Predicción del precio de Gracy - Pronóstico de GRACY
Predicción de precio de Gracy hasta $0.008061 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.00270073 | $0.008061 |
| 2027 | $0.002599 | $0.00683 |
| 2028 | $0.004692 | $0.011492 |
| 2029 | $0.0103071 | $0.033906 |
| 2030 | $0.008765 | $0.025344 |
| 2031 | $0.010363 | $0.023136 |
| 2032 | $0.015819 | $0.042917 |
| 2033 | $0.036761 | $0.114316 |
| 2034 | $0.029554 | $0.0662059 |
| 2035 | $0.034942 | $0.0780071 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en Gracy hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,955.39, equivalente a un ROI del 39.55% en los próximos 90 días.
Predicción del precio a largo plazo de Gracy para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'Gracy'
'name_with_ticker' => 'Gracy <small>GRACY</small>'
'name_lang' => 'Gracy'
'name_lang_with_ticker' => 'Gracy <small>GRACY</small>'
'name_with_lang' => 'Gracy'
'name_with_lang_with_ticker' => 'Gracy <small>GRACY</small>'
'image' => '/uploads/coins/gracy.png?1717115437'
'price_for_sd' => 0.007816
'ticker' => 'GRACY'
'marketcap' => '$0'
'low24h' => '$0.0077'
'high24h' => '$0.00791'
'volume24h' => '$118.26K'
'current_supply' => '0'
'max_supply' => '190M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.007816'
'change_24h_pct' => '1.2401%'
'ath_price' => '$0.1363'
'ath_days' => 666
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '11 mar. 2024'
'ath_pct' => '-94.27%'
'fdv' => '$1.49M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.385426'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.007883'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.006908'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.00270073'
'current_year_max_price_prediction' => '$0.008061'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.008765'
'grand_prediction_max_price' => '$0.025344'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0079650057643211
107 => 0.007994744204548
108 => 0.0080617464288616
109 => 0.0074892197580426
110 => 0.0077462674247404
111 => 0.0078972588468161
112 => 0.0072150741087632
113 => 0.0078837742479359
114 => 0.0074792533424605
115 => 0.0073419528714421
116 => 0.0075268098677069
117 => 0.0074547709164832
118 => 0.0073928360564902
119 => 0.0073582753404381
120 => 0.0074940139165728
121 => 0.0074876815497534
122 => 0.0072655868934747
123 => 0.0069758734680955
124 => 0.0070731108031718
125 => 0.0070377835677337
126 => 0.006909753109202
127 => 0.0069960301797959
128 => 0.0066161096247268
129 => 0.0059624760562824
130 => 0.0063942864129344
131 => 0.0063776621839226
201 => 0.0063692794938061
202 => 0.0066937730424684
203 => 0.0066625804751044
204 => 0.0066059656599003
205 => 0.0069087133337229
206 => 0.0067982063602468
207 => 0.0071387628137827
208 => 0.0073630753198918
209 => 0.0073061824125931
210 => 0.0075171494087852
211 => 0.0070753509549802
212 => 0.0072220986794568
213 => 0.0072523431820878
214 => 0.0069049774744223
215 => 0.0066676839648902
216 => 0.0066518591931484
217 => 0.0062404249486796
218 => 0.0064602098010937
219 => 0.0066536113759029
220 => 0.0065609870301378
221 => 0.0065316649293421
222 => 0.0066814651831192
223 => 0.0066931059457901
224 => 0.0064276953232611
225 => 0.0064828825961462
226 => 0.0067130226981978
227 => 0.0064770836560532
228 => 0.00601869263759
301 => 0.0059050053272594
302 => 0.0058898373443885
303 => 0.0055815083421177
304 => 0.0059126024569527
305 => 0.0057680710030566
306 => 0.0062246441341617
307 => 0.0059638520103253
308 => 0.0059526097831053
309 => 0.0059356155077862
310 => 0.0056702239986211
311 => 0.0057283278726179
312 => 0.0059214739992534
313 => 0.0059903907131838
314 => 0.0059832021353029
315 => 0.0059205274778624
316 => 0.0059492196150925
317 => 0.0058567922440711
318 => 0.0058241542156541
319 => 0.005721139620173
320 => 0.0055697366233242
321 => 0.0055907901386446
322 => 0.0052908211851379
323 => 0.0051273821787101
324 => 0.0050821444158224
325 => 0.0050216505886727
326 => 0.0050889773545669
327 => 0.0052899714107817
328 => 0.0050475299357189
329 => 0.0046318810320157
330 => 0.0046568622393596
331 => 0.0047129875952741
401 => 0.0046083983658337
402 => 0.0045094134376771
403 => 0.0045954728018082
404 => 0.0044193568819065
405 => 0.0047342703627905
406 => 0.0047257528356674
407 => 0.0048431331072219
408 => 0.0049165333999106
409 => 0.0047473694888901
410 => 0.0047048252227363
411 => 0.0047290603702666
412 => 0.0043285073660491
413 => 0.0048103993812362
414 => 0.0048145668033945
415 => 0.0047788828047594
416 => 0.0050354754260997
417 => 0.0055769658903734
418 => 0.0053732353963102
419 => 0.0052943447912221
420 => 0.005144373693281
421 => 0.0053442012768849
422 => 0.00532885763626
423 => 0.0052594678744515
424 => 0.0052175007300004
425 => 0.0052948264804343
426 => 0.0052079192137955
427 => 0.0051923082806551
428 => 0.0050977230106876
429 => 0.0050639603726647
430 => 0.0050389638596019
501 => 0.0050114451548265
502 => 0.0050721445603272
503 => 0.0049345917217908
504 => 0.0047687164829869
505 => 0.0047549257516753
506 => 0.0047930031733201
507 => 0.0047761567487729
508 => 0.0047548450974759
509 => 0.0047141553512669
510 => 0.0047020835727656
511 => 0.0047413109965006
512 => 0.0046970255222047
513 => 0.0047623711518829
514 => 0.004744600756349
515 => 0.0046453367714454
516 => 0.0045216170940214
517 => 0.0045205157293815
518 => 0.0044938605278214
519 => 0.0044599111209983
520 => 0.0044504671726773
521 => 0.0045882251222002
522 => 0.0048733799549641
523 => 0.0048173972381157
524 => 0.0048578504883783
525 => 0.0050568404416167
526 => 0.0051200933639145
527 => 0.0050751979378951
528 => 0.0050137423097304
529 => 0.0050164460454771
530 => 0.0052264585307996
531 => 0.0052395567519026
601 => 0.0052726517309836
602 => 0.0053151881317426
603 => 0.005082442070877
604 => 0.0050054837269408
605 => 0.0049690165940975
606 => 0.0048567119394966
607 => 0.0049778228812103
608 => 0.0049072567219613
609 => 0.0049167785077273
610 => 0.0049105774322559
611 => 0.0049139636387781
612 => 0.0047341823380546
613 => 0.0047996851950113
614 => 0.0046907739908328
615 => 0.0045449541142942
616 => 0.004544465274937
617 => 0.0045801544831369
618 => 0.0045589251455807
619 => 0.0045017975440732
620 => 0.0045099122502327
621 => 0.0044388188855806
622 => 0.0045185442718883
623 => 0.0045208305106965
624 => 0.0044901318942969
625 => 0.0046129598518871
626 => 0.0046632825663299
627 => 0.0046430760793876
628 => 0.0046618648253397
629 => 0.0048197235727476
630 => 0.0048454614364351
701 => 0.0048568924953373
702 => 0.0048415763907335
703 => 0.0046647501934569
704 => 0.0046725931872292
705 => 0.0046150465028364
706 => 0.0045664256186447
707 => 0.0045683701990295
708 => 0.0045933676537765
709 => 0.0047025330047382
710 => 0.004932265050188
711 => 0.0049409832133809
712 => 0.0049515498814974
713 => 0.0049085699318856
714 => 0.0048956067678199
715 => 0.0049127085272991
716 => 0.0049989838048329
717 => 0.0052209072421594
718 => 0.0051424646776402
719 => 0.0050786896516548
720 => 0.0051346375430675
721 => 0.0051260248037186
722 => 0.0050533246160592
723 => 0.0050512841639271
724 => 0.0049117492601528
725 => 0.0048601663832834
726 => 0.00481705987046
727 => 0.0047699886837808
728 => 0.0047420833064769
729 => 0.0047849586487829
730 => 0.0047947647468544
731 => 0.0047010170615697
801 => 0.004688239598475
802 => 0.0047647959819628
803 => 0.0047311063718995
804 => 0.0047657569713117
805 => 0.0047737962076027
806 => 0.0047725017054006
807 => 0.0047373258832674
808 => 0.0047597459033369
809 => 0.0047067158721427
810 => 0.0046490536780722
811 => 0.0046122687907368
812 => 0.0045801690977294
813 => 0.004597979873055
814 => 0.0045344877111383
815 => 0.0045141752906964
816 => 0.0047521505050038
817 => 0.0049279453544773
818 => 0.0049253892277436
819 => 0.0049098294636343
820 => 0.0048867108103509
821 => 0.0049972925313481
822 => 0.0049587680709039
823 => 0.0049867978347034
824 => 0.0049939325859959
825 => 0.0050155273293085
826 => 0.0050232455939119
827 => 0.0049999156376011
828 => 0.0049216174547079
829 => 0.0047265058273058
830 => 0.0046356808380564
831 => 0.0046057070787943
901 => 0.0046067965680152
902 => 0.0045767435916085
903 => 0.0045855955400402
904 => 0.0045736652451896
905 => 0.0045510721529907
906 => 0.0045965848132774
907 => 0.0046018297233957
908 => 0.004591206524649
909 => 0.0045937086725192
910 => 0.0045057531241241
911 => 0.0045124401934392
912 => 0.0044752057417412
913 => 0.0044682247309159
914 => 0.004374099279398
915 => 0.0042073423983316
916 => 0.0042997418979245
917 => 0.0041881362957521
918 => 0.0041458695631086
919 => 0.0043459537016175
920 => 0.0043258708035813
921 => 0.0042914976119693
922 => 0.0042406524975744
923 => 0.0042217935500559
924 => 0.0041072125549504
925 => 0.0041004424984937
926 => 0.0041572319336151
927 => 0.0041310255633117
928 => 0.0040942218942772
929 => 0.0039609227357624
930 => 0.0038110503477571
1001 => 0.0038155740530868
1002 => 0.0038632456712363
1003 => 0.0040018573303998
1004 => 0.0039476993571586
1005 => 0.003908407126181
1006 => 0.003901048872439
1007 => 0.0039931528235676
1008 => 0.0041234992107889
1009 => 0.0041846548193372
1010 => 0.0041240514685893
1011 => 0.0040544336023663
1012 => 0.0040586709193052
1013 => 0.004086859890548
1014 => 0.004089822152855
1015 => 0.0040445080787762
1016 => 0.0040572637252007
1017 => 0.0040378867318811
1018 => 0.0039189701596461
1019 => 0.0039168193359429
1020 => 0.0038876352913276
1021 => 0.0038867516100551
1022 => 0.0038371022698635
1023 => 0.003830155983961
1024 => 0.003731574205511
1025 => 0.0037964610306199
1026 => 0.0037529383550481
1027 => 0.003687339417
1028 => 0.0036760301353548
1029 => 0.0036756901646922
1030 => 0.0037430456064134
1031 => 0.0037956739430671
1101 => 0.0037536954506233
1102 => 0.0037441377616127
1103 => 0.0038461888752922
1104 => 0.0038332019408599
1105 => 0.0038219553393983
1106 => 0.004111828121465
1107 => 0.003882371195404
1108 => 0.0037823148786979
1109 => 0.003658476186595
1110 => 0.0036987986891926
1111 => 0.0037072952329507
1112 => 0.0034094855020452
1113 => 0.0032886641313066
1114 => 0.0032472027899265
1115 => 0.0032233412017849
1116 => 0.003234215227136
1117 => 0.003125461822538
1118 => 0.0031985459090431
1119 => 0.0031043746533577
1120 => 0.0030885865358823
1121 => 0.0032569764066278
1122 => 0.0032804068734227
1123 => 0.0031804452228002
1124 => 0.0032446367848211
1125 => 0.0032213600321029
1126 => 0.0031059889492485
1127 => 0.0031015826224957
1128 => 0.0030436934686091
1129 => 0.0029531081523255
1130 => 0.0029117082320554
1201 => 0.0028901467941281
1202 => 0.0028990434636409
1203 => 0.0028945450352927
1204 => 0.002865189747466
1205 => 0.0028962276460288
1206 => 0.002816938640946
1207 => 0.0027853651202471
1208 => 0.0027711040934475
1209 => 0.0027007305377316
1210 => 0.0028127261601378
1211 => 0.0028347907086355
1212 => 0.0028568987311099
1213 => 0.0030493339729609
1214 => 0.0030397204520943
1215 => 0.0031266219987532
1216 => 0.0031232451644517
1217 => 0.0030984594356329
1218 => 0.0029938925228007
1219 => 0.0030355710305296
1220 => 0.0029072910620183
1221 => 0.003003407136617
1222 => 0.0029595437740734
1223 => 0.0029885768896184
1224 => 0.002936372730058
1225 => 0.0029652646674156
1226 => 0.0028400230316251
1227 => 0.0027230741543213
1228 => 0.0027701377964989
1229 => 0.0028213013579263
1230 => 0.0029322369953339
1231 => 0.0028661646448931
]
'min_raw' => 0.0027007305377316
'max_raw' => 0.0080617464288616
'avg_raw' => 0.0053812384832966
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.00270073'
'max' => '$0.008061'
'avg' => '$0.005381'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0051161494622684
'max_diff' => 0.00024486642886157
'year' => 2026
]
1 => [
'items' => [
101 => 0.0028899267605838
102 => 0.0028103276507501
103 => 0.0026460919508015
104 => 0.0026470215070273
105 => 0.0026217574226594
106 => 0.0025999255651489
107 => 0.0028737538491523
108 => 0.0028396989734519
109 => 0.0027854369860152
110 => 0.0028580688124848
111 => 0.0028772738202255
112 => 0.0028778205597968
113 => 0.0029308108654903
114 => 0.0029590918011379
115 => 0.0029640764386224
116 => 0.0030474578295624
117 => 0.0030754061719783
118 => 0.0031905214389921
119 => 0.0029566923613361
120 => 0.0029518768053573
121 => 0.0028590908912326
122 => 0.0028002445976074
123 => 0.0028631201473023
124 => 0.0029188193009635
125 => 0.0028608216191976
126 => 0.0028683948920383
127 => 0.0027905377428523
128 => 0.002818368010167
129 => 0.0028423391855202
130 => 0.0028291037114507
131 => 0.0028092895661645
201 => 0.002914252605548
202 => 0.0029083301795126
203 => 0.0030060741748764
204 => 0.0030822726090026
205 => 0.0032188338250563
206 => 0.0030763250770071
207 => 0.0030711314918072
208 => 0.0031218996202133
209 => 0.0030753983996424
210 => 0.0031047855658756
211 => 0.0032140990982523
212 => 0.0032164087209374
213 => 0.003177719565181
214 => 0.0031753653265372
215 => 0.0031827960021132
216 => 0.0032263177010547
217 => 0.0032111098821578
218 => 0.0032287087552002
219 => 0.0032507164154231
220 => 0.0033417494291599
221 => 0.003363697180581
222 => 0.0033103755232321
223 => 0.0033151898718734
224 => 0.0032952461083127
225 => 0.0032759806826077
226 => 0.0033192865461031
227 => 0.0033984288628199
228 => 0.0033979365225751
301 => 0.0034162960017465
302 => 0.0034277338051722
303 => 0.0033786343798853
304 => 0.0033466724594594
305 => 0.0033589286935406
306 => 0.0033785266787423
307 => 0.0033525733310747
308 => 0.0031923772465098
309 => 0.0032409705052013
310 => 0.0032328822108661
311 => 0.0032213634961625
312 => 0.0032702243935374
313 => 0.0032655116407886
314 => 0.0031243463991842
315 => 0.0031333833399422
316 => 0.003124895965483
317 => 0.0031523204087142
318 => 0.0030739173897085
319 => 0.0030980336303023
320 => 0.003113159110327
321 => 0.0031220681342609
322 => 0.0031542536376853
323 => 0.0031504770403421
324 => 0.0031540188790918
325 => 0.0032017414840123
326 => 0.0034431060432794
327 => 0.0034562429836994
328 => 0.003391551884461
329 => 0.0034173947026312
330 => 0.0033677821429474
331 => 0.0034010873866384
401 => 0.0034238739885103
402 => 0.0033209057162627
403 => 0.0033148086034387
404 => 0.003264991275073
405 => 0.003291760285539
406 => 0.0032491688651275
407 => 0.0032596193099119
408 => 0.0032303989552415
409 => 0.0032829897759336
410 => 0.0033417944852548
411 => 0.0033566508770977
412 => 0.0033175701062379
413 => 0.0032892730525871
414 => 0.0032395927480054
415 => 0.0033222122017227
416 => 0.0033463726477718
417 => 0.003322085297185
418 => 0.0033164573873649
419 => 0.0033057925084253
420 => 0.0033187199918481
421 => 0.0033462410647939
422 => 0.0033332626350271
423 => 0.0033418351165386
424 => 0.0033091656569213
425 => 0.0033786506338381
426 => 0.0034890094996523
427 => 0.0034893643214514
428 => 0.003476385821726
429 => 0.003471075299264
430 => 0.0034843920275835
501 => 0.0034916158064161
502 => 0.003534679663931
503 => 0.0035808888987842
504 => 0.0037965272351757
505 => 0.0037359768532077
506 => 0.0039273040136362
507 => 0.0040786189568128
508 => 0.0041239916920709
509 => 0.0040822509105856
510 => 0.0039394579519171
511 => 0.003932451848135
512 => 0.0041458448140179
513 => 0.0040855515271389
514 => 0.0040783798325163
515 => 0.0040020851185012
516 => 0.0040471847437683
517 => 0.0040373207941508
518 => 0.0040217500671186
519 => 0.0041077970104612
520 => 0.0042688692069348
521 => 0.0042437645945889
522 => 0.0042250251660421
523 => 0.0041429144451158
524 => 0.0041923634392069
525 => 0.0041747555995442
526 => 0.0042504100529465
527 => 0.0042055940307023
528 => 0.0040850947461907
529 => 0.00410428465442
530 => 0.0041013841383959
531 => 0.0041610765526396
601 => 0.0041431583715404
602 => 0.0040978853259598
603 => 0.004268318679678
604 => 0.0042572516856877
605 => 0.0042729421528989
606 => 0.0042798495818091
607 => 0.0043835893608449
608 => 0.0044260882290131
609 => 0.0044357362161347
610 => 0.0044761068539141
611 => 0.00443473175789
612 => 0.0046002616419302
613 => 0.0047103293558805
614 => 0.0048381786696665
615 => 0.0050250008797637
616 => 0.0050952477589624
617 => 0.0050825582889906
618 => 0.0052242047565139
619 => 0.0054787403100293
620 => 0.005134007201806
621 => 0.0054970120018425
622 => 0.0053820888732429
623 => 0.0051096082027121
624 => 0.005092063659866
625 => 0.0052765907335151
626 => 0.0056858540227961
627 => 0.005583338210657
628 => 0.0056860217019395
629 => 0.0055662359550037
630 => 0.0055602875830348
701 => 0.0056802039755776
702 => 0.0059603951630562
703 => 0.0058272868326947
704 => 0.00563644340162
705 => 0.0057773592212729
706 => 0.0056552848971461
707 => 0.0053802172784364
708 => 0.0055832598187475
709 => 0.0054474910543601
710 => 0.0054871155976728
711 => 0.0057724813463357
