Prédiction du prix de Fluence jusqu'à $0.014238 d'ici 2026
| Année | Prix min. | Prix max. |
|---|---|---|
| 2026 | $0.004769 | $0.014238 |
| 2027 | $0.004591 | $0.012062 |
| 2028 | $0.008286 | $0.020297 |
| 2029 | $0.0182038 | $0.059882 |
| 2030 | $0.015481 | $0.044761 |
| 2031 | $0.018304 | $0.040862 |
| 2032 | $0.027939 | $0.075797 |
| 2033 | $0.064926 | $0.201898 |
| 2034 | $0.052197 | $0.116928 |
| 2035 | $0.061713 | $0.137771 |
Calculateur de profit d’investissement
Si vous ouvrez une position short de $10,000.00 sur Fluence aujourd’hui et la fermez le Apr 06, 2026, notre prévision indique que vous pourriez gagner environ $3,954.65, soit un rendement de 39.55% sur les 90 prochains jours.
Prévision du prix à long terme de Fluence pour 2027, 2028, 2029, 2030, 2031, 2032 et 2037
[
'name' => 'Fluence'
'name_with_ticker' => 'Fluence <small>FLT</small>'
'name_lang' => 'Fluence'
'name_lang_with_ticker' => 'Fluence <small>FLT</small>'
'name_with_lang' => 'Fluence'
'name_with_lang_with_ticker' => 'Fluence <small>FLT</small>'
'image' => '/uploads/coins/fluence-2.png?1727177248'
'price_for_sd' => 0.0138
'ticker' => 'FLT'
'marketcap' => '$3.42M'
'low24h' => '$0.01272'
'high24h' => '$0.01384'
'volume24h' => '$171.47K'
'current_supply' => '247.82M'
'max_supply' => '1B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.0138'
'change_24h_pct' => '8.3392%'
'ath_price' => '$1.52'
'ath_days' => 651
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '26 mars 2024'
'ath_pct' => '-99.09%'
'fdv' => '$13.8M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.680714'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.013923'
'next_week_prediction_price_date' => '13 janvier 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.012201'
'next_month_prediction_price_date' => '5 février 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.004769'
'current_year_max_price_prediction' => '$0.014238'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.015481'
'grand_prediction_max_price' => '$0.044761'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.014067269995223
107 => 0.014119792074966
108 => 0.014238127002471
109 => 0.013226968003195
110 => 0.013680948707802
111 => 0.013947619839518
112 => 0.012742789964844
113 => 0.01392380422672
114 => 0.013209365974644
115 => 0.012966874901387
116 => 0.013293357185758
117 => 0.013166126722024
118 => 0.013056741440529
119 => 0.012995702573977
120 => 0.013235435131085
121 => 0.013224251320753
122 => 0.012832002327242
123 => 0.01232032950532
124 => 0.012492063699445
125 => 0.012429671056703
126 => 0.012203552070594
127 => 0.012355928965521
128 => 0.011684938236445
129 => 0.010530533562134
130 => 0.011293168650356
131 => 0.011263808029046
201 => 0.011249003072384
202 => 0.011822102263497
203 => 0.011767011999919
204 => 0.011667022632081
205 => 0.012201715687441
206 => 0.012006545529598
207 => 0.012608013968198
208 => 0.013004179982399
209 => 0.01290369946657
210 => 0.013276295517763
211 => 0.012496020108423
212 => 0.01275519630019
213 => 0.01280861215411
214 => 0.012195117658136
215 => 0.011776025448353
216 => 0.011748076775962
217 => 0.011021428638663
218 => 0.011409598208309
219 => 0.01175117136605
220 => 0.01158758433064
221 => 0.011535797562253
222 => 0.011800364930763
223 => 0.011820924081162
224 => 0.011352173273292
225 => 0.011449641409656
226 => 0.011856099741022
227 => 0.01143939970257
228 => 0.010629819595423
301 => 0.01042903253553
302 => 0.0104022438405
303 => 0.0098576934094474
304 => 0.010442450086973
305 => 0.010187188126728
306 => 0.010993557600632
307 => 0.010532963681784
308 => 0.01051310839852
309 => 0.01048309422573
310 => 0.010014377174628
311 => 0.010116996420296
312 => 0.010458118422252
313 => 0.010579834595564
314 => 0.010567138601496
315 => 0.010456446738344
316 => 0.010507120906461
317 => 0.010343881754905
318 => 0.010286238612962
319 => 0.010104301000992
320 => 0.0098369029729459
321 => 0.0098740863087932
322 => 0.009344300846733
323 => 0.00905564560916
324 => 0.0089757496438147
325 => 0.0088689094198727
326 => 0.0089878175314
327 => 0.0093428000310831
328 => 0.0089146158227268
329 => 0.0081805240311298
330 => 0.0082246441986364
331 => 0.0083237691156282
401 => 0.0081390504885908
402 => 0.0079642298103592
403 => 0.0081162222064317
404 => 0.0078051778369709
405 => 0.0083613573416455
406 => 0.0083463142447191
407 => 0.0085536235701519
408 => 0.0086832583457607
409 => 0.0083844921577395
410 => 0.0083093532694018
411 => 0.008352155795071
412 => 0.0076447253895633
413 => 0.0084958114134484
414 => 0.0085031716407251
415 => 0.0084401489062586
416 => 0.0088933259396445
417 => 0.0098496708295499
418 => 0.0094898554130834
419 => 0.009350524008349
420 => 0.0090856549060984
421 => 0.0094385772584763
422 => 0.00941147832826
423 => 0.0092889266888579
424 => 0.0092148070749631
425 => 0.0093513747361957
426 => 0.009197884830409
427 => 0.0091703138257091
428 => 0.0090032635347771
429 => 0.0089436341812184
430 => 0.0088994869817564
501 => 0.008850885252963
502 => 0.008958088555885
503 => 0.0087151517676948
504 => 0.0084221938165244
505 => 0.0083978375327335
506 => 0.0084650873737065
507 => 0.0084353343252378
508 => 0.0083976950865843
509 => 0.008325831529558
510 => 0.0083045111473103
511 => 0.0083737920464364
512 => 0.0082955779506504
513 => 0.008410987109525
514 => 0.0083796022041911
515 => 0.0082042886742631
516 => 0.0079857831065907
517 => 0.0079838379487075
518 => 0.0079367612825734
519 => 0.0078768020702276
520 => 0.0078601227890339
521 => 0.0081034218307757
522 => 0.0086070435658536
523 => 0.0085081705686111
524 => 0.0085796164420312
525 => 0.0089310594266779
526 => 0.0090427725832379
527 => 0.0089634812307827
528 => 0.0088549423370645
529 => 0.0088597174975439
530 => 0.0092306277543365
531 => 0.0092537609720849
601 => 0.0093122111502761
602 => 0.0093873361472703
603 => 0.0089762753426205
604 => 0.008840356570611
605 => 0.0087759507159465
606 => 0.0085776056117825
607 => 0.0087915038017993
608 => 0.0086668744865103
609 => 0.0086836912390864
610 => 0.0086727393069099
611 => 0.0086787198024447
612 => 0.008361201878139
613 => 0.0084768887215052
614 => 0.0082845369065766
615 => 0.0080269994188917
616 => 0.0080261360629287
617 => 0.0080891679981865
618 => 0.0080516741366553
619 => 0.0079507791193301
620 => 0.0079651107803301
621 => 0.0078395503494879
622 => 0.0079803560899794
623 => 0.0079843938947895
624 => 0.0079301760149598
625 => 0.0081471066856347
626 => 0.0082359833584088
627 => 0.0082002959884453
628 => 0.0082334794373969
629 => 0.0085122791880313
630 => 0.0085577357122707
701 => 0.0085779244976484
702 => 0.0085508741997438
703 => 0.0082385753850386
704 => 0.0082524271654678
705 => 0.0081507919914785
706 => 0.0080649209795083
707 => 0.008068355369653
708 => 0.0081125042322558
709 => 0.0083053049045391
710 => 0.0087110425531387
711 => 0.0087264400003127
712 => 0.0087451021554628
713 => 0.0086691937916196
714 => 0.0086462991027393
715 => 0.008676503106993
716 => 0.008828876835135
717 => 0.0092208234329797
718 => 0.0090822833280682
719 => 0.0089696480662701
720 => 0.0090684595571156
721 => 0.00905324830261
722 => 0.0089248500065172
723 => 0.0089212462939897
724 => 0.0086748089123692
725 => 0.0085837066234918
726 => 0.0085075747320177
727 => 0.0084244406940014
728 => 0.0083751560495871
729 => 0.0084508796628777
730 => 0.0084681985491727
731 => 0.0083026275452905
801 => 0.0082800608292672
802 => 0.0084152696851358
803 => 0.0083557693087623
804 => 0.0084169669214008
805 => 0.0084311652924763
806 => 0.0084288790277169
807 => 0.0083667538012083
808 => 0.008406350567984
809 => 0.0083126924101951
810 => 0.0082108532306001
811 => 0.0081458861788236
812 => 0.0080891938095197
813 => 0.0081206500309894
814 => 0.0080085143451292
815 => 0.0079726398823771
816 => 0.0083929360743558
817 => 0.008703413390316
818 => 0.0086988989271794
819 => 0.0086714182938612
820 => 0.0086305876469932
821 => 0.0088258898189982
822 => 0.0087578504474618
823 => 0.0088073547751342
824 => 0.008819955704217
825 => 0.0088580949213933
826 => 0.0088717264133574
827 => 0.0088305225769621
828 => 0.0086922374693947
829 => 0.0083476441290903
830 => 0.0081872349989666
831 => 0.0081342973142004
901 => 0.0081362214984987
902 => 0.0080831439056153
903 => 0.0080987776354903
904 => 0.008077707132373
905 => 0.0080378046969709
906 => 0.0081181861680454
907 => 0.0081274493837815
908 => 0.0081086873879457
909 => 0.0081131065171592
910 => 0.0079577652049917
911 => 0.0079695754675722
912 => 0.0079038144247484
913 => 0.0078914850219801
914 => 0.0077252468321905
915 => 0.0074307317823673
916 => 0.007593921709237
917 => 0.0073968112255545
918 => 0.0073221624986728
919 => 0.0076755379614721
920 => 0.0076400688661167
921 => 0.0075793611929133
922 => 0.0074895618916579
923 => 0.0074562544573109
924 => 0.0072538890300703
925 => 0.0072419322010514
926 => 0.007342229971118
927 => 0.0072959460012678
928 => 0.007230945778488
929 => 0.0069955215605467
930 => 0.0067308267933007
1001 => 0.0067388162645119
1002 => 0.0068230107451516
1003 => 0.0070678175527842
1004 => 0.0069721672978414
1005 => 0.0069027719404201
1006 => 0.0068897762759919
1007 => 0.0070524442245774
1008 => 0.0072826534518146
1009 => 0.0073906624705931
1010 => 0.0072836288132662
1011 => 0.0071606743108305
1012 => 0.0071681579816775
1013 => 0.0072179434910787
1014 => 0.0072231752441875
1015 => 0.0071431445030289
1016 => 0.0071656726878823
1017 => 0.0071314503150696
1018 => 0.0069214276762876
1019 => 0.006917629032741
1020 => 0.0068660860901114
1021 => 0.006864525390293
1022 => 0.0067768379868904
1023 => 0.006764569913
1024 => 0.0065904612512991
1025 => 0.0067050600996802
1026 => 0.0066281932088957
1027 => 0.006512336673417
1028 => 0.0064923629630315
1029 => 0.0064917625291784
1030 => 0.0066107212860677
1031 => 0.0067036699973448
1101 => 0.0066295303413705
1102 => 0.006612650178842
1103 => 0.0067928861525399
1104 => 0.0067699494819995
1105 => 0.0067500864732371
1106 => 0.0072620407404724
1107 => 0.006856788989666
1108 => 0.0066800760953532
1109 => 0.0064613603317726
1110 => 0.006532575287255
1111 => 0.0065475813247406
1112 => 0.0060216093398088
1113 => 0.0058082225710276
1114 => 0.0057349962732927
1115 => 0.0056928535036783
1116 => 0.0057120584929872
1117 => 0.0055199853733125
1118 => 0.0056490616863301
1119 => 0.0054827426002285
1120 => 0.0054548586641944
1121 => 0.0057522577931252
1122 => 0.0057936391445354
1123 => 0.0056170934432413
1124 => 0.0057304643636249
1125 => 0.0056893544919202
1126 => 0.005485593663595
1127 => 0.0054778114987161
1128 => 0.005375571477602
1129 => 0.0052155856421275
1130 => 0.0051424678223226
1201 => 0.0051043874269302
1202 => 0.0051201001402412
1203 => 0.0051121553115742
1204 => 0.0050603099304328
1205 => 0.0051151270281332
1206 => 0.0049750919954972
1207 => 0.0049193289171626
1208 => 0.0048941420283725
1209 => 0.0047698528767923
1210 => 0.004967652188593
1211 => 0.0050066211448278
1212 => 0.0050456668819445
1213 => 0.0053855333658885
1214 => 0.0053685545968034
1215 => 0.005522034400337
1216 => 0.005516070457403
1217 => 0.0054722955312272
1218 => 0.0052876163183174
1219 => 0.0053612261609928
1220 => 0.0051346665067474
1221 => 0.0053044204042671
1222 => 0.0052269518145313
1223 => 0.005278228196151
1224 => 0.0051860286385939
1225 => 0.0052370556805724
1226 => 0.005015862130004
1227 => 0.0048093147047604
1228 => 0.0048924354181737
1229 => 0.0049827971396604
1230 => 0.0051787243755822
1231 => 0.0050620317302318
]
'min_raw' => 0.0047698528767923
'max_raw' => 0.014238127002471
'avg_raw' => 0.0095039899396317
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.004769'
'max' => '$0.014238'
'avg' => '$0.0095039'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0090358071232077
'max_diff' => 0.0004324670024712
'year' => 2026
]
1 => [
'items' => [
101 => 0.0051039988181373
102 => 0.0049634160988597
103 => 0.0046733537935215
104 => 0.004674995514669
105 => 0.0046303757483436
106 => 0.0045918177556458
107 => 0.0050754352842934
108 => 0.0050152897997443
109 => 0.0049194558417618
110 => 0.0050477334028115
111 => 0.0050816520259917
112 => 0.0050826176415097
113 => 0.0051762056387285
114 => 0.0052261535696208
115 => 0.0052349571089273
116 => 0.0053822198446536
117 => 0.0054315803712266
118 => 0.0056348893944177
119 => 0.0052219158366514
120 => 0.005213410917994
121 => 0.0050495385311599
122 => 0.0049456080727099
123 => 0.0050566547385664
124 => 0.0051550269251338
125 => 0.005052595229208
126 => 0.0050659706462448
127 => 0.0049284644634415
128 => 0.0049776164535264
129 => 0.0050199527688756
130 => 0.0049965771439534
131 => 0.0049615827020517
201 => 0.0051469615276569
202 => 0.0051365017278107
203 => 0.005309130752055
204 => 0.0054437074212734
205 => 0.0056848928709698
206 => 0.0054332032809297
207 => 0.0054240307118931
208 => 0.005513694045552
209 => 0.0054315666442374
210 => 0.0054834683269267
211 => 0.0056765307074916
212 => 0.0056806098113693
213 => 0.0056122795657906
214 => 0.0056081216641373
215 => 0.0056212452352516
216 => 0.0056981104011758
217 => 0.0056712513503739
218 => 0.0057023333239498
219 => 0.0057412018078505
220 => 0.0059019783371595
221 => 0.0059407410140695
222 => 0.0058465678053219
223 => 0.0058550705916591
224 => 0.0058198472264751
225 => 0.0057858218970548
226 => 0.0058623058685913
227 => 0.0060020818298704
228 => 0.0060012122908697
301 => 0.00603363759703
302 => 0.0060538382941421
303 => 0.0059671221143228
304 => 0.0059106730699027
305 => 0.0059323192254793
306 => 0.0059669318996384
307 => 0.0059210948017475
308 => 0.0056381669997558
309 => 0.0057239892213821
310 => 0.0057097042072112
311 => 0.0056893606099149
312 => 0.0057756555174037
313 => 0.0057673321630586
314 => 0.0055180153858523
315 => 0.0055339758370228
316 => 0.0055189859937507
317 => 0.0055674212439962
318 => 0.0054289509817732
319 => 0.0054715435018216
320 => 0.0054982571311158
321 => 0.0055139916639939
322 => 0.0055708355860197
323 => 0.0055641656078601
324 => 0.0055704209708122
325 => 0.0056547055009375
326 => 0.0060809877313532
327 => 0.006104189332616
328 => 0.005989936162411
329 => 0.0060355780503638
330 => 0.0059479556062781
331 => 0.0060067771400122
401 => 0.006047021339488
402 => 0.0058651655405711
403 => 0.0058543972203936
404 => 0.0057664131273121
405 => 0.0058136907952603
406 => 0.0057384686261701
407 => 0.0057569255153051
408 => 0.005705318444241
409 => 0.005798200897291
410 => 0.0059020579122748
411 => 0.0059282962956975
412 => 0.0058592744052466
413 => 0.005809298007796
414 => 0.0057215559171213
415 => 0.0058674729693733
416 => 0.0059101435621933
417 => 0.0058672488389146
418 => 0.0058573091942627
419 => 0.0058384735856079
420 => 0.0058613052576805
421 => 0.0059099111689808
422 => 0.0058869895188218
423 => 0.0059021296725794
424 => 0.0058444310189145
425 => 0.0059671508209865
426 => 0.0061620594008057
427 => 0.0061626860637606
428 => 0.0061397642900454
429 => 0.0061303851940976
430 => 0.006153904324939
501 => 0.0061666624886151
502 => 0.0062427190450851
503 => 0.0063243307604043
504 => 0.0067051770258179
505 => 0.0065982369184707
506 => 0.0069361463817913
507 => 0.0072033888952256
508 => 0.0072835232399058
509 => 0.0072098034134123
510 => 0.0069576118692449
511 => 0.0069452381489448
512 => 0.0073221187884544
513 => 0.0072156327455661
514 => 0.0072029665696003
515 => 0.0070682198571664
516 => 0.0071478718529198
517 => 0.0071304507930243
518 => 0.0071029507977117
519 => 0.0072549212570032
520 => 0.0075393963903003
521 => 0.0074950582729851
522 => 0.0074619619251953
523 => 0.0073169433633825
524 => 0.0074042769286622
525 => 0.0073731791188304
526 => 0.0075067950450258
527 => 0.0074276439303028
528 => 0.0072148260090593
529 => 0.0072487179644744
530 => 0.0072435952635945
531 => 0.0073490200847031
601 => 0.0073173741702112
602 => 0.0072374158908912
603 => 0.0075384240852211
604 => 0.0075188782873769
605 => 0.0075465897599285
606 => 0.0075587892071515
607 => 0.0077420075906808
608 => 0.0078170663000784
609 => 0.0078341059411993
610 => 0.0079054059098781
611 => 0.0078323319330258
612 => 0.0081246799412976
613 => 0.0083190743078191
614 => 0.0085448733679764
615 => 0.0088748264839321
616 => 0.0089988919077684
617 => 0.0089764805994189
618 => 0.0092266472862336
619 => 0.0096761912615466
620 => 0.0090673462897838
621 => 0.0097084615234411
622 => 0.0095054918424965
623 => 0.0090242543802455
624 => 0.0089932683610935
625 => 0.0093191679578117
626 => 0.010041981896659
627 => 0.0098609252030656
628 => 0.010042278040548
629 => 0.0098307203225016
630 => 0.0098202146986522
701 => 0.010032003154388
702 => 0.010526858425203
703 => 0.010291771235411
704 => 0.009954716103101
705 => 0.01020359236764
706 => 0.0099879927148854
707 => 0.009502186354686
708 => 0.0098607867524242
709 => 0.009621000878808
710 => 0.0096909831444473
711 => 0.010194977385332
712 => 0.010134335464865
713 => 0.01021281172524
714 => 0.01007430317976
715 => 0.0099449143574895
716 => 0.0097034005121811
717 => 0.009631900169074
718 => 0.0096516602915959
719 => 0.0096318903769386
720 => 0.0094967656001154
721 => 0.0094675854174258
722 => 0.0094189505011966
723 => 0.0094340244953892
724 => 0.0093425766242317
