Previsão de Preço deBridge - Projeção DBR
Previsão de Preço deBridge até $0.019019 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.006371 | $0.019019 |
| 2027 | $0.006133 | $0.016113 |
| 2028 | $0.011069 | $0.027112 |
| 2029 | $0.024316 | $0.07999 |
| 2030 | $0.02068 | $0.059792 |
| 2031 | $0.02445 | $0.054583 |
| 2032 | $0.037321 | $0.101249 |
| 2033 | $0.086726 | $0.269691 |
| 2034 | $0.069724 | $0.156191 |
| 2035 | $0.082435 | $0.184031 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em deBridge hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,954.89, com um retorno de 39.55% nos próximos 90 dias.
Previsão de preço de longo prazo de deBridge para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'deBridge'
'name_with_ticker' => 'deBridge <small>DBR</small>'
'name_lang' => 'deBridge'
'name_lang_with_ticker' => 'deBridge <small>DBR</small>'
'name_with_lang' => 'deBridge'
'name_with_lang_with_ticker' => 'deBridge <small>DBR</small>'
'image' => '/uploads/coins/debridge.png?1724709151'
'price_for_sd' => 0.01844
'ticker' => 'DBR'
'marketcap' => '$75.94M'
'low24h' => '$0.01819'
'high24h' => '$0.01914'
'volume24h' => '$8.2M'
'current_supply' => '4.12B'
'max_supply' => '10B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.01844'
'change_24h_pct' => '1.2557%'
'ath_price' => '$0.05521'
'ath_days' => 380
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '22 de dez. de 2024'
'ath_pct' => '-66.61%'
'fdv' => '$184.4M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.909285'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.018599'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.016298'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.006371'
'current_year_max_price_prediction' => '$0.019019'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.02068'
'grand_prediction_max_price' => '$0.059792'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.018790793692855
107 => 0.018860951695446
108 => 0.01901902125764
109 => 0.017668334155415
110 => 0.018274753010224
111 => 0.018630967273662
112 => 0.017021578272264
113 => 0.018599154827685
114 => 0.017644821697973
115 => 0.017320906700146
116 => 0.017757015572164
117 => 0.017587063520609
118 => 0.017440948726601
119 => 0.017359414160974
120 => 0.017679644385004
121 => 0.017664705262295
122 => 0.017140746461774
123 => 0.016457263565787
124 => 0.016686662860241
125 => 0.016603319945936
126 => 0.016301274473044
127 => 0.016504816652664
128 => 0.015608519903959
129 => 0.014066487933263
130 => 0.015085201486821
131 => 0.015045982123156
201 => 0.01502620594154
202 => 0.015791741021865
203 => 0.015718152487791
204 => 0.015584588577866
205 => 0.016298821467097
206 => 0.016038116854739
207 => 0.016841547040293
208 => 0.017370738123105
209 => 0.017236518146965
210 => 0.017734224918152
211 => 0.016691947756664
212 => 0.017038150420809
213 => 0.017109502310073
214 => 0.016290007944111
215 => 0.01573019248205
216 => 0.015692859173094
217 => 0.014722216309203
218 => 0.015240725892338
219 => 0.015696992868113
220 => 0.015478476394464
221 => 0.015409300606901
222 => 0.015762704703163
223 => 0.015790167228144
224 => 0.015164018748231
225 => 0.015294214844748
226 => 0.015837154210527
227 => 0.015280534165769
228 => 0.014199112342174
301 => 0.013930904778096
302 => 0.013895120945002
303 => 0.013167720759412
304 => 0.013948827690012
305 => 0.013607853582441
306 => 0.014684986702761
307 => 0.014069734041215
308 => 0.014043211728666
309 => 0.01400311936327
310 => 0.013377015975009
311 => 0.013514092826092
312 => 0.013969757156486
313 => 0.014132343322997
314 => 0.0141153842538
315 => 0.01396752415268
316 => 0.014035213749807
317 => 0.013817161972843
318 => 0.013740163352042
319 => 0.013497134524655
320 => 0.013139949286822
321 => 0.013189618084887
322 => 0.012481940666139
323 => 0.012096360449122
324 => 0.011989636926917
325 => 0.011846921772742
326 => 0.012005756983332
327 => 0.012479935904927
328 => 0.011907975522813
329 => 0.010927389566036
330 => 0.010986324452875
331 => 0.011118733645679
401 => 0.010871989990864
402 => 0.010638467829207
403 => 0.010841496402516
404 => 0.010426009205793
405 => 0.011168943288389
406 => 0.011148849003503
407 => 0.01142576888676
408 => 0.011598932572728
409 => 0.01119984633898
410 => 0.011099477230437
411 => 0.011156652036185
412 => 0.010211679855622
413 => 0.011348544499233
414 => 0.01135837615188
415 => 0.011274191572945
416 => 0.01187953689891
417 => 0.013157004348638
418 => 0.012676369708041
419 => 0.012490253447943
420 => 0.012136446301447
421 => 0.012607873317163
422 => 0.012571675077763
423 => 0.012407972911422
424 => 0.012308965330437
425 => 0.01249138983414
426 => 0.012286360915626
427 => 0.012249532088042
428 => 0.012026389463048
429 => 0.011946737698268
430 => 0.011887766702653
501 => 0.011822845430851
502 => 0.011966045579073
503 => 0.011641535203653
504 => 0.01125020750304
505 => 0.011217672838959
506 => 0.011307503906965
507 => 0.011267760346509
508 => 0.011217482562082
509 => 0.011121488579271
510 => 0.011093009215158
511 => 0.011185553332302
512 => 0.011081076419704
513 => 0.011235237795395
514 => 0.011193314431345
515 => 0.010959133927696
516 => 0.010667258315422
517 => 0.010664660010243
518 => 0.010601775888351
519 => 0.01052168350443
520 => 0.010499403635489
521 => 0.010824397902364
522 => 0.011497126308537
523 => 0.011365053625379
524 => 0.011460489674314
525 => 0.011929940578543
526 => 0.012079164904117
527 => 0.011973249012397
528 => 0.011828264807202
529 => 0.011834643376424
530 => 0.012330098295276
531 => 0.012360999210827
601 => 0.012439075855412
602 => 0.012539426408162
603 => 0.011990339145458
604 => 0.011808781415729
605 => 0.011722749290944
606 => 0.011457803645229
607 => 0.01174352480941
608 => 0.011577047322842
609 => 0.01159951082346
610 => 0.011584881439213
611 => 0.011592870072247
612 => 0.011168735623172
613 => 0.011323267924564
614 => 0.011066328001467
615 => 0.010722314287298
616 => 0.010721161032702
617 => 0.010805357901881
618 => 0.010755274309469
619 => 0.010620500650057
620 => 0.010639644612263
621 => 0.010471923359117
622 => 0.010660009009086
623 => 0.010665402632524
624 => 0.010592979412192
625 => 0.010882751306787
626 => 0.011001471088435
627 => 0.010953800573356
628 => 0.010998126398017
629 => 0.011370541841637
630 => 0.011431261808572
701 => 0.011458229606948
702 => 0.011422096329672
703 => 0.011004933468674
704 => 0.011023436415472
705 => 0.010887674068761
706 => 0.010772969192074
707 => 0.010777556785593
708 => 0.010836530002801
709 => 0.011094069501079
710 => 0.011636046192424
711 => 0.011656613811681
712 => 0.01168154236622
713 => 0.011580145406822
714 => 0.01154956311363
715 => 0.01158990905231
716 => 0.011793447001798
717 => 0.012317001867897
718 => 0.012131942611164
719 => 0.011981486554821
720 => 0.012113477078895
721 => 0.01209315817229
722 => 0.011921646152316
723 => 0.011916832381154
724 => 0.011587645979115
725 => 0.011465953261493
726 => 0.011364257718106
727 => 0.011253208839557
728 => 0.011187375341961
729 => 0.011288525515058
730 => 0.011311659756419
731 => 0.011090493135139
801 => 0.011060348941898
802 => 0.011240958379048
803 => 0.011161478899556
804 => 0.011243225515209
805 => 0.01126219143125
806 => 0.011259137481946
807 => 0.011176151777197
808 => 0.011229044390734
809 => 0.011103937591671
810 => 0.010967902738123
811 => 0.01088112097683
812 => 0.010805392380172
813 => 0.01084741100697
814 => 0.010697622274734
815 => 0.01064970184464
816 => 0.011211125563389
817 => 0.011625855300751
818 => 0.011619824966119
819 => 0.011583116854921
820 => 0.01152857604765
821 => 0.011789457002033
822 => 0.011698571294005
823 => 0.01176469824035
824 => 0.011781530323534
825 => 0.011832475969833
826 => 0.011850684659459
827 => 0.011795645352662
828 => 0.011610926716568
829 => 0.01115062543794
830 => 0.01093635395018
831 => 0.010865640790245
901 => 0.010868211079305
902 => 0.010797311032749
903 => 0.010818194273977
904 => 0.010790048693689
905 => 0.010736747773771
906 => 0.010844119825363
907 => 0.010856493454069
908 => 0.010831431534227
909 => 0.010837334523605
910 => 0.010629832531398
911 => 0.010645608457195
912 => 0.01055776609765
913 => 0.010541296714191
914 => 0.010319238878572
915 => 0.0099258312349747
916 => 0.010143817258532
917 => 0.0098805207955482
918 => 0.0097808064354239
919 => 0.010252838707488
920 => 0.01020545975951
921 => 0.010124367595705
922 => 0.01000441538435
923 => 0.0099599239423385
924 => 0.0096896080249548
925 => 0.0096736363184764
926 => 0.0098076121862755
927 => 0.0097457869331144
928 => 0.0096589608626218
929 => 0.0093444856367151
930 => 0.0089909113636268
1001 => 0.0090015835484427
1002 => 0.0091140489462289
1003 => 0.0094410572583174
1004 => 0.0093132894534832
1005 => 0.0092205924451093
1006 => 0.0092032330819027
1007 => 0.0094205218567216
1008 => 0.0097280309964961
1009 => 0.0098723074047491
1010 => 0.00972933386591
1011 => 0.0095650935627338
1012 => 0.0095750901089718
1013 => 0.009641592652562
1014 => 0.009648581129598
1015 => 0.0095416775764062
1016 => 0.0095717703004385
1017 => 0.009526056700897
1018 => 0.0092455124248917
1019 => 0.0092404382685543
1020 => 0.009171588178835
1021 => 0.009169503425481
1022 => 0.0090523722474088
1023 => 0.0090359847859068
1024 => 0.00880341372249
1025 => 0.008956492700721
1026 => 0.0088538153591308
1027 => 0.0086990563862179
1028 => 0.0086723758809555
1029 => 0.0086715738327497
1030 => 0.0088304766944581
1031 => 0.0089546358282642
1101 => 0.0088556014754477
1102 => 0.0088330532730117
1103 => 0.0090738090841206
1104 => 0.009043170712619
1105 => 0.009016638080495
1106 => 0.0097004969258191
1107 => 0.0091591692875739
1108 => 0.0089231195393977
1109 => 0.0086309631513981
1110 => 0.0087260907445112
1111 => 0.0087461355260952
1112 => 0.0080435520781035
1113 => 0.0077585140607544
1114 => 0.0076606997546313
1115 => 0.0076044062385662
1116 => 0.0076300599007266
1117 => 0.0073734922534876
1118 => 0.0075459099556694
1119 => 0.0073237440602838
1120 => 0.007286497224932
1121 => 0.0076837573669547
1122 => 0.0077390337949571
1123 => 0.0075032073800589
1124 => 0.0076546461152521
1125 => 0.0075997323247152
1126 => 0.0073275524569054
1127 => 0.0073171571879747
1128 => 0.0071805868978927
1129 => 0.0069668808391335
1130 => 0.0068692114357815
1201 => 0.0068183443625111
1202 => 0.006839333108322
1203 => 0.0068287205561738
1204 => 0.0067594664748
1205 => 0.0068326901190522
1206 => 0.0066456339660866
1207 => 0.0065711466987618
1208 => 0.0065375025282027
1209 => 0.0063714794258952
1210 => 0.0066356960124751
1211 => 0.0066877500085442
1212 => 0.0067399065670658
1213 => 0.0071938938002018
1214 => 0.007171213880989
1215 => 0.0073762293051047
1216 => 0.0073682627827227
1217 => 0.0073097890627352
1218 => 0.0070630980565681
1219 => 0.007161424694782
1220 => 0.006858790585712
1221 => 0.0070855446373463
1222 => 0.006982063557656
1223 => 0.0070505575802104
1224 => 0.0069273991518006
1225 => 0.0069955601111695
1226 => 0.0067000939420881
1227 => 0.0064241917907211
1228 => 0.0065352228705171
1229 => 0.0066559263521995
1230 => 0.006917642255162
1231 => 0.0067617664224668
]
'min_raw' => 0.0063714794258952
'max_raw' => 0.01901902125764
'avg_raw' => 0.012695250341768
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.006371'
'max' => '$0.019019'
'avg' => '$0.012695'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.012069860574105
'max_diff' => 0.00057768125764014
'year' => 2026
]
1 => [
'items' => [
101 => 0.0068178252662218
102 => 0.0066300375237797
103 => 0.006242577772205
104 => 0.0062447707523209
105 => 0.0061851685108107
106 => 0.0061336634720761
107 => 0.0067796706369454
108 => 0.0066993294341319
109 => 0.0065713162422452
110 => 0.0067426669866276
111 => 0.0067879748431442
112 => 0.0067892646941239
113 => 0.0069142777740224
114 => 0.0069809972771741
115 => 0.0069927568787834
116 => 0.0071894676610901
117 => 0.0072554025206413
118 => 0.0075269788756822
119 => 0.0069753365934749
120 => 0.0069639758836911
121 => 0.0067450782429975
122 => 0.0066062498986349
123 => 0.0067545839385089
124 => 0.0068859876482215
125 => 0.0067491613225447
126 => 0.0067670279521167
127 => 0.0065833497890171
128 => 0.0066490060894644
129 => 0.0067055581402683
130 => 0.0066743334217903
131 => 0.0066275885069352
201 => 0.0068752140425333
202 => 0.0068612420393625
203 => 0.0070918366309979
204 => 0.0072716016051551
205 => 0.0075937725756777
206 => 0.0072575703727848
207 => 0.0072453178282287
208 => 0.0073650884166349
209 => 0.0072553841843882
210 => 0.0073247134723067
211 => 0.0075826025555674
212 => 0.0075880513455204
213 => 0.0074967770934383
214 => 0.0074912230469041
215 => 0.0075087532654473
216 => 0.0076114283030017
217 => 0.007575550489995
218 => 0.0076170692035215
219 => 0.0076689889905434
220 => 0.0078837512431998
221 => 0.007935529695241
222 => 0.0078097349008302
223 => 0.0078210927623009
224 => 0.0077740420560469
225 => 0.0077285916633491
226 => 0.0078307575086368
227 => 0.0080174675989748
228 => 0.0080163060851931
301 => 0.0080596191970259
302 => 0.0080866029068726
303 => 0.0079707690709278
304 => 0.0078953655030559
305 => 0.0079242800290317
306 => 0.0079705149857434
307 => 0.0079092866557092
308 => 0.007531357039017
309 => 0.0076459967424841
310 => 0.007626915090232
311 => 0.007599740497017
312 => 0.0077150116053357
313 => 0.0077038934257326
314 => 0.0073708607814283
315 => 0.0073921804507949
316 => 0.0073721573011355
317 => 0.0074368561940362
318 => 0.0072518902318479
319 => 0.0073087845160523
320 => 0.0073444680777544
321 => 0.0073654859697311
322 => 0.007441417007654
323 => 0.0074325073767465
324 => 0.0074408631724871
325 => 0.0075534488566761
326 => 0.0081228686125627
327 => 0.0081538608735218
328 => 0.0080012436456726
329 => 0.0080622112179566
330 => 0.0079451668113137
331 => 0.0080237395056225
401 => 0.0080774969475385
402 => 0.0078345774044816
403 => 0.0078201932856765
404 => 0.0077026657951323
405 => 0.0077658184114534
406 => 0.0076653380580527
407 => 0.0076899924221237
408 => 0.0076210566708524
409 => 0.0077451272981696
410 => 0.0078838575381365
411 => 0.0079189062753753
412 => 0.0078267081371301
413 => 0.0077599506088871
414 => 0.0076427463805893
415 => 0.0078376596243151
416 => 0.007894658196654
417 => 0.0078373602350796
418 => 0.0078240830453977
419 => 0.0077989227949417
420 => 0.0078294209114721
421 => 0.007894347770188
422 => 0.0078637294626284
423 => 0.0078839533941966
424 => 0.0078068806218861
425 => 0.0079708074167473
426 => 0.0082311626181185
427 => 0.0082319997026633
428 => 0.0082013812300596
429 => 0.0081888528107544
430 => 0.0082202692217301
501 => 0.0082373113359157
502 => 0.0083389062482265
503 => 0.0084479216368558
504 => 0.0089566488884484
505 => 0.0088138003119062
506 => 0.0092651733938387
507 => 0.0096221508981882
508 => 0.0097291928430082
509 => 0.0096307192904865
510 => 0.0092938465867464
511 => 0.0092773180047649
512 => 0.0097807480481394
513 => 0.0096385060023294
514 => 0.0096215867635907
515 => 0.0094415946489163
516 => 0.0095479922811459
517 => 0.0095247215582182
518 => 0.0094879875836341
519 => 0.009690986854205
520 => 0.010070983366844
521 => 0.010011757346764
522 => 0.009967547870191
523 => 0.0097738348130318
524 => 0.0098904933408193
525 => 0.0098489534735211
526 => 0.010027435105285
527 => 0.0099217065404805
528 => 0.0096374283789334
529 => 0.0096827006131529
530 => 0.0096758578060257
531 => 0.0098166822918164
601 => 0.0097744102766607
602 => 0.0096676035166249
603 => 0.010069684580075
604 => 0.010043575672307
605 => 0.010080592134194
606 => 0.010096887925489
607 => 0.010341627583348
608 => 0.010441889590377
609 => 0.010464650821306
610 => 0.010559891973442
611 => 0.010462281134679
612 => 0.010852794085082
613 => 0.011112462410037
614 => 0.011414080531883
615 => 0.011854825675208
616 => 0.012020549926219
617 => 0.011990613323614
618 => 0.012324781261129
619 => 0.012925273616706
620 => 0.01211198999741
621 => 0.012968379623335
622 => 0.012697256555261
623 => 0.012054428638153
624 => 0.012013038098734
625 => 0.012448368627586
626 => 0.013413889841567
627 => 0.013172037728316
628 => 0.013414285424983
629 => 0.013131690619077
630 => 0.013117657405067
701 => 0.013400560426024
702 => 0.01406157875473
703 => 0.013747553724663
704 => 0.013297321841966
705 => 0.013629766057766
706 => 0.013341772111781
707 => 0.012692841147046
708 => 0.013171852788563
