Prédiction du prix de dKargo jusqu'à $0.006856 d'ici 2026
| Année | Prix min. | Prix max. |
|---|---|---|
| 2026 | $0.002296 | $0.006856 |
| 2027 | $0.002211 | $0.0058085 |
| 2028 | $0.00399 | $0.009773 |
| 2029 | $0.008765 | $0.028835 |
| 2030 | $0.007454 | $0.021554 |
| 2031 | $0.008813 | $0.019676 |
| 2032 | $0.013453 | $0.036499 |
| 2033 | $0.031263 | $0.09722 |
| 2034 | $0.025134 | $0.0563048 |
| 2035 | $0.029716 | $0.066341 |
Calculateur de profit d’investissement
Si vous ouvrez une position short de $10,000.00 sur dKargo aujourd’hui et la fermez le Apr 06, 2026, notre prévision indique que vous pourriez gagner environ $3,954.45, soit un rendement de 39.54% sur les 90 prochains jours.
Prévision du prix à long terme de dKargo pour 2027, 2028, 2029, 2030, 2031, 2032 et 2037
[
'name' => 'dKargo'
'name_with_ticker' => 'dKargo <small>DKA</small>'
'name_lang' => 'dKargo'
'name_lang_with_ticker' => 'dKargo <small>DKA</small>'
'name_with_lang' => 'dKargo'
'name_with_lang_with_ticker' => 'dKargo <small>DKA</small>'
'image' => '/uploads/coins/dkargo.png?1732748247'
'price_for_sd' => 0.006647
'ticker' => 'DKA'
'marketcap' => '$33.15M'
'low24h' => '$0.005941'
'high24h' => '$0.00697'
'volume24h' => '$14.91M'
'current_supply' => '5B'
'max_supply' => '5B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.006647'
'change_24h_pct' => '11.772%'
'ath_price' => '$0.7037'
'ath_days' => 1757
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '16 mars 2021'
'ath_pct' => '-99.05%'
'fdv' => '$33.15M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.327785'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.006704'
'next_week_prediction_price_date' => '13 janvier 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.005875'
'next_month_prediction_price_date' => '5 février 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.002296'
'current_year_max_price_prediction' => '$0.006856'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.007454'
'grand_prediction_max_price' => '$0.021554'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0067738334502256
107 => 0.0067991244854272
108 => 0.0068561064791287
109 => 0.0063692015817949
110 => 0.0065878075859211
111 => 0.0067162181327326
112 => 0.0061360546106224
113 => 0.0067047501652684
114 => 0.006360725650798
115 => 0.0062439585635119
116 => 0.0064011700636486
117 => 0.0063399045891522
118 => 0.0062872321318095
119 => 0.0062578399955845
120 => 0.0063732787704848
121 => 0.0063678934136566
122 => 0.006179013172219
123 => 0.0059326265970072
124 => 0.0060153220190119
125 => 0.0059852779969239
126 => 0.0058763945851209
127 => 0.0059497688580428
128 => 0.0056266656939644
129 => 0.0050707834936084
130 => 0.0054380163022958
131 => 0.0054238782386338
201 => 0.0054167491858253
202 => 0.0056927144919845
203 => 0.0056661867954002
204 => 0.0056180387663396
205 => 0.0058755103088091
206 => 0.0057815297323268
207 => 0.0060711557244365
208 => 0.0062619221346747
209 => 0.0062135376023914
210 => 0.0063929543332745
211 => 0.0060172271545136
212 => 0.00614202865174
213 => 0.006167750067351
214 => 0.0058723331499413
215 => 0.0056705270546349
216 => 0.0056570688888359
217 => 0.0053071649301677
218 => 0.0054940808005622
219 => 0.0056585590314051
220 => 0.0055797867228577
221 => 0.0055548497632273
222 => 0.005682247281812
223 => 0.005692147160092
224 => 0.0054664288861662
225 => 0.0055133628628835
226 => 0.005709085347919
227 => 0.0055084311584327
228 => 0.0051185928449367
301 => 0.0050219075532533
302 => 0.0050090079530793
303 => 0.0047467897738267
304 => 0.0050283685267623
305 => 0.0049054518552645
306 => 0.0052937441477582
307 => 0.0050719536727391
308 => 0.0050623927286481
309 => 0.0050479399593689
310 => 0.0048222379403896
311 => 0.0048716523384345
312 => 0.0050359133235609
313 => 0.0050945234935865
314 => 0.0050884099726738
315 => 0.0050351083551215
316 => 0.0050595095626885
317 => 0.0049809047711709
318 => 0.0049531477832688
319 => 0.0048655390942887
320 => 0.004736778524006
321 => 0.0047546834710383
322 => 0.0044995750892723
323 => 0.0043605785032596
324 => 0.0043221060801968
325 => 0.0042706591482041
326 => 0.0043279171480605
327 => 0.0044988523992794
328 => 0.0042926682203728
329 => 0.003939179907776
330 => 0.0039604251576778
331 => 0.004008156926436
401 => 0.0039192090911324
402 => 0.0038350274298436
403 => 0.0039082165544602
404 => 0.0037584388964588
405 => 0.0040262568408342
406 => 0.00401901311599
407 => 0.0041188390839026
408 => 0.0041812623102734
409 => 0.0040373969832482
410 => 0.0040012152425546
411 => 0.0040218260064221
412 => 0.0036811759907359
413 => 0.0040910007100716
414 => 0.0040945448912628
415 => 0.0040641974601693
416 => 0.0042824164712969
417 => 0.0047429266489926
418 => 0.0045696641961645
419 => 0.0045025717375441
420 => 0.0043750289246624
421 => 0.0045449721500844
422 => 0.0045319231618993
423 => 0.0044729106886444
424 => 0.0044372197606898
425 => 0.0045029813897898
426 => 0.0044290711670925
427 => 0.004415794860179
428 => 0.0043353548850474
429 => 0.0043066414737111
430 => 0.0042853832070715
501 => 0.0042619799442955
502 => 0.0043136017102497
503 => 0.0041966199971886
504 => 0.0040555515190958
505 => 0.0040438232015244
506 => 0.0040762061175031
507 => 0.0040618790878071
508 => 0.0040437546092183
509 => 0.0040091500436841
510 => 0.0039988836082997
511 => 0.0040322445427327
512 => 0.0039945819928211
513 => 0.0040501551368009
514 => 0.0040350423166407
515 => 0.0039506233317412
516 => 0.0038454060206452
517 => 0.0038444693658756
518 => 0.003821800468791
519 => 0.0037929282200622
520 => 0.0037848966209734
521 => 0.003902052770526
522 => 0.0041445624939116
523 => 0.0040969520324452
524 => 0.004131355470171
525 => 0.0043005863334484
526 => 0.0043543797359347
527 => 0.0043161984530165
528 => 0.0042639335580391
529 => 0.0042662329481693
530 => 0.0044448379159666
531 => 0.0044559772887268
601 => 0.004484122889994
602 => 0.0045202979415683
603 => 0.0043223592207249
604 => 0.0042569100522179
605 => 0.0042258966051976
606 => 0.0041303871920897
607 => 0.0042333859057684
608 => 0.0041733729661525
609 => 0.0041814707620406
610 => 0.0041761970618452
611 => 0.0041790768587579
612 => 0.0040261819802606
613 => 0.0040818888380668
614 => 0.0039892653824413
615 => 0.0038652529728295
616 => 0.0038648372397481
617 => 0.0038951891013124
618 => 0.0038771346263855
619 => 0.0038285504985803
620 => 0.0038354516446244
621 => 0.0037749903435509
622 => 0.0038427927412619
623 => 0.0038447370714196
624 => 0.0038186294550793
625 => 0.0039230884036811
626 => 0.0039658853201536
627 => 0.003948700727799
628 => 0.0039646796033434
629 => 0.0040989304620674
630 => 0.0041208192098151
701 => 0.0041305407456751
702 => 0.0041175151754794
703 => 0.0039671334625931
704 => 0.003973803531032
705 => 0.0039248629944871
706 => 0.0038835133983333
707 => 0.0038851671653294
708 => 0.0039064262328237
709 => 0.003999265827399
710 => 0.0041946412809897
711 => 0.0042020556366359
712 => 0.0042110420519711
713 => 0.0041744897845924
714 => 0.004163465270993
715 => 0.0041780094500991
716 => 0.0042513821981144
717 => 0.0044401168265167
718 => 0.0043734054036773
719 => 0.0043191679784838
720 => 0.0043667488226834
721 => 0.0043594241246698
722 => 0.00429759630212
723 => 0.004295861001065
724 => 0.0041771936420412
725 => 0.0041333250213352
726 => 0.0040966651183639
727 => 0.0040566334613502
728 => 0.0040329013531992
729 => 0.0040693646573694
730 => 0.0040777042464543
731 => 0.0039979765946166
801 => 0.0039871100102749
802 => 0.0040522173318065
803 => 0.004023566027046
804 => 0.0040530346045103
805 => 0.0040598715672588
806 => 0.0040587706587877
807 => 0.0040288554060364
808 => 0.0040479224960544
809 => 0.0040028231439887
810 => 0.003953784372321
811 => 0.0039225006912205
812 => 0.0038952015302821
813 => 0.0039103486914072
814 => 0.0038563518277584
815 => 0.003839077144335
816 => 0.0040414629949794
817 => 0.004190967598865
818 => 0.0041887937427142
819 => 0.0041755609524665
820 => 0.0041558997103319
821 => 0.00424994385579
822 => 0.0042171807559844
823 => 0.0042410186485415
824 => 0.0042470863926705
825 => 0.0042654516266614
826 => 0.0042720156192679
827 => 0.004252174674625
828 => 0.0041855860410361
829 => 0.0040196534971899
830 => 0.0039424114501031
831 => 0.0039169202879964
901 => 0.0039178468433244
902 => 0.0038922883110539
903 => 0.0038998164442606
904 => 0.0038896703335456
905 => 0.0038704560544592
906 => 0.0039091622638181
907 => 0.0039136227938734
908 => 0.0039045883021043
909 => 0.0039067162519693
910 => 0.0038319145188029
911 => 0.0038376015321147
912 => 0.0038059355193238
913 => 0.003799998523665
914 => 0.0037199496008047
915 => 0.0035781313306809
916 => 0.0036567124189621
917 => 0.0035617975144915
918 => 0.003525851801973
919 => 0.0036960132143304
920 => 0.0036789337280726
921 => 0.0036497010718735
922 => 0.0036064598807357
923 => 0.0035904213023194
924 => 0.0034929759770589
925 => 0.003487218387392
926 => 0.0035355149218361
927 => 0.0035132277329724
928 => 0.0034819280789893
929 => 0.0033685639050575
930 => 0.00324110503997
1001 => 0.0032449522219291
1002 => 0.003285494515457
1003 => 0.0034033767017623
1004 => 0.0033573180921903
1005 => 0.0033239020424841
1006 => 0.0033176442208569
1007 => 0.0033959739601583
1008 => 0.0035068269518574
1009 => 0.0035588366953668
1010 => 0.0035072966191084
1011 => 0.0034480901546176
1012 => 0.0034516937777748
1013 => 0.0034756670681881
1014 => 0.0034781863220465
1015 => 0.0034396490001859
1016 => 0.003450497030556
1017 => 0.0034340178804591
1018 => 0.0033328853667326
1019 => 0.0033310562002539
1020 => 0.0033062366504034
1021 => 0.0033054851242978
1022 => 0.0032632608784751
1023 => 0.0032573534146021
1024 => 0.0031735146116927
1025 => 0.003228697565655
1026 => 0.0031916837373722
1027 => 0.0031358951674706
1028 => 0.0031262771969916
1029 => 0.003125988069185
1030 => 0.0031832704563779
1031 => 0.0032280281876092
1101 => 0.0031923276087621
1102 => 0.0031841992789853
1103 => 0.003270988575557
1104 => 0.0032599438464662
1105 => 0.0032503791823045
1106 => 0.003496901282297
1107 => 0.0033017598037936
1108 => 0.0032166669808799
1109 => 0.0031113484538354
1110 => 0.0031456406973032
1111 => 0.0031528665768598
1112 => 0.0028995945044092
1113 => 0.002796842056159
1114 => 0.0027615812880639
1115 => 0.002741288217511
1116 => 0.0027505360245863
1117 => 0.002658046769501
1118 => 0.0027202010785494
1119 => 0.0026401132015677
1120 => 0.0026266862083632
1121 => 0.0027698932533907
1122 => 0.0027898196771028
1123 => 0.0027048073628922
1124 => 0.0027593990308589
1125 => 0.0027396033331732
1126 => 0.0026414860783524
1127 => 0.0026377387209199
1128 => 0.0025885069314391
1129 => 0.0025114687140545
1130 => 0.0024762601814984
1201 => 0.0024579232720487
1202 => 0.0024654894382669
1203 => 0.0024616637530985
1204 => 0.0024366985695814
1205 => 0.0024630947281945
1206 => 0.0023956634505838
1207 => 0.0023688117725084
1208 => 0.002356683492476
1209 => 0.002296834352397
1210 => 0.0023920809492961
1211 => 0.0024108457287703
1212 => 0.0024296474806567
1213 => 0.0025933038943271
1214 => 0.0025851280823883
1215 => 0.0026590334405327
1216 => 0.0026561616142184
1217 => 0.0026350826088882
1218 => 0.0025461537527282
1219 => 0.0025815992097892
1220 => 0.0024725036024026
1221 => 0.0025542454492368
1222 => 0.0025169418839628
1223 => 0.0025416330762937
1224 => 0.0024972360861678
1225 => 0.0025218072136102
1226 => 0.002415295554111
1227 => 0.0023158364651302
1228 => 0.0023558617059279
1229 => 0.0023993737201165
1230 => 0.0024937188535324
1231 => 0.0024375276704003
]
'min_raw' => 0.002296834352397
'max_raw' => 0.0068561064791287
'avg_raw' => 0.0045764704157628
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.002296'
'max' => '$0.006856'
'avg' => '$0.004576'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.004351025647603
'max_diff' => 0.00020824647912872
'year' => 2026
]
1 => [
'items' => [
101 => 0.0024577361446785
102 => 0.0023900411387044
103 => 0.0022503670052573
104 => 0.002251157545684
105 => 0.0022296717232196
106 => 0.0022111048356288
107 => 0.0024439819037295
108 => 0.0024150199590696
109 => 0.0023688728906995
110 => 0.0024306425755244
111 => 0.0024469754606089
112 => 0.0024474404348859
113 => 0.0024925060024278
114 => 0.0025165575039034
115 => 0.0025207966852837
116 => 0.002591708329517
117 => 0.0026154769773167
118 => 0.0027133766737391
119 => 0.0025145169020417
120 => 0.0025104215159069
121 => 0.0024315118016637
122 => 0.0023814660133775
123 => 0.0024349384796037
124 => 0.0024823077849606
125 => 0.0024329836980226
126 => 0.0024394243824884
127 => 0.0023732108257001
128 => 0.0023968790566145
129 => 0.002417265325533
130 => 0.0024060092260857
131 => 0.0023891583004117
201 => 0.0024784240421138
202 => 0.0024733873191317
203 => 0.0025565136300153
204 => 0.0026213165337685
205 => 0.002737454922199
206 => 0.0026162584594407
207 => 0.0026118415786254
208 => 0.0026550172970842
209 => 0.0026154703673392
210 => 0.0026404626618244
211 => 0.002733428277178
212 => 0.0027353924941371
213 => 0.0027024893293212
214 => 0.0027004871687519
215 => 0.002706806581476
216 => 0.0027438195791842
217 => 0.0027308861004904
218 => 0.0027458530494705
219 => 0.0027645694483521
220 => 0.0028419884097152
221 => 0.0028606538591992
222 => 0.0028153064938791
223 => 0.0028194008532346
224 => 0.0028024396937919
225 => 0.0027860554262929
226 => 0.0028228848669005
227 => 0.0028901913934953
228 => 0.0028897726830866
301 => 0.0029053864890046
302 => 0.0029151137607399
303 => 0.0028733571896542
304 => 0.0028461751973092
305 => 0.0028565985028094
306 => 0.0028732655952943
307 => 0.00285119358935
308 => 0.002714954943914
309 => 0.0027562810459809
310 => 0.0027494023618539
311 => 0.0027396062791803
312 => 0.0027811599943739
313 => 0.0027771520371725
314 => 0.0026570981585083
315 => 0.0026647836183066
316 => 0.0026575655367737
317 => 0.0026808886348869
318 => 0.0026142108435012
319 => 0.0026347204830497
320 => 0.0026475839367085
321 => 0.0026551606097353
322 => 0.0026825327480814
323 => 0.0026793209435745
324 => 0.0026823330978037
325 => 0.0027229187529943
326 => 0.0029281870696333
327 => 0.002939359371209
328 => 0.0028843428721731
329 => 0.0029063208783855
330 => 0.0028641279125194
331 => 0.0028924523331736
401 => 0.0029118311824229
402 => 0.0028242618890036
403 => 0.0028190766037673
404 => 0.0027767094925221
405 => 0.0027994751783094
406 => 0.0027632533353111
407 => 0.0027721409085966
408 => 0.0027472904788856
409 => 0.0027920163046942
410 => 0.0028420267276389
411 => 0.0028546613354462
412 => 0.0028214251218459
413 => 0.0027973599128261
414 => 0.00275510933336
415 => 0.0028253729886277
416 => 0.0028459202226741
417 => 0.0028252650627545
418 => 0.0028204788108769
419 => 0.0028114088722176
420 => 0.0028224030412399
421 => 0.0028458083180247
422 => 0.0028347708217206
423 => 0.0028420612824851
424 => 0.0028142775639412
425 => 0.0028733710128167
426 => 0.002967225631244
427 => 0.002967527389189
428 => 0.0029564898333887
429 => 0.0029519735033627
430 => 0.0029632987054287
501 => 0.0029694421629654
502 => 0.0030060657897601
503 => 0.0030453644004605
504 => 0.003228753869272
505 => 0.0031772588402745
506 => 0.0033399728868924
507 => 0.0034686585719926
508 => 0.0035072457822111
509 => 0.0034717473644786
510 => 0.0033503091950025
511 => 0.0033443508590567
512 => 0.0035258307541265
513 => 0.0034745543714635
514 => 0.0034684552089059
515 => 0.00340357042399
516 => 0.0034419253680122
517 => 0.0034335365791215
518 => 0.0034202944654639
519 => 0.0034934730268297
520 => 0.0036304567610112
521 => 0.0036091065614137
522 => 0.0035931696278214
523 => 0.0035233386239916
524 => 0.0035653924856165
525 => 0.0035504179109806
526 => 0.0036147581867165
527 => 0.0035766444326822
528 => 0.0034741659024331
529 => 0.003490485946149
530 => 0.0034880192043727
531 => 0.0035387845753332
601 => 0.0035235460710448
602 => 0.0034850436418411
603 => 0.0036299885654998
604 => 0.0036205766483834
605 => 0.0036339205949907
606 => 0.0036397950129624
607 => 0.0037280204337774
608 => 0.0037641635657867
609 => 0.0037723686895274
610 => 0.0038067018695262
611 => 0.0037715144487323
612 => 0.0039122892201137
613 => 0.0040058962286467
614 => 0.0041146255860304
615 => 0.0042735084008641
616 => 0.0043332498089897
617 => 0.0043224580583364
618 => 0.0044429211952388
619 => 0.0046593907745074
620 => 0.0043662127494087
621 => 0.0046749299217295
622 => 0.0045771936292839
623 => 0.0043454626380962
624 => 0.0043305418941926
625 => 0.0044874728118771
626 => 0.00483553048326
627 => 0.004748345984216
628 => 0.0048356730858674
629 => 0.0047338013831389
630 => 0.0047287425944563
701 => 0.0048307254046478
702 => 0.0050690137994538
703 => 0.0049558119151884
704 => 0.0047935092558531
705 => 0.0049133510137972
706 => 0.0048095329922349
707 => 0.0045756019328205
708 => 0.0047482793158727
709 => 0.0046328148673944
710 => 0.0046665135318881
711 => 0.0049092026285489
712 => 0.004880001634363
713 => 0.0049177904247788
714 => 0.0048510941987997
715 => 0.0047887894067057
716 => 0.0046724928854476
717 => 0.0046380632188523
718 => 0.0046475783400496
719 => 0.0046380585036308
720 => 0.0045729916688071
721 => 0.004558940492022
722 => 0.0045355212484506
723 => 0.0045427798513014
724 => 0.0044987448218459
725 => 0.0045818480205298
726 => 0.0045972727065084
727 => 0.0046577482842789
728 => 0.0046640270593831
729 => 0.0048324506826579
730 => 0.0047396857812021
731 => 0.0048019204860349
