Prédiction du prix de FUNToken jusqu'à $0.002072 d'ici 2026
| Année | Prix min. | Prix max. |
|---|---|---|
| 2026 | $0.000694 | $0.002072 |
| 2027 | $0.000668 | $0.001755 |
| 2028 | $0.0012059 | $0.002953 |
| 2029 | $0.002649 | $0.008714 |
| 2030 | $0.002253 | $0.006514 |
| 2031 | $0.002663 | $0.005946 |
| 2032 | $0.004066 | $0.01103 |
| 2033 | $0.009448 | $0.029382 |
| 2034 | $0.007596 | $0.017016 |
| 2035 | $0.008981 | $0.020049 |
Calculateur de profit d’investissement
Si vous ouvrez une position short de $10,000.00 sur FUNToken aujourd’hui et la fermez le Apr 06, 2026, notre prévision indique que vous pourriez gagner environ $3,957.58, soit un rendement de 39.58% sur les 90 prochains jours.
Prévision du prix à long terme de FunFair pour 2027, 2028, 2029, 2030, 2031, 2032 et 2037
[
'name' => 'FUNToken'
'name_with_ticker' => 'FUNToken <small>FUN</small>'
'name_lang' => 'FunFair'
'name_lang_with_ticker' => 'FunFair <small>FUN</small>'
'name_with_lang' => 'FunFair/FUNToken'
'name_with_lang_with_ticker' => 'FunFair/FUNToken <small>FUN</small>'
'image' => '/uploads/coins/funfair.png?1717218295'
'price_for_sd' => 0.002009
'ticker' => 'FUN'
'marketcap' => '$21.29M'
'low24h' => '$0.00193'
'high24h' => '$0.002187'
'volume24h' => '$7.65M'
'current_supply' => '10.6B'
'max_supply' => '11B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.002009'
'change_24h_pct' => '1.9487%'
'ath_price' => '$0.191'
'ath_days' => 2920
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '8 janv. 2018'
'ath_pct' => '-98.95%'
'fdv' => '$22.1M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.099063'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.0020263'
'next_week_prediction_price_date' => '13 janvier 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.001775'
'next_month_prediction_price_date' => '5 février 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.000694'
'current_year_max_price_prediction' => '$0.002072'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.002253'
'grand_prediction_max_price' => '$0.006514'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0020472019566976
107 => 0.0020548454656696
108 => 0.0020720666816708
109 => 0.0019249132764576
110 => 0.0019909808352013
111 => 0.0020297893362702
112 => 0.0018544511165758
113 => 0.0020263234634222
114 => 0.0019223516630597
115 => 0.0018870620724126
116 => 0.0019345748571688
117 => 0.0019160590787416
118 => 0.0019001402997329
119 => 0.0018912573475267
120 => 0.001926145492857
121 => 0.001924517919177
122 => 0.0018674341419194
123 => 0.0017929706815193
124 => 0.0018179630630094
125 => 0.0018088830965092
126 => 0.0017759761265737
127 => 0.0017981514511075
128 => 0.0017005025445353
129 => 0.0015325026761264
130 => 0.0016434885351725
131 => 0.0016392157003286
201 => 0.0016370611432427
202 => 0.001720463948892
203 => 0.0017124466935589
204 => 0.0016978952966242
205 => 0.0017757088787576
206 => 0.0017473058745385
207 => 0.0018348372409523
208 => 0.0018924910600462
209 => 0.0018778681866183
210 => 0.0019320918821413
211 => 0.0018185388370014
212 => 0.0018562566036394
213 => 0.001864030183069
214 => 0.0017747486712328
215 => 0.0017137584156824
216 => 0.0017096910609771
217 => 0.0016039423628277
218 => 0.0016604324638054
219 => 0.0017101414149466
220 => 0.0016863346849204
221 => 0.0016787981854
222 => 0.0017173005269827
223 => 0.0017202924886739
224 => 0.0016520754450399
225 => 0.0016662599285642
226 => 0.0017254115828349
227 => 0.0016647694586441
228 => 0.0015469517171763
301 => 0.0015177312883346
302 => 0.0015138327444877
303 => 0.0014345846239675
304 => 0.0015196839371127
305 => 0.001482535806405
306 => 0.0015998863062076
307 => 0.0015328563300837
308 => 0.0015299668017841
309 => 0.0015255988559577
310 => 0.0014573867249273
311 => 0.0014723208465159
312 => 0.0015219641412072
313 => 0.0015396774280249
314 => 0.0015378297870891
315 => 0.0015217208619804
316 => 0.0015290954454041
317 => 0.0015053393427212
318 => 0.0014969505684234
319 => 0.0014704732892251
320 => 0.0014315590033388
321 => 0.0014369702734665
322 => 0.001359870890649
323 => 0.001317863054916
324 => 0.0013062358396395
325 => 0.001290687441437
326 => 0.0013079920725892
327 => 0.0013596524777845
328 => 0.0012973390687526
329 => 0.0011905070997449
330 => 0.0011969278831151
331 => 0.0012113534770002
401 => 0.0011844714782301
402 => 0.0011590299224294
403 => 0.0011811492910595
404 => 0.0011358831774499
405 => 0.0012168236705685
406 => 0.0012146344570627
407 => 0.0012448040675708
408 => 0.0012636697441642
409 => 0.0012201904674517
410 => 0.001209255546939
411 => 0.0012154845746274
412 => 0.0011125326222675
413 => 0.0012363906966492
414 => 0.0012374618264197
415 => 0.0012282901630224
416 => 0.0012942407639416
417 => 0.0014334171023894
418 => 0.0013810533655101
419 => 0.0013607765438881
420 => 0.0013222302911624
421 => 0.0013735908842694
422 => 0.0013696471920688
423 => 0.0013518123203371
424 => 0.0013410257342656
425 => 0.0013609003498372
426 => 0.0013385630494536
427 => 0.0013345506565167
428 => 0.001310239920846
429 => 0.0013015620942795
430 => 0.001295137376964
501 => 0.0012880643944792
502 => 0.0013036656313632
503 => 0.0012683111760704
504 => 0.0012256771688274
505 => 0.0012221326124315
506 => 0.0012319194442812
507 => 0.0012275894997316
508 => 0.0012221118823228
509 => 0.0012116536189491
510 => 0.0012085508756116
511 => 0.0012186332862215
512 => 0.0012072508324839
513 => 0.0012240462630081
514 => 0.0012194788352391
515 => 0.0011939655550059
516 => 0.0011621665616091
517 => 0.0011618834838672
518 => 0.0011550324429007
519 => 0.0011463066121689
520 => 0.0011438792856793
521 => 0.0011792864595294
522 => 0.0012525782497514
523 => 0.001238189317607
524 => 0.0012485867957184
525 => 0.0012997320972646
526 => 0.0013159896506332
527 => 0.0013044504243334
528 => 0.0012886548196657
529 => 0.0012893497461071
530 => 0.0013433281089111
531 => 0.001346694673188
601 => 0.0013552008950209
602 => 0.0013661337939342
603 => 0.0013063123442935
604 => 0.0012865321612086
605 => 0.0012771592131003
606 => 0.0012482941607138
607 => 0.00127942264501
608 => 0.0012612854102652
609 => 0.0012637327428885
610 => 0.001262138914307
611 => 0.0012630092524867
612 => 0.0012168010460511
613 => 0.0012336368878444
614 => 0.0012056440354978
615 => 0.0011681647485508
616 => 0.001168039104839
617 => 0.0011772121072224
618 => 0.0011717556464652
619 => 0.0011570724508658
620 => 0.001159158129498
621 => 0.001140885390026
622 => 0.0011613767709085
623 => 0.0011619643903905
624 => 0.0011540740925777
625 => 0.0011856438920927
626 => 0.0011985780647126
627 => 0.0011933845016656
628 => 0.0011982136704842
629 => 0.0012387872426997
630 => 0.0012454025053199
701 => 0.001248340567996
702 => 0.0012444039532287
703 => 0.0011989552809024
704 => 0.0012009711227827
705 => 0.0011861802125968
706 => 0.0011736834521174
707 => 0.0011741832569997
708 => 0.0011806082163513
709 => 0.0012086663906584
710 => 0.0012677131643679
711 => 0.0012699539462676
712 => 0.0012726698392982
713 => 0.0012616229374443
714 => 0.0012582910861405
715 => 0.0012626866580339
716 => 0.0012848615217074
717 => 0.0013419012914922
718 => 0.0013217396272921
719 => 0.0013053478804624
720 => 0.0013197278616153
721 => 0.0013175141762308
722 => 0.0012988284438117
723 => 0.0012983039975375
724 => 0.0012624401028352
725 => 0.0012491820375452
726 => 0.0012381026058398
727 => 0.0012260041556535
728 => 0.0012188317888393
729 => 0.0012298518040483
730 => 0.0012323722119116
731 => 0.0012082767560602
801 => 0.0012049926344634
802 => 0.0012246695038482
803 => 0.0012160104472596
804 => 0.0012249165016952
805 => 0.001226982782719
806 => 0.0012266500638837
807 => 0.0012176090143189
808 => 0.0012233715097035
809 => 0.0012097414902363
810 => 0.0011949208912284
811 => 0.0011854662724173
812 => 0.0011772158635314
813 => 0.0011817936698978
814 => 0.0011654746260758
815 => 0.0011602538355197
816 => 0.0012214193059275
817 => 0.0012666028965573
818 => 0.0012659459092549
819 => 0.0012619466680148
820 => 0.0012560046067485
821 => 0.0012844268229149
822 => 0.0012745250911227
823 => 0.0012817294283189
824 => 0.0012835632345004
825 => 0.0012891136135048
826 => 0.0012910973969277
827 => 0.0012851010255976
828 => 0.0012649764710188
829 => 0.0012148279943935
830 => 0.0011914837431513
831 => 0.0011837797514121
901 => 0.0011840597768798
902 => 0.0011763354243903
903 => 0.0011786105923797
904 => 0.0011755442138126
905 => 0.0011697372346433
906 => 0.0011814351052978
907 => 0.0011827831759175
908 => 0.0011800527531276
909 => 0.0011806958665374
910 => 0.0011580891320158
911 => 0.0011598078729422
912 => 0.0011502377050568
913 => 0.0011484434139484
914 => 0.001124250862904
915 => 0.0010813902519624
916 => 0.0011051391910042
917 => 0.0010764538122479
918 => 0.0010655902246585
919 => 0.0011170167586723
920 => 0.0011118549610074
921 => 0.0011030202071844
922 => 0.0010899517649563
923 => 0.0010851045526123
924 => 0.0010556544248508
925 => 0.0010539143541923
926 => 0.0010685106327312
927 => 0.0010617749524128
928 => 0.0010523155062441
929 => 0.0010180543511097
930 => 0.00097953346926002
1001 => 0.00098069617254943
1002 => 0.00099294894835933
1003 => 0.0010285755465385
1004 => 0.0010146556182835
1005 => 0.0010045565506217
1006 => 0.0010026652988255
1007 => 0.0010263382746587
1008 => 0.0010598404951045
1009 => 0.0010755589873677
1010 => 0.0010599824389126
1011 => 0.0010420889387482
1012 => 0.0010431780331927
1013 => 0.0010504232906091
1014 => 0.0010511846647212
1015 => 0.0010395378355957
1016 => 0.0010428163497729
1017 => 0.0010378359869442
1018 => 0.0010072715094577
1019 => 0.001006718694981
1020 => 0.00099921767928701
1021 => 0.00099899055151289
1022 => 0.0009862294526014
1023 => 0.00098444408665037
1024 => 0.00095910615021828
1025 => 0.00097578365670822
1026 => 0.00096459726096316
1027 => 0.00094773672397136
1028 => 0.00094482996103885
1029 => 0.00094474258023508
1030 => 0.00096205458177858
1031 => 0.00097558135589065
1101 => 0.00096479185310646
1102 => 0.00096233529246822
1103 => 0.00098856493319787
1104 => 0.00098522697232654
1105 => 0.0009823363197395
1106 => 0.0010568407387191
1107 => 0.00099786467744445
1108 => 0.00097214774849279
1109 => 0.00094031816540276
1110 => 0.00095068203815556
1111 => 0.00095286585842155
1112 => 0.00087632144880361
1113 => 0.00084526739135462
1114 => 0.00083461080908559
1115 => 0.00082847779532781
1116 => 0.00083127268671077
1117 => 0.00080332039272903
1118 => 0.00082210479657303
1119 => 0.00079790047273343
1120 => 0.00079384253907404
1121 => 0.00083712286843959
1122 => 0.00084314507343079
1123 => 0.0008174524759859
1124 => 0.00083395128279921
1125 => 0.00082796858609814
1126 => 0.00079831538639504
1127 => 0.00079718285228056
1128 => 0.00078230391902991
1129 => 0.00075902126962186
1130 => 0.00074838047408549
1201 => 0.00074283865538252
1202 => 0.00074512531778726
1203 => 0.0007439691113024
1204 => 0.0007364240819005
1205 => 0.00074440158355582
1206 => 0.00072402236335773
1207 => 0.00071590719366832
1208 => 0.00071224175979012
1209 => 0.00069415402888016
1210 => 0.00072293965240834
1211 => 0.00072861078287513
1212 => 0.00073429308722083
1213 => 0.00078375366707623
1214 => 0.0007812827562808
1215 => 0.0008036185864891
1216 => 0.00080275065720017
1217 => 0.0007963801166083
1218 => 0.00076950385375427
1219 => 0.00078021625310456
1220 => 0.00074724515298084
1221 => 0.00077194934301041
1222 => 0.00076067538235255
1223 => 0.00076813760557141
1224 => 0.00075471985538237
1225 => 0.00076214579234231
1226 => 0.00072995561829387
1227 => 0.00069989688669541
1228 => 0.00071199339775971
1229 => 0.00072514368869044
1230 => 0.00075365687006007
1231 => 0.00073667465446495
]
'min_raw' => 0.00069415402888016
'max_raw' => 0.0020720666816708
'avg_raw' => 0.0013831103552755
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.000694'
'max' => '$0.002072'
'avg' => '$0.001383'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0013149759711198
'max_diff' => 6.2936681670776E-5
'year' => 2026
]
1 => [
'items' => [
101 => 0.00074278210136162
102 => 0.00072232317663204
103 => 0.00068011057111198
104 => 0.00068034948987495
105 => 0.00067385600016729
106 => 0.00066824467699485
107 => 0.000738625266212
108 => 0.00072987232739038
109 => 0.00071592566493444
110 => 0.00073459382685006
111 => 0.00073952998516411
112 => 0.00073967051065189
113 => 0.00075329031969052
114 => 0.00076055921421593
115 => 0.00076184038838122
116 => 0.00078327145217895
117 => 0.00079045486208139
118 => 0.00082004231083529
119 => 0.00075994249930039
120 => 0.0007587047832316
121 => 0.00073485652617183
122 => 0.00071973158451849
123 => 0.00073589214386679
124 => 0.00075020819331303
125 => 0.00073530136573396
126 => 0.00073724788271548
127 => 0.00071723668462313
128 => 0.00072438974632676
129 => 0.00073055092668739
130 => 0.0007271490850297
131 => 0.00072205636341712
201 => 0.00074903444051651
202 => 0.00074751223167863
203 => 0.00077263483729689
204 => 0.0007922197049111
205 => 0.00082731928888959
206 => 0.00079069104322534
207 => 0.00078935616436924
208 => 0.00080240481930888
209 => 0.0007904528644003
210 => 0.00079800608733506
211 => 0.00082610234790243
212 => 0.00082669597761471
213 => 0.00081675191508532
214 => 0.00081614681797669
215 => 0.00081805668396159
216 => 0.00082924282868869
217 => 0.00082533404600553
218 => 0.00082985738828475
219 => 0.00083551389706879
220 => 0.00085891161570959
221 => 0.00086455272646129
222 => 0.00085084775191525
223 => 0.00085208515766867
224 => 0.00084695912097849
225 => 0.00084200743376483
226 => 0.0008531381034853
227 => 0.00087347962117331
228 => 0.0008733530776475
301 => 0.00087807191436852
302 => 0.00088101171055276
303 => 0.00086839195326767
304 => 0.00086017695531641
305 => 0.00086332710826482
306 => 0.00086836427143074
307 => 0.0008616936241393
308 => 0.00082051929891213
309 => 0.00083300895895998
310 => 0.00083093006881484
311 => 0.00082796947644649
312 => 0.00084052792620428
313 => 0.0008393166330886
314 => 0.00080303370155266
315 => 0.00080535641710991
316 => 0.00080317495357877
317 => 0.00081022370853332
318 => 0.00079007220850072
319 => 0.00079627067418832
320 => 0.00080015829376058
321 => 0.00080244813155474
322 => 0.00081072059582373
323 => 0.00080974991762219
324 => 0.00081066025710383
325 => 0.00082292613776513
326 => 0.00088496275300809
327 => 0.00088833926909969
328 => 0.00087171206896192
329 => 0.00087835430745994
330 => 0.00086560266204162
331 => 0.00087416292703953
401 => 0.00088001964294395
402 => 0.00085355426995359
403 => 0.00085198716232395
404 => 0.00083918288632898
405 => 0.00084606317897742
406 => 0.00083511613866321
407 => 0.0008378021594451
408 => 0.00083029181117585
409 => 0.00084380894276508
410 => 0.00085892319623174
411 => 0.00086274165353737
412 => 0.00085269693631548
413 => 0.00084542389906771
414 => 0.00083265484154803
415 => 0.00085389006878026
416 => 0.00086009989635479
417 => 0.00085385745119962
418 => 0.00085241094025704
419 => 0.00084966980463465
420 => 0.00085299248513752
421 => 0.00086006607630019
422 => 0.00085673030133659
423 => 0.00085893363946884
424 => 0.00085053678658113
425 => 0.00086839613093243
426 => 0.00089676106784759
427 => 0.00089685226575791
428 => 0.00089351647281324
429 => 0.00089215153821094
430 => 0.00089557426420501
501 => 0.00089743095264923
502 => 0.00090849942089345
503 => 0.00092037632830673
504 => 0.00097580067290383
505 => 0.00096023773872506
506 => 0.0010094135144606
507 => 0.0010483051683921
508 => 0.0010599670748803
509 => 0.0010492386696463
510 => 0.0010125373748778
511 => 0.0010107366342637
512 => 0.0010655838635348
513 => 0.0010500870091035
514 => 0.0010482437075794
515 => 0.0010286340936709
516 => 0.0010402258041888
517 => 0.0010376905270584
518 => 0.0010336884680781
519 => 0.0010558046442606
520 => 0.0010972041517497
521 => 0.0010907516502654
522 => 0.0010859351572303
523 => 0.0010648306868105
524 => 0.0010775402918573
525 => 0.0010730146449366
526 => 0.0010924596961545
527 => 0.0010809408785737
528 => 0.0010499696051896
529 => 0.0010549018825586
530 => 0.0010541563787567
531 => 0.0010694987941742
601 => 0.001064893381888
602 => 0.0010532570980936
603 => 0.0010970626527338
604 => 0.0010942181636747
605 => 0.0010982509988197
606 => 0.0011000263775701
607 => 0.0011266900467391
608 => 0.0011376132988554
609 => 0.0011400930683243
610 => 0.0011504693130001
611 => 0.0011398348979042
612 => 0.0011823801404974
613 => 0.0012106702442381
614 => 0.0012435306555284
615 => 0.0012915485484694
616 => 0.0013096037204056
617 => 0.0013063422152009
618 => 0.0013427488336081
619 => 0.0014081707176123
620 => 0.0013195658484414
621 => 0.0014128669908278
622 => 0.0013833289263617
623 => 0.0013132947068798
624 => 0.0013087853287944
625 => 0.0013562133153416
626 => 0.0014614040247286
627 => 0.0014350549450903
628 => 0.0014614471223836
629 => 0.0014306592456679
630 => 0.0014291303680884
701 => 0.0014599518239313
702 => 0.0015319678354984
703 => 0.0014977557278827
704 => 0.0014487042824627
705 => 0.0014849231064358
706 => 0.0014535470092163
707 => 0.0013828478805642
708 => 0.0014350347964457
709 => 0.0014001388919935
710 => 0.001410323372081
711 => 0.0014836693728653
712 => 0.0014748441880015
713 => 0.0014862647944054
714 => 0.0014661077230318
715 => 0.0014472778398905
716 => 0.0014121304646818
717 => 0.0014017250596271
718 => 0.001404600739237
719 => 0.0014017236345831
720 => 0.0013820590011749
721 => 0.0013778124254626
722 => 0.0013707346132289
723 => 0.0013729283231965
724 => 0.00135961996551
725 => 0.0013847355861115
726 => 0.0013893972666132
727 => 0.001407674320818
728 => 0.0014095719052174
729 => 0.0014604732410202
730 => 0.0014324376406222
731 => 0.0014512463418465
801 => 0.0014495639145746
802 => 0.0013148125607783
