Prédiction du prix de BlockProtocol jusqu'à $0.004514 d'ici 2026
| Année | Prix min. | Prix max. |
|---|---|---|
| 2026 | $0.001512 | $0.004514 |
| 2027 | $0.001455 | $0.003824 |
| 2028 | $0.002627 | $0.006435 |
| 2029 | $0.005771 | $0.018985 |
| 2030 | $0.0049083 | $0.014191 |
| 2031 | $0.0058032 | $0.012955 |
| 2032 | $0.008858 | $0.024031 |
| 2033 | $0.020584 | $0.06401 |
| 2034 | $0.016548 | $0.037071 |
| 2035 | $0.019565 | $0.043679 |
Calculateur de profit d’investissement
Si vous ouvrez une position short de $10,000.00 sur BlockProtocol aujourd’hui et la fermez le Apr 06, 2026, notre prévision indique que vous pourriez gagner environ $3,954.78, soit un rendement de 39.55% sur les 90 prochains jours.
Prévision du prix à long terme de BlockProtocol pour 2027, 2028, 2029, 2030, 2031, 2032 et 2037
[
'name' => 'BlockProtocol'
'name_with_ticker' => 'BlockProtocol <small>BLOCK</small>'
'name_lang' => 'BlockProtocol'
'name_lang_with_ticker' => 'BlockProtocol <small>BLOCK</small>'
'name_with_lang' => 'BlockProtocol'
'name_with_lang_with_ticker' => 'BlockProtocol <small>BLOCK</small>'
'image' => '/uploads/coins/blockgames.png?1717253092'
'price_for_sd' => 0.004377
'ticker' => 'BLOCK'
'marketcap' => '$2.97M'
'low24h' => '$0.002358'
'high24h' => '$0.005798'
'volume24h' => '$17.97K'
'current_supply' => '679.32M'
'max_supply' => '1B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.004377'
'change_24h_pct' => '-13.8549%'
'ath_price' => '$0.2505'
'ath_days' => 634
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '12 avr. 2024'
'ath_pct' => '-98.25%'
'fdv' => '$4.38M'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.215816'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.004414'
'next_week_prediction_price_date' => '13 janvier 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.003868'
'next_month_prediction_price_date' => '5 février 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.001512'
'current_year_max_price_prediction' => '$0.004514'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.0049083'
'grand_prediction_max_price' => '$0.014191'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0044599520371927
107 => 0.004476603879137
108 => 0.0045141213293016
109 => 0.0041935388253562
110 => 0.0043374709578199
111 => 0.0044220176010253
112 => 0.00404003279119
113 => 0.0044144669895096
114 => 0.0041879581971942
115 => 0.0041110777110344
116 => 0.0042145871574147
117 => 0.0041742494254941
118 => 0.0041395694122998
119 => 0.0041202173690591
120 => 0.0041962232825601
121 => 0.0041926775158485
122 => 0.0040683170892489
123 => 0.0039060939823291
124 => 0.0039605413818034
125 => 0.0039407601311273
126 => 0.003869070326845
127 => 0.0039173805990713
128 => 0.0037046466094561
129 => 0.0033386488372738
130 => 0.0035804381763924
131 => 0.0035711295498525
201 => 0.0035664357182385
202 => 0.0037481337240196
203 => 0.00373066765325
204 => 0.0036989665637748
205 => 0.0038684881114765
206 => 0.0038066104661788
207 => 0.0039973027887795
208 => 0.0041229050856505
209 => 0.0040910482803554
210 => 0.0042091778476511
211 => 0.003961795739919
212 => 0.0040439661528601
213 => 0.004060901361084
214 => 0.003866396241892
215 => 0.0037335253184344
216 => 0.0037246643426792
217 => 0.0034942844721449
218 => 0.003617351539423
219 => 0.0037256454657665
220 => 0.0036737810789961
221 => 0.0036573623635491
222 => 0.003741242019983
223 => 0.0037477601876686
224 => 0.0035991452736728
225 => 0.0036300470203147
226 => 0.0037589124407997
227 => 0.0036267999423531
228 => 0.0033701269383255
301 => 0.0033064684845447
302 => 0.0032979752733522
303 => 0.0031253284978831
304 => 0.0033107224468211
305 => 0.0032297930198607
306 => 0.003485448109945
307 => 0.0033394192935946
308 => 0.0033331242831859
309 => 0.0033236084516757
310 => 0.003175004240081
311 => 0.0032075391181299
312 => 0.0033156900079664
313 => 0.003354279463867
314 => 0.0033502542674625
315 => 0.0033151600096047
316 => 0.0033312259811403
317 => 0.0032794718890685
318 => 0.0032611964419897
319 => 0.0032035141039511
320 => 0.0031187370021871
321 => 0.0031305257781556
322 => 0.0029625601564256
323 => 0.0028710435710969
324 => 0.0028457129864471
325 => 0.0028118398700154
326 => 0.002849539045081
327 => 0.002962084330923
328 => 0.0028263308383832
329 => 0.0025935909974239
330 => 0.002607579058435
331 => 0.0026390060784342
401 => 0.0025804420345762
402 => 0.0025250160819722
403 => 0.0025732044509117
404 => 0.0024745895121421
405 => 0.0026509232226461
406 => 0.0026461538899464
407 => 0.0027118801928188
408 => 0.0027529801988444
409 => 0.0026582579912404
410 => 0.002634435612184
411 => 0.0026480059219613
412 => 0.002423718929582
413 => 0.0026935511605224
414 => 0.0026958846808606
415 => 0.0026759036630037
416 => 0.002819580995844
417 => 0.0031227849822209
418 => 0.0030087074461938
419 => 0.0029645331762323
420 => 0.0028805578567444
421 => 0.002992449984001
422 => 0.0029838584144168
423 => 0.002945004078501
424 => 0.0029215048549062
425 => 0.0029648028949051
426 => 0.0029161397485921
427 => 0.0029073985103405
428 => 0.0028544361170965
429 => 0.0028355309523438
430 => 0.0028215343209972
501 => 0.0028061254051651
502 => 0.002840113633828
503 => 0.002763091836154
504 => 0.002670211098699
505 => 0.0026624890703632
506 => 0.0026838102695262
507 => 0.0026743772260731
508 => 0.0026624439085803
509 => 0.0026396599556407
510 => 0.0026329004435057
511 => 0.0026548655786955
512 => 0.0026300682217131
513 => 0.0026666580727225
514 => 0.0026567076578567
515 => 0.0026011254492821
516 => 0.0025318494382289
517 => 0.0025312327364191
518 => 0.0025163073334731
519 => 0.0024972975887721
520 => 0.0024920095126803
521 => 0.0025691461608879
522 => 0.0027288167141721
523 => 0.0026974695639699
524 => 0.0027201210925761
525 => 0.0028315441942771
526 => 0.0028669622476983
527 => 0.0028418233523025
528 => 0.0028074116817852
529 => 0.0028089256206458
530 => 0.0029265207159244
531 => 0.0029338549777718
601 => 0.0029523862913378
602 => 0.0029762042662186
603 => 0.0028458796564165
604 => 0.002802787343244
605 => 0.0027823678145924
606 => 0.0027194835696974
607 => 0.0027872988365289
608 => 0.0027477857846854
609 => 0.0027531174453372
610 => 0.0027496451943433
611 => 0.0027515412781785
612 => 0.0026508739337803
613 => 0.0026875518231592
614 => 0.0026265677182731
615 => 0.0025449168476178
616 => 0.0025446431252689
617 => 0.0025646270601871
618 => 0.0025527398337263
619 => 0.0025207516129688
620 => 0.0025252953887473
621 => 0.0024854871317425
622 => 0.0025301288318994
623 => 0.0025314089961242
624 => 0.002514219509914
625 => 0.0025829962083732
626 => 0.0026111740778484
627 => 0.0025998595897903
628 => 0.0026103802232041
629 => 0.0026987721795847
630 => 0.0027131839252861
701 => 0.0027195846707403
702 => 0.002711008519768
703 => 0.0026119958659034
704 => 0.0026163874981366
705 => 0.0025841646147031
706 => 0.0025569396737655
707 => 0.002558028528627
708 => 0.0025720256872635
709 => 0.0026331520999515
710 => 0.0027617890318546
711 => 0.0027666707093879
712 => 0.0027725874449669
713 => 0.0027485211078541
714 => 0.002741262470297
715 => 0.0027508384868481
716 => 0.0027991477550624
717 => 0.0029234123087477
718 => 0.0028794889161248
719 => 0.0028437785142141
720 => 0.002875106164145
721 => 0.0028702835179924
722 => 0.0028295755311246
723 => 0.0028284329935154
724 => 0.0027503013515855
725 => 0.0027214178625354
726 => 0.0026972806571934
727 => 0.0026709234590777
728 => 0.0026552980285335
729 => 0.0026793057914806
730 => 0.0026847966509181
731 => 0.0026323032576503
801 => 0.0026251486021176
802 => 0.0026680158402088
803 => 0.0026491515669766
804 => 0.0026685539398073
805 => 0.0026730554567345
806 => 0.0026723306088305
807 => 0.0026526341410281
808 => 0.0026651880822483
809 => 0.0026354942687527
810 => 0.0026032067064428
811 => 0.0025826092532753
812 => 0.002564635243531
813 => 0.0025746082687927
814 => 0.0025390562547371
815 => 0.0025276824499201
816 => 0.0026609350894355
817 => 0.0027593702469529
818 => 0.002757938960778
819 => 0.0027492263742852
820 => 0.0027362812380405
821 => 0.0027982007377158
822 => 0.0027766292221484
823 => 0.0027923243020841
824 => 0.0027963193586482
825 => 0.0028084111916336
826 => 0.0028127329825977
827 => 0.0027996695286273
828 => 0.0027558269815362
829 => 0.0026465755226095
830 => 0.0025957186735605
831 => 0.0025789350662865
901 => 0.0025795451185343
902 => 0.0025627171541467
903 => 0.0025676737438353
904 => 0.0025609934545301
905 => 0.0025483426027215
906 => 0.0025738271143427
907 => 0.0025767639669024
908 => 0.0025708155773728
909 => 0.0025722166384418
910 => 0.002522966513727
911 => 0.0025267108937435
912 => 0.0025058617099992
913 => 0.0025019527393878
914 => 0.0024492478184285
915 => 0.0023558734112487
916 => 0.0024076118968993
917 => 0.0023451190817653
918 => 0.0023214521057534
919 => 0.0024334878892239
920 => 0.0024222426039524
921 => 0.0024029955637756
922 => 0.0023745251799194
923 => 0.002363965237605
924 => 0.0022998063709745
925 => 0.0022960155228598
926 => 0.002327814389597
927 => 0.0023131403067299
928 => 0.0022925323368749
929 => 0.0022178923590562
930 => 0.0021339723115407
1001 => 0.0021365053302726
1002 => 0.0021631987359993
1003 => 0.0022408134132459
1004 => 0.0022104880160981
1005 => 0.0021884865925235
1006 => 0.0021843663872484
1007 => 0.0022359393825009
1008 => 0.0023089259756598
1009 => 0.0023431696521869
1010 => 0.0023092352087444
1011 => 0.0022702531472779
1012 => 0.0022726258047339
1013 => 0.0022884100318193
1014 => 0.002290068730909
1015 => 0.002264695416315
1016 => 0.0022718378557481
1017 => 0.0022609878371308
1018 => 0.0021944012929036
1019 => 0.0021931969534668
1020 => 0.0021768555416603
1021 => 0.0021763607302053
1022 => 0.0021485599121664
1023 => 0.0021446703855448
1024 => 0.0020894701739394
1025 => 0.0021258031203797
1026 => 0.0021014328874729
1027 => 0.0020647011981255
1028 => 0.002058368641037
1029 => 0.0020581782767241
1030 => 0.0020958935086284
1031 => 0.002125362395936
1101 => 0.0021018568181081
1102 => 0.0020965050536731
1103 => 0.0021536478964808
1104 => 0.0021463759488649
1105 => 0.0021400784891286
1106 => 0.0023023908267663
1107 => 0.0021739079461364
1108 => 0.0021178820766354
1109 => 0.0020485394241037
1110 => 0.002071117741424
1111 => 0.0020758753246279
1112 => 0.0019091187452419
1113 => 0.0018414656217532
1114 => 0.0018182496192261
1115 => 0.0018048884815456
1116 => 0.0018109773197652
1117 => 0.0017500815737055
1118 => 0.0017910045221803
1119 => 0.0017382739534818
1120 => 0.0017294335020394
1121 => 0.0018237222909363
1122 => 0.0018368420250841
1123 => 0.0017808691632274
1124 => 0.0018168128017226
1125 => 0.0018037791387503
1126 => 0.0017391778677363
1127 => 0.0017367105743583
1128 => 0.0017042959274079
1129 => 0.0016535732816431
1130 => 0.0016303916714583
1201 => 0.001618318487602
1202 => 0.0016233001185628
1203 => 0.0016207812535086
1204 => 0.0016043439552041
1205 => 0.0016217234202066
1206 => 0.0015773260688161
1207 => 0.0015596466857586
1208 => 0.0015516613185901
1209 => 0.0015122561138148
1210 => 0.0015749673181864
1211 => 0.0015873222154625
1212 => 0.0015997014557029
1213 => 0.0017074542903293
1214 => 0.0017020712632177
1215 => 0.0017507312066659
1216 => 0.0017488403707434
1217 => 0.0017349617666332
1218 => 0.0016764102188116
1219 => 0.0016997478221923
1220 => 0.0016279183064554
1221 => 0.0016817378635778
1222 => 0.0016571768652655
1223 => 0.0016734337653423
1224 => 0.0016442023931787
1225 => 0.0016603802414678
1226 => 0.0015902520199432
1227 => 0.0015247672734142
1228 => 0.0015511202470364
1229 => 0.0015797689431918
1230 => 0.0016418866160087
1231 => 0.0016048898425386
]
'min_raw' => 0.0015122561138148
'max_raw' => 0.0045141213293016
'avg_raw' => 0.0030131887215582
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.001512'
'max' => '$0.004514'
'avg' => '$0.003013'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0028647538861852
'max_diff' => 0.00013711132930164
'year' => 2026
]
1 => [
'items' => [
101 => 0.0016181952812814
102 => 0.0015736242887968
103 => 0.0014816616002264
104 => 0.0014821820990566
105 => 0.0014680356429361
106 => 0.0014558110394316
107 => 0.0016091393670209
108 => 0.001590070565723
109 => 0.0015596869265178
110 => 0.0016003566349917
111 => 0.0016111103514273
112 => 0.0016114164946163
113 => 0.0016410880640818
114 => 0.0016569237860244
115 => 0.0016597149006528
116 => 0.0017064037563034
117 => 0.0017220532448766
118 => 0.001786511273511
119 => 0.0016555802356556
120 => 0.0016528837970926
121 => 0.0016009289411931
122 => 0.0015679783502079
123 => 0.0016031850963484
124 => 0.0016343734672286
125 => 0.0016018980508136
126 => 0.001606138654604
127 => 0.0015625430614058
128 => 0.0015781264346109
129 => 0.0015915489349221
130 => 0.0015841378191883
131 => 0.0015730430202328
201 => 0.0016318163764839
202 => 0.0016285001533896
203 => 0.0016832312539243
204 => 0.0017258980606496
205 => 0.0018023646059054
206 => 0.0017225677796398
207 => 0.001719659666127
208 => 0.0017480869421905
209 => 0.0017220488928087
210 => 0.0017385040412151
211 => 0.0017997134271015
212 => 0.0018010066849728
213 => 0.00177934294936
214 => 0.0017780247090791
215 => 0.0017821854664789
216 => 0.001806555152528
217 => 0.0017980396354177
218 => 0.0018078940074043
219 => 0.0018202170504691
220 => 0.0018711903814472
221 => 0.0018834798789766
222 => 0.0018536227713541
223 => 0.0018563185338765
224 => 0.0018451511560298
225 => 0.0018343636089566
226 => 0.0018586124393823
227 => 0.0019029276535972
228 => 0.0019026519709496
301 => 0.0019129322392827
302 => 0.001919336761288
303 => 0.0018918438644449
304 => 0.0018739469995418
305 => 0.0018808097963528
306 => 0.0018917835579057
307 => 0.0018772511533818
308 => 0.0017875504205957
309 => 0.001814759892818
310 => 0.001810230906165
311 => 0.0018037810784275
312 => 0.0018311404131517
313 => 0.001828501538574
314 => 0.0017494569998124
315 => 0.0017545171747245
316 => 0.0017497647258086
317 => 0.0017651208605155
318 => 0.00172121961114
319 => 0.0017347233397685
320 => 0.0017431927517747
321 => 0.0017481813005114
322 => 0.0017662033592283
323 => 0.0017640886786477
324 => 0.0017660719077143
325 => 0.0017927938631444
326 => 0.0019279443438423
327 => 0.001935300286314
328 => 0.001899076935274
329 => 0.0019135474495405
330 => 0.0018857672265024
331 => 0.0019044162763392
401 => 0.001917175482603
402 => 0.0018595190829511
403 => 0.0018561050451507
404 => 0.0018282101632502
405 => 0.0018431992927366
406 => 0.0018193505099671
407 => 0.0018252021670638
408 => 0.0018088404236833
409 => 0.0018382883041775
410 => 0.0018712156103081
411 => 0.0018795343481754
412 => 0.0018576513302883
413 => 0.001841806583177
414 => 0.0018139884268336
415 => 0.0018602506408007
416 => 0.0018737791219801
417 => 0.0018601795814483
418 => 0.0018570282707513
419 => 0.0018510565426747
420 => 0.0018582952010929
421 => 0.0018737054429662
422 => 0.0018664382574812
423 => 0.0018712383615254
424 => 0.0018529453147549
425 => 0.0018918529657377
426 => 0.0019536476791345
427 => 0.0019538463592426
428 => 0.0019465791345848
429 => 0.0019436055428293
430 => 0.0019510621563403
501 => 0.0019551070632837
502 => 0.0019792203840691
503 => 0.002005094937989
504 => 0.0021258401911807
505 => 0.0020919354072544
506 => 0.0021990677790533
507 => 0.0022837955757488
508 => 0.0023092017372802
509 => 0.0022858292641235
510 => 0.0022058732960108
511 => 0.0022019502747651
512 => 0.0023214382476646
513 => 0.0022876774224246
514 => 0.0022836616796884
515 => 0.0022409409616792
516 => 0.0022661941970865
517 => 0.0022606709440603
518 => 0.0022519522189517
519 => 0.0023001336329531
520 => 0.0023903249387793
521 => 0.0023762677779576
522 => 0.0023657747594971
523 => 0.002319797407075
524 => 0.0023474860426466
525 => 0.0023376266498604
526 => 0.002379988858195
527 => 0.0023548944244154
528 => 0.0022874216509687
529 => 0.0022981669125333
530 => 0.0022965427878642
531 => 0.0023299671584659
601 => 0.0023199339920552
602 => 0.002294583651096
603 => 0.0023900166747011
604 => 0.0023838197849745
605 => 0.0023926055578006
606 => 0.0023964733267076
607 => 0.0024545617264575
608 => 0.0024783586852136
609 => 0.0024837610114757
610 => 0.0025063662817711
611 => 0.0024831985717578
612 => 0.0025758859301083
613 => 0.0026375176149541
614 => 0.00270910598844
615 => 0.0028137158432437
616 => 0.0028530501163451
617 => 0.0028459447319768
618 => 0.0029252587299932
619 => 0.0030677842213775
620 => 0.0028747532087453
621 => 0.0030780153337629
622 => 0.0030136648917564
623 => 0.002861091151374
624 => 0.0028512672012197
625 => 0.0029545919096241
626 => 0.0031837561682307
627 => 0.0031263531206092
628 => 0.0031838500590525
629 => 0.0031167768262287
630 => 0.0031134460748814
701 => 0.0031805924618445
702 => 0.0033374836549427
703 => 0.0032629505300802
704 => 0.0031560890193177
705 => 0.0032349938959155
706 => 0.0031666391895049
707 => 0.0030126169046843
708 => 0.0031263092255805
709 => 0.0030502864083681
710 => 0.0030724739080259
711 => 0.0032322625622659
712 => 0.0032130363686394
713 => 0.0032379168434896
714 => 0.0031940034566143
715 => 0.0031529814287673
716 => 0.0030764107674549
717 => 0.0030537419695283
718 => 0.0030600068097373
719 => 0.0030537388649847
720 => 0.0030108982837011
721 => 0.0030016468642518
722 => 0.0029862274265224
723 => 0.0029910065550335
724 => 0.0029620135009865
725 => 0.0030167293842438
726 => 0.0030268851343311
727 => 0.0030667027912398
728 => 0.0030708367924701
729 => 0.003181728400192
730 => 0.0031206511661166
731 => 0.0031616270478891
801 => 0.0031579617793434
