Prédiction du prix de Fold jusqu'à $0.000743 d'ici 2026
| Année | Prix min. | Prix max. |
|---|---|---|
| 2026 | $0.000249 | $0.000743 |
| 2027 | $0.000239 | $0.00063 |
| 2028 | $0.000432 | $0.00106 |
| 2029 | $0.000951 | $0.003128 |
| 2030 | $0.0008088 | $0.002338 |
| 2031 | $0.000956 | $0.002134 |
| 2032 | $0.001459 | $0.00396 |
| 2033 | $0.003392 | $0.010548 |
| 2034 | $0.002727 | $0.0061089 |
| 2035 | $0.003224 | $0.007197 |
Calculateur de profit d’investissement
Si vous ouvrez une position short de $10,000.00 sur Fold aujourd’hui et la fermez le Apr 06, 2026, notre prévision indique que vous pourriez gagner environ $3,955.19, soit un rendement de 39.55% sur les 90 prochains jours.
Prévision du prix à long terme de Fold pour 2027, 2028, 2029, 2030, 2031, 2032 et 2037
[
'name' => 'Fold'
'name_with_ticker' => 'Fold <small>FLD</small>'
'name_lang' => 'Fold'
'name_lang_with_ticker' => 'Fold <small>FLD</small>'
'name_with_lang' => 'Fold'
'name_with_lang_with_ticker' => 'Fold <small>FLD</small>'
'image' => '/uploads/coins/fold.png?1717110885'
'price_for_sd' => 0.0007212
'ticker' => 'FLD'
'marketcap' => '$924.84K'
'low24h' => '$0.0007147'
'high24h' => '$0.0007544'
'volume24h' => '$5.24K'
'current_supply' => '1.28B'
'max_supply' => '2.65B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.0007212'
'change_24h_pct' => '-2.8793%'
'ath_price' => '$0.008565'
'ath_days' => 663
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '14 mars 2024'
'ath_pct' => '-91.57%'
'fdv' => '$1.91M'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.035564'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.000727'
'next_week_prediction_price_date' => '13 janvier 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.000637'
'next_month_prediction_price_date' => '5 février 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.000249'
'current_year_max_price_prediction' => '$0.000743'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.0008088'
'grand_prediction_max_price' => '$0.002338'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.00073494787660672
107 => 0.00073769190519189
108 => 0.00074387434170785
109 => 0.00069104609858166
110 => 0.00071476442878959
111 => 0.00072869672567975
112 => 0.0006657501014687
113 => 0.00072745247330792
114 => 0.00069012647640106
115 => 0.00067745747243321
116 => 0.00069451461726157
117 => 0.00068786743133334
118 => 0.00068215257120811
119 => 0.00067896358106446
120 => 0.00069148846569803
121 => 0.0006909041648594
122 => 0.00067041102262354
123 => 0.00064367855398419
124 => 0.00065265084792293
125 => 0.00064939112941928
126 => 0.00063757748905001
127 => 0.00064553845627452
128 => 0.00061048238557109
129 => 0.00055017023798183
130 => 0.00059001429009034
131 => 0.00058848033742615
201 => 0.00058770684893365
202 => 0.00061764855288448
203 => 0.00061477034892224
204 => 0.00060954638054734
205 => 0.00063748154677412
206 => 0.00062728483532034
207 => 0.00065870869737353
208 => 0.00067940648528973
209 => 0.00067415685677088
210 => 0.00069362322634716
211 => 0.00065285755145379
212 => 0.00066639827341837
213 => 0.00066918899744864
214 => 0.00063713683115914
215 => 0.00061524125868581
216 => 0.00061378107362964
217 => 0.00057581716835664
218 => 0.00059609718011954
219 => 0.00061394275122699
220 => 0.00060539610753878
221 => 0.00060269049547081
222 => 0.0006165128807504
223 => 0.00061758699846735
224 => 0.00059309700069104
225 => 0.0005981892467261
226 => 0.00061942475920778
227 => 0.00059765416629628
228 => 0.00055535746047539
301 => 0.0005448672926341
302 => 0.00054346771087192
303 => 0.00051501754370064
304 => 0.00054556829580995
305 => 0.00053223207380498
306 => 0.00057436103932619
307 => 0.00055029720016265
308 => 0.0005492598561521
309 => 0.00054769175853486
310 => 0.00052320352438894
311 => 0.00052856489135843
312 => 0.00054638689172426
313 => 0.00055274598223399
314 => 0.00055208267699533
315 => 0.00054629955419971
316 => 0.00054894703820116
317 => 0.0005404185697879
318 => 0.00053740699008645
319 => 0.00052790161614844
320 => 0.00051393134238613
321 => 0.00051587399463744
322 => 0.00048819522679333
323 => 0.00047311436504846
324 => 0.00046894018128005
325 => 0.00046335828829377
326 => 0.0004695706709457
327 => 0.00048811681632168
328 => 0.00046574623021401
329 => 0.00042739342944657
330 => 0.00042969849812269
331 => 0.00043487730305688
401 => 0.00042522663432323
402 => 0.00041609308628605
403 => 0.0004240339652762
404 => 0.000407783377995
405 => 0.00043684110889172
406 => 0.00043605517870431
407 => 0.00044688610386459
408 => 0.00045365890364027
409 => 0.00043804979287729
410 => 0.00043412414373193
411 => 0.00043636037189593
412 => 0.00039940050160472
413 => 0.00044386569394669
414 => 0.00044425023077652
415 => 0.00044095759298043
416 => 0.00046463393519374
417 => 0.00051459840210013
418 => 0.00049579975983392
419 => 0.00048852035735648
420 => 0.00047468220792564
421 => 0.00049312072041422
422 => 0.0004917049303407
423 => 0.0004853021907058
424 => 0.00048142979379685
425 => 0.00048856480383576
426 => 0.00048054568709336
427 => 0.00047910523337584
428 => 0.00047037765107674
429 => 0.00046726230127565
430 => 0.00046495582030857
501 => 0.00046241661139396
502 => 0.00046801747352816
503 => 0.00045532518307729
504 => 0.00044001952503413
505 => 0.00043874702517736
506 => 0.00044226050916124
507 => 0.00044070605404649
508 => 0.00043873958304431
509 => 0.00043498505436463
510 => 0.00043387116590818
511 => 0.00043749076300979
512 => 0.0004334044489177
513 => 0.00043943402795362
514 => 0.00043779431608767
515 => 0.00042863501889605
516 => 0.00041721914338914
517 => 0.00041711751815152
518 => 0.00041465798649935
519 => 0.00041152540314724
520 => 0.00041065399012249
521 => 0.00042336520659656
522 => 0.00044967704428321
523 => 0.00044451140095641
524 => 0.00044824410765644
525 => 0.00046660533022501
526 => 0.00047244181073833
527 => 0.0004682992151146
528 => 0.00046262857472065
529 => 0.000462878054119
530 => 0.00048225634896469
531 => 0.00048346494944431
601 => 0.00048651869294704
602 => 0.00049044361633584
603 => 0.00046896764653956
604 => 0.0004618665378729
605 => 0.00045850163863212
606 => 0.00044813905135043
607 => 0.00045931421331264
608 => 0.00045280292500541
609 => 0.00045368152025533
610 => 0.00045310933394622
611 => 0.00045342178636206
612 => 0.00043683298666374
613 => 0.00044287707339216
614 => 0.00043282760693625
615 => 0.00041937249945734
616 => 0.0004193273932191
617 => 0.00042262051171273
618 => 0.00042066163597298
619 => 0.00041539035172462
620 => 0.00041613911277234
621 => 0.00040957917811091
622 => 0.00041693560761168
623 => 0.0004171465636872
624 => 0.00041431393762197
625 => 0.00042564753225956
626 => 0.00043029091522992
627 => 0.00042842642007306
628 => 0.00043016009727935
629 => 0.00044472605675812
630 => 0.00044710094371052
701 => 0.00044815571161856
702 => 0.00044674246235176
703 => 0.00043042633627951
704 => 0.00043115002585234
705 => 0.0004258400719425
706 => 0.00042135372043783
707 => 0.0004215331509702
708 => 0.00042383971882847
709 => 0.00043391263594395
710 => 0.00045511049618257
711 => 0.00045591493948319
712 => 0.00045688994823081
713 => 0.00045292409765411
714 => 0.00045172795917209
715 => 0.00045330597457941
716 => 0.00046126677635449
717 => 0.00048174411985661
718 => 0.00047450605902717
719 => 0.00046862140290571
720 => 0.00047378383281613
721 => 0.00047298911719589
722 => 0.00046628091758748
723 => 0.00046609264076682
724 => 0.00045321746097714
725 => 0.00044845780016256
726 => 0.00044448027133145
727 => 0.0004401369136839
728 => 0.00043756202567977
729 => 0.00044151822391979
730 => 0.00044242305326564
731 => 0.00043377275667133
801 => 0.00043259375320947
802 => 0.000439657772138
803 => 0.00043654916078073
804 => 0.00043974644465154
805 => 0.00044048824193536
806 => 0.00044036879548763
807 => 0.00043712304820889
808 => 0.00043919179073478
809 => 0.00043429859793922
810 => 0.00042897798570784
811 => 0.00042558376659007
812 => 0.00042262186023199
813 => 0.00042426529802646
814 => 0.00041840674236906
815 => 0.00041653247250482
816 => 0.00043849094731519
817 => 0.00045471190875099
818 => 0.0004544760495475
819 => 0.00045304031730437
820 => 0.00045090711041872
821 => 0.00046111071898388
822 => 0.00045755598578737
823 => 0.00046014235119573
824 => 0.00046080068974157
825 => 0.00046279328224095
826 => 0.00046350546279036
827 => 0.00046135275852884
828 => 0.00045412802009647
829 => 0.00043612465883052
830 => 0.00042774404556208
831 => 0.00042497830359334
901 => 0.00042507883306101
902 => 0.00042230578155932
903 => 0.00042312256950602
904 => 0.00042202173604435
905 => 0.00041993702378816
906 => 0.00042413657291921
907 => 0.00042462053183506
908 => 0.00042364030688699
909 => 0.00042387118534692
910 => 0.00041575534143651
911 => 0.00041637237142234
912 => 0.0004129366700529
913 => 0.00041229251746413
914 => 0.00040360736358293
915 => 0.00038822035454921
916 => 0.000396746251207
917 => 0.00038644816696688
918 => 0.00038254812642371
919 => 0.00040101031177434
920 => 0.00039915722042645
921 => 0.0003959855335583
922 => 0.00039129394764285
923 => 0.00038955379279
924 => 0.00037898116277014
925 => 0.00037835647538577
926 => 0.00038359655630864
927 => 0.00038117843926291
928 => 0.00037778248711817
929 => 0.00036548269269206
930 => 0.00035165365143513
1001 => 0.00035207106326443
1002 => 0.0003564698239898
1003 => 0.00036925981405251
1004 => 0.00036426254366593
1005 => 0.0003606369666634
1006 => 0.00035995800507527
1007 => 0.00036845663085308
1008 => 0.00038048396684583
1009 => 0.00038612692379715
1010 => 0.00038053492483754
1011 => 0.00037411113752735
1012 => 0.00037450212369596
1013 => 0.00037710317951081
1014 => 0.0003773765137
1015 => 0.00037319528853707
1016 => 0.00037437227892877
1017 => 0.00037258432289752
1018 => 0.00036161164003407
1019 => 0.00036141317899582
1020 => 0.00035872030566272
1021 => 0.00035863876652841
1022 => 0.00035405751722006
1023 => 0.00035341656877314
1024 => 0.00034432022020947
1025 => 0.00035030746438036
1026 => 0.00034629153533495
1027 => 0.00034023858300163
1028 => 0.00033919505173787
1029 => 0.00033916368192798
1030 => 0.00034537871055892
1031 => 0.00035023483815224
1101 => 0.00034636139414006
1102 => 0.00034547948602205
1103 => 0.00035489595746266
1104 => 0.0003536976256388
1105 => 0.00035265987800775
1106 => 0.00037940705082466
1107 => 0.00035823457643215
1108 => 0.00034900216911443
1109 => 0.00033757531187216
1110 => 0.00034129595420946
1111 => 0.00034207994821753
1112 => 0.00031460041639569
1113 => 0.00030345197375792
1114 => 0.00029962624836484
1115 => 0.00029742448931331
1116 => 0.00029842785856104
1117 => 0.00028839295260515
1118 => 0.00029513657536953
1119 => 0.00028644719504122
1120 => 0.00028499039215149
1121 => 0.00030052808058618
1122 => 0.00030269005916201
1123 => 0.00029346638688343
1124 => 0.00029938947766318
1125 => 0.00029724168260932
1126 => 0.00028659614952692
1127 => 0.00028618956846641
1128 => 0.00028084801417424
1129 => 0.00027248951603572
1130 => 0.00026866945809797
1201 => 0.00026667993875673
1202 => 0.00026750085321189
1203 => 0.00026708577374296
1204 => 0.00026437709943766
1205 => 0.00026724103178348
1206 => 0.00025992486809846
1207 => 0.00025701151276875
1208 => 0.00025569561775565
1209 => 0.00024920210138253
1210 => 0.00025953617361201
1211 => 0.00026157211602643
1212 => 0.00026361206987633
1213 => 0.00028136847540415
1214 => 0.00028048141556306
1215 => 0.00028850000451084
1216 => 0.00028818841688957
1217 => 0.00028590138542913
1218 => 0.00027625277589597
1219 => 0.00028009853968596
1220 => 0.00026826187650476
1221 => 0.00027713070937498
1222 => 0.00027308334442433
1223 => 0.00027576229121388
1224 => 0.00027094530333537
1225 => 0.00027361122331589
1226 => 0.00026205491350137
1227 => 0.00025126379399823
1228 => 0.00025560645549871
1229 => 0.00026032742519331
1230 => 0.00027056369037192
1231 => 0.00026446705527889
]
'min_raw' => 0.00024920210138253
'max_raw' => 0.00074387434170785
'avg_raw' => 0.00049653822154519
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.000249'
'max' => '$0.000743'
'avg' => '$0.000496'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.00047207789861747
'max_diff' => 2.2594341707852E-5
'year' => 2026
]
1 => [
'items' => [
101 => 0.00026665963579764
102 => 0.00025931485809338
103 => 0.00024416048375747
104 => 0.00024424625587045
105 => 0.00024191508553486
106 => 0.00023990061400847
107 => 0.00026516732715822
108 => 0.00026202501197042
109 => 0.00025701814397471
110 => 0.000263720035752
111 => 0.00026549212231123
112 => 0.00026554257112432
113 => 0.00027043209836416
114 => 0.00027304163992856
115 => 0.00027350158293968
116 => 0.0002811953596968
117 => 0.00028377421218242
118 => 0.00029439614059781
119 => 0.00027282023855867
120 => 0.00027237589705459
121 => 0.00026381434511317
122 => 0.00025838447351913
123 => 0.00026418613306667
124 => 0.00026932561142028
125 => 0.00026397404303185
126 => 0.00026467284488561
127 => 0.00025748880156335
128 => 0.0002600567590104
129 => 0.00026226862990503
130 => 0.00026104736480478
131 => 0.0002592190718398
201 => 0.00026890423280512
202 => 0.00026835775806701
203 => 0.0002773768026188
204 => 0.00028440779280498
205 => 0.00029700858415846
206 => 0.000283859001487
207 => 0.00028337977842959
208 => 0.00028806426068553
209 => 0.00028377349501259
210 => 0.00028648511080569
211 => 0.00029657170093278
212 => 0.00029678481468792
213 => 0.00029321488470768
214 => 0.00029299765414395
215 => 0.00029368329824741
216 => 0.00029769913717707
217 => 0.00029629587966078
218 => 0.00029791976478477
219 => 0.00029995045799813
220 => 0.00030835026612465
221 => 0.00031037543142654
222 => 0.00030545532967077
223 => 0.00030589955977127
224 => 0.0003040593066548
225 => 0.0003022816452026
226 => 0.00030627756854055
227 => 0.00031358019698073
228 => 0.00031353476770821
301 => 0.00031522883556352
302 => 0.00031628422580296
303 => 0.0003117537183024
304 => 0.00030880452451092
305 => 0.00030993543307265
306 => 0.00031174378049084
307 => 0.00030934901037723
308 => 0.00029456737987056
309 => 0.00029905118231207
310 => 0.00029830485833907
311 => 0.00029724200224541
312 => 0.00030175050027257
313 => 0.0003013156446393
314 => 0.00028829003014036
315 => 0.00028912388771908
316 => 0.00028834073978154
317 => 0.00029087125098471
318 => 0.00028363683910319
319 => 0.00028586209547344
320 => 0.00028725775540838
321 => 0.00028807980983202
322 => 0.00029104963409821
323 => 0.00029070115949816
324 => 0.00029102797242779
325 => 0.00029543143781002
326 => 0.00031770265462647
327 => 0.00031891482781912
328 => 0.000312945643687
329 => 0.00031533021501083
330 => 0.00031075235951749
331 => 0.00031382550457913
401 => 0.00031592807238089
402 => 0.0003064269727853
403 => 0.00030586437932887
404 => 0.00030126762939749
405 => 0.00030373766243739
406 => 0.00029980766226924
407 => 0.00030077194684494
408 => 0.00029807572310648
409 => 0.00030292838902291
410 => 0.00030835442354553
411 => 0.00030972525414654
412 => 0.00030611918901496
413 => 0.00030350816020843
414 => 0.00029892405375051
415 => 0.0003065475249535
416 => 0.00030877686025433
417 => 0.00030653581520422
418 => 0.00030601651609831
419 => 0.00030503244523096
420 => 0.00030622529138482
421 => 0.00030876471881551
422 => 0.00030756717173506
423 => 0.00030835817267976
424 => 0.00030534369275519
425 => 0.0003117552180889
426 => 0.00032193826333642
427 => 0.00032197100349199
428 => 0.00032077344995632
429 => 0.00032028343685117
430 => 0.0003215121994524
501 => 0.00032217875275708
502 => 0.00032615234569293
503 => 0.00033041616922801
504 => 0.00035031357321431
505 => 0.00034472646179571
506 => 0.00036238062231421
507 => 0.00037634277117851
508 => 0.00038052940913214
509 => 0.00037667789921134
510 => 0.00036350209182676
511 => 0.00036285562385796
512 => 0.00038254584277292
513 => 0.00037698245406029
514 => 0.00037632070667547
515 => 0.00036928083254093
516 => 0.00037344227005982
517 => 0.00037253210262983
518 => 0.00037109535881468
519 => 0.00037903509171248
520 => 0.0003938975629123
521 => 0.00039158110739644
522 => 0.00038985198081112
523 => 0.00038227545145546
524 => 0.00038683821440666
525 => 0.00038521350191371
526 => 0.00039219429785147
527 => 0.0003880590289815
528 => 0.00037694030591904
529 => 0.00037871099921453
530 => 0.00037844336248506
531 => 0.00038395130741266
601 => 0.00038229795906099
602 => 0.0003781205196841
603 => 0.0003938467646015
604 => 0.00039282558973053
605 => 0.00039427338222448
606 => 0.00039491074525479
607 => 0.00040448303340849
608 => 0.00040840449358601
609 => 0.00040929473370112
610 => 0.00041301981757315
611 => 0.00040920205022091
612 => 0.00042447584165184
613 => 0.00043463202170296
614 => 0.00044642894746459
615 => 0.00046366742671705
616 => 0.00047014925438082
617 => 0.00046897837022995
618 => 0.00048204838845912
619 => 0.00050553492068676
620 => 0.00047372566989881
621 => 0.00050722088821741
622 => 0.00049661668881864
623 => 0.00047147432280554
624 => 0.00046985545084332
625 => 0.00048688215301626
626 => 0.00052464573967649
627 => 0.00051518638952916
628 => 0.00052466121178461
629 => 0.00051360832833881
630 => 0.00051305945951471
701 => 0.00052412439790615
702 => 0.00054997822957614
703 => 0.00053769604326612
704 => 0.00052008651747506
705 => 0.00053308911728461
706 => 0.00052182506199577
707 => 0.00049644399281946
708 => 0.00051517915614237
709 => 0.00050265148597507
710 => 0.00050630772613747
711 => 0.00053263902547884
712 => 0.00052947077387811
713 => 0.00053357078482165
714 => 0.00052633437282226
715 => 0.0005195744229374
716 => 0.00050695647447685
717 => 0.00050322092199501
718 => 0.00050425329430989
719 => 0.00050322041040257
720 => 0.00049616078420382
721 => 0.00049463625859835
722 => 0.00049209531579824
723 => 0.00049288286022069
724 => 0.00048810514437744
725 => 0.00049712168130011
726 => 0.00049879523000641
727 => 0.00050535671366194
728 => 0.00050603794866195
729 => 0.00052431158724575
730 => 0.00051424677418981
731 => 0.00052099911974188
801 => 0.00052039512640016
802 => 0.00047201923411536
