Prédiction du prix de BlockProtocol jusqu'à $0.004475 d'ici 2026
| Année | Prix min. | Prix max. |
|---|---|---|
| 2026 | $0.001499 | $0.004475 |
| 2027 | $0.001443 | $0.003791 |
| 2028 | $0.0026047 | $0.006379 |
| 2029 | $0.005721 | $0.018822 |
| 2030 | $0.004866 | $0.014069 |
| 2031 | $0.005753 | $0.012844 |
| 2032 | $0.008782 | $0.023824 |
| 2033 | $0.0204076 | $0.063461 |
| 2034 | $0.0164067 | $0.036753 |
| 2035 | $0.019397 | $0.0433044 |
Calculateur de profit d’investissement
Si vous ouvrez une position short de $10,000.00 sur BlockProtocol aujourd’hui et la fermez le Apr 06, 2026, notre prévision indique que vous pourriez gagner environ $3,955.41, soit un rendement de 39.55% sur les 90 prochains jours.
Prévision du prix à long terme de BlockProtocol pour 2027, 2028, 2029, 2030, 2031, 2032 et 2037
[
'name' => 'BlockProtocol'
'name_with_ticker' => 'BlockProtocol <small>BLOCK</small>'
'name_lang' => 'BlockProtocol'
'name_lang_with_ticker' => 'BlockProtocol <small>BLOCK</small>'
'name_with_lang' => 'BlockProtocol'
'name_with_lang_with_ticker' => 'BlockProtocol <small>BLOCK</small>'
'image' => '/uploads/coins/blockgames.png?1717253092'
'price_for_sd' => 0.004339
'ticker' => 'BLOCK'
'marketcap' => '$2.96M'
'low24h' => '$0.002358'
'high24h' => '$0.005798'
'volume24h' => '$18.09K'
'current_supply' => '679.32M'
'max_supply' => '1B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.004339'
'change_24h_pct' => '-16.3103%'
'ath_price' => '$0.2505'
'ath_days' => 634
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '12 avr. 2024'
'ath_pct' => '-98.26%'
'fdv' => '$4.35M'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.213963'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.004376'
'next_week_prediction_price_date' => '13 janvier 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.003835'
'next_month_prediction_price_date' => '5 février 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.001499'
'current_year_max_price_prediction' => '$0.004475'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.004866'
'grand_prediction_max_price' => '$0.014069'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0044216497264651
107 => 0.0044381585614849
108 => 0.0044753538097464
109 => 0.0041575244857853
110 => 0.0043002205212651
111 => 0.0043840410732992
112 => 0.0040053367697917
113 => 0.004376555306846
114 => 0.0041519917843616
115 => 0.0040757715519994
116 => 0.004178392053623
117 => 0.0041384007443386
118 => 0.0041040185649843
119 => 0.0040848327181438
120 => 0.0041601858887247
121 => 0.0041566705732506
122 => 0.0040333781607601
123 => 0.0038725482347079
124 => 0.0039265280369533
125 => 0.0039069166687342
126 => 0.0038358425403912
127 => 0.0038837379213714
128 => 0.0036728309028323
129 => 0.0033099763394287
130 => 0.003549689178549
131 => 0.0035404604950002
201 => 0.0035358069742675
202 => 0.0037159445476901
203 => 0.0036986284764865
204 => 0.0036671996376923
205 => 0.00383526532512
206 => 0.0037739190884064
207 => 0.0039629737349665
208 => 0.0040874973524789
209 => 0.0040559141351607
210 => 0.0041730291993059
211 => 0.0039277716225732
212 => 0.0040092363515377
213 => 0.0040260261192721
214 => 0.0038331914206253
215 => 0.0037014615998869
216 => 0.0036926767226735
217 => 0.0034642753670006
218 => 0.0035862855276097
219 => 0.0036936494198223
220 => 0.0036422304472271
221 => 0.0036259527366015
222 => 0.0037091120299827
223 => 0.0037155742192896
224 => 0.0035682356182602
225 => 0.0035988719790209
226 => 0.0037266306962642
227 => 0.0035956527871415
228 => 0.003341184104836
301 => 0.0032780723533195
302 => 0.0032696520822868
303 => 0.0030984880067178
304 => 0.0032822897823364
305 => 0.0032020553816976
306 => 0.00345551489196
307 => 0.0033107401790287
308 => 0.0033044992305118
309 => 0.0032950651214804
310 => 0.0031477371309392
311 => 0.0031799925976855
312 => 0.0032872146817964
313 => 0.0033254727293504
314 => 0.0033214821015515
315 => 0.0032866892350894
316 => 0.0033026172311875
317 => 0.0032513076060739
318 => 0.0032331891095288
319 => 0.0031760021505474
320 => 0.0030919531191454
321 => 0.0031036406524645
322 => 0.0029371175286318
323 => 0.0028463868927166
324 => 0.0028212738485058
325 => 0.0027876916362408
326 => 0.00282506704874
327 => 0.0029366457895445
328 => 0.0028020581553839
329 => 0.0025713170968404
330 => 0.0025851850276225
331 => 0.0026163421506642
401 => 0.0025582810580009
402 => 0.0025033311064932
403 => 0.0025511056310987
404 => 0.0024533376027882
405 => 0.0026281569497933
406 => 0.0026234285763824
407 => 0.00268859041819
408 => 0.0027293374551279
409 => 0.0026354287269959
410 => 0.0026118109358269
411 => 0.0026252647030455
412 => 0.0024029038995585
413 => 0.0026704187966201
414 => 0.0026727322765587
415 => 0.0026529228567701
416 => 0.0027953662808596
417 => 0.0030959663349065
418 => 0.0029828685029649
419 => 0.002939073604037
420 => 0.0028558194691613
421 => 0.0029667506607418
422 => 0.0029582328760246
423 => 0.0029197122232594
424 => 0.0028964148122753
425 => 0.0029393410063512
426 => 0.0028910957817861
427 => 0.0028824296137641
428 => 0.0028299220644346
429 => 0.0028111792582653
430 => 0.0027973028307501
501 => 0.0027820262475255
502 => 0.0028157225834316
503 => 0.0027393622531462
504 => 0.0026472791805174
505 => 0.002639623469381
506 => 0.0026607615609257
507 => 0.002651409528963
508 => 0.0026395786954499
509 => 0.0026169904123377
510 => 0.0026102889512607
511 => 0.0026320654486745
512 => 0.002607481052743
513 => 0.0026437566681213
514 => 0.0026338917079597
515 => 0.0025787868424161
516 => 0.0025101057775146
517 => 0.0025094943719735
518 => 0.0024946971492
519 => 0.0024758506612206
520 => 0.002470607999414
521 => 0.0025470821938904
522 => 0.0027053814877765
523 => 0.0026743035486056
524 => 0.0026967605446519
525 => 0.0028072267386937
526 => 0.0028423406199453
527 => 0.0028174176187508
528 => 0.002783301477532
529 => 0.0027848024146033
530 => 0.0029013875968062
531 => 0.0029086588716139
601 => 0.0029270310372508
602 => 0.0029506444620676
603 => 0.0028214390871044
604 => 0.0027787168530618
605 => 0.0027584726884331
606 => 0.0026961284968543
607 => 0.002763361362485
608 => 0.0027241876508803
609 => 0.0027294735229403
610 => 0.0027260310918269
611 => 0.002727910891991
612 => 0.002628108084223
613 => 0.0026644709818925
614 => 0.0026040106118169
615 => 0.0025230609632808
616 => 0.0025227895916743
617 => 0.0025426019034722
618 => 0.002530816765159
619 => 0.0024991032609816
620 => 0.0025036080145665
621 => 0.0024641416330385
622 => 0.0025083999478459
623 => 0.0025096691179507
624 => 0.0024926272559832
625 => 0.0025608132964144
626 => 0.0025887491728136
627 => 0.0025775318541945
628 => 0.0025879621358362
629 => 0.0026755949772866
630 => 0.002689882954132
701 => 0.0026962287296359
702 => 0.0026877262311148
703 => 0.0025895639033081
704 => 0.0025939178199647
705 => 0.0025619716684071
706 => 0.0025349805367435
707 => 0.0025360600404602
708 => 0.0025499369907368
709 => 0.0026105384464672
710 => 0.002738070637401
711 => 0.0027429103908221
712 => 0.002748776313154
713 => 0.0027249166590536
714 => 0.0027177203590708
715 => 0.0027272141362708
716 => 0.0027751085218614
717 => 0.0028983058847995
718 => 0.002854759708662
719 => 0.0028193559896255
720 => 0.0028504145959946
721 => 0.0028456333669895
722 => 0.0028052749825275
723 => 0.0028041422570935
724 => 0.002726681613955
725 => 0.0026980461778802
726 => 0.0026741162641708
727 => 0.0026479854231064
728 => 0.0026324941846097
729 => 0.0026562957675826
730 => 0.0026617394712206
731 => 0.0026096968940699
801 => 0.0026026036831081
802 => 0.0026451027750265
803 => 0.0026264005091991
804 => 0.0026456362533964
805 => 0.0026500991110514
806 => 0.0026493804881806
807 => 0.0026298531747152
808 => 0.0026422993020052
809 => 0.0026128605005953
810 => 0.0025808502256271
811 => 0.002560429664508
812 => 0.0025426100165371
813 => 0.0025524973929154
814 => 0.0025172507014906
815 => 0.0025059745755281
816 => 0.0026380828341261
817 => 0.0027356726251556
818 => 0.0027342536309442
819 => 0.0027256158686182
820 => 0.0027127819059078
821 => 0.0027741696375513
822 => 0.0027527833793332
823 => 0.0027683436690686
824 => 0.0027723044158695
825 => 0.0027842924035354
826 => 0.0027885770787236
827 => 0.0027756258144066
828 => 0.0027321597894951
829 => 0.0026238465880412
830 => 0.0025734265003785
831 => 0.0025567870316368
901 => 0.0025573918447228
902 => 0.0025407083998089
903 => 0.0025456224220356
904 => 0.0025389995034183
905 => 0.0025264572978133
906 => 0.0025517229470623
907 => 0.0025546345777724
908 => 0.0025487372733357
909 => 0.0025501263020161
910 => 0.0025012991400516
911 => 0.0025050113631288
912 => 0.0024843412333088
913 => 0.0024804658331497
914 => 0.0024282135449188
915 => 0.0023356410422276
916 => 0.0023869351949488
917 => 0.002324979071511
918 => 0.0023015153487766
919 => 0.0024125889628436
920 => 0.0024014402526938
921 => 0.002382358507145
922 => 0.0023541326284943
923 => 0.002343663375539
924 => 0.0022800555087455
925 => 0.0022762972166406
926 => 0.0023078229929803
927 => 0.0022932749319353
928 => 0.0022728439444465
929 => 0.0021988449788179
930 => 0.0021156456412359
1001 => 0.0021181569062651
1002 => 0.0021446210675713
1003 => 0.0022215691857472
1004 => 0.0021915042247599
1005 => 0.0021696917506079
1006 => 0.0021656069298798
1007 => 0.0022167370134434
1008 => 0.0022890967937696
1009 => 0.0023230463837398
1010 => 0.0022894033711437
1011 => 0.0022507560897418
1012 => 0.0022531083706864
1013 => 0.0022687570419709
1014 => 0.0022704014960627
1015 => 0.0022452460888747
1016 => 0.0022523271886495
1017 => 0.0022415703505823
1018 => 0.0021755556552194
1019 => 0.0021743616587151
1020 => 0.0021581605878423
1021 => 0.002157670025855
1022 => 0.0021301079627538
1023 => 0.0021262518395984
1024 => 0.0020715256904134
1025 => 0.002107546607533
1026 => 0.0020833856675122
1027 => 0.0020469694319112
1028 => 0.0020406912591675
1029 => 0.0020405025297137
1030 => 0.0020778938611546
1031 => 0.0021071096680548
1101 => 0.002083805957408
1102 => 0.0020785001542172
1103 => 0.0021351522511821
1104 => 0.002127942755448
1105 => 0.0021216993786385
1106 => 0.0022826177690904
1107 => 0.0021552383064291
1108 => 0.0020996935901433
1109 => 0.002030946456084
1110 => 0.0020533308695868
1111 => 0.0020580475944073
1112 => 0.0018927231295971
1113 => 0.0018256510148134
1114 => 0.001802634392579
1115 => 0.0017893880010758
1116 => 0.0017954245480215
1117 => 0.0017350517779418
1118 => 0.0017756232779088
1119 => 0.001723345562203
1120 => 0.0017145810330385
1121 => 0.0018080600646868
1122 => 0.001821067125844
1123 => 0.00176557496197
1124 => 0.0018012099145424
1125 => 0.0017882881853767
1126 => 0.0017242417135926
1127 => 0.0017217956094644
1128 => 0.0016896593412655
1129 => 0.0016393723043419
1130 => 0.0016163897790865
1201 => 0.00160442028039
1202 => 0.0016093591288331
1203 => 0.001606861895929
1204 => 0.0015905657620366
1205 => 0.0016077959712482
1206 => 0.0015637799067267
1207 => 0.0015462523551727
1208 => 0.0015383355667719
1209 => 0.001499268776039
1210 => 0.0015614414131758
1211 => 0.001573690205922
1212 => 0.0015859631325737
1213 => 0.0016927905799943
1214 => 0.0016874537826124
1215 => 0.001735695831819
1216 => 0.0017338212344983
1217 => 0.0017200618205952
1218 => 0.0016620131166517
1219 => 0.0016851502954249
1220 => 0.0016139376554768
1221 => 0.0016672950073147
1222 => 0.0016429449401922
1223 => 0.0016590622251266
1224 => 0.0016300818935775
1225 => 0.0016461208056254
1226 => 0.0015765948490823
1227 => 0.0015116724891191
1228 => 0.0015377991419701
1229 => 0.0015662018015644
1230 => 0.0016277860044278
1231 => 0.001591106961261
]
'min_raw' => 0.001499268776039
'max_raw' => 0.0044753538097464
'avg_raw' => 0.0029873112928927
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.001499'
'max' => '$0.004475'
'avg' => '$0.002987'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.002840151223961
'max_diff' => 0.00013593380974641
'year' => 2026
]
1 => [
'items' => [
101 => 0.001604298132172
102 => 0.0015601099177956
103 => 0.0014689370097977
104 => 0.0014694530385556
105 => 0.0014554280729699
106 => 0.0014433084550253
107 => 0.0015953199905958
108 => 0.0015764149532008
109 => 0.0015462922503421
110 => 0.0015866126851471
111 => 0.0015972740480809
112 => 0.0015975775620956
113 => 0.0016269943105083
114 => 0.0016426940344094
115 => 0.0016454611787934
116 => 0.0016917490680117
117 => 0.0017072641579257
118 => 0.0017711686175035
119 => 0.0016413620225242
120 => 0.0016386887411222
121 => 0.0015871800763517
122 => 0.0015545124668345
123 => 0.0015894168555237
124 => 0.0016203373789782
125 => 0.0015881408632061
126 => 0.0015923450484604
127 => 0.0015491238565883
128 => 0.0015645733989365
129 => 0.0015778806260848
130 => 0.0015705331574162
131 => 0.0015595336411977
201 => 0.0016178022486679
202 => 0.0016145145054779
203 => 0.0016687755723437
204 => 0.0017110759542117
205 => 0.0017868858006168
206 => 0.0017077742738364
207 => 0.0017048911353607
208 => 0.0017330742764308
209 => 0.0017072598432336
210 => 0.0017235736739303
211 => 0.0017842573902808
212 => 0.0017855395415831
213 => 0.0017640618553103
214 => 0.0017627549361487
215 => 0.0017668799607375
216 => 0.0017910403585971
217 => 0.001782597973211
218 => 0.0017923677153149
219 => 0.0018045849274155
220 => 0.001855120496654
221 => 0.0018673044513101
222 => 0.0018377037581521
223 => 0.0018403763693193
224 => 0.0018293048975211
225 => 0.001818609994489
226 => 0.0018426505746399
227 => 0.0018865852073842
228 => 0.0018863118923141
301 => 0.0018965038731436
302 => 0.0019028533927655
303 => 0.0018755966064161
304 => 0.0018578534407625
305 => 0.001864657299501
306 => 0.0018755368177928
307 => 0.0018611292183495
308 => 0.0017721988403365
309 => 0.0017991746361311
310 => 0.0017946845446619
311 => 0.0017882901083959
312 => 0.001815414479665
313 => 0.0018127982678858
314 => 0.0017344325679233
315 => 0.001739449285778
316 => 0.0017347376511519
317 => 0.0017499619065385
318 => 0.001706437683481
319 => 0.0017198254413534
320 => 0.0017282221175885
321 => 0.0017331678243973
322 => 0.0017510351086935
323 => 0.0017489385891048
324 => 0.0017509047860922
325 => 0.0017773972519154
326 => 0.0019113870529325
327 => 0.0019186798221701
328 => 0.0018827675592394
329 => 0.0018971137999422
330 => 0.0018695721549709
331 => 0.0018880610457531
401 => 0.0019007106752594
402 => 0.0018435494319044
403 => 0.0018401647140463
404 => 0.0018125093949091
405 => 0.0018273697969361
406 => 0.0018037258288104
407 => 0.0018095272315576
408 => 0.0017933060037194
409 => 0.0018225009842139
410 => 0.0018551455088481
411 => 0.001863392804942
412 => 0.0018416977196031
413 => 0.0018259890480419
414 => 0.0017984097955386
415 => 0.0018442747070953
416 => 0.0018576870049424
417 => 0.0018442042580045
418 => 0.0018410800109352
419 => 0.0018351595683842
420 => 0.0018423360608101
421 => 0.0018576139586879
422 => 0.0018504091841872
423 => 0.0018551680646767
424 => 0.001837032119587
425 => 0.0018756056295465
426 => 0.0019368696465829
427 => 0.0019370666204154
428 => 0.0019298618070783
429 => 0.0019269137526906
430 => 0.0019343063283991
501 => 0.0019383164974616
502 => 0.0019622227317364
503 => 0.0019878750735795
504 => 0.0021075833599679
505 => 0.0020739697521705
506 => 0.0021801820653321
507 => 0.0022641822151002
508 => 0.0022893701871343
509 => 0.0022661984380486
510 => 0.0021869291361397
511 => 0.0021830398060139
512 => 0.0023015016097017
513 => 0.0022680307242656
514 => 0.0022640494689464
515 => 0.0022216956387876
516 => 0.0022467319980354
517 => 0.0022412561790067
518 => 0.0022326123307836
519 => 0.0022803799601805
520 => 0.0023697966981656
521 => 0.0023558602610058
522 => 0.0023454573571587
523 => 0.0022998748607404
524 => 0.0023273257048034
525 => 0.0023175509850188
526 => 0.0023595493844036
527 => 0.0023346704629865
528 => 0.0022677771493889
529 => 0.0022784301300626
530 => 0.0022768199534646
531 => 0.0023099572737531
601 => 0.0023000102727213
602 => 0.0022748776418694
603 => 0.002369491081476
604 => 0.0023633474109756
605 => 0.0023720577311066
606 => 0.0023758922834039
607 => 0.0024334818168166
608 => 0.0024570744059963
609 => 0.0024624303367865
610 => 0.0024848414717908
611 => 0.0024618727273315
612 => 0.0025537640816061
613 => 0.0026148664701895
614 => 0.0026858400388293
615 => 0.0027895514985089
616 => 0.0028285479667331
617 => 0.0028215036037922
618 => 0.0029001364488788
619 => 0.0030414379235894
620 => 0.002850064671795
621 => 0.003051581170625
622 => 0.0029877833737153
623 => 0.0028365199449157
624 => 0.0028267803633797
625 => 0.0029292177135673
626 => 0.0031564138970538
627 => 0.0030995038299282
628 => 0.0031565069815362
629 => 0.0030900097772848
630 => 0.0030867076306113
701 => 0.0031532773607502
702 => 0.0033088211637468
703 => 0.0032349281334154
704 => 0.0031289843551209
705 => 0.0032072115923458
706 => 0.0031394439198726
707 => 0.0029867443868132
708 => 0.0030994603118724
709 => 0.00302409038275
710 => 0.0030460873349538
711 => 0.0032045037155382
712 => 0.0031854426375085
713 => 0.0032101094374872
714 => 0.0031665731811674
715 => 0.0031259034527271
716 => 0.0030499903844198
717 => 0.003027516267363
718 => 0.0030337273047835
719 => 0.0030275131894813
720 => 0.0029850405254405
721 => 0.0029758685576847
722 => 0.0029605815429253
723 => 0.0029653196280208
724 => 0.0029365755678992
725 => 0.0029908215481745
726 => 0.0030008900801276
727 => 0.0030403657808326
728 => 0.0030444642790354
729 => 0.0031544035435974
730 => 0.0030938508441309
731 => 0.0031344748228016
801 => 0.0031308410317816