803 => 0.0013333801084102
804 => 0.001362265385708
805 => 0.0013492526074384
806 => 0.0013308555834864
807 => 0.0013159990002591
808 => 0.0012934897575062
809 => 0.0013251710844292
810 => 0.0013668286603995
811 => 0.0014106284100894
812 => 0.0014632509394686
813 => 0.001451506203505
814 => 0.0014096446685062
815 => 0.0014115225463863
816 => 0.0014231308485239
817 => 0.0014080970425303
818 => 0.001403663279648
819 => 0.0014225217175889
820 => 0.0014226515852866
821 => 0.0014053533745948
822 => 0.0013861295789501
823 => 0.0013860490305444
824 => 0.0013826283417893
825 => 0.0014312677785984
826 => 0.0014580145508416
827 => 0.0014610810251747
828 => 0.0014578081526866
829 => 0.0014590677514116
830 => 0.0014435043939682
831 => 0.0014790776139136
901 => 0.0015117231183623
902 => 0.0015029734258006
903 => 0.0014898563928085
904 => 0.0014794080442283
905 => 0.0015005121269284
906 => 0.0014995723953467
907 => 0.0015114379883603
908 => 0.0015108996965222
909 => 0.0015069097438793
910 => 0.0015029735682944
911 => 0.0015185800595633
912 => 0.0015140856407105
913 => 0.0015095842407837
914 => 0.0015005559941008
915 => 0.0015017830827683
916 => 0.0014886683146168
917 => 0.001482600822779
918 => 0.0013913603034867
919 => 0.0013669778553618
920 => 0.0013746490698924
921 => 0.0013771746328988
922 => 0.0013665633602279
923 => 0.0013817771994257
924 => 0.0013794061387022
925 => 0.0013886305489533
926 => 0.0013828675379057
927 => 0.0013831040538894
928 => 0.0014000518405768
929 => 0.0014049718551532
930 => 0.0014024694960302
1001 => 0.0014042220625841
1002 => 0.0014446092191056
1003 => 0.0014388674569568
1004 => 0.0014358172602528
1005 => 0.0014366621855852
1006 => 0.0014469819699869
1007 => 0.00144987094618
1008 => 0.001437630151045
1009 => 0.0014434029807938
1010 => 0.0014679829571833
1011 => 0.0014765845578135
1012 => 0.0015040367380224
1013 => 0.001492374563946
1014 => 0.0015137809891902
1015 => 0.0015795770424026
1016 => 0.0016321394824493
1017 => 0.0015838008903477
1018 => 0.001680325117707
1019 => 0.0017554830742843
1020 => 0.0017525983867288
1021 => 0.0017394928585647
1022 => 0.0016539275231791
1023 => 0.00157518902585
1024 => 0.0016410571222789
1025 => 0.0016412250336026
1026 => 0.0016355669057039
1027 => 0.0016004247592686
1028 => 0.0016343440351829
1029 => 0.0016370364241283
1030 => 0.0016355294022829
1031 => 0.0016085860010061
1101 => 0.0015674484072293
1102 => 0.0015754865945838
1103 => 0.001588653309445
1104 => 0.0015637259713482
1105 => 0.0015557601764256
1106 => 0.0015705701047412
1107 => 0.0016182907795453
1108 => 0.0016092694624006
1109 => 0.001609033879352
1110 => 0.0016476308997307
1111 => 0.0016200037628978
1112 => 0.0015755879818681
1113 => 0.001564372411386
1114 => 0.0015245646918878
1115 => 0.0015520600255354
1116 => 0.0015530495336444
1117 => 0.0015379906204011
1118 => 0.0015768099296834
1119 => 0.0015764522029144
1120 => 0.0016133053595863
1121 => 0.0016837547537294
1122 => 0.0016629194012771
1123 => 0.001638690153255
1124 => 0.0016413245443192
1125 => 0.001670217312062
1126 => 0.001652748085127
1127 => 0.0016590301409326
1128 => 0.0016702078034182
1129 => 0.0016769515647215
1130 => 0.0016403542208483
1201 => 0.0016318216293381
1202 => 0.001614366941641
1203 => 0.001609813339428
1204 => 0.0016240298183533
1205 => 0.0016202842784321
1206 => 0.0015529663693194
1207 => 0.0015459312732638
1208 => 0.001546147029616
1209 => 0.0015284569460837
1210 => 0.0015014753225903
1211 => 0.0015723814181418
1212 => 0.0015666866663389
1213 => 0.0015604001010872
1214 => 0.0015611701694599
1215 => 0.0015919481023083
1216 => 0.0015740953469333
1217 => 0.0016215598231066
1218 => 0.0016118025537181
1219 => 0.0016017950471874
1220 => 0.0016004117049488
1221 => 0.0015965596687348
1222 => 0.0015833496032774
1223 => 0.0015673976554358
1224 => 0.0015568647977367
1225 => 0.0014361254803503
1226 => 0.0014585339953489
1227 => 0.0014843129492544
1228 => 0.0014932117408399
1229 => 0.0014779897420553
1230 => 0.0015839506605686
1231 => 0.0016033107414458
]
'min_raw' => 0.00066824467699485
'max_raw' => 0.0017554830742843
'avg_raw' => 0.0012118638756396
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.000668'
'max' => '$0.001755'
'avg' => '$0.001211'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -2.5909351885313E-5
'max_diff' => -0.00031658360738644
'year' => 2027
]
2 => [
'items' => [
101 => 0.0015446677936419
102 => 0.0015336980924836
103 => 0.0015846698323503
104 => 0.0015539276421689
105 => 0.0015677708485252
106 => 0.0015378494082119
107 => 0.0015986474648918
108 => 0.0015981842855645
109 => 0.0015745324683297
110 => 0.0015945228222959
111 => 0.0015910490063558
112 => 0.0015643461629495
113 => 0.0015994939926568
114 => 0.0015995114255418
115 => 0.0015767470656881
116 => 0.0015501632771381
117 => 0.0015454107236265
118 => 0.0015418303129711
119 => 0.0015668902869872
120 => 0.0015893589813294
121 => 0.0016311676510387
122 => 0.0016416793439531
123 => 0.001682707181201
124 => 0.001658277101729
125 => 0.0016691066395365
126 => 0.0016808636347581
127 => 0.0016865003706165
128 => 0.0016773156120191
129 => 0.0017410487309967
130 => 0.0017464297589707
131 => 0.0017482339711047
201 => 0.0017267435219758
202 => 0.0017458320707045
203 => 0.0017369011709006
204 => 0.0017601368911149
205 => 0.001763780548733
206 => 0.0017606945003573
207 => 0.0017618510547966
208 => 0.0017074660810418
209 => 0.0017046459332491
210 => 0.001666193017986
211 => 0.0016818628651853
212 => 0.0016525688369216
213 => 0.0016618582750459
214 => 0.0016659529708581
215 => 0.0016638141341378
216 => 0.0016827488148351
217 => 0.0016666504681427
218 => 0.0016241642844081
219 => 0.0015816665253412
220 => 0.001581133000594
221 => 0.0015699440907794
222 => 0.0015618565583346
223 => 0.0015634145040041
224 => 0.0015689049077495
225 => 0.0015615374460879
226 => 0.0015631096675732
227 => 0.001589219019886
228 => 0.0015944550642889
229 => 0.0015766609395531
301 => 0.0015052149610587
302 => 0.0014876819387276
303 => 0.0015002843274843
304 => 0.0014942611973563
305 => 0.0012059854085714
306 => 0.0012737115290912
307 => 0.0012334709680401
308 => 0.0012520156699516
309 => 0.0012109404773612
310 => 0.0012305437122006
311 => 0.0012269237105213
312 => 0.0013358253081555
313 => 0.0013341249594977
314 => 0.0013349388264198
315 => 0.0012960908377116
316 => 0.0013579767385616
317 => 0.0013884639586653
318 => 0.0013828215856152
319 => 0.0013842416493517
320 => 0.0013598402494614
321 => 0.0013351750853095
322 => 0.0013078176223235
323 => 0.0013586444070669
324 => 0.0013529933362456
325 => 0.0013659548595186
326 => 0.0013989196625983
327 => 0.0014037738550728
328 => 0.0014102979389851
329 => 0.0014079595193184
330 => 0.0014636701628124
331 => 0.0014569232362946
401 => 0.0014731813879793
402 => 0.0014397371364551
403 => 0.0014018917912979
404 => 0.0014090849541548
405 => 0.0014083921947279
406 => 0.0013995725721115
407 => 0.0013916106111654
408 => 0.0013783561894588
409 => 0.0014202951410239
410 => 0.0014185924961799
411 => 0.0014461563370966
412 => 0.0014412841604737
413 => 0.0014087465725622
414 => 0.0014099086588799
415 => 0.0014177242478459
416 => 0.0014447740904942
417 => 0.0014528043254859
418 => 0.0014490844006882
419 => 0.0014578891867624
420 => 0.0014648481306755
421 => 0.0014587631229761
422 => 0.0015449139998536
423 => 0.0015091381493559
424 => 0.0015265750499617
425 => 0.001530733648012
426 => 0.001520081486552
427 => 0.0015223915589474
428 => 0.0015258906891693
429 => 0.0015471367226769
430 => 0.00160289246219
501 => 0.0016275862996783
502 => 0.001701878928134
503 => 0.0016255358202297
504 => 0.0016210059361458
505 => 0.0016343882819531
506 => 0.0016780059195301
507 => 0.0017133539179898
508 => 0.0017250808883539
509 => 0.0017266308010787
510 => 0.0017486313770759
511 => 0.001761241696951
512 => 0.0017459599284772
513 => 0.0017330102297635
514 => 0.0016866260163468
515 => 0.0016919951153498
516 => 0.0017289828832012
517 => 0.0017812302838599
518 => 0.0018260639890406
519 => 0.0018103647880987
520 => 0.0019301386093768
521 => 0.0019420136945244
522 => 0.0019403729417245
523 => 0.0019674261529402
524 => 0.0019137310379677
525 => 0.001890775336023
526 => 0.0017358101016107
527 => 0.0017793490115308
528 => 0.0018426353740502
529 => 0.0018342591866591
530 => 0.0017882989385482
531 => 0.0018260291240711
601 => 0.0018135543448052
602 => 0.0018037149688192
603 => 0.0018487910576682
604 => 0.001799228046355
605 => 0.0018421409450986
606 => 0.0017871047085829
607 => 0.0018104365007262
608 => 0.0017971922470739
609 => 0.0018057629023416
610 => 0.0017556590267735
611 => 0.0017826938618272
612 => 0.001754534288753
613 => 0.0017545209374489
614 => 0.0017538993133125
615 => 0.0017870289261557
616 => 0.0017881092816411
617 => 0.001763626447694
618 => 0.0017600980888284
619 => 0.001773144280842
620 => 0.0017578706067972
621 => 0.0017650170627514
622 => 0.0017580870656678
623 => 0.0017565269773563
624 => 0.0017440959282624
625 => 0.001738740290514
626 => 0.0017408403740729
627 => 0.0017336717062189
628 => 0.0017293523245349
629 => 0.0017530400795783
630 => 0.0017403846676199
701 => 0.0017511004561915
702 => 0.0017388884626738
703 => 0.0016965563726292
704 => 0.0016722107399908
705 => 0.0015922493460833
706 => 0.0016149262982037
707 => 0.0016299611409205
708 => 0.0016249921254923
709 => 0.0016356674933858
710 => 0.0016363228742727
711 => 0.001632852203348
712 => 0.0016288336110377
713 => 0.0016268775825432
714 => 0.0016414562163975
715 => 0.0016499196040442
716 => 0.0016314700885274
717 => 0.0016271476251779
718 => 0.0016458011039911
719 => 0.0016571797152914
720 => 0.0017411929880433
721 => 0.0017349690134386
722 => 0.0017505899683032
723 => 0.0017488312885085
724 => 0.0017652045378199
725 => 0.0017919678805925
726 => 0.0017375505215874
727 => 0.0017469954935
728 => 0.0017446798045033
729 => 0.0017699618897632
730 => 0.0017700408176737
731 => 0.0017548829446266
801 => 0.0017631002735138
802 => 0.0017585135859596
803 => 0.0017668023502981
804 => 0.0017348858884631
805 => 0.001773756693809
806 => 0.0017957939356607
807 => 0.0017960999227852
808 => 0.0018065454005245
809 => 0.001817158610869
810 => 0.0018375297439093
811 => 0.0018165904710249
812 => 0.001778922757503
813 => 0.0017816422447533
814 => 0.0017595576780975
815 => 0.0017599289236529
816 => 0.0017579471857832
817 => 0.0017638945303084
818 => 0.0017361909961382
819 => 0.0017426929602349
820 => 0.0017335901724241
821 => 0.001746975705817
822 => 0.0017325750845942
823 => 0.0017446786878079
824 => 0.0017499022017142
825 => 0.0017691770804825
826 => 0.0017297281693282
827 => 0.001649289169028
828 => 0.0016661984221197
829 => 0.0016411883086039
830 => 0.00164350308983
831 => 0.0016481793163014
901 => 0.0016330221363414
902 => 0.0016359136486201
903 => 0.0016358103434543
904 => 0.0016349201153449
905 => 0.0016309771474392
906 => 0.0016252590638836
907 => 0.001648038148836
908 => 0.001651908759249
909 => 0.0016605126467299
910 => 0.0016861119798005
911 => 0.0016835540027529
912 => 0.001687726169447
913 => 0.0016786183529795
914 => 0.001643925575314
915 => 0.0016458095600533
916 => 0.0016223162401663
917 => 0.0016599118697202
918 => 0.0016510087284038
919 => 0.0016452688152787
920 => 0.0016437026268026
921 => 0.0016693654156685
922 => 0.001677044124312
923 => 0.0016722592683843
924 => 0.00166244538928
925 => 0.0016812909383732
926 => 0.0016863332122806
927 => 0.0016874619914566
928 => 0.001720852691174
929 => 0.0016893281606464
930 => 0.0016969164284713
1001 => 0.0017561179278744
1002 => 0.0017024303371642
1003 => 0.0017308698513396
1004 => 0.0017294778851128
1005 => 0.0017440265782242
1006 => 0.0017282844676331
1007 => 0.0017284796099606
1008 => 0.0017413978638297
1009 => 0.00172325650609
1010 => 0.0017187644507911
1011 => 0.0017125587085684
1012 => 0.0017261087196791
1013 => 0.0017342313385256
1014 => 0.0017996936810226
1015 => 0.0018419853397211
1016 => 0.0018401493472807
1017 => 0.0018569268813523
1018 => 0.0018493684485885
1019 => 0.0018249602753802
1020 => 0.0018666220507871
1021 => 0.0018534385218456
1022 => 0.0018545253559536
1023 => 0.0018544849039338
1024 => 0.0018632507981558
1025 => 0.0018570393587171
1026 => 0.0018447959739923
1027 => 0.0018529237041475
1028 => 0.0018770601569916
1029 => 0.0019519804472167
1030 => 0.0019939068341885
1031 => 0.0019494564260767
1101 => 0.0019801177223775
1102 => 0.001961731870334
1103 => 0.0019583906140859
1104 => 0.0019776481740148
1105 => 0.0019969394417531
1106 => 0.0019957106713967
1107 => 0.0019817062016362
1108 => 0.0019737954320188
1109 => 0.0020336984298641
1110 => 0.0020778339382556
1111 => 0.0020748241924715
1112 => 0.0020881082315407
1113 => 0.0021271105811078
1114 => 0.0021306764671589
1115 => 0.0021302272474774
1116 => 0.0021213888268381
1117 => 0.0021597917050821
1118 => 0.0021918280617475
1119 => 0.0021193429878267
1120 => 0.0021469443550764
1121 => 0.0021593354980954
1122 => 0.0021775293723336
1123 => 0.0022082254878209
1124 => 0.0022415696109827
1125 => 0.0022462848355975
1126 => 0.002242939158089
1127 => 0.0022209478125257
1128 => 0.0022574333499674
1129 => 0.0022788057221096
1130 => 0.0022915324806223
1201 => 0.0023238054226797
1202 => 0.0021594120215762
1203 => 0.002043046201393
1204 => 0.0020248739982286
1205 => 0.00206182788795
1206 => 0.0020715723339678
1207 => 0.0020676443599965
1208 => 0.0019366640498628
1209 => 0.0020241844140027
1210 => 0.002118348966896
1211 => 0.0021219662108698
1212 => 0.0021691069549362
1213 => 0.0021844579135686
1214 => 0.0022224123914205
1215 => 0.002220038328497
1216 => 0.0022292796398663
1217 => 0.0022271552224197
1218 => 0.0022974579003823
1219 => 0.0023750121942237
1220 => 0.0023723267356355
1221 => 0.002361177388315
1222 => 0.0023777360703321
1223 => 0.0024577804127996
1224 => 0.0024504112124297
1225 => 0.0024575697628821
1226 => 0.0025519465537528
1227 => 0.0026746498068266
1228 => 0.0026176418265686
1229 => 0.002741332740124
1230 => 0.0028191896136336
1231 => 0.0029538350258173
]
'min_raw' => 0.0012059854085714
'max_raw' => 0.0029538350258173
'avg_raw' => 0.0020799102171944
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.0012059'
'max' => '$0.002953'
'avg' => '$0.002079'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00053774073157654
'max_diff' => 0.001198351951533
'year' => 2028
]
3 => [
'items' => [
101 => 0.0029369767570693
102 => 0.0029893932279588
103 => 0.0029067969375834
104 => 0.0027171391594173
105 => 0.0026871250900417
106 => 0.0027472140170089
107 => 0.0028949367805662
108 => 0.0027425617014838
109 => 0.0027733869815285
110 => 0.0027645092988019
111 => 0.0027640362448171
112 => 0.0027820907913664
113 => 0.0027559017299348
114 => 0.0026492027823402
115 => 0.002698102281242
116 => 0.0026792198363692
117 => 0.002700171316735
118 => 0.0028132378152219
119 => 0.0027632484210722
120 => 0.0027105886551441
121 => 0.0027766356877554
122 => 0.0028607362564925
123 => 0.0028554733940442
124 => 0.0028452612411886
125 => 0.0029028266121445
126 => 0.0029979077398925
127 => 0.0030236077866559
128 => 0.0030425790357623
129 => 0.0030451948504922
130 => 0.0030721393679299
131 => 0.0029272519067747
201 => 0.0031571920286018
202 => 0.0031968963356737
203 => 0.0031894335715191
204 => 0.0032335632378168
205 => 0.0032205791705304
206 => 0.0032017672941702
207 => 0.0032717222019013
208 => 0.0031915245452576
209 => 0.003077694068256
210 => 0.0030152444172614
211 => 0.0030974831553607
212 => 0.0031477034829816
213 => 0.0031808959249262
214 => 0.0031909399378032
215 => 0.0029384991079425
216 => 0.0028024475016578
217 => 0.0028896550214515
218 => 0.0029960542143412
219 => 0.002926660853886
220 => 0.0029293809422368
221 => 0.0028304442464821
222 => 0.0030048079165888
223 => 0.0029794045964835
224 => 0.0031111970661273
225 => 0.0030797437355461
226 => 0.0031872153783864
227 => 0.0031589144930596
228 => 0.00327638988577
301 => 0.0033232540004415
302 => 0.0034019461427919
303 => 0.0034598324030395
304 => 0.0034938243222446
305 => 0.003491783574916
306 => 0.0036264764935136
307 => 0.0035470527852288
308 => 0.0034472778888922
309 => 0.0034454732758033
310 => 0.0034971481084372
311 => 0.0036054443813398
312 => 0.0036335240292568
313 => 0.0036492167217464
314 => 0.0036251828169321
315 => 0.0035389740739373
316 => 0.0035017495758004
317 => 0.0035334659267106
318 => 0.0034946795549646
319 => 0.003561635714132
320 => 0.0036535808217328
321 => 0.0036345945206036
322 => 0.0036980628786932
323 => 0.0037637459522499
324 => 0.0038576756974474
325 => 0.0038822324110504
326 => 0.003922823724828
327 => 0.0039646055202572
328 => 0.0039780247068981
329 => 0.0040036460979246
330 => 0.0040035110605468
331 => 0.0040807228469237
401 => 0.0041658898383474
402 => 0.0041980384059895
403 => 0.0042719622646
404 => 0.0041453702473304
405 => 0.0042413917466137
406 => 0.0043280055425412
407 => 0.0042247410043687
408 => 0.004367067112688
409 => 0.0043725933129561
410 => 0.0044560323759978
411 => 0.0043714509006147
412 => 0.0043212266905259
413 => 0.0044662221031758
414 => 0.0045363808160444
415 => 0.0045152484407578
416 => 0.004354430021393
417 => 0.0042608268034962
418 => 0.004015849127548
419 => 0.0043060357669567
420 => 0.0044473772141524
421 => 0.0043540639811904
422 => 0.0044011257481898
423 => 0.0046578794891095
424 => 0.0047556346900781
425 => 0.004735302291637
426 => 0.0047387381322738
427 => 0.004791485064334
428 => 0.0050253940093552
429 => 0.0048852303475316
430 => 0.0049923802151636
501 => 0.0050492121185979
502 => 0.0051020007577842
503 => 0.0049723685439635
504 => 0.0048037189384583
505 => 0.0047503005289659
506 => 0.0043447858191751
507 => 0.0043236770174694
508 => 0.0043118280074098
509 => 0.0042371216750599
510 => 0.0041784229616195
