Prédiction du prix de BlockProtocol jusqu'à $0.003695 d'ici 2026
| Année | Prix min. | Prix max. |
|---|---|---|
| 2026 | $0.001238 | $0.003695 |
| 2027 | $0.001191 | $0.003131 |
| 2028 | $0.00215 | $0.005268 |
| 2029 | $0.004725 | $0.015543 |
| 2030 | $0.004018 | $0.011618 |
| 2031 | $0.004751 | $0.0106064 |
| 2032 | $0.007252 | $0.019674 |
| 2033 | $0.016852 | $0.0524056 |
| 2034 | $0.013548 | $0.03035 |
| 2035 | $0.016018 | $0.03576 |
Calculateur de profit d’investissement
Si vous ouvrez une position short de $10,000.00 sur BlockProtocol aujourd’hui et la fermez le Apr 06, 2026, notre prévision indique que vous pourriez gagner environ $3,955.56, soit un rendement de 39.56% sur les 90 prochains jours.
Prévision du prix à long terme de BlockProtocol pour 2027, 2028, 2029, 2030, 2031, 2032 et 2037
[
'name' => 'BlockProtocol'
'name_with_ticker' => 'BlockProtocol <small>BLOCK</small>'
'name_lang' => 'BlockProtocol'
'name_lang_with_ticker' => 'BlockProtocol <small>BLOCK</small>'
'name_with_lang' => 'BlockProtocol'
'name_with_lang_with_ticker' => 'BlockProtocol <small>BLOCK</small>'
'image' => '/uploads/coins/blockgames.png?1717253092'
'price_for_sd' => 0.003583
'ticker' => 'BLOCK'
'marketcap' => '$2.43M'
'low24h' => '$0.002358'
'high24h' => '$0.005798'
'volume24h' => '$15.15K'
'current_supply' => '679.32M'
'max_supply' => '1B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.003583'
'change_24h_pct' => '-34.0976%'
'ath_price' => '$0.2505'
'ath_days' => 634
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '12 avr. 2024'
'ath_pct' => '-98.27%'
'fdv' => '$3.58M'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.176689'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.003614'
'next_week_prediction_price_date' => '13 janvier 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.003167'
'next_month_prediction_price_date' => '5 février 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.001238'
'current_year_max_price_prediction' => '$0.003695'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.004018'
'grand_prediction_max_price' => '$0.011618'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0036513646821
107 => 0.0036649975523776
108 => 0.0036957131052246
109 => 0.0034332520691319
110 => 0.0035510893688863
111 => 0.0036203077426303
112 => 0.0033075766118692
113 => 0.0036141260536824
114 => 0.0034286832064166
115 => 0.0033657411187965
116 => 0.0034504843477875
117 => 0.0034174598290342
118 => 0.0033890672870749
119 => 0.0033732237608159
120 => 0.003435449835418
121 => 0.0034325469146615
122 => 0.0033307329790519
123 => 0.003197920850516
124 => 0.0032424969602622
125 => 0.0032263020416881
126 => 0.0031676095675898
127 => 0.0032071612085757
128 => 0.003032995798301
129 => 0.0027333532622537
130 => 0.0029313062998657
131 => 0.0029236853232491
201 => 0.0029198424812552
202 => 0.0030685987180005
203 => 0.0030542992382277
204 => 0.0030283455424193
205 => 0.0031671329076131
206 => 0.0031164736523639
207 => 0.0032725935402204
208 => 0.0033754241955639
209 => 0.0033493430151455
210 => 0.0034460557435198
211 => 0.0032435239037996
212 => 0.0033107968567876
213 => 0.0033246617191622
214 => 0.00316542029307
215 => 0.0030566388099632
216 => 0.0030493843252397
217 => 0.0028607722245443
218 => 0.0029615272863121
219 => 0.00305018757114
220 => 0.0030077261750235
221 => 0.0029942841655111
222 => 0.0030629564768936
223 => 0.0030682929036266
224 => 0.0029466218085852
225 => 0.0029719210820668
226 => 0.0030774232581393
227 => 0.0029692626979204
228 => 0.0027591243973424
301 => 0.0027070071934098
302 => 0.0027000537976945
303 => 0.0025587078071616
304 => 0.0027104899141847
305 => 0.0026442329569615
306 => 0.0028535378909492
307 => 0.0027339840351803
308 => 0.0027288303074074
309 => 0.0027210396919911
310 => 0.0025993773590101
311 => 0.0026260136778883
312 => 0.0027145568586654
313 => 0.002746150063077
314 => 0.0027428546330214
315 => 0.0027141229487751
316 => 0.002727276166693
317 => 0.0026849050688944
318 => 0.0026699429523835
319 => 0.002622718397021
320 => 0.0025533113467544
321 => 0.0025629628227921
322 => 0.0024254492948714
323 => 0.0023505246264648
324 => 0.0023297864657412
325 => 0.0023020545305141
326 => 0.0023329188616169
327 => 0.0024250597363244
328 => 0.0023139182926501
329 => 0.0021233740831364
330 => 0.0021348261147997
331 => 0.0021605554298084
401 => 0.0021126090215061
402 => 0.0020672317698849
403 => 0.0021066836085967
404 => 0.0020259475151258
405 => 0.0021703120009831
406 => 0.0021664073462175
407 => 0.0022202174991052
408 => 0.0022538660920014
409 => 0.002176316979237
410 => 0.0021568135870919
411 => 0.0021679236056375
412 => 0.0019842997469505
413 => 0.0022052115123533
414 => 0.0022071219664741
415 => 0.0021907634984218
416 => 0.0023083921936132
417 => 0.0025566254297773
418 => 0.0024632301011736
419 => 0.0024270646070495
420 => 0.0023583139762827
421 => 0.0024499201097709
422 => 0.0024428861879973
423 => 0.0024110761262015
424 => 0.0023918373015739
425 => 0.0024272854258447
426 => 0.0023874448866898
427 => 0.0023802884311127
428 => 0.0023369280966163
429 => 0.0023214504299707
430 => 0.0023099913817699
501 => 0.0022973760956436
502 => 0.0023252022733047
503 => 0.0022621444938861
504 => 0.0021861029935376
505 => 0.0021797809655641
506 => 0.0021972366406374
507 => 0.0021895138038396
508 => 0.0021797439915927
509 => 0.0021610907593632
510 => 0.002155556743824
511 => 0.0021735396096038
512 => 0.0021532380026046
513 => 0.0021831941296177
514 => 0.0021750477206183
515 => 0.0021295425421657
516 => 0.0020728262416388
517 => 0.0020723213475977
518 => 0.0020601019136825
519 => 0.0020445386273874
520 => 0.0020402092771799
521 => 0.0021033610847806
522 => 0.0022340834365394
523 => 0.0022084195109683
524 => 0.0022269643273383
525 => 0.002318186469399
526 => 0.0023471832452146
527 => 0.002326602020567
528 => 0.0022984291708746
529 => 0.0022996686332815
530 => 0.0023959437891817
531 => 0.0024019483525617
601 => 0.0024171199470774
602 => 0.0024366197335221
603 => 0.002329922918518
604 => 0.0022946432228899
605 => 0.0022779257458583
606 => 0.0022264423870788
607 => 0.0022819627756729
608 => 0.0022496134228592
609 => 0.002253978455765
610 => 0.0022511357223587
611 => 0.0022526880470234
612 => 0.0021702716481672
613 => 0.002200299852232
614 => 0.0021503721389083
615 => 0.0020835245354168
616 => 0.0020833004388101
617 => 0.0020996612950617
618 => 0.0020899292175628
619 => 0.0020637404472481
620 => 0.0020674604384638
621 => 0.0020348694010555
622 => 0.0020714175804849
623 => 0.0020724656514953
624 => 0.0020583926116222
625 => 0.00211470012471
626 => 0.0021377693587647
627 => 0.0021285061824465
628 => 0.0021371194296205
629 => 0.0022094859629415
630 => 0.002221284865446
701 => 0.0022265251585468
702 => 0.0022195038599976
703 => 0.0021384421570045
704 => 0.0021420375882332
705 => 0.0021156566994829
706 => 0.0020933676284385
707 => 0.0020942590743895
708 => 0.0021057185542828
709 => 0.0021557627750661
710 => 0.0022610778874368
711 => 0.0022650745189669
712 => 0.0022699185529714
713 => 0.0022502154322587
714 => 0.0022442727825183
715 => 0.002252112671454
716 => 0.0022916634904548
717 => 0.0023933989348677
718 => 0.0023574388341303
719 => 0.0023282027124785
720 => 0.0023538506731689
721 => 0.002349902370656
722 => 0.0023165747240157
723 => 0.0023156393279757
724 => 0.0022516729185797
725 => 0.0022280259934706
726 => 0.0022082648529079
727 => 0.002186686203291
728 => 0.0021738936564752
729 => 0.0021935488224928
730 => 0.0021980441915141
731 => 0.0021550678275031
801 => 0.0021492103078915
802 => 0.0021843057344522
803 => 0.0021688615457122
804 => 0.0021847462768287
805 => 0.0021884316707044
806 => 0.0021878382374086
807 => 0.0021717127306103
808 => 0.002181990647774
809 => 0.0021576803096873
810 => 0.0021312464683127
811 => 0.0021143833244023
812 => 0.0020996679947689
813 => 0.0021078329149095
814 => 0.0020787264654639
815 => 0.0020694147264892
816 => 0.0021785087206994
817 => 0.0022590976271806
818 => 0.0022579258325636
819 => 0.0022507928341941
820 => 0.0022401946454928
821 => 0.0022908881669393
822 => 0.0022732275577163
823 => 0.0022860771265193
824 => 0.0022893478810744
825 => 0.0022992474700243
826 => 0.0023027857221755
827 => 0.0022920906667005
828 => 0.0022561967542354
829 => 0.002166752537063
830 => 0.0021251160125193
831 => 0.0021113752659087
901 => 0.0021118747159506
902 => 0.0020980976541517
903 => 0.0021021556162961
904 => 0.0020966864605222
905 => 0.0020863292026174
906 => 0.0021071933834199
907 => 0.002109597785894
908 => 0.0021047278367864
909 => 0.0021058748860959
910 => 0.0020655537874668
911 => 0.0020686193130228
912 => 0.0020515500771791
913 => 0.0020483498012311
914 => 0.0020052002594067
915 => 0.0019287545914387
916 => 0.0019711129122535
917 => 0.0019199500171905
918 => 0.0019005738535857
919 => 0.0019922975984789
920 => 0.0019830910785123
921 => 0.0019673335183075
922 => 0.0019440248026013
923 => 0.0019353793732132
924 => 0.0018828524810618
925 => 0.0018797489120534
926 => 0.0019057826581491
927 => 0.0018937689800924
928 => 0.0018768972261653
929 => 0.0018157894437033
930 => 0.0017470840641245
1001 => 0.0017491578476674
1002 => 0.0017710117506024
1003 => 0.0018345549207861
1004 => 0.0018097275048873
1005 => 0.001791714929791
1006 => 0.0017883417159314
1007 => 0.001830564549685
1008 => 0.0018903187054034
1009 => 0.0019183540183426
1010 => 0.001890571874665
1011 => 0.0018586572439049
1012 => 0.0018605997396011
1013 => 0.0018735222932146
1014 => 0.0018748802708843
1015 => 0.0018541071271366
1016 => 0.0018599546454222
1017 => 0.0018510717304381
1018 => 0.0017965572975772
1019 => 0.0017955713043539
1020 => 0.0017821925833658
1021 => 0.0017817874810114
1022 => 0.0017590269391324
1023 => 0.0017558425819873
1024 => 0.0017106501446204
1025 => 0.0017403959437506
1026 => 0.0017204440234186
1027 => 0.0016903717732961
1028 => 0.0016851873060401
1029 => 0.0016850314546939
1030 => 0.0017159089315377
1031 => 0.0017400351224559
1101 => 0.0017207910956149
1102 => 0.001716409603733
1103 => 0.0017631924741143
1104 => 0.0017572389274229
1105 => 0.0017520831943845
1106 => 0.0018849683761481
1107 => 0.0017797793856222
1108 => 0.0017339109817752
1109 => 0.0016771401218409
1110 => 0.001695625000099
1111 => 0.0016995200355474
1112 => 0.001562996351122
1113 => 0.0015076087093536
1114 => 0.0014886017579379
1115 => 0.0014776629886794
1116 => 0.0014826479231909
1117 => 0.0014327925492769
1118 => 0.0014662961850789
1119 => 0.0014231256454392
1120 => 0.0014158879639796
1121 => 0.0014930822366589
1122 => 0.0015038233687398
1123 => 0.0014579983622744
1124 => 0.0014874254348199
1125 => 0.001476754769248
1126 => 0.0014238656804344
1127 => 0.0014218457062675
1128 => 0.0013953078206422
1129 => 0.0013537811683859
1130 => 0.0013348023739959
1201 => 0.0013249180530961
1202 => 0.001328996516541
1203 => 0.0013269343206202
1204 => 0.0013134770973143
1205 => 0.0013277056729077
1206 => 0.0012913575419201
1207 => 0.001276883423284
1208 => 0.0012703457996931
1209 => 0.0012380847413213
1210 => 0.0012894264317487
1211 => 0.0012995413915484
1212 => 0.0013096762809437
1213 => 0.0013978935737463
1214 => 0.0013934864870974
1215 => 0.0014333244040656
1216 => 0.0014317763758694
1217 => 0.0014204139566186
1218 => 0.0013724777788268
1219 => 0.0013915842849144
1220 => 0.001332777428987
1221 => 0.0013768395239253
1222 => 0.0013567314238726
1223 => 0.0013700409550706
1224 => 0.0013461092179045
1225 => 0.0013593540293694
1226 => 0.0013019400237572
1227 => 0.0012483276331534
1228 => 0.0012699028241756
1229 => 0.0012933575242392
1230 => 0.0013442132901233
1231 => 0.0013139240155137
]
'min_raw' => 0.0012380847413213
'max_raw' => 0.0036957131052246
'avg_raw' => 0.002466898923273
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.001238'
'max' => '$0.003695'
'avg' => '$0.002466'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0023453752586787
'max_diff' => 0.00011225310522463
'year' => 2026
]
1 => [
'items' => [
101 => 0.0013248171840276
102 => 0.0012883268930004
103 => 0.001213036999675
104 => 0.0012134631322947
105 => 0.0012018814224861
106 => 0.0011918731342541
107 => 0.0013174031030645
108 => 0.0013017914671078
109 => 0.0012769163684112
110 => 0.0013102126765138
111 => 0.0013190167488596
112 => 0.0013192673884222
113 => 0.0013435595153117
114 => 0.0013565242277873
115 => 0.0013588093145533
116 => 0.0013970335010802
117 => 0.0014098457442147
118 => 0.0014626175604296
119 => 0.0013554242625131
120 => 0.001353216687083
121 => 0.001310681223851
122 => 0.0012837045606101
123 => 0.0013125283390626
124 => 0.0013380622719334
125 => 0.0013114746343208
126 => 0.0013149464184974
127 => 0.0012792546872923
128 => 0.0012920128017461
129 => 0.0013030018086173
130 => 0.001296934324927
131 => 0.0012878510081731
201 => 0.0013359687806231
202 => 0.0013332537873264
203 => 0.0013780621632547
204 => 0.0014129934965685
205 => 0.0014755966905896
206 => 0.0014102669940503
207 => 0.0014078861202464
208 => 0.0014311595435838
209 => 0.0014098421811749
210 => 0.001423314018367
211 => 0.0014734261693442
212 => 0.0014744849601286
213 => 0.0014567488503141
214 => 0.0014556696064201
215 => 0.0014590760203217
216 => 0.0014790274929411
217 => 0.0014720558353611
218 => 0.0014801236140135
219 => 0.0014902124947565
220 => 0.0015319443831065
221 => 0.001542005800105
222 => 0.0015175617730452
223 => 0.0015197687950005
224 => 0.0015106260578766
225 => 0.001501794288373
226 => 0.0015216468164407
227 => 0.0015579277016867
228 => 0.0015577020001825
301 => 0.00156611846036
302 => 0.0015713618453248
303 => 0.0015488533986634
304 => 0.0015342012275453
305 => 0.0015398198022939
306 => 0.0015488040256734
307 => 0.0015369063397382
308 => 0.0014634683106019
309 => 0.0014857447174024
310 => 0.0014820368340502
311 => 0.0014767563572626
312 => 0.0014991554565588
313 => 0.0014969950087887
314 => 0.0014322812103577
315 => 0.0014364239777698
316 => 0.0014325331457653
317 => 0.0014451052199613
318 => 0.0014091632479103
319 => 0.0014202187564403
320 => 0.0014271526677514
321 => 0.0014312367947824
322 => 0.0014459914621306
323 => 0.001444260172215
324 => 0.0014458838427186
325 => 0.0014677611193083
326 => 0.001578408876924
327 => 0.0015844311902405
328 => 0.0015547751169124
329 => 0.0015666221332668
330 => 0.0015438784525241
331 => 0.0015591464377761
401 => 0.0015695924055208
402 => 0.0015223890859267
403 => 0.0015195940116873
404 => 0.0014967564596838
405 => 0.0015090280665454
406 => 0.0014895030576688
407 => 0.0014942938118913
408 => 0.0014808984454347
409 => 0.0015050074380657
410 => 0.0015319650379859
411 => 0.0015387755923136
412 => 0.0015208599560054
413 => 0.0015078878546202
414 => 0.0014851131178638
415 => 0.0015229880126579
416 => 0.0015340637861122
417 => 0.001522929836335
418 => 0.00152034985689
419 => 0.0015154608005037
420 => 0.0015213870933145
421 => 0.0015340034650713
422 => 0.0015280538171386
423 => 0.0015319836644174
424 => 0.0015170071390313
425 => 0.0015488608498958
426 => 0.0015994522087616
427 => 0.0015996148682528
428 => 0.0015936651882493
429 => 0.0015912307073795
430 => 0.0015973354401199
501 => 0.0016006470072023
502 => 0.0016203885934682
503 => 0.0016415721020711
504 => 0.0017404262936315
505 => 0.0017126684322128
506 => 0.0018003777518274
507 => 0.0018697444360129
508 => 0.0018905444715626
509 => 0.0018714094175741
510 => 0.0018059494315349
511 => 0.0018027376523265
512 => 0.0019005625079623
513 => 0.001872922505583
514 => 0.0018696348152497
515 => 0.0018346593447442
516 => 0.0018553341796092
517 => 0.0018508122899427
518 => 0.0018436742658857
519 => 0.0018831204105867
520 => 0.0019569600720853
521 => 0.0019454514683768
522 => 0.0019368608295772
523 => 0.0018992191510545
524 => 0.0019218878490984
525 => 0.0019138159599153
526 => 0.0019484979183935
527 => 0.0019279530944904
528 => 0.0018727131053802
529 => 0.0018815102557194
530 => 0.0018801805841431
531 => 0.001907545130963
601 => 0.0018993309732374
602 => 0.0018785766380146
603 => 0.0019567076961497
604 => 0.0019516342998222
605 => 0.0019588272158748
606 => 0.0019619937599694
607 => 0.0020095507582326
608 => 0.0020290333387668
609 => 0.0020334562256386
610 => 0.0020519631703093
611 => 0.0020329957559958
612 => 0.002108878936787
613 => 0.0021593368241067
614 => 0.0022179462567678
615 => 0.002303590390616
616 => 0.0023357933771954
617 => 0.0023299761959076
618 => 0.0023949106007483
619 => 0.0025115962828363
620 => 0.0023535617084289
621 => 0.0025199724990178
622 => 0.0024672887640223
623 => 0.002342376576088
624 => 0.002334333703803
625 => 0.0024189256877324
626 => 0.0026065425664113
627 => 0.0025595466662352
628 => 0.0026066194348681
629 => 0.0025517065498405
630 => 0.0025489796622568
701 => 0.0026039524386102
702 => 0.00273239932697
703 => 0.0026713790250699
704 => 0.0025838914595042
705 => 0.0026484909164606
706 => 0.0025925288884474
707 => 0.0024664307765484
708 => 0.0025595107293561
709 => 0.002497270815678
710 => 0.0025154357313451
711 => 0.0026462547724079
712 => 0.002630514279283
713 => 0.0026508839349171
714 => 0.0026149320258896
715 => 0.0025813472737623
716 => 0.0025186588398802
717 => 0.0025000998851102
718 => 0.0025052289125274
719 => 0.0025000973434189
720 => 0.0024650237407983
721 => 0.0024574495996518
722 => 0.0024448256992435
723 => 0.0024487383738443
724 => 0.0024250017478244
725 => 0.0024697976653611
726 => 0.0024781121823962
727 => 0.00251071091551
728 => 0.002514095424124
729 => 0.0026048824318318
730 => 0.0025548784736
731 => 0.0025884254459159
801 => 0.0025854246889557
802 => 0.0023450838019674
803 => 0.0023782006556488
804 => 0.0024297200873358
