Previsão de Preço FUNToken - Projeção FUN
Previsão de Preço FUNToken até $0.002069 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.000693 | $0.002069 |
| 2027 | $0.000667 | $0.001753 |
| 2028 | $0.0012043 | $0.002949 |
| 2029 | $0.002645 | $0.0087029 |
| 2030 | $0.00225 | $0.0065054 |
| 2031 | $0.00266 | $0.005938 |
| 2032 | $0.00406 | $0.011016 |
| 2033 | $0.009435 | $0.029342 |
| 2034 | $0.007586 | $0.016993 |
| 2035 | $0.008969 | $0.020022 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em FUNToken hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,954.44, com um retorno de 39.54% nos próximos 90 dias.
Previsão de preço de longo prazo de FunFair para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'FUNToken'
'name_with_ticker' => 'FUNToken <small>FUN</small>'
'name_lang' => 'FunFair'
'name_lang_with_ticker' => 'FunFair <small>FUN</small>'
'name_with_lang' => 'FunFair/FUNToken'
'name_with_lang_with_ticker' => 'FunFair/FUNToken <small>FUN</small>'
'image' => '/uploads/coins/funfair.png?1717218295'
'price_for_sd' => 0.002006
'ticker' => 'FUN'
'marketcap' => '$21.3M'
'low24h' => '$0.00193'
'high24h' => '$0.002187'
'volume24h' => '$7.64M'
'current_supply' => '10.6B'
'max_supply' => '11B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.002006'
'change_24h_pct' => '1.7691%'
'ath_price' => '$0.191'
'ath_days' => 2920
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '8 de jan. de 2018'
'ath_pct' => '-98.95%'
'fdv' => '$22.11M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.09893'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.0020236'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.001773'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.000693'
'current_year_max_price_prediction' => '$0.002069'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.00225'
'grand_prediction_max_price' => '$0.0065054'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0020444507931178
107 => 0.0020520840302437
108 => 0.002069282103251
109 => 0.0019223264523863
110 => 0.0019883052252333
111 => 0.002027061572906
112 => 0.001851958984153
113 => 0.0020236003577241
114 => 0.0019197682814516
115 => 0.0018845261152592
116 => 0.0019319750492349
117 => 0.001913484153519
118 => 0.0018975867672043
119 => 0.0018887157524889
120 => 0.0019235570128528
121 => 0.0019219316264126
122 => 0.0018649245620599
123 => 0.001790561170517
124 => 0.0018155199656139
125 => 0.0018064522013652
126 => 0.0017735894539632
127 => 0.0017957349778489
128 => 0.0016982172982495
129 => 0.0015304431990266
130 => 0.0016412799080329
131 => 0.0016370128153033
201 => 0.0016348611536518
202 => 0.0017181518771684
203 => 0.0017101453959462
204 => 0.0016956135541282
205 => 0.0017733225652923
206 => 0.0017449577308837
207 => 0.0018323714669354
208 => 0.001889947807065
209 => 0.0018753445848087
210 => 0.0019294954109912
211 => 0.0018160949658433
212 => 0.0018537620448852
213 => 0.0018615251776715
214 => 0.0017723636481569
215 => 0.001711455355292
216 => 0.0017073934665632
217 => 0.0016017868804151
218 => 0.0016582010663089
219 => 0.0017078432153177
220 => 0.0016840684783289
221 => 0.0016765421068482
222 => 0.0017149927064719
223 => 0.0017179806473697
224 => 0.0016498552782505
225 => 0.0016640206997403
226 => 0.0017230928621579
227 => 0.0016625322328109
228 => 0.0015448728225123
301 => 0.0015156916619896
302 => 0.0015117983572604
303 => 0.0014326567355358
304 => 0.0015176416866709
305 => 0.0014805434780453
306 => 0.0015977362745886
307 => 0.0015307963777206
308 => 0.0015279107325577
309 => 0.0015235486566619
310 => 0.0014554281935444
311 => 0.0014703422456859
312 => 0.0015199188264783
313 => 0.0015376083090253
314 => 0.00153576315107
315 => 0.0015196758741861
316 => 0.0015270405471633
317 => 0.0015033163694814
318 => 0.0014949388685658
319 => 0.0014684971712632
320 => 0.0014296351809336
321 => 0.0014350391790434
322 => 0.0013580434074076
323 => 0.0013160920245455
324 => 0.0013044804346796
325 => 0.0012889529314292
326 => 0.0013062343074889
327 => 0.0013578252880605
328 => 0.001295595619854
329 => 0.0011889072186176
330 => 0.0011953193733201
331 => 0.0012097255811508
401 => 0.0011828797081649
402 => 0.001157472342387
403 => 0.0011795619855661
404 => 0.0011343567035139
405 => 0.001215188423516
406 => 0.0012130021520182
407 => 0.001243131218635
408 => 0.0012619715423011
409 => 0.0012185506958779
410 => 0.0012076304704249
411 => 0.0012138511271395
412 => 0.0011110375283312
413 => 0.0012347291541502
414 => 0.0012357988444667
415 => 0.0012266395065491
416 => 0.0012925014787472
417 => 0.0014314907829494
418 => 0.0013791974158767
419 => 0.0013589478435708
420 => 0.0013204533918149
421 => 0.0013717449632053
422 => 0.0013678065707957
423 => 0.0013499956667284
424 => 0.0013392235763751
425 => 0.0013590714831413
426 => 0.0013367642010797
427 => 0.0013327572002583
428 => 0.0013084791349405
429 => 0.0012998129702037
430 => 0.0012933968868425
501 => 0.0012863334094931
502 => 0.0013019136804169
503 => 0.0012666067367482
504 => 0.0012240300238662
505 => 0.0012204902308765
506 => 0.0012302639105429
507 => 0.0012259397848554
508 => 0.0012204695286263
509 => 0.0012100253197494
510 => 0.0012069267460808
511 => 0.0012169956072894
512 => 0.001205628450036
513 => 0.0012224013097646
514 => 0.001217840020003
515 => 0.0011923610261807
516 => 0.0011606047663463
517 => 0.0011603220690228
518 => 0.0011534802349322
519 => 0.0011447661305412
520 => 0.0011423420660513
521 => 0.0011777016574306
522 => 0.0012508949533623
523 => 0.0012365253580038
524 => 0.0012469088633057
525 => 0.0012979854324581
526 => 0.0013142211378656
527 => 0.0013026974187311
528 => 0.0012869230412278
529 => 0.0012876170337816
530 => 0.0013415228569394
531 => 0.0013448848970075
601 => 0.0013533796876244
602 => 0.0013642978941947
603 => 0.0013045568365217
604 => 0.0012848032353376
605 => 0.0012754428832085
606 => 0.0012466166215631
607 => 0.0012777032733708
608 => 0.0012595904126256
609 => 0.0012620344563636
610 => 0.001260442769673
611 => 0.0012613119382354
612 => 0.0012151658294029
613 => 0.0012319790460934
614 => 0.0012040238123684
615 => 0.001166594892533
616 => 0.0011664694176694
617 => 0.0011756300927736
618 => 0.0011701809647644
619 => 0.0011555175014014
620 => 0.0011576003771625
621 => 0.0011393521937903
622 => 0.001159816037018
623 => 0.0011604028668186
624 => 0.0011525231725029
625 => 0.0011840505464612
626 => 0.0011969673372959
627 => 0.0011917807536979
628 => 0.0011966034327643
629 => 0.0012371224795658
630 => 0.0012437288521643
701 => 0.0012466629664802
702 => 0.0012427316419926
703 => 0.0011973440465579
704 => 0.0011993571794184
705 => 0.0011845861462228
706 => 0.0011721061797056
707 => 0.0011726053129175
708 => 0.0011790216379894
709 => 0.0012070421058909
710 => 0.0012660095286929
711 => 0.0012682472992836
712 => 0.0012709595425199
713 => 0.0012599274862136
714 => 0.001256600112469
715 => 0.0012609897773061
716 => 0.0012831348409507
717 => 0.0013400979569708
718 => 0.0013199633873307
719 => 0.0013035936688001
720 => 0.0013179543251959
721 => 0.0013157436147063
722 => 0.0012970829933937
723 => 0.0012965592519046
724 => 0.0012607435534444
725 => 0.0012475033052076
726 => 0.0012364387627656
727 => 0.0012243565712661
728 => 0.0012171938431464
729 => 0.0012281990489399
730 => 0.0012307160697146
731 => 0.0012066529949091
801 => 0.0012033732867293
802 => 0.001223023713053
803 => 0.0012143762930696
804 => 0.0012232703789682
805 => 0.0012253338831887
806 => 0.0012250016114827
807 => 0.0012159727118702
808 => 0.0012217274632375
809 => 0.0012081157606799
810 => 0.00119331507856
811 => 0.0011838731654826
812 => 0.0011756338440346
813 => 0.0011802054984461
814 => 0.0011639083852201
815 => 0.001158694610703
816 => 0.0012197778829603
817 => 0.0012649007529326
818 => 0.0012642446485326
819 => 0.0012602507817339
820 => 0.0012543167057972
821 => 0.0012827007263349
822 => 0.001272812301136
823 => 0.0012800069566738
824 => 0.0012818382984669
825 => 0.0012873812185097
826 => 0.001289362335995
827 => 0.00128337402298
828 => 0.0012632765130908
829 => 0.0012131954292609
830 => 0.0011898825495468
831 => 0.0011821889109344
901 => 0.0011824685600857
902 => 0.0011747545880852
903 => 0.0011770266985553
904 => 0.0011739644407878
905 => 0.001168165265416
906 => 0.0011798474157086
907 => 0.001181193674703
908 => 0.0011784669212335
909 => 0.0011791091703855
910 => 0.0011565328162689
911 => 0.0011582492474392
912 => 0.0011486919405699
913 => 0.0011469000607469
914 => 0.0011227400212313
915 => 0.0010799370091756
916 => 0.0011036540328434
917 => 0.0010750072033709
918 => 0.0010641582149794
919 => 0.001115515638661
920 => 0.0011103607777566
921 => 0.0011015378966523
922 => 0.0010884870166496
923 => 0.0010836463183058
924 => 0.0010542357675478
925 => 0.0010524980353098
926 => 0.0010670746984172
927 => 0.0010603480699455
928 => 0.0010509013359978
929 => 0.0010166862232394
930 => 0.00097821710826446
1001 => 0.00097937824903732
1002 => 0.00099161455876753
1003 => 0.0010271932795993
1004 => 0.0010132920578522
1005 => 0.0010032065619766
1006 => 0.0010013178517679
1007 => 0.0010249590143114
1008 => 0.0010584162122872
1009 => 0.0010741135810148
1010 => 0.0010585579653419
1011 => 0.0010406885116307
1012 => 0.001041776142479
1013 => 0.0010490116632457
1014 => 0.0010497720141735
1015 => 0.0010381408368171
1016 => 0.0010414149451129
1017 => 0.0010364412752208
1018 => 0.0010059178722737
1019 => 0.0010053658007051
1020 => 0.00099787486536552
1021 => 0.00099764804282053
1022 => 0.00098490409310648
1023 => 0.00098312112644673
1024 => 0.00095781724078704
1025 => 0.00097447233495547
1026 => 0.00096330097221898
1027 => 0.00094646309351702
1028 => 0.00094356023688222
1029 => 0.00094347297350647
1030 => 0.0009607617100526
1031 => 0.00097427030600293
1101 => 0.00096349530285665
1102 => 0.00096104204350491
1103 => 0.00098723643513172
1104 => 0.00098390296003003
1105 => 0.00098101619209057
1106 => 0.0010554204871702
1107 => 0.00099652368177513
1108 => 0.00097084131291075
1109 => 0.00093905450449152
1110 => 0.00094940444959583
1111 => 0.00095158533510163
1112 => 0.00087514379085626
1113 => 0.0008441314658761
1114 => 0.00083348920461772
1115 => 0.00082736443280403
1116 => 0.00083015556822957
1117 => 0.00080224083836452
1118 => 0.00082099999850085
1119 => 0.00079682820201109
1120 => 0.00079277572166775
1121 => 0.00083599788810243
1122 => 0.00084201200006159
1123 => 0.00081635393000571
1124 => 0.00083283056464581
1125 => 0.00082685590788295
1126 => 0.00079724255808464
1127 => 0.00079611154594341
1128 => 0.00078125260797419
1129 => 0.00075800124730972
1130 => 0.00074737475156876
1201 => 0.0007418403803234
1202 => 0.00074412396976198
1203 => 0.00074296931706285
1204 => 0.0007354344271638
1205 => 0.00074340120813183
1206 => 0.00072304937485969
1207 => 0.00071494511086486
1208 => 0.0007112846028359
1209 => 0.00069322117939906
1210 => 0.00072196811892793
1211 => 0.00072763162815952
1212 => 0.00073330629625384
1213 => 0.00078270040775448
1214 => 0.00078023281753022
1215 => 0.00080253863139236
1216 => 0.00080167186848344
1217 => 0.00079530988903973
1218 => 0.00076846974426153
1219 => 0.00077916774759054
1220 => 0.00074624095618269
1221 => 0.00077091194710963
1222 => 0.00075965313713579
1223 => 0.00076710533213213
1224 => 0.00075370561359138
1225 => 0.00076112157109265
1226 => 0.00072897465630067
1227 => 0.00069895631958722
1228 => 0.00071103657457059
1229 => 0.00072416919328224
1230 => 0.00075264405677812
1231 => 0.0007356846629925
]
'min_raw' => 0.00069322117939906
'max_raw' => 0.002069282103251
'avg_raw' => 0.001381251641325
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.000693'
'max' => '$0.002069'
'avg' => '$0.001381'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0013132088206009
'max_diff' => 6.2852103251006E-5
'year' => 2026
]
1 => [
'items' => [
101 => 0.00074178390230349
102 => 0.000721352471612
103 => 0.00067919659414583
104 => 0.00067943519183417
105 => 0.00067295042850172
106 => 0.00066734664619152
107 => 0.0007376326533802
108 => 0.00072889147732894
109 => 0.0007149635573081
110 => 0.00073360663172953
111 => 0.00073853615651194
112 => 0.0007386764931524
113 => 0.00075227799900288
114 => 0.00075953712511349
115 => 0.00076081657755333
116 => 0.00078221884088905
117 => 0.0007893925972565
118 => 0.00081894028446604
119 => 0.00075892123897969
120 => 0.00075768518623453
121 => 0.00073386897801882
122 => 0.00071876436224905
123 => 0.00073490320398313
124 => 0.00074920001458794
125 => 0.00073431321977651
126 => 0.00073625712090149
127 => 0.00071627281516298
128 => 0.00072341626411551
129 => 0.00072956916467993
130 => 0.00072617189463904
131 => 0.00072108601695809
201 => 0.00074802783915702
202 => 0.00074650767596271
203 => 0.00077159652018416
204 => 0.00079115506837525
205 => 0.00082620748324237
206 => 0.00078962846100482
207 => 0.00078829537604604
208 => 0.00080132649535168
209 => 0.00078939060226003
210 => 0.00079693367468093
211 => 0.00082499217765992
212 => 0.00082558500961386
213 => 0.0008156543105646
214 => 0.00081505002662495
215 => 0.0008169573260073
216 => 0.00082812843806316
217 => 0.00082422490825724
218 => 0.00082874217177394
219 => 0.00083439107897235
220 => 0.00085775735423203
221 => 0.00086339088409098
222 => 0.00084970432718407
223 => 0.00085094007003088
224 => 0.00084582092204331
225 => 0.00084087588923004
226 => 0.00085199160083021
227 => 0.00087230578225937
228 => 0.00087217940879101
301 => 0.00087689190403131
302 => 0.0008798277495256
303 => 0.00086722495149385
304 => 0.00085902099339291
305 => 0.00086216691296023
306 => 0.00086719730685759
307 => 0.00086053562401727
308 => 0.00081941663153518
309 => 0.00083188950716283
310 => 0.00082981341076593
311 => 0.0008268567970348
312 => 0.0008393983699283
313 => 0.00083818870462736
314 => 0.00080195453246246
315 => 0.00080427412660297
316 => 0.00080209559466488
317 => 0.00080913487704256
318 => 0.00078901045791068
319 => 0.00079520059369562
320 => 0.00079908298883101
321 => 0.00080136974939172
322 => 0.0008096310965834
323 => 0.00080866172284257
324 => 0.0008095708389506
325 => 0.00082182023592107
326 => 0.00088377348231225
327 => 0.00088714546082119
328 => 0.00087054060539998
329 => 0.00087717391762446
330 => 0.00086443940869937
331 => 0.00087298816985458
401 => 0.00087883701512198
402 => 0.00085240720802685
403 => 0.00085084220637871
404 => 0.00083805513760536
405 => 0.00084492618406756
406 => 0.00083399385510048
407 => 0.00083667626623237
408 => 0.00082917601085921
409 => 0.00084267497724495
410 => 0.00085776891919151
411 => 0.00086158224500504
412 => 0.00085155102652963
413 => 0.00084428776326391
414 => 0.00083153586563698
415 => 0.00085274255558514
416 => 0.00085894403798815
417 => 0.00085270998183813
418 => 0.00085126541481135
419 => 0.00084852796290589
420 => 0.00085184617817387
421 => 0.00085891026338315
422 => 0.00085557897125162
423 => 0.00085777934839431
424 => 0.00084939377974545
425 => 0.0008672291235444
426 => 0.00089555594180637
427 => 0.00089564701715899
428 => 0.00089231570707056
429 => 0.00089095260675645
430 => 0.00089437073306798
501 => 0.0008962249263731
502 => 0.00090727852008742
503 => 0.00091913946653749
504 => 0.0009744893282836
505 => 0.00095894730859134
506 => 0.0010080569987105
507 => 0.0010468963874996
508 => 0.0010585426219568
509 => 0.0010478286342538
510 => 0.0010111766610802
511 => 0.0010093783404189
512 => 0.0010641518624042
513 => 0.0010486758336571
514 => 0.0010468350092819
515 => 0.0010272517480522
516 => 0.0010388278808731
517 => 0.0010362960108135
518 => 0.0010322993300612
519 => 0.001054385785083
520 => 0.0010957296572124
521 => 0.0010892858270206
522 => 0.0010844758067032
523 => 0.001063399697848
524 => 0.0010760922228981
525 => 0.0010715726578371
526 => 0.0010909915775262
527 => 0.0010794882396841
528 => 0.0010485585875182
529 => 0.0010534842365711
530 => 0.0010527397346258
531 => 0.0010680615319044
601 => 0.0010634623086717
602 => 0.0010518416624747
603 => 0.0010955883483521
604 => 0.001092747681903
605 => 0.001096775097461
606 => 0.0010985480903416
607 => 0.001125175927132
608 => 0.0011360844998694
609 => 0.0011385609368622
610 => 0.0011489232372633
611 => 0.0011383031133883
612 => 0.0011807911809082
613 => 0.0012090432665615
614 => 0.0012418595178868
615 => 0.0012898128812499
616 => 0.0013078437894678
617 => 0.0013045866672866
618 => 0.0013409443601043
619 => 0.0014062783259116
620 => 0.0013177925297458
621 => 0.0014109682879687
622 => 0.0013814699186812
623 => 0.0013115298157535
624 => 0.0013070264976646
625 => 0.0013543907473885
626 => 0.0014594400946361
627 => 0.0014331264246104
628 => 0.0014594831343736
629 => 0.0014287366324158
630 => 0.0014272098094417
701 => 0.001457989845401
702 => 0.0015299090771524
703 => 0.0014957429459994
704 => 0.0014467574191125
705 => 0.0014829275698666
706 => 0.001451593637894
707 => 0.0013809895193444
708 => 0.0014331063030428
709 => 0.0013982572939843
710 => 0.0014084280875028
711 => 0.001481675521145
712 => 0.0014728621961405
713 => 0.0014842674547883
714 => 0.0014641374718026