712 => 0.0057381453844725
713 => 0.005782579298548
714 => 0.0057041546032427
715 => 0.0056308935713883
716 => 0.0054941464149964
717 => 0.005453662323542
718 => 0.005464850669955
719 => 0.0054536567791532
720 => 0.0053771480019232
721 => 0.0053606259387648
722 => 0.005333088442986
723 => 0.0053416234643993
724 => 0.0052898449159566
725 => 0.0053875617348619
726 => 0.0054056988375284
727 => 0.0054768089894213
728 => 0.0054841918812897
729 => 0.0056822326421217
730 => 0.0055731551189952
731 => 0.0056463337388087
801 => 0.0056397879542687
802 => 0.0051155136850761
803 => 0.0051877540536598
804 => 0.0053001373968996
805 => 0.0052495088531021
806 => 0.0051779319374272
807 => 0.0051201297403083
808 => 0.005032553501095
809 => 0.005155815376035
810 => 0.005317891634142
811 => 0.0054883024026618
812 => 0.0056930397752826
813 => 0.0056473447771194
814 => 0.005484474979893
815 => 0.0054917812000201
816 => 0.0055369453779543
817 => 0.0054784536639313
818 => 0.005461203315572
819 => 0.0055345754449868
820 => 0.0055350807185175
821 => 0.0054677789325743
822 => 0.0053929853135952
823 => 0.0053926719256007
824 => 0.005379363123524
825 => 0.0055686035613275
826 => 0.0056726666677531
827 => 0.0056845973351987
828 => 0.0056718636387754
829 => 0.0056767643331464
830 => 0.0056162123043914
831 => 0.005754616285979
901 => 0.0058816294662188
902 => 0.0058475872206737
903 => 0.0057965530552113
904 => 0.005755901884282
905 => 0.0058380110967156
906 => 0.0058343549027378
907 => 0.0058805201168933
908 => 0.005878425796116
909 => 0.0058629021709571
910 => 0.0058475877750713
911 => 0.0059083076236976
912 => 0.0058908212824241
913 => 0.0058733077800328
914 => 0.005838181769804
915 => 0.0058429559779754
916 => 0.0057919306242811
917 => 0.0057683239609008
918 => 0.0054133363839667
919 => 0.0053184721038561
920 => 0.0053483183375194
921 => 0.0053581444925985
922 => 0.0053168594363225
923 => 0.0053760516017614
924 => 0.0053668265654778
925 => 0.0054027157851917
926 => 0.0053802937588432
927 => 0.0053812139666257
928 => 0.0054471523652366
929 => 0.0054662945628753
930 => 0.0054565586866598
1001 => 0.0054633773606348
1002 => 0.0056205108244076
1003 => 0.0055981714707044
1004 => 0.0055863041342894
1005 => 0.0055895914675792
1006 => 0.0056297424365526
1007 => 0.0056409825157035
1008 => 0.0055933575105147
1009 => 0.0056158177382786
1010 => 0.00571145053747
1011 => 0.0057449166048394
1012 => 0.0058517242272587
1013 => 0.0058063504509008
1014 => 0.0058896359811367
1015 => 0.006145627306952
1016 => 0.0063501308912656
1017 => 0.0061620609436627
1018 => 0.0065376057328803
1019 => 0.0068300212199867
1020 => 0.006818797826548
1021 => 0.006767808422679
1022 => 0.0064349011648763
1023 => 0.0061285549428788
1024 => 0.0063848265657274
1025 => 0.0063854798547968
1026 => 0.006363465895118
1027 => 0.0062267390822054
1028 => 0.0063587080984012
1029 => 0.0063691833196658
1030 => 0.0063633199813438
1031 => 0.0062584918544566
1101 => 0.0060984386801761
1102 => 0.0061297126873174
1103 => 0.0061809401489872
1104 => 0.0060839558768782
1105 => 0.0060529635254551
1106 => 0.0061105842032868
1107 => 0.0062962500330053
1108 => 0.0062611509833859
1109 => 0.006260234405354
1110 => 0.006410403023939
1111 => 0.0063029147014483
1112 => 0.0061301071527007
1113 => 0.0060864709675903
1114 => 0.0059315919073052
1115 => 0.0060385674259044
1116 => 0.006042417284374
1117 => 0.0059838278861005
1118 => 0.006134861359466
1119 => 0.00613346955942
1120 => 0.0062768533640147
1121 => 0.006550949345902
1122 => 0.0064698856766138
1123 => 0.0063756174489338
1124 => 0.006385867019057
1125 => 0.0064982795052144
1126 => 0.0064303123499562
1127 => 0.0064547538128709
1128 => 0.006498242510133
1129 => 0.0065244803209548
1130 => 0.0063820918018567
1201 => 0.0063488942268248
1202 => 0.006280983639075
1203 => 0.0062632670343422
1204 => 0.0063185787910636
1205 => 0.0063040060973607
1206 => 0.006042093718677
1207 => 0.0060147224178378
1208 => 0.0060155618565574
1209 => 0.0059467354191629
1210 => 0.0058417585818986
1211 => 0.0061176314423878
1212 => 0.0060954749908524
1213 => 0.0060710159831303
1214 => 0.0060740120720151
1215 => 0.0061937591305547
1216 => 0.0061242997892303
1217 => 0.0063089688323034
1218 => 0.0062710064287071
1219 => 0.0062320704327039
1220 => 0.0062266882920368
1221 => 0.0062117012554386
1222 => 0.0061603051305128
1223 => 0.0060982412212366
1224 => 0.0060572612524487
1225 => 0.0055875033197655
1226 => 0.0056746876596153
1227 => 0.0057749852955099
1228 => 0.0058096076375032
1229 => 0.0057503837257306
1230 => 0.0061626436515236
1231 => 0.0062379675126014
]
'min_raw' => 0.0025999255651489
'max_raw' => 0.0068300212199867
'avg_raw' => 0.0047149733925678
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.002599'
'max' => '$0.00683'
'avg' => '$0.004714'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00010080497258279
'max_diff' => -0.0012317252088749
'year' => 2027
]
2 => [
'items' => [
101 => 0.0060098066241427
102 => 0.0059671270376597
103 => 0.006165441718108
104 => 0.006045833722814
105 => 0.0060996931957712
106 => 0.0059832784747943
107 => 0.0062198242002079
108 => 0.0062180221181027
109 => 0.0061260004882893
110 => 0.0062037765396707
111 => 0.0061902610367686
112 => 0.0060863688433485
113 => 0.0062231177680485
114 => 0.006223185593809
115 => 0.0061346167758364
116 => 0.0060311877866517
117 => 0.0060126971262692
118 => 0.0059987668975416
119 => 0.0060962672134428
120 => 0.0061836856918042
121 => 0.006346349807156
122 => 0.0063872474305595
123 => 0.0065468735774124
124 => 0.0064518239790176
125 => 0.0064939582348876
126 => 0.006539700929889
127 => 0.0065616316600046
128 => 0.0065258967121491
129 => 0.0067738618229549
130 => 0.0067947976757616
131 => 0.0068018172861133
201 => 0.0067182048459095
202 => 0.0067924722625458
203 => 0.00675772499778
204 => 0.0068481277276324
205 => 0.0068623040299932
206 => 0.0068502972062302
207 => 0.0068547969883572
208 => 0.0066432025103275
209 => 0.0066322302203919
210 => 0.0064826222685613
211 => 0.0065435886147784
212 => 0.0064296149527186
213 => 0.0064657571750166
214 => 0.0064816883222298
215 => 0.0064733667950102
216 => 0.0065470355605204
217 => 0.0064844020603023
218 => 0.0063191019553259
219 => 0.0061537568144465
220 => 0.00615168104089
221 => 0.0061081485838806
222 => 0.00607668259083
223 => 0.0060827440574077
224 => 0.0061041054562367
225 => 0.0060754410274972
226 => 0.0060815580366922
227 => 0.0061831411467482
228 => 0.0062035129150124
229 => 0.0061342816866871
301 => 0.0058563083149427
302 => 0.0057880929522732
303 => 0.0058371248021906
304 => 0.0058136907359857
305 => 0.0046921021638986
306 => 0.004955602762152
307 => 0.0047990396543046
308 => 0.0048711911375229
309 => 0.004711380746231
310 => 0.0047876506413357
311 => 0.0047735663766405
312 => 0.0051972675410824
313 => 0.0051906520301816
314 => 0.0051938185251648
315 => 0.005042673469358
316 => 0.0052834516472937
317 => 0.0054020676358481
318 => 0.005380114973229
319 => 0.0053856399854586
320 => 0.0052907019701115
321 => 0.0051947377326776
322 => 0.0050882986245731
323 => 0.0052860493311598
324 => 0.0052640628283045
325 => 0.0053144919553606
326 => 0.0054427474240945
327 => 0.0054616335290607
328 => 0.0054870166456593
329 => 0.005477918605252
330 => 0.0056946708387636
331 => 0.0056684207131081
401 => 0.0057316759632614
402 => 0.0056015551145087
403 => 0.0054543110229607
404 => 0.0054822973109919
405 => 0.005479602006403
406 => 0.0054452876854594
407 => 0.0054143102508085
408 => 0.0053627415499528
409 => 0.005525912550192
410 => 0.0055192881055675
411 => 0.0056265301639632
412 => 0.005607574088448
413 => 0.0054809807768188
414 => 0.0054855020817094
415 => 0.005515910029964
416 => 0.0056211522860651
417 => 0.0056523953531151
418 => 0.0056379223196366
419 => 0.0056721789163567
420 => 0.0056992539336503
421 => 0.0056755791216745
422 => 0.0060107645334923
423 => 0.0058715721814602
424 => 0.0059394135653465
425 => 0.0059555933356587
426 => 0.0059141491942278
427 => 0.0059231369445008
428 => 0.0059367509371489
429 => 0.0060194124346152
430 => 0.0062363401222639
501 => 0.0063324159184468
502 => 0.0066214646915593
503 => 0.0063244381610134
504 => 0.0063068138359088
505 => 0.0063588802483831
506 => 0.0065285824771201
507 => 0.0066661101941916
508 => 0.0067117360721086
509 => 0.0067177662850765
510 => 0.0068033634651997
511 => 0.0068524261725535
512 => 0.0067929697161034
513 => 0.0067425865946125
514 => 0.0065621205072152
515 => 0.0065830099482243
516 => 0.0067269174817149
517 => 0.0069301953488819
518 => 0.0071046289063684
519 => 0.0070435483541599
520 => 0.0075095498513614
521 => 0.0075557519963635
522 => 0.0075493683538184
523 => 0.0076546237159343
524 => 0.007445713257016
525 => 0.007356399988379
526 => 0.0067534799973516
527 => 0.0069228759220434
528 => 0.0071691028468569
529 => 0.0071365137900542
530 => 0.0069576972155901
531 => 0.0071044932579618
601 => 0.0070559578956171
602 => 0.0070176760416017
603 => 0.0071930526361485
604 => 0.0070002188663709
605 => 0.0071671791824932
606 => 0.006953050850083
607 => 0.0070438273649773
608 => 0.0069922982247573
609 => 0.0070256438936536
610 => 0.0068307057946502
611 => 0.0069358896610176
612 => 0.0068263297999968
613 => 0.0068262778543576
614 => 0.0068238593143532
615 => 0.0069527560049813
616 => 0.0069569593214351
617 => 0.0068617044723089
618 => 0.0068479767603894
619 => 0.0068987353063408
620 => 0.0068393103427159
621 => 0.0068671149091798
622 => 0.0068401525147092
623 => 0.0068340827117989
624 => 0.0067857174895183
625 => 0.0067648804219303
626 => 0.0067730511730366
627 => 0.0067451601871997
628 => 0.006728354859372
629 => 0.0068205163116643
630 => 0.0067712781654869
701 => 0.0068129698595882
702 => 0.0067654569122485
703 => 0.0066007563363634
704 => 0.0065060352934949
705 => 0.0061949311733993
706 => 0.006283159915935
707 => 0.0063416556635153
708 => 0.006322322819289
709 => 0.0063638572495047
710 => 0.0063664071261913
711 => 0.0063529038595348
712 => 0.0063372688066221
713 => 0.0063296585275368
714 => 0.0063863793128535
715 => 0.0064193076378637
716 => 0.0063475264943572
717 => 0.0063307091767585
718 => 0.0064032838759892
719 => 0.0064475544005948
720 => 0.0067744230808241
721 => 0.0067502075932208
722 => 0.0068109837150557
723 => 0.0068041412564227
724 => 0.0068678443145011
725 => 0.0069719718915383
726 => 0.0067602514128932
727 => 0.0067969987672427
728 => 0.0067879891645765
729 => 0.0068863536440409
730 => 0.0068866607272089
731 => 0.0068276863080999
801 => 0.0068596572974496
802 => 0.0068418119682728
803 => 0.0068740608900361
804 => 0.0067498841806204
805 => 0.0069011180086413
806 => 0.0069868578438366
807 => 0.0069880483415314
808 => 0.0070286883429406
809 => 0.0070699809380824
810 => 0.0071492384786301
811 => 0.0070677704882936
812 => 0.0069212175044274
813 => 0.0069317981564993
814 => 0.0068458741956801
815 => 0.0068473185929849
816 => 0.0068396082869724
817 => 0.0068627474957207
818 => 0.00675496193571
819 => 0.0067802589912058
820 => 0.0067448429653723
821 => 0.0067969217797192
822 => 0.0067408935844184
823 => 0.0067879848198733
824 => 0.0068083078359965
825 => 0.0068833002030143
826 => 0.0067298171508354
827 => 0.0064168548175535
828 => 0.0064826432943109
829 => 0.0063853369696134
830 => 0.0063943430404355
831 => 0.0064125367368016
901 => 0.006353565014272
902 => 0.0063648149605181
903 => 0.0063644130332736
904 => 0.0063609494414186
905 => 0.0063456086187927
906 => 0.0063233613908958
907 => 0.0064119874995012
908 => 0.0064270468023463
909 => 0.0064605217671181
910 => 0.0065601205559934
911 => 0.0065501682882835
912 => 0.0065664008498339
913 => 0.0065309652591114
914 => 0.0063959867958574
915 => 0.006403316775813
916 => 0.0063119118083108
917 => 0.0064581843365927
918 => 0.0064235450711925
919 => 0.0064012129114472
920 => 0.0063951193747547
921 => 0.0064949650497631
922 => 0.0065248404406148
923 => 0.0065062241018989
924 => 0.0064680414480673
925 => 0.0065413634311123
926 => 0.006560981300569
927 => 0.0065653730180612
928 => 0.0066952855139211
929 => 0.0065726336834319
930 => 0.006602157198085
1001 => 0.0068324912315496
1002 => 0.0066236100471211
1003 => 0.0067342590691192
1004 => 0.0067288433752821
1005 => 0.0067854476707775
1006 => 0.0067242001708959
1007 => 0.0067249594070614
1008 => 0.0067752201867542
1009 => 0.006704637986255
1010 => 0.0066871608408117
1011 => 0.0066630162895554
1012 => 0.0067157350339127
1013 => 0.0067473375368912
1014 => 0.007002030501417
1015 => 0.0071665737719109
1016 => 0.0071594305145868
1017 => 0.0072247065149121
1018 => 0.0071952990789059
1019 => 0.0071003347107523
1020 => 0.0072624273075195
1021 => 0.0072111344276601
1022 => 0.0072153629503548
1023 => 0.0072152055645289
1024 => 0.0072493108455341
1025 => 0.0072251441282388
1026 => 0.0071775090477873
1027 => 0.0072091314372271
1028 => 0.0073030386286525
1029 => 0.0075945294322614
1030 => 0.0077576515477004
1031 => 0.0075847092760898
1101 => 0.0077040025392575
1102 => 0.0076324690898927
1103 => 0.0076194693342073
1104 => 0.0076943943191796
1105 => 0.0077694504504195
1106 => 0.0077646696993361
1107 => 0.0077101828022309
1108 => 0.00767940453661
1109 => 0.007912467875367
1110 => 0.0080841849732328
1111 => 0.0080724750183644
1112 => 0.0081241589508722
1113 => 0.0082759045752391
1114 => 0.0082897782933932
1115 => 0.0082880305237895
1116 => 0.008253643065772
1117 => 0.0084030563396206
1118 => 0.0085276995213415
1119 => 0.0082456833627901
1120 => 0.0083530714241039
1121 => 0.0084012813846549
1122 => 0.0084720679099945
1123 => 0.0085914966434416
1124 => 0.0087212279248722
1125 => 0.0087395733504976
1126 => 0.0087265563931069
1127 => 0.0086409951256394
1128 => 0.0087829486417969
1129 => 0.0088661016823423
1130 => 0.0089156174150636
1201 => 0.0090411810746125
1202 => 0.0084015791129586
1203 => 0.0079488370542199
1204 => 0.0078781348440732
1205 => 0.0080219105686335
1206 => 0.0080598230806101
1207 => 0.0080445405945706
1208 => 0.007534938245953
1209 => 0.0078754518931724
1210 => 0.0082418159463798
1211 => 0.0082558894817281
1212 => 0.0084392989870748
1213 => 0.0084990246402253
1214 => 0.0086466933320628
1215 => 0.0086374566151825
1216 => 0.0086734115917229
1217 => 0.0086651461652697
1218 => 0.008938671321587
1219 => 0.0092404101878838
1220 => 0.0092299619304148
1221 => 0.0091865833983724
1222 => 0.0092510079155942
1223 => 0.0095624347619145
1224 => 0.0095337635684189
1225 => 0.0095616151906934
1226 => 0.0099288049937531
1227 => 0.010406203969871
1228 => 0.010184404215391
1229 => 0.010665645861453
1230 => 0.010968561968126
1231 => 0.011492424052506
]
'min_raw' => 0.0046921021638986
'max_raw' => 0.011492424052506
'avg_raw' => 0.0080922631082022
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.004692'
'max' => '$0.011492'
'avg' => '$0.008092'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0020921765987497
'max_diff' => 0.0046624028325192
'year' => 2028
]
3 => [
'items' => [
101 => 0.011426833939466
102 => 0.011630769604638
103 => 0.011309413948056
104 => 0.010571516403849
105 => 0.01045474129292
106 => 0.010688528022217
107 => 0.011263269883617
108 => 0.010670427355669
109 => 0.010790358626953
110 => 0.010755818412755
111 => 0.010753977911527
112 => 0.010824222357546
113 => 0.010722329124891
114 => 0.010307197764813
115 => 0.010497450020753
116 => 0.010423984488071
117 => 0.0105054999738
118 => 0.010945405430734
119 => 0.010750912742187
120 => 0.010546030494106
121 => 0.01080299830021
122 => 0.0111302066211
123 => 0.011109730512429
124 => 0.011069998303257
125 => 0.011293966686048
126 => 0.011663896837841
127 => 0.011763887471371
128 => 0.011837698512824
129 => 0.011847875808392
130 => 0.011952708277903
131 => 0.01138899766816
201 => 0.012283620882938
202 => 0.012438097598663
203 => 0.01240906237851
204 => 0.012580756746664
205 => 0.012530239908088
206 => 0.012457048934839
207 => 0.012729221028803
208 => 0.012417197686229
209 => 0.011974319834092
210 => 0.011731348285279
211 => 0.012051312820712
212 => 0.012246703997277
213 => 0.012375845135774
214 => 0.012414923166254
215 => 0.011432756918116
216 => 0.010903423783807
217 => 0.011242720254082
218 => 0.011656685364809
219 => 0.011386698071068
220 => 0.011397281061829
221 => 0.011012350132366
222 => 0.011690743210755
223 => 0.011591907045418
224 => 0.012104669246026
225 => 0.011982294431677
226 => 0.01240043210096
227 => 0.012290322439318
228 => 0.012747381488643
301 => 0.012929714717799
302 => 0.013235880587452
303 => 0.013461097447488
304 => 0.013593349095413
305 => 0.013585409202535
306 => 0.014109456119125
307 => 0.013800443961217
308 => 0.01341225186231
309 => 0.013405230691972
310 => 0.01360628088072
311 => 0.01402762692091
312 => 0.014136875818796
313 => 0.014197931048705
314 => 0.014104422838751