709 => 0.012851551345347
710 => 0.012945032334638
711 => 0.013618258327035
712 => 0.013537253994495
713 => 0.013642081101601
714 => 0.013457064001362
715 => 0.013284228855219
716 => 0.012961619220038
717 => 0.012866110411523
718 => 0.01289250561015
719 => 0.012866097331374
720 => 0.012685600205425
721 => 0.012646621868262
722 => 0.01258165626531
723 => 0.01260179182218
724 => 0.012479637482272
725 => 0.012710167960053
726 => 0.012752956448157
727 => 0.012920717305239
728 => 0.012938134793946
729 => 0.013405346392994
730 => 0.01314801409541
731 => 0.013320654817631
801 => 0.013305212206478
802 => 0.012068360668341
803 => 0.012238787897463
804 => 0.012503919182966
805 => 0.012384477898224
806 => 0.012215615866555
807 => 0.012079250722173
808 => 0.011872643584382
809 => 0.012163439163284
810 => 0.012545804426877
811 => 0.01294783220803
812 => 0.013430842245181
813 => 0.013323040027745
814 => 0.01293880267136
815 => 0.012956039278482
816 => 0.013062589201354
817 => 0.012924597370153
818 => 0.012883900885211
819 => 0.01305699812926
820 => 0.013058190154848
821 => 0.012899413876181
822 => 0.012722963098195
823 => 0.012722223762992
824 => 0.012690826051362
825 => 0.013137276202225
826 => 0.013382778643999
827 => 0.013410925103301
828 => 0.013380884163029
829 => 0.013392445728657
830 => 0.013249593267066
831 => 0.013576111632681
901 => 0.013875757174289
902 => 0.013795445768145
903 => 0.013675047553396
904 => 0.013579144576184
905 => 0.013772854074555
906 => 0.013764228495519
907 => 0.013873140031889
908 => 0.013868199175495
909 => 0.013831576322184
910 => 0.013795447076063
911 => 0.013938695453071
912 => 0.013897442220991
913 => 0.013856124911247
914 => 0.013773256721193
915 => 0.013784519884516
916 => 0.013664142458216
917 => 0.013608450352713
918 => 0.012770974709999
919 => 0.01254717385296
920 => 0.012617586158471
921 => 0.0126407677177
922 => 0.012543369297908
923 => 0.012683013612289
924 => 0.012661250193812
925 => 0.01274591892393
926 => 0.012693021577241
927 => 0.012695192502801
928 => 0.012850752320508
929 => 0.012895911997387
930 => 0.012872943421243
1001 => 0.012889029824658
1002 => 0.013259734201699
1003 => 0.013207031893743
1004 => 0.013179034843037
1005 => 0.013186790217417
1006 => 0.013281513133743
1007 => 0.013308030378635
1008 => 0.013195674948695
1009 => 0.013248662418974
1010 => 0.013474276342309
1011 => 0.013553228446834
1012 => 0.013805205665318
1013 => 0.013698161264368
1014 => 0.013894645895085
1015 => 0.014498572663363
1016 => 0.014981031154416
1017 => 0.014537342387603
1018 => 0.015423315965704
1019 => 0.016113173481618
1020 => 0.016086695601139
1021 => 0.015966402986548
1022 => 0.015181018545491
1023 => 0.014458296073409
1024 => 0.015062884109723
1025 => 0.015064425328962
1026 => 0.01501249068046
1027 => 0.014689929038982
1028 => 0.01500126623453
1029 => 0.015025979050502
1030 => 0.015012146445225
1031 => 0.01476483919099
1101 => 0.014387246723792
1102 => 0.014461027388054
1103 => 0.0145818816212
1104 => 0.014353079345021
1105 => 0.014279963154163
1106 => 0.014415900063893
1107 => 0.01485391711062
1108 => 0.014771112525196
1109 => 0.014768950162831
1110 => 0.015123223293883
1111 => 0.014869640188977
1112 => 0.014461957998509
1113 => 0.014359012868748
1114 => 0.013993627010247
1115 => 0.014246000324174
1116 => 0.014255082790451
1117 => 0.014116860505606
1118 => 0.014473173975138
1119 => 0.014469890483788
1120 => 0.014808157092848
1121 => 0.015454795802233
1122 => 0.015263552916709
1123 => 0.015041158248012
1124 => 0.015065338714835
1125 => 0.015330538753402
1126 => 0.015170192756156
1127 => 0.015227854294738
1128 => 0.015330451475757
1129 => 0.015392350902411
1130 => 0.015056432339917
1201 => 0.014978113654158
1202 => 0.014817901109217
1203 => 0.014776104646751
1204 => 0.014906594421661
1205 => 0.014872214976244
1206 => 0.014254319444329
1207 => 0.014189745923306
1208 => 0.014191726301006
1209 => 0.014029353112089
1210 => 0.01378169502496
1211 => 0.014432525691038
1212 => 0.014380254880183
1213 => 0.014322551950438
1214 => 0.014329620230083
1215 => 0.01461212376353
1216 => 0.014448257447361
1217 => 0.014883922906058
1218 => 0.014794363185053
1219 => 0.014702506595143
1220 => 0.014689809216397
1221 => 0.014654452266118
1222 => 0.014533200127868
1223 => 0.014386780884808
1224 => 0.014290102217922
1225 => 0.013181863924088
1226 => 0.013387546505098
1227 => 0.013624165565993
1228 => 0.013705845517622
1229 => 0.013566126308279
1230 => 0.014538717093852
1231 => 0.014716418802494
]
'min_raw' => 0.0061336634720761
'max_raw' => 0.016113173481618
'avg_raw' => 0.011123418476847
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.006133'
'max' => '$0.016113'
'avg' => '$0.011123'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00023781595381917
'max_diff' => -0.0029058477760223
'year' => 2027
]
2 => [
'items' => [
101 => 0.014178148735821
102 => 0.014077460383769
103 => 0.014545318205449
104 => 0.014263142745683
105 => 0.014390206337938
106 => 0.014115564351552
107 => 0.014673615664595
108 => 0.014669364248582
109 => 0.014452269683647
110 => 0.01463575652333
111 => 0.014603871169546
112 => 0.014358771940416
113 => 0.014681385747334
114 => 0.014681545759758
115 => 0.014472596961051
116 => 0.014228590508936
117 => 0.014184967918473
118 => 0.014152104156429
119 => 0.014382123867061
120 => 0.01458835882036
121 => 0.014972110938469
122 => 0.015068595338687
123 => 0.015445180376068
124 => 0.0152209423219
125 => 0.015320344146944
126 => 0.015428258889275
127 => 0.015479997185182
128 => 0.015395692408432
129 => 0.01598068398007
130 => 0.016030075192395
131 => 0.016046635638655
201 => 0.015849379772117
202 => 0.016024589149913
203 => 0.015942614484367
204 => 0.016155889790901
205 => 0.016189334082201
206 => 0.016161007957285
207 => 0.016171623703226
208 => 0.015672436596417
209 => 0.015646551111508
210 => 0.015293600688012
211 => 0.015437430594464
212 => 0.015168547478299
213 => 0.015253813084238
214 => 0.015291397350896
215 => 0.015271765462882
216 => 0.015445562521575
217 => 0.015297799517293
218 => 0.014907828654505
219 => 0.014517751544417
220 => 0.01451285444405
221 => 0.014410154026397
222 => 0.014335920434953
223 => 0.014350220458243
224 => 0.014400615605499
225 => 0.014332991377381
226 => 0.014347422435086
227 => 0.014587074146613
228 => 0.014635134588242
229 => 0.01447180642916
301 => 0.013816020302305
302 => 0.01365508874186
303 => 0.013770763156097
304 => 0.013715478236478
305 => 0.011069461386025
306 => 0.011691103796116
307 => 0.011321744985021
308 => 0.011491962518556
309 => 0.011114942817428
310 => 0.011294876380102
311 => 0.011261649221198
312 => 0.012261231820888
313 => 0.012245624713475
314 => 0.012253095009884
315 => 0.01189651829853
316 => 0.01246455468183
317 => 0.012744389830171
318 => 0.012692599791785
319 => 0.012705634228674
320 => 0.012481659417759
321 => 0.012255263575638
322 => 0.012004155744656
323 => 0.012470683056755
324 => 0.012418813183537
325 => 0.012537784010509
326 => 0.012840360320467
327 => 0.012884915831484
328 => 0.012944798890128
329 => 0.01292333507637
330 => 0.013434690199379
331 => 0.013372761719953
401 => 0.013521991537331
402 => 0.013215014480892
403 => 0.012867640803001
404 => 0.012933665182667
405 => 0.012927306503971
406 => 0.012846353226015
407 => 0.012773272226341
408 => 0.01265161295233
409 => 0.013036560897488
410 => 0.013020932713912
411 => 0.013273934840231
412 => 0.013229214256872
413 => 0.012930559256222
414 => 0.012941225777997
415 => 0.013012963263089
416 => 0.013261247518077
417 => 0.013334955189438
418 => 0.013300810859321
419 => 0.013381627956085
420 => 0.01344550249419
421 => 0.013389649614642
422 => 0.014180408605745
423 => 0.013852030341114
424 => 0.014012079622454
425 => 0.014050250432988
426 => 0.01395247670445
427 => 0.013973680325155
428 => 0.014005798032883
429 => 0.014200810464913
430 => 0.014712579513861
501 => 0.01493923854191
502 => 0.015621153410957
503 => 0.014920417664877
504 => 0.014878838905637
505 => 0.015001672365409
506 => 0.015402028581559
507 => 0.015726479691201
508 => 0.015834118842303
509 => 0.01584834513305
510 => 0.016050283336232
511 => 0.016166030548372
512 => 0.016025762726864
513 => 0.015906900434789
514 => 0.015481150458307
515 => 0.015530432177363
516 => 0.015869934351333
517 => 0.016349501168644
518 => 0.01676101938832
519 => 0.016616920050647
520 => 0.01771629627881
521 => 0.017825294941283
522 => 0.017810234850478
523 => 0.018058550024768
524 => 0.017565694972309
525 => 0.017354989888765
526 => 0.01593259981148
527 => 0.01633223340466
528 => 0.016913124302005
529 => 0.016836241213512
530 => 0.016414382716602
531 => 0.016760699370821
601 => 0.016646196254613
602 => 0.016555882896121
603 => 0.016969625899478
604 => 0.016514698471661
605 => 0.016908586052911
606 => 0.016403421155713
607 => 0.016617578284284
608 => 0.016496012340492
609 => 0.016574680404687
610 => 0.016114788508857
611 => 0.016362935012602
612 => 0.016104464798471
613 => 0.016104342249936
614 => 0.016098636505633
615 => 0.016402725566326
616 => 0.016412641899678
617 => 0.016187919624373
618 => 0.01615553363368
619 => 0.016275281615457
620 => 0.016135088090842
621 => 0.016200683758642
622 => 0.016137074916796
623 => 0.01612275522669
624 => 0.016008653499625
625 => 0.015959495338314
626 => 0.015978771520014
627 => 0.015912971974319
628 => 0.015873325367964
629 => 0.016090749797739
630 => 0.015974588695787
701 => 0.01607294644288
702 => 0.01596085537633
703 => 0.015572298903915
704 => 0.015348835967718
705 => 0.01461488881053
706 => 0.01482303531385
707 => 0.014961036660894
708 => 0.014915427216519
709 => 0.015013413951549
710 => 0.015019429541264
711 => 0.01498757305485
712 => 0.01495068732465
713 => 0.014932733391098
714 => 0.015066547302414
715 => 0.015144230781903
716 => 0.01497488694229
717 => 0.014935212050041
718 => 0.015106428021619
719 => 0.015210869665374
720 => 0.015982008082166
721 => 0.015924879657506
722 => 0.016068260792516
723 => 0.016052118277077
724 => 0.016202404548974
725 => 0.016448059087807
726 => 0.015948574724269
727 => 0.01603526793891
728 => 0.016014012764718
729 => 0.016246071183131
730 => 0.016246795644184
731 => 0.016107665030167
801 => 0.016183089993162
802 => 0.016140989847994
803 => 0.016217070500488
804 => 0.015924116672565
805 => 0.016280902812564
806 => 0.016483177563153
807 => 0.016485986148261
808 => 0.016581862774688
809 => 0.016679278979938
810 => 0.016866260902751
811 => 0.016674064155595
812 => 0.016328320917437
813 => 0.016353282462488
814 => 0.016150573328459
815 => 0.016153980905624
816 => 0.016135790991659
817 => 0.016190380292742
818 => 0.01593609595433
819 => 0.015995775980299
820 => 0.015912223594457
821 => 0.01603508631234
822 => 0.015902906337833
823 => 0.01601400251483
824 => 0.016061947941925
825 => 0.016238867600098
826 => 0.015876775160472
827 => 0.01513844416457
828 => 0.015293650291306
829 => 0.015064088238685
830 => 0.015085335080659
831 => 0.015128257082858
901 => 0.014989132830528
902 => 0.015015673353563
903 => 0.015014725139318
904 => 0.015006553941216
905 => 0.014970362349951
906 => 0.014917877382329
907 => 0.015126961339313
908 => 0.015162488777873
909 => 0.015241461872873
910 => 0.015476432235631
911 => 0.015452953155409
912 => 0.015491248509389
913 => 0.01540764996667
914 => 0.01508921297729
915 => 0.01510650563786
916 => 0.014890865883457
917 => 0.015235947479529
918 => 0.015154227602724
919 => 0.015101542266529
920 => 0.015087166584422
921 => 0.015322719393261
922 => 0.015393200485504
923 => 0.015349281398629
924 => 0.015259202070123
925 => 0.015432181010417
926 => 0.015478462877444
927 => 0.015488823680662
928 => 0.015795309197441
929 => 0.01550595281642
930 => 0.015575603773287
1001 => 0.016119000656019
1002 => 0.015626214667025
1003 => 0.015887254395834
1004 => 0.015874477859494
1005 => 0.01600801695165
1006 => 0.015863523756224
1007 => 0.015865314922554
1008 => 0.015983888589667
1009 => 0.015817373259081
1010 => 0.015776141721517
1011 => 0.015719180647679
1012 => 0.015843553068526
1013 => 0.015918108709942
1014 => 0.016518972424676
1015 => 0.016907157787108
1016 => 0.016890305636759
1017 => 0.017044302745048
1018 => 0.016974925637312
1019 => 0.016750888655676
1020 => 0.017133292464929
1021 => 0.017012283899226
1022 => 0.017022259698357
1023 => 0.017021888398616
1024 => 0.017102348516055
1025 => 0.017045335148788
1026 => 0.016932955949601
1027 => 0.017007558506539
1028 => 0.017229101429741
1029 => 0.017916777461128
1030 => 0.018301610078787
1031 => 0.017893610054334
1101 => 0.018175043007864
1102 => 0.018006283520561
1103 => 0.017975614901558
1104 => 0.018152375594106
1105 => 0.018329445682848
1106 => 0.01831816708369
1107 => 0.018189623291913
1108 => 0.018117012165617
1109 => 0.018666847940447
1110 => 0.019071957573134
1111 => 0.019044331812074
1112 => 0.019166262937013
1113 => 0.019524256491022
1114 => 0.019556986935079
1115 => 0.019552863651429
1116 => 0.019471737830764
1117 => 0.019824228976023
1118 => 0.02011828329089
1119 => 0.019452959547231
1120 => 0.019706306119089
1121 => 0.019820041557513
1122 => 0.019987038924903
1123 => 0.020268791475699
1124 => 0.020574849477037
1125 => 0.020618129434182
1126 => 0.020587420233451
1127 => 0.020385566754288
1128 => 0.020720459071383
1129 => 0.020916631136546
1130 => 0.021033447112033
1201 => 0.021329672989543
1202 => 0.01982074394886
1203 => 0.018752648975226
1204 => 0.018585850521615
1205 => 0.018925041736059
1206 => 0.019014483754308
1207 => 0.018978429788903
1208 => 0.017776191789131
1209 => 0.018579520987355
1210 => 0.019443835658806
1211 => 0.019477037505369
1212 => 0.019909731501865
1213 => 0.020050634403851
1214 => 0.020399009785529
1215 => 0.020377218810552
1216 => 0.020462042672128
1217 => 0.020442543135296
1218 => 0.021087835170763
1219 => 0.021799688112678
1220 => 0.021775038908853
1221 => 0.021672701626191
1222 => 0.021824689942044
1223 => 0.022559398464897
1224 => 0.022491758277577
1225 => 0.022557464957981
1226 => 0.023423727712783
1227 => 0.024549992518465
1228 => 0.024026729441088
1229 => 0.025162059754102
1230 => 0.02587669000487
1231 => 0.027112569129427
]
'min_raw' => 0.011069461386025
'max_raw' => 0.027112569129427
'avg_raw' => 0.019091015257726
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.011069'
'max' => '$0.027112'
'avg' => '$0.019091'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0049357979139486
'max_diff' => 0.01099939564781
'year' => 2028
]
3 => [
'items' => [
101 => 0.0269578309762
102 => 0.02743894965009
103 => 0.026680817387095
104 => 0.02493999246745
105 => 0.024664500260307
106 => 0.025216042635582
107 => 0.02657195574648
108 => 0.025173340106435
109 => 0.025456278228855
110 => 0.025374792030564
111 => 0.025370449977351
112 => 0.025536168488081
113 => 0.025295785144971
114 => 0.024316420161006
115 => 0.024765257361723
116 => 0.024591939763593
117 => 0.024784248560401
118 => 0.025822059822592
119 => 0.025363218725247
120 => 0.024879866902418
121 => 0.025486097352601
122 => 0.026258037039069
123 => 0.026209730440799
124 => 0.026115995449563
125 => 0.026644374687355
126 => 0.027517102387595
127 => 0.027752997178066
128 => 0.027927129889736
129 => 0.027951139848678
130 => 0.028198457347897
131 => 0.026868568822566
201 => 0.028979136066226
202 => 0.029343572725962
203 => 0.029275073738284
204 => 0.029680129747742
205 => 0.02956095199448
206 => 0.02938828212842
207 => 0.030030382061296
208 => 0.029294266303047
209 => 0.02824944265861
210 => 0.027676231743003
211 => 0.028431082116279
212 => 0.028892042898592
213 => 0.029196708653088
214 => 0.029288900326315
215 => 0.02697180428308
216 => 0.025723018027814
217 => 0.026523475700076
218 => 0.027500089304873
219 => 0.026863143684681
220 => 0.026888110747095
221 => 0.025979993679065
222 => 0.027580437514997
223 => 0.027347266309953
224 => 0.028556958934193
225 => 0.028268256081028
226 => 0.029254713456099
227 => 0.028994946169456
228 => 0.030073225652917
301 => 0.030503380532122
302 => 0.031225677522566
303 => 0.031757002129015
304 => 0.032069006100542
305 => 0.032050274552389
306 => 0.033286589727341
307 => 0.032557577862234
308 => 0.031641767144756
309 => 0.031625203018223
310 => 0.032099514365943
311 => 0.033093540829801
312 => 0.033351277429382
313 => 0.033495317027475
314 => 0.033274715368942
315 => 0.03248342523812
316 => 0.032141750171563
317 => 0.032432867227549
