Prédiction du prix de BlockProtocol jusqu'à $0.004513 d'ici 2026
| Année | Prix min. | Prix max. |
|---|---|---|
| 2026 | $0.001512 | $0.004513 |
| 2027 | $0.001455 | $0.003824 |
| 2028 | $0.002627 | $0.006434 |
| 2029 | $0.005771 | $0.018984 |
| 2030 | $0.0049082 | $0.014191 |
| 2031 | $0.005803 | $0.012954 |
| 2032 | $0.008857 | $0.02403 |
| 2033 | $0.020583 | $0.0640087 |
| 2034 | $0.016548 | $0.03707 |
| 2035 | $0.019565 | $0.043678 |
Calculateur de profit d’investissement
Si vous ouvrez une position short de $10,000.00 sur BlockProtocol aujourd’hui et la fermez le Apr 06, 2026, notre prévision indique que vous pourriez gagner environ $3,954.58, soit un rendement de 39.55% sur les 90 prochains jours.
Prévision du prix à long terme de BlockProtocol pour 2027, 2028, 2029, 2030, 2031, 2032 et 2037
[
'name' => 'BlockProtocol'
'name_with_ticker' => 'BlockProtocol <small>BLOCK</small>'
'name_lang' => 'BlockProtocol'
'name_lang_with_ticker' => 'BlockProtocol <small>BLOCK</small>'
'name_with_lang' => 'BlockProtocol'
'name_with_lang_with_ticker' => 'BlockProtocol <small>BLOCK</small>'
'image' => '/uploads/coins/blockgames.png?1717253092'
'price_for_sd' => 0.004376
'ticker' => 'BLOCK'
'marketcap' => '$2.97M'
'low24h' => '$0.002358'
'high24h' => '$0.005798'
'volume24h' => '$18.01K'
'current_supply' => '679.32M'
'max_supply' => '1B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.004376'
'change_24h_pct' => '-13.5932%'
'ath_price' => '$0.2505'
'ath_days' => 634
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '12 avr. 2024'
'ath_pct' => '-98.25%'
'fdv' => '$4.38M'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.2158098'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.004414'
'next_week_prediction_price_date' => '13 janvier 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.003868'
'next_month_prediction_price_date' => '5 février 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.001512'
'current_year_max_price_prediction' => '$0.004513'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.0049082'
'grand_prediction_max_price' => '$0.014191'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0044598093842664
107 => 0.0044764606935964
108 => 0.0045139769437539
109 => 0.0041934046937377
110 => 0.0043373322224882
111 => 0.0044218761614434
112 => 0.0040399035695088
113 => 0.0044143257914364
114 => 0.0041878242440738
115 => 0.0041109462169598
116 => 0.0042144523525588
117 => 0.0041741159108529
118 => 0.0041394370069094
119 => 0.0041200855826498
120 => 0.0041960890650784
121 => 0.0041925434117793
122 => 0.0040681869628858
123 => 0.0039059690447216
124 => 0.0039604147026791
125 => 0.0039406340847124
126 => 0.0038689465734504
127 => 0.0039172553004579
128 => 0.0037045281152043
129 => 0.0033385420495723
130 => 0.0035803236549851
131 => 0.0035710153261845
201 => 0.0035663216447042
202 => 0.0037480138388191
203 => 0.0037305483267071
204 => 0.003698848251201
205 => 0.0038683643767042
206 => 0.0038064887105819
207 => 0.0039971749338305
208 => 0.0041227732132737
209 => 0.0040909174269282
210 => 0.0042090432158137
211 => 0.0039616690206737
212 => 0.0040438368053691
213 => 0.0040607714719152
214 => 0.0038662725740288
215 => 0.0037334059004883
216 => 0.0037245452081541
217 => 0.0034941727063902
218 => 0.0036172358373306
219 => 0.0037255262998598
220 => 0.0036736635719877
221 => 0.0036572453816983
222 => 0.0037411223552158
223 => 0.0037476403144158
224 => 0.0035990301539133
225 => 0.0036299309121535
226 => 0.0037587922108387
227 => 0.0036266839380507
228 => 0.0033700191437873
301 => 0.0033063627261416
302 => 0.0032978697866071
303 => 0.0031252285332978
304 => 0.0033106165523537
305 => 0.0032296897139458
306 => 0.003485336626824
307 => 0.0033393124812499
308 => 0.0033330176721889
309 => 0.0033235021450456
310 => 0.0031749026866019
311 => 0.0032074365240128
312 => 0.0033155839546101
313 => 0.0033541721762152
314 => 0.0033501471085578
315 => 0.0033150539732005
316 => 0.0033311194308611
317 => 0.0032793669941598
318 => 0.0032610921316267
319 => 0.0032034116385753
320 => 0.0031186372484327
321 => 0.0031304256473336
322 => 0.0029624653980353
323 => 0.0028709517398925
324 => 0.0028456219654492
325 => 0.0028117499324595
326 => 0.0028494479017054
327 => 0.0029619895877522
328 => 0.0028262404373292
329 => 0.0025935080406247
330 => 0.0026074956542234
331 => 0.0026389216690198
401 => 0.0025803594983506
402 => 0.0025249353185626
403 => 0.0025731221461824
404 => 0.0024745103616417
405 => 0.0026508384320582
406 => 0.0026460692519071
407 => 0.0027117934525036
408 => 0.002752892143933
409 => 0.0026581729660476
410 => 0.0026343513489574
411 => 0.0026479212246841
412 => 0.0024236414061927
413 => 0.0026934650064669
414 => 0.0026957984521668
415 => 0.0026758180734087
416 => 0.0028194908106857
417 => 0.0031226850989907
418 => 0.0030086112117684
419 => 0.0029644383547344
420 => 0.0028804657212227
421 => 0.0029923542695755
422 => 0.0029837629747952
423 => 0.0029449098816472
424 => 0.0029214114096822
425 => 0.0029647080647802
426 => 0.0029160464749727
427 => 0.0029073055163123
428 => 0.0028543448170866
429 => 0.0028354402570213
430 => 0.0028214440733612
501 => 0.002806035650388
502 => 0.0028400227919271
503 => 0.0027630034578188
504 => 0.0026701256911825
505 => 0.0026624039098381
506 => 0.0026837244270361
507 => 0.0026742916853018
508 => 0.0026623587494997
509 => 0.0026395755253118
510 => 0.0026328162293819
511 => 0.0026547806620101
512 => 0.0026299840981788
513 => 0.0026665727788506
514 => 0.0026566226822519
515 => 0.0026010422514912
516 => 0.0025317684562523
517 => 0.0025311517741679
518 => 0.0025162268486155
519 => 0.0024972177119469
520 => 0.0024919298049958
521 => 0.0025690639859643
522 => 0.0027287294321371
523 => 0.0026973832845831
524 => 0.0027200340886733
525 => 0.0028314536264723
526 => 0.0028668705470362
527 => 0.0028417324557157
528 => 0.0028073218858662
529 => 0.002808835776303
530 => 0.0029264271102666
531 => 0.0029337611375254
601 => 0.0029522918583617
602 => 0.0029761090714173
603 => 0.0028457886300876
604 => 0.0028026976952359
605 => 0.0027822788197091
606 => 0.0027193965861859
607 => 0.0027872096839254
608 => 0.0027476978959189
609 => 0.0027530293860359
610 => 0.002749557246103
611 => 0.0027514532692914
612 => 0.0026507891447689
613 => 0.0026874658609943
614 => 0.0026264837067035
615 => 0.0025448354476761
616 => 0.0025445617340823
617 => 0.0025645450298082
618 => 0.002552658183564
619 => 0.0025206709859596
620 => 0.002525214616404
621 => 0.0024854076326784
622 => 0.002530047904957