511 => 0.0041317435653481
512 => 0.0040092428898845
513 => 0.0040505832718084
514 => 0.0038553427629974
515 => 0.0039802507216359
516 => 0.0036686421553265
517 => 0.0039281590288475
518 => 0.0037869157933744
519 => 0.00388175682727
520 => 0.0038814259358373
521 => 0.0037067935230583
522 => 0.0036060691918529
523 => 0.0036702546559466
524 => 0.0037390665685035
525 => 0.0037502310698048
526 => 0.0038394475106096
527 => 0.0038643459015372
528 => 0.0037889026146318
529 => 0.003662184760406
530 => 0.0036916184278161
531 => 0.0036054727195223
601 => 0.0034545056792841
602 => 0.0035629328432148
603 => 0.0035999546441866
604 => 0.0036163055805812
605 => 0.0034678468351887
606 => 0.0034211978741903
607 => 0.0033963623587774
608 => 0.0036430206006409
609 => 0.0036565330959297
610 => 0.003587401259558
611 => 0.0038998837153078
612 => 0.0038291593116511
613 => 0.0039081757984352
614 => 0.0036889476310077
615 => 0.0036973224422333
616 => 0.0035935363144859
617 => 0.0036516496110329
618 => 0.0036105770061125
619 => 0.0036469546309587
620 => 0.003668759229301
621 => 0.0037725283267661
622 => 0.003929343905254
623 => 0.0037570286839992
624 => 0.0036819484744991
625 => 0.0037285278142059
626 => 0.0038525747339985
627 => 0.0040405121673294
628 => 0.0039292494242042
629 => 0.0039786259402393
630 => 0.0039894125123846
701 => 0.0039073714847747
702 => 0.0040435371370395
703 => 0.004116509416296
704 => 0.0041913638753276
705 => 0.0042563579047304
706 => 0.0041614653583055
707 => 0.0042630139852923
708 => 0.0041811837176867
709 => 0.0041077735081869
710 => 0.0041078848411723
711 => 0.004061833544401
712 => 0.0039726033540699
713 => 0.0039561479379361
714 => 0.0040417510907541
715 => 0.0041103967126653
716 => 0.0041160506948763
717 => 0.0041540564383058
718 => 0.004176547845777
719 => 0.0043969942145813
720 => 0.0044856595677424
721 => 0.0045940778832385
722 => 0.0046363129272457
723 => 0.004763425267606
724 => 0.0046607717292055
725 => 0.0046385619904515
726 => 0.004330229030867
727 => 0.0043807185357258
728 => 0.0044615571045174
729 => 0.0043315620290916
730 => 0.0044140139837075
731 => 0.0044302917461199
801 => 0.0043271448461719
802 => 0.0043822400621486
803 => 0.0042359235031076
804 => 0.0039325332064041
805 => 0.0040438748971685
806 => 0.0041258598587789
807 => 0.0040088572098879
808 => 0.0042185799293972
809 => 0.0040960642462156
810 => 0.0040572326564369
811 => 0.0039057367802491
812 => 0.0039772370021987
813 => 0.0040739420761701
814 => 0.0040141895836273
815 => 0.0041381849775355
816 => 0.0043137955236733
817 => 0.0044389460566398
818 => 0.0044485535605606
819 => 0.0043680901522977
820 => 0.0044970332775497
821 => 0.0044979724874468
822 => 0.0043525241154143
823 => 0.0042634377974044
824 => 0.0042431971985133
825 => 0.0042937621829463
826 => 0.0043551574088592
827 => 0.0044519605683098
828 => 0.0045104566901647
829 => 0.0046629835520168
830 => 0.0047042529475461
831 => 0.0047495955011339
901 => 0.0048101871358529
902 => 0.0048829429287093
903 => 0.0047237573959291
904 => 0.0047300821339054
905 => 0.0045818507698542
906 => 0.0044234442988376
907 => 0.0045436550646938
908 => 0.0047008146500828
909 => 0.0046647620675487
910 => 0.0046607054155261
911 => 0.0046675275790066
912 => 0.0046403451091431
913 => 0.0045173998053799
914 => 0.0044556574435084
915 => 0.0045353208424791
916 => 0.0045776583936221
917 => 0.0046433202432223
918 => 0.0046352260343056
919 => 0.0048043639073081
920 => 0.004870085770293
921 => 0.0048532713053444
922 => 0.0048563655715576
923 => 0.0049753518652066
924 => 0.0051076890951418
925 => 0.0052316403744118
926 => 0.0053577289395164
927 => 0.0052057242529623
928 => 0.0051285456474758
929 => 0.0052081742678986
930 => 0.0051659222010483
1001 => 0.0054087151099474
1002 => 0.0054255255641793
1003 => 0.0056683009163876
1004 => 0.0058987236347845
1005 => 0.0057539992538112
1006 => 0.0058904678265397
1007 => 0.0060380697143916
1008 => 0.0063228177036011
1009 => 0.0062269245983904
1010 => 0.0061534719826355
1011 => 0.0060840596156676
1012 => 0.0062284957324249
1013 => 0.0064143104892098
1014 => 0.0064543332081096
1015 => 0.0065191853025827
1016 => 0.0064510012549811
1017 => 0.0065331214300908
1018 => 0.0068230417336614
1019 => 0.0067447027084393
1020 => 0.0066334486989972
1021 => 0.0068623129344243
1022 => 0.0069451380115382
1023 => 0.007526447778553
1024 => 0.008260375372118
1025 => 0.0079565245291537
1026 => 0.0077679145057203
1027 => 0.0078122423351167
1028 => 0.0080802478472698
1029 => 0.0081663227117035
1030 => 0.0079323415583874
1031 => 0.0080149876573386
1101 => 0.0084703757881447
1102 => 0.0087146769097218
1103 => 0.0083828831726021
1104 => 0.0074674774110195
1105 => 0.0066234314927034
1106 => 0.0068473104781239
1107 => 0.006821929548951
1108 => 0.0073111872846759
1109 => 0.0067428343485962
1110 => 0.0067524039544175
1111 => 0.0072517790219842
1112 => 0.0071185543154134
1113 => 0.0069027473529
1114 => 0.0066250071223561
1115 => 0.0061115786183337
1116 => 0.0056568206743081
1117 => 0.0065487057270422
1118 => 0.0065102460217805
1119 => 0.0064545506691527
1120 => 0.0065784946495593
1121 => 0.0071803314363012
1122 => 0.0071664571504112
1123 => 0.0070781960223021
1124 => 0.007145141310075
1125 => 0.0068910115202777
1126 => 0.0069565065535362
1127 => 0.0066232977915176
1128 => 0.0067739220679771
1129 => 0.0069022843280823
1130 => 0.0069280549522341
1201 => 0.006986117484329
1202 => 0.0064899795047302
1203 => 0.0067127308917242
1204 => 0.0068435764626008
1205 => 0.0062524114131778
1206 => 0.0068318910303143
1207 => 0.0064813428463128
1208 => 0.0063623615276056
1209 => 0.006522554198648
1210 => 0.0064601269589503
1211 => 0.0064064556841087
1212 => 0.0063765061905576
1213 => 0.0064941340083512
1214 => 0.0064886465300555
1215 => 0.0062961845895695
1216 => 0.0060451258339579
1217 => 0.0061293893930639
1218 => 0.0060987756520656
1219 => 0.0059878275054366
1220 => 0.0060625931603342
1221 => 0.0057333630541971
1222 => 0.0051669397684801
1223 => 0.0055411363410392
1224 => 0.0055267301800433
1225 => 0.0055194659404017
1226 => 0.0058006643226463
1227 => 0.0057736335865439
1228 => 0.0057245725358324
1229 => 0.0059869264607661
1230 => 0.0058911637490071
1231 => 0.006186281862116
]
'min_raw' => 0.0026492027823402
'max_raw' => 0.0087146769097218
'avg_raw' => 0.005681939846031
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.002649'
'max' => '$0.008714'
'avg' => '$0.005681'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0014432173737688
'max_diff' => 0.0057608418839044
'year' => 2029
]
4 => [
'items' => [
101 => 0.0063806657384523
102 => 0.0063313636997537
103 => 0.0065141826749869
104 => 0.0061313306552772
105 => 0.0062584987388678
106 => 0.0062847079046484
107 => 0.0059836890540566
108 => 0.005778056149265
109 => 0.0057643427789022
110 => 0.0054078036599533
111 => 0.0055982639794126
112 => 0.0057658611787532
113 => 0.0056855951263371
114 => 0.0056601852920223
115 => 0.005789998624816
116 => 0.0058000862325501
117 => 0.0055700877071763
118 => 0.0056179116837075
119 => 0.0058173456159175
120 => 0.0056128864603106
121 => 0.0052156557191798
122 => 0.0051171370032347
123 => 0.0051039927904674
124 => 0.0048368022192064
125 => 0.0051237204949197
126 => 0.0049984729786391
127 => 0.0053941283818739
128 => 0.0051681321374887
129 => 0.0051583898910862
130 => 0.005143663056772
131 => 0.0049136810945841
201 => 0.0049640325281871
202 => 0.0051314083622232
203 => 0.0051911299454311
204 => 0.005184900495018
205 => 0.0051305881293249
206 => 0.0051554520522149
207 => 0.0050753566934213
208 => 0.0050470733551905
209 => 0.0049578033597891
210 => 0.0048266011280148
211 => 0.0048448456030531
212 => 0.0045848996509767
213 => 0.0044432672999096
214 => 0.0044040653318186
215 => 0.0043516428217243
216 => 0.0044099865938247
217 => 0.0045841632567549
218 => 0.0043740692476207
219 => 0.0040138778053413
220 => 0.0040355259247586
221 => 0.004084162821705
222 => 0.0039935282860106
223 => 0.0039077503043559
224 => 0.0039823273000171
225 => 0.0038297094376034
226 => 0.0041026059612373
227 => 0.0040952248750567
228 => 0.0041969438232596
301 => 0.0042605507690538
302 => 0.0041139573519913
303 => 0.0040770895040309
304 => 0.0040980911057794
305 => 0.0037509814105221
306 => 0.0041685775557945
307 => 0.0041721889445999
308 => 0.0041412660411106
309 => 0.0043636230966336
310 => 0.0048328658386922
311 => 0.0046563178438842
312 => 0.0045879531241031
313 => 0.0044579917418251
314 => 0.0046311575673673
315 => 0.0046178611337733
316 => 0.0045577296185388
317 => 0.0045213618905032
318 => 0.0045883705445042
319 => 0.0045130587767205
320 => 0.0044995307137976
321 => 0.0044175653711623
322 => 0.004388307473027
323 => 0.0043666460900381
324 => 0.0043427990357708
325 => 0.0043953996951687
326 => 0.00427619968078
327 => 0.0041324561487488
328 => 0.004120505429387
329 => 0.004153502416263
330 => 0.0041389037059071
331 => 0.0041204355363783
401 => 0.0040851747712411
402 => 0.004074713655452
403 => 0.0041087072067549
404 => 0.0040703304692811
405 => 0.0041269574359127
406 => 0.0041115580343019
407 => 0.0040255382287153
408 => 0.0039183257023434
409 => 0.0039173712859728
410 => 0.0038942725230297
411 => 0.0038648527754995
412 => 0.0038566688747693
413 => 0.0039760466334546
414 => 0.0042231550212577
415 => 0.0041746417319294
416 => 0.004209697555311
417 => 0.0043821375103247
418 => 0.0044369509865732
419 => 0.0043980456794603
420 => 0.0043447896955094
421 => 0.0043471326885246
422 => 0.0045291245073674
423 => 0.004540475113873
424 => 0.004569154434668
425 => 0.0046060154666647
426 => 0.004404323272601
427 => 0.004337633004322
428 => 0.0043060314553763
429 => 0.0042087109159619
430 => 0.0043136627740878
501 => 0.0042525118208445
502 => 0.004260763173651
503 => 0.0042553894693111
504 => 0.004258323875249
505 => 0.0041025296810973
506 => 0.0041592928971444
507 => 0.0040649130410593
508 => 0.0039385490083973
509 => 0.0039381253918509
510 => 0.0039690528098251
511 => 0.003950655971424
512 => 0.0039011505523128
513 => 0.0039081825634385
514 => 0.003846574746547
515 => 0.0039156628678547
516 => 0.0039176440679646
517 => 0.0038910413780058
518 => 0.0039974811612038
519 => 0.0040410896272266
520 => 0.0040235791668109
521 => 0.0040398610466446
522 => 0.0041766576781254
523 => 0.0041989614979122
524 => 0.0042088673813539
525 => 0.0041955948098201
526 => 0.0040423614379469
527 => 0.0040491579895881
528 => 0.0039992894032279
529 => 0.0039571557027758
530 => 0.0039588408298317
531 => 0.0039805030288618
601 => 0.0040751031224973
602 => 0.0042741834425731
603 => 0.0042817383951942
604 => 0.0042908952181644
605 => 0.004253649817294
606 => 0.004242416248001
607 => 0.0042572362255287
608 => 0.0043320003266032
609 => 0.0045243138928223
610 => 0.0044563374343293
611 => 0.0044010715154578
612 => 0.0044495546258928
613 => 0.0044420910310645
614 => 0.0043790907796174
615 => 0.0043773225723882
616 => 0.0042564049474623
617 => 0.0042117044546884
618 => 0.0041743493771525
619 => 0.0041335586076624
620 => 0.0041093764721897
621 => 0.0041465312228598
622 => 0.0041550289539401
623 => 0.004073789442246
624 => 0.0040627167969924
625 => 0.0041290587359185
626 => 0.0040998641220739
627 => 0.0041298915064047
628 => 0.0041368581171395
629 => 0.0041357363323566
630 => 0.0041052538025228
701 => 0.0041246824580367
702 => 0.0040787278957853
703 => 0.0040287592114889
704 => 0.0039968823040669
705 => 0.0039690654744829
706 => 0.0039844998682597
707 => 0.0039294790726544
708 => 0.0039118768127905
709 => 0.0041181004667072
710 => 0.0042704400971333
711 => 0.0042682250185738
712 => 0.0042547412975147
713 => 0.0042347072230939
714 => 0.0043305347092748
715 => 0.0042971503292204
716 => 0.0043214402550683
717 => 0.0043276230606415
718 => 0.0043463365509699
719 => 0.0043530250152834
720 => 0.0043328078306907
721 => 0.0042649564898767
722 => 0.0040958773996799
723 => 0.004017170626773
724 => 0.0039911960807487
725 => 0.003992140206164
726 => 0.0039660970124487
727 => 0.0039737679001719
728 => 0.0039634293907454
729 => 0.0039438507550455
730 => 0.0039832909426764
731 => 0.0039878360568901
801 => 0.0039786302458219
802 => 0.0039807985475837
803 => 0.0039045783637924
804 => 0.0039103732188245
805 => 0.0038781067296311
806 => 0.0038720571518857
807 => 0.0037904902769694
808 => 0.0036459827347477
809 => 0.0037260539408251
810 => 0.003629339183599
811 => 0.0035927118395697
812 => 0.0037660999894835
813 => 0.0037486966282708
814 => 0.003718909638934
815 => 0.0036748484735523
816 => 0.0036585057587128
817 => 0.0035592125968227
818 => 0.0035533458271098
819 => 0.0036025581992834
820 => 0.0035798483828196
821 => 0.0035479551996244
822 => 0.0034324413230513
823 => 0.0033025654804531
824 => 0.0033064856157707
825 => 0.0033477967048752
826 => 0.0034679142680061
827 => 0.0034209822580359
828 => 0.0033869325463198
829 => 0.0033805560588459
830 => 0.003460371149662
831 => 0.0035733262249452
901 => 0.0036263222190407
902 => 0.0035738047984043
903 => 0.003513475613316
904 => 0.0035171475712738
905 => 0.0035415754625009
906 => 0.0035441424884771
907 => 0.003504874390925
908 => 0.0035159281303717
909 => 0.003499136489377
910 => 0.0033960862195877
911 => 0.0033942223669831
912 => 0.0033689321688667
913 => 0.0033681663917187
914 => 0.0033251414557872
915 => 0.003319121969833
916 => 0.003233693348114
917 => 0.0032899227256311
918 => 0.0032522070113674
919 => 0.0031953605337345
920 => 0.0031855601795638
921 => 0.0031852655690832
922 => 0.0032436341909724
923 => 0.0032892406543005
924 => 0.0032528630923645
925 => 0.0032445806266612
926 => 0.0033330156916762
927 => 0.0033217615235495
928 => 0.0033120154865334
929 => 0.0035632123368557
930 => 0.0033643704286909
1001 => 0.0032776640072318
1002 => 0.0031703483455732
1003 => 0.0032052908661418
1004 => 0.003212653768638
1005 => 0.0029545789474511
1006 => 0.0028498780246368
1007 => 0.0028139486134979
1008 => 0.0027932707294202
1009 => 0.002802693900851
1010 => 0.0027084507901247
1011 => 0.0027717837191699
1012 => 0.0026901771514528
1013 => 0.0026764955448043
1014 => 0.0028224181969963
1015 => 0.0028427224815811
1016 => 0.0027560980954958
1017 => 0.0028117249745768
1018 => 0.0027915538949505
1019 => 0.0026915760618313
1020 => 0.0026877576439933
1021 => 0.0026375922817248
1022 => 0.0025590932037029
1023 => 0.0025232170186354
1024 => 0.0025045323899609
1025 => 0.0025122420319081
1026 => 0.0025083438010207
1027 => 0.002482905207615
1028 => 0.0025098019114173
1029 => 0.0024410919476878
1030 => 0.0024137310864968
1031 => 0.0024013728202641
1101 => 0.0023403887726561
1102 => 0.0024374415121294
1103 => 0.0024565621244439
1104 => 0.0024757204102712
1105 => 0.0026424802084811
1106 => 0.0026341493602208
1107 => 0.002709456171206
1108 => 0.0027065298870115
1109 => 0.002685051164629
1110 => 0.0025944359679759
1111 => 0.0026305535703013
1112 => 0.0025193892042654
1113 => 0.0026026811057416
1114 => 0.0025646701602609
1115 => 0.002589829566839
1116 => 0.0025445906852793
1117 => 0.0025696277502021
1118 => 0.0024610963309516
1119 => 0.0023597512187337
1120 => 0.0024005354503385
1121 => 0.0024448725743354
1122 => 0.0025410067560499
1123 => 0.0024837500305105
1124 => 0.002504341714131
1125 => 0.0024353630210087
1126 => 0.0022930402743078
1127 => 0.0022938458055979
1128 => 0.0022719525516876
1129 => 0.0022530335838416
1130 => 0.0024903266542031
1201 => 0.0024608155098553
1202 => 0.0024137933636602
1203 => 0.0024767343749281
1204 => 0.0024933769773155
1205 => 0.0024938507688088
1206 => 0.0025397709058872
1207 => 0.0025642784912776
1208 => 0.0025685980594246
1209 => 0.0026408543872878
1210 => 0.0026650737553035
1211 => 0.002764829904507
1212 => 0.0025621991938822
1213 => 0.0025580261477417
1214 => 0.0024776200840326
1215 => 0.0024266252872587
1216 => 0.0024811117413956
1217 => 0.0025293793016183
1218 => 0.002479119891674
1219 => 0.0024856827095787
1220 => 0.0024182135580731
1221 => 0.0024423306050177
1222 => 0.0024631034547635
1223 => 0.0024516339081055
1224 => 0.0024344634416263
1225 => 0.0025254219121161
1226 => 0.0025202896787419
1227 => 0.0026049922975882
1228 => 0.0026710240461213
1229 => 0.0027893647440795
1230 => 0.00266587005652
1231 => 0.0026613694192584
]
'min_raw' => 0.0022530335838416
'max_raw' => 0.0065141826749869
'avg_raw' => 0.0043836081294142
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.002253'
'max' => '$0.006514'
'avg' => '$0.004383'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00039616919849859
'max_diff' => -0.0022004942347349
'year' => 2030
]
5 => [
'items' => [
101 => 0.0027053638704154
102 => 0.0026650670199823
103 => 0.002690533238456
104 => 0.0027852617425771
105 => 0.002787263206598
106 => 0.0027537361055079
107 => 0.0027516959783596
108 => 0.0027581352248703
109 => 0.0027958500928094
110 => 0.0027826713590906
111 => 0.0027979221233947
112 => 0.0028169934376849
113 => 0.0028958804796589
114 => 0.002914899878408
115 => 0.0028686925998753
116 => 0.0028728645997659
117 => 0.0028555818091765
118 => 0.0028388868500198
119 => 0.0028764146801009
120 => 0.0029449975271855
121 => 0.0029445708768532
122 => 0.0029604807643168
123 => 0.002970392492402
124 => 0.002927844099632
125 => 0.0029001466604865
126 => 0.0029107676210887
127 => 0.0029277507683861
128 => 0.0029052602153133
129 => 0.0027664381031103
130 => 0.0028085478639618
131 => 0.002801538740694
201 => 0.0027915568968222
202 => 0.0028338985869835
203 => 0.0028298146276742
204 => 0.0027074841908074
205 => 0.0027153153884755
206 => 0.0027079604318754
207 => 0.002731725801333
208 => 0.0026637836120403
209 => 0.0026846821718691
210 => 0.0026977895526819
211 => 0.0027055099006763
212 => 0.0027334010915242
213 => 0.0027301283821971
214 => 0.0027331976553173
215 => 0.0027745529283433
