Prédiction du prix de BlockProtocol jusqu'à $0.004465 d'ici 2026
| Année | Prix min. | Prix max. |
|---|---|---|
| 2026 | $0.001495 | $0.004465 |
| 2027 | $0.00144 | $0.003783 |
| 2028 | $0.002598 | $0.006365 |
| 2029 | $0.0057089 | $0.018779 |
| 2030 | $0.004855 | $0.014037 |
| 2031 | $0.00574 | $0.012814 |
| 2032 | $0.008762 | $0.023771 |
| 2033 | $0.020361 | $0.063317 |
| 2034 | $0.016369 | $0.03667 |
| 2035 | $0.019354 | $0.0432065 |
Calculateur de profit d’investissement
Si vous ouvrez une position short de $10,000.00 sur BlockProtocol aujourd’hui et la fermez le Apr 06, 2026, notre prévision indique que vous pourriez gagner environ $3,955.58, soit un rendement de 39.56% sur les 90 prochains jours.
Prévision du prix à long terme de BlockProtocol pour 2027, 2028, 2029, 2030, 2031, 2032 et 2037
[
'name' => 'BlockProtocol'
'name_with_ticker' => 'BlockProtocol <small>BLOCK</small>'
'name_lang' => 'BlockProtocol'
'name_lang_with_ticker' => 'BlockProtocol <small>BLOCK</small>'
'name_with_lang' => 'BlockProtocol'
'name_with_lang_with_ticker' => 'BlockProtocol <small>BLOCK</small>'
'image' => '/uploads/coins/blockgames.png?1717253092'
'price_for_sd' => 0.004329
'ticker' => 'BLOCK'
'marketcap' => '$2.94M'
'low24h' => '$0.002358'
'high24h' => '$0.005798'
'volume24h' => '$18.13K'
'current_supply' => '679.32M'
'max_supply' => '1B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.004329'
'change_24h_pct' => '-20.462%'
'ath_price' => '$0.2505'
'ath_days' => 634
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '12 avr. 2024'
'ath_pct' => '-98.27%'
'fdv' => '$4.33M'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.213479'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.004366'
'next_week_prediction_price_date' => '13 janvier 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.003826'
'next_month_prediction_price_date' => '5 février 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.001495'
'current_year_max_price_prediction' => '$0.004465'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.004855'
'grand_prediction_max_price' => '$0.014037'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0044116538321251
107 => 0.004428125346104
108 => 0.0044652365081546
109 => 0.0041481256916595
110 => 0.0042904991383813
111 => 0.0043741301997425
112 => 0.0039962820219886
113 => 0.0043666613561429
114 => 0.0041426054978522
115 => 0.0040665575743422
116 => 0.0041689460847963
117 => 0.0041290451826962
118 => 0.0040947407301302
119 => 0.0040755982561731
120 => 0.004150781078043
121 => 0.0041472737095399
122 => 0.0040242600206038
123 => 0.0038637936780661
124 => 0.0039176514497499
125 => 0.0038980844163778
126 => 0.0038271709632401
127 => 0.003874958068532
128 => 0.0036645278413271
129 => 0.0033024935726327
130 => 0.0035416644999418
131 => 0.0035324566794083
201 => 0.0035278136787539
202 => 0.0037075440204278
203 => 0.0036902670951603
204 => 0.0036589093066237
205 => 0.0038265950528625
206 => 0.0037653874997938
207 => 0.0039540147560384
208 => 0.0040782568666471
209 => 0.0040467450485855
210 => 0.0041635953541273
211 => 0.003918892224032
212 => 0.0040001727880641
213 => 0.0040169245996612
214 => 0.0038245258367831
215 => 0.0036930938138014
216 => 0.0036843287963033
217 => 0.0034564437809014
218 => 0.0035781781167055
219 => 0.003685299294504
220 => 0.0036339965632778
221 => 0.003617755651197
222 => 0.0037007269487935
223 => 0.0037071745292178
224 => 0.0035601690122587
225 => 0.0035907361142938
226 => 0.003718206011138
227 => 0.0035875241999473
228 => 0.0033336307875566
301 => 0.0032706617109327
302 => 0.0032622604753607
303 => 0.0030914833454161
304 => 0.0032748696057311
305 => 0.0031948165886574
306 => 0.0034477031104108
307 => 0.0033032556854429
308 => 0.0032970288456559
309 => 0.0032876160640391
310 => 0.0031406211335814
311 => 0.0031728036813365
312 => 0.0032797833716147
313 => 0.0033179549303185
314 => 0.0033139733240153
315 => 0.0032792591127698
316 => 0.0032951511009125
317 => 0.0032439574699692
318 => 0.0032258799333798
319 => 0.0031688222552857
320 => 0.0030849632310731
321 => 0.0030966243427271
322 => 0.0029304776728547
323 => 0.0028399521490371
324 => 0.0028148958771516
325 => 0.0027813895832126
326 => 0.0028186805022088
327 => 0.0029300070002142
328 => 0.0027957236243856
329 => 0.0025655041954112
330 => 0.0025793407753673
331 => 0.0026104274624114
401 => 0.0025524976267638
402 => 0.0024976718990059
403 => 0.0025453384211395
404 => 0.0024477914141539
405 => 0.0026222155521693
406 => 0.002617497868054
407 => 0.0026825124003898
408 => 0.0027231673216919
409 => 0.0026294708902776
410 => 0.002605906491159
411 => 0.0026193298438392
412 => 0.0023974717249235
413 => 0.0026643818588739
414 => 0.0026666901087959
415 => 0.0026469254715839
416 => 0.0027890468779866
417 => 0.0030889673742746
418 => 0.002976125219297
419 => 0.0029324293262175
420 => 0.0028493634015319
421 => 0.0029600438142089
422 => 0.0029515452853987
423 => 0.0029131117151477
424 => 0.0028898669719398
425 => 0.0029326961240231
426 => 0.0028845599660275
427 => 0.0028759133893583
428 => 0.0028235245423114
429 => 0.0028048241074563
430 => 0.0027909790499753
501 => 0.002775737002076
502 => 0.0028093571616602
503 => 0.0027331694569422
504 => 0.0026412945538252
505 => 0.0026336561497312
506 => 0.00265474645501
507 => 0.0026454155649127
508 => 0.0026336114770193
509 => 0.0026110742585787
510 => 0.0026043879472989
511 => 0.0026261152152213
512 => 0.0026015863965153
513 => 0.0026377800046699
514 => 0.0026279373459355
515 => 0.0025729570543513
516 => 0.0025044312547264
517 => 0.002503821231372
518 => 0.0024890574602477
519 => 0.002470253577973
520 => 0.0024650227680987
521 => 0.0025413240795981
522 => 0.0026992655108959
523 => 0.002668257828714
524 => 0.0026906640568855
525 => 0.0028008805232303
526 => 0.0028359150235565
527 => 0.0028110483650625
528 => 0.0027770093492074
529 => 0.0027785068931541
530 => 0.002894828514642
531 => 0.0029020833514912
601 => 0.0029204139837101
602 => 0.0029439740263474
603 => 0.0028150607422002
604 => 0.0027724350890637
605 => 0.0027522366898264
606 => 0.0026900334379399
607 => 0.0027571143121958
608 => 0.0027180291594563
609 => 0.0027233030818998
610 => 0.0027198684329898
611 => 0.0027217439835446
612 => 0.002622166797068
613 => 0.0026584474901972
614 => 0.0025981238011137
615 => 0.0025173571530827
616 => 0.0025170863949581
617 => 0.0025368539176416
618 => 0.0025250954216462
619 => 0.0024934536112611
620 => 0.0024979481810812
621 => 0.0024585710200488
622 => 0.002502729281377
623 => 0.0025039955823061
624 => 0.0024869922463779
625 => 0.0025550241406199
626 => 0.0025828968631996
627 => 0.002571704903245
628 => 0.0025821116054537
629 => 0.0026695463379
630 => 0.0026838020143336
701 => 0.0026901334441282
702 => 0.0026816501669571
703 => 0.0025837097518566
704 => 0.0025880538257411
705 => 0.0025561798939149
706 => 0.0025292497803139
707 => 0.0025303268436281
708 => 0.0025441724226888
709 => 0.0026046368784789
710 => 0.002731880761115
711 => 0.002736709573447
712 => 0.0027425622348597
713 => 0.0027187565195821
714 => 0.0027115764880644
715 => 0.0027210488029597
716 => 0.0027688349151123
717 => 0.0028917537693716
718 => 0.0028483060368021
719 => 0.0028129823539189
720 => 0.002843970747004
721 => 0.0028392003267836
722 => 0.0027989331793422
723 => 0.0027978030146274
724 => 0.0027205174845015
725 => 0.0026919467837203
726 => 0.0026680709676677
727 => 0.0026419991998322
728 => 0.0026265429819257
729 => 0.0026502907573555
730 => 0.0026557221545717
731 => 0.0026037972285545
801 => 0.0025967200530075
802 => 0.0026391230684705
803 => 0.002620463082309
804 => 0.0026396553408215
805 => 0.0026441081094246
806 => 0.0026433911111235
807 => 0.0026239079424851
808 => 0.0026363259331788
809 => 0.0026069536832071
810 => 0.0025750157729322
811 => 0.0025546413759789
812 => 0.0025368620123656
813 => 0.0025467270366409
814 => 0.0025115600263816
815 => 0.0025003093920275
816 => 0.0026321189973454
817 => 0.0027294881699858
818 => 0.0027280723836532
819 => 0.0027194541484641
820 => 0.0027066491991182
821 => 0.0027678981533105
822 => 0.0027465602423814
823 => 0.0027620853554244
824 => 0.0027660371482808
825 => 0.0027779980350533
826 => 0.0027822730240015
827 => 0.0027693510382293
828 => 0.0027259832756903
829 => 0.0026179149347261
830 => 0.0025676088302823
831 => 0.0025510069779015
901 => 0.0025516104237041
902 => 0.0025349646945667
903 => 0.0025398676078069
904 => 0.0025332596614282
905 => 0.002520745809621
906 => 0.0025459543415549
907 => 0.0025488593900266
908 => 0.0025429754174537
909 => 0.0025443613059975
910 => 0.0024956445261715
911 => 0.0024993483571343
912 => 0.0024787249556729
913 => 0.0024748583165177
914 => 0.0024227241535081
915 => 0.0023303609267688
916 => 0.0023815391202977
917 => 0.0023197230592578
918 => 0.0022963123802758
919 => 0.002407134893469
920 => 0.0023960113868824
921 => 0.0023769727788783
922 => 0.0023488107096467
923 => 0.0023383651242257
924 => 0.0022749010538781
925 => 0.0022711512580343
926 => 0.0023026057649726
927 => 0.0022880905923041
928 => 0.0022677057925517
929 => 0.0021938741142226
930 => 0.0021108628629521
1001 => 0.0021133684508378
1002 => 0.0021397727853877
1003 => 0.0022165469492013
1004 => 0.0021865499551928
1005 => 0.0021647867918638
1006 => 0.0021607112055706
1007 => 0.0022117257008482
1008 => 0.0022839218995333
1009 => 0.0023177947406574
1010 => 0.0022842277838369
1011 => 0.0022456678712148
1012 => 0.0022480148344267
1013 => 0.0022636281292172
1014 => 0.0022652688657396
1015 => 0.0022401703266457
1016 => 0.0022472354183851
1017 => 0.0022365028979874
1018 => 0.0021706374401174
1019 => 0.0021694461428462
1020 => 0.0021532816972609
1021 => 0.0021527922442728
1022 => 0.0021252924899223
1023 => 0.0021214450841918
1024 => 0.0020668426528132
1025 => 0.002102782138498
1026 => 0.0020786758184083
1027 => 0.0020423419079271
1028 => 0.0020360779280651
1029 => 0.0020358896252665
1030 => 0.0020731964272169
1031 => 0.0021023461867961
1101 => 0.0020790951581671
1102 => 0.0020738013496505
1103 => 0.0021303253748751
1104 => 0.0021231321774374
1105 => 0.0021169029148474
1106 => 0.0022774575217959
1107 => 0.0021503660221639
1108 => 0.0020949468741952
1109 => 0.0020263551547732
1110 => 0.0020486889644865
1111 => 0.002053395026345
1112 => 0.0018884443057217
1113 => 0.0018215238189081
1114 => 0.001798559229679
1115 => 0.0017853427839061
1116 => 0.0017913656842065
1117 => 0.0017311293970841
1118 => 0.0017716091782466
1119 => 0.0017194496452452
1120 => 0.0017107049297957
1121 => 0.0018039726361284
1122 => 0.0018169502926026
1123 => 0.001761583578242
1124 => 0.0017971379719183
1125 => 0.0017842454545283
1126 => 0.0017203437707315
1127 => 0.0017179031964395
1128 => 0.0016858395777631
1129 => 0.0016356662232745
1130 => 0.0016127356539424
1201 => 0.0016007932143419
1202 => 0.0016057208976746
1203 => 0.001603229310192
1204 => 0.0015869700164933
1205 => 0.0016041612738743
1206 => 0.0015602447151838
1207 => 0.0015427567876535
1208 => 0.0015348578965049
1209 => 0.0014958794229243
1210 => 0.0015579115081969
1211 => 0.0015701326104553
1212 => 0.0015823777920603
1213 => 0.0016889637377919
1214 => 0.0016836390051519
1215 => 0.0017317719949675
1216 => 0.0017299016354942
1217 => 0.001716173327096
1218 => 0.0016582558521614
1219 => 0.0016813407253906
1220 => 0.0016102890737769
1221 => 0.0016635258022086
1222 => 0.0016392307825713
1223 => 0.0016553116316306
1224 => 0.0016263968150702
1225 => 0.0016423994684183
1226 => 0.0015730306871737
1227 => 0.0015082550952926
1228 => 0.001534322684383
1229 => 0.0015626611349146
1230 => 0.0016241061161701
1231 => 0.0015875099922444
]
'min_raw' => 0.0014958794229243
'max_raw' => 0.0044652365081546
'avg_raw' => 0.0029805579655394
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.001495'
'max' => '$0.004465'
'avg' => '$0.00298'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0028337305770757
'max_diff' => 0.00013562650815458
'year' => 2026
]
1 => [
'items' => [
101 => 0.0016006713422607
102 => 0.0015565830228894
103 => 0.0014656162268206
104 => 0.0014661310890074
105 => 0.0014521378292516
106 => 0.0014400456097732
107 => 0.0015917134973069
108 => 0.0015728511979776
109 => 0.001542796592633
110 => 0.0015830258762092
111 => 0.0015936631373114
112 => 0.0015939659651807
113 => 0.0016233162120098
114 => 0.0016389804440038
115 => 0.0016417413327854
116 => 0.0016879245803251
117 => 0.0017034045957286
118 => 0.0017671645883619
119 => 0.001637651443359
120 => 0.0016349842053662
121 => 0.0015835919847291
122 => 0.0015509982259222
123 => 0.0015858237072798
124 => 0.0016166743296103
125 => 0.0015845505995607
126 => 0.0015887452805362
127 => 0.0015456217975498
128 => 0.001561036413569
129 => 0.0015743135574577
130 => 0.0015669826989968
131 => 0.0015560080490632
201 => 0.0016141449303951
202 => 0.0016108646197101
203 => 0.0016650030201674
204 => 0.0017072077747981
205 => 0.0017828462400986
206 => 0.0017039135584352
207 => 0.0017010369377864
208 => 0.0017291563660529
209 => 0.0017034002907906
210 => 0.0017196772412869
211 => 0.001780223771733
212 => 0.0017815030245133
213 => 0.0017600738922183
214 => 0.0017587699275707
215 => 0.001762885626837
216 => 0.0017869914059911
217 => 0.0017785681060588
218 => 0.0017883157619923
219 => 0.0018005053549984
220 => 0.0018509266799522
221 => 0.001863083090698
222 => 0.0018335493149621
223 => 0.0018362158842354
224 => 0.0018251694413899
225 => 0.0018144987160127
226 => 0.0018384849483264
227 => 0.0018823202593302
228 => 0.0018820475621356
301 => 0.0018922165022518
302 => 0.0018985516677001
303 => 0.0018713564999712
304 => 0.0018536534457738
305 => 0.0018604419232277
306 => 0.0018712968465103
307 => 0.0018569218179061
308 => 0.0017681924822002
309 => 0.0017951072946015
310 => 0.0017906273537508
311 => 0.0017842473732001
312 => 0.0018113104251956
313 => 0.0018087001278099
314 => 0.0017305115868955
315 => 0.0017355169636028
316 => 0.0017308159804314
317 => 0.0017460058187887
318 => 0.0017025799896706
319 => 0.0017159374822299
320 => 0.0017243151763444
321 => 0.0017292497025383
322 => 0.001747076594787
323 => 0.0017449848147388
324 => 0.0017469465668022
325 => 0.001773379141882
326 => 0.001907066036071
327 => 0.0019143423187582
328 => 0.0018785112416311
329 => 0.0018928250502066
330 => 0.0018653456678274
331 => 0.0018837927613144
401 => 0.0018964137941729
402 => 0.0018393817735705
403 => 0.0018360047074452
404 => 0.0018084119078799
405 => 0.0018232387154303
406 => 0.0017996481985325
407 => 0.001805436486218
408 => 0.0017892519292356
409 => 0.0018183809094907
410 => 0.0018509516356019
411 => 0.0018591802872746
412 => 0.0018375342473811
413 => 0.0018218610879548
414 => 0.0017943441830617
415 => 0.0018401054091531
416 => 0.0018534873862103
417 => 0.0018400351193245
418 => 0.0018369179351492
419 => 0.0018310108767697
420 => 0.0018381711455089
421 => 0.0018534145050893
422 => 0.0018462260182118
423 => 0.0018509741404392
424 => 0.0018328791947507
425 => 0.0018713655027034
426 => 0.0019324910219665
427 => 0.001932687550506
428 => 0.0019254990248799
429 => 0.0019225576350726
430 => 0.0019299334986012
501 => 0.0019339346019917
502 => 0.0019577867921411
503 => 0.0019833811424846
504 => 0.0021028188078477
505 => 0.0020692811893513
506 => 0.00217525339144
507 => 0.0022590636445239
508 => 0.0022841946748456
509 => 0.002261075309456
510 => 0.0021819852093418
511 => 0.0021781046717109
512 => 0.0022962986722605
513 => 0.0022629034534771
514 => 0.0022589311984655
515 => 0.002216673116373
516 => 0.002241652876655
517 => 0.0022361894366503
518 => 0.0022275651293224
519 => 0.0022752247718351
520 => 0.0023644393680134
521 => 0.0023505344365499
522 => 0.0023401550502435
523 => 0.002294675600843
524 => 0.0023220643875849
525 => 0.0023123117652238
526 => 0.0023542152200542
527 => 0.0023293925416878
528 => 0.0022626504518497
529 => 0.0022732793496412
530 => 0.0022716728131224
531 => 0.0023047352208392
601 => 0.0022948107067021
602 => 0.0022697348924544
603 => 0.0023641344422226
604 => 0.0023580046605385
605 => 0.0023666952895033
606 => 0.0023705211731403
607 => 0.0024279805155775
608 => 0.0024515197696802
609 => 0.0024568635924741
610 => 0.0024792240632804
611 => 0.0024563072435905
612 => 0.0025479908617655
613 => 0.0026089551179644
614 => 0.0026797682387314
615 => 0.0027832452409445
616 => 0.0028221535509924
617 => 0.002815125113037
618 => 0.0028935801951482
619 => 0.0030345622337436
620 => 0.0028436216138679
621 => 0.0030446825502371
622 => 0.0029810289791427
623 => 0.0028301075071568
624 => 0.0028203899436082
625 => 0.0029225957166714
626 => 0.0031492782843844
627 => 0.0030924968721847
628 => 0.0031493711584333
629 => 0.0030830242824687
630 => 0.0030797296008616
701 => 0.0031461488387567
702 => 0.0033013410084228
703 => 0.0032276150259059
704 => 0.0031219107516154
705 => 0.0031999611428109
706 => 0.0031323466707347
707 => 0.0029799923410479
708 => 0.0030924534525089
709 => 0.003017253909983
710 => 0.0030392011343196
711 => 0.0031972593876212
712 => 0.0031782414004137
713 => 0.0032028524368784
714 => 0.0031594146017011
715 => 0.0031188368141277
716 => 0.0030430953602758
717 => 0.0030206720497987
718 => 0.0030268690461084
719 => 0.0030206689788751
720 => 0.0029782923315449
721 => 0.0029691410985886
722 => 0.0029538886427368
723 => 0.0029586160165818
724 => 0.002929936937317
725 => 0.0029840602852897
726 => 0.0029941060556068
727 => 0.0030334925147486
728 => 0.0030375817475963
729 => 0.0031472724756753
730 => 0.0030868566659272
731 => 0.0031273888071562
801 => 0.0031237632309414
