Prédiction du prix de Defactor jusqu'à $0.011617 d'ici 2026
| Année | Prix min. | Prix max. |
|---|---|---|
| 2026 | $0.003891 | $0.011617 |
| 2027 | $0.003746 | $0.009842 |
| 2028 | $0.006761 | $0.016561 |
| 2029 | $0.014853 | $0.04886 |
| 2030 | $0.012632 | $0.036523 |
| 2031 | $0.014935 | $0.033341 |
| 2032 | $0.022797 | $0.061847 |
| 2033 | $0.052976 | $0.164738 |
| 2034 | $0.04259 | $0.0954075 |
| 2035 | $0.050354 | $0.112413 |
Calculateur de profit d’investissement
Si vous ouvrez une position short de $10,000.00 sur Defactor aujourd’hui et la fermez le Apr 06, 2026, notre prévision indique que vous pourriez gagner environ $3,954.56, soit un rendement de 39.55% sur les 90 prochains jours.
Prévision du prix à long terme de Defactor pour 2027, 2028, 2029, 2030, 2031, 2032 et 2037
[
'name' => 'Defactor'
'name_with_ticker' => 'Defactor <small>REAL</small>'
'name_lang' => 'Defactor'
'name_lang_with_ticker' => 'Defactor <small>REAL</small>'
'name_with_lang' => 'Defactor'
'name_with_lang_with_ticker' => 'Defactor <small>REAL</small>'
'image' => '/uploads/coins/defactor.png?1758150608'
'price_for_sd' => 0.01126
'ticker' => 'REAL'
'marketcap' => '$3.36M'
'low24h' => '$0.01099'
'high24h' => '$0.01133'
'volume24h' => '$62.56K'
'current_supply' => '298.39M'
'max_supply' => '300M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.01126'
'change_24h_pct' => '1.7281%'
'ath_price' => '$4'
'ath_days' => 118
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '10 sept. 2025'
'ath_pct' => '-99.72%'
'fdv' => '$3.38M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.555426'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.011361'
'next_week_prediction_price_date' => '13 janvier 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.009955'
'next_month_prediction_price_date' => '5 février 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.003891'
'current_year_max_price_prediction' => '$0.011617'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.012632'
'grand_prediction_max_price' => '$0.036523'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.011478139760778
107 => 0.01152099496808
108 => 0.011617549938373
109 => 0.010792498288835
110 => 0.011162922257234
111 => 0.011380511634636
112 => 0.010397434911563
113 => 0.011361079368653
114 => 0.010778135975191
115 => 0.010580276231933
116 => 0.01084666831019
117 => 0.010742855058219
118 => 0.010653602520292
119 => 0.010603798070576
120 => 0.010799407012227
121 => 0.010790281621296
122 => 0.010470227426695
123 => 0.010052729776917
124 => 0.010192855692076
125 => 0.010141946633411
126 => 0.0099574456374111
127 => 0.01008177703198
128 => 0.0095342844929776
129 => 0.0085923520358101
130 => 0.0092146214691864
131 => 0.0091906647729004
201 => 0.0091785847202832
202 => 0.0096462030012016
203 => 0.0096012522932806
204 => 0.0095196663182453
205 => 0.0099559472469991
206 => 0.0097966988391974
207 => 0.010287464908398
208 => 0.010610715182333
209 => 0.010528728456813
210 => 0.010832746901853
211 => 0.010196083910146
212 => 0.010407557817506
213 => 0.010451142296722
214 => 0.0099505636080604
215 => 0.0096086067850113
216 => 0.0095858021635071
217 => 0.0089928961568928
218 => 0.0093096217598561
219 => 0.0095883271834678
220 => 0.0094548489139723
221 => 0.0094125936814
222 => 0.0096284665005704
223 => 0.0096452416674457
224 => 0.0092627660849384
225 => 0.0093422948699681
226 => 0.0096739431241025
227 => 0.0093339381848857
228 => 0.0086733641274788
301 => 0.0085095326280911
302 => 0.0084876744860591
303 => 0.0080433504660794
304 => 0.008520480632271
305 => 0.0083122005284349
306 => 0.0089701548808743
307 => 0.0085943348834409
308 => 0.0085781340344934
309 => 0.0085536440751615
310 => 0.0081711960363709
311 => 0.0082549278510252
312 => 0.0085332651556516
313 => 0.0086325790416365
314 => 0.0086222197896736
315 => 0.0085319011510126
316 => 0.0085732485612853
317 => 0.0084400541464041
318 => 0.0083930204263075
319 => 0.0082445690680387
320 => 0.0080263865821181
321 => 0.0080567261949763
322 => 0.0076244495998146
323 => 0.0073889223681152
324 => 0.0073237315345798
325 => 0.0072365556274638
326 => 0.0073335782852548
327 => 0.0076232250145332
328 => 0.0072738496070419
329 => 0.0066748699767333
330 => 0.0067108696731265
331 => 0.0067917503025161
401 => 0.0066410297847274
402 => 0.0064983854636546
403 => 0.0066224031277278
404 => 0.0063686075621571
405 => 0.0068224202840927
406 => 0.0068101459217598
407 => 0.0069792992409069
408 => 0.0070850742827451
409 => 0.0068412970563845
410 => 0.0067799877431985
411 => 0.0068149123143421
412 => 0.0062376869487809
413 => 0.006932127613808
414 => 0.0069381331655164
415 => 0.0068867099857126
416 => 0.0072564782013894
417 => 0.0080368044700662
418 => 0.0077432143392386
419 => 0.0076295273667734
420 => 0.0074134083490125
421 => 0.0077013741083014
422 => 0.0076792628309537
423 => 0.0075792672493342
424 => 0.0075187896095656
425 => 0.007630221515185
426 => 0.007504981963297
427 => 0.0074824854984252
428 => 0.0073461813976973
429 => 0.0072975270351788
430 => 0.0072615052821561
501 => 0.0072218488715025
502 => 0.0073093210316426
503 => 0.0071110976088442
504 => 0.0068720595930311
505 => 0.0068521861684434
506 => 0.0069070584410194
507 => 0.0068827815451648
508 => 0.0068520699400061
509 => 0.0067934331219501
510 => 0.0067760368306103
511 => 0.006832566337984
512 => 0.0067687478200341
513 => 0.0068629155196437
514 => 0.0068373071158864
515 => 0.0066942606541953
516 => 0.006515971800345
517 => 0.0065143846555722
518 => 0.0064759726144624
519 => 0.0064270491048201
520 => 0.0064134397036559
521 => 0.0066119587059729
522 => 0.0070228870995954
523 => 0.0069422120232442
524 => 0.0070005080338223
525 => 0.0072872667081842
526 => 0.0073784186676296
527 => 0.0073137211658677
528 => 0.0072251592350879
529 => 0.0072290555105829
530 => 0.007531698437577
531 => 0.0075505739057043
601 => 0.0075982661242051
602 => 0.0076595641027979
603 => 0.0073241604766821
604 => 0.0072132580299551
605 => 0.0071607062980624
606 => 0.0069988673039126
607 => 0.0071733967840765
608 => 0.0070717059300825
609 => 0.0070854275005405
610 => 0.0070764913097788
611 => 0.0070813710741973
612 => 0.0068222934341882
613 => 0.0069166877094876
614 => 0.0067597389187315
615 => 0.0065496021062377
616 => 0.0065488976539587
617 => 0.006600328341116
618 => 0.0065697353559118
619 => 0.0064874104193451
620 => 0.0064991042880217
621 => 0.0063966536935481
622 => 0.0065115436451187
623 => 0.0065148382778337
624 => 0.0064705993883811
625 => 0.0066476032105336
626 => 0.0067201218208909
627 => 0.0066910028361643
628 => 0.0067180787552972
629 => 0.0069455644368928
630 => 0.006982654528889
701 => 0.0069991274977198
702 => 0.0069770559017367
703 => 0.0067222367759554
704 => 0.0067335390877584
705 => 0.0066506102229497
706 => 0.0065805440710149
707 => 0.0065833463496437
708 => 0.0066193694597004
709 => 0.0067766844940454
710 => 0.0071077447095967
711 => 0.007120308202775
712 => 0.00713553552301
713 => 0.0070735983589761
714 => 0.0070549175176446
715 => 0.0070795623692951
716 => 0.0072038911799369
717 => 0.0075236986358506
718 => 0.0074106573217089
719 => 0.0073187529737188
720 => 0.0073993778641404
721 => 0.0073869662942188
722 => 0.0072822001535178
723 => 0.0072792597168828
724 => 0.0070781799971162
725 => 0.0070038454030822
726 => 0.0069417258524595
727 => 0.0068738929248513
728 => 0.0068336792915849
729 => 0.0068954657090516
730 => 0.0069095969937616
731 => 0.006774499912129
801 => 0.0067560866791033
802 => 0.0068664098722376
803 => 0.0068178607482024
804 => 0.0068677947262329
805 => 0.0068793798374618
806 => 0.0068775143677262
807 => 0.0068268235064021
808 => 0.0068591323497868
809 => 0.0067827123034521
810 => 0.0066996169809829
811 => 0.0066466073422691
812 => 0.0066003494017831
813 => 0.006626015995692
814 => 0.0065345192749416
815 => 0.0065052476325084
816 => 0.0068481868406201
817 => 0.0071015197208699
818 => 0.0070978361604603
819 => 0.0070754134338013
820 => 0.00704209781027
821 => 0.0072014539345654
822 => 0.0071459374472872
823 => 0.0071863303303398
824 => 0.0071966120143607
825 => 0.0072277315752467
826 => 0.0072388541434469
827 => 0.0072052340172258
828 => 0.0070924007672752
829 => 0.006811231036262
830 => 0.0066803457674721
831 => 0.0066371514487049
901 => 0.0066387214801544
902 => 0.0065954130038482
903 => 0.0066081692910701
904 => 0.0065909768877329
905 => 0.0065584186351014
906 => 0.0066240056153388
907 => 0.0066315639038261
908 => 0.0066162551189327
909 => 0.0066198608919612
910 => 0.006493110691511
911 => 0.0065027472339643
912 => 0.0064490897410319
913 => 0.0064390296079578
914 => 0.0063033881383172
915 => 0.0060630796133033
916 => 0.0061962338634739
917 => 0.0060354022535887
918 => 0.0059744928859286
919 => 0.0062628283590814
920 => 0.006233887474758
921 => 0.0061843532610963
922 => 0.0061110818352561
923 => 0.0060839047506733
924 => 0.0059187853879679
925 => 0.0059090292551417
926 => 0.0059908668698963
927 => 0.0059531016265475
928 => 0.0059000649220695
929 => 0.005707971354695
930 => 0.0054919945849716
1001 => 0.005498513566068
1002 => 0.0055672117581263
1003 => 0.0057669610167495
1004 => 0.0056889155257081
1005 => 0.0056322926264888
1006 => 0.0056216888595432
1007 => 0.0057544172033581
1008 => 0.0059422556173038
1009 => 0.0060303851984795
1010 => 0.0059430514600696
1011 => 0.0058427271637666
1012 => 0.0058488334388246
1013 => 0.0058894557511256
1014 => 0.0058937245817798
1015 => 0.0058284237783909
1016 => 0.0058468055720432
1017 => 0.0058188819466189
1018 => 0.0056475147089327
1019 => 0.0056444152190143
1020 => 0.0056023589352161
1021 => 0.005601085487657
1022 => 0.0055295372574846
1023 => 0.0055195271654939
1024 => 0.0053774638118195
1025 => 0.0054709703414154
1026 => 0.0054082510706756
1027 => 0.0053137183356904
1028 => 0.0052974208565474
1029 => 0.0052969309346446
1030 => 0.0053939949163416
1031 => 0.0054698360922759
1101 => 0.0054093420992426
1102 => 0.0053955687896557
1103 => 0.0055426317021275
1104 => 0.0055239166060072
1105 => 0.0055077094534665
1106 => 0.0059254367475647
1107 => 0.0055947729986188
1108 => 0.0054505847304514
1109 => 0.0052721243679847
1110 => 0.0053302319618791
1111 => 0.0053424760856908
1112 => 0.0049133110838567
1113 => 0.0047391988960617
1114 => 0.0046794501544899
1115 => 0.0046450639089921
1116 => 0.0046607341528607
1117 => 0.0045040127625225
1118 => 0.0046093321287623
1119 => 0.0044736246520588
1120 => 0.0044508728519591
1121 => 0.0046935346312354
1122 => 0.0047272996002122
1123 => 0.0045832477526038
1124 => 0.0046757523586441
1125 => 0.0046422089025837
1126 => 0.0044759509672428
1127 => 0.0044696011370234
1128 => 0.0043861787493183
1129 => 0.0042556388663172
1130 => 0.0041959786369331
1201 => 0.0041649070714759
1202 => 0.0041777278049563
1203 => 0.0041712452497877
1204 => 0.0041289421923434
1205 => 0.0041736700115222
1206 => 0.0040594089163312
1207 => 0.004013909227562
1208 => 0.0039933580737297
1209 => 0.0038919447751245
1210 => 0.004053338431904
1211 => 0.0040851350154733
1212 => 0.0041169942481346
1213 => 0.00439430711723
1214 => 0.004380453349968
1215 => 0.0045056846589579
1216 => 0.0045008184005761
1217 => 0.0044651004026395
1218 => 0.0043144120446704
1219 => 0.0043744737383952
1220 => 0.0041896131807699
1221 => 0.0043281232798388
1222 => 0.0042649130549438
1223 => 0.004306751839218
1224 => 0.0042315219326418
1225 => 0.0042731572691078
1226 => 0.004092675165013
1227 => 0.003924143515661
1228 => 0.0039919655711058
1229 => 0.0040656959017671
1230 => 0.0042255620447797
1231 => 0.0041303470888685
]
'min_raw' => 0.0038919447751245
'max_raw' => 0.011617549938373
'avg_raw' => 0.0077547473567487
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.003891'
'max' => '$0.011617'
'avg' => '$0.007754'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0073727352248755
'max_diff' => 0.0003528699383729
'year' => 2026
]
1 => [
'items' => [
101 => 0.0041645899874902
102 => 0.0040498820092993
103 => 0.0038132066855772
104 => 0.0038145462422066
105 => 0.0037781388999042
106 => 0.0037466776405958
107 => 0.0041412836719341
108 => 0.004092208174139
109 => 0.0040140127912448
110 => 0.0041186804186097
111 => 0.0041463562005836
112 => 0.0041471440911888
113 => 0.0042235068902517
114 => 0.0042642617298004
115 => 0.0042714449469124
116 => 0.0043916034611654
117 => 0.0044318790102139
118 => 0.0045977682967355
119 => 0.0042608039664029
120 => 0.0042538644077652
121 => 0.0041201533067732
122 => 0.0040353516126352
123 => 0.0041259597513219
124 => 0.0042062261929539
125 => 0.0041226474088566
126 => 0.0041335610336152
127 => 0.0040213633446022
128 => 0.0040614687390324
129 => 0.0040960129074958
130 => 0.0040769396480827
131 => 0.004048386055585
201 => 0.0041996452600865
202 => 0.0041911106229789
203 => 0.0043319666716447
204 => 0.0044417740342924
205 => 0.004638568458571
206 => 0.0044332032177109
207 => 0.0044257188920811
208 => 0.0044988793756364
209 => 0.004431867809725
210 => 0.0044742168062204
211 => 0.0046317453805227
212 => 0.0046350737110674
213 => 0.0045793198861315
214 => 0.0045759272608172
215 => 0.0045866353927762
216 => 0.0046493532561222
217 => 0.0046274377075438
218 => 0.0046527989351926
219 => 0.0046845135387122
220 => 0.0048156985855826
221 => 0.0048473268562581
222 => 0.0047704865558947
223 => 0.0047774243746732
224 => 0.0047486839930238
225 => 0.0047209211444665
226 => 0.004783327973585
227 => 0.0048973776804082
228 => 0.0048966681831013
301 => 0.0049231254982748
302 => 0.0049396081864436
303 => 0.0048688524227577
304 => 0.0048227930223597
305 => 0.0048404551273081
306 => 0.0048686972177512
307 => 0.0048312965980148
308 => 0.0046004426473496
309 => 0.004670468988974
310 => 0.0046588131816145
311 => 0.00464221389454
312 => 0.004712625922541
313 => 0.004705834510669
314 => 0.0045024053581432
315 => 0.0045154282324636
316 => 0.0045031973222637
317 => 0.0045427178953284
318 => 0.0044297335690841
319 => 0.0044644867868758
320 => 0.0044862836792835
321 => 0.0044991222163633
322 => 0.0045455038157629
323 => 0.0045400614704077
324 => 0.0045451655119342
325 => 0.0046139371795554
326 => 0.0049617606747971
327 => 0.0049806919402139
328 => 0.0048874674655169
329 => 0.0049247088043869
330 => 0.004853213577542
331 => 0.0049012088022994
401 => 0.0049340459161318
402 => 0.0047856613129369
403 => 0.0047768749397438
404 => 0.0047050846266655
405 => 0.0047436606745026
406 => 0.0046822834086777
407 => 0.0046973432428255
408 => 0.0046552346336556
409 => 0.0047310217464211
410 => 0.0048157635146196
411 => 0.0048371726318204
412 => 0.0047808544616696
413 => 0.0047400763949322
414 => 0.0046684835428714
415 => 0.0047875440513992
416 => 0.0048223609723959
417 => 0.0047873611729352
418 => 0.0047792509546394
419 => 0.0047638821056238
420 => 0.0047825115286113
421 => 0.0048221713519669
422 => 0.0048034685116743
423 => 0.0048158220671892
424 => 0.0047687430524977
425 => 0.0048688758458596
426 => 0.0050279108199875
427 => 0.0050284221434341
428 => 0.0050097192023263
429 => 0.0050020663617855
430 => 0.0050212567143515
501 => 0.005031666693389
502 => 0.0050937247746786
503 => 0.0051603155684054
504 => 0.0054710657468886
505 => 0.0053838083402574
506 => 0.0056595243852186
507 => 0.0058775799795352
508 => 0.0059429653178553
509 => 0.0058828138832187
510 => 0.0056770390746437
511 => 0.0056669427808345
512 => 0.0059744572207288
513 => 0.005887570306405
514 => 0.0058772353844181
515 => 0.0057672892756033
516 => 0.0058322810430033
517 => 0.0058180663901012
518 => 0.0057956278650907
519 => 0.0059196276299242
520 => 0.0061517441201571
521 => 0.0061155665883797
522 => 0.0060885617391352
523 => 0.0059702343507393
524 => 0.0060414938679326
525 => 0.0060161197187462
526 => 0.006125143166484
527 => 0.0060605600912092
528 => 0.0058869120525734
529 => 0.0059145660750776
530 => 0.0059103862252082
531 => 0.0059964072393318
601 => 0.0059705858660647
602 => 0.0059053441876596
603 => 0.0061509507712278
604 => 0.0061350024458265
605 => 0.0061576135249508
606 => 0.0061675676212522
607 => 0.0063170640205967
608 => 0.0063783079120569
609 => 0.0063922113476436
610 => 0.0064503883077583
611 => 0.006390763851878
612 => 0.0066293041869158
613 => 0.0067879195905015
614 => 0.0069721595440404
615 => 0.0072413836351917
616 => 0.0073426143839266
617 => 0.0073243279552489
618 => 0.0075284505885477
619 => 0.0078952544231945
620 => 0.007398469497554
621 => 0.0079215852305415
622 => 0.0077559728291392
623 => 0.0073633088046543
624 => 0.0073380258706823
625 => 0.0076039425069865
626 => 0.0081937200127815
627 => 0.0080459874367809
628 => 0.008193961650352
629 => 0.0080213418701082
630 => 0.0080127698430653
701 => 0.0081855778929202
702 => 0.0085893533206824
703 => 0.0083975347502481
704 => 0.0081225157936875
705 => 0.008325585511443
706 => 0.008149667728708
707 => 0.0077532757279191
708 => 0.0080458744684642
709 => 0.0078502220233941
710 => 0.0079073238083216
711 => 0.0083185561467543
712 => 0.0082690755838083
713 => 0.0083331080140372
714 => 0.0082200924507036
715 => 0.0081145180936315
716 => 0.0079174557161017
717 => 0.0078591152611729
718 => 0.0078752384640456
719 => 0.0078591072713143
720 => 0.0077488526821831
721 => 0.0077250432141577
722 => 0.0076853597243319
723 => 0.0076976592971811
724 => 0.0076230427264941
725 => 0.0077638596119506
726 => 0.0077899964667654
727 => 0.0078924712528469
