Predicción del precio de Eva Token - Pronóstico de EVA
Predicción de precio de Eva Token hasta $0.048255 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.016165 | $0.048255 |
| 2027 | $0.015562 | $0.040882 |
| 2028 | $0.028085 | $0.06879 |
| 2029 | $0.061696 | $0.202953 |
| 2030 | $0.05247 | $0.1517067 |
| 2031 | $0.062036 | $0.138491 |
| 2032 | $0.094693 | $0.256893 |
| 2033 | $0.220046 | $0.684271 |
| 2034 | $0.1769069 | $0.396293 |
| 2035 | $0.209158 | $0.466932 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en Eva Token hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,954.81, equivalente a un ROI del 39.55% en los próximos 90 días.
Predicción del precio a largo plazo de Eva Token para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'Eva Token'
'name_with_ticker' => 'Eva Token <small>EVA</small>'
'name_lang' => 'Eva Token'
'name_lang_with_ticker' => 'Eva Token <small>EVA</small>'
'name_with_lang' => 'Eva Token'
'name_with_lang_with_ticker' => 'Eva Token <small>EVA</small>'
'image' => '/uploads/coins/eva-token.png?ts=1572419182'
'price_for_sd' => 0.0468
'ticker' => 'EVA'
'marketcap' => '$0'
'low24h' => '$0'
'high24h' => '$0'
'volume24h' => '$0'
'current_supply' => '0'
'max_supply' => '100K'
'algo' => 'Ethash'
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.04679'
'change_24h_pct' => '0%'
'ath_price' => '$1,210.04'
'ath_days' => 2625
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '30 oct. 2018'
'ath_pct' => '0.00%'
'fdv' => '$0'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$2.30'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.04719'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.041353'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.016165'
'current_year_max_price_prediction' => '$0.048255'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.05247'
'grand_prediction_max_price' => '$0.1517067'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.04767664588846
107 => 0.047854653177585
108 => 0.048255712689261
109 => 0.044828703073197
110 => 0.046367329779094
111 => 0.047271128818982
112 => 0.043187731876276
113 => 0.047190413190547
114 => 0.04476904646019
115 => 0.043947198224199
116 => 0.045053708603689
117 => 0.044622500432685
118 => 0.044251772968649
119 => 0.044044900673811
120 => 0.044857399775414
121 => 0.044819495721178
122 => 0.043490089491675
123 => 0.041755933258818
124 => 0.042337973012303
125 => 0.04212651251321
126 => 0.041360152385551
127 => 0.041876586580918
128 => 0.039602471745884
129 => 0.035689975370411
130 => 0.038274690319053
131 => 0.038175181605159
201 => 0.038125004799253
202 => 0.040067346646884
203 => 0.039880635295685
204 => 0.039541752364976
205 => 0.041353928534773
206 => 0.040692459855588
207 => 0.042730950463214
208 => 0.044073632218703
209 => 0.043733084694307
210 => 0.044995883375088
211 => 0.042351382032668
212 => 0.043229779299642
213 => 0.043410815758959
214 => 0.041331566562134
215 => 0.03991118358184
216 => 0.039816460230605
217 => 0.037353711883606
218 => 0.038669292171963
219 => 0.039826948383306
220 => 0.039272520895824
221 => 0.039097005716337
222 => 0.039993674703737
223 => 0.040063353563508
224 => 0.038474668176483
225 => 0.038805006175569
226 => 0.040182570545879
227 => 0.038770295087903
228 => 0.036026474566941
301 => 0.035345969141456
302 => 0.035255177173493
303 => 0.033409592488012
304 => 0.035391443767951
305 => 0.034526312573945
306 => 0.037259251649945
307 => 0.03569821150678
308 => 0.03563091818622
309 => 0.035529194462409
310 => 0.033940623483472
311 => 0.034288419568906
312 => 0.035444546727731
313 => 0.035857065922705
314 => 0.035814036790999
315 => 0.03543888107393
316 => 0.035610625440096
317 => 0.035057376996972
318 => 0.034862013456834
319 => 0.034245392385184
320 => 0.033339129755777
321 => 0.033465151132828
322 => 0.031669607727457
323 => 0.030691300383509
324 => 0.030420517804588
325 => 0.030058416023272
326 => 0.030461418164304
327 => 0.031664521178587
328 => 0.030213323690818
329 => 0.027725347387707
330 => 0.027874879002829
331 => 0.028210832145674
401 => 0.027584785686535
402 => 0.026992285253056
403 => 0.027507416308886
404 => 0.026453227950846
405 => 0.028338225772299
406 => 0.028287241863874
407 => 0.028989852484228
408 => 0.029429209324157
409 => 0.028416634051587
410 => 0.02816197410883
411 => 0.028307039985873
412 => 0.025909424176582
413 => 0.028793916121015
414 => 0.028818861327132
415 => 0.028605265327687
416 => 0.030141168239401
417 => 0.033382402443247
418 => 0.032162919757416
419 => 0.031690699202403
420 => 0.030793007582133
421 => 0.031989128366489
422 => 0.031897284952642
423 => 0.031481934204642
424 => 0.031230728776279
425 => 0.031693582480417
426 => 0.031173376080161
427 => 0.031079932716359
428 => 0.030513767599102
429 => 0.030311672411113
430 => 0.030162049179567
501 => 0.02999732870331
502 => 0.030360661028148
503 => 0.029537302179717
504 => 0.028544412123374
505 => 0.028461864058408
506 => 0.028689786523478
507 => 0.028588947799517
508 => 0.028461381281393
509 => 0.028217822057621
510 => 0.028145563238748
511 => 0.028380369345092
512 => 0.028115286941076
513 => 0.028506430467987
514 => 0.028400061071626
515 => 0.027805890270278
516 => 0.027065333461593
517 => 0.027058740952625
518 => 0.026899189202951
519 => 0.026695976060974
520 => 0.026639446813763
521 => 0.027464033408182
522 => 0.029170902980828
523 => 0.02883580364179
524 => 0.029077947256606
525 => 0.030269054183158
526 => 0.030647671257274
527 => 0.030378937826103
528 => 0.030011078930761
529 => 0.030027262855241
530 => 0.031284348059086
531 => 0.031362750921278
601 => 0.031560849660315
602 => 0.031815462522674
603 => 0.03042229949754
604 => 0.029961645002042
605 => 0.029743361345936
606 => 0.029071132171537
607 => 0.029796073703553
608 => 0.029373681317939
609 => 0.029430676481737
610 => 0.029393558306543
611 => 0.029413827340119
612 => 0.028337698876991
613 => 0.028729783529308
614 => 0.028077866748762
615 => 0.027205023360704
616 => 0.027202097283609
617 => 0.02741572446628
618 => 0.027288650658795
619 => 0.026946698310219
620 => 0.026995271027365
621 => 0.026569722914554
622 => 0.027046940273057
623 => 0.027060625159333
624 => 0.026876870482104
625 => 0.027612089666184
626 => 0.027913309565783
627 => 0.027792358300824
628 => 0.027904823302602
629 => 0.02884972853221
630 => 0.029003789313741
701 => 0.029072212936214
702 => 0.028980534346494
703 => 0.027922094435612
704 => 0.027969040746494
705 => 0.027624579866611
706 => 0.027333546721504
707 => 0.02734518652104
708 => 0.027494815389286
709 => 0.028148253432533
710 => 0.029523375272269
711 => 0.029575560140886
712 => 0.02963880972399
713 => 0.029381541882813
714 => 0.029303947440193
715 => 0.029406314538834
716 => 0.029922738001368
717 => 0.031251119354607
718 => 0.030781580664765
719 => 0.030399838401118
720 => 0.030734729283311
721 => 0.030683175456959
722 => 0.03024800928061
723 => 0.030235795615405
724 => 0.029400572591948
725 => 0.029091809657284
726 => 0.028833784238574
727 => 0.028552027217266
728 => 0.028384992210454
729 => 0.02864163389697
730 => 0.028700330887172
731 => 0.028139179354275
801 => 0.028062696473867
802 => 0.028520944928928
803 => 0.02831928686908
804 => 0.028526697184513
805 => 0.028574818156826
806 => 0.028567069571964
807 => 0.028356515397202
808 => 0.028490716349379
809 => 0.028173291090251
810 => 0.027828138796681
811 => 0.027607953137131
812 => 0.027415811945784
813 => 0.027522423046055
814 => 0.027142373940007
815 => 0.027020788582105
816 => 0.028445252086399
817 => 0.029497518592584
818 => 0.02948221822084
819 => 0.02938908114279
820 => 0.029250698336973
821 => 0.029912614437189
822 => 0.029682016103304
823 => 0.029849795658341
824 => 0.029892502596784
825 => 0.030021763636943
826 => 0.030067963348438
827 => 0.029928315732537
828 => 0.029459641277054
829 => 0.028291749094222
830 => 0.027748092130448
831 => 0.02756867627708
901 => 0.027575197702591
902 => 0.02739530767408
903 => 0.027448293349582
904 => 0.027376881418471
905 => 0.027241644497349
906 => 0.027514072547263
907 => 0.027545467342173
908 => 0.02748187938005
909 => 0.027496856647048
910 => 0.026970375479446
911 => 0.027010402699161
912 => 0.026787526053371
913 => 0.026745739369103
914 => 0.026182326616634
915 => 0.02518415925765
916 => 0.025737240868977
917 => 0.025069196057537
918 => 0.024816197364914
919 => 0.026013853826422
920 => 0.025893642335506
921 => 0.025687892517737
922 => 0.025383545655237
923 => 0.02527066044344
924 => 0.024584805631675
925 => 0.024544281670503
926 => 0.024884209834851
927 => 0.024727344683218
928 => 0.024507046600847
929 => 0.023709149277758
930 => 0.022812048511881
1001 => 0.022839126345029
1002 => 0.023124477407501
1003 => 0.023954174106473
1004 => 0.023629997252286
1005 => 0.023394803225073
1006 => 0.023350758453682
1007 => 0.02390207098161
1008 => 0.024682293712173
1009 => 0.025048356760854
1010 => 0.024685599397112
1011 => 0.024268883269888
1012 => 0.024294246849675
1013 => 0.024462979382918
1014 => 0.024480710786412
1015 => 0.024209471426699
1016 => 0.024285823717665
1017 => 0.024169837605888
1018 => 0.02345803105201
1019 => 0.023445156728614
1020 => 0.023270467920861
1021 => 0.023265178413188
1022 => 0.022967989173035
1023 => 0.022926410343965
1024 => 0.022336323069544
1025 => 0.022724720300517
1026 => 0.02246420382975
1027 => 0.022071544058682
1028 => 0.022003849366147
1029 => 0.022001814381946
1030 => 0.022404988169715
1031 => 0.022720008980068
1101 => 0.022468735625296
1102 => 0.022411525553144
1103 => 0.023022379449975
1104 => 0.022944642723546
1105 => 0.022877323219807
1106 => 0.024612433324209
1107 => 0.023238958284245
1108 => 0.022640044771606
1109 => 0.021898775569125
1110 => 0.022140136559256
1111 => 0.022190994866208
1112 => 0.020408376058056
1113 => 0.019685167829599
1114 => 0.01943699001912
1115 => 0.01929416018047
1116 => 0.019359249531487
1117 => 0.018708277302012
1118 => 0.019145741406306
1119 => 0.018582054480893
1120 => 0.018487550533452
1121 => 0.019495492583501
1122 => 0.019635741831453
1123 => 0.019037394967663
1124 => 0.019421630517774
1125 => 0.01928230136603
1126 => 0.01859171727535
1127 => 0.018565342042679
1128 => 0.01821883122118
1129 => 0.017676608883251
1130 => 0.01742879872505
1201 => 0.017299737043073
1202 => 0.017352990408419
1203 => 0.01732606387732
1204 => 0.017150350048093
1205 => 0.017336135588328
1206 => 0.016861530304912
1207 => 0.016672538656902
1208 => 0.016587175514068
1209 => 0.016165936007776
1210 => 0.016836315388345
1211 => 0.016968388571535
1212 => 0.017100721979694
1213 => 0.018252593949867
1214 => 0.018195049681394
1215 => 0.018715221843198
1216 => 0.018695008909526
1217 => 0.018546647382749
1218 => 0.017920734505563
1219 => 0.018170212222585
1220 => 0.017402358587037
1221 => 0.017977686739762
1222 => 0.017715130997136
1223 => 0.017888916379073
1224 => 0.017576434592755
1225 => 0.01774937491536
1226 => 0.016999708022861
1227 => 0.016299679626743
1228 => 0.016581391488444
1229 => 0.016887644499771
1230 => 0.017551679060146
1231 => 0.017156185554153
]
'min_raw' => 0.016165936007776
'max_raw' => 0.048255712689261
'avg_raw' => 0.032210824348519
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.016165'
'max' => '$0.048255'
'avg' => '$0.03221'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.030624063992224
'max_diff' => 0.0014657126892613
'year' => 2026
]
1 => [
'items' => [
101 => 0.017298419974173
102 => 0.01682195847686
103 => 0.015838882313404
104 => 0.015844446417728
105 => 0.015693221567458
106 => 0.015562541217636
107 => 0.017201612740868
108 => 0.016997768287068
109 => 0.01667296882844
110 => 0.017107725810831
111 => 0.017222682457496
112 => 0.017225955111617
113 => 0.017543142583267
114 => 0.017712425593746
115 => 0.017742262458058
116 => 0.018241363797989
117 => 0.018408655983828
118 => 0.019097708821223
119 => 0.017698063113022
120 => 0.017669238330724
121 => 0.017113843733148
122 => 0.016761603698925
123 => 0.017137961909646
124 => 0.017471363906326
125 => 0.017124203462539
126 => 0.017169535287541
127 => 0.016703500755808
128 => 0.01687008617194
129 => 0.017013571973791
130 => 0.016934347547714
131 => 0.016815744747372
201 => 0.017444028744664
202 => 0.017408578499272
203 => 0.017993651001738
204 => 0.018449756856346
205 => 0.019267180086477
206 => 0.018414156332598
207 => 0.018383068756545
208 => 0.018686954799074
209 => 0.018408609460458
210 => 0.018584514106309
211 => 0.019238839128556
212 => 0.019252663985204
213 => 0.019021079824025
214 => 0.01900698790677
215 => 0.019051466178178
216 => 0.019311976803066
217 => 0.019220946386047
218 => 0.019326289089229
219 => 0.019458021752624
220 => 0.020002923901914
221 => 0.02013429796535
222 => 0.019815127100842
223 => 0.019843944656302
224 => 0.01972456599154
225 => 0.01960924769719
226 => 0.019868466382005
227 => 0.020342193623459
228 => 0.020339246590876
301 => 0.020449142102952
302 => 0.020517606096551
303 => 0.020223708517316
304 => 0.020032392000147
305 => 0.020105754926616
306 => 0.020223063843676
307 => 0.020067713225863
308 => 0.019108817247315
309 => 0.019399685032694
310 => 0.019351270410499
311 => 0.019282322101074
312 => 0.019574791908487
313 => 0.019546582482077
314 => 0.018701600640899
315 => 0.018755693636834
316 => 0.018704890215143
317 => 0.018869046464029
318 => 0.018399744484303
319 => 0.01854409861247
320 => 0.01863463616842
321 => 0.018687963484417
322 => 0.018880618316681
323 => 0.018858012495728
324 => 0.01887921310711
325 => 0.019164869364367
326 => 0.020609620688183
327 => 0.020688255315074
328 => 0.020301029652998
329 => 0.020455718667309
330 => 0.020158749586601
331 => 0.02035810692
401 => 0.020494502144385
402 => 0.019878158352684
403 => 0.019841662473378
404 => 0.019543467695636
405 => 0.019703700678579
406 => 0.019448758481558
407 => 0.019511312379207
408 => 0.019336406228028
409 => 0.019651202476683
410 => 0.020003193597071
411 => 0.020092120454631
412 => 0.019858192177809
413 => 0.019688812688765
414 => 0.019391438103076
415 => 0.019885978666502
416 => 0.020030597398098
417 => 0.019885219045871
418 => 0.01985153170508
419 => 0.019787694255153
420 => 0.019865075121861
421 => 0.020029809773427
422 => 0.01995212395392
423 => 0.020003436806352
424 => 0.019807885126463
425 => 0.020223805809643
426 => 0.020884387951297
427 => 0.020886511830898
428 => 0.020808825592635
429 => 0.020777038057712
430 => 0.020856748852564
501 => 0.020899988688864
502 => 0.021157758782958
503 => 0.021434356363935
504 => 0.022725116585373
505 => 0.022362676280253
506 => 0.023507915536383
507 => 0.024413651097275
508 => 0.024685241588971
509 => 0.024435391115931
510 => 0.023580666144318
511 => 0.02353872925953
512 => 0.024816049222694
513 => 0.02445514782814
514 => 0.024412219755636
515 => 0.023955537592322
516 => 0.024225493312027
517 => 0.024166450036116
518 => 0.024073247336595
519 => 0.024588304044514
520 => 0.025552444222308
521 => 0.02540217393395
522 => 0.025290004134528
523 => 0.0247985087256
524 => 0.025094498741249
525 => 0.024989102365991
526 => 0.025441952080288
527 => 0.025173693941388
528 => 0.02445241364512
529 => 0.024567279909672
530 => 0.024549918104863
531 => 0.024907222817544
601 => 0.024799968811646
602 => 0.024528975038846
603 => 0.025549148895996
604 => 0.025482904480218
605 => 0.02557682391621
606 => 0.025618170156488
607 => 0.026239132005855
608 => 0.026493520206978
609 => 0.026551270782325
610 => 0.026792919898302
611 => 0.026545258332183
612 => 0.027536081176366
613 => 0.028194920551633
614 => 0.028960196389569
615 => 0.030078470075547
616 => 0.030498951326085
617 => 0.030422995151757
618 => 0.031270857497785
619 => 0.032794447286676
620 => 0.030730956209191
621 => 0.03290381732433
622 => 0.032215914582165
623 => 0.030584909555334
624 => 0.030479892059892
625 => 0.03158442760042
626 => 0.034034181121705
627 => 0.033420545649497
628 => 0.034035184809508
629 => 0.033318175580874
630 => 0.033282570029244
701 => 0.034000361271668
702 => 0.035677519634355
703 => 0.034880764563584
704 => 0.033738420797274
705 => 0.03458190965748
706 => 0.033851201545561
707 => 0.032204711657085
708 => 0.033420076414016
709 => 0.032607396612652
710 => 0.032844579783125
711 => 0.034552711848595
712 => 0.034347184879321