805 => 0.0024065106531937
806 => 0.002373697943488
807 => 0.0023471999210945
808 => 0.0023070527076063
809 => 0.0023635591396319
810 => 0.0024378590889565
811 => 0.0025159797934524
812 => 0.002609836701233
813 => 0.0025888889320312
814 => 0.002514225203847
815 => 0.0025175745641514
816 => 0.0025382789916289
817 => 0.00251146487685
818 => 0.002503556870928
819 => 0.0025371925530509
820 => 0.0025374241835078
821 => 0.0025065713038607
822 => 0.0024722839741503
823 => 0.0024721403089868
824 => 0.0024660392098412
825 => 0.0025527919218249
826 => 0.0026004971417274
827 => 0.0026059664683085
828 => 0.0026001290124712
829 => 0.0026023756175427
830 => 0.0025746170011941
831 => 0.0026380649666049
901 => 0.0026962910940192
902 => 0.0026806852480523
903 => 0.0026572898664464
904 => 0.002638654318123
905 => 0.0026762953051136
906 => 0.0026746192112153
907 => 0.0026957825395916
908 => 0.0026948224487711
909 => 0.0026877060174312
910 => 0.0026806855022025
911 => 0.0027085210515212
912 => 0.0027005048603427
913 => 0.0026924762178051
914 => 0.0026763735460723
915 => 0.0026785621665979
916 => 0.0026551708245344
917 => 0.0026443489193808
918 => 0.0024816134312525
919 => 0.0024381251912891
920 => 0.0024518074768664
921 => 0.0024563120405388
922 => 0.002437385902775
923 => 0.0024645211226024
924 => 0.0024602921273356
925 => 0.0024767446740391
926 => 0.0024664658371453
927 => 0.0024668876841968
928 => 0.0024971155518225
929 => 0.0025058908303928
930 => 0.0025014276528868
1001 => 0.0025045535094232
1002 => 0.0025765875539642
1003 => 0.0025663466163495
1004 => 0.0025609063223512
1005 => 0.0025624133209684
1006 => 0.0025808195637759
1007 => 0.0025859723068184
1008 => 0.0025641397724705
1009 => 0.0025744361218813
1010 => 0.0026182766708715
1011 => 0.0026336183818579
1012 => 0.0026825817588875
1013 => 0.0026617812460707
1014 => 0.002699961487571
1015 => 0.0028173145333394
1016 => 0.0029110642665123
1017 => 0.0028248481375149
1018 => 0.0029970075835304
1019 => 0.0031310584070593
1020 => 0.0031259133131789
1021 => 0.0031025384514452
1022 => 0.0029499251527832
1023 => 0.0028094881200183
1024 => 0.0029269696611975
1025 => 0.0029272691458063
1026 => 0.0029171773772297
1027 => 0.0028544982693248
1028 => 0.0029149962801395
1029 => 0.0029197983925415
1030 => 0.0029171104865811
1031 => 0.0028690545615093
1101 => 0.0027956820461442
1102 => 0.0028100188600176
1103 => 0.0028335028536052
1104 => 0.0027890427544695
1105 => 0.0027748350588633
1106 => 0.00280124986812
1107 => 0.0028863638872892
1108 => 0.0028702735749972
1109 => 0.0028698533919172
1110 => 0.0029386945712566
1111 => 0.0028894191437059
1112 => 0.0028101996931534
1113 => 0.0027901957371127
1114 => 0.0027191951694476
1115 => 0.0027682355144292
1116 => 0.0027700003891403
1117 => 0.002743141493374
1118 => 0.002812379144517
1119 => 0.0028117411073726
1120 => 0.0028774719524685
1121 => 0.0030031246409138
1122 => 0.0029659629579472
1123 => 0.0029227479638367
1124 => 0.0029274466319184
1125 => 0.0029789794234727
1126 => 0.0029478215213198
1127 => 0.0029590261201746
1128 => 0.0029789624639704
1129 => 0.002990990555174
1130 => 0.002925715974696
1201 => 0.0029104973475424
1202 => 0.0028793653773986
1203 => 0.0028712436274938
1204 => 0.0028965999675861
1205 => 0.0028899194678245
1206 => 0.0027698520582547
1207 => 0.0027573043459059
1208 => 0.0027576891663297
1209 => 0.0027261373470174
1210 => 0.0026780132492619
1211 => 0.0028044805048228
1212 => 0.0027943234142931
1213 => 0.0027831107724448
1214 => 0.0027844842570927
1215 => 0.0028393794063587
1216 => 0.002807537447513
1217 => 0.0028921945138989
1218 => 0.0028747915660743
1219 => 0.0028569422983053
1220 => 0.0028544749857977
1221 => 0.0028476045405346
1222 => 0.0028240432273474
1223 => 0.0027955915258584
1224 => 0.0027768052480913
1225 => 0.0025614560599941
1226 => 0.0026014236166764
1227 => 0.0026474026474818
1228 => 0.0026632744246665
1229 => 0.0026361246514986
1230 => 0.0028251152658719
1231 => 0.0028596456722767
]
'min_raw' => 0.0011918731342541
'max_raw' => 0.0031310584070593
'avg_raw' => 0.0021614657706567
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.001191'
'max' => '$0.003131'
'avg' => '$0.002161'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -4.6211607067211E-5
'max_diff' => -0.00056465469816537
'year' => 2027
]
2 => [
'items' => [
101 => 0.0027550508189137
102 => 0.0027354853924292
103 => 0.0028263979719749
104 => 0.002771566572898
105 => 0.002796257148545
106 => 0.0027428896290191
107 => 0.0028513283085421
108 => 0.0028505021874887
109 => 0.0028083170919555
110 => 0.0028439716458291
111 => 0.0028377757896781
112 => 0.0027901489207184
113 => 0.0028528381652387
114 => 0.0028528692583218
115 => 0.0028122670210543
116 => 0.0027648524968984
117 => 0.0027563758998604
118 => 0.0027499899226628
119 => 0.0027946865896219
120 => 0.0028347614814546
121 => 0.0029093309197469
122 => 0.0029280794482598
123 => 0.0030012562032057
124 => 0.0029576830085469
125 => 0.0029769984413718
126 => 0.002997968076038
127 => 0.0030080216900298
128 => 0.0029916398655369
129 => 0.0031053134867218
130 => 0.0031149110232196
131 => 0.0031181289941889
201 => 0.0030797988887028
202 => 0.0031138449936474
203 => 0.0030979159486323
204 => 0.0031393588985454
205 => 0.0031458576822619
206 => 0.0031403534436549
207 => 0.0031424162601829
208 => 0.0030454158779024
209 => 0.0030403858963634
210 => 0.0029718017411677
211 => 0.0029997502913584
212 => 0.0029475018163857
213 => 0.0029640703460185
214 => 0.0029713735960098
215 => 0.0029675587926701
216 => 0.0030013304604525
217 => 0.0029726176437416
218 => 0.0028968397996173
219 => 0.00282104130987
220 => 0.0028200897215753
221 => 0.0028001333171793
222 => 0.0027857084919988
223 => 0.0027884872250768
224 => 0.0027982798428792
225 => 0.0027851393272501
226 => 0.0027879435225007
227 => 0.0028345118479146
228 => 0.0028438507934662
229 => 0.0028121134075201
301 => 0.0026846832232636
302 => 0.0026534115364126
303 => 0.0026758890047766
304 => 0.002665146222633
305 => 0.002150981007799
306 => 0.0022717764983038
307 => 0.0022000039196731
308 => 0.0022330800260037
309 => 0.0021598188086409
310 => 0.0021947829015158
311 => 0.002188326310246
312 => 0.0023825618843793
313 => 0.0023795291630516
314 => 0.0023809807662631
315 => 0.0023116919628427
316 => 0.0024220709080875
317 => 0.0024764475456136
318 => 0.0024663838771949
319 => 0.0024689166857226
320 => 0.0024253946436194
321 => 0.0023814021547652
322 => 0.0023326077142303
323 => 0.0024232617535689
324 => 0.0024131825719105
325 => 0.0024363005882598
326 => 0.0024950962128555
327 => 0.00250375409192
328 => 0.0025153903691824
329 => 0.0025112195921104
330 => 0.0026105844229252
331 => 0.0025985506862833
401 => 0.0026275485292481
402 => 0.0025678977661979
403 => 0.0025003972657043
404 => 0.0025132269040905
405 => 0.0025119913067445
406 => 0.0024962607343769
407 => 0.0024820598770049
408 => 0.0024584194505472
409 => 0.0025332212579841
410 => 0.0025301844412063
411 => 0.0025793469749255
412 => 0.0025706570195513
413 => 0.0025126233707693
414 => 0.0025146960538888
415 => 0.0025286358439652
416 => 0.0025768816165814
417 => 0.0025912042467165
418 => 0.0025845694337798
419 => 0.0026002735438701
420 => 0.0026126854321773
421 => 0.0026018322859447
422 => 0.0027554899493389
423 => 0.0026916805745227
424 => 0.0027227808198254
425 => 0.0027301980450768
426 => 0.0027111989785627
427 => 0.0027153191957841
428 => 0.0027215602021824
429 => 0.0027594543709186
430 => 0.0028588996344485
501 => 0.0029029432647191
502 => 0.0030354506994626
503 => 0.002899286054342
504 => 0.0028912066078059
505 => 0.0029150751981444
506 => 0.0029928710896753
507 => 0.0030559173527645
508 => 0.0030768334354574
509 => 0.0030795978410722
510 => 0.0031188378026789
511 => 0.0031413294168899
512 => 0.0031140730392264
513 => 0.0030909761130182
514 => 0.0030082457902367
515 => 0.0030178220503658
516 => 0.0030837929863355
517 => 0.0031769808190613
518 => 0.0032569456740816
519 => 0.0032289447689101
520 => 0.0034425719098105
521 => 0.0034637521682421
522 => 0.0034608257413666
523 => 0.003509077522119
524 => 0.0034133075636298
525 => 0.0033723640509201
526 => 0.0030959699306257
527 => 0.0031736254044588
528 => 0.0032865021962212
529 => 0.0032715625295652
530 => 0.003189588386182
531 => 0.003256883489343
601 => 0.0032346336237256
602 => 0.0032170842315653
603 => 0.0032974813991686
604 => 0.0032090814108551
605 => 0.0032856203387153
606 => 0.0031874583720408
607 => 0.0032290726746863
608 => 0.0032054503838474
609 => 0.0032207369010592
610 => 0.0031313722337937
611 => 0.0031795912390455
612 => 0.0031293661646458
613 => 0.003129342351421
614 => 0.00312823363012
615 => 0.0031873232074191
616 => 0.0031892501164134
617 => 0.00314558282951
618 => 0.003139289691256
619 => 0.0031625587217483
620 => 0.0031353167812105
621 => 0.0031480631137294
622 => 0.0031357028546376
623 => 0.0031329202999692
624 => 0.0031107484309583
625 => 0.0031011961801601
626 => 0.0031049418638292
627 => 0.0030921559144342
628 => 0.0030844519174357
629 => 0.0031267011112102
630 => 0.0031041290713041
701 => 0.0031232416223659
702 => 0.0031014604582347
703 => 0.0030259574537545
704 => 0.0029825348774482
705 => 0.0028399167011173
706 => 0.0028803630390074
707 => 0.0029071790028733
708 => 0.0028983163269756
709 => 0.0029173567842042
710 => 0.0029185257136379
711 => 0.0029123354668984
712 => 0.0029051679541937
713 => 0.0029016792053974
714 => 0.0029276814806467
715 => 0.0029427766766253
716 => 0.0029098703435986
717 => 0.002902160850179
718 => 0.0029354309696774
719 => 0.002955725723352
720 => 0.0031055707818477
721 => 0.0030944697759212
722 => 0.0031223311223344
723 => 0.0031191943622955
724 => 0.0031483974919971
725 => 0.0031961322668957
726 => 0.0030990741226738
727 => 0.0031159200604926
728 => 0.0031117898255689
729 => 0.0031568826474597
730 => 0.0031570234223276
731 => 0.0031299880230506
801 => 0.0031446443515979
802 => 0.0031364635910781
803 => 0.0031512473310334
804 => 0.0030943215152191
805 => 0.0031636510141189
806 => 0.0032029563725008
807 => 0.0032035021274401
808 => 0.0032221325553665
809 => 0.0032410621491414
810 => 0.0032773958559722
811 => 0.0032400488217781
812 => 0.0031728651429234
813 => 0.0031777155875348
814 => 0.0031383258212038
815 => 0.0031389879702922
816 => 0.0031354533665649
817 => 0.003146060978423
818 => 0.0030966492895042
819 => 0.0031082461141307
820 => 0.0030920104917426
821 => 0.0031158847674203
822 => 0.0030901999933503
823 => 0.0031117878338446
824 => 0.0031211044301537
825 => 0.0031554828711063
826 => 0.0030851222696693
827 => 0.0029416522403453
828 => 0.0029718113799152
829 => 0.002927203643542
830 => 0.002931332259377
831 => 0.002939672720428
901 => 0.0029126385573327
902 => 0.0029177958237069
903 => 0.0029176115698609
904 => 0.002916023769758
905 => 0.002908991139828
906 => 0.0028987924350661
907 => 0.0029394209358417
908 => 0.0029463245098218
909 => 0.0029616702996076
910 => 0.0030073289608616
911 => 0.003002766583897
912 => 0.0030102080100175
913 => 0.0029939634185782
914 => 0.0029320857993832
915 => 0.0029354460518077
916 => 0.0028935436502299
917 => 0.0029605987609898
918 => 0.0029447192256777
919 => 0.0029344815859594
920 => 0.0029316881511113
921 => 0.0029774599913551
922 => 0.0029911556433418
923 => 0.0029826214321047
924 => 0.0029651175158748
925 => 0.0029987302096045
926 => 0.0030077235484409
927 => 0.0030097368253448
928 => 0.0030692920740392
929 => 0.0030130653021705
930 => 0.0030265996450054
1001 => 0.0031321907242542
1002 => 0.0030364341859484
1003 => 0.0030871585599146
1004 => 0.0030846758657659
1005 => 0.0031106247390678
1006 => 0.0030825473007643
1007 => 0.0030828953542626
1008 => 0.0031059361958257
1009 => 0.003073579489288
1010 => 0.0030655675137158
1011 => 0.0030544990268458
1012 => 0.003078666662994
1013 => 0.0030931540678567
1014 => 0.0032099119112239
1015 => 0.0032853428028436
1016 => 0.0032820681489035
1017 => 0.0033119923560201
1018 => 0.0032985112266398
1019 => 0.0032549771037284
1020 => 0.0033292845431174
1021 => 0.0033057705601394
1022 => 0.0033077090243266
1023 => 0.0033076368745928
1024 => 0.0033232716176451
1025 => 0.0033121929692894
1026 => 0.0032903558161803
1027 => 0.0033048523375114
1028 => 0.0033479018232634
1029 => 0.0034815287479571
1030 => 0.0035563081453371
1031 => 0.0034770269343391
1101 => 0.0035317140520678
1102 => 0.003498921268443
1103 => 0.0034929618441576
1104 => 0.0035273093954374
1105 => 0.003561717067559
1106 => 0.0035595254475933
1107 => 0.0035345472444866
1108 => 0.00352043769135
1109 => 0.003627279954747
1110 => 0.0037059995144074
1111 => 0.0037006313681811
1112 => 0.003724324619809
1113 => 0.003793888739393
1114 => 0.0038002488106818
1115 => 0.003799447587884
1116 => 0.0037836834875898
1117 => 0.0038521783973627
1118 => 0.0039093180561485
1119 => 0.0037800345538404
1120 => 0.003829264019074
1121 => 0.0038513647120917
1122 => 0.0038838150864218
1123 => 0.0039385643072309
1124 => 0.0039980364825432
1125 => 0.0040064465002116
1126 => 0.0040004791902195
1127 => 0.0039612556919031
1128 => 0.0040263308557805
1129 => 0.0040644503605794
1130 => 0.0040871496533379
1201 => 0.0041447112829711
1202 => 0.0038515011984478
1203 => 0.0036439525271355
1204 => 0.0036115408050709
1205 => 0.0036774513164172
1206 => 0.0036948313926327
1207 => 0.003687825505703
1208 => 0.0034542106066413
1209 => 0.003610310870975
1210 => 0.0037782616301151
1211 => 0.0037847133027746
1212 => 0.0038687929644849
1213 => 0.0038961727488796
1214 => 0.0039638678971295
1215 => 0.0039596335471751
1216 => 0.0039761162385089
1217 => 0.0039723271532116
1218 => 0.0040977181604494
1219 => 0.0042360430621775
1220 => 0.0042312533106769
1221 => 0.0042113674694675
1222 => 0.0042409013347032
1223 => 0.0043836674570839
1224 => 0.0043705238403156
1225 => 0.0043832917444354
1226 => 0.0045516210486683
1227 => 0.0047704730887354
1228 => 0.0046687943437386
1229 => 0.0048894079631108
1230 => 0.0050282725422802
1231 => 0.005268424473088
]
'min_raw' => 0.002150981007799
'max_raw' => 0.005268424473088
'avg_raw' => 0.0037097027404435
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.00215'
'max' => '$0.005268'
'avg' => '$0.0037097'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00095910787354489
'max_diff' => 0.0021373660660288
'year' => 2028
]
3 => [
'items' => [
101 => 0.0052383562685777
102 => 0.0053318456529249
103 => 0.0051845279070805
104 => 0.0048462565847932
105 => 0.0047927238531906
106 => 0.0048998977375236
107 => 0.0051633742742817
108 => 0.0048915999237477
109 => 0.0049465795209011
110 => 0.0049307453932222
111 => 0.0049299016598489
112 => 0.004962103530996
113 => 0.0049153930373605
114 => 0.0047250860832324
115 => 0.0048123026388234
116 => 0.0047786241382267
117 => 0.0048159929455373
118 => 0.005017656986524
119 => 0.0049284965069335
120 => 0.0048345731844941
121 => 0.0049523738740868
122 => 0.0051023746326472
123 => 0.0050929878547538
124 => 0.0050747735822717
125 => 0.0051774464825846
126 => 0.0053470320335644
127 => 0.0053928703265442
128 => 0.0054267072172994
129 => 0.0054313727528555
130 => 0.0054794306686983
131 => 0.0052210111430574
201 => 0.0056311295669337
202 => 0.0057019456894443
203 => 0.0056886351934398
204 => 0.0057673443332124
205 => 0.0057441861076331
206 => 0.0057106334721831
207 => 0.0058354042006367
208 => 0.0056923646289432
209 => 0.0054893379651056
210 => 0.0053779535219122
211 => 0.005524633541836
212 => 0.0056142059115762
213 => 0.0056734075501018
214 => 0.0056913219301491
215 => 0.0052410715152069
216 => 0.0049984115135859
217 => 0.0051539537925224
218 => 0.0053437261077795
219 => 0.0052199569482643
220 => 0.0052248084649913
221 => 0.0050483461694856
222 => 0.0053593391053735
223 => 0.0053140300504769
224 => 0.0055490935074307
225 => 0.0054929937269266
226 => 0.0056846788509616
227 => 0.0056342017337351
228 => 0.0058437294252046
301 => 0.0059273156940676
302 => 0.0060676700486524
303 => 0.00617091528323
304 => 0.0062315428597406
305 => 0.0062279030074553
306 => 0.006468139670129
307 => 0.00632648050338
308 => 0.0061485232034411
309 => 0.0061453045173333
310 => 0.0062374711246461
311 => 0.0064306270488998
312 => 0.0064807095697544
313 => 0.0065086988665289
314 => 0.0064658322842043
315 => 0.0063120714115022
316 => 0.0062456782462547
317 => 0.0063022471466407
318 => 0.0062330682424897
319 => 0.0063524904392267
320 => 0.0065164826225513
321 => 0.0064826188851902
322 => 0.0065958202820533
323 => 0.0067129718186724
324 => 0.0068805037776425
325 => 0.0069243028354077
326 => 0.0069967010123647
327 => 0.0070712225180156
328 => 0.0070951568172198
329 => 0.0071408548207775
330 => 0.0071406139697416
331 => 0.0072783279792931
401 => 0.0074302307964762
402 => 0.0074875705934046
403 => 0.0076194202947064
404 => 0.0073936323017916
405 => 0.007564895088083
406 => 0.0077193784083035
407 => 0.0075351970253369
408 => 0.0077890481529979
409 => 0.007798904617046
410 => 0.0079477255220385
411 => 0.007796867024193
412 => 0.0077072877297297
413 => 0.0079658997963528
414 => 0.008091034029188
415 => 0.0080533425798818
416 => 0.007766508789606
417 => 0.0075995592207854
418 => 0.0071626199970152
419 => 0.0076801933819408
420 => 0.0079322882799154
421 => 0.0077658559247219
422 => 0.0078497947238895
423 => 0.0083077375949014
424 => 0.0084820925905776
425 => 0.0084458279703103
426 => 0.008451956094169
427 => 0.0085460348850689
428 => 0.0089632320540553
429 => 0.008713237839844
430 => 0.008904349049504
501 => 0.009005713746005
502 => 0.009099866925231
503 => 0.0088686564744698
504 => 0.0085678550751856
505 => 0.0084725786452485
506 => 0.0077493075070211
