Prédiction du prix de Coinweb jusqu'à $0.0022045 d'ici 2026
| Année | Prix min. | Prix max. |
|---|---|---|
| 2026 | $0.000738 | $0.0022045 |
| 2027 | $0.00071 | $0.001867 |
| 2028 | $0.001283 | $0.003142 |
| 2029 | $0.002818 | $0.009271 |
| 2030 | $0.002397 | $0.00693 |
| 2031 | $0.002834 | $0.006326 |
| 2032 | $0.004325 | $0.011735 |
| 2033 | $0.010052 | $0.03126 |
| 2034 | $0.008081 | $0.0181043 |
| 2035 | $0.009555 | $0.021331 |
Calculateur de profit d’investissement
Si vous ouvrez une position short de $10,000.00 sur Coinweb aujourd’hui et la fermez le Apr 06, 2026, notre prévision indique que vous pourriez gagner environ $3,955.73, soit un rendement de 39.56% sur les 90 prochains jours.
Prévision du prix à long terme de Coinweb pour 2027, 2028, 2029, 2030, 2031, 2032 et 2037
[
'name' => 'Coinweb'
'name_with_ticker' => 'Coinweb <small>CWEB</small>'
'name_lang' => 'Coinweb'
'name_lang_with_ticker' => 'Coinweb <small>CWEB</small>'
'name_with_lang' => 'Coinweb'
'name_with_lang_with_ticker' => 'Coinweb <small>CWEB</small>'
'image' => '/uploads/coins/coinweb.png?1717082221'
'price_for_sd' => 0.002137
'ticker' => 'CWEB'
'marketcap' => '$13.81M'
'low24h' => '$0.002134'
'high24h' => '$0.002246'
'volume24h' => '$86.13K'
'current_supply' => '6.46B'
'max_supply' => '7.6B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.002137'
'change_24h_pct' => '-4.5766%'
'ath_price' => '$0.6616'
'ath_days' => 1468
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '30 déc. 2021'
'ath_pct' => '-99.68%'
'fdv' => '$16.25M'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.105396'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.002155'
'next_week_prediction_price_date' => '13 janvier 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.001889'
'next_month_prediction_price_date' => '5 février 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.000738'
'current_year_max_price_prediction' => '$0.0022045'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.002397'
'grand_prediction_max_price' => '$0.00693'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0021780656376434
107 => 0.0021861977440966
108 => 0.0022045197951711
109 => 0.002047959874784
110 => 0.0021182506826801
111 => 0.002159539946961
112 => 0.0019729935488235
113 => 0.0021558525244622
114 => 0.0020452345148844
115 => 0.002007689101007
116 => 0.0020582390545608
117 => 0.0020385396884995
118 => 0.0020216033303455
119 => 0.002012152551492
120 => 0.0020492708583871
121 => 0.0020475392450045
122 => 0.0019868064905712
123 => 0.0019075830881966
124 => 0.001934173062453
125 => 0.0019245126755233
126 => 0.0018895021870754
127 => 0.0019130950291068
128 => 0.0018092040928645
129 => 0.0016304651368407
130 => 0.0017485455661123
131 => 0.0017439995980322
201 => 0.0017417073147829
202 => 0.0018304414938772
203 => 0.0018219117500031
204 => 0.0018064301813481
205 => 0.0018892178559263
206 => 0.0018589992410539
207 => 0.0019521258916894
208 => 0.0020134651268521
209 => 0.0019979075126985
210 => 0.0020555973598473
211 => 0.0019347856417557
212 => 0.0019749144483809
213 => 0.0019831849398102
214 => 0.0018881962688728
215 => 0.00182330732159
216 => 0.0018189799685944
217 => 0.0017064714762539
218 => 0.0017665726047254
219 => 0.0018194591106266
220 => 0.0017941305784586
221 => 0.0017861123218425
222 => 0.0018270758559461
223 => 0.0018302590733749
224 => 0.0017576813786562
225 => 0.0017727725796249
226 => 0.0018357053963678
227 => 0.001771186834112
228 => 0.0016458378066961
301 => 0.0016147495148111
302 => 0.0016106017636027
303 => 0.0015262878503671
304 => 0.0016168269831293
305 => 0.0015773042253807
306 => 0.0017021561435533
307 => 0.0016308413974874
308 => 0.0016277671613194
309 => 0.0016231200024592
310 => 0.0015505475343734
311 => 0.0015664362926632
312 => 0.0016192529451449
313 => 0.0016380985217725
314 => 0.001636132773733
315 => 0.0016189941147337
316 => 0.0016268401050594
317 => 0.001601565436496
318 => 0.0015926404249795
319 => 0.0015644706336156
320 => 0.0015230688224142
321 => 0.0015288259981938
322 => 0.0014467981768306
323 => 0.0014021050662059
324 => 0.0013897346022307
325 => 0.0013731923008058
326 => 0.001391603099194
327 => 0.0014465658023189
328 => 0.0013802691213624
329 => 0.0012666081120339
330 => 0.0012734393323635
331 => 0.0012887870562365
401 => 0.0012601866743345
402 => 0.0012331188131123
403 => 0.00125665212236
404 => 0.0012084924543409
405 => 0.0012946069220311
406 => 0.0012922777670131
407 => 0.001324375915285
408 => 0.0013444475461198
409 => 0.0012981889353133
410 => 0.0012865550197921
411 => 0.0012931822268049
412 => 0.0011836492571681
413 => 0.0013154247348501
414 => 0.0013165643346532
415 => 0.001306806389268
416 => 0.0013769727630223
417 => 0.0015250456970846
418 => 0.0014693347030704
419 => 0.0014477617223144
420 => 0.0014067514701274
421 => 0.0014613951962187
422 => 0.0014571994106298
423 => 0.0014382244769924
424 => 0.0014267483779231
425 => 0.0014478934423347
426 => 0.0014241282704405
427 => 0.001419859392545
428 => 0.0013939946370835
429 => 0.0013847620961551
430 => 0.0013779266904098
501 => 0.0013704015803173
502 => 0.0013870000980408
503 => 0.0013493856731626
504 => 0.001304026364147
505 => 0.0013002552283969
506 => 0.0013106676657646
507 => 0.0013060609373442
508 => 0.0013002331731536
509 => 0.0012891063842165
510 => 0.0012858053036251
511 => 0.0012965322140905
512 => 0.0012844221575928
513 => 0.0013022912056241
514 => 0.0012974318132991
515 => 0.0012702876427898
516 => 0.0012364559562762
517 => 0.0012361547833019
518 => 0.0012288658019376
519 => 0.0012195821882645
520 => 0.001216999699321
521 => 0.0012546702126949
522 => 0.0013326470479952
523 => 0.0013173383293983
524 => 0.0013284004474852
525 => 0.0013828151198921
526 => 0.001400111907944
527 => 0.0013878350574816
528 => 0.0013710297473656
529 => 0.0013717690957223
530 => 0.0014291979277021
531 => 0.001432779693509
601 => 0.0014418296601817
602 => 0.0014534614248764
603 => 0.0013898159973063
604 => 0.0013687714018073
605 => 0.0013587993049502
606 => 0.0013280891063174
607 => 0.0013612074226494
608 => 0.0013419107979905
609 => 0.0013445145719235
610 => 0.0013428188607338
611 => 0.0013437448337069
612 => 0.0012945828512824
613 => 0.0013124948938001
614 => 0.0012827126490166
615 => 0.0012428375664652
616 => 0.0012427038912065
617 => 0.0012524632611699
618 => 0.0012466580060315
619 => 0.0012310362137207
620 => 0.0012332552155857
621 => 0.0012138144243051
622 => 0.001235615679634
623 => 0.0012362408616282
624 => 0.0012278461908042
625 => 0.0012614340326319
626 => 0.0012751949988338
627 => 0.0012696694466662
628 => 0.0012748073113638
629 => 0.0013179744757707
630 => 0.0013250126070844
701 => 0.0013281384801012
702 => 0.0013239502243576
703 => 0.001275596327886
704 => 0.0012777410288112
705 => 0.0012620046364538
706 => 0.001248709043172
707 => 0.0012492407971771
708 => 0.0012560764604301
709 => 0.0012859282027622
710 => 0.001348749434644
711 => 0.0013511334544722
712 => 0.0013540229560507
713 => 0.0013422699009837
714 => 0.0013387250671139
715 => 0.0013434016179874
716 => 0.0013669939696987
717 => 0.0014276799035613
718 => 0.001406229441457
719 => 0.0013887898818699
720 => 0.0014040890772993
721 => 0.001401733886082
722 => 0.0013818537020274
723 => 0.0013812957314739
724 => 0.0013431393021937
725 => 0.0013290337390687
726 => 0.0013172460747383
727 => 0.0013043742530143
728 => 0.0012967434056289
729 => 0.001308467855371
730 => 0.0013111493757466
731 => 0.0012855136614773
801 => 0.0012820196083497
802 => 0.0013029542860073
803 => 0.0012937417148936
804 => 0.0013032170727448
805 => 0.0013054154370444
806 => 0.0013050614497595
807 => 0.0012954424674598
808 => 0.0013015733199354
809 => 0.0012870720261354
810 => 0.0012713040471518
811 => 0.00126124505894
812 => 0.0012524672575941
813 => 0.0012573376919497
814 => 0.0012399754827784
815 => 0.0012344209626323
816 => 0.0012994963250652
817 => 0.0013475681949725
818 => 0.0013468692109455
819 => 0.0013426143254452
820 => 0.0013362924286638
821 => 0.0013665314835725
822 => 0.0013559968014913
823 => 0.0013636616629075
824 => 0.0013656126918312
825 => 0.0013715178687707
826 => 0.0013736284619595
827 => 0.0013672487834418
828 => 0.0013458378031242
829 => 0.0012924836758676
830 => 0.0012676471856029
831 => 0.0012594507301311
901 => 0.0012597486557203
902 => 0.0012515305379741
903 => 0.0012539511419605
904 => 0.0012506887506918
905 => 0.0012445105708859
906 => 0.0012569562067563
907 => 0.0012583904503512
908 => 0.0012554854902248
909 => 0.0012561697134957
910 => 0.0012321178843737
911 => 0.001233946492704
912 => 0.0012237645691524
913 => 0.0012218555812315
914 => 0.0011961165651347
915 => 0.0011505161671892
916 => 0.0011757832141887
917 => 0.0011452641744977
918 => 0.0011337061517278
919 => 0.0011884200338792
920 => 0.001182928277638
921 => 0.0011735287781623
922 => 0.0011596249594103
923 => 0.0011544678977875
924 => 0.0011231352238949
925 => 0.001121283922368
926 => 0.0011368132416026
927 => 0.0011296469951071
928 => 0.0011195828709576
929 => 0.0010831316334722
930 => 0.0010421483739486
1001 => 0.0010433854009421
1002 => 0.0010564214132759
1003 => 0.0010943253772822
1004 => 0.0010795156427997
1005 => 0.0010687710105105
1006 => 0.0010667588638652
1007 => 0.0010919450918455
1008 => 0.0011275888811155
1009 => 0.0011443121495561
1010 => 0.0011277398984247
1011 => 0.0011087025886382
1012 => 0.0011098613014745
1013 => 0.0011175696988619
1014 => 0.0011183797424365
1015 => 0.0011059884108326
1016 => 0.0011094764980964
1017 => 0.0011041777745852
1018 => 0.0010716595181777
1019 => 0.0010710713660358
1020 => 0.0010630908614857
1021 => 0.0010628492149796
1022 => 0.0010492723859096
1023 => 0.0010473728936706
1024 => 0.0010204152754976
1025 => 0.0010381588614143
1026 => 0.0010262573955615
1027 => 0.0010083190792493
1028 => 0.0010052265067558
1029 => 0.0010051335402922
1030 => 0.0010235521802106
1031 => 0.001037943628883
1101 => 0.0010264644266554
1102 => 0.0010238508348232
1103 => 0.0010517571578775
1104 => 0.0010482058238971
1105 => 0.0010451303915737
1106 => 0.0011243973707309
1107 => 0.0010616513714484
1108 => 0.0010342905343448
1109 => 0.0010004263027471
1110 => 0.0010114526673136
1111 => 0.0010137760843388
1112 => 0.00093233871183281
1113 => 0.00089929957994952
1114 => 0.00088796179494059
1115 => 0.00088143673937521
1116 => 0.00088441028913284
1117 => 0.00085467119533423
1118 => 0.00087465635820611
1119 => 0.00084890481675953
1120 => 0.00084458748703325
1121 => 0.00089063443314356
1122 => 0.00089704159669246
1123 => 0.00086970664644319
1124 => 0.00088726010962969
1125 => 0.00088089497986687
1126 => 0.00084934625302623
1127 => 0.00084814132371764
1128 => 0.00083231128158038
1129 => 0.00080754033093573
1130 => 0.00079621934179778
1201 => 0.0007903232723614
1202 => 0.00079275610552296
1203 => 0.00079152599063055
1204 => 0.00078349865887584
1205 => 0.00079198610789028
1206 => 0.00077030418291447
1207 => 0.00076167026568597
1208 => 0.00075777052557921
1209 => 0.00073852656919815
1210 => 0.00076915226162666
1211 => 0.00077518590884739
1212 => 0.00078123144421703
1213 => 0.00083385370214743
1214 => 0.00083122484285018
1215 => 0.00085498845059088
1216 => 0.00085406504049254
1217 => 0.00084728727461998
1218 => 0.00081869299529198
1219 => 0.0008300901653881
1220 => 0.00079501144734572
1221 => 0.00082129480802404
1222 => 0.00080930017982984
1223 => 0.00081723941216607
1224 => 0.00080296395657381
1225 => 0.00081086458311768
1226 => 0.00077661671043698
1227 => 0.00074463652880831
1228 => 0.00075750628745539
1229 => 0.00077149718694018
1230 => 0.00080183302183811
1231 => 0.00078376524883811
]
'min_raw' => 0.00073852656919815
'max_raw' => 0.0022045197951711
'avg_raw' => 0.0014715231821846
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.000738'
'max' => '$0.0022045'
'avg' => '$0.001471'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0013990334308018
'max_diff' => 6.6959795171135E-5
'year' => 2026
]
1 => [
'items' => [
101 => 0.00079026310322705
102 => 0.00076849637875179
103 => 0.00072358540880188
104 => 0.00072383960001448
105 => 0.00071693102572635
106 => 0.00071096100887305
107 => 0.00078584054991172
108 => 0.00077652809531319
109 => 0.00076168991769436
110 => 0.00078155140808291
111 => 0.00078680310138587
112 => 0.0007869526097112
113 => 0.00080144304039941
114 => 0.00080917658585527
115 => 0.00081053965676097
116 => 0.00083334066253535
117 => 0.00084098325891839
118 => 0.00087246203179938
119 => 0.00080852044855461
120 => 0.00080720361372562
121 => 0.0007818308999835
122 => 0.00076573912380152
123 => 0.0007829327176658
124 => 0.00079816389466993
125 => 0.00078230417510976
126 => 0.00078437511966737
127 => 0.00076308474194454
128 => 0.00077069505017507
129 => 0.00077725007284243
130 => 0.00077363077461194
131 => 0.00076821250998487
201 => 0.00079691511184965
202 => 0.00079529559856603
203 => 0.00082202412129248
204 => 0.00084286091613274
205 => 0.00088020417750909
206 => 0.00084123453751462
207 => 0.00083981432894293
208 => 0.00085369709553981
209 => 0.00084098113353915
210 => 0.00084901718258348
211 => 0.00087890944577122
212 => 0.00087954102218876
213 => 0.00086896130345462
214 => 0.00086831752660817
215 => 0.0008703494773205
216 => 0.00088225067610946
217 => 0.00087809203156569
218 => 0.00088290452031573
219 => 0.0008889226111891
220 => 0.000913815986659
221 => 0.00091981769520867
222 => 0.00090523665496209
223 => 0.00090655315963937
224 => 0.00090109945032864
225 => 0.00089583123546926
226 => 0.00090767341311216
227 => 0.00092931522551314
228 => 0.00092918059292141
301 => 0.00093420107274172
302 => 0.00093732879007787
303 => 0.00092390233764208
304 => 0.00091516221081072
305 => 0.00091851373158658
306 => 0.00092387288629382
307 => 0.00091677582994391
308 => 0.00087296951047599
309 => 0.00088625754944403
310 => 0.00088404577000784
311 => 0.00088089592712914
312 => 0.00089425715306487
313 => 0.00089296843022844
314 => 0.00085436617794314
315 => 0.00085683736888974
316 => 0.00085451645924944
317 => 0.00086201579311069
318 => 0.00084057614489993
319 => 0.00084717083629133
320 => 0.00085130696491062
321 => 0.00085374317644262
322 => 0.00086254444302209
323 => 0.00086151171597283
324 => 0.00086248024725869
325 => 0.00087553020214782
326 => 0.00094153239577328
327 => 0.00094512474954668
328 => 0.00092743468572479
329 => 0.00093450151730055
330 => 0.00092093474602126
331 => 0.00093004221047052
401 => 0.00093627330634218
402 => 0.00090811618226894
403 => 0.00090644890011955
404 => 0.00089282613394922
405 => 0.00090014623685624
406 => 0.00088849942679714
407 => 0.00089135714659752
408 => 0.00088336671290412
409 => 0.00089774790267276
410 => 0.00091382830744507
411 => 0.00091789085272498
412 => 0.00090720404512924
413 => 0.00089946609213499
414 => 0.00088588079571726
415 => 0.00090847344642802
416 => 0.00091508022599441
417 => 0.00090843874382755
418 => 0.00090689976729024
419 => 0.00090398340953291
420 => 0.00090751848637497
421 => 0.00091504424405401
422 => 0.0009114952357115
423 => 0.00091383941824721
424 => 0.00090490581173162
425 => 0.00092390678235651
426 => 0.00095408489654144
427 => 0.00095418192411316
428 => 0.00095063289664017
429 => 0.00094918071106309
430 => 0.00095282222862337
501 => 0.00095479760251695
502 => 0.00096657360256679
503 => 0.0009792097197968
504 => 0.0010381769653394
505 => 0.0010216191987523
506 => 0.0010739384469748
507 => 0.0011153161795147
508 => 0.0011277235522744
509 => 0.0011163093531475
510 => 0.001077261994517
511 => 0.0010753461448173
512 => 0.0011336993839808
513 => 0.0011172119211695
514 => 0.0011152507899307
515 => 0.001094387666934
516 => 0.0011067203565731
517 => 0.0011040230164394
518 => 0.00109976513308
519 => 0.0011232950458087
520 => 0.0011673409419072
521 => 0.0011604759759404
522 => 0.0011553515973029
523 => 0.0011328980617973
524 => 0.0011464201053504
525 => 0.0011416051646388
526 => 0.0011622932055726
527 => 0.0011500380684196
528 => 0.0011170870124228
529 => 0.0011223345766984
530 => 0.0011215414179148
531 => 0.0011378645694779
601 => 0.0011329647645442
602 => 0.0011205846523624
603 => 0.0011671903978227
604 => 0.0011641640799473
605 => 0.0011684547067821
606 => 0.0011703435734068
607 => 0.0011987116693831
608 => 0.0012103331706268
609 => 0.0012129714548721
610 => 0.0012240109822145
611 => 0.0012126967813751
612 => 0.0012579616516211
613 => 0.0012880601490564
614 => 0.0013230211026819
615 => 0.0013741084525473
616 => 0.0013933177686811
617 => 0.0013898477776574
618 => 0.0014285816232735
619 => 0.0014981854828405
620 => 0.0014039167077264
621 => 0.001503181956824
622 => 0.0014717557250321
623 => 0.0013972446947873
624 => 0.0013924470628669
625 => 0.0014429067976395
626 => 0.0015548216327957
627 => 0.0015267882359166
628 => 0.0015548674853903
629 => 0.0015221115493621
630 => 0.0015204849410496
701 => 0.00155327660269
702 => 0.0016298961074933
703 => 0.0015934970528005
704 => 0.0015413100824839
705 => 0.0015798441292465
706 => 0.0015464623717831
707 => 0.0014712439292524
708 => 0.0015267667993064
709 => 0.0014896402373016
710 => 0.0015004757418512
711 => 0.0015785102530259
712 => 0.0015691209341877
713 => 0.0015812715821919
714 => 0.0015598260065023
715 => 0.0015397924571513
716 => 0.0015023983495768
717 => 0.0014913277978312
718 => 0.0014943873000569
719 => 0.0014913262816938
720 => 0.0014704046221754
721 => 0.0014658865917944
722 => 0.0014583563432199
723 => 0.0014606902821281
724 => 0.0014465312117561
725 => 0.0014732523029612
726 => 0.0014782119729543
727 => 0.0014976573547793
728 => 0.001499676238828
729 => 0.0015538313504229
730 => 0.0015240036249961
731 => 0.0015440146384143
801 => 0.0015422246650232
802 => 0.0013988595747499
803 => 0.0014186140192687
804 => 0.0014493457356537
