Predicción del precio de Fold - Pronóstico de FLD
Predicción de precio de Fold hasta $0.000741 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.000248 | $0.000741 |
| 2027 | $0.000239 | $0.000628 |
| 2028 | $0.000431 | $0.001056 |
| 2029 | $0.000947 | $0.003117 |
| 2030 | $0.000806 | $0.00233 |
| 2031 | $0.000952 | $0.002127 |
| 2032 | $0.001454 | $0.003946 |
| 2033 | $0.00338 | $0.010511 |
| 2034 | $0.002717 | $0.006087 |
| 2035 | $0.003212 | $0.007172 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en Fold hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,961.82, equivalente a un ROI del 39.62% en los próximos 90 días.
Predicción del precio a largo plazo de Fold para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'Fold'
'name_with_ticker' => 'Fold <small>FLD</small>'
'name_lang' => 'Fold'
'name_lang_with_ticker' => 'Fold <small>FLD</small>'
'name_with_lang' => 'Fold'
'name_with_lang_with_ticker' => 'Fold <small>FLD</small>'
'image' => '/uploads/coins/fold.png?1717110885'
'price_for_sd' => 0.0007187
'ticker' => 'FLD'
'marketcap' => '$919.48K'
'low24h' => '$0.0007147'
'high24h' => '$0.0007544'
'volume24h' => '$5.23K'
'current_supply' => '1.28B'
'max_supply' => '2.65B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.0007187'
'change_24h_pct' => '-3.3762%'
'ath_price' => '$0.008565'
'ath_days' => 663
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '14 mar. 2024'
'ath_pct' => '-91.65%'
'fdv' => '$1.9M'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.035439'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.000724'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.000635'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.000248'
'current_year_max_price_prediction' => '$0.000741'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.000806'
'grand_prediction_max_price' => '$0.00233'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.00073238012393224
107 => 0.00073511456546102
108 => 0.0007412754018494
109 => 0.00068863172944841
110 => 0.00071226719281944
111 => 0.00072615081320649
112 => 0.00066342411120736
113 => 0.00072491090798969
114 => 0.00068771532023351
115 => 0.00067509057909009
116 => 0.00069208812985654
117 => 0.00068546416779219
118 => 0.00067976927418137
119 => 0.00067659142569584
120 => 0.0006890725510275
121 => 0.00068849029161261
122 => 0.00066806874808797
123 => 0.00064142967704869
124 => 0.00065037062368717
125 => 0.00064712229395159
126 => 0.00063534992794696
127 => 0.00064328308123319
128 => 0.00060834948903765
129 => 0.00054824805935534
130 => 0.00058795290476005
131 => 0.00058642431140253
201 => 0.00058565352531548
202 => 0.0006154906192758
203 => 0.00061262247115039
204 => 0.00060741675421779
205 => 0.00063525432087312
206 => 0.00062509323457582
207 => 0.00065640730829109
208 => 0.00067703278250727
209 => 0.00067180149508185
210 => 0.00069119985327374
211 => 0.00065057660503955
212 => 0.00066407001858111
213 => 0.00066685099241097
214 => 0.00063491080962171
215 => 0.00061309173565469
216 => 0.00061163665217675
217 => 0.00057380538477154
218 => 0.00059401454245608
219 => 0.00061179776490671
220 => 0.00060328098138667
221 => 0.00060058482215589
222 => 0.00061435891494033
223 => 0.00061542927991681
224 => 0.00059102484502092
225 => 0.00059609929982372
226 => 0.0006172606199093
227 => 0.00059556608885192
228 => 0.00055341715878895
301 => 0.00054296364137878
302 => 0.00054156894945971
303 => 0.00051321818116442
304 => 0.00054366219539757
305 => 0.00053037256733594
306 => 0.00057235434314842
307 => 0.00054837457795711
308 => 0.00054734085820747
309 => 0.00054577823919216
310 => 0.00052137556176491
311 => 0.00052671819725042
312 => 0.00054447793131062
313 => 0.00055081480450103
314 => 0.0005501538167108
315 => 0.00054439089892494
316 => 0.00054702913317639
317 => 0.00053853046143072
318 => 0.00053552940355277
319 => 0.00052605723938394
320 => 0.00051213577480791
321 => 0.00051407163984252
322 => 0.00048648957576804
323 => 0.00047146140336933
324 => 0.0004673018033175
325 => 0.00046173941228653
326 => 0.0004679300901854
327 => 0.00048641143924602
328 => 0.00046411901124199
329 => 0.00042590020706108
330 => 0.00042819722231403
331 => 0.00043335793359745
401 => 0.00042374098226231
402 => 0.00041463934491316
403 => 0.00042255248014907
404 => 0.00040635866898803
405 => 0.00043531487830941
406 => 0.00043453169399611
407 => 0.00044532477819115
408 => 0.00045207391523469
409 => 0.00043651933940839
410 => 0.00043260740565212
411 => 0.00043483582090717
412 => 0.00039800508059756
413 => 0.00044231492094765
414 => 0.00044269811428701
415 => 0.00043941698027204
416 => 0.00046301060234562
417 => 0.00051280050395615
418 => 0.00049406754017612
419 => 0.00048681357039366
420 => 0.00047302376853459
421 => 0.00049139786075439
422 => 0.0004899870171524
423 => 0.00048360664733765
424 => 0.00047974777976572
425 => 0.00048685786158633
426 => 0.00047886676194436
427 => 0.00047743134086793
428 => 0.00046873425089828
429 => 0.0004656297854715
430 => 0.00046333136286184
501 => 0.00046080102540695
502 => 0.00046638231931164
503 => 0.00045373437304325
504 => 0.00043848218973704
505 => 0.00043721413572604
506 => 0.00044071534433886
507 => 0.00043916632016201
508 => 0.00043720671959423
509 => 0.00043346530844488
510 => 0.00043235531167947
511 => 0.00043596226267318
512 => 0.00043189022529959
513 => 0.00043789873825968
514 => 0.00043626475520072
515 => 0.00042713745865923
516 => 0.00041576146781053
517 => 0.00041566019763003
518 => 0.00041320925906204
519 => 0.00041008762029463
520 => 0.00040921925180296
521 => 0.00042188605797103
522 => 0.00044810596765334
523 => 0.00044295837199344
524 => 0.00044667803740454
525 => 0.00046497510973898
526 => 0.00047079119882194
527 => 0.00046666307655247
528 => 0.00046101224817854
529 => 0.00046126085594855
530 => 0.00048057144712436
531 => 0.00048177582500914
601 => 0.00048481889937696
602 => 0.00048873010991231
603 => 0.0004673291726192
604 => 0.0004602528737266
605 => 0.00045689973073317
606 => 0.00044657334814307
607 => 0.00045770946644936
608 => 0.00045122092720842
609 => 0.00045209645283208
610 => 0.0004515262656211
611 => 0.00045183762639418
612 => 0.00043530678445878
613 => 0.00044132975442457
614 => 0.00043131539868221
615 => 0.00041790730050737
616 => 0.0004178623518608
617 => 0.00042114396489386
618 => 0.00041919193305227
619 => 0.00041393906555788
620 => 0.00041468521059262
621 => 0.00040814819495757
622 => 0.0004154789226472
623 => 0.00041568914168674
624 => 0.00041286641221879
625 => 0.00042416040967015
626 => 0.00042878756964099
627 => 0.00042692958863647
628 => 0.00042865720874072
629 => 0.00044317227783311
630 => 0.00044553886743203
701 => 0.00044658995020374
702 => 0.00044518163853143
703 => 0.00042892251755804
704 => 0.00042964367871233
705 => 0.00042435227666009
706 => 0.00041988159952015
707 => 0.00042006040316014
708 => 0.00042235891235741
709 => 0.00043239663682769
710 => 0.0004535204362192
711 => 0.00045432206896481
712 => 0.00045529367123777
713 => 0.00045134167650547
714 => 0.00045014971707871
715 => 0.00045172221923344
716 => 0.00045965520764828
717 => 0.00048006100763661
718 => 0.00047284823506318
719 => 0.00046698413868749
720 => 0.000472128532158
721 => 0.0004713365931063
722 => 0.00046465183053069
723 => 0.00046446421150949
724 => 0.00045163401487901
725 => 0.00044689098331416
726 => 0.00044292735112882
727 => 0.00043859916825566
728 => 0.00043603327636645
729 => 0.00043997565248528
730 => 0.00044087732054849
731 => 0.00043225724626371
801 => 0.00043108236199096
802 => 0.00043812170072914
803 => 0.00043502395020346
804 => 0.00043821006343964
805 => 0.0004389492690404
806 => 0.00043883023991333
807 => 0.00043559583259014
808 => 0.00043765734736653
809 => 0.00043278125035325
810 => 0.0004274792272174
811 => 0.00042409686678444
812 => 0.00042114530870168
813 => 0.00042278300467156
814 => 0.00041694491757041
815 => 0.00041507719600927
816 => 0.00043695895254584
817 => 0.00045312324136793
818 => 0.00045288820620669
819 => 0.00045145749010882
820 => 0.00044933173619753
821 => 0.00045949969550917
822 => 0.00045595738179976
823 => 0.00045853471099357
824 => 0.00045919074944356
825 => 0.00046117638024554
826 => 0.00046188607258652
827 => 0.00045974088941907
828 => 0.00045254139269706
829 => 0.00043460093137343
830 => 0.00042624959819793
831 => 0.00042349351914756
901 => 0.0004235936973865
902 => 0.00042083033434114
903 => 0.00042164426860324
904 => 0.00042054728122121
905 => 0.00041846985250939
906 => 0.00042265472930264
907 => 0.00042313699736824
908 => 0.00042216019711914
909 => 0.00042239026893849
910 => 0.0004143027800728
911 => 0.00041491765428616
912 => 0.00041149395653175
913 => 0.00041085205447609
914 => 0.00040219724468843
915 => 0.00038686399461484
916 => 0.00039536010359021
917 => 0.00038509799868167
918 => 0.00038121158405654
919 => 0.00039960926643041
920 => 0.00039776264939235
921 => 0.00039460204372833
922 => 0.00038992684922329
923 => 0.00038819277410401
924 => 0.00037765708262071
925 => 0.00037703457776214
926 => 0.00038225635094887
927 => 0.00037984668229344
928 => 0.00037646259488833
929 => 0.00036420577334648
930 => 0.00035042504783928
1001 => 0.00035084100131979
1002 => 0.00035522439370412
1003 => 0.00036796969824255
1004 => 0.00036298988726337
1005 => 0.00035937697726124
1006 => 0.00035870038782151
1007 => 0.0003671693211956
1008 => 0.00037915463621632
1009 => 0.00038477787786774
1010 => 0.00037920541617157
1011 => 0.00037280407221767
1012 => 0.00037319369236317
1013 => 0.0003757856606383
1014 => 0.00037605803985555
1015 => 0.00037189142301035
1016 => 0.00037306430124618
1017 => 0.00037128259195572
1018 => 0.00036034824532898
1019 => 0.00036015047767169
1020 => 0.00035746701266933
1021 => 0.00035738575841554
1022 => 0.0003528205150248
1023 => 0.0003521818059164
1024 => 0.00034311723807364
1025 => 0.00034908356407779
1026 => 0.00034508166584038
1027 => 0.00033904986124425
1028 => 0.00033800997585835
1029 => 0.00033797871564795
1030 => 0.00034417203028135
1031 => 0.00034901119159037
1101 => 0.00034515128057358
1102 => 0.00034427245365629
1103 => 0.00035365602593426
1104 => 0.00035246188082873
1105 => 0.00035142775886875
1106 => 0.0003780814827123
1107 => 0.00035698298047412
1108 => 0.00034778282923787
1109 => 0.00033639589502167
1110 => 0.00034010353822037
1111 => 0.00034088479311895
1112 => 0.00031350126897816
1113 => 0.00030239177664464
1114 => 0.00029857941752816
1115 => 0.00029638535095778
1116 => 0.00029738521464526
1117 => 0.00028738536853161
1118 => 0.00029410543050217
1119 => 0.0002854464090337
1120 => 0.00028399469590562
1121 => 0.00029947809893817
1122 => 0.00030163252401742
1123 => 0.00029244107730193
1124 => 0.00029834347405333
1125 => 0.00029620318294182
1126 => 0.00028559484310388
1127 => 0.00028518968255174
1128 => 0.00027986679052224
1129 => 0.00027153749521106
1130 => 0.00026773078374903
1201 => 0.00026574821536822
1202 => 0.00026656626172163
1203 => 0.00026615263245271
1204 => 0.00026345342168342
1205 => 0.00026630734805442
1206 => 0.00025901674550029
1207 => 0.00025611356881886
1208 => 0.00025480227126505
1209 => 0.00024833144186683
1210 => 0.00025862940903029
1211 => 0.00026065823829186
1212 => 0.00026269106497382
1213 => 0.00028038543337052
1214 => 0.00027950147272918
1215 => 0.00028749204642054
1216 => 0.00028718154742062
1217 => 0.00028490250636513
1218 => 0.00027528760703609
1219 => 0.00027911993453954
1220 => 0.00026732462615983
1221 => 0.00027616247320092
1222 => 0.00027212924888868
1223 => 0.00027479883600389
1224 => 0.00026999867766378
1225 => 0.00027265528348288
1226 => 0.00026113934897438
1227 => 0.00025038593136392
1228 => 0.0002547134205222
1229 => 0.00025941789614566
1230 => 0.00026961839797543
1231 => 0.00026354306323793
]
'min_raw' => 0.00024833144186683
'max_raw' => 0.0007412754018494
'avg_raw' => 0.00049480342185812
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.000248'
'max' => '$0.000741'
'avg' => '$0.000494'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.00047042855813317
'max_diff' => 2.2515401849401E-5
'year' => 2026
]
1 => [
'items' => [
101 => 0.00026572798334338
102 => 0.00025840886674135
103 => 0.00024330743858907
104 => 0.0002433929110324
105 => 0.00024106988531366
106 => 0.00023906245192537
107 => 0.0002642408885152
108 => 0.00026110955191307
109 => 0.00025612017685679
110 => 0.00026279865363951
111 => 0.00026456454890254
112 => 0.00026461482145812
113 => 0.00026948726572236
114 => 0.00027208769009961
115 => 0.00027254602616699
116 => 0.00028021292249289
117 => 0.00028278276501253
118 => 0.00029336758265318
119 => 0.00027186706225936
120 => 0.00027142427319066
121 => 0.00026289263350369
122 => 0.00025748173273432
123 => 0.00026326312250859
124 => 0.00026838464461019
125 => 0.00026305177347157
126 => 0.00026374813385922
127 => 0.00025658919006721
128 => 0.00025914817561324
129 => 0.00026135231869806
130 => 0.00026013532044016
131 => 0.00025831341514471
201 => 0.00026796473820293
202 => 0.00026742017273214
203 => 0.00027640770664692
204 => 0.0002834141320382
205 => 0.00029597089888772
206 => 0.00028286725808118
207 => 0.00028238970932794
208 => 0.00028705782499214
209 => 0.00028278205034834
210 => 0.0002854841923285
211 => 0.00029553554203976
212 => 0.00029574791122045
213 => 0.00029219045382167
214 => 0.00029197398221565
215 => 0.00029265723082341
216 => 0.00029665903925992
217 => 0.00029526068442905
218 => 0.00029687889604134
219 => 0.00029890249444146
220 => 0.00030727295541226
221 => 0.00030929104521425
222 => 0.000304388133255
223 => 0.00030483081130934
224 => 0.00030299698764863
225 => 0.00030122553697013
226 => 0.0003052074993958
227 => 0.00031248461399438
228 => 0.00031243934344215
301 => 0.00031412749258212
302 => 0.00031517919551094
303 => 0.00031066451664684
304 => 0.00030772562671565
305 => 0.0003088525841217
306 => 0.0003106546135559
307 => 0.00030826821026333
308 => 0.00029353822365207
309 => 0.00029800636063474
310 => 0.00029726264416009
311 => 0.00029620350146117
312 => 0.00030069624774832
313 => 0.0003002629114088
314 => 0.00028728280565617
315 => 0.00028811374991261
316 => 0.00028733333812858
317 => 0.00028985500826
318 => 0.00028264587188583
319 => 0.00028486335368025
320 => 0.00028625413747411
321 => 0.0002870733198132
322 => 0.00029003276814057
323 => 0.00028968551103718
324 => 0.00029001118215145
325 => 0.00029439926275556
326 => 0.00031659266864369
327 => 0.00031780060675919
328 => 0.00031185227769585
329 => 0.00031422851783105
330 => 0.00030966665639806
331 => 0.00031272906453984
401 => 0.00031482428641372
402 => 0.00030535638165367
403 => 0.00030479575377998
404 => 0.00030021506392211
405 => 0.00030267646718819
406 => 0.00029876019761069
407 => 0.00029972111317972
408 => 0.00029703430947761
409 => 0.00030187002120412
410 => 0.00030727709830799
411 => 0.00030864313951637
412 => 0.00030504967321483
413 => 0.00030244776679155
414 => 0.00029787967623353
415 => 0.00030547651263806
416 => 0.00030769805911214
417 => 0.00030546484380017
418 => 0.00030494735901567
419 => 0.00030396672628411
420 => 0.00030515540488542
421 => 0.00030768596009294
422 => 0.00030649259698909
423 => 0.00030728083434353
424 => 0.00030427688637522
425 => 0.0003106660111934
426 => 0.00032081347903129
427 => 0.00032084610479967
428 => 0.00031965273526315
429 => 0.00031916443416031
430 => 0.0003203889037245
501 => 0.0003210531282327
502 => 0.00032501283827397
503 => 0.00032926176491006
504 => 0.00034908965156877
505 => 0.00034352206033757
506 => 0.00036111454094743
507 => 0.00037502790901213
508 => 0.00037919991973688
509 => 0.00037536186617838
510 => 0.00036223209228233
511 => 0.0003615878829361
512 => 0.00038120930838435
513 => 0.000375665356977
514 => 0.0003750059215978
515 => 0.0003679906432968
516 => 0.00037213754163181
517 => 0.00037123055413462
518 => 0.00036979882999895
519 => 0.00037771082314671
520 => 0.00039252136801082
521 => 0.00039021300570134
522 => 0.00038848992031916
523 => 0.00038093986175705
524 => 0.00038548668337807
525 => 0.00038386764728745
526 => 0.00039082405379842
527 => 0.0003867032326846
528 => 0.00037562335609246
529 => 0.00037738786295951
530 => 0.00037712116129625
531 => 0.00038260986262744
601 => 0.00038096229072576
602 => 0.00037679944643986
603 => 0.00039247074717859
604 => 0.00039145314007697
605 => 0.00039289587428969
606 => 0.00039353101050817
607 => 0.00040306985510854
608 => 0.00040697761453233
609 => 0.00040786474433648
610 => 0.00041157681355212
611 => 0.00040777238467278
612 => 0.00042299281270197
613 => 0.00043311350920478
614 => 0.00044486921899907
615 => 0.00046204747064545
616 => 0.0004685066521722
617 => 0.00046733985884328
618 => 0.00048036421318889
619 => 0.00050376868843281
620 => 0.00047207057244963
621 => 0.00050544876554895
622 => 0.00049488161498348
623 => 0.00046982709108766
624 => 0.0004682138751222
625 => 0.00048518108959345
626 => 0.00052281273825682
627 => 0.00051338643708127
628 => 0.00052282815630866
629 => 0.00051181388930346
630 => 0.00051126693811113
701 => 0.00052229321794452
702 => 0.00054805672178647
703 => 0.00053581744684166
704 => 0.00051826944501494
705 => 0.00053122661648664
706 => 0.00052000191542824
707 => 0.00049470952234765
708 => 0.00051337922896641
709 => 0.00050089532783308
710 => 0.00050453879386447