803 => 0.0004786850052481
804 => 0.00048905485329642
805 => 0.00048438325080665
806 => 0.00047777869787274
807 => 0.00047244516726489
808 => 0.00046436432301248
809 => 0.00047573795611887
810 => 0.00049069307420274
811 => 0.00050641723513626
812 => 0.00052530878421004
813 => 0.00052109241037865
814 => 0.00050606407076701
815 => 0.00050673823110378
816 => 0.00051090562503337
817 => 0.00050550847124689
818 => 0.00050391674523029
819 => 0.00051068694632131
820 => 0.00051073356897538
821 => 0.00050452349127621
822 => 0.0004976221263458
823 => 0.00049759320937475
824 => 0.00049636517814466
825 => 0.00051382679236656
826 => 0.00052342891462028
827 => 0.00052452978246207
828 => 0.00052335481744327
829 => 0.00052380701484631
830 => 0.0005182197514752
831 => 0.00053099057869008
901 => 0.00054271035264636
902 => 0.00053956920286963
903 => 0.00053486017281355
904 => 0.00053110920355627
905 => 0.00053868559372013
906 => 0.00053834822899248
907 => 0.00054260799064496
908 => 0.00054241474325083
909 => 0.00054098234562484
910 => 0.00053956925402506
911 => 0.00054517200248956
912 => 0.00054355850090917
913 => 0.00054194249311517
914 => 0.00053870134208588
915 => 0.00053914186834057
916 => 0.00053443365136493
917 => 0.00053225541475864
918 => 0.00049949996252053
919 => 0.00049074663536722
920 => 0.00049350061028006
921 => 0.00049440729032829
922 => 0.00049059783113348
923 => 0.00049605961704906
924 => 0.00049520840349958
925 => 0.00049851997747734
926 => 0.00049645104982787
927 => 0.00049653595934027
928 => 0.0005026202344155
929 => 0.00050438652535419
930 => 0.00050348817552706
1001 => 0.00050411734895235
1002 => 0.0005186163849808
1003 => 0.00051655508571062
1004 => 0.00051546006155656
1005 => 0.00051576339073076
1006 => 0.00051946820529887
1007 => 0.00052050535110256
1008 => 0.00051611089145337
1009 => 0.000518183344028
1010 => 0.00052700758405737
1011 => 0.00053009556865892
1012 => 0.00053995093319037
1013 => 0.00053576419917227
1014 => 0.00054344913066009
1015 => 0.00056706999006743
1016 => 0.00058593996700116
1017 => 0.00056858635637813
1018 => 0.00060323866593985
1019 => 0.00063022045951223
1020 => 0.00062918485333439
1021 => 0.00062447995352492
1022 => 0.00059376189889086
1023 => 0.00056549468703621
1024 => 0.00058914141004184
1025 => 0.00058920169040177
1026 => 0.00058717041592435
1027 => 0.00057455434459952
1028 => 0.00058673140398916
1029 => 0.00058769797474293
1030 => 0.00058715695215273
1031 => 0.00057748423984793
1101 => 0.00056271579597454
1102 => 0.00056560151455674
1103 => 0.00057032838046145
1104 => 0.0005613794371763
1105 => 0.00055851970756111
1106 => 0.00056383648900158
1107 => 0.00058096826659819
1108 => 0.00057772960328118
1109 => 0.00057764502869351
1110 => 0.00059150140377065
1111 => 0.00058158322960831
1112 => 0.00056563791270941
1113 => 0.00056161150989954
1114 => 0.00054732049243446
1115 => 0.00055719134910045
1116 => 0.00055754658365911
1117 => 0.00055214041634086
1118 => 0.0005660765933922
1119 => 0.00056594816906725
1120 => 0.00057917849505128
1121 => 0.00060446990924924
1122 => 0.000596989993556
1123 => 0.00058829166541727
1124 => 0.00058923741486443
1125 => 0.00059960995199121
1126 => 0.00059333847926237
1127 => 0.00059559374458192
1128 => 0.00059960653837704
1129 => 0.0006020275565057
1130 => 0.00058888906761307
1201 => 0.00058582585736562
1202 => 0.00057955960424006
1203 => 0.00057792485576475
1204 => 0.00058302858818586
1205 => 0.00058168393501043
1206 => 0.00055751672756999
1207 => 0.0005549911199274
1208 => 0.00055506857670806
1209 => 0.00054871781620465
1210 => 0.00053903138207978
1211 => 0.000564486752613
1212 => 0.0005624423301115
1213 => 0.00056018544589558
1214 => 0.00056046190133442
1215 => 0.00057151121492034
1216 => 0.0005651020550368
1217 => 0.00058214185702784
1218 => 0.00057863898600182
1219 => 0.00057504627955152
1220 => 0.00057454965808357
1221 => 0.00057316677261551
1222 => 0.00056842434379653
1223 => 0.00056269757602183
1224 => 0.00055891626789284
1225 => 0.000515570712929
1226 => 0.0005236153958008
1227 => 0.00053287007014888
1228 => 0.00053606474664806
1229 => 0.00053060003143133
1230 => 0.00056864012406112
1231 => 0.00057559041554804
]
'min_raw' => 0.00023990061400847
'max_raw' => 0.00063022045951223
'avg_raw' => 0.00043506053676035
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.000239'
'max' => '$0.00063'
'avg' => '$0.000435'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -9.3014873740569E-6
'max_diff' => -0.00011365388219562
'year' => 2027
]
2 => [
'items' => [
101 => 0.00055453752927787
102 => 0.00055059939384041
103 => 0.00056889830756478
104 => 0.00055786182563776
105 => 0.00056283155277372
106 => 0.00055208972100117
107 => 0.00057391629385713
108 => 0.00057375001194148
109 => 0.00056525898212501
110 => 0.00057243554238183
111 => 0.00057118843843073
112 => 0.00056160208668042
113 => 0.00057422019830648
114 => 0.00057422645673243
115 => 0.00056605402514498
116 => 0.00055651041422615
117 => 0.0005548042420039
118 => 0.00055351887042641
119 => 0.00056251543016037
120 => 0.00057058171748632
121 => 0.00058559107839771
122 => 0.00058936478834445
123 => 0.00060409382949668
124 => 0.00059532340263453
125 => 0.00059921121926648
126 => 0.0006034319941857
127 => 0.00060545558889584
128 => 0.00060215824990775
129 => 0.00062503851353237
130 => 0.00062697030881545
131 => 0.00062761802306391
201 => 0.00061990292690403
202 => 0.00062675573803474
203 => 0.00062354953464793
204 => 0.00063189118515145
205 => 0.00063319926246194
206 => 0.00063209136751615
207 => 0.0006325065719011
208 => 0.00061298230325258
209 => 0.00061196986692443
210 => 0.00059816522575093
211 => 0.00060379071906788
212 => 0.00059327412894874
213 => 0.0005966090480084
214 => 0.00059807904855363
215 => 0.0005973112036906
216 => 0.0006041087760196
217 => 0.00059832945088767
218 => 0.00058307686165548
219 => 0.00056782011686555
220 => 0.00056762858086259
221 => 0.00056361174926331
222 => 0.00056070831573644
223 => 0.00056126762003856
224 => 0.00056323868135041
225 => 0.0005605937540698
226 => 0.00056115818340634
227 => 0.0005705314711658
228 => 0.00057241121717874
229 => 0.00056602310576262
301 => 0.00054037391662682
302 => 0.00053407954127678
303 => 0.0005386038134555
304 => 0.00053644150275452
305 => 0.00043295016026557
306 => 0.00045726391607457
307 => 0.00044281750798999
308 => 0.00044947507748264
309 => 0.00043472903570753
310 => 0.00044176661974888
311 => 0.00044046703494786
312 => 0.00047956283479239
313 => 0.00047895240765233
314 => 0.00047924458682119
315 => 0.00046529811382272
316 => 0.0004875152239973
317 => 0.00049846017137074
318 => 0.00049643455290225
319 => 0.00049694435743054
320 => 0.00048818422657147
321 => 0.00047932940403661
322 => 0.00046950804309802
323 => 0.00048775491776501
324 => 0.00048572617678658
325 => 0.00049037937867314
326 => 0.00050221378120822
327 => 0.00050395644193603
328 => 0.00050629859562654
329 => 0.00050545910025434
330 => 0.00052545928587665
331 => 0.00052303713143231
401 => 0.00052887382674176
402 => 0.00051686730165908
403 => 0.0005032807788582
404 => 0.00050586313266575
405 => 0.00050561443122811
406 => 0.00050244817648066
407 => 0.00049958982326748
408 => 0.00049483147050357
409 => 0.00050988760275231
410 => 0.00050927635127873
411 => 0.00051917180213377
412 => 0.00051742268507586
413 => 0.0005057416532816
414 => 0.00050615884361732
415 => 0.00050896464911991
416 => 0.0005186755740005
417 => 0.00052155843767524
418 => 0.00052022298035885
419 => 0.00052338390877047
420 => 0.00052588217770559
421 => 0.0005236976528847
422 => 0.00055462591759338
423 => 0.00054178234577524
424 => 0.0005480422133144
425 => 0.00054953515483721
426 => 0.00054571101651972
427 => 0.00054654033518865
428 => 0.00054779652699629
429 => 0.00055542387766465
430 => 0.00057544025281013
501 => 0.000584305369106
502 => 0.00061097650887923
503 => 0.000583569244606
504 => 0.00058194301096656
505 => 0.00058674728863098
506 => 0.00060240607110473
507 => 0.00061509604354506
508 => 0.00061930603950559
509 => 0.00061986245997124
510 => 0.00062776069226843
511 => 0.00063228781172787
512 => 0.00062680163912342
513 => 0.00062215268226736
514 => 0.00060550069585873
515 => 0.00060742820862738
516 => 0.00062070686018096
517 => 0.00063946373760906
518 => 0.00065555908976285
519 => 0.00064992305841825
520 => 0.0006929219991595
521 => 0.00069718516849908
522 => 0.00069659613634111
523 => 0.00070630827054132
524 => 0.00068703166199564
525 => 0.00067879053837566
526 => 0.00062315783950754
527 => 0.00063878835866119
528 => 0.00066150823619921
529 => 0.00065850117521189
530 => 0.00064200139283971
531 => 0.00065554657319835
601 => 0.00065106811297483
602 => 0.00064753576558505
603 => 0.00066371813375685
604 => 0.00064592495521691
605 => 0.00066133073563221
606 => 0.0006415726628972
607 => 0.00064994880333468
608 => 0.00064519410091404
609 => 0.00064827097609461
610 => 0.0006302836266599
611 => 0.00063998916379665
612 => 0.00062987984440617
613 => 0.00062987505127251
614 => 0.00062965188748665
615 => 0.00064154545691796
616 => 0.00064193330579012
617 => 0.0006331439400102
618 => 0.00063187725508561
619 => 0.00063656085314825
620 => 0.00063107758645318
621 => 0.00063364317242853
622 => 0.00063115529543877
623 => 0.00063059522192567
624 => 0.00062613246088461
625 => 0.00062420978072195
626 => 0.0006249637131551
627 => 0.00062239015308197
628 => 0.00062083949004818
629 => 0.00062934342157961
630 => 0.00062480011400999
701 => 0.00062864709453436
702 => 0.00062426297469919
703 => 0.00060906570528039
704 => 0.00060032559492943
705 => 0.00057161936178494
706 => 0.00057976041389474
707 => 0.00058515793986607
708 => 0.00058337405756475
709 => 0.0005872065270188
710 => 0.00058744180951726
711 => 0.00058619583463034
712 => 0.00058475315533056
713 => 0.0005840509388326
714 => 0.00058928468529323
715 => 0.00059232305127344
716 => 0.00058569965380688
717 => 0.00058414788445164
718 => 0.00059084450497813
719 => 0.00059492943963078
720 => 0.00062509030197941
721 => 0.00062285588787832
722 => 0.00062846382879043
723 => 0.00062783246070459
724 => 0.00063371047619553
725 => 0.00064331854728852
726 => 0.00062378265229754
727 => 0.00062717340816755
728 => 0.00062634207313222
729 => 0.00063541837106029
730 => 0.00063544670627171
731 => 0.00063000501226912
801 => 0.00063295504286933
802 => 0.00063130841671815
803 => 0.0006342840927282
804 => 0.00062282604591574
805 => 0.0006367807101136
806 => 0.00064469210549508
807 => 0.00064480195522763
808 => 0.00064855189384974
809 => 0.0006523620486716
810 => 0.00065967530905761
811 => 0.00065215808580871
812 => 0.00063863533297087
813 => 0.00063961163204754
814 => 0.0006316832470065
815 => 0.00063181652459142
816 => 0.00063110507839796
817 => 0.00063324018197969
818 => 0.00062329458108464
819 => 0.00062562879373572
820 => 0.00062236088235507
821 => 0.00062716630436642
822 => 0.00062199646464693
823 => 0.00062634167223729
824 => 0.00062821691978738
825 => 0.00063513662361839
826 => 0.00062097441876485
827 => 0.00059209672437149
828 => 0.00059816716584117
829 => 0.00058918850608462
830 => 0.00059001951522926
831 => 0.00059169828595555
901 => 0.00058625684077204
902 => 0.00058729489703341
903 => 0.00058725781035906
904 => 0.00058693821743539
905 => 0.00058552268738458
906 => 0.00058346988875681
907 => 0.00059164760667174
908 => 0.00059303716029878
909 => 0.00059612596588241
910 => 0.00060531615614246
911 => 0.00060439783941587
912 => 0.00060589565209753
913 => 0.00060262593542333
914 => 0.000590171188008
915 => 0.00059084754071425
916 => 0.0005824134116295
917 => 0.00059591028623921
918 => 0.00059271404818159
919 => 0.00059065341271308
920 => 0.00059009114923385
921 => 0.00059930412019797
922 => 0.00060206078550606
923 => 0.00060034301667899
924 => 0.00059681982269933
925 => 0.00060358539667906
926 => 0.00060539557885939
927 => 0.00060580081189261
928 => 0.00061778811181456
929 => 0.00060647076879596
930 => 0.00060919496574525
1001 => 0.00063044837268732
1002 => 0.00061117446536054
1003 => 0.00062138428393096
1004 => 0.00062088456644127
1005 => 0.00062610756414047
1006 => 0.00062045612818206
1007 => 0.00062052618450394
1008 => 0.00062516385262433
1009 => 0.0006186510841571
1010 => 0.00061703843109535
1011 => 0.00061481056244058
1012 => 0.00061967503214333
1013 => 0.00062259106172909
1014 => 0.00064609211860257
1015 => 0.00066127487312123
1016 => 0.00066061574970591
1017 => 0.00066663890389462
1018 => 0.00066392541776684
1019 => 0.00065516285527875
1020 => 0.00067011948096525
1021 => 0.00066538657878625
1022 => 0.00066577675349141
1023 => 0.00066576223116939
1024 => 0.00066890919736094
1025 => 0.00066667928339902
1026 => 0.00066228389408408
1027 => 0.00066520175863556
1028 => 0.00067386677319781
1029 => 0.00070076324427412
1030 => 0.00071581486581927
1031 => 0.00069985711775773
1101 => 0.00071086455868782
1102 => 0.000704264016482
1103 => 0.00070306450161408
1104 => 0.00070997798796167
1105 => 0.00071690357545192
1106 => 0.00071646244546893
1107 => 0.00071143482458386
1108 => 0.00070859484911704
1109 => 0.00073010009481336
1110 => 0.00074594479351011
1111 => 0.0007448642912832
1112 => 0.00074963327671463
1113 => 0.00076363516544049
1114 => 0.0007649153226682
1115 => 0.00076475405228159
1116 => 0.00076158104902212
1117 => 0.00077536772684773
1118 => 0.00078686881604338
1119 => 0.00076084659044443
1120 => 0.00077075551329656
1121 => 0.00077520394801044
1122 => 0.00078173556996152
1123 => 0.00079275551101994
1124 => 0.00080472608990439
1125 => 0.00080641886100936
1126 => 0.00080521775890383
1127 => 0.0007973228403431
1128 => 0.00081042119059717
1129 => 0.00081809389698189
1130 => 0.00082266281804723
1201 => 0.00083424884167296
1202 => 0.00077523142002881
1203 => 0.0007334559556329
1204 => 0.00072693211362246
1205 => 0.0007401986028881
1206 => 0.00074369687030918
1207 => 0.0007422867230982
1208 => 0.00069526463986155
1209 => 0.00072668455208566
1210 => 0.00076048973577755
1211 => 0.0007617883305591
1212 => 0.00077871191234831
1213 => 0.00078422292429994
1214 => 0.00079784862586483
1215 => 0.00079699633452207
1216 => 0.00080031397602085
1217 => 0.00079955130769382
1218 => 0.00082479005061281
1219 => 0.00085263213204204
1220 => 0.00085166804929455
1221 => 0.00084766542067654
1222 => 0.00085361000672388
1223 => 0.00088234601849762
1224 => 0.0008797004670187
1225 => 0.00088227039493293
1226 => 0.00091615177230483
1227 => 0.00096020238245803
1228 => 0.00093973645143292
1229 => 0.0009841416328444
1230 => 0.0010120923407254
1231 => 0.0010604301998485
]
'min_raw' => 0.00043295016026557
'max_raw' => 0.0010604301998485
'avg_raw' => 0.00074669018005701
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.000432'
'max' => '$0.00106'
'avg' => '$0.000746'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0001930495462571
'max_diff' => 0.00043020974033622
'year' => 2028
]
3 => [
'items' => [
101 => 0.0010543780618173
102 => 0.0010731956356543
103 => 0.0010435434716221
104 => 0.00097545610931324
105 => 0.0009646810235999
106 => 0.00098625301806663
107 => 0.0010392856614986
108 => 0.0009845828313978
109 => 0.00099564914268208
110 => 0.00099246204428774
111 => 0.0009922922173586
112 => 0.00099877382050778
113 => 0.00098937191708221
114 => 0.00095106687115634
115 => 0.00096862184797111
116 => 0.0009618430283637
117 => 0.0009693646341126
118 => 0.0010099556381933
119 => 0.00099200938772052
120 => 0.00097310447068249
121 => 0.00099681543198511
122 => 0.0010270076336936
123 => 0.0010251182599713
124 => 0.0010214520852531
125 => 0.0010421181201851
126 => 0.0010762523553128
127 => 0.0010854787019054
128 => 0.0010922894023356
129 => 0.0010932284828573
130 => 0.0011029015958651
131 => 0.0010508868292836
201 => 0.0011334355996824
202 => 0.0011476894919665
203 => 0.0011450103509804
204 => 0.0011608529523587
205 => 0.0011561916571452
206 => 0.0011494381717157
207 => 0.0011745520647183
208 => 0.0011457610129774
209 => 0.001104895739724
210 => 0.0010824762425937
211 => 0.0011120000449441
212 => 0.0011300292008008
213 => 0.0011419453259524
214 => 0.0011455511382234
215 => 0.0010549245875462
216 => 0.0010060819031102
217 => 0.0010373895038512
218 => 0.0010755869374904
219 => 0.0010506746406111
220 => 0.0010516511554835
221 => 0.0010161327669701
222 => 0.001078729526749
223 => 0.0010696097053708
224 => 0.0011169233548134
225 => 0.0011056315726582
226 => 0.0011442140170733
227 => 0.0011340539664203
228 => 0.0011762277686402
301 => 0.0011930520401559
302 => 0.0012213026105194
303 => 0.0012420838450794
304 => 0.0012542869834946
305 => 0.001253554352837
306 => 0.0013019092668177
307 => 0.0012733960634353
308 => 0.001237576759941
309 => 0.0012369289017492
310 => 0.0012554802265924
311 => 0.0012943587141563
312 => 0.0013044393403226
313 => 0.0013100730351253
314 => 0.0013014448354247
315 => 0.0012704957967128
316 => 0.0012571321587121
317 => 0.0012685183654705
318 => 0.0012545940130329
319 => 0.0012786313518235
320 => 0.0013116397520815
321 => 0.0013048236479576
322 => 0.0013276088621163
323 => 0.0013511891616963
324 => 0.001384910049153
325 => 0.0013937259378151
326 => 0.0014082982665352
327 => 0.0014232979795489
328 => 0.0014281154831153
329 => 0.0014373135922071
330 => 0.0014372651136319
331 => 0.0014649842344841
401 => 0.0014955592831739
402 => 0.0015071006562403
403 => 0.0015336394072114
404 => 0.0014881927262021
405 => 0.0015226645558015
406 => 0.001553759008986
407 => 0.0015166869200256
408 => 0.0015677821579687
409 => 0.0015697660702737
410 => 0.0015997207906704
411 => 0.0015693559429183
412 => 0.0015513253932511
413 => 0.0016033789145444
414 => 0.0016285659738277
415 => 0.0016209794265925
416 => 0.0015632454275385
417 => 0.0015296417637613
418 => 0.0014416944939938
419 => 0.0015458718340727
420 => 0.0015966135775305
421 => 0.0015631140186812
422 => 0.0015800092476118
423 => 0.0016721841383608
424 => 0.0017072783688758
425 => 0.0016999790142559
426 => 0.0017012124850291
427 => 0.0017201486948096
428 => 0.0018041222773378
429 => 0.0017538033601945
430 => 0.0017922702869367
