Prédiction du prix de dKargo jusqu'à $0.006878 d'ici 2026
| Année | Prix min. | Prix max. |
|---|---|---|
| 2026 | $0.0023041 | $0.006878 |
| 2027 | $0.002218 | $0.005827 |
| 2028 | $0.0040031 | $0.0098049 |
| 2029 | $0.008793 | $0.028927 |
| 2030 | $0.007478 | $0.021623 |
| 2031 | $0.008842 | $0.019739 |
| 2032 | $0.013496 | $0.036615 |
| 2033 | $0.031363 | $0.09753 |
| 2034 | $0.025214 | $0.056484 |
| 2035 | $0.029811 | $0.066552 |
Calculateur de profit d’investissement
Si vous ouvrez une position short de $10,000.00 sur dKargo aujourd’hui et la fermez le Apr 06, 2026, notre prévision indique que vous pourriez gagner environ $3,954.50, soit un rendement de 39.54% sur les 90 prochains jours.
Prévision du prix à long terme de dKargo pour 2027, 2028, 2029, 2030, 2031, 2032 et 2037
[
'name' => 'dKargo'
'name_with_ticker' => 'dKargo <small>DKA</small>'
'name_lang' => 'dKargo'
'name_lang_with_ticker' => 'dKargo <small>DKA</small>'
'name_with_lang' => 'dKargo'
'name_with_lang_with_ticker' => 'dKargo <small>DKA</small>'
'image' => '/uploads/coins/dkargo.png?1732748247'
'price_for_sd' => 0.006669
'ticker' => 'DKA'
'marketcap' => '$33.09M'
'low24h' => '$0.005976'
'high24h' => '$0.00697'
'volume24h' => '$15.32M'
'current_supply' => '5B'
'max_supply' => '5B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.006669'
'change_24h_pct' => '10.9411%'
'ath_price' => '$0.7037'
'ath_days' => 1757
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '16 mars 2021'
'ath_pct' => '-99.06%'
'fdv' => '$33.09M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.328832'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.006726'
'next_week_prediction_price_date' => '13 janvier 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.005894'
'next_month_prediction_price_date' => '5 février 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.0023041'
'current_year_max_price_prediction' => '$0.006878'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.007478'
'grand_prediction_max_price' => '$0.021623'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0067954657475587
107 => 0.006820837549906
108 => 0.0068780015161108
109 => 0.0063895416836595
110 => 0.0066088458080029
111 => 0.0067376664350371
112 => 0.0061556501555622
113 => 0.0067261618445169
114 => 0.0063810386847016
115 => 0.0062638987006844
116 => 0.0064216122571442
117 => 0.0063601511308103
118 => 0.0063073104635069
119 => 0.0062778244632337
120 => 0.0063936318928878
121 => 0.0063882293378746
122 => 0.0061987459057071
123 => 0.0059515724927773
124 => 0.0060345320033473
125 => 0.0060043920354076
126 => 0.0058951609034613
127 => 0.005968769497776
128 => 0.0056446345008711
129 => 0.0050869770857673
130 => 0.0054553826556934
131 => 0.0054411994419994
201 => 0.0054340476224974
202 => 0.0057108942263148
203 => 0.0056842818132956
204 => 0.0056359800230763
205 => 0.0058942738032052
206 => 0.0057999930989165
207 => 0.0060905440142064
208 => 0.0062819196386713
209 => 0.0062333805899541
210 => 0.0064133702897621
211 => 0.0060364432229161
212 => 0.0061616432748332
213 => 0.0061874468320136
214 => 0.0058910864980523
215 => 0.0056886359331868
216 => 0.0056751347886157
217 => 0.0053241134085453
218 => 0.0055116261964333
219 => 0.0056766296899684
220 => 0.0055976058213535
221 => 0.0055725892253209
222 => 0.0057003935890136
223 => 0.0057103250826428
224 => 0.0054838859754029
225 => 0.005530969836192
226 => 0.0057273173627232
227 => 0.0055260223822993
228 => 0.005134939116684
301 => 0.0050379450596622
302 => 0.0050250042645004
303 => 0.0047619486891617
304 => 0.0050444266663476
305 => 0.0049211174593668
306 => 0.0053106497667479
307 => 0.0050881510018755
308 => 0.0050785595248245
309 => 0.0050640606004981
310 => 0.0048376378001151
311 => 0.0048872100034793
312 => 0.0050519955575218
313 => 0.0051107928996463
314 => 0.0051046598551503
315 => 0.0050511880184086
316 => 0.0050756671514488
317 => 0.0049968113348308
318 => 0.0049689657047411
319 => 0.004881077236634
320 => 0.0047519054683256
321 => 0.0047698675949654
322 => 0.0045139445223147
323 => 0.0043745040494691
324 => 0.0043359087643813
325 => 0.0042842975361539
326 => 0.0043417383899418
327 => 0.0045132195244049
328 => 0.0043063768944903
329 => 0.0039517597138252
330 => 0.0039730728106214
331 => 0.0040209570112074
401 => 0.0039317251202012
402 => 0.0038472746240287
403 => 0.0039206974787653
404 => 0.0037704415044818
405 => 0.0040391147278431
406 => 0.0040318478700992
407 => 0.0041319926331276
408 => 0.0041946152086267
409 => 0.0040502904464009
410 => 0.0040139931589967
411 => 0.0040346697435219
412 => 0.0036929318589827
413 => 0.0041040653572024
414 => 0.0041076208567677
415 => 0.0040771765108832
416 => 0.0042960924063626
417 => 0.004758073227404
418 => 0.0045842574593928
419 => 0.0045169507404094
420 => 0.0043890006184211
421 => 0.004559486559044
422 => 0.0045463958987992
423 => 0.0044871949686864
424 => 0.0044513900614361
425 => 0.0045173617008832
426 => 0.0044432154452328
427 => 0.0044298967403151
428 => 0.0043491998794079
429 => 0.0043203947715373
430 => 0.0042990686164343
501 => 0.0042755906151305
502 => 0.0043273772356531
503 => 0.0042100219404516
504 => 0.0040685029589201
505 => 0.0040567371868623
506 => 0.004089223517971
507 => 0.0040748507347783
508 => 0.004056668375506
509 => 0.0040219532999842
510 => 0.0040116540786471
511 => 0.0040451215515208
512 => 0.0040073387259213
513 => 0.0040630893432304
514 => 0.0040479282601447
515 => 0.0039632396824665
516 => 0.0038576863589523
517 => 0.0038567467129674
518 => 0.0038340054225584
519 => 0.0038050409700466
520 => 0.0037969837219748
521 => 0.0039145140107324
522 => 0.0041577981910752
523 => 0.0041100356851768
524 => 0.0041445489905869
525 => 0.0043143202941303
526 => 0.0043682854863256
527 => 0.004329982271141
528 => 0.004277550467757
529 => 0.00427985720101
530 => 0.0044590325453595
531 => 0.0044702074918057
601 => 0.0044984429763007
602 => 0.0045347335532237
603 => 0.0043361627133159
604 => 0.0042705045323075
605 => 0.0042393920435685
606 => 0.0041435776203009
607 => 0.0042469052612872
608 => 0.0041867006698152
609 => 0.0041948243260865
610 => 0.0041895337842826
611 => 0.0041924227778524
612 => 0.0040390396282016
613 => 0.0040949243863533
614 => 0.004002005136899
615 => 0.0038775966925548
616 => 0.0038771796318262
617 => 0.0039076284223301
618 => 0.0038895162902771
619 => 0.0038407770086279
620 => 0.0038477001935432
621 => 0.0037870458087673
622 => 0.0038550647340381
623 => 0.0038570152734315
624 => 0.0038308242821863
625 => 0.0039356168213689
626 => 0.0039785504101745
627 => 0.0039613109386716
628 => 0.003977340842897
629 => 0.0041120204329317
630 => 0.0041339790825899
701 => 0.004143731664261
702 => 0.0041306644967911
703 => 0.003979802538568
704 => 0.0039864939079298
705 => 0.0039373970793464
706 => 0.0038959154328898
707 => 0.0038975744812055
708 => 0.0039189014397208
709 => 0.0040120375183666
710 => 0.0042080369052049
711 => 0.0042154749386618
712 => 0.0042244900521942
713 => 0.0041878210548248
714 => 0.0041767613343431
715 => 0.0041913519604145
716 => 0.0042649590249528
717 => 0.0044542963790685
718 => 0.0043873719127073
719 => 0.0043329612798143
720 => 0.0043806940738628
721 => 0.004373345984361
722 => 0.0043113207141103
723 => 0.0043095798713559
724 => 0.0041905335470664
725 => 0.0041465248315302
726 => 0.0041097478548329
727 => 0.0040695883563667
728 => 0.0040457804595174
729 => 0.0040823602095735
730 => 0.0040907264312103
731 => 0.0040107441684078
801 => 0.0039998428815325
802 => 0.004065158123874
803 => 0.0040364153209172
804 => 0.0040659780065455
805 => 0.0040728368031953
806 => 0.0040717323789632
807 => 0.0040417215915863
808 => 0.0040608495725258
809 => 0.0040156061952785
810 => 0.0039664108178575
811 => 0.0039350272320433
812 => 0.0039076408909918
813 => 0.0039228364247107
814 => 0.0038686671215978
815 => 0.0038513372713193
816 => 0.0040543694429767
817 => 0.0042043514911437
818 => 0.0042021706927639
819 => 0.004188895643483
820 => 0.0041691716129968
821 => 0.0042635160892694
822 => 0.0042306483602134
823 => 0.0042545623792923
824 => 0.0042606495008161
825 => 0.0042790733843449
826 => 0.0042856583391202
827 => 0.0042657540322442
828 => 0.004198952747262
829 => 0.0040324902963621
830 => 0.0039550015761114
831 => 0.003929429007752
901 => 0.0039303585220426
902 => 0.0039047183683721
903 => 0.0039122705427391
904 => 0.0039020920303294
905 => 0.0038828163902719
906 => 0.0039216462082545
907 => 0.0039261209830521
908 => 0.0039170576395533
909 => 0.0039191923850451
910 => 0.0038441517718789
911 => 0.0038498569467183
912 => 0.0038180898082341
913 => 0.0038121338527269
914 => 0.00373182929292
915 => 0.0035895581248899
916 => 0.003668390162575
917 => 0.0035731721465134
918 => 0.0035371116410424
919 => 0.0037078164653826
920 => 0.0036906824356337
921 => 0.0036613564246872
922 => 0.0036179771424211
923 => 0.0036018873446621
924 => 0.0035041308268893
925 => 0.0034983548503085
926 => 0.0035468056201647
927 => 0.0035244472569653
928 => 0.0034930476472589
929 => 0.00337932144383
930 => 0.0032514555377239
1001 => 0.0032553150056929
1002 => 0.0032959867713954
1003 => 0.0034142454155106
1004 => 0.0033680397173595
1005 => 0.0033345169532016
1006 => 0.0033282391471654
1007 => 0.0034068190331854
1008 => 0.0035180260348989
1009 => 0.0035702018719864
1010 => 0.0035184972020364
1011 => 0.003459101661175
1012 => 0.0034627167925348
1013 => 0.0034867666418641
1014 => 0.0034892939409821
1015 => 0.0034506335498415
1016 => 0.0034615162234931
1017 => 0.0034449844470839
1018 => 0.0033435289657758
1019 => 0.0033416939578378
1020 => 0.0033167951465342
1021 => 0.0033160412204233
1022 => 0.0032736821310963
1023 => 0.0032677558016849
1024 => 0.0031836492588131
1025 => 0.0032390084400294
1026 => 0.003201876407757
1027 => 0.0031459096765616
1028 => 0.0031362609910083
1029 => 0.0031359709398695
1030 => 0.0031934362588751
1031 => 0.0032383369243189
1101 => 0.003202522335356
1102 => 0.0031943680476858
1103 => 0.0032814345066474
1104 => 0.0032703545061162
1105 => 0.0032607592971144
1106 => 0.0035080686676245
1107 => 0.003312304003075
1108 => 0.0032269394354749
1109 => 0.0031212845727782
1110 => 0.0031556863288303
1111 => 0.0031629352842975
1112 => 0.0029088543852323
1113 => 0.0028057737961253
1114 => 0.0027704004224538
1115 => 0.0027500425457998
1116 => 0.0027593198858291
1117 => 0.0026665352654857
1118 => 0.0027288880648725
1119 => 0.0026485444265437
1120 => 0.0026350745541171
1121 => 0.0027787389321158
1122 => 0.0027987289910392
1123 => 0.0027134451892475
1124 => 0.0027682111961911
1125 => 0.0027483522807689
1126 => 0.0026499216876227
1127 => 0.0026461623629709
1128 => 0.0025967733513328
1129 => 0.0025194891117162
1130 => 0.0024841681403985
1201 => 0.0024657726718655
1202 => 0.0024733630007027
1203 => 0.0024695250981747
1204 => 0.0024444801881221
1205 => 0.0024709606431024
1206 => 0.0024033140231072
1207 => 0.0023763765939593
1208 => 0.0023642095821568
1209 => 0.0023041693133169
1210 => 0.0023997200810699
1211 => 0.0024185447860341
1212 => 0.0024374065814823
1213 => 0.0026015856333644
1214 => 0.0025933837118975
1215 => 0.0026675250874601
1216 => 0.0026646440899429
1217 => 0.0026434977686219
1218 => 0.0025542849173692
1219 => 0.0025898435698124
1220 => 0.0024803995646339
1221 => 0.0025624024547826
1222 => 0.0025249797602413
1223 => 0.0025497498041143
1224 => 0.0025052110318058
1225 => 0.0025298606273622
1226 => 0.0024230088219316
1227 => 0.002323232109466
1228 => 0.002363385171226
1229 => 0.0024070361414187
1230 => 0.0025016825668567
1231 => 0.0024453119366819
]
'min_raw' => 0.0023041693133169
'max_raw' => 0.0068780015161108
'avg_raw' => 0.0045910854147139
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.0023041'
'max' => '$0.006878'
'avg' => '$0.004591'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0043649206866831
'max_diff' => 0.00020891151611083
'year' => 2026
]
1 => [
'items' => [
101 => 0.0024655849469023
102 => 0.0023976737563249
103 => 0.0022575535722911
104 => 0.0022583466373157
105 => 0.0022367921996863
106 => 0.002218166018575
107 => 0.0024517867816626
108 => 0.0024227323467749
109 => 0.0023764379073319
110 => 0.0024384048541943
111 => 0.0024547898984924
112 => 0.002455256357669
113 => 0.0025004658425014
114 => 0.0025245941526607
115 => 0.0025288468719044
116 => 0.0025999849731039
117 => 0.0026238295262917
118 => 0.0027220418662648
119 => 0.0025225470341189
120 => 0.002518438569332
121 => 0.002439276856215
122 => 0.002389071246259
123 => 0.0024427144772815
124 => 0.0024902350569361
125 => 0.002440753453088
126 => 0.0024472147059369
127 => 0.0023807896955664
128 => 0.0024045335111866
129 => 0.0024249848838361
130 => 0.0024136928379352
131 => 0.0023967880986803
201 => 0.002486338911322
202 => 0.0024812861035202
203 => 0.0025646778790165
204 => 0.0026296877314188
205 => 0.0027461970088251
206 => 0.0026246135040857
207 => 0.0026201825179223
208 => 0.0026634961184217
209 => 0.0026238228952051
210 => 0.0026488950028049
211 => 0.0027421575046775
212 => 0.0027441279943809
213 => 0.0027111197530157
214 => 0.0027091111985288
215 => 0.0027154507923536
216 => 0.002752581991399
217 => 0.002739607209526
218 => 0.0027546219555907
219 => 0.0027733981254585
220 => 0.0028510643249629
221 => 0.0028697893827257
222 => 0.0028242972001914
223 => 0.0028284046349199
224 => 0.0028113893098637
225 => 0.0027949527190608
226 => 0.0028318997748143
227 => 0.0028994212454001
228 => 0.002899001197836
301 => 0.002914664866582
302 => 0.002924423202446
303 => 0.0028825332813794
304 => 0.0028552644831002
305 => 0.0028657210755192
306 => 0.0028824413945121
307 => 0.0028602989014206
308 => 0.0027236251766595
309 => 0.0027650832540007
310 => 0.0027581826027347
311 => 0.0027483552361841
312 => 0.0027900416535365
313 => 0.0027860208968881
314 => 0.0026655836250954
315 => 0.0026732936284778
316 => 0.0026660524959374
317 => 0.0026894500765717
318 => 0.0026225593490665
319 => 0.0026431344863312
320 => 0.0026560390195437
321 => 0.0026636398887431
322 => 0.0026910994402563
323 => 0.0026878773788232
324 => 0.0026908991523936
325 => 0.0027316144182348
326 => 0.0029375382610676
327 => 0.0029487462414876
328 => 0.0028935540467731
329 => 0.0029156022399436
330 => 0.002873274530466
331 => 0.0029016894054094
401 => 0.002921130141186
402 => 0.0028332811944497
403 => 0.002828079349959
404 => 0.0027855769389675
405 => 0.0028084153271747
406 => 0.0027720778093988
407 => 0.0027809937652286
408 => 0.0027560639754495
409 => 0.0028009326335803
410 => 0.0028511027652552
411 => 0.0028637777217948
412 => 0.002830435368051
413 => 0.0028062933065722
414 => 0.002763907799505
415 => 0.0028343958423804
416 => 0.0028550086942013
417 => 0.002834287571845
418 => 0.0028294860350295
419 => 0.0028203871314404
420 => 0.0028314164104392
421 => 0.0028548964321835
422 => 0.0028438236875368
423 => 0.0028511374304526
424 => 0.0028232649843566
425 => 0.0028825471486863
426 => 0.0029767014926718
427 => 0.0029770042142835
428 => 0.0029659314099506
429 => 0.0029614006569845
430 => 0.002972762026184
501 => 0.002978925102907
502 => 0.0030156656875794
503 => 0.0030550897987423
504 => 0.0032390649234525
505 => 0.0031874054446223
506 => 0.0033506391199943
507 => 0.0034797357639736
508 => 0.003518446202791
509 => 0.0034828344205459
510 => 0.0033610084371963
511 => 0.0033550310732516
512 => 0.0035370905259795
513 => 0.0034856503917326
514 => 0.0034795317514451
515 => 0.0034144397563919
516 => 0.0034529171872688
517 => 0.0034445016087062
518 => 0.0034312172062409
519 => 0.0035046294639928
520 => 0.0036420506569471
521 => 0.0036206322752974
522 => 0.003604644446966
523 => 0.0035345904372048
524 => 0.0035767785982106
525 => 0.0035617562021374
526 => 0.0036263019491159
527 => 0.0035880664784692
528 => 0.0034852606821229
529 => 0.0035016328440434
530 => 0.0034991582247053
531 => 0.0035500857153293
601 => 0.003534798546742
602 => 0.0034961731596884
603 => 0.0036415809662492
604 => 0.0036321389920918
605 => 0.0036455255527111
606 => 0.0036514187306889
607 => 0.0037399259001695
608 => 0.0037761844555921
609 => 0.0037844157824684
610 => 0.0038188586057826
611 => 0.0037835588136477
612 => 0.0039247831505128
613 => 0.0040186890938596
614 => 0.0041277656794125
615 => 0.0042871558879276
616 => 0.0043470880807711
617 => 0.0043362618665662
618 => 0.0044571097035671
619 => 0.0046742705803611
620 => 0.0043801562886334
621 => 0.004689859351988
622 => 0.0045918109378237
623 => 0.0043593399116559
624 => 0.0043443715182241
625 => 0.004501803596189
626 => 0.0048509727928393
627 => 0.0047635098693226
628 => 0.0048511158508494
629 => 0.0047489188199327
630 => 0.0047438438759635
701 => 0.0048461523691658
702 => 0.0050852017400787
703 => 0.0049716383445897
704 => 0.0048088173702692
705 => 0.0049290418439325
706 => 0.0048248922785955
707 => 0.0045902141582635
708 => 0.0047634429880734
709 => 0.0046476098028526
710 => 0.0046814160843308
711 => 0.004924880210779
712 => 0.0048955859629585
713 => 0.0049334954322125
714 => 0.0048665862112428
715 => 0.0048040824482415
716 => 0.0046874145330091
717 => 0.0046528749149675
718 => 0.0046624204227889
719 => 0.0046528701846878
720 => 0.0045875955583488
721 => 0.0045734995090057
722 => 0.0045500054758719
723 => 0.0045572872591354
724 => 0.0045131116034219
725 => 0.0045964801929095
726 => 0.0046119541377599
727 => 0.0046726228448255
728 => 0.0046789216712538
729 => 0.0048478831568666
730 => 0.0047548220098735
