Previsão de Preço deBridge - Projeção DBR
Previsão de Preço deBridge até $0.0190021 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.006365 | $0.0190021 |
| 2027 | $0.006128 | $0.016098 |
| 2028 | $0.011059 | $0.027088 |
| 2029 | $0.024294 | $0.079919 |
| 2030 | $0.020661 | $0.059739 |
| 2031 | $0.024428 | $0.054535 |
| 2032 | $0.037288 | $0.101159 |
| 2033 | $0.08665 | $0.269452 |
| 2034 | $0.069662 | $0.156052 |
| 2035 | $0.082362 | $0.183868 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em deBridge hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,954.95, com um retorno de 39.55% nos próximos 90 dias.
Previsão de preço de longo prazo de deBridge para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'deBridge'
'name_with_ticker' => 'deBridge <small>DBR</small>'
'name_lang' => 'deBridge'
'name_lang_with_ticker' => 'deBridge <small>DBR</small>'
'name_with_lang' => 'deBridge'
'name_with_lang_with_ticker' => 'deBridge <small>DBR</small>'
'image' => '/uploads/coins/debridge.png?1724709151'
'price_for_sd' => 0.01842
'ticker' => 'DBR'
'marketcap' => '$76.11M'
'low24h' => '$0.01819'
'high24h' => '$0.01914'
'volume24h' => '$8.15M'
'current_supply' => '4.12B'
'max_supply' => '10B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.01842'
'change_24h_pct' => '1.0759%'
'ath_price' => '$0.05521'
'ath_days' => 380
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '22 de dez. de 2024'
'ath_pct' => '-66.63%'
'fdv' => '$184.83M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.908478'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.018582'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.016284'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.006365'
'current_year_max_price_prediction' => '$0.0190021'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.020661'
'grand_prediction_max_price' => '$0.059739'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.018774123679461
107 => 0.018844219442273
108 => 0.019002148775067
109 => 0.017652659917709
110 => 0.018258540795751
111 => 0.01861443904824
112 => 0.017006477795806
113 => 0.018582654824269
114 => 0.017629168319044
115 => 0.017305540678284
116 => 0.017741262661868
117 => 0.017571461381112
118 => 0.017425476210983
119 => 0.017344013977708
120 => 0.017663960113572
121 => 0.017649034243915
122 => 0.017125540266773
123 => 0.016442663713936
124 => 0.016671859499727
125 => 0.016588590522027
126 => 0.016286813004931
127 => 0.016490174614697
128 => 0.015594673004242
129 => 0.014054009027577
130 => 0.015071818842376
131 => 0.01503263427167
201 => 0.015012875634241
202 => 0.015777731579866
203 => 0.015704208328923
204 => 0.01557076290852
205 => 0.016284362175136
206 => 0.016023888843557
207 => 0.01682660627625
208 => 0.01735532789393
209 => 0.017221226989333
210 => 0.017718492226295
211 => 0.016677139707721
212 => 0.01702303524258
213 => 0.017094323832924
214 => 0.016275556470955
215 => 0.015716237642054
216 => 0.015678937452868
217 => 0.014709155682436
218 => 0.015227205276396
219 => 0.015683067480732
220 => 0.015464744861191
221 => 0.015395630442047
222 => 0.015748721020365
223 => 0.015776159182316
224 => 0.015150566182055
225 => 0.015280646776763
226 => 0.015823104480795
227 => 0.015266978234424
228 => 0.014186515780432
301 => 0.01391854615328
302 => 0.013882794065357
303 => 0.013156039183581
304 => 0.013936453165113
305 => 0.01359578154838
306 => 0.014671959103766
307 => 0.014057252255785
308 => 0.014030753472168
309 => 0.013990696674204
310 => 0.013365148725593
311 => 0.013502103970693
312 => 0.013957364064277
313 => 0.01411980599454
314 => 0.014102861970366
315 => 0.013955133041452
316 => 0.014022762588614
317 => 0.013804904253509
318 => 0.013727973941054
319 => 0.013485160713596
320 => 0.0131282923481
321 => 0.013177917083123
322 => 0.012470867471388
323 => 0.012085629316951
324 => 0.011979000473161
325 => 0.011836411926917
326 => 0.011995106228872
327 => 0.012468864488674
328 => 0.011897411513932
329 => 0.010917695471501
330 => 0.010976578075006
331 => 0.01110886980268
401 => 0.010862345043357
402 => 0.010629030047913
403 => 0.010831878507008
404 => 0.010416759904462
405 => 0.011159034902545
406 => 0.011138958444049
407 => 0.011415632661356
408 => 0.011588642727365
409 => 0.011189910537889
410 => 0.011089630470522
411 => 0.011146754554369
412 => 0.010202620693846
413 => 0.011338476782462
414 => 0.011348299713083
415 => 0.011264189817425
416 => 0.011868998118991
417 => 0.013145332279735
418 => 0.01266512402804
419 => 0.012479172878613
420 => 0.012125679607622
421 => 0.012596688402864
422 => 0.012560522276271
423 => 0.012396965336222
424 => 0.012298045588552
425 => 0.01248030825668
426 => 0.01227546122696
427 => 0.012238665071602
428 => 0.012015720404747
429 => 0.011936139302016
430 => 0.011877220621768
501 => 0.011812356944046
502 => 0.01195543005408
503 => 0.011631207563908
504 => 0.011240227024683
505 => 0.011207721223315
506 => 0.011297472598832
507 => 0.01125776429637
508 => 0.011207531115239
509 => 0.011111622292268
510 => 0.011083168193261
511 => 0.011175630211069
512 => 0.011071245983834
513 => 0.011225270597223
514 => 0.011183384424952
515 => 0.010949411671555
516 => 0.010657794993015
517 => 0.01065519899289
518 => 0.010592370657845
519 => 0.010512349326863
520 => 0.010490089223224
521 => 0.010814795175573
522 => 0.011486926779305
523 => 0.011354971262746
524 => 0.011450322646805
525 => 0.011919357083642
526 => 0.012068449026755
527 => 0.011962627096969
528 => 0.011817771512667
529 => 0.011824144423222
530 => 0.01231915980555
531 => 0.012350033307748
601 => 0.012428040687632
602 => 0.012528302215666
603 => 0.011979702068737
604 => 0.011798305405636
605 => 0.011712349603156
606 => 0.011447639000597
607 => 0.011733106690885
608 => 0.011566776892699
609 => 0.011589220465109
610 => 0.011574604059134
611 => 0.011582585605154
612 => 0.011158827421556
613 => 0.011313222631584
614 => 0.011056510649468
615 => 0.010712802122687
616 => 0.010711649891185
617 => 0.010795772066183
618 => 0.010745732904793
619 => 0.010611078808118
620 => 0.010630205787001
621 => 0.010462633325629
622 => 0.010650552117809
623 => 0.010655940956363
624 => 0.010583581985368
625 => 0.010873096812516
626 => 0.010991711273421
627 => 0.010944083048633
628 => 0.010988369550203
629 => 0.011360454610203
630 => 0.011421120710192
701 => 0.01144806458443
702 => 0.011411963362331
703 => 0.010995170582053
704 => 0.011013657114198
705 => 0.010878015207325
706 => 0.010763412089608
707 => 0.010767995613303
708 => 0.010826916513171
709 => 0.011084227538563
710 => 0.011625723422185
711 => 0.011646272795141
712 => 0.01167117923463
713 => 0.011569872228254
714 => 0.011539317065753
715 => 0.011579627212048
716 => 0.011782984595436
717 => 0.0123060749965
718 => 0.012121179912731
719 => 0.011970857331563
720 => 0.012102730761924
721 => 0.012082429880978
722 => 0.011911070015709
723 => 0.011906260515023
724 => 0.01157736614651
725 => 0.011455781387033
726 => 0.011354176061552
727 => 0.011243225698602
728 => 0.011177450604355
729 => 0.011278511043364
730 => 0.011301624761477
731 => 0.01108065434535
801 => 0.011050536894146
802 => 0.011230986105933
803 => 0.01115157713565
804 => 0.011233251230834
805 => 0.011252200321504
806 => 0.011249149081471
807 => 0.011166236996434
808 => 0.011219082686963
809 => 0.011094086874803
810 => 0.010958172702844
811 => 0.010871467928886
812 => 0.010795806513888
813 => 0.010837787864396
814 => 0.010688132015327
815 => 0.010640254097233
816 => 0.011201179756077
817 => 0.011615541571233
818 => 0.011609516586335
819 => 0.011572841040271
820 => 0.011518348618183
821 => 0.011778998135348
822 => 0.011688193055419
823 => 0.011754261338085
824 => 0.011771078488901
825 => 0.011821978939419
826 => 0.011840171475437
827 => 0.011785180996061
828 => 0.011600626230752
829 => 0.011140733302544
830 => 0.010926651903006
831 => 0.010856001475351
901 => 0.010858569484212
902 => 0.010787732335729
903 => 0.010808597050656
904 => 0.010780476439361
905 => 0.010727222804675
906 => 0.010834499602519
907 => 0.010846862254118
908 => 0.010821822567639
909 => 0.010827720320255
910 => 0.010620402410799
911 => 0.010636164341184
912 => 0.01054839990987
913 => 0.010531945137015
914 => 0.010310084297178
915 => 0.0099170256601627
916 => 0.010134818300194
917 => 0.0098717554173157
918 => 0.0097721295175165
919 => 0.01024374303216
920 => 0.010196406115812
921 => 0.010115385891888
922 => 0.0099955400946105
923 => 0.0099510881226152
924 => 0.0096810120125561
925 => 0.0096650544751738
926 => 0.0097989114879875
927 => 0.0097371410823126
928 => 0.009650392038463
929 => 0.0093361957952493
930 => 0.008982935191076
1001 => 0.008993597908199
1002 => 0.0091059635337393
1003 => 0.0094326817445669
1004 => 0.0093050272873142
1005 => 0.0092124125139111
1006 => 0.0091950685508426
1007 => 0.0094121645606913
1008 => 0.0097194008976474
1009 => 0.0098635493129216
1010 => 0.0097207026112373
1011 => 0.009556608011755
1012 => 0.0095665956896844
1013 => 0.0096330392363896
1014 => 0.0096400215136872
1015 => 0.0095332127986216
1016 => 0.009563278826277
1017 => 0.0095176057809733
1018 => 0.0092373103862507
1019 => 0.0092322407313865
1020 => 0.0091634517211478
1021 => 0.0091613688172562
1022 => 0.0090443415506173
1023 => 0.0090279686270433
1024 => 0.0087956038860845
1025 => 0.0089485470622488
1026 => 0.0088459608095549
1027 => 0.0086913391290946
1028 => 0.0086646822931028
1029 => 0.0086638809564238
1030 => 0.0088226428494814
1031 => 0.0089466918370927
1101 => 0.0088477453413415
1102 => 0.0088252171422562
1103 => 0.0090657593699124
1104 => 0.0090351481788521
1105 => 0.0090086390848148
1106 => 0.0096918912534706
1107 => 0.009151043847148
1108 => 0.0089152035075006
1109 => 0.0086233063023212
1110 => 0.0087183495042011
1111 => 0.0087383765033123
1112 => 0.0080364163432817
1113 => 0.0077516311937809
1114 => 0.0076539036623742
1115 => 0.0075976600863851
1116 => 0.0076232909902257
1117 => 0.0073669509537086
1118 => 0.007539215697721
1119 => 0.007317246893981
1120 => 0.007280033101685
1121 => 0.0076769408194303
1122 => 0.0077321682096533
1123 => 0.0074965510051568
1124 => 0.0076478553934041
1125 => 0.0075929903189373
1126 => 0.007321051912032
1127 => 0.0073106658651318
1128 => 0.0071742167316439
1129 => 0.0069607002594941
1130 => 0.0068631175023098
1201 => 0.0068122955551159
1202 => 0.0068332656810281
1203 => 0.0068226625436704
1204 => 0.0067534699001732
1205 => 0.0068266285850017
1206 => 0.0066397383765207
1207 => 0.0065653171896268
1208 => 0.0065317028660653
1209 => 0.0063658270490394
1210 => 0.0066298092392382
1211 => 0.0066818170562674
1212 => 0.0067339273447622
1213 => 0.0071875118289041
1214 => 0.0071648520298928
1215 => 0.0073696855771852
1216 => 0.0073617261222021
1217 => 0.0073033042764309
1218 => 0.0070568321190492
1219 => 0.0071550715280378
1220 => 0.0068527058969648
1221 => 0.007079258786629
1222 => 0.0069758695088611
1223 => 0.0070443027678154
1224 => 0.0069212535978374
1225 => 0.006989354089079
1226 => 0.0066941500390479
1227 => 0.0064184926507619
1228 => 0.006529425230749
1229 => 0.0066500216318743
1230 => 0.0069115053569054
1231 => 0.0067557678074707
]
'min_raw' => 0.0063658270490394
'max_raw' => 0.019002148775067
'avg_raw' => 0.012683987912053
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.006365'
'max' => '$0.0190021'
'avg' => '$0.012683'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.012059152950961
'max_diff' => 0.00057716877506702
'year' => 2026
]
1 => [
'items' => [
101 => 0.0068117769193362
102 => 0.0066241557703991
103 => 0.0062370397488101
104 => 0.0062392307834516
105 => 0.0061796814173111
106 => 0.0061282220706159
107 => 0.0067736561384534
108 => 0.0066933862093151
109 => 0.0065654865827019
110 => 0.0067366853154528
111 => 0.0067819529776814
112 => 0.0067832416843862
113 => 0.0069081438605225
114 => 0.0069748041743163
115 => 0.0069865533435448
116 => 0.0071830896163853
117 => 0.0072489659826653
118 => 0.0075203014122004
119 => 0.0069691485124206
120 => 0.0069577978811459
121 => 0.0067390944327074
122 => 0.006600389248143
123 => 0.006748591695362
124 => 0.0068798788319465
125 => 0.0067431738900026
126 => 0.0067610246694216
127 => 0.006577509454066
128 => 0.0066431075083622
129 => 0.0066996093897342
130 => 0.0066684123718677
131 => 0.0066217089261687
201 => 0.0068691147839254
202 => 0.0068551551758394
203 => 0.0070855451984185
204 => 0.0072651506963675
205 => 0.0075870358570152
206 => 0.0072511319116264
207 => 0.0072388902367592
208 => 0.0073585545722127
209 => 0.007248947662679
210 => 0.0073182154460024
211 => 0.0075758757462461
212 => 0.0075813197023744
213 => 0.007490126423083
214 => 0.0074845773037505
215 => 0.0075020919705836
216 => 0.0076046759212856
217 => 0.0075688299368239
218 => 0.0076103118175522
219 => 0.0076621855445961
220 => 0.0078767572736542
221 => 0.007928489791101
222 => 0.0078028065939404
223 => 0.0078141543794289
224 => 0.00776714541361
225 => 0.0077217353416495
226 => 0.0078238105518083
227 => 0.0080103550046666
228 => 0.0080091945213071
301 => 0.0080524692084642
302 => 0.0080794289800562
303 => 0.0079636979046242
304 => 0.0078883612300676
305 => 0.0079172501048898
306 => 0.0079634440448483
307 => 0.0079022700327476
308 => 0.0075246756915033
309 => 0.0076392136938169
310 => 0.0076201489696098
311 => 0.0075929984839891
312 => 0.0077081673310116
313 => 0.00769705901476
314 => 0.0073643218161263
315 => 0.0073856225720196
316 => 0.0073656171856424
317 => 0.007430258681744
318 => 0.0072454568097543
319 => 0.0073023006209187
320 => 0.0073379525264034
321 => 0.0073589517726247
322 => 0.0074348154492941
323 => 0.0074259137224522
324 => 0.007434262105455
325 => 0.0075467479106876
326 => 0.0081156625130873
327 => 0.0081466272796565
328 => 0.007994145444238
329 => 0.0080550589299165
330 => 0.0079381183577288
331 => 0.0080166213472722
401 => 0.008070331098958
402 => 0.007827627058881
403 => 0.0078132557007638
404 => 0.0076958324732366
405 => 0.0077589290645182
406 => 0.0076585378509837
407 => 0.0076831703432495
408 => 0.0076142957474523
409 => 0.007738256307092
410 => 0.0078768634742928
411 => 0.0079118811184906
412 => 0.0078197647726499
413 => 0.0077530664674982
414 => 0.0076359662154394
415 => 0.0078307065443625
416 => 0.0078876545511436
417 => 0.0078304074207263
418 => 0.0078171420097342
419 => 0.0077920040798741
420 => 0.0078224751403887
421 => 0.0078873444000684
422 => 0.0078567532551506
423 => 0.0078769592453154
424 => 0.0077999548471336
425 => 0.0079637362164258
426 => 0.0082238604469947
427 => 0.0082246967889306
428 => 0.0081941054791151
429 => 0.0081815881742375
430 => 0.0082129767145442
501 => 0.0082300037100352
502 => 0.0083315084937129
503 => 0.0084404271707281
504 => 0.0089487031114162
505 => 0.00880598126117
506 => 0.0092569539132195
507 => 0.0096136147295207
508 => 0.0097205617134421
509 => 0.0096221755204788
510 => 0.0092856016690691
511 => 0.0092690877502086
512 => 0.0097720711820295
513 => 0.0096299553244395
514 => 0.009613051095388
515 => 0.0094332186584266
516 => 0.0095395219013514
517 => 0.0095162718227493
518 => 0.009479570436243
519 => 0.0096823896185955
520 => 0.010062049022166
521 => 0.010002875543696
522 => 0.0099587052869972
523 => 0.0097651640799104
524 => 0.0098817191155702
525 => 0.0098402160998364
526 => 0.010018539393893
527 => 0.0099129046248387
528 => 0.0096288786570434
529 => 0.0096741107285766
530 => 0.0096672739919587
531 => 0.0098079735470997
601 => 0.009765739033024
602 => 0.0096590270252457
603 => 0.010060751387599
604 => 0.010034665642016
605 => 0.010071649265221
606 => 0.010087930599912
607 => 0.010332453140099
608 => 0.010432626200965
609 => 0.010455367239558
610 => 0.010550523899718
611 => 0.010452999655168
612 => 0.010843166166979
613 => 0.011102604130486
614 => 0.011403954675655
615 => 0.011844308817537
616 => 0.012009886048388
617 => 0.011979976003659
618 => 0.012313847488342
619 => 0.012913807124771
620 => 0.012101244999684
621 => 0.012956874890456
622 => 0.01268599234576
623 => 0.012043734705254
624 => 0.012002380884926
625 => 0.012437325215841
626 => 0.01340198987997
627 => 0.013160352322741
628 => 0.013402385112449
629 => 0.013120041006927
630 => 0.013106020242304
701 => 0.013388672289448
702 => 0.014049104204159
703 => 0.0137353577574
704 => 0.013285525292186
705 => 0.013617674584331
706 => 0.013329936128509
707 => 0.012681580854618
