Prédiction du prix de deBridge jusqu'à $0.019029 d'ici 2026
| Année | Prix min. | Prix max. |
|---|---|---|
| 2026 | $0.006374 | $0.019029 |
| 2027 | $0.006136 | $0.016121 |
| 2028 | $0.011075 | $0.027126 |
| 2029 | $0.024329 | $0.080032 |
| 2030 | $0.020691 | $0.059823 |
| 2031 | $0.024463 | $0.054612 |
| 2032 | $0.037341 | $0.1013032 |
| 2033 | $0.086772 | $0.269835 |
| 2034 | $0.069761 | $0.156273 |
| 2035 | $0.082479 | $0.184129 |
Calculateur de profit d’investissement
Si vous ouvrez une position short de $10,000.00 sur deBridge aujourd’hui et la fermez le Apr 06, 2026, notre prévision indique que vous pourriez gagner environ $3,954.84, soit un rendement de 39.55% sur les 90 prochains jours.
Prévision du prix à long terme de deBridge pour 2027, 2028, 2029, 2030, 2031, 2032 et 2037
[
'name' => 'deBridge'
'name_with_ticker' => 'deBridge <small>DBR</small>'
'name_lang' => 'deBridge'
'name_lang_with_ticker' => 'deBridge <small>DBR</small>'
'name_with_lang' => 'deBridge'
'name_with_lang_with_ticker' => 'deBridge <small>DBR</small>'
'image' => '/uploads/coins/debridge.png?1724709151'
'price_for_sd' => 0.01845
'ticker' => 'DBR'
'marketcap' => '$76.01M'
'low24h' => '$0.01819'
'high24h' => '$0.01914'
'volume24h' => '$8.14M'
'current_supply' => '4.12B'
'max_supply' => '10B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.01845'
'change_24h_pct' => '0.7027%'
'ath_price' => '$0.05521'
'ath_days' => 380
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '22 déc. 2024'
'ath_pct' => '-66.57%'
'fdv' => '$184.59M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.909767'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.018609'
'next_week_prediction_price_date' => '13 janvier 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.016307'
'next_month_prediction_price_date' => '5 février 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.006374'
'current_year_max_price_prediction' => '$0.019029'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.020691'
'grand_prediction_max_price' => '$0.059823'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.018800769208206
107 => 0.01887096445575
108 => 0.019029117932725
109 => 0.017677713787881
110 => 0.018284454573775
111 => 0.018640857941564
112 => 0.017030614559827
113 => 0.018609028607234
114 => 0.017654188848322
115 => 0.017330101892936
116 => 0.017766442283154
117 => 0.017596400008731
118 => 0.0174502076464
119 => 0.017368629796315
120 => 0.01768903002176
121 => 0.017674082968282
122 => 0.01714984601245
123 => 0.016466000274199
124 => 0.016695521350427
125 => 0.016612134191662
126 => 0.016309928371139
127 => 0.016513578605702
128 => 0.015616806037714
129 => 0.014073955444673
130 => 0.015093209805227
131 => 0.015053969621082
201 => 0.015034182940834
202 => 0.01580012442267
203 => 0.015726496822468
204 => 0.015592862007138
205 => 0.016307474062958
206 => 0.016046631049695
207 => 0.016850487754228
208 => 0.017379959770025
209 => 0.017245668540194
210 => 0.017743639530211
211 => 0.016700809052456
212 => 0.01704719550607
213 => 0.017118585274088
214 => 0.016298655861116
215 => 0.015738543208429
216 => 0.015701190080246
217 => 0.014730031928766
218 => 0.015248816774372
219 => 0.01570532596973
220 => 0.015486693491698
221 => 0.015417480980613
222 => 0.015771072689386
223 => 0.015798549793466
224 => 0.015172068908552
225 => 0.015302334122595
226 => 0.015845561719944
227 => 0.01528864618092
228 => 0.014206650260234
301 => 0.013938300312139
302 => 0.013902497482393
303 => 0.013174711140058
304 => 0.013956232738836
305 => 0.013615077617493
306 => 0.01469278255815
307 => 0.014077203275894
308 => 0.014050666883379
309 => 0.01401055323405
310 => 0.013384117464727
311 => 0.013521267086139
312 => 0.013977173316188
313 => 0.014139845795221
314 => 0.014122877722922
315 => 0.013974939126942
316 => 0.014042664658613
317 => 0.013824497123961
318 => 0.013747457626711
319 => 0.013504299782006
320 => 0.013146924924358
321 => 0.013196620090221
322 => 0.012488566985003
323 => 0.012102782074058
324 => 0.011996001895272
325 => 0.011853210977548
326 => 0.012012130509381
327 => 0.012486561159518
328 => 0.011914297139375
329 => 0.010933190616494
330 => 0.010992156790243
331 => 0.011124636275444
401 => 0.010877761631212
402 => 0.010644115499064
403 => 0.010847251854657
404 => 0.010431544087213
405 => 0.011174872573072
406 => 0.011154767620683
407 => 0.011431834513086
408 => 0.011605090126891
409 => 0.011205792029242
410 => 0.011105369637501
411 => 0.01116257479578
412 => 0.010217100955487
413 => 0.011354569129257
414 => 0.011364406001258
415 => 0.011280176731046
416 => 0.011885843418189
417 => 0.013163989040237
418 => 0.012683099243934
419 => 0.012496884179834
420 => 0.012142889206859
421 => 0.012614566490207
422 => 0.012578349034158
423 => 0.01241455996284
424 => 0.012315499821455
425 => 0.012498021169308
426 => 0.012292883406581
427 => 0.012256035027587
428 => 0.012032773942313
429 => 0.011953079892602
430 => 0.011894077590908
501 => 0.011829121854189
502 => 0.01197239802343
503 => 0.01164771537438
504 => 0.011256179928659
505 => 0.011223627992819
506 => 0.011313506749668
507 => 0.011273742090449
508 => 0.01122343761493
509 => 0.011127392671555
510 => 0.011098898188531
511 => 0.0111914914348
512 => 0.011086959058284
513 => 0.011241202274007
514 => 0.011199256653997
515 => 0.010964951830362
516 => 0.010672921269357
517 => 0.010670321584809
518 => 0.010607404079467
519 => 0.010527269176703
520 => 0.010504977479992
521 => 0.010830144277382
522 => 0.011503229816556
523 => 0.011371087019644
524 => 0.011466573732951
525 => 0.011936273855749
526 => 0.012085577400411
527 => 0.011979605280858
528 => 0.011834544107539
529 => 0.011840926062967
530 => 0.012336644005203
531 => 0.0123675613252
601 => 0.012445679418528
602 => 0.012546083244625
603 => 0.011996704486601
604 => 0.011815050372869
605 => 0.011728972575996
606 => 0.011463886277927
607 => 0.011749759123613
608 => 0.011583193258728
609 => 0.011605668684601
610 => 0.011591031534016
611 => 0.011599024407995
612 => 0.011174664797611
613 => 0.01132927913595
614 => 0.011072202810517
615 => 0.010728006468933
616 => 0.010726852602106
617 => 0.010811094169086
618 => 0.010760983988673
619 => 0.010626138781633
620 => 0.010645292906842
621 => 0.010477482615098
622 => 0.010665668114563
623 => 0.010671064601328
624 => 0.0105986029335
625 => 0.010888528660022
626 => 0.011007311466734
627 => 0.010959615644691
628 => 0.011003965000713
629 => 0.011376578149445
630 => 0.011437330350939
701 => 0.011464312465778
702 => 0.011428160006339
703 => 0.011010775685056
704 => 0.01102928845456
705 => 0.010893454035354
706 => 0.010778688265004
707 => 0.010783278293951
708 => 0.010842282818417
709 => 0.011099959037329
710 => 0.011642223449186
711 => 0.011662801987226
712 => 0.011687743775649
713 => 0.011586292987395
714 => 0.011555694458905
715 => 0.011596061816134
716 => 0.01179970781832
717 => 0.012323540625291
718 => 0.01213838312569
719 => 0.011987847196367
720 => 0.012119907790579
721 => 0.012099578097225
722 => 0.011927975026239
723 => 0.011923158699578
724 => 0.011593797541536
725 => 0.011472040220599
726 => 0.011370290689846
727 => 0.011259182858502
728 => 0.011193314411714
729 => 0.011294518282655
730 => 0.011317664805348
731 => 0.011096380772794
801 => 0.01106622057683
802 => 0.011246925894561
803 => 0.011167404221601
804 => 0.011249194234283
805 => 0.011268170218807
806 => 0.011265114648244
807 => 0.011182084888668
808 => 0.011235005581439
809 => 0.011109832366618
810 => 0.010973725295909
811 => 0.010886897464567
812 => 0.010811128665681
813 => 0.010853169599012
814 => 0.010703301348059
815 => 0.010655355478327
816 => 0.011217077241481
817 => 0.01163202714745
818 => 0.011625993611479
819 => 0.011589266012955
820 => 0.01153469625147
821 => 0.011795715700373
822 => 0.011704781743624
823 => 0.011770943794945
824 => 0.011787784813819
825 => 0.01183875750576
826 => 0.011856975861878
827 => 0.011801907336228
828 => 0.011617090638091
829 => 0.011156544998181
830 => 0.010942159759583
831 => 0.010871409059977
901 => 0.010873980713533
902 => 0.010803043028093
903 => 0.010823937355659
904 => 0.010795776833657
905 => 0.010742447617747
906 => 0.010849876670207
907 => 0.010862256867732
908 => 0.010837181643206
909 => 0.010843087766318
910 => 0.010635475617014
911 => 0.010651259917815
912 => 0.010563370925179
913 => 0.010546892798577
914 => 0.010324717078563
915 => 0.0099311005856722
916 => 0.010149202332011
917 => 0.0098857660921801
918 => 0.0097859987964456
919 => 0.010258281657455
920 => 0.010210877557297
921 => 0.010129742343894
922 => 0.01000972645321
923 => 0.0099652113919162
924 => 0.0096947519712496
925 => 0.0096787717858317
926 => 0.0098128187777328
927 => 0.0097509607032458
928 => 0.0096640885391813
929 => 0.0093494463670299
930 => 0.0089956843910885
1001 => 0.0090063622414737
1002 => 0.0091188873440451
1003 => 0.0094460692558489
1004 => 0.0093182336226026
1005 => 0.0092254874039376
1006 => 0.0092081188251227
1007 => 0.0094255229525735
1008 => 0.0097331953404893
1009 => 0.0098775483411177
1010 => 0.0097344989015608
1011 => 0.0095701714077266
1012 => 0.009580173260856
1013 => 0.0096467111088167
1014 => 0.0096537032958429
1015 => 0.0095467429904961
1016 => 0.0095768516899277
1017 => 0.009531113822294
1018 => 0.0092504206130515
1019 => 0.0092453437629841
1020 => 0.0091764571226466
1021 => 0.0091743712625545
1022 => 0.0090571779027626
1023 => 0.0090407817416082
1024 => 0.008808087212613
1025 => 0.0089612474562616
1026 => 0.0088585156060958
1027 => 0.0087036744759023
1028 => 0.0086769798066938
1029 => 0.0086761773327026
1030 => 0.0088351645515682
1031 => 0.0089593895980422
1101 => 0.0088603026706127
1102 => 0.0088377424979564
1103 => 0.0090786261197012
1104 => 0.0090479714831312
1105 => 0.0090214247655628
1106 => 0.0097056466527317
1107 => 0.0091640316385379
1108 => 0.0089278565780451
1109 => 0.0086355450922578
1110 => 0.0087307231859926
1111 => 0.0087507786087996
1112 => 0.0080478221785867
1113 => 0.0077626328423969
1114 => 0.00766476660935
1115 => 0.0076084432086061
1116 => 0.0076341104895899
1117 => 0.0073774066376463
1118 => 0.0075499158716422
1119 => 0.0073276320344956
1120 => 0.0072903654258237
1121 => 0.0076878364623254
1122 => 0.0077431422350625
1123 => 0.0075071906264093
1124 => 0.0076587097562602
1125 => 0.0076037668135028
1126 => 0.0073314424528901
1127 => 0.0073210416653971
1128 => 0.0071843988739058
1129 => 0.0069705793644801
1130 => 0.0068728581111292
1201 => 0.0068219640339292
1202 => 0.0068429639220877
1203 => 0.0068323457360276
1204 => 0.0067630548895675
1205 => 0.0068363174062377
1206 => 0.0066491619503073
1207 => 0.0065746351397418
1208 => 0.0065409731084182
1209 => 0.0063748618690138
1210 => 0.0066392187209096
1211 => 0.006691300351013
1212 => 0.0067434845980165
1213 => 0.0071977128404833
1214 => 0.0071750208811253
1215 => 0.0073801451422888
1216 => 0.0073721743906993
1217 => 0.0073136696286228
1218 => 0.0070668476609881
1219 => 0.0071652264981087
1220 => 0.0068624317289171
1221 => 0.0070893061580384
1222 => 0.0069857701430901
1223 => 0.0070543005272365
1224 => 0.0069310767174057
1225 => 0.0069992738615525
1226 => 0.0067036508376116
1227 => 0.0064276022173838
1228 => 0.0065386922405251
1229 => 0.0066594598003647
1230 => 0.0069213146410991
1231 => 0.0067653560582132
]
'min_raw' => 0.0063748618690138
'max_raw' => 0.019029117932725
'avg_raw' => 0.012701989900869
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.006374'
'max' => '$0.019029'
'avg' => '$0.0127019'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.012076268130986
'max_diff' => 0.00057798793272516
'year' => 2026
]
1 => [
'items' => [
101 => 0.0068214446620659
102 => 0.0066335572282783
103 => 0.0062458917849823
104 => 0.006248085929291
105 => 0.0061884520465907
106 => 0.0061369196652481
107 => 0.0067832697775467
108 => 0.0067028859237991
109 => 0.0065748047732311
110 => 0.006746246483009
111 => 0.0067915783922201
112 => 0.0067928689279462
113 => 0.0069179483738491
114 => 0.0069847032965492
115 => 0.0069964691410075
116 => 0.007193284351656
117 => 0.00725925421421
118 => 0.0075309747416655
119 => 0.0069790396077488
120 => 0.0069676728668768
121 => 0.0067486590194486
122 => 0.0066097569749378
123 => 0.0067581697612722
124 => 0.0068896432295988
125 => 0.0067527442665904
126 => 0.0067706203810645
127 => 0.0065868447082819
128 => 0.0066525358638526
129 => 0.0067091179365843
130 => 0.0066778766417623
131 => 0.0066311069113181
201 => 0.0068788639044997
202 => 0.0068648844839769
203 => 0.0070956014919363
204 => 0.0072754618983721
205 => 0.0075978039005985
206 => 0.0072614232172066
207 => 0.0072491641681117
208 => 0.0073689983394279
209 => 0.0072592358682228
210 => 0.0073286019611527
211 => 0.0075866279506319
212 => 0.0075920796331976
213 => 0.0075007569261264
214 => 0.0074951999311017
215 => 0.0075127394559557
216 => 0.0076154690008624
217 => 0.0075795721413119
218 => 0.007621112895981
219 => 0.0076730602457894
220 => 0.0078879365098166
221 => 0.0079397424496133
222 => 0.0078138808742073
223 => 0.0078252447652542
224 => 0.0077781690810748
225 => 0.0077326945600142
226 => 0.0078349146423381
227 => 0.0080217238519257
228 => 0.0080205617215283
301 => 0.0080638978271005
302 => 0.0080908958618563
303 => 0.0079750005329151
304 => 0.0078995569353637
305 => 0.0079284868112657
306 => 0.0079747463128438
307 => 0.0079134854783739
308 => 0.0075353552292468
309 => 0.0076500557917781
310 => 0.007630964009602
311 => 0.0076037749901431
312 => 0.0077191072927215
313 => 0.0077079832107828
314 => 0.007374773768611
315 => 0.0073961047560034
316 => 0.0073760709766047
317 => 0.0074408042163675
318 => 0.0072557400608392
319 => 0.0073126645486536
320 => 0.0073483670537769
321 => 0.007369396103574
322 => 0.0074453674511958
323 => 0.0074364530904104
324 => 0.0074448133220131
325 => 0.0075574587748441
326 => 0.0081271808200117
327 => 0.0081581895339094
328 => 0.0080054912857731
329 => 0.0080664912240638
330 => 0.0079493846817657
331 => 0.0080279990881561
401 => 0.0080817850684189
402 => 0.0078387365660604
403 => 0.0078243448111224
404 => 0.0077067549284672
405 => 0.0077699410707747
406 => 0.0076694073751191
407 => 0.0076940748275136
408 => 0.0076251024801487
409 => 0.0077492389731481
410 => 0.0078880428611823
411 => 0.0079231102048314
412 => 0.0078308631211314
413 => 0.0077640701531535
414 => 0.0076468037043557
415 => 0.0078418204221596
416 => 0.0078988492534723
417 => 0.0078415208739866
418 => 0.00782823663581
419 => 0.0078030630284693
420 => 0.0078335773356106
421 => 0.0078985386622094
422 => 0.0078679041002328
423 => 0.0078881387681298
424 => 0.0078110250800051
425 => 0.0079750388990913
426 => 0.0082355323158754
427 => 0.0082363698448053
428 => 0.008205735117697
429 => 0.0081932000473987
430 => 0.0082246331364825
501 => 0.0082416842978577
502 => 0.008343333144112
503 => 0.0084524064060117
504 => 0.0089614037269047
505 => 0.0088184793159836
506 => 0.009270092019466
507 => 0.0096272590333504
508 => 0.0097343578037937
509 => 0.0096358319743724
510 => 0.0092987804341829
511 => 0.0092822430776319
512 => 0.0097859403781648
513 => 0.0096436228199664
514 => 0.0096266945992694
515 => 0.0094466069317337
516 => 0.0095530610475388
517 => 0.0095297779708246
518 => 0.0094930244951841
519 => 0.0096961315324823
520 => 0.010076329774814
521 => 0.01001707231327
522 => 0.0099728393671022
523 => 0.0097790234730109
524 => 0.0098957439316011
525 => 0.0098541820119302
526 => 0.010032758394682
527 => 0.0099269737014911
528 => 0.0096425446244898
529 => 0.0096878408924928
530 => 0.0096809944527076
531 => 0.0098218936983431
601 => 0.0097795992421376
602 => 0.0096727357813317
603 => 0.010075030298555
604 => 0.010048907530286
605 => 0.010085943643195
606 => 0.010102248085477
607 => 0.010347117668886
608 => 0.010447432902256
609 => 0.010470206216497
610 => 0.01056549792954
611 => 0.010467835271868
612 => 0.010858555534851
613 => 0.011118361710576
614 => 0.011420139953184
615 => 0.011861119075979
616 => 0.012026931305434
617 => 0.011996978810311
618 => 0.012331324148389
619 => 0.012932135288835
620 => 0.012118419919643
621 => 0.012975264179258
622 => 0.012703997179406
623 => 0.012060828002644
624 => 0.012019415490127
625 => 0.012454977123978
626 => 0.013421010906607
627 => 0.013179030400723
628 => 0.013421406700027
629 => 0.013138661872313
630 => 0.013124621208457
701 => 0.013407674414843
702 => 0.014069043659992
703 => 0.013754851922677
704 => 0.013304381024262
705 => 0.013637001725548
706 => 0.013348854891501
707 => 0.012699579427172
708 => 0.01317884536279
709 => 0.012858373880351
710 => 0.012951904496127
711 => 0.01362548788568
712 => 0.013544440550168
713 => 0.013649323307102
714 => 0.013464207986374
715 => 0.013291281086808
716 => 0.012968500187048
717 => 0.012872940675535
718 => 0.012899349886646
719 => 0.012872927588442
720 => 0.012692334641535
721 => 0.012653335611845
722 => 0.012588335520442
723 => 0.012608481766725
724 => 0.01248626257844
725 => 0.012716915438508
726 => 0.012759726641842
727 => 0.012927576558548
728 => 0.012945003293721
729 => 0.013412462922551
