Predicción del precio de dKargo - Pronóstico de DKA
Predicción de precio de dKargo hasta $0.006393 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.002141 | $0.006393 |
| 2027 | $0.002062 | $0.005416 |
| 2028 | $0.003721 | $0.009114 |
| 2029 | $0.008174 | $0.026891 |
| 2030 | $0.006952 | $0.020101 |
| 2031 | $0.008219 | $0.01835 |
| 2032 | $0.012546 | $0.034038 |
| 2033 | $0.029156 | $0.090665 |
| 2034 | $0.02344 | $0.0525087 |
| 2035 | $0.027713 | $0.061868 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en dKargo hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,954.51, equivalente a un ROI del 39.55% en los próximos 90 días.
Predicción del precio a largo plazo de dKargo para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'dKargo'
'name_with_ticker' => 'dKargo <small>DKA</small>'
'name_lang' => 'dKargo'
'name_lang_with_ticker' => 'dKargo <small>DKA</small>'
'name_with_lang' => 'dKargo'
'name_with_lang_with_ticker' => 'dKargo <small>DKA</small>'
'image' => '/uploads/coins/dkargo.png?1732748247'
'price_for_sd' => 0.006199
'ticker' => 'DKA'
'marketcap' => '$31.07M'
'low24h' => '$0.005936'
'high24h' => '$0.006308'
'volume24h' => '$4.26M'
'current_supply' => '5B'
'max_supply' => '5B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.006199'
'change_24h_pct' => '3.5898%'
'ath_price' => '$0.7037'
'ath_days' => 1757
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '16 mar. 2021'
'ath_pct' => '-99.12%'
'fdv' => '$31.07M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.305685'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.006252'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.005479'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.002141'
'current_year_max_price_prediction' => '$0.006393'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.006952'
'grand_prediction_max_price' => '$0.020101'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0063171402959788
107 => 0.0063407262047221
108 => 0.006393866461447
109 => 0.0059397887859538
110 => 0.0061436563312301
111 => 0.0062634094142742
112 => 0.0057223606284265
113 => 0.0062527146193825
114 => 0.0059318843038551
115 => 0.0058229896760555
116 => 0.0059696019466114
117 => 0.0059124670021906
118 => 0.0058633457320542
119 => 0.0058359352193075
120 => 0.0059435910897979
121 => 0.005938568814763
122 => 0.0057624229155366
123 => 0.0055326477706212
124 => 0.0056097678513668
125 => 0.0055817494030273
126 => 0.0054802069317932
127 => 0.0055486342971203
128 => 0.0052473148105169
129 => 0.00472891029504
130 => 0.0050713841971238
131 => 0.0050581993244335
201 => 0.0050515509137367
202 => 0.0053089105858692
203 => 0.0052841713916915
204 => 0.0052392695120121
205 => 0.0054793822735604
206 => 0.0053917378856229
207 => 0.0056618372376314
208 => 0.005839742139795
209 => 0.0057946197019856
210 => 0.0059619401223595
211 => 0.0056115445422665
212 => 0.0057279318985428
213 => 0.0057519191713654
214 => 0.0054764193193546
215 => 0.0052882190298138
216 => 0.0052756682161418
217 => 0.0049493548496755
218 => 0.0051236688161323
219 => 0.0052770578930123
220 => 0.00520359642866
221 => 0.0051803407236449
222 => 0.0052991490770201
223 => 0.0053083815036021
224 => 0.0050978811991241
225 => 0.0051416508781027
226 => 0.0053241777155475
227 => 0.0051370516701148
228 => 0.0047734963307049
301 => 0.0046833295799855
302 => 0.0046712996733366
303 => 0.0044267602941703
304 => 0.0046893549534177
305 => 0.0045747253475568
306 => 0.0049368388989977
307 => 0.0047300015804686
308 => 0.0047210852370673
309 => 0.0047076068762731
310 => 0.0044971217308301
311 => 0.0045432046006533
312 => 0.0046963910785648
313 => 0.0047510497396528
314 => 0.0047453483934961
315 => 0.0046956403812524
316 => 0.0047183964547114
317 => 0.0046450912133585
318 => 0.0046192056069202
319 => 0.0045375035126037
320 => 0.0044174240047382
321 => 0.0044341217967973
322 => 0.0041962128712033
323 => 0.0040665874617574
324 => 0.0040307088568582
325 => 0.0039827304869168
326 => 0.0040361281414086
327 => 0.0041955389051088
328 => 0.0040032557032062
329 => 0.0036735996406426
330 => 0.0036934125317093
331 => 0.003737926215436
401 => 0.0036549752602988
402 => 0.0035764691428075
403 => 0.0036447238425636
404 => 0.0035050442230763
405 => 0.0037548058301237
406 => 0.0037480504786019
407 => 0.003841146160555
408 => 0.003899360800996
409 => 0.0037651949019932
410 => 0.0037314525412171
411 => 0.00375067372342
412 => 0.0034329903973197
413 => 0.0038151846552428
414 => 0.0038184898870563
415 => 0.0037901884856048
416 => 0.0039936951290251
417 => 0.0044231576219556
418 => 0.0042615765570264
419 => 0.0041990074848722
420 => 0.0040800636329695
421 => 0.0042385492534428
422 => 0.0042263800305513
423 => 0.004171346189595
424 => 0.0041380615508687
425 => 0.0041993895182847
426 => 0.0041304623370193
427 => 0.0041180811212717
428 => 0.0040430644247371
429 => 0.0040162868771165
430 => 0.0039964618469031
501 => 0.0039746364366053
502 => 0.0040227778531688
503 => 0.0039136830697052
504 => 0.0037821254555417
505 => 0.0037711878633971
506 => 0.0038013875169512
507 => 0.0037880264183533
508 => 0.0037711238955974
509 => 0.0037388523765282
510 => 0.0037292781061922
511 => 0.0037603898400084
512 => 0.0037252665064567
513 => 0.0037770928983792
514 => 0.0037629989874613
515 => 0.0036842715467628
516 => 0.0035861480070208
517 => 0.003585274501696
518 => 0.0035641339460134
519 => 0.0035372082698478
520 => 0.0035297181627146
521 => 0.0036389756221279
522 => 0.003865135293313
523 => 0.0038207347383171
524 => 0.0038528186896536
525 => 0.0040106399755751
526 => 0.0040608066165179
527 => 0.0040251995230387
528 => 0.0039764583373345
529 => 0.0039786027021398
530 => 0.0041451660886513
531 => 0.0041555544427572
601 => 0.0041818024621728
602 => 0.0042155385848113
603 => 0.0040309449306031
604 => 0.0039699083576268
605 => 0.0039409858431705
606 => 0.0038519156930667
607 => 0.0039479702136561
608 => 0.0038920033579733
609 => 0.003899555198905
610 => 0.0038946370525912
611 => 0.0038973226930421
612 => 0.0037547360166644
613 => 0.0038066871074014
614 => 0.0037203083429714
615 => 0.003604656873871
616 => 0.003604269169594
617 => 0.003632574702813
618 => 0.0036157374640587
619 => 0.0035704288874959
620 => 0.0035768647569462
621 => 0.0035204797684215
622 => 0.0035837109154362
623 => 0.0035855241584807
624 => 0.0035611767226562
625 => 0.0036585930288492
626 => 0.0036985045689806
627 => 0.0036824785651483
628 => 0.0036973801418297
629 => 0.0038225797818337
630 => 0.0038429927859976
701 => 0.0038520588940399
702 => 0.0038399115102924
703 => 0.0036996685614167
704 => 0.0037058889325584
705 => 0.0036602479764017
706 => 0.0036216861779747
707 => 0.0036232284476818
708 => 0.0036430542247562
709 => 0.0037296345560064
710 => 0.0039118377589331
711 => 0.0039187522372953
712 => 0.0039271327867799
713 => 0.0038930448802993
714 => 0.0038827636415274
715 => 0.0038963272492804
716 => 0.0039647531925104
717 => 0.0041407632959603
718 => 0.0040785495700815
719 => 0.0040279688425278
720 => 0.0040723417770586
721 => 0.0040655109115942
722 => 0.004007851532734
723 => 0.0040062332260099
724 => 0.0038955664431588
725 => 0.0038546554532994
726 => 0.0038204671680384
727 => 0.0037831344530412
728 => 0.0037610023681869
729 => 0.0037950073093758
730 => 0.0038027846417603
731 => 0.0037284322435462
801 => 0.0037182982864111
802 => 0.0037790160598008
803 => 0.0037522964315187
804 => 0.0037797782318217
805 => 0.0037861542452265
806 => 0.0037851275602163
807 => 0.0037572291995601
808 => 0.0037750107827013
809 => 0.0037329520376273
810 => 0.0036872194693787
811 => 0.0036580449400757
812 => 0.0036325862938191
813 => 0.0036467122304275
814 => 0.0035963558457128
815 => 0.0035802458247688
816 => 0.0037689867824313
817 => 0.0039084117571639
818 => 0.0039063844628129
819 => 0.0038940438298292
820 => 0.0038757081524214
821 => 0.0039634118235021
822 => 0.0039328576181879
823 => 0.0039550883554433
824 => 0.0039607470110959
825 => 0.0039778740574783
826 => 0.0039839955044406
827 => 0.0039654922401022
828 => 0.003903393024999
829 => 0.0037486476851781
830 => 0.0036766133117644
831 => 0.0036528407687105
901 => 0.0036537048555
902 => 0.0036298694843917
903 => 0.0036368900694095
904 => 0.0036274280114306
905 => 0.0036095091627364
906 => 0.0036456057920146
907 => 0.0036497655922756
908 => 0.0036413402076794
909 => 0.0036433246907552
910 => 0.0035735661048279
911 => 0.0035788696986083
912 => 0.0035493386144911
913 => 0.0035438018922217
914 => 0.0034691498831391
915 => 0.0033368930280676
916 => 0.0034101761642608
917 => 0.0033216604409077
918 => 0.0032881381952418
919 => 0.0034468272924453
920 => 0.0034308993084365
921 => 0.0034036375235416
922 => 0.0033633116618283
923 => 0.003348354407454
924 => 0.0032574788647675
925 => 0.0032521094529034
926 => 0.0032971498257049
927 => 0.0032763652434016
928 => 0.0032471758181109
929 => 0.0031414546785926
930 => 0.0030225891147076
1001 => 0.003026176918919
1002 => 0.0030639858432184
1003 => 0.0031739203898469
1004 => 0.0031309670605922
1005 => 0.0030998039273852
1006 => 0.0030939680092959
1007 => 0.0031670167425058
1008 => 0.0032703960041807
1009 => 0.0033188992407779
1010 => 0.0032708340063752
1011 => 0.0032156192531095
1012 => 0.0032189799193002
1013 => 0.0032413369258624
1014 => 0.003243686331141
1015 => 0.0032077472029333
1016 => 0.0032178638570091
1017 => 0.0032024957343817
1018 => 0.0031081815941848
1019 => 0.003106475750462
1020 => 0.0030833295394367
1021 => 0.0030826286813658
1022 => 0.0030432512023188
1023 => 0.0030377420207965
1024 => 0.0029595556461067
1025 => 0.0030110181546977
1026 => 0.0029764998058378
1027 => 0.0029244725120506
1028 => 0.0029155029869914
1029 => 0.0029152333522371
1030 => 0.0029686537498665
1031 => 0.0030103939062485
1101 => 0.0029771002672948
1102 => 0.0029695199510751
1103 => 0.0030504578965769
1104 => 0.003040157805246
1105 => 0.003031237992582
1106 => 0.0032611395251713
1107 => 0.0030791545226866
1108 => 0.0029997986742624
1109 => 0.0029015807425706
1110 => 0.0029335609963872
1111 => 0.0029402997057541
1112 => 0.0027041032851482
1113 => 0.0026082784267248
1114 => 0.0025753949463975
1115 => 0.0025564700385649
1116 => 0.0025650943567083
1117 => 0.0024788407449923
1118 => 0.0025368045985685
1119 => 0.0024621162616588
1120 => 0.002449594518919
1121 => 0.0025831465174231
1122 => 0.0026017294978154
1123 => 0.0025224487301821
1124 => 0.0025733598173931
1125 => 0.0025548987494533
1126 => 0.0024633965788266
1127 => 0.0024599018689531
1128 => 0.0024139892961894
1129 => 0.0023421450102402
1130 => 0.0023093102437218
1201 => 0.0022922096122346
1202 => 0.0022992656660709
1203 => 0.0022956979093324
1204 => 0.0022724158832904
1205 => 0.0022970324078122
1206 => 0.0022341473599092
1207 => 0.002209106027135
1208 => 0.0021977954380754
1209 => 0.0021419813385332
1210 => 0.0022308063915475
1211 => 0.0022483060459799
1212 => 0.0022658401801374
1213 => 0.0024184628469167
1214 => 0.0024108382497916
1215 => 0.0024797608944733
1216 => 0.0024770826872415
1217 => 0.0024574248325055
1218 => 0.0023744915769344
1219 => 0.0024075472944619
1220 => 0.0023058069339113
1221 => 0.0023820377297078
1222 => 0.0023472491779804
1223 => 0.0023702756853747
1224 => 0.0023288719488634
1225 => 0.0023517864861671
1226 => 0.0022524558632402
1227 => 0.0021597023251706
1228 => 0.0021970290565344
1229 => 0.0022376074823563
1230 => 0.0023255918487289
1231 => 0.0022731890859726
]
'min_raw' => 0.0021419813385332
'max_raw' => 0.006393866461447
'avg_raw' => 0.0042679238999901
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.002141'
'max' => '$0.006393'
'avg' => '$0.004267'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0040576786614668
'max_diff' => 0.00019420646144701
'year' => 2026
]
1 => [
'items' => [
101 => 0.0022920351010276
102 => 0.0022289041053783
103 => 0.0020986468288762
104 => 0.0020993840709153
105 => 0.0020793468267345
106 => 0.0020620317222768
107 => 0.0022792081736493
108 => 0.0022521988488694
109 => 0.0022091630247259
110 => 0.0022667681855177
111 => 0.0022819999043479
112 => 0.0022824335299697
113 => 0.0023244607682791
114 => 0.0023468907128986
115 => 0.0023508440878547
116 => 0.002416974855393
117 => 0.002439141016386
118 => 0.0025304402964433
119 => 0.0023449876888069
120 => 0.0023411684143931
121 => 0.0022675788082635
122 => 0.0022209071166505
123 => 0.0022707744589176
124 => 0.0023149501165953
125 => 0.0022689514690867
126 => 0.0022749579213669
127 => 0.0022132084953142
128 => 0.0022352810095475
129 => 0.002254292832294
130 => 0.0022437956212367
131 => 0.0022280807882131
201 => 0.0023113282164383
202 => 0.0023066310702885
203 => 0.0023841529893019
204 => 0.0024445868688184
205 => 0.0025528951847602
206 => 0.0024398698108347
207 => 0.0024357507169737
208 => 0.0024760155201886
209 => 0.0024391348520544
210 => 0.0024624421612378
211 => 0.0025491400169212
212 => 0.0025509718059951
213 => 0.0025202869788804
214 => 0.0025184198043618
215 => 0.0025243131610644
216 => 0.0025588307353472
217 => 0.0025467692342749
218 => 0.0025607271086756
219 => 0.0025781816443443
220 => 0.0026503810044398
221 => 0.002667788025729
222 => 0.002625497988502
223 => 0.0026293163053621
224 => 0.0026134986705517
225 => 0.0025982190335192
226 => 0.0026325654261564
227 => 0.002695334133781
228 => 0.0026949436529085
301 => 0.0027095047730281
302 => 0.0027185762302318
303 => 0.0026796348952011
304 => 0.0026542855180088
305 => 0.0026640060822471
306 => 0.0026795494761505
307 => 0.0026589655690928
308 => 0.0025319121593394
309 => 0.0025704520476554
310 => 0.0025640371257353
311 => 0.0025549014968401
312 => 0.0025936536525619
313 => 0.002589915912606
314 => 0.0024779560895353
315 => 0.0024851233941555
316 => 0.0024783919570681
317 => 0.00250014260742
318 => 0.0024379602455558
319 => 0.0024570871212606
320 => 0.0024690833183994
321 => 0.0024761491706732
322 => 0.0025016758741866
323 => 0.0024986806101574
324 => 0.002501489684369
325 => 0.0025393390468795
326 => 0.0027307681341248
327 => 0.0027411871969791
328 => 0.0026898799208914
329 => 0.0027103761656971
330 => 0.0026710278577061
331 => 0.0026974426404712
401 => 0.0027155149639764
402 => 0.0026338496091644
403 => 0.0026290139168562
404 => 0.0025895032044011
405 => 0.0026107340232733
406 => 0.0025769542638977
407 => 0.0025852426352827
408 => 0.0025620676263231
409 => 0.0026037780283521
410 => 0.0026504167389617
411 => 0.0026621995190801
412 => 0.0026312040973942
413 => 0.0026087613693958
414 => 0.0025693593321247
415 => 0.0026348857982382
416 => 0.0026540477338126
417 => 0.0026347851487481
418 => 0.0026303215868928
419 => 0.0026218631452426
420 => 0.0026321160852746
421 => 0.0026539433737962
422 => 0.0026436500276161
423 => 0.0026504489641135
424 => 0.0026245384292184
425 => 0.0026796477864034
426 => 0.0027671747084021
427 => 0.0027674561217685
428 => 0.0027571627201034
429 => 0.0027529508819165
430 => 0.0027635125366807
501 => 0.0027692418011285
502 => 0.0028033962559597
503 => 0.0028400453467671
504 => 0.003011070662314
505 => 0.0029630474380773
506 => 0.0031147912723721
507 => 0.0032348009438284
508 => 0.0032707865969113
509 => 0.0032376814893309
510 => 0.0031244307046011
511 => 0.0031188740808109
512 => 0.0032881185664452
513 => 0.003240299247365
514 => 0.0032346112915202
515 => 0.0031741010512848
516 => 0.0032098700976029
517 => 0.0032020468824729
518 => 0.0031896975546654
519 => 0.0032579424033471
520 => 0.0033856906678195
521 => 0.0033657799027859
522 => 0.003350917440322
523 => 0.0032857944562033
524 => 0.0033250130383879
525 => 0.0033110480524544
526 => 0.0033710504944236
527 => 0.0033355063770179
528 => 0.0032399369689913
529 => 0.0032551567122204
530 => 0.0032528562786492
531 => 0.0033001990385342
601 => 0.0032859879171363
602 => 0.0032500813291159
603 => 0.0033852540381396
604 => 0.0033764766742857
605 => 0.0033889209694458
606 => 0.0033943993330279
607 => 0.0034766765790002
608 => 0.0035103829340969
609 => 0.0035180348668166
610 => 0.0035500532972154
611 => 0.0035172382191002
612 => 0.0036485219283153
613 => 0.0037358179343265
614 => 0.0038372167375199
615 => 0.0039853876424144
616 => 0.0040411012733122
617 => 0.0040310371045639
618 => 0.0041433785936037
619 => 0.0043452537521973
620 => 0.0040718418459473
621 => 0.0043597452471245
622 => 0.0042685983543164
623 => 0.004052490711131
624 => 0.0040385759266516
625 => 0.0041849265316781
626 => 0.0045095180879031
627 => 0.0044282115845557
628 => 0.0045096510762153
629 => 0.0044146475832811
630 => 0.0044099298591046
701 => 0.0045050369686153
702 => 0.0047272599140057
703 => 0.0046216901225533
704 => 0.0044703299397313
705 => 0.0045820919433018
706 => 0.0044852733527239
707 => 0.0042671139703348
708 => 0.0044281494110049
709 => 0.0043204695978541
710 => 0.0043518962919052
711 => 0.0045782232429849
712 => 0.0045509909854441
