Previsão de Preço deBridge - Projeção DBR
Previsão de Preço deBridge até $0.01890027 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.006331 | $0.01890027 |
| 2027 | $0.006095 | $0.016012 |
| 2028 | $0.01100034 | $0.026943 |
| 2029 | $0.024164 | $0.07949 |
| 2030 | $0.02055 | $0.059418 |
| 2031 | $0.024297 | $0.054242 |
| 2032 | $0.037088 | $0.100617 |
| 2033 | $0.086185 | $0.268008 |
| 2034 | $0.069288 | $0.155215 |
| 2035 | $0.081921 | $0.182882 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em deBridge hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,954.45, com um retorno de 39.54% nos próximos 90 dias.
Previsão de preço de longo prazo de deBridge para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'deBridge'
'name_with_ticker' => 'deBridge <small>DBR</small>'
'name_lang' => 'deBridge'
'name_lang_with_ticker' => 'deBridge <small>DBR</small>'
'name_with_lang' => 'deBridge'
'name_with_lang_with_ticker' => 'deBridge <small>DBR</small>'
'image' => '/uploads/coins/debridge.png?1724709151'
'price_for_sd' => 0.01832
'ticker' => 'DBR'
'marketcap' => '$75.48M'
'low24h' => '$0.01819'
'high24h' => '$0.01914'
'volume24h' => '$8.34M'
'current_supply' => '4.12B'
'max_supply' => '10B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.01832'
'change_24h_pct' => '0.4231%'
'ath_price' => '$0.05521'
'ath_days' => 380
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '22 de dez. de 2024'
'ath_pct' => '-66.71%'
'fdv' => '$183.28M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.9036078'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.018483'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.016197'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.006331'
'current_year_max_price_prediction' => '$0.01890027'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.02055'
'grand_prediction_max_price' => '$0.059418'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.018673471850419
107 => 0.018743191815838
108 => 0.018900274457917
109 => 0.017558020480018
110 => 0.018160653109588
111 => 0.01851464332042
112 => 0.016915302669609
113 => 0.018483029498025
114 => 0.017534654824508
115 => 0.017212762216207
116 => 0.017646148207158
117 => 0.017477257265003
118 => 0.017332054750546
119 => 0.017251029252584
120 => 0.017569260093272
121 => 0.017554414244186
122 => 0.017033726822875
123 => 0.01635451130771
124 => 0.016582478329089
125 => 0.01649965577302
126 => 0.016199496145503
127 => 0.016401767493038
128 => 0.015511066845681
129 => 0.013978662676495
130 => 0.014991015809469
131 => 0.014952041315077
201 => 0.014932388607653
202 => 0.015693144007697
203 => 0.015620014929596
204 => 0.015487284936761
205 => 0.016197058455096
206 => 0.015937981573103
207 => 0.016736395477216
208 => 0.017262282512639
209 => 0.017128900549793
210 => 0.017623499848441
211 => 0.016587730228833
212 => 0.016931771348602
213 => 0.017002677746566
214 => 0.016188299960055
215 => 0.015631979751176
216 => 0.015594879535758
217 => 0.014630296959208
218 => 0.015145569185762
219 => 0.015598987421717
220 => 0.015381835273371
221 => 0.015313091390441
222 => 0.015664288979603
223 => 0.015691580040085
224 => 0.015069340968922
225 => 0.015198724175566
226 => 0.015738273655437
227 => 0.015185128913014
228 => 0.014110459034167
301 => 0.01384392604574
302 => 0.013808365631906
303 => 0.013085507028292
304 => 0.013861737054503
305 => 0.013522891846391
306 => 0.014593299798829
307 => 0.01398188851711
308 => 0.013955531798767
309 => 0.013915689753302
310 => 0.013293495492259
311 => 0.013429716492919
312 => 0.013882535846158
313 => 0.014044106892769
314 => 0.014027253708895
315 => 0.013880316784293
316 => 0.013947583755937
317 => 0.013730893402905
318 => 0.013654375529229
319 => 0.01341286407201
320 => 0.013057908949141
321 => 0.013107267636043
322 => 0.012404008658579
323 => 0.012020835842878
324 => 0.011914778657629
325 => 0.011772954557078
326 => 0.011930798067165
327 => 0.012402016414256
328 => 0.011833627113116
329 => 0.010859163524184
330 => 0.010917730446284
331 => 0.011049312931568
401 => 0.010804109840747
402 => 0.010572045693622
403 => 0.010773806641588
404 => 0.010360913572831
405 => 0.011099209086307
406 => 0.011079240261717
407 => 0.011354431173252
408 => 0.011526513697721
409 => 0.011129919191199
410 => 0.011030176745314
411 => 0.011086994575531
412 => 0.010147922405319
413 => 0.011277688942444
414 => 0.011287459210371
415 => 0.011203800244673
416 => 0.011805366048064
417 => 0.013074857526297
418 => 0.012597223767009
419 => 0.012412269538856
420 => 0.012060671415937
421 => 0.012529155038896
422 => 0.012493182806136
423 => 0.01233050272753
424 => 0.012232113308396
425 => 0.012413398829934
426 => 0.012209650026079
427 => 0.012173051142264
428 => 0.011951301726323
429 => 0.011872147273788
430 => 0.01181354446836
501 => 0.011749028537777
502 => 0.011891334604275
503 => 0.011568850335669
504 => 0.011179965921252
505 => 0.011147634389981
506 => 0.011236904590437
507 => 0.01119740917212
508 => 0.011147445301113
509 => 0.011052050664509
510 => 0.011023749113613
511 => 0.011115715424065
512 => 0.011011890821533
513 => 0.011165089678188
514 => 0.011123428066057
515 => 0.010890709687351
516 => 0.010600656424105
517 => 0.010598074341654
518 => 0.01053558284187
519 => 0.010455990521236
520 => 0.010433849758461
521 => 0.010756814897307
522 => 0.011425343069187
523 => 0.011294094992523
524 => 0.011388935178756
525 => 0.011855455028241
526 => 0.012003747659651
527 => 0.01189849306238
528 => 0.011754414077814
529 => 0.011760752821922
530 => 0.012253114327857
531 => 0.012283822311039
601 => 0.01236141147777
602 => 0.012461135483715
603 => 0.011915476491811
604 => 0.011735052332473
605 => 0.011649557356228
606 => 0.011386265920112
607 => 0.011670203161061
608 => 0.011504765090165
609 => 0.011527088338098
610 => 0.011512550293596
611 => 0.011520489048953
612 => 0.011099002717664
613 => 0.011252570184116
614 => 0.01099723448624
615 => 0.010655368649561
616 => 0.010654222595402
617 => 0.010737893774609
618 => 0.010688122883163
619 => 0.01055419069401
620 => 0.010573215129337
621 => 0.01040654105742
622 => 0.010593452379399
623 => 0.010598812327313
624 => 0.010526841287222
625 => 0.010814803967523
626 => 0.010932782512598
627 => 0.010885409632241
628 => 0.010929458705026
629 => 0.011299548942658
630 => 0.011359889799562
701 => 0.011386689222305
702 => 0.011350781546072
703 => 0.010936223275185
704 => 0.010954610697337
705 => 0.010819695993834
706 => 0.010705707286335
707 => 0.010710266236843
708 => 0.010768871249992
709 => 0.011024802779553
710 => 0.011563395595526
711 => 0.011583834799186
712 => 0.011608607710275
713 => 0.011507843831007
714 => 0.011477452480839
715 => 0.011517546516384
716 => 0.011719813660198
717 => 0.012240099669083
718 => 0.012056195844809
719 => 0.011906679173041
720 => 0.012037845603587
721 => 0.012017653559721
722 => 0.011847212388936
723 => 0.011842428672944
724 => 0.011515297572869
725 => 0.011394364653587
726 => 0.011293304054562
727 => 0.011182948518681
728 => 0.011117526057859
729 => 0.011218044691658
730 => 0.011241034492509
731 => 0.011021248742943
801 => 0.010991292757414
802 => 0.011170774544914
803 => 0.011091791301991
804 => 0.011173027526027
805 => 0.011191875026835
806 => 0.011188840145111
807 => 0.011106372568331
808 => 0.011158934942552
809 => 0.011034609257922
810 => 0.010899423749
811 => 0.010813183816663
812 => 0.010737928037632
813 => 0.01077968431773
814 => 0.010630830803577
815 => 0.01058320956857
816 => 0.011141127992857
817 => 0.011553268331511
818 => 0.011547275647762
819 => 0.011510796726629
820 => 0.011456596449306
821 => 0.011715848572319
822 => 0.011625530316571
823 => 0.011691244393971
824 => 0.01170797138468
825 => 0.01175859894771
826 => 0.011776693949907
827 => 0.01172199828548
828 => 0.011538432955152
829 => 0.011081005604841
830 => 0.01086807193847
831 => 0.010797800281877
901 => 0.010800354523129
902 => 0.010729897146756
903 => 0.010750650001776
904 => 0.010722680150699
905 => 0.010669712019391
906 => 0.010776413684882
907 => 0.010788710057836
908 => 0.01076380461412
909 => 0.010769670747705
910 => 0.010563464310994
911 => 0.01057914173852
912 => 0.010491847829863
913 => 0.010475481274333
914 => 0.010254809874797
915 => 0.0098638585036876
916 => 0.01008048351385
917 => 0.0098188309636597
918 => 0.0097197391782195
919 => 0.010188824278559
920 => 0.01014174114488
921 => 0.010061155286569
922 => 0.0099419520065612
923 => 0.0098977383504715
924 => 0.009629110172413
925 => 0.0096132381865777
926 => 0.0097463775651944
927 => 0.0096849383230091
928 => 0.0095986543581203
929 => 0.0092861425837584
930 => 0.008934775880283
1001 => 0.0089453814324486
1002 => 0.0090571446434142
1003 => 0.0093821112526191
1004 => 0.0092551411764233
1005 => 0.0091630229293295
1006 => 0.0091457719507132
1007 => 0.0093617040654666
1008 => 0.0096672932470193
1009 => 0.0098106688538312
1010 => 0.0096685879818625
1011 => 0.0095053731263222
1012 => 0.0095153072583142
1013 => 0.0095813945878869
1014 => 0.0095883394318004
1015 => 0.009482103339602
1016 => 0.0095120081772744
1017 => 0.0094665799942943
1018 => 0.0091877873191997
1019 => 0.0091827448437683
1020 => 0.0091143246251609
1021 => 0.0091122528881334
1022 => 0.0089958530280588
1023 => 0.0089795678830001
1024 => 0.0087484488958555
1025 => 0.0089005721130869
1026 => 0.0087985358457955
1027 => 0.0086447431230651
1028 => 0.0086182291996984
1029 => 0.0086174321591455
1030 => 0.008775342897966
1031 => 0.0088987268341636
1101 => 0.0088003108103505
1102 => 0.0087779033894427
1103 => 0.0090171560221443
1104 => 0.0089867089437969
1105 => 0.0089603419703106
1106 => 0.0096399310875427
1107 => 0.0091019832722534
1108 => 0.0088674073197994
1109 => 0.0085770750338724
1110 => 0.0086716086901527
1111 => 0.0086915283205193
1112 => 0.0079933315091929
1113 => 0.0077100731497927
1114 => 0.0076128695552126
1115 => 0.0075569275122747
1116 => 0.0075824210037175
1117 => 0.0073274552573655
1118 => 0.0074987964556582
1119 => 0.0072780176710354
1120 => 0.0072410033893171
1121 => 0.0076357832054658
1122 => 0.0076907145106127
1123 => 0.0074563604970374
1124 => 0.0076068537122212
1125 => 0.0075522827803834
1126 => 0.0072818022896243
1127 => 0.0072714719243971
1128 => 0.0071357543219831
1129 => 0.0069233825543116
1130 => 0.0068263229577904
1201 => 0.0067757734772121
1202 => 0.0067966311780885
1203 => 0.0067860848862692
1204 => 0.0067172631983619
1205 => 0.0067900296648603
1206 => 0.0066041414121368
1207 => 0.0065301192120989
1208 => 0.0064966851016438
1209 => 0.0063316985780231
1210 => 0.0065942655069437
1211 => 0.0066459944996721
1212 => 0.006697825414496
1213 => 0.0071489781415699
1214 => 0.0071264398262697
1215 => 0.0073301752199791
1216 => 0.0073222584372249
1217 => 0.0072641498026444
1218 => 0.0070189990317557
1219 => 0.0071167117596397
1220 => 0.0068159671711424
1221 => 0.0070413054654887
1222 => 0.0069384704783012
1223 => 0.007006536852878
1224 => 0.0068841473740914
1225 => 0.0069518827649896
1226 => 0.0066582613628671
1227 => 0.0063840818289296
1228 => 0.0064944196771856
1229 => 0.0066143695369034
1230 => 0.0068744513954273
1231 => 0.0067195487861192
]
'min_raw' => 0.0063316985780231
'max_raw' => 0.018900274457917
'avg_raw' => 0.01261598651797
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.006331'
'max' => '$0.01890027'
'avg' => '$0.012615'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.011994501421977
'max_diff' => 0.00057407445791709
'year' => 2026
]
1 => [
'items' => [
101 => 0.0067752576219425
102 => 0.0065886423474808
103 => 0.0062036017322485
104 => 0.0062057810203154
105 => 0.0061465509102277
106 => 0.0060953674473742
107 => 0.0067373412141845
108 => 0.0066575016281782
109 => 0.0065302876970239
110 => 0.0067005685991546
111 => 0.0067455935723993
112 => 0.0067468753700899
113 => 0.0068711079206982
114 => 0.0069374108552278
115 => 0.006949097034812
116 => 0.0071445796374162
117 => 0.0072101028273312
118 => 0.0074799835734023
119 => 0.0069317855144658
120 => 0.0069204957361938
121 => 0.0067029648006501
122 => 0.0065650032423003
123 => 0.0067124111465816
124 => 0.0068429944265892
125 => 0.0067070223871594
126 => 0.0067247774649826
127 => 0.0065422461113718
128 => 0.0066074924813892
129 => 0.0066636914448834
130 => 0.0066326616804643
131 => 0.0065862086212713
201 => 0.0068322880867807
202 => 0.0068184033189435
203 => 0.0070475581745683
204 => 0.0072262007715487
205 => 0.0075463602415217
206 => 0.0072122571443143
207 => 0.0072000810995125
208 => 0.0073191038905489
209 => 0.007210084605562
210 => 0.0072789810304559
211 => 0.0075352599623367
212 => 0.0075406747323283
213 => 0.0074499703584321
214 => 0.0074444509890373
215 => 0.0074618717562412
216 => 0.0075639057338821
217 => 0.0075282519269069
218 => 0.0075695114149826
219 => 0.0076211070366089
220 => 0.0078345284037455
221 => 0.0078859835728275
222 => 0.0077609741884046
223 => 0.0077722611361473
224 => 0.0077255041947888
225 => 0.0076803375752992
226 => 0.0077818655398567
227 => 0.0079674098906225
228 => 0.0079662556288461
301 => 0.008009298311757
302 => 0.0080361135466256
303 => 0.0079210029286178
304 => 0.0078460701490294
305 => 0.0078748041448203
306 => 0.0079207504298348
307 => 0.0078599043838386
308 => 0.0074843344013197
309 => 0.0075982583425126
310 => 0.007579295828102
311 => 0.0075522909016607
312 => 0.0076668423054779
313 => 0.0076557935431298
314 => 0.0073248402151152
315 => 0.0073460267733992
316 => 0.0073261286398965
317 => 0.0073904235800189
318 => 0.0072066124677974
319 => 0.00726315152793
320 => 0.0072986122964244
321 => 0.0073194989614901
322 => 0.0073949559178275
323 => 0.0073861019149222
324 => 0.0073944055405753
325 => 0.0075062882869259
326 => 0.0080721528244448
327 => 0.0081029515827122
328 => 0.0079512872328868
329 => 0.008011874149195
330 => 0.0078955605187853
331 => 0.007973642638113
401 => 0.0080270644410862
402 => 0.0077856615858723
403 => 0.0077713672754781
404 => 0.0076545735773406
405 => 0.0077173318951865
406 => 0.0076174788990109
407 => 0.0076419793315628
408 => 0.0075734739862383
409 => 0.0076967699685443
410 => 0.0078346340350211
411 => 0.0078694639426302
412 => 0.0077778414509289
413 => 0.0077115007287207
414 => 0.0075950282745156
415 => 0.0077887245616166
416 => 0.0078453672587523
417 => 0.0077884270416421
418 => 0.0077752327491693
419 => 0.007750229588775
420 => 0.0077805372878445
421 => 0.0078450587704591
422 => 0.0078146316307828
423 => 0.0078347292925962
424 => 0.0077581377303823
425 => 0.0079210410350221
426 => 0.0081797706876053
427 => 0.0081806025457449
428 => 0.008150175242055
429 => 0.0081377250449505
430 => 0.0081689453050195
501 => 0.0081858810153849
502 => 0.0082868416116317
503 => 0.0083951763538521
504 => 0.0089007273256435
505 => 0.0087587706357593
506 => 0.0092073255332946
507 => 0.0095620742196812
508 => 0.0096684478394486
509 => 0.0095705891145281
510 => 0.0092358197027999
511 => 0.0092193943183587
512 => 0.0097196811554807
513 => 0.0095783272094049
514 => 0.0095615136073038
515 => 0.0093826452879763
516 => 0.0094883786179711
517 => 0.0094652531876869
518 => 0.0094287485646485
519 => 0.009630480392831
520 => 0.010008104366464
521 => 0.0099492481288384
522 => 0.0099053146777129
523 => 0.0097128110837164
524 => 0.0098287412445366
525 => 0.0097874607347645
526 => 0.0099648280020043
527 => 0.0098597595620575
528 => 0.009577256314238
529 => 0.0096222458875961
530 => 0.0096154458040895
531 => 0.0097553910407967
601 => 0.0097133829543915
602 => 0.0096072430510132
603 => 0.010006813688775
604 => 0.0099808677940878
605 => 0.010017653140698
606 => 0.0100338471879
607 => 0.010277058793881
608 => 0.010376694806949
609 => 0.010399313926289
610 => 0.010493960432577
611 => 0.010396959034991
612 => 0.010785033786158
613 => 0.011043080850894
614 => 0.011342815795566
615 => 0.011780809110889
616 => 0.011945498649115
617 => 0.011915748958114
618 => 0.012247830491043
619 => 0.01284457362396
620 => 0.012036367806815
621 => 0.012887410494745
622 => 0.012617980205507
623 => 0.011979165836567
624 => 0.011938033722334
625 => 0.012370646229767
626 => 0.013330139133844
627 => 0.013089797043852
628 => 0.013330532247403
629 => 0.013049701845057
630 => 0.013035756248556
701 => 0.013316892941587
702 => 0.013973784148816
703 => 0.01366171975946
704 => 0.013214298935991
705 => 0.013544667509402
706 => 0.013258471676945
707 => 0.012613592365251