730 => 0.013154994014331
731 => 0.013327726386761
801 => 0.013312275577551
802 => 0.012074767428964
803 => 0.012245285133212
804 => 0.012510557169619
805 => 0.012391052476786
806 => 0.01222210080091
807 => 0.012085663264025
808 => 0.01187894644419
809 => 0.012169896398463
810 => 0.012552464649255
811 => 0.012954705855895
812 => 0.013437972309785
813 => 0.013330112863118
814 => 0.012945671525692
815 => 0.012962917283255
816 => 0.01306952377055
817 => 0.012931458683282
818 => 0.012890740593696
819 => 0.013063929730309
820 => 0.01306512238871
821 => 0.012906261820085
822 => 0.012729717369236
823 => 0.012728977641541
824 => 0.012697563261729
825 => 0.013144250420694
826 => 0.013389883192959
827 => 0.013418044594442
828 => 0.013387987706261
829 => 0.013399555409607
830 => 0.013256627111575
831 => 0.013583318816806
901 => 0.013883123431987
902 => 0.013802769390727
903 => 0.013682307259879
904 => 0.013586353370415
905 => 0.013780165703828
906 => 0.01377153554571
907 => 0.013880504900218
908 => 0.01387556142086
909 => 0.013838919125484
910 => 0.013802770699339
911 => 0.013946095122969
912 => 0.013904819990683
913 => 0.013863480746717
914 => 0.01378056856422
915 => 0.013791837706847
916 => 0.013671396375484
917 => 0.013615674704575
918 => 0.012777754469085
919 => 0.012553834802328
920 => 0.012624284487795
921 => 0.012647478353476
922 => 0.012550028227542
923 => 0.012689746675247
924 => 0.012667971703171
925 => 0.012752685381588
926 => 0.012699759953153
927 => 0.012701932031197
928 => 0.012857574431332
929 => 0.012902758082241
930 => 0.012879777312711
1001 => 0.012895872255955
1002 => 0.013266773429751
1003 => 0.013214043143589
1004 => 0.013186031230019
1005 => 0.013193790721515
1006 => 0.01328856392363
1007 => 0.013315095245798
1008 => 0.013202680169452
1009 => 0.01325569576932
1010 => 0.01348142946488
1011 => 0.013560423482905
1012 => 0.013812534469161
1013 => 0.013705433241284
1014 => 0.013902022180285
1015 => 0.014506269556667
1016 => 0.014988984171659
1017 => 0.014545059862687
1018 => 0.015431503779784
1019 => 0.016121727522072
1020 => 0.016095235585215
1021 => 0.015974879110584
1022 => 0.015189077730538
1023 => 0.01446597158498
1024 => 0.015070880580448
1025 => 0.015072422617878
1026 => 0.0150204603987
1027 => 0.014697727518121
1028 => 0.01500922999402
1029 => 0.015033955929346
1030 => 0.01502011598072
1031 => 0.014772677437868
1101 => 0.014394884517219
1102 => 0.014468704349605
1103 => 0.014589622740938
1104 => 0.014360698999926
1105 => 0.014287543993694
1106 => 0.014423553068589
1107 => 0.014861802646514
1108 => 0.014778954102414
1109 => 0.014776790592111
1110 => 0.01513125179702
1111 => 0.014877534071821
1112 => 0.014469635454095
1113 => 0.014366635673598
1114 => 0.014001055841798
1115 => 0.014253563133773
1116 => 0.014262650421681
1117 => 0.014124354758428
1118 => 0.014480857384977
1119 => 0.014477572150513
1120 => 0.014816018336008
1121 => 0.015463000328092
1122 => 0.015271655916982
1123 => 0.015049143185074
1124 => 0.015073336488642
1125 => 0.015338677314612
1126 => 0.015178246194089
1127 => 0.015235938343594
1128 => 0.015338589990634
1129 => 0.015400522277991
1130 => 0.015064425385575
1201 => 0.01498606512258
1202 => 0.014825767525208
1203 => 0.01478394887415
1204 => 0.01491450792249
1205 => 0.014880110225972
1206 => 0.01426188667032
1207 => 0.014197278868991
1208 => 0.014199260298019
1209 => 0.014036800909644
1210 => 0.013789011347651
1211 => 0.014440187521823
1212 => 0.014387888961832
1213 => 0.014330155399189
1214 => 0.01433722743119
1215 => 0.01461988093799
1216 => 0.014455927629701
1217 => 0.014891824371204
1218 => 0.014802217105407
1219 => 0.014710311751361
1220 => 0.014697607631926
1221 => 0.014662231911614
1222 => 0.014540915403941
1223 => 0.014394418430933
1224 => 0.014297688440003
1225 => 0.013188861812952
1226 => 0.013394653585185
1227 => 0.013631398260628
1228 => 0.013713121573897
1229 => 0.01357332819147
1230 => 0.01454643529873
1231 => 0.01472423134432
]
'min_raw' => 0.0061369196652481
'max_raw' => 0.016121727522072
'avg_raw' => 0.01112932359366
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.006136'
'max' => '$0.016121'
'avg' => '$0.011129'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00023794220376564
'max_diff' => -0.0029073904106534
'year' => 2027
]
2 => [
'items' => [
101 => 0.014185675524879
102 => 0.014084933720151
103 => 0.014553039914676
104 => 0.014270714655723
105 => 0.014397845702542
106 => 0.014123057916283
107 => 0.014681405483413
108 => 0.01467715181044
109 => 0.014459941995974
110 => 0.014643526243772
111 => 0.01461162396293
112 => 0.014366394617363
113 => 0.014689179691075
114 => 0.014689339788445
115 => 0.01448028006457
116 => 0.014236144076143
117 => 0.014192498327647
118 => 0.014159617119137
119 => 0.014389758940904
120 => 0.014596103378665
121 => 0.014980059220215
122 => 0.015076594841346
123 => 0.015453379797362
124 => 0.015229022701381
125 => 0.015328477296118
126 => 0.015436449327417
127 => 0.015488215089762
128 => 0.015403865557925
129 => 0.015989167685493
130 => 0.016038585118254
131 => 0.016055154355999
201 => 0.015857793771749
202 => 0.016033096163383
203 => 0.015951077979742
204 => 0.016164466508268
205 => 0.016197928554222
206 => 0.016169587391746
207 => 0.016180208773294
208 => 0.015680756661786
209 => 0.015654857434984
210 => 0.01530171963982
211 => 0.015445625901612
212 => 0.015176600042799
213 => 0.015261910913902
214 => 0.015299515133013
215 => 0.01527987282297
216 => 0.015453762145739
217 => 0.015305920698144
218 => 0.014915742810555
219 => 0.014525458619262
220 => 0.014520558919159
221 => 0.01441780398068
222 => 0.014343530980665
223 => 0.014357838595444
224 => 0.014408260496097
225 => 0.014340600368137
226 => 0.014355039086893
227 => 0.01459481802292
228 => 0.014642903978515
229 => 0.014479489113007
301 => 0.013823354847342
302 => 0.013662337852759
303 => 0.013778073675359
304 => 0.013722759406498
305 => 0.011075337858503
306 => 0.011697310281445
307 => 0.011327755387921
308 => 0.01149806328526
309 => 0.011120843434747
310 => 0.011300872519198
311 => 0.011267627720909
312 => 0.012267740971499
313 => 0.012252125578702
314 => 0.012259599840886
315 => 0.011902833832766
316 => 0.012471171770953
317 => 0.012751155476075
318 => 0.012699337943782
319 => 0.012712379300296
320 => 0.012488285587317
321 => 0.012261769557872
322 => 0.012010528420651
323 => 0.012477303399265
324 => 0.012425405989757
325 => 0.012544439975068
326 => 0.012847176914464
327 => 0.012891756078775
328 => 0.012951670927688
329 => 0.012930195719382
330 => 0.013441822306756
331 => 0.013379860951204
401 => 0.013529169990586
402 => 0.013222029968474
403 => 0.012874471879456
404 => 0.012940531309648
405 => 0.012934169255304
406 => 0.01285317300148
407 => 0.012780053205115
408 => 0.012658329345542
409 => 0.013043481648973
410 => 0.013027845168824
411 => 0.01328098160701
412 => 0.013236237282725
413 => 0.012937423734352
414 => 0.01294809591869
415 => 0.013019871487239
416 => 0.013268287549506
417 => 0.013342034350242
418 => 0.013307871893839
419 => 0.013388731894177
420 => 0.013452640341516
421 => 0.013396757811211
422 => 0.014187936594505
423 => 0.013859384002889
424 => 0.014019518249989
425 => 0.014057709324356
426 => 0.013959883690436
427 => 0.01398109856756
428 => 0.014013233325695
429 => 0.014208349284459
430 => 0.014720390017514
501 => 0.014947169372605
502 => 0.015629446251493
503 => 0.014928338504086
504 => 0.014886737671827
505 => 0.015009636340503
506 => 0.015410205094752
507 => 0.015734828446561
508 => 0.015842524740327
509 => 0.01585675858342
510 => 0.016058803990038
511 => 0.016174612649188
512 => 0.016034270363353
513 => 0.015915344970558
514 => 0.015489368975127
515 => 0.015538676856493
516 => 0.015878359262825
517 => 0.016358180668964
518 => 0.01676991735234
519 => 0.016625741516294
520 => 0.017725701373048
521 => 0.017834757899912
522 => 0.017819689814119
523 => 0.018068136812102
524 => 0.017575020116456
525 => 0.017364203175382
526 => 0.015941057990341
527 => 0.016340903737999
528 => 0.016922103014339
529 => 0.01684517911073
530 => 0.016423096660751
531 => 0.016769597164953
601 => 0.016655033262191
602 => 0.016564671958822
603 => 0.016978634606956
604 => 0.016523465670685
605 => 0.016917562356014
606 => 0.016412129280671
607 => 0.016626400099369
608 => 0.016504769619563
609 => 0.016583479446468
610 => 0.016123343406684
611 => 0.016371621644581
612 => 0.016113014215725
613 => 0.016112891602132
614 => 0.016107182828807
615 => 0.016411433322015
616 => 0.016421354919675
617 => 0.016196513345497
618 => 0.016164110161973
619 => 0.016283921714659
620 => 0.016143653765159
621 => 0.016209284255894
622 => 0.016145641645864
623 => 0.016131314353828
624 => 0.016017152053297
625 => 0.01596796779527
626 => 0.015987254210164
627 => 0.015921419733301
628 => 0.015881752079654
629 => 0.016099291934076
630 => 0.015983069165391
701 => 0.016081479127906
702 => 0.015969328555293
703 => 0.015580565808937
704 => 0.015356984242417
705 => 0.014622647452877
706 => 0.014830904455448
707 => 0.014968979063611
708 => 0.014923345406437
709 => 0.015021384159927
710 => 0.015027402943154
711 => 0.014995529545007
712 => 0.014958624233189
713 => 0.014940660768387
714 => 0.015074545717827
715 => 0.015152270437338
716 => 0.01498283669774
717 => 0.014943140743182
718 => 0.015114447608608
719 => 0.015218944697558
720 => 0.015990492490519
721 => 0.01593333373795
722 => 0.016076790990059
723 => 0.016060639905003
724 => 0.016211005959746
725 => 0.016456790909815
726 => 0.015957041383772
727 => 0.016043780621454
728 => 0.016022514163476
729 => 0.016254695775318
730 => 0.016255420620967
731 => 0.016116216146336
801 => 0.016191681150368
802 => 0.016149558655391
803 => 0.016225679697011
804 => 0.015932570347961
805 => 0.016289545895905
806 => 0.016491928028593
807 => 0.016494738104702
808 => 0.016590665629392
809 => 0.016688133550225
810 => 0.016875214736596
811 => 0.016682915957475
812 => 0.016336989173745
813 => 0.016361963970194
814 => 0.016159147223462
815 => 0.016162556609617
816 => 0.016144357039126
817 => 0.016198975320168
818 => 0.015944555989197
819 => 0.01600426769765
820 => 0.015920670956145
821 => 0.016043598898464
822 => 0.015911348753245
823 => 0.016022503908146
824 => 0.016070474788149
825 => 0.016247488368101
826 => 0.015885203703561
827 => 0.015146480748049
828 => 0.015301769269447
829 => 0.015072085348648
830 => 0.015093343469987
831 => 0.015136288258295
901 => 0.014997090148727
902 => 0.015023644761396
903 => 0.01502269604377
904 => 0.015014520507804
905 => 0.014978309703419
906 => 0.014925796872972
907 => 0.015134991826876
908 => 0.015170538125976
909 => 0.015249553145619
910 => 0.015484648247678
911 => 0.015461156703058
912 => 0.015499472386988
913 => 0.015415829464102
914 => 0.015097223425286
915 => 0.015114525266053
916 => 0.014898771034438
917 => 0.015244035824835
918 => 0.015162272565196
919 => 0.015109559259806
920 => 0.015095175946045
921 => 0.015330853803389
922 => 0.015401372312104
923 => 0.015357429909794
924 => 0.015267302760651
925 => 0.015440373530705
926 => 0.015486679967502
927 => 0.015497046270985
928 => 0.015803694492493
929 => 0.015514184500131
930 => 0.015583872432774
1001 => 0.01612755778996
1002 => 0.015634510194443
1003 => 0.015895688502062
1004 => 0.01588290518301
1005 => 0.016016515167396
1006 => 0.015871945264507
1007 => 0.015873737381719
1008 => 0.015992373996329
1009 => 0.015825770267335
1010 => 0.015784516841083
1011 => 0.015727525528178
1012 => 0.015851963974921
1013 => 0.015926559195876
1014 => 0.016527741892623
1015 => 0.016916133331984
1016 => 0.016899272235292
1017 => 0.017053351096408
1018 => 0.016983937158274
1019 => 0.01675978124157
1020 => 0.017142388058483
1021 => 0.017021315252662
1022 => 0.017031296347671
1023 => 0.017030924850816
1024 => 0.017111427682318
1025 => 0.017054384048223
1026 => 0.016941945190012
1027 => 0.017016587351394
1028 => 0.017238247885638
1029 => 0.017926288985309
1030 => 0.018311325900016
1031 => 0.017903109279577
1101 => 0.018184691638118
1102 => 0.018015842561046
1103 => 0.017985157660917
1104 => 0.018162012190854
1105 => 0.018339176281234
1106 => 0.018327891694578
1107 => 0.018199279662439
1108 => 0.018126629988893
1109 => 0.018676757656408
1110 => 0.019082082350652
1111 => 0.019054441923836
1112 => 0.019176437778654
1113 => 0.019534621381591
1114 => 0.019567369201341
1115 => 0.019563243728752
1116 => 0.019482074840621
1117 => 0.019834753113731
1118 => 0.020128963533943
1119 => 0.019463286588214
1120 => 0.019716767654796
1121 => 0.019830563472235
1122 => 0.019997649493933
1123 => 0.020279551619406
1124 => 0.020585772098516
1125 => 0.020629075031799
1126 => 0.020598349528398
1127 => 0.020396388890777
1128 => 0.020731458992989
1129 => 0.020927735200504
1130 => 0.021044613190378
1201 => 0.021340996326055
1202 => 0.019831266236463
1203 => 0.018762604240596
1204 => 0.018595717238275
1205 => 0.018935088520002
1206 => 0.019024578020558
1207 => 0.018988504915094
1208 => 0.017785628680247
1209 => 0.018589384343839
1210 => 0.019454157856168
1211 => 0.019487377328678
1212 => 0.019920301030511
1213 => 0.020061278733971
1214 => 0.020409839058553
1215 => 0.020388036515348
1216 => 0.020472905407578
1217 => 0.020453395518978
1218 => 0.021099030122232
1219 => 0.021811260967287
1220 => 0.021786598677878
1221 => 0.021684207067169
1222 => 0.021836276069437
1223 => 0.022571374628829
1224 => 0.022503698533195
1225 => 0.022569440095468
1226 => 0.023436162725331
1227 => 0.02456302543401
1228 => 0.024039484570663
1229 => 0.025175417599302
1230 => 0.025890427227607
1231 => 0.027126962446387
]
'min_raw' => 0.011075337858503
'max_raw' => 0.027126962446387
'avg_raw' => 0.019101150152445
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.011075'
'max' => '$0.027126'
'avg' => '$0.0191011'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0049384181932546
'max_diff' => 0.011005234924315
'year' => 2028
]
3 => [
'items' => [
101 => 0.026972142146931
102 => 0.027453516233487
103 => 0.026694981498934
104 => 0.024953232423238
105 => 0.024677593964861
106 => 0.025229429138808
107 => 0.026586062066669
108 => 0.025186703940063
109 => 0.025469792266548
110 => 0.025388262809476
111 => 0.025383918451186
112 => 0.025549724937314
113 => 0.025309213981301
114 => 0.024329329079413
115 => 0.02477840455545
116 => 0.024604994947777
117 => 0.024797405836033
118 => 0.025835768043668
119 => 0.025376683360209
120 => 0.024893074939197
121 => 0.025499627220446
122 => 0.026271976708454
123 => 0.02622364446554
124 => 0.026129859712976
125 => 0.026658519452767
126 => 0.027531710460131
127 => 0.027767730480656
128 => 0.02794195563459
129 => 0.02796597833976
130 => 0.028213427133033
131 => 0.026882832606476
201 => 0.028994520292214
202 => 0.029359150421346
203 => 0.029290615069439
204 => 0.029695886111988
205 => 0.029576645090536
206 => 0.029403883558796
207 => 0.030046324364858
208 => 0.029309817823007
209 => 0.028264439510445
210 => 0.027690924292935
211 => 0.028446175395505
212 => 0.028907380889214
213 => 0.029212208382376
214 => 0.029304448997626
215 => 0.026986122871856
216 => 0.025736673670327
217 => 0.026537556283543
218 => 0.027514688345631
219 => 0.026877404588534
220 => 0.026902384905275
221 => 0.02599378574288
222 => 0.027595079210409
223 => 0.027361784221188
224 => 0.028572119037958
225 => 0.028283262920392
226 => 0.029270243978541
227 => 0.029010338788593
228 => 0.030089190700964
301 => 0.030519573937558
302 => 0.031242254375601
303 => 0.031773861047665
304 => 0.032086030653515
305 => 0.032067289161299
306 => 0.03330426066196
307 => 0.032574861784513
308 => 0.031658564888323
309 => 0.03164199196835
310 => 0.032116555114915
311 => 0.033111109280072
312 => 0.033368982704923
313 => 0.033513098769675
314 => 0.033292379999791
315 => 0.03250066979481
316 => 0.032158813342361
317 => 0.032450084944383
318 => 0.032093884804365
319 => 0.032708786178143
320 => 0.033553177100187
321 => 0.033378813713868
322 => 0.033961684372311
323 => 0.034564894184018
324 => 0.035427511306607
325 => 0.035653031365071
326 => 0.036025807445952
327 => 0.036409516483743
328 => 0.036532753485433
329 => 0.036768051159855
330 => 0.036766811024964
331 => 0.037475896404194
401 => 0.038258039536031
402 => 0.038553280461645
403 => 0.039232170690413
404 => 0.038069594964798
405 => 0.038951422007384
406 => 0.039746852073359
407 => 0.038798507556972
408 => 0.040105579536879
409 => 0.04015633017997
410 => 0.040922604636706
411 => 0.040145838674381
412 => 0.039684597525478
413 => 0.041016183439882
414 => 0.041660495919299
415 => 0.04146642375691
416 => 0.039989525018603
417 => 0.039129906605741
418 => 0.036880119411275
419 => 0.039545089526695
420 => 0.040843118731672
421 => 0.039986163436543
422 => 0.040418361841293
423 => 0.042776296196808
424 => 0.043674044934444
425 => 0.043487319472753
426 => 0.043518873002016
427 => 0.044003281925553
428 => 0.04615141786138
429 => 0.044864205015231
430 => 0.045848231005167
501 => 0.046370154842059
502 => 0.046854946788896
503 => 0.045664450987533
504 => 0.044115633441816