802 => 0.0028333784330887
803 => 0.002873390896146
804 => 0.0029356377320607
805 => 0.0029075956168547
806 => 0.0028679506267979
807 => 0.0028359351716972
808 => 0.0027874284834711
809 => 0.0028557007156608
810 => 0.0029454714410478
811 => 0.0030398584813364
812 => 0.0031532583257593
813 => 0.0031279488006038
814 => 0.0030377385501242
815 => 0.0030417853160621
816 => 0.0030668008307464
817 => 0.003034403466331
818 => 0.0030248488510932
819 => 0.0030654881733338
820 => 0.0030657680340111
821 => 0.0030284909508989
822 => 0.002987064294654
823 => 0.0029868907154517
824 => 0.0029795192421069
825 => 0.0030843356512009
826 => 0.0031419740780683
827 => 0.0031485822308197
828 => 0.0031415292967371
829 => 0.0031442436911446
830 => 0.0031107051605265
831 => 0.0031873642959771
901 => 0.0032577142994693
902 => 0.0032388589957248
903 => 0.0032105922149724
904 => 0.0031880763625905
905 => 0.0032335549764677
906 => 0.0032315298853817
907 => 0.0032570998535608
908 => 0.0032559398521049
909 => 0.0032473416335414
910 => 0.0032388593027943
911 => 0.0032724907854076
912 => 0.0032628054585201
913 => 0.0032531050876447
914 => 0.0032336495088016
915 => 0.0032362938450893
916 => 0.0032080319449952
917 => 0.003194956696835
918 => 0.0029983363364137
919 => 0.0029457929513536
920 => 0.0029623241699127
921 => 0.0029677666762953
922 => 0.0029448997277809
923 => 0.0029776850579134
924 => 0.0029725754989405
925 => 0.002992453803912
926 => 0.0029800347019815
927 => 0.0029805443862567
928 => 0.0030170663170027
929 => 0.0030276687888736
930 => 0.0030222762861076
1001 => 0.0030260530102007
1002 => 0.0031130860228714
1003 => 0.0031007127116287
1004 => 0.0030941396366403
1005 => 0.0030959604233333
1006 => 0.0031181992240795
1007 => 0.0031244248740949
1008 => 0.0030980463575109
1009 => 0.0031104866184243
1010 => 0.0031634556704895
1011 => 0.0031819918409236
1012 => 0.0032411503990827
1013 => 0.0032160187921172
1014 => 0.0032621489443728
1015 => 0.0034039373054789
1016 => 0.0035172076593388
1017 => 0.0034130395608339
1018 => 0.003621046140805
1019 => 0.0037830091000842
1020 => 0.0037767926919437
1021 => 0.0037485507037226
1022 => 0.0035641601805913
1023 => 0.003394481272098
1024 => 0.0035364248839996
1025 => 0.0035367867274573
1026 => 0.0035245936453114
1027 => 0.0034488634592967
1028 => 0.0035219583989928
1029 => 0.0035277604098641
1030 => 0.0035245128266554
1031 => 0.0034664506705967
1101 => 0.0033778004899752
1102 => 0.0033951225230701
1103 => 0.0034234963666394
1104 => 0.0033697787613588
1105 => 0.0033526127316072
1106 => 0.0033845276468863
1107 => 0.0034873641536521
1108 => 0.0034679235077393
1109 => 0.0034674158339087
1110 => 0.0035505911612404
1111 => 0.00349105557723
1112 => 0.0033953410093803
1113 => 0.0033711718186781
1114 => 0.0032853874740034
1115 => 0.0033446390264236
1116 => 0.0033467713843117
1117 => 0.0033143199145873
1118 => 0.0033979742672981
1119 => 0.0033972033777108
1120 => 0.0034766207353025
1121 => 0.0036284368952204
1122 => 0.0035835373863132
1123 => 0.0035313241425067
1124 => 0.0035370011698247
1125 => 0.0035992641474055
1126 => 0.0035616185298346
1127 => 0.0035751561563877
1128 => 0.0035992436565864
1129 => 0.0036137762435152
1130 => 0.0035349101542095
1201 => 0.0035165226961912
1202 => 0.0034789084102066
1203 => 0.0034690955450971
1204 => 0.0034997315961837
1205 => 0.00349166007911
1206 => 0.0033465921678881
1207 => 0.0033314317640152
1208 => 0.0033318967119579
1209 => 0.0032937751555815
1210 => 0.0032356306318856
1211 => 0.0033884309685292
1212 => 0.0033761589630574
1213 => 0.0033626116187943
1214 => 0.0033642710911665
1215 => 0.0034305965384195
1216 => 0.0033921244294974
1217 => 0.0034944088365216
1218 => 0.0034733822373881
1219 => 0.0034518163853275
1220 => 0.0034488353276608
1221 => 0.0034405343145295
1222 => 0.0034120670518313
1223 => 0.003377691121506
1224 => 0.0033549931547132
1225 => 0.0030948038409557
1226 => 0.0031430934641375
1227 => 0.0031986462738705
1228 => 0.0032178228811764
1229 => 0.0031850199673988
1230 => 0.0034133623108034
1231 => 0.003455082657305
]
'min_raw' => 0.0014400456097732
'max_raw' => 0.0037830091000842
'avg_raw' => 0.0026115273549287
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.00144'
'max' => '$0.003783'
'avg' => '$0.002611'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -5.5833813151051E-5
'max_diff' => -0.00068222740807034
'year' => 2027
]
2 => [
'items' => [
101 => 0.0033287090064008
102 => 0.0033050696561188
103 => 0.0034149121026724
104 => 0.0033486636797076
105 => 0.0033784953405122
106 => 0.0033140156068987
107 => 0.0034450334475471
108 => 0.0034440353111163
109 => 0.0033930664119319
110 => 0.0034361449765026
111 => 0.003428659015797
112 => 0.0033711152541487
113 => 0.0034468576874303
114 => 0.0034468952547323
115 => 0.0033978387974267
116 => 0.0033405515951332
117 => 0.0033303099964265
118 => 0.0033225943275661
119 => 0.0033765977589516
120 => 0.0034250170666675
121 => 0.0035151133941625
122 => 0.0035377657515306
123 => 0.0036261794103914
124 => 0.0035735333813228
125 => 0.0035968706841287
126 => 0.0036222066275876
127 => 0.0036343536105802
128 => 0.0036145607536367
129 => 0.0037519035583614
130 => 0.0037634994991549
131 => 0.0037673875177985
201 => 0.0037210762967959
202 => 0.0037622115003225
203 => 0.0037429657008472
204 => 0.0037930379244448
205 => 0.0038008898884592
206 => 0.0037942395542807
207 => 0.0037967318915937
208 => 0.0036795340366923
209 => 0.0036734567096477
210 => 0.0035905919241674
211 => 0.0036243599367562
212 => 0.0035612322557644
213 => 0.0035812506936941
214 => 0.0035900746303908
215 => 0.0035854655066144
216 => 0.0036262691295228
217 => 0.0035915777144213
218 => 0.0035000213661715
219 => 0.0034084400734559
220 => 0.0034072903449263
221 => 0.0033831786070984
222 => 0.0033657502369339
223 => 0.0033691075593322
224 => 0.0033809392013664
225 => 0.0033650625603901
226 => 0.0033684506467085
227 => 0.0034247154542954
228 => 0.0034359989601947
229 => 0.0033976531983985
301 => 0.0032436894315199
302 => 0.003205906336939
303 => 0.0032330640760524
304 => 0.0032200844259386
305 => 0.0025988594490176
306 => 0.0027448070425849
307 => 0.0026580899383992
308 => 0.0026980531696701
309 => 0.0026095374615817
310 => 0.0026517817969872
311 => 0.002643980810754
312 => 0.0028786602223068
313 => 0.0028749960260864
314 => 0.0028767498829122
315 => 0.0027930337269687
316 => 0.002926395836528
317 => 0.0029920948072433
318 => 0.0029799356762854
319 => 0.0029829958675893
320 => 0.0029304116420892
321 => 0.0028772590131585
322 => 0.0028183045675433
323 => 0.0029278346405066
324 => 0.0029156567661337
325 => 0.0029435884284841
326 => 0.0030146265101721
327 => 0.0030250871375481
328 => 0.0030391463268226
329 => 0.0030341071082689
330 => 0.003154161738471
331 => 0.0031396223306076
401 => 0.0031746581202853
402 => 0.0031025868427465
403 => 0.0030210313511428
404 => 0.0030365323838467
405 => 0.0030350395097459
406 => 0.0030160335090013
407 => 0.0029988757413447
408 => 0.0029703128923677
409 => 0.0030606899730374
410 => 0.0030570208286101
411 => 0.0031164200119737
412 => 0.0031059206293413
413 => 0.0030358031824874
414 => 0.0030383074408191
415 => 0.003055149781605
416 => 0.0031134413153675
417 => 0.0031307462113785
418 => 0.0031227298940654
419 => 0.0031417039225429
420 => 0.0031567002210181
421 => 0.0031435872267443
422 => 0.0033292395728032
423 => 0.0032521437750831
424 => 0.0032897197304628
425 => 0.0032986813744104
426 => 0.0032757263118816
427 => 0.0032807044429849
428 => 0.003288244955147
429 => 0.0033340294684112
430 => 0.0034541812790723
501 => 0.0035073956981131
502 => 0.0036674939033504
503 => 0.0035029769813922
504 => 0.0034932152280819
505 => 0.0035220537493478
506 => 0.0036160483439382
507 => 0.0036922221343905
508 => 0.0037174933752549
509 => 0.0037208333869178
510 => 0.0037682439147797
511 => 0.0037954187451962
512 => 0.0037624870296766
513 => 0.0037345808488681
514 => 0.0036346243730547
515 => 0.0036461946073026
516 => 0.003725902047621
517 => 0.0038384935018156
518 => 0.0039351086826588
519 => 0.0039012774137065
520 => 0.0041593861146586
521 => 0.0041849765380785
522 => 0.0041814407689994
523 => 0.0042397395619155
524 => 0.0041240283303197
525 => 0.0040745595370129
526 => 0.0037406144819075
527 => 0.0038344394209503
528 => 0.0039708194799946
529 => 0.0039527690677811
530 => 0.0038537262234538
531 => 0.00393503354978
601 => 0.0039081508049814
602 => 0.0038869472687926
603 => 0.0039840847785811
604 => 0.0038772780963796
605 => 0.0039697540016368
606 => 0.0038511526966038
607 => 0.0039014319520933
608 => 0.0038728910149435
609 => 0.0038913604991251
610 => 0.0037833882719928
611 => 0.0038416474648758
612 => 0.0037809644980305
613 => 0.003780935726403
614 => 0.0037795961465465
615 => 0.0038509893879306
616 => 0.003853317518969
617 => 0.003800557805717
618 => 0.0037929543067758
619 => 0.0038210684275166
620 => 0.003788154155229
621 => 0.0038035545360724
622 => 0.0037886206170761
623 => 0.0037852586773536
624 => 0.0037584701696576
625 => 0.0037469289439768
626 => 0.003751454555947
627 => 0.0037360063091799
628 => 0.0037266981817152
629 => 0.0037777445257117
630 => 0.003750472523318
701 => 0.0037735647002092
702 => 0.0037472482501766
703 => 0.0036560239688318
704 => 0.0036035599199512
705 => 0.0034312457089864
706 => 0.0034801138054609
707 => 0.0035125134039812
708 => 0.0035018053368635
709 => 0.0035248104085042
710 => 0.0035262227330635
711 => 0.0035187435497641
712 => 0.0035100836136462
713 => 0.0035058684356685
714 => 0.0035372849188837
715 => 0.0035555232448203
716 => 0.0035157651371434
717 => 0.0035064503687898
718 => 0.0035466480107564
719 => 0.0035711685491346
720 => 0.003752214427619
721 => 0.0037388019641704
722 => 0.0037724646153634
723 => 0.0037686747174346
724 => 0.0038039585387657
725 => 0.0038616326745867
726 => 0.0037443650305207
727 => 0.0037647186387205
728 => 0.0037597284040234
729 => 0.0038142104779369
730 => 0.0038143805650248
731 => 0.0037817158401322
801 => 0.0037994239174211
802 => 0.0037895397544741
803 => 0.0038074017728441
804 => 0.0037386228325439
805 => 0.0038223881576017
806 => 0.0038698776991911
807 => 0.0038705370915222
808 => 0.0038930467573353
809 => 0.0039159178814733
810 => 0.0039598170126011
811 => 0.0039146935585324
812 => 0.0038335208573425
813 => 0.0038393812641822
814 => 0.0037917897391745
815 => 0.003792589761308
816 => 0.0037883191804606
817 => 0.0038011355150581
818 => 0.003741435297263
819 => 0.0037554468190524
820 => 0.0037358306064959
821 => 0.0037646759969054
822 => 0.0037336431251386
823 => 0.0037597259975811
824 => 0.0037709825006664
825 => 0.0038125192393861
826 => 0.0037275081150572
827 => 0.0035541646778034
828 => 0.0035906035699002
829 => 0.0035367075862759
830 => 0.0035416958647568
831 => 0.0035517729811668
901 => 0.0035191097498545
902 => 0.0035253408650521
903 => 0.0035251182457696
904 => 0.0035231998330613
905 => 0.0035147028650831
906 => 0.0035023805804408
907 => 0.0035514687698564
908 => 0.0035598098097843
909 => 0.0035783509083077
910 => 0.003633516640966
911 => 0.0036280042833759
912 => 0.0036369951673109
913 => 0.0036173681181624
914 => 0.003542606307275
915 => 0.0035466662332961
916 => 0.003496038890757
917 => 0.0035770562533332
918 => 0.0035578702724982
919 => 0.0035455009458417
920 => 0.0035421258604625
921 => 0.0035974283383018
922 => 0.0036139757064315
923 => 0.0036036644970656
924 => 0.0035825159058303
925 => 0.0036231274530219
926 => 0.0036339933897868
927 => 0.0036364258723081
928 => 0.0037083817474399
929 => 0.0036404474063979
930 => 0.003656799877496
1001 => 0.0037843771889845
1002 => 0.00366868217193
1003 => 0.0037299684027705
1004 => 0.003726968760689
1005 => 0.0037583207225741
1006 => 0.0037243969847193
1007 => 0.0037248175101072
1008 => 0.0037526559282953
1009 => 0.0037135618906353
1010 => 0.00370388165713
1011 => 0.0036905084838736
1012 => 0.0037197083184312
1013 => 0.0037372122986536
1014 => 0.0038782815239891
1015 => 0.0039694186770941
1016 => 0.0039654621729207
1017 => 0.0040016172148003
1018 => 0.0039853290372913
1019 => 0.0039327302155106
1020 => 0.0040225099905473
1021 => 0.0039940999131804
1022 => 0.0039964420054402
1023 => 0.0039963548326494
1024 => 0.0040152450504463
1025 => 0.0040018595998741
1026 => 0.003975475502808
1027 => 0.0039929904977348
1028 => 0.0040450037709419
1029 => 0.0042064545669389
1030 => 0.0042968045713173
1031 => 0.0042010153832285
1101 => 0.0042670894825038
1102 => 0.0042274685675474
1103 => 0.0042202682686798
1104 => 0.0042617676858623
1105 => 0.0043033397422809
1106 => 0.004300691782008
1107 => 0.0042705126037968
1108 => 0.0042534651517935
1109 => 0.0043825541696774
1110 => 0.0044776647590801
1111 => 0.0044711788545123
1112 => 0.0044998055279454
1113 => 0.0045838543265345
1114 => 0.0045915386953437
1115 => 0.0045905706414969
1116 => 0.0045715241316225
1117 => 0.0046542810889491
1118 => 0.0047233183987212
1119 => 0.0045671154148931
1120 => 0.0046265954662876
1121 => 0.0046532979776862
1122 => 0.0046925051866974
1123 => 0.0047586543201906
1124 => 0.0048305098243552
1125 => 0.0048406709804996
1126 => 0.0048334611539591
1127 => 0.0047860705173829
1128 => 0.0048646956674543
1129 => 0.0049107524363795
1130 => 0.004938178188284
1201 => 0.0050077253319039
1202 => 0.004653462883306
1203 => 0.0044026983142022
1204 => 0.0043635378056524
1205 => 0.0044431722396994
1206 => 0.0044641712048849
1207 => 0.0044557065483491
1208 => 0.0041734482273056
1209 => 0.0043620517740068
1210 => 0.0045649733320206
1211 => 0.004572768375488
1212 => 0.0046743551503194
1213 => 0.0047074359683871
1214 => 0.0047892266374094
1215 => 0.0047841106087928
1216 => 0.0048040253351259
1217 => 0.0047994472844169
1218 => 0.0049509472757233
1219 => 0.0051180742641007
1220 => 0.0051122871879245
1221 => 0.0050882607059885
1222 => 0.0051239441287874
1223 => 0.0052964370912094
1224 => 0.005280556703373
1225 => 0.0052959831474678
1226 => 0.0054993620714407
1227 => 0.00576378360292
1228 => 0.0056409332540601
1229 => 0.0059074831618504
1230 => 0.0060752621996009
1231 => 0.006365418696714
]
'min_raw' => 0.0025988594490176
'max_raw' => 0.006365418696714
'avg_raw' => 0.0044821390728658
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.002598'
'max' => '$0.006365'
'avg' => '$0.004482'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0011588138392444
'max_diff' => 0.0025824095966298
'year' => 2028
]
3 => [
'items' => [
101 => 0.0063290896742246
102 => 0.006442045469284
103 => 0.0062640531418727
104 => 0.0058553467799519
105 => 0.0057906674337128
106 => 0.0059201571228254
107 => 0.0062384948880894
108 => 0.0059101315337293
109 => 0.005976559012655
110 => 0.0059574278942556
111 => 0.0059564084782581
112 => 0.0059953154406176
113 => 0.0059388788624644
114 => 0.0057089460903216
115 => 0.0058143229247923
116 => 0.005773631868392
117 => 0.0058187816291874
118 => 0.0060624362670224
119 => 0.0059547107436344
120 => 0.0058412306556561
121 => 0.0059835598692284
122 => 0.00616479386773
123 => 0.0061534525698126
124 => 0.006131445711558
125 => 0.0062554972192974
126 => 0.0064603939664014
127 => 0.0065157767338018
128 => 0.0065566591604459
129 => 0.0065622961563659
130 => 0.006620360717715
131 => 0.0063081329371872
201 => 0.0068036464434629
202 => 0.0068892079377124
203 => 0.0068731259229541
204 => 0.0069682239228343
205 => 0.0069402436788661
206 => 0.006899704695322
207 => 0.0070504552530568
208 => 0.0068776319035566
209 => 0.0066323309167958
210 => 0.0064977539439554
211 => 0.0066749757578063
212 => 0.0067831989353361
213 => 0.0068547275713965
214 => 0.0068763720934496
215 => 0.0063323702909911
216 => 0.0060391834911891
217 => 0.0062271128684687
218 => 0.0064563996789426
219 => 0.0063068592373781
220 => 0.0063127209395699
221 => 0.0060995155684357
222 => 0.00647526362343
223 => 0.0064205202923559
224 => 0.0067045287908076
225 => 0.0066367478833415
226 => 0.0068683457886824
227 => 0.0068073582985151
228 => 0.0070605139604349
301 => 0.0071615046078907
302 => 0.007331083622908
303 => 0.0074558266366656
304 => 0.0075290781202976
305 => 0.0075246803759798
306 => 0.0078149392478742
307 => 0.0076437837319906
308 => 0.007428772065783
309 => 0.0074248831830945
310 => 0.0075362407717622
311 => 0.0077696157281474
312 => 0.0078301264588706
313 => 0.0078639437023191
314 => 0.007812151416791
315 => 0.0076263743711257
316 => 0.0075461567847184
317 => 0.0076145044924646
318 => 0.0075309211190765
319 => 0.0076752094708969
320 => 0.0078733481962753
321 => 0.0078324333330101
322 => 0.0079692055866065
323 => 0.0081107504802181
324 => 0.0083131660352617
325 => 0.0083660849567763
326 => 0.0084535579217138
327 => 0.0085435963360065
328 => 0.008572514248074
329 => 0.008627727514912
330 => 0.0086274365137418
331 => 0.0087938254096396
401 => 0.0089773575144502
402 => 0.0090466366352382
403 => 0.0092059401534171
404 => 0.0089331384611967
405 => 0.0091400616784659
406 => 0.0093267116000667
407 => 0.0091041798688611
408 => 0.0094108880170845
409 => 0.0094227967994644
410 => 0.0096026052746433
411 => 0.0094203349379137
412 => 0.0093121033937913
413 => 0.0096245638062898
414 => 0.0097757535574871
415 => 0.0097302139740035
416 => 0.0093836554951265
417 => 0.0091819435958277
418 => 0.0086540246480433
419 => 0.0092793674460953
420 => 0.009583953681527
421 => 0.0093828666903594
422 => 0.0094842832721726
423 => 0.010037579258108
424 => 0.010248238546291
425 => 0.010204422886968
426 => 0.010211827012127
427 => 0.010325494940293
428 => 0.010829561131855
429 => 0.010527512985708
430 => 0.01075841747591