216 => 0.0029837137078931
217 => 0.0029950978676368
218 => 0.0029390381014982
219 => 0.0029614328723406
220 => 0.0029184398095213
221 => 0.0029473013406204
222 => 0.002967047667195
223 => 0.0028778178144046
224 => 0.0028725342016193
225 => 0.0028293636911363
226 => 0.0028525610781672
227 => 0.0028156523674499
228 => 0.002824708474048
301 => 0.0027993868105025
302 => 0.0028449607633915
303 => 0.0028959195241978
304 => 0.0029087937196
305 => 0.0028749272541866
306 => 0.0028504057013185
307 => 0.0028073539323838
308 => 0.0028789499835935
309 => 0.0028998868508173
310 => 0.002878840011143
311 => 0.002873962998508
312 => 0.0028647210683771
313 => 0.0028759237176747
314 => 0.002899772824142
315 => 0.0028885260259558
316 => 0.0028959547343009
317 => 0.0028676441585404
318 => 0.0029278581849204
319 => 0.0030234925501065
320 => 0.0030238000302284
321 => 0.0030125531714178
322 => 0.0030079511991095
323 => 0.0030194911587656
324 => 0.0030257511134851
325 => 0.0030630692269463
326 => 0.0031031130495094
327 => 0.0032899800969226
328 => 0.0032375085777696
329 => 0.003403308139005
330 => 0.0035344340655637
331 => 0.0035737529974968
401 => 0.0035375814302171
402 => 0.0034138404525027
403 => 0.0034077691297985
404 => 0.0035926903925971
405 => 0.0035404416659261
406 => 0.0035342268461426
407 => 0.0034681116637505
408 => 0.0035071939250689
409 => 0.0034986460612164
410 => 0.0034851528399494
411 => 0.0035597190720509
412 => 0.0036993004019716
413 => 0.003677545342718
414 => 0.0036613062001734
415 => 0.0035901510046862
416 => 0.0036330023254578
417 => 0.003617743790894
418 => 0.0036833041386853
419 => 0.0036444676409932
420 => 0.0035400458304335
421 => 0.0035566753479439
422 => 0.0035541618298262
423 => 0.0036058898545798
424 => 0.0035903623855172
425 => 0.0035511298422847
426 => 0.0036988233281603
427 => 0.0036892329347019
428 => 0.0037028299199568
429 => 0.0037088157333667
430 => 0.003798714155568
501 => 0.0038355426627153
502 => 0.0038439033786115
503 => 0.0038788876119824
504 => 0.0038430329390153
505 => 0.0039864771948322
506 => 0.004081859254746
507 => 0.0041926504256519
508 => 0.0043545461042048
509 => 0.0044154203769594
510 => 0.0044044239844507
511 => 0.0045271714402397
512 => 0.0047477458897697
513 => 0.0044490083871656
514 => 0.0047635797027991
515 => 0.00466399005617
516 => 0.0044278647955538
517 => 0.004412661112504
518 => 0.004572567880464
519 => 0.0049272257013432
520 => 0.0048383879397086
521 => 0.0049273710080959
522 => 0.0048235675322082
523 => 0.004818412814706
524 => 0.0049223295049658
525 => 0.0051651365159617
526 => 0.0050497880065222
527 => 0.0048844076336259
528 => 0.0050065219273689
529 => 0.0049007352249843
530 => 0.0046623681766782
531 => 0.0048383200071466
601 => 0.004720666028932
602 => 0.0047550037146045
603 => 0.0050022948771031
604 => 0.00497254015018
605 => 0.005011045522032
606 => 0.0049430845485743
607 => 0.0048795982829029
608 => 0.0047610964534752
609 => 0.0047260139038513
610 => 0.0047357094584294
611 => 0.0047260090992159
612 => 0.0046597084147392
613 => 0.004645390788239
614 => 0.0046215274501357
615 => 0.0046289236964516
616 => 0.0045840536393516
617 => 0.0046687327077261
618 => 0.0046844498890058
619 => 0.0047460722533206
620 => 0.0047524700916081
621 => 0.0049240874990851
622 => 0.0048295635149601
623 => 0.0048929783643193
624 => 0.0048873059433089
625 => 0.0044329823459457
626 => 0.0044955841291313
627 => 0.0045929728582464
628 => 0.0045490993677873
629 => 0.004487072517094
630 => 0.0044369825094897
701 => 0.0043610910260031
702 => 0.0044679068316437
703 => 0.0046083582574666
704 => 0.0047560321715471
705 => 0.0049334527033367
706 => 0.0048938545060439
707 => 0.0047527154181164
708 => 0.0047590468144987
709 => 0.0047981850156211
710 => 0.004747497489087
711 => 0.004732548747974
712 => 0.0047961312881457
713 => 0.0047965691461556
714 => 0.0047382470210858
715 => 0.004673432651907
716 => 0.0046731610773336
717 => 0.0046616279863708
718 => 0.0048256192434696
719 => 0.0049157978534877
720 => 0.0049261366857962
721 => 0.0049151019676978
722 => 0.0049193487927416
723 => 0.0048668758465221
724 => 0.004986813441211
725 => 0.0050968800386963
726 => 0.0050673798393404
727 => 0.0050231548468054
728 => 0.004987927510087
729 => 0.0050590813983504
730 => 0.0050559130277126
731 => 0.0050959187029873
801 => 0.0050941038144728
802 => 0.0050806514105675
803 => 0.0050673803197681
804 => 0.0051199986946918
805 => 0.005104845447739
806 => 0.0050896686636083
807 => 0.0050592292995847
808 => 0.0050633665146998
809 => 0.0050191491582333
810 => 0.0049986921858833
811 => 0.0046910684048796
812 => 0.0046088612786984
813 => 0.0046347253140754
814 => 0.0046432404260808
815 => 0.0046074637794155
816 => 0.0046587583004671
817 => 0.0046507641036956
818 => 0.004681864846885
819 => 0.0046624344527776
820 => 0.0046632318829293
821 => 0.0047203725290026
822 => 0.0047369607016513
823 => 0.0047285238231592
824 => 0.0047344327236558
825 => 0.0048706008416093
826 => 0.0048512420896476
827 => 0.0048409581385022
828 => 0.0048438068632512
829 => 0.0048786007368657
830 => 0.0048883411218027
831 => 0.00484707042638
901 => 0.0048665339249244
902 => 0.0049494070314407
903 => 0.0049784079285098
904 => 0.0050709648707341
905 => 0.0050316450366087
906 => 0.0051038182938684
907 => 0.0053256542810079
908 => 0.0055028722174176
909 => 0.0053398952792542
910 => 0.0056653334509026
911 => 0.005918733748864
912 => 0.0059090078233679
913 => 0.0058648216201639
914 => 0.0055763321179304
915 => 0.0053108597768389
916 => 0.0055329386627129
917 => 0.005533504787464
918 => 0.0055144280142154
919 => 0.0053959438139624
920 => 0.005510305020876
921 => 0.0055193825981819
922 => 0.0055143015688132
923 => 0.0054234600102801
924 => 0.0052847617407265
925 => 0.0053118630506006
926 => 0.005356255549026
927 => 0.0052722112882614
928 => 0.0052453540545257
929 => 0.005295286761838
930 => 0.005456180348691
1001 => 0.0054257643480896
1002 => 0.0054249700633932
1003 => 0.0055551026123578
1004 => 0.0054619557916609
1005 => 0.0053122048849085
1006 => 0.0052743908059817
1007 => 0.0051401763004074
1008 => 0.0052328787374633
1009 => 0.0052362149331379
1010 => 0.0051854427557584
1011 => 0.0053163247672814
1012 => 0.0053151186665039
1013 => 0.0054393716572284
1014 => 0.0056768967082015
1015 => 0.0056066488627308
1016 => 0.0055249582613923
1017 => 0.0055338402947925
1018 => 0.005631254278466
1019 => 0.0055723555601921
1020 => 0.0055935359499398
1021 => 0.0056312222194094
1022 => 0.0056539592814778
1023 => 0.0055305687814644
1024 => 0.0055018005534614
1025 => 0.0054429508552432
1026 => 0.0054275980674597
1027 => 0.0054755299187192
1028 => 0.0054629015693696
1029 => 0.0052359345388099
1030 => 0.0052122152212837
1031 => 0.0052129426588889
1101 => 0.0051532993071773
1102 => 0.0050623288797727
1103 => 0.0053013937314301
1104 => 0.0052821934781316
1105 => 0.0052609978844716
1106 => 0.0052635942237545
1107 => 0.0053673641731995
1108 => 0.0053071723620134
1109 => 0.0054672021572955
1110 => 0.0054343048423214
1111 => 0.0054005638353513
1112 => 0.0053958998004118
1113 => 0.0053829123913757
1114 => 0.0053383737333889
1115 => 0.0052845906275115
1116 => 0.0052490783623984
1117 => 0.0048419973240801
1118 => 0.0049175491969105
1119 => 0.005004464739832
1120 => 0.0050344676369563
1121 => 0.0049831456052879
1122 => 0.0053404002400107
1123 => 0.0054056741043658
1124 => 0.0052079553115252
1125 => 0.0051709701981898
1126 => 0.0053428249778836
1127 => 0.0052391755373359
1128 => 0.005285848874068
1129 => 0.0051849666490034
1130 => 0.0053899515418845
1201 => 0.0053883899004444
1202 => 0.0053086461473199
1203 => 0.0053760450213991
1204 => 0.005364332808423
1205 => 0.0052743023075456
1206 => 0.0053928056693469
1207 => 0.0053928644455358
1208 => 0.0053161128169322
1209 => 0.005226483717815
1210 => 0.0052104601518377
1211 => 0.005198388547337
1212 => 0.0052828799993636
1213 => 0.0053586347710527
1214 => 0.0054995956199656
1215 => 0.0055350365265294
1216 => 0.0056733647442829
1217 => 0.0055909970256894
1218 => 0.0056275095685014
1219 => 0.0056671490987383
1220 => 0.0056861537472293
1221 => 0.0056551866923589
1222 => 0.005870067352696
1223 => 0.0058882098642017
1224 => 0.0058942928913775
1225 => 0.0058218363417242
1226 => 0.0058861947164829
1227 => 0.0058560835642587
1228 => 0.0059344244172272
1229 => 0.0059467092632789
1230 => 0.0059363044357192
1231 => 0.0059402038397591
]
'min_raw' => 0.0026637836120403
'max_raw' => 0.0059467092632789
'avg_raw' => 0.0043052464376596
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.002663'
'max' => '$0.005946'
'avg' => '$0.0043052'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00041075002819867
'max_diff' => -0.000567473411708
'year' => 2031
]
6 => [
'items' => [
101 => 0.0057568411037074
102 => 0.0057473327785276
103 => 0.0056176860900215
104 => 0.0056705180738877
105 => 0.0055717512123528
106 => 0.0056030712015569
107 => 0.0056168767543703
108 => 0.0056096655170388
109 => 0.005673505114987
110 => 0.0056192284151628
111 => 0.0054759832804111
112 => 0.0053326991186182
113 => 0.0053309003026836
114 => 0.005293176112059
115 => 0.0052659084317676
116 => 0.0052711611543647
117 => 0.0052896724339201
118 => 0.0052648325225482
119 => 0.0052701333770549
120 => 0.0053581628812743
121 => 0.0053758165705478
122 => 0.0053158224366548
123 => 0.0050749373319621
124 => 0.005015823523056
125 => 0.00505831335662
126 => 0.0050380059528722
127 => 0.0040660640042108
128 => 0.0042944073480301
129 => 0.00415873348694
130 => 0.0042212582441845
131 => 0.0040827703645875
201 => 0.0041488640395028
202 => 0.0041366589511005
203 => 0.0045038282907912
204 => 0.0044980954465768
205 => 0.0045008394557268
206 => 0.0043698607495173
207 => 0.0045785133849685
208 => 0.0046813031760979
209 => 0.0046622795214216
210 => 0.0046670673654551
211 => 0.0045847963420736
212 => 0.0045016360190687
213 => 0.0044093984225744
214 => 0.0045807644759494
215 => 0.0045617114961302
216 => 0.0046054121767897
217 => 0.0047165553119019
218 => 0.0047329215607389
219 => 0.0047549179651459
220 => 0.0047470338199766
221 => 0.0049348661441095
222 => 0.0049121184102994
223 => 0.004966933903812
224 => 0.0048541742747951
225 => 0.0047265760513203
226 => 0.0047508283021026
227 => 0.004748492615328
228 => 0.0047187566419105
229 => 0.0046919123346944
301 => 0.0046472241265163
302 => 0.0047886242298023
303 => 0.0047828836438358
304 => 0.0048758170579322
305 => 0.0048593901742837
306 => 0.0047496874249382
307 => 0.0047536054800926
308 => 0.0047799562839585
309 => 0.0048711567170068
310 => 0.0048982312149345
311 => 0.0048856892287622
312 => 0.0049153751797422
313 => 0.004938837745003
314 => 0.0049183217167029
315 => 0.0052087854129573
316 => 0.0050881646352142
317 => 0.0051469543630122
318 => 0.0051609753666829
319 => 0.0051250608606105
320 => 0.0051328494309755
321 => 0.0051446469928202
322 => 0.0052162794781416
323 => 0.0054042638466517
324 => 0.0054875208438119
325 => 0.0057380036275963
326 => 0.0054806075091911
327 => 0.0054653346887359
328 => 0.0055104542019509
329 => 0.0056575141123278
330 => 0.0057766923570532
331 => 0.0058162306563865
401 => 0.0058214562953496
402 => 0.0058956327733553
403 => 0.0059381493472388
404 => 0.0058866257978904
405 => 0.0058429649845581
406 => 0.0056865773705814
407 => 0.0057046796627285
408 => 0.0058293865044429
409 => 0.0060055422635608
410 => 0.0061567022307669
411 => 0.0061037712787081
412 => 0.0065075970794884
413 => 0.0065476347581553
414 => 0.0065421028455367
415 => 0.0066333146359453
416 => 0.0064522778069422
417 => 0.0063748810551201
418 => 0.0058524049479718
419 => 0.005999199422557
420 => 0.0062125738123038
421 => 0.0061843329117079
422 => 0.00602937472636
423 => 0.0061565846810879
424 => 0.0061145250918318
425 => 0.0060813509487315
426 => 0.0062333281293979
427 => 0.0060662229763767
428 => 0.0062109068105736
429 => 0.0060253482966535
430 => 0.0061040130628385
501 => 0.0060593591369653
502 => 0.0060882556995846
503 => 0.0059193269849659
504 => 0.0060104768188614
505 => 0.005915534852203
506 => 0.005915489837349
507 => 0.0059133939881728
508 => 0.0060250927909093
509 => 0.0060287352848564
510 => 0.0059461897008666
511 => 0.0059342935926093
512 => 0.0059782797398393
513 => 0.0059267834814232
514 => 0.0059508782566225
515 => 0.0059275132876183
516 => 0.0059222533409539
517 => 0.0058803411910258
518 => 0.0058622842844383
519 => 0.0058693648627804
520 => 0.0058451951986103
521 => 0.0058306321016929
522 => 0.0059104970216481
523 => 0.0058678284166577
524 => 0.0059039574459794
525 => 0.0058627838572203
526 => 0.0057200582601027
527 => 0.0056379752599046
528 => 0.0053683798376192
529 => 0.0054448367649473
530 => 0.0054955277868662
531 => 0.0054787744044244
601 => 0.0055147671526077
602 => 0.0055169768150252
603 => 0.0055052752056882
604 => 0.0054917262411448
605 => 0.0054851313545099
606 => 0.0055342842363975
607 => 0.0055628191387432
608 => 0.0055006153090741
609 => 0.0054860418221067
610 => 0.0055489333282697
611 => 0.0055872971106979
612 => 0.0058705537254004
613 => 0.0058495691604764
614 => 0.0059022363004227
615 => 0.0058963067887079
616 => 0.005951510341905
617 => 0.0060417448206199
618 => 0.0058582728954354
619 => 0.0058901172776656
620 => 0.0058823097705369
621 => 0.0059675500861294
622 => 0.0059678161970904
623 => 0.0059167103698231
624 => 0.005944415667882
625 => 0.0059289513305607
626 => 0.005956897478231
627 => 0.0058492888988182
628 => 0.0059803445329146
629 => 0.0060546446324088
630 => 0.0060556762893623
701 => 0.0060908939468405
702 => 0.0061266771265075
703 => 0.0061953598238202
704 => 0.006124761603357
705 => 0.0059977622773421
706 => 0.0060069312184751
707 => 0.0059324715600998
708 => 0.0059337232404093
709 => 0.0059270416728211
710 => 0.0059470935601182
711 => 0.0058536891604645
712 => 0.0058756109863691
713 => 0.0058449203017285
714 => 0.005890050562111
715 => 0.0058414978622388
716 => 0.0058823060055206
717 => 0.0058999174473496
718 => 0.005964904046846
719 => 0.0058318992886542
720 => 0.0055606935830704
721 => 0.0056177043104354
722 => 0.0055333809665665
723 => 0.0055411854130832
724 => 0.0055569516371153
725 => 0.0055058481466397
726 => 0.0055155970821664
727 => 0.0055152487815871
728 => 0.0055122473153626
729 => 0.0054989533237795
730 => 0.0054796744058478
731 => 0.0055564756811496
801 => 0.0055695257143944
802 => 0.0055985343217406
803 => 0.0056848442604765
804 => 0.0056762198622683
805 => 0.0056902866135688
806 => 0.0056595789744613
807 => 0.0055426098523898
808 => 0.0055489618384737
809 => 0.0054697524702237
810 => 0.0055965087601075
811 => 0.0055664911975617
812 => 0.0055471386797127
813 => 0.0055418581659178
814 => 0.0056283820502976
815 => 0.0056542713525998
816 => 0.0056381388767715
817 => 0.0056050506981882
818 => 0.00566858978271
819 => 0.0056855901612292
820 => 0.0056893959190298
821 => 0.0058019749943913
822 => 0.005695687838745
823 => 0.0057212722135126
824 => 0.005920874202067
825 => 0.0057398627416397
826 => 0.0058357485492653
827 => 0.0058310554379477
828 => 0.0058801073725302
829 => 0.0058270317475933
830 => 0.0058276896835749
831 => 0.0058712444784183
901 => 0.0058100796242094
902 => 0.0057949343461441
903 => 0.0057740112529693
904 => 0.0058196960614604
905 => 0.0058470820380046
906 => 0.006067792896168
907 => 0.0062103821761794
908 => 0.0062041919994817
909 => 0.006260758626974
910 => 0.0062352748431978
911 => 0.0061529809831018
912 => 0.0062934465676186
913 => 0.0062489973793478
914 => 0.0062526617164231
915 => 0.0062525253296141
916 => 0.0062820801539987
917 => 0.0062611378522623
918 => 0.0062198584258568
919 => 0.006247261635535
920 => 0.0063286393714524
921 => 0.0065812383607139
922 => 0.0067225961015961
923 => 0.0065727284472187
924 => 0.0066761051484004
925 => 0.0066141159645763
926 => 0.006602850685857
927 => 0.0066677788936773
928 => 0.0067328207497303
929 => 0.0067286778646834
930 => 0.0066814608171252
1001 => 0.0066547891050478
1002 => 0.0068567562445769
1003 => 0.0070055621925615
1004 => 0.0069954146245167
1005 => 0.0070402026897006
1006 => 0.0071717018343233
1007 => 0.0071837244681067
1008 => 0.007182209892587
1009 => 0.0071524105403229
1010 => 0.0072818885255256
1011 => 0.0073899013387302
1012 => 0.0071455128512598
1013 => 0.0072385727880083
1014 => 0.0072803503918186
1015 => 0.0073416923090686
1016 => 0.0074451864055685
1017 => 0.0075576084448207
1018 => 0.0075735061538159
1019 => 0.0075622259685084
1020 => 0.0074880806115549
1021 => 0.0076110941483786
1022 => 0.0076831525932274
1023 => 0.0077260617481067
1024 => 0.0078348722254781
1025 => 0.0072806083960769
1026 => 0.0068882729089271
1027 => 0.0068270040572155
1028 => 0.0069515966764496
1029 => 0.0069844507565341
1030 => 0.0069712073180475
1031 => 0.0065295980576785
1101 => 0.0068246790758528
1102 => 0.0071421614402917
1103 => 0.0071543572308975
1104 => 0.0073132955407788
1105 => 0.0073650523695776
1106 => 0.0074930185415525
1107 => 0.007485014222654
1108 => 0.0075161719491434
1109 => 0.0075090093274001
1110 => 0.0077460397145271
1111 => 0.0080075194308812
1112 => 0.0079984652197584
1113 => 0.007960874416845
1114 => 0.0080167031693559
1115 => 0.0082865782585027
1116 => 0.0082617324849542
1117 => 0.0082858680375986
1118 => 0.0086040659771962
1119 => 0.0090177685618022
1120 => 0.0088255621761923
1121 => 0.0092425947270681
1122 => 0.0095050946118989
1123 => 0.0099590610197189
1124 => 0.0099022221896281
1125 => 0.010078947980833
1126 => 0.0098004688211439
1127 => 0.0091610243805735
1128 => 0.0090598298501583
1129 => 0.0092624238627032
1130 => 0.0097604814737104
1201 => 0.0092467382560961
1202 => 0.0093506678399189
1203 => 0.0093207361127862
1204 => 0.0093191411782489
1205 => 0.0093800133424682
1206 => 0.0092917150933896
1207 => 0.0089319721420917