802 => 0.0028643978869722
803 => 0.0029048484012048
804 => 0.0029677767072801
805 => 0.0029394275906904
806 => 0.0028993485725044
807 => 0.0028669826164181
808 => 0.0028179448833586
809 => 0.0028869645509537
810 => 0.0029777180744179
811 => 0.0030731384515913
812 => 0.0031877797825743
813 => 0.0031621931720711
814 => 0.0030709953116514
815 => 0.0030750863810497
816 => 0.0031003757622939
817 => 0.0030676237158001
818 => 0.0030579644978933
819 => 0.0030990487340808
820 => 0.003099331658636
821 => 0.0030616464709279
822 => 0.0030197662811069
823 => 0.0030195908015824
824 => 0.0030121386263184
825 => 0.0031181025516531
826 => 0.0031763719964259
827 => 0.0031830524943632
828 => 0.0031759223456873
829 => 0.0031786664569272
830 => 0.0031447607508935
831 => 0.0032222591404618
901 => 0.003293379326526
902 => 0.0032743175973996
903 => 0.0032457413556547
904 => 0.0032229790026866
905 => 0.0032689555104383
906 => 0.0032669082489219
907 => 0.0032927581537446
908 => 0.0032915854527456
909 => 0.0032828931020178
910 => 0.0032743179078308
911 => 0.003308317583486
912 => 0.0032985262229154
913 => 0.0032887196536574
914 => 0.0032690510776998
915 => 0.0032717243638329
916 => 0.003243153056179
917 => 0.0032299346619243
918 => 0.0030311617276952
919 => 0.0029780431045762
920 => 0.0029947553047387
921 => 0.0030002573949643
922 => 0.0029771401021095
923 => 0.0030102843617179
924 => 0.0030051188639664
925 => 0.0030252147940025
926 => 0.0030126597293798
927 => 0.0030131749936113
928 => 0.0030500967616445
929 => 0.003060815307981
930 => 0.003055363768805
1001 => 0.0030591818399761
1002 => 0.0031471676786058
1003 => 0.0031346589059814
1004 => 0.0031280138698337
1005 => 0.0031298545902596
1006 => 0.0031523368584672
1007 => 0.003158630666079
1008 => 0.0031319633609698
1009 => 0.0031445398162212
1010 => 0.0031980887664915
1011 => 0.003216827868478
1012 => 0.0032766340867396
1013 => 0.0032512273422513
1014 => 0.0032978625213378
1015 => 0.0034412031627455
1016 => 0.0035557135855199
1017 => 0.0034504050683932
1018 => 0.0036606888770039
1019 => 0.0038244249854282
1020 => 0.0038181405208701
1021 => 0.0037895893430819
1022 => 0.0036031801367906
1023 => 0.0034316436059566
1024 => 0.003575141197825
1025 => 0.0035755070026972
1026 => 0.003563180432294
1027 => 0.0034866211621777
1028 => 0.0035605163356458
1029 => 0.0035663818661679
1030 => 0.003563098728846
1031 => 0.0035044009159505
1101 => 0.0034147802048282
1102 => 0.0034322918772598
1103 => 0.0034609763539313
1104 => 0.0034066706553836
1105 => 0.0033893166941993
1106 => 0.0034215810097671
1107 => 0.0035255433570637
1108 => 0.0035058898775202
1109 => 0.0035053766457433
1110 => 0.0035894625656031
1111 => 0.0035292751938608
1112 => 0.0034325127555294
1113 => 0.0034080789637109
1114 => 0.0033213554633298
1115 => 0.0033812556939416
1116 => 0.0033834113966029
1117 => 0.0033506046524624
1118 => 0.0034351748420081
1119 => 0.0034343955128231
1120 => 0.0035146823211851
1121 => 0.0036681605444252
1122 => 0.0036227694816084
1123 => 0.0035699846140861
1124 => 0.0035757237927514
1125 => 0.0036386684172097
1126 => 0.0036006106603762
1127 => 0.0036142964950817
1128 => 0.0036386477020598
1129 => 0.0036533393898361
1130 => 0.0035736098849726
1201 => 0.0035550211234859
1202 => 0.0035169950412527
1203 => 0.0035070747461885
1204 => 0.0035380461967272
1205 => 0.0035298863137478
1206 => 0.0033832302181416
1207 => 0.0033679038401639
1208 => 0.0033683738782954
1209 => 0.0033298349721411
1210 => 0.0032710538898583
1211 => 0.0034255270644613
1212 => 0.00341312070669
1213 => 0.0033994250478863
1214 => 0.0034011026879434
1215 => 0.0034681542574568
1216 => 0.0034292609609536
1217 => 0.0035326651641934
1218 => 0.0035114083686222
1219 => 0.0034896064164538
1220 => 0.0034865927225604
1221 => 0.0034782008310307
1222 => 0.0034494219124901
1223 => 0.0034146696390075
1224 => 0.0033917231778638
1225 => 0.0031286853457705
1226 => 0.0031775036373864
1227 => 0.0032336646319631
1228 => 0.0032530511822399
1229 => 0.003219889146483
1230 => 0.0034507313517868
1231 => 0.0034929084471466
]
'min_raw' => 0.0014558110394316
'max_raw' => 0.0038244249854282
'avg_raw' => 0.0026401180124299
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.001455'
'max' => '$0.003824'
'avg' => '$0.00264'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -5.6445074383208E-5
'max_diff' => -0.00068969634387346
'year' => 2027
]
2 => [
'items' => [
101 => 0.0033651512741578
102 => 0.0033412531233826
103 => 0.003452298110573
104 => 0.0033853244085996
105 => 0.0034154826624974
106 => 0.0033502970132533
107 => 0.003482749219964
108 => 0.003481740156067
109 => 0.0034302132560878
110 => 0.0034737634391092
111 => 0.0034661955230919
112 => 0.0034080217799205
113 => 0.0034845934313851
114 => 0.0034846314099689
115 => 0.0034350378890304
116 => 0.0033771235139918
117 => 0.0033667697916114
118 => 0.0033589696526247
119 => 0.0034135643064638
120 => 0.003462513702383
121 => 0.0035535963926042
122 => 0.0035764967449972
123 => 0.0036658783449496
124 => 0.003612655954089
125 => 0.0036362487506122
126 => 0.0036618620686429
127 => 0.0036741420352054
128 => 0.0036541324886711
129 => 0.0037929789043316
130 => 0.0038047017959576
131 => 0.0038086323801172
201 => 0.003761814149967
202 => 0.0038033996962836
203 => 0.0037839431963306
204 => 0.0038345636040369
205 => 0.0038425015303191
206 => 0.003835778389158
207 => 0.0038382980122516
208 => 0.0037198170906715
209 => 0.0037136732298509
210 => 0.0036299012516139
211 => 0.0036640389519567
212 => 0.0036002201574284
213 => 0.0036204577545797
214 => 0.0036293782945731
215 => 0.0036247187107168
216 => 0.0036659690463143
217 => 0.0036308978341696
218 => 0.0035383391390786
219 => 0.0034457552264331
220 => 0.0034445929108271
221 => 0.0034202172008693
222 => 0.0034025980272038
223 => 0.0034059921051256
224 => 0.0034179532784183
225 => 0.0034019028220678
226 => 0.003405328000709
227 => 0.0034622087879983
228 => 0.003473615824234
229 => 0.0034348502580884
301 => 0.0032792009161695
302 => 0.0032410041772458
303 => 0.0032684592357099
304 => 0.0032553374860963
305 => 0.0026273114199534
306 => 0.0027748568285514
307 => 0.0026871903569311
308 => 0.0027275911003942
309 => 0.0026381063339926
310 => 0.0026808131548179
311 => 0.0026729267644149
312 => 0.0029101754152543
313 => 0.0029064711038963
314 => 0.0029082441617156
315 => 0.0028236114923236
316 => 0.0029584336326924
317 => 0.0030248518670855
318 => 0.0030125596195634
319 => 0.0030156533134386
320 => 0.002962493402764
321 => 0.0029087588658527
322 => 0.0028491589947322
323 => 0.0029598881885074
324 => 0.00294757699237
325 => 0.0029758144468807
326 => 0.0030476302441301
327 => 0.0030582053930768
328 => 0.0030724185005037
329 => 0.003067324113249
330 => 0.0031886930857294
331 => 0.0031739945023438
401 => 0.0032094138592322
402 => 0.0031365535548397
403 => 0.0030541052044561
404 => 0.0030697759404244
405 => 0.0030682667225346
406 => 0.0030490526465972
407 => 0.0030317070379603
408 => 0.0030028314866748
409 => 0.0030941980037196
410 => 0.0030904886899824
411 => 0.0031505381677816
412 => 0.0031399238392911
413 => 0.0030690387558647
414 => 0.0030715704304867
415 => 0.0030885971590011
416 => 0.0031475268607974
417 => 0.0031650212085305
418 => 0.0031569171296313
419 => 0.0031760988832734
420 => 0.003191259359249
421 => 0.0031780028056412
422 => 0.0033656876491313
423 => 0.0032877478167725
424 => 0.0033257351487623
425 => 0.0033347949036075
426 => 0.0033115885320776
427 => 0.0033166211631046
428 => 0.0033242442278006
429 => 0.0033705299838855
430 => 0.0034919972007438
501 => 0.003545794204235
502 => 0.0037076451435358
503 => 0.0035413271119855
504 => 0.0035314584882858
505 => 0.0035606127298839
506 => 0.0036556363649153
507 => 0.0037326440959921
508 => 0.0037581920030728
509 => 0.0037615685807435
510 => 0.0038094981528198
511 => 0.0038369704897003
512 => 0.0038036782420968
513 => 0.0037754665480965
514 => 0.0036744157619518
515 => 0.0036861126656002
516 => 0.0037666927324765
517 => 0.0038805168230815
518 => 0.0039781897341988
519 => 0.0039439880849701
520 => 0.0042049225259832
521 => 0.004230793109988
522 => 0.0042272186317747
523 => 0.0042861556721968
524 => 0.0041691776492784
525 => 0.0041191672781384
526 => 0.0037815662365557
527 => 0.0038764183586729
528 => 0.0040142914886401
529 => 0.0039960434628912
530 => 0.0038959163105497
531 => 0.0039781137787751
601 => 0.0039509367252273
602 => 0.0039295010555172
603 => 0.0040277020139683
604 => 0.0039197260262783
605 => 0.0040132143455656
606 => 0.0038933146090668
607 => 0.0039441443152229
608 => 0.0039152909156524
609 => 0.0039339626013141
610 => 0.0038248083084609
611 => 0.0038837053153138
612 => 0.0038223579993404
613 => 0.003822328912725
614 => 0.0038209746673247
615 => 0.0038931495125118
616 => 0.0038955031316222
617 => 0.0038421658119788
618 => 0.0038344790709326
619 => 0.0038629009813643
620 => 0.003829626367959
621 => 0.0038451953501434
622 => 0.003830097936569
623 => 0.0038266991907732
624 => 0.0037996174060234
625 => 0.003787949828524
626 => 0.003792524986298
627 => 0.00377690761416
628 => 0.0037674975825419
629 => 0.0038191027751888
630 => 0.0037915322025051
701 => 0.0038148771895073
702 => 0.003788272630446
703 => 0.0036960496376848
704 => 0.0036430112193074
705 => 0.0034688105350575
706 => 0.0035182136330155
707 => 0.0035509679380729
708 => 0.0035401426404468
709 => 0.0035633995685817
710 => 0.0035648273550842
711 => 0.0035572662906712
712 => 0.0035485115467134
713 => 0.0035442502215224
714 => 0.0035760106482577
715 => 0.0035944486449844
716 => 0.0035542552707815
717 => 0.0035448385255708
718 => 0.003585476246027
719 => 0.0036102652320296
720 => 0.003793293176945
721 => 0.0037797338756132
722 => 0.0038137650610775
723 => 0.0038099336718453
724 => 0.003845603775805
725 => 0.0039039093204682
726 => 0.0037853578456811
727 => 0.0038059342825026
728 => 0.0038008894153733
729 => 0.0038559679518559
730 => 0.0038561399010348
731 => 0.0038231175670365
801 => 0.0038410195100231
802 => 0.0038310271365621
803 => 0.0038490847059565
804 => 0.0037795527828772
805 => 0.0038642351596805
806 => 0.0039122446105161
807 => 0.0039129112217875
808 => 0.003935667320457
809 => 0.0039587888346496
810 => 0.0040031685676828
811 => 0.0039575511079825
812 => 0.0038754897387517
813 => 0.0038814143045536
814 => 0.0038333017537987
815 => 0.0038341105344691
816 => 0.0038297931998651
817 => 0.0038427498460056
818 => 0.0037823960380896
819 => 0.003796560956174
820 => 0.0037767299879062
821 => 0.0038058911738505
822 => 0.0037745185582912
823 => 0.0038008869825856
824 => 0.003812266720384
825 => 0.0038542581978482
826 => 0.0037683163829275
827 => 0.0035930752045547
828 => 0.0036299130248426
829 => 0.0035754269950885
830 => 0.0035804698845852
831 => 0.0035906573239384
901 => 0.0035576364998719
902 => 0.0035639358324981
903 => 0.0035637107760089
904 => 0.003561771360771
905 => 0.0035531813691065
906 => 0.0035407241817151
907 => 0.0035903497821627
908 => 0.003598782138697
909 => 0.0036175262227248
910 => 0.0036732959025581
911 => 0.0036677231964032
912 => 0.0036768125113513
913 => 0.0036569705878539
914 => 0.0035813902945082
915 => 0.0035854946680647
916 => 0.0035343130640479
917 => 0.0036162173940382
918 => 0.0035968213676122
919 => 0.0035843166231967
920 => 0.0035809045878273
921 => 0.0036368125099098
922 => 0.0036535410364462
923 => 0.0036431169413183
924 => 0.0036217368180917
925 => 0.0036627929751528
926 => 0.0036737778707622
927 => 0.0036762369837817
928 => 0.0037489806223567
929 => 0.0036803025450971
930 => 0.0036968340408948
1001 => 0.0038258080519855
1002 => 0.0037088464211232
1003 => 0.0037708036055466
1004 => 0.0037677711237787
1005 => 0.0037994663228129
1006 => 0.0037651711923444
1007 => 0.0037655963215889
1008 => 0.0037937395111125
1009 => 0.0037542174770775
1010 => 0.0037444312656509
1011 => 0.0037309116846551
1012 => 0.0037604311951554
1013 => 0.0037781268066477
1014 => 0.003920740439281
1015 => 0.004012875349934
1016 => 0.004008875530474
1017 => 0.0040454263929899
1018 => 0.004028959894659
1019 => 0.0039757852279055
1020 => 0.0040665479000939
1021 => 0.004037826792942
1022 => 0.0040401945261194
1023 => 0.0040401063989723
1024 => 0.0040592034243856
1025 => 0.0040456714316636
1026 => 0.004018998484978
1027 => 0.0040367052317622
1028 => 0.0040892879394334
1029 => 0.0042525062774793
1030 => 0.0043438454218051
1031 => 0.0042470075463021
1101 => 0.0043138050161132
1102 => 0.0042737503365986
1103 => 0.0042664712098073
1104 => 0.004308424957143
1105 => 0.0043504521389596
1106 => 0.0043477751891664
1107 => 0.0043172656132872
1108 => 0.0043000315280249
1109 => 0.0044305337954734
1110 => 0.0045266856430813
1111 => 0.0045201287316846
1112 => 0.0045490688061678
1113 => 0.0046340377599333
1114 => 0.0046418062562
1115 => 0.0046408276042272
1116 => 0.0046215725756714
1117 => 0.0047052355452665
1118 => 0.0047750286664125
1119 => 0.004617115592892
1120 => 0.0046772468240547
1121 => 0.0047042416710309
1122 => 0.0047438781154022
1123 => 0.0048107514408959
1124 => 0.0048833936096556
1125 => 0.0048936660087991
1126 => 0.0048863772500272
1127 => 0.0048384677870039
1128 => 0.0049179537148621
1129 => 0.004964514707227
1130 => 0.004992240712651
1201 => 0.0050625492492388
1202 => 0.0047044083820157
1203 => 0.0044508984754391
1204 => 0.0044113092427998
1205 => 0.0044918155041416
1206 => 0.004513044363232
1207 => 0.0045044870367514
1208 => 0.0042191385887872
1209 => 0.0044098069422755
1210 => 0.0046149500587784
1211 => 0.0046228304413549
1212 => 0.0047255293748166
1213 => 0.0047589723573232
1214 => 0.0048416584598167
1215 => 0.0048364864215928
1216 => 0.0048566191717267
1217 => 0.0048519910011215
1218 => 0.0050051495943777
1219 => 0.0051741062670105
1220 => 0.0051682558346866
1221 => 0.005143966313991
1222 => 0.0051800403942026
1223 => 0.0053544217868571
1224 => 0.0053383675426263
1225 => 0.0053539628733992
1226 => 0.0055595683630434
1227 => 0.0058268847466208
1228 => 0.005702689448323
1229 => 0.0059721575093948
1230 => 0.0061417733699513
1231 => 0.0064351064621765
]
'min_raw' => 0.0026273114199534
'max_raw' => 0.0064351064621765
'avg_raw' => 0.004531208941065
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.002627'
'max' => '$0.006435'
'avg' => '$0.004531'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0011715003805218
'max_diff' => 0.0026106814767484
'year' => 2028
]
3 => [
'items' => [
101 => 0.006398379714334
102 => 0.0065125721345596
103 => 0.0063326311705923
104 => 0.0059194503452545
105 => 0.0058540628980521
106 => 0.0059849702232251
107 => 0.006306793108413
108 => 0.0059748348753001
109 => 0.0060419895935156
110 => 0.0060226490301518
111 => 0.0060216184537222
112 => 0.006060951364381
113 => 0.0060038969260038
114 => 0.0057714468801575
115 => 0.0058779773663321
116 => 0.005836840829606
117 => 0.0058824848840356
118 => 0.0061288070207524
119 => 0.0060199021325236
120 => 0.0059051796794892
121 => 0.0060490670945446
122 => 0.0062322852189903
123 => 0.0062208197580372
124 => 0.0061985719715971
125 => 0.0063239815789036
126 => 0.0065311215086066
127 => 0.0065871105992497
128 => 0.0066284406013159
129 => 0.0066341393103247
130 => 0.0066928395548435
131 => 0.0063771935456999
201 => 0.0068781318685752
202 => 0.0069646300787938
203 => 0.0069483720002562
204 => 0.0070445111205131
205 => 0.0070162245525194
206 => 0.0069752417535232
207 => 0.0071276427085077
208 => 0.0069529273117408
209 => 0.0067049408020871
210 => 0.006568890498274
211 => 0.0067480525132
212 => 0.0068574605038226
213 => 0.0069297722259691
214 => 0.0069516537093987
215 => 0.0064016962468608
216 => 0.006105299676592
217 => 0.0062952864799407
218 => 0.0065270834922148
219 => 0.006375905901593
220 => 0.0063818317769284
221 => 0.0061662922614736
222 => 0.0065461539566818
223 => 0.0064908113028297
224 => 0.0067779290889139
225 => 0.0067094061250007
226 => 0.0069435395337042
227 => 0.0068818843605275
228 => 0.0071378115372893
301 => 0.0072399078170513
302 => 0.0074113433607888
303 => 0.0075374520446302
304 => 0.0076115054758567
305 => 0.0076070595856133
306 => 0.0079004961734054
307 => 0.0077274668694779
308 => 0.0075101012838692
309 => 0.0075061698262052
310 => 0.0076187465430861
311 => 0.0078546764577545
312 => 0.0079158496519874
313 => 0.0079500371221629
314 => 0.0078976778215147
315 => 0.0077098669132233
316 => 0.007628771115246
317 => 0.0076978670846941
318 => 0.0076133686515434
319 => 0.0077592366532345
320 => 0.0079595445752802
321 => 0.0079181817814811
322 => 0.0080564513996948
323 => 0.0081995459081579
324 => 0.0084041774820366
325 => 0.0084576757529337
326 => 0.0085461063603697
327 => 0.0086371305033626
328 => 0.0086663650049224
329 => 0.0087221827393333
330 => 0.0087218885523206
331 => 0.0088900990519346
401 => 0.0090756404420545
402 => 0.0091456780215316
403 => 0.0093067255736447
404 => 0.0090309372844304
405 => 0.009240125869827
406 => 0.0094288192101847
407 => 0.009203851230897
408 => 0.0095139171795286
409 => 0.0095259563376894
410 => 0.0097077333323708
411 => 0.0095234675240028
412 => 0.0094140510751911
413 => 0.0097299322631295
414 => 0.0098827772198088
415 => 0.0098367390749635
416 => 0.0094863865195072
417 => 0.0092824663049036
418 => 0.0087487677700143
419 => 0.0093809567386517
420 => 0.0096888775440699
421 => 0.0094855890790093
422 => 0.009588115956202
423 => 0.010147469353714
424 => 0.010360434912036
425 => 0.010316139564646
426 => 0.010323624749192
427 => 0.010438537098864
428 => 0.010948121740698
429 => 0.010642766811231
430 => 0.010876199213377