708 => 0.013089613258785
709 => 0.012771311643573
710 => 0.012864208976736
711 => 0.01353323162812
712 => 0.013452733052691
713 => 0.013556905663263
714 => 0.013373043732275
715 => 0.013201287696367
716 => 0.012880692300573
717 => 0.012785779809041
718 => 0.012812010207107
719 => 0.012785766810558
720 => 0.012606396633036
721 => 0.012567661660278
722 => 0.012503101675329
723 => 0.01252311151422
724 => 0.012401719854827
725 => 0.012630810996897
726 => 0.01267333233161
727 => 0.012840045760192
728 => 0.012857354501398
729 => 0.013321649026984
730 => 0.013065923404444
731 => 0.013237486230332
801 => 0.013222140036372
802 => 0.011993010880996
803 => 0.012162374033909
804 => 0.012425849950755
805 => 0.012307154407349
806 => 0.012139346679452
807 => 0.012003832941895
808 => 0.011798515772503
809 => 0.012087495745654
810 => 0.012467473680754
811 => 0.012866991368892
812 => 0.013346985693753
813 => 0.013239856548194
814 => 0.012858018208865
815 => 0.012875147197835
816 => 0.012981031867633
817 => 0.012843901599607
818 => 0.012803459206465
819 => 0.012975475703851
820 => 0.01297666028693
821 => 0.012818875340819
822 => 0.012643526247558
823 => 0.012642791528454
824 => 0.01261158985098
825 => 0.013055252554165
826 => 0.013299222181558
827 => 0.013327192906162
828 => 0.013297339528933
829 => 0.01330882890899
830 => 0.013166868358314
831 => 0.013491348080066
901 => 0.013789122760464
902 => 0.01370931278509
903 => 0.013589666286346
904 => 0.013494362087141
905 => 0.013686862144568
906 => 0.013678290420034
907 => 0.013786521958404
908 => 0.013781611950648
909 => 0.013745217755088
910 => 0.013709314084841
911 => 0.013851668079004
912 => 0.01381067241482
913 => 0.013769613073047
914 => 0.013687262277249
915 => 0.0136984551181
916 => 0.013578829278011
917 => 0.01352348489068
918 => 0.012691238094975
919 => 0.012468834556714
920 => 0.012538807237293
921 => 0.012561844060579
922 => 0.01246505375571
923 => 0.012603826189503
924 => 0.012582198652692
925 => 0.012666338746735
926 => 0.012613771668916
927 => 0.012615929040125
928 => 0.012770517607511
929 => 0.012815395326289
930 => 0.012792570156311
1001 => 0.012808556122963
1002 => 0.0131769459772
1003 => 0.013124572720372
1004 => 0.01309675047152
1005 => 0.013104457424593
1006 => 0.013198588930718
1007 => 0.013224940613043
1008 => 0.013113286683331
1009 => 0.013165943322047
1010 => 0.013390148606577
1011 => 0.013468607767243
1012 => 0.013719011745554
1013 => 0.013612635684992
1014 => 0.013807893548002
1015 => 0.014408049650585
1016 => 0.014887495872971
1017 => 0.014446577312911
1018 => 0.015327019243216
1019 => 0.016012569577852
1020 => 0.015986257014165
1021 => 0.015866715456256
1022 => 0.015086234626572
1023 => 0.014368024530783
1024 => 0.014968837772722
1025 => 0.014970369369234
1026 => 0.014918758978916
1027 => 0.014598211277173
1028 => 0.014907604613723
1029 => 0.014932163133227
1030 => 0.014918416892942
1031 => 0.01467265372158
1101 => 0.014297418783536
1102 => 0.014370738792244
1103 => 0.014490838462196
1104 => 0.014263464731561
1105 => 0.014190805047563
1106 => 0.014325893224186
1107 => 0.014761175476003
1108 => 0.014678887887716
1109 => 0.014676739026235
1110 => 0.015028800224298
1111 => 0.014776800386047
1112 => 0.014371663592357
1113 => 0.014269361208852
1114 => 0.013906256666554
1115 => 0.014157054267254
1116 => 0.014166080026416
1117 => 0.014028720743603
1118 => 0.014382809541127
1119 => 0.014379546550522
1120 => 0.014715701164609
1121 => 0.015358302532835
1122 => 0.015168253687758
1123 => 0.014947247558188
1124 => 0.014971277052308
1125 => 0.015234821292953
1126 => 0.015075476428929
1127 => 0.015132777953024
1128 => 0.015234734560234
1129 => 0.015296247512803
1130 => 0.014962426285063
1201 => 0.014884596588362
1202 => 0.014725384343423
1203 => 0.014683848840556
1204 => 0.014813523891986
1205 => 0.014779359097421
1206 => 0.014165321446308
1207 => 0.014101151095294
1208 => 0.014103119108345
1209 => 0.013941759709585
1210 => 0.013695647895783
1211 => 0.014342415047882
1212 => 0.014290470594068
1213 => 0.014233127937239
1214 => 0.014240152085508
1215 => 0.014520891785261
1216 => 0.014358048581709
1217 => 0.014790993927828
1218 => 0.014701993380194
1219 => 0.014610710304344
1220 => 0.014598092202711
1221 => 0.014562956006414
1222 => 0.014442460915711
1223 => 0.014296955853055
1224 => 0.014200880807256
1225 => 0.013099561888974
1226 => 0.01330396027413
1227 => 0.013539101984753
1228 => 0.013620271960988
1229 => 0.013481425099846
1230 => 0.014447943436071
1231 => 0.014624535649701
]
'min_raw' => 0.0060953674473742
'max_raw' => 0.016012569577852
'avg_raw' => 0.011053968512613
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.006095'
'max' => '$0.016012'
'avg' => '$0.011053'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.0002363311306489
'max_diff' => -0.0028877048800652
'year' => 2027
]
2 => [
'items' => [
101 => 0.014089626315789
102 => 0.013989566619618
103 => 0.014454503333093
104 => 0.014174089658666
105 => 0.014300359919091
106 => 0.014027432682192
107 => 0.014581999756661
108 => 0.014577774884708
109 => 0.014362035767274
110 => 0.014544376992011
111 => 0.014512690717016
112 => 0.014269121784775
113 => 0.014589721326259
114 => 0.014589880339632
115 => 0.014382236129675
116 => 0.014139753151607
117 => 0.014096402922321
118 => 0.014063744347838
119 => 0.014292327911775
120 => 0.014497275220438
121 => 0.014878631351115
122 => 0.014974513343165
123 => 0.015348747141363
124 => 0.015125909135649
125 => 0.015224690337347
126 => 0.015331931305243
127 => 0.015383346568909
128 => 0.015299568155861
129 => 0.015880907285239
130 => 0.015929990119529
131 => 0.015946447169301
201 => 0.015750422885743
202 => 0.015924538329598
203 => 0.015843075479516
204 => 0.016055019184398
205 => 0.016088254663556
206 => 0.016060105395096
207 => 0.016070654860767
208 => 0.015574584469093
209 => 0.015548860602305
210 => 0.015198113853367
211 => 0.015341045746148
212 => 0.015073841423498
213 => 0.01515857466672
214 => 0.015195924272964
215 => 0.015176414958233
216 => 0.015349126900913
217 => 0.015202286466917
218 => 0.014814750418798
219 => 0.014427108786742
220 => 0.014422242261818
221 => 0.014320183062541
222 => 0.014246412954538
223 => 0.014260623694474
224 => 0.014310704195547
225 => 0.014243502184774
226 => 0.014257843141001
227 => 0.014495998567656
228 => 0.014543758940025
229 => 0.014381450533533
301 => 0.013729758860479
302 => 0.013569832089267
303 => 0.013684784280929
304 => 0.013629844537184
305 => 0.011000348307258
306 => 0.01161810944261
307 => 0.01125105675317
308 => 0.011420211519746
309 => 0.011045545771661
310 => 0.011224355904561
311 => 0.011191336202115
312 => 0.01218467782688
313 => 0.012169168163706
314 => 0.012176591818715
315 => 0.01182224142294
316 => 0.012386731225071
317 => 0.012664819199998
318 => 0.012613352516911
319 => 0.012626305572238
320 => 0.012403729166196
321 => 0.012178746844853
322 => 0.011929206825952
323 => 0.012392821336991
324 => 0.012341275317527
325 => 0.012459503340505
326 => 0.012760190490764
327 => 0.012804467815839
328 => 0.012863976989756
329 => 0.012842647187058
330 => 0.013350809622938
331 => 0.013289267798989
401 => 0.013437565887914
402 => 0.013132505467592
403 => 0.012787300645396
404 => 0.012852912796499
405 => 0.012846593818729
406 => 0.01276614597912
407 => 0.012693521266588
408 => 0.012572621582107
409 => 0.01295516607359
410 => 0.012939635465845
411 => 0.013191057952895
412 => 0.013146616586121
413 => 0.012849826262158
414 => 0.01286042618664
415 => 0.012931715772933
416 => 0.013178449845064
417 => 0.013251697316609
418 => 0.013217766169383
419 => 0.013298078678058
420 => 0.01336155441031
421 => 0.013306050252739
422 => 0.014091872076031
423 => 0.013765544067694
424 => 0.013924594068382
425 => 0.013962526556369
426 => 0.013865363286024
427 => 0.013886434520206
428 => 0.013918351698424
429 => 0.014112146554539
430 => 0.014620720331978
501 => 0.014845964196027
502 => 0.015523621474355
503 => 0.014827260828664
504 => 0.014785941669775
505 => 0.014908008208891
506 => 0.015305864768578
507 => 0.015628290141437
508 => 0.01573525723878
509 => 0.015749394706528
510 => 0.015950072092183
511 => 0.016065096627228
512 => 0.015925704579225
513 => 0.015807584413498
514 => 0.015384492641479
515 => 0.015433466666131
516 => 0.015770849130779
517 => 0.016247421733822
518 => 0.016656370606161
519 => 0.016513170964375
520 => 0.01760568314801
521 => 0.017714001268506
522 => 0.017699035206597
523 => 0.017945800004983
524 => 0.017456022132964
525 => 0.017246632603677
526 => 0.015833123334049
527 => 0.016230261782521
528 => 0.016807525840497
529 => 0.016731122777795
530 => 0.01631189818858
531 => 0.016656052586717
601 => 0.01654226437999
602 => 0.016452514900267
603 => 0.01686367466567
604 => 0.016411587614097
605 => 0.016803015926329
606 => 0.016301005067085
607 => 0.016513825088277
608 => 0.016393018151302
609 => 0.016471195045066
610 => 0.016014174521538
611 => 0.016260771702487
612 => 0.016003915268074
613 => 0.01600379348468
614 => 0.015998123364654
615 => 0.016300313820666
616 => 0.016310168240588
617 => 0.01608684903701
618 => 0.016054665250873
619 => 0.016173665576427
620 => 0.016034347361438
621 => 0.016099533477373
622 => 0.016036321782484
623 => 0.016022091498522
624 => 0.015908702174833
625 => 0.015859850936483
626 => 0.015879006765782
627 => 0.01581361804488
628 => 0.015774218975323
629 => 0.015990285898059
630 => 0.015874850057356
701 => 0.015972593699889
702 => 0.015861202482992
703 => 0.015475071994384
704 => 0.01525300426713
705 => 0.014523639568466
706 => 0.014730486492233
707 => 0.014867626216689
708 => 0.014822301538575
709 => 0.014919676485487
710 => 0.014925654516381
711 => 0.01489399692852
712 => 0.014857341497364
713 => 0.01483949966065
714 => 0.014972478093973
715 => 0.015049676550365
716 => 0.014881390022731
717 => 0.014841962843885
718 => 0.015012109814677
719 => 0.015115899368569
720 => 0.015882223120196
721 => 0.015825451381482
722 => 0.015967937304763
723 => 0.015951895576426
724 => 0.016101243523811
725 => 0.016345364298634
726 => 0.015848998506177
727 => 0.01593515044471
728 => 0.01591402797892
729 => 0.016144637521802
730 => 0.016145357459623
731 => 0.016007095518864
801 => 0.016082049559993
802 => 0.016040212270492
803 => 0.01611581790727
804 => 0.0158246931603
805 => 0.016179251677135
806 => 0.016380263508934
807 => 0.016383054558414
808 => 0.016478332571358
809 => 0.01657514055064
810 => 0.016760955036673
811 => 0.016569958285475
812 => 0.016226373723229
813 => 0.016251179418852
814 => 0.01604973591572
815 => 0.016053122217401
816 => 0.016035045873637
817 => 0.016089294341998
818 => 0.015836597648449
819 => 0.015895905057342
820 => 0.015812874337588
821 => 0.015934969952141
822 => 0.01580361525401
823 => 0.015914017793028
824 => 0.015961663868965
825 => 0.016137478914923
826 => 0.015777647228772
827 => 0.015043926062246
828 => 0.015198163146959
829 => 0.014970034383607
830 => 0.014991148569203
831 => 0.015033802584404
901 => 0.014895546965612
902 => 0.014921921780742
903 => 0.014920979486749
904 => 0.014912859306184
905 => 0.014876893680051
906 => 0.014824736406576
907 => 0.015032514930939
908 => 0.015067820551059
909 => 0.015146300571143
910 => 0.01537980387741
911 => 0.015356471390726
912 => 0.015394527644562
913 => 0.015311451056115
914 => 0.014995002253871
915 => 0.015012186946314
916 => 0.014797893556184
917 => 0.01514082060736
918 => 0.015059610955226
919 => 0.015007254564195
920 => 0.014992968637824
921 => 0.015227050753621
922 => 0.015297091791456
923 => 0.015253446916957
924 => 0.015163930006034
925 => 0.015335828938304
926 => 0.015381821840746
927 => 0.015392117955449
928 => 0.01569668990508
929 => 0.015409140144061
930 => 0.015478356229537
1001 => 0.016018360369818
1002 => 0.015528651130061
1003 => 0.01578806103618
1004 => 0.015775364271179
1005 => 0.015908069601197
1006 => 0.015764478560739
1007 => 0.015766258543778
1008 => 0.015884091886596
1009 => 0.015718616207964
1010 => 0.015677642102844
1011 => 0.015621036670084
1012 => 0.015744632561647
1013 => 0.015818722708878
1014 => 0.01641583488234
1015 => 0.01680159657802
1016 => 0.016784849645437
1017 => 0.016937885260306
1018 => 0.016868941314162
1019 => 0.016646303125568
1020 => 0.017026319365663
1021 => 0.016906066326742
1022 => 0.016915979841163
1023 => 0.016915610859661
1024 => 0.016995568617841
1025 => 0.01693891121815
1026 => 0.016827233667596
1027 => 0.016901370437427
1028 => 0.017121530139443
1029 => 0.017804912609827
1030 => 0.018187342493868
1031 => 0.017781889850615
1101 => 0.018061565654704
1102 => 0.017893859830929
1103 => 0.017863382693933
1104 => 0.01803903976678
1105 => 0.01821500430408
1106 => 0.01820379612377
1107 => 0.018076054905569
1108 => 0.018003897132721
1109 => 0.018550299963355
1110 => 0.018952880261237
1111 => 0.018925426983854
1112 => 0.019046596821938
1113 => 0.019402355214196
1114 => 0.019434881303075
1115 => 0.01943078376348
1116 => 0.019350164458448
1117 => 0.019700454796691
1118 => 0.019992673159625
1119 => 0.019331503418648
1120 => 0.019583268200665
1121 => 0.019696293522667
1122 => 0.019862248228467
1123 => 0.020142241634391
1124 => 0.020446388737807
1125 => 0.020489398473034
1126 => 0.020458881007685
1127 => 0.020258287817069
1128 => 0.020591089206857
1129 => 0.020786036455842
1130 => 0.020902123081324
1201 => 0.021196499448573
1202 => 0.019696991528577
1203 => 0.018635565292424
1204 => 0.018469808258468
1205 => 0.018806881705091
1206 => 0.018895765284855
1207 => 0.018859936425303
1208 => 0.017665204695861
1209 => 0.018463518243168
1210 => 0.019322436495961
1211 => 0.019355431044105
1212 => 0.019785423480587
1213 => 0.019925446643891
1214 => 0.020271646915656
1215 => 0.020249991994396
1216 => 0.020334286251322
1217 => 0.020314908461428
1218 => 0.020956171563804
1219 => 0.021663579994217
1220 => 0.021639084689693
1221 => 0.021537386358144
1222 => 0.021688425722636
1223 => 0.022418547033317
1224 => 0.022351329162985
1225 => 0.022416625598408
1226 => 0.023277479771535
1227 => 0.024396712651678
1228 => 0.023876716609708
1229 => 0.025004958395953
1230 => 0.025715126794867
1231 => 0.026943289608006
]
'min_raw' => 0.011000348307258
'max_raw' => 0.026943289608006
'avg_raw' => 0.018971818957632
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.01100034'
'max' => '$0.026943'
'avg' => '$0.018971'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0049049808598836
'max_diff' => 0.010930720030154
'year' => 2028
]
3 => [
'items' => [
101 => 0.026789517574972
102 => 0.027267632345452
103 => 0.026514233542649
104 => 0.024784277604393
105 => 0.024510505455158
106 => 0.02505860423094
107 => 0.026406051588504
108 => 0.025016168318493
109 => 0.025297339893828
110 => 0.025216362461216
111 => 0.025212047517964
112 => 0.025376731351749
113 => 0.025137848861513
114 => 0.024164598622151
115 => 0.024610633471451
116 => 0.024438397995784
117 => 0.024629506097042
118 => 0.025660837700556
119 => 0.025204861414768
120 => 0.024724527438195
121 => 0.02532697283946
122 => 0.026094092857969
123 => 0.026046087865858
124 => 0.025952938116633
125 => 0.026478018375855
126 => 0.02734529713001
127 => 0.02757971909225
128 => 0.02775276459223
129 => 0.027776624643049
130 => 0.028022397995429
131 => 0.026700812736824
201 => 0.028798202482947
202 => 0.02916036375288
203 => 0.029092292444179
204 => 0.029494819453633
205 => 0.029376385796327
206 => 0.029204794008562
207 => 0.029842884938498
208 => 0.029111365178609
209 => 0.028073064975225
210 => 0.027503432948398
211 => 0.028253570352228
212 => 0.028711653088559
213 => 0.02901441663774
214 => 0.029106032704788
215 => 0.026803403638379
216 => 0.025562414281247
217 => 0.026357874231197
218 => 0.027328390269848
219 => 0.026695421471227
220 => 0.026720232649764
221 => 0.025817785484204
222 => 0.027408236819414
223 => 0.027176521437675
224 => 0.028378661248033
225 => 0.028091760934517
226 => 0.029072059283065
227 => 0.028813913874517
228 => 0.029885461032685
301 => 0.030312930205059
302 => 0.03103071747574
303 => 0.031558724713972
304 => 0.031868780663431
305 => 0.031850166067216
306 => 0.033078762208234
307 => 0.032354301987756
308 => 0.031444209208671
309 => 0.031427748501603
310 => 0.031899098448005
311 => 0.032886918627122
312 => 0.033143046027368
313 => 0.033286186302563
314 => 0.033066961988353
315 => 0.032280612341556
316 => 0.031941070550952
317 => 0.032230369994019