801 => 0.0047963536282589
802 => 0.0043504849513451
803 => 0.0044119217210911
804 => 0.0045074980548956
805 => 0.0044644410460674
806 => 0.0044035685093726
807 => 0.0043544106722127
808 => 0.0042799315222684
809 => 0.0043847594955696
810 => 0.0045225971332484
811 => 0.0046675228493414
812 => 0.0048416416013179
813 => 0.0048027803228425
814 => 0.0046642678203876
815 => 0.0046704813900643
816 => 0.004708891232856
817 => 0.0046591469965386
818 => 0.0046444764501257
819 => 0.0047068757250604
820 => 0.0047073054345729
821 => 0.0046500686788979
822 => 0.0045864604991809
823 => 0.0045861939785853
824 => 0.0045748755173868
825 => 0.004735814912242
826 => 0.0048243153066043
827 => 0.0048344617341924
828 => 0.0048236323711851
829 => 0.0048278001632046
830 => 0.0047763037336983
831 => 0.0048940093007579
901 => 0.0050020275689658
902 => 0.0049730763656124
903 => 0.0049296743961295
904 => 0.0048951026369143
905 => 0.0049649323578476
906 => 0.0049618229502966
907 => 0.0050010841236261
908 => 0.0049993030100203
909 => 0.0049861009541171
910 => 0.0049730768370994
911 => 0.0050247159888951
912 => 0.0050098447424773
913 => 0.0049949503969063
914 => 0.0049650775066535
915 => 0.004969137728575
916 => 0.0049257432530541
917 => 0.004905666983082
918 => 0.0046037680524092
919 => 0.0045230907933013
920 => 0.0045484735013537
921 => 0.0045568301479063
922 => 0.0045217193013518
923 => 0.0045720592360745
924 => 0.0045642138105711
925 => 0.0045947357717842
926 => 0.0045756669755278
927 => 0.0045764495655776
928 => 0.0046325268294718
929 => 0.00464880629775
930 => 0.0046405264287923
1001 => 0.004646325365193
1002 => 0.0047799594069688
1003 => 0.0047609609196043
1004 => 0.0047508683518459
1005 => 0.0047536640620888
1006 => 0.0047878104249087
1007 => 0.004797369542176
1008 => 0.0047568668906073
1009 => 0.0047759681752301
1010 => 0.0048572990208402
1011 => 0.0048857602138766
1012 => 0.0049765946799009
1013 => 0.0049380065842799
1014 => 0.0050088367038459
1015 => 0.0052265443436248
1016 => 0.0054004642705029
1017 => 0.0052405203182008
1018 => 0.0055599021153434
1019 => 0.0058085866570167
1020 => 0.0057990417301015
1021 => 0.0057556778280837
1022 => 0.0054725570890093
1023 => 0.0052120251638206
1024 => 0.0054299711820108
1025 => 0.0054305267712322
1026 => 0.0054118050149829
1027 => 0.0052955257948222
1028 => 0.0054077587501711
1029 => 0.0054166673945965
1030 => 0.005411680922718
1031 => 0.0053225299172519
1101 => 0.005186412809765
1102 => 0.0052130097667496
1103 => 0.0052565761248536
1104 => 0.0051740959200683
1105 => 0.0051477384969876
1106 => 0.0051967419611996
1107 => 0.005354641333168
1108 => 0.0053247913715462
1109 => 0.0053240118684151
1110 => 0.005451722662587
1111 => 0.0053603092956743
1112 => 0.0052133452395524
1113 => 0.0051762348771639
1114 => 0.0050445180912202
1115 => 0.0051354953444306
1116 => 0.00513876945381
1117 => 0.0050889421419917
1118 => 0.0052173884512925
1119 => 0.0052162047959398
1120 => 0.0053381454499108
1121 => 0.0055712501814852
1122 => 0.0055023096419715
1123 => 0.0054221392952263
1124 => 0.0054308560348001
1125 => 0.0055264571531781
1126 => 0.0054686545346455
1127 => 0.005489440759284
1128 => 0.0055264256907376
1129 => 0.0055487396181677
1130 => 0.0054276454040348
1201 => 0.0053994125501146
1202 => 0.005341658039379
1203 => 0.0053265909655671
1204 => 0.0053736308094738
1205 => 0.0053612374725466
1206 => 0.0051384942775946
1207 => 0.0051152163743907
1208 => 0.0051159302744488
1209 => 0.0050573968800386
1210 => 0.0049681194039387
1211 => 0.0052027352806481
1212 => 0.0051838923423012
1213 => 0.0051630911966939
1214 => 0.0051656392183411
1215 => 0.0052674780185508
1216 => 0.0052084063714465
1217 => 0.0053654580269259
1218 => 0.0053331729279642
1219 => 0.005300059838037
1220 => 0.0052954826003597
1221 => 0.0052827368858138
1222 => 0.0052390270881644
1223 => 0.0051862448809512
1224 => 0.0051513934958325
1225 => 0.0047518881982756
1226 => 0.0048260340576867
1227 => 0.0049113321103315
1228 => 0.004940776656294
1229 => 0.0048904097229246
1230 => 0.0052410158816839
1231 => 0.0053050750054143
]
'min_raw' => 0.0022111048356288
'max_raw' => 0.0058085866570167
'avg_raw' => 0.0040098457463228
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.002211'
'max' => '$0.0058085'
'avg' => '$0.0040098'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -8.5729516768102E-5
'max_diff' => -0.001047519822112
'year' => 2027
]
2 => [
'items' => [
101 => 0.0051110357411618
102 => 0.0050747389173912
103 => 0.0052433954954076
104 => 0.0051416749614355
105 => 0.0051874797116547
106 => 0.0050884748955397
107 => 0.0052896450383777
108 => 0.0052881124589415
109 => 0.0052098527297437
110 => 0.0052759973169622
111 => 0.0052645030671946
112 => 0.0051761480256756
113 => 0.0052924460507899
114 => 0.0052925037331594
115 => 0.0052171804453198
116 => 0.0051292193355112
117 => 0.005113493966626
118 => 0.0051016470135772
119 => 0.0051845660874361
120 => 0.0052589110697768
121 => 0.0053972486502288
122 => 0.0054320300047742
123 => 0.005567783947091
124 => 0.0054869490841809
125 => 0.0055227821319222
126 => 0.0055616839741395
127 => 0.0055803349478664
128 => 0.0055499441870449
129 => 0.0057608259380148
130 => 0.0057786308190466
131 => 0.0057846006416449
201 => 0.0057134925017306
202 => 0.0057766531730419
203 => 0.0057471023865969
204 => 0.0058239853234818
205 => 0.0058360415496759
206 => 0.0058258303550021
207 => 0.0058296571914908
208 => 0.0056497068191281
209 => 0.0056403754430072
210 => 0.0055131414674753
211 => 0.0055649902529706
212 => 0.005468061433664
213 => 0.0054987985607436
214 => 0.0055123471934862
215 => 0.0055052701566196
216 => 0.0055679217055092
217 => 0.0055146550900872
218 => 0.0053740757341462
219 => 0.0052334580774537
220 => 0.0052316927373186
221 => 0.0051946705904193
222 => 0.0051679103591555
223 => 0.0051730653290671
224 => 0.0051912321154089
225 => 0.0051668544725079
226 => 0.0051720566785987
227 => 0.0052584479618239
228 => 0.0052757731175602
229 => 0.0052168954689927
301 => 0.0049804932139901
302 => 0.0049224795076423
303 => 0.0049641786093033
304 => 0.0049442491244754
305 => 0.0039903949262743
306 => 0.0042144888214223
307 => 0.004081339838435
308 => 0.0041427010156857
309 => 0.0040067903828176
310 => 0.0040716540605088
311 => 0.0040596761076815
312 => 0.0044200124596591
313 => 0.0044143863031495
314 => 0.0044170792465411
315 => 0.0042885380420329
316 => 0.0044933076710884
317 => 0.0045941845536389
318 => 0.0045755149274301
319 => 0.0045802136701256
320 => 0.0044994737029384
321 => 0.0044178609859123
322 => 0.0043273399226231
323 => 0.0044955168694728
324 => 0.0044768184638593
325 => 0.0045197058788626
326 => 0.004628780650431
327 => 0.0046448423248792
328 => 0.004666429378219
329 => 0.0046586919562678
330 => 0.0048430287380877
331 => 0.0048207043375161
401 => 0.0048744997197254
402 => 0.0047638385370554
403 => 0.0046386149048085
404 => 0.0046624158234297
405 => 0.0046601236035716
406 => 0.0046309410138902
407 => 0.0046045962767677
408 => 0.0045607397120423
409 => 0.0046995083723838
410 => 0.0046938746181952
411 => 0.0047850785499847
412 => 0.0047689573691332
413 => 0.0046612961778846
414 => 0.0046651413183921
415 => 0.0046910017362166
416 => 0.0047805049375762
417 => 0.0048070755815824
418 => 0.0047947670006216
419 => 0.0048239004987784
420 => 0.0048469264278531
421 => 0.0048267922009567
422 => 0.0051118503944825
423 => 0.0049934743583427
424 => 0.0050511700147021
425 => 0.0050649300887812
426 => 0.0050296839483706
427 => 0.005037327574156
428 => 0.0050489055844576
429 => 0.0051192049958015
430 => 0.0053036909924667
501 => 0.0053853985845511
502 => 0.0056312199067184
503 => 0.0053786139064531
504 => 0.0053636253117849
505 => 0.0054079051549999
506 => 0.0055522282939418
507 => 0.005669188642471
508 => 0.0057079911376826
509 => 0.0057131195279841
510 => 0.0057859155885421
511 => 0.0058276409328877
512 => 0.0057770762320639
513 => 0.0057342279424605
514 => 0.0055807506876268
515 => 0.0055985160977785
516 => 0.0057209021566141
517 => 0.0058937796732223
518 => 0.0060421265673121
519 => 0.0059901806554131
520 => 0.0063864912951039
521 => 0.0064257838762454
522 => 0.0064203549120129
523 => 0.0065098692593734
524 => 0.0063322015091426
525 => 0.0062562451037684
526 => 0.0057434922290215
527 => 0.0058875548719074
528 => 0.0060969583838444
529 => 0.0060692430438167
530 => 0.0059171686160761
531 => 0.0060420112052218
601 => 0.0060007343410615
602 => 0.0059681775657196
603 => 0.0061173264650022
604 => 0.0059533311235419
605 => 0.0060953224048635
606 => 0.0059132171178569
607 => 0.005990417939963
608 => 0.005946595019552
609 => 0.005974953819793
610 => 0.0058091688530492
611 => 0.0058986223969016
612 => 0.005805447291529
613 => 0.0058054031143973
614 => 0.0058033462687819
615 => 0.0059129663670512
616 => 0.0059165410745202
617 => 0.0058355316562725
618 => 0.005823856933498
619 => 0.0058670245025651
620 => 0.0058164865847918
621 => 0.0058401329584361
622 => 0.0058172028093606
623 => 0.0058120407498208
624 => 0.0057709085811563
625 => 0.005753187711943
626 => 0.0057601365213721
627 => 0.0057364166524339
628 => 0.0057221245734135
629 => 0.0058005032145384
630 => 0.0057586286683707
701 => 0.0057940853397726
702 => 0.0057536779877215
703 => 0.0056136085008669
704 => 0.0055330530577689
705 => 0.005268474781549
706 => 0.0053435088524766
707 => 0.00539325651913
708 => 0.0053768149155978
709 => 0.0054121378420409
710 => 0.0054143063828436
711 => 0.0054028225393823
712 => 0.0053895257198256
713 => 0.0053830535634257
714 => 0.0054312917146926
715 => 0.0054592955851246
716 => 0.0053982493630166
717 => 0.0053839470873041
718 => 0.0054456681883096
719 => 0.0054833180242678
720 => 0.0057613032593678
721 => 0.0057407092152711
722 => 0.0057923962245768
723 => 0.0057865770605308
724 => 0.0058407532806694
725 => 0.0059293085040171
726 => 0.0057492509745213
727 => 0.0057805027357209
728 => 0.0057728405255833
729 => 0.0058564945267259
730 => 0.0058567556853864
731 => 0.0058066009328741
801 => 0.0058337906378789
802 => 0.0058186140904558
803 => 0.0058460401628828
804 => 0.0057404341692566
805 => 0.0058690508700308
806 => 0.0059419682514926
807 => 0.0059429807094049
808 => 0.0059775429695097
809 => 0.0060126602274872
810 => 0.0060800647461066
811 => 0.0060107803520468
812 => 0.0058861444718331
813 => 0.0058951427798131
814 => 0.0058220688088463
815 => 0.0058232971955001
816 => 0.0058167399712715
817 => 0.0058364186947864
818 => 0.0057447525424375
819 => 0.0057662664051741
820 => 0.0057361468713579
821 => 0.0057804372617366
822 => 0.0057327881231529
823 => 0.0057728368306336
824 => 0.0057901205251466
825 => 0.0058538977299908
826 => 0.0057233681781418
827 => 0.0054572095858477
828 => 0.0055131593488089
829 => 0.0054304052546303
830 => 0.0054380644611136
831 => 0.0054535372771635
901 => 0.0054033848179553
902 => 0.0054129523266866
903 => 0.0054126105079492
904 => 0.0054096648987357
905 => 0.0053966183071157
906 => 0.0053776981680774
907 => 0.0054530701786946
908 => 0.0054658773520184
909 => 0.0054943461118443
910 => 0.0055790498305419
911 => 0.0055705859315927
912 => 0.0055843909019426
913 => 0.0055542547291805
914 => 0.0054394623917354
915 => 0.0054456961679412
916 => 0.0053679608787646
917 => 0.0054923582457273
918 => 0.0054628993072655
919 => 0.0054439069379975
920 => 0.0054387246940796
921 => 0.0055236383769123
922 => 0.0055490458816747
923 => 0.005533213629741
924 => 0.0055007412191243
925 => 0.0055630978471147
926 => 0.00557978185015
927 => 0.0055835167831472
928 => 0.0056940007722487
929 => 0.005589691610814
930 => 0.0056147998627152
1001 => 0.0058106872765821
1002 => 0.0056330444228202
1003 => 0.0057271458043662
1004 => 0.0057225400314195
1005 => 0.0057706791140013
1006 => 0.0057185912215733
1007 => 0.0057192369134267
1008 => 0.0057619811575354
1009 => 0.0057019545756498
1010 => 0.0056870911498191
1011 => 0.005666557433488
1012 => 0.005711392051886
1013 => 0.0057382683779203
1014 => 0.00595487182727
1015 => 0.0060948075338672
1016 => 0.0060887325557896
1017 => 0.0061442464835361
1018 => 0.006119236950637
1019 => 0.0060384745717245
1020 => 0.0061763261046053
1021 => 0.0061327041116487
1022 => 0.0061363002557473
1023 => 0.0061361664070843
1024 => 0.0061651712188997
1025 => 0.0061446186514765
1026 => 0.0061041074314078
1027 => 0.0061310006698689
1028 => 0.0062108639735897
1029 => 0.0064587621188445
1030 => 0.0065974892051426
1031 => 0.0064504105740585
1101 => 0.006551863444319
1102 => 0.0064910278735165
1103 => 0.0064799722406003
1104 => 0.0065436921404321
1105 => 0.0066075235735135
1106 => 0.0066034577871771
1107 => 0.0065571194445403
1108 => 0.0065309440905768
1109 => 0.0067291526401758
1110 => 0.0068751893231257
1111 => 0.0068652306003909
1112 => 0.0069091851637924
1113 => 0.0070382371214026
1114 => 0.0070500360150746
1115 => 0.0070485496256664
1116 => 0.0070193048366129
1117 => 0.0071463732483945
1118 => 0.0072523759530587
1119 => 0.0070125355129102
1120 => 0.0071038636127769
1121 => 0.0071448637392146
1122 => 0.0072050640890145
1123 => 0.0073066321698772
1124 => 0.007416962045297
1125 => 0.0074325638993868
1126 => 0.0074214936372926
1127 => 0.007348728118627
1128 => 0.0074694523848205
1129 => 0.0075401698286242
1130 => 0.0075822804480694
1201 => 0.0076890659724435
1202 => 0.0071451169420374
1203 => 0.006760082782295
1204 => 0.0066999541382905
1205 => 0.0068222281003157
1206 => 0.0068544707689852
1207 => 0.0068414737896734
1208 => 0.0064080828371091
1209 => 0.0066976724246176
1210 => 0.0070092464713927
1211 => 0.0070212152994546
1212 => 0.0071771957819763
1213 => 0.0072279894209414
1214 => 0.0073535741542006
1215 => 0.0073457187949422
1216 => 0.0073762966790012
1217 => 0.0073692673529912
1218 => 0.0076018866263682
1219 => 0.0078585002291995
1220 => 0.0078496145161148
1221 => 0.0078127232745934
1222 => 0.007867513059144
1223 => 0.0081323657976509
1224 => 0.0081079824016678
1225 => 0.0081316687938926
1226 => 0.0084439450990384
1227 => 0.0088499487165143
1228 => 0.0086613192741
1229 => 0.0090705908874792
1230 => 0.0093282056735453
1231 => 0.0097737238081807
]
'min_raw' => 0.0039903949262743
'max_raw' => 0.0097737238081807
'avg_raw' => 0.0068820593672275
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.00399'
'max' => '$0.009773'
'avg' => '$0.006882'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0017792900906454
'max_diff' => 0.003965137151164
'year' => 2028
]
3 => [
'items' => [
101 => 0.0097179427435013
102 => 0.0098913796839517
103 => 0.0096180829958656
104 => 0.0089905385576463
105 => 0.0088912272481545
106 => 0.00909005100472
107 => 0.0095788398092978
108 => 0.0090746573058122
109 => 0.0091766527696186
110 => 0.0091472780691808
111 => 0.0091457128162289
112 => 0.0092054521550588
113 => 0.0091187971282916
114 => 0.0087657489603003
115 => 0.0089275488551648
116 => 0.0088650701454885
117 => 0.0089343949319707
118 => 0.0093085122128985
119 => 0.0091431060451583
120 => 0.0089688640839498
121 => 0.0091874021706918
122 => 0.0094656762529483
123 => 0.0094482623609873
124 => 0.0094144721321408
125 => 0.0096049458829498
126 => 0.0099195527157137
127 => 0.010004589678417
128 => 0.010067362225781
129 => 0.010076017499511
130 => 0.010165172198159
131 => 0.0096857649136549
201 => 0.010446596586214
202 => 0.010577971198515
203 => 0.010553278216322
204 => 0.010699295568805
205 => 0.010656333559602
206 => 0.010594088348799
207 => 0.010825556911266
208 => 0.010560196882947
209 => 0.010183551730648
210 => 0.0099769167508998
211 => 0.010249030361
212 => 0.010415200647232
213 => 0.010525028636017
214 => 0.010558262519063
215 => 0.0097229799364534
216 => 0.0092728089513228
217 => 0.0095613633915707
218 => 0.0099134197236368
219 => 0.0096838092229545
220 => 0.0096928095198711
221 => 0.0093654452864763
222 => 0.0099423841943397
223 => 0.009858329048284
224 => 0.010294407294712
225 => 0.010190333721455
226 => 0.010545938602957
227 => 0.010452295920041
228 => 0.010841001461336
301 => 0.010996066625542
302 => 0.011256445170208
303 => 0.011447980687596
304 => 0.011560454006897
305 => 0.011553701530683
306 => 0.011999376855738
307 => 0.011736577687263
308 => 0.01140643999465
309 => 0.011400468845362
310 => 0.011571451834453
311 => 0.011929785272697
312 => 0.012022695919694
313 => 0.012074620296262
314 => 0.011995096306048
315 => 0.011709846643654
316 => 0.011586677285681
317 => 0.011691621147234
318 => 0.011563283822484
319 => 0.011784830050096
320 => 0.012089060340329
321 => 0.012026237988453
322 => 0.012236243691921
323 => 0.012453577501766
324 => 0.012764374610918
325 => 0.012845628484033
326 => 0.012979938046485
327 => 0.013118186704642
328 => 0.013162588447736
329 => 0.013247365152354
330 => 0.013246918337274
331 => 0.013502398642771
401 => 0.013784201331301
402 => 0.013890575322473
403 => 0.014135176449679
404 => 0.013716305591185
405 => 0.014034023948994
406 => 0.014320613860745
407 => 0.013978929553241
408 => 0.014449861768902
409 => 0.014468146999681
410 => 0.014744232275214
411 => 0.014464366956922
412 => 0.014298183824282
413 => 0.014777948301413
414 => 0.015010091219458
415 => 0.014940167883301
416 => 0.014408047842607
417 => 0.014098331155222
418 => 0.013287742844446
419 => 0.014247919713369
420 => 0.014715593857478
421 => 0.014406836679556
422 => 0.014562555840767
423 => 0.01541210909223
424 => 0.015735563965887
425 => 0.015668287613286
426 => 0.015679656209413
427 => 0.015854186588117