501 => 0.001812673006178
502 => 0.0018316241888651
503 => 0.0017850860737682
504 => 0.0017245406698079
505 => 0.0017053633988505
506 => 0.0015597831477578
507 => 0.0015522050634654
508 => 0.0015479512551127
509 => 0.0015211315951617
510 => 0.0015000586889633
511 => 0.0014833007315675
512 => 0.0014393228470113
513 => 0.0014541640920647
514 => 0.00138407252298
515 => 0.0014289146249877
516 => 0.0013170467883083
517 => 0.0014102136468656
518 => 0.0013595071615301
519 => 0.0013935552026864
520 => 0.0013934364122783
521 => 0.0013307431735684
522 => 0.0012945830218551
523 => 0.001317625677901
524 => 0.0013423292343105
525 => 0.0013463373032252
526 => 0.0013783661089389
527 => 0.0013873046601568
528 => 0.0013602204326657
529 => 0.0013147285760432
530 => 0.0013252952967778
531 => 0.0012943688875966
601 => 0.0012401715450738
602 => 0.0012790970226685
603 => 0.0012923878921518
604 => 0.0012982578972797
605 => 0.0012449610355153
606 => 0.0012282140044178
607 => 0.0012192980255827
608 => 0.0013078486204627
609 => 0.0013126996219419
610 => 0.0012878812125119
611 => 0.0014000627765138
612 => 0.0013746726335815
613 => 0.0014030396439729
614 => 0.0013243364776263
615 => 0.0013273430445686
616 => 0.0012900837043459
617 => 0.0013109464452006
618 => 0.001296201332402
619 => 0.0013092609419091
620 => 0.0013170888180009
621 => 0.0013543420443325
622 => 0.0014106390188697
623 => 0.0013487776546042
624 => 0.0013218237723227
625 => 0.0013385458092958
626 => 0.0013830787973593
627 => 0.0014505485538772
628 => 0.0014106051000632
629 => 0.001428331326582
630 => 0.0014322037184915
701 => 0.0014027508944361
702 => 0.0014516345215112
703 => 0.0014778316543907
704 => 0.0015047044919922
705 => 0.0015280374239218
706 => 0.0014939708897078
707 => 0.0015304269645626
708 => 0.0015010498035931
709 => 0.0014746954532484
710 => 0.0014747354219193
711 => 0.0014582029529725
712 => 0.0014261692111628
713 => 0.0014202616976873
714 => 0.0014509933288235
715 => 0.0014756371866983
716 => 0.001477666972869
717 => 0.0014913110788357
718 => 0.0014993855202013
719 => 0.001578526022255
720 => 0.0016103569868656
721 => 0.001649279287862
722 => 0.0016644417176408
723 => 0.0017100751952431
724 => 0.0016732224559094
725 => 0.00166524913394
726 => 0.0015545572438736
727 => 0.0015726830346709
728 => 0.001601704174616
729 => 0.0015550357917821
730 => 0.0015846361391092
731 => 0.0015904798746927
801 => 0.0015534500179913
802 => 0.0015732292644212
803 => 0.0015207014500413
804 => 0.0014117839816812
805 => 0.0014517557777892
806 => 0.0014811884740858
807 => 0.0014391843874453
808 => 0.0015144750869658
809 => 0.0014704918146214
810 => 0.0014565512288577
811 => 0.0014021640336156
812 => 0.0014278326962147
813 => 0.0014625499299199
814 => 0.0014410987158017
815 => 0.001485613206013
816 => 0.001548657595733
817 => 0.0015935867822058
818 => 0.0015970358872553
819 => 0.001568149430375
820 => 0.0016144401618766
821 => 0.0016147773393188
822 => 0.0015625612050818
823 => 0.0015305791136023
824 => 0.0015233127151273
825 => 0.0015414656031793
826 => 0.0015635065604824
827 => 0.0015982590069883
828 => 0.0016192591825726
829 => 0.0016740165028637
830 => 0.0016888322637191
831 => 0.0017051102930412
901 => 0.0017268627601738
902 => 0.0017529821741845
903 => 0.001695834383308
904 => 0.0016981049715764
905 => 0.0016448897399772
906 => 0.0015880216331773
907 => 0.0016311774375288
908 => 0.0016875979109424
909 => 0.0016746549920022
910 => 0.0016731986492216
911 => 0.0016756478138228
912 => 0.0016658892756182
913 => 0.0016217517689868
914 => 0.0015995861894719
915 => 0.0016281854420885
916 => 0.001643384672048
917 => 0.0016669573522029
918 => 0.0016640515218149
919 => 0.001724772214373
920 => 0.0017483664394026
921 => 0.0017423300269862
922 => 0.0017434408721452
923 => 0.0017861570895543
924 => 0.0018336663085733
925 => 0.0018781649615782
926 => 0.0019234309026765
927 => 0.0018688610439228
928 => 0.0018411538350487
929 => 0.0018697406021262
930 => 0.001854572061127
1001 => 0.0019417349969902
1002 => 0.0019477699695546
1003 => 0.0020349266025454
1004 => 0.0021176486256725
1005 => 0.0020656924050653
1006 => 0.0021146847809383
1007 => 0.0021676740298519
1008 => 0.0022698988882021
1009 => 0.0022354731522236
1010 => 0.0022091035779842
1011 => 0.0021841844577448
1012 => 0.002236037191164
1013 => 0.0023027449043403
1014 => 0.0023171131068399
1015 => 0.0023403950839651
1016 => 0.0023159169318027
1017 => 0.0023453981699023
1018 => 0.0024494798951065
1019 => 0.0024213560942015
1020 => 0.0023814157757899
1021 => 0.0024635783017234
1022 => 0.00249331260046
1023 => 0.0027020034809667
1024 => 0.0029654843381968
1025 => 0.0028564015331949
1026 => 0.0027886903160502
1027 => 0.0028046040582108
1028 => 0.0029008183478813
1029 => 0.0029317193240345
1030 => 0.0028477198186447
1031 => 0.0028773898640134
1101 => 0.0030408747310891
1102 => 0.0031285791170527
1103 => 0.0030094647806436
1104 => 0.0026808330506339
1105 => 0.0023778195871134
1106 => 0.0024581924025131
1107 => 0.0024490806195056
1108 => 0.002624724714026
1109 => 0.0024206853508511
1110 => 0.0024241208504388
1111 => 0.0026033970788235
1112 => 0.0025555692546632
1113 => 0.0024780943048482
1114 => 0.002378385239986
1115 => 0.0021940638116158
1116 => 0.0020308051823252
1117 => 0.0023509929505811
1118 => 0.0023371858717902
1119 => 0.0023171911756066
1120 => 0.0023616872083111
1121 => 0.0025777473127051
1122 => 0.0025727664279806
1123 => 0.0025410805806324
1124 => 0.0025651140165797
1125 => 0.0024738811273267
1126 => 0.0024973939202215
1127 => 0.0023777715882326
1128 => 0.0024318458781615
1129 => 0.0024779280784017
1130 => 0.0024871797623585
1201 => 0.002508024278716
1202 => 0.0023299101686659
1203 => 0.0024098781749229
1204 => 0.00245685188661
1205 => 0.0022446229482895
1206 => 0.0024526568028674
1207 => 0.0023268095982781
1208 => 0.0022840951668789
1209 => 0.0023416045215595
1210 => 0.0023191930701108
1211 => 0.0022999250201997
1212 => 0.0022891731172823
1213 => 0.0023314016402839
1214 => 0.0023294316292118
1215 => 0.0022603375693781
1216 => 0.0021702071849592
1217 => 0.0022004579003992
1218 => 0.0021894675318779
1219 => 0.0021496370185709
1220 => 0.0021764779753853
1221 => 0.002058283985472
1222 => 0.0018549373690151
1223 => 0.0019892743725218
1224 => 0.0019841025440174
1225 => 0.0019814946735617
1226 => 0.0020824452188949
1227 => 0.0020727411532864
1228 => 0.0020551281791846
1229 => 0.0021493135424892
1230 => 0.0021149346179111
1231 => 0.0022208823627675
]
'min_raw' => 0.00095106687115634
'max_raw' => 0.0031285791170527
'avg_raw' => 0.0020398229941045
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.000951'
'max' => '$0.003128'
'avg' => '$0.002039'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.00051811671089076
'max_diff' => 0.0020681489172042
'year' => 2029
]
4 => [
'items' => [
101 => 0.0022906663998003
102 => 0.0022729669107317
103 => 0.0023385991348566
104 => 0.0022011548157851
105 => 0.0022468083052717
106 => 0.0022562174261819
107 => 0.0021481513097261
108 => 0.0020743288584322
109 => 0.0020694057425684
110 => 0.0019414077853853
111 => 0.0020097832609491
112 => 0.0020699508498759
113 => 0.0020411352439735
114 => 0.0020320130839865
115 => 0.0020786162210048
116 => 0.00208223768388
117 => 0.0019996679465401
118 => 0.0020168368095766
119 => 0.0020884338225247
120 => 0.0020150327485493
121 => 0.0018724264518125
122 => 0.0018370581185354
123 => 0.0018323393309086
124 => 0.0017364176059634
125 => 0.0018394215996853
126 => 0.0017944575960902
127 => 0.0019364983446955
128 => 0.001855365430872
129 => 0.0018518679531153
130 => 0.0018465810025178
131 => 0.0017640172113809
201 => 0.0017820934344372
202 => 0.0018421815529629
203 => 0.001863621670594
204 => 0.0018613852906714
205 => 0.0018418870884012
206 => 0.0018508132655535
207 => 0.0018220589388595
208 => 0.0018119051876343
209 => 0.0017798571557583
210 => 0.0017327554023953
211 => 0.0017393051900923
212 => 0.001645984291836
213 => 0.001595138113551
214 => 0.0015810645615436
215 => 0.0015622448196251
216 => 0.0015831903014707
217 => 0.0016457199254564
218 => 0.0015702959325299
219 => 0.0014409867870355
220 => 0.0014487584870117
221 => 0.00146621918942
222 => 0.0014336812859963
223 => 0.001402886891105
224 => 0.0014296601190348
225 => 0.0013748701294364
226 => 0.0014728402979007
227 => 0.001470190479402
228 => 0.0015067076997709
301 => 0.0015295426670763
302 => 0.0014769154603457
303 => 0.001463679860172
304 => 0.0014712194595554
305 => 0.0013466066764128
306 => 0.0014965241768544
307 => 0.0014978206696237
308 => 0.0014867193114095
309 => 0.0015665457522111
310 => 0.0017350044407937
311 => 0.0016716235059139
312 => 0.0016470804922295
313 => 0.0016004242052747
314 => 0.0016625909374658
315 => 0.0016578175023856
316 => 0.0016362302186815
317 => 0.0016231741621409
318 => 0.0016472303466376
319 => 0.0016201933346637
320 => 0.0016153367443858
321 => 0.0015859110913241
322 => 0.0015754074719629
323 => 0.0015676310103491
324 => 0.0015590698902116
325 => 0.0015779535879367
326 => 0.0015351606445342
327 => 0.0014835565498348
328 => 0.0014792662277245
329 => 0.0014911121842798
330 => 0.0014858712303319
331 => 0.0014792411360534
401 => 0.001466582480477
402 => 0.0014628269277769
403 => 0.0014750306521172
404 => 0.0014612533588583
405 => 0.0014815825055497
406 => 0.0014760541025127
407 => 0.0014451728925494
408 => 0.0014066834712469
409 => 0.001406340834663
410 => 0.0013980483519787
411 => 0.0013874866284971
412 => 0.001384548598644
413 => 0.0014274053524551
414 => 0.0015161175502495
415 => 0.0014987012231195
416 => 0.0015112863043679
417 => 0.0015731924481975
418 => 0.0015928705497382
419 => 0.001578903499366
420 => 0.0015597845393663
421 => 0.0015606256765759
422 => 0.0016259609505975
423 => 0.0016300358314964
424 => 0.0016403317409213
425 => 0.0016535648941561
426 => 0.0015811571625836
427 => 0.0015572152789304
428 => 0.0015458702862103
429 => 0.0015109320996974
430 => 0.0015486099384779
501 => 0.0015266566753464
502 => 0.0015296189205731
503 => 0.0015276897544831
504 => 0.0015287432096179
505 => 0.001472812913242
506 => 0.0014931909736315
507 => 0.0014593084958441
508 => 0.0014139436615733
509 => 0.0014137915827419
510 => 0.0014248945616613
511 => 0.0014182900753404
512 => 0.0014005175724678
513 => 0.001403042072617
514 => 0.001380924794906
515 => 0.0014057275105773
516 => 0.0014064387637144
517 => 0.0013968883671679
518 => 0.0014351003727748
519 => 0.00145075586265
520 => 0.0014444695870538
521 => 0.0014503148007962
522 => 0.0014994249501417
523 => 0.0015074320473111
524 => 0.0015109882709546
525 => 0.0015062234023816
526 => 0.0014512124441735
527 => 0.0014536524140947
528 => 0.0014357495337585
529 => 0.0014206234864335
530 => 0.0014212284490008
531 => 0.0014290052035744
601 => 0.0014629667468978
602 => 0.0015344368126797
603 => 0.0015371490494322
604 => 0.0015404363594977
605 => 0.0015270652173915
606 => 0.0015230323529877
607 => 0.0015283527421069
608 => 0.0015551931410971
609 => 0.0016242339343969
610 => 0.0015998303069652
611 => 0.0015799897779981
612 => 0.0015973952708705
613 => 0.0015947158316715
614 => 0.0015720986683402
615 => 0.0015714638798943
616 => 0.0015280543123171
617 => 0.0015120067835718
618 => 0.0014985962674155
619 => 0.0014839523338633
620 => 0.0014752709191844
621 => 0.0014886095177636
622 => 0.0014916602130763
623 => 0.0014624951341641
624 => 0.0014585200416771
625 => 0.0014823368746887
626 => 0.0014718559744613
627 => 0.001482635840259
628 => 0.001485136861592
629 => 0.001484734139554
630 => 0.0014737908759929
701 => 0.0014807657858539
702 => 0.0014642680447119
703 => 0.0014463292291005
704 => 0.0014348853823682
705 => 0.0014248991082882
706 => 0.0014304400735534
707 => 0.0014106875441232
708 => 0.0014043683124186
709 => 0.0014784028433334
710 => 0.0015330929473256
711 => 0.0015322977315539
712 => 0.0015274570600565
713 => 0.0015202648041058
714 => 0.0015546669827765
715 => 0.0015426819516209
716 => 0.0015514020631694
717 => 0.0015536216975405
718 => 0.0015603398622705
719 => 0.0015627410287157
720 => 0.001555483036001
721 => 0.0015311243259611
722 => 0.0014704247364984
723 => 0.0014421689137481
724 => 0.0014328440216026
725 => 0.0014331829637216
726 => 0.0014238334269753
727 => 0.001426587284564
728 => 0.0014228757476902
729 => 0.0014158469947685
730 => 0.001430006067867
731 => 0.0014316377691407
801 => 0.0014283328722912
802 => 0.0014291112951383
803 => 0.0014017481607642
804 => 0.001403828520441
805 => 0.001392244813401
806 => 0.0013900730079746
807 => 0.0013607904052861
808 => 0.0013089120300423
809 => 0.0013376576858831
810 => 0.0013029369758782
811 => 0.0012897877168948
812 => 0.0013520342637931
813 => 0.001345786436935
814 => 0.0013350928732189
815 => 0.0013192748637489
816 => 0.0013134078101688
817 => 0.0012777614498993
818 => 0.0012756552727687
819 => 0.0012933225714509
820 => 0.0012851697210037
821 => 0.0012737200312499
822 => 0.001232250415598
823 => 0.0011856248374875
824 => 0.0011870321706127
825 => 0.0012018628995099
826 => 0.001244985243975
827 => 0.0012281365979683
828 => 0.0012159127119746
829 => 0.0012136235455766
830 => 0.0012422772557416
831 => 0.001282828258763
901 => 0.001301853882103
902 => 0.0012830000671898
903 => 0.001261341819779
904 => 0.0012626600569442
905 => 0.0012714296982239
906 => 0.0012723512635264
907 => 0.0012582539709657
908 => 0.0012622222762462
909 => 0.0012561940576557
910 => 0.0012191988912933
911 => 0.0012185297660468
912 => 0.0012094505555938
913 => 0.0012091756407096
914 => 0.0011937296388139
915 => 0.0011915686363755
916 => 0.0011608996621063
917 => 0.0011810860738445
918 => 0.0011675460886847
919 => 0.0011471381372893
920 => 0.0011436197987765
921 => 0.0011435140332723
922 => 0.0011644684362209
923 => 0.0011808412094458
924 => 0.0011677816225235
925 => 0.0011648082077308
926 => 0.0011965564986299
927 => 0.0011925162392209
928 => 0.0011890174006295
929 => 0.0012791973612097
930 => 0.0012078128855804
1001 => 0.0011766851797226
1002 => 0.0011381587327326
1003 => 0.0011507031381398
1004 => 0.0011533464286747
1005 => 0.0010606972685777
1006 => 0.0010231095158651
1007 => 0.0010102108155987
1008 => 0.0010027874312345
1009 => 0.0010061703607063
1010 => 0.00097233697466124
1011 => 0.00099507356963605
1012 => 0.00096577671718599
1013 => 0.00096086500453253
1014 => 0.0010132514058968
1015 => 0.0010205406676098
1016 => 0.00098944241254632
1017 => 0.0010094125266472
1018 => 0.0010021710856689
1019 => 0.00096627892763418
1020 => 0.0009649081112021
1021 => 0.00094689868797064
1022 => 0.00091871742792492
1023 => 0.00090583783587987
1024 => 0.00089913003251706
1025 => 0.00090189780291703
1026 => 0.00090049833350763
1027 => 0.00089136584897372
1028 => 0.00090102179683101
1029 => 0.00087635484016874
1030 => 0.00086653225927065
1031 => 0.00086209562736113
1101 => 0.00084020228354631
1102 => 0.00087504432956987
1103 => 0.00088190865156504
1104 => 0.00088878649839504
1105 => 0.00094865345934472
1106 => 0.00094566267515795
1107 => 0.00097269790763538
1108 => 0.00097164736821591
1109 => 0.00096393648197162
1110 => 0.00093140552128617
1111 => 0.00094437178240677
1112 => 0.00090446364608192
1113 => 0.00093436553530599
1114 => 0.00092071956179687
1115 => 0.00092975181793594
1116 => 0.00091351100699219
1117 => 0.00092249934233511
1118 => 0.00088353643695965
1119 => 0.00084715342414292
1120 => 0.00086179501058673
1121 => 0.00087771208951966
1122 => 0.00091222437224253
1123 => 0.00089166914137294
1124 => 0.00089906157967298
1125 => 0.00087429814884708
1126 => 0.00082320411772892
1127 => 0.00082349330439626
1128 => 0.0008156336008527
1129 => 0.00080884166945557
1130 => 0.00089403015690551
1201 => 0.00088343562186042
1202 => 0.00086655461684452
1203 => 0.00088915051288277
1204 => 0.00089512522644038
1205 => 0.0008952953181359
1206 => 0.00091178070060092
1207 => 0.00092057895217767
1208 => 0.00092212968215187
1209 => 0.00094806978765084
1210 => 0.00095676456885583
1211 => 0.00099257714210768
1212 => 0.00091983248200134
1213 => 0.00091833435359741
1214 => 0.00088946848347843
1215 => 0.00087116129229762
1216 => 0.00089072199252106
1217 => 0.00090805010261718
1218 => 0.00089000691616103
1219 => 0.00089236297539975
1220 => 0.00086814147176487
1221 => 0.00087679951958667
1222 => 0.00088425699673579
1223 => 0.00088013941618429
1224 => 0.00087397519880554
1225 => 0.00090662939519646
1226 => 0.00090478691746326
1227 => 0.00093519525585921
1228 => 0.00095890073015999
1229 => 0.0010013851779674
1230 => 0.00095705044191601
1231 => 0.00095543470791969
]
'min_raw' => 0.00080884166945557
'max_raw' => 0.0023385991348566
'avg_raw' => 0.0015737204021561
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.0008088'
'max' => '$0.002338'
'avg' => '$0.001573'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00014222520170077
'max_diff' => -0.00078997998219607
'year' => 2030
]
5 => [
'items' => [
101 => 0.00097122876690567
102 => 0.00095676215086769
103 => 0.00096590455283308
104 => 0.00099991219566979
105 => 0.0010006307235744
106 => 0.00098859445540146
107 => 0.00098786204738928
108 => 0.00099017374435423
109 => 0.0010037134256825
110 => 0.00099898224499404
111 => 0.0010044572870656
112 => 0.0010113039110129
113 => 0.0010396244505673
114 => 0.0010464524367752
115 => 0.0010298639701951
116 => 0.0010313617229941
117 => 0.0010251571811295
118 => 0.0010191636714311
119 => 0.0010326362059514
120 => 0.0010572575275907
121 => 0.0010571043596267
122 => 0.0010628160276769
123 => 0.0010663743495541
124 => 0.0010510994272061
125 => 0.001041156014432
126 => 0.0010449689516054
127 => 0.0010510659211806
128 => 0.001042991786545
129 => 0.00099315448727131
130 => 0.0010082719402519
131 => 0.0010057556568703
201 => 0.0010021721633443
202 => 0.0010173728792161
203 => 0.0010159067330879
204 => 0.00097198996438537
205 => 0.0009748013734301
206 => 0.00097216093548105
207 => 0.00098069273067718
208 => 0.00095630140592813
209 => 0.00096380401314286
210 => 0.00096850957805537
211 => 0.00097128119193868
212 => 0.00098129416179866
213 => 0.00098011925535485