728 => 0.007903110525085
729 => 0.0081885013456846
730 => 0.0080313128774962
731 => 0.0081367684729564
801 => 0.0081273355319119
802 => 0.0073718190247264
803 => 0.007475922533438
804 => 0.0076378749235125
805 => 0.0075649155913052
806 => 0.0074617681654185
807 => 0.0073784710886
808 => 0.0072522674996565
809 => 0.0074298966275692
810 => 0.0076634600420227
811 => 0.0079090340787138
812 => 0.00820407519315
813 => 0.008138225451065
814 => 0.0079035184903058
815 => 0.0079140472731119
816 => 0.007979132065496
817 => 0.0078948413457816
818 => 0.0078699823669875
819 => 0.0079757168235452
820 => 0.0079764449586369
821 => 0.0078794582987318
822 => 0.0077716753746187
823 => 0.0077712237602312
824 => 0.0077520448299448
825 => 0.0080247537591999
826 => 0.0081747160963076
827 => 0.0081919090365806
828 => 0.008173558874441
829 => 0.0081806211235567
830 => 0.0080933613437883
831 => 0.0082928113242549
901 => 0.0084758463498897
902 => 0.0084267890530466
903 => 0.0083532451911731
904 => 0.0082946639628386
905 => 0.0084129891773892
906 => 0.0084077203418464
907 => 0.008474247698617
908 => 0.0084712296334333
909 => 0.0084488589855718
910 => 0.0084267898519729
911 => 0.0085142914721108
912 => 0.0084890924107441
913 => 0.0084638542082749
914 => 0.0084132351294475
915 => 0.0084201151029541
916 => 0.0083465839394652
917 => 0.0083125650586782
918 => 0.0078010027143491
919 => 0.0076642965401626
920 => 0.0077073070854724
921 => 0.0077214672737568
922 => 0.0076619725715571
923 => 0.0077472726915764
924 => 0.0077339787582266
925 => 0.0077856976761999
926 => 0.0077533859416246
927 => 0.0077547120264823
928 => 0.0078497339482802
929 => 0.0078773192164303
930 => 0.0078632891264088
1001 => 0.0078731153205365
1002 => 0.0080995558168332
1003 => 0.0080673632194193
1004 => 0.0080502615436654
1005 => 0.0080549988247241
1006 => 0.0081128592264669
1007 => 0.0081290569798941
1008 => 0.0080604259604273
1009 => 0.008092792745959
1010 => 0.0082306064107966
1011 => 0.0082788333939119
1012 => 0.0084327507737506
1013 => 0.0083673639351319
1014 => 0.0084873843072927
1015 => 0.0088562860133551
1016 => 0.0091509902222142
1017 => 0.0088799680525809
1018 => 0.0094211548017959
1019 => 0.0098425463146881
1020 => 0.009826372606559
1021 => 0.009752893249325
1022 => 0.0092731502151701
1023 => 0.0088316835225752
1024 => 0.0092009891565968
1025 => 0.0092019305926063
1026 => 0.0091702069111229
1027 => 0.0089731738499935
1028 => 0.0091633505876895
1029 => 0.0091784461265073
1030 => 0.0091699966389971
1031 => 0.0090189318529976
1101 => 0.0087882838462157
1102 => 0.0088333519146476
1103 => 0.0089071743301027
1104 => 0.008767413096677
1105 => 0.0087227509141657
1106 => 0.008805786408782
1107 => 0.0090733440735682
1108 => 0.0090227638468964
1109 => 0.0090214429927672
1110 => 0.0092378466518234
1111 => 0.0090829483347718
1112 => 0.0088339203673184
1113 => 0.0087710375212611
1114 => 0.0085478457807184
1115 => 0.008702005110893
1116 => 0.0087075530307414
1117 => 0.0086231215410749
1118 => 0.0088407715173763
1119 => 0.0088387658345282
1120 => 0.0090453920941026
1121 => 0.0094403838971297
1122 => 0.0093235653846084
1123 => 0.0091877181643642
1124 => 0.0092024885238396
1125 => 0.009364482910931
1126 => 0.0092665374065234
1127 => 0.0093017592928087
1128 => 0.0093644295983877
1129 => 0.0094022401497596
1130 => 0.0091970481673685
1201 => 0.009149208100806
1202 => 0.009051344114201
1203 => 0.0090258132268135
1204 => 0.0091055214019043
1205 => 0.0090845211138992
1206 => 0.0087070867495607
1207 => 0.0086676427584624
1208 => 0.0086688524493563
1209 => 0.0085696686582799
1210 => 0.0084183895700511
1211 => 0.0088159419815115
1212 => 0.0087840129591288
1213 => 0.0087487657895283
1214 => 0.0087530833666868
1215 => 0.0089256473942004
1216 => 0.0088255515435502
1217 => 0.0090916727678909
1218 => 0.0090369662445027
1219 => 0.0089808567052162
1220 => 0.0089731006577485
1221 => 0.0089515032721641
1222 => 0.0088774378009621
1223 => 0.0087879992938409
1224 => 0.0087289442444087
1225 => 0.00805198965522
1226 => 0.0081776284893097
1227 => 0.0083221645155899
1228 => 0.00837205777267
1229 => 0.0082867119039262
1230 => 0.0088808077760493
1231 => 0.0089893548167365
]
'min_raw' => 0.0037466776405958
'max_raw' => 0.0098425463146881
'avg_raw' => 0.006794611977642
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.003746'
'max' => '$0.009842'
'avg' => '$0.006794'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.0001452671345286
'max_diff' => -0.0017750036236848
'year' => 2027
]
2 => [
'items' => [
101 => 0.0086605587501468
102 => 0.0085990544307428
103 => 0.0088848399889901
104 => 0.0087124763615033
105 => 0.0087900916924067
106 => 0.0086223298003099
107 => 0.0089632090132633
108 => 0.0089606120847895
109 => 0.0088280023718444
110 => 0.0089400831931535
111 => 0.0089206063922775
112 => 0.0087708903529658
113 => 0.0089679552787532
114 => 0.0089680530204978
115 => 0.0088404190549719
116 => 0.0086913705259054
117 => 0.0086647241692775
118 => 0.0086446497189926
119 => 0.0087851546082228
120 => 0.0089111308525591
121 => 0.0091455414111096
122 => 0.0092044777949867
123 => 0.0094345104248762
124 => 0.0092975371938624
125 => 0.0093582556530705
126 => 0.0094241741296914
127 => 0.0094557778714551
128 => 0.0094042812702014
129 => 0.0097616166296276
130 => 0.0097917866824357
131 => 0.0098019024401723
201 => 0.0096814109674985
202 => 0.0097884355966132
203 => 0.0097383623169336
204 => 0.0098686390799021
205 => 0.0098890681397928
206 => 0.0098717654528503
207 => 0.0098782499589104
208 => 0.0095733272679171
209 => 0.0095575154177937
210 => 0.0093419197194043
211 => 0.0094297765601009
212 => 0.0092655324075065
213 => 0.0093176159201965
214 => 0.0093405738363203
215 => 0.0093285819237875
216 => 0.0094347438540546
217 => 0.009344484525878
218 => 0.0091062753188127
219 => 0.0088680012118082
220 => 0.0088650098744886
221 => 0.0088022765080017
222 => 0.0087569317742208
223 => 0.0087656667786379
224 => 0.0087964500735281
225 => 0.0087551425931608
226 => 0.0087639576384396
227 => 0.0089103461244066
228 => 0.0089397032912724
229 => 0.0088399361676769
301 => 0.008439356770114
302 => 0.0083410535811747
303 => 0.0084117119639473
304 => 0.0083779418079647
305 => 0.0067616529105762
306 => 0.0071413760122655
307 => 0.0069157574394198
308 => 0.0070197328579985
309 => 0.0067894347187693
310 => 0.0068993450617691
311 => 0.0068790486347001
312 => 0.0074896321453931
313 => 0.0074800987237038
314 => 0.007484661868169
315 => 0.0072668510936342
316 => 0.0076138295716752
317 => 0.0077847636469007
318 => 0.0077531282988395
319 => 0.0077610902343897
320 => 0.0076242778024833
321 => 0.007485986511567
322 => 0.0073326001870639
323 => 0.0076175730188681
324 => 0.0075858889046199
325 => 0.0076585608631207
326 => 0.0078433861148245
327 => 0.0078706023352207
328 => 0.0079071812114329
329 => 0.0078940702881725
330 => 0.008206425671624
331 => 0.0081685973737008
401 => 0.0082597526877515
402 => 0.0080722392907789
403 => 0.0078600500831693
404 => 0.0079003803145481
405 => 0.0078964961889511
406 => 0.0078470468121093
407 => 0.0078024061257275
408 => 0.0077280919603373
409 => 0.007963232976059
410 => 0.0079536866802386
411 => 0.0081082301132157
412 => 0.0080809130602821
413 => 0.0078984830951754
414 => 0.0079049986170685
415 => 0.0079488186330525
416 => 0.0081004802087011
417 => 0.0081455036902611
418 => 0.008124647019727
419 => 0.0081740132118575
420 => 0.0082130302372957
421 => 0.0081789131495358
422 => 0.0086619391656441
423 => 0.0084613530872996
424 => 0.0085591173462158
425 => 0.0085824335459068
426 => 0.0085227095906851
427 => 0.0085356615780182
428 => 0.0085552803096225
429 => 0.0086744014061826
430 => 0.0089870096315235
501 => 0.0091254616865308
502 => 0.0095420015251243
503 => 0.0091139651707081
504 => 0.0090885672648275
505 => 0.0091635986680563
506 => 0.0094081516485305
507 => 0.0096063388695114
508 => 0.0096720890044059
509 => 0.0096807789701486
510 => 0.0098041305941969
511 => 0.0098748334447298
512 => 0.0097891524625677
513 => 0.009716546801358
514 => 0.0094564823350515
515 => 0.0094865855051585
516 => 0.0096939664953184
517 => 0.0099869043585986
518 => 0.010238275520283
519 => 0.010150254100631
520 => 0.010821795399141
521 => 0.010888375975888
522 => 0.010879176692989
523 => 0.011030857155337
524 => 0.010729802326765
525 => 0.010601095554888
526 => 0.0097322449694208
527 => 0.0099763565439822
528 => 0.010331187053777
529 => 0.01028422390526
530 => 0.0100265365044
531 => 0.010238080041282
601 => 0.010168137132411
602 => 0.01011297025825
603 => 0.010365700403405
604 => 0.010087813227225
605 => 0.010328414916622
606 => 0.010019840761265
607 => 0.010150656175061
608 => 0.010076399019361
609 => 0.010124452499714
610 => 0.0098435328354637
611 => 0.0099951102673536
612 => 0.0098372267159568
613 => 0.0098371518585964
614 => 0.0098336665704486
615 => 0.010019415868504
616 => 0.010025473146445
617 => 0.0098882041345304
618 => 0.0098684215253686
619 => 0.0099415681999252
620 => 0.0098559326011638
621 => 0.0098960009588402
622 => 0.0098571462308995
623 => 0.0098483992132343
624 => 0.0097787014882954
625 => 0.0097486737920128
626 => 0.0097604484254436
627 => 0.0097202555313047
628 => 0.0096960378587455
629 => 0.0098288490658266
630 => 0.009757893395472
701 => 0.0098179740916972
702 => 0.0097495045555602
703 => 0.0095121593125525
704 => 0.0093756595534184
705 => 0.0089273363912927
706 => 0.0090544802839284
707 => 0.0091387768162857
708 => 0.0091109168128445
709 => 0.0091707708806264
710 => 0.0091744454342736
711 => 0.0091549862666977
712 => 0.0091324550435186
713 => 0.0091214880901298
714 => 0.0092032267756336
715 => 0.0092506788337662
716 => 0.0091472371010499
717 => 0.0091230021503781
718 => 0.0092275874533289
719 => 0.0092913844277119
720 => 0.0097624254421326
721 => 0.0097275292023419
722 => 0.0098151119161754
723 => 0.009805251446664
724 => 0.009897052083782
725 => 0.010047107327626
726 => 0.0097420030607851
727 => 0.0097949586117969
728 => 0.0097819751336111
729 => 0.0099237253439933
730 => 0.0099241678726775
731 => 0.0098391815406053
801 => 0.0098852540099674
802 => 0.0098595376215015
803 => 0.0099060106112377
804 => 0.0097270631417842
805 => 0.0099450018433929
806 => 0.010068559043545
807 => 0.010070274635389
808 => 0.010128839767651
809 => 0.010188345333893
810 => 0.010302561086451
811 => 0.010185159918544
812 => 0.0099739666462544
813 => 0.0099892141183636
814 => 0.0098653915800926
815 => 0.0098674730593313
816 => 0.0098563619600266
817 => 0.0098897072054444
818 => 0.0097343805479876
819 => 0.0097708354040302
820 => 0.0097197983920912
821 => 0.0097948476673003
822 => 0.009714107053265
823 => 0.0097819688725848
824 => 0.0098112557841483
825 => 0.0099193251183197
826 => 0.0096981451247394
827 => 0.0092471441452598
828 => 0.0093419500190048
829 => 0.0092017246848954
830 => 0.0092147030734427
831 => 0.0092409214838035
901 => 0.009155939037694
902 => 0.0091721510103071
903 => 0.0091715718045634
904 => 0.0091665805223771
905 => 0.0091444733059662
906 => 0.009112413468391
907 => 0.009240129993793
908 => 0.0092618315201787
909 => 0.0093100713250836
910 => 0.0094536002631085
911 => 0.0094392583375543
912 => 0.0094626506131739
913 => 0.0094115854068384
914 => 0.009217071841906
915 => 0.0092276348643149
916 => 0.0090959138056159
917 => 0.0093067029214634
918 => 0.0092567852765503
919 => 0.0092246030461413
920 => 0.009215821826408
921 => 0.0093597065449086
922 => 0.0094027591078006
923 => 0.0093759316397563
924 => 0.0093209077201152
925 => 0.0094265699121877
926 => 0.0094548406572563
927 => 0.0094611694344922
928 => 0.0096483825801287
929 => 0.0094716325696546
930 => 0.0095141780539198
1001 => 0.0098461057770123
1002 => 0.0095450931350621
1003 => 0.0097045462448861
1004 => 0.0096967418449141
1005 => 0.009778312660301
1006 => 0.0096900506571787
1007 => 0.0096911447704885
1008 => 0.0097635741284664
1009 => 0.0096618601578899
1010 => 0.0096366743483684
1011 => 0.0096018803328987
1012 => 0.0096778517927633
1013 => 0.0097233932470586
1014 => 0.010090423922166
1015 => 0.010327542476918
1016 => 0.0103172485351
1017 => 0.01041131589386
1018 => 0.010368937687181
1019 => 0.010232087279006
1020 => 0.010465674238631
1021 => 0.010391757550912
1022 => 0.010397851152839
1023 => 0.010397624348671
1024 => 0.010446772484095
1025 => 0.010411946525786
1026 => 0.010343300987149
1027 => 0.01038887109925
1028 => 0.010524198040575
1029 => 0.010944257018786
1030 => 0.011179327588034
1031 => 0.010930105475354
1101 => 0.011102015551463
1102 => 0.010998930763621
1103 => 0.010980197191163
1104 => 0.011088169423015
1105 => 0.011196330645965
1106 => 0.011189441243657
1107 => 0.011110921749935
1108 => 0.01106656808029
1109 => 0.011402428926412
1110 => 0.011649885476594
1111 => 0.011633010598841
1112 => 0.011707490821237
1113 => 0.011926167057778
1114 => 0.011946160072308
1115 => 0.011943641412011
1116 => 0.011894086639444
1117 => 0.012109401793017
1118 => 0.012289021482237
1119 => 0.01188261614137
1120 => 0.012037369974936
1121 => 0.01210684395668
1122 => 0.012208852373883
1123 => 0.012380957672299
1124 => 0.012567909675056
1125 => 0.01259434673807
1126 => 0.012575588376731
1127 => 0.012452288505374
1128 => 0.012656853617591
1129 => 0.012776683062686
1130 => 0.012848038754992
1201 => 0.013028984918224
1202 => 0.01210727300434
1203 => 0.011454839499638
1204 => 0.011352952586625
1205 => 0.011560143630742
1206 => 0.011614778256758
1207 => 0.011592755107517
1208 => 0.010858381881316
1209 => 0.011349086263571
1210 => 0.011877042919281
1211 => 0.011897323884597
1212 => 0.012161630025499
1213 => 0.012247698939251
1214 => 0.012460500026075
1215 => 0.012447189260154
1216 => 0.012499002938391
1217 => 0.012487091871052
1218 => 0.012881261073837
1219 => 0.013316088239202
1220 => 0.013301031557131
1221 => 0.013238520007468
1222 => 0.01333136031852
1223 => 0.013780148552088
1224 => 0.013738831323226
1225 => 0.013778967491672
1226 => 0.014308114111644
1227 => 0.014996079987837
1228 => 0.014676450767701
1229 => 0.015369954204566
1230 => 0.015806477857036
1231 => 0.016561400376593
]
'min_raw' => 0.0067616529105762
'max_raw' => 0.016561400376593
'avg_raw' => 0.011661526643585
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.006761'
'max' => '$0.016561'
'avg' => '$0.011661'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0030149752699803
'max_diff' => 0.0067188540619048
'year' => 2028
]
3 => [
'items' => [
101 => 0.016466880359073
102 => 0.016760766156059
103 => 0.016297669800788
104 => 0.015234306961872
105 => 0.015066025722224
106 => 0.015402929025558
107 => 0.016231172922264
108 => 0.015376844677781
109 => 0.015549674168961
110 => 0.015499899263874
111 => 0.015497246970712
112 => 0.015598474213062
113 => 0.015451638818375
114 => 0.014853405005237
115 => 0.015127572036384
116 => 0.015021702979076
117 => 0.015139172591221
118 => 0.015773107639811
119 => 0.015492829843705
120 => 0.015197579953427
121 => 0.015567888837031
122 => 0.016039419297798
123 => 0.016009911768985
124 => 0.015952654829898
125 => 0.016275409197659
126 => 0.016808504855043
127 => 0.016952598469082
128 => 0.017058965429101
129 => 0.017073631635804
130 => 0.017224702679833
131 => 0.016412355601284
201 => 0.017701571277493
202 => 0.01792418321091
203 => 0.017882341393747
204 => 0.018129765188798
205 => 0.018056966831758
206 => 0.01795149343412
207 => 0.018343712777826
208 => 0.017894064950736
209 => 0.017255846469269
210 => 0.016905707187806
211 => 0.017366798838567
212 => 0.017648371419805
213 => 0.017834472984624
214 => 0.017890787205693
215 => 0.016475415792536
216 => 0.015712609100942
217 => 0.016201559444657
218 => 0.01679811260954
219 => 0.016409041718332
220 => 0.016424292560659
221 => 0.015869579715828
222 => 0.01684719238767
223 => 0.016704762444399
224 => 0.017443689242041
225 => 0.017267338431526
226 => 0.01786990455003
227 => 0.017711228696838
228 => 0.01836988329199
301 => 0.018632638442357
302 => 0.019073845234397
303 => 0.019398398746657
304 => 0.019588982776775
305 => 0.01957754082647
306 => 0.020332729702385
307 => 0.019887421206547
308 => 0.019328008784621
309 => 0.019317890778832
310 => 0.019607618399083
311 => 0.020214808008238
312 => 0.020372243439642
313 => 0.020460228368061
314 => 0.020325476387411
315 => 0.019842125930726
316 => 0.019633417654173
317 => 0.019811243152657
318 => 0.01959377784873
319 => 0.019969183973296
320 => 0.020484696764747
321 => 0.020378245411871
322 => 0.020734096324458
323 => 0.021102364582377
324 => 0.021629004731163
325 => 0.021766687967484
326 => 0.021994273121498
327 => 0.022228533002807
328 => 0.022303770963203
329 => 0.022447423574567
330 => 0.022446666454396
331 => 0.022879573267675
401 => 0.023357082888731
402 => 0.023537331716306
403 => 0.023951803956337
404 => 0.023242034770123
405 => 0.023780402851107
406 => 0.024266024336381
407 => 0.023687046381813
408 => 0.024485032607623
409 => 0.024516016604496
410 => 0.024983838171375
411 => 0.024509611389575
412 => 0.024228017040327
413 => 0.025040969375402
414 => 0.025434331402587
415 => 0.025315847558712
416 => 0.024414179656561
417 => 0.023889370263153
418 => 0.022515842852432
419 => 0.024142845402399
420 => 0.024935310884173
421 => 0.024412127362408
422 => 0.024675990699018
423 => 0.026115543505588
424 => 0.026663632010188
425 => 0.026549633432659
426 => 0.026568897315685
427 => 0.026864635924257