623 => 0.0025313280282353
624 => 0.002514139091836
625 => 0.0025829135904516
626 => 0.002611090558649
627 => 0.0025997764324883
628 => 0.0026102967293964
629 => 0.0026986858585333
630 => 0.0027130971432707
701 => 0.002719497683995
702 => 0.0027109218073336
703 => 0.0026119123204189
704 => 0.0026163038121844
705 => 0.0025840819594096
706 => 0.0025568578892701
707 => 0.0025579467093042
708 => 0.0025719434202373
709 => 0.0026330678777784
710 => 0.00276170069519
711 => 0.0027665822165814
712 => 0.0027724987629118
713 => 0.0027484331955681
714 => 0.0027411747901807
715 => 0.00275075050044
716 => 0.0027990582234676
717 => 0.0029233188025133
718 => 0.0028793968147935
719 => 0.0028436875550908
720 => 0.0028750142029974
721 => 0.0028701917110985
722 => 0.0028294850262881
723 => 0.0028283425252233
724 => 0.0027502133823578
725 => 0.0027213308171549
726 => 0.0026971943838488
727 => 0.0026708380287761
728 => 0.002655213098016
729 => 0.0026792200930676
730 => 0.0026847107768783
731 => 0.0026322190626276
801 => 0.0026250646359388
802 => 0.0026679305029083
803 => 0.0026490668330556
804 => 0.0026684685852956
805 => 0.0026729699582404
806 => 0.0026722451335209
807 => 0.002652549295716
808 => 0.0026651028353945
809 => 0.0026354099716646
810 => 0.0026031234420822
811 => 0.0025825266477306
812 => 0.0025645532128904
813 => 0.0025745259191619
814 => 0.0025389750422483
815 => 0.0025276016012259
816 => 0.002660849978615
817 => 0.0027592819876538
818 => 0.002757850747259
819 => 0.002749138439441
820 => 0.0027361937172504
821 => 0.0027981112364116
822 => 0.0027765404108157
823 => 0.0027922349887395
824 => 0.0027962299175205
825 => 0.0028083213637449
826 => 0.0028126430164752
827 => 0.0027995799803434
828 => 0.0027557388355696
829 => 0.0026464908710841
830 => 0.0025956356487069
831 => 0.0025788525782617
901 => 0.0025794626109968
902 => 0.0025626351848568
903 => 0.0025675916160074
904 => 0.0025609115403732
905 => 0.0025482610932061
906 => 0.0025737447896973
907 => 0.0025766815483209
908 => 0.0025707333490523
909 => 0.002572134365308
910 => 0.0025228858158735
911 => 0.0025266300761248
912 => 0.0025057815592481
913 => 0.0025018727136663
914 => 0.00244916947849
915 => 0.002355798057919
916 => 0.0024075348886984
917 => 0.0023450440724162
918 => 0.0023213778533997
919 => 0.0024334100533715
920 => 0.0024221651277838
921 => 0.0024029187032295
922 => 0.0023744492300072
923 => 0.0023638896254558
924 => 0.0022997328109662
925 => 0.0022959420841029
926 => 0.0023277399337436
927 => 0.0023130663202316
928 => 0.0022924590095288
929 => 0.0022178214190926
930 => 0.0021339040557854
1001 => 0.0021364369934979
1002 => 0.0021631295454279
1003 => 0.0022407417401453
1004 => 0.0022104173129646
1005 => 0.0021884165931123
1006 => 0.0021842965196232
1007 => 0.0022358678652977
1008 => 0.0023088521239581
1009 => 0.0023430947051908
1010 => 0.0023091613471519
1011 => 0.0022701805325384
1012 => 0.0022725531141043
1013 => 0.0022883368363264
1014 => 0.0022899954823621
1015 => 0.0022646229793413
1016 => 0.0022717651903213
1017 => 0.0022609155187451
1018 => 0.0021943311043089
1019 => 0.0021931268033932
1020 => 0.0021767859142718
1021 => 0.0021762911186435
1022 => 0.0021484911898222
1023 => 0.0021446017876083
1024 => 0.0020894033415985
1025 => 0.0021257351259184
1026 => 0.0021013656725009
1027 => 0.0020646351580279
1028 => 0.0020583028034881
1029 => 0.0020581124452641
1030 => 0.0020958264708352
1031 => 0.0021252944155715
1101 => 0.0021017895895766
1102 => 0.0020964379963195
1103 => 0.0021535790113959
1104 => 0.0021463072963755
1105 => 0.0021400100380654
1106 => 0.0023023171840934
1107 => 0.0021738384130277
1108 => 0.0021178143355311
1109 => 0.0020484739009454
1110 => 0.0020710514960913
1111 => 0.0020758089271224
1112 => 0.0019090576814965
1113 => 0.0018414067219136
1114 => 0.0018181914619574
1115 => 0.001804830751637
1116 => 0.0018109193951032
1117 => 0.0017500255968125
1118 => 0.0017909472363543
1119 => 0.0017382183542592
1120 => 0.0017293781855813
1121 => 0.0018236639586225
1122 => 0.0018367832731317
1123 => 0.001780812201584
1124 => 0.001816754690411
1125 => 0.0018037214443243
1126 => 0.0017391222396017
1127 => 0.0017366550251408
1128 => 0.0017042414149828
1129 => 0.0016535203915973
1130 => 0.0016303395228833
1201 => 0.0016182667251916
1202 => 0.0016232481968133
1203 => 0.0016207294123258
1204 => 0.0016042926397733
1205 => 0.0016216715488883
1206 => 0.0015772756175606
1207 => 0.0015595967999836
1208 => 0.0015516116882295
1209 => 0.0015122077438417
1210 => 0.0015749169423763
1211 => 0.0015872714444773
1212 => 0.0015996502887639
1213 => 0.001707399676883
1214 => 0.0017020168219492
1215 => 0.0017506752089942
1216 => 0.0017487844335507
1217 => 0.0017349062733518
1218 => 0.0016763565983194
1219 => 0.0016996934552397
1220 => 0.0016278662369917
1221 => 0.0016816840726792
1222 => 0.001657123859958
1223 => 0.0016733802400528
1224 => 0.0016441498028636
1225 => 0.0016603271336993
1226 => 0.0015902011552472
1227 => 0.0015247185032679
1228 => 0.0015510706339821
1229 => 0.0015797184138003
1230 => 0.0016418340997645
1231 => 0.0016048385096475
]
'min_raw' => 0.0015122077438417
'max_raw' => 0.0045139769437539
'avg_raw' => 0.0030130923437978
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.001512'
'max' => '$0.004513'
'avg' => '$0.003013'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0028646622561583
'max_diff' => 0.00013710694375395
'year' => 2026
]
1 => [
'items' => [
101 => 0.0016181435228117
102 => 0.0015735739559439
103 => 0.0014816142088282
104 => 0.00148213469101
105 => 0.0014679886873683
106 => 0.0014557644748714
107 => 0.0016090878982074
108 => 0.0015900197068309
109 => 0.0015596370394557
110 => 0.0016003054470966
111 => 0.0016110588195713
112 => 0.0016113649529682
113 => 0.0016410355733795
114 => 0.0016568707888117
115 => 0.0016596618141654
116 => 0.0017063491764587
117 => 0.0017219981644782
118 => 0.001786454131403
119 => 0.0016555272814168
120 => 0.0016528309291001
121 => 0.0016008777349926
122 => 0.0015679281979421
123 => 0.001603133817984
124 => 0.0016343211912947
125 => 0.0016018468136158
126 => 0.0016060872817692
127 => 0.0015624930829894
128 => 0.0015780759577555
129 => 0.0015914980287439
130 => 0.001584087150057
131 => 0.001572992705972
201 => 0.0016317641823394
202 => 0.0016284480653155
203 => 0.0016831774152592
204 => 0.0017258428572737
205 => 0.0018023069567237
206 => 0.0017225126827839
207 => 0.0017196046622881
208 => 0.0017480310290964
209 => 0.0017219938125496
210 => 0.001738448434633