708 => 0.013160167547055
709 => 0.012840150255187
710 => 0.012933548314009
711 => 0.013606177062538
712 => 0.01352524459196
713 => 0.013629978703032
714 => 0.013445125738358
715 => 0.013272443920715
716 => 0.012950120484564
717 => 0.012854696405473
718 => 0.012881068187935
719 => 0.012854683336928
720 => 0.012674346336706
721 => 0.012635402578679
722 => 0.012570494609134
723 => 0.012590612303002
724 => 0.012468566330761
725 => 0.012698892296363
726 => 0.012741642825204
727 => 0.012909254855378
728 => 0.012926656892382
729 => 0.013393454010608
730 => 0.013136350002096
731 => 0.013308837568298
801 => 0.013293408656861
802 => 0.012057654375819
803 => 0.012227930412594
804 => 0.012492826490253
805 => 0.012373491166326
806 => 0.012204778938458
807 => 0.012068534768678
808 => 0.011862110919779
809 => 0.012152648523085
810 => 0.012534674576203
811 => 0.012936345703528
812 => 0.013418927244474
813 => 0.013311220662404
814 => 0.012927324177297
815 => 0.012944545493182
816 => 0.013051000891647
817 => 0.012913131478142
818 => 0.012872471096569
819 => 0.013045414779602
820 => 0.013046605747699
821 => 0.012887970325386
822 => 0.012711676083461
823 => 0.01271093740415
824 => 0.0126795675466
825 => 0.013125621634896
826 => 0.013370906282304
827 => 0.013399027771833
828 => 0.013369013481998
829 => 0.013380564790931
830 => 0.013237839059083
831 => 0.013564067758087
901 => 0.013863447472968
902 => 0.013783207314065
903 => 0.013662915909059
904 => 0.013567098010953
905 => 0.013760635662408
906 => 0.013752017735445
907 => 0.013860832652331
908 => 0.013855896179156
909 => 0.013819305815343
910 => 0.013783208620822
911 => 0.013926329916856
912 => 0.013885113282056
913 => 0.013843832626438
914 => 0.013761037951843
915 => 0.013772291123194
916 => 0.013652020488196
917 => 0.013596377789235
918 => 0.012759645102376
919 => 0.012536042787417
920 => 0.012606392627548
921 => 0.012629553621552
922 => 0.012532241607528
923 => 0.012671762038233
924 => 0.012650017926896
925 => 0.012734611544228
926 => 0.012681761124747
927 => 0.012683930124397
928 => 0.012839351939193
929 => 0.012884471553239
930 => 0.012861523353375
1001 => 0.012877595485942
1002 => 0.013247970997315
1003 => 0.01319531544354
1004 => 0.013167343230061
1005 => 0.01317509172436
1006 => 0.013269730608457
1007 => 0.013296224328912
1008 => 0.013183968573661
1009 => 0.01323690903678
1010 => 0.013462322809596
1011 => 0.013541204872767
1012 => 0.01379295855287
1013 => 0.013686009114997
1014 => 0.013882319436875
1015 => 0.014485710439209
1016 => 0.014967740923354
1017 => 0.014524445769382
1018 => 0.015409633367303
1019 => 0.016098878884904
1020 => 0.01607242449394
1021 => 0.01595223859541
1022 => 0.015167550898162
1023 => 0.014445469580119
1024 => 0.015049521263854
1025 => 0.01505106111582
1026 => 0.014999172540481
1027 => 0.014676897055456
1028 => 0.014987958052174
1029 => 0.015012648944486
1030 => 0.01499882861063
1031 => 0.014751740751876
1101 => 0.014374483261029
1102 => 0.014448198471714
1103 => 0.014568945490565
1104 => 0.014340346193413
1105 => 0.014267294866653
1106 => 0.014403111181683
1107 => 0.014840739647164
1108 => 0.014758008520774
1109 => 0.014755848076721
1110 => 0.015109806918875
1111 => 0.014856448776992
1112 => 0.014449128256589
1113 => 0.01434627445329
1114 => 0.013981212742201
1115 => 0.014233362166355
1116 => 0.014242436575238
1117 => 0.014104336912533
1118 => 0.014460334283107
1119 => 0.014457053704665
1120 => 0.014795020224809
1121 => 0.015441085276895
1122 => 0.015250012050063
1123 => 0.015027814675965
1124 => 0.015051973691394
1125 => 0.015316938461123
1126 => 0.015156734712788
1127 => 0.015214345097669
1128 => 0.015316851260906
1129 => 0.015378695774271
1130 => 0.015043075217654
1201 => 0.014964826011319
1202 => 0.014804755596898
1203 => 0.014762996213632
1204 => 0.014893370226199
1205 => 0.014859021280069
1206 => 0.014241673906309
1207 => 0.014177157670863
1208 => 0.014179136291696
1209 => 0.014016907150086
1210 => 0.013769468769677
1211 => 0.014419722059615
1212 => 0.014367497620144
1213 => 0.014309845880819
1214 => 0.01431690788993
1215 => 0.014599160803964
1216 => 0.01443543985971
1217 => 0.014870718823343
1218 => 0.014781238554103
1219 => 0.014689463453598
1220 => 0.01467677733917
1221 => 0.014641451755359
1222 => 0.0145203071844
1223 => 0.014374017835308
1224 => 0.01427742493567
1225 => 0.013170169801329
1226 => 0.013375669913656
1227 => 0.013612079060963
1228 => 0.013693686551264
1229 => 0.013554091292039
1230 => 0.014525819256078
1231 => 0.014703363318911
]
'min_raw' => 0.0061282220706159
'max_raw' => 0.016098878884904
'avg_raw' => 0.01111355047776
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.006128'
'max' => '$0.016098'
'avg' => '$0.011113'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00023760497842343
'max_diff' => -0.0029032698901629
'year' => 2027
]
2 => [
'items' => [
101 => 0.014165570771676
102 => 0.014064971744013
103 => 0.014532414511583
104 => 0.014250489380184
105 => 0.014377440249591
106 => 0.014103041908347
107 => 0.014660598153272
108 => 0.014656350508848
109 => 0.014439448536593
110 => 0.014622772598262
111 => 0.014590915531163
112 => 0.014346033738694
113 => 0.014668361342881
114 => 0.014668521213351
115 => 0.014459757780911
116 => 0.014215967796013
117 => 0.014172383904776
118 => 0.014139549297401
119 => 0.014369364948974
120 => 0.01457541694356
121 => 0.014958828620863
122 => 0.015055227426174
123 => 0.015431478380934
124 => 0.015207439256701
125 => 0.015306752898681
126 => 0.015414571905823
127 => 0.015466264302759
128 => 0.015382034315918
129 => 0.015966506919731
130 => 0.016015854315271
131 => 0.016032400070142
201 => 0.015835319196634
202 => 0.016010373139662
203 => 0.015928471196896
204 => 0.016141557298957
205 => 0.01617497192058
206 => 0.016146670924825
207 => 0.016157277253142
208 => 0.01565853299382
209 => 0.015632670472889
210 => 0.015280033164868
211 => 0.01542373547445
212 => 0.015155090894518
213 => 0.01524028085816
214 => 0.015277831782414
215 => 0.01525821731058
216 => 0.015431860187425
217 => 0.015284228269211
218 => 0.01489460336411
219 => 0.014504872305964
220 => 0.014499979549997
221 => 0.014397370241711
222 => 0.014323202505653
223 => 0.01433748984286
224 => 0.014387840282703
225 => 0.014320276046558
226 => 0.014334694301933
227 => 0.014574133409495
228 => 0.014622151214915
229 => 0.01445896795033
301 => 0.013803763595789
302 => 0.013642974803729
303 => 0.013758546598882
304 => 0.013703310724576
305 => 0.011059641254284
306 => 0.011680732182225
307 => 0.011311701043098
308 => 0.011481767570314
309 => 0.011105082337415
310 => 0.011284856274319
311 => 0.011251658592466
312 => 0.012250354425179
313 => 0.012234761163412
314 => 0.012242224832643
315 => 0.011885964453778
316 => 0.012453496910833
317 => 0.012733083806985
318 => 0.012681339713472
319 => 0.012694362587026
320 => 0.012470586472514
321 => 0.012244391474582
322 => 0.011993506410715
323 => 0.012459619849049
324 => 0.012407795991528
325 => 0.012526661275046
326 => 0.012828969158282
327 => 0.012873485142445
328 => 0.012933315076596
329 => 0.012911870304187
330 => 0.013422771785009
331 => 0.013360898244645
401 => 0.01350999567469
402 => 0.013203290949039
403 => 0.012856225439284
404 => 0.012922191246262
405 => 0.012915838208586
406 => 0.0128349567473
407 => 0.012761940580505
408 => 0.01264038923497
409 => 0.013024995678459
410 => 0.013009381359228
411 => 0.013262159037931
412 => 0.013217478127868
413 => 0.0129190880752
414 => 0.012929745134306
415 => 0.013001418978401
416 => 0.013249482971173
417 => 0.013323125253712
418 => 0.013289011214303
419 => 0.013369756615209
420 => 0.01343357448783
421 => 0.013377771157453
422 => 0.014167828636784
423 => 0.01383974168875
424 => 0.013999648984408
425 => 0.014037785932194
426 => 0.013940098942374
427 => 0.013961283752557
428 => 0.013993372967469
429 => 0.014188212396703
430 => 0.014699527436255
501 => 0.014925985386633
502 => 0.015607295303585
503 => 0.014907181206301
504 => 0.014865639333128
505 => 0.01498836382276
506 => 0.015388364867989
507 => 0.01571252814496
508 => 0.01582007180536
509 => 0.015834285475434
510 => 0.01603604453171
511 => 0.016151689060184
512 => 0.016011545675488
513 => 0.015892788830582
514 => 0.015467416552772
515 => 0.015516654552179
516 => 0.015855855541117
517 => 0.016334996916831
518 => 0.016746150063358
519 => 0.016602178561578
520 => 0.017700579492117
521 => 0.017809481457814
522 => 0.017794434727377
523 => 0.018042529612021
524 => 0.017550111789647
525 => 0.017339593630436
526 => 0.015918465408399
527 => 0.016317744471724
528 => 0.016898120039105
529 => 0.016821305156466
530 => 0.01639982090595
531 => 0.016745830329758
601 => 0.016631428793532
602 => 0.016541195555387
603 => 0.016954571511906
604 => 0.016500047667165
605 => 0.016893585816061
606 => 0.016388869069471
607 => 0.016602836211271
608 => 0.016481378113159
609 => 0.016559976387982
610 => 0.016100492479392
611 => 0.016348418843126
612 => 0.016090177927555
613 => 0.016090055487737
614 => 0.016084354805213
615 => 0.016388174097167
616 => 0.01639808163337
617 => 0.01617355871757
618 => 0.016141201457697
619 => 0.016260843206576
620 => 0.016120774052862
621 => 0.0161863115283
622 => 0.016122759116229
623 => 0.016108452129653
624 => 0.015994451626483
625 => 0.015945337075209
626 => 0.015964596156289
627 => 0.015898854983824
628 => 0.015859243549451
629 => 0.016076475093911
630 => 0.015960417042801
701 => 0.016058687533071
702 => 0.015946695906684
703 => 0.015558484137196
704 => 0.015335219443299
705 => 0.014601923397987
706 => 0.014809885246787
707 => 0.014947764167693
708 => 0.014902195185156
709 => 0.015000094992501
710 => 0.015006105245562
711 => 0.014974277020224
712 => 0.014937424012731
713 => 0.014919486006782
714 => 0.015053181206791
715 => 0.015130795770369
716 => 0.014961602161988
717 => 0.014921962466814
718 => 0.015093026546323
719 => 0.015197375536003
720 => 0.015967829847167
721 => 0.015910752103261
722 => 0.016054006039523
723 => 0.016037877844711
724 => 0.016188030792055
725 => 0.016433467401592
726 => 0.015934426149247
727 => 0.016021042455106
728 => 0.015999806137172
729 => 0.016231658687914
730 => 0.01623238250627
731 => 0.016093375320206
801 => 0.016168733370905
802 => 0.016126670574345
803 => 0.016202683732857
804 => 0.015909989795193
805 => 0.01626645941691
806 => 0.016468554722029
807 => 0.016471360815536
808 => 0.016567152386235
809 => 0.016664482169939
810 => 0.01685129821412
811 => 0.016659271971861
812 => 0.016313835455415
813 => 0.016338774856149
814 => 0.016136245552947
815 => 0.016139650107124
816 => 0.016121476330109
817 => 0.016176017202989
818 => 0.015921958449691
819 => 0.015981585531284
820 => 0.015898107267877
821 => 0.016020860989665
822 => 0.015888798276939
823 => 0.015999795896377
824 => 0.016047698789297
825 => 0.016224461495448
826 => 0.015862690281519
827 => 0.01512501428656
828 => 0.015280082724157
829 => 0.015050724324588
830 => 0.015071952317697
831 => 0.015114836242188
901 => 0.014975835412167
902 => 0.015002352390116
903 => 0.015001405017066
904 => 0.014993241067939
905 => 0.014957081583583
906 => 0.014904643177333
907 => 0.015113541648146
908 => 0.015149037568991
909 => 0.015227940604015
910 => 0.015462702515808
911 => 0.015439244264752
912 => 0.015477505645497
913 => 0.01539398126616
914 => 0.015075826774101
915 => 0.015093104093707
916 => 0.014877655641367
917 => 0.015222431102695
918 => 0.015140783722639
919 => 0.015088145125569
920 => 0.015073782196665
921 => 0.015309126037829
922 => 0.015379544603668
923 => 0.015335664479051
924 => 0.015245665063275
925 => 0.015418490547504
926 => 0.015464731356162
927 => 0.015475082967925
928 => 0.01578129658998
929 => 0.015492196907789
930 => 0.015561786074696
1001 => 0.016104700889802
1002 => 0.015612352069624
1003 => 0.015873160220361
1004 => 0.015860395018563
1005 => 0.015993815643213
1006 => 0.015849450633085
1007 => 0.015851240210406
1008 => 0.015969708686399
1009 => 0.015803341077769
1010 => 0.015762146118239
1011 => 0.015705235576692
1012 => 0.015829497662129
1013 => 0.015903987162457
1014 => 0.016504317828596
1015 => 0.016892158817326
1016 => 0.016875321617148
1017 => 0.017029182108862
1018 => 0.016959866548144
1019 => 0.016736028318065
1020 => 0.017118092882646
1021 => 0.016997191668152
1022 => 0.01700715861738
1023 => 0.017006787647032
1024 => 0.017087176385303
1025 => 0.017030213596719
1026 => 0.016917934093308
1027 => 0.016992470467537
1028 => 0.017213816851755
1029 => 0.017900882820106
1030 => 0.018285374038408
1031 => 0.017877735965982
1101 => 0.01815891924985
1102 => 0.017990309475378
1103 => 0.01795966806365
1104 => 0.0181362719452
1105 => 0.018313184948467
1106 => 0.018301916354975
1107 => 0.018173486599186
1108 => 0.018100939888926
1109 => 0.018650287883948
1110 => 0.019055038128782
1111 => 0.019027436875564
1112 => 0.019149259830858
1113 => 0.019506935795444
1114 => 0.019539637203104
1115 => 0.019535517577372
1116 => 0.019454463726447
1117 => 0.019806642163674
1118 => 0.020100435612
1119 => 0.019435702101828
1120 => 0.019688823920501
1121 => 0.019802458459979
1122 => 0.019969307677781
1123 => 0.020250810275388
1124 => 0.020556596761267
1125 => 0.020599838323148
1126 => 0.020569156365694
1127 => 0.020367481958275
1128 => 0.020702077179915
1129 => 0.020898075213528
1130 => 0.021014787557209
1201 => 0.021310750641703
1202 => 0.019803160228209
1203 => 0.018736012801432
1204 => 0.018569362320945
1205 => 0.018908252626222
1206 => 0.018997615297124
1207 => 0.018961593316534
1208 => 0.017760421866898
1209 => 0.018563038401851
1210 => 0.019426586307546
1211 => 0.019459758699513
1212 => 0.019892068837039
1213 => 0.020032846738809
1214 => 0.020380913063702
1215 => 0.020359141420312
1216 => 0.020443890031478
1217 => 0.020424407793412
1218 => 0.021069127366266
1219 => 0.021780348796906
1220 => 0.021755721460308
1221 => 0.021653474964864
1222 => 0.021805328446217
1223 => 0.022539385181758
1224 => 0.022471805000569
1225 => 0.022537453390128
1226 => 0.023402947650955
1227 => 0.024528213305154
1228 => 0.024005414433954
1229 => 0.025139737553135
1230 => 0.025853733828775
1231 => 0.027088516558901
]
'min_raw' => 0.011059641254284
'max_raw' => 0.027088516558901
'avg_raw' => 0.019074078906592
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.011059'
'max' => '$0.027088'
'avg' => '$0.019074'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0049314191836681
'max_diff' => 0.010989637673996
'year' => 2028
]
3 => [
'items' => [
101 => 0.026933915679656
102 => 0.027414607535239
103 => 0.02665714783963
104 => 0.02491786727065
105 => 0.02464261946291
106 => 0.02519367254439
107 => 0.026548382774234
108 => 0.025151007898247
109 => 0.025433695015714
110 => 0.025352281106867
111 => 0.025347942905651
112 => 0.025513514401313
113 => 0.025273344311226
114 => 0.024294848158438
115 => 0.024743287178947
116 => 0.024570123337318
117 => 0.024762261529825
118 => 0.025799152110967
119 => 0.02534071806866
120 => 0.024857795045247
121 => 0.025463487685804
122 => 0.026234742555807
123 => 0.026186478812121
124 => 0.026092826976689
125 => 0.026620737469566
126 => 0.027492690940539
127 => 0.02772837645995
128 => 0.027902354692001
129 => 0.027926343350814
130 => 0.028173441445462
131 => 0.026844732713805
201 => 0.028953427594605
202 => 0.029317540948998
203 => 0.029249102729324
204 => 0.029653799398501
205 => 0.029534727372266
206 => 0.029362210688079
207 => 0.030003740990174
208 => 0.029268278267648
209 => 0.028224381525205
210 => 0.027651679126365
211 => 0.028405859843743
212 => 0.028866411690566
213 => 0.029170807164717
214 => 0.029262917051274
215 => 0.026947876590295
216 => 0.025700198179857
217 => 0.026499945736285
218 => 0.027475692950756
219 => 0.026839312388762
220 => 0.026864257301964
221 => 0.02595694585843
222 => 0.027555969880988
223 => 0.02732300553081
224 => 0.02853162499164
225 => 0.028243178257536
226 => 0.029228760509505
227 => 0.028969223672103
228 => 0.030046546573649
301 => 0.030476319846428
302 => 0.031197976060294
303 => 0.031728829308882
304 => 0.032040556490058
305 => 0.03202184155936
306 => 0.033257059953044
307 => 0.032528694821532
308 => 0.031613696553872
309 => 0.031597147121993
310 => 0.032071037690439
311 => 0.033064182316375
312 => 0.033321690268214
313 => 0.033465602083411
314 => 0.03324519612883
315 => 0.032454607980974
316 => 0.032113236027102