802 => 0.0028397982820886
803 => 0.0028799014051044
804 => 0.0029422892794637
805 => 0.0029141836266296
806 => 0.0028744488092321
807 => 0.0028423608137375
808 => 0.0027937442193972
809 => 0.0028621711423322
810 => 0.0029521452695997
811 => 0.0030467461713828
812 => 0.0031604029563786
813 => 0.0031350360850784
814 => 0.0030446214368453
815 => 0.0030486773719171
816 => 0.0030737495665793
817 => 0.0030412787964427
818 => 0.0030317025324246
819 => 0.0030724339349568
820 => 0.0030727144297404
821 => 0.0030353528844746
822 => 0.0029938323640022
823 => 0.0029936583915053
824 => 0.0029862702159279
825 => 0.0030913241173071
826 => 0.0031490931409183
827 => 0.0031557162663758
828 => 0.0031486473518047
829 => 0.0031513678964679
830 => 0.0031177533744822
831 => 0.0031945862036647
901 => 0.0032650956057019
902 => 0.0032461975797423
903 => 0.0032178667523161
904 => 0.0031952998836737
905 => 0.0032408815426755
906 => 0.0032388518631524
907 => 0.0032644797675862
908 => 0.0032633171378071
909 => 0.0032546994374603
910 => 0.0032461978875075
911 => 0.0032799055720985
912 => 0.0032701983002652
913 => 0.0032604759503574
914 => 0.0032409762892002
915 => 0.0032436266170065
916 => 0.0032153006812971
917 => 0.0032021958073313
918 => 0.0030051299458752
919 => 0.0029524675083813
920 => 0.0029690361832596
921 => 0.002974491021235
922 => 0.0029515722609489
923 => 0.0029844318758527
924 => 0.0029793107396769
925 => 0.0029992340847725
926 => 0.0029867868437279
927 => 0.0029872976828421
928 => 0.0030239023647229
929 => 0.0030345288596003
930 => 0.0030291241385393
1001 => 0.0030329094199074
1002 => 0.0031201396313684
1003 => 0.0031077382847637
1004 => 0.003101150316548
1005 => 0.0031029752287668
1006 => 0.0031252644180319
1007 => 0.0031315041740815
1008 => 0.0031050658892394
1009 => 0.0031175343372088
1010 => 0.003170623406181
1011 => 0.0031892015757402
1012 => 0.0032484941749459
1013 => 0.0032233056249614
1014 => 0.0032695402985928
1015 => 0.003411649922774
1016 => 0.0035251769238079
1017 => 0.0034207728019554
1018 => 0.0036292506817778
1019 => 0.0037915806155953
1020 => 0.0037853501223607
1021 => 0.0037570441436406
1022 => 0.003572235829754
1023 => 0.0034021724639788
1024 => 0.0035444376907217
1025 => 0.0035448003540418
1026 => 0.0035325796448958
1027 => 0.0034566778699562
1028 => 0.0035299384276545
1029 => 0.0035357535846814
1030 => 0.0035324986431214
1031 => 0.0034743049302364
1101 => 0.0033854538866568
1102 => 0.0034028151678929
1103 => 0.0034312533007182
1104 => 0.003377413982464
1105 => 0.0033602090580424
1106 => 0.0033921962859129
1107 => 0.0034952657989151
1108 => 0.0034757811045231
1109 => 0.0034752722804087
1110 => 0.0035586360658142
1111 => 0.0034989655864947
1112 => 0.0034030341492478
1113 => 0.0033788101961628
1114 => 0.0032928314819209
1115 => 0.0033522172860934
1116 => 0.0033543544754631
1117 => 0.003321829477426
1118 => 0.003405673373583
1119 => 0.0034049007373195
1120 => 0.0034844980382035
1121 => 0.0036366581821128
1122 => 0.0035916569402129
1123 => 0.0035393253920045
1124 => 0.0035450152822912
1125 => 0.0036074193348903
1126 => 0.0035696884201429
1127 => 0.0035832567201554
1128 => 0.0036073987976432
1129 => 0.0036219643124057
1130 => 0.0035429195288674
1201 => 0.0035244904086756
1202 => 0.0034867908965054
1203 => 0.0034769557974749
1204 => 0.0035076612635114
1205 => 0.0034995714580509
1206 => 0.0033541748529722
1207 => 0.0033389800987624
1208 => 0.0033394461001809
1209 => 0.0033012381682492
1210 => 0.0032429619010989
1211 => 0.0033961084516747
1212 => 0.0033838086403788
1213 => 0.003370230600638
1214 => 0.003371893833031
1215 => 0.0034383695600178
1216 => 0.0033998102812608
1217 => 0.0035023264435777
1218 => 0.0034812522025233
1219 => 0.0034596374867062
1220 => 0.0034566496745799
1221 => 0.0034483298530712
1222 => 0.0034197980894487
1223 => 0.0033853442703813
1224 => 0.0033625948746943
1225 => 0.003101816025813
1226 => 0.0031502150632846
1227 => 0.0032058937441846
1228 => 0.003225113801713
1229 => 0.0031922365633232
1230 => 0.0034210962832095
1231 => 0.0034629111593798
]
'min_raw' => 0.0014433084550253
'max_raw' => 0.0037915806155953
'avg_raw' => 0.0026174445353103
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.001443'
'max' => '$0.003791'
'avg' => '$0.002617'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -5.5960321013656E-5
'max_diff' => -0.00068377319415112
'year' => 2027
]
2 => [
'items' => [
101 => 0.0033362511719429
102 => 0.0033125582597867
103 => 0.003422649586586
104 => 0.0033562510584087
105 => 0.0033861503115813
106 => 0.0033215244802392
107 => 0.0034528391801929
108 => 0.0034518387821915
109 => 0.0034007543980325
110 => 0.003443930569713
111 => 0.0034364276473701
112 => 0.0033787535034698
113 => 0.003454667553426
114 => 0.0034547052058477
115 => 0.0034055375967649
116 => 0.0033481205935299
117 => 0.0033378557894806
118 => 0.0033301226385118
119 => 0.0033842484304937
120 => 0.0034327774463378
121 => 0.0035230779134602
122 => 0.003545781596381
123 => 0.0036343955822905
124 => 0.0035816302682181
125 => 0.0036050204485212
126 => 0.0036304137979832
127 => 0.0036425883035248
128 => 0.0036227506000647
129 => 0.003760404595154
130 => 0.0037720268099489
131 => 0.0037759236380379
201 => 0.0037295074853953
202 => 0.0037707358927777
203 => 0.0037514464863048
204 => 0.0038016321631959
205 => 0.0038095019181353
206 => 0.0038028365156762
207 => 0.0038053345001096
208 => 0.0036878710991297
209 => 0.0036817800021201
210 => 0.0035987274621896
211 => 0.0036325719861046
212 => 0.0035693012708556
213 => 0.0035893650664217
214 => 0.0035982089963323
215 => 0.0035935894292356
216 => 0.0036344855047069
217 => 0.0035997154860401
218 => 0.003507951690058
219 => 0.003416162893091
220 => 0.0034150105595147
221 => 0.0033908441894801
222 => 0.0033733763302366
223 => 0.0033767412596325
224 => 0.0033885997097183
225 => 0.0033726870955601
226 => 0.0033760828585808
227 => 0.0034324751505744
228 => 0.0034437842225623
229 => 0.0034053515772078
301 => 0.003251038960305
302 => 0.0032131702570531
303 => 0.0032403895299815
304 => 0.0032273804706674
305 => 0.0026047479265467
306 => 0.0027510262071488
307 => 0.0026641126199561
308 => 0.0027041663996364
309 => 0.0026154501332769
310 => 0.0026577901856016
311 => 0.0026499715239483
312 => 0.0028851826704675
313 => 0.002881510171937
314 => 0.0028832680026392
315 => 0.0027993621632162
316 => 0.0029330264437089
317 => 0.0029988742746917
318 => 0.00298668759366
319 => 0.002989754718724
320 => 0.0029370513482542
321 => 0.0028837782864692
322 => 0.0028246902622843
323 => 0.0029344685077194
324 => 0.0029222630408042
325 => 0.0029502579905193
326 => 0.003021457029795
327 => 0.0030319413587872
328 => 0.0030460324032743
329 => 0.0030409817668945
330 => 0.0031613084160365
331 => 0.0031467360648846
401 => 0.0031818512384091
402 => 0.0031096166622746
403 => 0.0030278763828095
404 => 0.0030434125376448
405 => 0.0030419162810003
406 => 0.0030228672165923
407 => 0.0030056705729861
408 => 0.0029770430065059
409 => 0.0030676248629318
410 => 0.0030639474049828
411 => 0.0031234811745997
412 => 0.0031129580025398
413 => 0.0030426816840662
414 => 0.0030451916165288
415 => 0.0030620721185724
416 => 0.0031204957288837
417 => 0.0031378398342068
418 => 0.0031298053535781
419 => 0.0031488223732764
420 => 0.0031638526502595
421 => 0.0031507099446552
422 => 0.0033367829404989
423 => 0.0032595124596606
424 => 0.0032971735543767
425 => 0.0033061555035544
426 => 0.0032831484296057
427 => 0.0032881378401236
428 => 0.0032956954375253
429 => 0.0033415836890189
430 => 0.0034620077388107
501 => 0.0035153427307092
502 => 0.0036758036853382
503 => 0.003510914002091
504 => 0.0035011301306684
505 => 0.0035300339940537
506 => 0.0036242415609379
507 => 0.0037005879454308
508 => 0.0037259164456957
509 => 0.0037292640251336
510 => 0.0037767819754374
511 => 0.0038040183783942
512 => 0.0037710120464243
513 => 0.0037430426359869
514 => 0.003642859679491
515 => 0.0036544561294946
516 => 0.0037343441703728
517 => 0.0038471907334953
518 => 0.0039440248243383
519 => 0.0039101169007338
520 => 0.004168810422572
521 => 0.004194458828594
522 => 0.004190915048194
523 => 0.0042493459341066
524 => 0.004133372524813
525 => 0.004083791645461
526 => 0.0037490899399898
527 => 0.003843127466922
528 => 0.0039798165349484
529 => 0.0039617252242374
530 => 0.0038624579693274
531 => 0.0039439495212239
601 => 0.0039170058656905
602 => 0.003895754286678
603 => 0.0039931118899555
604 => 0.003886063205922
605 => 0.0039787486424372
606 => 0.0038598786113983
607 => 0.0039102717892727
608 => 0.0038816661842674
609 => 0.0039001775164769
610 => 0.0037919606466289
611 => 0.0038503518427829
612 => 0.0037895313808965
613 => 0.0037895025440785
614 => 0.0037881599290114
615 => 0.0038597149327015
616 => 0.0038620483388029
617 => 0.0038091690829623
618 => 0.0038015483560665
619 => 0.0038297261775851
620 => 0.0037967373283699
621 => 0.0038121726032884
622 => 0.003797204847123
623 => 0.0037938352899411
624 => 0.003766986085032
625 => 0.003755418709323
626 => 0.003759954575393
627 => 0.0037444713260966
628 => 0.0037351421083419
629 => 0.003786304112787
630 => 0.0037589703176814
701 => 0.0037821148166652
702 => 0.0037557387390045
703 => 0.0036643077623223
704 => 0.0036117248407673
705 => 0.0034390202014707
706 => 0.0034879990229358
707 => 0.0035204720322394
708 => 0.0035097397028583
709 => 0.0035327968992291
710 => 0.0035342124238235
711 => 0.003526716294243
712 => 0.0035180367365025
713 => 0.0035138120078041
714 => 0.0035452996742668
715 => 0.0035635793244745
716 => 0.0035237311331558
717 => 0.0035143952594653
718 => 0.0035546839809674
719 => 0.0035792600778097
720 => 0.003760716168777
721 => 0.0037472733154627
722 => 0.0037810122392549
723 => 0.0037772137542019
724 => 0.0038125775213681
725 => 0.0038703823348419
726 => 0.0037528489865697
727 => 0.0037732487118324
728 => 0.0037682471702964
729 => 0.0038228526893113
730 => 0.0038230231617813
731 => 0.0037902844253839
801 => 0.0038080326255102
802 => 0.0037981260670961
803 => 0.0038160285571021
804 => 0.003747093777961
805 => 0.0038310488979053
806 => 0.0038786460409653
807 => 0.0038793069273429
808 => 0.0039018675953991
809 => 0.0039247905407699
810 => 0.0039687891382415
811 => 0.0039235634437667
812 => 0.0038422068220393
813 => 0.0038480805073477
814 => 0.0038003811497961
815 => 0.0038011829846141
816 => 0.0037969027275146
817 => 0.0038097481012732
818 => 0.003749912615143
819 => 0.0037639558841402
820 => 0.0037442952253068
821 => 0.0037732059733997
822 => 0.0037421027875696
823 => 0.0037682447584017
824 => 0.0037795267663927
825 => 0.003821157618764
826 => 0.0037359538768253
827 => 0.003562217679226
828 => 0.0035987391343092
829 => 0.0035447210335428
830 => 0.0035497206144301
831 => 0.0035598205634999
901 => 0.0035270833240669
902 => 0.0035333285576818
903 => 0.00353310543399
904 => 0.0035311826745556
905 => 0.0035226664542069
906 => 0.0035103162498185
907 => 0.0035595156629097
908 => 0.0035678756019074
909 => 0.0035864587107219
910 => 0.0036417494375107
911 => 0.0036362245900594
912 => 0.0036452358454762
913 => 0.0036255643254973
914 => 0.0035506331198227
915 => 0.0035547022447957
916 => 0.0035039601911786
917 => 0.0035851611223272
918 => 0.0035659316700313
919 => 0.0035535343170411
920 => 0.0035501515844171
921 => 0.0036055793662232
922 => 0.0036221642272636
923 => 0.0036118296548319
924 => 0.0035906331452667
925 => 0.0036313367098174
926 => 0.0036422272665456
927 => 0.0036446652605688
928 => 0.0037167841728183
929 => 0.0036486959066224
930 => 0.0036650854290349
1001 => 0.0037929518043018
1002 => 0.0036769946462883
1003 => 0.0037384197390413
1004 => 0.0037354133003918
1005 => 0.0037668362993324
1006 => 0.00373283569731
1007 => 0.0037332571755215
1008 => 0.0037611586698024
1009 => 0.0037219760531458
1010 => 0.0037122738862353
1011 => 0.0036988704121366
1012 => 0.0037281364074748
1013 => 0.0037456800480929
1014 => 0.0038870689070907
1015 => 0.0039784125581185
1016 => 0.0039744470893257
1017 => 0.0040106840510459
1018 => 0.0039943589678984
1019 => 0.0039416409680758
1020 => 0.0040316241654978
1021 => 0.0040031497167766
1022 => 0.0040054971157327
1023 => 0.0040054097454263
1024 => 0.0040243427645464
1025 => 0.0040109269853141
1026 => 0.0039844831073458
1027 => 0.0040020377876253
1028 => 0.0040541689121423
1029 => 0.0042159855222216
1030 => 0.0043065402410069
1031 => 0.0042105340144469
1101 => 0.0042767578239534
1102 => 0.0042370471362055
1103 => 0.0042298305229511
1104 => 0.0042714239692223
1105 => 0.0043130902193151
1106 => 0.0043104362593123
1107 => 0.0042801887013305
1108 => 0.00426310262333
1109 => 0.004392484130206
1110 => 0.0044878102205158
1111 => 0.0044813096202309
1112 => 0.00451000115578
1113 => 0.0045942403915481
1114 => 0.0046019421715462
1115 => 0.0046009719242898
1116 => 0.0045818822589668
1117 => 0.0046648267264275
1118 => 0.0047340204604522
1119 => 0.0045774635529979
1120 => 0.0046370783738761
1121 => 0.0046638413876379
1122 => 0.0047031374320686
1123 => 0.0047694364458049
1124 => 0.0048414547596674
1125 => 0.0048516389388882
1126 => 0.0048444127763732
1127 => 0.0047969147624247
1128 => 0.0048757180608102
1129 => 0.0049218791848397
1130 => 0.0049493670778207
1201 => 0.0050190718008713
1202 => 0.0046640066668997
1203 => 0.0044126739171924
1204 => 0.0043734246790367
1205 => 0.0044532395482264
1206 => 0.00447428609272
1207 => 0.0044658022570247
1208 => 0.0041829043970553
1209 => 0.004371935280351
1210 => 0.0045753166166091
1211 => 0.0045831293220313
1212 => 0.0046849462714653
1213 => 0.0047181020438188
1214 => 0.0048000780335658
1215 => 0.0047949504130875
1216 => 0.004814910262068
1217 => 0.0048103218384438
1218 => 0.0049621650973689
1219 => 0.0051296707609055
1220 => 0.0051238705724126
1221 => 0.0050997896514422
1222 => 0.0051355539254904
1223 => 0.005308437721258
1224 => 0.0052925213517501
1225 => 0.0053079827489739
1226 => 0.0055118224874876
1227 => 0.0057768431434201
1228 => 0.0056537144411006
1229 => 0.0059208682958042
1230 => 0.0060890274861228
1231 => 0.0063798414177939
]
'min_raw' => 0.0026047479265467
'max_raw' => 0.0063798414177939
'avg_raw' => 0.0044922946721703
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.0026047'
'max' => '$0.006379'
'avg' => '$0.004492'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0011614394715214
'max_diff' => 0.0025882608021986
'year' => 2028
]
3 => [
'items' => [
101 => 0.0063434300812599
102 => 0.0064566418107682
103 => 0.0062782461895887
104 => 0.0058686137836569
105 => 0.0058037878874084
106 => 0.0059335709733511
107 => 0.0062526300260931
108 => 0.0059235226683455
109 => 0.0059901006581875
110 => 0.0059709261926341
111 => 0.005969904466851
112 => 0.0060088995843332
113 => 0.0059523351325767
114 => 0.0057218813803699
115 => 0.0058274969769338
116 => 0.005786713723023
117 => 0.00583196578383
118 => 0.0060761724926361
119 => 0.0059682028855121
120 => 0.0058544656751456
121 => 0.0059971173772527
122 => 0.0061787620144782
123 => 0.0061673950195274
124 => 0.0061453382982876
125 => 0.006269670881064
126 => 0.0064750318817818
127 => 0.0065305401350686
128 => 0.0065715151928285
129 => 0.0065771649610143
130 => 0.0066353610846397
131 => 0.0063224258605946
201 => 0.0068190620979007
202 => 0.0069048174567843
203 => 0.0068886990035097
204 => 0.0069840124757716
205 => 0.0069559688343627
206 => 0.0069153379978738
207 => 0.0070664301251659
208 => 0.0068932151937314
209 => 0.0066473584057137
210 => 0.0065124765093112
211 => 0.0066900998711062
212 => 0.0067985682599533
213 => 0.006870258965096
214 => 0.0068919525291555
215 => 0.0063467181312249
216 => 0.0060528670308263
217 => 0.0062412222171721
218 => 0.0064710285440945
219 => 0.0063211492748453
220 => 0.0063270242584409
221 => 0.0061133358080707
222 => 0.0064899352303752
223 => 0.0064350678622451
224 => 0.0067197198651625
225 => 0.0066517853801912
226 => 0.0068839080384433
227 => 0.0068227823632481
228 => 0.0070765116234928
301 => 0.0071777310948499
302 => 0.0073476943408112
303 => 0.0074727199964152
304 => 0.0075461374527456
305 => 0.0075417297440495
306 => 0.007832646282462
307 => 0.0076611029636098
308 => 0.0074456041254755
309 => 0.0074417064313838
310 => 0.0075533163332957
311 => 0.0077872200690218
312 => 0.0078478679045346
313 => 0.0078817617708564
314 => 0.0078298521347306
315 => 0.007643654156737
316 => 0.0075632548138846
317 => 0.0076317573833881
318 => 0.0075479846273782
319 => 0.0076925999067351
320 => 0.0078911875734491
321 => 0.0078501800055734
322 => 0.0079872621567836
323 => 0.0081291277618234
324 => 0.0083320019486132
325 => 0.0083850407734494
326 => 0.0084727119340179
327 => 0.0085629543567188
328 => 0.0085919377907888
329 => 0.00864727615946
330 => 0.0086469844989413
331 => 0.0088137503976336
401 => 0.0089976983482012
402 => 0.0090671344411356
403 => 0.0092267989081098
404 => 0.0089533791037267
405 => 0.0091607711661716
406 => 0.0093478439978569
407 => 0.0091248080558141
408 => 0.0094322111412106
409 => 0.0094441469064262
410 => 0.0096243627903882
411 => 0.0094416794668068
412 => 0.0093332026924101
413 => 0.0096463710755218
414 => 0.009797903391398
415 => 0.0097522606246452
416 => 0.0094049169159952
417 => 0.0092027479792884
418 => 0.0086736328764512
419 => 0.0093003925718333
420 => 0.0096056689366229
421 => 0.0094041263239597
422 => 0.0095057726947534
423 => 0.010060322334857
424 => 0.010271458933378
425 => 0.010227543996842
426 => 0.010234964898215
427 => 0.010348890374377
428 => 0.010854098675584
429 => 0.010551366150864
430 => 0.010782793822841