214 => 0.00098122112796447
215 => 0.00099606771894077
216 => 0.0010711566813641
217 => 0.0010752436079144
218 => 0.0010551180868578
219 => 0.0010631578355616
220 => 0.0010477232761501
221 => 0.0010580845992856
222 => 0.0010651735534258
223 => 0.0010331399327937
224 => 0.0010312431096763
225 => 0.0010157448463478
226 => 0.001024072735194
227 => 0.0010108224652433
228 => 0.0010140736180144
301 => 0.0010049831114359
302 => 0.0010213442133755
303 => 0.0010396384676021
304 => 0.0010442603186817
305 => 0.0010321022183232
306 => 0.0010232989524058
307 => 0.0010078433174308
308 => 0.0010335463828455
309 => 0.0010410627424594
310 => 0.0010335069026082
311 => 0.0010317560494163
312 => 0.0010284381857814
313 => 0.001032459949871
314 => 0.0010410218067507
315 => 0.0010369841931589
316 => 0.0010396511080699
317 => 0.00102948757854
318 => 0.001051104483841
319 => 0.0010854373318505
320 => 0.0010855477175709
321 => 0.0010815100822148
322 => 0.0010798579688192
323 => 0.0010840008277187
324 => 0.0010862481587227
325 => 0.0010996454047333
326 => 0.0011140211834725
327 => 0.0011811066702047
328 => 0.0011622693339772
329 => 0.0012217915687395
330 => 0.0012688659284416
331 => 0.001282981470604
401 => 0.0012699958360021
402 => 0.0012255726814995
403 => 0.0012233930696078
404 => 0.0012897800174067
405 => 0.0012710226639387
406 => 0.0012687915364291
407 => 0.0012450561092761
408 => 0.0012590866864134
409 => 0.0012560179933773
410 => 0.0012511739112943
411 => 0.0012779432750936
412 => 0.0013280531344084
413 => 0.0013202430429069
414 => 0.0013144131719008
415 => 0.0012888683742018
416 => 0.0013042520480537
417 => 0.0012987742164499
418 => 0.0013223104573377
419 => 0.0013083681096273
420 => 0.0012708805585378
421 => 0.0012768505746094
422 => 0.0012759482186902
423 => 0.001294518639566
424 => 0.0012889442601653
425 => 0.0012748597316466
426 => 0.0013278818643569
427 => 0.0013244389019833
428 => 0.0013293202354583
429 => 0.0013314691494143
430 => 0.0013637427872403
501 => 0.0013769642640164
502 => 0.0013799657707191
503 => 0.0013925251510707
504 => 0.0013796532818946
505 => 0.001431149936086
506 => 0.0014653922062103
507 => 0.0015051663650506
508 => 0.0015632871014025
509 => 0.0015851410359177
510 => 0.0015811933182545
511 => 0.0016252597972337
512 => 0.0017044462804164
513 => 0.0015971991705339
514 => 0.0017101306376565
515 => 0.001674377839022
516 => 0.0015896085966249
517 => 0.0015841504567783
518 => 0.0016415571719207
519 => 0.0017688797409151
520 => 0.0017369868814626
521 => 0.0017689319062079
522 => 0.0017316663379827
523 => 0.0017298157884214
524 => 0.0017671220007375
525 => 0.0018542899992697
526 => 0.0018128797506106
527 => 0.0017535080049482
528 => 0.0017973471780187
529 => 0.0017593696291811
530 => 0.0016737955824035
531 => 0.0017369624935941
601 => 0.001694724578971
602 => 0.0017070518479491
603 => 0.0017958296620711
604 => 0.001785147680599
605 => 0.0017989711537488
606 => 0.0017745730854627
607 => 0.0017517814424612
608 => 0.0017092391482694
609 => 0.001696644472269
610 => 0.0017001251876066
611 => 0.0016966427473993
612 => 0.0016728407247829
613 => 0.0016677006802651
614 => 0.0016591337142115
615 => 0.0016617889752164
616 => 0.0016456805726815
617 => 0.0016760804564307
618 => 0.0016817229427375
619 => 0.0017038454429903
620 => 0.0017061422743551
621 => 0.0017677531226651
622 => 0.0017338189027442
623 => 0.0017565849072067
624 => 0.0017545485014856
625 => 0.0015914458031505
626 => 0.0016139199159138
627 => 0.0016488825826084
628 => 0.0016331319486532
629 => 0.0016108642373214
630 => 0.0015928818665018
701 => 0.0015656367359183
702 => 0.0016039837340182
703 => 0.0016544059587709
704 => 0.0017074210651842
705 => 0.0017711152418523
706 => 0.0017568994431019
707 => 0.0017062303468561
708 => 0.0017085033254999
709 => 0.0017225539850917
710 => 0.0017043571042833
711 => 0.0016989904888876
712 => 0.0017218166945463
713 => 0.0017219738860796
714 => 0.001701036175543
715 => 0.0016777677418422
716 => 0.0016776702462554
717 => 0.0016735298532248
718 => 0.0017324029047049
719 => 0.0017647771302821
720 => 0.0017684887830708
721 => 0.0017645273064765
722 => 0.0017660519215923
723 => 0.0017472140730463
724 => 0.0017902718086319
725 => 0.001829785844774
726 => 0.0018191952389937
727 => 0.0018033184153856
728 => 0.0017906717606504
729 => 0.0018162160890545
730 => 0.0018150786403212
731 => 0.0018294407241396
801 => 0.0018287891770582
802 => 0.0018239597484554
803 => 0.0018191954114678
804 => 0.0018380854690873
805 => 0.0018326454358579
806 => 0.0018271969527544
807 => 0.0018162691857692
808 => 0.0018177544507934
809 => 0.0018018803685428
810 => 0.0017945362917451
811 => 0.0016840989976117
812 => 0.0016545865439765
813 => 0.0016638717626715
814 => 0.0016669286977565
815 => 0.0016540848401133
816 => 0.0016724996326574
817 => 0.0016696297067455
818 => 0.0016807949096182
819 => 0.0016738193756001
820 => 0.0016741056539493
821 => 0.001694619212156
822 => 0.0017005743853743
823 => 0.0016975455362113
824 => 0.0016996668383422
825 => 0.0017485513506025
826 => 0.0017416015361978
827 => 0.0017379095858102
828 => 0.0017389322812988
829 => 0.001751423322277
830 => 0.0017549201317654
831 => 0.0017401039042468
901 => 0.0017470913227962
902 => 0.0017768428641439
903 => 0.0017872542198243
904 => 0.0018204822694216
905 => 0.0018063664033712
906 => 0.0018322766864271
907 => 0.0019119160630747
908 => 0.0019755375077665
909 => 0.0019170285979606
910 => 0.0020338612789949
911 => 0.0021248322798329
912 => 0.0021213406613006
913 => 0.0021054777631073
914 => 0.0020019096972425
915 => 0.0019066048189208
916 => 0.0019863313964958
917 => 0.0019865346359379
918 => 0.0019796860522182
919 => 0.0019371500869206
920 => 0.0019782058928279
921 => 0.0019814647536081
922 => 0.0019796406581722
923 => 0.0019470284333094
924 => 0.0018972355936904
925 => 0.0019069649953647
926 => 0.0019229019537817
927 => 0.0018927299667006
928 => 0.001883088188643
929 => 0.0019010140884754
930 => 0.0019587750727449
1001 => 0.0019478556932553
1002 => 0.0019475705441282
1003 => 0.001994288280122
1004 => 0.0019608484634688
1005 => 0.0019070877142777
1006 => 0.0018935124160898
1007 => 0.0018453292529393
1008 => 0.0018786095353499
1009 => 0.0018798072334661
1010 => 0.001861579962906
1011 => 0.0019085667568274
1012 => 0.0019081337652496
1013 => 0.0019527407330166
1014 => 0.0020380125017752
1015 => 0.0020127934437844
1016 => 0.0019834664231668
1017 => 0.001986655083458
1018 => 0.0020216268165683
1019 => 0.0020004821084028
1020 => 0.0020080858928853
1021 => 0.0020216153073298
1022 => 0.0020297779389807
1023 => 0.0019854806063792
1024 => 0.0019751527791634
1025 => 0.0019540256692547
1026 => 0.0019485140006358
1027 => 0.0019657215908248
1028 => 0.0019611879987631
1029 => 0.0018797065715771
1030 => 0.0018711913090778
1031 => 0.0018714524600217
1101 => 0.0018500404275885
1102 => 0.0018173819386513
1103 => 0.0019032064976412
1104 => 0.0018963135844404
1105 => 0.0018887043417358
1106 => 0.0018896364305494
1107 => 0.0019268899627427
1108 => 0.0019052810327221
1109 => 0.0019627319148159
1110 => 0.001950921740589
1111 => 0.0019388086799571
1112 => 0.0019371342860049
1113 => 0.0019324717910994
1114 => 0.0019164823612304
1115 => 0.0018971741638478
1116 => 0.0018844252194884
1117 => 0.0017382826546378
1118 => 0.0017654058646019
1119 => 0.0017966086453072
1120 => 0.0018073797201693
1121 => 0.0017889550512819
1122 => 0.0019172098794577
1123 => 0.0019406432724597
1124 => 0.0018696619965343
1125 => 0.001856384297955
1126 => 0.0019180803631661
1127 => 0.0018808700938066
1128 => 0.0018976258758207
1129 => 0.0018614090400289
1130 => 0.0019349988542954
1201 => 0.0019344382232073
1202 => 0.0019058101233563
1203 => 0.0019300063973136
1204 => 0.0019258016992725
1205 => 0.0018934806450486
1206 => 0.0019360234893643
1207 => 0.0019360445900843
1208 => 0.0019084906664063
1209 => 0.0018763137158798
1210 => 0.0018705612371113
1211 => 0.0018662275170961
1212 => 0.0018965600463589
1213 => 0.0019237560972485
1214 => 0.0019743612054814
1215 => 0.0019870845320388
1216 => 0.0020367445226324
1217 => 0.002007174416135
1218 => 0.0020202824613483
1219 => 0.0020345130986735
1220 => 0.0020413357895216
1221 => 0.0020302185809104
1222 => 0.0021073609871698
1223 => 0.0021138741698404
1224 => 0.002116057983651
1225 => 0.0020900459982972
1226 => 0.0021131507294724
1227 => 0.0021023407909038
1228 => 0.0021304652479718
1229 => 0.0021348755219512
1230 => 0.0021311401767907
1231 => 0.0021325400673632
]
'min_raw' => 0.00095630140592813
'max_raw' => 0.0021348755219512
'avg_raw' => 0.0015455884639397
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.000956'
'max' => '$0.002134'
'avg' => '$0.001545'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00014745973647257
'max_diff' => -0.00020372361290545
'year' => 2031
]
6 => [
'items' => [
101 => 0.0020667126324738
102 => 0.0020632991327074
103 => 0.0020167558211817
104 => 0.0020357225646592
105 => 0.0020002651468276
106 => 0.0020115090592739
107 => 0.0020164652687443
108 => 0.0020138764261794
109 => 0.0020367949158779
110 => 0.002017309517696
111 => 0.0019658843481979
112 => 0.0019144451679468
113 => 0.0019137993909402
114 => 0.001900256362757
115 => 0.0018904672339099
116 => 0.0018923529674138
117 => 0.0018989985382419
118 => 0.0018900809812524
119 => 0.0018919839941677
120 => 0.0019235866882708
121 => 0.0019299243831931
122 => 0.0019083864195499
123 => 0.0018219083876094
124 => 0.0018006864616575
125 => 0.0018159403611826
126 => 0.0018086499796865
127 => 0.0014597216929503
128 => 0.0015416972181925
129 => 0.0014929901447194
130 => 0.0015154366050805
131 => 0.0014657192957
201 => 0.0014894470016438
202 => 0.0014850653607531
203 => 0.0016168795795105
204 => 0.0016148214817891
205 => 0.0016158065842562
206 => 0.0015687850768302
207 => 0.0016436916149329
208 => 0.0016805932691543
209 => 0.0016737637550636
210 => 0.0016754825966241
211 => 0.00164594720382
212 => 0.0016160925514197
213 => 0.0015829791473098
214 => 0.0016444997592056
215 => 0.0016376597173547
216 => 0.0016533483123914
217 => 0.00169324882679
218 => 0.0016991243291025
219 => 0.001707021063794
220 => 0.0017041906465349
221 => 0.0017716226687289
222 => 0.0017634562059104
223 => 0.0017831350316513
224 => 0.0017426541940662
225 => 0.0016968462838623
226 => 0.0017055528700187
227 => 0.0017047143557579
228 => 0.001694039106816
229 => 0.0016844019693939
301 => 0.0016683588508328
302 => 0.001719121651895
303 => 0.0017170607748756
304 => 0.0017504239783117
305 => 0.0017445267080315
306 => 0.0017051432937936
307 => 0.0017065498801378
308 => 0.0017160098492848
309 => 0.0017487509105148
310 => 0.0017584706866693
311 => 0.0017539680990885
312 => 0.0017646253899172
313 => 0.0017730484780556
314 => 0.0017656832001033
315 => 0.0018699600039111
316 => 0.0018266570048167
317 => 0.001847762585275
318 => 0.001852796141853
319 => 0.0018399027925227
320 => 0.0018426988983162
321 => 0.0018469342367001
322 => 0.0018726503820032
323 => 0.0019401369883048
324 => 0.001970026346839
325 => 0.002059949956704
326 => 0.0019675444516927
327 => 0.0019620614914373
328 => 0.0019782594490069
329 => 0.0020310541273784
330 => 0.0020738392554465
331 => 0.00208803355076
401 => 0.002089909561208
402 => 0.0021165390028349
403 => 0.0021318025021658
404 => 0.0021133054881976
405 => 0.0020976312055776
406 => 0.0020414878707963
407 => 0.0020479866146704
408 => 0.0020927565154692
409 => 0.0021559966372814
410 => 0.0022102632408095
411 => 0.002191260967636
412 => 0.0023362348984353
413 => 0.0023506084715087
414 => 0.0023486225084632
415 => 0.0023813676469988
416 => 0.0023163752154372
417 => 0.0022885896917755
418 => 0.0021010201633907
419 => 0.0021537195500052
420 => 0.0022303212033758
421 => 0.0022201826873108
422 => 0.0021645525190649
423 => 0.0022102210403384
424 => 0.0021951215990187
425 => 0.0021832120431734
426 => 0.0022377720272815
427 => 0.0021777810835541
428 => 0.0022297227478215
429 => 0.0021631070261308
430 => 0.0021913477684192
501 => 0.0021753169572453
502 => 0.0021856908567372
503 => 0.0021250452522814
504 => 0.0021577681483569
505 => 0.0021236838722218
506 => 0.002123667711837
507 => 0.0021229152995522
508 => 0.0021630152992723
509 => 0.0021643229588236
510 => 0.0021346889984426
511 => 0.0021304182817823
512 => 0.0021462093596488
513 => 0.002127722143157
514 => 0.0021363721953964
515 => 0.0021279841444273
516 => 0.0021260958174748
517 => 0.0021110493070449
518 => 0.0021045668566392
519 => 0.0021071087924755
520 => 0.0020984318550087
521 => 0.0020932036863264
522 => 0.0021218752852102
523 => 0.0021065572065356
524 => 0.0021195275699611
525 => 0.0021047462038474
526 => 0.0020535075489624
527 => 0.0020240396566991
528 => 0.0019272545874473
529 => 0.0019547027130256
530 => 0.0019729008486812
531 => 0.0019668863649556
601 => 0.0019798078032944
602 => 0.0019806010746648
603 => 0.0019764001833424
604 => 0.0019715360893586
605 => 0.0019691685174085
606 => 0.001986814459009
607 => 0.0019970585220432
608 => 0.0019747272750539
609 => 0.0019694953763316
610 => 0.0019920734999798
611 => 0.0020058461423622
612 => 0.0021075355955348
613 => 0.0021000021123911
614 => 0.0021189096767103
615 => 0.0021167809751282
616 => 0.0021365991147458
617 => 0.0021689933972499
618 => 0.0021031267633352
619 => 0.0021145589334859
620 => 0.0021117560293723
621 => 0.0021423574015237
622 => 0.0021424529356673
623 => 0.0021241058844107
624 => 0.0021340521185438
625 => 0.0021285004035114
626 => 0.0021385331029343
627 => 0.0020999014981308
628 => 0.0021469506227574
629 => 0.0021736244446421
630 => 0.0021739948106848
701 => 0.0021866379905616
702 => 0.0021994841935601
703 => 0.002224141361547
704 => 0.0021987965185276
705 => 0.0021532036132064
706 => 0.0021564952737064
707 => 0.0021297641699983
708 => 0.002130213524681
709 => 0.0021278148341682
710 => 0.0021350134849622
711 => 0.0021014811971648
712 => 0.0021093511580875
713 => 0.0020983331667093
714 => 0.0021145349825245
715 => 0.0020971045069635
716 => 0.0021117546777271
717 => 0.0021180772057678
718 => 0.0021414074703524
719 => 0.0020936586079151
720 => 0.0019962954450917
721 => 0.0020167623623314
722 => 0.0019864901840922
723 => 0.0019892919894425
724 => 0.0019949520821542
725 => 0.0019766058698085
726 => 0.0019801057489684
727 => 0.0019799807086566
728 => 0.0019789031788012
729 => 0.0019741306204057
730 => 0.0019672094665103
731 => 0.0019947812134106
801 => 0.0019994661904797
802 => 0.0020098803141584
803 => 0.0020408656822587
804 => 0.0020377695133002
805 => 0.0020428194933304
806 => 0.002031795415279
807 => 0.0019898033648055
808 => 0.0019920837351761
809 => 0.0019636474801147
810 => 0.0020091531351831
811 => 0.0019983767954176
812 => 0.0019914292190665
813 => 0.0019895335084903
814 => 0.0020205956833249
815 => 0.0020298899728754
816 => 0.0020240983953441
817 => 0.0020122197008602
818 => 0.0020350303058901
819 => 0.002041133461494
820 => 0.002042499732958
821 => 0.0020829157515714
822 => 0.0020447585394325
823 => 0.0020539433596444
824 => 0.0021256007050151
825 => 0.0020606173808016
826 => 0.0020950404969385
827 => 0.0020933556645329
828 => 0.0021109653659338
829 => 0.0020919111550293
830 => 0.0020921473548098
831 => 0.0021077835766693
901 => 0.0020858253230751
902 => 0.0020803881506855
903 => 0.0020728767359711
904 => 0.0020892776352004
905 => 0.0020991092325394
906 => 0.0021783446865798
907 => 0.0022295344034655
908 => 0.0022273121228522
909 => 0.0022476196077227
910 => 0.0022384708997933
911 => 0.0022089273085822
912 => 0.0022593546163224
913 => 0.0022433973061852
914 => 0.0022447128074448
915 => 0.0022446638444222
916 => 0.0022552740606512
917 => 0.0022477557500409
918 => 0.0022329363880894
919 => 0.0022427741721435
920 => 0.0022719888737121
921 => 0.0023626722037975
922 => 0.0024134197967076
923 => 0.0023596171349838
924 => 0.0023967294905945
925 => 0.0023744753017125
926 => 0.0023704310535878
927 => 0.0023937403554929
928 => 0.0024170904572454
929 => 0.002415603156709
930 => 0.0023986521818777
1001 => 0.0023890770063106
1002 => 0.0024615834436241
1003 => 0.0025150049515217
1004 => 0.0025113619628254
1005 => 0.0025274409301674
1006 => 0.0025746492755873
1007 => 0.0025789654150582
1008 => 0.0025784216806902
1009 => 0.0025677236786689
1010 => 0.0026142064255131
1011 => 0.0026529831507166
1012 => 0.002565247400296
1013 => 0.0025986560255108
1014 => 0.0026136542337285
1015 => 0.0026356760531598
1016 => 0.002672830553826
1017 => 0.002713190196294
1018 => 0.00271889749226
1019 => 0.0027148478926529
1020 => 0.0026882296235198
1021 => 0.002732391625899
1022 => 0.0027582606911664
1023 => 0.00277366512753
1024 => 0.0028127282150945
1025 => 0.0026137468575564
1026 => 0.0024728979626758
1027 => 0.0024509023738575
1028 => 0.0024956312686534
1029 => 0.0025074259215048
1030 => 0.0025026715117296
1031 => 0.0023441332751202
1101 => 0.002450067702852
1102 => 0.0025640442398718
1103 => 0.0025684225428428
1104 => 0.0026254815804119
1105 => 0.0026440623419733
1106 => 0.0026900023461155
1107 => 0.0026871287863483
1108 => 0.0026983144462918
1109 => 0.0026957430567794
1110 => 0.0027808372406435
1111 => 0.0028747087620542
1112 => 0.0028714582897609
1113 => 0.0028579631479207
1114 => 0.002878005734817
1115 => 0.0029748912047965
1116 => 0.0029659715432788
1117 => 0.0029746362346683
1118 => 0.0030888696639999
1119 => 0.0032373893716468
1120 => 0.0031683870563099
1121 => 0.0033181022257095
1122 => 0.0034123399887864
1123 => 0.0035753144556613
1124 => 0.0035549092497424
1125 => 0.0036183540137349
1126 => 0.0035183796724526
1127 => 0.0032888183767203
1128 => 0.0032524894229453
1129 => 0.0033252209083985
1130 => 0.0035040241683504
1201 => 0.0033195897574358
1202 => 0.0033569005985559
1203 => 0.0033461550738033
1204 => 0.0033455824904548
1205 => 0.0033674356680033
1206 => 0.0033357364941841
1207 => 0.0032065883574721
1208 => 0.0032657761874524
1209 => 0.003242920923864
1210 => 0.0032682805427881
1211 => 0.0034051359470195
1212 => 0.0033446289105834
1213 => 0.0032808896628906
1214 => 0.0033608328243688
1215 => 0.0034626279403813