725 => 0.0095151576512002
726 => 0.0095471902105843
727 => 0.0096727802899486
728 => 0.0096858194686173
729 => 0.010035586051984
730 => 0.0098429404954543
731 => 0.0099721837669916
801 => 0.0099606230323005
802 => 0.0090346842552921
803 => 0.0091622704491369
804 => 0.0093607545280061
805 => 0.0092713377195143
806 => 0.0091449232726178
807 => 0.009042836828835
808 => 0.0088881654276293
809 => 0.0091058624546252
810 => 0.0093921108956269
811 => 0.009693079201463
812 => 0.0100546729007
813 => 0.0099739693964453
814 => 0.0096863194587751
815 => 0.0096992232248505
816 => 0.0097789892292843
817 => 0.0096756850060369
818 => 0.0096452185738632
819 => 0.0097748036093476
820 => 0.0097756959902683
821 => 0.0096568319966896
822 => 0.0095247364197081
823 => 0.0095241829344174
824 => 0.0095006778023854
825 => 0.0098349018332732
826 => 0.010018691256401
827 => 0.010039762417571
828 => 0.010017272999368
829 => 0.010025928283861
830 => 0.0099189852680666
831 => 0.010163425289206
901 => 0.010387747625216
902 => 0.010327624447218
903 => 0.010237491256385
904 => 0.010165695828484
905 => 0.010310711726096
906 => 0.010304254396451
907 => 0.010385788365305
908 => 0.010382089513515
909 => 0.010354672706437
910 => 0.010327625426358
911 => 0.010434864834586
912 => 0.010403981607228
913 => 0.010373050409689
914 => 0.010311013157694
915 => 0.010319445050569
916 => 0.010229327422503
917 => 0.010187634884257
918 => 0.0095606791434271
919 => 0.0093931360831076
920 => 0.0094458485405376
921 => 0.0094632028502019
922 => 0.0093902878956386
923 => 0.0094948292101674
924 => 0.0094785365570347
925 => 0.0095419217394907
926 => 0.0095023214293569
927 => 0.0095039466398979
928 => 0.009620402708325
929 => 0.0096542104004289
930 => 0.0096370155353633
1001 => 0.0096490582294498
1002 => 0.0099265770317685
1003 => 0.0098871227326305
1004 => 0.0098661634225667
1005 => 0.0098719692946929
1006 => 0.0099428812987555
1007 => 0.0099627327882412
1008 => 0.009878620632351
1009 => 0.0099182884113154
1010 => 0.010087188779555
1011 => 0.010146294349506
1012 => 0.010334930956506
1013 => 0.010254794773104
1014 => 0.010401888205952
1015 => 0.010854003270678
1016 => 0.011215184068364
1017 => 0.010883027280384
1018 => 0.011546289819237
1019 => 0.012062734845094
1020 => 0.012042912824818
1021 => 0.011952858688971
1022 => 0.011364899757433
1023 => 0.010823851182659
1024 => 0.011276461289594
1025 => 0.011277615085836
1026 => 0.011238735476251
1027 => 0.010997257560259
1028 => 0.011230332568208
1029 => 0.011248833215935
1030 => 0.011238477772927
1031 => 0.011053337220911
1101 => 0.010770661817677
1102 => 0.010825895914839
1103 => 0.010916370492737
1104 => 0.010745083241803
1105 => 0.010690346586469
1106 => 0.010792112442809
1107 => 0.011120023235698
1108 => 0.01105803359976
1109 => 0.011056414799846
1110 => 0.011321632750084
1111 => 0.011131793935329
1112 => 0.010826592593689
1113 => 0.010749525229813
1114 => 0.010475988006853
1115 => 0.010664921141058
1116 => 0.010671720508207
1117 => 0.010568243761452
1118 => 0.010834989161395
1119 => 0.010832531055575
1120 => 0.011085766113007
1121 => 0.011569856432073
1122 => 0.011426687104088
1123 => 0.011260196752419
1124 => 0.011278298869922
1125 => 0.011476834419098
1126 => 0.01135679529394
1127 => 0.011399962200289
1128 => 0.011476769080815
1129 => 0.011523108578844
1130 => 0.01127163132928
1201 => 0.011212999952859
1202 => 0.011093060733519
1203 => 0.011061770829965
1204 => 0.011159458821503
1205 => 0.011133721487101
1206 => 0.010671149047726
1207 => 0.010622807654083
1208 => 0.01062429021561
1209 => 0.010502733482786
1210 => 0.01031733028827
1211 => 0.010804558813608
1212 => 0.010765427544265
1213 => 0.010722229651429
1214 => 0.010727521146818
1215 => 0.01093901053596
1216 => 0.010816336009787
1217 => 0.011142486343577
1218 => 0.011075439639926
1219 => 0.011006673441317
1220 => 0.010997167858
1221 => 0.010970698738392
1222 => 0.01087992627853
1223 => 0.010770313078668
1224 => 0.010697936949586
1225 => 0.0098682813451855
1226 => 0.010022260599478
1227 => 0.01019939969589
1228 => 0.010260547402131
1229 => 0.010155950019313
1230 => 0.010884056420732
1231 => 0.011017088476479
]
'min_raw' => 0.0045918177556458
'max_raw' => 0.012062734845094
'avg_raw' => 0.0083272763003701
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.004591'
'max' => '$0.012062'
'avg' => '$0.008327'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00017803512114646
'max_diff' => -0.0021753921573769
'year' => 2027
]
2 => [
'items' => [
101 => 0.010614125702155
102 => 0.010538747819941
103 => 0.010888998182141
104 => 0.010677754397369
105 => 0.010772877460717
106 => 0.010567273427292
107 => 0.010985044949883
108 => 0.01098186223084
109 => 0.010819339672754
110 => 0.010956702625942
111 => 0.010932832432489
112 => 0.010749344864685
113 => 0.010990861833063
114 => 0.010990981622466
115 => 0.010834557193854
116 => 0.010651887706945
117 => 0.010619230717147
118 => 0.010594628062183
119 => 0.010766826715766
120 => 0.010921219490118
121 => 0.011208506165972
122 => 0.011280736862044
123 => 0.011562658077486
124 => 0.011394787720185
125 => 0.011469202475292
126 => 0.011549990218569
127 => 0.011588722833568
128 => 0.011525610115935
129 => 0.011963549806917
130 => 0.012000525334962
131 => 0.012012922909678
201 => 0.011865252109918
202 => 0.011996418342886
203 => 0.011935050006249
204 => 0.012094713369562
205 => 0.012119750623614
206 => 0.012098544960158
207 => 0.012106492179781
208 => 0.011732787911382
209 => 0.011713409373619
210 => 0.011449181636175
211 => 0.011556856392256
212 => 0.011355563596748
213 => 0.011419395615749
214 => 0.011447532161511
215 => 0.01143283522674
216 => 0.011562944161411
217 => 0.011452324987442
218 => 0.011160382799859
219 => 0.010868361072823
220 => 0.010864694977916
221 => 0.010787810811799
222 => 0.010732237641734
223 => 0.010742943005853
224 => 0.01078067010533
225 => 0.010730044874128
226 => 0.01074084833397
227 => 0.010920257750409
228 => 0.010956237029386
229 => 0.010833965381409
301 => 0.010343027071066
302 => 0.010222549578282
303 => 0.010309146410922
304 => 0.01026775870247
305 => 0.0082868826386036
306 => 0.0087522600870591
307 => 0.0084757486099117
308 => 0.0086031778202626
309 => 0.008320931204395
310 => 0.0084556340832996
311 => 0.0084307593801274
312 => 0.0091790725457241
313 => 0.0091673886649145
314 => 0.0091729811203608
315 => 0.0089060386508398
316 => 0.0093312852530647
317 => 0.0095407770206939
318 => 0.0095020056699486
319 => 0.0095117635836353
320 => 0.0093440902969841
321 => 0.0091746045642913
322 => 0.0089866188030676
323 => 0.0093358731116788
324 => 0.0092970419945311
325 => 0.009386106606273
326 => 0.0096126229906209
327 => 0.0096459783886682
328 => 0.0096908083819008
329 => 0.0096747400205431
330 => 0.010057553577883
331 => 0.010011192330204
401 => 0.01012290959807
402 => 0.0098930987020612
403 => 0.0096330458593771
404 => 0.0096824734030034
405 => 0.0096777131330809
406 => 0.0096171094333851
407 => 0.0095623991230742
408 => 0.0094713218709409
409 => 0.0097595037735878
410 => 0.0097478041146223
411 => 0.0099372079939081
412 => 0.0099037290184732
413 => 0.009680148226824
414 => 0.0096881334585375
415 => 0.0097418379793822
416 => 0.0099277099392132
417 => 0.0099828893920191
418 => 0.0099573280709584
419 => 0.010017829821922
420 => 0.010065647939029
421 => 0.01002383504121
422 => 0.010615817498728
423 => 0.010369985109493
424 => 0.010489802105515
425 => 0.010518377753064
426 => 0.01044518183275
427 => 0.010461055406916
428 => 0.010485099546489
429 => 0.010631090853649
430 => 0.011014214286561
501 => 0.011183897046989
502 => 0.011694396003734
503 => 0.011169807255833
504 => 0.011138680330497
505 => 0.011230636608198
506 => 0.011530353537611
507 => 0.01177324595792
508 => 0.011853827386536
509 => 0.011864477552582
510 => 0.012015653669619
511 => 0.012102305000636
512 => 0.011997296912684
513 => 0.011908313552949
514 => 0.011589586203401
515 => 0.011626479761977
516 => 0.011880639794984
517 => 0.012239655811557
518 => 0.012547728903027
519 => 0.012439852443825
520 => 0.013262873678622
521 => 0.013344472872312
522 => 0.013333198502162
523 => 0.013519093608975
524 => 0.01315012967883
525 => 0.012992390450354
526 => 0.011927552765328
527 => 0.012226728720656
528 => 0.012661598541712
529 => 0.012604041890217
530 => 0.012288227802062
531 => 0.012547489329721
601 => 0.01246176936082
602 => 0.012394158464822
603 => 0.012703897086404
604 => 0.012363326748613
605 => 0.01265820109207
606 => 0.012280021696503
607 => 0.012440345214404
608 => 0.012349337831667
609 => 0.012408230761743
610 => 0.012063943895898
611 => 0.012249712731617
612 => 0.012056215301581
613 => 0.012056123558605
614 => 0.012051852092113
615 => 0.012279500960451
616 => 0.012286924581875
617 => 0.012118691724214
618 => 0.012094446741134
619 => 0.012184093150891
620 => 0.012079140683498
621 => 0.012128247282428
622 => 0.012080628072354
623 => 0.012069907985152
624 => 0.011984488506456
625 => 0.011947687446376
626 => 0.011962118090279
627 => 0.011912858863129
628 => 0.011883178396987
629 => 0.01204594790035
630 => 0.011958986720806
701 => 0.012032619852386
702 => 0.011948705605709
703 => 0.011657822267027
704 => 0.011490532182916
705 => 0.010941080521046
706 => 0.011096904330759
707 => 0.011200215677811
708 => 0.011166071278227
709 => 0.011239426660662
710 => 0.011243930085376
711 => 0.011220081502777
712 => 0.011192467899319
713 => 0.011179027124284
714 => 0.011279203649575
715 => 0.011337359494293
716 => 0.011210584353615
717 => 0.011180882711927
718 => 0.0113090593786
719 => 0.011387247071225
720 => 0.011964541063699
721 => 0.011921773260102
722 => 0.012029112054374
723 => 0.012017027353387
724 => 0.012129535510195
725 => 0.012313438797082
726 => 0.011939511994673
727 => 0.012004412758156
728 => 0.011988500589727
729 => 0.012162225472233
730 => 0.012162767822353
731 => 0.01205861107709
801 => 0.012115076138447
802 => 0.012083558890236
803 => 0.012140514817566
804 => 0.01192120207001
805 => 0.012188301323185
806 => 0.012339729388239
807 => 0.01234183196707
808 => 0.012413607668098
809 => 0.012486535937311
810 => 0.012626515399352
811 => 0.012482631986088
812 => 0.012223799732396
813 => 0.01224248658509
814 => 0.012090733329453
815 => 0.012093284329097
816 => 0.012079666893073
817 => 0.012120533843653
818 => 0.011930170067515
819 => 0.01197484806528
820 => 0.011912298606774
821 => 0.012004276787848
822 => 0.011905323469551
823 => 0.011988492916398
824 => 0.012024386092546
825 => 0.012156832685259
826 => 0.011885761000118
827 => 0.011333027484176
828 => 0.011449218770473
829 => 0.011277362731411
830 => 0.011293268662128
831 => 0.011325401173587
901 => 0.011221249190845
902 => 0.011241118106946
903 => 0.011240408249448
904 => 0.011234291081021
905 => 0.01120719712777
906 => 0.01116790553518
907 => 0.011324431146744
908 => 0.011351027898251
909 => 0.01141014918221
910 => 0.011586054020921
911 => 0.011568476979412
912 => 0.011597145863377
913 => 0.011534561850649
914 => 0.011296171754984
915 => 0.011309117484108
916 => 0.01114768403449
917 => 0.011406020965951
918 => 0.0113448433707
919 => 0.011305401777058
920 => 0.011294639772809
921 => 0.011470980645592
922 => 0.011523744598533
923 => 0.011490865643917
924 => 0.011423429948768
925 => 0.011552926419028
926 => 0.011587574211452
927 => 0.011595330574414
928 => 0.011824773491229
929 => 0.011608153884671
930 => 0.011660296376983
1001 => 0.012067097217273
1002 => 0.011698184989809
1003 => 0.011893606024421
1004 => 0.011884041181699
1005 => 0.011984011970319
1006 => 0.011875840659103
1007 => 0.011877181572148
1008 => 0.011965948859835
1009 => 0.011841291213543
1010 => 0.011810424227257
1011 => 0.011767781706776
1012 => 0.011860890090201
1013 => 0.011916704355134
1014 => 0.012366526339434
1015 => 0.012657131855666
1016 => 0.012644515903789
1017 => 0.012759802087874
1018 => 0.012707864606043
1019 => 0.012540144776796
1020 => 0.012826422074067
1021 => 0.012735831958859
1022 => 0.01274330009789
1023 => 0.012743022133382
1024 => 0.01280325664047
1025 => 0.012760574971787
1026 => 0.012676445021629
1027 => 0.012732294408724
1028 => 0.012898147121875
1029 => 0.013412959032478
1030 => 0.013701054598001
1031 => 0.01339561531769
1101 => 0.013606303243254
1102 => 0.013479965563699
1103 => 0.013457006249104
1104 => 0.013589333836073
1105 => 0.013721893044967
1106 => 0.013713449596429
1107 => 0.013617218417763
1108 => 0.013562859866711
1109 => 0.013974481026732
1110 => 0.014277756485652
1111 => 0.014257075132538
1112 => 0.014348355899246
1113 => 0.014616359053509
1114 => 0.01464086190321
1115 => 0.014637775107339
1116 => 0.014577042237748
1117 => 0.014840926147727
1118 => 0.015061062748028
1119 => 0.014562984333178
1120 => 0.014752646073228
1121 => 0.014837791338856
1122 => 0.014962809850259
1123 => 0.015173737034532
1124 => 0.015402859902326
1125 => 0.015435260388036
1126 => 0.015412270692918
1127 => 0.015261158002456
1128 => 0.015511866978399
1129 => 0.015658726416658
1130 => 0.015746177851323
1201 => 0.015967940139101
1202 => 0.014838317167029
1203 => 0.014038713881492
1204 => 0.013913844282044
1205 => 0.014167771522776
1206 => 0.014234730111126
1207 => 0.014207739188121
1208 => 0.013307712993499
1209 => 0.013909105830394
1210 => 0.014556153956348
1211 => 0.014581009710052
1212 => 0.014904935531043
1213 => 0.015010419056525
1214 => 0.015271221800351
1215 => 0.015254908517716
1216 => 0.015318409835559
1217 => 0.015303811982276
1218 => 0.015786894146716
1219 => 0.016319805512488
1220 => 0.016301352486446
1221 => 0.016224740172495
1222 => 0.016338522523053
1223 => 0.016888544162783
1224 => 0.016837906984113
1225 => 0.016887096689926
1226 => 0.017535603201029
1227 => 0.018378753914438
1228 => 0.017987025757111
1229 => 0.018836963141768
1230 => 0.019371953672165
1231 => 0.020297164475432
]
'min_raw' => 0.0082868826386036
'max_raw' => 0.020297164475432
'avg_raw' => 0.014292023557018
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.008286'
'max' => '$0.020297'
'avg' => '$0.014292'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0036950648829577
'max_diff' => 0.008234429630338
'year' => 2028
]
3 => [
'items' => [
101 => 0.020181323526104
102 => 0.020541501302305
103 => 0.01997394405007
104 => 0.018670717876693
105 => 0.018464477346207
106 => 0.018877376111083
107 => 0.019892447434457
108 => 0.018845407902777
109 => 0.019057222636369
110 => 0.018996219978845
111 => 0.01899296940647
112 => 0.019117030532985
113 => 0.018937073398382
114 => 0.018203895658341
115 => 0.018539906695958
116 => 0.018410156697759
117 => 0.018554123994264
118 => 0.019331056116874
119 => 0.01898755590572
120 => 0.01862570633696
121 => 0.019079545997032
122 => 0.019657439840532
123 => 0.019621276282381
124 => 0.019551103864373
125 => 0.019946662110575
126 => 0.020600008445608
127 => 0.020776605334609
128 => 0.020906965547706
129 => 0.020924940018638
130 => 0.02111008824031
131 => 0.020114499589018
201 => 0.021694524347149
202 => 0.021967350975575
203 => 0.021916070876936
204 => 0.022219306192132
205 => 0.022130086670064
206 => 0.022000821580701
207 => 0.022481514055288
208 => 0.021930438923057
209 => 0.021148257151284
210 => 0.020719136761488
211 => 0.021284237106926
212 => 0.0216293241686
213 => 0.021857404764707
214 => 0.02192642181528
215 => 0.02019178430194
216 => 0.019256910889657
217 => 0.019856154028585
218 => 0.020587272015629
219 => 0.020110438191685
220 => 0.020129129174818
221 => 0.019449289451597
222 => 0.020647422746031
223 => 0.020472864802919
224 => 0.021378471720571
225 => 0.021162341361723
226 => 0.021900828647611
227 => 0.021706360195832
228 => 0.022513587866579
301 => 0.022835612839256
302 => 0.023376342887566
303 => 0.023774106112271
304 => 0.024007680285815
305 => 0.02399365736855
306 => 0.024919194610324
307 => 0.024373437634658
308 => 0.023687838248179
309 => 0.023675437918316
310 => 0.024030519555592
311 => 0.024774673255433
312 => 0.024967621482806
313 => 0.025075453219426
314 => 0.024910305161142
315 => 0.024317925078812
316 => 0.024062138362697
317 => 0.024280076055681
318 => 0.024013556984761
319 => 0.024473643673214
320 => 0.025105440965673
321 => 0.024974977323178
322 => 0.025411097719838
323 => 0.025862436449178
324 => 0.026507871103025
325 => 0.026676611621917
326 => 0.026955533283018
327 => 0.027242635293283
328 => 0.027334844721364
329 => 0.027510901130476
330 => 0.027509973226296
331 => 0.028040531065118
401 => 0.028625752791347
402 => 0.028846660445084
403 => 0.029354625413934
404 => 0.028484753205994
405 => 0.029144561268088
406 => 0.029739724656164
407 => 0.029030146329194
408 => 0.030008134742377
409 => 0.030046107816291
410 => 0.03061945614869
411 => 0.030038257773554
412 => 0.029693144033649
413 => 0.030689474469512
414 => 0.031171567383311
415 => 0.031026357074272
416 => 0.029921299452571
417 => 0.02927810851859
418 => 0.027594753782097
419 => 0.029588760182986
420 => 0.030559982534896
421 => 0.02991878422131
422 => 0.030242167354404
423 => 0.032006440871232
424 => 0.03267816199819
425 => 0.032538448699468
426 => 0.032562057947075
427 => 0.03292450647458
428 => 0.034531802849589
429 => 0.033568673604846
430 => 0.034304949824688