507 => 0.007711658103269
508 => 0.0076905243520493
509 => 0.0075572790400373
510 => 0.0074525847237585
511 => 0.0073693279164028
512 => 0.0071508371913144
513 => 0.0072245713971692
514 => 0.0068763427839366
515 => 0.0070991271102185
516 => 0.0065433458352254
517 => 0.0070062169961694
518 => 0.0067542972674368
519 => 0.0069234545899214
520 => 0.0069228644159588
521 => 0.0066113921538867
522 => 0.0064317414533838
523 => 0.0065462218718542
524 => 0.0066689539679213
525 => 0.0066888668375878
526 => 0.0068479922037743
527 => 0.0068924006730886
528 => 0.006757840937833
529 => 0.006531828503643
530 => 0.0065843260373106
531 => 0.0064306775925397
601 => 0.0061614146030807
602 => 0.0063548039829909
603 => 0.006420835620023
604 => 0.0064499989526758
605 => 0.0061852097276062
606 => 0.0061020072042356
607 => 0.0060577108789298
608 => 0.0064976475397673
609 => 0.0065217482631488
610 => 0.00639844555483
611 => 0.0069557854884736
612 => 0.0068296422963816
613 => 0.0069705751477807
614 => 0.0065795624363834
615 => 0.0065944996485272
616 => 0.006409387964695
617 => 0.0065130381384739
618 => 0.006439781536448
619 => 0.0065046642287235
620 => 0.0065435546469521
621 => 0.0067286359557784
622 => 0.007008330327416
623 => 0.0067009909801575
624 => 0.0065670788253764
625 => 0.0066501571730521
626 => 0.0068714057608489
627 => 0.0072066086968679
628 => 0.0070081618121569
629 => 0.007096229169745
630 => 0.007115467969534
701 => 0.006969140583651
702 => 0.0072120039963046
703 => 0.0073421564721645
704 => 0.0074756659811367
705 => 0.0075915885469258
706 => 0.0074223393473162
707 => 0.0076034602518182
708 => 0.0074575087749332
709 => 0.007326575211981
710 => 0.007326773784149
711 => 0.0072446372474749
712 => 0.0070854873577993
713 => 0.0070561376763457
714 => 0.0072088184257233
715 => 0.0073312539278034
716 => 0.0073413383021812
717 => 0.007409124887096
718 => 0.0074492402897912
719 => 0.0078424257704496
720 => 0.0080005682233713
721 => 0.0081939418213205
722 => 0.0082692717356606
723 => 0.0084959877705551
724 => 0.0083128961594017
725 => 0.0082732831376284
726 => 0.007723344195224
727 => 0.0078133966662346
728 => 0.0079575793610935
729 => 0.0077257217147565
730 => 0.0078727820250837
731 => 0.0079018148455056
801 => 0.0077178432806554
802 => 0.007816110442384
803 => 0.0075551419950158
804 => 0.0070140187264242
805 => 0.0072126064211909
806 => 0.0073588338084344
807 => 0.007150149297131
808 => 0.0075242082064364
809 => 0.0073056907137634
810 => 0.0072364311592756
811 => 0.0069662249444044
812 => 0.0070937518766326
813 => 0.007266233878481
814 => 0.0071596600545236
815 => 0.0073808167413753
816 => 0.0076940335902914
817 => 0.0079172505692148
818 => 0.0079343863971603
819 => 0.0077908728340886
820 => 0.0080208542348022
821 => 0.00802252939823
822 => 0.0077631094387235
823 => 0.0076042161579821
824 => 0.0075681152702833
825 => 0.0076583023657508
826 => 0.0077678061491045
827 => 0.0079404630950288
828 => 0.0080447960714029
829 => 0.0083168411398515
830 => 0.0083904487352304
831 => 0.0084713211661232
901 => 0.0085793916739301
902 => 0.0087091580272618
903 => 0.0084252366337748
904 => 0.0084365173600337
905 => 0.0081721336895779
906 => 0.0078896018212422
907 => 0.0081040082912144
908 => 0.0083843162294056
909 => 0.0083200132786718
910 => 0.0083127778831241
911 => 0.0083249458115039
912 => 0.0082764634865886
913 => 0.0080571797278358
914 => 0.0079470567969791
915 => 0.0080891434731402
916 => 0.0081646562179694
917 => 0.0082817698997962
918 => 0.0082673331665411
919 => 0.0085690054338356
920 => 0.0086862261548104
921 => 0.0086562360782275
922 => 0.0086617549740703
923 => 0.0088739774902037
924 => 0.0091100125750334
925 => 0.0093310905795491
926 => 0.0095559806212637
927 => 0.009284866898369
928 => 0.0091472120698529
929 => 0.0092892367154161
930 => 0.0092138764393386
1001 => 0.0096469189389895
1002 => 0.0096769018621064
1003 => 0.010109913047856
1004 => 0.010520892225145
1005 => 0.010262763567346
1006 => 0.01050616726528
1007 => 0.01076942820959
1008 => 0.011277301283713
1009 => 0.011106267499539
1010 => 0.010975258301302
1011 => 0.010851455242
1012 => 0.011109069755225
1013 => 0.011440486710996
1014 => 0.011511870748997
1015 => 0.01162754016136
1016 => 0.011505927917643
1017 => 0.011652396470051
1018 => 0.012169494821593
1019 => 0.012029770282453
1020 => 0.011831338975033
1021 => 0.012239538460922
1022 => 0.01238726426803
1023 => 0.013424081346918
1024 => 0.014733105737792
1025 => 0.014191161044453
1026 => 0.013854758484851
1027 => 0.013933821065933
1028 => 0.014411832460208
1029 => 0.014565354548726
1030 => 0.014148028589897
1031 => 0.014295435173715
1101 => 0.015107659943252
1102 => 0.015543392472817
1103 => 0.014951609170981
1104 => 0.01331890251168
1105 => 0.011813472406884
1106 => 0.012212780261077
1107 => 0.012167511142377
1108 => 0.01304014533014
1109 => 0.012026437898404
1110 => 0.012043506131757
1111 => 0.012934185470387
1112 => 0.01269656749295
1113 => 0.012311656801314
1114 => 0.011816282680901
1115 => 0.010900537802757
1116 => 0.010089437026751
1117 => 0.011680192433853
1118 => 0.011611596168097
1119 => 0.011512258609887
1120 => 0.011733323596238
1121 => 0.012806752419569
1122 => 0.012782006410841
1123 => 0.012624584928839
1124 => 0.012743987735488
1125 => 0.012290724912004
1126 => 0.012407541062218
1127 => 0.011813233939064
1128 => 0.012081885579188
1129 => 0.012310830955841
1130 => 0.012356795129799
1201 => 0.012460354760714
1202 => 0.011575449053083
1203 => 0.011972745736343
1204 => 0.012206120316093
1205 => 0.011151725474542
1206 => 0.012185278320213
1207 => 0.011560044813451
1208 => 0.011347831170563
1209 => 0.01163354888369
1210 => 0.011522204413015
1211 => 0.011426476975495
1212 => 0.011373059420553
1213 => 0.01158285897556
1214 => 0.011573071575554
1215 => 0.011229798783224
1216 => 0.010782013419219
1217 => 0.010932304885432
1218 => 0.010877702586767
1219 => 0.010679816812567
1220 => 0.010813167931558
1221 => 0.010225957090976
1222 => 0.009215691360319
1223 => 0.0098831038472674
1224 => 0.009857409192525
1225 => 0.009844452782444
1226 => 0.01034599482046
1227 => 0.010297783126048
1228 => 0.0102102784286
1229 => 0.010678209720176
1230 => 0.010507408504187
1231 => 0.011033777606037
]
'min_raw' => 0.0047250860832324
'max_raw' => 0.015543392472817
'avg_raw' => 0.010134239278025
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.004725'
'max' => '$0.015543'
'avg' => '$0.010134'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0025741050754334
'max_diff' => 0.010274967999729
'year' => 2029
]
4 => [
'items' => [
101 => 0.011380478339935
102 => 0.011292543819225
103 => 0.011618617535206
104 => 0.010935767297268
105 => 0.011162582755114
106 => 0.011209329106624
107 => 0.010672435520673
108 => 0.010305671155498
109 => 0.01028121215376
110 => 0.0096452932877894
111 => 0.0099849960130334
112 => 0.010283920353394
113 => 0.010140758791827
114 => 0.010095438118265
115 => 0.010326971610639
116 => 0.010344963745947
117 => 0.0099347411542099
118 => 0.010020039421092
119 => 0.010375747373647
120 => 0.01001107649334
121 => 0.0093025805415538
122 => 0.0091268637497878
123 => 0.0091034198906633
124 => 0.0086268620151196
125 => 0.0091386059860362
126 => 0.0089152160288453
127 => 0.0096209022269886
128 => 0.0092178180552802
129 => 0.0092004419022719
130 => 0.0091741752984725
131 => 0.0087639822486342
201 => 0.0088537884574205
202 => 0.0091523179732981
203 => 0.0092588366677389
204 => 0.0092477258952268
205 => 0.0091508550158081
206 => 0.0091952020083468
207 => 0.0090523448938631
208 => 0.0090018990734252
209 => 0.0088426781879071
210 => 0.0086086674720878
211 => 0.0086412080973936
212 => 0.0081775716371209
213 => 0.007924957886515
214 => 0.007855037729743
215 => 0.007761537573943
216 => 0.007865598821135
217 => 0.0081762582132818
218 => 0.0078015370762861
219 => 0.0071591039705386
220 => 0.0071977152948467
221 => 0.0072844634767621
222 => 0.0071228088136594
223 => 0.0069698162416802
224 => 0.0071028308703364
225 => 0.0068306234943852
226 => 0.0073173584376597
227 => 0.0073041936215031
228 => 0.0074856183088688
301 => 0.007599066889088
302 => 0.0073376046410968
303 => 0.0072718475927961
304 => 0.0073093057959994
305 => 0.0066902051362278
306 => 0.0074350245768504
307 => 0.0074414658063022
308 => 0.007386312089152
309 => 0.0077829054475632
310 => 0.0086198411343814
311 => 0.0083049522633404
312 => 0.0081830177749068
313 => 0.007951220223261
314 => 0.0082600766980523
315 => 0.0082363613396999
316 => 0.0081291114954478
317 => 0.0080642464550042
318 => 0.0081837622808922
319 => 0.0080494371215535
320 => 0.0080253086319278
321 => 0.0078791162368514
322 => 0.0078269322031393
323 => 0.0077882972220851
324 => 0.0077457639041392
325 => 0.0078395818048853
326 => 0.0076269780990219
327 => 0.007370598871549
328 => 0.0073492837128463
329 => 0.0074081367400724
330 => 0.0073820986566174
331 => 0.0073491590525203
401 => 0.0072862683777315
402 => 0.0072676100579684
403 => 0.0073282405454688
404 => 0.0072597922600578
405 => 0.0073607914337527
406 => 0.0073333252470469
407 => 0.0071799013608238
408 => 0.006988678393792
409 => 0.0069869761082817
410 => 0.0069457774337032
411 => 0.0068933047273653
412 => 0.006878708020875
413 => 0.007091628749319
414 => 0.0075323682850169
415 => 0.0074458405681562
416 => 0.0075083657113052
417 => 0.0078159275321895
418 => 0.007913692186342
419 => 0.0078443011505073
420 => 0.0077493144208041
421 => 0.0077534933548452
422 => 0.0080780917646797
423 => 0.0080983365693405
424 => 0.008149488659497
425 => 0.0082152335509271
426 => 0.0078554977898068
427 => 0.007736549832847
428 => 0.007680185691858
429 => 0.0075066059532796
430 => 0.0076937968197343
501 => 0.0075847287181633
502 => 0.0075994457313621
503 => 0.0075898612572096
504 => 0.0075950950281962
505 => 0.0073172223853234
506 => 0.0074184645718301
507 => 0.0072501298005177
508 => 0.0070247484381953
509 => 0.0070239928808399
510 => 0.0070791546499707
511 => 0.0070463422712115
512 => 0.0069580450036537
513 => 0.0069705872137589
514 => 0.0068607042557034
515 => 0.006983928994362
516 => 0.0069874626389474
517 => 0.006940014402467
518 => 0.0071298591141077
519 => 0.0072076386473655
520 => 0.0071764072016744
521 => 0.0072054473658792
522 => 0.007449436185441
523 => 0.0074892170090081
524 => 0.0075068850230629
525 => 0.0074832122247927
526 => 0.0072099070336042
527 => 0.0072220292810168
528 => 0.0071330842727405
529 => 0.0070579351135411
530 => 0.0070609406858036
531 => 0.007099577122339
601 => 0.007268304706686
602 => 0.00762338196091
603 => 0.0076368568831497
604 => 0.0076531888819954
605 => 0.0075867584348848
606 => 0.0075667223763825
607 => 0.0075931551092926
608 => 0.007726503456904
609 => 0.0080695116106838
610 => 0.0079482696203937
611 => 0.0078496979950438
612 => 0.007936171885195
613 => 0.007922859907611
614 => 0.0078104934201011
615 => 0.0078073396670449
616 => 0.0075916724517743
617 => 0.0075119451927936
618 => 0.0074453191277075
619 => 0.0073725652039509
620 => 0.0073294342392144
621 => 0.0073957030037226
622 => 0.0074108594542346
623 => 0.0072659616424576
624 => 0.0072462126061282
625 => 0.0073645392870618
626 => 0.0073124681264462
627 => 0.007366024606442
628 => 0.0073784501692
629 => 0.0073764493674109
630 => 0.0073220810953936
701 => 0.0073567338106922
702 => 0.0072747698085393
703 => 0.0071856462667931
704 => 0.0071287909997518
705 => 0.0070791772385015
706 => 0.0071067058368119
707 => 0.0070085714103588
708 => 0.0069771762322807
709 => 0.0073449942504598
710 => 0.0076167053751989
711 => 0.0076127545878357
712 => 0.0075887051858228
713 => 0.0075529726526745
714 => 0.00772388939954
715 => 0.0076643454225203
716 => 0.0077076686408679
717 => 0.0077186962182071
718 => 0.0077520733735191
719 => 0.0077640028376797
720 => 0.0077279437114408
721 => 0.0076069248795316
722 => 0.0073053574565393
723 => 0.0071649770070706
724 => 0.0071186491205247
725 => 0.0071203330512114
726 => 0.0070738827254729
727 => 0.0070875644281605
728 => 0.0070691247876247
729 => 0.007034204569478
730 => 0.0071045496117439
731 => 0.0071126562225557
801 => 0.0070962368491301
802 => 0.0071001042059618
803 => 0.0069641588068046
804 => 0.0069744944402447
805 => 0.0069169443198618
806 => 0.006906154366067
807 => 0.0067606726732012
808 => 0.0065029307663809
809 => 0.0066457448023716
810 => 0.0064732455295872
811 => 0.0064079174411932
812 => 0.0067171704510481
813 => 0.006686130026202
814 => 0.0066330023118137
815 => 0.0065544153494477
816 => 0.0065252666806613
817 => 0.0063481685964622
818 => 0.0063377046968662
819 => 0.0064254792894457
820 => 0.0063849743351096
821 => 0.0063280900387959
822 => 0.0061220608838161
823 => 0.00589041589971
824 => 0.0058974078057117
825 => 0.0059710897652477
826 => 0.0061853299999647
827 => 0.0061016226338671
828 => 0.0060408919793319
829 => 0.0060295189532942
830 => 0.0061718761851984
831 => 0.006373341493105
901 => 0.0064678645080425
902 => 0.0063741950709461
903 => 0.0062665926651303
904 => 0.0062731419249908
905 => 0.0063167112167223
906 => 0.0063212897332467
907 => 0.0062512516287667
908 => 0.0062709669449273
909 => 0.006241017576873
910 => 0.0060572183604065
911 => 0.0060538940154142
912 => 0.0060087867235306
913 => 0.0060074208926592
914 => 0.0059306821366238
915 => 0.0059199458541845
916 => 0.0057675763963668
917 => 0.0058678664349196
918 => 0.0058005971425217
919 => 0.0056992064516562
920 => 0.0056817266583345
921 => 0.0056812011946398
922 => 0.0057853067636151
923 => 0.0058666499007329
924 => 0.0058017673206635
925 => 0.0057869948148776
926 => 0.0059447265286437
927 => 0.0059246537303105
928 => 0.0059072708164096
929 => 0.0063553024844728
930 => 0.0060006504588537
1001 => 0.0058460019328539
1002 => 0.0056545950149706
1003 => 0.0057169180725908
1004 => 0.0057300504565476
1005 => 0.0052697513227283
1006 => 0.0050830080214645
1007 => 0.0050189247577436
1008 => 0.0049820439334678
1009 => 0.0049988509882105
1010 => 0.0048307601142685
1011 => 0.004943719961524
1012 => 0.004798167473058
1013 => 0.0047737651246979
1014 => 0.0050340310045684
1015 => 0.0050702454813011
1016 => 0.0049157432726032
1017 => 0.0050149587022228
1018 => 0.0049789818082451
1019 => 0.0048006625527118
1020 => 0.0047938520687781
1021 => 0.0047043777345764
1022 => 0.0045643677271959
1023 => 0.0045003793968529
1024 => 0.0044670537188381
1025 => 0.0044808045430915
1026 => 0.0044738517055669
1027 => 0.0044284797376377
1028 => 0.004476452373658
1029 => 0.004353902112288
1030 => 0.0043051016107559
1031 => 0.0042830595563769
1101 => 0.0041742891456811
1102 => 0.0043473912395192
1103 => 0.0043814945326881
1104 => 0.0044156650198795
1105 => 0.0047130957816984
1106 => 0.0046982369813685
1107 => 0.0048325532998213
1108 => 0.004827334014678
1109 => 0.0047890248248752
1110 => 0.004627404654653
1111 => 0.0046918235739011
1112 => 0.0044935521533783
1113 => 0.00464211058278
1114 => 0.0045743147195494
1115 => 0.0046191887332253
1116 => 0.0045385012105094
1117 => 0.0045831570170865
1118 => 0.0043895816886472
1119 => 0.0042088237706289
1120 => 0.004281566033492
1121 => 0.0043606451923111
1122 => 0.0045321089576257
1123 => 0.0044299865535496
1124 => 0.004466713631731
1125 => 0.0043436840678621
1126 => 0.0040898389359429
1127 => 0.0040912756718221
1128 => 0.0040522271285931
1129 => 0.0040184834860626
1130 => 0.0044417165401295
1201 => 0.0043890808195318
1202 => 0.0043052126875522
1203 => 0.004417473514994
1204 => 0.0044471570595886
1205 => 0.004448002108373
1206 => 0.0045299047102032
1207 => 0.0045736161434818
1208 => 0.0045813204730534
1209 => 0.0047101959866561
1210 => 0.0047533933589065
1211 => 0.0049313172216853
1212 => 0.0045699075337629
1213 => 0.0045624645390724
1214 => 0.0044190532550544
1215 => 0.0043280995514874
1216 => 0.0044252809329519
1217 => 0.0045113703703479
1218 => 0.0044217282938476
1219 => 0.004433433656591
1220 => 0.0043130964929161
1221 => 0.0043561113665401
1222 => 0.0043931615704343
1223 => 0.0043727046255542
1224 => 0.0043420795889415
1225 => 0.0045043120182325
1226 => 0.0044951582287778
1227 => 0.004646232796641
1228 => 0.0047640062257364
1229 => 0.0049750772651939
1230 => 0.0047548136321378
1231 => 0.0047467863498806
]
'min_raw' => 0.0040184834860626
'max_raw' => 0.011618617535206
'avg_raw' => 0.0078185505106343
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.004018'
'max' => '$0.011618'
'avg' => '$0.007818'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0007066025971698
'max_diff' => -0.0039247749376114
'year' => 2030
]
5 => [
'items' => [
101 => 0.0048252543215614
102 => 0.0047533813458689
103 => 0.0047988025855358
104 => 0.0049677592012739
105 => 0.0049713289883261
106 => 0.004911530455791
107 => 0.0049078917096517
108 => 0.0049193766719493
109 => 0.0049866444548529
110 => 0.0049631390245762
111 => 0.0049903401035771
112 => 0.0050243554693854
113 => 0.0051650574445847
114 => 0.005198980214461
115 => 0.0051165654706013
116 => 0.0051240065992131
117 => 0.0050931812226742
118 => 0.0050634042951785
119 => 0.0051303384796178
120 => 0.0052526620172752
121 => 0.005251901048896
122 => 0.0052802777320028
123 => 0.0052979561704931
124 => 0.0052220673710846
125 => 0.0051726665531782
126 => 0.0051916099702192
127 => 0.0052219009066018
128 => 0.0051817870278014
129 => 0.004934185585289
130 => 0.0050092920461059
131 => 0.0049967906585076
201 => 0.0049789871623471
202 => 0.0050545072894795
203 => 0.005047223188985
204 => 0.0048290360994016
205 => 0.0048430037289705
206 => 0.0048298855172179
207 => 0.004872273143124
208 => 0.0047510922749657
209 => 0.0047883666938456
210 => 0.004811744859941
211 => 0.0048255147793708