501 => 0.011000010917773
502 => 0.011115014128916
503 => 0.010832602589486
504 => 0.010465189326137
505 => 0.010348814122675
506 => 0.0094653760475368
507 => 0.0094193892591488
508 => 0.0093935754812843
509 => 0.00923082326328
510 => 0.0091029446015131
511 => 0.0090012507418457
512 => 0.0087343756857213
513 => 0.0088244381829639
514 => 0.0083990950446547
515 => 0.0086712145113096
516 => 0.007992356592299
517 => 0.0085577296396231
518 => 0.0082500227943227
519 => 0.0084566396651928
520 => 0.0084559187983948
521 => 0.0080754716311843
522 => 0.0078560376448671
523 => 0.007995869521447
524 => 0.0081457803930087
525 => 0.0081701029275589
526 => 0.0083644662856128
527 => 0.0084187089210192
528 => 0.0082543512033912
529 => 0.0079782887708334
530 => 0.0080424117776029
531 => 0.0078547381941816
601 => 0.007525847457996
602 => 0.0077620625266058
603 => 0.0078427167366727
604 => 0.0078783382306072
605 => 0.0075549119649248
606 => 0.0074532844103216
607 => 0.0073991787529886
608 => 0.0079365385013469
609 => 0.007965976281383
610 => 0.0078153684366356
611 => 0.0084961301761157
612 => 0.0083420528281843
613 => 0.0085141949756905
614 => 0.0080365932868441
615 => 0.008054838314534
616 => 0.0078287340211275
617 => 0.0079553373171408
618 => 0.0078658581881333
619 => 0.0079451090219411
620 => 0.007992611644962
621 => 0.0082186788368788
622 => 0.008560310963818
623 => 0.0081849119370829
624 => 0.0080213452053214
625 => 0.008122821085772
626 => 0.0083930647277473
627 => 0.0088024976788573
628 => 0.0085601051311941
629 => 0.0086676748277546
630 => 0.0086911740210104
701 => 0.0085124427302234
702 => 0.0088090877564882
703 => 0.0089680622360034
704 => 0.0091311371568527
705 => 0.0092727305413705
706 => 0.0090660014473711
707 => 0.0092872312114021
708 => 0.0091089590739035
709 => 0.0089490305371325
710 => 0.0089492730827072
711 => 0.0088489475754076
712 => 0.0086545542631873
713 => 0.0086187051538854
714 => 0.0088051967477174
715 => 0.008954745345151
716 => 0.0089670628839251
717 => 0.0090498606715487
718 => 0.0090988595493793
719 => 0.0095791151628637
720 => 0.0097722779434899
721 => 0.010008473735255
722 => 0.010100485307413
723 => 0.010377407151635
724 => 0.010153770271933
725 => 0.010105385026268
726 => 0.0094336632126318
727 => 0.0095436576219842
728 => 0.0097197692842393
729 => 0.0094365672290764
730 => 0.0096161937489498
731 => 0.0096516558289828
801 => 0.0094269441316106
802 => 0.0095469723583964
803 => 0.0092282129739425
804 => 0.0085672590473302
805 => 0.0088098235871523
806 => 0.0089884327348025
807 => 0.0087335354587565
808 => 0.0091904289601821
809 => 0.0089235212088456
810 => 0.0088389242655034
811 => 0.0085088814285377
812 => 0.0086646489430717
813 => 0.0088753267368549
814 => 0.0087451523542192
815 => 0.0090152837439702
816 => 0.0093978618332677
817 => 0.0096705097626201
818 => 0.009691440285153
819 => 0.0095161459325719
820 => 0.0097970562512967
821 => 0.0097991023762919
822 => 0.009482234389218
823 => 0.0092881545114635
824 => 0.0092440591548902
825 => 0.0093542180010143
826 => 0.0094879711766539
827 => 0.0096988626555262
828 => 0.0098262999593943
829 => 0.010158588860359
830 => 0.01024849670949
831 => 0.010347278177329
901 => 0.010479280681439
902 => 0.01063778353237
903 => 0.010290988318106
904 => 0.010304767138475
905 => 0.0099818362366593
906 => 0.009636738255093
907 => 0.0098986246060311
908 => 0.010241006172601
909 => 0.010162463462932
910 => 0.010153625803612
911 => 0.010168488295226
912 => 0.010109269657101
913 => 0.0098414259516039
914 => 0.0097069165194938
915 => 0.0098804680039318
916 => 0.0099727028940226
917 => 0.010115751164826
918 => 0.010098117446067
919 => 0.010466594429393
920 => 0.010609773442948
921 => 0.010573142124305
922 => 0.010579883168517
923 => 0.010839101933438
924 => 0.011127406512434
925 => 0.011397441795804
926 => 0.011672133284333
927 => 0.01134098197352
928 => 0.011172843760462
929 => 0.011346319477751
930 => 0.01125427082031
1001 => 0.011783209709372
1002 => 0.011819832290428
1003 => 0.012348732931188
1004 => 0.012850722619586
1005 => 0.012535431890382
1006 => 0.012832736847015
1007 => 0.013154296397241
1008 => 0.013774636940785
1009 => 0.013565728069563
1010 => 0.013405707148226
1011 => 0.013254488150778
1012 => 0.013569150879127
1013 => 0.013973959452288
1014 => 0.014061151341739
1015 => 0.014202435512514
1016 => 0.01405389248235
1017 => 0.014232796200705
1018 => 0.014864404940772
1019 => 0.014693738683841
1020 => 0.01445136516303
1021 => 0.014949959602965
1022 => 0.01513039899254
1023 => 0.016396817125425
1024 => 0.017995722331315
1025 => 0.017333765077098
1026 => 0.016922866848179
1027 => 0.017019437678612
1028 => 0.017603303733446
1029 => 0.017790822979276
1030 => 0.017281081027349
1031 => 0.017461130502281
1101 => 0.01845322081123
1102 => 0.018985445431914
1103 => 0.018262612909723
1104 => 0.016268346648951
1105 => 0.014429542079347
1106 => 0.014917275853655
1107 => 0.014861981979789
1108 => 0.015927859250969
1109 => 0.014689668350057
1110 => 0.01471051630931
1111 => 0.015798434793674
1112 => 0.015508196793691
1113 => 0.015038048404591
1114 => 0.014432974682884
1115 => 0.013314439945764
1116 => 0.012323722536448
1117 => 0.01426674752471
1118 => 0.014182960754055
1119 => 0.014061625093642
1120 => 0.014331644476001
1121 => 0.015642781950399
1122 => 0.015612555987876
1123 => 0.015420273835728
1124 => 0.015566118153435
1125 => 0.01501248119055
1126 => 0.015155166041965
1127 => 0.014429250803308
1128 => 0.014757394808079
1129 => 0.015037039677303
1130 => 0.015093182525012
1201 => 0.015219675227627
1202 => 0.014138808933219
1203 => 0.014624086166841
1204 => 0.014909141077266
1205 => 0.013621252621579
1206 => 0.014883683663375
1207 => 0.014119993455744
1208 => 0.013860785529032
1209 => 0.014209774854302
1210 => 0.014073773374841
1211 => 0.013956847289076
1212 => 0.013891600524173
1213 => 0.014147859768105
1214 => 0.01413590496808
1215 => 0.013716615107231
1216 => 0.013169668576196
1217 => 0.013353241784919
1218 => 0.013286547917182
1219 => 0.013044840736822
1220 => 0.013207722192548
1221 => 0.012490474693948
1222 => 0.011256487651887
1223 => 0.012071697289918
1224 => 0.012040312605631
1225 => 0.012024487024631
1226 => 0.012637094536872
1227 => 0.01257820645983
1228 => 0.012471324023365
1229 => 0.013042877757058
1230 => 0.012834252955778
1231 => 0.013477185435139
]
'min_raw' => 0.0057714468801575
'max_raw' => 0.018985445431914
'avg_raw' => 0.012378446156036
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.005771'
'max' => '$0.018985'
'avg' => '$0.012378'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0031441354602041
'max_diff' => 0.012550338969737
'year' => 2029
]
4 => [
'items' => [
101 => 0.013900662348311
102 => 0.013793254905088
103 => 0.014191536988768
104 => 0.013357470940882
105 => 0.013634514225068
106 => 0.013691612461974
107 => 0.013035824872704
108 => 0.012587841277515
109 => 0.012557965879103
110 => 0.011781224060988
111 => 0.012196153270584
112 => 0.012561273804092
113 => 0.012386409403039
114 => 0.012331052557592
115 => 0.012613858675549
116 => 0.012635835132985
117 => 0.012134769574486
118 => 0.012238956970781
119 => 0.012673435733042
120 => 0.012228009220729
121 => 0.011362618267313
122 => 0.0111479893459
123 => 0.011119353891388
124 => 0.010537263234081
125 => 0.011162331876717
126 => 0.010889472663408
127 => 0.011751431648896
128 => 0.011259085299164
129 => 0.011237861232067
130 => 0.011205777941757
131 => 0.01070474846715
201 => 0.010814442080005
202 => 0.011179080355942
203 => 0.011309187400741
204 => 0.011295616170033
205 => 0.011177293429463
206 => 0.011231460974185
207 => 0.01105696843941
208 => 0.010995351493633
209 => 0.010800871463684
210 => 0.010515039546138
211 => 0.010554786227382
212 => 0.0099884784067339
213 => 0.0096799238498142
214 => 0.0095945200151425
215 => 0.0094803144381475
216 => 0.0096074198389535
217 => 0.0099868741278308
218 => 0.0095291717497266
219 => 0.0087444731265556
220 => 0.0087916348508696
221 => 0.0088975932429615
222 => 0.0087001404802832
223 => 0.0085132680113624
224 => 0.0086757384616464
225 => 0.0083432513105097
226 => 0.0089377727267002
227 => 0.0089216925885192
228 => 0.0091432934075173
301 => 0.0092818649473434
302 => 0.008962502411113
303 => 0.0088821835968992
304 => 0.008927936843762
305 => 0.0081717375897374
306 => 0.0090814957954379
307 => 0.0090893634221793
308 => 0.0090219960254445
309 => 0.0095064141843466
310 => 0.010528687593443
311 => 0.010144067216088
312 => 0.0099951305807641
313 => 0.0097120019281409
314 => 0.010089254047245
315 => 0.010060286970548
316 => 0.0099292868642847
317 => 0.0098500575912715
318 => 0.0099960399561005
319 => 0.0098319687607539
320 => 0.0098024970656947
321 => 0.0096239306591565
322 => 0.0095601905762762
323 => 0.0095129999564774
324 => 0.0094610477209335
325 => 0.0095756414068529
326 => 0.0093159570385047
327 => 0.0090028031474493
328 => 0.0089767677897801
329 => 0.0090486537013568
330 => 0.0090168495367608
331 => 0.008976615523676
401 => 0.0088997978356155
402 => 0.0088770076685182
403 => 0.0089510646553673
404 => 0.0088674586350052
405 => 0.008990823872305
406 => 0.0089572753538694
407 => 0.0087698760570342
408 => 0.0085363071490715
409 => 0.0085342278958632
410 => 0.0084839058577724
411 => 0.0084198131762948
412 => 0.0084019840585496
413 => 0.0086620556534904
414 => 0.0092003960717301
415 => 0.0090947069662352
416 => 0.0091710781764105
417 => 0.0095467489431078
418 => 0.0096661633830267
419 => 0.0095814058420583
420 => 0.0094653844923632
421 => 0.0094704888429315
422 => 0.0098669689168906
423 => 0.009891696892771
424 => 0.0099541765102736
425 => 0.010034480475502
426 => 0.0095950819545809
427 => 0.0094497932121105
428 => 0.0093809473456155
429 => 0.0091689287235143
430 => 0.0093975726303475
501 => 0.0092643516173441
502 => 0.0092823276834761
503 => 0.0092706207468254
504 => 0.0092770135258563
505 => 0.008937606545848
506 => 0.0090612686106573
507 => 0.0088556564432599
508 => 0.0085803648321637
509 => 0.0085794419581536
510 => 0.008646819189964
511 => 0.0086067405760118
512 => 0.0084988900563819
513 => 0.0085142097136552
514 => 0.0083799933958398
515 => 0.0085305060047029
516 => 0.0085348221677651
517 => 0.0084768666148756
518 => 0.0087087520555666
519 => 0.0088037557098183
520 => 0.0087656081233782
521 => 0.00880107917346
522 => 0.0090990988257263
523 => 0.0091476890325547
524 => 0.009169269592739
525 => 0.0091403545009684
526 => 0.008806526425621
527 => 0.0088213331203092
528 => 0.0087126914190832
529 => 0.0086209006299276
530 => 0.0086245717801146
531 => 0.0086717641777079
601 => 0.0088778561457954
602 => 0.0093115645428504
603 => 0.0093280234594819
604 => 0.0093479721465798
605 => 0.0092668308107458
606 => 0.0092423578074403
607 => 0.0092746440158184
608 => 0.0094375220864481
609 => 0.0098564887050725
610 => 0.009708397920211
611 => 0.0095879978069483
612 => 0.0096936211659172
613 => 0.0096773612777071
614 => 0.0095401114578415
615 => 0.0095362593125226
616 => 0.0092728330267788
617 => 0.0091754503268656
618 => 0.0090940700538494
619 => 0.0090052049202015
620 => 0.0089525226901887
621 => 0.0090334665391336
622 => 0.0090519793550868
623 => 0.0088749942147124
624 => 0.008850871794062
625 => 0.0089954016801813
626 => 0.0089317994659174
627 => 0.0089972159205468
628 => 0.0090123930991528
629 => 0.0090099492238371
630 => 0.0089435412074779
701 => 0.0089858676967897
702 => 0.0088857529314335
703 => 0.0087768931608602
704 => 0.0087074474094377
705 => 0.0086468467806794
706 => 0.0086804715316437
707 => 0.0085606054340929
708 => 0.0085222578570585
709 => 0.008971528434587
710 => 0.00930340944068
711 => 0.0092985837594121
712 => 0.0092692086657583
713 => 0.0092255632351088
714 => 0.0094343291513455
715 => 0.0093615992805349
716 => 0.0094145163383337
717 => 0.0094279859504654
718 => 0.0094687544096004
719 => 0.0094833256295738
720 => 0.0094392812824514
721 => 0.0092914630739449
722 => 0.0089231141524803
723 => 0.0087516467351996
724 => 0.0086950596314812
725 => 0.0086971164652272
726 => 0.0086403798084036
727 => 0.0086570912965968
728 => 0.0086345682348013
729 => 0.0085919150046745
730 => 0.0086778378148771
731 => 0.0086877396183265
801 => 0.0086676842077242
802 => 0.0086724079829375
803 => 0.0085063577489276
804 => 0.0085189821875772
805 => 0.00844868770894
806 => 0.0084355083416081
807 => 0.0082578100208538
808 => 0.0079429916878539
809 => 0.0081174316044908
810 => 0.0079067327151576
811 => 0.0078269378531579
812 => 0.0082046743192172
813 => 0.0081667600548036
814 => 0.0081018673150619
815 => 0.0080058774281521
816 => 0.0079702738453676
817 => 0.0077539577470939
818 => 0.0077411766380064
819 => 0.0078483887373368
820 => 0.0077989140424389
821 => 0.0077294328332701
822 => 0.0074777789368577
823 => 0.0071948366375485
824 => 0.0072033768870528
825 => 0.0072933755681344
826 => 0.0075550588713549
827 => 0.0074528146776196
828 => 0.0073786353419476
829 => 0.0073647437821989
830 => 0.0075386257364043
831 => 0.0077847051310006
901 => 0.0079001600772291
902 => 0.0077857477319355
903 => 0.0076543169900604
904 => 0.007662316570327
905 => 0.007715534193965
906 => 0.0077211266137527
907 => 0.0076355787120906
908 => 0.0076596599453088
909 => 0.0076230783500162
910 => 0.0073985771672303
911 => 0.0073945166527346
912 => 0.0073394204419083
913 => 0.0073377521505411
914 => 0.0072440197515317
915 => 0.0072309059409688
916 => 0.0070447945735857
917 => 0.0071672936391944
918 => 0.0070851276974737
919 => 0.0069612842423144
920 => 0.0069399335839655
921 => 0.0069392917573938
922 => 0.0070664512949526
923 => 0.0071658077059621
924 => 0.0070865570092082
925 => 0.0070685131617676
926 => 0.0072611742458794
927 => 0.0072366563667814
928 => 0.0072154240416059
929 => 0.0077626714202369
930 => 0.007329482417805
1001 => 0.0071405872871808
1002 => 0.006906793692821
1003 => 0.0069829180660342
1004 => 0.0069989585899699
1005 => 0.0064367271399974
1006 => 0.0062086299107651
1007 => 0.0061303555373553
1008 => 0.0060853075288208
1009 => 0.0061058364719872
1010 => 0.0059005222125416
1011 => 0.0060384967904735
1012 => 0.0058607119965759
1013 => 0.0058309057973172
1014 => 0.0061488070321159
1015 => 0.006193041131786
1016 => 0.0060043247201355
1017 => 0.006125511206827
1018 => 0.0060815673021345
1019 => 0.0058637596065939
1020 => 0.0058554409547092
1021 => 0.0057461527093977
1022 => 0.0055751377678594
1023 => 0.005496979350633
1024 => 0.0054562737683389
1025 => 0.0054730696849294
1026 => 0.0054645771555377
1027 => 0.0054091576566887
1028 => 0.00546775373634
1029 => 0.0053180649664028
1030 => 0.0052584576920894
1031 => 0.0052315344691603
1101 => 0.0050986770700769
1102 => 0.0053101122739721
1103 => 0.00535176767273
1104 => 0.0053935051454915
1105 => 0.0057568013504969
1106 => 0.0057386520987593
1107 => 0.0059027124954236
1108 => 0.0058963374100969
1109 => 0.005849544727366
1110 => 0.0056521340959472
1111 => 0.0057308184551246
1112 => 0.0054886402278408
1113 => 0.0056700966222405
1114 => 0.0055872875016367
1115 => 0.0056420987752659
1116 => 0.0055435431631473
1117 => 0.0055980879081552
1118 => 0.0053616457130889
1119 => 0.0051408593181675
1120 => 0.0052297102086405
1121 => 0.0053263012879166
1122 => 0.0055357353587363
1123 => 0.0054109981539496
1124 => 0.0054558583696268
1125 => 0.0053055841566176
1126 => 0.0049955255314728
1127 => 0.0049972804296188
1128 => 0.0049495846651346
1129 => 0.0049083685609246
1130 => 0.0054253257224337
1201 => 0.0053610339275167
1202 => 0.0052585933666186
1203 => 0.0053957141282068
1204 => 0.0054319710339699
1205 => 0.0054330032171058
1206 => 0.0055330429851614
1207 => 0.0055864342273059
1208 => 0.0055958446651447
1209 => 0.0057532594016826
1210 => 0.0058060227450195
1211 => 0.0060233474888764
1212 => 0.0055819043534338
1213 => 0.005572813122559
1214 => 0.005397643698522
1215 => 0.0052865484804786
1216 => 0.0054052504831475
1217 => 0.0055104042530729
1218 => 0.0054009111192685
1219 => 0.0054152086110172
1220 => 0.0052682230248025
1221 => 0.0053207634555596
1222 => 0.005366018352488
1223 => 0.005341031258364
1224 => 0.0053036243690715
1225 => 0.0055017828430968
1226 => 0.005490601965403
1227 => 0.005675131692059
1228 => 0.0058189858098347
1229 => 0.0060767981058882
1230 => 0.0058077575348974
1231 => 0.0057979526271511
]
'min_raw' => 0.0049083685609246
'max_raw' => 0.014191536988768
'avg_raw' => 0.0095499527748465
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.0049083'
'max' => '$0.014191'
'avg' => '$0.009549'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00086307831923286
'max_diff' => -0.0047939084431456
'year' => 2030
]
5 => [
'items' => [
101 => 0.0058937971731281
102 => 0.0058060080717189
103 => 0.0058614877534327
104 => 0.0060678594714516
105 => 0.0060722197806571
106 => 0.0059991789835247
107 => 0.0059947344443813
108 => 0.0060087627284493
109 => 0.0060909268264012
110 => 0.0060622161659291
111 => 0.0060954408690924
112 => 0.0061369888691529
113 => 0.0063088490133898
114 => 0.0063502839123355
115 => 0.0062496185894294
116 => 0.006258707540986
117 => 0.0062210559468941
118 => 0.0061846849787745
119 => 0.0062664416035541
120 => 0.0064158534422691
121 => 0.006414923958975
122 => 0.0064495846014057
123 => 0.0064711778944958
124 => 0.0063784836732965
125 => 0.0063181431437567
126 => 0.0063412815423499
127 => 0.0063782803455892
128 => 0.0063292833291168
129 => 0.0060268510458233
130 => 0.0061185896811255
131 => 0.0061033198864211
201 => 0.0060815738418916
202 => 0.0061738177490818
203 => 0.0061649205992028
204 => 0.0058984164180546