428 => 0.016628150402927
429 => 0.016164373344752
430 => 0.016518913528332
501 => 0.016706960363313
502 => 0.016881628743607
503 => 0.016452698406113
504 => 0.015894666339271
505 => 0.015717914159109
506 => 0.01437613686315
507 => 0.014306291527852
508 => 0.014267085224619
509 => 0.014019895028576
510 => 0.01382567124558
511 => 0.013671217282274
512 => 0.013265883958702
513 => 0.013402672056723
514 => 0.012756655338589
515 => 0.013169953941425
516 => 0.012138895660664
517 => 0.012997591634944
518 => 0.012530242456258
519 => 0.01284405486043
520 => 0.012842959998514
521 => 0.012265131868121
522 => 0.011931852661476
523 => 0.012144231143371
524 => 0.012371917734588
525 => 0.012408859117983
526 => 0.012704060726723
527 => 0.012786445150385
528 => 0.012536816500528
529 => 0.012117529269541
530 => 0.012214920130376
531 => 0.01192987903879
601 => 0.011430355489732
602 => 0.01178912202351
603 => 0.011911620691992
604 => 0.011965723082589
605 => 0.011474499042759
606 => 0.011320145784451
607 => 0.011237969404878
608 => 0.012054118414526
609 => 0.012098828899627
610 => 0.011870083736426
611 => 0.012904033564601
612 => 0.012670018874614
613 => 0.01293147061832
614 => 0.012206082930558
615 => 0.012233793717094
616 => 0.011890383560854
617 => 0.012082670301674
618 => 0.011946768230953
619 => 0.01206713543323
620 => 0.012139283037982
621 => 0.012482636843995
622 => 0.013001512183872
623 => 0.012431351235217
624 => 0.012182923945033
625 => 0.012337046838655
626 => 0.012747496414448
627 => 0.013369348532301
628 => 0.013001199562592
629 => 0.013164577823774
630 => 0.013200268705649
701 => 0.012928809285001
702 => 0.013379357628346
703 => 0.013620810145793
704 => 0.013868490467135
705 => 0.014083544350311
706 => 0.013769561500184
707 => 0.014105568157494
708 => 0.013834806104862
709 => 0.013591904552784
710 => 0.013592272934173
711 => 0.01343989724233
712 => 0.01314465013881
713 => 0.013090202043018
714 => 0.013373447913366
715 => 0.013600584277901
716 => 0.013619292316794
717 => 0.013745046678889
718 => 0.013819466815003
719 => 0.014548885318196
720 => 0.014842263474246
721 => 0.0152010007301
722 => 0.015340749108579
723 => 0.015761341625234
724 => 0.015421679009181
725 => 0.01534819086562
726 => 0.014327970994978
727 => 0.014495031941641
728 => 0.014762512636234
729 => 0.014332381653112
730 => 0.014605200759398
731 => 0.014659061030078
801 => 0.014317765966897
802 => 0.014500066406631
803 => 0.014015930487011
804 => 0.013012065023928
805 => 0.013380475217577
806 => 0.013651749125632
807 => 0.013264607811006
808 => 0.013958543633036
809 => 0.013553160651549
810 => 0.013424673708232
811 => 0.012923400333451
812 => 0.013159982070566
813 => 0.013479962257538
814 => 0.013282251703679
815 => 0.013692530789326
816 => 0.014273595392039
817 => 0.014687696630927
818 => 0.014719486182133
819 => 0.014453246828156
820 => 0.014879897092021
821 => 0.014883004773408
822 => 0.014401741532852
823 => 0.014106970477696
824 => 0.014039997873761
825 => 0.014207308569143
826 => 0.014410454640595
827 => 0.014730759375274
828 => 0.014924312818125
829 => 0.015428997544265
830 => 0.015565550760714
831 => 0.015715581345243
901 => 0.015916068473892
902 => 0.01615680467568
903 => 0.015630087571288
904 => 0.015651015023769
905 => 0.015160543349053
906 => 0.014636404023866
907 => 0.015034160436794
908 => 0.015554174035378
909 => 0.015434882341299
910 => 0.015421459588807
911 => 0.015444032935338
912 => 0.015354090893704
913 => 0.014947286372805
914 => 0.01474299168914
915 => 0.0150065839522
916 => 0.015146671508874
917 => 0.015363935092357
918 => 0.015337152769815
919 => 0.015896800428463
920 => 0.016114262585746
921 => 0.016058626460183
922 => 0.016068864846244
923 => 0.01646256969466
924 => 0.016900450457675
925 => 0.017310583575695
926 => 0.017727788598973
927 => 0.017224831659623
928 => 0.016969461143892
929 => 0.017232938330816
930 => 0.017093133626724
1001 => 0.017896492925204
1002 => 0.017952115780007
1003 => 0.018755416986465
1004 => 0.019517845486722
1005 => 0.019038977806036
1006 => 0.019490528460249
1007 => 0.019978917308246
1008 => 0.020921098634265
1009 => 0.020603805110001
1010 => 0.020360763243037
1011 => 0.020131089853127
1012 => 0.020609003717907
1013 => 0.021223832270086
1014 => 0.021356260451471
1015 => 0.021570844696773
1016 => 0.021345235600951
1017 => 0.021616956906842
1018 => 0.022576252517029
1019 => 0.02231704237522
1020 => 0.021948922303741
1021 => 0.022706194056254
1022 => 0.022980247759669
1023 => 0.024903700173275
1024 => 0.027332138299308
1025 => 0.026326748969146
1026 => 0.025702671368203
1027 => 0.025849344407743
1028 => 0.026736127803552
1029 => 0.027020934485188
1030 => 0.026246731745751
1031 => 0.026520193241709
1101 => 0.028026992970577
1102 => 0.028835342681192
1103 => 0.027737495198327
1104 => 0.024708577534366
1105 => 0.021915777118994
1106 => 0.022656553550592
1107 => 0.022572572492218
1108 => 0.024191440823792
1109 => 0.022310860299064
1110 => 0.022342524452083
1111 => 0.023994869266343
1112 => 0.02355405199826
1113 => 0.022839984479576
1114 => 0.021920990602114
1115 => 0.020222145422982
1116 => 0.018717430872022
1117 => 0.02166852262152
1118 => 0.02154126617907
1119 => 0.021356979992053
1120 => 0.02176708895941
1121 => 0.023758461693434
1122 => 0.02371255410647
1123 => 0.023420513460463
1124 => 0.023642023716531
1125 => 0.022801152660701
1126 => 0.023017864278066
1127 => 0.021915334725139
1128 => 0.022413724128763
1129 => 0.022838452411385
1130 => 0.022923722902331
1201 => 0.023115841672451
1202 => 0.021474207816476
1203 => 0.022211253221971
1204 => 0.022644198345884
1205 => 0.020688136525366
1206 => 0.02260553329291
1207 => 0.021445630623349
1208 => 0.021051942236146
1209 => 0.021581991785013
1210 => 0.02137543096033
1211 => 0.021197842092925
1212 => 0.02109874445355
1213 => 0.021487954342804
1214 => 0.021469797236264
1215 => 0.02083297431506
1216 => 0.020002264774572
1217 => 0.020281078163471
1218 => 0.020179782645394
1219 => 0.019812674620503
1220 => 0.020060061104488
1221 => 0.018970696228455
1222 => 0.017096500579499
1223 => 0.018334651633364
1224 => 0.01828698416464
1225 => 0.018262948065361
1226 => 0.019193384362359
1227 => 0.019103944381221
1228 => 0.018941609939655
1229 => 0.01980969322118
1230 => 0.019492831146055
1231 => 0.020469325399494
]
'min_raw' => 0.0087657489603003
'max_raw' => 0.028835342681192
'avg_raw' => 0.018800545820746
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.008765'
'max' => '$0.028835'
'avg' => '$0.01880054'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.004775354034026
'max_diff' => 0.019061618873011
'year' => 2029
]
4 => [
'items' => [
101 => 0.021112507670498
102 => 0.020949375841805
103 => 0.021554291876453
104 => 0.020287501460827
105 => 0.020708278422088
106 => 0.020794999970632
107 => 0.019798981208235
108 => 0.019118577868258
109 => 0.019073202722647
110 => 0.017893477096483
111 => 0.018523677003568
112 => 0.019078226842358
113 => 0.018812640504383
114 => 0.018728563803947
115 => 0.019158093432466
116 => 0.019191471563274
117 => 0.018430446643586
118 => 0.018588687822914
119 => 0.019248579846119
120 => 0.018572060237038
121 => 0.017257693145444
122 => 0.016931711934182
123 => 0.016888220031574
124 => 0.016004133132736
125 => 0.016953495557459
126 => 0.016539073417736
127 => 0.01784822799158
128 => 0.017100445920137
129 => 0.01706821052961
130 => 0.017019482008925
131 => 0.016258511893925
201 => 0.016425115986937
202 => 0.016978933366626
203 => 0.017176541646899
204 => 0.017155929484309
205 => 0.016976219359332
206 => 0.017058489734282
207 => 0.016793468191669
208 => 0.016699883569026
209 => 0.016404504757486
210 => 0.015970379505002
211 => 0.016030747284005
212 => 0.015170631563782
213 => 0.014701994869609
214 => 0.014572282409194
215 => 0.01439882548607
216 => 0.014591874830212
217 => 0.015168194964015
218 => 0.014473030609511
219 => 0.013281220083825
220 => 0.013352849927165
221 => 0.013513780918059
222 => 0.013213887081194
223 => 0.012930062732782
224 => 0.013176824976329
225 => 0.012671839145235
226 => 0.013574806043148
227 => 0.013550383319095
228 => 0.013886953539539
301 => 0.014097417805499
302 => 0.013612365811077
303 => 0.0134903765462
304 => 0.013559867175577
305 => 0.012411341864266
306 => 0.013793094518555
307 => 0.013805043972888
308 => 0.013702725490166
309 => 0.014438466121748
310 => 0.015991108337643
311 => 0.015406941881135
312 => 0.01518073497265
313 => 0.014750715474265
314 => 0.015323690923832
315 => 0.015279695349114
316 => 0.015080730675416
317 => 0.014960396219956
318 => 0.015182116143797
319 => 0.014932922667726
320 => 0.014888160672045
321 => 0.014616951679749
322 => 0.014520142408723
323 => 0.014448468678543
324 => 0.01436956294413
325 => 0.014543609332161
326 => 0.014149197319173
327 => 0.013673575096196
328 => 0.01363403225466
329 => 0.013743213516785
330 => 0.013694908935883
331 => 0.01363380099091
401 => 0.013517129282198
402 => 0.01348251527852
403 => 0.013594993998147
404 => 0.013468012081605
405 => 0.013655380816526
406 => 0.013604426888212
407 => 0.013319802386678
408 => 0.01296505487628
409 => 0.012961896879329
410 => 0.012885467110117
411 => 0.012788122307731
412 => 0.012761043210655
413 => 0.013156043348453
414 => 0.013973681812336
415 => 0.013813159817445
416 => 0.013929153409709
417 => 0.014499727080571
418 => 0.014681095292789
419 => 0.014552364431698
420 => 0.014376149689263
421 => 0.014383902243625
422 => 0.014986081362355
423 => 0.015023638535342
424 => 0.015118533395077
425 => 0.015240500107122
426 => 0.014573135890158
427 => 0.014352469449021
428 => 0.014247905447103
429 => 0.013925888792555
430 => 0.014273156146863
501 => 0.014070818330979
502 => 0.014098120615186
503 => 0.014080339966779
504 => 0.014090049403131
505 => 0.013574553645498
506 => 0.01376237320592
507 => 0.013450086758515
508 => 0.013031970261239
509 => 0.01303056858813
510 => 0.013132902008493
511 => 0.013072030085754
512 => 0.012908225306823
513 => 0.012931493002534
514 => 0.012727643504691
515 => 0.012956244022386
516 => 0.012962799467262
517 => 0.012874775815995
518 => 0.013226966454296
519 => 0.013371259246169
520 => 0.013313320193255
521 => 0.013367194087763
522 => 0.013819830231046
523 => 0.013893629672301
524 => 0.013926406509189
525 => 0.013882489889858
526 => 0.013375467445546
527 => 0.013397956046977
528 => 0.013232949611097
529 => 0.013093536560728
530 => 0.013099112351617
531 => 0.013170788781935
601 => 0.013483803956899
602 => 0.014142525939359
603 => 0.014167523957074
604 => 0.014197822283788
605 => 0.014074583762323
606 => 0.014037413845015
607 => 0.014086450560314
608 => 0.014333831902969
609 => 0.014970163879658
610 => 0.014745241659913
611 => 0.014562376394136
612 => 0.014722798532344
613 => 0.014698102801597
614 => 0.01448964598119
615 => 0.014483795292528
616 => 0.014083700006489
617 => 0.013935793888969
618 => 0.013812192466589
619 => 0.013677222940046
620 => 0.013597208480492
621 => 0.013720147056288
622 => 0.01374826456314
623 => 0.013479457218562
624 => 0.013442819770773
625 => 0.013662333650965
626 => 0.013565733776595
627 => 0.013665089142946
628 => 0.013688140440194
629 => 0.013684428650421
630 => 0.013583567287154
701 => 0.013647853312371
702 => 0.013495797698145
703 => 0.01333046005569
704 => 0.013224984940703
705 => 0.013132943913632
706 => 0.013184013624907
707 => 0.013001959429174
708 => 0.012943716627932
709 => 0.013626074653509
710 => 0.014130139863587
711 => 0.014122810555801
712 => 0.014078195279597
713 => 0.014011906029036
714 => 0.0143289824314
715 => 0.014218519352959
716 => 0.014298890472024
717 => 0.014319348294992
718 => 0.014381267963611
719 => 0.014403398922968
720 => 0.014336503792853
721 => 0.014111995565639
722 => 0.013552542409021
723 => 0.0132921154544
724 => 0.013206170221621
725 => 0.0132092941676
726 => 0.01312312179161
727 => 0.013148503418314
728 => 0.013114295097659
729 => 0.013049512814222
730 => 0.013180013501456
731 => 0.013195052489962
801 => 0.013164592070194
802 => 0.013171766601733
803 => 0.012919567335872
804 => 0.012938741498308
805 => 0.012831977325333
806 => 0.012811960329961
807 => 0.0125420697977
808 => 0.012063919598543
809 => 0.012328861224039
810 => 0.012008848996869
811 => 0.011887655517464
812 => 0.012461366599517
813 => 0.012403781919147
814 => 0.012305221977813
815 => 0.012159431282888
816 => 0.01210535609598
817 => 0.011776812378449
818 => 0.011757400262905
819 => 0.01192023540074
820 => 0.011845092587444
821 => 0.011739563618768
822 => 0.011357348391523
823 => 0.010927611928987
824 => 0.010940582971563
825 => 0.011077274144765
826 => 0.011474722166165
827 => 0.011319432348283
828 => 0.011206767803665
829 => 0.011185669121142
830 => 0.011449763306004
831 => 0.011823511907026
901 => 0.011998866388473
902 => 0.011825095422954
903 => 0.01162547669426
904 => 0.011637626561332
905 => 0.011718454183722
906 => 0.011726948023994
907 => 0.011597016752751
908 => 0.011633591644529
909 => 0.01157803103944
910 => 0.011237055708564
911 => 0.011230888546073
912 => 0.011147207700906
913 => 0.011144673878172
914 => 0.011002311885378
915 => 0.010982394458484
916 => 0.010699726081037
917 => 0.010885779263071
918 => 0.010760984556793
919 => 0.010572889498336
920 => 0.010540461839361
921 => 0.010539487024774
922 => 0.010732618592524
923 => 0.010883522408255
924 => 0.010763155414138
925 => 0.010735750182793
926 => 0.01102836635562
927 => 0.010991128280372
928 => 0.010958880347367
929 => 0.011790046819115
930 => 0.011132113699998
1001 => 0.010845217306554
1002 => 0.010490128539518
1003 => 0.010605747232578
1004 => 0.010630109789998
1005 => 0.009776185314839
1006 => 0.0094297482616167
1007 => 0.0093108641201557
1008 => 0.0092424446159699
1009 => 0.0092736242431854
1010 => 0.0089617902622719
1011 => 0.0091713478547038
1012 => 0.0089013259859029
1013 => 0.0088560559408713
1014 => 0.009338888491578
1015 => 0.009406071820342
1016 => 0.0091194468676106
1017 => 0.009303506487629
1018 => 0.0092367639107902
1019 => 0.0089059547358338
1020 => 0.008893320258618
1021 => 0.0087273318431296
1022 => 0.008467592114581
1023 => 0.0083488840888869
1024 => 0.0082870599184351
1025 => 0.0083125697760926
1026 => 0.0082996712114464
1027 => 0.008215499352205
1028 => 0.0083044958438901
1029 => 0.008077146583524
1030 => 0.0079866142761688
1031 => 0.00794572293327
1101 => 0.0077439373789599
1102 => 0.0080650679303105
1103 => 0.0081283346944227
1104 => 0.0081917261136042
1105 => 0.0087435051384198
1106 => 0.0087159398176513
1107 => 0.0089651168925424
1108 => 0.0089554343296193
1109 => 0.0088843649914594
1110 => 0.0085845351441014
1111 => 0.0087040419773052
1112 => 0.0083362185201894
1113 => 0.0086118168638244
1114 => 0.0084860452890514
1115 => 0.0085692933678788
1116 => 0.0084196058159704
1117 => 0.0085024490876441
1118 => 0.0081433375912359
1119 => 0.007808004328725
1120 => 0.0079429522225476
1121 => 0.0080896560162963
1122 => 0.0084077472205749
1123 => 0.008218294723502
1124 => 0.0082864290054415
1125 => 0.0080581905664853
1126 => 0.0075872694738318
1127 => 0.0075899348360744
1128 => 0.0075174938855433
1129 => 0.0074548943277325
1130 => 0.0082400556217917
1201 => 0.0081424084033122
1202 => 0.0079868203404171
1203 => 0.008195081145426
1204 => 0.0082501486078138
1205 => 0.0082517163010523
1206 => 0.0084036580083974
1207 => 0.0084847493248445
1208 => 0.0084990420208382
1209 => 0.0087381255802636
1210 => 0.0088182632357946
1211 => 0.0091483388974213
1212 => 0.0084778692931975
1213 => 0.0084640614129133
1214 => 0.0081980118020421
1215 => 0.0080292789327497
1216 => 0.0082095650859598
1217 => 0.0083692740061899
1218 => 0.0082029744033805
1219 => 0.0082246896207312
1220 => 0.0080014459911364
1221 => 0.0080812450841275
1222 => 0.00814997881311
1223 => 0.0081120280879477
1224 => 0.0080552140155438
1225 => 0.0083561796960276
1226 => 0.0083391980328406
1227 => 0.0086194641936782
1228 => 0.0088379517080765
1229 => 0.0092295203931931
1230 => 0.0088208980573367
1231 => 0.0088060062352914
]
'min_raw' => 0.0074548943277325
'max_raw' => 0.021554291876453
'avg_raw' => 0.014504593102093
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.007454'
'max' => '$0.021554'
'avg' => '$0.0145045'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0013108546325678
'max_diff' => -0.0072810508047388
'year' => 2030
]
5 => [
'items' => [
101 => 0.0089515761845075
102 => 0.0088182409497938
103 => 0.008902504215557
104 => 0.0092159442783737
105 => 0.0092225667729886
106 => 0.0091116314555861
107 => 0.0091048810314404
108 => 0.0091261873726469
109 => 0.0092509792785851
110 => 0.0092073731521824
111 => 0.0092578352656277
112 => 0.0093209389111943
113 => 0.0095819623446493
114 => 0.0096448942107647
115 => 0.009492002402536
116 => 0.009505806820962
117 => 0.0094486210877105
118 => 0.0093933803859247
119 => 0.0095175534162826
120 => 0.0097444820698887
121 => 0.0097430703585122
122 => 0.0097957133952861
123 => 0.0098285095710778
124 => 0.0096877243763119
125 => 0.0095960783913344
126 => 0.0096312212935603
127 => 0.0096874155595324
128 => 0.009612998250473
129 => 0.0091536601455072
130 => 0.0092929939839221
131 => 0.0092698020201333
201 => 0.0092367738434588
202 => 0.0093768750954216
203 => 0.0093633619878905
204 => 0.0089585919540802
205 => 0.0089845040183715
206 => 0.0089601677525332
207 => 0.0090388032061885
208 => 0.0088139943772369
209 => 0.0088831440589118
210 => 0.0089265140910204