715 => 0.001445332893487
716 => 0.0014102327516146
717 => 0.0013998413300223
718 => 0.0014027131451062
719 => 0.0013998399068933
720 => 0.0013802017001027
721 => 0.001375960831216
722 => 0.0013688925306082
723 => 0.0013710832925252
724 => 0.0013577928194782
725 => 0.0013828746880698
726 => 0.0013875301039011
727 => 0.0014057825962078
728 => 0.0014076776305094
729 => 0.0014585105617756
730 => 0.0014305126374468
731 => 0.001449296062311
801 => 0.0014476158959947
802 => 0.0013130456298609
803 => 0.0013315882252107
804 => 0.0013604346845879
805 => 0.0013474393937389
806 => 0.0013290670929082
807 => 0.0013142304749269
808 => 0.0012917514815632
809 => 0.0013233902330518
810 => 0.0013649918268531
811 => 0.0014087327155812
812 => 0.0014612845273716
813 => 0.0014495555747505
814 => 0.0014077502960141
815 => 0.0014096256502794
816 => 0.0014212183524231
817 => 0.001406204749839
818 => 0.0014017769453366
819 => 0.001420610040078
820 => 0.001420739733251
821 => 0.0014034647690236
822 => 0.0013842668075699
823 => 0.0013841863674104
824 => 0.0013807702756
825 => 0.0014293443475599
826 => 0.0014560551757453
827 => 0.0014591175291501
828 => 0.0014558490549616
829 => 0.0014571069609556
830 => 0.0014415645185675
831 => 0.0014770899328986
901 => 0.0015096915661882
902 => 0.0015009536320343
903 => 0.0014878542265671
904 => 0.0014774199191595
905 => 0.0014984956408162
906 => 0.0014975571721071
907 => 0.0015094068193625
908 => 0.0015088692509161
909 => 0.0015048846602319
910 => 0.0015009537743366
911 => 0.0015165392925842
912 => 0.0015120509136246
913 => 0.0015075555629729
914 => 0.0014985394490369
915 => 0.0014997648886626
916 => 0.0014866677449924
917 => 0.0014806084070461
918 => 0.0013894905027175
919 => 0.0013651408213175
920 => 0.0013728017267694
921 => 0.0013753238957595
922 => 0.0013647268832092
923 => 0.0013799202770571
924 => 0.0013775524027197
925 => 0.0013867644166064
926 => 0.0013810091502691
927 => 0.0013812453484071
928 => 0.0013981703595529
929 => 0.0014030837622926
930 => 0.0014005847660031
1001 => 0.0014023349773437
1002 => 0.0014426678589688
1003 => 0.0014369338129747
1004 => 0.001433887715324
1005 => 0.0014347315051907
1006 => 0.0014450374211926
1007 => 0.001447922514991
1008 => 0.0014356981698353
1009 => 0.0014414632416788
1010 => 0.0014660101858921
1011 => 0.00147460022713
1012 => 0.0015020155153077
1013 => 0.0014903690136219
1014 => 0.001511746671515
1015 => 0.0015774543036976
1016 => 0.0016299461069074
1017 => 0.0015816724753601
1018 => 0.0016780669871641
1019 => 0.0017531239415749
1020 => 0.0017502431306507
1021 => 0.0017371552145505
1022 => 0.0016517048674462
1023 => 0.0015730721840479
1024 => 0.0016388517626307
1025 => 0.0016390194483042
1026 => 0.0016333689241669
1027 => 0.0015982740040412
1028 => 0.0016321476970192
1029 => 0.0016348364677566
1030 => 0.0016333314711455
1031 => 0.0016064242781695
1101 => 0.0015653419677756
1102 => 0.0015733693528894
1103 => 0.00158651837346
1104 => 0.0015616245343468
1105 => 0.0015536694443792
1106 => 0.0015684594701467
1107 => 0.001616116014794
1108 => 0.001607106821084
1109 => 0.0016068715546272
1110 => 0.0016454167058113
1111 => 0.0016178266961277
1112 => 0.0015734706039229
1113 => 0.0015622701056563
1114 => 0.0015225158823692
1115 => 0.0015499742659933
1116 => 0.0015509624443367
1117 => 0.0015359237682437
1118 => 0.001574690909605
1119 => 0.0015743336635725
1120 => 0.0016111372945676
1121 => 0.0016814920142177
1122 => 0.0016606846616717
1123 => 0.0016364879744942
1124 => 0.0016391188252917
1125 => 0.0016679727650479
1126 => 0.0016505270143999
1127 => 0.001656800627969
1128 => 0.0016679632691823
1129 => 0.0016746979677791
1130 => 0.0016381498058048
1201 => 0.0016296286809479
1202 => 0.0016121974499991
1203 => 0.0016076499672139
1204 => 0.0016218473411071
1205 => 0.0016181068346869
1206 => 0.0015508793917733
1207 => 0.0015438537499389
1208 => 0.0015440692163436
1209 => 0.0015264029058999
1210 => 0.0014994575420729
1211 => 0.0015702683493862
1212 => 0.0015645812505623
1213 => 0.0015583031336073
1214 => 0.0015590721671118
1215 => 0.0015898087385656
1216 => 0.0015719799748884
1217 => 0.0016193806652013
1218 => 0.0016096365082681
1219 => 0.0015996424504777
1220 => 0.0015982609672646
1221 => 0.0015944141076682
1222 => 0.0015812217947589
1223 => 0.0015652912841857
1224 => 0.0015547725812281
1225 => 0.0014341955212153
1226 => 0.0014565739221892
1227 => 0.0014823182326542
1228 => 0.0014912050654629
1229 => 0.0014760035229935
1230 => 0.0015818220443101
1231 => 0.0016011561078472
]
'min_raw' => 0.00066734664619152
'max_raw' => 0.0017531239415749
'avg_raw' => 0.0012102352938832
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.000667'
'max' => '$0.001753'
'avg' => '$0.00121'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -2.5874533207532E-5
'max_diff' => -0.00031615816167613
'year' => 2027
]
2 => [
'items' => [
101 => 0.0015425919682634
102 => 0.0015316370089053
103 => 0.0015825402496218
104 => 0.0015518393728016
105 => 0.0015656639757539
106 => 0.0015357827458246
107 => 0.0015964990981086
108 => 0.0015960365412319
109 => 0.0015724165088524
110 => 0.0015923799984766
111 => 0.001588910850877
112 => 0.0015622438924942
113 => 0.0015973444882543
114 => 0.0015973618977119
115 => 0.0015746281300904
116 => 0.0015480800665702
117 => 0.0015433338998501
118 => 0.0015397583007843
119 => 0.0015647845975719
120 => 0.0015872230970165
121 => 0.0016289755815072
122 => 0.0016394731481227
123 => 0.0016804458494857
124 => 0.0016560486007487
125 => 0.0016668635851165
126 => 0.0016786047805208
127 => 0.0016842339413657
128 => 0.0016750615258463
129 => 0.0017387089960996
130 => 0.0017440827926971
131 => 0.0017458845802131
201 => 0.0017244230113521
202 => 0.0017434859076434
203 => 0.0017345670097655
204 => 0.0017577715043027
205 => 0.0017614102653359
206 => 0.0017583283641934
207 => 0.0017594833643793
208 => 0.0017051714767012
209 => 0.0017023551188071
210 => 0.0016639538790808
211 => 0.0016796026681169
212 => 0.0016503480070799
213 => 0.0016596249614512
214 => 0.0016637141545439
215 => 0.0016615781921319
216 => 0.0016804874271698
217 => 0.0016644107144861
218 => 0.0016219816264577
219 => 0.0015795409786526
220 => 0.0015790081708908
221 => 0.0015678342974634
222 => 0.0015597576335724
223 => 0.0015613134855728
224 => 0.0015667965109554
225 => 0.0015594389501695
226 => 0.001561009058801
227 => 0.0015870833236624
228 => 0.0015923123315272
229 => 0.0015745421196973
301 => 0.0015031921549711
302 => 0.0014856826946594
303 => 0.0014982681475038
304 => 0.0014922531116512
305 => 0.0012043647266826
306 => 0.0012719998324222
307 => 0.0012318133492629
308 => 0.0012503331295939
309 => 0.0012093131365276
310 => 0.0012288900272609
311 => 0.0012252748903761
312 => 0.001334030138937
313 => 0.0013323320753187
314 => 0.0013331448485133
315 => 0.0012943490662673
316 => 0.0013561518008054
317 => 0.0013865980501932
318 => 0.0013809632597322
319 => 0.0013823814150945
320 => 0.0013580128073977
321 => 0.0013333807899029
322 => 0.0013060600916609
323 => 0.0013568185720542
324 => 0.0013511750955106
325 => 0.0013641192002428
326 => 0.001397039703069
327 => 0.001401887372163
328 => 0.0014084026885855
329 => 0.0014060674114398
330 => 0.0014617031873357
331 => 0.001454965327778
401 => 0.0014712016306975
402 => 0.0014378023237409
403 => 0.0014000078376282
404 => 0.0014071913338434
405 => 0.0014064995053918
406 => 0.0013976917351598
407 => 0.0013897404740164
408 => 0.0013765038644666
409 => 0.0014183864557319
410 => 0.0014166860990131
411 => 0.0014442128978417
412 => 0.0014393472687677
413 => 0.0014068534069901
414 => 0.0014080139316203
415 => 0.0014158190174879
416 => 0.0014428325087925
417 => 0.0014508519522304
418 => 0.0014471370265104
419 => 0.0014559299801386
420 => 0.0014628795721687
421 => 0.0014568027418997
422 => 0.001542837843607
423 => 0.0015071100710318
424 => 0.0015245235387927
425 => 0.0015286765482476
426 => 0.0015180387018573
427 => 0.0015203456698267
428 => 0.001523840097689
429 => 0.0015450575793904
430 => 0.0016007383907024
501 => 0.0016253990430004
502 => 0.0016995918321741
503 => 0.0016233513191199
504 => 0.0016188275225899
505 => 0.0016321918843277
506 => 0.001675750905677
507 => 0.0017110514011897
508 => 0.0017227626120857
509 => 0.0017243104419367
510 => 0.0017462814521242
511 => 0.0017588748254286
512 => 0.0017436135935925
513 => 0.001730681297529
514 => 0.0016843594182451
515 => 0.0016897213019025
516 => 0.0017266593631778
517 => 0.0017788365503701
518 => 0.0018236100050922
519 => 0.0018079319017609
520 => 0.0019275447631622
521 => 0.0019394038897954
522 => 0.0019377653419461
523 => 0.0019647821972912
524 => 0.0019111592413181
525 => 0.0018882343887437
526 => 0.0017334774067257
527 => 0.0017769578062175
528 => 0.0018401591203932
529 => 0.0018317941894693
530 => 0.0017858957057389
531 => 0.0018235751869764
601 => 0.001811117172133
602 => 0.0018012910189425
603 => 0.0018463065316018
604 => 0.0017968101262975
605 => 0.0018396653558875
606 => 0.0017847030806578
607 => 0.0018080035180163
608 => 0.0017947770628563
609 => 0.0018033362003182
610 => 0.0017532996576076
611 => 0.0017802981614858
612 => 0.0017521764310835
613 => 0.0017521630977217
614 => 0.0017515423089644
615 => 0.001784627400072
616 => 0.0017857063037052
617 => 0.0017612563713879
618 => 0.0017577327541613
619 => 0.0017707614138507
620 => 0.0017555082655657
621 => 0.0017626451176461
622 => 0.0017557244335448
623 => 0.0017541664417817
624 => 0.0017417520983428
625 => 0.0017364036578499
626 => 0.0017385009191795
627 => 0.0017313418850492
628 => 0.0017270283080321
629 => 0.0017506842299245
630 => 0.0017380458251346
701 => 0.0017487472131302
702 => 0.0017365516308863
703 => 0.0016942764294667
704 => 0.0016699635140781
705 => 0.0015901095775096
706 => 0.001612756054862
707 => 0.001627770692776
708 => 0.001622808355035
709 => 0.0016334693766725
710 => 0.0016341238768158
711 => 0.0016306578700052
712 => 0.0016266446781415
713 => 0.0016246912782857
714 => 0.0016392503204205
715 => 0.0016477023344146
716 => 0.0016292776125606
717 => 0.0016249609580195
718 => 0.0016435893690706
719 => 0.0016549526890505
720 => 0.0017388530592842
721 => 0.0017326374488627
722 => 0.0017482374112688
723 => 0.0017464810949028
724 => 0.0017628323407733
725 => 0.0017895597172195
726 => 0.0017352154878124
727 => 0.0017446477669554
728 => 0.0017423351899327
729 => 0.0017675832994766
730 => 0.0017676621213187
731 => 0.0017525246184105
801 => 0.001760730904315
802 => 0.0017561503806508
803 => 0.0017644280060069
804 => 0.0017325544355961
805 => 0.0017713730038171
806 => 0.0017933806305852
807 => 0.0017936862065042
808 => 0.001804117646929
809 => 0.0018147165945488
810 => 0.0018350603515313
811 => 0.0018141492182082
812 => 0.0017765321250177
813 => 0.0017792479576436
814 => 0.0017571930696695
815 => 0.0017575638163209
816 => 0.0017555847416399
817 => 0.0017615240937354
818 => 0.0017338577893823
819 => 0.0017403510157153
820 => 0.0017312604608248
821 => 0.0017446280058645
822 => 0.0017302467371361
823 => 0.0017423340747381
824 => 0.0017475505689455
825 => 0.0017667995448739
826 => 0.0017274036477406
827 => 0.0016470727466181
828 => 0.0016639592759521
829 => 0.0016389827726588
830 => 0.0016412944431309
831 => 0.001645964385384
901 => 0.0016308275746315
902 => 0.0016337152011074
903 => 0.0016336120347698
904 => 0.001632723003007
905 => 0.0016287853339189
906 => 0.0016230749346971
907 => 0.0016458234076286
908 => 0.0016496888164628
909 => 0.0016582811414783
910 => 0.0016838460724946
911 => 0.0016812915330235
912 => 0.0016854580928877
913 => 0.0016763625160984
914 => 0.0016417163608514
915 => 0.001643597813769
916 => 0.0016201360657384
917 => 0.0016576811718319
918 => 0.0016487899951378
919 => 0.0016430577956826
920 => 0.0016414937119527
921 => 0.0016671220134883
922 => 0.0016747904029821
923 => 0.001670011977256
924 => 0.0016602112866829
925 => 0.0016790315098974
926 => 0.0016840670076681
927 => 0.001685194269917
928 => 0.0017185400970332
929 => 0.0016870579312268
930 => 0.0016946360014422
1001 => 0.0017537579420073
1002 => 0.0017001425001849
1003 => 0.0017285437954852
1004 => 0.0017271536998735
1005 => 0.0017416828415017
1006 => 0.0017259618861861
1007 => 0.0017261567662686
1008 => 0.0017390576597452
1009 => 0.0017209406815458
1010 => 0.001716454662964
1011 => 0.0017102572604227
1012 => 0.0017237890621442
1013 => 0.0017319007652855
1014 => 0.0017972751352148
1015 => 0.0018395099596227
1016 => 0.0018376764345087
1017 => 0.0018544314218352
1018 => 0.0018468831465865
1019 => 0.0018225077746741
1020 => 0.0018641135622686
1021 => 0.0018509477502136
1022 => 0.001852033123763
1023 => 0.0018519927261053
1024 => 0.0018607468401466
1025 => 0.0018545437480455
1026 => 0.0018423168167801
1027 => 0.0018504336243611
1028 => 0.0018745376410649
1029 => 0.001949357248515
1030 => 0.0019912272920721
1031 => 0.0019468366193193
1101 => 0.0019774567109694
1102 => 0.0019590955670336
1103 => 0.0019557588009837
1104 => 0.001974990481347
1105 => 0.0019942558242208
1106 => 0.0019930287051661
1107 => 0.001979043055526
1108 => 0.001971142916917
1109 => 0.0020309654132048
1110 => 0.00207504160942
1111 => 0.0020720359083287
1112 => 0.0020853020954394
1113 => 0.0021242520311041
1114 => 0.0021278131250848
1115 => 0.002127364509094
1116 => 0.0021185379661012
1117 => 0.0021568892360513
1118 => 0.0021888825401701
1119 => 0.0021164948764217
1120 => 0.002144059151153
1121 => 0.0021564336421453
1122 => 0.0021746030662682
1123 => 0.0022052579303124
1124 => 0.0022385572434656
1125 => 0.0022432661314538
1126 => 0.0022399249500851
1127 => 0.002217963157927
1128 => 0.0022543996637227
1129 => 0.0022757433142765
1130 => 0.0022884529697406
1201 => 0.0023206825413125
1202 => 0.0021565100627889
1203 => 0.0020403006225883
1204 => 0.0020221528404164
1205 => 0.0020590570690894
1206 => 0.0020687884198847
1207 => 0.0020648657245812
1208 => 0.0019340614343354
1209 => 0.0020214641828988
1210 => 0.0021155021913212
1211 => 0.0021191145742065
1212 => 0.0021661919674648
1213 => 0.0021815222964773
1214 => 0.0022194257686252
1215 => 0.0022170548961223
1216 => 0.0022262837884144
1217 => 0.0022241622258986
1218 => 0.0022943704265349
1219 => 0.0023718204978554
1220 => 0.0023691386481617
1221 => 0.0023580042840617
1222 => 0.0023745407134414
1223 => 0.0024544774870982
1224 => 0.0024471181899406
1225 => 0.0024542671202658
1226 => 0.0025485170814463
1227 => 0.0026710554378816
1228 => 0.0026141240686676
1229 => 0.0027376487583019
1230 => 0.0028154010026642
1231 => 0.0029498654695568
]
'min_raw' => 0.0012043647266826
'max_raw' => 0.0029498654695568
'avg_raw' => 0.0020771150981197
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.0012043'
'max' => '$0.002949'
'avg' => '$0.002077'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00053701808049111
'max_diff' => 0.0011967415279819
'year' => 2028
]
3 => [
'items' => [
101 => 0.0029330298560504
102 => 0.0029853758862658
103 => 0.0029028905941754
104 => 0.0027134876905077
105 => 0.0026835139559971
106 => 0.0027435221315431
107 => 0.002891046375611
108 => 0.0027388760681032
109 => 0.002769659923125
110 => 0.0027607941708078
111 => 0.0027603217525438
112 => 0.0027783520362154
113 => 0.0027521981693535
114 => 0.0026456426107673
115 => 0.0026944763953315
116 => 0.0026756193259203
117 => 0.0026965426503196
118 => 0.0028094572026676
119 => 0.0027595349875278
120 => 0.0027069459892295
121 => 0.0027729042635286
122 => 0.0028568918124333
123 => 0.002851636022563
124 => 0.0028414375934648
125 => 0.0028989256043188
126 => 0.0029938789558428
127 => 0.0030195444652063
128 => 0.0030384902195102
129 => 0.0030411025189375
130 => 0.0030680108265744
131 => 0.0029233180746443
201 => 0.0031529491879309
202 => 0.003192600137764
203 => 0.0031851474025588
204 => 0.0032292177645313
205 => 0.0032162511460818
206 => 0.0031974645503486
207 => 0.0032673254481098
208 => 0.0031872355663104
209 => 0.0030735580621318
210 => 0.0030111923350534
211 => 0.00309332055537
212 => 0.0031434733936374
213 => 0.0031766212294126
214 => 0.0031866517444897
215 => 0.0029345501610892
216 => 0.0027986813898311
217 => 0.0028857717144689
218 => 0.0029920279211801
219 => 0.002922727816051
220 => 0.0029254442489696
221 => 0.0028266405108027
222 => 0.0030007698596314
223 => 0.0029754006781654
224 => 0.0031070160364883
225 => 0.0030756049749453
226 => 0.0031829321903788
227 => 0.0031546693376285
228 => 0.0032719868592403
301 => 0.0033187879948564
302 => 0.0033973743855708
303 => 0.0034551828544846
304 => 0.0034891290931305
305 => 0.0034870910882913
306 => 0.0036216029977555
307 => 0.0035422860242326
308 => 0.0034426452119126
309 => 0.0034408430239805
310 => 0.0034924484126023
311 => 0.0036005991499065
312 => 0.0036286410625603
313 => 0.0036443126661857
314 => 0.003620311059701
315 => 0.0035342181696406
316 => 0.0034970436962134
317 => 0.0035287174246216
318 => 0.0034899831765329
319 => 0.0035568493556444
320 => 0.0036486709014097
321 => 0.0036297101153109
322 => 0.0036930931804793
323 => 0.0037586879848356
324 => 0.0038524915011121