317 => 0.032404094822298
318 => 0.032048399509554
319 => 0.032662429409828
320 => 0.033505623612614
321 => 0.03333150734409
322 => 0.033913551924795
323 => 0.03451590683295
324 => 0.035377301405063
325 => 0.035602501843562
326 => 0.035974749604795
327 => 0.036357914828124
328 => 0.036480977171264
329 => 0.036715941368323
330 => 0.036714702991023
331 => 0.037422783413772
401 => 0.03820381804749
402 => 0.038498640540725
403 => 0.039176568607313
404 => 0.038015640550715
405 => 0.038896217817425
406 => 0.039690520554275
407 => 0.038743520086144
408 => 0.040048739608653
409 => 0.040099418325021
410 => 0.040864606773635
411 => 0.040088941688596
412 => 0.03962835423711
413 => 0.040958052951562
414 => 0.041601452274368
415 => 0.041407655162182
416 => 0.039932849569498
417 => 0.039074449457169
418 => 0.036827850790188
419 => 0.039489043957067
420 => 0.040785233520585
421 => 0.039929492751665
422 => 0.040361078620041
423 => 0.042715671175709
424 => 0.04361214757233
425 => 0.043425686748676
426 => 0.043457195558467
427 => 0.043940917949886
428 => 0.046086009424223
429 => 0.044800620889969
430 => 0.045783252261817
501 => 0.046304436398304
502 => 0.046788541270181
503 => 0.045599732707768
504 => 0.044053110235134
505 => 0.043563229975256
506 => 0.039844406197003
507 => 0.039650825269312
508 => 0.039542162428497
509 => 0.038857058587819
510 => 0.038318754634782
511 => 0.037890675345382
512 => 0.036767267454701
513 => 0.037146384639822
514 => 0.035355906935525
515 => 0.0365013911201
516 => 0.033643745471447
517 => 0.036023677683044
518 => 0.034728388782511
519 => 0.035598140442536
520 => 0.03559510596093
521 => 0.033993617399809
522 => 0.033069912219969
523 => 0.033658533111706
524 => 0.034289581432434
525 => 0.034391966899371
526 => 0.03521013751924
527 => 0.035438471352727
528 => 0.034746609177374
529 => 0.033584527117103
530 => 0.033854452275434
531 => 0.03306444219525
601 => 0.031679979917027
602 => 0.032674324895639
603 => 0.0330138379896
604 => 0.033163786313527
605 => 0.031802326669462
606 => 0.03137452649057
607 => 0.031146769264918
608 => 0.033408779773532
609 => 0.033532697815394
610 => 0.032898715592983
611 => 0.035764375354941
612 => 0.035115788293433
613 => 0.035840418948825
614 => 0.033829959396537
615 => 0.033906761658877
616 => 0.032954977887781
617 => 0.03348791320138
618 => 0.033111251699035
619 => 0.033444857294611
620 => 0.033644819113092
621 => 0.034596446705837
622 => 0.036034543741533
623 => 0.034454305277464
624 => 0.033765772749238
625 => 0.034192934457296
626 => 0.035330522376565
627 => 0.037054026306312
628 => 0.036033677291153
629 => 0.036486490857431
630 => 0.036585410477389
701 => 0.035833042888984
702 => 0.037081767172463
703 => 0.037750968660597
704 => 0.038437430915686
705 => 0.039033466857545
706 => 0.038163242795375
707 => 0.039094507283616
708 => 0.038344072496405
709 => 0.037670854913755
710 => 0.037671875906936
711 => 0.0372495566832
712 => 0.036431259971565
713 => 0.036280353503016
714 => 0.037065388009796
715 => 0.03769491134119
716 => 0.037746761897977
717 => 0.038095298360313
718 => 0.038301558648512
719 => 0.040323189870131
720 => 0.041136306671276
721 => 0.042130570504204
722 => 0.042517892300768
723 => 0.043683592045878
724 => 0.042742194828198
725 => 0.042538517618486
726 => 0.03971091133433
727 => 0.040173931704955
728 => 0.040915271993147
729 => 0.03972313576263
730 => 0.040479271808958
731 => 0.040628549081654
801 => 0.039682627429694
802 => 0.040187885054868
803 => 0.038846070600851
804 => 0.036063791629875
805 => 0.037084864644314
806 => 0.037836718072402
807 => 0.036763730527662
808 => 0.038687019171256
809 => 0.037563473650404
810 => 0.037207363659991
811 => 0.035818051625008
812 => 0.036473753425996
813 => 0.037360599500576
814 => 0.036812631733408
815 => 0.037949747128057
816 => 0.039560205784478
817 => 0.040707914527516
818 => 0.04079602135365
819 => 0.040058121522391
820 => 0.041240610711197
821 => 0.041249223853985
822 => 0.039915371218401
823 => 0.039098393906029
824 => 0.038912774941723
825 => 0.039376487507301
826 => 0.039939520167974
827 => 0.040827265747809
828 => 0.041363711809167
829 => 0.042762478628181
830 => 0.043140944823619
831 => 0.043556764428624
901 => 0.044112427654928
902 => 0.044779643827233
903 => 0.043319812826868
904 => 0.043377814633978
905 => 0.042018440219173
906 => 0.040565753702944
907 => 0.041668161688831
908 => 0.04310941348319
909 => 0.042778788729123
910 => 0.042741586690239
911 => 0.042804150200656
912 => 0.042554869933284
913 => 0.041427384522718
914 => 0.040861168407964
915 => 0.041591731653134
916 => 0.041979993504312
917 => 0.042582153775498
918 => 0.042507924812013
919 => 0.044059025003296
920 => 0.044661735634794
921 => 0.044507536463815
922 => 0.044535912822285
923 => 0.045627091631399
924 => 0.046840706885172
925 => 0.047977417720968
926 => 0.049133728806006
927 => 0.047739750661403
928 => 0.047031974528193
929 => 0.047762218832304
930 => 0.04737474092561
1001 => 0.049601303910886
1002 => 0.049755466301082
1003 => 0.051981868280511
1004 => 0.054094988874006
1005 => 0.05276777568972
1006 => 0.054019277943507
1007 => 0.055372879667453
1008 => 0.057984197006912
1009 => 0.057104797194234
1010 => 0.056431190719674
1011 => 0.055794635856059
1012 => 0.057119205477004
1013 => 0.058823243133834
1014 => 0.059190276524045
1015 => 0.059785010833734
1016 => 0.059159720427748
1017 => 0.05991281384828
1018 => 0.062571564548773
1019 => 0.061853146640058
1020 => 0.060832877718241
1021 => 0.062931706047149
1022 => 0.063691263860393
1023 => 0.06902223837725
1024 => 0.075752813916355
1025 => 0.072966311447824
1026 => 0.071236639445734
1027 => 0.071643153394593
1028 => 0.074100931737114
1029 => 0.074890292134747
1030 => 0.072744538465135
1031 => 0.07350245493657
1101 => 0.077678649210878
1102 => 0.07991904345069
1103 => 0.076876287147935
1104 => 0.068481443186098
1105 => 0.060741013664836
1106 => 0.062794124129958
1107 => 0.062561365118649
1108 => 0.067048164875547
1109 => 0.061836012610532
1110 => 0.061923771887365
1111 => 0.066503353911633
1112 => 0.06528159994147
1113 => 0.063302514980233
1114 => 0.060755463175239
1115 => 0.056047002339932
1116 => 0.051876587272956
1117 => 0.060055731608526
1118 => 0.059703032031967
1119 => 0.059192270777961
1120 => 0.060328914678611
1121 => 0.065848134818165
1122 => 0.065720898929976
1123 => 0.064911489125639
1124 => 0.065525419328418
1125 => 0.063194890047377
1126 => 0.063795520508267
1127 => 0.060739787541252
1128 => 0.062121106461024
1129 => 0.063298268752758
1130 => 0.06353460151101
1201 => 0.0640670712828
1202 => 0.059517175381913
1203 => 0.061559945063486
1204 => 0.062759880869775
1205 => 0.057338527242922
1206 => 0.062652718139553
1207 => 0.059437971816884
1208 => 0.0583468386311
1209 => 0.059815905719891
1210 => 0.059243408846675
1211 => 0.058751209653228
1212 => 0.058476554046229
1213 => 0.059555274781219
1214 => 0.059504951169581
1215 => 0.057739954676465
1216 => 0.055437588701655
1217 => 0.056210338295388
1218 => 0.055929591123419
1219 => 0.054912127155097
1220 => 0.055597775020678
1221 => 0.052578528819101
1222 => 0.04738407265605
1223 => 0.050815689507857
1224 => 0.050683575991944
1225 => 0.050616958366349
1226 => 0.053195723587558
1227 => 0.052947834813775
1228 => 0.052497914262025
1229 => 0.054903864011332
1230 => 0.054025659988244
1231 => 0.05673207785651
]
'min_raw' => 0.024294848158438
'max_raw' => 0.07991904345069
'avg_raw' => 0.052106945804564
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.024294'
'max' => '$0.079919'
'avg' => '$0.0521069'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.013235206904154
'max_diff' => 0.05283052689179
'year' => 2029
]
4 => [
'items' => [
101 => 0.058514699704682
102 => 0.05806256914221
103 => 0.059739133606576
104 => 0.056228140885293
105 => 0.057394351830725
106 => 0.05763470629028
107 => 0.054874174964891
108 => 0.052988392482858
109 => 0.052862632290801
110 => 0.049592945343789
111 => 0.051339585718892
112 => 0.052876556968092
113 => 0.052140467013512
114 => 0.051907442923954
115 => 0.053097912460748
116 => 0.053190422139439
117 => 0.051081191661549
118 => 0.051519767468545
119 => 0.053348701490878
120 => 0.051473683023743
121 => 0.047830828424628
122 => 0.046927350117642
123 => 0.046806809457081
124 => 0.044356504632768
125 => 0.046987724858265
126 => 0.045839126717517
127 => 0.04946753448182
128 => 0.047395007426391
129 => 0.047305664927339
130 => 0.047170610636327
131 => 0.045061532053222
201 => 0.045523286223986
202 => 0.04705822741475
203 => 0.047605911723964
204 => 0.047548783763468
205 => 0.047050705365531
206 => 0.047278723105532
207 => 0.04654419851834
208 => 0.046284822598795
209 => 0.045466160849745
210 => 0.04426295423972
211 => 0.044430267498539
212 => 0.042046400367946
213 => 0.040747543033795
214 => 0.040388036442366
215 => 0.039907289203493
216 => 0.040442338122216
217 => 0.042039647171882
218 => 0.040112953569966
219 => 0.036809772531323
220 => 0.037008299340092
221 => 0.037454330136257
222 => 0.036623154698392
223 => 0.035836516901719
224 => 0.036520434643984
225 => 0.035120833292845
226 => 0.037623465272868
227 => 0.037555776091354
228 => 0.038488602531783
301 => 0.039071918048509
302 => 0.037727564633097
303 => 0.037389463384639
304 => 0.037582061221605
305 => 0.03439884799353
306 => 0.038228466099238
307 => 0.038261584795645
308 => 0.037978002410069
309 => 0.040017155825164
310 => 0.044320405558917
311 => 0.04270134991126
312 => 0.042074402628271
313 => 0.040882575385013
314 => 0.042470614422954
315 => 0.042348677802109
316 => 0.041797234159554
317 => 0.041463719323928
318 => 0.042078230634692
319 => 0.041387574572029
320 => 0.041263513765215
321 => 0.040511840255413
322 => 0.040243527011379
323 => 0.040044878567355
324 => 0.039826186149277
325 => 0.040308567128802
326 => 0.039215428366695
327 => 0.037897210181309
328 => 0.037787614602512
329 => 0.038090217631311
330 => 0.037956338317214
331 => 0.037786973639864
401 => 0.037463610347077
402 => 0.037367675365671
403 => 0.037679417514205
404 => 0.037327478804206
405 => 0.037846783541903
406 => 0.037705561387691
407 => 0.036916705914159
408 => 0.035933499922435
409 => 0.035924747326765
410 => 0.035712917208629
411 => 0.035443119704311
412 => 0.035368068210741
413 => 0.036462836999332
414 => 0.038728975628044
415 => 0.038284078391127
416 => 0.038605562239702
417 => 0.040186944590435
418 => 0.040689618485907
419 => 0.040332832461385
420 => 0.039844441745416
421 => 0.039865928458294
422 => 0.041534907380685
423 => 0.041638999548863
424 => 0.041902006876443
425 => 0.042240045618246
426 => 0.040390401920835
427 => 0.039778810406481
428 => 0.039489004417175
429 => 0.038596514139144
430 => 0.039558988387667
501 => 0.038998195860309
502 => 0.03907386593165
503 => 0.03902458569842
504 => 0.039051496038079
505 => 0.037622765736226
506 => 0.038143319966367
507 => 0.037277797595604
508 => 0.036118960300598
509 => 0.036115075471644
510 => 0.036398699257873
511 => 0.036229988731624
512 => 0.035775993043433
513 => 0.035840480988141
514 => 0.035275498735091
515 => 0.035909080062995
516 => 0.035927248908416
517 => 0.035683285585765
518 => 0.036659405038776
519 => 0.037059321975113
520 => 0.036898740089943
521 => 0.037048055121971
522 => 0.038302565879911
523 => 0.038507105871597
524 => 0.038597949024751
525 => 0.038476231233937
526 => 0.037070985275688
527 => 0.037133313909503
528 => 0.036675987750263
529 => 0.036289595337549
530 => 0.036305049007696
531 => 0.036503704935329
601 => 0.037371247022318
602 => 0.039196938199987
603 => 0.039266221845617
604 => 0.039350195645267
605 => 0.039008632000241
606 => 0.038905613136578
607 => 0.039041521609175
608 => 0.039727155225226
609 => 0.041490791033419
610 => 0.040867404349529
611 => 0.040360581271934
612 => 0.040805201749505
613 => 0.040736755912033
614 => 0.040159004162317
615 => 0.040142788594964
616 => 0.03903389826885
617 => 0.038623966763497
618 => 0.038281397314782
619 => 0.037907320419787
620 => 0.037685555097264
621 => 0.038026287423197
622 => 0.038104216937564
623 => 0.037359199751929
624 => 0.03725765666246
625 => 0.037866053778563
626 => 0.037598320891097
627 => 0.037873690805312
628 => 0.037937578987489
629 => 0.037927291518689
630 => 0.037647747635248
701 => 0.037825920570434
702 => 0.03740448846281
703 => 0.036946244342824
704 => 0.036653913143891
705 => 0.036398815400715
706 => 0.036540358454997
707 => 0.036035783311222
708 => 0.035874359567638
709 => 0.037765559589011
710 => 0.039162609378626
711 => 0.039142295721393
712 => 0.039018641557233
713 => 0.038834916551622
714 => 0.039713714596713
715 => 0.039407558929925
716 => 0.039630312757675
717 => 0.039687012955786
718 => 0.039858627378462
719 => 0.03991996478381
720 => 0.03973456054328
721 => 0.039112321266841
722 => 0.037561760150689
723 => 0.03683996976546
724 => 0.036601766915965
725 => 0.036610425137133
726 => 0.036371592745331
727 => 0.036441939588434
728 => 0.036347128984135
729 => 0.036167580636743
730 => 0.036529271850499
731 => 0.036570953393498
801 => 0.036486530342319
802 => 0.036506415027031
803 => 0.035807428220826
804 => 0.035860570669582
805 => 0.035564666761891
806 => 0.035509188346374
807 => 0.034761169035033
808 => 0.03343594439786
809 => 0.034170247489522
810 => 0.033283312613433
811 => 0.032947416936602
812 => 0.034537494828226
813 => 0.034377895109802
814 => 0.034104729768191
815 => 0.033700661295303
816 => 0.033550788368183
817 => 0.032640207907007
818 => 0.032586405955603
819 => 0.033037714219903
820 => 0.032829450984498
821 => 0.032536970526534
822 => 0.031477635956058
823 => 0.03028659316522
824 => 0.030322543260447
825 => 0.030701391812074
826 => 0.031802945070616
827 => 0.031372549155439
828 => 0.031060291980754
829 => 0.031001815598351
830 => 0.031733769952715
831 => 0.032769638713319
901 => 0.033255645159537
902 => 0.03277402753157
903 => 0.032220771132696
904 => 0.032254445286153
905 => 0.03247846434281
906 => 0.032502005578205
907 => 0.032141892538216
908 => 0.032243262249599
909 => 0.032089272388567
910 => 0.03114423689566
911 => 0.031127144200334
912 => 0.030895217249618
913 => 0.030888194593724
914 => 0.030493628993669
915 => 0.030438426538718
916 => 0.029654992591387
917 => 0.030170651187976
918 => 0.029824774474675
919 => 0.029303456683662
920 => 0.029213581299995
921 => 0.029210879537435
922 => 0.02974615634428
923 => 0.030164396166835
924 => 0.029830791148186
925 => 0.029754835752101
926 => 0.030565840666766
927 => 0.030462632898901
928 => 0.030373255637549
929 => 0.032676888027315
930 => 0.030853383236138
1001 => 0.03005823106517
1002 => 0.029074079258296
1003 => 0.029394524049138
1004 => 0.029462046474882
1005 => 0.027095338786046
1006 => 0.02613516577144
1007 => 0.025805670576183
1008 => 0.025616041432935
1009 => 0.025702457814726
1010 => 0.024838189484519
1011 => 0.025418992096097
1012 => 0.024670608776921
1013 => 0.024545139878011
1014 => 0.025883341959601
1015 => 0.026069544961591
1016 => 0.025275145106363
1017 => 0.025785278415074
1018 => 0.025600296985952
1019 => 0.024683437660938
1020 => 0.024648420378683
1021 => 0.024188372598554
1022 => 0.023468486905457
1023 => 0.0231394798266
1024 => 0.02296813008336
1025 => 0.023038832326961
1026 => 0.023003083109072
1027 => 0.022769795280645
1028 => 0.023016454894321
1029 => 0.022386341508169
1030 => 0.022135425280635
1031 => 0.02202209224187
1101 => 0.021462830343688
1102 => 0.022352864728591
1103 => 0.022528212714775
1104 => 0.022703906190659
1105 => 0.024233197947201
1106 => 0.024156798852778
1107 => 0.024847409458496
1108 => 0.024820573600309
1109 => 0.024623600268408
1110 => 0.023792602181659
1111 => 0.024123823207921
1112 => 0.023104376372264
1113 => 0.023868215257185
1114 => 0.023519631088781
1115 => 0.023750358599203
1116 => 0.023335489731604
1117 => 0.023565095292449
1118 => 0.022569794227281
1119 => 0.02164039609689
1120 => 0.022014413035382
1121 => 0.022421012221548
1122 => 0.023302622856701
1123 => 0.022777542835534
1124 => 0.022966381466619
1125 => 0.022333803663687
1126 => 0.021028614969323
1127 => 0.02103600219559
1128 => 0.020835227350043
1129 => 0.020661728569883
1130 => 0.022837854592365
1201 => 0.022567218922008
1202 => 0.022135996401215
1203 => 0.022713204881398
1204 => 0.022865827965089
1205 => 0.022870172929719
1206 => 0.023291289336954
1207 => 0.023516039238984
1208 => 0.023555652383339
1209 => 0.024218288148945