713 => 0.034613155808847
714 => 0.034143724079905
715 => 0.033705200822484
716 => 0.032886664597343
717 => 0.032644336374427
718 => 0.032711307177185
719 => 0.032644303187023
720 => 0.032186339691793
721 => 0.032087442518601
722 => 0.03192260956383
723 => 0.03197369818895
724 => 0.031663764010399
725 => 0.032248673840994
726 => 0.03235723825976
727 => 0.032782886857035
728 => 0.032827079106439
729 => 0.034012504391122
730 => 0.033359592064581
731 => 0.033797622022963
801 => 0.033758440500587
802 => 0.030620258379905
803 => 0.03105267218772
804 => 0.031725372373751
805 => 0.031422321851768
806 => 0.030993879316584
807 => 0.030647888997787
808 => 0.030123678285484
809 => 0.030861494796476
810 => 0.031831645050391
811 => 0.03285168371787
812 => 0.034077193341266
813 => 0.033803673859828
814 => 0.032828773667908
815 => 0.032872506978352
816 => 0.033142849095097
817 => 0.032792731490741
818 => 0.032689474974109
819 => 0.033128663235323
820 => 0.033131687683505
821 => 0.032728835066568
822 => 0.032281138104092
823 => 0.032279262237473
824 => 0.03219959888724
825 => 0.033332347513908
826 => 0.033955244724771
827 => 0.034026658886147
828 => 0.033950437982712
829 => 0.033979772383345
830 => 0.033617322220947
831 => 0.034445775810932
901 => 0.03520604675067
902 => 0.035002277898001
903 => 0.0346967994204
904 => 0.034453471099154
905 => 0.0349449574786
906 => 0.034923072363795
907 => 0.035199406447257
908 => 0.035186870337049
909 => 0.035093949578231
910 => 0.035002281216494
911 => 0.035365735909059
912 => 0.035261066794504
913 => 0.035156235099904
914 => 0.034945979087453
915 => 0.034974556371528
916 => 0.034669130639093
917 => 0.034527826719938
918 => 0.032402954811357
919 => 0.031835119605191
920 => 0.032013772120403
921 => 0.032072589167121
922 => 0.031825466557697
923 => 0.032179776899021
924 => 0.032124558007633
925 => 0.032339382412052
926 => 0.032205169450762
927 => 0.032210677597509
928 => 0.032605369299441
929 => 0.032719949979651
930 => 0.032661673320917
1001 => 0.032702488295087
1002 => 0.03364305214792
1003 => 0.033509334045586
1004 => 0.033438298968821
1005 => 0.033457976170548
1006 => 0.033698310400863
1007 => 0.033765590863588
1008 => 0.033480518815305
1009 => 0.033614960441257
1010 => 0.034187395821379
1011 => 0.034387715807385
1012 => 0.035027041043669
1013 => 0.034755444320196
1014 => 0.035253971860561
1015 => 0.036786275559083
1016 => 0.038010385780812
1017 => 0.036884643432415
1018 => 0.039132565965125
1019 => 0.040882896102176
1020 => 0.040815715516188
1021 => 0.040510504970928
1022 => 0.038517800644831
1023 => 0.036684084414408
1024 => 0.03821806590486
1025 => 0.038221976339146
1026 => 0.038090205968695
1027 => 0.037271791514823
1028 => 0.038061726919716
1029 => 0.038124429123533
1030 => 0.038089332563257
1031 => 0.037461856120348
1101 => 0.036503815569056
1102 => 0.036691014399553
1103 => 0.036997649902661
1104 => 0.036417124924411
1105 => 0.036231612018612
1106 => 0.036576515805767
1107 => 0.037687867671541
1108 => 0.03747777303894
1109 => 0.037472286619023
1110 => 0.038371160551282
1111 => 0.03772776080492
1112 => 0.036693375576299
1113 => 0.036432179664208
1114 => 0.035505110138931
1115 => 0.036145440362148
1116 => 0.036168484706924
1117 => 0.035817782387684
1118 => 0.036721833136675
1119 => 0.036713502149868
1120 => 0.037571763785839
1121 => 0.039212437685465
1122 => 0.038727209680686
1123 => 0.038162942303785
1124 => 0.038224293813091
1125 => 0.038897168441754
1126 => 0.038490333081031
1127 => 0.038636633913304
1128 => 0.038896946997923
1129 => 0.039054000345083
1130 => 0.038201696253349
1201 => 0.038002983399148
1202 => 0.037596486638188
1203 => 0.037490439220875
1204 => 0.037821522350844
1205 => 0.037734293643436
1206 => 0.036166547918977
1207 => 0.036002709767917
1208 => 0.036007734450103
1209 => 0.035595755629181
1210 => 0.034967389041028
1211 => 0.036618698916873
1212 => 0.036486075623776
1213 => 0.036339669772424
1214 => 0.036357603653834
1215 => 0.037074381302854
1216 => 0.036658614068284
1217 => 0.037763999404299
1218 => 0.037536765410139
1219 => 0.037303703721461
1220 => 0.037271487496853
1221 => 0.037181778630601
1222 => 0.036874133549024
1223 => 0.036502633626416
1224 => 0.036257337198738
1225 => 0.033445477010243
1226 => 0.033967341905389
1227 => 0.034567699897774
1228 => 0.034774941070961
1229 => 0.034420440703571
1230 => 0.036888131384234
1231 => 0.03733900225085
]
'min_raw' => 0.015562541217636
'max_raw' => 0.040882896102176
'avg_raw' => 0.028222718659906
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.015562'
'max' => '$0.040882'
'avg' => '$0.028222'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00060339479013991
'max_diff' => -0.0073728165870855
'year' => 2027
]
2 => [
'items' => [
101 => 0.035973284986291
102 => 0.03571781504796
103 => 0.036904879950859
104 => 0.036188934701629
105 => 0.036511324803519
106 => 0.035814493741189
107 => 0.037230400662122
108 => 0.037219613823677
109 => 0.036668794051726
110 => 0.037134343151128
111 => 0.037053442538506
112 => 0.036431568372583
113 => 0.037250115182399
114 => 0.037250521171404
115 => 0.036720369116756
116 => 0.036101267582134
117 => 0.035990586850269
118 => 0.035907203786674
119 => 0.036490817681349
120 => 0.037014084074403
121 => 0.037987753103135
122 => 0.038232556630763
123 => 0.039188041096592
124 => 0.038619096618885
125 => 0.038871302336788
126 => 0.039145107320249
127 => 0.039276379498165
128 => 0.039062478528704
129 => 0.040546739197232
130 => 0.040672056274228
131 => 0.040714074006156
201 => 0.040213589659827
202 => 0.040658136899187
203 => 0.040450147967747
204 => 0.040991277386364
205 => 0.04107613338869
206 => 0.041004263373559
207 => 0.041031198008059
208 => 0.039764643368994
209 => 0.039698965829351
210 => 0.038803447916046
211 => 0.039168378085052
212 => 0.038486158625654
213 => 0.038702497443868
214 => 0.038797857533585
215 => 0.038748046834354
216 => 0.039189010689271
217 => 0.038814101329628
218 => 0.037824653888725
219 => 0.036834936873529
220 => 0.036822511782609
221 => 0.036561936762465
222 => 0.036373588749595
223 => 0.036409871258879
224 => 0.036537735553995
225 => 0.036366157044319
226 => 0.036402772018609
227 => 0.037010824556134
228 => 0.037132765156102
229 => 0.036718363352142
301 => 0.035054480311348
302 => 0.034646159239602
303 => 0.034939652328614
304 => 0.034799381535442
305 => 0.028085816879473
306 => 0.029663069311681
307 => 0.028725919474894
308 => 0.029157801235876
309 => 0.028201213926291
310 => 0.028657747529462
311 => 0.028573442442894
312 => 0.031109617679592
313 => 0.031070018791666
314 => 0.031088972683789
315 => 0.030184254028623
316 => 0.031625495412092
317 => 0.032335502742952
318 => 0.032204099282243
319 => 0.032237170702327
320 => 0.031668894134427
321 => 0.031094474843158
322 => 0.030457355446645
323 => 0.031641044535028
324 => 0.031509438514646
325 => 0.03181129537505
326 => 0.032579002360709
327 => 0.032692050130583
328 => 0.032843987479711
329 => 0.032789528755685
330 => 0.034086956502562
331 => 0.033929829441712
401 => 0.034308460449821
402 => 0.033529587739336
403 => 0.032648219336146
404 => 0.032815738655488
405 => 0.03279960519793
406 => 0.032594207766097
407 => 0.032408784148577
408 => 0.032100106068187
409 => 0.033076809190301
410 => 0.033037156827213
411 => 0.033679082494786
412 => 0.033565615897709
413 => 0.032807858192444
414 => 0.03283492165713
415 => 0.033016936463399
416 => 0.033646891786107
417 => 0.033833905416516
418 => 0.033747273251706
419 => 0.033952325159952
420 => 0.034114389827591
421 => 0.033972677987016
422 => 0.035979018805726
423 => 0.035145846216204
424 => 0.03555192873916
425 => 0.035648777028107
426 => 0.035400702172468
427 => 0.035454500725761
428 => 0.035535990874773
429 => 0.036030783102164
430 => 0.037329261076123
501 => 0.037904348131751
502 => 0.039634525912904
503 => 0.03785659515738
504 => 0.037751100104156
505 => 0.038062757368905
506 => 0.039078554884359
507 => 0.039901763361626
508 => 0.040174869105572
509 => 0.040210964538119
510 => 0.040723329069487
511 => 0.041017006863835
512 => 0.040661114538854
513 => 0.040359533056913
514 => 0.039279305622269
515 => 0.03940434488919
516 => 0.040265741442806
517 => 0.041482514810792
518 => 0.042526632944215
519 => 0.042161019165081
520 => 0.044950394216772
521 => 0.045226949359572
522 => 0.045188738380935
523 => 0.045818772153156
524 => 0.044568283419444
525 => 0.044033675258703
526 => 0.040424738396404
527 => 0.041438702448088
528 => 0.042912558745232
529 => 0.042717488337628
530 => 0.04164713449835
531 => 0.042525820984847
601 => 0.042235299753344
602 => 0.042006153604321
603 => 0.043055916535164
604 => 0.041901659070818
605 => 0.042901044144065
606 => 0.041619322450311
607 => 0.042162689258027
608 => 0.041854247978272
609 => 0.042053847287415
610 => 0.040886993804649
611 => 0.041516599620182
612 => 0.040860800132771
613 => 0.040860489198426
614 => 0.040846012388394
615 => 0.041617557577073
616 => 0.041642717637977
617 => 0.041072544577802
618 => 0.040990373732054
619 => 0.041294202416269
620 => 0.040938498599912
621 => 0.041104930176812
622 => 0.04094353964283
623 => 0.040907207234225
624 => 0.040617704421017
625 => 0.040492978649041
626 => 0.04054188683802
627 => 0.040374937975135
628 => 0.040274345246443
629 => 0.040826001962774
630 => 0.040531274033007
701 => 0.040780830680544
702 => 0.040496429384116
703 => 0.039510570582949
704 => 0.03894359276113
705 => 0.037081396874885
706 => 0.037609513318178
707 => 0.037959655066456
708 => 0.037843933220739
709 => 0.038092548523749
710 => 0.038107811484184
711 => 0.038026984114843
712 => 0.037933396375772
713 => 0.037887843040119
714 => 0.038227360282928
715 => 0.038424461470004
716 => 0.037994796475188
717 => 0.037894131978555
718 => 0.038328547010768
719 => 0.038593539929464
720 => 0.040550098754459
721 => 0.040405150557102
722 => 0.040768942087822
723 => 0.040727984744299
724 => 0.041109296225029
725 => 0.041732579341767
726 => 0.040465270492738
727 => 0.040685231488687
728 => 0.040631302132121
729 => 0.041220088706066
730 => 0.041221926833481
731 => 0.040868919870331
801 => 0.041060290671939
802 => 0.040953472740465
803 => 0.041146507179948
804 => 0.040403214685556
805 => 0.041308464710259
806 => 0.041821683141242
807 => 0.041828809179654
808 => 0.042072070642787
809 => 0.042319238378084
810 => 0.042793655322213
811 => 0.042306007147002
812 => 0.041428775551391
813 => 0.041492108839153
814 => 0.040977788275613
815 => 0.040986434097206
816 => 0.040940282023958
817 => 0.041078787869939
818 => 0.040433608929889
819 => 0.040585031137553
820 => 0.040373039160096
821 => 0.040684770659529
822 => 0.040349399097202
823 => 0.040631276125753
824 => 0.040752924906904
825 => 0.041201811528262
826 => 0.040283098178249
827 => 0.038409779466146
828 => 0.038803573771224
829 => 0.038221121062139
830 => 0.038275029277919
831 => 0.038383932453222
901 => 0.038030941631161
902 => 0.038098281155991
903 => 0.038095875314303
904 => 0.038075143070378
905 => 0.037983316524407
906 => 0.037850149865421
907 => 0.038380644848285
908 => 0.038470786283246
909 => 0.038671159527005
910 => 0.039267334385961
911 => 0.03920776245878
912 => 0.039304926743628
913 => 0.039092817655359
914 => 0.03828486841018
915 => 0.038328743941354
916 => 0.037781615364552
917 => 0.038657168219183
918 => 0.038449825746474
919 => 0.038316150705475
920 => 0.038279676232048
921 => 0.038877328893166
922 => 0.039056155936431
923 => 0.038944722923705
924 => 0.038716170563584
925 => 0.039155058660456
926 => 0.039272486599976
927 => 0.039298774385059
928 => 0.04007639994427
929 => 0.039342235015477
930 => 0.039518955810809
1001 => 0.040897681008817
1002 => 0.039647367505296
1003 => 0.04030968645343
1004 => 0.04027726938746
1005 => 0.040616089349674
1006 => 0.040249476261145
1007 => 0.040254020869759
1008 => 0.040554870042552
1009 => 0.040132381637798
1010 => 0.040027767567313
1011 => 0.039883243978198
1012 => 0.040198805947741
1013 => 0.040387971076841
1014 => 0.041912503090914
1015 => 0.042897420299111
1016 => 0.042854662445568
1017 => 0.043245389187596
1018 => 0.043069363211666
1019 => 0.042500928902081
1020 => 0.043471176955363
1021 => 0.043164149874402
1022 => 0.043189460813918
1023 => 0.043188518739485
1024 => 0.043392664907551
1025 => 0.043248008637755
1026 => 0.042962876281325
1027 => 0.043152160446093
1028 => 0.043714266745127
1029 => 0.045459061944856
1030 => 0.046435472454087
1031 => 0.045400280806184
1101 => 0.046114342143139
1102 => 0.045686159787035
1103 => 0.045608346315609
1104 => 0.046056829603935
1105 => 0.046506097902888
1106 => 0.046477481454485
1107 => 0.046151335739628
1108 => 0.045967104300946
1109 => 0.047362166476704
1110 => 0.048390024523539
1111 => 0.048319931495593
1112 => 0.048629299325474
1113 => 0.049537612842392
1114 => 0.049620657647024
1115 => 0.049610195910403
1116 => 0.049404360697295
1117 => 0.050298713314116
1118 => 0.051044798001705
1119 => 0.049356715792611
1120 => 0.049999515399216
1121 => 0.05028808885233
1122 => 0.050711800297387
1123 => 0.051426672527483
1124 => 0.052203213379861
1125 => 0.052313024770725
1126 => 0.052235108333948
1127 => 0.051722958767266
1128 => 0.052572659033997
1129 => 0.053070393522325
1130 => 0.053366783019673
1201 => 0.054118377470438
1202 => 0.050289870983734
1203 => 0.047579863803326
1204 => 0.047156657049128
1205 => 0.048017264625575
1206 => 0.048244199980267
1207 => 0.048152722623343
1208 => 0.045102363158721
1209 => 0.047140597537833
1210 => 0.049333566350143
1211 => 0.049417807213371
1212 => 0.050515653253629
1213 => 0.050873156926567
1214 => 0.051757066886945
1215 => 0.05170177807826
1216 => 0.051916996087533
1217 => 0.051867521194257
1218 => 0.053504778266656
1219 => 0.055310915952539
1220 => 0.055248375147643
1221 => 0.054988721486046
1222 => 0.055374351451046
1223 => 0.057238479100355
1224 => 0.057066860098443
1225 => 0.057233573340328
1226 => 0.059431484896494
1227 => 0.062289082568782
1228 => 0.060961441551889
1229 => 0.063842040540136
1230 => 0.065655224909247
1231 => 0.06879093978886
]
'min_raw' => 0.028085816879473
'max_raw' => 0.06879093978886
'avg_raw' => 0.048438378334167
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.028085'
'max' => '$0.06879'
'avg' => '$0.048438'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.012523275661837
'max_diff' => 0.027908043686685
'year' => 2028
]
3 => [
'items' => [
101 => 0.068398332842211
102 => 0.069619043633906
103 => 0.067695484468167
104 => 0.063278603808183
105 => 0.062579615536601
106 => 0.063979007757511
107 => 0.067419276981923
108 => 0.063870661436756
109 => 0.064588541739816
110 => 0.064381792164241
111 => 0.064370775357987
112 => 0.064791242044087
113 => 0.064181333185832
114 => 0.061696454776793
115 => 0.062835259908175
116 => 0.062395512557034
117 => 0.062883445028462
118 => 0.065516615338097
119 => 0.064352427977267
120 => 0.063126051163534
121 => 0.064664199842756
122 => 0.066622791676637
123 => 0.066500226519601
124 => 0.066262398886689
125 => 0.067603020801163
126 => 0.069817335438508
127 => 0.070415855787146
128 => 0.0708576712723
129 => 0.070918590163169
130 => 0.0715460926
131 => 0.068171853846187
201 => 0.073526857405085
202 => 0.074451518590719
203 => 0.074277720611099
204 => 0.07530544260324
205 => 0.075003060722362
206 => 0.074564956819233
207 => 0.076194114779513
208 => 0.07432641664432
209 => 0.07167545427807
210 => 0.070221083893855
211 => 0.072136316136502
212 => 0.073305881634692
213 => 0.074078890030659
214 => 0.074312801904214
215 => 0.06843378639542
216 => 0.065265323101328
217 => 0.067296271746335
218 => 0.069774169261832
219 => 0.068158089000376
220 => 0.068221436286981
221 => 0.065917330532566
222 => 0.06997803149482
223 => 0.069386421520491
224 => 0.072455695113852
225 => 0.071723188338337
226 => 0.074226061805209
227 => 0.073566971340958
228 => 0.076302819008814
301 => 0.07739422271364
302 => 0.079226859397467
303 => 0.080574954402263
304 => 0.081366581574028
305 => 0.081319055247954
306 => 0.084455876489576
307 => 0.082606202595578
308 => 0.080282576250052
309 => 0.080240549180409
310 => 0.081443988190797
311 => 0.083966066209201
312 => 0.08462000434463
313 => 0.084985466550454
314 => 0.084425748460404
315 => 0.082418060015792