505 => 0.04362505791015
506 => 0.039900956121185
507 => 0.039707100450115
508 => 0.039598283387516
509 => 0.038912207200304
510 => 0.03837313924924
511 => 0.037944452400244
512 => 0.036819450091748
513 => 0.037199105346077
514 => 0.035406086472565
515 => 0.03655319640715
516 => 0.033691494991071
517 => 0.036074804966299
518 => 0.034777677702589
519 => 0.035648663774044
520 => 0.035645624985693
521 => 0.034041863481759
522 => 0.033116847315939
523 => 0.033706303618967
524 => 0.034338247566913
525 => 0.034440778346353
526 => 0.03526011017029
527 => 0.035488768070872
528 => 0.034795923957091
529 => 0.033632192589962
530 => 0.033902500844659
531 => 0.033111369527785
601 => 0.03172494232539
602 => 0.032720698546847
603 => 0.033060693501163
604 => 0.033210854642074
605 => 0.031847462720758
606 => 0.031419055378402
607 => 0.031190974904017
608 => 0.033456195813662
609 => 0.03358028972854
610 => 0.032945407714915
611 => 0.03581513461848
612 => 0.035165627037566
613 => 0.035891286138668
614 => 0.033877973203783
615 => 0.033954884469181
616 => 0.033001749861035
617 => 0.033535441553119
618 => 0.03315824546684
619 => 0.033492324538443
620 => 0.033692570156502
621 => 0.034645548364637
622 => 0.036085686446646
623 => 0.034503205199364
624 => 0.033813695458375
625 => 0.034241463423735
626 => 0.035380665886091
627 => 0.037106615931262
628 => 0.036084818766539
629 => 0.036538274997002
630 => 0.036637335010495
701 => 0.035883899610215
702 => 0.03713439616916
703 => 0.037804547434114
704 => 0.038491983963692
705 => 0.039088865840791
706 => 0.038217406696725
707 => 0.039149992899636
708 => 0.038398493043716
709 => 0.037724319984328
710 => 0.037725342426572
711 => 0.037302423818321
712 => 0.036482965723661
713 => 0.036331845078263
714 => 0.037117993760058
715 => 0.0377484105543
716 => 0.037800334700966
717 => 0.038149365830243
718 => 0.038355918857243
719 => 0.040380419317061
720 => 0.041194690149546
721 => 0.042190365110151
722 => 0.042578236620473
723 => 0.043745590806908
724 => 0.04280285749349
725 => 0.042598891211061
726 => 0.039767271793413
727 => 0.040230949314423
728 => 0.040973341763785
729 => 0.039779513571463
730 => 0.040536722778121
731 => 0.040686211915399
801 => 0.039738947746312
802 => 0.04024492246789
803 => 0.038901203618429
804 => 0.036114975845604
805 => 0.037137498037156
806 => 0.037890418547387
807 => 0.036815908144858
808 => 0.038741926452095
809 => 0.037616786318096
810 => 0.037260170911869
811 => 0.035868887069606
812 => 0.036525519487728
813 => 0.037413624235308
814 => 0.036864878754562
815 => 0.038003608021659
816 => 0.03961635235187
817 => 0.040765690002164
818 => 0.040853921875572
819 => 0.040114974766075
820 => 0.041299142224941
821 => 0.041307767592094
822 => 0.039972021861027
823 => 0.039153885038211
824 => 0.038968002630693
825 => 0.039432373329066
826 => 0.039996205084451
827 => 0.040885210613926
828 => 0.041422418036463
829 => 0.042823170081639
830 => 0.043202173422355
831 => 0.043618583187169
901 => 0.044175035048976
902 => 0.044843198180404
903 => 0.043381295287387
904 => 0.043439379414655
905 => 0.042078075682101
906 => 0.040623327413164
907 => 0.041727300012355
908 => 0.043170597330477
909 => 0.042839503330998
910 => 0.04280224849242
911 => 0.042864900797278
912 => 0.04261526673419
913 => 0.041486181118713
914 => 0.04091916139107
915 => 0.04165076150189
916 => 0.042039574401015
917 => 0.042642589299511
918 => 0.042568254985171
919 => 0.044121556604624
920 => 0.044725122644541
921 => 0.044570704623483
922 => 0.044599121255635
923 => 0.045691848740832
924 => 0.046907186440919
925 => 0.048045510574985
926 => 0.049203462776316
927 => 0.047807506201968
928 => 0.047098725544146
929 => 0.047830006261244
930 => 0.04744197841923
1001 => 0.049671701495973
1002 => 0.049826082684045
1003 => 0.05205564452643
1004 => 0.054171764206139
1005 => 0.052842667349536
1006 => 0.054095945821476
1007 => 0.055451468670172
1008 => 0.058066492170962
1009 => 0.057185844253532
1010 => 0.056511281750293
1011 => 0.055873823444194
1012 => 0.057200272985529
1013 => 0.058906729129908
1014 => 0.059274283439174
1015 => 0.059869861836737
1016 => 0.059243683975561
1017 => 0.059997846238118
1018 => 0.062660370420636
1019 => 0.061940932883769
1020 => 0.060919215926062
1021 => 0.063021023056619
1022 => 0.063781658886599
1023 => 0.069120199489477
1024 => 0.075860327524723
1025 => 0.073069870260065
1026 => 0.071337743388398
1027 => 0.071744834289838
1028 => 0.074206100880577
1029 => 0.074996581592826
1030 => 0.072847782521892
1031 => 0.073606774680558
1101 => 0.077788896097271
1102 => 0.080032470058819
1103 => 0.076985395266854
1104 => 0.068578636764561
1105 => 0.060827221492868
1106 => 0.0628832458737
1107 => 0.062650156514778
1108 => 0.067143324246764
1109 => 0.061923774536448
1110 => 0.062011658367289
1111 => 0.066597740049625
1112 => 0.065374252082122
1113 => 0.063392358267267
1114 => 0.060841691511011
1115 => 0.056126548103954
1116 => 0.051950214096821
1117 => 0.060140966837088
1118 => 0.059787766685011
1119 => 0.059276280523472
1120 => 0.060414537627393
1121 => 0.065941591024115
1122 => 0.065814174553994
1123 => 0.065003615979542
1124 => 0.065618417514329
1125 => 0.063284580585697
1126 => 0.063886063502684
1127 => 0.060825993629085
1128 => 0.062209273011759
1129 => 0.063388106013254
1130 => 0.063624774191225
1201 => 0.06415799968077
1202 => 0.059601646254405
1203 => 0.061647315175335
1204 => 0.062848954013124
1205 => 0.057419906027996
1206 => 0.062741639190178
1207 => 0.059522330278223
1208 => 0.058429648481108
1209 => 0.059900800571043
1210 => 0.059327491170853
1211 => 0.058834593414428
1212 => 0.058559547997284
1213 => 0.059639799727001
1214 => 0.059589404692629
1215 => 0.057821903194987
1216 => 0.05551626954389
1217 => 0.056290115877042
1218 => 0.05600897024936
1219 => 0.054990062226131
1220 => 0.055676683210363
1221 => 0.052653151886731
1222 => 0.047451323393905
1223 => 0.050887810632582
1224 => 0.050755509612072
1225 => 0.050688797438157
1226 => 0.053271222620491
1227 => 0.053022982025896
1228 => 0.052572422915926
1229 => 0.054981787354744
1230 => 0.05410233692405
1231 => 0.056812595926866
]
'min_raw' => 0.024329329079413
'max_raw' => 0.080032470058819
'avg_raw' => 0.052180899569116
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.024329'
'max' => '$0.080032'
'avg' => '$0.05218'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.01325399122091
'max_diff' => 0.052905507612432
'year' => 2029
]
4 => [
'items' => [
101 => 0.058597747794682
102 => 0.05814497553739
103 => 0.059823919497459
104 => 0.056307943733608
105 => 0.057475809845896
106 => 0.057716505433046
107 => 0.054952056171564
108 => 0.053063597257215
109 => 0.052937658577636
110 => 0.049663331065822
111 => 0.051412450393185
112 => 0.052951603017788
113 => 0.052214468353671
114 => 0.051981113540284
115 => 0.053173272673397
116 => 0.053265913648192
117 => 0.051153689605208
118 => 0.05159288786918
119 => 0.053424417640583
120 => 0.051546738018162
121 => 0.047898713229024
122 => 0.046993952643429
123 => 0.046873240903265
124 => 0.044419458437665
125 => 0.04705441307204
126 => 0.045904184761741
127 => 0.049537742212124
128 => 0.047462273683625
129 => 0.047372804383548
130 => 0.047237558414188
131 => 0.045125486481569
201 => 0.045587896005639
202 => 0.047125015690606
203 => 0.047673477311096
204 => 0.047616268270665
205 => 0.047117482965577
206 => 0.047345824324052
207 => 0.046610257249001
208 => 0.046350513205296
209 => 0.045530689555134
210 => 0.044325775271459
211 => 0.044493325992773
212 => 0.042106075513842
213 => 0.040805374751948
214 => 0.040445357924016
215 => 0.039963928375566
216 => 0.040499736672548
217 => 0.042099312733177
218 => 0.040169884635067
219 => 0.036862015494501
220 => 0.037060824066184
221 => 0.03750748789996
222 => 0.036675132800694
223 => 0.035887378553508
224 => 0.036572266958914
225 => 0.035170679197188
226 => 0.0376768630848
227 => 0.037609077834139
228 => 0.038543228206069
301 => 0.039127371604332
302 => 0.037781110190007
303 => 0.037442529084982
304 => 0.037635400270057
305 => 0.034447669206635
306 => 0.038282722569991
307 => 0.038315888270732
308 => 0.038031903405512
309 => 0.040073950927511
310 => 0.044383308129523
311 => 0.042761954606634
312 => 0.042134117516902
313 => 0.040940598750375
314 => 0.04253089164264
315 => 0.042408781960948
316 => 0.041856555671614
317 => 0.041522567488774
318 => 0.042137950956293
319 => 0.041446314667001
320 => 0.04132207778455
321 => 0.040569337447957
322 => 0.040300643395297
323 => 0.040101713015725
324 => 0.039882710214312
325 => 0.040365775822131
326 => 0.039271085602241
327 => 0.037950996510859
328 => 0.037841245386473
329 => 0.038144277890322
330 => 0.038010208565485
331 => 0.037840603514126
401 => 0.037516781281893
402 => 0.037420710142957
403 => 0.037732894737409
404 => 0.037380456531766
405 => 0.037900498302495
406 => 0.03775907571608
407 => 0.036969100644555
408 => 0.035984499219204
409 => 0.035975734201247
410 => 0.035763603439225
411 => 0.035493423019716
412 => 0.035418265007899
413 => 0.03651458756772
414 => 0.038783942456376
415 => 0.038338413790673
416 => 0.038660353911257
417 => 0.040243980668686
418 => 0.040747367993554
419 => 0.040390075593745
420 => 0.03990099172005
421 => 0.03992250892835
422 => 0.041593856580521
423 => 0.04169809648347
424 => 0.041961477089156
425 => 0.042299995598812
426 => 0.040447726759735
427 => 0.039835267232601
428 => 0.039545049930685
429 => 0.038651292969012
430 => 0.039615133227245
501 => 0.039053544784528
502 => 0.039129322252043
503 => 0.039079972076914
504 => 0.039106920609579
505 => 0.037676162555327
506 => 0.038197455591867
507 => 0.037330704812172
508 => 0.036170222815502
509 => 0.036166332472932
510 => 0.036450358797563
511 => 0.036281408825721
512 => 0.035826768795595
513 => 0.035891348266034
514 => 0.035325564151277
515 => 0.035960044701418
516 => 0.035978239333315
517 => 0.035733929761122
518 => 0.036711434590057
519 => 0.03711191911604
520 => 0.036951109322004
521 => 0.037100636272205
522 => 0.038356927518174
523 => 0.038561757807097
524 => 0.038652729891107
525 => 0.038530839350025
526 => 0.037123598969975
527 => 0.037186016064878
528 => 0.03672804083687
529 => 0.036341100029444
530 => 0.036356575632504
531 => 0.036555513506305
601 => 0.037424286868746
602 => 0.039252569193016
603 => 0.039321951170765
604 => 0.039406044151812
605 => 0.039063995736148
606 => 0.038960830661021
607 => 0.039096932024279
608 => 0.039783538738757
609 => 0.041549677620299
610 => 0.040925406183112
611 => 0.040417863787315
612 => 0.040863115300876
613 => 0.04079457232036
614 => 0.040216000585588
615 => 0.040199762003986
616 => 0.039089297864384
617 => 0.038678784556019
618 => 0.03833572890916
619 => 0.037961121098484
620 => 0.037739041031348
621 => 0.038080256948055
622 => 0.038158297065353
623 => 0.037412222500042
624 => 0.03731053529363
625 => 0.037919795888801
626 => 0.037651683016391
627 => 0.037927443754544
628 => 0.037991422611228
629 => 0.037981120541744
630 => 0.03770117991038
701 => 0.037879605720861
702 => 0.037457575487778
703 => 0.036998680996192
704 => 0.036705934900697
705 => 0.036450475105243
706 => 0.036592219047171
707 => 0.036086927775617
708 => 0.035925274928343
709 => 0.037819159070978
710 => 0.039218191649828
711 => 0.039197849162054
712 => 0.039074019499392
713 => 0.038890033738605
714 => 0.039770079034379
715 => 0.039463488850392
716 => 0.039686558825709
717 => 0.039743339496645
718 => 0.039915197486323
719 => 0.03997662194594
720 => 0.039790954566948
721 => 0.039167832165692
722 => 0.037615070386463
723 => 0.036892255586632
724 => 0.036653714663255
725 => 0.036662385172766
726 => 0.036423213813592
727 => 0.036493660497777
728 => 0.036398715331742
729 => 0.036218912156975
730 => 0.036581116707801
731 => 0.036622857408115
801 => 0.03653831453793
802 => 0.036558227444355
803 => 0.035858248587956
804 => 0.035911466460134
805 => 0.035615142585248
806 => 0.035559585430944
807 => 0.034810504479102
808 => 0.033483398991895
809 => 0.034218744257054
810 => 0.033330550581933
811 => 0.032994178178834
812 => 0.034586512818463
813 => 0.034426686585132
814 => 0.034153133548463
815 => 0.033748491593782
816 => 0.033598405956687
817 => 0.032686533137036
818 => 0.032632654826198
819 => 0.033084603618255
820 => 0.032876044801329
821 => 0.032583149234965
822 => 0.031522311183941
823 => 0.030329577983183
824 => 0.03036557910126
825 => 0.030744965340831
826 => 0.03184808199959
827 => 0.031417075236901
828 => 0.031104374885337
829 => 0.031045815509227
830 => 0.031778808703599
831 => 0.032816147640458
901 => 0.033302843860481
902 => 0.032820542687622
903 => 0.03226650106918
904 => 0.032300223015313
905 => 0.032524560015237
906 => 0.032548134661975
907 => 0.032187510524768
908 => 0.032289024107024
909 => 0.032134815692981
910 => 0.031188438940646
911 => 0.031171321986189
912 => 0.03093906586878
913 => 0.030932033245849
914 => 0.030536907651132
915 => 0.030481626849056
916 => 0.029697080998336
917 => 0.030213471453104
918 => 0.029867103847761
919 => 0.029345046166651
920 => 0.029255043225652
921 => 0.029252337628564
922 => 0.029788374137102
923 => 0.030207207554406
924 => 0.029873129060549
925 => 0.029797065863337
926 => 0.030609221812007
927 => 0.030505867564573
928 => 0.030416363452858
929 => 0.032723265316295
930 => 0.030897172481588
1001 => 0.03010089177592
1002 => 0.029115343193052
1003 => 0.029436242781201
1004 => 0.02950386103942
1005 => 0.027133794356106
1006 => 0.026172258597859
1007 => 0.025842295760339
1008 => 0.025652397482357
1009 => 0.025738936512226
1010 => 0.024873441552908
1011 => 0.025455068479535
1012 => 0.024705623003233
1013 => 0.024579976030224
1014 => 0.025920077380331
1015 => 0.02610654465444
1016 => 0.025311017332251
1017 => 0.025821874657271
1018 => 0.025636630689771
1019 => 0.024718470094885
1020 => 0.024683403113693
1021 => 0.024222702402085
1022 => 0.023501794997655
1023 => 0.023172320969302
1024 => 0.023000728034711
1025 => 0.023071530623803
1026 => 0.023035730668163
1027 => 0.022802111741591
1028 => 0.02304912143157
1029 => 0.022418113745124
1030 => 0.022166841400006
1031 => 0.022053347511191
1101 => 0.021493291870022
1102 => 0.022384589452995
1103 => 0.022560186305112
1104 => 0.022736129137272
1105 => 0.024267591369952
1106 => 0.024191083844675
1107 => 0.024882674612506
1108 => 0.024855800667022
1109 => 0.024658547777009
1110 => 0.023826370280569
1111 => 0.024158061398512
1112 => 0.023137167693727
1113 => 0.023902090671376
1114 => 0.023553011768325
1115 => 0.023784066743113
1116 => 0.023368609065056
1117 => 0.02359854049792
1118 => 0.022601826832963
1119 => 0.021671109636766
1120 => 0.022045657405844
1121 => 0.022452833665565
1122 => 0.023335695543222
1123 => 0.022809870292342
1124 => 0.022998976936213
1125 => 0.022365501335316
1126 => 0.021058460227307
1127 => 0.021065857938034
1128 => 0.020864798139005
1129 => 0.020691053117432
1130 => 0.022870267647771
1201 => 0.022599247872639
1202 => 0.022167413331159
1203 => 0.022745441025353
1204 => 0.022898280722231
1205 => 0.022902631853534
1206 => 0.023324345938164
1207 => 0.023549414820727
1208 => 0.023589084186783
1209 => 0.024252660410684
1210 => 0.024475082408153
1211 => 0.025391207137391
1212 => 0.02353031929851
1213 => 0.02349199553806
1214 => 0.022753575060397
1215 => 0.022285257119498
1216 => 0.022785641190474
1217 => 0.023228913168122
1218 => 0.022767348756359
1219 => 0.022827619324378
1220 => 0.022208006812784
1221 => 0.022429489130201
1222 => 0.02262025953885
1223 => 0.02251492733216
1224 => 0.022357239920609
1225 => 0.023192569920962
1226 => 0.023145437328657
1227 => 0.023923315829139
1228 => 0.02452972774689
1229 => 0.025616526312596
1230 => 0.024482395353191
1231 => 0.024441063113268
]
'min_raw' => 0.020691053117432
'max_raw' => 0.059823919497459
'avg_raw' => 0.040257486307446
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.020691'
'max' => '$0.059823'
'avg' => '$0.040257'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0036382759619802
'max_diff' => -0.02020855056136
'year' => 2030
]
5 => [
'items' => [
101 => 0.024845092388415
102 => 0.024475020553376
103 => 0.024708893178676
104 => 0.025578845817004
105 => 0.025597226545399
106 => 0.02528932566256
107 => 0.025270589865857
108 => 0.025329725598473
109 => 0.025676085431474
110 => 0.025555056663261
111 => 0.025695114217911
112 => 0.025870258334638
113 => 0.026594728660987
114 => 0.026769396003987
115 => 0.026345044915131
116 => 0.026383359067197
117 => 0.026224640111267
118 => 0.026071319588581
119 => 0.026415961732915
120 => 0.027045802025642
121 => 0.02704188382187
122 => 0.027187994527437
123 => 0.027279020286558
124 => 0.02688827109348
125 => 0.026633907737031
126 => 0.026731446833455
127 => 0.02688741397276
128 => 0.02668086879225
129 => 0.025405976257107
130 => 0.025792697211819
131 => 0.025728327935266
201 => 0.025636658257884
202 => 0.026025509168272
203 => 0.025988003549357
204 => 0.024864564651134
205 => 0.024936483564409
206 => 0.024868938278453
207 => 0.025087190915844
208 => 0.024463234194713
209 => 0.02465515907972
210 => 0.024775532568413