211 => 0.0017996558627186
212 => 0.0018009490792246
213 => 0.001779286036533
214 => 0.0017779678384165
215 => 0.0017821284627331
216 => 0.0018064973693104
217 => 0.0017979821245714
218 => 0.001807836181363
219 => 0.0018201588302715
220 => 0.0018711305308521
221 => 0.0018834196352982
222 => 0.0018535634826643
223 => 0.001856259158962
224 => 0.0018450921383072
225 => 0.001834304936277
226 => 0.0018585529910965
227 => 0.0019028667878758
228 => 0.0019025911140459
301 => 0.0019128710535616
302 => 0.0019192753707162
303 => 0.0018917833532418
304 => 0.0018738870607754
305 => 0.0018807496380777
306 => 0.0018917230486315
307 => 0.001877191108931
308 => 0.0017874932452502
309 => 0.0018147018471693
310 => 0.0018101730053773
311 => 0.0018037233839395
312 => 0.001831081843567
313 => 0.0018284430533945
314 => 0.0017494010428966
315 => 0.0017544610559575
316 => 0.0017497087590501
317 => 0.0017650644025863
318 => 0.0017211645574057
319 => 0.0017346678541133
320 => 0.0017431369952227
321 => 0.0017481253843992
322 => 0.0017661468666751
323 => 0.0017640322537332
324 => 0.0017660154193656
325 => 0.0017927365200859
326 => 0.0019278826779544
327 => 0.001935238385144
328 => 0.0018990161927189
329 => 0.0019134862441416
330 => 0.0018857069096624
331 => 0.0019043553630037
401 => 0.0019171141611604
402 => 0.001859459605666
403 => 0.0018560456770646
404 => 0.0018281516873904
405 => 0.001843140337445
406 => 0.0018192923174861
407 => 0.0018251437874157
408 => 0.0018087825673706
409 => 0.0018382295059654
410 => 0.001871155758906
411 => 0.0018794742306959
412 => 0.0018575919127439
413 => 0.0018417476724316
414 => 0.0018139304058604
415 => 0.0018601911401165
416 => 0.0018737191885833
417 => 0.001860120083037
418 => 0.0018569688731356
419 => 0.0018509973360665
420 => 0.001858235762954
421 => 0.0018736455119261
422 => 0.0018663785588842
423 => 0.0018711785093956
424 => 0.0018528860477338
425 => 0.0018917924542435
426 => 0.0019535851911176
427 => 0.0019537838648708
428 => 0.0019465168726574
429 => 0.0019435433760132
430 => 0.0019509997510221
501 => 0.0019550445285879
502 => 0.0019791570781014
503 => 0.0020050308044158
504 => 0.0021257721955337
505 => 0.0020918684960623
506 => 0.0021989974411996
507 => 0.0022837225278506
508 => 0.0023091278767583
509 => 0.0022857561511773
510 => 0.0022058027404805
511 => 0.0022018798447138
512 => 0.0023213639957541
513 => 0.0022876042503644
514 => 0.0022835886360729
515 => 0.002240869284499
516 => 0.0022661217121738
517 => 0.0022605986358106
518 => 0.002251880189573
519 => 0.0023000600624772
520 => 0.002390248483507
521 => 0.0023761917723079
522 => 0.0023656990894698
523 => 0.0023197232076473
524 => 0.0023474109575894
525 => 0.0023375518801589
526 => 0.0023799127335254
527 => 0.0023548191023989
528 => 0.0022873484870895
529 => 0.0022980934049635
530 => 0.0022964693322427
531 => 0.0023298926337556
601 => 0.0023198597882588
602 => 0.002294510258138
603 => 0.0023899402292887
604 => 0.0023837435377716
605 => 0.002392529029582
606 => 0.0023963966747773
607 => 0.002454483216552
608 => 0.0024782794141551
609 => 0.0024836815676221
610 => 0.002506286114881
611 => 0.002483119145894
612 => 0.0025758035396111
613 => 0.0026374332531486
614 => 0.0027090193368586
615 => 0.0028136258456842
616 => 0.0028529588606669
617 => 0.0028458537035664
618 => 0.0029251651647004
619 => 0.0030676860973634
620 => 0.002874661258887
621 => 0.0030779168825035
622 => 0.0030135684987656
623 => 0.0028609996385008
624 => 0.0028511760025685
625 => 0.0029544974061007
626 => 0.0031836543348185
627 => 0.003126253123251
628 => 0.0031837482226372
629 => 0.0031166771351712
630 => 0.003113346490359
701 => 0.0031804907296244
702 => 0.00333737690451
703 => 0.0032628461636122
704 => 0.0031559880708477
705 => 0.0032348904236489
706 => 0.0031665379035845
707 => 0.0030125205452137
708 => 0.0031262092296263
709 => 0.0030501888440269
710 => 0.0030723756340108
711 => 0.0032321591773619
712 => 0.003212933598691
713 => 0.0032378132777317
714 => 0.0031939012954395
715 => 0.0031528805796945
716 => 0.0030763123675181
717 => 0.0030536442946599
718 => 0.0030599089344861
719 => 0.0030536411902156
720 => 0.0030108019792011
721 => 0.0030015508556613
722 => 0.0029861319111272
723 => 0.0029909108867765
724 => 0.0029619187600811
725 => 0.0030166328932343
726 => 0.0030267883184868
727 => 0.0030666047018156
728 => 0.0030707385708186
729 => 0.0031816266316386
730 => 0.0031205513511371
731 => 0.0031615259222835
801 => 0.0031578607709726
802 => 0.002864306268332
803 => 0.0029047554887426
804 => 0.0029676817820368
805 => 0.0029393335722023
806 => 0.0028992558359559
807 => 0.0028668909151046
808 => 0.0028178547505319
809 => 0.0028868722105119
810 => 0.002977622831197
811 => 0.0030730401563205
812 => 0.0031876778204656
813 => 0.0031620920283579
814 => 0.0030708970849296
815 => 0.0030749880234738
816 => 0.0031002765958294
817 => 0.0030675255969199
818 => 0.003057866687966
819 => 0.0030989496100618
820 => 0.0030992325255675
821 => 0.0030615485432316
822 => 0.0030196696929613
823 => 0.0030194942190495
824 => 0.0030120422821456
825 => 0.0031180028181918
826 => 0.0031762703991987
827 => 0.0031829506834583
828 => 0.0031758207628423
829 => 0.003178564786311
830 => 0.0031446601647616
831 => 0.0032221560755203
901 => 0.0032932739867836
902 => 0.0032742128673525
903 => 0.0032456375396274
904 => 0.0032228759147201
905 => 0.0032688509518992
906 => 0.003266803755865
907 => 0.0032926528338707
908 => 0.0032914801703808
909 => 0.0032827880976805
910 => 0.0032742131777738
911 => 0.003308211765939
912 => 0.003298420718548
913 => 0.0032886144629561
914 => 0.0032689465161039
915 => 0.0032716197167311
916 => 0.0032430493229392
917 => 0.0032298313514789
918 => 0.0030310647750627
919 => 0.0029779478509591
920 => 0.0029946595165768
921 => 0.0030001614308163
922 => 0.0029770448773752
923 => 0.0030101880768544
924 => 0.0030050227443229
925 => 0.0030251180315845
926 => 0.0030125633685394
927 => 0.00301307861629
928 => 0.0030499992033692
929 => 0.0030607174068697
930 => 0.0030552660420629
1001 => 0.0030590839911118
1002 => 0.0031470670154876
1003 => 0.0031345586429601
1004 => 0.003127913819356
1005 => 0.0031297544809058
1006 => 0.0031522360300112
1007 => 0.0031585296363136
1008 => 0.0031318631841664
1009 => 0.0031444392371559
1010 => 0.0031979864746467
1011 => 0.0032167249772573
1012 => 0.0032765292825989
1013 => 0.003251123350753
1014 => 0.0032977570381991
1015 => 0.0034410930948126
1016 => 0.0035555998549362
1017 => 0.0034502947061346
1018 => 0.0036605717887536