1210 => 0.024440394917199
1211 => 0.025355221261911
1212 => 0.023496970780037
1213 => 0.023458701334219
1214 => 0.022721327388421
1215 => 0.022253673174576
1216 => 0.022753348072539
1217 => 0.023195991819709
1218 => 0.02273508156351
1219 => 0.022795266712623
1220 => 0.022176532351429
1221 => 0.022397700771398
1222 => 0.022588200809279
1223 => 0.022483017885436
1224 => 0.022325553957531
1225 => 0.023159700080284
1226 => 0.023112634286993
1227 => 0.023889410333436
1228 => 0.024494962809427
1229 => 0.025580221101855
1230 => 0.024447697497912
1231 => 0.02440642383641
]
'min_raw' => 0.020661728569883
'max_raw' => 0.059739133606576
'avg_raw' => 0.040200431088229
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.020661'
'max' => '$0.059739'
'avg' => '$0.04020043'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0036331195885545
'max_diff' => -0.020179909844115
'year' => 2030
]
5 => [
'items' => [
101 => 0.024809880498089
102 => 0.024440333150086
103 => 0.024673874317683
104 => 0.025542594009222
105 => 0.025560948687394
106 => 0.025253484179352
107 => 0.025234774936095
108 => 0.025293826858158
109 => 0.025639695810132
110 => 0.025518838570833
111 => 0.025658697627881
112 => 0.025833593520317
113 => 0.026557037085756
114 => 0.026731456880177
115 => 0.02630770720603
116 => 0.026345967057081
117 => 0.026187473046762
118 => 0.026034369818717
119 => 0.026378523516431
120 => 0.02700747116336
121 => 0.027003558512691
122 => 0.027149462141784
123 => 0.027240358893977
124 => 0.026850163493073
125 => 0.026596160634966
126 => 0.026693561493386
127 => 0.026849307587114
128 => 0.026643055134284
129 => 0.025369969449984
130 => 0.025756142321572
131 => 0.025691864272851
201 => 0.025600324514994
202 => 0.025988624323563
203 => 0.025951171859763
204 => 0.0248293251636
205 => 0.024901142149265
206 => 0.024833692592363
207 => 0.025051635909595
208 => 0.024428563495727
209 => 0.024620216373776
210 => 0.024740419262254
211 => 0.02481121968701
212 => 0.025066999369533
213 => 0.025036986575987
214 => 0.025065133732147
215 => 0.025444387477997
216 => 0.027362522780336
217 => 0.027466922652715
218 => 0.02695281949866
219 => 0.027158193568469
220 => 0.026763920264808
221 => 0.027028598574957
222 => 0.027209684752661
223 => 0.026391391136486
224 => 0.026342937099218
225 => 0.025947036489382
226 => 0.026159771052151
227 => 0.025821295066629
228 => 0.025904345234089
301 => 0.025672129725688
302 => 0.026090071407163
303 => 0.026557395148624
304 => 0.026675459580891
305 => 0.026364882889531
306 => 0.026140004896985
307 => 0.02574519322149
308 => 0.02640177383679
309 => 0.026593778017635
310 => 0.026400765320567
311 => 0.026356040061245
312 => 0.026271285775648
313 => 0.026374021083594
314 => 0.026592732321631
315 => 0.026489592140735
316 => 0.026557718047313
317 => 0.026298092342568
318 => 0.026850292663987
319 => 0.027727319668644
320 => 0.027730139453872
321 => 0.027626998717012
322 => 0.027584795749687
323 => 0.027690624404809
324 => 0.027748032108893
325 => 0.028090262573901
326 => 0.028457489497917
327 => 0.030171177318639
328 => 0.029689980636013
329 => 0.031210466418303
330 => 0.032412973261725
331 => 0.032773552484816
401 => 0.032441836566136
402 => 0.031307054327272
403 => 0.031251376496869
404 => 0.032947220254435
405 => 0.032468066718358
406 => 0.032411072929895
407 => 0.03180475531318
408 => 0.032163164118557
409 => 0.032084774855281
410 => 0.031961033568266
411 => 0.03264485260195
412 => 0.033924900788061
413 => 0.03372539327404
414 => 0.033576470169711
415 => 0.032923932477402
416 => 0.033316905917742
417 => 0.033176975602547
418 => 0.033778205038595
419 => 0.033422050039543
420 => 0.032464436659062
421 => 0.032616939746238
422 => 0.032593889211405
423 => 0.033068267584892
424 => 0.032925870971967
425 => 0.032566083987347
426 => 0.03392052572252
427 => 0.033832575810039
428 => 0.033957268677788
429 => 0.034012162334427
430 => 0.034836587150686
501 => 0.035174327619256
502 => 0.0352510006186
503 => 0.035571827941956
504 => 0.035243018142528
505 => 0.036558491777655
506 => 0.037433204984999
507 => 0.038449229387659
508 => 0.03993391412156
509 => 0.040492169315609
510 => 0.040391325511552
511 => 0.041516996532324
512 => 0.043539802334388
513 => 0.040800192398381
514 => 0.043685008313289
515 => 0.042771708901431
516 => 0.040606292425469
517 => 0.040466865133
518 => 0.041933310311524
519 => 0.045185744577371
520 => 0.04437104668258
521 => 0.045187077131269
522 => 0.044235134266864
523 => 0.044187862280042
524 => 0.045140843391122
525 => 0.047367535701455
526 => 0.046309717651129
527 => 0.044793076088359
528 => 0.045912940616752
529 => 0.044942810323688
530 => 0.042756835251045
531 => 0.044370423698454
601 => 0.043291463056025
602 => 0.043606361132188
603 => 0.045874175919292
604 => 0.045601306444214
605 => 0.045954424811998
606 => 0.045331180135576
607 => 0.044748971331133
608 => 0.043662235362247
609 => 0.043340506417296
610 => 0.043429420723085
611 => 0.043340462355781
612 => 0.042732443568809
613 => 0.042601141969652
614 => 0.042382300218602
615 => 0.042450128428049
616 => 0.042038641911663
617 => 0.042815201985536
618 => 0.042959338378271
619 => 0.043524454040299
620 => 0.04358312622303
621 => 0.045156965297861
622 => 0.044290121182736
623 => 0.044871675054882
624 => 0.04481965540276
625 => 0.04065322356662
626 => 0.041227321112901
627 => 0.042120436733179
628 => 0.041718089356833
629 => 0.041149264301467
630 => 0.040689907570788
701 => 0.039993935152173
702 => 0.040973502966408
703 => 0.042261530476702
704 => 0.04361579272626
705 => 0.045242850084327
706 => 0.044879709823042
707 => 0.043585376020709
708 => 0.04364343888957
709 => 0.044002360697973
710 => 0.043537524344606
711 => 0.043400435029314
712 => 0.043983526731202
713 => 0.043987542163291
714 => 0.043452691761392
715 => 0.042858303416272
716 => 0.042855812907403
717 => 0.042750047242499
718 => 0.044253949743691
719 => 0.045080944057654
720 => 0.045175757622982
721 => 0.045074562349272
722 => 0.045113508393826
723 => 0.044632298624107
724 => 0.04573220145936
725 => 0.046741581070104
726 => 0.046471045772175
727 => 0.04606547490172
728 => 0.045742418168462
729 => 0.04639494387271
730 => 0.04636588793027
731 => 0.046732765019768
801 => 0.046716121355803
802 => 0.046592754389551
803 => 0.046471050177998
804 => 0.046953593619986
805 => 0.046814628858104
806 => 0.046675448245563
807 => 0.046396300219628
808 => 0.04643424107251
809 => 0.046028740229584
810 => 0.045841136985191
811 => 0.043020034312632
812 => 0.042266143496335
813 => 0.042503332894005
814 => 0.042581421802338
815 => 0.042253327552948
816 => 0.042723730426075
817 => 0.042650418636578
818 => 0.042935631923549
819 => 0.042757443044371
820 => 0.042764755978127
821 => 0.043288771477914
822 => 0.043440895406824
823 => 0.04336352394879
824 => 0.043417712265858
825 => 0.044666459161246
826 => 0.0444889272854
827 => 0.044394617014698
828 => 0.04442074160421
829 => 0.044739823209417
830 => 0.044829148637665
831 => 0.044450670521391
901 => 0.044629162988982
902 => 0.045389161261916
903 => 0.045655117645267
904 => 0.046503922754614
905 => 0.046143335257856
906 => 0.046805209214017
907 => 0.048839584105799
908 => 0.050464783537389
909 => 0.048970182975892
910 => 0.051954654764108
911 => 0.054278494148285
912 => 0.054189301322163
913 => 0.053784086174158
914 => 0.051138456817739
915 => 0.048703909239851
916 => 0.050740511665105
917 => 0.050745703383518
918 => 0.050570757429016
919 => 0.049484183130699
920 => 0.05053294699872
921 => 0.050616194066013
922 => 0.050569597845511
923 => 0.0497365238786
924 => 0.048464573908931
925 => 0.048713109888387
926 => 0.049120216892731
927 => 0.048349478402089
928 => 0.048103180753637
929 => 0.048561094942154
930 => 0.050036589867766
1001 => 0.04975765609904
1002 => 0.049750372011078
1003 => 0.050943768960018
1004 => 0.050089554295758
1005 => 0.04871624472301
1006 => 0.048369465944163
1007 => 0.047138634897434
1008 => 0.04798877428548
1009 => 0.048019369288582
1010 => 0.047553756633963
1011 => 0.048754026623795
1012 => 0.048742965924535
1013 => 0.049882443643268
1014 => 0.0520606970732
1015 => 0.051416480348628
1016 => 0.050667326388531
1017 => 0.050748780195779
1018 => 0.05164212741617
1019 => 0.051101989293589
1020 => 0.051296226728446
1021 => 0.051641833414549
1022 => 0.051850346509207
1023 => 0.050718778370292
1024 => 0.050454955707951
1025 => 0.049915267129971
1026 => 0.049774472453741
1027 => 0.050214037539533
1028 => 0.050098227669491
1029 => 0.04801679789704
1030 => 0.047799276904854
1031 => 0.047805947963135
1101 => 0.047258981085722
1102 => 0.046424725310574
1103 => 0.048617099676838
1104 => 0.048441021332968
1105 => 0.048246644468716
1106 => 0.048270454525488
1107 => 0.049222089931421
1108 => 0.04867009333724
1109 => 0.050137666753334
1110 => 0.04983597777828
1111 => 0.049526551619393
1112 => 0.049483779498883
1113 => 0.049364676826711
1114 => 0.04895622944768
1115 => 0.048463004693617
1116 => 0.048137334988589
1117 => 0.044404146997073
1118 => 0.045097004973343
1119 => 0.045894074919049
1120 => 0.04616922027025
1121 => 0.045698565107543
1122 => 0.04897481378218
1123 => 0.049573415985754
1124 => 0.047760210865273
1125 => 0.047421034219908
1126 => 0.048997050146584
1127 => 0.048046519882687
1128 => 0.048474543602318
1129 => 0.047549390436933
1130 => 0.049429230244032
1201 => 0.049414909014295
1202 => 0.048683608871226
1203 => 0.049301698744421
1204 => 0.049194290418508
1205 => 0.048368654358096
1206 => 0.049455404379807
1207 => 0.04945594339426
1208 => 0.048752082906392
1209 => 0.047930127951436
1210 => 0.047783181819199
1211 => 0.047672477647994
1212 => 0.04844731716249
1213 => 0.049142035848328
1214 => 0.050434735087303
1215 => 0.050759750389758
1216 => 0.052028306752733
1217 => 0.05127294320347
1218 => 0.051607786081262
1219 => 0.051971305391523
1220 => 0.052145589916843
1221 => 0.051861602635458
1222 => 0.053832192825788
1223 => 0.053998571015176
1224 => 0.054054356182911
1225 => 0.053389884258133
1226 => 0.053980090848927
1227 => 0.053703952730682
1228 => 0.054422387400976
1229 => 0.054535047130712
1230 => 0.054439628347612
1231 => 0.054475388324043
]
'min_raw' => 0.024428563495727
'max_raw' => 0.054535047130712
'avg_raw' => 0.03948180531322
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.024428'
'max' => '$0.054535'
'avg' => '$0.039481'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0037668349258434
'max_diff' => -0.0052040864758634
'year' => 2031
]
6 => [
'items' => [
101 => 0.052793837232527
102 => 0.052706639937543
103 => 0.051517698633202
104 => 0.052002201002931
105 => 0.051096447045525
106 => 0.051383670955718
107 => 0.051510276518561
108 => 0.051444144957334
109 => 0.052029594039974
110 => 0.051531842720385
111 => 0.050218195150094
112 => 0.048904189677401
113 => 0.048887693409057
114 => 0.04854173896222
115 => 0.048291677261875
116 => 0.048339848016777
117 => 0.048509608040062
118 => 0.048281810500715
119 => 0.048330422655363
120 => 0.049137708323613
121 => 0.049299603707083
122 => 0.048749419937443
123 => 0.046540352711201
124 => 0.045998242072856
125 => 0.046387900449177
126 => 0.046201668842509
127 => 0.037288352648313
128 => 0.039382404075051
129 => 0.038138189824551
130 => 0.038711580994726
131 => 0.037441560432683
201 => 0.038047680812371
202 => 0.037935752510215
203 => 0.041302925236924
204 => 0.041250351466191
205 => 0.041275515748099
206 => 0.040074359007452
207 => 0.041987834310262
208 => 0.042930481050773
209 => 0.042756022226835
210 => 0.042799929754253
211 => 0.042045452960624
212 => 0.041282820732666
213 => 0.040436944223601
214 => 0.042008478223947
215 => 0.041833750470088
216 => 0.042234513072378
217 => 0.043253765207172
218 => 0.043403853955783
219 => 0.043605574755966
220 => 0.043533272208565
221 => 0.045255812221158
222 => 0.045047201259948
223 => 0.045549893654994
224 => 0.04451581725902
225 => 0.043345661661542
226 => 0.043568069985354
227 => 0.043546650275276
228 => 0.043273952781587
229 => 0.043027773677412
301 => 0.042617954829494
302 => 0.043914682306084
303 => 0.043862037538637
304 => 0.044714295130758
305 => 0.044563650322962
306 => 0.043557607427463
307 => 0.043593538446291
308 => 0.043835191815766
309 => 0.044671556886671
310 => 0.044919846983791
311 => 0.044804829118155
312 => 0.045077067874775
313 => 0.045292234287938
314 => 0.045104089463508
315 => 0.047767823415125
316 => 0.04666165536353
317 => 0.04720079397521
318 => 0.047329375357306
319 => 0.047000016850842
320 => 0.04707144291745
321 => 0.047179633945923
322 => 0.047836548684839
323 => 0.049560483039564
324 => 0.050324001830054
325 => 0.052621085782597
326 => 0.050260602223199
327 => 0.050120540897436
328 => 0.050534315082579
329 => 0.051882946533752
330 => 0.052975885654417
331 => 0.053338476613912
401 => 0.053386398994933
402 => 0.054066643739537
403 => 0.054456547341331
404 => 0.053984044135329
405 => 0.053583647141391
406 => 0.052149474808208
407 => 0.052315484160896
408 => 0.053459123977359
409 => 0.055074582578162
410 => 0.056460814117472
411 => 0.055975404147452
412 => 0.059678739572667
413 => 0.060045910153308
414 => 0.05999517905111
415 => 0.060831648276119
416 => 0.059171427208471
417 => 0.058461650536783
418 => 0.053670217516179
419 => 0.055016414754956
420 => 0.056973191500909
421 => 0.056714204761046
422 => 0.055293141183342
423 => 0.056459736113318
424 => 0.056074023346672
425 => 0.05576979568438
426 => 0.057163521582771
427 => 0.055631062706386
428 => 0.056957904051347
429 => 0.055256216302018
430 => 0.055977621459307
501 => 0.055568117001589
502 => 0.055833116572711
503 => 0.05428393449476
504 => 0.055119835539753
505 => 0.0542491582631
506 => 0.054248745448706
507 => 0.054229525199566
508 => 0.055253873154374
509 => 0.055287277104405
510 => 0.054530282418098
511 => 0.054421187657322
512 => 0.054824568166791
513 => 0.054352315235726
514 => 0.054573279409847
515 => 0.05435900801546
516 => 0.054310771011338
517 => 0.05392641035564
518 => 0.053760817216949
519 => 0.053825750553439
520 => 0.053604099600569
521 => 0.053470546883999
522 => 0.054202958202768
523 => 0.053811660380538
524 => 0.05414298619951
525 => 0.053765398612139
526 => 0.052456515527232
527 => 0.051703763023914
528 => 0.04923140421005
529 => 0.04993256210271
530 => 0.050397430510944
531 => 0.050243791504796
601 => 0.050573867540405
602 => 0.050594131528225
603 => 0.050486820444322
604 => 0.050362567956563
605 => 0.050302088717115
606 => 0.050752851418245
607 => 0.051014534338226
608 => 0.050444086274848
609 => 0.050310438275015
610 => 0.050887192762391
611 => 0.051239012666511
612 => 0.053836653168002
613 => 0.053644211569383
614 => 0.05412720221716
615 => 0.054072824882316
616 => 0.05457907602763
617 => 0.055406582692521
618 => 0.053724030268295
619 => 0.054016063190855
620 => 0.053944463462268
621 => 0.054726170524522
622 => 0.054728610928644
623 => 0.054259938495659
624 => 0.054514013424922
625 => 0.054372195769589
626 => 0.054628479440582
627 => 0.053641641394508
628 => 0.054843503612042
629 => 0.055524882043093
630 => 0.055534342983269
701 => 0.055857310951834
702 => 0.056185465112939
703 => 0.056815328448976
704 => 0.056167898566355
705 => 0.055003235233551
706 => 0.055087320164339
707 => 0.05440447847845
708 => 0.054415957170555
709 => 0.054354683012496
710 => 0.054538571373334
711 => 0.053681994548772
712 => 0.053883031417395
713 => 0.053601578624052
714 => 0.054015451367449
715 => 0.05357019271117
716 => 0.053944428934711
717 => 0.054105936882665
718 => 0.05470190468763
719 => 0.05348216778181
720 => 0.050995041661913
721 => 0.051517865725805
722 => 0.050744567868365
723 => 0.050816139529224
724 => 0.050960725674704
725 => 0.050492074671561
726 => 0.05058147851407
727 => 0.050578284379691
728 => 0.050550759055218
729 => 0.05042884482914
730 => 0.050252045081333
731 => 0.050956360860505
801 => 0.051076037835881
802 => 0.051342064927299
803 => 0.05213358110346
804 => 0.052054489972225
805 => 0.052183490888729
806 => 0.05190188261231
807 => 0.050829202529495
808 => 0.050887454218812
809 => 0.050161054719616
810 => 0.051323489258936
811 => 0.051048209416639
812 => 0.050870734711508
813 => 0.050822309093922
814 => 0.051615787285587
815 => 0.051853208396781
816 => 0.051705263493023
817 => 0.051401824179174
818 => 0.051984517365544
819 => 0.052140421480365
820 => 0.052175322662151
821 => 0.053207743268062