501 => 0.010905542225583
502 => 0.011019557782893
503 => 0.010739571609127
504 => 0.010375313710872
505 => 0.010259937943988
506 => 0.0093840868831011
507 => 0.0093384950317536
508 => 0.0093129029440177
509 => 0.0091515484509158
510 => 0.009024768018053
511 => 0.0089239475107848
512 => 0.0086593643921611
513 => 0.0087486534277777
514 => 0.00832696315948
515 => 0.0085967456493514
516 => 0.0079237177990807
517 => 0.0084842353919167
518 => 0.0081791711497437
519 => 0.0083840135836864
520 => 0.0083832989077317
521 => 0.0080061190414904
522 => 0.0077885695661855
523 => 0.007927200559002
524 => 0.0080758239878433
525 => 0.0080999376391436
526 => 0.0082926317941047
527 => 0.0083464085908073
528 => 0.0081834623861997
529 => 0.0079097707928312
530 => 0.0079733431077301
531 => 0.0077872812752531
601 => 0.0074612150706023
602 => 0.0076954015113523
603 => 0.0077753630586753
604 => 0.007810678633282
605 => 0.0074900299699645
606 => 0.007389275198329
607 => 0.0073356342033247
608 => 0.0078683790769304
609 => 0.0078975640437101
610 => 0.0077482496273268
611 => 0.0084231649479531
612 => 0.0082704108246679
613 => 0.0084410746060463
614 => 0.0079675745864865
615 => 0.007985662924886
616 => 0.0077615004274519
617 => 0.0078870164474715
618 => 0.0077983057700918
619 => 0.0078768759934274
620 => 0.0079239706613376
621 => 0.0081480963759116
622 => 0.008486794547559
623 => 0.0081146194680882
624 => 0.0079524574563174
625 => 0.0080530618563862
626 => 0.0083209846312623
627 => 0.008726901349914
628 => 0.0084865904826369
629 => 0.0085932363647913
630 => 0.008616533745697
701 => 0.0084393374089587
702 => 0.0087334348315997
703 => 0.0088910440296362
704 => 0.0090527184541936
705 => 0.0091930958270222
706 => 0.0089881421337286
707 => 0.0092074719645106
708 => 0.0090307308378273
709 => 0.0088721757760306
710 => 0.0088724162386107
711 => 0.0087729523322258
712 => 0.0085802284803462
713 => 0.0085446872451453
714 => 0.0087295772390239
715 => 0.0088778415049669
716 => 0.0088900532600479
717 => 0.008972139975767
718 => 0.0090207180485692
719 => 0.0094968492007179
720 => 0.0096883530888756
721 => 0.0099225204183317
722 => 0.010013741790102
723 => 0.01028828541446
724 => 0.010066569140448
725 => 0.010018599429905
726 => 0.0093526463997475
727 => 0.0094616961711284
728 => 0.0096362953768471
729 => 0.0093555254763409
730 => 0.0095336093538895
731 => 0.0095687668836499
801 => 0.0093459850225597
802 => 0.0094649824404039
803 => 0.0091489605788851
804 => 0.008493682960552
805 => 0.00873416434291
806 => 0.0089112395854835
807 => 0.0086585313811111
808 => 0.0091115010562904
809 => 0.0088468855232428
810 => 0.0087630151030523
811 => 0.0084358066919256
812 => 0.0085902364665706
813 => 0.0087991049479995
814 => 0.0086700485100437
815 => 0.0089378599967236
816 => 0.009317152484577
817 => 0.0095874588986795
818 => 0.0096082096687462
819 => 0.0094344207536015
820 => 0.0097129185992269
821 => 0.0097149471519893
822 => 0.0094008004444268
823 => 0.0092083873352209
824 => 0.0091646706719687
825 => 0.0092738834679294
826 => 0.0094064879640201
827 => 0.0096155682953989
828 => 0.0097419111607684
829 => 0.010071346346574
830 => 0.010160482062206
831 => 0.010258415189425
901 => 0.010389284048848
902 => 0.010546425668672
903 => 0.010202608750575
904 => 0.010216269237686
905 => 0.0098961116840227
906 => 0.0095539774226963
907 => 0.0098136146794053
908 => 0.010153055854456
909 => 0.01007518767385
910 => 0.010066425912829
911 => 0.010081160764556
912 => 0.010022450699316
913 => 0.009756907250134
914 => 0.0096235529923446
915 => 0.0097956140071925
916 => 0.0098870567790295
917 => 0.010028876543501
918 => 0.010011394264078
919 => 0.010376706747025
920 => 0.010518656131423
921 => 0.010482339404537
922 => 0.010489022556295
923 => 0.01074601513636
924 => 0.011031843739947
925 => 0.011299559945613
926 => 0.011571892368695
927 => 0.011243585003354
928 => 0.011076890770418
929 => 0.011248876668809
930 => 0.011157618530246
1001 => 0.011682014863353
1002 => 0.011718322927691
1003 => 0.012242681340974
1004 => 0.012740359914618
1005 => 0.01242777691935
1006 => 0.01272252860484
1007 => 0.013041326584156
1008 => 0.013656339609364
1009 => 0.013449224858893
1010 => 0.013290578205934
1011 => 0.013140657885463
1012 => 0.013452618273182
1013 => 0.013853950328295
1014 => 0.013940393409055
1015 => 0.014080464223686
1016 => 0.013933196889146
1017 => 0.014110564172634
1018 => 0.014736748622481
1019 => 0.014567548056649
1020 => 0.01432725605282
1021 => 0.01482156853658
1022 => 0.015000458302862
1023 => 0.016256000367925
1024 => 0.017841174088922
1025 => 0.017184901759617
1026 => 0.016777532347042
1027 => 0.016873273821929
1028 => 0.01745212560332
1029 => 0.017638034423666
1030 => 0.017132670163353
1031 => 0.017311173363599
1101 => 0.018294743547003
1102 => 0.01882239739369
1103 => 0.018105772596523
1104 => 0.016128633202892
1105 => 0.014305620386967
1106 => 0.014789165477087
1107 => 0.014734346470019
1108 => 0.015791069929207
1109 => 0.014563512679113
1110 => 0.014584181594958
1111 => 0.015662756976193
1112 => 0.015375011555943
1113 => 0.014908900826786
1114 => 0.014309023511119
1115 => 0.013200094811172
1116 => 0.012217885736864
1117 => 0.014144223920822
1118 => 0.014061156715511
1119 => 0.013940863092351
1120 => 0.014208563533565
1121 => 0.015508440888003
1122 => 0.015478474507691
1123 => 0.015287843685126
1124 => 0.015432435483899
1125 => 0.014883553185371
1126 => 0.015025012651519
1127 => 0.014305331612423
1128 => 0.014630657498629
1129 => 0.014907900762503
1130 => 0.014963561452382
1201 => 0.015088967828785
1202 => 0.014017384072915
1203 => 0.014498493719255
1204 => 0.014781100562601
1205 => 0.013504272563036
1206 => 0.014755861778365
1207 => 0.013998730183784
1208 => 0.013741748348849
1209 => 0.014087740534807
1210 => 0.013952907043451
1211 => 0.013836985125271
1212 => 0.013772298703135
1213 => 0.014026357178739
1214 => 0.014014505047186
1215 => 0.013598816070473
1216 => 0.013056566746001
1217 => 0.013238563418021
1218 => 0.013172442320849
1219 => 0.012932810934903
1220 => 0.013094293555826
1221 => 0.012383205817764
1222 => 0.011159816323552
1223 => 0.011968024896862
1224 => 0.011936909745951
1225 => 0.011921220075902
1226 => 0.012528566481501
1227 => 0.012470184138468
1228 => 0.012364219614182
1229 => 0.012930864813316
1230 => 0.012724031693179
1231 => 0.01336144263343
]
'min_raw' => 0.0057218813803699
'max_raw' => 0.01882239739369
'avg_raw' => 0.01227213938703
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.005721'
'max' => '$0.018822'
'avg' => '$0.012272'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0031171334538232
'max_diff' => 0.012442555975896
'year' => 2029
]
4 => [
'items' => [
101 => 0.013781282703834
102 => 0.013674797681576
103 => 0.014069659297055
104 => 0.013242756253763
105 => 0.013517420275153
106 => 0.013574028149293
107 => 0.012923872499517
108 => 0.012479736211815
109 => 0.012450117384949
110 => 0.011680046267825
111 => 0.012091412042796
112 => 0.012453396901298
113 => 0.012280034245235
114 => 0.012225152807388
115 => 0.012505530171019
116 => 0.012527317893443
117 => 0.01203055551322
118 => 0.012133848142487
119 => 0.012564595577501
120 => 0.012122994412308
121 => 0.011265035483479
122 => 0.01105224980692
123 => 0.011023860275249
124 => 0.010446768644174
125 => 0.011066469163302
126 => 0.010795953279761
127 => 0.011650509714588
128 => 0.011162391662093
129 => 0.011141349868439
130 => 0.011109542111171
131 => 0.01061281550495
201 => 0.01072156706309
202 => 0.011083073805676
203 => 0.011212063484096
204 => 0.011198608803856
205 => 0.011081302225418
206 => 0.01113500457632
207 => 0.010962010592926
208 => 0.010900922816832
209 => 0.01070811299196
210 => 0.010424735814472
211 => 0.010464141149055
212 => 0.0099026968107794
213 => 0.0095967921371806
214 => 0.0095121217552872
215 => 0.0093988969820006
216 => 0.0095249107947095
217 => 0.0099011063095108
218 => 0.0094473347043298
219 => 0.0086693751156242
220 => 0.008716131812484
221 => 0.0088211802281402
222 => 0.0086254232005297
223 => 0.0084401556025384
224 => 0.0086012307477565
225 => 0.0082715990143619
226 => 0.0088610146482867
227 => 0.0088450726072073
228 => 0.0090647703063162
301 => 0.0092021517862196
302 => 0.0088855319528245
303 => 0.0088059029209567
304 => 0.0088512632364463
305 => 0.0081015582627543
306 => 0.0090035034154912
307 => 0.0090113034746262
308 => 0.0089445146327594
309 => 0.0094247725821594
310 => 0.010438266651604
311 => 0.010056949414975
312 => 0.0099092918555771
313 => 0.0096285947272255
314 => 0.010002606984608
315 => 0.0099738886787409
316 => 0.0098440136085169
317 => 0.0097654647608106
318 => 0.0099101934211486
319 => 0.0097475312781535
320 => 0.0097183126876148
321 => 0.0095412798190904
322 => 0.0094780871395095
323 => 0.0094313017953208
324 => 0.0093797957284021
325 => 0.0094934052775126
326 => 0.0092359510926473
327 => 0.0089254865842446
328 => 0.0088996748196435
329 => 0.0089709433711008
330 => 0.0089394123424006
331 => 0.0088995238612089
401 => 0.0088233658876326
402 => 0.0088007714437301
403 => 0.0088741924251473
404 => 0.0087913044178365
405 => 0.008913610187767
406 => 0.0088803497858328
407 => 0.0086945598843538
408 => 0.0084629968788794
409 => 0.0084609354824108
410 => 0.0084110456127208
411 => 0.0083475033626784
412 => 0.0083298273623664
413 => 0.0085876654483013
414 => 0.0091213825697422
415 => 0.009016601128035
416 => 0.0090923164581025
417 => 0.009464760943818
418 => 0.0095831498460305
419 => 0.0094991202074349
420 => 0.0093840952554028
421 => 0.0093891557695307
422 => 0.0097822308510452
423 => 0.0098067464617235
424 => 0.009868689500872
425 => 0.0099483038112785
426 => 0.0095126788687591
427 => 0.0093686378739132
428 => 0.009300383259465
429 => 0.0090901854648247
430 => 0.0093168657653473
501 => 0.0091847888616511
502 => 0.0092026105483492
503 => 0.0091910041515073
504 => 0.0091973420290041
505 => 0.0088608498946047
506 => 0.0089834499428739
507 => 0.0087796035839559
508 => 0.0085066761921923
509 => 0.0085057612438745
510 => 0.0085725598363526
511 => 0.0085328254197174
512 => 0.0084259011262174
513 => 0.0084410892174406
514 => 0.0083080255566643
515 => 0.0084572455550542
516 => 0.0084615246506732
517 => 0.0084040668232249
518 => 0.0086339608191361
519 => 0.0087281485768366
520 => 0.0086903286039442
521 => 0.0087254950267182
522 => 0.0090209552699978
523 => 0.0090691281814866
524 => 0.009090523406646
525 => 0.0090618566392565
526 => 0.0087308954975813
527 => 0.00874557503157
528 => 0.0086378663511845
529 => 0.0085468638663198
530 => 0.0085505034884693
531 => 0.0085972905951847
601 => 0.0088016126342383
602 => 0.0092315963199846
603 => 0.0092479138865447
604 => 0.0092676912532325
605 => 0.009187246763605
606 => 0.0091629839357833
607 => 0.0091949928684474
608 => 0.0093564721333455
609 => 0.0097718406438563
610 => 0.0096250216707118
611 => 0.0095056555601718
612 => 0.0096103718199877
613 => 0.0095942515725822
614 => 0.0094581804616363
615 => 0.009454361398751
616 => 0.0091931974322801
617 => 0.0090966510602916
618 => 0.0090159696854873
619 => 0.0089278677304417
620 => 0.0088756379382864
621 => 0.008955886637053
622 => 0.0089742404639356
623 => 0.0087987752815752
624 => 0.0087748600255856
625 => 0.0089181486811801
626 => 0.0088550926861925
627 => 0.0089199473407507
628 => 0.0089349941769211
629 => 0.0089325712897397
630 => 0.0088667335890377
701 => 0.0089086965761566
702 => 0.0088094416018518
703 => 0.0087015167249103
704 => 0.0086326673773791
705 => 0.0085725871901174
706 => 0.0086059231698912
707 => 0.0084870864889071
708 => 0.0084490682429505
709 => 0.0088944804603178
710 => 0.0092235112542753
711 => 0.0092187270162207
712 => 0.0091896041974692
713 => 0.0091463335961526
714 => 0.0093533066193433
715 => 0.0092812013566199
716 => 0.0093336639598474
717 => 0.0093470178942174
718 => 0.0093874362316075
719 => 0.009401882313151
720 => 0.0093582162212778
721 => 0.0092116674835877
722 => 0.0088464819626997
723 => 0.0086764871169268
724 => 0.0086203859863337
725 => 0.0086224251558795
726 => 0.0085661757565514
727 => 0.0085827437255748
728 => 0.0085604140930593
729 => 0.0085181271711933
730 => 0.0086033120716274
731 => 0.0086131288378502
801 => 0.0085932456642051
802 => 0.0085979288713799
803 => 0.0084333046858132
804 => 0.0084458207050969
805 => 0.0083761299192665
806 => 0.0083630637370582
807 => 0.0081868914991497
808 => 0.0078747768431206
809 => 0.0080477186602634
810 => 0.0078388292644543
811 => 0.0077597196850705
812 => 0.0081342121298095
813 => 0.0080966234751613
814 => 0.0080322880377989
815 => 0.0079371225172599
816 => 0.0079018246999813
817 => 0.0076873663361277
818 => 0.0076746949919003
819 => 0.0077809863478891
820 => 0.0077319365443625
821 => 0.007663052043598
822 => 0.0074135593645386
823 => 0.0071330469890886
824 => 0.0071415138944655
825 => 0.0072307396619779
826 => 0.0074901756147542
827 => 0.0073888094997169
828 => 0.0073152672202152
829 => 0.0073014949619374
830 => 0.0074738836084605
831 => 0.0077178496598287
901 => 0.0078323130726979
902 => 0.00771888330685
903 => 0.0075885812993363
904 => 0.0075965121787723
905 => 0.0076492727665634
906 => 0.0076548171583457
907 => 0.0075700039467171
908 => 0.0075938783689943
909 => 0.0075576109384322
910 => 0.0073350377840175
911 => 0.0073310121414412
912 => 0.0072763890998709
913 => 0.0072747351358807
914 => 0.0071818077158133
915 => 0.0071688065273689
916 => 0.0069842934945338
917 => 0.0071057405315028
918 => 0.0070242802353596
919 => 0.0069015003545306
920 => 0.0068803330567971
921 => 0.006879696742267
922 => 0.0070057642267994
923 => 0.0071042673595459
924 => 0.0070256972720872
925 => 0.00700780838619
926 => 0.0071988148864302
927 => 0.0071745075682117
928 => 0.0071534575873999
929 => 0.0076960051757717
930 => 0.0072665364240592
1001 => 0.0070792635350932
1002 => 0.0068474777728407
1003 => 0.0069229483857953
1004 => 0.0069388511528389
1005 => 0.0063814481771455
1006 => 0.0061553098593268
1007 => 0.0060777077104942
1008 => 0.0060330465767077
1009 => 0.0060533992161934
1010 => 0.0058498482067775
1011 => 0.005986637851528
1012 => 0.0058103798831123
1013 => 0.0057808296611143
1014 => 0.006096000742814
1015 => 0.0061398549576297
1016 => 0.0059527592527891
1017 => 0.00607290498334
1018 => 0.0060293384712917
1019 => 0.0058134013200897
1020 => 0.00580515410924
1021 => 0.0056968044373247
1022 => 0.005527258181408
1023 => 0.0054497709929207
1024 => 0.0054094149923818
1025 => 0.0054260666647269
1026 => 0.0054176470696397
1027 => 0.0053627035164617
1028 => 0.0054207963697932
1029 => 0.0052723931351556
1030 => 0.0052132977713568
1031 => 0.0051866057665309
1101 => 0.0050548893540186
1102 => 0.0052645087408802
1103 => 0.0053058064008074
1104 => 0.0053471854298822
1105 => 0.0057073616273149
1106 => 0.0056893682423385
1107 => 0.005852019679391
1108 => 0.0058456993436439
1109 => 0.005799308519018
1110 => 0.0056035932608413
1111 => 0.0056816018744615
1112 => 0.0054415034869688
1113 => 0.0056214015239817
1114 => 0.0055393035726106
1115 => 0.00559364412404
1116 => 0.00549593491288
1117 => 0.0055500112246504
1118 => 0.0053155996080183
1119 => 0.0050967093386678
1120 => 0.0051847971728597
1121 => 0.0052805587226922
1122 => 0.005488194162318
1123 => 0.005364528207432
1124 => 0.0054090031611365
1125 => 0.0052600195112439
1126 => 0.0049526236864397
1127 => 0.004954363513425
1128 => 0.004907077362761
1129 => 0.0048662152246962
1130 => 0.0053787327299786
1201 => 0.0053149930764939
1202 => 0.0052134322807058
1203 => 0.0053493754417338
1204 => 0.0053853209712177
1205 => 0.0053863442899087
1206 => 0.0054855249109939
1207 => 0.0055384576262461
1208 => 0.0055477872467329
1209 => 0.0057038500969496
1210 => 0.0057561603058235
1211 => 0.0059716186529571
1212 => 0.0055339666551773
1213 => 0.0055249535002879
1214 => 0.0053512884407941
1215 => 0.0052411473145271
1216 => 0.0053588298979394
1217 => 0.0054630806015681
1218 => 0.0053545278007535
1219 => 0.0053687025048652
1220 => 0.0052229792388614
1221 => 0.0052750684495408
1222 => 0.0053199346949523
1223 => 0.0052951621913521
1224 => 0.0052580765544598
1225 => 0.0054545332327299
1226 => 0.005443448377022
1227 => 0.0056263933523466
1228 => 0.0057690120431329
1229 => 0.0060246102331623
1230 => 0.0057578801972316
1231 => 0.0057481594945664
]
'min_raw' => 0.0048662152246962
'max_raw' => 0.014069659297055
'avg_raw' => 0.0094679372608754
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.004866'
'max' => '$0.014069'
'avg' => '$0.009467'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00085566615567374
'max_diff' => -0.0047527380966356
'year' => 2030
]
5 => [
'items' => [
101 => 0.0058431809223683
102 => 0.005756145758538
103 => 0.005811148977727
104 => 0.0060157483642044
105 => 0.0060200712268372
106 => 0.0059476577080443
107 => 0.0059432513388448
108 => 0.0059571591472461
109 => 0.0060386176154548
110 => 0.0060101535236968
111 => 0.0060430928913018
112 => 0.0060842840748774
113 => 0.006254668274846
114 => 0.0062957473286255
115 => 0.0061959465249889
116 => 0.006204957420135
117 => 0.0061676291799816
118 => 0.0061315705677149
119 => 0.0062126250621531
120 => 0.0063607537438689
121 => 0.0063598322430278
122 => 0.0063941952179758
123 => 0.0064156030666901
124 => 0.0063237049085052
125 => 0.0062638825867157
126 => 0.0062868222714831
127 => 0.0063235033269873
128 => 0.0062749270995579
129 => 0.0059750921211664
130 => 0.0060660429000778
131 => 0.006050904243201
201 => 0.006029344954885
202 => 0.006120796666382
203 => 0.0061119759257102
204 => 0.0058477604969681
