Prédiction du prix de Eva Token jusqu'à $0.048235 d'ici 2026
| Année | Prix min. | Prix max. |
|---|---|---|
| 2026 | $0.016159 | $0.048235 |
| 2027 | $0.015555 | $0.040865 |
| 2028 | $0.028073 | $0.068761 |
| 2029 | $0.06167 | $0.202866 |
| 2030 | $0.052447 | $0.151641 |
| 2031 | $0.0620095 | $0.138431 |
| 2032 | $0.094652 | $0.256783 |
| 2033 | $0.219952 | $0.683979 |
| 2034 | $0.176831 | $0.396123 |
| 2035 | $0.209069 | $0.466732 |
Calculateur de profit d’investissement
Si vous ouvrez une position short de $10,000.00 sur Eva Token aujourd’hui et la fermez le Apr 06, 2026, notre prévision indique que vous pourriez gagner environ $3,954.52, soit un rendement de 39.55% sur les 90 prochains jours.
Prévision du prix à long terme de Eva Token pour 2027, 2028, 2029, 2030, 2031, 2032 et 2037
[
'name' => 'Eva Token'
'name_with_ticker' => 'Eva Token <small>EVA</small>'
'name_lang' => 'Eva Token'
'name_lang_with_ticker' => 'Eva Token <small>EVA</small>'
'name_with_lang' => 'Eva Token'
'name_with_lang_with_ticker' => 'Eva Token <small>EVA</small>'
'image' => '/uploads/coins/eva-token.png?ts=1572419182'
'price_for_sd' => 0.0468
'ticker' => 'EVA'
'marketcap' => '$0'
'low24h' => '$0'
'high24h' => '$0'
'volume24h' => '$0'
'current_supply' => '0'
'max_supply' => '100K'
'algo' => 'Ethash'
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.04677'
'change_24h_pct' => '0%'
'ath_price' => '$1,210.04'
'ath_days' => 2625
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '30 oct. 2018'
'ath_pct' => '0.00%'
'fdv' => '$0'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$2.30'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.04717'
'next_week_prediction_price_date' => '13 janvier 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.041336'
'next_month_prediction_price_date' => '5 février 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.016159'
'current_year_max_price_prediction' => '$0.048235'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.052447'
'grand_prediction_max_price' => '$0.151641'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.04765626689898
107 => 0.047834198100356
108 => 0.048235086182448
109 => 0.04480954141341
110 => 0.046347510445997
111 => 0.047250923164432
112 => 0.043169271636107
113 => 0.047170242037228
114 => 0.04474991030013
115 => 0.043928413356396
116 => 0.045034450767141
117 => 0.044603426912517
118 => 0.044232857912881
119 => 0.044026074043901
120 => 0.044838225849458
121 => 0.044800337996997
122 => 0.043471500011234
123 => 0.041738085029171
124 => 0.042319875994559
125 => 0.042108505882514
126 => 0.041342473329177
127 => 0.041858686779003
128 => 0.039585543995619
129 => 0.035674719984486
130 => 0.038258330118019
131 => 0.038158863938305
201 => 0.038108708580061
202 => 0.040050220189672
203 => 0.039863588646702
204 => 0.03952485056871
205 => 0.041336252138733
206 => 0.040675066198885
207 => 0.042712685470497
208 => 0.044054793307731
209 => 0.043714391347568
210 => 0.044976650255458
211 => 0.042333279283349
212 => 0.043211301086647
213 => 0.043392260163422
214 => 0.041313899724536
215 => 0.039894123875243
216 => 0.039799441012725
217 => 0.037337745347216
218 => 0.038652763301618
219 => 0.039809924682351
220 => 0.039255734180331
221 => 0.039080294023361
222 => 0.03997657973699
223 => 0.040046228813107
224 => 0.038458222496562
225 => 0.038788419295391
226 => 0.040165394837161
227 => 0.038753723044694
228 => 0.036011075347208
301 => 0.03533086079816
302 => 0.035240107638476
303 => 0.033395311832962
304 => 0.0353763159869
305 => 0.034511554586096
306 => 0.037243325489804
307 => 0.035682952600387
308 => 0.035615688043802
309 => 0.035514007800959
310 => 0.033926115843598
311 => 0.034273763266462
312 => 0.035429396248258
313 => 0.0358417391153
314 => 0.035798728376042
315 => 0.035423733016194
316 => 0.035595403971645
317 => 0.03504239201001
318 => 0.034847111976408
319 => 0.034230754474355
320 => 0.033324879219442
321 => 0.033450846729693
322 => 0.031656070814558
323 => 0.030678181640024
324 => 0.030407514804885
325 => 0.030045567800992
326 => 0.030448397682079
327 => 0.031650986439892
328 => 0.030200409254533
329 => 0.027713496416393
330 => 0.027862964115459
331 => 0.028198773657901
401 => 0.027572994797162
402 => 0.026980747623113
403 => 0.027495658490417
404 => 0.026441920736505
405 => 0.028326112831169
406 => 0.028275150715396
407 => 0.028977461010629
408 => 0.029416630051097
409 => 0.028404487595484
410 => 0.028149936505022
411 => 0.028294940374851
412 => 0.025898349406684
413 => 0.0287816083988
414 => 0.028806542942294
415 => 0.0285930382427
416 => 0.030128284645368
417 => 0.033368133410358
418 => 0.032149171982354
419 => 0.031677153274127
420 => 0.030779845364743
421 => 0.031975454877125
422 => 0.031883650720988
423 => 0.031468477511244
424 => 0.031217379458572
425 => 0.031680035319707
426 => 0.031160051277391
427 => 0.031066647855185
428 => 0.030500724740543
429 => 0.030298715936477
430 => 0.030149156660149
501 => 0.029984506592302
502 => 0.030347683613731
503 => 0.029524676703257
504 => 0.028532211049587
505 => 0.028449698269112
506 => 0.028677523310602
507 => 0.028576727689322
508 => 0.028449215698456
509 => 0.028205760582068
510 => 0.028133532649631
511 => 0.028368238390039
512 => 0.028103269293313
513 => 0.028494245629147
514 => 0.028387921699507
515 => 0.027794004871573
516 => 0.027053764607795
517 => 0.027047174916741
518 => 0.026887691366147
519 => 0.026684565085953
520 => 0.026628060001703
521 => 0.027452294133376
522 => 0.029158434118686
523 => 0.0288234780151
524 => 0.029065518127623
525 => 0.030256115925333
526 => 0.0306345711627
527 => 0.03036595259942
528 => 0.029998250942332
529 => 0.030014427949126
530 => 0.031270975822258
531 => 0.031349345171793
601 => 0.031547359235155
602 => 0.031801863265344
603 => 0.030409295736268
604 => 0.029948838143738
605 => 0.029730647791183
606 => 0.029058705955606
607 => 0.029783337617336
608 => 0.029361125779868
609 => 0.029418096581552
610 => 0.029380994272217
611 => 0.029401254641961
612 => 0.028325586161079
613 => 0.028717503220041
614 => 0.028065865095952
615 => 0.027193394797609
616 => 0.027190469971242
617 => 0.027404005840734
618 => 0.0272769863499
619 => 0.026935180166039
620 => 0.026983732121176
621 => 0.0265583659054
622 => 0.027035379281276
623 => 0.02704905831806
624 => 0.026865382185254
625 => 0.02760028710595
626 => 0.027901378251585
627 => 0.027780478686248
628 => 0.027892895615787
629 => 0.02883739695344
630 => 0.02899139188296
701 => 0.029059786258318
702 => 0.028968146855856
703 => 0.027910159366394
704 => 0.027957085610462
705 => 0.027612771967545
706 => 0.027321863222157
707 => 0.027333498046357
708 => 0.027483062956976
709 => 0.028136221693515
710 => 0.029510755748751
711 => 0.029562918311375
712 => 0.029626140858966
713 => 0.029368982984808
714 => 0.029291421709293
715 => 0.029393745051962
716 => 0.029909947773541
717 => 0.031237761321115
718 => 0.030768423331717
719 => 0.030386844240656
720 => 0.030721591976501
721 => 0.030670060186407
722 => 0.030235080018254
723 => 0.030222871573681
724 => 0.029388005559423
725 => 0.029079374602932
726 => 0.028821459475061
727 => 0.028539822888471
728 => 0.028372859279396
729 => 0.028629391266538
730 => 0.028688063167194
731 => 0.028127151493897
801 => 0.028050701305467
802 => 0.028508753886001
803 => 0.028307182023229
804 => 0.028514503682831
805 => 0.028562604086231
806 => 0.028554858813438
807 => 0.028344394638323
808 => 0.028478538227409
809 => 0.028161248649092
810 => 0.027816243888026
811 => 0.027596152345022
812 => 0.027404093282845
813 => 0.027510658813079
814 => 0.027130772155891
815 => 0.027009238768648
816 => 0.028433093397753
817 => 0.029484910121289
818 => 0.029469616289564
819 => 0.02937651902219
820 => 0.029238195366964
821 => 0.029899828536596
822 => 0.029669328770069
823 => 0.029837036609118
824 => 0.029879725292831
825 => 0.030008931081424
826 => 0.030055111045233
827 => 0.029915523120555
828 => 0.029447048996107
829 => 0.028279656019165
830 => 0.027736231437082
831 => 0.027556892273542
901 => 0.027563410911523
902 => 0.027383597775523
903 => 0.027436560802735
904 => 0.027365179396065
905 => 0.027230000280851
906 => 0.027502311883639
907 => 0.027533693259103
908 => 0.027470132477131
909 => 0.027485103342219
910 => 0.026958847214654
911 => 0.026998857325065
912 => 0.02677607594606
913 => 0.026734307123166
914 => 0.026171135196836
915 => 0.025173394496266
916 => 0.025726239697415
917 => 0.025058480436226
918 => 0.02480558988581
919 => 0.02600273441893
920 => 0.025882574311426
921 => 0.025676912439721
922 => 0.02537269566778
923 => 0.025259858707836
924 => 0.024574297059061
925 => 0.024533790419522
926 => 0.024873573284377
927 => 0.024716775183461
928 => 0.02449657126569
929 => 0.023699014997238
930 => 0.022802297689692
1001 => 0.022829363948643
1002 => 0.023114593040155
1003 => 0.023943935092108
1004 => 0.023619896804647
1005 => 0.023384803309183
1006 => 0.023340777364367
1007 => 0.023891854238297
1008 => 0.024671743469082
1009 => 0.025037650047129
1010 => 0.024675047741033
1011 => 0.024258509735684
1012 => 0.024283862474018
1013 => 0.024452522883929
1014 => 0.024470246708281
1015 => 0.024199123287598
1016 => 0.024275442942406
1017 => 0.024159506407938
1018 => 0.023448004109907
1019 => 0.023435135289533
1020 => 0.023260521151072
1021 => 0.023255233904356
1022 => 0.022958171695295
1023 => 0.022916610638753
1024 => 0.022326775592276
1025 => 0.022715006806052
1026 => 0.022454601690905
1027 => 0.02206210975902
1028 => 0.021994444002024
1029 => 0.02199240988766
1030 => 0.022395411342115
1031 => 0.022710297499418
1101 => 0.022459131549372
1102 => 0.022401945931193
1103 => 0.023012538723559
1104 => 0.022934835225054
1105 => 0.022867544496482
1106 => 0.024601912942365
1107 => 0.023229024982991
1108 => 0.022630367470999
1109 => 0.02188941511793
1110 => 0.022130672940295
1111 => 0.022181509508283
1112 => 0.020399652665853
1113 => 0.019676753566795
1114 => 0.019428681837877
1115 => 0.019285913050664
1116 => 0.019350974579775
1117 => 0.018700280603016
1118 => 0.019137557716883
1119 => 0.018574111734802
1120 => 0.018479648182294
1121 => 0.019487159395818
1122 => 0.019627348695385
1123 => 0.019029257590032
1124 => 0.019413328901823
1125 => 0.019274059305177
1126 => 0.018583770398977
1127 => 0.018557406440181
1128 => 0.018211043731879
1129 => 0.017669053162421
1130 => 0.01742134892863
1201 => 0.017292342413005
1202 => 0.017345573015639
1203 => 0.017318657994064
1204 => 0.017143019272265
1205 => 0.017328725400002
1206 => 0.016854322982705
1207 => 0.016665412117617
1208 => 0.016580085462555
1209 => 0.01615902601162
1210 => 0.016829118844046
1211 => 0.016961135573641
1212 => 0.017093412416976
1213 => 0.018244792028965
1214 => 0.018187272357315
1215 => 0.018707222175815
1216 => 0.018687017881995
1217 => 0.01853871977113
1218 => 0.017913074435247
1219 => 0.018162445515074
1220 => 0.017394920092236
1221 => 0.017970002325682
1222 => 0.017707558810345
1223 => 0.017881269909152
1224 => 0.017568921690599
1225 => 0.017741788091288
1226 => 0.016992441637726
1227 => 0.016292712462979
1228 => 0.016574303909265
1229 => 0.016880426015266
1230 => 0.017544176739539
1231 => 0.017148852283987
]
'min_raw' => 0.01615902601162
'max_raw' => 0.048235086182448
'avg_raw' => 0.032197056097034
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.016159'
'max' => '$0.048235'
'avg' => '$0.032197'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.03061097398838
'max_diff' => 0.0014650861824482
'year' => 2026
]
1 => [
'items' => [
101 => 0.017291025907076
102 => 0.016814768069304
103 => 0.015832112113655
104 => 0.015837673839648
105 => 0.015686513629195
106 => 0.015555889137611
107 => 0.017194260053225
108 => 0.016990502731057
109 => 0.016665842105281
110 => 0.017100413254382
111 => 0.017215320763776
112 => 0.017218592019028
113 => 0.017535643911507
114 => 0.017704854563358
115 => 0.017734678674147
116 => 0.018233566677323
117 => 0.018400787355495
118 => 0.019089545662932
119 => 0.017690498221757
120 => 0.017661685760375
121 => 0.017106528561644
122 => 0.016754439089521
123 => 0.017130636429026
124 => 0.01746389591577
125 => 0.017116883862855
126 => 0.017162196311141
127 => 0.016696360982029
128 => 0.016862875192597
129 => 0.017006299662625
130 => 0.016927109100376
131 => 0.016808556995824
201 => 0.017436572438298
202 => 0.017401137345821
203 => 0.017985959763866
204 => 0.018441870659784
205 => 0.019258944489091
206 => 0.018406285353187
207 => 0.018375211065262
208 => 0.018678967214205
209 => 0.018400740852012
210 => 0.018576570308871
211 => 0.019230615645278
212 => 0.019244434592605
213 => 0.019012949420167
214 => 0.018998863526387
215 => 0.019043322785924
216 => 0.019303722057692
217 => 0.019212730550875
218 => 0.019318028226186
219 => 0.019449704581539
220 => 0.019994373816895
221 => 0.02012569172557
222 => 0.019806657288018
223 => 0.019835462525652
224 => 0.019716134888317
225 => 0.019600865885822
226 => 0.019859973769745
227 => 0.020333498520392
228 => 0.020330552747495
301 => 0.020440401285639
302 => 0.020508836014868
303 => 0.020215064059732
304 => 0.020023829319232
305 => 0.020097160887322
306 => 0.020214419661652
307 => 0.020059135447181
308 => 0.019100649340819
309 => 0.01939139279716
310 => 0.019342998869396
311 => 0.019274080031358
312 => 0.019566424824961
313 => 0.019538227456438
314 => 0.018693606795786
315 => 0.018747676670116
316 => 0.018696894963929
317 => 0.018860981045579
318 => 0.018391879665118
319 => 0.018536172090302
320 => 0.018626670946719
321 => 0.018679975468394
322 => 0.018872547951937
323 => 0.018849951793657
324 => 0.018871143343012
325 => 0.019156677498855
326 => 0.020600811275621
327 => 0.020679412290789
328 => 0.020292352145132
329 => 0.020446975038898
330 => 0.020150132895177
331 => 0.020349405014926
401 => 0.020485741938296
402 => 0.019869661597671
403 => 0.019833181318228
404 => 0.019535114001387
405 => 0.019695278494062
406 => 0.019440445269982
407 => 0.019502972429483
408 => 0.019328141040497
409 => 0.01964280273209
410 => 0.019994643396773
411 => 0.020083532243281
412 => 0.019849703957173
413 => 0.019680396867996
414 => 0.019383149392623
415 => 0.01987747856876
416 => 0.020022035484271
417 => 0.019876719272823
418 => 0.019843046331408
419 => 0.019779236168273
420 => 0.019856583959167
421 => 0.020021248196264
422 => 0.01994359558292
423 => 0.019994886502097
424 => 0.019799418409162
425 => 0.020215161310473
426 => 0.020875461091732
427 => 0.020877584063499
428 => 0.020799931031579
429 => 0.020768157083975
430 => 0.020847833807105
501 => 0.020891055160893
502 => 0.021148715073284
503 => 0.021425194424903
504 => 0.022715402921519
505 => 0.022353117538522
506 => 0.023497867271567
507 => 0.024403215683256
508 => 0.024674690085834
509 => 0.02442494640932
510 => 0.023570586782855
511 => 0.023528667823643
512 => 0.024805441806912
513 => 0.024444694676685
514 => 0.024401784953433
515 => 0.023945297995146
516 => 0.024215138324503
517 => 0.024156120286154
518 => 0.024062957425359
519 => 0.024577793976531
520 => 0.025541522040551
521 => 0.025391315983989
522 => 0.025279194130624
523 => 0.024787908807359
524 => 0.025083772304514
525 => 0.024978420980069
526 => 0.025431077127487
527 => 0.025162933653318
528 => 0.024441961662369
529 => 0.024556778828283
530 => 0.024539424444635
531 => 0.02489657643036
601 => 0.024789368269303
602 => 0.024518490330559
603 => 0.025538228122798
604 => 0.02547201202265
605 => 0.025565891313553
606 => 0.025607219880721
607 => 0.026227916305062
608 => 0.026482195770044
609 => 0.026539921660384
610 => 0.026781467485437
611 => 0.026533911780213
612 => 0.027524311105336
613 => 0.028182868865139
614 => 0.028947817592224
615 => 0.030065613281328
616 => 0.03048591480062
617 => 0.030409991093133
618 => 0.031257491027386
619 => 0.032780429570375
620 => 0.03071782051515
621 => 0.032889752858707
622 => 0.032202144154902
623 => 0.030571836287732
624 => 0.030466863681153
625 => 0.031570927097064
626 => 0.03401963349139
627 => 0.033406260312609
628 => 0.034020636750175
629 => 0.033303934001229
630 => 0.033268343668898
701 => 0.03398582809737
702 => 0.035662269572533
703 => 0.034865855068152
704 => 0.033723999587273
705 => 0.034567127905115
706 => 0.033836732128358
707 => 0.03219094601842
708 => 0.033405791277699
709 => 0.03259345884962
710 => 0.032830540638101
711 => 0.034537942576593
712 => 0.034332503458129
713 => 0.034598360700572
714 => 0.034129129626355
715 => 0.033690793812087
716 => 0.032872607463512
717 => 0.032630382821799
718 => 0.032697324998439
719 => 0.03263034964858
720 => 0.032172581906073
721 => 0.032073727005663
722 => 0.031908964507381
723 => 0.031960031295089
724 => 0.031650229595349
725 => 0.032234889411056
726 => 0.032343407424855
727 => 0.032768874082144
728 => 0.032813047441936
729 => 0.033997966026347