315 => 0.013769012288443
316 => 0.01362418371339
317 => 0.013747581855423
318 => 0.01359667653144
319 => 0.01385718145719
320 => 0.014214910361095
321 => 0.014141040757052
322 => 0.014387975768218
323 => 0.014643527526453
324 => 0.015008978018278
325 => 0.015104520309433
326 => 0.015262448083565
327 => 0.015425007639719
328 => 0.015477217388052
329 => 0.015576901997354
330 => 0.015576376610258
331 => 0.015876782889938
401 => 0.016208140319233
402 => 0.01633322007785
403 => 0.016620834085851
404 => 0.016128305176346
405 => 0.01650189401197
406 => 0.016838880493238
407 => 0.016437111317949
408 => 0.016990856525874
409 => 0.017012357197484
410 => 0.017336991812023
411 => 0.017007912437721
412 => 0.016812506155718
413 => 0.017376636770081
414 => 0.017649601804423
415 => 0.017567382514616
416 => 0.016941689659518
417 => 0.016577509580621
418 => 0.015624380069058
419 => 0.016753403147635
420 => 0.017303317355155
421 => 0.01694026551457
422 => 0.017123367745497
423 => 0.018122314146337
424 => 0.018502648258787
425 => 0.018423541422134
426 => 0.018436909175319
427 => 0.018642130558845
428 => 0.019552195190878
429 => 0.019006863368231
430 => 0.019423749113451
501 => 0.019644863809523
502 => 0.01985024746209
503 => 0.019345890123555
504 => 0.018689728636602
505 => 0.018481894749898
506 => 0.016904167163993
507 => 0.016822039591423
508 => 0.01677593889622
509 => 0.016485280534033
510 => 0.016256902679381
511 => 0.016075288130235
512 => 0.015598677318581
513 => 0.015759519476457
514 => 0.014999901319088
515 => 0.015485878096958
516 => 0.014273509176175
517 => 0.01528320603914
518 => 0.014733673941911
519 => 0.015102669965582
520 => 0.015101382573217
521 => 0.014421943903343
522 => 0.014030057858083
523 => 0.014279782898556
524 => 0.014547507965141
525 => 0.014590945456459
526 => 0.014938057993626
527 => 0.01503492964159
528 => 0.014741404025754
529 => 0.014248385525039
530 => 0.014362902478201
531 => 0.014027737175683
601 => 0.013440372874967
602 => 0.013862228170138
603 => 0.014006268115577
604 => 0.014069884361258
605 => 0.01349227903075
606 => 0.013310782895482
607 => 0.013214155875966
608 => 0.014173823930128
609 => 0.014226396712463
610 => 0.013957426924994
611 => 0.015173195869115
612 => 0.014898029913475
613 => 0.015205457703221
614 => 0.014352511265011
615 => 0.014385094967595
616 => 0.013981296454674
617 => 0.014207396640084
618 => 0.014047596316585
619 => 0.014189129979468
620 => 0.014273964673435
621 => 0.014677696926994
622 => 0.015287816012952
623 => 0.014617392791596
624 => 0.014325279793414
625 => 0.014506505054581
626 => 0.014989131806652
627 => 0.015720336041249
628 => 0.015287448417511
629 => 0.015479556594017
630 => 0.015521523684286
701 => 0.015202328376912
702 => 0.015732105227527
703 => 0.016016016945671
704 => 0.016307251621234
705 => 0.016560122529816
706 => 0.016190926087427
707 => 0.016586019203014
708 => 0.016267643895174
709 => 0.015982028331007
710 => 0.015982461491921
711 => 0.015803290676341
712 => 0.01545612464418
713 => 0.015392101901367
714 => 0.015725156294662
715 => 0.015992234377715
716 => 0.016014232207853
717 => 0.016162100357599
718 => 0.016249607205456
719 => 0.017107293274241
720 => 0.017452261706258
721 => 0.01787408257501
722 => 0.01803840557591
723 => 0.018532958895564
724 => 0.018133566924287
725 => 0.018047155959008
726 => 0.016847531372685
727 => 0.017043969831491
728 => 0.017358486757532
729 => 0.016852717640952
730 => 0.017173511733419
731 => 0.01723684328262
801 => 0.016835531799906
802 => 0.017049889602469
803 => 0.01648061883152
804 => 0.015300224560121
805 => 0.015733419343785
806 => 0.016052396516349
807 => 0.015597176761498
808 => 0.01641314055263
809 => 0.015936471350763
810 => 0.015785390097927
811 => 0.015195968266261
812 => 0.015474152681881
813 => 0.015850401087223
814 => 0.015617923316293
815 => 0.016100349597686
816 => 0.016783593870527
817 => 0.017270514427253
818 => 0.017307894141482
819 => 0.01699483684465
820 => 0.017496513160728
821 => 0.017500167324998
822 => 0.016934274391055
823 => 0.01658766811992
824 => 0.016508918445852
825 => 0.016705650571456
826 => 0.016944519690694
827 => 0.017321149715155
828 => 0.01754873935097
829 => 0.018142172416961
830 => 0.018302738389559
831 => 0.018479151712882
901 => 0.018714894316697
902 => 0.018997963755739
903 => 0.018378623938267
904 => 0.018403231463809
905 => 0.017826510801122
906 => 0.017210202062931
907 => 0.017677903571249
908 => 0.01828936107765
909 => 0.018149092050081
910 => 0.018133308919044
911 => 0.018159851767573
912 => 0.018054093501545
913 => 0.017575752783881
914 => 0.017335533070041
915 => 0.017645477787479
916 => 0.017810199610745
917 => 0.018065668793378
918 => 0.018034176824318
919 => 0.018692238003394
920 => 0.018947940678845
921 => 0.01888252099233
922 => 0.018894559789062
923 => 0.019357497269015
924 => 0.019872378957077
925 => 0.02035463360257
926 => 0.020845203741285
927 => 0.020253802291786
928 => 0.019953525108301
929 => 0.020263334513571
930 => 0.020098945282252
1001 => 0.021043574566427
1002 => 0.02110897864853
1003 => 0.022053539625257
1004 => 0.022950040468399
1005 => 0.022386964351302
1006 => 0.022917919768219
1007 => 0.023492191341045
1008 => 0.024600054377231
1009 => 0.024226965081735
1010 => 0.02394118452844
1011 => 0.023671123286457
1012 => 0.024233077860008
1013 => 0.024956023441437
1014 => 0.02511173899539
1015 => 0.025364057680714
1016 => 0.025098775435157
1017 => 0.02541827868005
1018 => 0.026546265531361
1019 => 0.026241473527121
1020 => 0.025808619883341
1021 => 0.026699057169443
1022 => 0.027021302961796
1023 => 0.02928299269396
1024 => 0.03213846940656
1025 => 0.030956283297473
1026 => 0.030222462230655
1027 => 0.030394927587825
1028 => 0.03143765101928
1029 => 0.031772540691076
1030 => 0.030862195119742
1031 => 0.031183744565507
1101 => 0.032955513625715
1102 => 0.03390601088136
1103 => 0.032615107939382
1104 => 0.029053557920418
1105 => 0.025769646148673
1106 => 0.026640687427014
1107 => 0.026541938377608
1108 => 0.02844548320011
1109 => 0.026234204338622
1110 => 0.026271436603508
1111 => 0.028214344717051
1112 => 0.027696010142235
1113 => 0.026856374514311
1114 => 0.025775776417953
1115 => 0.023778190893611
1116 => 0.022008873687908
1117 => 0.025478912177709
1118 => 0.025329277808174
1119 => 0.025112585066515
1120 => 0.025594811314473
1121 => 0.027936365092251
1122 => 0.027882384698803
1123 => 0.027538988976728
1124 => 0.027799451605371
1125 => 0.026810714156191
1126 => 0.027065534309978
1127 => 0.025769125960271
1128 => 0.026355156677133
1129 => 0.026854573033353
1130 => 0.026954838260849
1201 => 0.027180740938068
1202 => 0.025250427294867
1203 => 0.026117081449633
1204 => 0.026626159571046
1205 => 0.024326126098083
1206 => 0.026580695304457
1207 => 0.025216824828899
1208 => 0.024753906704847
1209 => 0.025377164974057
1210 => 0.025134280620408
1211 => 0.024925462915787
1212 => 0.024808939048666
1213 => 0.025266591135069
1214 => 0.025245241118225
1215 => 0.024496433478428
1216 => 0.023519644437617
1217 => 0.02384748690172
1218 => 0.023728378660972
1219 => 0.023296715031231
1220 => 0.023587604198411
1221 => 0.022306675521789
1222 => 0.020102904310541
1223 => 0.021558783076029
1224 => 0.021502733327249
1225 => 0.021474470502261
1226 => 0.022568523156992
1227 => 0.022463355238329
1228 => 0.022272474436148
1229 => 0.023293209355609
1230 => 0.022920627379183
1231 => 0.024068837239172
]
'min_raw' => 0.010307197764813
'max_raw' => 0.03390601088136
'avg_raw' => 0.022106604323086
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.0103071'
'max' => '$0.033906'
'avg' => '$0.0221066'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0056150956009148
'max_diff' => 0.022413586828854
'year' => 2029
]
4 => [
'items' => [
101 => 0.024825122514518
102 => 0.024633304105424
103 => 0.025344594062331
104 => 0.023855039729944
105 => 0.024349809928616
106 => 0.024451781380841
107 => 0.023280613645147
108 => 0.022480562010456
109 => 0.022427207687678
110 => 0.02104002840703
111 => 0.021781048381832
112 => 0.022433115294168
113 => 0.022120825845596
114 => 0.02202196433556
115 => 0.022527026349889
116 => 0.022566273993966
117 => 0.021671423549731
118 => 0.021857491293316
119 => 0.022633424715252
120 => 0.021837939761923
121 => 0.020292442439335
122 => 0.019909137735162
123 => 0.019857997821917
124 => 0.018818445063918
125 => 0.019934751988337
126 => 0.019447454100663
127 => 0.020986822289101
128 => 0.020107543435662
129 => 0.020069639481683
130 => 0.020012342095942
131 => 0.019117556093748
201 => 0.019313457361612
202 => 0.019964663012595
203 => 0.020197020525223
204 => 0.020172783733007
205 => 0.019961471749642
206 => 0.020058209293534
207 => 0.019746583959062
208 => 0.01963654256754
209 => 0.019289221666626
210 => 0.018778755892131
211 => 0.018849739288943
212 => 0.017838373019031
213 => 0.017287326997913
214 => 0.017134804721937
215 => 0.016930845560158
216 => 0.017157842451975
217 => 0.01783550794546
218 => 0.017018099585563
219 => 0.015616710287048
220 => 0.01570093617174
221 => 0.015890166727753
222 => 0.015537536838508
223 => 0.01520380224232
224 => 0.015493957396962
225 => 0.014900170276992
226 => 0.01596192306435
227 => 0.015933205626979
228 => 0.016328961407754
301 => 0.016576435619199
302 => 0.016006087682546
303 => 0.015862646718863
304 => 0.015944357210805
305 => 0.014593864791368
306 => 0.016218597365197
307 => 0.016232648119964
308 => 0.016112337027189
309 => 0.016977456964763
310 => 0.018803129870718
311 => 0.018116238285975
312 => 0.017850253102955
313 => 0.017344615075599
314 => 0.018018347725235
315 => 0.01796661556961
316 => 0.017732663143034
317 => 0.017591167985465
318 => 0.017851877151764
319 => 0.01755886323462
320 => 0.017506229883616
321 => 0.017187329042188
322 => 0.017073495950862
323 => 0.01698921846187
324 => 0.016896437227425
325 => 0.017101089510968
326 => 0.01663732051221
327 => 0.016078060563543
328 => 0.016031564150088
329 => 0.016159944835644
330 => 0.016103145939104
331 => 0.016031292218823
401 => 0.015894103898613
402 => 0.015853403054571
403 => 0.015985661052464
404 => 0.015836349483963
405 => 0.016056666836709
406 => 0.015996752707477
407 => 0.015662077251985
408 => 0.015244947721717
409 => 0.015241234393939
410 => 0.015151364520873
411 => 0.015036901725496
412 => 0.015005060794377
413 => 0.015469521339146
414 => 0.016430940766685
415 => 0.016242191128242
416 => 0.016378582085858
417 => 0.017049490606236
418 => 0.017262752249941
419 => 0.017111384186618
420 => 0.016904182245566
421 => 0.016913298079405
422 => 0.017621369836273
423 => 0.01766553140321
424 => 0.017777113435799
425 => 0.017920527880755
426 => 0.017135808286736
427 => 0.016876337857095
428 => 0.01675338637266
429 => 0.016374743388812
430 => 0.016783077384496
501 => 0.016545158651816
502 => 0.016577262017316
503 => 0.016556354658419
504 => 0.016567771490126
505 => 0.015961626282807
506 => 0.0161824737383
507 => 0.015815272009474
508 => 0.015323630114906
509 => 0.015321981958883
510 => 0.01544231061607
511 => 0.015370734422315
512 => 0.01517812472531
513 => 0.015205484023678
514 => 0.014965787781173
515 => 0.015234587487358
516 => 0.01524229570112
517 => 0.01513879317262
518 => 0.015552916207209
519 => 0.015722582752373
520 => 0.015654455170875
521 => 0.015717802739641
522 => 0.016250034527873
523 => 0.016336811532255
524 => 0.016375352145435
525 => 0.016323712829427
526 => 0.015727530959698
527 => 0.015753974160782
528 => 0.01555995149657
529 => 0.015396022790916
530 => 0.01540257907945
531 => 0.015486859743396
601 => 0.015854918345845
602 => 0.016629475976458
603 => 0.016658869872346
604 => 0.016694496131642
605 => 0.016549586230761
606 => 0.016505880018054
607 => 0.016563539794145
608 => 0.016854422915898
609 => 0.017602653279044
610 => 0.017338178696082
611 => 0.017123156743343
612 => 0.017311788965398
613 => 0.01728275051336
614 => 0.017037636754902
615 => 0.017030757228079
616 => 0.016560305557987
617 => 0.016386390287221
618 => 0.016241053669636
619 => 0.016082349877342
620 => 0.015988264949471
621 => 0.016132822159516
622 => 0.016165884103804
623 => 0.015849807237612
624 => 0.015806727128695
625 => 0.01606484232062
626 => 0.015951255448158
627 => 0.016068082363304
628 => 0.01609518720974
629 => 0.016090822705187
630 => 0.015972224964967
701 => 0.016047815627947
702 => 0.015869021175338
703 => 0.015674609062183
704 => 0.015550586246293
705 => 0.015442359890189
706 => 0.015502410162708
707 => 0.015288341905925
708 => 0.015219857162237
709 => 0.016022207212173
710 => 0.016614911820778
711 => 0.016606293661032
712 => 0.01655383282999
713 => 0.016475886676352
714 => 0.016848720669263
715 => 0.016718832761184
716 => 0.016813337066809
717 => 0.016837392378924
718 => 0.016910200563699
719 => 0.016936223231682
720 => 0.016857564655134
721 => 0.016593576864905
722 => 0.015935744390861
723 => 0.015629521598408
724 => 0.015528462976354
725 => 0.015532136265328
726 => 0.015430810557142
727 => 0.015460655519302
728 => 0.015420431697267
729 => 0.015344257509519
730 => 0.015497706621268
731 => 0.01551539020192
801 => 0.015479573345657
802 => 0.015488009511896
803 => 0.015191461239622
804 => 0.015214007160694
805 => 0.015088468607168
806 => 0.015064931641771
807 => 0.01474758111035
808 => 0.014185348643241
809 => 0.014496880007245
810 => 0.014120593927467
811 => 0.01397808868739
812 => 0.014652686329801
813 => 0.014584975436929
814 => 0.01446908382155
815 => 0.014297655968475
816 => 0.014234071710226
817 => 0.013847753885439
818 => 0.013824928167425
819 => 0.014016397712848
820 => 0.0139280411057
821 => 0.013803954966
822 => 0.013354527546417
823 => 0.012849222326502
824 => 0.012864474314855
825 => 0.013025202503773
826 => 0.0134925413902
827 => 0.013309944002228
828 => 0.013177467502191
829 => 0.013152658635963
830 => 0.013463193537685
831 => 0.013902665482696
901 => 0.014108855886665
902 => 0.013904527458428
903 => 0.013669805961893
904 => 0.013684092371792
905 => 0.013779133456428
906 => 0.013789120930615
907 => 0.01363634136613
908 => 0.013679347918621
909 => 0.013614017032786
910 => 0.013213081507006
911 => 0.013205829854725
912 => 0.013107433810739
913 => 0.013104454417633
914 => 0.01293705820077
915 => 0.012913638312876
916 => 0.012581262964072
917 => 0.01280003342518
918 => 0.012653293685833
919 => 0.012432122286232
920 => 0.012393992253577
921 => 0.012392846018752
922 => 0.012619939593122
923 => 0.012797379704543
924 => 0.012655846286424
925 => 0.012623621870628
926 => 0.01296769432538
927 => 0.012923907969222
928 => 0.012885989267182
929 => 0.013863315590191
930 => 0.013089685543805
1001 => 0.012752338686322
1002 => 0.012334807889755
1003 => 0.012470758022491
1004 => 0.012499404712981
1005 => 0.011495318412821
1006 => 0.011087960725898
1007 => 0.010948170918696
1008 => 0.010867719908314
1009 => 0.010904382443985
1010 => 0.010537712747463
1011 => 0.010784120847683
1012 => 0.010466615884312
1013 => 0.010413385143953
1014 => 0.010981123349777
1015 => 0.011060120804439
1016 => 0.010723093120265
1017 => 0.01093951945333
1018 => 0.01086104025641
1019 => 0.010472058595615
1020 => 0.010457202357328
1021 => 0.010262025033307
1022 => 0.0099566103149925
1023 => 0.0098170275933516
1024 => 0.0097443317000083
1025 => 0.0097743274424164
1026 => 0.00975916067717
1027 => 0.0096601872747417
1028 => 0.0097648337167431
1029 => 0.0094975053003248
1030 => 0.0093910529708956
1031 => 0.0093429709233677
1101 => 0.009105701566947
1102 => 0.0094833026271741
1103 => 0.0095576947929317
1104 => 0.0096322335342367
1105 => 0.010281042387537
1106 => 0.010248629730741
1107 => 0.010541624362573
1108 => 0.010530239129963
1109 => 0.010446672314766
1110 => 0.010094117667524
1111 => 0.010234639666232
1112 => 0.0098021347961747
1113 => 0.010126196852294
1114 => 0.0099783084630362
1115 => 0.010076195639124
1116 => 0.0099001856703876
1117 => 0.0099975968543596
1118 => 0.0095753359352002
1119 => 0.0091810346302606
1120 => 0.009339712985741
1121 => 0.0095122145052192
1122 => 0.0098862417520176
1123 => 0.0096634742094822
1124 => 0.0097435898415513
1125 => 0.0094752158853147
1126 => 0.0089214837563677
1127 => 0.0089246178200824
1128 => 0.0088394381957541
1129 => 0.0087658305639056
1130 => 0.0096890617415035
1201 => 0.0095742433504441
1202 => 0.0093912952713504
1203 => 0.0096361785452849
1204 => 0.0097009295697334
1205 => 0.0097027729403702
1206 => 0.0098814334556807
1207 => 0.0099767846047285
1208 => 0.0099935906580238
1209 => 0.010274716839081
1210 => 0.010368946626827
1211 => 0.010757065786655
1212 => 0.0099686947259132
1213 => 0.0099524587427192
1214 => 0.0096396245551421
1215 => 0.0094412201676678
1216 => 0.0096532094732948
1217 => 0.0098410030586543
1218 => 0.0096454598253118
1219 => 0.0096709936434434
1220 => 0.0094084928291502