316 => 0.081551150324619
317 => 0.08228978249829
318 => 0.081386498821277
319 => 0.082945819864437
320 => 0.085087100709699
321 => 0.084644934682695
322 => 0.086123029417735
323 => 0.0876527019684
324 => 0.089840202417745
325 => 0.090412096038111
326 => 0.091357414445409
327 => 0.092330457607439
328 => 0.092642972846834
329 => 0.093239661406624
330 => 0.09323651656338
331 => 0.095034677700079
401 => 0.097018105118272
402 => 0.09776680305219
403 => 0.099488392667789
404 => 0.096540230782771
405 => 0.0987764454386
406 => 0.10079356703424
407 => 0.098388671511756
408 => 0.10170325972071
409 => 0.10183195766985
410 => 0.10377514390455
411 => 0.10180535238624
412 => 0.10063569647047
413 => 0.10401244927287
414 => 0.10564635358723
415 => 0.10515420831059
416 => 0.10140895845514
417 => 0.099229062397948
418 => 0.093523853945723
419 => 0.10028191980405
420 => 0.10357357654815
421 => 0.10140043385938
422 => 0.10249644062744
423 => 0.10847589817256
424 => 0.11075248846454
425 => 0.11027897359837
426 => 0.11035898981604
427 => 0.11158739661455
428 => 0.11703482885514
429 => 0.11377060118609
430 => 0.1162659809308
501 => 0.11758952134964
502 => 0.11881889945236
503 => 0.11579993538101
504 => 0.11187230748158
505 => 0.11062826285522
506 => 0.10118435764694
507 => 0.10069276136805
508 => 0.10041681347982
509 => 0.098677001078104
510 => 0.097309985105083
511 => 0.096222883249287
512 => 0.093370003343584
513 => 0.094332766564591
514 => 0.089785871437213
515 => 0.09269481380764
516 => 0.085437859395723
517 => 0.091481666671532
518 => 0.088192297149506
519 => 0.090401020316237
520 => 0.090393314289183
521 => 0.086326354662913
522 => 0.083980617225762
523 => 0.085475412418182
524 => 0.087077951521445
525 => 0.08733795809936
526 => 0.089415691877292
527 => 0.089995542713974
528 => 0.088238567608179
529 => 0.085287475145658
530 => 0.085972946617449
531 => 0.083966726168265
601 => 0.080450901999226
602 => 0.082976028297831
603 => 0.08383821743814
604 => 0.084219009280333
605 => 0.080761600005217
606 => 0.079675206946968
607 => 0.079096820398477
608 => 0.084841167024527
609 => 0.085155855299831
610 => 0.083545865590936
611 => 0.09082317174063
612 => 0.08917609323048
613 => 0.09101628347035
614 => 0.085910747266156
615 => 0.086105785624672
616 => 0.083688742965759
617 => 0.085042125347902
618 => 0.084085598301754
619 => 0.08493278542581
620 => 0.085440585894886
621 => 0.087857231940882
622 => 0.091509260887466
623 => 0.087496265609654
624 => 0.08574774609996
625 => 0.086832517769727
626 => 0.089721407675855
627 => 0.094098223763193
628 => 0.091507060547856
629 => 0.092656974782018
630 => 0.092908179886059
701 => 0.090997552061146
702 => 0.094168671336388
703 => 0.095868099918118
704 => 0.097611361995777
705 => 0.099124987612715
706 => 0.096915064786806
707 => 0.099279998990522
708 => 0.097374279489411
709 => 0.095664652087254
710 => 0.09566724488632
711 => 0.094594770643276
712 => 0.092516716656927
713 => 0.092133491618776
714 => 0.094127076663224
715 => 0.095725743075665
716 => 0.095857416898489
717 => 0.096742520766862
718 => 0.097266316118871
719 => 0.10240022263381
720 => 0.10446512230401
721 => 0.1069900425342
722 => 0.10797364126056
723 => 0.11093392078725
724 => 0.1085432546473
725 => 0.10802601898992
726 => 0.10084534915823
727 => 0.1020211834409
728 => 0.10390380757859
729 => 0.10087639293684
730 => 0.10279659071224
731 => 0.10317567842845
801 => 0.10077352254577
802 => 0.10205661779374
803 => 0.098649097226365
804 => 0.091583535524155
805 => 0.094176537326361
806 => 0.096085859447753
807 => 0.093361021362807
808 => 0.098245188164277
809 => 0.095391958748526
810 => 0.094487622002898
811 => 0.090959481938876
812 => 0.092624628238529
813 => 0.094876762451409
814 => 0.093485205346554
815 => 0.096372895282479
816 => 0.10046263435053
817 => 0.10337722595859
818 => 0.10360097211163
819 => 0.10172708497011
820 => 0.10473000107338
821 => 0.10475187403883
822 => 0.10136457240708
823 => 0.099289869018207
824 => 0.098818492043041
825 => 0.099996084145904
826 => 0.10142589835427
827 => 0.10368031684919
828 => 0.10504261473016
829 => 0.10859476509677
830 => 0.10955587513784
831 => 0.11061184368262
901 => 0.11202294330708
902 => 0.11371733020477
903 => 0.11001010813413
904 => 0.11015740297812
905 => 0.10670528911592
906 => 0.10301621037096
907 => 0.10581576128823
908 => 0.10947580170391
909 => 0.10863618438857
910 => 0.10854171028877
911 => 0.1087005895197
912 => 0.10806754548327
913 => 0.10520431076821
914 => 0.1037664122191
915 => 0.10562166819449
916 => 0.10660765417747
917 => 0.10813683245005
918 => 0.10794832895092
919 => 0.11188732795934
920 => 0.11341790386486
921 => 0.11302631705119
922 => 0.11309837844897
923 => 0.11586941301609
924 => 0.11895137336145
925 => 0.12183803592536
926 => 0.12477447307042
927 => 0.12123448348096
928 => 0.11943709508364
929 => 0.12129154111231
930 => 0.12030754594628
1001 => 0.12596187404222
1002 => 0.12635336745156
1003 => 0.13200728667522
1004 => 0.13737352927464
1005 => 0.13400308844417
1006 => 0.13718126233932
1007 => 0.14061871652724
1008 => 0.1472501233626
1009 => 0.14501689883616
1010 => 0.14330628384799
1011 => 0.14168976094981
1012 => 0.14505348848514
1013 => 0.1493808702225
1014 => 0.15031294680158
1015 => 0.15182326694034
1016 => 0.15023534998759
1017 => 0.15214782105386
1018 => 0.15889968430018
1019 => 0.15707527125068
1020 => 0.15448431143136
1021 => 0.15981425900848
1022 => 0.161743146317
1023 => 0.17528108761429
1024 => 0.19237329772658
1025 => 0.18529701050659
1026 => 0.18090453067878
1027 => 0.18193686762933
1028 => 0.18817836415451
1029 => 0.1901829347432
1030 => 0.18473382086622
1031 => 0.1866585400083
1101 => 0.19726393171537
1102 => 0.2029533841045
1103 => 0.19522634356465
1104 => 0.17390774517408
1105 => 0.15425102384793
1106 => 0.15946487149732
1107 => 0.15887378297841
1108 => 0.1702679533181
1109 => 0.15703175960282
1110 => 0.15725462315888
1111 => 0.16888441287455
1112 => 0.16578178436348
1113 => 0.16075592353018
1114 => 0.15428771819396
1115 => 0.14233064239339
1116 => 0.1317399269091
1117 => 0.15251075886991
1118 => 0.15161508282645
1119 => 0.15031801118377
1120 => 0.15320450376675
1121 => 0.16722049240444
1122 => 0.16689737850101
1123 => 0.16484189270157
1124 => 0.16640096056423
1125 => 0.16048261139587
1126 => 0.16200790473486
1127 => 0.15424791012284
1128 => 0.15775575177348
1129 => 0.16074514029006
1130 => 0.16134530429342
1201 => 0.16269750443812
1202 => 0.15114310225139
1203 => 0.1563306896138
1204 => 0.15937791117802
1205 => 0.14561045329202
1206 => 0.15910577280136
1207 => 0.15094196581554
1208 => 0.14817104710828
1209 => 0.15190172410682
1210 => 0.15044787565229
1211 => 0.14919794212393
1212 => 0.14850045773852
1213 => 0.15123985518645
1214 => 0.15111205902122
1215 => 0.14662987310227
1216 => 0.14078304428827
1217 => 0.14274543195386
1218 => 0.14203247811747
1219 => 0.13944864144151
1220 => 0.14118983538748
1221 => 0.13352249844753
1222 => 0.12033124375585
1223 => 0.12904579066423
1224 => 0.12871029008786
1225 => 0.12854111548352
1226 => 0.13508985663278
1227 => 0.13446034627644
1228 => 0.13331777881551
1229 => 0.13942765729408
1230 => 0.13719746945994
1231 => 0.14407038286642
]
'min_raw' => 0.061696454776793
'max_raw' => 0.2029533841045
'avg_raw' => 0.13232491944065
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.061696'
'max' => '$0.202953'
'avg' => '$0.132324'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.03361063789732
'max_diff' => 0.13416244431564
'year' => 2029
]
4 => [
'items' => [
101 => 0.1485973281481
102 => 0.14744914839332
103 => 0.15170676231137
104 => 0.14279064140221
105 => 0.14575221911555
106 => 0.1463625961777
107 => 0.13935226234206
108 => 0.13456334195603
109 => 0.13424397556397
110 => 0.12594064756846
111 => 0.13037621836154
112 => 0.13427933710305
113 => 0.13241004612012
114 => 0.1318182844384
115 => 0.13484146653285
116 => 0.13507639367339
117 => 0.12972002997256
118 => 0.13083378759994
119 => 0.13547834205292
120 => 0.13071675674443
121 => 0.12146577429057
122 => 0.11917140273718
123 => 0.1188652912783
124 => 0.11264277365659
125 => 0.11932472361534
126 => 0.11640787339322
127 => 0.12562216829567
128 => 0.12035901246465
129 => 0.12013212833611
130 => 0.11978915969915
131 => 0.11443318173318
201 => 0.11560580051757
202 => 0.11950376395177
203 => 0.1208946012188
204 => 0.12074952549705
205 => 0.11948466180442
206 => 0.12006370992576
207 => 0.11819839417319
208 => 0.11753971235777
209 => 0.11546073136359
210 => 0.11240520363531
211 => 0.11283009350657
212 => 0.10677629355452
213 => 0.10347786204117
214 => 0.1025648996709
215 => 0.10134404823405
216 => 0.10270279808925
217 => 0.10675914389988
218 => 0.10186633025049
219 => 0.093477944439592
220 => 0.093982100719941
221 => 0.095114790196542
222 => 0.093004030850387
223 => 0.091006374271854
224 => 0.092743174591887
225 => 0.089188904941672
226 => 0.095544306703047
227 => 0.095372410896209
228 => 0.097741311657441
301 => 0.099222633918177
302 => 0.095808665690958
303 => 0.094950061914164
304 => 0.095439161646792
305 => 0.087355432549575
306 => 0.097080698529028
307 => 0.097164803033069
308 => 0.096444649208146
309 => 0.1016230531083
310 => 0.11255110052232
311 => 0.10843952950548
312 => 0.10684740493487
313 => 0.10382077496229
314 => 0.10785357969724
315 => 0.10754392321515
316 => 0.10614353916941
317 => 0.10529658252908
318 => 0.10685712610799
319 => 0.10510321390988
320 => 0.10478816308481
321 => 0.10287929786359
322 => 0.10219791982745
323 => 0.10169345465594
324 => 0.10113808806982
325 => 0.10236308837006
326 => 0.099587076527501
327 => 0.096239478381168
328 => 0.095961161816814
329 => 0.096729618320837
330 => 0.096389633522665
331 => 0.095959534100402
401 => 0.095138357172693
402 => 0.094894731519911
403 => 0.095686396701089
404 => 0.094792652868487
405 => 0.096111420578238
406 => 0.095752788731931
407 => 0.093749500391507
408 => 0.091252661407
409 => 0.091230434302741
410 => 0.090692494439166
411 => 0.090007347143103
412 => 0.089816754839385
413 => 0.092596906113264
414 => 0.098351736047268
415 => 0.097221925229814
416 => 0.098038329333094
417 => 0.10205422949639
418 => 0.10333076339598
419 => 0.10242470987042
420 => 0.10118444792168
421 => 0.10123901315299
422 => 0.10547736368464
423 => 0.10574170440843
424 => 0.10640960813791
425 => 0.10726805317985
426 => 0.10257090677308
427 => 0.10101777797964
428 => 0.100281819393
429 => 0.098015351797971
430 => 0.10045954278696
501 => 0.09903541736837
502 => 0.09922758054239
503 => 0.099102434023217
504 => 0.099170772485056
505 => 0.095542530238731
506 => 0.096864471018494
507 => 0.094666488077507
508 => 0.091723635654691
509 => 0.091713770181473
510 => 0.092434029142821
511 => 0.092005590928875
512 => 0.0908526747113
513 => 0.091016441018396
514 => 0.089581675845234
515 => 0.09119064748768
516 => 0.091236787037208
517 => 0.090617245313588
518 => 0.093096088124076
519 => 0.094111672046077
520 => 0.093703876411721
521 => 0.09408306001727
522 => 0.097268873970069
523 => 0.097788300651183
524 => 0.098018995671534
525 => 0.097709894905498
526 => 0.094141290848046
527 => 0.094299573612871
528 => 0.093138199706856
529 => 0.09215696113884
530 => 0.092196205535642
531 => 0.092700689711687
601 => 0.094903801696082
602 => 0.099540120986694
603 => 0.099716065914667
604 => 0.099929316300047
605 => 0.099061919811652
606 => 0.098800304730886
607 => 0.099145442550998
608 => 0.10088660031046
609 => 0.10536533078753
610 => 0.10378224831259
611 => 0.10249517761831
612 => 0.10362428560896
613 => 0.10345046828404
614 => 0.10198327513814
615 => 0.10194209591318
616 => 0.099126083176182
617 => 0.098085067384822
618 => 0.097215116670881
619 => 0.096265153201895
620 => 0.095701983014417
621 => 0.096567268378656
622 => 0.096765169379214
623 => 0.094873207807703
624 => 0.094615340436545
625 => 0.096160357096667
626 => 0.095480452868574
627 => 0.096179751227981
628 => 0.096341994445834
629 => 0.096315869550981
630 => 0.095605971450349
701 => 0.096058439330226
702 => 0.09498821790715
703 => 0.093824512851615
704 => 0.093082141527571
705 => 0.092434324086075
706 => 0.092793770853987
707 => 0.091512408758766
708 => 0.091102475235781
709 => 0.095905153393373
710 => 0.099452943385877
711 => 0.099401357114307
712 => 0.099087338953037
713 => 0.098620771661646
714 => 0.10085246800703
715 => 0.10007498962448
716 => 0.10064067010828
717 => 0.10078465953294
718 => 0.10122047215455
719 => 0.10137623770742
720 => 0.10090540602053
721 => 0.099325237372061
722 => 0.095387607338012
723 => 0.093554629927734
724 => 0.092949716851688
725 => 0.092971704293109
726 => 0.092365192502463
727 => 0.09254383740676
728 => 0.092303067095198
729 => 0.091847106373694
730 => 0.092765616564298
731 => 0.092871466307251
801 => 0.092657075053384
802 => 0.092707571954747
803 => 0.090932503940435
804 => 0.091067458506318
805 => 0.090316014334284
806 => 0.090175127610822
807 => 0.08827554217965
808 => 0.084910151239016
809 => 0.08677490450653
810 => 0.084522544783362
811 => 0.083669542027379
812 => 0.087707524405056
813 => 0.087302222970535
814 => 0.086608523094932
815 => 0.085582396399194
816 => 0.085201796026226
817 => 0.082889388643509
818 => 0.082752759279124
819 => 0.08389885081825
820 => 0.083369969007546
821 => 0.082627218642111
822 => 0.079937052109904
823 => 0.076912414244175
824 => 0.077003709049145
825 => 0.077965790078846
826 => 0.080763170427004
827 => 0.079670185529807
828 => 0.078877212446334
829 => 0.078728712424483
830 => 0.080587501103803
831 => 0.083218076513309
901 => 0.084452283639642
902 => 0.083229221860874
903 => 0.081824234343748
904 => 0.08190974942383
905 => 0.082478642940186
906 => 0.082538425605034
907 => 0.081623923166435
908 => 0.081881350246172
909 => 0.081490294972426
910 => 0.07909038947928
911 => 0.079046982799092
912 => 0.07845800728737
913 => 0.078440173342949
914 => 0.077438179070683
915 => 0.077297993145534
916 => 0.075308472701245
917 => 0.076617981082499
918 => 0.07573963161263
919 => 0.074415751779843
920 => 0.07418751439767
921 => 0.074180653306357
922 => 0.075539981880515
923 => 0.07660209653667
924 => 0.075754910877712
925 => 0.075562023125171
926 => 0.077621559686794
927 => 0.077359464886235
928 => 0.077132492479281
929 => 0.082982537337792
930 => 0.078351770347588
1001 => 0.07633249162492
1002 => 0.073833250754989
1003 => 0.074647016184505
1004 => 0.074818488517205
1005 => 0.068808264747049
1006 => 0.066369917712022
1007 => 0.065533168896771
1008 => 0.065051608123702
1009 => 0.065271061415049
1010 => 0.063076263093943
1011 => 0.06455120386434
1012 => 0.062650694039946
1013 => 0.062332067383093
1014 => 0.065730414377098
1015 => 0.066203274508459
1016 => 0.064185906281946
1017 => 0.065481383265616
1018 => 0.06501162530286
1019 => 0.062683272826092
1020 => 0.062594346887681
1021 => 0.061426061460385
1022 => 0.059597920991303
1023 => 0.058762411741375
1024 => 0.058327271269789
1025 => 0.058506818709084
1026 => 0.058416034029534
1027 => 0.057823602586347
1028 => 0.058449991506382
1029 => 0.056849826657464
1030 => 0.05621262812122
1031 => 0.055924820325293
1101 => 0.054504581919826
1102 => 0.05676481280581
1103 => 0.057210106763987
1104 => 0.05765627808882
1105 => 0.061539894857392
1106 => 0.061345880338621
1107 => 0.063099677099406
1108 => 0.063031527782307
1109 => 0.062531316536507
1110 => 0.060421007571234
1111 => 0.061262139112152
1112 => 0.058673266970072
1113 => 0.060613026005112
1114 => 0.059727800987794
1115 => 0.0603137305363
1116 => 0.059260176376948
1117 => 0.059843256748919
1118 => 0.057315702480787
1119 => 0.054955507868855
1120 => 0.055905319079072
1121 => 0.056937872488666
1122 => 0.059176711370381
1123 => 0.057843277402451
1124 => 0.058322830680039
1125 => 0.056716407476368
1126 => 0.053401897555092
1127 => 0.053420657321291
1128 => 0.052910792180427
1129 => 0.05247019425719
1130 => 0.057996438334085
1201 => 0.057309162526133
1202 => 0.056214078474594
1203 => 0.057679891994489
1204 => 0.058067476354738
1205 => 0.058078510336595
1206 => 0.059147930042587
1207 => 0.059718679531379
1208 => 0.059819276602549
1209 => 0.06150203161627
1210 => 0.062066068900794
1211 => 0.064389258650203
1212 => 0.05967025542486
1213 => 0.05957307065886