325 => 0.0038770152138009
326 => 0.0039175519783223
327 => 0.0039592776246483
328 => 0.0039726787777105
329 => 0.0039982657370398
330 => 0.0039981308811341
331 => 0.004075238905274
401 => 0.004160291443737
402 => 0.004192396808036
403 => 0.0042662213229415
404 => 0.0041397994282854
405 => 0.0042356918876121
406 => 0.0043221892862687
407 => 0.0042190635217211
408 => 0.0043611983629285
409 => 0.0043667171367281
410 => 0.0044500440689121
411 => 0.004365576259635
412 => 0.004315419544117
413 => 0.0044602201024697
414 => 0.0045302845314818
415 => 0.0045091805552601
416 => 0.0043485782541815
417 => 0.004255100826397
418 => 0.0040104523674357
419 => 0.0043002490351022
420 => 0.0044414005384379
421 => 0.0043482127058875
422 => 0.0043952112282134
423 => 0.0046516199267016
424 => 0.0047492437578521
425 => 0.0047289386834149
426 => 0.0047323699067448
427 => 0.0047850459540357
428 => 0.0050186405569528
429 => 0.0048786652562044
430 => 0.0049856711288521
501 => 0.0050424266578661
502 => 0.0050951443562343
503 => 0.0049656863506417
504 => 0.0047972633874815
505 => 0.0047439167651337
506 => 0.0043389470124718
507 => 0.0043178665781513
508 => 0.0043060334915646
509 => 0.0042314275544591
510 => 0.0041728077241802
511 => 0.0041261910587276
512 => 0.0040038550076655
513 => 0.0040451398336865
514 => 0.0038501617018116
515 => 0.0039749018009845
516 => 0.0036637119946006
517 => 0.0039228801124121
518 => 0.0037818266888156
519 => 0.003876540269141
520 => 0.0038762098223818
521 => 0.0037018120920348
522 => 0.0036012231207584
523 => 0.0036653223282371
524 => 0.0037340417668556
525 => 0.0037451912645715
526 => 0.0038342878105013
527 => 0.0038591527413464
528 => 0.003783810840053
529 => 0.0036572632775487
530 => 0.0036866573900758
531 => 0.0036006274500062
601 => 0.0034498632891282
602 => 0.0035581447415605
603 => 0.0035951167902203
604 => 0.0036114457531596
605 => 0.0034631865163169
606 => 0.0034166002452363
607 => 0.0033917981054096
608 => 0.003638124871832
609 => 0.0036516192081479
610 => 0.0035825802756491
611 => 0.0038946427970838
612 => 0.0038240134374959
613 => 0.0039029237367689
614 => 0.0036839901824585
615 => 0.0036923537390663
616 => 0.0035887070858899
617 => 0.0036467422859968
618 => 0.0036057248771231
619 => 0.0036420536153432
620 => 0.0036638289112433
621 => 0.0037674585570238
622 => 0.0039240633965043
623 => 0.0037519797436883
624 => 0.0036770004318731
625 => 0.0037235171752236
626 => 0.0038473973926708
627 => 0.0040350822634149
628 => 0.0039239690424243
629 => 0.0039732792030751
630 => 0.0039840512795209
701 => 0.0039021205039975
702 => 0.0040381031679733
703 => 0.0041109773823191
704 => 0.004185731247044
705 => 0.0042506379332289
706 => 0.0041558729096001
707 => 0.0042572850689154
708 => 0.0041755647701633
709 => 0.0041022532140934
710 => 0.0041023643974622
711 => 0.0040563749874287
712 => 0.00396726471045
713 => 0.0039508314081782
714 => 0.0040363195218934
715 => 0.0041048728933384
716 => 0.0041105192773592
717 => 0.0041484739461905
718 => 0.0041709351282408
719 => 0.0043910852468294
720 => 0.004479631445703
721 => 0.0045879040615919
722 => 0.0046300823473909
723 => 0.0047570238658936
724 => 0.0046545082800166
725 => 0.0046323283881589
726 => 0.0043244097865257
727 => 0.0043748314402932
728 => 0.0044555613729409
729 => 0.0043257409933804
730 => 0.0044080821436792
731 => 0.0044243380309723
801 => 0.0043213297465593
802 => 0.0043763509219895
803 => 0.0042302309926885
804 => 0.0039272484116634
805 => 0.0040384404741981
806 => 0.0041203152590672
807 => 0.0040034698459708
808 => 0.0042129107264042
809 => 0.0040905596877924
810 => 0.004051780282438
811 => 0.0039004879962945
812 => 0.0039718921315801
813 => 0.0040684672469626
814 => 0.0040087950537184
815 => 0.004132623814525
816 => 0.0043079983637513
817 => 0.004432980711265
818 => 0.0044425753039951
819 => 0.0043622200277108
820 => 0.0044909898707769
821 => 0.0044919278185024
822 => 0.0043466749094836
823 => 0.0042577083114811
824 => 0.0042374949132276
825 => 0.004287991945135
826 => 0.0043493046641369
827 => 0.0044459777331849
828 => 0.0045043952441341
829 => 0.004656717130436
830 => 0.0046979310654586
831 => 0.0047432126847641
901 => 0.0048037228924904
902 => 0.0048763809113647
903 => 0.0047174093024911
904 => 0.0047237255408718
905 => 0.0045756933798005
906 => 0.0044174997857364
907 => 0.0045375490045212
908 => 0.0046944973886038
909 => 0.0046584932558827
910 => 0.0046544420554539
911 => 0.0046612550508659
912 => 0.0046341091105792
913 => 0.004511329028738
914 => 0.0044496696402814
915 => 0.0045292259823781
916 => 0.0045715066375571
917 => 0.0046370802464791
918 => 0.0046289969150885
919 => 0.0047979074895801
920 => 0.0048635410312369
921 => 0.0048467491626635
922 => 0.0048498392705999
923 => 0.0049686656627029
924 => 0.005100825049233
925 => 0.0052246097546853
926 => 0.0053505288737483
927 => 0.005198728461011
928 => 0.0051216535731709
929 => 0.0052011751834574
930 => 0.0051589798976917
1001 => 0.0054014465256363
1002 => 0.0054182343888829
1003 => 0.0056606834837306
1004 => 0.0058907965450422
1005 => 0.0057462666541361
1006 => 0.0058825518314913
1007 => 0.0060299553622945
1008 => 0.0063143206885748
1009 => 0.0062185564507764
1010 => 0.0061452025454397
1011 => 0.0060758834593401
1012 => 0.0062201254734184
1013 => 0.0064056905202078
1014 => 0.0064456594539663
1015 => 0.006510424395963
1016 => 0.0064423319785338
1017 => 0.0065243417951935
1018 => 0.0068138724849414
1019 => 0.0067356387368134
1020 => 0.0066245342377691
1021 => 0.006853090910502
1022 => 0.0069358046818725
1023 => 0.007516333246889
1024 => 0.0082492745406612
1025 => 0.0079458320322875
1026 => 0.0077574754753114
1027 => 0.0078017437340781
1028 => 0.0080693890829351
1029 => 0.0081553482743492
1030 => 0.0079216815601755
1031 => 0.0080042165939058
1101 => 0.0084589927444253
1102 => 0.0087029655582133
1103 => 0.0083716177071688
1104 => 0.0074574421275835
1105 => 0.0066145304932508
1106 => 0.0068381086154814
1107 => 0.0068127617948573
1108 => 0.0073013620341104
1109 => 0.0067337728877942
1110 => 0.0067433296333546
1111 => 0.0072420336081188
1112 => 0.0071089879376023
1113 => 0.0068934709905676
1114 => 0.0066161040054695
1115 => 0.0061033654801747
1116 => 0.0056492186695495
1117 => 0.0065399051489496
1118 => 0.0065014971283496
1119 => 0.0064458766227711
1120 => 0.0065696540391689
1121 => 0.0071706820383637
1122 => 0.0071568263976445
1123 => 0.0070686838805988
1124 => 0.0071355392029255
1125 => 0.006881750929323
1126 => 0.006947157946082
1127 => 0.0066143969717413
1128 => 0.0067648188294692
1129 => 0.0068930085879929
1130 => 0.0069187445798983
1201 => 0.0069767290837736
1202 => 0.0064812578467674
1203 => 0.0067037098859119
1204 => 0.006834379617972
1205 => 0.006244009014719
1206 => 0.0068227098893319
1207 => 0.0064726327948551
1208 => 0.0063538113710082
1209 => 0.0065137887646859
1210 => 0.0064514454187866
1211 => 0.0063978462709064
1212 => 0.0063679370254391
1213 => 0.0064854067672953
1214 => 0.006479926663431
1215 => 0.0062877233658598
1216 => 0.0060370019993868
1217 => 0.0061211523196235
1218 => 0.006090579719368
1219 => 0.0059797806720984
1220 => 0.0060544458520302
1221 => 0.0057256581867937
1222 => 0.00515999609765
1223 => 0.0055336898004367
1224 => 0.0055193029993799
1225 => 0.0055120485218976
1226 => 0.0057928690114065
1227 => 0.0057658746009712
1228 => 0.0057168794817012
1229 => 0.0059788808383106
1230 => 0.0058832468187326
1231 => 0.0061779683328631
]
'min_raw' => 0.0026456426107673
'max_raw' => 0.0087029655582133
'avg_raw' => 0.0056743040844903
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.002645'
'max' => '$0.0087029'
'avg' => '$0.005674'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.0014412778840846
'max_diff' => 0.0057531000886565
'year' => 2029
]
4 => [
'items' => [
101 => 0.0063720909834619
102 => 0.0063228552000602
103 => 0.0065054284912245
104 => 0.006123090973042
105 => 0.0062500881598635
106 => 0.0062762621040569
107 => 0.0059756477822395
108 => 0.0057702912203639
109 => 0.005756596278923
110 => 0.0054005363005083
111 => 0.0055907406669617
112 => 0.0057581126382493
113 => 0.0056779544525922
114 => 0.0056525787656708
115 => 0.005782217646837
116 => 0.0057922916981856
117 => 0.0055626022598387
118 => 0.0056103619673895
119 => 0.0058095278872673
120 => 0.0056053434972157
121 => 0.0052086465806762
122 => 0.0051102602606104
123 => 0.005097133711894
124 => 0.0048303022087581
125 => 0.0051168349049697
126 => 0.0049917557044745
127 => 0.0053868794001599
128 => 0.0051611868642753
129 => 0.0051514577101392
130 => 0.005136750666706
131 => 0.0049070777692864
201 => 0.0049573615373472
202 => 0.0051245124408155
203 => 0.0051841537662626
204 => 0.0051779326873915
205 => 0.0051236933101996
206 => 0.0051485238193275
207 => 0.0050685360979037
208 => 0.0050402907686685
209 => 0.0049511407401122
210 => 0.0048201148264586
211 => 0.0048383347833807
212 => 0.0045787381636375
213 => 0.004437296147366
214 => 0.0043981468614379
215 => 0.0043457948001335
216 => 0.0044040601660658
217 => 0.0045780027590304
218 => 0.0043681910879354
219 => 0.0040084836944204
220 => 0.0040301027216822
221 => 0.0040786742571927
222 => 0.0039881615221018
223 => 0.0039024988144962
224 => 0.0039769755887241
225 => 0.003824562824153
226 => 0.0040970926116306
227 => 0.0040897214446352
228 => 0.0041913036962778
301 => 0.0042548251629076
302 => 0.004108428747645
303 => 0.0040716104451044
304 => 0.0040925838235301
305 => 0.0037459405969319
306 => 0.0041629755492541
307 => 0.0041665820848395
308 => 0.0041357007375657
309 => 0.0043577589751677
310 => 0.0048263711182089
311 => 0.004650060380117
312 => 0.0045817875333076
313 => 0.0044520008016157
314 => 0.0046249339156215
315 => 0.0046116553506427
316 => 0.0045516046440622
317 => 0.0045152857893528
318 => 0.0045822043927519
319 => 0.0045069938338362
320 => 0.004493483950807
321 => 0.0044116287585478
322 => 0.0043824101790852
323 => 0.0043607779060763
324 => 0.0043369628990367
325 => 0.004389492870236
326 => 0.0042704530446051
327 => 0.0041269026845122
328 => 0.0041149680253069
329 => 0.0041479206686787
330 => 0.0041333415770225
331 => 0.004114898226225
401 => 0.004079684846805
402 => 0.0040692377893459
403 => 0.0041031856578963
404 => 0.0040648604935866
405 => 0.0041214113612053
406 => 0.0041060326543152
407 => 0.0040201284477566
408 => 0.0039130600005738
409 => 0.0039121068668102
410 => 0.0038890391454921
411 => 0.0038596589341384
412 => 0.003851486031468
413 => 0.0039707033625312
414 => 0.0042174796699577
415 => 0.0041690315759533
416 => 0.0042040402890319
417 => 0.0043762485079814
418 => 0.0044309883223037
419 => 0.0043921352986813
420 => 0.0043389508835969
421 => 0.0043412907279451
422 => 0.0045230379743059
423 => 0.0045343733271257
424 => 0.004563014106778
425 => 0.0045998256025145
426 => 0.0043984044555826
427 => 0.0043318038100381
428 => 0.004300244729316
429 => 0.0042030549755931
430 => 0.0043078657925635
501 => 0.0042467970179615
502 => 0.0042550372820617
503 => 0.0042496707992563
504 => 0.0042526012617481
505 => 0.0040970164340008
506 => 0.0041537033679341
507 => 0.0040594503456583
508 => 0.0039332561292294
509 => 0.0039328330819665
510 => 0.0039637189376583
511 => 0.0039453468221291
512 => 0.0038959079316306
513 => 0.0039029304926809
514 => 0.0038414054683939
515 => 0.0039104007445759
516 => 0.0039123792822198
517 => 0.0038858123426917
518 => 0.0039921090851633
519 => 0.0040356589472838
520 => 0.0040181720185674
521 => 0.0040344320177485
522 => 0.0041710448129892
523 => 0.0041933186594476
524 => 0.0042032112307167
525 => 0.0041899564957307
526 => 0.0040369290488618
527 => 0.0040437164668534
528 => 0.0039939148971538
529 => 0.0039518378187177
530 => 0.00395352068119
531 => 0.0039751537691434
601 => 0.004069626733
602 => 0.0042684395159507
603 => 0.0042759843157334
604 => 0.0042851288331674
605 => 0.0042479334850971
606 => 0.0042367150122075
607 => 0.0042515150736824
608 => 0.0043261787018792
609 => 0.0045182338245786
610 => 0.0044503487172862
611 => 0.0043951570683629
612 => 0.0044435750240304
613 => 0.0044361214592679
614 => 0.0043732058716697
615 => 0.0043714400406727
616 => 0.0042506849127418
617 => 0.0042060444914069
618 => 0.0041687396140619
619 => 0.0041280036618696
620 => 0.0041038540239285
621 => 0.0041409588436202
622 => 0.004149445154895
623 => 0.0040683148181579
624 => 0.0040572570530476
625 => 0.004123509837347
626 => 0.0040943544571296
627 => 0.0041243414887018
628 => 0.0041312987372506
629 => 0.0041301784599952
630 => 0.0040997368945741
701 => 0.004119139440593
702 => 0.0040732466350811
703 => 0.0040233451019634
704 => 0.0039915110328096
705 => 0.0039637315852965
706 => 0.0039791452373278
707 => 0.003924198382258
708 => 0.0039066197774595
709 => 0.0041125662945729
710 => 0.0042647012010627
711 => 0.0042624890992703
712 => 0.0042490234985155
713 => 0.0042290163471912
714 => 0.0043247150541429
715 => 0.004291375538197
716 => 0.0043156328216574
717 => 0.0043218073183731
718 => 0.004340495660292
719 => 0.0043471751362107
720 => 0.00432698512079
721 => 0.0042592249630353
722 => 0.0040903730923532
723 => 0.0040117720907438
724 => 0.0039858324510095
725 => 0.0039867753076474
726 => 0.0039607671124753
727 => 0.003968427691559
728 => 0.0039581030756961
729 => 0.0039385507510445
730 => 0.0039779379363775
731 => 0.0039824769425701
801 => 0.0039732835028716
802 => 0.003975448890728
803 => 0.0038993311365934
804 => 0.0039051182041212
805 => 0.0038728950767415
806 => 0.0038668536288135
807 => 0.0037853963687864
808 => 0.0036410830252297
809 => 0.0037210466263953
810 => 0.0036244618407711
811 => 0.0035878837189569
812 => 0.0037610388585603
813 => 0.0037436588851201
814 => 0.0037139119254833
815 => 0.0036699099723709
816 => 0.003653589219938
817 => 0.0035544294946782
818 => 0.0035485706091133
819 => 0.0035977168464899
820 => 0.0035750375489594
821 => 0.0035431872259049
822 => 0.0034278285844171
823 => 0.0032981272774512
824 => 0.0033020421446351
825 => 0.0033432977172024
826 => 0.0034632538585136
827 => 0.003416384918841
828 => 0.0033823809653494
829 => 0.0033760130470155
830 => 0.0034557208771042
831 => 0.0035685241559863
901 => 0.0036214489306067
902 => 0.0035690020863072
903 => 0.0035087539755146
904 => 0.0035124209988556
905 => 0.0035368160622885
906 => 0.0035393796385276
907 => 0.0035001643120075
908 => 0.0035112031967178
909 => 0.0034944341214261
910 => 0.0033915223373138
911 => 0.003389660989476
912 => 0.0033644047779781
913 => 0.0033636400299314
914 => 0.0033206729137164
915 => 0.0033146615171403
916 => 0.0032293476999778
917 => 0.0032855015127882
918 => 0.0032478364833624
919 => 0.0031910663997356
920 => 0.0031812792159204
921 => 0.0031809850013566
922 => 0.0032392751836829
923 => 0.0032848203580695
924 => 0.0032484916826751
925 => 0.0032402203474896
926 => 0.0033285365676934
927 => 0.0033172975236523
928 => 0.0033075645839967
929 => 0.0035584238595996
930 => 0.0033598491681665
1001 => 0.0032732592684545
1002 => 0.003166087824585
1003 => 0.0032009833871143
1004 => 0.0032083363948616
1005 => 0.0029506083914602
1006 => 0.0028460481725782
1007 => 0.0028101670457266
1008 => 0.0027895169499388
1009 => 0.0027989274578969
1010 => 0.0027048109972127
1011 => 0.0027680588153351
1012 => 0.0026865619158489
1013 => 0.0026728986954362
1014 => 0.002818625247246
1015 => 0.0028389022456082
1016 => 0.0027523942710256
1017 => 0.0028079463950765
1018 => 0.0027878024226634
1019 => 0.0026879589462803
1020 => 0.0026841456598814
1021 => 0.0026340477131002
1022 => 0.0025556541272618
1023 => 0.0025198261549529
1024 => 0.0025011666359017
1025 => 0.002508865917129
1026 => 0.0025049729249386
1027 => 0.0024795685175748
1028 => 0.0025064290758314
1029 => 0.0024378114490347
1030 => 0.0024104873571545
1031 => 0.0023981456987663
1101 => 0.0023372436055011
1102 => 0.0024341659191699
1103 => 0.0024532608359578
1104 => 0.0024723933756305
1105 => 0.0026389290711416
1106 => 0.0026306094184189
1107 => 0.0027058150271973
1108 => 0.0027028926755344
1109 => 0.0026814428176607
1110 => 0.002590949395622
1111 => 0.0026270184607565
1112 => 0.0025160034846497
1113 => 0.0025991834530335
1114 => 0.0025612235891417
1115 => 0.0025863491848675
1116 => 0.0025411710982688
1117 => 0.00256617451675
1118 => 0.0024577889491029
1119 => 0.0023565800310602
1120 => 0.0023973094541531
1121 => 0.0024415869950296
1122 => 0.0025375919853574
1123 => 0.0024804122051421
1124 => 0.0025009762163144
1125 => 0.0024320902212612
1126 => 0.0022899587371546
1127 => 0.0022907631859192
1128 => 0.0022688993535921
1129 => 0.0022500058102897
1130 => 0.0024869799907386
1201 => 0.0024575085053924
1202 => 0.0024105495506258
1203 => 0.0024734059776555
1204 => 0.0024900262146278
1205 => 0.0024904993694091
1206 => 0.0025363577960109
1207 => 0.0025608324465088
1208 => 0.0025651462097382
1209 => 0.0026373054348329
1210 => 0.0026614922552815
1211 => 0.0027611143456621
1212 => 0.0025587559434089
1213 => 0.0025545885052801
1214 => 0.0024742904964863
1215 => 0.0024233642298479
1216 => 0.0024777774615323
1217 => 0.0025259801566579