1221 => 0.0095023245184487
1222 => 0.0095831450097661
1223 => 0.0095385206848695
1224 => 0.0094717159106576
1225 => 0.0098256061262247
1226 => 0.0098056382533554
1227 => 0.010135188957992
1228 => 0.010392097298654
1229 => 0.010852522972978
1230 => 0.010372044779288
1231 => 0.010354534244182
]
'min_raw' => 0.0087658305639056
'max_raw' => 0.025344594062331
'avg_raw' => 0.017055212313118
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.008765'
'max' => '$0.025344'
'avg' => '$0.017055'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0015413672009077
'max_diff' => -0.0085614168190285
'year' => 2030
]
5 => [
'items' => [
101 => 0.01052570253362
102 => 0.010368920421854
103 => 0.010468001304556
104 => 0.010836559510991
105 => 0.010844346565126
106 => 0.010713903375303
107 => 0.010705965895348
108 => 0.010731018936845
109 => 0.010877755383415
110 => 0.010826481160228
111 => 0.010885816989404
112 => 0.010960017352372
113 => 0.011266941513907
114 => 0.011340939890166
115 => 0.011161162199615
116 => 0.011177394112187
117 => 0.011110152320913
118 => 0.011045197593079
119 => 0.011191206335373
120 => 0.011458040181723
121 => 0.011456380222214
122 => 0.011518280488058
123 => 0.01155684384087
124 => 0.011391301700503
125 => 0.011283539854277
126 => 0.011324862603184
127 => 0.01139093857858
128 => 0.011303435054913
129 => 0.01076332277127
130 => 0.010927158335621
131 => 0.010899888086563
201 => 0.010861051935729
202 => 0.011025789862587
203 => 0.011009900487661
204 => 0.010533952019749
205 => 0.010564420696454
206 => 0.010535804920895
207 => 0.010628268345963
208 => 0.010363927093461
209 => 0.010445236682365
210 => 0.010496233294296
211 => 0.010526270690497
212 => 0.010634786362412
213 => 0.010622053300796
214 => 0.010633994857424
215 => 0.010794894951799
216 => 0.011608672414904
217 => 0.011652964526722
218 => 0.011434853969051
219 => 0.0115219848348
220 => 0.011354712625988
221 => 0.01146700358039
222 => 0.011543830199511
223 => 0.011196665480613
224 => 0.01117610863904
225 => 0.01100814603832
226 => 0.011098399626059
227 => 0.010954799678503
228 => 0.010990034082721
301 => 0.010891515616849
302 => 0.011068829240587
303 => 0.011267093423677
304 => 0.011317182786015
305 => 0.011185419238529
306 => 0.011090013746508
307 => 0.010922513131043
308 => 0.011201070387557
309 => 0.01128252901824
310 => 0.011200642520048
311 => 0.011181667629161
312 => 0.011145710245218
313 => 0.011189296158146
314 => 0.011282085377043
315 => 0.011238327694959
316 => 0.011267230414887
317 => 0.011157083050878
318 => 0.01139135650184
319 => 0.011763439122942
320 => 0.011764635429411
321 => 0.011720877511457
322 => 0.011702972714207
323 => 0.011747870993481
324 => 0.011772226468163
325 => 0.011917419270397
326 => 0.01207321693193
327 => 0.012800256638462
328 => 0.012596106798164
329 => 0.013241179677585
330 => 0.013751348572976
331 => 0.013904325917722
401 => 0.013763593958696
402 => 0.013282157529059
403 => 0.013258535961008
404 => 0.013978005244103
405 => 0.013774722217848
406 => 0.013750542348716
407 => 0.013493309393687
408 => 0.01364536592903
409 => 0.013612108934216
410 => 0.013559611140913
411 => 0.013849724417999
412 => 0.014392790574111
413 => 0.014308148620839
414 => 0.014244967329148
415 => 0.013968125300758
416 => 0.014134846036754
417 => 0.014075479975991
418 => 0.014330554247662
419 => 0.014179453899711
420 => 0.013773182148989
421 => 0.013837882264381
422 => 0.013828102972098
423 => 0.014029360114312
424 => 0.013968947715729
425 => 0.01381630648169
426 => 0.014390934433028
427 => 0.014353621290117
428 => 0.014406522795793
429 => 0.014429811674625
430 => 0.014779577582524
501 => 0.01492286548373
502 => 0.014955394345911
503 => 0.015091506769772
504 => 0.01495200774481
505 => 0.015510103305779
506 => 0.015881204288045
507 => 0.016312257175628
508 => 0.016942141300481
509 => 0.01717898355818
510 => 0.01713620012422
511 => 0.017613771078915
512 => 0.018471955468697
513 => 0.017309663725825
514 => 0.018533559753334
515 => 0.018146088401584
516 => 0.017227400796896
517 => 0.01716824814577
518 => 0.017790394057847
519 => 0.019170253811508
520 => 0.018824614593456
521 => 0.019170819153447
522 => 0.018766953144479
523 => 0.018746897793084
524 => 0.019151204282837
525 => 0.020095888433745
526 => 0.019647104404605
527 => 0.019003662452473
528 => 0.019478769976862
529 => 0.019067187870111
530 => 0.018139778189023
531 => 0.01882435028966
601 => 0.018366596421455
602 => 0.018500193335731
603 => 0.019462323880948
604 => 0.019346557788266
605 => 0.019496369831848
606 => 0.01923195549619
607 => 0.01898495081237
608 => 0.018523898227213
609 => 0.018387403286366
610 => 0.018425125577443
611 => 0.018387384593072
612 => 0.018129429908969
613 => 0.018073724619497
614 => 0.017980880029872
615 => 0.018009656450463
616 => 0.017835081459326
617 => 0.018164540536635
618 => 0.018225691044568
619 => 0.018465443886427
620 => 0.018490335821818
621 => 0.019158044073728
622 => 0.018790281588957
623 => 0.019037008414826
624 => 0.019014938845238
625 => 0.017247311542994
626 => 0.017490874989336
627 => 0.017869783277423
628 => 0.017699085607238
629 => 0.017457759038699
630 => 0.017262874895492
701 => 0.016967605490607
702 => 0.017383191507836
703 => 0.017929642927847
704 => 0.018504194731612
705 => 0.019194481077709
706 => 0.019040417201079
707 => 0.018491290308525
708 => 0.018515923739787
709 => 0.018668197918954
710 => 0.018470989021365
711 => 0.01841282826749
712 => 0.018660207524491
713 => 0.018661911089477
714 => 0.018434998419309
715 => 0.018182826510997
716 => 0.018181769901493
717 => 0.018136898346101
718 => 0.018774935694501
719 => 0.019125791723269
720 => 0.019166016801534
721 => 0.019123084255005
722 => 0.019139607288232
723 => 0.018935451895677
724 => 0.019402090582657
725 => 0.019830324387613
726 => 0.019715548580004
727 => 0.019543483328055
728 => 0.019406425067093
729 => 0.019683262009495
730 => 0.019670934896232
731 => 0.019826584138909
801 => 0.019819522990188
802 => 0.01976718400414
803 => 0.019715550449194
804 => 0.019920271658162
805 => 0.019861315237701
806 => 0.019802267241635
807 => 0.019683837445729
808 => 0.019699934021903
809 => 0.019527898479447
810 => 0.019448306965695
811 => 0.018251441565621
812 => 0.017931600022015
813 => 0.018032228682609
814 => 0.018065358250498
815 => 0.017926162800833
816 => 0.018125733319275
817 => 0.018094630465374
818 => 0.018215633475344
819 => 0.018140036048055
820 => 0.01814313859284
821 => 0.018365454507428
822 => 0.018429993763233
823 => 0.018397168576835
824 => 0.018420158212207
825 => 0.018949944656025
826 => 0.018874625965331
827 => 0.018834614412056
828 => 0.018845697885757
829 => 0.018981069680902
830 => 0.019018966392517
831 => 0.018858395362451
901 => 0.01893412158848
902 => 0.019256554247823
903 => 0.019369387430485
904 => 0.019729496786541
905 => 0.019576515931655
906 => 0.019857318911655
907 => 0.020720411539385
908 => 0.021409909651883
909 => 0.020775818692915
910 => 0.022041994169462
911 => 0.023027893400039
912 => 0.022990052945468
913 => 0.022818138610357
914 => 0.021695718547833
915 => 0.020662850871958
916 => 0.021526888540705
917 => 0.021529091150414
918 => 0.021454869548392
919 => 0.020993885552695
920 => 0.021438828304582
921 => 0.021474146244432
922 => 0.021454377589914
923 => 0.021100942241248
924 => 0.020561311789606
925 => 0.020666754288164
926 => 0.020839471251771
927 => 0.02051248200713
928 => 0.02040798913049
929 => 0.020602261268747
930 => 0.021228246576417
1001 => 0.021109907680088
1002 => 0.02110681737326
1003 => 0.021613121355257
1004 => 0.021250716971385
1005 => 0.020668084255744
1006 => 0.020520961811064
1007 => 0.019998776246002
1008 => 0.020359451675751
1009 => 0.02037243174237
1010 => 0.020174893495509
1011 => 0.020684113395782
1012 => 0.020679420844754
1013 => 0.021162849352683
1014 => 0.022086983092386
1015 => 0.021813671271696
1016 => 0.021495839360476
1017 => 0.021530396501748
1018 => 0.021909403047217
1019 => 0.021680247037949
1020 => 0.021762653136614
1021 => 0.021909278315717
1022 => 0.021997740926768
1023 => 0.02151766809338
1024 => 0.02140574015138
1025 => 0.021176774863415
1026 => 0.021117042093625
1027 => 0.021303529543154
1028 => 0.021254396688902
1029 => 0.020371340818032
1030 => 0.020279056566249
1031 => 0.0202818867925
1101 => 0.020049833653516
1102 => 0.019695896917431
1103 => 0.020626021527398
1104 => 0.020551319504132
1105 => 0.020468854251924
1106 => 0.020478955774779
1107 => 0.020882691343118
1108 => 0.020648504324347
1109 => 0.021271128896249
1110 => 0.021143136002073
1111 => 0.021011860573124
1112 => 0.020993714310096
1113 => 0.020943184469844
1114 => 0.020769898846293
1115 => 0.020560646043005
1116 => 0.020422479217106
1117 => 0.018838657549614
1118 => 0.019132605638433
1119 => 0.019470766120409
1120 => 0.019587497763694
1121 => 0.019387820210272
1122 => 0.020777783333152
1123 => 0.02103174298972
1124 => 0.020262482624596
1125 => 0.020118585418976
1126 => 0.020787217209996
1127 => 0.020383950503098
1128 => 0.020565541476522
1129 => 0.020173041116932
1130 => 0.020970571545259
1201 => 0.020964495699624
1202 => 0.020654238349963
1203 => 0.020916465737346
1204 => 0.020870897275689
1205 => 0.020520617492052
1206 => 0.020981676039183
1207 => 0.02098190471847
1208 => 0.020683288764998
1209 => 0.020334570706781
1210 => 0.020272228154324
1211 => 0.020225261415592
1212 => 0.020553990537907
1213 => 0.020848728041066
1214 => 0.021397161462821
1215 => 0.021535050655506
1216 => 0.022073241354363
1217 => 0.021752774997223
1218 => 0.021894833582609
1219 => 0.022049058272459
1220 => 0.022122999260198
1221 => 0.022002516388569
1222 => 0.022838548072022
1223 => 0.022909134761455
1224 => 0.022932801867849
1225 => 0.022650896688068
1226 => 0.022901294468442
1227 => 0.022784141639308
1228 => 0.023088940754722
1229 => 0.02313673714789
1230 => 0.023096255303283
1231 => 0.023111426632889
]
'min_raw' => 0.010363927093461
'max_raw' => 0.02313673714789
'avg_raw' => 0.016750332120675
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.010363'
'max' => '$0.023136'
'avg' => '$0.01675'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0015980965295554
'max_diff' => -0.0022078569144415
'year' => 2031
]
6 => [
'items' => [
101 => 0.022398021077157
102 => 0.022361027235578
103 => 0.021856613580688
104 => 0.022062165873493
105 => 0.021677895714472
106 => 0.021799751740319
107 => 0.021853464715425
108 => 0.021825408105414
109 => 0.02207378749172
110 => 0.021862614272804
111 => 0.021305293427991
112 => 0.020747820741487
113 => 0.020740822126015
114 => 0.020594049407869
115 => 0.020487959615414
116 => 0.020508396273178
117 => 0.020580417720736
118 => 0.020483773597954
119 => 0.020504397521531
120 => 0.020846892069391
121 => 0.020915576908405
122 => 0.020682158988536
123 => 0.019744952358219
124 => 0.019514959500334
125 => 0.019680273805625
126 => 0.019601264215301
127 => 0.015819750037696
128 => 0.016708160701731
129 => 0.016180297252737
130 => 0.016423561015863
131 => 0.015884749124017
201 => 0.016141898400357
202 => 0.016094412318605
203 => 0.017522950376392
204 => 0.017500645719509
205 => 0.017511321778423
206 => 0.017001725670159
207 => 0.017813526107665
208 => 0.01821344819458
209 => 0.018139433259874
210 => 0.01815806122435
211 => 0.017837971077247
212 => 0.017514420950729
213 => 0.017155554066413
214 => 0.017822284380184
215 => 0.017748155350759
216 => 0.017918180673478
217 => 0.018350602940825
218 => 0.018414278762304
219 => 0.018499859712109
220 => 0.018469185033671
221 => 0.019199980322113
222 => 0.01911147619074
223 => 0.019324745682972
224 => 0.018886034156655
225 => 0.018389590421747
226 => 0.018483948145785
227 => 0.018474860738183
228 => 0.018359167609372
229 => 0.018254725025671
301 => 0.018080857550324
302 => 0.018630999969866
303 => 0.018608665192311
304 => 0.018970239279593
305 => 0.018906327547523
306 => 0.018479509358902
307 => 0.018494753254009
308 => 0.018597275774564
309 => 0.018952107388788
310 => 0.019057445570669
311 => 0.019008648727821
312 => 0.019124147235382
313 => 0.019215432546505
314 => 0.019135611265006
315 => 0.020265712282848
316 => 0.019796415549872
317 => 0.020025147512179
318 => 0.020079698737422
319 => 0.01993996692105
320 => 0.0199702697486
321 => 0.020016170275312
322 => 0.020294869285261
323 => 0.021026256129576
324 => 0.021350182384204
325 => 0.022324730503494
326 => 0.021323284818029
327 => 0.021263863175447
328 => 0.021439408720265
329 => 0.022011571632683
330 => 0.022475255932668
331 => 0.022629086765563
401 => 0.0226494180496
402 => 0.02293801491859
403 => 0.023103433261882
404 => 0.022902971667843
405 => 0.022733101456099
406 => 0.022124647442699
407 => 0.022195077651516
408 => 0.022680271947982
409 => 0.023365637469543
410 => 0.023953752387171
411 => 0.023747815040892
412 => 0.025318971623893
413 => 0.025474745381498
414 => 0.025453222484966
415 => 0.025808098287034
416 => 0.025103742089129
417 => 0.024802616168265
418 => 0.022769829323987
419 => 0.023340959510931
420 => 0.024171130778955
421 => 0.024061254498649
422 => 0.023458361933269
423 => 0.023953295039098
424 => 0.023789654676322
425 => 0.023660584732755
426 => 0.024251879165673
427 => 0.023601726647643
428 => 0.024164645010247
429 => 0.023442696387563
430 => 0.023748755745343
501 => 0.023575021651442
502 => 0.023687448902246
503 => 0.023030201491312
504 => 0.023384836240473
505 => 0.023015447519816
506 => 0.023015272381467
507 => 0.023007118104985
508 => 0.023441702296717
509 => 0.023455874071607
510 => 0.023134715697297
511 => 0.023088431758122
512 => 0.023259567739646
513 => 0.023059212325866
514 => 0.023152957362952
515 => 0.02306205176754
516 => 0.023041587003248
517 => 0.022878520279577
518 => 0.022808266651406
519 => 0.022835814909225
520 => 0.02274177850319
521 => 0.022685118167108
522 => 0.022995846938018
523 => 0.022829837090484
524 => 0.022970403547967
525 => 0.022810210328764
526 => 0.02225491083814
527 => 0.021935552228897
528 => 0.020886642967398
529 => 0.021184112332791
530 => 0.021381334829801
531 => 0.021316152795716
601 => 0.02145618902703
602 => 0.021464786114305
603 => 0.021419258908005
604 => 0.021366544235505
605 => 0.021340885648237
606 => 0.02153212373605
607 => 0.021643143882805
608 => 0.021401128745873
609 => 0.021344427985441
610 => 0.021589118650901
611 => 0.021738379815479
612 => 0.022840440392114
613 => 0.022758796184988
614 => 0.022963707123008
615 => 0.022940637296001
616 => 0.023155416603918
617 => 0.023506489999854
618 => 0.022792659624251
619 => 0.022916555895058
620 => 0.022886179390639
621 => 0.023217822100742
622 => 0.023218857453083
623 => 0.023020021081594
624 => 0.02312781350433
625 => 0.023067646731089
626 => 0.023176376222362
627 => 0.022757705776826
628 => 0.023267601186807
629 => 0.023556679027332
630 => 0.023560692873428
701 => 0.023697713475573
702 => 0.023836934343051
703 => 0.024104156674592
704 => 0.023829481657259
705 => 0.023335368040152
706 => 0.02337104144733
707 => 0.023081342814409
708 => 0.023086212700766
709 => 0.023060216865729
710 => 0.023138232323551
711 => 0.022774825782628
712 => 0.022860116571416
713 => 0.022740708967651
714 => 0.022916296326248
715 => 0.022727393354027
716 => 0.022886164742169
717 => 0.022954685209936
718 => 0.023207527211136
719 => 0.022690048384871
720 => 0.021634874027878
721 => 0.021856684470471
722 => 0.021528609403042
723 => 0.021558973999603
724 => 0.021620315317144
725 => 0.021421488037362
726 => 0.021459418016577
727 => 0.02145806289081
728 => 0.021446385149051
729 => 0.021394662494505
730 => 0.021319654412399
731 => 0.02161846352524
801 => 0.021669237016189
802 => 0.021782100197064
803 => 0.022117904467523
804 => 0.022084349702094
805 => 0.022139078916682
806 => 0.022019605348527
807 => 0.021564516035771
808 => 0.021589229574954
809 => 0.02128105134533
810 => 0.021774219386854
811 => 0.021657430685121
812 => 0.021582136249358
813 => 0.021561591464962
814 => 0.021898228129255
815 => 0.021998955095345
816 => 0.021936188809613
817 => 0.021807453326392
818 => 0.022054663511405
819 => 0.022120806527955
820 => 0.022135613510099
821 => 0.022573622560092
822 => 0.02216009335032
823 => 0.022259633941239
824 => 0.023036221216474
825 => 0.022331963719555
826 => 0.022705024622489
827 => 0.022686765232606
828 => 0.022877610566854
829 => 0.022671110344839
830 => 0.02267367016258
831 => 0.022843127890409
901 => 0.022605155073535
902 => 0.022546229657457
903 => 0.022464824617178
904 => 0.022642569544484
905 => 0.022749119589692
906 => 0.023607834701686
907 => 0.0241626038262
908 => 0.024138519835406
909 => 0.024358602427927
910 => 0.024259453204271
911 => 0.02393927420684
912 => 0.024485780713785
913 => 0.024312843188184
914 => 0.024327099947675
915 => 0.024326569310375
916 => 0.024441557646439