805 => 0.0014355011390781
806 => 0.0014159281186569
807 => 0.0014001218552278
808 => 0.0013761737498594
809 => 0.0014098802482829
810 => 0.0014542007094233
811 => 0.0015008002788624
812 => 0.0015567866082188
813 => 0.0015442911112591
814 => 0.0014997536533783
815 => 0.0015017515712042
816 => 0.0015141019130523
817 => 0.0014981070982122
818 => 0.00149338991506
819 => 0.0015134538445244
820 => 0.0015135920137797
821 => 0.0014951880462683
822 => 0.0014747354042698
823 => 0.001474649706953
824 => 0.0014710103568585
825 => 0.0015227589816591
826 => 0.0015512154929233
827 => 0.0015544779860798
828 => 0.0015509959011397
829 => 0.0015523360174341
830 => 0.0015357778005259
831 => 0.0015736249741914
901 => 0.0016083572834444
902 => 0.001599048282617
903 => 0.0015850927670244
904 => 0.0015739765266661
905 => 0.0015964296496678
906 => 0.001595429847445
907 => 0.0016080539270229
908 => 0.001607481225853
909 => 0.0016032362227066
910 => 0.0015990484342194
911 => 0.0016156525422049
912 => 0.0016108708257589
913 => 0.0016060816819865
914 => 0.0015964763209698
915 => 0.0015977818490601
916 => 0.001583828743084
917 => 0.0015773733978087
918 => 0.0014803004934081
919 => 0.0014543594414036
920 => 0.001462521024443
921 => 0.001465208029495
922 => 0.0014539184504183
923 => 0.0014701048067594
924 => 0.0014675821802692
925 => 0.0014773962442553
926 => 0.0014712648431539
927 => 0.0014715164779938
928 => 0.0014895476212805
929 => 0.0014947821388866
930 => 0.0014921198209844
1001 => 0.0014939844171842
1002 => 0.0015369532496112
1003 => 0.001530844455706
1004 => 0.0015275992806966
1005 => 0.0015284982163521
1006 => 0.0015394776742994
1007 => 0.0015425513230684
1008 => 0.0015295280572525
1009 => 0.0015356699046979
1010 => 0.0015618211116039
1011 => 0.0015709725539909
1012 => 0.0016001795651486
1013 => 0.0015877719076956
1014 => 0.0016105466999415
1015 => 0.0016805486468064
1016 => 0.0017364710457284
1017 => 0.0016850424965889
1018 => 0.0017877368605346
1019 => 0.0018676991534979
1020 => 0.0018646300675098
1021 => 0.0018506867921705
1022 => 0.0017596518475393
1023 => 0.0016758801342351
1024 => 0.0017459587295489
1025 => 0.0017461373743002
1026 => 0.0017401175608131
1027 => 0.0017027290162519
1028 => 0.0017388165205067
1029 => 0.0017416810155439
1030 => 0.0017400776600538
1031 => 0.0017114119506008
1101 => 0.0016676447105747
1102 => 0.0016761967245118
1103 => 0.0016902050977972
1104 => 0.0016636843247152
1105 => 0.0016552093307652
1106 => 0.0016709659569518
1107 => 0.0017217370895486
1108 => 0.0017121391010283
1109 => 0.0017118884587596
1110 => 0.0017529527238298
1111 => 0.0017235595722626
1112 => 0.0016763045927949
1113 => 0.0016643720872627
1114 => 0.0016220197313224
1115 => 0.0016512726544243
1116 => 0.0016523254150488
1117 => 0.0016363038880235
1118 => 0.0016776046514134
1119 => 0.0016772240576079
1120 => 0.0017164329856392
1121 => 0.0017913857298342
1122 => 0.0017692185151752
1123 => 0.0017434404563129
1124 => 0.0017462432460592
1125 => 0.0017769829317024
1126 => 0.0017583970160438
1127 => 0.0017650806409002
1128 => 0.0017769728152357
1129 => 0.0017841476592784
1130 => 0.0017452108964161
1201 => 0.0017361328744322
1202 => 0.001717562427406
1203 => 0.0017127177444106
1204 => 0.0017278429860284
1205 => 0.0017238580192448
1206 => 0.0016522369345948
1207 => 0.0016447521327529
1208 => 0.0016449816809395
1209 => 0.0016261607908252
1210 => 0.0015974544158696
1211 => 0.0016728930552843
1212 => 0.0016668342767762
1213 => 0.0016601458542155
1214 => 0.0016609651478156
1215 => 0.0016937105043327
1216 => 0.0016747165438726
1217 => 0.0017252151008047
1218 => 0.0017148341156251
1219 => 0.0017041868973466
1220 => 0.0017027151274583
1221 => 0.001698616856799
1222 => 0.0016845623618092
1223 => 0.0016675907145647
1224 => 0.001656384562995
1225 => 0.0015279272032061
1226 => 0.0015517681419809
1227 => 0.0015791949688712
1228 => 0.0015886625996077
1229 => 0.0015724675620929
1230 => 0.0016852018406002
1231 => 0.001705799479618
]
'min_raw' => 0.00071096100887305
'max_raw' => 0.0018676991534979
'avg_raw' => 0.0012893300811855
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.00071'
'max' => '$0.001867'
'avg' => '$0.001289'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -2.7565560325101E-5
'max_diff' => -0.00033682064167323
'year' => 2027
]
2 => [
'items' => [
101 => 0.0016434078874823
102 => 0.0016317369680256
103 => 0.0016859669841368
104 => 0.0016532596550719
105 => 0.0016679877633471
106 => 0.0016361536491006
107 => 0.0017008381115479
108 => 0.0017003453243201
109 => 0.0016751816074633
110 => 0.001696449808637
111 => 0.0016927539352983
112 => 0.0016643441609425
113 => 0.0017017387520686
114 => 0.0017017572993192
115 => 0.0016775377689509
116 => 0.0016492546598176
117 => 0.0016441983079218
118 => 0.0016403890259936
119 => 0.001667050913506
120 => 0.00169095587848
121 => 0.0017354370917533
122 => 0.0017466207256177
123 => 0.0017902711931274
124 => 0.0017642794650281
125 => 0.0017758012614453
126 => 0.0017883098013138
127 => 0.001794306855313
128 => 0.0017845349776409
129 => 0.0018523421209326
130 => 0.0018580671213836
131 => 0.0018599866645138
201 => 0.0018371224773084
202 => 0.0018574312269764
203 => 0.0018479294355618
204 => 0.0018726504571489
205 => 0.0018765270289876
206 => 0.0018732437105532
207 => 0.0018744741956424
208 => 0.0018166127608426
209 => 0.0018136123402049
210 => 0.001772701391909
211 => 0.0017893729057381
212 => 0.0017582063097212
213 => 0.0017680895583696
214 => 0.0017724460002028
215 => 0.0017701704422151
216 => 0.0017903154881162
217 => 0.0017731880837393
218 => 0.0017279860475825
219 => 0.0016827716961612
220 => 0.0016822040668099
221 => 0.0016702999261802
222 => 0.0016616954128571
223 => 0.0016633529473847
224 => 0.0016691943152554
225 => 0.0016613559019375
226 => 0.0016630286248365
227 => 0.0016908069702545
228 => 0.001696377719322
229 => 0.0016774461373585
301 => 0.0016014331039608
302 => 0.0015827793149007
303 => 0.0015961872885564
304 => 0.0015897791407331
305 => 0.0012830758437462
306 => 0.001355131233979
307 => 0.0013123183678725
308 => 0.0013320485062996
309 => 0.0012883476563429
310 => 0.0013092039925
311 => 0.0013053525887632
312 => 0.0014212155239835
313 => 0.0014194064836143
314 => 0.0014202723755067
315 => 0.0013789410994106
316 => 0.0014447829444982
317 => 0.0014772190049845
318 => 0.0014712159534463
319 => 0.0014727267921878
320 => 0.0014467655769606
321 => 0.0014205237368186
322 => 0.0013914174975108
323 => 0.0014454932925047
324 => 0.001439480987206
325 => 0.0014532710524021
326 => 0.0014883430708732
327 => 0.0014935075588187
328 => 0.0015004486829906
329 => 0.0014979607840778
330 => 0.0015572326296563
331 => 0.0015500544180685
401 => 0.0015673518426826
402 => 0.0015317697278926
403 => 0.0014915051875224
404 => 0.0014991581602998
405 => 0.00149842111748
406 => 0.0014890377164458
407 => 0.0014805668015523
408 => 0.0014664651149201
409 => 0.0015110849380812
410 => 0.0015092734547462
411 => 0.0015385992643204
412 => 0.0015334156426225
413 => 0.0014987981482761
414 => 0.001500034518859
415 => 0.0015083497052085
416 => 0.001537128660105
417 => 0.0015456722133389
418 => 0.0015417144990792
419 => 0.0015510821151722
420 => 0.0015584858969836
421 => 0.0015520119161771
422 => 0.0016436698319805
423 => 0.0016056070749713
424 => 0.0016241585978987
425 => 0.0016285830268049
426 => 0.0016172499451973
427 => 0.0016197076847907
428 => 0.0016234304905809
429 => 0.0016460346383386
430 => 0.0017053544626176
501 => 0.0017316268089871
502 => 0.0018106684592944
503 => 0.0017294452563498
504 => 0.0017246258076221
505 => 0.0017388635956716
506 => 0.0017852694118104
507 => 0.0018228769671143
508 => 0.0018353535628405
509 => 0.0018370025509318
510 => 0.0018604094739426
511 => 0.0018738258856991
512 => 0.0018575672578259
513 => 0.0018437897730527
514 => 0.0017944405327193
515 => 0.0018001528416614
516 => 0.0018395049856483
517 => 0.0018950922068595
518 => 0.0019427918255233
519 => 0.0019260890815668
520 => 0.0020535192276555
521 => 0.0020661534061348
522 => 0.0020644077711808
523 => 0.0020931903099744
524 => 0.0020360628319313
525 => 0.0020116397282751
526 => 0.0018467686216417
527 => 0.0018930906776007
528 => 0.0019604225063359
529 => 0.0019515108863214
530 => 0.0019026127125089
531 => 0.0019427547318737
601 => 0.0019294825249147
602 => 0.0019190141846218
603 => 0.0019669716808913
604 => 0.0019142404437576
605 => 0.0019598964719082
606 => 0.0019013421435539
607 => 0.0019261653782943
608 => 0.0019120745096909
609 => 0.0019211930285892
610 => 0.0018678863534316
611 => 0.0018966493414002
612 => 0.0018666897185682
613 => 0.0018666755138061
614 => 0.0018660141534716
615 => 0.0019012615168722
616 => 0.0019024109321272
617 => 0.0018763630773184
618 => 0.0018726091744965
619 => 0.0018864893207292
620 => 0.0018702393047067
621 => 0.0018778425849273
622 => 0.001870469600319
623 => 0.0018688097861849
624 => 0.00185558410477
625 => 0.0018498861175688
626 => 0.0018521204451694
627 => 0.0018444935331936
628 => 0.0018398980428508
629 => 0.0018650999947756
630 => 0.001851635608506
701 => 0.0018630363844733
702 => 0.0018500437613659
703 => 0.0018050056690594
704 => 0.0017791037859047
705 => 0.0016940310045711
706 => 0.0017181575398248
707 => 0.0017341534576588
708 => 0.0017288668069101
709 => 0.0017402245783805
710 => 0.0017409218533048
711 => 0.001737229326021
712 => 0.0017329538524684
713 => 0.0017308727883915
714 => 0.0017463833350369
715 => 0.0017553877294255
716 => 0.0017357588620112
717 => 0.0017311600930131
718 => 0.0017510059617084
719 => 0.001763111930148
720 => 0.0018524955993499
721 => 0.00184587376843
722 => 0.0018624932645703
723 => 0.0018606221643519
724 => 0.0018780420440003
725 => 0.001906516185035
726 => 0.0018486202948164
727 => 0.0018586690194691
728 => 0.0018562053042432
729 => 0.0018831035010587
730 => 0.0018831874742932
731 => 0.0018670606616376
801 => 0.0018758032684058
802 => 0.0018709233851487
803 => 0.0018797419937501
804 => 0.0018457853298409
805 => 0.001887140881087
806 => 0.0019105868137507
807 => 0.0019109123605484
808 => 0.0019220255465526
809 => 0.0019333171871651
810 => 0.0019549905080263
811 => 0.0019327127300095
812 => 0.0018926371760554
813 => 0.0018955305016076
814 => 0.0018720342189874
815 => 0.0018724291957432
816 => 0.0018703207788658
817 => 0.0018766482966289
818 => 0.0018471738641627
819 => 0.0018540914545499
820 => 0.0018444067874985
821 => 0.0018586479668943
822 => 0.0018433268120157
823 => 0.0018562041161651
824 => 0.0018617615337465
825 => 0.0018822685242648
826 => 0.0018402979128424
827 => 0.0017547169949916
828 => 0.0017727071414922
829 => 0.0017460983017223
830 => 0.00174856105115
831 => 0.0017535361969376
901 => 0.0017374101216735
902 => 0.0017404864686429
903 => 0.0017403765598812
904 => 0.0017394294255507
905 => 0.0017352344105559
906 => 0.0017291508088551
907 => 0.0017533860055973
908 => 0.0017575040377776
909 => 0.0017666579131982
910 => 0.0017938936373168
911 => 0.0017911721462148
912 => 0.0017956110111158
913 => 0.00178592099396
914 => 0.0017490105432542
915 => 0.0017510149583091
916 => 0.0017260198704564
917 => 0.0017660187326052
918 => 0.0017565464740892
919 => 0.0017504396474032
920 => 0.0017487733431626
921 => 0.0017760765793733
922 => 0.0017842461355733
923 => 0.001779155416388
924 => 0.0017687142028189
925 => 0.0017887644195393
926 => 0.0017941290116829
927 => 0.0017953299460254
928 => 0.0018308550858063
929 => 0.001797315406704
930 => 0.0018053887408197
1001 => 0.0018683745889551
1002 => 0.0018112551161492
1003 => 0.0018415125748107
1004 => 0.0018400316296614
1005 => 0.0018555103216561
1006 => 0.0018387619251287
1007 => 0.0018389695415764
1008 => 0.0018527135714503
1009 => 0.0018334125602413
1010 => 0.0018286333584353
1011 => 0.0018220309253695
1012 => 0.0018364470964234
1013 => 0.001845088938983
1014 => 0.0019147358432788
1015 => 0.0019597309197386
1016 => 0.0019577775648034
1017 => 0.0019756275723838
1018 => 0.0019675859804815
1019 => 0.0019416175589641
1020 => 0.0019859424879826
1021 => 0.0019719162258074
1022 => 0.0019730725338192
1023 => 0.0019730294959772
1024 => 0.0019823557341266
1025 => 0.0019757472396606
1026 => 0.00196272121872
1027 => 0.0019713684993193
1028 => 0.0019970478312399
1029 => 0.0020767572654594
1030 => 0.0021213637208582
1031 => 0.0020740719008349
1101 => 0.0021066931650243
1102 => 0.0020871320306556
1103 => 0.0020835771906474
1104 => 0.0021040657552509
1105 => 0.0021245901823744
1106 => 0.0021232828650962
1107 => 0.0021083831849455
1108 => 0.0020999667336937
1109 => 0.0021636989222899
1110 => 0.002210655713198
1111 => 0.0022074535748604
1112 => 0.0022215867720915
1113 => 0.0022630822762852
1114 => 0.0022668761051501
1115 => 0.0022663981699133
1116 => 0.0022569947692265
1117 => 0.0022978524819774
1118 => 0.0023319367047772
1119 => 0.0022548181536579
1120 => 0.0022841838883682
1121 => 0.0022973671127845
1122 => 0.0023167239975141
1123 => 0.0023493823066434
1124 => 0.0023848578925466
1125 => 0.0023898745293633
1126 => 0.0023863149854737
1127 => 0.0023629178829356
1128 => 0.0024017356923426
1129 => 0.0024244742547036
1130 => 0.0024380145482268
1201 => 0.0024723504797117
1202 => 0.0022974485278904
1203 => 0.0021736442332002
1204 => 0.0021543104048287
1205 => 0.0021936265050875
1206 => 0.0022039938471857
1207 => 0.0021998147845855
1208 => 0.0020604617951176
1209 => 0.0021535767401789
1210 => 0.0022537605917378
1211 => 0.0022576090614878
1212 => 0.0023077631923237
1213 => 0.0023240954332112
1214 => 0.0023644760823864
1215 => 0.002361950261786
1216 => 0.0023717823072637
1217 => 0.0023695220902756
1218 => 0.0024443187397237
1219 => 0.0025268305514749
1220 => 0.0025239734298054
1221 => 0.0025121113806307
1222 => 0.0025297285464351
1223 => 0.0026148895786654
1224 => 0.0026070493154954
1225 => 0.002614665463333
1226 => 0.002715075119798
1227 => 0.0028456219563096
1228 => 0.0027849698440619
1229 => 0.0029165674754643
1230 => 0.0029994012087414
1231 => 0.0031426535852763
]
'min_raw' => 0.0012830758437462
'max_raw' => 0.0031426535852763
'avg_raw' => 0.0022128647145112
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.001283'
'max' => '$0.003142'
'avg' => '$0.002212'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00057211483487317
'max_diff' => 0.0012749544317784
'year' => 2028
]
3 => [
'items' => [
101 => 0.0031247176822013
102 => 0.0031804847811518
103 => 0.0030926086723611
104 => 0.0028908273638859
105 => 0.0028588946994319
106 => 0.0029228247023327
107 => 0.0030799903762658
108 => 0.0029178749959554
109 => 0.0029506707262527
110 => 0.0029412255537208
111 => 0.0029407222606159
112 => 0.0029599309113862
113 => 0.0029320677615881
114 => 0.0028185482768258
115 => 0.0028705735877179
116 => 0.0028504841167218
117 => 0.0028727748825612
118 => 0.0029930689523852
119 => 0.0029398840766635
120 => 0.0028838581304793
121 => 0.0029541271001471
122 => 0.003043603645572
123 => 0.0030380043641641
124 => 0.0030271394179148
125 => 0.0030883845510522
126 => 0.0031895435678551
127 => 0.003216886443607
128 => 0.0032370703954866
129 => 0.0032398534214401
130 => 0.0032685203184026
131 => 0.0031143711884474
201 => 0.0033590098165166
202 => 0.0034012521495785
203 => 0.0033933123417282
204 => 0.0034402629170973
205 => 0.0034264488668026
206 => 0.0034064344752836
207 => 0.0034808611239174
208 => 0.0033955369771796
209 => 0.0032744300928966
210 => 0.0032079884609564
211 => 0.0032954841615888
212 => 0.0033489147327859
213 => 0.0033842289415246
214 => 0.0033949149997515
215 => 0.0031263373465996
216 => 0.0029815888875502
217 => 0.0030743709902564
218 => 0.0031875715590366
219 => 0.0031137423535722
220 => 0.0031166363186493
221 => 0.003011375273631
222 => 0.0031968848258617
223 => 0.0031698576444826
224 => 0.0033100747092876
225 => 0.0032766107814596
226 => 0.003390952354613
227 => 0.0033608423863983
228 => 0.0034858271810318
301 => 0.0035356869994394
302 => 0.0036194093946067
303 => 0.0036809959293033
304 => 0.0037171607204398
305 => 0.0037149895220307
306 => 0.0038582924417409
307 => 0.0037737917166105
308 => 0.0036676388905548
309 => 0.0036657189208394
310 => 0.0037206969736508
311 => 0.0038359158898512
312 => 0.003865790478455
313 => 0.0038824862979181
314 => 0.0038569160692246
315 => 0.0037651965883171
316 => 0.0037255925814895
317 => 0.0037593363427451
318 => 0.003718070622364
319 => 0.003789306832858
320 => 0.0038871293650999
321 => 0.0038669293990242
322 => 0.0039344548570672
323 => 0.0040043366022563
324 => 0.0041042706364624
325 => 0.0041303970935504
326 => 0.0041735831336168
327 => 0.0042180357547202
328 => 0.0042323127385869
329 => 0.0042595719306763
330 => 0.0042594282612785
331 => 0.0043415756713952
401 => 0.0044321868086475
402 => 0.0044663904153075
403 => 0.0045450397228245
404 => 0.0044103555399021
405 => 0.0045125150397891
406 => 0.0046046654659054
407 => 0.0044947999289735
408 => 0.0046462239762471
409 => 0.0046521034288684
410 => 0.0047408761830434
411 => 0.0046508879898852
412 => 0.0045974532880404
413 => 0.0047517172700943
414 => 0.0048263607517402
415 => 0.0048038775275997
416 => 0.0046327790817562
417 => 0.0045331924475178
418 => 0.0042725550168887
419 => 0.004581291312168
420 => 0.0047316677556373
421 => 0.0046323896430959
422 => 0.0046824597483989
423 => 0.0049556260076455
424 => 0.0050596300329612
425 => 0.0050379979227385
426 => 0.0050416533932713
427 => 0.005097772077525
428 => 0.00534663322863
429 => 0.0051975098583316
430 => 0.0053115090873786
501 => 0.0053719738674104
502 => 0.0054281369248427
503 => 0.0052902182063056
504 => 0.0051107879799171
505 => 0.0050539548952514
506 => 0.0046225183913614
507 => 0.0046000602477002
508 => 0.0045874538111117
509 => 0.0045079720116374
510 => 0.0044455210891477