205 => 0.005915477151061
206 => 0.0058994539377356
207 => 0.0059512282180309
208 => 0.0058032120906742
209 => 0.0058487408545453
210 => 0.0058772960684396
211 => 0.0058941153087948
212 => 0.005954877938019
213 => 0.0059477481447992
214 => 0.0059544347400618
215 => 0.0060445296784618
216 => 0.00650019896004
217 => 0.0065250000336587
218 => 0.0064028704765937
219 => 0.0064516588257422
220 => 0.0063579958642162
221 => 0.0064208724377759
222 => 0.0064638909925137
223 => 0.0062694984156462
224 => 0.0062579877488414
225 => 0.0061639382069555
226 => 0.0062144751035267
227 => 0.0061340672673504
228 => 0.0061537965378014
301 => 0.0060986317776537
302 => 0.0061979173627254
303 => 0.0063089340742556
304 => 0.006336981279771
305 => 0.0062632011571413
306 => 0.0062097794860104
307 => 0.006115988629697
308 => 0.0062719649140117
309 => 0.0063175771328365
310 => 0.006271725332444
311 => 0.0062611004684114
312 => 0.0062409663702684
313 => 0.0062653720125124
314 => 0.006317328718897
315 => 0.0062928268956558
316 => 0.0063090107815732
317 => 0.0062473344972067
318 => 0.0063785143589407
319 => 0.0065868595495273
320 => 0.0065875294133829
321 => 0.0065630274580677
322 => 0.0065530017858547
323 => 0.0065781422789111
324 => 0.0065917799650772
325 => 0.0066730797096436
326 => 0.006760317574688
327 => 0.007167418625988
328 => 0.0070531062798242
329 => 0.0074143105510874
330 => 0.0076999762331522
331 => 0.0077856348805571
401 => 0.0077068329554954
402 => 0.0074372558266557
403 => 0.0074240290866292
404 => 0.0078268911296438
405 => 0.0077130641502416
406 => 0.0076995247932362
407 => 0.007555488909803
408 => 0.0076406319561032
409 => 0.0076220099229042
410 => 0.0075926141324786
411 => 0.0077550611337034
412 => 0.0080591474182524
413 => 0.0080117527191023
414 => 0.0079763747747636
415 => 0.0078213589210362
416 => 0.0079147130890245
417 => 0.0078814714578852
418 => 0.0080242986009201
419 => 0.0079396909653948
420 => 0.0077122017989207
421 => 0.0077484301984958
422 => 0.0077429543487815
423 => 0.00785564694788
424 => 0.0078218194268329
425 => 0.0077363489823847
426 => 0.0080581080843902
427 => 0.0080372148380242
428 => 0.0080668366845102
429 => 0.0080798771374194
430 => 0.0082757262327788
501 => 0.0083559593406755
502 => 0.0083741736608463
503 => 0.0084503889078969
504 => 0.0083722773560692
505 => 0.0086847792559727
506 => 0.0088925747844171
507 => 0.0091339399837654
508 => 0.0094866394128629
509 => 0.0096192576608557
510 => 0.0095953013613757
511 => 0.0098627140432144
512 => 0.010343248688229
513 => 0.0096924311521444
514 => 0.01037774359795
515 => 0.01016078158992
516 => 0.0096463685718628
517 => 0.009613246438031
518 => 0.0099616129063175
519 => 0.010734256203947
520 => 0.010540717821139
521 => 0.010734572763408
522 => 0.010508430676039
523 => 0.010497200815326
524 => 0.010723589546983
525 => 0.011252559158307
526 => 0.011001265524096
527 => 0.010640974479728
528 => 0.01090700778014
529 => 0.010676545115104
530 => 0.010157248228339
531 => 0.010540569825985
601 => 0.010284253590009
602 => 0.010359060294187
603 => 0.010897798898045
604 => 0.010832976443903
605 => 0.01091686270196
606 => 0.010768805652175
607 => 0.010630497021222
608 => 0.010372333690615
609 => 0.010295904255721
610 => 0.010317026601882
611 => 0.010295893788535
612 => 0.010151453777704
613 => 0.010120261971117
614 => 0.010068274260261
615 => 0.010084387425704
616 => 0.0099866353197545
617 => 0.010171113740298
618 => 0.010205354560769
619 => 0.010339602571017
620 => 0.010353540644791
621 => 0.01072741944243
622 => 0.010521493283469
623 => 0.010659646329709
624 => 0.010647288620907
625 => 0.0096575174618008
626 => 0.0097938991947007
627 => 0.010006066372148
628 => 0.0099104853462936
629 => 0.0097753561382516
630 => 0.0096662320575879
701 => 0.0095008979168723
702 => 0.0097336025449686
703 => 0.010039584385537
704 => 0.010361300849215
705 => 0.010747822100626
706 => 0.010661555056915
707 => 0.010354075103278
708 => 0.010367868429384
709 => 0.010453133343897
710 => 0.010342707532469
711 => 0.01031014080491
712 => 0.010448659175627
713 => 0.010449613075517
714 => 0.010322554834064
715 => 0.010181352850101
716 => 0.010180761208633
717 => 0.010155635679436
718 => 0.010512900451867
719 => 0.010709359953161
720 => 0.010731883718374
721 => 0.010707843924302
722 => 0.010717095886935
723 => 0.010602780431822
724 => 0.010864071663016
725 => 0.011103858335784
726 => 0.011039590385187
727 => 0.010943243591015
728 => 0.010866498728766
729 => 0.011021511734628
730 => 0.01101460924949
731 => 0.011101764008383
801 => 0.011097810165089
802 => 0.01106850329773
803 => 0.011039591431828
804 => 0.011154223712081
805 => 0.011121211456306
806 => 0.01108814792338
807 => 0.011021833946323
808 => 0.011030847117163
809 => 0.010934516958623
810 => 0.010889950219514
811 => 0.010219773393878
812 => 0.010040680247408
813 => 0.010097026597065
814 => 0.010115577278404
815 => 0.010037635711546
816 => 0.010149383896875
817 => 0.010131968060562
818 => 0.010199722891731
819 => 0.010157392614789
820 => 0.01015912986412
821 => 0.01028361418284
822 => 0.010319752510159
823 => 0.010301372265212
824 => 0.010314245158735
825 => 0.01061089555665
826 => 0.010568721356412
827 => 0.010546317153099
828 => 0.01055252327053
829 => 0.010628323807453
830 => 0.010649543819236
831 => 0.010559633138209
901 => 0.010602035535149
902 => 0.010782579559653
903 => 0.010845759750323
904 => 0.011047400590729
905 => 0.010961739977845
906 => 0.011118973740099
907 => 0.011602256720329
908 => 0.011988336605575
909 => 0.011633281587677
910 => 0.012342268129954
911 => 0.012894315851197
912 => 0.012873127340172
913 => 0.012776865050879
914 => 0.012148373397193
915 => 0.011570026007188
916 => 0.012053838156854
917 => 0.012055071493521
918 => 0.012013511600793
919 => 0.011755386676398
920 => 0.012004529412942
921 => 0.012024305458615
922 => 0.012013236131913
923 => 0.011815332357586
924 => 0.011513169872919
925 => 0.011572211699148
926 => 0.011668923414932
927 => 0.011485827960775
928 => 0.011427317869028
929 => 0.011536099261587
930 => 0.011886615573917
1001 => 0.011820352495474
1002 => 0.011818622098706
1003 => 0.012102123648204
1004 => 0.011899197722227
1005 => 0.011572956405655
1006 => 0.011490576170626
1007 => 0.01119818183425
1008 => 0.011400139643858
1009 => 0.011407407745887
1010 => 0.011296797517524
1011 => 0.011581931816079
1012 => 0.011579304253321
1013 => 0.011849996833159
1014 => 0.01236745937832
1015 => 0.012214420240931
1016 => 0.012036452374758
1017 => 0.012055802416324
1018 => 0.012268024612339
1019 => 0.012139710228067
1020 => 0.012185852975291
1021 => 0.012267954769765
1022 => 0.012317488820843
1023 => 0.01204867522866
1024 => 0.011986001921481
1025 => 0.011857794330336
1026 => 0.011824347362914
1027 => 0.011928769770763
1028 => 0.011901258155593
1029 => 0.011406796890055
1030 => 0.01135512293665
1031 => 0.011356707703027
1101 => 0.011226771090227
1102 => 0.011028586567347
1103 => 0.011549403660493
1104 => 0.011507574759083
1105 => 0.011461398889226
1106 => 0.011467055169808
1107 => 0.011693124217814
1108 => 0.01156199275321
1109 => 0.011910627243884
1110 => 0.011838958473513
1111 => 0.011765451669614
1112 => 0.011755290790243
1113 => 0.011726996942047
1114 => 0.011629966808908
1115 => 0.011512797092535
1116 => 0.011435431496718
1117 => 0.010548581081101
1118 => 0.010713175359668
1119 => 0.010902526073919
1120 => 0.010967889181703
1121 => 0.010856081062849
1122 => 0.011634381674919
1123 => 0.011776584696635
1124 => 0.011345842468182
1125 => 0.011265268184328
1126 => 0.011639664111554
1127 => 0.011413857599396
1128 => 0.011515538257994
1129 => 0.011295760290451
1130 => 0.011742332152894
1201 => 0.011738930023515
1202 => 0.011565203482742
1203 => 0.011712035965375
1204 => 0.011686520208148
1205 => 0.011490383371484
1206 => 0.011748550040459
1207 => 0.011748678087906
1208 => 0.011581470069553
1209 => 0.011386207710658
1210 => 0.011351299412778
1211 => 0.011325000699596
1212 => 0.011509070386692
1213 => 0.011674106692571
1214 => 0.011981198341842
1215 => 0.012058408478787
1216 => 0.01235976478345
1217 => 0.012180321776795
1218 => 0.01225986653747
1219 => 0.012346223627475
1220 => 0.0123876263921
1221 => 0.012320162808938
1222 => 0.012788293193285
1223 => 0.012827817740868
1224 => 0.012841069979786
1225 => 0.012683219048091
1226 => 0.012823427620907
1227 => 0.012757828672906
1228 => 0.012928498911692
1229 => 0.01295526218436
1230 => 0.012932594644541
1231 => 0.012941089729716
]
'min_raw' => 0.0058032120906742
'max_raw' => 0.01295526218436
'avg_raw' => 0.0093792371375173
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.0058032'
'max' => '$0.012955'
'avg' => '$0.009379'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00089484352974961
'max_diff' => -0.0012362748044079
'year' => 2031
]
6 => [
'items' => [
101 => 0.012541623030535
102 => 0.012520908574828
103 => 0.012238465501428
104 => 0.012353563141552
105 => 0.012138393620114
106 => 0.012206626091854
107 => 0.012236702315254
108 => 0.01222099220296
109 => 0.012360070589434
110 => 0.012241825549094
111 => 0.011929757446353
112 => 0.011617604320867
113 => 0.011613685492651
114 => 0.01153150108467
115 => 0.011472096810526
116 => 0.011483540181206
117 => 0.011523868112065
118 => 0.011469752877872
119 => 0.011481301106799
120 => 0.011673078652435
121 => 0.011711538271517
122 => 0.011580837458732
123 => 0.011056054835362
124 => 0.01092727186327
125 => 0.011019838509733
126 => 0.010975597614779
127 => 0.0088581638853986
128 => 0.0093556235317781
129 => 0.0090600499020328
130 => 0.0091962638293082
131 => 0.0088945596917586
201 => 0.009038548719866
202 => 0.0090119592040119
203 => 0.009811859594489
204 => 0.0097993702501188
205 => 0.0098053482383474
206 => 0.009520003284628
207 => 0.0099745655438628
208 => 0.010198499258292
209 => 0.010157055087554
210 => 0.010167485692449
211 => 0.009988253342103
212 => 0.0098070835992813
213 => 0.0096061384726684
214 => 0.0099794696803468
215 => 0.0099379616230292
216 => 0.010033166172388
217 => 0.010275298146834
218 => 0.01031095299984
219 => 0.010358873483858
220 => 0.01034169740155
221 => 0.010750901365979
222 => 0.010701344065872
223 => 0.010820762900521
224 => 0.010575109297318
225 => 0.01029712892764
226 => 0.010349963908053
227 => 0.010344875474567
228 => 0.01028009387606
229 => 0.010221611945509
301 => 0.010124256008324
302 => 0.010432304599547
303 => 0.010419798389306
304 => 0.010622259396226
305 => 0.010586472446652
306 => 0.010347478438841
307 => 0.010356014156585
308 => 0.01041342096054
309 => 0.010612106564486
310 => 0.010671089979285
311 => 0.010643766511467
312 => 0.010708439133099
313 => 0.010759553736321
314 => 0.01071485834029
315 => 0.011347650893854
316 => 0.011084871307471
317 => 0.011212948249465
318 => 0.011243493845458
319 => 0.011165251943628
320 => 0.011182219810502
321 => 0.01120792150535
322 => 0.011363977163559
323 => 0.011773512365767
324 => 0.011954892719024
325 => 0.012500584460948
326 => 0.011939831605623
327 => 0.011906558851813
328 => 0.012004854412846
329 => 0.012325233232693
330 => 0.012584870174526
331 => 0.012671006726947
401 => 0.012682391094309
402 => 0.012843988992899
403 => 0.012936613894749
404 => 0.012824366757564
405 => 0.012729249061564
406 => 0.012388549280937
407 => 0.012427986208239
408 => 0.012699667529633
409 => 0.013083433398052
410 => 0.013412744437189
411 => 0.013297431188931
412 => 0.014177189874668
413 => 0.014264414354867
414 => 0.014252362752008
415 => 0.014451073098644
416 => 0.01405667352723
417 => 0.013888060069319
418 => 0.012749814587071
419 => 0.013069615139153
420 => 0.013534464022832
421 => 0.013472939529983
422 => 0.013135353845209
423 => 0.013412488348175
424 => 0.013320859014697
425 => 0.013248587157679
426 => 0.013579678545269
427 => 0.013215629964129
428 => 0.013530832359752
429 => 0.013126582027014
430 => 0.013297957930136
501 => 0.013200676679004
502 => 0.013263629570828
503 => 0.012895608251564
504 => 0.013094183622227
505 => 0.01288734686329
506 => 0.012887248795735
507 => 0.012882682862817
508 => 0.013126025392452
509 => 0.013133960783608
510 => 0.012954130286537
511 => 0.012928213902429
512 => 0.013024040357804
513 => 0.012911852675548
514 => 0.012964344585975
515 => 0.012913442602041
516 => 0.012901983493297
517 => 0.012810675365224
518 => 0.01277133731308
519 => 0.012786762776942
520 => 0.012734107716409
521 => 0.012702381137821
522 => 0.01287637164779
523 => 0.012783415537071
524 => 0.012862124790644
525 => 0.012772425662298
526 => 0.0124614894034
527 => 0.012282666672816
528 => 0.011695336903564
529 => 0.011861902897544
530 => 0.011972336323877
531 => 0.011935838077133
601 => 0.012014250434086
602 => 0.012019064315964
603 => 0.011993571659399
604 => 0.011964054428909
605 => 0.011949687073511
606 => 0.012056769569691
607 => 0.012118934562955
608 => 0.011983419795618
609 => 0.011951670581684
610 => 0.012088683493437
611 => 0.012172261290457
612 => 0.012789352785342
613 => 0.012743636654222
614 => 0.012858375171996
615 => 0.012845457375701
616 => 0.012965721621608
617 => 0.013162302836203
618 => 0.012762598261959
619 => 0.012831973155304
620 => 0.012814964033556
621 => 0.013000665164767
622 => 0.013001244903429
623 => 0.012889907798808
624 => 0.012950265449461
625 => 0.012916575464692
626 => 0.012977457820645
627 => 0.012743026087419
628 => 0.013028538633146
629 => 0.013190405848551
630 => 0.013192653374994
701 => 0.013269377150438
702 => 0.013347332949831
703 => 0.013496962318247
704 => 0.013343159867958
705 => 0.013066484232254
706 => 0.013086459319495
707 => 0.012924244495514
708 => 0.012926971356012
709 => 0.012912415160968
710 => 0.012956099398034
711 => 0.012752612320877
712 => 0.012800370331162
713 => 0.012733508837093
714 => 0.012831827811473
715 => 0.012726052847749
716 => 0.012814955831242
717 => 0.012853323411737
718 => 0.012994900609759
719 => 0.012705141780488
720 => 0.012114303912656
721 => 0.012238505195691
722 => 0.012054801742282
723 => 0.012071804196303
724 => 0.012106151859347
725 => 0.011994819845567
726 => 0.012016058485321
727 => 0.012015299691655
728 => 0.012008760817775
729 => 0.011979799061144
730 => 0.01193779878412
731 => 0.012105114960778
801 => 0.012133545239562
802 => 0.012196742227532
803 => 0.012384773596805
804 => 0.012365984828929
805 => 0.012396630088873
806 => 0.012329731658482
807 => 0.01207490742262
808 => 0.012088745604624
809 => 0.011916183253296
810 => 0.012192329420236
811 => 0.012126934362953
812 => 0.012084773744103
813 => 0.012073269828634
814 => 0.012261767291302
815 => 0.012318168686468
816 => 0.012283023121957
817 => 0.012210938543786
818 => 0.012349362243767
819 => 0.012386398586255
820 => 0.01239468965749
821 => 0.012639949913744
822 => 0.012408396981313
823 => 0.012464134073587
824 => 0.012898978956658
825 => 0.012504634652205
826 => 0.012713527625201
827 => 0.012703303401199
828 => 0.012810165977631
829 => 0.012694537550847
830 => 0.012695970903776
831 => 0.01279085763215
901 => 0.012657606335061
902 => 0.012624611439984
903 => 0.01257902922875
904 => 0.012678556319388
905 => 0.012738218309003
906 => 0.013219050128392
907 => 0.013529689412312
908 => 0.013516203741745
909 => 0.013639437526617
910 => 0.01358391957784
911 => 0.013404637476344
912 => 0.013710650162474
913 => 0.013613814944468
914 => 0.013621797922186
915 => 0.013621500795356
916 => 0.013685887749849
917 => 0.013640263691613
918 => 0.013550333989617
919 => 0.013610033522646
920 => 0.013787319792766
921 => 0.014337621815028
922 => 0.014645578117218
923 => 0.014319082458955
924 => 0.014544294792074
925 => 0.014409247643562
926 => 0.014384705559373
927 => 0.014526155547632
928 => 0.014667853125371
929 => 0.014658827602245
930 => 0.014555962437057
1001 => 0.01449785651535
1002 => 0.01493785402143
1003 => 0.015262036688748
1004 => 0.015239929604185
1005 => 0.015337503085836
1006 => 0.0156239818458
1007 => 0.015650173873342
1008 => 0.015646874279888
1009 => 0.015581954606769
1010 => 0.015864030149921
1011 => 0.016099342530665
1012 => 0.015566927578152
1013 => 0.015769664222246
1014 => 0.015860679233546
1015 => 0.015994316273072
1016 => 0.01621978435892
1017 => 0.016464702502608
1018 => 0.016499336613516
1019 => 0.016474762054432
1020 => 0.016313231954917
1021 => 0.016581224310221
1022 => 0.016738207946764
1023 => 0.016831688109819
1024 => 0.01706873824971
1025 => 0.01586124131127
1026 => 0.015006514961751
1027 => 0.014873037099876
1028 => 0.015144469580757
1029 => 0.015216044161332
1030 => 0.015187192537649
1031 => 0.014225120322945
1101 => 0.014867971988771
1102 => 0.015559626328695
1103 => 0.015586195588743
1104 => 0.015932452213119
1105 => 0.016045207563555
1106 => 0.016323989531071
1107 => 0.016306551643099
1108 => 0.016374430615799
1109 => 0.016358826415475
1110 => 0.01687521130583
1111 => 0.01744486052379
1112 => 0.017425135382745
1113 => 0.01734324156788
1114 => 0.017464867847925
1115 => 0.01805280688818
1116 => 0.017998678882884
1117 => 0.018051259629416
1118 => 0.018744472892669
1119 => 0.019645748743333
1120 => 0.019227015624084
1121 => 0.020135546005646
1122 => 0.020707417721714
1123 => 0.021696410722014
1124 => 0.021572583927483
1125 => 0.021957591644934
1126 => 0.021350908121841
1127 => 0.019957840121851
1128 => 0.019737381778402
1129 => 0.020178744964881
1130 => 0.021263793291248
1201 => 0.020144572931724
1202 => 0.02037098975278
1203 => 0.020305781693084
1204 => 0.020302307032699
1205 => 0.020434920687122
1206 => 0.020242557664719
1207 => 0.019458836106004
1208 => 0.019818011077863
1209 => 0.01967931637223