211 => 0.0089520593731166
212 => 0.009044346448612
213 => 0.009033517625476
214 => 0.0090436733137615
215 => 0.0091805106838365
216 => 0.0098725871447613
217 => 0.0099102553395488
218 => 0.0097247633719202
219 => 0.0097988637543206
220 => 0.0096566072240841
221 => 0.0097521049858678
222 => 0.0098174421291
223 => 0.0095221961424437
224 => 0.0095047135912445
225 => 0.0093618699177044
226 => 0.0094386260167856
227 => 0.0093165015441885
228 => 0.0093464666180311
301 => 0.0092626816592589
302 => 0.00941347790363
303 => 0.0095820915362042
304 => 0.0096246899985465
305 => 0.0095126317839149
306 => 0.0094314942515254
307 => 0.0092890434730141
308 => 0.009525942292401
309 => 0.0095952187265504
310 => 0.0095255784127843
311 => 0.0095094412304138
312 => 0.0094788612989809
313 => 0.0095159289074279
314 => 0.0095948414322122
315 => 0.0095576277428094
316 => 0.0095822080402808
317 => 0.0094885332934127
318 => 0.0096877709820694
319 => 0.010004208380817
320 => 0.010005225778797
321 => 0.0099680118887985
322 => 0.0099527847667956
323 => 0.0099909684762616
324 => 0.010011681572269
325 => 0.010135160686987
326 => 0.010267658696705
327 => 0.010885969094647
328 => 0.010712350009114
329 => 0.011260951777618
330 => 0.011694824549481
331 => 0.011824924022806
401 => 0.011705238629
402 => 0.011295801362069
403 => 0.01127571241643
404 => 0.01188758455318
405 => 0.011714702649029
406 => 0.011694138896636
407 => 0.011475375314181
408 => 0.011604691685808
409 => 0.011576408298377
410 => 0.011531761587645
411 => 0.011778488216454
412 => 0.012240338440146
413 => 0.01216835475158
414 => 0.012114622267292
415 => 0.011879182162435
416 => 0.01202096969301
417 => 0.011970481869134
418 => 0.012187409600872
419 => 0.012058906418128
420 => 0.011713392898571
421 => 0.011768417065388
422 => 0.011760100273267
423 => 0.011931259265785
424 => 0.011879881584658
425 => 0.011750067956444
426 => 0.012238759886291
427 => 0.012207026950614
428 => 0.012252016998245
429 => 0.012271823008575
430 => 0.012569281174555
501 => 0.012691140267558
502 => 0.012718804415113
503 => 0.012834561128545
504 => 0.012715924282631
505 => 0.013190556252924
506 => 0.013506158817626
507 => 0.013872747437286
508 => 0.014408431940342
509 => 0.014609854268849
510 => 0.014573469128066
511 => 0.0149796190046
512 => 0.015709461304527
513 => 0.014720991123871
514 => 0.015761852624295
515 => 0.015432327890585
516 => 0.014651030674854
517 => 0.01460072434505
518 => 0.01512982789059
519 => 0.016303328630268
520 => 0.016009380004714
521 => 0.016303809424916
522 => 0.015960341866711
523 => 0.015943285807474
524 => 0.016287127972248
525 => 0.0170905339321
526 => 0.016708865875796
527 => 0.016161651128238
528 => 0.016565705982231
529 => 0.01621567627419
530 => 0.01542696137483
531 => 0.01600915522774
601 => 0.015619858778225
602 => 0.015733476178331
603 => 0.016551719411735
604 => 0.016453266221089
605 => 0.016580673766305
606 => 0.016355802783834
607 => 0.016145737827308
608 => 0.015753635986322
609 => 0.015637553961594
610 => 0.015669634857035
611 => 0.015637538063895
612 => 0.015418160687466
613 => 0.015370786163913
614 => 0.015291826549133
615 => 0.015316299435424
616 => 0.015167832259187
617 => 0.01544802049563
618 => 0.015500025901324
619 => 0.015703923534047
620 => 0.015725092862681
621 => 0.016292944867514
622 => 0.015980181525617
623 => 0.016190010178049
624 => 0.016171241128392
625 => 0.01466796375462
626 => 0.014875102113197
627 => 0.015197344395545
628 => 0.015052174684136
629 => 0.014846938676685
630 => 0.01468119959661
701 => 0.014430087942604
702 => 0.014783522773445
703 => 0.015248251992396
704 => 0.015736879162593
705 => 0.016323932691465
706 => 0.016192909177877
707 => 0.015725904605217
708 => 0.015746854089199
709 => 0.015876355555861
710 => 0.015708639390085
711 => 0.015659176618589
712 => 0.01586956013061
713 => 0.015871008926233
714 => 0.015678031208332
715 => 0.015463571789435
716 => 0.015462673196639
717 => 0.015424512214478
718 => 0.015967130620662
719 => 0.016265515879155
720 => 0.016299725268169
721 => 0.016263213314708
722 => 0.016277265316488
723 => 0.016103641509041
724 => 0.016500494046323
725 => 0.016864685179181
726 => 0.016767074175766
727 => 0.016620741405426
728 => 0.016504180305509
729 => 0.016739616084991
730 => 0.016729132500341
731 => 0.016861504287349
801 => 0.016855499138474
802 => 0.016810987485257
803 => 0.016767075765418
804 => 0.016941180771027
805 => 0.016891041325452
806 => 0.01684082399947
807 => 0.016740105464324
808 => 0.016753794786008
809 => 0.016607487282084
810 => 0.016539798736192
811 => 0.015521925413519
812 => 0.01524991640173
813 => 0.015335495974093
814 => 0.015363670991387
815 => 0.015245292320868
816 => 0.015415016925407
817 => 0.015388565525573
818 => 0.015491472448778
819 => 0.015427180670858
820 => 0.01542981922785
821 => 0.015618887638259
822 => 0.015673775002155
823 => 0.015645858845882
824 => 0.015665410364826
825 => 0.016115966866704
826 => 0.016051912140123
827 => 0.016017884343284
828 => 0.016027310275559
829 => 0.016142437121829
830 => 0.016174666353092
831 => 0.016038108835523
901 => 0.016102510150238
902 => 0.016376722774551
903 => 0.01647268167397
904 => 0.016778936418031
905 => 0.01664883395951
906 => 0.016887642652828
907 => 0.017621659160204
908 => 0.018208042336375
909 => 0.017668780134259
910 => 0.01874559816185
911 => 0.019584055456702
912 => 0.019551874069201
913 => 0.019405669645977
914 => 0.018451108307329
915 => 0.017572706731798
916 => 0.018307526948631
917 => 0.018309400156481
918 => 0.018246278448175
919 => 0.017854234939047
920 => 0.018232636183861
921 => 0.018262672300523
922 => 0.01824586006244
923 => 0.017945281223187
924 => 0.017486352891902
925 => 0.017576026389315
926 => 0.017722913407369
927 => 0.017444825638351
928 => 0.017355959746218
929 => 0.017521178347122
930 => 0.018053547103895
1001 => 0.01795290587423
1002 => 0.017950277725
1003 => 0.018380863584034
1004 => 0.01807265703521
1005 => 0.017577157459292
1006 => 0.017452037281537
1007 => 0.017007944941555
1008 => 0.017314681102583
1009 => 0.017325719990946
1010 => 0.017157723730319
1011 => 0.017590789429962
1012 => 0.0175867986533
1013 => 0.017997930081788
1014 => 0.018783858959144
1015 => 0.018551421116898
1016 => 0.018281121195532
1017 => 0.018310510291589
1018 => 0.018632836136857
1019 => 0.018437950572824
1020 => 0.018508032780441
1021 => 0.018632730059042
1022 => 0.018707963023281
1023 => 0.018299685425804
1024 => 0.018204496387657
1025 => 0.018009773022421
1026 => 0.017958973331115
1027 => 0.018117571449063
1028 => 0.018075786448338
1029 => 0.017324792215124
1030 => 0.017246309139261
1031 => 0.01724871610315
1101 => 0.017051366677224
1102 => 0.016750361433399
1103 => 0.017541385242083
1104 => 0.017477854959874
1105 => 0.017407722445169
1106 => 0.01741631327805
1107 => 0.017759669903115
1108 => 0.017560505720652
1109 => 0.018090016342097
1110 => 0.017981164876875
1111 => 0.017869521782303
1112 => 0.017854089305901
1113 => 0.017811116239432
1114 => 0.017663745604937
1115 => 0.017485786708181
1116 => 0.017368282830008
1117 => 0.016021322826726
1118 => 0.016271310768429
1119 => 0.016558899108241
1120 => 0.016658173450706
1121 => 0.016488357818344
1122 => 0.017670450961141
1123 => 0.017886430769263
1124 => 0.017232213842447
1125 => 0.017109836566941
1126 => 0.01767847399495
1127 => 0.017335516112762
1128 => 0.017489950026112
1129 => 0.017156148376284
1130 => 0.017834407558114
1201 => 0.017829240359543
1202 => 0.017565382218633
1203 => 0.017788393312507
1204 => 0.017749639646913
1205 => 0.01745174445568
1206 => 0.017843851367022
1207 => 0.017844045847158
1208 => 0.017590088123303
1209 => 0.017293521100334
1210 => 0.017240501921228
1211 => 0.017200559091895
1212 => 0.017480126538636
1213 => 0.017730785837198
1214 => 0.018197200648114
1215 => 0.01831446841332
1216 => 0.018772172307879
1217 => 0.018499631923867
1218 => 0.018620445546111
1219 => 0.018751605823186
1220 => 0.018814488883276
1221 => 0.018712024311351
1222 => 0.01942302685804
1223 => 0.019483057257535
1224 => 0.019503184931225
1225 => 0.019263438872893
1226 => 0.019476389485956
1227 => 0.019376756946287
1228 => 0.019635973135789
1229 => 0.019676621544142
1230 => 0.019642193788376
1231 => 0.019655096234779
]
'min_raw' => 0.0088139943772369
'max_raw' => 0.019676621544142
'avg_raw' => 0.014245307960689
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.008813'
'max' => '$0.019676'
'avg' => '$0.014245'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0013591000495044
'max_diff' => -0.0018776703323115
'year' => 2031
]
6 => [
'items' => [
101 => 0.019048380990624
102 => 0.019016919604537
103 => 0.018587941372838
104 => 0.018762753173102
105 => 0.018435950891456
106 => 0.018539583261403
107 => 0.01858526342263
108 => 0.018561402698731
109 => 0.018772636770004
110 => 0.018593044657152
111 => 0.01811907154366
112 => 0.01764496929651
113 => 0.017639017328992
114 => 0.017514194575917
115 => 0.017423970587872
116 => 0.017441350928837
117 => 0.017502601517353
118 => 0.01742041059232
119 => 0.017437950193361
120 => 0.017729224436402
121 => 0.017787637408571
122 => 0.017589127305719
123 => 0.0167920805979
124 => 0.01659648333656
125 => 0.016737074769149
126 => 0.016669881119619
127 => 0.013453895094411
128 => 0.014209443307638
129 => 0.013760522215331
130 => 0.013967405708533
131 => 0.013509173520841
201 => 0.013727865938814
202 => 0.013687481434583
203 => 0.014902380603156
204 => 0.014883411623678
205 => 0.014892491070338
206 => 0.014459105424878
207 => 0.015149500525798
208 => 0.015489613978316
209 => 0.015426668030081
210 => 0.015442510169135
211 => 0.015170289732679
212 => 0.014895126759207
213 => 0.014589928674349
214 => 0.015156948992392
215 => 0.015093906012385
216 => 0.015238503926373
217 => 0.015606257134073
218 => 0.015660410190865
219 => 0.015733192448361
220 => 0.015707105190042
221 => 0.016328609519931
222 => 0.016253341244764
223 => 0.016434716131757
224 => 0.016061614228268
225 => 0.015639414009312
226 => 0.015719660468171
227 => 0.015711932088881
228 => 0.015613540950308
229 => 0.015524717829768
301 => 0.015376852359829
302 => 0.015844720586689
303 => 0.015825725991106
304 => 0.016133226414789
305 => 0.016078872728003
306 => 0.015715885505044
307 => 0.015728849664725
308 => 0.015816039868937
309 => 0.016117806161234
310 => 0.016207390942604
311 => 0.016165891702538
312 => 0.016264117325609
313 => 0.016341750853103
314 => 0.016273866901396
315 => 0.017234960502995
316 => 0.016835847432399
317 => 0.017030372365997
318 => 0.017076765416452
319 => 0.016957930593251
320 => 0.016983701611247
321 => 0.01702273768133
322 => 0.017259757054824
323 => 0.017881764472982
324 => 0.018157247324336
325 => 0.01898605107472
326 => 0.018134372308437
327 => 0.018083837215043
328 => 0.018233129797963
329 => 0.018719725337225
330 => 0.019114065318202
331 => 0.019244890639912
401 => 0.019262181365866
402 => 0.019507618366496
403 => 0.019648298278128
404 => 0.019477815858986
405 => 0.019333349859016
406 => 0.018815890578904
407 => 0.018875787899572
408 => 0.019288421041658
409 => 0.019871289658825
410 => 0.020371451569498
411 => 0.020196312300783
412 => 0.021532501292026
413 => 0.021664978972665
414 => 0.021646674840717
415 => 0.021948478712535
416 => 0.021349459488266
417 => 0.02109336716444
418 => 0.019364585047968
419 => 0.01985030230659
420 => 0.020556320867172
421 => 0.020462876663246
422 => 0.019950147112621
423 => 0.020371062618157
424 => 0.020231894788782
425 => 0.020122127347675
426 => 0.02062499327485
427 => 0.020072071531327
428 => 0.020550805049818
429 => 0.01993682436049
430 => 0.02019711232221
501 => 0.020049360286425
502 => 0.020144973961386
503 => 0.019586018371273
504 => 0.019887617239818
505 => 0.019573470866776
506 => 0.019573321920492
507 => 0.019566387121896
508 => 0.019935978936641
509 => 0.019948031312451
510 => 0.019674902402932
511 => 0.019635540259995
512 => 0.019781082732968
513 => 0.019610690614751
514 => 0.019690416014429
515 => 0.01961310541589
516 => 0.019595701171748
517 => 0.019457021193339
518 => 0.019397274045555
519 => 0.019420702441695
520 => 0.019340729247502
521 => 0.019292542505244
522 => 0.019556801566018
523 => 0.019415618610026
524 => 0.019535163253164
525 => 0.019398927044572
526 => 0.018926672990302
527 => 0.018655074689696
528 => 0.017763030559155
529 => 0.018016013167999
530 => 0.018183740899392
531 => 0.018128306885168
601 => 0.018247400597838
602 => 0.018254711984557
603 => 0.018215993404551
604 => 0.018171162249062
605 => 0.018149340921888
606 => 0.018311979216764
607 => 0.018406396221093
608 => 0.018200574621145
609 => 0.018152353500028
610 => 0.018360450501297
611 => 0.018487389551858
612 => 0.019424636180307
613 => 0.019355201922805
614 => 0.019529468283351
615 => 0.019509848565488
616 => 0.019692507474149
617 => 0.019991077592394
618 => 0.019384001060483
619 => 0.019489368555296
620 => 0.019463534878859
621 => 0.019745580184247
622 => 0.019746460698904
623 => 0.019577360449116
624 => 0.019669032437864
625 => 0.019617863648634
626 => 0.019710332566649
627 => 0.019354274585964
628 => 0.019787914772355
629 => 0.020033760814883
630 => 0.020037174387422
701 => 0.020153703460425
702 => 0.020272103747505
703 => 0.020499362788063
704 => 0.020265765616209
705 => 0.019845547044269
706 => 0.019875885467865
707 => 0.019629511472889
708 => 0.019633653064255
709 => 0.019611544924958
710 => 0.019677893115213
711 => 0.019368834282642
712 => 0.019441369772909
713 => 0.019339819661769
714 => 0.019489147805187
715 => 0.019328495407695
716 => 0.019463522421078
717 => 0.019521795603837
718 => 0.019736824902752
719 => 0.019296735405411
720 => 0.018399363128892
721 => 0.018588001661003
722 => 0.018308990454773
723 => 0.018334814004181
724 => 0.01838698168377
725 => 0.018217889166017
726 => 0.018250146689687
727 => 0.018248994223949
728 => 0.018239062896829
729 => 0.018195075402299
730 => 0.018131284832569
731 => 0.018385406828671
801 => 0.0184285871077
802 => 0.018524571519079
803 => 0.018810156020492
804 => 0.018781619394255
805 => 0.018828163815621
806 => 0.018726557605114
807 => 0.018339527224872
808 => 0.018360544836579
809 => 0.018098454881815
810 => 0.018517869289677
811 => 0.018418546421895
812 => 0.018354512322903
813 => 0.018337040025722
814 => 0.018623332435876
815 => 0.018708995612078
816 => 0.018655616069311
817 => 0.018546133069765
818 => 0.018756372794636
819 => 0.018812624075709
820 => 0.018825216663074
821 => 0.019197721146075
822 => 0.018846035525665
823 => 0.018930689749952
824 => 0.019591137842227
825 => 0.018992202558141
826 => 0.019309471935972
827 => 0.019293943250917
828 => 0.019456247528805
829 => 0.019280629562823
830 => 0.019282806557988
831 => 0.019426921761308
901 => 0.019224537949559
902 => 0.01917442487164
903 => 0.019105194013411
904 => 0.019256357059593
905 => 0.019346972469263
906 => 0.020077266121515
907 => 0.020549069126306
908 => 0.020528586913577
909 => 0.020715755996832
910 => 0.020631434610553
911 => 0.020359138611401
912 => 0.020823914678995
913 => 0.020676840084151
914 => 0.020688964735055
915 => 0.020688513454942
916 => 0.020786305203029
917 => 0.020717010787028
918 => 0.020580424380163
919 => 0.02067109681126
920 => 0.020940361515633
921 => 0.021776167420055
922 => 0.022243895477125
923 => 0.021748009603723
924 => 0.022090065039019
925 => 0.021884953664655
926 => 0.021847678826398
927 => 0.022062514917463
928 => 0.022277727050665
929 => 0.022264018968167
930 => 0.022107786010728
1001 => 0.022019533977335
1002 => 0.022687807940787
1003 => 0.023180180813308
1004 => 0.023146604284312
1005 => 0.02329480016363
1006 => 0.023729907848832
1007 => 0.02376968864262
1008 => 0.023764677176954
1009 => 0.023666076328854
1010 => 0.024094496350809
1011 => 0.024451891870457
1012 => 0.023643253081371
1013 => 0.023951172146396
1014 => 0.024089406935218
1015 => 0.024292376617623
1016 => 0.024634820493508
1017 => 0.025006805371472
1018 => 0.025059408111823
1019 => 0.025022083950271
1020 => 0.024776749923764
1021 => 0.025183780215934
1022 => 0.025422209015053
1023 => 0.025564187908582
1024 => 0.025924222759536
1025 => 0.024090260626213
1026 => 0.022792091074415
1027 => 0.022589363153107
1028 => 0.02300161835297
1029 => 0.0231103267615
1030 => 0.02306650653833
1031 => 0.02160529868337
1101 => 0.022581670196154
1102 => 0.023632163848262
1103 => 0.023672517587709
1104 => 0.024198416674741
1105 => 0.02436967097481
1106 => 0.024793088671039
1107 => 0.024766603778856
1108 => 0.024869699249841
1109 => 0.024845999386426
1110 => 0.025630291507576
1111 => 0.026495482185711
1112 => 0.026465523383665
1113 => 0.026341141987212
1114 => 0.026525869571125
1115 => 0.027418839070428
1116 => 0.027336628748477
1117 => 0.027416489073594
1118 => 0.028469350438828
1119 => 0.029838219981416
1120 => 0.029202242646629
1121 => 0.030582130465568
1122 => 0.03145069670288
1123 => 0.032952792198886
1124 => 0.03276472244481
1125 => 0.033349477198519
1126 => 0.032428038333672
1127 => 0.030312228446462
1128 => 0.029977393432816
1129 => 0.030647741609508
1130 => 0.032295727190287
1201 => 0.030595840678886
1202 => 0.030939725506206
1203 => 0.030840686652803
1204 => 0.030835409293194
1205 => 0.031036824644926
1206 => 0.03074466117212
1207 => 0.029554334624701
1208 => 0.030099854266745
1209 => 0.029889202934947
1210 => 0.030122936292674
1211 => 0.031384298825356
1212 => 0.03082662038253
1213 => 0.030239151445131
1214 => 0.030975967862423