511 => 0.0043958577969298
512 => 0.0042655264874356
513 => 0.0043095094784742
514 => 0.0041017885733988
515 => 0.0042346810472892
516 => 0.0039031534671922
517 => 0.0041792594872922
518 => 0.004028987533552
519 => 0.0041298911089373
520 => 0.0041295390658685
521 => 0.0039437435920764
522 => 0.0038365806402458
523 => 0.0039048690439968
524 => 0.003978079633558
525 => 0.0039899578054043
526 => 0.0040848772457624
527 => 0.0041113672212798
528 => 0.0040311013587634
529 => 0.0038962832949851
530 => 0.0039275984563282
531 => 0.0038359460395007
601 => 0.0036753287043699
602 => 0.0037906868785704
603 => 0.0038300752311834
604 => 0.0038474713716022
605 => 0.0036895226695266
606 => 0.0036398917581013
607 => 0.0036134686773022
608 => 0.003875894100982
609 => 0.0038902703580831
610 => 0.003816719394156
611 => 0.0041491767254948
612 => 0.0040739313923006
613 => 0.0041579988650327
614 => 0.0039247569336663
615 => 0.0039336670895464
616 => 0.0038232466213697
617 => 0.0038850747052503
618 => 0.0038413766083757
619 => 0.0038800796070698
620 => 0.0039032780249086
621 => 0.0040136803741729
622 => 0.004180520104779
623 => 0.0039971899447868
624 => 0.0039173103687419
625 => 0.0039668672084603
626 => 0.0040988436031546
627 => 0.0042987945968637
628 => 0.0041804195841991
629 => 0.0042329524046816
630 => 0.0042444284889345
701 => 0.0041571431370768
702 => 0.0043020129322892
703 => 0.0043796498324636
704 => 0.0044592892273497
705 => 0.0045284378824842
706 => 0.0044274795017244
707 => 0.0045355194409528
708 => 0.0044484583215513
709 => 0.0043703554972351
710 => 0.0043704739469802
711 => 0.0043214789043864
712 => 0.0042265448355884
713 => 0.0042090375367521
714 => 0.0043001127162266
715 => 0.0043731463853135
716 => 0.0043791617881072
717 => 0.0044195969799191
718 => 0.0044435261099178
719 => 0.0046780641139799
720 => 0.0047723972394138
721 => 0.0048877459995596
722 => 0.0049326808423364
723 => 0.0050679186090616
724 => 0.0049587031289566
725 => 0.0049350736728383
726 => 0.0046070310866992
727 => 0.0046607480418022
728 => 0.0047467540698373
729 => 0.0046084492944235
730 => 0.0046961718410525
731 => 0.0047134901299747
801 => 0.0046037497510779
802 => 0.0046623668290486
803 => 0.004506697248711
804 => 0.0041839132762345
805 => 0.0043023722831232
806 => 0.0043895979850639
807 => 0.0042651161535431
808 => 0.004488245018432
809 => 0.0043578977418786
810 => 0.0043165839129839
811 => 0.0041554039370221
812 => 0.0042314746812898
813 => 0.0043343614521401
814 => 0.0042707893896256
815 => 0.0044027109647364
816 => 0.0045895470972924
817 => 0.0047226976516358
818 => 0.0047329192978613
819 => 0.0046473124118128
820 => 0.0047844979930413
821 => 0.0047854972402317
822 => 0.0046307513441863
823 => 0.0045359703444872
824 => 0.0045144359019347
825 => 0.0045682331615071
826 => 0.00463355296615
827 => 0.0047365440924162
828 => 0.0047987794730199
829 => 0.004961056338539
830 => 0.0050049638055062
831 => 0.0050532047997908
901 => 0.0051176696451268
902 => 0.0051950762203998
903 => 0.0050257150404614
904 => 0.005032444075869
905 => 0.0048747372900756
906 => 0.0047062049720144
907 => 0.0048340999935728
908 => 0.0050013057210987
909 => 0.0049629485424583
910 => 0.0049586325762952
911 => 0.0049658908342324
912 => 0.0049369707741659
913 => 0.0048061664143126
914 => 0.0047404772836729
915 => 0.0048252330212827
916 => 0.0048702769237783
917 => 0.004940136088308
918 => 0.0049315244717317
919 => 0.0051114741772336
920 => 0.0051813971913951
921 => 0.0051635078921981
922 => 0.0051667999537804
923 => 0.0052933922309611
924 => 0.0054341888788736
925 => 0.0055660635193977
926 => 0.0057002120678865
927 => 0.0055384907567763
928 => 0.0054563786485784
929 => 0.0055410973844845
930 => 0.0054961444307102
1001 => 0.0057544574370096
1002 => 0.005772342469112
1003 => 0.006030636796441
1004 => 0.0062757888701925
1005 => 0.0061218132450248
1006 => 0.0062670053243435
1007 => 0.0064240423958106
1008 => 0.0067269923850172
1009 => 0.0066249694865615
1010 => 0.0065468215452471
1011 => 0.0064729721183131
1012 => 0.0066266410524964
1013 => 0.006824333681402
1014 => 0.0068669147801918
1015 => 0.006935912427463
1016 => 0.0068633698379883
1017 => 0.0069507393967065
1018 => 0.0072591923311111
1019 => 0.0071758456254456
1020 => 0.0070574799047491
1021 => 0.0073009738723269
1022 => 0.0073890933926344
1023 => 0.008007562334704
1024 => 0.0087884049217445
1025 => 0.0084651309634209
1026 => 0.0082644643855039
1027 => 0.0083116257911893
1028 => 0.0085967630707868
1029 => 0.0086883401151887
1030 => 0.0084394021400042
1031 => 0.0085273312412939
1101 => 0.0090118292343983
1102 => 0.0092717468631422
1103 => 0.0089187438117132
1104 => 0.0079448223931248
1105 => 0.0070468223666678
1106 => 0.0072850124111524
1107 => 0.0072580090520054
1108 => 0.0077785417032406
1109 => 0.0071738578340801
1110 => 0.0071840391596385
1111 => 0.0077153358748476
1112 => 0.0075735950199614
1113 => 0.007343992987843
1114 => 0.007048498715595
1115 => 0.0065022502234328
1116 => 0.0060184227006585
1117 => 0.0069673198916428
1118 => 0.00692640171931
1119 => 0.0068671461420387
1120 => 0.0069990130171328
1121 => 0.0076393211315246
1122 => 0.0076245599570127
1123 => 0.0075306568959858
1124 => 0.0076018815401511
1125 => 0.0073315069633547
1126 => 0.0074011886481098
1127 => 0.0070466801188755
1128 => 0.0072069327796734
1129 => 0.0073435003650016
1130 => 0.0073709183296739
1201 => 0.0074326924040765
1202 => 0.0069048397018267
1203 => 0.0071418300681957
1204 => 0.0072810397054432
1205 => 0.0066520854998693
1206 => 0.0072686073030409
1207 => 0.0068956509606468
1208 => 0.006769063976422
1209 => 0.0069394966741137
1210 => 0.006873078886072
1211 => 0.0068159767720971
1212 => 0.0067841128113603
1213 => 0.0069092597745746
1214 => 0.0069034215191577
1215 => 0.0066986567973601
1216 => 0.006431549565053
1217 => 0.0065211995197113
1218 => 0.0064886288507112
1219 => 0.0063705885445546
1220 => 0.0064501334586632
1221 => 0.0060998579136888
1222 => 0.005497227044299
1223 => 0.0058953434557007
1224 => 0.005880016406929
1225 => 0.005872287813912
1226 => 0.006171461293951
1227 => 0.0061427026669518
1228 => 0.0060905054773429
1229 => 0.0063696299022339
1230 => 0.0062677457323954
1231 => 0.0065817287369083
]
'min_raw' => 0.0028185482768258
'max_raw' => 0.0092717468631422
'avg_raw' => 0.006045147569984
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.002818'
'max' => '$0.009271'
'avg' => '$0.006045'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0015354724330796
'max_diff' => 0.0061290932778659
'year' => 2029
]
4 => [
'items' => [
101 => 0.006788538250828
102 => 0.006736084668511
103 => 0.0069305900159496
104 => 0.0065232648735992
105 => 0.0066585619468398
106 => 0.006686446486121
107 => 0.0063661855501581
108 => 0.0061474079339928
109 => 0.006132817961242
110 => 0.0057534877242238
111 => 0.0059561228749922
112 => 0.0061344334220561
113 => 0.00604903650747
114 => 0.0060220023954722
115 => 0.0061601138106851
116 => 0.0061708462504914
117 => 0.0059261454855344
118 => 0.0059770265232344
119 => 0.0061892089087121
120 => 0.0059716800715243
121 => 0.0055490570740022
122 => 0.0054442407273966
123 => 0.0054302562946109
124 => 0.0051459860495273
125 => 0.0054512450568756
126 => 0.0053179913197353
127 => 0.0057389382787367
128 => 0.0054984956333389
129 => 0.0054881306314625
130 => 0.005472462410911
131 => 0.0052277792679116
201 => 0.0052813493258035
202 => 0.0054594243571864
203 => 0.0055229635345426
204 => 0.0055163358777832
205 => 0.0054585516923841
206 => 0.0054850049965569
207 => 0.0053997896868742
208 => 0.0053696983874219
209 => 0.0052747219690865
210 => 0.0051351328720388
211 => 0.005154543592133
212 => 0.0048779810654073
213 => 0.0047272951225629
214 => 0.0046855872395923
215 => 0.0046298137153917
216 => 0.0046918870075585
217 => 0.0048771975985173
218 => 0.004653673709986
219 => 0.0042704576814767
220 => 0.0042934896177584
221 => 0.0043452355403403
222 => 0.0042488073559426
223 => 0.0041575461720142
224 => 0.004236890367186
225 => 0.004074516684059
226 => 0.0043648576241967
227 => 0.0043570047154371
228 => 0.0044652258633571
301 => 0.004532898768073
302 => 0.0043769346320659
303 => 0.004337710073632
304 => 0.0043600541647728
305 => 0.0039907561102943
306 => 0.0044350463335693
307 => 0.0044388885738698
308 => 0.0044059889797257
309 => 0.004642559807698
310 => 0.0051417980430111
311 => 0.0049539645370748
312 => 0.0048812297262785
313 => 0.0047429607977859
314 => 0.0049271959354057
315 => 0.0049130495513523
316 => 0.0048490742378063
317 => 0.0048103817685585
318 => 0.0048816738295234
319 => 0.0048015478932507
320 => 0.0047871550733826
321 => 0.0046999502445246
322 => 0.0046688220881892
323 => 0.0046457760404861
324 => 0.0046204046064228
325 => 0.0046763676677989
326 => 0.0045495480081668
327 => 0.004396615930935
328 => 0.0043839012834612
329 => 0.0044190075430196
330 => 0.0044034756365187
331 => 0.0043838269226684
401 => 0.0043463121769195
402 => 0.0043351823532315
403 => 0.0043713488807946
404 => 0.0043305189798154
405 => 0.0043907657228301
406 => 0.0043743819423344
407 => 0.0042828634763169
408 => 0.0041687975831833
409 => 0.0041677821574731
410 => 0.0041432068479031
411 => 0.004111906496243
412 => 0.0041031994544662
413 => 0.0042302082203776
414 => 0.0044931125647617
415 => 0.0044414981511913
416 => 0.0044787948546538
417 => 0.0046622577217848
418 => 0.0047205750503249
419 => 0.0046791827918488
420 => 0.0046225225154834
421 => 0.0046250152800877
422 => 0.0048186405966604
423 => 0.0048307167701494
424 => 0.0048612293646349
425 => 0.0049004466714069
426 => 0.0046858616687725
427 => 0.0046149083457609
428 => 0.0045812867249775
429 => 0.0044777451461695
430 => 0.0045894058619299
501 => 0.0045243459446449
502 => 0.0045331247502499
503 => 0.004527407541583
504 => 0.0045305295241111
505 => 0.0043647764679868
506 => 0.0044251681699143
507 => 0.0043247552522966
508 => 0.0041903136274854
509 => 0.0041898629320177
510 => 0.0042227673292269
511 => 0.0042031945062177
512 => 0.0041505245427631
513 => 0.0041580060624766
514 => 0.0040924600773614
515 => 0.004165964531818
516 => 0.0041680723765602
517 => 0.0041397691577797
518 => 0.0042530129115303
519 => 0.00429940896984
520 => 0.0042807791849249
521 => 0.0042981018544671
522 => 0.0044436429631003
523 => 0.0044673725142112
524 => 0.0044779116133286
525 => 0.0044637906166744
526 => 0.0043007620787594
527 => 0.0043079930876668
528 => 0.004254936742154
529 => 0.0042101097211357
530 => 0.0042119025668897
531 => 0.0042349494827979
601 => 0.004335596716253
602 => 0.0045474028855806
603 => 0.0045554407748783
604 => 0.0045651829311889
605 => 0.0045255566854583
606 => 0.0045136050305739
607 => 0.0045293723483503
608 => 0.0046089156093105
609 => 0.0048135224722847
610 => 0.0047412007416767
611 => 0.0046824020489376
612 => 0.0047339843544835
613 => 0.0047260436628602
614 => 0.0046590162343298
615 => 0.0046571349976527
616 => 0.0045284879323377
617 => 0.0044809300414426
618 => 0.0044411871081643
619 => 0.0043977888625399
620 => 0.0043720609278114
621 => 0.0044115907286916
622 => 0.0044206316618558
623 => 0.0043341990613686
624 => 0.0043224186173016
625 => 0.0043930013446367
626 => 0.0043619405179258
627 => 0.0043938873484694
628 => 0.0044012992871904
629 => 0.0044001057943449
630 => 0.0043676747239455
701 => 0.0043883453211096
702 => 0.0043394531966148
703 => 0.0042862903545864
704 => 0.0042523757735344
705 => 0.0042227808034501
706 => 0.0042392018129226
707 => 0.004180663912511
708 => 0.0041619364600341
709 => 0.0043813425878935
710 => 0.0045434202535567
711 => 0.0045410635801081
712 => 0.0045267179365773
713 => 0.0045054032201981
714 => 0.0046073563050462
715 => 0.0045718378889014
716 => 0.0045976805043097
717 => 0.0046042585345423
718 => 0.0046241682508803
719 => 0.0046312842631732
720 => 0.0046097747316357
721 => 0.004537586116628
722 => 0.0043576989515162
723 => 0.0042739609905605
724 => 0.0042463260686791
725 => 0.0042473305456033
726 => 0.0042196225878514
727 => 0.0042277838231929
728 => 0.0042167844432574
729 => 0.0041959542786953
730 => 0.0042379156089588
731 => 0.0042427512613748
801 => 0.0042329569854908
802 => 0.0042352638920194
803 => 0.0041541714708894
804 => 0.0041603367515445
805 => 0.0041260076854112
806 => 0.0041195713993543
807 => 0.0040327905095433
808 => 0.003879045584152
809 => 0.0039642351971998
810 => 0.0038613381241104
811 => 0.0038223694433863
812 => 0.0040068411170607
813 => 0.0039883252774716
814 => 0.003956634208737
815 => 0.003909756513081
816 => 0.0038923691197653
817 => 0.003786728822159
818 => 0.0037804870298073
819 => 0.003832845213829
820 => 0.0038086837134381
821 => 0.0037747518162135
822 => 0.0036518539240874
823 => 0.0035136760032438
824 => 0.0035178467261186
825 => 0.0035617985518474
826 => 0.0036895944128648
827 => 0.0036396623590745
828 => 0.0036034360811453
829 => 0.003596651988247
830 => 0.0036815691143288
831 => 0.0038017446384225
901 => 0.0038581283055515
902 => 0.0038022538038241
903 => 0.0037380681847365
904 => 0.0037419748659629
905 => 0.0037679642659377
906 => 0.0037706953844047
907 => 0.0037289171447669
908 => 0.0037406774745075
909 => 0.0037228124582445
910 => 0.0036131748864144
911 => 0.0036111918904045
912 => 0.0035842850621327
913 => 0.0035834703340661
914 => 0.003537695106953
915 => 0.0035312908362506
916 => 0.0034404013444598
917 => 0.0035002250831953
918 => 0.0034600984601388
919 => 0.0033996181742791
920 => 0.0033891913502005
921 => 0.003388877907278
922 => 0.0034509776377113
923 => 0.0034994994116889
924 => 0.0034607964799265
925 => 0.003451984572589
926 => 0.0035460726891238
927 => 0.0035340991186626
928 => 0.0035237300838643
929 => 0.0037909842383366
930 => 0.0035794317209701
1001 => 0.0034871827484027
1002 => 0.0033730071272459
1003 => 0.003410183285218
1004 => 0.0034180168479341
1005 => 0.0031434450607545
1006 => 0.0030320513208914
1007 => 0.002993825187155
1008 => 0.0029718255067514
1009 => 0.0029818510373659
1010 => 0.0028815836063067
1011 => 0.0029489649782487
1012 => 0.0028621418583464
1013 => 0.0028475856797479
1014 => 0.0030028361734539
1015 => 0.0030244383726929
1016 => 0.0029322766794622
1017 => 0.0029914594061391
1018 => 0.0029699989267447
1019 => 0.0028636301915397
1020 => 0.0028595676882503
1021 => 0.0028061955959662
1022 => 0.0027226786064153
1023 => 0.0026845091011305
1024 => 0.0026646300913753
1025 => 0.0026728325582344
1026 => 0.0026686851399908
1027 => 0.0026416204305294
1028 => 0.0026702364574563
1029 => 0.0025971343336168
1030 => 0.00256802447888
1031 => 0.0025548762328389
1101 => 0.00248999389033
1102 => 0.0025932505505703
1103 => 0.0026135934134308
1104 => 0.0026339763580153
1105 => 0.0028113959745964
1106 => 0.0028025325919347
1107 => 0.0028826532545545
1108 => 0.0028795399129376
1109 => 0.0028566882020897
1110 => 0.0027602805929465
1111 => 0.0027987069476506
1112 => 0.0026804366006528
1113 => 0.0027690527862254
1114 => 0.0027286120598305
1115 => 0.0027553797359516
1116 => 0.0027072490407418
1117 => 0.0027338865547386
1118 => 0.0026184174608855
1119 => 0.0025105940457395
1120 => 0.0025539853355559
1121 => 0.0026011566299823
1122 => 0.002703436015321
1123 => 0.0026425192571999
1124 => 0.0026644272269379
1125 => 0.0025910391956654
1126 => 0.0024396187248955
1127 => 0.0024404757483159
1128 => 0.0024171830077622
1129 => 0.002397054679128
1130 => 0.0026495162796625
1201 => 0.0026181186888087
1202 => 0.0025680907369984
1203 => 0.0026350551385283
1204 => 0.0026527615891608
1205 => 0.002653265666918
1206 => 0.0027021211656728
1207 => 0.0027281953541162
1208 => 0.0027327910428413
1209 => 0.002809666225725
1210 => 0.0028354337730195
1211 => 0.0029415666535655
1212 => 0.002725983141397
1213 => 0.0027215433408325
1214 => 0.0026359974649847
1215 => 0.0025817429180952
1216 => 0.002639712320227
1217 => 0.0026910652969033
1218 => 0.0026375931451159
1219 => 0.0026445754792806
1220 => 0.0025727934843414
1221 => 0.0025984521698753
1222 => 0.0026205528864554
1223 => 0.00260835016978
1224 => 0.0025900821122987
1225 => 0.0026868549384374
1226 => 0.0026813946363309
1227 => 0.002771511716829
1228 => 0.0028417644254115
1229 => 0.0029676698383651
1230 => 0.0028362809763504
1231 => 0.0028314926439951
]
'min_raw' => 0.002397054679128
'max_raw' => 0.0069305900159496
'avg_raw' => 0.0046638223475388
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.002397'
'max' => '$0.00693'
'avg' => '$0.004663'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00042149359769783
'max_diff' => -0.0023411568471926
'year' => 2030
]
5 => [
'items' => [
101 => 0.0028782993608403
102 => 0.002835426607155
103 => 0.002862520707567
104 => 0.0029633045599156
105 => 0.0029654339639026
106 => 0.0029297637035381
107 => 0.0029275931649532
108 => 0.0029344440286461
109 => 0.0029745697512782
110 => 0.0029605485908516
111 => 0.0029767742326696
112 => 0.0029970646462189
113 => 0.0030809943996156
114 => 0.0031012295790167
115 => 0.0030520685838096
116 => 0.0030565072712445
117 => 0.0030381197095376
118 => 0.0030203575553242
119 => 0.0030602842840416
120 => 0.0031332511655347
121 => 0.0031327972423519
122 => 0.0031497241405848
123 => 0.0031602694579538
124 => 0.0031150012361616
125 => 0.0030855332883335
126 => 0.003096833174625
127 => 0.0031149019388847
128 => 0.0030909737179003
129 => 0.0029432776533547
130 => 0.0029880792044767
131 => 0.0029806220356861
201 => 0.0029700021205055
202 => 0.0030150504265988
203 => 0.0030107054075801
204 => 0.002880555218877
205 => 0.0028888870116865
206 => 0.0028810619027935
207 => 0.0029063464304935
208 => 0.0028340611596824
209 => 0.0028562956221352
210 => 0.0028702408685504
211 => 0.0028784547258214
212 => 0.0029081288105789
213 => 0.0029046468992296
214 => 0.0029079123700806
215 => 0.002951911204108
216 => 0.0031744422080423