711 => 0.00053077809720659
712 => 0.00052762091480788
713 => 0.00053170660117903
714 => 0.00052449547167498
715 => 0.00051775913962745
716 => 0.00050518527561415
717 => 0.00050146277436382
718 => 0.00050249153978785
719 => 0.00050146226455877
720 => 0.0004944273032031
721 => 0.00049290810396815
722 => 0.00049037603868559
723 => 0.00049116083159414
724 => 0.00048639980808109
725 => 0.00049538484312786
726 => 0.0004970525448084
727 => 0.0005035911040257
728 => 0.00050426995893448
729 => 0.00052247975328409
730 => 0.00051245010455949
731 => 0.00051917885884216
801 => 0.00051857697572563
802 => 0.00047037009859244
803 => 0.00047701258092852
804 => 0.00048734619891766
805 => 0.00048269091802044
806 => 0.00047610943999974
807 => 0.00047079454362149
808 => 0.00046274193213239
809 => 0.00047407582816659
810 => 0.0004889786962261
811 => 0.00050464792026195
812 => 0.00052347346625279
813 => 0.00051927182354115
814 => 0.00050429598977442
815 => 0.00050496779473735
816 => 0.00050912062867262
817 => 0.00050374233140169
818 => 0.00050215616653966
819 => 0.00050890271397779
820 => 0.00050894917374216
821 => 0.00050276079274302
822 => 0.00049588353972425
823 => 0.00049585472378299
824 => 0.00049463098303468
825 => 0.00051203159006403
826 => 0.00052160016453038
827 => 0.00052269718617241
828 => 0.00052152632623326
829 => 0.00052197694375407
830 => 0.00051640920110125
831 => 0.00052913540974279
901 => 0.00054081423728386
902 => 0.00053768406202109
903 => 0.00053299148432158
904 => 0.00052925362015875
905 => 0.00053680354001536
906 => 0.00053646735396882
907 => 0.00054071223291367
908 => 0.00054051966068512
909 => 0.00053909226755394
910 => 0.0005376841129978
911 => 0.00054326728664235
912 => 0.00054165942229574
913 => 0.0005400490604917
914 => 0.00053681923335964
915 => 0.00053725822050864
916 => 0.00053256645304882
917 => 0.00053039582674124
918 => 0.00049775481513594
919 => 0.00048903207025919
920 => 0.00049177642336526
921 => 0.00049267993566488
922 => 0.00048888378591601
923 => 0.00049432648950502
924 => 0.00049347824991593
925 => 0.00049677825395355
926 => 0.00049471655470036
927 => 0.00049480116755686
928 => 0.00050086418545985
929 => 0.00050262430535101
930 => 0.00050172909416846
1001 => 0.00050235606939468
1002 => 0.00051680444885314
1003 => 0.00051475035132732
1004 => 0.0005136591529564
1005 => 0.00051396142236253
1006 => 0.00051765329309092
1007 => 0.0005186868153262
1008 => 0.000514307708991
1009 => 0.00051637292085399
1010 => 0.0005251663308522
1011 => 0.00052824352668767
1012 => 0.0005380644586567
1013 => 0.00053389235220311
1014 => 0.00054155043416322
1015 => 0.00056508876727605
1016 => 0.00058389281649534
1017 => 0.00056659983572308
1018 => 0.00060113107743307
1019 => 0.00062801860231673
1020 => 0.00062698661432818
1021 => 0.00062229815244506
1022 => 0.00059168742020685
1023 => 0.00056351896802094
1024 => 0.00058708307437011
1025 => 0.0005871431441232
1026 => 0.00058511896648983
1027 => 0.00057254697305394
1028 => 0.00058468148836964
1029 => 0.00058564468212931
1030 => 0.00058510554975779
1031 => 0.00057546663186709
1101 => 0.00056074978581779
1102 => 0.00056362542230867
1103 => 0.00056833577354213
1104 => 0.00055941809597499
1105 => 0.00055656835765115
1106 => 0.00056186656338007
1107 => 0.00057893848616364
1108 => 0.00057571113805232
1109 => 0.0005756268589504
1110 => 0.00058943482277922
1111 => 0.00057955130062288
1112 => 0.00056366169329389
1113 => 0.00055964935788514
1114 => 0.0005454082702171
1115 => 0.00055524464019443
1116 => 0.00055559863363856
1117 => 0.00055021135432724
1118 => 0.00056409884131901
1119 => 0.00056397086568154
1120 => 0.00057715496770056
1121 => 0.00060235801903835
1122 => 0.00059490423659093
1123 => 0.00058623629857381
1124 => 0.00058717874377212
1125 => 0.00059751504144465
1126 => 0.00059126547991712
1127 => 0.00059351286581591
1128 => 0.00059751163975693
1129 => 0.00059992419935952
1130 => 0.00058683161357249
1201 => 0.00058377910553476
1202 => 0.00057753474537431
1203 => 0.00057590570836495
1204 => 0.00058099160942279
1205 => 0.00057965165418159
1206 => 0.00055556888186032
1207 => 0.00055305209815746
1208 => 0.00055312928432049
1209 => 0.00054680071203312
1210 => 0.00053714812026351
1211 => 0.00056251455510775
1212 => 0.00056047727538673
1213 => 0.00055822827624765
1214 => 0.00055850376580958
1215 => 0.00056951447542722
1216 => 0.00056312770779482
1217 => 0.00058010797631617
1218 => 0.00057661734358178
1219 => 0.00057303718928911
1220 => 0.00057254230291169
1221 => 0.00057116424895343
1222 => 0.00056643838917923
1223 => 0.00056073162952175
1224 => 0.00055696353248483
1225 => 0.00051376941773632
1226 => 0.00052178599418503
1227 => 0.00053100833465535
1228 => 0.00053419184962949
1229 => 0.00052874622697369
1230 => 0.00056665341555315
1231 => 0.00057357942418937
]
'min_raw' => 0.00023906245192537
'max_raw' => 0.00062801860231673
'avg_raw' => 0.00043354052712105
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.000239'
'max' => '$0.000628'
'avg' => '$0.000433'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -9.2689899414611E-6
'max_diff' => -0.00011325679953267
'year' => 2027
]
2 => [
'items' => [
101 => 0.00055260009225788
102 => 0.00054867571583398
103 => 0.00056691069701816
104 => 0.00055591277422831
105 => 0.00056086513818717
106 => 0.00055016083610637
107 => 0.00057191115152611
108 => 0.00057174545056436
109 => 0.00056328408661292
110 => 0.00057043557348375
111 => 0.0005691928266505
112 => 0.00055963996758875
113 => 0.00057221399419749
114 => 0.00057222023075782
115 => 0.00056407635192048
116 => 0.00055456608436279
117 => 0.00055286587314596
118 => 0.00055158499238533
119 => 0.00056055012003947
120 => 0.00056858822546094
121 => 0.00058354514683499
122 => 0.00058730567223611
123 => 0.00060198325322903
124 => 0.00059324346838619
125 => 0.00059711770180786
126 => 0.00060132373023086
127 => 0.00060334025492842
128 => 0.00060005443614643
129 => 0.0006228547609618
130 => 0.00062477980696012
131 => 0.00062542525823177
201 => 0.00061773711698861
202 => 0.0006245659858444
203 => 0.00062137098425514
204 => 0.00062968349079339
205 => 0.000630986997958
206 => 0.00062988297376319
207 => 0.00063029672751169
208 => 0.00061084067253469
209 => 0.00060983177344527
210 => 0.00059607536277276
211 => 0.00060168120180406
212 => 0.0005912013544299
213 => 0.00059452462198664
214 => 0.00059598948666039
215 => 0.00059522432448516
216 => 0.00060199814753196
217 => 0.00059623901414156
218 => 0.0005810397142351
219 => 0.00056583627328954
220 => 0.00056564540647293
221 => 0.00056164260883499
222 => 0.00055874931929171
223 => 0.00055930666950271
224 => 0.00056127084434259
225 => 0.00055863515787934
226 => 0.00055919761521897
227 => 0.00056853815469046
228 => 0.00057041133326778
229 => 0.00056404554056391
301 => 0.00053848596427836
302 => 0.00053221358014654
303 => 0.00053672204547371
304 => 0.00053456728942968
305 => 0.00043143752383607
306 => 0.00045566633251685
307 => 0.00044127039713133
308 => 0.00044790470648212
309 => 0.0004332101842629
310 => 0.00044022318047181
311 => 0.00043892813614564
312 => 0.00047788734352176
313 => 0.00047727904908522
314 => 0.00047757020744177
315 => 0.00046367246047473
316 => 0.00048581194875818
317 => 0.00049671865679685
318 => 0.00049470011541152
319 => 0.00049520813879044
320 => 0.00048647861397864
321 => 0.00047765472832374
322 => 0.0004678676811462
323 => 0.00048605080508648
324 => 0.0004840291521006
325 => 0.00048866609668243
326 => 0.00050045915231425
327 => 0.00050219572455349
328 => 0.00050452969525362
329 => 0.00050369313290097
330 => 0.00052362344209835
331 => 0.00052120975015013
401 => 0.00052702605327877
402 => 0.00051506147645918
403 => 0.00050152242209977
404 => 0.00050409575370846
405 => 0.00050384792118111
406 => 0.00050069272865911
407 => 0.00049784436192843
408 => 0.0004931026338442
409 => 0.00050810616314642
410 => 0.00050749704725641
411 => 0.00051735792549588
412 => 0.00051561491948359
413 => 0.00050397469874762
414 => 0.00050439043150841
415 => 0.0005071864341191
416 => 0.00051686343107891
417 => 0.00051973622263678
418 => 0.00051840543112622
419 => 0.00052155531592151
420 => 0.00052404485643255
421 => 0.00052186796388006
422 => 0.00055268817176328
423 => 0.00053988947267277
424 => 0.00054612746955671
425 => 0.00054761519505711
426 => 0.00054380441747132
427 => 0.00054463083867596
428 => 0.0005458826416147
429 => 0.00055348334393057
430 => 0.00057342978608836
501 => 0.00058226392954002
502 => 0.0006088418859833
503 => 0.00058153037690357
504 => 0.00057990982498104
505 => 0.00058469731751387
506 => 0.00060030139150848
507 => 0.00061294702786498
508 => 0.00061714231498869
509 => 0.00061769679143873
510 => 0.00062556742898023
511 => 0.00063007873164031
512 => 0.00062461172656437
513 => 0.0006199790121818
514 => 0.00060338520429711
515 => 0.0006053059827432
516 => 0.00061853824149244
517 => 0.00063722958635188
518 => 0.00065326870474427
519 => 0.00064765236450296
520 => 0.00069050107602579
521 => 0.00069474935075199
522 => 0.000694162376548
523 => 0.00070384057860232
524 => 0.00068463131845606
525 => 0.00067641898758165
526 => 0.00062098065761485
527 => 0.00063655656703543
528 => 0.00065919706611933
529 => 0.00065620051116806
530 => 0.00063975837555106
531 => 0.00065325623191
601 => 0.00064879341848074
602 => 0.00064527341236678
603 => 0.00066139924276158
604 => 0.0006436682298299
605 => 0.00065902018570181
606 => 0.00063933114350043
607 => 0.0006476780194721
608 => 0.00064293992897762
609 => 0.00064600605420608
610 => 0.00062808154877173
611 => 0.00063775317681133
612 => 0.00062767917724792
613 => 0.00062767440086045
614 => 0.00062745201676174
615 => 0.00063930403257314
616 => 0.00063969052638325
617 => 0.00063093186879122
618 => 0.00062966960939626
619 => 0.00063433684395635
620 => 0.00062887273463716
621 => 0.00063142935699691
622 => 0.00062895017212396
623 => 0.00062839205538944
624 => 0.00062394488629301
625 => 0.00062202892356881
626 => 0.00062278022192125
627 => 0.00062021565332353
628 => 0.00061867040797891
629 => 0.00062714462856943
630 => 0.000622617194357
701 => 0.00062645073434383
702 => 0.00062208193169752
703 => 0.00060693775832871
704 => 0.00059822818407758
705 => 0.00056962224444951
706 => 0.00057773485344247
707 => 0.00058311352159791
708 => 0.00058133587180462
709 => 0.00058515495141975
710 => 0.00058538941189084
711 => 0.00058414779017705
712 => 0.00058271015129408
713 => 0.00058201038819227
714 => 0.00058722584904803
715 => 0.00059025359961914
716 => 0.0005836533429046
717 => 0.00058210699510379
718 => 0.00058878021905235
719 => 0.00059285088180598
720 => 0.00062290636847094
721 => 0.00062067976094086
722 => 0.00062626810889171
723 => 0.00062563894667263
724 => 0.00063149642561876
725 => 0.00064107092814039
726 => 0.00062160328744091
727 => 0.00062498219672598
728 => 0.00062415376619969
729 => 0.00063319835345954
730 => 0.00063322658967371
731 => 0.00062780390780079
801 => 0.00063074363161707
802 => 0.00062910275842993
803 => 0.0006320680380564
804 => 0.00062065002323979
805 => 0.00063455593278789
806 => 0.00064243968742464
807 => 0.00064254915336542
808 => 0.0006462859904939
809 => 0.00065008283343944
810 => 0.00065737054283808
811 => 0.00064987958317972
812 => 0.00063640407598456
813 => 0.00063737696407843
814 => 0.0006294762791404
815 => 0.00062960909108159
816 => 0.00062890013053089
817 => 0.00063102777451159
818 => 0.00062111692144576
819 => 0.00062344297885078
820 => 0.00062018648486237
821 => 0.00062497511774403
822 => 0.00061982334035274
823 => 0.00062415336670541
824 => 0.00062602206253657
825 => 0.0006329175903837
826 => 0.00061880486528314
827 => 0.00059002806345559
828 => 0.00059607729608474
829 => 0.00058713000586926
830 => 0.00058795811164344
831 => 0.00058963101709934
901 => 0.00058420858317617
902 => 0.00058524301268818
903 => 0.00058520605558684
904 => 0.00058488757925336
905 => 0.00058347699476561
906 => 0.00058143136818274
907 => 0.00058958051487825
908 => 0.00059096521369836
909 => 0.00059404322764758
910 => 0.00060320130932364
911 => 0.00060228620100176
912 => 0.00060377878064223
913 => 0.00060052048766758
914 => 0.00058810925450953
915 => 0.00058878324418225
916 => 0.00058037858216341
917 => 0.0005938283015435
918 => 0.00059064323046667
919 => 0.00058858979442333
920 => 0.00058802949537395
921 => 0.00059721027816312
922 => 0.00059995731226477
923 => 0.00059824554495922
924 => 0.00059473466027531
925 => 0.00060147659676831
926 => 0.00060328045455437
927 => 0.00060368427178895
928 => 0.00061562969061645
929 => 0.00060435188800436
930 => 0.00060706656718481
1001 => 0.00062824571921132
1002 => 0.00060903915084647
1003 => 0.00061921329846692
1004 => 0.0006187153268846
1005 => 0.00062392007653284
1006 => 0.00061828838549819
1007 => 0.00061835819705809
1008 => 0.00062297966214544
1009 => 0.00061648964791587
1010 => 0.00061488262912336
1011 => 0.00061266254417118
1012 => 0.00061751001844407
1013 => 0.00062041586003827
1014 => 0.00064383480918198
1015 => 0.00065896451836266
1016 => 0.00065830769778536
1017 => 0.0006643098083453
1018 => 0.00066160580256501
1019 => 0.00065287385461978
1020 => 0.00066777822501468
1021 => 0.00066306185859639
1022 => 0.00066345067011353
1023 => 0.00066343619852944
1024 => 0.00066657216988569
1025 => 0.00066435004677223
1026 => 0.00065997001401935
1027 => 0.00066287768416828
1028 => 0.00067151242499952
1029 => 0.00069831492548589
1030 => 0.00071331395984397
1031 => 0.0006974119647842
1101 => 0.00070838094804023
1102 => 0.00070180346673497
1103 => 0.00070060814271869
1104 => 0.00070749747480497
1105 => 0.00071439886575508
1106 => 0.00071395927698709
1107 => 0.00070894922154766
1108 => 0.00070611916835538
1109 => 0.00072754927926471
1110 => 0.0007433386199303
1111 => 0.00074226189274999
1112 => 0.00074701421635344
1113 => 0.00076096718543701
1114 => 0.00076224287006571
1115 => 0.00076208216312377
1116 => 0.00075892024566761
1117 => 0.00077265875575238
1118 => 0.00078411966257118
1119 => 0.00075818835313309
1120 => 0.00076806265630135
1121 => 0.00077249554912376
1122 => 0.00077900435096709
1123 => 0.00078998579067864
1124 => 0.00080191454688842
1125 => 0.00080360140380863
1126 => 0.0008024044981002
1127 => 0.00079453716271768
1128 => 0.00080758975010207
1129 => 0.00081523564967101
1130 => 0.00081978860789101
1201 => 0.00083133415239693
1202 => 0.00077252292516069
1203 => 0.00073089341541524
1204 => 0.00072439236633108
1205 => 0.00073761250528485
1206 => 0.00074109855049832
1207 => 0.0007396933300439
1208 => 0.00069283553203595
1209 => 0.00072414566972201
1210 => 0.00075783274524106
1211 => 0.00075912680300668
1212 => 0.00077599125737505
1213 => 0.00078148301501473
1214 => 0.00079506111125583
1215 => 0.00079421179763903
1216 => 0.00079751784799904
1217 => 0.00079675784427409
1218 => 0.00082190840835523
1219 => 0.00084965321543165
1220 => 0.00084869250098568
1221 => 0.00084470385670679
1222 => 0.00085062767362585
1223 => 0.00087926328784293
1224 => 0.00087662697936219
1225 => 0.00087918792849101
1226 => 0.00091295093148544
1227 => 0.00095684763810938
1228 => 0.00093645321072527
1229 => 0.00098070324981039
1230 => 0.0010085563038207
1231 => 0.001056725280672
]
'min_raw' => 0.00043143752383607
'max_raw' => 0.001056725280672
'avg_raw' => 0.00074408140225402
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.000431'
'max' => '$0.001056'
'avg' => '$0.000744'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0001923750719107
'max_diff' => 0.00042870667835524
'year' => 2028
]
3 => [
'items' => [
101 => 0.001050694287533
102 => 0.0010694461167409
103 => 0.0010398975511079
104 => 0.00097204807166424
105 => 0.00096131063182491
106 => 0.00098280725829854
107 => 0.0010356546168738
108 => 0.00098114290690922
109 => 0.00099217055483886
110 => 0.00098899459149326
111 => 0.00098882535790354
112 => 0.0009952843157001
113 => 0.00098591526053961
114 => 0.00094774404435494
115 => 0.00096523768778798
116 => 0.00095848255194473
117 => 0.00096597787879156
118 => 0.001006427066476
119 => 0.00098854351641249
120 => 0.00096970464916225
121 => 0.00099333276937336
122 => 0.0010234194859051
123 => 0.0010215367132556
124 => 0.0010178833473776
125 => 0.0010384771795479
126 => 0.0010724921568665
127 => 0.0010816862685524
128 => 0.0010884731738337
129 => 0.0010894089734063
130 => 0.0010990482906
131 => 0.0010472152526285
201 => 0.0011294756150562
202 => 0.0011436797072508
203 => 0.0011410099266175
204 => 0.0011567971772923
205 => 0.0011521521676599
206 => 0.0011454222774822
207 => 0.0011704484278462
208 => 0.0011417579659601
209 => 0.0011010354673414
210 => 0.0010786942991996
211 => 0.0011081149516194
212 => 0.0011260811174129
213 => 0.0011379556101397
214 => 0.0011415488244641
215 => 0.0010512389038165
216 => 0.0010025668654052
217 => 0.0010337650840008
218 => 0.0010718290638734
219 => 0.0010470038052984
220 => 0.0010479769084341
221 => 0.0010125826136693
222 => 0.0010749606735887
223 => 0.0010658727149405
224 => 0.0011130210604837
225 => 0.0011017687294307
226 => 0.0011402163749329
227 => 0.0011300918213513
228 => 0.0011721182772125
301 => 0.0011888837682765
302 => 0.0012170356371131
303 => 0.0012377442664281
304 => 0.0012499047696548
305 => 0.001249174698654
306 => 0.0012973606707768
307 => 0.0012689470865056
308 => 0.0012332529280933
309 => 0.0012326073333813