318 => 0.031876581634932
319 => 0.032487319598197
320 => 0.03332599326835
321 => 0.033152810471938
322 => 0.033731734595326
323 => 0.034330860158438
324 => 0.0351876366221
325 => 0.035411629716042
326 => 0.035781881782634
327 => 0.036162992780625
328 => 0.03628539536195
329 => 0.036519099868991
330 => 0.036517868130879
331 => 0.037222152392972
401 => 0.03799899974393
402 => 0.038292241634859
403 => 0.038966535193598
404 => 0.037811831104322
405 => 0.038687687420322
406 => 0.03947773174146
407 => 0.038535808332095
408 => 0.039834030311897
409 => 0.039884437329539
410 => 0.040645523449957
411 => 0.039874016860455
412 => 0.039415898710345
413 => 0.040738468644249
414 => 0.041378418574703
415 => 0.041185660447565
416 => 0.039718761582403
417 => 0.038864963524626
418 => 0.03663040932208
419 => 0.039277335300554
420 => 0.04056657573278
421 => 0.039715422761141
422 => 0.040144694811424
423 => 0.042486663925838
424 => 0.043378334133336
425 => 0.043192872963421
426 => 0.043224212848186
427 => 0.043705341907193
428 => 0.045838933117442
429 => 0.044560435808004
430 => 0.045537799096689
501 => 0.046056189060862
502 => 0.046537698549773
503 => 0.045355263427645
504 => 0.043816932707179
505 => 0.043329678793276
506 => 0.039630792372503
507 => 0.039438249270852
508 => 0.039330168993243
509 => 0.038648738131172
510 => 0.038113320133207
511 => 0.03768753586243
512 => 0.036570150785963
513 => 0.036947235448087
514 => 0.035166356852589
515 => 0.036305699867527
516 => 0.033463374628294
517 => 0.035830547547678
518 => 0.034542202949803
519 => 0.035407291697359
520 => 0.035404273484215
521 => 0.033811370823327
522 => 0.032892617811557
523 => 0.033478082989059
524 => 0.034105748133625
525 => 0.034207584691611
526 => 0.035021368935277
527 => 0.035248478625451
528 => 0.034560325661488
529 => 0.033404473755383
530 => 0.033672951790996
531 => 0.032887177112735
601 => 0.031510137213469
602 => 0.032499151309932
603 => 0.032836844206344
604 => 0.03298598862734
605 => 0.031631828040513
606 => 0.031206321383875
607 => 0.030979785210228
608 => 0.033229668628444
609 => 0.033352922320918
610 => 0.032722339003903
611 => 0.035572635391176
612 => 0.034927525534525
613 => 0.035648271300157
614 => 0.033648590223317
615 => 0.03372498073338
616 => 0.032778299665294
617 => 0.033308377806171
618 => 0.032933735661415
619 => 0.033265552730722
620 => 0.033464442513932
621 => 0.03441096824097
622 => 0.035841355351055
623 => 0.034269588861202
624 => 0.033584747693462
625 => 0.034009619302235
626 => 0.035141108385323
627 => 0.036855372266062
628 => 0.035840493545889
629 => 0.036290879488143
630 => 0.03638926878025
701 => 0.035640934784847
702 => 0.036882964407885
703 => 0.037548578173101
704 => 0.038231360166852
705 => 0.038824200640909
706 => 0.03795864202385
707 => 0.038884913817057
708 => 0.038138502260715
709 => 0.037468893932067
710 => 0.0374699094515
711 => 0.037049854365522
712 => 0.036235944706095
713 => 0.036085847277282
714 => 0.036866673057183
715 => 0.037492821388187
716 => 0.037544393963776
717 => 0.037891061852483
718 => 0.038096216338056
719 => 0.040107009190674
720 => 0.040915766710148
721 => 0.041904700095964
722 => 0.042289945382972
723 => 0.043449395578784
724 => 0.042513045379725
725 => 0.042310460124239
726 => 0.039498013202468
727 => 0.039958551228352
728 => 0.040695917043102
729 => 0.039510172093164
730 => 0.040262254343034
731 => 0.040410731310439
801 => 0.039469880933496
802 => 0.039972429771566
803 => 0.038637809052999
804 => 0.035870446435622
805 => 0.03688604527357
806 => 0.037633867865172
807 => 0.036566632821096
808 => 0.038479610329903
809 => 0.037362088361129
810 => 0.037007887547542
811 => 0.035626023892033
812 => 0.036278210344624
813 => 0.037160301860163
814 => 0.036615271857705
815 => 0.037746290949472
816 => 0.039348115615187
817 => 0.040489671262284
818 => 0.040577305730115
819 => 0.03984336192732
820 => 0.041019511555266
821 => 0.041028078521274
822 => 0.039701376936239
823 => 0.03888877960251
824 => 0.038704155778568
825 => 0.039165382288409
826 => 0.039725396418467
827 => 0.040608382616833
828 => 0.041141952683648
829 => 0.042533220434203
830 => 0.04290965759673
831 => 0.043323247909732
901 => 0.043875932114431
902 => 0.044539571207494
903 => 0.043087566652867
904 => 0.043145257500698
905 => 0.041793170963801
906 => 0.040348272590304
907 => 0.041444770346663
908 => 0.042878295302119
909 => 0.042549443093433
910 => 0.042512440502115
911 => 0.04257466859705
912 => 0.042326724771009
913 => 0.041205284035057
914 => 0.040642103518052
915 => 0.041368750067661
916 => 0.041754930369462
917 => 0.042353862339093
918 => 0.042280031331915
919 => 0.043822815765087
920 => 0.044422295144438
921 => 0.044268922666031
922 => 0.044297146893172
923 => 0.04538247567462
924 => 0.046589584494477
925 => 0.047720201196311
926 => 0.048870313066534
927 => 0.04748380831735
928 => 0.046779826713439
929 => 0.047506156031896
930 => 0.047120755471697
1001 => 0.049335381407832
1002 => 0.049488717302645
1003 => 0.051703183096117
1004 => 0.053804974827805
1005 => 0.052484877098642
1006 => 0.053729669798735
1007 => 0.055076014593323
1008 => 0.057673332138654
1009 => 0.05679864696412
1010 => 0.05612865182849
1011 => 0.055495509662714
1012 => 0.056812978001207
1013 => 0.058507879971608
1014 => 0.058872945622463
1015 => 0.05946449144266
1016 => 0.058842553343504
1017 => 0.059591609279703
1018 => 0.062236105886342
1019 => 0.061521539559611
1020 => 0.060506740503383
1021 => 0.062594316594171
1022 => 0.06334980226618
1023 => 0.068652196363261
1024 => 0.0753466879418
1025 => 0.072575124469883
1026 => 0.07085472558507
1027 => 0.071259060131408
1028 => 0.07370366183305
1029 => 0.074488790311837
1030 => 0.072354540456476
1031 => 0.073108393586238
1101 => 0.077262198448432
1102 => 0.079490581486983
1103 => 0.07646413800886
1104 => 0.068114300483207
1105 => 0.060415368951527
1106 => 0.062457472281134
1107 => 0.062225961137401
1108 => 0.066688706264118
1109 => 0.061504497389041
1110 => 0.061591786170853
1111 => 0.066146816140661
1112 => 0.0649316122377
1113 => 0.062963137546459
1114 => 0.060429740995218
1115 => 0.055746523159431
1116 => 0.051598466521084
1117 => 0.059733760829274
1118 => 0.059382952145632
1119 => 0.058874929184785
1120 => 0.060005479310325
1121 => 0.065495109807699
1122 => 0.065368556056535
1123 => 0.064563485659918
1124 => 0.065174124460187
1125 => 0.062856089612376
1126 => 0.063453499973329
1127 => 0.060414149401438
1128 => 0.061788062794425
1129 => 0.062958914083858
1130 => 0.063193979814961
1201 => 0.063723594909891
1202 => 0.059198091910223
1203 => 0.061229909895286
1204 => 0.062423412605912
1205 => 0.057031123939306
1206 => 0.062316824396503
1207 => 0.059119312971334
1208 => 0.058034029568622
1209 => 0.059495220695158
1210 => 0.058925793092092
1211 => 0.058436232676887
1212 => 0.058163049553486
1213 => 0.059235987051035
1214 => 0.059185933234336
1215 => 0.057430399240153
1216 => 0.055140376709461
1217 => 0.055908983438188
1218 => 0.055629741407915
1219 => 0.054617732267266
1220 => 0.055299704237614
1221 => 0.052296644818318
1222 => 0.047130037172866
1223 => 0.050543256440924
1224 => 0.050411851211972
1225 => 0.050345590736781
1226 => 0.052910530682275
1227 => 0.052663970889749
1228 => 0.052216462451993
1229 => 0.054609513423866
1230 => 0.053736017628055
1231 => 0.056427925849253
]
'min_raw' => 0.024164598622151
'max_raw' => 0.079490581486983
'avg_raw' => 0.051827590054567
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.024164'
'max' => '$0.07949'
'avg' => '$0.051827'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.013164250314893
'max_diff' => 0.052547291878977
'year' => 2029
]
4 => [
'items' => [
101 => 0.058200990705442
102 => 0.057751284105273
103 => 0.059418860172485
104 => 0.055926690584851
105 => 0.057086649240337
106 => 0.0573257151116
107 => 0.054579983546337
108 => 0.052704311121063
109 => 0.052579225154528
110 => 0.049327067652684
111 => 0.051064343939671
112 => 0.052593075178842
113 => 0.051860931549615
114 => 0.051629156748771
115 => 0.052813243940464
116 => 0.052905257656279
117 => 0.050807335184509
118 => 0.051243559698955
119 => 0.053062688440483
120 => 0.051197722322072
121 => 0.047574397794484
122 => 0.046675763215262
123 => 0.046555868797272
124 => 0.044118700546814
125 => 0.046735814274834
126 => 0.045593373998266
127 => 0.049202329143409
128 => 0.047140913319718
129 => 0.047052049803658
130 => 0.04691771956569
131 => 0.044819948174368
201 => 0.045279226788741
202 => 0.046805938853024
203 => 0.047350686917202
204 => 0.047293865231119
205 => 0.046798457131014
206 => 0.047025252422342
207 => 0.046294665768256
208 => 0.046036680414852
209 => 0.045222407675047
210 => 0.044025651696119
211 => 0.04419206795512
212 => 0.041820981212629
213 => 0.040529087312221
214 => 0.040171508107476
215 => 0.039693338250628
216 => 0.040225518665169
217 => 0.041814264221798
218 => 0.03989790000933
219 => 0.036612427984374
220 => 0.036809890451246
221 => 0.037253529987174
222 => 0.036426810646941
223 => 0.035644390172705
224 => 0.036324641295273
225 => 0.034932543486687
226 => 0.037421758356516
227 => 0.037354432070231
228 => 0.038282257441688
301 => 0.038862445687354
302 => 0.03752529961927
303 => 0.037189010999174
304 => 0.037380576280646
305 => 0.03421442889485
306 => 0.038023515652547
307 => 0.038056456793003
308 => 0.03777439474927
309 => 0.039802615855384
310 => 0.044082795007312
311 => 0.042472419440549
312 => 0.041848833347239
313 => 0.040663395728019
314 => 0.042242920971309
315 => 0.042121638077057
316 => 0.041573150834075
317 => 0.041241424038136
318 => 0.041852640830953
319 => 0.041165687513469
320 => 0.041042291821434
321 => 0.040294648183539
322 => 0.040027773420429
323 => 0.039830189970413
324 => 0.039612670006094
325 => 0.040092464844784
326 => 0.039005186618044
327 => 0.037694035663795
328 => 0.037585027648799
329 => 0.037886008362285
330 => 0.037752846801946
331 => 0.037584390122479
401 => 0.037262760444929
402 => 0.03716733979013
403 => 0.037477410626704
404 => 0.037127358730465
405 => 0.03764387937168
406 => 0.03750341433766
407 => 0.036718788075974
408 => 0.035740853248065
409 => 0.035732147576809
410 => 0.035521453122271
411 => 0.035253102056293
412 => 0.035178452928778
413 => 0.036267352443105
414 => 0.038521341849742
415 => 0.038078829795824
416 => 0.038398590105239
417 => 0.039971494349152
418 => 0.040471473309411
419 => 0.04011660008607
420 => 0.039630827730333
421 => 0.039652199248649
422 => 0.041312230441493
423 => 0.041415764550755
424 => 0.041677361843491
425 => 0.042013588292042
426 => 0.040173860904142
427 => 0.039565548254123
428 => 0.039277295972643
429 => 0.038389590513357
430 => 0.039346904745083
501 => 0.038789118738539
502 => 0.038864383127505
503 => 0.038815367095454
504 => 0.038842133163403
505 => 0.037421062570229
506 => 0.03793882600511
507 => 0.037077943872751
508 => 0.035925319336076
509 => 0.035921455334467
510 => 0.036203558556896
511 => 0.036035752521495
512 => 0.035584190794918
513 => 0.035648333006867
514 => 0.035086379736587
515 => 0.035716564308372
516 => 0.035734635746982
517 => 0.035491980360459
518 => 0.036462866642006
519 => 0.036860639543723
520 => 0.036700918570132
521 => 0.036849433094433
522 => 0.038097218169487
523 => 0.0383006615814
524 => 0.038391017706255
525 => 0.038269952468842
526 => 0.036872240315013
527 => 0.036934234792567
528 => 0.036479360450262
529 => 0.036095039564493
530 => 0.036110410384426
531 => 0.03630800127793
601 => 0.037170892298413
602 => 0.038986795580815
603 => 0.039055707782974
604 => 0.039139231382302
605 => 0.038799498928239
606 => 0.038697032369292
607 => 0.038832212209406
608 => 0.039514170006618
609 => 0.041268350610782
610 => 0.040648306027487
611 => 0.040144200129699
612 => 0.040586436908033
613 => 0.040518358022375
614 => 0.039943703715252
615 => 0.039927575082797
616 => 0.038824629739332
617 => 0.038416895958703
618 => 0.038076163093266
619 => 0.037704091699264
620 => 0.037483515304954
621 => 0.037822420896793
622 => 0.037899932615459
623 => 0.037158909615848
624 => 0.037057910919175
625 => 0.03766304629675
626 => 0.0373967487788
627 => 0.037670642379872
628 => 0.037734188044737
629 => 0.037723955729113
630 => 0.037445910536298
701 => 0.037623128250771
702 => 0.037203955524899
703 => 0.03674816814322
704 => 0.036457404190266
705 => 0.036203674077073
706 => 0.036344458290753
707 => 0.035842588275164
708 => 0.035682029956529
709 => 0.037563090876633
710 => 0.038952650803126
711 => 0.038932446051469
712 => 0.038809454821995
713 => 0.038626714802857
714 => 0.039500801436
715 => 0.039196287130927
716 => 0.03941784673089
717 => 0.039474242947907
718 => 0.039644937311366
719 => 0.039705945874626
720 => 0.039521535623282
721 => 0.038902632295958
722 => 0.037360384047828
723 => 0.036642463325104
724 => 0.03640553752869
725 => 0.036414149331404
726 => 0.036176597367785
727 => 0.036246567067403
728 => 0.036152264761702
729 => 0.035973679008882
730 => 0.036333431123758
731 => 0.036374889203675
801 => 0.036290918761345
802 => 0.036310696840288
803 => 0.035615457442043
804 => 0.035668314983511
805 => 0.035373997475806
806 => 0.035318816491162
807 => 0.03457480746084
808 => 0.033256687617791
809 => 0.033987053963829
810 => 0.033104874122865
811 => 0.032770779249886
812 => 0.034352332416156
813 => 0.034193588343719
814 => 0.033921887496096
815 => 0.033519985315044
816 => 0.033370915886639
817 => 0.032465217229294
818 => 0.032411703720904
819 => 0.032860592431405
820 => 0.032653445736826
821 => 0.032362533325049
822 => 0.031308878058913
823 => 0.030124220686506
824 => 0.030159978046088
825 => 0.030536795514917
826 => 0.031632443126295
827 => 0.031204354649633
828 => 0.030893771548066
829 => 0.030835608669236
830 => 0.031563638870026
831 => 0.032593954131186
901 => 0.033077354999718
902 => 0.032598319420106
903 => 0.032048029139354
904 => 0.032081522758944
905 => 0.032304340804668
906 => 0.032327755830797
907 => 0.031969573428782
908 => 0.032070399676884
909 => 0.031917235386272
910 => 0.030977266417508
911 => 0.030960265359537
912 => 0.030729581815555
913 => 0.030722596809522
914 => 0.030330146554502
915 => 0.030275240050944
916 => 0.029496006249574
917 => 0.030008900297373
918 => 0.029664877898255
919 => 0.029146354996105
920 => 0.029056961452331
921 => 0.02905427417446
922 => 0.029586681255369
923 => 0.03000267881065
924 => 0.029670862315177
925 => 0.02959531413115
926 => 0.030401971086389
927 => 0.030299316635993
928 => 0.030210418544001
929 => 0.032501700700146
930 => 0.030687972082581
1001 => 0.029897082881312
1002 => 0.028918207308957
1003 => 0.029236934131235
1004 => 0.02930409455576
1005 => 0.026950075259828
1006 => 0.025995049924643
1007 => 0.025667321218978
1008 => 0.025478708715464
1009 => 0.025564661801763
1010 => 0.024705026986797
1011 => 0.025282715799501
1012 => 0.024538344712863
1013 => 0.024413548477795
1014 => 0.025744576190587
1015 => 0.025929780921071
1016 => 0.025139640002227
1017 => 0.02564703838432
1018 => 0.025463048677608
1019 => 0.024551104818669
1020 => 0.024516275271062
1021 => 0.024058693899023
1022 => 0.023342667656995
1023 => 0.02301542445084
1024 => 0.022844993347818
1025 => 0.022915316542561
1026 => 0.022879758983374
1027 => 0.022647721857617
1028 => 0.022893059079809
1029 => 0.022266323857449
1030 => 0.022016752841956
1031 => 0.021904027404261
1101 => 0.021347763820883
1102 => 0.022233026553576
1103 => 0.022407434464163
1104 => 0.022582186012211
1105 => 0.024103278930018
1106 => 0.024027289426408
1107 => 0.02471419753065
1108 => 0.024687505544863
1109 => 0.024491588226359
1110 => 0.023665045286428
1111 => 0.023994490570573
1112 => 0.022980509193138
1113 => 0.023740252985144
1114 => 0.023393537646132
1115 => 0.02362302818026
1116 => 0.02321038350757
1117 => 0.023438758107118
1118 => 0.02244879304987
1119 => 0.021524377608596
1120 => 0.021896389367534
1121 => 0.022300808694204
1122 => 0.023177692838553
1123 => 0.022655427876316
1124 => 0.022843254105761
1125 => 0.022214067678851
1126 => 0.020915876361917
1127 => 0.020923223983788
1128 => 0.020723525532313
1129 => 0.020550956913788
1130 => 0.022715416289765
1201 => 0.022446231551323
1202 => 0.022017320900643
1203 => 0.02259143485081
1204 => 0.022743239691648
1205 => 0.022747561362054
1206 => 0.02316642008007
1207 => 0.023389965052959
1208 => 0.02342936582333
1209 => 0.02408844906617
1210 => 0.024309365075651