212 => 0.0048752611704734
213 => 0.0048694240056482
214 => 0.0048748983241121
215 => 0.0049486590895568
216 => 0.005321715729538
217 => 0.0053420203793491
218 => 0.0052420328576025
219 => 0.0052819759003736
220 => 0.0052052939928362
221 => 0.0052567710710902
222 => 0.0052919903806555
223 => 0.0051328410930136
224 => 0.0051234173050698
225 => 0.0050464189040228
226 => 0.0050877934833331
227 => 0.0050219635527128
228 => 0.0050381159150538
301 => 0.0049929525018108
302 => 0.0050742376537024
303 => 0.0051651270839527
304 => 0.0051880893433664
305 => 0.0051276855247234
306 => 0.0050839491792202
307 => 0.0050071625641646
308 => 0.0051348604163035
309 => 0.0051722031597904
310 => 0.0051346642707692
311 => 0.0051259656899421
312 => 0.0051094818949927
313 => 0.0051294628049645
314 => 0.0051719997831896
315 => 0.0051519401297933
316 => 0.0051651898842672
317 => 0.0051146954833003
318 => 0.0052220924934349
319 => 0.0053926647920268
320 => 0.0053932132098581
321 => 0.0053731534483328
322 => 0.0053649454261102
323 => 0.0053855279587633
324 => 0.0053966931383879
325 => 0.005463253274797
326 => 0.0055346749530368
327 => 0.0058679687616622
328 => 0.0057743811938969
329 => 0.0060700992886468
330 => 0.0063039739074052
331 => 0.0063741026794732
401 => 0.0063095875089843
402 => 0.0060888845957828
403 => 0.0060780558579423
404 => 0.0064078791886318
405 => 0.0063146889908465
406 => 0.0063036043133487
407 => 0.0061856820726301
408 => 0.0062553887218484
409 => 0.0062401428551295
410 => 0.0062160765086604
411 => 0.0063490719395617
412 => 0.0065980275136248
413 => 0.0065592254527165
414 => 0.0065302615142242
415 => 0.0064033499670269
416 => 0.0064797790651599
417 => 0.0064525641272177
418 => 0.006569496771644
419 => 0.0065002284634611
420 => 0.0063139829834431
421 => 0.0063436431900091
422 => 0.0063391601094547
423 => 0.0064314215895897
424 => 0.0064037269833239
425 => 0.0063337522930988
426 => 0.0065971766105376
427 => 0.0065800713006061
428 => 0.0066043227192706
429 => 0.0066149989437668
430 => 0.0067753406837346
501 => 0.0068410275642361
502 => 0.0068559396361206
503 => 0.0069183370921913
504 => 0.0068543871305708
505 => 0.0071102325726027
506 => 0.0072803548625585
507 => 0.0074779606567552
508 => 0.0077667158335068
509 => 0.0078752904511001
510 => 0.0078556774182456
511 => 0.0080746082977414
512 => 0.0084680222216353
513 => 0.0079351976203991
514 => 0.0084962632193
515 => 0.0083186363285018
516 => 0.0078974861657907
517 => 0.0078703690603463
518 => 0.0081555768401883
519 => 0.0087881402456462
520 => 0.0086296902870537
521 => 0.0087883994130153
522 => 0.0086032567872495
523 => 0.0085940628953757
524 => 0.0087794074489279
525 => 0.0092124751009083
526 => 0.0090067408927506
527 => 0.0087117704572591
528 => 0.0089295720365777
529 => 0.0087408921519873
530 => 0.0083157435638306
531 => 0.0086295691233566
601 => 0.0084197229089389
602 => 0.0084809671903443
603 => 0.0089220327207815
604 => 0.0088689625492447
605 => 0.0089376402653789
606 => 0.0088164258940108
607 => 0.008703192557401
608 => 0.0084918341258008
609 => 0.0084292613140487
610 => 0.0084465541880831
611 => 0.0084292527445592
612 => 0.0083109996445632
613 => 0.008285462898878
614 => 0.0082429005372789
615 => 0.0082560923928697
616 => 0.0081760627010053
617 => 0.0083270952645315
618 => 0.0083551282392164
619 => 0.0084650371438802
620 => 0.0084764482509712
621 => 0.0087825429860045
622 => 0.0086139511496612
623 => 0.0087270571089992
624 => 0.0087169398474014
625 => 0.0079066137668556
626 => 0.0080182695511873
627 => 0.008191970912092
628 => 0.0081137186844511
629 => 0.008003088342768
630 => 0.0079137484102353
701 => 0.0077783892769711
702 => 0.0079689046576985
703 => 0.0082194121243031
704 => 0.0084828015337245
705 => 0.0087992466511867
706 => 0.0087286197847964
707 => 0.0084768858123682
708 => 0.0084881784144796
709 => 0.0085579848372567
710 => 0.008467579177178
711 => 0.0084409167830926
712 => 0.0085543218337383
713 => 0.0085551027919958
714 => 0.0084510801541862
715 => 0.0083354780282026
716 => 0.0083349936510737
717 => 0.008314423369339
718 => 0.008606916194673
719 => 0.0087677576742466
720 => 0.0087861978906707
721 => 0.0087665165007573
722 => 0.0087740910866085
723 => 0.0086805009735448
724 => 0.0088944202187225
725 => 0.0090907336725182
726 => 0.0090381174732758
727 => 0.0089592383107778
728 => 0.008896407258513
729 => 0.0090233164741617
730 => 0.0090176654065625
731 => 0.0090890190457594
801 => 0.0090857820325269
802 => 0.0090617884874111
803 => 0.0090381183301608
804 => 0.0091319678281048
805 => 0.0091049406798738
806 => 0.0090778715510164
807 => 0.0090235802690167
808 => 0.0090309593559232
809 => 0.0089520938130248
810 => 0.0089156070042383
811 => 0.0083669329441847
812 => 0.0082203093068962
813 => 0.0082664400879865
814 => 0.0082816275389067
815 => 0.0082178167440554
816 => 0.0083093050322238
817 => 0.0082950466794229
818 => 0.008350517589314
819 => 0.008315861773081
820 => 0.0083172840598676
821 => 0.00841919942601
822 => 0.0084487858903801
823 => 0.0084337379758094
824 => 0.0084442770193624
825 => 0.0086871448297886
826 => 0.0086526167936213
827 => 0.0086342744625768
828 => 0.0086393554136299
829 => 0.0087014133463383
830 => 0.0087187861792592
831 => 0.0086451762654062
901 => 0.0086798911263131
902 => 0.0088277025980829
903 => 0.0088794282477976
904 => 0.0090445116919665
905 => 0.0089743813107593
906 => 0.0091031086606369
907 => 0.0094987726477731
908 => 0.0098148564185629
909 => 0.0095241727202303
910 => 0.01010462031226
911 => 0.010556582022917
912 => 0.010539234979681
913 => 0.010460425001365
914 => 0.0099458786098056
915 => 0.0094723853488381
916 => 0.0098684825672232
917 => 0.009869492300491
918 => 0.0098354671981505
919 => 0.0096241402097334
920 => 0.0098281134770314
921 => 0.0098443041342674
922 => 0.0098352416716585
923 => 0.0096732177651214
924 => 0.0094258372068626
925 => 0.009474174775801
926 => 0.0095533526997818
927 => 0.0094034523714409
928 => 0.0093555501337548
929 => 0.0094446095073868
930 => 0.0097315773654867
1001 => 0.0096773277542046
1002 => 0.0096759110776141
1003 => 0.0099080139200947
1004 => 0.009741878375807
1005 => 0.0094747844673436
1006 => 0.0094073397329208
1007 => 0.0091679563619368
1008 => 0.0093332993089297
1009 => 0.0093392497072377
1010 => 0.0092486930649336
1011 => 0.0094821326397805
1012 => 0.009479981453002
1013 => 0.0097015975864237
1014 => 0.010125244398308
1015 => 0.00999995118964
1016 => 0.009854248819822
1017 => 0.0098700907073097
1018 => 0.01004383711194
1019 => 0.0099387860694558
1020 => 0.0099765631567749
1021 => 0.010043779931794
1022 => 0.010084333481061
1023 => 0.0098642556756538
1024 => 0.009812945011675
1025 => 0.0097079814007703
1026 => 0.0096805983539239
1027 => 0.0097660890248682
1028 => 0.0097435652535043
1029 => 0.0093387495993009
1030 => 0.0092964441110637
1031 => 0.0092977415599896
1101 => 0.0091913623983006
1102 => 0.0090291086428007
1103 => 0.0094555018245861
1104 => 0.00942125648472
1105 => 0.0093834522798865
1106 => 0.0093880830792708
1107 => 0.0095731659076781
1108 => 0.009465808520295
1109 => 0.0097512357301827
1110 => 0.0096925604765571
1111 => 0.009632380424078
1112 => 0.0096240617076961
1113 => 0.0096008975218125
1114 => 0.0095214589094035
1115 => 0.0094255320113991
1116 => 0.009362192764291
1117 => 0.0086361279414214
1118 => 0.0087708813492212
1119 => 0.0089259028617353
1120 => 0.0089794156666455
1121 => 0.0088878783108733
1122 => 0.0095250733621361
1123 => 0.0096414950381661
1124 => 0.0092888461874732
1125 => 0.0092228799860662
1126 => 0.0095293980953182
1127 => 0.0093445302051244
1128 => 0.009427776204759
1129 => 0.0092478438866762
1130 => 0.0096134524656351
1201 => 0.0096106671408254
1202 => 0.0094684371459661
1203 => 0.0095886489636722
1204 => 0.0095677592020782
1205 => 0.0094071818881791
1206 => 0.0096185430529023
1207 => 0.009618647885403
1208 => 0.0094817546076977
1209 => 0.0093218932291297
1210 => 0.009293313790399
1211 => 0.0092717830224228
1212 => 0.0094224809556969
1213 => 0.0095575962514504
1214 => 0.009809012318925
1215 => 0.0098722242917865
1216 => 0.010118944830124
1217 => 0.0099720347621492
1218 => 0.010037158092479
1219 => 0.010107858679809
1220 => 0.010141755141303
1221 => 0.010086522676283
1222 => 0.010469781226547
1223 => 0.010502139990928
1224 => 0.010512989604722
1225 => 0.010383756977953
1226 => 0.010498545797797
1227 => 0.010444839910398
1228 => 0.010584567709485
1229 => 0.010606478812515
1230 => 0.010587920887758
1231 => 0.010594875817704
]
'min_raw' => 0.0047510922749657
'max_raw' => 0.010606478812515
'avg_raw' => 0.0076787855437406
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.004751'
'max' => '$0.0106064'
'avg' => '$0.007678'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00073260878890305
'max_diff' => -0.0010121387226905
'year' => 2031
]
6 => [
'items' => [
101 => 0.010267832256495
102 => 0.010250873322554
103 => 0.010019637054919
104 => 0.010113867543192
105 => 0.0099377081619495
106 => 0.0099935701163842
107 => 0.010018193533627
108 => 0.010005331657826
109 => 0.010119195193617
110 => 0.010022387927411
111 => 0.0097668976353057
112 => 0.0095113377350412
113 => 0.009508129388668
114 => 0.0094408449779352
115 => 0.00939221067273
116 => 0.0094015793653072
117 => 0.009434595859927
118 => 0.009390291694042
119 => 0.0093997462341118
120 => 0.0095567545945414
121 => 0.0095882415014932
122 => 0.0094812366889424
123 => 0.0090515969258301
124 => 0.0089461622502926
125 => 0.0090219466042085
126 => 0.0089857265641742
127 => 0.0072521826444926
128 => 0.0076594530744013
129 => 0.0074174668145465
130 => 0.0075289852163401
131 => 0.0072819799070665
201 => 0.0073998637873093
202 => 0.0073780949390585
203 => 0.0080329737383437
204 => 0.0080227487066492
205 => 0.0080276428882247
206 => 0.0077940308499028
207 => 0.0081661811702076
208 => 0.0083495158000825
209 => 0.0083155854393858
210 => 0.0083241249801723
211 => 0.0081773873766093
212 => 0.0080290636289797
213 => 0.0078645497659974
214 => 0.0081701961888905
215 => 0.0081362135242232
216 => 0.0082141575303931
217 => 0.0084123910836968
218 => 0.0084415817274368
219 => 0.0084808142486457
220 => 0.0084667521825534
221 => 0.0088017676470764
222 => 0.0087611950638195
223 => 0.0088589633159398
224 => 0.0086578466036331
225 => 0.0084302639534844
226 => 0.0084735199750402
227 => 0.0084693540723215
228 => 0.0084163173493107
229 => 0.0083684381672087
301 => 0.0082887328188848
302 => 0.0085409323351537
303 => 0.0085306934953636
304 => 0.0086964484102163
305 => 0.0086671496189587
306 => 0.0084714851203103
307 => 0.008478473316158
308 => 0.0085254722916456
309 => 0.0086881362824333
310 => 0.0087364260299081
311 => 0.008714056294864
312 => 0.0087670037984594
313 => 0.0088088513464576
314 => 0.0087722592061918
315 => 0.0092903267463609
316 => 0.0090751889841398
317 => 0.0091800456325274
318 => 0.0092050533253166
319 => 0.0091409966460922
320 => 0.0091548882461183
321 => 0.0091759302349233
322 => 0.0093036930705038
323 => 0.0096389797195414
324 => 0.0097874758940268
325 => 0.010234233961638
326 => 0.0097751453539023
327 => 0.0097479049358168
328 => 0.0098283795545947
329 => 0.010090673834427
330 => 0.010303238712182
331 => 0.010373758745295
401 => 0.01038307913183
402 => 0.010515379402034
403 => 0.01059121144966
404 => 0.010499314669388
405 => 0.010421441770102
406 => 0.010142510710797
407 => 0.010174797740416
408 => 0.010397223356981
409 => 0.010711412641183
410 => 0.010981019732852
411 => 0.010886612726105
412 => 0.011606871546621
413 => 0.011678282266682
414 => 0.011668415614155
415 => 0.011831099861793
416 => 0.011508204760302
417 => 0.011370160848616
418 => 0.010438278774822
419 => 0.010700099626583
420 => 0.011080671610816
421 => 0.011030301481631
422 => 0.010753919933962
423 => 0.010980810072664
424 => 0.010905793097299
425 => 0.010846624096371
426 => 0.011117688760096
427 => 0.010819642027607
428 => 0.011077698366665
429 => 0.010746738442573
430 => 0.010887043969359
501 => 0.01080739976654
502 => 0.010858939326591
503 => 0.010557640111663
504 => 0.010720213854413
505 => 0.010550876509472
506 => 0.010550796221522
507 => 0.010547058090247
508 => 0.010746282725613
509 => 0.01075277943382
510 => 0.010605552127273
511 => 0.010584334372276
512 => 0.010662787533173
513 => 0.010570939428678
514 => 0.010613914578687
515 => 0.010572241102193
516 => 0.010562859524856
517 => 0.010488105520496
518 => 0.010455899440013
519 => 0.010468528274019
520 => 0.010425419552947
521 => 0.01039944498919
522 => 0.010541891095745
523 => 0.010465787887273
524 => 0.010530227187573
525 => 0.010456790471993
526 => 0.010202226820936
527 => 0.010055824573252
528 => 0.0095749774344691
529 => 0.0097113450865389
530 => 0.0098017569809437
531 => 0.0097718758503823
601 => 0.0098360720812907
602 => 0.0098400132084883
603 => 0.0098191423594169
604 => 0.0097949765899135
605 => 0.0097832140297701
606 => 0.0098708825161941
607 => 0.0099217770233487
608 => 0.0098108310241023
609 => 0.0097848379287784
610 => 0.009897010459513
611 => 0.0099654356384612
612 => 0.010470648715028
613 => 0.010433220898499
614 => 0.010527157373148
615 => 0.010516581567675
616 => 0.010615041958361
617 => 0.010775983084668
618 => 0.01044874477504
619 => 0.010505542030542
620 => 0.010491616655133
621 => 0.010643650252418
622 => 0.010644124884714
623 => 0.0105529731485
624 => 0.01060238798347
625 => 0.010574805978215
626 => 0.010624650389642
627 => 0.01043272102719
628 => 0.010666470273162
629 => 0.010798991033159
630 => 0.01080083108404
701 => 0.010863644872529
702 => 0.010927467319563
703 => 0.011049968948882
704 => 0.01092405081561
705 => 0.010697536351736
706 => 0.010713889964391
707 => 0.0105810846171
708 => 0.010583317098982
709 => 0.010571399935737
710 => 0.010607164239716
711 => 0.010440569280712
712 => 0.010479668784605
713 => 0.010424929250189
714 => 0.010505423037485
715 => 0.010418825028454
716 => 0.010491609939896
717 => 0.010523021494816
718 => 0.010638930808714
719 => 0.010401705128548
720 => 0.009917985907925
721 => 0.010019669552629
722 => 0.009869271455034
723 => 0.0098831913715723
724 => 0.009911311818318
725 => 0.0098201642499775
726 => 0.0098375523336269
727 => 0.0098369311089209
728 => 0.0098315777300171
729 => 0.0098078667272057
730 => 0.0097734810820501
731 => 0.0099104629090065
801 => 0.0099337387906724
802 => 0.0099854781923442
803 => 0.010139419556548
804 => 0.010124037184077
805 => 0.010149126471786
806 => 0.010094356697587
807 => 0.0098857319843139
808 => 0.0098970613099684
809 => 0.0097557844375166
810 => 0.0099818654250819
811 => 0.0099283264631032
812 => 0.009893809546024
813 => 0.0098843912854019
814 => 0.010038714240472
815 => 0.010084890087345
816 => 0.010056116398319
817 => 0.0099971007226658
818 => 0.010110428266339
819 => 0.010140749936121
820 => 0.010147537839765
821 => 0.010348332518753
822 => 0.01015876003177
823 => 0.010204392013575
824 => 0.010560399709396
825 => 0.01023754985499
826 => 0.01040857062328
827 => 0.010400200046621
828 => 0.010487688484651
829 => 0.010393023441107
830 => 0.010394196927776
831 => 0.010471880733767
901 => 0.010362787838602
902 => 0.010335774903582
903 => 0.010298456727322
904 => 0.010379939599927
905 => 0.0104287848969
906 => 0.010822442117584
907 => 0.011076762635097
908 => 0.011065721910709
909 => 0.011166613464244
910 => 0.011121160895316
911 => 0.010974382560464
912 => 0.011224915280344
913 => 0.01114563624504
914 => 0.011152171912387
915 => 0.011151928654522
916 => 0.011204642282305
917 => 0.011167289845887
918 => 0.011093664359559
919 => 0.011142540393341
920 => 0.011287684740173
921 => 0.011738217246312
922 => 0.01199034120551
923 => 0.011723039067393
924 => 0.011907420502947
925 => 0.011796857343437
926 => 0.011776764728385
927 => 0.011892569895595
928 => 0.01200857776442
929 => 0.012001188564691
930 => 0.011916972808995
1001 => 0.011869401465497
1002 => 0.012229627616029
1003 => 0.012495036107448
1004 => 0.012476937027654
1005 => 0.012556820479727
1006 => 0.012791360765717
1007 => 0.012812804190113
1008 => 0.01281010281151
1009 => 0.012756953046754
1010 => 0.012987888417215
1011 => 0.013180538766175
1012 => 0.012744650411858
1013 => 0.012910630990984
1014 => 0.012985145020514
1015 => 0.013094553723181
1016 => 0.013279144543608
1017 => 0.013479659134888
1018 => 0.013508014096625
1019 => 0.013487894894363
1020 => 0.013355650131292
1021 => 0.013575055589707
1022 => 0.013703578161556
1023 => 0.013780110411905
1024 => 0.013974183465038
1025 => 0.012985605193793
1026 => 0.012285840357878
1027 => 0.012176561974023
1028 => 0.012398783864752
1029 => 0.012457382005151
1030 => 0.012433761168232
1031 => 0.011646112225574
1101 => 0.012172415165348
1102 => 0.012738672875736
1103 => 0.012760425140549
1104 => 0.01304390559026
1105 => 0.013136218444942
1106 => 0.013364457363591
1107 => 0.013350180957087
1108 => 0.013405753501703
1109 => 0.013392978336078
1110 => 0.013815742871501
1111 => 0.014282114935213
1112 => 0.014265965953619
1113 => 0.014198919451597
1114 => 0.014298494940228
1115 => 0.014779840889447
1116 => 0.014735526267854
1117 => 0.014778574148021
1118 => 0.015346108149619
1119 => 0.016083983082466
1120 => 0.015741166094727
1121 => 0.016484980315191
1122 => 0.016953171939076
1123 => 0.017762860940667
1124 => 0.017661483889865
1125 => 0.017976689876412
1126 => 0.017479997810901
1127 => 0.01633949243046
1128 => 0.016159003088326
1129 => 0.016520347321996
1130 => 0.017408676861021
1201 => 0.016492370663516
1202 => 0.016677738213871
1203 => 0.016624352346899
1204 => 0.016621507640923
1205 => 0.016730078497758
1206 => 0.016572590807244
1207 => 0.015930957624594