917 => 0.024360077871811
918 => 0.024199472872294
919 => 0.024306089966095
920 => 0.024622704618377
921 => 0.025605486213982
922 => 0.026155463815007
923 => 0.025572376871828
924 => 0.025974582437387
925 => 0.025733402418548
926 => 0.025689572834641
927 => 0.02594218765257
928 => 0.026195244639297
929 => 0.026179126003238
930 => 0.025995419625494
1001 => 0.025891648554084
1002 => 0.026677437872666
1003 => 0.027256394057025
1004 => 0.027216913126623
1005 => 0.02739116911353
1006 => 0.027902790080625
1007 => 0.027949566290013
1008 => 0.027943673562769
1009 => 0.027827733847207
1010 => 0.028331491131689
1011 => 0.028751734321171
1012 => 0.027800897152875
1013 => 0.028162963499189
1014 => 0.028325506747099
1015 => 0.028564168459439
1016 => 0.028966830772504
1017 => 0.029404228845396
1018 => 0.029466081728729
1019 => 0.029422194148071
1020 => 0.029133718361107
1021 => 0.02961232455171
1022 => 0.029892680833469
1023 => 0.030059626583417
1024 => 0.030482973228161
1025 => 0.028326510558862
1026 => 0.026800059098383
1027 => 0.026561681660603
1028 => 0.027046431554058
1029 => 0.027174256235155
1030 => 0.027122730266483
1031 => 0.025404570368819
1101 => 0.026552635904323
1102 => 0.027787857888433
1103 => 0.027835307795443
1104 => 0.028453685747962
1105 => 0.028655054957471
1106 => 0.0291529302619
1107 => 0.029121788026051
1108 => 0.029243012739753
1109 => 0.029215145277393
1110 => 0.030137354438833
1111 => 0.031154688093288
1112 => 0.031119461063757
1113 => 0.030973207314383
1114 => 0.031190419072173
1115 => 0.03224041642767
1116 => 0.032143749497041
1117 => 0.032237653186077
1118 => 0.033475659243466
1119 => 0.03508524322238
1120 => 0.034337429864585
1121 => 0.035959969673503
1122 => 0.036981272476077
1123 => 0.038747510068448
1124 => 0.038526368422979
1125 => 0.039213951756439
1126 => 0.038130478723937
1127 => 0.035642605635284
1128 => 0.035248890195809
1129 => 0.036037118476101
1130 => 0.037974900789007
1201 => 0.035976090815085
1202 => 0.036380447469554
1203 => 0.036263992725865
1204 => 0.036257787347474
1205 => 0.036494621401538
1206 => 0.036151081253685
1207 => 0.034751436889636
1208 => 0.035392885653523
1209 => 0.035145191480887
1210 => 0.035420026632251
1211 => 0.036903198593525
1212 => 0.036247452915042
1213 => 0.035556678111214
1214 => 0.036423063010415
1215 => 0.03752626870925
1216 => 0.037457232079268
1217 => 0.037323272162031
1218 => 0.038078397201585
1219 => 0.039325642536052
1220 => 0.039662767938121
1221 => 0.039911627017702
1222 => 0.039945940480268
1223 => 0.040299390470393
1224 => 0.038398800792625
1225 => 0.041415085421848
1226 => 0.041935914454134
1227 => 0.041838020182216
1228 => 0.042416899731765
1229 => 0.042246578683531
1230 => 0.041999810207193
1231 => 0.04291745742444
]
'min_raw' => 0.015819750037696
'max_raw' => 0.04291745742444
'avg_raw' => 0.029368603731068
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.015819'
'max' => '$0.042917'
'avg' => '$0.029368'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0054558229442348
'max_diff' => 0.019780720276551
'year' => 2032
]
7 => [
'items' => [
101 => 0.041865448940178
102 => 0.040372255340954
103 => 0.039553059800399
104 => 0.040631842570821
105 => 0.041290617564388
106 => 0.041726025929176
107 => 0.04185778023728
108 => 0.038546338159025
109 => 0.036761654539842
110 => 0.037905616278299
111 => 0.039301328551238
112 => 0.038391047540477
113 => 0.038426728832709
114 => 0.037128907329006
115 => 0.039416156956687
116 => 0.039082923924731
117 => 0.040811737483996
118 => 0.040399142253482
119 => 0.041808922598907
120 => 0.041437680187073
121 => 0.042978686682715
122 => 0.043593435894912
123 => 0.044625695500266
124 => 0.045385029868017
125 => 0.045830925532513
126 => 0.045804155629329
127 => 0.047571016396397
128 => 0.04652916033147
129 => 0.045220343567301
130 => 0.045196671201302
131 => 0.045874525949542
201 => 0.047295123541484
202 => 0.047663463828221
203 => 0.0478693157986
204 => 0.047554046340205
205 => 0.046423186252224
206 => 0.045934886599825
207 => 0.046350932051072
208 => 0.04584214421539
209 => 0.04672045476043
210 => 0.04792656273578
211 => 0.047677506208338
212 => 0.048510064838935
213 => 0.049371675433881
214 => 0.050603817282006
215 => 0.050925944787186
216 => 0.051458409303838
217 => 0.052006490196954
218 => 0.052182519008629
219 => 0.052518612628648
220 => 0.05251684124937
221 => 0.053529681995009
222 => 0.054646876702515
223 => 0.055068591841481
224 => 0.056038302550027
225 => 0.054377706944359
226 => 0.055637287786806
227 => 0.056773461236046
228 => 0.055418868410928
301 => 0.057285859040703
302 => 0.057358350056166
303 => 0.05845287832435
304 => 0.057343364238301
305 => 0.056684538315699
306 => 0.058586544068365
307 => 0.059506864739461
308 => 0.059229656663509
309 => 0.057120089518064
310 => 0.055892230955823
311 => 0.052678688262212
312 => 0.056485268397508
313 => 0.058339342541946
314 => 0.057115287913941
315 => 0.057732629869301
316 => 0.061100647403944
317 => 0.06238297041815
318 => 0.06211625619531
319 => 0.06216132650848
320 => 0.062853244731137
321 => 0.065921591176721
322 => 0.064082966862813
323 => 0.065488526258857
324 => 0.066234029894397
325 => 0.066926495218456
326 => 0.065226019238481
327 => 0.063013724973486
328 => 0.062312998513967
329 => 0.056993579804666
330 => 0.056716680959782
331 => 0.056561249247255
401 => 0.055581274286025
402 => 0.054811282404231
403 => 0.054198956271863
404 => 0.052592029644468
405 => 0.053134320209388
406 => 0.050573214556972
407 => 0.052211719193376
408 => 0.048124132732062
409 => 0.051528396200332
410 => 0.049675610367419
411 => 0.050919706223705
412 => 0.050915365690463
413 => 0.048624590778091
414 => 0.047303319615887
415 => 0.048145285025086
416 => 0.049047938779045
417 => 0.049194391313733
418 => 0.050364705467414
419 => 0.050691314991888
420 => 0.049701672884792
421 => 0.04803942658818
422 => 0.048425528491081
423 => 0.047295495273148
424 => 0.04531515552482
425 => 0.046737470105484
426 => 0.04722311083808
427 => 0.047437597451937
428 => 0.045490160753013
429 => 0.044878233861303
430 => 0.044552449118721
501 => 0.047788036965212
502 => 0.047965289771369
503 => 0.047058439354047
504 => 0.051157489231428
505 => 0.050229748000512
506 => 0.051266262257565
507 => 0.048390493790322
508 => 0.048500352018506
509 => 0.047138917139879
510 => 0.047901229700799
511 => 0.047362451753222
512 => 0.047839642379196
513 => 0.048125668472875
514 => 0.049486879953435
515 => 0.051543939048896
516 => 0.049283560350642
517 => 0.048298680982593
518 => 0.048909694603358
519 => 0.05053690439389
520 => 0.053002210521883
521 => 0.051542699675202
522 => 0.052190405804858
523 => 0.052331900779747
524 => 0.051255711515433
525 => 0.053041891155119
526 => 0.053999119334924
527 => 0.054981037376942
528 => 0.055833609300107
529 => 0.054588837718119
530 => 0.055920921741844
531 => 0.054847497163206
601 => 0.053884524347575
602 => 0.053885984779839
603 => 0.053281897865805
604 => 0.052111403350016
605 => 0.051895546202697
606 => 0.053018462342804
607 => 0.053918934746616
608 => 0.053993101966766
609 => 0.054491649757459
610 => 0.05478668520454
611 => 0.057678433667179
612 => 0.05884151882065
613 => 0.060263717330239
614 => 0.06081774380044
615 => 0.062485164846263
616 => 0.061138586930445
617 => 0.060847246327986
618 => 0.056802628280087
619 => 0.057464934258847
620 => 0.058525350033862
621 => 0.056820114145641
622 => 0.057901693825521
623 => 0.05811522056532
624 => 0.056762170882676
625 => 0.057484893180002
626 => 0.055565557030533
627 => 0.051585775332014
628 => 0.05304632178983
629 => 0.054121775597405
630 => 0.052586970411498
701 => 0.055338049302073
702 => 0.053730925807994
703 => 0.053221544815904
704 => 0.051234267958324
705 => 0.052172186137801
706 => 0.053440733905238
707 => 0.052656918869468
708 => 0.054283452759109
709 => 0.056587058527584
710 => 0.058228745180295
711 => 0.058354773496586
712 => 0.057299278963356
713 => 0.058990715688933
714 => 0.059003035958895
715 => 0.057095088422723
716 => 0.055926481180314
717 => 0.055660971156068
718 => 0.056324267252941
719 => 0.057129631165759
720 => 0.058399465588699
721 => 0.059166799935652
722 => 0.061167600949813
723 => 0.061708960336785
724 => 0.062303750173155
725 => 0.063098572820939
726 => 0.064052961197948
727 => 0.061964813762414
728 => 0.062047779752821
729 => 0.060103325773221
730 => 0.05802539783311
731 => 0.05960228612228
801 => 0.061663857795711
802 => 0.061190930975991
803 => 0.061137717047755
804 => 0.061227208114736
805 => 0.060870636737014
806 => 0.059257877610727
807 => 0.058447960073912
808 => 0.059492960328404
809 => 0.060048331456055
810 => 0.060909663641591
811 => 0.060803486269207
812 => 0.063022185478824
813 => 0.063884304901699
814 => 0.063663737861157
815 => 0.063704327504859
816 => 0.065265153539784
817 => 0.067001113098978
818 => 0.068627068306202
819 => 0.070281059779391
820 => 0.068287108502075
821 => 0.067274703013272
822 => 0.068319247053343
823 => 0.06776499728266
824 => 0.070949880866167
825 => 0.071170395295346
826 => 0.07435504857552
827 => 0.077377663759864
828 => 0.075479213318353
829 => 0.077269366576612
830 => 0.079205563278755
831 => 0.082940800853783
901 => 0.081682904245756
902 => 0.08071937515776
903 => 0.079808844825342
904 => 0.081703513904483
905 => 0.08414097540672
906 => 0.084665981268586
907 => 0.085516691332484
908 => 0.084622273720173
909 => 0.085699501217333
910 => 0.089502587640057
911 => 0.088474960117864
912 => 0.087015563836984
913 => 0.090017735315421
914 => 0.091104209502822
915 => 0.098729654340948
916 => 0.1083570934405
917 => 0.10437127043611
918 => 0.10189714147558
919 => 0.10247862046843
920 => 0.1059942353182
921 => 0.10712333922791
922 => 0.10405404557587
923 => 0.10513817198213
924 => 0.11111181506958
925 => 0.11431648292859
926 => 0.10996411353174
927 => 0.097956098983327
928 => 0.086884161169491
929 => 0.089820937653578
930 => 0.089487998339067
1001 => 0.095905932609388
1002 => 0.088450451541319
1003 => 0.088575982721858
1004 => 0.095126633076179
1005 => 0.093379031868224
1006 => 0.090548141727189
1007 => 0.086904829800371
1008 => 0.080169830738083
1009 => 0.074204454249271
1010 => 0.085903931287989
1011 => 0.085399428563961
1012 => 0.084668833856454
1013 => 0.086294693319407
1014 => 0.094189405363249
1015 => 0.094007406697949
1016 => 0.092849624045847
1017 => 0.093727791983238
1018 => 0.090394194641885
1019 => 0.091253338581352
1020 => 0.086882407317973
1021 => 0.088858250795234
1022 => 0.090542067908364
1023 => 0.090880119123163
1024 => 0.091641765771429
1025 => 0.085133578553179
1026 => 0.088055563543835
1027 => 0.089771955972878
1028 => 0.082017232535574
1029 => 0.089618670023859
1030 => 0.085020285493119
1031 => 0.083459524717968
1101 => 0.085560883487113
1102 => 0.084741981931139
1103 => 0.084037938460825
1104 => 0.083645070107388
1105 => 0.085188076068943
1106 => 0.085116092996546
1107 => 0.082591435758889
1108 => 0.079298123310561
1109 => 0.080403467067516
1110 => 0.080001885317961
1111 => 0.078546501252498
1112 => 0.079527254388878
1113 => 0.075208513924064
1114 => 0.067778345422947
1115 => 0.072686942327001
1116 => 0.072497966685721
1117 => 0.072402676598024
1118 => 0.076091351507767
1119 => 0.075736770527405
1120 => 0.07509320257598
1121 => 0.078534681622378
1122 => 0.077278495476017
1123 => 0.081149765184421
1124 => 0.083699633792401
1125 => 0.083052904633809
1126 => 0.0854510683842
1127 => 0.080428931955195
1128 => 0.08209708422377
1129 => 0.082440888094364
1130 => 0.078492214305152
1201 => 0.075794784360969
1202 => 0.075614896536645
1203 => 0.070937924742175
1204 => 0.073436325323583
1205 => 0.075634814444382
1206 => 0.074581908765167
1207 => 0.07424859028179
1208 => 0.075951442125404
1209 => 0.076083768297593
1210 => 0.073066717548394
1211 => 0.073694057936724
1212 => 0.076310171642722
1213 => 0.073628138583589
1214 => 0.068417386457308
1215 => 0.067125047885705
1216 => 0.066952626097728
1217 => 0.063447701394878
1218 => 0.067211408128617
1219 => 0.06556844927827
1220 => 0.070758536600846
1221 => 0.067793986557187
1222 => 0.067666190729976
1223 => 0.067473008593575
1224 => 0.064456175115216
1225 => 0.065116669917207
1226 => 0.067312255235224
1227 => 0.068095664811732
1228 => 0.068013948774617
1229 => 0.067301495669369
1230 => 0.067627653052601
1231 => 0.066576986480444
]
'min_raw' => 0.036761654539842
'max_raw' => 0.11431648292859
'avg_raw' => 0.075539068734215
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.036761'
'max' => '$0.114316'
'avg' => '$0.075539'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.020941904502147
'max_diff' => 0.071399025504148
'year' => 2033
]
8 => [
'items' => [
101 => 0.066205974246082
102 => 0.06503495757948
103 => 0.063313886581186
104 => 0.063553212059441
105 => 0.060143320069097
106 => 0.058285429936092
107 => 0.057771190433874
108 => 0.057083527879961
109 => 0.057848863749139
110 => 0.060133660273518
111 => 0.057377710918494
112 => 0.052652829056675
113 => 0.052936802507377
114 => 0.053574806538631
115 => 0.052385890247209
116 => 0.051260680755558
117 => 0.052238959117417
118 => 0.050236964385547
119 => 0.053816738037335
120 => 0.053719915192253
121 => 0.055054233437922
122 => 0.055888610019906
123 => 0.05396564213106
124 => 0.053482020907273
125 => 0.053757513535701
126 => 0.0492042340552
127 => 0.054682133363071
128 => 0.05472950646376
129 => 0.054323869214616
130 => 0.05724068148489
131 => 0.063396065151731
201 => 0.061080162216531
202 => 0.060183374601485
203 => 0.058478580689735
204 => 0.060750117356496
205 => 0.060575698781981
206 => 0.059786911841743
207 => 0.059309851039122
208 => 0.060188850195434
209 => 0.059200933316202
210 => 0.059023476298552
211 => 0.057948279846731
212 => 0.057564483631752
213 => 0.057280336193549
214 => 0.056967517783839
215 => 0.057657517246169
216 => 0.056093887687539
217 => 0.054208303724327
218 => 0.054051537820087
219 => 0.054484382264693
220 => 0.054292880819434
221 => 0.054050620984843
222 => 0.05358808098507
223 => 0.05345085524774
224 => 0.053896772321598
225 => 0.053393357943793
226 => 0.054136173280644
227 => 0.053934168610868
228 => 0.052805786946381
301 => 0.05139940561203
302 => 0.05138688586817
303 => 0.051083883316612
304 => 0.050697964010464
305 => 0.050590610088131
306 => 0.052156571242421
307 => 0.055398063966527
308 => 0.054761681382438
309 => 0.055221533018553
310 => 0.057483547936345
311 => 0.05820257445755
312 => 0.057692226463876
313 => 0.056993630653241
314 => 0.057024365323475
315 => 0.059411678687747
316 => 0.059560572493939
317 => 0.059936779107222
318 => 0.060420310921268
319 => 0.057774574022658
320 => 0.056899751353478
321 => 0.056485211839506
322 => 0.055208590583455
323 => 0.056585317158871
324 => 0.055783157540686
325 => 0.055891396278854
326 => 0.055820905658627
327 => 0.055859398303826
328 => 0.053815737417643
329 => 0.054560340032914
330 => 0.053322293766974
331 => 0.051664688794095
401 => 0.051659131920994
402 => 0.052064828389779
403 => 0.051823504255241
404 => 0.051174107214211
405 => 0.051266350998822
406 => 0.050458198382161
407 => 0.05136447535856
408 => 0.051390464139429
409 => 0.051041498138274
410 => 0.05243774286254
411 => 0.053009785465299
412 => 0.052780088567763
413 => 0.052993669318643
414 => 0.054788125951902
415 => 0.055080700680756
416 => 0.055210643048911
417 => 0.055036537489648
418 => 0.053026468691769
419 => 0.053115623790427
420 => 0.052461462831809
421 => 0.051908765755559
422 => 0.051930870740095
423 => 0.052215028882878
424 => 0.053455964158064
425 => 0.056067439287564
426 => 0.056166542859765
427 => 0.056286659280328
428 => 0.055798085432223
429 => 0.055650726884613
430 => 0.055845130845379
501 => 0.05682586359918
502 => 0.059348574508302
503 => 0.058456879986822
504 => 0.057731918460806
505 => 0.058367905167346
506 => 0.058269999998903
507 => 0.057443581848963
508 => 0.057420387043965
509 => 0.055834226392367
510 => 0.055247858914601
511 => 0.054757846361335
512 => 0.05422276544527
513 => 0.053905551542153
514 => 0.054392936268482
515 => 0.05450440692196
516 => 0.053438731699813
517 => 0.05329348410484
518 => 0.054163737495443
519 => 0.053780771424555
520 => 0.054174661525564
521 => 0.054266047407725
522 => 0.054251332175902
523 => 0.053851471614522
524 => 0.054106330812332
525 => 0.053503512832328
526 => 0.052848038819407
527 => 0.052429887236637
528 => 0.052064994520911
529 => 0.052267458207285
530 => 0.051545712133771
531 => 0.051314811038976
601 => 0.054019990250628
602 => 0.056018335219852
603 => 0.055989278492568
604 => 0.05581240313801
605 => 0.055549602238993
606 => 0.056806638076531
607 => 0.056368711925958
608 => 0.056687339790454
609 => 0.056768443954738
610 => 0.057013921833013
611 => 0.05710165907496