1208 => 0.009096840216693
1209 => 0.0090331767354742
1210 => 0.0091038161143134
1211 => 0.0094850277080125
1212 => 0.0093164849754887
1213 => 0.0091389388980747
1214 => 0.0093616210797805
1215 => 0.0096451720189916
1216 => 0.0096274279108058
1217 => 0.0095929969244635
1218 => 0.0097870825917272
1219 => 0.010107655252282
1220 => 0.010194304754265
1221 => 0.010258267645157
1222 => 0.010267087047149
1223 => 0.010357932368897
1224 => 0.0098694341778927
1225 => 0.010644693352539
1226 => 0.010778559195898
1227 => 0.010753397965518
1228 => 0.010902184216475
1229 => 0.010858407527101
1230 => 0.010794981972549
1231 => 0.01103083982806
]
'min_raw' => 0.0040660640042108
'max_raw' => 0.01103083982806
'avg_raw' => 0.0075484519161354
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.004066'
'max' => '$0.01103'
'avg' => '$0.007548'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0014022803921706
'max_diff' => 0.0050841305647811
'year' => 2032
]
7 => [
'items' => [
101 => 0.010760447829464
102 => 0.010376660428863
103 => 0.010166107070439
104 => 0.010443380717667
105 => 0.010612702058512
106 => 0.01072461269395
107 => 0.010758476784616
108 => 0.0099073549018843
109 => 0.0094486474124758
110 => 0.0097426736540946
111 => 0.010101405961477
112 => 0.0098674414018123
113 => 0.0098766123695977
114 => 0.0095430403923209
115 => 0.010130919679768
116 => 0.01004527061243
117 => 0.010489618125291
118 => 0.010383571025235
119 => 0.010745919172501
120 => 0.010650500761717
121 => 0.01104657725011
122 => 0.011204582884673
123 => 0.011469898936718
124 => 0.011665066504632
125 => 0.011779672633472
126 => 0.011772792111373
127 => 0.012226918690384
128 => 0.011959136112716
129 => 0.011622738083656
130 => 0.011616653704633
131 => 0.01179087901068
201 => 0.012156007455775
202 => 0.012250679949186
203 => 0.012303588957543
204 => 0.012222556969468
205 => 0.011931898173559
206 => 0.011806393179159
207 => 0.011913327070618
208 => 0.011782556110298
209 => 0.012008303475661
210 => 0.012318302825339
211 => 0.012254289185501
212 => 0.012468277186019
213 => 0.012689732254361
214 => 0.01300642294826
215 => 0.013089217622668
216 => 0.013226074071064
217 => 0.013366944311465
218 => 0.013412188036123
219 => 0.013498572344797
220 => 0.01349811705685
221 => 0.013758441985374
222 => 0.014045588443129
223 => 0.014153979583475
224 => 0.01440321903398
225 => 0.013976405209383
226 => 0.014300148398223
227 => 0.014592172858375
228 => 0.014244009258227
301 => 0.014723871669317
302 => 0.014742503639348
303 => 0.015023824265922
304 => 0.014738651916378
305 => 0.014569317485521
306 => 0.015058179642527
307 => 0.015294724641288
308 => 0.015223475362594
309 => 0.014681264833722
310 => 0.014365675049415
311 => 0.013539715711161
312 => 0.014518100226111
313 => 0.014994642783476
314 => 0.014680030703623
315 => 0.014838702736809
316 => 0.015704365900294
317 => 0.016033954385409
318 => 0.015965402284503
319 => 0.015976986461092
320 => 0.016154826425207
321 => 0.016943466764347
322 => 0.016470895192594
323 => 0.01683215845228
324 => 0.017023771182586
325 => 0.017201751765187
326 => 0.016764687705659
327 => 0.016196073785958
328 => 0.016015969888801
329 => 0.014648748732608
330 => 0.014577578933888
331 => 0.0145376291692
401 => 0.014285751553853
402 => 0.014087844743275
403 => 0.013930461899695
404 => 0.013517442319645
405 => 0.013656824303595
406 => 0.012998557296882
407 => 0.013419693200227
408 => 0.012369083163099
409 => 0.013244062421065
410 => 0.012767850991379
411 => 0.013087614158748
412 => 0.01308649853518
413 => 0.01249771316305
414 => 0.012158114048043
415 => 0.012374519821521
416 => 0.012606523989001
417 => 0.012644165884619
418 => 0.012944965343685
419 => 0.013028912007048
420 => 0.012774549697964
421 => 0.012347311605284
422 => 0.01244654926995
423 => 0.012156102999936
424 => 0.011647107083591
425 => 0.012012676836926
426 => 0.012137498423682
427 => 0.012192626747322
428 => 0.011692087722173
429 => 0.01153480749324
430 => 0.011451072819065
501 => 0.012282698302637
502 => 0.012328256623915
503 => 0.012095173810957
504 => 0.013148730227346
505 => 0.012910277962597
506 => 0.013176687564545
507 => 0.012437544492041
508 => 0.012465780752799
509 => 0.012115858576983
510 => 0.012311791613632
511 => 0.012173312458545
512 => 0.012295962160519
513 => 0.012369477886178
514 => 0.012719342643209
515 => 0.013248057314595
516 => 0.01266708451547
517 => 0.012413946347207
518 => 0.012570991843094
519 => 0.012989224693854
520 => 0.013622868871702
521 => 0.013247738765139
522 => 0.013414215136309
523 => 0.013450582817392
524 => 0.013173975764883
525 => 0.013633067768276
526 => 0.013879098902551
527 => 0.014131475937348
528 => 0.014350607845218
529 => 0.01403067099976
530 => 0.014373049285545
531 => 0.014097152825106
601 => 0.01384964517844
602 => 0.013850020545373
603 => 0.01369475538311
604 => 0.013393909566556
605 => 0.01333842898218
606 => 0.013627045988527
607 => 0.013858489495485
608 => 0.013877552291258
609 => 0.014005691308707
610 => 0.014081522659296
611 => 0.014824772982793
612 => 0.015123714411393
613 => 0.015489254331614
614 => 0.01563165273124
615 => 0.016060220861466
616 => 0.015714117289707
617 => 0.015639235604864
618 => 0.014599669504504
619 => 0.014769898395201
620 => 0.01504245127385
621 => 0.014604163801086
622 => 0.014882156322685
623 => 0.014937037935135
624 => 0.014589270960474
625 => 0.014775028327765
626 => 0.014281711833462
627 => 0.013258810266092
628 => 0.013634206550133
629 => 0.01391062457221
630 => 0.01351614197261
701 => 0.014223236763808
702 => 0.013810166584189
703 => 0.013679243168115
704 => 0.013168464244444
705 => 0.013409532234733
706 => 0.01373558014336
707 => 0.013534120442966
708 => 0.01395217957061
709 => 0.01454426278765
710 => 0.014966216547278
711 => 0.014998608917522
712 => 0.014727320918787
713 => 0.015162061668096
714 => 0.015165228279837
715 => 0.014674838938649
716 => 0.01437447819767
717 => 0.014306235605355
718 => 0.014476718980706
719 => 0.014683717271349
720 => 0.015010095882017
721 => 0.01520731964092
722 => 0.01572157460474
723 => 0.015860717253104
724 => 0.016013592838241
725 => 0.016217881765069
726 => 0.016463183000332
727 => 0.015926477862584
728 => 0.015947802158251
729 => 0.015448029765169
730 => 0.014913951288549
731 => 0.015319250278481
801 => 0.015849124793152
802 => 0.015727570994027
803 => 0.015713893708507
804 => 0.01573689510899
805 => 0.015645247514026
806 => 0.015230728838621
807 => 0.015022560154857
808 => 0.015291150866408
809 => 0.015433894876
810 => 0.015655278386291
811 => 0.015627988195809
812 => 0.016198248343466
813 => 0.016419834193073
814 => 0.01636314305055
815 => 0.016373575585123
816 => 0.016774746181518
817 => 0.017220930391735
818 => 0.017638840783796
819 => 0.018063957184269
820 => 0.017551462770923
821 => 0.017291249714087
822 => 0.017559723167336
823 => 0.017417267374005
824 => 0.018235860617618
825 => 0.018292538237729
826 => 0.019111072287733
827 => 0.019887958570409
828 => 0.019400010215623
829 => 0.019860123536509
830 => 0.020357773606636
831 => 0.021317821332726
901 => 0.020994511033465
902 => 0.02074686041115
903 => 0.020512831769701
904 => 0.020999808221556
905 => 0.021626295647228
906 => 0.021761235038296
907 => 0.021979888402641
908 => 0.021750001125693
909 => 0.022026875029523
910 => 0.023004361574601
911 => 0.022740236081609
912 => 0.022365135421268
913 => 0.023136767169801
914 => 0.023416017699952
915 => 0.025375944165195
916 => 0.027850432288087
917 => 0.026825977956845
918 => 0.026190066094508
919 => 0.026339520466188
920 => 0.027243119761959
921 => 0.027533327176953
922 => 0.026744443382505
923 => 0.027023090475286
924 => 0.028558463352482
925 => 0.029382141640439
926 => 0.028263475890641
927 => 0.025177121453876
928 => 0.022331361710869
929 => 0.023086185340946
930 => 0.0230006117662
1001 => 0.02465017838108
1002 => 0.022733936775953
1003 => 0.022766201370108
1004 => 0.024449879275663
1005 => 0.024000702876007
1006 => 0.023273094634733
1007 => 0.02233667405625
1008 => 0.020605614008505
1009 => 0.019072365850037
1010 => 0.022079418574756
1011 => 0.021949748993295
1012 => 0.021761968223385
1013 => 0.022179854006819
1014 => 0.024208988752221
1015 => 0.024162210628672
1016 => 0.023864632073056
1017 => 0.024090342784753
1018 => 0.023233526455677
1019 => 0.023454347533025
1020 => 0.022330910927986
1021 => 0.022838751192321
1022 => 0.023271533514232
1023 => 0.023358420972808
1024 => 0.023554182853562
1025 => 0.021881419016097
1026 => 0.022632440869353
1027 => 0.023073595846909
1028 => 0.021080441608954
1029 => 0.023034197596104
1030 => 0.02185229991925
1031 => 0.021451146096219
1101 => 0.021991246870934
1102 => 0.021780769073762
1103 => 0.021599812623425
1104 => 0.02149883581491
1105 => 0.021895426215113
1106 => 0.021876924798916
1107 => 0.021228025929304
1108 => 0.020381563806397
1109 => 0.020665664279016
1110 => 0.020562447913858
1111 => 0.020188378491346
1112 => 0.020440456116804
1113 => 0.019330433827851
1114 => 0.017420698173645
1115 => 0.018682328043599
1116 => 0.018633756665995
1117 => 0.01860926477487
1118 => 0.019557344753252
1119 => 0.019466208739257
1120 => 0.01930079598145
1121 => 0.02018534055633
1122 => 0.019862469887696
1123 => 0.020857481210531
1124 => 0.021512860021048
1125 => 0.021346634755417
1126 => 0.021963021694429
1127 => 0.020672209380103
1128 => 0.021100965452521
1129 => 0.021189331484816
1130 => 0.020174425413581
1201 => 0.019481119718245
1202 => 0.01943488413263
1203 => 0.018232787600327
1204 => 0.018874937864899
1205 => 0.019440003523739
1206 => 0.019169380924021
1207 => 0.01908370989357
1208 => 0.019521384608362
1209 => 0.019555395682132
1210 => 0.01877993959585
1211 => 0.018941181471688
1212 => 0.019613586898167
1213 => 0.018924238580156
1214 => 0.017584947402668
1215 => 0.017252784673502
1216 => 0.017208468042458
1217 => 0.016307616376801
1218 => 0.017274981375363
1219 => 0.016852700629721
1220 => 0.018186680445505
1221 => 0.017424718329006
1222 => 0.017391871665078
1223 => 0.017342219114993
1224 => 0.016566818872649
1225 => 0.016736582246466
1226 => 0.017300901556727
1227 => 0.01750225704414
1228 => 0.017481254017146
1229 => 0.017298136084243
1230 => 0.01738196653621
1231 => 0.017111919441958
]
'min_raw' => 0.0094486474124758
'max_raw' => 0.029382141640439
'avg_raw' => 0.019415394526457
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.009448'
'max' => '$0.029382'
'avg' => '$0.019415'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0053825834082649
'max_diff' => 0.018351301812379
'year' => 2033
]
8 => [
'items' => [
101 => 0.017016560192434
102 => 0.016715580170306
103 => 0.016273222685631
104 => 0.016334735207012
105 => 0.015458309280739
106 => 0.014980785920661
107 => 0.014848613748249
108 => 0.014671867595443
109 => 0.014868577696512
110 => 0.015455826476207
111 => 0.014747479856116
112 => 0.013533069260707
113 => 0.013606057406746
114 => 0.013770040100521
115 => 0.013464459435526
116 => 0.01317525298155
117 => 0.013426694529221
118 => 0.012912132750654
119 => 0.013832222433113
120 => 0.013807336585724
121 => 0.01415028912138
122 => 0.01436474438002
123 => 0.013870494439569
124 => 0.013746191916139
125 => 0.013817000282719
126 => 0.012646695710734
127 => 0.014054650270152
128 => 0.014066826319649
129 => 0.013962567591566
130 => 0.014712259928736
131 => 0.016294344595068
201 => 0.015699100704386
202 => 0.015468604278572
203 => 0.015030430404607
204 => 0.015614271075475
205 => 0.015569441221285
206 => 0.015366703619424
207 => 0.015244087285238
208 => 0.015470011640597
209 => 0.015216092757415
210 => 0.015170481948771
211 => 0.014894130073439
212 => 0.014795485027154
213 => 0.014722452162058
214 => 0.014642050153647
215 => 0.014819396949268
216 => 0.014417505778478
217 => 0.013932864424381
218 => 0.01389257173968
219 => 0.014003823384709
220 => 0.013954602813495
221 => 0.013892336090522
222 => 0.013773451959034
223 => 0.013738181576779
224 => 0.013852793208351
225 => 0.01372340335858
226 => 0.013914325130147
227 => 0.013862404972464
228 => 0.013572383192218
301 => 0.013210908674215
302 => 0.013207690792786
303 => 0.01312981170082
304 => 0.013030620968001
305 => 0.013003028375307
306 => 0.013405518823403
307 => 0.014238662005438
308 => 0.014075096063378
309 => 0.014193289219428
310 => 0.01477468256713
311 => 0.014959490029257
312 => 0.014828318070044
313 => 0.01464876180194
314 => 0.014656661366473
315 => 0.015270259489965
316 => 0.015308528852272
317 => 0.015405223184659
318 => 0.01552950272759
319 => 0.014849483413605
320 => 0.014624632517937
321 => 0.014518085689317
322 => 0.014189962695978
323 => 0.014543815213154
324 => 0.014337640504871
325 => 0.01436546051695
326 => 0.014347342697587
327 => 0.014357236252081
328 => 0.013831965249295
329 => 0.014023346395279
330 => 0.013705138121097
331 => 0.013279092962522
401 => 0.01327766470976
402 => 0.013381938658743
403 => 0.013319912433648
404 => 0.013153001456756
405 => 0.013176710373226
406 => 0.012968995317256
407 => 0.013201930741823
408 => 0.013208610496317
409 => 0.01311891766978
410 => 0.013477786830221
411 => 0.013624815818063
412 => 0.013565778078229
413 => 0.013620673572853
414 => 0.014081892966727
415 => 0.014157091852341
416 => 0.014190490229971
417 => 0.014145740828384
418 => 0.013629103816701
419 => 0.013652018865079
420 => 0.013483883444452
421 => 0.013341826731697
422 => 0.013347508255218
423 => 0.013420543871654
424 => 0.013739494692114
425 => 0.014410707890594
426 => 0.014436179940826
427 => 0.014467052808779
428 => 0.014341477339353
429 => 0.014303602576179
430 => 0.014353569165111
501 => 0.014605641551747
502 => 0.015254040167159
503 => 0.015024852791385
504 => 0.014838519887367
505 => 0.015001984079181
506 => 0.014976820048126
507 => 0.014764410301835
508 => 0.014758448667709
509 => 0.014350766453073
510 => 0.014200055620797
511 => 0.014074110368836
512 => 0.01393658144158
513 => 0.013855049683491
514 => 0.013980319519437
515 => 0.014008970213067
516 => 0.013735065527429
517 => 0.013697733330889
518 => 0.013921409809824
519 => 0.013822978130944
520 => 0.01392421755366
521 => 0.013947705968146
522 => 0.01394392379243
523 => 0.013841149814873
524 => 0.013906654883404
525 => 0.013751715868328
526 => 0.013583242960521
527 => 0.013475767741573
528 => 0.013381981358521
529 => 0.013434019494735
530 => 0.013248513040922
531 => 0.01318916579284
601 => 0.013884463240096
602 => 0.014398086940091
603 => 0.014390618648076
604 => 0.014345157341122
605 => 0.014277611060478
606 => 0.014600700120598
607 => 0.014488142352422
608 => 0.014570037533286
609 => 0.014590883293946
610 => 0.014653977133122
611 => 0.014676527757529
612 => 0.014608364108156
613 => 0.014379598575372
614 => 0.013809536618049
615 => 0.013544171238062
616 => 0.013456596242656
617 => 0.01345977942741
618 => 0.013371972981522
619 => 0.013397835915045
620 => 0.013362978908701
621 => 0.013296968171503
622 => 0.013429943517726
623 => 0.013445267687627
624 => 0.013414229652882
625 => 0.013421540233658
626 => 0.013164558562482
627 => 0.013184096320807
628 => 0.013075307599717
629 => 0.01305491102598
630 => 0.012779902612382
701 => 0.012292685344587
702 => 0.01256265100627
703 => 0.012236570449874
704 => 0.01211307880224
705 => 0.012697669055248
706 => 0.012638992407856
707 => 0.012538563493645
708 => 0.012390008198309
709 => 0.012334907594215
710 => 0.012000133766476
711 => 0.011980353542784
712 => 0.012146276491465
713 => 0.012069708759709
714 => 0.011962178665855
715 => 0.011572715566068
716 => 0.011134830095106
717 => 0.011148047105024
718 => 0.011287330326189
719 => 0.011692315076625
720 => 0.011534080528322
721 => 0.011419279547996
722 => 0.011397780775286
723 => 0.011666882926484
724 => 0.012047718849073
725 => 0.012226398543228
726 => 0.012049332392903
727 => 0.011845928333329
728 => 0.011858308595951
729 => 0.011940668936724
730 => 0.011949323844027
731 => 0.011816928711519
801 => 0.011854197165811
802 => 0.011797582975843
803 => 0.011450141796508
804 => 0.011443857687322
805 => 0.011358590018667
806 => 0.011356008147548
807 => 0.011210946572149
808 => 0.011190651454988
809 => 0.010902622892426
810 => 0.011092204164535
811 => 0.010965043000668
812 => 0.010773381132434
813 => 0.010740338554109
814 => 0.010739345254304
815 => 0.010936139138171
816 => 0.011089904513423
817 => 0.010967255023556
818 => 0.010939330112173
819 => 0.011237495108211
820 => 0.011199550894631
821 => 0.011166691450384
822 => 0.01201361916925
823 => 0.011343209793174
824 => 0.011050873039575
825 => 0.010689050793753
826 => 0.010806861941459
827 => 0.010831686481286
828 => 0.0099615692034462
829 => 0.0096085627321926
830 => 0.0094874242140267
831 => 0.0094177072841749
901 => 0.0094494781645584
902 => 0.0091317309369009
903 => 0.0093452623289409
904 => 0.009070120088294
905 => 0.0090239915962592
906 => 0.0095159800061189
907 => 0.0095844373191963
908 => 0.0092923771535881
909 => 0.0094799270601544
910 => 0.0094119188568948
911 => 0.0090748366123038
912 => 0.0090619625499695
913 => 0.0088928265286476
914 => 0.008628161406466
915 => 0.0085072023437157
916 => 0.0084442058136207
917 => 0.0084701994097158
918 => 0.0084570562521129
919 => 0.0083712882583799
920 => 0.0084619723731173
921 => 0.0082303119332265
922 => 0.008138062879447
923 => 0.0080963961220166
924 => 0.0078907841477362
925 => 0.0082180042348763
926 => 0.008282470714253
927 => 0.0083470642125087
928 => 0.0089093065149707
929 => 0.0088812184784199
930 => 0.0091351206494101
1001 => 0.0091252544779415
1002 => 0.0090528374658327
1003 => 0.0087473220037657
1004 => 0.0088690950216561
1005 => 0.0084942966003181
1006 => 0.0087751210613999
1007 => 0.008646964504872
1008 => 0.0087317912007239
1009 => 0.0085792651530674
1010 => 0.0086636793654867