1208 => 0.016225014331034
1209 => 0.016111464914915
1210 => 0.016237456457769
1211 => 0.016917380851689
1212 => 0.016616770069764
1213 => 0.016300101030643
1214 => 0.016697274280186
1215 => 0.017203012310391
1216 => 0.017171364133359
1217 => 0.017109953442006
1218 => 0.017456122293804
1219 => 0.018027891819017
1220 => 0.018182438824126
1221 => 0.018296522263724
1222 => 0.018312252442588
1223 => 0.018474283061149
1224 => 0.017603003588176
1225 => 0.018985746487828
1226 => 0.019224507989097
1227 => 0.019179630722508
1228 => 0.019445004082548
1229 => 0.019366924508152
1230 => 0.019253799455162
1231 => 0.019674472677358
]
'min_raw' => 0.0072521826444926
'max_raw' => 0.019674472677358
'avg_raw' => 0.013463327660925
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.007252'
'max' => '$0.019674'
'avg' => '$0.013463'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0025010903695269
'max_diff' => 0.0090679938648422
'year' => 2032
]
7 => [
'items' => [
101 => 0.019192204774689
102 => 0.018507686202691
103 => 0.018132145775851
104 => 0.018626687703897
105 => 0.018928687202219
106 => 0.019128289659834
107 => 0.019188689242906
108 => 0.017670638533448
109 => 0.016852493396002
110 => 0.017376915049052
111 => 0.018016745659421
112 => 0.017599449296829
113 => 0.017615806524196
114 => 0.017020851574695
115 => 0.018069385970874
116 => 0.017916623328913
117 => 0.018709156185639
118 => 0.018520011858908
119 => 0.01916629163762
120 => 0.018996104512691
121 => 0.019702541753237
122 => 0.019984358694515
123 => 0.020457573200226
124 => 0.020805671716957
125 => 0.021010081824044
126 => 0.020997809807938
127 => 0.021807784488931
128 => 0.021330170717909
129 => 0.020730175256583
130 => 0.020719323231649
131 => 0.021030069383071
201 => 0.021681308067409
202 => 0.02185016478312
203 => 0.021944532651346
204 => 0.021800004976189
205 => 0.021281589458632
206 => 0.021057740266578
207 => 0.021248466263744
208 => 0.021015224758482
209 => 0.021417865032572
210 => 0.02197077612822
211 => 0.021856602173416
212 => 0.022238268586409
213 => 0.022633253171379
214 => 0.023198098867755
215 => 0.023345770448963
216 => 0.023589865957253
217 => 0.02384112041648
218 => 0.023921816577287
219 => 0.024075890586814
220 => 0.024075078540731
221 => 0.024539390938819
222 => 0.025051541892468
223 => 0.025244867021148
224 => 0.02568940749454
225 => 0.024928147512413
226 => 0.025505571953581
227 => 0.026026423253385
228 => 0.02540544286158
301 => 0.026261319661808
302 => 0.026294551418503
303 => 0.026796311490029
304 => 0.026287681531939
305 => 0.025985658686429
306 => 0.026857587324767
307 => 0.027279486127364
308 => 0.027152406774495
309 => 0.026185326624484
310 => 0.025622444497159
311 => 0.024149273398095
312 => 0.025894308201192
313 => 0.026744263750417
314 => 0.026183125444946
315 => 0.02646613096676
316 => 0.028010117328926
317 => 0.028597967369926
318 => 0.02847569867078
319 => 0.028496360068221
320 => 0.028813553280112
321 => 0.030220162663125
322 => 0.029377289715873
323 => 0.030021634502201
324 => 0.030363392653511
325 => 0.030680836670836
326 => 0.029901294493497
327 => 0.028887121574527
328 => 0.028565890439006
329 => 0.026127331299294
330 => 0.026000393705947
331 => 0.025929139788198
401 => 0.025479893915859
402 => 0.025126909719001
403 => 0.024846203580197
404 => 0.024109546846026
405 => 0.024358146869023
406 => 0.023184069786964
407 => 0.023935202697329
408 => 0.02206134732528
409 => 0.023621949761035
410 => 0.022772584807139
411 => 0.023342910530083
412 => 0.023340920717364
413 => 0.022290770239489
414 => 0.021685065359932
415 => 0.022071044083572
416 => 0.022484843914344
417 => 0.022551981544697
418 => 0.023088483826573
419 => 0.023238210081366
420 => 0.022784532539291
421 => 0.022022515837736
422 => 0.022199514937756
423 => 0.021681478478819
424 => 0.020773639510517
425 => 0.021425665306899
426 => 0.021648295581335
427 => 0.021746621793493
428 => 0.020853866434177
429 => 0.020573343317618
430 => 0.020423995164179
501 => 0.02190727233159
502 => 0.021988529603129
503 => 0.021572805913312
504 => 0.023451916411823
505 => 0.023026615832649
506 => 0.023501780780758
507 => 0.022183454124646
508 => 0.022233815978272
509 => 0.021609699012147
510 => 0.021959162809666
511 => 0.021712173061323
512 => 0.021930929588295
513 => 0.022062051348595
514 => 0.022686065903268
515 => 0.023629075004881
516 => 0.022592858937851
517 => 0.022141364758559
518 => 0.022421469208092
519 => 0.023167424268932
520 => 0.024297584370842
521 => 0.02362850684392
522 => 0.023925432088694
523 => 0.023990297045393
524 => 0.023496944047637
525 => 0.024315774999581
526 => 0.024754593158898
527 => 0.025204729789734
528 => 0.025595570813747
529 => 0.025024935320661
530 => 0.025635597095648
531 => 0.025143511501323
601 => 0.02470205985234
602 => 0.024702729352268
603 => 0.024425800284282
604 => 0.02388921531975
605 => 0.0237902608196
606 => 0.024305034625956
607 => 0.024717834469393
608 => 0.024751834641676
609 => 0.024980381845425
610 => 0.025115633726379
611 => 0.026441286025753
612 => 0.026974474346932
613 => 0.027626446933331
614 => 0.027880426998895
615 => 0.02864481593935
616 => 0.028027509789299
617 => 0.027893951720697
618 => 0.02603979418087
619 => 0.026343412374145
620 => 0.026829534396376
621 => 0.026047810153967
622 => 0.026543634257658
623 => 0.026641520438717
624 => 0.02602124746334
625 => 0.026352562059902
626 => 0.025472688719365
627 => 0.023648253839289
628 => 0.024317806117144
629 => 0.024810821962506
630 => 0.02410722756276
701 => 0.025368393291442
702 => 0.024631646308491
703 => 0.024398132884987
704 => 0.023487113766354
705 => 0.023917079722007
706 => 0.024498614833548
707 => 0.024139293745329
708 => 0.024884938955716
709 => 0.025940971429938
710 => 0.02669356305889
711 => 0.026751337699194
712 => 0.026267471701501
713 => 0.027042870050795
714 => 0.027048517981248
715 => 0.026173865475649
716 => 0.025638145686055
717 => 0.025516429022695
718 => 0.025820501111725
719 => 0.026189700762613
720 => 0.026771825710319
721 => 0.02712359162446
722 => 0.028040810566315
723 => 0.028288983713253
724 => 0.028561650760341
725 => 0.028926018022654
726 => 0.029363534342909
727 => 0.028406273542009
728 => 0.028444307298186
729 => 0.027552919294566
730 => 0.026600343374727
731 => 0.02732322975762
801 => 0.028268307541707
802 => 0.028051505653819
803 => 0.028027111012571
804 => 0.028068136032641
805 => 0.027904674489261
806 => 0.027165343986723
807 => 0.026794056836802
808 => 0.027273111985654
809 => 0.027527708476977
810 => 0.027922565431872
811 => 0.027873890977763
812 => 0.028891000089031
813 => 0.029286217933887
814 => 0.029185104296848
815 => 0.029203711639498
816 => 0.029919234669545
817 => 0.030715043437492
818 => 0.03146042336489
819 => 0.032218655841852
820 => 0.031304576996557
821 => 0.030840464131462
822 => 0.031319310139822
823 => 0.03106522770754
824 => 0.032525260729175
825 => 0.032626350247805
826 => 0.034086277692434
827 => 0.035471922682313
828 => 0.034601623890578
829 => 0.035422276452066
830 => 0.036309879106099
831 => 0.038022208634071
901 => 0.037445556289529
902 => 0.037003849630905
903 => 0.036586438972815
904 => 0.037455004290223
905 => 0.038572399695398
906 => 0.038813075963393
907 => 0.039203063462955
908 => 0.038793039292568
909 => 0.039286868243118
910 => 0.041030301437995
911 => 0.040559210399029
912 => 0.039890185392033
913 => 0.041266458458285
914 => 0.041764526330835
915 => 0.045260227500564
916 => 0.04967369462756
917 => 0.047846490256596
918 => 0.046712285540022
919 => 0.046978850552113
920 => 0.048590499341601
921 => 0.049108109781609
922 => 0.047701066174649
923 => 0.048198057763592
924 => 0.050936530281807
925 => 0.052405632927111
926 => 0.050410394207979
927 => 0.044905609714207
928 => 0.039829947010114
929 => 0.04117624131931
930 => 0.041023613325024
1001 => 0.043965760414441
1002 => 0.04054797503355
1003 => 0.040605521773965
1004 => 0.043608509349403
1005 => 0.042807363748517
1006 => 0.041509610478057
1007 => 0.039839422045168
1008 => 0.036751924253243
1009 => 0.034017241357689
1010 => 0.039380584275728
1011 => 0.039149307176496
1012 => 0.038814383663462
1013 => 0.03955971969921
1014 => 0.043178859921476
1015 => 0.043095427025339
1016 => 0.042564669507953
1017 => 0.042967244407008
1018 => 0.041439037151831
1019 => 0.041832890958123
1020 => 0.03982914299921
1021 => 0.040734920760545
1022 => 0.041506826082389
1023 => 0.041661797504003
1024 => 0.042010956029936
1025 => 0.039027434654514
1026 => 0.040366948160493
1027 => 0.041153786849813
1028 => 0.037598821026027
1029 => 0.041083516605563
1030 => 0.038975498185104
1031 => 0.038260005071825
1101 => 0.039223322289805
1102 => 0.038847916633101
1103 => 0.038525164894028
1104 => 0.038345063878046
1105 => 0.039052417725488
1106 => 0.039019418823034
1107 => 0.037862050637153
1108 => 0.036352311019033
1109 => 0.036859029190388
1110 => 0.036674933728227
1111 => 0.036007748024567
1112 => 0.036457350632524
1113 => 0.034477528285751
1114 => 0.031071346840339
1115 => 0.033321574637338
1116 => 0.03323494331493
1117 => 0.033191259873755
1118 => 0.034882243871471
1119 => 0.034719694777729
1120 => 0.034424666580902
1121 => 0.036002329600368
1122 => 0.035426461375701
1123 => 0.037201151552507
1124 => 0.038370077282716
1125 => 0.038073599906749
1126 => 0.039172980205919
1127 => 0.036870702953629
1128 => 0.037635427105509
1129 => 0.037793035693349
1130 => 0.035982861483602
1201 => 0.034746289819744
1202 => 0.034663824587713
1203 => 0.032519779732655
1204 => 0.033665111188102
1205 => 0.034672955471859
1206 => 0.034190276271815
1207 => 0.034037474456712
1208 => 0.034818105791403
1209 => 0.034878767531764
1210 => 0.033495673422896
1211 => 0.033783262485024
1212 => 0.0349825566818
1213 => 0.033753043348337
1214 => 0.031364299781281
1215 => 0.030771858349688
1216 => 0.030692815741851
1217 => 0.029086067592247
1218 => 0.030811448119016
1219 => 0.030058273281758
1220 => 0.032437543568235
1221 => 0.031078517140882
1222 => 0.031019932227851
1223 => 0.030931372539265
1224 => 0.029548378032971
1225 => 0.029851165935963
1226 => 0.03085767904141
1227 => 0.031216814256615
1228 => 0.031179353511361
1229 => 0.030852746578092
1230 => 0.031002265559644
1231 => 0.030520612824197
]
'min_raw' => 0.016852493396002
'max_raw' => 0.052405632927111
'avg_raw' => 0.034629063161557
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.016852'
'max' => '$0.0524056'
'avg' => '$0.034629'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0096003107515098
'max_diff' => 0.032731160249754
'year' => 2033
]
8 => [
'items' => [
101 => 0.030350531218576
102 => 0.029813706886605
103 => 0.029024723420113
104 => 0.029134436410246
105 => 0.027571253714373
106 => 0.026719548817276
107 => 0.02648380812705
108 => 0.026168565823797
109 => 0.02651941558403
110 => 0.027566825414199
111 => 0.026303426938623
112 => 0.024137418869348
113 => 0.02426759964501
114 => 0.024560077196902
115 => 0.024015047213884
116 => 0.023499222075855
117 => 0.023947690183155
118 => 0.023029924010223
119 => 0.024670984854221
120 => 0.024626598757411
121 => 0.025238284757532
122 => 0.025620784566468
123 => 0.024739246342654
124 => 0.024517541863298
125 => 0.024643834810646
126 => 0.022556493711998
127 => 0.02506770445769
128 => 0.025089421512499
129 => 0.024903466904418
130 => 0.026240609101565
131 => 0.029062396202657
201 => 0.028000726389103
202 => 0.027589615748155
203 => 0.026808094119193
204 => 0.027849425287622
205 => 0.027769467301184
206 => 0.027407866963342
207 => 0.027189169950754
208 => 0.027592125902064
209 => 0.027139239249071
210 => 0.0270578883617
211 => 0.026564990494873
212 => 0.02638904838184
213 => 0.026258787845807
214 => 0.026115383794771
215 => 0.026431697397294
216 => 0.025714889159459
217 => 0.024850488694208
218 => 0.024778623148465
219 => 0.024977050238744
220 => 0.024889261022455
221 => 0.024778202847472
222 => 0.024566162546535
223 => 0.024503254718771
224 => 0.024707674640464
225 => 0.024476896467294
226 => 0.024817422232944
227 => 0.024724818066837
228 => 0.024207538722723
301 => 0.023562817138614
302 => 0.023557077764166
303 => 0.023418173556425
304 => 0.023241258163479
305 => 0.023192044348438
306 => 0.023909921450037
307 => 0.025395905566094
308 => 0.025104171327526
309 => 0.025314979213019
310 => 0.026351945365411
311 => 0.026681565722597
312 => 0.026447609000552
313 => 0.026127354609596
314 => 0.02614144417748
315 => 0.027235850378974
316 => 0.027304107151335
317 => 0.027476569994623
318 => 0.027698233486241
319 => 0.026485359251675
320 => 0.026084317910104
321 => 0.025894282273541
322 => 0.025309046065974
323 => 0.025940173141474
324 => 0.025572442422136
325 => 0.025622061859645
326 => 0.025589747135873
327 => 0.025607393160165
328 => 0.024670526144271
329 => 0.025011871244582
330 => 0.024444318810344
331 => 0.023684429811649
401 => 0.023681882397274
402 => 0.023867864153171
403 => 0.023757234927297
404 => 0.023459534525007
405 => 0.023501821462046
406 => 0.023131343397179
407 => 0.023546804206843
408 => 0.023558718136274
409 => 0.02339874309425
410 => 0.024038817794081
411 => 0.024301056920853
412 => 0.024195757921196
413 => 0.024293668862332
414 => 0.02511629420224
415 => 0.025250418026305
416 => 0.025309986969232
417 => 0.025230172477082
418 => 0.024308704943431
419 => 0.024349575946931
420 => 0.024049691641585
421 => 0.023796321004597
422 => 0.023806454501323
423 => 0.023936719944612
424 => 0.024505596775421
425 => 0.02570276452874
426 => 0.02574819616986
427 => 0.025803260644232
428 => 0.025579285753773
429 => 0.02551173278366
430 => 0.02560085258814
501 => 0.026050445852196
502 => 0.02720692179073
503 => 0.026798145955621
504 => 0.026465804838703
505 => 0.026757357596762
506 => 0.026712475334925
507 => 0.026333623877108
508 => 0.026322990778491
509 => 0.025595853704802
510 => 0.025327047684769
511 => 0.025102413254648
512 => 0.024857118321185
513 => 0.024711699262268
514 => 0.024935129028545
515 => 0.024986230059636
516 => 0.024497696970788
517 => 0.02443111171597
518 => 0.024830058382042
519 => 0.024654496828534
520 => 0.024835066240034
521 => 0.024876959892398
522 => 0.024870214049475
523 => 0.024686907624497
524 => 0.024803741673501
525 => 0.024527394317699
526 => 0.024226908074294
527 => 0.024035216571957
528 => 0.023867940311979
529 => 0.023960754903168
530 => 0.023629887832855
531 => 0.023524036798023
601 => 0.024764160926548
602 => 0.02568025395387
603 => 0.02566693359844
604 => 0.025585849360478
605 => 0.025465374630203
606 => 0.026041632375286
607 => 0.025840875699536
608 => 0.025986942954926
609 => 0.026024123201846
610 => 0.026136656611299
611 => 0.026176877632605
612 => 0.026055301770923
613 => 0.025647278329876
614 => 0.024630522708492
615 => 0.024157220222059
616 => 0.024001022518059
617 => 0.024006700007938
618 => 0.023850089491652
619 => 0.023896218307489
620 => 0.023834047772008
621 => 0.023716311818475
622 => 0.023953485039809
623 => 0.023980817044146
624 => 0.023925457980278
625 => 0.023938497043846
626 => 0.023480147639183
627 => 0.023514994948937
628 => 0.023320960700045
629 => 0.023284581617495
630 => 0.022794079932791
701 => 0.021925085098981
702 => 0.022406592592281
703 => 0.021824999250574
704 => 0.021604741039492
705 => 0.022647409153573
706 => 0.022542754194031
707 => 0.022363630395713
708 => 0.022098668965329
709 => 0.022000392193421
710 => 0.02140329363795
711 => 0.021368013869896
712 => 0.021663952037004
713 => 0.021527386755494
714 => 0.021335597378938
715 => 0.020640955698428
716 => 0.019859948461577
717 => 0.019883522160821
718 => 0.020131946031707
719 => 0.020854271940831
720 => 0.020572046711771
721 => 0.020367289069927
722 => 0.020328944118602
723 => 0.020808911465031
724 => 0.021488165816497
725 => 0.021806856760745
726 => 0.021491043713783
727 => 0.021128254690015
728 => 0.021150335976889
729 => 0.021297232885873
730 => 0.021312669673997
731 => 0.021076531314838
801 => 0.021143002879753
802 => 0.02104202649436
803 => 0.020422334603592
804 => 0.020411126342352
805 => 0.020259043958476
806 => 0.020254438964333
807 => 0.019995708890631
808 => 0.019959510764804
809 => 0.019445786499676
810 => 0.019783921366683
811 => 0.019557118250772
812 => 0.019215272457647
813 => 0.019156338114062
814 => 0.019154566476529
815 => 0.019505565670748
816 => 0.019779819736737
817 => 0.019561063588076
818 => 0.019511257053436
819 => 0.020043060538874
820 => 0.019975383697856
821 => 0.019916775990003
822 => 0.02142734603945
823 => 0.020231611974062
824 => 0.019710203671438
825 => 0.01906486188419
826 => 0.019274988424214
827 => 0.019319265173598
828 => 0.017767334506867
829 => 0.017137716428655
830 => 0.016921655230869
831 => 0.016797308956886
901 => 0.016853975115383
902 => 0.016287244998157
903 => 0.016668097009783
904 => 0.01617735663277
905 => 0.016095082411557
906 => 0.016972586996723
907 => 0.017094686633442
908 => 0.016573771649817
909 => 0.01690828339778
910 => 0.016786984787907
911 => 0.016185768968024
912 => 0.016162806945949
913 => 0.015861137981289
914 => 0.015389084466219
915 => 0.015173343342945
916 => 0.015060983492794
917 => 0.015107345356816
918 => 0.01508390337967
919 => 0.014930928622027
920 => 0.015092671713712
921 => 0.014679484951317
922 => 0.014514950653259
923 => 0.014440634327994
924 => 0.014073907294225
925 => 0.014657533089203
926 => 0.014772514723137
927 => 0.01488772290641
928 => 0.015890531485836
929 => 0.015840434003115
930 => 0.016293290848444
1001 => 0.016275693664185
1002 => 0.016146531556103
1003 => 0.015601617868239
1004 => 0.015818810752069
1005 => 0.015150324814908
1006 => 0.015651199931654