731 => 0.0048172554617893
801 => 0.0048116708262035
802 => 0.0043643782637068
803 => 0.0044260112323231
804 => 0.0045218927899992
805 => 0.0044786982782305
806 => 0.0044176313445487
807 => 0.0043683165213989
808 => 0.0042935995216272
809 => 0.0043987622639929
810 => 0.0045370400873929
811 => 0.0046824286250483
812 => 0.004857103426807
813 => 0.0048181180444933
814 => 0.0046791632011307
815 => 0.0046853966138974
816 => 0.0047239291188634
817 => 0.0046740260238852
818 => 0.0046593086269519
819 => 0.0047219071745258
820 => 0.0047223382563194
821 => 0.0046649187145564
822 => 0.0046011074015521
823 => 0.0046008400298206
824 => 0.0045894854230157
825 => 0.0047509387792589
826 => 0.0048397218004172
827 => 0.004849900630712
828 => 0.0048390366840377
829 => 0.004843217785938
830 => 0.0047915569021264
831 => 0.0049096383629606
901 => 0.0050180015884682
902 => 0.0049889579291895
903 => 0.0049454173551313
904 => 0.0049107351906958
905 => 0.0049807879134635
906 => 0.0049776685759919
907 => 0.0050170551302274
908 => 0.0050152683286195
909 => 0.0050020241118333
910 => 0.0049889584021822
911 => 0.0050407624640682
912 => 0.0050258437261928
913 => 0.0050109018153968
914 => 0.0049809335258034
915 => 0.0049850067140797
916 => 0.0049414736579155
917 => 0.0049213332741969
918 => 0.0046184702266055
919 => 0.0045375353239535
920 => 0.0045629990919097
921 => 0.0045713824254873
922 => 0.0045361594521323
923 => 0.0045866601478839
924 => 0.0045787896679445
925 => 0.0046094091013121
926 => 0.0045902794086853
927 => 0.0045910644979434
928 => 0.0046473208450783
929 => 0.0046636523019831
930 => 0.0046553459911903
1001 => 0.0046611634465459
1002 => 0.0047952242498219
1003 => 0.0047761650906193
1004 => 0.0047660402921559
1005 => 0.0047688449305244
1006 => 0.0048031003400575
1007 => 0.0048126899844507
1008 => 0.0047720579873042
1009 => 0.0047912202720493
1010 => 0.0048728108484377
1011 => 0.004901362932547
1012 => 0.004992487479246
1013 => 0.0049537761521986
1014 => 0.0050248324683811
1015 => 0.0052432353594427
1016 => 0.0054177107011532
1017 => 0.0052572559664177
1018 => 0.0055776577121684
1019 => 0.0058271364301359
1020 => 0.0058175610214118
1021 => 0.0057740586363874
1022 => 0.0054900337487162
1023 => 0.0052286698125087
1024 => 0.0054473118432452
1025 => 0.0054478692067457
1026 => 0.0054290876624014
1027 => 0.0053124371035176
1028 => 0.005425028475807
1029 => 0.0054339655700676
1030 => 0.0054289631738469
1031 => 0.0053395274638523
1101 => 0.0052029756651728
1102 => 0.0052296575597759
1103 => 0.0052733630474318
1104 => 0.0051906194413794
1105 => 0.0051641778456337
1106 => 0.0052133378028443
1107 => 0.0053717414278606
1108 => 0.005341796140121
1109 => 0.0053410141476397
1110 => 0.005469132787368
1111 => 0.0053774274910555
1112 => 0.0052299941039141
1113 => 0.0051927652292535
1114 => 0.0050606278045831
1115 => 0.0051518955944603
1116 => 0.0051551801597371
1117 => 0.0051051937239555
1118 => 0.0052340502276868
1119 => 0.0052328627923202
1120 => 0.0053551928648536
1121 => 0.0055890420184603
1122 => 0.0055198813167208
1123 => 0.0054394549452607
1124 => 0.0054481995218198
1125 => 0.0055441059432191
1126 => 0.0054861187315104
1127 => 0.0055069713371421
1128 => 0.005544074380303
1129 => 0.0055664595674587
1130 => 0.0054449786378766
1201 => 0.0054166556220864
1202 => 0.0053587166718075
1203 => 0.0053436014811614
1204 => 0.0053907915472278
1205 => 0.0053783586320689
1206 => 0.005154904104744
1207 => 0.0051315518633493
1208 => 0.0051322680432536
1209 => 0.005073547721928
1210 => 0.0049839851374147
1211 => 0.0052193502620117
1212 => 0.0052004471485738
1213 => 0.0051795795743231
1214 => 0.0051821357331
1215 => 0.0052842997564234
1216 => 0.005225039463489
1217 => 0.0053825926648261
1218 => 0.005350204463114
1219 => 0.0053169856262398
1220 => 0.0053123937711132
1221 => 0.0052996073530146
1222 => 0.0052557579677379
1223 => 0.0052028072000768
1224 => 0.00516784451675
1225 => 0.0047670633954743
1226 => 0.0048414460403465
1227 => 0.0049270164930806
1228 => 0.0049565550704624
1229 => 0.0049060272898436
1230 => 0.0052577531124872
1231 => 0.0053220168095986
]
'min_raw' => 0.002218166018575
'max_raw' => 0.0058271364301359
'avg_raw' => 0.0040226512243555
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.002218'
'max' => '$0.005827'
'avg' => '$0.004022'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -8.6003294741915E-5
'max_diff' => -0.0010508650859749
'year' => 2027
]
2 => [
'items' => [
101 => 0.005127357879231
102 => 0.005090945141231
103 => 0.0052601403255285
104 => 0.005158094946127
105 => 0.0052040459742232
106 => 0.0051047249853479
107 => 0.0053065375668252
108 => 0.0053050000930829
109 => 0.0052264904407443
110 => 0.00529284626129
111 => 0.0052813153045336
112 => 0.0051926781004041
113 => 0.0053093475242954
114 => 0.0053094053908741
115 => 0.0052338415574453
116 => 0.0051455995430505
117 => 0.0051298239550601
118 => 0.0051179391686614
119 => 0.0052011230453197
120 => 0.0052757054490224
121 => 0.0054144848117671
122 => 0.0054493772408775
123 => 0.0055855647146157
124 => 0.0055044717048523
125 => 0.0055404191857502
126 => 0.0055794452613464
127 => 0.0055981557971236
128 => 0.0055676679831373
129 => 0.0057792231868534
130 => 0.005797084927931
131 => 0.0058030738152108
201 => 0.0057317385908197
202 => 0.0057951009662962
203 => 0.005765455809152
204 => 0.0058425842723792
205 => 0.0058546790002389
206 => 0.0058444351960242
207 => 0.0058482742535491
208 => 0.0056677492080728
209 => 0.0056583880321193
210 => 0.0055307477337556
211 => 0.0055827620988083
212 => 0.0054855237364557
213 => 0.0055163590228238
214 => 0.0055299509232455
215 => 0.0055228512857988
216 => 0.0055857029129666
217 => 0.0055322661901348
218 => 0.0053912378927711
219 => 0.005250171172342
220 => 0.0052484001945775
221 => 0.005211259817123
222 => 0.0051844141268228
223 => 0.0051895855591766
224 => 0.0052078103613121
225 => 0.0051833548681918
226 => 0.005188573687574
227 => 0.00527524086213
228 => 0.0052926213459052
229 => 0.0052335556710437
301 => 0.0049963984633385
302 => 0.0049381994897038
303 => 0.0049800317578166
304 => 0.0049600386280018
305 => 0.0040031382879402
306 => 0.0042279478289343
307 => 0.0040943736334863
308 => 0.004155930768202
309 => 0.0040195861035198
310 => 0.0040846569239422
311 => 0.0040726407194161
312 => 0.0044341278087367
313 => 0.0044284836850462
314 => 0.0044311852283764
315 => 0.0043022335263891
316 => 0.0045076570890752
317 => 0.0046088561228467
318 => 0.0045901268750207
319 => 0.0045948406231927
320 => 0.0045138428122027
321 => 0.0044319694642392
322 => 0.0043411593211299
323 => 0.0045098733425541
324 => 0.0044911152234162
325 => 0.0045341395997605
326 => 0.0046435627025814
327 => 0.0046596756701297
328 => 0.0046813316619163
329 => 0.0046735695304393
330 => 0.0048584949934104
331 => 0.0048360992996671
401 => 0.0048900664779077
402 => 0.0047790518977672
403 => 0.0046534283627377
404 => 0.004677305289804
405 => 0.0046750057497214
406 => 0.0046457299651805
407 => 0.0046193010959058
408 => 0.0045753044748511
409 => 0.0047145162941429
410 => 0.0047088645485103
411 => 0.0048003597408666
412 => 0.0047841870768808
413 => 0.0046761820686609
414 => 0.0046800394886588
415 => 0.0047059824919575
416 => 0.0047957715225862
417 => 0.0048224270201802
418 => 0.0048100791316567
419 => 0.0048393056678988
420 => 0.0048624051304827
421 => 0.0048422066047538
422 => 0.0051281751341543
423 => 0.0050094210630909
424 => 0.0050673009710417
425 => 0.0050811049880398
426 => 0.0050457462887665
427 => 0.0050534143245387
428 => 0.0050650293093191
429 => 0.005135553222458
430 => 0.0053206283767934
501 => 0.0054025969027993
502 => 0.005649203257544
503 => 0.0053957905577715
504 => 0.005380754096893
505 => 0.005425175348181
506 => 0.0055699593843499
507 => 0.0056872932467917
508 => 0.0057262196581166
509 => 0.0057313644259782
510 => 0.0058043929614026
511 => 0.0058462515560063
512 => 0.0057955253763609
513 => 0.0057525402503639
514 => 0.0055985728645526
515 => 0.0056163950086995
516 => 0.0057391719085019
517 => 0.005912601510996
518 => 0.0060614221522107
519 => 0.0060093103505803
520 => 0.0064068866118216
521 => 0.0064463046741702
522 => 0.0064408583724922
523 => 0.0065306585847167
524 => 0.0063524234509463
525 => 0.0062762244781163
526 => 0.0057618341225063
527 => 0.0059063568307228
528 => 0.0061164290746365
529 => 0.006088625225424
530 => 0.0059360651466467
531 => 0.0060613064217105
601 => 0.0060198977395177
602 => 0.0059872369938243
603 => 0.0061368622014425
604 => 0.0059723431394016
605 => 0.0061147878711421
606 => 0.0059321010292828
607 => 0.0060095483929006
608 => 0.0059655855236036
609 => 0.0059940348879254
610 => 0.0058277204854166
611 => 0.0059174596999564
612 => 0.0058239870390566
613 => 0.0058239427208448
614 => 0.0058218793066748
615 => 0.0059318494777022
616 => 0.0059354356010313
617 => 0.0058541674784863
618 => 0.0058424554723809
619 => 0.0058857608974635
620 => 0.0058350615864006
621 => 0.0058587834749493
622 => 0.0058357800982389
623 => 0.0058306015536161
624 => 0.0057893380290053
625 => 0.0057715605680387
626 => 0.0057785315685525
627 => 0.005754735950002
628 => 0.0057403982291002
629 => 0.0058190271731122
630 => 0.0057770189002092
701 => 0.0058125888028063
702 => 0.0057720524095173
703 => 0.0056315356095114
704 => 0.0055507229118898
705 => 0.0052852997025931
706 => 0.0053605733954932
707 => 0.0054104799317622
708 => 0.005393985821823
709 => 0.0054294215523456
710 => 0.0054315970184026
711 => 0.0054200765011852
712 => 0.0054067372181171
713 => 0.0054002443928282
714 => 0.0054486365930599
715 => 0.005476729894101
716 => 0.0054154887203401
717 => 0.005401140770183
718 => 0.0054630589780731
719 => 0.0055008290491171
720 => 0.0057797020325364
721 => 0.0057590422211768
722 => 0.0058108942934061
723 => 0.005805056545808
724 => 0.0058594057781872
725 => 0.0059482438034278
726 => 0.0057676112586111
727 => 0.0057989628225878
728 => 0.0057912761431141
729 => 0.0058751972940529
730 => 0.0058754592867258
731 => 0.0058251443645656
801 => 0.0058524209001351
802 => 0.0058371958862728
803 => 0.0058647095441059
804 => 0.0057587662968004
805 => 0.0058877937361517
806 => 0.0059609439799193
807 => 0.005961959671125
808 => 0.0059966323061146
809 => 0.0060318617113677
810 => 0.0060994814869164
811 => 0.0060299758325283
812 => 0.0059049419265233
813 => 0.0059139689706798
814 => 0.0058406616373372
815 => 0.0058418939468547
816 => 0.0058353157820723
817 => 0.0058550573497656
818 => 0.0057630984607444
819 => 0.0057846810281929
820 => 0.0057544653073777
821 => 0.0057988971395118
822 => 0.0057510958329805
823 => 0.0057912724363645
824 => 0.0058086113265095
825 => 0.0058725922044243
826 => 0.0057416458052912
827 => 0.0054746372331669
828 => 0.0055307656721935
829 => 0.0054477473020795
830 => 0.0054554309683068
831 => 0.0054709531969323
901 => 0.0054206405753998
902 => 0.0054302386380553
903 => 0.0054298957277167
904 => 0.005426940711674
905 => 0.0054138524556478
906 => 0.0053948718949772
907 => 0.0054704846067802
908 => 0.005483332679926
909 => 0.0055118923549894
910 => 0.0055968665757655
911 => 0.0055883756472798
912 => 0.0056022247039252
913 => 0.0055719922910275
914 => 0.0054568333632324
915 => 0.005463087047058
916 => 0.0053851035095444
917 => 0.0055098981406043
918 => 0.0054803451247606
919 => 0.0054612921031925
920 => 0.0054560933097327
921 => 0.0055412781651662
922 => 0.0055667668090209
923 => 0.0055508839966499
924 => 0.0055183078851013
925 => 0.0055808636495375
926 => 0.0055976009330847
927 => 0.0056013477936237
928 => 0.0057121846143264
929 => 0.0056075423406575
930 => 0.0056327307759844
1001 => 0.0058292437580486
1002 => 0.0056510336002542
1003 => 0.0057454354953986
1004 => 0.0057408150138751
1005 => 0.005789107829045
1006 => 0.0057368535934695
1007 => 0.0057375013473456
1008 => 0.0057803820955778
1009 => 0.0057201638182693
1010 => 0.0057052529259562
1011 => 0.0056846536350195
1012 => 0.0057296314331699
1013 => 0.0057565935889902
1014 => 0.0059738887633807
1015 => 0.0061142713559007
1016 => 0.0061081769773267
1017 => 0.0061638681892948
1018 => 0.0061387787882301
1019 => 0.0060577584939427
1020 => 0.006196050256919
1021 => 0.0061522889567402
1022 => 0.006155896585157
1023 => 0.0061557623090471
1024 => 0.0061848597479868
1025 => 0.0061642415457569
1026 => 0.0061236009527468
1027 => 0.006150580075004
1028 => 0.0062306984228951
1029 => 0.0064793882330802
1030 => 0.0066185583455615
1031 => 0.0064710100175617
1101 => 0.0065727868784651
1102 => 0.0065117570287266
1103 => 0.0065006660895483
1104 => 0.0065645894794467
1105 => 0.0066286247587769
1106 => 0.0066245459883157
1107 => 0.0065780596637699
1108 => 0.0065518007185808
1109 => 0.0067506422489447
1110 => 0.0068971453013398
1111 => 0.0068871547753354
1112 => 0.0069312497080257
1113 => 0.0070607137942096
1114 => 0.0070725503677535
1115 => 0.0070710592315475
1116 => 0.0070417210490003
1117 => 0.0071691952548843
1118 => 0.0072755364801281
1119 => 0.0070349301074022
1120 => 0.0071265498643675
1121 => 0.0071676809250734
1122 => 0.0072280735252256
1123 => 0.0073299659646572
1124 => 0.0074406481795148
1125 => 0.0074562998582644
1126 => 0.0074451942431898
1127 => 0.0073721963471936
1128 => 0.0074933061474042
1129 => 0.0075642494279933
1130 => 0.007606494528076
1201 => 0.0077136210729713
1202 => 0.0071679349365017
1203 => 0.0067816711667477
1204 => 0.0067213505013842
1205 => 0.006844014946394
1206 => 0.0068763605823124
1207 => 0.0068633220970316
1208 => 0.0064285471066081
1209 => 0.0067190615010384
1210 => 0.0070316305623013
1211 => 0.007043637612922
1212 => 0.0072001162205011
1213 => 0.0072510720694037
1214 => 0.0073770578586248
1215 => 0.0073691774132068
1216 => 0.0073998529480103
1217 => 0.0073928011737852
1218 => 0.0076261633188795
1219 => 0.0078835964195323
1220 => 0.0078746823298439
1221 => 0.0078376732758148
1222 => 0.0078926380320294
1223 => 0.0081583365801108
1224 => 0.0081338753155359
1225 => 0.0081576373504648
1226 => 0.0084709109127668
1227 => 0.0088782111064039
1228 => 0.0086889792741886
1229 => 0.0090995579001029
1230 => 0.0093579953812782
1231 => 0.0098049362820366
]
'min_raw' => 0.0040031382879402
'max_raw' => 0.0098049362820366
'avg_raw' => 0.0069040372849884
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.0040031'
'max' => '$0.0098049'
'avg' => '$0.006904'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0017849722693652
'max_diff' => 0.0039777998519007
'year' => 2028
]
3 => [
'items' => [
101 => 0.0097489770800313
102 => 0.0099229678928927
103 => 0.0096487984294039
104 => 0.0090192499224432
105 => 0.0089196214614018
106 => 0.0091190801634012
107 => 0.0096094299193711
108 => 0.009103637304579
109 => 0.0092059584918058
110 => 0.009176489983001
111 => 0.0091749197313998
112 => 0.0092348498483393
113 => 0.0091479180879739
114 => 0.00879374245752
115 => 0.0089560590617869
116 => 0.0088933808257959
117 => 0.0089629270016
118 => 0.0093382390293898
119 => 0.0091723046355826
120 => 0.0089975062311223
121 => 0.0092167422211868
122 => 0.0094959049741985
123 => 0.0094784354708187
124 => 0.009444537332576
125 => 0.0096356193630013
126 => 0.009951230895482
127 => 0.010036539424482
128 => 0.010099512436533
129 => 0.010108195350957
130 => 0.010197634765927
131 => 0.0097166964899993
201 => 0.010479957885268
202 => 0.01061175204356
203 => 0.010586980204109
204 => 0.010733463864305
205 => 0.010690364655544
206 => 0.010627920664107
207 => 0.010860128423486
208 => 0.010593920965558
209 => 0.010216072993617
210 => 0.010008778123224
211 => 0.010281760730557
212 => 0.010448461683076
213 => 0.010558640408518
214 => 0.010591980424265
215 => 0.0097540303593039
216 => 0.0093024217491309
217 => 0.0095918976905486
218 => 0.0099450783176404
219 => 0.0097147345537833
220 => 0.0097237635932281
221 => 0.0093953539192441
222 => 0.009974135286638
223 => 0.0098898117097262
224 => 0.01032728257591
225 => 0.010222876642772
226 => 0.010579617151624
227 => 0.010485675419967
228 => 0.010875622295864
301 => 0.01103118266205
302 => 0.011292392727913
303 => 0.011484539915678
304 => 0.011597372419524
305 => 0.011590598379217
306 => 0.012037696972384
307 => 0.011774058552429
308 => 0.01144286656216
309 => 0.011436876343953
310 => 0.01160840536874
311 => 0.011967883148004
312 => 0.012061090505978
313 => 0.012113180703504
314 => 0.012033402752721
315 => 0.011747242142995
316 => 0.011623679442582
317 => 0.01172895844329
318 => 0.011600211272152
319 => 0.011822465009611
320 => 0.01212766686198
321 => 0.012064643886365
322 => 0.012275320244914
323 => 0.012493348112213
324 => 0.012805137754695
325 => 0.012886651112776
326 => 0.01302138959401
327 => 0.013160079750485
328 => 0.01320462329094
329 => 0.013289670730718
330 => 0.01328922248873
331 => 0.013545518672854
401 => 0.013828221300774
402 => 0.013934934998233
403 => 0.014180317261313
404 => 0.013760108735009
405 => 0.014078841729218
406 => 0.014366346868399
407 => 0.014023571389022
408 => 0.0144960075309
409 => 0.014514351155725
410 => 0.01479131811204
411 => 0.014510559041367
412 => 0.014343845201415
413 => 0.014825141810669
414 => 0.015058026079185
415 => 0.014987879442233
416 => 0.01445406007146
417 => 0.01414335430108
418 => 0.013330177369329
419 => 0.014293420571617
420 => 0.014762588237263
421 => 0.014452845040548
422 => 0.014609061492285
423 => 0.015461327799607
424 => 0.015785815629279
425 => 0.015718324429048
426 => 0.015729729330887
427 => 0.015904817073907