428 => 0.028176103780892
429 => 0.027390241841609
430 => 0.027991003848506
501 => 0.028309645850755
502 => 0.028605618300556
503 => 0.027878803506899
504 => 0.02693322813938
505 => 0.026633724727933
506 => 0.024360107071989
507 => 0.024241755399176
508 => 0.024175321018804
509 => 0.023756461647884
510 => 0.023427352917579
511 => 0.023165633436217
512 => 0.022478803361069
513 => 0.022710588349323
514 => 0.021615924562115
515 => 0.022316251660668
516 => 0.020569141824702
517 => 0.022024186811743
518 => 0.021232271978074
519 => 0.021764021490402
520 => 0.021762166266447
521 => 0.020783046822916
522 => 0.020218311161588
523 => 0.020578182704827
524 => 0.020963993565817
525 => 0.021026590079989
526 => 0.021526803931957
527 => 0.021666402865981
528 => 0.021243411578639
529 => 0.020532936856674
530 => 0.020697963930384
531 => 0.020214966893207
601 => 0.019368533163767
602 => 0.019976456645565
603 => 0.02018402845076
604 => 0.020275703985039
605 => 0.019443333625706
606 => 0.019181784787163
607 => 0.019042538380131
608 => 0.020425488295744
609 => 0.020501249413954
610 => 0.020113644821648
611 => 0.021865654333046
612 => 0.021469120621747
613 => 0.021912145930387
614 => 0.020682989453176
615 => 0.020729944885884
616 => 0.020148042511467
617 => 0.02047386895841
618 => 0.020243585327587
619 => 0.020447545401377
620 => 0.020569798228647
621 => 0.021151605118611
622 => 0.022030830111858
623 => 0.021064702570801
624 => 0.020643746965961
625 => 0.020904905455659
626 => 0.021600404928789
627 => 0.022654122232545
628 => 0.022030300380684
629 => 0.022307141925358
630 => 0.022367619487046
701 => 0.021907636348625
702 => 0.022671082466971
703 => 0.023080219444019
704 => 0.023499909323501
705 => 0.023864314286412
706 => 0.023332275956457
707 => 0.023901633234207
708 => 0.02344283177343
709 => 0.023031239433089
710 => 0.023031863648772
711 => 0.022773665761272
712 => 0.022273374819212
713 => 0.022181113493657
714 => 0.022661068560519
715 => 0.023045947072229
716 => 0.023077647509897
717 => 0.023290736029751
718 => 0.023416839620815
719 => 0.024652826242757
720 => 0.025149950286719
721 => 0.0257578241576
722 => 0.025994625288202
723 => 0.026707311793411
724 => 0.026131759558887
725 => 0.026007235212554
726 => 0.024278490868897
727 => 0.024561572658325
728 => 0.025014813916529
729 => 0.024285964650305
730 => 0.024748251751748
731 => 0.024839517018153
801 => 0.024261198631137
802 => 0.024570103469305
803 => 0.023749743803032
804 => 0.022048711710798
805 => 0.022672976201956
806 => 0.023132644992604
807 => 0.022476640951596
808 => 0.02365250280424
809 => 0.022965588584641
810 => 0.022747869754726
811 => 0.021898470976859
812 => 0.022299354503655
813 => 0.022841555213745
814 => 0.022506538212507
815 => 0.023201748793132
816 => 0.024186352381186
817 => 0.02488803953219
818 => 0.02494190635876
819 => 0.024490768530052
820 => 0.02521371977968
821 => 0.02521898569027
822 => 0.024403493727347
823 => 0.023904009440735
824 => 0.023790525559893
825 => 0.024074030544062
826 => 0.024418257932751
827 => 0.024961008583132
828 => 0.025288981434036
829 => 0.026144160685835
830 => 0.026375547671461
831 => 0.026629771816514
901 => 0.026969493674127
902 => 0.027377416867088
903 => 0.02648490414397
904 => 0.026520365338311
905 => 0.025689269848223
906 => 0.024801125125915
907 => 0.025475116261344
908 => 0.026356270013635
909 => 0.026154132369271
910 => 0.026131387754983
911 => 0.026169637887386
912 => 0.026017232704734
913 => 0.025327909711998
914 => 0.024981736020437
915 => 0.025428388400879
916 => 0.025665764262873
917 => 0.026033913523476
918 => 0.025988531356419
919 => 0.026936844315388
920 => 0.027305330055748
921 => 0.02721105563497
922 => 0.027228404397234
923 => 0.027895530228982
924 => 0.028637511358778
925 => 0.029332474599866
926 => 0.030039421058066
927 => 0.029187169510116
928 => 0.028754448733635
929 => 0.02920090611962
930 => 0.028964009546274
1001 => 0.03032528752481
1002 => 0.030419539458521
1003 => 0.031780719001166
1004 => 0.033072640473381
1005 => 0.03226120774386
1006 => 0.033026352260065
1007 => 0.033853918437489
1008 => 0.035450427861513
1009 => 0.03491277965338
1010 => 0.034500949551973
1011 => 0.034111772096091
1012 => 0.0349215886016
1013 => 0.035963404598802
1014 => 0.03618780178621
1015 => 0.036551410956134
1016 => 0.036169120373973
1017 => 0.03662954727226
1018 => 0.038255056545043
1019 => 0.037815829590769
1020 => 0.037192056706445
1021 => 0.038475240161737
1022 => 0.038939619265958
1023 => 0.042198875016605
1024 => 0.046313820034936
1025 => 0.044610205777161
1026 => 0.043552717432071
1027 => 0.043801252277126
1028 => 0.045303890898141
1029 => 0.045786490731845
1030 => 0.044474618021699
1031 => 0.044937993640964
1101 => 0.047491238861198
1102 => 0.048860973003939
1103 => 0.047000690058258
1104 => 0.041868243191014
1105 => 0.037135892783059
1106 => 0.038391125211765
1107 => 0.038248820808747
1108 => 0.04099196427406
1109 => 0.037805354173172
1110 => 0.037859008514754
1111 => 0.040658877281891
1112 => 0.039911920296721
1113 => 0.038701945643769
1114 => 0.037144726937063
1115 => 0.034266064132421
1116 => 0.031716352208899
1117 => 0.036716924454514
1118 => 0.036501290686332
1119 => 0.036189021034871
1120 => 0.036883943353092
1121 => 0.04025828887323
1122 => 0.0401804992873
1123 => 0.039685641630211
1124 => 0.040060986801638
1125 => 0.038636145820451
1126 => 0.039003359784329
1127 => 0.037135143154576
1128 => 0.037979655094842
1129 => 0.038699349581591
1130 => 0.038843838905065
1201 => 0.039169380728659
1202 => 0.036387661488975
1203 => 0.037636571760607
1204 => 0.038370189538124
1205 => 0.03505567773006
1206 => 0.038304672296646
1207 => 0.036339237945779
1208 => 0.035672140007261
1209 => 0.036570299498005
1210 => 0.036220285870973
1211 => 0.035919364707941
1212 => 0.035751445528487
1213 => 0.036410954732244
1214 => 0.036380187839605
1215 => 0.035301102777039
1216 => 0.033893480302055
1217 => 0.034365924608292
1218 => 0.034194281162648
1219 => 0.033572223173185
1220 => 0.033991415150515
1221 => 0.03214550583056
1222 => 0.028969714787596
1223 => 0.031067739627689
1224 => 0.030986967953557
1225 => 0.030946239212756
1226 => 0.032522846894938
1227 => 0.032371292444824
1228 => 0.032096219633842
1229 => 0.033567171245297
1230 => 0.033030254120025
1231 => 0.034684906186529
]
'min_raw' => 0.014853405005237
'max_raw' => 0.048860973003939
'avg_raw' => 0.031857189004588
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.014853'
'max' => '$0.04886'
'avg' => '$0.031857'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0080917520946609
'max_diff' => 0.032299572627346
'year' => 2029
]
4 => [
'items' => [
101 => 0.035774767053714
102 => 0.03549834308449
103 => 0.036523362497833
104 => 0.034376808770905
105 => 0.035089807814203
106 => 0.035236755928852
107 => 0.033549019930741
108 => 0.032396088627168
109 => 0.032319201253599
110 => 0.030320177256924
111 => 0.03138803974039
112 => 0.032327714534688
113 => 0.031877683229929
114 => 0.031735216763145
115 => 0.032463047044737
116 => 0.032519605691062
117 => 0.031230062561046
118 => 0.031498199412296
119 => 0.032616374656052
120 => 0.031470024265096
121 => 0.029242852710741
122 => 0.028690483372205
123 => 0.028616787120257
124 => 0.027118717665183
125 => 0.028727395332662
126 => 0.028025164420927
127 => 0.030243503457082
128 => 0.028976400096821
129 => 0.028921777803487
130 => 0.028839208195766
131 => 0.027549757931314
201 => 0.027832065590389
202 => 0.028770499245827
203 => 0.029105342946299
204 => 0.029070416005047
205 => 0.028765900408955
206 => 0.028905306089474
207 => 0.028456231820364
208 => 0.028297654349269
209 => 0.027797140230323
210 => 0.027061522746027
211 => 0.027163814869023
212 => 0.025706364147847
213 => 0.024912267642186
214 => 0.024692472195443
215 => 0.024398552538174
216 => 0.024725671202822
217 => 0.025702235373073
218 => 0.024524291794104
219 => 0.022504790151096
220 => 0.022626165640904
221 => 0.022898860329797
222 => 0.022390695581101
223 => 0.021909760293496
224 => 0.022327894506556
225 => 0.021472205037794
226 => 0.023002266313992
227 => 0.022960882444418
228 => 0.02353119466983
301 => 0.023887822608365
302 => 0.023065910669708
303 => 0.022859202039822
304 => 0.022976952669788
305 => 0.02103079704921
306 => 0.023372152235648
307 => 0.023392400372527
308 => 0.023219023531567
309 => 0.024465722887114
310 => 0.027096647382598
311 => 0.026106787758704
312 => 0.025723484193667
313 => 0.024994823836338
314 => 0.025965720498908
315 => 0.02589117078357
316 => 0.025554028698671
317 => 0.025350124113777
318 => 0.0257258245635
319 => 0.025303570670364
320 => 0.025227722268396
321 => 0.024768163476343
322 => 0.024604121896173
323 => 0.024482672040898
324 => 0.024348967683657
325 => 0.024643886178681
326 => 0.023975562069199
327 => 0.023169628709784
328 => 0.023102624071268
329 => 0.023287629769318
330 => 0.023205778519985
331 => 0.023102232198977
401 => 0.022904534073009
402 => 0.022845881262187
403 => 0.023036474443061
404 => 0.022821305854127
405 => 0.023138798827939
406 => 0.02305245830675
407 => 0.022570167173973
408 => 0.021969053855486
409 => 0.021963702686074
410 => 0.021834193807629
411 => 0.02166924477914
412 => 0.021623359732937
413 => 0.022292680409403
414 => 0.023678154178605
415 => 0.023406152526133
416 => 0.023602701595895
417 => 0.024569528487357
418 => 0.024876853682654
419 => 0.024658721538429
420 => 0.024360128805608
421 => 0.024373265370468
422 => 0.025393647128684
423 => 0.025457287087318
424 => 0.025618084731757
425 => 0.025824755146271
426 => 0.024693918403688
427 => 0.024320003061587
428 => 0.024142821228466
429 => 0.023597169760452
430 => 0.024185608088084
501 => 0.023842750274014
502 => 0.023889013506823
503 => 0.023858884515765
504 => 0.023875336982196
505 => 0.023001838630682
506 => 0.023320095520252
507 => 0.022790931714403
508 => 0.022082440779797
509 => 0.022080065669755
510 => 0.022253467822281
511 => 0.022150321436732
512 => 0.021872757165353
513 => 0.021912183860036
514 => 0.021566764527897
515 => 0.021954124020977
516 => 0.0219652321052
517 => 0.02181607760075
518 => 0.022412858345149
519 => 0.022657359903056
520 => 0.022559183213028
521 => 0.022650471564765
522 => 0.023417455422807
523 => 0.02354250725752
524 => 0.023598047022039
525 => 0.023523631095193
526 => 0.022664490621718
527 => 0.022702597155064
528 => 0.022422996697453
529 => 0.022186763774342
530 => 0.022196211852388
531 => 0.022317666282997
601 => 0.022848064904677
602 => 0.023964257535294
603 => 0.024006616229699
604 => 0.024057956203009
605 => 0.023849130730154
606 => 0.023786146969351
607 => 0.023869238807339
608 => 0.024288422072778
609 => 0.025366675238635
610 => 0.024985548555713
611 => 0.024675686629908
612 => 0.024947519077015
613 => 0.024905672602476
614 => 0.024552446244564
615 => 0.024542532357154
616 => 0.023864578043024
617 => 0.023613953769362
618 => 0.023404513367389
619 => 0.023175809916015
620 => 0.023040226843831
621 => 0.023248544064109
622 => 0.023296188677124
623 => 0.022840699434223
624 => 0.022778617933506
625 => 0.023150580281677
626 => 0.022986893520401
627 => 0.02315524941361
628 => 0.023194309424965
629 => 0.023188019863508
630 => 0.023017112085431
701 => 0.023126043606634
702 => 0.022868388084939
703 => 0.022588226403704
704 => 0.022409500705766
705 => 0.022253538829791
706 => 0.022340075543139
707 => 0.022031587961032
708 => 0.021932896574888
709 => 0.023089140058287
710 => 0.023943269551187
711 => 0.023930850170087
712 => 0.023855250381652
713 => 0.023742924430894
714 => 0.024280204729845
715 => 0.024093027016949
716 => 0.024229214442302
717 => 0.024263879857823
718 => 0.024368801630048
719 => 0.024406302145288
720 => 0.024292949542451
721 => 0.023912524362477
722 => 0.022964540983722
723 => 0.022523252161879
724 => 0.022377619500425
725 => 0.022382912971073
726 => 0.022236895419505
727 => 0.02227990413249
728 => 0.022221938744303
729 => 0.022112166322411
730 => 0.022333297405418
731 => 0.022358780702756
801 => 0.022307166065663
802 => 0.022319323181175
803 => 0.021891976030941
804 => 0.021924466306624
805 => 0.021743556322956
806 => 0.021709637881921
807 => 0.021252313196842
808 => 0.020442096226953
809 => 0.020891035077936
810 => 0.020348780076304
811 => 0.020143419890681
812 => 0.021115563069356
813 => 0.021017986857271
814 => 0.020850978797543
815 => 0.020603939069675
816 => 0.02051230963156
817 => 0.019955598171933
818 => 0.019922704688958
819 => 0.020198625920823
820 => 0.020071297766188
821 => 0.019892480814136
822 => 0.019244823940188
823 => 0.018516643182049
824 => 0.018538622381956
825 => 0.018770243132835
826 => 0.019443711704331
827 => 0.019180575882323
828 => 0.018989667824321
829 => 0.018953916483732
830 => 0.019401419361701
831 => 0.020034729688778
901 => 0.020331864724723
902 => 0.020037412928227
903 => 0.019699162558823
904 => 0.019719750291507
905 => 0.01985671125359
906 => 0.019871103914181
907 => 0.019650937696398
908 => 0.019712913197073
909 => 0.01961876674439
910 => 0.019040990138052
911 => 0.019030539991393
912 => 0.018888744294291
913 => 0.018884450776936
914 => 0.018643220923572
915 => 0.018609471199543
916 => 0.018130494684083
917 => 0.018445758477034
918 => 0.018234296076815
919 => 0.017915572360747
920 => 0.017860624271963
921 => 0.017858972466062
922 => 0.018186230457145
923 => 0.018441934276869
924 => 0.018237974555801
925 => 0.018191536880907
926 => 0.018687369757911
927 => 0.018624270504695
928 => 0.018569626958357
929 => 0.019978023695197
930 => 0.01886316777942
1001 => 0.01837702696639
1002 => 0.017775335394629
1003 => 0.017971249204387
1004 => 0.018012531122676
1005 => 0.016565571355648
1006 => 0.015978539958373
1007 => 0.015777092904639
1008 => 0.015661157277172
1009 => 0.015713990598437
1010 => 0.015185593488974
1011 => 0.015540685085415
1012 => 0.015083137852915
1013 => 0.015006428570399
1014 => 0.015824579701334
1015 => 0.015938420651634
1016 => 0.015452739790043
1017 => 0.015764625527773
1018 => 0.015651531423736
1019 => 0.015090981186976
1020 => 0.01506957229106
1021 => 0.014788307886548
1022 => 0.014348183557006
1023 => 0.014147034928293
1024 => 0.014042274976007
1025 => 0.014085500974051
1026 => 0.014063644586703
1027 => 0.013921016875024
1028 => 0.014071819840182
1029 => 0.013686580580291
1030 => 0.013533175202918
1031 => 0.013463885552937
1101 => 0.013121963536239
1102 => 0.013666113518216
1103 => 0.013773317919687
1104 => 0.013880733546945
1105 => 0.014815713246466
1106 => 0.014769004302904
1107 => 0.015191230404534
1108 => 0.015174823474648
1109 => 0.015054397750854
1110 => 0.014546341431236
1111 => 0.014748843625003
1112 => 0.014125573348417
1113 => 0.014592569817894
1114 => 0.014379452131464
1115 => 0.014520514513735
1116 => 0.014266871631329
1117 => 0.01440724807511
1118 => 0.013798740060297
1119 => 0.013230523838002
1120 => 0.013459190633119
1121 => 0.013707777590631
1122 => 0.014246777453296
1123 => 0.013925753581745
1124 => 0.014041205905211
1125 => 0.013654459948085
1126 => 0.012856492570013
1127 => 0.012861008978713
1128 => 0.012738259082261
1129 => 0.012632185249948
1130 => 0.013962627035119
1201 => 0.013797165567961
1202 => 0.013533524375106
1203 => 0.013886418588427
1204 => 0.013979729419613
1205 => 0.013982385847797
1206 => 0.014239848356318
1207 => 0.014377256143269
1208 => 0.014401474861278
1209 => 0.014806597681281
1210 => 0.014942389506847
1211 => 0.015501696818375
1212 => 0.014365598052561
1213 => 0.014342200846109
1214 => 0.013891384533704
1215 => 0.013605469701252
1216 => 0.013910961366892
1217 => 0.014181585278879
1218 => 0.01389979357301
1219 => 0.013936589620849
1220 => 0.013558307278949
1221 => 0.01369352541634
1222 => 0.013809993492111
1223 => 0.013745686666347
1224 => 0.013649416235693
1225 => 0.01415939720425
1226 => 0.014130622079373
1227 => 0.014605528081705
1228 => 0.014975751271377
1229 => 0.01563925741258
1230 => 0.014946854164877
1231 => 0.014921620238477
]
'min_raw' => 0.012632185249948
'max_raw' => 0.036523362497833
'avg_raw' => 0.024577773873891
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.012632'
'max' => '$0.036523'
'avg' => '$0.024577'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0022212197552887
'max_diff' => -0.012337610506107
'year' => 2030
]
5 => [
'items' => [
101 => 0.015168285916686
102 => 0.014942351743617
103 => 0.015085134342014
104 => 0.015616252928568
105 => 0.015627474627376
106 => 0.015439496713997
107 => 0.015428058240884
108 => 0.015464161455402
109 => 0.015675619110494
110 => 0.015601729308368
111 => 0.01568723645805
112 => 0.015794164458059
113 => 0.01623646400263
114 => 0.016343100925428
115 => 0.016084028487934
116 => 0.016107419828329
117 => 0.016010519625009
118 => 0.015916915242758
119 => 0.016127324224236
120 => 0.016511850773487
121 => 0.016509458653781
122 => 0.016598661339079
123 => 0.016654233873025
124 => 0.016415675875748
125 => 0.016260383391542
126 => 0.016319932411504
127 => 0.016415152591233
128 => 0.016289053790564
129 => 0.015510713578188
130 => 0.015746812278058
131 => 0.015707513909763
201 => 0.015651548254466
202 => 0.015888947322882
203 => 0.015866049603594
204 => 0.015180174012883
205 => 0.015224081542883
206 => 0.015182844175209
207 => 0.015316090546535
208 => 0.014935156002288
209 => 0.015052328902465
210 => 0.015125818647029
211 => 0.015169104671151
212 => 0.015325483471786