217 => 0.0031865540795994
218 => 0.0031269107943431
219 => 0.0031507371103912
220 => 0.0031049957938214
221 => 0.0031357022460749
222 => 0.0031567108208475
223 => 0.0030617771111669
224 => 0.0030561557529943
225 => 0.0030102256457398
226 => 0.0030349058837641
227 => 0.0029956378504956
228 => 0.0030052728523222
301 => 0.0029783325472506
302 => 0.0030268197326182
303 => 0.003081035940006
304 => 0.0030947330950551
305 => 0.003058701777117
306 => 0.0030326127283503
307 => 0.0029868089529828
308 => 0.0030629816522226
309 => 0.0030852568708013
310 => 0.0030628646499823
311 => 0.0030576758831388
312 => 0.0030478431793464
313 => 0.0030597619377306
314 => 0.0030851355551771
315 => 0.0030731698257665
316 => 0.0030810734008512
317 => 0.0030509531227594
318 => 0.0031150162218266
319 => 0.0032167638407697
320 => 0.0032170909760021
321 => 0.0032051251820917
322 => 0.0032002290370302
323 => 0.0032125066677273
324 => 0.0032191667787257
325 => 0.0032588703850678
326 => 0.0033014739365343
327 => 0.0035002861218428
328 => 0.003444460455768
329 => 0.0036208584539634
330 => 0.0037603663681227
331 => 0.0038021986916374
401 => 0.0037637149223668
402 => 0.0036320640265446
403 => 0.0036256046055218
404 => 0.0038223466254547
405 => 0.0037667579934683
406 => 0.0037601459025751
407 => 0.003689804426775
408 => 0.0037313849509341
409 => 0.003722290680351
410 => 0.0037079349293287
411 => 0.0037872676728998
412 => 0.003935771486782
413 => 0.0039126257747285
414 => 0.0038953485743793
415 => 0.0038196449117663
416 => 0.0038652354256845
417 => 0.003849001516907
418 => 0.0039187526913082
419 => 0.0038774336407706
420 => 0.003766336854908
421 => 0.0037840293842365
422 => 0.0037813551940209
423 => 0.003836389839162
424 => 0.0038198698047345
425 => 0.0037781293921618
426 => 0.0039352639168906
427 => 0.0039250604748828
428 => 0.0039395266228182
429 => 0.0039458950685199
430 => 0.0040415400847013
501 => 0.0040807227875317
502 => 0.004089617947064
503 => 0.0041268384842539
504 => 0.0040886918661916
505 => 0.0042413055365185
506 => 0.0043427847220314
507 => 0.0044606580180757
508 => 0.0046329025849517
509 => 0.0046976681354483
510 => 0.0046859688184451
511 => 0.0048165626832503
512 => 0.0050512369553668
513 => 0.004733403198434
514 => 0.0050680829162449
515 => 0.0049621271816491
516 => 0.0047109080409848
517 => 0.0046947324900052
518 => 0.0048648610087772
519 => 0.0052421896891506
520 => 0.0051476731343435
521 => 0.0052423442843746
522 => 0.0051319053591091
523 => 0.0051264211356174
524 => 0.0052369805122788
525 => 0.005495308522126
526 => 0.0053725865679282
527 => 0.005196634553928
528 => 0.0053265547829492
529 => 0.0052140058570214
530 => 0.0049604016264454
531 => 0.0051476008593153
601 => 0.0050224260634224
602 => 0.0050589587235221
603 => 0.0053220575261434
604 => 0.0052904007821389
605 => 0.0053313675402163
606 => 0.0052590622844965
607 => 0.0051915177741619
608 => 0.0050654409297011
609 => 0.0050281157915696
610 => 0.0050384311169314
611 => 0.0050281106798067
612 => 0.0049575718440369
613 => 0.0049423389891685
614 => 0.0049169502303544
615 => 0.0049248192683336
616 => 0.0048770809740198
617 => 0.0049671729986248
618 => 0.0049838948722797
619 => 0.0050494563347359
620 => 0.0050562631432599
621 => 0.0052388508829913
622 => 0.0051382846242095
623 => 0.0052057531530734
624 => 0.0051997181328134
625 => 0.0047163527215261
626 => 0.0047829562104323
627 => 0.0048865703378443
628 => 0.0048398923138908
629 => 0.0047739005089961
630 => 0.0047206085882869
701 => 0.0046398658790338
702 => 0.0047535096917812
703 => 0.0049029392208718
704 => 0.0050600529227139
705 => 0.0052488147409796
706 => 0.0052066853005725
707 => 0.0050565241518214
708 => 0.0050632602712616
709 => 0.0051049003110755
710 => 0.0050509726761199
711 => 0.005035068363779
712 => 0.0051027153027872
713 => 0.005103181150078
714 => 0.0050411308886892
715 => 0.0049721733782335
716 => 0.0049718844437469
717 => 0.0049596141208118
718 => 0.0051340882223006
719 => 0.0052300313367981
720 => 0.0052410310602552
721 => 0.0052292909677682
722 => 0.0052338092634189
723 => 0.005177982079055
724 => 0.0053055864674735
725 => 0.0054226888730523
726 => 0.0053913029268292
727 => 0.0053442509316656
728 => 0.0053067717511866
729 => 0.0053824740230139
730 => 0.0053791031200158
731 => 0.0054216660856975
801 => 0.0054197351837186
802 => 0.0054054228592339
803 => 0.0053913034379674
804 => 0.0054472853473023
805 => 0.0054311634564558
806 => 0.0054150165238598
807 => 0.0053826313785669
808 => 0.0053870330576725
809 => 0.0053399891866993
810 => 0.0053182245394059
811 => 0.0049909364648054
812 => 0.0049034743968257
813 => 0.0049309917438667
814 => 0.0049400511690002
815 => 0.0049019875649298
816 => 0.0049565609954291
817 => 0.0049480557840934
818 => 0.0049811445860186
819 => 0.0049604721391245
820 => 0.0049613205435559
821 => 0.0050221138020411
822 => 0.0050397623436123
823 => 0.005030786152928
824 => 0.0050370727691975
825 => 0.0051819451877132
826 => 0.0051613489625595
827 => 0.0051504076284445
828 => 0.0051534384527688
829 => 0.0051904564617992
830 => 0.0052008194832194
831 => 0.0051569106332655
901 => 0.0051776183007378
902 => 0.0052657889206405
903 => 0.0052966436475815
904 => 0.0053951171248681
905 => 0.0053532838414903
906 => 0.0054300706436324
907 => 0.0056660870948675
908 => 0.0058546333672103
909 => 0.0056812384231596
910 => 0.0060274796410941
911 => 0.0062970780946089
912 => 0.0062867304569233
913 => 0.0062397197306284
914 => 0.0059327890589475
915 => 0.0056503468787883
916 => 0.0058866217556199
917 => 0.0058872240688713
918 => 0.0058669278474097
919 => 0.0057408697590367
920 => 0.005862541299181
921 => 0.0058721991441916
922 => 0.005866793319214
923 => 0.0057701448784172
924 => 0.0056225805729382
925 => 0.0056514142850098
926 => 0.0056986444935748
927 => 0.0056092278555076
928 => 0.0055806538216999
929 => 0.0056337783869807
930 => 0.005804956805258
1001 => 0.0057725965168517
1002 => 0.0057717514589433
1003 => 0.0059102024956432
1004 => 0.0058111014329698
1005 => 0.0056517779704574
1006 => 0.0056115466949547
1007 => 0.0054687527699546
1008 => 0.0055673810425667
1009 => 0.0055709304985134
1010 => 0.0055169128015603
1011 => 0.0056561612088566
1012 => 0.0056548780102691
1013 => 0.0057870736486067
1014 => 0.0060397820586936
1015 => 0.0059650437468053
1016 => 0.0058781312215844
1017 => 0.0058875810228988
1018 => 0.0059912220192211
1019 => 0.0059285583069508
1020 => 0.0059510926147902
1021 => 0.0059911879108473
1022 => 0.0060153783984688
1023 => 0.0058841003840005
1024 => 0.0058534931990747
1025 => 0.0057908816403785
1026 => 0.0057745474534147
1027 => 0.0058255432615398
1028 => 0.0058121076678073
1029 => 0.0055706321804853
1030 => 0.0055453966485032
1031 => 0.0055461705862411
1101 => 0.005482714641188
1102 => 0.0053859290938102
1103 => 0.0056402757335542
1104 => 0.0056198481388039
1105 => 0.0055972976551697
1106 => 0.0056000599607436
1107 => 0.005710463216449
1108 => 0.0056464237526418
1109 => 0.005816683163035
1110 => 0.0057816829467245
1111 => 0.0057457851069336
1112 => 0.0057408229319995
1113 => 0.0057270053263398
1114 => 0.0056796196152279
1115 => 0.0056223985216205
1116 => 0.0055846161992147
1117 => 0.0051515132420802
1118 => 0.0052318946316804
1119 => 0.0053243660934212
1120 => 0.005356286871458
1121 => 0.0053016841717754
1122 => 0.0056817756626187
1123 => 0.0057512220406486
1124 => 0.0055408644317211
1125 => 0.0055015151119353
1126 => 0.005684355397473
1127 => 0.0055740803539779
1128 => 0.0056237371993115
1129 => 0.0055164062605425
1130 => 0.0057344944418085
1201 => 0.0057328329752649
1202 => 0.0056479917470074
1203 => 0.005719698972163
1204 => 0.0057072380771641
1205 => 0.0056114525394161
1206 => 0.0057375310142047
1207 => 0.0057375935475552
1208 => 0.0056559357099648
1209 => 0.0055605772328584
1210 => 0.0055435293894184
1211 => 0.005530686129442
1212 => 0.0056205785446634
1213 => 0.0057011758030647
1214 => 0.0058511473191947
1215 => 0.0058888537215851
1216 => 0.0060360243203722
1217 => 0.0059483913944009
1218 => 0.0059872379354476
1219 => 0.0060294113509325
1220 => 0.006049630837192
1221 => 0.0060166842693696
1222 => 0.0062453007871212
1223 => 0.0062646030258485
1224 => 0.0062710748995301
1225 => 0.0061939866960406
1226 => 0.006262459063458
1227 => 0.0062304231103098
1228 => 0.0063137717605571
1229 => 0.0063268418931649
1230 => 0.0063157719558296
1231 => 0.0063199206222173
]
'min_raw' => 0.0028340611596824
'max_raw' => 0.0063268418931649
'avg_raw' => 0.0045804515264237
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.002834'
'max' => '$0.006326'
'avg' => '$0.00458'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00043700648055444
'max_diff' => -0.00060374812278476
'year' => 2031
]
6 => [
'items' => [
101 => 0.0061248367550337
102 => 0.0061147206273708
103 => 0.0059767865088802
104 => 0.0060329956817226
105 => 0.0059279153272694
106 => 0.0059612373901141
107 => 0.0059759254379118
108 => 0.0059682532352817
109 => 0.0060361736640196
110 => 0.0059784274243655
111 => 0.0058260256035575
112 => 0.0056735822609754
113 => 0.0056716684589869
114 => 0.0056315328177335
115 => 0.0056025221003167
116 => 0.0056081105937017
117 => 0.005627805173309
118 => 0.0056013774155471
119 => 0.0056070171175869
120 => 0.005700673748586
121 => 0.0057194559180043
122 => 0.0056556267676535
123 => 0.0053993435184926
124 => 0.0053364509663106
125 => 0.0053816568856055
126 => 0.0053600513678166
127 => 0.0043259797886851
128 => 0.0045689195676015
129 => 0.0044245730004248
130 => 0.004491094539646
131 => 0.0043437540729209
201 => 0.0044140726664176
202 => 0.0044010873898227
203 => 0.0047917273652096
204 => 0.0047856280593016
205 => 0.0047885474742717
206 => 0.004649196191256
207 => 0.0048711865688996
208 => 0.0049805470114427
209 => 0.0049603073040619
210 => 0.0049654012023623
211 => 0.0048778711526695
212 => 0.0047893949564839
213 => 0.0046912612385252
214 => 0.0048735815567984
215 => 0.004853310649718
216 => 0.0048998048173182
217 => 0.0050180525762439
218 => 0.0050354650079253
219 => 0.0050588674926845
220 => 0.0050504793678006
221 => 0.0052503185333964
222 => 0.0052261166918615
223 => 0.0052844361666156
224 => 0.0051644685823372
225 => 0.0050287138732985
226 => 0.0050545164053309
227 => 0.0050520314140053
228 => 0.0050203946222904
229 => 0.0049918343413067
301 => 0.004944289520278
302 => 0.0050947283693222
303 => 0.0050886208267846
304 => 0.0051874948412266
305 => 0.0051700178987631
306 => 0.0050533025996581
307 => 0.0050574711093989
308 => 0.0050855063407238
309 => 0.0051825365964398
310 => 0.0052113417826599
311 => 0.0051979980727145
312 => 0.0052295816443982
313 => 0.0052545440116909
314 => 0.0052327165334028
315 => 0.0055417475958853
316 => 0.0054134163531721
317 => 0.0054759641079475
318 => 0.0054908813789086
319 => 0.005452671103018
320 => 0.0054609575436513
321 => 0.0054735092432908
322 => 0.005549720705627
323 => 0.0057497216347617
324 => 0.005838300684823
325 => 0.006104795127346
326 => 0.0058309454277953
327 => 0.0058146963199267
328 => 0.0058627000163863
329 => 0.0060191604654489
330 => 0.0061459569638314
331 => 0.0061880226774104
401 => 0.0061935823558891
402 => 0.006272500431039
403 => 0.00631773479998
404 => 0.0062629177009644
405 => 0.0062164659491382
406 => 0.0060500815399004
407 => 0.0060693409883193
408 => 0.0062020194892501
409 => 0.0063894356865395
410 => 0.0065502582811456
411 => 0.0064939438137478
412 => 0.0069235834481747
413 => 0.0069661804630076
414 => 0.0069602949328841
415 => 0.0070573372719591
416 => 0.0068647279912238
417 => 0.0067823837920804
418 => 0.0062265093451328
419 => 0.006382687390901
420 => 0.0066097013524402
421 => 0.0065796552033718
422 => 0.0064147915964015
423 => 0.0065501332173161
424 => 0.0065053850449179
425 => 0.0064700903047441
426 => 0.0066317823517023
427 => 0.0064539953041286
428 => 0.0066079277906406
429 => 0.0064105077844612
430 => 0.0064942010534913
501 => 0.0064466927062019
502 => 0.0064774364293022
503 => 0.0062977092522553
504 => 0.0063946856743592
505 => 0.0062936747142669
506 => 0.0062936268219198
507 => 0.0062913969993772
508 => 0.0064102359459747
509 => 0.0064141112797568
510 => 0.0063262891186655
511 => 0.0063136325732123
512 => 0.0063604304553169
513 => 0.0063056423917571
514 => 0.0063312773818648
515 => 0.0063064188494927
516 => 0.006300822670255
517 => 0.0062562313619772
518 => 0.0062370202003075
519 => 0.0062445533918088
520 => 0.0062188387255884
521 => 0.0062033447090505
522 => 0.0062883148495091
523 => 0.0062429187311477
524 => 0.0062813572432982
525 => 0.0062375517073758
526 => 0.0060857026347051
527 => 0.0059983726272375
528 => 0.0057115438053791
529 => 0.0057928881034481
530 => 0.0058468194572246
531 => 0.0058289951451232
601 => 0.0058672886646101
602 => 0.0058696395756996
603 => 0.0058571899621581
604 => 0.0058427749045714
605 => 0.0058357584517409
606 => 0.0058880533426676
607 => 0.0059184122870157
608 => 0.0058522321900845
609 => 0.0058367271193315
610 => 0.0059036388512322
611 => 0.005944454969038
612 => 0.0062458182503207
613 => 0.0062234922850527
614 => 0.006279526076626
615 => 0.0062732175316035
616 => 0.0063319498720552
617 => 0.0064279524265549
618 => 0.0062327523905207
619 => 0.0062666323672668
620 => 0.0062583257793716
621 => 0.0063490149279075
622 => 0.0063492980495301
623 => 0.0062949253747239
624 => 0.0063244016838323
625 => 0.0063079488167282
626 => 0.0063376813713236
627 => 0.0062231941081751
628 => 0.0063626272365536
629 => 0.0064416768354719
630 => 0.0064427744392296
701 => 0.0064802433217404
702 => 0.0065183138764228
703 => 0.0065913869908891
704 => 0.0065162759069208
705 => 0.0063811583787786
706 => 0.0063909134278835
707 => 0.0063116940705713
708 => 0.0063130257622798
709 => 0.006305917087573
710 => 0.0063272507554844
711 => 0.0062278756485854
712 => 0.0062511987875465
713 => 0.0062185462564209
714 => 0.0062665613870411
715 => 0.0062149050436792
716 => 0.0062583217736834
717 => 0.0062770589950659
718 => 0.0063461997453506
719 => 0.0062046928986455
720 => 0.0059161508590424
721 => 0.0059768058940011
722 => 0.0058870923329471
723 => 0.0058953956645862
724 => 0.0059121697159628
725 => 0.0058577995273233
726 => 0.0058681716459142
727 => 0.0058678010808506
728 => 0.0058646077513285
729 => 0.005850463965387
730 => 0.0058299526775092
731 => 0.0059116633353731
801 => 0.0059255475683808
802 => 0.0059564104984644
803 => 0.0060482376438678
804 => 0.0060390619466088
805 => 0.0060540278895343
806 => 0.0060213573201582
807 => 0.0058969111585981
808 => 0.0059036691838994
809 => 0.0058193965001027
810 => 0.0059542554564689
811 => 0.0059223190755501
812 => 0.0059017294830134
813 => 0.0058961114219285
814 => 0.005988166189064
815 => 0.0060157104181726
816 => 0.0059985467030166
817 => 0.005963343422486
818 => 0.0060309441280203
819 => 0.0060490312249765
820 => 0.0060530802589586
821 => 0.0061728557480159
822 => 0.0060597743782572
823 => 0.0060869941878902
824 => 0.0062993553724101
825 => 0.0061067730818909
826 => 0.0062087882162765
827 => 0.0062037951063095
828 => 0.0062559825970572
829 => 0.0061995142088294
830 => 0.0062002142021783
831 => 0.0062465531584754
901 => 0.0061814784516309
902 => 0.0061653650390685
903 => 0.00614310447502
904 => 0.0061917096022334
905 => 0.006220846177777
906 => 0.0064556655782019
907 => 0.006607369619942
908 => 0.0066007837473991
909 => 0.0066609662942043
910 => 0.0066338535056596
911 => 0.0065462991594566
912 => 0.0066957437523101
913 => 0.0066484532301039
914 => 0.0066523518032966
915 => 0.0066522066982076
916 => 0.0066836507612655
917 => 0.006661369760783
918 => 0.006617451621734
919 => 0.0066466065320084
920 => 0.0067331861924523
921 => 0.0070019321150585
922 => 0.0071523258937589
923 => 0.0069928782207408
924 => 0.0071028630904992
925 => 0.0070369113602603
926 => 0.0070249259689819
927 => 0.0070940045950082
928 => 0.0071632041340249
929 => 0.0071587964225474
930 => 0.0071085611106569
1001 => 0.0070801844576438
1002 => 0.007295061981135
1003 => 0.0074533800801003
1004 => 0.0074425838471288
1005 => 0.0074902349083417
1006 => 0.0076301398978544
1007 => 0.007642931056749
1008 => 0.0076413196647297
1009 => 0.0076096154427899
1010 => 0.0077473700739238
1011 => 0.0078622874107778
1012 => 0.0076022768314339
1013 => 0.0077012854562597
1014 => 0.0077457336178026
1015 => 0.0078109967061229
1016 => 0.0079211064754829
1017 => 0.0080407148901818
1018 => 0.0080576288314597
1019 => 0.0080456275807164
1020 => 0.0079667426159758
1021 => 0.0080976195705644
1022 => 0.0081742842211202
1023 => 0.0082199362660868
1024 => 0.0083357022563462
1025 => 0.0077460081145163
1026 => 0.0073285932912287
1027 => 0.0072634079390292
1028 => 0.0073959649160142
1029 => 0.0074309191337231
1030 => 0.0074168291323935
1031 => 0.0069469907990878
1101 => 0.0072609343374396
1102 => 0.0075987111875837
1103 => 0.0076116865720373
1104 => 0.0077807847258003
1105 => 0.007835850016233
1106 => 0.0079719961942139
1107 => 0.0079634802137126
1108 => 0.0079966296414921
1109 => 0.0079890091621137
1110 => 0.0082411912878632
1111 => 0.0085193856219729
1112 => 0.0085097526367865
1113 => 0.0084697589098123
1114 => 0.0085291564143128
1115 => 0.0088162827802307
1116 => 0.0087898487855633
1117 => 0.0088155271597404
1118 => 0.0091540653268905
1119 => 0.0095942131006783
1120 => 0.0093897202696399
1121 => 0.0098334108717663
1122 => 0.010112690586777
1123 => 0.010595675975826
1124 => 0.010535203826363
1125 => 0.01072322649401
1126 => 0.010426946057908
1127 => 0.0097466262884625
1128 => 0.0096389630807884
1129 => 0.0098545075490187
1130 => 0.010384402591641
1201 => 0.0098378192683902
1202 => 0.0099483923628123
1203 => 0.00991654730418
1204 => 0.0099148504163383
1205 => 0.0099796137235153
1206 => 0.0098856711686281
1207 => 0.0095029323000749