1210 => 0.019833208488505
1211 => 0.020663700770108
1212 => 0.020296520335948
1213 => 0.019909725575877
1214 => 0.020394852041635
1215 => 0.021012584740085
1216 => 0.020973928137988
1217 => 0.020898918172715
1218 => 0.021321745419568
1219 => 0.02202013215461
1220 => 0.022208903282746
1221 => 0.022348250270281
1222 => 0.022367463865575
1223 => 0.02256537583829
1224 => 0.021501153280762
1225 => 0.023190101810733
1226 => 0.023481736565597
1227 => 0.023426921318705
1228 => 0.02375106107487
1229 => 0.023655690935974
1230 => 0.023517514567831
1231 => 0.024031345027856
]
'min_raw' => 0.0088581638853986
'max_raw' => 0.024031345027856
'avg_raw' => 0.016444754456627
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.008858'
'max' => '$0.024031'
'avg' => '$0.016444'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0030549517947243
'max_diff' => 0.011076082843496
'year' => 2032
]
7 => [
'items' => [
101 => 0.023442279869417
102 => 0.022606176038254
103 => 0.02214747294022
104 => 0.022751530182235
105 => 0.023120406861241
106 => 0.023364210881101
107 => 0.023437985830201
108 => 0.02158376584845
109 => 0.020584444118041
110 => 0.021224997889986
111 => 0.022006517700419
112 => 0.021496811898755
113 => 0.02151679140118
114 => 0.020790084876336
115 => 0.022070815102827
116 => 0.021884223481464
117 => 0.02285226114317
118 => 0.022621231186217
119 => 0.023410628320333
120 => 0.023202753599341
121 => 0.024065629944058
122 => 0.02440985467941
123 => 0.024987861584369
124 => 0.025413045816567
125 => 0.025662722130193
126 => 0.025647732500835
127 => 0.026637074443664
128 => 0.026053694064953
129 => 0.025320830817092
130 => 0.025307575633093
131 => 0.025687135893912
201 => 0.026482590073317
202 => 0.026688839768649
203 => 0.026804105211239
204 => 0.026627572173494
205 => 0.025994354583651
206 => 0.025720934438842
207 => 0.025953896323963
208 => 0.025669003957103
209 => 0.026160808108983
210 => 0.026836160253213
211 => 0.026696702706061
212 => 0.027162888377545
213 => 0.027645341503368
214 => 0.028335271141621
215 => 0.02851564429708
216 => 0.028813794264078
217 => 0.029120688517282
218 => 0.029219254680378
219 => 0.029407448069015
220 => 0.029406456196962
221 => 0.029973589640492
222 => 0.030599155391368
223 => 0.030835291980443
224 => 0.031378275046373
225 => 0.030448435574363
226 => 0.031153729495109
227 => 0.031789922266273
228 => 0.031031427017341
301 => 0.032076836011266
302 => 0.032117426873553
303 => 0.032730300702386
304 => 0.032109035664445
305 => 0.031740130468064
306 => 0.032805145947318
307 => 0.033320473390057
308 => 0.03316525257043
309 => 0.031984014468875
310 => 0.031296483228084
311 => 0.029497081356063
312 => 0.031628550601848
313 => 0.03266672709566
314 => 0.031981325842561
315 => 0.032327002367214
316 => 0.034212901399732
317 => 0.034930929648395
318 => 0.03478158479207
319 => 0.034806821614363
320 => 0.035194256624207
321 => 0.036912356822213
322 => 0.035882831358317
323 => 0.036669864999882
324 => 0.037087304805507
325 => 0.037475046161145
326 => 0.036522875938612
327 => 0.035284116469256
328 => 0.034891749345726
329 => 0.031913176195722
330 => 0.031758128527977
331 => 0.031671095573647
401 => 0.031122365107648
402 => 0.030691213271298
403 => 0.030348345323391
404 => 0.029448557439046
405 => 0.029752209436462
406 => 0.028318135349143
407 => 0.029235605129745
408 => 0.026946788259454
409 => 0.028852982961593
410 => 0.027815527849257
411 => 0.028512151054924
412 => 0.028509720602186
413 => 0.027227016415963
414 => 0.026487179410702
415 => 0.026958632345341
416 => 0.027464067315254
417 => 0.027546072438636
418 => 0.028201382070331
419 => 0.028384264902703
420 => 0.027830121382631
421 => 0.026899357617199
422 => 0.027115552811447
423 => 0.026482798221991
424 => 0.025373920142524
425 => 0.026170335738351
426 => 0.026442267038689
427 => 0.026562367392502
428 => 0.025471913156853
429 => 0.025129268761099
430 => 0.024946847759865
501 => 0.026758593668714
502 => 0.026857845199386
503 => 0.026350060335717
504 => 0.028645296069641
505 => 0.028125813533753
506 => 0.028706202802651
507 => 0.02709593536362
508 => 0.027157449748304
509 => 0.026395123336986
510 => 0.026821975188655
511 => 0.026520290057973
512 => 0.026787489777272
513 => 0.026947648187315
514 => 0.027709849508369
515 => 0.028861686076338
516 => 0.027596002048178
517 => 0.027044525392179
518 => 0.027386658407938
519 => 0.028297803714666
520 => 0.02967823549503
521 => 0.028860992097276
522 => 0.029223670839506
523 => 0.029302900010229
524 => 0.028700294984721
525 => 0.029700454401867
526 => 0.030236447958796
527 => 0.030786266439967
528 => 0.031263658421603
529 => 0.03056665684782
530 => 0.031312548443019
531 => 0.030711491484879
601 => 0.030172281257302
602 => 0.030173099016641
603 => 0.029834844564277
604 => 0.029179433940019
605 => 0.029058566165102
606 => 0.029687335594134
607 => 0.030191549131531
608 => 0.030233078573491
609 => 0.030512237095221
610 => 0.03067744023282
611 => 0.032296655564058
612 => 0.032947917365134
613 => 0.033744267967735
614 => 0.034054491407309
615 => 0.034988152739167
616 => 0.034234145385426
617 => 0.034071011151515
618 => 0.031806254158721
619 => 0.032177107989417
620 => 0.032770880754433
621 => 0.031816045252916
622 => 0.032421668605792
623 => 0.032541231484506
624 => 0.031783600307947
625 => 0.032188283854658
626 => 0.031113564334902
627 => 0.028885112024999
628 => 0.029702935306325
629 => 0.03030512851772
630 => 0.029445724555171
701 => 0.030986172894513
702 => 0.030086274775978
703 => 0.02980105027513
704 => 0.028688287807445
705 => 0.029213468858037
706 => 0.029923783748831
707 => 0.02948489172929
708 => 0.030395658569806
709 => 0.031685547308622
710 => 0.032604798838104
711 => 0.032675367556146
712 => 0.032084350407759
713 => 0.033031459159871
714 => 0.033038357813148
715 => 0.031970015271712
716 => 0.031315661413639
717 => 0.031166990840312
718 => 0.031538399081065
719 => 0.031989357251082
720 => 0.032700392596073
721 => 0.033130056363453
722 => 0.034250391592725
723 => 0.034553522183238
724 => 0.034886570798759
725 => 0.035331626457484
726 => 0.035866029885713
727 => 0.034696785608353
728 => 0.034743241863236
729 => 0.033654457781448
730 => 0.032490935842625
731 => 0.033373903959134
801 => 0.034528267315144
802 => 0.034263455085817
803 => 0.034233658300395
804 => 0.034283768228536
805 => 0.034084108455583
806 => 0.03318105470225
807 => 0.032727546760743
808 => 0.033312687707503
809 => 0.033623664079079
810 => 0.034105961311403
811 => 0.034046507997459
812 => 0.035288853872986
813 => 0.035771591913626
814 => 0.035648086865305
815 => 0.035670814766511
816 => 0.036544788930516
817 => 0.037516827947385
818 => 0.038427270758528
819 => 0.039353412290452
820 => 0.038236912525799
821 => 0.03767002280144
822 => 0.038254908293968
823 => 0.037944559818773
824 => 0.039727914212579
825 => 0.039851389801517
826 => 0.041634615238501
827 => 0.043327108520735
828 => 0.04226408381433
829 => 0.043266468232785
830 => 0.044350628706945
831 => 0.046442150160296
901 => 0.045737799315419
902 => 0.045198277606828
903 => 0.04468843219916
904 => 0.045749339556839
905 => 0.047114179924083
906 => 0.047408153466909
907 => 0.047884502912824
908 => 0.047383679715683
909 => 0.047986866092773
910 => 0.050116379057425
911 => 0.049540965856645
912 => 0.04872378660925
913 => 0.050404832574243
914 => 0.051013196574073
915 => 0.055283013727583
916 => 0.060673834261238
917 => 0.058441999162269
918 => 0.05705662709547
919 => 0.057382222392632
920 => 0.059350767560732
921 => 0.059983001790225
922 => 0.058264371210255
923 => 0.058871420585641
924 => 0.062216322327798
925 => 0.064010754795169
926 => 0.061573674480046
927 => 0.054849866546629
928 => 0.048650208558974
929 => 0.050294637031538
930 => 0.050108209875305
1001 => 0.053701889512262
1002 => 0.049527242442108
1003 => 0.04959753279229
1004 => 0.053265525918367
1005 => 0.052286968237652
1006 => 0.050701830119091
1007 => 0.048661781821458
1008 => 0.044890563861655
1009 => 0.041550290946465
1010 => 0.048101335352064
1011 => 0.047818842404993
1012 => 0.047409750754525
1013 => 0.048320139954301
1014 => 0.052740731489928
1015 => 0.052638822546974
1016 => 0.051990529846296
1017 => 0.05248225414597
1018 => 0.050615628471906
1019 => 0.051096700410389
1020 => 0.048649226501474
1021 => 0.049755586923843
1022 => 0.050698429124611
1023 => 0.050887718655432
1024 => 0.051314197633736
1025 => 0.047669981458465
1026 => 0.049306127532596
1027 => 0.050267210064993
1028 => 0.045925004219143
1029 => 0.050181378616677
1030 => 0.047606543762503
1031 => 0.046732606140275
1101 => 0.047909248016079
1102 => 0.047450709532756
1103 => 0.047056485071079
1104 => 0.046836501047827
1105 => 0.047700496980192
1106 => 0.047660190537249
1107 => 0.046246525497515
1108 => 0.044402457081541
1109 => 0.045021386971424
1110 => 0.044796523939931
1111 => 0.043981591305891
1112 => 0.044530757505892
1113 => 0.04211250748774
1114 => 0.037952034021207
1115 => 0.040700570231947
1116 => 0.040594754577666
1117 => 0.040541397526419
1118 => 0.04260684652483
1119 => 0.042408301261648
1120 => 0.042047939664814
1121 => 0.043974972982566
1122 => 0.043271579899331
1123 => 0.045439271641609
1124 => 0.046867053620585
1125 => 0.046504921926808
1126 => 0.047847757779104
1127 => 0.045035645866024
1128 => 0.045969716641202
1129 => 0.0461622273334
1130 => 0.043951193690551
1201 => 0.042440785722156
1202 => 0.042340058730575
1203 => 0.039721219460417
1204 => 0.041120182260004
1205 => 0.042351211630625
1206 => 0.041761644093836
1207 => 0.041575004624517
1208 => 0.042528505196103
1209 => 0.042602600356696
1210 => 0.040913222842937
1211 => 0.041264497923675
1212 => 0.042729373404978
1213 => 0.04122758682003
1214 => 0.03830986080092
1215 => 0.037586224407463
1216 => 0.037489677973311
1217 => 0.035527118681928
1218 => 0.037634581251476
1219 => 0.036714617363383
1220 => 0.039620772263009
1221 => 0.037960792170364
1222 => 0.03788923374633
1223 => 0.037781062693065
1224 => 0.036091806838668
1225 => 0.036461646512971
1226 => 0.037691049918526
1227 => 0.038129714903849
1228 => 0.038083958552003
1229 => 0.03768502517114
1230 => 0.03786765483003
1231 => 0.037279341066355
]
'min_raw' => 0.020584444118041
'max_raw' => 0.064010754795169
'avg_raw' => 0.042297599456605
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.020584'
'max' => '$0.06401'
'avg' => '$0.042297'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.011726280232643
'max_diff' => 0.039979409767312
'year' => 2033
]
8 => [
'items' => [
101 => 0.037071595231709
102 => 0.036415892232573
103 => 0.035452189966421
104 => 0.035586198677259
105 => 0.033676852321596
106 => 0.03263653909035
107 => 0.032348594099049
108 => 0.031963542022632
109 => 0.032392086755664
110 => 0.033671443383267
111 => 0.032128267859729
112 => 0.0294826016658
113 => 0.029641610712051
114 => 0.029998856828767
115 => 0.029333131053686
116 => 0.0287030774777
117 => 0.029250857944157
118 => 0.028129854300588
119 => 0.030134324763434
120 => 0.030080109454878
121 => 0.030827252087805
122 => 0.031294455709084
123 => 0.030217702621003
124 => 0.029946902131201
125 => 0.030101162397389
126 => 0.027551583816299
127 => 0.030618897124108
128 => 0.030645423376966
129 => 0.030418289495433
130 => 0.032051539139168
131 => 0.035498205310786
201 => 0.034201430855198
202 => 0.033699280590779
203 => 0.032744692571048
204 => 0.034016624429511
205 => 0.033918959908009
206 => 0.033477283903607
207 => 0.033210156878032
208 => 0.033702346613216
209 => 0.03314916912302
210 => 0.03304980324548
211 => 0.032447754138728
212 => 0.032232849999106
213 => 0.032073743529711
214 => 0.031898582940385
215 => 0.032284943553138
216 => 0.031409399574668
217 => 0.030353579367269
218 => 0.030265799341156
219 => 0.030508167710951
220 => 0.03040093774952
221 => 0.030265285965355
222 => 0.03000628976682
223 => 0.029929451127293
224 => 0.030179139428948
225 => 0.029897255894111
226 => 0.030313190404754
227 => 0.030200079232565
228 => 0.029568249419484
301 => 0.028780755539027
302 => 0.028773745191667
303 => 0.028604080926871
304 => 0.028387987976461
305 => 0.028327875861194
306 => 0.029204725401156
307 => 0.031019777706979
308 => 0.030663439508825
309 => 0.030920930375999
310 => 0.032187530594414
311 => 0.032590144715851
312 => 0.032304378748893
313 => 0.031913204668044
314 => 0.031930414342359
315 => 0.033267174593067
316 => 0.0333505466902
317 => 0.033561201082798
318 => 0.03383195150821
319 => 0.032350488717099
320 => 0.031860637578124
321 => 0.031628518932571
322 => 0.030913683345489
323 => 0.031684572240785
324 => 0.03123540829425
325 => 0.031296015856263
326 => 0.031256545101993
327 => 0.031278098802825
328 => 0.030133764473088
329 => 0.030550699758403
330 => 0.029857463980639
331 => 0.028929299093582
401 => 0.028926187559424
402 => 0.029153354600601
403 => 0.029018226755462
404 => 0.028654601198646
405 => 0.028706252492728
406 => 0.028253732806529
407 => 0.028761196575766
408 => 0.028775748820875
409 => 0.02858034762798
410 => 0.029362165580995
411 => 0.029682477034247
412 => 0.029553859783185
413 => 0.029673452905046
414 => 0.030678246969729
415 => 0.030842072244511
416 => 0.030914832609879
417 => 0.030817343359187
418 => 0.029691818696022
419 => 0.029741740500933
420 => 0.029375447420128
421 => 0.029065968365862
422 => 0.029078345905029
423 => 0.029237458368383
424 => 0.029932311827671
425 => 0.031394589968896
426 => 0.031450082355444
427 => 0.031517340746767
428 => 0.031243767067896
429 => 0.031161254628601
430 => 0.031270109834299
501 => 0.03181926462121
502 => 0.033231839827218
503 => 0.032732541406689
504 => 0.032326604018756
505 => 0.032682720547907
506 => 0.032627899199578
507 => 0.032165151849424
508 => 0.032152164072534
509 => 0.031264003958312
510 => 0.030935671386512
511 => 0.030661292114248
512 => 0.030361677111789
513 => 0.030184055295145
514 => 0.030456963133182
515 => 0.030519380384692
516 => 0.029922662627212
517 => 0.029841332201815
518 => 0.030328624803621
519 => 0.030114185497665
520 => 0.030334741641679
521 => 0.030385912558986
522 => 0.030377672862733
523 => 0.030153773599119
524 => 0.030296480312975
525 => 0.029958936391786
526 => 0.029591908074952
527 => 0.029357766875484
528 => 0.029153447624624
529 => 0.029266815820105
530 => 0.028862678903429
531 => 0.028733387370115
601 => 0.030248134489323
602 => 0.031367094472557
603 => 0.031350824351244
604 => 0.031251784172087
605 => 0.031104630555425
606 => 0.031808499417588
607 => 0.031563285580313
608 => 0.031741699135232
609 => 0.031787112872953
610 => 0.031924566579289
611 => 0.03197369446476
612 => 0.031825195873359
613 => 0.031326816463041
614 => 0.030084902357023
615 => 0.029506787988188
616 => 0.029316000617216
617 => 0.029322935375794
618 => 0.029131643776087
619 => 0.029187987725289
620 => 0.029112049649935
621 => 0.02896824130661
622 => 0.029257936060146
623 => 0.029291320681798
624 => 0.029223702464728
625 => 0.029239629002663
626 => 0.028679779045442
627 => 0.028722343221759
628 => 0.02848534047923
629 => 0.028440905322117
630 => 0.027841783027193
701 => 0.02678035103757
702 => 0.027368487395517
703 => 0.026658101379603
704 => 0.026389067431272
705 => 0.027662632299309
706 => 0.027534801709749
707 => 0.027316011307044
708 => 0.026992374701527
709 => 0.026872334736407
710 => 0.026143009908369
711 => 0.026099917506732
712 => 0.026461390584934
713 => 0.026294583196873
714 => 0.026060322449137
715 => 0.025211853767469
716 => 0.024257894050947
717 => 0.024286688098412
718 => 0.024590124935186
719 => 0.025472408462139
720 => 0.025127685024499
721 => 0.024877584215245
722 => 0.024830747851674
723 => 0.025417003000328
724 => 0.026246676859924
725 => 0.02663594127194
726 => 0.026250192061768
727 => 0.025807064139335
728 => 0.025834035282717
729 => 0.026013462216348
730 => 0.026032317450113
731 => 0.025743886726895
801 => 0.025825078285988
802 => 0.025701740883414
803 => 0.024944819471479
804 => 0.024931129163361
805 => 0.024745368441865
806 => 0.024739743681045
807 => 0.024423718353597
808 => 0.024379504225707
809 => 0.023752016756695
810 => 0.024165030909006
811 => 0.023888002699852
812 => 0.023470455844308
813 => 0.023398470609029
814 => 0.023396306645932
815 => 0.023825033904807
816 => 0.024160020981369
817 => 0.023892821724156
818 => 0.023831985632729
819 => 0.024481555928979
820 => 0.024398892187816
821 => 0.024327305921093
822 => 0.02617238866574
823 => 0.02471186169975
824 => 0.024074988578614
825 => 0.023286737152282
826 => 0.023543395791405
827 => 0.023597477537768
828 => 0.021701874950439
829 => 0.020932829216842
830 => 0.020668921701949
831 => 0.020517039196023
901 => 0.020586253961194
902 => 0.019894022600889
903 => 0.020359213523464
904 => 0.0197597996783
905 => 0.019659305996497
906 => 0.020731132204776
907 => 0.020880270560141
908 => 0.020244000002502
909 => 0.020652588703352
910 => 0.020504428760616
911 => 0.019770074908254
912 => 0.019742027992635
913 => 0.019373555043305
914 => 0.018796966228027
915 => 0.018533449667501
916 => 0.018396207954824
917 => 0.018452836560262
918 => 0.018424203404489
919 => 0.018237352694854
920 => 0.018434913468445
921 => 0.017930227329666
922 => 0.017729257242671
923 => 0.017638483716846
924 => 0.017190545720029
925 => 0.017903414271897
926 => 0.018043858357096
927 => 0.018184579160529
928 => 0.019409457680236
929 => 0.019348266210862
930 => 0.019901407292547
1001 => 0.019879913247273
1002 => 0.019722148450486
1003 => 0.019056564723887
1004 => 0.01932185453442
1005 => 0.018505333732789
1006 => 0.019117126635388