713 => 0.004586232048341
714 => 0.0045240324947472
715 => 0.0044659283037213
716 => 0.0043574725162976
717 => 0.0043253641044471
718 => 0.0043342377143429
719 => 0.0043253597071267
720 => 0.0042646796908233
721 => 0.00425157584708
722 => 0.0042297355334152
723 => 0.0042365047598655
724 => 0.0041954385805666
725 => 0.0042729389456092
726 => 0.004287323696292
727 => 0.004343721998976
728 => 0.0043495774578548
729 => 0.0045066459280501
730 => 0.004420135254095
731 => 0.0044781740831563
801 => 0.0044729825440024
802 => 0.0040571744190545
803 => 0.0041144691099662
804 => 0.0042036016689603
805 => 0.0041634475719498
806 => 0.0041066790733886
807 => 0.0040608354670661
808 => 0.0039913777157381
809 => 0.0040891381669143
810 => 0.004217682764546
811 => 0.0043528375609817
812 => 0.004515217193206
813 => 0.0044789759496008
814 => 0.0043498019867062
815 => 0.00435559663632
816 => 0.004391416880122
817 => 0.004345026409786
818 => 0.0043313449544344
819 => 0.0043895372582497
820 => 0.0043899379966642
821 => 0.004336560154067
822 => 0.0042772404500624
823 => 0.0042769918983366
824 => 0.0042664365299694
825 => 0.0044165253598648
826 => 0.0044990590406149
827 => 0.0045085213941033
828 => 0.0044984221488331
829 => 0.0045023089475129
830 => 0.0044542844171899
831 => 0.0045640542522762
901 => 0.0046647899080628
902 => 0.0046377906004086
903 => 0.0045973148000572
904 => 0.0045650738754986
905 => 0.0046301956632139
906 => 0.0046272958925182
907 => 0.0046639100699894
908 => 0.0046622490394056
909 => 0.0046499370686509
910 => 0.0046377910401079
911 => 0.0046859486703561
912 => 0.0046720800462325
913 => 0.004658189880305
914 => 0.0046303310260594
915 => 0.004634117507038
916 => 0.0045936486954041
917 => 0.0045749259714155
918 => 0.0042933811247227
919 => 0.0042181431419432
920 => 0.004241814542936
921 => 0.0042496077827705
922 => 0.0042168641162447
923 => 0.0042638101228849
924 => 0.0042564936374781
925 => 0.004284957802195
926 => 0.0042671746278503
927 => 0.0042679044555284
928 => 0.0043202009795036
929 => 0.004335382882899
930 => 0.0043276612442991
1001 => 0.0043330692152922
1002 => 0.0044576936242653
1003 => 0.0044399760185735
1004 => 0.0044305638936748
1005 => 0.0044331711165954
1006 => 0.0044650153250654
1007 => 0.0044739299648077
1008 => 0.004436158009799
1009 => 0.0044539714821382
1010 => 0.0045298189864922
1011 => 0.0045563613204192
1012 => 0.004641071709271
1013 => 0.0046050852304797
1014 => 0.0046711399697595
1015 => 0.0048741697185857
1016 => 0.005036363930538
1017 => 0.0048872034302673
1018 => 0.0051850524452094
1019 => 0.0054169706272455
1020 => 0.005408069221139
1021 => 0.0053676289217368
1022 => 0.0051035962373527
1023 => 0.0048606294246768
1024 => 0.005063881480396
1025 => 0.0050643996116852
1026 => 0.0050469400798436
1027 => 0.0049385004270739
1028 => 0.0050431666149837
1029 => 0.0050514746368883
1030 => 0.0050468243539031
1031 => 0.0049636839263748
1101 => 0.0048367438604585
1102 => 0.0048615476454869
1103 => 0.0049021767513471
1104 => 0.0048252573778345
1105 => 0.004800676977288
1106 => 0.0048463766185164
1107 => 0.0049936303844528
1108 => 0.0049657929129855
1109 => 0.0049650659641055
1110 => 0.0050841664719676
1111 => 0.0049989162118366
1112 => 0.0048618605006489
1113 => 0.0048272521260312
1114 => 0.0047044157111333
1115 => 0.0047892592604316
1116 => 0.0047923126287268
1117 => 0.0047458446838562
1118 => 0.0048656311182757
1119 => 0.0048645272651945
1120 => 0.004978246656818
1121 => 0.005195635422549
1122 => 0.0051313428674709
1123 => 0.0050565776209251
1124 => 0.00506470667624
1125 => 0.0051538623488268
1126 => 0.0050999567939548
1127 => 0.0051193416073297
1128 => 0.0051538330075901
1129 => 0.0051746425257405
1130 => 0.0050617125068185
1201 => 0.0050353831173405
1202 => 0.0049815224268286
1203 => 0.0049674711780314
1204 => 0.0050113395866132
1205 => 0.0049997818108456
1206 => 0.0047920560049448
1207 => 0.0047703475024527
1208 => 0.0047710132712315
1209 => 0.0047164262095321
1210 => 0.0046331678380445
1211 => 0.0048519658672148
1212 => 0.004834393323396
1213 => 0.0048149945950269
1214 => 0.0048173708285645
1215 => 0.0049123436372741
1216 => 0.0048572546119807
1217 => 0.0050037178146368
1218 => 0.0049736093832576
1219 => 0.004942728784223
1220 => 0.0049384601447904
1221 => 0.0049265737487709
1222 => 0.0048858108740872
1223 => 0.0048365872534376
1224 => 0.0048040855554078
1225 => 0.004431514981862
1226 => 0.0045006619131688
1227 => 0.0045802091546961
1228 => 0.0046076685437058
1229 => 0.0045606973586729
1230 => 0.0048876655827651
1231 => 0.0049474058280509
]
'min_raw' => 0.0020620317222768
'max_raw' => 0.0054169706272455
'avg_raw' => 0.0037395011747611
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.002062'
'max' => '$0.005416'
'avg' => '$0.003739'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -7.9949616256439E-5
'max_diff' => -0.00097689583420155
'year' => 2027
]
2 => [
'items' => [
101 => 0.0047664487283203
102 => 0.0047325990433904
103 => 0.0048898847624737
104 => 0.0047950222464693
105 => 0.0048377388316176
106 => 0.0047454089392499
107 => 0.0049330161523601
108 => 0.0049315868997243
109 => 0.0048586034565233
110 => 0.0049202885629477
111 => 0.0049095692577106
112 => 0.0048271711300869
113 => 0.0049356283199767
114 => 0.0049356821133897
115 => 0.0048654371361057
116 => 0.0047834063812407
117 => 0.0047687412197508
118 => 0.0047576929905554
119 => 0.0048350216445043
120 => 0.0049043542738344
121 => 0.0050333651080013
122 => 0.0050658014969326
123 => 0.0051924028823445
124 => 0.0051170179214413
125 => 0.005150435098211
126 => 0.0051867141707427
127 => 0.0052041076922332
128 => 0.0051757658823523
129 => 0.0053724299451061
130 => 0.0053890344176337
131 => 0.0053946017536441
201 => 0.0053282877382014
202 => 0.005387190104903
203 => 0.0053596316381647
204 => 0.0054313311126553
205 => 0.0054425745057603
206 => 0.0054330517517957
207 => 0.0054366205822321
208 => 0.0052688024985898
209 => 0.0052601002456421
210 => 0.0051414444092156
211 => 0.005189797539619
212 => 0.0050994036799556
213 => 0.0051280685040148
214 => 0.0051407036853316
215 => 0.0051341037836519
216 => 0.0051925313530636
217 => 0.0051428559830998
218 => 0.0050117545143786
219 => 0.0048806173271499
220 => 0.0048789710065863
221 => 0.0048444448999526
222 => 0.0048194888486283
223 => 0.0048242962694768
224 => 0.0048412382475889
225 => 0.0048185041500616
226 => 0.004823355622417
227 => 0.0049039223887087
228 => 0.0049200794791126
229 => 0.0048651713729374
301 => 0.004644707403442
302 => 0.0045906049923358
303 => 0.0046294927325415
304 => 0.0046109068974144
305 => 0.0037213617327419
306 => 0.0039303471743718
307 => 0.0038061751214303
308 => 0.0038633993163072
309 => 0.0037366518044512
310 => 0.0037971423605151
311 => 0.0037859719635715
312 => 0.0041220143693836
313 => 0.0041167675294281
314 => 0.0041192789140582
315 => 0.0039994039822845
316 => 0.0041903680035591
317 => 0.004284443747283
318 => 0.0042670328308646
319 => 0.0042714147834236
320 => 0.0041961183203556
321 => 0.0041200079484106
322 => 0.0040355898326213
323 => 0.0041924282573633
324 => 0.0041749905018532
325 => 0.004214986439087
326 => 0.0043167073685744
327 => 0.0043316861618416
328 => 0.0043518178118928
329 => 0.0043446020484179
330 => 0.004516510808948
331 => 0.0044956915237573
401 => 0.0045458600109498
402 => 0.0044426596265025
403 => 0.00432587859563
404 => 0.0043480748517394
405 => 0.004345937173785
406 => 0.0043187220799136
407 => 0.0042941535100356
408 => 0.0042532537633404
409 => 0.0043826666139077
410 => 0.0043774126885103
411 => 0.0044624676336743
412 => 0.0044474333459369
413 => 0.0043470306929123
414 => 0.0043506165933071
415 => 0.0043747334967873
416 => 0.0044582023750942
417 => 0.0044829816211703
418 => 0.0044715028871056
419 => 0.0044986721992124
420 => 0.0045201457157196
421 => 0.0045013689422737
422 => 0.0047672084575574
423 => 0.0046568133565452
424 => 0.0047106191606544
425 => 0.0047234515278922
426 => 0.0046905816890481
427 => 0.0046977099801127
428 => 0.0047085073987325
429 => 0.0047740672102407
430 => 0.0049461151255225
501 => 0.0050223139760311
502 => 0.0052515619773711
503 => 0.0050159867222355
504 => 0.0050020086615031
505 => 0.0050433031491708
506 => 0.0051778959943229
507 => 0.0052869708536554
508 => 0.0053231572771757
509 => 0.0053279399104166
510 => 0.0053958280465685
511 => 0.0054347402601719
512 => 0.0053875846412044
513 => 0.0053476251915285
514 => 0.0052044954027389
515 => 0.0052210630655208
516 => 0.0053351978327272
517 => 0.0054964199139105
518 => 0.0056347652318644
519 => 0.0055863215233381
520 => 0.0059559128234655
521 => 0.0059925562912281
522 => 0.0059874933488085
523 => 0.0060709726216507
524 => 0.0059052832653171
525 => 0.0058344478554044
526 => 0.0053562648781075
527 => 0.0054906147898977
528 => 0.0056859002767785
529 => 0.0056600535103069
530 => 0.005518231969738
531 => 0.0056346576475084
601 => 0.00559616367747
602 => 0.0055658018861843
603 => 0.0057048951379866
604 => 0.0055519563939942
605 => 0.0056843745958152
606 => 0.0055145468822888
607 => 0.005586542810118
608 => 0.005545674439431
609 => 0.0055721212839046
610 => 0.0054175135715095
611 => 0.0055009361402278
612 => 0.0054140429183828
613 => 0.0054140017196818
614 => 0.0054120835469936
615 => 0.0055143130371507
616 => 0.0055176467371545
617 => 0.0054420989894682
618 => 0.005431211378749
619 => 0.0054714685820057
620 => 0.0054243379403704
621 => 0.0054463900709548
622 => 0.0054250058769409
623 => 0.0054201918444483
624 => 0.0053818328145074
625 => 0.0053653066897054
626 => 0.005371787009066
627 => 0.0053496663382545
628 => 0.0053363378339509
629 => 0.005409432172014
630 => 0.0053703808158041
701 => 0.0054034469915995
702 => 0.0053657639109965
703 => 0.0052351379358898
704 => 0.0051600135562614
705 => 0.0049132731983191
706 => 0.0049832484577511
707 => 0.0050296421271491
708 => 0.0050143090196898
709 => 0.0050472504676373
710 => 0.0050492728050019
711 => 0.0050385632044759
712 => 0.0050261628590515
713 => 0.0050201270566811
714 => 0.0050651129825103
715 => 0.0050912288266109
716 => 0.0050342983525404
717 => 0.0050209603390077
718 => 0.0050785201915105
719 => 0.005113631668286
720 => 0.0053728750853617
721 => 0.0053536694956795
722 => 0.0054018717568751
723 => 0.0053964449219885
724 => 0.0054469685709439
725 => 0.0055295533840988
726 => 0.0053616353678779
727 => 0.0053907801293257
728 => 0.0053836345068696
729 => 0.0054616485391632
730 => 0.0054618920904565
731 => 0.0054151187810066
801 => 0.0054404753508697
802 => 0.0054263220091932
803 => 0.0054518990105415
804 => 0.0053534129933202
805 => 0.0054733583313871
806 => 0.0055413596089642
807 => 0.0055423038067693
808 => 0.0055745358726493
809 => 0.0056072855183388
810 => 0.0056701456113467
811 => 0.0056055323844621
812 => 0.0054892994792677
813 => 0.0054976911195928
814 => 0.0054295438098052
815 => 0.0054306893783946
816 => 0.0054245742434848
817 => 0.0054429262236749
818 => 0.0053574402209505
819 => 0.0053775036149229
820 => 0.0053494147458705
821 => 0.0053907190696101
822 => 0.0053462824451156
823 => 0.0053836310610341
824 => 0.0053997494855382
825 => 0.0054592268189635
826 => 0.0053374975946091
827 => 0.0050892834658065
828 => 0.0051414610849863
829 => 0.0050642862877559
830 => 0.0050714291090648
831 => 0.0050858587448802
901 => 0.0050390875741193
902 => 0.0050480100395715
903 => 0.0050476912663191
904 => 0.0050449442506454
905 => 0.0050327772627422
906 => 0.0050151327231173
907 => 0.0050854231382799
908 => 0.0050973668495147
909 => 0.0051239162400768
910 => 0.0052029092177659
911 => 0.0051950159565121
912 => 0.0052078901931053
913 => 0.005179785806908
914 => 0.0050727327909351
915 => 0.0050785462847501
916 => 0.0050060519237231
917 => 0.0051220623962758
918 => 0.0050945895851119
919 => 0.0050768776850333
920 => 0.0050720448289972
921 => 0.0051512336149991
922 => 0.005174928140903
923 => 0.0051601633024402
924 => 0.0051298801879938
925 => 0.00518803272013
926 => 0.0052035918844712
927 => 0.0052070750075673
928 => 0.0053101101448706
929 => 0.005212833527165
930 => 0.0052362489758932
1001 => 0.0054189296226357
1002 => 0.0052532634842463
1003 => 0.0053410205325469
1004 => 0.0053367252816982
1005 => 0.0053816188180722
1006 => 0.0053330427013714
1007 => 0.0053336448605559
1008 => 0.0053735072795044
1009 => 0.0053175277013163
1010 => 0.0053036663705144
1011 => 0.0052845170412882
1012 => 0.0053263289010894
1013 => 0.0053513932200524
1014 => 0.0055533932231805
1015 => 0.0056838944375205
1016 => 0.0056782290356335
1017 => 0.0057300002036925
1018 => 0.0057066768183124
1019 => 0.0056313594545218
1020 => 0.0057599170105383
1021 => 0.0057192360207381
1022 => 0.0057225897121098
1023 => 0.0057224648875494
1024 => 0.0057495141893727
1025 => 0.0057303472799988
1026 => 0.00569256733418
1027 => 0.0057176474253308
1028 => 0.005792126329752
1029 => 0.0060233111343674
1030 => 0.0061526852138214
1031 => 0.0060155226523373
1101 => 0.0061101355505692
1102 => 0.0060534015256527
1103 => 0.0060430912656343
1104 => 0.0061025151575622
1105 => 0.0061620430631464
1106 => 0.0061582513929069
1107 => 0.0061150371902445
1108 => 0.0060906265836804
1109 => 0.0062754718747374
1110 => 0.0064116627364309
1111 => 0.0064023754326986
1112 => 0.0064433665709803
1113 => 0.0065637178207836
1114 => 0.0065747212307747
1115 => 0.0065733350540263
1116 => 0.0065460619542764
1117 => 0.0066645633892924
1118 => 0.0067634193712172
1119 => 0.0065397490196799
1120 => 0.0066249197614854
1121 => 0.0066631556515118
1122 => 0.0067192972821479
1123 => 0.0068140176234609
1124 => 0.0069169090374565
1125 => 0.0069314590115424
1126 => 0.0069211351086481
1127 => 0.0068532754552484
1128 => 0.0069658604681922
1129 => 0.0070318101283313
1130 => 0.007071081641713
1201 => 0.0071706676654922
1202 => 0.0066633917833515
1203 => 0.0063043167007252
1204 => 0.006248241941466
1205 => 0.0063622721694505
1206 => 0.006392341031196
1207 => 0.0063802203107295
1208 => 0.0059760486595553
1209 => 0.0062461140613678
1210 => 0.0065366817259742
1211 => 0.0065478436133458
1212 => 0.006693307861731
1213 => 0.0067406769837863
1214 => 0.0068577947701713
1215 => 0.0068504690207452
1216 => 0.0068789853379789
1217 => 0.0068724299304807
1218 => 0.0070893659676994
1219 => 0.0073286786320649
1220 => 0.0073203919954656
1221 => 0.0072859879685442
1222 => 0.0073370838152809
1223 => 0.0075840801312098
1224 => 0.0075613406684743
1225 => 0.007583430119579
1226 => 0.0078746526961615
1227 => 0.0082532834716473
1228 => 0.0080773714625258
1229 => 0.0084590499050024
1230 => 0.0086992962526365
1231 => 0.0091147774689337
]
'min_raw' => 0.0037213617327419
'max_raw' => 0.0091147774689337
'avg_raw' => 0.0064180696008378
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.003721'
'max' => '$0.009114'
'avg' => '$0.006418'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0016593300104651
'max_diff' => 0.0036978068416882
'year' => 2028
]
3 => [
'items' => [
101 => 0.0090627571743651
102 => 0.0092245009629276
103 => 0.0089696299901244
104 => 0.0083843947186459
105 => 0.0082917789967438
106 => 0.0084771980173954
107 => 0.0089330325867439
108 => 0.0084628421646291
109 => 0.0085579610746457
110 => 0.0085305668221619
111 => 0.0085291070988651
112 => 0.0085848187999795
113 => 0.0085040060717862
114 => 0.0081747604791941
115 => 0.0083256517940226
116 => 0.0082673854109712
117 => 0.0083320363070133
118 => 0.0086809305288948
119 => 0.0085266760768015
120 => 0.0083641815421354
121 => 0.0085679857490307
122 => 0.0088274985391319
123 => 0.0088112586951167
124 => 0.008779746609999
125 => 0.0089573785838884
126 => 0.0092507745634688
127 => 0.0093300783177888
128 => 0.009388618727934
129 => 0.0093966904614447
130 => 0.0094798343331591
131 => 0.0090327487799969
201 => 0.0097422850348367
202 => 0.0098648023455041
203 => 0.0098417741689209
204 => 0.0099779470034111
205 => 0.0099378815011327
206 => 0.009879832874416
207 => 0.010095695781876
208 => 0.0098482263777116
209 => 0.0094969747140325
210 => 0.009304271104368
211 => 0.009558038762531
212 => 0.0097130058161003
213 => 0.0098154291807539
214 => 0.0098464224290122
215 => 0.0090674547587995
216 => 0.0086476343880824
217 => 0.0089167344324618
218 => 0.0092450550588975
219 => 0.0090309249423397
220 => 0.0090393184375068
221 => 0.0087340251637002
222 => 0.0092720667394139
223 => 0.0091936786074744
224 => 0.009600356374643
225 => 0.0095032994617152
226 => 0.0098349293937013
227 => 0.0097476001184801
228 => 0.010110099057409
301 => 0.010254709698415
302 => 0.010497533471513
303 => 0.010676155627475
304 => 0.010781045973953
305 => 0.010774748750984
306 => 0.011190376559892
307 => 0.010945295361909
308 => 0.010637415616038
309 => 0.010631847042783
310 => 0.010791302325859
311 => 0.011125476854767
312 => 0.011212123448071
313 => 0.011260547073182
314 => 0.011186384605686
315 => 0.010920366530402