213 => 0.015307134224449
214 => 0.015324342856808
215 => 0.015556211335678
216 => 0.016728922534146
217 => 0.016792750617238
218 => 0.016478437792072
219 => 0.016603999566179
220 => 0.016362948417234
221 => 0.016524767668423
222 => 0.016635480290323
223 => 0.01613519124077
224 => 0.016105567370104
225 => 0.015863521317321
226 => 0.015993583155897
227 => 0.015786645418945
228 => 0.015837420701219
301 => 0.015695448585473
302 => 0.015950970127449
303 => 0.016236682915412
304 => 0.016308865248791
305 => 0.016118984606118
306 => 0.015981498507079
307 => 0.015740118207903
308 => 0.016141539024944
309 => 0.016258926704924
310 => 0.016140922437434
311 => 0.016113578270213
312 => 0.016061761122738
313 => 0.016124571523005
314 => 0.016258287386409
315 => 0.016195229454572
316 => 0.016236880329488
317 => 0.016078150144504
318 => 0.016415754848372
319 => 0.016951952367111
320 => 0.016953676329811
321 => 0.016890618058068
322 => 0.016864815971881
323 => 0.016929517585385
324 => 0.016964615556511
325 => 0.017173848710336
326 => 0.017398364220606
327 => 0.018446080143247
328 => 0.018151885704673
329 => 0.019081481600139
330 => 0.019816671260533
331 => 0.020037122493737
401 => 0.019834317732221
402 => 0.019140533598372
403 => 0.019106493238894
404 => 0.02014329964297
405 => 0.019850354345077
406 => 0.019815509434037
407 => 0.019444818451975
408 => 0.019663942733345
409 => 0.01961601703865
410 => 0.019540363984969
411 => 0.019958437849492
412 => 0.020741034802169
413 => 0.020619059727946
414 => 0.0205280109933
415 => 0.020129061941969
416 => 0.020369318379367
417 => 0.020283767663818
418 => 0.02065134782964
419 => 0.020433601482305
420 => 0.019848134996325
421 => 0.019941372463941
422 => 0.019927279808278
423 => 0.020217305663191
424 => 0.020130247100431
425 => 0.019910280226659
426 => 0.020738359970863
427 => 0.020684589078296
428 => 0.020760823910219
429 => 0.020794384840872
430 => 0.021298422388767
501 => 0.021504910444737
502 => 0.021551786848525
503 => 0.021747934531337
504 => 0.02154690651549
505 => 0.022351161909425
506 => 0.022885944816788
507 => 0.023507122683367
508 => 0.024414830503309
509 => 0.024756137040374
510 => 0.02469448306937
511 => 0.025382696778924
512 => 0.026619401516861
513 => 0.024944456455648
514 => 0.02670817767219
515 => 0.026149803898173
516 => 0.024825909724696
517 => 0.024740666547611
518 => 0.025637223052617
519 => 0.027625699090356
520 => 0.027127608396011
521 => 0.027626513788295
522 => 0.027044514147275
523 => 0.02701561295962
524 => 0.027598247364779
525 => 0.028959604410179
526 => 0.028312874707615
527 => 0.027385629094361
528 => 0.028070292825648
529 => 0.02747717373897
530 => 0.026140710433104
531 => 0.027127227515444
601 => 0.026467571636872
602 => 0.026660094291475
603 => 0.028046592831826
604 => 0.02787976565923
605 => 0.028095655468349
606 => 0.027714615606075
607 => 0.02735866429024
608 => 0.026694254725943
609 => 0.02649755580895
610 => 0.026551916313121
611 => 0.026497528870584
612 => 0.026125797825598
613 => 0.026045522541826
614 => 0.025911726885266
615 => 0.025953195753856
616 => 0.025701620776222
617 => 0.02617639473706
618 => 0.026264516967885
619 => 0.02661001786372
620 => 0.02664588891288
621 => 0.027608103989883
622 => 0.027078132094837
623 => 0.027433682997606
624 => 0.027401879178287
625 => 0.024854602525833
626 => 0.025205594773729
627 => 0.025751628564021
628 => 0.025505641081626
629 => 0.025157872333726
630 => 0.024877030423616
701 => 0.024451526212239
702 => 0.025050415218667
703 => 0.025837890577373
704 => 0.026665860587509
705 => 0.027660612303944
706 => 0.027438595301022
707 => 0.026647264396106
708 => 0.026682762922433
709 => 0.026902200844031
710 => 0.026618008797524
711 => 0.026534195014921
712 => 0.026890686117349
713 => 0.026893141075647
714 => 0.026566143780385
715 => 0.026202746126574
716 => 0.026201223477136
717 => 0.026136560374645
718 => 0.027056017569558
719 => 0.027561626059153
720 => 0.027619593257656
721 => 0.027557724404835
722 => 0.027581535270799
723 => 0.027287332831027
724 => 0.027959792365323
725 => 0.028576907733348
726 => 0.02841150763197
727 => 0.028163549366995
728 => 0.027966038665655
729 => 0.028364980387715
730 => 0.028347216140824
731 => 0.028571517768968
801 => 0.028561342151486
802 => 0.028485917950352
803 => 0.028411510325606
804 => 0.028706528147069
805 => 0.028621567752329
806 => 0.028536475390629
807 => 0.028365809632251
808 => 0.028389005943273
809 => 0.028141090491789
810 => 0.028026393460093
811 => 0.026301625300045
812 => 0.025840710889255
813 => 0.025985723945667
814 => 0.026033466009101
815 => 0.025832875466847
816 => 0.026120470776956
817 => 0.026075649352515
818 => 0.026250023295361
819 => 0.026141082026307
820 => 0.026145553013989
821 => 0.02646592605755
822 => 0.02655893171506
823 => 0.026511628287002
824 => 0.026544757986547
825 => 0.027308217929382
826 => 0.027199678339585
827 => 0.02714201884578
828 => 0.027157990919616
829 => 0.027353071303776
830 => 0.027407683160347
831 => 0.02717628888655
901 => 0.027285415763747
902 => 0.02775006415659
903 => 0.027912664797263
904 => 0.028431607989558
905 => 0.028211151697992
906 => 0.028615808762287
907 => 0.029859586620171
908 => 0.03085320243593
909 => 0.029939432268848
910 => 0.031764081178278
911 => 0.03318483208461
912 => 0.033130301298441
913 => 0.032882560515361
914 => 0.031265073381119
915 => 0.029776637604815
916 => 0.031021777334015
917 => 0.03102495145125
918 => 0.030917992844252
919 => 0.030253682122245
920 => 0.030894876271103
921 => 0.030945771934164
922 => 0.030917283897099
923 => 0.030407958424095
924 => 0.0296303125659
925 => 0.02978226270517
926 => 0.030031160132994
927 => 0.029559945376681
928 => 0.029409363710131
929 => 0.029689323677583
930 => 0.030591413024689
1001 => 0.030420878259066
1002 => 0.030416424907151
1003 => 0.03114604495248
1004 => 0.030623794461885
1005 => 0.029784179283038
1006 => 0.029572165377216
1007 => 0.028819658841227
1008 => 0.029339417785971
1009 => 0.029358122985083
1010 => 0.029073456322854
1011 => 0.029807278413791
1012 => 0.029800516114036
1013 => 0.030497170974376
1014 => 0.031828913415729
1015 => 0.031435051644755
1016 => 0.030977033257152
1017 => 0.031026832555356
1018 => 0.031573007941522
1019 => 0.031242777835075
1020 => 0.031361530883799
1021 => 0.03157282819456
1022 => 0.031700309108359
1023 => 0.031008490013681
1024 => 0.030847193889179
1025 => 0.030517238625694
1026 => 0.030431159456358
1027 => 0.030699901133723
1028 => 0.030629097196521
1029 => 0.029356550885528
1030 => 0.029223562715648
1031 => 0.029227641272955
1101 => 0.02889323619655
1102 => 0.028383188188618
1103 => 0.029723563900079
1104 => 0.029615912971903
1105 => 0.029497074678716
1106 => 0.02951163169155
1107 => 0.030093443358347
1108 => 0.029755963209411
1109 => 0.030653209497266
1110 => 0.030468762634176
1111 => 0.030279585405028
1112 => 0.030253435349481
1113 => 0.030180618256102
1114 => 0.029930901348858
1115 => 0.029629353177702
1116 => 0.029430244955449
1117 => 0.02714784529454
1118 => 0.027571445395496
1119 => 0.028058758699283
1120 => 0.028226977298965
1121 => 0.027939227743837
1122 => 0.029942263455149
1123 => 0.030308237381338
1124 => 0.029199678487023
1125 => 0.028992312380058
1126 => 0.029955858342599
1127 => 0.029374722338483
1128 => 0.029636407845553
1129 => 0.029070786913587
1130 => 0.030220084979487
1201 => 0.030211329253825
1202 => 0.029764226348116
1203 => 0.030142114662393
1204 => 0.030076447268413
1205 => 0.029571669189033
1206 => 0.030236087344959
1207 => 0.030236416888075
1208 => 0.029806090062186
1209 => 0.029303562540202
1210 => 0.029213722488442
1211 => 0.029146040077753
1212 => 0.029619762121531
1213 => 0.030044499824691
1214 => 0.030834831388867
1215 => 0.031033539521915
1216 => 0.031809110593953
1217 => 0.031347295782425
1218 => 0.031552012306872
1219 => 0.03177426105308
1220 => 0.03188081527494
1221 => 0.031707190888435
1222 => 0.032911972001099
1223 => 0.033013692440547
1224 => 0.033047798424016
1225 => 0.03264155301145
1226 => 0.033002394020731
1227 => 0.032833568462286
1228 => 0.033272805664268
1229 => 0.033341683666001
1230 => 0.033283346448939
1231 => 0.033305209413854
]
'min_raw' => 0.014935156002288
'max_raw' => 0.033341683666001
'avg_raw' => 0.024138419834145
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.014935'
'max' => '$0.033341'
'avg' => '$0.024138'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00230297075234
'max_diff' => -0.003181678831832
'year' => 2031
]
6 => [
'items' => [
101 => 0.032277141272148
102 => 0.032223830515509
103 => 0.031496934565978
104 => 0.031793150038356
105 => 0.031239389410723
106 => 0.031414992610112
107 => 0.031492396827194
108 => 0.031451965256841
109 => 0.031809897616726
110 => 0.031505581990073
111 => 0.030702443017217
112 => 0.029899085229684
113 => 0.029888999727063
114 => 0.029677489802048
115 => 0.029524606866238
116 => 0.029554057543489
117 => 0.029657845571432
118 => 0.029518574517377
119 => 0.029548295057982
120 => 0.030041854058937
121 => 0.030140833796677
122 => 0.029804461973957
123 => 0.028453880567513
124 => 0.028122444502695
125 => 0.028360674173423
126 => 0.028246815734771
127 => 0.022797384871538
128 => 0.024077647820304
129 => 0.023316959049769
130 => 0.023667519432839
131 => 0.022891053177525
201 => 0.023261623572644
202 => 0.02319319275173
203 => 0.025251817687611
204 => 0.025219675090783
205 => 0.025235060050936
206 => 0.024500695817529
207 => 0.025670557981508
208 => 0.026246874150367
209 => 0.026140213365669
210 => 0.026167057587261
211 => 0.02570578492115
212 => 0.025239526178636
213 => 0.024722373476482
214 => 0.025683179275078
215 => 0.025576354071776
216 => 0.025821372653656
217 => 0.026444523893862
218 => 0.026536285281104
219 => 0.026659613516109
220 => 0.026615409122961
221 => 0.027668537106224
222 => 0.027540996358689
223 => 0.027848332864271
224 => 0.027216118354611
225 => 0.026500707626578
226 => 0.026636683817438
227 => 0.026623588216807
228 => 0.02645686619034
229 => 0.02630635699949
301 => 0.026055801602428
302 => 0.026848595953955
303 => 0.026816409951095
304 => 0.027337463925255
305 => 0.027245362574074
306 => 0.026630287209864
307 => 0.026652254746825
308 => 0.026799996990131
309 => 0.027311334581104
310 => 0.027463134392622
311 => 0.02739281467175
312 => 0.027559256235156
313 => 0.027690804860502
314 => 0.027575776717141
315 => 0.029204332654249
316 => 0.028528042686638
317 => 0.028857661711257
318 => 0.0289362739064
319 => 0.028734910421576
320 => 0.028778578951149
321 => 0.028844724874489
322 => 0.029246349968311
323 => 0.030300330425657
324 => 0.030767131195528
325 => 0.032171524343229
326 => 0.03072836988977
327 => 0.030642739076869
328 => 0.03089571269138
329 => 0.031720240139193
330 => 0.03238844219172
331 => 0.032610123362044
401 => 0.03263942218826
402 => 0.033055310800874
403 => 0.033293690397761
404 => 0.033004810984346
405 => 0.032760015928413
406 => 0.031883190423139
407 => 0.031984685362891
408 => 0.032683884850093
409 => 0.033671545308411
410 => 0.034519060730204
411 => 0.034222290368387
412 => 0.036486438741829
413 => 0.036710919804839
414 => 0.036679903780273
415 => 0.037191305049071
416 => 0.036176277675564
417 => 0.035742333808161
418 => 0.032812943398047
419 => 0.033635982615007
420 => 0.034832318452257
421 => 0.034673978918168
422 => 0.033805167855008
423 => 0.034518401659105
424 => 0.034282584258587
425 => 0.034096585290726
426 => 0.034948682620172
427 => 0.034011766604217
428 => 0.034822971998294
429 => 0.033782592689546
430 => 0.034223645990402
501 => 0.033973282805488
502 => 0.034135298469485
503 => 0.033188158208282
504 => 0.033699212102697
505 => 0.033166896686085
506 => 0.033166644299268
507 => 0.033154893406943
508 => 0.033781160133939
509 => 0.033801582669422
510 => 0.033338770611936
511 => 0.033272072163969
512 => 0.033518691284174
513 => 0.033229964884064
514 => 0.033365058149453
515 => 0.033234056721451
516 => 0.033204565540695
517 => 0.032969574794924
518 => 0.03286833432044
519 => 0.032908033319131
520 => 0.032772520170363
521 => 0.032690868596506
522 => 0.033138650853762
523 => 0.032899418857195
524 => 0.033101985119218
525 => 0.032871135297742
526 => 0.032070909240026
527 => 0.031610690771997
528 => 0.030099137929966
529 => 0.030527812440891
530 => 0.030812024085129
531 => 0.030718092138404
601 => 0.030919894306808
602 => 0.030932283320979
603 => 0.030866675378901
604 => 0.030790709786873
605 => 0.030753733937834
606 => 0.031029321622823
607 => 0.031189309549814
608 => 0.03084054852589
609 => 0.03075883869767
610 => 0.031111455348481
611 => 0.031326551301776
612 => 0.032914698968929
613 => 0.032797043860097
614 => 0.033092335094616
615 => 0.033059089833222
616 => 0.033368602090582
617 => 0.033874523821724
618 => 0.03284584348437
619 => 0.033024386821845
620 => 0.032980612118664
621 => 0.033458532849651
622 => 0.033460024866007
623 => 0.033173487513869
624 => 0.033328824061
625 => 0.033242119461827
626 => 0.033398806391363
627 => 0.032795472504387
628 => 0.033530268052855
629 => 0.033946849779657
630 => 0.033952634017338
701 => 0.034150090449645
702 => 0.034350717620775
703 => 0.034735804004813
704 => 0.03433997777053
705 => 0.03362792490796
706 => 0.033679332824721
707 => 0.033261856491927
708 => 0.033268874344504
709 => 0.033231412497446
710 => 0.033343838320463
711 => 0.032820143650287
712 => 0.032943053742631
713 => 0.032770978893589
714 => 0.033024012764729
715 => 0.032751790147379
716 => 0.032980591009177
717 => 0.03307933387626
718 => 0.033443697181579
719 => 0.032697973390929
720 => 0.031177392100731
721 => 0.031497036723197
722 => 0.031024257219027
723 => 0.031068014762136
724 => 0.031156411963178
725 => 0.030869887712835
726 => 0.030924547510384
727 => 0.030922594677781
728 => 0.030905766221409
729 => 0.030831230197803
730 => 0.030723138217072
731 => 0.031153743399348
801 => 0.031226911610709
802 => 0.031389555480942
803 => 0.031873473316363
804 => 0.031825118513036
805 => 0.031903987203484
806 => 0.031731817295065
807 => 0.031076001230392
808 => 0.03111161519793
809 => 0.030667508452056
810 => 0.031378198672962
811 => 0.031209897847999
812 => 0.031101393211283
813 => 0.031071786715867
814 => 0.031556904090002
815 => 0.031702058811627
816 => 0.031611608130081
817 => 0.031426091143364
818 => 0.031782338601035
819 => 0.031877655391834
820 => 0.031898993306146
821 => 0.032530195497464
822 => 0.031934270496859
823 => 0.03207771556749
824 => 0.03319683306035
825 => 0.032181947921983
826 => 0.032719555214415
827 => 0.032693242135024
828 => 0.032968263834194
829 => 0.03267068232841
830 => 0.032674371207823
831 => 0.032918571845102
901 => 0.032575636091861
902 => 0.032490720376642
903 => 0.032373409924245
904 => 0.032629553005337
905 => 0.032783099198096
906 => 0.034020568744484
907 => 0.034820030506918
908 => 0.034785323763381
909 => 0.035102478431014
910 => 0.034959597348441
911 => 0.03449819664269
912 => 0.035285751385586
913 => 0.035036536112243
914 => 0.035057081116581
915 => 0.035056316430494
916 => 0.035222022800489
917 => 0.035104604650581
918 => 0.034873161424388
919 => 0.035026804238938
920 => 0.035483068469841
921 => 0.03689932664246
922 => 0.037691883478783
923 => 0.03685161372575
924 => 0.037431220549732
925 => 0.037083662990371
926 => 0.037020501442893
927 => 0.037384537360962
928 => 0.037749210475714
929 => 0.03772598237483
930 => 0.037461248419691
1001 => 0.037311706925809
1002 => 0.038444085217562
1003 => 0.039278402253366
1004 => 0.039221507424856
1005 => 0.039472622694707
1006 => 0.040209904893693
1007 => 0.040277312738047
1008 => 0.04026882089901
1009 => 0.040101743523497
1010 => 0.040827693596591
1011 => 0.041433293919441
1012 => 0.040063069938396
1013 => 0.040584833292829
1014 => 0.040819069672799
1015 => 0.041162998173398
1016 => 0.041743263203018
1017 => 0.042373584932883
1018 => 0.042462719336612
1019 => 0.042399474211692
1020 => 0.041983760086889
1021 => 0.042673465645009
1022 => 0.04307747898537
1023 => 0.043318059683875
1024 => 0.04392813230647
1025 => 0.040820516236939
1026 => 0.038620791124384
1027 => 0.038277272283643
1028 => 0.038975831354501
1029 => 0.039160035810582
1030 => 0.039085783225309
1031 => 0.036609792620871
1101 => 0.038264236705528
1102 => 0.04004427943101
1103 => 0.040112658121548
1104 => 0.041003784728863
1105 => 0.041293972080718
1106 => 0.042011445802241
1107 => 0.041966567625612
1108 => 0.042141261059303
1109 => 0.042101102064166
1110 => 0.04343007105137
1111 => 0.04489612119806
1112 => 0.044845356543235
1113 => 0.04463459448913
1114 => 0.044947612079746
1115 => 0.046460732942612
1116 => 0.046321429020827
1117 => 0.046456750914961
1118 => 0.048240805688035
1119 => 0.050560330671864
1120 => 0.049482678440375
1121 => 0.05182087369663
1122 => 0.053292643668038
1123 => 0.055837917649733
1124 => 0.055519236811486
1125 => 0.056510093294476
1126 => 0.054948731600326
1127 => 0.051363529547296
1128 => 0.050796157598802
1129 => 0.051932050607833
1130 => 0.054724532731718
1201 => 0.051844105408152
1202 => 0.052426812104233
1203 => 0.052258992536561
1204 => 0.052250050144987
1205 => 0.052591344860031
1206 => 0.052096279075124
1207 => 0.050079292006778
1208 => 0.051003665294021
1209 => 0.050646720375765
1210 => 0.051042777374577
1211 => 0.053180133650831
1212 => 0.052235157492889
1213 => 0.051239701874127
1214 => 0.052488224129341