501 => 0.03469546807685
502 => 0.035058203193278
503 => 0.034167440390943
504 => 0.033008571073009
505 => 0.032641508513995
506 => 0.029855029685661
507 => 0.029709981361582
508 => 0.029628561341863
509 => 0.029115219634621
510 => 0.028711873668857
511 => 0.028391117981606
512 => 0.027549359272502
513 => 0.027833428126739
514 => 0.026491840433124
515 => 0.02735014069655
516 => 0.025208934343773
517 => 0.026992194620656
518 => 0.026021647126844
519 => 0.026673343666148
520 => 0.026671069958316
521 => 0.025471090008882
522 => 0.024778966616991
523 => 0.025220014580149
524 => 0.025692853007086
525 => 0.025769569451037
526 => 0.026382616813906
527 => 0.026553705155473
528 => 0.026035299493172
529 => 0.025164562601398
530 => 0.025366814921963
531 => 0.02477486798017
601 => 0.023737503733589
602 => 0.024482556846126
603 => 0.024736950736419
604 => 0.024849305570872
605 => 0.023829176976448
606 => 0.023508630424011
607 => 0.023337974129139
608 => 0.025032876810084
609 => 0.025125727404972
610 => 0.024650690633771
611 => 0.026797901884436
612 => 0.026311921848008
613 => 0.026854880616697
614 => 0.02534846264378
615 => 0.025406009839006
616 => 0.024692847429208
617 => 0.025092170725166
618 => 0.024809941890374
619 => 0.025059909349042
620 => 0.025209738813114
621 => 0.025922784199978
622 => 0.027000336453594
623 => 0.025816278997148
624 => 0.02530036820736
625 => 0.025620436359752
626 => 0.026472820027661
627 => 0.027764224917259
628 => 0.026999687230671
629 => 0.027338976073287
630 => 0.027413095591489
701 => 0.026849353806123
702 => 0.027785010880999
703 => 0.028286437108689
704 => 0.028800796662762
705 => 0.029247400651535
706 => 0.028595350145856
707 => 0.029293137654701
708 => 0.028730844098649
709 => 0.02822640865003
710 => 0.028227173670384
711 => 0.027910733944839
712 => 0.027297592102626
713 => 0.027184519339638
714 => 0.027772738132216
715 => 0.028244433899337
716 => 0.028283285021987
717 => 0.028544440035269
718 => 0.028698988882019
719 => 0.030213777679133
720 => 0.030823038264322
721 => 0.031568030575179
722 => 0.031858247065724
723 => 0.032731694653894
724 => 0.032026314788502
725 => 0.031873701417577
726 => 0.029755003271206
727 => 0.030101939973983
728 => 0.030657419109541
729 => 0.029764162917556
730 => 0.030330728372137
731 => 0.030442580394368
801 => 0.029733810413961
802 => 0.03011239508464
803 => 0.029106986441849
804 => 0.027022251614542
805 => 0.027787331786814
806 => 0.028350688316808
807 => 0.027546709087148
808 => 0.028987810738022
809 => 0.028145948903957
810 => 0.027879119119054
811 => 0.026838120996458
812 => 0.027329432038631
813 => 0.027993937258066
814 => 0.027583350289478
815 => 0.028435379899241
816 => 0.029642081054663
817 => 0.030502048158312
818 => 0.030568065754276
819 => 0.030015164519951
820 => 0.030901192276526
821 => 0.030907646021434
822 => 0.029908203092488
823 => 0.02929604986343
824 => 0.029156967361807
825 => 0.029504422719592
826 => 0.029926297667742
827 => 0.030591476877798
828 => 0.030993430743227
829 => 0.032041513244407
830 => 0.032325094318346
831 => 0.032636663942196
901 => 0.033053017044172
902 => 0.03355295569384
903 => 0.032459118389891
904 => 0.032502578585145
905 => 0.031484012432916
906 => 0.030395528422098
907 => 0.031221552104861
908 => 0.032301468188749
909 => 0.032053734245904
910 => 0.032025859116589
911 => 0.032072737352181
912 => 0.03188595404951
913 => 0.031041140094041
914 => 0.03061687981442
915 => 0.031164283815472
916 => 0.031455204679882
917 => 0.031906397569617
918 => 0.031850778522431
919 => 0.033013002951808
920 => 0.033464608221222
921 => 0.033349068268027
922 => 0.033370330400039
923 => 0.034187940168833
924 => 0.035097290386006
925 => 0.035949016863718
926 => 0.03681542961935
927 => 0.03577093522577
928 => 0.035240605388168
929 => 0.035787770409758
930 => 0.035497436947397
1001 => 0.037165779140621
1002 => 0.037281291534329
1003 => 0.038949513087424
1004 => 0.040532853989437
1005 => 0.039538385937381
1006 => 0.040476124518645
1007 => 0.041490365249231
1008 => 0.043447000173158
1009 => 0.042788074366026
1010 => 0.042283347524447
1011 => 0.041806383097976
1012 => 0.04279887035349
1013 => 0.044075689352338
1014 => 0.04435070393547
1015 => 0.044796332623799
1016 => 0.044327808546904
1017 => 0.04489209419129
1018 => 0.046884270475649
1019 => 0.046345966858188
1020 => 0.04558148918477
1021 => 0.047154121030627
1022 => 0.047723250382191
1023 => 0.051717698226823
1024 => 0.056760853633082
1025 => 0.054672954179747
1026 => 0.053376927612968
1027 => 0.053681524598322
1028 => 0.055523114231104
1029 => 0.05611457437202
1030 => 0.054506781820473
1031 => 0.055074681330433
1101 => 0.058203863464961
1102 => 0.059882569283953
1103 => 0.057602661301491
1104 => 0.051312485600342
1105 => 0.04551265633461
1106 => 0.047051032225598
1107 => 0.046876628140922
1108 => 0.050238543971051
1109 => 0.046333128494941
1110 => 0.046398885675562
1111 => 0.049830322364728
1112 => 0.048914873885776
1113 => 0.047431964591658
1114 => 0.045523483213543
1115 => 0.041995478872938
1116 => 0.038870627042784
1117 => 0.044999181092113
1118 => 0.044734906697453
1119 => 0.044352198210715
1120 => 0.045203874534567
1121 => 0.049339373010649
1122 => 0.049244036385473
1123 => 0.048637553417277
1124 => 0.049097565403358
1125 => 0.047351322266372
1126 => 0.047801368883991
1127 => 0.045511737612022
1128 => 0.0465467465704
1129 => 0.047428782934321
1130 => 0.047605864793149
1201 => 0.048004839263114
1202 => 0.044595646100189
1203 => 0.04612627374169
1204 => 0.047025374080656
1205 => 0.042963206039655
1206 => 0.046945078079352
1207 => 0.044536299631993
1208 => 0.043718724048321
1209 => 0.044819481864342
1210 => 0.044390515472917
1211 => 0.044021715359321
1212 => 0.043815918559144
1213 => 0.044624193613023
1214 => 0.044586486615662
1215 => 0.043263991748088
1216 => 0.041538851105124
1217 => 0.042117864930714
1218 => 0.041907503779594
1219 => 0.041145127830805
1220 => 0.041658877170666
1221 => 0.039396585080511
1222 => 0.03550442912311
1223 => 0.03807570656853
1224 => 0.037976715183893
1225 => 0.037926799238858
1226 => 0.039859043174202
1227 => 0.039673302504271
1228 => 0.039336181369568
1229 => 0.041138936336793
1230 => 0.04048090652328
1231 => 0.042508799357204
]
'min_raw' => 0.018203895658341
'max_raw' => 0.059882569283953
'avg_raw' => 0.039043232471147
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.0182038'
'max' => '$0.059882'
'avg' => '$0.039043'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0099170130197373
'max_diff' => 0.039585404808521
'year' => 2029
]
4 => [
'items' => [
101 => 0.043844500733512
102 => 0.043505723659067
103 => 0.04476195725949
104 => 0.042131204239812
105 => 0.043005034865458
106 => 0.043185130146326
107 => 0.041116690620332
108 => 0.039703691974965
109 => 0.039609461074683
110 => 0.037159516146825
111 => 0.038468256952022
112 => 0.039619894701222
113 => 0.039068349590055
114 => 0.038893746884801
115 => 0.039785754239237
116 => 0.039855070850203
117 => 0.038274644774332
118 => 0.038603265401091
119 => 0.039973668043306
120 => 0.038568734770598
121 => 0.035839178916273
122 => 0.035162211325338
123 => 0.035071891369719
124 => 0.033235901572127
125 => 0.035207449536811
126 => 0.034346816016026
127 => 0.037065546996213
128 => 0.035512622441177
129 => 0.0354456789674
130 => 0.035344484088314
131 => 0.033764171825743
201 => 0.034110159777163
202 => 0.035260276423134
203 => 0.035670650999407
204 => 0.035627845569002
205 => 0.035254640224125
206 => 0.035425491719889
207 => 0.034875119523424
208 => 0.034680771645846
209 => 0.034067356284614
210 => 0.033165805163921
211 => 0.033291171376788
212 => 0.031504962703012
213 => 0.030531741416269
214 => 0.030262366590949
215 => 0.029902147316583
216 => 0.030303054316496
217 => 0.031499902598264
218 => 0.030056249644924
219 => 0.027581207916903
220 => 0.027729962142023
221 => 0.028064168720342
222 => 0.027441376972643
223 => 0.026851956850395
224 => 0.027364409825523
225 => 0.026315702017462
226 => 0.028190900048685
227 => 0.028140181197122
228 => 0.028839139061694
301 => 0.02927621175847
302 => 0.028268900696367
303 => 0.028015564688307
304 => 0.028159876391978
305 => 0.025774725388595
306 => 0.028644221339052
307 => 0.02866903685919
308 => 0.02845655130983
309 => 0.0299844693177
310 => 0.033208852883884
311 => 0.031995710085757
312 => 0.031525944526887
313 => 0.030632919856079
314 => 0.031822822207373
315 => 0.031731456272162
316 => 0.031318264863635
317 => 0.031068365410523
318 => 0.031528812815218
319 => 0.031011310881535
320 => 0.030918353314244
321 => 0.030355131595288
322 => 0.030154087066576
323 => 0.030005241701331
324 => 0.029841377579439
325 => 0.030202820999937
326 => 0.029383742657248
327 => 0.028396014471206
328 => 0.028313895559904
329 => 0.028540633093978
330 => 0.028440318613775
331 => 0.028313415292767
401 => 0.028071122292899
402 => 0.02799923913561
403 => 0.028232824524051
404 => 0.027969120239375
405 => 0.028358230276131
406 => 0.028252413876573
407 => 0.027661332070421
408 => 0.026924625293442
409 => 0.026918067057832
410 => 0.026759344791174
411 => 0.026557188120531
412 => 0.026500952759476
413 => 0.027321252465305
414 => 0.029019248306867
415 => 0.028685891093572
416 => 0.028926775843999
417 => 0.030111690403701
418 => 0.030488339110607
419 => 0.030221002779859
420 => 0.029855056321744
421 => 0.029871156108692
422 => 0.031121705935595
423 => 0.031199701194343
424 => 0.031396770050976
425 => 0.031650059223402
426 => 0.030264139021176
427 => 0.029805879391801
428 => 0.029588730556126
429 => 0.028919996189424
430 => 0.029641168870961
501 => 0.029220972433123
502 => 0.029277671288541
503 => 0.029240746084569
504 => 0.029260909742809
505 => 0.028190375892619
506 => 0.028580422162025
507 => 0.027931894588419
508 => 0.027063588967996
509 => 0.027060678103089
510 => 0.02727319467356
511 => 0.02714678150167
512 => 0.026806606906493
513 => 0.026854927102159
514 => 0.026431591343225
515 => 0.026906327728035
516 => 0.026919941468863
517 => 0.026737142101645
518 => 0.027468539003442
519 => 0.027768192910871
520 => 0.027647870451426
521 => 0.027759750766361
522 => 0.028699743590802
523 => 0.028853003435948
524 => 0.028921071335385
525 => 0.028829869367408
526 => 0.027776932109622
527 => 0.02782363435444
528 => 0.027480964269394
529 => 0.027191444157214
530 => 0.027203023443368
531 => 0.027351874416009
601 => 0.028001915343525
602 => 0.029369888153476
603 => 0.029421801721639
604 => 0.029484722480677
605 => 0.029228792132227
606 => 0.029151601090211
607 => 0.029253435999329
608 => 0.029767174662154
609 => 0.031088649981625
610 => 0.030621552345354
611 => 0.030241794696259
612 => 0.030574944536443
613 => 0.030523658729861
614 => 0.030090754910102
615 => 0.030078604741712
616 => 0.02924772390387
617 => 0.028940566176361
618 => 0.028683882188897
619 => 0.028403589975492
620 => 0.028237423355905
621 => 0.028492730804968
622 => 0.028551122639278
623 => 0.027992888439891
624 => 0.027916803181261
625 => 0.028372669278802
626 => 0.028172059605675
627 => 0.028378391629367
628 => 0.028426262428747
629 => 0.028418554127489
630 => 0.02820909458887
701 => 0.028342597852612
702 => 0.028026822834623
703 => 0.027683464930434
704 => 0.027464423979515
705 => 0.027273281698272
706 => 0.02737933854516
707 => 0.027001265251219
708 => 0.026880311995375
709 => 0.028297369950775
710 => 0.029344165898369
711 => 0.029328945070714
712 => 0.029236292196845
713 => 0.029098628820225
714 => 0.029757103728702
715 => 0.02952770423721
716 => 0.029694611534239
717 => 0.02973709644641
718 => 0.029865685479915
719 => 0.029911645006792
720 => 0.029772723395626
721 => 0.029306485500704
722 => 0.028144664995129
723 => 0.027603834413509
724 => 0.027425351313329
725 => 0.027431838835033
726 => 0.027252884024868
727 => 0.027305594236653
728 => 0.027234553564298
729 => 0.027100019717441
730 => 0.027371031459223
731 => 0.027402263037815
801 => 0.027339005658934
802 => 0.027353905061611
803 => 0.026830160982054
804 => 0.02686998010691
805 => 0.02664826215974
806 => 0.026606692717496
807 => 0.02604620905424
808 => 0.025053231001377
809 => 0.025603437233375
810 => 0.024938865475825
811 => 0.024687182081336
812 => 0.02587861212605
813 => 0.025759025594687
814 => 0.025554345436007
815 => 0.025251580822238
816 => 0.025139282481886
817 => 0.024456993315241
818 => 0.024416680031405
819 => 0.024754840965751
820 => 0.024598791329957
821 => 0.024379638540685
822 => 0.023585889353101
823 => 0.022693452464933
824 => 0.022720389524929
825 => 0.023004257094676
826 => 0.023829640338475
827 => 0.023507148825848
828 => 0.023273177533273
829 => 0.023229361743325
830 => 0.023777808089094
831 => 0.02455397457142
901 => 0.02491813451918
902 => 0.024557263070652
903 => 0.02414271338128
904 => 0.024167945100034
905 => 0.024335800420893
906 => 0.024353439641769
907 => 0.024083610410385
908 => 0.024159565758486
909 => 0.024044182639218
910 => 0.023336076649252
911 => 0.023323269257322
912 => 0.023149488627633
913 => 0.023144226619231
914 => 0.02284858241652
915 => 0.022807219748869
916 => 0.022220200240066
917 => 0.022606578258419
918 => 0.022347416169464
919 => 0.021956797771252
920 => 0.021889455012168
921 => 0.021887430607511
922 => 0.022288508361798
923 => 0.022601891431341
924 => 0.022351924404958
925 => 0.022295011758458
926 => 0.022902689927454
927 => 0.02282535734134
928 => 0.022758387820507
929 => 0.024484477375996
930 => 0.023118142804379
1001 => 0.022522342943503
1002 => 0.021784927476344
1003 => 0.022025033670822
1004 => 0.022075627573893
1005 => 0.020302276304504
1006 => 0.01958282791537
1007 => 0.01933594034006
1008 => 0.019193853049991
1009 => 0.019258604012295
1010 => 0.018611016079195
1011 => 0.019046205880354
1012 => 0.018485449469535
1013 => 0.018391436832401
1014 => 0.019394138759336
1015 => 0.019533658874769
1016 => 0.018938422716829
1017 => 0.019320660690207
1018 => 0.019182055887555
1019 => 0.01849506202873
1020 => 0.018468823916507
1021 => 0.018124114547151
1022 => 0.017584711132994
1023 => 0.017338189298599
1024 => 0.017209798586845
1025 => 0.0172627750968
1026 => 0.017235988552258
1027 => 0.017061188230011
1028 => 0.017246007902116
1029 => 0.01677387001265
1030 => 0.016585860900791
1031 => 0.016500941546742
1101 => 0.016081891994598
1102 => 0.016748786184241
1103 => 0.016880172740913
1104 => 0.017011818169688
1105 => 0.018157701749025
1106 => 0.018100456643635
1107 => 0.018617924516866
1108 => 0.018597816666875
1109 => 0.018450226447006
1110 => 0.01782756758679
1111 => 0.018075748310645
1112 => 0.017311886618466
1113 => 0.017884223735792
1114 => 0.017623032976814
1115 => 0.017795914877448
1116 => 0.017485057631976
1117 => 0.017657098866601
1118 => 0.016911329367619
1119 => 0.01621494030273
1120 => 0.016495187591305
1121 => 0.016799848444152
1122 => 0.017460430799265
1123 => 0.017066993398246
1124 => 0.017208488365168
1125 => 0.016734503911951
1126 => 0.015756538598
1127 => 0.01576207377547
1128 => 0.015611635118051
1129 => 0.015481634153638
1130 => 0.017112184416571
1201 => 0.01690939971619
1202 => 0.016586288835938
1203 => 0.017018785589071
1204 => 0.017133144595246
1205 => 0.017136400235382
1206 => 0.01745193870211
1207 => 0.017620341638367
1208 => 0.017650023385782
1209 => 0.018146529980839
1210 => 0.018312952442422
1211 => 0.018998423008693
1212 => 0.017606053825791
1213 => 0.017577378898743
1214 => 0.017024871705328
1215 => 0.01667446290847
1216 => 0.017048864495436
1217 => 0.017380533190575
1218 => 0.017035177576209
1219 => 0.01708027372859
1220 => 0.016616662032893
1221 => 0.016782381399147
1222 => 0.016925121242174
1223 => 0.016846308690715
1224 => 0.01672832248661
1225 => 0.017353340139873
1226 => 0.017318074194412
1227 => 0.017900105002225
1228 => 0.018353839638338
1229 => 0.01916701322102
1230 => 0.018318424195794
1231 => 0.018287498238879
]
'min_raw' => 0.015481634153638
'max_raw' => 0.04476195725949
'avg_raw' => 0.030121795706564
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.015481'
'max' => '$0.044761'
'avg' => '$0.030121'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0027222615047031
'max_diff' => -0.015120612024463
'year' => 2030
]
5 => [
'items' => [
101 => 0.018589804428404
102 => 0.018312906160919
103 => 0.018487896307766
104 => 0.019138819603026
105 => 0.019152572586543
106 => 0.018922192392909
107 => 0.01890817373719
108 => 0.01895242077346
109 => 0.019211577046928
110 => 0.01912101988191
111 => 0.019225814925896
112 => 0.019356862733078
113 => 0.019898932026702
114 => 0.020029623098228
115 => 0.019712111549972
116 => 0.019740779287753
117 => 0.019622021252818
118 => 0.019507302479105
119 => 0.019765173529081
120 => 0.020236437941379
121 => 0.020233506229929
122 => 0.020342830413511
123 => 0.020410938474192
124 => 0.020118568819601
125 => 0.019928246925192
126 => 0.020001228450005
127 => 0.020117927497512
128 => 0.019963384521729
129 => 0.019009473683926
130 => 0.019298829296055
131 => 0.01925066637343
201 => 0.019182076514801
202 => 0.019473025820318
203 => 0.019444963050025
204 => 0.018604374128933
205 => 0.018658185904377
206 => 0.018607646601227
207 => 0.018770949429072
208 => 0.018304087272302
209 => 0.018447690927359