1011 => 0.0082977581080619
1012 => 0.0079560659865297
1013 => 0.0080935728708491
1014 => 0.008243058579924
1015 => 0.0085671816854485
1016 => 0.0083741366377557
1017 => 0.0084435629367474
1018 => 0.0082109964569471
1019 => 0.0077311453797882
1020 => 0.0077338612847732
1021 => 0.0076600466506763
1022 => 0.0075962600297035
1023 => 0.0083963101837003
1024 => 0.0082968113001295
1025 => 0.0081382728512514
1026 => 0.0083504828651423
1027 => 0.0084065945610408
1028 => 0.0084081919821393
1029 => 0.0085630149303408
1030 => 0.0086456439655496
1031 => 0.0086602076911398
1101 => 0.0089038249453062
1102 => 0.0089854822355135
1103 => 0.009321817057305
1104 => 0.0086386334692091
1105 => 0.0086245637527937
1106 => 0.0083534690952261
1107 => 0.0081815365775598
1108 => 0.0083652414618054
1109 => 0.0085279789110296
1110 => 0.0083585258014024
1111 => 0.0083806528001693
1112 => 0.0081531758453225
1113 => 0.0082344881528947
1114 => 0.0083045252661266
1115 => 0.0082658548887912
1116 => 0.0082079634622527
1117 => 0.0085146362960266
1118 => 0.0084973326128845
1119 => 0.0087829134060728
1120 => 0.0090055440564415
1121 => 0.0094045379818913
1122 => 0.0089881670206607
1123 => 0.0089729928079088
1124 => 0.0091213231715791
1125 => 0.0089854595269076
1126 => 0.0090713206604864
1127 => 0.0093907044258638
1128 => 0.0093974525015479
1129 => 0.0092844135394351
1130 => 0.0092775351083176
1201 => 0.0092992454775021
1202 => 0.0094264037879267
1203 => 0.0093819707670842
1204 => 0.0094333897837097
1205 => 0.0094976900513558
1206 => 0.0097636632210886
1207 => 0.0098277884518632
1208 => 0.009671997386201
1209 => 0.0096860635751117
1210 => 0.0096277934399937
1211 => 0.0095715052195923
1212 => 0.0096980329188202
1213 => 0.0099292647760672
1214 => 0.0099278262946842
1215 => 0.0099814675910605
1216 => 0.010014885674314
1217 => 0.0098714307974565
1218 => 0.009778046947604
1219 => 0.0098138562578062
1220 => 0.0098711161246448
1221 => 0.0097952876547196
1222 => 0.0093272392111769
1223 => 0.0094692152098974
1224 => 0.0094455834614387
1225 => 0.0094119289779146
1226 => 0.009554686942496
1227 => 0.0095409175885518
1228 => 0.009128471979817
1229 => 0.0091548754095116
1230 => 0.0091300776598276
1231 => 0.0092102042621991
]
'min_raw' => 0.0075962600297035
'max_raw' => 0.017016560192434
'avg_raw' => 0.012306410111069
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.007596'
'max' => '$0.017016'
'avg' => '$0.0123064'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0018523873827723
'max_diff' => -0.012365581448005
'year' => 2034
]
9 => [
'items' => [
101 => 0.0089811324274265
102 => 0.0090515933809802
103 => 0.0090957858305186
104 => 0.0091218155227992
105 => 0.0092158526200436
106 => 0.0092048184520541
107 => 0.0092151667206687
108 => 0.009354598911009
109 => 0.0100597990824
110 => 0.010098181571793
111 => 0.0099091721562888
112 => 0.0099846776897367
113 => 0.0098397235767617
114 => 0.00993703224391
115 => 0.010003608362601
116 => 0.0097027636840887
117 => 0.0096849496146931
118 => 0.0095393972245307
119 => 0.0096176088344952
120 => 0.0094931685394279
121 => 0.0095237018351007
122 => 0.0094383280785548
123 => 0.0095919838425921
124 => 0.0097637948624776
125 => 0.0098072011111235
126 => 0.0096930179585012
127 => 0.0096103418309662
128 => 0.0094651897862243
129 => 0.0097065808715544
130 => 0.009777170981165
131 => 0.0097062100917598
201 => 0.0096897669031585
202 => 0.0096586070904714
203 => 0.009696377604722
204 => 0.009776786532268
205 => 0.0097388671669571
206 => 0.0097639135757982
207 => 0.0096684624930405
208 => 0.0098714782869899
209 => 0.010193916226193
210 => 0.010194952916891
211 => 0.010157033347181
212 => 0.010141517476244
213 => 0.010180425255919
214 => 0.010201531130312
215 => 0.010327351755314
216 => 0.010462362298855
217 => 0.01109239759585
218 => 0.010915486205581
219 => 0.011474491002042
220 => 0.011916591218354
221 => 0.012049157742527
222 => 0.011927202778025
223 => 0.011510001432342
224 => 0.011489531543958
225 => 0.012113006492274
226 => 0.011936846262413
227 => 0.011915892563608
228 => 0.011692980610159
301 => 0.01182474918283
302 => 0.011795929463059
303 => 0.01175043612549
304 => 0.012001841383069
305 => 0.012472449582153
306 => 0.01239910088099
307 => 0.01234434947812
308 => 0.012104444768638
309 => 0.012248920988403
310 => 0.012197475773805
311 => 0.01241851706366
312 => 0.012287577100214
313 => 0.011935511675414
314 => 0.011991579254736
315 => 0.011983104752914
316 => 0.012157509399906
317 => 0.012105157453868
318 => 0.011972882195231
319 => 0.012470841094491
320 => 0.012438506413366
321 => 0.012484349598464
322 => 0.012504531186291
323 => 0.012807629993251
324 => 0.012931799876382
325 => 0.012959988613752
326 => 0.013077940399083
327 => 0.012957053865882
328 => 0.013440686189326
329 => 0.013762273463689
330 => 0.01413581363159
331 => 0.014681656215027
401 => 0.014886898075725
402 => 0.014849822970638
403 => 0.015263674587784
404 => 0.016007356744391
405 => 0.015000142397175
406 => 0.016060741550501
407 => 0.015724968103764
408 => 0.014928855301857
409 => 0.014877595022968
410 => 0.015416731855479
411 => 0.016612485459991
412 => 0.016312962744186
413 => 0.016612975371853
414 => 0.016262994705571
415 => 0.016245615215621
416 => 0.016595977592063
417 => 0.01741461838188
418 => 0.017025712828929
419 => 0.016468121355221
420 => 0.016879838222323
421 => 0.016523170969442
422 => 0.015719499823821
423 => 0.01631273370481
424 => 0.015916055102921
425 => 0.016031827007547
426 => 0.016865586427229
427 => 0.016765266287999
428 => 0.016895089837557
429 => 0.01666595467066
430 => 0.01645190629348
501 => 0.016052369102031
502 => 0.015934085836588
503 => 0.015966775075771
504 => 0.015934069637425
505 => 0.015710532250746
506 => 0.015662259373375
507 => 0.015581802462875
508 => 0.015606739423719
509 => 0.015455456893479
510 => 0.015740958284607
511 => 0.01579394985863
512 => 0.016001713962253
513 => 0.016023284720722
514 => 0.016601904791976
515 => 0.016283210580045
516 => 0.016497018172143
517 => 0.01647789320867
518 => 0.0149461094803
519 => 0.015157175763027
520 => 0.015485528662702
521 => 0.01533760612647
522 => 0.015128478268781
523 => 0.014959596310971
524 => 0.014703722875822
525 => 0.01506385982218
526 => 0.015537401610347
527 => 0.016035294521933
528 => 0.016633480231968
529 => 0.016499972145137
530 => 0.016024111856173
531 => 0.01604545860112
601 => 0.016177415778747
602 => 0.016006519244147
603 => 0.015956118519796
604 => 0.016170491493177
605 => 0.016171967762027
606 => 0.015975330645434
607 => 0.015756804474553
608 => 0.015755888841918
609 => 0.015717004220522
610 => 0.016269912193334
611 => 0.01657395567308
612 => 0.016608813768042
613 => 0.016571609445554
614 => 0.016585927912693
615 => 0.01640901171097
616 => 0.016813389685239
617 => 0.017184486903265
618 => 0.017085024921498
619 => 0.016935917271476
620 => 0.016817145846236
621 => 0.017057046148322
622 => 0.017046363765508
623 => 0.017181245692804
624 => 0.017175126669466
625 => 0.017129770950482
626 => 0.017085026541294
627 => 0.017262433066047
628 => 0.01721134283598
629 => 0.017160173248674
630 => 0.017057544807659
701 => 0.017071493717271
702 => 0.016922411812787
703 => 0.016853439702249
704 => 0.015816264646989
705 => 0.01553909758155
706 => 0.015626299982593
707 => 0.015655009277226
708 => 0.015534385815148
709 => 0.015707328874143
710 => 0.01568037588159
711 => 0.015785234208638
712 => 0.015719723278318
713 => 0.015722411869749
714 => 0.015915065547418
715 => 0.015970993729652
716 => 0.015942548204772
717 => 0.015962470475343
718 => 0.016421570791977
719 => 0.016356301408153
720 => 0.016321628348864
721 => 0.016331233023247
722 => 0.016448542997369
723 => 0.016481383385236
724 => 0.01634223635419
725 => 0.016407858898431
726 => 0.016687271363066
727 => 0.016785049912313
728 => 0.017097112105141
729 => 0.016964542539164
730 => 0.017207879714991
731 => 0.017955815233726
801 => 0.018553317879293
802 => 0.018003829753588
803 => 0.019101067270669
804 => 0.019955424067089
805 => 0.019922632430237
806 => 0.019773655561152
807 => 0.018800993062678
808 => 0.017905934530001
809 => 0.018654688998778
810 => 0.018656597727902
811 => 0.018592279054996
812 => 0.018192801301541
813 => 0.018578378095094
814 => 0.018608983780757
815 => 0.018591852735495
816 => 0.018285574078546
817 => 0.017817943179142
818 => 0.017909317137535
819 => 0.018058989545361
820 => 0.017775628452411
821 => 0.017685077413759
822 => 0.017853429022653
823 => 0.018395892983959
824 => 0.018293343314354
825 => 0.018290665328045
826 => 0.018729416302443
827 => 0.01841536529316
828 => 0.01791046965577
829 => 0.017782976848574
830 => 0.017330463272473
831 => 0.017643016011284
901 => 0.017654264227927
902 => 0.017483082287091
903 => 0.017924360126831
904 => 0.017920293673853
905 => 0.018339221307147
906 => 0.019140053599972
907 => 0.01890320808442
908 => 0.018627782518552
909 => 0.018657728914284
910 => 0.018986166961467
911 => 0.018787585820629
912 => 0.018858996983431
913 => 0.018986058872119
914 => 0.019062718464334
915 => 0.018646698778689
916 => 0.018549704689443
917 => 0.018351288823146
918 => 0.018299525827236
919 => 0.018461131410253
920 => 0.018418554048737
921 => 0.017653318858873
922 => 0.017573347523804
923 => 0.017575800130478
924 => 0.017374708406016
925 => 0.017067995258669
926 => 0.017874019097007
927 => 0.017809284102492
928 => 0.017737821678639
929 => 0.017746575417802
930 => 0.018096443047342
1001 => 0.01789350215347
1002 => 0.018433053781187
1003 => 0.018322138186935
1004 => 0.018208378026213
1005 => 0.018192652906782
1006 => 0.018148864950465
1007 => 0.017998699755473
1008 => 0.01781736625899
1009 => 0.017697634177774
1010 => 0.016325132035594
1011 => 0.016579860449705
1012 => 0.016872902270914
1013 => 0.016974059133304
1014 => 0.016801023320344
1015 => 0.018005532264034
1016 => 0.018225607654983
1017 => 0.017558984940636
1018 => 0.017434287048807
1019 => 0.018013707437062
1020 => 0.017664246111683
1021 => 0.017821608525103
1022 => 0.017481477059926
1023 => 0.018172597937863
1024 => 0.018167332754717
1025 => 0.017898471123527
1026 => 0.018125711133124
1027 => 0.018086222589355
1028 => 0.017782678469918
1029 => 0.018182220827871
1030 => 0.018182418995896
1031 => 0.017923645521431
1101 => 0.017621454756054
1102 => 0.017567430184632
1103 => 0.017526729927245
1104 => 0.017811598756757
1105 => 0.018067011258537
1106 => 0.018542270602218
1107 => 0.018661762093104
1108 => 0.019128145337027
1109 => 0.018850436823059
1110 => 0.018973541410374
1111 => 0.019107188854111
1112 => 0.019171264353361
1113 => 0.019066856765814
1114 => 0.019791341914629
1115 => 0.019852510658841
1116 => 0.019873020009667
1117 => 0.019628727693757
1118 => 0.019845716447614
1119 => 0.019744194595596
1120 => 0.020008326250963
1121 => 0.020049745467127
1122 => 0.020014664864568
1123 => 0.020027811977536
1124 => 0.01940959171096
1125 => 0.019377533728767
1126 => 0.018940420866825
1127 => 0.019118547589042
1128 => 0.018785548219694
1129 => 0.018891145749988
1130 => 0.018937692135171
1201 => 0.018913378945036
1202 => 0.019128618606657
1203 => 0.018945620923721
1204 => 0.01846265995085
1205 => 0.017979567395584
1206 => 0.017973502562071
1207 => 0.017846312819562
1208 => 0.017754377931691
1209 => 0.01777208785266
1210 => 0.017834499924097
1211 => 0.01775075042864
1212 => 0.017768622629703
1213 => 0.018065420249202
1214 => 0.018124940895129
1215 => 0.017922666484052
1216 => 0.01711050553552
1217 => 0.016911199201599
1218 => 0.017054456642005
1219 => 0.016985988812452
1220 => 0.01370901867372
1221 => 0.01447889419983
1222 => 0.014021460304718
1223 => 0.014232266889107
1224 => 0.013765345334131
1225 => 0.013988184773621
1226 => 0.01394703446594
1227 => 0.015184971529652
1228 => 0.015165642845129
1229 => 0.015174894463559
1230 => 0.014733290610932
1231 => 0.015436777539018
]
'min_raw' => 0.0089811324274265
'max_raw' => 0.020049745467127
'avg_raw' => 0.014515438947277
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.008981'
'max' => '$0.020049'
'avg' => '$0.014515'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.001384872397723
'max_diff' => 0.0030331852746933
'year' => 2035
]
10 => [
'items' => [
101 => 0.015783340496365
102 => 0.015719200916434
103 => 0.01573534346687
104 => 0.01545796096756
105 => 0.01517758013248
106 => 0.014866594636076
107 => 0.015444367249426
108 => 0.015380128797729
109 => 0.015527468693657
110 => 0.015902195533453
111 => 0.015957375484062
112 => 0.01603153789726
113 => 0.016004955951369
114 => 0.016638245746217
115 => 0.01656155017348
116 => 0.016746364436953
117 => 0.016366187475097
118 => 0.015935981156028
119 => 0.016017749312779
120 => 0.016009874381746
121 => 0.015909617471269
122 => 0.015819110015281
123 => 0.015668440601377
124 => 0.016145180921846
125 => 0.016125826135465
126 => 0.016439157629495
127 => 0.016383773244385
128 => 0.016013902765766
129 => 0.016027112762268
130 => 0.016115956337257
131 => 0.01642344496469
201 => 0.016514728524734
202 => 0.016472442342701
203 => 0.016572530599037
204 => 0.016651636275918
205 => 0.016582465054121
206 => 0.01756178368557
207 => 0.017155102311935
208 => 0.017353315983774
209 => 0.017400588776565
210 => 0.017279500511871
211 => 0.017305760220637
212 => 0.017345536524076
213 => 0.017587050449558
214 => 0.018220852872639
215 => 0.018501559651382
216 => 0.019346079845061
217 => 0.018478250861035
218 => 0.018426757480556
219 => 0.018578881069504
220 => 0.019074703824735
221 => 0.019476521597586
222 => 0.019609827734264
223 => 0.01962744634087
224 => 0.019877537515303
225 => 0.020020885112564
226 => 0.019847169868676
227 => 0.019699964388226
228 => 0.019172692629069
229 => 0.019233725770904
301 => 0.019654183594498
302 => 0.020248105035166
303 => 0.020757751418254
304 => 0.020579291017866
305 => 0.021940817899414
306 => 0.022075807728381
307 => 0.022057156498762
308 => 0.022364683418328
309 => 0.021754305109757
310 => 0.021493356557319
311 => 0.019731791883952
312 => 0.020226719703879
313 => 0.020946126356235
314 => 0.020850910188159
315 => 0.020328457847423
316 => 0.020757355091304
317 => 0.02061554824962
318 => 0.020503699310013
319 => 0.021016100985337
320 => 0.020452694295017
321 => 0.020940505943515
322 => 0.020314882458551
323 => 0.020580106209943
324 => 0.020429552381224
325 => 0.020526979159588
326 => 0.019957424204025
327 => 0.020264742232882
328 => 0.019944638763657
329 => 0.019944486992934
330 => 0.019937420691109
331 => 0.020314021003096
401 => 0.02032630192575
402 => 0.020047993726179
403 => 0.02000788516663
404 => 0.020156187533031
405 => 0.019982564302427
406 => 0.020063801519255
407 => 0.019985024894967
408 => 0.01996729061755
409 => 0.019825980877855
410 => 0.019765100756602
411 => 0.019788973420833
412 => 0.019707483710611
413 => 0.019658383212591
414 => 0.019927653366211
415 => 0.019783793185459
416 => 0.019905604730265
417 => 0.019766785101116
418 => 0.019285575785651
419 => 0.019008827219631
420 => 0.018099867430844
421 => 0.018357647299383
422 => 0.018528555618917
423 => 0.01847207042033
424 => 0.018593422483764
425 => 0.018600872514878
426 => 0.018561419722018
427 => 0.018515738442102
428 => 0.018493503321372
429 => 0.018659225694401
430 => 0.018755433109902
501 => 0.01854570855524
502 => 0.018496573026441
503 => 0.018708616130415
504 => 0.018837962301345
505 => 0.01979298175416
506 => 0.019722230828423
507 => 0.019899801767854
508 => 0.019879810005123
509 => 0.020065932638915
510 => 0.020370164483873
511 => 0.019751576078513
512 => 0.019858941636505
513 => 0.019832618081118
514 => 0.020120011756427
515 => 0.020120908968111
516 => 0.019948602103385
517 => 0.020042012450113
518 => 0.019989873357148
519 => 0.020084095745156
520 => 0.019721285906675
521 => 0.020163149127043
522 => 0.020413657099955
523 => 0.020417135403402
524 => 0.020535874194408
525 => 0.020656519682957
526 => 0.02088808819222
527 => 0.020650061362918
528 => 0.020221874268449
529 => 0.020252787993634
530 => 0.020001742056814
531 => 0.020005962184367
601 => 0.019983434812751
602 => 0.020051041150752
603 => 0.019736121696032
604 => 0.019810032662603
605 => 0.019706556876582
606 => 0.019858716700355
607 => 0.019695017882895
608 => 0.019832605387103
609 => 0.019891983592821
610 => 0.020111090450243
611 => 0.019662655621903
612 => 0.01874826665055
613 => 0.018940482298223
614 => 0.018656180257101
615 => 0.018682493493421
616 => 0.018735650418508
617 => 0.018563351432438
618 => 0.018596220649215
619 => 0.018595046329494
620 => 0.018584926676563
621 => 0.018540105055783
622 => 0.018475104837966
623 => 0.018734045699739
624 => 0.018778044797949
625 => 0.018875849342933
626 => 0.019166849327348
627 => 0.019137771566653
628 => 0.019185198600772
629 => 0.019081665651582
630 => 0.018687296089994
701 => 0.018708712254558
702 => 0.018441652339281
703 => 0.018869020020466
704 => 0.018767813712584
705 => 0.018702565347506
706 => 0.018684761726573
707 => 0.018976483043664
708 => 0.019063770633909
709 => 0.019009378865321
710 => 0.018897819761085
711 => 0.019112046220707
712 => 0.019169364183813
713 => 0.019182195561947
714 => 0.019561763774549
715 => 0.019203409208555
716 => 0.019289668714328
717 => 0.019962640754505
718 => 0.019352347977858
719 => 0.019675633672801
720 => 0.019659810520331
721 => 0.019825192542472
722 => 0.019646244367376
723 => 0.019648462644473
724 => 0.019795310676186
725 => 0.019589089099828
726 => 0.019538025737421
727 => 0.019467482067978
728 => 0.019621511589417
729 => 0.019713845321364
730 => 0.020457987389202
731 => 0.020938737102026
801 => 0.020917866489105
802 => 0.021108584823052
803 => 0.021022664466829
804 => 0.020745204971942
805 => 0.021218794497134
806 => 0.021068930955536
807 => 0.021081285523821
808 => 0.021080825686172