310 => 0.0012510938438131
311 => 0.0012898364981518
312 => 0.0012998819047392
313 => 0.0013054959166019
314 => 0.001296897862009
315 => 0.0012660569527025
316 => 0.0012527400044309
317 => 0.0012640864301874
318 => 0.0012502107264967
319 => 0.0012741640839018
320 => 0.0013070571597799
321 => 0.0013002648696844
322 => 0.0013229704771167
323 => 0.0013464683921096
324 => 0.0013800714659068
325 => 0.0013888565537156
326 => 0.0014033779697966
327 => 0.0014183252769806
328 => 0.0014231259492069
329 => 0.001432291922048
330 => 0.0014322436128467
331 => 0.0014598658889444
401 => 0.0014903341148709
402 => 0.0015018351648171
403 => 0.0015282811949968
404 => 0.0014829932950935
405 => 0.0015173446874
406 => 0.0015483305031317
407 => 0.0015113879362212
408 => 0.0015623046581931
409 => 0.0015642816391275
410 => 0.0015941317040571
411 => 0.0015638729446705
412 => 0.0015459053899361
413 => 0.0015977770472188
414 => 0.0016228761082359
415 => 0.0016153160667946
416 => 0.001557783778141
417 => 0.0015242975184687
418 => 0.001436657517889
419 => 0.0015404708843419
420 => 0.0015910353468637
421 => 0.0015576528283986
422 => 0.0015744890289672
423 => 0.0016663418801134
424 => 0.0017013134987982
425 => 0.0016940396465819
426 => 0.0016952688078686
427 => 0.0017141388585312
428 => 0.0017978190550956
429 => 0.0017476759416224
430 => 0.001786008473046
501 => 0.0018063399094949
502 => 0.0018252248807518
503 => 0.0017788493600012
504 => 0.0017185154888963
505 => 0.0016994052192738
506 => 0.0015543335948347
507 => 0.0015467819867686
508 => 0.0015425430403239
509 => 0.0015158170826009
510 => 0.0014948178006867
511 => 0.0014781183920551
512 => 0.0014342941569403
513 => 0.0014490835498176
514 => 0.0013792368658733
515 => 0.0014239222990464
516 => 0.0013124453049641
517 => 0.0014052866581926
518 => 0.0013547573306087
519 => 0.0013886864150993
520 => 0.0013885680397199
521 => 0.0013260938379465
522 => 0.0012900600221669
523 => 0.0013130221720387
524 => 0.0013376394194391
525 => 0.0013416334850074
526 => 0.0013735503888378
527 => 0.0013824577106454
528 => 0.0013554681097255
529 => 0.001310135192043
530 => 0.0013206649948869
531 => 0.0012898466360483
601 => 0.0012358386475949
602 => 0.0012746281277912
603 => 0.0012878725617832
604 => 0.0012937220583529
605 => 0.0012406114045683
606 => 0.0012239228840608
607 => 0.0012150380557728
608 => 0.0013032792735745
609 => 0.0013081133266789
610 => 0.0012833816275303
611 => 0.0013951712528381
612 => 0.0013698698177034
613 => 0.001398137719751
614 => 0.001319709525647
615 => 0.0013227055882793
616 => 0.0012855764243229
617 => 0.0013063662751669
618 => 0.0012916726786785
619 => 0.001304686660668
620 => 0.0013124871878138
621 => 0.0013496102592398
622 => 0.0014057105440366
623 => 0.0013440653103141
624 => 0.0013172055992051
625 => 0.0013338692129124
626 => 0.0013782466121201
627 => 0.001445480643557
628 => 0.0014056767437354
629 => 0.0014233410385622
630 => 0.001427199901152
701 => 0.001397849979044
702 => 0.0014465628170494
703 => 0.0014726684226789
704 => 0.0014994473722608
705 => 0.0015226987838537
706 => 0.0014887512709161
707 => 0.0015250799759442
708 => 0.0014958054525713
709 => 0.0014695431787612
710 => 0.0014695830077899
711 => 0.0014531082997983
712 => 0.0014211864771176
713 => 0.0014152996032467
714 => 0.0014459238645535
715 => 0.0014704816219933
716 => 0.0014725043165197
717 => 0.0014861007528615
718 => 0.0014941469838341
719 => 0.0015730109856866
720 => 0.0016047307396288
721 => 0.0016435170543252
722 => 0.0016586265097764
723 => 0.0017041005536449
724 => 0.0016673765699998
725 => 0.0016594311051335
726 => 0.0015491259491551
727 => 0.0015671884122671
728 => 0.001596108158478
729 => 0.0015496028251183
730 => 0.0015790997550829
731 => 0.0015849230738883
801 => 0.0015480225916862
802 => 0.001567732733606
803 => 0.0015153884403168
804 => 0.0014068515065899
805 => 0.0014466836496836
806 => 0.0014760135143549
807 => 0.0014341561811227
808 => 0.001509183830839
809 => 0.0014653542267598
810 => 0.0014514623464587
811 => 0.0013972651685913
812 => 0.001422844150304
813 => 0.0014574400893262
814 => 0.0014360638212201
815 => 0.0014804227872031
816 => 0.0015432469131392
817 => 0.0015880191265226
818 => 0.0015914561811274
819 => 0.0015626706474272
820 => 0.0016087996488886
821 => 0.0016091356483041
822 => 0.0015571019462131
823 => 0.0015252315934073
824 => 0.001517990582194
825 => 0.0015360800478886
826 => 0.0015580439987416
827 => 0.0015926750275384
828 => 0.001613601832944
829 => 0.0016681678427218
830 => 0.0016829318404375
831 => 0.0016991529977627
901 => 0.0017208294663688
902 => 0.0017468576246629
903 => 0.0016899094960993
904 => 0.0016921721514117
905 => 0.0016391428425938
906 => 0.0015824734209496
907 => 0.0016254784480344
908 => 0.0016817018002287
909 => 0.001668804101114
910 => 0.0016673528464876
911 => 0.0016697934542248
912 => 0.0016600690102919
913 => 0.0016160857107877
914 => 0.0015939975731267
915 => 0.0016224969059943
916 => 0.001637643033054
917 => 0.0016611333552426
918 => 0.0016582376772123
919 => 0.0017187462244936
920 => 0.0017422580162836
921 => 0.0017362426938174
922 => 0.001737349657918
923 => 0.0017799166338842
924 => 0.001827259865725
925 => 0.0018716030498336
926 => 0.0019167108412929
927 => 0.0018623316381016
928 => 0.0018347212323641
929 => 0.0018632081233145
930 => 0.0018480925779942
1001 => 0.0019349509849665
1002 => 0.0019409648726113
1003 => 0.0020278169987322
1004 => 0.0021102500085797
1005 => 0.0020584753120352
1006 => 0.0021072965188931
1007 => 0.0021601006345613
1008 => 0.0022619683408442
1009 => 0.0022276628811172
1010 => 0.0022013854366015
1011 => 0.0021765533785057
1012 => 0.0022282249494247
1013 => 0.0022946995999385
1014 => 0.0023090176029729
1015 => 0.0023322182377867
1016 => 0.0023078256071186
1017 => 0.0023372038439982
1018 => 0.0024409219296345
1019 => 0.0024128963873507
1020 => 0.0023730956119769
1021 => 0.002454971079396
1022 => 0.0024846014927721
1023 => 0.0026925632514137
1024 => 0.0029551235621705
1025 => 0.0028464218694532
1026 => 0.0027789472210019
1027 => 0.002794805363908
1028 => 0.002890683501169
1029 => 0.0029214765158372
1030 => 0.0028377704869802
1031 => 0.0028673368714761
1101 => 0.003030250556951
1102 => 0.0031176485223115
1103 => 0.0029989503462392
1104 => 0.0026714667860937
1105 => 0.0023695119876243
1106 => 0.0024496039973801
1107 => 0.0024405240490182
1108 => 0.0026155544801649
1109 => 0.0024122279874359
1110 => 0.0024156514841136
1111 => 0.0025943013592159
1112 => 0.0025466406353728
1113 => 0.0024694363666714
1114 => 0.0023700756642251
1115 => 0.0021863982160007
1116 => 0.0020237099778838
1117 => 0.0023427790776947
1118 => 0.0023290202379214
1119 => 0.0023090953989837
1120 => 0.0023534359719467
1121 => 0.0025687412079636
1122 => 0.0025637777253983
1123 => 0.0025322025817094
1124 => 0.0025561520499069
1125 => 0.0024652379091024
1126 => 0.0024886685532642
1127 => 0.0023694641564414
1128 => 0.0024233495222207
1129 => 0.0024692707209849
1130 => 0.0024784900815118
1201 => 0.0024992617715311
1202 => 0.0023217699545673
1203 => 0.0024014585694981
1204 => 0.0024482681649565
1205 => 0.0022367807097279
1206 => 0.0024440877379506
1207 => 0.0023186802169176
1208 => 0.0022761150207213
1209 => 0.0023334234498615
1210 => 0.0023110902992913
1211 => 0.0022918895678776
1212 => 0.0022811752298384
1213 => 0.0023232562152984
1214 => 0.002321293087029
1215 => 0.0022524404272491
1216 => 0.0021626249393596
1217 => 0.0021927699651882
1218 => 0.0021818179946936
1219 => 0.0021421266407886
1220 => 0.0021688738209682
1221 => 0.0020510927758954
1222 => 0.0018484566095737
1223 => 0.0019823242679594
1224 => 0.0019771705087316
1225 => 0.0019745717496245
1226 => 0.0020751695950711
1227 => 0.0020654994334186
1228 => 0.0020479479953288
1229 => 0.0021418042948641
1230 => 0.0021075454829883
1231 => 0.0022131230687982
]
'min_raw' => 0.00094774404435494
'max_raw' => 0.0031176485223115
'avg_raw' => 0.0020326962833332
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.000947'
'max' => '$0.003117'
'avg' => '$0.002032'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.00051630652051886
'max_diff' => 0.0020609232416395
'year' => 2029
]
4 => [
'items' => [
101 => 0.0022826632951427
102 => 0.002265025644351
103 => 0.0023304285633451
104 => 0.0021934644456989
105 => 0.0022389584315343
106 => 0.0022483346789631
107 => 0.0021406461226968
108 => 0.0020670815914579
109 => 0.0020621756759213
110 => 0.0019346249165699
111 => 0.0020027615026616
112 => 0.0020627188787389
113 => 0.0020340039484782
114 => 0.0020249136593918
115 => 0.002071353974891
116 => 0.0020749627851397
117 => 0.001992681529025
118 => 0.0020097904076798
119 => 0.0020811372757845
120 => 0.0020079926496607
121 => 0.0018658845892091
122 => 0.0018306398254194
123 => 0.00182593752424
124 => 0.001730350929545
125 => 0.0018329950490653
126 => 0.0017881881402033
127 => 0.0019297326284291
128 => 0.0018488831758728
129 => 0.0018453979175649
130 => 0.0018401294384562
131 => 0.0017578541077697
201 => 0.00177586717632
202 => 0.001835745359649
203 => 0.0018571105700368
204 => 0.0018548820035533
205 => 0.0018354519238843
206 => 0.0018443469148587
207 => 0.0018156930497098
208 => 0.0018055747735471
209 => 0.0017736387107265
210 => 0.0017267015209428
211 => 0.0017332284250648
212 => 0.0016402335703195
213 => 0.0015895650378437
214 => 0.001575540655855
215 => 0.0015567866661403
216 => 0.0015776589688957
217 => 0.0016399701275802
218 => 0.001564809650157
219 => 0.0014359522835093
220 => 0.0014436968308071
221 => 0.0014610965292085
222 => 0.001428672306348
223 => 0.0013979855005693
224 => 0.0014246651884947
225 => 0.0013700666235494
226 => 0.0014676945049344
227 => 0.0014650539443419
228 => 0.0015014435812546
301 => 0.0015241987680066
302 => 0.0014717554296224
303 => 0.0014585660718407
304 => 0.001466079329456
305 => 0.001341901917062
306 => 0.0014912956374166
307 => 0.001492587600514
308 => 0.001481525028101
309 => 0.0015610725721762
310 => 0.001728942701676
311 => 0.0016657832063979
312 => 0.0016413259408203
313 => 0.0015948326610793
314 => 0.0016567821958365
315 => 0.0016520254381304
316 => 0.0016305135758368
317 => 0.0016175031344005
318 => 0.0016414752716687
319 => 0.0016145327213051
320 => 0.001609693098928
321 => 0.0015803702528839
322 => 0.0015699033309506
323 => 0.0015621540386514
324 => 0.0015536228292597
325 => 0.0015724405513329
326 => 0.0015297971174376
327 => 0.0014783733165473
328 => 0.0014740979839165
329 => 0.0014859025532012
330 => 0.0014806799100396
331 => 0.0014740729799103
401 => 0.0014614585510033
402 => 0.0014577161194112
403 => 0.0014698772065158
404 => 0.0014561480482102
405 => 0.0014764061691561
406 => 0.0014708970811918
407 => 0.0014401237636546
408 => 0.0014017688162619
409 => 0.0014014273767779
410 => 0.0013931638662769
411 => 0.0013826390432267
412 => 0.0013797112782295
413 => 0.0014224182995933
414 => 0.0015108205557028
415 => 0.0014934650775418
416 => 0.0015060061891741
417 => 0.0015676960460104
418 => 0.00158730539642
419 => 0.0015733871439722
420 => 0.0015543349815813
421 => 0.0015551731800351
422 => 0.0016202801864068
423 => 0.0016243408305323
424 => 0.001634600768224
425 => 0.001647787687616
426 => 0.0015756329333665
427 => 0.0015517746975987
428 => 0.0015404693418874
429 => 0.0015056532220199
430 => 0.0015431994223885
501 => 0.0015213228593223
502 => 0.0015242747550897
503 => 0.0015223523290987
504 => 0.0015234021036837
505 => 0.0014676672159519
506 => 0.0014879740797019
507 => 0.0014542099801366
508 => 0.0014090036410166
509 => 0.0014088520935165
510 => 0.0014199162809723
511 => 0.0014133348693319
512 => 0.001395624459831
513 => 0.0013981401399099
514 => 0.0013761001352964
515 => 0.0014008161955171
516 => 0.0014015249636859
517 => 0.0013920079342081
518 => 0.001430086435137
519 => 0.0014456872280367
520 => 0.0014394229153599
521 => 0.0014452477071599
522 => 0.0014941862760147
523 => 0.0015021653980775
524 => 0.0015057091970265
525 => 0.0015009609758982
526 => 0.0014461422143608
527 => 0.0014485736595424
528 => 0.0014307333280893
529 => 0.0014156601279793
530 => 0.0014162629769352
531 => 0.0014240125611706
601 => 0.0014578554500337
602 => 0.0015290758144987
603 => 0.0015317785752688
604 => 0.0015350544001672
605 => 0.0015217299740078
606 => 0.0015177111995805
607 => 0.0015230130003837
608 => 0.001549759624688
609 => 0.0016185592040361
610 => 0.001594240837725
611 => 0.0015744696273763
612 => 0.0015918143091322
613 => 0.001589144231328
614 => 0.0015666060875891
615 => 0.0015659735169599
616 => 0.0015227156132446
617 => 0.0015067241511758
618 => 0.0014933604885309
619 => 0.00147876771779
620 => 0.0014701166341407
621 => 0.0014834086304732
622 => 0.0014864486673008
623 => 0.0014573854850153
624 => 0.0014534242806619
625 => 0.0014771579026886
626 => 0.0014667136205133
627 => 0.0014774558237363
628 => 0.001479948107029
629 => 0.0014795467920167
630 => 0.0014686417619075
701 => 0.0014755923029065
702 => 0.001459152201388
703 => 0.00144127606021
704 => 0.0014298721958614
705 => 0.0014199208117142
706 => 0.0014254424180169
707 => 0.0014057588997532
708 => 0.0013994617461096
709 => 0.0014732376160081
710 => 0.0015277366443264
711 => 0.0015269442068707
712 => 0.0015221204476573
713 => 0.00151495331993
714 => 0.0015492353046534
715 => 0.0015372921466657
716 => 0.001545981791986
717 => 0.0015481936714233
718 => 0.0015548883643045
719 => 0.0015572811415812
720 => 0.0015500485067603
721 => 0.0015257749009092
722 => 0.0014652873829936
723 => 0.0014371302801209
724 => 0.0014278379671793
725 => 0.0014281757251061
726 => 0.0014188588536668
727 => 0.0014216030898586
728 => 0.0014179045203109
729 => 0.0014109003243675
730 => 0.0014250099286547
731 => 0.0014266359291088
801 => 0.0014233425788709
802 => 0.001424118282073
803 => 0.0013968507487118
804 => 0.0013989238400513
805 => 0.0013873806040374
806 => 0.0013852163864406
807 => 0.0013560360909819
808 => 0.0013043389678255
809 => 0.0013329841924153
810 => 0.0012983847892389
811 => 0.0012852814709895
812 => 0.0013473105415982
813 => 0.0013410845433277
814 => 0.001330428340665
815 => 0.0013146655959796
816 => 0.0013088190406457
817 => 0.0012732972212312
818 => 0.0012711984026387
819 => 0.0012888039755103
820 => 0.0012806796094008
821 => 0.001269269922445
822 => 0.0012279451928727
823 => 0.0011814825146857
824 => 0.0011828849308862
825 => 0.0011976638443486
826 => 0.0012406355284487
827 => 0.0012238457480531
828 => 0.0012116645697356
829 => 0.0012093834012016
830 => 0.0012379370013543
831 => 0.0012783463277347
901 => 0.0012973054795646
902 => 0.0012785175358992
903 => 0.001256934957831
904 => 0.001258248589354
905 => 0.001266987591359
906 => 0.0012679059369069
907 => 0.0012538578973094
908 => 0.0012578123381692
909 => 0.0012518051809015
910 => 0.0012149392678377
911 => 0.0012142724803735
912 => 0.0012052249907645
913 => 0.0012049510363748
914 => 0.0011895589995479
915 => 0.0011874055471956
916 => 0.0011568437238458
917 => 0.0011769596085244
918 => 0.0011634669292134
919 => 0.0011431302788904
920 => 0.0011396242327093
921 => 0.0011395188367274
922 => 0.0011604000294174
923 => 0.0011767155996302
924 => 0.0011637016401467
925 => 0.0011607386138373
926 => 0.0011923759829126
927 => 0.0011883498393167
928 => 0.0011848632249286
929 => 0.0012747281157707
930 => 0.0012035930424243
1001 => 0.0011725740901972
1002 => 0.0011341822464769
1003 => 0.0011466828243807
1004 => 0.0011493168798168
1005 => 0.0010569914163195
1006 => 0.0010195349872771
1007 => 0.0010066813523454
1008 => 0.00099928390371857
1009 => 0.0010026550139491
1010 => 0.00096893983461002
1011 => 0.00099159699272351
1012 => 0.00096240249728899
1013 => 0.00095750794512229
1014 => 0.0010097113194632
1015 => 0.001016975114035
1016 => 0.00098598550970746
1017 => 0.001005885852447
1018 => 0.00099866971153418
1019 => 0.00096290295311993
1020 => 0.00096153692603098
1021 => 0.00094359042392106
1022 => 0.00091550762324661
1023 => 0.00090267302977625
1024 => 0.00089598866206184
1025 => 0.00089874676245654
1026 => 0.00089735218249771
1027 => 0.00088825160493616
1028 => 0.00089787381695079
1029 => 0.00087329304142592
1030 => 0.00086350477855115
1031 => 0.00085908364729659
1101 => 0.00083726679420163
1102 => 0.00087198710947433
1103 => 0.00087882744897806
1104 => 0.0008856812660637
1105 => 0.00094533906449453
1106 => 0.00094235872947611
1107 => 0.00096929950656057
1108 => 0.00096825263750398
1109 => 0.00096056869146784
1110 => 0.00092815138708913
1111 => 0.00094107234683159
1112 => 0.00090130364110726
1113 => 0.00093110105944506
1114 => 0.00091750276208563
1115 => 0.00092650346142918
1116 => 0.00091031939244914
1117 => 0.00091927632444652
1118 => 0.00088044954723426
1119 => 0.00084419364898094
1120 => 0.00085878408081372
1121 => 0.00087464554883423
1122 => 0.00090903725292958
1123 => 0.00088855383769579
1124 => 0.00089592044837754
1125 => 0.0008712435357494
1126 => 0.00082032801638593
1127 => 0.00082061619269612
1128 => 0.00081278394929693
1129 => 0.00080601574747378
1130 => 0.00089090660433869
1201 => 0.00088034908436169
1202 => 0.00086352705801238
1203 => 0.00088604400876168
1204 => 0.00089199784793186
1205 => 0.00089216734536292
1206 => 0.00090859513138299
1207 => 0.00091736264372674
1208 => 0.0009189079557779
1209 => 0.00094475743202629
1210 => 0.00095342183550191