1007 => 0.015422621445416
1008 => 0.015573917315528
1009 => 0.015301873699268
1010 => 0.015452433868912
1011 => 0.014799781134081
1012 => 0.014190343193367
1013 => 0.014435598811313
1014 => 0.014702219716402
1015 => 0.015280321772378
1016 => 0.014936008957077
1017 => 0.015059836865368
1018 => 0.014645034101134
1019 => 0.013789177515967
1020 => 0.013794021571294
1021 => 0.013662366681515
1022 => 0.013548597634818
1023 => 0.014975557425793
1024 => 0.014798092418889
1025 => 0.014515325156433
1026 => 0.014893820373954
1027 => 0.014993900516994
1028 => 0.01499674965797
1029 => 0.015272889998297
1030 => 0.015420266147431
1031 => 0.015446241832481
1101 => 0.015880754624393
1102 => 0.01602639758088
1103 => 0.016626280306486
1104 => 0.015407762310837
1105 => 0.015382667734585
1106 => 0.014899146577862
1107 => 0.014592489816101
1108 => 0.014920143628696
1109 => 0.015210400177449
1110 => 0.014908165657918
1111 => 0.01494763110565
1112 => 0.014541905956648
1113 => 0.014686933606273
1114 => 0.014811850955465
1115 => 0.014742878937544
1116 => 0.014639624488432
1117 => 0.015186602450493
1118 => 0.01515573981025
1119 => 0.01566509826349
1120 => 0.016062179602363
1121 => 0.016773820348404
1122 => 0.016031186131239
1123 => 0.016004121588662
1124 => 0.016268681833643
1125 => 0.016026357078085
1126 => 0.016179497958831
1127 => 0.016749146984967
1128 => 0.016761182771248
1129 => 0.016559567843805
1130 => 0.016547299557147
1201 => 0.016586021909388
1202 => 0.016812819935934
1203 => 0.01673356973666
1204 => 0.01682528007363
1205 => 0.01693996525433
1206 => 0.017414351787212
1207 => 0.017528724774262
1208 => 0.017250857711326
1209 => 0.017275945995963
1210 => 0.017172016086804
1211 => 0.017071621096793
1212 => 0.017297294372826
1213 => 0.017709716720394
1214 => 0.017707151062375
1215 => 0.017802825030666
1216 => 0.017862429120305
1217 => 0.017606564734713
1218 => 0.017440006428086
1219 => 0.017503875481227
1220 => 0.017606003488087
1221 => 0.01747075674505
1222 => 0.016635951194638
1223 => 0.016889177871048
1224 => 0.016847028569942
1225 => 0.016787002839636
1226 => 0.01704162422091
1227 => 0.017017065367533
1228 => 0.016281432361666
1229 => 0.016328525199947
1230 => 0.016284296233139
1231 => 0.01642720907329
]
'min_raw' => 0.013548597634818
'max_raw' => 0.030350531218576
'avg_raw' => 0.021949564426697
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.013548'
'max' => '$0.03035'
'avg' => '$0.021949'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0033038957611847
'max_diff' => -0.022055101708535
'year' => 2034
]
9 => [
'items' => [
101 => 0.016018639315717
102 => 0.016144312621387
103 => 0.016223133740589
104 => 0.016269559985332
105 => 0.016437283416116
106 => 0.01641760300737
107 => 0.016436060054276
108 => 0.016684749624785
109 => 0.017942536132464
110 => 0.018010994676928
111 => 0.017673879766453
112 => 0.01780855052389
113 => 0.017550012118869
114 => 0.017723570682216
115 => 0.01784231504335
116 => 0.017305732108616
117 => 0.017273959149616
118 => 0.017014353664629
119 => 0.017153850947455
120 => 0.01693190074027
121 => 0.016986359557624
122 => 0.016834087956667
123 => 0.017108146521417
124 => 0.017414586581204
125 => 0.017492005441991
126 => 0.017288349750176
127 => 0.017140889607738
128 => 0.016881998174007
129 => 0.017312540398073
130 => 0.017438444064926
131 => 0.01731187907971
201 => 0.017282551207136
202 => 0.017226974941602
203 => 0.017294341974595
204 => 0.017437758366517
205 => 0.017370125844571
206 => 0.017414798316848
207 => 0.017244552918582
208 => 0.017606649436471
209 => 0.018181745850151
210 => 0.018183594879158
211 => 0.018115961992648
212 => 0.018088288072659
213 => 0.018157683518525
214 => 0.018195327701158
215 => 0.018419739848141
216 => 0.018660543022829
217 => 0.01978426636844
218 => 0.019468729349644
219 => 0.020465763552471
220 => 0.02125428815822
221 => 0.021490732209482
222 => 0.021273214807873
223 => 0.020529099527029
224 => 0.020492589681361
225 => 0.02160461206831
226 => 0.021290414810145
227 => 0.021253042046054
228 => 0.020855458978403
301 => 0.021090479813006
302 => 0.021039077308931
303 => 0.020957935941551
304 => 0.021406339322279
305 => 0.022245710421756
306 => 0.02211488656433
307 => 0.022017232623506
308 => 0.021589341481449
309 => 0.021847027521914
310 => 0.021755270458555
311 => 0.022149517033215
312 => 0.021915974096018
313 => 0.021288034456893
314 => 0.02138803591414
315 => 0.021372920895052
316 => 0.021683986916818
317 => 0.021590612618217
318 => 0.021354688064646
319 => 0.02224284154259
320 => 0.022185169795901
321 => 0.022266935147109
322 => 0.022302930783388
323 => 0.022843534154392
324 => 0.023065002058114
325 => 0.0231152791496
326 => 0.023325656529194
327 => 0.023110044768747
328 => 0.023972645539116
329 => 0.024546224717261
330 => 0.025212466448791
331 => 0.026186024687451
401 => 0.026552091591105
402 => 0.026485964881498
403 => 0.027224105626984
404 => 0.028550528138675
405 => 0.026754072794982
406 => 0.028645744634025
407 => 0.028046863170186
408 => 0.026626925992839
409 => 0.026535498778578
410 => 0.027497096720886
411 => 0.029629828406554
412 => 0.029095603308537
413 => 0.029630702207434
414 => 0.029006480918419
415 => 0.02897548307007
416 => 0.029600385172714
417 => 0.031060502997184
418 => 0.030366855750477
419 => 0.029372342333039
420 => 0.030106675564132
421 => 0.029470528160027
422 => 0.02803711001213
423 => 0.029095194796673
424 => 0.028387683633769
425 => 0.028594173004466
426 => 0.030081256234547
427 => 0.02990232644597
428 => 0.030133878160841
429 => 0.029725195444856
430 => 0.029343421344777
501 => 0.028630811636063
502 => 0.028419843032547
503 => 0.028478147164703
504 => 0.028419814139914
505 => 0.02802111555711
506 => 0.027935016636114
507 => 0.027791514662373
508 => 0.027835991924524
509 => 0.027566166230908
510 => 0.028075383063594
511 => 0.028169898194943
512 => 0.028540463740612
513 => 0.028578937084867
514 => 0.029610956854884
515 => 0.029042537707947
516 => 0.029423882346661
517 => 0.029389771292819
518 => 0.026657700337099
519 => 0.027034155609531
520 => 0.027619801875263
521 => 0.027355969026375
522 => 0.026982971105427
523 => 0.026681755285378
524 => 0.026225382517105
525 => 0.026867718424587
526 => 0.027712321838117
527 => 0.028600357621242
528 => 0.029667274428259
529 => 0.029429151017213
530 => 0.028580412353667
531 => 0.02861848615011
601 => 0.028853843378232
602 => 0.028549034383355
603 => 0.028459140260187
604 => 0.028841493306127
605 => 0.028844126361417
606 => 0.028493406775413
607 => 0.028103646136577
608 => 0.028102013025268
609 => 0.028032658884229
610 => 0.029018818866039
611 => 0.029561107144015
612 => 0.029623279621144
613 => 0.02955692244094
614 => 0.029582460685978
615 => 0.029266915085531
616 => 0.029988158756012
617 => 0.030650043271652
618 => 0.03047264408236
619 => 0.030206697478831
620 => 0.029994858199396
621 => 0.030422741480475
622 => 0.030403688511519
623 => 0.030644262287823
624 => 0.030633348471709
625 => 0.030552452559175
626 => 0.030472646971408
627 => 0.030789067106089
628 => 0.030697943188853
629 => 0.030606677731004
630 => 0.030423630883246
701 => 0.030448509989942
702 => 0.030182609305844
703 => 0.030059591482593
704 => 0.028209698581922
705 => 0.027715346751869
706 => 0.027870879901063
707 => 0.027922085452194
708 => 0.027706942902226
709 => 0.028015402053294
710 => 0.027967329021339
711 => 0.028154353066892
712 => 0.028037508562871
713 => 0.028042303902073
714 => 0.028385918674526
715 => 0.02848567150481
716 => 0.028434936410224
717 => 0.028470469531375
718 => 0.029289315310716
719 => 0.029172901626107
720 => 0.02911105917637
721 => 0.029128189957586
722 => 0.029337422610459
723 => 0.029395996329584
724 => 0.029147815365749
725 => 0.029264858943011
726 => 0.02976321563995
727 => 0.029937612279333
728 => 0.030494202637106
729 => 0.030257753160519
730 => 0.030691766408088
731 => 0.032025775165095
801 => 0.033091473666577
802 => 0.032111413282761
803 => 0.034068432864847
804 => 0.035592253327286
805 => 0.035533766559882
806 => 0.035268053215653
807 => 0.033533224132029
808 => 0.031936808544434
809 => 0.033272277970844
810 => 0.033275682357053
811 => 0.033160964348956
812 => 0.032448460653128
813 => 0.033136170764782
814 => 0.033190758696049
815 => 0.033160203970642
816 => 0.032613929057604
817 => 0.031779868233876
818 => 0.031942841722373
819 => 0.0322097956211
820 => 0.031704396198392
821 => 0.031542890459606
822 => 0.031843160355733
823 => 0.032810692524773
824 => 0.032627786172748
825 => 0.032623009748714
826 => 0.033405560687041
827 => 0.032845423100261
828 => 0.031944897339976
829 => 0.031717502709028
830 => 0.030910404960543
831 => 0.031467870250205
901 => 0.031487932433544
902 => 0.031182614391553
903 => 0.03196967221638
904 => 0.031962419339965
905 => 0.032709613606541
906 => 0.034137968410883
907 => 0.033715533610168
908 => 0.033224287897712
909 => 0.033277699927422
910 => 0.033863498061219
911 => 0.033509311137055
912 => 0.033636679224463
913 => 0.033863305274364
914 => 0.034000034397078
915 => 0.033258026710805
916 => 0.033085029224805
917 => 0.032731137082314
918 => 0.032638813228048
919 => 0.032927050993905
920 => 0.032851110526192
921 => 0.031486246284719
922 => 0.031343610377452
923 => 0.031347984817091
924 => 0.0309893200463
925 => 0.030442270181437
926 => 0.031879884563648
927 => 0.031764424009356
928 => 0.031636964493355
929 => 0.031652577556791
930 => 0.032276597234836
1001 => 0.031914634307821
1002 => 0.032876972073849
1003 => 0.032679144359675
1004 => 0.032476243111104
1005 => 0.032448195978029
1006 => 0.03237009630805
1007 => 0.032102263480086
1008 => 0.031778839246062
1009 => 0.031565286552233
1010 => 0.0291173083097
1011 => 0.02957163883228
1012 => 0.030094304684978
1013 => 0.030274726842877
1014 => 0.029966102256957
1015 => 0.032114449859827
1016 => 0.032506973668864
1017 => 0.031317993447597
1018 => 0.03109558379394
1019 => 0.032129030999694
1020 => 0.031505736000842
1021 => 0.03178640570066
1022 => 0.03117975132777
1023 => 0.032412426177706
1024 => 0.032403035260645
1025 => 0.031923496902796
1026 => 0.032328799439113
1027 => 0.032258368149422
1028 => 0.031716970524461
1029 => 0.032429589448091
1030 => 0.032429942898186
1031 => 0.031968397654819
1101 => 0.031429413855813
1102 => 0.031333056282779
1103 => 0.031260463795317
1104 => 0.031768552398745
1105 => 0.032224103051826
1106 => 0.033071769876626
1107 => 0.033284893456448
1108 => 0.034116728976932
1109 => 0.03362141142582
1110 => 0.033840979280792
1111 => 0.034079351247133
1112 => 0.034193635533636
1113 => 0.034007415421613
1114 => 0.035299598382085
1115 => 0.035408698215411
1116 => 0.035445278445816
1117 => 0.03500956162193
1118 => 0.035396580142333
1119 => 0.035215506993343
1120 => 0.035686609023446
1121 => 0.035760483837099
1122 => 0.035697914498108
1123 => 0.035721363529996
1124 => 0.034618713329928
1125 => 0.034561535100111
1126 => 0.033781905879378
1127 => 0.034099610549555
1128 => 0.03350567689664
1129 => 0.033694019376174
1130 => 0.033777038946559
1201 => 0.033733674234309
1202 => 0.034117573094926
1203 => 0.033791180638046
1204 => 0.03292977728045
1205 => 0.032068139234086
1206 => 0.032057322070289
1207 => 0.031830467981856
1208 => 0.031666494026318
1209 => 0.031698081227443
1210 => 0.031809398644192
1211 => 0.031660024055693
1212 => 0.031691900697633
1213 => 0.032221265346795
1214 => 0.032327425651928
1215 => 0.031966651455576
1216 => 0.030518090997753
1217 => 0.030162610627964
1218 => 0.030418122868286
1219 => 0.030296004474508
1220 => 0.02445124011713
1221 => 0.025824380806281
1222 => 0.025008507236239
1223 => 0.025384499313852
1224 => 0.024551703668276
1225 => 0.024949157400905
1226 => 0.024875762209175
1227 => 0.027083731803142
1228 => 0.027049257394895
1229 => 0.027065758469778
1230 => 0.026278119172304
1231 => 0.027532849959917
]
'min_raw' => 0.016018639315717
'max_raw' => 0.035760483837099
'avg_raw' => 0.025889561576408
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.016018'
'max' => '$0.03576'
'avg' => '$0.025889'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0024700416808989
'max_diff' => 0.0054099526185226
'year' => 2035
]
10 => [
'items' => [
101 => 0.028150975464556
102 => 0.028036576884525
103 => 0.028065368542498
104 => 0.027570632467193
105 => 0.027070548596426
106 => 0.02651587862139
107 => 0.027546386875726
108 => 0.027431811949207
109 => 0.027694605607885
110 => 0.028362963873074
111 => 0.028461382166469
112 => 0.028593657350852
113 => 0.028546246113239
114 => 0.029675774141911
115 => 0.029538980844773
116 => 0.029868613332758
117 => 0.029190534295696
118 => 0.028423223501406
119 => 0.028569064198121
120 => 0.02855501856625
121 => 0.028376201551714
122 => 0.028214773546439
123 => 0.027946041399715
124 => 0.028796349676824
125 => 0.028761828713618
126 => 0.029320682981683
127 => 0.029221900061382
128 => 0.02856220354333
129 => 0.02858576473353
130 => 0.028744225060751
131 => 0.029292658062528
201 => 0.029455470317622
202 => 0.029380049194116
203 => 0.029558565399165
204 => 0.029699657328943
205 => 0.029576284373255
206 => 0.031322985255256
207 => 0.030597633269489
208 => 0.030951164780385
209 => 0.031035479962605
210 => 0.030819508396305
211 => 0.030866344895674
212 => 0.030937289430035
213 => 0.031368050750311
214 => 0.032498493096507
215 => 0.032999158316457
216 => 0.03450543433306
217 => 0.032957585039536
218 => 0.032865742068095
219 => 0.033137067863864
220 => 0.034021411341119
221 => 0.034738088667276
222 => 0.034975851882469
223 => 0.0350072762164
224 => 0.035453335814302
225 => 0.0357090088573
226 => 0.035399172446584
227 => 0.035136618529727
228 => 0.034196182988937
229 => 0.034305040963504
301 => 0.035054964459015
302 => 0.036114275566697
303 => 0.037023274699624
304 => 0.036704974885091
305 => 0.039133377785327
306 => 0.039374144013749
307 => 0.039340877905886
308 => 0.03988937920505
309 => 0.038800715826556
310 => 0.03833529114039
311 => 0.035193385666665
312 => 0.036076132948123
313 => 0.037359257963652
314 => 0.037189431556375
315 => 0.036257591872068
316 => 0.037022567815663
317 => 0.036769642845701
318 => 0.036570150428025
319 => 0.037484063866906
320 => 0.036479178499362
321 => 0.037349233463413
322 => 0.036233378972451
323 => 0.036706428851832
324 => 0.036437902861447
325 => 0.036611672086534
326 => 0.035595820747366
327 => 0.036143949471584
328 => 0.035573016790359
329 => 0.03557274609393
330 => 0.035560142723348
331 => 0.036231842490906
401 => 0.036253746596212
402 => 0.035757359453104
403 => 0.035685822310758
404 => 0.035950332620146
405 => 0.035640660323212
406 => 0.035785554041893
407 => 0.035645049006345
408 => 0.035613418363355
409 => 0.035361380018495
410 => 0.03525279496959
411 => 0.035295373965158
412 => 0.035150029902309
413 => 0.035062454847119
414 => 0.035542721840639
415 => 0.035286134559916
416 => 0.035503396159888
417 => 0.03525579914612
418 => 0.034397520023517
419 => 0.03390391462397
420 => 0.032282704923889
421 => 0.032742477983728
422 => 0.033047307998071
423 => 0.032946561680149
424 => 0.033163003754694
425 => 0.033176291540202
426 => 0.033105924015401
427 => 0.03302444743632
428 => 0.032984789143561
429 => 0.033280369566358
430 => 0.033451963950571
501 => 0.033077901768109
502 => 0.032990264232445
503 => 0.033368461751452
504 => 0.03359916201957
505 => 0.035302523180064
506 => 0.03517633268351
507 => 0.035493046066225
508 => 0.035457388999695
509 => 0.035789355081178
510 => 0.036331979325071
511 => 0.035228672517113
512 => 0.035420168429495
513 => 0.035373218054065
514 => 0.035885809941958
515 => 0.035887410197881
516 => 0.035580085755225
517 => 0.035746691321359
518 => 0.035653696664928
519 => 0.03582175057808
520 => 0.035174647332494
521 => 0.035962749235139
522 => 0.036409552229774
523 => 0.036415756089788
524 => 0.036627537163197
525 => 0.036842718999313
526 => 0.03725574179535
527 => 0.0368312000177
528 => 0.036067490688017
529 => 0.036122628034854
530 => 0.035674865534291
531 => 0.035682392502821
601 => 0.035642212954912
602 => 0.035762794802761
603 => 0.035201108267192
604 => 0.035332934974407
605 => 0.035148376812329
606 => 0.035419767236094
607 => 0.035127796002567
608 => 0.035373195413173
609 => 0.035479101663671
610 => 0.035869898008007
611 => 0.035070075064762
612 => 0.033439181940232
613 => 0.033782015447676
614 => 0.033274937761176
615 => 0.033321869731643
616 => 0.033416679781153
617 => 0.033109369390773
618 => 0.033167994528794
619 => 0.033165900026325
620 => 0.03314785073559
621 => 0.033067907434162
622 => 0.032951973830791
623 => 0.03341381762414
624 => 0.033492293884247
625 => 0.033666736889313
626 => 0.034185760946568
627 => 0.034133898203819
628 => 0.034218488489008
629 => 0.034033828371393
630 => 0.033330435584881
701 => 0.033368633197313
702 => 0.032892308358206
703 => 0.033654556192253
704 => 0.03347404584397
705 => 0.033357669648144
706 => 0.033325915324894
707 => 0.033846225942398
708 => 0.034001911034024
709 => 0.03390489853256
710 => 0.033705923061751
711 => 0.034088014787522
712 => 0.034190246414183
713 => 0.034213132305235
714 => 0.034890125584479
715 => 0.034250968709087
716 => 0.034404820121667
717 => 0.035605124923792
718 => 0.034516614099005
719 => 0.035093222559583
720 => 0.035065000575963
721 => 0.035359973953028
722 => 0.035040804149416
723 => 0.035044760641653
724 => 0.03530667701726
725 => 0.034938862704588
726 => 0.034847786708186
727 => 0.034721965871455
728 => 0.034996691065393
729 => 0.035161376394407
730 => 0.036488619198215
731 => 0.0373460785791
801 => 0.037308854005987
802 => 0.037649016922754
803 => 0.037495770413215
804 => 0.037000897009528