1214 => 0.057700518996722
1215 => 0.056512917128724
1216 => 0.057781835112662
1217 => 0.058905923221853
1218 => 0.057735447547658
1219 => 0.057888286960618
1220 => 0.056317018999388
1221 => 0.056878673360499
1222 => 0.0573624457593
1223 => 0.057095335075509
1224 => 0.056695457453571
1225 => 0.058813760815831
1226 => 0.058694237838434
1227 => 0.060666850628955
1228 => 0.062204643362059
1229 => 0.064960642853115
1230 => 0.062084613710696
1231 => 0.061979799777565
]
'min_raw' => 0.05247019425719
'max_raw' => 0.15170676231137
'avg_raw' => 0.10208847828428
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.05247'
'max' => '$0.1517067'
'avg' => '$0.102088'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0092262605196025
'max_diff' => -0.051246621793138
'year' => 2030
]
5 => [
'items' => [
101 => 0.063004372786597
102 => 0.062065912044004
103 => 0.062658986838759
104 => 0.064865089334779
105 => 0.064911700804189
106 => 0.064130898636084
107 => 0.064083386753195
108 => 0.064233348350619
109 => 0.0651116781107
110 => 0.06480476270418
111 => 0.065159932982752
112 => 0.065604078854666
113 => 0.067441254494851
114 => 0.067884191321971
115 => 0.066808084468484
116 => 0.066905244868697
117 => 0.066502751365699
118 => 0.066113947685032
119 => 0.066987921578954
120 => 0.068585126048095
121 => 0.068575189921988
122 => 0.06894571031361
123 => 0.069176541448034
124 => 0.068185645240368
125 => 0.067540608245441
126 => 0.067787956474066
127 => 0.068183471678182
128 => 0.067659696223992
129 => 0.06442671148434
130 => 0.065407392530486
131 => 0.065244159251554
201 => 0.06501169521251
202 => 0.065997777587792
203 => 0.065902667537132
204 => 0.063053752264851
205 => 0.063236130577299
206 => 0.063064843294087
207 => 0.063618307548228
208 => 0.062036023157966
209 => 0.062522723179562
210 => 0.062827976870578
211 => 0.063007773639656
212 => 0.063657322857364
213 => 0.063581105753735
214 => 0.063652585095189
215 => 0.064615695110413
216 => 0.069486775067974
217 => 0.069751897202632
218 => 0.068446338847712
219 => 0.068967883659502
220 => 0.067966631670176
221 => 0.068638778838416
222 => 0.069098644860239
223 => 0.067020598734772
224 => 0.06689755032963
225 => 0.065892165817178
226 => 0.06643240250628
227 => 0.065572847089526
228 => 0.065783751922826
301 => 0.065194043622568
302 => 0.066255401153281
303 => 0.067442163790903
304 => 0.067741986899843
305 => 0.066953281382186
306 => 0.066382206609175
307 => 0.065379587431494
308 => 0.067046965468804
309 => 0.067534557619338
310 => 0.067044404354812
311 => 0.06693082513336
312 => 0.066715592713943
313 => 0.066976487708609
314 => 0.067531902087771
315 => 0.067269978923451
316 => 0.067442983787977
317 => 0.066783667646247
318 => 0.068185973268244
319 => 0.070413172079201
320 => 0.070420332887562
321 => 0.070158408311379
322 => 0.070051234418048
323 => 0.070319984928125
324 => 0.070465771055118
325 => 0.071334860924289
326 => 0.072267428979978
327 => 0.076619317184558
328 => 0.075397324391074
329 => 0.079258578501165
330 => 0.082312329181151
331 => 0.083228015485746
401 => 0.082385627171889
402 => 0.079503862255106
403 => 0.079362469120103
404 => 0.083669042555542
405 => 0.082452238306471
406 => 0.082307503312883
407 => 0.080767767514738
408 => 0.08167794207143
409 => 0.081478873544427
410 => 0.081164634135786
411 => 0.082901183786645
412 => 0.086151849710198
413 => 0.08564520294146
414 => 0.085267014631265
415 => 0.08360990354495
416 => 0.084607854548072
417 => 0.084252503310353
418 => 0.085779317739063
419 => 0.084874866694576
420 => 0.082443019817524
421 => 0.082830299448167
422 => 0.082771762911094
423 => 0.083976440696116
424 => 0.083614826326993
425 => 0.082701151901819
426 => 0.086140739287463
427 => 0.08591739161463
428 => 0.086234047550321
429 => 0.086373449286123
430 => 0.088467065515436
501 => 0.089324753096339
502 => 0.089519463193138
503 => 0.090334200059058
504 => 0.089499191797706
505 => 0.092839820193914
506 => 0.095061143146321
507 => 0.097641324063776
508 => 0.10141166187143
509 => 0.10282934376468
510 => 0.10257325221984
511 => 0.10543187931533
512 => 0.11056876866222
513 => 0.10361156442613
514 => 0.11093751738014
515 => 0.1086182052571
516 => 0.103119157936
517 => 0.10276508411803
518 => 0.10648910280913
519 => 0.11474861784247
520 => 0.11267970300526
521 => 0.11475200184598
522 => 0.11233455517165
523 => 0.11221450856843
524 => 0.11463459185685
525 => 0.1202892483721
526 => 0.11760293302334
527 => 0.11375144125933
528 => 0.11659532284202
529 => 0.11413168942628
530 => 0.10858043381303
531 => 0.11267812094508
601 => 0.10993811425529
602 => 0.11073779387414
603 => 0.11649688039084
604 => 0.1158039318645
605 => 0.11670067142289
606 => 0.11511794957409
607 => 0.11363943779498
608 => 0.11087968576354
609 => 0.11006265924116
610 => 0.11028845597841
611 => 0.11006254734752
612 => 0.10851849144936
613 => 0.10818505272516
614 => 0.10762930690988
615 => 0.10780155577637
616 => 0.10675659105447
617 => 0.10872865538542
618 => 0.10909468790301
619 => 0.11052979186656
620 => 0.11067878912083
621 => 0.11467553323189
622 => 0.11247419373808
623 => 0.11395104232504
624 => 0.11381893908678
625 => 0.10323833896602
626 => 0.10469625230924
627 => 0.10696430795287
628 => 0.10594255195969
629 => 0.10449802803941
630 => 0.10333149752332
701 => 0.10156408450757
702 => 0.10405168438708
703 => 0.10732261370188
704 => 0.11076174528611
705 => 0.11489363654374
706 => 0.11397144651555
707 => 0.11068450245313
708 => 0.11083195236266
709 => 0.11174342968395
710 => 0.11056298373643
711 => 0.11021484718147
712 => 0.1116956010673
713 => 0.1117057982055
714 => 0.11034755248123
715 => 0.10883811091504
716 => 0.10883178629976
717 => 0.10856319575253
718 => 0.11238233683333
719 => 0.11448247826905
720 => 0.11472325610011
721 => 0.1144662720026
722 => 0.1145651749824
723 => 0.11334314895441
724 => 0.11613633807382
725 => 0.11869964462757
726 => 0.11801262371411
727 => 0.11698268169906
728 => 0.11616228327533
729 => 0.11781936391812
730 => 0.11774557672558
731 => 0.11867725638101
801 => 0.1186349900102
802 => 0.11832170118432
803 => 0.11801263490264
804 => 0.11923804777423
805 => 0.11888514854674
806 => 0.11853170116928
807 => 0.11782280834369
808 => 0.11791915865215
809 => 0.11688939447111
810 => 0.11641297844215
811 => 0.10924882444855
812 => 0.10733432840598
813 => 0.10793666783413
814 => 0.10813497361362
815 => 0.10730178248239
816 => 0.10849636453532
817 => 0.10831019018775
818 => 0.10903448566581
819 => 0.10858197729637
820 => 0.1086005483977
821 => 0.10993127902726
822 => 0.11031759579035
823 => 0.11012111196668
824 => 0.11025872250171
825 => 0.1134298991996
826 => 0.11297905928168
827 => 0.11273955956086
828 => 0.1128059026203
829 => 0.11361620625741
830 => 0.11384304703486
831 => 0.11288190672098
901 => 0.11333518604929
902 => 0.11526519189953
903 => 0.11594058471825
904 => 0.11809611438864
905 => 0.11718040707317
906 => 0.1188612274816
907 => 0.12402749638319
908 => 0.1281546694604
909 => 0.12435915053596
910 => 0.13193817829993
911 => 0.13783953856114
912 => 0.13761303452509
913 => 0.13658399586262
914 => 0.12986545410101
915 => 0.12368295180416
916 => 0.12885487749839
917 => 0.1288680618006
918 => 0.12842378879671
919 => 0.12566444732561
920 => 0.12832776969474
921 => 0.12853917455263
922 => 0.1284208440493
923 => 0.12630526341302
924 => 0.12307516280609
925 => 0.12370631673291
926 => 0.12474015974025
927 => 0.12278287924512
928 => 0.12215740953112
929 => 0.12332027672993
930 => 0.12706727713749
1001 => 0.12635892841534
1002 => 0.12634043056754
1003 => 0.12937104678753
1004 => 0.12720177962193
1005 => 0.12371427760517
1006 => 0.12283363735143
1007 => 0.11970795772104
1008 => 0.12186687577504
1009 => 0.12194457139236
1010 => 0.12076215403779
1011 => 0.12381022425682
1012 => 0.12378213575315
1013 => 0.12667582478073
1014 => 0.13220747138152
1015 => 0.13057149128587
1016 => 0.12866902442876
1017 => 0.12887587532581
1018 => 0.13114451911495
1019 => 0.12977284529194
1020 => 0.13026610876234
1021 => 0.13114377250161
1022 => 0.13167328882668
1023 => 0.12879968607542
1024 => 0.1281297118138
1025 => 0.12675917960352
1026 => 0.12640163333206
1027 => 0.12751790322023
1028 => 0.1272238055431
1029 => 0.12193804137657
1030 => 0.12138564961146
1031 => 0.12140259067826
1101 => 0.12001357532008
1102 => 0.11789499349697
1103 => 0.12346250003415
1104 => 0.12301535134201
1105 => 0.12252173379245
1106 => 0.12258219912573
1107 => 0.12499886501322
1108 => 0.12359707675392
1109 => 0.12732396058983
1110 => 0.12655782531355
1111 => 0.12577204155833
1112 => 0.1256634223078
1113 => 0.12536096260196
1114 => 0.12432371573033
1115 => 0.12307117780396
1116 => 0.12224414377199
1117 => 0.11276376082867
1118 => 0.1145232647581
1119 => 0.11654741364508
1120 => 0.1172461417296
1121 => 0.11605091899052
1122 => 0.12437091040903
1123 => 0.12589105301463
1124 => 0.12128644190583
1125 => 0.12042510717241
1126 => 0.12442737937076
1127 => 0.12201351997728
1128 => 0.12310048071436
1129 => 0.12075106613652
1130 => 0.12552489517591
1201 => 0.12548852659698
1202 => 0.12363139927884
1203 => 0.12520103057107
1204 => 0.12492826850732
1205 => 0.12283157633904
1206 => 0.12559136405745
1207 => 0.12559273287772
1208 => 0.12380528821144
1209 => 0.12171794416318
1210 => 0.12134477634821
1211 => 0.12106364452768
1212 => 0.1230313395202
1213 => 0.12479556869767
1214 => 0.12807836180744
1215 => 0.12890373399248
1216 => 0.13212521657882
1217 => 0.13020698054979
1218 => 0.13105730973614
1219 => 0.13198046235434
1220 => 0.13242305566731
1221 => 0.13170187361468
1222 => 0.1367061620864
1223 => 0.13712867736085
1224 => 0.13727034307763
1225 => 0.13558292516128
1226 => 0.13708174721608
1227 => 0.13638049801241
1228 => 0.13820495362772
1229 => 0.13849105156402
1230 => 0.1382487367902
1231 => 0.13833954879093
]
'min_raw' => 0.062036023157966
'max_raw' => 0.13849105156402
'avg_raw' => 0.10026353736099
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.062036'
'max' => '$0.138491'
'avg' => '$0.100263'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0095658289007758
'max_diff' => -0.013215710747346
'year' => 2031
]
6 => [
'items' => [
101 => 0.13406927139731
102 => 0.13384783498694
103 => 0.13082853381917
104 => 0.13205892136258
105 => 0.12975877082418
106 => 0.13048817225408
107 => 0.13080968545439
108 => 0.13064174520427
109 => 0.13212848562823
110 => 0.13086445254686
111 => 0.12752846141884
112 => 0.12419156140227
113 => 0.12414966934074
114 => 0.12327112246756
115 => 0.12263609399213
116 => 0.12275842300534
117 => 0.12318952640353
118 => 0.12261103747892
119 => 0.12273448742112
120 => 0.12478457900426
121 => 0.12519571025067
122 => 0.12379852563601
123 => 0.11818862779537
124 => 0.11681194479391
125 => 0.11780147723455
126 => 0.11732854446198
127 => 0.094693292498258
128 => 0.1000111091937
129 => 0.096851443089258
130 => 0.09830756259943
131 => 0.095082361698371
201 => 0.096621596615619
202 => 0.096337356130262
203 => 0.10488824801089
204 => 0.10475473759554
205 => 0.10481864196615
206 => 0.10176831985482
207 => 0.10662756580345
208 => 0.10902140509057
209 => 0.10857836914849
210 => 0.10868987175028
211 => 0.1067738876258
212 => 0.10483719288061
213 => 0.10268910035302
214 => 0.10667999075703
215 => 0.10623627187088
216 => 0.1072540033507
217 => 0.10984238105244
218 => 0.11022352950131
219 => 0.11073579688182
220 => 0.11055218549158
221 => 0.11492655372369
222 => 0.11439678886777
223 => 0.11567336974679
224 => 0.11304734602423
225 => 0.1100757509177
226 => 0.11064055399869
227 => 0.11058615892013
228 => 0.10989364713831
229 => 0.10926847846598
301 => 0.10822774876673
302 => 0.11152077153417
303 => 0.11138708082358
304 => 0.11355137802962
305 => 0.11316881747559
306 => 0.11061398446734
307 => 0.11070523082804
308 => 0.11131890645524
309 => 0.11344284480783
310 => 0.11407337431962
311 => 0.1137812879275
312 => 0.11447263475242
313 => 0.11501904709436
314 => 0.11454125572986
315 => 0.12130577387838
316 => 0.11849667432256
317 => 0.11986580990048
318 => 0.1201923406684
319 => 0.11935593897257
320 => 0.1195373245511
321 => 0.11981207427795
322 => 0.12148030081789
323 => 0.12585820996393
324 => 0.12779715612328
325 => 0.13363057130959
326 => 0.12763615363618
327 => 0.1272804696988
328 => 0.12833124392612
329 => 0.13175607617019
330 => 0.13453158102588
331 => 0.13545237610922
401 => 0.13557407438016
402 => 0.13730154716982
403 => 0.13829170235739
404 => 0.13709178653611
405 => 0.136074983514
406 => 0.13243292129902
407 => 0.13285449991741
408 => 0.13575875853871
409 => 0.13986119490128
410 => 0.14338151208612
411 => 0.14214881970343
412 => 0.15155339243815
413 => 0.15248581741056
414 => 0.15235698642829
415 => 0.15448118927888
416 => 0.15026507920683
417 => 0.14846261046775
418 => 0.13629482786858
419 => 0.13971347846154
420 => 0.14468268786873
421 => 0.14402499437011
422 => 0.14041622167126
423 => 0.14337877450842
424 => 0.14239926189286
425 => 0.14162667965296
426 => 0.1451660286664
427 => 0.14127436903768
428 => 0.14464386558697
429 => 0.14032245140952
430 => 0.1421544505384
501 => 0.14111451922902
502 => 0.14178748223538
503 => 0.13785335425112
504 => 0.13997611421587
505 => 0.1377650404576
506 => 0.13776399212075
507 => 0.13771518254499
508 => 0.14031650101618
509 => 0.14040132991814
510 => 0.13847895163755
511 => 0.13820190689412
512 => 0.1392262865156
513 => 0.1380270062643
514 => 0.1385881419457
515 => 0.13804400249245
516 => 0.13792150524019
517 => 0.13694542629302
518 => 0.13652490464473
519 => 0.13668980201853
520 => 0.13612692227132
521 => 0.13578776686337
522 => 0.13764771599793
523 => 0.13665402020547
524 => 0.13749541786613
525 => 0.13653653903896
526 => 0.13321264726036
527 => 0.13130104194897
528 => 0.12502251850413
529 => 0.1268030999646
530 => 0.12798362731504
531 => 0.12759346303276
601 => 0.12843168688463
602 => 0.12848314702136
603 => 0.12821063190244
604 => 0.12789509430608
605 => 0.12774150805449
606 => 0.12888621414296
607 => 0.12955075455635
608 => 0.12810210902808
609 => 0.12776271164951
610 => 0.1292273722605
611 => 0.1301208143871
612 => 0.13671748906815
613 => 0.1362287861008
614 => 0.13745533464573
615 => 0.13731724410249
616 => 0.13860286238209
617 => 0.14070430492641
618 => 0.13643148466123
619 => 0.13717309851626
620 => 0.13699127192537
621 => 0.13897640696719
622 => 0.13898260434211
623 => 0.13779241671969
624 => 0.13843763673839
625 => 0.13807749262464
626 => 0.13872832171459
627 => 0.13622225917472
628 => 0.13927437283554
629 => 0.14100472460737
630 => 0.1410287505434
701 => 0.14184892355033
702 => 0.14268226682658
703 => 0.14428179667645
704 => 0.14263765680721
705 => 0.13968000923626
706 => 0.13989354183774
707 => 0.13815947414904
708 => 0.13818862414018
709 => 0.13803301920299
710 => 0.13850000133288
711 => 0.13632473549155
712 => 0.13683526603665
713 => 0.13612052028384
714 => 0.13717154479858
715 => 0.1360408161613
716 => 0.13699118424308
717 => 0.13740133160198
718 => 0.13891478418615
719 => 0.13581727798407
720 => 0.12950125315528
721 => 0.13082895814869
722 => 0.12886517817446
723 => 0.12904693348771
724 => 0.12941410814662
725 => 0.12822397494501
726 => 0.12845101485447
727 => 0.12844290339125
728 => 0.12837300318338
729 => 0.12806340357251
730 => 0.12761442288434
731 => 0.12940302375704
801 => 0.12970694189849
802 => 0.13038251427944
803 => 0.13239255944001
804 => 0.13219170852834
805 => 0.13251930469849
806 => 0.13180416409841
807 => 0.12908010680908
808 => 0.12922803622572
809 => 0.12738335402974
810 => 0.13033534160827
811 => 0.12963627198534
812 => 0.12918557725172
813 => 0.129062601018
814 => 0.13107762869173
815 => 0.13168055655341
816 => 0.131304852371
817 => 0.13053427213183
818 => 0.13201401399262
819 => 0.13240993048927
820 => 0.13249856159204
821 => 0.135120380457
822 => 0.13264509214181
823 => 0.13324091864153
824 => 0.13788938690613
825 => 0.13367386763491
826 => 0.13590692221017
827 => 0.13579762580897
828 => 0.13693998096723
829 => 0.13570391934314
830 => 0.13571924180838
831 => 0.13673357579907
901 => 0.13530912664524
902 => 0.13495641300268
903 => 0.13446914163167
904 => 0.13553308084381
905 => 0.13617086428366
906 => 0.14131093040853
907 => 0.14463164754069
908 => 0.14448748645222