1215 => 0.054078021999022
1216 => 0.053978535305479
1217 => 0.053785489537793
1218 => 0.054873678422689
1219 => 0.056671047651111
1220 => 0.057156869331138
1221 => 0.057515492963148
1222 => 0.057564941103006
1223 => 0.058074287675393
1224 => 0.055335402783804
1225 => 0.059682083446309
1226 => 0.060432635122094
1227 => 0.060291562514226
1228 => 0.061125769113818
1229 => 0.060880324370439
1230 => 0.060524713446383
1231 => 0.061847108347569
]
'min_raw' => 0.022797384871538
'max_raw' => 0.061847108347569
'avg_raw' => 0.042322246609553
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.022797'
'max' => '$0.061847'
'avg' => '$0.042322'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0078622288692499
'max_diff' => 0.028505424681568
'year' => 2032
]
7 => [
'items' => [
101 => 0.060331089305125
102 => 0.058179291135868
103 => 0.056998772102471
104 => 0.058553374795402
105 => 0.059502716411817
106 => 0.060130170830801
107 => 0.060320038158867
108 => 0.055548014621333
109 => 0.05297615860316
110 => 0.05462468882442
111 => 0.056636009469834
112 => 0.055324229796065
113 => 0.055375649075749
114 => 0.053505395990588
115 => 0.05680148536844
116 => 0.056321272870562
117 => 0.058812616159033
118 => 0.058218037088961
119 => 0.06024963082732
120 => 0.059714644109889
121 => 0.061935344063239
122 => 0.062821241397681
123 => 0.064308800901119
124 => 0.065403055727305
125 => 0.066045623091001
126 => 0.066007045756694
127 => 0.068553217777446
128 => 0.067051829093283
129 => 0.065165731055832
130 => 0.065131617492897
131 => 0.066108454392709
201 => 0.0681556365526
202 => 0.06868644110137
203 => 0.068983088430445
204 => 0.068528762719599
205 => 0.066899112908437
206 => 0.06619543838249
207 => 0.066794989466011
208 => 0.066061790010876
209 => 0.067327497969871
210 => 0.069065585338202
211 => 0.068706677169784
212 => 0.069906453366286
213 => 0.071148095509529
214 => 0.072923699540004
215 => 0.073387908183997
216 => 0.074155227420244
217 => 0.07494505096558
218 => 0.075198721002001
219 => 0.075683055810717
220 => 0.075680503127201
221 => 0.077140078672761
222 => 0.078750035698806
223 => 0.079357757205547
224 => 0.080755179300339
225 => 0.078362142934519
226 => 0.080177288507214
227 => 0.081814595249826
228 => 0.07986253065305
301 => 0.082552996926987
302 => 0.082657461635677
303 => 0.08423475471067
304 => 0.082635866006374
305 => 0.081686450997596
306 => 0.084427376553821
307 => 0.085753624092132
308 => 0.085354147540233
309 => 0.082314111255685
310 => 0.080544679744788
311 => 0.075913736182924
312 => 0.081399288873827
313 => 0.0840711415738
314 => 0.082307191802664
315 => 0.083196825464395
316 => 0.088050378258111
317 => 0.089898296917687
318 => 0.089513942754422
319 => 0.089578892281006
320 => 0.090575995647617
321 => 0.094997701090024
322 => 0.092348112694604
323 => 0.094373623744719
324 => 0.095447947502177
325 => 0.096445839280817
326 => 0.093995332459412
327 => 0.090807259089858
328 => 0.089797462427505
329 => 0.082131801761575
330 => 0.081732770833637
331 => 0.08150878268191
401 => 0.080096569069028
402 => 0.078986956007166
403 => 0.078104550503082
404 => 0.075788854951776
405 => 0.076570334222386
406 => 0.072879598836829
407 => 0.075240800544877
408 => 0.069350297753605
409 => 0.074256083515412
410 => 0.071586087363969
411 => 0.073378917970347
412 => 0.073372662953256
413 => 0.070071493389452
414 => 0.068167447678701
415 => 0.06938077971216
416 => 0.070681567966443
417 => 0.070892616484324
418 => 0.07257912241005
419 => 0.073049789962597
420 => 0.071623645305013
421 => 0.069228230176149
422 => 0.069784630476982
423 => 0.068156172244364
424 => 0.065302361829441
425 => 0.067352018292188
426 => 0.068051861125603
427 => 0.068360951590006
428 => 0.06555455680927
429 => 0.064672726639368
430 => 0.064203247656184
501 => 0.068865959851153
502 => 0.069121393750671
503 => 0.067814557806023
504 => 0.073721580195101
505 => 0.072384639102354
506 => 0.073878329861473
507 => 0.069734142981594
508 => 0.069892456501293
509 => 0.067930532018817
510 => 0.069029078633162
511 => 0.068252661293953
512 => 0.068940326922772
513 => 0.069352510865335
514 => 0.071314113415308
515 => 0.074278481865567
516 => 0.071021115408023
517 => 0.069601834196123
518 => 0.070482348277645
519 => 0.072827273309526
520 => 0.07637995476733
521 => 0.074276695839933
522 => 0.075210086436259
523 => 0.075413990757899
524 => 0.073863125491714
525 => 0.076437137381825
526 => 0.077816571264971
527 => 0.079231584995457
528 => 0.080460201769853
529 => 0.078666397394682
530 => 0.080586025207872
531 => 0.079039144050366
601 => 0.077651431738449
602 => 0.077653536325203
603 => 0.076783004120695
604 => 0.075096238280345
605 => 0.074785172779753
606 => 0.076403374797073
607 => 0.077701019570661
608 => 0.077807899809513
609 => 0.078526342631568
610 => 0.07895150969311
611 => 0.083118724882817
612 => 0.084794813305129
613 => 0.086844302501202
614 => 0.087642694045955
615 => 0.09004556635645
616 => 0.088105051813978
617 => 0.087685209286305
618 => 0.081856627034588
619 => 0.082811057051783
620 => 0.084339191598112
621 => 0.08188182541041
622 => 0.08344045864878
623 => 0.0837481658664
624 => 0.081798325047674
625 => 0.082839819276604
626 => 0.080073919386085
627 => 0.074338770924849
628 => 0.076443522241542
629 => 0.077993327662261
630 => 0.075781564237264
701 => 0.079746064569505
702 => 0.077430085319309
703 => 0.076696031083606
704 => 0.073832223800899
705 => 0.075183830600285
706 => 0.077011898149601
707 => 0.075882364939787
708 => 0.078226315950415
709 => 0.081545975690366
710 => 0.08391176291021
711 => 0.084093378676853
712 => 0.082572335989927
713 => 0.085009816602891
714 => 0.085027570988098
715 => 0.082278082899274
716 => 0.080594036754083
717 => 0.080211417926633
718 => 0.081167274774444
719 => 0.082327861448596
720 => 0.084157783159996
721 => 0.085263566525153
722 => 0.088146863079303
723 => 0.088927000456265
724 => 0.089784134910673
725 => 0.090929530872238
726 => 0.092304872397593
727 => 0.089295703438352
728 => 0.089415263330895
729 => 0.08661316686083
730 => 0.083618724921283
731 => 0.085891133090942
801 => 0.08886200448698
802 => 0.088180483306208
803 => 0.088103798251157
804 => 0.088232761243092
805 => 0.087718916529191
806 => 0.085394815932189
807 => 0.084227667162013
808 => 0.085733586846947
809 => 0.086533916138715
810 => 0.087775157074198
811 => 0.087622147929482
812 => 0.090819451279742
813 => 0.092061826680219
814 => 0.091743973888536
815 => 0.091802466451761
816 => 0.094051727770739
817 => 0.096553368953315
818 => 0.098896486041426
819 => 0.10128000538267
820 => 0.098406579786456
821 => 0.096947631476951
822 => 0.098452893724459
823 => 0.097654180387831
824 => 0.10224382413386
825 => 0.10256160110883
826 => 0.10715091297138
827 => 0.11150671641402
828 => 0.10877091431402
829 => 0.11135065247109
830 => 0.1141408496171
831 => 0.11952359260493
901 => 0.11771087413381
902 => 0.11632236019385
903 => 0.11501022122984
904 => 0.11774057411775
905 => 0.12125312948959
906 => 0.12200970027385
907 => 0.12323563397663
908 => 0.12194671458819
909 => 0.12349907602175
910 => 0.12897959402437
911 => 0.12749870968219
912 => 0.12539561585226
913 => 0.12972195846078
914 => 0.13128764503258
915 => 0.14227645334985
916 => 0.15615027777544
917 => 0.1504064233628
918 => 0.14684102757586
919 => 0.14767898015811
920 => 0.15274523117974
921 => 0.15437235021312
922 => 0.14994927977883
923 => 0.15151158303103
924 => 0.16012002755294
925 => 0.16473818184698
926 => 0.15846610801481
927 => 0.1411617050659
928 => 0.12520625526332
929 => 0.12943835903423
930 => 0.12895856980408
1001 => 0.13820726951755
1002 => 0.12746339108039
1003 => 0.12764429043906
1004 => 0.13708424346805
1005 => 0.13456582584168
1006 => 0.13048631182152
1007 => 0.12523604023033
1008 => 0.11553042760266
1009 => 0.1069338958373
1010 => 0.1237936742922
1011 => 0.1230666499877
1012 => 0.12201381105583
1013 => 0.12435679016964
1014 => 0.13573363168007
1015 => 0.13547135866001
1016 => 0.13380291151927
1017 => 0.1350684139705
1018 => 0.13026446312321
1019 => 0.13150255064048
1020 => 0.12520372783855
1021 => 0.1280510588071
1022 => 0.13047755901664
1023 => 0.13096471485865
1024 => 0.13206230184551
1025 => 0.12268354121548
1026 => 0.12689432939241
1027 => 0.12936777294887
1028 => 0.11819266497616
1029 => 0.12914687699496
1030 => 0.12252027785877
1031 => 0.12027111058376
1101 => 0.1232993180143
1102 => 0.12211922263359
1103 => 0.12110464592278
1104 => 0.12053849468551
1105 => 0.12276207601144
1106 => 0.12265834328483
1107 => 0.11902013265708
1108 => 0.11427423520561
1109 => 0.11586711416909
1110 => 0.11528840630834
1111 => 0.11319109436616
1112 => 0.11460442938478
1113 => 0.10838081723528
1114 => 0.097673416007277
1115 => 0.10474705323507
1116 => 0.10447472589643
1117 => 0.10433740610323
1118 => 0.10965304897894
1119 => 0.10914207256919
1120 => 0.10821464538199
1121 => 0.11317406143857
1122 => 0.11136380786436
1123 => 0.1169425828307
1124 => 0.12061712483607
1125 => 0.11968514212453
1126 => 0.12314106664118
1127 => 0.11590381088325
1128 => 0.11830773693773
1129 => 0.11880318276586
1130 => 0.11311286301427
1201 => 0.10922567462918
1202 => 0.10896644348108
1203 => 0.10222659450889
1204 => 0.10582696742768
1205 => 0.10899514660265
1206 => 0.10747783463848
1207 => 0.10699749899902
1208 => 0.1094514296089
1209 => 0.10964212103378
1210 => 0.10529433633791
1211 => 0.10619837845261
1212 => 0.10996838435544
1213 => 0.1061033839767
1214 => 0.098594319585039
1215 => 0.09673196779497
1216 => 0.096483495736221
1217 => 0.09143264997657
1218 => 0.096856419046764
1219 => 0.09448879849965
1220 => 0.10196808343953
1221 => 0.097695955994082
1222 => 0.097511793118501
1223 => 0.097233403921241
1224 => 0.092885932328099
1225 => 0.093837752310764
1226 => 0.097001746899419
1227 => 0.098130695813601
1228 => 0.098012937192646
1229 => 0.096986241599823
1230 => 0.097456257584685
1231 => 0.095942172333019
]
'min_raw' => 0.05297615860316
'max_raw' => 0.16473818184698
'avg_raw' => 0.10885717022507
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.052976'
'max' => '$0.164738'
'avg' => '$0.108857'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.030178773731622
'max_diff' => 0.10289107349941
'year' => 2033
]
8 => [
'items' => [
101 => 0.095407517317697
102 => 0.09371999902089
103 => 0.091239813313413
104 => 0.091584698347901
105 => 0.086670801485497
106 => 0.083993449674614
107 => 0.083252393980291
108 => 0.082261423334993
109 => 0.08336432675155
110 => 0.086656881033084
111 => 0.082685362015196
112 => 0.075876471228693
113 => 0.076285697166747
114 => 0.077205106349283
115 => 0.075491793420128
116 => 0.073870286520136
117 => 0.075280055212666
118 => 0.072395038426403
119 => 0.077553746844573
120 => 0.077414218238974
121 => 0.079337065724879
122 => 0.080539461718618
123 => 0.077768328233376
124 => 0.077071395655779
125 => 0.077468400125798
126 => 0.070906800574773
127 => 0.078800843054047
128 => 0.078869111061215
129 => 0.078284558937133
130 => 0.082487892856129
131 => 0.091358238477935
201 => 0.088020857646186
202 => 0.086728522915263
203 => 0.084271793647087
204 => 0.087545239530781
205 => 0.087293889960624
206 => 0.08615719188288
207 => 0.085469713338746
208 => 0.086736413635555
209 => 0.08531275515402
210 => 0.085057026971218
211 => 0.083507592418442
212 => 0.082954514777881
213 => 0.082545038111465
214 => 0.082094244536087
215 => 0.083088582832611
216 => 0.080835281436592
217 => 0.078118020846854
218 => 0.077892110029984
219 => 0.078515869657644
220 => 0.078239902455847
221 => 0.077890788805194
222 => 0.077224235770652
223 => 0.077026483723956
224 => 0.077669081940065
225 => 0.076943626019881
226 => 0.078014075747741
227 => 0.077722972652448
228 => 0.076096894425801
301 => 0.074070198904131
302 => 0.074052157062851
303 => 0.073615508837154
304 => 0.073059371671229
305 => 0.072904667034363
306 => 0.075161328425545
307 => 0.079832549969101
308 => 0.078915477407243
309 => 0.079578156318562
310 => 0.082837880684825
311 => 0.083874049037528
312 => 0.083138601283772
313 => 0.082131875037988
314 => 0.08217616588358
315 => 0.085616454222183
316 => 0.085831020785918
317 => 0.086373161270679
318 => 0.08706996500248
319 => 0.083257269972362
320 => 0.081996588290532
321 => 0.081399207369724
322 => 0.079559505349146
323 => 0.081543466254208
324 => 0.080387497196505
325 => 0.080543476915915
326 => 0.080441894919025
327 => 0.080497365558271
328 => 0.077552304880435
329 => 0.078625330203606
330 => 0.07684121748715
331 => 0.074452490835866
401 => 0.074444482986535
402 => 0.07502912045033
403 => 0.074681355209999
404 => 0.073745527890128
405 => 0.073878457743935
406 => 0.072713852349219
407 => 0.074019861924715
408 => 0.074057313606214
409 => 0.073554428780825
410 => 0.075566516726469
411 => 0.076390870799507
412 => 0.076059861234599
413 => 0.076367646286029
414 => 0.078953585912522
415 => 0.079375206904097
416 => 0.079562463097835
417 => 0.079311564604918
418 => 0.076414912515325
419 => 0.076543391353014
420 => 0.075600698889099
421 => 0.074804223095575
422 => 0.07483607795035
423 => 0.075245570042827
424 => 0.077033846027068
425 => 0.080797167411274
426 => 0.080939982706853
427 => 0.08111307901131
428 => 0.08040900934985
429 => 0.080196655202914
430 => 0.080476805135978
501 => 0.081890110781848
502 => 0.085525516611765
503 => 0.084240521390881
504 => 0.08319580027416
505 => 0.084112302348315
506 => 0.08397121403778
507 => 0.082780286710603
508 => 0.082746861347036
509 => 0.080461091043686
510 => 0.079616093807009
511 => 0.078909950869094
512 => 0.07813886121522
513 => 0.077681733421244
514 => 0.078384089473658
515 => 0.078544726612877
516 => 0.077009012829192
517 => 0.076799700715133
518 => 0.078053797741575
519 => 0.077501916397687
520 => 0.078069540045875
521 => 0.078201233601239
522 => 0.078180027905666
523 => 0.077603800399479
524 => 0.077971070628571
525 => 0.077102367048243
526 => 0.076157782379695
527 => 0.075555196210866
528 => 0.075029359857106
529 => 0.075321124427961
530 => 0.074281037006971
531 => 0.073948292108173
601 => 0.077846647738796
602 => 0.080726404957523
603 => 0.080684532147054
604 => 0.080429642182134
605 => 0.080050927396805
606 => 0.081862405436433
607 => 0.081231322709073
608 => 0.081690488121954
609 => 0.081807364990643
610 => 0.082161116071106
611 => 0.082287551676439
612 => 0.081905375461949
613 => 0.080622745407229
614 => 0.07742655325967
615 => 0.075938717187026
616 => 0.075447706501184
617 => 0.075465553807052
618 => 0.074973245437322
619 => 0.075118252315921
620 => 0.074922817962636
621 => 0.074552712578162
622 => 0.075298271463399
623 => 0.075384190179561
624 => 0.075210167826982
625 => 0.075251156390715
626 => 0.073810325637275
627 => 0.073919868870139
628 => 0.073309918229471
629 => 0.07319555983741
630 => 0.071653657732278
701 => 0.068921954650753
702 => 0.070435583330752
703 => 0.068607332733714
704 => 0.067914946530098
705 => 0.071192595129868
706 => 0.070863610118272
707 => 0.070300530784766
708 => 0.069467619094496
709 => 0.069158684046531
710 => 0.067281692492045
711 => 0.067170789817646
712 => 0.068101077515084
713 => 0.067671781751962
714 => 0.067068887913518
715 => 0.064885267545044
716 => 0.062430155279021
717 => 0.062504259686047
718 => 0.063285185218881
719 => 0.065555831527753
720 => 0.064668650732297
721 => 0.064024990885967
722 => 0.063904452745093
723 => 0.065413239941818
724 => 0.067548489925875
725 => 0.068550301444869
726 => 0.067557536655014
727 => 0.066417101918681
728 => 0.066486514896816
729 => 0.066948288342785
730 => 0.066996814202832
731 => 0.066254508428064
801 => 0.06646346315558
802 => 0.066146041817263
803 => 0.064198027649921
804 => 0.064162794250854
805 => 0.063684720158216
806 => 0.06367024426469
807 => 0.062856920971942
808 => 0.062743131421049
809 => 0.061128228658103
810 => 0.06219116254705
811 => 0.061478202300878
812 => 0.060403603039578
813 => 0.060218341721888
814 => 0.060212772542969
815 => 0.061316145708327
816 => 0.062178268989197
817 => 0.061490604549605
818 => 0.061334036686525
819 => 0.063005771849288
820 => 0.062793028311622
821 => 0.062608793780052
822 => 0.06735730170943
823 => 0.063598487152633
824 => 0.061959429460235
825 => 0.059930784317279
826 => 0.060591321405142
827 => 0.060730506274864
828 => 0.055851980396827
829 => 0.053872763055689
830 => 0.053193570249442
831 => 0.052802685187071
901 => 0.052980816418419
902 => 0.051199288672355
903 => 0.052396504781459
904 => 0.05085385234216
905 => 0.050595221640486
906 => 0.05335367529992
907 => 0.053737498011978
908 => 0.05209999107797
909 => 0.053151535617895
910 => 0.052770230950155
911 => 0.050880296690551
912 => 0.050808115103249
913 => 0.049859812526181
914 => 0.048375902620632
915 => 0.047697715975177
916 => 0.047344510481938
917 => 0.047490249952286
918 => 0.047416559616377
919 => 0.046935680328504
920 => 0.047444123054261
921 => 0.046145261992991
922 => 0.045628045052759
923 => 0.045394430160198
924 => 0.044241616208668
925 => 0.046076255864243
926 => 0.046437702988573
927 => 0.046799862275394
928 => 0.049952211610528
929 => 0.049794729146191
930 => 0.051218293926723
1001 => 0.051162976817119
1002 => 0.050756953081491
1003 => 0.049044005728539
1004 => 0.049726756013075
1005 => 0.047625356760225
1006 => 0.04919986796172
1007 => 0.048481326802517
1008 => 0.048956928473006