1019 => 0.0038243026600284
1020 => 0.0038180183964809
1021 => 0.0037894681319108
1022 => 0.0036030648879748
1023 => 0.0034315338437891
1024 => 0.0035750268458433
1025 => 0.0035753926390151
1026 => 0.003563066462881
1027 => 0.0034865096415363
1028 => 0.0035604024514447
1029 => 0.003566267794356
1030 => 0.0035629847620463
1031 => 0.0035042888266182
1101 => 0.0034146709820417
1102 => 0.0034321820943572
1103 => 0.0034608656535469
1104 => 0.0034065616919835
1105 => 0.0033892082858709
1106 => 0.0034214715694548
1107 => 0.003525430591484
1108 => 0.003505777740563
1109 => 0.0035052645252021
1110 => 0.003589347755548
1111 => 0.0035291623089171
1112 => 0.0034324029655618
1113 => 0.0034079699552657
1114 => 0.0033212492287622
1115 => 0.0033811475434468
1116 => 0.0033833031771574
1117 => 0.0033504974823506
1118 => 0.0034350649668929
1119 => 0.003434285662635
1120 => 0.003514569902999
1121 => 0.0036680432171913
1122 => 0.0036226536062215
1123 => 0.0035698704270393
1124 => 0.0035756094221352
1125 => 0.0036385520332905
1126 => 0.0036004954937459
1127 => 0.0036141808907058
1128 => 0.0036385313188031
1129 => 0.0036532225366614
1130 => 0.0035734955819704
1201 => 0.0035549074150509
1202 => 0.0035168825490935
1203 => 0.003506962571333
1204 => 0.0035379330312404
1205 => 0.0035297734092573
1206 => 0.003383122004491
1207 => 0.0033677961167322
1208 => 0.0033682661398295
1209 => 0.0033297284663538
1210 => 0.0032709492642019
1211 => 0.0034254174979332
1212 => 0.003413011536983
1213 => 0.0033993163162392
1214 => 0.0034009939026364
1215 => 0.003468043327485
1216 => 0.0034291512749957
1217 => 0.0035325521708205
1218 => 0.0035112960551544
1219 => 0.0034894948003281
1220 => 0.0034864812028286
1221 => 0.0034780895797162
1222 => 0.003449311581678
1223 => 0.0034145604197575
1224 => 0.0033916146925634
1225 => 0.0031285852738154
1226 => 0.0031774020039633
1227 => 0.0032335612022135
1228 => 0.0032529471324056
1229 => 0.0032197861573464
1230 => 0.0034506209790919
1231 => 0.0034927967254045
]
'min_raw' => 0.0014557644748714
'max_raw' => 0.0038243026600284
'avg_raw' => 0.0026400335674499
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.001455'
'max' => '$0.003824'
'avg' => '$0.00264'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -5.6443268970286E-5
'max_diff' => -0.00068967428372551
'year' => 2027
]
2 => [
'items' => [
101 => 0.0033650436387678
102 => 0.0033411462523822
103 => 0.0034521876877649
104 => 0.0033852161279657
105 => 0.0034153734172426
106 => 0.0033501898529814
107 => 0.0034826378231678
108 => 0.003481628791546
109 => 0.0034301035396704
110 => 0.003473652329726
111 => 0.0034660846557707
112 => 0.0034079127733043
113 => 0.0034844819756013
114 => 0.0034845199529704
115 => 0.0034349280182957
116 => 0.0033770154956661
117 => 0.0033666621044526
118 => 0.0033588622149557
119 => 0.0034134551225682
120 => 0.003462402952826
121 => 0.0035534827297396
122 => 0.0035763823496578
123 => 0.0036657610907125
124 => 0.0036125404021864
125 => 0.0036361324440867
126 => 0.0036617449428676
127 => 0.0036740245166517
128 => 0.0036540156101289
129 => 0.0037928575847444
130 => 0.0038045801014101
131 => 0.0038085105598488
201 => 0.003761693827194
202 => 0.0038032780433842
203 => 0.0037838221657533
204 => 0.0038344409543504
205 => 0.0038423786267355
206 => 0.0038356557006162
207 => 0.0038381752431189
208 => 0.0037196981111872
209 => 0.0037135544468799
210 => 0.0036297851481151
211 => 0.0036639217565532
212 => 0.0036001050032884
213 => 0.0036203419531341
214 => 0.0036292622078013
215 => 0.0036246027729831
216 => 0.0036658517891761
217 => 0.0036307816987948
218 => 0.003538225964222
219 => 0.0034456450129011
220 => 0.0034444827344721
221 => 0.0034201078041789
222 => 0.003402489194068
223 => 0.0034058831634291
224 => 0.0034178439541401
225 => 0.0034017940111683
226 => 0.0034052190802541
227 => 0.0034620980481942
228 => 0.0034735047195723
229 => 0.0034347403933552
301 => 0.003279096029928
302 => 0.0032409005127386
303 => 0.0032683546930443
304 => 0.0032552333631338
305 => 0.0026272273845962
306 => 0.0027747680739093
307 => 0.0026871044063279
308 => 0.0027275038575608
309 => 0.0026380219533568
310 => 0.0026807274081914
311 => 0.002672841270037
312 => 0.002910082332406
313 => 0.0029063781395315
314 => 0.002908151140639
315 => 0.0028235211782487
316 => 0.0029583390062903
317 => 0.0030247551162758
318 => 0.003012463261925
319 => 0.0030155568568475
320 => 0.0029623986465088
321 => 0.0029086658283131
322 => 0.0028490678635127
323 => 0.0029597935155808
324 => 0.0029474827132208
325 => 0.0029757192645479
326 => 0.0030475327647471
327 => 0.0030581075754444
328 => 0.0030723202282608
329 => 0.0030672260039516
330 => 0.0031885910944084
331 => 0.0031738929811615
401 => 0.0032093112051509
402 => 0.0031364532312175
403 => 0.0030540075179696
404 => 0.0030696777527046
405 => 0.0030681685830875
406 => 0.0030489551217182
407 => 0.0030316100678859
408 => 0.0030027354401938
409 => 0.0030940990348526
410 => 0.003090389839759
411 => 0.0031504373968573
412 => 0.0031398234078693
413 => 0.0030689405917239
414 => 0.0030714721853696
415 => 0.0030884983692789
416 => 0.0031474261861906
417 => 0.0031649199743617
418 => 0.0031568161546739
419 => 0.0031759972947818
420 => 0.003191157285845
421 => 0.003177901156252
422 => 0.0033655799965852
423 => 0.0032876426571557
424 => 0.0033256287741091
425 => 0.0033346882391753
426 => 0.0033114826099083
427 => 0.003316515079965
428 => 0.003324137900835
429 => 0.0033704221764559
430 => 0.0034918855081481
501 => 0.0035456807909258
502 => 0.0037075265533749
503 => 0.0035412138415576
504 => 0.0035313455335088
505 => 0.0035604988425997
506 => 0.0036555194382711
507 => 0.0037325247062321
508 => 0.0037580717961553
509 => 0.0037614482658251
510 => 0.0038093763048593
511 => 0.0038368477630287
512 => 0.003803556580288
513 => 0.0037753457886473
514 => 0.0036742982346429
515 => 0.0036859947641622
516 => 0.0037665722536605
517 => 0.0038803927035672
518 => 0.0039780624905866
519 => 0.0039438619353082
520 => 0.0042047880302535
521 => 0.0042306577867798
522 => 0.0042270834228973
523 => 0.0042860185782002
524 => 0.0041690442968596
525 => 0.0041190355253165
526 => 0.0037814452820061
527 => 0.0038762943702493
528 => 0.0040141630903023
529 => 0.0039959156482221
530 => 0.0038957916984782
531 => 0.0039779865375924
601 => 0.003950810353311
602 => 0.0039293753692273
603 => 0.0040275731866908
604 => 0.0039196006526457
605 => 0.0040130859816805
606 => 0.0038931900802114
607 => 0.0039440181605638
608 => 0.0039151656838782
609 => 0.0039338367723204