211 => 0.024846433478005
212 => 0.025102576180662
213 => 0.025072520790893
214 => 0.025100707895435
215 => 0.025480499904309
216 => 0.027401357556314
217 => 0.027505905600179
218 => 0.026991072795537
219 => 0.027196738346364
220 => 0.026801905462888
221 => 0.027066959422716
222 => 0.027248302610389
223 => 0.026428847615583
224 => 0.026380324809009
225 => 0.025983862309774
226 => 0.026196898800079
227 => 0.025857942426137
228 => 0.025941110464112
301 => 0.025708565379476
302 => 0.026127100232557
303 => 0.026595087232042
304 => 0.026713319229479
305 => 0.026402301746298
306 => 0.026177104591424
307 => 0.025781732572021
308 => 0.026439245051729
309 => 0.026631521738126
310 => 0.02643823510415
311 => 0.026393446367662
312 => 0.026308571792948
313 => 0.026411452909915
314 => 0.026630474557998
315 => 0.026527187993457
316 => 0.026595410589011
317 => 0.026335416405593
318 => 0.026888400447722
319 => 0.027766672189479
320 => 0.02776949597674
321 => 0.027666208855446
322 => 0.027623945990765
323 => 0.027729924845199
324 => 0.027787414026249
325 => 0.028130130208292
326 => 0.028497878326038
327 => 0.030213998330487
328 => 0.029732118700403
329 => 0.031254762460786
330 => 0.032458975984702
331 => 0.032820066966649
401 => 0.032487880253901
402 => 0.031351487453965
403 => 0.031295730601752
404 => 0.032993981217522
405 => 0.032514147633761
406 => 0.03245707295579
407 => 0.031849894811374
408 => 0.0322088122952
409 => 0.032130311776486
410 => 0.032006394867318
411 => 0.03269118442405
412 => 0.033973049342665
413 => 0.033773258673846
414 => 0.033624124207595
415 => 0.032970660388872
416 => 0.033364191564171
417 => 0.03322406265024
418 => 0.033826145392493
419 => 0.033469484913748
420 => 0.032510512422435
421 => 0.032663231952491
422 => 0.032640148702752
423 => 0.033115200346683
424 => 0.032972601634682
425 => 0.032612304015606
426 => 0.03396866806773
427 => 0.033880593330678
428 => 0.03400546317113
429 => 0.034060434736624
430 => 0.034886029633337
501 => 0.03522424944643
502 => 0.035301031265373
503 => 0.035622313928952
504 => 0.035293037460021
505 => 0.036610378105888
506 => 0.037486332766432
507 => 0.038503799180869
508 => 0.03999059108155
509 => 0.040549638589801
510 => 0.040448651661275
511 => 0.041575920311851
512 => 0.043601597019161
513 => 0.040858098840136
514 => 0.043747009084383
515 => 0.042832413455127
516 => 0.040663923671034
517 => 0.040524298493754
518 => 0.041992824952226
519 => 0.045249875296682
520 => 0.044434021126555
521 => 0.045251209741833
522 => 0.044297915814582
523 => 0.044250576736102
524 => 0.045204910383578
525 => 0.047434762968925
526 => 0.046375443590401
527 => 0.044856649505519
528 => 0.045978103422742
529 => 0.045006596253983
530 => 0.042817518695033
531 => 0.044433397258247
601 => 0.043352905280598
602 => 0.043668250281789
603 => 0.045939283707756
604 => 0.045666026957534
605 => 0.046019646495215
606 => 0.045395517267043
607 => 0.044812482151786
608 => 0.043724203812401
609 => 0.043402018247583
610 => 0.043491058746677
611 => 0.043401974123534
612 => 0.042793092394442
613 => 0.042661604443017
614 => 0.042442452096689
615 => 0.0425103765726
616 => 0.042098306046224
617 => 0.042875968267612
618 => 0.043020309228637
619 => 0.043586226941716
620 => 0.043644982396048
621 => 0.045221055171638
622 => 0.04435298077167
623 => 0.044935360025106
624 => 0.044883266543113
625 => 0.040710921420092
626 => 0.041285833765131
627 => 0.042180216956581
628 => 0.041777298541141
629 => 0.041207666170097
630 => 0.040747657488725
701 => 0.040050697298142
702 => 0.041031655382452
703 => 0.042321510950057
704 => 0.043677695261828
705 => 0.045307061851705
706 => 0.044943406196762
707 => 0.043647235386794
708 => 0.043705380662476
709 => 0.044064811877418
710 => 0.043599315796299
711 => 0.043462031914413
712 => 0.044045951180185
713 => 0.044049972311252
714 => 0.043514362812843
715 => 0.042919130870865
716 => 0.042916636827294
717 => 0.042810721052478
718 => 0.044316757995629
719 => 0.045144926036853
720 => 0.04523987416812
721 => 0.045138535271112
722 => 0.045177536590573
723 => 0.044695643854822
724 => 0.045797107747897
725 => 0.04680791993967
726 => 0.046537000679422
727 => 0.046130854194868
728 => 0.045807338957256
729 => 0.046460790770903
730 => 0.04643169359027
731 => 0.046799091376989
801 => 0.046782424091191
802 => 0.046658882034047
803 => 0.046537005091498
804 => 0.047020233392358
805 => 0.04688107140212
806 => 0.046741693254873
807 => 0.046462149042842
808 => 0.046500143743995
809 => 0.046094067386357
810 => 0.045906197882524
811 => 0.043081091306847
812 => 0.042326130516806
813 => 0.042563656549997
814 => 0.042641856287484
815 => 0.042313296384149
816 => 0.042784366885417
817 => 0.042710951046782
818 => 0.042996569128083
819 => 0.042818127350981
820 => 0.042825450663757
821 => 0.043350209882414
822 => 0.043502549716076
823 => 0.043425068447142
824 => 0.043479333672001
825 => 0.044729852874947
826 => 0.044552069033641
827 => 0.04445762491131
828 => 0.044483786578639
829 => 0.044803321046425
830 => 0.044892773251471
831 => 0.044513757972999
901 => 0.044692503769388
902 => 0.04545358068419
903 => 0.045719914531148
904 => 0.046569924323139
905 => 0.046208825055782
906 => 0.046871638389026
907 => 0.048908900605701
908 => 0.050536406632204
909 => 0.049039684830701
910 => 0.052028392386731
911 => 0.054355529923736
912 => 0.054266210509015
913 => 0.053860420251778
914 => 0.05121103603605
915 => 0.048773033180643
916 => 0.05081252609226
917 => 0.050817725179117
918 => 0.050642530929273
919 => 0.049554414489911
920 => 0.050604666835812
921 => 0.050688032053073
922 => 0.050641369700007
923 => 0.049807113377173
924 => 0.048533358168546
925 => 0.048782246887373
926 => 0.049189931686003
927 => 0.048418099310237
928 => 0.048171452099208
929 => 0.048630016191064
930 => 0.050107605240648
1001 => 0.049828275589915
1002 => 0.049820981163875
1003 => 0.051016071863918
1004 => 0.050160644839402
1005 => 0.048785386171169
1006 => 0.048438115220007
1007 => 0.047205537293125
1008 => 0.048056883257515
1009 => 0.048087521683151
1010 => 0.047621248199
1011 => 0.048823221694628
1012 => 0.048812145297263
1013 => 0.049953240241217
1014 => 0.052134585198368
1015 => 0.051489454157072
1016 => 0.050739236946103
1017 => 0.050820806358202
1018 => 0.051715421478467
1019 => 0.051174516754678
1020 => 0.051369029864674
1021 => 0.051715127059578
1022 => 0.051923936090374
1023 => 0.050790761952059
1024 => 0.050526564854433
1025 => 0.049986110313271
1026 => 0.049845115811544
1027 => 0.050285304758366
1028 => 0.050169330522984
1029 => 0.048084946642114
1030 => 0.047867116929161
1031 => 0.047873797455468
1101 => 0.047326054285008
1102 => 0.046490614476634
1103 => 0.048686100411523
1104 => 0.048509772165145
1105 => 0.048315119427867
1106 => 0.04833896327751
1107 => 0.049291949309923
1108 => 0.048739169284175
1109 => 0.05020882558149
1110 => 0.049906708428674
1111 => 0.049596843110881
1112 => 0.049554010285234
1113 => 0.04943473857435
1114 => 0.049025711498681
1115 => 0.048531786726093
1116 => 0.0482056548082
1117 => 0.044467168419293
1118 => 0.045161009747299
1119 => 0.045959210949543
1120 => 0.046234746805968
1121 => 0.045763423657053
1122 => 0.049044322209348
1123 => 0.049643773990378
1124 => 0.047827995444367
1125 => 0.047488337416158
1126 => 0.049066590133131
1127 => 0.048114710811248
1128 => 0.048543342011608
1129 => 0.047616875805163
1130 => 0.049499383610325
1201 => 0.049485042054913
1202 => 0.048752704000337
1203 => 0.04937167110923
1204 => 0.049264110342027
1205 => 0.048437302482081
1206 => 0.049525594894236
1207 => 0.049526134673694
1208 => 0.048821275218568
1209 => 0.047998153688556
1210 => 0.047850999000253
1211 => 0.047740137710067
1212 => 0.048516076930143
1213 => 0.049211781608564
1214 => 0.050506315535289
1215 => 0.050831792121835
1216 => 0.052102148907328
1217 => 0.051345713294117
1218 => 0.051681031403972
1219 => 0.052045066645863
1220 => 0.052219598527778
1221 => 0.051935208192095
1222 => 0.053908595179679
1223 => 0.054075209504446
1224 => 0.054131073846333
1225 => 0.053465658857256
1226 => 0.054056703109873
1227 => 0.053780173077402
1228 => 0.054499627399637
1229 => 0.054612447023817
1230 => 0.054516892815811
1231 => 0.054552703545263
]
'min_raw' => 0.024463234194713
'max_raw' => 0.054612447023817
'avg_raw' => 0.039537840609265
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.024463'
'max' => '$0.054612'
'avg' => '$0.039537'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0037721810772808
'max_diff' => -0.0052114724736418
'year' => 2031
]
6 => [
'items' => [
101 => 0.052868765880679
102 => 0.052781444829291
103 => 0.051590816097604
104 => 0.05207600610645
105 => 0.051168966640674
106 => 0.051456598198814
107 => 0.051583383448987
108 => 0.051517158029296
109 => 0.052103438021577
110 => 0.051604980259049
111 => 0.050289468269694
112 => 0.048973597869978
113 => 0.048957078188994
114 => 0.048610632739791
115 => 0.048360216134666
116 => 0.048408455256819
117 => 0.048578456215215
118 => 0.048350335369919
119 => 0.048399016518283
120 => 0.049207447941928
121 => 0.049369573098471
122 => 0.04881860847015
123 => 0.046606405983628
124 => 0.046063525944546
125 => 0.046453737350859
126 => 0.046267241431474
127 => 0.037341274845338
128 => 0.039438298294017
129 => 0.038192318169
130 => 0.038766523135397
131 => 0.037494700072743
201 => 0.0381016807002
202 => 0.037989593541692
203 => 0.041361545191732
204 => 0.041308896804685
205 => 0.041334096801474
206 => 0.040131235296492
207 => 0.042047426335177
208 => 0.042991410944834
209 => 0.042816704516924
210 => 0.042860674360927
211 => 0.042105126761894
212 => 0.041341412153778
213 => 0.040494335118541
214 => 0.042068099548125
215 => 0.04189312380861
216 => 0.042294455200773
217 => 0.043315153928363
218 => 0.043465455693258
219 => 0.043667462789487
220 => 0.043595057625333
221 => 0.045320042385293
222 => 0.045111135349046
223 => 0.045614541199745
224 => 0.044578997171363
225 => 0.043407180808507
226 => 0.043629904789523
227 => 0.043608454679118
228 => 0.043335370154373
229 => 0.043088841655866
301 => 0.042678441164827
302 => 0.04397700904632
303 => 0.043924289561794
304 => 0.04477775673656
305 => 0.044626898123283
306 => 0.043619427382449
307 => 0.043655409397053
308 => 0.043897405737626
309 => 0.044734957835414
310 => 0.044983600322933
311 => 0.044868419216025
312 => 0.045141044352628
313 => 0.045356516144778
314 => 0.04516810429226
315 => 0.047835618798475
316 => 0.046727880797032
317 => 0.047267784591344
318 => 0.047396548464989
319 => 0.047066722510259
320 => 0.047138249949658
321 => 0.047246594530287
322 => 0.047904441607822
323 => 0.04963082268886
324 => 0.050395425117779
325 => 0.052695769249999
326 => 0.050331935529837
327 => 0.050191675419398
328 => 0.050606036861349
329 => 0.051956582383118
330 => 0.053051072678221
331 => 0.053414178251767
401 => 0.053462168647531
402 => 0.054143378842305
403 => 0.054533835822131
404 => 0.054060662007052
405 => 0.053659696742137
406 => 0.052223488932849
407 => 0.052389733897438
408 => 0.053534996846258
409 => 0.055152748217116
410 => 0.056540947191655
411 => 0.05605484829439
412 => 0.05976343974818
413 => 0.060131131442585
414 => 0.060080328339314
415 => 0.060917984739031
416 => 0.059255407371353
417 => 0.058544623335751
418 => 0.05374638998356
419 => 0.055094497838131
420 => 0.057054051776347
421 => 0.056794697464674
422 => 0.055371617015715
423 => 0.056539867657524
424 => 0.056153607460767
425 => 0.055848948017634
426 => 0.057244651987764
427 => 0.055710018140247
428 => 0.057038742629785
429 => 0.055334639728057
430 => 0.056057068753207
501 => 0.055646983098572
502 => 0.055912358775328
503 => 0.054360977991525
504 => 0.055198065404826
505 => 0.054326152403044
506 => 0.054325739002755
507 => 0.054306491474915
508 => 0.055332293254857
509 => 0.055365744614073
510 => 0.054607675548795
511 => 0.054498425953224
512 => 0.054902378968081
513 => 0.054429455783146
514 => 0.054650733564834
515 => 0.054436158061734
516 => 0.054387852596335
517 => 0.054002946429535
518 => 0.053837118269662
519 => 0.053902143764014
520 => 0.053680178228853
521 => 0.053546435965074
522 => 0.054279886772405
523 => 0.053888033593369
524 => 0.054219829652752
525 => 0.053841706167084
526 => 0.052530965425198
527 => 0.051777144563708
528 => 0.049301276808017
529 => 0.050003429832227
530 => 0.050468958013707
531 => 0.050315100952505
601 => 0.050645645454746
602 => 0.050665938202613
603 => 0.050558474815432
604 => 0.050434045979989
605 => 0.050373480904241
606 => 0.050824883358827
607 => 0.051086937677223
608 => 0.050515679994683
609 => 0.050381842312408
610 => 0.050959415369457
611 => 0.051311734600604
612 => 0.053913061852318
613 => 0.053720347127334
614 => 0.054204023268688
615 => 0.054149568757787
616 => 0.054656538409577
617 => 0.055485219528893
618 => 0.053800279110438
619 => 0.054092726506226
620 => 0.054021025158375
621 => 0.054803841673104
622 => 0.054806285540816
623 => 0.054336947935651
624 => 0.054591383465544
625 => 0.054449364532831
626 => 0.054706011939253
627 => 0.05371777330469
628 => 0.054921341287819
629 => 0.055603686778046
630 => 0.05561316114584
701 => 0.055936587492779
702 => 0.05626520739286
703 => 0.056895964674303
704 => 0.056247615914624
705 => 0.055081299611442
706 => 0.055165503881353
707 => 0.054481693059535
708 => 0.05449318804299
709 => 0.054431826920428
710 => 0.054615976268287
711 => 0.053758183730928
712 => 0.053959505924915
713 => 0.053677653674393
714 => 0.054092113814478
715 => 0.053646223216462
716 => 0.054020990581814
717 => 0.054182727752966
718 => 0.054779541396466
719 => 0.053558073356062
720 => 0.051067417335562
721 => 0.051590983427356
722 => 0.050816588052363
723 => 0.05088826129265
724 => 0.051033052644741
725 => 0.050563736499832
726 => 0.050653267230429
727 => 0.050650068562714
728 => 0.050622504172406
729 => 0.050500416917266
730 => 0.050323366243086
731 => 0.051028681635698
801 => 0.051148528464875
802 => 0.051414933120255
803 => 0.052207572670662
804 => 0.052128369287848
805 => 0.052257553291334
806 => 0.051975545337062
807 => 0.05090134283283
808 => 0.050959677196954
809 => 0.050232246741584
810 => 0.051396331088024
811 => 0.051120660549625
812 => 0.050942933960175
813 => 0.050894439613619
814 => 0.051689043964157
815 => 0.051926802039736
816 => 0.051778647162386
817 => 0.051474777186574
818 => 0.052058297371227
819 => 0.0522144227559
820 => 0.052249373471846
821 => 0.053283259360153
822 => 0.052307156207962
823 => 0.052542113938326
824 => 0.054375187078977
825 => 0.052712842687208
826 => 0.053593423586232
827 => 0.053550323733546
828 => 0.054000799124254
829 => 0.053513371603117
830 => 0.053519413851418
831 => 0.05391940548052
901 => 0.053357689376317
902 => 0.053218600569485
903 => 0.053026450379019
904 => 0.053446003290227
905 => 0.05369750628575
906 => 0.055724435721069
907 => 0.057033924575498
908 => 0.056977076210796
909 => 0.057496563848491
910 => 0.057262529909748
911 => 0.056506772586512
912 => 0.057796758182489
913 => 0.057388552764632
914 => 0.057422204723311
915 => 0.057420952195728
916 => 0.057692373112666
917 => 0.057500046517653
918 => 0.057120951056964
919 => 0.057372612315414
920 => 0.058119956282464
921 => 0.060439734887498
922 => 0.061737913727854
923 => 0.060361582891267
924 => 0.06131095747254
925 => 0.060741671020528
926 => 0.060638214737392
927 => 0.061234492132662
928 => 0.061831813232579
929 => 0.061793766460804
930 => 0.061360142015043
1001 => 0.061115198568445
1002 => 0.062969992408157
1003 => 0.064336572913668
1004 => 0.064243381284864
1005 => 0.064654698826863
1006 => 0.065862339851746
1007 => 0.065972751412411
1008 => 0.065958842093548
1009 => 0.065685175520184
1010 => 0.066874254941184
1011 => 0.067866205914045
1012 => 0.065621829615438
1013 => 0.066476458728904
1014 => 0.06686012927237
1015 => 0.067423471460098
1016 => 0.068373924157908
1017 => 0.069406367882857
1018 => 0.069552366745734
1019 => 0.069448773565834
1020 => 0.068767849175653
1021 => 0.069897561419108
1022 => 0.070559320356311
1023 => 0.070953382659332
1024 => 0.071952659094078
1025 => 0.066862498691029
1026 => 0.063259430160364
1027 => 0.06269675898036
1028 => 0.063840972950849
1029 => 0.064142693049932
1030 => 0.064021070056316
1031 => 0.059965488848394
1101 => 0.062675407184622
1102 => 0.065591051457999
1103 => 0.065703053228875
1104 => 0.067162685715374
1105 => 0.067638001885335
1106 => 0.068813197355371
1107 => 0.068739688558749
1108 => 0.069025829954258
1109 => 0.068960051002709
1110 => 0.071136853144347
1111 => 0.07353818916482
1112 => 0.073455038534212
1113 => 0.073109818069951
1114 => 0.073622529328215
1115 => 0.076100965444151
1116 => 0.075872790762725
1117 => 0.076094443029857
1118 => 0.079016658889083
1119 => 0.082815955186436
1120 => 0.081050800613204
1121 => 0.084880678127572
1122 => 0.087291383009783
1123 => 0.09146044783203
1124 => 0.090938460383207
1125 => 0.092561446724497
1126 => 0.090003993907747
1127 => 0.084131565293999
1128 => 0.083202230987119
1129 => 0.085062781803985
1130 => 0.089636764437355
1201 => 0.084918730813438