1216 => 0.0034562577849646
1217 => 0.0034438970209379
1218 => 0.0035135740005679
1219 => 0.0036286599574771
1220 => 0.0036597672291768
1221 => 0.0036827299811854
1222 => 0.0036858961567285
1223 => 0.0037185097325896
1224 => 0.0035431383155049
1225 => 0.0038214572582757
1226 => 0.0038695152512866
1227 => 0.0038604823404003
1228 => 0.0039138967770424
1229 => 0.0038981808947888
1230 => 0.0038754110471498
1231 => 0.003960084290804
]
'min_raw' => 0.0014597216929503
'max_raw' => 0.003960084290804
'avg_raw' => 0.0027099029918771
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.001459'
'max' => '$0.00396'
'avg' => '$0.0027099'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.00050342028702214
'max_diff' => 0.0018252087688528
'year' => 2032
]
7 => [
'items' => [
101 => 0.0038630132497329
102 => 0.0037252331278366
103 => 0.0036496442279825
104 => 0.003749185788893
105 => 0.0038099723466193
106 => 0.0038501483945252
107 => 0.0038623056423465
108 => 0.0035567518993948
109 => 0.0033920753787313
110 => 0.0034976311404565
111 => 0.0036264164548307
112 => 0.003542422906581
113 => 0.0035457152946516
114 => 0.0034259625679638
115 => 0.0036370119139246
116 => 0.0036062637994225
117 => 0.0037657850718518
118 => 0.0037277140399483
119 => 0.0038577974450343
120 => 0.0038235421249055
121 => 0.0039657340435709
122 => 0.0040224582496191
123 => 0.0041177070199916
124 => 0.0041877724032099
125 => 0.0042289161363729
126 => 0.00422644602096
127 => 0.0043894779894783
128 => 0.0042933437335462
129 => 0.0041725764509911
130 => 0.0041703921518655
131 => 0.0042329392387865
201 => 0.0043640207740175
202 => 0.0043980083089441
203 => 0.0044170027043033
204 => 0.004387912126611
205 => 0.0042835652818009
206 => 0.0042385088432625
207 => 0.0042768982343079
208 => 0.0042299513078973
209 => 0.0043109948738631
210 => 0.0044222849999058
211 => 0.0043993040289668
212 => 0.004476125969316
213 => 0.0045556285956736
214 => 0.0046693209220514
215 => 0.0046990443061812
216 => 0.0047481759298687
217 => 0.0047987485095407
218 => 0.0048149910591622
219 => 0.0048460031261566
220 => 0.0048458396772556
221 => 0.0049392966284962
222 => 0.0050423825398356
223 => 0.0050812950849218
224 => 0.0051707723366974
225 => 0.0050175456786886
226 => 0.0051337698589293
227 => 0.0052386069787863
228 => 0.0051136158425656
301 => 0.0052858870046461
302 => 0.0052925759034949
303 => 0.0053935703346843
304 => 0.0052911931304819
305 => 0.0052304018734261
306 => 0.0054059039547275
307 => 0.0054908238836055
308 => 0.0054652453099261
309 => 0.0052705911012563
310 => 0.0051572940026988
311 => 0.0048607736423954
312 => 0.005212014817901
313 => 0.0053830941486443
314 => 0.0052701480471194
315 => 0.0053271114910462
316 => 0.0056378855706518
317 => 0.0057562082190341
318 => 0.0057315979353083
319 => 0.0057357566681382
320 => 0.0057996014214973
321 => 0.0060827242178395
322 => 0.0059130704755362
323 => 0.0060427644047226
324 => 0.0061115535971168
325 => 0.0061754488326759
326 => 0.0060185423284394
327 => 0.005814409271842
328 => 0.0057497517638948
329 => 0.0052589177832472
330 => 0.0052333677429705
331 => 0.0052190257311178
401 => 0.0051286013751041
402 => 0.005057552600593
403 => 0.00500105197723
404 => 0.0048527774690108
405 => 0.004902815762891
406 => 0.0046664971440846
407 => 0.0048176854217793
408 => 0.0044405152000519
409 => 0.0047546337683801
410 => 0.0045836733128578
411 => 0.0046984686607743
412 => 0.0046980681506198
413 => 0.0044866935192073
414 => 0.0043647770430845
415 => 0.0044424669667302
416 => 0.0045257567319121
417 => 0.0045392702160925
418 => 0.0046472575707362
419 => 0.0046773945202368
420 => 0.0045860781562903
421 => 0.0044326991855475
422 => 0.0044683256222492
423 => 0.0043640550744819
424 => 0.0041813249502284
425 => 0.0043125649156292
426 => 0.0043573760100309
427 => 0.0043771671421504
428 => 0.0041974730516438
429 => 0.004141009267058
430 => 0.0041109484219217
501 => 0.0044095029349648
502 => 0.004425858425138
503 => 0.0043421814249786
504 => 0.0047204094002779
505 => 0.0046348047606985
506 => 0.0047304461167546
507 => 0.0044650928965371
508 => 0.0044752297468949
509 => 0.00434960727997
510 => 0.0044199474673517
511 => 0.0043702332900804
512 => 0.0044142646753265
513 => 0.0044406569060949
514 => 0.0045662587596091
515 => 0.0047560679397902
516 => 0.0045474980311468
517 => 0.0044566211351747
518 => 0.0045130006503247
519 => 0.0046631467287748
520 => 0.004890625723463
521 => 0.0047559535801662
522 => 0.00481571879048
523 => 0.0048287748301645
524 => 0.0047294725775311
525 => 0.0048942871391609
526 => 0.0049826126016894
527 => 0.0050732162498644
528 => 0.0051518848589183
529 => 0.0050370271603664
530 => 0.0051599413620213
531 => 0.0050608942127648
601 => 0.0049720386805757
602 => 0.0049721734377401
603 => 0.0049164330644257
604 => 0.00480842906739
605 => 0.004788511473258
606 => 0.0048921253132474
607 => 0.0049752138006518
608 => 0.0049820573664414
609 => 0.0050280594223091
610 => 0.0050552829651128
611 => 0.0053221106932002
612 => 0.0054294310127517
613 => 0.0055606602680295
614 => 0.0056117814586359
615 => 0.0057656379143997
616 => 0.00564138633076
617 => 0.0056145037190605
618 => 0.0052412982834406
619 => 0.005302410652616
620 => 0.0054002574521323
621 => 0.0052429117411254
622 => 0.005342711378769
623 => 0.0053624139412852
624 => 0.0052375651940744
625 => 0.0053042523043556
626 => 0.005127151110799
627 => 0.0047599282618481
628 => 0.004894695963168
629 => 0.0049939303536572
630 => 0.004852310642917
701 => 0.0051061584929792
702 => 0.0049578658194561
703 => 0.004910864161253
704 => 0.0047274939353015
705 => 0.0048140376233833
706 => 0.0049310892007002
707 => 0.0048587649346248
708 => 0.0050088486462745
709 => 0.0052214072078343
710 => 0.005372889096883
711 => 0.0053845179953661
712 => 0.0052871252892061
713 => 0.0054431977223794
714 => 0.0054443345396669
715 => 0.0052682841974728
716 => 0.0051604543431314
717 => 0.005135955173349
718 => 0.0051971589028105
719 => 0.0052714715292084
720 => 0.0053886418289416
721 => 0.0054594453871093
722 => 0.005644063515505
723 => 0.0056940158876324
724 => 0.0057488983999874
725 => 0.0058222383616337
726 => 0.0059103017895702
727 => 0.0057176240226988
728 => 0.0057252794695729
729 => 0.0055458606008674
730 => 0.0053541258083872
731 => 0.0054996286158004
801 => 0.0056898541810659
802 => 0.0056462162262134
803 => 0.00564130606485
804 => 0.0056495635942981
805 => 0.0056166620014217
806 => 0.0054678493162317
807 => 0.005393116517346
808 => 0.0054895408942789
809 => 0.0055407861592635
810 => 0.0056202630961978
811 => 0.005610465886166
812 => 0.005815189940509
813 => 0.0058947395174926
814 => 0.0058743873315818
815 => 0.0058781326235921
816 => 0.0060221533329379
817 => 0.0061823339818483
818 => 0.0063323642972512
819 => 0.006484981578031
820 => 0.0063009954892971
821 => 0.0062075787001224
822 => 0.0063039609811888
823 => 0.0062528191861761
824 => 0.0065466951099606
825 => 0.0065670424413099
826 => 0.0068608971145202
827 => 0.0071398001909604
828 => 0.0069646261657159
829 => 0.00712980738151
830 => 0.0073084643338135
831 => 0.0076531225808527
901 => 0.0075370538084732
902 => 0.0074481469478601
903 => 0.0073641303941755
904 => 0.0075389555051409
905 => 0.0077638652174984
906 => 0.0078123086153818
907 => 0.0078908054267551
908 => 0.0078082756277295
909 => 0.0079076736802967
910 => 0.0082585924835766
911 => 0.0081637711252844
912 => 0.0080291095532155
913 => 0.0083061262458048
914 => 0.0084063775099778
915 => 0.0091099933839381
916 => 0.0099983374897351
917 => 0.0096305571967533
918 => 0.0094022641007036
919 => 0.0094559183934599
920 => 0.0097803115885512
921 => 0.0098844963870892
922 => 0.0096012861900093
923 => 0.0097013208194661
924 => 0.010252521462961
925 => 0.010548222923562
926 => 0.010146620622061
927 => 0.0090386157999987
928 => 0.0080169847520149
929 => 0.0082879673105859
930 => 0.0082572462980117
1001 => 0.0088494426257661
1002 => 0.0081615096672486
1003 => 0.0081730926939676
1004 => 0.0087775350146332
1005 => 0.0086162801662444
1006 => 0.0083550679638151
1007 => 0.0080188918901674
1008 => 0.0073974393255064
1009 => 0.0068470014584993
1010 => 0.0079265368739702
1011 => 0.0078799853438474
1012 => 0.0078125718296792
1013 => 0.0079625933105564
1014 => 0.0086910550373555
1015 => 0.0086742616367523
1016 => 0.0085674305901829
1017 => 0.0086484609974402
1018 => 0.0083408629416466
1019 => 0.0084201379645022
1020 => 0.0080168229204372
1021 => 0.0081991381642786
1022 => 0.008354507519745
1023 => 0.0083857002181375
1024 => 0.0084559789603545
1025 => 0.0078554548027905
1026 => 0.0081250725190738
1027 => 0.0082834476676266
1028 => 0.0075679029847278
1029 => 0.0082693036498972
1030 => 0.007845001013253
1031 => 0.0077009863255642
1101 => 0.0078948831300448
1102 => 0.0078193213567679
1103 => 0.0077543577812406
1104 => 0.0077181069898804
1105 => 0.0078604834034816
1106 => 0.0078538413736105
1107 => 0.0076208859268879
1108 => 0.0073170050431171
1109 => 0.0074189974422605
1110 => 0.0073819426474679
1111 => 0.0072476512909756
1112 => 0.0073381474508512
1113 => 0.0069396481618176
1114 => 0.0062540508472259
1115 => 0.0067069774336588
1116 => 0.0066895402527705
1117 => 0.0066807476354534
1118 => 0.0070211094471864
1119 => 0.0069883915124713
1120 => 0.0069290081405884
1121 => 0.007246560668782
1122 => 0.0071306497243071
1123 => 0.0074878599431255
1124 => 0.0077231416961477
1125 => 0.0076634666330139
1126 => 0.0078847502589467
1127 => 0.0074213471411411
1128 => 0.00757527106837
1129 => 0.0076069945764426
1130 => 0.0072426421198765
1201 => 0.0069937445712202
1202 => 0.0069771459423646
1203 => 0.0065455918931896
1204 => 0.0067761245828763
1205 => 0.0069789838097097
1206 => 0.0068818299825684
1207 => 0.0068510739832835
1208 => 0.0070081997134677
1209 => 0.0070204097283939
1210 => 0.0067420200941175
1211 => 0.0067999061145368
1212 => 0.0070413004424351
1213 => 0.0067938235968278
1214 => 0.0063130165109259
1215 => 0.0061937697059442
1216 => 0.006177859984005
1217 => 0.0058544531913113
1218 => 0.0062017383476539
1219 => 0.0060501390702468
1220 => 0.0065290393711376
1221 => 0.0062554940876626
1222 => 0.00624370209722
1223 => 0.0062258767741572
1224 => 0.0059475071879193
1225 => 0.0060084524359953
1226 => 0.0062110437228232
1227 => 0.0062833305763176
1228 => 0.0062757904652694
1229 => 0.0062100509149945
1230 => 0.0062401461444694
1231 => 0.0061431989244577
]
'min_raw' => 0.0033920753787313
'max_raw' => 0.010548222923562
'avg_raw' => 0.0069701491511466
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.003392'
'max' => '$0.010548'
'avg' => '$0.00697'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0019323536857811
'max_diff' => 0.0065881386327578
'year' => 2033
]
8 => [
'items' => [
101 => 0.0061089648432896
102 => 0.0060009126662975
103 => 0.0058421058162947
104 => 0.0058641888828066
105 => 0.0055495509588785
106 => 0.0053781195188239
107 => 0.0053306695556469
108 => 0.0052672174818161
109 => 0.0053378366362256
110 => 0.0055486596291722
111 => 0.0052943623710856
112 => 0.0048583875589747
113 => 0.0048845903880475
114 => 0.0049434603652843
115 => 0.0048337565521674
116 => 0.0047299310997954
117 => 0.0048201989070077
118 => 0.0046354706317619
119 => 0.004965783894798
120 => 0.0049568498467251
121 => 0.0050799702047498
122 => 0.0051569598913067
123 => 0.0049795235895
124 => 0.0049348988394344
125 => 0.0049603191251536
126 => 0.0045401784266017
127 => 0.005045635746246
128 => 0.0050500069621359
129 => 0.0050125779578448
130 => 0.0052817183763115
131 => 0.0058496886062778
201 => 0.0056359953592149
202 => 0.0055532468750395
203 => 0.0053959419461335
204 => 0.0056055414240583
205 => 0.0055894474544149
206 => 0.0055166644202306
207 => 0.0054726450140591
208 => 0.0055537521196388
209 => 0.0054625949461051
210 => 0.0054462206129069
211 => 0.0053470099691756
212 => 0.0053115962831603
213 => 0.0052853773998939
214 => 0.005256512985632
215 => 0.00532018069093
216 => 0.0051759012945406
217 => 0.0050019144863785
218 => 0.0049874493658432
219 => 0.0050273888354276
220 => 0.0050097185932803
221 => 0.004987364767522
222 => 0.0049446852264473
223 => 0.0049320231183145
224 => 0.0049731688269645
225 => 0.0049267177208425
226 => 0.0049952588582481
227 => 0.0049766194614279
228 => 0.0048725013059795
301 => 0.0047427315348125
302 => 0.0047415763116478
303 => 0.004713617627315
304 => 0.0046780080392007
305 => 0.0046681022664244
306 => 0.0048125968040617
307 => 0.0051116961726132
308 => 0.0050529758097253
309 => 0.0050954072898167
310 => 0.005304128175887
311 => 0.0053704742691127
312 => 0.0053233833836344
313 => 0.0052589224751524
314 => 0.005261758427981
315 => 0.0054820408659079
316 => 0.0054957796113575
317 => 0.0055304929888213
318 => 0.0055751094888615
319 => 0.0053309817665185
320 => 0.0052502600342127
321 => 0.005212009599175
322 => 0.0050942130640402
323 => 0.0052212465280714
324 => 0.0051472295686957
325 => 0.0051572169852948
326 => 0.0051507126671325
327 => 0.0051542644646692
328 => 0.0049656915655092
329 => 0.0050343976188633
330 => 0.0049201604794039
331 => 0.0047672097733884
401 => 0.0047666970289904
402 => 0.0048041314976026
403 => 0.0047818640108612
404 => 0.0047219427765894
405 => 0.0047304543050975
406 => 0.0046558843591158
407 => 0.0047395084466721
408 => 0.0047419064862819
409 => 0.0047097066575378
410 => 0.0048385411023187
411 => 0.0048913246794643
412 => 0.0048701300623978
413 => 0.0048898376086304
414 => 0.0050554159059098
415 => 0.0050824123930539
416 => 0.0050944024493555
417 => 0.0050783373622895
418 => 0.0048928640759483
419 => 0.0049010906048908
420 => 0.0048407297938982
421 => 0.0047897312692749
422 => 0.0047917709428078
423 => 0.0048179908138083
424 => 0.0049324945282425
425 => 0.0051734608449067
426 => 0.00518260534048
427 => 0.0051936887358786
428 => 0.0051486069967242
429 => 0.0051350099128211
430 => 0.0051529479761945
501 => 0.0052434422553265
502 => 0.0054762181102112
503 => 0.0053939395765183
504 => 0.0053270458478844
505 => 0.0053857296823161
506 => 0.0053766957659844
507 => 0.0053004404207331
508 => 0.0052983001871682
509 => 0.0051519417993223
510 => 0.0050978364357548
511 => 0.0050526219442417
512 => 0.0050032488998634
513 => 0.0049739789041566
514 => 0.0050189509205374
515 => 0.005029236552777
516 => 0.004930904452984
517 => 0.0049175021511318
518 => 0.0049978022664686
519 => 0.0049624651795989
520 => 0.0049988102497619
521 => 0.005007242617802
522 => 0.0050058848123336
523 => 0.0049689888352031
524 => 0.0049925052307722
525 => 0.0049368819446763
526 => 0.0048763999753945
527 => 0.0048378162471525
528 => 0.0048041468268725
529 => 0.004822828578122
530 => 0.0047562315460704
531 => 0.0047349258151836
601 => 0.0049845384050891
602 => 0.0051689299090398
603 => 0.0051662487835453
604 => 0.005149928121627
605 => 0.0051256789285419
606 => 0.0052416682758134
607 => 0.0052012599065042
608 => 0.0052306603714089
609 => 0.0052381440236608
610 => 0.0052607947850953
611 => 0.0052688904854094
612 => 0.0052444196562348
613 => 0.0051622925646646
614 => 0.0049576396608812
615 => 0.00486237318172
616 => 0.0048309336568081
617 => 0.0048320764238265
618 => 0.0048005538079228
619 => 0.004809838631051
620 => 0.0047973249253498
621 => 0.0047736269941424
622 => 0.004821365297649
623 => 0.004826866692415
624 => 0.0048157240019464
625 => 0.004818348508923
626 => 0.0047260917909478
627 => 0.0047331058688444
628 => 0.0046940505918102
629 => 0.0046867281981847
630 => 0.0045879998587743
701 => 0.0044130882946071
702 => 0.0045100062802321
703 => 0.0043929429823282
704 => 0.0043486093376136
705 => 0.0045584779163963
706 => 0.0045374129319348
707 => 0.0045013588352653
708 => 0.004448027311959
709 => 0.004428246131189
710 => 0.0043080619387912
711 => 0.0043009608155466
712 => 0.0043605273465451
713 => 0.0043330394420485
714 => 0.0042944360136517
715 => 0.0041546183091654
716 => 0.0039974169172717
717 => 0.0040021618391603
718 => 0.0040521646770858
719 => 0.0041975546721556
720 => 0.0041407482858094
721 => 0.004099534600737
722 => 0.0040918165164018
723 => 0.0041884245007612
724 => 0.0043251450386283
725 => 0.0043892912560459
726 => 0.0043257243027346
727 => 0.0042527020094585
728 => 0.0042571465380974
729 => 0.0042867139959488
730 => 0.0042898211177076
731 => 0.0042422911115978
801 => 0.0042556705299091
802 => 0.0042353459700546
803 => 0.0041106141837438
804 => 0.0041083581812582
805 => 0.0040777469893258
806 => 0.0040768200945997
807 => 0.0040247428208029
808 => 0.0040174568502056
809 => 0.0039140542622175
810 => 0.0039821141587631
811 => 0.0039364631534653
812 => 0.0038676563204979
813 => 0.0038557939965595
814 => 0.0038554374007777
815 => 0.0039260866333089
816 => 0.003981288581347
817 => 0.0039372572722473
818 => 0.0039272321966764
819 => 0.0040342737760375
820 => 0.0040206517593581
821 => 0.0040088551807664
822 => 0.0043129032140262
823 => 0.0040722254705372
824 => 0.0039672762369706
825 => 0.0038373816311131
826 => 0.0038796759697658
827 => 0.003888588008353
828 => 0.0035762148965282
829 => 0.0034494851639645
830 => 0.0034059962954578
831 => 0.0033809678367899
901 => 0.0033923736196925
902 => 0.0032783019964701
903 => 0.003354960013846
904 => 0.0032561836303697
905 => 0.0032396234482337
906 => 0.0034162478579353
907 => 0.0034408241127204
908 => 0.0033359741745631
909 => 0.0034033048085232
910 => 0.0033788897846834
911 => 0.003257876867959
912 => 0.0032532550646509
913 => 0.0031925350368482
914 => 0.0030975199510514
915 => 0.0030540955072471
916 => 0.0030314796798855
917 => 0.0030408114110285
918 => 0.0030360930022069
919 => 0.0030053021929911
920 => 0.0030378578953487
921 => 0.00295469152877
922 => 0.0029215740114814
923 => 0.0029066155972427
924 => 0.0028328006600265
925 => 0.0029502730507889
926 => 0.0029734165916473
927 => 0.0029966057324306
928 => 0.0031984513710502
929 => 0.0031883677333546
930 => 0.0032795189071919
1001 => 0.0032759769401928
1002 => 0.0032499791488633
1003 => 0.0031402987436732
1004 => 0.0031840153983167
1005 => 0.0030494623304004
1006 => 0.0031502786376026
1007 => 0.0031042702851852
1008 => 0.00313472316737