730 => 0.033345332781801
731 => 0.033783175507886
801 => 0.033744010733329
802 => 0.030607170002739
803 => 0.031039398978834
804 => 0.031711811624714
805 => 0.031408890639179
806 => 0.030980631238227
807 => 0.030634788810141
808 => 0.030110802167388
809 => 0.030848303304791
810 => 0.031818038875973
811 => 0.032837641536328
812 => 0.034062627325732
813 => 0.033789224757943
814 => 0.032814741279078
815 => 0.032858455896079
816 => 0.033128682457313
817 => 0.032778714507843
818 => 0.032675502127358
819 => 0.033114502661168
820 => 0.033117525816574
821 => 0.032714845395669
822 => 0.032267339797572
823 => 0.032265464732776
824 => 0.032185835433986
825 => 0.033318099876586
826 => 0.033940730835169
827 => 0.03401211447115
828 => 0.033935926147712
829 => 0.033965248009597
830 => 0.033602952773535
831 => 0.034431052247858
901 => 0.035190998216047
902 => 0.034987316462695
903 => 0.034681968559352
904 => 0.034438744246793
905 => 0.034930020544436
906 => 0.034908144784242
907 => 0.035184360750977
908 => 0.035171829999226
909 => 0.03507894895862
910 => 0.034987319779769
911 => 0.035350619116621
912 => 0.035245994742017
913 => 0.03514120785686
914 => 0.03493104171661
915 => 0.03495960678556
916 => 0.034654311604838
917 => 0.034513068084879
918 => 0.032389104435289
919 => 0.031821511945604
920 => 0.032000088097269
921 => 0.032058880003125
922 => 0.031811863024225
923 => 0.032166021918512
924 => 0.032110826629985
925 => 0.032325559209482
926 => 0.032191403616417
927 => 0.032196909408752
928 => 0.032591432402968
929 => 0.03270596410661
930 => 0.032647712357753
1001 => 0.032688509885899
1002 => 0.033628671702462
1003 => 0.033495010756829
1004 => 0.033424006043423
1005 => 0.033443674834292
1006 => 0.03368390633572
1007 => 0.033751158039966
1008 => 0.033466207843382
1009 => 0.033600592003368
1010 => 0.034172782700703
1011 => 0.034373017061582
1012 => 0.03501206902356
1013 => 0.034740588391869
1014 => 0.035238902840745
1015 => 0.036770551568675
1016 => 0.037994138554576
1017 => 0.03686887739547
1018 => 0.039115839072215
1019 => 0.040865421045069
1020 => 0.040798269174869
1021 => 0.040493189089342
1022 => 0.038501336528291
1023 => 0.036668404104763
1024 => 0.038201729907466
1025 => 0.038205638670268
1026 => 0.038073924623977
1027 => 0.03725585999462
1028 => 0.038045457748133
1029 => 0.038108133150409
1030 => 0.038073051591869
1031 => 0.037445843358595
1101 => 0.036488212313844
1102 => 0.036675331127743
1103 => 0.036981835562031
1104 => 0.036401558724401
1105 => 0.036216125114564
1106 => 0.036560881475438
1107 => 0.037671758303013
1108 => 0.037461753473631
1109 => 0.03745626939884
1110 => 0.038354759114842
1111 => 0.037711634384401
1112 => 0.036677691295224
1113 => 0.036416607029173
1114 => 0.035489933772127
1115 => 0.036129990291465
1116 => 0.036153024786126
1117 => 0.035802472371703
1118 => 0.03670613669165
1119 => 0.036697809265854
1120 => 0.03755570404496
1121 => 0.039195676652045
1122 => 0.038710656053979
1123 => 0.038146629868519
1124 => 0.038207955153629
1125 => 0.038880542167575
1126 => 0.038473880705275
1127 => 0.038620119002463
1128 => 0.038880320818398
1129 => 0.039037307034399
1130 => 0.038185367253027
1201 => 0.037986739336998
1202 => 0.03758041632973
1203 => 0.037474414241511
1204 => 0.037805355852724
1205 => 0.037718164430509
1206 => 0.036151088826043
1207 => 0.03598732070625
1208 => 0.035992343240677
1209 => 0.035580540516708
1210 => 0.034952442518677
1211 => 0.03660304655572
1212 => 0.036470479951357
1213 => 0.03632413667998
1214 => 0.036342062895701
1215 => 0.03705853416402
1216 => 0.036642944645728
1217 => 0.037747857493889
1218 => 0.037520720629027
1219 => 0.037287758560648
1220 => 0.0372555561066
1221 => 0.037165885585664
1222 => 0.036858372004442
1223 => 0.036487030876415
1224 => 0.036241839298675
1225 => 0.03343118101665
1226 => 0.033952822844947
1227 => 0.034552924219253
1228 => 0.034760076808909
1229 => 0.034405727969781
1230 => 0.036872363856392
1231 => 0.037323042001971
]
'min_raw' => 0.015555889137611
'max_raw' => 0.040865421045069
'avg_raw' => 0.02821065509134
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.015555'
'max' => '$0.040865'
'avg' => '$0.02821'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.0006031368740082
'max_diff' => -0.0073696651373796
'year' => 2027
]
2 => [
'items' => [
101 => 0.035957908502005
102 => 0.035702547762195
103 => 0.036889105263982
104 => 0.036173466039649
105 => 0.036495718338547
106 => 0.035799185130913
107 => 0.037214486834098
108 => 0.037203704606399
109 => 0.036653120277821
110 => 0.037118470382096
111 => 0.037037604349774
112 => 0.03641599599884
113 => 0.037234192927565
114 => 0.037234598743034
115 => 0.036704673297514
116 => 0.036085836392742
117 => 0.035975202970445
118 => 0.035891855548252
119 => 0.036475219981977
120 => 0.036998262709122
121 => 0.037971515551049
122 => 0.038216214439427
123 => 0.039171290491293
124 => 0.038602589204216
125 => 0.038854687118863
126 => 0.039128375066639
127 => 0.039259591133344
128 => 0.03904578159409
129 => 0.040529407827625
130 => 0.040654671338868
131 => 0.040696671110663
201 => 0.040196400692244
202 => 0.040640757913549
203 => 0.040432857885265
204 => 0.040973756002569
205 => 0.041058575733897
206 => 0.040986736439012
207 => 0.041013659560524
208 => 0.039747646299805
209 => 0.039681996833484
210 => 0.038786861701934
211 => 0.039151635884546
212 => 0.038469708034235
213 => 0.038685954380203
214 => 0.038781273709036
215 => 0.038731484300978
216 => 0.039172259669528
217 => 0.038797510561802
218 => 0.037808486052056
219 => 0.036819192083243
220 => 0.036806772303326
221 => 0.036546308663827
222 => 0.036358041158764
223 => 0.036394308159388
224 => 0.036522117799965
225 => 0.036350612630109
226 => 0.03638721195363
227 => 0.036995004584107
228 => 0.03711689306157
229 => 0.036702668390247
301 => 0.035039496562551
302 => 0.034631350024283
303 => 0.034924717662092
304 => 0.034784506826515
305 => 0.028073811828445
306 => 0.029650390077096
307 => 0.028713640817286
308 => 0.029145337973967
309 => 0.028189159549747
310 => 0.02864549801139
311 => 0.028561228960337
312 => 0.031096320129825
313 => 0.031056738168117
314 => 0.031075683958556
315 => 0.030171352017924
316 => 0.031611977354638
317 => 0.032321681198715
318 => 0.032190333905333
319 => 0.032223391189311
320 => 0.031655357526547
321 => 0.031081183766072
322 => 0.030444336700996
323 => 0.03162751983123
324 => 0.031495970064758
325 => 0.031797697898933
326 => 0.032565076734567
327 => 0.032678076183103
328 => 0.032829948587862
329 => 0.03277551314177
330 => 0.034072386313846
331 => 0.033915326415663
401 => 0.034293795581067
402 => 0.033515255793305
403 => 0.032634264123777
404 => 0.032801711838367
405 => 0.032785585276922
406 => 0.032580275640529
407 => 0.032394931280807
408 => 0.032086385142319
409 => 0.033062670780731
410 => 0.033023035366718
411 => 0.033664686648453
412 => 0.033551268551738
413 => 0.032793834743762
414 => 0.032820886640392
415 => 0.033002823645933
416 => 0.033632509699428
417 => 0.033819443392401
418 => 0.033732848257796
419 => 0.033937812518294
420 => 0.034099807912725
421 => 0.03395815664571
422 => 0.035963639870567
423 => 0.035130823413803
424 => 0.03553673236013
425 => 0.035633539252075
426 => 0.035385570433988
427 => 0.035439345991534
428 => 0.035520801308253
429 => 0.036015382040783
430 => 0.03731330499103
501 => 0.037888146230434
502 => 0.039617584461349
503 => 0.037840413667678
504 => 0.037734963707445
505 => 0.038046487756864
506 => 0.03906185107804
507 => 0.039884707681625
508 => 0.040157696688771
509 => 0.040193776692623
510 => 0.040705922217994
511 => 0.040999474482188
512 => 0.040643734280449
513 => 0.040342281707027
514 => 0.0392625160067
515 => 0.039387501826618
516 => 0.040248530183373
517 => 0.041464783451608
518 => 0.042508455285338
519 => 0.042142997784801
520 => 0.044931180541108
521 => 0.04520761747269
522 => 0.045169422827021
523 => 0.045799187296498
524 => 0.044549233073891
525 => 0.044014853427005
526 => 0.040407459175033
527 => 0.041420989816138
528 => 0.042894216125551
529 => 0.042699229099185
530 => 0.041629332773837
531 => 0.042507643673035
601 => 0.042217246622439
602 => 0.041988198420049
603 => 0.043037512638376
604 => 0.041883748551873
605 => 0.042882706446204
606 => 0.041601532613829
607 => 0.04214466716388
608 => 0.041836357724809
609 => 0.042035871716871
610 => 0.040869516996012
611 => 0.041498853691728
612 => 0.040843334520404
613 => 0.040843023718965
614 => 0.040828553096926
615 => 0.041599768494972
616 => 0.041624917801414
617 => 0.041054988457017
618 => 0.04097285273452
619 => 0.041276551549667
620 => 0.040920999775975
621 => 0.041087360213069
622 => 0.040926038664141
623 => 0.040889721785525
624 => 0.040600342717909
625 => 0.040475670258937
626 => 0.040524557542513
627 => 0.040357680040545
628 => 0.040257130309385
629 => 0.040808551224599
630 => 0.040513949273856
701 => 0.040763399250461
702 => 0.040479119519023
703 => 0.039493682115079
704 => 0.038926946643259
705 => 0.037065546737303
706 => 0.037593437441572
707 => 0.037943429524646
708 => 0.037827757143278
709 => 0.038076266177725
710 => 0.038091522614134
711 => 0.038010729793785
712 => 0.037917182058022
713 => 0.037871648193768
714 => 0.038211020312728
715 => 0.038408037250525
716 => 0.037978555912472
717 => 0.037877934444049
718 => 0.038312163789135
719 => 0.038577043438791
720 => 0.040532765948837
721 => 0.040387879708392
722 => 0.040751515739419
723 => 0.040710575902776
724 => 0.041091724395055
725 => 0.04171474109456
726 => 0.040447973946257
727 => 0.04066784092169
728 => 0.040613934616784
729 => 0.041202469518758
730 => 0.041204306860481
731 => 0.040851450787249
801 => 0.041042739788984
802 => 0.040935967515955
803 => 0.041128919444457
804 => 0.040385944664318
805 => 0.041290807747356
806 => 0.04180380680735
807 => 0.041810929799795
808 => 0.04205408728282
809 => 0.042301149368305
810 => 0.04277536352682
811 => 0.042287923792804
812 => 0.041411067162611
813 => 0.041474373379081
814 => 0.040960272657628
815 => 0.040968914783636
816 => 0.040922782437712
817 => 0.04106122908051
818 => 0.040416325916882
819 => 0.040567683400371
820 => 0.040355782037138
821 => 0.04066738028951
822 => 0.040332152078994
823 => 0.040613908621531
824 => 0.040735505404913
825 => 0.041184200153383
826 => 0.040265879499823
827 => 0.038393361522369
828 => 0.038786987503316
829 => 0.038204783758842
830 => 0.038258668931999
831 => 0.038367525557538
901 => 0.038014685618495
902 => 0.0380819963596
903 => 0.03807959154627
904 => 0.038058868164171
905 => 0.037967080868701
906 => 0.037833971130707
907 => 0.03836423935786
908 => 0.038454342262608
909 => 0.038654629858475
910 => 0.039250549887399
911 => 0.039191003423747
912 => 0.039288126176522
913 => 0.039076107752536
914 => 0.038268503858605
915 => 0.038312360635545
916 => 0.037765465924345
917 => 0.038640644531122
918 => 0.038433390685244
919 => 0.038299772782541
920 => 0.038263313899827
921 => 0.038860711099239
922 => 0.039039461704357
923 => 0.038928076322754
924 => 0.038699621655457
925 => 0.039138322153228
926 => 0.039255699899143
927 => 0.039281976447729
928 => 0.040059269617301
929 => 0.039325418501258
930 => 0.039502063758742
1001 => 0.040880199632024
1002 => 0.039630420564708
1003 => 0.040292456410064
1004 => 0.040260053200502
1005 => 0.040598728336915
1006 => 0.04023227195413
1007 => 0.040236814620189
1008 => 0.040537535197482
1009 => 0.040115227381915
1010 => 0.040010658027853
1011 => 0.039866196214155
1012 => 0.040181623299334
1013 => 0.040370707571359
1014 => 0.041894587936782
1015 => 0.042879084150233
1016 => 0.042836344573183
1017 => 0.043226904302284
1018 => 0.043050953567207
1019 => 0.042482762230185
1020 => 0.04345259555893
1021 => 0.043145699714165
1022 => 0.043170999834729
1023 => 0.043170058162978
1024 => 0.043374117070446
1025 => 0.043229522632781
1026 => 0.042944512153827
1027 => 0.043133715410639
1028 => 0.043695581441966
1029 => 0.045439630843363
1030 => 0.046415623993965
1031 => 0.045380874830203
1101 => 0.046094630947523
1102 => 0.04566663161444
1103 => 0.045588851403741
1104 => 0.046037142991581
1105 => 0.046486219254501
1106 => 0.046457615037963
1107 => 0.046131608731404
1108 => 0.045947456040933
1109 => 0.047341921908858
1110 => 0.048369340606239
1111 => 0.04829927753898
1112 => 0.048608513132131
1113 => 0.04951643839792
1114 => 0.049599447705734
1115 => 0.049588990440897
1116 => 0.049383243210354
1117 => 0.050277213543518
1118 => 0.051022979323354
1119 => 0.049335618671093
1120 => 0.049978143518301
1121 => 0.050266593623071
1122 => 0.050690123956162
1123 => 0.051404690620013
1124 => 0.052180899546401
1125 => 0.05229066399929
1126 => 0.052212780867253
1127 => 0.051700850214684
1128 => 0.052550187284037
1129 => 0.053047709019858
1130 => 0.053343971827958
1201 => 0.054095245015867
1202 => 0.050268374992718
1203 => 0.047559526182551
1204 => 0.047136500324593
1205 => 0.047996740041422
1206 => 0.048223578394466
1207 => 0.048132140138785
1208 => 0.045083084525184
1209 => 0.047120447677804
1210 => 0.049312479123664
1211 => 0.049396683978828
1212 => 0.050494060753841
1213 => 0.05085141161478
1214 => 0.051734943755127
1215 => 0.051679678579189
1216 => 0.051894804595296
1217 => 0.051845350849656
1218 => 0.053481908090008
1219 => 0.055287273757219
1220 => 0.055224759684874
1221 => 0.054965217010096
1222 => 0.055350682140744
1223 => 0.057214012984048
1224 => 0.057042467339265
1225 => 0.057209109320948
1226 => 0.059406081397927
1227 => 0.062262457613634
1228 => 0.060935384085955
1229 => 0.063814751785898
1230 => 0.065627161124289
1231 => 0.068761535668412
]
'min_raw' => 0.028073811828445
'max_raw' => 0.068761535668412
'avg_raw' => 0.048417673748429
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.028073'
'max' => '$0.068761'
'avg' => '$0.048417'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.012517922690834
'max_diff' => 0.027896114623344
'year' => 2028
]
3 => [
'items' => [
101 => 0.068369096538368
102 => 0.069589285547292
103 => 0.067666548591071
104 => 0.063251555890334
105 => 0.06255286639553
106 => 0.063951660457765
107 => 0.067390459167441
108 => 0.063843360448751
109 => 0.064560933899791
110 => 0.064354272697618
111 => 0.064343260600407
112 => 0.064763547561486
113 => 0.064153899403748
114 => 0.061670083135512
115 => 0.062808401494023
116 => 0.062368842109265
117 => 0.062856566017977
118 => 0.065488610800658
119 => 0.064324921062124
120 => 0.063099068453056
121 => 0.064636559663298
122 => 0.066594314313237
123 => 0.066471801545667
124 => 0.066234075570217
125 => 0.067574124446899
126 => 0.069787492593696
127 => 0.070385757109742
128 => 0.070827383744507
129 => 0.070888276596098
130 => 0.071515510812182
131 => 0.068142714348925
201 => 0.073495428955671
202 => 0.074419694902499
203 => 0.074245971211394
204 => 0.075273253912237
205 => 0.074971001282002
206 => 0.074533084642777
207 => 0.076161546232909
208 => 0.074294646429896
209 => 0.071644817195669
210 => 0.070191068470092
211 => 0.072105482062496
212 => 0.07327454763955
213 => 0.074047225619447
214 => 0.074281037509299
215 => 0.068404534937247
216 => 0.065237425976685
217 => 0.067267506509427
218 => 0.069744344868047
219 => 0.068128955386784
220 => 0.068192275596113
221 => 0.065889154712719
222 => 0.069948119961803
223 => 0.069356762866282
224 => 0.072424724523934
225 => 0.071692530852405
226 => 0.074194334486635
227 => 0.073535525745172
228 => 0.076270203997483
301 => 0.077361141190788
302 => 0.079192994529163
303 => 0.080540513301856
304 => 0.081331802099109
305 => 0.081284296087771
306 => 0.084419776520998
307 => 0.082570893254866
308 => 0.080248260124277
309 => 0.080206251018759
310 => 0.081409175629057
311 => 0.083930175605991
312 => 0.084583834220952
313 => 0.084949140212967
314 => 0.084389661369803
315 => 0.082382831095075
316 => 0.081516291957308
317 => 0.082254608408742
318 => 0.081351710832895
319 => 0.082910365357122
320 => 0.085050730929528
321 => 0.084608753902749
322 => 0.086086216838373
323 => 0.087615235543109
324 => 0.08980180096341
325 => 0.090373450132559
326 => 0.091318364471293
327 => 0.09229099171404
328 => 0.092603373371371
329 => 0.093199806881552
330 => 0.093196663382545
331 => 0.094994055910081
401 => 0.096976635528566
402 => 0.09772501343772
403 => 0.099445867174022
404 => 0.096498965456513
405 => 0.098734224260811
406 => 0.10075048365444
407 => 0.098346616084737
408 => 0.10165978750027
409 => 0.10178843043853
410 => 0.10373078607428
411 => 0.10176183652713
412 => 0.10059268057114
413 => 0.10396799000838
414 => 0.10560119592381
415 => 0.10510926101061
416 => 0.10136561203135
417 => 0.099186647752768
418 => 0.093483877944892
419 => 0.10023905512364
420 => 0.10352930487619
421 => 0.10135709107936
422 => 0.10245262936835
423 => 0.10842953104361
424 => 0.11070514822583
425 => 0.11023183575969