318 => 0.032076856084052
319 => 0.032691431196812
320 => 0.033535374092793
321 => 0.033361103222085
322 => 0.033943664614714
323 => 0.034546554368838
324 => 0.035408713794709
325 => 0.035634114194303
326 => 0.036006692483622
327 => 0.036390197928924
328 => 0.036513369542194
329 => 0.036748542369832
330 => 0.036747302892946
331 => 0.03745601203799
401 => 0.03823774017187
402 => 0.038532824445362
403 => 0.039211354461214
404 => 0.038049395587595
405 => 0.038930754740856
406 => 0.039725762758949
407 => 0.038777921425446
408 => 0.040084299884974
409 => 0.04013502360024
410 => 0.040900891478791
411 => 0.040124537661347
412 => 0.039663541242758
413 => 0.040994420629914
414 => 0.041638391243052
415 => 0.041444422053568
416 => 0.039968306944158
417 => 0.039109144636926
418 => 0.036860551158868
419 => 0.039524107265637
420 => 0.040821447748248
421 => 0.039964947145723
422 => 0.040396916229972
423 => 0.042753599487188
424 => 0.043650871887595
425 => 0.043464245500718
426 => 0.043495782287969
427 => 0.043979934188582
428 => 0.046126930343225
429 => 0.044840400480382
430 => 0.045823904355171
501 => 0.046345551264072
502 => 0.046830085984758
503 => 0.045640221849525
504 => 0.044092226092163
505 => 0.043601910855366
506 => 0.039879785040583
507 => 0.039686032227551
508 => 0.039577272902285
509 => 0.038891560740793
510 => 0.038352778814229
511 => 0.037924319422535
512 => 0.036799914029925
513 => 0.037179367842664
514 => 0.035387300328488
515 => 0.036533801617085
516 => 0.033673618593476
517 => 0.036055664006335
518 => 0.03475922498643
519 => 0.03562974892068
520 => 0.035626711744682
521 => 0.034023801181863
522 => 0.033099275821119
523 => 0.03368841936405
524 => 0.034320028008345
525 => 0.034422504385896
526 => 0.035241401479897
527 => 0.035469938056698
528 => 0.034777461559637
529 => 0.033614347657675
530 => 0.033884512489297
531 => 0.033093800939429
601 => 0.031708109362565
602 => 0.032703337244922
603 => 0.03304315180104
604 => 0.03319323326783
605 => 0.031830564749737
606 => 0.03140238471638
607 => 0.031174425259399
608 => 0.033438444263648
609 => 0.033562472335435
610 => 0.032927927184372
611 => 0.035796131437217
612 => 0.035146968479055
613 => 0.035872242552108
614 => 0.033859997862562
615 => 0.033936868319549
616 => 0.032984239435866
617 => 0.033517647956044
618 => 0.033140652006541
619 => 0.033474553818859
620 => 0.033674693188433
621 => 0.03462716575509
622 => 0.036066539713068
623 => 0.034484898115793
624 => 0.033795754222335
625 => 0.034223295217944
626 => 0.035361893229944
627 => 0.037086927501883
628 => 0.036065672493345
629 => 0.0365188881241
630 => 0.036617895577259
701 => 0.035864859942879
702 => 0.037114692999842
703 => 0.037784488688694
704 => 0.038471560470768
705 => 0.039068125647828
706 => 0.038197128891975
707 => 0.039129220273218
708 => 0.038378119156214
709 => 0.037704303806855
710 => 0.037705325706602
711 => 0.037282631495077
712 => 0.036463608197351
713 => 0.036312567735178
714 => 0.037098299293708
715 => 0.037728381594592
716 => 0.037780278190784
717 => 0.038129124127351
718 => 0.038335567559213
719 => 0.040358993837694
720 => 0.041172832625559
721 => 0.042167979290181
722 => 0.042555644999444
723 => 0.043722379798477
724 => 0.04278014669069
725 => 0.042576288630897
726 => 0.039746171644487
727 => 0.040209603142466
728 => 0.040951601685218
729 => 0.039758406927162
730 => 0.040515214365574
731 => 0.040664624185289
801 => 0.039717862625865
802 => 0.040223568881906
803 => 0.038880562997317
804 => 0.036095813571341
805 => 0.037117793222016
806 => 0.037870314239543
807 => 0.036796373962359
808 => 0.038721370341984
809 => 0.037596827196998
810 => 0.037240401007628
811 => 0.035849855367785
812 => 0.036506139382781
813 => 0.037393772910145
814 => 0.036845318588707
815 => 0.037983443656521
816 => 0.039595332279413
817 => 0.040744060101713
818 => 0.040832245160099
819 => 0.040093690129147
820 => 0.041277229279643
821 => 0.041285850070255
822 => 0.039950813073596
823 => 0.03913311034666
824 => 0.038947326566639
825 => 0.039411450874187
826 => 0.039974983465625
827 => 0.040863517296936
828 => 0.041400439682152
829 => 0.042800448501167
830 => 0.043179250746193
831 => 0.043595439567813
901 => 0.044151596181377
902 => 0.044819404791588
903 => 0.043358277570811
904 => 0.043416330879174
905 => 0.042055749441869
906 => 0.040601773048994
907 => 0.04170515989047
908 => 0.0431476914083
909 => 0.042816773084254
910 => 0.042779538012751
911 => 0.042842157074872
912 => 0.042592655465323
913 => 0.041464168932297
914 => 0.04089745006011
915 => 0.041628661990635
916 => 0.04201726858921
917 => 0.042619963533542
918 => 0.042545668660306
919 => 0.044098146112196
920 => 0.044701391905519
921 => 0.044547055817244
922 => 0.044575457371792
923 => 0.045667605065829
924 => 0.046882297918902
925 => 0.048020018068644
926 => 0.049177355871179
927 => 0.04778213997856
928 => 0.047073735393241
929 => 0.047804628099511
930 => 0.047416806141504
1001 => 0.049645346147675
1002 => 0.049799645422507
1003 => 0.05202802427987
1004 => 0.054143021165926
1005 => 0.052814629515899
1006 => 0.0540672430098
1007 => 0.055422046630531
1008 => 0.058035682623886
1009 => 0.057155501970147
1010 => 0.056481297383572
1011 => 0.055844177306992
1012 => 0.057169923046391
1013 => 0.058875473760824
1014 => 0.059242833049151
1015 => 0.05983809543829
1016 => 0.059212249821332
1017 => 0.059966011932324
1018 => 0.062627123403981
1019 => 0.061908067594059
1020 => 0.060886892749979
1021 => 0.06298758468099
1022 => 0.063747816924589
1023 => 0.069083524946888
1024 => 0.075820076732145
1025 => 0.073031100058465
1026 => 0.071299892237397
1027 => 0.071706767140146
1028 => 0.074166727805453
1029 => 0.074956789095901
1030 => 0.072809130158005
1031 => 0.073567719602408
1101 => 0.077747622023933
1102 => 0.079990005565757
1103 => 0.076944547523672
1104 => 0.068542249570177
1105 => 0.060794947128186
1106 => 0.062849880601378
1107 => 0.062616914917528
1108 => 0.06710769861601
1109 => 0.0618909183508
1110 => 0.061978755551287
1111 => 0.066562403900832
1112 => 0.0653395651048
1113 => 0.063358722864588
1114 => 0.060809409468671
1115 => 0.05609676787337
1116 => 0.051922649790678
1117 => 0.06010905659282
1118 => 0.059756043845497
1119 => 0.059244829073815
1120 => 0.060382482228977
1121 => 0.065906603021964
1122 => 0.065779254157852
1123 => 0.06496912565833
1124 => 0.065583600985072
1125 => 0.063251002368865
1126 => 0.063852166144545
1127 => 0.060793719915897
1128 => 0.062176265343243
1129 => 0.063354472866782
1130 => 0.063591015470793
1201 => 0.064123958035794
1202 => 0.059570022168681
1203 => 0.061614605676482
1204 => 0.062815606935748
1205 => 0.057389439553584
1206 => 0.062708349053061
1207 => 0.059490748276827
1208 => 0.058398646246631
1209 => 0.059869017756788
1210 => 0.059296012549297
1211 => 0.058803376319891
1212 => 0.058528476839317
1213 => 0.059608155397394
1214 => 0.059557787102165
1215 => 0.057791223424573
1216 => 0.055486813121501
1217 => 0.056260248858901
1218 => 0.055979252404505
1219 => 0.054960885004509
1220 => 0.055647141673957
1221 => 0.052625214608257
1222 => 0.047426146157821
1223 => 0.050860810027953
1224 => 0.050728579205148
1225 => 0.0506619024281
1226 => 0.053242957399367
1227 => 0.052994848518949
1228 => 0.052544528471502
1229 => 0.054952614523692
1230 => 0.054073630721314
1231 => 0.056782451685612
]
'min_raw' => 0.024316420161006
'max_raw' => 0.079990005565757
'avg_raw' => 0.052153212863381
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.024316'
'max' => '$0.07999'
'avg' => '$0.052153'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.013246958774981
'max_diff' => 0.052877436436329
'year' => 2029
]
4 => [
'items' => [
101 => 0.058566656368254
102 => 0.058114124347761
103 => 0.059792177475595
104 => 0.05627806725617
105 => 0.057445313709432
106 => 0.057685881585716
107 => 0.054922899115605
108 => 0.0530354422002
109 => 0.052909570342526
110 => 0.049636980158797
111 => 0.05138517141952
112 => 0.052923507383887
113 => 0.052186763836648
114 => 0.05195353283918
115 => 0.053145059423614
116 => 0.053237651243959
117 => 0.051126547927639
118 => 0.05156551315705
119 => 0.053396071135588
120 => 0.051519387792718
121 => 0.047873298612006
122 => 0.046969018084062
123 => 0.046848370392438
124 => 0.044395889881262
125 => 0.047029446432925
126 => 0.045879828423196
127 => 0.049511457941391
128 => 0.047437090637418
129 => 0.047347668808929
130 => 0.047212494599838
131 => 0.045101543313175
201 => 0.045563707487001
202 => 0.047100011590391
203 => 0.047648182202185
204 => 0.047591003516345
205 => 0.047092482862157
206 => 0.047320703064805
207 => 0.046585526274884
208 => 0.046325920048981
209 => 0.045506531389713
210 => 0.044302256422483
211 => 0.044469718242924
212 => 0.042083734417157
213 => 0.040783723795132
214 => 0.040423897988821
215 => 0.039942723882465
216 => 0.040478247884489
217 => 0.042076975224761
218 => 0.040148570863467
219 => 0.036842456847866
220 => 0.037041159933547
221 => 0.037487586771599
222 => 0.036655673312299
223 => 0.035868337040276
224 => 0.036552862050189
225 => 0.035152017958048
226 => 0.037656872087522
227 => 0.037589122803093
228 => 0.03852277752342
301 => 0.039106610980565
302 => 0.037761063880173
303 => 0.037422662423171
304 => 0.037615431272568
305 => 0.03442939158995
306 => 0.038262410109239
307 => 0.038295558212564
308 => 0.038011724027103
309 => 0.040052688057455
310 => 0.044359758754141
311 => 0.04273926550653
312 => 0.042111761541388
313 => 0.040918876044949
314 => 0.042508325142421
315 => 0.042386280251004
316 => 0.041834346967864
317 => 0.041500535996084
318 => 0.042115592946791
319 => 0.041424323633357
320 => 0.041300152669854
321 => 0.040547811730366
322 => 0.040279260244301
323 => 0.04008043541536
324 => 0.039861548814821
325 => 0.040344358112468
326 => 0.039250248725148
327 => 0.037930860060905
328 => 0.037821167169457
329 => 0.038124038887044
330 => 0.037990040698159
331 => 0.037820525637681
401 => 0.037496875222549
402 => 0.037400855058077
403 => 0.037712874010252
404 => 0.037360622805081
405 => 0.037880388646426
406 => 0.037739041097536
407 => 0.036949485179524
408 => 0.035965406174639
409 => 0.03595664580732
410 => 0.035744627599931
411 => 0.03547459053567
412 => 0.035399472402004
413 => 0.03649521326315
414 => 0.038763364052959
415 => 0.038318071780671
416 => 0.038639841082786
417 => 0.040222627582412
418 => 0.040725747814592
419 => 0.040368644990846
420 => 0.03987982062056
421 => 0.039901326412027
422 => 0.041571787262495
423 => 0.041675971856709
424 => 0.041939212715066
425 => 0.042277551609912
426 => 0.040426265567657
427 => 0.03981413100592
428 => 0.039524067690637
429 => 0.038630784948194
430 => 0.039594113801644
501 => 0.039032823332593
502 => 0.039108560593281
503 => 0.039059236602901
504 => 0.039086170836922
505 => 0.037656171929744
506 => 0.03817718837299
507 => 0.037310897483293
508 => 0.036151031227704
509 => 0.036147142949314
510 => 0.036431018572188
511 => 0.036262158243648
512 => 0.035807759441344
513 => 0.03587230464651
514 => 0.035306820731604
515 => 0.035940964632196
516 => 0.035959149610189
517 => 0.035714969666409
518 => 0.036691955840266
519 => 0.03709222787284
520 => 0.036931503403003
521 => 0.037080951015578
522 => 0.038336575684958
523 => 0.038541297292812
524 => 0.038632221107871
525 => 0.03851039524079
526 => 0.037103901529552
527 => 0.037166285506518
528 => 0.036708553275957
529 => 0.036321817775767
530 => 0.036337285167614
531 => 0.036536117486808
601 => 0.037404429886087
602 => 0.039231742140559
603 => 0.039301087304868
604 => 0.039385135666953
605 => 0.039043268739034
606 => 0.038940158402348
607 => 0.039076187551473
608 => 0.039762429958739
609 => 0.041527631743222
610 => 0.040903691538723
611 => 0.040396418440257
612 => 0.040841433707457
613 => 0.040772927095216
614 => 0.040194662345289
615 => 0.040178432379729
616 => 0.039068557442194
617 => 0.038658261948417
618 => 0.038315388323731
619 => 0.037940979276517
620 => 0.037719017043024
621 => 0.038060051913701
622 => 0.03813805062363
623 => 0.037392371918626
624 => 0.037290738666511
625 => 0.037899675993611
626 => 0.037631705379426
627 => 0.037907319801467
628 => 0.037971264711557
629 => 0.037960968108256
630 => 0.037681176010818
701 => 0.037859507150205
702 => 0.037437700842484
703 => 0.036979049836098
704 => 0.03668645906899
705 => 0.036431134818156
706 => 0.036572803552051
707 => 0.036067780383402
708 => 0.035906213307643
709 => 0.037799092572758
710 => 0.03919738283778
711 => 0.039177051143543
712 => 0.039053287183761
713 => 0.038869399044129
714 => 0.039748977395956
715 => 0.039442549885904
716 => 0.039665501502342
717 => 0.039722252045976
718 => 0.039894018849384
719 => 0.039955410717747
720 => 0.03976984185216
721 => 0.039147050073924
722 => 0.037595112175824
723 => 0.036872680894882
724 => 0.036634266539126
725 => 0.036642932448145
726 => 0.036403887991096
727 => 0.036474297296918
728 => 0.036379402507915
729 => 0.03619969473506
730 => 0.036561707103481
731 => 0.036603425656562
801 => 0.036518927644047
802 => 0.036538829984867
803 => 0.035839222530816
804 => 0.03589241216608
805 => 0.035596245517918
806 => 0.03554071784173
807 => 0.034792034345357
808 => 0.033465633008124
809 => 0.034200588105844
810 => 0.033312865698124
811 => 0.03297667177113
812 => 0.034568161532634
813 => 0.034408420101634
814 => 0.034135012209692
815 => 0.033730584954313
816 => 0.033580578951278
817 => 0.032669189962964
818 => 0.032615340239463
819 => 0.033067049231644
820 => 0.03285860107411
821 => 0.032565860915442
822 => 0.031505585735338
823 => 0.030313485387854
824 => 0.030349467404069
825 => 0.030728652344788
826 => 0.031831183699985
827 => 0.031400405625524
828 => 0.031087871189893
829 => 0.03102934288485
830 => 0.031761947159769
831 => 0.032798735694122
901 => 0.033285173677604
902 => 0.032803128409314
903 => 0.032249380760264
904 => 0.032283084813842
905 => 0.032507302782615
906 => 0.032530864920862
907 => 0.032170432127508
908 => 0.03227189184759
909 => 0.032117765255114
910 => 0.031171890641586
911 => 0.031154782769229
912 => 0.03092264988478
913 => 0.030915620993295
914 => 0.030520705048586
915 => 0.030465453577997
916 => 0.029681324000094
917 => 0.030197440462832
918 => 0.029851256636958
919 => 0.029329475954855
920 => 0.02923952076859
921 => 0.029236816607067
922 => 0.02977256869956
923 => 0.030191179887701
924 => 0.029857278652823
925 => 0.029781255814045
926 => 0.030592980840232
927 => 0.030489681431612
928 => 0.030400224809957
929 => 0.032705902652467
930 => 0.030880778725834
1001 => 0.030084920519391
1002 => 0.029099894859543
1003 => 0.02942062418132
1004 => 0.029488206561912
1005 => 0.027119397414198
1006 => 0.026158371837987
1007 => 0.025828584075717
1008 => 0.025638786556015
1009 => 0.02572527966907
1010 => 0.024860243933423
1011 => 0.025441562254148
1012 => 0.024692514426728
1013 => 0.024566934120849
1014 => 0.025906324425496
1015 => 0.026092692761783
1016 => 0.025297587539079
1017 => 0.025808173807898
1018 => 0.025623028129144
1019 => 0.024705354701832
1020 => 0.024670306326857
1021 => 0.024209850058813
1022 => 0.023489325161226
1023 => 0.023160025948765
1024 => 0.022988524059808
1025 => 0.023059289081697
1026 => 0.023023508121184
1027 => 0.022790013150667
1028 => 0.023036891779575
1029 => 0.022406218900008
1030 => 0.022155079877687
1031 => 0.022041646207686
1101 => 0.021481887726894
1102 => 0.022372712395561
1103 => 0.022548216077602
1104 => 0.022724065556112
1105 => 0.024254715209007
1106 => 0.024178248277919
1107 => 0.024869472094045
1108 => 0.024842612407629
1109 => 0.024645464178187
1110 => 0.023813728227478
1111 => 0.024145243353163
1112 => 0.023124891325195
1113 => 0.023889408441742
1114 => 0.023540514756748
1115 => 0.02377144713589
1116 => 0.023356209895859
1117 => 0.023586019329218
1118 => 0.022589834511371
1119 => 0.021659611145164
1120 => 0.022033960182639
1121 => 0.022440920398379
1122 => 0.023323313837638
1123 => 0.022797767584803
1124 => 0.022986773890426
1125 => 0.022353634405861
1126 => 0.021047286801851
1127 => 0.021054680587421
1128 => 0.020853727468873
1129 => 0.020680074634813
1130 => 0.02285813289395
1201 => 0.02258725691942
1202 => 0.022155651505379
1203 => 0.022733372503391
1204 => 0.02288613110493
1205 => 0.022890479927563
1206 => 0.023311970254575
1207 => 0.023536919717658
1208 => 0.023576568035513
1209 => 0.024239792171968