210 => 0.018537757793611
211 => 0.01859080786976
212 => 0.018782461121586
213 => 0.018759972824537
214 => 0.018781063217466
215 => 0.019065234395341
216 => 0.020502474697263
217 => 0.020580700515804
218 => 0.020195487975557
219 => 0.020349372787404
220 => 0.020053947599566
221 => 0.020252268507338
222 => 0.020387954635632
223 => 0.019774815112817
224 => 0.019738508969518
225 => 0.019441864456841
226 => 0.01960126441515
227 => 0.019347647620218
228 => 0.019409876310555
301 => 0.019235879467372
302 => 0.019549039142676
303 => 0.019899200319759
304 => 0.019987664861374
305 => 0.019754952738764
306 => 0.019586453825519
307 => 0.019290625240852
308 => 0.019782594770123
309 => 0.019926461652981
310 => 0.019781839098633
311 => 0.019748326892725
312 => 0.019684821323086
313 => 0.019761799899535
314 => 0.01992567812304
315 => 0.019848396179191
316 => 0.019899442264636
317 => 0.019704907225413
318 => 0.020118665606122
319 => 0.020775813491065
320 => 0.02077792632897
321 => 0.020700643968542
322 => 0.020669021691726
323 => 0.020748318083411
324 => 0.020791333122992
325 => 0.02104776311323
326 => 0.021322922709376
327 => 0.022606972483055
328 => 0.022246416444814
329 => 0.023385701792485
330 => 0.024286728584805
331 => 0.024556907122696
401 => 0.024308355580719
402 => 0.023458074182108
403 => 0.02341635532021
404 => 0.024687034709283
405 => 0.024328009581067
406 => 0.024285304684474
407 => 0.023830996735788
408 => 0.024099549000595
409 => 0.024040812680858
410 => 0.023948094526673
411 => 0.024460473540413
412 => 0.025419601313744
413 => 0.025270112255627
414 => 0.025158525608341
415 => 0.024669585402316
416 => 0.024964036615091
417 => 0.024859188178064
418 => 0.025309683601997
419 => 0.025042820092555
420 => 0.024325289612609
421 => 0.024439558706552
422 => 0.02442228716288
423 => 0.024777734307774
424 => 0.024671037897617
425 => 0.024401452976381
426 => 0.025416323119285
427 => 0.025350423097209
428 => 0.02544385426167
429 => 0.025484985549721
430 => 0.026102719121689
501 => 0.026355784800855
502 => 0.026413235140564
503 => 0.026653627962969
504 => 0.026407253948149
505 => 0.027392925669124
506 => 0.028048339848032
507 => 0.02880963714414
508 => 0.029922097111175
509 => 0.03034039234961
510 => 0.030264831058803
511 => 0.031108285509479
512 => 0.032623954408405
513 => 0.030571191077908
514 => 0.03273275584942
515 => 0.032048429399224
516 => 0.030425903696318
517 => 0.030321432169373
518 => 0.031420225413291
519 => 0.033857243073372
520 => 0.033246797789948
521 => 0.03385824154317
522 => 0.033144959926289
523 => 0.033109539482001
524 => 0.033823599047113
525 => 0.035492038142356
526 => 0.03469942526871
527 => 0.033563020357689
528 => 0.034402124059568
529 => 0.033675214777619
530 => 0.032037284716289
531 => 0.033246330993944
601 => 0.032437876179732
602 => 0.032673826274341
603 => 0.034373078045237
604 => 0.0341686195765
605 => 0.03443320776739
606 => 0.033966216535948
607 => 0.033529973088023
608 => 0.032715692296608
609 => 0.032474623897828
610 => 0.032541246530518
611 => 0.03247459088296
612 => 0.03201900826379
613 => 0.031920625240556
614 => 0.031756649224908
615 => 0.031807472248761
616 => 0.031499149366467
617 => 0.032081018348114
618 => 0.032189018358519
619 => 0.032612454079515
620 => 0.032656416580763
621 => 0.033835679036507
622 => 0.033186161092584
623 => 0.033621913806049
624 => 0.033582935981893
625 => 0.030461068748229
626 => 0.03089123450856
627 => 0.031560437438183
628 => 0.031258962425471
629 => 0.030832747291784
630 => 0.030488555719123
701 => 0.029967070291146
702 => 0.030701051016783
703 => 0.031666157620848
704 => 0.032680893276911
705 => 0.033900031679556
706 => 0.033627934180421
707 => 0.032658102332488
708 => 0.032701608280724
709 => 0.032970544933757
710 => 0.032622247532608
711 => 0.032519527829436
712 => 0.03295643282391
713 => 0.032959441548488
714 => 0.032558683295318
715 => 0.032113313834907
716 => 0.032111447720606
717 => 0.032032198526884
718 => 0.033159058181799
719 => 0.03377871705364
720 => 0.033849759944667
721 => 0.033773935301034
722 => 0.033803117196996
723 => 0.033442551352723
724 => 0.034266697950251
725 => 0.035023016367795
726 => 0.034820306875507
727 => 0.034516416529715
728 => 0.03427435323195
729 => 0.034763284455436
730 => 0.034741513117703
731 => 0.035016410586215
801 => 0.035003939649159
802 => 0.034911501969915
803 => 0.034820310176747
804 => 0.035181875328803
805 => 0.03507775037157
806 => 0.034973463679518
807 => 0.034764300753114
808 => 0.03479272946864
809 => 0.034488891593801
810 => 0.034348322290226
811 => 0.032234497237366
812 => 0.031669614112016
813 => 0.031847337842507
814 => 0.03190584910918
815 => 0.03166001124911
816 => 0.032012479589885
817 => 0.031957547772332
818 => 0.032171255340394
819 => 0.032037740129973
820 => 0.032043219640781
821 => 0.032435859406185
822 => 0.032549844400491
823 => 0.032491870712416
824 => 0.032532473496322
825 => 0.033468147514084
826 => 0.033335124589929
827 => 0.033264458812717
828 => 0.033284033715943
829 => 0.033523118488558
830 => 0.033590049171346
831 => 0.033306459165239
901 => 0.033440201851533
902 => 0.0340096612353
903 => 0.034208939791009
904 => 0.034844941281698
905 => 0.034574756544428
906 => 0.035070692323009
907 => 0.036595029829398
908 => 0.037812776105634
909 => 0.036692886304514
910 => 0.038929122261769
911 => 0.040670352723488
912 => 0.040603521398196
913 => 0.040299897591809
914 => 0.038317553004149
915 => 0.036493369959492
916 => 0.038019376535251
917 => 0.038023266639839
918 => 0.037892181321633
919 => 0.037078021668417
920 => 0.037863850330494
921 => 0.037926226555979
922 => 0.037891312456885
923 => 0.037267098159663
924 => 0.036314038301891
925 => 0.036500263916797
926 => 0.036805305272912
927 => 0.036227798347493
928 => 0.036043249892443
929 => 0.036386360582161
930 => 0.037491934714384
1001 => 0.037282932328842
1002 => 0.03727747443191
1003 => 0.038171675268063
1004 => 0.037531620449996
1005 => 0.036502612818178
1006 => 0.0362427748202
1007 => 0.035320524975229
1008 => 0.035957526228092
1009 => 0.035980450769151
1010 => 0.035631571692953
1011 => 0.036530922432429
1012 => 0.036522634757037
1013 => 0.037376434433477
1014 => 0.039008578742315
1015 => 0.038525873357248
1016 => 0.037964539512611
1017 => 0.038025572065623
1018 => 0.038694948530979
1019 => 0.038290228239646
1020 => 0.03843576847822
1021 => 0.038694728238397
1022 => 0.038850965091321
1023 => 0.038003091986836
1024 => 0.037805412207721
1025 => 0.037401028755828
1026 => 0.037295532661403
1027 => 0.037624894545233
1028 => 0.037538119325371
1029 => 0.035978524050243
1030 => 0.035815537666486
1031 => 0.035820536226185
1101 => 0.035410699214648
1102 => 0.034785599399901
1103 => 0.036428324390286
1104 => 0.036296390583637
1105 => 0.036150745871961
1106 => 0.036168586518104
1107 => 0.036881637759315
1108 => 0.036468032029462
1109 => 0.037567670650922
1110 => 0.037341618008513
1111 => 0.0371097679688
1112 => 0.037077719230987
1113 => 0.036988476746213
1114 => 0.036682431060259
1115 => 0.036312862503974
1116 => 0.036068841331635
1117 => 0.033271599536695
1118 => 0.033790751343029
1119 => 0.03438798817404
1120 => 0.034594151934828
1121 => 0.034241494555901
1122 => 0.036696356123051
1123 => 0.037144882987004
1124 => 0.035786265859407
1125 => 0.035532124066806
1126 => 0.036713017616664
1127 => 0.036000794447734
1128 => 0.036321508497093
1129 => 0.035628300143585
1130 => 0.037036845999877
1201 => 0.037026115240412
1202 => 0.036478159088863
1203 => 0.03694128787591
1204 => 0.036860807852121
1205 => 0.036242166706579
1206 => 0.037056458027641
1207 => 0.037056861905977
1208 => 0.036529466023705
1209 => 0.035913583095016
1210 => 0.035803477773872
1211 => 0.035720528204959
1212 => 0.036301107988041
1213 => 0.036821654006128
1214 => 0.037790261091484
1215 => 0.038033791926279
1216 => 0.038984308987251
1217 => 0.038418322357278
1218 => 0.038669216899592
1219 => 0.038941598416472
1220 => 0.039072188132164
1221 => 0.038859399198275
1222 => 0.040335943442396
1223 => 0.040460609016746
1224 => 0.040502408305473
1225 => 0.040004525894038
1226 => 0.040446762006221
1227 => 0.040239854374651
1228 => 0.040778170551401
1229 => 0.040862585401481
1230 => 0.040791089026609
1231 => 0.040817883632422
]
'min_raw' => 0.018304087272302
'max_raw' => 0.040862585401481
'avg_raw' => 0.029583336336891
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.018304'
'max' => '$0.040862'
'avg' => '$0.029583'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0028224531186639
'max_diff' => -0.0038993718580085
'year' => 2031
]
6 => [
'items' => [
101 => 0.039557913600319
102 => 0.039492577507283
103 => 0.0386017152427
104 => 0.038964748200439
105 => 0.038286075486569
106 => 0.03850128959524
107 => 0.038596153923708
108 => 0.03854660218202
109 => 0.038985273539179
110 => 0.038612313270956
111 => 0.03762800980277
112 => 0.036643438161762
113 => 0.036631077666824
114 => 0.03637185733288
115 => 0.03618448851001
116 => 0.036220582392561
117 => 0.036347781942469
118 => 0.036177095440933
119 => 0.036213520060061
120 => 0.036818411433552
121 => 0.036939718084618
122 => 0.036527470686728
123 => 0.034872237897187
124 => 0.034466039618797
125 => 0.034758006886042
126 => 0.034618465337399
127 => 0.027939803387722
128 => 0.029508855946805
129 => 0.028576578196188
130 => 0.029006214675709
131 => 0.028054600504482
201 => 0.028508760665364
202 => 0.028424893866923
203 => 0.030947883950289
204 => 0.030908490930396
205 => 0.030927346284386
206 => 0.030027331111068
207 => 0.031461079720239
208 => 0.032167395841049
209 => 0.032036675525082
210 => 0.032069575012352
211 => 0.031504252819833
212 => 0.030932819838943
213 => 0.030299012720231
214 => 0.031476548005871
215 => 0.031345626183305
216 => 0.031645913740086
217 => 0.032409629544784
218 => 0.032522089598099
219 => 0.032673237050213
220 => 0.032619061448039
221 => 0.033909744083801
222 => 0.033753433900412
223 => 0.03413009646887
224 => 0.033355272988093
225 => 0.032478486672674
226 => 0.032645135086931
227 => 0.032629085504536
228 => 0.032424755899797
229 => 0.032240296268831
301 => 0.031933222954453
302 => 0.032904848359445
303 => 0.032865402142399
304 => 0.033503990545168
305 => 0.033391113842061
306 => 0.032637295593104
307 => 0.032664218359337
308 => 0.032845286900895
309 => 0.033471967190631
310 => 0.033658008568272
311 => 0.033571826789682
312 => 0.033775812667154
313 => 0.033937034787534
314 => 0.033796059683254
315 => 0.035791969869669
316 => 0.034963128805897
317 => 0.03536710017334
318 => 0.035463444964138
319 => 0.035216659808422
320 => 0.035270178671983
321 => 0.035351245167261
322 => 0.035843465052137
323 => 0.037135192455025
324 => 0.037707289728678
325 => 0.039428472603246
326 => 0.03765978501408
327 => 0.037554838412096
328 => 0.037864875422549
329 => 0.03887539197563
330 => 0.03969432072891
331 => 0.039966006641506
401 => 0.040001914419901
402 => 0.040511615253269
403 => 0.040803766265598
404 => 0.040449724165635
405 => 0.04014971055567
406 => 0.039075099043835
407 => 0.0391994882524
408 => 0.040056406548569
409 => 0.041266854114144
410 => 0.042305544051012
411 => 0.04194183103712
412 => 0.044716704591743
413 => 0.044991821970342
414 => 0.04495380964423
415 => 0.045580567975633
416 => 0.044336580324912
417 => 0.043804751503102
418 => 0.040214576903444
419 => 0.041223269524629
420 => 0.042689463487962
421 => 0.04249540721897
422 => 0.04143061797132
423 => 0.042304736312885
424 => 0.042015725452956
425 => 0.041787770596658
426 => 0.042832075984582
427 => 0.041683819312859
428 => 0.042678008749291
429 => 0.041402950513494
430 => 0.04194349244753
501 => 0.0416366547027
502 => 0.041835216328225
503 => 0.040674429122687
504 => 0.041300761722278
505 => 0.040648371627353
506 => 0.040648062309504
507 => 0.040633660762
508 => 0.041401194815539
509 => 0.04142622407347
510 => 0.040859015248225
511 => 0.04077727159504
512 => 0.041079520724448
513 => 0.040725666153084
514 => 0.040891232479891
515 => 0.040730680988458
516 => 0.040694537466004
517 => 0.040406539729782
518 => 0.040282462386355
519 => 0.040331116309792
520 => 0.040165035386285
521 => 0.040064965622462
522 => 0.040613754367257
523 => 0.040320558678988
524 => 0.040568817923011
525 => 0.040285895181632
526 => 0.03930516169644
527 => 0.038741131498038
528 => 0.036888616858554
529 => 0.037413987712274
530 => 0.037762309131826
531 => 0.037647188904742
601 => 0.037894511698133
602 => 0.037909695308975
603 => 0.037829288147686
604 => 0.037736186955709
605 => 0.037690870444273
606 => 0.038028622593393
607 => 0.038224699084171
608 => 0.037797267846218
609 => 0.037697126687564
610 => 0.03812928326826
611 => 0.038392898532836
612 => 0.040339285533843
613 => 0.040195090898062
614 => 0.040556991137106
615 => 0.040516246724001
616 => 0.040895575829749
617 => 0.041515618601205
618 => 0.040254898280149
619 => 0.040473715735456
620 => 0.040420066748648
621 => 0.0410057923191
622 => 0.041007620890396
623 => 0.040656449151748
624 => 0.04084682504838
625 => 0.04074056244557
626 => 0.0409325933311
627 => 0.040193165090789
628 => 0.041093708871142
629 => 0.041604259164842
630 => 0.041611348156166
701 => 0.041853344943402
702 => 0.042099227694743
703 => 0.042571178224067
704 => 0.042086065250632
705 => 0.041213394236217
706 => 0.041276398264748
707 => 0.040764751568294
708 => 0.040773352441698
709 => 0.040727440305405
710 => 0.040865226082524
711 => 0.040223401320501
712 => 0.040374036309286
713 => 0.040163146442869
714 => 0.040473257302072
715 => 0.040139629280731
716 => 0.040420040877482
717 => 0.040541057226848
718 => 0.040987610161304
719 => 0.040073673049231
720 => 0.038210093409611
721 => 0.038601840443578
722 => 0.038022415809275
723 => 0.038076043765205
724 => 0.038184380771009
725 => 0.037833225089535
726 => 0.037900214527373
727 => 0.037897821193256
728 => 0.037877196732819
729 => 0.037785847577792
730 => 0.037653373230123
731 => 0.038181110257783
801 => 0.038270783062413
802 => 0.038470114598996
803 => 0.039063190043994
804 => 0.039003927821357
805 => 0.039100586965244
806 => 0.038889580596856
807 => 0.038085831745453
808 => 0.038129479175037
809 => 0.037585195028728
810 => 0.038456196029657
811 => 0.038249931495986
812 => 0.038116951409297
813 => 0.038080666560593
814 => 0.038675212124905
815 => 0.038853109476108
816 => 0.038742255785085
817 => 0.03851489163068
818 => 0.038951498021316
819 => 0.039068315472506
820 => 0.039094466591765
821 => 0.039868049405
822 => 0.039137701277592
823 => 0.039313503330895
824 => 0.040685060765858
825 => 0.039441247434335
826 => 0.04010012309639
827 => 0.040067874561356
828 => 0.040404933054926
829 => 0.040040225926883
830 => 0.040044746908833
831 => 0.040344032016803
901 => 0.039923740059012
902 => 0.039819669859684
903 => 0.039675897624677
904 => 0.039989819040013
905 => 0.040178000731062
906 => 0.041694606956698
907 => 0.042674403744105
908 => 0.042631868181533
909 => 0.0430205636002
910 => 0.042845452754049
911 => 0.042279973639918
912 => 0.043245177534907
913 => 0.042939746636687
914 => 0.042964925988837
915 => 0.042963988812093
916 => 0.043167073658177
917 => 0.043023169432273
918 => 0.042739519431552
919 => 0.042927819539422
920 => 0.043487003541276
921 => 0.045222727840893
922 => 0.046194062154246
923 => 0.045164252295585
924 => 0.045874601346386
925 => 0.045448645039152
926 => 0.045371236107026
927 => 0.045817387805311
928 => 0.046264320433083
929 => 0.046235852756837
930 => 0.045911402619319
1001 => 0.045728128969252
1002 => 0.047115938448734
1003 => 0.048138452832499
1004 => 0.04806872420655
1005 => 0.048376483684526
1006 => 0.049280075030507
1007 => 0.049362688099009
1008 => 0.049352280751217
1009 => 0.049147515641155
1010 => 0.050037218667437
1011 => 0.050779424584797
1012 => 0.049100118434408
1013 => 0.049739576232745
1014 => 0.050026649440461
1015 => 0.050448158080172
1016 => 0.051159313808415
1017 => 0.051931817554027
1018 => 0.052041058053729
1019 => 0.051963546691552
1020 => 0.051454059705305
1021 => 0.05229934252164
1022 => 0.052794489371129
1023 => 0.053089337988765
1024 => 0.053837025024958
1025 => 0.050028422306861
1026 => 0.047332504003155
1027 => 0.046911497430499
1028 => 0.04776763085126
1029 => 0.047993386406779
1030 => 0.047902384625423
1031 => 0.044867883472433
1101 => 0.046895521409933
1102 => 0.049077089342042
1103 => 0.04916089225103
1104 => 0.050253030772278
1105 => 0.050608675843067
1106 => 0.051487990502541
1107 => 0.051432989131179
1108 => 0.051647088257809
1109 => 0.051597870576276
1110 => 0.053226615821404
1111 => 0.055023363697789
1112 => 0.054961148032138
1113 => 0.054702844266752
1114 => 0.055086469405687
1115 => 0.056940905765321
1116 => 0.056770178982063
1117 => 0.056936025509525
1118 => 0.059122510488987
1119 => 0.061965251986148
1120 => 0.060644513154136
1121 => 0.06351013638724
1122 => 0.065313894312318
1123 => 0.06843330713169
1124 => 0.068042741283272
1125 => 0.069257105802545
1126 => 0.067343546901053
1127 => 0.062949628869166
1128 => 0.062254274521378
1129 => 0.063646391534827
1130 => 0.067068775371601
1201 => 0.063538608488577
1202 => 0.064252756651314
1203 => 0.064047081932402
1204 => 0.064036122400693
1205 => 0.064454403150408