1208 => 0.0096783392680385
1209 => 0.0096106062139733
1210 => 0.0096857610872923
1211 => 0.010091340942368
1212 => 0.0099120244206227
1213 => 0.0097231290314557
1214 => 0.0099600457687137
1215 => 0.010261722188667
1216 => 0.010242843820471
1217 => 0.010206211895625
1218 => 0.010412704137996
1219 => 0.010753768825844
1220 => 0.01084595724046
1221 => 0.010914008843421
1222 => 0.010923392009728
1223 => 0.011020044454296
1224 => 0.010500319900303
1225 => 0.011325136114962
1226 => 0.011467559090146
1227 => 0.011440789473639
1228 => 0.01159908661648
1229 => 0.011552511581445
1230 => 0.011485031663079
1231 => 0.01173596630525
]
'min_raw' => 0.0043259797886851
'max_raw' => 0.01173596630525
'avg_raw' => 0.0080309730469678
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.004325'
'max' => '$0.011735'
'avg' => '$0.00803'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0014919186290027
'max_diff' => 0.0054091244120856
'year' => 2032
]
7 => [
'items' => [
101 => 0.011448289987382
102 => 0.011039969671609
103 => 0.010815957070716
104 => 0.011110954934153
105 => 0.011291099835348
106 => 0.01141016415567
107 => 0.011446192947058
108 => 0.010540664637964
109 => 0.010052635102264
110 => 0.010365456439377
111 => 0.010747120060431
112 => 0.010498199739618
113 => 0.010507956944925
114 => 0.010153061982554
115 => 0.010778520389764
116 => 0.010687396360766
117 => 0.011160147984399
118 => 0.01104732201535
119 => 0.011432832612311
120 => 0.011331314752264
121 => 0.011752709713531
122 => 0.011920815572393
123 => 0.012203091473011
124 => 0.012410734774575
125 => 0.012532666892837
126 => 0.012525346545812
127 => 0.013008502344706
128 => 0.012723602250276
129 => 0.012365700585876
130 => 0.012359227273932
131 => 0.012544589617431
201 => 0.012933058237728
202 => 0.013033782498983
203 => 0.013090073619968
204 => 0.013003861808672
205 => 0.012694623175142
206 => 0.012561095501059
207 => 0.012674864948047
208 => 0.012535734690701
209 => 0.012775912547935
210 => 0.01310572804514
211 => 0.013037622449199
212 => 0.013265289245468
213 => 0.013500900428361
214 => 0.013837835001858
215 => 0.013925922176021
216 => 0.014071526925258
217 => 0.014221402040891
218 => 0.014269537888785
219 => 0.01436144415809
220 => 0.014360959766685
221 => 0.014637925495242
222 => 0.014943427270756
223 => 0.01505874711863
224 => 0.015323918750043
225 => 0.014869821623971
226 => 0.015214259510388
227 => 0.015524951105776
228 => 0.015154531777444
301 => 0.015665068524916
302 => 0.015684891509919
303 => 0.015984195048536
304 => 0.015680793572528
305 => 0.015500634744566
306 => 0.016020746530428
307 => 0.016272412240239
308 => 0.016196608480321
309 => 0.015619738124448
310 => 0.015283974834196
311 => 0.014405217539706
312 => 0.015446143514519
313 => 0.015953148192624
314 => 0.015618425104815
315 => 0.015787239960627
316 => 0.016708239075536
317 => 0.017058895908217
318 => 0.016985961738295
319 => 0.016998286412413
320 => 0.017187494474456
321 => 0.018026547220337
322 => 0.017523767365915
323 => 0.017908123725819
324 => 0.018111984953212
325 => 0.018301342622525
326 => 0.017836340033799
327 => 0.017231378498112
328 => 0.017039761785203
329 => 0.015585143490403
330 => 0.015509424291072
331 => 0.01546692080996
401 => 0.015198942373791
402 => 0.014988384728432
403 => 0.014820941471339
404 => 0.014381520361938
405 => 0.014529812087019
406 => 0.013829466552947
407 => 0.014277522806925
408 => 0.013159754424111
409 => 0.014090665147985
410 => 0.013584012764297
411 => 0.013924216213571
412 => 0.013923029275786
413 => 0.01329660686407
414 => 0.012935299490095
415 => 0.013165538611086
416 => 0.013412373225192
417 => 0.013452421310879
418 => 0.01377244883111
419 => 0.013861761633038
420 => 0.01359113967358
421 => 0.013136591158855
422 => 0.013242172411678
423 => 0.012933159889377
424 => 0.012391627330039
425 => 0.012780565468407
426 => 0.012913366049248
427 => 0.01297201835123
428 => 0.012439483274556
429 => 0.012272149191566
430 => 0.012183061929851
501 => 0.013067847567745
502 => 0.01311631812228
503 => 0.012868335912236
504 => 0.013989239016274
505 => 0.013735544121948
506 => 0.014018983475668
507 => 0.013232592019634
508 => 0.013262633232271
509 => 0.012890342914503
510 => 0.013098800616005
511 => 0.012951469431489
512 => 0.013081959293743
513 => 0.013160174379148
514 => 0.013532403607739
515 => 0.014094915407856
516 => 0.013476804973739
517 => 0.013207485406089
518 => 0.013374569751148
519 => 0.013819537380157
520 => 0.01449368611558
521 => 0.014094576495702
522 => 0.014271694567683
523 => 0.014310386986976
524 => 0.01401609832912
525 => 0.014504536958164
526 => 0.014766295187538
527 => 0.015034804967641
528 => 0.015267944486232
529 => 0.014927556256811
530 => 0.015291820455027
531 => 0.014998287812552
601 => 0.014734958687405
602 => 0.01473535804899
603 => 0.014570167842161
604 => 0.014250091001123
605 => 0.014191063920776
606 => 0.01449813024704
607 => 0.014744368361415
608 => 0.014764649711916
609 => 0.014900979784205
610 => 0.014981658516674
611 => 0.01577241977229
612 => 0.016090470490818
613 => 0.016479376889043
614 => 0.016630877848716
615 => 0.017086841421229
616 => 0.016718613804874
617 => 0.016638945443815
618 => 0.015532926961445
619 => 0.015714037425973
620 => 0.016004012754242
621 => 0.015537708547804
622 => 0.015833471238356
623 => 0.015891861058581
624 => 0.015521863709303
625 => 0.015719495280194
626 => 0.015194644421583
627 => 0.014106355722321
628 => 0.01450574853459
629 => 0.014799836078587
630 => 0.014380136892571
701 => 0.015132431438904
702 => 0.014692956495448
703 => 0.01455366403689
704 => 0.014010234494708
705 => 0.014266712320097
706 => 0.014613602251343
707 => 0.014399264604116
708 => 0.014844047405072
709 => 0.015473978470467
710 => 0.015922904860711
711 => 0.015957367854612
712 => 0.015668738261418
713 => 0.016131269026521
714 => 0.016134638058189
715 => 0.015612901465658
716 => 0.015293340707775
717 => 0.015220735831222
718 => 0.015402117047875
719 => 0.015622347329712
720 => 0.015969589102529
721 => 0.01617942003337
722 => 0.016726547815277
723 => 0.016874584905678
724 => 0.017037232785988
725 => 0.01725458051283
726 => 0.017515562185717
727 => 0.016944549143134
728 => 0.016967236555818
729 => 0.016435517116779
730 => 0.015867298639885
731 => 0.016298505634414
801 => 0.016862251418699
802 => 0.0167329275129
803 => 0.01671837593165
804 => 0.016742847655041
805 => 0.016645341653392
806 => 0.016204325621678
807 => 0.015982850131458
808 => 0.016268610018266
809 => 0.016420478680395
810 => 0.016656013731018
811 => 0.016626979064487
812 => 0.017233692060274
813 => 0.017469442384388
814 => 0.017409127363155
815 => 0.017420226778624
816 => 0.017847041479529
817 => 0.018321747208074
818 => 0.018766371765795
819 => 0.019218662962977
820 => 0.018673408271548
821 => 0.018396561565874
822 => 0.018682196698855
823 => 0.01853063467669
824 => 0.019401555012266
825 => 0.019461855646693
826 => 0.020332713004816
827 => 0.021159260337441
828 => 0.020640120766953
829 => 0.021129645999363
830 => 0.021659107449793
831 => 0.022680524489696
901 => 0.022336547164541
902 => 0.022073065924284
903 => 0.021824077425374
904 => 0.022342182965795
905 => 0.023008717466609
906 => 0.023152282614097
907 => 0.023384912999133
908 => 0.023140330593957
909 => 0.023434903161123
910 => 0.024474873764965
911 => 0.024193864527733
912 => 0.023794786236373
913 => 0.024615743148268
914 => 0.024912844263293
915 => 0.026998055481603
916 => 0.029630720780499
917 => 0.028540780059744
918 => 0.027864218682204
919 => 0.028023226654176
920 => 0.028984586899988
921 => 0.029293345298894
922 => 0.028454033535266
923 => 0.028750492639277
924 => 0.030384011449599
925 => 0.031260341881778
926 => 0.030070167447999
927 => 0.026786523388206
928 => 0.023758853602647
929 => 0.024561927967524
930 => 0.024470884256846
1001 => 0.026225896432915
1002 => 0.024187162550361
1003 => 0.024221489600318
1004 => 0.026012793569598
1005 => 0.025534904381319
1006 => 0.024760785099729
1007 => 0.023764505530094
1008 => 0.021922790600917
1009 => 0.020291532328125
1010 => 0.023490805457414
1011 => 0.023352846982579
1012 => 0.023153062666716
1013 => 0.023597661042747
1014 => 0.025756504555304
1015 => 0.025706736224845
1016 => 0.025390135498491
1017 => 0.02563027435904
1018 => 0.024718687596421
1019 => 0.024953624261592
1020 => 0.023758374004284
1021 => 0.024298677038647
1022 => 0.024759124187426
1023 => 0.024851565769579
1024 => 0.025059841374356
1025 => 0.023280149135222
1026 => 0.024079178701574
1027 => 0.02454853371286
1028 => 0.022427970696588
1029 => 0.024506617000159
1030 => 0.023249168652796
1031 => 0.022822371797461
1101 => 0.02339699753696
1102 => 0.023173065327436
1103 => 0.022980541563427
1104 => 0.022873109995132
1105 => 0.023295051719091
1106 => 0.023275367633339
1107 => 0.022584989077582
1108 => 0.021684418395027
1109 => 0.021986679476318
1110 => 0.021876865191772
1111 => 0.021478884058255
1112 => 0.02174707528982
1113 => 0.020566096834481
1114 => 0.01853428478399
1115 => 0.019876562060631
1116 => 0.019824885845597
1117 => 0.019798828354647
1118 => 0.020807512630224
1119 => 0.020710550911433
1120 => 0.020534564442375
1121 => 0.02147565192874
1122 => 0.021132142336804
1123 => 0.022190757958112
1124 => 0.022888030673272
1125 => 0.022711179758298
1126 => 0.023366968117117
1127 => 0.021993642961149
1128 => 0.02244980648972
1129 => 0.022543821160743
1130 => 0.02146403905524
1201 => 0.020726415047773
1202 => 0.020677223936004
1203 => 0.019398285557906
1204 => 0.020081484116256
1205 => 0.020682670574927
1206 => 0.020394748915177
1207 => 0.020303601519115
1208 => 0.020769253798137
1209 => 0.020805438968259
1210 => 0.019980413254744
1211 => 0.02015196222575
1212 => 0.02086734995249
1213 => 0.020133936290532
1214 => 0.018709033347791
1215 => 0.018355637717167
1216 => 0.018308488225668
1217 => 0.017350051247254
1218 => 0.018379253303032
1219 => 0.017929979024785
1220 => 0.019349231086636
1221 => 0.018538561920508
1222 => 0.01850361559302
1223 => 0.018450789093511
1224 => 0.017625822793657
1225 => 0.017806437983981
1226 => 0.01840683038509
1227 => 0.018621057157711
1228 => 0.018598711550218
1229 => 0.018403888134782
1230 => 0.018493077296711
1231 => 0.018205767930573
]
'min_raw' => 0.010052635102264
'max_raw' => 0.031260341881778
'avg_raw' => 0.020656488492021
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.010052'
'max' => '$0.03126'
'avg' => '$0.020656'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0057266553135789
'max_diff' => 0.019524375576528
'year' => 2033
]
8 => [
'items' => [
101 => 0.018104313013562
102 => 0.017784093388103
103 => 0.017313459001607
104 => 0.017378903599618
105 => 0.016446453731783
106 => 0.015938405554926
107 => 0.01579778451554
108 => 0.015609740184714
109 => 0.015819024623073
110 => 0.016443812218463
111 => 0.01569018582234
112 => 0.014398146226933
113 => 0.014475800008145
114 => 0.014650264998915
115 => 0.014325150642817
116 => 0.01401745718955
117 => 0.014284971683207
118 => 0.013737517473975
119 => 0.014716422224607
120 => 0.014689945594451
121 => 0.015054820750423
122 => 0.015282984673444
123 => 0.014757140699828
124 => 0.014624892362496
125 => 0.014700227025792
126 => 0.013455112851551
127 => 0.014953068358676
128 => 0.014966022740105
129 => 0.014855099461472
130 => 0.015652714524829
131 => 0.017335931090887
201 => 0.016702637311506
202 => 0.016457406818724
203 => 0.015991223472683
204 => 0.016612385102055
205 => 0.01656468958055
206 => 0.016348992344316
207 => 0.016218537982825
208 => 0.016458904143821
209 => 0.016188753955463
210 => 0.016140227558403
211 => 0.015846210389462
212 => 0.015741259637079
213 => 0.015663558278224
214 => 0.015578016716903
215 => 0.015766700085548
216 => 0.015339118748833
217 => 0.014823497573069
218 => 0.014780629251403
219 => 0.014898992456545
220 => 0.014846625549374
221 => 0.014780378538798
222 => 0.01465389495431
223 => 0.014616369976686
224 => 0.014738307949432
225 => 0.014600647087628
226 => 0.014803773187995
227 => 0.014748534128175
228 => 0.014439973230382
301 => 0.014055392107855
302 => 0.014051968529179
303 => 0.01396911115717
304 => 0.013863579836227
305 => 0.013834223436971
306 => 0.01426244235871
307 => 0.015148842711196
308 => 0.01497482111224
309 => 0.015100569551936
310 => 0.015719127417437
311 => 0.015915748362196
312 => 0.015776191472828
313 => 0.015585157395168
314 => 0.015593561925071
315 => 0.016246383198384
316 => 0.016287098860433
317 => 0.016389974203062
318 => 0.016522198090909
319 => 0.015798709772681
320 => 0.015559485690344
321 => 0.015446128048487
322 => 0.015097030386493
323 => 0.015473502285582
324 => 0.015254148232117
325 => 0.015283746588131
326 => 0.015264470619947
327 => 0.015274996602011
328 => 0.014716148600779
329 => 0.014919763440242
330 => 0.014581214277887
331 => 0.014127934953422
401 => 0.014126415402186
402 => 0.014237354874689
403 => 0.014171363735382
404 => 0.013993783276296
405 => 0.014019007742353
406 => 0.013798014877262
407 => 0.01404584027738
408 => 0.014052947023093
409 => 0.013957520744907
410 => 0.014339329967103
411 => 0.014495757516964
412 => 0.014432945896433
413 => 0.014491350486224
414 => 0.014982052495337
415 => 0.015062058333652
416 => 0.015097591642142
417 => 0.015049981716026
418 => 0.014500319618157
419 => 0.014524699469541
420 => 0.014345816296369
421 => 0.014194678865283
422 => 0.014200723569915
423 => 0.014278427855984
424 => 0.014617767030543
425 => 0.015331886318266
426 => 0.015358986623221
427 => 0.015391832983397
428 => 0.015258230329301
429 => 0.01521793449042
430 => 0.015271095103142
501 => 0.015539280761002
502 => 0.016229127084715
503 => 0.015985289320628
504 => 0.015787045422864
505 => 0.015960958767374
506 => 0.015934186171165
507 => 0.015708198516169
508 => 0.015701855795368
509 => 0.015268113232807
510 => 0.015107768483269
511 => 0.014973772408958
512 => 0.014827452193867
513 => 0.014740708665662
514 => 0.014873986149213
515 => 0.014904468286593
516 => 0.014613054739519
517 => 0.014573336149863
518 => 0.014811310743002
519 => 0.014706586997149
520 => 0.014814297966783
521 => 0.014839287835666
522 => 0.01483526389121
523 => 0.014725920273093
524 => 0.014795612634607
525 => 0.014630769423334
526 => 0.014451527189724
527 => 0.014337181811867
528 => 0.014237400303973
529 => 0.014292764883888
530 => 0.014095400265664
531 => 0.014032259352129
601 => 0.014772002430654
602 => 0.015318458596339
603 => 0.015310512907269
604 => 0.015262145568524
605 => 0.015190281514106
606 => 0.015534023457808
607 => 0.015414270637959
608 => 0.015501400820082
609 => 0.015523579108275
610 => 0.01559070610696
611 => 0.01561469823923
612 => 0.015542177351904
613 => 0.015298788396357
614 => 0.014692286259862
615 => 0.014409957878102
616 => 0.01431678480957
617 => 0.014320171473651
618 => 0.014226752159582
619 => 0.014254268334335
620 => 0.01421718315693
621 => 0.014146952802794
622 => 0.014288428357424
623 => 0.014304732097159
624 => 0.014271710012201
625 => 0.014279487908626
626 => 0.014006079149094
627 => 0.014026865823268
628 => 0.013911122980021
629 => 0.013889422592213
630 => 0.013596834763367
701 => 0.013078473013283
702 => 0.013365695741422
703 => 0.013018771075457
704 => 0.012887385447689
705 => 0.013509344574884
706 => 0.013446917128974
707 => 0.013340068478136
708 => 0.013182017054335
709 => 0.013123394243823
710 => 0.012767220604873
711 => 0.012746175966171
712 => 0.012922705239132
713 => 0.012841243053662
714 => 0.01272683929312
715 => 0.012312480469359
716 => 0.011846603961961
717 => 0.011860665845324
718 => 0.012008852494387
719 => 0.01243972516223
720 => 0.012271375756731
721 => 0.012149236331454
722 => 0.012126363288598
723 => 0.012412667307907
724 => 0.012817847477776
725 => 0.013007948948083
726 => 0.012819564164476
727 => 0.012603157868426
728 => 0.012616329516936
729 => 0.012703954593473
730 => 0.012713162750065
731 => 0.012572304498263
801 => 0.012611955271063
802 => 0.012551722121437
803 => 0.012182071393361
804 => 0.012175385583865
805 => 0.012084667333772
806 => 0.012081920421213
807 => 0.011927586047077
808 => 0.011905993601272
809 => 0.011599553333997
810 => 0.011801253245904
811 => 0.011665963534718
812 => 0.011462050028343
813 => 0.011426895262985
814 => 0.011425838468287
815 => 0.011635212045108
816 => 0.011798806593756
817 => 0.011668316957166
818 => 0.01163860699635
819 => 0.01195583165027
820 => 0.011915461921492
821 => 0.011880501996727
822 => 0.012781568037619
823 => 0.012068303955193
824 => 0.011757280103564
825 => 0.011372329025347
826 => 0.011497671037506
827 => 0.011524082441126
828 => 0.010598344490659
829 => 0.010222772719449
830 => 0.010093890640693
831 => 0.010019717182244
901 => 0.01005351895867
902 => 0.0097154603144057
903 => 0.0099426413143255
904 => 0.0096499111037781
905 => 0.0096008339313533
906 => 0.010124271810127
907 => 0.010197105133078
908 => 0.009886375549827
909 => 0.010085914244824
910 => 0.010013558740223
911 => 0.0096549291230513
912 => 0.0096412321095762
913 => 0.0094612843741201
914 => 0.009179701012879
915 => 0.0090510098609015
916 => 0.0089839863916038
917 => 0.0090116415812974
918 => 0.0089976582711256
919 => 0.0089064077135788
920 => 0.0090028886462701
921 => 0.0087564197319176
922 => 0.0086582738242875
923 => 0.0086139435947788
924 => 0.0083951882470696
925 => 0.0087433252862195
926 => 0.008811912668647
927 => 0.0088806351894055
928 => 0.0094788178137506
929 => 0.0094489343002848
930 => 0.0097190667081538
1001 => 0.0097085698595256
1002 => 0.0096315237209465
1003 => 0.009306478735756
1004 => 0.0094360358734832
1005 => 0.0090372791412083
1006 => 0.0093360547978508
1007 => 0.0091997060653289
1008 => 0.0092899551542306
1009 => 0.009127679154953
1010 => 0.009217489393165
1011 => 0.0088281772814446