1202 => 0.085873182870776
1203 => 0.085598300614053
1204 => 0.085583653306767
1205 => 0.086142681450984
1206 => 0.08533178197085
1207 => 0.082028031610753
1208 => 0.083542120931662
1209 => 0.082957458332318
1210 => 0.083606185075774
1211 => 0.087107095754949
1212 => 0.085559259692399
1213 => 0.083928740136494
1214 => 0.085973773500854
1215 => 0.088577803723391
1216 => 0.088414848191957
1217 => 0.088098646350846
1218 => 0.089881059573395
1219 => 0.092825084018972
1220 => 0.093620841996563
1221 => 0.094208254267065
1222 => 0.094289248494756
1223 => 0.095123539377601
1224 => 0.090637347032169
1225 => 0.097757049497961
1226 => 0.098986425435992
1227 => 0.098755353712054
1228 => 0.10012175332713
1229 => 0.09971972389816
1230 => 0.099137246332072
1231 => 0.1013032803635
]
'min_raw' => 0.037341274845338
'max_raw' => 0.1013032803635
'avg_raw' => 0.069322277604417
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.037341'
'max' => '$0.1013032'
'avg' => '$0.069322'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.012878040650625
'max_diff' => 0.046690833339679
'year' => 2032
]
7 => [
'items' => [
101 => 0.098820097136401
102 => 0.095295531169615
103 => 0.093361884572225
104 => 0.095908266394489
105 => 0.097463252916867
106 => 0.098491000092441
107 => 0.098801995766788
108 => 0.090985597373393
109 => 0.086772992156682
110 => 0.089473223802976
111 => 0.092767692771489
112 => 0.090619046090707
113 => 0.090703268972667
114 => 0.087639863460285
115 => 0.093038736184798
116 => 0.092252165840504
117 => 0.096332894178123
118 => 0.095358995610459
119 => 0.098686671156827
120 => 0.097810382662916
121 => 0.10144780720851
122 => 0.10289887433908
123 => 0.10533544189188
124 => 0.10712779090234
125 => 0.10818029252345
126 => 0.10811710427395
127 => 0.11228764005102
128 => 0.10982842081071
129 => 0.1067390618514
130 => 0.10668318509462
131 => 0.10828320787621
201 => 0.11163641668159
202 => 0.11250585493762
203 => 0.11299175231179
204 => 0.11224758356904
205 => 0.10957827733751
206 => 0.10842568444042
207 => 0.10940772698257
208 => 0.1082067733414
209 => 0.11027995625413
210 => 0.1131268792013
211 => 0.11253900087066
212 => 0.11450418999033
213 => 0.11653795398526
214 => 0.11944632784008
215 => 0.1202066844625
216 => 0.12146352504558
217 => 0.1227572268562
218 => 0.12317272901153
219 => 0.12396605154881
220 => 0.12396187034744
221 => 0.12635260121027
222 => 0.12898965138675
223 => 0.12998507678052
224 => 0.13227400258541
225 => 0.12835429735806
226 => 0.13132743879934
227 => 0.13400928680193
228 => 0.13081187705362
301 => 0.13521876149073
302 => 0.13538987082721
303 => 0.13797341865767
304 => 0.13535449798363
305 => 0.13379939124727
306 => 0.13828892612604
307 => 0.14046127063486
308 => 0.13980694278968
309 => 0.1348274755797
310 => 0.13192921208409
311 => 0.12434389748282
312 => 0.13332903028923
313 => 0.13770542637932
314 => 0.13481614177108
315 => 0.13627332886783
316 => 0.14422326917317
317 => 0.14725009172092
318 => 0.14662053379008
319 => 0.14672691871698
320 => 0.14836013722304
321 => 0.15560272750874
322 => 0.15126279952762
323 => 0.15458051185519
324 => 0.15634021451083
325 => 0.15797472440668
326 => 0.15396088469462
327 => 0.14873893820425
328 => 0.14708492854835
329 => 0.13452885935837
330 => 0.13387526142879
331 => 0.13350837710487
401 => 0.13119522333938
402 => 0.12937771810584
403 => 0.12793237046449
404 => 0.12413934663624
405 => 0.12541938083289
406 => 0.11937409251627
407 => 0.12324165374938
408 => 0.11359322762746
409 => 0.12162872360633
410 => 0.1172553684742
411 => 0.12019195882441
412 => 0.12018171333733
413 => 0.11477451945576
414 => 0.11165576287013
415 => 0.11364315595032
416 => 0.11577379909173
417 => 0.11611948877309
418 => 0.11888192322141
419 => 0.11965285929761
420 => 0.11731688699516
421 => 0.11339328544176
422 => 0.11430464859479
423 => 0.11163729412492
424 => 0.10696285801479
425 => 0.11032011963691
426 => 0.11146643636308
427 => 0.11197271513358
428 => 0.10737594408188
429 => 0.10593153881668
430 => 0.10516254957322
501 => 0.11279990002276
502 => 0.11321829132073
503 => 0.11107774228575
504 => 0.12075322689905
505 => 0.11856336674283
506 => 0.1210099770661
507 => 0.11422195194111
508 => 0.11448126364217
509 => 0.11126770376507
510 => 0.1130670825661
511 => 0.11179533962622
512 => 0.11292171054079
513 => 0.11359685262277
514 => 0.11680988518632
515 => 0.12166541127704
516 => 0.11632996526652
517 => 0.11400523503474
518 => 0.11544748459575
519 => 0.11928838523417
520 => 0.12510754631344
521 => 0.12166248583298
522 => 0.12319134517329
523 => 0.12352533292493
524 => 0.12098507286971
525 => 0.12520120932507
526 => 0.12746067110333
527 => 0.12977841135809
528 => 0.13179084027969
529 => 0.12885265493214
530 => 0.13199693442634
531 => 0.12946320019406
601 => 0.12719017865507
602 => 0.12719362589049
603 => 0.12576772627553
604 => 0.12300486609665
605 => 0.12249535228978
606 => 0.1251459074576
607 => 0.12727140169368
608 => 0.1274464675794
609 => 0.12862325040033
610 => 0.12931965835193
611 => 0.13614540299832
612 => 0.13889077396062
613 => 0.1422477616061
614 => 0.14355549748347
615 => 0.14749131362511
616 => 0.14431282243938
617 => 0.1436251358777
618 => 0.13407813331375
619 => 0.13564145444876
620 => 0.13814448242397
621 => 0.13411940732313
622 => 0.13667239103004
623 => 0.13717640409337
624 => 0.13398263681142
625 => 0.13568856591125
626 => 0.13115812399484
627 => 0.12176416253055
628 => 0.12521166748958
629 => 0.12775019155706
630 => 0.12412740471501
701 => 0.13062110990817
702 => 0.12682762139161
703 => 0.12562526765142
704 => 0.1209344570409
705 => 0.12314833908321
706 => 0.12614264624517
707 => 0.12429251254465
708 => 0.1281318177722
709 => 0.13356929787973
710 => 0.13744437001188
711 => 0.13774184993323
712 => 0.13525043816192
713 => 0.13924294142542
714 => 0.13927202245298
715 => 0.1347684624619
716 => 0.13201005704329
717 => 0.13138334152844
718 => 0.13294899975934
719 => 0.13484999788809
720 => 0.1378473420991
721 => 0.13965857443081
722 => 0.1443813077485
723 => 0.1456591439729
724 => 0.14706309856777
725 => 0.14893921487008
726 => 0.15119197351735
727 => 0.14626306584674
728 => 0.14645890053713
729 => 0.14186916995963
730 => 0.13696438460363
731 => 0.14068650529871
801 => 0.14555268297456
802 => 0.14443637643907
803 => 0.14431076914975
804 => 0.14452200576983
805 => 0.14368034709723
806 => 0.13987355611441
807 => 0.13796180951461
808 => 0.14042845036693
809 => 0.14173936020238
810 => 0.14377246703381
811 => 0.14352184370316
812 => 0.1487589085612
813 => 0.15079387360442
814 => 0.1502732424653
815 => 0.15036905112458
816 => 0.15405325813272
817 => 0.15815085404073
818 => 0.16198879333399
819 => 0.16589291002642
820 => 0.16118634497343
821 => 0.1587966415001
822 => 0.16126220549418
823 => 0.15995394253359
824 => 0.16747160956112
825 => 0.16799211651526
826 => 0.1755092399299
827 => 0.1826438851728
828 => 0.17816274232618
829 => 0.18238825819543
830 => 0.18695849811939
831 => 0.19577523242742
901 => 0.19280606648893
902 => 0.19053173191281
903 => 0.18838249672788
904 => 0.19285471396624
905 => 0.19860814999798
906 => 0.19984738501349
907 => 0.20185541916283
908 => 0.19974421678553
909 => 0.20228692750767
910 => 0.21126381368053
911 => 0.20883817979546
912 => 0.20539338973855
913 => 0.21247977922271
914 => 0.21504431602939
915 => 0.23304357839699
916 => 0.25576839064854
917 => 0.24636016915724
918 => 0.24052018247617
919 => 0.24189271787256
920 => 0.25019105002338
921 => 0.25285621093433
922 => 0.24561138484232
923 => 0.2481703798964
924 => 0.26227069423924
925 => 0.26983506049193
926 => 0.25956163509085
927 => 0.23121766185924
928 => 0.20508322408419
929 => 0.2120152538312
930 => 0.21122937678382
1001 => 0.22637840549516
1002 => 0.20878032922951
1003 => 0.20907663570104
1004 => 0.22453893028304
1005 => 0.2204138551794
1006 => 0.21373176181121
1007 => 0.20513201076063
1008 => 0.18923457556293
1009 => 0.17515377387556
1010 => 0.20276946859946
1011 => 0.20157862962708
1012 => 0.19985411832263
1013 => 0.20369183161907
1014 => 0.22232667803267
1015 => 0.22189708450772
1016 => 0.21916422968257
1017 => 0.22123707598117
1018 => 0.213368381833
1019 => 0.21539632348182
1020 => 0.20507908425572
1021 => 0.20974290727189
1022 => 0.21371742503992
1023 => 0.21451536832559
1024 => 0.21631317529221
1025 => 0.20095111160078
1026 => 0.20784822719174
1027 => 0.21189963642909
1028 => 0.19359522210321
1029 => 0.21153781701105
1030 => 0.20068369224942
1031 => 0.19699963928184
1101 => 0.20195973126562
1102 => 0.20002677859569
1103 => 0.19836493939688
1104 => 0.19743760456992
1105 => 0.20107974869743
1106 => 0.20090983832058
1107 => 0.19495058361826
1108 => 0.18717697878939
1109 => 0.18978605572984
1110 => 0.18883815361714
1111 => 0.18540283407894
1112 => 0.18771782466563
1113 => 0.17752377771179
1114 => 0.15998544976815
1115 => 0.17157180642123
1116 => 0.17112574429362
1117 => 0.17090081954157
1118 => 0.17960764634298
1119 => 0.17877068584669
1120 => 0.1772515943504
1121 => 0.18537493477233
1122 => 0.18240980624397
1123 => 0.19154763369621
1124 => 0.19756639785387
1125 => 0.19603984457687
1126 => 0.20170052135836
1127 => 0.18984616359295
1128 => 0.19378370572834
1129 => 0.19459522770524
1130 => 0.18527469401247
1201 => 0.17890762293475
1202 => 0.17848301188379
1203 => 0.16744338807147
1204 => 0.17334066600328
1205 => 0.17853002653734
1206 => 0.17604472555217
1207 => 0.17525795350652
1208 => 0.1792774012577
1209 => 0.17958974677221
1210 => 0.17246823594052
1211 => 0.17394902355134
1212 => 0.18012415404895
1213 => 0.17379342610656
1214 => 0.16149385583302
1215 => 0.15844339235032
1216 => 0.15803640429053
1217 => 0.14976330539014
1218 => 0.15864723890659
1219 => 0.15476916385204
1220 => 0.16701995648289
1221 => 0.16002236943447
1222 => 0.15972071744271
1223 => 0.15926472621444
1224 => 0.15214372823346
1225 => 0.15370277422827
1226 => 0.15888528056441
1227 => 0.16073445721025
1228 => 0.16054157293623
1229 => 0.15885988345605
1230 => 0.15962975228844
1231 => 0.15714973653925
]
'min_raw' => 0.086772992156682
'max_raw' => 0.26983506049193
'avg_raw' => 0.17830402632431
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.086772'
'max' => '$0.269835'
'avg' => '$0.178304'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.049431717311343
'max_diff' => 0.16853178012843
'year' => 2033
]
8 => [
'items' => [
101 => 0.15627399136115
102 => 0.15350989868636
103 => 0.14944744605453
104 => 0.15001235500945
105 => 0.14196357334723
106 => 0.13757816991648
107 => 0.13636434804553
108 => 0.1347411747106
109 => 0.13654768979281
110 => 0.14194077216006
111 => 0.13543557061891
112 => 0.12428285886344
113 => 0.12495315584324
114 => 0.12645911414389
115 => 0.12365277081354
116 => 0.12099680236991
117 => 0.12330595144612
118 => 0.11858040045173
119 => 0.12703017440498
120 => 0.12680163169976
121 => 0.12995118489902
122 => 0.13192066514985
123 => 0.12738165079849
124 => 0.12624010096392
125 => 0.12689037963023
126 => 0.11614272178963
127 => 0.12907287195906
128 => 0.12918469243466
129 => 0.12822721763438
130 => 0.13511212342601
131 => 0.1496414221023
201 => 0.1441749155006
202 => 0.14205811891838
203 => 0.13803408706821
204 => 0.14339587058519
205 => 0.14298416926794
206 => 0.14112229977824
207 => 0.13999623530149
208 => 0.14207104362693
209 => 0.13973914358908
210 => 0.13932027026595
211 => 0.13678235366648
212 => 0.13587643290831
213 => 0.13520572524471
214 => 0.13446734200946
215 => 0.13609603143278
216 => 0.1324052069276
217 => 0.12795443439032
218 => 0.12758440081188
219 => 0.12860609605566
220 => 0.12815407196655
221 => 0.12758223669444
222 => 0.12649044742993
223 => 0.12616653687753
224 => 0.12721908903376
225 => 0.12603081901698
226 => 0.12778417615515
227 => 0.12730736003125
228 => 0.1246439039233
301 => 0.12132425147505
302 => 0.12129469960506
303 => 0.1205794859304
304 => 0.11966855378263
305 => 0.11941515329843
306 => 0.12311148135166
307 => 0.13076276980006
308 => 0.12926063879783
309 => 0.13034608239152
310 => 0.13568539056948
311 => 0.13738259608065
312 => 0.13617795980934
313 => 0.13452897938243
314 => 0.1346015261525
315 => 0.14023659145156
316 => 0.14058804356215
317 => 0.14147604966286
318 => 0.14261738845278
319 => 0.13637233474055
320 => 0.13430738468426
321 => 0.13332889678852
322 => 0.13031553279212
323 => 0.13356518751593
324 => 0.13167175287246
325 => 0.1319272418948
326 => 0.13176085433383
327 => 0.1318517131932
328 => 0.12702781252095
329 => 0.12878538838917
330 => 0.12586307762082
331 => 0.12195043154678
401 => 0.12193731498519
402 => 0.12289492956877
403 => 0.12232530294299
404 => 0.12079245233947
405 => 0.12101018653285
406 => 0.11910260588816
407 => 0.12124180136098
408 => 0.12130314583273
409 => 0.12047943905293
410 => 0.12377516483089
411 => 0.12512542637118
412 => 0.12458324492321
413 => 0.12508738547544
414 => 0.12932305912268
415 => 0.13001365874258
416 => 0.13032037747529
417 => 0.12990941500591
418 => 0.12516480581418
419 => 0.12537524940747
420 => 0.12383115395143
421 => 0.12252655600385
422 => 0.12257873308004
423 => 0.12324946601096
424 => 0.12617859605825
425 => 0.13234277756112
426 => 0.13257670374319
427 => 0.13286022909998
428 => 0.13170698898551
429 => 0.13135916073196
430 => 0.13181803598048
501 => 0.13413297845569
502 => 0.14008763900269
503 => 0.13798286426698
504 => 0.13627164964407
505 => 0.13777284620851
506 => 0.13754174876418
507 => 0.13559105376581
508 => 0.13553630425419
509 => 0.1317922968774
510 => 0.13040822259712
511 => 0.12925158653235
512 => 0.12798857014438
513 => 0.12723981169289
514 => 0.128390244979
515 => 0.12865336268306
516 => 0.12613792019685
517 => 0.12579507468086
518 => 0.1278492393147
519 => 0.12694527804632
520 => 0.12787502462801
521 => 0.12809073381018
522 => 0.12805599966364
523 => 0.12711216028017
524 => 0.1277137353575
525 => 0.12629083096145
526 => 0.12474363614408
527 => 0.12375662224424
528 => 0.12289532170823
529 => 0.12337322130469
530 => 0.12166959650433
531 => 0.12112457264351
601 => 0.12750993525717
602 => 0.1322268712741
603 => 0.1321582851563
604 => 0.13174078480312
605 => 0.13112046396516
606 => 0.13408759812266
607 => 0.1330539079119
608 => 0.13380600390793
609 => 0.13399744390429
610 => 0.13457687511523
611 => 0.13478397196935
612 => 0.1341579814382
613 => 0.13205708075735
614 => 0.12682183600831
615 => 0.12438481544536
616 => 0.1235805580678
617 => 0.12360979129597
618 => 0.12280340836011
619 => 0.12304092427427
620 => 0.12272081001812
621 => 0.12211459106094
622 => 0.12333578899236
623 => 0.12347652067771
624 => 0.12319147848829
625 => 0.12325861624257
626 => 0.12089858865726
627 => 0.12107801642886
628 => 0.12007893979601
629 => 0.1198916249714
630 => 0.1173660462431
701 => 0.11289161743744
702 => 0.11537088533909
703 => 0.11237627835172
704 => 0.1112421753099
705 => 0.11661084272066
706 => 0.11607197741627
707 => 0.11514967425428
708 => 0.11378539565288
709 => 0.11327937144876
710 => 0.11020492857238
711 => 0.11002327408573
712 => 0.11154705099221
713 => 0.11084388037983
714 => 0.10985636252852
715 => 0.10627967297414
716 => 0.10225828971381
717 => 0.10237966999693
718 => 0.10365879719154
719 => 0.10737803202369
720 => 0.10592486263136
721 => 0.10487057156402
722 => 0.10467313453898
723 => 0.10714447226976
724 => 0.11064193292007
725 => 0.11228286320592
726 => 0.11065675112843
727 => 0.10878876112991
728 => 0.10890245702568
729 => 0.10965882488364
730 => 0.10973830845104
731 => 0.10852243899448
801 => 0.1088646991245
802 => 0.10834477469007
803 => 0.10515399939566
804 => 0.10509628838864
805 => 0.10431322067319
806 => 0.10428950969398
807 => 0.1029573161646
808 => 0.10277093308082
809 => 0.10012578196987
810 => 0.10186682844135
811 => 0.10069902587733
812 => 0.098938871956561
813 => 0.098635420757179
814 => 0.098626298647698
815 => 0.10043358316111
816 => 0.10184570926956
817 => 0.10071934030291
818 => 0.10046288792294
819 => 0.1032011284068
820 => 0.10285266234562
821 => 0.10255089298399
822 => 0.11032877367931
823 => 0.10417197419337
824 => 0.10148725819967
825 => 0.098164412343722
826 => 0.099246347709661
827 => 0.099474327388202
828 => 0.091483482092638
829 => 0.088241597151424
830 => 0.087129104407457
831 => 0.086488849104965
901 => 0.08678062148613
902 => 0.083862544803861
903 => 0.085823540594879
904 => 0.083296732846916
905 => 0.082873105305026
906 => 0.087391350569799
907 => 0.088020038003187
908 => 0.085337862094481
909 => 0.087060253232706
910 => 0.086435690262958
911 => 0.083340047713376
912 => 0.083221816937988
913 => 0.081668532323705
914 => 0.079237942677521
915 => 0.078127097987787
916 => 0.077548560428579
917 => 0.07778727630098
918 => 0.077666574251068
919 => 0.076878911729376
920 => 0.077711722144807
921 => 0.075584235674403
922 => 0.074737053419565
923 => 0.074354400849534
924 => 0.072466134153499
925 => 0.075471206182902
926 => 0.076063243229594
927 => 0.076656446772158
928 => 0.081819878612917
929 => 0.08156192814986
930 => 0.083893674708928
1001 => 0.08380306732545
1002 => 0.083138015435014
1003 => 0.080332270904989
1004 => 0.081450590667069