809 => 0.021180471840037
810 => 0.021109863407588
811 => 0.020970686939424
812 => 0.021063078774085
813 => 0.021337449492343
814 => 0.022189104620536
815 => 0.022665702113203
816 => 0.022160412853044
817 => 0.022508954618609
818 => 0.022299953757399
819 => 0.02226197208368
820 => 0.022480882069489
821 => 0.022700175228249
822 => 0.022686207202067
823 => 0.022527011629635
824 => 0.022437086090207
825 => 0.023118032402025
826 => 0.023619742044954
827 => 0.023585528810811
828 => 0.023736534899581
829 => 0.024179893446653
830 => 0.024220428595847
831 => 0.024215322098739
901 => 0.024114851502056
902 => 0.024551395569031
903 => 0.024915568309964
904 => 0.024091595461798
905 => 0.024405353535783
906 => 0.024546209643849
907 => 0.024753028200613
908 => 0.02510196577269
909 => 0.025481004527084
910 => 0.025534604762904
911 => 0.025496572830583
912 => 0.025246586582951
913 => 0.025661335310882
914 => 0.02590428538865
915 => 0.026048956600147
916 => 0.02641581872151
917 => 0.024547079523219
918 => 0.023224293036304
919 => 0.023017720825104
920 => 0.023437793539631
921 => 0.023548563364434
922 => 0.02350391218695
923 => 0.022014995733441
924 => 0.023009881988115
925 => 0.024080295945732
926 => 0.024121414905242
927 => 0.024657286513725
928 => 0.024831788275566
929 => 0.025263235158693
930 => 0.025236248038683
1001 => 0.025341298488905
1002 => 0.025317149209619
1003 => 0.026116313708751
1004 => 0.026997910828369
1005 => 0.026967383923424
1006 => 0.026840643906895
1007 => 0.027028874443825
1008 => 0.02793877714896
1009 => 0.027855007888765
1010 => 0.027936382589596
1011 => 0.02900920915882
1012 => 0.030404036306611
1013 => 0.029755999058106
1014 => 0.031162053419667
1015 => 0.032047090108531
1016 => 0.033577669547418
1017 => 0.033386033463407
1018 => 0.033981876807055
1019 => 0.033042964877369
1020 => 0.030887033301401
1021 => 0.030545848876929
1022 => 0.031228908734887
1023 => 0.03290814474367
1024 => 0.031176023617077
1025 => 0.031526429465067
1026 => 0.031425512557273
1027 => 0.031420135124126
1028 => 0.03162536987575
1029 => 0.031327666164194
1030 => 0.030114767687443
1031 => 0.030670631911682
1101 => 0.030455986039911
1102 => 0.030694151637551
1103 => 0.031979433141051
1104 => 0.03141117955107
1105 => 0.030812570555197
1106 => 0.031563359077992
1107 => 0.032519370866436
1108 => 0.032459545366834
1109 => 0.032343458892486
1110 => 0.032997832270294
1111 => 0.034078665377023
1112 => 0.034370810222632
1113 => 0.034586465575023
1114 => 0.034616200804591
1115 => 0.034922492149479
1116 => 0.033275486392655
1117 => 0.035889326826843
1118 => 0.036340664863943
1119 => 0.036255832019013
1120 => 0.036757475252041
1121 => 0.036609879087424
1122 => 0.036396035402022
1123 => 0.037191246628947
1124 => 0.036279601127514
1125 => 0.034985635111208
1126 => 0.034275739762916
1127 => 0.035210587223171
1128 => 0.035781465945468
1129 => 0.0361587804662
1130 => 0.036272955612194
1201 => 0.033403338761133
1202 => 0.031856774434658
1203 => 0.032848104436533
1204 => 0.034057595456761
1205 => 0.033268767608969
1206 => 0.033299688167154
1207 => 0.032175026956513
1208 => 0.034157103018564
1209 => 0.033868331208206
1210 => 0.035366479871168
1211 => 0.035008934669358
1212 => 0.036230616746206
1213 => 0.035908906912347
1214 => 0.037244306446142
1215 => 0.037777033474672
1216 => 0.038671565067915
1217 => 0.039329586149303
1218 => 0.039715988714232
1219 => 0.039692790553593
1220 => 0.041223910020834
1221 => 0.040321062364241
1222 => 0.039186872922707
1223 => 0.039166359014032
1224 => 0.039753771797391
1225 => 0.040984827842485
1226 => 0.041304022763841
1227 => 0.041482409179507
1228 => 0.041209204174239
1229 => 0.040229227750682
1230 => 0.039806078899584
1231 => 0.040166613980522
]
'min_raw' => 0.014866594636076
'max_raw' => 0.041482409179507
'avg_raw' => 0.028174501907792
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.014866'
'max' => '$0.041482'
'avg' => '$0.028174'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.0058854622086499
'max_diff' => 0.02143266371238
'year' => 2036
]
11 => [
'items' => [
101 => 0.039725710557667
102 => 0.040486833561166
103 => 0.04153201801207
104 => 0.041316191556066
105 => 0.042037667039978
106 => 0.042784318264393
107 => 0.043852063049511
108 => 0.044131211074816
109 => 0.044592632145596
110 => 0.045067585996354
111 => 0.045220128372853
112 => 0.045511379100708
113 => 0.045509844065607
114 => 0.046387547737433
115 => 0.047355682067678
116 => 0.047721130364984
117 => 0.048561458573703
118 => 0.047122425964885
119 => 0.048213948729088
120 => 0.049198529584987
121 => 0.04802467169908
122 => 0.049642561320993
123 => 0.049705380308795
124 => 0.050653872442471
125 => 0.049692393955885
126 => 0.049121471099698
127 => 0.050769703993309
128 => 0.051567231971677
129 => 0.051327010054094
130 => 0.049498909400073
131 => 0.048434876408506
201 => 0.045650096832941
202 => 0.048948788533723
203 => 0.050555485037018
204 => 0.049494748444278
205 => 0.050029722282293
206 => 0.052948366076653
207 => 0.054059596665354
208 => 0.053828468470992
209 => 0.053867525331146
210 => 0.054467125186547
211 => 0.057126081151067
212 => 0.05553277310301
213 => 0.056750797405636
214 => 0.057396833103836
215 => 0.057996907064284
216 => 0.056523315072746
217 => 0.05460619354312
218 => 0.0539989606794
219 => 0.049389279094964
220 => 0.049149325149661
221 => 0.049014631728815
222 => 0.048165408763138
223 => 0.047498152133863
224 => 0.046967524888613
225 => 0.045575000538369
226 => 0.046044936628595
227 => 0.043825543456726
228 => 0.045245432557623
301 => 0.041703227466198
302 => 0.04465328112353
303 => 0.043047701040325
304 => 0.044125804884259
305 => 0.044122043481511
306 => 0.042136912491693
307 => 0.040991930365393
308 => 0.041721557539642
309 => 0.042503775788315
310 => 0.042630688067464
311 => 0.043644854444853
312 => 0.043927886481349
313 => 0.043070286197264
314 => 0.041629823138981
315 => 0.041964409853956
316 => 0.040985149976293
317 => 0.039269034707376
318 => 0.04050157865401
319 => 0.040922423348523
320 => 0.041108292340613
321 => 0.039420690070803
322 => 0.038890408798001
323 => 0.038608091497852
324 => 0.04141197487795
325 => 0.041565577938921
326 => 0.040779722961711
327 => 0.044331861976527
328 => 0.04352790351772
329 => 0.044426122090812
330 => 0.041934049616544
331 => 0.042029250141082
401 => 0.04084946309453
402 => 0.0415100650072
403 => 0.041043172867519
404 => 0.041456694900852
405 => 0.041704558302616
406 => 0.042884151757722
407 => 0.04466675018598
408 => 0.042707959831505
409 => 0.041854486823665
410 => 0.042383976677614
411 => 0.043794077934038
412 => 0.045930453519275
413 => 0.044665676174249
414 => 0.04522696288266
415 => 0.04534957905854
416 => 0.04441697906892
417 => 0.045964839811139
418 => 0.046794350957693
419 => 0.047645257750911
420 => 0.048384076277595
421 => 0.047305386865858
422 => 0.04845973916047
423 => 0.047529534981624
424 => 0.046695045670458
425 => 0.046696311246281
426 => 0.046172823911443
427 => 0.045158501236546
428 => 0.044971444572793
429 => 0.045944536960288
430 => 0.046724864902867
501 => 0.046789136449736
502 => 0.047221166093445
503 => 0.047476836786333
504 => 0.049982757144085
505 => 0.050990659042034
506 => 0.052223102404238
507 => 0.052703208550519
508 => 0.054148155923245
509 => 0.052981243566881
510 => 0.052728774738359
511 => 0.049223805050811
512 => 0.049797743640795
513 => 0.050716674700196
514 => 0.049238957885517
515 => 0.050176229080906
516 => 0.050361266268994
517 => 0.049188745633609
518 => 0.049815039566594
519 => 0.048151788563796
520 => 0.044703004512701
521 => 0.045968679293676
522 => 0.046900641953998
523 => 0.045570616327551
524 => 0.047954635783857
525 => 0.046561940833634
526 => 0.04612052339556
527 => 0.044398396592955
528 => 0.045211174153045
529 => 0.04631046744092
530 => 0.045631231995575
531 => 0.047040747532382
601 => 0.049036997436563
602 => 0.050459643997019
603 => 0.050568857134858
604 => 0.049654190706402
605 => 0.051119949495326
606 => 0.051130625947898
607 => 0.049477244046191
608 => 0.048464556837464
609 => 0.048234472172929
610 => 0.048809268775693
611 => 0.049507177964754
612 => 0.05060758623765
613 => 0.051272539910514
614 => 0.053006386425167
615 => 0.053475515578756
616 => 0.053990946287479
617 => 0.054679720667277
618 => 0.05550677090835
619 => 0.053697232064878
620 => 0.053769128416532
621 => 0.052084110900262
622 => 0.050283428028172
623 => 0.051649921869799
624 => 0.053436430790669
625 => 0.053026603670305
626 => 0.052980489747256
627 => 0.053058040574889
628 => 0.052749044309837
629 => 0.051351465654941
630 => 0.050649610403757
701 => 0.051555182740155
702 => 0.052036454134562
703 => 0.052782864096012
704 => 0.052690853313461
705 => 0.054613525215578
706 => 0.055360617378161
707 => 0.055169479233096
708 => 0.055204653251784
709 => 0.056557227926367
710 => 0.058061569142701
711 => 0.059470583207105
712 => 0.060903892831978
713 => 0.059175982136166
714 => 0.058298655647549
715 => 0.059203832639393
716 => 0.058723532986232
717 => 0.061483477259428
718 => 0.061674569812738
719 => 0.06443431451055
720 => 0.067053640853058
721 => 0.065408488907434
722 => 0.066959793092887
723 => 0.068637655049139
724 => 0.071874522986042
725 => 0.07078445973928
726 => 0.06994948837573
727 => 0.069160444471726
728 => 0.070802319578765
729 => 0.072914565674374
730 => 0.073369523252527
731 => 0.074106728336306
801 => 0.073331647331861
802 => 0.074265147029342
803 => 0.077560811162003
804 => 0.076670293621726
805 => 0.075405615556695
806 => 0.078007225870482
807 => 0.078948738529538
808 => 0.085556767444799
809 => 0.093899676914375
810 => 0.090445657611473
811 => 0.088301636369656
812 => 0.088805532218347
813 => 0.091852080331327
814 => 0.092830534892613
815 => 0.090170758101525
816 => 0.091110236229353
817 => 0.096286853081133
818 => 0.09906394193636
819 => 0.095292282258168
820 => 0.084886422792228
821 => 0.075291745134081
822 => 0.077836685702988
823 => 0.077548168421174
824 => 0.083109797432308
825 => 0.076649055072904
826 => 0.076757837404739
827 => 0.082434475013956
828 => 0.080920045422023
829 => 0.078466863436579
830 => 0.075309656077428
831 => 0.069473266267704
901 => 0.064303813053461
902 => 0.074442301260567
903 => 0.074005111213432
904 => 0.073371995237246
905 => 0.074780926331944
906 => 0.081622295795733
907 => 0.081464580086241
908 => 0.080461273209713
909 => 0.081222272632819
910 => 0.078333456558331
911 => 0.079077970237846
912 => 0.075290225288119
913 => 0.077002444195598
914 => 0.078461600009819
915 => 0.078754547142694
916 => 0.079414571991315
917 => 0.073774731924661
918 => 0.076306854537584
919 => 0.077794239344872
920 => 0.07107418067402
921 => 0.077661405391586
922 => 0.073676554856612
923 => 0.072324036734596
924 => 0.074145024205178
925 => 0.073435383616924
926 => 0.072825276310636
927 => 0.072484825950754
928 => 0.073821958174096
929 => 0.073759579357659
930 => 0.071571771514089
1001 => 0.06871786536861
1002 => 0.069675729947308
1003 => 0.069327728765839
1004 => 0.068066527591147
1005 => 0.068916424904879
1006 => 0.065173907258392
1007 => 0.058735100166751
1008 => 0.062988773357484
1009 => 0.062825011566747
1010 => 0.062742435445851
1011 => 0.065938953285795
1012 => 0.065631681851699
1013 => 0.065073981190003
1014 => 0.068056284981141
1015 => 0.066967703979729
1016 => 0.07032245412414
1017 => 0.072532109540885
1018 => 0.071971669452334
1019 => 0.074049861051974
1020 => 0.069697797212587
1021 => 0.071143378245536
1022 => 0.071441310492939
1023 => 0.068019483815289
1024 => 0.065681955258407
1025 => 0.065526068753439
1026 => 0.061473116367082
1027 => 0.063638170817586
1028 => 0.065543329137988
1029 => 0.064630906148773
1030 => 0.064342060288249
1031 => 0.065817711146642
1101 => 0.065932381856434
1102 => 0.063317877520919
1103 => 0.063861515762857
1104 => 0.066128577604077
1105 => 0.06380439162114
1106 => 0.059288877909917
1107 => 0.058168968077673
1108 => 0.058019551462018
1109 => 0.054982267175802
1110 => 0.058243805807721
1111 => 0.056820056791087
1112 => 0.0613176628755
1113 => 0.058748654401229
1114 => 0.058637909580515
1115 => 0.058470502541273
1116 => 0.055856186487493
1117 => 0.056428555554819
1118 => 0.058331197508878
1119 => 0.059010081592882
1120 => 0.058939268420987
1121 => 0.05832187352532
1122 => 0.058604513746983
1123 => 0.057694031114626
1124 => 0.057372520747083
1125 => 0.056357745588726
1126 => 0.054866306444732
1127 => 0.055073700205232
1128 => 0.052118769004701
1129 => 0.050508765656583
1130 => 0.050063137949327
1201 => 0.04946722595512
1202 => 0.050130447794733
1203 => 0.052110398055877
1204 => 0.049722157971058
1205 => 0.045627687861198
1206 => 0.045873772491438
1207 => 0.046426651592405
1208 => 0.045396365045414
1209 => 0.044421285294082
1210 => 0.045269038027144
1211 => 0.043534157065151
1212 => 0.04663630366817
1213 => 0.046552399296224
1214 => 0.04770868771437
1215 => 0.048431738591664
1216 => 0.046765340410003
1217 => 0.046346245773735
1218 => 0.046584981125342
1219 => 0.042639217552838
1220 => 0.047386234650164
1221 => 0.047427287051146
1222 => 0.047075771470304
1223 => 0.04960341152692
1224 => 0.054937520437083
1225 => 0.052930614101046
1226 => 0.052153479308667
1227 => 0.050676145500273
1228 => 0.052644605084556
1229 => 0.052493458101237
1230 => 0.051809914121873
1231 => 0.051396504590367
]
'min_raw' => 0.038608091497852
'max_raw' => 0.09906394193636
'avg_raw' => 0.068836016717106
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.038608'
'max' => '$0.099063'
'avg' => '$0.068836'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.023741496861776
'max_diff' => 0.057581532756853
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0012118638756396
]
1 => [
'year' => 2028
'avg' => 0.0020799102171944
]
2 => [
'year' => 2029
'avg' => 0.005681939846031
]
3 => [
'year' => 2030
'avg' => 0.0043836081294142
]
4 => [
'year' => 2031
'avg' => 0.0043052464376596
]
5 => [
'year' => 2032
'avg' => 0.0075484519161354
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0012118638756396
'min' => '$0.001211'
'max_raw' => 0.0075484519161354
'max' => '$0.007548'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.0075484519161354
]
1 => [
'year' => 2033
'avg' => 0.019415394526457
]
2 => [
'year' => 2034
'avg' => 0.012306410111069
]
3 => [
'year' => 2035
'avg' => 0.014515438947277
]
4 => [
'year' => 2036
'avg' => 0.028174501907792
]
5 => [
'year' => 2037
'avg' => 0.068836016717106
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.0075484519161354
'min' => '$0.007548'
'max_raw' => 0.068836016717106
'max' => '$0.068836'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.068836016717106
]
]
]
]
'prediction_2025_max_price' => '$0.002072'
'last_price' => 0.00200913
'sma_50day_nextmonth' => '$0.001824'
'sma_200day_nextmonth' => '$0.005527'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'augmenter'
'sma_200day_date_nextmonth' => '4 févr. 2026'
'sma_50day_date_nextmonth' => '4 févr. 2026'
'daily_sma3' => '$0.001974'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.001958'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.001873'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.001791'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.00200083'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.003398'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.007244'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.001982'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.001952'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.001897'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.001884'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.002257'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.003479'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.004897'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.004854'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.005858'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.005125'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.005893'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.001946'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.001997'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.002575'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.004088'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.005222'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.005565'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.007041'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '56.05'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 102.89
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.0019057'
'vwma_10_action' => 'BUY'
'hma_9' => '0.002013'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 99.51
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 155.31
'cci_20_action' => 'SELL'
'adx_14' => 19.07
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000044'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0.49
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 76.29
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.000811'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 16
'buy_signals' => 18
'sell_pct' => 47.06
'buy_pct' => 52.94
'overall_action' => 'bullish'
'overall_action_label' => 'Haussier'
'overall_action_dir' => 1
'last_updated' => 1767678122
'last_updated_date' => '6 janvier 2026'
]
Prévision du prix de FunFair pour 2026
La prévision du prix de FunFair pour 2026 suggère que le prix moyen pourrait varier entre $0.000694 à la baisse et $0.002072 à la hausse. Sur le marché des cryptomonnaies, comparé au prix moyen d'aujourd'hui, FunFair pourrait potentiellement gagner 3.13% d'ici 2026 si FUN atteint l'objectif de prix prévu.