316 => 0.010805501274237
317 => 0.010903369800456
318 => 0.010783685002828
319 => 0.010990294541157
320 => 0.0112740135667
321 => 0.011215426709872
322 => 0.011411273788415
323 => 0.011613954910994
324 => 0.01190379801926
325 => 0.011979573740621
326 => 0.012104828126536
327 => 0.012233756033566
328 => 0.012275164202599
329 => 0.012354225245484
330 => 0.012353808554762
331 => 0.012592064328918
401 => 0.012854867825979
402 => 0.012954070062204
403 => 0.013182180134362
404 => 0.012791549629723
405 => 0.013087847354731
406 => 0.013355115319502
407 => 0.013036467433737
408 => 0.013475649308829
409 => 0.013492701745831
410 => 0.01375017329898
411 => 0.013489176554282
412 => 0.013334197520412
413 => 0.013781616184207
414 => 0.013998107982061
415 => 0.013932898890678
416 => 0.013436654485489
417 => 0.013147818956744
418 => 0.012391880665808
419 => 0.013287322225526
420 => 0.013723465688876
421 => 0.013435524979283
422 => 0.013580745524691
423 => 0.014373021732517
424 => 0.014674669216372
425 => 0.014611928648405
426 => 0.014622530771594
427 => 0.014785294278593
428 => 0.015507077304126
429 => 0.015074568184427
430 => 0.01540520520063
501 => 0.015580573881823
502 => 0.015743466086318
503 => 0.015343454314688
504 => 0.014823044877137
505 => 0.014658209362963
506 => 0.013406894950405
507 => 0.013341758601048
508 => 0.013305195594321
509 => 0.013074671008846
510 => 0.01289354183066
511 => 0.012749501183272
512 => 0.012371495510346
513 => 0.012499061328485
514 => 0.011896599181757
515 => 0.012282033113287
516 => 0.011320488980151
517 => 0.012121291506665
518 => 0.011685451099506
519 => 0.011978106211023
520 => 0.011977085164909
521 => 0.011438214318219
522 => 0.011127404859796
523 => 0.011325464743588
524 => 0.011537800661027
525 => 0.011572251449247
526 => 0.011847550508741
527 => 0.011924380558712
528 => 0.011691581920447
529 => 0.011300563115228
530 => 0.011391387865491
531 => 0.011125564299131
601 => 0.010659718723841
602 => 0.010994297148898
603 => 0.011108536933587
604 => 0.011158991730603
605 => 0.010700886110031
606 => 0.01055693937809
607 => 0.010480303345835
608 => 0.011241427432256
609 => 0.011283123527851
610 => 0.011069800407555
611 => 0.012034041139421
612 => 0.011815803764849
613 => 0.012059628381701
614 => 0.011383146471385
615 => 0.011408988991363
616 => 0.011088731613915
617 => 0.01126805434568
618 => 0.01114131481871
619 => 0.011253566841055
620 => 0.011320850240417
621 => 0.011641055066779
622 => 0.01212494773143
623 => 0.011593227143611
624 => 0.011361548869119
625 => 0.011505280767606
626 => 0.011888057754043
627 => 0.01246798448249
628 => 0.012124656187137
629 => 0.012277019454522
630 => 0.012310304050276
701 => 0.012057146475986
702 => 0.012477318763354
703 => 0.012702492505629
704 => 0.012933474172061
705 => 0.013134029081065
706 => 0.012841215015092
707 => 0.013154568038931
708 => 0.012902060815972
709 => 0.012675535733261
710 => 0.012675879278306
711 => 0.012533776784918
712 => 0.012258435297912
713 => 0.012207658103211
714 => 0.012471807482495
715 => 0.01268363026964
716 => 0.012701077008953
717 => 0.012818352987764
718 => 0.012887755703986
719 => 0.013567996671381
720 => 0.013841595215715
721 => 0.014176146336772
722 => 0.014306472852691
723 => 0.014698708940968
724 => 0.014381946443827
725 => 0.014313412885041
726 => 0.01336197643433
727 => 0.013517774099833
728 => 0.013767221194543
729 => 0.013366089725044
730 => 0.013620515314704
731 => 0.013670744315574
801 => 0.013352459431206
802 => 0.013522469140225
803 => 0.013070973757435
804 => 0.01213478909698
805 => 0.012478361004504
806 => 0.012731345573496
807 => 0.012370305400772
808 => 0.013017455936195
809 => 0.0126394039533
810 => 0.012519579624417
811 => 0.01205210219699
812 => 0.01227273354788
813 => 0.012571140609094
814 => 0.012386759738808
815 => 0.012769377729578
816 => 0.013311266845001
817 => 0.013697449298705
818 => 0.013727095592254
819 => 0.013478806146737
820 => 0.01387669156774
821 => 0.013879589728651
822 => 0.01343077334835
823 => 0.013155875814435
824 => 0.01309341851634
825 => 0.013249449092456
826 => 0.013438899016693
827 => 0.013737608744545
828 => 0.013918112777046
829 => 0.014388771561868
830 => 0.014516118334196
831 => 0.014656033827856
901 => 0.014843004075725
902 => 0.01506750979648
903 => 0.014576304060586
904 => 0.014595820580195
905 => 0.014138416600137
906 => 0.01364961484908
907 => 0.014020554448134
908 => 0.014505508629871
909 => 0.014394259604754
910 => 0.014381741816817
911 => 0.014402793263982
912 => 0.014318915132097
913 => 0.013939537450251
914 => 0.013749016353457
915 => 0.013994837175436
916 => 0.014125480002092
917 => 0.014328095632983
918 => 0.014303118979779
919 => 0.014825035085625
920 => 0.015027835902433
921 => 0.014975950775157
922 => 0.014985498887261
923 => 0.015352660079062
924 => 0.015761018836804
925 => 0.016143500701112
926 => 0.016532577681465
927 => 0.016063530195717
928 => 0.015825376809281
929 => 0.016071090313579
930 => 0.01594071126953
1001 => 0.01668990792957
1002 => 0.016741780680802
1003 => 0.017490923165396
1004 => 0.018201948589503
1005 => 0.017755366259965
1006 => 0.018176473282209
1007 => 0.018631934860126
1008 => 0.019510594139905
1009 => 0.019214692606082
1010 => 0.018988036668541
1011 => 0.018773847902759
1012 => 0.019219540722843
1013 => 0.019792917415764
1014 => 0.019916417263686
1015 => 0.020116534197892
1016 => 0.019906135710709
1017 => 0.020159537513887
1018 => 0.021054157229503
1019 => 0.020812423085317
1020 => 0.02046912173987
1021 => 0.021175338085158
1022 => 0.021430915035171
1023 => 0.023224687917051
1024 => 0.025489400277486
1025 => 0.024551794489363
1026 => 0.023969792320325
1027 => 0.024106576635325
1028 => 0.024933572924004
1029 => 0.025199177884378
1030 => 0.024477172042562
1031 => 0.024732196711858
1101 => 0.026137407713154
1102 => 0.026891258330783
1103 => 0.025867427936398
1104 => 0.023042720483991
1105 => 0.020438211209854
1106 => 0.021129044351936
1107 => 0.021050725312672
1108 => 0.022560449229922
1109 => 0.020806657805925
1110 => 0.020836187155656
1111 => 0.02237713056469
1112 => 0.021966033281617
1113 => 0.021300108332403
1114 => 0.02044307319894
1115 => 0.018858764488579
1116 => 0.017455498082096
1117 => 0.020207626658163
1118 => 0.020088949869542
1119 => 0.019917088292704
1120 => 0.020299547634592
1121 => 0.022156661635822
1122 => 0.022113849147202
1123 => 0.021841497937727
1124 => 0.02204807392972
1125 => 0.021263894562226
1126 => 0.021465995440662
1127 => 0.020437798642278
1128 => 0.020902586536439
1129 => 0.021298679556544
1130 => 0.021378201094587
1201 => 0.02155736718027
1202 => 0.020026412594653
1203 => 0.02071376625713
1204 => 0.021117522137506
1205 => 0.019293338381201
1206 => 0.021081463889842
1207 => 0.019999762081384
1208 => 0.019632616240978
1209 => 0.020126929747299
1210 => 0.01993429529315
1211 => 0.019768679501347
1212 => 0.019676263043881
1213 => 0.020039232327532
1214 => 0.020022299376608
1215 => 0.019428411179252
1216 => 0.018653708235781
1217 => 0.018913723972367
1218 => 0.018819257817605
1219 => 0.01847690028637
1220 => 0.018707607926017
1221 => 0.017691688239479
1222 => 0.015943851221701
1223 => 0.017098525893341
1224 => 0.017054072174527
1225 => 0.017031656593685
1226 => 0.017899362696559
1227 => 0.017815952776153
1228 => 0.017664562953865
1229 => 0.018474119893563
1230 => 0.018178620720496
1231 => 0.019089279543527
]
'min_raw' => 0.0081747604791941
'max_raw' => 0.026891258330783
'avg_raw' => 0.017533009404988
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.008174'
'max' => '$0.026891'
'avg' => '$0.017533'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0044533987464522
'max_diff' => 0.017776480861849
'year' => 2029
]
4 => [
'items' => [
101 => 0.019689098342095
102 => 0.019536964892673
103 => 0.020101097371902
104 => 0.01891971420978
105 => 0.019312122307371
106 => 0.019392997072431
107 => 0.018464130086591
108 => 0.01782959967068
109 => 0.017787283726115
110 => 0.016687095428602
111 => 0.017274807136723
112 => 0.017791969118708
113 => 0.017544288662728
114 => 0.017465880429608
115 => 0.017866451087947
116 => 0.017897578858756
117 => 0.017187862385546
118 => 0.017335434914124
119 => 0.017950836890186
120 => 0.017319928363286
121 => 0.016094176153843
122 => 0.015790172658551
123 => 0.015749612988383
124 => 0.014925131398329
125 => 0.015810487625755
126 => 0.015424005906412
127 => 0.016644897027056
128 => 0.015947530566714
129 => 0.015917468492418
130 => 0.015872025257971
131 => 0.015162359894506
201 => 0.015317731507518
202 => 0.015834210412935
203 => 0.01601849590494
204 => 0.015999273418317
205 => 0.015831679384535
206 => 0.01590840307498
207 => 0.01566124933575
208 => 0.015573974206368
209 => 0.015298509891122
210 => 0.01489365344667
211 => 0.0149499512184
212 => 0.014147824665489
213 => 0.013710783547385
214 => 0.013589816326003
215 => 0.013428053902003
216 => 0.013608087822227
217 => 0.014145552341747
218 => 0.013497256101748
219 => 0.012385797670963
220 => 0.012452598216486
221 => 0.012602679209017
222 => 0.012323004272321
223 => 0.012058315416077
224 => 0.012288440901696
225 => 0.011817501312475
226 => 0.012659590008434
227 => 0.012636813869134
228 => 0.012950692460572
301 => 0.013146967185235
302 => 0.012694617489583
303 => 0.012580852764411
304 => 0.012645658322187
305 => 0.011574566808299
306 => 0.012863161432838
307 => 0.012874305252661
308 => 0.012778885101726
309 => 0.013465021958398
310 => 0.014912984737427
311 => 0.014368202895788
312 => 0.014157246900587
313 => 0.013756219399503
314 => 0.014290564734041
315 => 0.014249535349434
316 => 0.01406398491231
317 => 0.013951763428985
318 => 0.01415853495291
319 => 0.013926142148932
320 => 0.01388439801561
321 => 0.013631473985745
322 => 0.013541191614394
323 => 0.01347435014089
324 => 0.013400764246269
325 => 0.013563076393339
326 => 0.013195255714137
327 => 0.012751700032926
328 => 0.012714823177372
329 => 0.012816643417802
330 => 0.012771595541037
331 => 0.012714607505469
401 => 0.012605801825802
402 => 0.01257352150491
403 => 0.012678416887623
404 => 0.012559996116321
405 => 0.01273473241509
406 => 0.012687213810425
407 => 0.012421778747536
408 => 0.012090948382529
409 => 0.01208800329834
410 => 0.01201672643887
411 => 0.011925944641787
412 => 0.011900691222645
413 => 0.012269060375169
414 => 0.013031573496534
415 => 0.012881873925417
416 => 0.012990047207378
417 => 0.013522152691593
418 => 0.013691293024054
419 => 0.013571241222381
420 => 0.013406906911779
421 => 0.013414136787434
422 => 0.013975716874142
423 => 0.014010741935302
424 => 0.01409923896534
425 => 0.014212982658196
426 => 0.013590612265116
427 => 0.013384823197889
428 => 0.013287308921094
429 => 0.01298700269134
430 => 0.01331085721382
501 => 0.013122161052404
502 => 0.013147622611358
503 => 0.013131040737687
504 => 0.013140095561973
505 => 0.012659354627481
506 => 0.01283451135701
507 => 0.012543279321962
508 => 0.012153352319362
509 => 0.012152045147324
510 => 0.012247479228801
511 => 0.012190711302802
512 => 0.012037950273577
513 => 0.012059649256767
514 => 0.011869543331282
515 => 0.012082731558099
516 => 0.01208884503362
517 => 0.012006755953854
518 => 0.012335201831573
519 => 0.012469766375661
520 => 0.012415733584841
521 => 0.012465975291017
522 => 0.01288809461845
523 => 0.012956918487179
524 => 0.012987485503419
525 => 0.012946529751011
526 => 0.012473690857427
527 => 0.012494663273024
528 => 0.012340781602791
529 => 0.012210767807096
530 => 0.012215967677091
531 => 0.012282811668689
601 => 0.012574723300345
602 => 0.013189034120034
603 => 0.013212346766585
604 => 0.013240602374284
605 => 0.013125672617643
606 => 0.01309100870331
607 => 0.01313673935383
608 => 0.013367442198777
609 => 0.013960872551191
610 => 0.013751114630768
611 => 0.013580578176386
612 => 0.013730184623177
613 => 0.013707153883347
614 => 0.013512751261871
615 => 0.013507295027764
616 => 0.013134174242873
617 => 0.012996239984249
618 => 0.012880971793541
619 => 0.012755101938441
620 => 0.012680482069142
621 => 0.01279513210251
622 => 0.01282135392164
623 => 0.012570669619942
624 => 0.012536502275931
625 => 0.012741216488094
626 => 0.012651129395836
627 => 0.012743786204276
628 => 0.012765283378629
629 => 0.012761821838436
630 => 0.012667760567683
701 => 0.012727712416714
702 => 0.012585908421249
703 => 0.012431717874453
704 => 0.012333353912007
705 => 0.012247518308687
706 => 0.012295144890204
707 => 0.012125364823368
708 => 0.012071048762989
709 => 0.012707402079221
710 => 0.013177483115873
711 => 0.013170647951427
712 => 0.013129040645727
713 => 0.013067220629191
714 => 0.013362919679514
715 => 0.013259904043071
716 => 0.013334856525828
717 => 0.013353935078435
718 => 0.013411680111086
719 => 0.013432318996905
720 => 0.013369933949331
721 => 0.013160562109982
722 => 0.012638827392802
723 => 0.012395958473558
724 => 0.012315807684906
725 => 0.012318721013845
726 => 0.012238358396021
727 => 0.01226202878857
728 => 0.012230126799475
729 => 0.012169712150048
730 => 0.012291414455846
731 => 0.012305439512853
801 => 0.012277032740446
802 => 0.012283723563688
803 => 0.012048527620845
804 => 0.012066409057561
805 => 0.011966842945665
806 => 0.011948175499972
807 => 0.011696481039314
808 => 0.011250567818561
809 => 0.011497647028702
810 => 0.011199210087446
811 => 0.011086187495735
812 => 0.011621218866276
813 => 0.011567516556134
814 => 0.011475601545004
815 => 0.011339640086776
816 => 0.011289210659371
817 => 0.010982817422475
818 => 0.010964714075495
819 => 0.011116570837014
820 => 0.011046494166645
821 => 0.010948079981337
822 => 0.010591633778237
823 => 0.01019087023067
824 => 0.010202966763061
825 => 0.010330442191071
826 => 0.010701094190414
827 => 0.010556274041926
828 => 0.010451205362578
829 => 0.010431529157289
830 => 0.010677818061406
831 => 0.011026368459853
901 => 0.011189900508428
902 => 0.011027845214832
903 => 0.010841684819226
904 => 0.010853015539922
905 => 0.010928393748462
906 => 0.01093631493239
907 => 0.010815143652448
908 => 0.010849252657986
909 => 0.01079743795958
910 => 0.010479451251103
911 => 0.010473699879894
912 => 0.010395660813405
913 => 0.010393297821486
914 => 0.010260533901632
915 => 0.01024195931149
916 => 0.0099783484904254
917 => 0.010151857931138
918 => 0.010035476907962
919 => 0.0098600632545292
920 => 0.0098298218745599
921 => 0.0098289127821605
922 => 0.010009023382461
923 => 0.010149753233907
924 => 0.010037501405687
925 => 0.010011943840312
926 => 0.010284831774478
927 => 0.010250104297427
928 => 0.010220030526268
929 => 0.010995159594606
930 => 0.010381584452941
1001 => 0.010114030669531
1002 => 0.009782882055475
1003 => 0.0098907057140079
1004 => 0.0099134257431199
1005 => 0.0091170730203396
1006 => 0.0087939928198871
1007 => 0.0086831238701123
1008 => 0.00861931722206
1009 => 0.0086483947128109
1010 => 0.0083575846388758
1011 => 0.0085530138181149
1012 => 0.0083011968756507
1013 => 0.0082589789457633
1014 => 0.0087092588330224
1015 => 0.0087719126488376
1016 => 0.0085046120055553
1017 => 0.0086762622905858
1018 => 0.0086140195111163
1019 => 0.0083055135543708
1020 => 0.0082937308960393
1021 => 0.0081389334514531
1022 => 0.0078967054253675
1023 => 0.0077860007176007
1024 => 0.0077283447446134
1025 => 0.0077521347227604
1026 => 0.0077401057818239
1027 => 0.0076616088055241
1028 => 0.0077446051366202
1029 => 0.0075325838071215
1030 => 0.0074481552053432
1031 => 0.0074100207646486
1101 => 0.0072218396312261
1102 => 0.0075213194990311
1103 => 0.0075803208057367
1104 => 0.0076394383632429
1105 => 0.0081540163400637
1106 => 0.0081283094785239
1107 => 0.0083606869870935
1108 => 0.0083516572244253
1109 => 0.0082853793947152
1110 => 0.0080057641333421
1111 => 0.0081172137928627
1112 => 0.0077741890639811
1113 => 0.0080312065142734
1114 => 0.0079139144832653
1115 => 0.0079915499606044
1116 => 0.00785195437224
1117 => 0.0079292123346015
1118 => 0.0075943122043608
1119 => 0.007281587174914
1120 => 0.0074074368557761
1121 => 0.0075442498515299
1122 => 0.0078408952856272
1123 => 0.0076642157123505
1124 => 0.0077277563678952
1125 => 0.007514905808398
1126 => 0.0070757343063988
1127 => 0.0070782199694062
1128 => 0.0070106630016949
1129 => 0.0069522839181135
1130 => 0.0076845094866915
1201 => 0.0075934456624656
1202 => 0.0074483473767002
1203 => 0.0076425671981739
1204 => 0.0076939220016545
1205 => 0.0076953840007133
1206 => 0.0078370817689213
1207 => 0.0079127058932146
1208 => 0.007926034972895
1209 => 0.0081489994727532
1210 => 0.0082237342321328
1211 => 0.0085315561291584
1212 => 0.0079062897146247
1213 => 0.0078934127642853
1214 => 0.0076453002693571
1215 => 0.0074879434025703
1216 => 0.0076560746286507
1217 => 0.0078050159427568
1218 => 0.0076499282911587
1219 => 0.0076701794643784
1220 => 0.0074619869632346
1221 => 0.0075364059860258