1211 => 0.025219286853502
1212 => 0.023370998823831
1213 => 0.02333293454816
1214 => 0.02259951381145
1215 => 0.022134366785305
1216 => 0.02263136282628
1217 => 0.02307163347186
1218 => 0.022613194247658
1219 => 0.022673056732158
1220 => 0.022057639529527
1221 => 0.022277622221397
1222 => 0.022467100950504
1223 => 0.022362481933336
1224 => 0.022205862201018
1225 => 0.023035536299703
1226 => 0.022988722835536
1227 => 0.023761334430356
1228 => 0.024363640418503
1229 => 0.025443080424338
1230 => 0.024316628505769
1231 => 0.024275576120616
]
'min_raw' => 0.020550956913788
'max_raw' => 0.059418860172485
'avg_raw' => 0.039984908543136
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.02055'
'max' => '$0.059418'
'avg' => '$0.039984'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0036136417083637
'max_diff' => -0.020071721314499
'year' => 2030
]
5 => [
'items' => [
101 => 0.024676869770501
102 => 0.024309303639684
103 => 0.024541592746409
104 => 0.025405655058069
105 => 0.025423911333142
106 => 0.025118095203774
107 => 0.02509948626451
108 => 0.025158221597417
109 => 0.025502236276818
110 => 0.025382026977332
111 => 0.025521136222024
112 => 0.025695094462628
113 => 0.026414659502534
114 => 0.026588144197579
115 => 0.026166666330121
116 => 0.026204721062464
117 => 0.026047076770209
118 => 0.025894794359167
119 => 0.026237102980129
120 => 0.026862678713029
121 => 0.026858787038862
122 => 0.02700390844944
123 => 0.027094317885979
124 => 0.026706214400599
125 => 0.026453573302577
126 => 0.02655045197553
127 => 0.026705363083323
128 => 0.026500216391112
129 => 0.025233955973591
130 => 0.025618058495238
131 => 0.025554125053982
201 => 0.025463076059062
202 => 0.025849294114755
203 => 0.025812042441098
204 => 0.024696210189274
205 => 0.024767642149726
206 => 0.024700554203379
207 => 0.024917329082931
208 => 0.024297597084794
209 => 0.024488222473462
210 => 0.024607780930233
211 => 0.024678201779762
212 => 0.02493261017629
213 => 0.024902758287328
214 => 0.024930754540958
215 => 0.025307975031683
216 => 0.027215826827329
217 => 0.027319666991128
218 => 0.026808320046825
219 => 0.027012593065201
220 => 0.026620433539517
221 => 0.026883692856349
222 => 0.027063808194865
223 => 0.026249901614302
224 => 0.026201707348811
225 => 0.025807929241265
226 => 0.026019523291528
227 => 0.025682861943408
228 => 0.025765466862323
301 => 0.025534496307671
302 => 0.025950197320266
303 => 0.026415015645754
304 => 0.026532447111005
305 => 0.026223535483356
306 => 0.02599986310667
307 => 0.02560716809547
308 => 0.026260228650874
309 => 0.026451203458934
310 => 0.026259225541508
311 => 0.02621474006324
312 => 0.026130440162305
313 => 0.026232624685734
314 => 0.026450163369115
315 => 0.026347576143342
316 => 0.026415336813319
317 => 0.026157103013863
318 => 0.026706342879002
319 => 0.027578667966614
320 => 0.02758147263441
321 => 0.027478884855653
322 => 0.02743690814687
323 => 0.027542169433422
324 => 0.027599269363332
325 => 0.027939665062422
326 => 0.028304923209508
327 => 0.030009423607344
328 => 0.0295308067163
329 => 0.031043140870443
330 => 0.032239200834358
331 => 0.032597846920173
401 => 0.032267909396826
402 => 0.03113921095233
403 => 0.031083831621903
404 => 0.032770583622171
405 => 0.032293998923959
406 => 0.032237310690587
407 => 0.031634243663787
408 => 0.03199073096793
409 => 0.031912761965161
410 => 0.031789684079915
411 => 0.032469837023099
412 => 0.033743022615068
413 => 0.033544584700701
414 => 0.033396460002896
415 => 0.032747420695565
416 => 0.033138287326755
417 => 0.032999107205946
418 => 0.033597113330832
419 => 0.033242867749907
420 => 0.032290388326136
421 => 0.032442073813785
422 => 0.032419146857476
423 => 0.032890981993699
424 => 0.032749348797472
425 => 0.032391490702781
426 => 0.033738671005127
427 => 0.033651192609704
428 => 0.033775216974069
429 => 0.033829816334844
430 => 0.034649821244903
501 => 0.034985751019323
502 => 0.035062012959395
503 => 0.035381120263353
504 => 0.035054073278972
505 => 0.036362494397044
506 => 0.037232518092073
507 => 0.038243095384859
508 => 0.039719820427189
509 => 0.040275082703575
510 => 0.040174779543305
511 => 0.04129441561677
512 => 0.043306376752673
513 => 0.040581454413042
514 => 0.043450804253302
515 => 0.042542401222113
516 => 0.040388593976635
517 => 0.040249914181746
518 => 0.041708497454599
519 => 0.044943494770351
520 => 0.044133164633791
521 => 0.044944820180161
522 => 0.043997980871698
523 => 0.043950962319444
524 => 0.044898834308334
525 => 0.047113588876189
526 => 0.046061441999835
527 => 0.044552931455583
528 => 0.045666792166435
529 => 0.044701862935752
530 => 0.042527607312339
531 => 0.044132544989607
601 => 0.043059368870811
602 => 0.043372578715456
603 => 0.045628235294265
604 => 0.045356828726976
605 => 0.04570805395662
606 => 0.045088150619463
607 => 0.044509063152775
608 => 0.043428153392601
609 => 0.043108149300821
610 => 0.043196586919248
611 => 0.04310810547553
612 => 0.042503346398786
613 => 0.042372748733743
614 => 0.042155080237056
615 => 0.042222544805917
616 => 0.041813264350981
617 => 0.042585661131102
618 => 0.04272902477983
619 => 0.043291110743856
620 => 0.04334946837329
621 => 0.04491486978231
622 => 0.044052672991724
623 => 0.044631109037339
624 => 0.044579368272968
625 => 0.04043527351056
626 => 0.041006293205162
627 => 0.041894620654111
628 => 0.041494430342459
629 => 0.040928654871894
630 => 0.040471760844451
701 => 0.039779519673061
702 => 0.040753835828477
703 => 0.042034957965878
704 => 0.043381959744868
705 => 0.045000294123271
706 => 0.044639100729501
707 => 0.043351706109353
708 => 0.043409457691571
709 => 0.043766455248429
710 => 0.043304110975649
711 => 0.043167756623574
712 => 0.043747722254317
713 => 0.043751716158873
714 => 0.043219733196868
715 => 0.042628531486454
716 => 0.0426260543297
717 => 0.042520855695663
718 => 0.044016695474993
719 => 0.044839256107164
720 => 0.04493356135802
721 => 0.044832908612397
722 => 0.044871645859422
723 => 0.044393015951448
724 => 0.045487021987786
725 => 0.046490990112713
726 => 0.046221905208582
727 => 0.045818508684617
728 => 0.045497183923069
729 => 0.04614621130661
730 => 0.046117311138884
731 => 0.046482221326985
801 => 0.046465666893029
802 => 0.046342961321737
803 => 0.046221909590785
804 => 0.046701866020945
805 => 0.046563646276923
806 => 0.046425211839462
807 => 0.046147560381881
808 => 0.046185297826268
809 => 0.0457819709544
810 => 0.045595373488492
811 => 0.042789395311157
812 => 0.042039546254191
813 => 0.042275464032097
814 => 0.042353134290187
815 => 0.042026799019637
816 => 0.042494679968952
817 => 0.04242176121861
818 => 0.042705445420149
819 => 0.042528211847164
820 => 0.042535485574821
821 => 0.043056691722789
822 => 0.043208000084914
823 => 0.043131043430729
824 => 0.0431849412334
825 => 0.04442699334712
826 => 0.04425041325514
827 => 0.044156608600647
828 => 0.044182593131014
829 => 0.044499964075967
830 => 0.044588810612743
831 => 0.044212361593289
901 => 0.044389897127089
902 => 0.045145820897398
903 => 0.045410351435425
904 => 0.046254605930949
905 => 0.045895951615823
906 => 0.046554277133431
907 => 0.04857774533485
908 => 0.050194231747492
909 => 0.0487076440383
910 => 0.051676115476814
911 => 0.053987496293635
912 => 0.053898781648079
913 => 0.053495738939465
914 => 0.050864293330753
915 => 0.048442797848972
916 => 0.050468481641611
917 => 0.050473645526184
918 => 0.050299637491906
919 => 0.049218888535554
920 => 0.050262029770884
921 => 0.050344830534013
922 => 0.050298484125161
923 => 0.049469876434276
924 => 0.048204745642593
925 => 0.048451949170992
926 => 0.048856873593326
927 => 0.048090267185765
928 => 0.047845289988228
929 => 0.048300749207267
930 => 0.049768333709706
1001 => 0.049490895360658
1002 => 0.049483650324148
1003 => 0.050670649233545
1004 => 0.049821014184814
1005 => 0.048455067199141
1006 => 0.048110147570631
1007 => 0.046885915255124
1008 => 0.047731496876011
1009 => 0.047761927853186
1010 => 0.047298811441061
1011 => 0.048492646543605
1012 => 0.048481645142964
1013 => 0.049615013893924
1014 => 0.051781589271895
1015 => 0.051140826321929
1016 => 0.05039568872593
1017 => 0.05047670584304
1018 => 0.051365263650448
1019 => 0.050828021316287
1020 => 0.051021217405438
1021 => 0.051364971225028
1022 => 0.051572366439314
1023 => 0.050446864863335
1024 => 0.050184456607011
1025 => 0.049647661407354
1026 => 0.049507621559521
1027 => 0.049944830049042
1028 => 0.049829641058857
1029 => 0.047759370247389
1030 => 0.047543015428713
1031 => 0.047549650722118
1101 => 0.047005616243445
1102 => 0.046175833080234
1103 => 0.048356453689376
1104 => 0.048181319336696
1105 => 0.047987984565659
1106 => 0.048011666971958
1107 => 0.048958200470297
1108 => 0.048409163240173
1109 => 0.04986886870189
1110 => 0.049568797141724
1111 => 0.049261029878313
1112 => 0.049218487067689
1113 => 0.049100022928745
1114 => 0.048693765317741
1115 => 0.048203184840155
1116 => 0.0478792611155
1117 => 0.044166087490882
1118 => 0.044855230917074
1119 => 0.045648027611508
1120 => 0.045921697853493
1121 => 0.045453565967173
1122 => 0.04871225001791
1123 => 0.04930764299544
1124 => 0.047504158829978
1125 => 0.047166800578393
1126 => 0.04873436716872
1127 => 0.047788932887531
1128 => 0.048214661886461
1129 => 0.047294468652087
1130 => 0.049164230262295
1201 => 0.049149985811533
1202 => 0.04842260631468
1203 => 0.04903738248454
1204 => 0.048930549996128
1205 => 0.048109340335639
1206 => 0.049190264073298
1207 => 0.049190800197986
1208 => 0.048490713246859
1209 => 0.047673164956684
1210 => 0.047527006632029
1211 => 0.04741689596801
1212 => 0.048187581413018
1213 => 0.048878575573142
1214 => 0.050164344393152
1215 => 0.050487617223616
1216 => 0.051749372602409
1217 => 0.050998058708092
1218 => 0.051331106426299
1219 => 0.051692676836889
1220 => 0.051866026988037
1221 => 0.051583562219223
1222 => 0.053543587681722
1223 => 0.053709073884385
1224 => 0.053764559976688
1225 => 0.053103650418692
1226 => 0.053690692794
1227 => 0.053416035107394
1228 => 0.054130618105841
1229 => 0.054242673844252
1230 => 0.054147766620317
1231 => 0.054183334880368
]
'min_raw' => 0.024297597084794
'max_raw' => 0.054242673844252
'avg_raw' => 0.039270135464523
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.024297'
'max' => '$0.054242'
'avg' => '$0.03927'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0037466401710065
'max_diff' => -0.005176186328233
'year' => 2031
]
6 => [
'items' => [
101 => 0.05251079892031
102 => 0.052424069107451
103 => 0.051241501955051
104 => 0.051723406810749
105 => 0.050822508781323
106 => 0.051108192826732
107 => 0.051234119631851
108 => 0.05116834261514
109 => 0.051750652988246
110 => 0.051255570212956
111 => 0.049948965369821
112 => 0.048642004543071
113 => 0.048625596714518
114 => 0.04828149699861
115 => 0.048032775929014
116 => 0.048080688430872
117 => 0.048249538336746
118 => 0.048022962065533
119 => 0.048071313600705
120 => 0.048874271249152
121 => 0.049035298679116
122 => 0.048488064554619
123 => 0.046290840579258
124 => 0.045751636304385
125 => 0.046139205644278
126 => 0.045953972462472
127 => 0.037088442337713
128 => 0.039171267136258
129 => 0.037933723367009
130 => 0.03850404047253
131 => 0.037240828744533
201 => 0.037843699591732
202 => 0.037732371359573
203 => 0.041081492000367
204 => 0.041029200088126
205 => 0.041054229459289
206 => 0.039859512359979
207 => 0.041762729139284
208 => 0.042700322162232
209 => 0.042526798646915
210 => 0.042570470777303
211 => 0.041820038884547
212 => 0.041061495280374
213 => 0.040220153684322
214 => 0.041783262376822
215 => 0.041609471373371
216 => 0.042008085407258
217 => 0.04302187312766
218 => 0.043171157220495
219 => 0.043371796555154
220 => 0.043299881636159
221 => 0.045013186767496
222 => 0.04480569421134
223 => 0.045305691571994
224 => 0.044277159066238
225 => 0.043113276906773
226 => 0.043334492855113
227 => 0.043313187980382
228 => 0.043041952472454
229 => 0.042797093183655
301 => 0.042389471456483
302 => 0.043679246917921
303 => 0.043626884389593
304 => 0.04447457285844
305 => 0.044324735687565
306 => 0.043324086389085
307 => 0.043359824774541
308 => 0.043600182592008
309 => 0.04443206374262
310 => 0.04467902270691
311 => 0.044564621475038
312 => 0.044835400705276
313 => 0.045049413568298
314 => 0.044862277425872
315 => 0.047511730567429
316 => 0.046411492903826
317 => 0.046947741085662
318 => 0.047075633117272
319 => 0.046748040367582
320 => 0.046819083504773
321 => 0.046926694499521
322 => 0.047580087387237
323 => 0.04929477938536
324 => 0.050054204799025
325 => 0.052338973625427
326 => 0.049991145090132
327 => 0.049851834661128
328 => 0.050263390520172
329 => 0.051604791688612
330 => 0.052691871344228
331 => 0.053052518381125
401 => 0.053100183840685
402 => 0.053776781657267
403 => 0.054164594907929
404 => 0.053694624886045
405 => 0.05329637450041
406 => 0.051869891051723
407 => 0.052035010395094
408 => 0.053172518929946
409 => 0.054779316734342
410 => 0.056158116409332
411 => 0.05567530881917
412 => 0.059358789923062
413 => 0.059723992028841
414 => 0.05967353290622
415 => 0.060505517652547
416 => 0.058854197361836
417 => 0.058148225944733
418 => 0.053382480754118
419 => 0.054721460760461
420 => 0.056667746835218
421 => 0.056410148575026
422 => 0.054996703603161
423 => 0.056157044184574
424 => 0.055773399301154
425 => 0.05547080266416
426 => 0.056857056519474
427 => 0.055332813461386
428 => 0.056652541344729
429 => 0.054959976683505
430 => 0.055677514243574
501 => 0.055270205221092
502 => 0.055533784076554
503 => 0.053992907473325
504 => 0.054824327085762
505 => 0.053958317683994
506 => 0.05395790708278
507 => 0.053938789877237
508 => 0.054957646097944
509 => 0.054990870962723
510 => 0.054237934676214
511 => 0.054129424794253
512 => 0.054530642700195
513 => 0.054060921611473
514 => 0.054280701152497
515 => 0.054067578509878
516 => 0.054019600113974
517 => 0.053637300092566
518 => 0.053472594731786
519 => 0.053537179947682
520 => 0.053316717309867
521 => 0.053183880596101
522 => 0.053912365311417
523 => 0.053523165315013
524 => 0.053852714830055
525 => 0.053477151565201
526 => 0.052175285664091
527 => 0.05142656881738
528 => 0.048967464813217
529 => 0.049664863658288
530 => 0.050127239814082
531 => 0.049974424497351
601 => 0.050302730929367
602 => 0.050322886277899
603 => 0.050216150510162
604 => 0.050092564164822
605 => 0.050032409166664
606 => 0.050480755238869
607 => 0.050741035224418
608 => 0.050173645447111
609 => 0.050040713960915
610 => 0.05061437635222
611 => 0.050964310079523
612 => 0.053548024111149
613 => 0.0533566142304
614 => 0.053837015468788
615 => 0.053782929661704
616 => 0.054286466693454
617 => 0.055109536929738
618 => 0.053436005005315
619 => 0.053726472281015
620 => 0.053655256412882
621 => 0.054432772587351
622 => 0.054435199907979
623 => 0.053969040121571
624 => 0.054221752904362
625 => 0.054080695561821
626 => 0.054335605244836
627 => 0.053354057834745
628 => 0.05454947662874
629 => 0.055227202053849
630 => 0.055236612272034
701 => 0.055557848744774
702 => 0.05588424360584
703 => 0.056510730118655
704 => 0.055866771237024
705 => 0.054708351897103
706 => 0.054791986031774
707 => 0.054112805196628
708 => 0.054124222349171
709 => 0.054063276694118
710 => 0.054246179192705
711 => 0.053394194647685
712 => 0.053594153717479
713 => 0.053314209848809
714 => 0.053725863737716
715 => 0.053282992202078
716 => 0.053655222070434
717 => 0.053815864142001
718 => 0.05440863684446
719 => 0.053195439191956
720 => 0.050721647052239
721 => 0.051241668151838
722 => 0.050472516098755
723 => 0.050543704049636
724 => 0.050687515039895
725 => 0.050221376568439
726 => 0.050310301099081
727 => 0.050307124089095
728 => 0.050279746333388
729 => 0.05015848571384
730 => 0.049982633824814
731 => 0.050683173626338
801 => 0.05080220898953
802 => 0.051066809856546
803 => 0.051854082556303
804 => 0.051775415448429
805 => 0.051903724765239
806 => 0.051623626247068
807 => 0.050556697016552
808 => 0.050614636406921
809 => 0.049892131280611
810 => 0.051048333776053
811 => 0.050774529764005
812 => 0.050598006536237
813 => 0.050549840538065
814 => 0.051339064734569
815 => 0.051575212983736
816 => 0.051428061242174
817 => 0.051126248727129
818 => 0.051705817978876
819 => 0.05186088626058
820 => 0.051895600330155
821 => 0.052922485922869
822 => 0.051952991827512
823 => 0.052186358692207