1007 => 0.018837929903724
1008 => 0.019022729939566
1009 => 0.018690442812375
1010 => 0.018874344228362
1011 => 0.018077162859829
1012 => 0.017332766114537
1013 => 0.017632333095138
1014 => 0.017957996662691
1015 => 0.01866411825468
1016 => 0.018243558059868
1017 => 0.018394807409064
1018 => 0.017888147408093
1019 => 0.016842763105815
1020 => 0.016848679867438
1021 => 0.016687870267467
1022 => 0.016548907294507
1023 => 0.018291864457331
1024 => 0.018075100182059
1025 => 0.017729714678819
1026 => 0.01819202689998
1027 => 0.018314269589136
1028 => 0.018317749666643
1029 => 0.018655040729197
1030 => 0.018835053029744
1031 => 0.018866780977934
1101 => 0.019397515752517
1102 => 0.019575411048396
1103 => 0.020308136595439
1104 => 0.018819780243719
1105 => 0.018789128524095
1106 => 0.018198532581015
1107 => 0.017823967296962
1108 => 0.018224179386469
1109 => 0.018578712663374
1110 => 0.018209548918187
1111 => 0.018257753909836
1112 => 0.017762181743707
1113 => 0.017939325474261
1114 => 0.018091905518851
1115 => 0.018007659786469
1116 => 0.017881539847553
1117 => 0.018549644977712
1118 => 0.018511947867944
1119 => 0.019134102724819
1120 => 0.019619116926473
1121 => 0.020488349082497
1122 => 0.019581260013589
1123 => 0.019548202082565
1124 => 0.019871348660979
1125 => 0.019575361576339
1126 => 0.019762415196705
1127 => 0.020458211852419
1128 => 0.020472912939332
1129 => 0.020226650792255
1130 => 0.020211665718225
1201 => 0.020258963057384
1202 => 0.020535985050143
1203 => 0.020439185053847
1204 => 0.020551204460236
1205 => 0.020691286443229
1206 => 0.021270724918416
1207 => 0.021410425573104
1208 => 0.021071025408697
1209 => 0.02110166944344
1210 => 0.02097472446521
1211 => 0.020852097206854
1212 => 0.021127745375364
1213 => 0.021631497821193
1214 => 0.021628364003372
1215 => 0.021745224779257
1216 => 0.021818028074505
1217 => 0.021505503036028
1218 => 0.021302060727843
1219 => 0.021380073454172
1220 => 0.021504817502467
1221 => 0.021339620640568
1222 => 0.020319949082296
1223 => 0.020629252296204
1224 => 0.020577769117255
1225 => 0.020504450809864
1226 => 0.02081545758322
1227 => 0.020785460221224
1228 => 0.019886922767754
1229 => 0.019944444220228
1230 => 0.019890420837796
1231 => 0.020064981438577
]
'min_raw' => 0.016548907294507
'max_raw' => 0.037071595231709
'avg_raw' => 0.026810251263108
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.016548'
'max' => '$0.037071'
'avg' => '$0.02681'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0040355368235346
'max_diff' => -0.026939159563459
'year' => 2034
]
9 => [
'items' => [
101 => 0.019565934731038
102 => 0.019719438137146
103 => 0.019815714034452
104 => 0.019872421277591
105 => 0.020077286724332
106 => 0.020053248128705
107 => 0.020075792451476
108 => 0.02037955382652
109 => 0.021915874623174
110 => 0.021999493174435
111 => 0.021587724845977
112 => 0.021752218171425
113 => 0.021436426957301
114 => 0.021648419714959
115 => 0.021793459775717
116 => 0.021138051630752
117 => 0.021099242613971
118 => 0.020782148017173
119 => 0.020952536692336
120 => 0.020681436058772
121 => 0.020747954671551
122 => 0.020561962831233
123 => 0.0208967111132
124 => 0.021271011707064
125 => 0.021365574818652
126 => 0.021116819984042
127 => 0.020936705090043
128 => 0.020620482669714
129 => 0.021146367602197
130 => 0.021300152382508
131 => 0.021145559836214
201 => 0.021109737365324
202 => 0.021041853847717
203 => 0.021124139174491
204 => 0.021299314837568
205 => 0.021216705229847
206 => 0.02127127033114
207 => 0.021063324432298
208 => 0.02150560649482
209 => 0.022208056851079
210 => 0.022210315343837
211 => 0.02212770529082
212 => 0.022093903036983
213 => 0.022178665964576
214 => 0.022224646375638
215 => 0.02249875414061
216 => 0.022792882693361
217 => 0.024165452310707
218 => 0.023780040254582
219 => 0.024997865673623
220 => 0.025961007465246
221 => 0.026249811575467
222 => 0.025984125383347
223 => 0.02507522727219
224 => 0.025030632394729
225 => 0.026388909899682
226 => 0.026005134291482
227 => 0.02595948540405
228 => 0.025473858366791
301 => 0.02576092409189
302 => 0.025698138606811
303 => 0.025599028647042
304 => 0.026146730053359
305 => 0.027171978192342
306 => 0.027012183655166
307 => 0.026892904445818
308 => 0.026370257672115
309 => 0.026685007767268
310 => 0.026572931287025
311 => 0.02705448297164
312 => 0.02676922242135
313 => 0.026002226813796
314 => 0.02612437339235
315 => 0.026105911182726
316 => 0.026485862148532
317 => 0.02637181029956
318 => 0.026083640728747
319 => 0.027168474005662
320 => 0.027098030966819
321 => 0.027197903090378
322 => 0.027241869887816
323 => 0.027902188786568
324 => 0.028172700311538
325 => 0.028234111163677
326 => 0.028491076190287
327 => 0.028227717639726
328 => 0.029281339613436
329 => 0.029981936745407
330 => 0.03079571636659
331 => 0.03198486711648
401 => 0.032431998798698
402 => 0.032351228462426
403 => 0.033252828989402
404 => 0.034872985094925
405 => 0.032678708333388
406 => 0.034989287091407
407 => 0.034257784533533
408 => 0.032523405127982
409 => 0.032411731541254
410 => 0.033586273411252
411 => 0.036191294233443
412 => 0.035538766063386
413 => 0.036192361535767
414 => 0.035429907699466
415 => 0.035392045440029
416 => 0.036155330854767
417 => 0.037938788830824
418 => 0.037091534798322
419 => 0.035876788387518
420 => 0.036773738233708
421 => 0.035996717268148
422 => 0.034245871558269
423 => 0.035538267087392
424 => 0.034674079002373
425 => 0.034926295028347
426 => 0.03674268984478
427 => 0.036524136414882
428 => 0.036806964790673
429 => 0.03630778011031
430 => 0.035841462904652
501 => 0.034971047211121
502 => 0.034713360035242
503 => 0.034784575500041
504 => 0.034713324744394
505 => 0.034226335163397
506 => 0.034121169809747
507 => 0.033945889612931
508 => 0.034000216275209
509 => 0.033670638225164
510 => 0.034292620099898
511 => 0.034408065416734
512 => 0.034860691956181
513 => 0.034907685145037
514 => 0.036168243614662
515 => 0.035473949192417
516 => 0.035939741833356
517 => 0.03589807695534
518 => 0.032560994388798
519 => 0.033020814923139
520 => 0.03373615137494
521 => 0.03341389327302
522 => 0.032958295713686
523 => 0.032590376256928
524 => 0.032032940658245
525 => 0.03281752055879
526 => 0.033849159697235
527 => 0.034933849216052
528 => 0.036237032601238
529 => 0.035946177240391
530 => 0.034909487109142
531 => 0.034955992271127
601 => 0.035243468883413
602 => 0.034871160550498
603 => 0.034761359554799
604 => 0.035228383912713
605 => 0.035231600052794
606 => 0.03480321432081
607 => 0.034327141973472
608 => 0.034325147212953
609 => 0.034240434737058
610 => 0.035444977860738
611 => 0.036107354785717
612 => 0.036183295232692
613 => 0.036102243388573
614 => 0.036133437026542
615 => 0.035748014488377
616 => 0.036628976117119
617 => 0.037437433625728
618 => 0.037220749743246
619 => 0.036895909799975
620 => 0.036637159138749
621 => 0.037159796310675
622 => 0.037136524100116
623 => 0.037430372454674
624 => 0.037417041795961
625 => 0.037318231646519
626 => 0.037220753272067
627 => 0.037607244008311
628 => 0.037495940883124
629 => 0.037384464873441
630 => 0.037160882669899
701 => 0.037191271204667
702 => 0.036866487349593
703 => 0.036716227477137
704 => 0.034456679519252
705 => 0.033852854472046
706 => 0.034042830123889
707 => 0.034105375041192
708 => 0.033842589606825
709 => 0.034219356415668
710 => 0.034160637707604
711 => 0.034389077851384
712 => 0.034246358367268
713 => 0.034252215624679
714 => 0.03467192319646
715 => 0.034793766090111
716 => 0.034731795811007
717 => 0.034775197670275
718 => 0.035775375198315
719 => 0.035633181937705
720 => 0.035557644602022
721 => 0.035578568960238
722 => 0.0358341357627
723 => 0.03590568051396
724 => 0.035602540375513
725 => 0.035745503017237
726 => 0.036354219801035
727 => 0.036567236224979
728 => 0.037247082396522
729 => 0.036958271659548
730 => 0.037488396266699
731 => 0.039117818576285
801 => 0.040419513864629
802 => 0.039222421082635
803 => 0.041612818709784
804 => 0.043474086144694
805 => 0.043402647600439
806 => 0.043078092571271
807 => 0.040959089080981
808 => 0.039009150476654
809 => 0.04064035691794
810 => 0.04064451519862
811 => 0.040504393118668
812 => 0.039634106914364
813 => 0.040474109045213
814 => 0.04054078536392
815 => 0.040503464356108
816 => 0.039836217963762
817 => 0.038817456050397
818 => 0.039016519689697
819 => 0.039342589991659
820 => 0.038725270884654
821 => 0.038528000025283
822 => 0.038894764085171
823 => 0.040076554304459
824 => 0.039853143709147
825 => 0.039847309555631
826 => 0.040803154823211
827 => 0.040118975895943
828 => 0.039019030519679
829 => 0.038741279805675
830 => 0.037755451886262
831 => 0.038436366741599
901 => 0.038460871655033
902 => 0.038087941547546
903 => 0.039049291742566
904 => 0.039040432731277
905 => 0.039953091663355
906 => 0.041697752762447
907 => 0.041181770625887
908 => 0.040581739539764
909 => 0.040646979555883
910 => 0.041362501506627
911 => 0.04092988060143
912 => 0.041085454095279
913 => 0.041362266027511
914 => 0.04152927353908
915 => 0.040622949745068
916 => 0.040411642314205
917 => 0.03997938146949
918 => 0.039866612683635
919 => 0.040218680122237
920 => 0.040125922790891
921 => 0.038458812111947
922 => 0.038284589770281
923 => 0.038289932920768
924 => 0.037851842558828
925 => 0.037183649603136
926 => 0.038939620794967
927 => 0.038798591733462
928 => 0.038642906564342
929 => 0.038661977109232
930 => 0.039424184688221
1001 => 0.038982065800002
1002 => 0.040157511326192
1003 => 0.039915875063134
1004 => 0.039668041741706
1005 => 0.039633783627497
1006 => 0.039538388942893
1007 => 0.039211245074585
1008 => 0.038816199195305
1009 => 0.038555355687516
1010 => 0.035565277593343
1011 => 0.036120218695138
1012 => 0.036758627848279
1013 => 0.036979004129679
1014 => 0.03660203525077
1015 => 0.039226130103577
1016 => 0.039705577519592
1017 => 0.038253300022901
1018 => 0.03798163819937
1019 => 0.039243940207501
1020 => 0.038482617786453
1021 => 0.038825441226034
1022 => 0.038084444464055
1023 => 0.039590092676933
1024 => 0.039578622160201
1025 => 0.038992890998785
1026 => 0.0394879469655
1027 => 0.039401918808554
1028 => 0.038740629769907
1029 => 0.039611056718978
1030 => 0.039611488439885
1031 => 0.039047734931915
1101 => 0.038389394256118
1102 => 0.038271698492599
1103 => 0.038183030544987
1104 => 0.038803634346366
1105 => 0.039360065774105
1106 => 0.040395446710077
1107 => 0.040655766077424
1108 => 0.041671809898623
1109 => 0.041066805273375
1110 => 0.041334995987626
1111 => 0.041626154945838
1112 => 0.041765747257422
1113 => 0.041538289076633
1114 => 0.043116623351277
1115 => 0.04324988312297
1116 => 0.043294563971726
1117 => 0.042762358534713
1118 => 0.043235081527014
1119 => 0.043013910093857
1120 => 0.043589336719738
1121 => 0.043679570962092
1122 => 0.043603145768995
1123 => 0.043631787541769
1124 => 0.042284957675606
1125 => 0.042215117441952
1126 => 0.041262840900441
1127 => 0.041650900629979
1128 => 0.040925441565794
1129 => 0.041155492108104
1130 => 0.041256896195152
1201 => 0.041203928454709
1202 => 0.041672840944847
1203 => 0.041274169535737
1204 => 0.040222010139447
1205 => 0.039169564083033
1206 => 0.039156351480099
1207 => 0.038879261010661
1208 => 0.038678975352909
1209 => 0.038717557476107
1210 => 0.038853525910604
1211 => 0.038671072620318
1212 => 0.038710008280418
1213 => 0.039356599665009
1214 => 0.03948626895591
1215 => 0.039045602040366
1216 => 0.037276260786523
1217 => 0.036842060004773
1218 => 0.037154154916119
1219 => 0.037004993649982
1220 => 0.029865917996874
1221 => 0.031543137926166
1222 => 0.030546590797188
1223 => 0.03100584556315
1224 => 0.029988628999091
1225 => 0.030474098060348
1226 => 0.030384449651225
1227 => 0.033081369664981
1228 => 0.033039260968458
1229 => 0.033059416173141
1230 => 0.032097355739527
1231 => 0.033629944133061
]
'min_raw' => 0.019565934731038
'max_raw' => 0.043679570962092
'avg_raw' => 0.031622752846565
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.019565'
'max' => '$0.043679'
'avg' => '$0.031622'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0030170274365309
'max_diff' => 0.0066079757303834
'year' => 2035
]
10 => [
'items' => [
101 => 0.034384952285812
102 => 0.034245220370629
103 => 0.034280387883274
104 => 0.033676093500479
105 => 0.033065267063688
106 => 0.032387766539772
107 => 0.033646478771613
108 => 0.033506531458366
109 => 0.033827520243499
110 => 0.034643885100456
111 => 0.034764097926712
112 => 0.034925665184277
113 => 0.034867754823581
114 => 0.036247414559361
115 => 0.03608032866207
116 => 0.036482957600648
117 => 0.035654719326462
118 => 0.034717489102122
119 => 0.034895625927404
120 => 0.034878469918644
121 => 0.034660054236371
122 => 0.034462878324441
123 => 0.034134635985045
124 => 0.035173243317619
125 => 0.035131077756636
126 => 0.035813689176845
127 => 0.035693030977789
128 => 0.034887245994427
129 => 0.034916024762746
130 => 0.035109575810294
131 => 0.035779458195785
201 => 0.035978324896869
202 => 0.035886201917459
203 => 0.036104250176588
204 => 0.036276586630061
205 => 0.036125892981806
206 => 0.038259397256313
207 => 0.037373417534139
208 => 0.037805237886119
209 => 0.037908224495633
210 => 0.037644426460938
211 => 0.037701634808764
212 => 0.037788289867379
213 => 0.038314442414487
214 => 0.039695218941566
215 => 0.040306755466145
216 => 0.042146593273023
217 => 0.040255975870778
218 => 0.040143794458282
219 => 0.040475204805079
220 => 0.041555384364328
221 => 0.042430768440991
222 => 0.042721183841339
223 => 0.042759567030731
224 => 0.043304405628235
225 => 0.043616696951686
226 => 0.043238247891821
227 => 0.042917551938853
228 => 0.041768858841568
229 => 0.041901823195366
301 => 0.04281781573863
302 => 0.044111709157682
303 => 0.045222004317894
304 => 0.044833217650481
305 => 0.047799385482231
306 => 0.04809346890704
307 => 0.048052836086587
308 => 0.048722801893783
309 => 0.047393056202662
310 => 0.046824564157099
311 => 0.042986890043938
312 => 0.044065119933043
313 => 0.045632390399079
314 => 0.045424956275937
315 => 0.044286762570242
316 => 0.045221140895904
317 => 0.044912206200728
318 => 0.044668536588931
319 => 0.045784834318253
320 => 0.04455741910988
321 => 0.045620145993452
322 => 0.044257187772769
323 => 0.044834993595228
324 => 0.044507003065078
325 => 0.044719253135093
326 => 0.043478443562766
327 => 0.044147954289044
328 => 0.043450589715406
329 => 0.043450259073798
330 => 0.043434864712184
331 => 0.044255311040481
401 => 0.044282065765792
402 => 0.043675754689554
403 => 0.043588375791109
404 => 0.043911461375795
405 => 0.043533212772377
406 => 0.043710192913248
407 => 0.043538573320551
408 => 0.043499938135374
409 => 0.043192086406644
410 => 0.043059455417347
411 => 0.04311146344573
412 => 0.042933933232883
413 => 0.042826964858094
414 => 0.043413586010083
415 => 0.043100177992805
416 => 0.043365551736532
417 => 0.043063124862719
418 => 0.042014781556968
419 => 0.041411868235801
420 => 0.039431644912713
421 => 0.039993233790682
422 => 0.040365567797781
423 => 0.040242511410656
424 => 0.0405068841467
425 => 0.040523114485547
426 => 0.040437164214098
427 => 0.040337644810671
428 => 0.040289204268852
429 => 0.040650240380985
430 => 0.040859833995995
501 => 0.040402936496579
502 => 0.040295891805142
503 => 0.040757840403053
504 => 0.04103962878092
505 => 0.043120195839878
506 => 0.042966060712008
507 => 0.043352909635472
508 => 0.04330935638337
509 => 0.043714835685027
510 => 0.044377622974898
511 => 0.04302999109635
512 => 0.043263893392862
513 => 0.04320654595135
514 => 0.043832650280469
515 => 0.043834604909843
516 => 0.043459224088305
517 => 0.043662724121519
518 => 0.043549135985711
519 => 0.043754405099474
520 => 0.042964002143403
521 => 0.043926627625171
522 => 0.044472374243118
523 => 0.044479951935437
524 => 0.044738631501031
525 => 0.045001464921384
526 => 0.045505950783786
527 => 0.044987395084492
528 => 0.044054563861842
529 => 0.044121911263091
530 => 0.043574992658561
531 => 0.043584186459112
601 => 0.043535109231239
602 => 0.043682393686447
603 => 0.042996322798798
604 => 0.04315734226483
605 => 0.042931914069456
606 => 0.04326340335599
607 => 0.042906775680822
608 => 0.043206518296677
609 => 0.043335877273056
610 => 0.043813214680791
611 => 0.042836272557588
612 => 0.04084422143521
613 => 0.041262974732419
614 => 0.040643605713485
615 => 0.040700930674291
616 => 0.04081673621832
617 => 0.040441372560906
618 => 0.040512980117673
619 => 0.04051042179185
620 => 0.040488375522033
621 => 0.040390728937507
622 => 0.040249122071157
623 => 0.040813240242401
624 => 0.04090909491226
625 => 0.041122167969474
626 => 0.041756128858907
627 => 0.041692781216226
628 => 0.041796103849708
629 => 0.041570551120948
630 => 0.040711393418478
701 => 0.040758049815254
702 => 0.040176243799833
703 => 0.041107289881581
704 => 0.040886805880215
705 => 0.040744658410202
706 => 0.040705872156021
707 => 0.041341404511878
708 => 0.041531565753499
709 => 0.041413070028967
710 => 0.041170031840879
711 => 0.041636737009798
712 => 0.041761607624291
713 => 0.041789561549825
714 => 0.04261647362731
715 => 0.041835776749109
716 => 0.042023698247151
717 => 0.043489808130323
718 => 0.042160248775621
719 => 0.042864546018518
720 => 0.042830074333464
721 => 0.043190368970811
722 => 0.042800519656989
723 => 0.042805352306464
724 => 0.043125269535956
725 => 0.042676003484511
726 => 0.042564758892131
727 => 0.042411075284507
728 => 0.042746637819352
729 => 0.042947792382804
730 => 0.044568950432481
731 => 0.045616292466361