1215 => 0.031914188359227
1216 => 0.031855476206681
1217 => 0.031741550090967
1218 => 0.032383745640272
1219 => 0.033444464542083
1220 => 0.033731172598929
1221 => 0.033942814625004
1222 => 0.033971996484679
1223 => 0.03427258777575
1224 => 0.032656232644899
1225 => 0.035221429748504
1226 => 0.035664368426157
1227 => 0.035581114312685
1228 => 0.036073422011187
1229 => 0.035928572597647
1230 => 0.035718708523604
1231 => 0.03649912094258
]
'min_raw' => 0.013453895094411
'max_raw' => 0.03649912094258
'avg_raw' => 0.024976508018496
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.013453'
'max' => '$0.036499'
'avg' => '$0.024976'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0046399007171737
'max_diff' => 0.016822499398439
'year' => 2032
]
7 => [
'items' => [
101 => 0.035604441080259
102 => 0.034334555652756
103 => 0.033637871391742
104 => 0.034555321426561
105 => 0.035115576148232
106 => 0.035485868880363
107 => 0.035597919237369
108 => 0.032781705692534
109 => 0.031263922786231
110 => 0.032236804227755
111 => 0.033423786731104
112 => 0.032649638897161
113 => 0.032679984026595
114 => 0.031576252657864
115 => 0.033521442466314
116 => 0.033238044672844
117 => 0.034708312926687
118 => 0.034357421608267
119 => 0.035556368293791
120 => 0.035240645450414
121 => 0.036551193321447
122 => 0.03707400634887
123 => 0.037951890791262
124 => 0.038597666160718
125 => 0.038976877809378
126 => 0.038954111364379
127 => 0.04045673683886
128 => 0.039570691094294
129 => 0.038457608814171
130 => 0.038437476667454
131 => 0.039013957752827
201 => 0.040222103957908
202 => 0.040535358691073
203 => 0.040710425351916
204 => 0.040442304666721
205 => 0.039480565514465
206 => 0.039065291424649
207 => 0.039419116980821
208 => 0.038986418730199
209 => 0.039733377304458
210 => 0.040759110968658
211 => 0.040547301023191
212 => 0.041255349914565
213 => 0.041988106028221
214 => 0.043035980180885
215 => 0.043309933287059
216 => 0.043762767354061
217 => 0.044228882357248
218 => 0.04437858593412
219 => 0.04466441651266
220 => 0.044662910044422
221 => 0.045524279731471
222 => 0.046474397170684
223 => 0.046833044508718
224 => 0.047657734286598
225 => 0.046245481942556
226 => 0.047316691568297
227 => 0.048282949464832
228 => 0.047130936966446
301 => 0.048718717810985
302 => 0.048780367743189
303 => 0.049711208525309
304 => 0.048767623065114
305 => 0.048207325030882
306 => 0.049824884461617
307 => 0.050607570517504
308 => 0.050371819107761
309 => 0.048577739239128
310 => 0.047533507803878
311 => 0.044800552720628
312 => 0.048037856071611
313 => 0.049614652100441
314 => 0.048573655718339
315 => 0.049098673742328
316 => 0.051963001843547
317 => 0.053053552532981
318 => 0.052826725613103
319 => 0.052865055628673
320 => 0.053453496985797
321 => 0.056062970023855
322 => 0.054499313292339
323 => 0.055694670274483
324 => 0.056328683307632
325 => 0.056917589946751
326 => 0.05547142136693
327 => 0.053589977293017
328 => 0.05299404497716
329 => 0.048470149143935
330 => 0.048234660719532
331 => 0.048102473930885
401 => 0.047269054926658
402 => 0.046614215882013
403 => 0.046093463561097
404 => 0.044726853961206
405 => 0.045188044583924
406 => 0.043009954115288
407 => 0.044403419210334
408 => 0.040927134230558
409 => 0.043822287660082
410 => 0.042246587274865
411 => 0.043304627705212
412 => 0.043300936301824
413 => 0.041352748417532
414 => 0.040229074303516
415 => 0.040945123183018
416 => 0.041712784421874
417 => 0.041837334875156
418 => 0.042832627709342
419 => 0.043110392545616
420 => 0.042268752124107
421 => 0.040855095951134
422 => 0.041183456038051
423 => 0.040222420096835
424 => 0.038538241575568
425 => 0.039747847992478
426 => 0.040160860805851
427 => 0.040343270793057
428 => 0.038687074646601
429 => 0.038166661859617
430 => 0.037889598458513
501 => 0.040641301826247
502 => 0.04079204634835
503 => 0.040020816060141
504 => 0.043506850093905
505 => 0.04271785322823
506 => 0.043599356036114
507 => 0.041153660801871
508 => 0.041247089653384
509 => 0.040089258335489
510 => 0.040737566507194
511 => 0.04027936318738
512 => 0.040685189613626
513 => 0.040928440300233
514 => 0.042086081629402
515 => 0.043835506064516
516 => 0.04191316861876
517 => 0.041075578665265
518 => 0.041595214761629
519 => 0.042979074163089
520 => 0.045075691994761
521 => 0.043834452040045
522 => 0.044385293254327
523 => 0.044505627554427
524 => 0.043590383165021
525 => 0.045109438360889
526 => 0.045923512381138
527 => 0.04675858387703
528 => 0.047483653058741
529 => 0.046425037957955
530 => 0.04755790786231
531 => 0.046645014697858
601 => 0.045826055156184
602 => 0.045827297179757
603 => 0.045313551896175
604 => 0.044318105673164
605 => 0.044134530116755
606 => 0.045089513344229
607 => 0.045855319455414
608 => 0.045918394914695
609 => 0.046342384526386
610 => 0.046593297211145
611 => 0.049052582621032
612 => 0.050041727557164
613 => 0.051251235261511
614 => 0.051722406676474
615 => 0.05314046371121
616 => 0.051995267486699
617 => 0.051747497079904
618 => 0.048307754556557
619 => 0.048871012202057
620 => 0.049772842038782
621 => 0.0483226253984
622 => 0.049242454062865
623 => 0.049424047725866
624 => 0.048273347591892
625 => 0.048887986252265
626 => 0.047255688197976
627 => 0.043871085701544
628 => 0.045113206391008
629 => 0.046027825311756
630 => 0.044722551340148
701 => 0.047062204413177
702 => 0.045695427388156
703 => 0.045262224688092
704 => 0.043572146507228
705 => 0.044369798351521
706 => 0.045448633892201
707 => 0.044782038956154
708 => 0.046165323538185
709 => 0.048124423414865
710 => 0.049520594653401
711 => 0.049627775344768
712 => 0.048730130774598
713 => 0.050168611926987
714 => 0.050179089691757
715 => 0.048556477075493
716 => 0.047562635882777
717 => 0.047336833072732
718 => 0.047900932763473
719 => 0.04858585392658
720 => 0.049665783702512
721 => 0.050318362648553
722 => 0.0520199424387
723 => 0.052480341141798
724 => 0.052986179732337
725 => 0.053662136084142
726 => 0.054473794996135
727 => 0.052697931504462
728 => 0.05276848987161
729 => 0.051114830376667
730 => 0.049347658047561
731 => 0.050688721564212
801 => 0.05244198371803
802 => 0.052039783442762
803 => 0.051994527695588
804 => 0.052070635309437
805 => 0.051767389436517
806 => 0.05039581959212
807 => 0.049707025802745
808 => 0.050595745521075
809 => 0.051068060499004
810 => 0.051800579839576
811 => 0.051710281369243
812 => 0.053597172523724
813 => 0.054330361369729
814 => 0.054142780288001
815 => 0.05417729972143
816 => 0.055504703105458
817 => 0.056981048669823
818 => 0.058363841111807
819 => 0.059770476976111
820 => 0.058074722539761
821 => 0.057213723016576
822 => 0.058102054747679
823 => 0.057630693426981
824 => 0.06033927539056
825 => 0.060526811728991
826 => 0.063235197831265
827 => 0.06580577875094
828 => 0.064191242932033
829 => 0.065713677488972
830 => 0.067360314588212
831 => 0.070536944709888
901 => 0.069467167440102
902 => 0.068647734816994
903 => 0.067873374947626
904 => 0.069484694909613
905 => 0.071557632299245
906 => 0.072004123158624
907 => 0.072727608923454
908 => 0.071966952105365
909 => 0.072883079459152
910 => 0.076117411584779
911 => 0.075243466494195
912 => 0.074002323971883
913 => 0.076555518556505
914 => 0.077479509751388
915 => 0.083964563855018
916 => 0.092152212545074
917 => 0.088762472224391
918 => 0.086658351021106
919 => 0.0871528694143
920 => 0.090142721546509
921 => 0.091102967158212
922 => 0.088492688569093
923 => 0.089414683095186
924 => 0.094494963582463
925 => 0.097220371068974
926 => 0.093518901631232
927 => 0.083306694254908
928 => 0.073890572667383
929 => 0.076388152125876
930 => 0.076105004124197
1001 => 0.081563131729877
1002 => 0.075222623192818
1003 => 0.075329381095441
1004 => 0.08090037699975
1005 => 0.079414130803529
1006 => 0.077006602309683
1007 => 0.073908150289718
1008 => 0.068180375158691
1009 => 0.063107124994315
1010 => 0.073056936866393
1011 => 0.07262788288591
1012 => 0.072006549139933
1013 => 0.073389260156271
1014 => 0.080103312362237
1015 => 0.079948531727624
1016 => 0.078963896299985
1017 => 0.07971073359367
1018 => 0.076875678121194
1019 => 0.077606336469465
1020 => 0.073889081105615
1021 => 0.075569435776372
1022 => 0.077001436834811
1023 => 0.077288932248431
1024 => 0.077936674095195
1025 => 0.072401790934559
1026 => 0.074886790978053
1027 => 0.076346495690589
1028 => 0.069751496694837
1029 => 0.076216133764982
1030 => 0.072305440932736
1031 => 0.070978093048837
1101 => 0.072765192109721
1102 => 0.072068757867684
1103 => 0.071470004602371
1104 => 0.071135889992439
1105 => 0.072448138307827
1106 => 0.072386920355438
1107 => 0.070239827415041
1108 => 0.067439032200999
1109 => 0.0683790710078
1110 => 0.068037546096379
1111 => 0.066799815759795
1112 => 0.067633896562522
1113 => 0.063961026825949
1114 => 0.057642045343333
1115 => 0.061816558066387
1116 => 0.061655843867545
1117 => 0.06157480448068
1118 => 0.064711835416998
1119 => 0.064410282276089
1120 => 0.063862960372521
1121 => 0.066789763763821
1122 => 0.065721441154936
1123 => 0.069013759707057
1124 => 0.071182293639298
1125 => 0.070632283289358
1126 => 0.072671799934064
1127 => 0.068400727603298
1128 => 0.069819406505899
1129 => 0.070111794261521
1130 => 0.066753647464289
1201 => 0.064459620099312
1202 => 0.064306634627895
1203 => 0.06032910731347
1204 => 0.062453870299357
1205 => 0.064323573798271
1206 => 0.063428130917144
1207 => 0.063144660451574
1208 => 0.064592849582927
1209 => 0.064705386281334
1210 => 0.062139537631544
1211 => 0.062673058815695
1212 => 0.06489793084412
1213 => 0.062616997749012
1214 => 0.058185517333524
1215 => 0.057086448920473
1216 => 0.056939812934322
1217 => 0.053959052229911
1218 => 0.057159893927233
1219 => 0.055762640749128
1220 => 0.060176546797098
1221 => 0.05765534733475
1222 => 0.057546663464986
1223 => 0.05738237185538
1224 => 0.05481670798342
1225 => 0.055378425314934
1226 => 0.057245659276852
1227 => 0.05791190939036
1228 => 0.057842414045095
1229 => 0.057236508811773
1230 => 0.057513889124851
1231 => 0.056620350490718
]
'min_raw' => 0.031263922786231
'max_raw' => 0.097220371068974
'avg_raw' => 0.064242146927603
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.031263'
'max' => '$0.09722'
'avg' => '$0.064242'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.017810027691821
'max_diff' => 0.060721250126394
'year' => 2033
]
8 => [
'items' => [
101 => 0.056304823401608
102 => 0.055308933115811
103 => 0.053845249517404
104 => 0.054048783699056
105 => 0.051148843496964
106 => 0.049568802163388
107 => 0.049131467546865
108 => 0.048546645420178
109 => 0.049197524762226
110 => 0.051140628330729
111 => 0.048796833174696
112 => 0.044778560777792
113 => 0.045020065795649
114 => 0.04556265586729
115 => 0.044551542858379
116 => 0.043594609251728
117 => 0.044426585384234
118 => 0.042723990397716
119 => 0.045768406337167
120 => 0.045686063417882
121 => 0.046820833414691
122 => 0.047530428381519
123 => 0.045895041717077
124 => 0.045483746393526
125 => 0.045718038902151
126 => 0.041845705627591
127 => 0.046504381172415
128 => 0.046544669591982
129 => 0.046199695683837
130 => 0.048680296590985
131 => 0.053915138223893
201 => 0.051945580230577
202 => 0.051182907845359
203 => 0.04973306708355
204 => 0.051664893815634
205 => 0.051516559663802
206 => 0.050845736375159
207 => 0.050440020357091
208 => 0.051187564560313
209 => 0.050347391357607
210 => 0.050196473163985
211 => 0.049282073111252
212 => 0.048955673894978
213 => 0.048714020909576
214 => 0.04844798471698
215 => 0.049034794265758
216 => 0.047705006627003
217 => 0.046101413095353
218 => 0.045968091644319
219 => 0.046336203892366
220 => 0.046173341625339
221 => 0.045967311922442
222 => 0.045573945110761
223 => 0.045457241580687
224 => 0.045836471436923
225 => 0.045408343039707
226 => 0.04604006981116
227 => 0.045868275084361
228 => 0.044908643705592
301 => 0.043712587706603
302 => 0.0437019402994
303 => 0.043444251996343
304 => 0.043116047198704
305 => 0.043024748132309
306 => 0.044356518674924
307 => 0.047113243841599
308 => 0.046572032728538
309 => 0.046963113223271
310 => 0.048886842190761
311 => 0.049498337780978
312 => 0.049064312695108
313 => 0.04847019238807
314 => 0.048496330666368
315 => 0.050526619607967
316 => 0.050653246238852
317 => 0.050973190883798
318 => 0.051384410168899
319 => 0.049134345117524
320 => 0.048390352804793
321 => 0.048037807971899
322 => 0.046952106338607
323 => 0.048122942469089
324 => 0.047440746396059
325 => 0.047532797953447
326 => 0.047472849255939
327 => 0.047505585298491
328 => 0.045767555360867
329 => 0.046400802121973
330 => 0.045347906561405
331 => 0.043938197598877
401 => 0.043933471760127
402 => 0.044278496031572
403 => 0.044073262094115
404 => 0.043520982845466
405 => 0.043599431506052
406 => 0.042912138691758
407 => 0.043682881297546
408 => 0.04370498343763
409 => 0.043408205551768
410 => 0.044595640877967
411 => 0.045082134099966
412 => 0.044886788537894
413 => 0.04506842813458
414 => 0.046594522493708
415 => 0.046843342462411
416 => 0.046953851856384
417 => 0.046805783908149
418 => 0.045096322337974
419 => 0.045172144227803
420 => 0.044615813508851
421 => 0.044145772676023
422 => 0.044164571844297
423 => 0.044406233933402
424 => 0.045461586449815
425 => 0.047682513604178
426 => 0.047766796166209
427 => 0.047868949090087
428 => 0.04745344181073
429 => 0.047328120839407
430 => 0.047493451548669
501 => 0.048327515017046
502 => 0.050472952703733
503 => 0.049714611736293
504 => 0.049098068725483
505 => 0.049638943164765
506 => 0.049555679784352
507 => 0.048852853060358
508 => 0.048833127055052
509 => 0.047484177864411
510 => 0.046985502062718
511 => 0.046568771237586
512 => 0.046113712055576
513 => 0.045843937718759
514 => 0.046258433710354
515 => 0.046353233847804
516 => 0.045446931118032
517 => 0.045323405404867
518 => 0.046063511777903
519 => 0.045737818557077
520 => 0.0460728021115
521 => 0.046150521169561
522 => 0.046138006611192
523 => 0.045797945483021
524 => 0.046014690305348
525 => 0.045502024185803
526 => 0.044944576780759
527 => 0.044588960066542
528 => 0.044278637317675
529 => 0.04445082241481
530 => 0.043837013983279
531 => 0.043640644312509
601 => 0.045941262036457
602 => 0.047640753084945
603 => 0.047616041812028
604 => 0.047465618293367
605 => 0.047242119456933
606 => 0.048311164685072
607 => 0.047938730703823
608 => 0.048209707543082
609 => 0.048278682521536
610 => 0.048487449007381
611 => 0.048562065081985
612 => 0.048336523480336
613 => 0.047579578317617
614 => 0.045693342940308
615 => 0.044815295280376
616 => 0.044525524927557
617 => 0.04453605752953
618 => 0.044245521347517
619 => 0.044331097274039
620 => 0.044215761532603
621 => 0.043997343541038
622 => 0.044437335719317
623 => 0.044488040719052
624 => 0.044385341287127
625 => 0.044409530721119
626 => 0.043559223288279
627 => 0.043623870315628
628 => 0.043263907452406
629 => 0.043196418754969
630 => 0.042286463982297
701 => 0.040674347202455
702 => 0.04156761639045
703 => 0.040488672824008
704 => 0.040080060546733
705 => 0.042014367515104
706 => 0.041820216744804
707 => 0.04148791502136
708 => 0.04099637151464
709 => 0.04081405324657
710 => 0.039706345164724
711 => 0.039640895861856
712 => 0.040189905897853
713 => 0.039936556656522
714 => 0.039580758370833
715 => 0.038292093046762
716 => 0.036843206560079
717 => 0.036886939335736
718 => 0.037347803169659
719 => 0.038687826922743
720 => 0.038164256459767
721 => 0.037784400081599
722 => 0.037713264400408
723 => 0.038603676383139
724 => 0.03986379588578
725 => 0.040455015762834
726 => 0.039869134820288
727 => 0.039196106339561
728 => 0.039237070464669
729 => 0.039509586436762
730 => 0.039538224012261
731 => 0.039100151659753
801 => 0.039223466460961
802 => 0.039036140001785
803 => 0.037886517867601
804 => 0.037865724848685
805 => 0.037583589036795
806 => 0.037575046076538
807 => 0.037095062678437
808 => 0.037027909683074
809 => 0.036074873513234
810 => 0.036702164806282
811 => 0.036281410741176
812 => 0.035647235119212
813 => 0.03553790300295
814 => 0.035534616347513
815 => 0.036185772912196
816 => 0.036694555662702
817 => 0.036288729938279
818 => 0.03619633128743
819 => 0.037182907143923
820 => 0.037057356373346
821 => 0.036948630215741
822 => 0.03975096600543
823 => 0.037532698558903
824 => 0.036565407337938
825 => 0.035368200768372
826 => 0.035758017264262
827 => 0.035840157327542
828 => 0.032961091340442
829 => 0.03179305462804
830 => 0.031392228444879
831 => 0.031161547309619
901 => 0.031266671599668
902 => 0.030215301561465
903 => 0.030921839615193
904 => 0.030011442032206
905 => 0.029858810914728
906 => 0.031486714569728
907 => 0.031713227853246
908 => 0.030746851813597
909 => 0.031367421673121
910 => 0.031142394415492
911 => 0.030027048185767
912 => 0.029984450163723
913 => 0.029424808631963
914 => 0.028549078002712
915 => 0.028148845606155
916 => 0.027940401099051
917 => 0.028026409365185
918 => 0.027982920953931
919 => 0.027699129653807
920 => 0.02799918753906
921 => 0.027232663634717
922 => 0.026927427639705
923 => 0.026789559622179
924 => 0.026109225537605
925 => 0.027191939612103
926 => 0.027405247924452
927 => 0.02761897652007
928 => 0.029479338026217
929 => 0.029386399622697
930 => 0.03022651752768
1001 => 0.03019387209077
1002 => 0.029954256855261
1003 => 0.028943359591442
1004 => 0.029346285223289
1005 => 0.028106142757009
1006 => 0.029035341814237
1007 => 0.028611294168799