909 => 0.14580484894264
910 => 0.14521136507505
911 => 0.14329484911346
912 => 0.14656610816566
913 => 0.14553094492625
914 => 0.14561628252599
915 => 0.14561310625626
916 => 0.14630139931493
917 => 0.14581368060173
918 => 0.14485233695472
919 => 0.14549052173164
920 => 0.14738570236384
921 => 0.15326840119744
922 => 0.15656043740011
923 => 0.15307021648443
924 => 0.15547772413615
925 => 0.15403407742781
926 => 0.15377172387613
927 => 0.15528381659483
928 => 0.15679855603166
929 => 0.15670207367793
930 => 0.15560245062952
1001 => 0.15498130147138
1002 => 0.15968485099708
1003 => 0.16315034616474
1004 => 0.16291402262728
1005 => 0.16395707786509
1006 => 0.16701952030381
1007 => 0.16729951166063
1008 => 0.16726423918519
1009 => 0.16657025139324
1010 => 0.16958562368256
1011 => 0.17210110029674
1012 => 0.16640961327064
1013 => 0.16857685702314
1014 => 0.16954980256787
1015 => 0.17097837528747
1016 => 0.17338861692203
1017 => 0.17600677862217
1018 => 0.17637701539325
1019 => 0.17611431468671
1020 => 0.1743875666655
1021 => 0.17725239043896
1022 => 0.17893053701707
1023 => 0.17992983490064
1024 => 0.18246388806604
1025 => 0.16955581114833
1026 => 0.16041883273292
1027 => 0.15899196161379
1028 => 0.16189356014348
1029 => 0.16265868853595
1030 => 0.16235026624034
1031 => 0.15206576633606
1101 => 0.15893781585022
1102 => 0.16633156330912
1103 => 0.166615587261
1104 => 0.17031705183489
1105 => 0.17152240042831
1106 => 0.17450256457235
1107 => 0.17431615449373
1108 => 0.17504177703803
1109 => 0.17487496898113
1110 => 0.18039509551036
1111 => 0.18648461481882
1112 => 0.18627375412865
1113 => 0.18539831368014
1114 => 0.18669849203096
1115 => 0.19298352854984
1116 => 0.19240490310284
1117 => 0.1929669884374
1118 => 0.2003774007023
1119 => 0.21001199076552
1120 => 0.20553575638413
1121 => 0.21524789699
1122 => 0.22136117468295
1123 => 0.23193345632819
1124 => 0.23060975459662
1125 => 0.23472546625812
1126 => 0.22824005223222
1127 => 0.21334823071033
1128 => 0.21099154295088
1129 => 0.21570969152613
1130 => 0.22730879940816
1201 => 0.2153443943412
1202 => 0.21776477790377
1203 => 0.21706770727492
1204 => 0.21703056334347
1205 => 0.2184481961317
1206 => 0.21639184583362
1207 => 0.20801390478887
1208 => 0.21185346579816
1209 => 0.21037082690161
1210 => 0.21201592529539
1211 => 0.2208938428364
1212 => 0.2169687038684
1213 => 0.212833888818
1214 => 0.21801986448011
1215 => 0.22462339359256
1216 => 0.22421015660838
1217 => 0.22340830413943
1218 => 0.22792830452331
1219 => 0.23539402092163
1220 => 0.23741197406442
1221 => 0.23890158581919
1222 => 0.23910697811297
1223 => 0.24122264638957
1224 => 0.22984616484926
1225 => 0.2479009332225
1226 => 0.25101849296764
1227 => 0.25043252094517
1228 => 0.25389755739493
1229 => 0.25287805577192
1230 => 0.25140095787508
1231 => 0.25689377768234
]
'min_raw' => 0.094693292498258
'max_raw' => 0.25689377768234
'avg_raw' => 0.1757935350903
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.094693'
'max' => '$0.256893'
'avg' => '$0.175793'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.032657269340292
'max_diff' => 0.11840272611832
'year' => 2032
]
7 => [
'items' => [
101 => 0.25059670302102
102 => 0.24165879831893
103 => 0.23675528702765
104 => 0.24321262625098
105 => 0.24715589798458
106 => 0.24976214976131
107 => 0.2505507999742
108 => 0.23072928872655
109 => 0.22004659351547
110 => 0.22689407866842
111 => 0.2352484831432
112 => 0.22979975571058
113 => 0.23001333551013
114 => 0.2222448820916
115 => 0.23593581889493
116 => 0.23394116456158
117 => 0.24428943477144
118 => 0.2418197370358
119 => 0.25025834967441
120 => 0.24803618015796
121 => 0.25726028158092
122 => 0.26094002537111
123 => 0.26711888790124
124 => 0.2716640843309
125 => 0.27433311061015
126 => 0.27417287228361
127 => 0.2847488841056
128 => 0.27851257943188
129 => 0.27067831097753
130 => 0.27053661377799
131 => 0.27459409242294
201 => 0.28309745454786
202 => 0.28530225262796
203 => 0.28653443397065
204 => 0.28464730535178
205 => 0.27787824358844
206 => 0.27495539703895
207 => 0.27744574698213
208 => 0.27440026299983
209 => 0.27965762276516
210 => 0.28687710063442
211 => 0.28538630700332
212 => 0.29036980659979
213 => 0.29552720440269
214 => 0.30290251489406
215 => 0.30483069416346
216 => 0.30801790117369
217 => 0.31129858413017
218 => 0.31235225107891
219 => 0.31436402821771
220 => 0.31435342515915
221 => 0.32041605097513
222 => 0.32710331499405
223 => 0.32962760235067
224 => 0.33543206193721
225 => 0.32549212830779
226 => 0.33303168214743
227 => 0.33983254843807
228 => 0.33172427527957
301 => 0.34289964084321
302 => 0.34333355496413
303 => 0.34988514302335
304 => 0.34324385339293
305 => 0.33930027681013
306 => 0.35068523464078
307 => 0.35619405711222
308 => 0.35453475495154
309 => 0.34190738357889
310 => 0.33455771182658
311 => 0.31532220320497
312 => 0.3381074940794
313 => 0.34920554460829
314 => 0.34187864230912
315 => 0.34557390564836
316 => 0.36573406423414
317 => 0.37340974735
318 => 0.37181325891897
319 => 0.37208303918338
320 => 0.3762246984692
321 => 0.39459109659593
322 => 0.38358552510861
323 => 0.39199887213977
324 => 0.39646128106851
325 => 0.40060621517428
326 => 0.39042756703039
327 => 0.37718529534922
328 => 0.37299091203505
329 => 0.34115012627293
330 => 0.33949267509648
331 => 0.33856229752524
401 => 0.33269639854304
402 => 0.32808740874799
403 => 0.32442216894215
404 => 0.31480348515835
405 => 0.31804950857596
406 => 0.30271933419992
407 => 0.31252703649769
408 => 0.28805970803353
409 => 0.30843682622908
410 => 0.29734648722912
411 => 0.30479335159388
412 => 0.30476737018565
413 => 0.29105533185962
414 => 0.28314651431611
415 => 0.28818632067062
416 => 0.29358939314298
417 => 0.2944660234735
418 => 0.30147124796854
419 => 0.30342625554831
420 => 0.29750249131103
421 => 0.28755267703495
422 => 0.28986379196018
423 => 0.28309967964592
424 => 0.271245832993
425 => 0.27975947260743
426 => 0.28266640349011
427 => 0.2839502697721
428 => 0.27229337301244
429 => 0.26863052296701
430 => 0.26668045233712
501 => 0.28604791804432
502 => 0.28710891153534
503 => 0.28168071882591
504 => 0.30621666459489
505 => 0.30066342440257
506 => 0.30686775427427
507 => 0.28965408250468
508 => 0.29031166794756
509 => 0.2821624398705
510 => 0.28672546306204
511 => 0.28350046534336
512 => 0.28635681588083
513 => 0.28806890061582
514 => 0.29621679148474
515 => 0.30852986205466
516 => 0.29499976829714
517 => 0.28910451269247
518 => 0.29276189611343
519 => 0.30250199012779
520 => 0.31725873114579
521 => 0.30852244345605
522 => 0.31239945958097
523 => 0.31324641512782
524 => 0.30680460002035
525 => 0.31749625005731
526 => 0.32322599217093
527 => 0.32910352197643
528 => 0.3342068164219
529 => 0.32675590732246
530 => 0.33472944810472
531 => 0.32830418175364
601 => 0.3225400536049
602 => 0.32254879540797
603 => 0.31893287361979
604 => 0.31192656951971
605 => 0.31063449954767
606 => 0.31735601071269
607 => 0.32274602613756
608 => 0.32318997362438
609 => 0.32617416311258
610 => 0.3279401757121
611 => 0.34524949996511
612 => 0.35221145336991
613 => 0.36072439821027
614 => 0.36404066998887
615 => 0.37402145909323
616 => 0.3659611612914
617 => 0.36421726516033
618 => 0.3400071354844
619 => 0.34397154286255
620 => 0.3503189415834
621 => 0.34011180175141
622 => 0.34658588261508
623 => 0.34786400331735
624 => 0.33976496704573
625 => 0.3440910122571
626 => 0.33260231875871
627 => 0.30878028417795
628 => 0.31752277079169
629 => 0.32396018362858
630 => 0.31477320178306
701 => 0.33124051115586
702 => 0.32162064897453
703 => 0.31857161449787
704 => 0.30667624394515
705 => 0.31229040095123
706 => 0.31988362868895
707 => 0.31519189675451
708 => 0.32492794498556
709 => 0.33871678578994
710 => 0.34854353488681
711 => 0.34929791066324
712 => 0.34297996933501
713 => 0.35310451063406
714 => 0.35317825686421
715 => 0.34175773291892
716 => 0.33476272559217
717 => 0.33317344520991
718 => 0.33714377920156
719 => 0.34196449763152
720 => 0.34956542698561
721 => 0.3541585094039
722 => 0.36613483236813
723 => 0.36937528197416
724 => 0.37293555364825
725 => 0.37769317455196
726 => 0.38340591827583
727 => 0.37090676023469
728 => 0.37140337508501
729 => 0.35976433217972
730 => 0.34732634562782
731 => 0.3567652270038
801 => 0.36910530880112
802 => 0.36627448040224
803 => 0.36595595437879
804 => 0.36649162679848
805 => 0.36435727463193
806 => 0.35470367888543
807 => 0.34985570353624
808 => 0.35611082858711
809 => 0.35943514916806
810 => 0.36459088047789
811 => 0.36395532776967
812 => 0.37723593793869
813 => 0.38239638146556
814 => 0.38107611918356
815 => 0.38131907921733
816 => 0.39066181572782
817 => 0.4010528602078
818 => 0.41078544458239
819 => 0.42068584743244
820 => 0.4087505253774
821 => 0.40269050490618
822 => 0.40894289916513
823 => 0.40562529076251
824 => 0.42468925271054
825 => 0.42600920007333
826 => 0.44507178347993
827 => 0.46316444506299
828 => 0.45180076848637
829 => 0.46251620366689
830 => 0.47410582045688
831 => 0.49646407159231
901 => 0.48893459918265
902 => 0.48316714131873
903 => 0.47771692150548
904 => 0.48905796373883
905 => 0.50364803339445
906 => 0.50679059465633
907 => 0.51188274445136
908 => 0.50652897158033
909 => 0.51297700130474
910 => 0.53574137963974
911 => 0.52959024366689
912 => 0.52085464174101
913 => 0.53882493212235
914 => 0.54532831035362
915 => 0.59097242462631
916 => 0.6486000043599
917 => 0.62474180794711
918 => 0.6099322555345
919 => 0.61341285163874
920 => 0.63445649294076
921 => 0.64121504263518
922 => 0.62284297475396
923 => 0.62933229972108
924 => 0.66508911830626
925 => 0.68427150426112
926 => 0.65821924759627
927 => 0.58634210470544
928 => 0.52006809636587
929 => 0.53764694773502
930 => 0.53565405152503
1001 => 0.57407029234084
1002 => 0.52944354110826
1003 => 0.53019494114733
1004 => 0.56940558913971
1005 => 0.55894486049603
1006 => 0.54199981980217
1007 => 0.52019181391544
1008 => 0.47987769803744
1009 => 0.444170361362
1010 => 0.51420067149106
1011 => 0.51118083717643
1012 => 0.50680766957449
1013 => 0.51653968084646
1014 => 0.56379556510352
1015 => 0.56270616401902
1016 => 0.55577595013678
1017 => 0.56103245628636
1018 => 0.54107832885931
1019 => 0.5462209618443
1020 => 0.52005759822435
1021 => 0.53188453125915
1022 => 0.54196346335525
1023 => 0.54398695819468
1024 => 0.54854599539012
1025 => 0.50958952171496
1026 => 0.52707983469313
1027 => 0.53735375494711
1028 => 0.49093580947123
1029 => 0.53643622141012
1030 => 0.50891137617861
1031 => 0.49956903029773
1101 => 0.51214726826586
1102 => 0.50724551669694
1103 => 0.5030312785385
1104 => 0.50067966123628
1105 => 0.50991573099061
1106 => 0.50948485729708
1107 => 0.49437285453511
1108 => 0.47465986297617
1109 => 0.48127619000024
1110 => 0.478872416364
1111 => 0.47016083061328
1112 => 0.47603138756839
1113 => 0.45018042575899
1114 => 0.40570518958199
1115 => 0.43508689291384
1116 => 0.43395572929671
1117 => 0.43338534530677
1118 => 0.45546488331002
1119 => 0.45334244519262
1120 => 0.44949019922656
1121 => 0.47009008109515
1122 => 0.4625708471056
1123 => 0.48574335450705
1124 => 0.50100626658545
1125 => 0.49713509837888
1126 => 0.51148994096068
1127 => 0.48142861681177
1128 => 0.49141378284305
1129 => 0.49347171172325
1130 => 0.46983588175053
1201 => 0.45368970231726
1202 => 0.45261293622898
1203 => 0.42461768617228
1204 => 0.43957252278281
1205 => 0.45273216012688
1206 => 0.44642971506818
1207 => 0.44443454924279
1208 => 0.45462741874606
1209 => 0.45541949200248
1210 => 0.43736013781577
1211 => 0.44111524941656
1212 => 0.4567746890272
1213 => 0.44072067171635
1214 => 0.40953033849022
1215 => 0.40179470461004
1216 => 0.40076262845441
1217 => 0.37978297585051
1218 => 0.40231163665529
1219 => 0.39247727248343
1220 => 0.42354391106856
1221 => 0.40579881372246
1222 => 0.40503385804254
1223 => 0.40387751533775
1224 => 0.38581946168304
1225 => 0.38977302778424
1226 => 0.40291528364976
1227 => 0.40760458860069
1228 => 0.40711545567596
1229 => 0.40285087942629
1230 => 0.40480318059522
1231 => 0.39851413830326
]
'min_raw' => 0.22004659351547
'max_raw' => 0.68427150426112
'avg_raw' => 0.45215904888829
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.220046'
'max' => '$0.684271'
'avg' => '$0.452159'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.12535330101721
'max_diff' => 0.42737772657877
'year' => 2033
]
8 => [
'items' => [
101 => 0.39629334657487
102 => 0.38928391700319
103 => 0.37898199193715
104 => 0.38041453780296
105 => 0.36000372860182
106 => 0.34888283646541
107 => 0.34580472009305
108 => 0.3416885342366
109 => 0.34626965423829
110 => 0.35994590734384
111 => 0.3434494445196
112 => 0.31516741609975
113 => 0.31686721419802
114 => 0.32068615585023
115 => 0.31356958334615
116 => 0.3068343447197
117 => 0.31269008825822
118 => 0.30070661998134
119 => 0.32213430073979
120 => 0.32155474202566
121 => 0.32954165633352
122 => 0.33453603775821
123 => 0.32302560552449
124 => 0.32013076294523
125 => 0.32177979684164
126 => 0.29452493980243
127 => 0.32731435304854
128 => 0.3275979172559
129 => 0.32516986835564
130 => 0.34262921864964
131 => 0.3794738934779
201 => 0.3656114447339
202 => 0.36024348558549
203 => 0.35003899132041
204 => 0.36363587404571
205 => 0.36259184559682
206 => 0.35787035301491
207 => 0.35501477956941
208 => 0.3602762611994
209 => 0.35436282376922
210 => 0.35330060791636
211 => 0.34686473555031
212 => 0.34456742192917
213 => 0.34286658238276
214 => 0.34099412516321
215 => 0.34512429920227
216 => 0.33576478146012
217 => 0.32447812058792
218 => 0.32353975685976
219 => 0.32613066161499
220 => 0.32498437913097
221 => 0.32353426890023
222 => 0.32076561355572
223 => 0.31994421265796
224 => 0.3226133670886
225 => 0.31960004735778
226 => 0.32404636476463
227 => 0.32283721245593
228 => 0.31608298595106
301 => 0.30766471899107
302 => 0.30758977875721
303 => 0.30577607694941
304 => 0.30346605500527
305 => 0.30282345974656
306 => 0.3121969338704
307 => 0.33159974478229
308 => 0.32779050873038
309 => 0.3305430721641
310 => 0.34408295994586
311 => 0.34838688311305
312 => 0.34533206039299
313 => 0.3411504306405
314 => 0.34133440112748
315 => 0.35562429585713
316 => 0.35651553906308
317 => 0.35876742311855
318 => 0.36166173051219
319 => 0.34582497345746
320 => 0.34058849129438
321 => 0.33810715553654
322 => 0.33046560180019
323 => 0.33870636236754
324 => 0.3339048240895
325 => 0.33455271564711
326 => 0.33413077542027
327 => 0.33436118331559
328 => 0.32212831126632
329 => 0.32658532690025
330 => 0.31917467395645
331 => 0.30925264154953
401 => 0.30921937941779
402 => 0.31164778279285
403 => 0.31020327344193
404 => 0.30631613592034
405 => 0.30686828545851
406 => 0.30203087450509
407 => 0.3074556347324
408 => 0.307611197445
409 => 0.30552236926879
410 => 0.31387996087163
411 => 0.31730407297046
412 => 0.31592916151785
413 => 0.31720760551771
414 => 0.327948799686
415 => 0.32970008300659
416 => 0.33047788737431
417 => 0.3294357325609
418 => 0.31740393482922
419 => 0.31793759622178
420 => 0.31402194301311
421 => 0.31071362867316
422 => 0.31084594389693
423 => 0.31254684751843
424 => 0.31997479339018
425 => 0.33560646757596
426 => 0.3361996781847
427 => 0.33691866674767
428 => 0.33399417892736
429 => 0.33311212541718
430 => 0.33427578167444
501 => 0.34014621662423
502 => 0.35524656912265
503 => 0.34990909603107
504 => 0.34556964732491
505 => 0.34937651374719
506 => 0.34879047650068
507 => 0.34384373237314
508 => 0.34370489374113
509 => 0.33421051019062
510 => 0.33070065276865
511 => 0.32776755319857
512 => 0.32456468503856
513 => 0.32266591743219
514 => 0.32558328745002
515 => 0.3262505244904
516 => 0.31987164395952
517 => 0.31900222611393
518 => 0.32421135765315
519 => 0.32191901307874
520 => 0.32427674632093
521 => 0.32482376065738
522 => 0.3247356787504
523 => 0.32234220774062
524 => 0.32386773478792
525 => 0.32025940853955
526 => 0.31633589569752
527 => 0.31383293894779
528 => 0.31164877721462
529 => 0.31286067708841
530 => 0.30854047532253
531 => 0.30715835582914
601 => 0.32335092054974
602 => 0.33531254220826
603 => 0.33513861549202
604 => 0.33407988133725
605 => 0.33250681713964
606 => 0.34003113718017
607 => 0.33740981453157
608 => 0.33931704577726
609 => 0.33980251617553