501 => 0.010880888384924
502 => 0.010994646190595
503 => 0.010715292973391
504 => 0.010351858542323
505 => 0.010236743602065
506 => 0.0093628725520792
507 => 0.0093173837688978
508 => 0.0092918495364469
509 => 0.0091308598127329
510 => 0.0090043659886903
511 => 0.008903773403397
512 => 0.0086397884200987
513 => 0.0087288756026014
514 => 0.0083081386371719
515 => 0.0085773112376512
516 => 0.0079058048817764
517 => 0.008465055328868
518 => 0.0081606807365136
519 => 0.0083650600891512
520 => 0.0083643470288435
521 => 0.007988019842105
522 => 0.0077709621745423
523 => 0.0079092797683241
524 => 0.0080575672085224
525 => 0.0080816263467957
526 => 0.0082738848837111
527 => 0.0083275401087807
528 => 0.0081649622718968
529 => 0.0078918894051163
530 => 0.0079553180039404
531 => 0.0077696767960116
601 => 0.0074443477197023
602 => 0.0076780047420084
603 => 0.0077577855225977
604 => 0.0077930212603168
605 => 0.0074730974780634
606 => 0.0073725704797962
607 => 0.0073190507494219
608 => 0.0078505912622582
609 => 0.0078797102514363
610 => 0.0077307333857913
611 => 0.0084041229450727
612 => 0.0082517141485706
613 => 0.0084219921153252
614 => 0.0079495625234243
615 => 0.0079676099700457
616 => 0.0077439542302198
617 => 0.0078691864998404
618 => 0.007780676368097
619 => 0.0078590689700244
620 => 0.0079060571723949
621 => 0.0081296762125147
622 => 0.008467608699102
623 => 0.0080962749849586
624 => 0.0079344795681096
625 => 0.0080348565347508
626 => 0.0083021736244381
627 => 0.0087071726990245
628 => 0.0084674050955034
629 => 0.0085738098864281
630 => 0.0085970545996255
701 => 0.0084202588454682
702 => 0.0087136914106592
703 => 0.0088709443061869
704 => 0.0090322532380966
705 => 0.0091723132639001
706 => 0.0089678229034324
707 => 0.0091866569016746
708 => 0.0090103153284922
709 => 0.0088521187074909
710 => 0.0088523586264642
711 => 0.0087531195752262
712 => 0.0085608314085274
713 => 0.0085253705203584
714 => 0.0087098425388301
715 => 0.0088577716280793
716 => 0.0088699557764024
717 => 0.0089518569210818
718 => 0.0090003251748542
719 => 0.0094753799512193
720 => 0.0096664509121326
721 => 0.0099000888663492
722 => 0.0099911040166302
723 => 0.010265026988239
724 => 0.010043811941729
725 => 0.0099959506749085
726 => 0.0093315031453077
727 => 0.0094403063910567
728 => 0.0096145108854527
729 => 0.0093343757132567
730 => 0.0095120570017868
731 => 0.0095471350519469
801 => 0.0093248568273006
802 => 0.0094435852311593
803 => 0.0091282777910289
804 => 0.008474481539661
805 => 0.0087144192727845
806 => 0.0088910942065311
807 => 0.0086389572922125
808 => 0.0090909029520824
809 => 0.0088268856276385
810 => 0.0087432048108564
811 => 0.0084167361102239
812 => 0.0085708167699897
813 => 0.0087792130685456
814 => 0.0086504483847081
815 => 0.0089176544377853
816 => 0.0092960894701941
817 => 0.0095657848104843
818 => 0.0095864886698914
819 => 0.0094130926342693
820 => 0.0096909608879525
821 => 0.0096929848548249
822 => 0.0093795483295451
823 => 0.0091875702030331
824 => 0.0091439523687641
825 => 0.0092529182705481
826 => 0.009385222991529
827 => 0.0095938306611118
828 => 0.0097198879068573
829 => 0.010048578348164
830 => 0.010137512557288
831 => 0.010235224289949
901 => 0.010365797297965
902 => 0.01052258367232
903 => 0.010179544011084
904 => 0.01019317361633
905 => 0.0098737398334943
906 => 0.0095323790250955
907 => 0.0097914293274447
908 => 0.010130103137749
909 => 0.010052410991464
910 => 0.0100436690379
911 => 0.010058370578978
912 => 0.0099997932378677
913 => 0.0097348500950018
914 => 0.0096017973072865
915 => 0.0097734693488256
916 => 0.0098647053986602
917 => 0.010006204555334
918 => 0.009988761797589
919 => 0.01035324842928
920 => 0.010494876912852
921 => 0.01045864228613
922 => 0.010465310329482
923 => 0.01072172193393
924 => 0.011006904373145
925 => 0.011274015360607
926 => 0.011545732129738
927 => 0.011218166959265
928 => 0.01105184956711
929 => 0.011223446662006
930 => 0.01113239482805
1001 => 0.011655605673689
1002 => 0.011691831657447
1003 => 0.012215004668987
1004 => 0.012711558155221
1005 => 0.012399681807197
1006 => 0.012693767156164
1007 => 0.013011844438203
1008 => 0.013625467121435
1009 => 0.013418820589229
1010 => 0.013260532584123
1011 => 0.01311095118414
1012 => 0.013422206332126
1013 => 0.013822631107588
1014 => 0.013908878769001
1015 => 0.014048632929634
1016 => 0.013901698518054
1017 => 0.014078664832507
1018 => 0.014703433685465
1019 => 0.014534615626408
1020 => 0.014294866843691
1021 => 0.014788061849663
1022 => 0.014966547205077
1023 => 0.016219250902879
1024 => 0.017800841067963
1025 => 0.017146052354337
1026 => 0.01673960386989
1027 => 0.016835128904822
1028 => 0.017412672092905
1029 => 0.017598160634612
1030 => 0.017093938836516
1031 => 0.017272038499793
1101 => 0.018253385154823
1102 => 0.018779846149876
1103 => 0.018064841405449
1104 => 0.016092171673074
1105 => 0.014273280088956
1106 => 0.01475573204282
1107 => 0.014701036963479
1108 => 0.015755371518819
1109 => 0.014530589371532
1110 => 0.014551211561763
1111 => 0.015627348639149
1112 => 0.015340253716562
1113 => 0.014875196710312
1114 => 0.014276675519764
1115 => 0.013170253742527
1116 => 0.012190265119575
1117 => 0.014112248487086
1118 => 0.014029369069379
1119 => 0.013909347390498
1120 => 0.014176442649146
1121 => 0.015473381408831
1122 => 0.015443482772639
1123 => 0.015253282903605
1124 => 0.015397547827922
1125 => 0.014849906371569
1126 => 0.014991046044435
1127 => 0.014272991967236
1128 => 0.014597582398717
1129 => 0.014874198906844
1130 => 0.014929733766228
1201 => 0.015054856640101
1202 => 0.013985695382317
1203 => 0.014465717398137
1204 => 0.01474768536045
1205 => 0.013473743848635
1206 => 0.014722503632796
1207 => 0.013967083663488
1208 => 0.013710682779878
1209 => 0.014055892791411
1210 => 0.013921364114189
1211 => 0.013805704257302
1212 => 0.013741164069871
1213 => 0.013994648202902
1214 => 0.013982822865117
1215 => 0.013568073624328
1216 => 0.01302705014706
1217 => 0.013208635384521
1218 => 0.013142663765381
1219 => 0.012903574107108
1220 => 0.013064691668988
1221 => 0.012355211466198
1222 => 0.011134587652869
1223 => 0.011940969132673
1224 => 0.011909924322875
1225 => 0.011894270122004
1226 => 0.01250024351733
1227 => 0.012441993157554
1228 => 0.012336268184172
1229 => 0.012901632385061
1230 => 0.012695266846515
1231 => 0.013331236810478
]
'min_raw' => 0.0057089460903216
'max_raw' => 0.018779846149876
'avg_raw' => 0.012244396120099
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.0057089'
'max' => '$0.018779'
'avg' => '$0.012244'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.003110086641304
'max_diff' => 0.012414427453162
'year' => 2029
]
4 => [
'items' => [
101 => 0.013750127760703
102 => 0.013643883466023
103 => 0.014037852429385
104 => 0.013212818741642
105 => 0.013486861838104
106 => 0.013543341740477
107 => 0.012894655878581
108 => 0.012451523636808
109 => 0.012421971768359
110 => 0.011653641528508
111 => 0.012064077340891
112 => 0.012425243870801
113 => 0.012252273130629
114 => 0.012197515761644
115 => 0.012477259284362
116 => 0.012498997751918
117 => 0.012003358387893
118 => 0.012106417506531
119 => 0.012536191163405
120 => 0.012095588313064
121 => 0.011239568946916
122 => 0.011027264308718
123 => 0.010998938956432
124 => 0.010423151939545
125 => 0.011041451519817
126 => 0.01077154718363
127 => 0.011624171747694
128 => 0.011137157169418
129 => 0.011116162944332
130 => 0.011084427093932
131 => 0.010588823423035
201 => 0.010697329129705
202 => 0.011058018624562
203 => 0.011186716699784
204 => 0.011173292436146
205 => 0.011056251049263
206 => 0.01110983199683
207 => 0.010937229095879
208 => 0.010876279419135
209 => 0.0106839054738
210 => 0.010401168918818
211 => 0.010440485170912
212 => 0.0098803100734473
213 => 0.0095750969496058
214 => 0.0094906179795708
215 => 0.0093776491702208
216 => 0.0095033781071854
217 => 0.0098787231677784
218 => 0.0094259773908065
219 => 0.0086497765126117
220 => 0.0086964275079732
221 => 0.0088012384437455
222 => 0.0086059239583275
223 => 0.0084210751893816
224 => 0.0085817861967254
225 => 0.0082528996521589
226 => 0.0088409828113823
227 => 0.0088250768100093
228 => 0.0090442778449492
301 => 0.0091813487505552
302 => 0.0088654446903661
303 => 0.008785995673524
304 => 0.0088312534442737
305 => 0.0080832433067101
306 => 0.0089831494583942
307 => 0.0089909318841634
308 => 0.00892429402988
309 => 0.0094034662741664
310 => 0.010414669167182
311 => 0.010034213963287
312 => 0.0098868902090199
313 => 0.0096068276444646
314 => 0.0099799943832649
315 => 0.009951341000033
316 => 0.0098217595345855
317 => 0.009743388259964
318 => 0.0098877897364485
319 => 0.0097254953190072
320 => 0.0096963427820824
321 => 0.0095197101265911
322 => 0.0094566603048545
323 => 0.0094099807269264
324 => 0.0093585910982682
325 => 0.0094719438135907
326 => 0.0092150716478785
327 => 0.0089053089975184
328 => 0.0088795555848193
329 => 0.0089506630215448
330 => 0.0089192032741198
331 => 0.0088794049676521
401 => 0.0088034191621813
402 => 0.008780875796878
403 => 0.0088541307976278
404 => 0.0087714301728132
405 => 0.0088934594496633
406 => 0.0088602742385479
407 => 0.0086749043468705
408 => 0.0084438648291166
409 => 0.0084418080927867
410 => 0.0083920310076674
411 => 0.0083286324057331
412 => 0.0083109963650385
413 => 0.0085682515639463
414 => 0.0091007621266855
415 => 0.008996217561322
416 => 0.0090717617239551
417 => 0.0094433642353042
418 => 0.0095614854991847
419 => 0.0094776458239378
420 => 0.0093628809054539
421 => 0.0093679299794254
422 => 0.0097601164475884
423 => 0.009784576636542
424 => 0.0098463796428717
425 => 0.009925813971533
426 => 0.0094911738335926
427 => 0.0093474584680149
428 => 0.0092793581547793
429 => 0.0090696355481516
430 => 0.0092958033991422
501 => 0.0091640250778429
502 => 0.0091818064755747
503 => 0.009170226316975
504 => 0.0091765498666173
505 => 0.0088408184301541
506 => 0.0089631413200765
507 => 0.0087597557906659
508 => 0.0084874453978822
509 => 0.0084865325179612
510 => 0.0085531801008132
511 => 0.0085135355106127
512 => 0.0084068529377387
513 => 0.0084220066936879
514 => 0.0082892438460415
515 => 0.0084381265071411
516 => 0.0084423959291337
517 => 0.008385067994917
518 => 0.008614442276189
519 => 0.0087084171063777
520 => 0.008670682631993
521 => 0.0087057695550625
522 => 0.0090005618600032
523 => 0.0090486258683986
524 => 0.0090699727259976
525 => 0.0090413707647316
526 => 0.008711157817239
527 => 0.0087258041656341
528 => 0.0086183389791152
529 => 0.008527542220909
530 => 0.008531173615071
531 => 0.0085778549515413
601 => 0.0087817150857314
602 => 0.0092107267199231
603 => 0.0092270073978372
604 => 0.0092467400544101
605 => 0.0091664774232897
606 => 0.0091422694457339
607 => 0.0091742060167392
608 => 0.0093353202301815
609 => 0.0097497497292373
610 => 0.0096032626654554
611 => 0.0094841664023937
612 => 0.0095886459332208
613 => 0.0095725621283876
614 => 0.0094367986294264
615 => 0.0094329882001849
616 => 0.0091724146394621
617 => 0.0090760865270357
618 => 0.008995587546258
619 => 0.0089076847607279
620 => 0.0088555730429376
621 => 0.0089356403258157
622 => 0.0089539526607381
623 => 0.0087788841473886
624 => 0.0087550229559194
625 => 0.008897987683037
626 => 0.0088350742368948
627 => 0.0088997822764304
628 => 0.008914795096658
629 => 0.0089123776868268
630 => 0.008846688823491
701 => 0.0088885569461111
702 => 0.0087895263546266
703 => 0.008681845460301
704 => 0.008613151758478
705 => 0.0085532073927401
706 => 0.0085864680108385
707 => 0.0084678999804668
708 => 0.008429967681248
709 => 0.00887437296823
710 => 0.0092026599318856
711 => 0.0091978865094182
712 => 0.0091688295277721
713 => 0.0091256567470395
714 => 0.0093321618723643
715 => 0.0092602196159015
716 => 0.0093125636184548
717 => 0.0093258873639755
718 => 0.0093662143288113
719 => 0.0093806277525203
720 => 0.0093370603753052
721 => 0.0091908429360643
722 => 0.008826482979413
723 => 0.0086568724360209
724 => 0.0086008981316144
725 => 0.0086029326912693
726 => 0.0085468104533146
727 => 0.0085633409676145
728 => 0.0085410618150469
729 => 0.0084988704899895
730 => 0.0085838628154082
731 => 0.0085936573891545
801 => 0.0085738191648191
802 => 0.0085784917848042
803 => 0.0084142397603237
804 => 0.0084267274850083
805 => 0.0083571942471011
806 => 0.0083441576032292
807 => 0.0081683836327513
808 => 0.0078569745652053
809 => 0.0080295254178354
810 => 0.0078211082521798
811 => 0.0077421775135106
812 => 0.0081158233541222
813 => 0.0080783196750472
814 => 0.0080141296789282
815 => 0.0079191792963008
816 => 0.0078839612757664
817 => 0.0076699877316696
818 => 0.0076573450331799
819 => 0.007763396099406
820 => 0.007714457181337
821 => 0.0076457284057506
822 => 0.0073967997475008
823 => 0.0071169215181817
824 => 0.007125369282673
825 => 0.0072143933400999
826 => 0.0074732427935982
827 => 0.0073721058339754
828 => 0.0072987298093561
829 => 0.0072849886856202
830 => 0.0074569876181671
831 => 0.0077004021426114
901 => 0.0078146067913877
902 => 0.0077014334528972
903 => 0.0075714260153245
904 => 0.0075793389656531
905 => 0.007631980279125
906 => 0.0076375121368628
907 => 0.0075528906599836
908 => 0.0075767111100519
909 => 0.0075405256682104
910 => 0.0073184556784225
911 => 0.0073144391364987
912 => 0.0072599395796425
913 => 0.0072582893547203
914 => 0.0071655720129562
915 => 0.0071526002159187
916 => 0.0069685043063056
917 => 0.0070896767915067
918 => 0.0070084006502748
919 => 0.0068858983343348
920 => 0.0068647788888928
921 => 0.0068641440128604
922 => 0.0069899265003141
923 => 0.0070882069499066
924 => 0.0070098144835488
925 => 0.0069919660385333
926 => 0.0071825407359594
927 => 0.007158288368585
928 => 0.0071372859748498
929 => 0.0076786070417413
930 => 0.0072501091774871
1001 => 0.0070632596508692
1002 => 0.0068319978799168
1003 => 0.006907297878662
1004 => 0.0069231646947847
1005 => 0.0063670218237117
1006 => 0.0061413947301806
1007 => 0.0060639680142583
1008 => 0.006019407844592
1009 => 0.0060397144734604
1010 => 0.0058366236258638
1011 => 0.0059731040342613
1012 => 0.0057972445270847
1013 => 0.0057677611084102
1014 => 0.0060822196920544
1015 => 0.0061259747669281
1016 => 0.0059393020238807
1017 => 0.0060591761444891
1018 => 0.0060157081219816
1019 => 0.0058002591335878
1020 => 0.0057920305669667
1021 => 0.0056839258379888
1022 => 0.0055147628703389
1023 => 0.0054374508548745
1024 => 0.0053971860859669
1025 => 0.0054138001143628
1026 => 0.0054053995532082
1027 => 0.0053505802093155
1028 => 0.0054085417338309
1029 => 0.0052604739900496
1030 => 0.0052015122214131
1031 => 0.0051748805584226
1101 => 0.0050434619133554
1102 => 0.005252607419794
1103 => 0.0052938117193081
1104 => 0.0053350972040209
1105 => 0.0056944591616481
1106 => 0.0056765064537913
1107 => 0.0058387901894926
1108 => 0.0058324841419439
1109 => 0.0057861981916997
1110 => 0.0055909253812886
1111 => 0.0056687576431153
1112 => 0.0054292020390317
1113 => 0.0056086933858088
1114 => 0.0055267810308776
1115 => 0.0055809987362101
1116 => 0.0054835104134088
1117 => 0.0055374644764412
1118 => 0.0053035827873016
1119 => 0.0050851873567872
1120 => 0.0051730760533863
1121 => 0.005268621117881
1122 => 0.0054757871621354
1123 => 0.0053524007752603
1124 => 0.0053967751857364
1125 => 0.0052481283388279
1126 => 0.0049414274347831
1127 => 0.0049431633285924
1128 => 0.0048959840763475
1129 => 0.0048552143141242
1130 => 0.0053665731860577
1201 => 0.0053029776269453
1202 => 0.0052016464266807
1203 => 0.0053372822649767
1204 => 0.0053731465334524
1205 => 0.0053741675387567
1206 => 0.0054731239451098
1207 => 0.0055259369969193
1208 => 0.0055352455262056
1209 => 0.0056909555696969
1210 => 0.00574314752241
1211 => 0.0059581187891538
1212 => 0.0055214561784576
1213 => 0.0055124633993441
1214 => 0.0053391909393759
1215 => 0.0052292988059349
1216 => 0.0053467153477694
1217 => 0.0054507303748785
1218 => 0.005342422976209
1219 => 0.0053565656359812
1220 => 0.0052111718023069
1221 => 0.0052631432564298
1222 => 0.0053079080740313
1223 => 0.0052831915729061
1224 => 0.0052461897744295
1225 => 0.0054422023288273
1226 => 0.0054311425323288
1227 => 0.0056136739292932
1228 => 0.0057559702061724
1229 => 0.0060109905728419
1230 => 0.0057448635257099
1231 => 0.0057351647983532
]
'min_raw' => 0.0048552143141242
'max_raw' => 0.014037852429385
'avg_raw' => 0.0094465333717545
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.004855'
'max' => '$0.014037'
'avg' => '$0.009446'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0008537317761974
'max_diff' => -0.0047419937204913
'year' => 2030
]
5 => [
'items' => [
101 => 0.0058299714139897
102 => 0.0057431330080111
103 => 0.0057980118830297
104 => 0.0060021487376523
105 => 0.0060064618277159
106 => 0.005934212012049
107 => 0.0059298156041996
108 => 0.0059436919716248
109 => 0.0060249662890547
110 => 0.0059965665452372
111 => 0.0060294314477763
112 => 0.0060705295116468
113 => 0.006240528529033
114 => 0.0062815147165958
115 => 0.0061819395297199
116 => 0.0061909300541987
117 => 0.0061536862009071
118 => 0.0061177091052916
119 => 0.0061985803622025
120 => 0.0063463741737357
121 => 0.0063454547561047
122 => 0.0063797400476792
123 => 0.0064010995002955
124 => 0.0063094090935916
125 => 0.0062497220103771
126 => 0.0062726098360693
127 => 0.0063092079677832
128 => 0.0062607415552118
129 => 0.0059615844049949
130 => 0.006052329574138
131 => 0.0060372251407805
201 => 0.0060157145909176
202 => 0.0061069595602026
203 => 0.0060981587603215
204 => 0.005834540635679