610 => 0.0038246859708004
611 => 0.0038835810938147
612 => 0.0038222357400539
613 => 0.0038222066543688
614 => 0.0038208524522844
615 => 0.0038930249889371
616 => 0.0038953785327662
617 => 0.0038420429191333
618 => 0.0038343564239499
619 => 0.0038627774252981
620 => 0.0038295038761914
621 => 0.0038450723603972
622 => 0.0038299754297181
623 => 0.0038265767926323
624 => 0.0037994958741017
625 => 0.0037878286697933
626 => 0.0037924036812294
627 => 0.0037767868086179
628 => 0.0037673770779825
629 => 0.0038189806200216
630 => 0.003791410929191
701 => 0.0038147551694968
702 => 0.0037881514613904
703 => 0.0036959314184098
704 => 0.0036428946964823
705 => 0.0034686995840945
706 => 0.0035181011018793
707 => 0.0035508543592802
708 => 0.0035400294079046
709 => 0.0035632855921595
710 => 0.0035647133329939
711 => 0.0035571525104239
712 => 0.0035483980464891
713 => 0.0035441368575979
714 => 0.0035758962684663
715 => 0.0035943336754481
716 => 0.0035541415868425
717 => 0.0035447251428292
718 => 0.0035853615634755
719 => 0.0036101497565949
720 => 0.0037931718473057
721 => 0.0037796129796722
722 => 0.0038136430766387
723 => 0.0038098118099547
724 => 0.0038454807729952
725 => 0.0039037844527378
726 => 0.0037852367698558
727 => 0.0038058125485336
728 => 0.0038007678427659
729 => 0.0038558446175447
730 => 0.0038560165612238
731 => 0.0038229952834549
801 => 0.0038408966538425
802 => 0.0038309045999906
803 => 0.003848961591808
804 => 0.0037794318927285
805 => 0.0038641115609402
806 => 0.0039121194761789
807 => 0.0039127860661285
808 => 0.0039355414369373
809 => 0.0039586622115812
810 => 0.0040030405251151
811 => 0.0039574245245031
812 => 0.0038753657800303
813 => 0.0038812901563331
814 => 0.0038331791444728
815 => 0.0038339878992741
816 => 0.0038296707027613
817 => 0.0038426269344796
818 => 0.0037822750569986
819 => 0.0037964395220138
820 => 0.0037766091880455
821 => 0.0038057694412604
822 => 0.0037743978291637
823 => 0.0038007654100561
824 => 0.00381214478387
825 => 0.0038541349182241
826 => 0.0037681958521785
827 => 0.0035929602789483
828 => 0.0036297969209673
829 => 0.0035753126339655
830 => 0.0035803553621638
831 => 0.0035905424756686
901 => 0.0035575227077833
902 => 0.0035638218389233
903 => 0.0035635967896327
904 => 0.0035616574364275
905 => 0.0035530677195166
906 => 0.0035406109305721
907 => 0.0035902349437297
908 => 0.0035986670305525
909 => 0.0036174105150451
910 => 0.0036731784110682
911 => 0.0036676058831579
912 => 0.0036766949073815
913 => 0.0036568536185341
914 => 0.0035812757426472
915 => 0.003585379984924
916 => 0.0035342000179664
917 => 0.0036161017282218
918 => 0.0035967063221836
919 => 0.0035842019777361
920 => 0.0035807900515017
921 => 0.0036366961853523
922 => 0.0036534241768217
923 => 0.0036430004151117
924 => 0.0036216209757349
925 => 0.0036626758196022
926 => 0.0036736603638563
927 => 0.0036761193982204
928 => 0.003748860710068
929 => 0.0036801848294975
930 => 0.0036967157965304
1001 => 0.003825685682348
1002 => 0.0037087277925391
1003 => 0.0037706829952431
1004 => 0.00376765061047
1005 => 0.0037993447957236
1006 => 0.0037650507621953
1007 => 0.0037654758778419
1008 => 0.003793618167197
1009 => 0.0037540973972864
1010 => 0.0037443114988747
1011 => 0.0037307923503068
1012 => 0.0037603109166166
1013 => 0.0037780059621093
1014 => 0.0039206150332021
1015 => 0.0040127469968918
1016 => 0.0040087473053673
1017 => 0.0040452969987928
1018 => 0.0040288310271478
1019 => 0.0039756580612022
1020 => 0.0040664178303189
1021 => 0.0040376976418203
1022 => 0.0040400652992651
1023 => 0.0040399771749368
1024 => 0.0040590735895259
1025 => 0.0040455420296288
1026 => 0.0040188699360856
1027 => 0.0040365761165141
1028 => 0.0040891571423113
1029 => 0.0042523702597688
1030 => 0.0043437064825843
1031 => 0.0042468717044702
1101 => 0.004313667037744
1102 => 0.0042736136393905
1103 => 0.0042663347454243
1104 => 0.0043082871508565
1105 => 0.0043503129884209
1106 => 0.0043476361242508
1107 => 0.0043171275242297
1108 => 0.0042998939902048
1109 => 0.0044303920834985
1110 => 0.0045265408556602
1111 => 0.0045199841539883
1112 => 0.0045489233028144
1113 => 0.004633889538822
1114 => 0.004641657786611
1115 => 0.0046406791659407
1116 => 0.0046214247532629
1117 => 0.0047050850468723
1118 => 0.0047748759356641
1119 => 0.0046169679130414
1120 => 0.0046770972208883
1121 => 0.0047040912044261
1122 => 0.0047437263810136
1123 => 0.0048105975675436
1124 => 0.0048832374128214
1125 => 0.0048935094833991
1126 => 0.0048862209577604
1127 => 0.0048383130271358
1128 => 0.0049177964126124
1129 => 0.0049643559157098
1130 => 0.004992081034309
1201 => 0.0050623873220568
1202 => 0.0047042579100786
1203 => 0.0044507561120937
1204 => 0.0044111681457281
1205 => 0.0044916718320526
1206 => 0.0045129000121315
1207 => 0.0045043429593595
1208 => 0.0042190036383524
1209 => 0.0044096658932553
1210 => 0.0046148024481931
1211 => 0.0046226825787131
1212 => 0.0047253782273181
1213 => 0.0047588201401407
1214 => 0.004841503597894
1215 => 0.0048363317250993
1216 => 0.0048564638312811
1217 => 0.0048518358087093
1218 => 0.0050049895031412
1219 => 0.0051739407716433
1220 => 0.0051680905264472
1221 => 0.0051438017826594
1222 => 0.0051798747090306
1223 => 0.005354250524043
1224 => 0.0053381967933121
1225 => 0.0053537916252636
1226 => 0.0055593905385535
1227 => 0.0058266983719348
1228 => 0.0057025070460615
1229 => 0.0059719664881151
1230 => 0.0061415769234566
1231 => 0.0064349006333334
]
'min_raw' => 0.0026272273845962
'max_raw' => 0.0064349006333334
'avg_raw' => 0.0045310640089648
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.002627'
'max' => '$0.006434'
'avg' => '$0.004531'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0011714629097248
'max_diff' => 0.002610597973305
'year' => 2028
]
3 => [
'items' => [
101 => 0.0063981750602071
102 => 0.0065123638279533
103 => 0.0063324286194526
104 => 0.0059192610098296
105 => 0.0058538756540646
106 => 0.0059847787921269
107 => 0.0063065913837117
108 => 0.0059746437683841
109 => 0.0060417963386354
110 => 0.0060224563938855
111 => 0.0060214258504192
112 => 0.0060607575030028
113 => 0.0060037048895292
114 => 0.0057712622786686
115 => 0.0058777893574331
116 => 0.0058366541364716
117 => 0.0058822967309622
118 => 0.0061286109889903
119 => 0.0060197095841176
120 => 0.0059049908005159
121 => 0.0060488736132885
122 => 0.0062320858774466
123 => 0.0062206207832197
124 => 0.0061983737083818
125 => 0.0063237793044238
126 => 0.006530912608693
127 => 0.0065868999085079
128 => 0.0066282285886214