1009 => 0.003079966139376
1010 => 0.0031102709395302
1011 => 0.0029789047837536
1012 => 0.0028562369158612
1013 => 0.0029056020467994
1014 => 0.0029592675897167
1015 => 0.0030756281604875
1016 => 0.0030063247644903
1017 => 0.0030312488863424
1018 => 0.0029477572503854
1019 => 0.0027754901571992
1020 => 0.0027764651702385
1021 => 0.0027499656309944
1022 => 0.0027270661600915
1023 => 0.0030142850931992
1024 => 0.0029785648786079
1025 => 0.0029216493916026
1026 => 0.0029978330326907
1027 => 0.0030179771965913
1028 => 0.0030185506726182
1029 => 0.0030741322905717
1030 => 0.003103796210037
1031 => 0.0031090246044135
1101 => 0.0031964834811836
1102 => 0.0032257985430665
1103 => 0.0033465431341391
1104 => 0.0031012794337206
1105 => 0.0030962283892108
1106 => 0.0029989050927539
1107 => 0.0029371811195206
1108 => 0.0030031313860084
1109 => 0.0030615543190074
1110 => 0.0030007204561355
1111 => 0.0030086640743536
1112 => 0.0029269995837573
1113 => 0.002956190796474
1114 => 0.0029813342013467
1115 => 0.0029674514910371
1116 => 0.0029466684017727
1117 => 0.0030567643047479
1118 => 0.0030505522624327
1119 => 0.003153076098377
1120 => 0.0032330007600455
1121 => 0.0033762400419976
1122 => 0.0032267623840479
1123 => 0.0032213148240723
1124 => 0.0032745655966496
1125 => 0.0032257903906506
1126 => 0.0032566146371791
1127 => 0.0033712737793408
1128 => 0.0033736963463372
1129 => 0.0033331152278468
1130 => 0.0033306458630986
1201 => 0.0033384399108135
1202 => 0.0033840898917222
1203 => 0.0033681383857105
1204 => 0.00338659787231
1205 => 0.0034096817429643
1206 => 0.003505166419349
1207 => 0.0035281874515636
1208 => 0.003472258278319
1209 => 0.0034773080564506
1210 => 0.003456389010367
1211 => 0.0034361814739651
1212 => 0.0034816050647228
1213 => 0.0035646175696355
1214 => 0.0035641011531508
1215 => 0.003583358440758
1216 => 0.0035953555714013
1217 => 0.0035438551042438
1218 => 0.003510330193849
1219 => 0.0035231857777398
1220 => 0.0035437421363395
1221 => 0.0035165196276976
1222 => 0.0033484896936672
1223 => 0.0033994592418583
1224 => 0.0033909754167557
1225 => 0.0033788934181413
1226 => 0.0034301436929833
1227 => 0.0034252004789489
1228 => 0.0032771320270975
1229 => 0.0032866108889781
1230 => 0.0032777084680834
1231 => 0.0033064740112581
]
'min_raw' => 0.0027270661600915
'max_raw' => 0.0061089648432896
'avg_raw' => 0.0044180155016905
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.002727'
'max' => '$0.0061089'
'avg' => '$0.004418'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.00066500921863989
'max_diff' => -0.0044392580802722
'year' => 2034
]
9 => [
'items' => [
101 => 0.0032242369569187
102 => 0.0032495325209585
103 => 0.0032653976615931
104 => 0.0032747423513086
105 => 0.0033085017782747
106 => 0.0033045404991701
107 => 0.0033082555396037
108 => 0.0033583118576362
109 => 0.0036114795369905
110 => 0.0036252588951948
111 => 0.0035574042958335
112 => 0.0035845108699055
113 => 0.0035324721752433
114 => 0.003567406099599
115 => 0.0035913070034177
116 => 0.0034833034149406
117 => 0.0034769081433684
118 => 0.0034246546665022
119 => 0.0034527327251819
120 => 0.0034080585149386
121 => 0.0034190200034948
122 => 0.0033883707258863
123 => 0.0034435333233712
124 => 0.0035052136787604
125 => 0.0035207965723627
126 => 0.0034798046881525
127 => 0.0034501238624874
128 => 0.0033980141100914
129 => 0.0034846737896676
130 => 0.0035100157208815
131 => 0.0034845406792913
201 => 0.0034786375555142
202 => 0.0034674511466233
203 => 0.0034810108050419
204 => 0.0035098777032817
205 => 0.0034962646071597
206 => 0.0035052562969801
207 => 0.0034709892475749
208 => 0.0035438721530414
209 => 0.0036596277471485
210 => 0.0036599999203115
211 => 0.0036463867508099
212 => 0.0036408165351497
213 => 0.0036547844731745
214 => 0.0036623615065582
215 => 0.0037075312568488
216 => 0.0037560001985528
217 => 0.0039821836008295
218 => 0.0039186722065577
219 => 0.0041193555767684
220 => 0.0042780700671308
221 => 0.004325661603047
222 => 0.0042818796293589
223 => 0.0041321038624278
224 => 0.0041247551487591
225 => 0.004348583378252
226 => 0.0042853416514379
227 => 0.0042778192492668
228 => 0.0041977935994661
301 => 0.0042450986698679
302 => 0.0042347523570475
303 => 0.0042184201961016
304 => 0.0043086749751284
305 => 0.0044776238643669
306 => 0.0044512915955865
307 => 0.0044316357784606
308 => 0.0043455097095376
309 => 0.0043973768399832
310 => 0.004378907948281
311 => 0.004458262027682
312 => 0.0044112544289529
313 => 0.0042848625331573
314 => 0.0043049908591559
315 => 0.0043019485031738
316 => 0.004364559973702
317 => 0.0043457655643617
318 => 0.0042982785931106
319 => 0.0044770464154306
320 => 0.004465438227408
321 => 0.0044818959840228
322 => 0.0044891411974577
323 => 0.0045979540206615
324 => 0.0046425311527062
325 => 0.0046526509421128
326 => 0.0046949957698361
327 => 0.0046515973642238
328 => 0.0048252219292118
329 => 0.0049406721336546
330 => 0.005074773487128
331 => 0.0052707316075985
401 => 0.0053444136736094
402 => 0.0053311036678871
403 => 0.0054796768783887
404 => 0.0057466596350632
405 => 0.0053850685163402
406 => 0.0057658248423673
407 => 0.0056452817855903
408 => 0.005359476366449
409 => 0.0053410738668808
410 => 0.0055346246149925
411 => 0.005963901545735
412 => 0.0058563725434026
413 => 0.0059640774246616
414 => 0.0058384339595914
415 => 0.0058321947025444
416 => 0.0059579752020046
417 => 0.0062518681949315
418 => 0.006112250650406
419 => 0.0059120746647024
420 => 0.0060598814974626
421 => 0.0059318375400491
422 => 0.0056433186667493
423 => 0.0058562903180011
424 => 0.0057138822398924
425 => 0.0057554444879143
426 => 0.0060547650864958
427 => 0.0060187500401704
428 => 0.006065356845019
429 => 0.0059830970543737
430 => 0.0059062534387327
501 => 0.0057628191236569
502 => 0.0057203552941892
503 => 0.0057320907689656
504 => 0.0057203494786708
505 => 0.0056400992976153
506 => 0.005622769278657
507 => 0.005593885154481
508 => 0.0056028375523434
509 => 0.005548526948544
510 => 0.0056510222790568
511 => 0.0056700463155857
512 => 0.0057446338697317
513 => 0.0057523777970379
514 => 0.005960103073647
515 => 0.0058456914819721
516 => 0.0059224486554892
517 => 0.0059155827714233
518 => 0.0053656706365196
519 => 0.0054414436767935
520 => 0.0055593227485697
521 => 0.0055062183865158
522 => 0.0054311412430786
523 => 0.0053705124243713
524 => 0.0052786535644147
525 => 0.0054079431458105
526 => 0.0055779451969317
527 => 0.0057566893296004
528 => 0.0059714386932223
529 => 0.0059235091352201
530 => 0.005752674739624
531 => 0.0057603382458159
601 => 0.0058077110256152
602 => 0.0057463589715041
603 => 0.0057282650530124
604 => 0.0058052251990655
605 => 0.0058057551812948
606 => 0.0057351622283966
607 => 0.0056567110796241
608 => 0.0056563823664463
609 => 0.0056424227422704
610 => 0.0058409173457208
611 => 0.0059500693075506
612 => 0.0059625834040672
613 => 0.0059492270091479
614 => 0.005954367355456
615 => 0.0058908542338666
616 => 0.0060360263955887
617 => 0.0061692507272237
618 => 0.0061335437604228
619 => 0.0060800139411439
620 => 0.0060373748617428
621 => 0.0061234993484054
622 => 0.0061196643605868
623 => 0.0061680871289093
624 => 0.0061658903924347
625 => 0.0061496076367203
626 => 0.0061335443419313
627 => 0.006197233490057
628 => 0.0061788920382133
629 => 0.0061605220970287
630 => 0.0061236783676858
701 => 0.0061286860424131
702 => 0.0060751654658121
703 => 0.0060504043981416
704 => 0.005678057350485
705 => 0.0055785540525604
706 => 0.0056098598156639
707 => 0.0056201664857313
708 => 0.0055768625229576
709 => 0.0056389492816998
710 => 0.005629273126116
711 => 0.0056669173871309
712 => 0.0056433988871726
713 => 0.0056443640946145
714 => 0.0057135269883191
715 => 0.0057336052706015
716 => 0.0057233932941811
717 => 0.0057305454124199
718 => 0.005895362958513
719 => 0.005871931174027
720 => 0.0058594835055316
721 => 0.0058629315947737
722 => 0.0059050460115285
723 => 0.005916835748858
724 => 0.005866881803343
725 => 0.0058904403728282
726 => 0.0059907497716685
727 => 0.0060258523842424
728 => 0.0061378830733682
729 => 0.0060902904454408
730 => 0.0061776487737622
731 => 0.0064461584923733
801 => 0.0066606626350591
802 => 0.0064633957606866
803 => 0.0068573053017912
804 => 0.0071640203825088
805 => 0.0071522481468502
806 => 0.0070987652780794
807 => 0.0067495783131248
808 => 0.0064282512618891
809 => 0.006697054984515
810 => 0.006697740220484
811 => 0.0066746497423202
812 => 0.0065312367655529
813 => 0.0066696592815943
814 => 0.006680646758241
815 => 0.0066744966931247
816 => 0.0065645423000867
817 => 0.0063966622648864
818 => 0.0064294656219165
819 => 0.0064831981899022
820 => 0.0063814712289173
821 => 0.0063489633010288
822 => 0.00640940172386
823 => 0.0066041469150677
824 => 0.0065673314647519
825 => 0.0065663700645613
826 => 0.0067238821731926
827 => 0.0066111374966531
828 => 0.0064298793772996
829 => 0.0063841093116619
830 => 0.0062216564130589
831 => 0.0063338632087614
901 => 0.0063379013315808
902 => 0.0062764468163002
903 => 0.0064348660725194
904 => 0.0064334062111842
905 => 0.0065838017173698
906 => 0.006871301439224
907 => 0.0067862736244696
908 => 0.0066873955269102
909 => 0.0066981463177071
910 => 0.0068160559575372
911 => 0.0067447650976807
912 => 0.0067704017879426
913 => 0.006816017153336
914 => 0.0068435380358436
915 => 0.0066941864862366
916 => 0.0066593654957128
917 => 0.006588133969608
918 => 0.0065695509940467
919 => 0.0066275675857645
920 => 0.0066122822636033
921 => 0.0063375619429942
922 => 0.0063088521409611
923 => 0.0063097326296013
924 => 0.0062375404673125
925 => 0.0061274300917178
926 => 0.0064167935844318
927 => 0.0063935536463274
928 => 0.0063678985532884
929 => 0.0063710411557998
930 => 0.0064966440405482
1001 => 0.0064237880242964
1002 => 0.0066174876843681
1003 => 0.0065776688574021
1004 => 0.0065368288277746
1005 => 0.0065311834916624
1006 => 0.0065154635645634
1007 => 0.0064615540854137
1008 => 0.0063964551498831
1009 => 0.0063534711938725
1010 => 0.0058607413331307
1011 => 0.0059521891292067
1012 => 0.0060573914828631
1013 => 0.0060937069137734
1014 => 0.0060315868562501
1015 => 0.006464006963911
1016 => 0.0065430142844844
1017 => 0.0063036959569474
1018 => 0.0062589292691681
1019 => 0.0064669418605089
1020 => 0.0063414848394253
1021 => 0.0063979781283374
1022 => 0.0062758705378864
1023 => 0.0065239837345627
1024 => 0.0065220935277073
1025 => 0.0064255718903095
1026 => 0.0065071513172865
1027 => 0.0064929748842781
1028 => 0.0063840021933783
1029 => 0.0065274383632353
1030 => 0.006527509505786
1031 => 0.006434609528352
1101 => 0.0063261226931291
1102 => 0.0063067278093359
1103 => 0.0062921163697338
1104 => 0.0063943846098928
1105 => 0.0064860779942349
1106 => 0.0066566966497778
1107 => 0.0066995942335806
1108 => 0.0068670263590166
1109 => 0.0067673286804417
1110 => 0.0068115233700528
1111 => 0.0068595029573463
1112 => 0.0068825061358857
1113 => 0.0068450236908744
1114 => 0.0071051146994888
1115 => 0.0071270743495984
1116 => 0.0071344372303299
1117 => 0.0070467360056107
1118 => 0.0071246352198886
1119 => 0.0070881887572788
1120 => 0.0071830123278706
1121 => 0.0071978818745075
1122 => 0.0071852878975055
1123 => 0.0071900077263079
1124 => 0.0069680659336535
1125 => 0.0069565570808682
1126 => 0.0067996330565089
1127 => 0.0068635807563592
1128 => 0.0067440335965822
1129 => 0.0067819432324197
1130 => 0.0067986534386806
1201 => 0.0067899249752257
1202 => 0.0068671962633623
1203 => 0.006801499882965
1204 => 0.0066281163336114
1205 => 0.0064546855460258
1206 => 0.0064525082637613
1207 => 0.0064068469986977
1208 => 0.0063738422673345
1209 => 0.0063802001495008
1210 => 0.0064026061555265
1211 => 0.0063725399895324
1212 => 0.0063789561304406
1213 => 0.0064855068200388
1214 => 0.006506874800953
1215 => 0.0064342580527975
1216 => 0.0061426913304066
1217 => 0.0060711401253922
1218 => 0.0061225697126345
1219 => 0.0060979896824223
1220 => 0.0049215536022959
1221 => 0.0051979398089986
1222 => 0.0050337205101646
1223 => 0.0051094003184339
1224 => 0.0049417749387057
1225 => 0.0050217745559109
1226 => 0.0050070015477314
1227 => 0.0054514223892468
1228 => 0.0054444833690874
1229 => 0.0054478047108329
1230 => 0.0052892684156093
1231 => 0.0055418210386301
]
'min_raw' => 0.0032242369569187
'max_raw' => 0.0071978818745075
'avg_raw' => 0.0052110594157131
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.003224'
'max' => '$0.007197'
'avg' => '$0.005211'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0004971707968273
'max_diff' => 0.0010889170312179
'year' => 2035
]
10 => [
'items' => [
101 => 0.0056662375422286
102 => 0.0056432113586506
103 => 0.0056490065529775
104 => 0.0055494259140431
105 => 0.0054487688690903
106 => 0.0053371247152295
107 => 0.0055445457534684
108 => 0.0055214840748114
109 => 0.0055743792683204
110 => 0.0057089066383804
111 => 0.0057287163046415
112 => 0.0057553406969862
113 => 0.0057457977475839
114 => 0.0059731495183643
115 => 0.0059456157188075
116 => 0.0060119642537246
117 => 0.0058754802835247
118 => 0.0057210357160661
119 => 0.0057503905791666
120 => 0.0057475634697932
121 => 0.0057115711226636
122 => 0.0056790788410016
123 => 0.005624988346678
124 => 0.0057961386746049
125 => 0.0057891902838482
126 => 0.0059016766535774
127 => 0.0058817935950934
128 => 0.005749009664328
129 => 0.0057537520683922
130 => 0.0057856470148455
131 => 0.0058960357886904
201 => 0.0059288066926084
202 => 0.0059136259042189
203 => 0.0059495577043164
204 => 0.0059779567340559
205 => 0.0059531241852125
206 => 0.0063047007096245
207 => 0.0061587016248589
208 => 0.0062298605629185
209 => 0.006246831550353
210 => 0.0062033607229011
211 => 0.0062127879888018
212 => 0.0062270677278651
213 => 0.0063137715071981
214 => 0.0065413073121086
215 => 0.0066420813712149
216 => 0.0069452651001406
217 => 0.0066337134884488
218 => 0.0066152273051397
219 => 0.0066698398499907
220 => 0.0068478407941271
221 => 0.0069920938405711
222 => 0.0070399508982345
223 => 0.0070462759984386
224 => 0.0071360590200922
225 => 0.0071875209737497
226 => 0.0071251569997355
227 => 0.0070723100615387
228 => 0.0068830188885212
229 => 0.0069049298572208
301 => 0.0070558747034983
302 => 0.0072690931894725
303 => 0.0074520568320407
304 => 0.00738798934134
305 => 0.0078767790707866
306 => 0.0079252405759342
307 => 0.0079185447628709
308 => 0.0080289472836361
309 => 0.0078098207629995
310 => 0.007716139930051
311 => 0.0070837361694151
312 => 0.0072614158307396
313 => 0.0075196836532354
314 => 0.0074855009384734
315 => 0.0072979399422583
316 => 0.0074519145502061
317 => 0.0074010057295874
318 => 0.0073608518305565
319 => 0.0075448046262333
320 => 0.0073425409710223
321 => 0.007517665918551
322 => 0.0072930663619098
323 => 0.0073882819962409
324 => 0.0073342329971326
325 => 0.0073692093235519
326 => 0.0071647384339884
327 => 0.0072750659627466
328 => 0.0071601484460688
329 => 0.0071600939602032
330 => 0.0071575571496533
331 => 0.0072927570984024
401 => 0.0072971659638772
402 => 0.0071972529974759
403 => 0.0071828539780836
404 => 0.0072360946996085
405 => 0.0071737637584698
406 => 0.0072029280135223
407 => 0.0071746471140453
408 => 0.0071682804878861
409 => 0.0071175501274578
410 => 0.0070956940933249
411 => 0.007104264407469
412 => 0.0070750095069954
413 => 0.007057382371264
414 => 0.0071540506686877
415 => 0.0071024046969622
416 => 0.0071461351828133
417 => 0.0070962987749587
418 => 0.0069235440726455
419 => 0.0068241910164973
420 => 0.006497873398197
421 => 0.0065904166699512
422 => 0.0066517729548672
423 => 0.0066314947030685
424 => 0.0066750602345738
425 => 0.0066777348043837
426 => 0.0066635712059933
427 => 0.0066471715735265
428 => 0.0066391891393982
429 => 0.0066986836635047
430 => 0.0067332222372422
501 => 0.0066579308788997
502 => 0.0066402911670781
503 => 0.0067164148873122
504 => 0.0067628503126797
505 => 0.0071057034037819
506 => 0.0070803037393922
507 => 0.007144051912578
508 => 0.0071368748465728
509 => 0.0072036930879519
510 => 0.0073129126731112
511 => 0.0070908387182062
512 => 0.0071293830780381
513 => 0.0071199328911266
514 => 0.0072231075538546
515 => 0.0072234296538897
516 => 0.0071615712896276
517 => 0.0071951057124314
518 => 0.0071763877175911
519 => 0.0072102136641563
520 => 0.0070799645113888
521 => 0.0072385939199324
522 => 0.0073285265727234
523 => 0.0073297752876946
524 => 0.0073724026513678
525 => 0.0074157145216703
526 => 0.0074988478850469
527 => 0.0074133959772864
528 => 0.0072596763138009
529 => 0.007270774376993
530 => 0.0071806485945353
531 => 0.007182163625221
601 => 0.0071740762726858
602 => 0.0071983470264314
603 => 0.0070852905769731
604 => 0.0071118246996869
605 => 0.0070746767725039
606 => 0.0071293023256992
607 => 0.0070705342603885
608 => 0.0071199283339603
609 => 0.0071412451786744
610 => 0.0072199047945883
611 => 0.0070589161711618
612 => 0.0067306494700236
613 => 0.0067996551104519
614 => 0.0066975903479824
615 => 0.0067070368303369
616 => 0.0067261202280895
617 => 0.0066642646922741
618 => 0.0066760647792157
619 => 0.0066756431970742
620 => 0.006672010229936
621 => 0.0066559192160962
622 => 0.0066325840625185
623 => 0.0067255441321905
624 => 0.0067413398594737
625 => 0.0067764518045474
626 => 0.0068809211364271
627 => 0.0068704821866158
628 => 0.0068875085468658
629 => 0.0068503400980389
630 => 0.0067087609680763
701 => 0.006716449395991
702 => 0.0066205745766959
703 => 0.0067740000698621
704 => 0.0067376668879627
705 => 0.0067142426492309
706 => 0.0067078511286689
707 => 0.0068125794198156
708 => 0.0068439157659416
709 => 0.0068243890579398
710 => 0.0067843392101432
711 => 0.0068612467575873
712 => 0.0068818239728144
713 => 0.0068864304524453
714 => 0.0070226958809567
715 => 0.006894046176179
716 => 0.0069250134387871
717 => 0.0071666111816603
718 => 0.0069475153670838
719 => 0.0070635753064847
720 => 0.0070578947763978
721 => 0.0071172671141411
722 => 0.0070530245117542
723 => 0.0070538208758048
724 => 0.0071065394894903
725 => 0.0070325057044211
726 => 0.0070141738980985
727 => 0.0069888486389588