1210 => 0.02446209615437
1211 => 0.025377734796246
1212 => 0.02351783432735
1213 => 0.023479530901134
1214 => 0.022741502222591
1215 => 0.022273432766886
1216 => 0.022773551338674
1217 => 0.023216588120284
1218 => 0.022755268610355
1219 => 0.022815507199366
1220 => 0.022196223448476
1221 => 0.02241758824941
1222 => 0.022608257437034
1223 => 0.022502981118645
1224 => 0.022345377374585
1225 => 0.023180264156517
1226 => 0.023133156572332
1227 => 0.023910622337631
1228 => 0.024516712498792
1229 => 0.025602934419168
1230 => 0.024469405219226
1231 => 0.02442809490981
]
'min_raw' => 0.020680074634813
'max_raw' => 0.059792177475595
'avg_raw' => 0.040236126055204
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.02068'
'max' => '$0.059792'
'avg' => '$0.040236'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0036363455261929
'max_diff' => -0.020197828090162
'year' => 2030
]
5 => [
'items' => [
101 => 0.024831909810737
102 => 0.024462034332412
103 => 0.024695782867046
104 => 0.0255652739165
105 => 0.025583644892249
106 => 0.025275907378789
107 => 0.025257181523128
108 => 0.025316285878868
109 => 0.025662461936524
110 => 0.025541497385063
111 => 0.025681480626462
112 => 0.02585653181333
113 => 0.026580617742383
114 => 0.026755192408496
115 => 0.026331066476427
116 => 0.026369360299357
117 => 0.026210725558246
118 => 0.02605748638602
119 => 0.026401945666399
120 => 0.027031451771656
121 => 0.027027535646847
122 => 0.027173568827416
123 => 0.027264546289107
124 => 0.026874004423958
125 => 0.026619776030369
126 => 0.026717263373444
127 => 0.026873147758019
128 => 0.026666712168484
129 => 0.025392496079603
130 => 0.02577901184373
131 => 0.025714676720924
201 => 0.02562305568263
202 => 0.026011700272299
203 => 0.02597421455352
204 => 0.024851371741652
205 => 0.024923252495413
206 => 0.024855743048364
207 => 0.025073879882912
208 => 0.024450254227483
209 => 0.02464207727891
210 => 0.024762386898535
211 => 0.024833250188757
212 => 0.02508925698445
213 => 0.025059217541795
214 => 0.025087389690517
215 => 0.025466980185242
216 => 0.027386818647832
217 => 0.027491311219465
218 => 0.026976751580377
219 => 0.027182308006953
220 => 0.026787684618177
221 => 0.027052597942809
222 => 0.027233844911454
223 => 0.026414824711936
224 => 0.026366327651118
225 => 0.025970075511241
226 => 0.026182998966342
227 => 0.025844222439538
228 => 0.025927346349316
301 => 0.025694924650964
302 => 0.026113237433299
303 => 0.026580976123183
304 => 0.026699145387808
305 => 0.026388292927646
306 => 0.026163215260313
307 => 0.025768053021669
308 => 0.026425216631299
309 => 0.026617391297453
310 => 0.026424207219589
311 => 0.026379442247592
312 => 0.026294612706547
313 => 0.02639743923574
314 => 0.026616344672949
315 => 0.02651311291131
316 => 0.026581299308582
317 => 0.026321443075688
318 => 0.026874133709566
319 => 0.027751939448409
320 => 0.027754761737395
321 => 0.027651529419298
322 => 0.027609288978904
323 => 0.027715211601932
324 => 0.027772670279752
325 => 0.028115204619738
326 => 0.028482757613713
327 => 0.03019796706066
328 => 0.029716343111479
329 => 0.031238178971076
330 => 0.032441753550364
331 => 0.032802652940755
401 => 0.032470642483224
402 => 0.031334852642863
403 => 0.031279125374724
404 => 0.032976474914324
405 => 0.032496895925853
406 => 0.032439851531182
407 => 0.031832995549909
408 => 0.032191722595417
409 => 0.032113263728356
410 => 0.031989412568361
411 => 0.032673838782048
412 => 0.033955023554919
413 => 0.033755338893192
414 => 0.033606283556318
415 => 0.032953166459492
416 => 0.033346488830766
417 => 0.033206434267949
418 => 0.033808197550632
419 => 0.03345172631266
420 => 0.032493262643336
421 => 0.032645901141814
422 => 0.032622830139835
423 => 0.03309762972573
424 => 0.032955106675294
425 => 0.032595000226824
426 => 0.033950644604648
427 => 0.033862616599242
428 => 0.033987420184904
429 => 0.034042362582991
430 => 0.034867519426639
501 => 0.035205559783408
502 => 0.035282300862623
503 => 0.035603413056574
504 => 0.035274311298712
505 => 0.036590952975739
506 => 0.037466442862791
507 => 0.038483369418899
508 => 0.039969372441462
509 => 0.040528123324243
510 => 0.040427189978454
511 => 0.041553860510644
512 => 0.04357846241251
513 => 0.040836419908405
514 => 0.043723797323427
515 => 0.042809686970206
516 => 0.040642347766863
517 => 0.040502796673418
518 => 0.041970543945248
519 => 0.045225866128726
520 => 0.044410444843323
521 => 0.045227199865832
522 => 0.044274411747578
523 => 0.044227097786778
524 => 0.045180925073592
525 => 0.04740959451965
526 => 0.046350837206253
527 => 0.044832848979554
528 => 0.045953707863636
529 => 0.044982716167651
530 => 0.042794800113135
531 => 0.044409821306034
601 => 0.043329902627498
602 => 0.043645080309529
603 => 0.045914908746033
604 => 0.045641796983331
605 => 0.045995228893735
606 => 0.045371430822796
607 => 0.044788705060612
608 => 0.043701004151713
609 => 0.043378989535594
610 => 0.043467982790617
611 => 0.043378945434957
612 => 0.042770386772915
613 => 0.042638968587788
614 => 0.042419932521681
615 => 0.042487820957489
616 => 0.042075969071947
617 => 0.042853218672907
618 => 0.042997483047946
619 => 0.043563100490287
620 => 0.043621824769515
621 => 0.045197061295375
622 => 0.044329447487706
623 => 0.044911517736063
624 => 0.044859451894392
625 => 0.040689320579347
626 => 0.04126392788118
627 => 0.042157836521128
628 => 0.041755131890496
629 => 0.041185801761153
630 => 0.040726037156159
701 => 0.040029446766248
702 => 0.041009884363214
703 => 0.04229905554531
704 => 0.043654520278149
705 => 0.045283022341088
706 => 0.044919559638494
707 => 0.043624076564845
708 => 0.043682190989178
709 => 0.044041431493221
710 => 0.043576182400044
711 => 0.043438971359724
712 => 0.0440225808033
713 => 0.044026599800792
714 => 0.04349127449186
715 => 0.04289635837448
716 => 0.042893865654226
717 => 0.042788006077346
718 => 0.044293243931137
719 => 0.04512097255401
720 => 0.045215870306671
721 => 0.04511458517915
722 => 0.04515356580487
723 => 0.044671928756976
724 => 0.045772808223431
725 => 0.046783084087546
726 => 0.046512308574568
727 => 0.046106377587605
728 => 0.045783034004205
729 => 0.046436139102325
730 => 0.046407057360389
731 => 0.046774260209219
801 => 0.046757601766929
802 => 0.046634125260065
803 => 0.046512312984303
804 => 0.046995284888667
805 => 0.046856196736502
806 => 0.046716892542019
807 => 0.046437496653578
808 => 0.046475471195091
809 => 0.046069610297837
810 => 0.045881840475836
811 => 0.043058232875743
812 => 0.042303672660959
813 => 0.042541072665019
814 => 0.042619230910445
815 => 0.042290845337975
816 => 0.042761665893564
817 => 0.042688289008698
818 => 0.042973755543671
819 => 0.042795408446136
820 => 0.042802727873229
821 => 0.043327208659468
822 => 0.043479467663014
823 => 0.043402027504929
824 => 0.043456263937158
825 => 0.044706119626108
826 => 0.044528430115275
827 => 0.044434036104128
828 => 0.044460183890315
829 => 0.04477954881605
830 => 0.044868953558578
831 => 0.04449013938213
901 => 0.044668790337641
902 => 0.045429463432027
903 => 0.045695655964694
904 => 0.046545214749301
905 => 0.046184307077897
906 => 0.046846768728478
907 => 0.048882949992545
908 => 0.050509592479308
909 => 0.049013664824637
910 => 0.052000786599906
911 => 0.054326689379122
912 => 0.054237417356462
913 => 0.053831842407805
914 => 0.051183863930992
915 => 0.048747154657494
916 => 0.050785565432916
917 => 0.050790761761186
918 => 0.0506156604678
919 => 0.049528121373021
920 => 0.050577816464679
921 => 0.050661137449122
922 => 0.050614499854672
923 => 0.049780686180576
924 => 0.048507606814756
925 => 0.048756363475515
926 => 0.049163831960338
927 => 0.048392409111738
928 => 0.048145892769451
929 => 0.048604213551415
930 => 0.05008101860583
1001 => 0.049801837164842
1002 => 0.049794546609157
1003 => 0.050989003205059
1004 => 0.05013403006226
1005 => 0.048759501093637
1006 => 0.04841241440125
1007 => 0.047180490468888
1008 => 0.048031384716933
1009 => 0.048062006886102
1010 => 0.047595980802376
1011 => 0.048797316541915
1012 => 0.048786246021584
1013 => 0.049926735511048
1014 => 0.052106923066613
1015 => 0.051462134325919
1016 => 0.050712315173306
1017 => 0.050793841305425
1018 => 0.051687981751129
1019 => 0.051147364026416
1020 => 0.051341773929543
1021 => 0.051687687488457
1022 => 0.0518963857271
1023 => 0.050763812840568
1024 => 0.050499755923494
1025 => 0.049959588142545
1026 => 0.049818668451204
1027 => 0.050258623837817
1028 => 0.050142711137298
1029 => 0.048059433211358
1030 => 0.047841719076849
1031 => 0.04784839605853
1101 => 0.047300943515563
1102 => 0.046465946983872
1103 => 0.048660268014102
1104 => 0.048484033325871
1105 => 0.048289483869546
1106 => 0.048313315067862
1107 => 0.049265795454645
1108 => 0.048713308728898
1109 => 0.050182185240089
1110 => 0.049880228387858
1111 => 0.049570527481754
1112 => 0.04952771738281
1113 => 0.0494085089564
1114 => 0.048999698906738
1115 => 0.048506036206096
1116 => 0.048180077330801
1117 => 0.044443574548412
1118 => 0.045137047730587
1119 => 0.045934825414609
1120 => 0.04621021507424
1121 => 0.045739142005057
1122 => 0.049018299742734
1123 => 0.049617433460157
1124 => 0.047802618349556
1125 => 0.047463140540775
1126 => 0.049040555851361
1127 => 0.048089181587898
1128 => 0.048517585360482
1129 => 0.047591610728491
1130 => 0.049473119692313
1201 => 0.049458785746399
1202 => 0.048726836263664
1203 => 0.049345474954298
1204 => 0.04923797125785
1205 => 0.048411602094555
1206 => 0.049499317068758
1207 => 0.049499856561814
1208 => 0.048795371098637
1209 => 0.047972686309344
1210 => 0.047825609699965
1211 => 0.047714807231761
1212 => 0.048490334745618
1213 => 0.049185670289531
1214 => 0.050479517348453
1215 => 0.050804821240113
1216 => 0.052074503985971
1217 => 0.051318469730544
1218 => 0.051653609923692
1219 => 0.05201745201183
1220 => 0.052191891288732
1221 => 0.051907651847947
1222 => 0.053879991774533
1223 => 0.05404651769527
1224 => 0.05410235239605
1225 => 0.053437290470051
1226 => 0.05402802112002
1227 => 0.053751637811842
1228 => 0.054470710398226
1229 => 0.054583470161351
1230 => 0.054487966653529
1231 => 0.054523758382137
]
'min_raw' => 0.024450254227483
'max_raw' => 0.054583470161351
'avg_raw' => 0.039516862194417
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.02445'
'max' => '$0.054583'
'avg' => '$0.039516'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00377017959267
'max_diff' => -0.0052087073142439
'year' => 2031
]
6 => [
'items' => [
101 => 0.052840714199402
102 => 0.052753439479762
103 => 0.051563442484736
104 => 0.052048375056223
105 => 0.051141816857252
106 => 0.051429295800729
107 => 0.051556013779815
108 => 0.051489823498723
109 => 0.052075792416228
110 => 0.051577599130807
111 => 0.050262785140024
112 => 0.048947612929048
113 => 0.048931102013255
114 => 0.048584840384823
115 => 0.048334556648447
116 => 0.048382770175366
117 => 0.048552680932816
118 => 0.048324681126343
119 => 0.048373336444938
120 => 0.049181338922299
121 => 0.049343378056724
122 => 0.048792705765172
123 => 0.046581677052957
124 => 0.046039085061034
125 => 0.046429089424761
126 => 0.046242692458397
127 => 0.037321461908096
128 => 0.039417372695406
129 => 0.038172053675992
130 => 0.038745953974511
131 => 0.037474805729486
201 => 0.0380814642986
202 => 0.037969436612508
203 => 0.041339599135994
204 => 0.041286978683696
205 => 0.041312165309599
206 => 0.040109942031876
207 => 0.042025116357207
208 => 0.042968600097307
209 => 0.042793986367021
210 => 0.042837932881029
211 => 0.042082786168608
212 => 0.041319476780444
213 => 0.040472849196497
214 => 0.042045778601138
215 => 0.041870895702142
216 => 0.042272014151558
217 => 0.043292171305784
218 => 0.043442393321943
219 => 0.043644293235064
220 => 0.043571926488425
221 => 0.045295995987324
222 => 0.045087199795231
223 => 0.045590338543412
224 => 0.044555343965174
225 => 0.043384149357311
226 => 0.04360675516303
227 => 0.043585316433856
228 => 0.043312376805249
229 => 0.043065979112499
301 => 0.042655796376188
302 => 0.043953675249497
303 => 0.043900983737446
304 => 0.044753998070373
305 => 0.044603219501289
306 => 0.043596283315172
307 => 0.043632246238049
308 => 0.043874114177587
309 => 0.044711221877931
310 => 0.044959732438031
311 => 0.044844612445159
312 => 0.045117092929371
313 => 0.045332450394168
314 => 0.045144138511248
315 => 0.047810237658781
316 => 0.046703087412941
317 => 0.047242704739262
318 => 0.047371400291979
319 => 0.047041749339869
320 => 0.047113238827466
321 => 0.047221525921456
322 => 0.047879023951378
323 => 0.049604489030482
324 => 0.050368685768378
325 => 0.052667809359144
326 => 0.050305229867428
327 => 0.050165044177716
328 => 0.050579185763293
329 => 0.051929014698021
330 => 0.053022924266633
331 => 0.053385837179698
401 => 0.053433802112199
402 => 0.054114650863104
403 => 0.054504900670046
404 => 0.054031977916645
405 => 0.053631225400213
406 => 0.05219577962959
407 => 0.052361936386129
408 => 0.053506591668953
409 => 0.055123484675802
410 => 0.056510947084724
411 => 0.056025106107066
412 => 0.059731729816315
413 => 0.060099226416887
414 => 0.060048450269276
415 => 0.060885662216205
416 => 0.059223966996798
417 => 0.058513560096673
418 => 0.053717872643
419 => 0.055065265203933
420 => 0.057023779420839
421 => 0.05676456272018
422 => 0.055342237344628
423 => 0.056509868123384
424 => 0.056123812872737
425 => 0.055819315079104
426 => 0.057214278501536
427 => 0.055680458916633
428 => 0.057008478397169
429 => 0.055305279676779
430 => 0.056027325387728
501 => 0.055617457320772
502 => 0.055882692191634
503 => 0.054332134556216
504 => 0.055168777818629
505 => 0.054297327445872
506 => 0.054296914264929
507 => 0.054277676949651
508 => 0.055302934448596
509 => 0.055336368058829
510 => 0.05457870121803
511 => 0.05446950958929
512 => 0.05487324827039
513 => 0.05440057601415
514 => 0.054621736387881
515 => 0.054407274736571
516 => 0.054358994901608
517 => 0.053974292962483
518 => 0.053808552789507
519 => 0.053873543781929
520 => 0.053651696019641
521 => 0.053518024718278
522 => 0.054251086363352
523 => 0.053859441098011
524 => 0.054191061109454
525 => 0.053813138252633
526 => 0.052503092977738
527 => 0.051749672086669
528 => 0.049275118003654
529 => 0.049976898471922
530 => 0.050442179648428
531 => 0.050288404222369
601 => 0.050618773340735
602 => 0.050639055321456
603 => 0.050531648953361
604 => 0.050407286138714
605 => 0.050346753198239
606 => 0.050797916142832
607 => 0.051059831417614
608 => 0.05048887683915
609 => 0.050355110169919
610 => 0.050932376772013
611 => 0.051284509065814
612 => 0.053884456077196
613 => 0.053691843604874
614 => 0.054175263112112
615 => 0.054120837494274
616 => 0.054627538152626
617 => 0.055455779581357
618 => 0.053771733176802
619 => 0.05406402540269
620 => 0.053992362098915
621 => 0.054774763258396
622 => 0.054777205829414
623 => 0.054308117250469
624 => 0.054562417779208
625 => 0.054420474200436
626 => 0.054676985432103
627 => 0.053689271147876
628 => 0.054892200528896
629 => 0.055574183972877
630 => 0.055583653313658
701 => 0.05590690805355
702 => 0.056235353590932
703 => 0.056865776198359
704 => 0.056217771446573
705 => 0.055052073980101
706 => 0.055136233572001
707 => 0.05445278557392
708 => 0.054464274458243
709 => 0.054402945893329
710 => 0.054586997533236
711 => 0.053729660132714
712 => 0.053930875506995
713 => 0.053649172804686
714 => 0.05406341303603
715 => 0.053617759023467
716 => 0.0539923275407
717 => 0.054153978895595
718 => 0.054750475875262
719 => 0.053529655934574
720 => 0.051040321433267
721 => 0.051563609725705
722 => 0.050789625237781
723 => 0.050861260448905
724 => 0.051005974976035
725 => 0.050536907845959
726 => 0.050626391072374
727 => 0.050623194101842
728 => 0.050595644336947
729 => 0.050473621860182
730 => 0.050296665127462
731 => 0.051001606286209
801 => 0.05112138952576
802 => 0.051387652829278
803 => 0.052179871812425
804 => 0.052100710454198
805 => 0.052229825913839
806 => 0.051947967590396
807 => 0.05087433504814
808 => 0.050932638460587
809 => 0.05020559397313
810 => 0.051369060667115
811 => 0.05109353639697
812 => 0.050915904107615
813 => 0.050867435491713
814 => 0.051661618232486
815 => 0.051899250155815
816 => 0.051751173888082
817 => 0.051447465142886
818 => 0.052030675717092
819 => 0.052186718263071
820 => 0.052221650434488
821 => 0.053254987752445