1222 => 0.0076005056737786
1223 => 0.007565113593807
1224 => 0.0075121299370935
1225 => 0.0077928044535045
1226 => 0.0077769676973163
1227 => 0.0080383382596774
1228 => 0.0082420953038261
1229 => 0.008607264352869
1230 => 0.0082261914134997
1231 => 0.0082123036009614
]
'min_raw' => 0.0069522839181135
'max_raw' => 0.020101097371902
'avg_raw' => 0.013526690645008
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.006952'
'max' => '$0.020101'
'avg' => '$0.013526'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0012224765610805
'max_diff' => -0.0067901609588811
'year' => 2030
]
5 => [
'items' => [
101 => 0.0083480591961991
102 => 0.0082237134486585
103 => 0.0083022956688348
104 => 0.0085946035423222
105 => 0.0086007795470763
106 => 0.0084973235101129
107 => 0.0084910282008616
108 => 0.0085108980644454
109 => 0.00862727647608
110 => 0.0085866102831075
111 => 0.0086336702311573
112 => 0.0086925194168011
113 => 0.0089359446001614
114 => 0.0089946335877575
115 => 0.0088520497746502
116 => 0.0088649234965306
117 => 0.0088115932364153
118 => 0.0087600768733701
119 => 0.008875878134135
120 => 0.0090875072142624
121 => 0.0090861906807385
122 => 0.0091352845138465
123 => 0.0091658695651576
124 => 0.0090345761353046
125 => 0.0089491089402635
126 => 0.0089818825012612
127 => 0.0090342881390118
128 => 0.0089648880592442
129 => 0.0085365186176748
130 => 0.0086664585419011
131 => 0.0086448301847722
201 => 0.0086140287741225
202 => 0.0087446843727277
203 => 0.0087320823215058
204 => 0.0083546019612376
205 => 0.0083787670291699
206 => 0.0083560715190557
207 => 0.0084294053552991
208 => 0.0082197531808403
209 => 0.0082842407776749
210 => 0.0083246867938758
211 => 0.0083485098081392
212 => 0.0084345748712521
213 => 0.008424476129455
214 => 0.0084339471192827
215 => 0.0085615588875449
216 => 0.0092069754203445
217 => 0.0092421040181934
218 => 0.0090691179547041
219 => 0.0091382224750689
220 => 0.0090055569074658
221 => 0.0090946161917798
222 => 0.0091555482922469
223 => 0.0088802078468053
224 => 0.0088639039725709
225 => 0.0087306908469786
226 => 0.0088022720350948
227 => 0.0086883812179323
228 => 0.0087163260407324
301 => 0.0086381898799977
302 => 0.0087788194125657
303 => 0.0089360650815968
304 => 0.0089757915474136
305 => 0.0088712883191683
306 => 0.0087956210948203
307 => 0.0086627743751985
308 => 0.0088837014306118
309 => 0.0089483072342447
310 => 0.0088833620838289
311 => 0.0088683128733979
312 => 0.0088397946468247
313 => 0.0088743631499798
314 => 0.0089479553771633
315 => 0.0089132506418586
316 => 0.0089361737309461
317 => 0.0088488145535314
318 => 0.009034619598893
319 => 0.0093297227273464
320 => 0.0093306715321586
321 => 0.0092959666097825
322 => 0.0092817661032742
323 => 0.0093173754597029
324 => 0.0093366920747932
325 => 0.0094518462038444
326 => 0.0095754111722593
327 => 0.010152034964232
328 => 0.0099901213108434
329 => 0.010501736242585
330 => 0.010906357228707
331 => 0.011027685370514
401 => 0.010916069188982
402 => 0.010534236261348
403 => 0.010515501716288
404 => 0.011086121315877
405 => 0.01092489514296
406 => 0.010905717802709
407 => 0.010701703303065
408 => 0.010822301140042
409 => 0.010795924624032
410 => 0.010754288003126
411 => 0.01098438027516
412 => 0.011415092467927
413 => 0.011347961933491
414 => 0.01129785210363
415 => 0.011078285415933
416 => 0.011210513603922
417 => 0.011163429678843
418 => 0.011365732101179
419 => 0.011245892627734
420 => 0.01092367369613
421 => 0.010974988123035
422 => 0.010967232050639
423 => 0.011126851470957
424 => 0.011078937682975
425 => 0.010957876114547
426 => 0.011413620340477
427 => 0.011384026845428
428 => 0.011425983655393
429 => 0.011444454340697
430 => 0.011721857819907
501 => 0.011835501149418
502 => 0.011861300174823
503 => 0.011969252548368
504 => 0.011858614221427
505 => 0.012301246412981
506 => 0.012595570992061
507 => 0.012937444136466
508 => 0.01343701268728
509 => 0.013624855083653
510 => 0.01359092303606
511 => 0.01396969020979
512 => 0.014650326401462
513 => 0.013728499070531
514 => 0.014699185488373
515 => 0.014391877375598
516 => 0.013663255368444
517 => 0.013616340701073
518 => 0.014109771983793
519 => 0.015204155077864
520 => 0.01493002452519
521 => 0.015204603457244
522 => 0.014884292547884
523 => 0.014868386411442
524 => 0.015189046671323
525 => 0.015938286846818
526 => 0.015582350924288
527 => 0.015072029500274
528 => 0.015448842898285
529 => 0.015122412260494
530 => 0.014386872671367
531 => 0.014929814902722
601 => 0.01456676489472
602 => 0.014672722187855
603 => 0.015435799305063
604 => 0.015343983847469
605 => 0.015462801551478
606 => 0.015253091413903
607 => 0.015057189077154
608 => 0.014691522817713
609 => 0.014583267065422
610 => 0.014613185060721
611 => 0.014583252239549
612 => 0.014378665328038
613 => 0.014334484803977
614 => 0.014260848661614
615 => 0.014283671581203
616 => 0.014145214090548
617 => 0.014406511982192
618 => 0.01445501117343
619 => 0.014645161988533
620 => 0.014664904076958
621 => 0.015194471390392
622 => 0.01490279461317
623 => 0.015098476577492
624 => 0.015080972940773
625 => 0.013679046816715
626 => 0.013872219867311
627 => 0.014172736512996
628 => 0.014037354171456
629 => 0.013845955215106
630 => 0.013691390295692
701 => 0.013457208637704
702 => 0.013786814824261
703 => 0.014220211909874
704 => 0.014675895742263
705 => 0.015223370009292
706 => 0.015101180126194
707 => 0.014665661091656
708 => 0.014685198157399
709 => 0.014805968610267
710 => 0.01464955990065
711 => 0.014603431918723
712 => 0.014799631333894
713 => 0.014800982451437
714 => 0.014621015328398
715 => 0.014421014804777
716 => 0.014420176795281
717 => 0.014384588633878
718 => 0.014890623602738
719 => 0.015168891669705
720 => 0.015200794655131
721 => 0.015166744344596
722 => 0.015179848957712
723 => 0.015017930900763
724 => 0.015388027563641
725 => 0.015727664860265
726 => 0.015636634809477
727 => 0.015500167822662
728 => 0.015391465294524
729 => 0.015611027948464
730 => 0.015601251169107
731 => 0.015724698424772
801 => 0.015719098144189
802 => 0.015677587475195
803 => 0.015636636291954
804 => 0.015799003104594
805 => 0.015752244070085
806 => 0.01570541240588
807 => 0.015611484333748
808 => 0.015624250718731
809 => 0.015487807294865
810 => 0.015424682323759
811 => 0.014475434216301
812 => 0.014221764104411
813 => 0.014301573885543
814 => 0.014327849337751
815 => 0.01421745177997
816 => 0.014375733519023
817 => 0.014351065477653
818 => 0.014447034396301
819 => 0.014387077182416
820 => 0.014389537847388
821 => 0.014565859229197
822 => 0.014617046076461
823 => 0.014591012032814
824 => 0.014609245384589
825 => 0.015029425280441
826 => 0.014969689135847
827 => 0.014937955499617
828 => 0.014946745933725
829 => 0.015054110905873
830 => 0.015084167236165
831 => 0.014956816452699
901 => 0.015016875818387
902 => 0.015272600974821
903 => 0.015362090306782
904 => 0.015647697297086
905 => 0.015526366371346
906 => 0.015749074536622
907 => 0.016433603509874
908 => 0.01698045261951
909 => 0.016477547578794
910 => 0.017481766327825
911 => 0.01826369467057
912 => 0.018233682958406
913 => 0.01809733566552
914 => 0.017207131035945
915 => 0.016387951463607
916 => 0.01707322996007
917 => 0.017074976875886
918 => 0.017016110845297
919 => 0.016650498984969
920 => 0.017003388345067
921 => 0.017031399420965
922 => 0.017015720667208
923 => 0.016735406911118
924 => 0.016307419616208
925 => 0.016391047309177
926 => 0.016528031176218
927 => 0.016268692138081
928 => 0.01618581760149
929 => 0.016339897132538
930 => 0.016836373485323
1001 => 0.01674251750672
1002 => 0.016740066547817
1003 => 0.017141622225406
1004 => 0.016854195021392
1005 => 0.016392102122198
1006 => 0.016275417570895
1007 => 0.015861266021902
1008 => 0.016147321971949
1009 => 0.016157616616335
1010 => 0.016000946695916
1011 => 0.016404815022783
1012 => 0.016401093305051
1013 => 0.016784506173544
1014 => 0.017517447574805
1015 => 0.017300680736596
1016 => 0.017048604487924
1017 => 0.017076012165471
1018 => 0.017376606740248
1019 => 0.017194860398431
1020 => 0.017260217650129
1021 => 0.01737650781422
1022 => 0.017446668557538
1023 => 0.01706591711422
1024 => 0.016977145739336
1025 => 0.016795550660842
1026 => 0.016748175894495
1027 => 0.016896081296823
1028 => 0.016857113448885
1029 => 0.016156751391338
1030 => 0.016083559659546
1031 => 0.016085804345466
1101 => 0.0159017602558
1102 => 0.015621048843416
1103 => 0.016358741674754
1104 => 0.016299494616393
1105 => 0.01623409044932
1106 => 0.016242102086596
1107 => 0.01656230954195
1108 => 0.01637657304698
1109 => 0.01687038396047
1110 => 0.016768871281971
1111 => 0.016664755186311
1112 => 0.016650363170437
1113 => 0.016610287356376
1114 => 0.016472852478407
1115 => 0.016306891604704
1116 => 0.0161973098606
1117 => 0.014941162159844
1118 => 0.015174295866429
1119 => 0.015442494945049
1120 => 0.015535076192249
1121 => 0.015376709562487
1122 => 0.016479105758206
1123 => 0.016680524166118
1124 => 0.016070414670355
1125 => 0.015956288094304
1126 => 0.016486587877532
1127 => 0.016166752281734
1128 => 0.016310774230938
1129 => 0.015999477552553
1130 => 0.016632008369872
1201 => 0.016627189544823
1202 => 0.016381120770529
1203 => 0.016589096413556
1204 => 0.016552955527551
1205 => 0.016275144487414
1206 => 0.016640815475366
1207 => 0.016640996843614
1208 => 0.016404160998353
1209 => 0.016127588581122
1210 => 0.01607814396527
1211 => 0.016040894089175
1212 => 0.016301613044877
1213 => 0.016535372845314
1214 => 0.016970341879956
1215 => 0.017079703429874
1216 => 0.017506548839817
1217 => 0.017252383180922
1218 => 0.017365051525514
1219 => 0.017487368951479
1220 => 0.01754601242356
1221 => 0.017450456032785
1222 => 0.018113522651006
1223 => 0.01816950578942
1224 => 0.018188276451478
1225 => 0.017964694118516
1226 => 0.018163287560283
1227 => 0.018070372265604
1228 => 0.018312112049746
1229 => 0.018350019934588
1230 => 0.018317913304739
1231 => 0.018329945865723
]
'min_raw' => 0.0082197531808403
'max_raw' => 0.018350019934588
'avg_raw' => 0.013284886557714
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.008219'
'max' => '$0.01835'
'avg' => '$0.013284'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0012674692627267
'max_diff' => -0.0017510774373134
'year' => 2031
]
6 => [
'items' => [
101 => 0.017764135480039
102 => 0.017734795226654
103 => 0.017334738789856
104 => 0.017497764744919
105 => 0.017192995535966
106 => 0.017289640991596
107 => 0.017332241387565
108 => 0.017309989358262
109 => 0.017506981987816
110 => 0.01733949800976
111 => 0.016897480254754
112 => 0.016455342072306
113 => 0.016449791387583
114 => 0.016333384208532
115 => 0.016249243139116
116 => 0.016265451694151
117 => 0.016322572756206
118 => 0.016245923159149
119 => 0.016262280236915
120 => 0.016533916714459
121 => 0.016588391472808
122 => 0.016403264959276
123 => 0.01565995529382
124 => 0.015477545237466
125 => 0.015608657968625
126 => 0.015545994527872
127 => 0.012546830899118
128 => 0.013251439906471
129 => 0.012832785160563
130 => 0.013025720528856
131 => 0.012598382443405
201 => 0.01280233057649
202 => 0.012764668803303
203 => 0.01389765923623
204 => 0.013879969148997
205 => 0.013888436457617
206 => 0.013484269755741
207 => 0.014128118286151
208 => 0.014445301224275
209 => 0.014386599103979
210 => 0.01440137316297
211 => 0.014147505880705
212 => 0.013890894447835
213 => 0.013606272876567
214 => 0.014135064575694
215 => 0.014076271965527
216 => 0.014211121060338
217 => 0.014554080276033
218 => 0.014604582323319
219 => 0.014672457587013
220 => 0.014648129136669
221 => 0.015227731525083
222 => 0.015157537851506
223 => 0.015326684408728
224 => 0.014978737107343
225 => 0.014585001708365
226 => 0.014659837935531
227 => 0.01465263060506
228 => 0.014560873015976
229 => 0.014478038367309
301 => 0.014340142015797
302 => 0.014776466476802
303 => 0.014758752500507
304 => 0.015045521186474
305 => 0.014994832035707
306 => 0.014656317481145
307 => 0.014668407594686
308 => 0.014749719418558
309 => 0.01503114056938
310 => 0.015114685527557
311 => 0.015075984174239
312 => 0.015167587406908
313 => 0.015239986867045
314 => 0.015176679664419
315 => 0.01607297615052
316 => 0.015700771359918
317 => 0.015882181385073
318 => 0.015925446607143
319 => 0.015814623650581
320 => 0.015838657181587
321 => 0.015875061432315
322 => 0.016096100914055
323 => 0.01667617247243
324 => 0.016933082216953
325 => 0.017706007859055
326 => 0.016911749439027
327 => 0.01686462143135
328 => 0.017003848679611
329 => 0.017457637854013
330 => 0.017825391357617
331 => 0.017947396410971
401 => 0.017963521392855
402 => 0.01819241098369
403 => 0.018323606228618
404 => 0.018164617766968
405 => 0.018029891692506
406 => 0.0175473196166
407 => 0.017603178648386
408 => 0.017987991984657
409 => 0.018531563487533
410 => 0.018998004385976
411 => 0.018834673040448
412 => 0.020080775912868
413 => 0.020204321922795
414 => 0.020187251858944
415 => 0.020468708055668
416 => 0.019910074822728
417 => 0.019671248292637
418 => 0.018059020999011
419 => 0.018511991106623
420 => 0.019170409760039
421 => 0.019083265582316
422 => 0.018605104356625
423 => 0.018997641657809
424 => 0.018867856550261
425 => 0.018765489651149
426 => 0.019234452260781
427 => 0.018718808607568
428 => 0.019165265820152
429 => 0.018592679827005
430 => 0.018835419124276
501 => 0.018697628559167
502 => 0.018786795941769
503 => 0.018265525245063
504 => 0.018546790259875
505 => 0.018253823695733
506 => 0.018253684791437
507 => 0.018247217538296
508 => 0.018591891401795
509 => 0.01860313120411
510 => 0.01834841669821
511 => 0.018311708358522
512 => 0.01844743832997
513 => 0.01828853408114
514 => 0.018362884379036
515 => 0.018290786075921
516 => 0.018274555229268
517 => 0.01814522508168
518 => 0.018089506098093
519 => 0.018111354947258
520 => 0.018036773561201
521 => 0.017991835578375
522 => 0.018238278242439
523 => 0.018106613868498
524 => 0.0182180987888
525 => 0.018091047651598
526 => 0.017650633056511
527 => 0.017397345965577
528 => 0.016565443621913
529 => 0.016801370094605
530 => 0.016957789590083
531 => 0.01690609294776
601 => 0.017017157339414
602 => 0.017023975791034
603 => 0.01698786762514
604 => 0.016946058994777
605 => 0.016925708865679
606 => 0.017077382055429
607 => 0.017165433447164
608 => 0.016973488379077
609 => 0.016928518335221
610 => 0.017122585396635
611 => 0.017240966191988
612 => 0.018115023472456
613 => 0.018050270485951
614 => 0.018212787774947
615 => 0.018194490822237
616 => 0.018364834832139
617 => 0.018643275295578
618 => 0.018077127980228
619 => 0.018175391578271
620 => 0.018151299613269
621 => 0.018414329369913
622 => 0.018415150520102
623 => 0.018257451041684
624 => 0.018342942487316
625 => 0.018295223507699
626 => 0.018381458153474
627 => 0.018049405670339
628 => 0.018453809751947
629 => 0.018683080806996
630 => 0.018686264235818
701 => 0.018794936896303
702 => 0.018905354613252
703 => 0.01911729180558
704 => 0.018899443799987
705 => 0.018507556445002
706 => 0.018535849446244
707 => 0.018306086033402
708 => 0.018309948397882
709 => 0.018289330793588
710 => 0.018351205776093
711 => 0.018062983749466
712 => 0.018130628883026
713 => 0.018035925299913
714 => 0.018175185711177
715 => 0.018025364529228
716 => 0.018151287995394
717 => 0.018205632388962
718 => 0.01840616437118
719 => 0.017995745792407
720 => 0.017158874527392
721 => 0.017334795013381
722 => 0.017074594796347
723 => 0.017098677317085
724 => 0.017147327841682
725 => 0.016989635574003
726 => 0.017019718289222
727 => 0.017018643522945
728 => 0.017009381767811
729 => 0.016968359918623
730 => 0.016908870121375
731 => 0.017145859163616
801 => 0.017186128219927
802 => 0.017275641343827
803 => 0.017541971683219
804 => 0.017515359001812
805 => 0.017558765389337
806 => 0.017464009489087
807 => 0.017103072771531
808 => 0.017122673371814
809 => 0.016878253572216
810 => 0.01726939098002
811 => 0.017176764479091
812 => 0.017117047571371
813 => 0.017100753259826
814 => 0.017367743780616
815 => 0.017447631528999
816 => 0.017397850845274
817 => 0.017295749210618
818 => 0.017491814532796
819 => 0.017544273341678
820 => 0.017556016934381
821 => 0.017903407093482
822 => 0.017575432185251
823 => 0.017654379005453
824 => 0.018270299560301
825 => 0.01771174460828
826 => 0.018007623623627
827 => 0.017993141885506
828 => 0.018144503577758
829 => 0.017980725808825
830 => 0.017982756030557
831 => 0.018117154959147
901 => 0.017928415902916
902 => 0.01788168145835
903 => 0.017817118157901
904 => 0.017958089762431
905 => 0.01804259586375
906 => 0.018723652977486
907 => 0.019163646932937
908 => 0.01914454563493
909 => 0.019319095742588
910 => 0.019240459320392
911 => 0.018986521569882
912 => 0.019419962345593
913 => 0.019282803548226
914 => 0.019294110752833
915 => 0.019293689898113
916 => 0.019384888507732