610 => 0.34127188885677
611 => 0.34179706329346
612 => 0.34020962138868
613 => 0.33488197246653
614 => 0.32160597789018
615 => 0.31542596657703
616 => 0.31338645990746
617 => 0.31346059210132
618 => 0.31141569525386
619 => 0.31201800902129
620 => 0.31120623510581
621 => 0.3096689316991
622 => 0.31276575293505
623 => 0.31312263273361
624 => 0.31239979765288
625 => 0.3125700514814
626 => 0.30658528573986
627 => 0.30704029448096
628 => 0.30450674799079
629 => 0.30403173856625
630 => 0.29762715366023
701 => 0.28628050313979
702 => 0.29256764897413
703 => 0.28497366091273
704 => 0.28209770256619
705 => 0.29571204207545
706 => 0.29434553999172
707 => 0.29200668242855
708 => 0.28854702463199
709 => 0.28726380390186
710 => 0.2794673609639
711 => 0.27900670552272
712 => 0.28287083316444
713 => 0.2810876712143
714 => 0.27858343650006
715 => 0.2695133522153
716 => 0.25931557447752
717 => 0.25962338128647
718 => 0.26286710464846
719 => 0.27229866779914
720 => 0.26861359290847
721 => 0.26594002879393
722 => 0.26543935060232
723 => 0.27170638641113
724 => 0.28057555506518
725 => 0.28473677056121
726 => 0.28061313238264
727 => 0.27587611887556
728 => 0.27616443893853
729 => 0.2780825031478
730 => 0.27828406457622
731 => 0.27520075575597
801 => 0.27606868912828
802 => 0.27475021897024
803 => 0.26665877004405
804 => 0.26651242139124
805 => 0.26452664933251
806 => 0.26446652094377
807 => 0.26108822729782
808 => 0.26061558066371
809 => 0.25390777358191
810 => 0.25832287251626
811 => 0.25536145595419
812 => 0.25089790266761
813 => 0.25012838439859
814 => 0.25010525175021
815 => 0.25468832294327
816 => 0.25826931666097
817 => 0.25541297106318
818 => 0.2547626365385
819 => 0.26170650784826
820 => 0.2608228369293
821 => 0.26005758361255
822 => 0.27978141829011
823 => 0.26416846407281
824 => 0.25736032487779
825 => 0.2489339597934
826 => 0.2516776267543
827 => 0.25225575769581
828 => 0.23199186863431
829 => 0.22377081136576
830 => 0.2209496543152
831 => 0.2193260385473
901 => 0.22006594064082
902 => 0.21266602486529
903 => 0.21763889064976
904 => 0.21123118908745
905 => 0.21015691706807
906 => 0.22161468122337
907 => 0.22320896217029
908 => 0.21640726434645
909 => 0.22077505544421
910 => 0.21919123367533
911 => 0.21134103073952
912 => 0.21104121072956
913 => 0.20710225484435
914 => 0.20093855161614
915 => 0.19812157384662
916 => 0.19665446736613
917 => 0.19725982409331
918 => 0.19695373720783
919 => 0.19495631323488
920 => 0.19706822721186
921 => 0.19167315970379
922 => 0.18952480035106
923 => 0.18855443627299
924 => 0.18376600333108
925 => 0.19138652956746
926 => 0.19288786923688
927 => 0.19439216700924
928 => 0.20748605208995
929 => 0.20683191859425
930 => 0.21274496681942
1001 => 0.21251519663879
1002 => 0.21082869949994
1003 => 0.20371364548645
1004 => 0.20654957920258
1005 => 0.19782101602628
1006 => 0.20436104904257
1007 => 0.20137645109224
1008 => 0.20335195347333
1009 => 0.19979982206827
1010 => 0.20176571825174
1011 => 0.19324389256853
1012 => 0.18528633165088
1013 => 0.18848868645983
1014 => 0.19197001237085
1015 => 0.19951841397129
1016 => 0.19502264825103
1017 => 0.19663949560776
1018 => 0.19122332761969
1019 => 0.18004822600842
1020 => 0.18011147586992
1021 => 0.17839242994985
1022 => 0.17690692329009
1023 => 0.19553904102539
1024 => 0.19322184265481
1025 => 0.18952969031872
1026 => 0.19447178294088
1027 => 0.19577855067173
1028 => 0.19581575251193
1029 => 0.19942137571518
1030 => 0.2013456974651
1031 => 0.20168486751401
1101 => 0.20735839352898
1102 => 0.20926008461358
1103 => 0.21709288105364
1104 => 0.20118243220911
1105 => 0.20085476698532
1106 => 0.19454132831904
1107 => 0.19053724570537
1108 => 0.19481549128124
1109 => 0.1986054328227
1110 => 0.19465909236715
1111 => 0.19517440111885
1112 => 0.18987676148514
1113 => 0.19177041837708
1114 => 0.19340149079555
1115 => 0.19250090847608
1116 => 0.19115269315515
1117 => 0.19829470083623
1118 => 0.1978917207731
1119 => 0.20454252251977
1120 => 0.20972729808469
1121 => 0.21901934278653
1122 => 0.20932260973492
1123 => 0.20896922224149
1124 => 0.21242364167485
1125 => 0.20925955575996
1126 => 0.21125914883764
1127 => 0.21869717742812
1128 => 0.21885433125155
1129 => 0.21622180222791
1130 => 0.21606161259758
1201 => 0.21656721859328
1202 => 0.21952856870242
1203 => 0.21849378198119
1204 => 0.21969126337259
1205 => 0.22118873218902
1206 => 0.22738289812742
1207 => 0.22887629056491
1208 => 0.225248121177
1209 => 0.22557570424984
1210 => 0.22421866930328
1211 => 0.22290779054851
1212 => 0.22585445455077
1213 => 0.23123954093174
1214 => 0.23120604058885
1215 => 0.23245527595811
1216 => 0.23323353924394
1217 => 0.22989266349763
1218 => 0.22771787623419
1219 => 0.2285518280563
1220 => 0.22988533518096
1221 => 0.22811938966833
1222 => 0.2172191558988
1223 => 0.22052559051485
1224 => 0.21997523811835
1225 => 0.21919146938059
1226 => 0.22251611495492
1227 => 0.22219544477875
1228 => 0.21259012803335
1229 => 0.21320502924701
1230 => 0.21262752221276
1231 => 0.21449356558724
]
'min_raw' => 0.17690692329009
'max_raw' => 0.39629334657487
'avg_raw' => 0.28660013493248
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.1769069'
'max' => '$0.396293'
'avg' => '$0.28660013'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.043139670225379
'max_diff' => -0.28797815768625
'year' => 2034
]
9 => [
'items' => [
101 => 0.20915878329391
102 => 0.21079972639703
103 => 0.21182891052842
104 => 0.21243510788838
105 => 0.21462510842596
106 => 0.21436813713976
107 => 0.21460913473
108 => 0.21785632738853
109 => 0.23427951355339
110 => 0.23517339134062
111 => 0.23077161019583
112 => 0.23253003494188
113 => 0.22915424395469
114 => 0.23142043506022
115 => 0.23297090545962
116 => 0.22596462786306
117 => 0.22554976157416
118 => 0.22216003749672
119 => 0.22398148321215
120 => 0.22108343211232
121 => 0.2217945124827
122 => 0.21980626977626
123 => 0.22338471079267
124 => 0.22738596388254
125 => 0.22839683842731
126 => 0.22573766270887
127 => 0.2238122442405
128 => 0.22043184368231
129 => 0.22605352514772
130 => 0.22769747612584
131 => 0.22604489017308
201 => 0.22566194989811
202 => 0.224936278769
203 => 0.22581590445862
204 => 0.22768852281576
205 => 0.22680543058036
206 => 0.22738872855992
207 => 0.2251657981561
208 => 0.22989376946651
209 => 0.23740292575571
210 => 0.23742706892105
211 => 0.23654397192546
212 => 0.23618262766145
213 => 0.23708873876974
214 => 0.23758026687536
215 => 0.24051046404719
216 => 0.24365468235676
217 => 0.25832737727763
218 => 0.25420734325759
219 => 0.26722583107392
220 => 0.27752176469755
221 => 0.28060906500467
222 => 0.27776889399083
223 => 0.26805282237549
224 => 0.26757610554908
225 => 0.28209601856202
226 => 0.27799347808171
227 => 0.27750549394576
228 => 0.27231416720139
301 => 0.27538288426564
302 => 0.27471171082832
303 => 0.2736522307226
304 => 0.27950712911249
305 => 0.290466976228
306 => 0.28875878127425
307 => 0.28748369298216
308 => 0.28189662725885
309 => 0.28526128874059
310 => 0.28406319723279
311 => 0.28921095867796
312 => 0.28616153883472
313 => 0.27796239730262
314 => 0.27926813761633
315 => 0.27907077759469
316 => 0.28313243285481
317 => 0.28191322476221
318 => 0.27883270764702
319 => 0.29042951666204
320 => 0.28967648438945
321 => 0.29074411198484
322 => 0.29121411466982
323 => 0.29827288795857
324 => 0.30116464151941
325 => 0.301821120205
326 => 0.30456806243156
327 => 0.30175277377999
328 => 0.31301593565303
329 => 0.32050528107489
330 => 0.32920454118057
331 => 0.34191649833565
401 => 0.34669631181813
402 => 0.34583288129497
403 => 0.35547094213039
404 => 0.37279032320958
405 => 0.34933362339113
406 => 0.37403358525728
407 => 0.36621386250523
408 => 0.34767344053093
409 => 0.346479655933
410 => 0.35903544495272
411 => 0.38688297654855
412 => 0.37990748572789
413 => 0.38689438595264
414 => 0.37874379570941
415 => 0.37833905020527
416 => 0.38649852997698
417 => 0.40556359921368
418 => 0.39650649946276
419 => 0.38352092607784
420 => 0.39310927138736
421 => 0.38480295932079
422 => 0.36608651344443
423 => 0.37990215170152
424 => 0.37066402784573
425 => 0.37336020351252
426 => 0.39277736579018
427 => 0.39044104145349
428 => 0.39346446148297
429 => 0.38812820426762
430 => 0.38314329857795
501 => 0.37383860192423
502 => 0.37108393996106
503 => 0.37184522942533
504 => 0.37108356270381
505 => 0.36587767044063
506 => 0.36475345850205
507 => 0.3628797226849
508 => 0.36346047176429
509 => 0.3599373002473
510 => 0.36658625282424
511 => 0.36782035701289
512 => 0.37265891022175
513 => 0.37316126486718
514 => 0.38663656668138
515 => 0.37921459688537
516 => 0.38419389500657
517 => 0.38374849971564
518 => 0.34807526769459
519 => 0.3529907243195
520 => 0.36063763227259
521 => 0.35719271060486
522 => 0.35232239735422
523 => 0.34838935827464
524 => 0.34243040189519
525 => 0.35081751856765
526 => 0.3618456851215
527 => 0.37344095737023
528 => 0.38737191722476
529 => 0.38426268915948
530 => 0.37318052776593
531 => 0.37367766543052
601 => 0.37675077485656
602 => 0.3727708189284
603 => 0.37159705222722
604 => 0.37658951733623
605 => 0.37662389769962
606 => 0.37204447741054
607 => 0.36695528978429
608 => 0.36693396590232
609 => 0.36602839411995
610 => 0.37890489491775
611 => 0.38598566839548
612 => 0.38679746766346
613 => 0.38593102783666
614 => 0.38626448613823
615 => 0.38214434006574
616 => 0.39156177219609
617 => 0.40020413920641
618 => 0.3978878002304
619 => 0.39441527881838
620 => 0.39164924825441
621 => 0.39723621133525
622 => 0.39698743266395
623 => 0.40012865567001
624 => 0.39998615164987
625 => 0.39892987650031
626 => 0.39788783795331
627 => 0.40201940300545
628 => 0.40082957862134
629 => 0.39963790611132
630 => 0.39724782445655
701 => 0.39757267624849
702 => 0.39410075441625
703 => 0.39249448451232
704 => 0.36834003913763
705 => 0.36188518206425
706 => 0.36391601150027
707 => 0.36458461328107
708 => 0.3617754512106
709 => 0.36580306800512
710 => 0.365175368194
711 => 0.36761738096697
712 => 0.36609171740629
713 => 0.36615433117099
714 => 0.3706409823972
715 => 0.37194347633574
716 => 0.37128101740618
717 => 0.37174498093268
718 => 0.38243682457412
719 => 0.38091678631422
720 => 0.38010929628414
721 => 0.38033297654096
722 => 0.38306497182706
723 => 0.38382978134575
724 => 0.38058922967283
725 => 0.38211749257519
726 => 0.38862464204799
727 => 0.3909017760907
728 => 0.3981692948687
729 => 0.39508192372196
730 => 0.4007489270801
731 => 0.41816736337919
801 => 0.43208241555903
802 => 0.4192855585106
803 => 0.44483877976765
804 => 0.46473562790815
805 => 0.46397195373658
806 => 0.4605024780409
807 => 0.43785044541802
808 => 0.41700570727567
809 => 0.43444321584608
810 => 0.43448766764148
811 => 0.43298977019072
812 => 0.42368645776983
813 => 0.43266603508457
814 => 0.43337880132278
815 => 0.43297984176922
816 => 0.4258470139489
817 => 0.41495650423419
818 => 0.41708448376424
819 => 0.42057015764409
820 => 0.4139710498018
821 => 0.41186223499215
822 => 0.41578292294173
823 => 0.42841619642305
824 => 0.42602794925097
825 => 0.42596558246565
826 => 0.43618351664219
827 => 0.42886968093999
828 => 0.41711132440085
829 => 0.41414218430105
830 => 0.40360373719918
831 => 0.4108826801491
901 => 0.41114463634742
902 => 0.40715803368274
903 => 0.41743481523567
904 => 0.41734011288447
905 => 0.4270963874719
906 => 0.44574672019367
907 => 0.44023089908071
908 => 0.43381659924596
909 => 0.43451401148724
910 => 0.44216290241399
911 => 0.43753820835248
912 => 0.43920128058151
913 => 0.44216038515499
914 => 0.4439456864146
915 => 0.43425713411021
916 => 0.43199826911103
917 => 0.42737742407658
918 => 0.42617193185926
919 => 0.42993551372272
920 => 0.428943942871
921 => 0.4111226199433
922 => 0.40926019254045
923 => 0.40931731052996
924 => 0.40463414827189
925 => 0.39749120174062
926 => 0.41626243874163
927 => 0.41475484570716
928 => 0.41309057967553
929 => 0.41329444276823
930 => 0.42144240053412
1001 => 0.41671617354818
1002 => 0.42928162260368
1003 => 0.42669854402984
1004 => 0.42404921923743
1005 => 0.42368300185071
1006 => 0.42266323783541
1007 => 0.41916608758944
1008 => 0.41494306852128
1009 => 0.41215466554084
1010 => 0.38019089254823
1011 => 0.38612318289094
1012 => 0.39294774218496
1013 => 0.39530355270555
1014 => 0.39127377579295
1015 => 0.41932520774373
1016 => 0.42445047467146
1017 => 0.40892570683447
1018 => 0.40602165664427
1019 => 0.41951559679072
1020 => 0.41137710131532
1021 => 0.41504186532957
1022 => 0.4071206500495
1023 => 0.4232159479539
1024 => 0.42309332875087
1025 => 0.41683189433727
1026 => 0.42212401582719
1027 => 0.4212043794856
1028 => 0.41413523545388
1029 => 0.42344005242871
1030 => 0.42344466750184
1031 => 0.41741817301407
1101 => 0.41038054682164
1102 => 0.40912238547974
1103 => 0.40817452991882
1104 => 0.41480875096618
1105 => 0.42075697281257
1106 => 0.43182513897946
1107 => 0.43460793892696
1108 => 0.44546939238352
1109 => 0.43900192568471
1110 => 0.44186886990458
1111 => 0.44498134340927
1112 => 0.44647357766484
1113 => 0.44404206202309
1114 => 0.46091436999373
1115 => 0.46233890974061
1116 => 0.46281654559552
1117 => 0.45712729827879
1118 => 0.46218068148096
1119 => 0.45981637083113
1120 => 0.46596765031758
1121 => 0.46693224948454
1122 => 0.46611526830674
1123 => 0.46642144730749
1124 => 0.45202390893363
1125 => 0.45127732061588
1126 => 0.44109753592787
1127 => 0.4452458734334
1128 => 0.4374907553018
1129 => 0.4399499831479
1130 => 0.44103398735008
1201 => 0.44046776507156
1202 => 0.44548041421185
1203 => 0.44121863842604
1204 => 0.42997111142646
1205 => 0.41872052004568
1206 => 0.41857927803543
1207 => 0.4156171959143
1208 => 0.41347615307313
1209 => 0.41388859388191
1210 => 0.41534208908757
1211 => 0.41339167328946
1212 => 0.41380789338858
1213 => 0.42071992029394
1214 => 0.42210607799549
1215 => 0.41739537251885
1216 => 0.39848121027857
1217 => 0.39383962742222
1218 => 0.39717590513278
1219 => 0.39558137927093
1220 => 0.31926504693244
1221 => 0.33719443719921
1222 => 0.32654140232725
1223 => 0.33145081091882
1224 => 0.32057682090456
1225 => 0.32576645889401
1226 => 0.32480812225259
1227 => 0.35363805123234
1228 => 0.35318791154559
1229 => 0.35340336959277
1230 => 0.34311899562772
1231 => 0.35950228260523
]
'min_raw' => 0.20915878329391
'max_raw' => 0.46693224948454
'avg_raw' => 0.33804551638922
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.209158'
'max' => '$0.466932'
'avg' => '$0.338045'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.032251860003812
'max_diff' => 0.070638902909667
'year' => 2035
]
10 => [
'items' => [
101 => 0.3675732788943
102 => 0.3660795522838
103 => 0.36645549109059
104 => 0.35999561684516
105 => 0.35346591529605
106 => 0.34622347136423
107 => 0.35967903699643
108 => 0.3581830077923
109 => 0.36161436053227
110 => 0.37034125666845
111 => 0.37162632527475
112 => 0.37335347051351
113 => 0.37273441189199
114 => 0.38748289979518
115 => 0.38569676059645
116 => 0.39000084215807
117 => 0.38114701983435
118 => 0.37112807946253
119 => 0.37303235248337
120 => 0.37284895567827
121 => 0.37051410385624
122 => 0.3684063040296
123 => 0.36489741118715
124 => 0.37600006735909
125 => 0.37554931979434
126 => 0.38284639893091
127 => 0.38155656931347
128 => 0.3729427714534
129 => 0.37325041492912
130 => 0.3753194651517
131 => 0.38248047159609
201 => 0.38460634586728
202 => 0.38362155620342
203 => 0.38595248029193
204 => 0.38779474765206
205 => 0.38618384070832
206 => 0.40899088592964
207 => 0.3995198106521
208 => 0.40413594684305
209 => 0.40523686812474
210 => 0.40241688141158
211 => 0.40302843555351
212 => 0.40395477344001
213 => 0.40957931569127
214 => 0.424339742033
215 => 0.43087703438213
216 => 0.45054480095882
217 => 0.43033420325604
218 => 0.42913499002813
219 => 0.43267774869824
220 => 0.44422480972328
221 => 0.45358261812378
222 => 0.45668714303515
223 => 0.45709745725231
224 => 0.46292175237094
225 => 0.46626012971627
226 => 0.46221452974937
227 => 0.4587863073694
228 => 0.44650684033095
229 => 0.44792822207653
301 => 0.45772013278711
302 => 0.47155178340647
303 => 0.48342077857585
304 => 0.47926467014377
305 => 0.51097284372519
306 => 0.51411657961951
307 => 0.51368221696807
308 => 0.52084411518596
309 => 0.50662920571865