1005 => 0.078008576264864
1006 => 0.080587567489225
1007 => 0.079410623595675
1008 => 0.080189641574917
1009 => 0.078788897007021
1010 => 0.07956412688622
1011 => 0.076203637176492
1012 => 0.073065659168913
1013 => 0.074328473122451
1014 => 0.07570129631024
1015 => 0.078677926770209
1016 => 0.076905070224919
1017 => 0.077542656477733
1018 => 0.075406849261456
1019 => 0.071000068911106
1020 => 0.071025010809314
1021 => 0.070347123659341
1022 => 0.06976133018862
1023 => 0.077108704125556
1024 => 0.076194942031704
1025 => 0.074738981725378
1026 => 0.076687842452958
1027 => 0.077203152161909
1028 => 0.077217822304883
1029 => 0.078639660784349
1030 => 0.079398496235719
1031 => 0.079532244273004
1101 => 0.081769537841298
1102 => 0.082519449134774
1103 => 0.085608227621185
1104 => 0.079334114349359
1105 => 0.07920490311532
1106 => 0.07671526692001
1107 => 0.075136300285353
1108 => 0.07682338011635
1109 => 0.07831790253725
1110 => 0.076761705897592
1111 => 0.076964912325627
1112 => 0.074875845482824
1113 => 0.075622588579395
1114 => 0.07626578433132
1115 => 0.075910649442406
1116 => 0.075378995324978
1117 => 0.078195368742045
1118 => 0.078036457916398
1119 => 0.080659129590515
1120 => 0.082703689709541
1121 => 0.086367906951673
1122 => 0.082544105239543
1123 => 0.082404750706918
1124 => 0.0837669636165
1125 => 0.082519240587075
1126 => 0.083307758471737
1127 => 0.086240864530015
1128 => 0.086302836439098
1129 => 0.085264727115656
1130 => 0.085201558068981
1201 => 0.08540093832022
1202 => 0.086568714679253
1203 => 0.086160657737264
1204 => 0.086632871561272
1205 => 0.087223382178989
1206 => 0.089665984465178
1207 => 0.090254887606988
1208 => 0.088824158283663
1209 => 0.088953337122362
1210 => 0.08841820508104
1211 => 0.087901274234308
1212 => 0.089063259286074
1213 => 0.091186809807049
1214 => 0.091173599309471
1215 => 0.091666221754413
1216 => 0.091973121456508
1217 => 0.090655683270805
1218 => 0.089798079455458
1219 => 0.090126939329011
1220 => 0.090652793428458
1221 => 0.089956411931844
1222 => 0.085658022739455
1223 => 0.086961879438261
1224 => 0.086744853928245
1225 => 0.086435783210777
1226 => 0.087746821203852
1227 => 0.087620368391122
1228 => 0.083832615709765
1229 => 0.084075095347092
1230 => 0.083847361699628
1231 => 0.084583215704503
]
'min_raw' => 0.06976133018862
'max_raw' => 0.15627399136115
'avg_raw' => 0.11301766077488
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.069761'
'max' => '$0.156273'
'avg' => '$0.113017'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.017011661968061
'max_diff' => -0.11356106913078
'year' => 2034
]
9 => [
'items' => [
101 => 0.082479502055945
102 => 0.083126590205514
103 => 0.083532437826849
104 => 0.083771485193684
105 => 0.084635088199004
106 => 0.084533754353998
107 => 0.084628789144919
108 => 0.085909284419069
109 => 0.092385590102805
110 => 0.092738081132008
111 => 0.091002286386677
112 => 0.091695702150399
113 => 0.09036449551741
114 => 0.091258143448445
115 => 0.091869554666663
116 => 0.089106704939153
117 => 0.088943106909036
118 => 0.087606405912736
119 => 0.088324673313533
120 => 0.087181858233611
121 => 0.087462265080249
122 => 0.086678223091619
123 => 0.088089342569951
124 => 0.089667193412525
125 => 0.090065820846577
126 => 0.089017203687487
127 => 0.088257935757067
128 => 0.086924911389655
129 => 0.089141760621047
130 => 0.089790034893562
131 => 0.089138355512272
201 => 0.088987347160151
202 => 0.088701186605749
203 => 0.089048057474536
204 => 0.08978650425265
205 => 0.089438266389062
206 => 0.089668283633123
207 => 0.088791695091514
208 => 0.090656119397663
209 => 0.093617273893972
210 => 0.093626794489875
211 => 0.093278554749156
212 => 0.093136062550183
213 => 0.093493377657116
214 => 0.093687206444794
215 => 0.094842697980229
216 => 0.096082586434566
217 => 0.10186860484524
218 => 0.10024391402865
219 => 0.10537761377437
220 => 0.10943770374576
221 => 0.11065514720196
222 => 0.10953515650739
223 => 0.105703728842
224 => 0.10551574072194
225 => 0.11124151124108
226 => 0.10962371881252
227 => 0.10943128755092
228 => 0.10738414404519
301 => 0.10859425940073
302 => 0.10832958942115
303 => 0.10791179491029
304 => 0.11022061071129
305 => 0.11454250778136
306 => 0.11386889959249
307 => 0.11336608232729
308 => 0.11116288343908
309 => 0.11248970127207
310 => 0.11201724685526
311 => 0.11404721085684
312 => 0.11284470515152
313 => 0.10961146244373
314 => 0.11012636700185
315 => 0.11004854021374
316 => 0.1116502099983
317 => 0.11116942848486
318 => 0.10995465990697
319 => 0.11452773600702
320 => 0.11423078588187
321 => 0.11465179326709
322 => 0.11483713373814
323 => 0.1176206845736
324 => 0.1187610162872
325 => 0.1190198915505
326 => 0.120103118482
327 => 0.11899293987765
328 => 0.12343444583898
329 => 0.1263877881342
330 => 0.12981824718771
331 => 0.13483106988536
401 => 0.13671593759087
402 => 0.13637545311067
403 => 0.14017611806947
404 => 0.14700582851639
405 => 0.13775593286089
406 => 0.14749609544664
407 => 0.14441247242757
408 => 0.13710125772138
409 => 0.13663050168786
410 => 0.14158174117184
411 => 0.15256311380817
412 => 0.14981240451247
413 => 0.15256761298316
414 => 0.14935351595058
415 => 0.14919390894238
416 => 0.15241151146429
417 => 0.15992961513912
418 => 0.15635804589511
419 => 0.15123732559912
420 => 0.15501838577845
421 => 0.15174288153051
422 => 0.14436225370399
423 => 0.14981030109691
424 => 0.14616734695672
425 => 0.14723055464492
426 => 0.15488750239906
427 => 0.15396619818751
428 => 0.15515845114773
429 => 0.15305415587964
430 => 0.15108841228234
501 => 0.14741920587994
502 => 0.14633293475387
503 => 0.14663314101318
504 => 0.14633278598656
505 => 0.14427989872616
506 => 0.14383657791774
507 => 0.14309769048137
508 => 0.14332670259424
509 => 0.14193737804471
510 => 0.14455932051876
511 => 0.14504597614643
512 => 0.14695400722718
513 => 0.14715210534364
514 => 0.15246594474443
515 => 0.14953917129792
516 => 0.1515027036113
517 => 0.15132706679971
518 => 0.13725971391361
519 => 0.13919807102401
520 => 0.14221354639782
521 => 0.14085507882929
522 => 0.13893452351986
523 => 0.13738357213383
524 => 0.13503372219108
525 => 0.13834109086063
526 => 0.14268992896165
527 => 0.14726239905456
528 => 0.15275592227107
529 => 0.1515298318408
530 => 0.14715970145924
531 => 0.14735574231577
601 => 0.14856758975164
602 => 0.14699813721424
603 => 0.14653527502161
604 => 0.1485039995941
605 => 0.14851755711824
606 => 0.14671171229929
607 => 0.14470484624915
608 => 0.14469643740712
609 => 0.14433933497752
610 => 0.1494170436795
611 => 0.15220927005133
612 => 0.15252939430497
613 => 0.15218772313845
614 => 0.15231921881
615 => 0.15069448380674
616 => 0.15440814622399
617 => 0.15781617010121
618 => 0.1569027469003
619 => 0.15553339567139
620 => 0.15444264146066
621 => 0.15664579987292
622 => 0.15654769669692
623 => 0.15778640398574
624 => 0.157730209068
625 => 0.1573136783969
626 => 0.15690276177593
627 => 0.1585319997302
628 => 0.15806280536413
629 => 0.15759288220961
630 => 0.1566503793816
701 => 0.15677848116924
702 => 0.15540936637812
703 => 0.15477595122932
704 => 0.14525090716678
705 => 0.14270550415347
706 => 0.14350633975792
707 => 0.14376999563259
708 => 0.14266223297917
709 => 0.14425048006329
710 => 0.1440029534376
711 => 0.14496593473993
712 => 0.14436430583002
713 => 0.14438899689034
714 => 0.14615825923356
715 => 0.14667188361878
716 => 0.146410650111
717 => 0.14659360910529
718 => 0.15080982190648
719 => 0.15021041127305
720 => 0.14989198632073
721 => 0.14998019220868
722 => 0.15105752497601
723 => 0.15135911933067
724 => 0.1500812428573
725 => 0.15068389678946
726 => 0.15324992074441
727 => 0.15414788390426
728 => 0.15701375126375
729 => 0.15579627987271
730 => 0.15803100130189
731 => 0.16489977310252
801 => 0.17038702329971
802 => 0.16534072124817
803 => 0.17541735743822
804 => 0.18326346411979
805 => 0.18296231747697
806 => 0.18159416729333
807 => 0.1726615834359
808 => 0.16444168659297
809 => 0.17131797933734
810 => 0.17133550842166
811 => 0.17074482877664
812 => 0.16707616823147
813 => 0.17061716734195
814 => 0.17089823899232
815 => 0.1707409136111
816 => 0.16792816017275
817 => 0.16363360555611
818 => 0.16447275124849
819 => 0.16584728901072
820 => 0.16324500226821
821 => 0.16241341397586
822 => 0.16395949482748
823 => 0.16894128947013
824 => 0.16799951005051
825 => 0.16797491638383
826 => 0.17200424811759
827 => 0.16912011618043
828 => 0.16448333556299
829 => 0.16331248730546
830 => 0.15915676476914
831 => 0.16202713712715
901 => 0.16213043671829
902 => 0.1605583631123
903 => 0.16461090067192
904 => 0.16457355582488
905 => 0.16842083709712
906 => 0.1757753939168
907 => 0.17360028956946
908 => 0.17107087986418
909 => 0.17134589683207
910 => 0.17436215417008
911 => 0.17253845612906
912 => 0.17319427065988
913 => 0.17436116151624
914 => 0.17506517574215
915 => 0.17124460001913
916 => 0.17035384105883
917 => 0.16853166083997
918 => 0.16805628803347
919 => 0.1695404158007
920 => 0.16914940056904
921 => 0.16212175478765
922 => 0.16138732670205
923 => 0.16140985056291
924 => 0.1595630962215
925 => 0.15674635257902
926 => 0.16414858669243
927 => 0.16355408369892
928 => 0.16289779840497
929 => 0.16297818960877
930 => 0.16619124855241
1001 => 0.16432751210173
1002 => 0.16928256091625
1003 => 0.16826395184239
1004 => 0.16721921928934
1005 => 0.16707480542718
1006 => 0.16667267252665
1007 => 0.16529360918367
1008 => 0.16362830732817
1009 => 0.16252873079719
1010 => 0.1499241629242
1011 => 0.15226349740403
1012 => 0.15495468848603
1013 => 0.15588367686326
1014 => 0.15429457795996
1015 => 0.16535635649405
1016 => 0.16737745002617
1017 => 0.16125542588469
1018 => 0.16011024512842
1019 => 0.16543143435378
1020 => 0.16222210676196
1021 => 0.16366726678004
1022 => 0.16054362128121
1023 => 0.16689062777881
1024 => 0.16684227422344
1025 => 0.16437314534223
1026 => 0.16646003616477
1027 => 0.16609738752849
1028 => 0.1633097471028
1029 => 0.16697900095253
1030 => 0.16698082085666
1031 => 0.16460433799199
1101 => 0.16182912628504
1102 => 0.16133298397942
1103 => 0.16095920739947
1104 => 0.1635753406543
1105 => 0.16592095755014
1106 => 0.17028556906557
1107 => 0.17138293610116
1108 => 0.17566603269693
1109 => 0.17311565721434
1110 => 0.17424620563288
1111 => 0.17547357586704
1112 => 0.17606202229235
1113 => 0.17510318042009
1114 => 0.18175659242621
1115 => 0.18231834425481
1116 => 0.1825066947838
1117 => 0.18026320169033
1118 => 0.18225594865343
1119 => 0.18132360834224
1120 => 0.18374929882035
1121 => 0.18412967806009
1122 => 0.18380751037642
1123 => 0.18392824875099
1124 => 0.17825073534607
1125 => 0.17795632632476
1126 => 0.17394203842883
1127 => 0.17557789041854
1128 => 0.1725197435322
1129 => 0.17348951341226
1130 => 0.17391697873508
1201 => 0.17369369510889
1202 => 0.17567037903562
1203 => 0.17398979388805
1204 => 0.16955445336983
1205 => 0.16511790444604
1206 => 0.16506220718824
1207 => 0.1638941421682
1208 => 0.16304984510049
1209 => 0.16321248666878
1210 => 0.1637856567691
1211 => 0.1630165314123
1212 => 0.16318066330282
1213 => 0.16590634629051
1214 => 0.16645296257502
1215 => 0.16459534686351
1216 => 0.15713675172916
1217 => 0.15530639377472
1218 => 0.15662201877479
1219 => 0.15599323476186
1220 => 0.12589871522561
1221 => 0.13296897619234
1222 => 0.12876806720929
1223 => 0.1307040393432
1224 => 0.12641599909162
1225 => 0.12846247665512
1226 => 0.12808456697454
1227 => 0.13945333738479
1228 => 0.13927582967207
1229 => 0.13936079322065
1230 => 0.1353052616755
1231 => 0.14176583354661
]
'min_raw' => 0.082479502055945
'max_raw' => 0.18412967806009
'avg_raw' => 0.13330459005802
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.082479'
'max' => '$0.184129'
'avg' => '$0.1333045'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.012718171867325
'max_diff' => 0.027855686698945
'year' => 2035
]
10 => [
'items' => [
101 => 0.14494854356497
102 => 0.14435950864566
103 => 0.14450775604459
104 => 0.1419603745638
105 => 0.13938545744169
106 => 0.13652947807636
107 => 0.14183553472742
108 => 0.14124559180523
109 => 0.14259870861397
110 => 0.14604006563695
111 => 0.14654681853103
112 => 0.14722789955965
113 => 0.14698378049354
114 => 0.15279968704633
115 => 0.1520953423882
116 => 0.15379261036051
117 => 0.15030120136944
118 => 0.14635034068847
119 => 0.14710127014055
120 => 0.14702894959573
121 => 0.14610822605439
122 => 0.14527703800961
123 => 0.14389334410082
124 => 0.14827155637639
125 => 0.14809380895356
126 => 0.15097133312045
127 => 0.15046270277318
128 => 0.1470659448311
129 => 0.14718726070551
130 => 0.1480031682634
131 => 0.15082703363712
201 => 0.15166534914345
202 => 0.15127700799982
203 => 0.15219618268196
204 => 0.15292266087295
205 => 0.15228741715769
206 => 0.16128112855531
207 => 0.15754631254365
208 => 0.15936663588105
209 => 0.15980077227105
210 => 0.15868874103697
211 => 0.15892990079279
212 => 0.15929519211075
213 => 0.16151316946208
214 => 0.16733378380888
215 => 0.16991169428081
216 => 0.17766746512749
217 => 0.16969763470236
218 => 0.16922473794737
219 => 0.1706217864787
220 => 0.17517524499742
221 => 0.17886539544224
222 => 0.18008963123467
223 => 0.18025143420457
224 => 0.18254818193683
225 => 0.18386463490515
226 => 0.18226929635167
227 => 0.1809174139665
228 => 0.17607513906466
229 => 0.17663564556963
301 => 0.18049697956128
302 => 0.18595134125592
303 => 0.19063175101954
304 => 0.18899283464907
305 => 0.20149660966111
306 => 0.20273630788021
307 => 0.20256502167057
308 => 0.20538923870552
309 => 0.19978374303295
310 => 0.19738728503156
311 => 0.18120970628269
312 => 0.18575494603626
313 => 0.19236171895065
314 => 0.1914872877813
315 => 0.18668927269133
316 => 0.19062811129484
317 => 0.18932580807365
318 => 0.18829862749048
319 => 0.19300434087072
320 => 0.1878302157091
321 => 0.19231010309416
322 => 0.18656460118432
323 => 0.189000321081
324 => 0.18761768866513
325 => 0.18851242128725
326 => 0.18328183266071
327 => 0.18610413131823
328 => 0.1831644157577
329 => 0.18316302194976
330 => 0.18309812756583
331 => 0.1865566898861
401 => 0.1866694734792
402 => 0.18411359069892
403 => 0.18374524805989
404 => 0.18510720385258
405 => 0.18351271031613
406 => 0.18425876380621
407 => 0.18353530751632
408 => 0.18337244226715
409 => 0.1820747042525
410 => 0.18151560303373
411 => 0.18173484102787
412 => 0.18098646872894
413 => 0.18053554734902
414 => 0.18300842795384
415 => 0.1816872676024
416 => 0.18280594118187
417 => 0.18153107145021
418 => 0.17711181752594
419 => 0.17457025786134
420 => 0.16622269686346
421 => 0.16859005480734
422 => 0.17015961557334
423 => 0.16964087574954
424 => 0.17075532961673
425 => 0.17082374803295
426 => 0.17046142772022
427 => 0.17004190721418
428 => 0.16983770783278
429 => 0.17135964272433
430 => 0.17224317715484
501 => 0.17031714199422
502 => 0.16986589890418
503 => 0.17181322679089
504 => 0.17300109567684
505 => 0.18177165212487
506 => 0.18112190097467
507 => 0.18275264885443
508 => 0.18256905166904
509 => 0.18427833524554
510 => 0.18707229149598
511 => 0.18139139723638
512 => 0.1823774040493
513 => 0.182135657949
514 => 0.18477497848291
515 => 0.18478321815352
516 => 0.1832008136496
517 => 0.18405866080276
518 => 0.18357983405567
519 => 0.18444513870498
520 => 0.18111322315193
521 => 0.18517113663748
522 => 0.18747171209762
523 => 0.18750365559012
524 => 0.18859411009973
525 => 0.18970207503636
526 => 0.19182871724881
527 => 0.18964276413929
528 => 0.18571044729351
529 => 0.18599434786847
530 => 0.18368883194056
531 => 0.18372758807984
601 => 0.18352070477102
602 => 0.18414157715422
603 => 0.18124946972536
604 => 0.18192824155825
605 => 0.18097795701732
606 => 0.1823753383163
607 => 0.180871987034
608 => 0.18213554137171
609 => 0.18268084953637
610 => 0.18469304840363
611 => 0.18057478362523
612 => 0.17217736296007
613 => 0.17394260259277
614 => 0.17133167451942
615 => 0.17157332585311
616 => 0.1720615000057
617 => 0.17047916785653
618 => 0.17078102696558
619 => 0.17077024243405
620 => 0.17067730716764
621 => 0.17026568146308
622 => 0.1696687427538
623 => 0.17204676284354
624 => 0.17245083479554
625 => 0.17334903669094
626 => 0.17602147627546
627 => 0.1757544365405
628 => 0.17618998942759
629 => 0.1752391799206
630 => 0.17161743117916
701 => 0.17181410956058
702 => 0.16936152699272
703 => 0.17328631864052
704 => 0.1723568761736
705 => 0.1717576585688
706 => 0.17159415649362
707 => 0.17427322053896
708 => 0.17507483849051
709 => 0.17457532397769
710 => 0.17355080513871
711 => 0.17551818418135
712 => 0.1760445718161
713 => 0.17616241059509
714 => 0.17964822905113
715 => 0.17635722912417
716 => 0.17714940551631
717 => 0.1833297395911
718 => 0.17772502941307
719 => 0.18069396939433
720 => 0.18054865523186
721 => 0.18206746446282
722 => 0.1804240685442
723 => 0.18044444040621
724 => 0.18179304011025
725 => 0.17989917504716
726 => 0.17943022742406
727 => 0.1787823796414
728 => 0.18019693157379
729 => 0.18104489148257
730 => 0.18787882558945
731 => 0.19229385868774
801 => 0.19210219045713
802 => 0.19385367929709