205 => 0.0058646747114713
206 => 0.0058487891063737
207 => 0.0059001187463332
208 => 0.0057533737895307
209 => 0.0057985115499007
210 => 0.0058268215300646
211 => 0.0058434963258687
212 => 0.0059037371223274
213 => 0.0058966685601597
214 => 0.0059032977305784
215 => 0.0059926189287461
216 => 0.0064443748977446
217 => 0.0064689629783938
218 => 0.006347882276609
219 => 0.0063962516287608
220 => 0.0063033930498439
221 => 0.0063657296359692
222 => 0.0064083787450185
223 => 0.0062156556221766
224 => 0.0062042438096046
225 => 0.0061110019703009
226 => 0.006161104853255
227 => 0.0060813875639502
228 => 0.0061009473983532
301 => 0.0060462563961668
302 => 0.0061446893112325
303 => 0.0062547526052045
304 => 0.0062825589397931
305 => 0.0062094124448704
306 => 0.0061564495619574
307 => 0.0060634641866205
308 => 0.00621810093812
309 => 0.0062633214367281
310 => 0.0062178634140918
311 => 0.0062073297969696
312 => 0.0061873686115567
313 => 0.0062115646568175
314 => 0.0062630751561811
315 => 0.0062387837559308
316 => 0.0062548286537555
317 => 0.0061936820486745
318 => 0.0063237353306194
319 => 0.0065302912413748
320 => 0.0065309553524031
321 => 0.0065066638212131
322 => 0.0064967242500185
323 => 0.0065216488351528
324 => 0.0065351694001282
325 => 0.0066157709380654
326 => 0.0067022595995789
327 => 0.007105864444903
328 => 0.0069925338193869
329 => 0.0073506360487182
330 => 0.0076338484183644
331 => 0.0077187714246453
401 => 0.0076406462548031
402 => 0.0073733842690115
403 => 0.007360271120948
404 => 0.0077596733628205
405 => 0.0076468239357099
406 => 0.007633400855439
407 => 0.0074906019600086
408 => 0.0075750137931952
409 => 0.0075565516870305
410 => 0.0075274083492522
411 => 0.007688460246793
412 => 0.0079899350217872
413 => 0.0079429473508918
414 => 0.0079078732342638
415 => 0.0077541886651213
416 => 0.0078467411024363
417 => 0.0078137849522336
418 => 0.0079553854879941
419 => 0.0078715044674455
420 => 0.0076459689903091
421 => 0.0076818862584177
422 => 0.0076764574355986
423 => 0.0077881822245253
424 => 0.0077546452160692
425 => 0.0076699087964478
426 => 0.0079889046137808
427 => 0.0079681907997512
428 => 0.0079975582522081
429 => 0.0080104867129982
430 => 0.008204653845672
501 => 0.0082841979072732
502 => 0.0083022558018715
503 => 0.0083778165082341
504 => 0.008300375782663
505 => 0.0086101938992492
506 => 0.0088162048683908
507 => 0.0090554972102763
508 => 0.009405167637489
509 => 0.0095366469527532
510 => 0.0095128963912764
511 => 0.0097780125184557
512 => 0.010254420305796
513 => 0.0096091920261179
514 => 0.010288618971356
515 => 0.010073520244855
516 => 0.0095635250337817
517 => 0.0095306873546372
518 => 0.009876062032742
519 => 0.010642069827698
520 => 0.01045019356305
521 => 0.010642383668529
522 => 0.010418183701709
523 => 0.010407050283651
524 => 0.010631494776564
525 => 0.011155921568089
526 => 0.01090678605728
527 => 0.010549589212002
528 => 0.010813337803957
529 => 0.010584854364825
530 => 0.010070017227975
531 => 0.010450046838886
601 => 0.01019593186069
602 => 0.010270096120823
603 => 0.010804208008242
604 => 0.010739942252863
605 => 0.010823108091172
606 => 0.010676322563385
607 => 0.010539201734479
608 => 0.0102832555246
609 => 0.01020748246985
610 => 0.010228423416154
611 => 0.010207472092557
612 => 0.010064272540397
613 => 0.010033348610742
614 => 0.0099818073731753
615 => 0.0099977821578773
616 => 0.0099008695523312
617 => 0.010083763662163
618 => 0.010117710420605
619 => 0.010250805501637
620 => 0.010264623874476
621 => 0.010635291780661
622 => 0.010431134126755
623 => 0.010568100707119
624 => 0.010555849126992
625 => 0.0095745781764464
626 => 0.0097097886556047
627 => 0.0099201337297892
628 => 0.0098253735589851
629 => 0.0096914048479331
630 => 0.0095832179308108
701 => 0.0094193036886903
702 => 0.0096500098367807
703 => 0.009953363888656
704 => 0.010272317433842
705 => 0.010655519219719
706 => 0.010569993042071
707 => 0.010265153743005
708 => 0.010278828611275
709 => 0.010363361266064
710 => 0.010253883797511
711 => 0.010221596754781
712 => 0.010358925522194
713 => 0.01035987122994
714 => 0.010233904171577
715 => 0.010093914837934
716 => 0.010093328277515
717 => 0.010068418527729
718 => 0.010422615090859
719 => 0.010617387387268
720 => 0.01063971771716
721 => 0.010615884378147
722 => 0.010625056884422
723 => 0.010511723176656
724 => 0.010770770424542
725 => 0.01100849779632
726 => 0.010944781782379
727 => 0.010849262419716
728 => 0.010773176646519
729 => 0.010926858392254
730 => 0.010920015186034
731 => 0.011006421455116
801 => 0.011002501567644
802 => 0.010973446389255
803 => 0.010944782820031
804 => 0.011058430632025
805 => 0.011025701887298
806 => 0.010992922305792
807 => 0.010927177836777
808 => 0.010936113602016
809 => 0.010840610732118
810 => 0.010796426734589
811 => 0.010132005423991
812 => 0.0099544503392062
813 => 0.010010312783346
814 => 0.010028704150425
815 => 0.0099514319499838
816 => 0.010062220435817
817 => 0.010044954167654
818 => 0.010112127116647
819 => 0.010070160374427
820 => 0.010071882704166
821 => 0.010195297944784
822 => 0.010231125914182
823 => 0.010212903519779
824 => 0.010225665860191
825 => 0.010519768608351
826 => 0.010477956602439
827 => 0.010455744807643
828 => 0.010461897626599
829 => 0.010537047184388
830 => 0.010558084957555
831 => 0.010468946434348
901 => 0.010510984677196
902 => 0.010689978179796
903 => 0.010752615775552
904 => 0.010952524913451
905 => 0.010867599958569
906 => 0.01102348338872
907 => 0.011502615908424
908 => 0.011885380118612
909 => 0.011533374332523
910 => 0.012236272059805
911 => 0.012783578765185
912 => 0.012762572222245
913 => 0.01266713663873
914 => 0.012044042505557
915 => 0.011470661994401
916 => 0.011950319139005
917 => 0.011951541883709
918 => 0.011910338909601
919 => 0.011654430776099
920 => 0.011901433861268
921 => 0.011921040069185
922 => 0.011910065806463
923 => 0.011713861640516
924 => 0.011414294143706
925 => 0.011472828915519
926 => 0.011568710065827
927 => 0.011387187045391
928 => 0.011329179441495
929 => 0.011437026613537
930 => 0.011784532672708
1001 => 0.011718838665187
1002 => 0.01171712312916
1003 => 0.011998189951928
1004 => 0.011797006764843
1005 => 0.011473567226446
1006 => 0.011391894477357
1007 => 0.011102011239449
1008 => 0.011302234624401
1009 => 0.011309440307575
1010 => 0.01119978000587
1011 => 0.011482465555557
1012 => 0.011479860558451
1013 => 0.011748228415687
1014 => 0.01226124696436
1015 => 0.012109522135408
1016 => 0.011933082666951
1017 => 0.011952266529308
1018 => 0.012162666149558
1019 => 0.012035453736199
1020 => 0.012081200206999
1021 => 0.012162596906795
1022 => 0.012211705556749
1023 => 0.011945200550319
1024 => 0.011883065484912
1025 => 0.011755958947534
1026 => 0.011722799224488
1027 => 0.011826324847018
1028 => 0.011799049503095
1029 => 0.011308834697806
1030 => 0.011257604523123
1031 => 0.011259175679441
1101 => 0.011130354969341
1102 => 0.010933872465925
1103 => 0.011450216753541
1104 => 0.011408747081012
1105 => 0.011362967772037
1106 => 0.011368575476174
1107 => 0.011592703030897
1108 => 0.011462697730444
1109 => 0.011808338129146
1110 => 0.011737284854074
1111 => 0.011664409330606
1112 => 0.01165433571342
1113 => 0.011626284854332
1114 => 0.011530088021254
1115 => 0.01141392456478
1116 => 0.011337223388909
1117 => 0.010457989292908
1118 => 0.010621170026856
1119 => 0.010808894586872
1120 => 0.01087369635273
1121 => 0.010762848448084
1122 => 0.011534464972156
1123 => 0.011675446746585
1124 => 0.011248403755824
1125 => 0.011168521448303
1126 => 0.011539702042938
1127 => 0.011315834769391
1128 => 0.011416642188961
1129 => 0.01119875168656
1130 => 0.011641488365554
1201 => 0.011638115453846
1202 => 0.011465880886057
1203 => 0.011611452363341
1204 => 0.011586155736825
1205 => 0.011391703333985
1206 => 0.011647652853562
1207 => 0.01164777980133
1208 => 0.011482007774535
1209 => 0.011288422339401
1210 => 0.011253813835883
1211 => 0.01122774097748
1212 => 0.01141022986409
1213 => 0.011573848829195
1214 => 0.011878303158676
1215 => 0.011954850210764
1216 => 0.012253618451089
1217 => 0.012075716510737
1218 => 0.012154578136679
1219 => 0.012240193587297
1220 => 0.012281240782728
1221 => 0.012214356580488
1222 => 0.012678466635626
1223 => 0.012717651744245
1224 => 0.012730790172215
1225 => 0.012574294872908
1226 => 0.012713299326873
1227 => 0.012648263746206
1228 => 0.012817468259696
1229 => 0.012844001687923
1230 => 0.012821528818169
1231 => 0.01282995094709
]
'min_raw' => 0.0057533737895307
'max_raw' => 0.012844001687923
'avg_raw' => 0.009298687738727
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.005753'
'max' => '$0.012844'
'avg' => '$0.009298'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00088715856483445
'max_diff' => -0.0012256576091313
'year' => 2031
]
6 => [
'items' => [
101 => 0.012433914889654
102 => 0.012413378330819
103 => 0.0121333608939
104 => 0.012247470069229
105 => 0.012034148435347
106 => 0.012101794922907
107 => 0.012131612850064
108 => 0.01211603765707
109 => 0.012253921630794
110 => 0.012136692085293
111 => 0.011827304040396
112 => 0.011517831702933
113 => 0.011513946529827
114 => 0.011432467926013
115 => 0.011373573819007
116 => 0.011384918913397
117 => 0.011424900505792
118 => 0.011371250016174
119 => 0.011382699068283
120 => 0.011572829617924
121 => 0.011610958943705
122 => 0.011481380596611
123 => 0.01096110483496
124 => 0.010833427858038
125 => 0.010925199537105
126 => 0.010881338585364
127 => 0.0087820894920451
128 => 0.0092752769279185
129 => 0.0089822417005853
130 => 0.009117285815243
131 => 0.0088181727292401
201 => 0.0089609251717407
202 => 0.0089345640080953
203 => 0.0097275948105025
204 => 0.0097152127253011
205 => 0.0097211393742417
206 => 0.0094382449785082
207 => 0.0098889034323315
208 => 0.010110913991839
209 => 0.010069825745894
210 => 0.010080166772186
211 => 0.0099024736790158
212 => 0.0097228598318014
213 => 0.0095236404328678
214 => 0.0098937654518246
215 => 0.0098526138679613
216 => 0.009947000795471
217 => 0.010187053327347
218 => 0.010222401974537
219 => 0.01026991091483
220 => 0.010252882341652
221 => 0.010658572040172
222 => 0.010609440340855
223 => 0.010727833600056
224 => 0.010484289683361
225 => 0.01020869662422
226 => 0.010261077854947
227 => 0.010256033121205
228 => 0.01019180787059
229 => 0.010133828186041
301 => 0.01003730834694
302 => 0.010342711400103
303 => 0.010330312593876
304 => 0.010531034854655
305 => 0.01049555524535
306 => 0.01025861373108
307 => 0.010267076143616
308 => 0.010323989934815
309 => 0.010520969215986
310 => 0.010579446078009
311 => 0.01055235726562
312 => 0.010616474475259
313 => 0.010667150103488
314 => 0.010622838553949
315 => 0.011250196650637
316 => 0.010989673829638
317 => 0.011116650839887
318 => 0.01114693410864
319 => 0.011069364152519
320 => 0.01108618629843
321 => 0.011111667265724
322 => 0.01126638270945
323 => 0.011672400801062
324 => 0.011852223449978
325 => 0.012393228761535
326 => 0.011837291682238
327 => 0.011804304676648
328 => 0.011901756070055
329 => 0.012219383459168
330 => 0.01247679062482
331 => 0.012562187431842
401 => 0.012573474029638
402 => 0.012733684116684
403 => 0.012825513550838
404 => 0.012714230398173
405 => 0.012619929578121
406 => 0.012282155745745
407 => 0.01232125398657
408 => 0.012590602093996
409 => 0.012971072160259
410 => 0.013297555058276
411 => 0.013183232126468
412 => 0.014055435396751
413 => 0.014141910788368
414 => 0.014129962685331
415 => 0.014326966496699
416 => 0.013935954050261
417 => 0.013768788653899
418 => 0.012640318485776
419 => 0.012957372573319
420 => 0.013418229309496
421 => 0.013357233192339
422 => 0.013022546711791
423 => 0.013297301168569
424 => 0.013206458752792
425 => 0.013134807570413
426 => 0.013463055527154
427 => 0.013102133415035
428 => 0.013414628835336
429 => 0.013013850226448
430 => 0.013183754343991
501 => 0.013087308549536
502 => 0.0131497207985
503 => 0.012784860066347
504 => 0.012981730060924
505 => 0.012776669627325
506 => 0.012776572401979
507 => 0.012772045681542
508 => 0.013013298372294
509 => 0.013021165613878
510 => 0.0128428795109
511 => 0.012817185698109
512 => 0.012912189190671
513 => 0.012800964982334
514 => 0.012853006089378
515 => 0.012802541254452
516 => 0.012791180557158
517 => 0.012700656588255
518 => 0.012661656373444
519 => 0.012676949362583
520 => 0.012624746506574
521 => 0.012593292397569
522 => 0.012765788667573
523 => 0.012673630868989
524 => 0.012751664163211
525 => 0.012662735375859
526 => 0.012354469454468
527 => 0.012177182463223
528 => 0.011594896713981
529 => 0.011760032230143
530 => 0.011869517248203
531 => 0.011833332450388
601 => 0.011911071397754
602 => 0.011915843937752
603 => 0.011890570213509
604 => 0.0118613064786
605 => 0.011847062510832
606 => 0.011953225376709
607 => 0.012014856493629
608 => 0.011880505534486
609 => 0.011849028984529
610 => 0.011984865221942
611 => 0.012067725248294
612 => 0.01267951712785
613 => 0.012634193609351
614 => 0.012747946746492
615 => 0.012735139888934
616 => 0.012854371298955
617 => 0.013049264263385
618 => 0.012652992373769
619 => 0.012721771471755
620 => 0.01270490842527
621 => 0.012889014745065
622 => 0.012889589504899
623 => 0.01277920856939
624 => 0.012839047865255
625 => 0.012805647211908
626 => 0.012866006706876
627 => 0.012633588286129
628 => 0.01291664883458
629 => 0.013077125925534
630 => 0.013079354150097
701 => 0.013155419017584
702 => 0.013232705328331
703 => 0.01338104967159
704 => 0.013228568085111
705 => 0.012954268554819
706 => 0.012974072094924
707 => 0.012813250380676
708 => 0.012815953822748
709 => 0.012801522637098
710 => 0.012844831711561
711 => 0.012643092192493
712 => 0.012690440054387
713 => 0.012624152770466
714 => 0.012721627376146
715 => 0.012616760813564
716 => 0.012704900293399
717 => 0.012742938371025
718 => 0.012883299696368
719 => 0.012596029331687
720 => 0.012010265611607
721 => 0.012133400247266
722 => 0.011951274449109
723 => 0.01196813088513
724 => 0.012002183568575
725 => 0.011891807680185
726 => 0.011912863921346
727 => 0.011912111644241
728 => 0.011905628926566
729 => 0.011876915895077
730 => 0.011835276318717
731 => 0.012001155574947
801 => 0.01202934169295
802 => 0.01209199594175
803 => 0.012278412487394
804 => 0.012259785078479
805 => 0.012290167155263
806 => 0.012223843252232
807 => 0.01197120746077
808 => 0.011984926799714
809 => 0.011813846423247
810 => 0.012087621031882
811 => 0.012022787590909
812 => 0.011980989049747
813 => 0.011969583930531
814 => 0.012156462566734
815 => 0.01221237958365
816 => 0.012177535851159
817 => 0.012106070339267
818 => 0.012243305248982
819 => 0.012280023521346
820 => 0.01228824338841
821 => 0.012531397336241
822 => 0.01230183299299
823 => 0.012357091412084
824 => 0.012788201823642
825 => 0.012397244169529
826 => 0.012604343158309
827 => 0.012594206740499
828 => 0.012700151575311
829 => 0.012585516171747
830 => 0.012586937214963
831 => 0.012681009050951
901 => 0.012548902123251
902 => 0.012516190590128
903 => 0.012470999841404
904 => 0.012569672187973
905 => 0.012628821797175
906 => 0.013105524206741
907 => 0.013413495703591
908 => 0.013400125848696
909 => 0.01352230129512
910 => 0.013467260137507
911 => 0.013289517720452
912 => 0.013592902352986
913 => 0.0134968987611
914 => 0.013504813180571
915 => 0.013504518605483
916 => 0.013568352601308
917 => 0.013523120364966
918 => 0.013433962984143
919 => 0.013493149814334
920 => 0.013668913540322
921 => 0.014214489538879
922 => 0.014519801095593
923 => 0.014196109399805
924 => 0.014419387597155
925 => 0.014285500240901
926 => 0.014261168925466
927 => 0.014401404133531
928 => 0.014541884804764
929 => 0.014532936793321
930 => 0.014430955039768
1001 => 0.014373348134877
1002 => 0.014809566918438
1003 => 0.015130965487373
1004 => 0.015109048259655
1005 => 0.015205783774938
1006 => 0.015489802239725
1007 => 0.01551576932871
1008 => 0.015512498072345
1009 => 0.01544813593291
1010 => 0.015727788995952
1011 => 0.015961080501168
1012 => 0.015433237957232
1013 => 0.015634233487997
1014 => 0.015724466857429
1015 => 0.015856956214789
1016 => 0.01608048796845
1017 => 0.016323302741796
1018 => 0.016357639413075
1019 => 0.016333275901641
1020 => 0.016173133031408
1021 => 0.016438823853786
1022 => 0.016594459306318
1023 => 0.016687136656647
1024 => 0.016922150997041
1025 => 0.015725024107999
1026 => 0.014877638194869
1027 => 0.014745306648132
1028 => 0.015014408052102
1029 => 0.015085367946285
1030 => 0.015056764101916
1031 => 0.014102954215731
1101 => 0.014740285036477
1102 => 0.015425999411303
1103 => 0.0154523404931
1104 => 0.015795623446749
1105 => 0.015907410448101
1106 => 0.016183798220913
1107 => 0.016166510090472
1108 => 0.016233806114862
1109 => 0.016218335924259
1110 => 0.016730286073083
1111 => 0.017295043112568
1112 => 0.017275487372108
1113 => 0.01719429686578
1114 => 0.017314878612716
1115 => 0.017897768400507
1116 => 0.017844105249466
1117 => 0.017896234429686
1118 => 0.018583494339721
1119 => 0.019477029984349
1120 => 0.019061892967908
1121 => 0.019962620841127
1122 => 0.020529581291786
1123 => 0.021510080766396
1124 => 0.021387317403113
1125 => 0.021769018653341
1126 => 0.021167545361349
1127 => 0.019786441105129
1128 => 0.019567876069928
1129 => 0.020005448805349
1130 => 0.021081178677661
1201 => 0.019971570243473
1202 => 0.020196042584552
1203 => 0.02013139453522
1204 => 0.020127949715408
1205 => 0.020259424476551
1206 => 0.02006871347825
1207 => 0.019291722562918
1208 => 0.019647812920578
1209 => 0.019510309332622