428 => 0.016681252549039
429 => 0.016215994414707
430 => 0.016571666825514
501 => 0.016760314189734
502 => 0.016935540375053
503 => 0.016505240244714
504 => 0.015945426097506
505 => 0.015768109457686
506 => 0.014422047184006
507 => 0.014351978797009
508 => 0.014312647288098
509 => 0.014064667687967
510 => 0.013869823649593
511 => 0.013714876436183
512 => 0.013308248677039
513 => 0.013445473609067
514 => 0.012797393830801
515 => 0.013212012306399
516 => 0.012177661331853
517 => 0.01303909955936
518 => 0.012570257896918
519 => 0.012885072463792
520 => 0.012883974105425
521 => 0.012304300675762
522 => 0.011969957139007
523 => 0.012183013853472
524 => 0.012411427563842
525 => 0.012448486919873
526 => 0.012744631257575
527 => 0.012827278776626
528 => 0.012576852935457
529 => 0.012156226706971
530 => 0.012253928586385
531 => 0.01196797721354
601 => 0.011466858431588
602 => 0.01182677068948
603 => 0.011949660558549
604 => 0.012003935725612
605 => 0.011511142957444
606 => 0.011356296770634
607 => 0.011273857960062
608 => 0.012092613348827
609 => 0.012137466617259
610 => 0.011907990954346
611 => 0.012945242710488
612 => 0.012710480692508
613 => 0.012972767384682
614 => 0.012245063164891
615 => 0.012272862446071
616 => 0.011928355606444
617 => 0.01212125641668
618 => 0.011984920341488
619 => 0.012105671937496
620 => 0.012178049946265
621 => 0.012522500255709
622 => 0.013043032628596
623 => 0.012471050865883
624 => 0.01222183022094
625 => 0.012376445307393
626 => 0.012788205657554
627 => 0.013412043665674
628 => 0.013042719008957
629 => 0.013206619020069
630 => 0.013242423881092
701 => 0.012970097552372
702 => 0.013422084725856
703 => 0.013664308324063
704 => 0.013912779614713
705 => 0.014128520274377
706 => 0.013813534717227
707 => 0.014150614414783
708 => 0.013878987681129
709 => 0.013635310420786
710 => 0.013635679978605
711 => 0.013482817673635
712 => 0.013186627695865
713 => 0.013132005719595
714 => 0.013416156138148
715 => 0.013644017864682
716 => 0.013662785647864
717 => 0.013788941607631
718 => 0.013863599405112
719 => 0.014595347312778
720 => 0.014889662374577
721 => 0.015249545261047
722 => 0.015389739927215
723 => 0.015811675609811
724 => 0.015470928278174
725 => 0.015397205449573
726 => 0.014373727497705
727 => 0.014541321954987
728 => 0.014809656851556
729 => 0.014378152241316
730 => 0.014651842597843
731 => 0.014705874871776
801 => 0.014363489879777
802 => 0.014546372497586
803 => 0.014060690485603
804 => 0.013053619169241
805 => 0.013423205884118
806 => 0.01369534610781
807 => 0.013306968453953
808 => 0.0140031203662
809 => 0.013596442790558
810 => 0.013467545523046
811 => 0.012964671327287
812 => 0.013202008590282
813 => 0.013523010636826
814 => 0.013324668692555
815 => 0.013736258008109
816 => 0.014319178245795
817 => 0.01473460192067
818 => 0.014766492992091
819 => 0.014499403400371
820 => 0.014927416175645
821 => 0.014930533781441
822 => 0.014447733622448
823 => 0.014152021213307
824 => 0.014084834731766
825 => 0.014252679735341
826 => 0.014456474555578
827 => 0.014777802186274
828 => 0.014971973743765
829 => 0.015478270185065
830 => 0.015615259485424
831 => 0.015765769193958
901 => 0.015966896580035
902 => 0.016208401575023
903 => 0.015680002394876
904 => 0.015700996679362
905 => 0.015208958678994
906 => 0.014683145510213
907 => 0.015082172161781
908 => 0.015603846428415
909 => 0.01548417377525
910 => 0.015470708157079
911 => 0.015493353591792
912 => 0.015403124319449
913 => 0.014995020664696
914 => 0.014790073564143
915 => 0.015054507611438
916 => 0.01519504253897
917 => 0.015412999955638
918 => 0.015386132103511
919 => 0.015947567001931
920 => 0.016165723626547
921 => 0.016109909826521
922 => 0.01612018090896
923 => 0.016515143057309
924 => 0.016954422196433
925 => 0.017365865078211
926 => 0.017784402449438
927 => 0.017279839312632
928 => 0.01702365326889
929 => 0.017287971872552
930 => 0.017147720700895
1001 => 0.017953645534435
1002 => 0.018009446021319
1003 => 0.01881531257732
1004 => 0.01958017589977
1005 => 0.019099778950889
1006 => 0.01955277163613
1007 => 0.020042720158253
1008 => 0.020987910348713
1009 => 0.020669603544758
1010 => 0.020425785521432
1011 => 0.020195378667509
1012 => 0.020674818754465
1013 => 0.02129161076709
1014 => 0.021424461859049
1015 => 0.021639731381046
1016 => 0.021413401800571
1017 => 0.021685990850868
1018 => 0.022648349980113
1019 => 0.022388312048412
1020 => 0.022019016382213
1021 => 0.022778706488799
1022 => 0.023053635385151
1023 => 0.024983230361136
1024 => 0.02741942372591
1025 => 0.026410823675986
1026 => 0.025784753077678
1027 => 0.025931894518873
1028 => 0.026821509865339
1029 => 0.027107226079644
1030 => 0.026330550916878
1031 => 0.026604885714553
1101 => 0.028116497421749
1102 => 0.028927428604349
1103 => 0.02782607513579
1104 => 0.024787484596346
1105 => 0.021985765348023
1106 => 0.02272890745574
1107 => 0.02264465820311
1108 => 0.02426869640509
1109 => 0.022382110229741
1110 => 0.022413875502514
1111 => 0.024071497094625
1112 => 0.023629272072678
1113 => 0.022912924173026
1114 => 0.021990995480449
1115 => 0.020286725024137
1116 => 0.018777205153883
1117 => 0.021737721241114
1118 => 0.021610058404084
1119 => 0.021425183697491
1120 => 0.02183660235148
1121 => 0.023834334552031
1122 => 0.02378828035878
1123 => 0.023495307078374
1124 => 0.023717524729414
1125 => 0.022873968344392
1126 => 0.023091372032234
1127 => 0.02198532154138
1128 => 0.022485302555995
1129 => 0.022911387212162
1130 => 0.022996930015178
1201 => 0.023189662318299
1202 => 0.021542785890013
1203 => 0.022282185056561
1204 => 0.022716512794576
1205 => 0.020754204273248
1206 => 0.022677724264412
1207 => 0.021514117435365
1208 => 0.021119171800799
1209 => 0.021650914067612
1210 => 0.021443693589099
1211 => 0.021265537590068
1212 => 0.0211661234815
1213 => 0.021556576315995
1214 => 0.021538361224574
1215 => 0.02089950460371
1216 => 0.020066142184921
1217 => 0.020345845966855
1218 => 0.020244226960642
1219 => 0.01987594657301
1220 => 0.02012412308793
1221 => 0.019031279315483
1222 => 0.017151098406063
1223 => 0.018393203506324
1224 => 0.018345383811115
1225 => 0.018321270952339
1226 => 0.019254678605922
1227 => 0.019164952997409
1228 => 0.019002100139361
1229 => 0.019872955652561
1230 => 0.019555081675584
1231 => 0.020534694372101
]
'min_raw' => 0.00879374245752
'max_raw' => 0.028927428604349
'avg_raw' => 0.018860585530935
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.008793'
'max' => '$0.028927'
'avg' => '$0.01886'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.0047906041695798
'max_diff' => 0.019122492322313
'year' => 2029
]
4 => [
'items' => [
101 => 0.021179930651404
102 => 0.021016277859765
103 => 0.021623125699147
104 => 0.020352289777069
105 => 0.020774410493296
106 => 0.020861408987876
107 => 0.019862209430708
108 => 0.019179633216617
109 => 0.019134113165076
110 => 0.017950620074638
111 => 0.018582832530728
112 => 0.019139153329357
113 => 0.018872718839051
114 => 0.018788373638925
115 => 0.01921927497413
116 => 0.019252759698296
117 => 0.018489304438763
118 => 0.018648050962704
119 => 0.01931005035695
120 => 0.018631370276484
121 => 0.017312805741901
122 => 0.016985783506743
123 => 0.016942152712357
124 => 0.016055242474149
125 => 0.017007636696214
126 => 0.016591891095704
127 => 0.017905226466317
128 => 0.017155056346182
129 => 0.017122718011649
130 => 0.017073833876
131 => 0.016310433596173
201 => 0.016477569740837
202 => 0.017033155741251
203 => 0.017231395085323
204 => 0.017210717097609
205 => 0.01703043306675
206 => 0.017112966172874
207 => 0.016847098281609
208 => 0.016753214795642
209 => 0.016456892689242
210 => 0.016021381053905
211 => 0.016081941617947
212 => 0.015219079110526
213 => 0.014748945820905
214 => 0.014618819122594
215 => 0.014444808263245
216 => 0.014638474112183
217 => 0.015216634729456
218 => 0.014519250361407
219 => 0.013323633778214
220 => 0.013395492372096
221 => 0.013556937297539
222 => 0.01325608574704
223 => 0.012971355003049
224 => 0.013218905284014
225 => 0.01271230677618
226 => 0.013618157306908
227 => 0.013593656588669
228 => 0.013931301649103
301 => 0.014142438034567
302 => 0.013655837022289
303 => 0.01353345818361
304 => 0.01360317073193
305 => 0.012450977594829
306 => 0.013837142888501
307 => 0.013849130503522
308 => 0.013746485265817
309 => 0.014484575491645
310 => 0.016042176084257
311 => 0.015456144086978
312 => 0.01522921478472
313 => 0.014797822015244
314 => 0.015372627267003
315 => 0.015328491192027
316 => 0.015128891122875
317 => 0.015008172378261
318 => 0.01523060036665
319 => 0.014980611088998
320 => 0.014935706145486
321 => 0.014663631044863
322 => 0.014566512612568
323 => 0.014494609991694
324 => 0.014415452271117
325 => 0.014590054477835
326 => 0.014194382906578
327 => 0.013717241779805
328 => 0.013677572657852
329 => 0.013787102591308
330 => 0.013738643749298
331 => 0.01367734065556
401 => 0.013560296354709
402 => 0.013525571810902
403 => 0.01363840973232
404 => 0.013511022297899
405 => 0.01369898939654
406 => 0.013647872746404
407 => 0.013362339293994
408 => 0.013006458894268
409 => 0.013003290812226
410 => 0.012926616963866
411 => 0.012828961289989
412 => 0.012801795715576
413 => 0.013198057289825
414 => 0.01401830688941
415 => 0.013857272266102
416 => 0.013973636284934
417 => 0.014546032087884
418 => 0.0147279795011
419 => 0.01459883753686
420 => 0.014422060051079
421 => 0.014429837363293
422 => 0.01503393954639
423 => 0.015071616658543
424 => 0.015166814565857
425 => 0.01528917077968
426 => 0.014619675329158
427 => 0.01439830418778
428 => 0.014293406259792
429 => 0.013970361242196
430 => 0.014318737597886
501 => 0.014115753614388
502 => 0.014143143088682
503 => 0.014125305657617
504 => 0.01413504610114
505 => 0.013617904103223
506 => 0.013806323467081
507 => 0.013493039730131
508 => 0.013073587974104
509 => 0.013072181824739
510 => 0.01317484204779
511 => 0.013113775730025
512 => 0.012949447839076
513 => 0.01297278984038
514 => 0.012768289347354
515 => 0.012997619902834
516 => 0.013004196282581
517 => 0.012915891527001
518 => 0.013269206889237
519 => 0.013413960481423
520 => 0.013355836399629
521 => 0.013409882340897
522 => 0.013863963981728
523 => 0.013937999102154
524 => 0.013970880612162
525 => 0.013926823744717
526 => 0.013418182119722
527 => 0.013440742538702
528 => 0.013275209153302
529 => 0.013135350886117
530 => 0.013140944483345
531 => 0.01321284981298
601 => 0.013526864604687
602 => 0.014187690221653
603 => 0.01421276807076
604 => 0.014243163155449
605 => 0.014119531070671
606 => 0.014082242450902
607 => 0.014131435765387
608 => 0.014379607122559
609 => 0.015017971231071
610 => 0.014792330720218
611 => 0.01460888147259
612 => 0.014769815920322
613 => 0.014745041323539
614 => 0.014535918794423
615 => 0.014530049421535
616 => 0.014128676427644
617 => 0.013980297970623
618 => 0.013856301826001
619 => 0.013720901273076
620 => 0.013640631286634
621 => 0.013763962467865
622 => 0.013792169768224
623 => 0.013522503985003
624 => 0.013485749535199
625 => 0.013705964434918
626 => 0.013609056067991
627 => 0.013708728726587
628 => 0.013731853638358
629 => 0.013728129994951
630 => 0.013626946530024
701 => 0.013691437853234
702 => 0.013538896648053
703 => 0.013373030998367
704 => 0.013267219047662
705 => 0.013174884086754
706 => 0.013226116889605
707 => 0.01304348130218
708 => 0.012985052502035
709 => 0.013669589644031
710 => 0.014175264590838
711 => 0.014167911876842
712 => 0.014123154121357
713 => 0.014056653175486
714 => 0.014374742164159
715 => 0.014263926320895
716 => 0.014344554105843
717 => 0.01436507726105
718 => 0.014427194670682
719 => 0.014449396305454
720 => 0.014382287545147
721 => 0.014157062348913
722 => 0.013595822573667
723 => 0.013334563943252
724 => 0.013248344243608
725 => 0.013251478165936
726 => 0.013165030597697
727 => 0.013190493280852
728 => 0.013156175715621
729 => 0.013091186549385
730 => 0.013222103991725
731 => 0.013237191007374
801 => 0.013206633311985
802 => 0.013213830755454
803 => 0.012960826088996
804 => 0.012980061484289
805 => 0.012872956358979
806 => 0.012852875439155
807 => 0.012582123009081
808 => 0.012102445833012
809 => 0.012368233551944
810 => 0.012047199362882
811 => 0.011925618851023
812 => 0.012501162084516
813 => 0.012443393506958
814 => 0.012344518813575
815 => 0.01219826253477
816 => 0.012144014658272
817 => 0.011814421733459
818 => 0.011794947625151
819 => 0.011958302778446
820 => 0.011882919995908
821 => 0.011777054019532
822 => 0.011393618184562
823 => 0.010962509354813
824 => 0.010975521820529
825 => 0.011112649518208
826 => 0.011511366793397
827 => 0.011355581056101
828 => 0.011242556716258
829 => 0.011221390654905
830 => 0.011486328226894
831 => 0.011861270397396
901 => 0.012037184874937
902 => 0.011862858970296
903 => 0.011662602757417
904 => 0.011674791425197
905 => 0.011755877171318
906 => 0.011764398136744
907 => 0.011634051928832
908 => 0.011670743622852
909 => 0.011615005584477
910 => 0.011272941345851
911 => 0.011266754488472
912 => 0.011182806407782
913 => 0.011180264493262
914 => 0.011037447866179
915 => 0.011017466832805
916 => 0.010733895751382
917 => 0.010920543095907
918 => 0.010795349856625
919 => 0.010606654114927
920 => 0.010574122897935
921 => 0.010573144970269
922 => 0.010766893305397
923 => 0.010918279033805
924 => 0.010797527646622
925 => 0.010770034896428
926 => 0.011063585541603
927 => 0.011026228546231
928 => 0.010993877629165
929 => 0.011827698438429
930 => 0.011167664204048
1001 => 0.010879851604421
1002 => 0.010523628858252
1003 => 0.010639616780635
1004 => 0.010664057140099
1005 => 0.0098074056495383
1006 => 0.0094598622465072
1007 => 0.0093405984474837
1008 => 0.0092719604450032
1009 => 0.0093032396446353
1010 => 0.008990409819132
1011 => 0.009200636635598
1012 => 0.008929752449559
1013 => 0.0088843378342362
1014 => 0.0093687123149853
1015 => 0.0094361101943068
1016 => 0.0091485699022412
1017 => 0.0093332173182921
1018 => 0.009266261598441
1019 => 0.0089343959814439
1020 => 0.0089217211559128
1021 => 0.0087552026549442
1022 => 0.0084946334452637
1023 => 0.0083755463244344
1024 => 0.0083135247179448
1025 => 0.0083391160415594
1026 => 0.0083261762852324
1027 => 0.0082417356224103
1028 => 0.0083310163251827
1029 => 0.0081029410229328
1030 => 0.0080121195998493
1031 => 0.0079710976700835
1101 => 0.0077686677118122
1102 => 0.0080908237964329
1103 => 0.0081542926035186
1104 => 0.0082178864637608
1105 => 0.0087714275997966
1106 => 0.0087437742489312
1107 => 0.0089937470730258
1108 => 0.008984033588752
1109 => 0.008912737290029
1110 => 0.0086119499333884
1111 => 0.0087318384127262
1112 => 0.0083628403081307
1113 => 0.0086393187775258
1114 => 0.0085131455501108
1115 => 0.008596659482418
1116 => 0.008446493901982
1117 => 0.0085296017343801
1118 => 0.0081693434122162
1119 => 0.0078329392599509
1120 => 0.0079683181110718
1121 => 0.0081154904046898
1122 => 0.0084345974360567
1123 => 0.0082445399207505
1124 => 0.0083128917901249
1125 => 0.0080839244696852
1126 => 0.0076114994863365
1127 => 0.0076141733604371
1128 => 0.0075415010690866
1129 => 0.0074787015990315
1130 => 0.0082663703126622
1201 => 0.0081684112569226
1202 => 0.0080123263221657
1203 => 0.0082212522099065
1204 => 0.0082764955307249
1205 => 0.0082780682304057
1206 => 0.0084304951649437
1207 => 0.0085118454472307
1208 => 0.0085261837870761
1209 => 0.0087660308619737
1210 => 0.0088464244378199
1211 => 0.0091775541990059
1212 => 0.0085049434441415
1213 => 0.0084910914682688
1214 => 0.0082241922256006
1215 => 0.0080549205063902
1216 => 0.0082357824050332
1217 => 0.0083960013571196
1218 => 0.0082291706750505
1219 => 0.0082509552401408
1220 => 0.0080269986800305
1221 => 0.0081070526121344
1222 => 0.0081760058428914
1223 => 0.0081379339217509
1224 => 0.0080809384131018
1225 => 0.0083828652301614
1226 => 0.0083658293358821
1227 => 0.0086469905291955
1228 => 0.008866175785413
1229 => 0.0092589949486061
1230 => 0.008849067673688
1231 => 0.0088341282944767
]
'min_raw' => 0.0074787015990315
'max_raw' => 0.021623125699147
'avg_raw' => 0.014550913649089
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.007478'
'max' => '$0.021623'
'avg' => '$0.01455'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0013150408584885
'max_diff' => -0.0073043029052019
'year' => 2030
]
5 => [
'items' => [
101 => 0.0089801631226195
102 => 0.0088464020806486
103 => 0.0089309344419
104 => 0.0092453754783433
105 => 0.0092520191219536
106 => 0.0091407295316289
107 => 0.0091339575499437
108 => 0.0091553319331403
109 => 0.0092805223631393
110 => 0.0092367769801843
111 => 0.0092874002448374
112 => 0.0093507054124571
113 => 0.0096125624265669
114 => 0.0096756952661561
115 => 0.0095223151965788
116 => 0.0095361636995379
117 => 0.0094787953431389
118 => 0.0094233782296809
119 => 0.009547947807715
120 => 0.0097756011599934
121 => 0.0097741849403041
122 => 0.0098269960930839
123 => 0.0098598970037545
124 => 0.0097186622102177
125 => 0.0096267235529726
126 => 0.0096619786843691
127 => 0.0097183524072291
128 => 0.0096436974458317
129 => 0.0091828924405449
130 => 0.0093226712428112
131 => 0.0092994052152799
201 => 0.0092662715628296
202 => 0.0094068202293859
203 => 0.0093932639676258
204 => 0.0089872012971146
205 => 0.0090131961118136
206 => 0.008988782127894
207 => 0.0090676687045695
208 => 0.0088421419466245
209 => 0.0089115124584225
210 => 0.008955020993114