310 => 0.50055205652047
311 => 0.45952752795992
312 => 0.47105374711666
313 => 0.4878077835721
314 => 0.48559032402281
315 => 0.47342309491219
316 => 0.4834115486415
317 => 0.48010905347077
318 => 0.47750423850896
319 => 0.48943740081724
320 => 0.47631639867199
321 => 0.48767689153866
322 => 0.47310694192791
323 => 0.47928365489701
324 => 0.47577745388176
325 => 0.47804639564246
326 => 0.46478220847149
327 => 0.471939241899
328 => 0.46448445235077
329 => 0.46448091780988
330 => 0.46431635291742
331 => 0.47308687976132
401 => 0.47337288632683
402 => 0.46689145373766
403 => 0.46595737804255
404 => 0.46941114545625
405 => 0.46536768835793
406 => 0.46725959648501
407 => 0.46542499232778
408 => 0.46501198428931
409 => 0.46172106597126
410 => 0.46030324787416
411 => 0.4608592108827
412 => 0.45896142251596
413 => 0.457817936379
414 => 0.46408888474365
415 => 0.46073857000175
416 => 0.46357540095918
417 => 0.46034247404658
418 => 0.44913574084833
419 => 0.44269063007696
420 => 0.42152214993017
421 => 0.42752550464038
422 => 0.43150573502417
423 => 0.43019026890607
424 => 0.43301639914556
425 => 0.43318990058939
426 => 0.43227109683954
427 => 0.43120723980327
428 => 0.430689413033
429 => 0.43454886953109
430 => 0.43678941393157
501 => 0.4319052043918
502 => 0.43076090243399
503 => 0.43569910794329
504 => 0.43871141045126
505 => 0.46095255970352
506 => 0.45930486352895
507 => 0.46344025758308
508 => 0.46297467567538
509 => 0.46730922746405
510 => 0.47439438772026
511 => 0.45998827587742
512 => 0.46248867876747
513 => 0.46187563772157
514 => 0.46856865911277
515 => 0.46858955399498
516 => 0.46457675332974
517 => 0.46675215767062
518 => 0.46553790664664
519 => 0.46773222236285
520 => 0.45928285754199
521 => 0.46957327184122
522 => 0.47540727364924
523 => 0.47548827877001
524 => 0.47825354932551
525 => 0.48106322436357
526 => 0.48645615092799
527 => 0.4809128185687
528 => 0.47094090328686
529 => 0.47166084336112
530 => 0.46581431307995
531 => 0.46591259431024
601 => 0.46538796140052
602 => 0.46696242425511
603 => 0.45962836359884
604 => 0.46134965297575
605 => 0.45893983776822
606 => 0.46248344029984
607 => 0.4586711097543
608 => 0.46187534209461
609 => 0.46325818255071
610 => 0.46836089360413
611 => 0.45791743518282
612 => 0.43662251650178
613 => 0.44109896658447
614 => 0.43447794529461
615 => 0.43509074602299
616 => 0.43632870102084
617 => 0.43231608383915
618 => 0.43308156474532
619 => 0.43305421638074
620 => 0.43281854294962
621 => 0.43177470624604
622 => 0.43026093650904
623 => 0.43629132922748
624 => 0.43731601046026
625 => 0.43959374990957
626 => 0.4463707575053
627 => 0.44569357463364
628 => 0.44679808799336
629 => 0.44438694153067
630 => 0.43520259219206
701 => 0.43570134654839
702 => 0.42948187173303
703 => 0.43943470395525
704 => 0.43707774191407
705 => 0.43555819315317
706 => 0.43514357019523
707 => 0.44193737668197
708 => 0.44397019006267
709 => 0.44270347718085
710 => 0.44010541210432
711 => 0.44509446510025
712 => 0.44642932521072
713 => 0.44672815116171
714 => 0.45556779651448
715 => 0.44722218914072
716 => 0.44923105978378
717 => 0.46490369508358
718 => 0.4506907775425
719 => 0.4582196769499
720 => 0.45785117650241
721 => 0.46170270667516
722 => 0.4575352386105
723 => 0.45758689937182
724 => 0.46100679723998
725 => 0.45620416746599
726 => 0.45501496879441
727 => 0.45337209934683
728 => 0.45695924468244
729 => 0.45910957607852
730 => 0.47643966788648
731 => 0.48763569754262
801 => 0.48714964836782
802 => 0.49159122797957
803 => 0.48959025568427
804 => 0.48312858831292
805 => 0.49415786659942
806 => 0.49066774146497
807 => 0.49095546314055
808 => 0.49094475412541
809 => 0.49326538222779
810 => 0.49162100453481
811 => 0.48837976731005
812 => 0.49053145184206
813 => 0.49692118566081
814 => 0.5167551154952
815 => 0.52785444539515
816 => 0.5160869218985
817 => 0.52420400203307
818 => 0.5193366463637
819 => 0.51845210304729
820 => 0.52355022921931
821 => 0.52865727898632
822 => 0.52833198199454
823 => 0.5246245261136
824 => 0.52253027835967
825 => 0.53838862397691
826 => 0.55007278288782
827 => 0.54927600158169
828 => 0.55279273513978
829 => 0.56311797363481
830 => 0.5640619840427
831 => 0.56394306042914
901 => 0.5616032321359
902 => 0.5717697703359
903 => 0.58025087536557
904 => 0.56106162949015
905 => 0.56836864311383
906 => 0.57164899694678
907 => 0.57646552961067
908 => 0.58459182755927
909 => 0.59341914252551
910 => 0.59466742164832
911 => 0.59378170787503
912 => 0.58795985636383
913 => 0.59761880973167
914 => 0.60327679808422
915 => 0.6066460006674
916 => 0.6151897378365
917 => 0.57166925529529
918 => 0.54086329464429
919 => 0.53605249904517
920 => 0.54583544107117
921 => 0.54841512486593
922 => 0.54737525756291
923 => 0.51270034809481
924 => 0.53586994282296
925 => 0.5607984785956
926 => 0.56175608517929
927 => 0.57423583141817
928 => 0.57829974835563
929 => 0.58834757983567
930 => 0.58771908524086
1001 => 0.59016557231033
1002 => 0.58960316730031
1003 => 0.60821465929653
1004 => 0.62874589880167
1005 => 0.62803496726296
1006 => 0.62508335866949
1007 => 0.62946700075484
1008 => 0.65065744018548
1009 => 0.64870656409258
1010 => 0.6506016740416
1011 => 0.67558639637116
1012 => 0.7080700894349
1013 => 0.69297815269734
1014 => 0.72572331283005
1015 => 0.74633465538723
1016 => 0.78197984108729
1017 => 0.7775168882814
1018 => 0.79139329749798
1019 => 0.76952727131251
1020 => 0.71931845533766
1021 => 0.71137271801801
1022 => 0.72728028535006
1023 => 0.76638748739818
1024 => 0.72604866038685
1025 => 0.73420915255384
1026 => 0.73185893026076
1027 => 0.73173369690256
1028 => 0.73651334482405
1029 => 0.72958021622427
1030 => 0.70133340306274
1031 => 0.71427875107515
1101 => 0.70927993052089
1102 => 0.7148264946126
1103 => 0.74475901343855
1104 => 0.73152513336347
1105 => 0.7175843157375
1106 => 0.73506919475556
1107 => 0.75733345420184
1108 => 0.75594019685842
1109 => 0.75323669527577
1110 => 0.76847619214638
1111 => 0.79364737622299
1112 => 0.80045104613289
1113 => 0.80547337616547
1114 => 0.806165870624
1115 => 0.81329899392978
1116 => 0.77494239213606
1117 => 0.8358153042501
1118 => 0.84632637459193
1119 => 0.84435072900689
1120 => 0.85603334131839
1121 => 0.85259602041708
1122 => 0.8476158817302
1123 => 0.86613530720682
1124 => 0.84490428033845
1125 => 0.81476951061077
1126 => 0.79823697993999
1127 => 0.82000834996847
1128 => 0.83330336592876
1129 => 0.84209052575668
1130 => 0.84474951501126
1201 => 0.77791990594607
1202 => 0.74190245319997
1203 => 0.76498922746928
1204 => 0.79315668544189
1205 => 0.77478592048482
1206 => 0.77550601969068
1207 => 0.74931413661399
1208 => 0.79547408591708
1209 => 0.7887489695699
1210 => 0.8236388850756
1211 => 0.8153121267311
1212 => 0.84376349840727
1213 => 0.83627129873564
1214 => 0.86737100068935
1215 => 0.8797775137895
1216 => 0.90060998020424
1217 => 0.91593442730231
1218 => 0.92493323574826
1219 => 0.92439298104284
1220 => 0.96005074329426
1221 => 0.93902460668193
1222 => 0.91261082361692
1223 => 0.91213308161569
1224 => 0.92581315415126
1225 => 0.95448283324119
1226 => 0.96191646390234
1227 => 0.96607084932738
1228 => 0.95970826343374
1229 => 0.93688589909783
1230 => 0.9270313178896
1231 => 0.93542770659372
]
'min_raw' => 0.34622347136423
'max_raw' => 0.96607084932738
'avg_raw' => 0.65614716034581
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.346223'
'max' => '$0.96607'
'avg' => '$0.656147'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.13706468807032
'max_diff' => 0.49913859984285
'year' => 2036
]
11 => [
'items' => [
101 => 0.92515964471849
102 => 0.94288520022445
103 => 0.96722617390849
104 => 0.96219985909738
105 => 0.97900207592369
106 => 0.99639060269417
107 => 1.0212569769436
108 => 1.0277579679715
109 => 1.0385038589302
110 => 1.049564910568
111 => 1.0531174222503
112 => 1.0599002693316
113 => 1.0598645203793
114 => 1.0803050865969
115 => 1.1028516641266
116 => 1.1113624751896
117 => 1.13093261594
118 => 1.0974194357244
119 => 1.1228395678896
120 => 1.1457691634098
121 => 1.1184315543544
122 => 1.1561100795913
123 => 1.1575730513449
124 => 1.1796621879038
125 => 1.1572706162348
126 => 1.1439745724542
127 => 1.1823597526526
128 => 1.2009331322288
129 => 1.1953386791452
130 => 1.1527646149475
131 => 1.1279846834968
201 => 1.0631308231988
202 => 1.1399530222001
203 => 1.1773708743994
204 => 1.1526677117498
205 => 1.1651265500931
206 => 1.2330979323023
207 => 1.2589770338265
208 => 1.2535943616181
209 => 1.254503944615
210 => 1.2684678380585
211 => 1.3303914316438
212 => 1.2932853789898
213 => 1.3216515659065
214 => 1.3366968891652
215 => 1.3506718238929
216 => 1.3163538010252
217 => 1.2717065575063
218 => 1.25756490132
219 => 1.1502114690704
220 => 1.1446232567095
221 => 1.1414864237711
222 => 1.1217091358086
223 => 1.1061696049252
224 => 1.093811993021
225 => 1.0613819290889
226 => 1.0723261236714
227 => 1.020639370444
228 => 1.0537067234929
301 => 0.97121341732163
302 => 1.0399162940029
303 => 1.0025244417618
304 => 1.027632064891
305 => 1.0275444667592
306 => 0.98131337219907
307 => 0.95464824167511
308 => 0.97164030066738
309 => 0.98985713673842
310 => 0.99281275710215
311 => 1.0164313605763
312 => 1.0230228051258
313 => 1.0030504204158
314 => 0.96950392691012
315 => 0.97729601223743
316 => 0.95449033531466
317 => 0.91452426371519
318 => 0.9432285940786
319 => 0.95302951450498
320 => 0.95735815931139
321 => 0.91805611802765
322 => 0.90570656336747
323 => 0.89913176408919
324 => 0.96443052691429
325 => 0.96800774054547
326 => 0.94970620984131
327 => 1.0324308640465
328 => 1.0137077270232
329 => 1.0346260583581
330 => 0.97658896216675
331 => 0.97880605739858
401 => 0.95133036597586
402 => 0.96671491724622
403 => 0.95584161227556
404 => 0.96547199753667
405 => 0.97124441075461
406 => 0.99871559368674
407 => 1.0402299707844
408 => 0.9946123150399
409 => 0.97473604917516
410 => 0.98706717272928
411 => 1.0199065797304
412 => 1.0696599623553
413 => 1.0402049584612
414 => 1.053276589011
415 => 1.0561321587698
416 => 1.0344131293818
417 => 1.0704607739485
418 => 1.0897789995224
419 => 1.1095955016177
420 => 1.1268016151412
421 => 1.1016803549066
422 => 1.1285637043488
423 => 1.1069004702484
424 => 1.0874663097563
425 => 1.0874957833557
426 => 1.0753044505913
427 => 1.0516822071533
428 => 1.0473259030332
429 => 1.0699879472069
430 => 1.0881607605307
501 => 1.089657560478
502 => 1.0997189636869
503 => 1.1056731984653
504 => 1.1640327936827
505 => 1.1875055056551
506 => 1.2162074935392
507 => 1.2273885353754
508 => 1.2610394626772
509 => 1.2338636058863
510 => 1.2279839383254
511 => 1.1463577958258
512 => 1.1597240720873
513 => 1.1811247700359
514 => 1.1467106854526
515 => 1.1685385010903
516 => 1.1728477742736
517 => 1.1455413080271
518 => 1.1601268714921
519 => 1.1213919392473
520 => 1.041074286457
521 => 1.0705501904561
522 => 1.0922543772815
523 => 1.0612798265747
524 => 1.1168005098359
525 => 1.0843664728543
526 => 1.0740864402394
527 => 1.0339803679127
528 => 1.0529088902266
529 => 1.0785099876865
530 => 1.0626914859033
531 => 1.0955172522635
601 => 1.1420072917416
602 => 1.1751388624034
603 => 1.1776822930025
604 => 1.1563809127097
605 => 1.1905165105724
606 => 1.1907651511361
607 => 1.1522600572991
608 => 1.1286759017211
609 => 1.1233175319523
610 => 1.1367037902051
611 => 1.1529571789635
612 => 1.1785842429607
613 => 1.1940701410128
614 => 1.2344491500468
615 => 1.2453745521345
616 => 1.257378256654
617 => 1.2734189076973
618 => 1.2926798220134
619 => 1.2505380380143
620 => 1.2522124096547
621 => 1.2129705638875
622 => 1.1710350238353
623 => 1.202858871396
624 => 1.2444643187327
625 => 1.2349199831437
626 => 1.2338460504169
627 => 1.2356521073793
628 => 1.2284559900341
629 => 1.1959082179822
630 => 1.1795629306176
701 => 1.2006525214455
702 => 1.2118607003809
703 => 1.2292436084536
704 => 1.227100798125
705 => 1.2718773025324
706 => 1.2892760981739
707 => 1.2848247417124
708 => 1.2856438984292
709 => 1.3171435868633
710 => 1.3521777188071
711 => 1.3849918065334
712 => 1.4183717059664
713 => 1.3781309343603
714 => 1.3576991522444
715 => 1.3787795360167
716 => 1.3675939876592
717 => 1.4318694663703
718 => 1.4363197610598
719 => 1.5005905919222
720 => 1.5615912636388
721 => 1.5232778346741
722 => 1.5594056725131
723 => 1.5984808746817
724 => 1.6738632793881
725 => 1.6484771374679
726 => 1.6290317506087
727 => 1.6106559539861
728 => 1.6488930696821
729 => 1.6980845081722
730 => 1.7086798728732
731 => 1.7258484114297
801 => 1.7077977924066
802 => 1.7295377748095
803 => 1.806289465724
804 => 1.785550481333
805 => 1.7560977895396
806 => 1.8166858782059
807 => 1.838612471964
808 => 1.9925047900047
809 => 2.1868001985056
810 => 2.1063606235738
811 => 2.0564291836448
812 => 2.0681642564177
813 => 2.1391143622876
814 => 2.1619012844492
815 => 2.0999585748908
816 => 2.1218377870876
817 => 2.2423943974089
818 => 2.3070691509272
819 => 2.2192321486712
820 => 1.9768933431129
821 => 1.7534458968925
822 => 1.8127142215998
823 => 1.8059950328882
824 => 1.935518070935
825 => 1.7850558634141
826 => 1.7875892611069
827 => 1.9197906984132
828 => 1.8845216214463
829 => 1.827390233682
830 => 1.7538630192486
831 => 1.6179411629242
901 => 1.4975513843163
902 => 1.7336634642765
903 => 1.7234818820467
904 => 1.7087374421519
905 => 1.7415495976227
906 => 1.9008761106959
907 => 1.8972031188799
908 => 1.8738374189239
909 => 1.8915600964047
910 => 1.8242833626317
911 => 1.8416221087878
912 => 1.7534105016754
913 => 1.7932858321323
914 => 1.8272676553829
915 => 1.8340900095099
916 => 1.8494611217162
917 => 1.7181166508662
918 => 1.7770864622068
919 => 1.8117257016453
920 => 1.6552243576759
921 => 1.8086321732652
922 => 1.7158302358438
923 => 1.6843318644447
924 => 1.7267402719387
925 => 1.7102136742948
926 => 1.6960050761149
927 => 1.6880764341958
928 => 1.7192164882143
929 => 1.7177637674739
930 => 1.6668125950756
1001 => 1.6003488677175
1002 => 1.6226562762164
1003 => 1.6145517855756
1004 => 1.5851800659936
1005 => 1.604973058637
1006 => 1.5178147360401
1007 => 1.3678633721075
1008 => 1.4669258362558
1009 => 1.4631120391454
1010 => 1.4611889497003
1011 => 1.5356316536224
1012 => 1.5284757053257
1013 => 1.5154875890959
1014 => 1.5849415290537
1015 => 1.5595899066818
1016 => 1.6377176332385
1017 => 1.6891776069333
1018 => 1.6761256930486
1019 => 1.7245240470362
1020 => 1.6231701938535
1021 => 1.65683587827
1022 => 1.6637743291696
1023 => 1.5840844782156
1024 => 1.5296465069661
1025 => 1.5260161149221
1026 => 1.43162817479
1027 => 1.4820494505357
1028 => 1.5264180866178
1029 => 1.5051689530797
1030 => 1.4984421122014
1031 => 1.5328080833751
1101 => 1.5354786136599
1102 => 1.4745902401556
1103 => 1.4872508610912
1104 => 1.5400477550456
1105 => 1.4859205148264
1106 => 1.3807601287149
1107 => 1.3546788990032
1108 => 1.3511991821872
1109 => 1.2804648186806
1110 => 1.3564217714848
1111 => 1.323264526066
1112 => 1.4280078670592
1113 => 1.3681790324337
1114 => 1.3655999309514
1115 => 1.3617012407889
1116 => 1.300817252119
1117 => 1.3141469762584
1118 => 1.358457009472
1119 => 1.3742673285108
1120 => 1.3726181827049
1121 => 1.358239866136
1122 => 1.3648221858323
1123 => 1.3436182406581
1124 => 1.3361306862951
1125 => 1.3124979051114
1126 => 1.2777642454938
1127 => 1.2825941738976
1128 => 1.2137777056387
1129 => 1.1762828413649
1130 => 1.1659047571083
1201 => 1.1520267491103
1202 => 1.1674723150396
1203 => 1.2135827572305
1204 => 1.1579637810723
1205 => 1.0626089476666
1206 => 1.068339935631
1207 => 1.0812157640415
1208 => 1.0572217429808
1209 => 1.0345134157123
1210 => 1.0542564638874
1211 => 1.0138533639329
1212 => 1.0860982856429
1213 => 1.0841442629747
1214 => 1.1110727021922
1215 => 1.1279116078621
1216 => 1.0891033819534
1217 => 1.079343218086
1218 => 1.0849030509996
1219 => 0.99301139761852
1220 => 1.1035631936615
1221 => 1.1045192501845
1222 => 1.0963329137963
1223 => 1.1551983322854
1224 => 1.2794227258819
1225 => 1.2326845120963
1226 => 1.2145860630485
1227 => 1.1801808981787
1228 => 1.2260237375911
1229 => 1.2225037227839
1230 => 1.2065848808999
1231 => 1.1969571156587
]
'min_raw' => 0.89913176408919
'max_raw' => 2.3070691509272
'avg_raw' => 1.6031004575082