917 => 0.019320265934587
918 => 0.019192888209547
919 => 0.019277447487898
920 => 0.019528558314105
921 => 0.020308014023674
922 => 0.020744207765163
923 => 0.020281754612735
924 => 0.020600748604785
925 => 0.020409465878736
926 => 0.020374704117245
927 => 0.020575055917723
928 => 0.020775758407506
929 => 0.020762974526568
930 => 0.020617274825172
1001 => 0.020534972760847
1002 => 0.021158191565132
1003 => 0.021617368563874
1004 => 0.021586055770921
1005 => 0.021724260255548
1006 => 0.022130032896916
1007 => 0.022167131661934
1008 => 0.022162458070247
1009 => 0.022070504910294
1010 => 0.022470040771956
1011 => 0.02280334061692
1012 => 0.022049220410547
1013 => 0.022336379512975
1014 => 0.022465294485744
1015 => 0.022654579913117
1016 => 0.022973936157017
1017 => 0.023320841742952
1018 => 0.02336989799643
1019 => 0.023335090237029
1020 => 0.023106296677782
1021 => 0.023485884909357
1022 => 0.023708238792974
1023 => 0.02384064544219
1024 => 0.024176406674236
1025 => 0.022466090620728
1026 => 0.021255443909831
1027 => 0.021066383943974
1028 => 0.02145084481896
1029 => 0.021552224085676
1030 => 0.021511358230382
1031 => 0.020148665290084
1101 => 0.021059209647659
1102 => 0.022038878815666
1103 => 0.022076511898238
1104 => 0.022566954767658
1105 => 0.022726663069874
1106 => 0.023121533863574
1107 => 0.023096834587916
1108 => 0.023192979342415
1109 => 0.023170877328351
1110 => 0.023902292323824
1111 => 0.024709151680009
1112 => 0.02468121270616
1113 => 0.024565217127382
1114 => 0.024737490342053
1115 => 0.025570255665939
1116 => 0.025493587979708
1117 => 0.025568064106344
1118 => 0.026549941355803
1119 => 0.02782652145051
1120 => 0.027233421829972
1121 => 0.02852027734672
1122 => 0.029330284681233
1123 => 0.030731108609951
1124 => 0.030555718554872
1125 => 0.031101049030601
1126 => 0.030241733751272
1127 => 0.028268572173661
1128 => 0.027956311801044
1129 => 0.028581464974714
1130 => 0.030118343050626
1201 => 0.028533063214819
1202 => 0.02885376326093
1203 => 0.028761401626075
1204 => 0.028756480067065
1205 => 0.028944315957039
1206 => 0.028671850201771
1207 => 0.027561775699153
1208 => 0.028070516301993
1209 => 0.027874067123506
1210 => 0.028092042133294
1211 => 0.029268363361384
1212 => 0.028748283706449
1213 => 0.028200422037816
1214 => 0.028887562150519
1215 => 0.02976252764095
1216 => 0.029707773873023
1217 => 0.029601528677945
1218 => 0.030200427279782
1219 => 0.03118963230919
1220 => 0.031457010453691
1221 => 0.031654383533657
1222 => 0.031681597946738
1223 => 0.031961923315143
1224 => 0.03045454315814
1225 => 0.032846794179572
1226 => 0.033259869846373
1227 => 0.033182228741247
1228 => 0.033641344960014
1229 => 0.033506261321798
1230 => 0.033310546323997
1231 => 0.034038343187564
]
'min_raw' => 0.012546830899118
'max_raw' => 0.034038343187564
'avg_raw' => 0.023292587043341
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.012546'
'max' => '$0.034038'
'avg' => '$0.023292'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0043270777182782
'max_diff' => 0.015688323252976
'year' => 2032
]
7 => [
'items' => [
101 => 0.033203982813663
102 => 0.032019713305961
103 => 0.031369999631841
104 => 0.032225595008829
105 => 0.032748077249393
106 => 0.033093404774293
107 => 0.033197900674676
108 => 0.030571556788767
109 => 0.029156103097973
110 => 0.030063392685563
111 => 0.031170348600205
112 => 0.030448393962143
113 => 0.030476693217114
114 => 0.029447375629579
115 => 0.031261420366961
116 => 0.030997129307242
117 => 0.032368271792586
118 => 0.032041037634353
119 => 0.033159151103707
120 => 0.032864714355163
121 => 0.034086904836631
122 => 0.034574469709175
123 => 0.035393167013589
124 => 0.035995404083413
125 => 0.036349049209774
126 => 0.036327817682877
127 => 0.037729135858819
128 => 0.036902827488794
129 => 0.035864789430112
130 => 0.035846014596599
131 => 0.036383629216303
201 => 0.037510321971835
202 => 0.037802457010632
203 => 0.037965720643524
204 => 0.037715676706501
205 => 0.036818778192893
206 => 0.036431501962096
207 => 0.036761472531208
208 => 0.036357946879879
209 => 0.037054545363374
210 => 0.03801112386662
211 => 0.037813594188421
212 => 0.038473906287336
213 => 0.039157259842854
214 => 0.040134486118574
215 => 0.040389969253632
216 => 0.040812273160728
217 => 0.041246962600737
218 => 0.041386573133659
219 => 0.041653132959611
220 => 0.041651728057751
221 => 0.042455024034804
222 => 0.043341084373499
223 => 0.043675551639012
224 => 0.044444640673427
225 => 0.043127602654085
226 => 0.044126591120798
227 => 0.045027703724077
228 => 0.043953360129936
301 => 0.045434092484506
302 => 0.045491585966422
303 => 0.046359669283953
304 => 0.045479700536995
305 => 0.044957177904011
306 => 0.046465681166768
307 => 0.047195598378208
308 => 0.046975741373859
309 => 0.045302618715083
310 => 0.044328789564069
311 => 0.041780090838251
312 => 0.044799134574574
313 => 0.046269622711824
314 => 0.045298810506051
315 => 0.045788431713869
316 => 0.048459646263514
317 => 0.049476671815685
318 => 0.049265137610379
319 => 0.049300883408926
320 => 0.049849651936558
321 => 0.052283193800425
322 => 0.050824959106537
323 => 0.051939724891003
324 => 0.052530992643497
325 => 0.053080195083723
326 => 0.051731527467742
327 => 0.049976930715212
328 => 0.049421176270725
329 => 0.045202282364805
330 => 0.044982670615274
331 => 0.044859395885345
401 => 0.044082166150702
402 => 0.043471476480414
403 => 0.042985833381147
404 => 0.041711360863365
405 => 0.042141457925583
406 => 0.040110214735326
407 => 0.041409732145614
408 => 0.038167818967882
409 => 0.040867780596267
410 => 0.039398314234128
411 => 0.040385021375134
412 => 0.040381578846872
413 => 0.038564738164498
414 => 0.037516822375402
415 => 0.038184595101706
416 => 0.03890050047217
417 => 0.039016653709933
418 => 0.039944843709781
419 => 0.040203881587361
420 => 0.03941898472497
421 => 0.038100637523114
422 => 0.038406859509807
423 => 0.037510616796615
424 => 0.035939985915225
425 => 0.037068040434824
426 => 0.037453207844871
427 => 0.037623319715651
428 => 0.036078784631979
429 => 0.035593458175201
430 => 0.035335074441896
501 => 0.037901257439253
502 => 0.038041838736678
503 => 0.037322604942856
504 => 0.04057360989148
505 => 0.039837807346263
506 => 0.040659879065271
507 => 0.038379073074181
508 => 0.038466202934554
509 => 0.037386432826834
510 => 0.037991031936892
511 => 0.037563720773042
512 => 0.037942186303564
513 => 0.038169036982088
514 => 0.039248629910157
515 => 0.040880107813332
516 => 0.039087374727955
517 => 0.038306255250246
518 => 0.038790857381034
519 => 0.040081416715445
520 => 0.042036680169594
521 => 0.040879124851394
522 => 0.041392828245047
523 => 0.041505049583487
524 => 0.040651511146873
525 => 0.042068151349227
526 => 0.042827340342433
527 => 0.043606111157435
528 => 0.044282296035439
529 => 0.043295052968386
530 => 0.044351544565867
531 => 0.04350019883417
601 => 0.042736453702332
602 => 0.042737611988437
603 => 0.0422585035107
604 => 0.041330170463531
605 => 0.041158971606448
606 => 0.042049569681022
607 => 0.042763744996879
608 => 0.042822567896562
609 => 0.043217972047073
610 => 0.043451968150359
611 => 0.045745448064837
612 => 0.046667904659101
613 => 0.047795867121357
614 => 0.048235272068887
615 => 0.049557723425559
616 => 0.048489736550798
617 => 0.048258670872491
618 => 0.045050836451746
619 => 0.045576119158437
620 => 0.046417147454091
621 => 0.045064704698571
622 => 0.045922518337538
623 => 0.046091868920847
624 => 0.045018749211257
625 => 0.045591948814915
626 => 0.044069700609439
627 => 0.040913288664387
628 => 0.04207166533803
629 => 0.042924620475203
630 => 0.041707348325847
701 => 0.04388926153863
702 => 0.042614632883553
703 => 0.042210636792859
704 => 0.040634504008057
705 => 0.041378378011569
706 => 0.042384478252569
707 => 0.041762825275339
708 => 0.043052848544757
709 => 0.044879865530893
710 => 0.046181906635956
711 => 0.046281861184494
712 => 0.045444735983917
713 => 0.046786234460302
714 => 0.046796005812156
715 => 0.045282790050611
716 => 0.044355953822285
717 => 0.04414537468113
718 => 0.044671442662209
719 => 0.045310186308746
720 => 0.046317307011447
721 => 0.046925888959414
722 => 0.048512747912788
723 => 0.04894210644676
724 => 0.049413841302221
725 => 0.050044224546758
726 => 0.050801161258772
727 => 0.049145026825317
728 => 0.049210828133779
729 => 0.047668658680088
730 => 0.046020629449348
731 => 0.047271278205736
801 => 0.048906335087881
802 => 0.04853125123254
803 => 0.048489046636546
804 => 0.048560023060429
805 => 0.048277222082595
806 => 0.046998123740945
807 => 0.046355768561348
808 => 0.047184570625312
809 => 0.047625042036573
810 => 0.048308174782295
811 => 0.048223964252202
812 => 0.049983640842081
813 => 0.05066739795505
814 => 0.050492463625936
815 => 0.050524655752522
816 => 0.051762565345056
817 => 0.053139375407478
818 => 0.054428939717026
819 => 0.055740739920774
820 => 0.054159313574722
821 => 0.053356362805015
822 => 0.054184803039925
823 => 0.053745220990141
824 => 0.056271189836705
825 => 0.056446082439125
826 => 0.05897186862939
827 => 0.061369140488977
828 => 0.059863456985557
829 => 0.061283248711808
830 => 0.062818869221066
831 => 0.065781330328873
901 => 0.064783677648402
902 => 0.064019491330372
903 => 0.063297338952355
904 => 0.064800023412547
905 => 0.066733202964613
906 => 0.067149591324365
907 => 0.067824299539758
908 => 0.067114926350668
909 => 0.067969288222034
910 => 0.070985561053586
911 => 0.070170537509124
912 => 0.069013073054415
913 => 0.071394130769003
914 => 0.072255826299785
915 => 0.078303656808266
916 => 0.085939292648641
917 => 0.082778089272438
918 => 0.080815828325433
919 => 0.081277006193431
920 => 0.084065281919751
921 => 0.084960787587597
922 => 0.082526494483076
923 => 0.083386327960863
924 => 0.088124094960431
925 => 0.090665754949936
926 => 0.08721383929371
927 => 0.077690140903145
928 => 0.068908856044361
929 => 0.071238048215321
930 => 0.070973990106383
1001 => 0.076064129698948
1002 => 0.070151099467135
1003 => 0.070250659731427
1004 => 0.075446058020216
1005 => 0.074060014828442
1006 => 0.07181480236877
1007 => 0.068925248580018
1008 => 0.063583641150135
1009 => 0.058852430487744
1010 => 0.068131424129435
1011 => 0.06773129705085
1012 => 0.067151853745548
1013 => 0.068441342119183
1014 => 0.07470273163389
1015 => 0.074558386339436
1016 => 0.073640135221735
1017 => 0.074336620601417
1018 => 0.071692705114254
1019 => 0.072374102336133
1020 => 0.068907465043975
1021 => 0.070474529879592
1022 => 0.071809985151207
1023 => 0.072078097568737
1024 => 0.072682168535592
1025 => 0.067520448262351
1026 => 0.069837909124891
1027 => 0.071199200264915
1028 => 0.065048837370089
1029 => 0.071077627365409
1030 => 0.067430594196185
1031 => 0.06619273636195
1101 => 0.067859348860378
1102 => 0.067209868348907
1103 => 0.066651483143919
1104 => 0.06633989460526
1105 => 0.067563670886797
1106 => 0.067506580260534
1107 => 0.0655042447392
1108 => 0.062892279677256
1109 => 0.063768940886875
1110 => 0.063450441650678
1111 => 0.06229615933148
1112 => 0.063074006246041
1113 => 0.059648762093631
1114 => 0.053755807558108
1115 => 0.057648873830354
1116 => 0.057498995013713
1117 => 0.0574234193179
1118 => 0.060348951025044
1119 => 0.060067728654902
1120 => 0.059557307299357
1121 => 0.062286785043008
1122 => 0.061290488949919
1123 => 0.064360838751938
1124 => 0.066383169709321
1125 => 0.065870241162976
1126 => 0.067772253203169
1127 => 0.063789137390538
1128 => 0.065112168688625
1129 => 0.065384843605518
1130 => 0.062253103711338
1201 => 0.060113740112593
1202 => 0.059971068951087
1203 => 0.056261707293328
1204 => 0.058243218349982
1205 => 0.059986866079338
1206 => 0.059151794129507
1207 => 0.058887435297255
1208 => 0.060237987238794
1209 => 0.060342936691347
1210 => 0.057950078051099
1211 => 0.058447629134385
1212 => 0.060522499862671
1213 => 0.058395347715602
1214 => 0.054262638562177
1215 => 0.053237669552954
1216 => 0.053100919793196
1217 => 0.050321122548864
1218 => 0.05330616288323
1219 => 0.052003112783172
1220 => 0.056119432436318
1221 => 0.053768212726706
1222 => 0.053666856344348
1223 => 0.053513641306665
1224 => 0.051120954986491
1225 => 0.051644801227461
1226 => 0.05338614591648
1227 => 0.054007477319174
1228 => 0.053942667363455
1229 => 0.053377612377516
1230 => 0.053636291656529
1231 => 0.052802995568993
]
'min_raw' => 0.029156103097973
'max_raw' => 0.090665754949936
'avg_raw' => 0.059910929023954
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.029156'
'max' => '$0.090665'
'avg' => '$0.05991'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.016609272198854
'max_diff' => 0.056627411762372
'year' => 2033
]
8 => [
'items' => [
101 => 0.052508741376926
102 => 0.05157999420577
103 => 0.050214992437125
104 => 0.050404804305098
105 => 0.047700378629271
106 => 0.046226863986346
107 => 0.045819014553796
108 => 0.045273621247388
109 => 0.045880618178991
110 => 0.047692717331125
111 => 0.04550694129537
112 => 0.041759581596431
113 => 0.041984804299527
114 => 0.042490812844164
115 => 0.041547869268814
116 => 0.040655452310002
117 => 0.041431336451613
118 => 0.039843530746602
119 => 0.042682691577783
120 => 0.042605900233956
121 => 0.043664163819292
122 => 0.044325917756958
123 => 0.04280078917602
124 => 0.0424172234623
125 => 0.042635719924925
126 => 0.039024460104628
127 => 0.043369046848064
128 => 0.043406619014634
129 => 0.043084903313737
130 => 0.04539826163055
131 => 0.050280169233579
201 => 0.048443399219041
202 => 0.047732146352745
203 => 0.046380054133992
204 => 0.048181636736188
205 => 0.048043303301406
206 => 0.047417707047925
207 => 0.04703934448184
208 => 0.047736489111081
209 => 0.046952960547319
210 => 0.046812217287343
211 => 0.045959466262061
212 => 0.045655072943736
213 => 0.045429712249094
214 => 0.045181612267779
215 => 0.045728859003897
216 => 0.044488725903548
217 => 0.042993246956275
218 => 0.042868914063115
219 => 0.043212208112588
220 => 0.043060326050932
221 => 0.042868186910237
222 => 0.042501340964669
223 => 0.042392505609042
224 => 0.042746167715421
225 => 0.042346903817101
226 => 0.042936039448102
227 => 0.042775827154831
228 => 0.041880894308215
301 => 0.040765476634755
302 => 0.040755547077793
303 => 0.040515232169698
304 => 0.04020915500265
305 => 0.040124011336874
306 => 0.041365993653323
307 => 0.04393685987897
308 => 0.043432137323261
309 => 0.043796851095809
310 => 0.045590881886257
311 => 0.046161150326152
312 => 0.045756387295063
313 => 0.045202322693411
314 => 0.045226698723958
315 => 0.047120105194564
316 => 0.047238194633636
317 => 0.047536568549074
318 => 0.04792006335087
319 => 0.045821698118087
320 => 0.045127865910197
321 => 0.044799089717753
322 => 0.043786586297426
323 => 0.044878484430766
324 => 0.044242282148209
325 => 0.044328127571891
326 => 0.0442722206271
327 => 0.044302749599367
328 => 0.042681897974469
329 => 0.043272451117128
330 => 0.042290541977791
331 => 0.040975875864692
401 => 0.0409714686429
402 => 0.041293231311595
403 => 0.041101834285681
404 => 0.040586789810213
405 => 0.040659949447012
406 => 0.040018994046467
407 => 0.04073777303751
408 => 0.040758385047058
409 => 0.040481615983351
410 => 0.041588994191439
411 => 0.042042687946828
412 => 0.041860512620127
413 => 0.042029906040264
414 => 0.043453110824136
415 => 0.043685155302685
416 => 0.043788214132059
417 => 0.043650128953377
418 => 0.042055919611099
419 => 0.042126629574531
420 => 0.041607806779668
421 => 0.041169456190208
422 => 0.04118698791494
423 => 0.041412357099511
424 => 0.042396557546257
425 => 0.04446774936465
426 => 0.044546349580136
427 => 0.044641615334236
428 => 0.04425412163558
429 => 0.044137249828251
430 => 0.044291433909292
501 => 0.045069264658188
502 => 0.047070056523336
503 => 0.046362843049797
504 => 0.045787867487376
505 => 0.046292276067918
506 => 0.046214626320629
507 => 0.045559184309564
508 => 0.045540788235331
509 => 0.04428278545861
510 => 0.043817730475394
511 => 0.043429095722656
512 => 0.043004716718234
513 => 0.042753130619099
514 => 0.043139681211207
515 => 0.043228089905154
516 => 0.042382890279762
517 => 0.042267692693941
518 => 0.042957900952937
519 => 0.04265416603171
520 => 0.042966564930456
521 => 0.043039044154673
522 => 0.043027373330236
523 => 0.042710239188741
524 => 0.042912371033454
525 => 0.042434268962306
526 => 0.041914404768542
527 => 0.041582763801605
528 => 0.041293363072161
529 => 0.041453939416925
530 => 0.040881514067922
531 => 0.04069838367813
601 => 0.042843893312576
602 => 0.044428804347656
603 => 0.044405759113513
604 => 0.044265477177416
605 => 0.044057046675527
606 => 0.045054016668741
607 => 0.04470669225815
608 => 0.044959399786781
609 => 0.045023724458919
610 => 0.045218415868129
611 => 0.04528800131263
612 => 0.04507766576915
613 => 0.04437175399491