1012 => 0.0084646431092893
1013 => 0.0086109398723887
1014 => 0.0087699811849419
1015 => 0.00911482327353
1016 => 0.0089094381704524
1017 => 0.0089833024199897
1018 => 0.0087358695487658
1019 => 0.0082253448597254
1020 => 0.0082282343740225
1021 => 0.0081497012729986
1022 => 0.0080818372076934
1023 => 0.0089330291202015
1024 => 0.0088271699505282
1025 => 0.0086584972181595
1026 => 0.008884272373223
1027 => 0.0089439709077553
1028 => 0.0089456704411072
1029 => 0.0091103901661413
1030 => 0.0091983011129196
1031 => 0.0092137957983171
1101 => 0.0094729858446634
1102 => 0.0095598629293994
1103 => 0.0099176973461214
1104 => 0.009190842483285
1105 => 0.009175873385705
1106 => 0.0088874494926618
1107 => 0.0087045264998924
1108 => 0.0088999743864741
1109 => 0.0090731145326885
1110 => 0.0088928294396309
1111 => 0.0089163708667582
1112 => 0.0086743528591617
1113 => 0.0087608629088718
1114 => 0.0088353770178443
1115 => 0.0087942347066066
1116 => 0.0087326426753733
1117 => 0.0090589190151631
1118 => 0.0090405092253849
1119 => 0.0093443452540577
1120 => 0.0095812071659311
1121 => 0.01000570605614
1122 => 0.0095627193345794
1123 => 0.009546575137733
1124 => 0.0097043872515171
1125 => 0.009559838769187
1126 => 0.0096511884203756
1127 => 0.0099909882150729
1128 => 0.0099981676492854
1129 => 0.0098779028760483
1130 => 0.0098705847536672
1201 => 0.0098936829189198
1202 => 0.010028969594263
1203 => 0.0099816962729581
1204 => 0.010036402157186
1205 => 0.010104812703098
1206 => 0.010387787726464
1207 => 0.01045601204659
1208 => 0.010290262318938
1209 => 0.010305227663524
1210 => 0.01024323271545
1211 => 0.010183346372406
1212 => 0.010317962125872
1213 => 0.010563975061211
1214 => 0.010562444627508
1215 => 0.010619514846698
1216 => 0.010655069120459
1217 => 0.01050244415016
1218 => 0.010403090906671
1219 => 0.010441189262236
1220 => 0.010502109362458
1221 => 0.010421433694794
1222 => 0.0099234661013689
1223 => 0.010074517658921
1224 => 0.010049375293701
1225 => 0.010013569508211
1226 => 0.010165453017377
1227 => 0.010150803482395
1228 => 0.0097119930343868
1229 => 0.0097400842555513
1230 => 0.0097137013545868
1231 => 0.0097989499050366
]
'min_raw' => 0.0080818372076934
'max_raw' => 0.018104313013562
'avg_raw' => 0.013093075110628
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.008081'
'max' => '$0.0181043'
'avg' => '$0.013093'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0019707978945706
'max_diff' => -0.013156028868216
'year' => 2034
]
9 => [
'items' => [
101 => 0.0095552350677008
102 => 0.0096302001102208
103 => 0.0096772174821357
104 => 0.0097049110753981
105 => 0.0098049593239365
106 => 0.009793219816723
107 => 0.009804229579685
108 => 0.009952574720509
109 => 0.010702853536892
110 => 0.010743689557471
111 => 0.010542598057068
112 => 0.010622930145124
113 => 0.010468710102752
114 => 0.010572239050381
115 => 0.010643070926999
116 => 0.010322995296751
117 => 0.010304042495201
118 => 0.010149185931855
119 => 0.010232397077473
120 => 0.010100002161702
121 => 0.010132487243054
122 => 0.010041656123594
123 => 0.010205134054328
124 => 0.01038792778279
125 => 0.010434108697343
126 => 0.010312626593289
127 => 0.010224665543892
128 => 0.010070234917323
129 => 0.010327056491018
130 => 0.010402158945663
131 => 0.010326662009796
201 => 0.010309167720115
202 => 0.010276016072782
203 => 0.010316200998815
204 => 0.010401749921565
205 => 0.010361406629437
206 => 0.010388054084645
207 => 0.010286501464128
208 => 0.010502494675376
209 => 0.010845543876435
210 => 0.01084664683571
211 => 0.010806303326116
212 => 0.010789795631204
213 => 0.010831190520296
214 => 0.010853645549521
215 => 0.010987509030321
216 => 0.011131149878575
217 => 0.011801459041966
218 => 0.011613238911171
219 => 0.012207977077802
220 => 0.012678337750522
221 => 0.012819378349891
222 => 0.012689627634944
223 => 0.012245757448108
224 => 0.012223979059147
225 => 0.01288730851544
226 => 0.012699887561623
227 => 0.012677594435535
228 => 0.01244043323879
301 => 0.012580624879052
302 => 0.01254996291084
303 => 0.012501561493981
304 => 0.012769037377767
305 => 0.013269728354476
306 => 0.013191690970305
307 => 0.013133439683072
308 => 0.012878199499112
309 => 0.013031911099815
310 => 0.012977177342956
311 => 0.013212348297321
312 => 0.01307303823363
313 => 0.012698467663564
314 => 0.012758119261448
315 => 0.01274910304243
316 => 0.01293465619092
317 => 0.012878957741455
318 => 0.012738227026244
319 => 0.013268017047149
320 => 0.013233615430039
321 => 0.013282389057797
322 => 0.013303860717111
323 => 0.013626334566888
324 => 0.01375844178513
325 => 0.013788432436533
326 => 0.013913924076324
327 => 0.013785310090215
328 => 0.014299857734869
329 => 0.014642001893876
330 => 0.01503941994114
331 => 0.015620154524094
401 => 0.01583851609938
402 => 0.015799071035283
403 => 0.016239377368246
404 => 0.017030598061121
405 => 0.015958999359178
406 => 0.017087395394369
407 => 0.016730158237587
408 => 0.015883155365277
409 => 0.015828618365808
410 => 0.016402218544842
411 => 0.017674408534967
412 => 0.0173557393715
413 => 0.017674929763559
414 => 0.017302577216427
415 => 0.017284086774028
416 => 0.017656845431451
417 => 0.018527816352537
418 => 0.018114050715786
419 => 0.017520816216007
420 => 0.017958851338892
421 => 0.017579384777212
422 => 0.016724340407743
423 => 0.017355495691197
424 => 0.016933460127419
425 => 0.017056632541574
426 => 0.017943688523583
427 => 0.017836955600969
428 => 0.017975077886034
429 => 0.017731295668183
430 => 0.017503564635783
501 => 0.017078487752279
502 => 0.016952643443111
503 => 0.016987422282761
504 => 0.016952626208445
505 => 0.016714799598783
506 => 0.016663440965071
507 => 0.016577840992142
508 => 0.016604372003088
509 => 0.016443419010828
510 => 0.016747170561808
511 => 0.016803549526319
512 => 0.017024594574345
513 => 0.01704754420452
514 => 0.017663151516893
515 => 0.017324085354099
516 => 0.017551560209665
517 => 0.017531212717507
518 => 0.015901512485857
519 => 0.016126070798811
520 => 0.016475413063488
521 => 0.016318034846773
522 => 0.01609553886917
523 => 0.015915861437776
524 => 0.015643631756253
525 => 0.016026789805289
526 => 0.016530601895454
527 => 0.017060321710543
528 => 0.017696745359755
529 => 0.017554703010039
530 => 0.017048424213108
531 => 0.017071135510102
601 => 0.017211527811549
602 => 0.017029707025189
603 => 0.016976084525728
604 => 0.017204160903553
605 => 0.017205731540218
606 => 0.016996524751735
607 => 0.016764029690774
608 => 0.016763055527979
609 => 0.016721685277517
610 => 0.017309936892079
611 => 0.017633415801142
612 => 0.017670502136754
613 => 0.017630919595267
614 => 0.01764615334451
615 => 0.017457928094698
616 => 0.017888155199305
617 => 0.018282974135543
618 => 0.018177154226555
619 => 0.018018515139795
620 => 0.017892151466098
621 => 0.018147386960927
622 => 0.01813602172612
623 => 0.018279525736567
624 => 0.018273015565734
625 => 0.01822476056448
626 => 0.018177155949893
627 => 0.018365902865747
628 => 0.018311546785164
629 => 0.018257106274574
630 => 0.01814791749616
701 => 0.01816275806458
702 => 0.018004146369096
703 => 0.017930765341187
704 => 0.016827290747148
705 => 0.016532406278548
706 => 0.016625182935296
707 => 0.016655727419643
708 => 0.016527393321003
709 => 0.016711391452127
710 => 0.016682715538294
711 => 0.016794276744171
712 => 0.016724578146163
713 => 0.016727438600937
714 => 0.01693240731637
715 => 0.016991910606459
716 => 0.016961646752869
717 => 0.01698284251854
718 => 0.017471289992235
719 => 0.017401848381146
720 => 0.017364958909278
721 => 0.017375177545093
722 => 0.017499986347054
723 => 0.017534925997295
724 => 0.017386884244058
725 => 0.017456701590703
726 => 0.017753974991581
727 => 0.017858003857671
728 => 0.018190014061542
729 => 0.018048970225927
730 => 0.018307862290432
731 => 0.019103608233914
801 => 0.019739305154998
802 => 0.019154691995083
803 => 0.020322068435139
804 => 0.021231038443927
805 => 0.021196150661021
806 => 0.021037650715133
807 => 0.020002812526346
808 => 0.019050538996456
809 => 0.019847156239879
810 => 0.019849186981058
811 => 0.019780756853363
812 => 0.019355743207319
813 => 0.019765967299752
814 => 0.019798529398494
815 => 0.019780303282159
816 => 0.019454446316234
817 => 0.018956922957701
818 => 0.019054137831056
819 => 0.019213377776741
820 => 0.018911903338627
821 => 0.018815563988669
822 => 0.018994677169552
823 => 0.019571817158069
824 => 0.019462712186384
825 => 0.019459863014646
826 => 0.019926660351222
827 => 0.019592534199404
828 => 0.019055364021934
829 => 0.018919721467719
830 => 0.018438281780027
831 => 0.018770813887145
901 => 0.018782781125685
902 => 0.018600656689012
903 => 0.019070142416225
904 => 0.019065816022597
905 => 0.019511522846857
906 => 0.020363546895003
907 => 0.020111561458409
908 => 0.019818529811588
909 => 0.019850390476484
910 => 0.020199823331568
911 => 0.019988548250608
912 => 0.020064524242783
913 => 0.020199708332804
914 => 0.020281268250746
915 => 0.019838655259428
916 => 0.019735460998525
917 => 0.019524361756981
918 => 0.019469289905216
919 => 0.019641225832723
920 => 0.019595926790411
921 => 0.018781775325625
922 => 0.018696691967659
923 => 0.018699301352777
924 => 0.018485355203677
925 => 0.018159035973342
926 => 0.019016583427154
927 => 0.018947710365244
928 => 0.018871679835247
929 => 0.018880993141348
930 => 0.019253225426068
1001 => 0.019037311902749
1002 => 0.019611353392022
1003 => 0.019493347719094
1004 => 0.019372315645932
1005 => 0.019355585326694
1006 => 0.019308998304498
1007 => 0.019149234071119
1008 => 0.018956309158973
1009 => 0.018828923421104
1010 => 0.017368686562842
1011 => 0.017639698029929
1012 => 0.017951472019339
1013 => 0.018059095151128
1014 => 0.017874998336909
1015 => 0.019156503335428
1016 => 0.019390646647547
1017 => 0.018681411282349
1018 => 0.018548742303409
1019 => 0.0191652010916
1020 => 0.018793401083299
1021 => 0.018960822604272
1022 => 0.018598948850605
1023 => 0.019334248380174
1024 => 0.019328646629722
1025 => 0.019042598505227
1026 => 0.019284364421277
1027 => 0.019242351643797
1028 => 0.018919404015747
1029 => 0.019344486396014
1030 => 0.019344697231572
1031 => 0.019069382130967
1101 => 0.018747874367687
1102 => 0.018690396373287
1103 => 0.018647094425588
1104 => 0.018950172979595
1105 => 0.019221912263416
1106 => 0.019727551700725
1107 => 0.019854681468961
1108 => 0.020350877417895
1109 => 0.020055416889647
1110 => 0.020186390714965
1111 => 0.020328581329727
1112 => 0.02039675273933
1113 => 0.020285671085661
1114 => 0.021056467636756
1115 => 0.021121546482264
1116 => 0.021143366856233
1117 => 0.020883458596042
1118 => 0.021114317963378
1119 => 0.02100630651066
1120 => 0.021287322304186
1121 => 0.0213313891688
1122 => 0.021294066102196
1123 => 0.021308053620573
1124 => 0.020650314742043
1125 => 0.020616207511342
1126 => 0.020151153000598
1127 => 0.020340666151235
1128 => 0.01998638039972
1129 => 0.020098728061073
1130 => 0.02014824983971
1201 => 0.020122382472886
1202 => 0.020351380940429
1203 => 0.020156685461722
1204 => 0.019642852082512
1205 => 0.019128878709742
1206 => 0.019122426192721
1207 => 0.018987106076054
1208 => 0.01888929441682
1209 => 0.018908136412443
1210 => 0.018974538062621
1211 => 0.0188854350322
1212 => 0.018904449681378
1213 => 0.019220219551689
1214 => 0.019283544947212
1215 => 0.019068340510395
1216 => 0.018204263642724
1217 => 0.017992217012025
1218 => 0.018144631925104
1219 => 0.01807178741343
1220 => 0.014585342887816
1221 => 0.015404431313946
1222 => 0.014917756784754
1223 => 0.015142038798624
1224 => 0.014645270128078
1225 => 0.014882354175539
1226 => 0.014838573408896
1227 => 0.016155643359525
1228 => 0.016135079123817
1229 => 0.016144922135215
1230 => 0.015675089555332
1231 => 0.016423545612431
]
'min_raw' => 0.0095552350677008
'max_raw' => 0.0213313891688
'avg_raw' => 0.015443312118251
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.009555'
'max' => '$0.021331'
'avg' => '$0.015443'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0014733978600074
'max_diff' => 0.003227076155238
'year' => 2035
]
10 => [
'items' => [
101 => 0.016792261979767
102 => 0.016724022393241
103 => 0.016741196827006
104 => 0.016446083153314
105 => 0.016147779480663
106 => 0.015816914799088
107 => 0.016431620481344
108 => 0.016363275702853
109 => 0.016520034035036
110 => 0.016918714610049
111 => 0.01697742183916
112 => 0.017056324950435
113 => 0.017028043801749
114 => 0.01770181550088
115 => 0.017620217302427
116 => 0.017816845483296
117 => 0.017412366397032
118 => 0.016954659917417
119 => 0.017041654955639
120 => 0.017033276633888
121 => 0.016926610981811
122 => 0.01683031800046
123 => 0.016670017316888
124 => 0.017177232399745
125 => 0.017156640393665
126 => 0.01749000103652
127 => 0.017431076304802
128 => 0.017037562525068
129 => 0.017051616946695
130 => 0.017146139686465
131 => 0.017473283968047
201 => 0.017570402664502
202 => 0.017525413414793
203 => 0.017631899631819
204 => 0.017716061995964
205 => 0.017642469128969
206 => 0.018684388931989
207 => 0.01825171118738
208 => 0.01846259530955
209 => 0.018512889930086
210 => 0.018384061317165
211 => 0.0184119996303
212 => 0.018454318561967
213 => 0.018711270828148
214 => 0.019385587924344
215 => 0.019684238376018
216 => 0.020582742995032
217 => 0.019659439613421
218 => 0.019604654611766
219 => 0.01976650242589
220 => 0.020294019753625
221 => 0.02072152300057
222 => 0.020863350490836
223 => 0.020882095334991
224 => 0.021148173135243
225 => 0.02130068396829
226 => 0.021115864291752
227 => 0.020959248967312
228 => 0.020398272314978
229 => 0.020463206889974
301 => 0.02091054171918
302 => 0.021542428513322
303 => 0.022084653119312
304 => 0.021894784960729
305 => 0.023343344984681
306 => 0.023486963794218
307 => 0.023467120318492
308 => 0.023794305339964
309 => 0.023144909702414
310 => 0.022867280485914
311 => 0.020993110978115
312 => 0.021519676163426
313 => 0.022285069584364
314 => 0.022183766895025
315 => 0.021627917733715
316 => 0.022084231457878
317 => 0.02193335987042
318 => 0.021814361189724
319 => 0.022359517215022
320 => 0.021760095771432
321 => 0.02227908989693
322 => 0.021613474562672
323 => 0.021895652262484
324 => 0.021735474552671
325 => 0.021839129161562
326 => 0.021233166435998
327 => 0.021560129213799
328 => 0.021219563709487
329 => 0.021219402237095
330 => 0.021211884234712
331 => 0.021612558040235
401 => 0.021625623998649
402 => 0.021329525450982
403 => 0.021286853024335
404 => 0.021444635351174
405 => 0.021259913569702
406 => 0.021346343728628
407 => 0.021262531451168
408 => 0.021243663542155
409 => 0.021093320833031
410 => 0.021028549060181
411 => 0.021053947741279
412 => 0.020967248948776
413 => 0.020915009790261
414 => 0.021201492551242
415 => 0.021048436368731
416 => 0.021178034496138
417 => 0.021030341073371
418 => 0.020518371323098
419 => 0.020223932105734
420 => 0.01925686870709
421 => 0.019531126687307
422 => 0.019712960011931
423 => 0.019652864099228
424 => 0.019781973373746
425 => 0.01978989963462
426 => 0.01974792489336
427 => 0.01969932352028
428 => 0.019675667059688
429 => 0.019851982935561
430 => 0.019954340236024
501 => 0.019731209418674
502 => 0.0196789329901
503 => 0.019904530565832
504 => 0.020042144956704
505 => 0.021058212300061
506 => 0.020982938749411
507 => 0.021171860589855
508 => 0.021150590889863
509 => 0.021348611076257
510 => 0.021672290391437
511 => 0.021014159841516
512 => 0.02112838854854
513 => 0.021100382307504
514 => 0.021406147103507
515 => 0.021407101667825
516 => 0.021223780398537
517 => 0.021323161832665
518 => 0.021267689842522
519 => 0.021367935226201
520 => 0.02098193342525
521 => 0.021452041952488
522 => 0.021718563194308
523 => 0.021722263842009
524 => 0.021848592795389
525 => 0.021976950328501
526 => 0.022223321435726
527 => 0.021970079172039
528 => 0.021514520992303
529 => 0.021547410821436
530 => 0.021280317227339
531 => 0.02128480711891
601 => 0.021260839725824
602 => 0.021332767676656
603 => 0.020997717565598
604 => 0.021076353156975
605 => 0.020966262868558
606 => 0.021128149233753
607 => 0.020953986265578
608 => 0.021100368802047
609 => 0.021163542652128
610 => 0.021396655518967
611 => 0.020919555305608
612 => 0.019946715673724
613 => 0.020151218358886
614 => 0.019848742824192
615 => 0.019876738086534
616 => 0.019933292971876
617 => 0.019749980084873
618 => 0.01978495040686
619 => 0.019783701020877
620 => 0.019772934487442
621 => 0.019725247725653
622 => 0.01965609248652
623 => 0.019931585674364
624 => 0.019978397335316
625 => 0.020082453858874
626 => 0.020392055490768
627 => 0.020361118986832
628 => 0.020411577708294
629 => 0.020301426602656
630 => 0.019881847680403
701 => 0.019904632834537
702 => 0.019620501597385
703 => 0.020075187984326
704 => 0.019967512246331
705 => 0.019898092997574
706 => 0.019879151312386
707 => 0.020189520386842
708 => 0.020282387678358
709 => 0.020224519014377
710 => 0.020105828696254
711 => 0.020333749194693
712 => 0.020394731104882
713 => 0.020408382705647
714 => 0.020812214129461
715 => 0.02043095239623
716 => 0.020522725884835
717 => 0.021238716445028
718 => 0.020589411806876
719 => 0.020933362954927
720 => 0.020916528336065
721 => 0.021092482104735
722 => 0.020902094991328
723 => 0.020904455067776
724 => 0.021060690094214
725 => 0.020841286176717
726 => 0.02078695868126
727 => 0.020711905635388
728 => 0.02087578121529
729 => 0.020974017213986
730 => 0.021765727217085
731 => 0.02227720798545
801 => 0.022255003256361
802 => 0.022457912914725
803 => 0.022366500255193
804 => 0.02207130466412
805 => 0.022575167542814
806 => 0.022415724245477
807 => 0.022428868557186
808 => 0.022428379325247
809 => 0.022534395179201
810 => 0.022459273230465
811 => 0.022311200158394