728 => 0.0070441454157844
729 => 0.0070772933326333
730 => 0.007344441197973
731 => 0.0075170309024052
801 => 0.0075095383281628
802 => 0.0075780064312268
803 => 0.0075471609237005
804 => 0.0074475526432645
805 => 0.0076175718320331
806 => 0.0075637706468017
807 => 0.0075682059511437
808 => 0.0075680408688946
809 => 0.0076038139536922
810 => 0.007578465444558
811 => 0.0075285009310835
812 => 0.0075616697068741
813 => 0.0076601691129179
814 => 0.0079659142916089
815 => 0.0081370133441892
816 => 0.0079556139138052
817 => 0.0080807408118489
818 => 0.0080057092602952
819 => 0.0079920737953826
820 => 0.0080706627341591
821 => 0.0081493892324695
822 => 0.0081443746948712
823 => 0.0080872232997482
824 => 0.0080549399268062
825 => 0.0082994004424464
826 => 0.0084795147860938
827 => 0.0084672321953589
828 => 0.0085214435563501
829 => 0.0086806097889147
830 => 0.0086951619544842
831 => 0.0086933287161001
901 => 0.0086572596553746
902 => 0.0088139794816815
903 => 0.0089447179180097
904 => 0.008648910709952
905 => 0.0087615502223797
906 => 0.0088121177285269
907 => 0.008886365830254
908 => 0.0090116348232944
909 => 0.0091477101756957
910 => 0.0091669527225155
911 => 0.0091532992147062
912 => 0.0090635538618958
913 => 0.0092124491362098
914 => 0.0092996684958791
915 => 0.0093516056285827
916 => 0.009483309555604
917 => 0.0088124300162296
918 => 0.0083375481333839
919 => 0.00826338847
920 => 0.0084141950616759
921 => 0.0084539615572408
922 => 0.0084379317327415
923 => 0.0079034089992268
924 => 0.0082605743184301
925 => 0.0086448541705799
926 => 0.00865961592473
927 => 0.0088519944536289
928 => 0.0089146407885008
929 => 0.0090695307198946
930 => 0.009059842312514
1001 => 0.0090975555459713
1002 => 0.0090888859267016
1003 => 0.0093757869086857
1004 => 0.0096922812970222
1005 => 0.0096813221027447
1006 => 0.0096358222898297
1007 => 0.0097033972708794
1008 => 0.010030053397243
1009 => 0.0099999801356849
1010 => 0.010029193747654
1011 => 0.010414339730169
1012 => 0.010915084293815
1013 => 0.010682438170069
1014 => 0.011187213316479
1015 => 0.011504942514163
1016 => 0.012054422307746
1017 => 0.011985624731345
1018 => 0.012199533182717
1019 => 0.011862462711098
1020 => 0.011088480775079
1021 => 0.01096599517102
1022 => 0.011211214452175
1023 => 0.011814062126748
1024 => 0.01119222863355
1025 => 0.011318024739347
1026 => 0.011281795452415
1027 => 0.011279864947679
1028 => 0.011353544461524
1029 => 0.011246668483826
1030 => 0.010811236524067
1031 => 0.011010792425208
1101 => 0.010933734308316
1102 => 0.011019236034071
1103 => 0.011480653584376
1104 => 0.011276649886566
1105 => 0.011061748562837
1106 => 0.011331282513214
1107 => 0.011674491853958
1108 => 0.011653014430221
1109 => 0.011611339251304
1110 => 0.011846260052818
1111 => 0.012234280391582
1112 => 0.012339160729958
1113 => 0.012416581251563
1114 => 0.012427256233462
1115 => 0.012537215181485
1116 => 0.011945938204742
1117 => 0.012884309951902
1118 => 0.01304634083064
1119 => 0.013015885740929
1120 => 0.013195976243345
1121 => 0.013142989049079
1122 => 0.013066218918024
1123 => 0.013351700670702
1124 => 0.013024418878447
1125 => 0.012559883577972
1126 => 0.012305030324666
1127 => 0.012640641647046
1128 => 0.012845587770402
1129 => 0.012981044120919
1130 => 0.01302203313074
1201 => 0.011991837353297
1202 => 0.011436618966533
1203 => 0.011792507586857
1204 => 0.012226716265773
1205 => 0.011943526153607
1206 => 0.011954626669854
1207 => 0.011550871990958
1208 => 0.01226243959586
1209 => 0.012158770181051
1210 => 0.012696607288466
1211 => 0.012568248146369
1212 => 0.01300683342875
1213 => 0.012891339225305
1214 => 0.013370749206608
1215 => 0.013561998827657
1216 => 0.013883136707025
1217 => 0.014119367038355
1218 => 0.014258086007277
1219 => 0.014249757840705
1220 => 0.014799431505093
1221 => 0.014475308149338
1222 => 0.014068132824501
1223 => 0.014060768307497
1224 => 0.014271650177949
1225 => 0.0147136007258
1226 => 0.01482819207274
1227 => 0.014892233002839
1228 => 0.014794152089111
1229 => 0.014442339416569
1230 => 0.014290428488297
1231 => 0.014419861000468
]
'min_raw' => 0.0053371247152295
'max_raw' => 0.014892233002839
'avg_raw' => 0.010114678859034
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.005337'
'max' => '$0.014892'
'avg' => '$0.010114'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.0021128877583108
'max_diff' => 0.0076943511283318
'year' => 2036
]
11 => [
'items' => [
101 => 0.014261576160345
102 => 0.01453482020128
103 => 0.014910042631261
104 => 0.01483256068326
105 => 0.015091571218684
106 => 0.015359619874145
107 => 0.015742941490273
108 => 0.015843155955087
109 => 0.016008806654609
110 => 0.016179315637838
111 => 0.016234078527906
112 => 0.016338637876971
113 => 0.016338086797589
114 => 0.016653183433653
115 => 0.017000744780962
116 => 0.017131941143508
117 => 0.017433619944971
118 => 0.016917005569551
119 => 0.017308863507746
120 => 0.017662329176837
121 => 0.017240912834467
122 => 0.01782173708501
123 => 0.017844289174482
124 => 0.018184798950444
125 => 0.017839627058727
126 => 0.017634665091254
127 => 0.018226382611525
128 => 0.018512696080657
129 => 0.018426456133658
130 => 0.017770165878805
131 => 0.017388176800868
201 => 0.016388437703715
202 => 0.017572671849808
203 => 0.018149477757786
204 => 0.01776867209085
205 => 0.01796072831911
206 => 0.019008524826053
207 => 0.019407457896098
208 => 0.019324482606281
209 => 0.01933850406437
210 => 0.019553761107819
211 => 0.020508329382689
212 => 0.019936329945667
213 => 0.02037360208286
214 => 0.020605529647725
215 => 0.020820956895436
216 => 0.02029193566154
217 => 0.019603686809107
218 => 0.01938568950682
219 => 0.017730808472132
220 => 0.017644664727493
221 => 0.017596309633204
222 => 0.017291437603677
223 => 0.017051891699946
224 => 0.01686139590353
225 => 0.016361478046873
226 => 0.016530185648252
227 => 0.015733420925708
228 => 0.016243162759584
301 => 0.014971507023846
302 => 0.016030579708023
303 => 0.015454174596151
304 => 0.015841215126407
305 => 0.015839864778458
306 => 0.015127200450946
307 => 0.014716150539761
308 => 0.01497808754147
309 => 0.015258904799886
310 => 0.015304466455282
311 => 0.015668553360899
312 => 0.015770162190235
313 => 0.015462282693685
314 => 0.014945154785247
315 => 0.015065271803946
316 => 0.014713716372211
317 => 0.014097629000481
318 => 0.014540113706711
319 => 0.014691197440097
320 => 0.014757924623811
321 => 0.014152073451827
322 => 0.013961701859921
323 => 0.013860349621762
324 => 0.014866947006898
325 => 0.01492209068392
326 => 0.014639967835741
327 => 0.015915189861497
328 => 0.01562656784243
329 => 0.015949029351839
330 => 0.015054372443506
331 => 0.015088549542219
401 => 0.014665004624301
402 => 0.014902161477054
403 => 0.014734546657451
404 => 0.014883001546981
405 => 0.014971984795663
406 => 0.015395460214028
407 => 0.016035415117062
408 => 0.015332207108185
409 => 0.015025809308593
410 => 0.015215896780213
411 => 0.015722124766572
412 => 0.01648908607924
413 => 0.016035029545606
414 => 0.016236532124852
415 => 0.016280551474192
416 => 0.015945746996377
417 => 0.016501430797897
418 => 0.016799226261499
419 => 0.017104702787066
420 => 0.017369939494957
421 => 0.016982688745181
422 => 0.017397102557656
423 => 0.017063158178687
424 => 0.016763575548216
425 => 0.016764029891404
426 => 0.016576097331106
427 => 0.016211954314502
428 => 0.016144800755284
429 => 0.016494142050896
430 => 0.016774280687233
501 => 0.016797354247095
502 => 0.016952453390214
503 => 0.017044239465463
504 => 0.017943867780027
505 => 0.01830570573026
506 => 0.018748154326564
507 => 0.01892051298986
508 => 0.019439250772383
509 => 0.019020327883173
510 => 0.018929691280944
511 => 0.01767140309838
512 => 0.017877447717784
513 => 0.018207345033799
514 => 0.017676842983613
515 => 0.018013324429716
516 => 0.018079752994829
517 => 0.017658816726946
518 => 0.017883656975205
519 => 0.017286547936318
520 => 0.016048430462399
521 => 0.01650280917658
522 => 0.016837384852438
523 => 0.016359904110105
524 => 0.017215769859681
525 => 0.016715790757434
526 => 0.016557321385251
527 => 0.015939075865955
528 => 0.016230863952611
529 => 0.016625511517815
530 => 0.016381665205222
531 => 0.016887682917559
601 => 0.017604338948223
602 => 0.018115070713279
603 => 0.018154278356418
604 => 0.017825912047858
605 => 0.018352121152931
606 => 0.018355954011786
607 => 0.017762387991636
608 => 0.017398832109284
609 => 0.017316231447886
610 => 0.017522584094873
611 => 0.017773134303115
612 => 0.018168182149235
613 => 0.018406901288944
614 => 0.019029354198456
615 => 0.019197772108647
616 => 0.019382812330826
617 => 0.019630083131949
618 => 0.01992699512763
619 => 0.01927736858429
620 => 0.019303179457913
621 => 0.018698256215447
622 => 0.018051808976104
623 => 0.018542381849979
624 => 0.019183740624397
625 => 0.019036612212907
626 => 0.019020057261054
627 => 0.01904789809811
628 => 0.018936968080611
629 => 0.018435235722724
630 => 0.018183268873603
701 => 0.018508370392567
702 => 0.018681147381293
703 => 0.01894910942307
704 => 0.018916077445428
705 => 0.019606318888022
706 => 0.019874525840797
707 => 0.019805907025054
708 => 0.019818534538555
709 => 0.020304110415319
710 => 0.020844170656576
711 => 0.021350008339739
712 => 0.021864568157287
713 => 0.021244246213622
714 => 0.020929284986767
715 => 0.021254244576579
716 => 0.021081816444087
717 => 0.022072639638889
718 => 0.022141242087138
719 => 0.023131993634145
720 => 0.024072334828754
721 => 0.023481723372382
722 => 0.024038643374016
723 => 0.024640997762137
724 => 0.025803037105301
725 => 0.02541170313556
726 => 0.025111947447724
727 => 0.024828679771128
728 => 0.025418114838647
729 => 0.026176413636555
730 => 0.026339743934729
731 => 0.026604401414747
801 => 0.026326146435285
802 => 0.026661273909266
803 => 0.027844421154893
804 => 0.027524724325195
805 => 0.027070703433194
806 => 0.028004684552946
807 => 0.028342688689425
808 => 0.030714978733374
809 => 0.033710092908274
810 => 0.032470095972885
811 => 0.031700389860639
812 => 0.03188128905469
813 => 0.03297500336035
814 => 0.033326269682571
815 => 0.032371406730012
816 => 0.03270868046742
817 => 0.034567091920562
818 => 0.035564070040195
819 => 0.034210039841708
820 => 0.030474324225699
821 => 0.027029823819419
822 => 0.027943460435039
823 => 0.027839882396273
824 => 0.029836513661124
825 => 0.027517099661537
826 => 0.027556152644821
827 => 0.029594072129761
828 => 0.029050390149964
829 => 0.02816969497222
830 => 0.027036253868852
831 => 0.024940983158665
901 => 0.023085143459707
902 => 0.026724872483723
903 => 0.026567920749789
904 => 0.02634063138011
905 => 0.026846439277053
906 => 0.02930249884853
907 => 0.029245878725918
908 => 0.028885690393704
909 => 0.029158890069134
910 => 0.028121801748216
911 => 0.028389083022579
912 => 0.027029278192956
913 => 0.027643966766412
914 => 0.028167805395909
915 => 0.028272973756344
916 => 0.028509923442433
917 => 0.026485214317948
918 => 0.027394249272505
919 => 0.027928222143251
920 => 0.025515713287123
921 => 0.027880534599973
922 => 0.026449968636662
923 => 0.025964413062335
924 => 0.026618149676084
925 => 0.026363387881926
926 => 0.026144358651424
927 => 0.026022136577404
928 => 0.026502168596264
929 => 0.026479774528822
930 => 0.025694348975767
1001 => 0.024669793359848
1002 => 0.025013667854442
1003 => 0.024888735026715
1004 => 0.024435962342378
1005 => 0.024741076463639
1006 => 0.02339750828833
1007 => 0.021085969075308
1008 => 0.022613042683792
1009 => 0.022554252011001
1010 => 0.022524607087836
1011 => 0.023672160699396
1012 => 0.023561849898211
1013 => 0.023361634713894
1014 => 0.024432285233508
1015 => 0.024041483391567
1016 => 0.025245842583934
1017 => 0.026039111441096
1018 => 0.025837912799361
1019 => 0.026583985993722
1020 => 0.025021590028268
1021 => 0.025540555295546
1022 => 0.025647513317877
1023 => 0.024419073572288
1024 => 0.023579898109522
1025 => 0.023523934673456
1026 => 0.022068920066521
1027 => 0.022846177125078
1028 => 0.023530131171526
1029 => 0.023202570260255
1030 => 0.023098874261351
1031 => 0.023628634630835
1101 => 0.023669801548635
1102 => 0.022731191460129
1103 => 0.022926358219445
1104 => 0.023740236049568
1105 => 0.022905850586321
1106 => 0.021284775927324
1107 => 0.020882726998782
1108 => 0.020829086260483
1109 => 0.019738697679375
1110 => 0.020909593830659
1111 => 0.020398466282558
1112 => 0.022013112082763
1113 => 0.021090835061205
1114 => 0.021051077542137
1115 => 0.020990978220906
1116 => 0.020052435725761
1117 => 0.020257916884711
1118 => 0.020940967552723
1119 => 0.021184687726187
1120 => 0.021159265715354
1121 => 0.020937620231813
1122 => 0.02103908839917
1123 => 0.020712224078261
1124 => 0.020596801483456
1125 => 0.020232496024765
1126 => 0.01969706764244
1127 => 0.019771522242976
1128 => 0.018710698515134
1129 => 0.018132705446029
1130 => 0.017972724582327
1201 => 0.017758791485324
1202 => 0.017996888894887
1203 => 0.018707693334798
1204 => 0.017850312374692
1205 => 0.016380392856871
1206 => 0.016468737524513
1207 => 0.016667221762937
1208 => 0.016297347697738
1209 => 0.015947292936204
1210 => 0.016251637150517
1211 => 0.01562881287321
1212 => 0.016742487101272
1213 => 0.016712365334438
1214 => 0.017127474217508
1215 => 0.017387050320982
1216 => 0.016788811441234
1217 => 0.016638355980787
1218 => 0.016724062248877
1219 => 0.015307528550423
1220 => 0.017011713193507
1221 => 0.017026451053068
1222 => 0.016900256551891
1223 => 0.017807682263535
1224 => 0.019722633548282
1225 => 0.019002151846223
1226 => 0.018723159554511
1227 => 0.018192795004025
1228 => 0.018899474277617
1229 => 0.018845212335319
1230 => 0.018599819254018
1231 => 0.018451404752773
]
'min_raw' => 0.013860349621762
'max_raw' => 0.035564070040195
'avg_raw' => 0.024712209830979
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.01386'
'max' => '$0.035564'
'avg' => '$0.024712'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.0085232249065326
'max_diff' => 0.020671837037356
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.00043506053676035
]
1 => [
'year' => 2028
'avg' => 0.00074669018005701
]
2 => [
'year' => 2029
'avg' => 0.0020398229941045
]
3 => [
'year' => 2030
'avg' => 0.0015737204021561
]
4 => [
'year' => 2031
'avg' => 0.0015455884639397
]
5 => [
'year' => 2032
'avg' => 0.0027099029918771
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.00043506053676035
'min' => '$0.000435'
'max_raw' => 0.0027099029918771
'max' => '$0.0027099'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.0027099029918771
]
1 => [
'year' => 2033
'avg' => 0.0069701491511466
]
2 => [
'year' => 2034
'avg' => 0.0044180155016905
]
3 => [
'year' => 2035
'avg' => 0.0052110594157131
]
4 => [
'year' => 2036
'avg' => 0.010114678859034
]
5 => [
'year' => 2037
'avg' => 0.024712209830979
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.0027099029918771
'min' => '$0.0027099'
'max_raw' => 0.024712209830979
'max' => '$0.024712'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.024712209830979
]
]
]
]
'prediction_2025_max_price' => '$0.000743'
'last_price' => 0.00072128
'sma_50day_nextmonth' => '$0.000682'
'sma_200day_nextmonth' => '$0.001164'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'augmenter'
'sma_200day_date_nextmonth' => '4 févr. 2026'
'sma_50day_date_nextmonth' => '4 févr. 2026'
'daily_sma3' => '$0.000743'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.000743'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.000712'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.000712'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.000765'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.000923'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.001257'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.000733'
'daily_ema3_action' => 'SELL'
'daily_ema5' => '$0.000732'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.000723'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.000727'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.000794'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.000941'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.001128'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.001124'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.001258'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.001691'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.000736'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.000754'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.000838'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.001013'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.001291'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.0017049'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.000865'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '47.07'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 86.94
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.0007079'
'vwma_10_action' => 'BUY'
'hma_9' => '0.000763'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 59.9
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => 26.82
'cci_20_action' => 'NEUTRAL'
'adx_14' => 17.93
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.0000047'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -40.1
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 60.77
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.000138'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 29
'buy_signals' => 4
'sell_pct' => 87.88
'buy_pct' => 12.12
'overall_action' => 'bearish'
'overall_action_label' => 'Baissier'
'overall_action_dir' => -1
'last_updated' => 1767699454
'last_updated_date' => '6 janvier 2026'
]
Prévision du prix de Fold pour 2026
La prévision du prix de Fold pour 2026 suggère que le prix moyen pourrait varier entre $0.000249 à la baisse et $0.000743 à la hausse. Sur le marché des cryptomonnaies, comparé au prix moyen d'aujourd'hui, Fold pourrait potentiellement gagner 3.13% d'ici 2026 si FLD atteint l'objectif de prix prévu.