205 => 0.0058514166127117
206 => 0.0058355669197373
207 => 0.0058867805202796
208 => 0.0057403673055132
209 => 0.0057854030242673
210 => 0.0058136490048862
211 => 0.0058302861044666
212 => 0.005890390716317
213 => 0.0058833381338412
214 => 0.005889952317888
215 => 0.0059790715902329
216 => 0.0064298062877122
217 => 0.0064543387828059
218 => 0.0063335318046258
219 => 0.0063817918095965
220 => 0.0062891431533557
221 => 0.0063513388169822
222 => 0.0063938915104368
223 => 0.0062016040711275
224 => 0.0061902180569068
225 => 0.0060971870067047
226 => 0.0061471766235353
227 => 0.0060676395487772
228 => 0.0060871551648341
301 => 0.0060325878009982
302 => 0.006130798191649
303 => 0.0062406126687483
304 => 0.0062683561423687
305 => 0.0061953750075898
306 => 0.0061425318563187
307 => 0.0060497566903029
308 => 0.0062040438590166
309 => 0.0062491621289648
310 => 0.006203806871952
311 => 0.0061932970678702
312 => 0.006173381008126
313 => 0.0061975223540943
314 => 0.006248916405177
315 => 0.0062246799197855
316 => 0.0062406885453785
317 => 0.0061796801726409
318 => 0.0063094394469315
319 => 0.0065155284027747
320 => 0.0065161910124667
321 => 0.0064919543964315
322 => 0.006482037295335
323 => 0.006506905534188
324 => 0.0065203955336172
325 => 0.0066008148580127
326 => 0.0066871079971362
327 => 0.0070898004247795
328 => 0.006976726002497
329 => 0.0073340186805819
330 => 0.0076165908002993
331 => 0.0077013218236213
401 => 0.0076233732690678
402 => 0.0073567154746383
403 => 0.0073436319710855
404 => 0.0077421312959799
405 => 0.0076295369842719
406 => 0.0076161442491663
407 => 0.0074736681750264
408 => 0.0075578891808482
409 => 0.0075394688114274
410 => 0.0075103913571413
411 => 0.0076710791693631
412 => 0.0079718724091423
413 => 0.0079249909619016
414 => 0.0078899961363041
415 => 0.0077366589973766
416 => 0.0078290022041009
417 => 0.007796120556904
418 => 0.0079374009804707
419 => 0.0078537095872944
420 => 0.0076286839716211
421 => 0.0076645200426112
422 => 0.0076591034925732
423 => 0.0077705757085341
424 => 0.0077371145162131
425 => 0.0076525696577396
426 => 0.0079708443305492
427 => 0.0079501773436337
428 => 0.0079794784059489
429 => 0.0079923776397455
430 => 0.0081861058244558
501 => 0.0082654700631212
502 => 0.0082834871347648
503 => 0.0083588770232464
504 => 0.0082816113656608
505 => 0.0085907290854835
506 => 0.0087962743316466
507 => 0.0090350257123267
508 => 0.0093839056498216
509 => 0.0095150877336395
510 => 0.0094913908643631
511 => 0.0097559076512601
512 => 0.010231238437436
513 => 0.0095874688064766
514 => 0.010265359791072
515 => 0.010050747331977
516 => 0.0095419050521756
517 => 0.0095091416082128
518 => 0.0098537355078744
519 => 0.01061801161139
520 => 0.010426569115807
521 => 0.010618324742731
522 => 0.010394631618225
523 => 0.010383523369159
524 => 0.010607460466966
525 => 0.011130701702166
526 => 0.010882129404727
527 => 0.01052574006392
528 => 0.010788892407139
529 => 0.010560925493843
530 => 0.010047252234264
531 => 0.010426422723339
601 => 0.010172882215449
602 => 0.010246878814606
603 => 0.010779783250887
604 => 0.010715662779223
605 => 0.010798640606952
606 => 0.010652186912919
607 => 0.010515376069064
608 => 0.010260008469303
609 => 0.010184406712484
610 => 0.010205300318203
611 => 0.010184396358651
612 => 0.010041520533534
613 => 0.010010666512703
614 => 0.0099592417929064
615 => 0.0099751804638793
616 => 0.0098784869458289
617 => 0.01006096759229
618 => 0.010094837608287
619 => 0.010227631805159
620 => 0.010241418939206
621 => 0.010611248887286
622 => 0.010407552766624
623 => 0.010544209710641
624 => 0.010531985827303
625 => 0.0095529332073236
626 => 0.0096878380201024
627 => 0.0098977075733238
628 => 0.009803161624069
629 => 0.0096694957721677
630 => 0.0095615534300478
701 => 0.009398009744065
702 => 0.0096281943415075
703 => 0.0099308626097415
704 => 0.010249095105967
705 => 0.010631430598763
706 => 0.010546097767647
707 => 0.010241947609876
708 => 0.010255591563772
709 => 0.010339933118058
710 => 0.01023070314202
711 => 0.010198489089664
712 => 0.010335507401945
713 => 0.010336450971757
714 => 0.010210768683442
715 => 0.010071095819595
716 => 0.010070510585196
717 => 0.010045657148154
718 => 0.010399052989462
719 => 0.010593384969832
720 => 0.0106156648182
721 => 0.010591885358521
722 => 0.010601037128778
723 => 0.010487959631214
724 => 0.010746421258556
725 => 0.01098361120701
726 => 0.010920039234
727 => 0.01082473580917
728 => 0.010748822040857
729 => 0.01090215636276
730 => 0.010895328626776
731 => 0.01098153955973
801 => 0.010977628533833
802 => 0.010948639039638
803 => 0.010920040269306
804 => 0.011033431161012
805 => 0.011000776405203
806 => 0.010968070927538
807 => 0.010902475085124
808 => 0.01091139064954
809 => 0.010816103680189
810 => 0.010772019568133
811 => 0.010109100295377
812 => 0.0099319466041846
813 => 0.0099876827617296
814 => 0.010006032551982
815 => 0.0099289350385466
816 => 0.010039473068087
817 => 0.010022245833272
818 => 0.010089266926342
819 => 0.010047395057109
820 => 0.010049113493228
821 => 0.010172249732618
822 => 0.010207996706772
823 => 0.010189815507204
824 => 0.010202548996166
825 => 0.010495986874836
826 => 0.010454269392105
827 => 0.010432107810864
828 => 0.010438246720322
829 => 0.010513226389702
830 => 0.01053421660339
831 => 0.010445279593037
901 => 0.010487222801258
902 => 0.010665811658477
903 => 0.01072830765125
904 => 0.010927764860402
905 => 0.010843031892885
906 => 0.010998562921919
907 => 0.011476612280736
908 => 0.011858511187058
909 => 0.011507301170164
910 => 0.012208609877092
911 => 0.012754679302195
912 => 0.012733720248133
913 => 0.012638500413053
914 => 0.012016814890581
915 => 0.011444730603993
916 => 0.011923303401706
917 => 0.011924523382186
918 => 0.011883413554438
919 => 0.011628083944976
920 => 0.011874528637487
921 => 0.011894090522223
922 => 0.011883141068696
923 => 0.011687380455774
924 => 0.011388490182451
925 => 0.011446892626416
926 => 0.011542557021008
927 => 0.011361444364361
928 => 0.01130356789656
929 => 0.011411171261651
930 => 0.011757891724028
1001 => 0.011692346229031
1002 => 0.011690634571266
1003 => 0.011971065994481
1004 => 0.011770337616348
1005 => 0.011447629268265
1006 => 0.011366141154374
1007 => 0.011076913247031
1008 => 0.011276683992827
1009 => 0.011283873386323
1010 => 0.011174460990458
1011 => 0.011456507481183
1012 => 0.011453908373118
1013 => 0.011721669538981
1014 => 0.01223352832161
1015 => 0.012082146492546
1016 => 0.01190610589564
1017 => 0.0119252463896
1018 => 0.012135170365576
1019 => 0.012008245537602
1020 => 0.012053888590693
1021 => 0.012135101279348
1022 => 0.012184098910812
1023 => 0.011918196384463
1024 => 0.011856201785983
1025 => 0.01172938259464
1026 => 0.011696297834811
1027 => 0.011799589419991
1028 => 0.011772375736641
1029 => 0.011283269145638
1030 => 0.011232154785515
1031 => 0.011233722389966
1101 => 0.011105192901081
1102 => 0.010909154579919
1103 => 0.011424331583092
1104 => 0.01138295565984
1105 => 0.011337279842811
1106 => 0.011342874869774
1107 => 0.011566495745883
1108 => 0.011436784344615
1109 => 0.011781643364167
1110 => 0.011710750717158
1111 => 0.011638039941256
1112 => 0.011627989097202
1113 => 0.011600001651871
1114 => 0.011504022288164
1115 => 0.011388121439021
1116 => 0.011311593659257
1117 => 0.010434347222086
1118 => 0.010597159058118
1119 => 0.010784459234706
1120 => 0.010849114505105
1121 => 0.010738517191078
1122 => 0.01150838934422
1123 => 0.011649052405272
1124 => 0.011222974818122
1125 => 0.011143273098199
1126 => 0.011513614575709
1127 => 0.011290253392366
1128 => 0.011390832919549
1129 => 0.01117343499584
1130 => 0.01161517079296
1201 => 0.011611805506295
1202 => 0.01143996030416
1203 => 0.01158520269226
1204 => 0.011559963253088
1205 => 0.011365950443113
1206 => 0.01162132134509
1207 => 0.011621448005871
1208 => 0.011456050735053
1209 => 0.011262902932856
1210 => 0.011228372667771
1211 => 0.011202358751517
1212 => 0.011384435090833
1213 => 0.011547684167325
1214 => 0.011851450225799
1215 => 0.011927824230203
1216 => 0.012225917053896
1217 => 0.012048417291263
1218 => 0.012127100637032
1219 => 0.012212522539302
1220 => 0.012253476940537
1221 => 0.012186743941459
1222 => 0.012649804796557
1223 => 0.012688901320545
1224 => 0.012702010046855
1225 => 0.012545868531898
1226 => 0.012684558742556
1227 => 0.012619670185926
1228 => 0.012788492183717
1229 => 0.012814965628598
1230 => 0.012792543562604
1231 => 0.012800946651864
]
'min_raw' => 0.0057403673055132
'max_raw' => 0.012814965628598
'avg_raw' => 0.0092776664670555
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.00574'
'max' => '$0.012814'
'avg' => '$0.009277'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00088515299138892
'max_diff' => -0.0012228868007869
'year' => 2031
]
6 => [
'items' => [
101 => 0.012405805901571
102 => 0.012385315769134
103 => 0.012105931359453
104 => 0.012219782571504
105 => 0.012006943187606
106 => 0.012074436748729
107 => 0.012104187267369
108 => 0.012088647284758
109 => 0.012226219548212
110 => 0.01210925502012
111 => 0.011800566399736
112 => 0.011491793677343
113 => 0.011487917287334
114 => 0.01140662287982
115 => 0.011347861913
116 => 0.011359181359867
117 => 0.011399072567044
118 => 0.011345543363521
119 => 0.011356966533092
120 => 0.011546667260154
121 => 0.011584710388083
122 => 0.011455424974972
123 => 0.010936325385533
124 => 0.010808937044223
125 => 0.010900501257736
126 => 0.010856739461167
127 => 0.0087622360789354
128 => 0.0092543085803829
129 => 0.008961935809226
130 => 0.0090966746335995
131 => 0.0087982377438103
201 => 0.0089406674700353
202 => 0.0089143659003023
203 => 0.0097056039211462
204 => 0.009693249827763
205 => 0.0096991630785014
206 => 0.0094169082138625
207 => 0.009866547877287
208 => 0.010088056544009
209 => 0.010047061185061
210 => 0.010057378833698
211 => 0.0098800874461112
212 => 0.0097008796466731
213 => 0.0095021106172136
214 => 0.0098713989053547
215 => 0.0098303403516747
216 => 0.0099245139014153
217 => 0.010164023753547
218 => 0.010199292489083
219 => 0.010246694027303
220 => 0.010229703950122
221 => 0.010634476517795
222 => 0.010585455889075
223 => 0.010703581500094
224 => 0.010460588156016
225 => 0.010185618122051
226 => 0.01023788093606
227 => 0.0102328476068
228 => 0.010168767548333
229 => 0.010110918936762
301 => 0.010014617297241
302 => 0.010319329934646
303 => 0.010306959158038
304 => 0.010507227651866
305 => 0.010471828250278
306 => 0.010235422382766
307 => 0.010243865664573
308 => 0.010300650792427
309 => 0.010497184768293
310 => 0.010555529433383
311 => 0.01052850185988
312 => 0.010592474121617
313 => 0.010643035188934
314 => 0.01059882381322
315 => 0.01122476365979
316 => 0.01096482979512
317 => 0.011091519752152
318 => 0.011121734560404
319 => 0.011044339964416
320 => 0.011061124080993
321 => 0.011086547444209
322 => 0.011240913127253
323 => 0.011646013345628
324 => 0.011825429474736
325 => 0.012365211751393
326 => 0.011810531462807
327 => 0.011777619029977
328 => 0.011874850117866
329 => 0.012191759456021
330 => 0.012448584708815
331 => 0.012533788461771
401 => 0.012545049544285
402 => 0.012704897449069
403 => 0.012796519287104
404 => 0.012685487709011
405 => 0.012591400072067
406 => 0.012254389835124
407 => 0.012293399687699
408 => 0.012562138887728
409 => 0.01294174883643
410 => 0.013267493664099
411 => 0.013153429178802
412 => 0.014023660684637
413 => 0.014109940583863
414 => 0.014098019491553
415 => 0.014294577942162
416 => 0.013904449446136
417 => 0.013737661955701
418 => 0.012611742887114
419 => 0.012928080219745
420 => 0.013387895110565
421 => 0.013327036885547
422 => 0.012993107020947
423 => 0.013267240348352
424 => 0.01317660329737
425 => 0.013105114094726
426 => 0.013432619990903
427 => 0.013072513804856
428 => 0.013384302775892
429 => 0.012984430195495
430 => 0.013153950215763
501 => 0.013057722453498
502 => 0.013119993608915
503 => 0.012755957706758
504 => 0.01295238264309
505 => 0.012747785783621
506 => 0.01274768877807
507 => 0.012743172291058
508 => 0.012983879588901
509 => 0.012991729045242
510 => 0.012813845988447
511 => 0.012788210260908
512 => 0.012882998981851
513 => 0.012772026214832
514 => 0.012823949674066
515 => 0.012773598923517
516 => 0.012762263909019
517 => 0.012671944585008
518 => 0.012633032536843
519 => 0.012648290953568
520 => 0.012596206111031
521 => 0.012564823109411
522 => 0.012736929422137
523 => 0.012644979961996
524 => 0.012722836848629
525 => 0.012634109099988
526 => 0.012326540066359
527 => 0.012149653862635
528 => 0.011568684469773
529 => 0.011733446668898
530 => 0.011842684177377
531 => 0.011806581181477
601 => 0.011884144386676
602 => 0.011888906137533
603 => 0.011863689548859
604 => 0.01183449196962
605 => 0.011820280202774
606 => 0.011926203069363
607 => 0.011987694858617
608 => 0.011853647622762
609 => 0.011822242230922
610 => 0.011957771387322
611 => 0.012040444094433
612 => 0.012650852913963
613 => 0.012605631857018
614 => 0.012719127835766
615 => 0.012706349930297
616 => 0.012825311797353
617 => 0.013019764172953
618 => 0.012624388123619
619 => 0.012693011734708
620 => 0.012676186810019
621 => 0.012859876926036
622 => 0.012860450386528
623 => 0.012750318985974
624 => 0.012810023004892
625 => 0.012776697859426
626 => 0.012836920901447
627 => 0.012605027902232
628 => 0.012887448543973
629 => 0.013047562849056
630 => 0.013049786036337
701 => 0.013125678946201
702 => 0.013202790538043
703 => 0.01335079952358
704 => 0.013198662647768
705 => 0.01292498321841
706 => 0.01294474198923
707 => 0.012784283839933
708 => 0.012786981170411
709 => 0.012772582608922
710 => 0.012815793775825
711 => 0.012614510323393
712 => 0.012661751147359
713 => 0.012595613717165
714 => 0.012692867964851
715 => 0.012588238471044
716 => 0.012676178696531
717 => 0.012714130782587
718 => 0.012854174797183
719 => 0.012567553856221
720 => 0.011983114355068
721 => 0.012105970623854
722 => 0.011924256552167
723 => 0.011941074881336
724 => 0.011975050582875
725 => 0.011864924218031
726 => 0.011885932857963
727 => 0.011885182281509
728 => 0.011878714219123
729 => 0.011850066098346
730 => 0.01180852065536
731 => 0.011974024913202
801 => 0.012002147311672
802 => 0.012064659919842
803 => 0.012250655039048
804 => 0.012232069740572
805 => 0.012262383133482
806 => 0.012196209166962
807 => 0.011944144501852
808 => 0.011957832825887
809 => 0.011787139205828
810 => 0.012060294900205
811 => 0.011995608026298
812 => 0.011953903977876
813 => 0.011942524641879
814 => 0.012128980807011
815 => 0.01218477141396
816 => 0.012150006451677
817 => 0.01207870249978
818 => 0.012215627166544
819 => 0.012252262430982
820 => 0.012260463715634
821 => 0.012503067972439
822 => 0.012274022598592
823 => 0.012329156096592
824 => 0.012759291909439
825 => 0.012369218081872
826 => 0.012575848888019
827 => 0.012565735385313
828 => 0.012671440713732
829 => 0.012557064463075
830 => 0.01255848229378
831 => 0.012652341464318
901 => 0.012520533186889
902 => 0.012487895603773
903 => 0.012442807016454
904 => 0.012541256297332
905 => 0.012600272188741
906 => 0.013075896931098
907 => 0.013383172205785
908 => 0.01336983257573
909 => 0.013491731823691
910 => 0.013436815096016
911 => 0.013259474496049
912 => 0.013562173275809
913 => 0.013466386716438
914 => 0.013474283244012
915 => 0.013473989334862
916 => 0.013537679023037
917 => 0.013492549041891
918 => 0.013403593216553
919 => 0.013462646244807
920 => 0.013638012626875
921 => 0.014182355257714
922 => 0.014486976605512
923 => 0.014164016670083
924 => 0.014386790108936
925 => 0.014253205427916
926 => 0.014228929117575
927 => 0.014368847300003
928 => 0.014509010390686
929 => 0.014500082607752
930 => 0.014398331401369
1001 => 0.014340854726726
1002 => 0.014776087363228
1003 => 0.015096759355809
1004 => 0.015074891675727
1005 => 0.015171408503857
1006 => 0.0154547848964
1007 => 0.015480693282346
1008 => 0.015477429421214
1009 => 0.015413212783388
1010 => 0.015692233642921
1011 => 0.015924997752848
1012 => 0.015398348487128
1013 => 0.015598889633169
1014 => 0.015688919014659
1015 => 0.0158211088572
1016 => 0.016044135279157
1017 => 0.01628640112824
1018 => 0.01632066017561
1019 => 0.016296351742054
1020 => 0.016136570902129
1021 => 0.016401661085028
1022 => 0.01655694469704
1023 => 0.016649412534391
1024 => 0.016883895584732
1025 => 0.015689475005469
1026 => 0.014844004752913
1027 => 0.014711972364238
1028 => 0.014980465418526
1029 => 0.01505126489575
1030 => 0.015022725715256
1031 => 0.014071072079211
1101 => 0.014706962104793
1102 => 0.015391126305168
1103 => 0.015417407838451
1104 => 0.015759914742357
1105 => 0.015871449030101
1106 => 0.016147211981152
1107 => 0.016129962933481
1108 => 0.016197106823715
1109 => 0.016181671606121
1110 => 0.016692464404202
1111 => 0.01725594471395
1112 => 0.017236433182581
1113 => 0.017155426221258
1114 => 0.017275735372562
1115 => 0.017857307438441
1116 => 0.017803765602118
1117 => 0.017855776935423
1118 => 0.018541483177061
1119 => 0.019432998831765
1120 => 0.019018800303447
1121 => 0.019917491927482
1122 => 0.020483170667216
1123 => 0.021461453555313
1124 => 0.021338967719578
1125 => 0.021719806068943
1126 => 0.021119692510048
1127 => 0.019741710475865
1128 => 0.019523639544252
1129 => 0.019960223071777
1130 => 0.021033521072998
1201 => 0.019926421098175
1202 => 0.020150385981192
1203 => 0.020085884079816
1204 => 0.020082447047607
1205 => 0.0202136245876
1206 => 0.02002334472408
1207 => 0.019248110329407
1208 => 0.019603395684001
1209 => 0.019466202946388