801 => 0.045570824586502
802 => 0.045986315896107
803 => 0.045799133255665
804 => 0.045194671133395
805 => 0.046226414269808
806 => 0.04589992757148
807 => 0.045926842738209
808 => 0.045925840954359
809 => 0.046142926066785
810 => 0.045989101369073
811 => 0.045685897100102
812 => 0.045887178243796
813 => 0.04648491128124
814 => 0.048340292970157
815 => 0.049378589143813
816 => 0.04827778623678
817 => 0.049037105341713
818 => 0.048581784451814
819 => 0.048499039101496
820 => 0.048975947612636
821 => 0.049453690888991
822 => 0.049423260707628
823 => 0.049076443621383
824 => 0.048880535449521
825 => 0.050364017760914
826 => 0.051457022257487
827 => 0.051382486678416
828 => 0.051711462484167
829 => 0.052677345624691
830 => 0.052765653874219
831 => 0.052754529064521
901 => 0.052535647854053
902 => 0.053486685241674
903 => 0.054280057362339
904 => 0.052484983177916
905 => 0.053168523928097
906 => 0.053475387393162
907 => 0.053925954002163
908 => 0.05468613539528
909 => 0.055511894016362
910 => 0.055628665339366
911 => 0.055545810497672
912 => 0.055001200489486
913 => 0.055904755426023
914 => 0.056434036716875
915 => 0.056749211613191
916 => 0.057548442710146
917 => 0.053477282477453
918 => 0.050595512914961
919 => 0.05014548298452
920 => 0.051060636544623
921 => 0.05130195524021
922 => 0.051204679976607
923 => 0.047960986334995
924 => 0.050128405608795
925 => 0.052460366505615
926 => 0.052549946620871
927 => 0.053717375004822
928 => 0.054097537541143
929 => 0.05503747040856
930 => 0.054978677351787
1001 => 0.055207536047404
1002 => 0.055154925396562
1003 => 0.056895953107235
1004 => 0.058816565217224
1005 => 0.058750060527028
1006 => 0.058473949812565
1007 => 0.058884021307414
1008 => 0.060866298830225
1009 => 0.060683802481275
1010 => 0.060861082139278
1011 => 0.063198299054938
1012 => 0.066237013510525
1013 => 0.064825225563961
1014 => 0.067888399176966
1015 => 0.069816504594496
1016 => 0.073150963544293
1017 => 0.072733472861222
1018 => 0.074031553260988
1019 => 0.07198607740559
1020 => 0.06728925138272
1021 => 0.066545960685873
1022 => 0.068034047484079
1023 => 0.071692363672081
1024 => 0.067918834088477
1025 => 0.068682214208585
1026 => 0.068462360682638
1027 => 0.068450645622558
1028 => 0.068897761817232
1029 => 0.068249196456845
1030 => 0.065606824503946
1031 => 0.066817807998364
1101 => 0.066350189114965
1102 => 0.066869047129393
1103 => 0.069669109839937
1104 => 0.068431135370447
1105 => 0.06712702983172
1106 => 0.06876266758147
1107 => 0.070845396503013
1108 => 0.070715063070127
1109 => 0.070462161735178
1110 => 0.071887753318799
1111 => 0.074242412955798
1112 => 0.07487886799389
1113 => 0.075348686091259
1114 => 0.075413466069244
1115 => 0.076080740103026
1116 => 0.072492639448674
1117 => 0.078187047336091
1118 => 0.079170314273405
1119 => 0.078985500841429
1120 => 0.080078360660055
1121 => 0.079756813578237
1122 => 0.079290942305875
1123 => 0.081023357576348
1124 => 0.079037283267455
1125 => 0.076218300825784
1126 => 0.074671751305132
1127 => 0.076708372470517
1128 => 0.077952065947934
1129 => 0.078774068222745
1130 => 0.079022805614435
1201 => 0.072771173488459
1202 => 0.069401890503971
1203 => 0.07156156226812
1204 => 0.074196510872964
1205 => 0.072478002176132
1206 => 0.072545364463481
1207 => 0.070095222677939
1208 => 0.074413294054284
1209 => 0.073784187375447
1210 => 0.077047993938122
1211 => 0.076269060308255
1212 => 0.078930567859876
1213 => 0.078229703724703
1214 => 0.08113895156502
1215 => 0.082299529293263
1216 => 0.084248319928483
1217 => 0.085681858252756
1218 => 0.086523659375988
1219 => 0.086473120794066
1220 => 0.089808756227964
1221 => 0.087841848550819
1222 => 0.08537094894378
1223 => 0.085326258165477
1224 => 0.086605972084881
1225 => 0.089287901387583
1226 => 0.089983286635289
1227 => 0.090371912122557
1228 => 0.089776718660656
1229 => 0.087641781346659
1230 => 0.086719926238854
1231 => 0.087505373499418
]
'min_raw' => 0.032387766539772
'max_raw' => 0.090371912122557
'avg_raw' => 0.061379839331164
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.032387'
'max' => '$0.090371'
'avg' => '$0.061379'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.012821831808734
'max_diff' => 0.046692341160464
'year' => 2036
]
11 => [
'items' => [
101 => 0.086544838994
102 => 0.088202991028733
103 => 0.090479987934584
104 => 0.090009797077747
105 => 0.091581574617199
106 => 0.093208199014713
107 => 0.09553434495943
108 => 0.096142485646314
109 => 0.097147719076214
110 => 0.098182434477561
111 => 0.098514757178112
112 => 0.099149264327141
113 => 0.099145920161264
114 => 0.10105805016212
115 => 0.1031671887668
116 => 0.1039633397634
117 => 0.10579404508005
118 => 0.10265902638085
119 => 0.10503697407669
120 => 0.10718194242223
121 => 0.10462462273401
122 => 0.10814929214516
123 => 0.10828614707132
124 => 0.11035249397471
125 => 0.10825785552396
126 => 0.10701406589822
127 => 0.11060483994353
128 => 0.11234230239574
129 => 0.1118189645652
130 => 0.10783633783439
131 => 0.10551827825417
201 => 0.099451469212422
202 => 0.10663786658902
203 => 0.11013815112107
204 => 0.10782727294306
205 => 0.10899274548029
206 => 0.11535118573769
207 => 0.11777206810919
208 => 0.11726854149917
209 => 0.11735362920751
210 => 0.11865989339304
211 => 0.12445258816455
212 => 0.12098147118385
213 => 0.12363501005532
214 => 0.1250424375047
215 => 0.12634973455647
216 => 0.1231394261728
217 => 0.11896286213444
218 => 0.11763996898326
219 => 0.10759750165069
220 => 0.1070747476138
221 => 0.10678130993183
222 => 0.10493122685458
223 => 0.10347756833626
224 => 0.10232156511162
225 => 0.099287867438367
226 => 0.10031165134796
227 => 0.095476570438709
228 => 0.098569883859702
301 => 0.090852977981426
302 => 0.097279846505951
303 => 0.093781994161906
304 => 0.096130707936495
305 => 0.096122513495398
306 => 0.091797786776
307 => 0.089303374658995
308 => 0.090892911143922
309 => 0.092597020433328
310 => 0.092873506432222
311 => 0.095082928607739
312 => 0.095699530845555
313 => 0.093831197278566
314 => 0.090693062259561
315 => 0.091421979451237
316 => 0.089288603175371
317 => 0.08554994331105
318 => 0.088235114096344
319 => 0.089151949461069
320 => 0.08955687618909
321 => 0.085880333600517
322 => 0.084725084097564
323 => 0.084110038955674
324 => 0.090218466779421
325 => 0.090553100244602
326 => 0.088841068124332
327 => 0.096579615649498
328 => 0.09482814401064
329 => 0.096784966952215
330 => 0.091355837856241
331 => 0.091563237898999
401 => 0.088993001179311
402 => 0.090432161999056
403 => 0.089415009517979
404 => 0.090315892026885
405 => 0.090855877288246
406 => 0.093425692257379
407 => 0.097309189664947
408 => 0.093041847596768
409 => 0.091182505548198
410 => 0.092336030897794
411 => 0.095408020913562
412 => 0.10006224303973
413 => 0.097306849866087
414 => 0.098529646566937
415 => 0.098796773247634
416 => 0.096765048331593
417 => 0.1001371556354
418 => 0.10194429533446
419 => 0.10379804673083
420 => 0.10540760712736
421 => 0.10305761765825
422 => 0.10557244324796
423 => 0.10354593774913
424 => 0.1017279528204
425 => 0.10173070995311
426 => 0.10059026145079
427 => 0.098380498771794
428 => 0.097972984629945
429 => 0.10009292465921
430 => 0.1017929158036
501 => 0.10193293521667
502 => 0.1028741376629
503 => 0.10343113157543
504 => 0.10889042911471
505 => 0.11108620374668
506 => 0.11377115540277
507 => 0.11481709538841
508 => 0.11796499975492
509 => 0.11542281131867
510 => 0.11487279285937
511 => 0.10723700653788
512 => 0.10848736612026
513 => 0.1104893124534
514 => 0.10727001789555
515 => 0.10931191931304
516 => 0.10971503390624
517 => 0.10716062749835
518 => 0.10852504633019
519 => 0.10490155443482
520 => 0.097388171886406
521 => 0.10014552017799
522 => 0.102175856634
523 => 0.099278316172598
524 => 0.10447204529936
525 => 0.10143797596384
526 => 0.10047632164549
527 => 0.096724565295094
528 => 0.098495249874135
529 => 0.10089012612105
530 => 0.099410371034703
531 => 0.10248108502521
601 => 0.10683003496529
602 => 0.10992935567703
603 => 0.11016728303686
604 => 0.10817462745757
605 => 0.11136787074034
606 => 0.11139113003151
607 => 0.10778913856377
608 => 0.10558293884574
609 => 0.10508168562792
610 => 0.10633391444252
611 => 0.10785435139762
612 => 0.11025165670616
613 => 0.11170029809605
614 => 0.11547758654085
615 => 0.11649961249067
616 => 0.11762250915061
617 => 0.11912304537679
618 => 0.12092482384592
619 => 0.11698263513077
620 => 0.11713926563759
621 => 0.11346835408936
622 => 0.10954545863811
623 => 0.11252244728979
624 => 0.11641446393965
625 => 0.11552163101987
626 => 0.11542116907748
627 => 0.11559011819877
628 => 0.11491695133446
629 => 0.1118722425559
630 => 0.11034320886819
701 => 0.11231605242343
702 => 0.11336453097187
703 => 0.11499062976357
704 => 0.11479017876471
705 => 0.11897883462187
706 => 0.12060641962958
707 => 0.12019001373632
708 => 0.12026664244205
709 => 0.12321330735492
710 => 0.12649060476589
711 => 0.12956022626875
712 => 0.13268277710477
713 => 0.12891842019671
714 => 0.12700711191206
715 => 0.12897909418552
716 => 0.12793273263356
717 => 0.1339454364821
718 => 0.134361743051
719 => 0.14037401211262
720 => 0.14608037137977
721 => 0.14249630936412
722 => 0.14587591841518
723 => 0.14953124114748
724 => 0.15658295175282
725 => 0.15420818370311
726 => 0.15238914859439
727 => 0.15067016920617
728 => 0.15424709243277
729 => 0.15884874702104
730 => 0.15983989934526
731 => 0.16144594475982
801 => 0.1597573843843
802 => 0.16179106936779
803 => 0.16897087100596
804 => 0.16703082522546
805 => 0.16427564833923
806 => 0.16994341217709
807 => 0.17199455387714
808 => 0.18639054051931
809 => 0.2045660683236
810 => 0.19704128046567
811 => 0.19237040181887
812 => 0.19346816909559
813 => 0.20010525656927
814 => 0.20223687841519
815 => 0.19644239542387
816 => 0.19848910477582
817 => 0.20976667453308
818 => 0.2158167288801
819 => 0.20759994244614
820 => 0.18493015455735
821 => 0.16402757480567
822 => 0.16957188021125
823 => 0.16894332803809
824 => 0.18105966983679
825 => 0.16698455577521
826 => 0.16722154459837
827 => 0.17958843951403
828 => 0.17628916397279
829 => 0.17094476013525
830 => 0.16406659486816
831 => 0.15135167021865
901 => 0.14008970687468
902 => 0.16217701046747
903 => 0.1612245657734
904 => 0.15984528471198
905 => 0.16291472546036
906 => 0.17781905845858
907 => 0.17747546534235
908 => 0.17528970123966
909 => 0.17694758404711
910 => 0.17065412526336
911 => 0.17227609289133
912 => 0.16402426373025
913 => 0.16775443513788
914 => 0.17093329344491
915 => 0.17157149631385
916 => 0.17300939996501
917 => 0.16072267069904
918 => 0.16623905142004
919 => 0.16947940827866
920 => 0.15483935810624
921 => 0.1691900215581
922 => 0.16050878607802
923 => 0.1575622443683
924 => 0.16152937460309
925 => 0.15998338009243
926 => 0.15865422479601
927 => 0.15791253330283
928 => 0.16082555591107
929 => 0.16068965992458
930 => 0.15592338954417
1001 => 0.14970598413097
1002 => 0.15179274946702
1003 => 0.1510346080569
1004 => 0.14828700578446
1005 => 0.15013855796932
1006 => 0.1419852591963
1007 => 0.1279579324289
1008 => 0.13722481416008
1009 => 0.13686804929386
1010 => 0.13668815227031
1011 => 0.14365195777349
1012 => 0.14298254855669
1013 => 0.14176756427332
1014 => 0.14826469164529
1015 => 0.14589315275583
1016 => 0.15320167680832
1017 => 0.15801554343499
1018 => 0.1567945911462
1019 => 0.16132205597602
1020 => 0.15184082432569
1021 => 0.15499010915894
1022 => 0.15563917239835
1023 => 0.14818451810204
1024 => 0.14309207218328
1025 => 0.14275246409863
1026 => 0.13392286465778
1027 => 0.13863956540905
1028 => 0.14279006687983
1029 => 0.14080229876725
1030 => 0.14017303076569
1031 => 0.14338782451407
1101 => 0.14363764152117
1102 => 0.13794178728496
1103 => 0.13912613574491
1104 => 0.14406506570447
1105 => 0.13900168738192
1106 => 0.12916437039937
1107 => 0.12672457977615
1108 => 0.12639906673275
1109 => 0.11978216106034
1110 => 0.12688761825191
1111 => 0.12378589577337
1112 => 0.13358419991872
1113 => 0.12798746114026
1114 => 0.12774619691758
1115 => 0.12738149065923
1116 => 0.12168604660605
1117 => 0.12293298688935
1118 => 0.12707800630538
1119 => 0.12855699593001
1120 => 0.12840272519515
1121 => 0.12705769344894
1122 => 0.12767344209468
1123 => 0.12568990116569
1124 => 0.12498947157983
1125 => 0.12277872313853
1126 => 0.11952953366465
1127 => 0.11998135338943
1128 => 0.113543858845
1129 => 0.11003637015351
1130 => 0.10906554351166
1201 => 0.10776731355254
1202 => 0.10921218204
1203 => 0.11352562223179
1204 => 0.10832269821311
1205 => 0.099402649925759
1206 => 0.099938760026851
1207 => 0.10114324025149
1208 => 0.098898699321311
1209 => 0.09677442970094
1210 => 0.098621309788411
1211 => 0.094841767738143
1212 => 0.10159997985129
1213 => 0.1014171891533
1214 => 0.10393623270404
1215 => 0.1055114423323
1216 => 0.10188109411934
1217 => 0.10096807136128
1218 => 0.10148817061884
1219 => 0.092892088426806
1220 => 0.10323374939706
1221 => 0.10332318451058
1222 => 0.10255738677101
1223 => 0.10806400197471
1224 => 0.11968467761086
1225 => 0.11531251199595
1226 => 0.11361947732045
1227 => 0.11040101716472
1228 => 0.11468942422897
1229 => 0.11436014147601
1230 => 0.11287099999033
1231 => 0.11197036257339
]
'min_raw' => 0.084110038955674
'max_raw' => 0.2158167288801
'avg_raw' => 0.14996338391788
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.08411'
'max' => '$0.215816'
'avg' => '$0.149963'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.051722272415902
'max_diff' => 0.12544481675754
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0026401180124299
]
1 => [
'year' => 2028
'avg' => 0.004531208941065
]
2 => [
'year' => 2029
'avg' => 0.012378446156036
]
3 => [
'year' => 2030
'avg' => 0.0095499527748465
]
4 => [
'year' => 2031
'avg' => 0.0093792371375173
]
5 => [
'year' => 2032
'avg' => 0.016444754456627
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0026401180124299
'min' => '$0.00264'
'max_raw' => 0.016444754456627
'max' => '$0.016444'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.016444754456627
]
1 => [
'year' => 2033
'avg' => 0.042297599456605
]
2 => [
'year' => 2034
'avg' => 0.026810251263108
]
3 => [
'year' => 2035
'avg' => 0.031622752846565
]
4 => [
'year' => 2036
'avg' => 0.061379839331164
]
5 => [
'year' => 2037
'avg' => 0.14996338391788
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.016444754456627
'min' => '$0.016444'
'max_raw' => 0.14996338391788
'max' => '$0.149963'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.14996338391788
]
]
]
]
'prediction_2025_max_price' => '$0.004514'
'last_price' => 0.00437701
'sma_50day_nextmonth' => '$0.002675'
'sma_200day_nextmonth' => '$0.001012'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'augmenter'
'sma_200day_date_nextmonth' => '4 févr. 2026'
'sma_50day_date_nextmonth' => '4 févr. 2026'
'daily_sma3' => '$0.003788'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.0023076'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.001199'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.000623'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.000358'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.000377'
'daily_sma100_action' => 'BUY'
'daily_sma200' => '$0.000525'
'daily_sma200_action' => 'BUY'
'daily_ema3' => '$0.003898'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.00301'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.001875'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.00105'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.000577'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.000532'
'daily_ema100_action' => 'BUY'
'daily_ema200' => '$0.002163'
'daily_ema200_action' => 'BUY'
'weekly_sma21' => '$0.000562'
'weekly_sma21_action' => 'BUY'
'weekly_sma50' => '$0.0020044'
'weekly_sma50_action' => 'BUY'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.0023056'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.001593'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.000989'
'weekly_ema10_action' => 'BUY'
'weekly_ema21' => '$0.001078'
'weekly_ema21_action' => 'BUY'
'weekly_ema50' => '$0.009845'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.02597'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.012985'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '71.99'
'rsi_14_action' => 'SELL'
'stoch_rsi_14' => 286.92
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.006260'
'vwma_10_action' => 'SELL'
'hma_9' => '0.004159'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 65.87
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => 256.62
'cci_20_action' => 'SELL'
'adx_14' => 20.72
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.001870'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -34.13
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 74.05
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.000066'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 7
'buy_signals' => 27
'sell_pct' => 20.59
'buy_pct' => 79.41
'overall_action' => 'bullish'
'overall_action_label' => 'Haussier'
'overall_action_dir' => 1
'last_updated' => 1767700075
'last_updated_date' => '6 janvier 2026'
]
Prévision du prix de BlockProtocol pour 2026
La prévision du prix de BlockProtocol pour 2026 suggère que le prix moyen pourrait varier entre $0.001512 à la baisse et $0.004514 à la hausse. Sur le marché des cryptomonnaies, comparé au prix moyen d'aujourd'hui, BlockProtocol pourrait potentiellement gagner 3.13% d'ici 2026 si BLOCK atteint l'objectif de prix prévu.