1218 => 0.0024757882885883
1219 => 0.00248234228695
1220 => 0.002414963804893
1221 => 0.0024390484417761
1222 => 0.0024597933756109
1223 => 0.0024483392424782
1224 => 0.0024311918507922
1225 => 0.0025220280853539
1226 => 0.0025169027490098
1227 => 0.0026014915389496
1228 => 0.0026674345497101
1229 => 0.0027856162137161
1230 => 0.0026622874863764
1231 => 0.0026577928973648
]
'min_raw' => 0.0022500058102897
'max_raw' => 0.0065054284912245
'avg_raw' => 0.0043777171507571
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.00225'
'max' => '$0.0065054'
'avg' => '$0.004377'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00039563680047758
'max_diff' => -0.0021975370669888
'year' => 2030
]
5 => [
'items' => [
101 => 0.0027017282259075
102 => 0.0026614855290116
103 => 0.0026869175243191
104 => 0.0027815187260949
105 => 0.0027835175004178
106 => 0.002750035455234
107 => 0.0027479980697417
108 => 0.0027544286627727
109 => 0.0027920928470111
110 => 0.0027789318237347
111 => 0.0027941620930665
112 => 0.0028132077780801
113 => 0.0028919888064993
114 => 0.0029109826457393
115 => 0.0028648374635628
116 => 0.0028690038568476
117 => 0.002851744292
118 => 0.0028350717686189
119 => 0.0028725491663531
120 => 0.0029410398473323
121 => 0.0029406137703606
122 => 0.0029565022770792
123 => 0.0029664006851374
124 => 0.0029239094716741
125 => 0.0028962492541547
126 => 0.002906855941617
127 => 0.0029238162658529
128 => 0.0029013559370529
129 => 0.0027627203830631
130 => 0.0028047735540702
131 => 0.0027977738501196
201 => 0.0027878054205009
202 => 0.002830090209136
203 => 0.0028260117381177
204 => 0.0027038456968746
205 => 0.0027116663704683
206 => 0.0027043212979388
207 => 0.0027280547299421
208 => 0.0026602038457969
209 => 0.0026810743207773
210 => 0.0026941640870364
211 => 0.0027018740599234
212 => 0.002729727768769
213 => 0.0027264594575223
214 => 0.002729524605953
215 => 0.0027708243030645
216 => 0.0029797039987099
217 => 0.0029910728596768
218 => 0.0029350884303102
219 => 0.0029574531055981
220 => 0.0029145178196621
221 => 0.0029433405647524
222 => 0.0029630603549248
223 => 0.0028739504150333
224 => 0.0028686739027117
225 => 0.0028255614075777
226 => 0.0028487276204462
227 => 0.0028118685100628
228 => 0.0028209124464739
301 => 0.0027956248118322
302 => 0.0028411375194695
303 => 0.0028920277985677
304 => 0.0029048846927859
305 => 0.0028710637393387
306 => 0.0028465751401335
307 => 0.0028035812269753
308 => 0.0028750810627393
309 => 0.0028959897936347
310 => 0.002874971238077
311 => 0.0028701007794898
312 => 0.0028608712692677
313 => 0.0028720588637141
314 => 0.0028958759201959
315 => 0.0028846442361911
316 => 0.0028920629613531
317 => 0.0028637904311917
318 => 0.0029239235380338
319 => 0.0030194293835194
320 => 0.0030197364504294
321 => 0.0030085047058816
322 => 0.0030039089180039
323 => 0.0030154333695092
324 => 0.0030216849116931
325 => 0.0030589528746382
326 => 0.0030989428836994
327 => 0.0032855588069804
328 => 0.0032331578024788
329 => 0.0033987345514446
330 => 0.0035296842624265
331 => 0.0035689503550132
401 => 0.0035328273974459
402 => 0.0034092527109321
403 => 0.0034031895472675
404 => 0.0035878623008061
405 => 0.0035356837893835
406 => 0.0035294773214804
407 => 0.0034634509889847
408 => 0.00350248072901
409 => 0.0034939443523348
410 => 0.003480469264139
411 => 0.003554935289272
412 => 0.0036943290406931
413 => 0.0036726032173078
414 => 0.0036563858979826
415 => 0.0035853263254904
416 => 0.0036281200598608
417 => 0.0036128820307115
418 => 0.0036783542742293
419 => 0.0036395699675571
420 => 0.0035352884858405
421 => 0.0035518956555201
422 => 0.003549385515232
423 => 0.0036010440244904
424 => 0.0035855374222541
425 => 0.0035463576022733
426 => 0.0036938526080048
427 => 0.0036842751027429
428 => 0.0036978538154818
429 => 0.003703831584765
430 => 0.0037936091956003
501 => 0.0038303882101964
502 => 0.0038387376904169
503 => 0.0038736749096921
504 => 0.0038378684205743
505 => 0.0039811199066398
506 => 0.0040763737859173
507 => 0.0041870160684181
508 => 0.0043486941809935
509 => 0.0044094866469281
510 => 0.0043985050320893
511 => 0.0045210875318372
512 => 0.0047413655590284
513 => 0.0044430295193744
514 => 0.0047571780935465
515 => 0.0046577222819833
516 => 0.0044219143419007
517 => 0.0044067310905524
518 => 0.0045664229653628
519 => 0.004920604173919
520 => 0.0048318857982657
521 => 0.0049207492853991
522 => 0.004817085307396
523 => 0.0048119375171395
524 => 0.0049157145573698
525 => 0.00515819526846
526 => 0.0050430017718746
527 => 0.0048778436479153
528 => 0.0049997938365018
529 => 0.004894149297191
530 => 0.004656102582079
531 => 0.0048318179569959
601 => 0.0047143220898747
602 => 0.0047486136303245
603 => 0.004995572466822
604 => 0.0049658577262425
605 => 0.0050043113520632
606 => 0.0049364417089964
607 => 0.0048730407603116
608 => 0.0047546981813751
609 => 0.0047196627779707
610 => 0.0047293453030299
611 => 0.0047196579797921
612 => 0.0046534463945017
613 => 0.0046391480089622
614 => 0.0046153167399699
615 => 0.0046227030467274
616 => 0.0045778932889381
617 => 0.0046624585600548
618 => 0.0046781546195607
619 => 0.0047396941717211
620 => 0.004746083412176
621 => 0.0049174701889819
622 => 0.004823073232355
623 => 0.0048864028607015
624 => 0.0048807380626606
625 => 0.0044270250149945
626 => 0.0044895426698188
627 => 0.0045868005216045
628 => 0.0045429859912049
629 => 0.0044810424962411
630 => 0.0044310198028577
701 => 0.0043552303072989
702 => 0.0044619025668896
703 => 0.0046021652449213
704 => 0.0047496407051595
705 => 0.0049268228076609
706 => 0.0048872778250096
707 => 0.0047463284089986
708 => 0.0047526512968372
709 => 0.0047917369014911
710 => 0.0047411174921627
711 => 0.0047261888401435
712 => 0.0047896859339487
713 => 0.0047901232035363
714 => 0.0047318794555441
715 => 0.004667152188144
716 => 0.0046668809785302
717 => 0.0046553633864876
718 => 0.0048191342614339
719 => 0.0049091916835513
720 => 0.0049195166218622
721 => 0.0049084967329381
722 => 0.0049127378508213
723 => 0.004860335421171
724 => 0.0049801118358937
725 => 0.0050900305187028
726 => 0.0050605699636398
727 => 0.0050164044035357
728 => 0.0049812244076112
729 => 0.0050522826746364
730 => 0.0050491185618618
731 => 0.0050890704748994
801 => 0.0050872580253506
802 => 0.0050738236996635
803 => 0.0050605704434219
804 => 0.0051131181063398
805 => 0.0050979852233091
806 => 0.0050828288347312
807 => 0.0050524303771113
808 => 0.0050565620323668
809 => 0.0050124040980693
810 => 0.0049919746171337
811 => 0.0046847642410409
812 => 0.0046026675901603
813 => 0.0046284968677588
814 => 0.0046370005366011
815 => 0.0046012719689281
816 => 0.0046524975570552
817 => 0.0046445141034069
818 => 0.0046755730513882
819 => 0.0046561687691122
820 => 0.0046569651276253
821 => 0.0047140289843697
822 => 0.0047305948647496
823 => 0.0047221693242853
824 => 0.0047280702840158
825 => 0.0048640554103667
826 => 0.0048447226739592
827 => 0.0048344525430584
828 => 0.0048372974395052
829 => 0.0048720445548419
830 => 0.004881771850014
831 => 0.0048405566168449
901 => 0.0048599939590699
902 => 0.0049427556952977
903 => 0.0049717176190689
904 => 0.0050641501772344
905 => 0.005024883183668
906 => 0.0050969594497948
907 => 0.0053184973192589
908 => 0.0054954770986413
909 => 0.0053327191795225
910 => 0.0056577200061194
911 => 0.0059107797682246
912 => 0.0059010669130619
913 => 0.0058569400901611
914 => 0.0055688382789461
915 => 0.0053037226969101
916 => 0.0055255031386855
917 => 0.0055260685026411
918 => 0.0055070173660053
919 => 0.0053886923925523
920 => 0.0055028999134134
921 => 0.0055119652916785
922 => 0.0055068910905287
923 => 0.0054161716108099
924 => 0.0052776597330416
925 => 0.005304724622407
926 => 0.0053490574632962
927 => 0.0052651261466935
928 => 0.0052383050054611
929 => 0.005288170609943
930 => 0.0054488479774948
1001 => 0.0054184728518998
1002 => 0.005417679634615
1003 => 0.0055476373029685
1004 => 0.0054546156590475
1005 => 0.0053050659973356
1006 => 0.0052673027354357
1007 => 0.0051332685960722
1008 => 0.0052258464535438
1009 => 0.005229178165821
1010 => 0.0051784742194066
1011 => 0.0053091803431418
1012 => 0.0053079758632012
1013 => 0.0054320618746486
1014 => 0.0056692677239585
1015 => 0.0055991142821266
1016 => 0.0055175334619489
1017 => 0.005526403559093
1018 => 0.0056236866314985
1019 => 0.0055648670651656
1020 => 0.0055860189913235
1021 => 0.0056236546155249
1022 => 0.0056463611220456
1023 => 0.005523136442238
1024 => 0.005494406874857
1025 => 0.0054356362627036
1026 => 0.0054203041069981
1027 => 0.0054681715443081
1028 => 0.0054555601657584
1029 => 0.0052288981483051
1030 => 0.0052052107063457
1031 => 0.0052059371663727
1101 => 0.0051463739672893
1102 => 0.0050555257918812
1103 => 0.0052942693725908
1104 => 0.0052750949218456
1105 => 0.0052539278122074
1106 => 0.0052565206623603
1107 => 0.0053601511589756
1108 => 0.0053000402374732
1109 => 0.0054598549742736
1110 => 0.0054270018688582
1111 => 0.0053933062052549
1112 => 0.00538864843815
1113 => 0.0053756784824416
1114 => 0.0053311996784098
1115 => 0.0052774888497797
1116 => 0.0052420243083658
1117 => 0.0048354903321109
1118 => 0.0049109406734045
1119 => 0.0049977394135477
1120 => 0.005027701990821
1121 => 0.0049764489290478
1122 => 0.0053332234616797
1123 => 0.0053984096067565
1124 => 0.0052009565213319
1125 => 0.0051640211110053
1126 => 0.0053356449410317
1127 => 0.0052321347913658
1128 => 0.0052787454054223
1129 => 0.0051779987524749
1130 => 0.0053827081732807
1201 => 0.0053811486304762
1202 => 0.0053015120422108
1203 => 0.0053688203412849
1204 => 0.0053571238679449
1205 => 0.0052672143559295
1206 => 0.0053855584651803
1207 => 0.005385617162382
1208 => 0.0053089686776253
1209 => 0.0052194600279403
1210 => 0.0052034579954766
1211 => 0.0051914026135857
1212 => 0.0052757805204856
1213 => 0.0053514334879691
1214 => 0.0054922049044948
1215 => 0.0055275981832557
1216 => 0.0056657405065235
1217 => 0.0055834834790452
1218 => 0.0056199469539195
1219 => 0.005659533213969
1220 => 0.0056785123227732
1221 => 0.0056475868834519
1222 => 0.0058621787731355
1223 => 0.0058802969035505
1224 => 0.0058863717559574
1225 => 0.0058140125781437
1226 => 0.0058782844639187
1227 => 0.0058482137770257
1228 => 0.0059264493504438
1229 => 0.0059387176873177
1230 => 0.0059283268424443
1231 => 0.0059322210062106
]
'min_raw' => 0.0026602038457969
'max_raw' => 0.0059387176873177
'avg_raw' => 0.0042994607665573
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.00266'
'max' => '$0.005938'
'avg' => '$0.004299'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00041019803550723
'max_diff' => -0.00056671080390678
'year' => 2031
]
6 => [
'items' => [
101 => 0.005749104684969
102 => 0.005739609137697
103 => 0.005610136676871
104 => 0.0056628976616697
105 => 0.0055642635294884
106 => 0.0055955414288472
107 => 0.0056093284288578
108 => 0.0056021268824577
109 => 0.0056658806885883
110 => 0.0056116769293352
111 => 0.005468624296743
112 => 0.0053255326895567
113 => 0.0053237362909884
114 => 0.0052860627965929
115 => 0.0052588317603896
116 => 0.0052640774240353
117 => 0.0052825638269252
118 => 0.0052577572970472
119 => 0.0052630510279197
120 => 0.0053509622323469
121 => 0.0053685921974408
122 => 0.0053086786875798
123 => 0.0050681173000099
124 => 0.0050090829320977
125 => 0.0050515156650506
126 => 0.0050312355517171
127 => 0.0040605997620705
128 => 0.0042886362432038
129 => 0.0041531447095016
130 => 0.0042155854418973
131 => 0.0040772836713499
201 => 0.004143288525272
202 => 0.0041310998388639
203 => 0.0044977757524362
204 => 0.004492050612392
205 => 0.0044947909339635
206 => 0.0043639882454864
207 => 0.0045723604799104
208 => 0.0046750121354109
209 => 0.0046560140459631
210 => 0.0046607954557794
211 => 0.0045786349935677
212 => 0.0044955864268316
213 => 0.0044034727852383
214 => 0.0045746085457283
215 => 0.0045555811705467
216 => 0.0045992231233799
217 => 0.0047102168970944
218 => 0.0047265611518982
219 => 0.0047485279961016
220 => 0.0047406544461612
221 => 0.0049282343489598
222 => 0.0049055171850389
223 => 0.0049602590139143
224 => 0.004847650918645
225 => 0.0047202241699893
226 => 0.0047444438290144
227 => 0.0047421112810881
228 => 0.0047124152688122
229 => 0.0046856070367278
301 => 0.00464097888348
302 => 0.0047821889640801
303 => 0.0047764560926876
304 => 0.0048692646167978
305 => 0.0048528598086674
306 => 0.0047433044850352
307 => 0.0047472172748514
308 => 0.0047735326667876
309 => 0.0048646105387427
310 => 0.0048916486521933
311 => 0.0048791235207604
312 => 0.0049087695778223
313 => 0.0049322006125569
314 => 0.0049117121550344
315 => 0.0052017855072195
316 => 0.0050813268275487
317 => 0.0051400375498742
318 => 0.0051540397112051
319 => 0.0051181734693896
320 => 0.0051259515729656
321 => 0.0051377332804768
322 => 0.00520926950139
323 => 0.0053970012442387
324 => 0.0054801463552132
325 => 0.0057302925238874
326 => 0.0054732423111826
327 => 0.0054579900153402
328 => 0.005503048894009
329 => 0.0056499111756819
330 => 0.0057689292609051
331 => 0.0058084144260917
401 => 0.0058136330425001
402 => 0.0058877098373143
403 => 0.0059301692746514
404 => 0.0058787149660108
405 => 0.0058351128269285
406 => 0.0056789353768326
407 => 0.0056970133419383
408 => 0.005821552594461
409 => 0.0059974716239747
410 => 0.006148428452553
411 => 0.0060955686325615
412 => 0.006498851745879
413 => 0.0065388356193007
414 => 0.0065333111408272
415 => 0.0066244003548799
416 => 0.0064436068149812
417 => 0.0063663140739646
418 => 0.0058445401043034
419 => 0.0059911373068946
420 => 0.0062042249502127
421 => 0.0061760220015818
422 => 0.0060212720591552
423 => 0.0061483110608448
424 => 0.0061063079940094
425 => 0.0060731784324874
426 => 0.0062249513763011
427 => 0.006058070790089
428 => 0.0062025601887082
429 => 0.0060172510404277
430 => 0.0060958100917666
501 => 0.0060512161747529
502 => 0.0060800739042857
503 => 0.0059113722070972
504 => 0.0060023995478979
505 => 0.0059075851704497
506 => 0.0059075402160896
507 => 0.0059054471834524
508 => 0.0060169958780488
509 => 0.0060206334769749
510 => 0.0059381988231274
511 => 0.0059263187016366
512 => 0.0059702457374116
513 => 0.005918818683028
514 => 0.0059428810780961
515 => 0.0059195475084619
516 => 0.005914294630457
517 => 0.005872438804811
518 => 0.0058544061642728
519 => 0.0058614772272718
520 => 0.0058373400438736
521 => 0.0058227965177961
522 => 0.0059025541100603
523 => 0.0058599428459256
524 => 0.0058960233227001
525 => 0.0058549050656964
526 => 0.0057123712725498
527 => 0.0056303985808436
528 => 0.0053611654584792
529 => 0.0054375196379991
530 => 0.0054881425380149
531 => 0.0054714116698617
601 => 0.0055073560486413
602 => 0.0055095627415702
603 => 0.0054978768576194
604 => 0.0054843461010588
605 => 0.0054777600770629
606 => 0.0055268469041003
607 => 0.0055553434593822
608 => 0.0054932232232785
609 => 0.0054786693211139
610 => 0.0055414763095669
611 => 0.0055797885362409
612 => 0.0058626644922206
613 => 0.0058417081277243
614 => 0.0058943044901311
615 => 0.0058883829468811
616 => 0.0059435123139411
617 => 0.0060336255296752
618 => 0.0058504001660363
619 => 0.0058822017537076
620 => 0.0058744047388165
621 => 0.0059595305029105
622 => 0.0059597962562542
623 => 0.0059087591083326
624 => 0.0059364271742041
625 => 0.0059209836188683
626 => 0.0059488922106817
627 => 0.0058414282427
628 => 0.0059723077556833
629 => 0.0060465080058552
630 => 0.0060475382764009
701 => 0.0060827086060928
702 => 0.0061184436979879
703 => 0.00618703409501
704 => 0.0061165307490425
705 => 0.0059897020930092
706 => 0.0059988587123208
707 => 0.0059244991176932
708 => 0.0059257491159131
709 => 0.0059190765274514
710 => 0.0059391014677139
711 => 0.0058458225909875
712 => 0.005867714956912
713 => 0.0058370655164162
714 => 0.0058821351278097
715 => 0.0058336476762239
716 => 0.0058744009788599
717 => 0.0058919887532841
718 => 0.0059568880195474
719 => 0.0058240620018289
720 => 0.0055532207601698
721 => 0.0056101548727992
722 => 0.0055259448481423
723 => 0.0055337388065344
724 => 0.0055494838428859
725 => 0.0054984490286155
726 => 0.0055081848628865
727 => 0.0055078370303763
728 => 0.005504839597718
729 => 0.0054915634714682
730 => 0.0054723104618045
731 => 0.0055490085265408
801 => 0.0055620410222994
802 => 0.0055910106459861
803 => 0.0056772045957942
804 => 0.005668591787615
805 => 0.0056826396350972
806 => 0.005651973262919
807 => 0.0055351613315865
808 => 0.005541504781457
809 => 0.0054624018599249
810 => 0.0055889878064349
811 => 0.0055590105834485
812 => 0.0055396840727758
813 => 0.0055344106552798
814 => 0.0056208182632177
815 => 0.005646672773786
816 => 0.0056305619778315
817 => 0.0055975182653018
818 => 0.0056609719618555
819 => 0.0056779494941568
820 => 0.0056817501375317
821 => 0.0057941779217854
822 => 0.0056880336017546
823 => 0.0057135835945698
824 => 0.005912917344947
825 => 0.0057321491395322
826 => 0.0058279060895524
827 => 0.0058232192851441
828 => 0.0058722053005359
829 => 0.0058192010020873
830 => 0.0058198580538916
831 => 0.0058633543169595