1206 => 0.063847665106889
1207 => 0.061375705167505
1208 => 0.062508589840373
1209 => 0.062071128662588
1210 => 0.062556524454232
1211 => 0.06517600534928
1212 => 0.064017870404954
1213 => 0.06279786932035
1214 => 0.064328021420357
1215 => 0.066276430860975
1216 => 0.06615450289981
1217 => 0.065917911693215
1218 => 0.067251563937278
1219 => 0.069454366721028
1220 => 0.070049775461897
1221 => 0.070489294021811
1222 => 0.070549896205496
1223 => 0.0711741363615
1224 => 0.067817439713889
1225 => 0.073144603499732
1226 => 0.074064457525618
1227 => 0.073891563092794
1228 => 0.074913942129191
1229 => 0.074613132281431
1230 => 0.074177306007644
1231 => 0.075797994246591
]
'min_raw' => 0.027939803387722
'max_raw' => 0.075797994246591
'avg_raw' => 0.051868898817156
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.027939'
'max' => '$0.075797'
'avg' => '$0.051868'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0096357161154199
'max_diff' => 0.03493540884511
'year' => 2032
]
7 => [
'items' => [
101 => 0.073940005963435
102 => 0.071302825509717
103 => 0.069856016155292
104 => 0.07176129142398
105 => 0.072924776545624
106 => 0.07369376619948
107 => 0.0739264620041
108 => 0.068078010519353
109 => 0.064926019539064
110 => 0.066946409619779
111 => 0.069411424958126
112 => 0.067803746429223
113 => 0.067866764383818
114 => 0.065574637292086
115 => 0.069614227345264
116 => 0.069025693052816
117 => 0.072079010003135
118 => 0.071350311408542
119 => 0.073840172852446
120 => 0.073184508889922
121 => 0.075906133340679
122 => 0.076991863019127
123 => 0.078814972129571
124 => 0.080156058612603
125 => 0.080943570246337
126 => 0.080896291001729
127 => 0.084016804431317
128 => 0.082176746684324
129 => 0.079865200485788
130 => 0.079823391907891
131 => 0.081020574438976
201 => 0.083529540593142
202 => 0.084180079012945
203 => 0.084543641241531
204 => 0.083986833032759
205 => 0.081989582226525
206 => 0.081127179454685
207 => 0.081861971602506
208 => 0.080963383947129
209 => 0.082514598339475
210 => 0.084644747021682
211 => 0.084204879742327
212 => 0.085675290108622
213 => 0.087197010146056
214 => 0.08937313814431
215 => 0.08994205858484
216 => 0.090882462438929
217 => 0.09185044691136
218 => 0.092161337435992
219 => 0.092754923911179
220 => 0.092751795417452
221 => 0.094540608213406
222 => 0.096513724122263
223 => 0.097258529700119
224 => 0.098971169057578
225 => 0.09603833417597
226 => 0.098262923123648
227 => 0.10026955803953
228 => 0.097877165168969
301 => 0.10117452138499
302 => 0.10130255025488
303 => 0.10323563418747
304 => 0.10127608328772
305 => 0.10011250821856
306 => 0.10347170584464
307 => 0.10509711576217
308 => 0.10460752906698
309 => 0.10088175014276
310 => 0.098713187002687
311 => 0.093037638980524
312 => 0.099760570778205
313 => 0.10303511474625
314 => 0.10087326986496
315 => 0.10196357867607
316 => 0.1079119500157
317 => 0.11017670469331
318 => 0.1097056515522
319 => 0.10978525177885
320 => 0.11100727229468
321 => 0.11642638424087
322 => 0.11317912674868
323 => 0.11566153342905
324 => 0.11697819298133
325 => 0.11820117975172
326 => 0.11519791077257
327 => 0.11129070195749
328 => 0.11005312491228
329 => 0.10065831699682
330 => 0.10016927644523
331 => 0.099894763164185
401 => 0.098163995757847
402 => 0.096804086673557
403 => 0.095722636479542
404 => 0.092884588222083
405 => 0.093842346197195
406 => 0.089319089621511
407 => 0.092212908884263
408 => 0.084993682171623
409 => 0.09100606869839
410 => 0.087733800061541
411 => 0.089931040443802
412 => 0.089923374479101
413 => 0.08587755829966
414 => 0.083544015961389
415 => 0.085031039962162
416 => 0.086625247731103
417 => 0.086883902578055
418 => 0.088950834563567
419 => 0.089527670852169
420 => 0.087779829967794
421 => 0.084844079744267
422 => 0.085525987563859
423 => 0.083530197121189
424 => 0.080032651137382
425 => 0.082544649724247
426 => 0.083402356486584
427 => 0.083781168655308
428 => 0.080341733876104
429 => 0.079260988794716
430 => 0.078685609181714
501 => 0.084400091904844
502 => 0.084713144168133
503 => 0.08311152452802
504 => 0.090350997173137
505 => 0.088712481550279
506 => 0.090543104947085
507 => 0.085464111576651
508 => 0.085658135963173
509 => 0.083253659107129
510 => 0.084600005479312
511 => 0.083648451258223
512 => 0.084491233997294
513 => 0.08499639449617
514 => 0.087400476801221
515 => 0.091033519456583
516 => 0.087041387073926
517 => 0.085301957826414
518 => 0.086381089948649
519 => 0.08925496099653
520 => 0.093609022744821
521 => 0.091031330556174
522 => 0.092175266577443
523 => 0.092425165707919
524 => 0.090524470919363
525 => 0.093679104072798
526 => 0.095369697607918
527 => 0.097103896755911
528 => 0.098609653284957
529 => 0.096411219480346
530 => 0.098763858784386
531 => 0.096868046802072
601 => 0.095167307468497
602 => 0.095169886788031
603 => 0.094102988160242
604 => 0.092035737631022
605 => 0.09165450491612
606 => 0.093637725643422
607 => 0.095228080855017
608 => 0.095359070127531
609 => 0.096239572488071
610 => 0.096760644715143
611 => 0.10186786090379
612 => 0.10392202550397
613 => 0.10643381909373
614 => 0.10741230425387
615 => 0.11035719377955
616 => 0.10797895631533
617 => 0.10746440968013
618 => 0.10032107095686
619 => 0.10149079227262
620 => 0.10336362896047
621 => 0.10035195334403
622 => 0.10226216833049
623 => 0.1026392852327
624 => 0.10024961775902
625 => 0.10152604240815
626 => 0.098136236973593
627 => 0.091107407951787
628 => 0.093686929168796
629 => 0.095586325041968
630 => 0.09287565293713
701 => 0.097734427767556
702 => 0.094896031817092
703 => 0.093996396567828
704 => 0.090486598717328
705 => 0.092143088198256
706 => 0.094383513939855
707 => 0.092999191308995
708 => 0.095871868625119
709 => 0.099940345819806
710 => 0.10283978495075
711 => 0.10306236788474
712 => 0.10119822277088
713 => 0.10418552721266
714 => 0.1042072864642
715 => 0.10083759485038
716 => 0.098773677499438
717 => 0.098304751134785
718 => 0.099476221132118
719 => 0.10089860197417
720 => 0.10314130012221
721 => 0.10449651564302
722 => 0.10803019897053
723 => 0.10898631236032
724 => 0.11003679110022
725 => 0.11144055465238
726 => 0.11312613271434
727 => 0.10943818387479
728 => 0.10958471295739
729 => 0.10615054606113
730 => 0.10248064622313
731 => 0.1052656427407
801 => 0.10890665521486
802 => 0.10807140293033
803 => 0.10797741998566
804 => 0.10813547322989
805 => 0.10750572028414
806 => 0.10465737105025
807 => 0.1032269478966
808 => 0.10507255870468
809 => 0.10605341871048
810 => 0.1075746470395
811 => 0.10738712353872
812 => 0.11130564434628
813 => 0.11282826304218
814 => 0.11243871202324
815 => 0.1125103987858
816 => 0.11526702720498
817 => 0.11833296495098
818 => 0.12120462023623
819 => 0.12412579133285
820 => 0.12060420556063
821 => 0.11881616148671
822 => 0.12066096655884
823 => 0.11968208702005
824 => 0.12530701920444
825 => 0.12569647730465
826 => 0.13132100274241
827 => 0.13665934713888
828 => 0.13330642866983
829 => 0.13646807976738
830 => 0.13988766320258
831 => 0.14648459445649
901 => 0.14426298009301
902 => 0.14256125830772
903 => 0.14095313944329
904 => 0.1442993795185
905 => 0.14860426391777
906 => 0.1495314947857
907 => 0.15103396302121
908 => 0.14945430138465
909 => 0.15135682983186
910 => 0.15807359126388
911 => 0.15625866303446
912 => 0.1536811731844
913 => 0.15898341125036
914 => 0.1609022705945
915 => 0.17436983038612
916 => 0.19137318094018
917 => 0.18433368216078
918 => 0.1799640381052
919 => 0.1809910081076
920 => 0.18720005613021
921 => 0.18919420528974
922 => 0.1837734204497
923 => 0.18568813329701
924 => 0.1962383893361
925 => 0.20189826320832
926 => 0.19421139426736
927 => 0.17300362772489
928 => 0.15344909842433
929 => 0.15863584014677
930 => 0.15804782459878
1001 => 0.16938275854153
1002 => 0.15621537759642
1003 => 0.15643708252191
1004 => 0.16800641089469
1005 => 0.16491991243333
1006 => 0.15992018021479
1007 => 0.15348560200256
1008 => 0.14159068905081
1009 => 0.13105503293526
1010 => 0.15171788079455
1011 => 0.15082686122191
1012 => 0.14953653283902
1013 => 0.15240801902703
1014 => 0.16635114087042
1015 => 0.16602970678245
1016 => 0.16398490711189
1017 => 0.16553586963997
1018 => 0.15964828898482
1019 => 0.16116565257737
1020 => 0.15344600088698
1021 => 0.15693560585217
1022 => 0.15990945303494
1023 => 0.16050649688544
1024 => 0.16185166716644
1025 => 0.15035733439537
1026 => 0.1555179523537
1027 => 0.15854933191971
1028 => 0.14485344875795
1029 => 0.15827860834522
1030 => 0.15015724363441
1031 => 0.14740073047275
1101 => 0.15111201230193
1102 => 0.14966572216376
1103 => 0.14842228683197
1104 => 0.1477284285519
1105 => 0.15045358432801
1106 => 0.15032645255379
1107 => 0.14586756877412
1108 => 0.1400511366509
1109 => 0.14200332218933
1110 => 0.14129407488138
1111 => 0.13872367114265
1112 => 0.14045581291082
1113 => 0.13282833718068
1114 => 0.11970566162865
1115 => 0.12837490305674
1116 => 0.12804114669208
1117 => 0.12787285159837
1118 => 0.13438754693135
1119 => 0.13376130929468
1120 => 0.13262468185198
1121 => 0.13870279608831
1122 => 0.13648420262988
1123 => 0.14332138490241
1124 => 0.14782479534832
1125 => 0.14668258478917
1126 => 0.15091806408043
1127 => 0.14204829660127
1128 => 0.14499447756454
1129 => 0.14560168137784
1130 => 0.13862779310211
1201 => 0.13386376951685
1202 => 0.13354606345755
1203 => 0.12528590308359
1204 => 0.12969841408168
1205 => 0.13358124115788
1206 => 0.13172166830793
1207 => 0.1311329830968
1208 => 0.13414044817024
1209 => 0.13437415396365
1210 => 0.12904563710702
1211 => 0.1301536044937
1212 => 0.13477401268039
1213 => 0.13003718206214
1214 => 0.12083429392778
1215 => 0.11855185043058
1216 => 0.11824733039427
1217 => 0.11205716260697
1218 => 0.11870437421899
1219 => 0.11580268821615
1220 => 0.12496907953158
1221 => 0.11973328597255
1222 => 0.11950758137687
1223 => 0.11916639577683
1224 => 0.11383826264969
1225 => 0.11500478518401
1226 => 0.11888248375448
1227 => 0.12026609028983
1228 => 0.12012176879263
1229 => 0.11886348091601
1230 => 0.11943951866245
1231 => 0.11758390037631
]
'min_raw' => 0.064926019539064
'max_raw' => 0.20189826320832
'avg_raw' => 0.13341214137369
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.064926'
'max' => '$0.201898'
'avg' => '$0.133412'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.036986216151342
'max_diff' => 0.12610026896173
'year' => 2033
]
8 => [
'items' => [
101 => 0.11692864293812
102 => 0.11486047022044
103 => 0.11182082767273
104 => 0.1122435086122
105 => 0.10622118135946
106 => 0.10293989784307
107 => 0.10203168181235
108 => 0.10081717737912
109 => 0.10216886331976
110 => 0.10620412086302
111 => 0.1013367441382
112 => 0.092991968150281
113 => 0.093493503405962
114 => 0.094620304218322
115 => 0.092520518359022
116 => 0.090533247264865
117 => 0.092261018248835
118 => 0.088725226655515
119 => 0.09504758773993
120 => 0.094876585590809
121 => 0.097233170830892
122 => 0.098706791943513
123 => 0.095310572369422
124 => 0.094456432330892
125 => 0.094942989315339
126 => 0.086901286181508
127 => 0.096575992120285
128 => 0.096659659378994
129 => 0.095943249514058
130 => 0.10109473175342
131 => 0.11196596606608
201 => 0.10787577042327
202 => 0.10629192304356
203 => 0.10328102801694
204 => 0.10729286687065
205 => 0.10698482024112
206 => 0.10559171655917
207 => 0.10474916310558
208 => 0.10630159367792
209 => 0.10455679977768
210 => 0.10424338684947
211 => 0.10234444550112
212 => 0.10166660983609
213 => 0.10116476729511
214 => 0.10061228796753
215 => 0.10183091969491
216 => 0.099069339876312
217 => 0.095739145336092
218 => 0.095462275693277
219 => 0.096226737119717
220 => 0.095888519845977
221 => 0.095460656439092
222 => 0.094643748673682
223 => 0.094401389590158
224 => 0.0951889390357
225 => 0.094299841628668
226 => 0.095611753284386
227 => 0.095254985905414
228 => 0.093262112327957
301 => 0.090778253994148
302 => 0.090756142444908
303 => 0.090220999241233
304 => 0.089539413912034
305 => 0.089349812466011
306 => 0.09211551019571
307 => 0.09784042172582
308 => 0.096716484606937
309 => 0.097528644361039
310 => 0.10152366652717
311 => 0.10279356393927
312 => 0.10189222083533
313 => 0.10065840680223
314 => 0.10071268835797
315 => 0.10492900440998
316 => 0.1051919708703
317 => 0.10585640227935
318 => 0.10671038440827
319 => 0.10203765768461
320 => 0.1004926033495
321 => 0.099760470889177
322 => 0.097505786282299
323 => 0.099937270328768
324 => 0.098520548701418
325 => 0.09871171285105
326 => 0.09858721694782
327 => 0.09865520012936
328 => 0.095045820511157
329 => 0.096360888740622
330 => 0.094174332747458
331 => 0.091246779725041
401 => 0.091236965540777
402 => 0.091953479995552
403 => 0.091527269160639
404 => 0.090380346762768
405 => 0.090543261676065
406 => 0.08911595560846
407 => 0.090716562474882
408 => 0.090762462152565
409 => 0.090146141323347
410 => 0.092612097042254
411 => 0.093622401112318
412 => 0.093216725539656
413 => 0.093593937832692
414 => 0.096763189268498
415 => 0.097279915536669
416 => 0.09750941121197
417 => 0.097201917409418
418 => 0.093651865931062
419 => 0.093809325810111
420 => 0.092653989693917
421 => 0.091677852422052
422 => 0.091716892793761
423 => 0.092218754240463
424 => 0.094410412611991
425 => 0.099022628449554
426 => 0.099197658669104
427 => 0.09940980040119
428 => 0.098546913362904
429 => 0.098286658375441
430 => 0.098630001881417
501 => 0.10036210765122
502 => 0.10481755395327
503 => 0.10324270166087
504 => 0.10196232223312
505 => 0.10308556017908
506 => 0.10291264650153
507 => 0.10145308104883
508 => 0.1014121159078
509 => 0.098610743152771
510 => 0.097575139429407
511 => 0.096709711444569
512 => 0.095764686677696
513 => 0.095204444318376
514 => 0.09606523120789
515 => 0.096262103354053
516 => 0.094379977776151
517 => 0.094123451014576
518 => 0.095660435389993
519 => 0.094984065870925
520 => 0.095679728694443
521 => 0.095841128436785
522 => 0.095815139360916
523 => 0.095108931902465
524 => 0.095559047477072
525 => 0.094494389957215
526 => 0.093336734810759
527 => 0.092598222951784
528 => 0.091953773405445
529 => 0.092311351469382
530 => 0.091036650962624
531 => 0.09062884861586
601 => 0.095406558448316
602 => 0.098935904070588
603 => 0.098884585987466
604 => 0.0985722003544
605 => 0.098108058668775
606 => 0.10032815279595
607 => 0.099554716394228
608 => 0.10011745599926
609 => 0.10026069684684
610 => 0.10069424375111
611 => 0.10084919950477
612 => 0.10038081559352
613 => 0.098808861979102
614 => 0.094891703028838
615 => 0.093068254963322
616 => 0.092466486729772
617 => 0.092488359862141
618 => 0.091885001225442
619 => 0.092062717384587
620 => 0.091823198797839
621 => 0.091369608540307
622 => 0.092283343549163
623 => 0.092388642996903
624 => 0.092175366327516
625 => 0.092225600703884
626 => 0.090459760973015
627 => 0.09059401393255
628 => 0.089846476393814
629 => 0.089706322117001
630 => 0.087816612314615
701 => 0.084468717481874
702 => 0.086323776207227
703 => 0.08408312612773
704 => 0.083234557991235
705 => 0.08725154756998
706 => 0.086848353230222
707 => 0.086158259784922
708 => 0.085137467751247
709 => 0.084758846056331
710 => 0.082458460495081
711 => 0.082322541444042
712 => 0.083462674643833
713 => 0.082936542401718
714 => 0.082197653471926
715 => 0.07952147266819
716 => 0.076512559391777
717 => 0.076603379570238
718 => 0.077560458900643
719 => 0.080343296133528
720 => 0.079255993483067
721 => 0.078467142934797
722 => 0.078319414939867
723 => 0.080168540085929
724 => 0.082785439571302
725 => 0.084013230260013
726 => 0.082796526976058
727 => 0.081398843755407
728 => 0.081483914256808
729 => 0.08204985019037
730 => 0.082109322055084
731 => 0.081199573962597
801 => 0.081455662721752
802 => 0.081066640479348
803 => 0.078679211695797
804 => 0.078636030679721
805 => 0.078050117153747
806 => 0.078032375925038
807 => 0.077035590854379
808 => 0.076896133732543
809 => 0.074916956474221
810 => 0.076219656939149
811 => 0.075345873862119
812 => 0.074028876660444
813 => 0.073801825846469
814 => 0.073795000424829
815 => 0.075147262075764
816 => 0.076203854974433
817 => 0.075361073692843
818 => 0.075169188731654
819 => 0.07721801810516
820 => 0.076957285891887
821 => 0.076731493476735
822 => 0.082551124924791
823 => 0.07794443252215
824 => 0.075935651693788
825 => 0.073449403961558
826 => 0.074258938759922
827 => 0.074429519636477
828 => 0.068450542020302
829 => 0.066024871546053
830 => 0.065192472848755
831 => 0.064713415630069
901 => 0.064931728020246
902 => 0.062748340090654
903 => 0.064215612889243
904 => 0.062324983499403
905 => 0.062008013329557
906 => 0.065388692882628
907 => 0.065859094692795
908 => 0.063852214428238
909 => 0.065140956442486
910 => 0.064673640673265
911 => 0.062357392913857
912 => 0.062268929286613
913 => 0.061106717580987
914 => 0.059288081310214
915 => 0.058456915733946
916 => 0.058024037485314
917 => 0.058202651487329
918 => 0.058112338782232
919 => 0.057522987291606
920 => 0.058146119719804
921 => 0.056554273861855
922 => 0.055920388014845
923 => 0.055634076483791
924 => 0.054221221661632
925 => 0.056469701983078
926 => 0.056912680932012
927 => 0.057356532686318
928 => 0.061219959177091
929 => 0.061026953307542