426 => 0.11031181777508
427 => 0.11153969950123
428 => 0.11698480328179
429 => 0.11372197087996
430 => 0.11621628399516
501 => 0.11753925867755
502 => 0.11876811129273
503 => 0.1157504376527
504 => 0.11182448858545
505 => 0.11058097571573
506 => 0.10114110722692
507 => 0.10064972107681
508 => 0.10037389114022
509 => 0.098634822406988
510 => 0.097268390753681
511 => 0.096181753570617
512 => 0.093330093104925
513 => 0.094292444800725
514 => 0.089747493206208
515 => 0.092655192173185
516 => 0.085401339686642
517 => 0.091442563586826
518 => 0.088154600078701
519 => 0.090362379144912
520 => 0.090354676411735
521 => 0.08628945517385
522 => 0.083944720402841
523 => 0.08543887665737
524 => 0.087040730768497
525 => 0.087300626208743
526 => 0.089377471876489
527 => 0.089957074860709
528 => 0.088200850759448
529 => 0.085251019717085
530 => 0.085936198189743
531 => 0.083930835282962
601 => 0.080416513923997
602 => 0.08294056087817
603 => 0.083802381482835
604 => 0.084183010558692
605 => 0.080727079124685
606 => 0.079641150436198
607 => 0.079063011114272
608 => 0.084804902366684
609 => 0.085119456131077
610 => 0.083510154599019
611 => 0.090784350124157
612 => 0.089137975644145
613 => 0.090977379309859
614 => 0.085874025425051
615 => 0.086068980416028
616 => 0.083652970902085
617 => 0.085005774792079
618 => 0.084049656605536
619 => 0.084896481606436
620 => 0.085404065020385
621 => 0.08781967809094
622 => 0.091470146007839
623 => 0.087458866051796
624 => 0.085711093932361
625 => 0.086795401925415
626 => 0.089683056999354
627 => 0.094058002252715
628 => 0.091467946608747
629 => 0.092617369321543
630 => 0.092868467050031
701 => 0.090958655907241
702 => 0.094128419713676
703 => 0.09582712188866
704 => 0.097569638823307
705 => 0.099082617453445
706 => 0.09687363924084
707 => 0.099237562572916
708 => 0.097332657655905
709 => 0.095623761019895
710 => 0.09562635271069
711 => 0.094554336887925
712 => 0.092477171148631
713 => 0.092094109916866
714 => 0.094086842819812
715 => 0.095684825895466
716 => 0.0958164434354
717 => 0.096701168973417
718 => 0.097224740433418
719 => 0.10235645250231
720 => 0.10442046954817
721 => 0.106944310522
722 => 0.10792748881719
723 => 0.11088650299679
724 => 0.10849685872738
725 => 0.10797984415813
726 => 0.10080224364459
727 => 0.10197757532658
728 => 0.1038593947521
729 => 0.1008332741538
730 => 0.10275265115647
731 => 0.10313157683476
801 => 0.10073044773383
802 => 0.1020129945333
803 => 0.09860693048252
804 => 0.091544388896447
805 => 0.094136282341396
806 => 0.096044788338778
807 => 0.093321114963421
808 => 0.098203194068033
809 => 0.095351184241688
810 => 0.094447234047351
811 => 0.090920602057731
812 => 0.092585036604318
813 => 0.094836208160984
814 => 0.093445245865748
815 => 0.096331701482402
816 => 0.10041969242518
817 => 0.10333303821507
818 => 0.10355668872966
819 => 0.10168360256577
820 => 0.10468523509728
821 => 0.10470709871332
822 => 0.10132124495574
823 => 0.099247428381738
824 => 0.098776252892778
825 => 0.099953341643597
826 => 0.10138254468966
827 => 0.10363599955197
828 => 0.10499771512993
829 => 0.10854834715913
830 => 0.10950904638163
831 => 0.11056456356136
901 => 0.11197506002291
902 => 0.11366872266888
903 => 0.10996308521977
904 => 0.1101103171038
905 => 0.10665967881923
906 => 0.10297217694058
907 => 0.10577053121288
908 => 0.10942900717444
909 => 0.1085897487466
910 => 0.10849531502897
911 => 0.10865412634829
912 => 0.10802135290132
913 => 0.10515934205234
914 => 0.10372205812112
915 => 0.10557652108263
916 => 0.10656208561402
917 => 0.10809061025195
918 => 0.10790218732709
919 => 0.11183950264283
920 => 0.1133694243163
921 => 0.11297800488319
922 => 0.11305003547891
923 => 0.11581988559014
924 => 0.11890052857694
925 => 0.12178595726072
926 => 0.12472113924992
927 => 0.12118266279984
928 => 0.11938604268138
929 => 0.12123969604238
930 => 0.12025612147697
1001 => 0.12590803267695
1002 => 0.12629935874566
1003 => 0.13195086124813
1004 => 0.13731481009137
1005 => 0.13394580992805
1006 => 0.13712262533896
1007 => 0.14055861021541
1008 => 0.14718718251055
1009 => 0.14495491255753
1010 => 0.14324502875765
1011 => 0.14162919682886
1012 => 0.14499148656658
1013 => 0.14931701860026
1014 => 0.15024869677088
1015 => 0.15175837133575
1016 => 0.15017113312502
1017 => 0.15208278672129
1018 => 0.15883176393929
1019 => 0.15700813072012
1020 => 0.15441827838522
1021 => 0.15974594772017
1022 => 0.1616740105417
1023 => 0.17520616515752
1024 => 0.19229106934542
1025 => 0.1852178068261
1026 => 0.1808272045276
1027 => 0.18185910021423
1028 => 0.18809792886314
1029 => 0.19010164261465
1030 => 0.1846548579165
1031 => 0.18657875435324
1101 => 0.197179612873
1102 => 0.20286663335259
1103 => 0.19514289567256
1104 => 0.17383340974122
1105 => 0.15418509051865
1106 => 0.15939670955182
1107 => 0.15880587368883
1108 => 0.17019517368428
1109 => 0.15696463767096
1110 => 0.15718740596582
1111 => 0.16881222462369
1112 => 0.16571092230562
1113 => 0.16068720973513
1114 => 0.15422176917999
1115 => 0.14226980433296
1116 => 0.13168361576274
1117 => 0.15244556940256
1118 => 0.15155027620845
1119 => 0.15025375898836
1120 => 0.15313901776385
1121 => 0.16714901538268
1122 => 0.16682603959163
1123 => 0.16477143239266
1124 => 0.1663298338446
1125 => 0.16041401442584
1126 => 0.16193865579076
1127 => 0.1541819781245
1128 => 0.15768832037712
1129 => 0.16067643110421
1130 => 0.16127633857241
1201 => 0.1626279607303
1202 => 0.15107849737759
1203 => 0.15626386734853
1204 => 0.15930978640299
1205 => 0.14554821330343
1206 => 0.15903776434964
1207 => 0.15087744691585
1208 => 0.14810771261497
1209 => 0.15183679496636
1210 => 0.15038356794737
1211 => 0.1491341686928
1212 => 0.14843698244134
1213 => 0.15117520895641
1214 => 0.15104746741659
1215 => 0.14656719737108
1216 => 0.14072286773589
1217 => 0.14268441659504
1218 => 0.14197176750489
1219 => 0.13938903526863
1220 => 0.14112948495559
1221 => 0.13346542535565
1222 => 0.12027980915711
1223 => 0.12899063110421
1224 => 0.1286552739348
1225 => 0.12848617164274
1226 => 0.13503211358656
1227 => 0.13440287230924
1228 => 0.13326079322935
1229 => 0.1393680600907
1230 => 0.13713882553198
1231 => 0.14400880116825
]
'min_raw' => 0.061670083135512
'max_raw' => 0.20286663335259
'avg_raw' => 0.13226835824405
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.06167'
'max' => '$0.202866'
'avg' => '$0.132268'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.033596271307067
'max_diff' => 0.13410509768418
'year' => 2029
]
4 => [
'items' => [
101 => 0.14853381144446
102 => 0.14738612246967
103 => 0.15164191650572
104 => 0.14272960671899
105 => 0.14568991853033
106 => 0.14630003469184
107 => 0.13929269736564
108 => 0.13450582396417
109 => 0.13418659408264
110 => 0.12588681527627
111 => 0.13032049012116
112 => 0.13422194050673
113 => 0.13235344853682
114 => 0.13176193979876
115 => 0.13478382965893
116 => 0.1350186563818
117 => 0.12966458221451
118 => 0.13077786377537
119 => 0.13542043295181
120 => 0.13066088294373
121 => 0.1214138547461
122 => 0.11912046390293
123 => 0.11881448328887
124 => 0.11259462543105
125 => 0.11927371924534
126 => 0.11635811580682
127 => 0.12556847213483
128 => 0.1203075659964
129 => 0.12008077884761
130 => 0.11973795680978
131 => 0.11438426821246
201 => 0.11555638577061
202 => 0.11945268305246
203 => 0.12084292581755
204 => 0.12069791210723
205 => 0.11943358907016
206 => 0.12001238968215
207 => 0.11814787124343
208 => 0.11748947097612
209 => 0.11541137862524
210 => 0.11235715695712
211 => 0.1127818652127
212 => 0.10673065290757
213 => 0.10343363128159
214 => 0.10252105914956
215 => 0.1013007295556
216 => 0.10265889862437
217 => 0.1067135105834
218 => 0.1018227883269
219 => 0.093437988062401
220 => 0.093941928845302
221 => 0.095074134163118
222 => 0.092964277043655
223 => 0.090967474346968
224 => 0.092703532286013
225 => 0.089150781879077
226 => 0.095503467076331
227 => 0.095331644744939
228 => 0.097699532939058
301 => 0.099180222020798
302 => 0.095767713066171
303 => 0.094909476292487
304 => 0.095398366963464
305 => 0.087318093189648
306 => 0.097039202184284
307 => 0.097123270738548
308 => 0.096403424737444
309 => 0.10157961517152
310 => 0.1125029914817
311 => 0.10839317792202
312 => 0.10680173389194
313 => 0.10377639762741
314 => 0.1078074785732
315 => 0.10749795445122
316 => 0.1060981689881
317 => 0.10525157437241
318 => 0.10681145090983
319 => 0.10505828840703
320 => 0.10474337224785
321 => 0.10283532295534
322 => 0.10215423616863
323 => 0.10164998662659
324 => 0.10109485742734
325 => 0.1023193341113
326 => 0.099544508852131
327 => 0.096198341609045
328 => 0.095920144008814
329 => 0.096688272042436
330 => 0.096348432567965
331 => 0.095918516988156
401 => 0.095097691065759
402 => 0.094854169548755
403 => 0.095645496339174
404 => 0.094752134530009
405 => 0.096070338543368
406 => 0.09571185999129
407 => 0.093709427939961
408 => 0.091213656208707
409 => 0.091191438605241
410 => 0.090653728679628
411 => 0.089968874244132
412 => 0.089778363407524
413 => 0.092557326328646
414 => 0.098309696408009
415 => 0.09718036851888
416 => 0.097996423656953
417 => 0.10201060725682
418 => 0.1032865955125
419 => 0.10238092927205
420 => 0.10114119746307
421 => 0.10119573937092
422 => 0.10543227825456
423 => 0.10569650598808
424 => 0.10636412422761
425 => 0.1072222023343
426 => 0.10252706368406
427 => 0.10097459876272
428 => 0.10023895475552
429 => 0.097973455943387
430 => 0.10041660218308
501 => 0.098993085495163
502 => 0.099185166530618
503 => 0.099060073504293
504 => 0.09912838275542
505 => 0.09550169137135
506 => 0.096823067098418
507 => 0.09462602366713
508 => 0.091684429142336
509 => 0.091674567886033
510 => 0.092394518978622
511 => 0.091966263897061
512 => 0.090813840484025
513 => 0.090977536790562
514 => 0.089543384895952
515 => 0.091151668796725
516 => 0.091197788624283
517 => 0.090578511718669
518 => 0.093056294968221
519 => 0.094071444787241
520 => 0.093663823461769
521 => 0.094042844988411
522 => 0.097227297191283
523 => 0.097746501847742
524 => 0.097977098259407
525 => 0.097668129615946
526 => 0.094101050928898
527 => 0.094259266037059
528 => 0.093098388550751
529 => 0.092117569405077
530 => 0.092156797027185
531 => 0.092661065565626
601 => 0.094863235847954
602 => 0.099497573382083
603 => 0.099673443103847
604 => 0.099886602337106
605 => 0.099019576610194
606 => 0.098758073354639
607 => 0.099103063648433
608 => 0.10084347716436
609 => 0.10532029324499
610 => 0.1037378874456
611 => 0.10245136689909
612 => 0.10357999226183
613 => 0.10340624923369
614 => 0.10193968322742
615 => 0.10189852160417
616 => 0.099083712548622
617 => 0.098043141730886
618 => 0.09717356287021
619 => 0.096224005455282
620 => 0.09566107599026
621 => 0.0965259914954
622 => 0.096723807904805
623 => 0.094832655036681
624 => 0.094574897888805
625 => 0.096119254144286
626 => 0.095439640535653
627 => 0.096138639985738
628 => 0.096300813854064
629 => 0.096274700126083
630 => 0.095565105465545
701 => 0.096017379941754
702 => 0.094947615976008
703 => 0.093784408336611
704 => 0.093042354333073
705 => 0.092394813795805
706 => 0.092754106921158
707 => 0.091473292533608
708 => 0.09106353423333
709 => 0.095864159525712
710 => 0.099410433044614
711 => 0.099358868823171
712 => 0.099044984886376
713 => 0.09857861702533
714 => 0.1008093594505
715 => 0.10003221339467
716 => 0.10059765208301
717 => 0.10074157996058
718 => 0.10117720629768
719 => 0.10133290526985
720 => 0.10086227483608
721 => 0.099282781617681
722 => 0.095346834691149
723 => 0.093514640771962
724 => 0.092909986261027
725 => 0.092931964304097
726 => 0.09232571176192
727 => 0.092504280305924
728 => 0.092263612909648
729 => 0.091807847084798
730 => 0.092725964665788
731 => 0.09283176916414
801 => 0.092617469550049
802 => 0.092667944866927
803 => 0.090893635590813
804 => 0.091028532471479
805 => 0.090277409498065
806 => 0.090136582995473
807 => 0.088237809526442
808 => 0.084873857094439
809 => 0.086737813288532
810 => 0.084486416317971
811 => 0.083633778170988
812 => 0.087670034546367
813 => 0.087264906354604
814 => 0.086571502995298
815 => 0.085545814908962
816 => 0.085165377220488
817 => 0.082853958257254
818 => 0.082717387293966
819 => 0.083862988945706
820 => 0.083334333201174
821 => 0.082591900318263
822 => 0.079902883675577
823 => 0.076879538666383
824 => 0.076970794448141
825 => 0.077932464244232
826 => 0.080728648875208
827 => 0.0796361311654
828 => 0.078843497031739
829 => 0.078695060484999
830 => 0.080553054640412
831 => 0.083182505632133
901 => 0.084416185206798
902 => 0.08319364621571
903 => 0.081789259248923
904 => 0.081874737776289
905 => 0.082443388123798
906 => 0.082503145235038
907 => 0.081589033692973
908 => 0.081846350737625
909 => 0.081455462617234
910 => 0.079056582943918
911 => 0.079013194817558
912 => 0.078424471058566
913 => 0.078406644737117
914 => 0.077405078759048
915 => 0.077264952755217
916 => 0.075276282715051
917 => 0.076585231357736
918 => 0.075707257331111
919 => 0.074383943379852
920 => 0.074155803555867
921 => 0.074148945397271
922 => 0.07550769293763
923 => 0.076569353601625
924 => 0.075722530065198
925 => 0.075529724760938
926 => 0.077588380990626
927 => 0.07732639822033
928 => 0.077099522830861
929 => 0.082947067135895
930 => 0.078318279528888
1001 => 0.076299863930274
1002 => 0.073801691340262
1003 => 0.074615108932449
1004 => 0.074786507970714
1005 => 0.06877885322119
1006 => 0.066341548437514
1007 => 0.06550515728365
1008 => 0.065023802349766
1009 => 0.065243161837612
1010 => 0.063049301664966
1011 => 0.064523611984082
1012 => 0.062623914516954
1013 => 0.06230542405444
1014 => 0.065702318453022
1015 => 0.066174976464215
1016 => 0.06415847054513
1017 => 0.065453393787837
1018 => 0.064983836619252
1019 => 0.062656479377566
1020 => 0.062567591449815
1021 => 0.061399805396499
1022 => 0.059572446350999
1023 => 0.058737294232616
1024 => 0.05830233975824
1025 => 0.058481810451461
1026 => 0.058391064577074
1027 => 0.057798886363827
1028 => 0.058425007539079
1029 => 0.056825526667442
1030 => 0.056188600496463
1031 => 0.055900915721606
1101 => 0.054481284385344
1102 => 0.056740549154258
1103 => 0.057185652775201
1104 => 0.057631633387778
1105 => 0.061513590136359
1106 => 0.061319658547495
1107 => 0.063072705662304
1108 => 0.06300458547507
1109 => 0.062504588040446
1110 => 0.060395181109353
1111 => 0.061235953115523
1112 => 0.058648187565511
1113 => 0.060587117466533
1114 => 0.059702270831355
1115 => 0.060287949929104
1116 => 0.059234846102797
1117 => 0.059817677241866
1118 => 0.057291203355983
1119 => 0.054932017589792
1120 => 0.055881422811033
1121 => 0.056913534864179
1122 => 0.059151416772659
1123 => 0.057818552770093
1124 => 0.058297901066584
1125 => 0.056692164515276
1126 => 0.053379071353957
1127 => 0.053397823101449
1128 => 0.052888175898238
1129 => 0.052447766304954
1130 => 0.057971648234349
1201 => 0.057284666196778
1202 => 0.056190050229895
1203 => 0.057655237199877
1204 => 0.058042655890385
1205 => 0.058053685155857
1206 => 0.059122647747207
1207 => 0.059693153273832
1208 => 0.059793707345613
1209 => 0.061475743079567
1210 => 0.062039539271001
1211 => 0.064361735992093
1212 => 0.059644749865799
1213 => 0.059547606640626
1214 => 0.057675855385268
1215 => 0.056488761147904
1216 => 0.057757136743304
1217 => 0.058880744370294
1218 => 0.057710769006283
1219 => 0.057863543089295
1220 => 0.056292946753609
1221 => 0.056854361040191
1222 => 0.057337926654466
1223 => 0.057070930144936
1224 => 0.056671223447393
1225 => 0.058788621358333
1226 => 0.058669149470049
1227 => 0.060640919083484
1228 => 0.062178054499755
1229 => 0.064932875961534
1230 => 0.062058076154076
1231 => 0.061953307022798
]
'min_raw' => 0.052447766304954
'max_raw' => 0.15164191650572
'avg_raw' => 0.10204484140534
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.052447'
'max' => '$0.151641'
'avg' => '$0.102044'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0092223168305581
'max_diff' => -0.05122471684687
'year' => 2030
]
5 => [
'items' => [
101 => 0.062977442086539
102 => 0.062039382481258
103 => 0.062632203771079
104 => 0.064837363286763
105 => 0.064883954832484
106 => 0.064103486411832
107 => 0.064055994837507
108 => 0.064205892335082
109 => 0.065083846660343
110 => 0.064777062442285
111 => 0.065132080906248
112 => 0.065576036931668
113 => 0.067412427286262
114 => 0.067855174783684
115 => 0.066779527903206
116 => 0.066876646773006
117 => 0.06647432531254
118 => 0.066085687822803
119 => 0.066959288143784
120 => 0.068555809901035
121 => 0.068545878022043
122 => 0.068916240037776
123 => 0.069146972505334
124 => 0.068156499848088
125 => 0.067511738568909
126 => 0.067758981070573
127 => 0.068154327214973
128 => 0.067630775644286
129 => 0.064399172817324
130 => 0.065379434679436
131 => 0.065216271173225