822 => 0.052233023505259
823 => 0.052467648240047
824 => 0.054298123444277
825 => 0.052638135022352
826 => 0.053517467911605
827 => 0.053474429142504
828 => 0.053924266093643
829 => 0.053437529382753
830 => 0.053443563067634
831 => 0.053842987805651
901 => 0.053282067797737
902 => 0.053143176115541
903 => 0.05295129825135
904 => 0.053370256548101
905 => 0.05362140309915
906 => 0.055645459853786
907 => 0.056953092825483
908 => 0.056896325029545
909 => 0.057415076419557
910 => 0.057181374167138
911 => 0.05642668794654
912 => 0.057714845300922
913 => 0.057307218415202
914 => 0.057340822680394
915 => 0.057339571927966
916 => 0.057610608171608
917 => 0.05741855415288
918 => 0.057039995968028
919 => 0.057291300557704
920 => 0.058037585346007
921 => 0.060354076227714
922 => 0.061650415214539
923 => 0.060276034992975
924 => 0.061224064066125
925 => 0.060655584439533
926 => 0.060552274780578
927 => 0.061147707097314
928 => 0.061744181639498
929 => 0.061706188789792
930 => 0.061273178901472
1001 => 0.06102858260278
1002 => 0.06288074772225
1003 => 0.064245391431467
1004 => 0.064152331879186
1005 => 0.064563066478367
1006 => 0.065768995965105
1007 => 0.065879251044171
1008 => 0.065865361438393
1009 => 0.065592082720998
1010 => 0.066779476910424
1011 => 0.067770022033456
1012 => 0.065528826593702
1013 => 0.066382244477758
1014 => 0.066765371261317
1015 => 0.067327915048177
1016 => 0.068277020709895
1017 => 0.069308001196365
1018 => 0.069453793141278
1019 => 0.069350346779575
1020 => 0.068670387434505
1021 => 0.069798498584956
1022 => 0.070459319639428
1023 => 0.070852823454745
1024 => 0.071850683657598
1025 => 0.066767737321901
1026 => 0.06316977526667
1027 => 0.062607901536543
1028 => 0.063750493861348
1029 => 0.064051786345396
1030 => 0.063930335722865
1031 => 0.059880502317304
1101 => 0.062586580001795
1102 => 0.065498092056834
1103 => 0.065609935092374
1104 => 0.067067498903973
1105 => 0.067542141428588
1106 => 0.068715671344181
1107 => 0.068642266728443
1108 => 0.06892800258795
1109 => 0.068862316862105
1110 => 0.071036033914862
1111 => 0.07343396662416
1112 => 0.073350933839396
1113 => 0.073006202641382
1114 => 0.073518187255836
1115 => 0.075993110789917
1116 => 0.075765259490741
1117 => 0.075986597619563
1118 => 0.078904671946823
1119 => 0.082698583663493
1120 => 0.080935930768591
1121 => 0.084760380360821
1122 => 0.087167668653768
1123 => 0.091330824838164
1124 => 0.090809577179901
1125 => 0.092430263331836
1126 => 0.089876435083942
1127 => 0.084012329212933
1128 => 0.08308431201195
1129 => 0.084942225949456
1130 => 0.089509726072223
1201 => 0.084798379116237
1202 => 0.085751478469362
1203 => 0.085476985791543
1204 => 0.085462359243261
1205 => 0.08602059510072
1206 => 0.085210844873852
1207 => 0.081911776778305
1208 => 0.083423720244964
1209 => 0.082839886262998
1210 => 0.083487693593696
1211 => 0.086983642581404
1212 => 0.085438000200923
1213 => 0.083809791510878
1214 => 0.085851926536628
1215 => 0.088452266178137
1216 => 0.088289541596631
1217 => 0.087973787894911
1218 => 0.089753674979181
1219 => 0.092693526984411
1220 => 0.093488157168143
1221 => 0.094074736924275
1222 => 0.094155616362299
1223 => 0.094988724840241
1224 => 0.090508890583979
1225 => 0.097618502598971
1226 => 0.098846136194891
1227 => 0.098615391959058
1228 => 0.099979855034205
1229 => 0.099578395384409
1230 => 0.098996743338945
1231 => 0.10115970754267
]
'min_raw' => 0.037288352648313
'max_raw' => 0.10115970754267
'avg_raw' => 0.069224030095492
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.037288'
'max' => '$0.101159'
'avg' => '$0.069224'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.012859789152586
'max_diff' => 0.04662466041196
'year' => 2032
]
7 => [
'items' => [
101 => 0.098680043625309
102 => 0.09516047287562
103 => 0.093229566753124
104 => 0.09577233969698
105 => 0.097325122403247
106 => 0.098351412996561
107 => 0.098661967909996
108 => 0.09085664736484
109 => 0.086650012493924
110 => 0.089346417217014
111 => 0.092636217075097
112 => 0.090490615579661
113 => 0.090574719096121
114 => 0.087515655217783
115 => 0.092906876350131
116 => 0.092121420778455
117 => 0.096196365673758
118 => 0.095223847371018
119 => 0.098546806744688
120 => 0.097671760177105
121 => 0.10130402955595
122 => 0.10275304015094
123 => 0.10518615446041
124 => 0.10697596325102
125 => 0.10802697320645
126 => 0.10796387451096
127 => 0.11212849956546
128 => 0.10967276567174
129 => 0.10658778512919
130 => 0.10653198756416
131 => 0.10812974270166
201 => 0.11147819914715
202 => 0.1123464051854
203 => 0.11283161391794
204 => 0.11208849985382
205 => 0.10942297671622
206 => 0.10827201733992
207 => 0.10925266807503
208 => 0.10805341649426
209 => 0.11012366117323
210 => 0.11296654929786
211 => 0.11237950414213
212 => 0.11434190808303
213 => 0.11637278971095
214 => 0.11927704165148
215 => 0.12003632065287
216 => 0.12129137996938
217 => 0.12258324827157
218 => 0.12299816155341
219 => 0.12379035974847
220 => 0.12378618447294
221 => 0.12617352705483
222 => 0.12880683985251
223 => 0.1298008544723
224 => 0.13208653628023
225 => 0.128172386284
226 => 0.13114131401865
227 => 0.13381936115239
228 => 0.13062648295663
301 => 0.13502712170428
302 => 0.13519798853479
303 => 0.13777787481304
304 => 0.13516266582363
305 => 0.13360976307376
306 => 0.13809293512613
307 => 0.14026220086368
308 => 0.13960880036946
309 => 0.13463639034609
310 => 0.13174223443579
311 => 0.12416767017755
312 => 0.13314006873826
313 => 0.13751026234872
314 => 0.1346250726004
315 => 0.13608019448799
316 => 0.14401886768183
317 => 0.14704140044302
318 => 0.14641273475779
319 => 0.14651896890987
320 => 0.14814987272496
321 => 0.1553821983962
322 => 0.15104842121
323 => 0.15436143148531
324 => 0.15611864018939
325 => 0.15775083356405
326 => 0.15374268249591
327 => 0.14852813684769
328 => 0.14687647134917
329 => 0.1343381973408
330 => 0.1336855257277
331 => 0.1333191613733
401 => 0.13100928594203
402 => 0.12919435658118
403 => 0.12775105736943
404 => 0.12396340923216
405 => 0.12524162929091
406 => 0.11920490870372
407 => 0.12306698860716
408 => 0.11343223678828
409 => 0.12145634440124
410 => 0.11708918743891
411 => 0.12002161588481
412 => 0.12001138491821
413 => 0.11461185442203
414 => 0.11149751791716
415 => 0.11348209434986
416 => 0.11560971782158
417 => 0.11595491757168
418 => 0.11871343693942
419 => 0.11948328040078
420 => 0.1171506187723
421 => 0.11323257797212
422 => 0.114142649489
423 => 0.11147907534692
424 => 0.10681126411582
425 => 0.11016376763416
426 => 0.1113084597345
427 => 0.11181402097768
428 => 0.10722376473363
429 => 0.10578140656244
430 => 0.10501350717466
501 => 0.11264003353298
502 => 0.1130578318628
503 => 0.11092031653672
504 => 0.12058208849813
505 => 0.11839533193736
506 => 0.12083847478411
507 => 0.11406007003776
508 => 0.11431901422741
509 => 0.11111000879173
510 => 0.11290683740989
511 => 0.11163689685707
512 => 0.11276167141415
513 => 0.11343585664605
514 => 0.1166443355155
515 => 0.12149298007608
516 => 0.11616509576575
517 => 0.11384366027503
518 => 0.11528386579722
519 => 0.11911932289089
520 => 0.12493023672123
521 => 0.12149005877813
522 => 0.12301675133127
523 => 0.12335026573631
524 => 0.12081360588337
525 => 0.12502376698827
526 => 0.12728002652767
527 => 0.12959448194796
528 => 0.13160405873984
529 => 0.12867003755713
530 => 0.13180986079805
531 => 0.12927971751928
601 => 0.12700991743683
602 => 0.12701335978662
603 => 0.12558948103841
604 => 0.12283053654348
605 => 0.12232174484881
606 => 0.12496854349778
607 => 0.12709102536149
608 => 0.12726584313379
609 => 0.12844095815059
610 => 0.12913637911289
611 => 0.13595244992236
612 => 0.13869392998742
613 => 0.14204615991742
614 => 0.14335204239649
615 => 0.14728228047368
616 => 0.14410829402802
617 => 0.14342158209519
618 => 0.13388811009099
619 => 0.1354492155976
620 => 0.13794869613796
621 => 0.13392932560448
622 => 0.13647869107641
623 => 0.13698198982351
624 => 0.13379274893178
625 => 0.13549626029102
626 => 0.13097223917681
627 => 0.12159159137365
628 => 0.12503421033087
629 => 0.1275691366564
630 => 0.12395148423571
701 => 0.13043598617731
702 => 0.12664787401032
703 => 0.12544722431483
704 => 0.12076306179022
705 => 0.12297380619189
706 => 0.12596386964995
707 => 0.12411635806506
708 => 0.12795022200898
709 => 0.13337999580774
710 => 0.13724957596535
711 => 0.13754663428108
712 => 0.13505875348147
713 => 0.13904559834029
714 => 0.13907463815255
715 => 0.13457746086506
716 => 0.13182296481687
717 => 0.13119713751921
718 => 0.13276057680943
719 => 0.13465888073458
720 => 0.13765197693741
721 => 0.13946064228674
722 => 0.14417668227583
723 => 0.14545270747741
724 => 0.14685467230729
725 => 0.14872812966994
726 => 0.15097769557841
727 => 0.14605577343853
728 => 0.14625133058076
729 => 0.14166810483276
730 => 0.13677027081996
731 => 0.14048711631204
801 => 0.14534639736171
802 => 0.14423167291989
803 => 0.14410624364843
804 => 0.14431718089185
805 => 0.14347671506621
806 => 0.13967531928597
807 => 0.13776628212313
808 => 0.14022942711051
809 => 0.14153847904934
810 => 0.14356870444513
811 => 0.14331843631224
812 => 0.14854807890151
813 => 0.15058015987551
814 => 0.15006026660472
815 => 0.15015593947847
816 => 0.15383492501707
817 => 0.15792671357708
818 => 0.16175921352258
819 => 0.16565779707685
820 => 0.16095790243787
821 => 0.1585715857894
822 => 0.16103365544474
823 => 0.15972724662948
824 => 0.167234259188
825 => 0.16775402844982
826 => 0.17526049816589
827 => 0.18238503178023
828 => 0.17791023986634
829 => 0.18212976709208
830 => 0.18669352980982
831 => 0.19549776853616
901 => 0.19253281066998
902 => 0.1902616994113
903 => 0.18811551024578
904 => 0.1925813892013
905 => 0.19832667113341
906 => 0.19956414983396
907 => 0.2015693380821
908 => 0.19946112782193
909 => 0.20200023486856
910 => 0.21096439848332
911 => 0.20854220234575
912 => 0.20510229444294
913 => 0.21217864068937
914 => 0.21473954288735
915 => 0.23271329566769
916 => 0.25540590101156
917 => 0.24601101339152
918 => 0.24017930347463
919 => 0.24154989363511
920 => 0.24983646491352
921 => 0.25249784860552
922 => 0.24526329029669
923 => 0.24781865859617
924 => 0.26189898916457
925 => 0.26945263476343
926 => 0.25919376945023
927 => 0.23088996692361
928 => 0.20479256837314
929 => 0.2117147736499
930 => 0.21093001039255
1001 => 0.22605756903129
1002 => 0.20848443376894
1003 => 0.20878032029794
1004 => 0.22422070082897
1005 => 0.22010147201843
1006 => 0.21342884889632
1007 => 0.2048412859063
1008 => 0.18896638146582
1009 => 0.17490553589843
1010 => 0.20248209207543
1011 => 0.20129294082836
1012 => 0.19957087360027
1013 => 0.20340314786925
1014 => 0.2220115839094
1015 => 0.22158259922905
1016 => 0.21885361756254
1017 => 0.22092352610445
1018 => 0.21306598392106
1019 => 0.21509105145463
1020 => 0.20478843441188
1021 => 0.20944564759049
1022 => 0.21341453244392
1023 => 0.21421134483859
1024 => 0.21600660385003
1025 => 0.20066631215661
1026 => 0.20755365275966
1027 => 0.2115993201074
1028 => 0.19332084784765
1029 => 0.2112380134806
1030 => 0.2003992718073
1031 => 0.19672044009094
1101 => 0.20167350234779
1102 => 0.19974328916928
1103 => 0.19808380522433
1104 => 0.19715778466949
1105 => 0.20079476694138
1106 => 0.20062509737127
1107 => 0.1946742884666
1108 => 0.18691170083647
1109 => 0.1895170800434
1110 => 0.18857052135196
1111 => 0.1851400705457
1112 => 0.18745178019491
1113 => 0.17727218082926
1114 => 0.15975870921018
1115 => 0.17132864501389
1116 => 0.17088321507111
1117 => 0.17065860909533
1118 => 0.17935309608227
1119 => 0.17851732177442
1120 => 0.17700038322174
1121 => 0.18511221077958
1122 => 0.18215128460149
1123 => 0.19127616140041
1124 => 0.19728639542021
1125 => 0.19576200566209
1126 => 0.20141465980769
1127 => 0.1895771027182
1128 => 0.19350906434297
1129 => 0.19431943618437
1130 => 0.18501211208668
1201 => 0.17865406478738
1202 => 0.17823005551956
1203 => 0.16720607769546
1204 => 0.17309499766665
1205 => 0.17827700354124
1206 => 0.17579522486721
1207 => 0.17500956788005
1208 => 0.17902331903928
1209 => 0.1793352218798
1210 => 0.17222380406183
1211 => 0.1737024930155
1212 => 0.17986887176389
1213 => 0.17354711609234
1214 => 0.16126497747543
1215 => 0.15821883728459
1216 => 0.15781242603163
1217 => 0.14955105224163
1218 => 0.15842239493783
1219 => 0.15454981611374
1220 => 0.16678324621842
1221 => 0.15979557655183
1222 => 0.15949435207858
1223 => 0.15903900710724
1224 => 0.15192810141314
1225 => 0.15348493783852
1226 => 0.15866009922935
1227 => 0.16050665511596
1228 => 0.1603140442086
1229 => 0.15863473811523
1230 => 0.15940351584534
1231 => 0.15692701491675
]
'min_raw' => 0.086650012493924
'max_raw' => 0.26945263476343
'avg_raw' => 0.17805132362868
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.08665'
'max' => '$0.269452'
'avg' => '$0.178051'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.049361659845611
'max_diff' => 0.16829292722076
'year' => 2033
]
8 => [
'items' => [
101 => 0.15605251089496
102 => 0.1532923356509
103 => 0.14923564056
104 => 0.14979974889354
105 => 0.14176237442646
106 => 0.13738318624104
107 => 0.13617108466809
108 => 0.13455021178753
109 => 0.13635416657293
110 => 0.14173960555444
111 => 0.13524362355813
112 => 0.1241067180656
113 => 0.12477606506207
114 => 0.12627988903222
115 => 0.12347752301264
116 => 0.12082531875986
117 => 0.12313119517752
118 => 0.1184123415051
119 => 0.12685013995394
120 => 0.12662192115255
121 => 0.12976701062432
122 => 0.13173369961475
123 => 0.12720111821493
124 => 0.12606118625028
125 => 0.12671054330437
126 => 0.11597811766106
127 => 0.12888994247985
128 => 0.12900160447706
129 => 0.128045486665
130 => 0.13492063477314
131 => 0.14942934169379
201 => 0.14397058253886
202 => 0.1418567860022
203 => 0.13783845724084
204 => 0.1431926417306
205 => 0.14278152390008
206 => 0.14092229315864
207 => 0.13979782460506
208 => 0.14186969239311
209 => 0.13954109725778
210 => 0.13912281758595
211 => 0.13658849786749
212 => 0.1356838610322
213 => 0.13501410393398
214 => 0.13427676717781
215 => 0.13590314832904
216 => 0.13221755467209
217 => 0.127773090025
218 => 0.12740358087937
219 => 0.12842382811804
220 => 0.1279724446634
221 => 0.12740141982905
222 => 0.12631117791092
223 => 0.12598772642314
224 => 0.12703878684206
225 => 0.12585220090973
226 => 0.12760307308957
227 => 0.12712693273683
228 => 0.12446725143169
301 => 0.12115230378534
302 => 0.12112279379795
303 => 0.12040859376515
304 => 0.11949895264268
305 => 0.11924591129218
306 => 0.12293700069723
307 => 0.13057744530068
308 => 0.12907744320468
309 => 0.13016134844544
310 => 0.13549308944953
311 => 0.13718788958368
312 => 0.135984960592
313 => 0.13433831719476
314 => 0.13441076114738
315 => 0.14003784010861
316 => 0.1403887941211
317 => 0.14127554168863
318 => 0.14241526290773
319 => 0.1361790600439
320 => 0.13411703655331
321 => 0.13313993542675
322 => 0.13013084214269
323 => 0.13337589126939
324 => 0.13148514011012
325 => 0.13174026703876
326 => 0.13157411529179
327 => 0.13166484538077
328 => 0.12684778141731
329 => 0.12860286634816
330 => 0.12568469724629
331 => 0.12177759639874
401 => 0.1217644984267
402 => 0.12272075582395
403 => 0.12215193650571
404 => 0.120621258346
405 => 0.12083868395399
406 => 0.11893380684203
407 => 0.1210699705243
408 => 0.12113122805514
409 => 0.12030868867985
410 => 0.12359974356616
411 => 0.12494809143833
412 => 0.12440667840101
413 => 0.12491010445633
414 => 0.12913977506387
415 => 0.12982939592637
416 => 0.13013567995969
417 => 0.1297252999299
418 => 0.12498741507052
419 => 0.12519756041108
420 => 0.12365565333571
421 => 0.12235290433918
422 => 0.12240500746702
423 => 0.12307478979675
424 => 0.12599976851289
425 => 0.13215521378409
426 => 0.13238880843256
427 => 0.13267193196094
428 => 0.13152032628453
429 => 0.13117299099314
430 => 0.13163121589733
501 => 0.13394287750325
502 => 0.1398890987637
503 => 0.13778730703549
504 => 0.13607851764412
505 => 0.13757758662666
506 => 0.13734681670689
507 => 0.13539888634538
508 => 0.13534421442792
509 => 0.13160551327318
510 => 0.13022340058237
511 => 0.1290684037686
512 => 0.12780717739991
513 => 0.12705948013186
514 => 0.12820828295791
515 => 0.12847102775647
516 => 0.12595915029966
517 => 0.12561679068401
518 => 0.12766804403787
519 => 0.12676536391527
520 => 0.12769379280676
521 => 0.1279091962735