211 => 0.0089806478542957
212 => 0.009073229649387
213 => 0.0090623662443081
214 => 0.0090725543648744
215 => 0.009209828726307
216 => 0.0099041153395614
217 => 0.0099419038280637
218 => 0.0097558194901877
219 => 0.0098301565128179
220 => 0.0096874456850877
221 => 0.0097832484198225
222 => 0.0098487942178023
223 => 0.0095526053604634
224 => 0.0095350669785815
225 => 0.0093917671325002
226 => 0.0094687683528662
227 => 0.0093462538746803
228 => 0.0093763146422526
301 => 0.0092922621154698
302 => 0.0094435399289876
303 => 0.0096126920306962
304 => 0.0096554265316067
305 => 0.0095430104580706
306 => 0.0094616138122502
307 => 0.0093187081159115
308 => 0.0095563634737838
309 => 0.0096258611428415
310 => 0.0095559984321143
311 => 0.0095398097155085
312 => 0.0095091321267927
313 => 0.0095463181109768
314 => 0.0096254826436104
315 => 0.0095881501119598
316 => 0.0096128089068296
317 => 0.0095188350088248
318 => 0.0097187089648111
319 => 0.010036156909204
320 => 0.010037177556254
321 => 0.0099998448233668
322 => 0.0099845690734144
323 => 0.010022874722896
324 => 0.01004365396636
325 => 0.010167527412729
326 => 0.010300448556018
327 => 0.010920733533712
328 => 0.010746559994086
329 => 0.011296913727214
330 => 0.01173217207563
331 => 0.011862687022779
401 => 0.011742619412605
402 => 0.011331874604123
403 => 0.011311721504257
404 => 0.011925547660114
405 => 0.011752113656065
406 => 0.011731484233146
407 => 0.011512022027247
408 => 0.011641751371856
409 => 0.011613377661175
410 => 0.011568588370776
411 => 0.011816102923267
412 => 0.012279428069754
413 => 0.012207214500638
414 => 0.012153310421184
415 => 0.01191711843626
416 => 0.012059358766574
417 => 0.012008709709383
418 => 0.012226330201761
419 => 0.012097416642961
420 => 0.011750799722908
421 => 0.01180599960989
422 => 0.01179765625802
423 => 0.011969361848302
424 => 0.011917820092094
425 => 0.011787591902905
426 => 0.012277844474773
427 => 0.012246010199684
428 => 0.012291143923432
429 => 0.012311013184432
430 => 0.012609421285709
501 => 0.012731669536808
502 => 0.012759422030065
503 => 0.01287554841359
504 => 0.012756532699854
505 => 0.013232680411563
506 => 0.01354929085586
507 => 0.013917050179536
508 => 0.014454445395814
509 => 0.014656510968318
510 => 0.014620009631264
511 => 0.015027456551039
512 => 0.015759629608838
513 => 0.014768002739874
514 => 0.015812188240751
515 => 0.015481611166875
516 => 0.014697818871541
517 => 0.014647351888026
518 => 0.015178145130441
519 => 0.016355393455162
520 => 0.01606050610206
521 => 0.016355875785232
522 => 0.016011311360327
523 => 0.015994200832414
524 => 0.016339141060196
525 => 0.017145112704123
526 => 0.016762225787489
527 => 0.01621326350477
528 => 0.01661860871153
529 => 0.016267461180506
530 => 0.015476227513104
531 => 0.016060280607258
601 => 0.015669740936072
602 => 0.015783721174355
603 => 0.016604577474797
604 => 0.016505809873012
605 => 0.016633624295356
606 => 0.016408035185404
607 => 0.016197299384572
608 => 0.015803945362872
609 => 0.015687492629166
610 => 0.015719675975232
611 => 0.015687476680698
612 => 0.015467398720667
613 => 0.015419872906152
614 => 0.01534066113314
615 => 0.015365212173811
616 => 0.015216270866327
617 => 0.015497353886393
618 => 0.015549525371813
619 => 0.015754074153438
620 => 0.015775311086511
621 => 0.016344976531769
622 => 0.01603121437736
623 => 0.016241713119459
624 => 0.016222884130674
625 => 0.014714806027247
626 => 0.014922605884014
627 => 0.015245877249955
628 => 0.015100243937782
629 => 0.014894352507317
630 => 0.014728084138016
701 => 0.014476170556712
702 => 0.014830734084826
703 => 0.015296947420668
704 => 0.015787135026077
705 => 0.016376063315612
706 => 0.016244621377269
707 => 0.015776125421354
708 => 0.0157971418077
709 => 0.015927056838447
710 => 0.015758805069605
711 => 0.015709184338309
712 => 0.015920239711945
713 => 0.015921693134309
714 => 0.015728099140351
715 => 0.015512954843393
716 => 0.015512053380933
717 => 0.015473770531337
718 => 0.016018121794225
719 => 0.016317459948692
720 => 0.016351778585695
721 => 0.016315150030986
722 => 0.016329246907958
723 => 0.016155068631339
724 => 0.016553188520726
725 => 0.016918542701204
726 => 0.016820619976182
727 => 0.016673819890839
728 => 0.016556886552013
729 => 0.01679307419775
730 => 0.016782557133679
731 => 0.016915351651165
801 => 0.016909327324794
802 => 0.016864673523217
803 => 0.01682062157091
804 => 0.016995282582402
805 => 0.016944983016063
806 => 0.016894605320603
807 => 0.01679356513992
808 => 0.016807298178574
809 => 0.016660523440336
810 => 0.016592618730472
811 => 0.015571494820295
812 => 0.015298617145309
813 => 0.015384470016797
814 => 0.015412735011259
815 => 0.015293978297403
816 => 0.015464244918976
817 => 0.015437709046361
818 => 0.01554094460374
819 => 0.015476447509456
820 => 0.015479094492703
821 => 0.015668766694761
822 => 0.015723829341942
823 => 0.015695824035176
824 => 0.015715437992069
825 => 0.016167433350141
826 => 0.016103174064221
827 => 0.016069037599311
828 => 0.016078493633384
829 => 0.016193988138261
830 => 0.01622632029386
831 => 0.016089326678645
901 => 0.016153933659531
902 => 0.016429021984297
903 => 0.016525287329314
904 => 0.016832520100623
905 => 0.016702002158744
906 => 0.016941573489747
907 => 0.017677934085364
908 => 0.01826618988142
909 => 0.017725205540668
910 => 0.018805462396201
911 => 0.019646597311877
912 => 0.01961431315283
913 => 0.019467641824481
914 => 0.018510032085713
915 => 0.017628825326942
916 => 0.018365992198669
917 => 0.018367871388625
918 => 0.018304548100583
919 => 0.017911252597024
920 => 0.018290862269576
921 => 0.018320994306844
922 => 0.018304128378729
923 => 0.018002589638281
924 => 0.017542195715291
925 => 0.017632155585816
926 => 0.017779511688867
927 => 0.017500535844087
928 => 0.017411386157938
929 => 0.017577132385912
930 => 0.018111201267042
1001 => 0.018010238638715
1002 => 0.018007602096467
1003 => 0.018439563035269
1004 => 0.018130372226092
1005 => 0.017633290267874
1006 => 0.017507770517719
1007 => 0.017062259964902
1008 => 0.017369975690587
1009 => 0.017381049831739
1010 => 0.01721251707356
1011 => 0.017646965772364
1012 => 0.017642962251121
1013 => 0.01805540663148
1014 => 0.018843845379691
1015 => 0.018610665245131
1016 => 0.018339502118563
1017 => 0.018368985068959
1018 => 0.018692340264679
1019 => 0.018496832331866
1020 => 0.018567138347635
1021 => 0.018692233848104
1022 => 0.018767707069483
1023 => 0.01835812563387
1024 => 0.018262632608683
1025 => 0.018067287392649
1026 => 0.018016325472077
1027 => 0.018175430074525
1028 => 0.018133511633029
1029 => 0.017380119093056
1030 => 0.017301385380792
1031 => 0.017303800031342
1101 => 0.017105820368271
1102 => 0.016803853861524
1103 => 0.017597403811771
1104 => 0.017533670645042
1105 => 0.017463314161528
1106 => 0.01747193242931
1107 => 0.017816385566809
1108 => 0.017616585351759
1109 => 0.01814778697008
1110 => 0.018038587886736
1111 => 0.017926588258949
1112 => 0.017911106498797
1113 => 0.017867996197458
1114 => 0.017720154933532
1115 => 0.017541627723458
1116 => 0.017423748595605
1117 => 0.016072487063579
1118 => 0.016323273343997
1119 => 0.016611780099728
1120 => 0.016711371475688
1121 => 0.016541013535595
1122 => 0.017726881703351
1123 => 0.01794355124491
1124 => 0.017287245070523
1125 => 0.0171644769821
1126 => 0.017734930358789
1127 => 0.017390877237556
1128 => 0.017545804336981
1129 => 0.017210936688618
1130 => 0.017891361897173
1201 => 0.017886178197108
1202 => 0.017621477422879
1203 => 0.017845200704664
1204 => 0.017806323278895
1205 => 0.01750747675672
1206 => 0.017900835864969
1207 => 0.017901030966179
1208 => 0.017646262226075
1209 => 0.017348748113683
1210 => 0.017295559617357
1211 => 0.017255489230244
1212 => 0.01753594947811
1213 => 0.017787409259371
1214 => 0.018255313570131
1215 => 0.018372955830988
1216 => 0.018832121407002
1217 => 0.018558710662852
1218 => 0.018679910104472
1219 => 0.018811489243058
1220 => 0.018874573120759
1221 => 0.018771781327313
1222 => 0.019485054466954
1223 => 0.019545276574064
1224 => 0.019565468525659
1225 => 0.019324956836158
1226 => 0.019538587508897
1227 => 0.019438636791826
1228 => 0.019698680790534
1229 => 0.01973945900994
1230 => 0.01970492130883
1231 => 0.01971786495931
]
'min_raw' => 0.0088421419466245
'max_raw' => 0.01973945900994
'avg_raw' => 0.014290800478282
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.008842'
'max' => '$0.019739'
'avg' => '$0.01429'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.001363440347593
'max_diff' => -0.0018836666892075
'year' => 2031
]
6 => [
'items' => [
101 => 0.019109212164631
102 => 0.019077650306327
103 => 0.018647302128833
104 => 0.018822672192135
105 => 0.018494826264497
106 => 0.018598789585339
107 => 0.018644615626566
108 => 0.018620678703234
109 => 0.018832587352391
110 => 0.018652421710531
111 => 0.018176934959687
112 => 0.017701318662797
113 => 0.017695347687618
114 => 0.017570126311972
115 => 0.017479614192818
116 => 0.017497050038057
117 => 0.017558496230872
118 => 0.017476042828389
119 => 0.017493638442302
120 => 0.017785842872227
121 => 0.017844442386742
122 => 0.017645298340112
123 => 0.016845706256547
124 => 0.016649484353615
125 => 0.016790524766193
126 => 0.016723116533146
127 => 0.013496860227981
128 => 0.014254821291143
129 => 0.013804466565337
130 => 0.014012010742813
131 => 0.013552315186557
201 => 0.013771706000711
202 => 0.013731192528206
203 => 0.014949971488073
204 => 0.01493094193099
205 => 0.014940050372944
206 => 0.014505280706574
207 => 0.015197880590385
208 => 0.015539080198236
209 => 0.015475933231557
210 => 0.015491825962622
211 => 0.015218736187783
212 => 0.014942694478909
213 => 0.014636521741254
214 => 0.015205352843723
215 => 0.015142108535399
216 => 0.01528716822411
217 => 0.015656095854948
218 => 0.015710421850009
219 => 0.01578343653829
220 => 0.015757265970081
221 => 0.016380755079571
222 => 0.016305246434499
223 => 0.016487200543804
224 => 0.016112907136071
225 => 0.015689358616963
226 => 0.015769861343601
227 => 0.015762108283664
228 => 0.015663402932115
229 => 0.01557429615415
301 => 0.015425958474518
302 => 0.015895320842719
303 => 0.015876265587727
304 => 0.016184748016746
305 => 0.016130220750979
306 => 0.015766074325097
307 => 0.015779079885936
308 => 0.01586654853284
309 => 0.016169278518475
310 => 0.01625914938964
311 => 0.016217517621381
312 => 0.016316056928853
313 => 0.016393938379708
314 => 0.016325837639997
315 => 0.017290000502556
316 => 0.016889612860821
317 => 0.017084759011523
318 => 0.017131300218598
319 => 0.017012085895332
320 => 0.017037939213304
321 => 0.017077099945423
322 => 0.017314876242393
323 => 0.01793887004677
324 => 0.018215232655058
325 => 0.019046683197586
326 => 0.018192284587593
327 => 0.018141588109929
328 => 0.018291357460039
329 => 0.018779506946481
330 => 0.019175106255693
331 => 0.01930634936923
401 => 0.019323695313271
402 => 0.019569916119144
403 => 0.019711045293324
404 => 0.019540018437061
405 => 0.019395091083636
406 => 0.018875979292714
407 => 0.018936067896008
408 => 0.019350018785701
409 => 0.019934748798978
410 => 0.020436507981159
411 => 0.020260809403632
412 => 0.021601265526295
413 => 0.021734166275585
414 => 0.021715803689229
415 => 0.022018571374394
416 => 0.021417639176908
417 => 0.021160729019969
418 => 0.019426426022442
419 => 0.019913694423447
420 => 0.020621967660578
421 => 0.020528225041755
422 => 0.020013858084753
423 => 0.020436117787697
424 => 0.020296505524622
425 => 0.020186387540217
426 => 0.0206908593742
427 => 0.020136171870175
428 => 0.020616434228412
429 => 0.020000492786295
430 => 0.020261611979934
501 => 0.02011338809671
502 => 0.020209307114792
503 => 0.019648566495033
504 => 0.019951128522246
505 => 0.01963597891997
506 => 0.019635829498024
507 => 0.019628872553087
508 => 0.019999644662578
509 => 0.020011735527757
510 => 0.019737734378638
511 => 0.019698246532347
512 => 0.019844253796501
513 => 0.01967331752954
514 => 0.019753297532991
515 => 0.019675740042368
516 => 0.019658280217618
517 => 0.019519157363465
518 => 0.019459219412634
519 => 0.019482722627565
520 => 0.019402494038265
521 => 0.019354153411217
522 => 0.019619256385651
523 => 0.019477622560635
524 => 0.019597548970652
525 => 0.019460877690518
526 => 0.018987115488728
527 => 0.018714649836535
528 => 0.017819756955134
529 => 0.018073547466188
530 => 0.018241810837582
531 => 0.01818619979434
601 => 0.018305673833841
602 => 0.018313008569538
603 => 0.018274166341403
604 => 0.01822919201722
605 => 0.018207301003444
606 => 0.01837045868516
607 => 0.018465177211032
608 => 0.018258698317975
609 => 0.018210323202278
610 => 0.018419084763171
611 => 0.018546429194718
612 => 0.019486668928606
613 => 0.019417012932185
614 => 0.019591835813903
615 => 0.019572153440297
616 => 0.019755395671806
617 => 0.020054919276377
618 => 0.019445904040166
619 => 0.01955160802701
620 => 0.019525691850498
621 => 0.019808637870075
622 => 0.019809521196664
623 => 0.019639880923725
624 => 0.019731845667784
625 => 0.019680513470571
626 => 0.019773277688898
627 => 0.019416082633886
628 => 0.019851107654067
629 => 0.020097738808116
630 => 0.02010116328193
701 => 0.020218064491563
702 => 0.020336842891013
703 => 0.020564827685337
704 => 0.020330484518838
705 => 0.019908923975153
706 => 0.019939359284775
707 => 0.019692198492256
708 => 0.019696353309831
709 => 0.019674174567994
710 => 0.019740734641785
711 => 0.019430688827085
712 => 0.019503455960085
713 => 0.019401581547762
714 => 0.019551386571933
715 => 0.019390221129582
716 => 0.019525679352933
717 => 0.019584138631619
718 => 0.019799854628511
719 => 0.019358359701448
720 => 0.018458121658588
721 => 0.018647362609528
722 => 0.018367460378532
723 => 0.018393366395673
724 => 0.018445700673212
725 => 0.018276068157
726 => 0.018308428695358
727 => 0.01830727254921
728 => 0.01829730950631
729 => 0.018253181537324
730 => 0.018189187251843
731 => 0.018444120788798
801 => 0.018487438964433
802 => 0.018583729902882
803 => 0.018870226420939
804 => 0.018841598662732
805 => 0.018888291724122
806 => 0.018786361033278
807 => 0.018398094668077
808 => 0.018419179399714
809 => 0.01815625245835
810 => 0.018577006269851
811 => 0.018477366213608
812 => 0.018413127621152
813 => 0.018395599526034
814 => 0.018682806213545
815 => 0.018768742955861
816 => 0.01871519294505
817 => 0.018605360310572
818 => 0.018816271437873
819 => 0.018872702357912
820 => 0.018885335159817
821 => 0.019259029239196
822 => 0.018906220507631
823 => 0.018991145075936
824 => 0.019653702315063
825 => 0.019052854325824
826 => 0.019371136906233
827 => 0.019355558630185
828 => 0.019518381228227
829 => 0.01934220242471
830 => 0.019344386372128
831 => 0.019488961808631
901 => 0.019285931682379
902 => 0.0192356585679
903 => 0.019166206620311
904 => 0.019317852407024
905 => 0.01940875719781
906 => 0.020141383049332
907 => 0.020614692761213
908 => 0.020594145138355
909 => 0.020781911947742
910 => 0.020697321280366
911 => 0.02042415570152
912 => 0.020890416035617
913 => 0.020742871756748
914 => 0.020755035127831
915 => 0.020754582406552
916 => 0.020852686453456
917 => 0.020783170745121
918 => 0.020646148148351
919 => 0.020737110142664
920 => 0.021007234746263
921 => 0.02184570980427
922 => 0.022314931555048
923 => 0.021817462065701
924 => 0.022160609858071
925 => 0.021954843458709
926 => 0.021917449582925
927 => 0.022132971754956
928 => 0.022348871170018
929 => 0.022335119310638
930 => 0.02217838742186
1001 => 0.022089853554814
1002 => 0.022760261657108
1003 => 0.023254206926774
1004 => 0.023220523170834
1005 => 0.02336919231501
1006 => 0.023805689520473
1007 => 0.023845597354579
1008 => 0.023840569884753
1009 => 0.023741654153968
1010 => 0.024171442339071
1011 => 0.024529979204488
1012 => 0.023718758020242
1013 => 0.024027660427537
1014 => 0.024166336670387
1015 => 0.024369954538276
1016 => 0.024713492011723
1017 => 0.025086664826701
1018 => 0.02513943555437
1019 => 0.025101992197777
1020 => 0.024855874694875
1021 => 0.025264204841902
1022 => 0.02550339506551
1023 => 0.025645827369897
1024 => 0.026007011995348
1025 => 0.024167193087651
1026 => 0.022864877819851
1027 => 0.022661502485123
1028 => 0.023075074225632
1029 => 0.023184129795431
1030 => 0.023140169631989
1031 => 0.021674295396755
1101 => 0.022653784960644
1102 => 0.023707633373567
1103 => 0.02374811598304
1104 => 0.024275694533481
1105 => 0.02444749573568
1106 => 0.024872265620086
1107 => 0.024845696148164
1108 => 0.024949120855451
1109 => 0.024925345306312
1110 => 0.025712142071322
1111 => 0.026580095743578
1112 => 0.026550041267832
1113 => 0.026425262658283
1114 => 0.026610580171377
1115 => 0.027506401376714
1116 => 0.027423928515369
1117 => 0.027504043875144
1118 => 0.028560267562507
1119 => 0.029933508602146
1120 => 0.029295500268087
1121 => 0.030679794771042
1122 => 0.031551134782353
1123 => 0.033058027233677
1124 => 0.032869356877169
1125 => 0.033455979050382
1126 => 0.032531597562329
1127 => 0.030409030817438
1128 => 0.0300731265052
1129 => 0.030745615444753
1130 => 0.032398863882132
1201 => 0.030693548768048
1202 => 0.03103853179462
1203 => 0.030939176659759
1204 => 0.030933882446854
1205 => 0.031135941020303
1206 => 0.030842844520849
1207 => 0.029648716655021
1208 => 0.03019597841889
1209 => 0.029984654370192
1210 => 0.030219134157474
1211 => 0.031484524862617
1212 => 0.030925065468726
1213 => 0.030335720444054
1214 => 0.031074889891124