201 => 0.064983906499019
202 => 0.065969567381514
203 => 0.065874497984861
204 => 0.063026800457941
205 => 0.063209100814283
206 => 0.063037886746408
207 => 0.063591114426814
208 => 0.062009506370978
209 => 0.06249599835666
210 => 0.062801121569501
211 => 0.062980841485931
212 => 0.063630113059178
213 => 0.063553928533921
214 => 0.06362537732212
215 => 0.064588075663903
216 => 0.069457073518469
217 => 0.069722082328855
218 => 0.068417082024096
219 => 0.068938403905855
220 => 0.067937579893442
221 => 0.068609439757913
222 => 0.069069109213793
223 => 0.066991951332022
224 => 0.066868955522906
225 => 0.065864000753782
226 => 0.066404006523162
227 => 0.065544818516289
228 => 0.065755633200055
301 => 0.065166176965752
302 => 0.066227080827932
303 => 0.067413336193643
304 => 0.067713031145665
305 => 0.066924662753683
306 => 0.06635383208188
307 => 0.065351641465505
308 => 0.06701830679581
309 => 0.067505690529097
310 => 0.067015746776545
311 => 0.066902216103596
312 => 0.066687075683504
313 => 0.066947859160753
314 => 0.067503036132615
315 => 0.067241224925194
316 => 0.067414155840215
317 => 0.066755121517739
318 => 0.068156827735751
319 => 0.070383074548926
320 => 0.070390232296458
321 => 0.070128419677777
322 => 0.070021291595044
323 => 0.070289927229929
324 => 0.070435651041844
325 => 0.071304369425711
326 => 0.072236538862868
327 => 0.076586566888689
328 => 0.075365096425957
329 => 0.079224700074791
330 => 0.082277145454209
331 => 0.083192440356238
401 => 0.082350412114325
402 => 0.079469878984212
403 => 0.07932854628654
404 => 0.083633278912646
405 => 0.082416994776526
406 => 0.082272321648719
407 => 0.080733243997955
408 => 0.081643029508032
409 => 0.08144404607123
410 => 0.081129940981635
411 => 0.082865748358654
412 => 0.086115024811839
413 => 0.085608594605089
414 => 0.085230567948371
415 => 0.083574165180537
416 => 0.084571689617725
417 => 0.084216490271964
418 => 0.085742652076426
419 => 0.084838587632086
420 => 0.082407780227947
421 => 0.082794894319102
422 => 0.082736382802989
423 => 0.083940545658417
424 => 0.083579085858377
425 => 0.082665801975809
426 => 0.086103919138164
427 => 0.085880666933453
428 => 0.086197187517173
429 => 0.086336529666851
430 => 0.088429250997157
501 => 0.089286571966569
502 => 0.089481198836142
503 => 0.090295587449501
504 => 0.089460936105551
505 => 0.092800136577674
506 => 0.095020510043886
507 => 0.097599588084266
508 => 0.10136831429209
509 => 0.10278539020889
510 => 0.10252940812828
511 => 0.10538681332717
512 => 0.11052150695302
513 => 0.10356727651657
514 => 0.11089009805235
515 => 0.10857177730016
516 => 0.10307508050154
517 => 0.1027211580295
518 => 0.10644358491949
519 => 0.11469956949118
520 => 0.11263153899458
521 => 0.11470295204822
522 => 0.11228653869156
523 => 0.11216654340127
524 => 0.11458559224503
525 => 0.12023783172394
526 => 0.11755266461854
527 => 0.11370281914295
528 => 0.1165454851319
529 => 0.11408290477596
530 => 0.10853402200118
531 => 0.11262995761063
601 => 0.10989112211412
602 => 0.11069045991651
603 => 0.11644708475913
604 => 0.11575443242793
605 => 0.11665078868238
606 => 0.11506874335499
607 => 0.11359086355356
608 => 0.11083229115539
609 => 0.11001561386427
610 => 0.11024131408657
611 => 0.11001550201845
612 => 0.10847210611426
613 => 0.1081388099157
614 => 0.10758330164939
615 => 0.10775547688952
616 => 0.10671095882918
617 => 0.10868218021748
618 => 0.1090480562775
619 => 0.11048254681768
620 => 0.1106314803843
621 => 0.11462651612002
622 => 0.11242611757063
623 => 0.11390233489083
624 => 0.11377028811902
625 => 0.1031942105886
626 => 0.10465150075877
627 => 0.10691858694071
628 => 0.10589726768871
629 => 0.10445336121828
630 => 0.10328732932604
701 => 0.10152067177642
702 => 0.10400720835186
703 => 0.10727673953488
704 => 0.11071440109065
705 => 0.1148445262054
706 => 0.11392273035974
707 => 0.11063719127448
708 => 0.11078457815776
709 => 0.11169566587558
710 => 0.11051572449996
711 => 0.11016773675309
712 => 0.11164785770287
713 => 0.1116580504824
714 => 0.11030038532907
715 => 0.10879158896124
716 => 0.10878526704937
717 => 0.10851679130895
718 => 0.11233429992936
719 => 0.11443354367693
720 => 0.11467421858948
721 => 0.11441734433771
722 => 0.11451620504224
723 => 0.11329470135922
724 => 0.11608669655296
725 => 0.11864890744244
726 => 0.11796218019041
727 => 0.11693267841558
728 => 0.1161126306644
729 => 0.11776900300172
730 => 0.11769524734891
731 => 0.11862652876554
801 => 0.11858428046114
802 => 0.118271125548
803 => 0.11796219137415
804 => 0.1191870804531
805 => 0.11883433206948
806 => 0.11848103577019
807 => 0.117772445955
808 => 0.11786875507932
809 => 0.11683943106248
810 => 0.11636321867364
811 => 0.10920212693863
812 => 0.10728844923162
813 => 0.10789053119475
814 => 0.10808875221006
815 => 0.10725591721952
816 => 0.1084499886582
817 => 0.10826389388932
818 => 0.10898787977324
819 => 0.10853556482478
820 => 0.10855412798804
821 => 0.10988428980775
822 => 0.11027044144293
823 => 0.11007404160465
824 => 0.11021159331919
825 => 0.11338141452373
826 => 0.11293076731362
827 => 0.11269136996498
828 => 0.11275768466663
829 => 0.11356764194612
830 => 0.11379438576235
831 => 0.11283365627998
901 => 0.11328674185778
902 => 0.11521592274292
903 => 0.11589102687054
904 => 0.11804563517753
905 => 0.11713031927361
906 => 0.1188104212292
907 => 0.12397448185172
908 => 0.1280998908028
909 => 0.12430599424165
910 => 0.13188178241264
911 => 0.13778062018603
912 => 0.13755421296726
913 => 0.1365256141589
914 => 0.12980994418261
915 => 0.12363008454543
916 => 0.12879979954263
917 => 0.12881297820932
918 => 0.12836889510627
919 => 0.12561073309294
920 => 0.12827291704687
921 => 0.1284842315415
922 => 0.12836595161756
923 => 0.1262512752688
924 => 0.12302255534176
925 => 0.12365343948704
926 => 0.12468684058669
927 => 0.12273039671499
928 => 0.12210519435286
929 => 0.12326756449367
930 => 0.12701296327678
1001 => 0.12630491733245
1002 => 0.12628642739141
1003 => 0.12931574819946
1004 => 0.12714740826924
1005 => 0.12366139695648
1006 => 0.12278113312517
1007 => 0.11965678954077
1008 => 0.12181478478304
1009 => 0.12189244719001
1010 => 0.12071053524999
1011 => 0.12375730259652
1012 => 0.12372922609905
1013 => 0.12662167824311
1014 => 0.13215096038712
1015 => 0.13051567957769
1016 => 0.12861402591436
1017 => 0.1288207883947
1018 => 0.13108846247075
1019 => 0.12971737495841
1020 => 0.13021042758741
1021 => 0.13108771617654
1022 => 0.13161700616422
1023 => 0.12874463171079
1024 => 0.12807494382414
1025 => 0.12670499743656
1026 => 0.12634760399531
1027 => 0.12746339674312
1028 => 0.12716942477561
1029 => 0.12188591996543
1030 => 0.12133376431562
1031 => 0.1213506981411
1101 => 0.11996227650609
1102 => 0.11784460025333
1103 => 0.12340972700571
1104 => 0.1229627694436
1105 => 0.12246936288679
1106 => 0.12252980237466
1107 => 0.12494543527822
1108 => 0.12354424620177
1109 => 0.1272695370119
1110 => 0.12650372921383
1111 => 0.12571828133539
1112 => 0.12560970851327
1113 => 0.12530737809133
1114 => 0.12427057458233
1115 => 0.12301857204298
1116 => 0.1221918915199
1117 => 0.11271556088816
1118 => 0.11447431273213
1119 => 0.11649759641334
1120 => 0.1171960258323
1121 => 0.11600131398133
1122 => 0.12431774908806
1123 => 0.12583724192123
1124 => 0.12123459901551
1125 => 0.12037363245252
1126 => 0.1243741939126
1127 => 0.12196136630342
1128 => 0.1230478624281
1129 => 0.12069945208816
1130 => 0.12547124059366
1201 => 0.12543488756018
1202 => 0.12357855405581
1203 => 0.12514751442208
1204 => 0.12487486894822
1205 => 0.12277907299374
1206 => 0.12553768106362
1207 => 0.12553904929881
1208 => 0.12375236866102
1209 => 0.12166591683077
1210 => 0.12129290852332
1211 => 0.12101189687026
1212 => 0.12297875078777
1213 => 0.12474222586002
1214 => 0.12802361576692
1215 => 0.12884863515342
1216 => 0.13206874074356
1217 => 0.13015132464873
1218 => 0.13100129036887
1219 => 0.13192404839308
1220 => 0.13236645252319
1221 => 0.13164557873389
1222 => 0.13664772816373
1223 => 0.13707006283751
1224 => 0.13721166800044
1225 => 0.13552497135698
1226 => 0.13702315275264
1227 => 0.13632220329216
1228 => 0.13814587905895
1229 => 0.13843185470505
1230 => 0.13818964350669
1231 => 0.13828041669057
]
'min_raw' => 0.062009506370978
'max_raw' => 0.13843185470505
'avg_raw' => 0.10022068053801
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.0620095'
'max' => '$0.138431'
'avg' => '$0.10022'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0095617400660244
'max_diff' => -0.013210061800671
'year' => 2031
]
6 => [
'items' => [
101 => 0.13401196459184
102 => 0.13379062283264
103 => 0.13077261224028
104 => 0.13200247386467
105 => 0.12970330650667
106 => 0.13043239615994
107 => 0.13075377193208
108 => 0.13058590346663
109 => 0.13207200839565
110 => 0.1308085156148
111 => 0.12747395042871
112 => 0.12413847674256
113 => 0.12409660258744
114 => 0.12321843124188
115 => 0.12258367420415
116 => 0.12270595092883
117 => 0.12313687005542
118 => 0.12255862840114
119 => 0.12268202557568
120 => 0.12473124086405
121 => 0.1251421963758
122 => 0.1237456089762
123 => 0.11813810904017
124 => 0.11676201449052
125 => 0.11775112396366
126 => 0.11727839334231
127 => 0.094652816630552
128 => 0.099968360269056
129 => 0.096810044737863
130 => 0.098265541841748
131 => 0.095041719526241
201 => 0.096580296510205
202 => 0.096296177521102
203 => 0.10484341439345
204 => 0.10470996104602
205 => 0.10477383810124
206 => 0.10172481982496
207 => 0.10658198872894
208 => 0.10897480478919
209 => 0.10853195821917
210 => 0.10864341316009
211 => 0.10672824800724
212 => 0.10479238108626
213 => 0.10264520674312
214 => 0.10663439127391
215 => 0.10619086205174
216 => 0.10720815851063
217 => 0.10979542983164
218 => 0.11017641536175
219 => 0.11068846377779
220 => 0.11050493087073
221 => 0.11487742931518
222 => 0.11434789090288
223 => 0.11562392611792
224 => 0.11299902486756
225 => 0.11002869994488
226 => 0.11059326160544
227 => 0.11053888977761
228 => 0.10984667400425
229 => 0.10922177255512
301 => 0.1081814877072
302 => 0.11147310289919
303 => 0.11133946933359
304 => 0.11350284142862
305 => 0.11312044439695
306 => 0.11056670343102
307 => 0.11065791078921
308 => 0.11127132410583
309 => 0.11339435459846
310 => 0.11402461459562
311 => 0.11373265305342
312 => 0.11442370436783
313 => 0.11496988315031
314 => 0.1144922960138
315 => 0.12125392272477
316 => 0.1184460238954
317 => 0.1198145742476
318 => 0.12014096544263
319 => 0.11930492125983
320 => 0.11948622930658
321 => 0.11976086159393
322 => 0.12142837506417
323 => 0.12580441290902
324 => 0.1277425302818
325 => 0.13357345202285
326 => 0.12758159661389
327 => 0.12722606471069
328 => 0.12827638979322
329 => 0.13169975812096
330 => 0.13447407660997
331 => 0.13539447810704
401 => 0.13551612435905
402 => 0.1372428587547
403 => 0.13823259070859
404 => 0.13703318778144
405 => 0.13601681938341
406 => 0.13237631393792
407 => 0.132797712356
408 => 0.13570072957588
409 => 0.13980141238583
410 => 0.14332022484009
411 => 0.1420880593616
412 => 0.15148861218919
413 => 0.15242063860423
414 => 0.1522918626897
415 => 0.15441515756729
416 => 0.15020084963675
417 => 0.14839915134808
418 => 0.13623656976733
419 => 0.13965375908627
420 => 0.14462084444583
421 => 0.14396343207288
422 => 0.14035620191419
423 => 0.14331748843255
424 => 0.14233839450159
425 => 0.14156614249559
426 => 0.14510397864346
427 => 0.14121398247258
428 => 0.14458203875833
429 => 0.14026247173378
430 => 0.14209368778972
501 => 0.14105420099041
502 => 0.14172687634427
503 => 0.13779442997061
504 => 0.1399162825791
505 => 0.13770615392609
506 => 0.13770510603735
507 => 0.13765631732483
508 => 0.14025652388388
509 => 0.14034131652642
510 => 0.13841975995059
511 => 0.13814283362766
512 => 0.1391667753865
513 => 0.13796800775767
514 => 0.13852890358625
515 => 0.13798499672092
516 => 0.13786255182911
517 => 0.13688689009884
518 => 0.13646654819906
519 => 0.13663137508884
520 => 0.13606873593994
521 => 0.13572972550118
522 => 0.1375888796158
523 => 0.13659560857042
524 => 0.13743664658258
525 => 0.13647817762026
526 => 0.13315570661182
527 => 0.13124491840037
528 => 0.12496907865865
529 => 0.12674889902425
530 => 0.127928921768
531 => 0.12753892425823
601 => 0.12837678981821
602 => 0.12842822795873
603 => 0.12815582932415
604 => 0.12784042660174
605 => 0.12768690599933
606 => 0.12883112279261
607 => 0.12949537915367
608 => 0.128047352837
609 => 0.12770810053104
610 => 0.12917213508493
611 => 0.13006519531705
612 => 0.13665905030385
613 => 0.13617055622856
614 => 0.13739658049542
615 => 0.13725854897785
616 => 0.13854361773051
617 => 0.14064416203053
618 => 0.13637316814717
619 => 0.13711446500546
620 => 0.13693271613485
621 => 0.13891700264705
622 => 0.13892319737295
623 => 0.13773351848642
624 => 0.13837846271115
625 => 0.13801847253803
626 => 0.13866902343644
627 => 0.13616403209236
628 => 0.13921484115235
629 => 0.14094445329957
630 => 0.14096846896591
701 => 0.14178829139664
702 => 0.14262127846718
703 => 0.14422012461119
704 => 0.14257668751599
705 => 0.13962030416712
706 => 0.13983374549585
707 => 0.13810041902011
708 => 0.13812955655132
709 => 0.13797401812618
710 => 0.1384408006484
711 => 0.13626646460653
712 => 0.13677677692956
713 => 0.13606233668894
714 => 0.1371129119519
715 => 0.13598266663526
716 => 0.13693262849004
717 => 0.13734260053483
718 => 0.13885540620616
719 => 0.13575922400758
720 => 0.12944589891157
721 => 0.13077303638842
722 => 0.12881009581576
723 => 0.1289917734392
724 => 0.12935879115233
725 => 0.12816916666335
726 => 0.12839610952647
727 => 0.12838800153043
728 => 0.12831813120082
729 => 0.12800866392576
730 => 0.12755987515069
731 => 0.12934771150068
801 => 0.12965149973482
802 => 0.13032678334792
803 => 0.13233596933125
804 => 0.13213520427164
805 => 0.13246266041352
806 => 0.1317478254944
807 => 0.1290249325809
808 => 0.12917279876634
809 => 0.12732890506456
810 => 0.13027963084033
811 => 0.12958086002895
812 => 0.12913035794108
813 => 0.12900743427253
814 => 0.13102160063929
815 => 0.13162427078441
816 => 0.13124872719366
817 => 0.13047847633267
818 => 0.13195758569
819 => 0.1323533329554
820 => 0.13244192617353
821 => 0.13506262436362
822 => 0.13258839409003
823 => 0.13318396590862
824 => 0.13783044722376
825 => 0.13361672984152
826 => 0.135848829916
827 => 0.13573958023265
828 => 0.1368814471006
829 => 0.13564591382088
830 => 0.13566122973665
831 => 0.13667513015864
901 => 0.13525128987386
902 => 0.13489872699584
903 => 0.13441166390496
904 => 0.13547514834506
905 => 0.13611265916963
906 => 0.14125052821558
907 => 0.14456982593457
908 => 0.14442572646656
909 => 0.14574252586123
910 => 0.14514929567343
911 => 0.14323359891081
912 => 0.14650345969027
913 => 0.14546873892287
914 => 0.14555404004574
915 => 0.14555086513369
916 => 0.14623886398716
917 => 0.14575135374531
918 => 0.14479042101672
919 => 0.14542833300681
920 => 0.14732270355966
921 => 0.15320288788211
922 => 0.15649351693103
923 => 0.15300478788153
924 => 0.15541126646394
925 => 0.15396823683049
926 => 0.15370599541968
927 => 0.1552174418068
928 => 0.15673153378073
929 => 0.15663509266759
930 => 0.155535939644
1001 => 0.15491505599094
1002 => 0.15961659502315
1003 => 0.16308060889345
1004 => 0.16284438637054
1005 => 0.16388699576299
1006 => 0.16694812918592
1007 => 0.16722800086274
1008 => 0.16719274346423
1009 => 0.16649905231165
1010 => 0.16951313570492
1011 => 0.17202753709935
1012 => 0.16633848285249
1013 => 0.1685048002345
1014 => 0.16947732990168
1015 => 0.17090529198964
1016 => 0.17331450338626
1017 => 0.17593154597476
1018 => 0.17630162449118
1019 => 0.17603903607389
1020 => 0.1743130261369
1021 => 0.17717662536504
1022 => 0.17885405463322
1023 => 0.17985292537514
1024 => 0.18238589538039
1025 => 0.16948333591381
1026 => 0.16035026302455
1027 => 0.15892400180972
1028 => 0.16182436007503
1029 => 0.16258916141967
1030 => 0.16228087095663
1031 => 0.1520007670771
1101 => 0.15886987919032
1102 => 0.16626046625278
1103 => 0.16654436880096
1104 => 0.17024425121432
1105 => 0.17144908459141
1106 => 0.17442797488884
1107 => 0.17424164448967
1108 => 0.1749669568726
1109 => 0.17480022011642
1110 => 0.18031798711305
1111 => 0.18640490350665
1112 => 0.18619413294715
1113 => 0.18531906669844
1114 => 0.18661868929874
1115 => 0.19290103933054
1116 => 0.19232266121222
1117 => 0.19288450628804
1118 => 0.20029175103327
1119 => 0.20992222287034
1120 => 0.20544790181846
1121 => 0.21515589104985
1122 => 0.22126655567261
1123 => 0.23183431828316
1124 => 0.230511182357
1125 => 0.23462513479146
1126 => 0.22814249290235
1127 => 0.21325703676687
1128 => 0.2109013563542
1129 => 0.2156174881957
1130 => 0.22721163813463
1201 => 0.21525234715405
1202 => 0.21767169614361
1203 => 0.21697492347186
1204 => 0.21693779541727
1205 => 0.21835482225005