1009 => 0.048101753786194
1010 => 0.048575042767173
1011 => 0.046523415510556
1012 => 0.044607634845501
1013 => 0.045378600910243
1014 => 0.046216729193282
1015 => 0.048034004862024
1016 => 0.04695165046592
1017 => 0.04734090603511
1018 => 0.046036965038919
1019 => 0.043346562311444
1020 => 0.043361789698705
1021 => 0.042947929852693
1022 => 0.042590294521211
1023 => 0.047075971888392
1024 => 0.046518106999718
1025 => 0.045629222311167
1026 => 0.046819029789666
1027 => 0.047133633771765
1028 => 0.047142590104854
1029 => 0.048010642927791
1030 => 0.048473922874999
1031 => 0.048555577973665
1101 => 0.049921477846079
1102 => 0.050379309466657
1103 => 0.052265053117062
1104 => 0.048434616808235
1105 => 0.048355731493144
1106 => 0.046835772820879
1107 => 0.045871791001332
1108 => 0.046901777480785
1109 => 0.047814204894406
1110 => 0.046864124484001
1111 => 0.046988184928308
1112 => 0.045712779601762
1113 => 0.046168676992604
1114 => 0.046561357241607
1115 => 0.046344542288786
1116 => 0.04601995981045
1117 => 0.047739396251674
1118 => 0.047642378909134
1119 => 0.049243557652875
1120 => 0.050491790985011
1121 => 0.052728848264598
1122 => 0.050394362372916
1123 => 0.050309284428282
1124 => 0.05114093498401
1125 => 0.05037918214529
1126 => 0.050860583644547
1127 => 0.052651287040629
1128 => 0.052689121781635
1129 => 0.052055341122478
1130 => 0.05201677551177
1201 => 0.052138500020162
1202 => 0.052851444267809
1203 => 0.052602319641117
1204 => 0.052890612966189
1205 => 0.053251128183695
1206 => 0.054742371978584
1207 => 0.05510190580895
1208 => 0.054228424998079
1209 => 0.054307290535351
1210 => 0.053980584734501
1211 => 0.053664991024492
1212 => 0.054374399595833
1213 => 0.055670857703418
1214 => 0.055662792504817
1215 => 0.055963545586233
1216 => 0.056150912264382
1217 => 0.055346597320976
1218 => 0.054823017868299
1219 => 0.055023791546682
1220 => 0.055344833030697
1221 => 0.054919682120304
1222 => 0.052295453752301
1223 => 0.053091477002796
1224 => 0.052958979810365
1225 => 0.052770287696135
1226 => 0.053570695229973
1227 => 0.053493493970727
1228 => 0.051181016530341
1229 => 0.05132905383326
1230 => 0.051190019169047
1231 => 0.051639268612936
]
'min_raw' => 0.042590294521211
'max_raw' => 0.095407517317697
'avg_raw' => 0.068998905919454
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.04259'
'max' => '$0.0954075'
'avg' => '$0.068998'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.010385864081949
'max_diff' => -0.069330664529282
'year' => 2034
]
9 => [
'items' => [
101 => 0.050354921201009
102 => 0.050749977814706
103 => 0.050997753619391
104 => 0.051143695471854
105 => 0.051670937516215
106 => 0.051609071747714
107 => 0.051667091853182
108 => 0.05244885261823
109 => 0.056402730299948
110 => 0.056617931138424
111 => 0.055558203503757
112 => 0.055981543791603
113 => 0.055168823013282
114 => 0.055714407916525
115 => 0.05608768325097
116 => 0.054400923791333
117 => 0.054301044843112
118 => 0.053484969677038
119 => 0.053923482246426
120 => 0.05322577721836
121 => 0.053396969627561
122 => 0.052918300727148
123 => 0.053779809445865
124 => 0.054743110058311
125 => 0.054986477834909
126 => 0.054346281991095
127 => 0.053882738009212
128 => 0.053068907477906
129 => 0.054422325788865
130 => 0.054818106547665
131 => 0.054420246921028
201 => 0.054328054152131
202 => 0.054153349021662
203 => 0.054365118671445
204 => 0.054815951040654
205 => 0.054603346820902
206 => 0.054743775653652
207 => 0.05420860575279
208 => 0.05534686358269
209 => 0.057154690953234
210 => 0.05716050341384
211 => 0.056947898048072
212 => 0.056860904513046
213 => 0.057079050520297
214 => 0.057197385780413
215 => 0.057902829966725
216 => 0.058659799684774
217 => 0.062192247067147
218 => 0.061200349977494
219 => 0.06433454744137
220 => 0.066813290710692
221 => 0.067556557434855
222 => 0.066872787022026
223 => 0.064533645376293
224 => 0.064418875927689
225 => 0.067914541106544
226 => 0.066926855581909
227 => 0.066809373531543
228 => 0.065559563004706
301 => 0.066298355818112
302 => 0.066136770992383
303 => 0.06588170143997
304 => 0.067291266663196
305 => 0.069929846928318
306 => 0.06951859944955
307 => 0.069211622283871
308 => 0.067866537703575
309 => 0.06867657905643
310 => 0.068388138845999
311 => 0.069627461038694
312 => 0.068893314026089
313 => 0.066919372892644
314 => 0.067233729524341
315 => 0.067186215151857
316 => 0.068164057570655
317 => 0.067870533548073
318 => 0.067128899875556
319 => 0.069920828547822
320 => 0.069739536229369
321 => 0.069996567287742
322 => 0.070109720308588
323 => 0.071809118092094
324 => 0.072505306989333
325 => 0.072663354057509
326 => 0.073324679664704
327 => 0.072646899673948
328 => 0.075358502885916
329 => 0.077161560795442
330 => 0.079255905341866
331 => 0.082316305630938
401 => 0.083467044449914
402 => 0.08325917378213
403 => 0.085579534353438
404 => 0.089749170721362
405 => 0.084101976506554
406 => 0.090048485727205
407 => 0.088165889563698
408 => 0.083702287926479
409 => 0.083414884603448
410 => 0.086437687455653
411 => 0.093141973247852
412 => 0.091462625696286
413 => 0.093144720058836
414 => 0.091182467635219
415 => 0.091085025263224
416 => 0.093049417838451
417 => 0.097639328163932
418 => 0.095458833818511
419 => 0.092332560495203
420 => 0.094640952066933
421 => 0.092641209655945
422 => 0.088135230311332
423 => 0.091461341530863
424 => 0.089237265680556
425 => 0.089886369252051
426 => 0.09456104588308
427 => 0.093998576423174
428 => 0.094726463987562
429 => 0.093441761488552
430 => 0.092241646775488
501 => 0.090001543541864
502 => 0.089338359410143
503 => 0.089521639645285
504 => 0.089338268585561
505 => 0.08808495141396
506 => 0.087814297690082
507 => 0.087363196292674
508 => 0.087503011478388
509 => 0.086654808876893
510 => 0.088255542433515
511 => 0.08855265268724
512 => 0.089717533079649
513 => 0.089838474826332
514 => 0.093082650138157
515 => 0.091295812892555
516 => 0.092494577585011
517 => 0.092387348787706
518 => 0.083799027708781
519 => 0.084982422578059
520 => 0.086823413624887
521 => 0.085994049653695
522 => 0.084821523039711
523 => 0.08387464493202
524 => 0.082440027775609
525 => 0.084459223873875
526 => 0.087114252025528
527 => 0.089905810721721
528 => 0.093259685585026
529 => 0.092511139758944
530 => 0.089843112364058
531 => 0.089962798123998
601 => 0.090702648397332
602 => 0.089744475070879
603 => 0.089461891051142
604 => 0.090663825692393
605 => 0.090672102755696
606 => 0.089569608544496
607 => 0.088344387983059
608 => 0.08833925426417
609 => 0.088121238099489
610 => 0.09122125222659
611 => 0.092925946549715
612 => 0.09312138700661
613 => 0.092912791849778
614 => 0.092993071846797
615 => 0.092001147780546
616 => 0.094268392050051
617 => 0.096349039598967
618 => 0.095791381609306
619 => 0.09495537300705
620 => 0.094289451887723
621 => 0.09563451175687
622 => 0.095574618358217
623 => 0.096330866957744
624 => 0.096296559152966
625 => 0.096042261192894
626 => 0.095791390691087
627 => 0.096786063873636
628 => 0.096499613971024
629 => 0.096212719132594
630 => 0.095637307612721
701 => 0.095715515594845
702 => 0.094879651341261
703 => 0.094492942291007
704 => 0.088677766019939
705 => 0.087123760903943
706 => 0.087612682548126
707 => 0.087773648248236
708 => 0.087097343230243
709 => 0.088066990897541
710 => 0.087915872335703
711 => 0.088503786258411
712 => 0.088136483163758
713 => 0.088151557410883
714 => 0.089231717494979
715 => 0.089545292562721
716 => 0.089385805752406
717 => 0.089497504847463
718 => 0.092071563347802
719 => 0.091705614542811
720 => 0.09151121153379
721 => 0.091565062495862
722 => 0.092222789631136
723 => 0.092406917318442
724 => 0.091626755368902
725 => 0.091994684254368
726 => 0.093561278751552
727 => 0.094109498163997
728 => 0.095859151368275
729 => 0.095115867589492
730 => 0.096480197134017
731 => 0.10067368101967
801 => 0.10402372611454
802 => 0.10094288619883
803 => 0.10709481738989
804 => 0.11188497826425
805 => 0.11170112391146
806 => 0.1108658485646
807 => 0.10541237776216
808 => 0.10039401262308
809 => 0.10459208815296
810 => 0.10460278991083
811 => 0.10424217149972
812 => 0.10200240151978
813 => 0.1041642323594
814 => 0.10433583064084
815 => 0.1042397812349
816 => 0.1025225548427
817 => 0.099900667538294
818 => 0.10041297804166
819 => 0.10125215309703
820 => 0.099663419646962
821 => 0.09915572304491
822 => 0.10009962762136
823 => 0.10314108483699
824 => 0.10256611496834
825 => 0.10255110018143
826 => 0.1050110651047
827 => 0.1032502611133
828 => 0.10041943991776
829 => 0.099704620231938
830 => 0.097167491907521
831 => 0.098919895478137
901 => 0.098982961362899
902 => 0.098023187836404
903 => 0.10049732024982
904 => 0.10047452068407
905 => 0.10282334118459
906 => 0.1073134038049
907 => 0.10598547134551
908 => 0.10444123037388
909 => 0.10460913218466
910 => 0.10645060063186
911 => 0.10533720677205
912 => 0.10573759096689
913 => 0.10644999460243
914 => 0.10687980540374
915 => 0.10454728902476
916 => 0.10400346787967
917 => 0.10289100067209
918 => 0.10260077874282
919 => 0.103506860071
920 => 0.10326813965335
921 => 0.098977660919488
922 => 0.098529282019802
923 => 0.098543033160517
924 => 0.097415563098001
925 => 0.095695900628843
926 => 0.10021507092208
927 => 0.099852118301785
928 => 0.099451446699281
929 => 0.099500526684387
930 => 0.10146214533979
1001 => 0.10032430745554
1002 => 0.10334943595878
1003 => 0.1027275604822
1004 => 0.1020897362462
1005 => 0.10200156950818
1006 => 0.10175606159392
1007 => 0.10091412360648
1008 => 0.099897432894001
1009 => 0.099226125621384
1010 => 0.091530855812571
1011 => 0.092959053127762
1012 => 0.094602063954607
1013 => 0.095169224708081
1014 => 0.094199056992934
1015 => 0.10095243174111
1016 => 0.10218633838474
1017 => 0.098448754675447
1018 => 0.097749605367975
1019 => 0.10099826785331
1020 => 0.099038927241817
1021 => 0.099921218199202
1022 => 0.098014187736687
1023 => 0.1018891264073
1024 => 0.10185960586692
1025 => 0.1003521672046
1026 => 0.1016262440395
1027 => 0.10140484183595
1028 => 0.099702947298837
1029 => 0.10194307949974
1030 => 0.10194419057736
1031 => 0.10049331363941
1101 => 0.098799007013695
1102 => 0.098496105006753
1103 => 0.098267909033681
1104 => 0.099865095978494
1105 => 0.10129712879894
1106 => 0.10396178684674
1107 => 0.10463174519068
1108 => 0.10724663720869
1109 => 0.10568959632875
1110 => 0.10637981238377
1111 => 0.10712913954853
1112 => 0.1074883945469
1113 => 0.10690300780573
1114 => 0.11096501144221
1115 => 0.1113079690057
1116 => 0.11142295971017
1117 => 0.11005327493856
1118 => 0.11126987559446
1119 => 0.11070066843714
1120 => 0.11218158733019
1121 => 0.11241381432194
1122 => 0.11221712632164
1123 => 0.11229083883428
1124 => 0.10882463531709
1125 => 0.10864489437904
1126 => 0.10619411393494
1127 => 0.10719282508117
1128 => 0.10532578246277
1129 => 0.10591784090973
1130 => 0.10617881463182
1201 => 0.10604249676953
1202 => 0.10724929071092
1203 => 0.10622326932902
1204 => 0.10351543020867
1205 => 0.10080685333935
1206 => 0.10077284936311
1207 => 0.10005972888378
1208 => 0.099544273391746
1209 => 0.099643568406277
1210 => 0.099993496988737
1211 => 0.099523934906398
1212 => 0.099624139784067
1213 => 0.10128820841498
1214 => 0.10162192551131
1215 => 0.10048782442628
1216 => 0.095934244919872
1217 => 0.09481678508721
1218 => 0.095619993054736
1219 => 0.095236111379477
1220 => 0.076862974756975
1221 => 0.081179470673844
1222 => 0.078614755374392
1223 => 0.079796694181257
1224 => 0.077178783990322
1225 => 0.078428187949865
1226 => 0.078197468659465
1227 => 0.08513826635939
1228 => 0.085029895350061
1229 => 0.085081766817361
1230 => 0.082605806532756
1231 => 0.086550078495779
]
'min_raw' => 0.050354921201009
'max_raw' => 0.11241381432194
'avg_raw' => 0.081384367761474
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.050354'
'max' => '$0.112413'
'avg' => '$0.081384'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0077646266797978
'max_diff' => 0.017006297004242
'year' => 2035
]
10 => [
'items' => [
101 => 0.088493168696196
102 => 0.08813355441377
103 => 0.088224061581071
104 => 0.086668848582247
105 => 0.085096824678717
106 => 0.083353208236957
107 => 0.086592632068241
108 => 0.086232463437011
109 => 0.087058560692469
110 => 0.089159558605855
111 => 0.089468938529515
112 => 0.089884748284337
113 => 0.089735710086587
114 => 0.093286404609206
115 => 0.09285639207428
116 => 0.093892598560402
117 => 0.091761043201274
118 => 0.089348985983329
119 => 0.089807439204369
120 => 0.089763286472535
121 => 0.08920117152014
122 => 0.088693719274976
123 => 0.087848954260561
124 => 0.090521915767868
125 => 0.090413398412072
126 => 0.092170168264779
127 => 0.091859642128962
128 => 0.089785872595335
129 => 0.089859937679926
130 => 0.090358060968265
131 => 0.092082071356679
201 => 0.092593875019538
202 => 0.092356787171052
203 => 0.092917956522653
204 => 0.09336148189744
205 => 0.092973656481089
206 => 0.098464446525195
207 => 0.096184287682336
208 => 0.097295621237103
209 => 0.097560667741557
210 => 0.096881756693725
211 => 0.097028988190017
212 => 0.09725200378872
213 => 0.098606110833109
214 => 0.10215967953162
215 => 0.10373353091823
216 => 0.1084685404673
217 => 0.10360284446964
218 => 0.10331413420539
219 => 0.10416705240876
220 => 0.10694700426573
221 => 0.10919989413821
222 => 0.10994730768124
223 => 0.1100460907194
224 => 0.11144828821325
225 => 0.11225200166729
226 => 0.11127802455604
227 => 0.11045268093392
228 => 0.10749640252488
229 => 0.10783859980041
301 => 0.11019599968806
302 => 0.11352596587953
303 => 0.11638342329574
304 => 0.11538284130103
305 => 0.12301657561988
306 => 0.12377342919659
307 => 0.12366885650429
308 => 0.12539308158694
309 => 0.12197084593021
310 => 0.12050777388427
311 => 0.11063112959307
312 => 0.11340606377581
313 => 0.1174395935766
314 => 0.1169057407825
315 => 0.11397648362461
316 => 0.11638120119152
317 => 0.11558612636143
318 => 0.11495901785525
319 => 0.11783192349301
320 => 0.11467304573183
321 => 0.11740808135451
322 => 0.1139003698781
323 => 0.1153874118753
324 => 0.11454329491756
325 => 0.1150895420403
326 => 0.11189619252243
327 => 0.1136192464081
328 => 0.11182450781591
329 => 0.11182365687614
330 => 0.11178403792224
331 => 0.11389553991686
401 => 0.1139643959211
402 => 0.11240399275677
403 => 0.11217911428272
404 => 0.11301060786489
405 => 0.11203714664868
406 => 0.11249262302485
407 => 0.11205094256411
408 => 0.11195151098919
409 => 0.11115922328329
410 => 0.11081788395518
411 => 0.11095173190097
412 => 0.11049483985867
413 => 0.11021954587668
414 => 0.11172927502018
415 => 0.11092268764111
416 => 0.11160565393624
417 => 0.11082732764572
418 => 0.10812930962213
419 => 0.10657765092574
420 => 0.10148134498558
421 => 0.10292665102826
422 => 0.10388489042984
423 => 0.10356819231333
424 => 0.10424858241349
425 => 0.10429035283974
426 => 0.10406915108242
427 => 0.10381302778515
428 => 0.10368836112854
429 => 0.1046175242494
430 => 0.10515693471525
501 => 0.10398106257338
502 => 0.10370557218273
503 => 0.10489444383985
504 => 0.1056196548639
505 => 0.11097420560464
506 => 0.11057752319079
507 => 0.11157311820455
508 => 0.11146102948465
509 => 0.1125045716698
510 => 0.11421032210867
511 => 0.11074205453112
512 => 0.11134402585891
513 => 0.11119643639088
514 => 0.11280777950277
515 => 0.11281280994008
516 => 0.11184672925194
517 => 0.11237045726585
518 => 0.11207812665621
519 => 0.11260640757868
520 => 0.11057222525531
521 => 0.11304963974876
522 => 0.11445417412548
523 => 0.11447367608666
524 => 0.11513941423415
525 => 0.11581584274896
526 => 0.11711418837862
527 => 0.11577963259403
528 => 0.11337889665393
529 => 0.11355222203448
530 => 0.11214467143119
531 => 0.11216833261113
601 => 0.11204202737827
602 => 0.11242107888989
603 => 0.1106554057462
604 => 0.11106980570385
605 => 0.11048964333642
606 => 0.11134276469923
607 => 0.11042494713886
608 => 0.11119636521877
609 => 0.11152928368915
610 => 0.11275776001207
611 => 0.11024350018712
612 => 0.10511675420362
613 => 0.10619445836514
614 => 0.10460044925842
615 => 0.10474798087006
616 => 0.10504601820507
617 => 0.10407998169056
618 => 0.10426427101422
619 => 0.10425768690275
620 => 0.10420094858717
621 => 0.10394964517965
622 => 0.10358520551987
623 => 0.10503702095581
624 => 0.10528371268885
625 => 0.10583207785277
626 => 0.10746364062096
627 => 0.10730060902552
628 => 0.1075665203218
629 => 0.10698603745505
630 => 0.10477490780539
701 => 0.10489498278343
702 => 0.10339764588317
703 => 0.10579378758176
704 => 0.10522634960001
705 => 0.10486051864177
706 => 0.10476069827542
707 => 0.10639630537213
708 => 0.10688570465046
709 => 0.10658074386257
710 => 0.10595526038947
711 => 0.10715637356541
712 => 0.1074777407804
713 => 0.10754968304826
714 => 0.10967782530542
715 => 0.10766862255973
716 => 0.10815225763037
717 => 0.11192544039184
718 => 0.10850368429082
719 => 0.1103162648118
720 => 0.11022754842751
721 => 0.11115480328766
722 => 0.11015148646443
723 => 0.11016392377892
724 => 0.11098726327705
725 => 0.10983103144199
726 => 0.1095447321795
727 => 0.10914921179889
728 => 0.11001281608013
729 => 0.11053050778927
730 => 0.11470272276229
731 => 0.11739816391097
801 => 0.11728114770199
802 => 0.11835045680694
803 => 0.11786872326141
804 => 0.116313078568
805 => 0.11896837436899
806 => 0.11812812767526