1211 => 0.00098910928718573
1212 => 0.00091661878155958
1213 => 0.00091512588729991
1214 => 0.00088636086843522
1215 => 0.00086811763871429
1216 => 0.00088760999798198
1217 => 0.00090487756732077
1218 => 0.00088689741994774
1219 => 0.00088924524761303
1220 => 0.00086510836879676
1221 => 0.00087373616722787
1222 => 0.0008811675895267
1223 => 0.0008770643949321
1224 => 0.00087092171402711
1225 => 0.00090346182355176
1226 => 0.00090162578304666
1227 => 0.00093192788112989
1228 => 0.00095555053350959
1229 => 0.00099788654962823
1230 => 0.000953706709782
1231 => 0.00095209662081904
]
'min_raw' => 0.00080601574747378
'max_raw' => 0.0023304285633451
'avg_raw' => 0.0015682221554094
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.000806'
'max' => '$0.00233'
'avg' => '$0.001568'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00014172829688116
'max_diff' => -0.00078721995896635
'year' => 2030
]
5 => [
'items' => [
101 => 0.00096783549869832
102 => 0.00095341942596171
103 => 0.00096252988630533
104 => 0.0009964187136197
105 => 0.00099713473113954
106 => 0.00098514051514579
107 => 0.00098441066601253
108 => 0.00098671428639648
109 => 0.0010002066629375
110 => 0.00099549201199523
111 => 0.001000947925426
112 => 0.0010077706287151
113 => 0.0010359922222851
114 => 0.0010427963529511
115 => 0.00102626584297
116 => 0.001027758362937
117 => 0.0010215754984315
118 => 0.0010156029287902
119 => 0.0010290283931201
120 => 0.0010535636930611
121 => 0.0010534110602336
122 => 0.0010591027729218
123 => 0.0010626486627739
124 => 0.0010474271077787
125 => 0.001037518435189
126 => 0.0010413180507651
127 => 0.0010473937188162
128 => 0.001039347793502
129 => 0.00098968461522728
130 => 0.0010047492510197
131 => 0.0010022417590008
201 => 0.00099867078544441
202 => 0.0010138183932251
203 => 0.0010123573695018
204 => 0.00096859403671477
205 => 0.00097139562329001
206 => 0.00096876441047356
207 => 0.00097726639737902
208 => 0.00095296029076768
209 => 0.0009604366854572
210 => 0.00096512581011962
211 => 0.00096788774056934
212 => 0.00097786572722716
213 => 0.00097669492565836
214 => 0.00097779294855776
215 => 0.0009925876686805
216 => 0.0010674142861265
217 => 0.0010714869338184
218 => 0.0010514317270823
219 => 0.0010594433866019
220 => 0.0010440627522816
221 => 0.0010543878751421
222 => 0.0010614520619736
223 => 0.0010295303600471
224 => 0.0010276401640292
225 => 0.0010121960483598
226 => 0.0010204948413211
227 => 0.0010072908650153
228 => 0.0010105306589453
301 => 0.001001471912677
302 => 0.0010177758523815
303 => 0.0010360061903473
304 => 0.0010406118936553
305 => 0.0010284962711319
306 => 0.0010197237619665
307 => 0.0010043221257162
308 => 0.0010299353900483
309 => 0.001037425489089
310 => 0.0010298960477466
311 => 0.001028151311666
312 => 0.001024845039946
313 => 0.0010288527528412
314 => 0.0010373846964011
315 => 0.0010333611893785
316 => 0.001036018786652
317 => 0.0010258907663479
318 => 0.0010474321467468
319 => 0.0010816450430358
320 => 0.0010817550430918
321 => 0.001077731514381
322 => 0.0010760851731207
323 => 0.0010802135577461
324 => 0.0010824530370502
325 => 0.0010958034759124
326 => 0.0011101290287166
327 => 0.0011769801329253
328 => 0.0011582086103725
329 => 0.0012175228870164
330 => 0.0012644327788469
331 => 0.0012784990042859
401 => 0.001265558738749
402 => 0.001221290789367
403 => 0.0012191187925789
404 => 0.0012852737984018
405 => 0.0012665819791656
406 => 0.0012643586467443
407 => 0.0012407061461614
408 => 0.0012546877034251
409 => 0.0012516297317545
410 => 0.0012468025738713
411 => 0.0012734784111667
412 => 0.0013234131972153
413 => 0.0013156303925241
414 => 0.0013098208898561
415 => 0.0012843653402857
416 => 0.0012996952668299
417 => 0.0012942365736129
418 => 0.0013176905838455
419 => 0.0013037969477537
420 => 0.001266440370251
421 => 0.0012723895283472
422 => 0.001271490325069
423 => 0.001289995864816
424 => 0.0012844409611197
425 => 0.0012704056409693
426 => 0.0013232425255451
427 => 0.001319811592155
428 => 0.0013246758712817
429 => 0.0013268172773861
430 => 0.0013589781579371
501 => 0.0013721534416654
502 => 0.0013751444617376
503 => 0.0013876599622665
504 => 0.001374833064683
505 => 0.0014261498004398
506 => 0.0014602724353035
507 => 0.0014999076316324
508 => 0.0015578253064054
509 => 0.0015796028878885
510 => 0.0015756689627171
511 => 0.0016195814827247
512 => 0.0016984913050579
513 => 0.0015916188939288
514 => 0.0017041558023542
515 => 0.0016685279164478
516 => 0.0015840548398821
517 => 0.0015786157696234
518 => 0.0016358219178263
519 => 0.0017626996486526
520 => 0.0017309182161159
521 => 0.0017627516316909
522 => 0.0017256162614913
523 => 0.0017237721773594
524 => 0.001760948049648
525 => 0.0018478115016015
526 => 0.0018065459316062
527 => 0.001747381618285
528 => 0.0017910676265427
529 => 0.0017532227632407
530 => 0.001667947694111
531 => 0.0017308939134534
601 => 0.0016888035691842
602 => 0.0017010877692878
603 => 0.0017895554124754
604 => 0.0017789107515907
605 => 0.0017926859284445
606 => 0.0017683731018566
607 => 0.0017456610880427
608 => 0.0017032674276427
609 => 0.0016907167547805
610 => 0.0016941853092337
611 => 0.0016907150359372
612 => 0.0016669961725612
613 => 0.0016618740862735
614 => 0.0016533370513902
615 => 0.0016559830354738
616 => 0.0016399309122956
617 => 0.0016702245852709
618 => 0.001675847357922
619 => 0.0016978925668308
620 => 0.0017001813735518
621 => 0.0017615769665688
622 => 0.0017277613056461
623 => 0.0017504477704967
624 => 0.0017484184795472
625 => 0.001585885627596
626 => 0.0016082812205554
627 => 0.001643121735076
628 => 0.0016274261305096
629 => 0.0016052362178587
630 => 0.0015873166736452
701 => 0.0015601667317944
702 => 0.001598379753581
703 => 0.0016486258137287
704 => 0.0017014556965558
705 => 0.0017649273392216
706 => 0.00175076120747
707 => 0.0017002691383461
708 => 0.0017025341756825
709 => 0.0017165357452369
710 => 0.0016984024404873
711 => 0.0016930545749124
712 => 0.001715801030629
713 => 0.0017159576729683
714 => 0.0016950931143707
715 => 0.0016719059756634
716 => 0.0016718088207056
717 => 0.0016676828933339
718 => 0.0017263502548049
719 => 0.0017586113716747
720 => 0.0017623100567325
721 => 0.0017583624207008
722 => 0.0017598817091333
723 => 0.0017411096760519
724 => 0.0017840169770024
725 => 0.0018233929594468
726 => 0.0018128393550065
727 => 0.0017970180016673
728 => 0.001784415531673
729 => 0.0018098706135881
730 => 0.0018087371388605
731 => 0.001823049044591
801 => 0.0018223997738775
802 => 0.0018175872182783
803 => 0.0018128395268781
804 => 0.0018316635866254
805 => 0.0018262425597233
806 => 0.0018208131124691
807 => 0.0018099235247941
808 => 0.001811403600616
809 => 0.0017955849790565
810 => 0.0017882665609122
811 => 0.0016782151113623
812 => 0.0016488057680077
813 => 0.0016580585461094
814 => 0.0016611048009088
815 => 0.0016483058169918
816 => 0.0016666562721396
817 => 0.0016637963731427
818 => 0.0016749225671545
819 => 0.0016679714041791
820 => 0.0016682566823323
821 => 0.0016886985704986
822 => 0.0016946329375993
823 => 0.0016916146705957
824 => 0.0016937285613449
825 => 0.0017424422814428
826 => 0.0017355167482219
827 => 0.0017318376967293
828 => 0.0017328568191359
829 => 0.0017453042190548
830 => 0.0017487888114293
831 => 0.0017340243486807
901 => 0.0017409873546653
902 => 0.0017706349504105
903 => 0.0017810099310128
904 => 0.0018141218888219
905 => 0.0018000553406265
906 => 0.0018258750986252
907 => 0.001905236232109
908 => 0.0019686353969087
909 => 0.0019103309048776
910 => 0.0020267553971972
911 => 0.0021174085645695
912 => 0.002113929145015
913 => 0.0020981216684381
914 => 0.0019949154475239
915 => 0.0018999435443206
916 => 0.0019793915740702
917 => 0.0019795941034366
918 => 0.0019727694472222
919 => 0.0019303820936045
920 => 0.0019712944591962
921 => 0.001974541934205
922 => 0.0019727242117733
923 => 0.0019402259271371
924 => 0.0018906070531845
925 => 0.0019003024623841
926 => 0.0019161837404339
927 => 0.0018861171679039
928 => 0.0018765090761827
929 => 0.0018943723467066
930 => 0.0019519315262951
1001 => 0.0019410502968115
1002 => 0.0019407661439352
1003 => 0.0019873206580253
1004 => 0.0019539976730297
1005 => 0.0019004247525431
1006 => 0.0018868968835802
1007 => 0.0018388820622264
1008 => 0.0018720460703584
1009 => 0.0018732395839703
1010 => 0.0018550759956443
1011 => 0.0019018986276305
1012 => 0.0019014671488337
1013 => 0.0019459182692755
1014 => 0.0020308921164817
1015 => 0.0020057611685538
1016 => 0.0019765366103529
1017 => 0.0019797141301385
1018 => 0.0020145636793987
1019 => 0.0019934928463781
1020 => 0.0020010700648434
1021 => 0.002014552210371
1022 => 0.0020226863235107
1023 => 0.0019785437564346
1024 => 0.001968252012466
1025 => 0.0019471987162178
1026 => 0.001941706304205
1027 => 0.0019588537747078
1028 => 0.0019543360220594
1029 => 0.0018731392737727
1030 => 0.0018646537618023
1031 => 0.0018649140003399
1101 => 0.0018435767770263
1102 => 0.0018110323899526
1103 => 0.0018965570960579
1104 => 0.0018896882652401
1105 => 0.0018821056076226
1106 => 0.0018830344399147
1107 => 0.0019201578161338
1108 => 0.0018986243831513
1109 => 0.0019558745439955
1110 => 0.0019441056320233
1111 => 0.0019320348918672
1112 => 0.0019303663478939
1113 => 0.0019257201427609
1114 => 0.0019097865765832
1115 => 0.0018905458379648
1116 => 0.0018778414357247
1117 => 0.0017322094621333
1118 => 0.0017592379093296
1119 => 0.0017903316741085
1120 => 0.0018010651171098
1121 => 0.0017827048201245
1122 => 0.0019105115530155
1123 => 0.001933863074691
1124 => 0.0018631297923538
1125 => 0.0018498984832494
1126 => 0.0019113789954376
1127 => 0.0018742987309012
1128 => 0.0018909959717515
1129 => 0.0018549056699356
1130 => 0.0019282383769318
1201 => 0.0019276797045704
1202 => 0.0018991516252545
1203 => 0.0019232633625404
1204 => 0.0019190733548263
1205 => 0.0018868652235403
1206 => 0.0019292594321422
1207 => 0.0019292804591407
1208 => 0.0019018228030532
1209 => 0.0018697582719967
1210 => 0.0018640258911742
1211 => 0.0018597073122615
1212 => 0.0018899338660727
1213 => 0.0019170348997038
1214 => 0.0019674632043753
1215 => 0.0019801420783166
1216 => 0.0020296285673903
1217 => 0.0020001617726003
1218 => 0.0020132240210718
1219 => 0.0020274049395555
1220 => 0.0020342037933626
1221 => 0.0020231254259306
1222 => 0.0020999983129134
1223 => 0.0021064887398992
1224 => 0.0021086649239255
1225 => 0.0020827438189553
1226 => 0.002105767827079
1227 => 0.002094995656153
1228 => 0.0021230218523073
1229 => 0.0021274167177208
1230 => 0.0021236944230675
1231 => 0.0021250894227179
]
'min_raw' => 0.00095296029076768
'max_raw' => 0.0021274167177208
'avg_raw' => 0.0015401885042442
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.000952'
'max' => '$0.002127'
'avg' => '$0.00154'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0001469445432939
'max_diff' => -0.00020301184562433
'year' => 2031
]
6 => [
'items' => [
101 => 0.0020594919749846
102 => 0.0020560904012655
103 => 0.0020097097022412
104 => 0.0020286101799224
105 => 0.0019932766428209
106 => 0.0020044812714115
107 => 0.0020094201649327
108 => 0.002006840367237
109 => 0.0020296787845725
110 => 0.0020102614642569
111 => 0.001959015963441
112 => 0.0019077565008227
113 => 0.0019071129800246
114 => 0.0018936172683219
115 => 0.0018838623406237
116 => 0.001885741485773
117 => 0.00189236383838
118 => 0.0018834774374514
119 => 0.0018853738016415
120 => 0.0019168660826053
121 => 0.0019231816349599
122 => 0.0019017189204133
123 => 0.0018155430244539
124 => 0.0017943952434296
125 => 0.0018095958490512
126 => 0.0018023309386085
127 => 0.0014546217336193
128 => 0.001536310853688
129 => 0.0014877739524436
130 => 0.0015101419896125
131 => 0.0014605983820116
201 => 0.0014842431883617
202 => 0.0014798768559989
203 => 0.0016112305437125
204 => 0.0016091796365499
205 => 0.0016101612972771
206 => 0.001563304073068
207 => 0.0016379489035453
208 => 0.0016747216311797
209 => 0.0016679159779691
210 => 0.0016696288142601
211 => 0.0016401966118812
212 => 0.0016104462653317
213 => 0.0015774485524628
214 => 0.0016387542243326
215 => 0.0016319380801434
216 => 0.0016475718625422
217 => 0.0016873329729697
218 => 0.0016931879475179
219 => 0.001701057092686
220 => 0.0016982365643072
221 => 0.0017654329932559
222 => 0.0017572950623339
223 => 0.0017769051344134
224 => 0.0017365657283261
225 => 0.0016909178612867
226 => 0.0016995940284697
227 => 0.0016987584438006
228 => 0.0016881204919242
229 => 0.0016785170246251
301 => 0.0016625299573322
302 => 0.0017131154038876
303 => 0.0017110617271373
304 => 0.0017443083665862
305 => 0.001738431700123
306 => 0.0016991858832174
307 => 0.001700587555246
308 => 0.0017100144732586
309 => 0.0017426411441349
310 => 0.0017523269614442
311 => 0.0017478401049535
312 => 0.0017584601614587
313 => 0.0017668538211058
314 => 0.0017595142758793
315 => 0.0018634267585558
316 => 0.0018202750509955
317 => 0.0018413068930127
318 => 0.0018463228634071
319 => 0.0018334745607165
320 => 0.0018362608975069
321 => 0.0018404814385129
322 => 0.001866107737035
323 => 0.0019333585593861
324 => 0.0019631434908136
325 => 0.0020527529265757
326 => 0.0019606702668848
327 => 0.0019552064629346
328 => 0.0019713478282611
329 => 0.0020239580531756
330 => 0.0020665936990417
331 => 0.0020807384024849
401 => 0.0020826078585485
402 => 0.00210914426253
403 => 0.0021243544344176
404 => 0.0021059220451099
405 => 0.0020903025251233
406 => 0.0020343553432974
407 => 0.0020408313819329
408 => 0.0020854448661527
409 => 0.0021484640403344
410 => 0.0022025410478098
411 => 0.0021836051645659
412 => 0.0023280725870666
413 => 0.002342395941911
414 => 0.002340416917401
415 => 0.0023730476513377
416 => 0.0023082822896069
417 => 0.0022805938426971
418 => 0.0020936796426335
419 => 0.0021461949087202
420 => 0.0022225289320908
421 => 0.0022124258378598
422 => 0.0021569900296738
423 => 0.0022024989947782
424 => 0.0021874523077178
425 => 0.0021755843613456
426 => 0.0022299537243912
427 => 0.0021701723763522
428 => 0.0022219325674137
429 => 0.0021555495869867
430 => 0.0021836916620855
501 => 0.0021677168591804
502 => 0.0021780545144582
503 => 0.0021176207929373
504 => 0.0021502293621243
505 => 0.0021162641692521
506 => 0.0021162480653283
507 => 0.0021154982818131
508 => 0.0021554581806025
509 => 0.0021567612714675
510 => 0.002127230845886
511 => 0.0021229750502078
512 => 0.002138710957383
513 => 0.0021202883313214
514 => 0.002128908162105
515 => 0.0021205494172147
516 => 0.0021186676876778
517 => 0.0021036737465777
518 => 0.0020972139444849
519 => 0.0020997469993341
520 => 0.0020911003772544
521 => 0.0020858904746894
522 => 0.0021144619010616
523 => 0.002099197340519
524 => 0.0021121223882338
525 => 0.0020973926650917
526 => 0.0020463330272463
527 => 0.0020169680895756
528 => 0.0019205211669166
529 => 0.0019478733945407
530 => 0.0019660079497534
531 => 0.0019600144793637
601 => 0.0019728907729258
602 => 0.0019736812727736
603 => 0.0019694950584783
604 => 0.0019646479586116
605 => 0.0019622886584579
606 => 0.001979872948865
607 => 0.0019900812213063
608 => 0.001967827994978
609 => 0.001962614375405
610 => 0.0019851136158572
611 => 0.0019988381395356
612 => 0.0021001723112336
613 => 0.0020926651484892
614 => 0.0021115066537715
615 => 0.0021093853894231
616 => 0.0021291342886461
617 => 0.0021614153923682
618 => 0.0020957788825627
619 => 0.0021071711111252
620 => 0.0021043779997666
621 => 0.0021348724571861
622 => 0.0021349676575536
623 => 0.0021166847070195
624 => 0.002126596191111
625 => 0.0021210638725985
626 => 0.0021310615198884
627 => 0.0020925648857538
628 => 0.0021394496306748
629 => 0.0021660302598588
630 => 0.0021663993319208
701 => 0.0021789983391971
702 => 0.0021917996602751
703 => 0.0022163706813243
704 => 0.002191114387834
705 => 0.0021456807744957
706 => 0.002148960934629
707 => 0.0021223232237522
708 => 0.0021227710084846
709 => 0.0021203806984899
710 => 0.0021275541987181
711 => 0.002094139065653
712 => 0.0021019815305942
713 => 0.0020910020337511
714 => 0.0021071472438433
715 => 0.002089777666683
716 => 0.0021043766528438
717 => 0.0021106770913067
718 => 0.0021339258448737
719 => 0.0020863438068781
720 => 0.0019893208103844
721 => 0.0020097162205375
722 => 0.0019795498068962
723 => 0.0019823418233303
724 => 0.0019879821408734
725 => 0.0019697000263192
726 => 0.0019731876776405
727 => 0.0019730630741931
728 => 0.0019719893089995
729 => 0.0019672334249151
730 => 0.0019603364520699
731 => 0.0019878118691091
801 => 0.0019924804778577
802 => 0.0020028582167875
803 => 0.0020337353285552
804 => 0.0020306499769572
805 => 0.0020356823134236
806 => 0.0020246967511728
807 => 0.0019828514120558
808 => 0.0019851238152939
809 => 0.0019567869105025
810 => 0.0020021335784219
811 => 0.0019913948889119
812 => 0.0019844715859254
813 => 0.0019825824985616
814 => 0.0020135361487171
815 => 0.0020227979659826
816 => 0.0020170266230002
817 => 0.0020051894301662
818 => 0.0020279203397593
819 => 0.0020340021722264
820 => 0.0020353636702264
821 => 0.0020756384838058
822 => 0.0020376145849081
823 => 0.0020467673152978
824 => 0.0021181743050364
825 => 0.0020534180188345
826 => 0.0020877208678731
827 => 0.0020860419219161
828 => 0.0021035900987392
829 => 0.0020846024592237
830 => 0.002084837833772
831 => 0.0021004194259744
901 => 0.0020785378898811