901 => 0.0058022716600731
902 => 0.0057871467352206
903 => 0.0057662517598638
904 => 0.0058118751741281
905 => 0.00583922434761
906 => 0.0060596386001196
907 => 0.0062020362593519
908 => 0.0061958544014175
909 => 0.0062523450109846
910 => 0.00622689547398
911 => 0.0061447122057433
912 => 0.0062849890234415
913 => 0.0062405995688904
914 => 0.0062442589815904
915 => 0.006244122778067
916 => 0.0062736378847499
917 => 0.0062527237266452
918 => 0.0062114997742266
919 => 0.0062388661576834
920 => 0.006320134532889
921 => 0.0065723940631453
922 => 0.006713561838271
923 => 0.0065638955858273
924 => 0.006667133362652
925 => 0.0066052274839383
926 => 0.0065939773442356
927 => 0.0066588182972933
928 => 0.0067237727458558
929 => 0.0067196354282882
930 => 0.0066724818340797
1001 => 0.0066458459651894
1002 => 0.0068475416880971
1003 => 0.0069961476609385
1004 => 0.0069860137298578
1005 => 0.007030741605917
1006 => 0.0071620640334082
1007 => 0.0071740705103917
1008 => 0.0071725579702575
1009 => 0.0071427986643075
1010 => 0.0072721026485446
1011 => 0.0073799703070824
1012 => 0.0071359102448091
1013 => 0.0072288451215419
1014 => 0.007270566581882
1015 => 0.0073318260638608
1016 => 0.0074351810782403
1017 => 0.00754745203742
1018 => 0.0075633283820364
1019 => 0.007552063355778
1020 => 0.0074780176401936
1021 => 0.0076008658633992
1022 => 0.0076728274714077
1023 => 0.0077156789621646
1024 => 0.007824343212916
1025 => 0.0072708242394174
1026 => 0.0068790159982971
1027 => 0.0068178294836666
1028 => 0.0069422546672086
1029 => 0.0069750645958364
1030 => 0.0069618389547467
1031 => 0.0065208231577189
1101 => 0.0068155076267655
1102 => 0.0071325633376858
1103 => 0.0071447427387922
1104 => 0.0073034674570012
1105 => 0.0073551547315961
1106 => 0.0074829489342786
1107 => 0.0074749553721062
1108 => 0.0075060712268096
1109 => 0.0074989182306648
1110 => 0.00773563008089
1111 => 0.0079967584037385
1112 => 0.0079877163602554
1113 => 0.0079501760743159
1114 => 0.008005929800506
1115 => 0.0082754422138973
1116 => 0.0082506298297207
1117 => 0.0082747329474344
1118 => 0.0085925032718768
1119 => 0.0090056498959534
1120 => 0.0088137018098269
1121 => 0.0092301739251474
1122 => 0.0094923210455034
1123 => 0.009945677383641
1124 => 0.0098889149372792
1125 => 0.010065403232834
1126 => 0.0097872983116114
1127 => 0.0091487131982073
1128 => 0.0090476546596055
1129 => 0.0092499764130961
1130 => 0.0097473647017848
1201 => 0.0092343118858306
1202 => 0.0093381018022967
1203 => 0.0093082102993722
1204 => 0.009306617508212
1205 => 0.0093674078684448
1206 => 0.0092792282803152
1207 => 0.0089199687750703
1208 => 0.0090846152891945
1209 => 0.0090210373631161
1210 => 0.0090915818121485
1211 => 0.009472281108832
1212 => 0.0093039648750305
1213 => 0.0091266573956211
1214 => 0.0093490403224799
1215 => 0.0096322102074357
1216 => 0.0096144899449404
1217 => 0.0095801052292044
1218 => 0.0097739300714833
1219 => 0.010094071925578
1220 => 0.010180604982305
1221 => 0.010244481915691
1222 => 0.010253289465596
1223 => 0.010344012703471
1224 => 0.0098561709882134
1225 => 0.010630388318992
1226 => 0.010764074264695
1227 => 0.010738946847617
1228 => 0.010887533149902
1229 => 0.010843815290499
1230 => 0.010780474971346
1231 => 0.01101601586568
]
'min_raw' => 0.0040605997620705
'max_raw' => 0.01101601586568
'avg_raw' => 0.0075383078138755
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.00406'
'max' => '$0.011016'
'avg' => '$0.007538'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0014003959162736
'max_diff' => 0.0050772981783627
'year' => 2032
]
7 => [
'items' => [
101 => 0.010745987237497
102 => 0.010362715595449
103 => 0.010152445192368
104 => 0.010429346221174
105 => 0.010598440016952
106 => 0.010710200259576
107 => 0.010744018841467
108 => 0.0098940407518617
109 => 0.0094359497035104
110 => 0.009729580813479
111 => 0.010087831032977
112 => 0.0098541808901556
113 => 0.009863339533396
114 => 0.0095302158319096
115 => 0.010117305088808
116 => 0.010031771122276
117 => 0.010475521491953
118 => 0.01036961690491
119 => 0.010731478105091
120 => 0.010636187923794
121 => 0.011031732138756
122 => 0.011189525435037
123 => 0.011454484938057
124 => 0.011649390227058
125 => 0.011763842340704
126 => 0.011756971065099
127 => 0.012210487359179
128 => 0.011943064645213
129 => 0.011607118689777
130 => 0.011601042487339
131 => 0.01177503365805
201 => 0.012139671419715
202 => 0.012234216686051
203 => 0.01228705459183
204 => 0.012206131499828
205 => 0.011915863310176
206 => 0.011790526977578
207 => 0.011897317164295
208 => 0.011766721942525
209 => 0.011992165933847
210 => 0.01230174868617
211 => 0.012237821072038
212 => 0.012451521501518
213 => 0.012672678964088
214 => 0.012988944068367
215 => 0.013071627477888
216 => 0.013208300009658
217 => 0.013348980939438
218 => 0.013394163862626
219 => 0.013480432082429
220 => 0.013479977406328
221 => 0.013739952493226
222 => 0.014026713064832
223 => 0.014134958542091
224 => 0.014383863048358
225 => 0.013957622804031
226 => 0.014280930925648
227 => 0.014572562944274
228 => 0.014224867229091
301 => 0.01470408476976
302 => 0.014722691700933
303 => 0.015003634270492
304 => 0.014718845154161
305 => 0.014549738285962
306 => 0.0150379434781
307 => 0.015274170592256
308 => 0.015203017062992
309 => 0.014661535192011
310 => 0.01434636951785
311 => 0.013521520157652
312 => 0.014498589855647
313 => 0.014974492004027
314 => 0.014660302720416
315 => 0.01481876151977
316 => 0.015683261348607
317 => 0.016012406911209
318 => 0.015943946935089
319 => 0.015955515544106
320 => 0.016133116515271
321 => 0.016920697028061
322 => 0.016448760528824
323 => 0.016809538299367
324 => 0.017000893527982
325 => 0.017178634928663
326 => 0.016742158224338
327 => 0.016174308445128
328 => 0.01599444658334
329 => 0.014629062788155
330 => 0.014557988632055
331 => 0.014518092554468
401 => 0.014266553428697
402 => 0.014068912578205
403 => 0.01391174123596
404 => 0.013499276698574
405 => 0.013638471371918
406 => 0.012981088987364
407 => 0.013401658940801
408 => 0.012352460781999
409 => 0.013226264185741
410 => 0.01275069272005
411 => 0.013070026168808
412 => 0.013068912044488
413 => 0.012480917920562
414 => 0.012141775181006
415 => 0.012357890134284
416 => 0.012589582519425
417 => 0.012627173829407
418 => 0.012927569054531
419 => 0.01301140290489
420 => 0.012757382424475
421 => 0.012330718482223
422 => 0.01242982278484
423 => 0.012139766835477
424 => 0.011631454941059
425 => 0.011996533417904
426 => 0.012121187261267
427 => 0.012176241499868
428 => 0.011676375131724
429 => 0.011519306266226
430 => 0.01143568412017
501 => 0.012266192011149
502 => 0.012311689108182
503 => 0.012078919527118
504 => 0.013131060105645
505 => 0.01289292828861
506 => 0.01315897987195
507 => 0.01242083010814
508 => 0.012449028423168
509 => 0.012099576495605
510 => 0.012295246224654
511 => 0.012156953166892
512 => 0.012279438044193
513 => 0.012352854974623
514 => 0.012702249560563
515 => 0.013230253710672
516 => 0.012650061660706
517 => 0.012397263676032
518 => 0.012554098123934
519 => 0.012971768926098
520 => 0.013604561571551
521 => 0.013229935589304
522 => 0.013396188238663
523 => 0.013432507046483
524 => 0.013156271716581
525 => 0.013614746762182
526 => 0.013860447263764
527 => 0.014112485137832
528 => 0.014331322561945
529 => 0.014011815668498
530 => 0.014353733844
531 => 0.014078208151228
601 => 0.013831033121489
602 => 0.01383140798398
603 => 0.013676351477174
604 => 0.013375909956859
605 => 0.013320503930913
606 => 0.013608733074893
607 => 0.013839865552964
608 => 0.013858902730908
609 => 0.013986869546783
610 => 0.014062598990255
611 => 0.014804850485467
612 => 0.015103390177068
613 => 0.01546843886089
614 => 0.015610645896255
615 => 0.01603863808866
616 => 0.015692999633467
617 => 0.015618218579518
618 => 0.014580049515921
619 => 0.014750049641926
620 => 0.015022236246232
621 => 0.014584537772774
622 => 0.014862156709882
623 => 0.01491696456884
624 => 0.014569664946133
625 => 0.014755172680552
626 => 0.014262519137146
627 => 0.013240992211651
628 => 0.013615884013669
629 => 0.01389193056717
630 => 0.013497978099029
701 => 0.014204122650106
702 => 0.013791607581149
703 => 0.013660860108505
704 => 0.013150767602882
705 => 0.013391511630275
706 => 0.013717121374447
707 => 0.013515932408745
708 => 0.013933429721252
709 => 0.014524717258229
710 => 0.01494610396886
711 => 0.014978452808122
712 => 0.014707529383903
713 => 0.015141685900224
714 => 0.015144848256466
715 => 0.014655117932475
716 => 0.01435516083586
717 => 0.014287009952394
718 => 0.01445726422106
719 => 0.014663984333892
720 => 0.014989924335686
721 => 0.015186883052431
722 => 0.015700446926873
723 => 0.015839402586266
724 => 0.015992072727217
725 => 0.016196087117254
726 => 0.016441058700709
727 => 0.015905074822349
728 => 0.015926370461035
729 => 0.015427269694707
730 => 0.014893908947596
731 => 0.015298663270298
801 => 0.015827825705019
802 => 0.015706435257821
803 => 0.01569277635273
804 => 0.015715746842429
805 => 0.015624222409484
806 => 0.015210260791325
807 => 0.015002371858222
808 => 0.015270601620048
809 => 0.015413153800925
810 => 0.015634239801609
811 => 0.015606986285465
812 => 0.016176480080323
813 => 0.016397768148407
814 => 0.01634115319114
815 => 0.016351571705792
816 => 0.016752203182962
817 => 0.017197787781721
818 => 0.017615136558526
819 => 0.018039681659839
820 => 0.017527875969929
821 => 0.017268012604379
822 => 0.017536125265482
823 => 0.017393860913542
824 => 0.018211354078137
825 => 0.018267955531163
826 => 0.019085389581698
827 => 0.019861231833891
828 => 0.019373939215946
829 => 0.019833434206526
830 => 0.020330415502015
831 => 0.021289173053322
901 => 0.02096629723954
902 => 0.020718979426291
903 => 0.020485265287802
904 => 0.020971587308923
905 => 0.021597232819911
906 => 0.02173199087062
907 => 0.021950350394305
908 => 0.021720772054882
909 => 0.021997273877493
910 => 0.022973446812365
911 => 0.022709676268446
912 => 0.022335079692849
913 => 0.023105674472286
914 => 0.023384549727352
915 => 0.025341842315516
916 => 0.027813005059796
917 => 0.026789927457134
918 => 0.026154870174654
919 => 0.026304123699797
920 => 0.02720650867987
921 => 0.027496326095202
922 => 0.026708502454276
923 => 0.02698677508291
924 => 0.028520084625844
925 => 0.029342656001168
926 => 0.028225493587403
927 => 0.02514328679513
928 => 0.022301351369767
929 => 0.023055160618593
930 => 0.022969702043201
1001 => 0.024617051862822
1002 => 0.022703385428208
1003 => 0.022735606663096
1004 => 0.024417021932413
1005 => 0.023968449165314
1006 => 0.023241818731474
1007 => 0.022306656576071
1008 => 0.020577922839779
1009 => 0.019046735160239
1010 => 0.02204974681128
1011 => 0.021920251488265
1012 => 0.021732723070407
1013 => 0.022150047271655
1014 => 0.024176455133376
1015 => 0.024129739873321
1016 => 0.023832561223187
1017 => 0.024057968610101
1018 => 0.023202303726719
1019 => 0.023422828050294
1020 => 0.022300901192675
1021 => 0.022808058988123
1022 => 0.023240259708909
1023 => 0.023327030402448
1024 => 0.023522529205613
1025 => 0.021852013337349
1026 => 0.02260202591843
1027 => 0.02304258804314
1028 => 0.021052112335913
1029 => 0.023003242738276
1030 => 0.021822933372645
1031 => 0.021422318646298
1101 => 0.021961693598347
1102 => 0.021751498654974
1103 => 0.021570785385723
1104 => 0.021469944276433
1105 => 0.021866001712577
1106 => 0.02184752515979
1107 => 0.021199498322823
1108 => 0.020354173730953
1109 => 0.020637892410818
1110 => 0.020534814754546
1111 => 0.020161248030934
1112 => 0.02041298689803
1113 => 0.019304456329464
1114 => 0.01739728710265
1115 => 0.018657221512057
1116 => 0.018608715407839
1117 => 0.018584256430516
1118 => 0.019531062317156
1119 => 0.019440048777684
1120 => 0.019274858312335
1121 => 0.020158214178494
1122 => 0.019835777404533
1123 => 0.020829451566223
1124 => 0.021483949635927
1125 => 0.021317947754656
1126 => 0.021933506352676
1127 => 0.020644428716171
1128 => 0.0210726085982
1129 => 0.021160855878455
1130 => 0.020147313704226
1201 => 0.019454939718325
1202 => 0.019408766267107
1203 => 0.018208285190567
1204 => 0.01884957249171
1205 => 0.019413878778444
1206 => 0.019143619859035
1207 => 0.019058063958906
1208 => 0.019495150497855
1209 => 0.019529115865325
1210 => 0.018754701887534
1211 => 0.018915727076018
1212 => 0.019587228880206
1213 => 0.018898806953448
1214 => 0.017561315602841
1215 => 0.017229599255626
1216 => 0.017185342180162
1217 => 0.016285701137759
1218 => 0.01725176612811
1219 => 0.01683005287089
1220 => 0.018162239997548
1221 => 0.017401301855464
1222 => 0.017368499333026
1223 => 0.017318913509278
1224 => 0.016544555300378
1225 => 0.016714090535096
1226 => 0.017277651476243
1227 => 0.017478736369012
1228 => 0.017457761567256
1229 => 0.017274889720181
1230 => 0.017358607515317
1231 => 0.017088923327972
]
'min_raw' => 0.0094359497035104
'max_raw' => 0.029342656001168
'avg_raw' => 0.019389302852339
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.009435'
'max' => '$0.029342'
'avg' => '$0.019389'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0053753499414398
'max_diff' => 0.018326640135487
'year' => 2033
]
8 => [
'items' => [
101 => 0.01699369222843
102 => 0.016693116682896
103 => 0.016251353667076
104 => 0.016312783523915
105 => 0.015437535395994
106 => 0.014960653762968
107 => 0.014828659212146
108 => 0.014652150582354
109 => 0.014848596331552
110 => 0.015435055928017
111 => 0.014727661230337
112 => 0.013514882639133
113 => 0.013587772698938
114 => 0.013751535022068
115 => 0.013446365016312
116 => 0.01315754721684
117 => 0.013408650860952
118 => 0.012894780584081
119 => 0.013813633789984
120 => 0.013788781385821
121 => 0.01413127303948
122 => 0.01434544009915
123 => 0.01385185436402
124 => 0.013727718886433
125 => 0.01379843209611
126 => 0.012629700255777
127 => 0.014035762713981
128 => 0.014047922400508
129 => 0.013943803782108
130 => 0.014692488633794
131 => 0.016272447191512
201 => 0.015678003228413
202 => 0.015447816558737
203 => 0.015010231531417
204 => 0.015593287599092
205 => 0.015548517990187
206 => 0.015346052840344
207 => 0.01522360128599
208 => 0.015449222029457
209 => 0.01519564437904
210 => 0.015150094865177
211 => 0.014874114369528
212 => 0.014775601888894
213 => 0.014702667170127
214 => 0.014622373211182
215 => 0.014799481676606
216 => 0.014398130593397
217 => 0.013914140531977
218 => 0.013873901995215
219 => 0.013985004133023
220 => 0.013935849707625
221 => 0.013873666662737
222 => 0.013754942295503
223 => 0.01371971931189
224 => 0.013834176920872
225 => 0.013704960953624
226 => 0.013895626152056
227 => 0.013843775768069
228 => 0.013554143738017
301 => 0.013193154993059
302 => 0.01318994143603
303 => 0.013112167003069
304 => 0.013013109569229
305 => 0.012985554057262
306 => 0.01338750361243
307 => 0.01421952716229
308 => 0.014056181030816
309 => 0.014174215351191
310 => 0.014754827384573
311 => 0.014939386490372
312 => 0.014808390808598
313 => 0.014629075839924
314 => 0.014636964788506
315 => 0.015249738318799
316 => 0.015287956252241
317 => 0.015384520640473
318 => 0.015508633168446
319 => 0.014829527708789
320 => 0.014604978982428
321 => 0.014498575338388
322 => 0.01417089329814
323 => 0.014524270285213
324 => 0.014318372647957
325 => 0.014346155273687
326 => 0.014328061802233
327 => 0.014337942061122
328 => 0.013813376951787
329 => 0.014004500907298
330 => 0.013686720262159
331 => 0.01326124765087
401 => 0.013259821317487
402 => 0.013363955136334
403 => 0.013302012266127
404 => 0.013135325595098
405 => 0.013159002649979
406 => 0.012951566735055
407 => 0.013184189125799
408 => 0.013190859903603
409 => 0.013101287612139
410 => 0.013459674500784
411 => 0.013606505901477
412 => 0.013547547500412
413 => 0.013602369222888
414 => 0.014062968800042
415 => 0.014138066628487
416 => 0.014171420123198
417 => 0.014126730858777
418 => 0.013610788137623
419 => 0.013633672391264
420 => 0.013465762921988
421 => 0.013323897114313
422 => 0.013329571002631
423 => 0.01340250846904
424 => 0.013721030662574
425 => 0.014391341840958
426 => 0.014416779660187
427 => 0.014447611039165
428 => 0.01432220432625
429 => 0.014284380461654
430 => 0.014334279902224
501 => 0.014586013537537
502 => 0.015233540792579
503 => 0.015004661413756
504 => 0.014818578916053
505 => 0.014981823434019
506 => 0.014956693220031
507 => 0.014744568923818
508 => 0.014738615301325
509 => 0.014331480956652
510 => 0.014180972659427
511 => 0.014055196660915
512 => 0.013917852554005
513 => 0.013836430363613
514 => 0.013961531853779
515 => 0.013990144044738
516 => 0.01371660745009
517 => 0.013679325422992
518 => 0.013902701310879
519 => 0.013804401910912
520 => 0.013905505281486
521 => 0.013928962130707
522 => 0.013925185037725
523 => 0.013822549174546
524 => 0.013887966213091
525 => 0.013733235415174
526 => 0.013564988912254
527 => 0.013457658125519
528 => 0.013363997778729
529 => 0.013415965982699
530 => 0.013230708824565
531 => 0.013171441331187
601 => 0.013865804392362
602 => 0.014378737851313
603 => 0.014371279595675