612 => 0.056836456192364
613 => 0.055946402926568
614 => 0.05372847481193
615 => 0.052696023287383
616 => 0.052355297087442
617 => 0.052367681837679
618 => 0.052026055138192
619 => 0.052126679511826
620 => 0.051991062087495
621 => 0.051734235495192
622 => 0.052251599888928
623 => 0.052311221315724
624 => 0.052190462284182
625 => 0.05221890540765
626 => 0.051219072203339
627 => 0.051295087350339
628 => 0.050871825352304
629 => 0.050792468830171
630 => 0.049722499356776
701 => 0.047826893340102
702 => 0.048877243084268
703 => 0.047608568294839
704 => 0.047128101928523
705 => 0.049402554978815
706 => 0.049174262976074
707 => 0.048783526303528
708 => 0.048205545328175
709 => 0.047991166562179
710 => 0.046688669044058
711 => 0.046611710542133
712 => 0.047257263482506
713 => 0.046959363012644
714 => 0.046540997929228
715 => 0.045025722006085
716 => 0.043322050177855
717 => 0.04337347332145
718 => 0.043915379632068
719 => 0.045491045316215
720 => 0.044875405474126
721 => 0.044428751705037
722 => 0.04434510688045
723 => 0.045392096982462
724 => 0.046873807328018
725 => 0.047568992670752
726 => 0.046880085109195
727 => 0.046088705195896
728 => 0.046136872824317
729 => 0.046457310476725
730 => 0.046490983943248
731 => 0.04597587697486
801 => 0.046120876569205
802 => 0.045900608926354
803 => 0.044548826808761
804 => 0.044524377356801
805 => 0.044192628224713
806 => 0.044182582992839
807 => 0.043618194960457
808 => 0.043539233173296
809 => 0.042418606479097
810 => 0.043156206362789
811 => 0.04266146308654
812 => 0.041915768271093
813 => 0.04178721020384
814 => 0.0417833455931
815 => 0.042549007434255
816 => 0.043147259158385
817 => 0.042670069357649
818 => 0.042561422489957
819 => 0.043721486793523
820 => 0.043573858036673
821 => 0.043446012485345
822 => 0.046741136418114
823 => 0.0441327887036
824 => 0.042995400220789
825 => 0.041587665989096
826 => 0.042046031353348
827 => 0.042142615670384
828 => 0.038757268606329
829 => 0.037383833724061
830 => 0.036912522629268
831 => 0.036641276430854
901 => 0.036764886729566
902 => 0.03552863424768
903 => 0.036359416361237
904 => 0.035288926209744
905 => 0.03510945505217
906 => 0.037023624051321
907 => 0.03728996948514
908 => 0.036153657117429
909 => 0.036883353609762
910 => 0.036618755518102
911 => 0.035307276690899
912 => 0.035257187846285
913 => 0.034599133871504
914 => 0.03356940682533
915 => 0.033098793933964
916 => 0.032853694654092
917 => 0.032954827393857
918 => 0.032903691585919
919 => 0.032569995849529
920 => 0.032922818634918
921 => 0.03202150221469
922 => 0.031662590753755
923 => 0.031500478773534
924 => 0.030700508572743
925 => 0.031973616910563
926 => 0.03222443529131
927 => 0.032475747861749
928 => 0.034663252209038
929 => 0.03455397067367
930 => 0.035541822531126
1001 => 0.035503436424488
1002 => 0.035221685072603
1003 => 0.034033022464846
1004 => 0.034506802194424
1005 => 0.0330485818285
1006 => 0.034141179675997
1007 => 0.033642563646376
1008 => 0.03397259709482
1009 => 0.033379167196602
1010 => 0.033707595804396
1011 => 0.032283913634134
1012 => 0.030954499255292
1013 => 0.031489494409363
1014 => 0.032071095325955
1015 => 0.033332154302285
1016 => 0.032581077979493
1017 => 0.032851193426509
1018 => 0.031946351895786
1019 => 0.030079405362699
1020 => 0.030089972077326
1021 => 0.029802783026852
1022 => 0.029554609756954
1023 => 0.032667348130167
1024 => 0.032280229908347
1025 => 0.031663407686655
1026 => 0.03248904874193
1027 => 0.03270736134163
1028 => 0.032713576394432
1029 => 0.03331594279548
1030 => 0.0336374258517
1031 => 0.033694088633746
1101 => 0.034641925180782
1102 => 0.034959627489083
1103 => 0.036268198334058
1104 => 0.033610150260456
1105 => 0.033555409509558
1106 => 0.032500667204756
1107 => 0.031831732960234
1108 => 0.032546469704776
1109 => 0.033179628889146
1110 => 0.032520341225539
1111 => 0.032606430276083
1112 => 0.031721390453472
1113 => 0.032037750545062
1114 => 0.032310242474245
1115 => 0.032159788447285
1116 => 0.031934551486869
1117 => 0.033127717056479
1118 => 0.033060393978988
1119 => 0.034171497188167
1120 => 0.035037681595475
1121 => 0.036590038902354
1122 => 0.034970073126409
1123 => 0.034911035134753
1124 => 0.035488140973184
1125 => 0.034959539137186
1126 => 0.035293597250821
1127 => 0.036536216975729
1128 => 0.036562471572422
1129 => 0.036122673250681
1130 => 0.036095911482834
1201 => 0.036180379561391
1202 => 0.03667511173581
1203 => 0.036502237112484
1204 => 0.036702292003247
1205 => 0.036952463707496
1206 => 0.037987279946874
1207 => 0.038236770638834
1208 => 0.037630637603464
1209 => 0.037685364629974
1210 => 0.037458654236022
1211 => 0.037239654836136
1212 => 0.037731933504784
1213 => 0.038631582447499
1214 => 0.038625985778119
1215 => 0.038834686846152
1216 => 0.038964705882564
1217 => 0.038406568998533
1218 => 0.03804324241029
1219 => 0.038182564943294
1220 => 0.038405344707617
1221 => 0.038110320468275
1222 => 0.036289294194534
1223 => 0.036841677238378
1224 => 0.036749733689732
1225 => 0.036618794895742
1226 => 0.037174220317778
1227 => 0.037120648180854
1228 => 0.035515954691629
1229 => 0.035618681962393
1230 => 0.035522201877207
1231 => 0.035833948770412
]
'min_raw' => 0.029554609756954
'max_raw' => 0.066205974246082
'avg_raw' => 0.047880292001518
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.029554'
'max' => '$0.0662059'
'avg' => '$0.04788'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0072070447828886
'max_diff' => -0.048110508682506
'year' => 2034
]
9 => [
'items' => [
101 => 0.034942703781886
102 => 0.03521684473773
103 => 0.035388783375324
104 => 0.035490056553761
105 => 0.035855924717946
106 => 0.035812994311713
107 => 0.035853256103618
108 => 0.036395742005489
109 => 0.039139449538474
110 => 0.039288783485845
111 => 0.038553408512665
112 => 0.03884717630982
113 => 0.038283206379237
114 => 0.038661803171908
115 => 0.038920829482137
116 => 0.037750339394106
117 => 0.03768103056751
118 => 0.037114732932408
119 => 0.037419029204775
120 => 0.036934871955764
121 => 0.037053667209569
122 => 0.036721505323545
123 => 0.037319330585617
124 => 0.037987792121268
125 => 0.03815667190352
126 => 0.037712421903734
127 => 0.037390755626387
128 => 0.036826015606825
129 => 0.037765190845409
130 => 0.038039834306017
131 => 0.03776374826023
201 => 0.037699773090821
202 => 0.037578540260393
203 => 0.037725493208901
204 => 0.038038338538748
205 => 0.037890806458539
206 => 0.037988253996698
207 => 0.0376168844687
208 => 0.038406753765065
209 => 0.039661256300092
210 => 0.039665289730874
211 => 0.039517756855411
212 => 0.039457389581412
213 => 0.03960876726468
214 => 0.039690883448015
215 => 0.040180411117785
216 => 0.040705693811091
217 => 0.043156958941953
218 => 0.042468653502103
219 => 0.04464356175262
220 => 0.046363631802287
221 => 0.046879405600635
222 => 0.046404917975188
223 => 0.044781721439849
224 => 0.044702079673957
225 => 0.047127820593654
226 => 0.046442437677867
227 => 0.046360913560904
228 => 0.045493634693593
301 => 0.046006303918751
302 => 0.045894175638805
303 => 0.045717175663408
304 => 0.046695312832162
305 => 0.048526298293163
306 => 0.048240922038193
307 => 0.048027901902082
308 => 0.04709450967487
309 => 0.047656620276353
310 => 0.047456463457684
311 => 0.048316464173341
312 => 0.047807018800734
313 => 0.046437245228187
314 => 0.046655386184448
315 => 0.046622414617748
316 => 0.047300967124046
317 => 0.047097282504364
318 => 0.046582641926733
319 => 0.048520040183911
320 => 0.048394236317465
321 => 0.048572597437318
322 => 0.048651117518278
323 => 0.049830377696635
324 => 0.050313482859591
325 => 0.050423156189529
326 => 0.050882068729643
327 => 0.050411738027471
328 => 0.052293396176266
329 => 0.053544589047418
330 => 0.054997913953058
331 => 0.057121612257105
401 => 0.057920142464735
402 => 0.057775895130093
403 => 0.059386058946788
404 => 0.062279487533458
405 => 0.058360739773748
406 => 0.062487190680186
407 => 0.061180803965374
408 => 0.05808338456545
409 => 0.057883947272271
410 => 0.059981555651678
411 => 0.06463384914988
412 => 0.063468502394456
413 => 0.064635755239697
414 => 0.063274092793438
415 => 0.063206474775989
416 => 0.06456962233397
417 => 0.067754690904497
418 => 0.06624158421715
419 => 0.064072174751856
420 => 0.065674032941279
421 => 0.064286355132624
422 => 0.061159528643161
423 => 0.063467611275755
424 => 0.061924262149748
425 => 0.062374693473669
426 => 0.065618583780678
427 => 0.06522827031667
428 => 0.06573337208115
429 => 0.064841880687657
430 => 0.064009087150844
501 => 0.062454616170324
502 => 0.061994413947485
503 => 0.062121597285536
504 => 0.061994350921739
505 => 0.061124638694464
506 => 0.06093682442179
507 => 0.060623792405667
508 => 0.060720814116796
509 => 0.060132222345739
510 => 0.061243016626988
511 => 0.061449189833873
512 => 0.06225753327921
513 => 0.062341458177281
514 => 0.064592683166495
515 => 0.063352746272735
516 => 0.06418460299207
517 => 0.064110193897354
518 => 0.058150515036043
519 => 0.05897170620044
520 => 0.060249221948258
521 => 0.059673702835498
522 => 0.058860053460787
523 => 0.058202987965588
524 => 0.057207466551966
525 => 0.058608643824344
526 => 0.06045104293893
527 => 0.062388184459248
528 => 0.064715533069371
529 => 0.064196095952916
530 => 0.062344676295852
531 => 0.062427729629205
601 => 0.062941132655711
602 => 0.062276229088802
603 => 0.062080136046461
604 => 0.062914192482907
605 => 0.062919936171195
606 => 0.062154884261186
607 => 0.061304669066233
608 => 0.061301106633522
609 => 0.061149819051685
610 => 0.06330100651816
611 => 0.064483942115137
612 => 0.064619563774934
613 => 0.064474813696856
614 => 0.064530522256983
615 => 0.063842198097309
616 => 0.065415503010134
617 => 0.066859323181872
618 => 0.066472348533127
619 => 0.065892218522971
620 => 0.065430117027035
621 => 0.066363492106482
622 => 0.066321930383462
623 => 0.066846712672233
624 => 0.066822905516325
625 => 0.066646440970672
626 => 0.066472354835232
627 => 0.067162586684446
628 => 0.066963810996657
629 => 0.066764726555321
630 => 0.066365432229919
701 => 0.066419702960318
702 => 0.065839673117787
703 => 0.065571324772273
704 => 0.061536009513447
705 => 0.060457641418559
706 => 0.060796917973418
707 => 0.060908616624589
708 => 0.060439309447727
709 => 0.061112175384225
710 => 0.061007309940763
711 => 0.06141528003704
712 => 0.061160398032889
713 => 0.061170858479245
714 => 0.061920412106882
715 => 0.062138010713814
716 => 0.062027338306092
717 => 0.062104849466832
718 => 0.063891061450673
719 => 0.063637119226415
720 => 0.063502217481033
721 => 0.063539586186439
722 => 0.063996001645127
723 => 0.0641237730542
724 => 0.063582396615622
725 => 0.063837712873715
726 => 0.064924817096218
727 => 0.065305242049324
728 => 0.066519375885302
729 => 0.06600359025227
730 => 0.066950337104379
731 => 0.069860314157973
801 => 0.07218500518348
802 => 0.070047123244504
803 => 0.074316122265231
804 => 0.077640150354406
805 => 0.077512568619885
806 => 0.076932947436382
807 => 0.073148629830716
808 => 0.069666244348985
809 => 0.072579407674351
810 => 0.072586833926765
811 => 0.072336590613559
812 => 0.070782350887194
813 => 0.072282506440091
814 => 0.072401583340116
815 => 0.072334931941206
816 => 0.071143299987109
817 => 0.069323898243602
818 => 0.069679404989251
819 => 0.070261732290765
820 => 0.069159265222798
821 => 0.068806960193747
822 => 0.069461962271527
823 => 0.071572515441235
824 => 0.071173527590104
825 => 0.071163108404874
826 => 0.072870147629195
827 => 0.071648275946703
828 => 0.069683889067804
829 => 0.069187855473802
830 => 0.067427270383363
831 => 0.068643312776318
901 => 0.068687075977162
902 => 0.068021061986193
903 => 0.069737932432558
904 => 0.069722111169146
905 => 0.071352024135528
906 => 0.074467805559896
907 => 0.073546315674418
908 => 0.072474723195422
909 => 0.072591235009925
910 => 0.073869082039365
911 => 0.073096466554955
912 => 0.073374304470015
913 => 0.073868661498404
914 => 0.074166919367826
915 => 0.072548320292443
916 => 0.072170947421428
917 => 0.07139897496721
918 => 0.071197581763453
919 => 0.07182633721968
920 => 0.071660682371222
921 => 0.068683397849591
922 => 0.068372255051626
923 => 0.06838179735703
924 => 0.067599413997512
925 => 0.066406091580727
926 => 0.069542071642459
927 => 0.06929020855549
928 => 0.069012171200129
929 => 0.069046229189702
930 => 0.070407451846274
1001 => 0.06961787396207
1002 => 0.071717096176496
1003 => 0.071285559197606
1004 => 0.070842954923546
1005 => 0.070781773530815
1006 => 0.070611408646523
1007 => 0.070027164068308
1008 => 0.069321653632456
1009 => 0.06885581453244
1010 => 0.063515849201591
1011 => 0.064506915705847
1012 => 0.065647047380439
1013 => 0.066040616265718
1014 => 0.065367389453311
1015 => 0.070053747166227
1016 => 0.070909989879244
1017 => 0.068316374850187
1018 => 0.067831215374854
1019 => 0.07008555414066
1020 => 0.068725912283173
1021 => 0.069338158928347
1022 => 0.068014816562491
1023 => 0.070703746083391
1024 => 0.070683260945631
1025 => 0.069637206629773
1026 => 0.070521324574465
1027 => 0.070367687324501
1028 => 0.069186694578215
1029 => 0.070741185659947
1030 => 0.07074195666813
1031 => 0.069735152132298
1101 => 0.0685594248523
1102 => 0.068349232584076
1103 => 0.068190880945326
1104 => 0.069299214132347
1105 => 0.070292942202162
1106 => 0.072142023774006
1107 => 0.072606926814263
1108 => 0.074421474330731
1109 => 0.073340999633389
1110 => 0.073819960072231
1111 => 0.074339939381684
1112 => 0.074589236584242
1113 => 0.0741830201707
1114 => 0.07700175936133
1115 => 0.077239747312956
1116 => 0.077319542614549
1117 => 0.076369079618925
1118 => 0.077213313217673
1119 => 0.076818324274897
1120 => 0.077845975772911
1121 => 0.078007124649513
1122 => 0.077870637284069
1123 => 0.077921788481064
1124 => 0.075516491841529
1125 => 0.075391764521818
1126 => 0.073691098667319
1127 => 0.074384132573715
1128 => 0.073088538903687
1129 => 0.073499385002547
1130 => 0.073680482048238
1201 => 0.073585887228736
1202 => 0.074423315670963
1203 => 0.073711330419742
1204 => 0.071832284280558
1205 => 0.069952726196509
1206 => 0.069929129875819
1207 => 0.069434275409245
1208 => 0.069076586267028
1209 => 0.069145489885523
1210 => 0.06938831522434
1211 => 0.069062472816904
1212 => 0.06913200781516
1213 => 0.070286752095476
1214 => 0.070518327825634
1215 => 0.069731343012079
1216 => 0.066571485424286
1217 => 0.065796048446339
1218 => 0.066353417168504
1219 => 0.066087030818452
1220 => 0.053337391751768
1221 => 0.056332730332416
1222 => 0.054553001859882
1223 => 0.055373182621395
1224 => 0.053556540709392
1225 => 0.05442353744816
1226 => 0.054263434808161
1227 => 0.059079850607331
1228 => 0.05900464889939
1229 => 0.059040643977396
1230 => 0.057322505119521
1231 => 0.060059546972669
]
'min_raw' => 0.034942703781886
'max_raw' => 0.078007124649513
'avg_raw' => 0.0564749142157
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.034942'
'max' => '$0.0780071'
'avg' => '$0.056474'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0053880940249326
'max_diff' => 0.01180115040343
'year' => 2035
]
10 => [
'items' => [
101 => 0.061407912210371
102 => 0.061158365690451
103 => 0.061221171173246
104 => 0.060141964894306
105 => 0.059051093053204
106 => 0.057841148297448
107 => 0.06008907609995
108 => 0.059839144901719
109 => 0.060412397148055
110 => 0.061870339013175
111 => 0.062085026490996
112 => 0.062373568638334
113 => 0.062270146818342
114 => 0.064734074155823
115 => 0.064435676297738
116 => 0.065154729280799
117 => 0.06367558273996
118 => 0.062001788027122
119 => 0.062319921681561
120 => 0.062289282852369
121 => 0.061899215391148
122 => 0.061547079928251
123 => 0.06096087359608
124 => 0.062815717173283
125 => 0.06274041391139
126 => 0.06395948619096
127 => 0.06374400332411
128 => 0.062304956001681
129 => 0.062356351858327
130 => 0.062702013694274
131 => 0.063898353255183
201 => 0.064253508289869
202 => 0.064088986327322
203 => 0.064478397609412
204 => 0.064786172409199
205 => 0.064517049385681
206 => 0.068327263868469
207 => 0.066744997167989
208 => 0.067516182948462
209 => 0.067700106213014
210 => 0.067228990638353
211 => 0.067331158737113
212 => 0.067485915567594
213 => 0.068425568737781
214 => 0.070891490547188
215 => 0.071983630530477
216 => 0.075269387555439
217 => 0.071892943508187
218 => 0.071692599291538
219 => 0.07228446335209
220 => 0.074213550558447
221 => 0.075776894549251
222 => 0.076295545942479
223 => 0.076364094286096
224 => 0.077337118779085
225 => 0.077894838272633
226 => 0.077218968012551
227 => 0.076646238733697
228 => 0.074594793546617
229 => 0.074832253912921
301 => 0.076468120358643
302 => 0.078778878065278
303 => 0.080761748570933
304 => 0.080067416429867
305 => 0.085364680544103
306 => 0.085889882643646