Prévision du prix de FunFair de 2027 à 2032
La prévision du prix de FUN pour 2027-2032 se situe actuellement dans une fourchette de prix comprise entre $0.001211 à la baisse et $0.007548 à la hausse. Compte tenu de la volatilité des prix sur le marché, si FunFair atteint l'objectif de prix le plus élevé, il pourrait gagner 275.71% d'ici 2032 par rapport au prix actuel.
| Prévision du Prix de FunFair | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2027 | $0.000668 | $0.001211 | $0.001755 |
| 2028 | $0.0012059 | $0.002079 | $0.002953 |
| 2029 | $0.002649 | $0.005681 | $0.008714 |
| 2030 | $0.002253 | $0.004383 | $0.006514 |
| 2031 | $0.002663 | $0.0043052 | $0.005946 |
| 2032 | $0.004066 | $0.007548 | $0.01103 |
Prévision du prix de FunFair de 2032 à 2037
La prévision du prix de FunFair pour 2032-2037 est actuellement estimée entre $0.007548 à la baisse et $0.068836 à la hausse. Par rapport au prix actuel, FunFair pourrait potentiellement gagner 3326.16% d'ici 2037 s'il atteint l'objectif de prix le plus élevé. Veuillez noter que ces informations sont à titre général seulement et ne doivent pas être considérées comme un conseil en investissement à long terme.
| Prévision du Prix de FunFair | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2032 | $0.004066 | $0.007548 | $0.01103 |
| 2033 | $0.009448 | $0.019415 | $0.029382 |
| 2034 | $0.007596 | $0.0123064 | $0.017016 |
| 2035 | $0.008981 | $0.014515 | $0.020049 |
| 2036 | $0.014866 | $0.028174 | $0.041482 |
| 2037 | $0.038608 | $0.068836 | $0.099063 |
FunFair Histogramme des prix potentiels
Prévision du prix de FunFair basée sur l'analyse technique
Au 6 janvier 2026, le sentiment global de prévision du prix pour FunFair est Haussier, avec 18 indicateurs techniques montrant des signaux haussiers et 16 indiquant des signaux baissiers. La prévision du prix de FUN a été mise à jour pour la dernière fois le 6 janvier 2026.
Moyennes Mobiles Simples sur 50 et 200 jours de FunFair et Indice de Force Relative sur 14 jours - RSI (14)
Selon nos indicateurs techniques, le SMA sur 200 jours de FunFair devrait augmenter au cours du prochain mois, atteignant $0.005527 d'ici le 4 févr. 2026. Le SMA à court terme sur 50 jours pour FunFair devrait atteindre $0.001824 d'ici le 4 févr. 2026.
Le Relative Strength Index (RSI), un oscillateur de momentum, est un outil couramment utilisé pour identifier si une cryptomonnaie est survendue (en dessous de 30) ou surachetée (au-dessus de 70). Actuellement, le RSI est à 56.05, ce qui suggère que le marché de FUN est dans un état NEUTRAL.
Moyennes Mobiles et Oscillateurs Populaires de FUN pour le Samedi 19 Octobre 2024
Les moyennes mobiles (MA) sont des indicateurs largement utilisés sur les marchés financiers, conçus pour lisser les mouvements de prix sur une période donnée. En tant qu'indicateurs retardés, ils sont basés sur des données historiques de prix. Le tableau ci-dessous met en évidence deux types : la moyenne mobile simple (SMA) et la moyenne mobile exponentielle (EMA).
Moyenne Mobile Simple Quotidienne (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 3 | $0.001974 | BUY |
| SMA 5 | $0.001958 | BUY |
| SMA 10 | $0.001873 | BUY |
| SMA 21 | $0.001791 | BUY |
| SMA 50 | $0.00200083 | BUY |
| SMA 100 | $0.003398 | SELL |
| SMA 200 | $0.007244 | SELL |
Moyenne Mobile Exponentielle Quotidienne (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 3 | $0.001982 | BUY |
| EMA 5 | $0.001952 | BUY |
| EMA 10 | $0.001897 | BUY |
| EMA 21 | $0.001884 | BUY |
| EMA 50 | $0.002257 | SELL |
| EMA 100 | $0.003479 | SELL |
| EMA 200 | $0.004897 | SELL |
Moyenne Mobile Simple Hebdomadaire (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 21 | $0.004854 | SELL |
| SMA 50 | $0.005858 | SELL |
| SMA 100 | $0.005125 | SELL |
| SMA 200 | $0.005893 | SELL |
Moyenne Mobile Exponentielle Hebdomadaire (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 21 | $0.004088 | SELL |
| EMA 50 | $0.005222 | SELL |
| EMA 100 | $0.005565 | SELL |
| EMA 200 | $0.007041 | SELL |
Oscillateurs de FunFair
Un oscillateur est un outil d'analyse technique qui établit des limites hautes et basses entre deux extrêmes, créant un indicateur de tendance qui fluctue à l'intérieur de ces limites. Les traders utilisent cet indicateur pour identifier les conditions de surachat ou de survente à court terme.
| Période | Valeur | Action |
|---|---|---|
| RSI (14) | 56.05 | NEUTRAL |
| Stoch RSI (14) | 102.89 | SELL |
| Stochastique Rapide (14) | 99.51 | SELL |
| Indice de Canal des Matières Premières (20) | 155.31 | SELL |
| Indice Directionnel Moyen (14) | 19.07 | NEUTRAL |
| Oscillateur Impressionnant (5, 34) | 0.000044 | NEUTRAL |
| Momentum (10) | 0 | SELL |
| MACD (12, 26) | 0 | BUY |
| Plage de Pourcentage de Williams (14) | -0.49 | SELL |
| Oscillateur Ultime (7, 14, 28) | 76.29 | SELL |
| VWMA (10) | 0.0019057 | BUY |
| Moyenne Mobile de Hull (9) | 0.002013 | BUY |
| Nuage Ichimoku B/L (9, 26, 52, 26) | -0.000811 | SELL |
Prévision du cours de FunFair basée sur les flux monétaires mondiaux
Définitions des flux monétaires mondiaux utilisés pour la prédiction du cours de FunFair
M0 : le total de toutes les devises physiques, plus les comptes à la banque centrale qui peuvent être échangés contre des devises physiques.
M1 : M0 plus le montant des comptes à vue, y compris les comptes de "chèques" et les comptes "courants".
M2 : M1 plus la plupart des comptes d'épargne, comptes du marché monétaire et comptes de certificats de dépôt (CD) de moins de 100 000 $.
Prédictions du cours de FunFair par des sociétés Internet ou des niches technologiques
| Comparaison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Action Facebook | $0.002823 | $0.003967 | $0.005574 | $0.007832 | $0.0110064 | $0.015465 |
| Action Amazon.com | $0.004192 | $0.008747 | $0.018251 | $0.038082 | $0.079462 | $0.165803 |
| Action Apple | $0.002849 | $0.004042 | $0.005733 | $0.008132 | $0.011535 | $0.016362 |
| Action Netflix | $0.00317 | $0.0050019 | $0.007892 | $0.012452 | $0.019648 | $0.0310021 |
| Action Google | $0.0026018 | $0.003369 | $0.004363 | $0.00565 | $0.007317 | $0.009475 |
| Action Tesla | $0.004554 | $0.010324 | $0.0234055 | $0.053058 | $0.120279 | $0.272665 |
| Action Kodak | $0.0015066 | $0.001129 | $0.000847 | $0.000635 | $0.000476 | $0.000357 |
| Action Nokia | $0.00133 | $0.000881 | $0.000584 | $0.000386 | $0.000256 | $0.000169 |
Ce calcul montre la valeur potentielle des cryptomonnaies si l'on suppose que leur capitalisation se comportera comme celle de certaines sociétés Internet ou niches technologiques. En extrapolant les données, vous pourrez obtenir une potentielle image des cours futurs pour 2024, 2025, 2026, 2027, 2028, 2029 et 2030.
Aperçu des prévisions relatives à FunFair
Vous vous posez peut-être des questions telles que : "Devrais-je investir dans FunFair maintenant ?", "Devrais-je acheter FUN aujourd'hui ?", " FunFair sera-t-il un bon ou un mauvais investissement à court ou à long terme ?".
Nous mettons régulièrement à jour les prévisions de FunFair/FUNToken avec de nouvelles valeurs. Regardez nos prévisions similaires. Nous faisons une prévision des cours futurs pour une grande quantité de devises numériques comme FunFair en utilisant des méthodes d'analyse technique.
Si vous souhaitez trouver des cryptomonnaies ayant un bon rendement, vous devriez consulter un maximum d'informations disponibles à propos de FunFair afin de prendre une décision responsable concernant cet investissement.
Le cours de FunFair est de $0.002009 USD actuellement, mais ce cours peut subir une hausse ou une baisse, ce qui pourrait causer la perte de votre investissement, car les cryptomonnaies sont des actifs à haut risque.
Prévision à court terme de FunFair
basée sur l'historique des cours sur 4 heures
Prévision à long terme de FunFair
basée sur l'historique des cours sur 1 mois
Prévision du cours de FunFair basée sur le modèle de croissance du Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si FunFair présente 1 % de la précédente croissance annuelle moyenne du Bitcoin | $0.002061 | $0.002114 | $0.002169 | $0.002226 |
| Si FunFair présente 2 % de la précédente croissance annuelle moyenne du Bitcoin | $0.002113 | $0.002223 | $0.002339 | $0.00246 |
| Si FunFair présente 5 % de la précédente croissance annuelle moyenne du Bitcoin | $0.00227 | $0.002565 | $0.002898 | $0.003275 |
| Si FunFair présente 10 % de la précédente croissance annuelle moyenne du Bitcoin | $0.002531 | $0.003189 | $0.004018 | $0.005062 |
| Si FunFair présente 20 % de la précédente croissance annuelle moyenne du Bitcoin | $0.003053 | $0.004641 | $0.007053 | $0.01072 |
| Si FunFair présente 50 % de la précédente croissance annuelle moyenne du Bitcoin | $0.00462 | $0.010625 | $0.024434 | $0.05619 |
| Si FunFair présente 100 % de la précédente croissance annuelle moyenne du Bitcoin | $0.007231 | $0.026028 | $0.093684 | $0.3372022 |
Boîte à questions
Est-ce que FUN est un bon investissement ?
La décision d'acquérir FunFair dépend entièrement de votre tolérance individuelle au risque. Comme vous pouvez le discerner, la valeur de FunFair a connu une hausse de 1.9487% au cours des 24 heures précédentes, et FunFair a enregistré une déclin de sur une période de 30 jours précédents. Par conséquent, la détermination de si investir ou non dans FunFair dépendra de la mesure dans laquelle cet investissement s'aligne avec vos aspirations de trading.
Est-ce que FunFair peut monter ?
Il semble que la valeur moyenne de FunFair pourrait potentiellement s'envoler jusqu'à $0.002072 pour la fin de cette année. En regardant les perspectives de FunFair sur une période de cinq ans plus longue, la monnaie numérique pourrait potentiellement croître jusqu'à $0.006514. Cependant, compte tenu de l'imprévisibilité du marché, il est essentiel de mener des recherches approfondies avant d'investir des fonds dans un projet, un réseau ou un actif particulier.
Quel sera le prix de FunFair la semaine prochaine ?
Basé sur notre nouveau pronostic expérimental de FunFair, le prix de FunFair va augmenter de 0.86% durant la prochaine semaine et atteindre $0.0020263 d'ici 13 janvier 2026.
Quel sera le prix de FunFair le mois prochain ?
Basé sur notre nouveau pronostic expérimental de FunFair, le prix de FunFair va diminuer de -11.62% durant le prochain mois et atteindre $0.001775 d'ici 5 février 2026.
Jusqu'où le prix de FunFair peut-il monter cette année en 2026 ?
Selon notre prédiction la plus récente sur la valeur de FunFair en 2026, FUN devrait fluctuer dans la fourchette de $0.000694 et $0.002072. Cependant, il est crucial de garder à l'esprit que le marché des cryptomonnaies est exceptionnellement instable, et cette prévision de prix de FunFair ne prend pas en compte les fluctuations de prix soudaines et extrêmes.
Où sera FunFair dans 5 ans ?
L'avenir de FunFair semble suivre une tendance haussière, avec un prix maximum de $0.006514 prévue après une période de cinq ans. Selon la prévision de FunFair pour 2030, la valeur de FunFair pourrait potentiellement atteindre son point le plus élevé d'environ $0.006514, tandis que son point le plus bas devrait être autour de $0.002253.
Combien vaudra FunFair en 2026 ?
Basé sur notre nouvelle simulation expérimentale de prédiction de prix de FunFair, il est attendu que la valeur de FUN en 2026 augmente de 3.13% jusqu'à $0.002072 si le meilleur scénario se produit. Le prix sera entre $0.002072 et $0.000694 durant 2026.
Combien vaudra FunFair en 2027 ?
Selon notre dernière simulation expérimentale pour la prédiction de prix de FunFair, le valeur de FUN pourrait diminuer de -12.62% jusqu'à $0.001755 en 2027, en supposant les conditions les plus favorables. Il est prévu que le prix fluctue entre $0.001755 et $0.000668 tout au long de l'année.
Combien vaudra FunFair en 2028 ?
Notre nouveau modèle expérimental de prédiction de prix de FunFair suggère que la valeur de FUN en 2028 pourrait augmenter de 47.02%, atteignant $0.002953 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.002953 et $0.0012059 durant l'année.
Combien vaudra FunFair en 2029 ?
Basé sur notre modèle de prévision expérimental, la valeur de FunFair pourrait connaître un 333.75% croissance en 2029, atteignant potentiellement $0.008714 sous des conditions optimales. Le range de prix prévu pour 2029 se situe entre $0.008714 et $0.002649.
Combien vaudra FunFair en 2030 ?
En utilisant notre nouvelle simulation expérimentale pour les prédictions de prix de FunFair, il est prévu que la valeur de FUN en 2030 augmente de 224.23%, atteignant $0.006514 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.006514 et $0.002253 au cours de 2030.
Combien vaudra FunFair en 2031 ?
Notre simulation expérimentale indique que le prix de FunFair pourrait augmenter de 195.98% en 2031, atteignant potentiellement $0.005946 dans des conditions idéales. Il est probable que le prix fluctue entre $0.005946 et $0.002663 durant l'année.
Combien vaudra FunFair en 2032 ?
Basé sur les résultats de notre dernière prédiction expérimentale de prix de FunFair, FUN pourrait connaître une 449.04% hausse en valeur, atteignant $0.01103 si le scénario le plus positif se réalise en 2032. Il est prévu que le prix reste dans une fourchette de $0.01103 et $0.004066 tout au long de l'année.
Combien vaudra FunFair en 2033 ?
Selon notre prédiction expérimentale de prix de FunFair, la valeur de FUN est anticipée à augmenter de 1362.43% en 2033, avec le prix potentiel le plus élevé étant $0.029382. Tout au long de l'année, le prix de FUN pourrait osciller entre $0.029382 et $0.009448.
Combien vaudra FunFair en 2034 ?
Les résultats de notre nouvelle simulation de prédiction de prix de FunFair suggèrent que FUN pourrait augmenter de 746.96% en 2034, atteignant potentiellement $0.017016 dans les meilleures circonstances. La fourchette de prix prévue pour l'année est entre $0.017016 et $0.007596.
Combien vaudra FunFair en 2035 ?
Basé sur notre prédiction expérimentale pour le prix de FunFair, FUN pourrait augmenter de 897.93%, avec la valeur potentiellement atteignant $0.020049 en 2035. La fourchette de prix attendue pour l'année se situe entre $0.020049 et $0.008981.
Combien vaudra FunFair en 2036 ?
Notre récente simulation de prédiction de prix de FunFair suggère que la valeur de FUN pourrait augmenter de 1964.7% en 2036, pouvant atteindre $0.041482 si les conditions sont optimales. La fourchette de prix attendue pour 2036 est entre $0.041482 et $0.014866.
Combien vaudra FunFair en 2037 ?
Selon la simulation expérimentale, la valeur de FunFair pourrait augmenter de 4830.69% en 2037, avec un maximum de $0.099063 sous des conditions favorables. Il est prévu que le prix chute entre $0.099063 et $0.038608 au cours de l'année.
Prévisions liées
Prévision du cours de Clore.ai
Prévision du cours de SaucerSwap
Prévision du cours de Overnight.fi USD+
Prévision du cours de LimeWire
Prévision du cours de Marcopolo
Prévision du cours de Stargaze
Prévision du cours de Beta Finance
Prévision du cours de Iagon
Prévision du cours de Hermez Network Token
Prévision du cours de Quanta
Prévision du cours de Orion Protocol
Prévision du cours de Verasity
Prévision du cours de Aergo
Prévision du cours de higher
Prévision du cours de SportX
Prévision du cours de Reef
Prévision du cours de ankrETH
Prévision du cours de Wanchain
Prévision du cours de VitaDAO
Prévision du cours de PlayDapp
Prévision du cours de Zero1 Labs
Prévision du cours de SingularityDAO
Prévision du cours de PunkCity
Prévision du cours de Compound USD Coin
Prévision du cours de Compound Dai
Comment lire et prédire les mouvements de prix de FunFair ?
Les traders de FunFair utilisent des indicateurs et des modèles graphiques pour prédire la direction du marché. Ils identifient également des niveaux clés de support et de résistance pour évaluer quand une tendance baissière pourrait ralentir ou une tendance haussière pourrait s'arrêter.
Indicateurs de prédiction du prix de FunFair
Les moyennes mobiles sont des outils populaires pour la prédiction du prix de FunFair. Une moyenne mobile simple (SMA) calcule le prix de clôture moyen de FUN sur une période spécifique, comme une SMA de 12 jours. Une moyenne mobile exponentielle (EMA) donne plus de poids aux prix récents, réagissant plus rapidement aux changements de prix.
Les moyennes mobiles couramment utilisées sur le marché des cryptomonnaies incluent les moyennes sur 50 jours, 100 jours et 200 jours, qui aident à identifier les niveaux clés de résistance et de support. Un mouvement de prix de FUN au-dessus de ces moyennes est considéré comme haussier, tandis qu'une chute en dessous indique une faiblesse.
Les traders utilisent également le RSI et les niveaux de retracement de Fibonacci pour évaluer la direction future de FUN.
Comment lire les graphiques de FunFair et prédire les mouvements de prix ?
La plupart des traders préfèrent les graphiques en chandeliers aux simples graphiques linéaires parce qu'ils fournissent des informations plus détaillées. Les chandeliers peuvent représenter l'action des prix de FunFair dans différentes périodes, comme 5 minutes pour les tendances à court terme et hebdomadaire pour les tendances à long terme. Les options populaires incluent les graphiques de 1 heure, 4 heures et 1 jour.
Par exemple, un graphique en chandeliers de 1 heure montre les prix d'ouverture, de clôture, les plus hauts et les plus bas de FUN au sein de chaque heure. La couleur du chandelier est cruciale : le vert indique que le prix a clôturé plus haut qu'il n'a ouvert, tandis que le rouge signifie le contraire. Certains graphiques utilisent des chandeliers creux et pleins pour transmettre la même information.
Qu'est-ce qui affecte le prix de FunFair ?
L'action du prix de FunFair est déterminée par l'offre et la demande, influencée par des facteurs tels que les réductions de récompenses de bloc, les hard forks et les mises à jour de protocole. Les événements du monde réel, tels que les réglementations, l'adoption par les entreprises et les gouvernements et les piratages d'échanges de cryptomonnaies, impactent également le prix de FUN. La capitalisation boursière de FunFair peut changer rapidement.
Les traders surveillent souvent l'activité des « baleines » de FUN, de grands détenteurs de FunFair, car leurs actions peuvent influencer significativement les mouvements de prix sur le marché relativement petit de FunFair.
Modèles de prédiction de prix haussiers et baissiers
Les traders identifient souvent des modèles de chandeliers pour obtenir un avantage dans les prédictions de prix des cryptomonnaies. Certaines formations indiquent des tendances haussières, tandis que d'autres suggèrent des mouvements baissiers.
Modèles de chandeliers haussiers couramment suivis :
- Marteau
- Englobante haussière
- Ligne pénétrante
- Étoile du matin
- Trois soldats blancs
Modèles de chandeliers baissiers courants :
- Harami baissier
- Nuage sombre
- Étoile du soir
- Étoile filante
- Pendu