604 => 0.014325879382592
605 => 0.014258423875048
606 => 0.014581078747006
607 => 0.014468672241303
608 => 0.01455045736608
609 => 0.014571275112846
610 => 0.014634284162404
611 => 0.01465680448181
612 => 0.014588732435197
613 => 0.014360274332464
614 => 0.013790978461599
615 => 0.013525969696926
616 => 0.013438512390514
617 => 0.013441691297497
618 => 0.013354002851639
619 => 0.013379831028865
620 => 0.013345020865641
621 => 0.013279098837979
622 => 0.013411895483255
623 => 0.013427199059536
624 => 0.013396202735727
625 => 0.013403503492067
626 => 0.013146867169631
627 => 0.013166378671841
628 => 0.013057736148134
629 => 0.013037366984644
630 => 0.012762728145298
701 => 0.012276165631861
702 => 0.012545768496071
703 => 0.012220126148005
704 => 0.012096800456505
705 => 0.012680605098984
706 => 0.012622007305099
707 => 0.012521713353817
708 => 0.012373357696781
709 => 0.012318331140475
710 => 0.01198400720365
711 => 0.011964253561914
712 => 0.01212995353251
713 => 0.012053488697468
714 => 0.011946103109571
715 => 0.011557163395711
716 => 0.01111986638382
717 => 0.011133065631858
718 => 0.01127216167514
719 => 0.011676602180642
720 => 0.01151858027825
721 => 0.011403933574973
722 => 0.011382463693717
723 => 0.011651204207884
724 => 0.012031528338308
725 => 0.012209967911031
726 => 0.012033139713753
727 => 0.011830009001827
728 => 0.011842372627045
729 => 0.011924622286618
730 => 0.011933265562891
731 => 0.011801048351602
801 => 0.011838266722113
802 => 0.011781728613987
803 => 0.011434754348781
804 => 0.011428478684591
805 => 0.011343325604194
806 => 0.011340747202761
807 => 0.011195880570574
808 => 0.011175612727315
809 => 0.010887971236331
810 => 0.011077297736756
811 => 0.010950307460358
812 => 0.01075890315985
813 => 0.010725904986298
814 => 0.010724913021354
815 => 0.010921442440758
816 => 0.011075001176065
817 => 0.010952516510586
818 => 0.010924629126522
819 => 0.01122239342898
820 => 0.011184500207311
821 => 0.01115168492173
822 => 0.01199747448386
823 => 0.011327966047651
824 => 0.011036022155259
825 => 0.010674686149781
826 => 0.010792338975179
827 => 0.01081713015417
828 => 0.0099481821967073
829 => 0.0095956501185853
830 => 0.009474674394265
831 => 0.0094050511545729
901 => 0.0094367793391742
902 => 0.0091194591209758
903 => 0.0093327035555971
904 => 0.0090579310690477
905 => 0.0090118645674906
906 => 0.0095031918112204
907 => 0.0095715571268933
908 => 0.0092798894507941
909 => 0.0094671873155573
910 => 0.0093992705061591
911 => 0.0090626412546847
912 => 0.0090497844933555
913 => 0.008880875768056
914 => 0.0086165663201364
915 => 0.0084957698100678
916 => 0.0084328579388207
917 => 0.0084588166030252
918 => 0.0084456911080552
919 => 0.0083600383749489
920 => 0.0084506006224554
921 => 0.0082192515029808
922 => 0.0081271264194995
923 => 0.0080855156565767
924 => 0.0078801799970845
925 => 0.0082069603445188
926 => 0.0082713401896337
927 => 0.0083358468829314
928 => 0.0088973336074981
929 => 0.0088692833174838
930 => 0.0091228442781681
1001 => 0.0091129913655046
1002 => 0.0090406716721022
1003 => 0.0087355667816496
1004 => 0.0088571761530123
1005 => 0.0084828814102503
1006 => 0.0087633284810961
1007 => 0.0086353441497118
1008 => 0.0087200568499144
1009 => 0.0085677357767138
1010 => 0.008652036547806
1011 => 0.0082866070392452
1012 => 0.0079453741058831
1013 => 0.0080826961994783
1014 => 0.0082319810199026
1015 => 0.0085556685476473
1016 => 0.0083628829264867
1017 => 0.0084322159258874
1018 => 0.0081999619840988
1019 => 0.0077207557621301
1020 => 0.0077234680173048
1021 => 0.0076497525801299
1022 => 0.0075860516797808
1023 => 0.0083850266741733
1024 => 0.0082856615036951
1025 => 0.00812733610913
1026 => 0.0083392609413564
1027 => 0.0083952972306964
1028 => 0.0083968925050762
1029 => 0.008551507392097
1030 => 0.0086340253850162
1031 => 0.0086485695389217
1101 => 0.0088918594043246
1102 => 0.0089734069581368
1103 => 0.0093092897912472
1104 => 0.0086270243098382
1105 => 0.0086129735012258
1106 => 0.0083422431583494
1107 => 0.0081705416948198
1108 => 0.0083539997044543
1109 => 0.0085165184564748
1110 => 0.008347293068994
1111 => 0.008369390332056
1112 => 0.0081422190755852
1113 => 0.0082234221103724
1114 => 0.0082933651031613
1115 => 0.0082547466936024
1116 => 0.0081969330653405
1117 => 0.0085031937721485
1118 => 0.008485913342825
1119 => 0.0087711103539078
1120 => 0.0089934418186807
1121 => 0.0093918995500571
1122 => 0.0089760881352946
1123 => 0.0089609343146399
1124 => 0.0091090653422882
1125 => 0.0089733842800482
1126 => 0.0090591300278328
1127 => 0.0093780845844649
1128 => 0.0093848235916445
1129 => 0.0092719365386654
1130 => 0.0092650673512325
1201 => 0.0092867485446062
1202 => 0.0094137359713955
1203 => 0.0093693626625458
1204 => 0.0094207125789414
1205 => 0.009484926435692
1206 => 0.0097505421733232
1207 => 0.0098145812284282
1208 => 0.0096589995249662
1209 => 0.0096730468108144
1210 => 0.0096148549829063
1211 => 0.0095586424062886
1212 => 0.0096850000693377
1213 => 0.0099159211821259
1214 => 0.0099144846338681
1215 => 0.0099680538435699
1216 => 0.010001427017423
1217 => 0.0098581649245896
1218 => 0.0097649065700483
1219 => 0.0098006677573627
1220 => 0.0098578506746558
1221 => 0.0097821241079766
1222 => 0.0093147046584749
1223 => 0.0094564898605837
1224 => 0.0094328898700106
1225 => 0.0093992806135776
1226 => 0.0095418467306906
1227 => 0.0095280958809027
1228 => 0.0091162045434911
1229 => 0.009142572490534
1230 => 0.0091178080656841
1231 => 0.0091978269886987
]
'min_raw' => 0.0075860516797808
'max_raw' => 0.01699369222843
'avg_raw' => 0.012289871954105
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.007586'
'max' => '$0.016993'
'avg' => '$0.012289'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0018498980237296
'max_diff' => -0.012348963772738
'year' => 2034
]
9 => [
'items' => [
101 => 0.0089690629956057
102 => 0.0090394292591321
103 => 0.0090835623199731
104 => 0.0091095570318546
105 => 0.0092034677559114
106 => 0.0091924484163568
107 => 0.0092027827782928
108 => 0.009342027590557
109 => 0.01004628006794
110 => 0.010084610976439
111 => 0.0098958555641211
112 => 0.0099712596283061
113 => 0.009826500314127
114 => 0.0099236782115385
115 => 0.0099901648608965
116 => 0.0096897244770952
117 => 0.0096719343474084
118 => 0.009526577560046
119 => 0.0096046840641453
120 => 0.0094804110000669
121 => 0.0095109032631045
122 => 0.0094256442373837
123 => 0.0095790935087785
124 => 0.0097506736378039
125 => 0.0097940215543004
126 => 0.0096799918484496
127 => 0.0095974268264899
128 => 0.0094524698465376
129 => 0.0096935365347753
130 => 0.0097640317807901
131 => 0.0096931662532587
201 => 0.0096767451620873
202 => 0.0096456272239897
203 => 0.0096833469797586
204 => 0.0097636478485407
205 => 0.0097257794417473
206 => 0.0097507921915898
207 => 0.0096554693822258
208 => 0.0098582123503035
209 => 0.010180216976363
210 => 0.010181252273889
211 => 0.010143383662971
212 => 0.010127888643274
213 => 0.010166744136135
214 => 0.010187821647077
215 => 0.010313473186112
216 => 0.010448302293676
217 => 0.011077490908125
218 => 0.010900817262926
219 => 0.011459070832264
220 => 0.011900576925457
221 => 0.012032965298084
222 => 0.011911174224621
223 => 0.011494533541331
224 => 0.011474091161719
225 => 0.012096728243714
226 => 0.011920804749466
227 => 0.011899879209609
228 => 0.011677266819788
301 => 0.011808858313253
302 => 0.011780077323301
303 => 0.011734645122649
304 => 0.011985712525437
305 => 0.012455688290514
306 => 0.012382438160122
307 => 0.01232776033576
308 => 0.012088178025881
309 => 0.012232460089074
310 => 0.012181084009912
311 => 0.012401828250058
312 => 0.012271064252279
313 => 0.011919471955971
314 => 0.011975464188022
315 => 0.011967001074788
316 => 0.012141171345435
317 => 0.012088889753358
318 => 0.011956792254845
319 => 0.012454081964442
320 => 0.012421790736771
321 => 0.012467572314806
322 => 0.012487726781299
323 => 0.012790418264302
324 => 0.012914421279842
325 => 0.012942572135348
326 => 0.013060365409373
327 => 0.012939641331383
328 => 0.013422623718152
329 => 0.01374377882255
330 => 0.014116817002798
331 => 0.014661926047352
401 => 0.014866892090645
402 => 0.014829866809504
403 => 0.015243162265841
404 => 0.015985845013836
405 => 0.014979984226986
406 => 0.01603915807796
407 => 0.015703835865492
408 => 0.014908792931919
409 => 0.014857601539937
410 => 0.015396013845191
411 => 0.016590160517981
412 => 0.016291040320346
413 => 0.016590649771467
414 => 0.016241139432042
415 => 0.016223783297785
416 => 0.016573674834403
417 => 0.017391215481306
418 => 0.017002832565015
419 => 0.016445990419114
420 => 0.016857153994224
421 => 0.016500966054072
422 => 0.015698374934181
423 => 0.016290811588769
424 => 0.01589466606947
425 => 0.016010282392255
426 => 0.016842921351622
427 => 0.016742736029142
428 => 0.016872385113342
429 => 0.016643557873235
430 => 0.016429797148232
501 => 0.016030796880932
502 => 0.015912672572261
503 => 0.01594531788151
504 => 0.015912656394867
505 => 0.015689419412315
506 => 0.015641211407187
507 => 0.015560862619933
508 => 0.015585766068862
509 => 0.015434686841958
510 => 0.015719804557686
511 => 0.015772724918174
512 => 0.015980209814837
513 => 0.016001751585114
514 => 0.016579594068957
515 => 0.016261328139105
516 => 0.016474848402608
517 => 0.01645574914051
518 => 0.01492602392307
519 => 0.015136806561153
520 => 0.015464718198775
521 => 0.0153169944505
522 => 0.015108147632473
523 => 0.014939492629258
524 => 0.014683963053528
525 => 0.015043616024357
526 => 0.015516521436169
527 => 0.01601374524677
528 => 0.016611127075813
529 => 0.016477798405861
530 => 0.016002577609006
531 => 0.016023895666804
601 => 0.016155675511764
602 => 0.015985008639079
603 => 0.015934675646511
604 => 0.016148760531501
605 => 0.016150234816445
606 => 0.01595386195364
607 => 0.015735629452488
608 => 0.01573471505034
609 => 0.015695882684635
610 => 0.016248047623634
611 => 0.016551682509911
612 => 0.016586493760291
613 => 0.016549339435399
614 => 0.016563638660447
615 => 0.016386960210261
616 => 0.01679079475502
617 => 0.017161393268389
618 => 0.017062064950124
619 => 0.016913157680692
620 => 0.016794545868243
621 => 0.017034123776649
622 => 0.017023455749518
623 => 0.017158156413678
624 => 0.017152045613483
625 => 0.017106750846474
626 => 0.017062066567742
627 => 0.017239234682031
628 => 0.017188213110349
629 => 0.017137112288073
630 => 0.017034621765855
701 => 0.017048551930012
702 => 0.016899670371519
703 => 0.016830790950204
704 => 0.015795009718464
705 => 0.015518215128215
706 => 0.015605300340981
707 => 0.01563397105419
708 => 0.015513509693791
709 => 0.015686220340618
710 => 0.015659303569256
711 => 0.015764020980841
712 => 0.015698598088384
713 => 0.015701283066711
714 => 0.015893677843796
715 => 0.015949530866089
716 => 0.015921123568162
717 => 0.015941019065885
718 => 0.016399502413556
719 => 0.016334320742989
720 => 0.016299694279619
721 => 0.016309286046614
722 => 0.016426438371938
723 => 0.016459234626749
724 => 0.016320274590563
725 => 0.016385808946947
726 => 0.016664845918879
727 => 0.01676249306693
728 => 0.01707413589022
729 => 0.016941744479877
730 => 0.017184754643328
731 => 0.017931685037506
801 => 0.018528384720028
802 => 0.017979635032324
803 => 0.019075398010028
804 => 0.019928606666034
805 => 0.019895859096723
806 => 0.019747082432477
807 => 0.01877572706134
808 => 0.017881871366726
809 => 0.018629619610388
810 => 0.018631525774437
811 => 0.018567293537161
812 => 0.018168352627979
813 => 0.018553411258276
814 => 0.018583975814022
815 => 0.018566867790575
816 => 0.018261000730872
817 => 0.017793998264386
818 => 0.017885249428491
819 => 0.018034720696769
820 => 0.017751740402946
821 => 0.017661311052689
822 => 0.017829436419704
823 => 0.018371171382541
824 => 0.018268759525874
825 => 0.018266085138417
826 => 0.018704246490626
827 => 0.018390617523583
828 => 0.017886400397897
829 => 0.017759078923855
830 => 0.017307173465026
831 => 0.017619306175071
901 => 0.017630539275626
902 => 0.017459587380254
903 => 0.017900272202037
904 => 0.017896211213823
905 => 0.018314575864827
906 => 0.019114331946959
907 => 0.018877804719866
908 => 0.018602749288845
909 => 0.018632655440657
910 => 0.018960652111359
911 => 0.018762337836817
912 => 0.018833653032639
913 => 0.018960544167269
914 => 0.019037100739322
915 => 0.018621640128078
916 => 0.018524776385818
917 => 0.01832662716371
918 => 0.018274933730292
919 => 0.01843632213718
920 => 0.018393801993902
921 => 0.017629595177021
922 => 0.017549731312651
923 => 0.017552180623352
924 => 0.017351359139072
925 => 0.017045058172867
926 => 0.017849998823774
927 => 0.017785350824369
928 => 0.017713984436383
929 => 0.017722726411701
930 => 0.018072123866289
1001 => 0.017869455697633
1002 => 0.018408282240665
1003 => 0.018297515702026
1004 => 0.018183908419632
1005 => 0.018168204432642
1006 => 0.018124475321438
1007 => 0.017974511928234
1008 => 0.017793422119537
1009 => 0.017673850942105
1010 => 0.016303193257866
1011 => 0.016557579351312
1012 => 0.016850227363799
1013 => 0.016951248284997
1014 => 0.016778445008854
1015 => 0.017981335254825
1016 => 0.018201114894102
1017 => 0.017535388030859
1018 => 0.017410857716195
1019 => 0.017989499441522
1020 => 0.017640507745076
1021 => 0.017797658684616
1022 => 0.017457984310297
1023 => 0.018148176414899
1024 => 0.01814291830745
1025 => 0.017874417990065
1026 => 0.018101352619708
1027 => 0.018061917143221
1028 => 0.017758780946179
1029 => 0.01815778637304
1030 => 0.018157984274754
1031 => 0.01789955855697
1101 => 0.017597773895263
1102 => 0.017543821925585
1103 => 0.01750317636386
1104 => 0.01778766236805
1105 => 0.018042731629843
1106 => 0.018517352289005
1107 => 0.018636683199428
1108 => 0.019102439687114
1109 => 0.018825104375969
1110 => 0.018948043527306
1111 => 0.019081511366887
1112 => 0.0191455007573
1113 => 0.019041233479483
1114 => 0.019764745017878
1115 => 0.01982583155954
1116 => 0.019846313348562
1117 => 0.019602349328607
1118 => 0.019819046478817
1119 => 0.019717661058489
1120 => 0.019981437756502
1121 => 0.02002280131082
1122 => 0.019987767851863
1123 => 0.020000897296883
1124 => 0.019383507835044
1125 => 0.019351492934459
1126 => 0.018914967493305
1127 => 0.019092854837209
1128 => 0.018760302974144
1129 => 0.018865758595585
1130 => 0.018912242428699
1201 => 0.018887961912215
1202 => 0.019102912320733
1203 => 0.018920160562025
1204 => 0.018437848623625
1205 => 0.017955405279659
1206 => 0.017949348596466
1207 => 0.017822329779832
1208 => 0.017730518440062
1209 => 0.017748204561284
1210 => 0.017810532759307
1211 => 0.017726895811887
1212 => 0.01774474399512
1213 => 0.01804114275861
1214 => 0.018100583416809
1215 => 0.017898580835285
1216 => 0.017087511321634
1217 => 0.01688847282857
1218 => 0.017031537750279
1219 => 0.016963161932263
1220 => 0.013690595599843
1221 => 0.014459436516982
1222 => 0.014002617351389
1223 => 0.014213140640133
1224 => 0.013746846564812
1225 => 0.013969386538122
1226 => 0.01392829153091
1227 => 0.015164564974014
1228 => 0.015145262264638
1229 => 0.015154501450139
1230 => 0.014713491053587
1231 => 0.015416032590032
]
'min_raw' => 0.0089690629956057
'max_raw' => 0.02002280131082
'avg_raw' => 0.014495932153213
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.008969'
'max' => '$0.020022'
'avg' => '$0.014495'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0013830113158249
'max_diff' => 0.0030291090823903
'year' => 2035
]
10 => [
'items' => [
101 => 0.015762129813462
102 => 0.015698076428485
103 => 0.015714197285507
104 => 0.015437187550901
105 => 0.015157183509884
106 => 0.014846615936083
107 => 0.015423612100892
108 => 0.015359459977019
109 => 0.015506601867979
110 => 0.015880825125396
111 => 0.015935930921586
112 => 0.016009993670494
113 => 0.015983447447156
114 => 0.016615886185853
115 => 0.016539293681631
116 => 0.016723859579637
117 => 0.016344193524391
118 => 0.015914565344646
119 => 0.015996223616012
120 => 0.015988359267825
121 => 0.015888237089128
122 => 0.015797851262964
123 => 0.015647384328451
124 => 0.016123483974167
125 => 0.016104155198011
126 => 0.016417065616733
127 => 0.016361755660774
128 => 0.01599238223824
129 => 0.016005574482287
130 => 0.016094298663482
131 => 0.016401374067633
201 => 0.016492534954872
202 => 0.01645030559977
203 => 0.016550259350975
204 => 0.016629258720486
205 => 0.01656018045549
206 => 0.017538183014657
207 => 0.01713204816599
208 => 0.017329995465363
209 => 0.01737720472989
210 => 0.017256279191507
211 => 0.017282503610764
212 => 0.01732222646021
213 => 0.017563415823519
214 => 0.018196366501545
215 => 0.018476696048202
216 => 0.019320081320535
217 => 0.018453418581727
218 => 0.018401994401413
219 => 0.018553913556756
220 => 0.019049069993013
221 => 0.01945034777692
222 => 0.019583474768113
223 => 0.019601069697686
224 => 0.019850824783279
225 => 0.019993979740684
226 => 0.019820497946677
227 => 0.019673490290557
228 => 0.019146927113598
229 => 0.019207878235115
301 => 0.019627771020048
302 => 0.020220894310328