Prévision du prix de BlockProtocol de 2027 à 2032
La prévision du prix de BLOCK pour 2027-2032 se situe actuellement dans une fourchette de prix comprise entre $0.00264 à la baisse et $0.016444 à la hausse. Compte tenu de la volatilité des prix sur le marché, si BlockProtocol atteint l'objectif de prix le plus élevé, il pourrait gagner 275.71% d'ici 2032 par rapport au prix actuel.
| Prévision du Prix de BlockProtocol | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2027 | $0.001455 | $0.00264 | $0.003824 |
| 2028 | $0.002627 | $0.004531 | $0.006435 |
| 2029 | $0.005771 | $0.012378 | $0.018985 |
| 2030 | $0.0049083 | $0.009549 | $0.014191 |
| 2031 | $0.0058032 | $0.009379 | $0.012955 |
| 2032 | $0.008858 | $0.016444 | $0.024031 |
Prévision du prix de BlockProtocol de 2032 à 2037
La prévision du prix de BlockProtocol pour 2032-2037 est actuellement estimée entre $0.016444 à la baisse et $0.149963 à la hausse. Par rapport au prix actuel, BlockProtocol pourrait potentiellement gagner 3326.16% d'ici 2037 s'il atteint l'objectif de prix le plus élevé. Veuillez noter que ces informations sont à titre général seulement et ne doivent pas être considérées comme un conseil en investissement à long terme.
| Prévision du Prix de BlockProtocol | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2032 | $0.008858 | $0.016444 | $0.024031 |
| 2033 | $0.020584 | $0.042297 | $0.06401 |
| 2034 | $0.016548 | $0.02681 | $0.037071 |
| 2035 | $0.019565 | $0.031622 | $0.043679 |
| 2036 | $0.032387 | $0.061379 | $0.090371 |
| 2037 | $0.08411 | $0.149963 | $0.215816 |
BlockProtocol Histogramme des prix potentiels
Prévision du prix de BlockProtocol basée sur l'analyse technique
Au 6 janvier 2026, le sentiment global de prévision du prix pour BlockProtocol est Haussier, avec 27 indicateurs techniques montrant des signaux haussiers et 7 indiquant des signaux baissiers. La prévision du prix de BLOCK a été mise à jour pour la dernière fois le 6 janvier 2026.
Moyennes Mobiles Simples sur 50 et 200 jours de BlockProtocol et Indice de Force Relative sur 14 jours - RSI (14)
Selon nos indicateurs techniques, le SMA sur 200 jours de BlockProtocol devrait augmenter au cours du prochain mois, atteignant $0.001012 d'ici le 4 févr. 2026. Le SMA à court terme sur 50 jours pour BlockProtocol devrait atteindre $0.002675 d'ici le 4 févr. 2026.
Le Relative Strength Index (RSI), un oscillateur de momentum, est un outil couramment utilisé pour identifier si une cryptomonnaie est survendue (en dessous de 30) ou surachetée (au-dessus de 70). Actuellement, le RSI est à 71.99, ce qui suggère que le marché de BLOCK est dans un état SELL.
Moyennes Mobiles et Oscillateurs Populaires de BLOCK pour le Samedi 19 Octobre 2024
Les moyennes mobiles (MA) sont des indicateurs largement utilisés sur les marchés financiers, conçus pour lisser les mouvements de prix sur une période donnée. En tant qu'indicateurs retardés, ils sont basés sur des données historiques de prix. Le tableau ci-dessous met en évidence deux types : la moyenne mobile simple (SMA) et la moyenne mobile exponentielle (EMA).
Moyenne Mobile Simple Quotidienne (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 3 | $0.003788 | BUY |
| SMA 5 | $0.0023076 | BUY |
| SMA 10 | $0.001199 | BUY |
| SMA 21 | $0.000623 | BUY |
| SMA 50 | $0.000358 | BUY |
| SMA 100 | $0.000377 | BUY |
| SMA 200 | $0.000525 | BUY |
Moyenne Mobile Exponentielle Quotidienne (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 3 | $0.003898 | BUY |
| EMA 5 | $0.00301 | BUY |
| EMA 10 | $0.001875 | BUY |
| EMA 21 | $0.00105 | BUY |
| EMA 50 | $0.000577 | BUY |
| EMA 100 | $0.000532 | BUY |
| EMA 200 | $0.002163 | BUY |
Moyenne Mobile Simple Hebdomadaire (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 21 | $0.000562 | BUY |
| SMA 50 | $0.0020044 | BUY |
| SMA 100 | — | — |
| SMA 200 | — | — |
Moyenne Mobile Exponentielle Hebdomadaire (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 21 | $0.001078 | BUY |
| EMA 50 | $0.009845 | SELL |
| EMA 100 | $0.02597 | SELL |
| EMA 200 | $0.012985 | SELL |
Oscillateurs de BlockProtocol
Un oscillateur est un outil d'analyse technique qui établit des limites hautes et basses entre deux extrêmes, créant un indicateur de tendance qui fluctue à l'intérieur de ces limites. Les traders utilisent cet indicateur pour identifier les conditions de surachat ou de survente à court terme.
| Période | Valeur | Action |
|---|---|---|
| RSI (14) | 71.99 | SELL |
| Stoch RSI (14) | 286.92 | SELL |
| Stochastique Rapide (14) | 65.87 | NEUTRAL |
| Indice de Canal des Matières Premières (20) | 256.62 | SELL |
| Indice Directionnel Moyen (14) | 20.72 | NEUTRAL |
| Oscillateur Impressionnant (5, 34) | 0.001870 | BUY |
| Momentum (10) | 0 | SELL |
| MACD (12, 26) | 0 | BUY |
| Plage de Pourcentage de Williams (14) | -34.13 | NEUTRAL |
| Oscillateur Ultime (7, 14, 28) | 74.05 | SELL |
| VWMA (10) | 0.006260 | SELL |
| Moyenne Mobile de Hull (9) | 0.004159 | BUY |
| Nuage Ichimoku B/L (9, 26, 52, 26) | -0.000066 | NEUTRAL |
Prévision du cours de BlockProtocol basée sur les flux monétaires mondiaux
Définitions des flux monétaires mondiaux utilisés pour la prédiction du cours de BlockProtocol
M0 : le total de toutes les devises physiques, plus les comptes à la banque centrale qui peuvent être échangés contre des devises physiques.
M1 : M0 plus le montant des comptes à vue, y compris les comptes de "chèques" et les comptes "courants".
M2 : M1 plus la plupart des comptes d'épargne, comptes du marché monétaire et comptes de certificats de dépôt (CD) de moins de 100 000 $.
Prédictions du cours de BlockProtocol par des sociétés Internet ou des niches technologiques
| Comparaison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Action Facebook | $0.00615 | $0.008642 | $0.012143 | $0.017064 | $0.023978 | $0.033693 |
| Action Amazon.com | $0.009132 | $0.019056 | $0.039762 | $0.082966 | $0.173113 | $0.361211 |
| Action Apple | $0.0062084 | $0.0088062 | $0.01249 | $0.017717 | $0.02513 | $0.035646 |
| Action Netflix | $0.0069062 | $0.010896 | $0.017193 | $0.027128 | $0.0428052 | $0.067539 |
| Action Google | $0.005668 | $0.00734 | $0.0095056 | $0.0123097 | $0.015941 | $0.020643 |
| Action Tesla | $0.009922 | $0.022493 | $0.05099 | $0.115591 | $0.262037 | $0.594018 |
| Action Kodak | $0.003282 | $0.002461 | $0.001845 | $0.001384 | $0.001037 | $0.000778 |
| Action Nokia | $0.002899 | $0.00192 | $0.001272 | $0.000842 | $0.000558 | $0.000369 |
Ce calcul montre la valeur potentielle des cryptomonnaies si l'on suppose que leur capitalisation se comportera comme celle de certaines sociétés Internet ou niches technologiques. En extrapolant les données, vous pourrez obtenir une potentielle image des cours futurs pour 2024, 2025, 2026, 2027, 2028, 2029 et 2030.
Aperçu des prévisions relatives à BlockProtocol
Vous vous posez peut-être des questions telles que : "Devrais-je investir dans BlockProtocol maintenant ?", "Devrais-je acheter BLOCK aujourd'hui ?", " BlockProtocol sera-t-il un bon ou un mauvais investissement à court ou à long terme ?".
Nous mettons régulièrement à jour les prévisions de BlockProtocol avec de nouvelles valeurs. Regardez nos prévisions similaires. Nous faisons une prévision des cours futurs pour une grande quantité de devises numériques comme BlockProtocol en utilisant des méthodes d'analyse technique.
Si vous souhaitez trouver des cryptomonnaies ayant un bon rendement, vous devriez consulter un maximum d'informations disponibles à propos de BlockProtocol afin de prendre une décision responsable concernant cet investissement.
Le cours de BlockProtocol est de $0.004377 USD actuellement, mais ce cours peut subir une hausse ou une baisse, ce qui pourrait causer la perte de votre investissement, car les cryptomonnaies sont des actifs à haut risque.
Prévision à court terme de BlockProtocol
basée sur l'historique des cours sur 4 heures
Prévision à long terme de BlockProtocol
basée sur l'historique des cours sur 1 mois
Prévision du cours de BlockProtocol basée sur le modèle de croissance du Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si BlockProtocol présente 1 % de la précédente croissance annuelle moyenne du Bitcoin | $0.00449 | $0.0046075 | $0.004727 | $0.00485 |
| Si BlockProtocol présente 2 % de la précédente croissance annuelle moyenne du Bitcoin | $0.0046045 | $0.004843 | $0.005095 | $0.00536 |
| Si BlockProtocol présente 5 % de la précédente croissance annuelle moyenne du Bitcoin | $0.004945 | $0.005588 | $0.006315 | $0.007135 |
| Si BlockProtocol présente 10 % de la précédente croissance annuelle moyenne du Bitcoin | $0.005514 | $0.006948 | $0.008754 | $0.011029 |
| Si BlockProtocol présente 20 % de la précédente croissance annuelle moyenne du Bitcoin | $0.006652 | $0.01011 | $0.015367 | $0.023355 |
| Si BlockProtocol présente 50 % de la précédente croissance annuelle moyenne du Bitcoin | $0.010065 | $0.023147 | $0.053231 | $0.122414 |
| Si BlockProtocol présente 100 % de la précédente croissance annuelle moyenne du Bitcoin | $0.015754 | $0.0567046 | $0.204098 | $0.734615 |
Boîte à questions
Est-ce que BLOCK est un bon investissement ?
La décision d'acquérir BlockProtocol dépend entièrement de votre tolérance individuelle au risque. Comme vous pouvez le discerner, la valeur de BlockProtocol a connu une baisse de -13.8549% au cours des 24 heures précédentes, et BlockProtocol a enregistré une déclin de sur une période de 30 jours précédents. Par conséquent, la détermination de si investir ou non dans BlockProtocol dépendra de la mesure dans laquelle cet investissement s'aligne avec vos aspirations de trading.
Est-ce que BlockProtocol peut monter ?
Il semble que la valeur moyenne de BlockProtocol pourrait potentiellement s'envoler jusqu'à $0.004514 pour la fin de cette année. En regardant les perspectives de BlockProtocol sur une période de cinq ans plus longue, la monnaie numérique pourrait potentiellement croître jusqu'à $0.014191. Cependant, compte tenu de l'imprévisibilité du marché, il est essentiel de mener des recherches approfondies avant d'investir des fonds dans un projet, un réseau ou un actif particulier.
Quel sera le prix de BlockProtocol la semaine prochaine ?
Basé sur notre nouveau pronostic expérimental de BlockProtocol, le prix de BlockProtocol va augmenter de 0.86% durant la prochaine semaine et atteindre $0.004414 d'ici 13 janvier 2026.
Quel sera le prix de BlockProtocol le mois prochain ?
Basé sur notre nouveau pronostic expérimental de BlockProtocol, le prix de BlockProtocol va diminuer de -11.62% durant le prochain mois et atteindre $0.003868 d'ici 5 février 2026.
Jusqu'où le prix de BlockProtocol peut-il monter cette année en 2026 ?
Selon notre prédiction la plus récente sur la valeur de BlockProtocol en 2026, BLOCK devrait fluctuer dans la fourchette de $0.001512 et $0.004514. Cependant, il est crucial de garder à l'esprit que le marché des cryptomonnaies est exceptionnellement instable, et cette prévision de prix de BlockProtocol ne prend pas en compte les fluctuations de prix soudaines et extrêmes.
Où sera BlockProtocol dans 5 ans ?
L'avenir de BlockProtocol semble suivre une tendance haussière, avec un prix maximum de $0.014191 prévue après une période de cinq ans. Selon la prévision de BlockProtocol pour 2030, la valeur de BlockProtocol pourrait potentiellement atteindre son point le plus élevé d'environ $0.014191, tandis que son point le plus bas devrait être autour de $0.0049083.
Combien vaudra BlockProtocol en 2026 ?
Basé sur notre nouvelle simulation expérimentale de prédiction de prix de BlockProtocol, il est attendu que la valeur de BLOCK en 2026 augmente de 3.13% jusqu'à $0.004514 si le meilleur scénario se produit. Le prix sera entre $0.004514 et $0.001512 durant 2026.
Combien vaudra BlockProtocol en 2027 ?
Selon notre dernière simulation expérimentale pour la prédiction de prix de BlockProtocol, le valeur de BLOCK pourrait diminuer de -12.62% jusqu'à $0.003824 en 2027, en supposant les conditions les plus favorables. Il est prévu que le prix fluctue entre $0.003824 et $0.001455 tout au long de l'année.
Combien vaudra BlockProtocol en 2028 ?
Notre nouveau modèle expérimental de prédiction de prix de BlockProtocol suggère que la valeur de BLOCK en 2028 pourrait augmenter de 47.02%, atteignant $0.006435 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.006435 et $0.002627 durant l'année.
Combien vaudra BlockProtocol en 2029 ?
Basé sur notre modèle de prévision expérimental, la valeur de BlockProtocol pourrait connaître un 333.75% croissance en 2029, atteignant potentiellement $0.018985 sous des conditions optimales. Le range de prix prévu pour 2029 se situe entre $0.018985 et $0.005771.
Combien vaudra BlockProtocol en 2030 ?
En utilisant notre nouvelle simulation expérimentale pour les prédictions de prix de BlockProtocol, il est prévu que la valeur de BLOCK en 2030 augmente de 224.23%, atteignant $0.014191 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.014191 et $0.0049083 au cours de 2030.
Combien vaudra BlockProtocol en 2031 ?
Notre simulation expérimentale indique que le prix de BlockProtocol pourrait augmenter de 195.98% en 2031, atteignant potentiellement $0.012955 dans des conditions idéales. Il est probable que le prix fluctue entre $0.012955 et $0.0058032 durant l'année.
Combien vaudra BlockProtocol en 2032 ?
Basé sur les résultats de notre dernière prédiction expérimentale de prix de BlockProtocol, BLOCK pourrait connaître une 449.04% hausse en valeur, atteignant $0.024031 si le scénario le plus positif se réalise en 2032. Il est prévu que le prix reste dans une fourchette de $0.024031 et $0.008858 tout au long de l'année.
Combien vaudra BlockProtocol en 2033 ?
Selon notre prédiction expérimentale de prix de BlockProtocol, la valeur de BLOCK est anticipée à augmenter de 1362.43% en 2033, avec le prix potentiel le plus élevé étant $0.06401. Tout au long de l'année, le prix de BLOCK pourrait osciller entre $0.06401 et $0.020584.
Combien vaudra BlockProtocol en 2034 ?
Les résultats de notre nouvelle simulation de prédiction de prix de BlockProtocol suggèrent que BLOCK pourrait augmenter de 746.96% en 2034, atteignant potentiellement $0.037071 dans les meilleures circonstances. La fourchette de prix prévue pour l'année est entre $0.037071 et $0.016548.
Combien vaudra BlockProtocol en 2035 ?
Basé sur notre prédiction expérimentale pour le prix de BlockProtocol, BLOCK pourrait augmenter de 897.93%, avec la valeur potentiellement atteignant $0.043679 en 2035. La fourchette de prix attendue pour l'année se situe entre $0.043679 et $0.019565.
Combien vaudra BlockProtocol en 2036 ?
Notre récente simulation de prédiction de prix de BlockProtocol suggère que la valeur de BLOCK pourrait augmenter de 1964.7% en 2036, pouvant atteindre $0.090371 si les conditions sont optimales. La fourchette de prix attendue pour 2036 est entre $0.090371 et $0.032387.
Combien vaudra BlockProtocol en 2037 ?
Selon la simulation expérimentale, la valeur de BlockProtocol pourrait augmenter de 4830.69% en 2037, avec un maximum de $0.215816 sous des conditions favorables. Il est prévu que le prix chute entre $0.215816 et $0.08411 au cours de l'année.
Prévisions liées
Comment lire et prédire les mouvements de prix de BlockProtocol ?
Les traders de BlockProtocol utilisent des indicateurs et des modèles graphiques pour prédire la direction du marché. Ils identifient également des niveaux clés de support et de résistance pour évaluer quand une tendance baissière pourrait ralentir ou une tendance haussière pourrait s'arrêter.
Indicateurs de prédiction du prix de BlockProtocol
Les moyennes mobiles sont des outils populaires pour la prédiction du prix de BlockProtocol. Une moyenne mobile simple (SMA) calcule le prix de clôture moyen de BLOCK sur une période spécifique, comme une SMA de 12 jours. Une moyenne mobile exponentielle (EMA) donne plus de poids aux prix récents, réagissant plus rapidement aux changements de prix.
Les moyennes mobiles couramment utilisées sur le marché des cryptomonnaies incluent les moyennes sur 50 jours, 100 jours et 200 jours, qui aident à identifier les niveaux clés de résistance et de support. Un mouvement de prix de BLOCK au-dessus de ces moyennes est considéré comme haussier, tandis qu'une chute en dessous indique une faiblesse.
Les traders utilisent également le RSI et les niveaux de retracement de Fibonacci pour évaluer la direction future de BLOCK.
Comment lire les graphiques de BlockProtocol et prédire les mouvements de prix ?
La plupart des traders préfèrent les graphiques en chandeliers aux simples graphiques linéaires parce qu'ils fournissent des informations plus détaillées. Les chandeliers peuvent représenter l'action des prix de BlockProtocol dans différentes périodes, comme 5 minutes pour les tendances à court terme et hebdomadaire pour les tendances à long terme. Les options populaires incluent les graphiques de 1 heure, 4 heures et 1 jour.
Par exemple, un graphique en chandeliers de 1 heure montre les prix d'ouverture, de clôture, les plus hauts et les plus bas de BLOCK au sein de chaque heure. La couleur du chandelier est cruciale : le vert indique que le prix a clôturé plus haut qu'il n'a ouvert, tandis que le rouge signifie le contraire. Certains graphiques utilisent des chandeliers creux et pleins pour transmettre la même information.
Qu'est-ce qui affecte le prix de BlockProtocol ?
L'action du prix de BlockProtocol est déterminée par l'offre et la demande, influencée par des facteurs tels que les réductions de récompenses de bloc, les hard forks et les mises à jour de protocole. Les événements du monde réel, tels que les réglementations, l'adoption par les entreprises et les gouvernements et les piratages d'échanges de cryptomonnaies, impactent également le prix de BLOCK. La capitalisation boursière de BlockProtocol peut changer rapidement.
Les traders surveillent souvent l'activité des « baleines » de BLOCK, de grands détenteurs de BlockProtocol, car leurs actions peuvent influencer significativement les mouvements de prix sur le marché relativement petit de BlockProtocol.
Modèles de prédiction de prix haussiers et baissiers
Les traders identifient souvent des modèles de chandeliers pour obtenir un avantage dans les prédictions de prix des cryptomonnaies. Certaines formations indiquent des tendances haussières, tandis que d'autres suggèrent des mouvements baissiers.
Modèles de chandeliers haussiers couramment suivis :
- Marteau
- Englobante haussière
- Ligne pénétrante
- Étoile du matin
- Trois soldats blancs
Modèles de chandeliers baissiers courants :
- Harami baissier
- Nuage sombre
- Étoile du soir
- Étoile filante
- Pendu