822 => 0.052279402511616
823 => 0.052514235575567
824 => 0.054346336104457
825 => 0.052684873737345
826 => 0.053564987408236
827 => 0.053521910423936
828 => 0.053972146796542
829 => 0.053484977899968
830 => 0.053491016942307
831 => 0.053890796339527
901 => 0.053329378276726
902 => 0.053190363269137
903 => 0.052998315031796
904 => 0.053417645332085
905 => 0.05366901488243
906 => 0.05569486884762
907 => 0.057003662899297
908 => 0.056946844697815
909 => 0.057466056700145
910 => 0.057232146937659
911 => 0.056476790612312
912 => 0.057766091753788
913 => 0.057358102925974
914 => 0.057391737029232
915 => 0.057390485166229
916 => 0.057661762069723
917 => 0.057469537521435
918 => 0.057090643205313
919 => 0.057342170934612
920 => 0.058089118367821
921 => 0.060407666119648
922 => 0.061705156158242
923 => 0.060329555590148
924 => 0.061278426441994
925 => 0.06070944204814
926 => 0.060606040657958
927 => 0.061202001673922
928 => 0.061799005840753
929 => 0.061760979256246
930 => 0.06132758488763
1001 => 0.061082771405774
1002 => 0.062936581108921
1003 => 0.064302436519376
1004 => 0.064209294337194
1005 => 0.064620393637885
1006 => 0.065827393899539
1007 => 0.065937746876845
1008 => 0.065923844938138
1009 => 0.065650323569743
1010 => 0.066838772076131
1011 => 0.067830196728922
1012 => 0.065587011275752
1013 => 0.066441186930865
1014 => 0.066824653902267
1015 => 0.067387697185807
1016 => 0.068337645582151
1017 => 0.069369541501949
1018 => 0.069515462899171
1019 => 0.06941192468486
1020 => 0.068731361586902
1021 => 0.069860474415424
1022 => 0.070521882229417
1023 => 0.070915735446602
1024 => 0.071914481674455
1025 => 0.066827022063734
1026 => 0.063225865288117
1027 => 0.06266349265627
1028 => 0.063807099517342
1029 => 0.064108659526513
1030 => 0.06398710106494
1031 => 0.059933671711133
1101 => 0.062642152189599
1102 => 0.065556249448921
1103 => 0.065668191792686
1104 => 0.067127049811603
1105 => 0.067602113783173
1106 => 0.068776685705293
1107 => 0.068703215911763
1108 => 0.068989205483277
1109 => 0.068923461433435
1110 => 0.071099108583863
1111 => 0.073499170477514
1112 => 0.073416063965866
1113 => 0.073071026672411
1114 => 0.073583465890793
1115 => 0.076060586971304
1116 => 0.075832533357267
1117 => 0.076054068017743
1118 => 0.078974733376092
1119 => 0.082772013801748
1120 => 0.081007795803309
1121 => 0.084835641219867
1122 => 0.087245067004224
1123 => 0.091411919758992
1124 => 0.090890209271913
1125 => 0.092512334471566
1126 => 0.089956238615776
1127 => 0.084086925858678
1128 => 0.083158084648041
1129 => 0.085017648273743
1130 => 0.089589203993965
1201 => 0.084873673715327
1202 => 0.085827619349176
1203 => 0.085552882942452
1204 => 0.085538243406892
1205 => 0.086096974935914
1206 => 0.085286505711591
1207 => 0.081984508291072
1208 => 0.083497794250103
1209 => 0.082913441867361
1210 => 0.083561824402369
1211 => 0.087060877530513
1212 => 0.085513862735552
1213 => 0.083884208318338
1214 => 0.08592815660679
1215 => 0.088530805154824
1216 => 0.088367936086097
1217 => 0.088051902018778
1218 => 0.089833369509252
1219 => 0.092775831882516
1220 => 0.093571167638237
1221 => 0.094158268233187
1222 => 0.094239219486085
1223 => 0.095073067701856
1224 => 0.09058925568885
1225 => 0.097705180505949
1226 => 0.098933904148406
1227 => 0.098702955029002
1228 => 0.100068629645
1229 => 0.09966681352915
1230 => 0.099084645020305
1231 => 0.10124952977398
]
'min_raw' => 0.037321461908096
'max_raw' => 0.10124952977398
'avg_raw' => 0.069285495841038
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.037321'
'max' => '$0.101249'
'avg' => '$0.069285'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.012871207680614
'max_diff' => 0.046666059612629
'year' => 2032
]
7 => [
'items' => [
101 => 0.098767664101083
102 => 0.095244968236605
103 => 0.093312347614329
104 => 0.095857378349801
105 => 0.097411539810621
106 => 0.098438741672989
107 => 0.09874957233589
108 => 0.090937321251644
109 => 0.086726951204544
110 => 0.089425750132745
111 => 0.092718471086301
112 => 0.0905709644577
113 => 0.090655142651773
114 => 0.087593362554202
115 => 0.092989370686466
116 => 0.092203217689167
117 => 0.096281780829835
118 => 0.095308399003801
119 => 0.098634308916107
120 => 0.097758485372817
121 => 0.10139397993438
122 => 0.10284427714207
123 => 0.10527955187452
124 => 0.10707094988106
125 => 0.10812289305449
126 => 0.10805973833209
127 => 0.11222806126121
128 => 0.10977014686002
129 => 0.10668242708618
130 => 0.1066265799771
131 => 0.1082257538013
201 => 0.11157718342491
202 => 0.11244616036499
203 => 0.11293179992649
204 => 0.11218802603283
205 => 0.10952013611065
206 => 0.10836815476876
207 => 0.10934967624816
208 => 0.10814935982195
209 => 0.11022144272289
210 => 0.1130668551189
211 => 0.11247928871111
212 => 0.11444343511949
213 => 0.11647612001794
214 => 0.11938295071631
215 => 0.1201429039005
216 => 0.12139907761552
217 => 0.12269209299985
218 => 0.12310737469356
219 => 0.12390027630118
220 => 0.12389609731832
221 => 0.12628555968134
222 => 0.12892121066323
223 => 0.12991610789343
224 => 0.13220381921533
225 => 0.12828619374754
226 => 0.1312577576673
227 => 0.13393818270598
228 => 0.13074246947391
301 => 0.13514701565864
302 => 0.13531803420607
303 => 0.1379002112298
304 => 0.13528268013099
305 => 0.13372839851998
306 => 0.13821555129281
307 => 0.14038674317559
308 => 0.13973276251075
309 => 0.13475593736031
310 => 0.13185921165668
311 => 0.12427792175362
312 => 0.13325828713114
313 => 0.13763236114569
314 => 0.13474460956531
315 => 0.13620102349197
316 => 0.14414674563205
317 => 0.14717196217558
318 => 0.14654273828239
319 => 0.14664906676243
320 => 0.14828141869775
321 => 0.15552016613162
322 => 0.15118254087639
323 => 0.15449849285629
324 => 0.15625726182988
325 => 0.1578909044698
326 => 0.15387919446421
327 => 0.14866001869065
328 => 0.14700688663707
329 => 0.134457479582
330 => 0.13380422844548
331 => 0.13343753878701
401 => 0.13112561235964
402 => 0.12930907147768
403 => 0.1278644907245
404 => 0.12407347943984
405 => 0.12535283446211
406 => 0.11931075371991
407 => 0.12317626286058
408 => 0.11353295610488
409 => 0.12156418852343
410 => 0.11719315385334
411 => 0.12012818607571
412 => 0.12011794602478
413 => 0.11471362115059
414 => 0.11159651934854
415 => 0.11358285793623
416 => 0.11571237057797
417 => 0.11605787683956
418 => 0.11881884556555
419 => 0.11958937259015
420 => 0.11725463973314
421 => 0.11333312000666
422 => 0.11424399959878
423 => 0.11157806040268
424 => 0.10690610450539
425 => 0.11026158479535
426 => 0.1114072932964
427 => 0.11191330344003
428 => 0.1073189713928
429 => 0.10587533251576
430 => 0.10510675129093
501 => 0.11274004943251
502 => 0.11315821873591
503 => 0.11101880545657
504 => 0.12068915634666
505 => 0.11850045811011
506 => 0.12094577028443
507 => 0.11416134682318
508 => 0.11442052093584
509 => 0.11120866614408
510 => 0.11300709021125
511 => 0.11173602204649
512 => 0.112861795319
513 => 0.1135365791768
514 => 0.1167479069348
515 => 0.121600856728
516 => 0.1162682416561
517 => 0.11394474490481
518 => 0.11538622922147
519 => 0.1192250919133
520 => 0.12504116539919
521 => 0.12159793283616
522 => 0.12312598097775
523 => 0.12345979151856
524 => 0.12092087930197
525 => 0.12513477871408
526 => 0.12739304164269
527 => 0.12970955212577
528 => 0.13172091327108
529 => 0.12878428689767
530 => 0.13192689806607
531 => 0.12939450820989
601 => 0.12712269271524
602 => 0.12712613812158
603 => 0.12570099507586
604 => 0.1229396008452
605 => 0.12243035738167
606 => 0.12507950618928
607 => 0.12720387265765
608 => 0.12737884565502
609 => 0.1285550040858
610 => 0.12925104252974
611 => 0.13607316549875
612 => 0.13881707979245
613 => 0.14217228625114
614 => 0.14347932825588
615 => 0.14741305608964
616 => 0.14423625138212
617 => 0.14354892970061
618 => 0.13400699268848
619 => 0.13556948433966
620 => 0.13807118423124
621 => 0.13404824479825
622 => 0.13659987391547
623 => 0.1371036195541
624 => 0.13391154685572
625 => 0.13561657080524
626 => 0.13108853269968
627 => 0.121699555585
628 => 0.12514523132959
629 => 0.12768240847953
630 => 0.12406154385488
701 => 0.13055180354774
702 => 0.12676032782133
703 => 0.12555861203899
704 => 0.12087029032946
705 => 0.12308299770631
706 => 0.12607571611641
707 => 0.12422656407982
708 => 0.12806383220731
709 => 0.13349842723786
710 => 0.13737144329236
711 => 0.13766876537359
712 => 0.13517867552247
713 => 0.13916906040043
714 => 0.13919812599787
715 => 0.13469695555433
716 => 0.13194001372028
717 => 0.13131363073493
718 => 0.13287845824195
719 => 0.13477844771857
720 => 0.13777420156629
721 => 0.13958447287477
722 => 0.14430470035357
723 => 0.14558185856981
724 => 0.14698506823927
725 => 0.14886018909152
726 => 0.15111175244575
727 => 0.14618546000826
728 => 0.14638119079056
729 => 0.14179389548192
730 => 0.13689171255995
731 => 0.140611858332
801 => 0.1454754540587
802 => 0.1443597398252
803 => 0.14423419918196
804 => 0.14444532372182
805 => 0.14360411162558
806 => 0.13979934049107
807 => 0.13788860824644
808 => 0.14035394032179
809 => 0.14166415460053
810 => 0.14369618268417
811 => 0.14344569233195
812 => 0.14867997845151
813 => 0.15071386376098
814 => 0.15019350886396
815 => 0.15028926668805
816 => 0.15397151888981
817 => 0.15806694065109
818 => 0.16190284356903
819 => 0.16580488877302
820 => 0.16110082098019
821 => 0.15871238546156
822 => 0.16117664125005
823 => 0.15986907244177
824 => 0.16738275066427
825 => 0.1679029814422
826 => 0.17541611634024
827 => 0.18254697600594
828 => 0.17806821081253
829 => 0.1822914846619
830 => 0.18685929965856
831 => 0.1956713558884
901 => 0.19270376536207
902 => 0.19043063752697
903 => 0.18828254270647
904 => 0.19275238702747
905 => 0.19850277033893
906 => 0.19974134782773
907 => 0.20174831653261
908 => 0.19963823433989
909 => 0.20217959592309
910 => 0.21115171904265
911 => 0.20872737217662
912 => 0.20528440989366
913 => 0.21236703940468
914 => 0.2149302154917
915 => 0.23291992761612
916 => 0.25563268229114
917 => 0.24622945271569
918 => 0.24039256467789
919 => 0.24176437181961
920 => 0.25005830095166
921 => 0.25272204775272
922 => 0.24548106569885
923 => 0.24803870297368
924 => 0.26213153581932
925 => 0.2696918884888
926 => 0.25942391407282
927 => 0.2310949798929
928 => 0.20497440881034
929 => 0.21190276048608
930 => 0.21111730041784
1001 => 0.22625829119378
1002 => 0.20866955230565
1003 => 0.20896570155969
1004 => 0.22441979199029
1005 => 0.22029690561359
1006 => 0.21361835770273
1007 => 0.20502316960101
1008 => 0.18913416943633
1009 => 0.17506083889292
1010 => 0.20266188098301
1011 => 0.20147167385884
1012 => 0.19974807756424
1013 => 0.20358375460528
1014 => 0.22220871354063
1015 => 0.22177934795406
1016 => 0.21904794315656
1017 => 0.22111968962197
1018 => 0.21325517053059
1019 => 0.21528203617221
1020 => 0.20497027117843
1021 => 0.20963161961296
1022 => 0.2136040285384
1023 => 0.2144015484427
1024 => 0.21619840150946
1025 => 0.20084448878784
1026 => 0.20773794483265
1027 => 0.2117872044295
1028 => 0.19349250225763
1029 => 0.21142557698951
1030 => 0.20057721132673
1031 => 0.1968951130838
1101 => 0.20185257328835
1102 => 0.19992064622535
1103 => 0.19825968878314
1104 => 0.19733284599152
1105 => 0.20097305763083
1106 => 0.20080323740686
1107 => 0.19484714463032
1108 => 0.18707766440472
1109 => 0.18968535699293
1110 => 0.18873795782838
1111 => 0.18530446103915
1112 => 0.18761822331311
1113 => 0.17742958522689
1114 => 0.15990056295888
1115 => 0.1714807719976
1116 => 0.17103494654645
1117 => 0.17081014113741
1118 => 0.17951234817654
1119 => 0.1786758317638
1120 => 0.17715754628349
1121 => 0.18527657653565
1122 => 0.18231302127725
1123 => 0.19144600028222
1124 => 0.19746157093894
1125 => 0.19593582763707
1126 => 0.20159350091549
1127 => 0.18974543296336
1128 => 0.19368088587508
1129 => 0.19449197726588
1130 => 0.18517638896263
1201 => 0.1788126961943
1202 => 0.17838831043806
1203 => 0.16735454414867
1204 => 0.17324869303901
1205 => 0.17843530014606
1206 => 0.17595131783876
1207 => 0.17516496324713
1208 => 0.17918227831627
1209 => 0.17949445810312
1210 => 0.17237672587962
1211 => 0.17385672779815
1212 => 0.18002858182827
1213 => 0.17370121291194
1214 => 0.16140816867735
1215 => 0.15835932374254
1216 => 0.15795255162687
1217 => 0.14968384235672
1218 => 0.1585630621397
1219 => 0.15468704475614
1220 => 0.166931337229
1221 => 0.15993746303596
1222 => 0.15963597109798
1223 => 0.15918022181446
1224 => 0.15206300216957
1225 => 0.15362122094889
1226 => 0.1588009774948
1227 => 0.16064917298451
1228 => 0.16045639105312
1229 => 0.15877559386192
1230 => 0.15954505420898
1231 => 0.15706635433335
]
'min_raw' => 0.086726951204544
'max_raw' => 0.2696918884888
'avg_raw' => 0.17820941984667
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.086726'
'max' => '$0.269691'
'avg' => '$0.1782094'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.049405489296448
'max_diff' => 0.16844235871482
'year' => 2033
]
8 => [
'items' => [
101 => 0.15619107381759
102 => 0.15342844774498
103 => 0.14936815061317
104 => 0.1499327598326
105 => 0.14188824877995
106 => 0.13750517220395
107 => 0.13629199437574
108 => 0.13466968228166
109 => 0.13647523884357
110 => 0.14186545969088
111 => 0.13536370974988
112 => 0.12421691552077
113 => 0.12488685684716
114 => 0.12639201610017
115 => 0.1235871617898
116 => 0.12093260257861
117 => 0.12324052644154
118 => 0.11851748278108
119 => 0.12696277336193
120 => 0.12673435191937
121 => 0.12988223399465
122 => 0.13185066925736
123 => 0.12731406326529
124 => 0.12617311912657
125 => 0.12682305276101
126 => 0.11608109752888
127 => 0.12900438707947
128 => 0.12911614822415
129 => 0.1281591814512
130 => 0.13504043417509
131 => 0.14956202373904
201 => 0.14409841761549
202 => 0.14198274418609
203 => 0.13796084745024
204 => 0.14331978605416
205 => 0.14290830318184
206 => 0.14104742158299
207 => 0.13992195458569
208 => 0.14199566203691
209 => 0.13966499928378
210 => 0.13924634821099
211 => 0.13670977820674
212 => 0.1358043381218
213 => 0.13513398632953
214 => 0.13439599487363
215 => 0.13602382012932
216 => 0.13233495394169
217 => 0.12788654294342
218 => 0.12751670570139
219 => 0.12853785884306
220 => 0.12808607459378
221 => 0.12751454273222
222 => 0.12642333276105
223 => 0.12609959407262
224 => 0.12715158775434
225 => 0.12596394822272
226 => 0.1277163750457
227 => 0.12723981191605
228 => 0.12457776901344
301 => 0.12125987794227
302 => 0.12123034175222
303 => 0.12051550756337
304 => 0.11960505874783
305 => 0.11935179271559
306 => 0.12304615953113
307 => 0.1306933882762
308 => 0.12919205429087
309 => 0.13027692195817
310 => 0.13561339714828
311 => 0.13730970213781
312 => 0.13610570503543
313 => 0.13445759954238
314 => 0.1345301078198
315 => 0.140162183205
316 => 0.14051344883833
317 => 0.14140098377117
318 => 0.14254171697721
319 => 0.13629997683309
320 => 0.13423612242032
321 => 0.13325815370127
322 => 0.13024638856811
323 => 0.13349431905499
324 => 0.13160188905054
325 => 0.13185724251275
326 => 0.13169094323549
327 => 0.13178175388598
328 => 0.1269604127311
329 => 0.12871705604571
330 => 0.1257962958286
331 => 0.1218857257686
401 => 0.12187261616654
402 => 0.12282972264862
403 => 0.1222603982615
404 => 0.12072836097442
405 => 0.12094597964004
406 => 0.11903941114011
407 => 0.12117747157547
408 => 0.1212387834984
409 => 0.12041551376985
410 => 0.12370949086601
411 => 0.12505903596993
412 => 0.12451714219845
413 => 0.12502101525835
414 => 0.12925444149608
415 => 0.12994467469016
416 => 0.13025123068073
417 => 0.12984048626426
418 => 0.12509839451856
419 => 0.12530872645242
420 => 0.12376545027923
421 => 0.12246154453933
422 => 0.12251369393085
423 => 0.12318407097704
424 => 0.12611164685484
425 => 0.13227255769966
426 => 0.13250635976266
427 => 0.13278973468349
428 => 0.13163710646763
429 => 0.13128946276856
430 => 0.13174809454208
501 => 0.13406180873009
502 => 0.14001330978893
503 => 0.13790965182735
504 => 0.13619934515919
505 => 0.13769974520253
506 => 0.13746877037639
507 => 0.13551911039885
508 => 0.13546438993682
509 => 0.13172236909593
510 => 0.13033902919275
511 => 0.12918300682845
512 => 0.12792066058536
513 => 0.12717229941823
514 => 0.12832212229501
515 => 0.12858510039123
516 => 0.12607099257569
517 => 0.12572832897038
518 => 0.12778140368334
519 => 0.1268779220485
520 => 0.1278071753152
521 => 0.12802277004406