Prévision du prix de Fold de 2027 à 2032
La prévision du prix de FLD pour 2027-2032 se situe actuellement dans une fourchette de prix comprise entre $0.000435 à la baisse et $0.0027099 à la hausse. Compte tenu de la volatilité des prix sur le marché, si Fold atteint l'objectif de prix le plus élevé, il pourrait gagner 275.71% d'ici 2032 par rapport au prix actuel.
| Prévision du Prix de Fold | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2027 | $0.000239 | $0.000435 | $0.00063 |
| 2028 | $0.000432 | $0.000746 | $0.00106 |
| 2029 | $0.000951 | $0.002039 | $0.003128 |
| 2030 | $0.0008088 | $0.001573 | $0.002338 |
| 2031 | $0.000956 | $0.001545 | $0.002134 |
| 2032 | $0.001459 | $0.0027099 | $0.00396 |
Prévision du prix de Fold de 2032 à 2037
La prévision du prix de Fold pour 2032-2037 est actuellement estimée entre $0.0027099 à la baisse et $0.024712 à la hausse. Par rapport au prix actuel, Fold pourrait potentiellement gagner 3326.16% d'ici 2037 s'il atteint l'objectif de prix le plus élevé. Veuillez noter que ces informations sont à titre général seulement et ne doivent pas être considérées comme un conseil en investissement à long terme.
| Prévision du Prix de Fold | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2032 | $0.001459 | $0.0027099 | $0.00396 |
| 2033 | $0.003392 | $0.00697 | $0.010548 |
| 2034 | $0.002727 | $0.004418 | $0.0061089 |
| 2035 | $0.003224 | $0.005211 | $0.007197 |
| 2036 | $0.005337 | $0.010114 | $0.014892 |
| 2037 | $0.01386 | $0.024712 | $0.035564 |
Fold Histogramme des prix potentiels
Prévision du prix de Fold basée sur l'analyse technique
Au 6 janvier 2026, le sentiment global de prévision du prix pour Fold est Baissier, avec 4 indicateurs techniques montrant des signaux haussiers et 29 indiquant des signaux baissiers. La prévision du prix de FLD a été mise à jour pour la dernière fois le 6 janvier 2026.
Moyennes Mobiles Simples sur 50 et 200 jours de Fold et Indice de Force Relative sur 14 jours - RSI (14)
Selon nos indicateurs techniques, le SMA sur 200 jours de Fold devrait augmenter au cours du prochain mois, atteignant $0.001164 d'ici le 4 févr. 2026. Le SMA à court terme sur 50 jours pour Fold devrait atteindre $0.000682 d'ici le 4 févr. 2026.
Le Relative Strength Index (RSI), un oscillateur de momentum, est un outil couramment utilisé pour identifier si une cryptomonnaie est survendue (en dessous de 30) ou surachetée (au-dessus de 70). Actuellement, le RSI est à 47.07, ce qui suggère que le marché de FLD est dans un état NEUTRAL.
Moyennes Mobiles et Oscillateurs Populaires de FLD pour le Samedi 19 Octobre 2024
Les moyennes mobiles (MA) sont des indicateurs largement utilisés sur les marchés financiers, conçus pour lisser les mouvements de prix sur une période donnée. En tant qu'indicateurs retardés, ils sont basés sur des données historiques de prix. Le tableau ci-dessous met en évidence deux types : la moyenne mobile simple (SMA) et la moyenne mobile exponentielle (EMA).
Moyenne Mobile Simple Quotidienne (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 3 | $0.000743 | SELL |
| SMA 5 | $0.000743 | SELL |
| SMA 10 | $0.000712 | BUY |
| SMA 21 | $0.000712 | BUY |
| SMA 50 | $0.000765 | SELL |
| SMA 100 | $0.000923 | SELL |
| SMA 200 | $0.001257 | SELL |
Moyenne Mobile Exponentielle Quotidienne (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 3 | $0.000733 | SELL |
| EMA 5 | $0.000732 | SELL |
| EMA 10 | $0.000723 | SELL |
| EMA 21 | $0.000727 | SELL |
| EMA 50 | $0.000794 | SELL |
| EMA 100 | $0.000941 | SELL |
| EMA 200 | $0.001128 | SELL |
Moyenne Mobile Simple Hebdomadaire (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 21 | $0.001124 | SELL |
| SMA 50 | $0.001258 | SELL |
| SMA 100 | $0.001691 | SELL |
| SMA 200 | — | — |
Moyenne Mobile Exponentielle Hebdomadaire (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 21 | $0.001013 | SELL |
| EMA 50 | $0.001291 | SELL |
| EMA 100 | $0.0017049 | SELL |
| EMA 200 | $0.000865 | SELL |
Oscillateurs de Fold
Un oscillateur est un outil d'analyse technique qui établit des limites hautes et basses entre deux extrêmes, créant un indicateur de tendance qui fluctue à l'intérieur de ces limites. Les traders utilisent cet indicateur pour identifier les conditions de surachat ou de survente à court terme.
| Période | Valeur | Action |
|---|---|---|
| RSI (14) | 47.07 | NEUTRAL |
| Stoch RSI (14) | 86.94 | SELL |
| Stochastique Rapide (14) | 59.9 | NEUTRAL |
| Indice de Canal des Matières Premières (20) | 26.82 | NEUTRAL |
| Indice Directionnel Moyen (14) | 17.93 | NEUTRAL |
| Oscillateur Impressionnant (5, 34) | 0.0000047 | BUY |
| Momentum (10) | 0 | SELL |
| MACD (12, 26) | 0 | NEUTRAL |
| Plage de Pourcentage de Williams (14) | -40.1 | NEUTRAL |
| Oscillateur Ultime (7, 14, 28) | 60.77 | NEUTRAL |
| VWMA (10) | 0.0007079 | BUY |
| Moyenne Mobile de Hull (9) | 0.000763 | SELL |
| Nuage Ichimoku B/L (9, 26, 52, 26) | -0.000138 | SELL |
Prévision du cours de Fold basée sur les flux monétaires mondiaux
Définitions des flux monétaires mondiaux utilisés pour la prédiction du cours de Fold
M0 : le total de toutes les devises physiques, plus les comptes à la banque centrale qui peuvent être échangés contre des devises physiques.
M1 : M0 plus le montant des comptes à vue, y compris les comptes de "chèques" et les comptes "courants".
M2 : M1 plus la plupart des comptes d'épargne, comptes du marché monétaire et comptes de certificats de dépôt (CD) de moins de 100 000 $.
Prédictions du cours de Fold par des sociétés Internet ou des niches technologiques
| Comparaison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Action Facebook | $0.001013 | $0.001424 | $0.0020011 | $0.002812 | $0.003951 | $0.005552 |
| Action Amazon.com | $0.0015049 | $0.00314 | $0.006552 | $0.013671 | $0.028527 | $0.059523 |
| Action Apple | $0.001023 | $0.001451 | $0.002058 | $0.002919 | $0.004141 | $0.005874 |
| Action Netflix | $0.001138 | $0.001795 | $0.002833 | $0.00447 | $0.007053 | $0.011129 |
| Action Google | $0.000934 | $0.0012095 | $0.001566 | $0.002028 | $0.002626 | $0.0034018 |
| Action Tesla | $0.001635 | $0.0037066 | $0.0084026 | $0.019048 | $0.04318 | $0.097887 |
| Action Kodak | $0.00054 | $0.0004056 | $0.0003041 | $0.000228 | $0.000171 | $0.000128 |
| Action Nokia | $0.000477 | $0.000316 | $0.0002096 | $0.000138 | $0.000092 | $0.00006 |
Ce calcul montre la valeur potentielle des cryptomonnaies si l'on suppose que leur capitalisation se comportera comme celle de certaines sociétés Internet ou niches technologiques. En extrapolant les données, vous pourrez obtenir une potentielle image des cours futurs pour 2024, 2025, 2026, 2027, 2028, 2029 et 2030.
Aperçu des prévisions relatives à Fold
Vous vous posez peut-être des questions telles que : "Devrais-je investir dans Fold maintenant ?", "Devrais-je acheter FLD aujourd'hui ?", " Fold sera-t-il un bon ou un mauvais investissement à court ou à long terme ?".
Nous mettons régulièrement à jour les prévisions de Fold avec de nouvelles valeurs. Regardez nos prévisions similaires. Nous faisons une prévision des cours futurs pour une grande quantité de devises numériques comme Fold en utilisant des méthodes d'analyse technique.
Si vous souhaitez trouver des cryptomonnaies ayant un bon rendement, vous devriez consulter un maximum d'informations disponibles à propos de Fold afin de prendre une décision responsable concernant cet investissement.
Le cours de Fold est de $0.0007212 USD actuellement, mais ce cours peut subir une hausse ou une baisse, ce qui pourrait causer la perte de votre investissement, car les cryptomonnaies sont des actifs à haut risque.
Prévision du cours de Fold basée sur le modèle de croissance du Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Fold présente 1 % de la précédente croissance annuelle moyenne du Bitcoin | $0.00074 | $0.000759 | $0.000778 | $0.000799 |
| Si Fold présente 2 % de la précédente croissance annuelle moyenne du Bitcoin | $0.000758 | $0.000798 | $0.000839 | $0.000883 |
| Si Fold présente 5 % de la précédente croissance annuelle moyenne du Bitcoin | $0.000815 | $0.00092 | $0.00104 | $0.001175 |
| Si Fold présente 10 % de la précédente croissance annuelle moyenne du Bitcoin | $0.0009087 | $0.001144 | $0.001442 | $0.001817 |
| Si Fold présente 20 % de la précédente croissance annuelle moyenne du Bitcoin | $0.001096 | $0.001666 | $0.002532 | $0.003848 |
| Si Fold présente 50 % de la précédente croissance annuelle moyenne du Bitcoin | $0.001658 | $0.003814 | $0.008771 | $0.020172 |
| Si Fold présente 100 % de la précédente croissance annuelle moyenne du Bitcoin | $0.002596 | $0.009344 | $0.033633 | $0.121056 |
Boîte à questions
Est-ce que FLD est un bon investissement ?
La décision d'acquérir Fold dépend entièrement de votre tolérance individuelle au risque. Comme vous pouvez le discerner, la valeur de Fold a connu une baisse de -2.8793% au cours des 24 heures précédentes, et Fold a enregistré une déclin de sur une période de 30 jours précédents. Par conséquent, la détermination de si investir ou non dans Fold dépendra de la mesure dans laquelle cet investissement s'aligne avec vos aspirations de trading.
Est-ce que Fold peut monter ?
Il semble que la valeur moyenne de Fold pourrait potentiellement s'envoler jusqu'à $0.000743 pour la fin de cette année. En regardant les perspectives de Fold sur une période de cinq ans plus longue, la monnaie numérique pourrait potentiellement croître jusqu'à $0.002338. Cependant, compte tenu de l'imprévisibilité du marché, il est essentiel de mener des recherches approfondies avant d'investir des fonds dans un projet, un réseau ou un actif particulier.
Quel sera le prix de Fold la semaine prochaine ?
Basé sur notre nouveau pronostic expérimental de Fold, le prix de Fold va augmenter de 0.86% durant la prochaine semaine et atteindre $0.000727 d'ici 13 janvier 2026.
Quel sera le prix de Fold le mois prochain ?
Basé sur notre nouveau pronostic expérimental de Fold, le prix de Fold va diminuer de -11.62% durant le prochain mois et atteindre $0.000637 d'ici 5 février 2026.
Jusqu'où le prix de Fold peut-il monter cette année en 2026 ?
Selon notre prédiction la plus récente sur la valeur de Fold en 2026, FLD devrait fluctuer dans la fourchette de $0.000249 et $0.000743. Cependant, il est crucial de garder à l'esprit que le marché des cryptomonnaies est exceptionnellement instable, et cette prévision de prix de Fold ne prend pas en compte les fluctuations de prix soudaines et extrêmes.
Où sera Fold dans 5 ans ?
L'avenir de Fold semble suivre une tendance haussière, avec un prix maximum de $0.002338 prévue après une période de cinq ans. Selon la prévision de Fold pour 2030, la valeur de Fold pourrait potentiellement atteindre son point le plus élevé d'environ $0.002338, tandis que son point le plus bas devrait être autour de $0.0008088.
Combien vaudra Fold en 2026 ?
Basé sur notre nouvelle simulation expérimentale de prédiction de prix de Fold, il est attendu que la valeur de FLD en 2026 augmente de 3.13% jusqu'à $0.000743 si le meilleur scénario se produit. Le prix sera entre $0.000743 et $0.000249 durant 2026.
Combien vaudra Fold en 2027 ?
Selon notre dernière simulation expérimentale pour la prédiction de prix de Fold, le valeur de FLD pourrait diminuer de -12.62% jusqu'à $0.00063 en 2027, en supposant les conditions les plus favorables. Il est prévu que le prix fluctue entre $0.00063 et $0.000239 tout au long de l'année.
Combien vaudra Fold en 2028 ?
Notre nouveau modèle expérimental de prédiction de prix de Fold suggère que la valeur de FLD en 2028 pourrait augmenter de 47.02%, atteignant $0.00106 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.00106 et $0.000432 durant l'année.
Combien vaudra Fold en 2029 ?
Basé sur notre modèle de prévision expérimental, la valeur de Fold pourrait connaître un 333.75% croissance en 2029, atteignant potentiellement $0.003128 sous des conditions optimales. Le range de prix prévu pour 2029 se situe entre $0.003128 et $0.000951.
Combien vaudra Fold en 2030 ?
En utilisant notre nouvelle simulation expérimentale pour les prédictions de prix de Fold, il est prévu que la valeur de FLD en 2030 augmente de 224.23%, atteignant $0.002338 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.002338 et $0.0008088 au cours de 2030.
Combien vaudra Fold en 2031 ?
Notre simulation expérimentale indique que le prix de Fold pourrait augmenter de 195.98% en 2031, atteignant potentiellement $0.002134 dans des conditions idéales. Il est probable que le prix fluctue entre $0.002134 et $0.000956 durant l'année.
Combien vaudra Fold en 2032 ?
Basé sur les résultats de notre dernière prédiction expérimentale de prix de Fold, FLD pourrait connaître une 449.04% hausse en valeur, atteignant $0.00396 si le scénario le plus positif se réalise en 2032. Il est prévu que le prix reste dans une fourchette de $0.00396 et $0.001459 tout au long de l'année.
Combien vaudra Fold en 2033 ?
Selon notre prédiction expérimentale de prix de Fold, la valeur de FLD est anticipée à augmenter de 1362.43% en 2033, avec le prix potentiel le plus élevé étant $0.010548. Tout au long de l'année, le prix de FLD pourrait osciller entre $0.010548 et $0.003392.
Combien vaudra Fold en 2034 ?
Les résultats de notre nouvelle simulation de prédiction de prix de Fold suggèrent que FLD pourrait augmenter de 746.96% en 2034, atteignant potentiellement $0.0061089 dans les meilleures circonstances. La fourchette de prix prévue pour l'année est entre $0.0061089 et $0.002727.
Combien vaudra Fold en 2035 ?
Basé sur notre prédiction expérimentale pour le prix de Fold, FLD pourrait augmenter de 897.93%, avec la valeur potentiellement atteignant $0.007197 en 2035. La fourchette de prix attendue pour l'année se situe entre $0.007197 et $0.003224.
Combien vaudra Fold en 2036 ?
Notre récente simulation de prédiction de prix de Fold suggère que la valeur de FLD pourrait augmenter de 1964.7% en 2036, pouvant atteindre $0.014892 si les conditions sont optimales. La fourchette de prix attendue pour 2036 est entre $0.014892 et $0.005337.
Combien vaudra Fold en 2037 ?
Selon la simulation expérimentale, la valeur de Fold pourrait augmenter de 4830.69% en 2037, avec un maximum de $0.035564 sous des conditions favorables. Il est prévu que le prix chute entre $0.035564 et $0.01386 au cours de l'année.
Prévisions liées
Prévision du cours de AIMX
Prévision du cours de Quadrant Protocol
Prévision du cours de Minto
Prévision du cours de El Hippo
Prévision du cours de Cum Inu
Prévision du cours de ZambesiGold
Prévision du cours de Archimedes Finance
Prévision du cours de Orcfax
Prévision du cours de Quantstamp
Prévision du cours de eUSD (OLD)
Prévision du cours de LockTrip
Prévision du cours de NOOT (Ordinals)
Prévision du cours de AssetMantle
Prévision du cours de Renewable Energy
Prévision du cours de Allbridge
Prévision du cours de DOMO
Prévision du cours de ATN
Prévision du cours de Linda
Prévision du cours de RealFevr
Prévision du cours de PanoVerse
Prévision du cours de Modern Investment Coin
Prévision du cours de Monolith
Prévision du cours de Qi Dao
Prévision du cours de SOMESING
Prévision du cours de Rainicorn
Comment lire et prédire les mouvements de prix de Fold ?
Les traders de Fold utilisent des indicateurs et des modèles graphiques pour prédire la direction du marché. Ils identifient également des niveaux clés de support et de résistance pour évaluer quand une tendance baissière pourrait ralentir ou une tendance haussière pourrait s'arrêter.
Indicateurs de prédiction du prix de Fold
Les moyennes mobiles sont des outils populaires pour la prédiction du prix de Fold. Une moyenne mobile simple (SMA) calcule le prix de clôture moyen de FLD sur une période spécifique, comme une SMA de 12 jours. Une moyenne mobile exponentielle (EMA) donne plus de poids aux prix récents, réagissant plus rapidement aux changements de prix.
Les moyennes mobiles couramment utilisées sur le marché des cryptomonnaies incluent les moyennes sur 50 jours, 100 jours et 200 jours, qui aident à identifier les niveaux clés de résistance et de support. Un mouvement de prix de FLD au-dessus de ces moyennes est considéré comme haussier, tandis qu'une chute en dessous indique une faiblesse.
Les traders utilisent également le RSI et les niveaux de retracement de Fibonacci pour évaluer la direction future de FLD.
Comment lire les graphiques de Fold et prédire les mouvements de prix ?
La plupart des traders préfèrent les graphiques en chandeliers aux simples graphiques linéaires parce qu'ils fournissent des informations plus détaillées. Les chandeliers peuvent représenter l'action des prix de Fold dans différentes périodes, comme 5 minutes pour les tendances à court terme et hebdomadaire pour les tendances à long terme. Les options populaires incluent les graphiques de 1 heure, 4 heures et 1 jour.
Par exemple, un graphique en chandeliers de 1 heure montre les prix d'ouverture, de clôture, les plus hauts et les plus bas de FLD au sein de chaque heure. La couleur du chandelier est cruciale : le vert indique que le prix a clôturé plus haut qu'il n'a ouvert, tandis que le rouge signifie le contraire. Certains graphiques utilisent des chandeliers creux et pleins pour transmettre la même information.
Qu'est-ce qui affecte le prix de Fold ?
L'action du prix de Fold est déterminée par l'offre et la demande, influencée par des facteurs tels que les réductions de récompenses de bloc, les hard forks et les mises à jour de protocole. Les événements du monde réel, tels que les réglementations, l'adoption par les entreprises et les gouvernements et les piratages d'échanges de cryptomonnaies, impactent également le prix de FLD. La capitalisation boursière de Fold peut changer rapidement.
Les traders surveillent souvent l'activité des « baleines » de FLD, de grands détenteurs de Fold, car leurs actions peuvent influencer significativement les mouvements de prix sur le marché relativement petit de Fold.
Modèles de prédiction de prix haussiers et baissiers
Les traders identifient souvent des modèles de chandeliers pour obtenir un avantage dans les prédictions de prix des cryptomonnaies. Certaines formations indiquent des tendances haussières, tandis que d'autres suggèrent des mouvements baissiers.
Modèles de chandeliers haussiers couramment suivis :
- Marteau
- Englobante haussière
- Ligne pénétrante
- Étoile du matin
- Trois soldats blancs
Modèles de chandeliers baissiers courants :
- Harami baissier
- Nuage sombre
- Étoile du soir
- Étoile filante
- Pendu