902 => 0.0020731197138237
903 => 0.002065634542406
904 => 0.0020819781403569
905 => 0.0020917753881711
906 => 0.002170734010268
907 => 0.0022217448810932
908 => 0.0022195303646591
909 => 0.0022397668994659
910 => 0.00223065015519
911 => 0.0022012097830475
912 => 0.0022514609084238
913 => 0.0022355593497584
914 => 0.0022368702549344
915 => 0.0022368214629782
916 => 0.0022473946093524
917 => 0.0022399025661317
918 => 0.0022251349799012
919 => 0.0022349383928154
920 => 0.0022640510243862
921 => 0.0023544175260669
922 => 0.0024049878176043
923 => 0.0023513731310184
924 => 0.0023883558238961
925 => 0.0023661793864503
926 => 0.0023621492680745
927 => 0.0023853771322013
928 => 0.0024086456536293
929 => 0.0024071635494069
930 => 0.0023902717977019
1001 => 0.0023807300757762
1002 => 0.0024529831909096
1003 => 0.0025062180553401
1004 => 0.002502587794477
1005 => 0.0025186105853027
1006 => 0.0025656539947332
1007 => 0.0025699550545243
1008 => 0.0025694132198493
1009 => 0.0025587525943879
1010 => 0.0026050729403308
1011 => 0.0026437141878453
1012 => 0.0025562849676086
1013 => 0.0025895768701422
1014 => 0.0026045226777877
1015 => 0.0026264675576325
1016 => 0.0026634922483196
1017 => 0.0027037108827201
1018 => 0.0027093982385992
1019 => 0.0027053627874379
1020 => 0.0026788375169159
1021 => 0.0027228452265849
1022 => 0.0027486239108013
1023 => 0.0027639745273174
1024 => 0.0028029011367033
1025 => 0.0026046149780075
1026 => 0.0024642581794212
1027 => 0.0024423394385452
1028 => 0.0024869120600284
1029 => 0.0024986655048536
1030 => 0.0024939277059821
1031 => 0.0023359433684913
1101 => 0.0024415076837039
1102 => 0.0025550860107729
1103 => 0.0025594490168779
1104 => 0.0026163087022195
1105 => 0.0026348245465239
1106 => 0.0026806040459932
1107 => 0.002677740525837
1108 => 0.0026888871054468
1109 => 0.0026863246998264
1110 => 0.0027711215825823
1111 => 0.002864665136721
1112 => 0.0028614260208914
1113 => 0.0028479780282269
1114 => 0.0028679505905572
1115 => 0.0029644975631649
1116 => 0.0029556090650609
1117 => 0.0029642434838484
1118 => 0.0030780778057017
1119 => 0.0032260786168545
1120 => 0.0031573173810356
1121 => 0.0033065094772501
1122 => 0.003400417993484
1123 => 0.0035628230619886
1124 => 0.00354248914755
1125 => 0.0036057122489354
1126 => 0.0035060871968889
1127 => 0.0032773279398451
1128 => 0.0032411259117627
1129 => 0.0033136032887651
1130 => 0.0034917818478865
1201 => 0.0033079918118547
1202 => 0.0033451722967753
1203 => 0.0033344643146169
1204 => 0.0033338937317537
1205 => 0.0033556705589148
1206 => 0.0033240821353147
1207 => 0.0031953852149188
1208 => 0.0032543662551205
1209 => 0.0032315908429964
1210 => 0.0032568618607675
1211 => 0.0033932391211176
1212 => 0.003332943483489
1213 => 0.0032694269272671
1214 => 0.0033490907842216
1215 => 0.0034505302495958
1216 => 0.0034441823501569
1217 => 0.0034318647720294
1218 => 0.0035012983150069
1219 => 0.0036159821858865
1220 => 0.0036469807753482
1221 => 0.0036698633003505
1222 => 0.0036730184139449
1223 => 0.0037055180448593
1224 => 0.003530759338471
1225 => 0.0038081058936312
1226 => 0.0038559959821634
1227 => 0.0038469946303601
1228 => 0.0039002224482407
1229 => 0.0038845614739608
1230 => 0.0038618711793609
1231 => 0.0039462485925831
]
'min_raw' => 0.0014546217336193
'max_raw' => 0.0039462485925831
'avg_raw' => 0.0027004351631012
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.001454'
'max' => '$0.003946'
'avg' => '$0.00270043'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.00050166144285165
'max_diff' => 0.0018188318748623
'year' => 2032
]
7 => [
'items' => [
101 => 0.0038495166972299
102 => 0.0037122179499832
103 => 0.0036368931417823
104 => 0.0037360869255002
105 => 0.0037966611078307
106 => 0.0038366967891096
107 => 0.0038488115620743
108 => 0.0035443253593737
109 => 0.003380224183697
110 => 0.0034854111558819
111 => 0.0036137465215646
112 => 0.0035300464290348
113 => 0.0035333273141967
114 => 0.0034139929782466
115 => 0.003624304962362
116 => 0.0035936642752786
117 => 0.0037526282140697
118 => 0.0037146901943119
119 => 0.0038443191154515
120 => 0.0038101834761772
121 => 0.0039518786063069
122 => 0.0040084046299582
123 => 0.0041033206212417
124 => 0.0041731412108074
125 => 0.0042141411964555
126 => 0.0042116797111042
127 => 0.0043741420803536
128 => 0.0042783436972101
129 => 0.0041579983500365
130 => 0.0041558216823909
131 => 0.0042181502429988
201 => 0.0043487738070275
202 => 0.0043826425966846
203 => 0.0044015706296376
204 => 0.0043725816882805
205 => 0.0042685994093102
206 => 0.004223700388453
207 => 0.0042619556550732
208 => 0.0042151727513092
209 => 0.0042959331681703
210 => 0.0044068344700148
211 => 0.0043839337897352
212 => 0.0044604873304481
213 => 0.0045397121914186
214 => 0.0046530073008175
215 => 0.0046826268377202
216 => 0.0047315868058901
217 => 0.0047819826956487
218 => 0.0047981684972319
219 => 0.0048290722146134
220 => 0.0048289093367683
221 => 0.0049220397691576
222 => 0.0050247655200924
223 => 0.0050635421129637
224 => 0.0051527067501174
225 => 0.0050000154336932
226 => 0.0051158335511923
227 => 0.0052203043922921
228 => 0.0050957499487057
301 => 0.0052674192317262
302 => 0.0052740847609749
303 => 0.0053747263389498
304 => 0.0052727068190789
305 => 0.0052121279538373
306 => 0.0053870168679292
307 => 0.0054716401045091
308 => 0.0054461508969645
309 => 0.0052521767689927
310 => 0.0051392755065714
311 => 0.0048437911257877
312 => 0.0051938051388013
313 => 0.0053642867544914
314 => 0.0052517352627934
315 => 0.0053084996884766
316 => 0.0056181879890774
317 => 0.0057360972431136
318 => 0.005711572942522
319 => 0.0057157171456176
320 => 0.0057793388388912
321 => 0.0060614724639728
322 => 0.0058924114560177
323 => 0.0060216522620043
324 => 0.0060902011194872
325 => 0.0061538731185866
326 => 0.0059975148125404
327 => 0.0057940949537339
328 => 0.0057296633454651
329 => 0.0052405442350914
330 => 0.0052150834612599
331 => 0.0052007915573678
401 => 0.0051106831249582
402 => 0.0050398825798612
403 => 0.0049835793577443
404 => 0.0048358228893443
405 => 0.0048856863599927
406 => 0.0046501933885347
407 => 0.0048008534463151
408 => 0.0044250009776915
409 => 0.0047380220820776
410 => 0.0045676589262834
411 => 0.0046820532034968
412 => 0.0046816540926402
413 => 0.0044710179595517
414 => 0.0043495274338502
415 => 0.0044269459253092
416 => 0.0045099446936407
417 => 0.0045234109645612
418 => 0.0046310210341925
419 => 0.0046610526915559
420 => 0.0045700553677008
421 => 0.0044172122706912
422 => 0.0044527142361466
423 => 0.0043488079876534
424 => 0.0041667162838651
425 => 0.004297497724542
426 => 0.0043421522584431
427 => 0.0043618742445265
428 => 0.0041828079672242
429 => 0.0041265414551778
430 => 0.0040965856362861
501 => 0.0043940970629095
502 => 0.004410395410454
503 => 0.0043270107600622
504 => 0.00470391728669
505 => 0.0046186117316433
506 => 0.0047139189369989
507 => 0.0044494928048955
508 => 0.0044595942392389
509 => 0.0043344106706844
510 => 0.0044045051043058
511 => 0.0043549646178713
512 => 0.0043988421667559
513 => 0.0044251421886435
514 => 0.0045503052158061
515 => 0.0047394512427957
516 => 0.0045316100333672
517 => 0.0044410506420782
518 => 0.0044972331791085
519 => 0.0046468546788684
520 => 0.0048735389099882
521 => 0.00473933728272
522 => 0.0047988936860102
523 => 0.0048119041106492
524 => 0.0047129487991158
525 => 0.0048771875334729
526 => 0.0049652044054879
527 => 0.0050554915036499
528 => 0.0051338852611969
529 => 0.0050194288511881
530 => 0.0051419136165794
531 => 0.0050432125171457
601 => 0.0049546674274216
602 => 0.0049548017137729
603 => 0.0048992560855516
604 => 0.0047916294316732
605 => 0.0047717814254089
606 => 0.0048750332605226
607 => 0.0049578314542986
608 => 0.0049646511101146
609 => 0.0050104924445138
610 => 0.005037620874008
611 => 0.0053035163623622
612 => 0.0054104617273811
613 => 0.005541232495354
614 => 0.0055921750793161
615 => 0.0057454939931149
616 => 0.005621676518269
617 => 0.0055948878287377
618 => 0.0052229862940963
619 => 0.0052838851495595
620 => 0.0053813900930217
621 => 0.0052245941147007
622 => 0.0053240450734861
623 => 0.0053436787994096
624 => 0.005219266247356
625 => 0.0052857203669569
626 => 0.0051092379275703
627 => 0.0047432980777034
628 => 0.0048775949291352
629 => 0.0049764826156204
630 => 0.0048353576942422
701 => 0.0050883186535239
702 => 0.0049405440832857
703 => 0.0048937066389505
704 => 0.0047109770698443
705 => 0.0047972183925563
706 => 0.004913861016381
707 => 0.0048417894360178
708 => 0.0049913487868737
709 => 0.0052031647137076
710 => 0.005354117357026
711 => 0.0053657056265935
712 => 0.0052686531899814
713 => 0.0054241803390326
714 => 0.0054253131845206
715 => 0.0052498779250438
716 => 0.0051424248054419
717 => 0.005118011230585
718 => 0.0051790011271408
719 => 0.0052530541209154
720 => 0.0053698150523654
721 => 0.0054403712378531
722 => 0.0056243443494959
723 => 0.005674122198584
724 => 0.0057288129630309
725 => 0.0058018966903392
726 => 0.0058896524432558
727 => 0.0056976478518121
728 => 0.0057052765521715
729 => 0.0055264845351036
730 => 0.0053354196234977
731 => 0.0054804140748291
801 => 0.0056699750321414
802 => 0.0056264895390877
803 => 0.0056215965327911
804 => 0.0056298252121752
805 => 0.0055970385705161
806 => 0.0054487458054219
807 => 0.0053742741071534
808 => 0.0054703615976763
809 => 0.005521427822527
810 => 0.0056006270838276
811 => 0.0055908641031787
812 => 0.0057948728949094
813 => 0.0058741445424703
814 => 0.0058538634627992
815 => 0.0058575956695501
816 => 0.0060011132009517
817 => 0.0061607342125018
818 => 0.0063102403536661
819 => 0.0064623244218966
820 => 0.0062789811417025
821 => 0.0061858907310615
822 => 0.0062819362727918
823 => 0.0062309731564108
824 => 0.0065238223397784
825 => 0.0065440985818489
826 => 0.0068369265888872
827 => 0.0071148552368771
828 => 0.0069402932326836
829 => 0.0071048973401927
830 => 0.0072829301028336
831 => 0.0076263841867427
901 => 0.0075107209341425
902 => 0.0074221246953249
903 => 0.0073384016777363
904 => 0.0075126159866835
905 => 0.0077367399120025
906 => 0.007785014058884
907 => 0.0078632366189754
908 => 0.0077809951616389
909 => 0.0078800459384013
910 => 0.0082297387054896
911 => 0.0081352486329989
912 => 0.008001057540025
913 => 0.0082771063947908
914 => 0.0083770074022178
915 => 0.0090781649909043
916 => 0.0099634054099962
917 => 0.0095969100636902
918 => 0.0093694145755071
919 => 0.0094228814114952
920 => 0.0097461412452683
921 => 0.009849962044122
922 => 0.0095677413236623
923 => 0.0096674264532491
924 => 0.010216701318098
925 => 0.010511369660242
926 => 0.010111170472372
927 => 0.0090070367851696
928 => 0.0079889751003192
929 => 0.0082590109030567
930 => 0.0082283972232128
1001 => 0.0088185245420582
1002 => 0.00813299507602
1003 => 0.0081445376340897
1004 => 0.0087468681609331
1005 => 0.0085861767029307
1006 => 0.0083258771207739
1007 => 0.0079908755753338
1008 => 0.0073715942346953
1009 => 0.006823079481354
1010 => 0.0078988432280597
1011 => 0.0078524543391523
1012 => 0.0077852763535662
1013 => 0.0079347736910708
1014 => 0.0086606903264332
1015 => 0.0086439555984252
1016 => 0.0085374977969719
1017 => 0.0086182451010982
1018 => 0.008311721727953
1019 => 0.00839071978062
1020 => 0.0079888138341469
1021 => 0.0081704921070277
1022 => 0.0083253186347771
1023 => 0.0083564023524686
1024 => 0.0084264355556018
1025 => 0.0078280095026255
1026 => 0.008096685231546
1027 => 0.0082545070507755
1028 => 0.0075414623298899
1029 => 0.0082404124492571
1030 => 0.007817592236421
1031 => 0.0076740807056379
1101 => 0.0078673000756309
1102 => 0.0077920022992326
1103 => 0.0077272656927192
1104 => 0.0076911415539686
1105 => 0.0078330205344477
1106 => 0.0078264017104263
1107 => 0.007594260160839
1108 => 0.0072914409727025
1109 => 0.0073930770319421
1110 => 0.0073561516987772
1111 => 0.0072223295279249
1112 => 0.0073125095133289
1113 => 0.006915402496656
1114 => 0.0062322005142969
1115 => 0.006683544670886
1116 => 0.0066661684118253
1117 => 0.0066574065140563
1118 => 0.0069965791734967
1119 => 0.0069639755483361
1120 => 0.006904799649414
1121 => 0.0072212427161349
1122 => 0.0071057367400219
1123 => 0.0074616989417714
1124 => 0.0076961586700354
1125 => 0.00763669209897
1126 => 0.0078572026066445
1127 => 0.007395418521471
1128 => 0.0075488046710039
1129 => 0.0075804173438386
1130 => 0.0072173378578117
1201 => 0.0069693099046282
1202 => 0.0069527692678766
1203 => 0.0065227229774137
1204 => 0.0067524502345666
1205 => 0.0069546007141013
1206 => 0.0068577863219151
1207 => 0.0068271377775967
1208 => 0.0069837145436614
1209 => 0.006995881899374
1210 => 0.0067184648996894
1211 => 0.0067761486785776
1212 => 0.007016699625672
1213 => 0.006770087411901
1214 => 0.0062909601644204
1215 => 0.0061721299825928
1216 => 0.0061562758458622
1217 => 0.005833998968205
1218 => 0.0061800707835511
1219 => 0.0060290011620045
1220 => 0.0065062282863783
1221 => 0.0062336387123564
1222 => 0.0062218879206382
1223 => 0.0062041248754897
1224 => 0.0059267278538001
1225 => 0.0059874601720497
1226 => 0.0061893436477047
1227 => 0.0062613779461986
1228 => 0.0062538641787061
1229 => 0.0061883543085369
1230 => 0.0062183443916355
1231 => 0.0061217358847372
]
'min_raw' => 0.003380224183697
'max_raw' => 0.010511369660242
'avg_raw' => 0.0069457969219695
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.00338'
'max' => '$0.010511'
'avg' => '$0.006945'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0019256024500776
'max_diff' => 0.0065651210676589
'year' => 2033
]
8 => [
'items' => [
101 => 0.0060876214102192
102 => 0.0059799467447149
103 => 0.0058216947323092
104 => 0.0058437006452503
105 => 0.0055301619997831
106 => 0.0053593295049771
107 => 0.0053120453219509
108 => 0.0052488149362663
109 => 0.0053191873622637
110 => 0.0055292737841945
111 => 0.0052758649870251
112 => 0.0048414133788386
113 => 0.0048675246607601
114 => 0.0049261889587286
115 => 0.0048168684275675
116 => 0.0047134057194002
117 => 0.0048033581499568
118 => 0.0046192752762938
119 => 0.0049484344945445
120 => 0.0049395316601488
121 => 0.0050622218616432
122 => 0.005138942562494
123 => 0.0049621261856547
124 => 0.004917657345042
125 => 0.0049429888176511
126 => 0.0045243160019747
127 => 0.0050280073604867
128 => 0.0050323633042713
129 => 0.004995065069017
130 => 0.0052632651676986
131 => 0.0058292510296254
201 => 0.00561630438164
202 => 0.0055338450031936
203 => 0.0053770896644894
204 => 0.0055859568461017
205 => 0.0055699191053894
206 => 0.0054973903597563
207 => 0.0054535247480938
208 => 0.0055343484825749
209 => 0.005443509792955
210 => 0.005427192668219
211 => 0.0053283286455256
212 => 0.0052930386874505
213 => 0.0052669114074254
214 => 0.0052381478393313
215 => 0.0053015931031123
216 => 0.0051578177884649
217 => 0.0049844388534681
218 => 0.0049700242710092
219 => 0.0050098242005213
220 => 0.0049922156944685
221 => 0.0049699399682567
222 => 0.0049274095404853
223 => 0.0049147916710844
224 => 0.0049557936253175
225 => 0.0049095048095507
226 => 0.0049778064786968
227 => 0.0049592322039928
228 => 0.0048554778153919
301 => 0.0047261614324005
302 => 0.0047250102453416
303 => 0.0046971492427475
304 => 0.0046616640670141
305 => 0.0046517929029159
306 => 0.0047957826071531
307 => 0.0050938369856748
308 => 0.0050353217793342
309 => 0.0050776050127948
310 => 0.0052855966721669
311 => 0.0053517109661539
312 => 0.0053047846062848
313 => 0.0052405489106042
314 => 0.0052433749552124
315 => 0.0054628877728206
316 => 0.0054765785179949
317 => 0.0055111706142486
318 => 0.0055556312336598
319 => 0.0053123564420237
320 => 0.0052319167344037
321 => 0.0051937999383083
322 => 0.005076414959391
323 => 0.0052030045953258
324 => 0.0051292462355753
325 => 0.00513919875825
326 => 0.0051327171648017
327 => 0.0051362565531079
328 => 0.0049483424878347
329 => 0.0050168084967477
330 => 0.004902970477729
331 => 0.0047505541491802
401 => 0.0047500431962028
402 => 0.0047873468766871
403 => 0.0047651571878419
404 => 0.0047054453057085
405 => 0.0047139270967334
406 => 0.0046396176823953
407 => 0.0047229496050495
408 => 0.0047253392664152
409 => 0.0046932519370729
410 => 0.0048216362615109
411 => 0.0048742354239848
412 => 0.0048531148564345
413 => 0.0048727535486624
414 => 0.0050377533503379
415 => 0.0050646555174571
416 => 0.0050766036830341
417 => 0.0050605947239896
418 => 0.0048757694421426
419 => 0.0048839672293303
420 => 0.0048238173062643
421 => 0.0047729969597162
422 => 0.0047750295070605
423 => 0.0048011577713688
424 => 0.0049152614340057
425 => 0.0051553858652467
426 => 0.0051644984118837
427 => 0.0051755430842394
428 => 0.0051306188511612
429 => 0.0051170692725978
430 => 0.0051349446641659
501 => 0.0052251227753972
502 => 0.0054570853606026
503 => 0.0053750942907309
504 => 0.0053084342746581
505 => 0.0053669130801652
506 => 0.0053579107264294
507 => 0.0052819218012508
508 => 0.00527978904521
509 => 0.0051339420026632
510 => 0.0050800256718101
511 => 0.0050349691501818
512 => 0.0049857686047941
513 => 0.004956600872271
514 => 0.0050014157659238
515 => 0.0050116654623364
516 => 0.0049136769141343
517 => 0.0049003214370945
518 => 0.0049803410007861
519 => 0.0049451273742354
520 => 0.0049813454623987
521 => 0.0049897483695256
522 => 0.0049883953079428
523 => 0.0049516282375646