812 => 0.022409497973915
813 => 0.022701407343901
814 => 0.023607502985209
815 => 0.024114566110255
816 => 0.023576977148394
817 => 0.023947798815683
818 => 0.02372543795258
819 => 0.023685028369091
820 => 0.023917931779654
821 => 0.024151242856807
822 => 0.024136381949824
823 => 0.023967010088467
824 => 0.023871336221639
825 => 0.02459581079436
826 => 0.025129591318437
827 => 0.025093191065205
828 => 0.025253849944975
829 => 0.025725549384972
830 => 0.025768675670235
831 => 0.025763242749538
901 => 0.02565634975175
902 => 0.02612079910834
903 => 0.026508250932815
904 => 0.025631607111198
905 => 0.02596542160236
906 => 0.026115281682273
907 => 0.026335320741068
908 => 0.026706563516084
909 => 0.027109831637034
910 => 0.027166858170947
911 => 0.027126395116165
912 => 0.026860428949969
913 => 0.027301689739902
914 => 0.027560169961806
915 => 0.027714089018735
916 => 0.028104402137418
917 => 0.026116207167108
918 => 0.024708863947421
919 => 0.024489086981385
920 => 0.024936012084123
921 => 0.025053862669554
922 => 0.025006357246338
923 => 0.023422264502533
924 => 0.024480747060924
925 => 0.025619585294012
926 => 0.025663332708609
927 => 0.026233458940077
928 => 0.026419115411307
929 => 0.026878141755792
930 => 0.026849429532965
1001 => 0.026961195143143
1002 => 0.026935502164874
1003 => 0.027785751808632
1004 => 0.028723703428991
1005 => 0.028691225146882
1006 => 0.028556383504115
1007 => 0.02875664633754
1008 => 0.029724712926755
1009 => 0.029635588868171
1010 => 0.029722165299516
1011 => 0.030863570366043
1012 => 0.032347559315505
1013 => 0.031658097458425
1014 => 0.033154031300983
1015 => 0.034095642358827
1016 => 0.035724061318969
1017 => 0.035520175245027
1018 => 0.036154106796319
1019 => 0.035155176620362
1020 => 0.032861431019268
1021 => 0.03249843699779
1022 => 0.033225160221262
1023 => 0.035011738353555
1024 => 0.033168894517985
1025 => 0.033541699425796
1026 => 0.033434331587266
1027 => 0.033428610411435
1028 => 0.033646964423212
1029 => 0.03333023054055
1030 => 0.032039799723248
1031 => 0.032631196562261
1101 => 0.032402829841509
1102 => 0.03265621974405
1103 => 0.034023660542118
1104 => 0.033419082369575
1105 => 0.032782208376744
1106 => 0.033580989697407
1107 => 0.034598112809653
1108 => 0.034534463073235
1109 => 0.034410955981057
1110 => 0.035107158993041
1111 => 0.036257082400496
1112 => 0.036567902076765
1113 => 0.036797342807358
1114 => 0.036828978807673
1115 => 0.037154849272591
1116 => 0.035402561652797
1117 => 0.038183487107348
1118 => 0.038663676111834
1119 => 0.038573420480786
1120 => 0.039107130349829
1121 => 0.038950099367444
1122 => 0.038722586111374
1123 => 0.039568629777153
1124 => 0.038598708986541
1125 => 0.037222028533899
1126 => 0.036466754409928
1127 => 0.037461360302599
1128 => 0.038068731414291
1129 => 0.038470165083061
1130 => 0.038591638668679
1201 => 0.035538586752598
1202 => 0.033893161099853
1203 => 0.034947860078419
1204 => 0.036234665623705
1205 => 0.03539541338302
1206 => 0.03542831048194
1207 => 0.034231757338333
1208 => 0.03634053402635
1209 => 0.036033303000509
1210 => 0.037627218106052
1211 => 0.037246817474147
1212 => 0.038546593367289
1213 => 0.038204318814391
1214 => 0.039625081347158
1215 => 0.040191861987089
1216 => 0.041143574893895
1217 => 0.041843658782311
1218 => 0.042254761432059
1219 => 0.042230080370975
1220 => 0.043859073879805
1221 => 0.042898513320346
1222 => 0.041691822870925
1223 => 0.041669997647755
1224 => 0.042294959730446
1225 => 0.043604708805793
1226 => 0.043944307684956
1227 => 0.044134097129477
1228 => 0.043843427988575
1229 => 0.042800808345278
1230 => 0.042350610469504
1231 => 0.042734192103152
]
'min_raw' => 0.015816914799088
'max_raw' => 0.044134097129477
'avg_raw' => 0.029975505964282
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.015816'
'max' => '$0.044134'
'avg' => '$0.029975'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.006261679731387
'max_diff' => 0.022802707960677
'year' => 2036
]
11 => [
'items' => [
101 => 0.042265104726746
102 => 0.043074881141094
103 => 0.044186877116902
104 => 0.043957254345206
105 => 0.044724848844015
106 => 0.045519228396985
107 => 0.046655226835552
108 => 0.046952218893294
109 => 0.047443135471144
110 => 0.047948449887447
111 => 0.048110743259358
112 => 0.048420611663013
113 => 0.04841897850357
114 => 0.049352787794532
115 => 0.050382808360129
116 => 0.050771617278611
117 => 0.051665661947611
118 => 0.05013464178301
119 => 0.051295938164952
120 => 0.052343456570597
121 => 0.051094561943272
122 => 0.052815872231912
123 => 0.052882706809847
124 => 0.053891829586999
125 => 0.052868890327824
126 => 0.052261472261064
127 => 0.054015065460143
128 => 0.054863573971509
129 => 0.054607996302494
130 => 0.052663037621866
131 => 0.051530988246538
201 => 0.048568196675288
202 => 0.052077751274504
203 => 0.053787152944671
204 => 0.052658610684501
205 => 0.053227781757148
206 => 0.056332994575169
207 => 0.057515258568631
208 => 0.05726935592264
209 => 0.057310909421911
210 => 0.057948837613173
211 => 0.060777762526703
212 => 0.05908260514455
213 => 0.060378489446871
214 => 0.061065821808163
215 => 0.06170425441078
216 => 0.060136465717449
217 => 0.058096795662814
218 => 0.057450746536988
219 => 0.052546399397864
220 => 0.052291106830772
221 => 0.052147803376708
222 => 0.051244295369504
223 => 0.050534385567514
224 => 0.04996983893571
225 => 0.048488299985962
226 => 0.04898827589047
227 => 0.046627012025782
228 => 0.048137664968356
301 => 0.044369030825604
302 => 0.047507661325256
303 => 0.045799447440313
304 => 0.046946467121787
305 => 0.046942465278174
306 => 0.044830438381659
307 => 0.043612265344626
308 => 0.044388532615827
309 => 0.045220752750728
310 => 0.045355777667691
311 => 0.046434772795758
312 => 0.046735897143078
313 => 0.045823476312545
314 => 0.044290934259585
315 => 0.044646908824925
316 => 0.043605051531421
317 => 0.041779236699018
318 => 0.043090568787319
319 => 0.043538315217466
320 => 0.043736065548571
321 => 0.041940586357153
322 => 0.041376407813459
323 => 0.041076043890713
324 => 0.044059160442635
325 => 0.044222582301354
326 => 0.043386492966625
327 => 0.047165696040846
328 => 0.046310345992215
329 => 0.047265981562385
330 => 0.044614607864269
331 => 0.044715893910086
401 => 0.043460691111249
402 => 0.044163520805916
403 => 0.043666783430984
404 => 0.044106739112085
405 => 0.044370446733332
406 => 0.045625443565741
407 => 0.047521991373153
408 => 0.045437988889435
409 => 0.044529959163814
410 => 0.045093295698636
411 => 0.046593535126489
412 => 0.048866474655528
413 => 0.047520848707166
414 => 0.048118014652839
415 => 0.048248468845905
416 => 0.047256254089362
417 => 0.048903059028883
418 => 0.049785595174591
419 => 0.050690894644964
420 => 0.051476940809174
421 => 0.050329298128535
422 => 0.051557440304935
423 => 0.050567774507035
424 => 0.049679941976549
425 => 0.049681288452017
426 => 0.049124338136479
427 => 0.048045176719869
428 => 0.04784616279734
429 => 0.048881458355026
430 => 0.049711667349436
501 => 0.049780047338648
502 => 0.050239693695632
503 => 0.050511707674961
504 => 0.053177814457457
505 => 0.054250144660569
506 => 0.055561369734763
507 => 0.056072165797757
508 => 0.057609478816846
509 => 0.056367973699473
510 => 0.056099366257896
511 => 0.052370347724841
512 => 0.052980974300726
513 => 0.053958646365417
514 => 0.052386469177089
515 => 0.053383653737778
516 => 0.053580519093315
517 => 0.052333047197831
518 => 0.052999375837287
519 => 0.051229804523564
520 => 0.047560563192112
521 => 0.048907143943393
522 => 0.049898680630515
523 => 0.0484836355224
524 => 0.051020049108889
525 => 0.049538328653866
526 => 0.049068694404749
527 => 0.047236483762244
528 => 0.048101216657251
529 => 0.049270780279531
530 => 0.048548125937327
531 => 0.050047742204495
601 => 0.052171598771856
602 => 0.053685185439602
603 => 0.053801379829671
604 => 0.052828245004741
605 => 0.054387699772155
606 => 0.05439905869764
607 => 0.052639987349438
608 => 0.051562565943214
609 => 0.051317773532806
610 => 0.051929312968384
611 => 0.052671834739584
612 => 0.053842584620284
613 => 0.054550044253542
614 => 0.056394723769482
615 => 0.056893841155389
616 => 0.057442219839564
617 => 0.058175022875346
618 => 0.059054940806644
619 => 0.05712973046672
620 => 0.057206222662566
621 => 0.055413493450381
622 => 0.053497705183786
623 => 0.054951549671753
624 => 0.056852257942942
625 => 0.056416233365435
626 => 0.056367171693292
627 => 0.056449679817264
628 => 0.056120931525055
629 => 0.054634015183375
630 => 0.053887295105172
701 => 0.054850754514663
702 => 0.055362790312163
703 => 0.05615691317987
704 => 0.056059020774525
705 => 0.058104595999169
706 => 0.058899444676482
707 => 0.058696088371333
708 => 0.058733510825524
709 => 0.060172546388877
710 => 0.061773049895562
711 => 0.063272132634612
712 => 0.064797063983875
713 => 0.062958699723255
714 => 0.062025291726257
715 => 0.062988330519509
716 => 0.062477328580057
717 => 0.06541369729717
718 => 0.065617005096194
719 => 0.068553161480427
720 => 0.071339923520062
721 => 0.069589608212995
722 => 0.071240076711627
723 => 0.073025192957568
724 => 0.076468971820661
725 => 0.075309228253172
726 => 0.074420882855975
727 => 0.073581400748077
728 => 0.075328229750581
729 => 0.077575497356027
730 => 0.078059537274179
731 => 0.078843866859065
801 => 0.078019240203816
802 => 0.079012412180417
803 => 0.082518745679697
804 => 0.08157130341693
805 => 0.080225783094856
806 => 0.082993696640689
807 => 0.083995393792935
808 => 0.091025829000266
809 => 0.099902043862314
810 => 0.096227232625057
811 => 0.093946158704674
812 => 0.09448226518376
813 => 0.097723558372545
814 => 0.098764558871279
815 => 0.095934760661329
816 => 0.096934293228619
817 => 0.10244181594626
818 => 0.10539642518179
819 => 0.10138366898298
820 => 0.090312633778678
821 => 0.08010463371151
822 => 0.082812255001557
823 => 0.082505294774536
824 => 0.088422440857189
825 => 0.081548707232303
826 => 0.081664443277873
827 => 0.087703949675148
828 => 0.086092712911708
829 => 0.083482715706547
830 => 0.080123689579503
831 => 0.073914219111353
901 => 0.068414317953819
902 => 0.079200890675335
903 => 0.078735754045474
904 => 0.078062167276048
905 => 0.079561161741704
906 => 0.08683985336993
907 => 0.086672055969074
908 => 0.085604614515813
909 => 0.086414259450114
910 => 0.083340781034988
911 => 0.084132886404369
912 => 0.080103016712145
913 => 0.081924686115255
914 => 0.083477115824754
915 => 0.08378878907305
916 => 0.084491004815893
917 => 0.078490648177509
918 => 0.081184632146928
919 => 0.0827670953368
920 => 0.075617469074454
921 => 0.082625770213395
922 => 0.078386195318023
923 => 0.076947219922256
924 => 0.078884610722064
925 => 0.078129607643204
926 => 0.077480500331269
927 => 0.07711828729813
928 => 0.078540893279489
929 => 0.078474527010077
930 => 0.076146867508651
1001 => 0.07311053057658
1002 => 0.074129624915346
1003 => 0.073759378388012
1004 => 0.072417557210202
1005 => 0.073321782671939
1006 => 0.069340031356482
1007 => 0.062489635171662
1008 => 0.067015216724664
1009 => 0.066840986757759
1010 => 0.066753132107745
1011 => 0.070153981566939
1012 => 0.069827068362384
1013 => 0.069233717694973
1014 => 0.072406659859883
1015 => 0.071248493287597
1016 => 0.074817689765021
1017 => 0.077168593406207
1018 => 0.076572328199037
1019 => 0.078783364436476
1020 => 0.07415310279063
1021 => 0.075691089975526
1022 => 0.076008067002775
1023 => 0.072367506246091
1024 => 0.069880555405653
1025 => 0.069714704137911
1026 => 0.065402674103528
1027 => 0.067706125742405
1028 => 0.069733067861312
1029 => 0.068762319883418
1030 => 0.068455010073888
1031 => 0.070024989243412
1101 => 0.070146990070846
1102 => 0.067365358276276
1103 => 0.06794374760919
1104 => 0.070355727276667
1105 => 0.067882971910072
1106 => 0.063078812155073
1107 => 0.061887314113129
1108 => 0.061728346310667
1109 => 0.058496909122012
1110 => 0.061966935709661
1111 => 0.060452176113221
1112 => 0.065237283528768
1113 => 0.062504055836054
1114 => 0.062386231853054
1115 => 0.062208123621729
1116 => 0.059426692144464
1117 => 0.060035648868793
1118 => 0.062059913767191
1119 => 0.062782194287916
1120 => 0.062706854512134
1121 => 0.062049993764855
1122 => 0.062350701251288
1123 => 0.061382017664053
1124 => 0.061039955327995
1125 => 0.059960312503738
1126 => 0.058373535811023
1127 => 0.058594186842412
1128 => 0.055450367011437
1129 => 0.053737447112374
1130 => 0.053263333460235
1201 => 0.052629328870021
1202 => 0.053334945965722
1203 => 0.055441460964856
1204 => 0.052900556953813
1205 => 0.048544355250572
1206 => 0.048806170395543
1207 => 0.049394391292679
1208 => 0.048298245542337
1209 => 0.047260835582177
1210 => 0.048162779374805
1211 => 0.04631699928635
1212 => 0.049617444998051
1213 => 0.049528177190941
1214 => 0.05075837925407
1215 => 0.051527649850432
1216 => 0.04975473018013
1217 => 0.049308845677534
1218 => 0.049562841754534
1219 => 0.045364852384985
1220 => 0.050415313961169
1221 => 0.050458990562605
1222 => 0.050085004984278
1223 => 0.052774219858089
1224 => 0.058449302028983
1225 => 0.056314107836641
1226 => 0.055487296108781
1227 => 0.053915526409721
1228 => 0.056009816211268
1229 => 0.055849007430519
1230 => 0.055121769139056
1231 => 0.054681933151257
]
'min_raw' => 0.041076043890713
'max_raw' => 0.10539642518179
'avg_raw' => 0.073236234536251
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.041076'
'max' => '$0.105396'
'avg' => '$0.073236'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.025259129091626
'max_diff' => 0.061262328052311
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0012893300811855
]
1 => [
'year' => 2028
'avg' => 0.0022128647145112
]
2 => [
'year' => 2029
'avg' => 0.006045147569984
]
3 => [
'year' => 2030
'avg' => 0.0046638223475388
]
4 => [
'year' => 2031
'avg' => 0.0045804515264237
]
5 => [
'year' => 2032
'avg' => 0.0080309730469678
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0012893300811855
'min' => '$0.001289'
'max_raw' => 0.0080309730469678
'max' => '$0.00803'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.0080309730469678
]
1 => [
'year' => 2033
'avg' => 0.020656488492021
]
2 => [
'year' => 2034
'avg' => 0.013093075110628
]
3 => [
'year' => 2035
'avg' => 0.015443312118251
]
4 => [
'year' => 2036
'avg' => 0.029975505964282
]
5 => [
'year' => 2037
'avg' => 0.073236234536251
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.0080309730469678
'min' => '$0.00803'
'max_raw' => 0.073236234536251
'max' => '$0.073236'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.073236234536251
]
]
]
]
'prediction_2025_max_price' => '$0.0022045'
'last_price' => 0.00213756
'sma_50day_nextmonth' => '$0.002074'
'sma_200day_nextmonth' => '$0.00285'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'augmenter'
'sma_200day_date_nextmonth' => '4 févr. 2026'
'sma_50day_date_nextmonth' => '4 févr. 2026'
'daily_sma3' => '$0.002197'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.0022065'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.0022021'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.002244'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.002421'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.0027057'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.002993'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.00218'
'daily_ema3_action' => 'SELL'
'daily_ema5' => '$0.002191'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.0022079'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.002259'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.00241'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.002636'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.002976'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.002853'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.003254'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.005348'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.012187'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.002199'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.002262'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.002432'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.00273'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.003585'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.006423'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.013825'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '36.10'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 87.78
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => -0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.002199'
'vwma_10_action' => 'SELL'
'hma_9' => '0.002215'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 28.9
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => -150
'cci_20_action' => 'BUY'
'adx_14' => 26.87
'adx_14_action' => 'SELL'
'ao_5_34' => '-0.000128'
'ao_5_34_action' => 'SELL'
'macd_12_26' => 0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -71.1
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 41.84
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.000283'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 34
'buy_signals' => 0
'sell_pct' => 100
'buy_pct' => 0
'overall_action' => 'bearish'
'overall_action_label' => 'Baissier'
'overall_action_dir' => -1
'last_updated' => 1767700175
'last_updated_date' => '6 janvier 2026'
]
Prévision du prix de Coinweb pour 2026
La prévision du prix de Coinweb pour 2026 suggère que le prix moyen pourrait varier entre $0.000738 à la baisse et $0.0022045 à la hausse. Sur le marché des cryptomonnaies, comparé au prix moyen d'aujourd'hui, Coinweb pourrait potentiellement gagner 3.13% d'ici 2026 si CWEB atteint l'objectif de prix prévu.