1215 => 0.032016106603424
1216 => 0.031957206953097
1217 => 0.031842917013319
1218 => 0.03248716341982
1219 => 0.033551269736872
1220 => 0.033838893398446
1221 => 0.034051211305212
1222 => 0.034080486357415
1223 => 0.034382037589447
1224 => 0.032760520614118
1225 => 0.035333909697474
1226 => 0.035778262903731
1227 => 0.035694742917508
1228 => 0.036188622805021
1229 => 0.036043310813592
1230 => 0.035832776536763
1231 => 0.036615681209736
]
'min_raw' => 0.013496860227981
'max_raw' => 0.036615681209736
'avg_raw' => 0.025056270718858
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.013496'
'max' => '$0.036615'
'avg' => '$0.025056'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0046547182813561
'max_diff' => 0.016876222199796
'year' => 2032
]
7 => [
'items' => [
101 => 0.035718144179321
102 => 0.034444203361418
103 => 0.033745294233024
104 => 0.034665674152685
105 => 0.035227718052789
106 => 0.035599193318051
107 => 0.035711601508869
108 => 0.032886394361046
109 => 0.031363764401541
110 => 0.032339752748596
111 => 0.03353052589112
112 => 0.032753905809187
113 => 0.032784347846063
114 => 0.031677091701395
115 => 0.033628493490788
116 => 0.033344190663946
117 => 0.034819154232526
118 => 0.034467142339562
119 => 0.035669917871983
120 => 0.035353186764899
121 => 0.036667919882207
122 => 0.03719240251768
123 => 0.038073090491842
124 => 0.038720928150681
125 => 0.039101350815111
126 => 0.039078511665268
127 => 0.040585935787558
128 => 0.039697060448031
129 => 0.038580423529753
130 => 0.038560227090846
131 => 0.039138549173689
201 => 0.040350553604415
202 => 0.040664808719355
203 => 0.040840434457135
204 => 0.040571457526148
205 => 0.039606647051362
206 => 0.039190046780049
207 => 0.039545002281279
208 => 0.039110922204948
209 => 0.039860266198053
210 => 0.040889275551827
211 => 0.040676789189417
212 => 0.041387099241218
213 => 0.042122195418036
214 => 0.043173415966121
215 => 0.043448243943975
216 => 0.043902524140595
217 => 0.044370127686187
218 => 0.044520309342763
219 => 0.044807052723797
220 => 0.044805541444638
221 => 0.045669661923439
222 => 0.04662281357114
223 => 0.046982606252636
224 => 0.047809929684651
225 => 0.046393167300196
226 => 0.047467797843399
227 => 0.048437141493115
228 => 0.047281450032575
301 => 0.048874301469354
302 => 0.048936148281165
303 => 0.049869961711596
304 => 0.048923362902848
305 => 0.048361275551863
306 => 0.049984000673017
307 => 0.050769186243781
308 => 0.050532681959815
309 => 0.048732872681175
310 => 0.047685306483555
311 => 0.044943623683955
312 => 0.048191265391964
313 => 0.049773096932928
314 => 0.048728776119626
315 => 0.049255470793342
316 => 0.052128946151811
317 => 0.053222979524565
318 => 0.052995428230903
319 => 0.053033880653719
320 => 0.053624201203546
321 => 0.056242007616947
322 => 0.05467335733376
323 => 0.055872531699051
324 => 0.056508569458457
325 => 0.057099356776163
326 => 0.055648569844127
327 => 0.053761117361841
328 => 0.053163281930836
329 => 0.048624938996057
330 => 0.048388698537277
331 => 0.048256089608946
401 => 0.047420009073721
402 => 0.046763078794767
403 => 0.046240663446685
404 => 0.044869689566889
405 => 0.04533235300596
406 => 0.043147306786052
407 => 0.044545221924266
408 => 0.041057835397507
409 => 0.043962234525242
410 => 0.04238150212684
411 => 0.043442921418705
412 => 0.043439218226788
413 => 0.04148480878717
414 => 0.040357546209884
415 => 0.041075881797847
416 => 0.041845994569693
417 => 0.041970942775955
418 => 0.042969414086653
419 => 0.0432480659674
420 => 0.042403737759724
421 => 0.040985567063197
422 => 0.041314975770971
423 => 0.040350870752934
424 => 0.03866131379259
425 => 0.039874783098344
426 => 0.040289114871807
427 => 0.040472107386929
428 => 0.038810622163358
429 => 0.038288547433513
430 => 0.038010599227975
501 => 0.040771090184872
502 => 0.040922316110947
503 => 0.040148622891957
504 => 0.043645789606393
505 => 0.042854273072215
506 => 0.043738590967151
507 => 0.041285085383439
508 => 0.04137881260082
509 => 0.04021728373832
510 => 0.040867662287933
511 => 0.040407995691746
512 => 0.040815118128291
513 => 0.041059145638127
514 => 0.042220483905171
515 => 0.043975495142768
516 => 0.042047018695293
517 => 0.041206753890836
518 => 0.041728049449692
519 => 0.043116328218452
520 => 0.045219641617805
521 => 0.043974437752261
522 => 0.044527038082856
523 => 0.044647756671614
524 => 0.043729589441114
525 => 0.045253495753253
526 => 0.046070169526121
527 => 0.046907907830258
528 => 0.047635292526846
529 => 0.046573296729326
530 => 0.04770978446379
531 => 0.046793975966903
601 => 0.045972401070654
602 => 0.04597364706064
603 => 0.045458261126928
604 => 0.044459635937556
605 => 0.044275474130976
606 => 0.045233507105875
607 => 0.046001758825684
608 => 0.046065035717005
609 => 0.046490379343289
610 => 0.046742093319937
611 => 0.04920923247964
612 => 0.050201536258918
613 => 0.05141490653687
614 => 0.051887582641934
615 => 0.053310168254414
616 => 0.052161314835582
617 => 0.051912753171791
618 => 0.04846202580012
619 => 0.049027082213918
620 => 0.049931792052242
621 => 0.048476944132129
622 => 0.04939971027761
623 => 0.049581883861588
624 => 0.048427508956508
625 => 0.049044110470906
626 => 0.047406599658272
627 => 0.044011188403683
628 => 0.04525727581661
629 => 0.046174815581011
630 => 0.044865373205373
701 => 0.047212497981287
702 => 0.045841356141688
703 => 0.04540677000495
704 => 0.043711294544393
705 => 0.044511493696941
706 => 0.04559377450851
707 => 0.044925050795609
708 => 0.046312752909249
709 => 0.048278109188798
710 => 0.049678739112594
711 => 0.049786262086452
712 => 0.048885750880368
713 => 0.050328825835104
714 => 0.050339337060708
715 => 0.048711542616632
716 => 0.047714527583233
717 => 0.047488003669907
718 => 0.048053904818024
719 => 0.048741013282953
720 => 0.049824391824224
721 => 0.05047905478693
722 => 0.052186068587261
723 => 0.05264793757771
724 => 0.053155391568284
725 => 0.053833506592707
726 => 0.05464775754465
727 => 0.052866222817131
728 => 0.052937006513052
729 => 0.051278066041813
730 => 0.049505250232167
731 => 0.050850596447078
801 => 0.052609457659168
802 => 0.052205972953746
803 => 0.052160572681941
804 => 0.052236923346131
805 => 0.051932709054821
806 => 0.050556759089934
807 => 0.049865765631471
808 => 0.050757323484121
809 => 0.05123114680413
810 => 0.051966005451727
811 => 0.051875418612427
812 => 0.053768335570582
813 => 0.054503865861683
814 => 0.054315685738103
815 => 0.05435031540965
816 => 0.055681957868183
817 => 0.057163018155231
818 => 0.058550226557169
819 => 0.059961354525608
820 => 0.058260184682393
821 => 0.057396435549578
822 => 0.05828760417596
823 => 0.057814737558695
824 => 0.06053196940285
825 => 0.060720104640245
826 => 0.06343713999761
827 => 0.066015930090301
828 => 0.064396238236905
829 => 0.065923534702134
830 => 0.067575430351587
831 => 0.070762205069792
901 => 0.069689011456787
902 => 0.068866961968313
903 => 0.068090129173819
904 => 0.069706594900427
905 => 0.071786152234038
906 => 0.072234068965945
907 => 0.072959865188996
908 => 0.072196779206598
909 => 0.073115832221232
910 => 0.07636049321525
911 => 0.075483757173252
912 => 0.074238651051262
913 => 0.076799999285485
914 => 0.077726941254461
915 => 0.084232705436014
916 => 0.092446501454939
917 => 0.089045935968411
918 => 0.086935095235361
919 => 0.08743119287744
920 => 0.090430593129009
921 => 0.091393905293607
922 => 0.088775290756612
923 => 0.08970022968042
924 => 0.094796734088589
925 => 0.097530845188134
926 => 0.093817555074841
927 => 0.083572734923489
928 => 0.074126542867978
929 => 0.076632098368672
930 => 0.076348046131332
1001 => 0.081823604316037
1002 => 0.075462847308606
1003 => 0.075569946143541
1004 => 0.081158733072788
1005 => 0.079667740536129
1006 => 0.077252523578638
1007 => 0.074144176624607
1008 => 0.068398109792787
1009 => 0.063308658158917
1010 => 0.073290244843648
1011 => 0.072859820675465
1012 => 0.072236502694648
1013 => 0.073623629410906
1014 => 0.080359123002271
1015 => 0.080203848074324
1016 => 0.079216068204696
1017 => 0.079965290529917
1018 => 0.07712118128259
1019 => 0.07785417299479
1020 => 0.074125046542894
1021 => 0.075810767441228
1022 => 0.077247341607776
1023 => 0.077535755140555
1024 => 0.078185565556664
1025 => 0.072633006697458
1026 => 0.075125942610678
1027 => 0.076590308903189
1028 => 0.069974248719524
1029 => 0.076459530665613
1030 => 0.072536349001047
1031 => 0.071204762219883
1101 => 0.072997568397503
1102 => 0.072298910086523
1103 => 0.071698244697335
1104 => 0.071363063089427
1105 => 0.072679502081474
1106 => 0.07261808862901
1107 => 0.070464138928224
1108 => 0.06765439934977
1109 => 0.068597440178856
1110 => 0.068254824604594
1111 => 0.06701314156518
1112 => 0.067849886012363
1113 => 0.06416528693364
1114 => 0.057826125727492
1115 => 0.062013969794033
1116 => 0.061852742352969
1117 => 0.061771444166102
1118 => 0.064918493238598
1119 => 0.064615977085053
1120 => 0.064066907304122
1121 => 0.067003057468067
1122 => 0.065931323161434
1123 => 0.069234155762116
1124 => 0.071409614926744
1125 => 0.070857848113863
1126 => 0.072903877973102
1127 => 0.068619165934884
1128 => 0.07004237540117
1129 => 0.070335696899689
1130 => 0.066966825830811
1201 => 0.064665472469054
1202 => 0.064511998437174
1203 => 0.060521768853915
1204 => 0.062653317289284
1205 => 0.064528991702941
1206 => 0.063630689217014
1207 => 0.063346313485993
1208 => 0.064799127422209
1209 => 0.064912023507563
1210 => 0.062337980797303
1211 => 0.062873205786097
1212 => 0.065105182963121
1213 => 0.0628169656879
1214 => 0.058371333300315
1215 => 0.057268755002517
1216 => 0.057121650733041
1217 => 0.054131370942827
1218 => 0.05734243455656
1219 => 0.055940719238011
1220 => 0.060368721134179
1221 => 0.057839470198938
1222 => 0.05773043924627
1223 => 0.057565622969948
1224 => 0.054991765627608
1225 => 0.055555276808413
1226 => 0.057428473798585
1227 => 0.058096851587753
1228 => 0.058027134308485
1229 => 0.057419294111414
1230 => 0.057697560240988
1231 => 0.056801168083285
]
'min_raw' => 0.031363764401541
'max_raw' => 0.097530845188134
'avg_raw' => 0.064447304794837
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.031363'
'max' => '$0.09753'
'avg' => '$0.064447'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.01786690417356
'max_diff' => 0.060915163978398
'year' => 2033
]
8 => [
'items' => [
101 => 0.056484633355611
102 => 0.055485562685334
103 => 0.054017204800345
104 => 0.054221388970215
105 => 0.051312187783312
106 => 0.049727100573693
107 => 0.049288369325185
108 => 0.048701679563838
109 => 0.049354637494851
110 => 0.051303946381871
111 => 0.048952666295174
112 => 0.044921561509654
113 => 0.045163837775932
114 => 0.04570816061379
115 => 0.044693818606497
116 => 0.043733829023867
117 => 0.044568462079547
118 => 0.042860429840807
119 => 0.045914568149621
120 => 0.045831962267491
121 => 0.046970356162371
122 => 0.047682217227034
123 => 0.046041607940743
124 => 0.04562899914192
125 => 0.045864039865754
126 => 0.041979340260461
127 => 0.046652893327047
128 => 0.04669331040804
129 => 0.046347234822653
130 => 0.048835757550847
131 => 0.05408731669704
201 => 0.052111468902765
202 => 0.051346360916506
203 => 0.049891890075337
204 => 0.051829886113262
205 => 0.051681078254997
206 => 0.051008112686219
207 => 0.050601101010442
208 => 0.051351032502721
209 => 0.050508176199424
210 => 0.05035677604721
211 => 0.049439455849781
212 => 0.049112014274708
213 => 0.048869589568349
214 => 0.048602703786808
215 => 0.049191387317095
216 => 0.047857352989696
217 => 0.046248638367849
218 => 0.046114891153576
219 => 0.04648417897136
220 => 0.046320796602235
221 => 0.046114108941651
222 => 0.04571948590956
223 => 0.045602409685725
224 => 0.045982850615878
225 => 0.04555335498682
226 => 0.046187099183333
227 => 0.046014755828547
228 => 0.045052059858439
301 => 0.043852184243987
302 => 0.043841502834194
303 => 0.043582991601251
304 => 0.043253738678673
305 => 0.043162148047899
306 => 0.044498171611579
307 => 0.047263700404577
308 => 0.046720760929016
309 => 0.047113090342784
310 => 0.049042962755831
311 => 0.049656411162651
312 => 0.049221000013812
313 => 0.048624982378292
314 => 0.048651204129414
315 => 0.050687976816795
316 => 0.050815007830951
317 => 0.051135974221964
318 => 0.051548506739507
319 => 0.049291256085391
320 => 0.048544887826596
321 => 0.048191217138645
322 => 0.047102048307536
323 => 0.048276623513609
324 => 0.047592248841355
325 => 0.04768459436621
326 => 0.047624454222003
327 => 0.047657294807399
328 => 0.04591371445572
329 => 0.046548983495987
330 => 0.045492725504087
331 => 0.044078514623457
401 => 0.044073773692699
402 => 0.044419899802222
403 => 0.044214010448362
404 => 0.043659967491023
405 => 0.043738666678104
406 => 0.043049178988098
407 => 0.043822382967248
408 => 0.043844555690713
409 => 0.043546830042035
410 => 0.044738057453503
411 => 0.04522610429593
412 => 0.045030134896069
413 => 0.045212354560422
414 => 0.04674332251545
415 => 0.046992937092935
416 => 0.04710379939964
417 => 0.046955258595096
418 => 0.045240337844202
419 => 0.045316401871911
420 => 0.044758294505863
421 => 0.044286752593457
422 => 0.044305611797042
423 => 0.044548045636176
424 => 0.045606768430231
425 => 0.047834788135203
426 => 0.047919339854345
427 => 0.048021819004493
428 => 0.047604984798946
429 => 0.047479263613987
430 => 0.047645122308339
501 => 0.048481849365816
502 => 0.050634138526825
503 => 0.049873375790765
504 => 0.04925486384437
505 => 0.049797465570982
506 => 0.049713936288223
507 => 0.049008865080838
508 => 0.048989076080359
509 => 0.047635819008488
510 => 0.04713555068119
511 => 0.046717489022464
512 => 0.046260976604911
513 => 0.045990340741351
514 => 0.04640616042958
515 => 0.046501263312111
516 => 0.045592066296516
517 => 0.045468146102888
518 => 0.046210616012205
519 => 0.045883882687183
520 => 0.046219936014564
521 => 0.046297903269129
522 => 0.046285348745406
523 => 0.045944201629
524 => 0.046161638627843
525 => 0.045647335304489
526 => 0.045088107686202
527 => 0.044731355306846
528 => 0.044420041539523
529 => 0.044592776511296
530 => 0.043977007877083
531 => 0.043780011098024
601 => 0.046087975865123
602 => 0.04779289425338
603 => 0.047768104064793
604 => 0.047617200167288
605 => 0.047392987585334
606 => 0.048465446818912
607 => 0.048091823466433
608 => 0.048363665672637
609 => 0.048432860923297
610 => 0.04864229410677
611 => 0.048717148468472
612 => 0.048490886597714
613 => 0.047731524123889
614 => 0.045839265037137
615 => 0.044958413324198
616 => 0.044667717587182
617 => 0.044678283825113
618 => 0.044386819813221
619 => 0.044472669027224
620 => 0.044356964960073
621 => 0.04413784944871
622 => 0.044579246745921
623 => 0.044630113672524
624 => 0.04452708626905
625 => 0.044551352952215
626 => 0.04369833005503
627 => 0.043763183533235
628 => 0.04340207112541
629 => 0.043334366902218
630 => 0.042421506180891
701 => 0.040804241091784
702 => 0.04170036294287
703 => 0.040617973760558
704 => 0.040208056576344
705 => 0.042148540771211
706 => 0.0419537699787
707 => 0.041620407046749
708 => 0.041127293791472
709 => 0.040944393288392
710 => 0.039833147730941
711 => 0.039767489415142
712 => 0.040318252719569
713 => 0.040064094405184
714 => 0.039707159874507
715 => 0.038414379186269
716 => 0.036960865667712
717 => 0.037004738104377
718 => 0.03746707371105
719 => 0.038811376841901
720 => 0.038286134351997
721 => 0.037905064899109
722 => 0.037833702045488
723 => 0.0387269575668
724 => 0.039991101272273
725 => 0.04058420921526
726 => 0.039996457256716
727 => 0.039321279453554
728 => 0.03936237439796
729 => 0.039635760652232
730 => 0.039664489682083
731 => 0.039225018341623
801 => 0.039348726949745
802 => 0.039160802261856
803 => 0.038007508799168
804 => 0.037986649377561
805 => 0.037703612562448
806 => 0.037695042320173
807 => 0.037213526090823
808 => 0.037146158641772
809 => 0.036190078942453
810 => 0.036819373495821
811 => 0.036397275748869
812 => 0.035761074881418
813 => 0.035651393612071
814 => 0.035648096460671
815 => 0.036301332499631
816 => 0.036811740052373
817 => 0.036404618319892
818 => 0.03631192459313
819 => 0.03730165108839
820 => 0.037175699370311
821 => 0.037066625994756
822 => 0.039877911068698
823 => 0.037652559565363
824 => 0.036682179291286
825 => 0.035481149431899
826 => 0.035872210810233
827 => 0.035954613188536
828 => 0.033066352878615
829 => 0.03189458603059
830 => 0.03149247980545
831 => 0.031261061987934
901 => 0.031366521993338
902 => 0.030311794395573
903 => 0.031020588784855
904 => 0.030107283839095
905 => 0.029954165292787
906 => 0.031587267672579
907 => 0.031814504328281
908 => 0.03084504215816
909 => 0.031467593813046
910 => 0.031241847928869
911 => 0.030122939831046
912 => 0.03008020577184
913 => 0.029518777019873
914 => 0.028640249737075
915 => 0.028238739194801
916 => 0.028029629018311
917 => 0.028115911952607
918 => 0.028072284660726
919 => 0.027787587070562
920 => 0.028088603193339
921 => 0.027319631388094
922 => 0.027013420619219
923 => 0.026875112318954
924 => 0.026192605581434
925 => 0.027278777312952
926 => 0.027492766827292
927 => 0.02770717796708
928 => 0.029573480554233
929 => 0.029480245351095
930 => 0.030323046180075
1001 => 0.030290296489672
1002 => 0.030049916040779
1003 => 0.029035790467562
1004 => 0.029440002845996
1005 => 0.028195899973728
1006 => 0.029128066436404
1007 => 0.02870266459104