307 => 0.085817316695306
308 => 0.087013805238616
309 => 0.084639019140799
310 => 0.083623752074669
311 => 0.076770069304539
312 => 0.078695674604858
313 => 0.081494654995706
314 => 0.081124199445339
315 => 0.079091505068545
316 => 0.080760206589972
317 => 0.080208481681867
318 => 0.079773313355758
319 => 0.081766903819197
320 => 0.079574869212463
321 => 0.081472787773685
322 => 0.079038687587464
323 => 0.080070588080601
324 => 0.079484831453286
325 => 0.079863887778791
326 => 0.07764793224528
327 => 0.078843608061883
328 => 0.077598188200292
329 => 0.077597597709119
330 => 0.077570104996647
331 => 0.079035335940771
401 => 0.079083117069256
402 => 0.078000309187707
403 => 0.077844259655338
404 => 0.078421256565378
405 => 0.077745744299451
406 => 0.078061812237055
407 => 0.077755317675297
408 => 0.077686319293683
409 => 0.07713652844987
410 => 0.076899663437541
411 => 0.076992544312135
412 => 0.076675494003774
413 => 0.076484459724776
414 => 0.077532103470292
415 => 0.076972389678891
416 => 0.077446319304334
417 => 0.076906216681455
418 => 0.075033985679044
419 => 0.073957245831075
420 => 0.070420775023428
421 => 0.071423713757498
422 => 0.072088663175802
423 => 0.071868897397019
424 => 0.072341039327911
425 => 0.07237002500789
426 => 0.07221652685324
427 => 0.072038795654486
428 => 0.071952285936085
429 => 0.072597058500966
430 => 0.072971370676927
501 => 0.072155399745804
502 => 0.071964229173289
503 => 0.072789220835643
504 => 0.073292465273098
505 => 0.077008139450636
506 => 0.076732870306095
507 => 0.077423741840053
508 => 0.077345960307617
509 => 0.078070103739671
510 => 0.079253772205232
511 => 0.076847043255839
512 => 0.077264768183028
513 => 0.077162351677559
514 => 0.078280508229224
515 => 0.078283998991928
516 => 0.077613608283142
517 => 0.077977037962222
518 => 0.077774181485531
519 => 0.078140770556608
520 => 0.076729193918846
521 => 0.078448341893358
522 => 0.079422988015459
523 => 0.079436520977809
524 => 0.079898495504415
525 => 0.080367888379206
526 => 0.081268847126865
527 => 0.08034276112873
528 => 0.078676822570741
529 => 0.078797097953679
530 => 0.077820358786673
531 => 0.077836777948532
601 => 0.077749131175732
602 => 0.078012165738647
603 => 0.076786915213689
604 => 0.0770744790629
605 => 0.076671887990032
606 => 0.07726389302866
607 => 0.076626993469035
608 => 0.077162302289219
609 => 0.077393323830241
610 => 0.078245798290153
611 => 0.076501082298181
612 => 0.07294348828366
613 => 0.073691337677171
614 => 0.072585209681867
615 => 0.072687586039158
616 => 0.072894402573964
617 => 0.0722240425185
618 => 0.072351926091609
619 => 0.072347357190475
620 => 0.072307984868819
621 => 0.072133598327859
622 => 0.071880703342142
623 => 0.072888159128269
624 => 0.073059345497896
625 => 0.073439871592073
626 => 0.07457205913503
627 => 0.074458926900667
628 => 0.074643450268723
629 => 0.074240636792312
630 => 0.072706271401032
701 => 0.072789594823833
702 => 0.071750550406337
703 => 0.073413300890228
704 => 0.073019539628408
705 => 0.072765679181345
706 => 0.072696411006363
707 => 0.073831405023248
708 => 0.074171013021952
709 => 0.073959392107405
710 => 0.0735253514377
711 => 0.074358837836138
712 => 0.074581843634391
713 => 0.074631766408483
714 => 0.076108544501348
715 => 0.074714301898916
716 => 0.075049909950901
717 => 0.077668228168946
718 => 0.075293774848395
719 => 0.076551575728919
720 => 0.076490012921097
721 => 0.077133461289912
722 => 0.076437231374004
723 => 0.076445861978235
724 => 0.077017200538775
725 => 0.076214858571949
726 => 0.076016187417603
727 => 0.075741724640783
728 => 0.076341004072949
729 => 0.076700244989456
730 => 0.079595462943117
731 => 0.081465905779161
801 => 0.081384704922706
802 => 0.082126728749069
803 => 0.081792440219133
804 => 0.080712934375113
805 => 0.082555519219142
806 => 0.081972448277467
807 => 0.082020515937467
808 => 0.082018726856761
809 => 0.082406418060029
810 => 0.082131703311137
811 => 0.08159021234218
812 => 0.081949679317699
813 => 0.083017167723195
814 => 0.086330684488398
815 => 0.088184972368464
816 => 0.086219054029706
817 => 0.087575118175086
818 => 0.086761962902917
819 => 0.086614188400691
820 => 0.087465896896342
821 => 0.088319096194968
822 => 0.088264751088128
823 => 0.087645372209594
824 => 0.087295500797268
825 => 0.089944844346925
826 => 0.091896835543923
827 => 0.091763722830603
828 => 0.092351239056625
829 => 0.094076204867418
830 => 0.094233914123182
831 => 0.094214046381862
901 => 0.093823147536192
902 => 0.095521600392035
903 => 0.096938479645813
904 => 0.093732665747574
905 => 0.094953397712838
906 => 0.095501423621572
907 => 0.096306088247555
908 => 0.097663692349038
909 => 0.099138410489952
910 => 0.099346951804538
911 => 0.099198981762218
912 => 0.098226365505734
913 => 0.099840019692569
914 => 0.10078526047037
915 => 0.1013481297221
916 => 0.10277547249197
917 => 0.095504808043014
918 => 0.090358270370572
919 => 0.089554564196115
920 => 0.091188932306058
921 => 0.091619902142808
922 => 0.091446178742004
923 => 0.085653282688936
924 => 0.089524065797264
925 => 0.093688702957136
926 => 0.093848683631465
927 => 0.095933588072154
928 => 0.096612518421162
929 => 0.098291139770589
930 => 0.098186141548143
1001 => 0.098594859134028
1002 => 0.098500902039035
1003 => 0.10161019461342
1004 => 0.10504020605738
1005 => 0.10492143566784
1006 => 0.10442833094072
1007 => 0.10516067554735
1008 => 0.10870081493988
1009 => 0.1083748956342
1010 => 0.10869149847793
1011 => 0.11286552233524
1012 => 0.11829234709771
1013 => 0.11577104215124
1014 => 0.12124154839912
1015 => 0.12468494210309
1016 => 0.13063993546053
1017 => 0.12989434096322
1018 => 0.13221257617752
1019 => 0.12855957120276
1020 => 0.12017153338662
1021 => 0.11884409429409
1022 => 0.12150166097344
1023 => 0.12803502933304
1024 => 0.12129590195351
1025 => 0.12265921864533
1026 => 0.12226658334637
1027 => 0.12224566147988
1028 => 0.12304416402839
1029 => 0.12188589443469
1030 => 0.11716689574125
1031 => 0.11932958503322
1101 => 0.11849446683672
1102 => 0.11942109273792
1103 => 0.12442171055712
1104 => 0.12221081821941
1105 => 0.11988182273995
1106 => 0.12280289991667
1107 => 0.12652243495365
1108 => 0.12628967313568
1109 => 0.12583801792193
1110 => 0.12838397471394
1111 => 0.13258914943898
1112 => 0.1337257912694
1113 => 0.134564837031
1114 => 0.13468052726573
1115 => 0.13587220858452
1116 => 0.12946423779099
1117 => 0.13963385200869
1118 => 0.14138986345416
1119 => 0.14105980608163
1120 => 0.14301153889901
1121 => 0.14243728959346
1122 => 0.14160529244666
1123 => 0.14469920410769
1124 => 0.14115228405412
1125 => 0.13611787758288
1126 => 0.1333559026235
1127 => 0.13699309405218
1128 => 0.13921419993719
1129 => 0.14068220963832
1130 => 0.14112642848688
1201 => 0.12996167032254
1202 => 0.12394448489784
1203 => 0.1278014317679
1204 => 0.13250717314163
1205 => 0.12943809716006
1206 => 0.12955839912801
1207 => 0.12518270331727
1208 => 0.13289432512767
1209 => 0.13177080669484
1210 => 0.13759962231181
1211 => 0.13620852868565
1212 => 0.14096170154798
1213 => 0.13971003183716
1214 => 0.14490564282686
1215 => 0.1469783127162
1216 => 0.15045864804571
1217 => 0.15301879688162
1218 => 0.1545221652459
1219 => 0.1544319086483
1220 => 0.16038900308275
1221 => 0.15687631261979
1222 => 0.15246354552072
1223 => 0.152383732486
1224 => 0.154669167096
1225 => 0.15945881106019
1226 => 0.16070069605362
1227 => 0.16139474034388
1228 => 0.16033178735349
1229 => 0.15651901361274
1230 => 0.15487267724268
1231 => 0.15627540352892
]
'min_raw' => 0.057841148297448
'max_raw' => 0.16139474034388
'avg_raw' => 0.10961794432067
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.057841'
'max' => '$0.161394'
'avg' => '$0.109617'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.022898444515562
'max_diff' => 0.083387615694369
'year' => 2036
]
11 => [
'items' => [
101 => 0.15455998981849
102 => 0.15752127514278
103 => 0.16158775238944
104 => 0.1607480409186
105 => 0.16355507046904
106 => 0.16646005074563
107 => 0.17061430301198
108 => 0.17170037838592
109 => 0.1734956196793
110 => 0.17534351267622
111 => 0.17593700610472
112 => 0.17707016920993
113 => 0.17706419688102
114 => 0.18047906016922
115 => 0.18424576012562
116 => 0.18566760215986
117 => 0.18893704951676
118 => 0.18333823549317
119 => 0.1875850002446
120 => 0.19141568835381
121 => 0.18684858406928
122 => 0.19314327332669
123 => 0.19338768184648
124 => 0.19707796032019
125 => 0.19333715611527
126 => 0.19111587851946
127 => 0.19752862370838
128 => 0.20063154910571
129 => 0.19969692272359
130 => 0.19258436980745
131 => 0.18844455893851
201 => 0.17760987538461
202 => 0.1904440260777
203 => 0.196695166503
204 => 0.19256818086391
205 => 0.19464959236785
206 => 0.20600509863337
207 => 0.2103285402047
208 => 0.209429294581
209 => 0.20958125228857
210 => 0.21191410288444
211 => 0.22225924715083
212 => 0.21606019690784
213 => 0.22079913854463
214 => 0.22331265610125
215 => 0.2256473512877
216 => 0.21991407779778
217 => 0.21245517322589
218 => 0.21009262504447
219 => 0.1921578334761
220 => 0.19122424968812
221 => 0.19070020081744
222 => 0.18739614681598
223 => 0.1848000654274
224 => 0.18273556512087
225 => 0.17731769980458
226 => 0.17914607030572
227 => 0.17051112378791
228 => 0.17603545656629
301 => 0.1622538734258
302 => 0.17373158538716
303 => 0.16748478859411
304 => 0.17167934463358
305 => 0.17166471022271
306 => 0.16394120266885
307 => 0.15948644469727
308 => 0.16232518985854
309 => 0.16536855001128
310 => 0.16586232495697
311 => 0.16980812083483
312 => 0.17090930764974
313 => 0.16757266019106
314 => 0.16196828074771
315 => 0.16327005027011
316 => 0.15946006437945
317 => 0.15278321065506
318 => 0.1575786435666
319 => 0.1592160152029
320 => 0.15993917179649
321 => 0.15337325300038
322 => 0.15131009876161
323 => 0.15021169275643
324 => 0.16112070308241
325 => 0.16171832329376
326 => 0.15866081379749
327 => 0.1724810466456
328 => 0.16935310231274
329 => 0.17284778249751
330 => 0.16315192833046
331 => 0.16352232301684
401 => 0.1589321502712
402 => 0.1615023402933
403 => 0.15968581282677
404 => 0.16129469433863
405 => 0.16225905128317
406 => 0.16684847082663
407 => 0.17378398918626
408 => 0.16616296459049
409 => 0.16284237503903
410 => 0.16490245012105
411 => 0.17038870153799
412 => 0.1787006532707
413 => 0.17377981055132
414 => 0.17596359698885
415 => 0.17644065717555
416 => 0.17281220993378
417 => 0.17883443929606
418 => 0.18206180093581
419 => 0.18537240616981
420 => 0.18824691193343
421 => 0.18405007763758
422 => 0.1885412919267
423 => 0.18492216601572
424 => 0.1816754359352
425 => 0.18168035988454
426 => 0.17964363867788
427 => 0.17569723469658
428 => 0.17496945725372
429 => 0.1787554474196
430 => 0.18179145299802
501 => 0.18204151295895
502 => 0.18372240164277
503 => 0.18471713425132
504 => 0.19446686608853
505 => 0.19838828888747
506 => 0.20318333045728
507 => 0.20505126938246
508 => 0.21067309585407
509 => 0.20613301439582
510 => 0.20515073921388
511 => 0.19151402707917
512 => 0.19374703792729
513 => 0.19732230374862
514 => 0.19157298189572
515 => 0.19521960329991
516 => 0.1959395236111
517 => 0.19137762213916
518 => 0.19381433082345
519 => 0.18734315499175
520 => 0.17392504313571
521 => 0.17884937749033
522 => 0.18247534508835
523 => 0.17730064224739
524 => 0.18657609680116
525 => 0.1811575677351
526 => 0.17944015415642
527 => 0.17273991148385
528 => 0.17590216810931
529 => 0.1801791654744
530 => 0.17753647835709
531 => 0.18302045092698
601 => 0.19078721860801
602 => 0.19632227977653
603 => 0.19674719304392
604 => 0.19318851953286
605 => 0.19889131654548
606 => 0.19893285519583
607 => 0.19250007686899
608 => 0.18856003596165
609 => 0.18766485037759
610 => 0.18990119947805
611 => 0.19261654013883
612 => 0.19689787555278
613 => 0.19948499687711
614 => 0.20623083718782
615 => 0.2080560681575
616 => 0.21006144361772
617 => 0.21274124366747
618 => 0.21595903071382
619 => 0.20891869584512
620 => 0.20919842147428
621 => 0.20264255912462
622 => 0.19563667999824
623 => 0.20095326896
624 => 0.20790400179131
625 => 0.20630949599993
626 => 0.2061300815256
627 => 0.20643180690599
628 => 0.20522960161098
629 => 0.19979207161746
630 => 0.19706137809546
701 => 0.20058466941306
702 => 0.20245714194471
703 => 0.20536118354454
704 => 0.20500319912048
705 => 0.21248369841033
706 => 0.21539039423581
707 => 0.21464673705913
708 => 0.21478358787675
709 => 0.22004602182689
710 => 0.22589893068154
711 => 0.23138095218326
712 => 0.23695749991311
713 => 0.23023475396841
714 => 0.22682135817902
715 => 0.23034311133785
716 => 0.22847441953951
717 => 0.23921247690278
718 => 0.23995595669658
719 => 0.25069323757608
720 => 0.26088419570235
721 => 0.25448343749322
722 => 0.26051906418794
723 => 0.26704708655016
724 => 0.27964070082032
725 => 0.27539961458282
726 => 0.27215100899119
727 => 0.26908109240425
728 => 0.27546910148614
729 => 0.28368717311906
730 => 0.28545726703708
731 => 0.28832549541219
801 => 0.28530990398604
802 => 0.28894185170234
803 => 0.30176422309957
804 => 0.29829950516184
805 => 0.29337904870905
806 => 0.30350107945352
807 => 0.30716420303155
808 => 0.33287392269485
809 => 0.36533350578531
810 => 0.35189502524474
811 => 0.34355332671616
812 => 0.34551382373811
813 => 0.35736696465652
814 => 0.36117381731962
815 => 0.3508254794805
816 => 0.3544806873505
817 => 0.3746212420863
818 => 0.3854260035157
819 => 0.37075168622151
820 => 0.33026582679872
821 => 0.29293601544136
822 => 0.30283756239664
823 => 0.30171503425269
824 => 0.32335354773094
825 => 0.29821687278488
826 => 0.29864010992437
827 => 0.32072608494577
828 => 0.31483392545953
829 => 0.30528938170259
830 => 0.29300570117341
831 => 0.27029818161229
901 => 0.25018549829097
902 => 0.28963110195841
903 => 0.28793013580109
904 => 0.28546688473624
905 => 0.29094858342947
906 => 0.31756615627647
907 => 0.31695253506968
908 => 0.31304899002431
909 => 0.31600979453695
910 => 0.30477033835625
911 => 0.30766700213167
912 => 0.29293010220852
913 => 0.29959179644109
914 => 0.30526890339836
915 => 0.30640866667104
916 => 0.30897661152214
917 => 0.28703380392869
918 => 0.29688548033116
919 => 0.30267241724037
920 => 0.276526825754
921 => 0.30215560296117
922 => 0.28665182846683
923 => 0.28138961454457
924 => 0.28847449234692
925 => 0.28571350857708
926 => 0.28333977686217
927 => 0.28201519377936
928 => 0.28721754610798
929 => 0.2869748501537
930 => 0.278462792011
1001 => 0.26735915915973
1002 => 0.27108590280894
1003 => 0.26973194190277
1004 => 0.26482501291439
1005 => 0.26813169058769
1006 => 0.25357075558574
1007 => 0.22851942372643
1008 => 0.24506910089574
1009 => 0.2444319563273
1010 => 0.24411067914369
1011 => 0.25654730413695
1012 => 0.2553518096056
1013 => 0.2531819753249
1014 => 0.26478516220622
1015 => 0.26054984290965
1016 => 0.27360209901495
1017 => 0.2821991590529
1018 => 0.28001866654152
1019 => 0.28810424306041
1020 => 0.27117175945565
1021 => 0.27679605129582
1022 => 0.27795521004915
1023 => 0.26464198068122
1024 => 0.25554740729586
1025 => 0.25494090293679
1026 => 0.23917216599599
1027 => 0.24759569798897
1028 => 0.25500805755335
1029 => 0.25145811254435
1030 => 0.25033430600609
1031 => 0.25607558988615
1101 => 0.2565217368144
1102 => 0.24634953956972
1103 => 0.24846466148849
1104 => 0.25728507149948
1105 => 0.24824240978705
1106 => 0.23067399519019
1107 => 0.22631678546784
1108 => 0.22573545337157
1109 => 0.21391835502988
1110 => 0.2266079550563
1111 => 0.22106860458463
1112 => 0.23856734635302
1113 => 0.22857215890255
1114 => 0.22814128634869
1115 => 0.22748995928826
1116 => 0.21731849458739
1117 => 0.21954539892658
1118 => 0.22694796811714
1119 => 0.22958928820025
1120 => 0.22931377687588
1121 => 0.22691169148965
1122 => 0.2280113538788
1123 => 0.22446895817558
1124 => 0.22321806452418
1125 => 0.21926990007496
1126 => 0.21346718904287
1127 => 0.21427409160198
1128 => 0.20277740268547
1129 => 0.1965133963883
1130 => 0.19477960200352
1201 => 0.19246109969194
1202 => 0.19504148300891
1203 => 0.20274483401026
1204 => 0.19345295834555
1205 => 0.17752268926771
1206 => 0.17848012558315
1207 => 0.18063120071854
1208 => 0.17662268643452
1209 => 0.17282896407381
1210 => 0.17612729787203
1211 => 0.16937743285872
1212 => 0.18144688965754
1213 => 0.18112044467539
1214 => 0.18561919179979
1215 => 0.18843235070026
1216 => 0.18194893020568
1217 => 0.18031836748433
1218 => 0.18124721011536
1219 => 0.16589551044702
1220 => 0.18436463041823
1221 => 0.18452435213469
1222 => 0.18315671782851
1223 => 0.19299095404307
1224 => 0.21374425983099
1225 => 0.20593603139378
1226 => 0.20291244933794
1227 => 0.19716461763956
1228 => 0.20482326210517
1229 => 0.20423519770368
1230 => 0.20157574746332
1231 => 0.19996730365997
]