1210 => 0.019618428517165
1211 => 0.02043992714005
1212 => 0.020076723016791
1213 => 0.019694116977246
1214 => 0.020173989857913
1215 => 0.020785032937215
1216 => 0.020746794959462
1217 => 0.020672597300387
1218 => 0.02109084561973
1219 => 0.021781669308025
1220 => 0.021968396175017
1221 => 0.022106234130768
1222 => 0.022125239656074
1223 => 0.022321008378601
1224 => 0.021268310617504
1225 => 0.022938968999561
1226 => 0.023227445551136
1227 => 0.023173223915568
1228 => 0.023493853461694
1229 => 0.023399516115637
1230 => 0.023262836102277
1231 => 0.023771102132747
]
'min_raw' => 0.0087622360789354
'max_raw' => 0.023771102132747
'avg_raw' => 0.016266669105841
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.008762'
'max' => '$0.023771'
'avg' => '$0.016266'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0030218687734222
'max_diff' => 0.01095613650415
'year' => 2032
]
7 => [
'items' => [
101 => 0.023188416143767
102 => 0.022361366740534
103 => 0.021907631080739
104 => 0.022505146799369
105 => 0.022870028798312
106 => 0.023111192588759
107 => 0.023184168606034
108 => 0.021350028548052
109 => 0.020361528782871
110 => 0.020995145799179
111 => 0.021768202288986
112 => 0.021264016249671
113 => 0.021283779387861
114 => 0.020564942593559
115 => 0.021831803394863
116 => 0.02164723243209
117 => 0.02260478691346
118 => 0.022376258851626
119 => 0.023157107359133
120 => 0.022951483778023
121 => 0.023805015766949
122 => 0.024145512785788
123 => 0.024717260274548
124 => 0.025137840054711
125 => 0.025384812546031
126 => 0.025369985244023
127 => 0.026348613295842
128 => 0.025771550524344
129 => 0.02504662368009
130 => 0.025033512040593
131 => 0.025408961925525
201 => 0.026195801884696
202 => 0.026399818038054
203 => 0.026513835235385
204 => 0.026339213928705
205 => 0.025712853648706
206 => 0.02544239445552
207 => 0.025672833524071
208 => 0.025391026345088
209 => 0.025877504597142
210 => 0.026545543143359
211 => 0.026407595825276
212 => 0.02686873302741
213 => 0.027345961518571
214 => 0.028028419694603
215 => 0.028206839533171
216 => 0.028501760741624
217 => 0.028805331541694
218 => 0.028902830301213
219 => 0.029088985685225
220 => 0.029088004554462
221 => 0.029648996333884
222 => 0.030267787639055
223 => 0.030501367031705
224 => 0.031038469965462
225 => 0.030118700013735
226 => 0.030816356087676
227 => 0.031445659329834
228 => 0.030695378061406
301 => 0.03172946599682
302 => 0.031769617288058
303 => 0.032375854115951
304 => 0.031761316949958
305 => 0.031396406742464
306 => 0.032449888838493
307 => 0.032959635640386
308 => 0.032806095755198
309 => 0.031637649647724
310 => 0.030957563896163
311 => 0.029177648305584
312 => 0.031286035209257
313 => 0.032312968967546
314 => 0.031634990137379
315 => 0.031976923223642
316 => 0.033842399270117
317 => 0.034552651767985
318 => 0.034404924213468
319 => 0.034429887738379
320 => 0.034813127094234
321 => 0.036512621451864
322 => 0.035494245038801
323 => 0.036272755648751
324 => 0.03668567486914
325 => 0.037069217253275
326 => 0.036127358377654
327 => 0.034902013819127
328 => 0.034513895760976
329 => 0.031567578504222
330 => 0.0314142098958
331 => 0.031328119448349
401 => 0.030785331354903
402 => 0.030358848595627
403 => 0.030019693671161
404 => 0.029129649869127
405 => 0.029430013524804
406 => 0.028011469470941
407 => 0.028919003686488
408 => 0.026654973124579
409 => 0.028540525052568
410 => 0.02751430486369
411 => 0.028203384120418
412 => 0.028200979987807
413 => 0.026932166603393
414 => 0.026200341522723
415 => 0.026666688947184
416 => 0.027166650404911
417 => 0.027247767469355
418 => 0.027895980549627
419 => 0.028076882887038
420 => 0.027528740359162
421 => 0.026608056123473
422 => 0.026821910072851
423 => 0.026196007779264
424 => 0.025099138084736
425 => 0.025886929048854
426 => 0.026155915520727
427 => 0.026274715270528
428 => 0.025196069902295
429 => 0.024857136109066
430 => 0.024676690601481
501 => 0.026468816551482
502 => 0.026566993256519
503 => 0.026064707352764
504 => 0.028335087266439
505 => 0.02782123036819
506 => 0.028395334421531
507 => 0.026802505068456
508 => 0.026863353294773
509 => 0.026109282352805
510 => 0.026531511693268
511 => 0.026233093604516
512 => 0.026497399735111
513 => 0.026655823740014
514 => 0.027409770946361
515 => 0.028549133918583
516 => 0.027297156375656
517 => 0.026751651831555
518 => 0.027090079782681
519 => 0.027991358014046
520 => 0.029356840670146
521 => 0.028548447454835
522 => 0.028907198636383
523 => 0.028985569809822
524 => 0.028389490581195
525 => 0.029378818961544
526 => 0.029909008077862
527 => 0.030452872404026
528 => 0.030925094559701
529 => 0.030235641032323
530 => 0.030973455135899
531 => 0.030378907210139
601 => 0.029845536257497
602 => 0.029846345161067
603 => 0.029511753771168
604 => 0.028863440792012
605 => 0.02874388193175
606 => 0.029365842221453
607 => 0.029864595473936
608 => 0.029905675180677
609 => 0.030181810608119
610 => 0.030345224709658
611 => 0.031946905055438
612 => 0.032591114140306
613 => 0.033378840815028
614 => 0.033685704748675
615 => 0.034609255172144
616 => 0.033863413198095
617 => 0.033702045595444
618 => 0.031461814359149
619 => 0.031828652098592
620 => 0.032415994714018
621 => 0.031471499422546
622 => 0.032070564292137
623 => 0.032188832387323
624 => 0.031439405833957
625 => 0.03183970693692
626 => 0.030776625888457
627 => 0.028572306180374
628 => 0.029381272999517
629 => 0.029976944873694
630 => 0.029126847663432
701 => 0.030650614009521
702 => 0.029760461167058
703 => 0.029478325450869
704 => 0.02837761343337
705 => 0.028897107135338
706 => 0.029599729805684
707 => 0.029165590684063
708 => 0.030066494547744
709 => 0.031342414681
710 => 0.032251711350316
711 => 0.032321515857804
712 => 0.03173689901758
713 => 0.032673751235015
714 => 0.032680575180634
715 => 0.031623802052214
716 => 0.030976534395194
717 => 0.030829473821656
718 => 0.031196859967277
719 => 0.031642934571285
720 => 0.032346269893805
721 => 0.032771280698872
722 => 0.033879483470172
723 => 0.034179331365423
724 => 0.034508773294102
725 => 0.034949009306944
726 => 0.035477625514559
727 => 0.034321043346435
728 => 0.034366996512114
729 => 0.033290003211127
730 => 0.03213908141256
731 => 0.033012487593245
801 => 0.034154349990135
802 => 0.033892405494643
803 => 0.033862931387859
804 => 0.033912498660034
805 => 0.03371500106474
806 => 0.032821726760828
807 => 0.032373129997597
808 => 0.032951934271405
809 => 0.03325954298332
810 => 0.033736617269201
811 => 0.033677807793649
812 => 0.034906699920041
813 => 0.035384210240588
814 => 0.035262042666773
815 => 0.035284524440482
816 => 0.036149034066966
817 => 0.037110546571582
818 => 0.038011129914904
819 => 0.038927241972686
820 => 0.037822833130568
821 => 0.037262082431008
822 => 0.037840634016977
823 => 0.037533646401758
824 => 0.039297688297245
825 => 0.039419826730701
826 => 0.04118374106588
827 => 0.042857905812977
828 => 0.041806392931102
829 => 0.04279792221753
830 => 0.04387034198137
831 => 0.045939213699653
901 => 0.04524249048872
902 => 0.04470881142819
903 => 0.044204487294707
904 => 0.045253905757283
905 => 0.046603965844517
906 => 0.046894755856593
907 => 0.04736594676649
908 => 0.046870547139216
909 => 0.047467201423788
910 => 0.049573653231503
911 => 0.049004471358894
912 => 0.048196141599237
913 => 0.049858982995646
914 => 0.050460758832874
915 => 0.054684336810993
916 => 0.060016778475672
917 => 0.057809112611795
918 => 0.056438743169154
919 => 0.056760812493772
920 => 0.058708039675171
921 => 0.059333427243935
922 => 0.057633408248012
923 => 0.058233883697273
924 => 0.06154256246014
925 => 0.063317562461295
926 => 0.060906874045422
927 => 0.054255880315318
928 => 0.048123360348507
929 => 0.049749980794679
930 => 0.049565572515992
1001 => 0.053120335080612
1002 => 0.048990896559473
1003 => 0.049060425713633
1004 => 0.05268869700353
1005 => 0.051720736427703
1006 => 0.050152764261887
1007 => 0.04813480828054
1008 => 0.044404430010684
1009 => 0.041100329947778
1010 => 0.047580431059936
1011 => 0.04730099731668
1012 => 0.046896335846686
1013 => 0.047796866159214
1014 => 0.052169585736864
1015 => 0.052068780397487
1016 => 0.051427508259707
1017 => 0.0519139075243
1018 => 0.050067496119098
1019 => 0.050543358380225
1020 => 0.048122388926013
1021 => 0.049216768227932
1022 => 0.050149400097831
1023 => 0.050336639753564
1024 => 0.050758500258625
1025 => 0.047153748431552
1026 => 0.048772176171954
1027 => 0.049722850843269
1028 => 0.045427668092429
1029 => 0.04963794889035
1030 => 0.047090997722092
1031 => 0.046226524241662
1101 => 0.04739042389734
1102 => 0.046936851069593
1103 => 0.046546895786986
1104 => 0.046329294039009
1105 => 0.047183933491221
1106 => 0.047144063539261
1107 => 0.045745707517071
1108 => 0.043921609090409
1109 => 0.044533836396387
1110 => 0.044311408476463
1111 => 0.043505301000889
1112 => 0.044048520109638
1113 => 0.041656458071605
1114 => 0.037541039663734
1115 => 0.040259811122648
1116 => 0.040155141378934
1117 => 0.040102362147759
1118 => 0.042145443757809
1119 => 0.041949048602915
1120 => 0.041592589473676
1121 => 0.043498754349442
1122 => 0.042802978528252
1123 => 0.044947195663758
1124 => 0.046359515748472
1125 => 0.04600130569122
1126 => 0.047329599557229
1127 => 0.044547940876991
1128 => 0.045471896309791
1129 => 0.045662322243944
1130 => 0.043475232570761
1201 => 0.041981181279116
1202 => 0.041881545091395
1203 => 0.039291066044633
1204 => 0.040674879041797
1205 => 0.041892577213229
1206 => 0.041309394286308
1207 => 0.04112477599374
1208 => 0.04206795081165
1209 => 0.042141243572748
1210 => 0.040470160852502
1211 => 0.040817631866348
1212 => 0.042266643756338
1213 => 0.040781120484502
1214 => 0.037894991426173
1215 => 0.037179191515851
1216 => 0.037083690613005
1217 => 0.035142384485405
1218 => 0.03722702468859
1219 => 0.036317023375016
1220 => 0.039191706621106
1221 => 0.037549702968175
1222 => 0.037478919472528
1223 => 0.037371919837177
1224 => 0.035700957458806
1225 => 0.03606679202447
1226 => 0.037282881838915
1227 => 0.037716796384942
1228 => 0.037671535542834
1229 => 0.037276922335389
1230 => 0.037457574241011
1231 => 0.036875631509707
]
'min_raw' => 0.020361528782871
'max_raw' => 0.063317562461295
'avg_raw' => 0.041839545622083
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.020361'
'max' => '$0.063317'
'avg' => '$0.041839'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.011599292703935
'max_diff' => 0.039546460328547
'year' => 2033
]
8 => [
'items' => [
101 => 0.036670135419193
102 => 0.036021533231378
103 => 0.035068267196218
104 => 0.035200824685127
105 => 0.033312155233848
106 => 0.032283107877517
107 => 0.03199828113191
108 => 0.031617398903957
109 => 0.032041302793047
110 => 0.033306804870591
111 => 0.03178034087383
112 => 0.029163325420381
113 => 0.029320612508311
114 => 0.029673989895933
115 => 0.029015473471925
116 => 0.028392242941695
117 => 0.028934091323438
118 => 0.027825227376307
119 => 0.029807990806284
120 => 0.029754362612133
121 => 0.030493414205561
122 => 0.030955558333796
123 => 0.029890465739152
124 => 0.029622597831915
125 => 0.029775187565795
126 => 0.027253219162599
127 => 0.030287315582443
128 => 0.030313554574275
129 => 0.030088880396052
130 => 0.031704443072402
131 => 0.035113784226135
201 => 0.03383105294367
202 => 0.033334340620342
203 => 0.0323900901306
204 => 0.033648247844135
205 => 0.033551640962053
206 => 0.033114748004208
207 => 0.032850513780114
208 => 0.03333737343987
209 => 0.032790186480433
210 => 0.032691896666825
211 => 0.032096367336738
212 => 0.031883790460755
213 => 0.031726407004707
214 => 0.031553143283776
215 => 0.03193531987752
216 => 0.031069257436579
217 => 0.030024871033953
218 => 0.029938041604992
219 => 0.030177785292474
220 => 0.030071716557582
221 => 0.029937533788697
222 => 0.029681342340393
223 => 0.029605335810345
224 => 0.029852320159874
225 => 0.029573489229338
226 => 0.02998491945605
227 => 0.029873033199857
228 => 0.029248045667954
301 => 0.028469079803183
302 => 0.02846214537305
303 => 0.028294318455245
304 => 0.028080565642475
305 => 0.028021104499964
306 => 0.028888458364066
307 => 0.030683854905041
308 => 0.03033137560385
309 => 0.030586078022492
310 => 0.031838961833965
311 => 0.032237215922101
312 => 0.031954544603507
313 => 0.031567606668208
314 => 0.031584629973617
315 => 0.032906914032614
316 => 0.032989383267427
317 => 0.033197756418216
318 => 0.033465574803225
319 => 0.032000155232553
320 => 0.031515608843622
321 => 0.031286003882936
322 => 0.030578909472326
323 => 0.031341450172476
324 => 0.030897150361747
325 => 0.030957101585657
326 => 0.030918058272437
327 => 0.030939378561552
328 => 0.029807436583496
329 => 0.030219856747181
330 => 0.029534128234849
331 => 0.028616014733474
401 => 0.028612936895086
402 => 0.028837643873857
403 => 0.028703979370099
404 => 0.028344291627315
405 => 0.028395383573499
406 => 0.027947764363453
407 => 0.028449732650006
408 => 0.028464127304335
409 => 0.028270842171615
410 => 0.029044193575325
411 => 0.029361036276419
412 => 0.029233811861494
413 => 0.029352109872314
414 => 0.030346022710163
415 => 0.03050807387019
416 => 0.030580046290975
417 => 0.030483612781641
418 => 0.029370276774438
419 => 0.029419657960628
420 => 0.029057331581299
421 => 0.02875120397178
422 => 0.028763447470733
423 => 0.02892083685583
424 => 0.029608165531311
425 => 0.031054608208624
426 => 0.031109499650893
427 => 0.031176029680218
428 => 0.030905418615638
429 => 0.030823799729162
430 => 0.030931476108046
501 => 0.031474683927302
502 => 0.032871961917912
503 => 0.032378070554971
504 => 0.031976529189023
505 => 0.032328789221735
506 => 0.032274561550804
507 => 0.031816825435351
508 => 0.031803978307128
509 => 0.030925436354486
510 => 0.030600659398027
511 => 0.030329251464075
512 => 0.030032881085484
513 => 0.02985718279063
514 => 0.030127135224973
515 => 0.03018887654069
516 => 0.029598620825039
517 => 0.029518171152065
518 => 0.030000186711021
519 => 0.029788069634876
520 => 0.030006237307941
521 => 0.0300568540795
522 => 0.030048703613476
523 => 0.02982722902449
524 => 0.029968390323042
525 => 0.029634501769757
526 => 0.029271448116498
527 => 0.029039842504761
528 => 0.028837735890494
529 => 0.028949876386595
530 => 0.028550115994041
531 => 0.028422224598876
601 => 0.029920568051322
602 => 0.031027410469551
603 => 0.031011316542432
604 => 0.030913348900119
605 => 0.030767788855652
606 => 0.031464035303412
607 => 0.031221476962899
608 => 0.031397958422049
609 => 0.031442880360307
610 => 0.031578845537789
611 => 0.031627441402137
612 => 0.031480550948079
613 => 0.030987568643103
614 => 0.029759103610453
615 => 0.029187249821577
616 => 0.028998528546269
617 => 0.029005388206194
618 => 0.028816168162601
619 => 0.028871901945686
620 => 0.028796786227324
621 => 0.028654535229189
622 => 0.028941092788313
623 => 0.028974115877533
624 => 0.028907229919126
625 => 0.028922983983638
626 => 0.028369196815391
627 => 0.028411300051031
628 => 0.028176863884771
629 => 0.028132909929767
630 => 0.027540275716154
701 => 0.026490338303036
702 => 0.027072105549795
703 => 0.026369412524565
704 => 0.026103292028373
705 => 0.027363065067115
706 => 0.02723661879469
707 => 0.027020197741173
708 => 0.026700065896921
709 => 0.026581325881845
710 => 0.025859899138767
711 => 0.025817273398124
712 => 0.026174831972154
713 => 0.026009830993078
714 => 0.025778107127699
715 => 0.024938826776766
716 => 0.023995197786142
717 => 0.024023680013929
718 => 0.024323830839005
719 => 0.025196559843766
720 => 0.024855569523241
721 => 0.024608177133287
722 => 0.024561847975236
723 => 0.0251417543849
724 => 0.025962443448724
725 => 0.026347492395587
726 => 0.025965920583356
727 => 0.02552759143075
728 => 0.025554270495248
729 => 0.025731754358917
730 => 0.025750405403502
731 => 0.025465098186121
801 => 0.025545410496617
802 => 0.025423408753062
803 => 0.02467468427806
804 => 0.024661142226538
805 => 0.02447739316556
806 => 0.02447182931702
807 => 0.024159226325944
808 => 0.02411549100657
809 => 0.023494798794143
810 => 0.023903340287992
811 => 0.023629312103309
812 => 0.023216286992279
813 => 0.023145081307459
814 => 0.02314294077859
815 => 0.023567025216893
816 => 0.023898384614416
817 => 0.023634078940903
818 => 0.023573901662395
819 => 0.024216437560268
820 => 0.024134669010419
821 => 0.0240638579736
822 => 0.025888959744455
823 => 0.024444249278356
824 => 0.023814273053946
825 => 0.023034557846999
826 => 0.023288437050047
827 => 0.02334193312839
828 => 0.021466858609912
829 => 0.020706141111291
830 => 0.020445091532799
831 => 0.020294853809677
901 => 0.02036331902667
902 => 0.019678584054648
903 => 0.020138737280318
904 => 0.019545814673754
905 => 0.019446409269226
906 => 0.02050662833878
907 => 0.020654151628598
908 => 0.020024771442339
909 => 0.020428935409314
910 => 0.02028237993659
911 => 0.019555978630052
912 => 0.019528235443189
913 => 0.019163752801809
914 => 0.018593408045796
915 => 0.018332745187905
916 => 0.018196989708337
917 => 0.018253005065028
918 => 0.018224681986587
919 => 0.018039854741288
920 => 0.018235276067936
921 => 0.017736055332018
922 => 0.01753726161248
923 => 0.017447471101345
924 => 0.017004383964144
925 => 0.017709532641175
926 => 0.017848455813779
927 => 0.017987652707948
928 => 0.019199266637939
929 => 0.019138737829982
930 => 0.019685888775187
1001 => 0.019664627495603
1002 => 0.019508571182773
1003 => 0.018850195268959
1004 => 0.019112612173783
1005 => 0.018304933729377
1006 => 0.018910101336722
1007 => 0.018633928113133