522 => 0.12787451135419
523 => 0.12693200963404
524 => 0.12753273212466
525 => 0.12611184435035
526 => 0.12456684230624
527 => 0.12358122725912
528 => 0.12272114740765
529 => 0.12319836969738
530 => 0.12149715937183
531 => 0.12095290795009
601 => 0.12732922086152
602 => 0.13203947176611
603 => 0.13197098285249
604 => 0.13155407420477
605 => 0.13093463252108
606 => 0.13389756148583
607 => 0.13286533628014
608 => 0.13361636636258
609 => 0.13380753503919
610 => 0.13438614504698
611 => 0.13459294839155
612 => 0.1339678450501
613 => 0.13186992188622
614 => 0.1266420968264
615 => 0.1242085301488
616 => 0.12340541261094
617 => 0.1234346044081
618 => 0.1226293643244
619 => 0.12286654361738
620 => 0.12254688304552
621 => 0.12194152325662
622 => 0.12316099043627
623 => 0.12330152266861
624 => 0.12301688445733
625 => 0.12308392706014
626 => 0.12072724424132
627 => 0.12090641771759
628 => 0.11990875703346
629 => 0.11972170768216
630 => 0.11719970834893
701 => 0.11273162096047
702 => 0.11520737510142
703 => 0.11221701224287
704 => 0.11108451651695
705 => 0.11644557514425
706 => 0.11590747355069
707 => 0.11498647752965
708 => 0.11362413246215
709 => 0.11311882542457
710 => 0.11004873982502
711 => 0.10986734278953
712 => 0.11138896011195
713 => 0.11068678607331
714 => 0.10970066778895
715 => 0.10612904732421
716 => 0.10211336339895
717 => 0.10223457165496
718 => 0.10351188599713
719 => 0.1072258497163
720 => 0.105774739839
721 => 0.10472194297345
722 => 0.10452478576749
723 => 0.10699262097665
724 => 0.11048512482507
725 => 0.11212372949038
726 => 0.11049992203222
727 => 0.10863457945629
728 => 0.10874811421572
729 => 0.10950341010575
730 => 0.10958278102448
731 => 0.10836863476787
801 => 0.1087104098272
802 => 0.10819122225951
803 => 0.1050049691149
804 => 0.10494733989923
805 => 0.10416538199227
806 => 0.10414170461762
807 => 0.10281139914934
808 => 0.10262528021836
809 => 0.099983877967326
810 => 0.10172245692786
811 => 0.10055630944063
812 => 0.09879865011098
813 => 0.098495628980047
814 => 0.098486519798943
815 => 0.10029124292505
816 => 0.10170136768737
817 => 0.10057659507544
818 => 0.1003205061545
819 => 0.10305486584685
820 => 0.10270689365176
821 => 0.10240555197499
822 => 0.11017240941156
823 => 0.10402433569507
824 => 0.1013434246349
825 => 0.098025288106736
826 => 0.099105690091802
827 => 0.099333346664463
828 => 0.091353826453297
829 => 0.088116536097413
830 => 0.087005620041987
831 => 0.086366272146042
901 => 0.086657631010649
902 => 0.083743689994067
903 => 0.085701906549347
904 => 0.083178679938289
905 => 0.082755652785656
906 => 0.087267494534023
907 => 0.087895290955511
908 => 0.085216916380383
909 => 0.086936866447071
910 => 0.086313188643796
911 => 0.083221933416436
912 => 0.083103870204485
913 => 0.081552786994272
914 => 0.07912564211918
915 => 0.078016371782272
916 => 0.077438654159683
917 => 0.077677031710255
918 => 0.077556500726213
919 => 0.076769954525035
920 => 0.077601584633766
921 => 0.075477113359245
922 => 0.074631131779703
923 => 0.074249021526847
924 => 0.072363430990705
925 => 0.075364244059624
926 => 0.075955442037448
927 => 0.076547804857918
928 => 0.08170391878684
929 => 0.081446333905978
930 => 0.083774775780048
1001 => 0.083684296810551
1002 => 0.083020187469809
1003 => 0.080218419401902
1004 => 0.081335154217056
1005 => 0.077898018035134
1006 => 0.080473354165172
1007 => 0.07929807830403
1008 => 0.080075992214299
1009 => 0.078677232861967
1010 => 0.079451364040906
1011 => 0.076095637009989
1012 => 0.072962106324872
1013 => 0.074223130546026
1014 => 0.075594008090033
1015 => 0.078566419898541
1016 => 0.076796075947258
1017 => 0.077432758576256
1018 => 0.075299978348499
1019 => 0.070899443540084
1020 => 0.070924350089203
1021 => 0.070247423679791
1022 => 0.069662460429184
1023 => 0.076999421246248
1024 => 0.07608695418846
1025 => 0.07463305735261
1026 => 0.076579156042958
1027 => 0.077093735425426
1028 => 0.077108384777031
1029 => 0.078528208145432
1030 => 0.079285968131665
1031 => 0.079419526613558
1101 => 0.081653649361051
1102 => 0.082402497837218
1103 => 0.085486898729551
1104 => 0.079221677491007
1105 => 0.079092649382543
1106 => 0.076606541642482
1107 => 0.075029812809927
1108 => 0.076714501614597
1109 => 0.07820690591258
1110 => 0.076652914804081
1111 => 0.076855833236308
1112 => 0.074769727138886
1113 => 0.0755154119083
1114 => 0.076157696086304
1115 => 0.075803064514929
1116 => 0.075272163888218
1117 => 0.0780845457793
1118 => 0.077925860171191
1119 => 0.080544814844547
1120 => 0.082586477295672
1121 => 0.086245501398908
1122 => 0.082427118997941
1123 => 0.082287961966555
1124 => 0.083648244269849
1125 => 0.082402289585085
1126 => 0.083189689936962
1127 => 0.086118639029058
1128 => 0.086180523107997
1129 => 0.085143885052646
1130 => 0.085080805532768
1201 => 0.085279903210876
1202 => 0.086446024530257
1203 => 0.086038545909976
1204 => 0.086510090485461
1205 => 0.087099764197652
1206 => 0.089538904687747
1207 => 0.090126973202237
1208 => 0.088698271590592
1209 => 0.08882726734963
1210 => 0.088292893728138
1211 => 0.087776695505459
1212 => 0.088937033725345
1213 => 0.091057574628692
1214 => 0.091044382853788
1215 => 0.091536307125939
1216 => 0.091842771872169
1217 => 0.090527200835446
1218 => 0.089670812465427
1219 => 0.0899992062599
1220 => 0.090524315088749
1221 => 0.089828920543945
1222 => 0.085536623275323
1223 => 0.086838632073612
1224 => 0.086621914144599
1225 => 0.086313281459884
1226 => 0.0876224613747
1227 => 0.08749618777815
1228 => 0.083713803317201
1229 => 0.083955939298474
1230 => 0.083728528408201
1231 => 0.084463339518564
]
'min_raw' => 0.069662460429184
'max_raw' => 0.15605251089496
'avg_raw' => 0.11285748566207
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.069662'
'max' => '$0.156052'
'avg' => '$0.112857'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.01698755206474
'max_diff' => -0.11340012386847
'year' => 2034
]
9 => [
'items' => [
101 => 0.082362607373681
102 => 0.0830087784328
103 => 0.083414050863602
104 => 0.083652759438794
105 => 0.08451513849639
106 => 0.084413948267523
107 => 0.084508848369686
108 => 0.08578752885247
109 => 0.092254655944237
110 => 0.09260664740293
111 => 0.090873312725497
112 => 0.091565745740617
113 => 0.090236425770041
114 => 0.091128807171958
115 => 0.09173935186312
116 => 0.088980417804752
117 => 0.088817051635149
118 => 0.087482245088189
119 => 0.088199494519218
120 => 0.087058299102392
121 => 0.08733830854036
122 => 0.086555377741017
123 => 0.087964497299867
124 => 0.089540111921704
125 => 0.089938174398086
126 => 0.088891043399394
127 => 0.088132851547046
128 => 0.086801716418244
129 => 0.089015423803722
130 => 0.089662779304746
131 => 0.089012023520863
201 => 0.088861229186443
202 => 0.088575474195195
203 => 0.088921853458687
204 => 0.089659253667661
205 => 0.089311509346752
206 => 0.089541200597179
207 => 0.088665854407142
208 => 0.0905276363442
209 => 0.093484594122471
210 => 0.09349410122524
211 => 0.09314635502986
212 => 0.093004064779007
213 => 0.09336087347847
214 => 0.09355442756087
215 => 0.09470828146741
216 => 0.095946412680695
217 => 0.10172423081412
218 => 0.10010184260257
219 => 0.10522826657449
220 => 0.10928260235343
221 => 0.11049832037892
222 => 0.10937991699943
223 => 0.10555391945313
224 => 0.10536619776062
225 => 0.11108385338929
226 => 0.10946835378897
227 => 0.10927619525199
228 => 0.10723195307549
301 => 0.10844035338612
302 => 0.10817605851202
303 => 0.10775885612351
304 => 0.1100643997383
305 => 0.11438017156788
306 => 0.11370751805519
307 => 0.11320541341147
308 => 0.11100533702312
309 => 0.11233027441376
310 => 0.11185848958645
311 => 0.11388557660659
312 => 0.11268477516134
313 => 0.10945611479061
314 => 0.10997028959645
315 => 0.10989257310893
316 => 0.11149197291518
317 => 0.11101187279289
318 => 0.10979882585472
319 => 0.11436542072896
320 => 0.11406889145856
321 => 0.11448930216795
322 => 0.11467437996386
323 => 0.11745398579138
324 => 0.11859270136145
325 => 0.11885120973188
326 => 0.11993290145202
327 => 0.11882429625648
328 => 0.12325950746075
329 => 0.12620866410984
330 => 0.12963426131996
331 => 0.13463997955769
401 => 0.13652217592056
402 => 0.13618217399449
403 => 0.13997745243286
404 => 0.14679748342231
405 => 0.13756069724961
406 => 0.14728705551814
407 => 0.14420780278653
408 => 0.13690694995327
409 => 0.13643686110221
410 => 0.14138108340553
411 => 0.15234689261055
412 => 0.14960008177787
413 => 0.15235138540905
414 => 0.14914184357918
415 => 0.14898246277519
416 => 0.15219550512621
417 => 0.15970295371319
418 => 0.15613644630202
419 => 0.15102298338461
420 => 0.15479868482853
421 => 0.15152782281313
422 => 0.14415765523581
423 => 0.14959798134339
424 => 0.14596019020682
425 => 0.14702189105608
426 => 0.15466798694458
427 => 0.15374798845821
428 => 0.15493855168913
429 => 0.15283723874902
430 => 0.15087428111632
501 => 0.14721027492374
502 => 0.14612554332344
503 => 0.14642532411321
504 => 0.14612539476697
505 => 0.14407541697617
506 => 0.14363272446743
507 => 0.14289488422473
508 => 0.14312357176849
509 => 0.14173621624942
510 => 0.14435444275618
511 => 0.14484040866756
512 => 0.14674573557721
513 => 0.14694355293765
514 => 0.15224986126038
515 => 0.14932723580511
516 => 0.15128798528784
517 => 0.15111259739882
518 => 0.13706518157229
519 => 0.13900079153179
520 => 0.1420119932009
521 => 0.14065545093055
522 => 0.13873761754228
523 => 0.13718886425354
524 => 0.13484234465294
525 => 0.13814502592987
526 => 0.14248770060803
527 => 0.14705369033399
528 => 0.15253942781423
529 => 0.15131507506966
530 => 0.1469511382876
531 => 0.14714690130378
601 => 0.14835703123993
602 => 0.14678980302072
603 => 0.14632759682294
604 => 0.14829353120602
605 => 0.14830706951566
606 => 0.14650378404359
607 => 0.14449976223915
608 => 0.14449136531462
609 => 0.14413476899107
610 => 0.14920528127296
611 => 0.15199355034138
612 => 0.15231322089656
613 => 0.15197203396602
614 => 0.15210334327436
615 => 0.15048091093876
616 => 0.15418931014058
617 => 0.15759250397083
618 => 0.15668037532569
619 => 0.1553129648199
620 => 0.15422375648862
621 => 0.15642379245838
622 => 0.15632582831983
623 => 0.15756278004161
624 => 0.15750666476653
625 => 0.1570907244266
626 => 0.15668039018023
627 => 0.158307319085
628 => 0.15783878968811
629 => 0.15736953253565
630 => 0.15642836547671
701 => 0.15655628571115
702 => 0.15518911130806
703 => 0.15455659387155
704 => 0.14504504924792
705 => 0.1425032537258
706 => 0.14330295434008
707 => 0.14356623654651
708 => 0.14246004387789
709 => 0.14404604000712
710 => 0.14379886419036
711 => 0.14476048070034
712 => 0.14415970445344
713 => 0.14418436052017
714 => 0.1459511153633
715 => 0.14646401181057
716 => 0.14620314853791
717 => 0.14638584823221
718 => 0.15059608557473
719 => 0.14999752446044
720 => 0.14967955079823
721 => 0.14976763167573
722 => 0.15084343758526
723 => 0.1511446045031
724 => 0.14986853910958
725 => 0.15047033892601
726 => 0.15303272616459
727 => 0.15392941667954
728 => 0.15679122236738
729 => 0.15557547644665
730 => 0.15780703070041
731 => 0.16466606768357
801 => 0.17014554103498
802 => 0.16510639089221
803 => 0.17516874589535
804 => 0.18300373262439
805 => 0.18270301278387
806 => 0.18133680162116
807 => 0.17241687753405
808 => 0.16420863040051
809 => 0.1710751776683
810 => 0.1710926819094
811 => 0.17050283940946
812 => 0.16683937830049
813 => 0.17037535890388
814 => 0.17065603220338
815 => 0.17049892979271
816 => 0.16769016274991
817 => 0.16340169462246
818 => 0.16423965102942
819 => 0.16561224071787
820 => 0.16301364208543
821 => 0.16218323236772
822 => 0.16372712202485
823 => 0.16870185618232
824 => 0.16776141150652
825 => 0.1677368526954
826 => 0.17176047382907
827 => 0.16888042944915
828 => 0.16425022034322
829 => 0.16308103147902
830 => 0.15893119867109
831 => 0.16179750297272
901 => 0.16190065616175
902 => 0.16033081058867
903 => 0.16437760465956
904 => 0.16434031273977
905 => 0.16818214142428
906 => 0.17552627494409
907 => 0.17335425327942
908 => 0.17082842839869
909 => 0.17110305559676
910 => 0.17411503812182
911 => 0.17229392473029
912 => 0.17294880980314
913 => 0.17411404687482
914 => 0.17481706333138
915 => 0.17100190234747
916 => 0.17011240582187
917 => 0.16829280810136
918 => 0.16781810902048
919 => 0.16930013339668
920 => 0.16890967233425
921 => 0.16189198653564
922 => 0.16115859932366
923 => 0.16118109126241
924 => 0.1593369542472
925 => 0.15652420265542
926 => 0.16391594589796
927 => 0.16332228546821
928 => 0.16266693029942
929 => 0.16274720756819
930 => 0.16595571278036
1001 => 0.16409461772391
1002 => 0.16904264395897
1003 => 0.16802547851633
1004 => 0.16698222661819
1005 => 0.16683801742764
1006 => 0.16643645445293
1007 => 0.16505934559764
1008 => 0.16339640390347
1009 => 0.16229838575543
1010 => 0.14971168179917
1011 => 0.15204770083997
1012 => 0.15473507781156
1013 => 0.15566274957317
1014 => 0.15407590283201
1015 => 0.16512200397893
1016 => 0.16714023310135
1017 => 0.16102688544371
1018 => 0.1598833277033
1019 => 0.16519697543401
1020 => 0.16199219628537
1021 => 0.16343530813977
1022 => 0.16031608965055
1023 => 0.1666541008064
1024 => 0.16660581578047
1025 => 0.16414018629037
1026 => 0.1662241194515
1027 => 0.16586198478168
1028 => 0.16307829515993
1029 => 0.16674234873259
1030 => 0.16674416605745
1031 => 0.16437105128063
1101 => 0.16159977276294
1102 => 0.16110433361865
1103 => 0.16073108677631
1104 => 0.163343512297
1105 => 0.16568580485002
1106 => 0.1700442305876
1107 => 0.17114004237167
1108 => 0.17541706871722
1109 => 0.17287030777308
1110 => 0.17399925391354
1111 => 0.17522488464819
1112 => 0.17581249709346
1113 => 0.17485501414692
1114 => 0.18149899655583
1115 => 0.1820599522375
1116 => 0.18224803582532
1117 => 0.18000772233898
1118 => 0.18199764506675
1119 => 0.18106662612174
1120 => 0.18348887877214
1121 => 0.1838687189166
1122 => 0.18354700782745
1123 => 0.18366757508467
1124 => 0.17799810817747
1125 => 0.17770411640951
1126 => 0.1736955177927
1127 => 0.17532905135912
1128 => 0.172275238654
1129 => 0.17324363412055
1130 => 0.17367049361499
1201 => 0.17344752643916
1202 => 0.17542140889603
1203 => 0.17374320557014
1204 => 0.16931415107096
1205 => 0.16488388987885
1206 => 0.16482827155839
1207 => 0.16366186198711
1208 => 0.16281876150565
1209 => 0.16298117256897
1210 => 0.16355353033975
1211 => 0.16278549503152
1212 => 0.16294939430491
1213 => 0.1656712142983
1214 => 0.16621705588684
1215 => 0.1643620728949
1216 => 0.15691404850948
1217 => 0.15508628464334
1218 => 0.15640004506419
1219 => 0.15577215220003
1220 => 0.12572028434343
1221 => 0.13278052493068
1222 => 0.12858556971685
1223 => 0.13051879808
1224 => 0.12623683508506
1225 => 0.12828041226315
1226 => 0.12790303817785
1227 => 0.13925569611444
1228 => 0.13907843997583
1229 => 0.1391632831092
1230 => 0.13511349929602
1231 => 0.14156491487403
]
'min_raw' => 0.082362607373681
'max_raw' => 0.1838687189166
'avg_raw' => 0.13311566314514
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.082362'
'max' => '$0.183868'
'avg' => '$0.133115'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.012700146944497
'max_diff' => 0.02781620802164
'year' => 2035
]
10 => [
'items' => [
101 => 0.14474311417315
102 => 0.14415491406792
103 => 0.14430295136213
104 => 0.14175918017653
105 => 0.13918791237468
106 => 0.13633598066716
107 => 0.14163451727033
108 => 0.14104541044909
109 => 0.14239660954306
110 => 0.14583308927743
111 => 0.14633912397223
112 => 0.14701923973375
113 => 0.14677546664718
114 => 0.15258313056354
115 => 0.15187978414307
116 => 0.15357464664983
117 => 0.1500881858839
118 => 0.14614292458935
119 => 0.14689278978113
120 => 0.14682057173313
121 => 0.14590115309402
122 => 0.14507114305662
123 => 0.14368941019822
124 => 0.14806141742017
125 => 0.14788392191118
126 => 0.15075736788574
127 => 0.15024945839858
128 => 0.14685751453673
129 => 0.14697865847533
130 => 0.14779340968222
131 => 0.15061327291191
201 => 0.15145040030942
202 => 0.15106260954513
203 => 0.15198048152018
204 => 0.1527059301046
205 => 0.15207158669318
206 => 0.16105255168702
207 => 0.15732302887089
208 => 0.15914077234162
209 => 0.15957429344862
210 => 0.158463838249
211 => 0.15870465621938
212 => 0.15906942982553
213 => 0.16128426373211
214 => 0.16709662877032
215 => 0.16967088567964
216 => 0.17741566460291