1008 => 0.028984237644571
1009 => 0.028477943905905
1010 => 0.028758147765238
1011 => 0.02754351167963
1012 => 0.02640930159328
1013 => 0.026865740841683
1014 => 0.027361942504858
1015 => 0.028437834140453
1016 => 0.027797041958206
1017 => 0.028027495057977
1018 => 0.027255515751127
1019 => 0.025662701936107
1020 => 0.025671717089321
1021 => 0.025426697385216
1022 => 0.025214964587406
1023 => 0.027870644648686
1024 => 0.027540368852977
1025 => 0.027014117597941
1026 => 0.027718525815199
1027 => 0.027904782528304
1028 => 0.02791008499508
1029 => 0.028424003046984
1030 => 0.02869828120341
1031 => 0.02874662391727
1101 => 0.029555285075875
1102 => 0.029826337629741
1103 => 0.030942764738321
1104 => 0.028675010618112
1105 => 0.028628307714343
1106 => 0.027728438283377
1107 => 0.027157726863886
1108 => 0.027767515382535
1109 => 0.028307704765624
1110 => 0.027745223473282
1111 => 0.027818671655434
1112 => 0.027063586476874
1113 => 0.027333493898149
1114 => 0.027565974529807
1115 => 0.027437612389586
1116 => 0.027245448052876
1117 => 0.028263415396449
1118 => 0.028205977689479
1119 => 0.029153932282782
1120 => 0.029892930677146
1121 => 0.031217347911609
1122 => 0.029835249484015
1123 => 0.029784880323969
1124 => 0.030277246942879
1125 => 0.029826262250977
1126 => 0.030111269008797
1127 => 0.031171428916737
1128 => 0.031193828425014
1129 => 0.030818607801243
1130 => 0.030795775592187
1201 => 0.030867840817446
1202 => 0.031289929092704
1203 => 0.031142438479866
1204 => 0.031313118351048
1205 => 0.031526556143503
1206 => 0.032409425348847
1207 => 0.032622282125316
1208 => 0.032105150512082
1209 => 0.03215184170668
1210 => 0.03195842028775
1211 => 0.031771577620627
1212 => 0.032191572650139
1213 => 0.032959121821596
1214 => 0.032954346938036
1215 => 0.03313240342679
1216 => 0.033243331144184
1217 => 0.032767148177076
1218 => 0.032457170575222
1219 => 0.03257603571216
1220 => 0.03276610365467
1221 => 0.032514399240076
1222 => 0.030960762992374
1223 => 0.031432036983259
1224 => 0.031353593947055
1225 => 0.031241881524501
1226 => 0.03171575116659
1227 => 0.031670045283598
1228 => 0.030300976639579
1229 => 0.030388619972237
1230 => 0.030306306520922
1231 => 0.030572278121868
]
'min_raw' => 0.025214964587406
'max_raw' => 0.056484633355611
'avg_raw' => 0.040849798971508
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.025214'
'max' => '$0.056484'
'avg' => '$0.040849'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0061487998141348
'max_diff' => -0.041046211832523
'year' => 2034
]
9 => [
'items' => [
101 => 0.029811898911681
102 => 0.030045786435503
103 => 0.030192478497884
104 => 0.030278881249568
105 => 0.030591027235573
106 => 0.030554400506891
107 => 0.030588750466692
108 => 0.031051580560452
109 => 0.033392416350582
110 => 0.033519822877876
111 => 0.032892426540734
112 => 0.033143059002577
113 => 0.032661899483132
114 => 0.032984905092024
115 => 0.033205897326174
116 => 0.03220727591441
117 => 0.032148144035405
118 => 0.031664998599466
119 => 0.031924613589984
120 => 0.031511547473092
121 => 0.031612899449738
122 => 0.03132951048733
123 => 0.031839554197485
124 => 0.032409862318218
125 => 0.032553944671665
126 => 0.032174926031099
127 => 0.031900491556783
128 => 0.03141867502422
129 => 0.032219946655854
130 => 0.032454262899254
131 => 0.032218715892378
201 => 0.032164134504082
202 => 0.032060702871886
203 => 0.032186078013805
204 => 0.03245298676267
205 => 0.032327117525736
206 => 0.032410256374262
207 => 0.03209341681609
208 => 0.032767305813452
209 => 0.033837603721482
210 => 0.033841044904268
211 => 0.033715174988852
212 => 0.033663671731368
213 => 0.033792821903011
214 => 0.033862880573109
215 => 0.034280528546109
216 => 0.034728681460967
217 => 0.036820015570175
218 => 0.036232777320918
219 => 0.038088333356631
220 => 0.039555837267083
221 => 0.039995877523659
222 => 0.039591061193103
223 => 0.03820620639402
224 => 0.038138258810778
225 => 0.040207816551224
226 => 0.039623071697798
227 => 0.039553518158126
228 => 0.038813586008573
301 => 0.039250977551338
302 => 0.039155313604789
303 => 0.03900430338512
304 => 0.039838815979757
305 => 0.041400949059465
306 => 0.041157475969402
307 => 0.040975734602061
308 => 0.040179396834489
309 => 0.040658970039047
310 => 0.040488203206523
311 => 0.041221925890353
312 => 0.0407872848264
313 => 0.039618641680421
314 => 0.039804751953316
315 => 0.03977662175997
316 => 0.040355539145709
317 => 0.040181762516123
318 => 0.039742689084028
319 => 0.041395609858424
320 => 0.041288278377364
321 => 0.041440449878115
322 => 0.041507440478806
323 => 0.04251354422645
324 => 0.042925712740131
325 => 0.043019282208761
326 => 0.043410810418501
327 => 0.043009540630229
328 => 0.044614905883828
329 => 0.045682380101811
330 => 0.04692230633772
331 => 0.048734171829136
401 => 0.049415450014601
402 => 0.049292383208282
403 => 0.050666118945338
404 => 0.053134691528399
405 => 0.04979135230651
406 => 0.053311896625421
407 => 0.052197332940692
408 => 0.049554722494345
409 => 0.049384569535931
410 => 0.051174176011535
411 => 0.055143350931186
412 => 0.054149117631823
413 => 0.05514497714069
414 => 0.053983254125404
415 => 0.053925564785925
416 => 0.055088554846852
417 => 0.057805944515494
418 => 0.056515014543751
419 => 0.054664149880241
420 => 0.056030799545133
421 => 0.054846881127948
422 => 0.05217918157613
423 => 0.054148357360356
424 => 0.052831625592342
425 => 0.053215917923559
426 => 0.055983492250858
427 => 0.055650490385704
428 => 0.056081425634355
429 => 0.055320836200024
430 => 0.054610325734414
501 => 0.053284105187152
502 => 0.052891476664991
503 => 0.052999985063222
504 => 0.052891422893618
505 => 0.052149414686021
506 => 0.051989178084237
507 => 0.051722110061139
508 => 0.051804885608859
509 => 0.051302719591928
510 => 0.052250410618671
511 => 0.052426310424259
512 => 0.05311596092265
513 => 0.053187562725221
514 => 0.055108229546679
515 => 0.054050358536915
516 => 0.054760069742453
517 => 0.054696586492169
518 => 0.049611995875813
519 => 0.050312607601024
520 => 0.051402539581382
521 => 0.050911526701598
522 => 0.050217349368904
523 => 0.04965676395332
524 => 0.048807419725908
525 => 0.050002855415779
526 => 0.051574726227547
527 => 0.053227427962989
528 => 0.055213040808815
529 => 0.054769875136708
530 => 0.053190308312
531 => 0.053261166525882
601 => 0.053699184122422
602 => 0.053131911536808
603 => 0.052964611776834
604 => 0.053676199704464
605 => 0.05368110001944
606 => 0.053028384352508
607 => 0.05230301033442
608 => 0.052299970990799
609 => 0.052170897690562
610 => 0.054006215978779
611 => 0.055015455465689
612 => 0.055131163146393
613 => 0.055007667416867
614 => 0.055055196021792
615 => 0.054467941801433
616 => 0.055810230804344
617 => 0.057042047932038
618 => 0.056711894627882
619 => 0.056216947890893
620 => 0.055822698975017
621 => 0.056619022112712
622 => 0.056583563096919
623 => 0.057031289084042
624 => 0.057010977647075
625 => 0.056860424237432
626 => 0.056711900004618
627 => 0.057300781799308
628 => 0.057131193299589
629 => 0.056961341382089
630 => 0.056620677358515
701 => 0.056666979257149
702 => 0.056172117979693
703 => 0.055943172509431
704 => 0.052500381953674
705 => 0.051580355820749
706 => 0.051869814771026
707 => 0.051965112173256
708 => 0.051564715621161
709 => 0.05213878142343
710 => 0.052049313876232
711 => 0.052397379765613
712 => 0.052179923309192
713 => 0.052188847798015
714 => 0.052828340869744
715 => 0.053013988429065
716 => 0.052919566582035
717 => 0.052985696407103
718 => 0.054509630314149
719 => 0.05429297564523
720 => 0.054177882170455
721 => 0.054209763849531
722 => 0.054599161636292
723 => 0.054708171756255
724 => 0.054246288217969
725 => 0.054464115164742
726 => 0.055391594657743
727 => 0.055716159989501
728 => 0.056752016728274
729 => 0.056311966374758
730 => 0.05711969784357
731 => 0.059602389002748
801 => 0.06158573448986
802 => 0.059761768014693
803 => 0.06340392942425
804 => 0.066239874518614
805 => 0.066131026222379
806 => 0.065636513598584
807 => 0.062407865506152
808 => 0.059436815395065
809 => 0.061922224970441
810 => 0.061928560790577
811 => 0.061715061903852
812 => 0.060389038654588
813 => 0.061668919169099
814 => 0.061770511436498
815 => 0.061713646782319
816 => 0.060696987866135
817 => 0.059144737611096
818 => 0.059448043595369
819 => 0.059944864984881
820 => 0.059004278446734
821 => 0.058703704055648
822 => 0.059262529035295
823 => 0.061063179555525
824 => 0.060722777005133
825 => 0.060713887718868
826 => 0.062170274182588
827 => 0.061127815782435
828 => 0.05945186925515
829 => 0.059028670653992
830 => 0.057526600720618
831 => 0.058564085773789
901 => 0.058601423013854
902 => 0.058033203053072
903 => 0.059497977173329
904 => 0.059484479021942
905 => 0.06087506404627
906 => 0.063533340332901
907 => 0.062747157229112
908 => 0.061832911815885
909 => 0.061932315641579
910 => 0.063022530259887
911 => 0.062363361614479
912 => 0.062600403255255
913 => 0.063022171468974
914 => 0.063276634704227
915 => 0.061895702297992
916 => 0.061573740896467
917 => 0.060915120862041
918 => 0.060743299188785
919 => 0.061279731464267
920 => 0.061138400512109
921 => 0.058598284963403
922 => 0.058332828755494
923 => 0.058340969918406
924 => 0.057673467661864
925 => 0.056655366501739
926 => 0.059330875562886
927 => 0.05911599474155
928 => 0.058878782945251
929 => 0.058907840036786
930 => 0.060069187838814
1001 => 0.059395547464168
1002 => 0.061186530807651
1003 => 0.060818358474118
1004 => 0.060440743909471
1005 => 0.060388546074216
1006 => 0.060243196683388
1007 => 0.059744739540112
1008 => 0.059142822586976
1009 => 0.058745384877361
1010 => 0.05418951228007
1011 => 0.055035055733836
1012 => 0.056007776403682
1013 => 0.05634355568098
1014 => 0.055769181991944
1015 => 0.059767419314204
1016 => 0.060497935800954
1017 => 0.058285153712176
1018 => 0.057871232530663
1019 => 0.059794555917954
1020 => 0.058634556798696
1021 => 0.05915690433107
1022 => 0.058027874674901
1023 => 0.060321975771316
1024 => 0.060304498564632
1025 => 0.059412041423503
1026 => 0.060166340087902
1027 => 0.060035262132585
1028 => 0.059027680218275
1029 => 0.060353917915191
1030 => 0.060354575712542
1031 => 0.059495605117897
1101 => 0.058492515516194
1102 => 0.058313186787329
1103 => 0.058178086679553
1104 => 0.059123677986344
1105 => 0.059971492195226
1106 => 0.061549064246987
1107 => 0.061945703342988
1108 => 0.063493812140437
1109 => 0.062571988727605
1110 => 0.062980621106902
1111 => 0.063424249359207
1112 => 0.063636941057251
1113 => 0.063290371348954
1114 => 0.065695221538395
1115 => 0.06589826457709
1116 => 0.065966343151649
1117 => 0.065155441198506
1118 => 0.065875711926862
1119 => 0.065538721105924
1120 => 0.066415477603259
1121 => 0.06655296421703
1122 => 0.066436517946394
1123 => 0.066480158367684
1124 => 0.06442804297564
1125 => 0.064321629966792
1126 => 0.062870681040419
1127 => 0.063461953452789
1128 => 0.062356598018288
1129 => 0.062707117612991
1130 => 0.062861623310462
1201 => 0.062780918302224
1202 => 0.063495383107846
1203 => 0.062887942067551
1204 => 0.061284805289658
1205 => 0.059681231738223
1206 => 0.059661100178527
1207 => 0.059238907567859
1208 => 0.058933739638779
1209 => 0.058992525808333
1210 => 0.059199695937445
1211 => 0.05892169853426
1212 => 0.058981023375056
1213 => 0.059966211011608
1214 => 0.060163783366082
1215 => 0.059492355309078
1216 => 0.056796474773599
1217 => 0.056134898928089
1218 => 0.056610426526223
1219 => 0.056383154962214
1220 => 0.045505606579325
1221 => 0.048061125222929
1222 => 0.046542722822113
1223 => 0.047242472506745
1224 => 0.045692576843907
1225 => 0.046432268291205
1226 => 0.046295674290095
1227 => 0.050404872645716
1228 => 0.050340713165411
1229 => 0.050371422913389
1230 => 0.048905566628572
1231 => 0.051240715492621
]
'min_raw' => 0.029811898911681
'max_raw' => 0.06655296421703
'avg_raw' => 0.048182431564356
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.029811'
'max' => '$0.066552'
'avg' => '$0.048182'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0045969343242748
'max_diff' => 0.01006833086142
'year' => 2035
]
10 => [
'items' => [
101 => 0.052391093792288
102 => 0.052178189385347
103 => 0.052231772837729
104 => 0.051311031595339
105 => 0.050380337701256
106 => 0.049348054939954
107 => 0.051265908716447
108 => 0.051052676115357
109 => 0.051541754983589
110 => 0.052785620248664
111 => 0.052968784133931
112 => 0.053214958253194
113 => 0.053126722355305
114 => 0.055228859418573
115 => 0.054974276749864
116 => 0.05558774773302
117 => 0.054325791376514
118 => 0.05289776797313
119 => 0.053169188536511
120 => 0.053143048553631
121 => 0.052810256569494
122 => 0.052509826846351
123 => 0.052009696002866
124 => 0.053592183997089
125 => 0.053527937874486
126 => 0.054568007921482
127 => 0.054384165437974
128 => 0.053156420339221
129 => 0.053200269495611
130 => 0.053495176145514
131 => 0.054515851428013
201 => 0.054818857344732
202 => 0.05467849293141
203 => 0.055010725086346
204 => 0.055273307835411
205 => 0.055043701436833
206 => 0.058294443843652
207 => 0.056944508955371
208 => 0.057602457827133
209 => 0.057759374756188
210 => 0.057357435342021
211 => 0.057444601608582
212 => 0.057576634751037
213 => 0.058378314137284
214 => 0.060482152814595
215 => 0.061413928643461
216 => 0.064217222197617
217 => 0.06133655763182
218 => 0.06116563091786
219 => 0.061670588738319
220 => 0.063316418813367
221 => 0.064650209504235
222 => 0.065092704824627
223 => 0.065151187886018
224 => 0.065981338523606
225 => 0.066457165387679
226 => 0.065880536401074
227 => 0.065391903710497
228 => 0.063641682064175
229 => 0.063844274985432
301 => 0.06523993931116
302 => 0.06721139737547
303 => 0.0689031134899
304 => 0.068310733468885
305 => 0.072830174874102
306 => 0.073278259029167
307 => 0.073216348287232
308 => 0.074237150676332
309 => 0.07221106581676
310 => 0.071344875285747
311 => 0.065497551644417
312 => 0.067140411078399
313 => 0.069528403747443
314 => 0.069212343963182
315 => 0.067478119855695
316 => 0.068901797925402
317 => 0.068431085433028
318 => 0.068059814960413
319 => 0.069760676969785
320 => 0.06789050932292
321 => 0.069509747394562
322 => 0.067433057818808
323 => 0.068313439410923
324 => 0.067813692239972
325 => 0.068137089906287
326 => 0.06624651375711
327 => 0.067266622756064
328 => 0.066204073868946
329 => 0.066203570082426
330 => 0.066180114256851
331 => 0.067430198310482
401 => 0.067470963506591
402 => 0.066547149502186
403 => 0.066414013471464
404 => 0.066906287156461
405 => 0.066329963598012
406 => 0.066599621763673
407 => 0.066338131269144
408 => 0.066279264250994
409 => 0.06581020183497
410 => 0.065608116849008
411 => 0.065687359579092
412 => 0.065416863288887
413 => 0.065253879489759
414 => 0.066147692676962
415 => 0.06567016434736
416 => 0.06607450461173
417 => 0.065613707848671
418 => 0.064016385508318
419 => 0.063097748539003
420 => 0.060080554709934
421 => 0.060936227137041
422 => 0.06150353884147
423 => 0.06131604232654
424 => 0.061718857392128
425 => 0.061743586965627
426 => 0.061612627681591
427 => 0.0614609936076
428 => 0.061387186526272
429 => 0.061937284041486
430 => 0.062256634164499
501 => 0.061560476160661
502 => 0.061397376080647
503 => 0.062101230258464
504 => 0.062530580900329
505 => 0.065700664808574
506 => 0.065465814753415
507 => 0.066055242304868
508 => 0.065988881808078
509 => 0.066606695785173
510 => 0.067616560530057
511 => 0.065563223141085
512 => 0.065919611512746
513 => 0.065832233314224
514 => 0.066786205573891
515 => 0.066789183771156
516 => 0.066217229747037
517 => 0.066527295302406
518 => 0.066354225215603
519 => 0.066666986254282
520 => 0.065462678187747
521 => 0.066929395415764
522 => 0.067760929570879
523 => 0.06777247542343
524 => 0.068166616013491
525 => 0.068567085680077
526 => 0.069335752331532
527 => 0.068545647984363
528 => 0.067124327178913
529 => 0.067226941950228
530 => 0.066393622082034
531 => 0.06640763033957
601 => 0.066332853162997
602 => 0.066557265098857
603 => 0.06551192398789
604 => 0.065757263457236
605 => 0.065413786763446
606 => 0.065918864861493
607 => 0.065375484320395
608 => 0.065832191177811
609 => 0.066029290717399
610 => 0.066756592261731
611 => 0.065268061290947
612 => 0.06223284587683
613 => 0.062870884955307
614 => 0.061927175041352
615 => 0.062014518986845
616 => 0.062190967657428
617 => 0.061619039785656
618 => 0.061728145600072
619 => 0.061724247572615
620 => 0.061690656477878
621 => 0.061541875949528
622 => 0.061326114748089
623 => 0.062185640966824
624 => 0.062331691220355
625 => 0.062656342842155
626 => 0.063622285855333
627 => 0.063525765369812
628 => 0.063683194286293
629 => 0.063339527845539
630 => 0.062030460687373
701 => 0.062101549332173
702 => 0.061215072792392
703 => 0.062633673643961
704 => 0.062297730237694
705 => 0.062081145338231
706 => 0.062022048141768
707 => 0.062990385540842
708 => 0.063280127267474
709 => 0.063099579667281
710 => 0.06272927127187
711 => 0.063440372862908
712 => 0.063630633649702
713 => 0.063673226023318
714 => 0.064933161702431
715 => 0.06374364243164
716 => 0.064029971542925
717 => 0.066263829532913
718 => 0.064238028587324
719 => 0.065311140528955
720 => 0.065258617283617
721 => 0.065807585040827
722 => 0.065213585904357
723 => 0.065220949235556
724 => 0.065708395413661
725 => 0.065023865167893
726 => 0.064854365852471
727 => 0.064620203762192
728 => 0.065131488119668