1008 => 0.028891970878761
1009 => 0.02838728884665
1010 => 0.028666600721031
1011 => 0.027455831238526
1012 => 0.02632523173175
1013 => 0.026780217977534
1014 => 0.02727484006069
1015 => 0.028347306764334
1016 => 0.027708554443301
1017 => 0.027938273931844
1018 => 0.027168752099804
1019 => 0.025581008757262
1020 => 0.025589995212153
1021 => 0.025345755489772
1022 => 0.025134696710051
1023 => 0.027781922831183
1024 => 0.027452698416568
1025 => 0.026928122399705
1026 => 0.027630288244098
1027 => 0.027815952038226
1028 => 0.027821237625432
1029 => 0.028333519699977
1030 => 0.028606924734994
1031 => 0.028655113557421
1101 => 0.029461200470305
1102 => 0.02973139017096
1103 => 0.030844263309281
1104 => 0.028583728227947
1105 => 0.028537173995534
1106 => 0.027640169157491
1107 => 0.027071274508119
1108 => 0.027679121860844
1109 => 0.028217591635921
1110 => 0.027656900914381
1111 => 0.027730115285787
1112 => 0.026977433802236
1113 => 0.02724648201565
1114 => 0.02747822258175
1115 => 0.027350269062231
1116 => 0.027158716450489
1117 => 0.028173443254993
1118 => 0.028116188391936
1119 => 0.029061125320758
1120 => 0.029797771229863
1121 => 0.031117972390187
1122 => 0.029740273655746
1123 => 0.029690064838007
1124 => 0.030180864085158
1125 => 0.029731315032152
1126 => 0.030015414515746
1127 => 0.031072199571219
1128 => 0.031094527774181
1129 => 0.030720501606302
1130 => 0.030697742079995
1201 => 0.030769577896934
1202 => 0.031190322520497
1203 => 0.031043301420848
1204 => 0.031213437959481
1205 => 0.031426196306265
1206 => 0.032306255036233
1207 => 0.032518434216603
1208 => 0.032002948810595
1209 => 0.032049491371112
1210 => 0.031856685678874
1211 => 0.031670437796021
1212 => 0.032089095837356
1213 => 0.032854201636642
1214 => 0.032849441953174
1215 => 0.033026931627076
1216 => 0.033137506223514
1217 => 0.032662839110052
1218 => 0.032353848273182
1219 => 0.032472335021636
1220 => 0.032661797912719
1221 => 0.032410894759575
1222 => 0.03086220426872
1223 => 0.031331978032914
1224 => 0.031253784707789
1225 => 0.031142427904177
1226 => 0.031614789056727
1227 => 0.031569228671231
1228 => 0.030204518242098
1229 => 0.030291882575979
1230 => 0.030209831156601
1231 => 0.030474956078752
]
'min_raw' => 0.025134696710051
'max_raw' => 0.056304823401608
'avg_raw' => 0.040719760055829
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.025134'
'max' => '$0.0563048'
'avg' => '$0.040719'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0061292260761804
'max_diff' => -0.040915547667367
'year' => 2034
]
9 => [
'items' => [
101 => 0.02971699741629
102 => 0.029950140395934
103 => 0.030096365487187
104 => 0.030182493189289
105 => 0.030493645507599
106 => 0.030457135374352
107 => 0.030491375986454
108 => 0.030952732733342
109 => 0.033286116840586
110 => 0.033413117789221
111 => 0.032787718669726
112 => 0.033037553282512
113 => 0.032557925458786
114 => 0.03287990283008
115 => 0.033100191570181
116 => 0.032104749112753
117 => 0.032045805470793
118 => 0.031564198052425
119 => 0.031822986599417
120 => 0.031411235413598
121 => 0.031512264752153
122 => 0.031229777913973
123 => 0.031738197980128
124 => 0.03230669061458
125 => 0.032450314304497
126 => 0.032072502210211
127 => 0.031798941354918
128 => 0.031318658609572
129 => 0.032117379518882
130 => 0.032350949853343
131 => 0.032116152673349
201 => 0.032061745036325
202 => 0.031958642662476
203 => 0.032083618692333
204 => 0.03234967777914
205 => 0.032224209227142
206 => 0.032307083416208
207 => 0.03199125246698
208 => 0.032662996244618
209 => 0.033729887027449
210 => 0.03373331725577
211 => 0.03360784802745
212 => 0.033556508722493
213 => 0.03368524776486
214 => 0.033755083414191
215 => 0.034171401870501
216 => 0.034618128160979
217 => 0.036702804836694
218 => 0.036117435968122
219 => 0.037967085132786
220 => 0.03942991747515
221 => 0.03986855693272
222 => 0.039465029271337
223 => 0.038084582939883
224 => 0.038016851657095
225 => 0.040079821285695
226 => 0.039496937875621
227 => 0.039427605748712
228 => 0.038690029056881
301 => 0.039126028232403
302 => 0.039030668816995
303 => 0.038880139314629
304 => 0.039711995369561
305 => 0.041269155644092
306 => 0.04102645761235
307 => 0.040845294790092
308 => 0.040051492038663
309 => 0.040529538597286
310 => 0.040359315374139
311 => 0.041090702367106
312 => 0.040657444914678
313 => 0.039492521960508
314 => 0.039678039780596
315 => 0.039649999135299
316 => 0.040227073628514
317 => 0.040053850189521
318 => 0.039616174478699
319 => 0.041263833439558
320 => 0.041156843631401
321 => 0.041308530718093
322 => 0.041375308064734
323 => 0.042378209039201
324 => 0.042789065479189
325 => 0.04288233708412
326 => 0.043272618925331
327 => 0.042872626516372
328 => 0.044472881341962
329 => 0.04553695742352
330 => 0.046772936549106
331 => 0.048579034251456
401 => 0.049258143694877
402 => 0.049135468652396
403 => 0.050504831317609
404 => 0.052965545587776
405 => 0.04963284936091
406 => 0.053142186580219
407 => 0.052031170933832
408 => 0.049396972822568
409 => 0.049227361519358
410 => 0.051011271063975
411 => 0.054967810739006
412 => 0.053976742425112
413 => 0.054969431771727
414 => 0.053811406919101
415 => 0.053753901224569
416 => 0.054913189089394
417 => 0.057621928375051
418 => 0.05633510787601
419 => 0.054490135149302
420 => 0.055852434299748
421 => 0.054672284700797
422 => 0.052013077351286
423 => 0.05397598457385
424 => 0.052663444414501
425 => 0.053046513411472
426 => 0.05580527760081
427 => 0.055473335794764
428 => 0.055902899228771
429 => 0.055144731011381
430 => 0.054436482344185
501 => 0.053114483611626
502 => 0.052723104960666
503 => 0.052831267939463
504 => 0.052723051360465
505 => 0.051983405219394
506 => 0.051823678705652
507 => 0.051557460851636
508 => 0.051639972896409
509 => 0.051139405446079
510 => 0.052084079647364
511 => 0.052259419503563
512 => 0.052946874607967
513 => 0.053018248477451
514 => 0.054932801157907
515 => 0.053878297714263
516 => 0.054585749665706
517 => 0.054522468504373
518 => 0.049454063883226
519 => 0.050152445321107
520 => 0.051238907674283
521 => 0.050749457856842
522 => 0.0500574903286
523 => 0.049498689448593
524 => 0.048652048975058
525 => 0.049843679183268
526 => 0.051410546191319
527 => 0.0530579868105
528 => 0.05503727876986
529 => 0.054595523846029
530 => 0.053020985324086
531 => 0.05309161797198
601 => 0.053528241208333
602 => 0.052962774445851
603 => 0.052796007258373
604 => 0.053505329957658
605 => 0.053510214673251
606 => 0.052859576824074
607 => 0.052136511920184
608 => 0.052133482251835
609 => 0.052004819836166
610 => 0.053834295677024
611 => 0.054840322408625
612 => 0.05495566175211
613 => 0.054832559151833
614 => 0.054879936456912
615 => 0.05429455166808
616 => 0.055632567704884
617 => 0.056860463536327
618 => 0.056531361223332
619 => 0.056037990071502
620 => 0.055644996185095
621 => 0.05643878435322
622 => 0.056403438215631
623 => 0.056849738937432
624 => 0.056829492158733
625 => 0.056679418012211
626 => 0.056531366582952
627 => 0.057118373764988
628 => 0.056949325123609
629 => 0.056780013902997
630 => 0.056440434329808
701 => 0.056486588833624
702 => 0.055993302869279
703 => 0.055765086210944
704 => 0.052333255237904
705 => 0.051416157863595
706 => 0.051704695366791
707 => 0.051799689404716
708 => 0.051400567452125
709 => 0.051972805806124
710 => 0.051883623064803
711 => 0.052230580941122
712 => 0.052013816723158
713 => 0.052022712802273
714 => 0.052660170148302
715 => 0.052845226727791
716 => 0.052751105457873
717 => 0.052817024769035
718 => 0.054336107471967
719 => 0.05412014248914
720 => 0.054005415396355
721 => 0.054037195585116
722 => 0.054425353785215
723 => 0.054534016888591
724 => 0.054073603683967
725 => 0.054290737212885
726 => 0.055215264220669
727 => 0.055538796349697
728 => 0.056571355601322
729 => 0.056132706078955
730 => 0.056937866261567
731 => 0.059412654163582
801 => 0.06138968598201
802 => 0.059571525817488
803 => 0.063202092978546
804 => 0.066029010287357
805 => 0.065920508492568
806 => 0.065427570072002
807 => 0.062209199873405
808 => 0.05924760763346
809 => 0.061725105298023
810 => 0.061731420949072
811 => 0.061518601702502
812 => 0.060196799639874
813 => 0.061472605855895
814 => 0.061573874720275
815 => 0.061517191085787
816 => 0.060503768543499
817 => 0.058956459633218
818 => 0.059258800090553
819 => 0.059754039927245
820 => 0.058816447598534
821 => 0.058516830038788
822 => 0.059073876086929
823 => 0.060868794519191
824 => 0.060529475586826
825 => 0.060520614598206
826 => 0.061972364884483
827 => 0.06093322498683
828 => 0.059262613571948
829 => 0.058840762157033
830 => 0.057343473827249
831 => 0.058377656209789
901 => 0.058414874592617
902 => 0.057848463470788
903 => 0.059308574712815
904 => 0.059295119530672
905 => 0.060681277846098
906 => 0.063331091927906
907 => 0.062547411514483
908 => 0.06163607645786
909 => 0.061735163847095
910 => 0.062821907938489
911 => 0.062164837652877
912 => 0.06240112470884
913 => 0.06282155028973
914 => 0.063075203481261
915 => 0.061698667056335
916 => 0.061377730568336
917 => 0.060721207147291
918 => 0.060549932441331
919 => 0.061084657068961
920 => 0.06094377602168
921 => 0.058411746531657
922 => 0.058147135361871
923 => 0.05815525060867
924 => 0.057489873240667
925 => 0.056475013045595
926 => 0.059142005044089
927 => 0.058927808262081
928 => 0.058691351592258
929 => 0.058720316185109
930 => 0.059877967018909
1001 => 0.059206471072536
1002 => 0.06099175310199
1003 => 0.060624752787224
1004 => 0.060248340299204
1005 => 0.060196308627555
1006 => 0.060051421933671
1007 => 0.059554551550381
1008 => 0.058954550705276
1009 => 0.058558378176155
1010 => 0.054017008483344
1011 => 0.054859860282398
1012 => 0.05582948444885
1013 => 0.056164194825584
1014 => 0.055591649564927
1015 => 0.059577159126976
1016 => 0.060305350129288
1017 => 0.058099612084561
1018 => 0.057687008556083
1019 => 0.059604209345612
1020 => 0.058447902901262
1021 => 0.058968587622351
1022 => 0.057843152054671
1023 => 0.060129950240753
1024 => 0.060112528670009
1025 => 0.059222912525944
1026 => 0.05997480999908
1027 => 0.059844149309834
1028 => 0.058839774874213
1029 => 0.060161790701832
1030 => 0.060162446405189
1031 => 0.059306210208449
1101 => 0.058306313784862
1102 => 0.058127555920824
1103 => 0.057992885883012
1104 => 0.058935467048473
1105 => 0.05978058237405
1106 => 0.061353132473092
1107 => 0.06174850893086
1108 => 0.063291689567231
1109 => 0.062372800634374
1110 => 0.062780132196705
1111 => 0.063222348228184
1112 => 0.063434362855631
1113 => 0.063088896397538
1114 => 0.065486091124312
1115 => 0.0656884878074
1116 => 0.065756349664515
1117 => 0.064948029090311
1118 => 0.06566600694999
1119 => 0.065330088886374
1120 => 0.066204054367178
1121 => 0.066341103313919
1122 => 0.066225027731687
1123 => 0.066268529230553
1124 => 0.06422294642538
1125 => 0.064116872165623
1126 => 0.062670542107148
1127 => 0.063259932296708
1128 => 0.062158095587532
1129 => 0.062507499358188
1130 => 0.062661513211051
1201 => 0.062581065114524
1202 => 0.063293255533712
1203 => 0.062687748186512
1204 => 0.061089714742627
1205 => 0.059491245915599
1206 => 0.05947117844156
1207 => 0.059050329814722
1208 => 0.058746133339789
1209 => 0.05880473237281
1210 => 0.059011243008371
1211 => 0.058734130566234
1212 => 0.058793266555721
1213 => 0.05977531800225
1214 => 0.059972261416181
1215 => 0.059302970744885
1216 => 0.056615672121447
1217 => 0.055956202298677
1218 => 0.056430216129429
1219 => 0.05620366804873
1220 => 0.045360746631764
1221 => 0.047908130183354
1222 => 0.046394561377971
1223 => 0.047092083519444
1224 => 0.04554712170589
1225 => 0.046284458461704
1226 => 0.046148299286132
1227 => 0.050244416654529
1228 => 0.050180461415846
1229 => 0.050211073404168
1230 => 0.048749883442481
1231 => 0.051077598727079
]
'min_raw' => 0.02971699741629
'max_raw' => 0.066341103313919
'avg_raw' => 0.048029050365105
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.029716'
'max' => '$0.066341'
'avg' => '$0.048029'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0045823007062393
'max_diff' => 0.010036279912311
'year' => 2035
]
10 => [
'items' => [
101 => 0.052224314978206
102 => 0.052012088318987
103 => 0.052065501196868
104 => 0.051147690989533
105 => 0.050219959813208
106 => 0.049190963161859
107 => 0.051102711752236
108 => 0.050890157943623
109 => 0.051377679906135
110 => 0.052617585521605
111 => 0.052800166333427
112 => 0.053045556796066
113 => 0.052957601783293
114 => 0.05505304702356
115 => 0.054799274778771
116 => 0.055410792873455
117 => 0.0541528537567
118 => 0.052729376241414
119 => 0.052999932780084
120 => 0.052973876009732
121 => 0.05264214341658
122 => 0.052342670064249
123 => 0.051844131308711
124 => 0.053421581701085
125 => 0.053357540095917
126 => 0.05439429924336
127 => 0.054211041993509
128 => 0.052987205228344
129 => 0.053030914797834
130 => 0.053324882658761
131 => 0.054342308781893
201 => 0.054644350126891
202 => 0.054504432541621
203 => 0.054835607087701
204 => 0.055097353945848
205 => 0.054868478463159
206 => 0.058108872642364
207 => 0.056763235059664
208 => 0.057419089454586
209 => 0.057575506863256
210 => 0.057174846960051
211 => 0.0572617357465
212 => 0.057393348582195
213 => 0.058192475948095
214 => 0.060289617385585
215 => 0.061218427052524
216 => 0.064012796762174
217 => 0.06114130233934
218 => 0.060970919743714
219 => 0.061474270110303
220 => 0.063114860943941
221 => 0.064444405721744
222 => 0.064885492427819
223 => 0.064943789317575
224 => 0.065771297301062
225 => 0.066245609445087
226 => 0.065670816066246
227 => 0.065183738861054
228 => 0.063439088770304
229 => 0.063641036768833
301 => 0.065032258216502
302 => 0.066997440453869
303 => 0.068683771255893
304 => 0.068093276983586
305 => 0.072598331457297
306 => 0.073044989206868
307 => 0.072983275548052
308 => 0.07400082837316
309 => 0.071981193236349
310 => 0.071117760086775
311 => 0.065289050481378
312 => 0.066926680130519
313 => 0.069307071000163
314 => 0.068992017342558
315 => 0.067263313864992
316 => 0.068682459879289
317 => 0.068213245826163
318 => 0.067843157234754
319 => 0.069538604817202
320 => 0.067674390555153
321 => 0.069288474036849
322 => 0.067218395276018
323 => 0.068095974311682
324 => 0.067597818007317
325 => 0.067920186187982
326 => 0.066035628390881
327 => 0.067052490033142
328 => 0.065993323603432
329 => 0.065992821420636
330 => 0.065969440262996
331 => 0.067215544870488
401 => 0.067256180297001
402 => 0.066335307109306
403 => 0.066202594896216
404 => 0.066693301505295
405 => 0.066118812582328
406 => 0.066387612333594
407 => 0.066126954252963
408 => 0.066068274628714
409 => 0.065600705399181
410 => 0.065399263719015
411 => 0.065478254192321
412 => 0.065208618984548
413 => 0.065046154018733
414 => 0.065937121892112
415 => 0.065461113698907
416 => 0.065864166809585
417 => 0.065404836920609
418 => 0.063812599404915
419 => 0.062896886772033
420 => 0.059889297705382
421 => 0.060742246233781
422 => 0.061307751990549
423 => 0.061120852341311
424 => 0.061522385108438
425 => 0.061547035959225
426 => 0.06141649356349
427 => 0.061265342192746
428 => 0.061191770064663
429 => 0.061740116430882
430 => 0.062058449952962
501 => 0.061364508058732
502 => 0.061201927182193
503 => 0.061903540750842
504 => 0.062331524622409
505 => 0.065491517066695
506 => 0.065257414619781
507 => 0.06584496582125
508 => 0.065778816572673
509 => 0.066394663836059
510 => 0.067401313835222
511 => 0.065354512923156
512 => 0.06570976678844
513 => 0.065622666744683
514 => 0.066573602183573
515 => 0.066576570900215
516 => 0.066006437601852
517 => 0.066315516112251
518 => 0.066142996966872
519 => 0.066454762379933
520 => 0.065254288038877
521 => 0.066716336203086
522 => 0.06754522329989
523 => 0.067556732398034
524 => 0.067949618303464
525 => 0.068348813137798
526 => 0.06911503285976
527 => 0.068327443685619
528 => 0.0669106474316
529 => 0.067012935544916
530 => 0.06618226841957
531 => 0.06619623208402
601 => 0.066121692948837
602 => 0.066345390504564
603 => 0.065303377072754
604 => 0.065547935542453
605 => 0.065205552252742
606 => 0.065709022514035
607 => 0.0651673717395
608 => 0.065622624742404
609 => 0.065819096846582
610 => 0.066544083140739
611 => 0.065060290674385
612 => 0.06203473739157
613 => 0.062670745372905
614 => 0.061730039611161
615 => 0.06181710551093
616 => 0.061992992484898
617 => 0.061422885255631
618 => 0.061531643748831
619 => 0.061527758130132
620 => 0.061494273967367
621 => 0.061345967058448
622 => 0.061130892698889
623 => 0.061987682750977
624 => 0.062133268076476
625 => 0.062456886220856
626 => 0.063419754306245
627 => 0.063323541078521
628 => 0.063480468844787
629 => 0.063137896412141
630 => 0.061832996463559
701 => 0.06190385880883
702 => 0.061020204227808
703 => 0.062434289186492
704 => 0.062099415203267
705 => 0.061883519767797
706 => 0.061824610697972
707 => 0.062789865547105
708 => 0.063078684926481
709 => 0.062898712071201
710 => 0.062529582494375
711 => 0.063238420405244
712 => 0.063428075526722
713 => 0.063470532314209
714 => 0.064726457186081
715 => 0.063540724562962
716 => 0.063826142190516
717 => 0.066052889044633
718 => 0.06403353691801
719 => 0.065103232776408
720 => 0.065050876730568
721 => 0.065598096935191
722 => 0.065005988701628
723 => 0.065013328592818
724 => 0.065499223062616
725 => 0.064816871911315
726 => 0.064647912170327
727 => 0.064414495498265
728 => 0.064924152262335