217 => 0.1694571294787
218 => 0.16898490294012
219 => 0.17037997149412
220 => 0.1749269765902
221 => 0.17861189714209
222 => 0.17983439787732
223 => 0.17999597153077
224 => 0.18228946418037
225 => 0.18360405139602
226 => 0.18201097384786
227 => 0.18066100742798
228 => 0.17582559527593
229 => 0.17638530739892
301 => 0.18024116888651
302 => 0.18568780034684
303 => 0.19036157676522
304 => 0.18872498316105
305 => 0.20121103710579
306 => 0.20244897835345
307 => 0.20227793490046
308 => 0.20509814929299
309 => 0.19950059805048
310 => 0.19710753644686
311 => 0.18095288549072
312 => 0.18549168346975
313 => 0.19208909288652
314 => 0.19121590101119
315 => 0.18642468594348
316 => 0.19035794219895
317 => 0.18905748467659
318 => 0.18803175987268
319 => 0.19273080404594
320 => 0.18756401195135
321 => 0.19203755018299
322 => 0.18630019112808
323 => 0.18873245898278
324 => 0.18735178611289
325 => 0.18824525066861
326 => 0.18302207513236
327 => 0.1858403738663
328 => 0.18290482463932
329 => 0.18290343280677
330 => 0.18283863039488
331 => 0.18629229104221
401 => 0.18640491479192
402 => 0.18385265435536
403 => 0.18348483375265
404 => 0.18484485930345
405 => 0.18325262557472
406 => 0.18399762171499
407 => 0.18327519074887
408 => 0.18311255632167
409 => 0.18181665753578
410 => 0.18125834870734
411 => 0.18147727598482
412 => 0.18072996432204
413 => 0.18027968201377
414 => 0.18274905791032
415 => 0.18142976998313
416 => 0.18254685811423
417 => 0.18127379520109
418 => 0.17686080449702
419 => 0.17432284687658
420 => 0.16598711652106
421 => 0.16835111930945
422 => 0.16991845560388
423 => 0.16940045096792
424 => 0.17051332536715
425 => 0.17058164681687
426 => 0.17021984000527
427 => 0.16980091406776
428 => 0.16959700408944
429 => 0.17111678200754
430 => 0.17199906424238
501 => 0.17007575876928
502 => 0.16962515520684
503 => 0.17156972322874
504 => 0.17275590859877
505 => 0.18151403491101
506 => 0.18086520462542
507 => 0.18249364131573
508 => 0.1823103043348
509 => 0.18401716541656
510 => 0.18680716191191
511 => 0.18113431894157
512 => 0.18211892832907
513 => 0.1818775248452
514 => 0.18451310478264
515 => 0.18452133277552
516 => 0.18294117094604
517 => 0.183797802309
518 => 0.18331965418265
519 => 0.18418373247256
520 => 0.18085653910139
521 => 0.18490870147914
522 => 0.18720601643176
523 => 0.1872379146521
524 => 0.18832682370702
525 => 0.18943321837218
526 => 0.19155684658528
527 => 0.18937399153392
528 => 0.18544724779317
529 => 0.18573074600794
530 => 0.18342849758948
531 => 0.18346719880133
601 => 0.18326060869941
602 => 0.18388060114665
603 => 0.18099259257836
604 => 0.18167040241687
605 => 0.1807214646737
606 => 0.18211686552374
607 => 0.18061564487713
608 => 0.18187740843314
609 => 0.18242194375578
610 => 0.18443129081937
611 => 0.18031886268208
612 => 0.17193334332325
613 => 0.17369608115707
614 => 0.17108885344078
615 => 0.17133016229234
616 => 0.17181764457651
617 => 0.17023755499925
618 => 0.17053898629624
619 => 0.17052821704917
620 => 0.17043541349596
621 => 0.17002437117096
622 => 0.16942827847746
623 => 0.1718029283007
624 => 0.17220642757876
625 => 0.17310335649089
626 => 0.17577200854071
627 => 0.17550534726979
628 => 0.17594028286634
629 => 0.17499082090113
630 => 0.17137420510979
701 => 0.17157060474732
702 => 0.16912149812019
703 => 0.17304072732809
704 => 0.17211260212036
705 => 0.17151423376113
706 => 0.17135096341047
707 => 0.17402623053255
708 => 0.17482671238515
709 => 0.17432790581294
710 => 0.17330483898085
711 => 0.17526942974103
712 => 0.17579507134903
713 => 0.17591274312014
714 => 0.17939362127427
715 => 0.17610728554122
716 => 0.17689833921554
717 => 0.1830699141663
718 => 0.17747314730509
719 => 0.18043787953427
720 => 0.18029277131937
721 => 0.18180942800675
722 => 0.18016836120311
723 => 0.18018870419294
724 => 0.18153539258411
725 => 0.17964421161525
726 => 0.17917592861162
727 => 0.17852899899601
728 => 0.17994154614424
729 => 0.1807883042756
730 => 0.18761255293898
731 => 0.19202132879908
801 => 0.19182993221167
802 => 0.19357893874116
803 => 0.19279099528056
804 => 0.1902465179973
805 => 0.19458963045388
806 => 0.19321528794907
807 => 0.19332858707534
808 => 0.19332437007621
809 => 0.19423818769479
810 => 0.19359066416187
811 => 0.19231432881155
812 => 0.19316161978117
813 => 0.19567777104887
814 => 0.20348798178878
815 => 0.20785867919035
816 => 0.20322486031719
817 => 0.20642120652659
818 => 0.20450453777556
819 => 0.20415622204754
820 => 0.20616376367517
821 => 0.20817481923867
822 => 0.20804672369331
823 => 0.20658680062305
824 => 0.20576212712484
825 => 0.21200683113918
826 => 0.21660782268118
827 => 0.21629406590345
828 => 0.21767888628117
829 => 0.22174476174101
830 => 0.22211649443785
831 => 0.22206966466223
901 => 0.22114828638682
902 => 0.22515166879768
903 => 0.22849136083764
904 => 0.22093501393724
905 => 0.22381237191707
906 => 0.22510411061689
907 => 0.22700076626985
908 => 0.23020074227277
909 => 0.23367676496366
910 => 0.2341683126848
911 => 0.23381953605393
912 => 0.23152700564878
913 => 0.23533051115473
914 => 0.23755851547693
915 => 0.23888524106384
916 => 0.24224959640613
917 => 0.22511208795534
918 => 0.21298130768444
919 => 0.21108691117455
920 => 0.21493924097088
921 => 0.21595506961642
922 => 0.21554559036314
923 => 0.20189129428595
924 => 0.21101502413153
925 => 0.22083139030037
926 => 0.22120847690333
927 => 0.22612275505799
928 => 0.22772304546821
929 => 0.23167968351187
930 => 0.23143219472497
1001 => 0.23239557312474
1002 => 0.23217410911402
1003 => 0.23950294792147
1004 => 0.24758774546918
1005 => 0.24730779463818
1006 => 0.24614550933572
1007 => 0.24787170120897
1008 => 0.25621607869777
1009 => 0.25544786213453
1010 => 0.25619411908919
1011 => 0.26603261041699
1012 => 0.2788240486522
1013 => 0.27288114135254
1014 => 0.28577554016729
1015 => 0.29389188071846
1016 => 0.30792825245643
1017 => 0.30617082958425
1018 => 0.31163508609819
1019 => 0.30302467585782
1020 => 0.28325343349492
1021 => 0.28012455870971
1022 => 0.28638864526542
1023 => 0.30178829082201
1024 => 0.28590365562416
1025 => 0.28911709663649
1026 => 0.28819162540876
1027 => 0.28814231098003
1028 => 0.29002444214824
1029 => 0.2872943127234
1030 => 0.27617127430568
1031 => 0.28126889726404
1101 => 0.27930046023186
1102 => 0.28148458787577
1103 => 0.29327142396719
1104 => 0.2880601827681
1105 => 0.28257056349171
1106 => 0.28945576430834
1107 => 0.2982229909596
1108 => 0.29767435367199
1109 => 0.29660976802142
1110 => 0.30261078159378
1111 => 0.31252269788333
1112 => 0.31520184902709
1113 => 0.31717954362858
1114 => 0.3174522343007
1115 => 0.32026111769986
1116 => 0.30515704373283
1117 => 0.32912759701863
1118 => 0.33326664939792
1119 => 0.33248867909676
1120 => 0.33708906161839
1121 => 0.33573551238009
1122 => 0.33377443189915
1123 => 0.34106701672536
1124 => 0.33270665670336
1125 => 0.3208401781922
1126 => 0.31432999338865
1127 => 0.3229031298996
1128 => 0.3281384452056
1129 => 0.33159865559428
1130 => 0.33264571316718
1201 => 0.30632952999911
1202 => 0.29214656683395
1203 => 0.30123768361481
1204 => 0.31232947352283
1205 => 0.30509542827985
1206 => 0.30537898915752
1207 => 0.29506514171468
1208 => 0.31324202016543
1209 => 0.31059380186677
1210 => 0.32433276308485
1211 => 0.3210538497281
1212 => 0.33225743925805
1213 => 0.32930715866164
1214 => 0.34155360846936
1215 => 0.34643904885705
1216 => 0.35464246362606
1217 => 0.36067692892405
1218 => 0.36422048236796
1219 => 0.36400774071072
1220 => 0.3780490648468
1221 => 0.36976938657026
1222 => 0.35936815928458
1223 => 0.35918003389843
1224 => 0.36456697689621
1225 => 0.37585653158393
1226 => 0.37878374885812
1227 => 0.38041966397606
1228 => 0.37791420302632
1229 => 0.36892720566701
1230 => 0.36504666577238
1231 => 0.36835299819267
]
'min_raw' => 0.13633598066716
'max_raw' => 0.38041966397606
'avg_raw' => 0.25837782232161
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.136335'
'max' => '$0.380419'
'avg' => '$0.258377'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.05397337329348
'max_diff' => 0.19655094505947
'year' => 2036
]
11 => [
'items' => [
101 => 0.36430963775904
102 => 0.37128961223406
103 => 0.38087460803036
104 => 0.3788953443016
105 => 0.38551172619903
106 => 0.39235898539919
107 => 0.40215087358507
108 => 0.40471083574943
109 => 0.40894235586048
110 => 0.41329798003669
111 => 0.41469688913472
112 => 0.41736784065887
113 => 0.41735376342592
114 => 0.42540285561972
115 => 0.43428125356912
116 => 0.43763264325963
117 => 0.44533897905626
118 => 0.43214214906675
119 => 0.44215209620805
120 => 0.45118131909473
121 => 0.44041630733806
122 => 0.45525336811858
123 => 0.45582945756718
124 => 0.46452772427621
125 => 0.45571036458034
126 => 0.45047464453894
127 => 0.46558997211859
128 => 0.47290380300603
129 => 0.47070081762081
130 => 0.45393599006443
131 => 0.44417814134934
201 => 0.4186399691135
202 => 0.44889103729379
203 => 0.46362545016865
204 => 0.45389783149466
205 => 0.45880387653204
206 => 0.48556966746552
207 => 0.49576034769637
208 => 0.49364075744659
209 => 0.49399893330738
210 => 0.49949763938601
211 => 0.52388193033143
212 => 0.5092702979735
213 => 0.52044034342372
214 => 0.52636489525392
215 => 0.53186794917267
216 => 0.51835418800627
217 => 0.50077298328536
218 => 0.49520427774148
219 => 0.45293061152794
220 => 0.4507300836163
221 => 0.44949486061667
222 => 0.4417069543298
223 => 0.43558779327539
224 => 0.43072160921503
225 => 0.41795128907509
226 => 0.42226089724564
227 => 0.40190767231553
228 => 0.41492894435181
301 => 0.38244470591756
302 => 0.40949854495996
303 => 0.3947743703563
304 => 0.40466125759726
305 => 0.40462676317907
306 => 0.38642186912803
307 => 0.37592166616583
308 => 0.38261280416735
309 => 0.38978623524819
310 => 0.39095010030673
311 => 0.40025064094874
312 => 0.40284622192747
313 => 0.39498149038582
314 => 0.38177154227913
315 => 0.38483991193748
316 => 0.37585948575264
317 => 0.36012163429081
318 => 0.37142483396722
319 => 0.37528424330335
320 => 0.37698877833189
321 => 0.36151240892364
322 => 0.35664939764724
323 => 0.3540603712483
324 => 0.37977373733245
325 => 0.38118237357118
326 => 0.37397559141274
327 => 0.40655093014402
328 => 0.3991781277249
329 => 0.40741535440751
330 => 0.38456148955211
331 => 0.3854345379664
401 => 0.37461515209442
402 => 0.3806732852311
403 => 0.37639159199284
404 => 0.38018384794129
405 => 0.38245691052074
406 => 0.39327452103796
407 => 0.4096220646955
408 => 0.39165873076221
409 => 0.38383184892779
410 => 0.38868760239781
411 => 0.40161911377218
412 => 0.42121101545623
413 => 0.4096122153355
414 => 0.41475956586868
415 => 0.4158840329705
416 => 0.40733150717239
417 => 0.4215263592816
418 => 0.4291334958457
419 => 0.43693684388535
420 => 0.44371227234333
421 => 0.43382001507901
422 => 0.44440614835121
423 => 0.4358755936379
424 => 0.42822280418752
425 => 0.42823441031018
426 => 0.42343370369855
427 => 0.41413172971054
428 => 0.41241630298927
429 => 0.42134016942785
430 => 0.42849626521829
501 => 0.42908567554298
502 => 0.43304765786604
503 => 0.43539231819317
504 => 0.45837317681017
505 => 0.46761626825357
506 => 0.47891854550778
507 => 0.48332141945974
508 => 0.49657249153746
509 => 0.48587117463524
510 => 0.48355587740901
511 => 0.4514131109411
512 => 0.45667648714955
513 => 0.46510366029954
514 => 0.45155207192242
515 => 0.46014743560203
516 => 0.46184434246708
517 => 0.45109159413494
518 => 0.45683510161797
519 => 0.44158204857434
520 => 0.40995453957007
521 => 0.42156156974033
522 => 0.43010825082975
523 => 0.41791108311697
524 => 0.43977403414655
525 => 0.42700214949798
526 => 0.42295407522297
527 => 0.40716109423346
528 => 0.41461477333292
529 => 0.42469598104135
530 => 0.41846696674373
531 => 0.43139310670249
601 => 0.44969996815971
602 => 0.46274652782657
603 => 0.46374808067801
604 => 0.45536001686383
605 => 0.46880194265796
606 => 0.46889985241249
607 => 0.45373730520483
608 => 0.44445032946556
609 => 0.44234030903763
610 => 0.44761155376047
611 => 0.45401181797944
612 => 0.46410325079859
613 => 0.47020129230086
614 => 0.48610175038746
615 => 0.49040395844384
616 => 0.49513078074982
617 => 0.50144727304861
618 => 0.5090318415687
619 => 0.49243723743647
620 => 0.49309657199486
621 => 0.47764390639486
622 => 0.46113051706485
623 => 0.47366212114329
624 => 0.49004552646641
625 => 0.48628715518324
626 => 0.48586426163732
627 => 0.48657545128066
628 => 0.48374176207008
629 => 0.47092509079202
630 => 0.46448863871278
701 => 0.47279330400905
702 => 0.47720686401588
703 => 0.4840519106836
704 => 0.4832081142004
705 => 0.5008402193121
706 => 0.50769152219133
707 => 0.50593866573104
708 => 0.50626123350458
709 => 0.51866519010654
710 => 0.53246094091616
711 => 0.54538248205902
712 => 0.55852682870264
713 => 0.54268080579117
714 => 0.53463517260355
715 => 0.54293621234274
716 => 0.53853156381153
717 => 0.56384198077547
718 => 0.56559441913082
719 => 0.59090300586353
720 => 0.61492386836331
721 => 0.59983679500565
722 => 0.61406322564522
723 => 0.62945027027982
724 => 0.65913437583798
725 => 0.64913781338542
726 => 0.64148060321286
727 => 0.63424457659916
728 => 0.64930159929539
729 => 0.66867221845228
730 => 0.67284446428919
731 => 0.67960509646557
801 => 0.67249711838288
802 => 0.68105789506537
803 => 0.71128119855046
804 => 0.70311459516031
805 => 0.69151670549929
806 => 0.71537510092384
807 => 0.72400936148082
808 => 0.78460912386708
809 => 0.86111882713105
810 => 0.82944330758997
811 => 0.80978129044819
812 => 0.81440233086579
813 => 0.84234108448089
814 => 0.85131412541035
815 => 0.8269223069714
816 => 0.83553790960321
817 => 0.88301072717186
818 => 0.90847837068711
819 => 0.87388989003255
820 => 0.77846164370566
821 => 0.69047244243057
822 => 0.7138111408141
823 => 0.71116525670154
824 => 0.76216887682446
825 => 0.70291982437033
826 => 0.70391742646099
827 => 0.75597574743428
828 => 0.74208747990417
829 => 0.7195902651803
830 => 0.69063669699497
831 => 0.63711334832346
901 => 0.58970622579612
902 => 0.68268251028053
903 => 0.67867320382716
904 => 0.67286713393675
905 => 0.68578791419547
906 => 0.74852755550436
907 => 0.74708120370379
908 => 0.73788025148373
909 => 0.74485909264917
910 => 0.7183668405818
911 => 0.72519449715693
912 => 0.69045850449154
913 => 0.70616062387949
914 => 0.71954199626152
915 => 0.72222850488182
916 => 0.72828134597987
917 => 0.67656048151053
918 => 0.69978163121246
919 => 0.71342188113486
920 => 0.65179473574891
921 => 0.71220371061696
922 => 0.67566013632865
923 => 0.66325669834913
924 => 0.67995629355986
925 => 0.67344844506535
926 => 0.66785337908346
927 => 0.66473123613012
928 => 0.67699357578582
929 => 0.67642152298421
930 => 0.65635795528993
1001 => 0.63018584912839
1002 => 0.6389700670263
1003 => 0.63577867831151
1004 => 0.62421267391176
1005 => 0.6320067643925
1006 => 0.59768553441426
1007 => 0.53863764209901
1008 => 0.57764648844832
1009 => 0.57614469029733
1010 => 0.57538741556848
1011 => 0.60470148547466
1012 => 0.60188361404384
1013 => 0.59676914980423
1014 => 0.62411874276519
1015 => 0.6141357734305
1016 => 0.64490093263661
1017 => 0.6651648562555
1018 => 0.66002526975649
1019 => 0.6790835878641
1020 => 0.63917243766505
1021 => 0.65242932080375
1022 => 0.65516154604539
1023 => 0.62378125303342
1024 => 0.60234465265913
1025 => 0.6009150758093
1026 => 0.56374696490579
1027 => 0.58360186973994
1028 => 0.6010733643422
1029 => 0.59270587427047
1030 => 0.59005697688541
1031 => 0.60358961914991
1101 => 0.6046412213531
1102 => 0.58066457967646
1103 => 0.58565008272253
1104 => 0.60644045919555
1105 => 0.58512621857802
1106 => 0.5437161307196
1107 => 0.53344585639145
1108 => 0.53207561247737
1109 => 0.50422181395371
1110 => 0.53413216523129
1111 => 0.52107549535104
1112 => 0.56232135905981
1113 => 0.53876194291537
1114 => 0.53774634357299
1115 => 0.53621111621095
1116 => 0.51223620119571
1117 => 0.51748518389871
1118 => 0.53493360184613
1119 => 0.54115939394027
1120 => 0.54050999281844
1121 => 0.53484809507924
1122 => 0.53744008287064
1123 => 0.52909038708613
1124 => 0.52614193572073
1125 => 0.51683581217609
1126 => 0.50315838144772
1127 => 0.50506031207906
1128 => 0.47796174291172
1129 => 0.46319700419944
1130 => 0.45911031912001
1201 => 0.45364543303747
1202 => 0.45972759254454
1203 => 0.47788497607003
1204 => 0.45598331923448
1205 => 0.41843446481253
1206 => 0.42069121494343