614 => 0.04261268896958
615 => 0.041793839451784
616 => 0.041523605471893
617 => 0.041533427963815
618 => 0.041262479787082
619 => 0.041342286168175
620 => 0.041234726384614
621 => 0.041031034176055
622 => 0.041441361997037
623 => 0.041488648455936
624 => 0.041392873039467
625 => 0.041415431617166
626 => 0.040622452075016
627 => 0.040682740587345
628 => 0.040347046489605
629 => 0.040284107893131
630 => 0.039435502446274
701 => 0.037932074889841
702 => 0.038765119697349
703 => 0.037758918713705
704 => 0.037377855154766
705 => 0.039181750775241
706 => 0.039000689687221
707 => 0.038690791809895
708 => 0.038232388260952
709 => 0.038062361925587
710 => 0.037029335735701
711 => 0.036968299037422
712 => 0.037480294711183
713 => 0.037244026324438
714 => 0.036912216027612
715 => 0.03571043276758
716 => 0.034359230486542
717 => 0.034400014790052
718 => 0.034829807095638
719 => 0.036079486189519
720 => 0.035591214947872
721 => 0.03523696855979
722 => 0.035170628859909
723 => 0.036001009095482
724 => 0.037176171098855
725 => 0.03772753081807
726 => 0.037181150081372
727 => 0.036553497310281
728 => 0.036591699626194
729 => 0.036845842519027
730 => 0.036872549343677
731 => 0.036464011913444
801 => 0.036579012807033
802 => 0.036404315933769
803 => 0.035332201545016
804 => 0.035312810395435
805 => 0.035049696234255
806 => 0.035041729242023
807 => 0.034594106416952
808 => 0.034531480889454
809 => 0.033642698601513
810 => 0.034227697794917
811 => 0.033835311049818
812 => 0.033243891670278
813 => 0.033141930746326
814 => 0.033138865677831
815 => 0.033746121141665
816 => 0.03422060166126
817 => 0.033842136785244
818 => 0.033755967669209
819 => 0.034676028391677
820 => 0.034558942278203
821 => 0.034457546459059
822 => 0.037070948230743
823 => 0.035002236802172
824 => 0.034100160541395
825 => 0.032983669869048
826 => 0.033347204861799
827 => 0.033423807026211
828 => 0.030738848221786
829 => 0.029649560769221
830 => 0.029275758364433
831 => 0.029060629795687
901 => 0.029158666585879
902 => 0.028178180117895
903 => 0.02883708324013
904 => 0.027988064837314
905 => 0.027845724139137
906 => 0.029363874216569
907 => 0.02957511593094
908 => 0.028673893149778
909 => 0.029252624069999
910 => 0.029042768193366
911 => 0.028002618821
912 => 0.027962892765796
913 => 0.027440982373762
914 => 0.026624293671993
915 => 0.026251045020601
916 => 0.026056653882263
917 => 0.026136863454549
918 => 0.026096307040348
919 => 0.025831649004269
920 => 0.026111476929179
921 => 0.025396632213917
922 => 0.025111975288405
923 => 0.024983402359141
924 => 0.02434893652942
925 => 0.025358653812742
926 => 0.025557580837639
927 => 0.025756899810227
928 => 0.027491835385766
929 => 0.027405162907289
930 => 0.02818863990151
1001 => 0.028158195426237
1002 => 0.027934735095999
1003 => 0.026991992720166
1004 => 0.027367753028406
1005 => 0.02621122120576
1006 => 0.027077773483806
1007 => 0.026682315212194
1008 => 0.026944068644378
1009 => 0.026473412371955
1010 => 0.026733892986035
1011 => 0.025604753814948
1012 => 0.024550379544404
1013 => 0.024974690529975
1014 => 0.025435965097137
1015 => 0.026436125889319
1016 => 0.025840438372643
1017 => 0.026054670129079
1018 => 0.025337029606982
1019 => 0.023856332226017
1020 => 0.02386471281239
1021 => 0.023636939779074
1022 => 0.023440110622882
1023 => 0.0259088602497
1024 => 0.025601832208449
1025 => 0.025112623207552
1026 => 0.025767448895645
1027 => 0.025940595201058
1028 => 0.025945524432958
1029 => 0.026423268351494
1030 => 0.026678240366457
1031 => 0.026723180289206
1101 => 0.027474920667362
1102 => 0.027726894126425
1103 => 0.028764737143685
1104 => 0.026656607772377
1105 => 0.026613192235268
1106 => 0.025776663635957
1107 => 0.025246123973279
1108 => 0.025812990140557
1109 => 0.026315156179816
1110 => 0.025792267334579
1111 => 0.025860545578981
1112 => 0.025158610025838
1113 => 0.025409518956949
1114 => 0.025625635529505
1115 => 0.025506308660885
1116 => 0.025327670563074
1117 => 0.026273984291223
1118 => 0.026220589562047
1119 => 0.027101818661358
1120 => 0.027788799761568
1121 => 0.029019992705705
1122 => 0.027735178684958
1123 => 0.027688354955369
1124 => 0.028146064422866
1125 => 0.02772682405349
1126 => 0.02799176949525
1127 => 0.028977305898997
1128 => 0.02899812873022
1129 => 0.028649319478528
1130 => 0.028628094403863
1201 => 0.028695087036205
1202 => 0.029087464976312
1203 => 0.028950356067483
1204 => 0.029109021967953
1205 => 0.02930743610607
1206 => 0.030128161107173
1207 => 0.030326035126387
1208 => 0.029845303845612
1209 => 0.029888708497746
1210 => 0.029708901802368
1211 => 0.029535210787603
1212 => 0.029925642823258
1213 => 0.030639165042378
1214 => 0.030634726257685
1215 => 0.030800249543631
1216 => 0.030903369179506
1217 => 0.030460704214142
1218 => 0.030172545598932
1219 => 0.030283043948013
1220 => 0.030459733214534
1221 => 0.030225746000238
1222 => 0.028781468520188
1223 => 0.029219570046833
1224 => 0.029146648530729
1225 => 0.029042799424237
1226 => 0.029483313897018
1227 => 0.029440825201476
1228 => 0.028168123811994
1229 => 0.028249598025679
1230 => 0.02817307852878
1231 => 0.028420328677679
]
'min_raw' => 0.023440110622882
'max_raw' => 0.052508741376926
'avg_raw' => 0.037974425999904
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.02344'
'max' => '$0.0525087'
'avg' => '$0.037974'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0057159924750901
'max_diff' => -0.038157013573009
'year' => 2034
]
9 => [
'items' => [
101 => 0.027713471734044
102 => 0.027930896169152
103 => 0.028067262736624
104 => 0.028147583692483
105 => 0.028437758061639
106 => 0.028403709448598
107 => 0.028435641552046
108 => 0.028865893538311
109 => 0.031041960440188
110 => 0.031160398960436
111 => 0.03057716436988
112 => 0.030810155085014
113 => 0.030362863861426
114 => 0.030663133456411
115 => 0.030868570287279
116 => 0.029940240751817
117 => 0.029885271101536
118 => 0.029436133747958
119 => 0.02967747472133
120 => 0.029293483879664
121 => 0.02938770180078
122 => 0.02912426027957
123 => 0.029598402567064
124 => 0.030128567318744
125 => 0.030262507871859
126 => 0.029910167941647
127 => 0.029655050611841
128 => 0.029207148621574
129 => 0.029952019613535
130 => 0.030169842591116
131 => 0.029950875482164
201 => 0.029900136018494
202 => 0.029803984826523
203 => 0.029920534948406
204 => 0.0301686562804
205 => 0.030051646842314
206 => 0.030128933637611
207 => 0.029834396071734
208 => 0.030460850754665
209 => 0.031455811555688
210 => 0.031459010517356
211 => 0.031342000448545
212 => 0.031294122449404
213 => 0.031414181880769
214 => 0.031479309197189
215 => 0.03186755938309
216 => 0.032284167301131
217 => 0.034228294674355
218 => 0.033682391487505
219 => 0.035407336949684
220 => 0.036771544854132
221 => 0.037180611155095
222 => 0.036804289406266
223 => 0.035516913032025
224 => 0.035453748205351
225 => 0.037377632024753
226 => 0.036834046726311
227 => 0.036769388984735
228 => 0.036081539855349
301 => 0.036488143882588
302 => 0.03639921361731
303 => 0.03625883284295
304 => 0.037034605002641
305 => 0.038486781231923
306 => 0.038260445948167
307 => 0.038091497158235
308 => 0.037351212741005
309 => 0.037797029308688
310 => 0.03763828256799
311 => 0.038320359309199
312 => 0.037916312157557
313 => 0.036829928533044
314 => 0.037002938706015
315 => 0.036976788566419
316 => 0.037514956586293
317 => 0.037353411904879
318 => 0.036945244374673
319 => 0.038481817851443
320 => 0.038382041316732
321 => 0.038523501630861
322 => 0.038585776835945
323 => 0.039521062033794
324 => 0.039904218453564
325 => 0.039991201668949
326 => 0.04035517063335
327 => 0.039982145789547
328 => 0.041474511126965
329 => 0.042466846994417
330 => 0.043619496169599
331 => 0.045303826417431
401 => 0.045937150171541
402 => 0.045822745904022
403 => 0.047099785874933
404 => 0.049394598315656
405 => 0.046286593109491
406 => 0.049559330138408
407 => 0.048523219380619
408 => 0.046066619412737
409 => 0.045908443336217
410 => 0.047572081356179
411 => 0.051261870365228
412 => 0.050337620067702
413 => 0.051263382107611
414 => 0.050183431513311
415 => 0.050129802863765
416 => 0.051210931317741
417 => 0.053737046879699
418 => 0.052536984066238
419 => 0.050816399755669
420 => 0.052086852435336
421 => 0.050986268749363
422 => 0.048506345670889
423 => 0.050336913310918
424 => 0.049112864861595
425 => 0.049470107273102
426 => 0.052042875050112
427 => 0.051733312824483
428 => 0.052133915009137
429 => 0.051426862638807
430 => 0.050766364232994
501 => 0.049533494909288
502 => 0.049168503082261
503 => 0.049269373692221
504 => 0.049168453095797
505 => 0.048478674039837
506 => 0.048329716318377
507 => 0.048081446923289
508 => 0.048158395990131
509 => 0.047691576893593
510 => 0.048572560978507
511 => 0.048736079387872
512 => 0.049377186136897
513 => 0.049443747966371
514 => 0.051229221136821
515 => 0.050245812518195
516 => 0.050905567922985
517 => 0.050846553189722
518 => 0.046119861383104
519 => 0.046771157810101
520 => 0.04778437066243
521 => 0.047327919645834
522 => 0.046682604701454
523 => 0.04616147828427
524 => 0.045371918474323
525 => 0.04648320874467
526 => 0.047944437277631
527 => 0.049480807133361
528 => 0.05132665484808
529 => 0.05091468312619
530 => 0.049446300294279
531 => 0.049512170875464
601 => 0.049919356889233
602 => 0.049392014004652
603 => 0.049236490293033
604 => 0.049897990319486
605 => 0.049902545706614
606 => 0.049295773986387
607 => 0.048621458257407
608 => 0.048618632849882
609 => 0.048498644879027
610 => 0.050204777106771
611 => 0.051142977322606
612 => 0.051250540465366
613 => 0.05113573746608
614 => 0.051179920584137
615 => 0.050634002550374
616 => 0.051881809288592
617 => 0.053026920146878
618 => 0.052720005975132
619 => 0.052259898001265
620 => 0.051893399838277
621 => 0.052633670655411
622 => 0.052600707561219
623 => 0.053016918602504
624 => 0.052998036865519
625 => 0.052858080746824
626 => 0.052720010973406
627 => 0.053267442018311
628 => 0.053109790668852
629 => 0.052951894443302
630 => 0.052635209390261
701 => 0.052678252148551
702 => 0.052218223618812
703 => 0.052005393371482
704 => 0.0488049371028
705 => 0.047949670609883
706 => 0.04821875485911
707 => 0.048307344380725
708 => 0.047935131306953
709 => 0.048468789241048
710 => 0.048385619217303
711 => 0.048709185126858
712 => 0.048507035194167
713 => 0.048515331497917
714 => 0.049109811347053
715 => 0.049282391376355
716 => 0.049194615780561
717 => 0.049256090799084
718 => 0.050672756653969
719 => 0.050471352071828
720 => 0.050364359901708
721 => 0.050393997464029
722 => 0.050755985963611
723 => 0.050857322979654
724 => 0.050427950921852
725 => 0.050630445266482
726 => 0.051492640485557
727 => 0.05179436001621
728 => 0.052757303924465
729 => 0.052348228237275
730 => 0.053099104365493
731 => 0.055407041591098
801 => 0.05725078154402
802 => 0.055555202087537
803 => 0.058940995712211
804 => 0.061577321712268
805 => 0.061476135129355
806 => 0.061016430711926
807 => 0.058015043651213
808 => 0.055253122529785
809 => 0.057563586825225
810 => 0.057569476673866
811 => 0.057371005741838
812 => 0.056138319828538
813 => 0.057328110944057
814 => 0.05742255224212
815 => 0.057369690229173
816 => 0.056424592829631
817 => 0.054981603783726
818 => 0.055263560389268
819 => 0.055725411060905
820 => 0.054851031387353
821 => 0.05457161410112
822 => 0.05509110399754
823 => 0.056765008683824
824 => 0.056448566699152
825 => 0.056440303120089
826 => 0.057794176122803
827 => 0.056825095236941
828 => 0.055267116765014
829 => 0.054873706653641
830 => 0.053477365791073
831 => 0.054441823398444
901 => 0.054476532510743
902 => 0.053948308935703
903 => 0.055309979196922
904 => 0.055297431165748
905 => 0.056590134420903
906 => 0.059061297527589
907 => 0.058330452998391
908 => 0.057480560326592
909 => 0.057572967224984
910 => 0.058586442820687
911 => 0.057973672340127
912 => 0.058194028877324
913 => 0.058586109284676
914 => 0.058822661129241
915 => 0.057538931054877
916 => 0.057239632166636
917 => 0.056627371680929
918 => 0.056467644348591
919 => 0.056966317738965
920 => 0.056834934918992
921 => 0.054473615344254
922 => 0.054226844310436
923 => 0.054234412425735
924 => 0.053613894927876
925 => 0.052667456802378
926 => 0.055154639687304
927 => 0.054954884093542
928 => 0.054734369377884
929 => 0.054761381172313
930 => 0.05584098296421
1001 => 0.055214759403712
1002 => 0.056879677375318
1003 => 0.056537420292371
1004 => 0.056186385606701
1005 => 0.056137861920363
1006 => 0.056002743515252
1007 => 0.055539372228782
1008 => 0.054979823556073
1009 => 0.054610361055074
1010 => 0.050375171380542
1011 => 0.05116119794917
1012 => 0.052065449867801
1013 => 0.05237759400655
1014 => 0.051843649857503
1015 => 0.055560455598215
1016 => 0.056239551823074
1017 => 0.054182525061624
1018 => 0.053797739342406
1019 => 0.055585682085907
1020 => 0.054507334044465
1021 => 0.054992914101498
1022 => 0.053943355616283
1023 => 0.056075977428764
1024 => 0.056059730423672
1025 => 0.055230092371169
1026 => 0.055931296772028
1027 => 0.055809445251586
1028 => 0.054872785933618
1029 => 0.056105671199833
1030 => 0.056106282695543
1031 => 0.055307774107896
1101 => 0.05437529089353
1102 => 0.054208584919071
1103 => 0.054082994361114
1104 => 0.054962026523082
1105 => 0.05575016401084
1106 => 0.057216692479705
1107 => 0.057585412580635
1108 => 0.059024551681651
1109 => 0.058167614417407
1110 => 0.058547483607451
1111 => 0.058959885349021
1112 => 0.059157605909502
1113 => 0.058835430866469
1114 => 0.061071006263632
1115 => 0.061259757323413
1116 => 0.061323043921067
1117 => 0.060569220475467
1118 => 0.061238792129735
1119 => 0.060925521726585
1120 => 0.061740564286555
1121 => 0.061868373366944
1122 => 0.061760123622795
1123 => 0.061800692242239
1124 => 0.059893023023285
1125 => 0.059794100310525
1126 => 0.058445282102812
1127 => 0.058994935492416
1128 => 0.057967384826124
1129 => 0.05829323172735
1130 => 0.058436861936627
1201 => 0.058361837666244
1202 => 0.059026012070371
1203 => 0.058461328144996
1204 => 0.0569710344233
1205 => 0.055480334672075
1206 => 0.055461620150996
1207 => 0.055069145219535
1208 => 0.054785457729458
1209 => 0.054840106004401
1210 => 0.055032693653188
1211 => 0.054774264185205
1212 => 0.054829413214906
1213 => 0.055745254564
1214 => 0.055928920015079
1215 => 0.055304753049588
1216 => 0.052798632616278
1217 => 0.052183624375817
1218 => 0.052625680102917
1219 => 0.052414405937398
1220 => 0.042302516368137
1221 => 0.044678154830657
1222 => 0.043266631125287
1223 => 0.043917126189805
1224 => 0.042476325998914
1225 => 0.043163951368815
1226 => 0.043036972071052
1227 => 0.046856928418531
1228 => 0.046797285054343
1229 => 0.046825833176523
1230 => 0.045463156923132
1231 => 0.047633937195477
]
'min_raw' => 0.027713471734044
'max_raw' => 0.061868373366944
'avg_raw' => 0.044790922550494
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.027713'
'max' => '$0.061868'
'avg' => '$0.04479'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0042733611111612
'max_diff' => 0.009359631990018
'year' => 2035
]
10 => [
'items' => [
101 => 0.048703341616367
102 => 0.048505423319338
103 => 0.048555235090718
104 => 0.047699303824114
105 => 0.046834120462157
106 => 0.045874498962983
107 => 0.047657357095647
108 => 0.047459133705698
109 => 0.047913786843716
110 => 0.04907009778408
111 => 0.049240368962447
112 => 0.049469215152892
113 => 0.049387190083998
114 => 0.051341360003082
115 => 0.051104697131852
116 => 0.05167498655896
117 => 0.050501857939437
118 => 0.049174351552055
119 => 0.049426667116843
120 => 0.04940236709896
121 => 0.049092999981052
122 => 0.048813717179742
123 => 0.048348790003003
124 => 0.049819888386481
125 => 0.049760164478653
126 => 0.050727025124941
127 => 0.050556123114127
128 => 0.04941479765909
129 => 0.049455560320997
130 => 0.049729708812191
131 => 0.050678539870387
201 => 0.050960217529804
202 => 0.050829733215048
203 => 0.051138579909525
204 => 0.051382679744146
205 => 0.051169235090526
206 => 0.054191161270839
207 => 0.052936246832815
208 => 0.053547883398269
209 => 0.053693755115158
210 => 0.053320107779699
211 => 0.053401138507452
212 => 0.053523877980447
213 => 0.054269128025616
214 => 0.056224879783978
215 => 0.057091068924504
216 => 0.059697041690797
217 => 0.057019143974319
218 => 0.056860248606065
219 => 0.057329662994113
220 => 0.058859644878159
221 => 0.060099551491287
222 => 0.06051090004679
223 => 0.060565266549024
224 => 0.061336983785083
225 => 0.061779317713118
226 => 0.061243277014447
227 => 0.060789038648125
228 => 0.059162013202099
229 => 0.059350345827719
301 => 0.060647770857768
302 => 0.062480460130664
303 => 0.064053098185628
304 => 0.063502415150749
305 => 0.067703737985239
306 => 0.068120281983413
307 => 0.068062729071346
308 => 0.069011678289246
309 => 0.067128207341861