807 => 0.1181973965918
808 => 0.11819481839926
809 => 0.11875350899495
810 => 0.11835762550466
811 => 0.1175772985087
812 => 0.11809531598496
813 => 0.1196336426948
814 => 0.12440865600377
815 => 0.12708081671199
816 => 0.12424778857387
817 => 0.12620197344779
818 => 0.12503015887071
819 => 0.12481720530359
820 => 0.12604457781753
821 => 0.12727409868458
822 => 0.12719578352072
823 => 0.12630321450783
824 => 0.12579902492055
825 => 0.12961691739133
826 => 0.13242987552769
827 => 0.1322380506411
828 => 0.13308470330572
829 => 0.135570501715
830 => 0.1357977719685
831 => 0.13576914114031
901 => 0.1352058281038
902 => 0.13765341945944
903 => 0.1396952432296
904 => 0.13507543741152
905 => 0.13683459898935
906 => 0.13762434329828
907 => 0.13878392225037
908 => 0.14074032631054
909 => 0.14286550003044
910 => 0.14316602289578
911 => 0.14295278754148
912 => 0.14155117834547
913 => 0.14387656878838
914 => 0.14523872797272
915 => 0.14604986259453
916 => 0.14810676503552
917 => 0.13762922049027
918 => 0.13021269369339
919 => 0.12905449593811
920 => 0.13140973661735
921 => 0.13203079480177
922 => 0.13178044702637
923 => 0.12343247183536
924 => 0.12901054557638
925 => 0.13501208390396
926 => 0.13524262743316
927 => 0.13824712300619
928 => 0.1392255099232
929 => 0.14164452266773
930 => 0.14149321276194
1001 => 0.14208220387033
1002 => 0.14194680501441
1003 => 0.14642751674042
1004 => 0.15137040716634
1005 => 0.15119925058832
1006 => 0.15048865160797
1007 => 0.15154401226893
1008 => 0.1566456049008
1009 => 0.15617593200262
1010 => 0.15663217921656
1011 => 0.16264724444271
1012 => 0.17046768486975
1013 => 0.16683430513201
1014 => 0.17471769368605
1015 => 0.17967986890035
1016 => 0.18826143783499
1017 => 0.18718698313926
1018 => 0.19052772495105
1019 => 0.18526348498843
1020 => 0.17317572595582
1021 => 0.17126279181883
1022 => 0.1750925344043
1023 => 0.18450758284985
1024 => 0.17479602102343
1025 => 0.17676065733255
1026 => 0.17619484194336
1027 => 0.17616469204583
1028 => 0.17731539100604
1029 => 0.17564624214783
1030 => 0.16884582942536
1031 => 0.17196241850099
1101 => 0.17075895378799
1102 => 0.1720942876113
1103 => 0.17930053352214
1104 => 0.17611448042951
1105 => 0.17275823231036
1106 => 0.17696771226286
1107 => 0.18232782677663
1108 => 0.18199240044341
1109 => 0.18134153315963
1110 => 0.18501043795998
1111 => 0.19107039380192
1112 => 0.19270837551512
1113 => 0.19391750012874
1114 => 0.19408421798463
1115 => 0.19580151551487
1116 => 0.18656717388004
1117 => 0.20122231120923
1118 => 0.20375284858598
1119 => 0.20327721243918
1120 => 0.20608979823215
1121 => 0.20526226414345
1122 => 0.20406329708503
1123 => 0.20852184382104
1124 => 0.20341047977437
1125 => 0.19615554201297
1126 => 0.19217533967067
1127 => 0.19741679118878
1128 => 0.20061756272944
1129 => 0.20273306911051
1130 => 0.2033732200632
1201 => 0.18728400953436
1202 => 0.17861281740784
1203 => 0.18417095214552
1204 => 0.19095226012745
1205 => 0.18652950337181
1206 => 0.18670286706324
1207 => 0.18039717820972
1208 => 0.19151017367276
1209 => 0.1898911037088
1210 => 0.19829084154592
1211 => 0.19628617669898
1212 => 0.2031358368292
1213 => 0.20133209175981
1214 => 0.20881933669684
1215 => 0.21180620141129
1216 => 0.21682161213522
1217 => 0.22051096868014
1218 => 0.22267742940946
1219 => 0.22254736323346
1220 => 0.23113195996948
1221 => 0.22606992319722
1222 => 0.21971081198079
1223 => 0.21959579572162
1224 => 0.22288926952991
1225 => 0.22979148711168
1226 => 0.23158113170745
1227 => 0.23258129888868
1228 => 0.23104950803455
1229 => 0.2255550299177
1230 => 0.22318254212449
1231 => 0.2252039704619
]
'min_raw' => 0.083353208236957
'max_raw' => 0.23258129888868
'avg_raw' => 0.15796725356282
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.083353'
'max' => '$0.232581'
'avg' => '$0.157967'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.032998287035948
'max_diff' => 0.12016748456674
'year' => 2036
]
11 => [
'items' => [
101 => 0.22273193730856
102 => 0.22699936006122
103 => 0.23285944297293
104 => 0.23164935902494
105 => 0.23569448823715
106 => 0.23988077141178
107 => 0.24586734436924
108 => 0.24743245622247
109 => 0.2500195266
110 => 0.25268247182682
111 => 0.25353773806529
112 => 0.25517070668805
113 => 0.25516210013735
114 => 0.26008316099352
115 => 0.26551124351044
116 => 0.26756021900018
117 => 0.27227172515766
118 => 0.26420343597384
119 => 0.2703233260016
120 => 0.27584361999742
121 => 0.26926209792059
122 => 0.27833319280553
123 => 0.27868540286437
124 => 0.28400335658979
125 => 0.27861259169241
126 => 0.27541157270428
127 => 0.2846527945824
128 => 0.28912433075347
129 => 0.28777746766817
130 => 0.27752777308627
131 => 0.27156201120952
201 => 0.25594846166853
202 => 0.27444338555497
203 => 0.28345172347573
204 => 0.27750444366731
205 => 0.28050390567007
206 => 0.29686799777832
207 => 0.30309838455664
208 => 0.30180250766044
209 => 0.30202148952395
210 => 0.30538329314001
211 => 0.3202913817527
212 => 0.31135810948919
213 => 0.31818726141132
214 => 0.32180941896648
215 => 0.32517388076874
216 => 0.31691182593145
217 => 0.30616301398183
218 => 0.30275841403295
219 => 0.27691310389843
220 => 0.27556774326544
221 => 0.27481255157354
222 => 0.2700511747801
223 => 0.26631003687132
224 => 0.26333494510672
225 => 0.25552741587879
226 => 0.25816222780079
227 => 0.24571865576947
228 => 0.25367961218199
301 => 0.23381937075945
302 => 0.25035956996641
303 => 0.24135749152863
304 => 0.24740214508947
305 => 0.24738105586264
306 => 0.23625093219798
307 => 0.22983130914796
308 => 0.2339221428109
309 => 0.23830784122835
310 => 0.23901940604132
311 => 0.24470557851799
312 => 0.24629246703236
313 => 0.24148412074908
314 => 0.23340781139957
315 => 0.23528375386046
316 => 0.22979329323386
317 => 0.22017147217327
318 => 0.22708203203987
319 => 0.22944160101419
320 => 0.23048372109493
321 => 0.22102176515545
322 => 0.21804861317021
323 => 0.21646573200043
324 => 0.23218639170594
325 => 0.23304760493199
326 => 0.22864151630424
327 => 0.24855745470415
328 => 0.2440498644677
329 => 0.24908594714823
330 => 0.23511353174483
331 => 0.23564729682959
401 => 0.22903253145973
402 => 0.23273635806807
403 => 0.2301186128012
404 => 0.23243712548005
405 => 0.23382683242016
406 => 0.24044051237211
407 => 0.25043508756776
408 => 0.23945264913408
409 => 0.23466744343711
410 => 0.23763615813849
411 => 0.24554223660092
412 => 0.2575203501762
413 => 0.25042906585763
414 => 0.2535760574204
415 => 0.25426353507695
416 => 0.24903468455405
417 => 0.25771314535334
418 => 0.26236400299936
419 => 0.2671348205848
420 => 0.27127718781896
421 => 0.26522925112865
422 => 0.27170141032495
423 => 0.26648599250262
424 => 0.26180722355602
425 => 0.2618143193172
426 => 0.25887925921108
427 => 0.25319221041411
428 => 0.25214343136096
429 => 0.25759931244161
430 => 0.26197441239443
501 => 0.26233476658186
502 => 0.2647570467165
503 => 0.2661905271487
504 => 0.28024058410647
505 => 0.28589163324305
506 => 0.29280162915838
507 => 0.29549346199343
508 => 0.30359491375145
509 => 0.29705233348911
510 => 0.29563680509459
511 => 0.27598533309431
512 => 0.27920326053346
513 => 0.28435547284735
514 => 0.27607029117769
515 => 0.28132533196115
516 => 0.28236278832879
517 => 0.27578876387491
518 => 0.27930023438256
519 => 0.26997480979271
520 => 0.25063835634037
521 => 0.25773467235365
522 => 0.26295994953356
523 => 0.25550283472579
524 => 0.26886942438852
525 => 0.26106093864997
526 => 0.25858602354427
527 => 0.24893049734598
528 => 0.25348753403629
529 => 0.25965099141041
530 => 0.25584269133203
531 => 0.26374548581379
601 => 0.27493795039828
602 => 0.28291436718397
603 => 0.28352669742122
604 => 0.27839839580644
605 => 0.28661653187251
606 => 0.28667639202181
607 => 0.27740630096721
608 => 0.27172842181235
609 => 0.27043839572201
610 => 0.2736611338202
611 => 0.27757413282167
612 => 0.28374384163271
613 => 0.28747206745167
614 => 0.29719330308932
615 => 0.2998235907232
616 => 0.30271347937945
617 => 0.30657526183286
618 => 0.31121232180888
619 => 0.30106669856933
620 => 0.30146980309444
621 => 0.29202233920949
622 => 0.28192636914505
623 => 0.28958795194352
624 => 0.29960445227488
625 => 0.29730665603162
626 => 0.29704810701454
627 => 0.29748291474576
628 => 0.29575045141734
629 => 0.28791458399103
630 => 0.28397946042466
701 => 0.28905677378237
702 => 0.29175513986677
703 => 0.29594007034143
704 => 0.29542418932726
705 => 0.30620412080125
706 => 0.31039287620384
707 => 0.30932121332491
708 => 0.30951842508564
709 => 0.31710196666099
710 => 0.32553642456705
711 => 0.33343640742083
712 => 0.34147260929185
713 => 0.33178465427804
714 => 0.32686570819202
715 => 0.33194080495355
716 => 0.32924788717472
717 => 0.34472219150316
718 => 0.34579359876074
719 => 0.36126678412084
720 => 0.37595267954021
721 => 0.36672873175245
722 => 0.37542649906058
723 => 0.38483384354369
724 => 0.40298213733826
725 => 0.39687043045292
726 => 0.39218895876141
727 => 0.38776499063364
728 => 0.39697056602237
729 => 0.40881339169731
730 => 0.41136422291851
731 => 0.4154975439894
801 => 0.41115186228182
802 => 0.41638575723746
803 => 0.43486370632084
804 => 0.42987080136914
805 => 0.42278007368821
806 => 0.43736663984844
807 => 0.44264546143799
808 => 0.47969499589378
809 => 0.52647156358415
810 => 0.50710575740883
811 => 0.49508477658516
812 => 0.4979099922202
813 => 0.51499121125397
814 => 0.52047715667683
815 => 0.50556446589872
816 => 0.51083188039005
817 => 0.53985585211807
818 => 0.55542628174965
819 => 0.53427954692227
820 => 0.47593654422519
821 => 0.42214163124187
822 => 0.43641046458155
823 => 0.43479282169428
824 => 0.46597545850182
825 => 0.42975172223731
826 => 0.43036163705505
827 => 0.46218909776879
828 => 0.45369807691118
829 => 0.43994371056963
830 => 0.42224205333766
831 => 0.38951890273924
901 => 0.36053509570165
902 => 0.41737901587447
903 => 0.41492780267266
904 => 0.41137808270699
905 => 0.41927760037077
906 => 0.45763541582888
907 => 0.45675114403044
908 => 0.45112585800819
909 => 0.45539258787707
910 => 0.43919573219428
911 => 0.44337003069929
912 => 0.42213310985281
913 => 0.43173308500757
914 => 0.43991419987686
915 => 0.44155667981035
916 => 0.4452572709676
917 => 0.41363612469929
918 => 0.42783309102568
919 => 0.43617247866659
920 => 0.39849482191547
921 => 0.43542771253552
922 => 0.41308567089346
923 => 0.40550244639395
924 => 0.41571225916869
925 => 0.411733485201
926 => 0.40831276898503
927 => 0.40640395056116
928 => 0.41390091024701
929 => 0.41355116811686
930 => 0.40128468697363
1001 => 0.38528356236803
1002 => 0.39065406500468
1003 => 0.38870291104805
1004 => 0.38163167740537
1005 => 0.38639683509653
1006 => 0.36541349221577
1007 => 0.32931274140867
1008 => 0.35316200318774
1009 => 0.35224383255225
1010 => 0.35178084928211
1011 => 0.36970291036391
1012 => 0.36798011772319
1013 => 0.36485323221066
1014 => 0.3815742497008
1015 => 0.37547085338747
1016 => 0.39428008268411
1017 => 0.40666905760355
1018 => 0.40352681282262
1019 => 0.41517870361547
1020 => 0.39077779053854
1021 => 0.39888279506798
1022 => 0.40055322526845
1023 => 0.3813679149405
1024 => 0.36826198790535
1025 => 0.36738797199061
1026 => 0.34466410061964
1027 => 0.35680300928533
1028 => 0.36748474656897
1029 => 0.36236902334641
1030 => 0.36074953820203
1031 => 0.36902313658119
1101 => 0.36966606603383
1102 => 0.35500720637905
1103 => 0.35805524748699
1104 => 0.37076608560177
1105 => 0.35773496697915
1106 => 0.33241763211653
1107 => 0.32613858303106
1108 => 0.32530084213723
1109 => 0.30827156301977
1110 => 0.3265581791154
1111 => 0.31857558113881
1112 => 0.34379251250063
1113 => 0.32938873654788
1114 => 0.32876781855501
1115 => 0.32782920993994
1116 => 0.31317140593289
1117 => 0.31638053345839
1118 => 0.32704816211709
1119 => 0.33085449220195
1120 => 0.33045746078976
1121 => 0.32699588491696
1122 => 0.32858057662539
1123 => 0.32347573248934
1124 => 0.32167310577676
1125 => 0.31598352002031
1126 => 0.30762140074651
1127 => 0.30878420471939
1128 => 0.29221665837048
1129 => 0.28318977981335
1130 => 0.28069125880108
1201 => 0.2773501320831
1202 => 0.28106864795428
1203 => 0.29216972459327
1204 => 0.27877947094186
1205 => 0.25582282027359
1206 => 0.25720255409498
1207 => 0.260302406345
1208 => 0.25452585218466
1209 => 0.24905882846135
1210 => 0.25381196203512
1211 => 0.24408492651479
1212 => 0.26147787211617
1213 => 0.26100744168082
1214 => 0.26749045622847
1215 => 0.27154441826997
1216 => 0.26220134825011
1217 => 0.25985159140647
1218 => 0.2611901196951
1219 => 0.23906722869257
1220 => 0.26568254405589
1221 => 0.26591271440838
1222 => 0.26394185610991
1223 => 0.27811368988521
1224 => 0.30802067945688
1225 => 0.29676846697415
1226 => 0.29241127020091
1227 => 0.2841282359499
1228 => 0.29516488729147
1229 => 0.29431744466701
1230 => 0.29048498773617
1231 => 0.28816710582641
]
'min_raw' => 0.21646573200043
'max_raw' => 0.55542628174965
'avg_raw' => 0.38594600687504
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.216465'
'max' => '$0.555426'
'avg' => '$0.385946'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.13311252376347
'max_diff' => 0.32284498286097
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.006794611977642
]
1 => [
'year' => 2028
'avg' => 0.011661526643585
]
2 => [
'year' => 2029
'avg' => 0.031857189004588
]
3 => [
'year' => 2030
'avg' => 0.024577773873891
]
4 => [
'year' => 2031
'avg' => 0.024138419834145
]
5 => [
'year' => 2032
'avg' => 0.042322246609553
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.006794611977642
'min' => '$0.006794'
'max_raw' => 0.042322246609553
'max' => '$0.042322'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.042322246609553
]
1 => [
'year' => 2033
'avg' => 0.10885717022507
]
2 => [
'year' => 2034
'avg' => 0.068998905919454
]
3 => [
'year' => 2035
'avg' => 0.081384367761474
]
4 => [
'year' => 2036
'avg' => 0.15796725356282
]
5 => [
'year' => 2037
'avg' => 0.38594600687504
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.042322246609553
'min' => '$0.042322'
'max_raw' => 0.38594600687504
'max' => '$0.385946'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.38594600687504
]
]
]
]
'prediction_2025_max_price' => '$0.011617'
'last_price' => 0.01126468
'sma_50day_nextmonth' => '$0.010744'
'sma_200day_nextmonth' => '$0.02162'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'augmenter'
'sma_200day_date_nextmonth' => '4 févr. 2026'
'sma_50day_date_nextmonth' => '4 févr. 2026'
'daily_sma3' => '$0.011147'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.011117'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.011177'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.011359'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.01202'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.013166'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.022876'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.01118'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.011161'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.011212'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.011454'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.012586'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.015937'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.020375'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.014553'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.018699'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.042954'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.037778'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.011319'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.011552'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.012379'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.01459'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.021584'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.032722'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.0476089'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '42.94'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 70.23
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => -0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.011176'
'vwma_10_action' => 'BUY'
'hma_9' => '0.011099'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 52.28
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => -24.93
'cci_20_action' => 'NEUTRAL'
'adx_14' => 17.16
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.000851'
'ao_5_34_action' => 'SELL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -47.72
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 43.61
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.000042'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 20
'buy_signals' => 14
'sell_pct' => 58.82
'buy_pct' => 41.18
'overall_action' => 'bearish'
'overall_action_label' => 'Baissier'
'overall_action_dir' => -1
'last_updated' => 1767680112
'last_updated_date' => '6 janvier 2026'
]
Prévision du prix de Defactor pour 2026
La prévision du prix de Defactor pour 2026 suggère que le prix moyen pourrait varier entre $0.003891 à la baisse et $0.011617 à la hausse. Sur le marché des cryptomonnaies, comparé au prix moyen d'aujourd'hui, Defactor pourrait potentiellement gagner 3.13% d'ici 2026 si REAL atteint l'objectif de prix prévu.