729 => 0.065229668442602
730 => 0.067691904478645
731 => 0.069282621249534
801 => 0.069213564039292
802 => 0.069844617671217
803 => 0.069560322230246
804 => 0.068642257258003
805 => 0.070209282219526
806 => 0.069713409954591
807 => 0.069754289061627
808 => 0.069752767539222
809 => 0.070082479245498
810 => 0.069848848283967
811 => 0.069388337677064
812 => 0.069694046109056
813 => 0.070601890859309
814 => 0.073419868820174
815 => 0.074996846620316
816 => 0.073324932776494
817 => 0.074478196558144
818 => 0.073786649239056
819 => 0.073660974519427
820 => 0.074385309399827
821 => 0.075110912132549
822 => 0.075064694375342
823 => 0.074537944051498
824 => 0.074240396159353
825 => 0.07649352848453
826 => 0.078153598000612
827 => 0.078040392388862
828 => 0.078540045142688
829 => 0.080007041081597
830 => 0.080141164805259
831 => 0.080124268298877
901 => 0.079791828655417
902 => 0.081236276670768
903 => 0.082441260617819
904 => 0.07971487848306
905 => 0.080753049109014
906 => 0.081219117350772
907 => 0.081903443805891
908 => 0.083058017242106
909 => 0.084312190229315
910 => 0.084489544041014
911 => 0.084363703024452
912 => 0.083536542225409
913 => 0.084908873273408
914 => 0.085712752616204
915 => 0.086191444368386
916 => 0.08740532700521
917 => 0.081221995629565
918 => 0.076845126350374
919 => 0.07616161500967
920 => 0.077551562198748
921 => 0.077918080187887
922 => 0.077770337246039
923 => 0.072843772944765
924 => 0.0761356776682
925 => 0.079677490359405
926 => 0.07981354580936
927 => 0.081586651298389
928 => 0.082164047127666
929 => 0.083591629452583
930 => 0.08350233378947
1001 => 0.083849927367792
1002 => 0.083770021623617
1003 => 0.086414317267601
1004 => 0.089331368044619
1005 => 0.089230359851864
1006 => 0.088810999289689
1007 => 0.08943382123612
1008 => 0.092444530248161
1009 => 0.092167352407961
1010 => 0.092436607069763
1011 => 0.095986402671084
1012 => 0.10060164190534
1013 => 0.098457399918583
1014 => 0.10310978804083
1015 => 0.10603821975128
1016 => 0.11110263958903
1017 => 0.11046854928255
1018 => 0.11244009076095
1019 => 0.10933339529531
1020 => 0.10219979453945
1021 => 0.10107087491351
1022 => 0.10333100059344
1023 => 0.10888729903772
1024 => 0.10315601298225
1025 => 0.10431544468683
1026 => 0.10398152827791
1027 => 0.10396373529153
1028 => 0.10464282121227
1029 => 0.1036577716655
1030 => 0.09964450260493
1031 => 0.10148376016505
1101 => 0.10077353449268
1102 => 0.101561582827
1103 => 0.10581435467146
1104 => 0.10393410286561
1105 => 0.10195341032739
1106 => 0.10443763832117
1107 => 0.10760091423061
1108 => 0.10740296210915
1109 => 0.10701885225595
1110 => 0.1091840593871
1111 => 0.11276034722158
1112 => 0.11372700345255
1113 => 0.11444056931984
1114 => 0.11453895799715
1115 => 0.11555242252161
1116 => 0.11010276834763
1117 => 0.11875150947878
1118 => 0.12024490815548
1119 => 0.11996421109929
1120 => 0.12162406087662
1121 => 0.1211356909658
1122 => 0.12042811958792
1123 => 0.12305933454516
1124 => 0.12004285892479
1125 => 0.11576135154539
1126 => 0.11341243191844
1127 => 0.11650567876515
1128 => 0.118394616675
1129 => 0.11964308447439
1130 => 0.12002087007614
1201 => 0.11052580948798
1202 => 0.10540849845116
1203 => 0.10868863615567
1204 => 0.11269063053819
1205 => 0.11008053706677
1206 => 0.11018284778929
1207 => 0.10646154041955
1208 => 0.11301988366755
1209 => 0.11206438822067
1210 => 0.11702150028935
1211 => 0.11583844571085
1212 => 0.11988077816888
1213 => 0.11881629655937
1214 => 0.12323490020608
1215 => 0.12499760082968
1216 => 0.12795744951914
1217 => 0.13013472626386
1218 => 0.13141326481302
1219 => 0.13133650615421
1220 => 0.13640271285138
1221 => 0.13341534776184
1222 => 0.12966251314148
1223 => 0.12959463620324
1224 => 0.1315382824312
1225 => 0.13561163171171
1226 => 0.13666779191532
1227 => 0.13725804138512
1228 => 0.13635405377539
1229 => 0.13311148307708
1230 => 0.13171135748975
1231 => 0.1329043050557
]
'min_raw' => 0.049190963161859
'max_raw' => 0.13725804138512
'avg_raw' => 0.093224502273487
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.04919'
'max' => '$0.137258'
'avg' => '$0.093224'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.019473965745569
'max_diff' => 0.070916938071196
'year' => 2036
]
11 => [
'items' => [
101 => 0.1314454326937
102 => 0.1339638556778
103 => 0.13742218834108
104 => 0.13670805632184
105 => 0.1390952925935
106 => 0.14156583099009
107 => 0.14509881185604
108 => 0.1460224638803
109 => 0.14754922555306
110 => 0.14912076482942
111 => 0.14962550089081
112 => 0.15058919864241
113 => 0.15058411947957
114 => 0.15348828751837
115 => 0.15669167479976
116 => 0.15790087933989
117 => 0.16068137850402
118 => 0.15591987112577
119 => 0.15953152916842
120 => 0.16278933512856
121 => 0.15890524455931
122 => 0.16425855853199
123 => 0.16446641558268
124 => 0.16760481026882
125 => 0.16442344601075
126 => 0.16253436206957
127 => 0.16798807662469
128 => 0.17062695730751
129 => 0.16983210496992
130 => 0.16378323943417
131 => 0.16026254024431
201 => 0.1510481913723
202 => 0.16196298564145
203 => 0.16727926354103
204 => 0.16376947155872
205 => 0.16553960648219
206 => 0.17519688865645
207 => 0.1788737564457
208 => 0.17810899364878
209 => 0.17823822597239
210 => 0.1802221970916
211 => 0.189020217627
212 => 0.18374823978567
213 => 0.18777846930812
214 => 0.18991608851476
215 => 0.1919016283647
216 => 0.18702577002957
217 => 0.18068234997614
218 => 0.17867312256656
219 => 0.16342049191652
220 => 0.16262652625237
221 => 0.16218084926546
222 => 0.15937091890525
223 => 0.15716308334683
224 => 0.1554073305391
225 => 0.15079971085943
226 => 0.15235464724322
227 => 0.1450110631588
228 => 0.14970922801537
301 => 0.13798869049959
302 => 0.14774990242039
303 => 0.14243731855974
304 => 0.14600457574068
305 => 0.14599212991643
306 => 0.13942367844641
307 => 0.13563513271858
308 => 0.13804934150876
309 => 0.14063756497196
310 => 0.14105749552103
311 => 0.14441319480062
312 => 0.14534969833903
313 => 0.14251204889646
314 => 0.13774580841096
315 => 0.13885289736937
316 => 0.13561269759617
317 => 0.12993437212613
318 => 0.13401264461277
319 => 0.13540514614869
320 => 0.13602015415601
321 => 0.13043617321631
322 => 0.12868156517094
323 => 0.12774742657016
324 => 0.13702498659227
325 => 0.13753323227319
326 => 0.13493297551091
327 => 0.14668638264287
328 => 0.14402622462425
329 => 0.14699827288559
330 => 0.13875244065035
331 => 0.13906744254622
401 => 0.13516373342074
402 => 0.13734954968507
403 => 0.13580468520159
404 => 0.13717295733157
405 => 0.13799309400468
406 => 0.14189616256991
407 => 0.14779446919382
408 => 0.14131317428214
409 => 0.13848918127526
410 => 0.14024117065399
411 => 0.14490694924399
412 => 0.15197584264465
413 => 0.14779091547672
414 => 0.14964811508918
415 => 0.15005383058344
416 => 0.14696802022423
417 => 0.15208962087415
418 => 0.15483432827025
419 => 0.15764983012148
420 => 0.16009445149033
421 => 0.15652525676789
422 => 0.16034480674487
423 => 0.15726692370476
424 => 0.15450574443207
425 => 0.15450993200127
426 => 0.15277780390912
427 => 0.1494215874684
428 => 0.14880264966313
429 => 0.15202244228936
430 => 0.1546044110601
501 => 0.15481707437485
502 => 0.15624658495268
503 => 0.1570925545875
504 => 0.16538420704876
505 => 0.16871917826083
506 => 0.17279711793116
507 => 0.17438570525285
508 => 0.17916678355104
509 => 0.17530567452506
510 => 0.17447029929977
511 => 0.16287296722715
512 => 0.16477202970435
513 => 0.16781261196261
514 => 0.16292310530867
515 => 0.1660243718713
516 => 0.16663662758457
517 => 0.16275696174356
518 => 0.16482925889971
519 => 0.15932585204627
520 => 0.14791442842414
521 => 0.15210232505077
522 => 0.15518602659873
523 => 0.15078520427213
524 => 0.15867350795721
525 => 0.15406532379203
526 => 0.15260475064352
527 => 0.14690653405924
528 => 0.14959587294255
529 => 0.15323324228985
530 => 0.15098577092279
531 => 0.15564961146895
601 => 0.16225485348316
602 => 0.16696214229145
603 => 0.16732350947551
604 => 0.16429703813564
605 => 0.16914697777247
606 => 0.16918230428792
607 => 0.163711552565
608 => 0.16036074759598
609 => 0.15959943765686
610 => 0.16150133914838
611 => 0.16381059866946
612 => 0.1674516573073
613 => 0.16965187278549
614 => 0.17538886784848
615 => 0.17694113421998
616 => 0.17864660434451
617 => 0.18092563837838
618 => 0.18366220306838
619 => 0.17767475531938
620 => 0.17791264778045
621 => 0.17233721933843
622 => 0.16637907445081
623 => 0.17090056372727
624 => 0.17681180948772
625 => 0.17545576317893
626 => 0.17530318026767
627 => 0.17555978240143
628 => 0.17453736776893
629 => 0.1699130242786
630 => 0.16759070792767
701 => 0.17058708850645
702 => 0.17217953143052
703 => 0.17464927153012
704 => 0.17434482393296
705 => 0.18070660919883
706 => 0.18317860658274
707 => 0.1825461638692
708 => 0.18266254854908
709 => 0.18713798173467
710 => 0.19211558388009
711 => 0.19677776514172
712 => 0.2015203361664
713 => 0.19580298169045
714 => 0.19290006168497
715 => 0.19589513413772
716 => 0.19430590653559
717 => 0.20343807973295
718 => 0.20407037159134
719 => 0.21320188442863
720 => 0.22186877747155
721 => 0.21642525723481
722 => 0.22155825163652
723 => 0.22711000358114
724 => 0.2378202338216
725 => 0.23421340506706
726 => 0.23145063076729
727 => 0.22883982240363
728 => 0.23427250015424
729 => 0.24126155329125
730 => 0.24276692839664
731 => 0.24520621116493
801 => 0.24264160359538
802 => 0.24573039093064
803 => 0.25663516750605
804 => 0.25368860061625
805 => 0.24950400194847
806 => 0.25811227574888
807 => 0.26122757657343
808 => 0.28309238925584
809 => 0.31069761845774
810 => 0.29926887230244
811 => 0.29217468076052
812 => 0.29384198404934
813 => 0.3039224792579
814 => 0.30716001437996
815 => 0.29835927787291
816 => 0.30146784678924
817 => 0.31859636714595
818 => 0.3277852687686
819 => 0.31530550613091
820 => 0.28087433596808
821 => 0.24912722462312
822 => 0.25754798814286
823 => 0.25659333488644
824 => 0.27499579318329
825 => 0.25361832597042
826 => 0.25397826769272
827 => 0.27276126933861
828 => 0.26775028652165
829 => 0.25963313611638
830 => 0.24918648880406
831 => 0.22987489504931
901 => 0.2127700779171
902 => 0.24631656331749
903 => 0.2448699778667
904 => 0.242775107762
905 => 0.24743701449139
906 => 0.27007391026396
907 => 0.26955205654792
908 => 0.26623228945858
909 => 0.26875030353676
910 => 0.25919171607406
911 => 0.26165518170819
912 => 0.24912219571848
913 => 0.25478762880956
914 => 0.25961572035721
915 => 0.26058503121651
916 => 0.26276893807677
917 => 0.24410769306749
918 => 0.25248604421129
919 => 0.25740754056293
920 => 0.23517204100063
921 => 0.25696801622917
922 => 0.2437828423094
923 => 0.23930759624636
924 => 0.2453329255014
925 => 0.24298484883089
926 => 0.24096611039327
927 => 0.23983961965875
928 => 0.24426395647233
929 => 0.24405755587175
930 => 0.23681848211796
1001 => 0.22737540550854
1002 => 0.23054481197708
1003 => 0.22939333689372
1004 => 0.22522024264835
1005 => 0.22803240430841
1006 => 0.21564906755998
1007 => 0.19434418031414
1008 => 0.20841884141508
1009 => 0.20787698227298
1010 => 0.20760375232218
1011 => 0.21818047114448
1012 => 0.21716376367614
1013 => 0.21531842966546
1014 => 0.22518635164212
1015 => 0.22158442737836
1016 => 0.23268470923918
1017 => 0.23999607279393
1018 => 0.23814167449861
1019 => 0.24501804726074
1020 => 0.23061782870082
1021 => 0.23540100366993
1022 => 0.23638680940187
1023 => 0.22506458301668
1024 => 0.21733010959179
1025 => 0.2168143083938
1026 => 0.20340379735113
1027 => 0.21056758410426
1028 => 0.21687141998938
1029 => 0.21385237179784
1030 => 0.21289663133189
1031 => 0.21777930209758
1101 => 0.21815872743333
1102 => 0.20950778956873
1103 => 0.21130659349035
1104 => 0.21880790486979
1105 => 0.21111757968997
1106 => 0.19617653407307
1107 => 0.19247094818396
1108 => 0.19197655471885
1109 => 0.18192671189387
1110 => 0.19271857315202
1111 => 0.18800763650894
1112 => 0.20288942891875
1113 => 0.19438902890692
1114 => 0.19402259365194
1115 => 0.19346867301968
1116 => 0.18481835814644
1117 => 0.18671222734749
1118 => 0.1930077370162
1119 => 0.19525404579
1120 => 0.19501973738142
1121 => 0.19297688558433
1122 => 0.19391209267594
1123 => 0.19089946478609
1124 => 0.18983564317576
1125 => 0.18647792954635
1126 => 0.1815430181032
1127 => 0.18222924780694
1128 => 0.17245189694823
1129 => 0.16712467727711
1130 => 0.16565017308378
1201 => 0.16367840445268
1202 => 0.16587288959734
1203 => 0.1724241989417
1204 => 0.16452192993459
1205 => 0.1509740440016
1206 => 0.15178829503065
1207 => 0.15361767533962
1208 => 0.15020863723642
1209 => 0.14698226877062
1210 => 0.14978733438808
1211 => 0.14404691651966
1212 => 0.15431137741385
1213 => 0.15403375251248
1214 => 0.15785970878383
1215 => 0.16025215775683
1216 => 0.15473833743861
1217 => 0.15335162653954
1218 => 0.15414156009015
1219 => 0.14108571809729
1220 => 0.15679276795501
1221 => 0.15692860317442
1222 => 0.15576549955781
1223 => 0.16412901870628
1224 => 0.1817786527566
1225 => 0.17513815047199
1226 => 0.17256674727714
1227 => 0.16767850792405
1228 => 0.17419179662711
1229 => 0.17369167767784
1230 => 0.1714299501248
1231 => 0.1700620502437
]
'min_raw' => 0.12774742657016
'max_raw' => 0.3277852687686
'avg_raw' => 0.22776634766938
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.127747'
'max' => '$0.327785'
'avg' => '$0.227766'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.078556463408304
'max_diff' => 0.19052722738348
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0040098457463228
]
1 => [
'year' => 2028
'avg' => 0.0068820593672275
]
2 => [
'year' => 2029
'avg' => 0.018800545820746
]
3 => [
'year' => 2030
'avg' => 0.014504593102093
]
4 => [
'year' => 2031
'avg' => 0.014245307960689
]
5 => [
'year' => 2032
'avg' => 0.024976508018496
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0040098457463228
'min' => '$0.0040098'
'max_raw' => 0.024976508018496
'max' => '$0.024976'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.024976508018496
]
1 => [
'year' => 2033
'avg' => 0.064242146927603
]
2 => [
'year' => 2034
'avg' => 0.040719760055829
]
3 => [
'year' => 2035
'avg' => 0.048029050365105
]
4 => [
'year' => 2036
'avg' => 0.093224502273487
]
5 => [
'year' => 2037
'avg' => 0.22776634766938
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.024976508018496
'min' => '$0.024976'
'max_raw' => 0.22776634766938
'max' => '$0.227766'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.22776634766938
]
]
]
]
'prediction_2025_max_price' => '$0.006856'
'last_price' => 0.00664786
'sma_50day_nextmonth' => '$0.006021'
'sma_200day_nextmonth' => '$0.010587'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'augmenter'
'sma_200day_date_nextmonth' => '4 févr. 2026'
'sma_50day_date_nextmonth' => '4 févr. 2026'
'daily_sma3' => '$0.006175'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.006077'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.005965'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.005882'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.006355'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.008313'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.012039'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.006298'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.006179'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.006056'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.006053'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.006689'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.008339'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.011083'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.009852'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.014162'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.019939'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.031097'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.006276'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.006327'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.007122'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.0093036'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.013578'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.020116'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.03861'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '57.73'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 71.16
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.006360'
'vwma_10_action' => 'BUY'
'hma_9' => '0.006157'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 198.66
'cci_20_action' => 'SELL'
'adx_14' => 18.87
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.000012'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 62.05
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.001585'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 14
'buy_signals' => 19
'sell_pct' => 42.42
'buy_pct' => 57.58
'overall_action' => 'bullish'
'overall_action_label' => 'Haussier'
'overall_action_dir' => 1
'last_updated' => 1767699283
'last_updated_date' => '6 janvier 2026'
]
Prévision du prix de dKargo pour 2026
La prévision du prix de dKargo pour 2026 suggère que le prix moyen pourrait varier entre $0.002296 à la baisse et $0.006856 à la hausse. Sur le marché des cryptomonnaies, comparé au prix moyen d'aujourd'hui, dKargo pourrait potentiellement gagner 3.13% d'ici 2026 si DKA atteint l'objectif de prix prévu.