1008 => 0.018816726892021
1009 => 0.018488038205279
1010 => 0.018669948095745
1011 => 0.017881399651713
1012 => 0.017145064209852
1013 => 0.017441387086628
1014 => 0.017763523942316
1015 => 0.018461998724391
1016 => 0.018045992906479
1017 => 0.018195604329521
1018 => 0.017694431106978
1019 => 0.016660367595817
1020 => 0.016666220282992
1021 => 0.016507152140098
1022 => 0.016369694040308
1023 => 0.018093776178968
1024 => 0.017879359311321
1025 => 0.01753771409491
1026 => 0.017995019793517
1027 => 0.018115938678646
1028 => 0.018119381069314
1029 => 0.018453019502249
1030 => 0.018631082393714
1031 => 0.018662466750104
1101 => 0.019187454033063
1102 => 0.019363422845561
1103 => 0.020088213480202
1104 => 0.01861597500143
1105 => 0.018585655218793
1106 => 0.018001455022513
1107 => 0.017630946022193
1108 => 0.018026824090749
1109 => 0.018377518016745
1110 => 0.018012352060349
1111 => 0.018060035025181
1112 => 0.017569829563874
1113 => 0.017745054949981
1114 => 0.017895982657904
1115 => 0.017812649248709
1116 => 0.017687895101762
1117 => 0.018348765114074
1118 => 0.018311476238009
1119 => 0.01892689358681
1120 => 0.019406655419117
1121 => 0.020266474390297
1122 => 0.019369208470494
1123 => 0.019336508534067
1124 => 0.019656155657872
1125 => 0.019363373909252
1126 => 0.019548401867897
1127 => 0.020236663525638
1128 => 0.020251205409917
1129 => 0.020007610112075
1130 => 0.019992787316064
1201 => 0.020039572457655
1202 => 0.020313594493261
1203 => 0.020217842774174
1204 => 0.020328649087639
1205 => 0.020467214079353
1206 => 0.021040377635423
1207 => 0.021178565428355
1208 => 0.020842840733686
1209 => 0.020873152914664
1210 => 0.020747582663009
1211 => 0.0206262833733
1212 => 0.020898946462226
1213 => 0.021397243616445
1214 => 0.02139414373571
1215 => 0.021509738989977
1216 => 0.021581753875742
1217 => 0.02127261326792
1218 => 0.021071374099643
1219 => 0.021148542001941
1220 => 0.021271935158215
1221 => 0.021108527264413
1222 => 0.020099898045972
1223 => 0.020405851719363
1224 => 0.020354926067741
1225 => 0.020282401747059
1226 => 0.020590040531524
1227 => 0.020560368020272
1228 => 0.019671561107811
1229 => 0.019728459642619
1230 => 0.019675021296166
1231 => 0.019847691526014
]
'min_raw' => 0.016369694040308
'max_raw' => 0.036670135419193
'avg_raw' => 0.026519914729751
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.016369'
'max' => '$0.03667'
'avg' => '$0.026519'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0039918347425625
'max_diff' => -0.026647427042102
'year' => 2034
]
9 => [
'items' => [
101 => 0.019354049150184
102 => 0.019505890220257
103 => 0.019601123515985
104 => 0.019657216658786
105 => 0.01985986355401
106 => 0.019836085279797
107 => 0.019858385463098
108 => 0.020158857311918
109 => 0.021678540813761
110 => 0.021761253833774
111 => 0.021353944672365
112 => 0.02151665664853
113 => 0.021204285235492
114 => 0.021413982257771
115 => 0.021557451634688
116 => 0.020909141107976
117 => 0.020870752366085
118 => 0.020557091685108
119 => 0.020725635168416
120 => 0.020457470367767
121 => 0.02052326862984
122 => 0.020339290952896
123 => 0.020670414141805
124 => 0.021040661318348
125 => 0.021134200376646
126 => 0.020888139385359
127 => 0.020709975011458
128 => 0.02039717706188
129 => 0.020917367023185
130 => 0.021069486420372
131 => 0.02091656800475
201 => 0.020881133466517
202 => 0.020813985080595
203 => 0.020895379314022
204 => 0.021068657945466
205 => 0.020986942942831
206 => 0.021040917141704
207 => 0.020835223153551
208 => 0.021272715606324
209 => 0.021967558909621
210 => 0.02196979294446
211 => 0.021888077501351
212 => 0.021854641302614
213 => 0.021938486306152
214 => 0.021983968781069
215 => 0.022255108147966
216 => 0.022546051491316
217 => 0.023903757126203
218 => 0.023522518816873
219 => 0.024727156026415
220 => 0.025679867656597
221 => 0.025965544217459
222 => 0.025702735223587
223 => 0.024803679852215
224 => 0.024759567906526
225 => 0.026103136202742
226 => 0.025723516619734
227 => 0.025678362078275
228 => 0.025197994046951
301 => 0.025481951048202
302 => 0.02541984548663
303 => 0.025321808819381
304 => 0.025863578997152
305 => 0.026877724405781
306 => 0.026719660333251
307 => 0.026601672835488
308 => 0.026084685965937
309 => 0.026396027534605
310 => 0.026285164765357
311 => 0.026761501577297
312 => 0.026479330202056
313 => 0.025720640628027
314 => 0.025841464443365
315 => 0.02582320216674
316 => 0.026199038525594
317 => 0.026086221779498
318 => 0.025801172886421
319 => 0.026874258167026
320 => 0.026804577977718
321 => 0.026903368555048
322 => 0.026946859222389
323 => 0.02760002732281
324 => 0.027867609394505
325 => 0.027928355209463
326 => 0.028182537482032
327 => 0.027922030922966
328 => 0.028964242897259
329 => 0.029657253045408
330 => 0.03046221999446
331 => 0.031638493061744
401 => 0.032080782616177
402 => 0.032000886966949
403 => 0.032892723781944
404 => 0.034495334714072
405 => 0.032324820456732
406 => 0.034610377240132
407 => 0.033886796350529
408 => 0.032171199077946
409 => 0.032060734839155
410 => 0.033222557230642
411 => 0.035799367473699
412 => 0.035153905733753
413 => 0.035800423217875
414 => 0.035046226230849
415 => 0.035008773993572
416 => 0.035763793553615
417 => 0.037527937909629
418 => 0.036689859054049
419 => 0.035488267509209
420 => 0.036375504007084
421 => 0.035606897642763
422 => 0.033875012384572
423 => 0.035153412161325
424 => 0.03429858263734
425 => 0.034548067337676
426 => 0.036344791850798
427 => 0.036128605203835
428 => 0.036408370743349
429 => 0.035914591888846
430 => 0.035453324576963
501 => 0.034592334885171
502 => 0.034337438283711
503 => 0.034407882534135
504 => 0.034337403375039
505 => 0.033855687555385
506 => 0.033751661069995
507 => 0.033578279036841
508 => 0.033632017378829
509 => 0.033306008431796
510 => 0.033921254671733
511 => 0.034035449795396
512 => 0.034483174701543
513 => 0.03452965898657
514 => 0.035776566477225
515 => 0.035089790784801
516 => 0.03555053921264
517 => 0.035509325536521
518 => 0.032208381272989
519 => 0.032663222268026
520 => 0.033370812119336
521 => 0.033052043850437
522 => 0.032601380098499
523 => 0.032237444955749
524 => 0.031686046000202
525 => 0.032462129441455
526 => 0.033482596639429
527 => 0.034555539718738
528 => 0.035844610526512
529 => 0.035556904928655
530 => 0.034531441436646
531 => 0.034577442979796
601 => 0.034861806418609
602 => 0.034493529928203
603 => 0.034384918001571
604 => 0.034846884807739
605 => 0.034850066119241
606 => 0.034426319509328
607 => 0.033955402697221
608 => 0.033953429538584
609 => 0.033869634440386
610 => 0.035061133192666
611 => 0.035716337032309
612 => 0.035791455096611
613 => 0.035711280988072
614 => 0.035742136820452
615 => 0.035360888142595
616 => 0.036232309564393
617 => 0.03703201203568
618 => 0.036817674690224
619 => 0.036496352539535
620 => 0.036240403969541
621 => 0.036757381341295
622 => 0.036734361152729
623 => 0.037025027332238
624 => 0.037011841035367
625 => 0.036914100931706
626 => 0.03681767818083
627 => 0.037199983488917
628 => 0.037089885699823
629 => 0.036979616898454
630 => 0.036758455935998
701 => 0.03678851538389
702 => 0.036467248714001
703 => 0.036318616052348
704 => 0.034083537440707
705 => 0.033486251402376
706 => 0.033674169748914
707 => 0.033736037347892
708 => 0.033476097698567
709 => 0.033848784382681
710 => 0.033790701557735
711 => 0.034016667852285
712 => 0.033875493921766
713 => 0.033881287749118
714 => 0.034296450177318
715 => 0.034416973596452
716 => 0.034355674412738
717 => 0.034398606259798
718 => 0.035387952554913
719 => 0.035247299149261
720 => 0.035172579830835
721 => 0.03519327759268
722 => 0.035446076782906
723 => 0.035516846753845
724 => 0.035216989414058
725 => 0.035358403868956
726 => 0.035960528669745
727 => 0.036171238272709
728 => 0.036843722179023
729 => 0.036558039063173
730 => 0.037082422786392
731 => 0.038694199575982
801 => 0.039981798401977
802 => 0.03879766930932
803 => 0.041162180578539
804 => 0.043003291770622
805 => 0.042932626856539
806 => 0.04261158653453
807 => 0.040515530390817
808 => 0.038586708276935
809 => 0.04020024987731
810 => 0.040204363126677
811 => 0.040065758472226
812 => 0.039204896867383
813 => 0.040035802354403
814 => 0.040101756614557
815 => 0.040064839767524
816 => 0.039404819193488
817 => 0.038397089769126
818 => 0.038593997686483
819 => 0.038916536871926
820 => 0.038305902905159
821 => 0.03811076835316
822 => 0.038473560611193
823 => 0.039642552857346
824 => 0.039421561644722
825 => 0.039415790671064
826 => 0.040361284793529
827 => 0.039684515052247
828 => 0.038596481325907
829 => 0.038321738460604
830 => 0.037346586377751
831 => 0.03802012739475
901 => 0.03804436693687
902 => 0.037675475405282
903 => 0.038626414840618
904 => 0.038617651766312
905 => 0.039520427231507
906 => 0.04124619485398
907 => 0.040735800448148
908 => 0.040142267284918
909 => 0.040206800796651
910 => 0.040914574138078
911 => 0.040486638218957
912 => 0.040640526959148
913 => 0.040914341209038
914 => 0.041079540144423
915 => 0.040183031212116
916 => 0.039974012095016
917 => 0.039546432337171
918 => 0.039434884759503
919 => 0.039783139550524
920 => 0.039691386717113
921 => 0.038042329697215
922 => 0.037869994063369
923 => 0.037875279351221
924 => 0.037441933205802
925 => 0.036780976319047
926 => 0.038517931553754
927 => 0.038378429739734
928 => 0.038224430533639
929 => 0.038243294557679
930 => 0.03899724795419
1001 => 0.038559916908654
1002 => 0.03972263317036
1003 => 0.039483613661403
1004 => 0.039238464203945
1005 => 0.039204577081489
1006 => 0.039110215455537
1007 => 0.038786614329731
1008 => 0.038395846524908
1009 => 0.038137827772436
1010 => 0.035180130162123
1011 => 0.035729061634462
1012 => 0.036360557256709
1013 => 0.036578547014949
1014 => 0.036205660449048
1015 => 0.038801338164123
1016 => 0.03927559349524
1017 => 0.037839043162377
1018 => 0.037570323249061
1019 => 0.038818955396903
1020 => 0.038065877572682
1021 => 0.038404988470817
1022 => 0.037672016192794
1023 => 0.039161359273791
1024 => 0.039150012974846
1025 => 0.038570624877999
1026 => 0.039060319729976
1027 => 0.038975223198646
1028 => 0.038321095464276
1029 => 0.039182096289717
1030 => 0.039182523335385
1031 => 0.038624874889153
1101 => 0.037973663588896
1102 => 0.037857242389334
1103 => 0.037769534654452
1104 => 0.038383417744618
1105 => 0.038933823403699
1106 => 0.039957991878112
1107 => 0.040215492166223
1108 => 0.041220532933482
1109 => 0.040622080091126
1110 => 0.040887366484881
1111 => 0.041175372392353
1112 => 0.041313453015462
1113 => 0.041088458049921
1114 => 0.042649700052759
1115 => 0.042781516713017
1116 => 0.042825713698992
1117 => 0.042299271679864
1118 => 0.042766875408139
1119 => 0.042548099109087
1120 => 0.043117294261413
1121 => 0.043206551329146
1122 => 0.043130953768189
1123 => 0.043159285370314
1124 => 0.041827040742854
1125 => 0.04175795683077
1126 => 0.040815992787533
1127 => 0.041199850097799
1128 => 0.040482247255017
1129 => 0.040709806508591
1130 => 0.040810112459303
1201 => 0.040757718322964
1202 => 0.041221552814186
1203 => 0.040827198741521
1204 => 0.039786433505944
1205 => 0.038745384714575
1206 => 0.03873231519502
1207 => 0.03845822542429
1208 => 0.038260108722098
1209 => 0.038298273027507
1210 => 0.03843276901762
1211 => 0.038252291570652
1212 => 0.038290805584401
1213 => 0.038930394830175
1214 => 0.039058659892073
1215 => 0.038622765095348
1216 => 0.036872584587181
1217 => 0.036443085900482
1218 => 0.036751801039152
1219 => 0.036604255086669
1220 => 0.029542490699918
1221 => 0.031201547493953
1222 => 0.030215792283183
1223 => 0.030670073636722
1224 => 0.0296638728266
1225 => 0.030144084592693
1226 => 0.030055407014021
1227 => 0.032723121243771
1228 => 0.032681468555394
1229 => 0.032701405493109
1230 => 0.031749763510574
1231 => 0.033265755028648
]
'min_raw' => 0.019354049150184
'max_raw' => 0.043206551329146
'avg_raw' => 0.031280300239665
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.019354'
'max' => '$0.0432065'
'avg' => '$0.03128'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0029843551098761
'max_diff' => 0.0065364159099535
'year' => 2035
]
10 => [
'items' => [
101 => 0.034012586963743
102 => 0.033874368248845
103 => 0.03390915492158
104 => 0.033311404630241
105 => 0.032707193022547
106 => 0.032037029362113
107 => 0.033282110608466
108 => 0.033143678828117
109 => 0.033461191526055
110 => 0.03426871571456
111 => 0.034387626718804
112 => 0.034547444314384
113 => 0.034490161082959
114 => 0.035854880055187
115 => 0.035689603582945
116 => 0.036087872327763
117 => 0.03526860330295
118 => 0.034341522635644
119 => 0.034517730361948
120 => 0.034500760140932
121 => 0.034284709749883
122 => 0.03408966911711
123 => 0.033764981415901
124 => 0.034792341347266
125 => 0.034750632410232
126 => 0.035425851619475
127 => 0.035306500065512
128 => 0.034509441177866
129 => 0.03453790829197
130 => 0.034729363315142
131 => 0.035391991336336
201 => 0.035588704448182
202 => 0.035497579097112
203 => 0.035713266043957
204 => 0.035883736212478
205 => 0.035734674472519
206 => 0.037845074366955
207 => 0.036968689194218
208 => 0.037395833229561
209 => 0.037497704565112
210 => 0.037236763281222
211 => 0.037293352102091
212 => 0.037379068746177
213 => 0.037899523424024
214 => 0.039265347093471
215 => 0.039870261099193
216 => 0.041690174731339
217 => 0.039820031411827
218 => 0.03970906484667
219 => 0.040036886247946
220 => 0.041105368207438
221 => 0.041971272478199
222 => 0.042258542880026
223 => 0.042296510405945
224 => 0.042835448777148
225 => 0.043144358200916
226 => 0.042770007483398
227 => 0.042452784446455
228 => 0.041316530903298
229 => 0.041448055344834
301 => 0.042354128320505
302 => 0.043634009766072
303 => 0.044732281195336
304 => 0.044347704819431
305 => 0.047281751098975
306 => 0.047572649803087
307 => 0.04753245700806
308 => 0.04819516754756
309 => 0.046879822085307
310 => 0.046317486416576
311 => 0.042521371667676
312 => 0.043587925070609
313 => 0.045138223078256
314 => 0.044933035323625
315 => 0.043807167470887
316 => 0.044731427123611
317 => 0.044425837978149
318 => 0.044184807140217
319 => 0.045289016134908
320 => 0.04407489298684
321 => 0.045126111271099
322 => 0.043777912948077
323 => 0.044349461531922
324 => 0.044025022913037
325 => 0.044234974461157
326 => 0.043007602000861
327 => 0.043669862387655
328 => 0.04298004979146
329 => 0.042979722730473
330 => 0.042964495079179
331 => 0.043776056539505
401 => 0.04380252152959
402 => 0.043202776384208
403 => 0.043116343738979
404 => 0.043435930529575
405 => 0.0430617780977
406 => 0.043236841665687
407 => 0.043067080594834
408 => 0.04302886380207
409 => 0.042724345895273
410 => 0.042593151208131
411 => 0.04264459602543
412 => 0.042468988342367
413 => 0.042363178361314
414 => 0.042943446810749
415 => 0.042633432786179
416 => 0.042895932715257
417 => 0.04259678091594
418 => 0.041559790445273
419 => 0.040963406259618
420 => 0.039004627389596
421 => 0.039560134647276
422 => 0.039928436533833
423 => 0.039806712762523
424 => 0.040068222524142
425 => 0.040084277099612
426 => 0.039999257610333
427 => 0.039900815933419
428 => 0.039852899969263
429 => 0.040210026309265
430 => 0.040417350169957
501 => 0.039965400555392
502 => 0.039859515084147
503 => 0.040316461097293
504 => 0.040595197901344
505 => 0.042653233853772
506 => 0.042500767903047
507 => 0.042883427519434
508 => 0.042840345919019
509 => 0.04324143415945
510 => 0.043897043920016
511 => 0.042564005965413
512 => 0.042795375261347
513 => 0.042738648853082
514 => 0.043357972904066
515 => 0.043359906366151
516 => 0.042988590660056
517 => 0.043189886928239
518 => 0.043077528873613
519 => 0.043280575064424
520 => 0.042498731627321
521 => 0.043450932538929
522 => 0.043990769097339
523 => 0.043998264728477
524 => 0.044254142972755
525 => 0.044514130088411
526 => 0.045013152716806
527 => 0.04450021261815
528 => 0.04357748331438
529 => 0.043644101389714
530 => 0.043103105536527
531 => 0.043112199774558
601 => 0.043063654019221
602 => 0.043209343485342
603 => 0.042530702272306
604 => 0.042689978008557
605 => 0.042466991045088
606 => 0.042794890531237
607 => 0.042442124887867
608 => 0.04273862149789
609 => 0.042866579605757
610 => 0.043338747778529
611 => 0.042372385264841
612 => 0.040401906682439
613 => 0.040816125170203
614 => 0.040203463490639
615 => 0.04026016766165
616 => 0.040374719111495
617 => 0.040003420383647
618 => 0.040074252479953
619 => 0.040071721859035
620 => 0.040049914335117
621 => 0.039953325195767
622 => 0.03981325183413
623 => 0.040371260994584
624 => 0.040466077624468
625 => 0.040676843247403
626 => 0.041303938777571
627 => 0.041241277146176
628 => 0.041343480866787
629 => 0.041120370718543
630 => 0.040270517101532
701 => 0.040316668241705
702 => 0.039741162784228
703 => 0.040662126278943
704 => 0.04044402996727
705 => 0.040303421856334
706 => 0.040265055630541
707 => 0.040893705609234
708 => 0.04108180753574
709 => 0.040964595038192
710 => 0.040724188786086
711 => 0.041185839859857
712 => 0.041309358211703
713 => 0.0413370094155
714 => 0.042154966605408
715 => 0.041382724136045
716 => 0.041568610573851
717 => 0.043018843497988
718 => 0.041703682354259
719 => 0.042400352543686
720 => 0.04236625416321
721 => 0.042722647058087
722 => 0.042337019543501
723 => 0.042341799858715
724 => 0.042658252605219
725 => 0.042213851795307
726 => 0.04210381190515
727 => 0.041951792585019
728 => 0.04228372120901
729 => 0.042482697407252
730 => 0.044086299433169
731 => 0.045122299475048
801 => 0.045077323980975