930 => 0.062771632370595
1001 => 0.062703837350464
1002 => 0.062206226619754
1003 => 0.060106888799882
1004 => 0.060943647437785
1005 => 0.058368234411485
1006 => 0.060297908961852
1007 => 0.0594172860822
1008 => 0.060000169480415
1009 => 0.058952092573948
1010 => 0.059532141608021
1011 => 0.05701772767424
1012 => 0.054669803321634
1013 => 0.055614676621307
1014 => 0.056641861957421
1015 => 0.058869061488071
1016 => 0.057542559821613
1017 => 0.058019619981453
1018 => 0.056421548304896
1019 => 0.053124269969552
1020 => 0.053142932206847
1021 => 0.052635717770067
1022 => 0.05219741044217
1023 => 0.057694924495032
1024 => 0.057011221719722
1025 => 0.055921830828073
1026 => 0.057380023827218
1027 => 0.057765593200827
1028 => 0.057776569818847
1029 => 0.058840429789615
1030 => 0.059408212046721
1031 => 0.059508286130445
1101 => 0.061182292780664
1102 => 0.061743397729136
1103 => 0.064054509601346
1104 => 0.059360039689079
1105 => 0.059263360170518
1106 => 0.057400543593097
1107 => 0.056219115869732
1108 => 0.057481436960071
1109 => 0.0585996811221
1110 => 0.057435290556305
1111 => 0.057587335382571
1112 => 0.056024236182196
1113 => 0.056582970595677
1114 => 0.05706422794222
1115 => 0.056798505922458
1116 => 0.056400707197783
1117 => 0.058507997853102
1118 => 0.05838909625579
1119 => 0.060351453760425
1120 => 0.06188125176482
1121 => 0.064622923272798
1122 => 0.061761846127655
1123 => 0.061657577104734
1124 => 0.062676823529061
1125 => 0.061743241687819
1126 => 0.062333233185334
1127 => 0.064527866521315
1128 => 0.064574235665447
1129 => 0.063797492757979
1130 => 0.063750227881469
1201 => 0.063899409853484
1202 => 0.064773173323194
1203 => 0.064467853518838
1204 => 0.06482117732619
1205 => 0.06526301415757
1206 => 0.067090638627094
1207 => 0.067531272699302
1208 => 0.066460760346408
1209 => 0.066557415625856
1210 => 0.066157014619653
1211 => 0.06577023226467
1212 => 0.066639662513644
1213 => 0.068228563382339
1214 => 0.068218678912499
1215 => 0.068587273030217
1216 => 0.068816904111957
1217 => 0.067831159408905
1218 => 0.067189475854055
1219 => 0.06743553816037
1220 => 0.067828997146707
1221 => 0.067307944714008
1222 => 0.064091767724426
1223 => 0.065067350372884
1224 => 0.064904965716626
1225 => 0.064673710219466
1226 => 0.065654666116448
1227 => 0.065560050527126
1228 => 0.062725946291618
1229 => 0.062907376449547
1230 => 0.062736979660437
1231 => 0.063287566545953
]
'min_raw' => 0.05219741044217
'max_raw' => 0.11692864293812
'avg_raw' => 0.084563026690147
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.052197'
'max' => '$0.116928'
'avg' => '$0.084563'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.012728609096894
'max_diff' => -0.0849696202702
'year' => 2034
]
9 => [
'items' => [
101 => 0.061713508189129
102 => 0.062197677938243
103 => 0.062501344666078
104 => 0.062680206701651
105 => 0.063326379020985
106 => 0.063250558157404
107 => 0.063321665889647
108 => 0.064279768856052
109 => 0.069125524878893
110 => 0.069389268687658
111 => 0.068090497713532
112 => 0.068609331100571
113 => 0.067613284453846
114 => 0.068281937240725
115 => 0.068739412495568
116 => 0.066672169786363
117 => 0.066549761089418
118 => 0.065549603403868
119 => 0.066087031492256
120 => 0.065231944761184
121 => 0.065441753135325
122 => 0.064855110630462
123 => 0.065910950339858
124 => 0.067091543195867
125 => 0.067389807574319
126 => 0.066605202405499
127 => 0.066037096555274
128 => 0.065039689827978
129 => 0.066698399444129
130 => 0.067183456684152
131 => 0.066695851644943
201 => 0.066582862902977
202 => 0.066368749441119
203 => 0.06662828808609
204 => 0.067180814958251
205 => 0.066920253488909
206 => 0.067092358929912
207 => 0.06643647046317
208 => 0.067831485731418
209 => 0.070047105706103
210 => 0.070054229286612
211 => 0.069793666412747
212 => 0.069687049698667
213 => 0.06995440301953
214 => 0.070099431228691
215 => 0.070964002844147
216 => 0.071891722633585
217 => 0.076220986095036
218 => 0.075005346238888
219 => 0.078846526330923
220 => 0.081884401068913
221 => 0.082795326872674
222 => 0.081957317995585
223 => 0.079090534895414
224 => 0.078949876839809
225 => 0.083234061116069
226 => 0.082023582829955
227 => 0.081879600289531
228 => 0.080347869321768
301 => 0.081253312032287
302 => 0.081055278429454
303 => 0.080742672699245
304 => 0.082470194317229
305 => 0.085703960569177
306 => 0.085199947772743
307 => 0.084823725600686
308 => 0.083175229559359
309 => 0.084167992381159
310 => 0.083814488555435
311 => 0.085333365329814
312 => 0.084433616375912
313 => 0.082014412266399
314 => 0.08239967849464
315 => 0.082341446279289
316 => 0.083539861144825
317 => 0.083180126748677
318 => 0.082271202364911
319 => 0.085692907907683
320 => 0.085470721382262
321 => 0.085785731076398
322 => 0.085924408085756
323 => 0.088007139952426
324 => 0.088860368558215
325 => 0.089054066389598
326 => 0.089864567574029
327 => 0.08903390038178
328 => 0.092357161406447
329 => 0.094566936070194
330 => 0.0971337030561
331 => 0.10088443950443
401 => 0.10229475110526
402 => 0.10203999093778
403 => 0.10488375650634
404 => 0.1099939400197
405 => 0.10307290513157
406 => 0.11036077167435
407 => 0.10805351726937
408 => 0.1025830585809
409 => 0.10223082553383
410 => 0.105935483671
411 => 0.1141520588591
412 => 0.1120938999661
413 => 0.11415542526973
414 => 0.11175054649869
415 => 0.11163112399779
416 => 0.11403862567561
417 => 0.11966388457192
418 => 0.11699153492996
419 => 0.1131600664312
420 => 0.11598916314643
421 => 0.11353833775116
422 => 0.10801594219276
423 => 0.11209232613079
424 => 0.10936656428016
425 => 0.11016208649764
426 => 0.11589123248119
427 => 0.11520188647901
428 => 0.11609396403755
429 => 0.11451947049646
430 => 0.11304864525423
501 => 0.11030324071471
502 => 0.10949046177736
503 => 0.10971508463492
504 => 0.10949035046543
505 => 0.10795432185714
506 => 0.10762261662542
507 => 0.10706976004022
508 => 0.10724111341349
509 => 0.10620158128942
510 => 0.10816339318584
511 => 0.10852752276124
512 => 0.10995516585792
513 => 0.11010338850024
514 => 0.11407935420326
515 => 0.11188945910742
516 => 0.11335862980416
517 => 0.11322721334867
518 => 0.10270162000856
519 => 0.10415195390273
520 => 0.10640821830221
521 => 0.10539177424854
522 => 0.10395476016792
523 => 0.10279429425001
524 => 0.10103606972063
525 => 0.10351073698202
526 => 0.10676466127921
527 => 0.11018591339021
528 => 0.11429632363225
529 => 0.11337892791668
530 => 0.11010907212988
531 => 0.11025575547184
601 => 0.1111624941741
602 => 0.10998818516878
603 => 0.10964185851787
604 => 0.11111491421047
605 => 0.11112505833545
606 => 0.10977387390484
607 => 0.10827227967436
608 => 0.10826598793971
609 => 0.10799879375007
610 => 0.11179807975145
611 => 0.11388730290106
612 => 0.11412682896821
613 => 0.1138711808883
614 => 0.11396956968795
615 => 0.11275389677008
616 => 0.11553256456372
617 => 0.11808254491294
618 => 0.11739909570696
619 => 0.11637450818918
620 => 0.11555837488045
621 => 0.11720684063652
622 => 0.11713343705132
623 => 0.11806027305914
624 => 0.11801822642416
625 => 0.1177065663348
626 => 0.11739910683733
627 => 0.11861814899116
628 => 0.11826708442807
629 => 0.11791547456475
630 => 0.11721026715509
701 => 0.11730611655432
702 => 0.11628170594602
703 => 0.11580776672478
704 => 0.10868085797651
705 => 0.10677631508051
706 => 0.10737552304614
707 => 0.10757279786685
708 => 0.10674393835777
709 => 0.10793230997725
710 => 0.10774710351915
711 => 0.10846763350546
712 => 0.10801747765179
713 => 0.10803595220505
714 => 0.10935976458734
715 => 0.10974407295382
716 => 0.10954861061688
717 => 0.10968550573762
718 => 0.11284019601517
719 => 0.11239169993902
720 => 0.11215344533742
721 => 0.11221944349033
722 => 0.11302553449357
723 => 0.11325119596354
724 => 0.11229505245832
725 => 0.11274597526278
726 => 0.11466594733354
727 => 0.11533782889729
728 => 0.11748215232736
729 => 0.11657120562196
730 => 0.11824328772457
731 => 0.12338269805321
801 => 0.12748841464387
802 => 0.12371262799118
803 => 0.13125225365008
804 => 0.13712293372059
805 => 0.13689760724135
806 => 0.13587391837978
807 => 0.12919030519961
808 => 0.12303994470415
809 => 0.1281849824167
810 => 0.12819809817592
811 => 0.1277561348735
812 => 0.12501113875988
813 => 0.12766061495887
814 => 0.12787092075806
815 => 0.12775320543534
816 => 0.12564862335101
817 => 0.12243531550002
818 => 0.12306318816253
819 => 0.12409165639198
820 => 0.12214455147268
821 => 0.12152233347172
822 => 0.12267915511733
823 => 0.12640667549284
824 => 0.1257020093579
825 => 0.12568360767734
826 => 0.12869846822754
827 => 0.12654047872122
828 => 0.12307110764753
829 => 0.12219504569604
830 => 0.11908561595429
831 => 0.12123331015232
901 => 0.12131060184305
902 => 0.12013433167969
903 => 0.12316655548849
904 => 0.12313861301228
905 => 0.12601725823179
906 => 0.13152014672171
907 => 0.12989267181454
908 => 0.12800009556627
909 => 0.12820587107991
910 => 0.13046272056723
911 => 0.12909817784833
912 => 0.12958887692398
913 => 0.13046197783541
914 => 0.13098874129315
915 => 0.12813007792477
916 => 0.12746358674792
917 => 0.12610017970671
918 => 0.12574449225886
919 => 0.1268549588455
920 => 0.12656239013329
921 => 0.12130410577573
922 => 0.12075458580355
923 => 0.12077143879656
924 => 0.11938964469825
925 => 0.11728207702976
926 => 0.12282063902624
927 => 0.1223758149858
928 => 0.12188476367179
929 => 0.12194491465586
930 => 0.12434901669925
1001 => 0.12295451610402
1002 => 0.12666202449059
1003 => 0.12589987222421
1004 => 0.12511817362807
1005 => 0.12501011907096
1006 => 0.12470923180284
1007 => 0.12367737740521
1008 => 0.12243135121525
1009 => 0.12160861679569
1010 => 0.11217752078686
1011 => 0.11392787734794
1012 => 0.11594150302144
1013 => 0.11663659853483
1014 => 0.11544758956003
1015 => 0.12372432672663
1016 => 0.1252365663636
1017 => 0.12065589386229
1018 => 0.11979903706492
1019 => 0.12378050211562
1020 => 0.12137919197574
1021 => 0.12246050178469
1022 => 0.12012330142258
1023 => 0.1248723121186
1024 => 0.12483613261386
1025 => 0.12298866019184
1026 => 0.12455013123199
1027 => 0.12427878721285
1028 => 0.12219299539851
1029 => 0.12493843543947
1030 => 0.12493979714348
1031 => 0.1231616451048
1101 => 0.12108515281115
1102 => 0.1207139250336
1103 => 0.12043425477066
1104 => 0.12239172004411
1105 => 0.12414677728745
1106 => 0.12741250370171
1107 => 0.12823358491401
1108 => 0.13143831954805
1109 => 0.12953005610918
1110 => 0.13037596457548
1111 => 0.13129431787672
1112 => 0.13173461022065
1113 => 0.1310171774736
1114 => 0.13599544948168
1115 => 0.13641576816947
1116 => 0.13655669738975
1117 => 0.13487805207855
1118 => 0.13636908200672
1119 => 0.13567147848105
1120 => 0.137486449055
1121 => 0.1377710596157
1122 => 0.1375300045961
1123 => 0.13762034448034
1124 => 0.13337226754881
1125 => 0.13315198234952
1126 => 0.13014837802646
1127 => 0.13137236898963
1128 => 0.1290841765514
1129 => 0.12980978594455
1130 => 0.1301296276512
1201 => 0.1299625604945
1202 => 0.13144157160222
1203 => 0.13018411001865
1204 => 0.12686546215379
1205 => 0.12354591012554
1206 => 0.12350423585387
1207 => 0.12263025639979
1208 => 0.12199852933181
1209 => 0.12212022237683
1210 => 0.12254908454013
1211 => 0.12197360308325
1212 => 0.12209641122973
1213 => 0.12413584472762
1214 => 0.12454483857105
1215 => 0.12315491768687
1216 => 0.11757418477227
1217 => 0.11620465891682
1218 => 0.11718904694284
1219 => 0.11671857286911
1220 => 0.094200997816483
1221 => 0.099491168067185
1222 => 0.096347928541425
1223 => 0.097796477928392
1224 => 0.09458804431052
1225 => 0.096119277001382
1226 => 0.095836514235044
1227 => 0.10434295145066
1228 => 0.10421013513376
1229 => 0.10427370727617
1230 => 0.10123924328228
1231 => 0.10607322681923
]
'min_raw' => 0.061713508189129
'max_raw' => 0.1377710596157
'avg_raw' => 0.099742283902415
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.061713'
'max' => '$0.137771'
'avg' => '$0.099742'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0095160977469591
'max_diff' => 0.020842416677578
'year' => 2035
]
10 => [
'items' => [
101 => 0.10845462093396
102 => 0.10801388826207
103 => 0.10812481118037
104 => 0.10621878793876
105 => 0.10429216174751
106 => 0.10215523679577
107 => 0.1061253792242
108 => 0.10568396715875
109 => 0.10669640762184
110 => 0.10927132877831
111 => 0.10965049569978
112 => 0.11016009988736
113 => 0.10997744306221
114 => 0.11432906968126
115 => 0.11380205898474
116 => 0.11507200313204
117 => 0.11245963167015
118 => 0.10950348539245
119 => 0.11006535215614
120 => 0.11001123986855
121 => 0.10932232834033
122 => 0.10870040981597
123 => 0.10766509069737
124 => 0.11094099358702
125 => 0.1108079979122
126 => 0.11296104329695
127 => 0.11258047161163
128 => 0.11003892075536
129 => 0.1101296927414
130 => 0.11074017797107
131 => 0.11285307432133
201 => 0.11348032581505
202 => 0.11318975793151
203 => 0.11387751055924
204 => 0.11442108219427
205 => 0.11394577478763
206 => 0.12067512533113
207 => 0.11788062981678
208 => 0.1192426474865
209 => 0.11956748067525
210 => 0.11873542729277
211 => 0.11891586987783
212 => 0.11918919122654
213 => 0.1208487449341
214 => 0.12520389405846
215 => 0.12713275995914
216 => 0.13293584818989
217 => 0.1269725944972
218 => 0.12661875970147
219 => 0.1276640711283
220 => 0.13107109823903
221 => 0.13383217370649
222 => 0.13474818172931
223 => 0.13486924731117
224 => 0.13658773925705
225 => 0.13757274679245
226 => 0.136379069134
227 => 0.13536755230172
228 => 0.13174442456259
229 => 0.13216381146384
301 => 0.1350529713275
302 => 0.13913407980558
303 => 0.14263609544675
304 => 0.14140981162678
305 => 0.15076549155168
306 => 0.15169306900171
307 => 0.15156490779028
308 => 0.15367806726348
309 => 0.14948387604663
310 => 0.14769077804279
311 => 0.13558625372206
312 => 0.13898713131906
313 => 0.14393050663283
314 => 0.14327623237334
315 => 0.13968622108368
316 => 0.14263337210126
317 => 0.14165895180892
318 => 0.14089038609561
319 => 0.14441133462207
320 => 0.14053990708463
321 => 0.14389188618165
322 => 0.13959293831794
323 => 0.14141541318798
324 => 0.14038088830855
325 => 0.14105035269214
326 => 0.13713667758509
327 => 0.13924840167376
328 => 0.1370488229203
329 => 0.13704778003358
330 => 0.13699922421068
331 => 0.13958701885971
401 => 0.13967140675031
402 => 0.13775902259474
403 => 0.13748341816086
404 => 0.13850247220302
405 => 0.13730942681033
406 => 0.13786764524063
407 => 0.13732633467792
408 => 0.13720447426851
409 => 0.13623346979348
410 => 0.13581513436731
411 => 0.13597917446708
412 => 0.13541922103808
413 => 0.1350818288427
414 => 0.13693210841098
415 => 0.13594357867772
416 => 0.13678060205185
417 => 0.13582670827625
418 => 0.13252009685831
419 => 0.13061842966506
420 => 0.1243725472196
421 => 0.12614387173314
422 => 0.12731826171818
423 => 0.12693012583513
424 => 0.12776399190057
425 => 0.12781518450461
426 => 0.12754408614648
427 => 0.12723018897761
428 => 0.12707740119541
429 => 0.12821615614727
430 => 0.12887724172555
501 => 0.12743612746449
502 => 0.12709849455646
503 => 0.12855554064049
504 => 0.12944433791003
505 => 0.13600671757633
506 => 0.13552055529444
507 => 0.13674072721745
508 => 0.13660335458398
509 => 0.13788228914792
510 => 0.13997280664189
511 => 0.13572220005877
512 => 0.13645995838668
513 => 0.13627907708201
514 => 0.13825389173684
515 => 0.13826005689263
516 => 0.13707605685775
517 => 0.13771792248487
518 => 0.13735965070048
519 => 0.13800709623821
520 => 0.13551406230077
521 => 0.13855030853019
522 => 0.14027166449088
523 => 0.14029556552007
524 => 0.14111147458391
525 => 0.14194048544704
526 => 0.14353169960719
527 => 0.14189610734775
528 => 0.1389538360947
529 => 0.1391662585757
530 => 0.13744120601657
531 => 0.13747020446175
601 => 0.13731540848875
602 => 0.1377799628562
603 => 0.13561600586027
604 => 0.13612388224196
605 => 0.13541285233347
606 => 0.13645841274652
607 => 0.13533356257941
608 => 0.13627898985556
609 => 0.13668700492654
610 => 0.13819258932239
611 => 0.13511118653999
612 => 0.12882799767403
613 => 0.13014880014996
614 => 0.12819522954127
615 => 0.12837603993887
616 => 0.12874130571779
617 => 0.12755735982079
618 => 0.12778321938752
619 => 0.12777515009444
620 => 0.12770561328613
621 => 0.12739762323216
622 => 0.12695097671993
623 => 0.12873027895411
624 => 0.12903261707567
625 => 0.12970467726815
626 => 0.13170427253816
627 => 0.13150446581698
628 => 0.13183035886913
629 => 0.13111893616611
630 => 0.12840904079765
701 => 0.12855620115386
702 => 0.12672110915387
703 => 0.12965774983986
704 => 0.12896231456365
705 => 0.12851396291701
706 => 0.12839162601627
707 => 0.1303961778962
708 => 0.13099597123618
709 => 0.13062222027734
710 => 0.1298556461567
711 => 0.13132769508562
712 => 0.13172155327823
713 => 0.13180972360263
714 => 0.13441791206728
715 => 0.13195549236444
716 => 0.13254822126126
717 => 0.13717252291232
718 => 0.13297891942482
719 => 0.13520036472067
720 => 0.13509163653328
721 => 0.13622805277703
722 => 0.13499841723179
723 => 0.13501366003808
724 => 0.13602272067502
725 => 0.13460567699548
726 => 0.13425479705249
727 => 0.13377005892431
728 => 0.13482846689341
729 => 0.13546293460321