303 => 0.020729855797349
304 => 0.020551635223693
305 => 0.021911332396571
306 => 0.022046140817396
307 => 0.022027514652516
308 => 0.022334628297341
309 => 0.021725070254971
310 => 0.021464472382226
311 => 0.019705275014418
312 => 0.020199537718044
313 => 0.020917977584795
314 => 0.02082288937442
315 => 0.020301139139232
316 => 0.020729460003009
317 => 0.020587843730612
318 => 0.020476145100909
319 => 0.020987858177425
320 => 0.020425208629781
321 => 0.020912364725153
322 => 0.020287581993854
323 => 0.020552449320261
324 => 0.020402097815601
325 => 0.020499393665503
326 => 0.019930604115056
327 => 0.020237509149891
328 => 0.019917835856597
329 => 0.019917684289833
330 => 0.019910627484165
331 => 0.020286721696079
401 => 0.020298986114827
402 => 0.020021051923976
403 => 0.019980997264927
404 => 0.02012910033293
405 => 0.019955710428553
406 => 0.020036838473508
407 => 0.019958167714388
408 => 0.019940457269451
409 => 0.019799337431005
410 => 0.019738539124432
411 => 0.019762379707018
412 => 0.019680999507987
413 => 0.01963196499442
414 => 0.019900873285236
415 => 0.019757206433183
416 => 0.019878854279686
417 => 0.019740221205413
418 => 0.019259658570428
419 => 0.01898328191719
420 => 0.018075543647882
421 => 0.018332977095012
422 => 0.018503655736793
423 => 0.018447246446703
424 => 0.018568435429315
425 => 0.018575875448591
426 => 0.018536475674968
427 => 0.018490855784537
428 => 0.018468650544813
429 => 0.018634150209303
430 => 0.018730228335001
501 => 0.018520785621882
502 => 0.018471716124613
503 => 0.018683474271226
504 => 0.018812646618331
505 => 0.019766382653685
506 => 0.01969572680766
507 => 0.019873059115675
508 => 0.019853094219178
509 => 0.020038966729231
510 => 0.020342789727582
511 => 0.019725032621687
512 => 0.019832253894837
513 => 0.019805965714761
514 => 0.020092973171695
515 => 0.020093869177648
516 => 0.01992179387013
517 => 0.020015078685939
518 => 0.01996300966089
519 => 0.020057105426704
520 => 0.019694783155759
521 => 0.020136052571498
522 => 0.020386223895449
523 => 0.020389697524525
524 => 0.020508276746595
525 => 0.020628760103864
526 => 0.020860017416253
527 => 0.020622310462936
528 => 0.020194698794226
529 => 0.02022557097553
530 => 0.019974862410622
531 => 0.019979076866892
601 => 0.019956579769029
602 => 0.02002409525322
603 => 0.019709599007814
604 => 0.019783410648005
605 => 0.019680073919497
606 => 0.01983202926097
607 => 0.019668550432663
608 => 0.019805953037805
609 => 0.019865251447216
610 => 0.020084063854545
611 => 0.01963623166219
612 => 0.018723071506405
613 => 0.018915028842147
614 => 0.018631108864661
615 => 0.018657386739537
616 => 0.018710472228879
617 => 0.018538404789429
618 => 0.018571229834408
619 => 0.018570057092815
620 => 0.018559951039333
621 => 0.018515189652773
622 => 0.018450276786489
623 => 0.018708869666636
624 => 0.018752809635986
625 => 0.01885048274484
626 => 0.019141091664487
627 => 0.019112052980384
628 => 0.01915941627896
629 => 0.019056022464103
630 => 0.018662182882067
701 => 0.018683570266191
702 => 0.018416869243456
703 => 0.018843662600063
704 => 0.018742592299821
705 => 0.018677431619754
706 => 0.018659651924489
707 => 0.018950981207438
708 => 0.019038151494923
709 => 0.018983832821543
710 => 0.01887242363771
711 => 0.019086362205837
712 => 0.019143603141324
713 => 0.019156417275815
714 => 0.019535475399883
715 => 0.01917760241414
716 => 0.01926374599876
717 => 0.019935813655195
718 => 0.019326341029805
719 => 0.019649192272336
720 => 0.01963339038405
721 => 0.019798550155039
722 => 0.019619842462177
723 => 0.019622057758209
724 => 0.019768708445955
725 => 0.019562764003607
726 => 0.019511769263479
727 => 0.019441320395223
728 => 0.01959514292174
729 => 0.019687352569592
730 => 0.02043049461076
731 => 0.020910598260749
801 => 0.02088975569512
802 => 0.021080217729323
803 => 0.020994412838482
804 => 0.02071732621177
805 => 0.021190279296454
806 => 0.021040617151262
807 => 0.021052955116672
808 => 0.021052495896983
809 => 0.021152008139844
810 => 0.021081494595614
811 => 0.02094250516187
812 => 0.021034772834355
813 => 0.021308774835337
814 => 0.022159285453794
815 => 0.02263524246365
816 => 0.022130632244172
817 => 0.022478705616568
818 => 0.022269985624354
819 => 0.022232054992887
820 => 0.022450670793172
821 => 0.022669669251475
822 => 0.022655719996438
823 => 0.022496738361405
824 => 0.022406933669784
825 => 0.023086964881513
826 => 0.023588000294285
827 => 0.023553833038118
828 => 0.023704636195053
829 => 0.024147398927978
830 => 0.024187879603394
831 => 0.024182779968729
901 => 0.02408244439099
902 => 0.024518401801562
903 => 0.024882085143401
904 => 0.024059219603717
905 => 0.024372556029128
906 => 0.024513222845564
907 => 0.024719763466056
908 => 0.025068232113053
909 => 0.025446761490435
910 => 0.025500289694761
911 => 0.025462308872231
912 => 0.025212658572432
913 => 0.025626849933958
914 => 0.025869473519558
915 => 0.026013950312441
916 => 0.026380319420545
917 => 0.024514091555933
918 => 0.023193082715819
919 => 0.022986788109836
920 => 0.023406296303237
921 => 0.023516917268321
922 => 0.023472326096002
923 => 0.021985410545584
924 => 0.022978959807187
925 => 0.024047935272677
926 => 0.024088998973846
927 => 0.024624150443094
928 => 0.024798417698081
929 => 0.025229284774731
930 => 0.025202333921774
1001 => 0.025307243198346
1002 => 0.025283126372438
1003 => 0.026081216902166
1004 => 0.026961629274047
1005 => 0.026931143393148
1006 => 0.026804573698124
1007 => 0.026992551278575
1008 => 0.02790123119708
1009 => 0.027817574511483
1010 => 0.027898839855681
1011 => 0.028970224690553
1012 => 0.030363177378604
1013 => 0.029716011004841
1014 => 0.031120175818799
1015 => 0.032004023137607
1016 => 0.033532545683966
1017 => 0.03334116713303
1018 => 0.033936209743511
1019 => 0.032998559584945
1020 => 0.030845525290514
1021 => 0.030504799371936
1022 => 0.031186941289483
1023 => 0.032863920631339
1024 => 0.031134127242145
1025 => 0.031484062191891
1026 => 0.031383280902823
1027 => 0.031377910696222
1028 => 0.031582869639994
1029 => 0.031285566002113
1030 => 0.030074297497482
1031 => 0.030629414715104
1101 => 0.030415057298462
1102 => 0.03065290283363
1103 => 0.031936457091975
1104 => 0.031368967158249
1105 => 0.030771162612207
1106 => 0.031520942176392
1107 => 0.032475669213811
1108 => 0.032415924111619
1109 => 0.03229999364185
1110 => 0.032953487630012
1111 => 0.034032868242682
1112 => 0.034324620484984
1113 => 0.03453998602564
1114 => 0.034569681295066
1115 => 0.034875561025658
1116 => 0.033230768622645
1117 => 0.035841096407491
1118 => 0.036291827907085
1119 => 0.036207109066068
1120 => 0.036708078158184
1121 => 0.036560680342924
1122 => 0.036347124034621
1123 => 0.037141266604808
1124 => 0.03623084623209
1125 => 0.034938619131754
1126 => 0.034229677787155
1127 => 0.03516326893839
1128 => 0.035733380476607
1129 => 0.036110187937465
1130 => 0.036224209647447
1201 => 0.033358449174768
1202 => 0.031813963222356
1203 => 0.032803961010284
1204 => 0.034011826637555
1205 => 0.033224058868099
1206 => 0.03325493787322
1207 => 0.032131788055704
1208 => 0.034111200474602
1209 => 0.033822816734647
1210 => 0.035318952087673
1211 => 0.034961887378437
1212 => 0.03618192767919
1213 => 0.035860650179999
1214 => 0.037194255116758
1215 => 0.037726266231944
1216 => 0.038619595695259
1217 => 0.039276732484979
1218 => 0.039662615776926
1219 => 0.03963944879149
1220 => 0.041168510640477
1221 => 0.040266876289481
1222 => 0.03913421104573
1223 => 0.039113724704983
1224 => 0.039700348084713
1225 => 0.040929749756361
1226 => 0.041248515722752
1227 => 0.041426662411112
1228 => 0.041153824556558
1229 => 0.040175165089268
1230 => 0.039752584893209
1231 => 0.040112635463578
]
'min_raw' => 0.014846615936083
'max_raw' => 0.041426662411112
'avg_raw' => 0.028136639173598
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.014846'
'max' => '$0.041426'
'avg' => '$0.028136'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.0058775529404774
'max_diff' => 0.021403861100292
'year' => 2036
]
11 => [
'items' => [
101 => 0.039672324555515
102 => 0.040432424712254
103 => 0.041476204576089
104 => 0.04126066816176
105 => 0.041981174079837
106 => 0.042726821905614
107 => 0.043793131785614
108 => 0.044071904673586
109 => 0.044532705656622
110 => 0.045007021233402
111 => 0.045159358613501
112 => 0.045450217939622
113 => 0.045448684967402
114 => 0.046325209123759
115 => 0.047292042411915
116 => 0.047656999595952
117 => 0.048496198516788
118 => 0.047059099773894
119 => 0.04814915567858
120 => 0.049132413390475
121 => 0.047960133011396
122 => 0.049575848407659
123 => 0.049638582975207
124 => 0.050585800463258
125 => 0.049625614074204
126 => 0.049055458461408
127 => 0.0507014763521
128 => 0.051497932560328
129 => 0.051258033468634
130 => 0.049432389535564
131 => 0.048369786460965
201 => 0.045588749253915
202 => 0.048883007957533
203 => 0.050487545277221
204 => 0.049428234171534
205 => 0.049962489076795
206 => 0.052877210607168
207 => 0.05398694785169
208 => 0.053756130262479
209 => 0.053795134635474
210 => 0.054393928709463
211 => 0.057049311395448
212 => 0.055458144538717
213 => 0.056674531980803
214 => 0.057319699494074
215 => 0.057918967035977
216 => 0.056447355353516
217 => 0.054532810176903
218 => 0.053926393352331
219 => 0.049322906558813
220 => 0.049083275079281
221 => 0.048948762668242
222 => 0.048100680943803
223 => 0.047434321017528
224 => 0.046904406863797
225 => 0.045513753878644
226 => 0.045983058438087
227 => 0.043766647831588
228 => 0.045184628792857
301 => 0.04164718394778
302 => 0.044593273130501
303 => 0.042989850730584
304 => 0.044066505748221
305 => 0.044062749400292
306 => 0.042080286159038
307 => 0.040936842734435
308 => 0.041665489388076
309 => 0.042446656440822
310 => 0.042573398166969
311 => 0.043586201641401
312 => 0.043868853320977
313 => 0.043012405536116
314 => 0.041573878266088
315 => 0.041908015341602
316 => 0.040930071457264
317 => 0.039216262416031
318 => 0.04044714998968
319 => 0.04086742912563
320 => 0.04105304833484
321 => 0.039367713975085
322 => 0.038838145328861
323 => 0.038556207425122
324 => 0.041356322763767
325 => 0.041509719402921
326 => 0.04072492050891
327 => 0.044272285927522
328 => 0.043469407880555
329 => 0.044366419368915
330 => 0.041877695904258
331 => 0.041972768492119
401 => 0.040794566920388
402 => 0.0414542810731
403 => 0.040988016373543
404 => 0.041400982688983
405 => 0.041648512995734
406 => 0.04282652123618
407 => 0.044606724092346
408 => 0.042650566088171
409 => 0.041798240033053
410 => 0.042327018323984
411 => 0.043735224594323
412 => 0.045868729178639
413 => 0.044605651523943
414 => 0.045166183938648
415 => 0.045288635334909
416 => 0.044357288634013
417 => 0.045903069259961
418 => 0.046731465655306
419 => 0.047581228944449
420 => 0.048319054598585
421 => 0.04724181480007
422 => 0.048394615800741
423 => 0.04746566169097
424 => 0.046632293820996
425 => 0.046633557696055
426 => 0.046110773857658
427 => 0.045097814295762
428 => 0.04491100901096
429 => 0.045882793693405
430 => 0.046662072980374
501 => 0.046726258154945
502 => 0.047157707209027
503 => 0.047413034314953
504 => 0.049915587053405
505 => 0.050922134467012
506 => 0.052152921591403
507 => 0.052632382539715
508 => 0.054075388097871
509 => 0.052910043914479
510 => 0.052657914370044
511 => 0.049157654889479
512 => 0.049730822183333
513 => 0.050648518323212
514 => 0.049172787360817
515 => 0.050108798990012
516 => 0.050293587513052
517 => 0.04912264258741
518 => 0.049748094865739
519 => 0.048087079048174
520 => 0.044642929698137
521 => 0.045906903582749
522 => 0.046837613810833
523 => 0.045509375559614
524 => 0.047890191215006
525 => 0.046499367859137
526 => 0.046058543626621
527 => 0.044338731130392
528 => 0.045150416426958
529 => 0.046248232412779
530 => 0.045569909768349
531 => 0.046977531106199
601 => 0.048971098319493
602 => 0.050391833034666
603 => 0.050500899404764
604 => 0.049587462164741
605 => 0.051051251171357
606 => 0.051061913276215
607 => 0.049410753296999
608 => 0.048399427003426
609 => 0.048169651541678
610 => 0.048743675695258
611 => 0.049440646988409
612 => 0.05053957646086
613 => 0.051203636525587
614 => 0.052935152984151
615 => 0.053403651691371
616 => 0.053918389730673
617 => 0.054606238490513
618 => 0.055432177287503
619 => 0.053625070220411
620 => 0.053696869953055
621 => 0.05201411687328
622 => 0.050215853876337
623 => 0.05158051133437
624 => 0.053364619427973
625 => 0.052955343060036
626 => 0.052909291107886
627 => 0.052986737717656
628 => 0.052678156701948
629 => 0.051282456204448
630 => 0.050581544152151
701 => 0.05148589952135
702 => 0.051966524151852
703 => 0.052711931038889
704 => 0.052620043906431
705 => 0.054540131996582
706 => 0.055286220167965
707 => 0.055095338886812
708 => 0.055130465636359
709 => 0.056481222632832
710 => 0.057983542217273
711 => 0.059390662756632
712 => 0.060822046206501
713 => 0.059096457589837
714 => 0.058220310109805
715 => 0.05912427066574
716 => 0.058644616470595
717 => 0.061400851750576
718 => 0.061591687501243
719 => 0.064347723474042
720 => 0.066963529794887
721 => 0.065320588711803
722 => 0.06686980815346
723 => 0.068545415289327
724 => 0.071777933311874
725 => 0.070689334963235
726 => 0.069855485688689
727 => 0.069067502153373
728 => 0.070707170801502
729 => 0.072816578322973
730 => 0.073270924499444
731 => 0.074007138878925
801 => 0.073233099478912
802 => 0.074165344678584
803 => 0.077456579882724
804 => 0.076567259078029
805 => 0.075304280569908
806 => 0.077902394669988
807 => 0.078842642062893
808 => 0.08544179067769
809 => 0.093773488401103
810 => 0.090324110834733
811 => 0.088182970868569
812 => 0.088686189549137
813 => 0.091728643511961
814 => 0.092705783162158
815 => 0.090049580752686
816 => 0.090987796348499
817 => 0.096157456524753
818 => 0.098930813346758
819 => 0.095164222270961
820 => 0.084772346878007
821 => 0.075190563173799
822 => 0.077732083685498
823 => 0.077443954132035
824 => 0.082998109063179
825 => 0.076546049070955
826 => 0.076654685213994
827 => 0.082323694187161
828 => 0.080811299784538
829 => 0.07836141454513
830 => 0.075208450047252
831 => 0.069379903559008
901 => 0.064217397393327
902 => 0.074342260838392
903 => 0.073905658315772
904 => 0.073273393162148
905 => 0.074680430843302
906 => 0.081512606428371
907 => 0.081355102667541
908 => 0.080353144100265
909 => 0.081113120842686
910 => 0.078228186947749
911 => 0.078971700101198
912 => 0.075189045370305
913 => 0.076898963286285
914 => 0.078356158191705
915 => 0.078648711643108
916 => 0.079307849507267
917 => 0.073675588625723
918 => 0.076204308407044
919 => 0.077689694369569
920 => 0.070978666552077
921 => 0.077557038927217
922 => 0.073577543494424
923 => 0.072226842974519
924 => 0.07404538328331
925 => 0.073336696356385
926 => 0.072727408952109
927 => 0.072387416111636
928 => 0.073722751409442
929 => 0.073660456421728
930 => 0.071475588697105
1001 => 0.068625517816936
1002 => 0.069582095154708
1003 => 0.069234561639935
1004 => 0.067975055349682
1005 => 0.068823810515943
1006 => 0.065086322308888
1007 => 0.058656168106382
1008 => 0.062904124933507
1009 => 0.062740583216551
1010 => 0.062658118066835
1011 => 0.065850340217516
1012 => 0.065543481714824
1013 => 0.06498653052767
1014 => 0.067964826504363
1015 => 0.066877708409136
1016 => 0.070227950221389
1017 => 0.072434636158993
1018 => 0.071874949226405
1019 => 0.07395034801656
1020 => 0.069604132764556
1021 => 0.071047771131381
1022 => 0.071345302997988
1023 => 0.06792807479432
1024 => 0.065593687560848
1025 => 0.065438010546338
1026 => 0.061390504781873
1027 => 0.063552649690925
1028 => 0.065455247735255
1029 => 0.064544050919594
1030 => 0.064255593228986
1031 => 0.065729261011461
1101 => 0.065843777619271
1102 => 0.063232786825291
1103 => 0.063775694490684
1104 => 0.066039709706265
1105 => 0.063718647116117
1106 => 0.05920920164688
1107 => 0.058090796822548
1108 => 0.057941581002691
1109 => 0.054908378417297
1110 => 0.05816553398077
1111 => 0.056743698290972
1112 => 0.061235260198837
1113 => 0.058669704125795
1114 => 0.058559108131198
1115 => 0.058391926064459
1116 => 0.05578112329919
1117 => 0.056352723179612
1118 => 0.058252808239257
1119 => 0.058930779994528
1120 => 0.058860061985994
1121 => 0.058243496785877
1122 => 0.058525757177166
1123 => 0.057616498110784
1124 => 0.057295419809853
1125 => 0.056282008372573
1126 => 0.054792573521825
1127 => 0.054999688573056
1128 => 0.052048728401896
1129 => 0.050440888681338
1130 => 0.049995859837675
1201 => 0.049400748668892
1202 => 0.050063079227719
1203 => 0.0520403687025
1204 => 0.049655338090551
1205 => 0.04556637039681
1206 => 0.045812124322466
1207 => 0.046364260428419
1208 => 0.045335358447721
1209 => 0.044361589072188
1210 => 0.045208202539807
1211 => 0.043475653024061
1212 => 0.046573630760044
1213 => 0.046489839144268
1214 => 0.047644573666584
1215 => 0.048366652860926
1216 => 0.046702494093883
1217 => 0.046283962664335
1218 => 0.046522377187798
1219 => 0.042581916189864
1220 => 0.047322553935847