522 => 0.12798805432714
523 => 0.12704471573617
524 => 0.12764597162329
525 => 0.12622382220724
526 => 0.12467744831722
527 => 0.12369095811788
528 => 0.12283011458002
529 => 0.12330776060734
530 => 0.12160503973465
531 => 0.12106030505848
601 => 0.12744227965742
602 => 0.13215671291145
603 => 0.13208816318482
604 => 0.13167088435349
605 => 0.13105089265206
606 => 0.13401645247545
607 => 0.13298331073122
608 => 0.13373500767202
609 => 0.13392634609208
610 => 0.13450546986215
611 => 0.13471245683258
612 => 0.13408679844625
613 => 0.13198701248399
614 => 0.1267545455077
615 => 0.12431881800546
616 => 0.12351498735948
617 => 0.12354420507677
618 => 0.12273825000028
619 => 0.12297563989067
620 => 0.12265569548421
621 => 0.12204979818123
622 => 0.12327034815626
623 => 0.12341100517067
624 => 0.12312611422201
625 => 0.12319321635362
626 => 0.12083444097726
627 => 0.12101377354613
628 => 0.12001522701416
629 => 0.11982801157707
630 => 0.11730377289764
701 => 0.11283171818277
702 => 0.11530967060766
703 => 0.11231665253123
704 => 0.11118315123407
705 => 0.11654897007924
706 => 0.11601039069183
707 => 0.11508857689542
708 => 0.1137250221677
709 => 0.11321926645539
710 => 0.11014645485014
711 => 0.10996489674769
712 => 0.11148786515214
713 => 0.11078506763563
714 => 0.10979807375221
715 => 0.10622328195644
716 => 0.10220403240511
717 => 0.10232534828497
718 => 0.10360379678645
719 => 0.10732105822678
720 => 0.10586865987276
721 => 0.10481492820258
722 => 0.10461759593581
723 => 0.1070876223975
724 => 0.11058322732733
725 => 0.11222328695066
726 => 0.11059803767329
727 => 0.10873103881309
728 => 0.10884467438287
729 => 0.10960064091899
730 => 0.10968008231315
731 => 0.10846485798574
801 => 0.10880693651569
802 => 0.10828728794838
803 => 0.10509820565001
804 => 0.10504052526393
805 => 0.10425787303701
806 => 0.10423417463862
807 => 0.10290268795889
808 => 0.10271640376826
809 => 0.10007265615018
810 => 0.10181277883841
811 => 0.10064559589969
812 => 0.098886375900415
813 => 0.09858308570945
814 => 0.098573968440076
815 => 0.10038029402493
816 => 0.10179167087225
817 => 0.10066589954662
818 => 0.10040958323793
819 => 0.10314637083656
820 => 0.10279808966826
821 => 0.10249648042269
822 => 0.11027023424599
823 => 0.10411670150127
824 => 0.1014334099932
825 => 0.098112327208728
826 => 0.099193688509705
827 => 0.099421547224324
828 => 0.091434941797833
829 => 0.088194776970974
830 => 0.087082874505432
831 => 0.086442958916519
901 => 0.086734576485941
902 => 0.08381804810834
903 => 0.085778003413015
904 => 0.083252536366019
905 => 0.082829133597009
906 => 0.087344981522371
907 => 0.087973335379984
908 => 0.085292582609165
909 => 0.087014059862482
910 => 0.086389828280105
911 => 0.08329582825001
912 => 0.083177660206784
913 => 0.081625199751041
914 => 0.079195899753385
915 => 0.078085644467635
916 => 0.077507413875138
917 => 0.077746003087092
918 => 0.077625365080577
919 => 0.07683812048538
920 => 0.077670489019259
921 => 0.075544131373623
922 => 0.074697398625904
923 => 0.074314949087809
924 => 0.072427684288728
925 => 0.075431161854531
926 => 0.076022884771808
927 => 0.076615773566024
928 => 0.081776465737304
929 => 0.081518652140391
930 => 0.083849161496166
1001 => 0.083758602188132
1002 => 0.083093903168117
1003 => 0.080289647340354
1004 => 0.081407373732246
1005 => 0.077967185631248
1006 => 0.080544808466568
1007 => 0.079368489048631
1008 => 0.080147093688093
1009 => 0.078747092342391
1010 => 0.079521910891741
1011 => 0.076163204226967
1012 => 0.073026891201679
1013 => 0.07428903511774
1014 => 0.075661129898163
1015 => 0.078636180985366
1016 => 0.076864265101466
1017 => 0.077501513056874
1018 => 0.075366839080277
1019 => 0.070962396927079
1020 => 0.070987325591345
1021 => 0.070309798122064
1022 => 0.069724315467975
1023 => 0.077067790955826
1024 => 0.076154513695744
1025 => 0.074699325908575
1026 => 0.076647152588565
1027 => 0.07716218887892
1028 => 0.077176851238051
1029 => 0.078597935303087
1030 => 0.079356368123341
1031 => 0.079490045195147
1101 => 0.081726151676035
1102 => 0.082475665073472
1103 => 0.085562804682405
1104 => 0.079292020397418
1105 => 0.079162877721672
1106 => 0.076674562504446
1107 => 0.075096433654974
1108 => 0.076782618336917
1109 => 0.078276347777957
1110 => 0.076720976841934
1111 => 0.076924075450506
1112 => 0.074836117047369
1113 => 0.075582463928916
1114 => 0.076225318407087
1115 => 0.075870371949481
1116 => 0.075338999922842
1117 => 0.078153878998058
1118 => 0.077995052489034
1119 => 0.080616332597665
1120 => 0.082659807891882
1121 => 0.086322080934022
1122 => 0.082500308095938
1123 => 0.082361027503547
1124 => 0.083722517635478
1125 => 0.082475456636426
1126 => 0.083263556140745
1127 => 0.086195105919905
1128 => 0.086257044947263
1129 => 0.085219486435087
1130 => 0.085156350905328
1201 => 0.085355625367238
1202 => 0.086522782114868
1203 => 0.086114941684142
1204 => 0.086586904955835
1205 => 0.087177102254045
1206 => 0.089618408517911
1207 => 0.090206999193125
1208 => 0.08877702900163
1209 => 0.088906139299225
1210 => 0.088371291194046
1211 => 0.08785463462607
1212 => 0.089016003139247
1213 => 0.091138426923833
1214 => 0.091125223435623
1215 => 0.091617584499624
1216 => 0.091924321363557
1217 => 0.090607582198447
1218 => 0.089750433419802
1219 => 0.090079118803329
1220 => 0.090604693889424
1221 => 0.089908681886432
1222 => 0.085612573379843
1223 => 0.086915738264268
1224 => 0.086698827905993
1225 => 0.086389921178608
1226 => 0.087700263546973
1227 => 0.087573877828943
1228 => 0.083788134894346
1229 => 0.084030485874206
1230 => 0.083802873060123
1231 => 0.084538336627626
]
'min_raw' => 0.069724315467975
'max_raw' => 0.15619107381759
'avg_raw' => 0.11295769464278
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.069724'
'max' => '$0.156191'
'avg' => '$0.112957'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.017002635736569
'max_diff' => -0.1135008146712
'year' => 2034
]
9 => [
'items' => [
101 => 0.082435739190195
102 => 0.083082484000739
103 => 0.083488116283056
104 => 0.083727036813555
105 => 0.084590181599058
106 => 0.084488901520859
107 => 0.084583885887194
108 => 0.08586370174232
109 => 0.092336571157781
110 => 0.092688875158484
111 => 0.090954001409891
112 => 0.091647049253582
113 => 0.090316548946598
114 => 0.091209722716254
115 => 0.091820809525299
116 => 0.089059425740461
117 => 0.088895914513956
118 => 0.087559922758919
119 => 0.088277809053635
120 => 0.087135600340891
121 => 0.087415858406234
122 => 0.086632232423076
123 => 0.088042603174383
124 => 0.089619616823801
125 => 0.0900180327498
126 => 0.088969971977337
127 => 0.088211106907503
128 => 0.086878789830569
129 => 0.089094462822133
130 => 0.089742393126277
131 => 0.089091059520077
201 => 0.088940131291601
202 => 0.088654122571358
203 => 0.08900080939365
204 => 0.08973886435869
205 => 0.089390811266913
206 => 0.089620706465938
207 => 0.088744583034153
208 => 0.0906080180939
209 => 0.093567601428848
210 => 0.093577116973211
211 => 0.093229062005297
212 => 0.093086645411376
213 => 0.093443770930197
214 => 0.093637496874101
215 => 0.094792375316348
216 => 0.096031605897266
217 => 0.10181455429975
218 => 0.10019072552917
219 => 0.10532170138099
220 => 0.10937963710595
221 => 0.11059643459785
222 => 0.10947703816005
223 => 0.10564764341496
224 => 0.10545975503968
225 => 0.1111824875176
226 => 0.10956555347483
227 => 0.10937322431549
228 => 0.10732716700529
301 => 0.10853664028475
302 => 0.10827211073663
303 => 0.10785453790369
304 => 0.11016212866825
305 => 0.11448173257945
306 => 0.1138084818009
307 => 0.11330593132592
308 => 0.11110390143479
309 => 0.11243001527043
310 => 0.1119578115336
311 => 0.11398669845493
312 => 0.11278483078808
313 => 0.10955330360916
314 => 0.11006793496366
315 => 0.10999014946972
316 => 0.11159096942301
317 => 0.11111044300783
318 => 0.10989631897498
319 => 0.11446696864288
320 => 0.11417017607674
321 => 0.1145909600793
322 => 0.11477620221041
323 => 0.11755827611938
324 => 0.11869800278345
325 => 0.11895674068992
326 => 0.12003939287116
327 => 0.11892980331737
328 => 0.12336895265646
329 => 0.12632072793541
330 => 0.12974936681887
331 => 0.13475952975886
401 => 0.1366433973709
402 => 0.13630309354863
403 => 0.14010174190953
404 => 0.14692782857486
405 => 0.13768284082898
406 => 0.14741783537398
407 => 0.14433584849695
408 => 0.13702851305408
409 => 0.13655800679939
410 => 0.14150661920121
411 => 0.15248216522214
412 => 0.14973291542751
413 => 0.15248666200991
414 => 0.14927427034768
415 => 0.14911474802548
416 => 0.15233064331707
417 => 0.15984475795519
418 => 0.15627508375299
419 => 0.15115708046412
420 => 0.15493613444767
421 => 0.15166236815219
422 => 0.14428565641896
423 => 0.149730813128
424 => 0.1460897919058
425 => 0.14715243546578
426 => 0.15480532051381
427 => 0.15388450513781
428 => 0.15507612549956
429 => 0.1529729467512
430 => 0.15100824615938
501 => 0.14734098660418
502 => 0.14625529184359
503 => 0.14655533881621
504 => 0.14625514315521
505 => 0.14420334513793
506 => 0.14376025955145
507 => 0.14302176416196
508 => 0.14325065476311
509 => 0.14186206737642
510 => 0.14448261867189
511 => 0.14496901608455
512 => 0.14687603478155
513 => 0.14707402778897
514 => 0.15238504771541
515 => 0.14945982718799
516 => 0.15142231766917
517 => 0.15124677404886
518 => 0.13718688517091
519 => 0.13912421380684
520 => 0.14213808919713
521 => 0.14078034241902
522 => 0.13886080613858
523 => 0.1373106776731
524 => 0.13496207453913
525 => 0.13826768834927
526 => 0.14261421899676
527 => 0.14718426297906
528 => 0.15267487138264
529 => 0.15144943150469
530 => 0.14708161987414
531 => 0.1472775567132
601 => 0.14848876115395
602 => 0.14692014135365
603 => 0.14645752475144
604 => 0.14842520473677
605 => 0.14843875506741
606 => 0.14663386841313
607 => 0.14462806718766
608 => 0.14461966280729
609 => 0.14426274985296
610 => 0.14933776436937
611 => 0.15212850921155
612 => 0.15244846361019
613 => 0.15210697373125
614 => 0.15223839963241
615 => 0.15061452669861
616 => 0.15432621868072
617 => 0.15773243429179
618 => 0.15681949574484
619 => 0.1554508710811
620 => 0.15436069561453
621 => 0.15656268505119
622 => 0.15646463392783
623 => 0.15770268396994
624 => 0.15764651886871
625 => 0.15723020920496
626 => 0.15681951061257
627 => 0.15844788410815
628 => 0.1579789386923
629 => 0.15750926487469
630 => 0.15656726213002
701 => 0.15669529594803
702 => 0.15532690759663
703 => 0.15469382853209
704 => 0.14517383837039
705 => 0.14262978592453
706 => 0.14343019661296
707 => 0.14369371259424
708 => 0.14258653770951
709 => 0.14417394208432
710 => 0.14392654679399
711 => 0.14488901714728
712 => 0.14428770745615
713 => 0.14431238541562
714 => 0.1460807090045
715 => 0.14659406086534
716 => 0.14633296596566
717 => 0.14651582788359
718 => 0.15072980360102
719 => 0.15013071100936
720 => 0.1498124550104
721 => 0.14990061409711
722 => 0.15097737524157
723 => 0.15127880957304
724 => 0.15000161112919
725 => 0.15060394529871
726 => 0.15316860774493
727 => 0.15406609445378
728 => 0.15693044121039
729 => 0.15571361579848
730 => 0.15794715150501
731 => 0.16481227879845
801 => 0.17029661751112
802 => 0.16525299298106
803 => 0.17532428260056
804 => 0.18316622621004
805 => 0.18286523935287
806 => 0.18149781509713
807 => 0.1725699707866
808 => 0.16435443534539
809 => 0.17122707959203
810 => 0.17124459937558
811 => 0.17065423313975
812 => 0.16698751915215
813 => 0.17052663944105
814 => 0.17080756195738
815 => 0.17065032005156
816 => 0.16783905903433
817 => 0.16354678306891
818 => 0.16438548351829
819 => 0.16575929196341
820 => 0.16315838597033
821 => 0.16232723891109
822 => 0.16387249942642
823 => 0.16885165077461
824 => 0.1679103710545
825 => 0.167885790437
826 => 0.17191298424438
827 => 0.16903038260111
828 => 0.16439606221685
829 => 0.16322583520065
830 => 0.15907231765251
831 => 0.16194116701733
901 => 0.16204441179866
902 => 0.16047317232047
903 => 0.16452355964091
904 => 0.1644862346087
905 => 0.16833147454886
906 => 0.17568212910828
907 => 0.17350817885132
908 => 0.17098011122758
909 => 0.17125498227399
910 => 0.17426963921358
911 => 0.17244690880998
912 => 0.17310237537164
913 => 0.17426864708643
914 => 0.17497228776886
915 => 0.17115373920821
916 => 0.17026345287643
917 => 0.16844223948965
918 => 0.16796711891159
919 => 0.16945045921426
920 => 0.16905965145169
921 => 0.16203573447457
922 => 0.16130169606975
923 => 0.16132420797967
924 => 0.15947843350913
925 => 0.15666318440495
926 => 0.16406149096097
927 => 0.16346730340528
928 => 0.16281136633027
929 => 0.16289171487924
930 => 0.16610306900333
1001 => 0.16424032143409
1002 => 0.16919274114525
1003 => 0.168174672536
1004 => 0.16713049430844
1005 => 0.16698615707095
1006 => 0.16658423753844
1007 => 0.1652059059138
1008 => 0.16354148765215
1009 => 0.16244249454637
1010 => 0.14984461454126
1011 => 0.15218270779171
1012 => 0.15487247095245
1013 => 0.15580096641699
1014 => 0.15421271067497
1015 => 0.16526861993103
1016 => 0.1672886410895
1017 => 0.16116986523776
1018 => 0.16002529210387
1019 => 0.16534365795513
1020 => 0.16213603320304
1021 => 0.1635804264325
1022 => 0.16045843831126
1023 => 0.16680207714555
1024 => 0.16675374924613
1025 => 0.16428593046201
1026 => 0.16637171399946
1027 => 0.16600925778121
1028 => 0.16322309645191
1029 => 0.16689040342927
1030 => 0.16689222236778
1031 => 0.16451700044307
1101 => 0.16174326123795
1102 => 0.16124738218087
1103 => 0.16087380392334
1104 => 0.16348854908191
1105 => 0.16583292141499
1106 => 0.17019521710766
1107 => 0.17129200189039
1108 => 0.17557282591447
1109 => 0.17302380363767
1110 => 0.17415375219761
1111 => 0.17538047120041
1112 => 0.17596860540145
1113 => 0.17501027228187
1114 => 0.18166015404873
1115 => 0.18222160781697
1116 => 0.1824098584089
1117 => 0.18016755569225
1118 => 0.18215924532212
1119 => 0.18122739970214
1120 => 0.18365180313117
1121 => 0.18403198054518
1122 => 0.18370998380072
1123 => 0.18383065811262
1124 => 0.17815615714414
1125 => 0.17786190433354
1126 => 0.17384974638188
1127 => 0.17548473040356
1128 => 0.17242820614185
1129 => 0.17339746147093
1130 => 0.17382469998458
1201 => 0.17360153483062
1202 => 0.17557716994703
1203 => 0.17389747650249
1204 => 0.16946448933518
1205 => 0.16503029440349
1206 => 0.16497462669814
1207 => 0.16380718144266
1208 => 0.16296333235122
1209 => 0.16312588762339
1210 => 0.16369875360492
1211 => 0.16293003633896
1212 => 0.16309408114261
1213 => 0.16581831790796
1214 => 0.16636464416289
1215 => 0.16450801408521
1216 => 0.15705337641288
1217 => 0.15522398962955
1218 => 0.15653891657109
1219 => 0.15591046618517
1220 => 0.12583191452441
1221 => 0.13289842407564
1222 => 0.12869974405629
1223 => 0.13063468898118
1224 => 0.12634892392435
1225 => 0.12839431564566
1226 => 0.12801660648048
1227 => 0.13937934472564
1228 => 0.13920193119688
1229 => 0.13928684966459
1230 => 0.1352334699472
1231 => 0.14169061389825
]
'min_raw' => 0.082435739190195
'max_raw' => 0.18403198054518
'avg_raw' => 0.13323385986769
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.082435'
'max' => '$0.184031'
'avg' => '$0.133233'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.01271142372222
'max_diff' => 0.027840906727594
'year' => 2035
]
10 => [
'items' => [
101 => 0.14487163519993
102 => 0.14428291281713
103 => 0.14443108155735
104 => 0.14188505169377
105 => 0.13931150079901
106 => 0.13645703679008
107 => 0.14176027809626
108 => 0.14117064819236
109 => 0.14252304704976
110 => 0.14596257812033
111 => 0.14646906213598
112 => 0.14714978178926
113 => 0.14690579225048
114 => 0.15271861293671
115 => 0.15201464199739
116 => 0.1537110094149
117 => 0.15022145293336
118 => 0.14627268854276
119 => 0.14702321955858
120 => 0.14695093738636
121 => 0.14603070237248
122 => 0.14519995534843
123 => 0.14381699561492
124 => 0.14819288485129
125 => 0.1480152317396
126 => 0.15089122911863
127 => 0.15038286864594
128 => 0.1469879129924
129 => 0.14710916449773
130 => 0.14792463914257
131 => 0.15074700619927
201 => 0.1515848769031
202 => 0.15119674180971
203 => 0.15211542878621
204 => 0.15284152151455
205 => 0.15220661485377
206 => 0.16119555427078
207 => 0.15746271991817
208 => 0.15928207740873
209 => 0.15971598344996
210 => 0.15860454224942
211 => 0.15884557404809
212 => 0.15921067154585
213 => 0.16142747205877
214 => 0.1672449980411
215 => 0.16982154069743
216 => 0.17757319640338