1207 => 0.42576146245242
1208 => 0.41631308976246
1209 => 0.40737099795322
1210 => 0.41514542128651
1211 => 0.39923547667013
1212 => 0.42768410324865
1213 => 0.42691464762605
1214 => 0.43751853636326
1215 => 0.44414936560434
1216 => 0.42886745096011
1217 => 0.42502409075378
1218 => 0.42721344339829
1219 => 0.39102832102785
1220 => 0.43456143987924
1221 => 0.43493791609882
1222 => 0.43171429814144
1223 => 0.45489433999555
1224 => 0.50381145834408
1225 => 0.48540687073484
1226 => 0.47828005813093
1227 => 0.46473198216124
1228 => 0.4827839889857
1229 => 0.48139787651676
1230 => 0.47512935026466
1231 => 0.47133812602839
]
'min_raw' => 0.3540603712483
'max_raw' => 0.90847837068711
'avg_raw' => 0.63126937096771
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.35406'
'max' => '$0.908478'
'avg' => '$0.631269'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.21772439058114
'max_diff' => 0.52805870671105
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.01111355047776
]
1 => [
'year' => 2028
'avg' => 0.019074078906592
]
2 => [
'year' => 2029
'avg' => 0.052106945804564
]
3 => [
'year' => 2030
'avg' => 0.040200431088229
]
4 => [
'year' => 2031
'avg' => 0.03948180531322
]
5 => [
'year' => 2032
'avg' => 0.069224030095492
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.01111355047776
'min' => '$0.011113'
'max_raw' => 0.069224030095492
'max' => '$0.069224'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.069224030095492
]
1 => [
'year' => 2033
'avg' => 0.17805132362868
]
2 => [
'year' => 2034
'avg' => 0.11285748566207
]
3 => [
'year' => 2035
'avg' => 0.13311566314514
]
4 => [
'year' => 2036
'avg' => 0.25837782232161
]
5 => [
'year' => 2037
'avg' => 0.63126937096771
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.069224030095492
'min' => '$0.069224'
'max_raw' => 0.63126937096771
'max' => '$0.631269'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.63126937096771
]
]
]
]
'prediction_2025_max_price' => '$0.0190021'
'last_price' => 0.01842498
'sma_50day_nextmonth' => '$0.017328'
'sma_200day_nextmonth' => '$0.023243'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.018239'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.017993'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.017498'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.018024'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.019657'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.024488'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.023766'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.018238'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.018033'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.01783'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.018262'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.020112'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.0220014'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.02314'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.023437'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.022524'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.01833'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.018877'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.020457'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.022025'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.023929'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.01622'
'weekly_ema100_action' => 'BUY'
'weekly_ema200' => '$0.00811'
'weekly_ema200_action' => 'BUY'
'rsi_14' => '48.41'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 106.55
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.017570'
'vwma_10_action' => 'BUY'
'hma_9' => '0.018486'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 32.96
'cci_20_action' => 'NEUTRAL'
'adx_14' => 19.12
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.001231'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 76.77
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.007722'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 14
'buy_signals' => 18
'sell_pct' => 43.75
'buy_pct' => 56.25
'overall_action' => 'bullish'
'overall_action_label' => 'Altista'
'overall_action_dir' => 1
'last_updated' => 1767680039
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de deBridge para 2026
A previsão de preço para deBridge em 2026 sugere que o preço médio poderia variar entre $0.006365 na extremidade inferior e $0.0190021 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, deBridge poderia potencialmente ganhar 3.13% até 2026 se DBR atingir a meta de preço prevista.
Previsão de preço de deBridge 2027-2032
A previsão de preço de DBR para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.011113 na extremidade inferior e $0.069224 na extremidade superior. Considerando a volatilidade de preços no mercado, se deBridge atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de deBridge | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.006128 | $0.011113 | $0.016098 |
| 2028 | $0.011059 | $0.019074 | $0.027088 |
| 2029 | $0.024294 | $0.0521069 | $0.079919 |
| 2030 | $0.020661 | $0.04020043 | $0.059739 |
| 2031 | $0.024428 | $0.039481 | $0.054535 |
| 2032 | $0.037288 | $0.069224 | $0.101159 |
Previsão de preço de deBridge 2032-2037
A previsão de preço de deBridge para 2032-2037 é atualmente estimada entre $0.069224 na extremidade inferior e $0.631269 na extremidade superior. Comparado ao preço atual, deBridge poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de deBridge | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.037288 | $0.069224 | $0.101159 |
| 2033 | $0.08665 | $0.178051 | $0.269452 |
| 2034 | $0.069662 | $0.112857 | $0.156052 |
| 2035 | $0.082362 | $0.133115 | $0.183868 |
| 2036 | $0.136335 | $0.258377 | $0.380419 |
| 2037 | $0.35406 | $0.631269 | $0.908478 |
deBridge Histograma de preços potenciais
Previsão de preço de deBridge baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para deBridge é Altista, com 18 indicadores técnicos mostrando sinais de alta e 14 indicando sinais de baixa. A previsão de preço de DBR foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de deBridge
De acordo com nossos indicadores técnicos, o SMA de 200 dias de deBridge está projetado para aumentar no próximo mês, alcançando $0.023243 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para deBridge é esperado para alcançar $0.017328 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 48.41, sugerindo que o mercado de DBR está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de DBR para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.018239 | BUY |
| SMA 5 | $0.017993 | BUY |
| SMA 10 | $0.017498 | BUY |
| SMA 21 | $0.018024 | BUY |
| SMA 50 | $0.019657 | SELL |
| SMA 100 | $0.024488 | SELL |
| SMA 200 | $0.023766 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.018238 | BUY |
| EMA 5 | $0.018033 | BUY |
| EMA 10 | $0.01783 | BUY |
| EMA 21 | $0.018262 | BUY |
| EMA 50 | $0.020112 | SELL |
| EMA 100 | $0.0220014 | SELL |
| EMA 200 | $0.02314 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.023437 | SELL |
| SMA 50 | $0.022524 | SELL |
| SMA 100 | — | — |
| SMA 200 | — | — |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.022025 | SELL |
| EMA 50 | $0.023929 | SELL |
| EMA 100 | $0.01622 | BUY |
| EMA 200 | $0.00811 | BUY |
Osciladores de deBridge
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 48.41 | NEUTRAL |
| Stoch RSI (14) | 106.55 | SELL |
| Estocástico Rápido (14) | 100 | SELL |
| Índice de Canal de Commodities (20) | 32.96 | NEUTRAL |
| Índice Direcional Médio (14) | 19.12 | NEUTRAL |
| Oscilador Impressionante (5, 34) | -0.001231 | NEUTRAL |
| Momentum (10) | 0 | SELL |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -0 | SELL |
| Oscilador Ultimate (7, 14, 28) | 76.77 | SELL |
| VWMA (10) | 0.017570 | BUY |
| Média Móvel de Hull (9) | 0.018486 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.007722 | SELL |
Previsão do preço de deBridge com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do deBridge
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de deBridge por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.02589 | $0.03638 | $0.05112 | $0.071832 | $0.100936 | $0.141832 |
| Amazon.com stock | $0.038444 | $0.080217 | $0.167378 | $0.349244 | $0.72872 | $1.52 |
| Apple stock | $0.026134 | $0.037069 | $0.05258 | $0.074581 | $0.105788 | $0.150052 |
| Netflix stock | $0.029071 | $0.04587 | $0.072376 | $0.114199 | $0.180188 | $0.2843087 |
| Google stock | $0.02386 | $0.030898 | $0.040013 | $0.051817 | $0.0671039 | $0.086899 |
| Tesla stock | $0.041768 | $0.094684 | $0.214643 | $0.486581 | $1.10 | $2.50 |
| Kodak stock | $0.013816 | $0.010361 | $0.007769 | $0.005826 | $0.004369 | $0.003276 |
| Nokia stock | $0.0122057 | $0.008085 | $0.005356 | $0.003548 | $0.00235 | $0.001557 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para deBridge
Você pode fazer perguntas como: 'Devo investir em deBridge agora?', 'Devo comprar DBR hoje?', 'deBridge será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para deBridge regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como deBridge, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre deBridge para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de deBridge é de $0.01842 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão de curto prazo para deBridge
com base no histórico de preços de 4 horas
Previsão de longo prazo para deBridge
com base no histórico de preços de 1 mês
Previsão do preço de deBridge com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se deBridge tiver 1% da média anterior do crescimento anual do Bitcoin | $0.0189039 | $0.019395 | $0.019899 | $0.020416 |
| Se deBridge tiver 2% da média anterior do crescimento anual do Bitcoin | $0.019382 | $0.02039 | $0.02145 | $0.022565 |
| Se deBridge tiver 5% da média anterior do crescimento anual do Bitcoin | $0.020819 | $0.023525 | $0.026582 | $0.030037 |
| Se deBridge tiver 10% da média anterior do crescimento anual do Bitcoin | $0.023214 | $0.029248 | $0.03685 | $0.046429 |
| Se deBridge tiver 20% da média anterior do crescimento anual do Bitcoin | $0.0280034 | $0.042561 | $0.064687 | $0.098316 |
| Se deBridge tiver 50% da média anterior do crescimento anual do Bitcoin | $0.042371 | $0.097439 | $0.224077 | $0.5153022 |
| Se deBridge tiver 100% da média anterior do crescimento anual do Bitcoin | $0.066317 | $0.238697 | $0.859149 | $3.09 |
Perguntas Frequentes sobre deBridge
DBR é um bom investimento?
A decisão de adquirir deBridge depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de deBridge experimentou uma escalada de 1.0759% nas últimas 24 horas, e deBridge registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em deBridge dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
deBridge pode subir?
Parece que o valor médio de deBridge pode potencialmente subir para $0.0190021 até o final deste ano. Observando as perspectivas de deBridge em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.059739. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de deBridge na próxima semana?
Com base na nossa nova previsão experimental de deBridge, o preço de deBridge aumentará 0.86% na próxima semana e atingirá $0.018582 até 13 de janeiro de 2026.
Qual será o preço de deBridge no próximo mês?
Com base na nossa nova previsão experimental de deBridge, o preço de deBridge diminuirá -11.62% no próximo mês e atingirá $0.016284 até 5 de fevereiro de 2026.
Até onde o preço de deBridge pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de deBridge em 2026, espera-se que DBR fluctue dentro do intervalo de $0.006365 e $0.0190021. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de deBridge não considera flutuações repentinas e extremas de preço.
Onde estará deBridge em 5 anos?
O futuro de deBridge parece seguir uma tendência de alta, com um preço máximo de $0.059739 projetada após um período de cinco anos. Com base na previsão de deBridge para 2030, o valor de deBridge pode potencialmente atingir seu pico mais alto de aproximadamente $0.059739, enquanto seu pico mais baixo está previsto para cerca de $0.020661.
Quanto será deBridge em 2026?
Com base na nossa nova simulação experimental de previsão de preços de deBridge, espera-se que o valor de DBR em 2026 aumente 3.13% para $0.0190021 se o melhor cenário ocorrer. O preço ficará entre $0.0190021 e $0.006365 durante 2026.
Quanto será deBridge em 2027?
De acordo com nossa última simulação experimental para previsão de preços de deBridge, o valor de DBR pode diminuir -12.62% para $0.016098 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.016098 e $0.006128 ao longo do ano.
Quanto será deBridge em 2028?
Nosso novo modelo experimental de previsão de preços de deBridge sugere que o valor de DBR em 2028 pode aumentar 47.02%, alcançando $0.027088 no melhor cenário. O preço é esperado para variar entre $0.027088 e $0.011059 durante o ano.
Quanto será deBridge em 2029?
Com base no nosso modelo de previsão experimental, o valor de deBridge pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.079919 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.079919 e $0.024294.
Quanto será deBridge em 2030?
Usando nossa nova simulação experimental para previsões de preços de deBridge, espera-se que o valor de DBR em 2030 aumente 224.23%, alcançando $0.059739 no melhor cenário. O preço está previsto para variar entre $0.059739 e $0.020661 ao longo de 2030.
Quanto será deBridge em 2031?
Nossa simulação experimental indica que o preço de deBridge poderia aumentar 195.98% em 2031, potencialmente atingindo $0.054535 sob condições ideais. O preço provavelmente oscilará entre $0.054535 e $0.024428 durante o ano.
Quanto será deBridge em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de deBridge, DBR poderia ver um 449.04% aumento em valor, atingindo $0.101159 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.101159 e $0.037288 ao longo do ano.
Quanto será deBridge em 2033?
De acordo com nossa previsão experimental de preços de deBridge, espera-se que o valor de DBR seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.269452. Ao longo do ano, o preço de DBR poderia variar entre $0.269452 e $0.08665.
Quanto será deBridge em 2034?
Os resultados da nossa nova simulação de previsão de preços de deBridge sugerem que DBR pode aumentar 746.96% em 2034, atingindo potencialmente $0.156052 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.156052 e $0.069662.
Quanto será deBridge em 2035?
Com base em nossa previsão experimental para o preço de deBridge, DBR poderia aumentar 897.93%, com o valor potencialmente atingindo $0.183868 em 2035. A faixa de preço esperada para o ano está entre $0.183868 e $0.082362.
Quanto será deBridge em 2036?
Nossa recente simulação de previsão de preços de deBridge sugere que o valor de DBR pode aumentar 1964.7% em 2036, possivelmente atingindo $0.380419 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.380419 e $0.136335.
Quanto será deBridge em 2037?
De acordo com a simulação experimental, o valor de deBridge poderia aumentar 4830.69% em 2037, com um pico de $0.908478 sob condições favoráveis. O preço é esperado para cair entre $0.908478 e $0.35406 ao longo do ano.
Previsões relacionadas
Como ler e prever os movimentos de preço de deBridge?
Traders de deBridge utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de deBridge
Médias móveis são ferramentas populares para a previsão de preço de deBridge. Uma média móvel simples (SMA) calcula o preço médio de fechamento de DBR em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de DBR acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de DBR.
Como ler gráficos de deBridge e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de deBridge em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de DBR dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de deBridge?
A ação de preço de deBridge é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de DBR. A capitalização de mercado de deBridge pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de DBR, grandes detentores de deBridge, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de deBridge.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