1221 => 0.047363551167934
1222 => 0.047012507976668
1223 => 0.049536751225634
1224 => 0.054863691812166
1225 => 0.052859482487824
1226 => 0.052083392059891
1227 => 0.050608043589072
1228 => 0.052573857828914
1229 => 0.052422913966774
1230 => 0.051740288578414
1231 => 0.051327434613614
]
'min_raw' => 0.038556207425122
'max_raw' => 0.098930813346758
'avg_raw' => 0.06874351038594
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.038556'
'max' => '$0.09893'
'avg' => '$0.068743'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.023709591489039
'max_diff' => 0.057504150935645
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0012102352938832
]
1 => [
'year' => 2028
'avg' => 0.0020771150981197
]
2 => [
'year' => 2029
'avg' => 0.0056743040844903
]
3 => [
'year' => 2030
'avg' => 0.0043777171507571
]
4 => [
'year' => 2031
'avg' => 0.0042994607665573
]
5 => [
'year' => 2032
'avg' => 0.0075383078138755
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0012102352938832
'min' => '$0.00121'
'max_raw' => 0.0075383078138755
'max' => '$0.007538'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.0075383078138755
]
1 => [
'year' => 2033
'avg' => 0.019389302852339
]
2 => [
'year' => 2034
'avg' => 0.012289871954105
]
3 => [
'year' => 2035
'avg' => 0.014495932153213
]
4 => [
'year' => 2036
'avg' => 0.028136639173598
]
5 => [
'year' => 2037
'avg' => 0.06874351038594
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.0075383078138755
'min' => '$0.007538'
'max_raw' => 0.06874351038594
'max' => '$0.068743'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.06874351038594
]
]
]
]
'prediction_2025_max_price' => '$0.002069'
'last_price' => 0.00200643
'sma_50day_nextmonth' => '$0.001822'
'sma_200day_nextmonth' => '$0.005526'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.001973'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.001958'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.001873'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.001791'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.00200078'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.003398'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.007244'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.001981'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.001951'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.001896'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.001884'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.002257'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.003479'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.004897'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.004854'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.005858'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.005125'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.005893'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.001945'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.001996'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.002575'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.004088'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.005222'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.005565'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.007041'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '55.87'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 102.62
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.0019051'
'vwma_10_action' => 'BUY'
'hma_9' => '0.002013'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 98.7
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 153.73
'cci_20_action' => 'SELL'
'adx_14' => 19.05
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000043'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -1.3
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 75.88
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.000811'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 16
'buy_signals' => 18
'sell_pct' => 47.06
'buy_pct' => 52.94
'overall_action' => 'bullish'
'overall_action_label' => 'Altista'
'overall_action_dir' => 1
'last_updated' => 1767677464
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de FunFair para 2026
A previsão de preço para FunFair em 2026 sugere que o preço médio poderia variar entre $0.000693 na extremidade inferior e $0.002069 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, FunFair poderia potencialmente ganhar 3.13% até 2026 se FUN atingir a meta de preço prevista.
Previsão de preço de FunFair 2027-2032
A previsão de preço de FUN para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.00121 na extremidade inferior e $0.007538 na extremidade superior. Considerando a volatilidade de preços no mercado, se FunFair atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de FunFair | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.000667 | $0.00121 | $0.001753 |
| 2028 | $0.0012043 | $0.002077 | $0.002949 |
| 2029 | $0.002645 | $0.005674 | $0.0087029 |
| 2030 | $0.00225 | $0.004377 | $0.0065054 |
| 2031 | $0.00266 | $0.004299 | $0.005938 |
| 2032 | $0.00406 | $0.007538 | $0.011016 |
Previsão de preço de FunFair 2032-2037
A previsão de preço de FunFair para 2032-2037 é atualmente estimada entre $0.007538 na extremidade inferior e $0.068743 na extremidade superior. Comparado ao preço atual, FunFair poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de FunFair | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.00406 | $0.007538 | $0.011016 |
| 2033 | $0.009435 | $0.019389 | $0.029342 |
| 2034 | $0.007586 | $0.012289 | $0.016993 |
| 2035 | $0.008969 | $0.014495 | $0.020022 |
| 2036 | $0.014846 | $0.028136 | $0.041426 |
| 2037 | $0.038556 | $0.068743 | $0.09893 |
FunFair Histograma de preços potenciais
Previsão de preço de FunFair baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para FunFair é Altista, com 18 indicadores técnicos mostrando sinais de alta e 16 indicando sinais de baixa. A previsão de preço de FUN foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de FunFair
De acordo com nossos indicadores técnicos, o SMA de 200 dias de FunFair está projetado para aumentar no próximo mês, alcançando $0.005526 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para FunFair é esperado para alcançar $0.001822 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 55.87, sugerindo que o mercado de FUN está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de FUN para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.001973 | BUY |
| SMA 5 | $0.001958 | BUY |
| SMA 10 | $0.001873 | BUY |
| SMA 21 | $0.001791 | BUY |
| SMA 50 | $0.00200078 | BUY |
| SMA 100 | $0.003398 | SELL |
| SMA 200 | $0.007244 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.001981 | BUY |
| EMA 5 | $0.001951 | BUY |
| EMA 10 | $0.001896 | BUY |
| EMA 21 | $0.001884 | BUY |
| EMA 50 | $0.002257 | SELL |
| EMA 100 | $0.003479 | SELL |
| EMA 200 | $0.004897 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.004854 | SELL |
| SMA 50 | $0.005858 | SELL |
| SMA 100 | $0.005125 | SELL |
| SMA 200 | $0.005893 | SELL |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.004088 | SELL |
| EMA 50 | $0.005222 | SELL |
| EMA 100 | $0.005565 | SELL |
| EMA 200 | $0.007041 | SELL |
Osciladores de FunFair
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 55.87 | NEUTRAL |
| Stoch RSI (14) | 102.62 | SELL |
| Estocástico Rápido (14) | 98.7 | SELL |
| Índice de Canal de Commodities (20) | 153.73 | SELL |
| Índice Direcional Médio (14) | 19.05 | NEUTRAL |
| Oscilador Impressionante (5, 34) | 0.000043 | NEUTRAL |
| Momentum (10) | 0 | SELL |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -1.3 | SELL |
| Oscilador Ultimate (7, 14, 28) | 75.88 | SELL |
| VWMA (10) | 0.0019051 | BUY |
| Média Móvel de Hull (9) | 0.002013 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.000811 | SELL |
Previsão do preço de FunFair com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do FunFair
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de FunFair por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.002819 | $0.003961 | $0.005566 | $0.007822 | $0.010991 | $0.015445 |
| Amazon.com stock | $0.004186 | $0.008735 | $0.018227 | $0.038031 | $0.079355 | $0.16558 |
| Apple stock | $0.002845 | $0.004036 | $0.005725 | $0.008121 | $0.01152 | $0.01634 |
| Netflix stock | $0.003165 | $0.004995 | $0.007881 | $0.012435 | $0.019622 | $0.03096 |
| Google stock | $0.002598 | $0.003364 | $0.004357 | $0.005642 | $0.0073074 | $0.009463 |
| Tesla stock | $0.004548 | $0.01031 | $0.023374 | $0.052987 | $0.120118 | $0.272299 |
| Kodak stock | $0.0015046 | $0.001128 | $0.000846 | $0.000634 | $0.000475 | $0.000356 |
| Nokia stock | $0.001329 | $0.00088 | $0.000583 | $0.000386 | $0.000255 | $0.000169 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para FunFair
Você pode fazer perguntas como: 'Devo investir em FunFair agora?', 'Devo comprar FUN hoje?', 'FunFair será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para FunFair/FUNToken regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como FunFair, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre FunFair para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de FunFair é de $0.002006 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão de curto prazo para FunFair
com base no histórico de preços de 4 horas
Previsão de longo prazo para FunFair
com base no histórico de preços de 1 mês
Previsão do preço de FunFair com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se FunFair tiver 1% da média anterior do crescimento anual do Bitcoin | $0.002058 | $0.002112 | $0.002166 | $0.002223 |
| Se FunFair tiver 2% da média anterior do crescimento anual do Bitcoin | $0.00211 | $0.00222 | $0.002335 | $0.002457 |
| Se FunFair tiver 5% da média anterior do crescimento anual do Bitcoin | $0.002267 | $0.002561 | $0.002894 | $0.003271 |
| Se FunFair tiver 10% da média anterior do crescimento anual do Bitcoin | $0.002527 | $0.003185 | $0.004012 | $0.005056 |
| Se FunFair tiver 20% da média anterior do crescimento anual do Bitcoin | $0.003049 | $0.004634 | $0.007044 | $0.0107063 |
| Se FunFair tiver 50% da média anterior do crescimento anual do Bitcoin | $0.004614 | $0.01061 | $0.0244014 | $0.056115 |
| Se FunFair tiver 100% da média anterior do crescimento anual do Bitcoin | $0.007221 | $0.025993 | $0.093559 | $0.336749 |
Perguntas Frequentes sobre FunFair
FUN é um bom investimento?
A decisão de adquirir FunFair depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de FunFair experimentou uma escalada de 1.7691% nas últimas 24 horas, e FunFair registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em FunFair dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
FunFair pode subir?
Parece que o valor médio de FunFair pode potencialmente subir para $0.002069 até o final deste ano. Observando as perspectivas de FunFair em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.0065054. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de FunFair na próxima semana?
Com base na nossa nova previsão experimental de FunFair, o preço de FunFair aumentará 0.86% na próxima semana e atingirá $0.0020236 até 13 de janeiro de 2026.
Qual será o preço de FunFair no próximo mês?
Com base na nossa nova previsão experimental de FunFair, o preço de FunFair diminuirá -11.62% no próximo mês e atingirá $0.001773 até 5 de fevereiro de 2026.
Até onde o preço de FunFair pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de FunFair em 2026, espera-se que FUN fluctue dentro do intervalo de $0.000693 e $0.002069. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de FunFair não considera flutuações repentinas e extremas de preço.
Onde estará FunFair em 5 anos?
O futuro de FunFair parece seguir uma tendência de alta, com um preço máximo de $0.0065054 projetada após um período de cinco anos. Com base na previsão de FunFair para 2030, o valor de FunFair pode potencialmente atingir seu pico mais alto de aproximadamente $0.0065054, enquanto seu pico mais baixo está previsto para cerca de $0.00225.
Quanto será FunFair em 2026?
Com base na nossa nova simulação experimental de previsão de preços de FunFair, espera-se que o valor de FUN em 2026 aumente 3.13% para $0.002069 se o melhor cenário ocorrer. O preço ficará entre $0.002069 e $0.000693 durante 2026.
Quanto será FunFair em 2027?
De acordo com nossa última simulação experimental para previsão de preços de FunFair, o valor de FUN pode diminuir -12.62% para $0.001753 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.001753 e $0.000667 ao longo do ano.
Quanto será FunFair em 2028?
Nosso novo modelo experimental de previsão de preços de FunFair sugere que o valor de FUN em 2028 pode aumentar 47.02%, alcançando $0.002949 no melhor cenário. O preço é esperado para variar entre $0.002949 e $0.0012043 durante o ano.
Quanto será FunFair em 2029?
Com base no nosso modelo de previsão experimental, o valor de FunFair pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.0087029 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.0087029 e $0.002645.
Quanto será FunFair em 2030?
Usando nossa nova simulação experimental para previsões de preços de FunFair, espera-se que o valor de FUN em 2030 aumente 224.23%, alcançando $0.0065054 no melhor cenário. O preço está previsto para variar entre $0.0065054 e $0.00225 ao longo de 2030.
Quanto será FunFair em 2031?
Nossa simulação experimental indica que o preço de FunFair poderia aumentar 195.98% em 2031, potencialmente atingindo $0.005938 sob condições ideais. O preço provavelmente oscilará entre $0.005938 e $0.00266 durante o ano.
Quanto será FunFair em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de FunFair, FUN poderia ver um 449.04% aumento em valor, atingindo $0.011016 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.011016 e $0.00406 ao longo do ano.
Quanto será FunFair em 2033?
De acordo com nossa previsão experimental de preços de FunFair, espera-se que o valor de FUN seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.029342. Ao longo do ano, o preço de FUN poderia variar entre $0.029342 e $0.009435.
Quanto será FunFair em 2034?
Os resultados da nossa nova simulação de previsão de preços de FunFair sugerem que FUN pode aumentar 746.96% em 2034, atingindo potencialmente $0.016993 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.016993 e $0.007586.
Quanto será FunFair em 2035?
Com base em nossa previsão experimental para o preço de FunFair, FUN poderia aumentar 897.93%, com o valor potencialmente atingindo $0.020022 em 2035. A faixa de preço esperada para o ano está entre $0.020022 e $0.008969.
Quanto será FunFair em 2036?
Nossa recente simulação de previsão de preços de FunFair sugere que o valor de FUN pode aumentar 1964.7% em 2036, possivelmente atingindo $0.041426 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.041426 e $0.014846.
Quanto será FunFair em 2037?
De acordo com a simulação experimental, o valor de FunFair poderia aumentar 4830.69% em 2037, com um pico de $0.09893 sob condições favoráveis. O preço é esperado para cair entre $0.09893 e $0.038556 ao longo do ano.
Previsões relacionadas
Previsão de Preço do Clore.ai
Previsão de Preço do SaucerSwap
Previsão de Preço do Overnight.fi USD+
Previsão de Preço do LimeWire
Previsão de Preço do Marcopolo
Previsão de Preço do Stargaze
Previsão de Preço do Beta Finance
Previsão de Preço do Iagon
Previsão de Preço do Hermez Network Token
Previsão de Preço do Quanta
Previsão de Preço do Orion Protocol
Previsão de Preço do Verasity
Previsão de Preço do Aergo
Previsão de Preço do higher
Previsão de Preço do SportX
Previsão de Preço do Reef
Previsão de Preço do ankrETH
Previsão de Preço do Wanchain
Previsão de Preço do VitaDAO
Previsão de Preço do PlayDapp
Previsão de Preço do Zero1 Labs
Previsão de Preço do SingularityDAO
Previsão de Preço do PunkCity
Previsão de Preço do Compound USD Coin
Previsão de Preço do Compound Dai
Como ler e prever os movimentos de preço de FunFair?
Traders de FunFair utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de FunFair
Médias móveis são ferramentas populares para a previsão de preço de FunFair. Uma média móvel simples (SMA) calcula o preço médio de fechamento de FUN em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de FUN acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de FUN.
Como ler gráficos de FunFair e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de FunFair em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de FUN dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de FunFair?
A ação de preço de FunFair é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de FUN. A capitalização de mercado de FunFair pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de FUN, grandes detentores de FunFair, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de FunFair.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