729 => 0.065437979968572
730 => 0.067908079177282
731 => 0.069503875916318
801 => 0.069434598171262
802 => 0.070067667078569
803 => 0.069782463737581
804 => 0.068861466916688
805 => 0.070433496186354
806 => 0.069936040348934
807 => 0.069977050003762
808 => 0.069975523622361
809 => 0.070306288265902
810 => 0.070071911201819
811 => 0.069609929950199
812 => 0.069916614664786
813 => 0.070827358625319
814 => 0.073654335823849
815 => 0.075236349716613
816 => 0.07355909660107
817 => 0.074716043340858
818 => 0.074022287559259
819 => 0.073896211496296
820 => 0.074622859546575
821 => 0.075350779498074
822 => 0.075304414144048
823 => 0.074775981638363
824 => 0.07447748352438
825 => 0.076737811247664
826 => 0.078403182210501
827 => 0.078289615075624
828 => 0.07879086347496
829 => 0.08026254427844
830 => 0.080397096327406
831 => 0.08038014586188
901 => 0.080046644569463
902 => 0.081495705442391
903 => 0.082704537516387
904 => 0.079969448656048
905 => 0.081010934689123
906 => 0.081478491323954
907 => 0.08216500318169
908 => 0.083323263758436
909 => 0.084581441958228
910 => 0.0847593621509
911 => 0.084633119259934
912 => 0.083803316915526
913 => 0.085180030514926
914 => 0.085986477053548
915 => 0.086466697512096
916 => 0.08768445669391
917 => 0.081481378794556
918 => 0.077090531944418
919 => 0.076404837804172
920 => 0.077799223801953
921 => 0.078166912269547
922 => 0.078018697509302
923 => 0.073076400181141
924 => 0.076378817631571
925 => 0.079931941133087
926 => 0.080068431077331
927 => 0.081847198994499
928 => 0.082426438742489
929 => 0.08385858006425
930 => 0.083768999234644
1001 => 0.084117702856147
1002 => 0.084037541932268
1003 => 0.086690282157895
1004 => 0.089616648562498
1005 => 0.089515317799182
1006 => 0.089094618005324
1007 => 0.089719428939177
1008 => 0.092739752677209
1009 => 0.092461689667112
1010 => 0.09273180419607
1011 => 0.096292936101196
1012 => 0.10092291414297
1013 => 0.098771824500369
1014 => 0.10343907006544
1015 => 0.10637685374859
1016 => 0.1114574468561
1017 => 0.11082133157659
1018 => 0.11279916919023
1019 => 0.109682552465
1020 => 0.10252617049173
1021 => 0.10139364565092
1022 => 0.1036609890623
1023 => 0.10923503159505
1024 => 0.10348544262662
1025 => 0.10464857698665
1026 => 0.10431359421271
1027 => 0.10429574440427
1028 => 0.10497699899193
1029 => 0.10398880368068
1030 => 0.099962718209696
1031 => 0.10180784945518
1101 => 0.10109535567082
1102 => 0.1018859206445
1103 => 0.10615227375364
1104 => 0.10426601734693
1105 => 0.10227899944949
1106 => 0.10477116084745
1107 => 0.10794453870662
1108 => 0.10774595442331
1109 => 0.10736061791188
1110 => 0.10953273965124
1111 => 0.11312044839271
1112 => 0.11409019164895
1113 => 0.11480603629518
1114 => 0.1149047391776
1115 => 0.11592144021003
1116 => 0.11045438251701
1117 => 0.11913074347983
1118 => 0.12062891133848
1119 => 0.12034731787375
1120 => 0.12201246839609
1121 => 0.12152253887162
1122 => 0.12081270785826
1123 => 0.12345232562385
1124 => 0.12042621686177
1125 => 0.11613103645051
1126 => 0.11377461552785
1127 => 0.11687774068586
1128 => 0.11877271093571
1129 => 0.12002516572812
1130 => 0.12040415779155
1201 => 0.110878774643
1202 => 0.1057451214279
1203 => 0.10903573428132
1204 => 0.11305050906847
1205 => 0.11043208024035
1206 => 0.11053471769307
1207 => 0.10680152629517
1208 => 0.11338081367063
1209 => 0.11242226684054
1210 => 0.11739520949068
1211 => 0.11620837681686
1212 => 0.12026361849953
1213 => 0.11919573745853
1214 => 0.12362845195528
1215 => 0.12539678177898
1216 => 0.12836608277154
1217 => 0.13055031266889
1218 => 0.13183293424228
1219 => 0.13175593045401
1220 => 0.1368383161273
1221 => 0.13384141086079
1222 => 0.13007659152972
1223 => 0.13000849782587
1224 => 0.13195835110534
1225 => 0.13604470866297
1226 => 0.13710424172358
1227 => 0.13769637616031
1228 => 0.13678950165812
1229 => 0.13353657578146
1230 => 0.13213197888062
1231 => 0.13332873613522
]
'min_raw' => 0.049348054939954
'max_raw' => 0.13769637616031
'avg_raw' => 0.093522215550131
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.049348'
'max' => '$0.137696'
'avg' => '$0.093522'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.019536156028273
'max_diff' => 0.071143411943277
'year' => 2036
]
11 => [
'items' => [
101 => 0.13186520485137
102 => 0.13439167044165
103 => 0.13786104732104
104 => 0.13714463471485
105 => 0.13953949464676
106 => 0.14201792272968
107 => 0.14556218620142
108 => 0.14648878791663
109 => 0.14802042531637
110 => 0.14959698331737
111 => 0.15010333125786
112 => 0.1510701065868
113 => 0.1510650112036
114 => 0.15397845372885
115 => 0.15719207105599
116 => 0.15840513720158
117 => 0.1611945159145
118 => 0.15641780262012
119 => 0.16004099452483
120 => 0.16330920431726
121 => 0.15941270987025
122 => 0.16478311969869
123 => 0.16499164054272
124 => 0.16814005772019
125 => 0.16494853374707
126 => 0.16305341699954
127 => 0.16852454804056
128 => 0.1711718560123
129 => 0.17037446530671
130 => 0.1643062826651
131 => 0.16077434009109
201 => 0.15153056511406
202 => 0.16248021587571
203 => 0.16781347135602
204 => 0.16429247082183
205 => 0.1660682586869
206 => 0.17575638147763
207 => 0.17944499137684
208 => 0.17867778630313
209 => 0.17880743133132
210 => 0.18079773827993
211 => 0.18962385537211
212 => 0.18433504142268
213 => 0.18837814151894
214 => 0.19052258723152
215 => 0.19251446792062
216 => 0.18762303848855
217 => 0.1812593606668
218 => 0.17924371677163
219 => 0.16394237671003
220 => 0.16314587550948
221 => 0.16269877524915
222 => 0.15987987135136
223 => 0.15766498505046
224 => 0.15590362523052
225 => 0.15128129107645
226 => 0.15284119316341
227 => 0.14547415727794
228 => 0.15018732576574
301 => 0.13842935860922
302 => 0.14822174304705
303 => 0.14289219340263
304 => 0.14647084265108
305 => 0.14645835708098
306 => 0.1398689292028
307 => 0.13606828472052
308 => 0.13849020330793
309 => 0.14108669228576
310 => 0.14150796388678
311 => 0.14487437962184
312 => 0.14581387389263
313 => 0.14296716239134
314 => 0.13818570087448
315 => 0.13929632533132
316 => 0.13604577795135
317 => 0.13034931869845
318 => 0.13444061518452
319 => 0.13583756368647
320 => 0.13645453572733
321 => 0.13085272229487
322 => 0.1290925108931
323 => 0.12815538911241
324 => 0.13746257710491
325 => 0.13797244587293
326 => 0.13536388516757
327 => 0.14715482690967
328 => 0.14448617365277
329 => 0.14746771317665
330 => 0.13919554780288
331 => 0.13951155566011
401 => 0.13559538000483
402 => 0.13778817669283
403 => 0.13623837867089
404 => 0.13761102039008
405 => 0.13843377617695
406 => 0.14234930922634
407 => 0.14826645214487
408 => 0.14176445916028
409 => 0.13893144770664
410 => 0.14068903207902
411 => 0.14536971087442
412 => 0.15246117884899
413 => 0.14826288707895
414 => 0.15012601767487
415 => 0.15053302882517
416 => 0.14743736390315
417 => 0.15257532043027
418 => 0.15532879307384
419 => 0.15815328625526
420 => 0.16060571454418
421 => 0.15702512156666
422 => 0.16085686931045
423 => 0.15776915702349
424 => 0.15499915990025
425 => 0.15500336084248
426 => 0.15326570118388
427 => 0.14989876663613
428 => 0.14927785224748
429 => 0.15250792731007
430 => 0.15509814162103
501 => 0.15531148407797
502 => 0.15674555981053
503 => 0.15759423105691
504 => 0.165912362984
505 => 0.16925798445628
506 => 0.1733489470632
507 => 0.17494260755261
508 => 0.17973895426685
509 => 0.17586551475487
510 => 0.17502747175138
511 => 0.1633931034957
512 => 0.1652982306458
513 => 0.16834852303053
514 => 0.16344340169363
515 => 0.1665545721786
516 => 0.16716878313593
517 => 0.16327672754757
518 => 0.16535564260311
519 => 0.15983466057096
520 => 0.14838679446607
521 => 0.15258806517779
522 => 0.15568161455405
523 => 0.15126673816224
524 => 0.15918023321525
525 => 0.15455733277298
526 => 0.15309209527114
527 => 0.14737568138155
528 => 0.15007360869249
529 => 0.15372259401112
530 => 0.15146794532428
531 => 0.15614667988668
601 => 0.16277301579998
602 => 0.16749533737691
603 => 0.16785785859029
604 => 0.16482172218729
605 => 0.16968715014946
606 => 0.16972258948046
607 => 0.16423436686328
608 => 0.1608728610688
609 => 0.16010911987963
610 => 0.16201709511046
611 => 0.16433372927235
612 => 0.16798641566332
613 => 0.17019365754919
614 => 0.17594897375691
615 => 0.17750619730487
616 => 0.1792171138634
617 => 0.18150342601272
618 => 0.18424872994638
619 => 0.17824216122977
620 => 0.17848081340252
621 => 0.17288757978022
622 => 0.16691040750395
623 => 0.17144633619659
624 => 0.17737645957292
625 => 0.17601608271819
626 => 0.17586301253205
627 => 0.176120434127
628 => 0.17509475440429
629 => 0.17045564303191
630 => 0.16812591034308
701 => 0.17113185988987
702 => 0.17272938829457
703 => 0.17520701553114
704 => 0.17490159567787
705 => 0.18128369736153
706 => 0.18376358909106
707 => 0.18312912666609
708 => 0.18324588302148
709 => 0.18773560854273
710 => 0.19272910670484
711 => 0.19740617668377
712 => 0.20216389315117
713 => 0.19642828025289
714 => 0.19351608974656
715 => 0.19652072698982
716 => 0.19492642417522
717 => 0.20408776104885
718 => 0.20472207213691
719 => 0.21388274654162
720 => 0.2225773173845
721 => 0.2171164132175
722 => 0.22226579988246
723 => 0.22783528139626
724 => 0.23857971485219
725 => 0.23496136765796
726 => 0.23218977041391
727 => 0.22957062441054
728 => 0.23502065146583
729 => 0.24203202420616
730 => 0.24354220674033
731 => 0.24598927937982
801 => 0.2434164817132
802 => 0.24651513311827
803 => 0.2574547341946
804 => 0.25449875741725
805 => 0.25030079519643
806 => 0.25893655959573
807 => 0.26206180916116
808 => 0.28399644731721
809 => 0.31168983406394
810 => 0.30022459010621
811 => 0.29310774320054
812 => 0.29478037103724
813 => 0.30489305839685
814 => 0.3081409326161
815 => 0.29931209087879
816 => 0.30243058703758
817 => 0.3196138074763
818 => 0.32883205393795
819 => 0.31631243706735
820 => 0.28177131065656
821 => 0.24992281462934
822 => 0.25837046993223
823 => 0.25741276798215
824 => 0.27587399469314
825 => 0.25442825834872
826 => 0.2547893495481
827 => 0.2736323348767
828 => 0.26860534944158
829 => 0.26046227684433
830 => 0.24998226807097
831 => 0.23060900256991
901 => 0.21344956105215
902 => 0.24710317745185
903 => 0.24565197231756
904 => 0.24355041222657
905 => 0.24822720679653
906 => 0.27093639369696
907 => 0.27041287343644
908 => 0.2670825046414
909 => 0.26960856001991
910 => 0.26001944712318
911 => 0.26249077985671
912 => 0.24991776966485
913 => 0.25560129536686
914 => 0.26044480546778
915 => 0.26141721182993
916 => 0.26360809301616
917 => 0.24488725315507
918 => 0.25329236063772
919 => 0.25822957383171
920 => 0.23592306500391
921 => 0.25778864587307
922 => 0.24456136498319
923 => 0.24007182718208
924 => 0.24611639837965
925 => 0.24376082310542
926 => 0.24173563780865
927 => 0.24060554961596
928 => 0.24504401558848
929 => 0.24483695584575
930 => 0.23757476404558
1001 => 0.22810153088707
1002 => 0.23128105888335
1003 => 0.23012590655407
1004 => 0.22593948549514
1005 => 0.22876062781845
1006 => 0.21633774477404
1007 => 0.19496482018141
1008 => 0.20908442883769
1009 => 0.2085408392636
1010 => 0.20826673675052
1011 => 0.21887723241839
1012 => 0.21785727808571
1013 => 0.21600605098447
1014 => 0.22590548625767
1015 => 0.22229205921676
1016 => 0.23342778992637
1017 => 0.24076250238562
1018 => 0.23890218205286
1019 => 0.24580051457253
1020 => 0.23135430878664
1021 => 0.23615275886753
1022 => 0.23714171277884
1023 => 0.22578332876305
1024 => 0.21802415522853
1025 => 0.21750670681483
1026 => 0.20405336918594
1027 => 0.21124003355574
1028 => 0.21756400079679
1029 => 0.21453531124801
1030 => 0.2135765186164
1031 => 0.21847478223458
1101 => 0.2188554192685
1102 => 0.21017685455694
1103 => 0.21198140297488
1104 => 0.21950666985888
1105 => 0.21179178555724
1106 => 0.19680302557836
1107 => 0.19308560586778
1108 => 0.19258963355275
1109 => 0.18250769646537
1110 => 0.19333402162837
1111 => 0.18860804056725
1112 => 0.2035373581134
1113 => 0.19500981199857
1114 => 0.19464220652935
1115 => 0.19408651694663
1116 => 0.18540857721595
1117 => 0.18730849450513
1118 => 0.19362410893993
1119 => 0.19587759132076
1120 => 0.1956425346462
1121 => 0.19359315898373
1122 => 0.19453135266751
1123 => 0.19150910392371
1124 => 0.19044188498961
1125 => 0.18707344847188
1126 => 0.18212277734517
1127 => 0.18281119852957
1128 => 0.17300262361398
1129 => 0.1676583914195
1130 => 0.16617917838391
1201 => 0.16420111289216
1202 => 0.16640260614464
1203 => 0.17297483715363
1204 => 0.1650473321802
1205 => 0.15145618095307
1206 => 0.15227303230001
1207 => 0.15410825475126
1208 => 0.15068832985457
1209 => 0.1474516579524
1210 => 0.15026568157185
1211 => 0.14450693162793
1212 => 0.15480417216923
1213 => 0.15452566067027
1214 => 0.15836383516698
1215 => 0.16076392444704
1216 => 0.15523249569463
1217 => 0.15384135632197
1218 => 0.15463381253239
1219 => 0.14153627659209
1220 => 0.15729348705313
1221 => 0.15742975606353
1222 => 0.15626293806518
1223 => 0.16465316618639
1224 => 0.18235916449993
1225 => 0.17569745571225
1226 => 0.17311784071844
1227 => 0.16821399072953
1228 => 0.17474807967795
1229 => 0.17424636359438
1230 => 0.17197741319429
1231 => 0.17060514491276
]
'min_raw' => 0.12815538911241
'max_raw' => 0.32883205393795
'avg_raw' => 0.22849372152518
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.128155'
'max' => '$0.328832'
'avg' => '$0.228493'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.078807334172454
'max_diff' => 0.19113567777765
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0040226512243555
]
1 => [
'year' => 2028
'avg' => 0.0069040372849884
]
2 => [
'year' => 2029
'avg' => 0.018860585530935
]
3 => [
'year' => 2030
'avg' => 0.014550913649089
]
4 => [
'year' => 2031
'avg' => 0.014290800478282
]
5 => [
'year' => 2032
'avg' => 0.025056270718858
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0040226512243555
'min' => '$0.004022'
'max_raw' => 0.025056270718858
'max' => '$0.025056'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.025056270718858
]
1 => [
'year' => 2033
'avg' => 0.064447304794837
]
2 => [
'year' => 2034
'avg' => 0.040849798971508
]
3 => [
'year' => 2035
'avg' => 0.048182431564356
]
4 => [
'year' => 2036
'avg' => 0.093522215550131
]
5 => [
'year' => 2037
'avg' => 0.22849372152518
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.025056270718858
'min' => '$0.025056'
'max_raw' => 0.22849372152518
'max' => '$0.228493'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.22849372152518
]
]
]
]
'prediction_2025_max_price' => '$0.006878'
'last_price' => 0.00666909
'sma_50day_nextmonth' => '$0.006033'
'sma_200day_nextmonth' => '$0.01059'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'augmenter'
'sma_200day_date_nextmonth' => '4 févr. 2026'
'sma_50day_date_nextmonth' => '4 févr. 2026'
'daily_sma3' => '$0.006182'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.006081'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.005967'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.005883'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.006356'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.008313'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.012039'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.0063092'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.006186'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.00606'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.006055'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.00669'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.008339'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.011083'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.009853'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.014163'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.019939'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.031098'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.006286'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.006334'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.007126'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.0093056'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.013578'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.020116'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.03861'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '57.97'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 71.58
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.006366'
'vwma_10_action' => 'BUY'
'hma_9' => '0.006163'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 202.96
'cci_20_action' => 'SELL'
'adx_14' => 18.91
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.0000089'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 62.28
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.001585'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 14
'buy_signals' => 19
'sell_pct' => 42.42
'buy_pct' => 57.58
'overall_action' => 'bullish'
'overall_action_label' => 'Haussier'
'overall_action_dir' => 1
'last_updated' => 1767703859
'last_updated_date' => '6 janvier 2026'
]
Prévision du prix de dKargo pour 2026
La prévision du prix de dKargo pour 2026 suggère que le prix moyen pourrait varier entre $0.0023041 à la baisse et $0.006878 à la hausse. Sur le marché des cryptomonnaies, comparé au prix moyen d'aujourd'hui, dKargo pourrait potentiellement gagner 3.13% d'ici 2026 si DKA atteint l'objectif de prix prévu.