803 => 0.19306461753288
804 => 0.1905165289523
805 => 0.19486580545306
806 => 0.19348951238676
807 => 0.19360297231495
808 => 0.19359874933076
809 => 0.19451386390221
810 => 0.19386542135932
811 => 0.192587274546
812 => 0.1934357680493
813 => 0.19595549041209
814 => 0.20377678594074
815 => 0.20815368653695
816 => 0.20351329102904
817 => 0.20671417371302
818 => 0.20479478469375
819 => 0.20444597461207
820 => 0.20645636548099
821 => 0.20847027527298
822 => 0.2083419979256
823 => 0.20688000283203
824 => 0.20605415890042
825 => 0.21230772582858
826 => 0.21691524741451
827 => 0.21660104533157
828 => 0.21798783114169
829 => 0.22205947717189
830 => 0.22243173745736
831 => 0.22238484121769
901 => 0.22146215525881
902 => 0.22547121954558
903 => 0.22881565150639
904 => 0.22124858011829
905 => 0.22413002184264
906 => 0.22542359386695
907 => 0.22732294138417
908 => 0.23052745901333
909 => 0.23400841511491
910 => 0.23450066047442
911 => 0.23415138883574
912 => 0.23185560471362
913 => 0.23566450841642
914 => 0.23789567487574
915 => 0.23922428344292
916 => 0.24259341370992
917 => 0.22543158252739
918 => 0.21328358541804
919 => 0.21138650025021
920 => 0.21524429753818
921 => 0.21626156791766
922 => 0.21585150750324
923 => 0.20217783230909
924 => 0.21131451118015
925 => 0.22114480941162
926 => 0.22152243120184
927 => 0.22644368403836
928 => 0.2280462456909
929 => 0.23200849926765
930 => 0.23176065922762
1001 => 0.23272540492033
1002 => 0.23250362659264
1003 => 0.23984286699265
1004 => 0.2479391390416
1005 => 0.24765879088511
1006 => 0.24649485598733
1007 => 0.24822349779093
1008 => 0.25657971819469
1009 => 0.25581041132561
1010 => 0.25655772741952
1011 => 0.2664101822115
1012 => 0.27921977493642
1013 => 0.27326843305361
1014 => 0.28618113248681
1015 => 0.29430899230722
1016 => 0.30836528543024
1017 => 0.30660536830254
1018 => 0.31207738006548
1019 => 0.30345474933816
1020 => 0.28365544626703
1021 => 0.28052213076734
1022 => 0.28679510774591
1023 => 0.30221660953958
1024 => 0.28630942977396
1025 => 0.28952743152299
1026 => 0.28860064680278
1027 => 0.28855126238362
1028 => 0.29043606480195
1029 => 0.28770206058949
1030 => 0.27656323558993
1031 => 0.28166809344572
1101 => 0.27969686267219
1102 => 0.28188409018041
1103 => 0.29368765496103
1104 => 0.28846901760968
1105 => 0.2829716070877
1106 => 0.28986657985531
1107 => 0.29864624955818
1108 => 0.29809683360676
1109 => 0.29703073702295
1110 => 0.30304026764689
1111 => 0.31296625161037
1112 => 0.31564920518987
1113 => 0.31762970667168
1114 => 0.31790278436518
1115 => 0.32071565432502
1116 => 0.30559014361645
1117 => 0.32959471756162
1118 => 0.33373964436898
1119 => 0.33296056991881
1120 => 0.33756748162
1121 => 0.33621201133144
1122 => 0.33424814755009
1123 => 0.3415510825147
1124 => 0.33317885689423
1125 => 0.32129553665988
1126 => 0.31477611215388
1127 => 0.32336141625035
1128 => 0.32860416187624
1129 => 0.3320692832337
1130 => 0.33311782686279
1201 => 0.30676429395595
1202 => 0.2925612013531
1203 => 0.30166522087274
1204 => 0.31277275301256
1205 => 0.30552844071458
1206 => 0.30581240404136
1207 => 0.29548391847622
1208 => 0.31368659480417
1209 => 0.3110346179718
1210 => 0.32479307846944
1211 => 0.32150951145313
1212 => 0.33272900188859
1213 => 0.32977453405087
1214 => 0.3420383648632
1215 => 0.34693073900421
1216 => 0.35514579662419
1217 => 0.36118882645075
1218 => 0.36473740914964
1219 => 0.3645243655548
1220 => 0.3785856181047
1221 => 0.37029418873877
1222 => 0.3598781993153
1223 => 0.35968980692866
1224 => 0.36508439544678
1225 => 0.37638997304769
1226 => 0.37932134483014
1227 => 0.38095958175144
1228 => 0.37845056487904
1229 => 0.36945081255441
1230 => 0.36556476513042
1231 => 0.36887579012529
]
'min_raw' => 0.13652947807636
'max_raw' => 0.38095958175144
'avg_raw' => 0.2587445299139
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.136529'
'max' => '$0.380959'
'avg' => '$0.258744'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.05404997602041
'max_diff' => 0.19682990369135
'year' => 2036
]
11 => [
'items' => [
101 => 0.36482669107619
102 => 0.37181657201148
103 => 0.38141517149366
104 => 0.37943309865756
105 => 0.38605887097965
106 => 0.39291584828144
107 => 0.40272163378911
108 => 0.40528522922801
109 => 0.40952275500369
110 => 0.41388456098158
111 => 0.4152854555077
112 => 0.41796019783013
113 => 0.4179461006178
114 => 0.42600661663734
115 => 0.4348976154203
116 => 0.43825376163378
117 => 0.44597103479267
118 => 0.43275547495357
119 => 0.44277962890094
120 => 0.45182166668232
121 => 0.4410413764799
122 => 0.45589949503846
123 => 0.45647640211287
124 => 0.46518701400081
125 => 0.45635714010106
126 => 0.45111398916535
127 => 0.46625076945845
128 => 0.47357498063817
129 => 0.47136886862443
130 => 0.45458024727069
131 => 0.44480854954497
201 => 0.41923413177703
202 => 0.44952813435578
203 => 0.46428345932372
204 => 0.45454203454365
205 => 0.45945504257788
206 => 0.48625882136443
207 => 0.49646396491019
208 => 0.49434136639201
209 => 0.49470005060064
210 => 0.50020656082147
211 => 0.52462545963123
212 => 0.50999308943878
213 => 0.52117898818646
214 => 0.52711194854847
215 => 0.53262281278017
216 => 0.51908987195363
217 => 0.50148371477667
218 => 0.49590710574253
219 => 0.45357344183177
220 => 0.45136979077943
221 => 0.45013281466629
222 => 0.44233385524669
223 => 0.43620600945766
224 => 0.4313329189739
225 => 0.4185444743165
226 => 0.42286019897965
227 => 0.40247808735159
228 => 0.41551784007354
301 => 0.38298749777187
302 => 0.41007973348504
303 => 0.39533466131916
304 => 0.4052355807111
305 => 0.40520103733607
306 => 0.38697030564615
307 => 0.37645520007307
308 => 0.38315583459827
309 => 0.39033944670631
310 => 0.39150496360227
311 => 0.40081870421181
312 => 0.40341796901774
313 => 0.39554207530768
314 => 0.38231337873326
315 => 0.38538610323305
316 => 0.37639293140916
317 => 0.36063274370514
318 => 0.37195198566064
319 => 0.37581687253619
320 => 0.37752382675818
321 => 0.36202549222106
322 => 0.35715557902429
323 => 0.35456287810085
324 => 0.38031273836427
325 => 0.38172337383652
326 => 0.37450636331672
327 => 0.40712793521124
328 => 0.39974466880337
329 => 0.40799358632514
330 => 0.38510728569147
331 => 0.38598157319617
401 => 0.37514683170695
402 => 0.38121356296322
403 => 0.37692579285116
404 => 0.38072343103032
405 => 0.38299971969666
406 => 0.39383268331142
407 => 0.41020342852829
408 => 0.39221459979487
409 => 0.38437660951095
410 => 0.38923925460056
411 => 0.40218911926609
412 => 0.42180882712572
413 => 0.4101935651894
414 => 0.4153482211968
415 => 0.41647428421974
416 => 0.40790962008826
417 => 0.42212461850876
418 => 0.42974255164475
419 => 0.43755697473313
420 => 0.4443420193456
421 => 0.43443572230878
422 => 0.44503688015008
423 => 0.43649421828627
424 => 0.42883056747028
425 => 0.42884219006515
426 => 0.42403466996021
427 => 0.41471949397036
428 => 0.41300163259739
429 => 0.42193816440155
430 => 0.42910441661577
501 => 0.42969466347216
502 => 0.43366226891329
503 => 0.43601025694376
504 => 0.45902373157732
505 => 0.46827994145239
506 => 0.47959825967653
507 => 0.4840073824903
508 => 0.49727726140173
509 => 0.48656075645388
510 => 0.48424217319844
511 => 0.45205378750363
512 => 0.45732463385793
513 => 0.46576376743218
514 => 0.45219294570794
515 => 0.4608005085194
516 => 0.46249982375149
517 => 0.45173181437869
518 => 0.45748347344292
519 => 0.44220877221639
520 => 0.41053637527409
521 => 0.42215987894059
522 => 0.43071869006817
523 => 0.41850421129532
524 => 0.44039819173005
525 => 0.42760818034357
526 => 0.42355436076288
527 => 0.40773896528755
528 => 0.41520322316151
529 => 0.42529873881391
530 => 0.41906088387039
531 => 0.43200536949682
601 => 0.45033821331207
602 => 0.46340328955454
603 => 0.46440626387874
604 => 0.45600629514696
605 => 0.46946729864752
606 => 0.46956534736231
607 => 0.45438128042386
608 => 0.4450811239693
609 => 0.44296810885513
610 => 0.44824683489135
611 => 0.4546561828059
612 => 0.46476193808121
613 => 0.47086863434376
614 => 0.48679165945508
615 => 0.4910999735013
616 => 0.49583350443889
617 => 0.50215896153838
618 => 0.50975429460024
619 => 0.49313613826345
620 => 0.49379640859483
621 => 0.47832181150804
622 => 0.46178498523911
623 => 0.47433437503273
624 => 0.49074103281253
625 => 0.4869773273901
626 => 0.48655383364455
627 => 0.4872660326572
628 => 0.48442832167981
629 => 0.47159346009957
630 => 0.46514787296446
701 => 0.4734643248134
702 => 0.47788414884843
703 => 0.4847389104776
704 => 0.48389391642034
705 => 0.50155104622942
706 => 0.50841207294934
707 => 0.5066567287145
708 => 0.50697975429843
709 => 0.51940131544949
710 => 0.53321664613836
711 => 0.54615652642194
712 => 0.55931952842718
713 => 0.54345101574915
714 => 0.53539396364504
715 => 0.54370678479127
716 => 0.53929588487965
717 => 0.56464222412972
718 => 0.56639714966623
719 => 0.59174165608748
720 => 0.61579661064893
721 => 0.60068812467816
722 => 0.61493474644744
723 => 0.63034362943504
724 => 0.66006986471928
725 => 0.65005911445712
726 => 0.64239103664476
727 => 0.63514474016395
728 => 0.65022313282333
729 => 0.66962124409641
730 => 0.67379941147183
731 => 0.68056963880279
801 => 0.6734515725883
802 => 0.68202449931438
803 => 0.71229069779236
804 => 0.70411250379649
805 => 0.69249815361206
806 => 0.71639041051382
807 => 0.72503692540777
808 => 0.78572269514852
809 => 0.86234098625033
810 => 0.83062051063136
811 => 0.81093058780131
812 => 0.81555818671759
813 => 0.84353659293513
814 => 0.85252236902199
815 => 0.82809593203516
816 => 0.83672376252333
817 => 0.88426395678273
818 => 0.90976774573085
819 => 0.87513017472346
820 => 0.77956649006006
821 => 0.69145240845331
822 => 0.71482423072423
823 => 0.71217459139079
824 => 0.7632505993625
825 => 0.7039174565744
826 => 0.70491647453062
827 => 0.75704868025675
828 => 0.74314070154129
829 => 0.72061155722157
830 => 0.69161689613909
831 => 0.63801758344658
901 => 0.59054317746741
902 => 0.68365142029529
903 => 0.6796364235582
904 => 0.67382211329371
905 => 0.68676123161325
906 => 0.74958991734011
907 => 0.7481415127775
908 => 0.73892750193265
909 => 0.7459162479499
910 => 0.71938639625466
911 => 0.72622374311001
912 => 0.69143845073259
913 => 0.70716285564932
914 => 0.72056321979621
915 => 0.72325354129448
916 => 0.72931497300131
917 => 0.67752070272062
918 => 0.70077480947676
919 => 0.71443441858086
920 => 0.65271980770773
921 => 0.7132145191515
922 => 0.67661907970688
923 => 0.66419803791432
924 => 0.68092133434018
925 => 0.67440424945908
926 => 0.66880124257438
927 => 0.66567466846084
928 => 0.67795441167312
929 => 0.6773815469748
930 => 0.65728950368406
1001 => 0.63108025226776
1002 => 0.63987693733242
1003 => 0.63668101917906
1004 => 0.62509859950966
1005 => 0.63290375190016
1006 => 0.59853381086965
1007 => 0.53940211372074
1008 => 0.57846632411018
1009 => 0.57696239450387
1010 => 0.57620404499859
1011 => 0.60555971945078
1012 => 0.60273784870284
1013 => 0.59761612566349
1014 => 0.62500453504954
1015 => 0.61500739719754
1016 => 0.64581622043548
1017 => 0.66610890400975
1018 => 0.66096202305577
1019 => 0.68004739004042
1020 => 0.6400795951895
1021 => 0.65335529340937
1022 => 0.65609139641316
1023 => 0.62466656632911
1024 => 0.60319954165587
1025 => 0.60176793585216
1026 => 0.56454707340698
1027 => 0.58443015768889
1028 => 0.60192644903904
1029 => 0.59354708324937
1030 => 0.5908944263668
1031 => 0.60444627508879
1101 => 0.60549936979823
1102 => 0.58148869882116
1103 => 0.58648127763635
1104 => 0.60730116124288
1105 => 0.58595666998778
1106 => 0.54448781008198
1107 => 0.5342029594735
1108 => 0.53283077081492
1109 => 0.50493744026293
1110 => 0.53489024237009
1111 => 0.52181504156512
1112 => 0.56311944424304
1113 => 0.53952659095337
1114 => 0.53850955020249
1115 => 0.53697214394009
1116 => 0.51296320207502
1117 => 0.51821963449562
1118 => 0.53569281643894
1119 => 0.54192744460581
1120 => 0.5412771218092
1121 => 0.53560718831496
1122 => 0.53820285483387
1123 => 0.52984130858631
1124 => 0.52688867257576
1125 => 0.51756934113995
1126 => 0.50387249846032
1127 => 0.50577712844254
1128 => 0.47864009912037
1129 => 0.46385440527449
1130 => 0.45976192009027
1201 => 0.45428927786519
1202 => 0.46038006959173
1203 => 0.47856322332589
1204 => 0.45663048215124
1205 => 0.41902833581022
1206 => 0.42128828887625
1207 => 0.42636573242954
1208 => 0.41690394995863
1209 => 0.40794916691712
1210 => 0.4157346242472
1211 => 0.39980209914218
1212 => 0.42829110196995
1213 => 0.42752055428296
1214 => 0.43813949278904
1215 => 0.44477973295945
1216 => 0.42947612916995
1217 => 0.42562731420223
1218 => 0.42781977412673
1219 => 0.39158329533962
1220 => 0.43517819939012
1221 => 0.43555520993067
1222 => 0.43232701679278
1223 => 0.45553995735801
1224 => 0.50452650224838
1225 => 0.48609579358142
1226 => 0.47895886611445
1227 => 0.46539156178269
1228 => 0.48346918925794
1229 => 0.48208110952276
1230 => 0.47580368654667
1231 => 0.47200708154398
]
'min_raw' => 0.35456287810085
'max_raw' => 0.90976774573085
'avg_raw' => 0.63216531191585
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.354562'
'max' => '$0.909767'
'avg' => '$0.632165'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.2180334000245
'max_diff' => 0.52880816397941
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.01112932359366
]
1 => [
'year' => 2028
'avg' => 0.019101150152445
]
2 => [
'year' => 2029
'avg' => 0.052180899569116
]
3 => [
'year' => 2030
'avg' => 0.040257486307446
]
4 => [
'year' => 2031
'avg' => 0.039537840609265
]
5 => [
'year' => 2032
'avg' => 0.069322277604417
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.01112932359366
'min' => '$0.011129'
'max_raw' => 0.069322277604417
'max' => '$0.069322'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.069322277604417
]
1 => [
'year' => 2033
'avg' => 0.17830402632431
]
2 => [
'year' => 2034
'avg' => 0.11301766077488
]
3 => [
'year' => 2035
'avg' => 0.13330459005802
]
4 => [
'year' => 2036
'avg' => 0.2587445299139
]
5 => [
'year' => 2037
'avg' => 0.63216531191585
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.069322277604417
'min' => '$0.069322'
'max_raw' => 0.63216531191585
'max' => '$0.632165'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.63216531191585
]
]
]
]
'prediction_2025_max_price' => '$0.019029'
'last_price' => 0.01845113
'sma_50day_nextmonth' => '$0.017343'
'sma_200day_nextmonth' => '$0.023247'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'augmenter'
'sma_200day_date_nextmonth' => '4 févr. 2026'
'sma_50day_date_nextmonth' => '4 févr. 2026'
'daily_sma3' => '$0.018248'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.017998'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.0175015'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.018025'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.019658'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.024489'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.023766'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.018251'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.018041'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.017835'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.018264'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.020113'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.0220019'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.02314'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.023439'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.022524'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.018343'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.018886'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.020462'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.022027'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.02393'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.01622'
'weekly_ema100_action' => 'BUY'
'weekly_ema200' => '$0.00811'
'weekly_ema200_action' => 'BUY'
'rsi_14' => '48.60'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 106.85
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.017573'
'vwma_10_action' => 'BUY'
'hma_9' => '0.018494'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 34.47
'cci_20_action' => 'NEUTRAL'
'adx_14' => 19.09
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.001226'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 76.84
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.007722'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 14
'buy_signals' => 18
'sell_pct' => 43.75
'buy_pct' => 56.25
'overall_action' => 'bullish'
'overall_action_label' => 'Haussier'
'overall_action_dir' => 1
'last_updated' => 1767677995
'last_updated_date' => '6 janvier 2026'
]
Prévision du prix de deBridge pour 2026
La prévision du prix de deBridge pour 2026 suggère que le prix moyen pourrait varier entre $0.006374 à la baisse et $0.019029 à la hausse. Sur le marché des cryptomonnaies, comparé au prix moyen d'aujourd'hui, deBridge pourrait potentiellement gagner 3.13% d'ici 2026 si DBR atteint l'objectif de prix prévu.