129 => 0.0066339271153553
130 => 0.0066926254823288
131 => 0.0063769895692191
201 => 0.0068779118694293
202 => 0.0069644073129763
203 => 0.0069481497544583
204 => 0.0070442857996761
205 => 0.007016000136437
206 => 0.006975018648288
207 => 0.0071274147286815
208 => 0.0069527049202399
209 => 0.0067047263425103
210 => 0.0065686803903077
211 => 0.006747836674682
212 => 0.0068572411658567
213 => 0.0069295505750907
214 => 0.0069514313586343
215 => 0.0064014914866536
216 => 0.0061051043967196
217 => 0.0062950851232824
218 => 0.0065268747214584
219 => 0.0063757019662979
220 => 0.0063816276520923
221 => 0.0061660950307347
222 => 0.0065459445759507
223 => 0.0064906036922503
224 => 0.0067777122947845
225 => 0.0067091915225992
226 => 0.0069433174424742
227 => 0.0068816642413571
228 => 0.0071375832322101
301 => 0.0072396762463914
302 => 0.0074111063067107
303 => 0.0075372109569274
304 => 0.0076112620195323
305 => 0.007606816271492
306 => 0.0079002434736254
307 => 0.007727219704093
308 => 0.0075098610709888
309 => 0.0075059297390737
310 => 0.0076185028551539
311 => 0.0078544252235321
312 => 0.0079155964611217
313 => 0.0079497828378005
314 => 0.0078974252118805
315 => 0.0077096203107783
316 => 0.0076285271066749
317 => 0.0076976208660673
318 => 0.0076131251356248
319 => 0.0077589884716833
320 => 0.007959289986819
321 => 0.0079179285160215
322 => 0.0080561937116393
323 => 0.0081992836431809
324 => 0.0084039086718563
325 => 0.0084574052315949
326 => 0.0085458330105509
327 => 0.0086368542421088
328 => 0.0086660878085942
329 => 0.0087219037576579
330 => 0.0087216095800548
331 => 0.0088898146994047
401 => 0.0090753501549266
402 => 0.0091453854942304
403 => 0.0093064278951884
404 => 0.0090306484271466
405 => 0.0092398303215825
406 => 0.0094285176265262
407 => 0.0092035568429079
408 => 0.0095136128739856
409 => 0.0095256516470702
410 => 0.0097074228275591
411 => 0.0095231629129891
412 => 0.0094137499638959
413 => 0.0097296210482782
414 => 0.0098824611161649
415 => 0.0098364244438637
416 => 0.0094860830945407
417 => 0.0092821694023874
418 => 0.0087484879380085
419 => 0.0093806566858889
420 => 0.0096885676423662
421 => 0.0094852856795493
422 => 0.0095878092773885
423 => 0.010147144783811
424 => 0.010360103530365
425 => 0.010315809599776
426 => 0.010323294544905
427 => 0.010438203219071
428 => 0.010947771561684
429 => 0.010642426399089
430 => 0.010875851334828
501 => 0.010999659079068
502 => 0.011114658611799
503 => 0.010832256105388
504 => 0.010464854593864
505 => 0.010348483112698
506 => 0.0094650732945967
507 => 0.0094190879771101
508 => 0.0093932750249072
509 => 0.0092305280125823
510 => 0.0091026534410533
511 => 0.0090009628340951
512 => 0.0087340963140508
513 => 0.0088241559306169
514 => 0.0083988263970377
515 => 0.0086709371598685
516 => 0.0079921009543355
517 => 0.0085574559180302
518 => 0.0082497589148271
519 => 0.0084563691769936
520 => 0.0084556483332527
521 => 0.0080752133347609
522 => 0.0078557863671067
523 => 0.0079956137711213
524 => 0.0081455198477381
525 => 0.0081698416043246
526 => 0.0083641987456072
527 => 0.0084184396460464
528 => 0.0082540871854502
529 => 0.0079780335828334
530 => 0.008042154538609
531 => 0.0078544869579845
601 => 0.0075256067414694
602 => 0.0077618142546683
603 => 0.0078424658849856
604 => 0.0078780862395557
605 => 0.0075546703187612
606 => 0.0074530460147463
607 => 0.0073989420879992
608 => 0.0079362846487421
609 => 0.0079657214872018
610 => 0.0078151184596923
611 => 0.0084958584248005
612 => 0.00834178600508
613 => 0.0085139226465671
614 => 0.0080363362339564
615 => 0.0080545806780735
616 => 0.0078284836166819
617 => 0.0079550828632501
618 => 0.0078656065962599
619 => 0.0079448548952055
620 => 0.0079923559988406
621 => 0.0082184159599293
622 => 0.0085600371596607
623 => 0.008184650140178
624 => 0.0080210886401482
625 => 0.0081225612748619
626 => 0.0083927962730118
627 => 0.008802216128284
628 => 0.0085598313336204
629 => 0.0086673975895314
630 => 0.0086908960311583
701 => 0.0085121704571462
702 => 0.0088088059951293
703 => 0.0089677753897973
704 => 0.0091308450946454
705 => 0.0092724339502557
706 => 0.0090657114685494
707 => 0.0092869341564789
708 => 0.009108667721069
709 => 0.0089487442996611
710 => 0.0089489868374778
711 => 0.0088486645391202
712 => 0.0086542774446293
713 => 0.008618429481972
714 => 0.0088049151108135
715 => 0.0089544589248896
716 => 0.0089667760696835
717 => 0.0090495712089946
718 => 0.0090985685195812
719 => 0.0095788087719433
720 => 0.0097719653741991
721 => 0.01000815361117
722 => 0.01010016224031
723 => 0.010377075227102
724 => 0.010153445500494
725 => 0.010105061802446
726 => 0.0094333614740364
727 => 0.0095433523651841
728 => 0.0097194583944539
729 => 0.0094362653975952
730 => 0.0096158861720595
731 => 0.009651347117827
801 => 0.0094266426079271
802 => 0.0095466669955734
803 => 0.0092279178067356
804 => 0.0085669850209363
805 => 0.0088095418022576
806 => 0.0089881452370398
807 => 0.0087332561139609
808 => 0.0091901350015085
809 => 0.0089232357872978
810 => 0.0088386415498146
811 => 0.0085086092693697
812 => 0.0086643718016323
813 => 0.008875042856822
814 => 0.0087448726378537
815 => 0.0090149953873697
816 => 0.0093975612397903
817 => 0.0096702004484156
818 => 0.0096911303014793
819 => 0.0095158415557416
820 => 0.0097967428894641
821 => 0.0097987889490133
822 => 0.0094819310970587
823 => 0.0092878574270083
824 => 0.0092437634808384
825 => 0.0093539188034982
826 => 0.0094876677010017
827 => 0.0096985524344458
828 => 0.0098259856621928
829 => 0.010158263934795
830 => 0.010248168908197
831 => 0.010346947216481
901 => 0.01047894549845
902 => 0.010637443279618
903 => 0.010290659157705
904 => 0.010304437537355
905 => 0.0099815169645825
906 => 0.0096364300210804
907 => 0.0098983079955037
908 => 0.010240678610895
909 => 0.010162138413439
910 => 0.010153301036794
911 => 0.010168163053026
912 => 0.010108946309027
913 => 0.0098411111705929
914 => 0.0097066060408081
915 => 0.0098801519741488
916 => 0.0099723839140786
917 => 0.010115427609439
918 => 0.0100977944547
919 => 0.010466259652178
920 => 0.010609434086108
921 => 0.010572803939129
922 => 0.010579544767727
923 => 0.010838755241456
924 => 0.011127050598943
925 => 0.011397077245152
926 => 0.01167175994759
927 => 0.011340619228752
928 => 0.011172486393647
929 => 0.011345956562262
930 => 0.011253910849025
1001 => 0.011782832819815
1002 => 0.011819454229487
1003 => 0.012348337953198
1004 => 0.012850311585303
1005 => 0.01253503094077
1006 => 0.012832326388012
1007 => 0.013153875653058