1210 => 0.019662879815031
1211 => 0.020486239783739
1212 => 0.020122212715123
1213 => 0.019738739769494
1214 => 0.020219699942772
1215 => 0.020832127519201
1216 => 0.020793802902106
1217 => 0.020719437126495
1218 => 0.021138633109949
1219 => 0.021831022061717
1220 => 0.022018172013136
1221 => 0.02215632228116
1222 => 0.022175370869053
1223 => 0.02237158316298
1224 => 0.021316500206672
1225 => 0.022990943954784
1226 => 0.023280074134508
1227 => 0.023225729643938
1228 => 0.023547085670244
1229 => 0.023452534575289
1230 => 0.023315544873312
1231 => 0.023824962529393
]
'min_raw' => 0.0087820894920451
'max_raw' => 0.023824962529393
'avg_raw' => 0.016303526010719
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.008782'
'max' => '$0.023824'
'avg' => '$0.0163035'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0030287157025144
'max_diff' => 0.01098096084147
'year' => 2032
]
7 => [
'items' => [
101 => 0.023240956294582
102 => 0.022412032968607
103 => 0.021957269237733
104 => 0.022556138803291
105 => 0.022921847549311
106 => 0.023163557766984
107 => 0.023236699132807
108 => 0.021398403293134
109 => 0.020407663792112
110 => 0.021042716453416
111 => 0.0218175245292
112 => 0.02131219610869
113 => 0.021332004026061
114 => 0.020611538496387
115 => 0.021881269742018
116 => 0.02169628057965
117 => 0.022656004681254
118 => 0.022426958822139
119 => 0.023209576570723
120 => 0.023003487089144
121 => 0.02385895300487
122 => 0.024200221519468
123 => 0.024773264469682
124 => 0.025194797196563
125 => 0.025442329276424
126 => 0.025427468378819
127 => 0.026408313799221
128 => 0.025829943522939
129 => 0.02510337414452
130 => 0.025090232796762
131 => 0.025466533373412
201 => 0.02625515614905
202 => 0.026459634560778
203 => 0.026573910097476
204 => 0.026398893135063
205 => 0.02577111365233
206 => 0.0255000416546
207 => 0.025731002850378
208 => 0.025448557154664
209 => 0.025936137665732
210 => 0.026605689849006
211 => 0.026467429970856
212 => 0.026929612014432
213 => 0.027407921806563
214 => 0.028091926291549
215 => 0.028270750392537
216 => 0.028566339831398
217 => 0.028870598460059
218 => 0.028968318131585
219 => 0.029154895305161
220 => 0.029153911951359
221 => 0.029716174822024
222 => 0.030336368180198
223 => 0.0305704768154
224 => 0.03110879671322
225 => 0.030186942753182
226 => 0.030886179571366
227 => 0.031516908684401
228 => 0.030764927433931
301 => 0.031801358398544
302 => 0.031841600664296
303 => 0.032449211099346
304 => 0.031833281519349
305 => 0.031467544500864
306 => 0.032523413569243
307 => 0.033034315351868
308 => 0.032880427577085
309 => 0.031709334012608
310 => 0.031027707327517
311 => 0.029243758816664
312 => 0.031356922888609
313 => 0.032386183466213
314 => 0.031706668476363
315 => 0.032049376312217
316 => 0.033919079141246
317 => 0.034630940924247
318 => 0.034482878649672
319 => 0.034507898736763
320 => 0.034892006433665
321 => 0.036595351493701
322 => 0.035574667650498
323 => 0.036354942204333
324 => 0.036768797014198
325 => 0.037153208425979
326 => 0.036209215493118
327 => 0.034981094557476
328 => 0.034592097104149
329 => 0.031639104102399
330 => 0.031485387992459
331 => 0.031399102481876
401 => 0.030855084542971
402 => 0.030427635462047
403 => 0.03008771208273
404 => 0.029195651625686
405 => 0.029496695843229
406 => 0.028074937662189
407 => 0.028984528162402
408 => 0.026715367775911
409 => 0.028605191974246
410 => 0.027576646582855
411 => 0.028267287150534
412 => 0.028264877570656
413 => 0.026993189317766
414 => 0.026259706072956
415 => 0.026727110144144
416 => 0.027228204411039
417 => 0.027309505269959
418 => 0.027959187066887
419 => 0.028140499291546
420 => 0.027591114786171
421 => 0.026668344470592
422 => 0.026882682968751
423 => 0.026255362510132
424 => 0.025156007535937
425 => 0.0259455834713
426 => 0.026215179410837
427 => 0.026334248336278
428 => 0.025253158980928
429 => 0.024913457233886
430 => 0.024732602874134
501 => 0.026528789410555
502 => 0.026627188563682
503 => 0.026123764584046
504 => 0.028399288708621
505 => 0.027884267517012
506 => 0.028459672371294
507 => 0.026863233996633
508 => 0.026924220092434
509 => 0.026168440581809
510 => 0.026591626606554
511 => 0.026292532364187
512 => 0.02655743735776
513 => 0.026716220318664
514 => 0.027471875813308
515 => 0.028613820346169
516 => 0.027359006081298
517 => 0.026812265536823
518 => 0.02715146029563
519 => 0.028054780636895
520 => 0.02942335719403
521 => 0.028613132327036
522 => 0.028972696364498
523 => 0.029051245110792
524 => 0.028453815290026
525 => 0.029445385283687
526 => 0.02997677569879
527 => 0.030521872308932
528 => 0.030995164422259
529 => 0.03030414873591
530 => 0.031043634573511
531 => 0.030447739525227
601 => 0.029913160064419
602 => 0.029913970800796
603 => 0.029578621296071
604 => 0.02892883937391
605 => 0.02880900961802
606 => 0.029432379140989
607 => 0.029932262465096
608 => 0.029973435249949
609 => 0.030250196343108
610 => 0.030413980707173
611 => 0.032019290129058
612 => 0.032664958858356
613 => 0.033454470358658
614 => 0.033762029582456
615 => 0.034687672580003
616 => 0.033940140682435
617 => 0.0337784074542
618 => 0.031533100317668
619 => 0.031900769235491
620 => 0.032489442647699
621 => 0.031542807325413
622 => 0.032143229551988
623 => 0.032261765618195
624 => 0.031510641019397
625 => 0.031911849121793
626 => 0.03084635935174
627 => 0.028637045111508
628 => 0.029447844882002
629 => 0.030044866425337
630 => 0.029192843070772
701 => 0.030720061955972
702 => 0.029827892211435
703 => 0.029545117234118
704 => 0.028441911231042
705 => 0.0289625819982
706 => 0.029666796666069
707 => 0.029231673875069
708 => 0.030134619000411
709 => 0.031413430104565
710 => 0.032324787051902
711 => 0.032394749721955
712 => 0.03180880826099
713 => 0.032747783191614
714 => 0.032754622598882
715 => 0.031695455041312
716 => 0.03104672080977
717 => 0.030899327027416
718 => 0.031267545593991
719 => 0.031714630910711
720 => 0.032419559845477
721 => 0.032845533637048
722 => 0.033956247366422
723 => 0.034256774654932
724 => 0.034586963030825
725 => 0.035028196527341
726 => 0.035558010469855
727 => 0.034398807725959
728 => 0.034444865011998
729 => 0.033365431467136
730 => 0.032211901918023
731 => 0.033087287056312
801 => 0.03423173667702
802 => 0.033969198669525
803 => 0.033939657780517
804 => 0.033989337361869
805 => 0.033791392277908
806 => 0.032896093999337
807 => 0.032446480808703
808 => 0.03302659653318
809 => 0.033334902222758
810 => 0.033813057460213
811 => 0.033754114734564
812 => 0.034985791276125
813 => 0.03546438353621
814 => 0.035341939155963
815 => 0.035364471868717
816 => 0.036230940295055
817 => 0.037194631387966
818 => 0.038097255266717
819 => 0.03901544304478
820 => 0.037908531840846
821 => 0.03734651059628
822 => 0.037926373060379
823 => 0.037618689874773
824 => 0.039386728724026
825 => 0.039509143897889
826 => 0.041277054897809
827 => 0.042955012955658
828 => 0.041901117563264
829 => 0.042894893449801
830 => 0.043969743094827
831 => 0.046043302448153
901 => 0.045345000606651
902 => 0.044810112339845
903 => 0.044304645512274
904 => 0.045356441739849
905 => 0.046709560783769
906 => 0.047001009665816
907 => 0.047473268196775
908 => 0.046976746096498
909 => 0.047574752276166
910 => 0.049685976867627
911 => 0.049115505346719
912 => 0.048305344079157
913 => 0.04997195312995
914 => 0.050575092466653
915 => 0.05480824019816
916 => 0.060152764071798
917 => 0.057940096094076
918 => 0.056566621677955
919 => 0.056889420744992
920 => 0.058841059940094
921 => 0.059467864507629
922 => 0.057763993620577
923 => 0.058365829622903
924 => 0.061682005166927
925 => 0.063461026950647
926 => 0.061044876413853
927 => 0.05437881290876
928 => 0.04823239792118
929 => 0.04986270395256
930 => 0.049677877842888
1001 => 0.053240694763618
1002 => 0.049101899789613
1003 => 0.049171586482444
1004 => 0.052808078684006
1005 => 0.051837924909888
1006 => 0.050266400043726
1007 => 0.048243871791856
1008 => 0.044505041257055
1009 => 0.04119345478738
1010 => 0.04768823846723
1011 => 0.047408171584957
1012 => 0.04700259323584
1013 => 0.04790516396364
1014 => 0.052287791218669
1015 => 0.05218675747526
1016 => 0.051544032347564
1017 => 0.052031533692202
1018 => 0.050180938700976
1019 => 0.05065787916748
1020 => 0.048231424297643
1021 => 0.049328283236516
1022 => 0.050263028257171
1023 => 0.050450692159204
1024 => 0.05087350851284
1025 => 0.047260589064337
1026 => 0.048882683826973
1027 => 0.049835512530296
1028 => 0.045530597784477
1029 => 0.049750418207128
1030 => 0.047197696174759
1031 => 0.046331263976375
1101 => 0.047497800787737
1102 => 0.047043200257855
1103 => 0.046652361417301
1104 => 0.046434266628808
1105 => 0.047290842517103
1106 => 0.047250882228084
1107 => 0.045849357820619
1108 => 0.044021126364523
1109 => 0.04463474085084
1110 => 0.044411808955295
1111 => 0.04360387500705
1112 => 0.04414832493785
1113 => 0.041750842982412
1114 => 0.03762609988835
1115 => 0.040351031520585
1116 => 0.040246124616899
1117 => 0.040193225798912
1118 => 0.042240936608958
1119 => 0.042044096463299
1120 => 0.041686829671462
1121 => 0.043597313522246
1122 => 0.042899961217076
1123 => 0.045049036704744
1124 => 0.046464556814409
1125 => 0.04610553512732
1126 => 0.047436838632263
1127 => 0.044648877289278
1128 => 0.045574926213823
1129 => 0.045765783613723
1130 => 0.043573738448084
1201 => 0.042076301945492
1202 => 0.041976440002795
1203 => 0.03938009146676
1204 => 0.040767039897717
1205 => 0.041987497121133
1206 => 0.041402992822423
1207 => 0.041217956223021
1208 => 0.042163268079825
1209 => 0.042236726907147
1210 => 0.040561857859383
1211 => 0.040910116170618
1212 => 0.042362411221595
1213 => 0.040873522061538
1214 => 0.037980853632212
1215 => 0.03726343186747
1216 => 0.037167714579346
1217 => 0.035222009853926
1218 => 0.037311373420275
1219 => 0.036399310232102
1220 => 0.039280506915348
1221 => 0.037634782822045
1222 => 0.03756383894565
1223 => 0.037456596871275
1224 => 0.035781848438056
1225 => 0.036148511909115
1226 => 0.037367357131341
1227 => 0.037802254837905
1228 => 0.037756891444099
1229 => 0.037361384124813
1230 => 0.037542445350257
1231 => 0.03695918405719
]
'min_raw' => 0.020407663792112
'max_raw' => 0.063461026950647
'avg_raw' => 0.041934345371379
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.0204076'
'max' => '$0.063461'
'avg' => '$0.041934'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.011625574300067
'max_diff' => 0.039636064421254
'year' => 2033
]
8 => [
'items' => [
101 => 0.036753222355074
102 => 0.036103150568967
103 => 0.035147724630304
104 => 0.035280582467043
105 => 0.033387633681755
106 => 0.032356254717135
107 => 0.032070782613084
108 => 0.031689037384847
109 => 0.032113901752399
110 => 0.033382271195683
111 => 0.031852348547494
112 => 0.029229403478769
113 => 0.02938704694668
114 => 0.029741225014311
115 => 0.029081216528403
116 => 0.028456573886804
117 => 0.028999649984815
118 => 0.027888273581522
119 => 0.029875529542985
120 => 0.029821779838448
121 => 0.030562505969797
122 => 0.03102569722096
123 => 0.029958191346978
124 => 0.029689716506514
125 => 0.029842651977143
126 => 0.027314969315611
127 => 0.030355940369863
128 => 0.030382238813819
129 => 0.030157055570418
130 => 0.031776278777359
131 => 0.035193344792388
201 => 0.033907707106372
202 => 0.033409869335742
203 => 0.032463479369857
204 => 0.033724487808323
205 => 0.033627662035045
206 => 0.033189779168197
207 => 0.03292494624405
208 => 0.033412909027012
209 => 0.032864482255196
210 => 0.032765969737218
211 => 0.032169091060947
212 => 0.031956032529768
213 => 0.031798292475388
214 => 0.031624636174733
215 => 0.032007678701524
216 => 0.031139653942374
217 => 0.030092901176354
218 => 0.030005875009882
219 => 0.030246161906931
220 => 0.030139852842242
221 => 0.03000536604298
222 => 0.029748594117887
223 => 0.029672415372776
224 => 0.029919959337714
225 => 0.029640496634009
226 => 0.030052859076446
227 => 0.029940719309158
228 => 0.029314315684885
301 => 0.028533584844715
302 => 0.028526634702599
303 => 0.02835842752374
304 => 0.028144190391344
305 => 0.028084594522193
306 => 0.028953913630603
307 => 0.03075337816848
308 => 0.030400100222158
309 => 0.030655379743756
310 => 0.031911102330589
311 => 0.032310258780048
312 => 0.032026946986761
313 => 0.031639132330199
314 => 0.031656194206895
315 => 0.032981474287847
316 => 0.033064130380874
317 => 0.033272975662088
318 => 0.033541400868117
319 => 0.032072660960051
320 => 0.031587016689307
321 => 0.03135689149131
322 => 0.030648194951139
323 => 0.031412463410664
324 => 0.030967156908537
325 => 0.03102724396951
326 => 0.030988112192225
327 => 0.031009480788702
328 => 0.029874974064444
329 => 0.030288328686845
330 => 0.029601046455655
331 => 0.028680852699142
401 => 0.028677767887009
402 => 0.028902984005278
403 => 0.028769016645424
404 => 0.028408513924672
405 => 0.02845972163463
406 => 0.028011088212115
407 => 0.028514193854894
408 => 0.02852862112453
409 => 0.028334898047711
410 => 0.029110001705612
411 => 0.029427562306678
412 => 0.029300049627565
413 => 0.029418615677189
414 => 0.030414780515782
415 => 0.030577198850191
416 => 0.030649334345583
417 => 0.03055268233788
418 => 0.029436823741753
419 => 0.029486316815488
420 => 0.029123169479589
421 => 0.028816348248277
422 => 0.028828619488464
423 => 0.028986365485326
424 => 0.029675251505305
425 => 0.031124971522301
426 => 0.031179987337214
427 => 0.031246668109814
428 => 0.03097544389658
429 => 0.030893640078602
430 => 0.031001560429872
501 => 0.031545999045598
502 => 0.032946442978888
503 => 0.032451432560358
504 => 0.032048981384797
505 => 0.032402039565822
506 => 0.032347689026215
507 => 0.031888915775479
508 => 0.031876039538323
509 => 0.03099550699148
510 => 0.030669994157669
511 => 0.030397971269522
512 => 0.030100929377004
513 => 0.029924832986185
514 => 0.030195397076861
515 => 0.030257278285619
516 => 0.029665685172704
517 => 0.029585053217425
518 => 0.030068160923856
519 => 0.029855563234326
520 => 0.030074225230177
521 => 0.030124956688862
522 => 0.030116787755569
523 => 0.029894811351011
524 => 0.030036292491845
525 => 0.029701647416215
526 => 0.029337771158532
527 => 0.029105640776423
528 => 0.028903076230405
529 => 0.029015470813656
530 => 0.028614804646807
531 => 0.028486623476215
601 => 0.029988361864757
602 => 0.031097712158781
603 => 0.031081581766155
604 => 0.030983392149444
605 => 0.030837502296048
606 => 0.03153532629413
607 => 0.03129221836663
608 => 0.031469099696233
609 => 0.031514123418304
610 => 0.031650396664733
611 => 0.03169910263725
612 => 0.03155187935983
613 => 0.031057780059002
614 => 0.029826531578889
615 => 0.029253382087704
616 => 0.029064233209054
617 => 0.029071108411548
618 => 0.028881459634506
619 => 0.028937319698807
620 => 0.028862033783775
621 => 0.028719460474326
622 => 0.029006667313559
623 => 0.029039765226264
624 => 0.028972727718121
625 => 0.028988517478082
626 => 0.02843347554275
627 => 0.028475674175605
628 => 0.028240706825523
629 => 0.028196653279956
630 => 0.027602676279895
701 => 0.026550359925943
702 => 0.027133445336852
703 => 0.02642916015469
704 => 0.026162436684543
705 => 0.027425064108208
706 => 0.027298331334705
707 => 0.027081419915881
708 => 0.02676056271914
709 => 0.02664155366377
710 => 0.025918492317033
711 => 0.025875769995285
712 => 0.026234138723027
713 => 0.026068763885889
714 => 0.025836514982199
715 => 0.024995332995728
716 => 0.024049565937149
717 => 0.024078112699768
718 => 0.02437894360448
719 => 0.025253650032505
720 => 0.024911887098501
721 => 0.024663934168603
722 => 0.024617500038271
723 => 0.025198720395815
724 => 0.026021268971168
725 => 0.026407190359237
726 => 0.026024753984268
727 => 0.02558543166854
728 => 0.025612171182274
729 => 0.025790057187639
730 => 0.02580875049163
731 => 0.025522796827154
801 => 0.025603291108721
802 => 0.02548101293447
803 => 0.024730592004799
804 => 0.024717019269792
805 => 0.024532853871478
806 => 0.024527277416409
807 => 0.024213966131667
808 => 0.024170131717113
809 => 0.023548033144621
810 => 0.023957500308923
811 => 0.0236828512331
812 => 0.023268890292667
813 => 0.023197523270505
814 => 0.023195377891641
815 => 0.023620423217493
816 => 0.023952533406817
817 => 0.023687628871361
818 => 0.023627315243597
819 => 0.024271306994805
820 => 0.024189353174348
821 => 0.024118381694379
822 => 0.025947618768037
823 => 0.024499634887087
824 => 0.023868231266963
825 => 0.023086749386763
826 => 0.02334120382753
827 => 0.023394821116913
828 => 0.02151549806773
829 => 0.020753056940731
830 => 0.020491415877933
831 => 0.020340837747231
901 => 0.020409458092233
902 => 0.01972317165251
903 => 0.020184367490134
904 => 0.019590101443682
905 => 0.019490470807085
906 => 0.020553092113578
907 => 0.020700949660633
908 => 0.020070143429158
909 => 0.020475223148017
910 => 0.020328335610929
911 => 0.019600288429401
912 => 0.01957248238222
913 => 0.019207173898625
914 => 0.01863553685946
915 => 0.018374283393492
916 => 0.01823822032011
917 => 0.018294362596004
918 => 0.01826597534333
919 => 0.018080729317754
920 => 0.018276593428674
921 => 0.017776241561911
922 => 0.017576997416957
923 => 0.01748700345911
924 => 0.017042912378178
925 => 0.01774965877614
926 => 0.017888896719896
927 => 0.018028409005413
928 => 0.019242768201756
929 => 0.01918210224805
930 => 0.019730492924033
1001 => 0.01970918347079
1002 => 0.01955277356666
1003 => 0.018892905909314
1004 => 0.019155917396522
1005 => 0.018346408919956
1006 => 0.018952947711825
1007 => 0.018676148736882