Prévision du prix de Defactor de 2027 à 2032
La prévision du prix de REAL pour 2027-2032 se situe actuellement dans une fourchette de prix comprise entre $0.006794 à la baisse et $0.042322 à la hausse. Compte tenu de la volatilité des prix sur le marché, si Defactor atteint l'objectif de prix le plus élevé, il pourrait gagner 275.71% d'ici 2032 par rapport au prix actuel.
| Prévision du Prix de Defactor | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2027 | $0.003746 | $0.006794 | $0.009842 |
| 2028 | $0.006761 | $0.011661 | $0.016561 |
| 2029 | $0.014853 | $0.031857 | $0.04886 |
| 2030 | $0.012632 | $0.024577 | $0.036523 |
| 2031 | $0.014935 | $0.024138 | $0.033341 |
| 2032 | $0.022797 | $0.042322 | $0.061847 |
Prévision du prix de Defactor de 2032 à 2037
La prévision du prix de Defactor pour 2032-2037 est actuellement estimée entre $0.042322 à la baisse et $0.385946 à la hausse. Par rapport au prix actuel, Defactor pourrait potentiellement gagner 3326.16% d'ici 2037 s'il atteint l'objectif de prix le plus élevé. Veuillez noter que ces informations sont à titre général seulement et ne doivent pas être considérées comme un conseil en investissement à long terme.
| Prévision du Prix de Defactor | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2032 | $0.022797 | $0.042322 | $0.061847 |
| 2033 | $0.052976 | $0.108857 | $0.164738 |
| 2034 | $0.04259 | $0.068998 | $0.0954075 |
| 2035 | $0.050354 | $0.081384 | $0.112413 |
| 2036 | $0.083353 | $0.157967 | $0.232581 |
| 2037 | $0.216465 | $0.385946 | $0.555426 |
Defactor Histogramme des prix potentiels
Prévision du prix de Defactor basée sur l'analyse technique
Au 6 janvier 2026, le sentiment global de prévision du prix pour Defactor est Baissier, avec 14 indicateurs techniques montrant des signaux haussiers et 20 indiquant des signaux baissiers. La prévision du prix de REAL a été mise à jour pour la dernière fois le 6 janvier 2026.
Moyennes Mobiles Simples sur 50 et 200 jours de Defactor et Indice de Force Relative sur 14 jours - RSI (14)
Selon nos indicateurs techniques, le SMA sur 200 jours de Defactor devrait augmenter au cours du prochain mois, atteignant $0.02162 d'ici le 4 févr. 2026. Le SMA à court terme sur 50 jours pour Defactor devrait atteindre $0.010744 d'ici le 4 févr. 2026.
Le Relative Strength Index (RSI), un oscillateur de momentum, est un outil couramment utilisé pour identifier si une cryptomonnaie est survendue (en dessous de 30) ou surachetée (au-dessus de 70). Actuellement, le RSI est à 42.94, ce qui suggère que le marché de REAL est dans un état NEUTRAL.
Moyennes Mobiles et Oscillateurs Populaires de REAL pour le Samedi 19 Octobre 2024
Les moyennes mobiles (MA) sont des indicateurs largement utilisés sur les marchés financiers, conçus pour lisser les mouvements de prix sur une période donnée. En tant qu'indicateurs retardés, ils sont basés sur des données historiques de prix. Le tableau ci-dessous met en évidence deux types : la moyenne mobile simple (SMA) et la moyenne mobile exponentielle (EMA).
Moyenne Mobile Simple Quotidienne (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 3 | $0.011147 | BUY |
| SMA 5 | $0.011117 | BUY |
| SMA 10 | $0.011177 | BUY |
| SMA 21 | $0.011359 | SELL |
| SMA 50 | $0.01202 | SELL |
| SMA 100 | $0.013166 | SELL |
| SMA 200 | $0.022876 | SELL |
Moyenne Mobile Exponentielle Quotidienne (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 3 | $0.01118 | BUY |
| EMA 5 | $0.011161 | BUY |
| EMA 10 | $0.011212 | BUY |
| EMA 21 | $0.011454 | SELL |
| EMA 50 | $0.012586 | SELL |
| EMA 100 | $0.015937 | SELL |
| EMA 200 | $0.020375 | SELL |
Moyenne Mobile Simple Hebdomadaire (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 21 | $0.014553 | SELL |
| SMA 50 | $0.018699 | SELL |
| SMA 100 | $0.042954 | SELL |
| SMA 200 | $0.037778 | SELL |
Moyenne Mobile Exponentielle Hebdomadaire (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 21 | $0.01459 | SELL |
| EMA 50 | $0.021584 | SELL |
| EMA 100 | $0.032722 | SELL |
| EMA 200 | $0.0476089 | SELL |
Oscillateurs de Defactor
Un oscillateur est un outil d'analyse technique qui établit des limites hautes et basses entre deux extrêmes, créant un indicateur de tendance qui fluctue à l'intérieur de ces limites. Les traders utilisent cet indicateur pour identifier les conditions de surachat ou de survente à court terme.
| Période | Valeur | Action |
|---|---|---|
| RSI (14) | 42.94 | NEUTRAL |
| Stoch RSI (14) | 70.23 | NEUTRAL |
| Stochastique Rapide (14) | 52.28 | NEUTRAL |
| Indice de Canal des Matières Premières (20) | -24.93 | NEUTRAL |
| Indice Directionnel Moyen (14) | 17.16 | NEUTRAL |
| Oscillateur Impressionnant (5, 34) | -0.000851 | SELL |
| Momentum (10) | -0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Plage de Pourcentage de Williams (14) | -47.72 | NEUTRAL |
| Oscillateur Ultime (7, 14, 28) | 43.61 | NEUTRAL |
| VWMA (10) | 0.011176 | BUY |
| Moyenne Mobile de Hull (9) | 0.011099 | BUY |
| Nuage Ichimoku B/L (9, 26, 52, 26) | -0.000042 | SELL |
Prévision du cours de Defactor basée sur les flux monétaires mondiaux
Définitions des flux monétaires mondiaux utilisés pour la prédiction du cours de Defactor
M0 : le total de toutes les devises physiques, plus les comptes à la banque centrale qui peuvent être échangés contre des devises physiques.
M1 : M0 plus le montant des comptes à vue, y compris les comptes de "chèques" et les comptes "courants".
M2 : M1 plus la plupart des comptes d'épargne, comptes du marché monétaire et comptes de certificats de dépôt (CD) de moins de 100 000 $.
Prédictions du cours de Defactor par des sociétés Internet ou des niches technologiques
| Comparaison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Action Facebook | $0.015828 | $0.022242 | $0.031253 | $0.043916 | $0.06171 | $0.086713 |
| Action Amazon.com | $0.0235044 | $0.049043 | $0.102331 | $0.213521 | $0.445525 | $0.929615 |
| Action Apple | $0.015978 | $0.022663 | $0.032146 | $0.045597 | $0.064676 | $0.091739 |
| Action Netflix | $0.017773 | $0.028044 | $0.044249 | $0.069819 | $0.110163 | $0.17382 |
| Action Google | $0.014587 | $0.018891 | $0.024463 | $0.03168 | $0.041026 | $0.053128 |
| Action Tesla | $0.025536 | $0.057888 | $0.131229 | $0.297486 | $0.674379 | $1.52 |
| Action Kodak | $0.008447 | $0.006334 | $0.00475 | $0.003562 | $0.002671 | $0.0020031 |
| Action Nokia | $0.007462 | $0.004943 | $0.003274 | $0.002169 | $0.001437 | $0.000952 |
Ce calcul montre la valeur potentielle des cryptomonnaies si l'on suppose que leur capitalisation se comportera comme celle de certaines sociétés Internet ou niches technologiques. En extrapolant les données, vous pourrez obtenir une potentielle image des cours futurs pour 2024, 2025, 2026, 2027, 2028, 2029 et 2030.
Aperçu des prévisions relatives à Defactor
Vous vous posez peut-être des questions telles que : "Devrais-je investir dans Defactor maintenant ?", "Devrais-je acheter REAL aujourd'hui ?", " Defactor sera-t-il un bon ou un mauvais investissement à court ou à long terme ?".
Nous mettons régulièrement à jour les prévisions de Defactor avec de nouvelles valeurs. Regardez nos prévisions similaires. Nous faisons une prévision des cours futurs pour une grande quantité de devises numériques comme Defactor en utilisant des méthodes d'analyse technique.
Si vous souhaitez trouver des cryptomonnaies ayant un bon rendement, vous devriez consulter un maximum d'informations disponibles à propos de Defactor afin de prendre une décision responsable concernant cet investissement.
Le cours de Defactor est de $0.01126 USD actuellement, mais ce cours peut subir une hausse ou une baisse, ce qui pourrait causer la perte de votre investissement, car les cryptomonnaies sont des actifs à haut risque.
Prévision du cours de Defactor basée sur le modèle de croissance du Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Defactor présente 1 % de la précédente croissance annuelle moyenne du Bitcoin | $0.011557 | $0.011857 | $0.012166 | $0.012482 |
| Si Defactor présente 2 % de la précédente croissance annuelle moyenne du Bitcoin | $0.01185 | $0.012466 | $0.013114 | $0.013796 |
| Si Defactor présente 5 % de la précédente croissance annuelle moyenne du Bitcoin | $0.012728 | $0.014383 | $0.016252 | $0.018364 |
| Si Defactor présente 10 % de la précédente croissance annuelle moyenne du Bitcoin | $0.014192 | $0.017881 | $0.022529 | $0.028386 |
| Si Defactor présente 20 % de la précédente croissance annuelle moyenne du Bitcoin | $0.01712 | $0.026021 | $0.039548 | $0.0601088 |
| Si Defactor présente 50 % de la précédente croissance annuelle moyenne du Bitcoin | $0.0259049 | $0.059572 | $0.136996 | $0.315045 |
| Si Defactor présente 100 % de la précédente croissance annuelle moyenne du Bitcoin | $0.040545 | $0.145935 | $0.525267 | $1.89 |
Boîte à questions
Est-ce que REAL est un bon investissement ?
La décision d'acquérir Defactor dépend entièrement de votre tolérance individuelle au risque. Comme vous pouvez le discerner, la valeur de Defactor a connu une hausse de 1.7281% au cours des 24 heures précédentes, et Defactor a enregistré une déclin de sur une période de 30 jours précédents. Par conséquent, la détermination de si investir ou non dans Defactor dépendra de la mesure dans laquelle cet investissement s'aligne avec vos aspirations de trading.
Est-ce que Defactor peut monter ?
Il semble que la valeur moyenne de Defactor pourrait potentiellement s'envoler jusqu'à $0.011617 pour la fin de cette année. En regardant les perspectives de Defactor sur une période de cinq ans plus longue, la monnaie numérique pourrait potentiellement croître jusqu'à $0.036523. Cependant, compte tenu de l'imprévisibilité du marché, il est essentiel de mener des recherches approfondies avant d'investir des fonds dans un projet, un réseau ou un actif particulier.
Quel sera le prix de Defactor la semaine prochaine ?
Basé sur notre nouveau pronostic expérimental de Defactor, le prix de Defactor va augmenter de 0.86% durant la prochaine semaine et atteindre $0.011361 d'ici 13 janvier 2026.
Quel sera le prix de Defactor le mois prochain ?
Basé sur notre nouveau pronostic expérimental de Defactor, le prix de Defactor va diminuer de -11.62% durant le prochain mois et atteindre $0.009955 d'ici 5 février 2026.
Jusqu'où le prix de Defactor peut-il monter cette année en 2026 ?
Selon notre prédiction la plus récente sur la valeur de Defactor en 2026, REAL devrait fluctuer dans la fourchette de $0.003891 et $0.011617. Cependant, il est crucial de garder à l'esprit que le marché des cryptomonnaies est exceptionnellement instable, et cette prévision de prix de Defactor ne prend pas en compte les fluctuations de prix soudaines et extrêmes.
Où sera Defactor dans 5 ans ?
L'avenir de Defactor semble suivre une tendance haussière, avec un prix maximum de $0.036523 prévue après une période de cinq ans. Selon la prévision de Defactor pour 2030, la valeur de Defactor pourrait potentiellement atteindre son point le plus élevé d'environ $0.036523, tandis que son point le plus bas devrait être autour de $0.012632.
Combien vaudra Defactor en 2026 ?
Basé sur notre nouvelle simulation expérimentale de prédiction de prix de Defactor, il est attendu que la valeur de REAL en 2026 augmente de 3.13% jusqu'à $0.011617 si le meilleur scénario se produit. Le prix sera entre $0.011617 et $0.003891 durant 2026.
Combien vaudra Defactor en 2027 ?
Selon notre dernière simulation expérimentale pour la prédiction de prix de Defactor, le valeur de REAL pourrait diminuer de -12.62% jusqu'à $0.009842 en 2027, en supposant les conditions les plus favorables. Il est prévu que le prix fluctue entre $0.009842 et $0.003746 tout au long de l'année.
Combien vaudra Defactor en 2028 ?
Notre nouveau modèle expérimental de prédiction de prix de Defactor suggère que la valeur de REAL en 2028 pourrait augmenter de 47.02%, atteignant $0.016561 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.016561 et $0.006761 durant l'année.
Combien vaudra Defactor en 2029 ?
Basé sur notre modèle de prévision expérimental, la valeur de Defactor pourrait connaître un 333.75% croissance en 2029, atteignant potentiellement $0.04886 sous des conditions optimales. Le range de prix prévu pour 2029 se situe entre $0.04886 et $0.014853.
Combien vaudra Defactor en 2030 ?
En utilisant notre nouvelle simulation expérimentale pour les prédictions de prix de Defactor, il est prévu que la valeur de REAL en 2030 augmente de 224.23%, atteignant $0.036523 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.036523 et $0.012632 au cours de 2030.
Combien vaudra Defactor en 2031 ?
Notre simulation expérimentale indique que le prix de Defactor pourrait augmenter de 195.98% en 2031, atteignant potentiellement $0.033341 dans des conditions idéales. Il est probable que le prix fluctue entre $0.033341 et $0.014935 durant l'année.
Combien vaudra Defactor en 2032 ?
Basé sur les résultats de notre dernière prédiction expérimentale de prix de Defactor, REAL pourrait connaître une 449.04% hausse en valeur, atteignant $0.061847 si le scénario le plus positif se réalise en 2032. Il est prévu que le prix reste dans une fourchette de $0.061847 et $0.022797 tout au long de l'année.
Combien vaudra Defactor en 2033 ?
Selon notre prédiction expérimentale de prix de Defactor, la valeur de REAL est anticipée à augmenter de 1362.43% en 2033, avec le prix potentiel le plus élevé étant $0.164738. Tout au long de l'année, le prix de REAL pourrait osciller entre $0.164738 et $0.052976.
Combien vaudra Defactor en 2034 ?
Les résultats de notre nouvelle simulation de prédiction de prix de Defactor suggèrent que REAL pourrait augmenter de 746.96% en 2034, atteignant potentiellement $0.0954075 dans les meilleures circonstances. La fourchette de prix prévue pour l'année est entre $0.0954075 et $0.04259.
Combien vaudra Defactor en 2035 ?
Basé sur notre prédiction expérimentale pour le prix de Defactor, REAL pourrait augmenter de 897.93%, avec la valeur potentiellement atteignant $0.112413 en 2035. La fourchette de prix attendue pour l'année se situe entre $0.112413 et $0.050354.
Combien vaudra Defactor en 2036 ?
Notre récente simulation de prédiction de prix de Defactor suggère que la valeur de REAL pourrait augmenter de 1964.7% en 2036, pouvant atteindre $0.232581 si les conditions sont optimales. La fourchette de prix attendue pour 2036 est entre $0.232581 et $0.083353.
Combien vaudra Defactor en 2037 ?
Selon la simulation expérimentale, la valeur de Defactor pourrait augmenter de 4830.69% en 2037, avec un maximum de $0.555426 sous des conditions favorables. Il est prévu que le prix chute entre $0.555426 et $0.216465 au cours de l'année.
Prévisions liées
Prévision du cours de Bostrom
Prévision du cours de DeFi Kingdoms
Prévision du cours de Mazze
Prévision du cours de MerlinSwap
Prévision du cours de Swash
Prévision du cours de Arsenal Fan Token
Prévision du cours de Byte
Prévision du cours de Ellipsis
Prévision du cours de Fulcrom
Prévision du cours de yfii finance
Prévision du cours de Juventus Fan Token
Prévision du cours de renBTC
Prévision du cours de Arcas
Prévision du cours de Data Lake
Prévision du cours de Juno Network
Prévision du cours de Wagmi
Prévision du cours de Fuse Network Token
Prévision du cours de Soil
Prévision du cours de WINR Protocol
Prévision du cours de Cakepie
Prévision du cours de Gyroscope GYD
Prévision du cours de Wrapped STEAMX
Prévision du cours de XANA
Prévision du cours de Radiant
Prévision du cours de Atletico Madrid
Comment lire et prédire les mouvements de prix de Defactor ?
Les traders de Defactor utilisent des indicateurs et des modèles graphiques pour prédire la direction du marché. Ils identifient également des niveaux clés de support et de résistance pour évaluer quand une tendance baissière pourrait ralentir ou une tendance haussière pourrait s'arrêter.
Indicateurs de prédiction du prix de Defactor
Les moyennes mobiles sont des outils populaires pour la prédiction du prix de Defactor. Une moyenne mobile simple (SMA) calcule le prix de clôture moyen de REAL sur une période spécifique, comme une SMA de 12 jours. Une moyenne mobile exponentielle (EMA) donne plus de poids aux prix récents, réagissant plus rapidement aux changements de prix.
Les moyennes mobiles couramment utilisées sur le marché des cryptomonnaies incluent les moyennes sur 50 jours, 100 jours et 200 jours, qui aident à identifier les niveaux clés de résistance et de support. Un mouvement de prix de REAL au-dessus de ces moyennes est considéré comme haussier, tandis qu'une chute en dessous indique une faiblesse.
Les traders utilisent également le RSI et les niveaux de retracement de Fibonacci pour évaluer la direction future de REAL.
Comment lire les graphiques de Defactor et prédire les mouvements de prix ?
La plupart des traders préfèrent les graphiques en chandeliers aux simples graphiques linéaires parce qu'ils fournissent des informations plus détaillées. Les chandeliers peuvent représenter l'action des prix de Defactor dans différentes périodes, comme 5 minutes pour les tendances à court terme et hebdomadaire pour les tendances à long terme. Les options populaires incluent les graphiques de 1 heure, 4 heures et 1 jour.
Par exemple, un graphique en chandeliers de 1 heure montre les prix d'ouverture, de clôture, les plus hauts et les plus bas de REAL au sein de chaque heure. La couleur du chandelier est cruciale : le vert indique que le prix a clôturé plus haut qu'il n'a ouvert, tandis que le rouge signifie le contraire. Certains graphiques utilisent des chandeliers creux et pleins pour transmettre la même information.
Qu'est-ce qui affecte le prix de Defactor ?
L'action du prix de Defactor est déterminée par l'offre et la demande, influencée par des facteurs tels que les réductions de récompenses de bloc, les hard forks et les mises à jour de protocole. Les événements du monde réel, tels que les réglementations, l'adoption par les entreprises et les gouvernements et les piratages d'échanges de cryptomonnaies, impactent également le prix de REAL. La capitalisation boursière de Defactor peut changer rapidement.
Les traders surveillent souvent l'activité des « baleines » de REAL, de grands détenteurs de Defactor, car leurs actions peuvent influencer significativement les mouvements de prix sur le marché relativement petit de Defactor.
Modèles de prédiction de prix haussiers et baissiers
Les traders identifient souvent des modèles de chandeliers pour obtenir un avantage dans les prédictions de prix des cryptomonnaies. Certaines formations indiquent des tendances haussières, tandis que d'autres suggèrent des mouvements baissiers.
Modèles de chandeliers haussiers couramment suivis :
- Marteau
- Englobante haussière
- Ligne pénétrante
- Étoile du matin
- Trois soldats blancs
Modèles de chandeliers baissiers courants :
- Harami baissier
- Nuage sombre
- Étoile du soir
- Étoile filante
- Pendu