1206 => 0.21629935092196
1207 => 0.20792499095909
1208 => 0.21176291077966
1209 => 0.21028090562489
1210 => 0.21192530083491
1211 => 0.22079942358322
1212 => 0.21687596238352
1213 => 0.21274291472576
1214 => 0.2179266736853
1215 => 0.22452738017363
1216 => 0.2241143198242
1217 => 0.22331281010047
1218 => 0.22783087844743
1219 => 0.23529340368678
1220 => 0.23731049427213
1221 => 0.23879946930463
1222 => 0.23900477380517
1223 => 0.24111953775679
1224 => 0.22974791899979
1225 => 0.24779497001103
1226 => 0.25091119718095
1227 => 0.25032547562739
1228 => 0.25378903097587
1229 => 0.25276996513043
1230 => 0.25129349860692
1231 => 0.25678397055361
]
'min_raw' => 0.094652816630552
'max_raw' => 0.25678397055361
'avg_raw' => 0.17571839359208
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.094652'
'max' => '$0.256783'
'avg' => '$0.175718'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.032643310259574
'max_diff' => 0.11835211584856
'year' => 2032
]
7 => [
'items' => [
101 => 0.25048958752496
102 => 0.2415555032566
103 => 0.23665408793082
104 => 0.2431086670177
105 => 0.24705025323229
106 => 0.24965539098817
107 => 0.25044370409903
108 => 0.23063066539305
109 => 0.21995253641203
110 => 0.22679709466386
111 => 0.23514792811728
112 => 0.22970152969831
113 => 0.22991501820494
114 => 0.22214988534781
115 => 0.235834970073
116 => 0.23384116833822
117 => 0.24418501526524
118 => 0.24171637318155
119 => 0.2501513788047
120 => 0.2479301591363
121 => 0.25715031779311
122 => 0.26082848870714
123 => 0.26700471013339
124 => 0.27154796375628
125 => 0.27421584918223
126 => 0.27405567934825
127 => 0.28462717054112
128 => 0.27839353152445
129 => 0.27056261176361
130 => 0.27042097513137
131 => 0.2744767194405
201 => 0.28297644687333
202 => 0.28518030253066
203 => 0.28641195718759
204 => 0.2845256352063
205 => 0.27775946682264
206 => 0.27483786961982
207 => 0.27732715508344
208 => 0.27428297286818
209 => 0.27953808541839
210 => 0.28675447738131
211 => 0.28526432097768
212 => 0.2902456904183
213 => 0.295400883734
214 => 0.30277304170966
215 => 0.30470039679472
216 => 0.30788624145957
217 => 0.31116552211516
218 => 0.31221873868264
219 => 0.31422965590387
220 => 0.3142190573775
221 => 0.32027909177403
222 => 0.32696349737704
223 => 0.32948670574783
224 => 0.33528868426594
225 => 0.32535299937925
226 => 0.33288933049873
227 => 0.3396872898151
228 => 0.33158248247116
301 => 0.34275307121687
302 => 0.34318679986476
303 => 0.34973558750165
304 => 0.34309713663576
305 => 0.33915524570228
306 => 0.35053533712651
307 => 0.35604180489717
308 => 0.35438321199152
309 => 0.34176123808474
310 => 0.33441470788906
311 => 0.31518742132713
312 => 0.33796297281671
313 => 0.34905627957533
314 => 0.34173250910018
315 => 0.34542619292956
316 => 0.36557773422164
317 => 0.37325013643
318 => 0.3716543304048
319 => 0.37192399535385
320 => 0.37606388432153
321 => 0.3944224318827
322 => 0.38342156463625
323 => 0.39183131545153
324 => 0.39629181696034
325 => 0.40043497934818
326 => 0.39026068198357
327 => 0.37702407060233
328 => 0.37283148014275
329 => 0.34100430446217
330 => 0.33934756174957
331 => 0.33841758186055
401 => 0.33255419020855
402 => 0.32794717048821
403 => 0.32428349735893
404 => 0.31466892500227
405 => 0.31791356093391
406 => 0.30258993931461
407 => 0.31239344939083
408 => 0.28793657928464
409 => 0.3083049874489
410 => 0.29721938892297
411 => 0.30466307018691
412 => 0.30463709988422
413 => 0.29093092265601
414 => 0.2830254856714
415 => 0.2880631378022
416 => 0.29346390077575
417 => 0.29434015639786
418 => 0.3013423865674
419 => 0.30329655849528
420 => 0.29737532632223
421 => 0.28742976501228
422 => 0.28973989207048
423 => 0.2829786710203
424 => 0.27112989119646
425 => 0.27963989172579
426 => 0.28254558006481
427 => 0.28382889756874
428 => 0.27217698345355
429 => 0.2685156990632
430 => 0.26656646197493
501 => 0.28592564921848
502 => 0.28698618919658
503 => 0.2815603167234
504 => 0.30608577480451
505 => 0.30053490829896
506 => 0.30673658618097
507 => 0.28953027225355
508 => 0.29018757661695
509 => 0.2820418318603
510 => 0.28660290462517
511 => 0.2833792854052
512 => 0.28623441501916
513 => 0.28794576793764
514 => 0.29609017605773
515 => 0.30839798350709
516 => 0.29487367307666
517 => 0.28898093735044
518 => 0.29263675745298
519 => 0.30237268814441
520 => 0.31712312151504
521 => 0.30839056807949
522 => 0.31226592700581
523 => 0.3131125205285
524 => 0.30667345892182
525 => 0.31736053890106
526 => 0.32308783188362
527 => 0.32896284938742
528 => 0.33406396247173
529 => 0.326616238202
530 => 0.33458637075995
531 => 0.32816385083603
601 => 0.32240218651637
602 => 0.32241092458283
603 => 0.31879654839063
604 => 0.31179323907752
605 => 0.31050172139014
606 => 0.31722035950059
607 => 0.32260807100777
608 => 0.3230518287329
609 => 0.32603474265389
610 => 0.32780000038588
611 => 0.34510192591084
612 => 0.35206090348602
613 => 0.36057020953824
614 => 0.36388506380379
615 => 0.37386158670208
616 => 0.36580473420814
617 => 0.3640615834911
618 => 0.33986180223563
619 => 0.34382451506052
620 => 0.35016920063807
621 => 0.33996642376391
622 => 0.34643773733505
623 => 0.34771531171516
624 => 0.33961973730987
625 => 0.34394393338886
626 => 0.33246015063785
627 => 0.3086482985895
628 => 0.31738704829937
629 => 0.32382170951718
630 => 0.31463865457136
701 => 0.33109892512843
702 => 0.32148317487794
703 => 0.31843544368595
704 => 0.30654515771136
705 => 0.31215691499229
706 => 0.31974689706737
707 => 0.31505717057509
708 => 0.32478905721254
709 => 0.33857200409052
710 => 0.34839455282445
711 => 0.34914860614917
712 => 0.34283336537291
713 => 0.3529535790202
714 => 0.35302729372813
715 => 0.3416116513917
716 => 0.3346196340232
717 => 0.33303103296575
718 => 0.33699966987085
719 => 0.34181832772443
720 => 0.34941600812389
721 => 0.35400712726695
722 => 0.36597833105059
723 => 0.36921739555314
724 => 0.37277614541844
725 => 0.37753173271629
726 => 0.38324203457492
727 => 0.37074821919591
728 => 0.3712446217723
729 => 0.35961055388001
730 => 0.34717788384299
731 => 0.35661273064689
801 => 0.36894753777791
802 => 0.3661179193933
803 => 0.36579952952118
804 => 0.36633497297211
805 => 0.36420153311681
806 => 0.35455206372027
807 => 0.3497061605982
808 => 0.35595861194741
809 => 0.35928151157491
810 => 0.36443503910988
811 => 0.36379975806343
812 => 0.37707469154504
813 => 0.38223292928284
814 => 0.38091323133607
815 => 0.38115608751859
816 => 0.39049483055333
817 => 0.40088143346696
818 => 0.41060985772854
819 => 0.42050602873296
820 => 0.408575808333
821 => 0.4025183781676
822 => 0.40876809989214
823 => 0.4054519095739
824 => 0.42450772278846
825 => 0.42582710595063
826 => 0.444881541213
827 => 0.46296646923694
828 => 0.45160764997024
829 => 0.46231850492628
830 => 0.47390316783005
831 => 0.49625186211525
901 => 0.48872560811654
902 => 0.48296061550496
903 => 0.47751272534327
904 => 0.48884891994155
905 => 0.50343275319211
906 => 0.50657397119206
907 => 0.51166394438961
908 => 0.5063124599447
909 => 0.51275773351192
910 => 0.53551238140095
911 => 0.5293638746805
912 => 0.52063200671569
913 => 0.53859461584446
914 => 0.54509521426029
915 => 0.59071981833239
916 => 0.64832276563182
917 => 0.62447476720851
918 => 0.60967154501707
919 => 0.61315065336918
920 => 0.63418529974011
921 => 0.64094096054814
922 => 0.62257674565597
923 => 0.6290632968146
924 => 0.66480483144227
925 => 0.68397901804429
926 => 0.65793789720192
927 => 0.58609147760363
928 => 0.51984579754289
929 => 0.53741713497685
930 => 0.53542509061392
1001 => 0.57382491072411
1002 => 0.52921723482867
1003 => 0.52996831368798
1004 => 0.56916220141193
1005 => 0.55870594412053
1006 => 0.5417681464447
1007 => 0.51996946221042
1008 => 0.4796725782691
1009 => 0.44398050440053
1010 => 0.5139808806505
1011 => 0.51096233713917
1012 => 0.50659103881169
1013 => 0.51631889021562
1014 => 0.5635545753343
1015 => 0.56246563990532
1016 => 0.5555383882859
1017 => 0.56079264758524
1018 => 0.54084704938556
1019 => 0.54598748419444
1020 => 0.51983530388871
1021 => 0.53165718159843
1022 => 0.54173180553804
1023 => 0.54375443545127
1024 => 0.54831152392383
1025 => 0.50937170187238
1026 => 0.52685453876037
1027 => 0.53712406751178
1028 => 0.49072596300427
1029 => 0.53620692616695
1030 => 0.50869384620375
1031 => 0.49935549363165
1101 => 0.51192835513559
1102 => 0.50702869878
1103 => 0.50281626196293
1104 => 0.50046564984016
1105 => 0.50969777171256
1106 => 0.50926708219244
1107 => 0.49416153893155
1108 => 0.47445697352843
1109 => 0.48107047245803
1110 => 0.47866772629502
1111 => 0.46995986423987
1112 => 0.47582791187377
1113 => 0.44998799984501
1114 => 0.40553177424129
1115 => 0.43490091860612
1116 => 0.43377023849556
1117 => 0.43320009831155
1118 => 0.4552701985982
1119 => 0.45314866769948
1120 => 0.44929806834422
1121 => 0.46988914496303
1122 => 0.4623731250081
1123 => 0.48553572751217
1124 => 0.50079211558456
1125 => 0.49692260207695
1126 => 0.51127130879955
1127 => 0.48122283411598
1128 => 0.4912037320703
1129 => 0.49326078130576
1130 => 0.46963505427382
1201 => 0.45349577639193
1202 => 0.45241947055844
1203 => 0.42443618684073
1204 => 0.43938463112956
1205 => 0.45253864349507
1206 => 0.44623889236459
1207 => 0.44424457935639
1208 => 0.45443309200156
1209 => 0.4552248266928
1210 => 0.43717319182825
1211 => 0.44092669833752
1212 => 0.45657944444972
1213 => 0.4405322892963
1214 => 0.40935528812113
1215 => 0.40162296077392
1216 => 0.40059132577074
1217 => 0.37962064074649
1218 => 0.40213967186082
1219 => 0.3923095113069
1220 => 0.42336287071333
1221 => 0.40562535836289
1222 => 0.40486072965697
1223 => 0.40370488122135
1224 => 0.38565454633289
1225 => 0.38960642251484
1226 => 0.40274306083136
1227 => 0.40743036137752
1228 => 0.40694143752864
1229 => 0.40267868413694
1230 => 0.40463015081083
1231 => 0.39834379671818
]
'min_raw' => 0.21995253641203
'max_raw' => 0.68397901804429
'avg_raw' => 0.45196577722816
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.219952'
'max' => '$0.683979'
'avg' => '$0.451965'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.12529971978147
'max_diff' => 0.42719504749069
'year' => 2033
]
8 => [
'items' => [
101 => 0.39612395424892
102 => 0.38911752080015
103 => 0.37881999920711
104 => 0.38025193274299
105 => 0.35984984797408
106 => 0.34873370937139
107 => 0.34565690871452
108 => 0.34154248228779
109 => 0.34612164412748
110 => 0.35979205143132
111 => 0.3433026398842
112 => 0.31503270038439
113 => 0.31673177191796
114 => 0.32054908119503
115 => 0.31343555061124
116 => 0.30670319090705
117 => 0.31255643145623
118 => 0.30057808541413
119 => 0.32199660708699
120 => 0.32141729610045
121 => 0.3294007964676
122 => 0.33439304308509
123 => 0.3228875308908
124 => 0.31999392568815
125 => 0.3216422547186
126 => 0.29439904754348
127 => 0.32717444522506
128 => 0.32745788822523
129 => 0.32503087717447
130 => 0.34248276461303
131 => 0.37931169048859
201 => 0.3654551671341
202 => 0.3600895024756
203 => 0.34988937003752
204 => 0.36348044088733
205 => 0.36243685869979
206 => 0.35771738428098
207 => 0.35486303142683
208 => 0.36012226407984
209 => 0.35421135429977
210 => 0.35314959248233
211 => 0.3467164710769
212 => 0.34442013942354
213 => 0.34272002688698
214 => 0.34084837003384
215 => 0.34497677866404
216 => 0.33562126157063
217 => 0.32433942508863
218 => 0.32340146245631
219 => 0.32599125975065
220 => 0.32484546723564
221 => 0.32339597684257
222 => 0.32062850493697
223 => 0.31980745514026
224 => 0.32247546866283
225 => 0.3194634369507
226 => 0.32390785381581
227 => 0.3226992183493
228 => 0.31594787888291
301 => 0.30753321024177
302 => 0.3074583020405
303 => 0.30564537548459
304 => 0.3033363409403
305 => 0.30269402035363
306 => 0.31206348786319
307 => 0.33145800520342
308 => 0.32765039737807
309 => 0.33040178425123
310 => 0.34393588451951
311 => 0.34823796801021
312 => 0.34518445104894
313 => 0.34100460869964
314 => 0.34118850054996
315 => 0.35547228718184
316 => 0.35636314943322
317 => 0.3586140709394
318 => 0.36150714118519
319 => 0.34567715342179
320 => 0.34044290954987
321 => 0.33796263441855
322 => 0.33032434700139
323 => 0.33856158512353
324 => 0.33376209922346
325 => 0.33440971384517
326 => 0.3339879539732
327 => 0.33421826338257
328 => 0.32199062017367
329 => 0.32644573069299
330 => 0.31903824537173
331 => 0.30912045405581
401 => 0.3090872061417
402 => 0.31151457151574
403 => 0.31007067960844
404 => 0.30618520361176
405 => 0.30673711713816
406 => 0.30190177389619
407 => 0.30732421535445
408 => 0.30747971157304
409 => 0.30539177624923
410 => 0.3137457954684
411 => 0.31716844395872
412 => 0.31579412020068
413 => 0.31707201774019
414 => 0.32780862067353
415 => 0.32955915542249
416 => 0.33033662732414
417 => 0.32929491797122
418 => 0.31726826313235
419 => 0.31780169641574
420 => 0.31388771692078
421 => 0.31058081669253
422 => 0.31071307535926
423 => 0.31241325194351
424 => 0.319838022801
425 => 0.33546301535643
426 => 0.33605597240219
427 => 0.33677465363943
428 => 0.33385141586734
429 => 0.33296973938366
430 => 0.33413289824564
501 => 0.34000082392638
502 => 0.35509472190353
503 => 0.34975953027086
504 => 0.34542193642629
505 => 0.34922717563488
506 => 0.34864138888517
507 => 0.34369675920265
508 => 0.34355797991606
509 => 0.33406765466158
510 => 0.33055929749925
511 => 0.32762745165842
512 => 0.32442595253801
513 => 0.32252799654421
514 => 0.32544411955626
515 => 0.32611107139167
516 => 0.31973491746071
517 => 0.31886587124062
518 => 0.32407277617948
519 => 0.32178141144887
520 => 0.32413813689741
521 => 0.32468491741709
522 => 0.32459687316
523 => 0.32220442521968
524 => 0.32372930019302
525 => 0.32012251629397
526 => 0.31620068052518
527 => 0.31369879364369
528 => 0.31151556551246
529 => 0.31272694736963
530 => 0.3084085922384
531 => 0.3070270635206
601 => 0.32321270686282
602 => 0.33516921562471
603 => 0.33499536325202
604 => 0.33393708164444
605 => 0.33236468984016
606 => 0.33988579367208
607 => 0.33726559148625
608 => 0.33917200750166
609 => 0.33965727038961
610 => 0.3411260149996
611 => 0.3416509649548
612 => 0.34006420158898
613 => 0.33473882992647
614 => 0.32146851006463
615 => 0.31529114034639
616 => 0.31325250544715
617 => 0.31332660595382
618 => 0.31128258318066
619 => 0.31188463949403
620 => 0.31107321256463
621 => 0.30953656626559
622 => 0.31263206379082
623 => 0.31298879104405
624 => 0.31226626493322
625 => 0.31243644598815
626 => 0.30645423838541
627 => 0.30690905263678
628 => 0.30437658909018
629 => 0.3039017827045
630 => 0.29749993538553
701 => 0.28615813489737
702 => 0.29244259334302
703 => 0.28485185126926
704 => 0.28197712222741
705 => 0.29558564239942
706 => 0.29421972441575
707 => 0.29188186657797
708 => 0.28842368758363
709 => 0.28714101535563
710 => 0.27934790494297
711 => 0.27888744640516
712 => 0.28274992235736
713 => 0.2809675226051
714 => 0.27846435830536
715 => 0.2693981509534
716 => 0.25920473217169
717 => 0.25951240741117
718 => 0.26275474427033
719 => 0.27218227597704
720 => 0.26849877624127
721 => 0.26582635491968
722 => 0.26532589073884
723 => 0.27159024775483
724 => 0.28045562535582
725 => 0.28461506217456
726 => 0.28049318661116
727 => 0.27575819790147
728 => 0.27604639472441
729 => 0.27796363907293
730 => 0.27816511434559
731 => 0.27508312346028
801 => 0.27595068584163
802 => 0.2746327792528
803 => 0.26654478894978
804 => 0.26639850285249
805 => 0.26441357959567
806 => 0.26435347690831
807 => 0.26097662728615
808 => 0.26050418268095
809 => 0.25379924279602
810 => 0.25821245453271
811 => 0.25525230380375
812 => 0.25079065842625
813 => 0.25002146908148
814 => 0.24999834632095
815 => 0.25457945851799
816 => 0.25815892156943
817 => 0.25530379689304
818 => 0.25465374034849
819 => 0.26159464355767
820 => 0.26071135035656
821 => 0.25994642414104
822 => 0.27966182802796
823 => 0.26405554743931
824 => 0.2572503183273
825 => 0.24882755502324
826 => 0.2515700492263
827 => 0.25214793305051
828 => 0.23189270562143
829 => 0.22367516237608
830 => 0.22085521120586
831 => 0.21923228943914
901 => 0.2199718752676
902 => 0.2125751225251
903 => 0.21754586269906
904 => 0.211140900056
905 => 0.21006708722534
906 => 0.22151995385375
907 => 0.22311355333842
908 => 0.21631476284428
909 => 0.22068068696571
910 => 0.2190975421884
911 => 0.21125069475716
912 => 0.21095100290279
913 => 0.20701373069182
914 => 0.20085266208778
915 => 0.19803688841219
916 => 0.19657040903428
917 => 0.19717550700672
918 => 0.19686955095555
919 => 0.19487298076502
920 => 0.19698399202177
921 => 0.19159123059086
922 => 0.18944378953663
923 => 0.1884738402327
924 => 0.183687454067
925 => 0.19130472297222
926 => 0.19280542090637
927 => 0.19430907567904
928 => 0.20739736388645
929 => 0.20674350999472
930 => 0.21265403073614
1001 => 0.21242435876888
1002 => 0.21073858250934