1008 => 0.018859361699962
1009 => 0.018529928272697
1010 => 0.018712250333318
1011 => 0.017921915201747
1012 => 0.017183911376201
1013 => 0.017480905659275
1014 => 0.017803772410393
1015 => 0.018503829791735
1016 => 0.018086881390756
1017 => 0.018236831802313
1018 => 0.017734523024993
1019 => 0.016698116539975
1020 => 0.016703982488127
1021 => 0.016544553929749
1022 => 0.016406784378361
1023 => 0.01813477293025
1024 => 0.017919870238366
1025 => 0.017577450924618
1026 => 0.018035792783272
1027 => 0.018156985645564
1028 => 0.018160435835976
1029 => 0.018494830224535
1030 => 0.018673296569652
1031 => 0.018704752036496
1101 => 0.019230928831962
1102 => 0.019407296353363
1103 => 0.020133729213545
1104 => 0.018658154947144
1105 => 0.018627766466156
1106 => 0.018042242593165
1107 => 0.017670894096148
1108 => 0.018067669142458
1109 => 0.018419157668294
1110 => 0.018053164321433
1111 => 0.018100955325992
1112 => 0.017609639160587
1113 => 0.017785261571145
1114 => 0.017936531250011
1115 => 0.017853009024562
1116 => 0.017727972210543
1117 => 0.018390339617498
1118 => 0.018352966252559
1119 => 0.018969778009676
1120 => 0.019450626882981
1121 => 0.020312394025961
1122 => 0.019413095087324
1123 => 0.019380321059611
1124 => 0.019700692437629
1125 => 0.019407247306174
1126 => 0.019592694499872
1127 => 0.020282515616054
1128 => 0.020297090449233
1129 => 0.020052943214872
1130 => 0.020038086833473
1201 => 0.02008497798051
1202 => 0.020359620893324
1203 => 0.020263652220663
1204 => 0.020374709598296
1205 => 0.020513588549598
1206 => 0.021088050775637
1207 => 0.021226551673503
1208 => 0.020890066296172
1209 => 0.020920447158278
1210 => 0.020794592390426
1211 => 0.020673018261637
1212 => 0.02094629914868
1213 => 0.021445725341099
1214 => 0.021442618436676
1215 => 0.021558475605859
1216 => 0.021630653662448
1217 => 0.021320812606003
1218 => 0.021119117471429
1219 => 0.021196460220219
1220 => 0.021320132959841
1221 => 0.021156354817579
1222 => 0.020145440254122
1223 => 0.020452087155203
1224 => 0.020401046116596
1225 => 0.020328357470817
1226 => 0.020636693301084
1227 => 0.020606953558064
1228 => 0.019716132793128
1229 => 0.019773160248238
1230 => 0.019719600821554
1231 => 0.019892662286398
]
'min_raw' => 0.016406784378361
'max_raw' => 0.036753222355074
'avg_raw' => 0.026580003366717
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.0164067'
'max' => '$0.036753'
'avg' => '$0.02658'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.004000879413751
'max_diff' => -0.026707804595573
'year' => 2034
]
9 => [
'items' => [
101 => 0.019397901419133
102 => 0.019550086529639
103 => 0.019645535604301
104 => 0.019701755842551
105 => 0.01990486189369
106 => 0.01988102974283
107 => 0.019903380453731
108 => 0.02020453310956
109 => 0.021727659899633
110 => 0.021810560330227
111 => 0.021402328290575
112 => 0.021565408938395
113 => 0.021252329756398
114 => 0.021462501908721
115 => 0.021606296357546
116 => 0.020956516893386
117 => 0.020918041170552
118 => 0.020603669799402
119 => 0.020772595167354
120 => 0.020503822760779
121 => 0.020569770108093
122 => 0.020385375575817
123 => 0.020717249021328
124 => 0.021088335101329
125 => 0.02118208609977
126 => 0.020935467585213
127 => 0.020756899527722
128 => 0.020443392842742
129 => 0.020964761446816
130 => 0.021117225515067
131 => 0.020963960617971
201 => 0.02092844579241
202 => 0.020861145262145
203 => 0.020942723918055
204 => 0.021116395163008
205 => 0.021034495011093
206 => 0.021088591504328
207 => 0.020882431456177
208 => 0.021320915176285
209 => 0.02201733285067
210 => 0.022019571947369
211 => 0.021937671353981
212 => 0.02190415939574
213 => 0.021988194374699
214 => 0.022033779903489
215 => 0.022305533616064
216 => 0.022597136176802
217 => 0.023957918091603
218 => 0.023575815975184
219 => 0.024783182643274
220 => 0.025738052920792
221 => 0.026024376765603
222 => 0.025760972300955
223 => 0.024859879856223
224 => 0.024815667961996
225 => 0.026162280505843
226 => 0.025781800783444
227 => 0.025736543931141
228 => 0.025255087485297
301 => 0.025539687874332
302 => 0.025477441594414
303 => 0.025379182796372
304 => 0.025922180513215
305 => 0.026938623765405
306 => 0.026780201552407
307 => 0.026661946719398
308 => 0.026143788464621
309 => 0.026455835468833
310 => 0.0263447215075
311 => 0.02682213760005
312 => 0.026539326882884
313 => 0.025778918275335
314 => 0.025900015852427
315 => 0.025881712197264
316 => 0.026258400123506
317 => 0.026145327758017
318 => 0.025859633003155
319 => 0.02693514967287
320 => 0.026865311602677
321 => 0.026964326019006
322 => 0.027007915227196
323 => 0.027662563271322
324 => 0.027930751628599
325 => 0.027991635080999
326 => 0.028246393277981
327 => 0.027985296464979
328 => 0.02902986987586
329 => 0.029724450241547
330 => 0.030531241079072
331 => 0.031710179337629
401 => 0.032153471028635
402 => 0.032073394352405
403 => 0.032967251885007
404 => 0.034573494001755
405 => 0.03239806180842
406 => 0.034688797190364
407 => 0.033963576816252
408 => 0.03224409235539
409 => 0.032133377827501
410 => 0.033297832668022
411 => 0.035880481429671
412 => 0.035233557207038
413 => 0.035881539565945
414 => 0.03512563372467
415 => 0.035088096628376
416 => 0.035844826906448
417 => 0.037612968448383
418 => 0.036772990679604
419 => 0.035568676577061
420 => 0.036457923369176
421 => 0.035687575501941
422 => 0.033951766150268
423 => 0.035233062516277
424 => 0.034376296125546
425 => 0.034626346106568
426 => 0.036427141625501
427 => 0.036210465144349
428 => 0.036490864574662
429 => 0.035995966919491
430 => 0.035533654471364
501 => 0.034670713955162
502 => 0.034415239810768
503 => 0.034485843673282
504 => 0.034415204823
505 => 0.033932397535018
506 => 0.033828135347146
507 => 0.033654360466196
508 => 0.033708220568143
509 => 0.033381472952322
510 => 0.033998113212878
511 => 0.034112567079053
512 => 0.034561306437155
513 => 0.034607896045949
514 => 0.035857628770859
515 => 0.035169296986884
516 => 0.035631089375281
517 => 0.035589782317505
518 => 0.03228135879759
519 => 0.032737230368167
520 => 0.033446423471604
521 => 0.033126932939794
522 => 0.032675248077085
523 => 0.032310488332638
524 => 0.031757840021202
525 => 0.032535681906878
526 => 0.033558461272279
527 => 0.034633835418498
528 => 0.035925826993876
529 => 0.035637469514691
530 => 0.034609682534687
531 => 0.034655788307811
601 => 0.034940796055312
602 => 0.034571685126614
603 => 0.03446282710784
604 => 0.034925840635161
605 => 0.034929029154856
606 => 0.034504322422843
607 => 0.034032338610723
608 => 0.034030360981317
609 => 0.033946376020773
610 => 0.035140574462577
611 => 0.035797262858489
612 => 0.035872551124774
613 => 0.035792195358303
614 => 0.035823121103611
615 => 0.035441008595172
616 => 0.03631440447752
617 => 0.037115918909063
618 => 0.036901095919551
619 => 0.036579045719386
620 => 0.036322517222914
621 => 0.036840665958376
622 => 0.036817593610827
623 => 0.03710891837973
624 => 0.037095702205439
625 => 0.036997740642936
626 => 0.036901099418067
627 => 0.037284270950842
628 => 0.037173923702949
629 => 0.037063405055302
630 => 0.036841742987887
701 => 0.036871870544266
702 => 0.036549875950608
703 => 0.036400906518111
704 => 0.034160763681014
705 => 0.033562124316162
706 => 0.033750468446772
707 => 0.033812476224923
708 => 0.033551947606162
709 => 0.033925478721154
710 => 0.033867264292549
711 => 0.034093742579946
712 => 0.033952248778525
713 => 0.03395805573349
714 => 0.034374158833811
715 => 0.034494955334064
716 => 0.034433517259088
717 => 0.034476546380827
718 => 0.035468134329845
719 => 0.035327162232692
720 => 0.035252273615758
721 => 0.035273018274447
722 => 0.035526390255306
723 => 0.035597320576349
724 => 0.035296783821903
725 => 0.035438518692682
726 => 0.036042007783626
727 => 0.036253194810932
728 => 0.036927202426569
729 => 0.036640872011916
730 => 0.037166443880101
731 => 0.038781872622247
801 => 0.04007238888064
802 => 0.038885576796582
803 => 0.041255445558866
804 => 0.043100728327787
805 => 0.043029903301637
806 => 0.042708135568716
807 => 0.04060733019568
808 => 0.038674137770168
809 => 0.040291335321795
810 => 0.040295457890933
811 => 0.040156539187027
812 => 0.039293727047992
813 => 0.040126515194843
814 => 0.040192618893697
815 => 0.040155618400731
816 => 0.039494102356703
817 => 0.038484089626072
818 => 0.038681443696008
819 => 0.039004713688478
820 => 0.038392696151548
821 => 0.038197119465048
822 => 0.038560733735238
823 => 0.03973237467583
824 => 0.039510882742865
825 => 0.039505098693376
826 => 0.040452735109798
827 => 0.039774431948378
828 => 0.038683932962846
829 => 0.038408567587084
830 => 0.037431206011474
831 => 0.03810627313299
901 => 0.038130567596895
902 => 0.037760840233459
903 => 0.038713934300705
904 => 0.038705151371086
905 => 0.039609972338604
906 => 0.041339650193264
907 => 0.040828099339363
908 => 0.040233221352851
909 => 0.040297901084162
910 => 0.041007278093467
911 => 0.040578372560139
912 => 0.04073260998036
913 => 0.041007044636659
914 => 0.041172617878633
915 => 0.04027407764267
916 => 0.040064584931519
917 => 0.039636036366455
918 => 0.039524236045067
919 => 0.039873279909353
920 => 0.039781319183015
921 => 0.038128525741277
922 => 0.037955799630559
923 => 0.037961096893779
924 => 0.0375267688757
925 => 0.036864314397463
926 => 0.03860520521317
927 => 0.038465387316917
928 => 0.0383110391805
929 => 0.038329945946513
930 => 0.039085607645347
1001 => 0.038647285698192
1002 => 0.039812636434256
1003 => 0.039573075356571
1004 => 0.03932737044119
1005 => 0.03929340653753
1006 => 0.039198831107666
1007 => 0.038874496768697
1008 => 0.03848284356492
1009 => 0.038224240195367
1010 => 0.035259841054534
1011 => 0.035810016291956
1012 => 0.036442942752559
1013 => 0.036661426430466
1014 => 0.036287694980796
1015 => 0.03888925396425
1016 => 0.039364583859773
1017 => 0.037924778601232
1018 => 0.03765544982422
1019 => 0.038906911114033
1020 => 0.038152126971355
1021 => 0.038492006224587
1022 => 0.037757373183112
1023 => 0.039250090807226
1024 => 0.039238718799916
1025 => 0.038658017929579
1026 => 0.03914882232872
1027 => 0.039063532986266
1028 => 0.038407923133859
1029 => 0.039270874808937
1030 => 0.039271302822202
1031 => 0.038712390860028
1101 => 0.03805970404977
1102 => 0.037943019063871
1103 => 0.037855112601417
1104 => 0.038470386623587
1105 => 0.039022039387953
1106 => 0.04004852841612
1107 => 0.040306612146579
1108 => 0.041313930128166
1109 => 0.040714121315553
1110 => 0.04098000879336
1111 => 0.041268667262599
1112 => 0.041407060747817
1113 => 0.041181555990259
1114 => 0.042746335444287
1115 => 0.042878450773811
1116 => 0.042922747901007
1117 => 0.042395113073241
1118 => 0.042863776294766
1119 => 0.042644504293909
1120 => 0.043214989124623
1121 => 0.043304448430395
1122 => 0.043228679581013
1123 => 0.043257075376685
1124 => 0.041921812158683
1125 => 0.041852571716755
1126 => 0.040908473377989
1127 => 0.041293200429459
1128 => 0.040573971647184
1129 => 0.040802046502921
1130 => 0.040902579726152
1201 => 0.040850066875546
1202 => 0.041314952319709
1203 => 0.040919704722349
1204 => 0.039876581328194
1205 => 0.038833173735769
1206 => 0.038820074603387
1207 => 0.038545363801975
1208 => 0.038346798208347
1209 => 0.038385048986173
1210 => 0.038519849716358
1211 => 0.038338963344855
1212 => 0.038377564623387
1213 => 0.039018603045991
1214 => 0.039147158729968
1215 => 0.038710276285868
1216 => 0.036956130230969
1217 => 0.036525658389154
1218 => 0.036835073012423
1219 => 0.036687192751354
1220 => 0.029609427868338
1221 => 0.031272243741632
1222 => 0.030284255013613
1223 => 0.03073956567466
1224 => 0.029731085021792
1225 => 0.03021238484834
1226 => 0.030123506344632
1227 => 0.032797265062591
1228 => 0.032755517997845
1229 => 0.032775500108533
1230 => 0.031821701902262
1231 => 0.033341128343295
]
'min_raw' => 0.019397901419133
'max_raw' => 0.043304448430395
'avg_raw' => 0.031351174924764
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.019397'
'max' => '$0.0433044'
'avg' => '$0.031351'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0029911170407724
'max_diff' => 0.0065512260753209
'year' => 2035
]
10 => [
'items' => [
101 => 0.034089652444956
102 => 0.033951120555062
103 => 0.033985986047196
104 => 0.033386881377436
105 => 0.032781300751314
106 => 0.032109618638755
107 => 0.033357520981472
108 => 0.033218775543365
109 => 0.033537007659349
110 => 0.034346361530502
111 => 0.034465541962466
112 => 0.034625721671634
113 => 0.034568308648265
114 => 0.035936119791177
115 => 0.035770468836662
116 => 0.036169639976012
117 => 0.035348514657183
118 => 0.034419333416997
119 => 0.034595940393533
120 => 0.034578931721509
121 => 0.034362391804998
122 => 0.034166909250526
123 => 0.033841485874198
124 => 0.034871173590497
125 => 0.034829370149646
126 => 0.035506119265842
127 => 0.035386497285964
128 => 0.034587632427876
129 => 0.034616164042567
130 => 0.034808052863189
131 => 0.03547218226231
201 => 0.035669341085347
202 => 0.035578009263095
203 => 0.035794184911913
204 => 0.035965041330547
205 => 0.035815641847542
206 => 0.037930823471271
207 => 0.03705245259115
208 => 0.037480564446456
209 => 0.037582666601365
210 => 0.037321134078543
211 => 0.037377851117965
212 => 0.037463761978223
213 => 0.037985395898632
214 => 0.039354314241779
215 => 0.039960598857416
216 => 0.041784636037117
217 => 0.039910255359977
218 => 0.039799037367554
219 => 0.040127601544264
220 => 0.041198504462693
221 => 0.042066370693283
222 => 0.042354291990374
223 => 0.042392345542847
224 => 0.042932505036835
225 => 0.043242114385411
226 => 0.04286691546666
227 => 0.042548973667982
228 => 0.041410145609509
229 => 0.041541968058203
301 => 0.042450094007673
302 => 0.043732875399651
303 => 0.044833635284625
304 => 0.044448187538262
305 => 0.047388881759307
306 => 0.047680439579664
307 => 0.047640155716084
308 => 0.04830436782048
309 => 0.046986042057696
310 => 0.046422432252747
311 => 0.042617716293649
312 => 0.043686686285809
313 => 0.045240496947819
314 => 0.045034844280211
315 => 0.043906425443981
316 => 0.04483277927775
317 => 0.044526497730543
318 => 0.044284920766628
319 => 0.045391631670321
320 => 0.044174757570532
321 => 0.045228357697813
322 => 0.043877104636478
323 => 0.0444499482311
324 => 0.044124774501465
325 => 0.044335201756332
326 => 0.043105048324115
327 => 0.043768809255853
328 => 0.043077433687112
329 => 0.043077105885072
330 => 0.043061843731073
331 => 0.043875244021669
401 => 0.043901768975943
402 => 0.043300664932213
403 => 0.043214036448502
404 => 0.043534347356609
405 => 0.043159347172775
406 => 0.043334807398568
407 => 0.04316466168427
408 => 0.043126358300165
409 => 0.042821150418829
410 => 0.042689658471684
411 => 0.042741219852289
412 => 0.042565214278568
413 => 0.042459164554002
414 => 0.043040747771624
415 => 0.042730031319449
416 => 0.042993126019027
417 => 0.042693296403659
418 => 0.04165395632725
419 => 0.041056220858486
420 => 0.039093003801026
421 => 0.039649769723158
422 => 0.040018906105548
423 => 0.03989690653337
424 => 0.040159008821975
425 => 0.040175099773789
426 => 0.040089887647947
427 => 0.039991222922571
428 => 0.03994319839076
429 => 0.040301133905121
430 => 0.040508927518763
501 => 0.040055953879929
502 => 0.039949828494124
503 => 0.040407809852346
504 => 0.040687178216294
505 => 0.042749877252162
506 => 0.042597065845155
507 => 0.042980592489019
508 => 0.042937413274616
509 => 0.043339410297971
510 => 0.043996505534539
511 => 0.042660447191879
512 => 0.042892340722743
513 => 0.042835485784179
514 => 0.043456213095258
515 => 0.043458150938168
516 => 0.043085993907547
517 => 0.043287746271405
518 => 0.043175133636686
519 => 0.043378639888134
520 => 0.042595024955649
521 => 0.043549383357411
522 => 0.044090443073712
523 => 0.044097955688398
524 => 0.044354413699809
525 => 0.04461498989245
526 => 0.04511514320282
527 => 0.044601040888082
528 => 0.043676220870721
529 => 0.043742989888824
530 => 0.043200768251024
531 => 0.043209883094715
601 => 0.043161227344746
602 => 0.043307246913039
603 => 0.042627068039497
604 => 0.042786704661595
605 => 0.042563212455827
606 => 0.042891854894335
607 => 0.042538289957042
608 => 0.042835458367006
609 => 0.042963706401457
610 => 0.043436944409567
611 => 0.042468392318466
612 => 0.040493449039499
613 => 0.040908606060611
614 => 0.040294556216506
615 => 0.040351388867431
616 => 0.040466199867148
617 => 0.040094059853244
618 => 0.040165052440417
619 => 0.040162516085636
620 => 0.040140659150384
621 => 0.040043851160038
622 => 0.03990346042116
623 => 0.04046273391486
624 => 0.040557765379599
625 => 0.040769008553806
626 => 0.041397524952632
627 => 0.041334721342952
628 => 0.041437156636037
629 => 0.041213540966382
630 => 0.040361761757001
701 => 0.040408017466104
702 => 0.039831208032394
703 => 0.040754258239741
704 => 0.040535667766974
705 => 0.040394741067166
706 => 0.040356287911447
707 => 0.040986362280857
708 => 0.04117489040739
709 => 0.041057412330586
710 => 0.040816461367679
711 => 0.041279158447218
712 => 0.04140295666608
713 => 0.041430670521781
714 => 0.042250481033359
715 => 0.041476488822419
716 => 0.041662796440413
717 => 0.043116315292148
718 => 0.041798174265515
719 => 0.042496422965375
720 => 0.042462247325028
721 => 0.042819447732429
722 => 0.042432946465722
723 => 0.042437737612141
724 => 0.042754907375061
725 => 0.042309499644908
726 => 0.042199210427139
727 => 0.042046846662697
728 => 0.042379527368239
729 => 0.042578954405356
730 => 0.044186189861507
731 => 0.045224537265022
801 => 0.045179459865789