730 => 0.140576278379
731 => 0.14387973165497
801 => 0.14373632003603
802 => 0.14504683377791
803 => 0.14445643533426
804 => 0.14254988302048
805 => 0.14580413534082
806 => 0.14477435374296
807 => 0.1448592476867
808 => 0.14485608792988
809 => 0.14554080266738
810 => 0.14505561952268
811 => 0.14409927374143
812 => 0.14473414070181
813 => 0.14661946860504
814 => 0.1524715842656
815 => 0.15574650571947
816 => 0.15227442988197
817 => 0.15466942130173
818 => 0.15323327987257
819 => 0.15297229025338
820 => 0.15447652185347
821 => 0.15598338641184
822 => 0.15588740565383
823 => 0.1547934993628
824 => 0.15417557945584
825 => 0.15885467600968
826 => 0.16230215464422
827 => 0.16206705971353
828 => 0.16310469228061
829 => 0.16615121359032
830 => 0.16642974931863
831 => 0.16639466021894
901 => 0.16570428035412
902 => 0.16870397622431
903 => 0.17120637529385
904 => 0.16554447736241
905 => 0.16770045397501
906 => 0.16866834133764
907 => 0.17008948714522
908 => 0.1724871983343
909 => 0.17509174864712
910 => 0.17546006061879
911 => 0.17519872564954
912 => 0.17348095470416
913 => 0.1763308847352
914 => 0.1780003069083
915 => 0.17899440960833
916 => 0.1815152886527
917 => 0.16867431868049
918 => 0.15958484189654
919 => 0.15816538884309
920 => 0.16105190244451
921 => 0.16181305306169
922 => 0.16150623420231
923 => 0.1512752017029
924 => 0.15811152457434
925 => 0.16546683316965
926 => 0.16574938052824
927 => 0.1694316018033
928 => 0.17063068398981
929 => 0.17359535475602
930 => 0.1734099137924
1001 => 0.17413176394575
1002 => 0.1739658230962
1003 => 0.17945725140551
1004 => 0.18551511231567
1005 => 0.18530534785517
1006 => 0.18443445867598
1007 => 0.18572787761575
1008 => 0.19198023927487
1009 => 0.19140462200535
1010 => 0.19196378515172
1011 => 0.19933567191548
1012 => 0.20892017334704
1013 => 0.20446721016387
1014 => 0.2141288589657
1015 => 0.22021035474446
1016 => 0.23072767285542
1017 => 0.22941085282904
1018 => 0.23350516759
1019 => 0.2270534701532
1020 => 0.21223906873513
1021 => 0.20989463300347
1022 => 0.21458825270882
1023 => 0.22612705875771
1024 => 0.21422485464322
1025 => 0.21663265503412
1026 => 0.21593920835956
1027 => 0.21590225753323
1028 => 0.21731252028432
1029 => 0.2152668606095
1030 => 0.20693247508714
1031 => 0.21075207485719
1101 => 0.20927714395373
1102 => 0.21091368975451
1103 => 0.21974545247848
1104 => 0.21584071965528
1105 => 0.21172740082078
1106 => 0.21688641545777
1107 => 0.22345561392041
1108 => 0.22304452528661
1109 => 0.2222468415153
1110 => 0.22674334316879
1111 => 0.23417024654898
1112 => 0.23617770868893
1113 => 0.23765957619988
1114 => 0.23786390069329
1115 => 0.23996856996231
1116 => 0.22865123285781
1117 => 0.24661213749248
1118 => 0.24971348956291
1119 => 0.24913056391155
1120 => 0.25257758621298
1121 => 0.25156338480939
1122 => 0.2500939660989
1123 => 0.25555822964934
1124 => 0.24929389243209
1125 => 0.24040245441031
1126 => 0.23552443565887
1127 => 0.24194820424932
1128 => 0.24587097556888
1129 => 0.248463677876
1130 => 0.24924822802758
1201 => 0.22952976552091
1202 => 0.21890260786588
1203 => 0.22571449408214
1204 => 0.23402546539726
1205 => 0.22860506499253
1206 => 0.22881753442622
1207 => 0.22108946790524
1208 => 0.2347092278047
1209 => 0.23272494334756
1210 => 0.24301941462134
1211 => 0.24056255643356
1212 => 0.24895729812826
1213 => 0.24674668130161
1214 => 0.25592282815509
1215 => 0.2595834415692
1216 => 0.26573018122048
1217 => 0.27025174792969
1218 => 0.27290689838513
1219 => 0.272747493111
1220 => 0.28326852200615
1221 => 0.27706463884344
1222 => 0.26927109944807
1223 => 0.26913013890871
1224 => 0.27316652339688
1225 => 0.28162567795607
1226 => 0.28381901365758
1227 => 0.28504478909436
1228 => 0.28316747134338
1229 => 0.27643360080656
1230 => 0.27352594965026
1231 => 0.27600335267819
]
'min_raw' => 0.10215523679577
'max_raw' => 0.28504478909436
'avg_raw' => 0.19360001294507
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.102155'
'max' => '$0.285044'
'avg' => '$0.193600012'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.040441728606645
'max_diff' => 0.14727372947866
'year' => 2036
]
11 => [
'items' => [
101 => 0.2729737016607
102 => 0.27820372928683
103 => 0.28538567429112
104 => 0.28390263104822
105 => 0.28886022225896
106 => 0.29399080760827
107 => 0.30132777508678
108 => 0.30324593007279
109 => 0.30641656732375
110 => 0.30968019455507
111 => 0.31072838366455
112 => 0.31272970190853
113 => 0.3127191539735
114 => 0.31875026120598
115 => 0.32540275925125
116 => 0.32791392325765
117 => 0.33368820642399
118 => 0.32379994885665
119 => 0.33130030580959
120 => 0.33806581552725
121 => 0.32999969593263
122 => 0.34111696262899
123 => 0.34154862090254
124 => 0.34806614834486
125 => 0.34145938567489
126 => 0.337536311091
127 => 0.34886208041902
128 => 0.35434226343845
129 => 0.35269158771379
130 => 0.34012986394519
131 => 0.33281840191419
201 => 0.31368289550336
202 => 0.33634972943935
203 => 0.34739008304896
204 => 0.3401012720965
205 => 0.3437773243761
206 => 0.36383267364969
207 => 0.37146845216537
208 => 0.36988026361223
209 => 0.3701486413339
210 => 0.37426876882178
211 => 0.39253968309867
212 => 0.38159132774748
213 => 0.38996093518642
214 => 0.39440014479317
215 => 0.39852353007576
216 => 0.38839779903102
217 => 0.37522437171836
218 => 0.37105179430558
219 => 0.33937654349404
220 => 0.33772770913065
221 => 0.33680216843769
222 => 0.3309667652889
223 => 0.3263817368654
224 => 0.32273555203184
225 => 0.31316687418561
226 => 0.31639602206723
227 => 0.30114554671862
228 => 0.310902260403
301 => 0.28656213351102
302 => 0.30683331445744
303 => 0.2958006322858
304 => 0.30320878164102
305 => 0.30318293530581
306 => 0.28954218358696
307 => 0.28167448267075
308 => 0.28668808791006
309 => 0.29206307070707
310 => 0.29293514358228
311 => 0.29990394908002
312 => 0.30184879290046
313 => 0.29595582532843
314 => 0.28605773848228
315 => 0.28835683830532
316 => 0.28162789148622
317 => 0.26983567101095
318 => 0.2783050496287
319 => 0.2811968678611
320 => 0.28247405953577
321 => 0.27087776504402
322 => 0.2672339575469
323 => 0.26529402500995
324 => 0.28456080248342
325 => 0.28561628004571
326 => 0.28021630760756
327 => 0.30462469507441
328 => 0.29910032525444
329 => 0.30527239984682
330 => 0.2881482190944
331 => 0.28880238585991
401 => 0.28069552426455
402 => 0.28523482505726
403 => 0.28202659356547
404 => 0.28486809441146
405 => 0.2865712783026
406 => 0.29467680964174
407 => 0.30692586660523
408 => 0.29346611355532
409 => 0.28760150640426
410 => 0.29123987569698
411 => 0.30092933258218
412 => 0.31560935575743
413 => 0.30691848657468
414 => 0.31077534673745
415 => 0.31161789910325
416 => 0.30520957392136
417 => 0.31584563984762
418 => 0.32154559398475
419 => 0.32739256749013
420 => 0.33246933075637
421 => 0.32505715769438
422 => 0.33298924536398
423 => 0.32659738290424
424 => 0.32086322149926
425 => 0.32087191785516
426 => 0.31727479464308
427 => 0.31030491515299
428 => 0.30901956243788
429 => 0.31570612958403
430 => 0.32106812321498
501 => 0.32150976269264
502 => 0.32447843787591
503 => 0.32623526926959
504 => 0.34345460522406
505 => 0.35038036459076
506 => 0.35884905204646
507 => 0.36214808307952
508 => 0.37207698372096
509 => 0.36405859006711
510 => 0.36232376016204
511 => 0.33823949492456
512 => 0.34218329200797
513 => 0.34849769165833
514 => 0.33834361704905
515 => 0.34478404024284
516 => 0.34605551620811
517 => 0.33799858547933
518 => 0.342302140301
519 => 0.33087317460973
520 => 0.30717498682554
521 => 0.31587202270511
522 => 0.3222759685031
523 => 0.31313674824855
524 => 0.32951844681816
525 => 0.31994859670069
526 => 0.31691541364727
527 => 0.30508188514805
528 => 0.3106668550854
529 => 0.31822060689473
530 => 0.31355326649447
531 => 0.3232386986297
601 => 0.3369558535436
602 => 0.34673151500594
603 => 0.34748196890815
604 => 0.34119687350631
605 => 0.35126877899869
606 => 0.35134214183445
607 => 0.33998099129411
608 => 0.3330223498473
609 => 0.33144133186948
610 => 0.33539102475491
611 => 0.34018668107135
612 => 0.34774809445764
613 => 0.35231729820419
614 => 0.36423135825679
615 => 0.36745496130415
616 => 0.37099672371783
617 => 0.37572961054157
618 => 0.38141265466076
619 => 0.36897847766387
620 => 0.36947251069616
621 => 0.35789397723955
622 => 0.34552065371151
623 => 0.35491046391274
624 => 0.36718639167675
625 => 0.36437028028399
626 => 0.36405341022437
627 => 0.36458629777223
628 => 0.36246304174769
629 => 0.35285963344024
630 => 0.34803686190875
701 => 0.35425946760461
702 => 0.35756650559564
703 => 0.3626954331157
704 => 0.36206318454033
705 => 0.37527475102542
706 => 0.38040836626449
707 => 0.37909496780655
708 => 0.37933666473151
709 => 0.38863082990843
710 => 0.39896785307602
711 => 0.40864983936281
712 => 0.41849877166471
713 => 0.40662549936439
714 => 0.40059698393192
715 => 0.40681687303279
716 => 0.40351651232459
717 => 0.42248136390447
718 => 0.42379444908041
719 => 0.44275792928567
720 => 0.46075653012967
721 => 0.44945193141798
722 => 0.4601116588328
723 => 0.47164102313225
724 => 0.49388303743784
725 => 0.48639270950321
726 => 0.48065523569369
727 => 0.47523335066697
728 => 0.48651543270757
729 => 0.50102965101715
730 => 0.50415587462557
731 => 0.50922155118056
801 => 0.50389561168445
802 => 0.51031011917452
803 => 0.53295614929189
804 => 0.52683699205214
805 => 0.51814680506808
806 => 0.53602367089789
807 => 0.54249323914714
808 => 0.58790005725959
809 => 0.64522804078865
810 => 0.62149387917178
811 => 0.60676131915958
812 => 0.61022382022345
813 => 0.63115805913355
814 => 0.63788147225194
815 => 0.61960491769666
816 => 0.62606050574234
817 => 0.66163143057346
818 => 0.68071409049346
819 => 0.65479727517895
820 => 0.58329380960204
821 => 0.51736434881156
822 => 0.53485181065551
823 => 0.53286927518153
824 => 0.57108579634932
825 => 0.52669105217571
826 => 0.52743854581093
827 => 0.56644534416447
828 => 0.55603899910956
829 => 0.53918205286459
830 => 0.51748742317416
831 => 0.47738289368104
901 => 0.44186119351144
902 => 0.51152742770301
903 => 0.50852329300484
904 => 0.50417286077408
905 => 0.51385427693771
906 => 0.56086448571039
907 => 0.55978074824099
908 => 0.55288656338834
909 => 0.55811574183651
910 => 0.53826535259992
911 => 0.54338124989115
912 => 0.51735390524813
913 => 0.5291193520247
914 => 0.53914588542879
915 => 0.54115886045503
916 => 0.54569419597419
917 => 0.50694025052785
918 => 0.52433963427719
919 => 0.53456014212815
920 => 0.48838351583227
921 => 0.53364737869545
922 => 0.50626563055737
923 => 0.49697185397925
924 => 0.50948469977973
925 => 0.50460843160214
926 => 0.50041610256713
927 => 0.49807671093223
928 => 0.50726476389571
929 => 0.50683613024287
930 => 0.49180269227039
1001 => 0.47219218527661
1002 => 0.47877411511667
1003 => 0.47638283829985
1004 => 0.46771654263487
1005 => 0.47355657954054
1006 => 0.447840012583
1007 => 0.40359599576339
1008 => 0.43282494850531
1009 => 0.43169966561973
1010 => 0.43113224696131
1011 => 0.45309699711794
1012 => 0.45098559320339
1013 => 0.44715337442354
1014 => 0.46764616093171
1015 => 0.46016601818936
1016 => 0.48321805557802
1017 => 0.4984016183145
1018 => 0.49455057566773
1019 => 0.50883078980991
1020 => 0.47892574948655
1021 => 0.4888590043
1022 => 0.49090623435016
1023 => 0.46739328312722
1024 => 0.45133104499598
1025 => 0.45025987683555
1026 => 0.42241016942874
1027 => 0.43728725833047
1028 => 0.45037848090823
1029 => 0.44410880121339
1030 => 0.44212400792336
1031 => 0.45226388639299
1101 => 0.45305184179227
1102 => 0.435086375185
1103 => 0.43882196458499
1104 => 0.454399993373
1105 => 0.43842943822863
1106 => 0.40740125835851
1107 => 0.39970584075257
1108 => 0.39867913018925
1109 => 0.37780854731067
1110 => 0.40022008535407
1111 => 0.39043684840624
1112 => 0.42134197670324
1113 => 0.40368913316752
1114 => 0.40292815436499
1115 => 0.40177782329364
1116 => 0.38381365045713
1117 => 0.38774666262558
1118 => 0.40082059408819
1119 => 0.40548552012243
1120 => 0.40499893011845
1121 => 0.40075652469157
1122 => 0.40269867617136
1123 => 0.39644232956451
1124 => 0.39423308336304
1125 => 0.38726009465014
1126 => 0.37701172757949
1127 => 0.37843682587755
1128 => 0.35813212907947
1129 => 0.34706905261205
1130 => 0.34400693885488
1201 => 0.33991215236424
1202 => 0.3444694558848
1203 => 0.35807460842459
1204 => 0.34166390796748
1205 => 0.31352891311056
1206 => 0.31521987424116
1207 => 0.31901896185075
1208 => 0.31193938722376
1209 => 0.30523916398297
1210 => 0.31106446448454
1211 => 0.29914329626658
1212 => 0.32045957807584
1213 => 0.31988303239109
1214 => 0.32782842405955
1215 => 0.3327968405257
1216 => 0.32134624911517
1217 => 0.31846645634111
1218 => 0.3201069171845
1219 => 0.292993753615
1220 => 0.32561270015399
1221 => 0.32589479015819
1222 => 0.32347936428042
1223 => 0.34084794631544
1224 => 0.37750107180592
1225 => 0.36371069162784
1226 => 0.35837063960644
1227 => 0.34821919681021
1228 => 0.36174539160316
1229 => 0.36070679088457
1230 => 0.35600984455748
1231 => 0.35316911676349
]
'min_raw' => 0.26529402500995
'max_raw' => 0.68071409049346
'avg_raw' => 0.4730040577517
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.265294'
'max' => '$0.680714'
'avg' => '$0.473004'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.16313878821417
'max_diff' => 0.3956693013991
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0083272763003701
]
1 => [
'year' => 2028
'avg' => 0.014292023557018
]
2 => [
'year' => 2029
'avg' => 0.039043232471147
]
3 => [
'year' => 2030
'avg' => 0.030121795706564
]
4 => [
'year' => 2031
'avg' => 0.029583336336891
]
5 => [
'year' => 2032
'avg' => 0.051868898817156
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0083272763003701
'min' => '$0.008327'
'max_raw' => 0.051868898817156
'max' => '$0.051868'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.051868898817156
]
1 => [
'year' => 2033
'avg' => 0.13341214137369
]
2 => [
'year' => 2034
'avg' => 0.084563026690147
]
3 => [
'year' => 2035
'avg' => 0.099742283902415
]
4 => [
'year' => 2036
'avg' => 0.19360001294507
]
5 => [
'year' => 2037
'avg' => 0.4730040577517
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.051868898817156
'min' => '$0.051868'
'max_raw' => 0.4730040577517
'max' => '$0.473004'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.4730040577517
]
]
]
]
'prediction_2025_max_price' => '$0.014238'
'last_price' => 0.01380566
'sma_50day_nextmonth' => '$0.012387'
'sma_200day_nextmonth' => '$0.022586'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'augmenter'
'sma_200day_date_nextmonth' => '4 févr. 2026'
'sma_50day_date_nextmonth' => '4 févr. 2026'
'daily_sma3' => '$0.0129093'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.012457'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.012214'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.0119049'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.012385'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.0168016'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.027764'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.013084'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.012752'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.012375'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.012188'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.013311'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.017712'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.035871'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.020854'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.044252'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.012958'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.012892'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.014564'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.022965'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.085335'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.211348'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.105674'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '66.29'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 130.88
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.012228'
'vwma_10_action' => 'BUY'
'hma_9' => '0.012913'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 332.04
'cci_20_action' => 'SELL'
'adx_14' => 17.87
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000463'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 73.02
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.004645'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 12
'buy_signals' => 21
'sell_pct' => 36.36
'buy_pct' => 63.64
'overall_action' => 'bullish'
'overall_action_label' => 'Haussier'
'overall_action_dir' => 1
'last_updated' => 1767682650
'last_updated_date' => '6 janvier 2026'
]
Prévision du prix de Fluence pour 2026
La prévision du prix de Fluence pour 2026 suggère que le prix moyen pourrait varier entre $0.004769 à la baisse et $0.014238 à la hausse. Sur le marché des cryptomonnaies, comparé au prix moyen d'aujourd'hui, Fluence pourrait potentiellement gagner 3.13% d'ici 2026 si FLT atteint l'objectif de prix prévu.