824 => 0.054007020353049
825 => 0.052355931460801
826 => 0.053230550070701
827 => 0.053187742041042
828 => 0.053635167326386
829 => 0.053151040108278
830 => 0.053157041445367
831 => 0.053554324787539
901 => 0.052996411983887
902 => 0.052858264927757
903 => 0.052667415759142
904 => 0.053084127936737
905 => 0.053333928040934
906 => 0.055347133422802
907 => 0.056647755912808
908 => 0.056591292460369
909 => 0.057107262720507
910 => 0.056874813392569
911 => 0.056124173195622
912 => 0.05740542448099
913 => 0.056999982964469
914 => 0.057033407070479
915 => 0.057032163023584
916 => 0.057301746187758
917 => 0.057110721809007
918 => 0.056734193150238
919 => 0.056984150445785
920 => 0.057726434252194
921 => 0.060030505963335
922 => 0.061319895017779
923 => 0.059952883123253
924 => 0.060895829623078
925 => 0.060330397729375
926 => 0.060227641934147
927 => 0.060819882019237
928 => 0.061413158742195
929 => 0.061375369579749
930 => 0.060944681143977
1001 => 0.060701396174925
1002 => 0.062543631467036
1003 => 0.063900959048604
1004 => 0.06380839840718
1005 => 0.06421693097609
1006 => 0.065416395233846
1007 => 0.065526059213399
1008 => 0.065512244072573
1009 => 0.065240430456996
1010 => 0.066421458788873
1011 => 0.067406693401541
1012 => 0.065177513458441
1013 => 0.066026355998665
1014 => 0.06640742876297
1015 => 0.066966956640165
1016 => 0.067910973956752
1017 => 0.068936427150793
1018 => 0.069081437475953
1019 => 0.068978545710869
1020 => 0.068302231763738
1021 => 0.069424294884858
1022 => 0.070081573145593
1023 => 0.070472967308314
1024 => 0.071465477783198
1025 => 0.06640978213863
1026 => 0.062831109477027
1027 => 0.062272248064258
1028 => 0.063408714723264
1029 => 0.063708391918092
1030 => 0.06358759241662
1031 => 0.059559470977302
1101 => 0.062251040838519
1102 => 0.065146943695567
1103 => 0.065258187118242
1104 => 0.066707936638953
1105 => 0.067180034510138
1106 => 0.068347272897324
1107 => 0.0682742618184
1108 => 0.068558465790861
1109 => 0.068493132219319
1110 => 0.070655195540541
1111 => 0.073040272453358
1112 => 0.072957684823947
1113 => 0.072614801798781
1114 => 0.073124041561397
1115 => 0.0755856965358
1116 => 0.075359066792974
1117 => 0.075579218283854
1118 => 0.07848164823147
1119 => 0.082255220029216
1120 => 0.080502017068749
1121 => 0.084305963022401
1122 => 0.086700345361714
1123 => 0.090841182033802
1124 => 0.090322728888406
1125 => 0.091934726217987
1126 => 0.089394589553711
1127 => 0.083561922326214
1128 => 0.08263888041091
1129 => 0.084486833700493
1130 => 0.08902984654229
1201 => 0.084343758058895
1202 => 0.085291747655911
1203 => 0.085018726588196
1204 => 0.085004178455762
1205 => 0.085559421499226
1206 => 0.084754012505152
1207 => 0.081472631372982
1208 => 0.082976469008555
1209 => 0.082395765077246
1210 => 0.08304009938338
1211 => 0.086517305889902
1212 => 0.084979950007119
1213 => 0.083360470469257
1214 => 0.085391657201015
1215 => 0.087978055902029
1216 => 0.087816203719525
1217 => 0.087502142836503
1218 => 0.089272487590405
1219 => 0.092196578461508
1220 => 0.092986948474019
1221 => 0.09357038345885
1222 => 0.093650829286044
1223 => 0.094479471302939
1224 => 0.090023654333416
1225 => 0.097095150297545
1226 => 0.098316202304416
1227 => 0.098086695134545
1228 => 0.099443843050459
1229 => 0.099044535706077
1230 => 0.098466002013471
1231 => 0.10061737013384
]
'min_raw' => 0.037088442337713
'max_raw' => 0.10061737013384
'avg_raw' => 0.068852906235774
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.037088'
'max' => '$0.100617'
'avg' => '$0.068852'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.012790845252919
'max_diff' => 0.046374696289584
'year' => 2032
]
7 => [
'items' => [
101 => 0.098151000190293
102 => 0.094650298562776
103 => 0.092729744413893
104 => 0.095258885043826
105 => 0.096803342971682
106 => 0.097824131416022
107 => 0.098133021382501
108 => 0.090369546720676
109 => 0.086185464459997
110 => 0.088867413218492
111 => 0.092139575802071
112 => 0.090005477305049
113 => 0.09008912992575
114 => 0.087046466300215
115 => 0.09240878401864
116 => 0.091627539431257
117 => 0.095680637732601
118 => 0.094713333294839
119 => 0.098018477619216
120 => 0.097148122351159
121 => 0.10076091840796
122 => 0.10220216056756
123 => 0.10462223046497
124 => 0.10640244373295
125 => 0.10744781901397
126 => 0.1073850586032
127 => 0.11152735627049
128 => 0.10908478805695
129 => 0.10601634671161
130 => 0.10596084828849
131 => 0.10755003754138
201 => 0.11088054224268
202 => 0.11174409365485
203 => 0.11222670108641
204 => 0.11148757100529
205 => 0.10883633826994
206 => 0.10769154941687
207 => 0.10866694268741
208 => 0.10747412053403
209 => 0.10953326621754
210 => 0.11236091305079
211 => 0.11177701516145
212 => 0.11372889826264
213 => 0.11574889192829
214 => 0.11863757359375
215 => 0.11939278194867
216 => 0.12064111264136
217 => 0.12192605497941
218 => 0.12233874382822
219 => 0.12312669489043
220 => 0.12312254199939
221 => 0.1254970855606
222 => 0.1281162806421
223 => 0.12910496615086
224 => 0.13137839396182
225 => 0.12748522850597
226 => 0.1304382392257
227 => 0.13310192881354
228 => 0.12992616827588
301 => 0.13430321431975
302 => 0.13447316509903
303 => 0.13703922009136
304 => 0.13443803175998
305 => 0.1328934544321
306 => 0.13735259130314
307 => 0.13951022717354
308 => 0.13886032968995
309 => 0.13391457775045
310 => 0.13103593798838
311 => 0.1235019824829
312 => 0.1324262782218
313 => 0.13677304235094
314 => 0.13390332068146
315 => 0.1353506413698
316 => 0.14324675375011
317 => 0.14625308210912
318 => 0.14562778682626
319 => 0.14573345143583
320 => 0.14735561164963
321 => 0.15454916337756
322 => 0.15023862043696
323 => 0.15353386900209
324 => 0.15528165695913
325 => 0.15690509981891
326 => 0.15291843724968
327 => 0.1477318478228
328 => 0.1460890372331
329 => 0.13361798341746
330 => 0.13296881090731
331 => 0.13260441070543
401 => 0.13030691897797
402 => 0.12850171981614
403 => 0.12706615841991
404 => 0.12329881662127
405 => 0.12457018388683
406 => 0.11856582736513
407 => 0.12240720188639
408 => 0.1128241038975
409 => 0.12080519266594
410 => 0.11646144890486
411 => 0.11937815601581
412 => 0.11936797989947
413 => 0.11399739736537
414 => 0.11089975744091
415 => 0.11287369416273
416 => 0.11498991101981
417 => 0.11533326008506
418 => 0.11807699047918
419 => 0.1188427066559
420 => 0.11652255089259
421 => 0.11262551549215
422 => 0.11353070793376
423 => 0.11088141374497
424 => 0.10623862758274
425 => 0.10957315765972
426 => 0.11071171283694
427 => 0.11121456366526
428 => 0.1066489167023
429 => 0.10521429130152
430 => 0.10445050877582
501 => 0.11203614780217
502 => 0.11245170623165
503 => 0.11032565055241
504 => 0.11993562382344
505 => 0.11776059090161
506 => 0.1201906355713
507 => 0.11344857120746
508 => 0.11370612714556
509 => 0.11051432582934
510 => 0.11230152129018
511 => 0.11103838914246
512 => 0.11215713355835
513 => 0.11282770434849
514 => 0.11601898192151
515 => 0.1208416319296
516 => 0.11554231147183
517 => 0.11323332166071
518 => 0.11466580595328
519 => 0.11848070039495
520 => 0.12426046075495
521 => 0.12083872629331
522 => 0.12235723394257
523 => 0.12268896031023
524 => 0.12016589999771
525 => 0.12435348958753
526 => 0.12659765286862
527 => 0.12889970003087
528 => 0.13089850307995
529 => 0.12798021177117
530 => 0.13110320179219
531 => 0.1285866231172
601 => 0.1263289918866
602 => 0.12633241578127
603 => 0.12491617073159
604 => 0.12217201748947
605 => 0.12166595352876
606 => 0.12429856216121
607 => 0.12640966497547
608 => 0.12658354551475
609 => 0.1277523605051
610 => 0.12844405317664
611 => 0.13522358166832
612 => 0.13795036411087
613 => 0.14128462206628
614 => 0.14258350344839
615 => 0.1464926707338
616 => 0.14333570066378
617 => 0.14265267033086
618 => 0.13317030917534
619 => 0.13472304528334
620 => 0.13720912560901
621 => 0.13321130372423
622 => 0.13574700153837
623 => 0.13624760200031
624 => 0.13307545926637
625 => 0.13476983776076
626 => 0.13027007082787
627 => 0.1209397145523
628 => 0.12436387694128
629 => 0.12688521302018
630 => 0.1232869555571
701 => 0.12973669278787
702 => 0.12596888944726
703 => 0.12477467667474
704 => 0.12011562688155
705 => 0.12231451904066
706 => 0.12528855217096
707 => 0.1234509454649
708 => 0.12726425529802
709 => 0.13266491899431
710 => 0.13651375355936
711 => 0.1368092192861
712 => 0.13433467651266
713 => 0.13830014709942
714 => 0.13832903122344
715 => 0.13385596420215
716 => 0.13111623555775
717 => 0.1304937634453
718 => 0.13204882082504
719 => 0.13393694756347
720 => 0.13691399717939
721 => 0.13871296591233
722 => 0.14340372226853
723 => 0.144672906444
724 => 0.14606735506024
725 => 0.14793076844356
726 => 0.15016827397962
727 => 0.14527273924798
728 => 0.14546724796929
729 => 0.14090859381047
730 => 0.13603701806464
731 => 0.13973393680524
801 => 0.14456716627807
802 => 0.14345841809676
803 => 0.14333366127669
804 => 0.14354346764339
805 => 0.14270750772301
806 => 0.13892649198526
807 => 0.13702768955217
808 => 0.13947762912702
809 => 0.14077966297678
810 => 0.14279900392849
811 => 0.14255007753307
812 => 0.14775168296328
813 => 0.14977286954508
814 => 0.149255763526
815 => 0.14935092347836
816 => 0.15301018524025
817 => 0.15708003690404
818 => 0.16089199005142
819 => 0.16476967252012
820 => 0.16009497495557
821 => 0.15772145182756
822 => 0.16017032183543
823 => 0.15887091693892
824 => 0.16633768290284
825 => 0.16685466557777
826 => 0.17432089160953
827 => 0.18140722917532
828 => 0.17695642751517
829 => 0.18115333301219
830 => 0.18569262848593
831 => 0.19444966592894
901 => 0.19150060379443
902 => 0.18924166841708
903 => 0.18710698540059
904 => 0.19154892188653
905 => 0.19726340221401
906 => 0.19849424654394
907 => 0.20048868457714
908 => 0.19839177685351
909 => 0.20091727123982
910 => 0.20983337618196
911 => 0.20742416592195
912 => 0.20400270005288
913 => 0.21104110859287
914 => 0.21358828128238
915 => 0.23146567318202
916 => 0.25403661893354
917 => 0.24469209918359
918 => 0.23889165422903
919 => 0.24025489638175
920 => 0.24849704169547
921 => 0.25114415717762
922 => 0.24394838478171
923 => 0.24649005324104
924 => 0.26049489634332
925 => 0.26800804533854
926 => 0.25780417985251
927 => 0.22965211966773
928 => 0.20369463448643
929 => 0.2105797284373
930 => 0.20979917245262
1001 => 0.22484562922626
1002 => 0.20736670705403
1003 => 0.20766100727622
1004 => 0.22301860884146
1005 => 0.2189214640398
1006 => 0.21228461418377
1007 => 0.20374309083516
1008 => 0.18795329492998
1009 => 0.17396783236573
1010 => 0.2013965451139
1011 => 0.20021376914432
1012 => 0.19850093426279
1013 => 0.20231266294354
1014 => 0.2208213354392
1015 => 0.22039465063145
1016 => 0.21768029958104
1017 => 0.21973911092958
1018 => 0.21192369460016
1019 => 0.21393790534198
1020 => 0.20369052268816
1021 => 0.20832276761619
1022 => 0.21227037448474
1023 => 0.21306291500892
1024 => 0.21484854927802
1025 => 0.19959049995411
1026 => 0.20644091614775
1027 => 0.21046489386432
1028 => 0.19228441614729
1029 => 0.21010552427455
1030 => 0.19932489126148
1031 => 0.19566578249716
1101 => 0.20059229039739
1102 => 0.19867242547748
1103 => 0.1970218383576
1104 => 0.19610078238402
1105 => 0.19971826606711
1106 => 0.19954950612947
1107 => 0.19363060070061
1108 => 0.18590962985411
1109 => 0.18850104110242
1110 => 0.1875595571013
1111 => 0.18414749762738
1112 => 0.18644681373917
1113 => 0.1763217892401
1114 => 0.15890221084243
1115 => 0.17041011790805
1116 => 0.16996707600422
1117 => 0.16974367418596
1118 => 0.17839154829058
1119 => 0.17756025473582
1120 => 0.17605144879388
1121 => 0.18411978722304
1122 => 0.18117473516193
1123 => 0.19025069167273
1124 => 0.19622870362681
1125 => 0.19471248642682
1126 => 0.20033483556387
1127 => 0.18856074198367
1128 => 0.19247162357637
1129 => 0.19327765085238
1130 => 0.18402022517924
1201 => 0.17769626464216
1202 => 0.17727452857276
1203 => 0.16630965249691
1204 => 0.17216700079124
1205 => 0.17732122489672
1206 => 0.17485275153414
1207 => 0.1740713066111
1208 => 0.17806353924822
1209 => 0.17837376991528
1210 => 0.17130047782944
1211 => 0.17277123923611
1212 => 0.17890455879569
1213 => 0.17261669531969
1214 => 0.16040040370249
1215 => 0.15737059447798
1216 => 0.15696636207696
1217 => 0.14874927916289
1218 => 0.15757306081796
1219 => 0.15372124366287
1220 => 0.16588908790392
1221 => 0.15893888053089
1222 => 0.15863927098225
1223 => 0.1581863672063
1224 => 0.15111358449873
1225 => 0.1526620744129
1226 => 0.15780949072926
1227 => 0.15964614686074
1228 => 0.15945456857894
1229 => 0.15778426558115
1230 => 0.15854892174021
1231 => 0.15608569782802
]
'min_raw' => 0.086185464459997
'max_raw' => 0.26800804533854
'avg_raw' => 0.17709675489927
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.086185'
'max' => '$0.268008'
'avg' => '$0.177096'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.049097022122284
'max_diff' => 0.1673906752047
'year' => 2033
]
8 => [
'items' => [
101 => 0.15521588219706
102 => 0.1524705048041
103 => 0.14843555846631
104 => 0.14899664250234
105 => 0.14100235800604
106 => 0.13664664752367
107 => 0.13544104426949
108 => 0.13382886121237
109 => 0.13562314463564
110 => 0.14097971120249
111 => 0.13451855546388
112 => 0.12344135714741
113 => 0.12410711564086
114 => 0.12560287731016
115 => 0.12281553533486
116 => 0.12017755007913
117 => 0.12247106423248
118 => 0.11777750927767
119 => 0.12617007100273
120 => 0.12594307572795
121 => 0.12907130374651
122 => 0.13102744892423
123 => 0.12651916759912
124 => 0.12538534703755
125 => 0.12603122275869
126 => 0.11535633579413
127 => 0.12819893773965
128 => 0.12831000109458
129 => 0.12735900922118
130 => 0.13419729828632
131 => 0.14862822112961
201 => 0.14319872747344
202 => 0.14109626342246
203 => 0.13709947772464
204 => 0.14242495736133
205 => 0.14201604361565
206 => 0.14016678058179
207 => 0.13904834052885
208 => 0.14110910061963
209 => 0.13879298954818
210 => 0.13837695235727
211 => 0.1358562196333
212 => 0.13495643273687
213 => 0.13429026634031
214 => 0.13355688259385
215 => 0.1351745443907
216 => 0.1315087099379
217 => 0.12708807295401
218 => 0.12672054482076
219 => 0.12773532231008
220 => 0.12728635881235
221 => 0.12671839535626
222 => 0.12563399844293
223 => 0.12531228104322
224 => 0.12635770651719
225 => 0.12517748210917
226 => 0.12691896751335
227 => 0.12644537984419
228 => 0.12379995762206
301 => 0.12050278207254
302 => 0.12047343029409
303 => 0.1197630592304
304 => 0.11885829487578
305 => 0.11860661013053
306 => 0.12227791086762
307 => 0.12987739352061
308 => 0.12838543323562
309 => 0.12946352744376
310 => 0.13476668391878
311 => 0.13645239789071
312 => 0.13525591804176
313 => 0.13361810262885
314 => 0.13369015819497
315 => 0.13928706926132
316 => 0.13963614173921
317 => 0.14051813527581
318 => 0.14165174622168
319 => 0.13544897688771
320 => 0.13339800831714
321 => 0.132426145625
322 => 0.1294331846914
323 => 0.13266083646121
324 => 0.13078022199677
325 => 0.13103398113896
326 => 0.13086872016471
327 => 0.13095896383155
328 => 0.12616772511068
329 => 0.12791340068047
330 => 0.12501087646635
331 => 0.12112472236728
401 => 0.12111169461608
402 => 0.12206282532632
403 => 0.12149705556212
404 => 0.11997458367393
405 => 0.12019084361978
406 => 0.11829617893471
407 => 0.12042089021656
408 => 0.12048181933354
409 => 0.11966368975623
410 => 0.12293710063958
411 => 0.12427821974933
412 => 0.12373970933551
413 => 0.12424043642314
414 => 0.12844743092126
415 => 0.12913335458849
416 => 0.1294379965719
417 => 0.12902981667146
418 => 0.12431733255968
419 => 0.12452635126906
420 => 0.12299271066567
421 => 0.12169694596687
422 => 0.12174876975943
423 => 0.12241496125224
424 => 0.12532425857292
425 => 0.13144670327186
426 => 0.13167904557274
427 => 0.1319606512193
428 => 0.13081521953107
429 => 0.13046974637359
430 => 0.13092551464249
501 => 0.13322478296856
502 => 0.13913912534848
503 => 0.13704860174577
504 => 0.13534897351583
505 => 0.13684000568997
506 => 0.13661047297386
507 => 0.13467298585631
508 => 0.13461860704592
509 => 0.13089994981524
510 => 0.12952524690679
511 => 0.12837644226176
512 => 0.12712197757969
513 => 0.12637828886612
514 => 0.12752093273064
515 => 0.12778226890182
516 => 0.12528385812205
517 => 0.12494333396472
518 => 0.12698359013941
519 => 0.12608574946535
520 => 0.127009200864
521 => 0.12722344950971
522 => 0.12718895054319
523 => 0.12625150176311
524 => 0.12684900366041