1003 => 0.20362656976707
1004 => 0.20646129128671
1005 => 0.19773645906282
1006 => 0.20427369659588
1007 => 0.20129037438735
1008 => 0.20326503235622
1009 => 0.19971441928047
1010 => 0.20167947515781
1011 => 0.19316129205878
1012 => 0.18520713253498
1013 => 0.18840811852375
1014 => 0.19188795637069
1015 => 0.19943313146906
1016 => 0.19493928742681
1017 => 0.19655544367546
1018 => 0.19114159078378
1019 => 0.17997126587762
1020 => 0.18003448870349
1021 => 0.17831617757543
1022 => 0.17683130588326
1023 => 0.19545545947334
1024 => 0.19313925157011
1025 => 0.18944867741412
1026 => 0.1943886575795
1027 => 0.19569486674326
1028 => 0.19573205268184
1029 => 0.19933613469116
1030 => 0.2012596339056
1031 => 0.20159865897907
1101 => 0.20726975989208
1102 => 0.20917063811449
1103 => 0.21700008649025
1104 => 0.20109643843599
1105 => 0.20076891327
1106 => 0.19445817323106
1107 => 0.19045580212952
1108 => 0.19473221900456
1109 => 0.19852054056674
1110 => 0.19457588694191
1111 => 0.19509097542913
1112 => 0.18979560022783
1113 => 0.19168844769173
1114 => 0.19331882292173
1115 => 0.19241862554875
1116 => 0.19107098651135
1117 => 0.19820994140009
1118 => 0.19780713358748
1119 => 0.20445509250373
1120 => 0.20963765187906
1121 => 0.21892572477294
1122 => 0.20923313650998
1123 => 0.20887990006913
1124 => 0.21233284293936
1125 => 0.20917010948693
1126 => 0.21116884785502
1127 => 0.21860369712147
1128 => 0.21876078377078
1129 => 0.21612937999999
1130 => 0.2159692588414
1201 => 0.21647464871998
1202 => 0.21943473302441
1203 => 0.21840038861424
1204 => 0.21959735815209
1205 => 0.22109418688781
1206 => 0.22728570518101
1207 => 0.22877845928021
1208 => 0.22515184072341
1209 => 0.22547928377356
1210 => 0.22412282888041
1211 => 0.22281251044996
1212 => 0.22575791492498
1213 => 0.23114069949514
1214 => 0.23110721347169
1215 => 0.23235591486559
1216 => 0.23313384548919
1217 => 0.22979439777269
1218 => 0.22762054010414
1219 => 0.22845413546042
1220 => 0.22978707258845
1221 => 0.22802188191468
1222 => 0.21712630736027
1223 => 0.22043132866808
1224 => 0.21988121151518
1225 => 0.21909777779291
1226 => 0.22242100227489
1227 => 0.22210046916654
1228 => 0.21249925813464
1229 => 0.21311389651385
1230 => 0.21253663633022
1231 => 0.21440188207983
]
'min_raw' => 0.17683130588326
'max_raw' => 0.39612395424892
'avg_raw' => 0.28647763006609
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.176831'
'max' => '$0.396123'
'avg' => '$0.286477'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.043121230528765
'max_diff' => -0.28785506379538
'year' => 2034
]
9 => [
'items' => [
101 => 0.20906938009523
102 => 0.21070962179075
103 => 0.21173836600586
104 => 0.21234430425175
105 => 0.21453336869164
106 => 0.21427650724571
107 => 0.21451740182351
108 => 0.21776320649629
109 => 0.23417937270553
110 => 0.23507286841207
111 => 0.23067296877237
112 => 0.23243064189425
113 => 0.2290562938611
114 => 0.23132151630192
115 => 0.23287132396552
116 => 0.22586804114459
117 => 0.22545335218687
118 => 0.22206507701906
119 => 0.22388574417252
120 => 0.22098893182076
121 => 0.22169970824569
122 => 0.21971231539722
123 => 0.2232892268385
124 => 0.2272887696257
125 => 0.22829921208048
126 => 0.22564117300478
127 => 0.22371657754067
128 => 0.22033762190685
129 => 0.22595690043083
130 => 0.22760014871566
131 => 0.22594826914715
201 => 0.22556549255684
202 => 0.22484013160987
203 => 0.22571938131074
204 => 0.22759119923259
205 => 0.2267084844677
206 => 0.22729153312134
207 => 0.22506955289081
208 => 0.22979550326884
209 => 0.23730144983105
210 => 0.23732558267659
211 => 0.23644286315353
212 => 0.23608167334315
213 => 0.23698739714171
214 => 0.23747871514769
215 => 0.24040765983088
216 => 0.24355053417025
217 => 0.25821695736856
218 => 0.25409868442312
219 => 0.26711160759408
220 => 0.27740314030572
221 => 0.28048912097176
222 => 0.27765016396561
223 => 0.26793824540504
224 => 0.2674617323473
225 => 0.28197543894306
226 => 0.27787465205988
227 => 0.27738687650872
228 => 0.2721977687542
301 => 0.27526517412062
302 => 0.27459428757086
303 => 0.27353526033118
304 => 0.279387656093
305 => 0.29034281851215
306 => 0.28863535371226
307 => 0.28736081044616
308 => 0.28177613286806
309 => 0.28513935615297
310 => 0.28394177675951
311 => 0.28908733783647
312 => 0.28603922144261
313 => 0.277843584566
314 => 0.27914876675178
315 => 0.27895149109006
316 => 0.2830114102291
317 => 0.28179272327695
318 => 0.27871352290343
319 => 0.29030537495798
320 => 0.28955266456283
321 => 0.2906198358096
322 => 0.2910896375958
323 => 0.29814539367006
324 => 0.30103591117467
325 => 0.30169210925385
326 => 0.30443787732259
327 => 0.30162379204297
328 => 0.31288213957026
329 => 0.32036828373312
330 => 0.32906382541174
331 => 0.34177034894546
401 => 0.34654811933606
402 => 0.34568505787916
403 => 0.35531899900488
404 => 0.37263097705732
405 => 0.34918430361196
406 => 0.3738737076829
407 => 0.36605732740692
408 => 0.34752483038324
409 => 0.3463315560587
410 => 0.35888197820985
411 => 0.38671760660774
412 => 0.37974509740315
413 => 0.38672901113496
414 => 0.37858190479438
415 => 0.37817733229537
416 => 0.38633332436468
417 => 0.40539024439461
418 => 0.39633701602636
419 => 0.3833569932178
420 => 0.39294124006811
421 => 0.3846384784662
422 => 0.36593003278042
423 => 0.37973976565677
424 => 0.3705055905609
425 => 0.37320061376962
426 => 0.39260947634124
427 => 0.39027415064714
428 => 0.39329627834064
429 => 0.38796230206447
430 => 0.38297952713167
501 => 0.37367880769387
502 => 0.37092532318827
503 => 0.37168628724562
504 => 0.37092494609227
505 => 0.36572127904485
506 => 0.3645975476414
507 => 0.36272461273719
508 => 0.36330511358017
509 => 0.35978344801382
510 => 0.36642955855075
511 => 0.36766313523174
512 => 0.3724996202409
513 => 0.37300176015897
514 => 0.38647130206643
515 => 0.37905250473026
516 => 0.3840296744915
517 => 0.38358446958112
518 => 0.34792648578918
519 => 0.35283984134266
520 => 0.36048348068795
521 => 0.35704003152361
522 => 0.35217180004823
523 => 0.34824044211381
524 => 0.34228403284117
525 => 0.3506675645097
526 => 0.36169101716462
527 => 0.37328133310977
528 => 0.38720633829027
529 => 0.38409843923891
530 => 0.37302101482395
531 => 0.37351793999114
601 => 0.37658973584187
602 => 0.37261148111309
603 => 0.37143821612881
604 => 0.37642854724974
605 => 0.37646291291754
606 => 0.37188545006393
607 => 0.366798437769
608 => 0.36677712300174
609 => 0.36587193829857
610 => 0.3787429351422
611 => 0.38582068200164
612 => 0.38663213427271
613 => 0.38576606479848
614 => 0.38609938056604
615 => 0.38198099561605
616 => 0.39139440234262
617 => 0.40003307524436
618 => 0.39771772636837
619 => 0.39424668925702
620 => 0.39148184101002
621 => 0.39706641598952
622 => 0.39681774365662
623 => 0.39995762397278
624 => 0.39981518086481
625 => 0.39875935721136
626 => 0.39771776407516
627 => 0.40184756312385
628 => 0.40065824732037
629 => 0.39946708418095
630 => 0.39707802414689
701 => 0.3974027370836
702 => 0.39393229929574
703 => 0.39232671597865
704 => 0.36818259522264
705 => 0.36173049722473
706 => 0.36376045859943
707 => 0.36442877459191
708 => 0.36162081327463
709 => 0.36564670849753
710 => 0.36501927699152
711 => 0.36746024594626
712 => 0.36593523451789
713 => 0.36599782151886
714 => 0.37048255496296
715 => 0.37178449216121
716 => 0.37112231639426
717 => 0.37158608160337
718 => 0.38227335510434
719 => 0.38075396657227
720 => 0.37994682169714
721 => 0.38017040634368
722 => 0.3829012338609
723 => 0.38366571646807
724 => 0.38042654994226
725 => 0.38195415960123
726 => 0.3884585276466
727 => 0.39073468834713
728 => 0.39799910068411
729 => 0.39491304920873
730 => 0.40057763025297
731 => 0.41798862118498
801 => 0.4318977254904
802 => 0.41910633835309
803 => 0.44464863709624
804 => 0.46453698049293
805 => 0.46377363274759
806 => 0.46030564005071
807 => 0.43766328985255
808 => 0.41682746162178
809 => 0.43425751667282
810 => 0.43430194946766
811 => 0.43280469228083
812 => 0.42350535648418
813 => 0.43248109555259
814 => 0.43319355712474
815 => 0.43279476810316
816 => 0.42566498915131
817 => 0.41477913449526
818 => 0.416906204438
819 => 0.42039038839525
820 => 0.41379410128725
821 => 0.41168618787311
822 => 0.41560519995693
823 => 0.42823307344958
824 => 0.42584584711409
825 => 0.42578350698693
826 => 0.4359970735917
827 => 0.42868636412831
828 => 0.41693303360179
829 => 0.41396516263647
830 => 0.40343122010699
831 => 0.41070705173271
901 => 0.41096889596001
902 => 0.4069839973358
903 => 0.41725638616312
904 => 0.41716172429166
905 => 0.4269138286399
906 => 0.44555618943061
907 => 0.44004272600993
908 => 0.43363116791481
909 => 0.43432828205297
910 => 0.44197390352431
911 => 0.43735118625018
912 => 0.43901354761268
913 => 0.44197138734129
914 => 0.44375592548859
915 => 0.43407151447606
916 => 0.43181361501011
917 => 0.4271947451178
918 => 0.42598976817819
919 => 0.42975174132959
920 => 0.42876059431667
921 => 0.41094688896662
922 => 0.40908525764302
923 => 0.40914235121791
924 => 0.40446119073897
925 => 0.39732129740135
926 => 0.41608451079175
927 => 0.4145775621655
928 => 0.41291400751068
929 => 0.41311778346378
930 => 0.42126225845225
1001 => 0.41653805165309
1002 => 0.42909812971093
1003 => 0.42651615525274
1004 => 0.42386796289239
1005 => 0.42350190204227
1006 => 0.42248257391669
1007 => 0.41898691849878
1008 => 0.41476570452533
1009 => 0.41197849342477
1010 => 0.38002838308358
1011 => 0.38595813771767
1012 => 0.39277977991004
1013 => 0.39513458345883
1014 => 0.39110652904117
1015 => 0.41914597063847
1016 => 0.42426904681308
1017 => 0.4087509149102
1018 => 0.40584810603232
1019 => 0.41933627830524
1020 => 0.41120126156267
1021 => 0.41486445910374
1022 => 0.40694662968188
1023 => 0.4230350477838
1024 => 0.42291248099334
1025 => 0.41665372297829
1026 => 0.42194358239448
1027 => 0.42102433914387
1028 => 0.41395821675952
1029 => 0.423259056467
1030 => 0.42326366956745
1031 => 0.4172397510551
1101 => 0.410205133038
1102 => 0.40894750948681
1103 => 0.40800005907893
1104 => 0.41463144438317
1105 => 0.42057712371114
1106 => 0.43164055888159
1107 => 0.43442216934417
1108 => 0.44527898016194
1109 => 0.43881427792849
1110 => 0.44167999669667
1111 => 0.4447911398002
1112 => 0.44628273621253
1113 => 0.44385225990211
1114 => 0.46071735594373
1115 => 0.46214128678283
1116 => 0.46261871847623
1117 => 0.45693190298139
1118 => 0.46198312615655
1119 => 0.45961982611182
1120 => 0.46576847628454
1121 => 0.46673266314152
1122 => 0.4659160311756
1123 => 0.46622207930266
1124 => 0.45183069503796
1125 => 0.45108442584323
1126 => 0.44090899242032
1127 => 0.44505555675316
1128 => 0.43730375348291
1129 => 0.43976193015233
1130 => 0.44084547100584
1201 => 0.44027949075437
1202 => 0.44528999727909
1203 => 0.44103004315422
1204 => 0.42978732381739
1205 => 0.4185415414092
1206 => 0.41840035977168
1207 => 0.41543954376815
1208 => 0.4132994160981
1209 => 0.41371168061246
1210 => 0.41516455453357
1211 => 0.41321497242463
1212 => 0.41363101461389
1213 => 0.4205400870303
1214 => 0.42192565223016
1215 => 0.41721696030577
1216 => 0.3983108827683
1217 => 0.3936712839183
1218 => 0.39700613556444
1219 => 0.39541229126954
1220 => 0.31912857971853
1221 => 0.33705030621515
1222 => 0.32640182489519
1223 => 0.3313091350005
1224 => 0.32043979298368
1225 => 0.32562721270513
1226 => 0.32466928569681
1227 => 0.35348689156094
1228 => 0.35303694428269
1229 => 0.35325231023411
1230 => 0.34297233223998
1231 => 0.35934861631645
]
'min_raw' => 0.20906938009523
'max_raw' => 0.46673266314152
'avg_raw' => 0.33790102161838
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.209069'
'max' => '$0.466732'
'avg' => '$0.337901'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.032238074211974
'max_diff' => 0.070608708892608
'year' => 2035
]
10 => [
'items' => [
101 => 0.36741616272465
102 => 0.36592307459529
103 => 0.36629885271013
104 => 0.35984173968472
105 => 0.35331482920275
106 => 0.34607548099391
107 => 0.35952529515544
108 => 0.35802990541667
109 => 0.36145979145318
110 => 0.37018295734951
111 => 0.37146747666382
112 => 0.37319388364858
113 => 0.37257508963856
114 => 0.38731727342211
115 => 0.38553189769386
116 => 0.38983413951129
117 => 0.38098410168097
118 => 0.37096944382267
119 => 0.3728729028777
120 => 0.37268958446405
121 => 0.3703557306552
122 => 0.36824883179022
123 => 0.3647414387951
124 => 0.37583934922814
125 => 0.37538879433172
126 => 0.38268275439194
127 => 0.38139347610154
128 => 0.3727833601384
129 => 0.37309087211444
130 => 0.37515903793856
131 => 0.38231698346974
201 => 0.38444194905349
202 => 0.38345758032986
203 => 0.38578750808407
204 => 0.3876289879822
205 => 0.38601876960735
206 => 0.4088160661451
207 => 0.39934903920066
208 => 0.40396320226223
209 => 0.40506365296419
210 => 0.40224487163111
211 => 0.40285616436926
212 => 0.40378210630026
213 => 0.40940424438728
214 => 0.42415836150638
215 => 0.43069285954376
216 => 0.45035221929567
217 => 0.43015026044636
218 => 0.42895155981226
219 => 0.43249280415937
220 => 0.44403492948831
221 => 0.45338873797071
222 => 0.45649193587848
223 => 0.4569020747102
224 => 0.46272388028188
225 => 0.46606083066531
226 => 0.46201695995679
227 => 0.45859020294223
228 => 0.4463159846608
229 => 0.44773675884846
301 => 0.45752448408748
302 => 0.47135022248174
303 => 0.48321414434692
304 => 0.47905981240916
305 => 0.51075443259302
306 => 0.51389682472333
307 => 0.51346264773662
308 => 0.52062148466013
309 => 0.50641265123875
310 => 0.50033809966793
311 => 0.45933110670412
312 => 0.47085239907344
313 => 0.48759927415403
314 => 0.48538276243956
315 => 0.47322073411078
316 => 0.48320491835784
317 => 0.47990383481145
318 => 0.47730013325634
319 => 0.48922819483271
320 => 0.47611280115173
321 => 0.48746843806931
322 => 0.47290471626348
323 => 0.47907878904751
324 => 0.475574086729
325 => 0.47784205864924
326 => 0.4645835411458
327 => 0.47173751535834
328 => 0.46428591229847
329 => 0.46428237926839
330 => 0.46411788471784
331 => 0.47288466267231
401 => 0.47317054698666
402 => 0.46669188483245
403 => 0.4657582084003
404 => 0.46921049952957
405 => 0.46516877077368
406 => 0.46705987022022
407 => 0.46522605024942
408 => 0.46481321874783
409 => 0.4615237071057
410 => 0.46010649504327
411 => 0.46066222041
412 => 0.45876524323727
413 => 0.45762224587403
414 => 0.46389051377347
415 => 0.460541631096
416 => 0.46337724947341
417 => 0.46014570444879
418 => 0.44894376147631
419 => 0.44250140561444
420 => 0.42134197376008
421 => 0.42734276238579
422 => 0.43132129145289
423 => 0.43000638761994
424 => 0.43283130985334
425 => 0.43300473713541
426 => 0.43208632612066
427 => 0.43102292382131
428 => 0.43050531839183
429 => 0.43436312519704
430 => 0.43660271189527
501 => 0.43172059007063
502 => 0.43057677723526
503 => 0.4355128719493
504 => 0.43852388687338
505 => 0.46075552932964
506 => 0.45910853744922
507 => 0.46324216386324
508 => 0.46277678096469
509 => 0.46710947998491
510 => 0.47419161174774
511 => 0.45979165767872
512 => 0.46229099179215
513 => 0.46167821278559
514 => 0.46836837329994
515 => 0.46838925925081
516 => 0.46437817382415
517 => 0.46655264830637
518 => 0.46533891630399
519 => 0.46753229407802
520 => 0.45908654086854
521 => 0.46937255661496
522 => 0.47520406472698
523 => 0.47528503522277
524 => 0.47804912378615
525 => 0.48085759785176
526 => 0.48624821925417
527 => 0.48070725634662
528 => 0.4707396034778
529 => 0.47145923581961
530 => 0.46561520458964
531 => 0.46571344381043
601 => 0.46518903515073
602 => 0.46676282501414
603 => 0.45943189924167
604 => 0.46115245286762
605 => 0.45874366771574
606 => 0.46228575556366
607 => 0.4584750545674
608 => 0.461677917285
609 => 0.46306016665734
610 => 0.46816069659896
611 => 0.45772170214791
612 => 0.43643588580441
613 => 0.44091042246539
614 => 0.43429223127654
615 => 0.43490477006829
616 => 0.43614219591247
617 => 0.43213129389094
618 => 0.4328964475986
619 => 0.43286911092386
620 => 0.43263353822941
621 => 0.43159014770522
622 => 0.43007702501663
623 => 0.43610484009338
624 => 0.43712908333461
625 => 0.43940584918296
626 => 0.44617996000263
627 => 0.44550306658721
628 => 0.4466071078318
629 => 0.44419699199379
630 => 0.43501656842964
701 => 0.43551510959752
702 => 0.42929829324543
703 => 0.43924687121153
704 => 0.43689091663434
705 => 0.43537201739204
706 => 0.43495757166128
707 => 0.44174847419141
708 => 0.44378041866278
709 => 0.44251424722694
710 => 0.43991729267192
711 => 0.44490421313826
712 => 0.44623850267376
713 => 0.44653720089406
714 => 0.45537306781326
715 => 0.44703102770061
716 => 0.44903903966847
717 => 0.46470497582944
718 => 0.45049813348285
719 => 0.45802381472423
720 => 0.45765547178922
721 => 0.46150535565714
722 => 0.45733966894236
723 => 0.45739130762172
724 => 0.46080974368271
725 => 0.45600916675324
726 => 0.45482047639484