310 => 0.066322987021323
311 => 0.060887250138748
312 => 0.062414470481926
313 => 0.06463437494124
314 => 0.064340562261835
315 => 0.062728408305265
316 => 0.064051875222287
317 => 0.063614295670882
318 => 0.063269158523498
319 => 0.064850298703796
320 => 0.063111770125899
321 => 0.06461703178877
322 => 0.0626865181362
323 => 0.063504930624467
324 => 0.063040360113968
325 => 0.063340994169881
326 => 0.061583493621979
327 => 0.062531798256713
328 => 0.061544041031438
329 => 0.061543572705903
330 => 0.061521767910409
331 => 0.062683859905559
401 => 0.0627217556838
402 => 0.061862967943561
403 => 0.061739203213406
404 => 0.062196826288508
405 => 0.061661069519237
406 => 0.061911746739566
407 => 0.061668662276872
408 => 0.061613938844178
409 => 0.061177893222043
410 => 0.060990032778703
411 => 0.061063697699104
412 => 0.060812241348907
413 => 0.060660729802339
414 => 0.061491628450306
415 => 0.061047712821053
416 => 0.061423592013477
417 => 0.060995230233974
418 => 0.059510341677875
419 => 0.05865636656685
420 => 0.055851549733621
421 => 0.05664699230816
422 => 0.057174371558025
423 => 0.057000072719091
424 => 0.057374534069818
425 => 0.057397522955503
426 => 0.0572757817532
427 => 0.057134821036947
428 => 0.057066209155892
429 => 0.057577585904619
430 => 0.057874457319406
501 => 0.057227301121173
502 => 0.057075681478604
503 => 0.057729992125491
504 => 0.058129121242109
505 => 0.061076066387937
506 => 0.060857747173026
507 => 0.061405685559469
508 => 0.061343996105955
509 => 0.061918322828378
510 => 0.062857104290956
511 => 0.06094829909011
512 => 0.061279601671459
513 => 0.061198373929406
514 => 0.062085197118082
515 => 0.062087965683277
516 => 0.061556270881562
517 => 0.061844511259335
518 => 0.061683623387923
519 => 0.061974369516864
520 => 0.060854831386808
521 => 0.062218307982543
522 => 0.062991311351833
523 => 0.063002044504366
524 => 0.063368441966475
525 => 0.063740723008289
526 => 0.064455284049204
527 => 0.063720794288686
528 => 0.062399518710652
529 => 0.062494910539692
530 => 0.061720247151726
531 => 0.061733269383232
601 => 0.061663755690882
602 => 0.061872371514371
603 => 0.060900610828579
604 => 0.061128681119206
605 => 0.06080938137675
606 => 0.061278907576177
607 => 0.060773775001054
608 => 0.061198334758929
609 => 0.061381560676049
610 => 0.062057668254794
611 => 0.060673913361947
612 => 0.057852343463463
613 => 0.058445471664353
614 => 0.057568188466023
615 => 0.057649384366081
616 => 0.05781341300643
617 => 0.057281742516227
618 => 0.057383168490895
619 => 0.057379544841356
620 => 0.057348318187285
621 => 0.057210010158695
622 => 0.057009436153829
623 => 0.057808461255791
624 => 0.05794423119064
625 => 0.058246030937473
626 => 0.059143982271325
627 => 0.059054255757923
628 => 0.059200603424
629 => 0.058881127290661
630 => 0.057664203947627
701 => 0.057730288739948
702 => 0.056906210320761
703 => 0.058224957399514
704 => 0.057912660684654
705 => 0.057711320960974
706 => 0.057656383551968
707 => 0.058556560733494
708 => 0.058825907854755
709 => 0.058658068803998
710 => 0.058313826014248
711 => 0.058974873936812
712 => 0.059151742473518
713 => 0.059191336816225
714 => 0.060362586991643
715 => 0.059256796690065
716 => 0.059522971406265
717 => 0.061599590559135
718 => 0.059716383541337
719 => 0.060713960299192
720 => 0.060665134108034
721 => 0.061175460621196
722 => 0.06062327243864
723 => 0.060630117472954
724 => 0.06108325284413
725 => 0.060446905938709
726 => 0.06028933749596
727 => 0.060071657820829
728 => 0.060546953427826
729 => 0.060831871648449
730 => 0.0631281032573
731 => 0.064611573597501
801 => 0.064547172237658
802 => 0.065135680112328
803 => 0.064870551924675
804 => 0.064014383069462
805 => 0.065475758906642
806 => 0.065013318445196
807 => 0.065051441474972
808 => 0.0650500225339
809 => 0.065357505013515
810 => 0.065139625496352
811 => 0.064710162603151
812 => 0.064995260113852
813 => 0.065841897796408
814 => 0.068469887141077
815 => 0.069940544794582
816 => 0.068381351703724
817 => 0.06945686221937
818 => 0.068811939153563
819 => 0.068694737447706
820 => 0.069370237531135
821 => 0.070046919988039
822 => 0.070003818240912
823 => 0.069512581525229
824 => 0.06923509436921
825 => 0.071336320079605
826 => 0.072884467389577
827 => 0.072778894121948
828 => 0.073244860190996
829 => 0.074612950981509
830 => 0.074738032057922
831 => 0.074722274717249
901 => 0.0744122482185
902 => 0.075759311270799
903 => 0.076883054968346
904 => 0.074340486041567
905 => 0.075308663004213
906 => 0.075743308835458
907 => 0.076381497869334
908 => 0.077458229742383
909 => 0.078627846145538
910 => 0.078793242729136
911 => 0.078675885938118
912 => 0.077904492479261
913 => 0.079184300704019
914 => 0.079933982346887
915 => 0.080380400609055
916 => 0.081512443044998
917 => 0.075745993060141
918 => 0.0716642131497
919 => 0.071026784275068
920 => 0.072323020957284
921 => 0.072664828233091
922 => 0.072527046148803
923 => 0.067932631760407
924 => 0.071002595634149
925 => 0.0743056186324
926 => 0.074432501197748
927 => 0.076086063573627
928 => 0.076624531265025
929 => 0.077955865714982
930 => 0.077872590382654
1001 => 0.078196749135061
1002 => 0.078122230651529
1003 => 0.080588247374532
1004 => 0.083308630027031
1005 => 0.083214431826062
1006 => 0.082823344633659
1007 => 0.083404175804654
1008 => 0.086211902235955
1009 => 0.08595341177906
1010 => 0.086204513239769
1011 => 0.0895149809388
1012 => 0.093819059856081
1013 => 0.091819383076546
1014 => 0.096158106296643
1015 => 0.098889102577859
1016 => 0.10361207825594
1017 => 0.1030207384399
1018 => 0.10485935821257
1019 => 0.10196211675284
1020 => 0.095309464732179
1021 => 0.094256657084581
1022 => 0.096364404656409
1023 => 0.10154609639075
1024 => 0.096201214743619
1025 => 0.097282477339644
1026 => 0.096971073639249
1027 => 0.096954480259435
1028 => 0.097587782076765
1029 => 0.096669144759926
1030 => 0.092926451071425
1031 => 0.094641705533033
1101 => 0.093979363412121
1102 => 0.094714281376148
1103 => 0.09868033052478
1104 => 0.096926845657367
1105 => 0.095079691791091
1106 => 0.097396432655658
1107 => 0.10034643989479
1108 => 0.10016183374343
1109 => 0.099803620650426
1110 => 0.10182284910028
1111 => 0.10515802292102
1112 => 0.10605950700295
1113 => 0.10672496412221
1114 => 0.10681671941596
1115 => 0.10776185596723
1116 => 0.10267961852597
1117 => 0.11074525986636
1118 => 0.112137973317
1119 => 0.11187620091034
1120 => 0.11342414329639
1121 => 0.1129686993789
1122 => 0.11230883259943
1123 => 0.1147626505381
1124 => 0.11194954628432
1125 => 0.10795669895604
1126 => 0.10576614394218
1127 => 0.10865084349146
1128 => 0.11041242884407
1129 => 0.11157672470427
1130 => 0.11192903992808
1201 => 0.10307413815126
1202 => 0.098301837208928
1203 => 0.10136082739842
1204 => 0.10509300654983
1205 => 0.10265888608234
1206 => 0.10275429899627
1207 => 0.099283882885238
1208 => 0.10540006136988
1209 => 0.10450898560983
1210 => 0.10913188822928
1211 => 0.10802859541803
1212 => 0.11179839304415
1213 => 0.11080567898951
1214 => 0.1149263795284
1215 => 0.11657023853687
1216 => 0.11933053365832
1217 => 0.12136101798609
1218 => 0.12255335722033
1219 => 0.12248177364505
1220 => 0.12720641571216
1221 => 0.12442045935161
1222 => 0.12092064156326
1223 => 0.12085734090125
1224 => 0.12266994612664
1225 => 0.12646866941509
1226 => 0.12745362309461
1227 => 0.12800407783161
1228 => 0.12716103724043
1229 => 0.12413708128234
1230 => 0.12283135243145
1231 => 0.12394387124302
]
'min_raw' => 0.045874498962983
'max_raw' => 0.12800407783161
'avg_raw' => 0.086939288397296
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.045874'
'max' => '$0.128004'
'avg' => '$0.086939'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.018161027228939
'max_diff' => 0.066135704464666
'year' => 2036
]
11 => [
'items' => [
101 => 0.1225833563363
102 => 0.12493198675836
103 => 0.12815715796823
104 => 0.1274911728671
105 => 0.12971746121011
106 => 0.13202143543276
107 => 0.13531622204911
108 => 0.13617760127622
109 => 0.13760142838331
110 => 0.13906701417935
111 => 0.13953772083839
112 => 0.1404364459022
113 => 0.1404317091775
114 => 0.14314007764846
115 => 0.14612749194313
116 => 0.14725517168057
117 => 0.14984820905618
118 => 0.14540772342131
119 => 0.14877588278398
120 => 0.15181404683961
121 => 0.14819182240369
122 => 0.15318421491855
123 => 0.1533780582069
124 => 0.15630486171959
125 => 0.15333798565177
126 => 0.1515762641133
127 => 0.15666228818402
128 => 0.15912325502358
129 => 0.15838199178349
130 => 0.15274094192574
131 => 0.14945760895251
201 => 0.14086449325395
202 => 0.15104340999387
203 => 0.15600126341481
204 => 0.15272810228311
205 => 0.15437889436952
206 => 0.1633850807219
207 => 0.1668140533775
208 => 0.16610085103546
209 => 0.16622137049095
210 => 0.16807158189566
211 => 0.17627643819416
212 => 0.17135989811302
213 => 0.17511840878581
214 => 0.17711190929434
215 => 0.17896358366565
216 => 0.1744164566374
217 => 0.16850071118421
218 => 0.16662694627309
219 => 0.15240265091551
220 => 0.15166221456917
221 => 0.15124658521045
222 => 0.14862610089565
223 => 0.14656711803528
224 => 0.14492973841958
225 => 0.14063276534505
226 => 0.14208286761874
227 => 0.13523438938592
228 => 0.13961580306411
301 => 0.12868546644224
302 => 0.13778857557764
303 => 0.13283416714282
304 => 0.13616091915841
305 => 0.13614931243403
306 => 0.13002370722564
307 => 0.12649058597956
308 => 0.1287420283487
309 => 0.13115575328813
310 => 0.13154737203881
311 => 0.13467682942745
312 => 0.13555019371716
313 => 0.13290385914586
314 => 0.12845895951074
315 => 0.12949140831861
316 => 0.12646966343742
317 => 0.12117417176287
318 => 0.12497748633395
319 => 0.12627610514845
320 => 0.12684964919762
321 => 0.12164214132702
322 => 0.12000582929358
323 => 0.11913467049697
324 => 0.12778673563773
325 => 0.12826071529708
326 => 0.1258357683459
327 => 0.13679675850811
328 => 0.13431594885481
329 => 0.13708762105066
330 => 0.12939772441092
331 => 0.12969148881837
401 => 0.12605096851306
402 => 0.12808941662438
403 => 0.12664870720155
404 => 0.12792473016132
405 => 0.12868957306217
406 => 0.13232949599393
407 => 0.13783013765063
408 => 0.13178581288866
409 => 0.12915221403354
410 => 0.13078608395133
411 => 0.13513729485127
412 => 0.14172960209907
413 => 0.13782682352583
414 => 0.13955881038316
415 => 0.13993717246075
416 => 0.13705940802956
417 => 0.14183570937845
418 => 0.14439536807393
419 => 0.14702104824875
420 => 0.14930085277466
421 => 0.14597229384698
422 => 0.14953432902978
423 => 0.1466639574563
424 => 0.14408893742133
425 => 0.1440928426638
426 => 0.14247749498082
427 => 0.13934755529815
428 => 0.13877034639877
429 => 0.14177305998677
430 => 0.14418095192631
501 => 0.14437927743948
502 => 0.14571241013916
503 => 0.14650134433847
504 => 0.15423397199579
505 => 0.15734409880721
506 => 0.16114710300053
507 => 0.1626285874594
508 => 0.16708732453903
509 => 0.16348653222631
510 => 0.16270747815941
511 => 0.15189204044602
512 => 0.15366306776569
513 => 0.15649865338321
514 => 0.15193879820844
515 => 0.15483097678285
516 => 0.15540195409816
517 => 0.15178385607445
518 => 0.1537164385577
519 => 0.14858407245296
520 => 0.13794200920658
521 => 0.14184755703704
522 => 0.14472335483345
523 => 0.14061923679466
524 => 0.14797570952788
525 => 0.14367821002556
526 => 0.14231610899968
527 => 0.13700206727364
528 => 0.1395100904121
529 => 0.14290222761831
530 => 0.14080628120315
531 => 0.14515568472254
601 => 0.15131560004955
602 => 0.15570552254088
603 => 0.15604252627988
604 => 0.15322010021992
605 => 0.15774305599349
606 => 0.15777600078847
607 => 0.15267408819908
608 => 0.14954919514564
609 => 0.14883921286906
610 => 0.15061288779617
611 => 0.15276645659612
612 => 0.1561620343602
613 => 0.15821391088761
614 => 0.16356411663986
615 => 0.165011728914
616 => 0.16660221591467
617 => 0.16872759703558
618 => 0.17127966200777
619 => 0.16569588913776
620 => 0.16591774284334
621 => 0.16071821085939
622 => 0.15516176524622
623 => 0.15937841484589
624 => 0.16489112328007
625 => 0.16362650187427
626 => 0.16348420613224
627 => 0.16372350810078
628 => 0.16277002485948
629 => 0.15845745549681
630 => 0.15629171016099
701 => 0.15908607418476
702 => 0.16057115430056
703 => 0.16287438404757
704 => 0.16259046236597
705 => 0.16852333484544
706 => 0.17082866969021
707 => 0.17023886638608
708 => 0.17034740438845
709 => 0.17452110300776
710 => 0.17916311425903
711 => 0.18351097036317
712 => 0.18793379633707
713 => 0.1826019069997
714 => 0.1798947024194
715 => 0.18268784651125
716 => 0.18120576493976
717 => 0.18972224526347
718 => 0.19031190788313
719 => 0.19882777236838
720 => 0.20691034181515
721 => 0.2018338247599
722 => 0.20662075169165
723 => 0.21179820345221
724 => 0.22178634790962
725 => 0.21842269224352
726 => 0.2158461847185
727 => 0.21341139755694
728 => 0.21847780312856
729 => 0.22499565295864
730 => 0.22639953538485
731 => 0.22867436123967
801 => 0.2262826600058
802 => 0.22916320070475
803 => 0.23933277514577
804 => 0.23658486636249
805 => 0.23268239414185
806 => 0.24071029646673
807 => 0.24361556311042
808 => 0.26400624591581
809 => 0.2897503252547
810 => 0.27909210736366
811 => 0.27247620758015
812 => 0.27403110096051
813 => 0.283431967243
814 => 0.28645122712435
815 => 0.27824383796554
816 => 0.28114282656755
817 => 0.29711653878693
818 => 0.30568592289457
819 => 0.29404754825456
820 => 0.26193773420738
821 => 0.23233101921626
822 => 0.24018405323965
823 => 0.23929376288942
824 => 0.25645552390795
825 => 0.2365193296468
826 => 0.23685500402894
827 => 0.25437165209072
828 => 0.24969851069921
829 => 0.24212862013569
830 => 0.23238628779471
831 => 0.21437668540574
901 => 0.19842507833491
902 => 0.22970985323652
903 => 0.22836079685509
904 => 0.22640716329583
905 => 0.23075476337674
906 => 0.25186547528183
907 => 0.25137880504371
908 => 0.24828285729014
909 => 0.25063110637479
910 => 0.24171696071754
911 => 0.24401433902473
912 => 0.23232632936134
913 => 0.23760979786359
914 => 0.24211237855035
915 => 0.24301633828507
916 => 0.24505300572471
917 => 0.22764990544367
918 => 0.23546338654168
919 => 0.24005307466258
920 => 0.21931669675805
921 => 0.23964318314395
922 => 0.22734695618618
923 => 0.22317343207359
924 => 0.22879253247121
925 => 0.2266027635815
926 => 0.22472012887767
927 => 0.22366958636517
928 => 0.2277956335397
929 => 0.22760314850732
930 => 0.22085213449853
1001 => 0.21204571193061
1002 => 0.21500143640538
1003 => 0.21392759399363
1004 => 0.21003585056504
1005 => 0.21265841574502
1006 => 0.20110996594226
1007 => 0.18124145829279
1008 => 0.19436720303488
1009 => 0.19386187614037
1010 => 0.19360706740541
1011 => 0.20347070181014
1012 => 0.20252254095489
1013 => 0.20080161971819
1014 => 0.21000424449696
1015 => 0.20664516265994
1016 => 0.21699706138242
1017 => 0.22381549139988
1018 => 0.22208611699435
1019 => 0.2284988833821
1020 => 0.21506953032755
1021 => 0.21953022272014
1022 => 0.22044956524001
1023 => 0.20989068553568
1024 => 0.20267767179692
1025 => 0.20219664601492
1026 => 0.18969027420642
1027 => 0.19637107707861
1028 => 0.20224990713573
1029 => 0.19943440375402
1030 => 0.19854309949413
1031 => 0.20309657965756
1101 => 0.20345042406418
1102 => 0.19538273409453
1103 => 0.19706026230973
1104 => 0.204055833833
1105 => 0.19688399185613
1106 => 0.18295027440882
1107 => 0.17949451983317
1108 => 0.17903345847059
1109 => 0.16966117798208
1110 => 0.17972544987825
1111 => 0.17533212548986
1112 => 0.1892105845927
1113 => 0.18128328318482
1114 => 0.18094155306523
1115 => 0.18042497786855
1116 => 0.17235786888805
1117 => 0.17412405306326
1118 => 0.17999511825909
1119 => 0.18208998046325
1120 => 0.18187146917265
1121 => 0.17996634683668
1122 => 0.18083850208629
1123 => 0.17802898614828
1124 => 0.17703688759556
1125 => 0.17390555166495
1126 => 0.16930335290058
1127 => 0.16994331686569
1128 => 0.16082515688267
1129 => 0.15585709938655
1130 => 0.15448200654956
1201 => 0.15264317493886
1202 => 0.15468970747294
1203 => 0.16079932628108
1204 => 0.15342982977052
1205 => 0.14079534491325
1206 => 0.14155469898128
1207 => 0.14326074211792
1208 => 0.14008154201941
1209 => 0.13707269593621
1210 => 0.13968864349015
1211 => 0.13433524569865
1212 => 0.14390767466486
1213 => 0.14364876728775
1214 => 0.14721677685131
1215 => 0.14944792645433
1216 => 0.14430584896263
1217 => 0.14301263037912
1218 => 0.14374930645779
1219 => 0.13157369184355
1220 => 0.14622176937841
1221 => 0.1463484465612
1222 => 0.14526375961415
1223 => 0.15306340869281
1224 => 0.16952310102033
1225 => 0.16333030267712
1226 => 0.16093226398032
1227 => 0.15637359066473
1228 => 0.16244775219051
1229 => 0.16198135135701
1230 => 0.15987210991066
1231 => 0.15859643410268
]
'min_raw' => 0.11913467049697
'max_raw' => 0.30568592289457
'avg_raw' => 0.21241029669577