1008 => 0.013774196354821
1009 => 0.013565294165612
1010 => 0.013405278362594
1011 => 0.013254064201932
1012 => 0.013568716865697
1013 => 0.013973512490933
1014 => 0.014060701591524
1015 => 0.014201981243282
1016 => 0.014053442964312
1017 => 0.014232340960377
1018 => 0.014863929498246
1019 => 0.014693268700127
1020 => 0.014450902931707
1021 => 0.014949481423947
1022 => 0.015129915042113
1023 => 0.016396292668227
1024 => 0.017995146732647
1025 => 0.017333210651335
1026 => 0.016922325565121
1027 => 0.017018893306706
1028 => 0.017602740686406
1029 => 0.017790253934377
1030 => 0.017280528286701
1031 => 0.017460572002696
1101 => 0.018452630579334
1102 => 0.018984838176651
1103 => 0.018262028774478
1104 => 0.016267826300921
1105 => 0.014429080546042
1106 => 0.014916798720036
1107 => 0.014861506614762
1108 => 0.015927349793532
1109 => 0.014689198496534
1110 => 0.014710045788959
1111 => 0.015797929475918
1112 => 0.015507700759286
1113 => 0.015037567408026
1114 => 0.014432513039787
1115 => 0.013314014079341
1116 => 0.012323328358423
1117 => 0.014266291198439
1118 => 0.014182507107729
1119 => 0.014061175328274
1120 => 0.014331186073981
1121 => 0.015642281611246
1122 => 0.01561205661551
1123 => 0.015419780613566
1124 => 0.015565620266398
1125 => 0.01501200101176
1126 => 0.015154681299357
1127 => 0.01442878927932
1128 => 0.014756922788305
1129 => 0.015036558713002
1130 => 0.015092699764966
1201 => 0.015219188421673
1202 => 0.014138356699103
1203 => 0.014623618410984
1204 => 0.014908664203841
1205 => 0.013620816941659
1206 => 0.014883207604213
1207 => 0.014119541823446
1208 => 0.013860342187579
1209 => 0.014209320350319
1210 => 0.014073323220907
1211 => 0.013956400875058
1212 => 0.013891156197093
1213 => 0.014147407244495
1214 => 0.014135452826847
1215 => 0.013716176377113
1216 => 0.013169247340329
1217 => 0.013352814677407
1218 => 0.013286122942894
1219 => 0.013044423493612
1220 => 0.013207299739525
1221 => 0.012490075182305
1222 => 0.011256127609696
1223 => 0.012071311172998
1224 => 0.012039927492559
1225 => 0.012024102417746
1226 => 0.012636690335549
1227 => 0.01257780414206
1228 => 0.012470925124262
1229 => 0.013042460576634
1230 => 0.012833842448282
1231 => 0.013476754363252
]
'min_raw' => 0.0057712622786686
'max_raw' => 0.018984838176651
'avg_raw' => 0.01237805022766
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.005771'
'max' => '$0.018984'
'avg' => '$0.012378'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0031440348940723
'max_diff' => 0.012549937543317
'year' => 2029
]
4 => [
'items' => [
101 => 0.013900217731386
102 => 0.013792813723622
103 => 0.014191083068129
104 => 0.0133570436981
105 => 0.013634078120972
106 => 0.013691174531573
107 => 0.013035407917869
108 => 0.012587438651572
109 => 0.012557564208734
110 => 0.011780847234942
111 => 0.012195763172902
112 => 0.012560872027917
113 => 0.012386013219956
114 => 0.012330658145114
115 => 0.012613455217432
116 => 0.012635430971944
117 => 0.01213438144018
118 => 0.012238565504009
119 => 0.012673030369334
120 => 0.012227618104125
121 => 0.011362254830502
122 => 0.01114763277406
123 => 0.011118998235462
124 => 0.010536926196502
125 => 0.011161974846127
126 => 0.010889124360303
127 => 0.01175105577577
128 => 0.011258725173886
129 => 0.011237501785648
130 => 0.011205419521531
131 => 0.010704406072505
201 => 0.010814096176776
202 => 0.011178722789647
203 => 0.011308825672933
204 => 0.011295254876304
205 => 0.011176935920323
206 => 0.01123110173248
207 => 0.011056614778902
208 => 0.010994999803961
209 => 0.010800525994515
210 => 0.010514703219391
211 => 0.010554448629325
212 => 0.0099881589222053
213 => 0.0096796142344971
214 => 0.0095942131314932
215 => 0.0094800112073984
216 => 0.0096071125426994
217 => 0.0099865546946156
218 => 0.0095288669562615
219 => 0.0087441934319153
220 => 0.0087913536477472
221 => 0.0088973086507275
222 => 0.0086998622036361
223 => 0.0085129957118883
224 => 0.0086754609655053
225 => 0.0083429844490716
226 => 0.0089374868493132
227 => 0.0089214072254604
228 => 0.0091430009564887
301 => 0.0092815680640618
302 => 0.0089622157427396
303 => 0.0088818994975475
304 => 0.0089276512809787
305 => 0.008171476214218
306 => 0.0090812053210247
307 => 0.0090890726961177
308 => 0.0090217074541496
309 => 0.0095061101187892
310 => 0.010528350830159
311 => 0.010143742755004
312 => 0.0099948108834637
313 => 0.0097116912867967
314 => 0.010088931339377
315 => 0.010059965189201
316 => 0.0099289692730156
317 => 0.0098497425341749
318 => 0.0099957202297134
319 => 0.009831654282234
320 => 0.009802183529836
321 => 0.0096236228347988
322 => 0.0095598847906644
323 => 0.009512695680272
324 => 0.0094607451064362
325 => 0.0095753351270416
326 => 0.0093156590647772
327 => 0.0090025151900445
328 => 0.0089764806651242
329 => 0.0090483642774081
330 => 0.009016561130078
331 => 0.0089763284038903
401 => 0.008899513172867
402 => 0.0088767237347201
403 => 0.0089507783528339
404 => 0.0088671750066359
405 => 0.008990536298061
406 => 0.008956988852685
407 => 0.0087695955498734
408 => 0.0085360341126835
409 => 0.0085339549259808
410 => 0.0084836344974557
411 => 0.008419543866002
412 => 0.0084017153185266
413 => 0.0086617785949981
414 => 0.0092001017942553
415 => 0.0090944160692588
416 => 0.0091707848366775
417 => 0.0095464435874308
418 => 0.0096658542078425
419 => 0.0095810993778698
420 => 0.0094650817391529
421 => 0.009470185926457
422 => 0.00986665331888
423 => 0.0098913805038286
424 => 0.0099538581229016
425 => 0.010034159519583
426 => 0.0095947750529577
427 => 0.0094494909575921
428 => 0.0093806472931532
429 => 0.0091686354525323
430 => 0.0093972720461204
501 => 0.0092640552942317
502 => 0.0092820307853937
503 => 0.009270324223193
504 => 0.0092767167977489
505 => 0.0089373206737764
506 => 0.0090609787832168
507 => 0.0088553731923873
508 => 0.0085800903865772
509 => 0.0085791675420856
510 => 0.0086465426188147
511 => 0.0086064652867892
512 => 0.008498618216791
513 => 0.0085139373840604
514 => 0.0083797253591949
515 => 0.0085302331538662
516 => 0.0085345491788746
517 => 0.0084765954797112
518 => 0.0087084735034757
519 => 0.0088034741190065
520 => 0.0087653277527286
521 => 0.008800797668258
522 => 0.0090988077882748
523 => 0.0091473964409307
524 => 0.0091689763108542
525 => 0.0091400621439416
526 => 0.008806244746187
527 => 0.0088210509672786
528 => 0.0087124127409905
529 => 0.0086206248877913
530 => 0.0086242959205554
531 => 0.0086714868086855
601 => 0.0088775721848585
602 => 0.0093112667096181
603 => 0.0093277250998062
604 => 0.0093476731488392