805 => 0.03784558556624
806 => 0.037578290763626
807 => 0.03760032622239
808 => 0.037599506061514
809 => 0.037777233737935
810 => 0.037651297390689
811 => 0.037403063923165
812 => 0.037567852883478
813 => 0.038057217182477
814 => 0.0395762189821
815 => 0.040426272513265
816 => 0.039525044692165
817 => 0.040146699575239
818 => 0.039773928163678
819 => 0.039706184509208
820 => 0.040096629715714
821 => 0.040487758344867
822 => 0.040462845142085
823 => 0.040178905841997
824 => 0.040018515736071
825 => 0.041233043352774
826 => 0.042127886611823
827 => 0.042066864300661
828 => 0.04233619693661
829 => 0.043126965885903
830 => 0.043199263888387
831 => 0.043190156001825
901 => 0.043010957859151
902 => 0.043789572584054
903 => 0.04443910668599
904 => 0.042969478666655
905 => 0.043529093777574
906 => 0.043780323030539
907 => 0.044149202110251
908 => 0.044771562949039
909 => 0.045447611893021
910 => 0.0455432126262
911 => 0.045475379331093
912 => 0.045029506879366
913 => 0.045769247700813
914 => 0.04620257052496
915 => 0.046460604350323
916 => 0.047114935198709
917 => 0.043781874536876
918 => 0.041422568536568
919 => 0.041054128835829
920 => 0.041803365455459
921 => 0.042000933177005
922 => 0.041921293876178
923 => 0.039265680474114
924 => 0.041040147580858
925 => 0.042949324986283
926 => 0.043022664265795
927 => 0.043978438393968
928 => 0.044289677628606
929 => 0.045059201077964
930 => 0.045011067176688
1001 => 0.045198433890814
1002 => 0.045155361527975
1003 => 0.046580741675631
1004 => 0.048153147649494
1005 => 0.048098700230564
1006 => 0.047872648267958
1007 => 0.048208373980015
1008 => 0.049831265454308
1009 => 0.049681855613661
1010 => 0.049826994547149
1011 => 0.051740475057495
1012 => 0.054228271910374
1013 => 0.053072440501492
1014 => 0.055580262077238
1015 => 0.05715880282526
1016 => 0.059888725824806
1017 => 0.059546926020108
1018 => 0.060609665010731
1019 => 0.058935033033928
1020 => 0.055089739516227
1021 => 0.054481207097859
1022 => 0.055699504409928
1023 => 0.058694569471936
1024 => 0.055605179152593
1025 => 0.056230158790566
1026 => 0.056050164612785
1027 => 0.056040573487977
1028 => 0.056406627711972
1029 => 0.055875646967963
1030 => 0.05371233589526
1031 => 0.054703768611408
1101 => 0.054320928827193
1102 => 0.054745718110376
1103 => 0.057038130675283
1104 => 0.056024600436047
1105 => 0.054956928661523
1106 => 0.05629602600211
1107 => 0.058001157080447
1108 => 0.05789445304198
1109 => 0.057687402608526
1110 => 0.0588545350611
1111 => 0.06078229593503
1112 => 0.061303361952882
1113 => 0.061688002234535
1114 => 0.061741037630824
1115 => 0.062287335173918
1116 => 0.059349755599998
1117 => 0.064011769826203
1118 => 0.064816770897525
1119 => 0.064665464059992
1120 => 0.065560188871143
1121 => 0.065296938134725
1122 => 0.06491552912043
1123 => 0.066333858259528
1124 => 0.064707858354811
1125 => 0.062399956197761
1126 => 0.061133795429275
1127 => 0.062801178067493
1128 => 0.063819390461019
1129 => 0.064492364082668
1130 => 0.064696005493957
1201 => 0.059577791540104
1202 => 0.056819358088137
1203 => 0.058587482305345
1204 => 0.060744715879752
1205 => 0.05933777205857
1206 => 0.059392921592664
1207 => 0.057386989441991
1208 => 0.060922196365044
1209 => 0.060407146452126
1210 => 0.063079226311455
1211 => 0.062441513008246
1212 => 0.064620490403986
1213 => 0.064046692630203
1214 => 0.066428495108575
1215 => 0.067378660601926
1216 => 0.068974136346712
1217 => 0.070147774799332
1218 => 0.070836957746836
1219 => 0.070795581787728
1220 => 0.073526467975321
1221 => 0.071916159800393
1222 => 0.069893233212188
1223 => 0.069856644852459
1224 => 0.070904347197582
1225 => 0.073100043889858
1226 => 0.073669356096078
1227 => 0.073987523952355
1228 => 0.073500238804964
1229 => 0.071752364692907
1230 => 0.070997641513244
1231 => 0.071640687528752
]
'min_raw' => 0.02651587862139
'max_raw' => 0.073987523952355
'avg_raw' => 0.050251701286873
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.026515'
'max' => '$0.073987'
'avg' => '$0.050251'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.010497239305674
'max_diff' => 0.038227040115256
'year' => 2036
]
11 => [
'items' => [
101 => 0.070854297509359
102 => 0.072211827304901
103 => 0.074076005666897
104 => 0.073691060206905
105 => 0.07497787516541
106 => 0.07630959327058
107 => 0.078214009972177
108 => 0.078711895018321
109 => 0.079534880066724
110 => 0.080382002018035
111 => 0.08065407475822
112 => 0.081173546038446
113 => 0.081170808168381
114 => 0.082736269835791
115 => 0.084463022533256
116 => 0.085114831702132
117 => 0.086613630944996
118 => 0.084046989765782
119 => 0.085993816583665
120 => 0.087749903105631
121 => 0.085656224359193
122 => 0.088541872746575
123 => 0.088653915934437
124 => 0.090345635047356
125 => 0.088630753632246
126 => 0.087612462522049
127 => 0.090552230802318
128 => 0.091974692071307
129 => 0.091546235160714
130 => 0.088285656915572
131 => 0.08638786052412
201 => 0.081420961310105
202 => 0.087304467983184
203 => 0.090170152459398
204 => 0.088278235485077
205 => 0.089232408360687
206 => 0.094438066178417
207 => 0.096420043634025
208 => 0.096007806178327
209 => 0.096077467522334
210 => 0.097146906581945
211 => 0.10188938832311
212 => 0.099047583333936
213 => 0.10122003676776
214 => 0.10237229823569
215 => 0.10344258290334
216 => 0.10081430202654
217 => 0.097394947222941
218 => 0.096311894021891
219 => 0.088090121627589
220 => 0.087662142669118
221 => 0.087421905110639
222 => 0.085907241286702
223 => 0.084717130422427
224 => 0.083770710077172
225 => 0.081287020466184
226 => 0.082125192800419
227 => 0.078166709946812
228 => 0.080699206996531
301 => 0.074381372781264
302 => 0.079643052851196
303 => 0.076779359608369
304 => 0.078702252602144
305 => 0.078695543809637
306 => 0.075154888154316
307 => 0.073112711863926
308 => 0.074414066078853
309 => 0.075809221098881
310 => 0.076035580307015
311 => 0.077844435207754
312 => 0.078349247729344
313 => 0.076819642221483
314 => 0.074250449709881
315 => 0.074847214533284
316 => 0.073100618443827
317 => 0.070039775978902
318 => 0.072238126474394
319 => 0.072988739988203
320 => 0.073320253677409
321 => 0.070310266653288
322 => 0.069364463380312
323 => 0.068860925653837
324 => 0.073861898182865
325 => 0.074135862747063
326 => 0.072734221301943
327 => 0.079069773542978
328 => 0.077635842946753
329 => 0.079237894744262
330 => 0.074793064380553
331 => 0.074962862886205
401 => 0.072858608960458
402 => 0.074036850552578
403 => 0.073204107371767
404 => 0.073941660275545
405 => 0.074383746445025
406 => 0.076487655083408
407 => 0.079667076108291
408 => 0.076173401292004
409 => 0.074651157144202
410 => 0.075595548852072
411 => 0.078110588420614
412 => 0.081921002109461
413 => 0.079665160513942
414 => 0.080666264707359
415 => 0.080884961437595
416 => 0.079221587360854
417 => 0.081982333084283
418 => 0.083461839145727
419 => 0.084979506224126
420 => 0.086297254024235
421 => 0.084373316618799
422 => 0.086432205428209
423 => 0.084773104490625
424 => 0.083284719434909
425 => 0.08328697670066
426 => 0.082353291013374
427 => 0.080544157342289
428 => 0.080210525336251
429 => 0.08194612116474
430 => 0.083337904657651
501 => 0.083452538612321
502 => 0.084223101466414
503 => 0.084679112626038
504 => 0.089148641907464
505 => 0.090946323558339
506 => 0.093144494652657
507 => 0.094000806176028
508 => 0.096577996856704
509 => 0.094496706072865
510 => 0.094046405719848
511 => 0.087794984121176
512 => 0.088818654057747
513 => 0.090457648395655
514 => 0.087822010534129
515 => 0.089493716117057
516 => 0.089823746210693
517 => 0.087732452568133
518 => 0.088849502862089
519 => 0.085882948463673
520 => 0.079731738887519
521 => 0.081989181138958
522 => 0.083651418482862
523 => 0.081279200840724
524 => 0.085531309146755
525 => 0.083047315255704
526 => 0.082260008444975
527 => 0.079188443881178
528 => 0.080638104119928
529 => 0.082598790349973
530 => 0.081387314214045
531 => 0.083901309100152
601 => 0.087461796316826
602 => 0.089999211538107
603 => 0.090194002771587
604 => 0.08856261477792
605 => 0.09117692444915
606 => 0.091195966840998
607 => 0.088247014852082
608 => 0.086440798178704
609 => 0.0860304219502
610 => 0.087055622228001
611 => 0.088300404627664
612 => 0.090263079531523
613 => 0.091449082870561
614 => 0.094541550571206
615 => 0.095378283663003
616 => 0.096297599649266
617 => 0.097526089313464
618 => 0.099001206133618
619 => 0.095773734509568
620 => 0.095901967973951
621 => 0.092896591085023
622 => 0.08968491486456
623 => 0.092122176774799
624 => 0.095308572507071
625 => 0.094577609805433
626 => 0.094495361569286
627 => 0.094633680288728
628 => 0.094082558282703
629 => 0.091589853874987
630 => 0.090338033326588
701 => 0.091953201207505
702 => 0.092811591053361
703 => 0.094142878844822
704 => 0.093978769524448
705 => 0.09740802390538
706 => 0.09874052846254
707 => 0.098399616775734
708 => 0.098462352730604
709 => 0.10087478858263
710 => 0.10355791340536
711 => 0.10607101387134
712 => 0.10862744760552
713 => 0.10554556695966
714 => 0.10398077803167
715 => 0.10559524078082
716 => 0.10473858412091
717 => 0.1096611873896
718 => 0.11000201775951
719 => 0.11492426506795
720 => 0.11959606389397
721 => 0.11666179075532
722 => 0.11942867816251
723 => 0.12242129248102
724 => 0.1281945310356
725 => 0.1262503073954
726 => 0.12476106255687
727 => 0.12335373338044
728 => 0.12628216198938
729 => 0.13004953861198
730 => 0.13086099545301
731 => 0.13217586553584
801 => 0.13079344041841
802 => 0.13245841920322
803 => 0.13833652594237
804 => 0.13674820961397
805 => 0.13449254509305
806 => 0.13913274582423
807 => 0.14081201643052
808 => 0.15259801698633
809 => 0.16747832954343
810 => 0.16131778243539
811 => 0.15749373204581
812 => 0.15839247459505
813 => 0.16382626101054
814 => 0.16557142074743
815 => 0.16082747498992
816 => 0.16250311683088
817 => 0.17173606812009
818 => 0.17668925025821
819 => 0.16996216361353
820 => 0.151402398361
821 => 0.1342894471827
822 => 0.13882857244142
823 => 0.13831397650254
824 => 0.14823363082866
825 => 0.13671032879483
826 => 0.13690435164792
827 => 0.14702913392041
828 => 0.14432801559282
829 => 0.13995254983522
830 => 0.13432139292491
831 => 0.12391167855722
901 => 0.1146915042454
902 => 0.13277438935021
903 => 0.1319946224629
904 => 0.13086540445509
905 => 0.13337835693732
906 => 0.14558054087699
907 => 0.14529924104256
908 => 0.14350975501639
909 => 0.14486706439543
910 => 0.13971460693858
911 => 0.14104251254449
912 => 0.1342867364038
913 => 0.13734062936552
914 => 0.13994316205083
915 => 0.14046565901856
916 => 0.14164287136621
917 => 0.13158372074617
918 => 0.13609998405342
919 => 0.13875286562979
920 => 0.1267670501551
921 => 0.13851594459519
922 => 0.13140861331346
923 => 0.12899627832791
924 => 0.13224416958499
925 => 0.13097846320343
926 => 0.12989028318133
927 => 0.1292830600317
928 => 0.13166795291422
929 => 0.13155669481069
930 => 0.12765454716712
1001 => 0.12256435463798
1002 => 0.12427279033063
1003 => 0.12365209962682
1004 => 0.12140263644551
1005 => 0.12291850302849
1006 => 0.11624339375957
1007 => 0.10475921520437
1008 => 0.11234601532783
1009 => 0.11205393177593
1010 => 0.11190665000413
1011 => 0.11760792061316
1012 => 0.11705987499479
1013 => 0.11606516683098
1014 => 0.12138436785002
1015 => 0.11944278792472
1016 => 0.12542627976074
1017 => 0.12936739447192
1018 => 0.12836780029946
1019 => 0.13207443773439
1020 => 0.12431214923844
1021 => 0.12689047010783
1022 => 0.12742185846562
1023 => 0.12131872973513
1024 => 0.11714954203575
1025 => 0.11687150474842
1026 => 0.10964270782716
1027 => 0.11350427279369
1028 => 0.11690229016182
1029 => 0.11527490353928
1030 => 0.11475972155138
1031 => 0.11739167459823
1101 => 0.11759619989113
1102 => 0.11293300153853
1103 => 0.11390262814032
1104 => 0.1179461322568
1105 => 0.11380074221115
1106 => 0.10574692649807
1107 => 0.10374946884852
1108 => 0.10348297117762
1109 => 0.098065707611653
1110 => 0.10388294851987
1111 => 0.10134356697107
1112 => 0.10936544285728
1113 => 0.10478339037326
1114 => 0.10458586724871
1115 => 0.1042872820756
1116 => 0.099624419540036
1117 => 0.10064529009495
1118 => 0.10403881930247
1119 => 0.10524966875455
1120 => 0.1051233672365
1121 => 0.10402218915802
1122 => 0.1045263028434
1123 => 0.10290237701792
1124 => 0.10232893500985
1125 => 0.10051899429473
1126 => 0.097858881452389
1127 => 0.098228786458537
1128 => 0.09295840686147
1129 => 0.090086824336771
1130 => 0.089292008140784
1201 => 0.088229146705854
1202 => 0.089412061168026
1203 => 0.09294347653826
1204 => 0.088683840370193
1205 => 0.081380992938778
1206 => 0.081819906512852
1207 => 0.082806014999188
1208 => 0.080968408358662
1209 => 0.079229267892039
1210 => 0.080741309426841
1211 => 0.077646996698414
1212 => 0.083179947909165
1213 => 0.08303029708483
1214 => 0.085092639140791
1215 => 0.086382263951902
1216 => 0.083410096283281
1217 => 0.082662604152219
1218 => 0.083088409641695
1219 => 0.076050793394103
1220 => 0.084517515750338
1221 => 0.084590736316863
1222 => 0.083963777372781
1223 => 0.08847204564675
1224 => 0.097985897868963
1225 => 0.094406403969148
1226 => 0.093020315740363
1227 => 0.09038536100422
1228 => 0.093896281742
1229 => 0.093626697808234
1230 => 0.092407537023073
1231 => 0.091670184776194
]
'min_raw' => 0.068860925653837
'max_raw' => 0.17668925025821
'avg_raw' => 0.12277508795602
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.06886'
'max' => '$0.176689'
'avg' => '$0.122775'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.042345047032447
'max_diff' => 0.10270172630585
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0021614657706567
]
1 => [
'year' => 2028
'avg' => 0.0037097027404435
]
2 => [
'year' => 2029
'avg' => 0.010134239278025
]
3 => [
'year' => 2030
'avg' => 0.0078185505106343
]
4 => [
'year' => 2031
'avg' => 0.0076787855437406
]
5 => [
'year' => 2032
'avg' => 0.013463327660925
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0021614657706567
'min' => '$0.002161'
'max_raw' => 0.013463327660925
'max' => '$0.013463'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.013463327660925
]
1 => [
'year' => 2033
'avg' => 0.034629063161557
]
2 => [
'year' => 2034
'avg' => 0.021949564426697
]
3 => [
'year' => 2035
'avg' => 0.025889561576408
]
4 => [
'year' => 2036
'avg' => 0.050251701286873
]
5 => [
'year' => 2037
'avg' => 0.12277508795602
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.013463327660925
'min' => '$0.013463'
'max_raw' => 0.12277508795602
'max' => '$0.122775'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.12277508795602
]
]
]
]
'prediction_2025_max_price' => '$0.003695'
'last_price' => 0.00358346
'sma_50day_nextmonth' => '$0.002221'
'sma_200day_nextmonth' => '$0.000898'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'augmenter'
'sma_200day_date_nextmonth' => '4 févr. 2026'
'sma_50day_date_nextmonth' => '4 févr. 2026'
'daily_sma3' => '$0.003523'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.002148'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.00112'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.000585'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.000343'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.00037'
'daily_sma100_action' => 'BUY'
'daily_sma200' => '$0.000521'
'daily_sma200_action' => 'BUY'
'daily_ema3' => '$0.003502'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.002745'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.00173'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.000978'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.000546'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.000516'
'daily_ema100_action' => 'BUY'
'daily_ema200' => '$0.002156'
'daily_ema200_action' => 'BUY'
'weekly_sma21' => '$0.000524'
'weekly_sma21_action' => 'BUY'
'weekly_sma50' => '$0.001988'
'weekly_sma50_action' => 'BUY'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.0019088'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.001329'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.000844'
'weekly_ema10_action' => 'BUY'
'weekly_ema21' => '$0.0010067'
'weekly_ema21_action' => 'BUY'
'weekly_ema50' => '$0.009814'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.025962'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.012981'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '65.91'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 283.05
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.006210'
'vwma_10_action' => 'SELL'
'hma_9' => '0.003921'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 53.72
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => 221.01
'cci_20_action' => 'SELL'
'adx_14' => 19.86
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.001735'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -46.28
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 68
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.000066'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 6
'buy_signals' => 27
'sell_pct' => 18.18
'buy_pct' => 81.82
'overall_action' => 'bullish'
'overall_action_label' => 'Haussier'
'overall_action_dir' => 1
'last_updated' => 1767704113
'last_updated_date' => '6 janvier 2026'
]
Prévision du prix de BlockProtocol pour 2026
La prévision du prix de BlockProtocol pour 2026 suggère que le prix moyen pourrait varier entre $0.001238 à la baisse et $0.003695 à la hausse. Sur le marché des cryptomonnaies, comparé au prix moyen d'aujourd'hui, BlockProtocol pourrait potentiellement gagner 3.13% d'ici 2026 si BLOCK atteint l'objectif de prix prévu.