727 => 0.45317830917827
728 => 0.45676392121817
729 => 0.4589133334728
730 => 0.4762360176758
731 => 0.48742726168131
801 => 0.48694142026422
802 => 0.49138110135936
803 => 0.48938098436318
804 => 0.48292207897832
805 => 0.49394664289068
806 => 0.49045800958146
807 => 0.49074560827279
808 => 0.49073490383513
809 => 0.49305454000414
810 => 0.49141086518686
811 => 0.48817101340225
812 => 0.49032177821443
813 => 0.49670878079411
814 => 0.5165342327786
815 => 0.52762881836143
816 => 0.51586632479574
817 => 0.52397993535129
818 => 0.519114660193
819 => 0.51823049496734
820 => 0.52332644198733
821 => 0.52843130878799
822 => 0.52810615084174
823 => 0.52440027968227
824 => 0.52230692709729
825 => 0.53815849419535
826 => 0.5498376588088
827 => 0.54904121808027
828 => 0.55255644843958
829 => 0.56287727349648
830 => 0.56382088039489
831 => 0.56370200761425
901 => 0.56136317946134
902 => 0.57152537205835
903 => 0.58000285190955
904 => 0.56082180831918
905 => 0.56812569862009
906 => 0.57140465029282
907 => 0.57621912416951
908 => 0.584341948599
909 => 0.59316549040219
910 => 0.59441323595837
911 => 0.59352790077614
912 => 0.5877085377674
913 => 0.5973633624952
914 => 0.60301893238724
915 => 0.60638669483254
916 => 0.61492678005158
917 => 0.57142489998206
918 => 0.54063210708514
919 => 0.53582336782096
920 => 0.545602128209
921 => 0.54818070933917
922 => 0.54714128651886
923 => 0.51248119855512
924 => 0.53564088963091
925 => 0.56055876990631
926 => 0.56151596716895
927 => 0.57399037904313
928 => 0.57805255889278
929 => 0.58809609551003
930 => 0.58746786956006
1001 => 0.58991331089879
1002 => 0.58935114628416
1003 => 0.60795468295146
1004 => 0.62847714654743
1005 => 0.62776651889054
1006 => 0.62481617193786
1007 => 0.62919794027151
1008 => 0.6503793220234
1009 => 0.64842927981642
1010 => 0.65032357971631
1011 => 0.67529762253215
1012 => 0.70776743070893
1013 => 0.69268194489537
1014 => 0.72541310837917
1015 => 0.7460156407878
1016 => 0.78164559024691
1017 => 0.77718454509343
1018 => 0.79105502295321
1019 => 0.76919834322048
1020 => 0.71901098859035
1021 => 0.71106864761065
1022 => 0.72696941538411
1023 => 0.76605990138091
1024 => 0.72573831686884
1025 => 0.73389532090069
1026 => 0.73154610319077
1027 => 0.73142092336254
1028 => 0.73619852826289
1029 => 0.72926836317181
1030 => 0.70103362387785
1031 => 0.71397343850791
1101 => 0.70897675465831
1102 => 0.7145209479169
1103 => 0.74444067233428
1104 => 0.73121244897221
1105 => 0.71727759023387
1106 => 0.73475499548445
1107 => 0.75700973825647
1108 => 0.75561707644942
1109 => 0.75291473045625
1110 => 0.76814771332948
1111 => 0.79330813819084
1112 => 0.80010889992809
1113 => 0.80512908320708
1114 => 0.80582128166456
1115 => 0.81295135597555
1116 => 0.77461114939525
1117 => 0.83545804188453
1118 => 0.84596461935595
1119 => 0.84398981824434
1120 => 0.85566743691945
1121 => 0.85223158527264
1122 => 0.84725357530502
1123 => 0.86576508480579
1124 => 0.84454313296494
1125 => 0.8144212440963
1126 => 0.79789578011955
1127 => 0.81965784415528
1128 => 0.83294717727053
1129 => 0.84173058109938
1130 => 0.84438843379092
1201 => 0.77758739049151
1202 => 0.74158533310884
1203 => 0.76466223912671
1204 => 0.79281765715147
1205 => 0.77445474462652
1206 => 0.77517453603191
1207 => 0.74899384845985
1208 => 0.79513406707293
1209 => 0.78841182532132
1210 => 0.82328682742009
1211 => 0.81496362827984
1212 => 0.8434028386516
1213 => 0.83591384145898
1214 => 0.86700025010133
1215 => 0.87940146013967
1216 => 0.90022502188827
1217 => 0.91554291867769
1218 => 0.92453788065711
1219 => 0.92399785687912
1220 => 0.95964037751385
1221 => 0.93862322835037
1222 => 0.91222073563932
1223 => 0.91174319784497
1224 => 0.92541742294624
1225 => 0.95407484741805
1226 => 0.96150530063503
1227 => 0.96565791030224
1228 => 0.95929804404352
1229 => 0.93648543493922
1230 => 0.92663506599053
1231 => 0.93502786572747
]
'min_raw' => 0.34607548099391
'max_raw' => 0.96565791030224
'avg_raw' => 0.65586669564808
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.346075'
'max' => '$0.965657'
'avg' => '$0.655866'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.13700610089868
'max_diff' => 0.49892524716072
'year' => 2036
]
11 => [
'items' => [
101 => 0.9247641928507
102 => 0.94248217171399
103 => 0.96681274104937
104 => 0.96178857469512
105 => 0.97858360955229
106 => 0.99596470374026
107 => 1.0208204490628
108 => 1.0273186612958
109 => 1.0380599590119
110 => 1.0491162826943
111 => 1.0526672758848
112 => 1.0594472236939
113 => 1.0594114900223
114 => 1.0798433190882
115 => 1.1023802592691
116 => 1.110887432456
117 => 1.130449208111
118 => 1.0969503528282
119 => 1.1223596193673
120 => 1.1452794138208
121 => 1.1179534900011
122 => 1.1556159098629
123 => 1.1570782562813
124 => 1.1791579510208
125 => 1.1567759504446
126 => 1.1434855899483
127 => 1.1818543627177
128 => 1.2004198032558
129 => 1.1948277414752
130 => 1.1522718752104
131 => 1.1275025357373
201 => 1.0626763966875
202 => 1.1394657586728
203 => 1.1768676169194
204 => 1.1521750134331
205 => 1.1646285263487
206 => 1.2325708547506
207 => 1.2584388944661
208 => 1.2530585230365
209 => 1.2539677172396
210 => 1.267925641932
211 => 1.3298227667873
212 => 1.2927325748099
213 => 1.3210866368337
214 => 1.3361255290929
215 => 1.3500944903498
216 => 1.3157911364383
217 => 1.2711629770158
218 => 1.257027365564
219 => 1.1497198206544
220 => 1.1441339969289
221 => 1.1409985048039
222 => 1.1212296704802
223 => 1.1056967818413
224 => 1.0933444520964
225 => 1.0609282501279
226 => 1.0718677667047
227 => 1.0202031065541
228 => 1.0532563252353
301 => 0.97079828014817
302 => 1.0394717903508
303 => 1.0020959209489
304 => 1.0271928120315
305 => 1.0271052513428
306 => 0.98089391788311
307 => 0.95424018514951
308 => 0.97122498102616
309 => 0.9894340304607
310 => 0.99238838746885
311 => 1.0159968953656
312 => 1.0225855224563
313 => 1.0026216747777
314 => 0.96908952044425
315 => 0.97687827510889
316 => 0.95408234628482
317 => 0.91413335785339
318 => 0.94282541878727
319 => 0.95262214989096
320 => 0.95694894445381
321 => 0.91766370250381
322 => 0.90531942655902
323 => 0.89874743762453
324 => 0.96401828903145
325 => 0.96759397361214
326 => 0.94930026574649
327 => 1.0319895599798
328 => 1.0132744260072
329 => 1.0341838159737
330 => 0.97617152726094
331 => 0.97838767481368
401 => 0.95092372764888
402 => 0.96630170291955
403 => 0.95543304565352
404 => 0.96505931448579
405 => 0.97082926033327
406 => 0.99828870093458
407 => 1.0397853330538
408 => 0.99418717620039
409 => 0.97431940628174
410 => 0.98664525899869
411 => 1.0194706290658
412 => 1.0692027450173
413 => 1.0397603314219
414 => 1.0528263746109
415 => 1.0556807237799
416 => 1.0339709780121
417 => 1.0700032143102
418 => 1.0893131824677
419 => 1.1091212141624
420 => 1.1263199730745
421 => 1.1012094507156
422 => 1.1280813090916
423 => 1.1064273347621
424 => 1.0870014812418
425 => 1.0870309422429
426 => 1.0748448205632
427 => 1.0512326742586
428 => 1.0468782322048
429 => 1.0695305896745
430 => 1.087695635179
501 => 1.0891917953314
502 => 1.0992488978764
503 => 1.1052005875662
504 => 1.1635352374555
505 => 1.1869979162105
506 => 1.2156876356663
507 => 1.2268638982583
508 => 1.2605004417485
509 => 1.2333362010537
510 => 1.2274590467083
511 => 1.1458677946307
512 => 1.1592283575876
513 => 1.1806199079841
514 => 1.1462205334178
515 => 1.1680390189356
516 => 1.1723464501555
517 => 1.1450516558331
518 => 1.1596309848191
519 => 1.120912609502
520 => 1.0406292878306
521 => 1.0700925925974
522 => 1.0917875021469
523 => 1.0608261912567
524 => 1.1163231426593
525 => 1.0839029693395
526 => 1.0736273308399
527 => 1.0335384015233
528 => 1.0524588329963
529 => 1.0780489874781
530 => 1.0622372471831
531 => 1.0950489824399
601 => 1.1415191501337
602 => 1.1746365589786
603 => 1.1771789024092
604 => 1.155886627216
605 => 1.1900076340986
606 => 1.1902561683829
607 => 1.151767533231
608 => 1.128193458506
609 => 1.1228373791282
610 => 1.1362179155352
611 => 1.1524643569165
612 => 1.1780804668363
613 => 1.1935597455689
614 => 1.2339214949282
615 => 1.2448422270428
616 => 1.2568408006776
617 => 1.2728745952768
618 => 1.2921272766738
619 => 1.2500035058331
620 => 1.2516771617771
621 => 1.2124520896135
622 => 1.1705344745624
623 => 1.2023447192817
624 => 1.2439323827127
625 => 1.2343921267714
626 => 1.2333186530882
627 => 1.2351239380665
628 => 1.2279308966424
629 => 1.1953970368675
630 => 1.1790587361613
701 => 1.2001393124173
702 => 1.2113427005089
703 => 1.2287181784009
704 => 1.2265762839988
705 => 1.2713336490584
706 => 1.288725007728
707 => 1.2842755539621
708 => 1.2850943605371
709 => 1.316580584689
710 => 1.3515997415817
711 => 1.3843998031966
712 => 1.4177654346666
713 => 1.3775418636467
714 => 1.3571188149278
715 => 1.3781901880637
716 => 1.3670094208767
717 => 1.431257425564
718 => 1.4357058180117
719 => 1.499949176837
720 => 1.560923774319
721 => 1.5226267221139
722 => 1.5587391174062
723 => 1.5977976172016
724 => 1.6731478003201
725 => 1.6477725094972
726 => 1.6283354344084
727 => 1.6099674923687
728 => 1.6481882639246
729 => 1.6973586759396
730 => 1.7079495117393
731 => 1.7251107117454
801 => 1.7070678083106
802 => 1.7287984981372
803 => 1.8055173821738
804 => 1.7847872624908
805 => 1.7553471600079
806 => 1.8159093507949
807 => 1.8378265722111
808 => 1.9916531102483
809 => 2.1858654687777
810 => 2.1054602770794
811 => 2.055550179933
812 => 2.0672802366458
813 => 2.1382000154774
814 => 2.1609771975569
815 => 2.0990609648994
816 => 2.1209308250073
817 => 2.2414359043987
818 => 2.3060830132264
819 => 2.2182835561733
820 => 1.9760483363409
821 => 1.7526964008904
822 => 1.8119393918406
823 => 1.8052230751909
824 => 1.9346907496822
825 => 1.7842928559923
826 => 1.7868251708051
827 => 1.9189700996963
828 => 1.8837160982057
829 => 1.8266091307824
830 => 1.753113344951
831 => 1.6172495873042
901 => 1.4969112683153
902 => 1.7329224241123
903 => 1.7227451939159
904 => 1.7080070564105
905 => 1.7408051865957
906 => 1.9000635968636
907 => 1.8963921750377
908 => 1.8730364625576
909 => 1.890751564626
910 => 1.8235035877385
911 => 1.8408349225904
912 => 1.7526610208027
913 => 1.7925193068782
914 => 1.8264866048783
915 => 1.8333060428463
916 => 1.8486705847973
917 => 1.7173822560593
918 => 1.7763268612399
919 => 1.8109512944208
920 => 1.6545168456615
921 => 1.8078590883439
922 => 1.7150968183461
923 => 1.6836119106663
924 => 1.726002191036
925 => 1.7094826575501
926 => 1.6952801327184
927 => 1.687354879832
928 => 1.7184816232909
929 => 1.7170295235041
930 => 1.6661001297646
1001 => 1.5996648117792
1002 => 1.6219626851601
1003 => 1.6138616587171
1004 => 1.5845024938346
1005 => 1.6042870261263
1006 => 1.5171659586363
1007 => 1.3672786901788
1008 => 1.466298810893
1009 => 1.4624866439587
1010 => 1.4605643765224
1011 => 1.534975260524
1012 => 1.5278223709785
1013 => 1.5148398064119
1014 => 1.5842640588553
1015 => 1.5589232728255
1016 => 1.6370176043293
1017 => 1.6884555818823
1018 => 1.6754092469306
1019 => 1.7237869134406
1020 => 1.6224763831274
1021 => 1.6561276774244
1022 => 1.6630631625404
1023 => 1.5834073743566
1024 => 1.5289926721694
1025 => 1.5253638319065
1026 => 1.4310162371218
1027 => 1.4814159607086
1028 => 1.5257656317828
1029 => 1.5045255810118
1030 => 1.4978016154661
1031 => 1.5321528971886
1101 => 1.5348222859772
1102 => 1.4739599387065
1103 => 1.486615147964
1104 => 1.5393894743211
1105 => 1.4852853703447
1106 => 1.3801699341739
1107 => 1.354099852669
1108 => 1.3506216232293
1109 => 1.2799174945435
1110 => 1.3558419801741
1111 => 1.3226989075466
1112 => 1.4273974768617
1113 => 1.3675942155786
1114 => 1.365016216512
1115 => 1.3611191928125
1116 => 1.3002612285019
1117 => 1.3135852549605
1118 => 1.3578763482155
1119 => 1.3736799092638
1120 => 1.3720314683717
1121 => 1.3576592976956
1122 => 1.3642388038337
1123 => 1.3430439221111
1124 => 1.3355595682415
1125 => 1.3119368886955
1126 => 1.2772180756945
1127 => 1.2820459395852
1128 => 1.2132588863587
1129 => 1.1757800489557
1130 => 1.1654064007257
1201 => 1.1515343247679
1202 => 1.1669732886173
1203 => 1.2130640212796
1204 => 1.1574688189945
1205 => 1.0621547442267
1206 => 1.0678832825275
1207 => 1.0807536072712
1208 => 1.0567698422571
1209 => 1.0340712214761
1210 => 1.0538058306479
1211 => 1.0134200006655
1212 => 1.085634041879
1213 => 1.0836808544417
1214 => 1.1105977833197
1215 => 1.1274294913381
1216 => 1.0886378536858
1217 => 1.07888186172
1218 => 1.0844393181289
1219 => 0.99258694307798
1220 => 1.1030914846666
1221 => 1.104047132531
1222 => 1.0958642953249
1223 => 1.1547045522759
1224 => 1.2788758471788
1225 => 1.2321576112576
1226 => 1.2140668982427
1227 => 1.1796764395772
1228 => 1.2254996838456
1229 => 1.2219811736398
1230 => 1.2060691361336
1231 => 1.1964454862012
]
'min_raw' => 0.89874743762453
'max_raw' => 2.3060830132264
'avg_raw' => 1.6024152254255
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.898747'
'max' => '$2.30'
'avg' => '$1.60'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.55267195663062
'max_diff' => 1.3404251029242
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.02821065509134
]
1 => [
'year' => 2028
'avg' => 0.048417673748429
]
2 => [
'year' => 2029
'avg' => 0.13226835824405
]
3 => [
'year' => 2030
'avg' => 0.10204484140534
]
4 => [
'year' => 2031
'avg' => 0.10022068053801
]
5 => [
'year' => 2032
'avg' => 0.17571839359208
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.02821065509134
'min' => '$0.02821'
'max_raw' => 0.17571839359208
'max' => '$0.175718'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.17571839359208
]
1 => [
'year' => 2033
'avg' => 0.45196577722816
]
2 => [
'year' => 2034
'avg' => 0.28647763006609
]
3 => [
'year' => 2035
'avg' => 0.33790102161838
]
4 => [
'year' => 2036
'avg' => 0.65586669564808
]
5 => [
'year' => 2037
'avg' => 1.6024152254255
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.17571839359208
'min' => '$0.175718'
'max_raw' => 1.6024152254255
'max' => '$1.60'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 1.6024152254255
]
]
]
]
'prediction_2025_max_price' => '$0.048235'
'last_price' => false
'sma_50day_nextmonth' => '—'
'sma_200day_nextmonth' => '—'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'decrease'
'sma_200day_direction_label' => 'diminuer'
'sma_200day_date_nextmonth' => '4 févr. 2026'
'sma_50day_date_nextmonth' => '4 févr. 2026'
'daily_sma3' => '—'
'daily_sma3_action' => '—'
'daily_sma5' => '—'
'daily_sma5_action' => '—'
'daily_sma10' => '—'
'daily_sma10_action' => '—'
'daily_sma21' => '—'
'daily_sma21_action' => '—'
'daily_sma50' => '—'
'daily_sma50_action' => '—'
'daily_sma100' => '—'
'daily_sma100_action' => '—'
'daily_sma200' => '—'
'daily_sma200_action' => '—'
'daily_ema3' => '—'
'daily_ema3_action' => '—'
'daily_ema5' => '—'
'daily_ema5_action' => '—'
'daily_ema10' => '—'
'daily_ema10_action' => '—'
'daily_ema21' => '—'
'daily_ema21_action' => '—'
'daily_ema50' => '—'
'daily_ema50_action' => '—'
'daily_ema100' => '—'
'daily_ema100_action' => '—'
'daily_ema200' => '—'
'daily_ema200_action' => '—'
'weekly_sma21' => '—'
'weekly_sma21_action' => '—'
'weekly_sma50' => '—'
'weekly_sma50_action' => '—'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '—'
'weekly_ema3_action' => '—'
'weekly_ema5' => '—'
'weekly_ema5_action' => '—'
'weekly_ema10' => '—'
'weekly_ema10_action' => '—'
'weekly_ema21' => '—'
'weekly_ema21_action' => '—'
'weekly_ema50' => '—'
'weekly_ema50_action' => '—'
'weekly_ema100' => '—'
'weekly_ema100_action' => '—'
'weekly_ema200' => '—'
'weekly_ema200_action' => '—'
'rsi_14' => '—'
'rsi_14_action' => '—'
'stoch_rsi_14' => '—'
'stoch_rsi_14_action' => '—'
'momentum_10' => '—'
'momentum_10_action' => '—'
'vwma_10' => '—'
'vwma_10_action' => '—'
'hma_9' => '—'
'hma_9_action' => '—'
'stochastic_fast_14' => '—'
'stochastic_fast_14_action' => '—'
'cci_20' => '—'
'cci_20_action' => '—'
'adx_14' => '—'
'adx_14_action' => '—'
'ao_5_34' => '—'
'ao_5_34_action' => '—'
'macd_12_26' => '—'
'macd_12_26_action' => '—'
'williams_percent_r_14' => '—'
'williams_percent_r_14_action' => '—'
'ultimate_oscillator' => '—'
'ultimate_oscillator_action' => '—'
'ichimoku_cloud' => '—'
'ichimoku_cloud_action' => '—'
'sell_signals' => 0
'buy_signals' => 0
'sell_pct' => 0
'buy_pct' => 0
'overall_action' => 'neutral'
'overall_action_label' => 'Neutre'
'overall_action_dir' => 0
'last_updated' => 1767698453
'last_updated_date' => '6 janvier 2026'
]
Prévision du prix de Eva Token pour 2026
La prévision du prix de Eva Token pour 2026 suggère que le prix moyen pourrait varier entre $0.016159 à la baisse et $0.048235 à la hausse. Sur le marché des cryptomonnaies, comparé au prix moyen d'aujourd'hui, Eva Token pourrait potentiellement gagner 3.13% d'ici 2026 si EVA atteint l'objectif de prix prévu.