524 => 0.0049750624718138
525 => 0.004919633521733
526 => 0.0048593628636792
527 => 0.0048209139388356
528 => 0.0047873621523997
529 => 0.0048059786335556
530 => 0.00473961427747
531 => 0.0047183829843076
601 => 0.0049671234805372
602 => 0.0051508707595129
603 => 0.0051481990013047
604 => 0.0051319353603326
605 => 0.0051077708888071
606 => 0.0052233549937939
607 => 0.0051830878027937
608 => 0.0052123855486828
609 => 0.005219843054634
610 => 0.0052424146790915
611 => 0.0052504820947384
612 => 0.0052260967614731
613 => 0.0051442566046173
614 => 0.004940318714861
615 => 0.0048453850766597
616 => 0.0048140553948085
617 => 0.0048151941692402
618 => 0.0047837816866995
619 => 0.0047930340706164
620 => 0.0047805640851604
621 => 0.0047569489495201
622 => 0.0048045204654755
623 => 0.0048100026395301
624 => 0.0047988988792688
625 => 0.0048015142167723
626 => 0.0047095798242869
627 => 0.0047165693964766
628 => 0.0046776505703326
629 => 0.0046703537596041
630 => 0.0045719703561621
701 => 0.0043976698960623
702 => 0.0044942492707127
703 => 0.0043775949672502
704 => 0.0043334162149278
705 => 0.0045425515572164
706 => 0.004521560169362
707 => 0.0044856320380924
708 => 0.004432486843866
709 => 0.0044127747743642
710 => 0.0042930104801541
711 => 0.0042859341667346
712 => 0.004345292584853
713 => 0.0043179007172898
714 => 0.0042794321611196
715 => 0.004140102950166
716 => 0.0039834507867378
717 => 0.0039881791308713
718 => 0.0040380072694407
719 => 0.0041828893025712
720 => 0.0041262813857425
721 => 0.0040852116925823
722 => 0.0040775205736038
723 => 0.0041737910300676
724 => 0.004310033895248
725 => 0.0043739559993283
726 => 0.0043106111355279
727 => 0.0042378439667236
728 => 0.0042422729671181
729 => 0.0042717371225157
730 => 0.0042748333886473
731 => 0.0042274694423415
801 => 0.0042408021157907
802 => 0.0042205485656562
803 => 0.0040962525658658
804 => 0.0040940044453765
805 => 0.0040635002024842
806 => 0.0040625765461326
807 => 0.0040106812193328
808 => 0.004003420704378
809 => 0.0039003793831958
810 => 0.0039682014928358
811 => 0.0039227099825099
812 => 0.0038541435460863
813 => 0.0038423226666026
814 => 0.0038419673166912
815 => 0.0039123697157236
816 => 0.0039673787998128
817 => 0.0039235013268086
818 => 0.0039135112767346
819 => 0.0040201788754225
820 => 0.0040066044511927
821 => 0.0039948490873554
822 => 0.0042978348409959
823 => 0.0040579979747162
824 => 0.0039534154116086
825 => 0.0038239746300727
826 => 0.0038661212012379
827 => 0.0038750021030443
828 => 0.0035637203569052
829 => 0.0034374333912643
830 => 0.0033940964636802
831 => 0.0033691554491614
901 => 0.0033805213826672
902 => 0.0032668483016066
903 => 0.0033432384920585
904 => 0.0032448072124065
905 => 0.0032283048880497
906 => 0.0034043122093633
907 => 0.0034288025999042
908 => 0.0033243189852887
909 => 0.0033914143802326
910 => 0.0033670846573302
911 => 0.0032464945341812
912 => 0.0032418888784778
913 => 0.0031813809936295
914 => 0.0030866978704771
915 => 0.003043425142509
916 => 0.0030208883300722
917 => 0.0030301874581174
918 => 0.0030254855344197
919 => 0.0029948023017889
920 => 0.0030272442613976
921 => 0.0029443684605406
922 => 0.0029113666488636
923 => 0.0028964604961654
924 => 0.0028229034527516
925 => 0.0029399654197885
926 => 0.0029630281020026
927 => 0.0029861362248251
928 => 0.0031872766574091
929 => 0.0031772282498142
930 => 0.0032680609606994
1001 => 0.0032645313685851
1002 => 0.0032386244080482
1003 => 0.0031293272030315
1004 => 0.0031728911209158
1005 => 0.0030388081530039
1006 => 0.0031392722293191
1007 => 0.0030934246203689
1008 => 0.0031237711066145
1009 => 0.0030692053881126
1010 => 0.0030994043096949
1011 => 0.0029684971195247
1012 => 0.0028462578272576
1013 => 0.0028954504868533
1014 => 0.0029489285336968
1015 => 0.0030648825652063
1016 => 0.0029958213006392
1017 => 0.0030206583428731
1018 => 0.0029374584090603
1019 => 0.0027657931807183
1020 => 0.0027667647872679
1021 => 0.0027403578318178
1022 => 0.0027175383668303
1023 => 0.0030037538176407
1024 => 0.0029681584019357
1025 => 0.0029114417656227
1026 => 0.0029873592371572
1027 => 0.0030074330216032
1028 => 0.003008004494026
1029 => 0.0030633919215441
1030 => 0.0030929522015392
1031 => 0.0030981623290099
1101 => 0.0031853156429342
1102 => 0.0032145282841816
1103 => 0.0033348510191519
1104 => 0.0030904442183078
1105 => 0.0030854108210808
1106 => 0.002988427551669
1107 => 0.0029269192289632
1108 => 0.0029926390791473
1109 => 0.0030508578947563
1110 => 0.0029902365725543
1111 => 0.0029981524374479
1112 => 0.0029167732653358
1113 => 0.0029458624901199
1114 => 0.0029709180492458
1115 => 0.0029570838421942
1116 => 0.0029363733646547
1117 => 0.003046084615795
1118 => 0.0030398942770438
1119 => 0.0031420599163563
1120 => 0.0032217053381354
1121 => 0.0033644441722856
1122 => 0.0032154887577061
1123 => 0.0032100602303547
1124 => 0.0032631249559781
1125 => 0.0032145201602485
1126 => 0.0032452367133691
1127 => 0.0033594952607019
1128 => 0.0033619093637607
1129 => 0.0033214700271284
1130 => 0.0033190092898192
1201 => 0.0033267761067773
1202 => 0.0033722665962931
1203 => 0.0033563708214747
1204 => 0.0033747658145263
1205 => 0.0033977690350114
1206 => 0.0034929201081013
1207 => 0.0035158607096909
1208 => 0.0034601269411665
1209 => 0.0034651590764397
1210 => 0.0034443131170855
1211 => 0.0034241761815483
1212 => 0.0034694410718725
1213 => 0.0035521635486236
1214 => 0.003551648936389
1215 => 0.0035708389431001
1216 => 0.0035827941583025
1217 => 0.0035314736229014
1218 => 0.0034980658414637
1219 => 0.0035108765106592
1220 => 0.0035313610496831
1221 => 0.0035042336507375
1222 => 0.0033367907778121
1223 => 0.0033875822491655
1224 => 0.0033791280647562
1225 => 0.0033670882780935
1226 => 0.0034181594952982
1227 => 0.0034132335518097
1228 => 0.00326568241986
1229 => 0.0032751281645989
1230 => 0.0032662568468828
1231 => 0.0032949218893244
]
'min_raw' => 0.0027175383668303
'max_raw' => 0.0060876214102192
'avg_raw' => 0.0044025798885247
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.002717'
'max' => '$0.006087'
'avg' => '$0.0044025'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.00066268581686669
'max_diff' => -0.0044237482500228
'year' => 2034
]
9 => [
'items' => [
101 => 0.0032129721538861
102 => 0.003238179340567
103 => 0.0032539890517506
104 => 0.0032633010930936
105 => 0.0032969425717513
106 => 0.0032929951325193
107 => 0.0032966971933861
108 => 0.0033465786252143
109 => 0.003598861790161
110 => 0.0036125930061976
111 => 0.003544975476477
112 => 0.0035719873459036
113 => 0.003520130463451
114 => 0.0035549423360523
115 => 0.0035787597351605
116 => 0.0034711334884132
117 => 0.0034647605605694
118 => 0.0034126896463164
119 => 0.0034406696061886
120 => 0.0033961514782016
121 => 0.0034070746696316
122 => 0.0033765324741266
123 => 0.0034315023451452
124 => 0.0034929672023983
125 => 0.0035084956526612
126 => 0.0034676469854377
127 => 0.0034380698583095
128 => 0.0033861421663838
129 => 0.0034724990753403
130 => 0.0034977524671983
131 => 0.0034723664300236
201 => 0.0034664839305143
202 => 0.0034553366045737
203 => 0.0034688488884094
204 => 0.0034976149318028
205 => 0.0034840493969639
206 => 0.003493009671719
207 => 0.0034588623441479
208 => 0.0035314906121341
209 => 0.0036468417806406
210 => 0.0036472126535092
211 => 0.003633647045547
212 => 0.003628096291044
213 => 0.0036420154280431
214 => 0.0036495659888723
215 => 0.0036945779255943
216 => 0.0037428775270517
217 => 0.0039682706922863
218 => 0.0039049811934137
219 => 0.0041049634183092
220 => 0.0042631233937597
221 => 0.0043105486548998
222 => 0.0042669196461819
223 => 0.0041176671641507
224 => 0.0041103441253357
225 => 0.0043333903462628
226 => 0.0042703695726868
227 => 0.0042628734522003
228 => 0.0041831273951202
301 => 0.0042302671915959
302 => 0.0042199570266075
303 => 0.0042036819267829
304 => 0.0042936213746719
305 => 0.00446197999217
306 => 0.0044357397227758
307 => 0.0044161525789241
308 => 0.0043303274162978
309 => 0.0043820133339429
310 => 0.004363608968648
311 => 0.0044426858016537
312 => 0.0043958424375475
313 => 0.0042698921283443
314 => 0.0042899501302225
315 => 0.0042869184035897
316 => 0.0043493111228623
317 => 0.0043305823772192
318 => 0.0042832613154173
319 => 0.0044614045607184
320 => 0.0044498369292533
321 => 0.004466237185942
322 => 0.0044734570861312
323 => 0.0045818897403099
324 => 0.004626311129269
325 => 0.0046363955622685
326 => 0.0046785924461061
327 => 0.0046353456653582
328 => 0.0048083636227821
329 => 0.0049234104685914
330 => 0.0050570433002553
331 => 0.0052523167844354
401 => 0.0053257414208678
402 => 0.0053124779174947
403 => 0.0054605320445745
404 => 0.0057265820198786
405 => 0.0053662542241636
406 => 0.0057456802679958
407 => 0.0056255583632028
408 => 0.0053407514878395
409 => 0.0053224132827186
410 => 0.0055152878053905
411 => 0.0059430649331917
412 => 0.0058359116144855
413 => 0.0059432401976345
414 => 0.0058180357042979
415 => 0.0058118182458974
416 => 0.0059371592948548
417 => 0.0062300254877287
418 => 0.0060908957374194
419 => 0.0058914191243366
420 => 0.0060387095512371
421 => 0.0059111129523704
422 => 0.0056236021030844
423 => 0.0058358296763621
424 => 0.0056939191420046
425 => 0.0057353361803091
426 => 0.0060336110159297
427 => 0.0059977217985705
428 => 0.0060441657690854
429 => 0.005962193376777
430 => 0.0058856182365012
501 => 0.0057426850506318
502 => 0.0057003695808167
503 => 0.0057120640543225
504 => 0.0057003637856164
505 => 0.0056203939817463
506 => 0.0056031245102145
507 => 0.0055743413010687
508 => 0.0055832624211435
509 => 0.0055291415671245
510 => 0.0056312788005974
511 => 0.0056502363711602
512 => 0.0057245633321434
513 => 0.0057322802038029
514 => 0.005939279732163
515 => 0.005825267870428
516 => 0.0059017568705904
517 => 0.0058949149744735
518 => 0.0053469241164386
519 => 0.0054224324217116
520 => 0.0055398996489047
521 => 0.0054869808222773
522 => 0.0054121659825244
523 => 0.0053517489881061
524 => 0.0052602110636074
525 => 0.0053890489345091
526 => 0.0055584570343648
527 => 0.0057365766727812
528 => 0.0059505757474774
529 => 0.0059028136452291
530 => 0.0057325761089344
531 => 0.005740212840454
601 => 0.0057874201097649
602 => 0.0057262824067745
603 => 0.0057082517046129
604 => 0.0057849429681682
605 => 0.0057854710987515
606 => 0.0057151247827229
607 => 0.0056369477256969
608 => 0.0056366201609735
609 => 0.0056227093087765
610 => 0.0058205104140006
611 => 0.0059292810219264
612 => 0.0059417513968325
613 => 0.0059284416663365
614 => 0.0059335640533601
615 => 0.0058702728332048
616 => 0.0060149377940514
617 => 0.006147696668006
618 => 0.0061121144538065
619 => 0.0060587716564117
620 => 0.0060162815489495
621 => 0.0061021051348434
622 => 0.0060982835456624
623 => 0.0061465371350583
624 => 0.0061443480735171
625 => 0.0061281222063125
626 => 0.0061121150332833
627 => 0.0061755816649754
628 => 0.006157304294291
629 => 0.0061389985338016
630 => 0.0061022835286683
701 => 0.0061072737076376
702 => 0.0060539401206288
703 => 0.0060292655628997
704 => 0.0056582194171953
705 => 0.0055590637627805
706 => 0.0055902601501589
707 => 0.0056005308108977
708 => 0.0055573781430249
709 => 0.0056192479837436
710 => 0.005609605634604
711 => 0.0056471183745207
712 => 0.0056236820432345
713 => 0.0056246438784454
714 => 0.0056935651316053
715 => 0.0057135732646095
716 => 0.0057033969666781
717 => 0.0057105240969262
718 => 0.0058747658053195
719 => 0.0058514158865401
720 => 0.0058390117075698
721 => 0.0058424477499162
722 => 0.0058844150277926
723 => 0.0058961635742696
724 => 0.005846384157291
725 => 0.0058698604181095
726 => 0.0059698193570936
727 => 0.0060047993285521
728 => 0.0061164386061088
729 => 0.0060690122567728
730 => 0.0061560653735433
731 => 0.0064236369759015
801 => 0.0066373916864118
802 => 0.0064408140208395
803 => 0.0068333473251934
804 => 0.0071389908081911
805 => 0.0071272597022378
806 => 0.007073963691316
807 => 0.0067259967118755
808 => 0.006405792309499
809 => 0.0066736568886841
810 => 0.0066743397305833
811 => 0.0066513299256739
812 => 0.0065084180035615
813 => 0.006646356900564
814 => 0.0066573059892875
815 => 0.0066511774112
816 => 0.0065416071755912
817 => 0.0063743136777809
818 => 0.0064070024268089
819 => 0.0064605472645494
820 => 0.0063591757160834
821 => 0.0063267813640299
822 => 0.0063870086277751
823 => 0.006581073420411
824 => 0.006544386595504
825 => 0.0065434285542426
826 => 0.0067003903488298
827 => 0.0065880395783807
828 => 0.0064074147366181
829 => 0.006361804581924
830 => 0.0061999192594419
831 => 0.006311734028296
901 => 0.0063157580427671
902 => 0.0062545182365849
903 => 0.0064123840093779
904 => 0.0064109292484899
905 => 0.0065607993045374
906 => 0.0068472945630777
907 => 0.0067625638175519
908 => 0.0066640311791842
909 => 0.0066747444089885
910 => 0.0067922420974371
911 => 0.0067212003127898
912 => 0.0067467474338699
913 => 0.0067922034288096
914 => 0.0068196281591657
915 => 0.0066707984123329
916 => 0.0066360990789965
917 => 0.0065651164208012
918 => 0.0065465983702321
919 => 0.0066044122642304
920 => 0.0065891803457569
921 => 0.0063154198399326
922 => 0.0062868103438849
923 => 0.0062876877562837
924 => 0.0062157478181643
925 => 0.0061060221449688
926 => 0.0063943746627471
927 => 0.0063712159200786
928 => 0.0063456504605169
929 => 0.0063487820834387
930 => 0.0064739461382327
1001 => 0.0064013446655159
1002 => 0.0065943675798808
1003 => 0.0065546878714873
1004 => 0.0065139905282987
1005 => 0.0065083649157987
1006 => 0.0064926999108053
1007 => 0.0064389787799911
1008 => 0.0063741072863936
1009 => 0.006331273507248
1010 => 0.0058402651405849
1011 => 0.0059313934373733
1012 => 0.0060362282362227
1013 => 0.0060724167886865
1014 => 0.0060105137655257
1015 => 0.0064414230886489
1016 => 0.0065201543743291
1017 => 0.0062816721744891
1018 => 0.0062370618920631
1019 => 0.0064443477313379
1020 => 0.006319329030592
1021 => 0.0063756249438829
1022 => 0.0062539439715661
1023 => 0.0065011903131299
1024 => 0.0064993067102581
1025 => 0.0064031222990779
1026 => 0.006484416704765
1027 => 0.0064702898012198
1028 => 0.0063616978378891
1029 => 0.0065046328720594
1030 => 0.0065047037660531
1031 => 0.0064121283615216
1101 => 0.0063040205563908
1102 => 0.0062846934342257
1103 => 0.0062701330439079
1104 => 0.0063720439804329
1105 => 0.0064634170074539
1106 => 0.0066334395574456
1107 => 0.0066761872661496
1108 => 0.0068430344190977
1109 => 0.0067436850631576
1110 => 0.0067877253458563
1111 => 0.0068355373026041
1112 => 0.0068584601128955
1113 => 0.0068211086236315
1114 => 0.0070802909291878
1115 => 0.0071021738569174
1116 => 0.0071095110132986
1117 => 0.0070221161981378
1118 => 0.0070997432490117
1119 => 0.0070634241226455
1120 => 0.0071579163997065
1121 => 0.0071727339952876
1122 => 0.0071601840189817
1123 => 0.007164887357699
1124 => 0.0069437209827984
1125 => 0.0069322523395143
1126 => 0.0067758765745569
1127 => 0.0068396008546483
1128 => 0.0067204713674016
1129 => 0.0067582485549773
1130 => 0.0067749003793063
1201 => 0.0067662024112595
1202 => 0.0068432037298336
1203 => 0.0067777368787155
1204 => 0.0066049590948683
1205 => 0.0064321342378293
1206 => 0.0064299645625293
1207 => 0.006384462828283
1208 => 0.0063515734084813
1209 => 0.00635790907755
1210 => 0.0063802368017223
1211 => 0.0063502756805629
1212 => 0.0063566694048296
1213 => 0.0064628478288198
1214 => 0.0064841411545211
1215 => 0.0064117781139485
1216 => 0.0061212300641126
1217 => 0.0060499288438982
1218 => 0.0061011787470236
1219 => 0.0060766845942462
1220 => 0.0049043587333438
1221 => 0.0051797793050076
1222 => 0.0050161337537238
1223 => 0.0050915491527252
1224 => 0.0049245094206746
1225 => 0.0050042295361116
1226 => 0.0049895081417028
1227 => 0.0054323762706509
1228 => 0.0054254614939626
1229 => 0.0054287712316414
1230 => 0.0052707888287536
1231 => 0.0055224590862436
]
'min_raw' => 0.0032129721538861
'max_raw' => 0.0071727339952876
'avg_raw' => 0.0051928530745868
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.003212'
'max' => '$0.007172'
'avg' => '$0.005192'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.00049543378705577
'max_diff' => 0.0010851125850684
'year' => 2035
]
10 => [
'items' => [
101 => 0.0056464409048529
102 => 0.0056234951698976
103 => 0.0056292701170394
104 => 0.0055300373918279
105 => 0.0054297320213335
106 => 0.0053184779285692
107 => 0.0055251742815037
108 => 0.0055021931754818
109 => 0.0055549035643551
110 => 0.0056889609241935
111 => 0.0057087013796641
112 => 0.0057352327520045
113 => 0.0057257231436522
114 => 0.0059522805953576
115 => 0.0059248429930819
116 => 0.0059909597202295
117 => 0.0058549525961988
118 => 0.0057010476254432
119 => 0.0057302999288513
120 => 0.0057274826968009
121 => 0.0056916160993314
122 => 0.0056592373388398
123 => 0.0056053358252805
124 => 0.0057758881901051
125 => 0.0057689640755584
126 => 0.0058810574416666
127 => 0.0058612438503901
128 => 0.0057289238386375
129 => 0.0057336496737434
130 => 0.0057654331859893
131 => 0.0058754362847703
201 => 0.0059080926940706
202 => 0.0058929649441498
203 => 0.0059287712061259
204 => 0.0059570710156528
205 => 0.0059323252264909
206 => 0.0062826734167726
207 => 0.006137184421977
208 => 0.0062080947457345
209 => 0.0062250064401227
210 => 0.0061816874905618
211 => 0.0061910818195863