525 => 0.12543573354942
526 => 0.12389901457003
527 => 0.12291868360216
528 => 0.12206321481066
529 => 0.12253787861632
530 => 0.12084578881931
531 => 0.12030445523821
601 => 0.12664658346182
602 => 0.13133158176997
603 => 0.13126346003911
604 => 0.13084878652196
605 => 0.13023266578894
606 => 0.13317970989936
607 => 0.1321530186593
608 => 0.13290002231937
609 => 0.1330901661025
610 => 0.1336656740664
611 => 0.13387136869691
612 => 0.1332496166594
613 => 0.13116294088087
614 => 0.12596314323597
615 => 0.12354262339568
616 => 0.12274381153144
617 => 0.12277284682555
618 => 0.12197192379486
619 => 0.12220783152225
620 => 0.1218898847146
621 => 0.12128777038051
622 => 0.1225006997529
623 => 0.12264047856385
624 => 0.12235736635491
625 => 0.12242404952893
626 => 0.12008000135768
627 => 0.12025821424914
628 => 0.11926590222331
629 => 0.11907985568097
630 => 0.11657137729019
701 => 0.11212724421117
702 => 0.11458972533938
703 => 0.11161539441374
704 => 0.11048897022373
705 => 0.11582128714433
706 => 0.11528607042095
707 => 0.11437001204364
708 => 0.11301497078031
709 => 0.11251237279475
710 => 0.10945874653765
711 => 0.10927832200792
712 => 0.11079178163578
713 => 0.11009337209249
714 => 0.10911254058533
715 => 0.10556006829169
716 => 0.10156591325048
717 => 0.10168647168481
718 => 0.10295693808952
719 => 0.10665099050696
720 => 0.10520766031971
721 => 0.10416050770855
722 => 0.10396440750178
723 => 0.10641901215319
724 => 0.1098927919905
725 => 0.11152261176873
726 => 0.10990750986687
727 => 0.10805216776528
728 => 0.10816509384217
729 => 0.10891634043999
730 => 0.10899528583537
731 => 0.10778764885948
801 => 0.10812759159442
802 => 0.10761118749503
803 => 0.1044420164903
804 => 0.10438469623638
805 => 0.10360693056203
806 => 0.10358338012652
807 => 0.10226020669171
808 => 0.10207508558152
809 => 0.099447844415831
810 => 0.10117710250711
811 => 0.1000172069696
812 => 0.098268970802891
813 => 0.097967574228799
814 => 0.097958513883835
815 => 0.099753561528595
816 => 0.10115612633025
817 => 0.10003738384907
818 => 0.099782667872021
819 => 0.1025023681156
820 => 0.10215626146898
821 => 0.10185653534517
822 => 0.10958175310682
823 => 0.10346664044221
824 => 0.10080010228201
825 => 0.097499754946907
826 => 0.098574364681014
827 => 0.098800800741292
828 => 0.090864060332679
829 => 0.087644125737363
830 => 0.086539165524926
831 => 0.085903245300825
901 => 0.086193042132332
902 => 0.083294723335889
903 => 0.085242441500867
904 => 0.082732742411936
905 => 0.08231198319241
906 => 0.086799636055475
907 => 0.087424066734883
908 => 0.084760051461123
909 => 0.086470780531774
910 => 0.085850446389843
911 => 0.082775763999543
912 => 0.082658333748066
913 => 0.081115566204925
914 => 0.078701433738572
915 => 0.077598110421627
916 => 0.07702349005867
917 => 0.077260589619553
918 => 0.077140704826204
919 => 0.076358375456402
920 => 0.077185547029919
921 => 0.075072465470475
922 => 0.07423101936725
923 => 0.073850957683824
924 => 0.071975476175381
925 => 0.074960201285726
926 => 0.07554822973304
927 => 0.076137416778047
928 => 0.08126588774975
929 => 0.081009683832912
930 => 0.083325642464758
1001 => 0.083235648571099
1002 => 0.082575099653254
1003 => 0.07978835242389
1004 => 0.080899100200522
1005 => 0.07748039119258
1006 => 0.080041920430946
1007 => 0.078872945458574
1008 => 0.079646688816904
1009 => 0.078255428493001
1010 => 0.07902540939998
1011 => 0.075687673092316
1012 => 0.072570941891436
1013 => 0.073825205509726
1014 => 0.07518873350525
1015 => 0.078145209620018
1016 => 0.07638435683646
1017 => 0.077017626082643
1018 => 0.074896280115923
1019 => 0.070519337454059
1020 => 0.070544110474191
1021 => 0.069870813202542
1022 => 0.069288986056827
1023 => 0.076586611960664
1024 => 0.075679036821128
1025 => 0.074232934616776
1026 => 0.076168599883119
1027 => 0.076680420502678
1028 => 0.076694991316182
1029 => 0.078107202727754
1030 => 0.078860900211263
1031 => 0.078993742659443
1101 => 0.081215887828398
1102 => 0.081960721578229
1103 => 0.085028586380962
1104 => 0.078796954245578
1105 => 0.07866861788259
1106 => 0.07619583866297
1107 => 0.074627562988794
1108 => 0.076303219840099
1109 => 0.077787623060385
1110 => 0.076241963208782
1111 => 0.076443793754741
1112 => 0.074368871689015
1113 => 0.075110558693354
1114 => 0.075749399457521
1115 => 0.075396669136873
1116 => 0.074868614774522
1117 => 0.077665918924232
1118 => 0.077508084061382
1119 => 0.080112997995337
1120 => 0.082143714686038
1121 => 0.085783122029802
1122 => 0.081985210739988
1123 => 0.081846799757257
1124 => 0.083199789315272
1125 => 0.081960514442577
1126 => 0.082743693383806
1127 => 0.085656939794471
1128 => 0.085718492100495
1129 => 0.084687411668929
1130 => 0.084624670330964
1201 => 0.08482270060663
1202 => 0.085982570116569
1203 => 0.085577276070607
1204 => 0.086046292601385
1205 => 0.086632804954959
1206 => 0.089058868725425
1207 => 0.089643784487084
1208 => 0.088222742430304
1209 => 0.088351046617298
1210 => 0.087819537879586
1211 => 0.08730610709874
1212 => 0.088460224513537
1213 => 0.090569396773311
1214 => 0.09055627572215
1215 => 0.091045562689967
1216 => 0.091350384417446
1217 => 0.090041866419967
1218 => 0.089190069319148
1219 => 0.08951670252886
1220 => 0.090038996144334
1221 => 0.089347329748659
1222 => 0.085078044343507
1223 => 0.086373072812422
1224 => 0.086157516751538
1225 => 0.085850538708326
1226 => 0.087152699847979
1227 => 0.087027103229417
1228 => 0.083264996887469
1229 => 0.083505834729357
1230 => 0.083279643034314
1231 => 0.084010514675463
]
'min_raw' => 0.069288986056827
'max_raw' => 0.15521588219706
'avg_raw' => 0.11225243412694
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.069288'
'max' => '$0.155215'
'avg' => '$0.112252'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.01689647840317
'max_diff' => -0.11279216314148
'year' => 2034
]
9 => [
'items' => [
101 => 0.081921044975439
102 => 0.082563751782373
103 => 0.08296685146668
104 => 0.083204280277495
105 => 0.084062035948616
106 => 0.083961388220789
107 => 0.084055779544539
108 => 0.085327604765711
109 => 0.091760060296688
110 => 0.092110164658826
111 => 0.090386122735005
112 => 0.091074843478348
113 => 0.089752650257798
114 => 0.090640247424678
115 => 0.091247518863734
116 => 0.088503376002223
117 => 0.088340885671305
118 => 0.087013235289003
119 => 0.08772663940249
120 => 0.086591562162361
121 => 0.086870070413772
122 => 0.086091337062913
123 => 0.087492902050196
124 => 0.08906006948716
125 => 0.089455997871054
126 => 0.088414480750914
127 => 0.08766035371661
128 => 0.086336355069261
129 => 0.088538194327037
130 => 0.089182079225847
131 => 0.088534812273774
201 => 0.088384826377917
202 => 0.088100603376285
203 => 0.088445125631321
204 => 0.089178572490406
205 => 0.088832692496299
206 => 0.089061152326028
207 => 0.088190499041853
208 => 0.090042299593871
209 => 0.092983404530547
210 => 0.092992860663837
211 => 0.092646978805308
212 => 0.092505451400926
213 => 0.092860347177644
214 => 0.093052863577926
215 => 0.094200531443076
216 => 0.095432024787487
217 => 0.10117886688321
218 => 0.099565176619091
219 => 0.10466411680758
220 => 0.10869671648216
221 => 0.10990591680036
222 => 0.10879350940489
223 => 0.10498802379606
224 => 0.10480130851707
225 => 0.11048831065123
226 => 0.10888147206713
227 => 0.10869034373047
228 => 0.10665706114482
301 => 0.10785898297989
302 => 0.10759610504343
303 => 0.1071811393603
304 => 0.10947432249501
305 => 0.11376695660931
306 => 0.11309790932653
307 => 0.11259849656614
308 => 0.110410215227
309 => 0.11172804936349
310 => 0.11125879386894
311 => 0.11327501327044
312 => 0.11208064956172
313 => 0.10886929868449
314 => 0.10938071689644
315 => 0.10930341706253
316 => 0.11089424216678
317 => 0.11041671595719
318 => 0.10921017240609
319 => 0.11375228485257
320 => 0.11345734533486
321 => 0.11387550213842
322 => 0.11405958769528
323 => 0.11682429150045
324 => 0.11795690218878
325 => 0.11821402464417
326 => 0.11928991719883
327 => 0.1181872554573
328 => 0.12259868860792
329 => 0.12553203423883
330 => 0.12893926613771
331 => 0.13391814771957
401 => 0.13579025325158
402 => 0.13545207414379
403 => 0.13922700533597
404 => 0.14601047277631
405 => 0.13682320686024
406 => 0.14649742017828
407 => 0.14343467593595
408 => 0.13617296443381
409 => 0.13570539582302
410 => 0.14062311116248
411 => 0.15153013047284
412 => 0.14879804584198
413 => 0.15153459918455
414 => 0.14834226434986
415 => 0.1481837380182
416 => 0.15137955460706
417 => 0.1588467542618
418 => 0.15529936760963
419 => 0.15021331898884
420 => 0.15396877814275
421 => 0.15071545187229
422 => 0.14338479723627
423 => 0.14879595666836
424 => 0.14517766845707
425 => 0.1462336773159
426 => 0.15383878095627
427 => 0.15292371476565
428 => 0.15410789514916
429 => 0.15201784776767
430 => 0.15006541394313
501 => 0.14642105122
502 => 0.14534213508259
503 => 0.14564030868763
504 => 0.14534198732256
505 => 0.14330299987239
506 => 0.14286268072666
507 => 0.14212879619295
508 => 0.14235625769709
509 => 0.14097634006822
510 => 0.14358052973942
511 => 0.14406389029044
512 => 0.14595900236174
513 => 0.14615575918378
514 => 0.15143361932713
515 => 0.14852666265101
516 => 0.15047690016391
517 => 0.15030245256441
518 => 0.13633034774149
519 => 0.13825558050917
520 => 0.14125063852434
521 => 0.13990136894821
522 => 0.13799381744802
523 => 0.13645336733517
524 => 0.1341194278951
525 => 0.13740440283767
526 => 0.141723795569
527 => 0.14626530611153
528 => 0.15172163345681
529 => 0.150503844712
530 => 0.14616330386715
531 => 0.14635801735868
601 => 0.1475616595464
602 => 0.14600283355088
603 => 0.1455431053329
604 => 0.14749849994886
605 => 0.14751196567691
606 => 0.14571834797865
607 => 0.1437250701356
608 => 0.14371671822866
609 => 0.14336203368927
610 => 0.14840536194148
611 => 0.15117868254219
612 => 0.15149663927964
613 => 0.15115728152042
614 => 0.15128788685331
615 => 0.14967415270171
616 => 0.15336267043428
617 => 0.15674761906229
618 => 0.1558403805211
619 => 0.15448030097631
620 => 0.15339693210857
621 => 0.15558517324582
622 => 0.15548773431259
623 => 0.15671805448899
624 => 0.15666224005911
625 => 0.15624852965847
626 => 0.155840395296
627 => 0.15745860190978
628 => 0.15699258439261
629 => 0.15652584302153
630 => 0.15558972174729
701 => 0.15571695617579
702 => 0.1543571114679
703 => 0.15372798508377
704 => 0.14426743375174
705 => 0.14173926530339
706 => 0.14253467856286
707 => 0.14279654926077
708 => 0.14169628711211
709 => 0.14327378039913
710 => 0.14302792974133
711 => 0.14398439083302
712 => 0.14338683546764
713 => 0.14341135934827
714 => 0.1451686422656
715 => 0.14567878897252
716 => 0.14541932423999
717 => 0.14560104444472
718 => 0.14978870986344
719 => 0.1491933577549
720 => 0.14887708881304
721 => 0.14896469747136
722 => 0.1500347357704
723 => 0.15033428807221
724 => 0.14906506392029
725 => 0.14966363736763
726 => 0.15221228713614
727 => 0.15310417031403
728 => 0.15595063328965
729 => 0.15474140522576
730 => 0.1569609956712
731 => 0.16378325998632
801 => 0.16923335678602
802 => 0.16422122253424
803 => 0.17422963124125
804 => 0.18202261304061
805 => 0.18172350541926
806 => 0.18036461878763
807 => 0.17149251619619
808 => 0.16332827511595
809 => 0.17015800945156
810 => 0.17017541984893
811 => 0.16958873961251
812 => 0.16594491905068
813 => 0.16946194255539
814 => 0.16974111110924
815 => 0.169584850956
816 => 0.16679114227464
817 => 0.16252566548187
818 => 0.16335912943707
819 => 0.16472436039788
820 => 0.16213969337204
821 => 0.16131373564679
822 => 0.16284934820292
823 => 0.16779741181637
824 => 0.16686200905243
825 => 0.166837581906
826 => 0.17083963160265
827 => 0.16797502771623
828 => 0.16336964208666
829 => 0.16220672147762
830 => 0.15807913675272
831 => 0.16093007422416
901 => 0.16103267438833
902 => 0.1594712450711
903 => 0.16349634347023
904 => 0.16345925147987
905 => 0.16728048335301
906 => 0.17458524350531
907 => 0.17242486648286
908 => 0.1699125830541
909 => 0.17018573792087
910 => 0.17318157260567
911 => 0.17137022256699
912 => 0.17202159667008
913 => 0.17318058667295
914 => 0.17387983411779
915 => 0.17008512697436
916 => 0.16920039921741
917 => 0.16739055672392
918 => 0.16691840259968
919 => 0.16839248154702
920 => 0.16800411382438
921 => 0.16102405124182
922 => 0.16029459586524
923 => 0.16031696722022
924 => 0.1584827169921
925 => 0.15568504512372
926 => 0.16303715975351
927 => 0.16244668205596
928 => 0.16179484037721
929 => 0.1618746872635
930 => 0.16506599103801
1001 => 0.16321487368409
1002 => 0.16813637256165
1003 => 0.16712466034622
1004 => 0.16608700153001
1005 => 0.16594356547375
1006 => 0.16554415535839
1007 => 0.16417442945889
1008 => 0.16252040312748
1009 => 0.16142827167417
1010 => 0.14890904755327
1011 => 0.15123254272913
1012 => 0.15390551213571
1013 => 0.15482821046361
1014 => 0.15324987112496
1015 => 0.16423675191607
1016 => 0.16624416090883
1017 => 0.16016358812973
1018 => 0.15902616123091
1019 => 0.1643113214342
1020 => 0.16112372374706
1021 => 0.1625590987904
1022 => 0.15945660305487
1023 => 0.16576063486627
1024 => 0.16571260870601
1025 => 0.16326019794836
1026 => 0.16533295872734
1027 => 0.16497276553385
1028 => 0.16220399982849
1029 => 0.16584840967769
1030 => 0.1658502172595
1031 => 0.16348982522527
1101 => 0.16073340408555
1102 => 0.16024062108952
1103 => 0.1598693752981
1104 => 0.16246779508349
1105 => 0.16479753013802
1106 => 0.16913258948419
1107 => 0.17022252640229
1108 => 0.17447662275484
1109 => 0.17194351550509
1110 => 0.17306640913967
1111 => 0.17428546902301
1112 => 0.17486993116053
1113 => 0.17391758147142
1114 => 0.18052594416284
1115 => 0.18108389244899
1116 => 0.18127096768311
1117 => 0.17904266496509
1118 => 0.18102191931944
1119 => 0.18009589175305
1120 => 0.18250515822291
1121 => 0.18288296196844
1122 => 0.18256297563674
1123 => 0.1826828965088
1124 => 0.17704382474673
1125 => 0.17675140912739
1126 => 0.17276430140888
1127 => 0.17438907727538
1128 => 0.17135163667048
1129 => 0.1723148403754
1130 => 0.17273941139079
1201 => 0.17251763958654
1202 => 0.17448093966508
1203 => 0.17281173352262
1204 => 0.16840642406975
1205 => 0.16399991439327
1206 => 0.16394459425375
1207 => 0.16278443803729
1208 => 0.16194585758599
1209 => 0.16210739793115
1210 => 0.16267668717753
1211 => 0.16191276946008
1212 => 0.16207579003671
1213 => 0.16478301780917
1214 => 0.16532593303187
1215 => 0.16348089497446
1216 => 0.15607280093625
1217 => 0.15425483607748
1218 => 0.15556155316615
1219 => 0.15493702656112
1220 => 0.12504627277395
1221 => 0.13206866200043
1222 => 0.12789619677986
1223 => 0.12981906071939
1224 => 0.12556005418382
1225 => 0.12759267533626
1226 => 0.12721732442884
1227 => 0.13850911849741
1228 => 0.13833281266439
1229 => 0.13841720093676
1230 => 0.13438912882395
1231 => 0.14080595707373
]
'min_raw' => 0.081921044975439
'max_raw' => 0.18288296196844
'avg_raw' => 0.13240200347194
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.081921'
'max' => '$0.182882'
'avg' => '$0.132402'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.012632058918612
'max_diff' => 0.027667079771385
'year' => 2035
]
10 => [
'items' => [
101 => 0.14396711741126
102 => 0.14338207076434
103 => 0.14352931440103
104 => 0.14099918088112
105 => 0.13844169815983
106 => 0.13560505622815
107 => 0.14087518631768
108 => 0.14028923781584
109 => 0.14163319286143
110 => 0.14505124894117
111 => 0.14555457068284
112 => 0.14623104020784
113 => 0.14598857403751
114 => 0.15176510190695
115 => 0.15106552626721
116 => 0.15275130227735
117 => 0.14928353312435
118 => 0.14535942316406
119 => 0.14610526817869
120 => 0.14603343730607
121 => 0.14511894785403
122 => 0.14429338766632
123 => 0.14291906255392
124 => 0.14726763057141
125 => 0.14709108665131
126 => 0.14994912750775
127 => 0.14944394102485
128 => 0.14607018205192
129 => 0.14619067651366
130 => 0.14700105967649
131 => 0.14980580505587
201 => 0.1506384444461
202 => 0.1502527327056
203 => 0.15116568378555
204 => 0.15188724309513
205 => 0.15125630052551
206 => 0.16018911677118
207 => 0.15647958867221
208 => 0.15828758685692
209 => 0.15871878377063
210 => 0.15761428194325
211 => 0.15785380884037
212 => 0.15821662682232
213 => 0.16041958656169
214 => 0.16620079034933
215 => 0.16876124615289
216 => 0.17646450376857
217 => 0.16854863594167
218 => 0.16807894110394
219 => 0.16946653041662
220 => 0.17398915810966