802 => 0.045488315806211
803 => 0.045303160224688
804 => 0.044705244010377
805 => 0.045725814080092
806 => 0.045402863007569
807 => 0.045429486701602
808 => 0.045428495766381
809 => 0.045643229996736
810 => 0.045491071114426
811 => 0.045191150338604
812 => 0.045390251746311
813 => 0.045981511747145
814 => 0.047816800931806
815 => 0.04884385307389
816 => 0.047754971103248
817 => 0.048506067305886
818 => 0.048055677227244
819 => 0.047973827952011
820 => 0.048445571872841
821 => 0.048918141518956
822 => 0.048888040875473
823 => 0.048544979579114
824 => 0.048351192957658
825 => 0.0498186101786
826 => 0.050899778190189
827 => 0.050826049780041
828 => 0.051151463004671
829 => 0.052106886296838
830 => 0.052194238228919
831 => 0.052183233893238
901 => 0.051966723015343
902 => 0.052907461323873
903 => 0.053692241771565
904 => 0.051916607002711
905 => 0.052592745477925
906 => 0.052896285823269
907 => 0.053341973106597
908 => 0.054093922259433
909 => 0.054910738484076
910 => 0.055026245254174
911 => 0.054944287673281
912 => 0.054405575415931
913 => 0.055299345475579
914 => 0.055822895015034
915 => 0.056134656784561
916 => 0.05692523275987
917 => 0.052898160385105
918 => 0.050047598399762
919 => 0.049602441983137
920 => 0.050507685061256
921 => 0.050746390441778
922 => 0.050650168602201
923 => 0.047441601925941
924 => 0.049585549543615
925 => 0.051892256911996
926 => 0.051980866936377
927 => 0.053135652875966
928 => 0.053511698514171
929 => 0.054441452556792
930 => 0.054383296188282
1001 => 0.054609676502042
1002 => 0.054557635588269
1003 => 0.056279809169414
1004 => 0.058179622374668
1005 => 0.058113837884406
1006 => 0.057840717258581
1007 => 0.058246347961918
1008 => 0.060207158786097
1009 => 0.06002663874676
1010 => 0.060201998588315
1011 => 0.062513905056477
1012 => 0.065519712329948
1013 => 0.064123213073305
1014 => 0.067153214628385
1015 => 0.069060439993826
1016 => 0.072358789052575
1017 => 0.071945819505708
1018 => 0.073229842589875
1019 => 0.071206517827471
1020 => 0.06656055519159
1021 => 0.065825313820431
1022 => 0.067297285664768
1023 => 0.070915984811157
1024 => 0.067183319950791
1025 => 0.06793843319061
1026 => 0.067720960526743
1027 => 0.067709372332685
1028 => 0.068151646567293
1029 => 0.067510104722521
1030 => 0.064896347835744
1031 => 0.066094217213988
1101 => 0.065631662320636
1102 => 0.066144901460562
1103 => 0.068914641422819
1104 => 0.067690073363151
1105 => 0.066400090388122
1106 => 0.068018015308947
1107 => 0.070078189712478
1108 => 0.069949267700795
1109 => 0.069699105112908
1110 => 0.071109258522738
1111 => 0.073438418819595
1112 => 0.074067981488511
1113 => 0.074532711779863
1114 => 0.074596790235358
1115 => 0.075256838151493
1116 => 0.071707594152944
1117 => 0.077340335529692
1118 => 0.078312954364116
1119 => 0.078130142334164
1120 => 0.07921116723457
1121 => 0.078893102285916
1122 => 0.078432276078177
1123 => 0.08014593048591
1124 => 0.078181363992224
1125 => 0.075392909186482
1126 => 0.073863107730669
1127 => 0.075877673693247
1128 => 0.07710789882793
1129 => 0.077920999384941
1130 => 0.078167043122204
1201 => 0.071983111861149
1202 => 0.068650315887992
1203 => 0.070786599896202
1204 => 0.073393013824665
1205 => 0.07169311539197
1206 => 0.071759748192198
1207 => 0.069336139752624
1208 => 0.07360744939362
1209 => 0.072985155506296
1210 => 0.076213617294554
1211 => 0.075443118978761
1212 => 0.078075804238921
1213 => 0.07738252997903
1214 => 0.080260272671396
1215 => 0.081408282143154
1216 => 0.083335968719643
1217 => 0.084753982812404
1218 => 0.08558666780996
1219 => 0.08553667652603
1220 => 0.088836189328367
1221 => 0.086890581905026
1222 => 0.084446440436847
1223 => 0.084402233628855
1224 => 0.085668089128977
1225 => 0.088320974986737
1226 => 0.089008829691734
1227 => 0.089393246632963
1228 => 0.088804498705821
1229 => 0.086692681290724
1230 => 0.085780809238043
1231 => 0.086557750646404
]
'min_raw' => 0.032037029362113
'max_raw' => 0.089393246632963
'avg_raw' => 0.060715137997538
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.032037'
'max' => '$0.089393'
'avg' => '$0.060715'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.012682980211929
'max_diff' => 0.046186695303817
'year' => 2036
]
11 => [
'items' => [
101 => 0.085607618067315
102 => 0.08724781345894
103 => 0.089500152058473
104 => 0.089035053044382
105 => 0.090589809316948
106 => 0.092198818493925
107 => 0.094499773882125
108 => 0.095101328824732
109 => 0.096095676269776
110 => 0.097119186416845
111 => 0.097447910291712
112 => 0.098075546165861
113 => 0.098072238214995
114 => 0.09996366116651
115 => 0.10204995925452
116 => 0.10283748848484
117 => 0.10464836852533
118 => 0.10154729991679
119 => 0.10389949607887
120 => 0.10602123589636
121 => 0.10349161021689
122 => 0.10697810988885
123 => 0.10711348277054
124 => 0.10915745256188
125 => 0.10708549760112
126 => 0.10585517735934
127 => 0.10940706579787
128 => 0.11112571272984
129 => 0.11060804228711
130 => 0.10666854465746
131 => 0.104375588064
201 => 0.098374478380629
202 => 0.10548305202923
203 => 0.10894543089353
204 => 0.10665957793265
205 => 0.107812429206
206 => 0.11410201194006
207 => 0.11649667782487
208 => 0.11599860406081
209 => 0.11608277032794
210 => 0.11737488857313
211 => 0.12310485245478
212 => 0.11967132527737
213 => 0.12229612815269
214 => 0.12368831413333
215 => 0.12498145405952
216 => 0.12180591110188
217 => 0.11767457637198
218 => 0.11636600924138
219 => 0.10643229490493
220 => 0.10591520193379
221 => 0.10562494197956
222 => 0.10379489402625
223 => 0.10235697762728
224 => 0.1012134931204
225 => 0.098212648300971
226 => 0.099225345336804
227 => 0.094442625019624
228 => 0.097502439989355
301 => 0.089869102880315
302 => 0.096226372850561
303 => 0.092766399835352
304 => 0.095089678659389
305 => 0.095081572958438
306 => 0.090803680047165
307 => 0.088336280693289
308 => 0.089908603594198
309 => 0.09159425855512
310 => 0.091867750401305
311 => 0.094053246058235
312 => 0.094663170919013
313 => 0.092815070116188
314 => 0.089710918935442
315 => 0.090431942456579
316 => 0.088321669174647
317 => 0.08462349641855
318 => 0.087279588655881
319 => 0.088186495325837
320 => 0.088587036976623
321 => 0.084950308809013
322 => 0.08380756986154
323 => 0.083199185234414
324 => 0.08924146299708
325 => 0.08957247261259
326 => 0.087878980619599
327 => 0.095533725011418
328 => 0.093801220602628
329 => 0.095736852501132
330 => 0.090366517129447
331 => 0.090571671172761
401 => 0.088029268344363
402 => 0.089452844044848
403 => 0.088446706623732
404 => 0.089337833196297
405 => 0.089871970789641
406 => 0.092413956434752
407 => 0.09625539824338
408 => 0.092034268547123
409 => 0.090195061890774
410 => 0.091336095356282
411 => 0.094374817838563
412 => 0.09897863794856
413 => 0.096253083782927
414 => 0.097462638438724
415 => 0.097726872321674
416 => 0.095717149585437
417 => 0.099052739292484
418 => 0.10084030891477
419 => 0.10267398546183
420 => 0.10426611542919
421 => 0.10194157472552
422 => 0.10442916648826
423 => 0.10242460664655
424 => 0.10062630924095
425 => 0.10062903651581
426 => 0.099500938284344
427 => 0.097315105811353
428 => 0.096912004766646
429 => 0.099008987307259
430 => 0.10069056871984
501 => 0.10082907181922
502 => 0.101760081692
503 => 0.10231104374454
504 => 0.10771122085609
505 => 0.10988321676297
506 => 0.11253909224411
507 => 0.11357370542096
508 => 0.11668752015392
509 => 0.11417286186539
510 => 0.11362879972672
511 => 0.1060757037056
512 => 0.10731252275593
513 => 0.10929278939079
514 => 0.10610835757304
515 => 0.10812814660623
516 => 0.10852689574637
517 => 0.10600015179841
518 => 0.10734979491517
519 => 0.10376554293834
520 => 0.096333525141845
521 => 0.099061013252846
522 => 0.10106936256511
523 => 0.098203200468823
524 => 0.10334068509063
525 => 0.10033947263378
526 => 0.099388232368563
527 => 0.095677104952306
528 => 0.097428614238386
529 => 0.099797555627005
530 => 0.098333825267834
531 => 0.10137128554333
601 => 0.10567313935451
602 => 0.10873889656017
603 => 0.10897424733076
604 => 0.1070031708373
605 => 0.11016183349731
606 => 0.1101848409064
607 => 0.10662185652239
608 => 0.10443954842596
609 => 0.10394372343484
610 => 0.10518239147488
611 => 0.10668636314623
612 => 0.10905770729141
613 => 0.110490660894
614 => 0.11422704390969
615 => 0.11523800202323
616 => 0.11634873848668
617 => 0.11783302494027
618 => 0.11961529139105
619 => 0.11571579386123
620 => 0.11587072816767
621 => 0.11223957006012
622 => 0.10835915686145
623 => 0.11130390677891
624 => 0.11515377557231
625 => 0.11427061141737
626 => 0.11417123740854
627 => 0.11433835692735
628 => 0.11367247999597
629 => 0.11066074331392
630 => 0.10914826800666
701 => 0.11109974702662
702 => 0.1121368712754
703 => 0.11374536053851
704 => 0.11354708028574
705 => 0.11769037588838
706 => 0.11930033527281
707 => 0.11888843876823
708 => 0.11896423763791
709 => 0.12187899220174
710 => 0.12512079874171
711 => 0.12815717836044
712 => 0.13124591412415
713 => 0.12752232260559
714 => 0.12563171247166
715 => 0.12758233953694
716 => 0.12654730935904
717 => 0.13249489977114
718 => 0.13290669802697
719 => 0.1388538583606
720 => 0.14449842169188
721 => 0.14095317259636
722 => 0.14429618281191
723 => 0.14791192091965
724 => 0.15488726636186
725 => 0.15253821541254
726 => 0.15073887919968
727 => 0.14903851517285
728 => 0.15257670278748
729 => 0.15712852462978
730 => 0.1581089434578
731 => 0.15969759650802
801 => 0.15802732207697
802 => 0.16003898365447
803 => 0.16714103299195
804 => 0.16522199656944
805 => 0.16249665634898
806 => 0.16810304221285
807 => 0.17013197146271
808 => 0.18437205949674
809 => 0.20235075886839
810 => 0.19490745927402
811 => 0.19028716302202
812 => 0.19137304223613
813 => 0.19793825462928
814 => 0.20004679248053
815 => 0.19431505974424
816 => 0.19633960464528
817 => 0.20749504609886
818 => 0.2134795825293
819 => 0.20535177822629
820 => 0.18292748850769
821 => 0.16225126928072
822 => 0.167735533682
823 => 0.16711378829543
824 => 0.17909891846764
825 => 0.16517622818543
826 => 0.16541065058306
827 => 0.17764362055475
828 => 0.1743800738925
829 => 0.16909354626313
830 => 0.16228986678283
831 => 0.14971263599932
901 => 0.13857263195234
902 => 0.16042074527819
903 => 0.15947861490336
904 => 0.15811427050471
905 => 0.16115047132642
906 => 0.175893400676
907 => 0.17555352843628
908 => 0.17339143465157
909 => 0.17503136373146
910 => 0.16880605876649
911 => 0.17041046160352
912 => 0.16224799406196
913 => 0.1659377702855
914 => 0.16908220374914
915 => 0.1697134953211
916 => 0.17113582746727
917 => 0.15898215500656
918 => 0.16443879712834
919 => 0.16764406315667
920 => 0.15316255463213
921 => 0.16735781029474
922 => 0.1587705866085
923 => 0.15585595391362
924 => 0.15978012286362
925 => 0.15825087040743
926 => 0.15693610894631
927 => 0.15620244946053
928 => 0.15908392604269
929 => 0.15894950171602
930 => 0.15423484675711
1001 => 0.14808477155714
1002 => 0.15014893866358
1003 => 0.14939900740214
1004 => 0.14668115976762
1005 => 0.14851266091911
1006 => 0.14044765674944
1007 => 0.12657223625797
1008 => 0.13573876405026
1009 => 0.13538586270152
1010 => 0.13520791383868
1011 => 0.14209630613037
1012 => 0.14143414615378
1013 => 0.14023231931236
1014 => 0.14665908727519
1015 => 0.14431323051653
1016 => 0.15154260829335
1017 => 0.156304344064
1018 => 0.15509661384655
1019 => 0.15957504935432
1020 => 0.15019649290469
1021 => 0.15331167315488
1022 => 0.15395370748699
1023 => 0.14657978195613
1024 => 0.14154248371502
1025 => 0.14120655335174
1026 => 0.13247257238411
1027 => 0.13713819451879
1028 => 0.14124374892074
1029 => 0.1392775069661
1030 => 0.13865505350306
1031 => 0.14183503325201
1101 => 0.14208214491319
1102 => 0.13644797285061
1103 => 0.13761949563345
1104 => 0.14250494038733
1105 => 0.13749639496041
1106 => 0.12776560933716
1107 => 0.12535223996395
1108 => 0.12503025200234
1109 => 0.11848500285548
1110 => 0.12551351284544
1111 => 0.12244537988247
1112 => 0.13213757515064
1113 => 0.12660144519374
1114 => 0.12636279369622
1115 => 0.12600203695516
1116 => 0.12036827063362
1117 => 0.12160170741351
1118 => 0.12570183912759
1119 => 0.12716481231446
1120 => 0.12701221222529
1121 => 0.12568174624537
1122 => 0.12629082675789
1123 => 0.12432876620935
1124 => 0.12363592179291
1125 => 0.12144911423273
1126 => 0.11823511124028
1127 => 0.118682038069
1128 => 0.11231425715133
1129 => 0.10884475214366
1130 => 0.10788443888488
1201 => 0.10660026786099
1202 => 0.10802948941908
1203 => 0.11229621802806
1204 => 0.10714963808866
1205 => 0.098326187773176
1206 => 0.098856492171564
1207 => 0.10004792870595
1208 => 0.09782769460626
1209 => 0.095726429361023
1210 => 0.097553309010719
1211 => 0.093814696794557
1212 => 0.10049972213085
1213 => 0.10031891093007
1214 => 0.10281067497624
1215 => 0.10436882617046
1216 => 0.10077779212523
1217 => 0.099874656774037
1218 => 0.10038912371529
1219 => 0.091886131165701
1220 => 0.10211579907905
1221 => 0.10220426567196
1222 => 0.10144676099383
1223 => 0.10689374335213
1224 => 0.11838857508454
1225 => 0.11406375700827
1226 => 0.11238905673082
1227 => 0.10920545027919
1228 => 0.11344741685214
1229 => 0.11312170000433
1230 => 0.11164868489406
1231 => 0.11075780075928
]
'min_raw' => 0.083199185234414
'max_raw' => 0.2134795825293
'avg_raw' => 0.14833938388186
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.083199'
'max' => '$0.213479'
'avg' => '$0.148339'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.0511621558723
'max_diff' => 0.12408633589633
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0026115273549287
]
1 => [
'year' => 2028
'avg' => 0.0044821390728658
]
2 => [
'year' => 2029
'avg' => 0.012244396120099
]
3 => [
'year' => 2030
'avg' => 0.0094465333717545
]
4 => [
'year' => 2031
'avg' => 0.0092776664670555
]
5 => [
'year' => 2032
'avg' => 0.016266669105841
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0026115273549287
'min' => '$0.002611'
'max_raw' => 0.016266669105841
'max' => '$0.016266'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.016266669105841
]
1 => [
'year' => 2033
'avg' => 0.041839545622083
]
2 => [
'year' => 2034
'avg' => 0.026519914729751
]
3 => [
'year' => 2035
'avg' => 0.031280300239665
]
4 => [
'year' => 2036
'avg' => 0.060715137997538
]
5 => [
'year' => 2037
'avg' => 0.14833938388186
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.016266669105841
'min' => '$0.016266'
'max_raw' => 0.14833938388186
'max' => '$0.148339'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.14833938388186
]
]
]
]
'prediction_2025_max_price' => '$0.004465'
'last_price' => 0.00432961
'sma_50day_nextmonth' => '$0.002648'
'sma_200day_nextmonth' => '$0.0010053'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'augmenter'
'sma_200day_date_nextmonth' => '4 févr. 2026'
'sma_50day_date_nextmonth' => '4 févr. 2026'
'daily_sma3' => '$0.003772'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.002298'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.001194'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.00062'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.000357'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.000377'
'daily_sma100_action' => 'BUY'
'daily_sma200' => '$0.000525'
'daily_sma200_action' => 'BUY'
'daily_ema3' => '$0.003875'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.002994'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.001866'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.001046'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.000575'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.000531'
'daily_ema100_action' => 'BUY'
'daily_ema200' => '$0.002163'
'daily_ema200_action' => 'BUY'
'weekly_sma21' => '$0.000559'
'weekly_sma21_action' => 'BUY'
'weekly_sma50' => '$0.0020034'
'weekly_sma50_action' => 'BUY'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.002281'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.001577'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.00098'
'weekly_ema10_action' => 'BUY'
'weekly_ema21' => '$0.001074'
'weekly_ema21_action' => 'BUY'
'weekly_ema50' => '$0.009843'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.02597'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.012985'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '71.59'
'rsi_14_action' => 'SELL'
'stoch_rsi_14' => 286.67
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.006252'
'vwma_10_action' => 'SELL'
'hma_9' => '0.004145'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 65.15
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => 254.64
'cci_20_action' => 'SELL'
'adx_14' => 20.67
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.001862'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -34.85
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 73.65
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.000066'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 7
'buy_signals' => 27
'sell_pct' => 20.59
'buy_pct' => 79.41
'overall_action' => 'bullish'
'overall_action_label' => 'Haussier'
'overall_action_dir' => 1
'last_updated' => 1767703247
'last_updated_date' => '6 janvier 2026'
]
Prévision du prix de BlockProtocol pour 2026
La prévision du prix de BlockProtocol pour 2026 suggère que le prix moyen pourrait varier entre $0.001495 à la baisse et $0.004465 à la hausse. Sur le marché des cryptomonnaies, comparé au prix moyen d'aujourd'hui, BlockProtocol pourrait potentiellement gagner 3.13% d'ici 2026 si BLOCK atteint l'objectif de prix prévu.