Prévision du prix de BlockProtocol de 2027 à 2032
La prévision du prix de BLOCK pour 2027-2032 se situe actuellement dans une fourchette de prix comprise entre $0.002161 à la baisse et $0.013463 à la hausse. Compte tenu de la volatilité des prix sur le marché, si BlockProtocol atteint l'objectif de prix le plus élevé, il pourrait gagner 275.71% d'ici 2032 par rapport au prix actuel.
| Prévision du Prix de BlockProtocol | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2027 | $0.001191 | $0.002161 | $0.003131 |
| 2028 | $0.00215 | $0.0037097 | $0.005268 |
| 2029 | $0.004725 | $0.010134 | $0.015543 |
| 2030 | $0.004018 | $0.007818 | $0.011618 |
| 2031 | $0.004751 | $0.007678 | $0.0106064 |
| 2032 | $0.007252 | $0.013463 | $0.019674 |
Prévision du prix de BlockProtocol de 2032 à 2037
La prévision du prix de BlockProtocol pour 2032-2037 est actuellement estimée entre $0.013463 à la baisse et $0.122775 à la hausse. Par rapport au prix actuel, BlockProtocol pourrait potentiellement gagner 3326.16% d'ici 2037 s'il atteint l'objectif de prix le plus élevé. Veuillez noter que ces informations sont à titre général seulement et ne doivent pas être considérées comme un conseil en investissement à long terme.
| Prévision du Prix de BlockProtocol | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2032 | $0.007252 | $0.013463 | $0.019674 |
| 2033 | $0.016852 | $0.034629 | $0.0524056 |
| 2034 | $0.013548 | $0.021949 | $0.03035 |
| 2035 | $0.016018 | $0.025889 | $0.03576 |
| 2036 | $0.026515 | $0.050251 | $0.073987 |
| 2037 | $0.06886 | $0.122775 | $0.176689 |
BlockProtocol Histogramme des prix potentiels
Prévision du prix de BlockProtocol basée sur l'analyse technique
Au 6 janvier 2026, le sentiment global de prévision du prix pour BlockProtocol est Haussier, avec 27 indicateurs techniques montrant des signaux haussiers et 6 indiquant des signaux baissiers. La prévision du prix de BLOCK a été mise à jour pour la dernière fois le 6 janvier 2026.
Moyennes Mobiles Simples sur 50 et 200 jours de BlockProtocol et Indice de Force Relative sur 14 jours - RSI (14)
Selon nos indicateurs techniques, le SMA sur 200 jours de BlockProtocol devrait augmenter au cours du prochain mois, atteignant $0.000898 d'ici le 4 févr. 2026. Le SMA à court terme sur 50 jours pour BlockProtocol devrait atteindre $0.002221 d'ici le 4 févr. 2026.
Le Relative Strength Index (RSI), un oscillateur de momentum, est un outil couramment utilisé pour identifier si une cryptomonnaie est survendue (en dessous de 30) ou surachetée (au-dessus de 70). Actuellement, le RSI est à 65.91, ce qui suggère que le marché de BLOCK est dans un état NEUTRAL.
Moyennes Mobiles et Oscillateurs Populaires de BLOCK pour le Samedi 19 Octobre 2024
Les moyennes mobiles (MA) sont des indicateurs largement utilisés sur les marchés financiers, conçus pour lisser les mouvements de prix sur une période donnée. En tant qu'indicateurs retardés, ils sont basés sur des données historiques de prix. Le tableau ci-dessous met en évidence deux types : la moyenne mobile simple (SMA) et la moyenne mobile exponentielle (EMA).
Moyenne Mobile Simple Quotidienne (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 3 | $0.003523 | BUY |
| SMA 5 | $0.002148 | BUY |
| SMA 10 | $0.00112 | BUY |
| SMA 21 | $0.000585 | BUY |
| SMA 50 | $0.000343 | BUY |
| SMA 100 | $0.00037 | BUY |
| SMA 200 | $0.000521 | BUY |
Moyenne Mobile Exponentielle Quotidienne (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 3 | $0.003502 | BUY |
| EMA 5 | $0.002745 | BUY |
| EMA 10 | $0.00173 | BUY |
| EMA 21 | $0.000978 | BUY |
| EMA 50 | $0.000546 | BUY |
| EMA 100 | $0.000516 | BUY |
| EMA 200 | $0.002156 | BUY |
Moyenne Mobile Simple Hebdomadaire (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 21 | $0.000524 | BUY |
| SMA 50 | $0.001988 | BUY |
| SMA 100 | — | — |
| SMA 200 | — | — |
Moyenne Mobile Exponentielle Hebdomadaire (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 21 | $0.0010067 | BUY |
| EMA 50 | $0.009814 | SELL |
| EMA 100 | $0.025962 | SELL |
| EMA 200 | $0.012981 | SELL |
Oscillateurs de BlockProtocol
Un oscillateur est un outil d'analyse technique qui établit des limites hautes et basses entre deux extrêmes, créant un indicateur de tendance qui fluctue à l'intérieur de ces limites. Les traders utilisent cet indicateur pour identifier les conditions de surachat ou de survente à court terme.
| Période | Valeur | Action |
|---|---|---|
| RSI (14) | 65.91 | NEUTRAL |
| Stoch RSI (14) | 283.05 | SELL |
| Stochastique Rapide (14) | 53.72 | NEUTRAL |
| Indice de Canal des Matières Premières (20) | 221.01 | SELL |
| Indice Directionnel Moyen (14) | 19.86 | NEUTRAL |
| Oscillateur Impressionnant (5, 34) | 0.001735 | BUY |
| Momentum (10) | 0 | SELL |
| MACD (12, 26) | 0 | BUY |
| Plage de Pourcentage de Williams (14) | -46.28 | NEUTRAL |
| Oscillateur Ultime (7, 14, 28) | 68 | NEUTRAL |
| VWMA (10) | 0.006210 | SELL |
| Moyenne Mobile de Hull (9) | 0.003921 | BUY |
| Nuage Ichimoku B/L (9, 26, 52, 26) | -0.000066 | NEUTRAL |
Prévision du cours de BlockProtocol basée sur les flux monétaires mondiaux
Définitions des flux monétaires mondiaux utilisés pour la prédiction du cours de BlockProtocol
M0 : le total de toutes les devises physiques, plus les comptes à la banque centrale qui peuvent être échangés contre des devises physiques.
M1 : M0 plus le montant des comptes à vue, y compris les comptes de "chèques" et les comptes "courants".
M2 : M1 plus la plupart des comptes d'épargne, comptes du marché monétaire et comptes de certificats de dépôt (CD) de moins de 100 000 $.
Prédictions du cours de BlockProtocol par des sociétés Internet ou des niches technologiques
| Comparaison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Action Facebook | $0.005035 | $0.007075 | $0.009942 | $0.01397 | $0.01963 | $0.027584 |
| Action Amazon.com | $0.007477 | $0.0156014 | $0.032553 | $0.067924 | $0.141728 | $0.295724 |
| Action Apple | $0.005082 | $0.0072096 | $0.010226 | $0.0145052 | $0.020574 | $0.029183 |
| Action Netflix | $0.005654 | $0.008921 | $0.014076 | $0.02221 | $0.035044 | $0.055294 |
| Action Google | $0.00464 | $0.0060095 | $0.007782 | $0.010078 | $0.013051 | $0.01690099 |
| Action Tesla | $0.008123 | $0.018415 | $0.041745 | $0.094634 | $0.214529 | $0.486322 |
| Action Kodak | $0.002687 | $0.002015 | $0.001511 | $0.001133 | $0.000849 | $0.000637 |
| Action Nokia | $0.002373 | $0.001572 | $0.001041 | $0.00069 | $0.000457 | $0.0003028 |
Ce calcul montre la valeur potentielle des cryptomonnaies si l'on suppose que leur capitalisation se comportera comme celle de certaines sociétés Internet ou niches technologiques. En extrapolant les données, vous pourrez obtenir une potentielle image des cours futurs pour 2024, 2025, 2026, 2027, 2028, 2029 et 2030.
Aperçu des prévisions relatives à BlockProtocol
Vous vous posez peut-être des questions telles que : "Devrais-je investir dans BlockProtocol maintenant ?", "Devrais-je acheter BLOCK aujourd'hui ?", " BlockProtocol sera-t-il un bon ou un mauvais investissement à court ou à long terme ?".
Nous mettons régulièrement à jour les prévisions de BlockProtocol avec de nouvelles valeurs. Regardez nos prévisions similaires. Nous faisons une prévision des cours futurs pour une grande quantité de devises numériques comme BlockProtocol en utilisant des méthodes d'analyse technique.
Si vous souhaitez trouver des cryptomonnaies ayant un bon rendement, vous devriez consulter un maximum d'informations disponibles à propos de BlockProtocol afin de prendre une décision responsable concernant cet investissement.
Le cours de BlockProtocol est de $0.003583 USD actuellement, mais ce cours peut subir une hausse ou une baisse, ce qui pourrait causer la perte de votre investissement, car les cryptomonnaies sont des actifs à haut risque.
Prévision à court terme de BlockProtocol
basée sur l'historique des cours sur 4 heures
Prévision à long terme de BlockProtocol
basée sur l'historique des cours sur 1 mois
Prévision du cours de BlockProtocol basée sur le modèle de croissance du Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si BlockProtocol présente 1 % de la précédente croissance annuelle moyenne du Bitcoin | $0.003676 | $0.003772 | $0.00387 | $0.00397 |
| Si BlockProtocol présente 2 % de la précédente croissance annuelle moyenne du Bitcoin | $0.003769 | $0.003965 | $0.004171 | $0.004388 |
| Si BlockProtocol présente 5 % de la précédente croissance annuelle moyenne du Bitcoin | $0.004049 | $0.004575 | $0.00517 | $0.005842 |
| Si BlockProtocol présente 10 % de la précédente croissance annuelle moyenne du Bitcoin | $0.004514 | $0.005688 | $0.007167 | $0.00903 |
| Si BlockProtocol présente 20 % de la précédente croissance annuelle moyenne du Bitcoin | $0.005446 | $0.008277 | $0.012581 | $0.019121 |
| Si BlockProtocol présente 50 % de la précédente croissance annuelle moyenne du Bitcoin | $0.00824 | $0.01895 | $0.04358 | $0.10022 |
| Si BlockProtocol présente 100 % de la précédente croissance annuelle moyenne du Bitcoin | $0.012898 | $0.046424 | $0.167095 | $0.601429 |
Boîte à questions
Est-ce que BLOCK est un bon investissement ?
La décision d'acquérir BlockProtocol dépend entièrement de votre tolérance individuelle au risque. Comme vous pouvez le discerner, la valeur de BlockProtocol a connu une baisse de -34.0976% au cours des 24 heures précédentes, et BlockProtocol a enregistré une déclin de sur une période de 30 jours précédents. Par conséquent, la détermination de si investir ou non dans BlockProtocol dépendra de la mesure dans laquelle cet investissement s'aligne avec vos aspirations de trading.
Est-ce que BlockProtocol peut monter ?
Il semble que la valeur moyenne de BlockProtocol pourrait potentiellement s'envoler jusqu'à $0.003695 pour la fin de cette année. En regardant les perspectives de BlockProtocol sur une période de cinq ans plus longue, la monnaie numérique pourrait potentiellement croître jusqu'à $0.011618. Cependant, compte tenu de l'imprévisibilité du marché, il est essentiel de mener des recherches approfondies avant d'investir des fonds dans un projet, un réseau ou un actif particulier.
Quel sera le prix de BlockProtocol la semaine prochaine ?
Basé sur notre nouveau pronostic expérimental de BlockProtocol, le prix de BlockProtocol va augmenter de 0.86% durant la prochaine semaine et atteindre $0.003614 d'ici 13 janvier 2026.
Quel sera le prix de BlockProtocol le mois prochain ?
Basé sur notre nouveau pronostic expérimental de BlockProtocol, le prix de BlockProtocol va diminuer de -11.62% durant le prochain mois et atteindre $0.003167 d'ici 5 février 2026.
Jusqu'où le prix de BlockProtocol peut-il monter cette année en 2026 ?
Selon notre prédiction la plus récente sur la valeur de BlockProtocol en 2026, BLOCK devrait fluctuer dans la fourchette de $0.001238 et $0.003695. Cependant, il est crucial de garder à l'esprit que le marché des cryptomonnaies est exceptionnellement instable, et cette prévision de prix de BlockProtocol ne prend pas en compte les fluctuations de prix soudaines et extrêmes.
Où sera BlockProtocol dans 5 ans ?
L'avenir de BlockProtocol semble suivre une tendance haussière, avec un prix maximum de $0.011618 prévue après une période de cinq ans. Selon la prévision de BlockProtocol pour 2030, la valeur de BlockProtocol pourrait potentiellement atteindre son point le plus élevé d'environ $0.011618, tandis que son point le plus bas devrait être autour de $0.004018.
Combien vaudra BlockProtocol en 2026 ?
Basé sur notre nouvelle simulation expérimentale de prédiction de prix de BlockProtocol, il est attendu que la valeur de BLOCK en 2026 augmente de 3.13% jusqu'à $0.003695 si le meilleur scénario se produit. Le prix sera entre $0.003695 et $0.001238 durant 2026.
Combien vaudra BlockProtocol en 2027 ?
Selon notre dernière simulation expérimentale pour la prédiction de prix de BlockProtocol, le valeur de BLOCK pourrait diminuer de -12.62% jusqu'à $0.003131 en 2027, en supposant les conditions les plus favorables. Il est prévu que le prix fluctue entre $0.003131 et $0.001191 tout au long de l'année.
Combien vaudra BlockProtocol en 2028 ?
Notre nouveau modèle expérimental de prédiction de prix de BlockProtocol suggère que la valeur de BLOCK en 2028 pourrait augmenter de 47.02%, atteignant $0.005268 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.005268 et $0.00215 durant l'année.
Combien vaudra BlockProtocol en 2029 ?
Basé sur notre modèle de prévision expérimental, la valeur de BlockProtocol pourrait connaître un 333.75% croissance en 2029, atteignant potentiellement $0.015543 sous des conditions optimales. Le range de prix prévu pour 2029 se situe entre $0.015543 et $0.004725.
Combien vaudra BlockProtocol en 2030 ?
En utilisant notre nouvelle simulation expérimentale pour les prédictions de prix de BlockProtocol, il est prévu que la valeur de BLOCK en 2030 augmente de 224.23%, atteignant $0.011618 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.011618 et $0.004018 au cours de 2030.
Combien vaudra BlockProtocol en 2031 ?
Notre simulation expérimentale indique que le prix de BlockProtocol pourrait augmenter de 195.98% en 2031, atteignant potentiellement $0.0106064 dans des conditions idéales. Il est probable que le prix fluctue entre $0.0106064 et $0.004751 durant l'année.
Combien vaudra BlockProtocol en 2032 ?
Basé sur les résultats de notre dernière prédiction expérimentale de prix de BlockProtocol, BLOCK pourrait connaître une 449.04% hausse en valeur, atteignant $0.019674 si le scénario le plus positif se réalise en 2032. Il est prévu que le prix reste dans une fourchette de $0.019674 et $0.007252 tout au long de l'année.
Combien vaudra BlockProtocol en 2033 ?
Selon notre prédiction expérimentale de prix de BlockProtocol, la valeur de BLOCK est anticipée à augmenter de 1362.43% en 2033, avec le prix potentiel le plus élevé étant $0.0524056. Tout au long de l'année, le prix de BLOCK pourrait osciller entre $0.0524056 et $0.016852.
Combien vaudra BlockProtocol en 2034 ?
Les résultats de notre nouvelle simulation de prédiction de prix de BlockProtocol suggèrent que BLOCK pourrait augmenter de 746.96% en 2034, atteignant potentiellement $0.03035 dans les meilleures circonstances. La fourchette de prix prévue pour l'année est entre $0.03035 et $0.013548.
Combien vaudra BlockProtocol en 2035 ?
Basé sur notre prédiction expérimentale pour le prix de BlockProtocol, BLOCK pourrait augmenter de 897.93%, avec la valeur potentiellement atteignant $0.03576 en 2035. La fourchette de prix attendue pour l'année se situe entre $0.03576 et $0.016018.
Combien vaudra BlockProtocol en 2036 ?
Notre récente simulation de prédiction de prix de BlockProtocol suggère que la valeur de BLOCK pourrait augmenter de 1964.7% en 2036, pouvant atteindre $0.073987 si les conditions sont optimales. La fourchette de prix attendue pour 2036 est entre $0.073987 et $0.026515.
Combien vaudra BlockProtocol en 2037 ?
Selon la simulation expérimentale, la valeur de BlockProtocol pourrait augmenter de 4830.69% en 2037, avec un maximum de $0.176689 sous des conditions favorables. Il est prévu que le prix chute entre $0.176689 et $0.06886 au cours de l'année.
Prévisions liées
Comment lire et prédire les mouvements de prix de BlockProtocol ?
Les traders de BlockProtocol utilisent des indicateurs et des modèles graphiques pour prédire la direction du marché. Ils identifient également des niveaux clés de support et de résistance pour évaluer quand une tendance baissière pourrait ralentir ou une tendance haussière pourrait s'arrêter.
Indicateurs de prédiction du prix de BlockProtocol
Les moyennes mobiles sont des outils populaires pour la prédiction du prix de BlockProtocol. Une moyenne mobile simple (SMA) calcule le prix de clôture moyen de BLOCK sur une période spécifique, comme une SMA de 12 jours. Une moyenne mobile exponentielle (EMA) donne plus de poids aux prix récents, réagissant plus rapidement aux changements de prix.
Les moyennes mobiles couramment utilisées sur le marché des cryptomonnaies incluent les moyennes sur 50 jours, 100 jours et 200 jours, qui aident à identifier les niveaux clés de résistance et de support. Un mouvement de prix de BLOCK au-dessus de ces moyennes est considéré comme haussier, tandis qu'une chute en dessous indique une faiblesse.
Les traders utilisent également le RSI et les niveaux de retracement de Fibonacci pour évaluer la direction future de BLOCK.
Comment lire les graphiques de BlockProtocol et prédire les mouvements de prix ?
La plupart des traders préfèrent les graphiques en chandeliers aux simples graphiques linéaires parce qu'ils fournissent des informations plus détaillées. Les chandeliers peuvent représenter l'action des prix de BlockProtocol dans différentes périodes, comme 5 minutes pour les tendances à court terme et hebdomadaire pour les tendances à long terme. Les options populaires incluent les graphiques de 1 heure, 4 heures et 1 jour.
Par exemple, un graphique en chandeliers de 1 heure montre les prix d'ouverture, de clôture, les plus hauts et les plus bas de BLOCK au sein de chaque heure. La couleur du chandelier est cruciale : le vert indique que le prix a clôturé plus haut qu'il n'a ouvert, tandis que le rouge signifie le contraire. Certains graphiques utilisent des chandeliers creux et pleins pour transmettre la même information.
Qu'est-ce qui affecte le prix de BlockProtocol ?
L'action du prix de BlockProtocol est déterminée par l'offre et la demande, influencée par des facteurs tels que les réductions de récompenses de bloc, les hard forks et les mises à jour de protocole. Les événements du monde réel, tels que les réglementations, l'adoption par les entreprises et les gouvernements et les piratages d'échanges de cryptomonnaies, impactent également le prix de BLOCK. La capitalisation boursière de BlockProtocol peut changer rapidement.
Les traders surveillent souvent l'activité des « baleines » de BLOCK, de grands détenteurs de BlockProtocol, car leurs actions peuvent influencer significativement les mouvements de prix sur le marché relativement petit de BlockProtocol.
Modèles de prédiction de prix haussiers et baissiers
Les traders identifient souvent des modèles de chandeliers pour obtenir un avantage dans les prédictions de prix des cryptomonnaies. Certaines formations indiquent des tendances haussières, tandis que d'autres suggèrent des mouvements baissiers.
Modèles de chandeliers haussiers couramment suivis :
- Marteau
- Englobante haussière
- Ligne pénétrante
- Étoile du matin
- Trois soldats blancs
Modèles de chandeliers baissiers courants :
- Harami baissier
- Nuage sombre
- Étoile du soir
- Étoile filante
- Pendu