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.899131'
'max' => '$2.30'
'avg' => '$1.60'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.55290829272496
'max_diff' => 1.3409983015998
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.028222718659906
]
1 => [
'year' => 2028
'avg' => 0.048438378334167
]
2 => [
'year' => 2029
'avg' => 0.13232491944065
]
3 => [
'year' => 2030
'avg' => 0.10208847828428
]
4 => [
'year' => 2031
'avg' => 0.10026353736099
]
5 => [
'year' => 2032
'avg' => 0.1757935350903
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.028222718659906
'min' => '$0.028222'
'max_raw' => 0.1757935350903
'max' => '$0.175793'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.1757935350903
]
1 => [
'year' => 2033
'avg' => 0.45215904888829
]
2 => [
'year' => 2034
'avg' => 0.28660013493248
]
3 => [
'year' => 2035
'avg' => 0.33804551638922
]
4 => [
'year' => 2036
'avg' => 0.65614716034581
]
5 => [
'year' => 2037
'avg' => 1.6031004575082
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.1757935350903
'min' => '$0.175793'
'max_raw' => 1.6031004575082
'max' => '$1.60'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 1.6031004575082
]
]
]
]
'prediction_2025_max_price' => '$0.048255'
'last_price' => false
'sma_50day_nextmonth' => '—'
'sma_200day_nextmonth' => '—'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'decrease'
'sma_200day_direction_label' => 'disminuir'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '—'
'daily_sma3_action' => '—'
'daily_sma5' => '—'
'daily_sma5_action' => '—'
'daily_sma10' => '—'
'daily_sma10_action' => '—'
'daily_sma21' => '—'
'daily_sma21_action' => '—'
'daily_sma50' => '—'
'daily_sma50_action' => '—'
'daily_sma100' => '—'
'daily_sma100_action' => '—'
'daily_sma200' => '—'
'daily_sma200_action' => '—'
'daily_ema3' => '—'
'daily_ema3_action' => '—'
'daily_ema5' => '—'
'daily_ema5_action' => '—'
'daily_ema10' => '—'
'daily_ema10_action' => '—'
'daily_ema21' => '—'
'daily_ema21_action' => '—'
'daily_ema50' => '—'
'daily_ema50_action' => '—'
'daily_ema100' => '—'
'daily_ema100_action' => '—'
'daily_ema200' => '—'
'daily_ema200_action' => '—'
'weekly_sma21' => '—'
'weekly_sma21_action' => '—'
'weekly_sma50' => '—'
'weekly_sma50_action' => '—'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '—'
'weekly_ema3_action' => '—'
'weekly_ema5' => '—'
'weekly_ema5_action' => '—'
'weekly_ema10' => '—'
'weekly_ema10_action' => '—'
'weekly_ema21' => '—'
'weekly_ema21_action' => '—'
'weekly_ema50' => '—'
'weekly_ema50_action' => '—'
'weekly_ema100' => '—'
'weekly_ema100_action' => '—'
'weekly_ema200' => '—'
'weekly_ema200_action' => '—'
'rsi_14' => '—'
'rsi_14_action' => '—'
'stoch_rsi_14' => '—'
'stoch_rsi_14_action' => '—'
'momentum_10' => '—'
'momentum_10_action' => '—'
'vwma_10' => '—'
'vwma_10_action' => '—'
'hma_9' => '—'
'hma_9_action' => '—'
'stochastic_fast_14' => '—'
'stochastic_fast_14_action' => '—'
'cci_20' => '—'
'cci_20_action' => '—'
'adx_14' => '—'
'adx_14_action' => '—'
'ao_5_34' => '—'
'ao_5_34_action' => '—'
'macd_12_26' => '—'
'macd_12_26_action' => '—'
'williams_percent_r_14' => '—'
'williams_percent_r_14_action' => '—'
'ultimate_oscillator' => '—'
'ultimate_oscillator_action' => '—'
'ichimoku_cloud' => '—'
'ichimoku_cloud_action' => '—'
'sell_signals' => 0
'buy_signals' => 0
'sell_pct' => 0
'buy_pct' => 0
'overall_action' => 'neutral'
'overall_action_label' => 'Neutral'
'overall_action_dir' => 0
'last_updated' => 1767706540
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de Eva Token para 2026
La previsión del precio de Eva Token para 2026 sugiere que el precio medio podría oscilar entre $0.016165 en el extremo inferior y $0.048255 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, Eva Token podría potencialmente ganar 3.13% para 2026 si EVA alcanza el objetivo de precio previsto.
Predicción de precio de Eva Token 2027-2032
La predicción del precio de EVA para 2027-2032 está actualmente dentro de un rango de precios de $0.028222 en el extremo inferior y $0.175793 en el extremo superior. Considerando la volatilidad de precios en el mercado, si Eva Token alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de Eva Token | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.015562 | $0.028222 | $0.040882 |
| 2028 | $0.028085 | $0.048438 | $0.06879 |
| 2029 | $0.061696 | $0.132324 | $0.202953 |
| 2030 | $0.05247 | $0.102088 | $0.1517067 |
| 2031 | $0.062036 | $0.100263 | $0.138491 |
| 2032 | $0.094693 | $0.175793 | $0.256893 |
Predicción de precio de Eva Token 2032-2037
La predicción de precio de Eva Token para 2032-2037 se estima actualmente entre $0.175793 en el extremo inferior y $1.60 en el extremo superior. Comparado con el precio actual, Eva Token podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de Eva Token | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.094693 | $0.175793 | $0.256893 |
| 2033 | $0.220046 | $0.452159 | $0.684271 |
| 2034 | $0.1769069 | $0.28660013 | $0.396293 |
| 2035 | $0.209158 | $0.338045 | $0.466932 |
| 2036 | $0.346223 | $0.656147 | $0.96607 |
| 2037 | $0.899131 | $1.60 | $2.30 |
Eva Token Histograma de precios potenciales
Pronóstico de precio de Eva Token basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para Eva Token es Neutral, con 0 indicadores técnicos mostrando señales alcistas y 0 indicando señales bajistas. La predicción de precio de EVA se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de Eva Token
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de Eva Token disminuir durante el próximo mes, alcanzando — para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para Eva Token alcance — para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en —, lo que sugiere que el mercado de EVA está en un estado —.
Promedios Móviles y Osciladores Populares de EVA para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | — | — |
| SMA 5 | — | — |
| SMA 10 | — | — |
| SMA 21 | — | — |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | — | — |
| EMA 5 | — | — |
| EMA 10 | — | — |
| EMA 21 | — | — |
| EMA 50 | — | — |
| EMA 100 | — | — |
| EMA 200 | — | — |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | — | — |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | — | — |
| EMA 50 | — | — |
| EMA 100 | — | — |
| EMA 200 | — | — |
Osciladores de Eva Token
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | — | — |
| Stoch RSI (14) | — | — |
| Estocástico Rápido (14) | — | — |
| Índice de Canal de Materias Primas (20) | — | — |
| Índice Direccional Medio (14) | — | — |
| Oscilador Asombroso (5, 34) | — | — |
| Momentum (10) | — | — |
| MACD (12, 26) | — | — |
| Rango Percentil de Williams (14) | — | — |
| Oscilador Ultimate (7, 14, 28) | — | — |
| VWMA (10) | — | — |
| Promedio Móvil de Hull (9) | — | — |
| Nube Ichimoku B/L (9, 26, 52, 26) | — | — |
Predicción de precios de Eva Token basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de Eva Token
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de Eva Token por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.065751 | $0.092391 | $0.129825 | $0.182426 | $0.25634 | $0.36020075 |
| Amazon.com acción | $0.097635 | $0.203722 | $0.425078 | $0.886951 | $1.85 | $3.86 |
| Apple acción | $0.066371 | $0.094143 | $0.133534 | $0.1894091 | $0.268662 | $0.381077 |
| Netflix acción | $0.073831 | $0.116494 | $0.1838097 | $0.290022 | $0.45761 | $0.722038 |
| Google acción | $0.060596 | $0.078471 | $0.10162 | $0.131598 | $0.170419 | $0.220692 |
| Tesla acción | $0.106075 | $0.240464 | $0.545114 | $1.23 | $2.80 | $6.35 |
| Kodak acción | $0.035089 | $0.026313 | $0.019732 | $0.014797 | $0.011096 | $0.00832 |
| Nokia acción | $0.030998 | $0.020534 | $0.0136035 | $0.009011 | $0.005969 | $0.003954 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de Eva Token
Podría preguntarse cosas como: "¿Debo invertir en Eva Token ahora?", "¿Debería comprar EVA hoy?", "¿Será Eva Token una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de Eva Token regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como Eva Token, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de Eva Token a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de Eva Token es de $0.04679 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Predicción de precios de Eva Token basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Eva Token ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.0480088 | $0.049256 | $0.050537 | $0.05185 |
| Si Eva Token ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.049225 | $0.051784 | $0.054476 | $0.0573082 |
| Si Eva Token ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.052874 | $0.059745 | $0.06751 | $0.076284 |
| Si Eva Token ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.058955 | $0.074279 | $0.093587 | $0.117914 |
| Si Eva Token ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.071118 | $0.10809 | $0.164282 | $0.249687 |
| Si Eva Token ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.107607 | $0.247459 | $0.569073 | $1.30 |
| Si Eva Token ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.168421 | $0.6062031 | $2.18 | $7.85 |
Cuadro de preguntas
¿Es EVA una buena inversión?
La decisión de adquirir Eva Token depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de Eva Token ha experimentado una caída de 0% durante las últimas 24 horas, y Eva Token ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en Eva Token dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede Eva Token subir?
Parece que el valor medio de Eva Token podría potencialmente aumentar hasta $0.048255 para el final de este año. Mirando las perspectivas de Eva Token en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.1517067. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de Eva Token la próxima semana?
Basado en nuestro nuevo pronóstico experimental de Eva Token, el precio de Eva Token aumentará en un 0.86% durante la próxima semana y alcanzará $0.04719 para el 13 de enero de 2026.
¿Cuál será el precio de Eva Token el próximo mes?
Basado en nuestro nuevo pronóstico experimental de Eva Token, el precio de Eva Token disminuirá en un -11.62% durante el próximo mes y alcanzará $0.041353 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de Eva Token este año en 2026?
Según nuestra predicción más reciente sobre el valor de Eva Token en 2026, se anticipa que EVA fluctúe dentro del rango de $0.016165 y $0.048255. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de Eva Token no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará Eva Token en 5 años?
El futuro de Eva Token parece estar en una tendencia alcista, con un precio máximo de $0.1517067 proyectada después de un período de cinco años. Basado en el pronóstico de Eva Token para 2030, el valor de Eva Token podría potencialmente alcanzar su punto más alto de aproximadamente $0.1517067, mientras que su punto más bajo se anticipa que esté alrededor de $0.05247.
¿Cuánto será Eva Token en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de Eva Token, se espera que el valor de EVA en 2026 crezca en un 3.13% hasta $0.048255 si ocurre lo mejor. El precio estará entre $0.048255 y $0.016165 durante 2026.
¿Cuánto será Eva Token en 2027?
Según nuestra última simulación experimental para la predicción de precios de Eva Token, el valor de EVA podría disminuir en un -12.62% hasta $0.040882 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.040882 y $0.015562 a lo largo del año.
¿Cuánto será Eva Token en 2028?
Nuestro nuevo modelo experimental de predicción de precios de Eva Token sugiere que el valor de EVA en 2028 podría aumentar en un 47.02% , alcanzando $0.06879 en el mejor escenario. Se espera que el precio oscile entre $0.06879 y $0.028085 durante el año.
¿Cuánto será Eva Token en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de Eva Token podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.202953 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.202953 y $0.061696.
¿Cuánto será Eva Token en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de Eva Token, se espera que el valor de EVA en 2030 aumente en un 224.23% , alcanzando $0.1517067 en el mejor escenario. Se pronostica que el precio oscile entre $0.1517067 y $0.05247 durante el transcurso de 2030.
¿Cuánto será Eva Token en 2031?
Nuestra simulación experimental indica que el precio de Eva Token podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.138491 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.138491 y $0.062036 durante el año.
¿Cuánto será Eva Token en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de Eva Token, EVA podría experimentar un 449.04% aumento en valor, alcanzando $0.256893 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.256893 y $0.094693 a lo largo del año.
¿Cuánto será Eva Token en 2033?
Según nuestra predicción experimental de precios de Eva Token, se anticipa que el valor de EVA aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.684271. A lo largo del año, el precio de EVA podría oscilar entre $0.684271 y $0.220046.
¿Cuánto será Eva Token en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de Eva Token sugieren que EVA podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.396293 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.396293 y $0.1769069.
¿Cuánto será Eva Token en 2035?
Basado en nuestra predicción experimental para el precio de Eva Token, EVA podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.466932 en 2035. El rango de precios esperado para el año está entre $0.466932 y $0.209158.
¿Cuánto será Eva Token en 2036?
Nuestra reciente simulación de predicción de precios de Eva Token sugiere que el valor de EVA podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.96607 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.96607 y $0.346223.
¿Cuánto será Eva Token en 2037?
Según la simulación experimental, el valor de Eva Token podría aumentar en un 4830.69% en 2037, con un máximo de $2.30 bajo condiciones favorables. Se espera que el precio caiga entre $2.30 y $0.899131 durante el transcurso del año.
Predicciones relacionadas
Predicción de precios de SolPod
Predicción de precios de zuzalu
Predicción de precios de SOFT COQ INU
Predicción de precios de All Street Bets
Predicción de precios de MagicRing
Predicción de precios de AI INU
Predicción de precios de Wall Street Baby On Solana
Predicción de precios de Meta Masters Guild Games
Predicción de precios de Morfey
Predicción de precios de PANTIESPredicción de precios de Celer Bridged BUSD (zkSync)
Predicción de precios de Bridged BUSD
Predicción de precios de Multichain Bridged BUSD (Moonriver)
Predicción de precios de tooker kurlson
Predicción de precios de dogwifsaudihatPredicción de precios de Harmony Horizen Bridged BUSD (Harmony)
Predicción de precios de IoTeX Bridged BUSD (IoTeX)
Predicción de precios de MIMANY
Predicción de precios de The Open League MEME
Predicción de precios de Sandwich Cat
Predicción de precios de Hege
Predicción de precios de DexNet
Predicción de precios de SolDocs
Predicción de precios de Secret Society
Predicción de precios de duk
¿Cómo leer y predecir los movimientos de precio de Eva Token?
Los traders de Eva Token utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de Eva Token
Las medias móviles son herramientas populares para la predicción de precios de Eva Token. Una media móvil simple (SMA) calcula el precio de cierre promedio de EVA durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de EVA por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de EVA.
¿Cómo leer gráficos de Eva Token y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de Eva Token en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de EVA dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de Eva Token?
La acción del precio de Eva Token está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de EVA. La capitalización de mercado de Eva Token puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de EVA, grandes poseedores de Eva Token, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de Eva Token.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