Prévision du prix de BlockProtocol de 2027 à 2032
La prévision du prix de BLOCK pour 2027-2032 se situe actuellement dans une fourchette de prix comprise entre $0.002611 à la baisse et $0.016266 à la hausse. Compte tenu de la volatilité des prix sur le marché, si BlockProtocol atteint l'objectif de prix le plus élevé, il pourrait gagner 275.71% d'ici 2032 par rapport au prix actuel.
| Prévision du Prix de BlockProtocol | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2027 | $0.00144 | $0.002611 | $0.003783 |
| 2028 | $0.002598 | $0.004482 | $0.006365 |
| 2029 | $0.0057089 | $0.012244 | $0.018779 |
| 2030 | $0.004855 | $0.009446 | $0.014037 |
| 2031 | $0.00574 | $0.009277 | $0.012814 |
| 2032 | $0.008762 | $0.016266 | $0.023771 |
Prévision du prix de BlockProtocol de 2032 à 2037
La prévision du prix de BlockProtocol pour 2032-2037 est actuellement estimée entre $0.016266 à la baisse et $0.148339 à la hausse. Par rapport au prix actuel, BlockProtocol pourrait potentiellement gagner 3326.16% d'ici 2037 s'il atteint l'objectif de prix le plus élevé. Veuillez noter que ces informations sont à titre général seulement et ne doivent pas être considérées comme un conseil en investissement à long terme.
| Prévision du Prix de BlockProtocol | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2032 | $0.008762 | $0.016266 | $0.023771 |
| 2033 | $0.020361 | $0.041839 | $0.063317 |
| 2034 | $0.016369 | $0.026519 | $0.03667 |
| 2035 | $0.019354 | $0.03128 | $0.0432065 |
| 2036 | $0.032037 | $0.060715 | $0.089393 |
| 2037 | $0.083199 | $0.148339 | $0.213479 |
BlockProtocol Histogramme des prix potentiels
Prévision du prix de BlockProtocol basée sur l'analyse technique
Au 6 janvier 2026, le sentiment global de prévision du prix pour BlockProtocol est Haussier, avec 27 indicateurs techniques montrant des signaux haussiers et 7 indiquant des signaux baissiers. La prévision du prix de BLOCK a été mise à jour pour la dernière fois le 6 janvier 2026.
Moyennes Mobiles Simples sur 50 et 200 jours de BlockProtocol et Indice de Force Relative sur 14 jours - RSI (14)
Selon nos indicateurs techniques, le SMA sur 200 jours de BlockProtocol devrait augmenter au cours du prochain mois, atteignant $0.0010053 d'ici le 4 févr. 2026. Le SMA à court terme sur 50 jours pour BlockProtocol devrait atteindre $0.002648 d'ici le 4 févr. 2026.
Le Relative Strength Index (RSI), un oscillateur de momentum, est un outil couramment utilisé pour identifier si une cryptomonnaie est survendue (en dessous de 30) ou surachetée (au-dessus de 70). Actuellement, le RSI est à 71.59, ce qui suggère que le marché de BLOCK est dans un état SELL.
Moyennes Mobiles et Oscillateurs Populaires de BLOCK pour le Samedi 19 Octobre 2024
Les moyennes mobiles (MA) sont des indicateurs largement utilisés sur les marchés financiers, conçus pour lisser les mouvements de prix sur une période donnée. En tant qu'indicateurs retardés, ils sont basés sur des données historiques de prix. Le tableau ci-dessous met en évidence deux types : la moyenne mobile simple (SMA) et la moyenne mobile exponentielle (EMA).
Moyenne Mobile Simple Quotidienne (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 3 | $0.003772 | BUY |
| SMA 5 | $0.002298 | BUY |
| SMA 10 | $0.001194 | BUY |
| SMA 21 | $0.00062 | BUY |
| SMA 50 | $0.000357 | BUY |
| SMA 100 | $0.000377 | BUY |
| SMA 200 | $0.000525 | BUY |
Moyenne Mobile Exponentielle Quotidienne (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 3 | $0.003875 | BUY |
| EMA 5 | $0.002994 | BUY |
| EMA 10 | $0.001866 | BUY |
| EMA 21 | $0.001046 | BUY |
| EMA 50 | $0.000575 | BUY |
| EMA 100 | $0.000531 | BUY |
| EMA 200 | $0.002163 | BUY |
Moyenne Mobile Simple Hebdomadaire (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 21 | $0.000559 | BUY |
| SMA 50 | $0.0020034 | BUY |
| SMA 100 | — | — |
| SMA 200 | — | — |
Moyenne Mobile Exponentielle Hebdomadaire (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 21 | $0.001074 | BUY |
| EMA 50 | $0.009843 | SELL |
| EMA 100 | $0.02597 | SELL |
| EMA 200 | $0.012985 | SELL |
Oscillateurs de BlockProtocol
Un oscillateur est un outil d'analyse technique qui établit des limites hautes et basses entre deux extrêmes, créant un indicateur de tendance qui fluctue à l'intérieur de ces limites. Les traders utilisent cet indicateur pour identifier les conditions de surachat ou de survente à court terme.
| Période | Valeur | Action |
|---|---|---|
| RSI (14) | 71.59 | SELL |
| Stoch RSI (14) | 286.67 | SELL |
| Stochastique Rapide (14) | 65.15 | NEUTRAL |
| Indice de Canal des Matières Premières (20) | 254.64 | SELL |
| Indice Directionnel Moyen (14) | 20.67 | NEUTRAL |
| Oscillateur Impressionnant (5, 34) | 0.001862 | BUY |
| Momentum (10) | 0 | SELL |
| MACD (12, 26) | 0 | BUY |
| Plage de Pourcentage de Williams (14) | -34.85 | NEUTRAL |
| Oscillateur Ultime (7, 14, 28) | 73.65 | SELL |
| VWMA (10) | 0.006252 | SELL |
| Moyenne Mobile de Hull (9) | 0.004145 | BUY |
| Nuage Ichimoku B/L (9, 26, 52, 26) | -0.000066 | NEUTRAL |
Prévision du cours de BlockProtocol basée sur les flux monétaires mondiaux
Définitions des flux monétaires mondiaux utilisés pour la prédiction du cours de BlockProtocol
M0 : le total de toutes les devises physiques, plus les comptes à la banque centrale qui peuvent être échangés contre des devises physiques.
M1 : M0 plus le montant des comptes à vue, y compris les comptes de "chèques" et les comptes "courants".
M2 : M1 plus la plupart des comptes d'épargne, comptes du marché monétaire et comptes de certificats de dépôt (CD) de moins de 100 000 $.
Prédictions du cours de BlockProtocol par des sociétés Internet ou des niches technologiques
| Comparaison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Action Facebook | $0.006083 | $0.008548 | $0.012012 | $0.016879 | $0.023718 | $0.033328 |
| Action Amazon.com | $0.009033 | $0.018849 | $0.039331 | $0.082067 | $0.171238 | $0.35730027 |
| Action Apple | $0.006141 | $0.00871 | $0.012355 | $0.017525 | $0.024858 | $0.03526 |
| Action Netflix | $0.006831 | $0.010778 | $0.0170074 | $0.026835 | $0.042341 | $0.0668085 |
| Action Google | $0.0056068 | $0.00726 | $0.0094027 | $0.012176 | $0.015768 | $0.02042 |
| Action Tesla | $0.009814 | $0.022249 | $0.050438 | $0.114339 | $0.259199 | $0.587585 |
| Action Kodak | $0.003246 | $0.002434 | $0.001825 | $0.001369 | $0.001026 | $0.000769 |
| Action Nokia | $0.002868 | $0.001900053 | $0.001258 | $0.000833 | $0.000552 | $0.000365 |
Ce calcul montre la valeur potentielle des cryptomonnaies si l'on suppose que leur capitalisation se comportera comme celle de certaines sociétés Internet ou niches technologiques. En extrapolant les données, vous pourrez obtenir une potentielle image des cours futurs pour 2024, 2025, 2026, 2027, 2028, 2029 et 2030.
Aperçu des prévisions relatives à BlockProtocol
Vous vous posez peut-être des questions telles que : "Devrais-je investir dans BlockProtocol maintenant ?", "Devrais-je acheter BLOCK aujourd'hui ?", " BlockProtocol sera-t-il un bon ou un mauvais investissement à court ou à long terme ?".
Nous mettons régulièrement à jour les prévisions de BlockProtocol avec de nouvelles valeurs. Regardez nos prévisions similaires. Nous faisons une prévision des cours futurs pour une grande quantité de devises numériques comme BlockProtocol en utilisant des méthodes d'analyse technique.
Si vous souhaitez trouver des cryptomonnaies ayant un bon rendement, vous devriez consulter un maximum d'informations disponibles à propos de BlockProtocol afin de prendre une décision responsable concernant cet investissement.
Le cours de BlockProtocol est de $0.004329 USD actuellement, mais ce cours peut subir une hausse ou une baisse, ce qui pourrait causer la perte de votre investissement, car les cryptomonnaies sont des actifs à haut risque.
Prévision à court terme de BlockProtocol
basée sur l'historique des cours sur 4 heures
Prévision à long terme de BlockProtocol
basée sur l'historique des cours sur 1 mois
Prévision du cours de BlockProtocol basée sur le modèle de croissance du Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si BlockProtocol présente 1 % de la précédente croissance annuelle moyenne du Bitcoin | $0.004442 | $0.004557 | $0.004676 | $0.004797 |
| Si BlockProtocol présente 2 % de la précédente croissance annuelle moyenne du Bitcoin | $0.004554 | $0.004791 | $0.00504 | $0.0053026 |
| Si BlockProtocol présente 5 % de la précédente croissance annuelle moyenne du Bitcoin | $0.004892 | $0.005528 | $0.006246 | $0.007058 |
| Si BlockProtocol présente 10 % de la précédente croissance annuelle moyenne du Bitcoin | $0.005455 | $0.006872 | $0.008659 | $0.01091 |
| Si BlockProtocol présente 20 % de la précédente croissance annuelle moyenne du Bitcoin | $0.00658 | $0.0100013 | $0.01520068 | $0.0231029 |
| Si BlockProtocol présente 50 % de la précédente croissance annuelle moyenne du Bitcoin | $0.009956 | $0.022896 | $0.052655 | $0.121088 |
| Si BlockProtocol présente 100 % de la précédente croissance annuelle moyenne du Bitcoin | $0.015583 | $0.05609 | $0.201888 | $0.726659 |
Boîte à questions
Est-ce que BLOCK est un bon investissement ?
La décision d'acquérir BlockProtocol dépend entièrement de votre tolérance individuelle au risque. Comme vous pouvez le discerner, la valeur de BlockProtocol a connu une baisse de -20.462% au cours des 24 heures précédentes, et BlockProtocol a enregistré une déclin de sur une période de 30 jours précédents. Par conséquent, la détermination de si investir ou non dans BlockProtocol dépendra de la mesure dans laquelle cet investissement s'aligne avec vos aspirations de trading.
Est-ce que BlockProtocol peut monter ?
Il semble que la valeur moyenne de BlockProtocol pourrait potentiellement s'envoler jusqu'à $0.004465 pour la fin de cette année. En regardant les perspectives de BlockProtocol sur une période de cinq ans plus longue, la monnaie numérique pourrait potentiellement croître jusqu'à $0.014037. Cependant, compte tenu de l'imprévisibilité du marché, il est essentiel de mener des recherches approfondies avant d'investir des fonds dans un projet, un réseau ou un actif particulier.
Quel sera le prix de BlockProtocol la semaine prochaine ?
Basé sur notre nouveau pronostic expérimental de BlockProtocol, le prix de BlockProtocol va augmenter de 0.86% durant la prochaine semaine et atteindre $0.004366 d'ici 13 janvier 2026.
Quel sera le prix de BlockProtocol le mois prochain ?
Basé sur notre nouveau pronostic expérimental de BlockProtocol, le prix de BlockProtocol va diminuer de -11.62% durant le prochain mois et atteindre $0.003826 d'ici 5 février 2026.
Jusqu'où le prix de BlockProtocol peut-il monter cette année en 2026 ?
Selon notre prédiction la plus récente sur la valeur de BlockProtocol en 2026, BLOCK devrait fluctuer dans la fourchette de $0.001495 et $0.004465. Cependant, il est crucial de garder à l'esprit que le marché des cryptomonnaies est exceptionnellement instable, et cette prévision de prix de BlockProtocol ne prend pas en compte les fluctuations de prix soudaines et extrêmes.
Où sera BlockProtocol dans 5 ans ?
L'avenir de BlockProtocol semble suivre une tendance haussière, avec un prix maximum de $0.014037 prévue après une période de cinq ans. Selon la prévision de BlockProtocol pour 2030, la valeur de BlockProtocol pourrait potentiellement atteindre son point le plus élevé d'environ $0.014037, tandis que son point le plus bas devrait être autour de $0.004855.
Combien vaudra BlockProtocol en 2026 ?
Basé sur notre nouvelle simulation expérimentale de prédiction de prix de BlockProtocol, il est attendu que la valeur de BLOCK en 2026 augmente de 3.13% jusqu'à $0.004465 si le meilleur scénario se produit. Le prix sera entre $0.004465 et $0.001495 durant 2026.
Combien vaudra BlockProtocol en 2027 ?
Selon notre dernière simulation expérimentale pour la prédiction de prix de BlockProtocol, le valeur de BLOCK pourrait diminuer de -12.62% jusqu'à $0.003783 en 2027, en supposant les conditions les plus favorables. Il est prévu que le prix fluctue entre $0.003783 et $0.00144 tout au long de l'année.
Combien vaudra BlockProtocol en 2028 ?
Notre nouveau modèle expérimental de prédiction de prix de BlockProtocol suggère que la valeur de BLOCK en 2028 pourrait augmenter de 47.02%, atteignant $0.006365 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.006365 et $0.002598 durant l'année.
Combien vaudra BlockProtocol en 2029 ?
Basé sur notre modèle de prévision expérimental, la valeur de BlockProtocol pourrait connaître un 333.75% croissance en 2029, atteignant potentiellement $0.018779 sous des conditions optimales. Le range de prix prévu pour 2029 se situe entre $0.018779 et $0.0057089.
Combien vaudra BlockProtocol en 2030 ?
En utilisant notre nouvelle simulation expérimentale pour les prédictions de prix de BlockProtocol, il est prévu que la valeur de BLOCK en 2030 augmente de 224.23%, atteignant $0.014037 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.014037 et $0.004855 au cours de 2030.
Combien vaudra BlockProtocol en 2031 ?
Notre simulation expérimentale indique que le prix de BlockProtocol pourrait augmenter de 195.98% en 2031, atteignant potentiellement $0.012814 dans des conditions idéales. Il est probable que le prix fluctue entre $0.012814 et $0.00574 durant l'année.
Combien vaudra BlockProtocol en 2032 ?
Basé sur les résultats de notre dernière prédiction expérimentale de prix de BlockProtocol, BLOCK pourrait connaître une 449.04% hausse en valeur, atteignant $0.023771 si le scénario le plus positif se réalise en 2032. Il est prévu que le prix reste dans une fourchette de $0.023771 et $0.008762 tout au long de l'année.
Combien vaudra BlockProtocol en 2033 ?
Selon notre prédiction expérimentale de prix de BlockProtocol, la valeur de BLOCK est anticipée à augmenter de 1362.43% en 2033, avec le prix potentiel le plus élevé étant $0.063317. Tout au long de l'année, le prix de BLOCK pourrait osciller entre $0.063317 et $0.020361.
Combien vaudra BlockProtocol en 2034 ?
Les résultats de notre nouvelle simulation de prédiction de prix de BlockProtocol suggèrent que BLOCK pourrait augmenter de 746.96% en 2034, atteignant potentiellement $0.03667 dans les meilleures circonstances. La fourchette de prix prévue pour l'année est entre $0.03667 et $0.016369.
Combien vaudra BlockProtocol en 2035 ?
Basé sur notre prédiction expérimentale pour le prix de BlockProtocol, BLOCK pourrait augmenter de 897.93%, avec la valeur potentiellement atteignant $0.0432065 en 2035. La fourchette de prix attendue pour l'année se situe entre $0.0432065 et $0.019354.
Combien vaudra BlockProtocol en 2036 ?
Notre récente simulation de prédiction de prix de BlockProtocol suggère que la valeur de BLOCK pourrait augmenter de 1964.7% en 2036, pouvant atteindre $0.089393 si les conditions sont optimales. La fourchette de prix attendue pour 2036 est entre $0.089393 et $0.032037.
Combien vaudra BlockProtocol en 2037 ?
Selon la simulation expérimentale, la valeur de BlockProtocol pourrait augmenter de 4830.69% en 2037, avec un maximum de $0.213479 sous des conditions favorables. Il est prévu que le prix chute entre $0.213479 et $0.083199 au cours de l'année.
Prévisions liées
Comment lire et prédire les mouvements de prix de BlockProtocol ?
Les traders de BlockProtocol utilisent des indicateurs et des modèles graphiques pour prédire la direction du marché. Ils identifient également des niveaux clés de support et de résistance pour évaluer quand une tendance baissière pourrait ralentir ou une tendance haussière pourrait s'arrêter.
Indicateurs de prédiction du prix de BlockProtocol
Les moyennes mobiles sont des outils populaires pour la prédiction du prix de BlockProtocol. Une moyenne mobile simple (SMA) calcule le prix de clôture moyen de BLOCK sur une période spécifique, comme une SMA de 12 jours. Une moyenne mobile exponentielle (EMA) donne plus de poids aux prix récents, réagissant plus rapidement aux changements de prix.
Les moyennes mobiles couramment utilisées sur le marché des cryptomonnaies incluent les moyennes sur 50 jours, 100 jours et 200 jours, qui aident à identifier les niveaux clés de résistance et de support. Un mouvement de prix de BLOCK au-dessus de ces moyennes est considéré comme haussier, tandis qu'une chute en dessous indique une faiblesse.
Les traders utilisent également le RSI et les niveaux de retracement de Fibonacci pour évaluer la direction future de BLOCK.
Comment lire les graphiques de BlockProtocol et prédire les mouvements de prix ?
La plupart des traders préfèrent les graphiques en chandeliers aux simples graphiques linéaires parce qu'ils fournissent des informations plus détaillées. Les chandeliers peuvent représenter l'action des prix de BlockProtocol dans différentes périodes, comme 5 minutes pour les tendances à court terme et hebdomadaire pour les tendances à long terme. Les options populaires incluent les graphiques de 1 heure, 4 heures et 1 jour.
Par exemple, un graphique en chandeliers de 1 heure montre les prix d'ouverture, de clôture, les plus hauts et les plus bas de BLOCK au sein de chaque heure. La couleur du chandelier est cruciale : le vert indique que le prix a clôturé plus haut qu'il n'a ouvert, tandis que le rouge signifie le contraire. Certains graphiques utilisent des chandeliers creux et pleins pour transmettre la même information.
Qu'est-ce qui affecte le prix de BlockProtocol ?
L'action du prix de BlockProtocol est déterminée par l'offre et la demande, influencée par des facteurs tels que les réductions de récompenses de bloc, les hard forks et les mises à jour de protocole. Les événements du monde réel, tels que les réglementations, l'adoption par les entreprises et les gouvernements et les piratages d'échanges de cryptomonnaies, impactent également le prix de BLOCK. La capitalisation boursière de BlockProtocol peut changer rapidement.
Les traders surveillent souvent l'activité des « baleines » de BLOCK, de grands détenteurs de BlockProtocol, car leurs actions peuvent influencer significativement les mouvements de prix sur le marché relativement petit de BlockProtocol.
Modèles de prédiction de prix haussiers et baissiers
Les traders identifient souvent des modèles de chandeliers pour obtenir un avantage dans les prédictions de prix des cryptomonnaies. Certaines formations indiquent des tendances haussières, tandis que d'autres suggèrent des mouvements baissiers.
Modèles de chandeliers haussiers couramment suivis :
- Marteau
- Englobante haussière
- Ligne pénétrante
- Étoile du matin
- Trois soldats blancs
Modèles de chandeliers baissiers courants :
- Harami baissier
- Nuage sombre
- Étoile du soir
- Étoile filante
- Pendu