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.119134'
'max' => '$0.305685'
'avg' => '$0.21241'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.073260171533987
'max_diff' => 0.17768184506296
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0037395011747611
]
1 => [
'year' => 2028
'avg' => 0.0064180696008378
]
2 => [
'year' => 2029
'avg' => 0.017533009404988
]
3 => [
'year' => 2030
'avg' => 0.013526690645008
]
4 => [
'year' => 2031
'avg' => 0.013284886557714
]
5 => [
'year' => 2032
'avg' => 0.023292587043341
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0037395011747611
'min' => '$0.003739'
'max_raw' => 0.023292587043341
'max' => '$0.023292'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.023292587043341
]
1 => [
'year' => 2033
'avg' => 0.059910929023954
]
2 => [
'year' => 2034
'avg' => 0.037974425999904
]
3 => [
'year' => 2035
'avg' => 0.044790922550494
]
4 => [
'year' => 2036
'avg' => 0.086939288397296
]
5 => [
'year' => 2037
'avg' => 0.21241029669577
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.023292587043341
'min' => '$0.023292'
'max_raw' => 0.21241029669577
'max' => '$0.21241'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.21241029669577
]
]
]
]
'prediction_2025_max_price' => '$0.006393'
'last_price' => 0.00619966
'sma_50day_nextmonth' => '$0.005765'
'sma_200day_nextmonth' => '$0.010523'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.006025'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.005987'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.00592'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.005861'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.006346'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.0083088'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.012037'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.006074'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.00603'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.005974'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.006012'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.006671'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.00833'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.011078'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.00983'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.014153'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.019934'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.031095'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.006051'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.006177'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.00704'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.009262'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.01356'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.0201076'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.0386058'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '51.75'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 60.91
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.006282'
'vwma_10_action' => 'SELL'
'hma_9' => '0.006023'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 62.78
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => 97.72
'cci_20_action' => 'NEUTRAL'
'adx_14' => 18.02
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.000089'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -37.22
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 56.37
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.001585'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 16
'buy_signals' => 17
'sell_pct' => 48.48
'buy_pct' => 51.52
'overall_action' => 'bullish'
'overall_action_label' => 'Alcista'
'overall_action_dir' => 1
'last_updated' => 1767675070
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de dKargo para 2026
La previsión del precio de dKargo para 2026 sugiere que el precio medio podría oscilar entre $0.002141 en el extremo inferior y $0.006393 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, dKargo podría potencialmente ganar 3.13% para 2026 si DKA alcanza el objetivo de precio previsto.
Predicción de precio de dKargo 2027-2032
La predicción del precio de DKA para 2027-2032 está actualmente dentro de un rango de precios de $0.003739 en el extremo inferior y $0.023292 en el extremo superior. Considerando la volatilidad de precios en el mercado, si dKargo alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de dKargo | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.002062 | $0.003739 | $0.005416 |
| 2028 | $0.003721 | $0.006418 | $0.009114 |
| 2029 | $0.008174 | $0.017533 | $0.026891 |
| 2030 | $0.006952 | $0.013526 | $0.020101 |
| 2031 | $0.008219 | $0.013284 | $0.01835 |
| 2032 | $0.012546 | $0.023292 | $0.034038 |
Predicción de precio de dKargo 2032-2037
La predicción de precio de dKargo para 2032-2037 se estima actualmente entre $0.023292 en el extremo inferior y $0.21241 en el extremo superior. Comparado con el precio actual, dKargo podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de dKargo | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.012546 | $0.023292 | $0.034038 |
| 2033 | $0.029156 | $0.05991 | $0.090665 |
| 2034 | $0.02344 | $0.037974 | $0.0525087 |
| 2035 | $0.027713 | $0.04479 | $0.061868 |
| 2036 | $0.045874 | $0.086939 | $0.128004 |
| 2037 | $0.119134 | $0.21241 | $0.305685 |
dKargo Histograma de precios potenciales
Pronóstico de precio de dKargo basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para dKargo es Alcista, con 17 indicadores técnicos mostrando señales alcistas y 16 indicando señales bajistas. La predicción de precio de DKA se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de dKargo
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de dKargo aumentar durante el próximo mes, alcanzando $0.010523 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para dKargo alcance $0.005765 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 51.75, lo que sugiere que el mercado de DKA está en un estado NEUTRAL.
Promedios Móviles y Osciladores Populares de DKA para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.006025 | BUY |
| SMA 5 | $0.005987 | BUY |
| SMA 10 | $0.00592 | BUY |
| SMA 21 | $0.005861 | BUY |
| SMA 50 | $0.006346 | SELL |
| SMA 100 | $0.0083088 | SELL |
| SMA 200 | $0.012037 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.006074 | BUY |
| EMA 5 | $0.00603 | BUY |
| EMA 10 | $0.005974 | BUY |
| EMA 21 | $0.006012 | BUY |
| EMA 50 | $0.006671 | SELL |
| EMA 100 | $0.00833 | SELL |
| EMA 200 | $0.011078 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.00983 | SELL |
| SMA 50 | $0.014153 | SELL |
| SMA 100 | $0.019934 | SELL |
| SMA 200 | $0.031095 | SELL |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.009262 | SELL |
| EMA 50 | $0.01356 | SELL |
| EMA 100 | $0.0201076 | SELL |
| EMA 200 | $0.0386058 | SELL |
Osciladores de dKargo
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 51.75 | NEUTRAL |
| Stoch RSI (14) | 60.91 | NEUTRAL |
| Estocástico Rápido (14) | 62.78 | NEUTRAL |
| Índice de Canal de Materias Primas (20) | 97.72 | NEUTRAL |
| Índice Direccional Medio (14) | 18.02 | NEUTRAL |
| Oscilador Asombroso (5, 34) | -0.000089 | NEUTRAL |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Rango Percentil de Williams (14) | -37.22 | NEUTRAL |
| Oscilador Ultimate (7, 14, 28) | 56.37 | NEUTRAL |
| VWMA (10) | 0.006282 | SELL |
| Promedio Móvil de Hull (9) | 0.006023 | BUY |
| Nube Ichimoku B/L (9, 26, 52, 26) | -0.001585 | SELL |
Predicción de precios de dKargo basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de dKargo
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de dKargo por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.008711 | $0.012241 | $0.01720092 | $0.02417 | $0.033963 | $0.047723 |
| Amazon.com acción | $0.012935 | $0.026991 | $0.056319 | $0.117514 | $0.24520068 | $0.511625 |
| Apple acción | $0.008793 | $0.012473 | $0.017692 | $0.025095 | $0.035595 | $0.050489 |
| Netflix acción | $0.009782 | $0.015434 | $0.024353 | $0.038425 | $0.060629 | $0.095664 |
| Google acción | $0.008028 | $0.010396 | $0.013463 | $0.017435 | $0.022579 | $0.02924 |
| Tesla acción | $0.014054 | $0.031859 | $0.072223 | $0.163725 | $0.371153 | $0.841375 |
| Kodak acción | $0.004649 | $0.003486 | $0.002614 | $0.00196 | $0.00147 | $0.0011024 |
| Nokia acción | $0.004107 | $0.00272 | $0.0018023 | $0.001193 | $0.00079 | $0.000523 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de dKargo
Podría preguntarse cosas como: "¿Debo invertir en dKargo ahora?", "¿Debería comprar DKA hoy?", "¿Será dKargo una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de dKargo regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como dKargo, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de dKargo a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de dKargo es de $0.006199 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Pronóstico a corto plazo de dKargo
basado en el historial de precios de las últimas 4 horas
Pronóstico a largo plazo de dKargo
basado en el historial de precios del último mes
Predicción de precios de dKargo basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si dKargo ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.00636 | $0.006526 | $0.006695 | $0.006869 |
| Si dKargo ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.006521 | $0.006861 | $0.007217 | $0.007592 |
| Si dKargo ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.0070054 | $0.007915 | $0.008944 | $0.0101071 |
| Si dKargo ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.007811 | $0.009841 | $0.012399 | $0.015622 |
| Si dKargo ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.009422 | $0.014321 | $0.021766 | $0.033081 |
| Si dKargo ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.014257 | $0.032786 | $0.075397 | $0.173389 |
| Si dKargo ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.022314 | $0.080317 | $0.289087 | $1.04 |
Cuadro de preguntas
¿Es DKA una buena inversión?
La decisión de adquirir dKargo depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de dKargo ha experimentado un aumento de 3.5898% durante las últimas 24 horas, y dKargo ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en dKargo dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede dKargo subir?
Parece que el valor medio de dKargo podría potencialmente aumentar hasta $0.006393 para el final de este año. Mirando las perspectivas de dKargo en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.020101. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de dKargo la próxima semana?
Basado en nuestro nuevo pronóstico experimental de dKargo, el precio de dKargo aumentará en un 0.86% durante la próxima semana y alcanzará $0.006252 para el 13 de enero de 2026.
¿Cuál será el precio de dKargo el próximo mes?
Basado en nuestro nuevo pronóstico experimental de dKargo, el precio de dKargo disminuirá en un -11.62% durante el próximo mes y alcanzará $0.005479 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de dKargo este año en 2026?
Según nuestra predicción más reciente sobre el valor de dKargo en 2026, se anticipa que DKA fluctúe dentro del rango de $0.002141 y $0.006393. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de dKargo no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará dKargo en 5 años?
El futuro de dKargo parece estar en una tendencia alcista, con un precio máximo de $0.020101 proyectada después de un período de cinco años. Basado en el pronóstico de dKargo para 2030, el valor de dKargo podría potencialmente alcanzar su punto más alto de aproximadamente $0.020101, mientras que su punto más bajo se anticipa que esté alrededor de $0.006952.
¿Cuánto será dKargo en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de dKargo, se espera que el valor de DKA en 2026 crezca en un 3.13% hasta $0.006393 si ocurre lo mejor. El precio estará entre $0.006393 y $0.002141 durante 2026.
¿Cuánto será dKargo en 2027?
Según nuestra última simulación experimental para la predicción de precios de dKargo, el valor de DKA podría disminuir en un -12.62% hasta $0.005416 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.005416 y $0.002062 a lo largo del año.
¿Cuánto será dKargo en 2028?
Nuestro nuevo modelo experimental de predicción de precios de dKargo sugiere que el valor de DKA en 2028 podría aumentar en un 47.02% , alcanzando $0.009114 en el mejor escenario. Se espera que el precio oscile entre $0.009114 y $0.003721 durante el año.
¿Cuánto será dKargo en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de dKargo podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.026891 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.026891 y $0.008174.
¿Cuánto será dKargo en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de dKargo, se espera que el valor de DKA en 2030 aumente en un 224.23% , alcanzando $0.020101 en el mejor escenario. Se pronostica que el precio oscile entre $0.020101 y $0.006952 durante el transcurso de 2030.
¿Cuánto será dKargo en 2031?
Nuestra simulación experimental indica que el precio de dKargo podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.01835 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.01835 y $0.008219 durante el año.
¿Cuánto será dKargo en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de dKargo, DKA podría experimentar un 449.04% aumento en valor, alcanzando $0.034038 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.034038 y $0.012546 a lo largo del año.
¿Cuánto será dKargo en 2033?
Según nuestra predicción experimental de precios de dKargo, se anticipa que el valor de DKA aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.090665. A lo largo del año, el precio de DKA podría oscilar entre $0.090665 y $0.029156.
¿Cuánto será dKargo en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de dKargo sugieren que DKA podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.0525087 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.0525087 y $0.02344.
¿Cuánto será dKargo en 2035?
Basado en nuestra predicción experimental para el precio de dKargo, DKA podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.061868 en 2035. El rango de precios esperado para el año está entre $0.061868 y $0.027713.
¿Cuánto será dKargo en 2036?
Nuestra reciente simulación de predicción de precios de dKargo sugiere que el valor de DKA podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.128004 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.128004 y $0.045874.
¿Cuánto será dKargo en 2037?
Según la simulación experimental, el valor de dKargo podría aumentar en un 4830.69% en 2037, con un máximo de $0.305685 bajo condiciones favorables. Se espera que el precio caiga entre $0.305685 y $0.119134 durante el transcurso del año.
Predicciones relacionadas
Predicción de precios de Aurora
Predicción de precios de NKN
Predicción de precios de Mil.k Alliance
Predicción de precios de Dogelon Mars
Predicción de precios de Medibloc
Predicción de precios de ChainGPT
Predicción de precios de Hifi Finance
Predicción de precios de The Truth
Predicción de precios de Metal
Predicción de precios de Telos
Predicción de precios de Stader MaticX
Predicción de precios de OmiseGO
Predicción de precios de WazirX
Predicción de precios de STP Network
Predicción de precios de Ultima
Predicción de precios de LUKSO
Predicción de precios de Bella Protocol
Predicción de precios de Aavegotchi
Predicción de precios de Tokamak Network
Predicción de precios de Chainflip
Predicción de precios de Kyber Network Crystal
Predicción de precios de Radicle
Predicción de precios de Ergo
Predicción de precios de CANTO
Predicción de precios de Mines of Dalarnia
¿Cómo leer y predecir los movimientos de precio de dKargo?
Los traders de dKargo utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de dKargo
Las medias móviles son herramientas populares para la predicción de precios de dKargo. Una media móvil simple (SMA) calcula el precio de cierre promedio de DKA durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de DKA por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de DKA.
¿Cómo leer gráficos de dKargo y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de dKargo en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de DKA dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de dKargo?
La acción del precio de dKargo está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de DKA. La capitalización de mercado de dKargo puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de DKA, grandes poseedores de dKargo, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de dKargo.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