217 => 0.16960759469702
218 => 0.16913494885671
219 => 0.17053125612692
220 => 0.1750822986224
221 => 0.17877049110731
222 => 0.17999407733148
223 => 0.18015579445021
224 => 0.18245132354923
225 => 0.1837670780197
226 => 0.1821725859382
227 => 0.1808214208494
228 => 0.17598171521412
229 => 0.17654192431949
301 => 0.18040120952281
302 => 0.18585267718327
303 => 0.19053060356448
304 => 0.18889255678797
305 => 0.20138969741191
306 => 0.20262873785853
307 => 0.20245754253178
308 => 0.20528026106312
309 => 0.19967773961504
310 => 0.19728255315224
311 => 0.18111355807797
312 => 0.1856563861691
313 => 0.1922596535905
314 => 0.1913856863863
315 => 0.18659021707903
316 => 0.19052696577099
317 => 0.18922535353991
318 => 0.18819871796933
319 => 0.19290193454129
320 => 0.18773055472293
321 => 0.19220806512091
322 => 0.18646561172158
323 => 0.18890003924767
324 => 0.18751814044385
325 => 0.18841239832907
326 => 0.18318458500478
327 => 0.18600538617657
328 => 0.1830672304021
329 => 0.1830658373337
330 => 0.18300097738214
331 => 0.18645770462102
401 => 0.18657042837218
402 => 0.18401590171982
403 => 0.18364775452001
404 => 0.18500898767147
405 => 0.18341534015864
406 => 0.18416099779959
407 => 0.18343792536897
408 => 0.1832751465346
409 => 0.18197809708781
410 => 0.18141929252301
411 => 0.18163841419149
412 => 0.18089043897201
413 => 0.18043975684684
414 => 0.18291132536393
415 => 0.18159086600804
416 => 0.18270894602959
417 => 0.18143475273208
418 => 0.17701784362334
419 => 0.17447763248693
420 => 0.1661345006282
421 => 0.16850060247371
422 => 0.1700693304452
423 => 0.16955086585998
424 => 0.17066472840819
425 => 0.17073311052223
426 => 0.17037098245332
427 => 0.16995168454101
428 => 0.16974759350592
429 => 0.1712687208728
430 => 0.17215178650807
501 => 0.17022677328401
502 => 0.1697757696194
503 => 0.17172206427183
504 => 0.17290930288547
505 => 0.18167520575685
506 => 0.18102579935864
507 => 0.18265568197857
508 => 0.18247218220815
509 => 0.1841805588545
510 => 0.18697303265743
511 => 0.18129515262811
512 => 0.18228063627488
513 => 0.18203901844283
514 => 0.18467693857753
515 => 0.18468517387625
516 => 0.18310360898162
517 => 0.18396100096896
518 => 0.18348242828294
519 => 0.18434727380955
520 => 0.18101712614027
521 => 0.18507288653423
522 => 0.18737224133017
523 => 0.18740416787374
524 => 0.18849404379821
525 => 0.18960142085883
526 => 0.19172693469447
527 => 0.18954214143158
528 => 0.18561191103697
529 => 0.1858956609769
530 => 0.18359136833456
531 => 0.18363010391018
601 => 0.18342333037174
602 => 0.18404387332577
603 => 0.18115330042252
604 => 0.18183171210532
605 => 0.18088193177663
606 => 0.18227857163794
607 => 0.18077601802001
608 => 0.1820389019274
609 => 0.18258392075657
610 => 0.1845950519696
611 => 0.18047897230464
612 => 0.1720860072337
613 => 0.17385031024648
614 => 0.17124076750757
615 => 0.17148229062329
616 => 0.17197020575515
617 => 0.17038871317688
618 => 0.17069041212226
619 => 0.17067963331291
620 => 0.1705867473571
621 => 0.17017534005735
622 => 0.16957871807826
623 => 0.17195547641239
624 => 0.17235933396754
625 => 0.17325705928526
626 => 0.1759280808979
627 => 0.17566118285177
628 => 0.1760965046385
629 => 0.1751461996223
630 => 0.17152637254745
701 => 0.17172294657313
702 => 0.16927166532304
703 => 0.17319437451246
704 => 0.17226542519918
705 => 0.17166652553373
706 => 0.17150311021125
707 => 0.17418075276983
708 => 0.17498194539026
709 => 0.17448269591525
710 => 0.17345872067655
711 => 0.17542505584595
712 => 0.17595116418426
713 => 0.17606894043908
714 => 0.17955290935188
715 => 0.17626365559924
716 => 0.17705541166987
717 => 0.18323246651619
718 => 0.17763073014588
719 => 0.18059809483486
720 => 0.18045285777476
721 => 0.1819708611395
722 => 0.18032833719165
723 => 0.18034869824453
724 => 0.18169658239396
725 => 0.17980372219827
726 => 0.17933502339447
727 => 0.17868751935389
728 => 0.18010132073802
729 => 0.18094883072707
730 => 0.18777913881132
731 => 0.19219182933363
801 => 0.19200026280041
802 => 0.19375082231649
803 => 0.19296217922121
804 => 0.19041544263301
805 => 0.19476241144763
806 => 0.19338684862978
807 => 0.19350024835718
808 => 0.19349602761366
809 => 0.19441065663374
810 => 0.19376255814849
811 => 0.19248508950813
812 => 0.19333313280857
813 => 0.19585151822984
814 => 0.20366866385096
815 => 0.20804324210394
816 => 0.20340530874725
817 => 0.20660449307229
818 => 0.20468612246319
819 => 0.20433749745694
820 => 0.20634682163093
821 => 0.2083596628609
822 => 0.2082314535763
823 => 0.20677023420389
824 => 0.20594482845748
825 => 0.2121950773005
826 => 0.21680015417783
827 => 0.21648611880762
828 => 0.21787216880194
829 => 0.22194165445417
830 => 0.22231371722176
831 => 0.2222668458648
901 => 0.22134464947461
902 => 0.22535158658872
903 => 0.22869424402466
904 => 0.22113118765509
905 => 0.22401110051295
906 => 0.22530398617984
907 => 0.22720232592072
908 => 0.23040514326227
909 => 0.23388425240054
910 => 0.23437623657919
911 => 0.23402715026083
912 => 0.23173258426067
913 => 0.23553946699417
914 => 0.23776944961706
915 => 0.23909735323676
916 => 0.2424646958742
917 => 0.22531197060156
918 => 0.21317041910783
919 => 0.21127434051596
920 => 0.21513009089215
921 => 0.21614682151731
922 => 0.21573697867718
923 => 0.20207055860942
924 => 0.21120238964263
925 => 0.22102747200821
926 => 0.22140489343578
927 => 0.22632353510077
928 => 0.22792524644883
929 => 0.23188539769025
930 => 0.23163768915186
1001 => 0.23260192295938
1002 => 0.23238026230523
1003 => 0.23971560857174
1004 => 0.24780758481315
1005 => 0.24752738540682
1006 => 0.2463640680822
1007 => 0.24809179268434
1008 => 0.25644357935435
1009 => 0.25567468067243
1010 => 0.25642160024728
1011 => 0.2662688274173
1012 => 0.27907162349005
1013 => 0.27312343933455
1014 => 0.28602928740811
1015 => 0.2941528346608
1016 => 0.30820166964387
1017 => 0.30644268631202
1018 => 0.31191179467582
1019 => 0.30329373903711
1020 => 0.28350494129422
1021 => 0.28037328830293
1022 => 0.28664293689757
1023 => 0.30205625618413
1024 => 0.28615751662189
1025 => 0.28937381092877
1026 => 0.28844751795202
1027 => 0.28839815973578
1028 => 0.29028196209527
1029 => 0.28754940852031
1030 => 0.27641649367893
1031 => 0.28151864294405
1101 => 0.27954845808746
1102 => 0.28173452507286
1103 => 0.29353182699049
1104 => 0.28831595860015
1105 => 0.28282146495368
1106 => 0.28971277931211
1107 => 0.29848779060292
1108 => 0.29793866616655
1109 => 0.29687313524379
1110 => 0.30287947726601
1111 => 0.31280019459363
1112 => 0.31548172462262
1113 => 0.31746117526855
1114 => 0.31773410806953
1115 => 0.32054548554642
1116 => 0.30542800029482
1117 => 0.32941983763367
1118 => 0.33356256518096
1119 => 0.33278390410053
1120 => 0.33738837141672
1121 => 0.33603362032824
1122 => 0.33407079855496
1123 => 0.3413698586494
1124 => 0.3330020752549
1125 => 0.32112506020104
1126 => 0.31460909484177
1127 => 0.32318984365479
1128 => 0.32842980752803
1129 => 0.33189309032395
1130 => 0.33294107760542
1201 => 0.30660152764094
1202 => 0.29240597106849
1203 => 0.30150516007904
1204 => 0.31260679866439
1205 => 0.30536633013194
1206 => 0.30565014279039
1207 => 0.29532713742477
1208 => 0.31352015557996
1209 => 0.31086958586211
1210 => 0.32462074624706
1211 => 0.32133892146124
1212 => 0.33255245893819
1213 => 0.32959955871394
1214 => 0.34185688245036
1215 => 0.34674666074261
1216 => 0.35495735952852
1217 => 0.36099718297899
1218 => 0.36454388283252
1219 => 0.36433095227665
1220 => 0.37838474405519
1221 => 0.37009771404547
1222 => 0.35968725125026
1223 => 0.35949895882288
1224 => 0.36489068502192
1225 => 0.37619026398726
1226 => 0.37912008041079
1227 => 0.38075744809863
1228 => 0.37824976248752
1229 => 0.36925478534877
1230 => 0.36537079982582
1231 => 0.36868006802126
]
'min_raw' => 0.13645703679008
'max_raw' => 0.38075744809863
'avg_raw' => 0.25860724244436
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.136457'
'max' => '$0.380757'
'avg' => '$0.2586072'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.054021297599888
'max_diff' => 0.19672546755345
'year' => 2036
]
11 => [
'items' => [
101 => 0.3646331173869
102 => 0.37161928955561
103 => 0.38121279610912
104 => 0.37923177494265
105 => 0.38585403169085
106 => 0.3927073707435
107 => 0.4025079533915
108 => 0.40507018861022
109 => 0.40930546599367
110 => 0.41366495763739
111 => 0.41506510886176
112 => 0.41773843199049
113 => 0.41772434225801
114 => 0.42578058144184
115 => 0.43466686274256
116 => 0.43802122821569
117 => 0.44573440666038
118 => 0.43252585887586
119 => 0.44254469409928
120 => 0.45158193425851
121 => 0.440807363979
122 => 0.45565759895641
123 => 0.45623419992922
124 => 0.46494019004655
125 => 0.45611500119675
126 => 0.45087463222873
127 => 0.46600338108533
128 => 0.47332370610591
129 => 0.47111876463493
130 => 0.45433905116938
131 => 0.44457253821666
201 => 0.41901168999975
202 => 0.44928961885915
203 => 0.46403711478727
204 => 0.45430085871766
205 => 0.45921125995498
206 => 0.48600081690285
207 => 0.49620054569324
208 => 0.49407907340633
209 => 0.49443756730041
210 => 0.49994115581753
211 => 0.524347098184
212 => 0.5097224917927
213 => 0.5209024554053
214 => 0.52683226779307
215 => 0.53234020801086
216 => 0.51881444763835
217 => 0.50121763212658
218 => 0.49564398198994
219 => 0.45333277993217
220 => 0.45113029811683
221 => 0.44989397833184
222 => 0.44209915696844
223 => 0.43597456255807
224 => 0.43110405769133
225 => 0.41832239846513
226 => 0.42263583324443
227 => 0.40226453617748
228 => 0.41529737012647
301 => 0.38278428812546
302 => 0.40986214894735
303 => 0.39512490038125
304 => 0.40502056643636
305 => 0.40498604138972
306 => 0.38676498275849
307 => 0.37625545640378
308 => 0.38295253563388
309 => 0.39013233618337
310 => 0.39129723466677
311 => 0.40060603349114
312 => 0.40320391915106
313 => 0.39533220431782
314 => 0.38211052676821
315 => 0.38518162090863
316 => 0.37619322077905
317 => 0.36044139528578
318 => 0.37175463135553
319 => 0.37561746755762
320 => 0.37732351608539
321 => 0.36183340482214
322 => 0.35696607555655
323 => 0.3543747502964
324 => 0.38011094792061
325 => 0.38152083492265
326 => 0.3743076536823
327 => 0.40691191687059
328 => 0.39953256795602
329 => 0.40777710867797
330 => 0.38490295130507
331 => 0.38577677492085
401 => 0.37494778224589
402 => 0.38101129455032
403 => 0.37672579948967
404 => 0.38052142267692
405 => 0.38279650356541
406 => 0.39362371930923
407 => 0.40998577835915
408 => 0.39200649433293
409 => 0.38417266281462
410 => 0.38903272782944
411 => 0.40197572141578
412 => 0.42158501923875
413 => 0.40997592025366
414 => 0.41512784124796
415 => 0.4162533067922
416 => 0.4076931869928
417 => 0.42190064306578
418 => 0.42951453419646
419 => 0.43732481102377
420 => 0.44410625555393
421 => 0.43420521470728
422 => 0.44480074767165
423 => 0.43626261846571
424 => 0.42860303391241
425 => 0.42861465034044
426 => 0.42380968106148
427 => 0.41449944761841
428 => 0.41278249772689
429 => 0.4217142878894
430 => 0.42887673775606
501 => 0.4294666714329
502 => 0.43343217169904
503 => 0.43577891390864
504 => 0.45878017780408
505 => 0.46803147641925
506 => 0.47934378924777
507 => 0.4837505726215
508 => 0.49701341065713
509 => 0.48630259178832
510 => 0.48398523875184
511 => 0.45181393191865
512 => 0.45708198161031
513 => 0.46551663745786
514 => 0.4519530162869
515 => 0.46055601200464
516 => 0.46225442559568
517 => 0.45149212962969
518 => 0.45724073691649
519 => 0.44197414030604
520 => 0.41031854844646
521 => 0.42193588478875
522 => 0.43049015468981
523 => 0.41828215680713
524 => 0.44016452049707
525 => 0.42738129537308
526 => 0.4233296267118
527 => 0.40752262273996
528 => 0.41498292014729
529 => 0.42507307921187
530 => 0.41883853401685
531 => 0.43177615141818
601 => 0.45009926799499
602 => 0.46315741202808
603 => 0.46415985418333
604 => 0.45576434239775
605 => 0.46921820361357
606 => 0.46931620030462
607 => 0.45414018989253
608 => 0.44484496801551
609 => 0.44273307404774
610 => 0.44800899924044
611 => 0.45441494641389
612 => 0.46451533966833
613 => 0.47061879577397
614 => 0.48653337227451
615 => 0.49083940036889
616 => 0.49557041973847
617 => 0.50189252060856
618 => 0.5094838236565
619 => 0.49287448476073
620 => 0.49353440475874
621 => 0.47806801835095
622 => 0.46153996637005
623 => 0.47408269757278
624 => 0.49048065013075
625 => 0.48671894169583
626 => 0.48629567265217
627 => 0.48700749377856
628 => 0.48417128846454
629 => 0.47134323694389
630 => 0.46490106977807
701 => 0.4732131089941
702 => 0.47763058791112
703 => 0.48448171246677
704 => 0.48363716675559
705 => 0.50128492785387
706 => 0.50814231417607
707 => 0.50638790131075
708 => 0.50671075550027
709 => 0.51912572588515
710 => 0.53293372628653
711 => 0.54586674078855
712 => 0.55902275862591
713 => 0.54316266563486
714 => 0.53510988852855
715 => 0.54341829896828
716 => 0.53900973943962
717 => 0.56434263015503
718 => 0.56609662454418
719 => 0.59142768340325
720 => 0.6154698746269
721 => 0.60036940507992
722 => 0.61460846772263
723 => 0.63000917489854
724 => 0.65971963771554
725 => 0.64971419906546
726 => 0.64205018986471
727 => 0.63480773820222
728 => 0.64987813040503
729 => 0.66926594921855
730 => 0.67344189969676
731 => 0.68020853480733
801 => 0.67309424537334
802 => 0.6816626233833
803 => 0.71191276289453
804 => 0.70373890817323
805 => 0.69213072045627
806 => 0.7160103003461
807 => 0.72465222747871
808 => 0.78530579790778
809 => 0.86188343604851
810 => 0.83017979102236
811 => 0.81050031548441
812 => 0.81512545903923
813 => 0.84308902017158
814 => 0.85207002848822
815 => 0.82765655194436
816 => 0.83627980458497
817 => 0.88379477445422
818 => 0.90928503132633
819 => 0.87466583869577
820 => 0.77915285924516
821 => 0.69108553016028
822 => 0.71444495155711
823 => 0.71179671809795
824 => 0.76284562560925
825 => 0.7035439644414
826 => 0.70454245232788
827 => 0.75664699718478
828 => 0.742746397915
829 => 0.7202292073522
830 => 0.69124993057041
831 => 0.6376790571806
901 => 0.59022984068493
902 => 0.68328868113489
903 => 0.67927581471817
904 => 0.67346458947327
905 => 0.68639684241554
906 => 0.74919219181919
907 => 0.74774455576673
908 => 0.73853543379135
909 => 0.7455204716442
910 => 0.71900469644444
911 => 0.72583841546639
912 => 0.69107157984541
913 => 0.7067876415374
914 => 0.72018089557424
915 => 0.72286978961265
916 => 0.72892800517952
917 => 0.67716121646261
918 => 0.70040298480344
919 => 0.71405534624448
920 => 0.65237348057669
921 => 0.71283609408255
922 => 0.67626007184176
923 => 0.66384562053982
924 => 0.68056004373829
925 => 0.67404641676254
926 => 0.6684463827818
927 => 0.66532146759974
928 => 0.67759469529313
929 => 0.67702213455155
930 => 0.65694075191433
1001 => 0.63074540688594
1002 => 0.63953742451036
1003 => 0.6363432020818
1004 => 0.62476692793783
1005 => 0.6325679389862
1006 => 0.59821623433052
1007 => 0.53911591191666
1008 => 0.57815939519509
1009 => 0.57665626356001
1010 => 0.57589831642801
1011 => 0.60523841502913
1012 => 0.60241804153987
1013 => 0.5972990360397
1014 => 0.62467291338744
1015 => 0.61468107992491
1016 => 0.6454735562844
1017 => 0.66575547274726
1018 => 0.66061132268101
1019 => 0.67968656314534
1020 => 0.63973997483905
1021 => 0.65300862909545
1022 => 0.65574328034813
1023 => 0.62433512399011
1024 => 0.60287948952286
1025 => 0.60144864331604
1026 => 0.56424752991839
1027 => 0.58412006441852
1028 => 0.60160707239728
1029 => 0.59323215262209
1030 => 0.59058090321488
1031 => 0.60412556145049
1101 => 0.60517809739755
1102 => 0.58118016626182
1103 => 0.58617009606058
1104 => 0.60697893282822
1105 => 0.58564576676401
1106 => 0.54419890985415
1107 => 0.53391951629288
1108 => 0.53254805570499
1109 => 0.50466952509783
1110 => 0.53460643452348
1111 => 0.52153817129989
1112 => 0.56282065824137
1113 => 0.53924032310281
1114 => 0.53822382198441
1115 => 0.53668723145565
1116 => 0.51269102851447
1117 => 0.51794467192033
1118 => 0.53540858275391
1119 => 0.54163990288437
1120 => 0.54098992514306
1121 => 0.53532300006342
1122 => 0.53791728934553
1123 => 0.52956017965756
1124 => 0.52660911028854
1125 => 0.51729472360434
1126 => 0.50360514834356
1127 => 0.50550876774662
1128 => 0.47838613708279
1129 => 0.46360828839018
1130 => 0.45951797464098
1201 => 0.45404823614957
1202 => 0.460135796158
1203 => 0.4783093020779
1204 => 0.45638819821414
1205 => 0.41880600322638
1206 => 0.42106475718209