221 => 0.17765432306604
222 => 0.17887026973051
223 => 0.17903097715532
224 => 0.18131217393247
225 => 0.18261971338334
226 => 0.18103517664229
227 => 0.17969244766217
228 => 0.17488295912103
229 => 0.17543967051547
301 => 0.17927485995903
302 => 0.18469229093959
303 => 0.18934101030854
304 => 0.18771319080976
305 => 0.20013230452397
306 => 0.2013636089212
307 => 0.20119348246634
308 => 0.2039985771259
309 => 0.19843103547427
310 => 0.19605080355216
311 => 0.1799827609083
312 => 0.18449722548428
313 => 0.19105926487068
314 => 0.1901907543515
315 => 0.18542522594528
316 => 0.18933739522791
317 => 0.18804390971823
318 => 0.18702368402998
319 => 0.19169753568833
320 => 0.18655844379873
321 => 0.19100799849788
322 => 0.18530139857147
323 => 0.18772062655212
324 => 0.18634735574541
325 => 0.18723603025909
326 => 0.18204085721074
327 => 0.18484404648193
328 => 0.18192423532102
329 => 0.18192285095036
330 => 0.18185839595715
331 => 0.18529354083954
401 => 0.18540556079083
402 => 0.18286698353253
403 => 0.18250113488958
404 => 0.1838538690716
405 => 0.1822701716261
406 => 0.18301117369318
407 => 0.18229261582384
408 => 0.1821308533123
409 => 0.18084190209879
410 => 0.18028658647556
411 => 0.18050434004015
412 => 0.17976103486455
413 => 0.17931316660972
414 => 0.18176930368859
415 => 0.18045708872764
416 => 0.18156818792601
417 => 0.18030195015757
418 => 0.1759126183786
419 => 0.17338826725617
420 => 0.16509722641698
421 => 0.16744855531397
422 => 0.1690074888053
423 => 0.16849226129572
424 => 0.16959916935288
425 => 0.16966712451766
426 => 0.16930725742468
427 => 0.16889057743284
428 => 0.16868776065667
429 => 0.17019939074163
430 => 0.17107694288508
501 => 0.169163948637
502 => 0.1687157608503
503 => 0.17064990365442
504 => 0.17182972964761
505 => 0.18054090189439
506 => 0.17989555011764
507 => 0.18151525643341
508 => 0.18133290235867
509 => 0.18303061261705
510 => 0.18580565138361
511 => 0.18016322165815
512 => 0.18114255235795
513 => 0.18090244308641
514 => 0.18352389315307
515 => 0.18353207703404
516 => 0.18196038676793
517 => 0.18281242555895
518 => 0.18233684088027
519 => 0.18319628667378
520 => 0.17988693105121
521 => 0.18391736897663
522 => 0.18620236756467
523 => 0.18623409477228
524 => 0.18731716596814
525 => 0.18841762903038
526 => 0.19052987204823
527 => 0.18835871971904
528 => 0.18445302803624
529 => 0.18473500636043
530 => 0.18244510075584
531 => 0.18248359448276
601 => 0.18227811195166
602 => 0.18289478049549
603 => 0.1800222551183
604 => 0.1806964310828
605 => 0.17975258078452
606 => 0.18114050061173
607 => 0.17964732830902
608 => 0.18090232729845
609 => 0.18144394325841
610 => 0.18344251781081
611 => 0.17935213722264
612 => 0.17101157430893
613 => 0.17276486175295
614 => 0.17017161190549
615 => 0.17041162705207
616 => 0.17089649584629
617 => 0.16932487744503
618 => 0.16962469270861
619 => 0.16961398119762
620 => 0.1695216751828
621 => 0.16911283653785
622 => 0.16851993961641
623 => 0.17088185846738
624 => 0.17128319450517
625 => 0.17217531480215
626 => 0.17482965967501
627 => 0.17456442802845
628 => 0.17499703184834
629 => 0.17405266013848
630 => 0.17045543374717
701 => 0.170650780447
702 => 0.16821480396995
703 => 0.17211302140681
704 => 0.17118987206381
705 => 0.17059471167693
706 => 0.17043231665125
707 => 0.17309324113163
708 => 0.17388943144105
709 => 0.17339329907057
710 => 0.17237571710421
711 => 0.17432977530071
712 => 0.174852598839
713 => 0.17496963974823
714 => 0.17843185621893
715 => 0.17516313918851
716 => 0.17594995186599
717 => 0.18208843977005
718 => 0.17652167829449
719 => 0.17947051600169
720 => 0.17932618574094
721 => 0.18083471132871
722 => 0.17920244261218
723 => 0.17922267653917
724 => 0.18056214506474
725 => 0.178681103095
726 => 0.17821533065014
727 => 0.17757186935349
728 => 0.17897684355417
729 => 0.17981906204595
730 => 0.18660672454843
731 => 0.19099186408005
801 => 0.190801493608
802 => 0.19254112336395
803 => 0.19175740422571
804 => 0.18922656839368
805 => 0.19354639655641
806 => 0.19217942217643
807 => 0.19229211388344
808 => 0.19228791949248
809 => 0.19319683795219
810 => 0.19255278592233
811 => 0.1912832932609
812 => 0.1921260417343
813 => 0.19462870341221
814 => 0.20239704205147
815 => 0.2067443072708
816 => 0.20213533122668
817 => 0.20531454118526
818 => 0.20340814807845
819 => 0.20306169974066
820 => 0.20505847853642
821 => 0.20705875242913
822 => 0.20693134362959
823 => 0.20547924749868
824 => 0.2046589952399
825 => 0.21087022014802
826 => 0.21544654485486
827 => 0.21513447018992
828 => 0.21651186626883
829 => 0.22055594375778
830 => 0.22092568352134
831 => 0.2208791048095
901 => 0.21996266622716
902 => 0.22394458570485
903 => 0.22726637298834
904 => 0.21975053717381
905 => 0.22261246906247
906 => 0.22389728249297
907 => 0.22578376979592
908 => 0.22896659008798
909 => 0.23242397712655
910 => 0.23291288956212
911 => 0.23256598279247
912 => 0.23028574310098
913 => 0.23406885725378
914 => 0.23628491679955
915 => 0.23760452954544
916 => 0.24095084790637
917 => 0.22390521706332
918 => 0.21183947232978
919 => 0.20995523205817
920 => 0.21378690874457
921 => 0.21479729132973
922 => 0.21439000737656
923 => 0.20080891470945
924 => 0.20988373041595
925 => 0.21964746908396
926 => 0.22002253405028
927 => 0.22491046577764
928 => 0.22650217671116
929 => 0.23043760242754
930 => 0.23019144047748
1001 => 0.23114965401311
1002 => 0.23092937731522
1003 => 0.23821892475316
1004 => 0.24626037808547
1005 => 0.24598192812683
1006 => 0.24482587406815
1007 => 0.2465428114818
1008 => 0.25484245309526
1009 => 0.25407835509454
1010 => 0.25482061121653
1011 => 0.2646063564261
1012 => 0.27732921720457
1013 => 0.27141817101863
1014 => 0.2842434403844
1015 => 0.29231626761183
1016 => 0.30627738755576
1017 => 0.30452938657881
1018 => 0.30996434812155
1019 => 0.30140010001127
1020 => 0.28173485522994
1021 => 0.27862275496776
1022 => 0.28485325850357
1023 => 0.30017034348272
1024 => 0.2843708689887
1025 => 0.28756708210156
1026 => 0.28664657251004
1027 => 0.28659752246582
1028 => 0.28846956315269
1029 => 0.28575407049731
1030 => 0.27469066491149
1031 => 0.27976095849441
1101 => 0.27780307464655
1102 => 0.27997549274566
1103 => 0.29169913725321
1104 => 0.28651583455964
1105 => 0.28105564622929
1106 => 0.28790393410834
1107 => 0.2966241579054
1108 => 0.29607846197193
1109 => 0.29501958377779
1110 => 0.3009884247171
1111 => 0.31084720124253
1112 => 0.31351198892158
1113 => 0.31547908070707
1114 => 0.31575030943
1115 => 0.3185441338439
1116 => 0.30352103583595
1117 => 0.32736307819509
1118 => 0.33147994028738
1119 => 0.33070614084048
1120 => 0.33528185979203
1121 => 0.3339355672017
1122 => 0.33198500046514
1123 => 0.33923848828668
1124 => 0.33092294982557
1125 => 0.31912008987722
1126 => 0.31264480747545
1127 => 0.32117198168823
1128 => 0.3263792294226
1129 => 0.32982088893187
1130 => 0.33086233301986
1201 => 0.30468723616903
1202 => 0.29058031070385
1203 => 0.2996226881908
1204 => 0.31065501279644
1205 => 0.30345975071573
1206 => 0.30374179136686
1207 => 0.29348323852138
1208 => 0.31156266709412
1209 => 0.308928646423
1210 => 0.32259395032427
1211 => 0.31933261587731
1212 => 0.33047614072476
1213 => 0.32754167717224
1214 => 0.33972247131509
1215 => 0.34458171988051
1216 => 0.3527411545035
1217 => 0.35874326782705
1218 => 0.36226782357277
1219 => 0.36205622246607
1220 => 0.37602226825731
1221 => 0.36778697899069
1222 => 0.35744151476316
1223 => 0.35725439795481
1224 => 0.36261246047461
1225 => 0.37384148960343
1226 => 0.37675301348081
1227 => 0.37838015813087
1228 => 0.37588812945799
1229 => 0.36694931318758
1230 => 0.36308957764284
1231 => 0.36637818415426
]
'min_raw' => 0.13560505622815
'max_raw' => 0.37838015813087
'avg_raw' => 0.25699260717951
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.135605'
'max' => '$0.37838'
'avg' => '$0.256992'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.053684011252711
'max_diff' => 0.19549719616243
'year' => 2036
]
11 => [
'items' => [
101 => 0.36235650098397
102 => 0.36929905442089
103 => 0.37883266313917
104 => 0.37686401063882
105 => 0.38344492079061
106 => 0.39025547046578
107 => 0.3999948623822
108 => 0.40254110007779
109 => 0.40674993416385
110 => 0.41108220696838
111 => 0.41247361623517
112 => 0.41513024825442
113 => 0.41511624649232
114 => 0.42312218589427
115 => 0.43195298497792
116 => 0.43528640719852
117 => 0.44295142778884
118 => 0.42982534864228
119 => 0.43978163045648
120 => 0.44876244587478
121 => 0.43805514749752
122 => 0.45281266383001
123 => 0.45338566474795
124 => 0.46203729831081
125 => 0.45326721024241
126 => 0.44805955994251
127 => 0.46309385123022
128 => 0.47036847120861
129 => 0.4681772964683
130 => 0.45150234850289
131 => 0.44179681356486
201 => 0.41639555657416
202 => 0.44648444273229
203 => 0.46113986147506
204 => 0.45146439450883
205 => 0.4563441372583
206 => 0.48296643143747
207 => 0.493102477395
208 => 0.49099425069214
209 => 0.49135050630056
210 => 0.49681973271699
211 => 0.52107329460547
212 => 0.50653999812873
213 => 0.51765015873297
214 => 0.52354294785679
215 => 0.5290164988037
216 => 0.51557518761163
217 => 0.49808823924282
218 => 0.49254938864226
219 => 0.45050236000166
220 => 0.44831362955992
221 => 0.44708502883766
222 => 0.4393388750728
223 => 0.43325252006371
224 => 0.4284124245886
225 => 0.41571056868707
226 => 0.41999707218695
227 => 0.39975296496327
228 => 0.41270442735787
301 => 0.38039434341782
302 => 0.40730314142242
303 => 0.39265790606143
304 => 0.40249178772399
305 => 0.40245747823728
306 => 0.38435018426148
307 => 0.37390627498582
308 => 0.3805615404593
309 => 0.3876965133425
310 => 0.38885413868787
311 => 0.39810481727279
312 => 0.40068648282317
313 => 0.39286391567908
314 => 0.37972478874418
315 => 0.38277670825958
316 => 0.37384442793425
317 => 0.35819095023931
318 => 0.36943355120332
319 => 0.3732722694747
320 => 0.3749676661503
321 => 0.35957426865138
322 => 0.35473732895031
323 => 0.35216218283931
324 => 0.37773769442908
325 => 0.37913877868742
326 => 0.3719706335284
327 => 0.40437132935859
328 => 0.39703805400668
329 => 0.40523111927085
330 => 0.38249977855226
331 => 0.38336814637952
401 => 0.37260676539745
402 => 0.37863241967167
403 => 0.37437368144656
404 => 0.37814560635299
405 => 0.38040648258968
406 => 0.39116609773503
407 => 0.40742599894397
408 => 0.38955897003386
409 => 0.38177404967715
410 => 0.3866037704824
411 => 0.39946595343993
412 => 0.41895281902363
413 => 0.40741620238836
414 => 0.41253595694664
415 => 0.4136543955556
416 => 0.40514772155751
417 => 0.41926647222773
418 => 0.42683282541243
419 => 0.43459433814375
420 => 0.4413334421757
421 => 0.43149421927954
422 => 0.44202359817563
423 => 0.43353877747096
424 => 0.42592701615423
425 => 0.42593856005415
426 => 0.42116359099008
427 => 0.41191148674361
428 => 0.41020525676782
429 => 0.41908128057499
430 => 0.42619901110576
501 => 0.42678526148391
502 => 0.43072600282794
503 => 0.43305809296247
504 => 0.45591574660372
505 => 0.46510928398666
506 => 0.47635096747376
507 => 0.48073023673855
508 => 0.49391026717065
509 => 0.48326632216699
510 => 0.4809634377119
511 => 0.44899299503873
512 => 0.45422815323545
513 => 0.46261014662602
514 => 0.44913121102246
515 => 0.45768049323961
516 => 0.45936830264784
517 => 0.44867320194843
518 => 0.45438591734001
519 => 0.43921463896206
520 => 0.40775669135429
521 => 0.41930149391615
522 => 0.4278023545402
523 => 0.41567057828113
524 => 0.43741631766094
525 => 0.42471290563843
526 => 0.42068653389861
527 => 0.4049782222364
528 => 0.4123919406726
529 => 0.42241910101178
530 => 0.41622348170467
531 => 0.42908032204384
601 => 0.44728903675817
602 => 0.4602656512113
603 => 0.46126183453775
604 => 0.45291874081003
605 => 0.46628860175362
606 => 0.46638598659438
607 => 0.45130472883253
608 => 0.44206754242619
609 => 0.43996883423947
610 => 0.44521181876589
611 => 0.4515777698893
612 => 0.46161510052034
613 => 0.46768044920342
614 => 0.48349566175653
615 => 0.48777480481572
616 => 0.49247628568266
617 => 0.4987589140039
618 => 0.50630282013638
619 => 0.48979718299332
620 => 0.49045298272737
621 => 0.47508316195586
622 => 0.45865830420624
623 => 0.47112272385078
624 => 0.48741829446376
625 => 0.48368007256013
626 => 0.48325944623103
627 => 0.48396682304457
628 => 0.48114832580815
629 => 0.46840036726622
630 => 0.4619984222929
701 => 0.47025856461883
702 => 0.47464846264842
703 => 0.48145681165298
704 => 0.48061753893135
705 => 0.49815511480379
706 => 0.50496968647905
707 => 0.50322622743255
708 => 0.50354706585579
709 => 0.51588452236749
710 => 0.52960631139994
711 => 0.54245857757838
712 => 0.55553245475276
713 => 0.53977138553693
714 => 0.53176888659674
715 => 0.54002542280293
716 => 0.53564438847277
717 => 0.56081911123309
718 => 0.56256215441619
719 => 0.58773505675752
720 => 0.61162713861289
721 => 0.59662095007064
722 => 0.61077110997241
723 => 0.62607566158563
724 => 0.65560062472155
725 => 0.6456576558381
726 => 0.63804149749956
727 => 0.63084426467066
728 => 0.64582056365908
729 => 0.66508733305546
730 => 0.66923721064862
731 => 0.67596159772479
801 => 0.66889172693313
802 => 0.67740660758096
803 => 0.70746787789595
804 => 0.69934505729867
805 => 0.68780934624196
806 => 0.71153983204055
807 => 0.72012780260114
808 => 0.78040267755042
809 => 0.85650219700478
810 => 0.82499649625429
811 => 0.80543989111585
812 => 0.81003615721226
813 => 0.83782512558569
814 => 0.84675006024947
815 => 0.82248901122385
816 => 0.83105842388813
817 => 0.87827673019439
818 => 0.90360783658306
819 => 0.86920479168577
820 => 0.77428815525871
821 => 0.68677068167625
822 => 0.70998425663351
823 => 0.70735255763446
824 => 0.75808273715686
825 => 0.69915133071382
826 => 0.70014358446031
827 => 0.75192281037104
828 => 0.73810900061872
829 => 0.71573239795904
830 => 0.68693405563909
831 => 0.63369765633642
901 => 0.58654469286723
902 => 0.67902251290927
903 => 0.67503470114905
904 => 0.66925975875967
905 => 0.68211126813321
906 => 0.74451454968657
907 => 0.74307595206705
908 => 0.73392432799065
909 => 0.74086575419389
910 => 0.71451553238431
911 => 0.72130658452803
912 => 0.68675681846129
913 => 0.70237475564914
914 => 0.71568438781957
915 => 0.71835649353026
916 => 0.72437688413753
917 => 0.67293330555899
918 => 0.69602996203664
919 => 0.70959708385321
920 => 0.64830033390982
921 => 0.70838544419091
922 => 0.67203778730757
923 => 0.65970084663787
924 => 0.67631091198127
925 => 0.66983795336313
926 => 0.66427288364814
927 => 0.66116747912714
928 => 0.67336407792931
929 => 0.6727950920171
930 => 0.65283908911893
1001 => 0.62680729684899
1002 => 0.63554442079923
1003 => 0.63237014175714
1004 => 0.62086614501843
1005 => 0.62861844982246
1006 => 0.59448122281721
1007 => 0.53574989805335
1008 => 0.57454961018149
1009 => 0.57305586347052
1010 => 0.57230264864283
1011 => 0.60145955996185
1012 => 0.59865679570292
1013 => 0.59356975112821
1014 => 0.62077271745551
1015 => 0.61084326881452
1016 => 0.64144348985373
1017 => 0.66159877452836
1018 => 0.65648674237972
1019 => 0.67544288503516
1020 => 0.63574570648854
1021 => 0.64893151682736
1022 => 0.65164909406345
1023 => 0.62043703707364
1024 => 0.59911536259805
1025 => 0.59769344999541
1026 => 0.56072460476247
1027 => 0.58047306348382
1028 => 0.59785088991185
1029 => 0.58952825962663
1030 => 0.58689356350984
1031 => 0.60035365457467
1101 => 0.60139961892829
1102 => 0.57755152081939
1103 => 0.58251029558728
1104 => 0.60318921069708
1105 => 0.58198923998314
1106 => 0.54080115988151
1107 => 0.53058594654654
1108 => 0.52922304878392
1109 => 0.50151858004071
1110 => 0.53126857594753
1111 => 0.51828190548388
1112 => 0.55930664187434
1113 => 0.53587353246818
1114 => 0.53486337795685
1115 => 0.53333638125551
1116 => 0.50949000055104
1117 => 0.51471084240876
1118 => 0.53206571590051
1119 => 0.53825813027901
1120 => 0.53761221072638
1121 => 0.53198066755248
1122 => 0.53455875917933
1123 => 0.5262538277826
1124 => 0.52332118365422
1125 => 0.51406495209773
1126 => 0.50046084880891
1127 => 0.50235258281004
1128 => 0.47539929448764
1129 => 0.46071371249031
1130 => 0.45664893694631
1201 => 0.45121334921021
1202 => 0.45726290104465
1203 => 0.47532293920832
1204 => 0.4535387015321
1205 => 0.41619115402283
1206 => 0.41843580526526
1207 => 0.42347887016407
1208 => 0.41408115208835
1209 => 0.40518700062037
1210 => 0.41291974371646
1211 => 0.39709509549276