Prévision du prix de Fluence de 2027 à 2032
La prévision du prix de FLT pour 2027-2032 se situe actuellement dans une fourchette de prix comprise entre $0.008327 à la baisse et $0.051868 à la hausse. Compte tenu de la volatilité des prix sur le marché, si Fluence atteint l'objectif de prix le plus élevé, il pourrait gagner 275.71% d'ici 2032 par rapport au prix actuel.
| Prévision du Prix de Fluence | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2027 | $0.004591 | $0.008327 | $0.012062 |
| 2028 | $0.008286 | $0.014292 | $0.020297 |
| 2029 | $0.0182038 | $0.039043 | $0.059882 |
| 2030 | $0.015481 | $0.030121 | $0.044761 |
| 2031 | $0.018304 | $0.029583 | $0.040862 |
| 2032 | $0.027939 | $0.051868 | $0.075797 |
Prévision du prix de Fluence de 2032 à 2037
La prévision du prix de Fluence pour 2032-2037 est actuellement estimée entre $0.051868 à la baisse et $0.473004 à la hausse. Par rapport au prix actuel, Fluence pourrait potentiellement gagner 3326.16% d'ici 2037 s'il atteint l'objectif de prix le plus élevé. Veuillez noter que ces informations sont à titre général seulement et ne doivent pas être considérées comme un conseil en investissement à long terme.
| Prévision du Prix de Fluence | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2032 | $0.027939 | $0.051868 | $0.075797 |
| 2033 | $0.064926 | $0.133412 | $0.201898 |
| 2034 | $0.052197 | $0.084563 | $0.116928 |
| 2035 | $0.061713 | $0.099742 | $0.137771 |
| 2036 | $0.102155 | $0.193600012 | $0.285044 |
| 2037 | $0.265294 | $0.473004 | $0.680714 |
Fluence Histogramme des prix potentiels
Prévision du prix de Fluence basée sur l'analyse technique
Au 6 janvier 2026, le sentiment global de prévision du prix pour Fluence est Haussier, avec 21 indicateurs techniques montrant des signaux haussiers et 12 indiquant des signaux baissiers. La prévision du prix de FLT a été mise à jour pour la dernière fois le 6 janvier 2026.
Moyennes Mobiles Simples sur 50 et 200 jours de Fluence et Indice de Force Relative sur 14 jours - RSI (14)
Selon nos indicateurs techniques, le SMA sur 200 jours de Fluence devrait augmenter au cours du prochain mois, atteignant $0.022586 d'ici le 4 févr. 2026. Le SMA à court terme sur 50 jours pour Fluence devrait atteindre $0.012387 d'ici le 4 févr. 2026.
Le Relative Strength Index (RSI), un oscillateur de momentum, est un outil couramment utilisé pour identifier si une cryptomonnaie est survendue (en dessous de 30) ou surachetée (au-dessus de 70). Actuellement, le RSI est à 66.29, ce qui suggère que le marché de FLT est dans un état NEUTRAL.
Moyennes Mobiles et Oscillateurs Populaires de FLT pour le Samedi 19 Octobre 2024
Les moyennes mobiles (MA) sont des indicateurs largement utilisés sur les marchés financiers, conçus pour lisser les mouvements de prix sur une période donnée. En tant qu'indicateurs retardés, ils sont basés sur des données historiques de prix. Le tableau ci-dessous met en évidence deux types : la moyenne mobile simple (SMA) et la moyenne mobile exponentielle (EMA).
Moyenne Mobile Simple Quotidienne (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 3 | $0.0129093 | BUY |
| SMA 5 | $0.012457 | BUY |
| SMA 10 | $0.012214 | BUY |
| SMA 21 | $0.0119049 | BUY |
| SMA 50 | $0.012385 | BUY |
| SMA 100 | $0.0168016 | SELL |
| SMA 200 | $0.027764 | SELL |
Moyenne Mobile Exponentielle Quotidienne (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 3 | $0.013084 | BUY |
| EMA 5 | $0.012752 | BUY |
| EMA 10 | $0.012375 | BUY |
| EMA 21 | $0.012188 | BUY |
| EMA 50 | $0.013311 | BUY |
| EMA 100 | $0.017712 | SELL |
| EMA 200 | $0.035871 | SELL |
Moyenne Mobile Simple Hebdomadaire (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 21 | $0.020854 | SELL |
| SMA 50 | $0.044252 | SELL |
| SMA 100 | — | — |
| SMA 200 | — | — |
Moyenne Mobile Exponentielle Hebdomadaire (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 21 | $0.022965 | SELL |
| EMA 50 | $0.085335 | SELL |
| EMA 100 | $0.211348 | SELL |
| EMA 200 | $0.105674 | SELL |
Oscillateurs de Fluence
Un oscillateur est un outil d'analyse technique qui établit des limites hautes et basses entre deux extrêmes, créant un indicateur de tendance qui fluctue à l'intérieur de ces limites. Les traders utilisent cet indicateur pour identifier les conditions de surachat ou de survente à court terme.
| Période | Valeur | Action |
|---|---|---|
| RSI (14) | 66.29 | NEUTRAL |
| Stoch RSI (14) | 130.88 | SELL |
| Stochastique Rapide (14) | 100 | SELL |
| Indice de Canal des Matières Premières (20) | 332.04 | SELL |
| Indice Directionnel Moyen (14) | 17.87 | NEUTRAL |
| Oscillateur Impressionnant (5, 34) | 0.000463 | BUY |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Plage de Pourcentage de Williams (14) | -0 | SELL |
| Oscillateur Ultime (7, 14, 28) | 73.02 | SELL |
| VWMA (10) | 0.012228 | BUY |
| Moyenne Mobile de Hull (9) | 0.012913 | BUY |
| Nuage Ichimoku B/L (9, 26, 52, 26) | -0.004645 | NEUTRAL |
Prévision du cours de Fluence basée sur les flux monétaires mondiaux
Définitions des flux monétaires mondiaux utilisés pour la prédiction du cours de Fluence
M0 : le total de toutes les devises physiques, plus les comptes à la banque centrale qui peuvent être échangés contre des devises physiques.
M1 : M0 plus le montant des comptes à vue, y compris les comptes de "chèques" et les comptes "courants".
M2 : M1 plus la plupart des comptes d'épargne, comptes du marché monétaire et comptes de certificats de dépôt (CD) de moins de 100 000 $.
Prédictions du cours de Fluence par des sociétés Internet ou des niches technologiques
| Comparaison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Action Facebook | $0.019399 | $0.027259 | $0.0383037 | $0.053823 | $0.07563 | $0.106273 |
| Action Amazon.com | $0.0288063 | $0.0601061 | $0.125414 | $0.261685 | $0.546023 | $1.13 |
| Action Apple | $0.019582 | $0.027775 | $0.039398 | $0.055883 | $0.079266 | $0.112432 |
| Action Netflix | $0.021783 | $0.03437 | $0.054231 | $0.085568 | $0.135013 | $0.213029 |
| Action Google | $0.017878 | $0.023152 | $0.029982 | $0.038826 | $0.05028 | $0.065112 |
| Action Tesla | $0.031296 | $0.070946 | $0.16083 | $0.36459 | $0.826499 | $1.87 |
| Action Kodak | $0.010352 | $0.007763 | $0.005821 | $0.004365 | $0.003273 | $0.002455 |
| Action Nokia | $0.009145 | $0.006058 | $0.004013 | $0.002658 | $0.001761 | $0.001166 |
Ce calcul montre la valeur potentielle des cryptomonnaies si l'on suppose que leur capitalisation se comportera comme celle de certaines sociétés Internet ou niches technologiques. En extrapolant les données, vous pourrez obtenir une potentielle image des cours futurs pour 2024, 2025, 2026, 2027, 2028, 2029 et 2030.
Aperçu des prévisions relatives à Fluence
Vous vous posez peut-être des questions telles que : "Devrais-je investir dans Fluence maintenant ?", "Devrais-je acheter FLT aujourd'hui ?", " Fluence sera-t-il un bon ou un mauvais investissement à court ou à long terme ?".
Nous mettons régulièrement à jour les prévisions de Fluence avec de nouvelles valeurs. Regardez nos prévisions similaires. Nous faisons une prévision des cours futurs pour une grande quantité de devises numériques comme Fluence en utilisant des méthodes d'analyse technique.
Si vous souhaitez trouver des cryptomonnaies ayant un bon rendement, vous devriez consulter un maximum d'informations disponibles à propos de Fluence afin de prendre une décision responsable concernant cet investissement.
Le cours de Fluence est de $0.0138 USD actuellement, mais ce cours peut subir une hausse ou une baisse, ce qui pourrait causer la perte de votre investissement, car les cryptomonnaies sont des actifs à haut risque.
Prévision du cours de Fluence basée sur le modèle de croissance du Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Fluence présente 1 % de la précédente croissance annuelle moyenne du Bitcoin | $0.014164 | $0.014532 | $0.01491 | $0.015298 |
| Si Fluence présente 2 % de la précédente croissance annuelle moyenne du Bitcoin | $0.014523 | $0.015278 | $0.016072 | $0.0169082 |
| Si Fluence présente 5 % de la précédente croissance annuelle moyenne du Bitcoin | $0.015599 | $0.017627 | $0.019918 | $0.022507 |
| Si Fluence présente 10 % de la précédente croissance annuelle moyenne du Bitcoin | $0.017394 | $0.021915 | $0.027612 | $0.034789 |
| Si Fluence présente 20 % de la précédente croissance annuelle moyenne du Bitcoin | $0.020982 | $0.03189 | $0.048469 | $0.073667 |
| Si Fluence présente 50 % de la précédente croissance annuelle moyenne du Bitcoin | $0.031748 | $0.07301 | $0.167899 | $0.386111 |
| Si Fluence présente 100 % de la précédente croissance annuelle moyenne du Bitcoin | $0.049691 | $0.178853 | $0.643752 | $2.31 |
Boîte à questions
Est-ce que FLT est un bon investissement ?
La décision d'acquérir Fluence dépend entièrement de votre tolérance individuelle au risque. Comme vous pouvez le discerner, la valeur de Fluence a connu une hausse de 8.3392% au cours des 24 heures précédentes, et Fluence a enregistré une déclin de sur une période de 30 jours précédents. Par conséquent, la détermination de si investir ou non dans Fluence dépendra de la mesure dans laquelle cet investissement s'aligne avec vos aspirations de trading.
Est-ce que Fluence peut monter ?
Il semble que la valeur moyenne de Fluence pourrait potentiellement s'envoler jusqu'à $0.014238 pour la fin de cette année. En regardant les perspectives de Fluence sur une période de cinq ans plus longue, la monnaie numérique pourrait potentiellement croître jusqu'à $0.044761. Cependant, compte tenu de l'imprévisibilité du marché, il est essentiel de mener des recherches approfondies avant d'investir des fonds dans un projet, un réseau ou un actif particulier.
Quel sera le prix de Fluence la semaine prochaine ?
Basé sur notre nouveau pronostic expérimental de Fluence, le prix de Fluence va augmenter de 0.86% durant la prochaine semaine et atteindre $0.013923 d'ici 13 janvier 2026.
Quel sera le prix de Fluence le mois prochain ?
Basé sur notre nouveau pronostic expérimental de Fluence, le prix de Fluence va diminuer de -11.62% durant le prochain mois et atteindre $0.012201 d'ici 5 février 2026.
Jusqu'où le prix de Fluence peut-il monter cette année en 2026 ?
Selon notre prédiction la plus récente sur la valeur de Fluence en 2026, FLT devrait fluctuer dans la fourchette de $0.004769 et $0.014238. Cependant, il est crucial de garder à l'esprit que le marché des cryptomonnaies est exceptionnellement instable, et cette prévision de prix de Fluence ne prend pas en compte les fluctuations de prix soudaines et extrêmes.
Où sera Fluence dans 5 ans ?
L'avenir de Fluence semble suivre une tendance haussière, avec un prix maximum de $0.044761 prévue après une période de cinq ans. Selon la prévision de Fluence pour 2030, la valeur de Fluence pourrait potentiellement atteindre son point le plus élevé d'environ $0.044761, tandis que son point le plus bas devrait être autour de $0.015481.
Combien vaudra Fluence en 2026 ?
Basé sur notre nouvelle simulation expérimentale de prédiction de prix de Fluence, il est attendu que la valeur de FLT en 2026 augmente de 3.13% jusqu'à $0.014238 si le meilleur scénario se produit. Le prix sera entre $0.014238 et $0.004769 durant 2026.
Combien vaudra Fluence en 2027 ?
Selon notre dernière simulation expérimentale pour la prédiction de prix de Fluence, le valeur de FLT pourrait diminuer de -12.62% jusqu'à $0.012062 en 2027, en supposant les conditions les plus favorables. Il est prévu que le prix fluctue entre $0.012062 et $0.004591 tout au long de l'année.
Combien vaudra Fluence en 2028 ?
Notre nouveau modèle expérimental de prédiction de prix de Fluence suggère que la valeur de FLT en 2028 pourrait augmenter de 47.02%, atteignant $0.020297 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.020297 et $0.008286 durant l'année.
Combien vaudra Fluence en 2029 ?
Basé sur notre modèle de prévision expérimental, la valeur de Fluence pourrait connaître un 333.75% croissance en 2029, atteignant potentiellement $0.059882 sous des conditions optimales. Le range de prix prévu pour 2029 se situe entre $0.059882 et $0.0182038.
Combien vaudra Fluence en 2030 ?
En utilisant notre nouvelle simulation expérimentale pour les prédictions de prix de Fluence, il est prévu que la valeur de FLT en 2030 augmente de 224.23%, atteignant $0.044761 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.044761 et $0.015481 au cours de 2030.
Combien vaudra Fluence en 2031 ?
Notre simulation expérimentale indique que le prix de Fluence pourrait augmenter de 195.98% en 2031, atteignant potentiellement $0.040862 dans des conditions idéales. Il est probable que le prix fluctue entre $0.040862 et $0.018304 durant l'année.
Combien vaudra Fluence en 2032 ?
Basé sur les résultats de notre dernière prédiction expérimentale de prix de Fluence, FLT pourrait connaître une 449.04% hausse en valeur, atteignant $0.075797 si le scénario le plus positif se réalise en 2032. Il est prévu que le prix reste dans une fourchette de $0.075797 et $0.027939 tout au long de l'année.
Combien vaudra Fluence en 2033 ?
Selon notre prédiction expérimentale de prix de Fluence, la valeur de FLT est anticipée à augmenter de 1362.43% en 2033, avec le prix potentiel le plus élevé étant $0.201898. Tout au long de l'année, le prix de FLT pourrait osciller entre $0.201898 et $0.064926.
Combien vaudra Fluence en 2034 ?
Les résultats de notre nouvelle simulation de prédiction de prix de Fluence suggèrent que FLT pourrait augmenter de 746.96% en 2034, atteignant potentiellement $0.116928 dans les meilleures circonstances. La fourchette de prix prévue pour l'année est entre $0.116928 et $0.052197.
Combien vaudra Fluence en 2035 ?
Basé sur notre prédiction expérimentale pour le prix de Fluence, FLT pourrait augmenter de 897.93%, avec la valeur potentiellement atteignant $0.137771 en 2035. La fourchette de prix attendue pour l'année se situe entre $0.137771 et $0.061713.
Combien vaudra Fluence en 2036 ?
Notre récente simulation de prédiction de prix de Fluence suggère que la valeur de FLT pourrait augmenter de 1964.7% en 2036, pouvant atteindre $0.285044 si les conditions sont optimales. La fourchette de prix attendue pour 2036 est entre $0.285044 et $0.102155.
Combien vaudra Fluence en 2037 ?
Selon la simulation expérimentale, la valeur de Fluence pourrait augmenter de 4830.69% en 2037, avec un maximum de $0.680714 sous des conditions favorables. Il est prévu que le prix chute entre $0.680714 et $0.265294 au cours de l'année.
Prévisions liées
Prévision du cours de Vyvo Smart Chain
Prévision du cours de HydraDX
Prévision du cours de Leash
Prévision du cours de BNB48 Club Token
Prévision du cours de Turbo
Prévision du cours de SafeMoon
Prévision du cours de ASD
Prévision du cours de UniLend Finance
Prévision du cours de ECOx
Prévision du cours de Botto
Prévision du cours de Coinweb
Prévision du cours de ThetaDrop
Prévision du cours de Syncus
Prévision du cours de Streamr XDATA
Prévision du cours de EURC
Prévision du cours de SUKU
Prévision du cours de Router Protocol
Prévision du cours de Keep3rV1
Prévision du cours de RAMP
Prévision du cours de CoW Protocol
Prévision du cours de Circuits of Value
Prévision du cours de Archway
Prévision du cours de XCAD Network
Prévision du cours de Concordium
Prévision du cours de EverGrowCoin
Comment lire et prédire les mouvements de prix de Fluence ?
Les traders de Fluence utilisent des indicateurs et des modèles graphiques pour prédire la direction du marché. Ils identifient également des niveaux clés de support et de résistance pour évaluer quand une tendance baissière pourrait ralentir ou une tendance haussière pourrait s'arrêter.
Indicateurs de prédiction du prix de Fluence
Les moyennes mobiles sont des outils populaires pour la prédiction du prix de Fluence. Une moyenne mobile simple (SMA) calcule le prix de clôture moyen de FLT sur une période spécifique, comme une SMA de 12 jours. Une moyenne mobile exponentielle (EMA) donne plus de poids aux prix récents, réagissant plus rapidement aux changements de prix.
Les moyennes mobiles couramment utilisées sur le marché des cryptomonnaies incluent les moyennes sur 50 jours, 100 jours et 200 jours, qui aident à identifier les niveaux clés de résistance et de support. Un mouvement de prix de FLT au-dessus de ces moyennes est considéré comme haussier, tandis qu'une chute en dessous indique une faiblesse.
Les traders utilisent également le RSI et les niveaux de retracement de Fibonacci pour évaluer la direction future de FLT.
Comment lire les graphiques de Fluence et prédire les mouvements de prix ?
La plupart des traders préfèrent les graphiques en chandeliers aux simples graphiques linéaires parce qu'ils fournissent des informations plus détaillées. Les chandeliers peuvent représenter l'action des prix de Fluence dans différentes périodes, comme 5 minutes pour les tendances à court terme et hebdomadaire pour les tendances à long terme. Les options populaires incluent les graphiques de 1 heure, 4 heures et 1 jour.
Par exemple, un graphique en chandeliers de 1 heure montre les prix d'ouverture, de clôture, les plus hauts et les plus bas de FLT au sein de chaque heure. La couleur du chandelier est cruciale : le vert indique que le prix a clôturé plus haut qu'il n'a ouvert, tandis que le rouge signifie le contraire. Certains graphiques utilisent des chandeliers creux et pleins pour transmettre la même information.
Qu'est-ce qui affecte le prix de Fluence ?
L'action du prix de Fluence est déterminée par l'offre et la demande, influencée par des facteurs tels que les réductions de récompenses de bloc, les hard forks et les mises à jour de protocole. Les événements du monde réel, tels que les réglementations, l'adoption par les entreprises et les gouvernements et les piratages d'échanges de cryptomonnaies, impactent également le prix de FLT. La capitalisation boursière de Fluence peut changer rapidement.
Les traders surveillent souvent l'activité des « baleines » de FLT, de grands détenteurs de Fluence, car leurs actions peuvent influencer significativement les mouvements de prix sur le marché relativement petit de Fluence.
Modèles de prédiction de prix haussiers et baissiers
Les traders identifient souvent des modèles de chandeliers pour obtenir un avantage dans les prédictions de prix des cryptomonnaies. Certaines formations indiquent des tendances haussières, tandis que d'autres suggèrent des mouvements baissiers.
Modèles de chandeliers haussiers couramment suivis :
- Marteau
- Englobante haussière
- Ligne pénétrante
- Étoile du matin
- Trois soldats blancs
Modèles de chandeliers baissiers courants :
- Harami baissier
- Nuage sombre
- Étoile du soir
- Étoile filante
- Pendu