Prévision du prix de dKargo de 2027 à 2032
La prévision du prix de DKA pour 2027-2032 se situe actuellement dans une fourchette de prix comprise entre $0.0040098 à la baisse et $0.024976 à la hausse. Compte tenu de la volatilité des prix sur le marché, si dKargo atteint l'objectif de prix le plus élevé, il pourrait gagner 275.71% d'ici 2032 par rapport au prix actuel.
| Prévision du Prix de dKargo | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2027 | $0.002211 | $0.0040098 | $0.0058085 |
| 2028 | $0.00399 | $0.006882 | $0.009773 |
| 2029 | $0.008765 | $0.01880054 | $0.028835 |
| 2030 | $0.007454 | $0.0145045 | $0.021554 |
| 2031 | $0.008813 | $0.014245 | $0.019676 |
| 2032 | $0.013453 | $0.024976 | $0.036499 |
Prévision du prix de dKargo de 2032 à 2037
La prévision du prix de dKargo pour 2032-2037 est actuellement estimée entre $0.024976 à la baisse et $0.227766 à la hausse. Par rapport au prix actuel, dKargo pourrait potentiellement gagner 3326.16% d'ici 2037 s'il atteint l'objectif de prix le plus élevé. Veuillez noter que ces informations sont à titre général seulement et ne doivent pas être considérées comme un conseil en investissement à long terme.
| Prévision du Prix de dKargo | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2032 | $0.013453 | $0.024976 | $0.036499 |
| 2033 | $0.031263 | $0.064242 | $0.09722 |
| 2034 | $0.025134 | $0.040719 | $0.0563048 |
| 2035 | $0.029716 | $0.048029 | $0.066341 |
| 2036 | $0.04919 | $0.093224 | $0.137258 |
| 2037 | $0.127747 | $0.227766 | $0.327785 |
dKargo Histogramme des prix potentiels
Prévision du prix de dKargo basée sur l'analyse technique
Au 6 janvier 2026, le sentiment global de prévision du prix pour dKargo est Haussier, avec 19 indicateurs techniques montrant des signaux haussiers et 14 indiquant des signaux baissiers. La prévision du prix de DKA a été mise à jour pour la dernière fois le 6 janvier 2026.
Moyennes Mobiles Simples sur 50 et 200 jours de dKargo et Indice de Force Relative sur 14 jours - RSI (14)
Selon nos indicateurs techniques, le SMA sur 200 jours de dKargo devrait augmenter au cours du prochain mois, atteignant $0.010587 d'ici le 4 févr. 2026. Le SMA à court terme sur 50 jours pour dKargo devrait atteindre $0.006021 d'ici le 4 févr. 2026.
Le Relative Strength Index (RSI), un oscillateur de momentum, est un outil couramment utilisé pour identifier si une cryptomonnaie est survendue (en dessous de 30) ou surachetée (au-dessus de 70). Actuellement, le RSI est à 57.73, ce qui suggère que le marché de DKA est dans un état NEUTRAL.
Moyennes Mobiles et Oscillateurs Populaires de DKA pour le Samedi 19 Octobre 2024
Les moyennes mobiles (MA) sont des indicateurs largement utilisés sur les marchés financiers, conçus pour lisser les mouvements de prix sur une période donnée. En tant qu'indicateurs retardés, ils sont basés sur des données historiques de prix. Le tableau ci-dessous met en évidence deux types : la moyenne mobile simple (SMA) et la moyenne mobile exponentielle (EMA).
Moyenne Mobile Simple Quotidienne (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 3 | $0.006175 | BUY |
| SMA 5 | $0.006077 | BUY |
| SMA 10 | $0.005965 | BUY |
| SMA 21 | $0.005882 | BUY |
| SMA 50 | $0.006355 | BUY |
| SMA 100 | $0.008313 | SELL |
| SMA 200 | $0.012039 | SELL |
Moyenne Mobile Exponentielle Quotidienne (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 3 | $0.006298 | BUY |
| EMA 5 | $0.006179 | BUY |
| EMA 10 | $0.006056 | BUY |
| EMA 21 | $0.006053 | BUY |
| EMA 50 | $0.006689 | SELL |
| EMA 100 | $0.008339 | SELL |
| EMA 200 | $0.011083 | SELL |
Moyenne Mobile Simple Hebdomadaire (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 21 | $0.009852 | SELL |
| SMA 50 | $0.014162 | SELL |
| SMA 100 | $0.019939 | SELL |
| SMA 200 | $0.031097 | SELL |
Moyenne Mobile Exponentielle Hebdomadaire (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 21 | $0.0093036 | SELL |
| EMA 50 | $0.013578 | SELL |
| EMA 100 | $0.020116 | SELL |
| EMA 200 | $0.03861 | SELL |
Oscillateurs de dKargo
Un oscillateur est un outil d'analyse technique qui établit des limites hautes et basses entre deux extrêmes, créant un indicateur de tendance qui fluctue à l'intérieur de ces limites. Les traders utilisent cet indicateur pour identifier les conditions de surachat ou de survente à court terme.
| Période | Valeur | Action |
|---|---|---|
| RSI (14) | 57.73 | NEUTRAL |
| Stoch RSI (14) | 71.16 | NEUTRAL |
| Stochastique Rapide (14) | 100 | SELL |
| Indice de Canal des Matières Premières (20) | 198.66 | SELL |
| Indice Directionnel Moyen (14) | 18.87 | NEUTRAL |
| Oscillateur Impressionnant (5, 34) | -0.000012 | NEUTRAL |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Plage de Pourcentage de Williams (14) | -0 | SELL |
| Oscillateur Ultime (7, 14, 28) | 62.05 | NEUTRAL |
| VWMA (10) | 0.006360 | BUY |
| Moyenne Mobile de Hull (9) | 0.006157 | BUY |
| Nuage Ichimoku B/L (9, 26, 52, 26) | -0.001585 | SELL |
Prévision du cours de dKargo basée sur les flux monétaires mondiaux
Définitions des flux monétaires mondiaux utilisés pour la prédiction du cours de dKargo
M0 : le total de toutes les devises physiques, plus les comptes à la banque centrale qui peuvent être échangés contre des devises physiques.
M1 : M0 plus le montant des comptes à vue, y compris les comptes de "chèques" et les comptes "courants".
M2 : M1 plus la plupart des comptes d'épargne, comptes du marché monétaire et comptes de certificats de dépôt (CD) de moins de 100 000 $.
Prédictions du cours de dKargo par des sociétés Internet ou des niches technologiques
| Comparaison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Action Facebook | $0.009341 | $0.013126 | $0.018444 | $0.025917 | $0.036418 | $0.051174 |
| Action Amazon.com | $0.013871 | $0.028942 | $0.060391 | $0.1260099 | $0.262927 | $0.548613 |
| Action Apple | $0.009429 | $0.013375 | $0.018971 | $0.0269095 | $0.038169 | $0.054139 |
| Action Netflix | $0.010489 | $0.01655 | $0.026114 | $0.0412038 | $0.065013 | $0.10258 |
| Action Google | $0.0086089 | $0.011148 | $0.014437 | $0.018696 | $0.024211 | $0.031353 |
| Action Tesla | $0.01507 | $0.034162 | $0.077444 | $0.175561 | $0.397985 | $0.9022026 |
| Action Kodak | $0.004985 | $0.003738 | $0.0028033 | $0.0021022 | $0.001576 | $0.001182 |
| Action Nokia | $0.0044039 | $0.002917 | $0.001932 | $0.00128 | $0.000848 | $0.000561 |
Ce calcul montre la valeur potentielle des cryptomonnaies si l'on suppose que leur capitalisation se comportera comme celle de certaines sociétés Internet ou niches technologiques. En extrapolant les données, vous pourrez obtenir une potentielle image des cours futurs pour 2024, 2025, 2026, 2027, 2028, 2029 et 2030.
Aperçu des prévisions relatives à dKargo
Vous vous posez peut-être des questions telles que : "Devrais-je investir dans dKargo maintenant ?", "Devrais-je acheter DKA aujourd'hui ?", " dKargo sera-t-il un bon ou un mauvais investissement à court ou à long terme ?".
Nous mettons régulièrement à jour les prévisions de dKargo avec de nouvelles valeurs. Regardez nos prévisions similaires. Nous faisons une prévision des cours futurs pour une grande quantité de devises numériques comme dKargo en utilisant des méthodes d'analyse technique.
Si vous souhaitez trouver des cryptomonnaies ayant un bon rendement, vous devriez consulter un maximum d'informations disponibles à propos de dKargo afin de prendre une décision responsable concernant cet investissement.
Le cours de dKargo est de $0.006647 USD actuellement, mais ce cours peut subir une hausse ou une baisse, ce qui pourrait causer la perte de votre investissement, car les cryptomonnaies sont des actifs à haut risque.
Prévision à court terme de dKargo
basée sur l'historique des cours sur 4 heures
Prévision à long terme de dKargo
basée sur l'historique des cours sur 1 mois
Prévision du cours de dKargo basée sur le modèle de croissance du Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si dKargo présente 1 % de la précédente croissance annuelle moyenne du Bitcoin | $0.00682 | $0.006997 | $0.007179 | $0.007366 |
| Si dKargo présente 2 % de la précédente croissance annuelle moyenne du Bitcoin | $0.006993 | $0.007357 | $0.007739 | $0.008141 |
| Si dKargo présente 5 % de la précédente croissance annuelle moyenne du Bitcoin | $0.007511 | $0.008488 | $0.009591 | $0.010837 |
| Si dKargo présente 10 % de la précédente croissance annuelle moyenne du Bitcoin | $0.008375 | $0.010553 | $0.013296 | $0.016752 |
| Si dKargo présente 20 % de la précédente croissance annuelle moyenne du Bitcoin | $0.0101038 | $0.015356 | $0.023339 | $0.035473 |
| Si dKargo présente 50 % de la précédente croissance annuelle moyenne du Bitcoin | $0.015287 | $0.035156 | $0.080848 | $0.185924 |
| Si dKargo présente 100 % de la précédente croissance annuelle moyenne du Bitcoin | $0.023927 | $0.086123 | $0.309987 | $1.11 |
Boîte à questions
Est-ce que DKA est un bon investissement ?
La décision d'acquérir dKargo dépend entièrement de votre tolérance individuelle au risque. Comme vous pouvez le discerner, la valeur de dKargo a connu une hausse de 11.772% au cours des 24 heures précédentes, et dKargo a enregistré une déclin de sur une période de 30 jours précédents. Par conséquent, la détermination de si investir ou non dans dKargo dépendra de la mesure dans laquelle cet investissement s'aligne avec vos aspirations de trading.
Est-ce que dKargo peut monter ?
Il semble que la valeur moyenne de dKargo pourrait potentiellement s'envoler jusqu'à $0.006856 pour la fin de cette année. En regardant les perspectives de dKargo sur une période de cinq ans plus longue, la monnaie numérique pourrait potentiellement croître jusqu'à $0.021554. Cependant, compte tenu de l'imprévisibilité du marché, il est essentiel de mener des recherches approfondies avant d'investir des fonds dans un projet, un réseau ou un actif particulier.
Quel sera le prix de dKargo la semaine prochaine ?
Basé sur notre nouveau pronostic expérimental de dKargo, le prix de dKargo va augmenter de 0.86% durant la prochaine semaine et atteindre $0.006704 d'ici 13 janvier 2026.
Quel sera le prix de dKargo le mois prochain ?
Basé sur notre nouveau pronostic expérimental de dKargo, le prix de dKargo va diminuer de -11.62% durant le prochain mois et atteindre $0.005875 d'ici 5 février 2026.
Jusqu'où le prix de dKargo peut-il monter cette année en 2026 ?
Selon notre prédiction la plus récente sur la valeur de dKargo en 2026, DKA devrait fluctuer dans la fourchette de $0.002296 et $0.006856. Cependant, il est crucial de garder à l'esprit que le marché des cryptomonnaies est exceptionnellement instable, et cette prévision de prix de dKargo ne prend pas en compte les fluctuations de prix soudaines et extrêmes.
Où sera dKargo dans 5 ans ?
L'avenir de dKargo semble suivre une tendance haussière, avec un prix maximum de $0.021554 prévue après une période de cinq ans. Selon la prévision de dKargo pour 2030, la valeur de dKargo pourrait potentiellement atteindre son point le plus élevé d'environ $0.021554, tandis que son point le plus bas devrait être autour de $0.007454.
Combien vaudra dKargo en 2026 ?
Basé sur notre nouvelle simulation expérimentale de prédiction de prix de dKargo, il est attendu que la valeur de DKA en 2026 augmente de 3.13% jusqu'à $0.006856 si le meilleur scénario se produit. Le prix sera entre $0.006856 et $0.002296 durant 2026.
Combien vaudra dKargo en 2027 ?
Selon notre dernière simulation expérimentale pour la prédiction de prix de dKargo, le valeur de DKA pourrait diminuer de -12.62% jusqu'à $0.0058085 en 2027, en supposant les conditions les plus favorables. Il est prévu que le prix fluctue entre $0.0058085 et $0.002211 tout au long de l'année.
Combien vaudra dKargo en 2028 ?
Notre nouveau modèle expérimental de prédiction de prix de dKargo suggère que la valeur de DKA en 2028 pourrait augmenter de 47.02%, atteignant $0.009773 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.009773 et $0.00399 durant l'année.
Combien vaudra dKargo en 2029 ?
Basé sur notre modèle de prévision expérimental, la valeur de dKargo pourrait connaître un 333.75% croissance en 2029, atteignant potentiellement $0.028835 sous des conditions optimales. Le range de prix prévu pour 2029 se situe entre $0.028835 et $0.008765.
Combien vaudra dKargo en 2030 ?
En utilisant notre nouvelle simulation expérimentale pour les prédictions de prix de dKargo, il est prévu que la valeur de DKA en 2030 augmente de 224.23%, atteignant $0.021554 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.021554 et $0.007454 au cours de 2030.
Combien vaudra dKargo en 2031 ?
Notre simulation expérimentale indique que le prix de dKargo pourrait augmenter de 195.98% en 2031, atteignant potentiellement $0.019676 dans des conditions idéales. Il est probable que le prix fluctue entre $0.019676 et $0.008813 durant l'année.
Combien vaudra dKargo en 2032 ?
Basé sur les résultats de notre dernière prédiction expérimentale de prix de dKargo, DKA pourrait connaître une 449.04% hausse en valeur, atteignant $0.036499 si le scénario le plus positif se réalise en 2032. Il est prévu que le prix reste dans une fourchette de $0.036499 et $0.013453 tout au long de l'année.
Combien vaudra dKargo en 2033 ?
Selon notre prédiction expérimentale de prix de dKargo, la valeur de DKA est anticipée à augmenter de 1362.43% en 2033, avec le prix potentiel le plus élevé étant $0.09722. Tout au long de l'année, le prix de DKA pourrait osciller entre $0.09722 et $0.031263.
Combien vaudra dKargo en 2034 ?
Les résultats de notre nouvelle simulation de prédiction de prix de dKargo suggèrent que DKA pourrait augmenter de 746.96% en 2034, atteignant potentiellement $0.0563048 dans les meilleures circonstances. La fourchette de prix prévue pour l'année est entre $0.0563048 et $0.025134.
Combien vaudra dKargo en 2035 ?
Basé sur notre prédiction expérimentale pour le prix de dKargo, DKA pourrait augmenter de 897.93%, avec la valeur potentiellement atteignant $0.066341 en 2035. La fourchette de prix attendue pour l'année se situe entre $0.066341 et $0.029716.
Combien vaudra dKargo en 2036 ?
Notre récente simulation de prédiction de prix de dKargo suggère que la valeur de DKA pourrait augmenter de 1964.7% en 2036, pouvant atteindre $0.137258 si les conditions sont optimales. La fourchette de prix attendue pour 2036 est entre $0.137258 et $0.04919.
Combien vaudra dKargo en 2037 ?
Selon la simulation expérimentale, la valeur de dKargo pourrait augmenter de 4830.69% en 2037, avec un maximum de $0.327785 sous des conditions favorables. Il est prévu que le prix chute entre $0.327785 et $0.127747 au cours de l'année.
Prévisions liées
Prévision du cours de Aurora
Prévision du cours de NKN
Prévision du cours de Mil.k Alliance
Prévision du cours de Dogelon Mars
Prévision du cours de Medibloc
Prévision du cours de ChainGPT
Prévision du cours de Hifi Finance
Prévision du cours de The Truth
Prévision du cours de Metal
Prévision du cours de Telos
Prévision du cours de Stader MaticX
Prévision du cours de OmiseGO
Prévision du cours de WazirX
Prévision du cours de STP Network
Prévision du cours de Ultima
Prévision du cours de LUKSO
Prévision du cours de Bella Protocol
Prévision du cours de Aavegotchi
Prévision du cours de Tokamak Network
Prévision du cours de Chainflip
Prévision du cours de Kyber Network Crystal
Prévision du cours de Radicle
Prévision du cours de Ergo
Prévision du cours de CANTO
Prévision du cours de Mines of Dalarnia
Comment lire et prédire les mouvements de prix de dKargo ?
Les traders de dKargo utilisent des indicateurs et des modèles graphiques pour prédire la direction du marché. Ils identifient également des niveaux clés de support et de résistance pour évaluer quand une tendance baissière pourrait ralentir ou une tendance haussière pourrait s'arrêter.
Indicateurs de prédiction du prix de dKargo
Les moyennes mobiles sont des outils populaires pour la prédiction du prix de dKargo. Une moyenne mobile simple (SMA) calcule le prix de clôture moyen de DKA sur une période spécifique, comme une SMA de 12 jours. Une moyenne mobile exponentielle (EMA) donne plus de poids aux prix récents, réagissant plus rapidement aux changements de prix.
Les moyennes mobiles couramment utilisées sur le marché des cryptomonnaies incluent les moyennes sur 50 jours, 100 jours et 200 jours, qui aident à identifier les niveaux clés de résistance et de support. Un mouvement de prix de DKA au-dessus de ces moyennes est considéré comme haussier, tandis qu'une chute en dessous indique une faiblesse.
Les traders utilisent également le RSI et les niveaux de retracement de Fibonacci pour évaluer la direction future de DKA.
Comment lire les graphiques de dKargo et prédire les mouvements de prix ?
La plupart des traders préfèrent les graphiques en chandeliers aux simples graphiques linéaires parce qu'ils fournissent des informations plus détaillées. Les chandeliers peuvent représenter l'action des prix de dKargo dans différentes périodes, comme 5 minutes pour les tendances à court terme et hebdomadaire pour les tendances à long terme. Les options populaires incluent les graphiques de 1 heure, 4 heures et 1 jour.
Par exemple, un graphique en chandeliers de 1 heure montre les prix d'ouverture, de clôture, les plus hauts et les plus bas de DKA au sein de chaque heure. La couleur du chandelier est cruciale : le vert indique que le prix a clôturé plus haut qu'il n'a ouvert, tandis que le rouge signifie le contraire. Certains graphiques utilisent des chandeliers creux et pleins pour transmettre la même information.
Qu'est-ce qui affecte le prix de dKargo ?
L'action du prix de dKargo est déterminée par l'offre et la demande, influencée par des facteurs tels que les réductions de récompenses de bloc, les hard forks et les mises à jour de protocole. Les événements du monde réel, tels que les réglementations, l'adoption par les entreprises et les gouvernements et les piratages d'échanges de cryptomonnaies, impactent également le prix de DKA. La capitalisation boursière de dKargo peut changer rapidement.
Les traders surveillent souvent l'activité des « baleines » de DKA, de grands détenteurs de dKargo, car leurs actions peuvent influencer significativement les mouvements de prix sur le marché relativement petit de dKargo.
Modèles de prédiction de prix haussiers et baissiers
Les traders identifient souvent des modèles de chandeliers pour obtenir un avantage dans les prédictions de prix des cryptomonnaies. Certaines formations indiquent des tendances haussières, tandis que d'autres suggèrent des mouvements baissiers.
Modèles de chandeliers haussiers couramment suivis :
- Marteau
- Englobante haussière
- Ligne pénétrante
- Étoile du matin
- Trois soldats blancs
Modèles de chandeliers baissiers courants :
- Harami baissier
- Nuage sombre
- Étoile du soir
- Étoile filante
- Pendu