212 => 0.0062053116682569
213 => 0.0062917125228951
214 => 0.0065184533657543
215 => 0.0066188753415795
216 => 0.0069209998105827
217 => 0.0066105366944286
218 => 0.0065921150979401
219 => 0.0066465368380925
220 => 0.0068239158845203
221 => 0.0069676649412835
222 => 0.0070153547964938
223 => 0.0070216577981336
224 => 0.0071111271368698
225 => 0.0071624092933291
226 => 0.00710026320587
227 => 0.0070476009037151
228 => 0.0068589710740816
229 => 0.0068808054904836
301 => 0.0070312229673448
302 => 0.0072436965129565
303 => 0.0074260209191959
304 => 0.007362177266778
305 => 0.0078492592681325
306 => 0.0078975514590152
307 => 0.0078908790397087
308 => 0.0080008958373812
309 => 0.0077825348985326
310 => 0.0076891813666308
311 => 0.0070589870911835
312 => 0.0072360459772938
313 => 0.0074934114665588
314 => 0.0074593481789835
315 => 0.00727244248128
316 => 0.007425879134464
317 => 0.0073751481785136
318 => 0.0073351345687262
319 => 0.0075184446721821
320 => 0.0073168876834683
321 => 0.0074914007814133
322 => 0.0072675859281921
323 => 0.0073624688992044
324 => 0.0073086087358849
325 => 0.007343462862406
326 => 0.0071397063509505
327 => 0.0072496484186221
328 => 0.0071351323994794
329 => 0.0071350781039759
330 => 0.0071325501565062
331 => 0.007267277745186
401 => 0.0072716712070159
402 => 0.0071721073154195
403 => 0.0071577586031602
404 => 0.0072108133128475
405 => 0.0071487001428541
406 => 0.0071777625041584
407 => 0.0071495804121717
408 => 0.0071432360296599
409 => 0.0070926829103976
410 => 0.0070709032366325
411 => 0.0070794436079088
412 => 0.0070502909178794
413 => 0.0070327253676378
414 => 0.0071290559264447
415 => 0.0070775903948378
416 => 0.0071211680956063
417 => 0.0070715058056363
418 => 0.0068993546717706
419 => 0.0068003487342192
420 => 0.0064751712007654
421 => 0.0065673911458714
422 => 0.0066285330648852
423 => 0.0066083256610159
424 => 0.0066517389837543
425 => 0.0066544042091821
426 => 0.0066402900954134
427 => 0.0066239477597991
428 => 0.00661599321461
429 => 0.0066752798774133
430 => 0.006709697780668
501 => 0.0066346694744315
502 => 0.0066170913920379
503 => 0.0066929491520693
504 => 0.0067392223418668
505 => 0.0070808775766725
506 => 0.0070555666533462
507 => 0.0071190921038773
508 => 0.007111940113025
509 => 0.0071785249055795
510 => 0.0072873629005732
511 => 0.007066064825169
512 => 0.0071044745191475
513 => 0.0070950573491933
514 => 0.0071978715414382
515 => 0.0071981925161238
516 => 0.0071365502719232
517 => 0.0071699675325356
518 => 0.0071513149344164
519 => 0.0071850227002676
520 => 0.0070552286105339
521 => 0.0072133038014234
522 => 0.0073029222485175
523 => 0.0073041666007423
524 => 0.0073466450334089
525 => 0.0073898055811831
526 => 0.0074726484941442
527 => 0.0073874951373037
528 => 0.0072343125378599
529 => 0.0072453718267629
530 => 0.0071555609247563
531 => 0.0071570706622447
601 => 0.0071490115652114
602 => 0.0071731975220689
603 => 0.0070605360679697
604 => 0.0070869774860623
605 => 0.007049959345892
606 => 0.0071043940489403
607 => 0.0070458313068391
608 => 0.0070950528079488
609 => 0.0071162951761092
610 => 0.0071946799719365
611 => 0.0070342538087626
612 => 0.0067071340021548
613 => 0.0067758985514481
614 => 0.0066741903817046
615 => 0.0066836038600446
616 => 0.0067026205844355
617 => 0.0066409811587996
618 => 0.0066527400187294
619 => 0.0066523199095068
620 => 0.0066486996351886
621 => 0.0066326648399531
622 => 0.0066094112144741
623 => 0.006702046501294
624 => 0.0067177870416417
625 => 0.0067527763129943
626 => 0.0068568806510902
627 => 0.0068464781727651
628 => 0.0068634450465081
629 => 0.0068264064563921
630 => 0.0066853219740109
701 => 0.0066929835401821
702 => 0.0065974436872587
703 => 0.0067503331441522
704 => 0.0067141269027176
705 => 0.0066907845033291
706 => 0.0066844153133902
707 => 0.0067887777060042
708 => 0.0068200045695544
709 => 0.0068005460837468
710 => 0.0067606361616606
711 => 0.0068372750103753
712 => 0.0068577803331579
713 => 0.0068623707187217
714 => 0.0069981600646024
715 => 0.006869959834725
716 => 0.0069008189042572
717 => 0.0071415725556375
718 => 0.0069232422155685
719 => 0.0070388966660506
720 => 0.0070332359825362
721 => 0.0070924008858697
722 => 0.0070283827335688
723 => 0.0070291763152916
724 => 0.007081710741274
725 => 0.0070079356146154
726 => 0.0069896678557527
727 => 0.0069644310777202
728 => 0.0070195346592852
729 => 0.0070525667643128
730 => 0.0073187812714273
731 => 0.0074907679838798
801 => 0.0074833015871095
802 => 0.0075515304770805
803 => 0.0075207927372436
804 => 0.0074215324671041
805 => 0.0075909576447318
806 => 0.0075373444294798
807 => 0.0075417642378052
808 => 0.0075415997323185
809 => 0.0075772478335125
810 => 0.0075519878867161
811 => 0.0075021979387001
812 => 0.0075352508297927
813 => 0.0076334060997129
814 => 0.0079380830693168
815 => 0.0081085843379401
816 => 0.007927818678858
817 => 0.0080525084099442
818 => 0.0079777390027864
819 => 0.0079641511773087
820 => 0.0080424655429296
821 => 0.0081209169874804
822 => 0.0081159199696174
823 => 0.0080589682493998
824 => 0.0080267976677453
825 => 0.0082704040899689
826 => 0.0084498891521362
827 => 0.0084376494741795
828 => 0.0084916714321238
829 => 0.0086502815714845
830 => 0.0086647828948607
831 => 0.0086629560614244
901 => 0.00862701301838
902 => 0.0087831852987099
903 => 0.0089134669625509
904 => 0.0086186932424095
905 => 0.008730939216168
906 => 0.0087813300501276
907 => 0.008855318744667
908 => 0.0089801500743001
909 => 0.0091157500081565
910 => 0.0091349253255814
911 => 0.009121319520245
912 => 0.0090318877187448
913 => 0.0091802627844141
914 => 0.0092671774180598
915 => 0.0093189330933897
916 => 0.0094501768747032
917 => 0.0087816412467631
918 => 0.0083084185009304
919 => 0.0082345179357493
920 => 0.0083847976410412
921 => 0.0084244252008685
922 => 0.0084084513811909
923 => 0.0078757961572264
924 => 0.0082317136162307
925 => 0.0086146508757294
926 => 0.0086293610554278
927 => 0.0088210674543733
928 => 0.0088834949161808
929 => 0.009037843694864
930 => 0.0090281891367327
1001 => 0.0090657706081166
1002 => 0.0090571312786658
1003 => 0.0093430298892067
1004 => 0.0096584185129877
1005 => 0.0096474976078206
1006 => 0.0096021567616432
1007 => 0.0096694956499797
1008 => 0.0099950105088207
1009 => 0.0099650423168879
1010 => 0.0099941538626661
1011 => 0.010377954226453
1012 => 0.010876949294341
1013 => 0.010645115987022
1014 => 0.011148127555668
1015 => 0.011464746674634
1016 => 0.012012306701857
1017 => 0.011943749489659
1018 => 0.012156910590076
1019 => 0.011821017771502
1020 => 0.011049739964918
1021 => 0.010927682299693
1022 => 0.011172044836465
1023 => 0.011772786288573
1024 => 0.011153125350281
1025 => 0.011278481951049
1026 => 0.011242379241595
1027 => 0.011240455481635
1028 => 0.011313877574818
1029 => 0.011207374999217
1030 => 0.01077346434677
1031 => 0.010972323041735
1101 => 0.01089553414963
1102 => 0.010980737150412
1103 => 0.011440542605238
1104 => 0.011237251653266
1105 => 0.01102310114938
1106 => 0.011291693405055
1107 => 0.011633703644841
1108 => 0.011612301258687
1109 => 0.011570771684044
1110 => 0.011804871721888
1111 => 0.012191536399531
1112 => 0.012296050308153
1113 => 0.012373200338805
1114 => 0.012383838024572
1115 => 0.012493412799251
1116 => 0.0119042016194
1117 => 0.012839294893841
1118 => 0.013000759670906
1119 => 0.012970410984847
1120 => 0.013149872289079
1121 => 0.01309707022088
1122 => 0.013020568308451
1123 => 0.013305052648172
1124 => 0.012978914309384
1125 => 0.012516001997149
1126 => 0.012262039147289
1127 => 0.012596477914583
1128 => 0.012800707999465
1129 => 0.012935691094099
1130 => 0.012976536896976
1201 => 0.011949940406023
1202 => 0.01139666183505
1203 => 0.011751307055692
1204 => 0.01218399870118
1205 => 0.011901797995462
1206 => 0.01191285972885
1207 => 0.011510515683536
1208 => 0.012219597221495
1209 => 0.012116290005729
1210 => 0.012652248023871
1211 => 0.01252433734151
1212 => 0.012961390299534
1213 => 0.012846299608447
1214 => 0.013324034632517
1215 => 0.013514616067778
1216 => 0.013834631959214
1217 => 0.014070036951652
1218 => 0.014208271265792
1219 => 0.014199972196075
1220 => 0.01474772541676
1221 => 0.014424734479562
1222 => 0.014018981739323
1223 => 0.014011642952385
1224 => 0.014221788046116
1225 => 0.014662194512085
1226 => 0.014776385501057
1227 => 0.014840202685671
1228 => 0.014742464445942
1229 => 0.014391880932583
1230 => 0.014240500749013
1231 => 0.014369481051321
]
'min_raw' => 0.0053184779285692
'max_raw' => 0.014840202685671
'avg_raw' => 0.01007934030712
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.005318'
'max' => '$0.01484'
'avg' => '$0.010079'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.0021055057746832
'max_diff' => 0.0076674686903835
'year' => 2036
]
11 => [
'items' => [
101 => 0.014211749225003
102 => 0.014484038608962
103 => 0.014857950091012
104 => 0.014780738848575
105 => 0.015038844455886
106 => 0.015305956605951
107 => 0.015687938977302
108 => 0.015787803313939
109 => 0.0159528752649
110 => 0.01612278852575
111 => 0.016177360085844
112 => 0.016281554126624
113 => 0.016281004972598
114 => 0.016595000727558
115 => 0.016941347768917
116 => 0.017072085759078
117 => 0.017372710558518
118 => 0.016857901124626
119 => 0.017248389993938
120 => 0.017600620728627
121 => 0.017180676725962
122 => 0.017759471699232
123 => 0.017781944996466
124 => 0.018121265103179
125 => 0.017777299169159
126 => 0.017573053295516
127 => 0.01816270347973
128 => 0.018448016630065
129 => 0.018362077987229
130 => 0.017708080671931
131 => 0.017327426183163
201 => 0.01633117996329
202 => 0.017511276645363
203 => 0.018086067315309
204 => 0.017706592102955
205 => 0.017897977327312
206 => 0.018942113054534
207 => 0.019339652336678
208 => 0.019256966945001
209 => 0.019270939415077
210 => 0.019485444395874
211 => 0.020436677610778
212 => 0.019866676618994
213 => 0.020302421019683
214 => 0.020533538278615
215 => 0.020748212869016
216 => 0.020221039923592
217 => 0.019535195667305
218 => 0.019317960001556
219 => 0.017668860771725
220 => 0.017583017995138
221 => 0.017534831843337
222 => 0.017231024972298
223 => 0.016992315991367
224 => 0.016802485747035
225 => 0.016304314497797
226 => 0.016472432670444
227 => 0.015678451675579
228 => 0.016186412579135
301 => 0.014919199739989
302 => 0.015974572247863
303 => 0.015400180973727
304 => 0.015785869266105
305 => 0.015784523635987
306 => 0.015074349207134
307 => 0.014664735417534
308 => 0.014925757266674
309 => 0.015205593408893
310 => 0.015250995881486
311 => 0.015613810744344
312 => 0.015715064573888
313 => 0.01540826074328
314 => 0.014892939570548
315 => 0.015012636925749
316 => 0.014662309754451
317 => 0.014048374861892
318 => 0.014489313620003
319 => 0.014639869498731
320 => 0.014706363551756
321 => 0.014102629095823
322 => 0.013912922622056
323 => 0.013811924487214
324 => 0.014815005033659
325 => 0.01486995605032
326 => 0.014588818879794
327 => 0.015859585549093
328 => 0.015571971914409
329 => 0.015893306811402
330 => 0.015001775645373
331 => 0.015035833336521
401 => 0.014613768195102
402 => 0.014850096471893
403 => 0.014683067263073
404 => 0.01483100348257
405 => 0.014919675842573
406 => 0.015341671727255
407 => 0.015979390763004
408 => 0.015278639614406
409 => 0.014973312304021
410 => 0.015162735650158
411 => 0.015667194982838
412 => 0.016431476694646
413 => 0.015979006538653
414 => 0.016179805110441
415 => 0.01622367066547
416 => 0.015890035923796
417 => 0.016443778283463
418 => 0.016740533312604
419 => 0.017044942567701
420 => 0.017309252594548
421 => 0.016923354817112
422 => 0.017336320755242
423 => 0.017003543107411
424 => 0.016705007155385
425 => 0.016705459911194
426 => 0.016518183947574
427 => 0.01615531316977
428 => 0.016088394230906
429 => 0.016436515001805
430 => 0.016715674892906
501 => 0.016738667838623
502 => 0.01689322509809
503 => 0.016984690492176
504 => 0.017881175695392
505 => 0.01824174946024
506 => 0.018682652234584
507 => 0.01885440871311
508 => 0.019371334135368
509 => 0.018953874874265
510 => 0.018863554937183
511 => 0.017609662947804
512 => 0.01781498769082
513 => 0.018143732415281
514 => 0.017615083827226
515 => 0.017950389678215
516 => 0.018016586155949
517 => 0.017597120550494
518 => 0.017821175254406
519 => 0.017226152388404
520 => 0.015992360635473
521 => 0.016445151846382
522 => 0.016778558585485
523 => 0.016302746060031
524 => 0.01715562159542
525 => 0.01665738931457
526 => 0.016499473600908
527 => 0.015883388100896
528 => 0.016174156741596
529 => 0.016567425491549
530 => 0.016324431126478
531 => 0.016828680919789
601 => 0.017542833105625
602 => 0.01805178048175
603 => 0.018090851141664
604 => 0.017763632075641
605 => 0.018288002717226
606 => 0.018291822184882
607 => 0.017700329959057
608 => 0.017338044264182
609 => 0.017255732192051
610 => 0.017461363886467
611 => 0.017711038725193
612 => 0.018104706357564
613 => 0.018342591463012
614 => 0.018962869653508
615 => 0.019130699147087
616 => 0.019315092877807
617 => 0.01956149976697
618 => 0.019857374414839
619 => 0.019210017529454
620 => 0.019235738225335
621 => 0.01863292845693
622 => 0.017988739767725
623 => 0.018477598683578
624 => 0.01911671668588
625 => 0.018970102309989
626 => 0.018953605197642
627 => 0.018981348764693
628 => 0.018870806313249
629 => 0.018370826902264
630 => 0.018119740372104
701 => 0.018443706055016
702 => 0.01861587939743
703 => 0.018882905236421
704 => 0.018849988665534
705 => 0.019537818550293
706 => 0.019805088444614
707 => 0.019736709368523
708 => 0.019749292764158
709 => 0.020233172141353
710 => 0.020771345526177
711 => 0.021275415919298
712 => 0.021788177973507
713 => 0.021170023303714
714 => 0.020856162484873
715 => 0.021179986734502
716 => 0.021008161029493
717 => 0.021995522497293
718 => 0.022063885263076
719 => 0.023051175333404
720 => 0.023988231174461
721 => 0.023399683189793
722 => 0.023954657430551
723 => 0.024554907319646
724 => 0.025712886742743
725 => 0.025322920011251
726 => 0.025024211606486
727 => 0.024741933607332
728 => 0.025329309313202
729 => 0.026084958775248
730 => 0.026247718431852
731 => 0.026511451254525
801 => 0.0262341684392
802 => 0.026568125048559
803 => 0.027747138627566
804 => 0.027428558751077
805 => 0.026976124112193
806 => 0.027906842099151
807 => 0.028243665320557
808 => 0.030607667084073
809 => 0.033592316962554
810 => 0.032356652314595
811 => 0.031589635392958
812 => 0.031769902563428
813 => 0.032859795662274
814 => 0.033209834734146
815 => 0.032258307871095
816 => 0.03259440324529
817 => 0.034446321801275
818 => 0.0354398166899
819 => 0.034090517186982
820 => 0.030367853372426
821 => 0.026935387323156
822 => 0.027845831885383
823 => 0.027742615726411
824 => 0.029732271183271
825 => 0.027420960726385
826 => 0.027459877266792
827 => 0.029490676691419
828 => 0.028948894221645
829 => 0.028071276006867
830 => 0.026941794907354
831 => 0.024853844630549
901 => 0.023004488843582
902 => 0.026631501423027
903 => 0.026475098045306
904 => 0.026248602776686
905 => 0.026752643487653
906 => 0.029200122105659
907 => 0.029143699801798
908 => 0.028784769891552
909 => 0.029057015065011
910 => 0.028023550111673
911 => 0.028289897561708
912 => 0.026934843602997
913 => 0.027547384584386
914 => 0.028069393032336
915 => 0.028174193956729
916 => 0.028410315790655
917 => 0.026392680572272
918 => 0.027298539550668
919 => 0.027830646832968
920 => 0.025426566773309
921 => 0.027783125899895
922 => 0.026357558031954
923 => 0.025873698886263
924 => 0.02652515148234
925 => 0.026271279772091
926 => 0.026053015783465
927 => 0.025931220727561
928 => 0.02640957561592
929 => 0.02638725978862
930 => 0.025604578346581
1001 => 0.024583602311619
1002 => 0.024926275381348
1003 => 0.024801779042538
1004 => 0.024350588250344
1005 => 0.024654636367299
1006 => 0.02331576233546
1007 => 0.021012299152297
1008 => 0.02253403748808
1009 => 0.022475452217485
1010 => 0.02244591086742
1011 => 0.023589455169003
1012 => 0.023479529770461
1013 => 0.023280014095716
1014 => 0.024346923988515
1015 => 0.02395748752568
1016 => 0.025157638941366
1017 => 0.025948136284664
1018 => 0.025747640588493
1019 => 0.02649110716067
1020 => 0.024934169876772
1021 => 0.025451321989001
1022 => 0.02555790632259
1023 => 0.02433375848605
1024 => 0.023497514925133
1025 => 0.023441747013495
1026 => 0.021991815920326
1027 => 0.022766357406862
1028 => 0.023447921862309
1029 => 0.023121505379688
1030 => 0.023018171672705
1031 => 0.023546081171333
1101 => 0.023587104260616
1102 => 0.022651773477543
1103 => 0.022846258365417
1104 => 0.023657292678277
1105 => 0.022825822381633
1106 => 0.021210411415156
1107 => 0.020809767160666
1108 => 0.020756313831778
1109 => 0.019669734838104
1110 => 0.020836540125506
1111 => 0.020327198349117
1112 => 0.021936202917877
1113 => 0.021017148137466
1114 => 0.020977529522774
1115 => 0.02091764017588
1116 => 0.019982376750012
1117 => 0.020187140001185
1118 => 0.02086780423441
1119 => 0.021110672901057
1120 => 0.021085339709361
1121 => 0.020864468608333
1122 => 0.02096558226734
1123 => 0.020639859941342
1124 => 0.020524840608708
1125 => 0.020161807956356
1126 => 0.019628250247727
1127 => 0.019702444719611
1128 => 0.01864532728585
1129 => 0.018069353602468
1130 => 0.017909931678118
1201 => 0.017696746018178
1202 => 0.017934011565674