Prévision du prix de deBridge de 2027 à 2032
La prévision du prix de DBR pour 2027-2032 se situe actuellement dans une fourchette de prix comprise entre $0.011129 à la baisse et $0.069322 à la hausse. Compte tenu de la volatilité des prix sur le marché, si deBridge atteint l'objectif de prix le plus élevé, il pourrait gagner 275.71% d'ici 2032 par rapport au prix actuel.
| Prévision du Prix de deBridge | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2027 | $0.006136 | $0.011129 | $0.016121 |
| 2028 | $0.011075 | $0.0191011 | $0.027126 |
| 2029 | $0.024329 | $0.05218 | $0.080032 |
| 2030 | $0.020691 | $0.040257 | $0.059823 |
| 2031 | $0.024463 | $0.039537 | $0.054612 |
| 2032 | $0.037341 | $0.069322 | $0.1013032 |
Prévision du prix de deBridge de 2032 à 2037
La prévision du prix de deBridge pour 2032-2037 est actuellement estimée entre $0.069322 à la baisse et $0.632165 à la hausse. Par rapport au prix actuel, deBridge pourrait potentiellement gagner 3326.16% d'ici 2037 s'il atteint l'objectif de prix le plus élevé. Veuillez noter que ces informations sont à titre général seulement et ne doivent pas être considérées comme un conseil en investissement à long terme.
| Prévision du Prix de deBridge | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2032 | $0.037341 | $0.069322 | $0.1013032 |
| 2033 | $0.086772 | $0.178304 | $0.269835 |
| 2034 | $0.069761 | $0.113017 | $0.156273 |
| 2035 | $0.082479 | $0.1333045 | $0.184129 |
| 2036 | $0.136529 | $0.258744 | $0.380959 |
| 2037 | $0.354562 | $0.632165 | $0.909767 |
deBridge Histogramme des prix potentiels
Prévision du prix de deBridge basée sur l'analyse technique
Au 6 janvier 2026, le sentiment global de prévision du prix pour deBridge est Haussier, avec 18 indicateurs techniques montrant des signaux haussiers et 14 indiquant des signaux baissiers. La prévision du prix de DBR a été mise à jour pour la dernière fois le 6 janvier 2026.
Moyennes Mobiles Simples sur 50 et 200 jours de deBridge et Indice de Force Relative sur 14 jours - RSI (14)
Selon nos indicateurs techniques, le SMA sur 200 jours de deBridge devrait augmenter au cours du prochain mois, atteignant $0.023247 d'ici le 4 févr. 2026. Le SMA à court terme sur 50 jours pour deBridge devrait atteindre $0.017343 d'ici le 4 févr. 2026.
Le Relative Strength Index (RSI), un oscillateur de momentum, est un outil couramment utilisé pour identifier si une cryptomonnaie est survendue (en dessous de 30) ou surachetée (au-dessus de 70). Actuellement, le RSI est à 48.60, ce qui suggère que le marché de DBR est dans un état NEUTRAL.
Moyennes Mobiles et Oscillateurs Populaires de DBR pour le Samedi 19 Octobre 2024
Les moyennes mobiles (MA) sont des indicateurs largement utilisés sur les marchés financiers, conçus pour lisser les mouvements de prix sur une période donnée. En tant qu'indicateurs retardés, ils sont basés sur des données historiques de prix. Le tableau ci-dessous met en évidence deux types : la moyenne mobile simple (SMA) et la moyenne mobile exponentielle (EMA).
Moyenne Mobile Simple Quotidienne (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 3 | $0.018248 | BUY |
| SMA 5 | $0.017998 | BUY |
| SMA 10 | $0.0175015 | BUY |
| SMA 21 | $0.018025 | BUY |
| SMA 50 | $0.019658 | SELL |
| SMA 100 | $0.024489 | SELL |
| SMA 200 | $0.023766 | SELL |
Moyenne Mobile Exponentielle Quotidienne (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 3 | $0.018251 | BUY |
| EMA 5 | $0.018041 | BUY |
| EMA 10 | $0.017835 | BUY |
| EMA 21 | $0.018264 | BUY |
| EMA 50 | $0.020113 | SELL |
| EMA 100 | $0.0220019 | SELL |
| EMA 200 | $0.02314 | SELL |
Moyenne Mobile Simple Hebdomadaire (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 21 | $0.023439 | SELL |
| SMA 50 | $0.022524 | SELL |
| SMA 100 | — | — |
| SMA 200 | — | — |
Moyenne Mobile Exponentielle Hebdomadaire (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 21 | $0.022027 | SELL |
| EMA 50 | $0.02393 | SELL |
| EMA 100 | $0.01622 | BUY |
| EMA 200 | $0.00811 | BUY |
Oscillateurs de deBridge
Un oscillateur est un outil d'analyse technique qui établit des limites hautes et basses entre deux extrêmes, créant un indicateur de tendance qui fluctue à l'intérieur de ces limites. Les traders utilisent cet indicateur pour identifier les conditions de surachat ou de survente à court terme.
| Période | Valeur | Action |
|---|---|---|
| RSI (14) | 48.60 | NEUTRAL |
| Stoch RSI (14) | 106.85 | SELL |
| Stochastique Rapide (14) | 100 | SELL |
| Indice de Canal des Matières Premières (20) | 34.47 | NEUTRAL |
| Indice Directionnel Moyen (14) | 19.09 | NEUTRAL |
| Oscillateur Impressionnant (5, 34) | -0.001226 | NEUTRAL |
| Momentum (10) | 0 | SELL |
| MACD (12, 26) | 0 | BUY |
| Plage de Pourcentage de Williams (14) | -0 | SELL |
| Oscillateur Ultime (7, 14, 28) | 76.84 | SELL |
| VWMA (10) | 0.017573 | BUY |
| Moyenne Mobile de Hull (9) | 0.018494 | BUY |
| Nuage Ichimoku B/L (9, 26, 52, 26) | -0.007722 | SELL |
Prévision du cours de deBridge basée sur les flux monétaires mondiaux
Définitions des flux monétaires mondiaux utilisés pour la prédiction du cours de deBridge
M0 : le total de toutes les devises physiques, plus les comptes à la banque centrale qui peuvent être échangés contre des devises physiques.
M1 : M0 plus le montant des comptes à vue, y compris les comptes de "chèques" et les comptes "courants".
M2 : M1 plus la plupart des comptes d'épargne, comptes du marché monétaire et comptes de certificats de dépôt (CD) de moins de 100 000 $.
Prédictions du cours de deBridge par des sociétés Internet ou des niches technologiques
| Comparaison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Action Facebook | $0.025926 | $0.036431 | $0.051192 | $0.071934 | $0.101079 | $0.142033 |
| Action Amazon.com | $0.038499 | $0.080331 | $0.167615 | $0.34974 | $0.729754 | $1.52 |
| Action Apple | $0.026171 | $0.037122 | $0.052655 | $0.074687 | $0.105938 | $0.150265 |
| Action Netflix | $0.029112 | $0.045935 | $0.072479 | $0.114361 | $0.180443 | $0.284712 |
| Action Google | $0.023894 | $0.030942 | $0.04007 | $0.051891 | $0.067199 | $0.087022 |
| Action Tesla | $0.041827 | $0.094819 | $0.214948 | $0.487271 | $1.10 | $2.50 |
| Action Kodak | $0.013836 | $0.010375 | $0.00778 | $0.005834 | $0.004375 | $0.003281 |
| Action Nokia | $0.012223 | $0.008097 | $0.005364 | $0.003553 | $0.002354 | $0.001559 |
Ce calcul montre la valeur potentielle des cryptomonnaies si l'on suppose que leur capitalisation se comportera comme celle de certaines sociétés Internet ou niches technologiques. En extrapolant les données, vous pourrez obtenir une potentielle image des cours futurs pour 2024, 2025, 2026, 2027, 2028, 2029 et 2030.
Aperçu des prévisions relatives à deBridge
Vous vous posez peut-être des questions telles que : "Devrais-je investir dans deBridge maintenant ?", "Devrais-je acheter DBR aujourd'hui ?", " deBridge sera-t-il un bon ou un mauvais investissement à court ou à long terme ?".
Nous mettons régulièrement à jour les prévisions de deBridge avec de nouvelles valeurs. Regardez nos prévisions similaires. Nous faisons une prévision des cours futurs pour une grande quantité de devises numériques comme deBridge en utilisant des méthodes d'analyse technique.
Si vous souhaitez trouver des cryptomonnaies ayant un bon rendement, vous devriez consulter un maximum d'informations disponibles à propos de deBridge afin de prendre une décision responsable concernant cet investissement.
Le cours de deBridge est de $0.01845 USD actuellement, mais ce cours peut subir une hausse ou une baisse, ce qui pourrait causer la perte de votre investissement, car les cryptomonnaies sont des actifs à haut risque.
Prévision à court terme de deBridge
basée sur l'historique des cours sur 4 heures
Prévision à long terme de deBridge
basée sur l'historique des cours sur 1 mois
Prévision du cours de deBridge basée sur le modèle de croissance du Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si deBridge présente 1 % de la précédente croissance annuelle moyenne du Bitcoin | $0.01893 | $0.019422 | $0.019927 | $0.020445 |
| Si deBridge présente 2 % de la précédente croissance annuelle moyenne du Bitcoin | $0.01941 | $0.020419 | $0.02148 | $0.022597 |
| Si deBridge présente 5 % de la précédente croissance annuelle moyenne du Bitcoin | $0.020849 | $0.023558 | $0.02662 | $0.03008 |
| Si deBridge présente 10 % de la précédente croissance annuelle moyenne du Bitcoin | $0.023247 | $0.029289 | $0.0369032 | $0.046495 |
| Si deBridge présente 20 % de la précédente croissance annuelle moyenne du Bitcoin | $0.028043 | $0.042621 | $0.064779 | $0.098455 |
| Si deBridge présente 50 % de la précédente croissance annuelle moyenne du Bitcoin | $0.042431 | $0.097577 | $0.224395 | $0.516033 |
| Si deBridge présente 100 % de la précédente croissance annuelle moyenne du Bitcoin | $0.066411 | $0.239036 | $0.860369 | $3.09 |
Boîte à questions
Est-ce que DBR est un bon investissement ?
La décision d'acquérir deBridge dépend entièrement de votre tolérance individuelle au risque. Comme vous pouvez le discerner, la valeur de deBridge a connu une hausse de 0.7027% au cours des 24 heures précédentes, et deBridge a enregistré une déclin de sur une période de 30 jours précédents. Par conséquent, la détermination de si investir ou non dans deBridge dépendra de la mesure dans laquelle cet investissement s'aligne avec vos aspirations de trading.
Est-ce que deBridge peut monter ?
Il semble que la valeur moyenne de deBridge pourrait potentiellement s'envoler jusqu'à $0.019029 pour la fin de cette année. En regardant les perspectives de deBridge sur une période de cinq ans plus longue, la monnaie numérique pourrait potentiellement croître jusqu'à $0.059823. Cependant, compte tenu de l'imprévisibilité du marché, il est essentiel de mener des recherches approfondies avant d'investir des fonds dans un projet, un réseau ou un actif particulier.
Quel sera le prix de deBridge la semaine prochaine ?
Basé sur notre nouveau pronostic expérimental de deBridge, le prix de deBridge va augmenter de 0.86% durant la prochaine semaine et atteindre $0.018609 d'ici 13 janvier 2026.
Quel sera le prix de deBridge le mois prochain ?
Basé sur notre nouveau pronostic expérimental de deBridge, le prix de deBridge va diminuer de -11.62% durant le prochain mois et atteindre $0.016307 d'ici 5 février 2026.
Jusqu'où le prix de deBridge peut-il monter cette année en 2026 ?
Selon notre prédiction la plus récente sur la valeur de deBridge en 2026, DBR devrait fluctuer dans la fourchette de $0.006374 et $0.019029. Cependant, il est crucial de garder à l'esprit que le marché des cryptomonnaies est exceptionnellement instable, et cette prévision de prix de deBridge ne prend pas en compte les fluctuations de prix soudaines et extrêmes.
Où sera deBridge dans 5 ans ?
L'avenir de deBridge semble suivre une tendance haussière, avec un prix maximum de $0.059823 prévue après une période de cinq ans. Selon la prévision de deBridge pour 2030, la valeur de deBridge pourrait potentiellement atteindre son point le plus élevé d'environ $0.059823, tandis que son point le plus bas devrait être autour de $0.020691.
Combien vaudra deBridge en 2026 ?
Basé sur notre nouvelle simulation expérimentale de prédiction de prix de deBridge, il est attendu que la valeur de DBR en 2026 augmente de 3.13% jusqu'à $0.019029 si le meilleur scénario se produit. Le prix sera entre $0.019029 et $0.006374 durant 2026.
Combien vaudra deBridge en 2027 ?
Selon notre dernière simulation expérimentale pour la prédiction de prix de deBridge, le valeur de DBR pourrait diminuer de -12.62% jusqu'à $0.016121 en 2027, en supposant les conditions les plus favorables. Il est prévu que le prix fluctue entre $0.016121 et $0.006136 tout au long de l'année.
Combien vaudra deBridge en 2028 ?
Notre nouveau modèle expérimental de prédiction de prix de deBridge suggère que la valeur de DBR en 2028 pourrait augmenter de 47.02%, atteignant $0.027126 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.027126 et $0.011075 durant l'année.
Combien vaudra deBridge en 2029 ?
Basé sur notre modèle de prévision expérimental, la valeur de deBridge pourrait connaître un 333.75% croissance en 2029, atteignant potentiellement $0.080032 sous des conditions optimales. Le range de prix prévu pour 2029 se situe entre $0.080032 et $0.024329.
Combien vaudra deBridge en 2030 ?
En utilisant notre nouvelle simulation expérimentale pour les prédictions de prix de deBridge, il est prévu que la valeur de DBR en 2030 augmente de 224.23%, atteignant $0.059823 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.059823 et $0.020691 au cours de 2030.
Combien vaudra deBridge en 2031 ?
Notre simulation expérimentale indique que le prix de deBridge pourrait augmenter de 195.98% en 2031, atteignant potentiellement $0.054612 dans des conditions idéales. Il est probable que le prix fluctue entre $0.054612 et $0.024463 durant l'année.
Combien vaudra deBridge en 2032 ?
Basé sur les résultats de notre dernière prédiction expérimentale de prix de deBridge, DBR pourrait connaître une 449.04% hausse en valeur, atteignant $0.1013032 si le scénario le plus positif se réalise en 2032. Il est prévu que le prix reste dans une fourchette de $0.1013032 et $0.037341 tout au long de l'année.
Combien vaudra deBridge en 2033 ?
Selon notre prédiction expérimentale de prix de deBridge, la valeur de DBR est anticipée à augmenter de 1362.43% en 2033, avec le prix potentiel le plus élevé étant $0.269835. Tout au long de l'année, le prix de DBR pourrait osciller entre $0.269835 et $0.086772.
Combien vaudra deBridge en 2034 ?
Les résultats de notre nouvelle simulation de prédiction de prix de deBridge suggèrent que DBR pourrait augmenter de 746.96% en 2034, atteignant potentiellement $0.156273 dans les meilleures circonstances. La fourchette de prix prévue pour l'année est entre $0.156273 et $0.069761.
Combien vaudra deBridge en 2035 ?
Basé sur notre prédiction expérimentale pour le prix de deBridge, DBR pourrait augmenter de 897.93%, avec la valeur potentiellement atteignant $0.184129 en 2035. La fourchette de prix attendue pour l'année se situe entre $0.184129 et $0.082479.
Combien vaudra deBridge en 2036 ?
Notre récente simulation de prédiction de prix de deBridge suggère que la valeur de DBR pourrait augmenter de 1964.7% en 2036, pouvant atteindre $0.380959 si les conditions sont optimales. La fourchette de prix attendue pour 2036 est entre $0.380959 et $0.136529.
Combien vaudra deBridge en 2037 ?
Selon la simulation expérimentale, la valeur de deBridge pourrait augmenter de 4830.69% en 2037, avec un maximum de $0.909767 sous des conditions favorables. Il est prévu que le prix chute entre $0.909767 et $0.354562 au cours de l'année.
Prévisions liées
Comment lire et prédire les mouvements de prix de deBridge ?
Les traders de deBridge utilisent des indicateurs et des modèles graphiques pour prédire la direction du marché. Ils identifient également des niveaux clés de support et de résistance pour évaluer quand une tendance baissière pourrait ralentir ou une tendance haussière pourrait s'arrêter.
Indicateurs de prédiction du prix de deBridge
Les moyennes mobiles sont des outils populaires pour la prédiction du prix de deBridge. Une moyenne mobile simple (SMA) calcule le prix de clôture moyen de DBR sur une période spécifique, comme une SMA de 12 jours. Une moyenne mobile exponentielle (EMA) donne plus de poids aux prix récents, réagissant plus rapidement aux changements de prix.
Les moyennes mobiles couramment utilisées sur le marché des cryptomonnaies incluent les moyennes sur 50 jours, 100 jours et 200 jours, qui aident à identifier les niveaux clés de résistance et de support. Un mouvement de prix de DBR au-dessus de ces moyennes est considéré comme haussier, tandis qu'une chute en dessous indique une faiblesse.
Les traders utilisent également le RSI et les niveaux de retracement de Fibonacci pour évaluer la direction future de DBR.
Comment lire les graphiques de deBridge et prédire les mouvements de prix ?
La plupart des traders préfèrent les graphiques en chandeliers aux simples graphiques linéaires parce qu'ils fournissent des informations plus détaillées. Les chandeliers peuvent représenter l'action des prix de deBridge dans différentes périodes, comme 5 minutes pour les tendances à court terme et hebdomadaire pour les tendances à long terme. Les options populaires incluent les graphiques de 1 heure, 4 heures et 1 jour.
Par exemple, un graphique en chandeliers de 1 heure montre les prix d'ouverture, de clôture, les plus hauts et les plus bas de DBR au sein de chaque heure. La couleur du chandelier est cruciale : le vert indique que le prix a clôturé plus haut qu'il n'a ouvert, tandis que le rouge signifie le contraire. Certains graphiques utilisent des chandeliers creux et pleins pour transmettre la même information.
Qu'est-ce qui affecte le prix de deBridge ?
L'action du prix de deBridge est déterminée par l'offre et la demande, influencée par des facteurs tels que les réductions de récompenses de bloc, les hard forks et les mises à jour de protocole. Les événements du monde réel, tels que les réglementations, l'adoption par les entreprises et les gouvernements et les piratages d'échanges de cryptomonnaies, impactent également le prix de DBR. La capitalisation boursière de deBridge peut changer rapidement.
Les traders surveillent souvent l'activité des « baleines » de DBR, de grands détenteurs de deBridge, car leurs actions peuvent influencer significativement les mouvements de prix sur le marché relativement petit de deBridge.
Modèles de prédiction de prix haussiers et baissiers
Les traders identifient souvent des modèles de chandeliers pour obtenir un avantage dans les prédictions de prix des cryptomonnaies. Certaines formations indiquent des tendances haussières, tandis que d'autres suggèrent des mouvements baissiers.
Modèles de chandeliers haussiers couramment suivis :
- Marteau
- Englobante haussière
- Ligne pénétrante
- Étoile du matin
- Trois soldats blancs
Modèles de chandeliers baissiers courants :
- Harami baissier
- Nuage sombre
- Étoile du soir
- Étoile filante
- Pendu