1207 => 0.4261395066905
1208 => 0.41668274455441
1209 => 0.40773271283848
1210 => 0.41551403927645
1211 => 0.39958996782281
1212 => 0.42806385464752
1213 => 0.42729371580606
1214 => 0.43790702000096
1215 => 0.44454373692096
1216 => 0.42924825308298
1217 => 0.42540148026111
1218 => 0.42759277688652
1219 => 0.39137552484203
1220 => 0.4349472978371
1221 => 0.43532410833932
1222 => 0.43209762805103
1223 => 0.45529825204335
1224 => 0.50425880512321
1225 => 0.48583787562088
1226 => 0.47870473494204
1227 => 0.46514462929726
1228 => 0.48321266494952
1229 => 0.48182532171669
1230 => 0.47555122948354
1231 => 0.47175663892457
]
'min_raw' => 0.3543747502964
'max_raw' => 0.90928503132633
'avg_raw' => 0.63182989081137
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.354374'
'max' => '$0.909285'
'avg' => '$0.631829'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.21791771350632
'max_diff' => 0.5285275832277
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.011123418476847
]
1 => [
'year' => 2028
'avg' => 0.019091015257726
]
2 => [
'year' => 2029
'avg' => 0.052153212863381
]
3 => [
'year' => 2030
'avg' => 0.040236126055204
]
4 => [
'year' => 2031
'avg' => 0.039516862194417
]
5 => [
'year' => 2032
'avg' => 0.069285495841038
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.011123418476847
'min' => '$0.011123'
'max_raw' => 0.069285495841038
'max' => '$0.069285'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.069285495841038
]
1 => [
'year' => 2033
'avg' => 0.17820941984667
]
2 => [
'year' => 2034
'avg' => 0.11295769464278
]
3 => [
'year' => 2035
'avg' => 0.13323385986769
]
4 => [
'year' => 2036
'avg' => 0.25860724244436
]
5 => [
'year' => 2037
'avg' => 0.63182989081137
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.069285495841038
'min' => '$0.069285'
'max_raw' => 0.63182989081137
'max' => '$0.631829'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.63182989081137
]
]
]
]
'prediction_2025_max_price' => '$0.019019'
'last_price' => 0.01844134
'sma_50day_nextmonth' => '$0.017338'
'sma_200day_nextmonth' => '$0.023245'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.018244'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.017996'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.0175006'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.018024'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.019657'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.024488'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.023766'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.018246'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.018038'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.017833'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.018263'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.020113'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.0220017'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.02314'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.023438'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.022524'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.018338'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.018882'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.02046'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.022026'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.023929'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.01622'
'weekly_ema100_action' => 'BUY'
'weekly_ema200' => '$0.00811'
'weekly_ema200_action' => 'BUY'
'rsi_14' => '48.53'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 106.74
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.017573'
'vwma_10_action' => 'BUY'
'hma_9' => '0.018491'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 33.9
'cci_20_action' => 'NEUTRAL'
'adx_14' => 19.1
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.001228'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 76.81
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.007722'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 14
'buy_signals' => 18
'sell_pct' => 43.75
'buy_pct' => 56.25
'overall_action' => 'bullish'
'overall_action_label' => 'Altista'
'overall_action_dir' => 1
'last_updated' => 1767682229
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de deBridge para 2026
A previsão de preço para deBridge em 2026 sugere que o preço médio poderia variar entre $0.006371 na extremidade inferior e $0.019019 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, deBridge poderia potencialmente ganhar 3.13% até 2026 se DBR atingir a meta de preço prevista.
Previsão de preço de deBridge 2027-2032
A previsão de preço de DBR para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.011123 na extremidade inferior e $0.069285 na extremidade superior. Considerando a volatilidade de preços no mercado, se deBridge atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de deBridge | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.006133 | $0.011123 | $0.016113 |
| 2028 | $0.011069 | $0.019091 | $0.027112 |
| 2029 | $0.024316 | $0.052153 | $0.07999 |
| 2030 | $0.02068 | $0.040236 | $0.059792 |
| 2031 | $0.02445 | $0.039516 | $0.054583 |
| 2032 | $0.037321 | $0.069285 | $0.101249 |
Previsão de preço de deBridge 2032-2037
A previsão de preço de deBridge para 2032-2037 é atualmente estimada entre $0.069285 na extremidade inferior e $0.631829 na extremidade superior. Comparado ao preço atual, deBridge poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de deBridge | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.037321 | $0.069285 | $0.101249 |
| 2033 | $0.086726 | $0.1782094 | $0.269691 |
| 2034 | $0.069724 | $0.112957 | $0.156191 |
| 2035 | $0.082435 | $0.133233 | $0.184031 |
| 2036 | $0.136457 | $0.2586072 | $0.380757 |
| 2037 | $0.354374 | $0.631829 | $0.909285 |
deBridge Histograma de preços potenciais
Previsão de preço de deBridge baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para deBridge é Altista, com 18 indicadores técnicos mostrando sinais de alta e 14 indicando sinais de baixa. A previsão de preço de DBR foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de deBridge
De acordo com nossos indicadores técnicos, o SMA de 200 dias de deBridge está projetado para aumentar no próximo mês, alcançando $0.023245 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para deBridge é esperado para alcançar $0.017338 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 48.53, sugerindo que o mercado de DBR está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de DBR para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.018244 | BUY |
| SMA 5 | $0.017996 | BUY |
| SMA 10 | $0.0175006 | BUY |
| SMA 21 | $0.018024 | BUY |
| SMA 50 | $0.019657 | SELL |
| SMA 100 | $0.024488 | SELL |
| SMA 200 | $0.023766 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.018246 | BUY |
| EMA 5 | $0.018038 | BUY |
| EMA 10 | $0.017833 | BUY |
| EMA 21 | $0.018263 | BUY |
| EMA 50 | $0.020113 | SELL |
| EMA 100 | $0.0220017 | SELL |
| EMA 200 | $0.02314 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.023438 | SELL |
| SMA 50 | $0.022524 | SELL |
| SMA 100 | — | — |
| SMA 200 | — | — |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.022026 | SELL |
| EMA 50 | $0.023929 | SELL |
| EMA 100 | $0.01622 | BUY |
| EMA 200 | $0.00811 | BUY |
Osciladores de deBridge
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 48.53 | NEUTRAL |
| Stoch RSI (14) | 106.74 | SELL |
| Estocástico Rápido (14) | 100 | SELL |
| Índice de Canal de Commodities (20) | 33.9 | NEUTRAL |
| Índice Direcional Médio (14) | 19.1 | NEUTRAL |
| Oscilador Impressionante (5, 34) | -0.001228 | NEUTRAL |
| Momentum (10) | 0 | SELL |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -0 | SELL |
| Oscilador Ultimate (7, 14, 28) | 76.81 | SELL |
| VWMA (10) | 0.017573 | BUY |
| Média Móvel de Hull (9) | 0.018491 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.007722 | SELL |
Previsão do preço de deBridge com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do deBridge
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de deBridge por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.025913 | $0.036412 | $0.051165 | $0.071895 | $0.101025 | $0.141958 |
| Amazon.com stock | $0.038478 | $0.080288 | $0.167526 | $0.349555 | $0.729367 | $1.52 |
| Apple stock | $0.026157 | $0.0371026 | $0.052627 | $0.074647 | $0.105882 | $0.150185 |
| Netflix stock | $0.029097 | $0.045911 | $0.07244 | $0.11430044 | $0.180348 | $0.284561 |
| Google stock | $0.023881 | $0.030926 | $0.040049 | $0.051863 | $0.067163 | $0.086976 |
| Tesla stock | $0.0418051 | $0.094769 | $0.214834 | $0.487013 | $1.10 | $2.50 |
| Kodak stock | $0.013829 | $0.01037 | $0.007776 | $0.005831 | $0.004373 | $0.003279 |
| Nokia stock | $0.012216 | $0.008093 | $0.005361 | $0.003551 | $0.002352 | $0.001558 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para deBridge
Você pode fazer perguntas como: 'Devo investir em deBridge agora?', 'Devo comprar DBR hoje?', 'deBridge será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para deBridge regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como deBridge, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre deBridge para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de deBridge é de $0.01844 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão de curto prazo para deBridge
com base no histórico de preços de 4 horas
Previsão de longo prazo para deBridge
com base no histórico de preços de 1 mês
Previsão do preço de deBridge com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se deBridge tiver 1% da média anterior do crescimento anual do Bitcoin | $0.01892 | $0.019412 | $0.019917 | $0.020434 |
| Se deBridge tiver 2% da média anterior do crescimento anual do Bitcoin | $0.019400039 | $0.0204085 | $0.021469 | $0.022585 |
| Se deBridge tiver 5% da média anterior do crescimento anual do Bitcoin | $0.020838 | $0.023546 | $0.0266065 | $0.030064 |
| Se deBridge tiver 10% da média anterior do crescimento anual do Bitcoin | $0.023234 | $0.029274 | $0.036883 | $0.04647 |
| Se deBridge tiver 20% da média anterior do crescimento anual do Bitcoin | $0.028028 | $0.042599 | $0.064745 | $0.0984037 |
| Se deBridge tiver 50% da média anterior do crescimento anual do Bitcoin | $0.0424088 | $0.097525 | $0.224276 | $0.515759 |
| Se deBridge tiver 100% da média anterior do crescimento anual do Bitcoin | $0.066376 | $0.2389096 | $0.859912 | $3.09 |
Perguntas Frequentes sobre deBridge
DBR é um bom investimento?
A decisão de adquirir deBridge depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de deBridge experimentou uma escalada de 1.2557% nas últimas 24 horas, e deBridge registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em deBridge dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
deBridge pode subir?
Parece que o valor médio de deBridge pode potencialmente subir para $0.019019 até o final deste ano. Observando as perspectivas de deBridge em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.059792. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de deBridge na próxima semana?
Com base na nossa nova previsão experimental de deBridge, o preço de deBridge aumentará 0.86% na próxima semana e atingirá $0.018599 até 13 de janeiro de 2026.
Qual será o preço de deBridge no próximo mês?
Com base na nossa nova previsão experimental de deBridge, o preço de deBridge diminuirá -11.62% no próximo mês e atingirá $0.016298 até 5 de fevereiro de 2026.
Até onde o preço de deBridge pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de deBridge em 2026, espera-se que DBR fluctue dentro do intervalo de $0.006371 e $0.019019. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de deBridge não considera flutuações repentinas e extremas de preço.
Onde estará deBridge em 5 anos?
O futuro de deBridge parece seguir uma tendência de alta, com um preço máximo de $0.059792 projetada após um período de cinco anos. Com base na previsão de deBridge para 2030, o valor de deBridge pode potencialmente atingir seu pico mais alto de aproximadamente $0.059792, enquanto seu pico mais baixo está previsto para cerca de $0.02068.
Quanto será deBridge em 2026?
Com base na nossa nova simulação experimental de previsão de preços de deBridge, espera-se que o valor de DBR em 2026 aumente 3.13% para $0.019019 se o melhor cenário ocorrer. O preço ficará entre $0.019019 e $0.006371 durante 2026.
Quanto será deBridge em 2027?
De acordo com nossa última simulação experimental para previsão de preços de deBridge, o valor de DBR pode diminuir -12.62% para $0.016113 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.016113 e $0.006133 ao longo do ano.
Quanto será deBridge em 2028?
Nosso novo modelo experimental de previsão de preços de deBridge sugere que o valor de DBR em 2028 pode aumentar 47.02%, alcançando $0.027112 no melhor cenário. O preço é esperado para variar entre $0.027112 e $0.011069 durante o ano.
Quanto será deBridge em 2029?
Com base no nosso modelo de previsão experimental, o valor de deBridge pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.07999 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.07999 e $0.024316.
Quanto será deBridge em 2030?
Usando nossa nova simulação experimental para previsões de preços de deBridge, espera-se que o valor de DBR em 2030 aumente 224.23%, alcançando $0.059792 no melhor cenário. O preço está previsto para variar entre $0.059792 e $0.02068 ao longo de 2030.
Quanto será deBridge em 2031?
Nossa simulação experimental indica que o preço de deBridge poderia aumentar 195.98% em 2031, potencialmente atingindo $0.054583 sob condições ideais. O preço provavelmente oscilará entre $0.054583 e $0.02445 durante o ano.
Quanto será deBridge em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de deBridge, DBR poderia ver um 449.04% aumento em valor, atingindo $0.101249 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.101249 e $0.037321 ao longo do ano.
Quanto será deBridge em 2033?
De acordo com nossa previsão experimental de preços de deBridge, espera-se que o valor de DBR seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.269691. Ao longo do ano, o preço de DBR poderia variar entre $0.269691 e $0.086726.
Quanto será deBridge em 2034?
Os resultados da nossa nova simulação de previsão de preços de deBridge sugerem que DBR pode aumentar 746.96% em 2034, atingindo potencialmente $0.156191 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.156191 e $0.069724.
Quanto será deBridge em 2035?
Com base em nossa previsão experimental para o preço de deBridge, DBR poderia aumentar 897.93%, com o valor potencialmente atingindo $0.184031 em 2035. A faixa de preço esperada para o ano está entre $0.184031 e $0.082435.
Quanto será deBridge em 2036?
Nossa recente simulação de previsão de preços de deBridge sugere que o valor de DBR pode aumentar 1964.7% em 2036, possivelmente atingindo $0.380757 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.380757 e $0.136457.
Quanto será deBridge em 2037?
De acordo com a simulação experimental, o valor de deBridge poderia aumentar 4830.69% em 2037, com um pico de $0.909285 sob condições favoráveis. O preço é esperado para cair entre $0.909285 e $0.354374 ao longo do ano.
Previsões relacionadas
Como ler e prever os movimentos de preço de deBridge?
Traders de deBridge utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de deBridge
Médias móveis são ferramentas populares para a previsão de preço de deBridge. Uma média móvel simples (SMA) calcula o preço médio de fechamento de DBR em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de DBR acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de DBR.
Como ler gráficos de deBridge e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de deBridge em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de DBR dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de deBridge?
A ação de preço de deBridge é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de DBR. A capitalização de mercado de deBridge pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de DBR, grandes detentores de deBridge, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de deBridge.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