'min_raw' => 0.15021169275643
'max_raw' => 0.3854260035157
'avg_raw' => 0.26781884813607
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.150211'
'max' => '$0.385426'
'avg' => '$0.267818'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.092370544458984
'max_diff' => 0.22403126317182
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0047149733925678
]
1 => [
'year' => 2028
'avg' => 0.0080922631082022
]
2 => [
'year' => 2029
'avg' => 0.022106604323086
]
3 => [
'year' => 2030
'avg' => 0.017055212313118
]
4 => [
'year' => 2031
'avg' => 0.016750332120675
]
5 => [
'year' => 2032
'avg' => 0.029368603731068
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0047149733925678
'min' => '$0.004714'
'max_raw' => 0.029368603731068
'max' => '$0.029368'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.029368603731068
]
1 => [
'year' => 2033
'avg' => 0.075539068734215
]
2 => [
'year' => 2034
'avg' => 0.047880292001518
]
3 => [
'year' => 2035
'avg' => 0.0564749142157
]
4 => [
'year' => 2036
'avg' => 0.10961794432067
]
5 => [
'year' => 2037
'avg' => 0.26781884813607
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.029368603731068
'min' => '$0.029368'
'max_raw' => 0.26781884813607
'max' => '$0.267818'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.26781884813607
]
]
]
]
'prediction_2025_max_price' => '$0.008061'
'last_price' => 0.00781688
'sma_50day_nextmonth' => '$0.007254'
'sma_200day_nextmonth' => '$0.012583'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.007848'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.007649'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.007491'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.007316'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.0078027'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.009973'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.014546'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.00776'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.007688'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.007574'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.007517'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.008177'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.01010022'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.013636'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.012099'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.0180075'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.031079'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.007763'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.007837'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.008794'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.011572'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.017877'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.027533'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.018933'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '53.55'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 78.98
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.0077058'
'vwma_10_action' => 'BUY'
'hma_9' => '0.007925'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 58.85
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => 75.3
'cci_20_action' => 'NEUTRAL'
'adx_14' => 17.37
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.0003072'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -41.15
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 61.74
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.001682'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 16
'buy_signals' => 17
'sell_pct' => 48.48
'buy_pct' => 51.52
'overall_action' => 'bullish'
'overall_action_label' => 'Alcista'
'overall_action_dir' => 1
'last_updated' => 1767684930
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de Gracy para 2026
La previsión del precio de Gracy para 2026 sugiere que el precio medio podría oscilar entre $0.00270073 en el extremo inferior y $0.008061 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, Gracy podría potencialmente ganar 3.13% para 2026 si GRACY alcanza el objetivo de precio previsto.
Predicción de precio de Gracy 2027-2032
La predicción del precio de GRACY para 2027-2032 está actualmente dentro de un rango de precios de $0.004714 en el extremo inferior y $0.029368 en el extremo superior. Considerando la volatilidad de precios en el mercado, si Gracy alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de Gracy | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.002599 | $0.004714 | $0.00683 |
| 2028 | $0.004692 | $0.008092 | $0.011492 |
| 2029 | $0.0103071 | $0.0221066 | $0.033906 |
| 2030 | $0.008765 | $0.017055 | $0.025344 |
| 2031 | $0.010363 | $0.01675 | $0.023136 |
| 2032 | $0.015819 | $0.029368 | $0.042917 |
Predicción de precio de Gracy 2032-2037
La predicción de precio de Gracy para 2032-2037 se estima actualmente entre $0.029368 en el extremo inferior y $0.267818 en el extremo superior. Comparado con el precio actual, Gracy podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de Gracy | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.015819 | $0.029368 | $0.042917 |
| 2033 | $0.036761 | $0.075539 | $0.114316 |
| 2034 | $0.029554 | $0.04788 | $0.0662059 |
| 2035 | $0.034942 | $0.056474 | $0.0780071 |
| 2036 | $0.057841 | $0.109617 | $0.161394 |
| 2037 | $0.150211 | $0.267818 | $0.385426 |
Gracy Histograma de precios potenciales
Pronóstico de precio de Gracy basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para Gracy es Alcista, con 17 indicadores técnicos mostrando señales alcistas y 16 indicando señales bajistas. La predicción de precio de GRACY se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de Gracy
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de Gracy aumentar durante el próximo mes, alcanzando $0.012583 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para Gracy alcance $0.007254 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 53.55, lo que sugiere que el mercado de GRACY está en un estado NEUTRAL.
Promedios Móviles y Osciladores Populares de GRACY para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.007848 | SELL |
| SMA 5 | $0.007649 | BUY |
| SMA 10 | $0.007491 | BUY |
| SMA 21 | $0.007316 | BUY |
| SMA 50 | $0.0078027 | BUY |
| SMA 100 | $0.009973 | SELL |
| SMA 200 | $0.014546 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.00776 | BUY |
| EMA 5 | $0.007688 | BUY |
| EMA 10 | $0.007574 | BUY |
| EMA 21 | $0.007517 | BUY |
| EMA 50 | $0.008177 | SELL |
| EMA 100 | $0.01010022 | SELL |
| EMA 200 | $0.013636 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.012099 | SELL |
| SMA 50 | $0.0180075 | SELL |
| SMA 100 | $0.031079 | SELL |
| SMA 200 | — | — |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.011572 | SELL |
| EMA 50 | $0.017877 | SELL |
| EMA 100 | $0.027533 | SELL |
| EMA 200 | $0.018933 | SELL |
Osciladores de Gracy
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 53.55 | NEUTRAL |
| Stoch RSI (14) | 78.98 | NEUTRAL |
| Estocástico Rápido (14) | 58.85 | NEUTRAL |
| Índice de Canal de Materias Primas (20) | 75.3 | NEUTRAL |
| Índice Direccional Medio (14) | 17.37 | NEUTRAL |
| Oscilador Asombroso (5, 34) | 0.0003072 | BUY |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Rango Percentil de Williams (14) | -41.15 | NEUTRAL |
| Oscilador Ultimate (7, 14, 28) | 61.74 | NEUTRAL |
| VWMA (10) | 0.0077058 | BUY |
| Promedio Móvil de Hull (9) | 0.007925 | BUY |
| Nube Ichimoku B/L (9, 26, 52, 26) | -0.001682 | SELL |
Predicción de precios de Gracy basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de Gracy
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de Gracy por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.010984 | $0.015434 | $0.021687 | $0.030475 | $0.042822 | $0.060172 |
| Amazon.com acción | $0.01631 | $0.034032 | $0.071011 | $0.148168 | $0.309162 | $0.645086 |
| Apple acción | $0.011087 | $0.015726 | $0.0223075 | $0.031641 | $0.044881 | $0.06366 |
| Netflix acción | $0.012333 | $0.01946 | $0.0307061 | $0.048449 | $0.076445 | $0.120619 |
| Google acción | $0.010122 | $0.013109 | $0.016976 | $0.021983 | $0.028469 | $0.036867 |
| Tesla acción | $0.01772 | $0.04017 | $0.091063 | $0.206434 | $0.46797 | $1.06 |
| Kodak acción | $0.005861 | $0.004395 | $0.003296 | $0.002471 | $0.001853 | $0.00139 |
| Nokia acción | $0.005178 | $0.00343 | $0.002272 | $0.0015054 | $0.000997 | $0.00066 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de Gracy
Podría preguntarse cosas como: "¿Debo invertir en Gracy ahora?", "¿Debería comprar GRACY hoy?", "¿Será Gracy una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de Gracy regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como Gracy, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de Gracy a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de Gracy es de $0.007816 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Predicción de precios de Gracy basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Gracy ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.00802 | $0.008228 | $0.008442 | $0.008661 |
| Si Gracy ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.008223 | $0.00865 | $0.00910047 | $0.009573 |
| Si Gracy ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.008832 | $0.00998 | $0.011277 | $0.012743 |
| Si Gracy ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.009848 | $0.0124087 | $0.015634 | $0.019697 |
| Si Gracy ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.01188 | $0.018056 | $0.027444 | $0.041711 |
| Si Gracy ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.017976 | $0.041339 | $0.095065 | $0.218619 |
| Si Gracy ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.028135 | $0.101268 | $0.364498 | $1.31 |
Cuadro de preguntas
¿Es GRACY una buena inversión?
La decisión de adquirir Gracy depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de Gracy ha experimentado un aumento de 1.2401% durante las últimas 24 horas, y Gracy ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en Gracy dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede Gracy subir?
Parece que el valor medio de Gracy podría potencialmente aumentar hasta $0.008061 para el final de este año. Mirando las perspectivas de Gracy en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.025344. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de Gracy la próxima semana?
Basado en nuestro nuevo pronóstico experimental de Gracy, el precio de Gracy aumentará en un 0.86% durante la próxima semana y alcanzará $0.007883 para el 13 de enero de 2026.
¿Cuál será el precio de Gracy el próximo mes?
Basado en nuestro nuevo pronóstico experimental de Gracy, el precio de Gracy disminuirá en un -11.62% durante el próximo mes y alcanzará $0.006908 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de Gracy este año en 2026?
Según nuestra predicción más reciente sobre el valor de Gracy en 2026, se anticipa que GRACY fluctúe dentro del rango de $0.00270073 y $0.008061. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de Gracy no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará Gracy en 5 años?
El futuro de Gracy parece estar en una tendencia alcista, con un precio máximo de $0.025344 proyectada después de un período de cinco años. Basado en el pronóstico de Gracy para 2030, el valor de Gracy podría potencialmente alcanzar su punto más alto de aproximadamente $0.025344, mientras que su punto más bajo se anticipa que esté alrededor de $0.008765.
¿Cuánto será Gracy en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de Gracy, se espera que el valor de GRACY en 2026 crezca en un 3.13% hasta $0.008061 si ocurre lo mejor. El precio estará entre $0.008061 y $0.00270073 durante 2026.
¿Cuánto será Gracy en 2027?
Según nuestra última simulación experimental para la predicción de precios de Gracy, el valor de GRACY podría disminuir en un -12.62% hasta $0.00683 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.00683 y $0.002599 a lo largo del año.
¿Cuánto será Gracy en 2028?
Nuestro nuevo modelo experimental de predicción de precios de Gracy sugiere que el valor de GRACY en 2028 podría aumentar en un 47.02% , alcanzando $0.011492 en el mejor escenario. Se espera que el precio oscile entre $0.011492 y $0.004692 durante el año.
¿Cuánto será Gracy en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de Gracy podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.033906 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.033906 y $0.0103071.
¿Cuánto será Gracy en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de Gracy, se espera que el valor de GRACY en 2030 aumente en un 224.23% , alcanzando $0.025344 en el mejor escenario. Se pronostica que el precio oscile entre $0.025344 y $0.008765 durante el transcurso de 2030.
¿Cuánto será Gracy en 2031?
Nuestra simulación experimental indica que el precio de Gracy podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.023136 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.023136 y $0.010363 durante el año.
¿Cuánto será Gracy en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de Gracy, GRACY podría experimentar un 449.04% aumento en valor, alcanzando $0.042917 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.042917 y $0.015819 a lo largo del año.
¿Cuánto será Gracy en 2033?
Según nuestra predicción experimental de precios de Gracy, se anticipa que el valor de GRACY aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.114316. A lo largo del año, el precio de GRACY podría oscilar entre $0.114316 y $0.036761.
¿Cuánto será Gracy en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de Gracy sugieren que GRACY podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.0662059 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.0662059 y $0.029554.
¿Cuánto será Gracy en 2035?
Basado en nuestra predicción experimental para el precio de Gracy, GRACY podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.0780071 en 2035. El rango de precios esperado para el año está entre $0.0780071 y $0.034942.
¿Cuánto será Gracy en 2036?
Nuestra reciente simulación de predicción de precios de Gracy sugiere que el valor de GRACY podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.161394 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.161394 y $0.057841.
¿Cuánto será Gracy en 2037?
Según la simulación experimental, el valor de Gracy podría aumentar en un 4830.69% en 2037, con un máximo de $0.385426 bajo condiciones favorables. Se espera que el precio caiga entre $0.385426 y $0.150211 durante el transcurso del año.
Predicciones relacionadas
Predicción de precios de SolPod
Predicción de precios de zuzalu
Predicción de precios de SOFT COQ INU
Predicción de precios de All Street Bets
Predicción de precios de MagicRing
Predicción de precios de AI INU
Predicción de precios de Wall Street Baby On Solana
Predicción de precios de Meta Masters Guild Games
Predicción de precios de Morfey
Predicción de precios de PANTIESPredicción de precios de Celer Bridged BUSD (zkSync)
Predicción de precios de Bridged BUSD
Predicción de precios de Multichain Bridged BUSD (Moonriver)
Predicción de precios de tooker kurlson
Predicción de precios de dogwifsaudihatPredicción de precios de Harmony Horizen Bridged BUSD (Harmony)
Predicción de precios de IoTeX Bridged BUSD (IoTeX)
Predicción de precios de MIMANY
Predicción de precios de The Open League MEME
Predicción de precios de Sandwich Cat
Predicción de precios de Hege
Predicción de precios de DexNet
Predicción de precios de SolDocs
Predicción de precios de Secret Society
Predicción de precios de duk
¿Cómo leer y predecir los movimientos de precio de Gracy?
Los traders de Gracy utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de Gracy
Las medias móviles son herramientas populares para la predicción de precios de Gracy. Una media móvil simple (SMA) calcula el precio de cierre promedio de GRACY durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de GRACY por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de GRACY.
¿Cómo leer gráficos de Gracy y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de Gracy en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de GRACY dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de Gracy?
La acción del precio de Gracy está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de GRACY. La capitalización de mercado de Gracy puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de GRACY, grandes poseedores de Gracy, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de Gracy.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