1212 => 0.42539120329875
1213 => 0.42462587288152
1214 => 0.43517291205203
1215 => 0.44176819209238
1216 => 0.42656820684664
1217 => 0.42274545166247
1218 => 0.42492306674991
1219 => 0.38893194005208
1220 => 0.43223166915323
1221 => 0.43260612700856
1222 => 0.42939979151129
1223 => 0.45245556052851
1224 => 0.50111042442952
1225 => 0.48280450749259
1226 => 0.47571590315534
1227 => 0.4622404611285
1228 => 0.48019568753669
1229 => 0.47881700629371
1230 => 0.4725820868636
1231 => 0.46881118813814
]
'min_raw' => 0.35216218283931
'max_raw' => 0.90360783658306
'avg_raw' => 0.62788500971118
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.352162'
'max' => '$0.9036078'
'avg' => '$0.627885'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.21655712661116
'max_diff' => 0.52522767845219
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.011053968512613
]
1 => [
'year' => 2028
'avg' => 0.018971818957632
]
2 => [
'year' => 2029
'avg' => 0.051827590054567
]
3 => [
'year' => 2030
'avg' => 0.039984908543136
]
4 => [
'year' => 2031
'avg' => 0.039270135464523
]
5 => [
'year' => 2032
'avg' => 0.068852906235774
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.011053968512613
'min' => '$0.011053'
'max_raw' => 0.068852906235774
'max' => '$0.068852'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.068852906235774
]
1 => [
'year' => 2033
'avg' => 0.17709675489927
]
2 => [
'year' => 2034
'avg' => 0.11225243412694
]
3 => [
'year' => 2035
'avg' => 0.13240200347194
]
4 => [
'year' => 2036
'avg' => 0.25699260717951
]
5 => [
'year' => 2037
'avg' => 0.62788500971118
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.068852906235774
'min' => '$0.068852'
'max_raw' => 0.62788500971118
'max' => '$0.627885'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.62788500971118
]
]
]
]
'prediction_2025_max_price' => '$0.01890027'
'last_price' => 0.0183262
'sma_50day_nextmonth' => '$0.017272'
'sma_200day_nextmonth' => '$0.023229'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.0182064'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.017973'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.017489'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.018019'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.019655'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.024487'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.023766'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.018189'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.0180001'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.017812'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.018253'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.0201087'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.021999'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.023139'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.023433'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.022522'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.01828'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.018844'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.020439'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.022016'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.023925'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.016219'
'weekly_ema100_action' => 'BUY'
'weekly_ema200' => '$0.0081098'
'weekly_ema200_action' => 'BUY'
'rsi_14' => '47.69'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 105.45
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.017558'
'vwma_10_action' => 'BUY'
'hma_9' => '0.018456'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 98.82
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 27.2
'cci_20_action' => 'NEUTRAL'
'adx_14' => 19.22
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.001248'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -1.18
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 75.41
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.007722'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 14
'buy_signals' => 18
'sell_pct' => 43.75
'buy_pct' => 56.25
'overall_action' => 'bullish'
'overall_action_label' => 'Altista'
'overall_action_dir' => 1
'last_updated' => 1767686732
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de deBridge para 2026
A previsão de preço para deBridge em 2026 sugere que o preço médio poderia variar entre $0.006331 na extremidade inferior e $0.01890027 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, deBridge poderia potencialmente ganhar 3.13% até 2026 se DBR atingir a meta de preço prevista.
Previsão de preço de deBridge 2027-2032
A previsão de preço de DBR para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.011053 na extremidade inferior e $0.068852 na extremidade superior. Considerando a volatilidade de preços no mercado, se deBridge atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de deBridge | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.006095 | $0.011053 | $0.016012 |
| 2028 | $0.01100034 | $0.018971 | $0.026943 |
| 2029 | $0.024164 | $0.051827 | $0.07949 |
| 2030 | $0.02055 | $0.039984 | $0.059418 |
| 2031 | $0.024297 | $0.03927 | $0.054242 |
| 2032 | $0.037088 | $0.068852 | $0.100617 |
Previsão de preço de deBridge 2032-2037
A previsão de preço de deBridge para 2032-2037 é atualmente estimada entre $0.068852 na extremidade inferior e $0.627885 na extremidade superior. Comparado ao preço atual, deBridge poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de deBridge | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.037088 | $0.068852 | $0.100617 |
| 2033 | $0.086185 | $0.177096 | $0.268008 |
| 2034 | $0.069288 | $0.112252 | $0.155215 |
| 2035 | $0.081921 | $0.132402 | $0.182882 |
| 2036 | $0.135605 | $0.256992 | $0.37838 |
| 2037 | $0.352162 | $0.627885 | $0.9036078 |
deBridge Histograma de preços potenciais
Previsão de preço de deBridge baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para deBridge é Altista, com 18 indicadores técnicos mostrando sinais de alta e 14 indicando sinais de baixa. A previsão de preço de DBR foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de deBridge
De acordo com nossos indicadores técnicos, o SMA de 200 dias de deBridge está projetado para aumentar no próximo mês, alcançando $0.023229 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para deBridge é esperado para alcançar $0.017272 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 47.69, sugerindo que o mercado de DBR está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de DBR para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.0182064 | BUY |
| SMA 5 | $0.017973 | BUY |
| SMA 10 | $0.017489 | BUY |
| SMA 21 | $0.018019 | BUY |
| SMA 50 | $0.019655 | SELL |
| SMA 100 | $0.024487 | SELL |
| SMA 200 | $0.023766 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.018189 | BUY |
| EMA 5 | $0.0180001 | BUY |
| EMA 10 | $0.017812 | BUY |
| EMA 21 | $0.018253 | BUY |
| EMA 50 | $0.0201087 | SELL |
| EMA 100 | $0.021999 | SELL |
| EMA 200 | $0.023139 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.023433 | SELL |
| SMA 50 | $0.022522 | SELL |
| SMA 100 | — | — |
| SMA 200 | — | — |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.022016 | SELL |
| EMA 50 | $0.023925 | SELL |
| EMA 100 | $0.016219 | BUY |
| EMA 200 | $0.0081098 | BUY |
Osciladores de deBridge
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 47.69 | NEUTRAL |
| Stoch RSI (14) | 105.45 | SELL |
| Estocástico Rápido (14) | 98.82 | SELL |
| Índice de Canal de Commodities (20) | 27.2 | NEUTRAL |
| Índice Direcional Médio (14) | 19.22 | NEUTRAL |
| Oscilador Impressionante (5, 34) | -0.001248 | NEUTRAL |
| Momentum (10) | 0 | SELL |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -1.18 | SELL |
| Oscilador Ultimate (7, 14, 28) | 75.41 | SELL |
| VWMA (10) | 0.017558 | BUY |
| Média Móvel de Hull (9) | 0.018456 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.007722 | SELL |
Previsão do preço de deBridge com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do deBridge
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de deBridge por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.025751 | $0.036184 | $0.050845 | $0.071447 | $0.100395 | $0.141071 |
| Amazon.com stock | $0.038238 | $0.079787 | $0.166481 | $0.347372 | $0.724813 | $1.51 |
| Apple stock | $0.025994 | $0.03687 | $0.052298 | $0.074181 | $0.10522 | $0.149247 |
| Netflix stock | $0.028915 | $0.045624 | $0.071988 | $0.113586 | $0.179222 | $0.282784 |
| Google stock | $0.023732 | $0.030733 | $0.039799 | $0.05154 | $0.066744 | $0.086433 |
| Tesla stock | $0.041544 | $0.094177 | $0.213492 | $0.483972 | $1.09 | $2.48 |
| Kodak stock | $0.013742 | $0.0103055 | $0.007728 | $0.005795 | $0.004345 | $0.003258 |
| Nokia stock | $0.01214 | $0.008042 | $0.005327 | $0.003529 | $0.002338 | $0.001548 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para deBridge
Você pode fazer perguntas como: 'Devo investir em deBridge agora?', 'Devo comprar DBR hoje?', 'deBridge será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para deBridge regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como deBridge, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre deBridge para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de deBridge é de $0.01832 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão de curto prazo para deBridge
com base no histórico de preços de 4 horas
Previsão de longo prazo para deBridge
com base no histórico de preços de 1 mês
Previsão do preço de deBridge com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se deBridge tiver 1% da média anterior do crescimento anual do Bitcoin | $0.0188025 | $0.019291 | $0.019792 | $0.0203072 |
| Se deBridge tiver 2% da média anterior do crescimento anual do Bitcoin | $0.019278 | $0.020281 | $0.021335 | $0.022444 |
| Se deBridge tiver 5% da média anterior do crescimento anual do Bitcoin | $0.0207079 | $0.023399 | $0.02644 | $0.029876 |
| Se deBridge tiver 10% da média anterior do crescimento anual do Bitcoin | $0.023089 | $0.029091 | $0.036653 | $0.04618 |
| Se deBridge tiver 20% da média anterior do crescimento anual do Bitcoin | $0.027853 | $0.042333 | $0.06434 | $0.097789 |
| Se deBridge tiver 50% da média anterior do crescimento anual do Bitcoin | $0.042144 | $0.096916 | $0.222876 | $0.512539 |
| Se deBridge tiver 100% da média anterior do crescimento anual do Bitcoin | $0.065961 | $0.237418 | $0.854543 | $3.07 |
Perguntas Frequentes sobre deBridge
DBR é um bom investimento?
A decisão de adquirir deBridge depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de deBridge experimentou uma escalada de 0.4231% nas últimas 24 horas, e deBridge registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em deBridge dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
deBridge pode subir?
Parece que o valor médio de deBridge pode potencialmente subir para $0.01890027 até o final deste ano. Observando as perspectivas de deBridge em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.059418. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de deBridge na próxima semana?
Com base na nossa nova previsão experimental de deBridge, o preço de deBridge aumentará 0.86% na próxima semana e atingirá $0.018483 até 13 de janeiro de 2026.
Qual será o preço de deBridge no próximo mês?
Com base na nossa nova previsão experimental de deBridge, o preço de deBridge diminuirá -11.62% no próximo mês e atingirá $0.016197 até 5 de fevereiro de 2026.
Até onde o preço de deBridge pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de deBridge em 2026, espera-se que DBR fluctue dentro do intervalo de $0.006331 e $0.01890027. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de deBridge não considera flutuações repentinas e extremas de preço.
Onde estará deBridge em 5 anos?
O futuro de deBridge parece seguir uma tendência de alta, com um preço máximo de $0.059418 projetada após um período de cinco anos. Com base na previsão de deBridge para 2030, o valor de deBridge pode potencialmente atingir seu pico mais alto de aproximadamente $0.059418, enquanto seu pico mais baixo está previsto para cerca de $0.02055.
Quanto será deBridge em 2026?
Com base na nossa nova simulação experimental de previsão de preços de deBridge, espera-se que o valor de DBR em 2026 aumente 3.13% para $0.01890027 se o melhor cenário ocorrer. O preço ficará entre $0.01890027 e $0.006331 durante 2026.
Quanto será deBridge em 2027?
De acordo com nossa última simulação experimental para previsão de preços de deBridge, o valor de DBR pode diminuir -12.62% para $0.016012 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.016012 e $0.006095 ao longo do ano.
Quanto será deBridge em 2028?
Nosso novo modelo experimental de previsão de preços de deBridge sugere que o valor de DBR em 2028 pode aumentar 47.02%, alcançando $0.026943 no melhor cenário. O preço é esperado para variar entre $0.026943 e $0.01100034 durante o ano.
Quanto será deBridge em 2029?
Com base no nosso modelo de previsão experimental, o valor de deBridge pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.07949 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.07949 e $0.024164.
Quanto será deBridge em 2030?
Usando nossa nova simulação experimental para previsões de preços de deBridge, espera-se que o valor de DBR em 2030 aumente 224.23%, alcançando $0.059418 no melhor cenário. O preço está previsto para variar entre $0.059418 e $0.02055 ao longo de 2030.
Quanto será deBridge em 2031?
Nossa simulação experimental indica que o preço de deBridge poderia aumentar 195.98% em 2031, potencialmente atingindo $0.054242 sob condições ideais. O preço provavelmente oscilará entre $0.054242 e $0.024297 durante o ano.
Quanto será deBridge em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de deBridge, DBR poderia ver um 449.04% aumento em valor, atingindo $0.100617 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.100617 e $0.037088 ao longo do ano.
Quanto será deBridge em 2033?
De acordo com nossa previsão experimental de preços de deBridge, espera-se que o valor de DBR seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.268008. Ao longo do ano, o preço de DBR poderia variar entre $0.268008 e $0.086185.
Quanto será deBridge em 2034?
Os resultados da nossa nova simulação de previsão de preços de deBridge sugerem que DBR pode aumentar 746.96% em 2034, atingindo potencialmente $0.155215 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.155215 e $0.069288.
Quanto será deBridge em 2035?
Com base em nossa previsão experimental para o preço de deBridge, DBR poderia aumentar 897.93%, com o valor potencialmente atingindo $0.182882 em 2035. A faixa de preço esperada para o ano está entre $0.182882 e $0.081921.
Quanto será deBridge em 2036?
Nossa recente simulação de previsão de preços de deBridge sugere que o valor de DBR pode aumentar 1964.7% em 2036, possivelmente atingindo $0.37838 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.37838 e $0.135605.
Quanto será deBridge em 2037?
De acordo com a simulação experimental, o valor de deBridge poderia aumentar 4830.69% em 2037, com um pico de $0.9036078 sob condições favoráveis. O preço é esperado para cair entre $0.9036078 e $0.352162 ao longo do ano.
Previsões relacionadas
Como ler e prever os movimentos de preço de deBridge?
Traders de deBridge utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de deBridge
Médias móveis são ferramentas populares para a previsão de preço de deBridge. Uma média móvel simples (SMA) calcula o preço médio de fechamento de DBR em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de DBR acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de DBR.
Como ler gráficos de deBridge e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de deBridge em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de DBR dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de deBridge?
A ação de preço de deBridge é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de DBR. A capitalização de mercado de deBridge pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de DBR, grandes detentores de deBridge, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de deBridge.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