Prévision du prix de Eva Token de 2027 à 2032
La prévision du prix de EVA pour 2027-2032 se situe actuellement dans une fourchette de prix comprise entre $0.02821 à la baisse et $0.175718 à la hausse. Compte tenu de la volatilité des prix sur le marché, si Eva Token atteint l'objectif de prix le plus élevé, il pourrait gagner 275.71% d'ici 2032 par rapport au prix actuel.
| Prévision du Prix de Eva Token | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2027 | $0.015555 | $0.02821 | $0.040865 |
| 2028 | $0.028073 | $0.048417 | $0.068761 |
| 2029 | $0.06167 | $0.132268 | $0.202866 |
| 2030 | $0.052447 | $0.102044 | $0.151641 |
| 2031 | $0.0620095 | $0.10022 | $0.138431 |
| 2032 | $0.094652 | $0.175718 | $0.256783 |
Prévision du prix de Eva Token de 2032 à 2037
La prévision du prix de Eva Token pour 2032-2037 est actuellement estimée entre $0.175718 à la baisse et $1.60 à la hausse. Par rapport au prix actuel, Eva Token pourrait potentiellement gagner 3326.16% d'ici 2037 s'il atteint l'objectif de prix le plus élevé. Veuillez noter que ces informations sont à titre général seulement et ne doivent pas être considérées comme un conseil en investissement à long terme.
| Prévision du Prix de Eva Token | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2032 | $0.094652 | $0.175718 | $0.256783 |
| 2033 | $0.219952 | $0.451965 | $0.683979 |
| 2034 | $0.176831 | $0.286477 | $0.396123 |
| 2035 | $0.209069 | $0.337901 | $0.466732 |
| 2036 | $0.346075 | $0.655866 | $0.965657 |
| 2037 | $0.898747 | $1.60 | $2.30 |
Eva Token Histogramme des prix potentiels
Prévision du prix de Eva Token basée sur l'analyse technique
Au 6 janvier 2026, le sentiment global de prévision du prix pour Eva Token est Neutre, avec 0 indicateurs techniques montrant des signaux haussiers et 0 indiquant des signaux baissiers. La prévision du prix de EVA a été mise à jour pour la dernière fois le 6 janvier 2026.
Moyennes Mobiles Simples sur 50 et 200 jours de Eva Token et Indice de Force Relative sur 14 jours - RSI (14)
Selon nos indicateurs techniques, le SMA sur 200 jours de Eva Token devrait diminuer au cours du prochain mois, atteignant — d'ici le 4 févr. 2026. Le SMA à court terme sur 50 jours pour Eva Token devrait atteindre — d'ici le 4 févr. 2026.
Le Relative Strength Index (RSI), un oscillateur de momentum, est un outil couramment utilisé pour identifier si une cryptomonnaie est survendue (en dessous de 30) ou surachetée (au-dessus de 70). Actuellement, le RSI est à —, ce qui suggère que le marché de EVA est dans un état —.
Moyennes Mobiles et Oscillateurs Populaires de EVA pour le Samedi 19 Octobre 2024
Les moyennes mobiles (MA) sont des indicateurs largement utilisés sur les marchés financiers, conçus pour lisser les mouvements de prix sur une période donnée. En tant qu'indicateurs retardés, ils sont basés sur des données historiques de prix. Le tableau ci-dessous met en évidence deux types : la moyenne mobile simple (SMA) et la moyenne mobile exponentielle (EMA).
Moyenne Mobile Simple Quotidienne (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 3 | — | — |
| SMA 5 | — | — |
| SMA 10 | — | — |
| SMA 21 | — | — |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Moyenne Mobile Exponentielle Quotidienne (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 3 | — | — |
| EMA 5 | — | — |
| EMA 10 | — | — |
| EMA 21 | — | — |
| EMA 50 | — | — |
| EMA 100 | — | — |
| EMA 200 | — | — |
Moyenne Mobile Simple Hebdomadaire (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 21 | — | — |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Moyenne Mobile Exponentielle Hebdomadaire (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 21 | — | — |
| EMA 50 | — | — |
| EMA 100 | — | — |
| EMA 200 | — | — |
Oscillateurs de Eva Token
Un oscillateur est un outil d'analyse technique qui établit des limites hautes et basses entre deux extrêmes, créant un indicateur de tendance qui fluctue à l'intérieur de ces limites. Les traders utilisent cet indicateur pour identifier les conditions de surachat ou de survente à court terme.
| Période | Valeur | Action |
|---|---|---|
| RSI (14) | — | — |
| Stoch RSI (14) | — | — |
| Stochastique Rapide (14) | — | — |
| Indice de Canal des Matières Premières (20) | — | — |
| Indice Directionnel Moyen (14) | — | — |
| Oscillateur Impressionnant (5, 34) | — | — |
| Momentum (10) | — | — |
| MACD (12, 26) | — | — |
| Plage de Pourcentage de Williams (14) | — | — |
| Oscillateur Ultime (7, 14, 28) | — | — |
| VWMA (10) | — | — |
| Moyenne Mobile de Hull (9) | — | — |
| Nuage Ichimoku B/L (9, 26, 52, 26) | — | — |
Prévision du cours de Eva Token basée sur les flux monétaires mondiaux
Définitions des flux monétaires mondiaux utilisés pour la prédiction du cours de Eva Token
M0 : le total de toutes les devises physiques, plus les comptes à la banque centrale qui peuvent être échangés contre des devises physiques.
M1 : M0 plus le montant des comptes à vue, y compris les comptes de "chèques" et les comptes "courants".
M2 : M1 plus la plupart des comptes d'épargne, comptes du marché monétaire et comptes de certificats de dépôt (CD) de moins de 100 000 $.
Prédictions du cours de Eva Token par des sociétés Internet ou des niches technologiques
| Comparaison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Action Facebook | $0.06572 | $0.092348 | $0.129764 | $0.18234 | $0.256219 | $0.36003 |
| Action Amazon.com | $0.097589 | $0.203626 | $0.424877 | $0.886532 | $1.84 | $3.85 |
| Action Apple | $0.06634 | $0.094098 | $0.133471 | $0.189319 | $0.268535 | $0.380897 |
| Action Netflix | $0.073796 | $0.116439 | $0.183722 | $0.289885 | $0.457394 | $0.721697 |
| Action Google | $0.060567 | $0.078434 | $0.101572 | $0.131536 | $0.170338 | $0.220587 |
| Action Tesla | $0.106025 | $0.24035 | $0.544857 | $1.23 | $2.79 | $6.34 |
| Action Kodak | $0.035072 | $0.02630093 | $0.019722 | $0.01479 | $0.01109 | $0.008317 |
| Action Nokia | $0.030983 | $0.020525 | $0.013597 | $0.0090075 | $0.005967 | $0.003952 |
Ce calcul montre la valeur potentielle des cryptomonnaies si l'on suppose que leur capitalisation se comportera comme celle de certaines sociétés Internet ou niches technologiques. En extrapolant les données, vous pourrez obtenir une potentielle image des cours futurs pour 2024, 2025, 2026, 2027, 2028, 2029 et 2030.
Aperçu des prévisions relatives à Eva Token
Vous vous posez peut-être des questions telles que : "Devrais-je investir dans Eva Token maintenant ?", "Devrais-je acheter EVA aujourd'hui ?", " Eva Token sera-t-il un bon ou un mauvais investissement à court ou à long terme ?".
Nous mettons régulièrement à jour les prévisions de Eva Token avec de nouvelles valeurs. Regardez nos prévisions similaires. Nous faisons une prévision des cours futurs pour une grande quantité de devises numériques comme Eva Token en utilisant des méthodes d'analyse technique.
Si vous souhaitez trouver des cryptomonnaies ayant un bon rendement, vous devriez consulter un maximum d'informations disponibles à propos de Eva Token afin de prendre une décision responsable concernant cet investissement.
Le cours de Eva Token est de $0.04677 USD actuellement, mais ce cours peut subir une hausse ou une baisse, ce qui pourrait causer la perte de votre investissement, car les cryptomonnaies sont des actifs à haut risque.
Prévision du cours de Eva Token basée sur le modèle de croissance du Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Eva Token présente 1 % de la précédente croissance annuelle moyenne du Bitcoin | $0.047986 | $0.049233 | $0.050513 | $0.051826 |
| Si Eva Token présente 2 % de la précédente croissance annuelle moyenne du Bitcoin | $0.0492019 | $0.051759 | $0.05445 | $0.057281 |
| Si Eva Token présente 5 % de la précédente croissance annuelle moyenne du Bitcoin | $0.052849 | $0.059717 | $0.067478 | $0.076248 |
| Si Eva Token présente 10 % de la précédente croissance annuelle moyenne du Bitcoin | $0.058927 | $0.074244 | $0.093543 | $0.117858 |
| Si Eva Token présente 20 % de la précédente croissance annuelle moyenne du Bitcoin | $0.071084 | $0.108039 | $0.1642049 | $0.249569 |
| Si Eva Token présente 50 % de la précédente croissance annuelle moyenne du Bitcoin | $0.107556 | $0.247342 | $0.5688045 | $1.30 |
| Si Eva Token présente 100 % de la précédente croissance annuelle moyenne du Bitcoin | $0.168341 | $0.605916 | $2.18 | $7.84 |
Boîte à questions
Est-ce que EVA est un bon investissement ?
La décision d'acquérir Eva Token dépend entièrement de votre tolérance individuelle au risque. Comme vous pouvez le discerner, la valeur de Eva Token a connu une baisse de 0% au cours des 24 heures précédentes, et Eva Token a enregistré une déclin de sur une période de 30 jours précédents. Par conséquent, la détermination de si investir ou non dans Eva Token dépendra de la mesure dans laquelle cet investissement s'aligne avec vos aspirations de trading.
Est-ce que Eva Token peut monter ?
Il semble que la valeur moyenne de Eva Token pourrait potentiellement s'envoler jusqu'à $0.048235 pour la fin de cette année. En regardant les perspectives de Eva Token sur une période de cinq ans plus longue, la monnaie numérique pourrait potentiellement croître jusqu'à $0.151641. Cependant, compte tenu de l'imprévisibilité du marché, il est essentiel de mener des recherches approfondies avant d'investir des fonds dans un projet, un réseau ou un actif particulier.
Quel sera le prix de Eva Token la semaine prochaine ?
Basé sur notre nouveau pronostic expérimental de Eva Token, le prix de Eva Token va augmenter de 0.86% durant la prochaine semaine et atteindre $0.04717 d'ici 13 janvier 2026.
Quel sera le prix de Eva Token le mois prochain ?
Basé sur notre nouveau pronostic expérimental de Eva Token, le prix de Eva Token va diminuer de -11.62% durant le prochain mois et atteindre $0.041336 d'ici 5 février 2026.
Jusqu'où le prix de Eva Token peut-il monter cette année en 2026 ?
Selon notre prédiction la plus récente sur la valeur de Eva Token en 2026, EVA devrait fluctuer dans la fourchette de $0.016159 et $0.048235. Cependant, il est crucial de garder à l'esprit que le marché des cryptomonnaies est exceptionnellement instable, et cette prévision de prix de Eva Token ne prend pas en compte les fluctuations de prix soudaines et extrêmes.
Où sera Eva Token dans 5 ans ?
L'avenir de Eva Token semble suivre une tendance haussière, avec un prix maximum de $0.151641 prévue après une période de cinq ans. Selon la prévision de Eva Token pour 2030, la valeur de Eva Token pourrait potentiellement atteindre son point le plus élevé d'environ $0.151641, tandis que son point le plus bas devrait être autour de $0.052447.
Combien vaudra Eva Token en 2026 ?
Basé sur notre nouvelle simulation expérimentale de prédiction de prix de Eva Token, il est attendu que la valeur de EVA en 2026 augmente de 3.13% jusqu'à $0.048235 si le meilleur scénario se produit. Le prix sera entre $0.048235 et $0.016159 durant 2026.
Combien vaudra Eva Token en 2027 ?
Selon notre dernière simulation expérimentale pour la prédiction de prix de Eva Token, le valeur de EVA pourrait diminuer de -12.62% jusqu'à $0.040865 en 2027, en supposant les conditions les plus favorables. Il est prévu que le prix fluctue entre $0.040865 et $0.015555 tout au long de l'année.
Combien vaudra Eva Token en 2028 ?
Notre nouveau modèle expérimental de prédiction de prix de Eva Token suggère que la valeur de EVA en 2028 pourrait augmenter de 47.02%, atteignant $0.068761 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.068761 et $0.028073 durant l'année.
Combien vaudra Eva Token en 2029 ?
Basé sur notre modèle de prévision expérimental, la valeur de Eva Token pourrait connaître un 333.75% croissance en 2029, atteignant potentiellement $0.202866 sous des conditions optimales. Le range de prix prévu pour 2029 se situe entre $0.202866 et $0.06167.
Combien vaudra Eva Token en 2030 ?
En utilisant notre nouvelle simulation expérimentale pour les prédictions de prix de Eva Token, il est prévu que la valeur de EVA en 2030 augmente de 224.23%, atteignant $0.151641 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.151641 et $0.052447 au cours de 2030.
Combien vaudra Eva Token en 2031 ?
Notre simulation expérimentale indique que le prix de Eva Token pourrait augmenter de 195.98% en 2031, atteignant potentiellement $0.138431 dans des conditions idéales. Il est probable que le prix fluctue entre $0.138431 et $0.0620095 durant l'année.
Combien vaudra Eva Token en 2032 ?
Basé sur les résultats de notre dernière prédiction expérimentale de prix de Eva Token, EVA pourrait connaître une 449.04% hausse en valeur, atteignant $0.256783 si le scénario le plus positif se réalise en 2032. Il est prévu que le prix reste dans une fourchette de $0.256783 et $0.094652 tout au long de l'année.
Combien vaudra Eva Token en 2033 ?
Selon notre prédiction expérimentale de prix de Eva Token, la valeur de EVA est anticipée à augmenter de 1362.43% en 2033, avec le prix potentiel le plus élevé étant $0.683979. Tout au long de l'année, le prix de EVA pourrait osciller entre $0.683979 et $0.219952.
Combien vaudra Eva Token en 2034 ?
Les résultats de notre nouvelle simulation de prédiction de prix de Eva Token suggèrent que EVA pourrait augmenter de 746.96% en 2034, atteignant potentiellement $0.396123 dans les meilleures circonstances. La fourchette de prix prévue pour l'année est entre $0.396123 et $0.176831.
Combien vaudra Eva Token en 2035 ?
Basé sur notre prédiction expérimentale pour le prix de Eva Token, EVA pourrait augmenter de 897.93%, avec la valeur potentiellement atteignant $0.466732 en 2035. La fourchette de prix attendue pour l'année se situe entre $0.466732 et $0.209069.
Combien vaudra Eva Token en 2036 ?
Notre récente simulation de prédiction de prix de Eva Token suggère que la valeur de EVA pourrait augmenter de 1964.7% en 2036, pouvant atteindre $0.965657 si les conditions sont optimales. La fourchette de prix attendue pour 2036 est entre $0.965657 et $0.346075.
Combien vaudra Eva Token en 2037 ?
Selon la simulation expérimentale, la valeur de Eva Token pourrait augmenter de 4830.69% en 2037, avec un maximum de $2.30 sous des conditions favorables. Il est prévu que le prix chute entre $2.30 et $0.898747 au cours de l'année.
Prévisions liées
Prévision du cours de SolPod
Prévision du cours de zuzalu
Prévision du cours de SOFT COQ INU
Prévision du cours de All Street Bets
Prévision du cours de MagicRing
Prévision du cours de AI INU
Prévision du cours de Wall Street Baby On Solana
Prévision du cours de Meta Masters Guild Games
Prévision du cours de Morfey
Prévision du cours de PANTIESPrévision du cours de Celer Bridged BUSD (zkSync)
Prévision du cours de Bridged BUSD
Prévision du cours de Multichain Bridged BUSD (Moonriver)
Prévision du cours de tooker kurlson
Prévision du cours de dogwifsaudihatPrévision du cours de Harmony Horizen Bridged BUSD (Harmony)
Prévision du cours de IoTeX Bridged BUSD (IoTeX)
Prévision du cours de MIMANY
Prévision du cours de The Open League MEME
Prévision du cours de Sandwich Cat
Prévision du cours de Hege
Prévision du cours de DexNet
Prévision du cours de SolDocs
Prévision du cours de Secret Society
Prévision du cours de duk
Comment lire et prédire les mouvements de prix de Eva Token ?
Les traders de Eva Token utilisent des indicateurs et des modèles graphiques pour prédire la direction du marché. Ils identifient également des niveaux clés de support et de résistance pour évaluer quand une tendance baissière pourrait ralentir ou une tendance haussière pourrait s'arrêter.
Indicateurs de prédiction du prix de Eva Token
Les moyennes mobiles sont des outils populaires pour la prédiction du prix de Eva Token. Une moyenne mobile simple (SMA) calcule le prix de clôture moyen de EVA sur une période spécifique, comme une SMA de 12 jours. Une moyenne mobile exponentielle (EMA) donne plus de poids aux prix récents, réagissant plus rapidement aux changements de prix.
Les moyennes mobiles couramment utilisées sur le marché des cryptomonnaies incluent les moyennes sur 50 jours, 100 jours et 200 jours, qui aident à identifier les niveaux clés de résistance et de support. Un mouvement de prix de EVA au-dessus de ces moyennes est considéré comme haussier, tandis qu'une chute en dessous indique une faiblesse.
Les traders utilisent également le RSI et les niveaux de retracement de Fibonacci pour évaluer la direction future de EVA.
Comment lire les graphiques de Eva Token et prédire les mouvements de prix ?
La plupart des traders préfèrent les graphiques en chandeliers aux simples graphiques linéaires parce qu'ils fournissent des informations plus détaillées. Les chandeliers peuvent représenter l'action des prix de Eva Token dans différentes périodes, comme 5 minutes pour les tendances à court terme et hebdomadaire pour les tendances à long terme. Les options populaires incluent les graphiques de 1 heure, 4 heures et 1 jour.
Par exemple, un graphique en chandeliers de 1 heure montre les prix d'ouverture, de clôture, les plus hauts et les plus bas de EVA au sein de chaque heure. La couleur du chandelier est cruciale : le vert indique que le prix a clôturé plus haut qu'il n'a ouvert, tandis que le rouge signifie le contraire. Certains graphiques utilisent des chandeliers creux et pleins pour transmettre la même information.
Qu'est-ce qui affecte le prix de Eva Token ?
L'action du prix de Eva Token est déterminée par l'offre et la demande, influencée par des facteurs tels que les réductions de récompenses de bloc, les hard forks et les mises à jour de protocole. Les événements du monde réel, tels que les réglementations, l'adoption par les entreprises et les gouvernements et les piratages d'échanges de cryptomonnaies, impactent également le prix de EVA. La capitalisation boursière de Eva Token peut changer rapidement.
Les traders surveillent souvent l'activité des « baleines » de EVA, de grands détenteurs de Eva Token, car leurs actions peuvent influencer significativement les mouvements de prix sur le marché relativement petit de Eva Token.
Modèles de prédiction de prix haussiers et baissiers
Les traders identifient souvent des modèles de chandeliers pour obtenir un avantage dans les prédictions de prix des cryptomonnaies. Certaines formations indiquent des tendances haussières, tandis que d'autres suggèrent des mouvements baissiers.
Modèles de chandeliers haussiers couramment suivis :
- Marteau
- Englobante haussière
- Ligne pénétrante
- Étoile du matin
- Trois soldats blancs
Modèles de chandeliers baissiers courants :
- Harami baissier
- Nuage sombre
- Étoile du soir
- Étoile filante
- Pendu