802 => 0.045591382913423
803 => 0.045405807807681
804 => 0.044806536839001
805 => 0.045829419309229
806 => 0.045505736496429
807 => 0.045532420514241
808 => 0.045531427333766
809 => 0.045746648107435
810 => 0.045594144464596
811 => 0.045293544130382
812 => 0.045493096660664
813 => 0.046085696334264
814 => 0.0479251439043
815 => 0.04895452313393
816 => 0.047863173982149
817 => 0.0486159720133
818 => 0.048164561443975
819 => 0.048082526715227
820 => 0.048555339510127
821 => 0.049028979901235
822 => 0.048998811055925
823 => 0.048654972453684
824 => 0.04846074675186
825 => 0.049931488836458
826 => 0.051015106550952
827 => 0.050941211087489
828 => 0.051267361631123
829 => 0.052224949714691
830 => 0.052312499568167
831 => 0.05230147029894
901 => 0.052084468852215
902 => 0.053027338679013
903 => 0.053813897276744
904 => 0.052034239287073
905 => 0.052711909752106
906 => 0.053016137857038
907 => 0.053462834975489
908 => 0.054216487889447
909 => 0.055035154850567
910 => 0.055150923335096
911 => 0.055068780055291
912 => 0.054528847187483
913 => 0.055424642345069
914 => 0.055949378139402
915 => 0.056261846296562
916 => 0.057054213553376
917 => 0.053018016666242
918 => 0.050160995897528
919 => 0.049714830848613
920 => 0.050622125020155
921 => 0.050861371257655
922 => 0.050764931399308
923 => 0.047549094775156
924 => 0.04969790013432
925 => 0.052009834024093
926 => 0.052098644820446
927 => 0.053256047265925
928 => 0.053632944945702
929 => 0.054564805618519
930 => 0.054506517479716
1001 => 0.054733410724405
1002 => 0.054681251896694
1003 => 0.056407327566671
1004 => 0.058311445355374
1005 => 0.058245511811075
1006 => 0.05797177235045
1007 => 0.058378322128992
1008 => 0.060343575744596
1009 => 0.060162646684219
1010 => 0.060338403854875
1011 => 0.062655548624513
1012 => 0.065668166435042
1013 => 0.064268503000168
1014 => 0.06730536991154
1015 => 0.069216916654851
1016 => 0.072522739089784
1017 => 0.072108833839412
1018 => 0.073395766254086
1019 => 0.071367857056613
1020 => 0.066711367631146
1021 => 0.065974460355241
1022 => 0.067449767383068
1023 => 0.071076665752626
1024 => 0.067335543446375
1025 => 0.068092367616482
1026 => 0.067874402204577
1027 => 0.067862787754069
1028 => 0.06830606409054
1029 => 0.067663068644751
1030 => 0.065043389525935
1031 => 0.066243973028222
1101 => 0.065780370081234
1102 => 0.066294772114807
1103 => 0.069070787734462
1104 => 0.067843445057066
1105 => 0.066550539247651
1106 => 0.068172130051424
1107 => 0.070236972383683
1108 => 0.070107758261409
1109 => 0.069857028856884
1110 => 0.071270377382429
1111 => 0.073604815074365
1112 => 0.074235804201966
1113 => 0.074701587475955
1114 => 0.074765811119966
1115 => 0.075427354568044
1116 => 0.071870068717313
1117 => 0.077515572720003
1118 => 0.078490395307367
1119 => 0.078307169063199
1120 => 0.079390643342249
1121 => 0.079071857724263
1122 => 0.078609987379732
1123 => 0.080327524573614
1124 => 0.078358506778933
1125 => 0.075563733911831
1126 => 0.074030466242599
1127 => 0.076049596794618
1128 => 0.077282609364791
1129 => 0.078097552239347
1130 => 0.078344153460786
1201 => 0.072146210691611
1202 => 0.068805863292691
1203 => 0.070946987678238
1204 => 0.073559307201117
1205 => 0.071855557150464
1206 => 0.071922340926824
1207 => 0.06949324109223
1208 => 0.073774228636681
1209 => 0.073150524760227
1210 => 0.076386301574583
1211 => 0.075614057469105
1212 => 0.07825270784908
1213 => 0.077557862773229
1214 => 0.080442125834823
1215 => 0.081592736458398
1216 => 0.083524790773624
1217 => 0.08494601779278
1218 => 0.085780589482169
1219 => 0.085730484928338
1220 => 0.089037473743663
1221 => 0.087087457976655
1222 => 0.084637778589864
1223 => 0.084593471618396
1224 => 0.08586219528504
1225 => 0.088521092032987
1226 => 0.089210505274356
1227 => 0.089595793224796
1228 => 0.089005711316726
1229 => 0.086889108960528
1230 => 0.085975170794539
1231 => 0.086753872591299
]
'min_raw' => 0.032109618638755
'max_raw' => 0.089595793224796
'avg_raw' => 0.060852705931776
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.0321096'
'max' => '$0.089595'
'avg' => '$0.060852'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.012711717219622
'max_diff' => 0.046291344794401
'year' => 2036
]
11 => [
'items' => [
101 => 0.08580158720847
102 => 0.087445498943321
103 => 0.08970294087587
104 => 0.089236788043692
105 => 0.090795067072126
106 => 0.092407721930821
107 => 0.094713890807617
108 => 0.095316808749198
109 => 0.096313409179715
110 => 0.097339238388904
111 => 0.097668707084023
112 => 0.098297765051138
113 => 0.09829444960514
114 => 0.10019015812952
115 => 0.10228118333713
116 => 0.10307049694565
117 => 0.10488548006545
118 => 0.10177738507739
119 => 0.10413491082906
120 => 0.10626145806975
121 => 0.10372610078214
122 => 0.10722050014063
123 => 0.10735617974924
124 => 0.10940478075301
125 => 0.10732813117123
126 => 0.10609502327846
127 => 0.10965495956093
128 => 0.11137750059107
129 => 0.11085865721429
130 => 0.10691023349851
131 => 0.10461208154007
201 => 0.098597374584423
202 => 0.10572205478939
203 => 0.10919227868746
204 => 0.10690124645696
205 => 0.10805670985264
206 => 0.11436054347919
207 => 0.11676063518118
208 => 0.11626143288508
209 => 0.11634578985555
210 => 0.1176408357732
211 => 0.12338378256686
212 => 0.11994247572763
213 => 0.12257322586292
214 => 0.1239685662488
215 => 0.12526463616237
216 => 0.12208189808174
217 => 0.11794120260256
218 => 0.11662967052973
219 => 0.10667344845295
220 => 0.10615518385617
221 => 0.10586426623297
222 => 0.10403007176984
223 => 0.10258889734996
224 => 0.1014428219439
225 => 0.098435177831305
226 => 0.099450169428986
227 => 0.094656612457624
228 => 0.097723360334673
301 => 0.090072727663899
302 => 0.096444401891897
303 => 0.092976589294075
304 => 0.095305132186992
305 => 0.0952970081202
306 => 0.091009422389144
307 => 0.088536432419103
308 => 0.090112317878223
309 => 0.091801792184343
310 => 0.092075903706437
311 => 0.094266351244113
312 => 0.094877658068366
313 => 0.093025369851693
314 => 0.089914185306952
315 => 0.090636842518131
316 => 0.088521787793784
317 => 0.08481523574377
318 => 0.08747734613628
319 => 0.088386307669014
320 => 0.088787756864266
321 => 0.085142788623456
322 => 0.083997460466083
323 => 0.083387697365332
324 => 0.089443665678615
325 => 0.089775425293392
326 => 0.08807809619811
327 => 0.095750184656134
328 => 0.094013754750995
329 => 0.095953772390691
330 => 0.090571268950751
331 => 0.090776887830659
401 => 0.088228724443747
402 => 0.089655525672079
403 => 0.088647108551844
404 => 0.089540254232754
405 => 0.090075602071314
406 => 0.092623347329688
407 => 0.096473493050248
408 => 0.092242799147904
409 => 0.090399425229999
410 => 0.091543044041139
411 => 0.094588651639527
412 => 0.09920290305287
413 => 0.096471173345707
414 => 0.097683468601968
415 => 0.097948301184198
416 => 0.095934024832267
417 => 0.0992771722951
418 => 0.10106879218011
419 => 0.10290662345864
420 => 0.10450236086292
421 => 0.10217255323122
422 => 0.10466578136195
423 => 0.10265667960259
424 => 0.10085430762733
425 => 0.10085704108163
426 => 0.099726386813095
427 => 0.097535601696203
428 => 0.097131587307974
429 => 0.099233321176933
430 => 0.1009187127049
501 => 0.10105752962363
502 => 0.10199064897205
503 => 0.10254285939056
504 => 0.10795527218557
505 => 0.11013218938555
506 => 0.11279408253075
507 => 0.11383103992688
508 => 0.11695190991944
509 => 0.11443155393578
510 => 0.11388625906493
511 => 0.10631604929178
512 => 0.10755567071804
513 => 0.10954042422716
514 => 0.10634877714611
515 => 0.10837314260315
516 => 0.10877279522629
517 => 0.1062403261996
518 => 0.10759302732828
519 => 0.10400065417843
520 => 0.096551796968092
521 => 0.099285465002544
522 => 0.10129836481861
523 => 0.098425708592325
524 => 0.10357483369079
525 => 0.10056682110779
526 => 0.09961342552904
527 => 0.095893889466287
528 => 0.097649367309834
529 => 0.10002367622925
530 => 0.09855662936009
531 => 0.1016009718918
601 => 0.10591257281319
602 => 0.10898527639005
603 => 0.10922116041677
604 => 0.107245617872
605 => 0.11041143740774
606 => 0.11043449694685
607 => 0.10686343957779
608 => 0.10467618682297
609 => 0.10417923839505
610 => 0.10542071300046
611 => 0.10692809236028
612 => 0.10930480948041
613 => 0.11074100985923
614 => 0.11448585874538
615 => 0.11549910748073
616 => 0.11661236064307
617 => 0.11810001018251
618 => 0.11988631488013
619 => 0.11597798189613
620 => 0.11613326725163
621 => 0.11249388169149
622 => 0.10860467627979
623 => 0.11155609839097
624 => 0.11541469019011
625 => 0.11452952496802
626 => 0.11442992579825
627 => 0.11459742397529
628 => 0.11393003830463
629 => 0.11091147765071
630 => 0.10939557538749
701 => 0.11135147605495
702 => 0.11239095021258
703 => 0.11400308397939
704 => 0.11380435446462
705 => 0.1179570379174
706 => 0.11957064513652
707 => 0.11915781535972
708 => 0.11923378597396
709 => 0.12215514476825
710 => 0.12540429657076
711 => 0.12844755599716
712 => 0.13154329019672
713 => 0.12781126179059
714 => 0.12591636792546
715 => 0.12787141470788
716 => 0.12683403936585
717 => 0.13279510578664
718 => 0.13320783709207
719 => 0.1391684724599
720 => 0.14482582520324
721 => 0.14127254330715
722 => 0.14462312809183
723 => 0.14824705871364
724 => 0.15523820884467
725 => 0.15288383543217
726 => 0.15108042229592
727 => 0.1493762055962
728 => 0.15292241001154
729 => 0.15748454533987
730 => 0.158467185594
731 => 0.16005943820317
801 => 0.15838537927602
802 => 0.16040159886223
803 => 0.16751973997333
804 => 0.16559635541154
805 => 0.1628648401343
806 => 0.16848392890798
807 => 0.17051745529152
808 => 0.18478980841723
809 => 0.20280924379994
810 => 0.19534907922951
811 => 0.19071831434263
812 => 0.19180665393426
813 => 0.19838674173964
814 => 0.20050005710118
815 => 0.19475533744502
816 => 0.19678446954571
817 => 0.20796518692037
818 => 0.21396328307152
819 => 0.20581706284647
820 => 0.18334196432936
821 => 0.16261889706974
822 => 0.16811558767887
823 => 0.16749243354597
824 => 0.17950471954214
825 => 0.16555048332585
826 => 0.1657854368761
827 => 0.17804612422544
828 => 0.17477518304203
829 => 0.1694766772354
830 => 0.16265758202581
831 => 0.15005185384092
901 => 0.13888660885082
902 => 0.16078422547875
903 => 0.15983996043152
904 => 0.1584725247109
905 => 0.16151560493515
906 => 0.17629193871075
907 => 0.17595129639089
908 => 0.17378430374923
909 => 0.17542794856894
910 => 0.1691885383516
911 => 0.17079657643334
912 => 0.16261561443001
913 => 0.16631375092267
914 => 0.16946530902162
915 => 0.1700980309696
916 => 0.17152358582598
917 => 0.15934237565937
918 => 0.16481138140264
919 => 0.16802390990027
920 => 0.15350958927519
921 => 0.16773700844861
922 => 0.15913032789112
923 => 0.1562090912419
924 => 0.16014215154641
925 => 0.15860943412071
926 => 0.15729169368229
927 => 0.156556371876
928 => 0.1594443772876
929 => 0.15930964838324
930 => 0.15458431099216
1001 => 0.14842030099488
1002 => 0.1504891450767
1003 => 0.14973751462626
1004 => 0.14701350891161
1005 => 0.14884915986558
1006 => 0.14076588206597
1007 => 0.12685902274398
1008 => 0.13604631999071
1009 => 0.13569261904057
1010 => 0.13551426698244
1011 => 0.14241826694512
1012 => 0.14175460665109
1013 => 0.14055005671884
1014 => 0.14699138640748
1015 => 0.14464021442302
1016 => 0.15188597247335
1017 => 0.15665849735154
1018 => 0.15544803066743
1019 => 0.15993661338298
1020 => 0.15053680706587
1021 => 0.15365904566964
1022 => 0.15430253471864
1023 => 0.14691190139898
1024 => 0.14186318968282
1025 => 0.14152649817087
1026 => 0.13277272781037
1027 => 0.13744892127898
1028 => 0.14156377801733
1029 => 0.13959308096545
1030 => 0.13896921715172
1031 => 0.1421564020765
1101 => 0.14240407364155
1102 => 0.13675713571139
1103 => 0.13793131292234
1104 => 0.14282782708271
1105 => 0.13780793332866
1106 => 0.12805509975952
1107 => 0.12563626219091
1108 => 0.12531354467123
1109 => 0.11875346534471
1110 => 0.12579790048336
1111 => 0.12272281576622
1112 => 0.13243697154251
1113 => 0.12688829786115
1114 => 0.12664910562874
1115 => 0.12628753148758
1116 => 0.12064100021778
1117 => 0.12187723171009
1118 => 0.12598665347388
1119 => 0.12745294145515
1120 => 0.12729999560576
1121 => 0.12596651506535
1122 => 0.12657697562822
1123 => 0.12461046945664
1124 => 0.12391605519817
1125 => 0.12172429278475
1126 => 0.11850300752684
1127 => 0.11895094699924
1128 => 0.11256873800818
1129 => 0.10909137182038
1130 => 0.10812888269055
1201 => 0.10684180200095
1202 => 0.10827426187923
1203 => 0.11255065801199
1204 => 0.10739241698783
1205 => 0.09854897456045
1206 => 0.099080480518829
1207 => 0.10027461660177
1208 => 0.09804935191121
1209 => 0.095943325633904
1210 => 0.097774344614709
1211 => 0.094027261477185
1212 => 0.10072743369704
1213 => 0.10054621281551
1214 => 0.1030436226832
1215 => 0.10460530432547
1216 => 0.10100613374046
1217 => 0.10010095207152
1218 => 0.10061658468836
1219 => 0.09209432611784
1220 => 0.10234717234107
1221 => 0.10243583938097
1222 => 0.10167661835405
1223 => 0.1071359424468
1224 => 0.1186568190884
1225 => 0.11432220186965
1226 => 0.11264370706804
1227 => 0.10945288722322
1228 => 0.11370446521431
1229 => 0.11337801035954
1230 => 0.11190165770196
1231 => 0.11100875500815
]
'min_raw' => 0.083387697365332
'max_raw' => 0.21396328307152
'avg_raw' => 0.14867549021842
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.083387'
'max' => '$0.213963'
'avg' => '$0.148675'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.051278078726577
'max_diff' => 0.12436748984672
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0026174445353103
]
1 => [
'year' => 2028
'avg' => 0.0044922946721703
]
2 => [
'year' => 2029
'avg' => 0.01227213938703
]
3 => [
'year' => 2030
'avg' => 0.0094679372608754
]
4 => [
'year' => 2031
'avg' => 0.009298687738727
]
5 => [
'year' => 2032
'avg' => 0.016303526010719
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0026174445353103
'min' => '$0.002617'
'max_raw' => 0.016303526010719
'max' => '$0.0163035'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.016303526010719
]
1 => [
'year' => 2033
'avg' => 0.041934345371379
]
2 => [
'year' => 2034
'avg' => 0.026580003366717
]
3 => [
'year' => 2035
'avg' => 0.031351174924764
]
4 => [
'year' => 2036
'avg' => 0.060852705931776
]
5 => [
'year' => 2037
'avg' => 0.14867549021842
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.016303526010719
'min' => '$0.0163035'
'max_raw' => 0.14867549021842
'max' => '$0.148675'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.14867549021842
]
]
]
]
'prediction_2025_max_price' => '$0.004475'
'last_price' => 0.00433942
'sma_50day_nextmonth' => '$0.002654'
'sma_200day_nextmonth' => '$0.0010067'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'augmenter'
'sma_200day_date_nextmonth' => '4 févr. 2026'
'sma_50day_date_nextmonth' => '4 févr. 2026'
'daily_sma3' => '$0.003775'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.00230013'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.001195'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.000621'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.000358'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.000377'
'daily_sma100_action' => 'BUY'
'daily_sma200' => '$0.000525'
'daily_sma200_action' => 'BUY'
'daily_ema3' => '$0.00388'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.002997'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.001868'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.001047'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.000576'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.000531'
'daily_ema100_action' => 'BUY'
'daily_ema200' => '$0.002163'
'daily_ema200_action' => 'BUY'
'weekly_sma21' => '$0.00056'
'weekly_sma21_action' => 'BUY'
'weekly_sma50' => '$0.0020036'
'weekly_sma50_action' => 'BUY'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.002286'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.001581'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.000982'
'weekly_ema10_action' => 'BUY'
'weekly_ema21' => '$0.001075'
'weekly_ema21_action' => 'BUY'
'weekly_ema50' => '$0.009843'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.02597'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.012985'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '71.68'
'rsi_14_action' => 'SELL'
'stoch_rsi_14' => 286.72
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.006253'
'vwma_10_action' => 'SELL'
'hma_9' => '0.004148'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 65.3
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => 255.05
'cci_20_action' => 'SELL'
'adx_14' => 20.68
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.001864'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -34.7
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 73.74
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.000066'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 7
'buy_signals' => 27
'sell_pct' => 20.59
'buy_pct' => 79.41
'overall_action' => 'bullish'
'overall_action_label' => 'Haussier'
'overall_action_dir' => 1
'last_updated' => 1767702350
'last_updated_date' => '6 janvier 2026'
]
Prévision du prix de BlockProtocol pour 2026
La prévision du prix de BlockProtocol pour 2026 suggère que le prix moyen pourrait varier entre $0.001499 à la baisse et $0.004475 à la hausse. Sur le marché des cryptomonnaies, comparé au prix moyen d'aujourd'hui, BlockProtocol pourrait potentiellement gagner 3.13% d'ici 2026 si BLOCK atteint l'objectif de prix prévu.