Prévision du prix de Coinweb de 2027 à 2032
La prévision du prix de CWEB pour 2027-2032 se situe actuellement dans une fourchette de prix comprise entre $0.001289 à la baisse et $0.00803 à la hausse. Compte tenu de la volatilité des prix sur le marché, si Coinweb atteint l'objectif de prix le plus élevé, il pourrait gagner 275.71% d'ici 2032 par rapport au prix actuel.
| Prévision du Prix de Coinweb | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2027 | $0.00071 | $0.001289 | $0.001867 |
| 2028 | $0.001283 | $0.002212 | $0.003142 |
| 2029 | $0.002818 | $0.006045 | $0.009271 |
| 2030 | $0.002397 | $0.004663 | $0.00693 |
| 2031 | $0.002834 | $0.00458 | $0.006326 |
| 2032 | $0.004325 | $0.00803 | $0.011735 |
Prévision du prix de Coinweb de 2032 à 2037
La prévision du prix de Coinweb pour 2032-2037 est actuellement estimée entre $0.00803 à la baisse et $0.073236 à la hausse. Par rapport au prix actuel, Coinweb pourrait potentiellement gagner 3326.16% d'ici 2037 s'il atteint l'objectif de prix le plus élevé. Veuillez noter que ces informations sont à titre général seulement et ne doivent pas être considérées comme un conseil en investissement à long terme.
| Prévision du Prix de Coinweb | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2032 | $0.004325 | $0.00803 | $0.011735 |
| 2033 | $0.010052 | $0.020656 | $0.03126 |
| 2034 | $0.008081 | $0.013093 | $0.0181043 |
| 2035 | $0.009555 | $0.015443 | $0.021331 |
| 2036 | $0.015816 | $0.029975 | $0.044134 |
| 2037 | $0.041076 | $0.073236 | $0.105396 |
Coinweb Histogramme des prix potentiels
Prévision du prix de Coinweb basée sur l'analyse technique
Au 6 janvier 2026, le sentiment global de prévision du prix pour Coinweb est Baissier, avec 0 indicateurs techniques montrant des signaux haussiers et 34 indiquant des signaux baissiers. La prévision du prix de CWEB a été mise à jour pour la dernière fois le 6 janvier 2026.
Moyennes Mobiles Simples sur 50 et 200 jours de Coinweb et Indice de Force Relative sur 14 jours - RSI (14)
Selon nos indicateurs techniques, le SMA sur 200 jours de Coinweb devrait augmenter au cours du prochain mois, atteignant $0.00285 d'ici le 4 févr. 2026. Le SMA à court terme sur 50 jours pour Coinweb devrait atteindre $0.002074 d'ici le 4 févr. 2026.
Le Relative Strength Index (RSI), un oscillateur de momentum, est un outil couramment utilisé pour identifier si une cryptomonnaie est survendue (en dessous de 30) ou surachetée (au-dessus de 70). Actuellement, le RSI est à 36.10, ce qui suggère que le marché de CWEB est dans un état NEUTRAL.
Moyennes Mobiles et Oscillateurs Populaires de CWEB pour le Samedi 19 Octobre 2024
Les moyennes mobiles (MA) sont des indicateurs largement utilisés sur les marchés financiers, conçus pour lisser les mouvements de prix sur une période donnée. En tant qu'indicateurs retardés, ils sont basés sur des données historiques de prix. Le tableau ci-dessous met en évidence deux types : la moyenne mobile simple (SMA) et la moyenne mobile exponentielle (EMA).
Moyenne Mobile Simple Quotidienne (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 3 | $0.002197 | SELL |
| SMA 5 | $0.0022065 | SELL |
| SMA 10 | $0.0022021 | SELL |
| SMA 21 | $0.002244 | SELL |
| SMA 50 | $0.002421 | SELL |
| SMA 100 | $0.0027057 | SELL |
| SMA 200 | $0.002993 | SELL |
Moyenne Mobile Exponentielle Quotidienne (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 3 | $0.00218 | SELL |
| EMA 5 | $0.002191 | SELL |
| EMA 10 | $0.0022079 | SELL |
| EMA 21 | $0.002259 | SELL |
| EMA 50 | $0.00241 | SELL |
| EMA 100 | $0.002636 | SELL |
| EMA 200 | $0.002976 | SELL |
Moyenne Mobile Simple Hebdomadaire (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 21 | $0.002853 | SELL |
| SMA 50 | $0.003254 | SELL |
| SMA 100 | $0.005348 | SELL |
| SMA 200 | $0.012187 | SELL |
Moyenne Mobile Exponentielle Hebdomadaire (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 21 | $0.00273 | SELL |
| EMA 50 | $0.003585 | SELL |
| EMA 100 | $0.006423 | SELL |
| EMA 200 | $0.013825 | SELL |
Oscillateurs de Coinweb
Un oscillateur est un outil d'analyse technique qui établit des limites hautes et basses entre deux extrêmes, créant un indicateur de tendance qui fluctue à l'intérieur de ces limites. Les traders utilisent cet indicateur pour identifier les conditions de surachat ou de survente à court terme.
| Période | Valeur | Action |
|---|---|---|
| RSI (14) | 36.10 | NEUTRAL |
| Stoch RSI (14) | 87.78 | SELL |
| Stochastique Rapide (14) | 28.9 | NEUTRAL |
| Indice de Canal des Matières Premières (20) | -150 | BUY |
| Indice Directionnel Moyen (14) | 26.87 | SELL |
| Oscillateur Impressionnant (5, 34) | -0.000128 | SELL |
| Momentum (10) | -0 | SELL |
| MACD (12, 26) | 0 | NEUTRAL |
| Plage de Pourcentage de Williams (14) | -71.1 | NEUTRAL |
| Oscillateur Ultime (7, 14, 28) | 41.84 | NEUTRAL |
| VWMA (10) | 0.002199 | SELL |
| Moyenne Mobile de Hull (9) | 0.002215 | SELL |
| Nuage Ichimoku B/L (9, 26, 52, 26) | -0.000283 | SELL |
Prévision du cours de Coinweb basée sur les flux monétaires mondiaux
Définitions des flux monétaires mondiaux utilisés pour la prédiction du cours de Coinweb
M0 : le total de toutes les devises physiques, plus les comptes à la banque centrale qui peuvent être échangés contre des devises physiques.
M1 : M0 plus le montant des comptes à vue, y compris les comptes de "chèques" et les comptes "courants".
M2 : M1 plus la plupart des comptes d'épargne, comptes du marché monétaire et comptes de certificats de dépôt (CD) de moins de 100 000 $.
Prédictions du cours de Coinweb par des sociétés Internet ou des niches technologiques
| Comparaison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Action Facebook | $0.0030036 | $0.00422 | $0.00593 | $0.008333 | $0.01171 | $0.016454 |
| Action Amazon.com | $0.00446 | $0.0093063 | $0.019418 | $0.040517 | $0.084541 | $0.1764017 |
| Action Apple | $0.003031 | $0.00430061 | $0.006100089 | $0.008652 | $0.012272 | $0.0174082 |
| Action Netflix | $0.003372 | $0.005321 | $0.008396 | $0.013248 | $0.0209043 | $0.032983 |
| Action Google | $0.002768 | $0.003584 | $0.004642 | $0.006011 | $0.007785 | $0.010081 |
| Action Tesla | $0.004845 | $0.010984 | $0.0249017 | $0.05645 | $0.127968 | $0.290095 |
| Action Kodak | $0.0016029 | $0.001202 | $0.0009013 | $0.000675 | $0.0005068 | $0.00038 |
| Action Nokia | $0.001416 | $0.000938 | $0.000621 | $0.000411 | $0.000272 | $0.00018 |
Ce calcul montre la valeur potentielle des cryptomonnaies si l'on suppose que leur capitalisation se comportera comme celle de certaines sociétés Internet ou niches technologiques. En extrapolant les données, vous pourrez obtenir une potentielle image des cours futurs pour 2024, 2025, 2026, 2027, 2028, 2029 et 2030.
Aperçu des prévisions relatives à Coinweb
Vous vous posez peut-être des questions telles que : "Devrais-je investir dans Coinweb maintenant ?", "Devrais-je acheter CWEB aujourd'hui ?", " Coinweb sera-t-il un bon ou un mauvais investissement à court ou à long terme ?".
Nous mettons régulièrement à jour les prévisions de Coinweb avec de nouvelles valeurs. Regardez nos prévisions similaires. Nous faisons une prévision des cours futurs pour une grande quantité de devises numériques comme Coinweb en utilisant des méthodes d'analyse technique.
Si vous souhaitez trouver des cryptomonnaies ayant un bon rendement, vous devriez consulter un maximum d'informations disponibles à propos de Coinweb afin de prendre une décision responsable concernant cet investissement.
Le cours de Coinweb est de $0.002137 USD actuellement, mais ce cours peut subir une hausse ou une baisse, ce qui pourrait causer la perte de votre investissement, car les cryptomonnaies sont des actifs à haut risque.
Prévision à court terme de Coinweb
basée sur l'historique des cours sur 4 heures
Prévision à long terme de Coinweb
basée sur l'historique des cours sur 1 mois
Prévision du cours de Coinweb basée sur le modèle de croissance du Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Coinweb présente 1 % de la précédente croissance annuelle moyenne du Bitcoin | $0.002193 | $0.00225 | $0.0023086 | $0.002368 |
| Si Coinweb présente 2 % de la précédente croissance annuelle moyenne du Bitcoin | $0.002248 | $0.002365 | $0.002488 | $0.002617 |
| Si Coinweb présente 5 % de la précédente croissance annuelle moyenne du Bitcoin | $0.002415 | $0.002729 | $0.003084 | $0.003484 |
| Si Coinweb présente 10 % de la précédente croissance annuelle moyenne du Bitcoin | $0.002693 | $0.003393 | $0.004275 | $0.005386 |
| Si Coinweb présente 20 % de la précédente croissance annuelle moyenne du Bitcoin | $0.003248 | $0.004937 | $0.0075046 | $0.0114061 |
| Si Coinweb présente 50 % de la précédente croissance annuelle moyenne du Bitcoin | $0.004915 | $0.0113043 | $0.025996 | $0.059782 |
| Si Coinweb présente 100 % de la précédente croissance annuelle moyenne du Bitcoin | $0.007693 | $0.027692 | $0.099673 | $0.358757 |
Boîte à questions
Est-ce que CWEB est un bon investissement ?
La décision d'acquérir Coinweb dépend entièrement de votre tolérance individuelle au risque. Comme vous pouvez le discerner, la valeur de Coinweb a connu une baisse de -4.5766% au cours des 24 heures précédentes, et Coinweb a enregistré une déclin de sur une période de 30 jours précédents. Par conséquent, la détermination de si investir ou non dans Coinweb dépendra de la mesure dans laquelle cet investissement s'aligne avec vos aspirations de trading.
Est-ce que Coinweb peut monter ?
Il semble que la valeur moyenne de Coinweb pourrait potentiellement s'envoler jusqu'à $0.0022045 pour la fin de cette année. En regardant les perspectives de Coinweb sur une période de cinq ans plus longue, la monnaie numérique pourrait potentiellement croître jusqu'à $0.00693. Cependant, compte tenu de l'imprévisibilité du marché, il est essentiel de mener des recherches approfondies avant d'investir des fonds dans un projet, un réseau ou un actif particulier.
Quel sera le prix de Coinweb la semaine prochaine ?
Basé sur notre nouveau pronostic expérimental de Coinweb, le prix de Coinweb va augmenter de 0.86% durant la prochaine semaine et atteindre $0.002155 d'ici 13 janvier 2026.
Quel sera le prix de Coinweb le mois prochain ?
Basé sur notre nouveau pronostic expérimental de Coinweb, le prix de Coinweb va diminuer de -11.62% durant le prochain mois et atteindre $0.001889 d'ici 5 février 2026.
Jusqu'où le prix de Coinweb peut-il monter cette année en 2026 ?
Selon notre prédiction la plus récente sur la valeur de Coinweb en 2026, CWEB devrait fluctuer dans la fourchette de $0.000738 et $0.0022045. Cependant, il est crucial de garder à l'esprit que le marché des cryptomonnaies est exceptionnellement instable, et cette prévision de prix de Coinweb ne prend pas en compte les fluctuations de prix soudaines et extrêmes.
Où sera Coinweb dans 5 ans ?
L'avenir de Coinweb semble suivre une tendance haussière, avec un prix maximum de $0.00693 prévue après une période de cinq ans. Selon la prévision de Coinweb pour 2030, la valeur de Coinweb pourrait potentiellement atteindre son point le plus élevé d'environ $0.00693, tandis que son point le plus bas devrait être autour de $0.002397.
Combien vaudra Coinweb en 2026 ?
Basé sur notre nouvelle simulation expérimentale de prédiction de prix de Coinweb, il est attendu que la valeur de CWEB en 2026 augmente de 3.13% jusqu'à $0.0022045 si le meilleur scénario se produit. Le prix sera entre $0.0022045 et $0.000738 durant 2026.
Combien vaudra Coinweb en 2027 ?
Selon notre dernière simulation expérimentale pour la prédiction de prix de Coinweb, le valeur de CWEB pourrait diminuer de -12.62% jusqu'à $0.001867 en 2027, en supposant les conditions les plus favorables. Il est prévu que le prix fluctue entre $0.001867 et $0.00071 tout au long de l'année.
Combien vaudra Coinweb en 2028 ?
Notre nouveau modèle expérimental de prédiction de prix de Coinweb suggère que la valeur de CWEB en 2028 pourrait augmenter de 47.02%, atteignant $0.003142 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.003142 et $0.001283 durant l'année.
Combien vaudra Coinweb en 2029 ?
Basé sur notre modèle de prévision expérimental, la valeur de Coinweb pourrait connaître un 333.75% croissance en 2029, atteignant potentiellement $0.009271 sous des conditions optimales. Le range de prix prévu pour 2029 se situe entre $0.009271 et $0.002818.
Combien vaudra Coinweb en 2030 ?
En utilisant notre nouvelle simulation expérimentale pour les prédictions de prix de Coinweb, il est prévu que la valeur de CWEB en 2030 augmente de 224.23%, atteignant $0.00693 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.00693 et $0.002397 au cours de 2030.
Combien vaudra Coinweb en 2031 ?
Notre simulation expérimentale indique que le prix de Coinweb pourrait augmenter de 195.98% en 2031, atteignant potentiellement $0.006326 dans des conditions idéales. Il est probable que le prix fluctue entre $0.006326 et $0.002834 durant l'année.
Combien vaudra Coinweb en 2032 ?
Basé sur les résultats de notre dernière prédiction expérimentale de prix de Coinweb, CWEB pourrait connaître une 449.04% hausse en valeur, atteignant $0.011735 si le scénario le plus positif se réalise en 2032. Il est prévu que le prix reste dans une fourchette de $0.011735 et $0.004325 tout au long de l'année.
Combien vaudra Coinweb en 2033 ?
Selon notre prédiction expérimentale de prix de Coinweb, la valeur de CWEB est anticipée à augmenter de 1362.43% en 2033, avec le prix potentiel le plus élevé étant $0.03126. Tout au long de l'année, le prix de CWEB pourrait osciller entre $0.03126 et $0.010052.
Combien vaudra Coinweb en 2034 ?
Les résultats de notre nouvelle simulation de prédiction de prix de Coinweb suggèrent que CWEB pourrait augmenter de 746.96% en 2034, atteignant potentiellement $0.0181043 dans les meilleures circonstances. La fourchette de prix prévue pour l'année est entre $0.0181043 et $0.008081.
Combien vaudra Coinweb en 2035 ?
Basé sur notre prédiction expérimentale pour le prix de Coinweb, CWEB pourrait augmenter de 897.93%, avec la valeur potentiellement atteignant $0.021331 en 2035. La fourchette de prix attendue pour l'année se situe entre $0.021331 et $0.009555.
Combien vaudra Coinweb en 2036 ?
Notre récente simulation de prédiction de prix de Coinweb suggère que la valeur de CWEB pourrait augmenter de 1964.7% en 2036, pouvant atteindre $0.044134 si les conditions sont optimales. La fourchette de prix attendue pour 2036 est entre $0.044134 et $0.015816.
Combien vaudra Coinweb en 2037 ?
Selon la simulation expérimentale, la valeur de Coinweb pourrait augmenter de 4830.69% en 2037, avec un maximum de $0.105396 sous des conditions favorables. Il est prévu que le prix chute entre $0.105396 et $0.041076 au cours de l'année.
Prévisions liées
Prévision du cours de ThetaDrop
Prévision du cours de Syncus
Prévision du cours de Streamr XDATA
Prévision du cours de EURC
Prévision du cours de SUKU
Prévision du cours de Router Protocol
Prévision du cours de Keep3rV1
Prévision du cours de RAMP
Prévision du cours de CoW Protocol
Prévision du cours de Circuits of Value
Prévision du cours de Archway
Prévision du cours de XCAD Network
Prévision du cours de Concordium
Prévision du cours de EverGrowCoin
Prévision du cours de Only1
Prévision du cours de SatoshiVM
Prévision du cours de Whiteheart
Prévision du cours de Zano
Prévision du cours de Sentinel Protocol
Prévision du cours de SWFT Blockchain
Prévision du cours de MicrovisionChain
Prévision du cours de APX
Prévision du cours de PolySwarm
Prévision du cours de FLUX Token
Prévision du cours de Smart Layer Network
Comment lire et prédire les mouvements de prix de Coinweb ?
Les traders de Coinweb utilisent des indicateurs et des modèles graphiques pour prédire la direction du marché. Ils identifient également des niveaux clés de support et de résistance pour évaluer quand une tendance baissière pourrait ralentir ou une tendance haussière pourrait s'arrêter.
Indicateurs de prédiction du prix de Coinweb
Les moyennes mobiles sont des outils populaires pour la prédiction du prix de Coinweb. Une moyenne mobile simple (SMA) calcule le prix de clôture moyen de CWEB sur une période spécifique, comme une SMA de 12 jours. Une moyenne mobile exponentielle (EMA) donne plus de poids aux prix récents, réagissant plus rapidement aux changements de prix.
Les moyennes mobiles couramment utilisées sur le marché des cryptomonnaies incluent les moyennes sur 50 jours, 100 jours et 200 jours, qui aident à identifier les niveaux clés de résistance et de support. Un mouvement de prix de CWEB au-dessus de ces moyennes est considéré comme haussier, tandis qu'une chute en dessous indique une faiblesse.
Les traders utilisent également le RSI et les niveaux de retracement de Fibonacci pour évaluer la direction future de CWEB.
Comment lire les graphiques de Coinweb et prédire les mouvements de prix ?
La plupart des traders préfèrent les graphiques en chandeliers aux simples graphiques linéaires parce qu'ils fournissent des informations plus détaillées. Les chandeliers peuvent représenter l'action des prix de Coinweb dans différentes périodes, comme 5 minutes pour les tendances à court terme et hebdomadaire pour les tendances à long terme. Les options populaires incluent les graphiques de 1 heure, 4 heures et 1 jour.
Par exemple, un graphique en chandeliers de 1 heure montre les prix d'ouverture, de clôture, les plus hauts et les plus bas de CWEB au sein de chaque heure. La couleur du chandelier est cruciale : le vert indique que le prix a clôturé plus haut qu'il n'a ouvert, tandis que le rouge signifie le contraire. Certains graphiques utilisent des chandeliers creux et pleins pour transmettre la même information.
Qu'est-ce qui affecte le prix de Coinweb ?
L'action du prix de Coinweb est déterminée par l'offre et la demande, influencée par des facteurs tels que les réductions de récompenses de bloc, les hard forks et les mises à jour de protocole. Les événements du monde réel, tels que les réglementations, l'adoption par les entreprises et les gouvernements et les piratages d'échanges de cryptomonnaies, impactent également le prix de CWEB. La capitalisation boursière de Coinweb peut changer rapidement.
Les traders surveillent souvent l'activité des « baleines » de CWEB, de grands détenteurs de Coinweb, car leurs actions peuvent influencer significativement les mouvements de prix sur le marché relativement petit de Coinweb.
Modèles de prédiction de prix haussiers et baissiers
Les traders identifient souvent des modèles de chandeliers pour obtenir un avantage dans les prédictions de prix des cryptomonnaies. Certaines formations indiquent des tendances haussières, tandis que d'autres suggèrent des mouvements baissiers.
Modèles de chandeliers haussiers couramment suivis :
- Marteau
- Englobante haussière
- Ligne pénétrante
- Étoile du matin
- Trois soldats blancs
Modèles de chandeliers baissiers courants :
- Harami baissier
- Nuage sombre
- Étoile du soir
- Étoile filante
- Pendu