Prévision du prix de dKargo de 2027 à 2032
La prévision du prix de DKA pour 2027-2032 se situe actuellement dans une fourchette de prix comprise entre $0.004022 à la baisse et $0.025056 à la hausse. Compte tenu de la volatilité des prix sur le marché, si dKargo atteint l'objectif de prix le plus élevé, il pourrait gagner 275.71% d'ici 2032 par rapport au prix actuel.
| Prévision du Prix de dKargo | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2027 | $0.002218 | $0.004022 | $0.005827 |
| 2028 | $0.0040031 | $0.006904 | $0.0098049 |
| 2029 | $0.008793 | $0.01886 | $0.028927 |
| 2030 | $0.007478 | $0.01455 | $0.021623 |
| 2031 | $0.008842 | $0.01429 | $0.019739 |
| 2032 | $0.013496 | $0.025056 | $0.036615 |
Prévision du prix de dKargo de 2032 à 2037
La prévision du prix de dKargo pour 2032-2037 est actuellement estimée entre $0.025056 à la baisse et $0.228493 à la hausse. Par rapport au prix actuel, dKargo pourrait potentiellement gagner 3326.16% d'ici 2037 s'il atteint l'objectif de prix le plus élevé. Veuillez noter que ces informations sont à titre général seulement et ne doivent pas être considérées comme un conseil en investissement à long terme.
| Prévision du Prix de dKargo | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2032 | $0.013496 | $0.025056 | $0.036615 |
| 2033 | $0.031363 | $0.064447 | $0.09753 |
| 2034 | $0.025214 | $0.040849 | $0.056484 |
| 2035 | $0.029811 | $0.048182 | $0.066552 |
| 2036 | $0.049348 | $0.093522 | $0.137696 |
| 2037 | $0.128155 | $0.228493 | $0.328832 |
dKargo Histogramme des prix potentiels
Prévision du prix de dKargo basée sur l'analyse technique
Au 6 janvier 2026, le sentiment global de prévision du prix pour dKargo est Haussier, avec 19 indicateurs techniques montrant des signaux haussiers et 14 indiquant des signaux baissiers. La prévision du prix de DKA a été mise à jour pour la dernière fois le 6 janvier 2026.
Moyennes Mobiles Simples sur 50 et 200 jours de dKargo et Indice de Force Relative sur 14 jours - RSI (14)
Selon nos indicateurs techniques, le SMA sur 200 jours de dKargo devrait augmenter au cours du prochain mois, atteignant $0.01059 d'ici le 4 févr. 2026. Le SMA à court terme sur 50 jours pour dKargo devrait atteindre $0.006033 d'ici le 4 févr. 2026.
Le Relative Strength Index (RSI), un oscillateur de momentum, est un outil couramment utilisé pour identifier si une cryptomonnaie est survendue (en dessous de 30) ou surachetée (au-dessus de 70). Actuellement, le RSI est à 57.97, ce qui suggère que le marché de DKA est dans un état NEUTRAL.
Moyennes Mobiles et Oscillateurs Populaires de DKA pour le Samedi 19 Octobre 2024
Les moyennes mobiles (MA) sont des indicateurs largement utilisés sur les marchés financiers, conçus pour lisser les mouvements de prix sur une période donnée. En tant qu'indicateurs retardés, ils sont basés sur des données historiques de prix. Le tableau ci-dessous met en évidence deux types : la moyenne mobile simple (SMA) et la moyenne mobile exponentielle (EMA).
Moyenne Mobile Simple Quotidienne (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 3 | $0.006182 | BUY |
| SMA 5 | $0.006081 | BUY |
| SMA 10 | $0.005967 | BUY |
| SMA 21 | $0.005883 | BUY |
| SMA 50 | $0.006356 | BUY |
| SMA 100 | $0.008313 | SELL |
| SMA 200 | $0.012039 | SELL |
Moyenne Mobile Exponentielle Quotidienne (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 3 | $0.0063092 | BUY |
| EMA 5 | $0.006186 | BUY |
| EMA 10 | $0.00606 | BUY |
| EMA 21 | $0.006055 | BUY |
| EMA 50 | $0.00669 | SELL |
| EMA 100 | $0.008339 | SELL |
| EMA 200 | $0.011083 | SELL |
Moyenne Mobile Simple Hebdomadaire (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 21 | $0.009853 | SELL |
| SMA 50 | $0.014163 | SELL |
| SMA 100 | $0.019939 | SELL |
| SMA 200 | $0.031098 | SELL |
Moyenne Mobile Exponentielle Hebdomadaire (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 21 | $0.0093056 | SELL |
| EMA 50 | $0.013578 | SELL |
| EMA 100 | $0.020116 | SELL |
| EMA 200 | $0.03861 | SELL |
Oscillateurs de dKargo
Un oscillateur est un outil d'analyse technique qui établit des limites hautes et basses entre deux extrêmes, créant un indicateur de tendance qui fluctue à l'intérieur de ces limites. Les traders utilisent cet indicateur pour identifier les conditions de surachat ou de survente à court terme.
| Période | Valeur | Action |
|---|---|---|
| RSI (14) | 57.97 | NEUTRAL |
| Stoch RSI (14) | 71.58 | NEUTRAL |
| Stochastique Rapide (14) | 100 | SELL |
| Indice de Canal des Matières Premières (20) | 202.96 | SELL |
| Indice Directionnel Moyen (14) | 18.91 | NEUTRAL |
| Oscillateur Impressionnant (5, 34) | -0.0000089 | NEUTRAL |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Plage de Pourcentage de Williams (14) | -0 | SELL |
| Oscillateur Ultime (7, 14, 28) | 62.28 | NEUTRAL |
| VWMA (10) | 0.006366 | BUY |
| Moyenne Mobile de Hull (9) | 0.006163 | BUY |
| Nuage Ichimoku B/L (9, 26, 52, 26) | -0.001585 | SELL |
Prévision du cours de dKargo basée sur les flux monétaires mondiaux
Définitions des flux monétaires mondiaux utilisés pour la prédiction du cours de dKargo
M0 : le total de toutes les devises physiques, plus les comptes à la banque centrale qui peuvent être échangés contre des devises physiques.
M1 : M0 plus le montant des comptes à vue, y compris les comptes de "chèques" et les comptes "courants".
M2 : M1 plus la plupart des comptes d'épargne, comptes du marché monétaire et comptes de certificats de dépôt (CD) de moins de 100 000 $.
Prédictions du cours de dKargo par des sociétés Internet ou des niches technologiques
| Comparaison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Action Facebook | $0.009371 | $0.013168 | $0.0185033 | $0.02600029 | $0.036534 | $0.051337 |
| Action Amazon.com | $0.013915 | $0.029035 | $0.060584 | $0.126412 | $0.263766 | $0.550365 |
| Action Apple | $0.009459 | $0.013417 | $0.019032 | $0.026995 | $0.03829 | $0.054312 |
| Action Netflix | $0.010522 | $0.0166032 | $0.026197 | $0.041335 | $0.06522 | $0.1029081 |
| Action Google | $0.008636 | $0.011184 | $0.014483 | $0.018755 | $0.024288 | $0.031454 |
| Action Tesla | $0.015118 | $0.034272 | $0.077692 | $0.176122 | $0.399256 | $0.905083 |
| Action Kodak | $0.0050011 | $0.00375 | $0.002812 | $0.0021089 | $0.001581 | $0.001185 |
| Action Nokia | $0.004417 | $0.002926 | $0.001938 | $0.001284 | $0.00085 | $0.000563 |
Ce calcul montre la valeur potentielle des cryptomonnaies si l'on suppose que leur capitalisation se comportera comme celle de certaines sociétés Internet ou niches technologiques. En extrapolant les données, vous pourrez obtenir une potentielle image des cours futurs pour 2024, 2025, 2026, 2027, 2028, 2029 et 2030.
Aperçu des prévisions relatives à dKargo
Vous vous posez peut-être des questions telles que : "Devrais-je investir dans dKargo maintenant ?", "Devrais-je acheter DKA aujourd'hui ?", " dKargo sera-t-il un bon ou un mauvais investissement à court ou à long terme ?".
Nous mettons régulièrement à jour les prévisions de dKargo avec de nouvelles valeurs. Regardez nos prévisions similaires. Nous faisons une prévision des cours futurs pour une grande quantité de devises numériques comme dKargo en utilisant des méthodes d'analyse technique.
Si vous souhaitez trouver des cryptomonnaies ayant un bon rendement, vous devriez consulter un maximum d'informations disponibles à propos de dKargo afin de prendre une décision responsable concernant cet investissement.
Le cours de dKargo est de $0.006669 USD actuellement, mais ce cours peut subir une hausse ou une baisse, ce qui pourrait causer la perte de votre investissement, car les cryptomonnaies sont des actifs à haut risque.
Prévision à court terme de dKargo
basée sur l'historique des cours sur 4 heures
Prévision à long terme de dKargo
basée sur l'historique des cours sur 1 mois
Prévision du cours de dKargo basée sur le modèle de croissance du Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si dKargo présente 1 % de la précédente croissance annuelle moyenne du Bitcoin | $0.006842 | $0.00702 | $0.0072027 | $0.00739 |
| Si dKargo présente 2 % de la précédente croissance annuelle moyenne du Bitcoin | $0.007015 | $0.00738 | $0.007764 | $0.008167 |
| Si dKargo présente 5 % de la précédente croissance annuelle moyenne du Bitcoin | $0.007535 | $0.008515 | $0.009621 | $0.010872 |
| Si dKargo présente 10 % de la précédente croissance annuelle moyenne du Bitcoin | $0.0084026 | $0.010586 | $0.013338 | $0.0168056 |
| Si dKargo présente 20 % de la précédente croissance annuelle moyenne du Bitcoin | $0.010136 | $0.0154055 | $0.023414 | $0.035586 |
| Si dKargo présente 50 % de la précédente croissance annuelle moyenne du Bitcoin | $0.015336 | $0.035269 | $0.0811069 | $0.186518 |
| Si dKargo présente 100 % de la précédente croissance annuelle moyenne du Bitcoin | $0.0240041 | $0.086398 | $0.310977 | $1.11 |
Boîte à questions
Est-ce que DKA est un bon investissement ?
La décision d'acquérir dKargo dépend entièrement de votre tolérance individuelle au risque. Comme vous pouvez le discerner, la valeur de dKargo a connu une hausse de 10.9411% au cours des 24 heures précédentes, et dKargo a enregistré une déclin de sur une période de 30 jours précédents. Par conséquent, la détermination de si investir ou non dans dKargo dépendra de la mesure dans laquelle cet investissement s'aligne avec vos aspirations de trading.
Est-ce que dKargo peut monter ?
Il semble que la valeur moyenne de dKargo pourrait potentiellement s'envoler jusqu'à $0.006878 pour la fin de cette année. En regardant les perspectives de dKargo sur une période de cinq ans plus longue, la monnaie numérique pourrait potentiellement croître jusqu'à $0.021623. Cependant, compte tenu de l'imprévisibilité du marché, il est essentiel de mener des recherches approfondies avant d'investir des fonds dans un projet, un réseau ou un actif particulier.
Quel sera le prix de dKargo la semaine prochaine ?
Basé sur notre nouveau pronostic expérimental de dKargo, le prix de dKargo va augmenter de 0.86% durant la prochaine semaine et atteindre $0.006726 d'ici 13 janvier 2026.
Quel sera le prix de dKargo le mois prochain ?
Basé sur notre nouveau pronostic expérimental de dKargo, le prix de dKargo va diminuer de -11.62% durant le prochain mois et atteindre $0.005894 d'ici 5 février 2026.
Jusqu'où le prix de dKargo peut-il monter cette année en 2026 ?
Selon notre prédiction la plus récente sur la valeur de dKargo en 2026, DKA devrait fluctuer dans la fourchette de $0.0023041 et $0.006878. Cependant, il est crucial de garder à l'esprit que le marché des cryptomonnaies est exceptionnellement instable, et cette prévision de prix de dKargo ne prend pas en compte les fluctuations de prix soudaines et extrêmes.
Où sera dKargo dans 5 ans ?
L'avenir de dKargo semble suivre une tendance haussière, avec un prix maximum de $0.021623 prévue après une période de cinq ans. Selon la prévision de dKargo pour 2030, la valeur de dKargo pourrait potentiellement atteindre son point le plus élevé d'environ $0.021623, tandis que son point le plus bas devrait être autour de $0.007478.
Combien vaudra dKargo en 2026 ?
Basé sur notre nouvelle simulation expérimentale de prédiction de prix de dKargo, il est attendu que la valeur de DKA en 2026 augmente de 3.13% jusqu'à $0.006878 si le meilleur scénario se produit. Le prix sera entre $0.006878 et $0.0023041 durant 2026.
Combien vaudra dKargo en 2027 ?
Selon notre dernière simulation expérimentale pour la prédiction de prix de dKargo, le valeur de DKA pourrait diminuer de -12.62% jusqu'à $0.005827 en 2027, en supposant les conditions les plus favorables. Il est prévu que le prix fluctue entre $0.005827 et $0.002218 tout au long de l'année.
Combien vaudra dKargo en 2028 ?
Notre nouveau modèle expérimental de prédiction de prix de dKargo suggère que la valeur de DKA en 2028 pourrait augmenter de 47.02%, atteignant $0.0098049 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.0098049 et $0.0040031 durant l'année.
Combien vaudra dKargo en 2029 ?
Basé sur notre modèle de prévision expérimental, la valeur de dKargo pourrait connaître un 333.75% croissance en 2029, atteignant potentiellement $0.028927 sous des conditions optimales. Le range de prix prévu pour 2029 se situe entre $0.028927 et $0.008793.
Combien vaudra dKargo en 2030 ?
En utilisant notre nouvelle simulation expérimentale pour les prédictions de prix de dKargo, il est prévu que la valeur de DKA en 2030 augmente de 224.23%, atteignant $0.021623 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.021623 et $0.007478 au cours de 2030.
Combien vaudra dKargo en 2031 ?
Notre simulation expérimentale indique que le prix de dKargo pourrait augmenter de 195.98% en 2031, atteignant potentiellement $0.019739 dans des conditions idéales. Il est probable que le prix fluctue entre $0.019739 et $0.008842 durant l'année.
Combien vaudra dKargo en 2032 ?
Basé sur les résultats de notre dernière prédiction expérimentale de prix de dKargo, DKA pourrait connaître une 449.04% hausse en valeur, atteignant $0.036615 si le scénario le plus positif se réalise en 2032. Il est prévu que le prix reste dans une fourchette de $0.036615 et $0.013496 tout au long de l'année.
Combien vaudra dKargo en 2033 ?
Selon notre prédiction expérimentale de prix de dKargo, la valeur de DKA est anticipée à augmenter de 1362.43% en 2033, avec le prix potentiel le plus élevé étant $0.09753. Tout au long de l'année, le prix de DKA pourrait osciller entre $0.09753 et $0.031363.
Combien vaudra dKargo en 2034 ?
Les résultats de notre nouvelle simulation de prédiction de prix de dKargo suggèrent que DKA pourrait augmenter de 746.96% en 2034, atteignant potentiellement $0.056484 dans les meilleures circonstances. La fourchette de prix prévue pour l'année est entre $0.056484 et $0.025214.
Combien vaudra dKargo en 2035 ?
Basé sur notre prédiction expérimentale pour le prix de dKargo, DKA pourrait augmenter de 897.93%, avec la valeur potentiellement atteignant $0.066552 en 2035. La fourchette de prix attendue pour l'année se situe entre $0.066552 et $0.029811.
Combien vaudra dKargo en 2036 ?
Notre récente simulation de prédiction de prix de dKargo suggère que la valeur de DKA pourrait augmenter de 1964.7% en 2036, pouvant atteindre $0.137696 si les conditions sont optimales. La fourchette de prix attendue pour 2036 est entre $0.137696 et $0.049348.
Combien vaudra dKargo en 2037 ?
Selon la simulation expérimentale, la valeur de dKargo pourrait augmenter de 4830.69% en 2037, avec un maximum de $0.328832 sous des conditions favorables. Il est prévu que le prix chute entre $0.328832 et $0.128155 au cours de l'année.
Prévisions liées
Prévision du cours de Aurora
Prévision du cours de NKN
Prévision du cours de Mil.k Alliance
Prévision du cours de Dogelon Mars
Prévision du cours de Medibloc
Prévision du cours de ChainGPT
Prévision du cours de Hifi Finance
Prévision du cours de The Truth
Prévision du cours de Metal
Prévision du cours de Telos
Prévision du cours de Stader MaticX
Prévision du cours de OmiseGO
Prévision du cours de WazirX
Prévision du cours de STP Network
Prévision du cours de Ultima
Prévision du cours de LUKSO
Prévision du cours de Bella Protocol
Prévision du cours de Aavegotchi
Prévision du cours de Tokamak Network
Prévision du cours de Chainflip
Prévision du cours de Kyber Network Crystal
Prévision du cours de Radicle
Prévision du cours de Ergo
Prévision du cours de CANTO
Prévision du cours de Mines of Dalarnia
Comment lire et prédire les mouvements de prix de dKargo ?
Les traders de dKargo utilisent des indicateurs et des modèles graphiques pour prédire la direction du marché. Ils identifient également des niveaux clés de support et de résistance pour évaluer quand une tendance baissière pourrait ralentir ou une tendance haussière pourrait s'arrêter.
Indicateurs de prédiction du prix de dKargo
Les moyennes mobiles sont des outils populaires pour la prédiction du prix de dKargo. Une moyenne mobile simple (SMA) calcule le prix de clôture moyen de DKA sur une période spécifique, comme une SMA de 12 jours. Une moyenne mobile exponentielle (EMA) donne plus de poids aux prix récents, réagissant plus rapidement aux changements de prix.
Les moyennes mobiles couramment utilisées sur le marché des cryptomonnaies incluent les moyennes sur 50 jours, 100 jours et 200 jours, qui aident à identifier les niveaux clés de résistance et de support. Un mouvement de prix de DKA au-dessus de ces moyennes est considéré comme haussier, tandis qu'une chute en dessous indique une faiblesse.
Les traders utilisent également le RSI et les niveaux de retracement de Fibonacci pour évaluer la direction future de DKA.
Comment lire les graphiques de dKargo et prédire les mouvements de prix ?
La plupart des traders préfèrent les graphiques en chandeliers aux simples graphiques linéaires parce qu'ils fournissent des informations plus détaillées. Les chandeliers peuvent représenter l'action des prix de dKargo dans différentes périodes, comme 5 minutes pour les tendances à court terme et hebdomadaire pour les tendances à long terme. Les options populaires incluent les graphiques de 1 heure, 4 heures et 1 jour.
Par exemple, un graphique en chandeliers de 1 heure montre les prix d'ouverture, de clôture, les plus hauts et les plus bas de DKA au sein de chaque heure. La couleur du chandelier est cruciale : le vert indique que le prix a clôturé plus haut qu'il n'a ouvert, tandis que le rouge signifie le contraire. Certains graphiques utilisent des chandeliers creux et pleins pour transmettre la même information.
Qu'est-ce qui affecte le prix de dKargo ?
L'action du prix de dKargo est déterminée par l'offre et la demande, influencée par des facteurs tels que les réductions de récompenses de bloc, les hard forks et les mises à jour de protocole. Les événements du monde réel, tels que les réglementations, l'adoption par les entreprises et les gouvernements et les piratages d'échanges de cryptomonnaies, impactent également le prix de DKA. La capitalisation boursière de dKargo peut changer rapidement.
Les traders surveillent souvent l'activité des « baleines » de DKA, de grands détenteurs de dKargo, car leurs actions peuvent influencer significativement les mouvements de prix sur le marché relativement petit de dKargo.
Modèles de prédiction de prix haussiers et baissiers
Les traders identifient souvent des modèles de chandeliers pour obtenir un avantage dans les prédictions de prix des cryptomonnaies. Certaines formations indiquent des tendances haussières, tandis que d'autres suggèrent des mouvements baissiers.
Modèles de chandeliers haussiers couramment suivis :
- Marteau
- Englobante haussière
- Ligne pénétrante
- Étoile du matin
- Trois soldats blancs
Modèles de chandeliers baissiers courants :
- Harami baissier
- Nuage sombre
- Étoile du soir
- Étoile filante
- Pendu