1203 => 0.01864233260498
1204 => 0.017787947152886
1205 => 0.016323163223442
1206 => 0.016411199233472
1207 => 0.016608990009883
1208 => 0.016240408206558
1209 => 0.015891576462436
1210 => 0.016194857362336
1211 => 0.015574209101526
1212 => 0.01668399238702
1213 => 0.016653975859279
1214 => 0.017067634439574
1215 => 0.017326303638961
1216 => 0.016730154879522
1217 => 0.016580225078681
1218 => 0.016665631907169
1219 => 0.015254047278314
1220 => 0.016952277860145
1221 => 0.016966964228737
1222 => 0.016841210624497
1223 => 0.017745465982335
1224 => 0.019653726831692
1225 => 0.018935762340549
1226 => 0.018657744788987
1227 => 0.018129233220238
1228 => 0.018833443505685
1229 => 0.018779371143154
1230 => 0.018534835413456
1231 => 0.018386939441137
]
'min_raw' => 0.013811924487214
'max_raw' => 0.0354398166899
'avg_raw' => 0.024625870588557
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.013811'
'max' => '$0.035439'
'avg' => '$0.024625'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.0084934465586449
'max_diff' => 0.020599614004229
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.00043354052712105
]
1 => [
'year' => 2028
'avg' => 0.00074408140225402
]
2 => [
'year' => 2029
'avg' => 0.0020326962833332
]
3 => [
'year' => 2030
'avg' => 0.0015682221554094
]
4 => [
'year' => 2031
'avg' => 0.0015401885042442
]
5 => [
'year' => 2032
'avg' => 0.0027004351631012
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.00043354052712105
'min' => '$0.000433'
'max_raw' => 0.0027004351631012
'max' => '$0.00270043'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.0027004351631012
]
1 => [
'year' => 2033
'avg' => 0.0069457969219695
]
2 => [
'year' => 2034
'avg' => 0.0044025798885247
]
3 => [
'year' => 2035
'avg' => 0.0051928530745868
]
4 => [
'year' => 2036
'avg' => 0.01007934030712
]
5 => [
'year' => 2037
'avg' => 0.024625870588557
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.0027004351631012
'min' => '$0.00270043'
'max_raw' => 0.024625870588557
'max' => '$0.024625'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.024625870588557
]
]
]
]
'prediction_2025_max_price' => '$0.000741'
'last_price' => 0.00071876
'sma_50day_nextmonth' => '$0.00068'
'sma_200day_nextmonth' => '$0.001164'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.000742'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.000742'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.000712'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.000712'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.000765'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.000923'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.001257'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.000732'
'daily_ema3_action' => 'SELL'
'daily_ema5' => '$0.000731'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.000723'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.000726'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.000794'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.00094'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.001128'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.001124'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.001258'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.001691'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.000734'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.000753'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.000837'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.001013'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.001291'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.0017048'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.000865'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '46.64'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 86.3
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.0007075'
'vwma_10_action' => 'BUY'
'hma_9' => '0.000762'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 57.51
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => 20.51
'cci_20_action' => 'NEUTRAL'
'adx_14' => 18
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.0000042'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -42.49
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 59.96
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.000138'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 29
'buy_signals' => 4
'sell_pct' => 87.88
'buy_pct' => 12.12
'overall_action' => 'bearish'
'overall_action_label' => 'Bajista'
'overall_action_dir' => -1
'last_updated' => 1767691548
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de Fold para 2026
La previsión del precio de Fold para 2026 sugiere que el precio medio podría oscilar entre $0.000248 en el extremo inferior y $0.000741 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, Fold podría potencialmente ganar 3.13% para 2026 si FLD alcanza el objetivo de precio previsto.
Predicción de precio de Fold 2027-2032
La predicción del precio de FLD para 2027-2032 está actualmente dentro de un rango de precios de $0.000433 en el extremo inferior y $0.00270043 en el extremo superior. Considerando la volatilidad de precios en el mercado, si Fold alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de Fold | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.000239 | $0.000433 | $0.000628 |
| 2028 | $0.000431 | $0.000744 | $0.001056 |
| 2029 | $0.000947 | $0.002032 | $0.003117 |
| 2030 | $0.000806 | $0.001568 | $0.00233 |
| 2031 | $0.000952 | $0.00154 | $0.002127 |
| 2032 | $0.001454 | $0.00270043 | $0.003946 |
Predicción de precio de Fold 2032-2037
La predicción de precio de Fold para 2032-2037 se estima actualmente entre $0.00270043 en el extremo inferior y $0.024625 en el extremo superior. Comparado con el precio actual, Fold podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de Fold | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.001454 | $0.00270043 | $0.003946 |
| 2033 | $0.00338 | $0.006945 | $0.010511 |
| 2034 | $0.002717 | $0.0044025 | $0.006087 |
| 2035 | $0.003212 | $0.005192 | $0.007172 |
| 2036 | $0.005318 | $0.010079 | $0.01484 |
| 2037 | $0.013811 | $0.024625 | $0.035439 |
Fold Histograma de precios potenciales
Pronóstico de precio de Fold basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para Fold es Bajista, con 4 indicadores técnicos mostrando señales alcistas y 29 indicando señales bajistas. La predicción de precio de FLD se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de Fold
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de Fold aumentar durante el próximo mes, alcanzando $0.001164 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para Fold alcance $0.00068 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 46.64, lo que sugiere que el mercado de FLD está en un estado NEUTRAL.
Promedios Móviles y Osciladores Populares de FLD para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.000742 | SELL |
| SMA 5 | $0.000742 | SELL |
| SMA 10 | $0.000712 | BUY |
| SMA 21 | $0.000712 | BUY |
| SMA 50 | $0.000765 | SELL |
| SMA 100 | $0.000923 | SELL |
| SMA 200 | $0.001257 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.000732 | SELL |
| EMA 5 | $0.000731 | SELL |
| EMA 10 | $0.000723 | SELL |
| EMA 21 | $0.000726 | SELL |
| EMA 50 | $0.000794 | SELL |
| EMA 100 | $0.00094 | SELL |
| EMA 200 | $0.001128 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.001124 | SELL |
| SMA 50 | $0.001258 | SELL |
| SMA 100 | $0.001691 | SELL |
| SMA 200 | — | — |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.001013 | SELL |
| EMA 50 | $0.001291 | SELL |
| EMA 100 | $0.0017048 | SELL |
| EMA 200 | $0.000865 | SELL |
Osciladores de Fold
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 46.64 | NEUTRAL |
| Stoch RSI (14) | 86.3 | SELL |
| Estocástico Rápido (14) | 57.51 | NEUTRAL |
| Índice de Canal de Materias Primas (20) | 20.51 | NEUTRAL |
| Índice Direccional Medio (14) | 18 | NEUTRAL |
| Oscilador Asombroso (5, 34) | 0.0000042 | BUY |
| Momentum (10) | 0 | SELL |
| MACD (12, 26) | 0 | NEUTRAL |
| Rango Percentil de Williams (14) | -42.49 | NEUTRAL |
| Oscilador Ultimate (7, 14, 28) | 59.96 | NEUTRAL |
| VWMA (10) | 0.0007075 | BUY |
| Promedio Móvil de Hull (9) | 0.000762 | SELL |
| Nube Ichimoku B/L (9, 26, 52, 26) | -0.000138 | SELL |
Predicción de precios de Fold basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de Fold
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de Fold por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.0010099 | $0.001419 | $0.001994 | $0.0028021 | $0.003937 | $0.005532 |
| Amazon.com acción | $0.001499 | $0.003129 | $0.006529 | $0.013624 | $0.028427 | $0.059315 |
| Apple acción | $0.001019 | $0.001446 | $0.002051 | $0.0029094 | $0.004126 | $0.005853 |
| Netflix acción | $0.001134 | $0.001789 | $0.002823 | $0.004454 | $0.007029 | $0.01109 |
| Google acción | $0.00093 | $0.0012053 | $0.00156 | $0.002021 | $0.002617 | $0.003389 |
| Tesla acción | $0.001629 | $0.003693 | $0.008373 | $0.018981 | $0.043029 | $0.097545 |
| Kodak acción | $0.000538 | $0.0004041 | $0.000303 | $0.000227 | $0.00017 | $0.000127 |
| Nokia acción | $0.000476 | $0.000315 | $0.0002089 | $0.000138 | $0.000091 | $0.00006 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de Fold
Podría preguntarse cosas como: "¿Debo invertir en Fold ahora?", "¿Debería comprar FLD hoy?", "¿Será Fold una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de Fold regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como Fold, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de Fold a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de Fold es de $0.0007187 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Predicción de precios de Fold basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Fold ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.000737 | $0.000756 | $0.000776 | $0.000796 |
| Si Fold ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.000756 | $0.000795 | $0.000836 | $0.00088 |
| Si Fold ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.000812 | $0.000917 | $0.001037 | $0.001171 |
| Si Fold ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.0009055 | $0.00114 | $0.001437 | $0.001811 |
| Si Fold ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.001092 | $0.00166 | $0.002523 | $0.003835 |
| Si Fold ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.001652 | $0.0038011 | $0.008741 | $0.0201019 |
| Si Fold ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.002587 | $0.009311 | $0.033515 | $0.120633 |
Cuadro de preguntas
¿Es FLD una buena inversión?
La decisión de adquirir Fold depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de Fold ha experimentado una caída de -3.3762% durante las últimas 24 horas, y Fold ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en Fold dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede Fold subir?
Parece que el valor medio de Fold podría potencialmente aumentar hasta $0.000741 para el final de este año. Mirando las perspectivas de Fold en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.00233. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de Fold la próxima semana?
Basado en nuestro nuevo pronóstico experimental de Fold, el precio de Fold aumentará en un 0.86% durante la próxima semana y alcanzará $0.000724 para el 13 de enero de 2026.
¿Cuál será el precio de Fold el próximo mes?
Basado en nuestro nuevo pronóstico experimental de Fold, el precio de Fold disminuirá en un -11.62% durante el próximo mes y alcanzará $0.000635 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de Fold este año en 2026?
Según nuestra predicción más reciente sobre el valor de Fold en 2026, se anticipa que FLD fluctúe dentro del rango de $0.000248 y $0.000741. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de Fold no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará Fold en 5 años?
El futuro de Fold parece estar en una tendencia alcista, con un precio máximo de $0.00233 proyectada después de un período de cinco años. Basado en el pronóstico de Fold para 2030, el valor de Fold podría potencialmente alcanzar su punto más alto de aproximadamente $0.00233, mientras que su punto más bajo se anticipa que esté alrededor de $0.000806.
¿Cuánto será Fold en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de Fold, se espera que el valor de FLD en 2026 crezca en un 3.13% hasta $0.000741 si ocurre lo mejor. El precio estará entre $0.000741 y $0.000248 durante 2026.
¿Cuánto será Fold en 2027?
Según nuestra última simulación experimental para la predicción de precios de Fold, el valor de FLD podría disminuir en un -12.62% hasta $0.000628 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.000628 y $0.000239 a lo largo del año.
¿Cuánto será Fold en 2028?
Nuestro nuevo modelo experimental de predicción de precios de Fold sugiere que el valor de FLD en 2028 podría aumentar en un 47.02% , alcanzando $0.001056 en el mejor escenario. Se espera que el precio oscile entre $0.001056 y $0.000431 durante el año.
¿Cuánto será Fold en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de Fold podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.003117 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.003117 y $0.000947.
¿Cuánto será Fold en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de Fold, se espera que el valor de FLD en 2030 aumente en un 224.23% , alcanzando $0.00233 en el mejor escenario. Se pronostica que el precio oscile entre $0.00233 y $0.000806 durante el transcurso de 2030.
¿Cuánto será Fold en 2031?
Nuestra simulación experimental indica que el precio de Fold podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.002127 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.002127 y $0.000952 durante el año.
¿Cuánto será Fold en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de Fold, FLD podría experimentar un 449.04% aumento en valor, alcanzando $0.003946 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.003946 y $0.001454 a lo largo del año.
¿Cuánto será Fold en 2033?
Según nuestra predicción experimental de precios de Fold, se anticipa que el valor de FLD aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.010511. A lo largo del año, el precio de FLD podría oscilar entre $0.010511 y $0.00338.
¿Cuánto será Fold en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de Fold sugieren que FLD podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.006087 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.006087 y $0.002717.
¿Cuánto será Fold en 2035?
Basado en nuestra predicción experimental para el precio de Fold, FLD podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.007172 en 2035. El rango de precios esperado para el año está entre $0.007172 y $0.003212.
¿Cuánto será Fold en 2036?
Nuestra reciente simulación de predicción de precios de Fold sugiere que el valor de FLD podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.01484 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.01484 y $0.005318.
¿Cuánto será Fold en 2037?
Según la simulación experimental, el valor de Fold podría aumentar en un 4830.69% en 2037, con un máximo de $0.035439 bajo condiciones favorables. Se espera que el precio caiga entre $0.035439 y $0.013811 durante el transcurso del año.
Predicciones relacionadas
Predicción de precios de AIMX
Predicción de precios de Quadrant Protocol
Predicción de precios de Minto
Predicción de precios de El Hippo
Predicción de precios de Cum Inu
Predicción de precios de ZambesiGold
Predicción de precios de Archimedes Finance
Predicción de precios de Orcfax
Predicción de precios de Quantstamp
Predicción de precios de eUSD (OLD)
Predicción de precios de LockTrip
Predicción de precios de NOOT (Ordinals)
Predicción de precios de AssetMantle
Predicción de precios de Renewable Energy
Predicción de precios de Allbridge
Predicción de precios de DOMO
Predicción de precios de ATN
Predicción de precios de Linda
Predicción de precios de RealFevr
Predicción de precios de PanoVerse
Predicción de precios de Modern Investment Coin
Predicción de precios de Monolith
Predicción de precios de Qi Dao
Predicción de precios de SOMESING
Predicción de precios de Rainicorn
¿Cómo leer y predecir los movimientos de precio de Fold?
Los traders de Fold utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de Fold
Las medias móviles son herramientas populares para la predicción de precios de Fold. Una media móvil simple (SMA) calcula el precio de cierre promedio de FLD durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de FLD por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de FLD.
¿Cómo leer gráficos de Fold y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de Fold en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de FLD dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de Fold?
La acción del precio de Fold está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de FLD. La capitalización de mercado de Fold puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de FLD, grandes poseedores de Fold, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de Fold.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