Prévision du prix de BlockProtocol de 2027 à 2032
La prévision du prix de BLOCK pour 2027-2032 se situe actuellement dans une fourchette de prix comprise entre $0.002617 à la baisse et $0.0163035 à la hausse. Compte tenu de la volatilité des prix sur le marché, si BlockProtocol atteint l'objectif de prix le plus élevé, il pourrait gagner 275.71% d'ici 2032 par rapport au prix actuel.
| Prévision du Prix de BlockProtocol | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2027 | $0.001443 | $0.002617 | $0.003791 |
| 2028 | $0.0026047 | $0.004492 | $0.006379 |
| 2029 | $0.005721 | $0.012272 | $0.018822 |
| 2030 | $0.004866 | $0.009467 | $0.014069 |
| 2031 | $0.005753 | $0.009298 | $0.012844 |
| 2032 | $0.008782 | $0.0163035 | $0.023824 |
Prévision du prix de BlockProtocol de 2032 à 2037
La prévision du prix de BlockProtocol pour 2032-2037 est actuellement estimée entre $0.0163035 à la baisse et $0.148675 à la hausse. Par rapport au prix actuel, BlockProtocol pourrait potentiellement gagner 3326.16% d'ici 2037 s'il atteint l'objectif de prix le plus élevé. Veuillez noter que ces informations sont à titre général seulement et ne doivent pas être considérées comme un conseil en investissement à long terme.
| Prévision du Prix de BlockProtocol | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2032 | $0.008782 | $0.0163035 | $0.023824 |
| 2033 | $0.0204076 | $0.041934 | $0.063461 |
| 2034 | $0.0164067 | $0.02658 | $0.036753 |
| 2035 | $0.019397 | $0.031351 | $0.0433044 |
| 2036 | $0.0321096 | $0.060852 | $0.089595 |
| 2037 | $0.083387 | $0.148675 | $0.213963 |
BlockProtocol Histogramme des prix potentiels
Prévision du prix de BlockProtocol basée sur l'analyse technique
Au 6 janvier 2026, le sentiment global de prévision du prix pour BlockProtocol est Haussier, avec 27 indicateurs techniques montrant des signaux haussiers et 7 indiquant des signaux baissiers. La prévision du prix de BLOCK a été mise à jour pour la dernière fois le 6 janvier 2026.
Moyennes Mobiles Simples sur 50 et 200 jours de BlockProtocol et Indice de Force Relative sur 14 jours - RSI (14)
Selon nos indicateurs techniques, le SMA sur 200 jours de BlockProtocol devrait augmenter au cours du prochain mois, atteignant $0.0010067 d'ici le 4 févr. 2026. Le SMA à court terme sur 50 jours pour BlockProtocol devrait atteindre $0.002654 d'ici le 4 févr. 2026.
Le Relative Strength Index (RSI), un oscillateur de momentum, est un outil couramment utilisé pour identifier si une cryptomonnaie est survendue (en dessous de 30) ou surachetée (au-dessus de 70). Actuellement, le RSI est à 71.68, ce qui suggère que le marché de BLOCK est dans un état SELL.
Moyennes Mobiles et Oscillateurs Populaires de BLOCK pour le Samedi 19 Octobre 2024
Les moyennes mobiles (MA) sont des indicateurs largement utilisés sur les marchés financiers, conçus pour lisser les mouvements de prix sur une période donnée. En tant qu'indicateurs retardés, ils sont basés sur des données historiques de prix. Le tableau ci-dessous met en évidence deux types : la moyenne mobile simple (SMA) et la moyenne mobile exponentielle (EMA).
Moyenne Mobile Simple Quotidienne (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 3 | $0.003775 | BUY |
| SMA 5 | $0.00230013 | BUY |
| SMA 10 | $0.001195 | BUY |
| SMA 21 | $0.000621 | BUY |
| SMA 50 | $0.000358 | BUY |
| SMA 100 | $0.000377 | BUY |
| SMA 200 | $0.000525 | BUY |
Moyenne Mobile Exponentielle Quotidienne (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 3 | $0.00388 | BUY |
| EMA 5 | $0.002997 | BUY |
| EMA 10 | $0.001868 | BUY |
| EMA 21 | $0.001047 | BUY |
| EMA 50 | $0.000576 | BUY |
| EMA 100 | $0.000531 | BUY |
| EMA 200 | $0.002163 | BUY |
Moyenne Mobile Simple Hebdomadaire (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 21 | $0.00056 | BUY |
| SMA 50 | $0.0020036 | BUY |
| SMA 100 | — | — |
| SMA 200 | — | — |
Moyenne Mobile Exponentielle Hebdomadaire (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 21 | $0.001075 | BUY |
| EMA 50 | $0.009843 | SELL |
| EMA 100 | $0.02597 | SELL |
| EMA 200 | $0.012985 | SELL |
Oscillateurs de BlockProtocol
Un oscillateur est un outil d'analyse technique qui établit des limites hautes et basses entre deux extrêmes, créant un indicateur de tendance qui fluctue à l'intérieur de ces limites. Les traders utilisent cet indicateur pour identifier les conditions de surachat ou de survente à court terme.
| Période | Valeur | Action |
|---|---|---|
| RSI (14) | 71.68 | SELL |
| Stoch RSI (14) | 286.72 | SELL |
| Stochastique Rapide (14) | 65.3 | NEUTRAL |
| Indice de Canal des Matières Premières (20) | 255.05 | SELL |
| Indice Directionnel Moyen (14) | 20.68 | NEUTRAL |
| Oscillateur Impressionnant (5, 34) | 0.001864 | BUY |
| Momentum (10) | 0 | SELL |
| MACD (12, 26) | 0 | BUY |
| Plage de Pourcentage de Williams (14) | -34.7 | NEUTRAL |
| Oscillateur Ultime (7, 14, 28) | 73.74 | SELL |
| VWMA (10) | 0.006253 | SELL |
| Moyenne Mobile de Hull (9) | 0.004148 | BUY |
| Nuage Ichimoku B/L (9, 26, 52, 26) | -0.000066 | NEUTRAL |
Prévision du cours de BlockProtocol basée sur les flux monétaires mondiaux
Définitions des flux monétaires mondiaux utilisés pour la prédiction du cours de BlockProtocol
M0 : le total de toutes les devises physiques, plus les comptes à la banque centrale qui peuvent être échangés contre des devises physiques.
M1 : M0 plus le montant des comptes à vue, y compris les comptes de "chèques" et les comptes "courants".
M2 : M1 plus la plupart des comptes d'épargne, comptes du marché monétaire et comptes de certificats de dépôt (CD) de moins de 100 000 $.
Prédictions du cours de BlockProtocol par des sociétés Internet ou des niches technologiques
| Comparaison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Action Facebook | $0.006097 | $0.008568 | $0.012039 | $0.016917 | $0.023772 | $0.033404 |
| Action Amazon.com | $0.009054 | $0.018892 | $0.03942 | $0.082253 | $0.171626 | $0.3581098 |
| Action Apple | $0.006155 | $0.00873 | $0.012383 | $0.017565 | $0.024915 | $0.03534 |
| Action Netflix | $0.006846 | $0.0108033 | $0.017046 | $0.026895 | $0.042437 | $0.066959 |
| Action Google | $0.005619 | $0.007277 | $0.009424 | $0.012204 | $0.0158042 | $0.020466 |
| Action Tesla | $0.009837 | $0.022300046 | $0.050552 | $0.114598 | $0.259786 | $0.588916 |
| Action Kodak | $0.003254 | $0.00244 | $0.001829 | $0.001372 | $0.001029 | $0.000771 |
| Action Nokia | $0.002874 | $0.0019043 | $0.001261 | $0.000835 | $0.000553 | $0.000366 |
Ce calcul montre la valeur potentielle des cryptomonnaies si l'on suppose que leur capitalisation se comportera comme celle de certaines sociétés Internet ou niches technologiques. En extrapolant les données, vous pourrez obtenir une potentielle image des cours futurs pour 2024, 2025, 2026, 2027, 2028, 2029 et 2030.
Aperçu des prévisions relatives à BlockProtocol
Vous vous posez peut-être des questions telles que : "Devrais-je investir dans BlockProtocol maintenant ?", "Devrais-je acheter BLOCK aujourd'hui ?", " BlockProtocol sera-t-il un bon ou un mauvais investissement à court ou à long terme ?".
Nous mettons régulièrement à jour les prévisions de BlockProtocol avec de nouvelles valeurs. Regardez nos prévisions similaires. Nous faisons une prévision des cours futurs pour une grande quantité de devises numériques comme BlockProtocol en utilisant des méthodes d'analyse technique.
Si vous souhaitez trouver des cryptomonnaies ayant un bon rendement, vous devriez consulter un maximum d'informations disponibles à propos de BlockProtocol afin de prendre une décision responsable concernant cet investissement.
Le cours de BlockProtocol est de $0.004339 USD actuellement, mais ce cours peut subir une hausse ou une baisse, ce qui pourrait causer la perte de votre investissement, car les cryptomonnaies sont des actifs à haut risque.
Prévision à court terme de BlockProtocol
basée sur l'historique des cours sur 4 heures
Prévision à long terme de BlockProtocol
basée sur l'historique des cours sur 1 mois
Prévision du cours de BlockProtocol basée sur le modèle de croissance du Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si BlockProtocol présente 1 % de la précédente croissance annuelle moyenne du Bitcoin | $0.004452 | $0.004567 | $0.004686 | $0.0048085 |
| Si BlockProtocol présente 2 % de la précédente croissance annuelle moyenne du Bitcoin | $0.004565 | $0.0048023 | $0.005051 | $0.005314 |
| Si BlockProtocol présente 5 % de la précédente croissance annuelle moyenne du Bitcoin | $0.0049033 | $0.00554 | $0.00626 | $0.007074 |
| Si BlockProtocol présente 10 % de la précédente croissance annuelle moyenne du Bitcoin | $0.005467 | $0.006888 | $0.008679 | $0.010935 |
| Si BlockProtocol présente 20 % de la précédente croissance annuelle moyenne du Bitcoin | $0.006595 | $0.010024 | $0.015235 | $0.023155 |
| Si BlockProtocol présente 50 % de la précédente croissance annuelle moyenne du Bitcoin | $0.009979 | $0.022948 | $0.052774 | $0.121363 |
| Si BlockProtocol présente 100 % de la précédente croissance annuelle moyenne du Bitcoin | $0.015618 | $0.056217 | $0.202345 | $0.7283064 |
Boîte à questions
Est-ce que BLOCK est un bon investissement ?
La décision d'acquérir BlockProtocol dépend entièrement de votre tolérance individuelle au risque. Comme vous pouvez le discerner, la valeur de BlockProtocol a connu une baisse de -16.3103% au cours des 24 heures précédentes, et BlockProtocol a enregistré une déclin de sur une période de 30 jours précédents. Par conséquent, la détermination de si investir ou non dans BlockProtocol dépendra de la mesure dans laquelle cet investissement s'aligne avec vos aspirations de trading.
Est-ce que BlockProtocol peut monter ?
Il semble que la valeur moyenne de BlockProtocol pourrait potentiellement s'envoler jusqu'à $0.004475 pour la fin de cette année. En regardant les perspectives de BlockProtocol sur une période de cinq ans plus longue, la monnaie numérique pourrait potentiellement croître jusqu'à $0.014069. Cependant, compte tenu de l'imprévisibilité du marché, il est essentiel de mener des recherches approfondies avant d'investir des fonds dans un projet, un réseau ou un actif particulier.
Quel sera le prix de BlockProtocol la semaine prochaine ?
Basé sur notre nouveau pronostic expérimental de BlockProtocol, le prix de BlockProtocol va augmenter de 0.86% durant la prochaine semaine et atteindre $0.004376 d'ici 13 janvier 2026.
Quel sera le prix de BlockProtocol le mois prochain ?
Basé sur notre nouveau pronostic expérimental de BlockProtocol, le prix de BlockProtocol va diminuer de -11.62% durant le prochain mois et atteindre $0.003835 d'ici 5 février 2026.
Jusqu'où le prix de BlockProtocol peut-il monter cette année en 2026 ?
Selon notre prédiction la plus récente sur la valeur de BlockProtocol en 2026, BLOCK devrait fluctuer dans la fourchette de $0.001499 et $0.004475. Cependant, il est crucial de garder à l'esprit que le marché des cryptomonnaies est exceptionnellement instable, et cette prévision de prix de BlockProtocol ne prend pas en compte les fluctuations de prix soudaines et extrêmes.
Où sera BlockProtocol dans 5 ans ?
L'avenir de BlockProtocol semble suivre une tendance haussière, avec un prix maximum de $0.014069 prévue après une période de cinq ans. Selon la prévision de BlockProtocol pour 2030, la valeur de BlockProtocol pourrait potentiellement atteindre son point le plus élevé d'environ $0.014069, tandis que son point le plus bas devrait être autour de $0.004866.
Combien vaudra BlockProtocol en 2026 ?
Basé sur notre nouvelle simulation expérimentale de prédiction de prix de BlockProtocol, il est attendu que la valeur de BLOCK en 2026 augmente de 3.13% jusqu'à $0.004475 si le meilleur scénario se produit. Le prix sera entre $0.004475 et $0.001499 durant 2026.
Combien vaudra BlockProtocol en 2027 ?
Selon notre dernière simulation expérimentale pour la prédiction de prix de BlockProtocol, le valeur de BLOCK pourrait diminuer de -12.62% jusqu'à $0.003791 en 2027, en supposant les conditions les plus favorables. Il est prévu que le prix fluctue entre $0.003791 et $0.001443 tout au long de l'année.
Combien vaudra BlockProtocol en 2028 ?
Notre nouveau modèle expérimental de prédiction de prix de BlockProtocol suggère que la valeur de BLOCK en 2028 pourrait augmenter de 47.02%, atteignant $0.006379 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.006379 et $0.0026047 durant l'année.
Combien vaudra BlockProtocol en 2029 ?
Basé sur notre modèle de prévision expérimental, la valeur de BlockProtocol pourrait connaître un 333.75% croissance en 2029, atteignant potentiellement $0.018822 sous des conditions optimales. Le range de prix prévu pour 2029 se situe entre $0.018822 et $0.005721.
Combien vaudra BlockProtocol en 2030 ?
En utilisant notre nouvelle simulation expérimentale pour les prédictions de prix de BlockProtocol, il est prévu que la valeur de BLOCK en 2030 augmente de 224.23%, atteignant $0.014069 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.014069 et $0.004866 au cours de 2030.
Combien vaudra BlockProtocol en 2031 ?
Notre simulation expérimentale indique que le prix de BlockProtocol pourrait augmenter de 195.98% en 2031, atteignant potentiellement $0.012844 dans des conditions idéales. Il est probable que le prix fluctue entre $0.012844 et $0.005753 durant l'année.
Combien vaudra BlockProtocol en 2032 ?
Basé sur les résultats de notre dernière prédiction expérimentale de prix de BlockProtocol, BLOCK pourrait connaître une 449.04% hausse en valeur, atteignant $0.023824 si le scénario le plus positif se réalise en 2032. Il est prévu que le prix reste dans une fourchette de $0.023824 et $0.008782 tout au long de l'année.
Combien vaudra BlockProtocol en 2033 ?
Selon notre prédiction expérimentale de prix de BlockProtocol, la valeur de BLOCK est anticipée à augmenter de 1362.43% en 2033, avec le prix potentiel le plus élevé étant $0.063461. Tout au long de l'année, le prix de BLOCK pourrait osciller entre $0.063461 et $0.0204076.
Combien vaudra BlockProtocol en 2034 ?
Les résultats de notre nouvelle simulation de prédiction de prix de BlockProtocol suggèrent que BLOCK pourrait augmenter de 746.96% en 2034, atteignant potentiellement $0.036753 dans les meilleures circonstances. La fourchette de prix prévue pour l'année est entre $0.036753 et $0.0164067.
Combien vaudra BlockProtocol en 2035 ?
Basé sur notre prédiction expérimentale pour le prix de BlockProtocol, BLOCK pourrait augmenter de 897.93%, avec la valeur potentiellement atteignant $0.0433044 en 2035. La fourchette de prix attendue pour l'année se situe entre $0.0433044 et $0.019397.
Combien vaudra BlockProtocol en 2036 ?
Notre récente simulation de prédiction de prix de BlockProtocol suggère que la valeur de BLOCK pourrait augmenter de 1964.7% en 2036, pouvant atteindre $0.089595 si les conditions sont optimales. La fourchette de prix attendue pour 2036 est entre $0.089595 et $0.0321096.
Combien vaudra BlockProtocol en 2037 ?
Selon la simulation expérimentale, la valeur de BlockProtocol pourrait augmenter de 4830.69% en 2037, avec un maximum de $0.213963 sous des conditions favorables. Il est prévu que le prix chute entre $0.213963 et $0.083387 au cours de l'année.
Prévisions liées
Comment lire et prédire les mouvements de prix de BlockProtocol ?
Les traders de BlockProtocol utilisent des indicateurs et des modèles graphiques pour prédire la direction du marché. Ils identifient également des niveaux clés de support et de résistance pour évaluer quand une tendance baissière pourrait ralentir ou une tendance haussière pourrait s'arrêter.
Indicateurs de prédiction du prix de BlockProtocol
Les moyennes mobiles sont des outils populaires pour la prédiction du prix de BlockProtocol. Une moyenne mobile simple (SMA) calcule le prix de clôture moyen de BLOCK sur une période spécifique, comme une SMA de 12 jours. Une moyenne mobile exponentielle (EMA) donne plus de poids aux prix récents, réagissant plus rapidement aux changements de prix.
Les moyennes mobiles couramment utilisées sur le marché des cryptomonnaies incluent les moyennes sur 50 jours, 100 jours et 200 jours, qui aident à identifier les niveaux clés de résistance et de support. Un mouvement de prix de BLOCK au-dessus de ces moyennes est considéré comme haussier, tandis qu'une chute en dessous indique une faiblesse.
Les traders utilisent également le RSI et les niveaux de retracement de Fibonacci pour évaluer la direction future de BLOCK.
Comment lire les graphiques de BlockProtocol et prédire les mouvements de prix ?
La plupart des traders préfèrent les graphiques en chandeliers aux simples graphiques linéaires parce qu'ils fournissent des informations plus détaillées. Les chandeliers peuvent représenter l'action des prix de BlockProtocol dans différentes périodes, comme 5 minutes pour les tendances à court terme et hebdomadaire pour les tendances à long terme. Les options populaires incluent les graphiques de 1 heure, 4 heures et 1 jour.
Par exemple, un graphique en chandeliers de 1 heure montre les prix d'ouverture, de clôture, les plus hauts et les plus bas de BLOCK au sein de chaque heure. La couleur du chandelier est cruciale : le vert indique que le prix a clôturé plus haut qu'il n'a ouvert, tandis que le rouge signifie le contraire. Certains graphiques utilisent des chandeliers creux et pleins pour transmettre la même information.
Qu'est-ce qui affecte le prix de BlockProtocol ?
L'action du prix de BlockProtocol est déterminée par l'offre et la demande, influencée par des facteurs tels que les réductions de récompenses de bloc, les hard forks et les mises à jour de protocole. Les événements du monde réel, tels que les réglementations, l'adoption par les entreprises et les gouvernements et les piratages d'échanges de cryptomonnaies, impactent également le prix de BLOCK. La capitalisation boursière de BlockProtocol peut changer rapidement.
Les traders surveillent souvent l'activité des « baleines » de BLOCK, de grands détenteurs de BlockProtocol, car leurs actions peuvent influencer significativement les mouvements de prix sur le marché relativement petit de BlockProtocol.
Modèles de prédiction de prix haussiers et baissiers
Les traders identifient souvent des modèles de chandeliers pour obtenir un avantage dans les prédictions de prix des cryptomonnaies. Certaines formations indiquent des tendances haussières, tandis que d'autres suggèrent des mouvements baissiers.
Modèles de chandeliers haussiers couramment suivis :
- Marteau
- Englobante haussière
- Ligne pénétrante
- Étoile du matin
- Trois soldats blancs
Modèles de chandeliers baissiers courants :
- Harami baissier
- Nuage sombre
- Étoile du soir
- Étoile filante
- Pendu