605 => 0.0092665344083357
606 => 0.0092420621878067
607 => 0.0092743473635005
608 => 0.0094372202244254
609 => 0.0098561734422747
610 => 0.0097080873941422
611 => 0.0095876911319138
612 => 0.0096933111124873
613 => 0.0096770517443548
614 => 0.0095398063144665
615 => 0.0095359542923597
616 => 0.0092725364323859
617 => 0.0091751568472881
618 => 0.0090937791772447
619 => 0.0090049168859752
620 => 0.0089522363410197
621 => 0.0090331776009509
622 => 0.009051689824766
623 => 0.0088747103453153
624 => 0.0088505886962278
625 => 0.0089951139595146
626 => 0.008931513779587
627 => 0.0089969281418511
628 => 0.0090121048350104
629 => 0.0090096610378629
630 => 0.0089432551455843
701 => 0.0089855802810705
702 => 0.0088854687179156
703 => 0.0087766124292552
704 => 0.0087071688990763
705 => 0.0086465702086476
706 => 0.008680193884114
707 => 0.0085603316205168
708 => 0.0085219852700414
709 => 0.0089712414775135
710 => 0.0093031118682912
711 => 0.0092982863413742
712 => 0.0092689121872917
713 => 0.0092252681526546
714 => 0.0094340273914498
715 => 0.0093612998469263
716 => 0.0094142152121569
717 => 0.0094276843934589
718 => 0.0094684515486024
719 => 0.0094830223025108
720 => 0.0094389793641603
721 => 0.0092911658836643
722 => 0.0089228287439523
723 => 0.0087513668111092
724 => 0.0086947815173467
725 => 0.0086968382853042
726 => 0.0086401034432199
727 => 0.008656814396891
728 => 0.0086342920555025
729 => 0.0085916401896523
730 => 0.0086775602515875
731 => 0.0086874617383248
801 => 0.0086674069692009
802 => 0.0086721305933228
803 => 0.0085060856704803
804 => 0.0085187097053334
805 => 0.0084484174750865
806 => 0.0084352385293007
807 => 0.0082575458922813
808 => 0.0079427376288419
809 => 0.0081171719659649
810 => 0.0079064798158999
811 => 0.0078266875061632
812 => 0.0082044118902065
813 => 0.0081664988384921
814 => 0.0081016081743645
815 => 0.0080056213577205
816 => 0.0079700189137275
817 => 0.0077537097343901
818 => 0.0077409290341103
819 => 0.007848137704229
820 => 0.0077986645917943
821 => 0.0077291856050032
822 => 0.0074775397578174
823 => 0.007194606508504
824 => 0.0072031464848458
825 => 0.0072931422872921
826 => 0.0075548172204924
827 => 0.0074525762970688
828 => 0.0073783993340455
829 => 0.0073645082186225
830 => 0.0075383846111606
831 => 0.0077844561348324
901 => 0.0078999073881992
902 => 0.0077854987024194
903 => 0.0076540721643967
904 => 0.0076620714887942
905 => 0.0077152874102503
906 => 0.0077208796511628
907 => 0.0076353344857764
908 => 0.007659414948749
909 => 0.0076228345235299
910 => 0.0073983405214828
911 => 0.0073942801368639
912 => 0.0073391856883067
913 => 0.0073375174503003
914 => 0.0072437880493503
915 => 0.0072306746582367
916 => 0.0070445692436824
917 => 0.0071670643911211
918 => 0.0070849010775031
919 => 0.0069610615835145
920 => 0.0069397116080729
921 => 0.0069390698020303
922 => 0.0070662252723525
923 => 0.0071655785054169
924 => 0.0070863303435207
925 => 0.007068287073218
926 => 0.0072609419950062
927 => 0.0072364249001201
928 => 0.007215193254067
929 => 0.0077624231288237
930 => 0.0073292479820741
1001 => 0.0071403588933183
1002 => 0.0069065727769179
1003 => 0.0069826947152698
1004 => 0.0069987347261445
1005 => 0.0064365212593165
1006 => 0.0062084313258436
1007 => 0.0061301594560635
1008 => 0.0060851128884032
1009 => 0.0061056411749452
1010 => 0.0059003334825388
1011 => 0.0060383036473117
1012 => 0.005860524539915
1013 => 0.0058307192940166
1014 => 0.0061486103606474
1015 => 0.0061928430454763
1016 => 0.0060041326699779
1017 => 0.0061253152804826
1018 => 0.0060813727813493
1019 => 0.0058635720524543
1020 => 0.0058552536666442
1021 => 0.0057459689169505
1022 => 0.0055749594453773
1023 => 0.0054968035280717
1024 => 0.0054560992477581
1025 => 0.0054728946271261
1026 => 0.0054644023693705
1027 => 0.0054089846431311
1028 => 0.0054675788485689
1029 => 0.0053178948664726
1030 => 0.0052582894987161
1031 => 0.0052313671369345
1101 => 0.0050985139873355
1102 => 0.0053099424284113
1103 => 0.0053515964948085
1104 => 0.0053933326325842
1105 => 0.0057566172174497
1106 => 0.0057384685462214
1107 => 0.0059025236953639
1108 => 0.0058961488139463
1109 => 0.0058493576278936
1110 => 0.005651953310714
1111 => 0.0057306351531482
1112 => 0.0054884646720089
1113 => 0.0056699152624705
1114 => 0.0055871087905417
1115 => 0.0056419183110156
1116 => 0.0055433658512283
1117 => 0.0055979088516059
1118 => 0.0053614742192153
1119 => 0.005140694886214
1120 => 0.0052295429347643
1121 => 0.0053261309245452
1122 => 0.0055355582965523
1123 => 0.0054108250815231
1124 => 0.0054556838623327
1125 => 0.00530541445589
1126 => 0.0049953657480648
1127 => 0.0049971205900799
1128 => 0.0049494263511593
1129 => 0.004908211565259
1130 => 0.0054251521917356
1201 => 0.0053608624532113
1202 => 0.0052584251689057
1203 => 0.0053955415446446
1204 => 0.0054317972907194
1205 => 0.0054328294408406
1206 => 0.0055328660090938
1207 => 0.0055862555435031
1208 => 0.0055956656803462
1209 => 0.0057530753819257
1210 => 0.005805837037611
1211 => 0.0060231548302696
1212 => 0.0055817258145204
1213 => 0.0055726348744314
1214 => 0.0053974710532418
1215 => 0.0052863793886129
1216 => 0.005405077594562
1217 => 0.005510228001112
1218 => 0.0054007383694789
1219 => 0.0054150354039179
1220 => 0.0052680545190821
1221 => 0.0053205932693175
1222 => 0.0053658467187542
1223 => 0.00534086042385
1224 => 0.0053034547310282
1225 => 0.0055016068668943
1226 => 0.0054904263468243
1227 => 0.0056749501712407
1228 => 0.0058187996877986
1229 => 0.0060766037376472
1230 => 0.0058075717720011
1231 => 0.0057977671778678
]
'min_raw' => 0.004908211565259
'max_raw' => 0.014191083068129
'avg_raw' => 0.0095496473166939
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.0049082'
'max' => '$0.014191'
'avg' => '$0.009549'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00086305071340956
'max_diff' => -0.0047937551085217
'year' => 2030
]
5 => [
'items' => [
101 => 0.0058936086582277
102 => 0.0058058223647797
103 => 0.005861300271959
104 => 0.0060676653891155
105 => 0.0060720255588551
106 => 0.005998987097955
107 => 0.0059945427009715
108 => 0.0060085705363406
109 => 0.0060907320062488
110 => 0.0060620222640959
111 => 0.0060952459045569
112 => 0.0061367925756919
113 => 0.0063086472229297
114 => 0.0063500807965676
115 => 0.0062494186934724
116 => 0.0062585073543162
117 => 0.0062208569645221
118 => 0.006184487159739
119 => 0.0062662411695079
120 => 0.0064156482292397
121 => 0.0064147187756754
122 => 0.0064493783094749
123 => 0.006470970911897
124 => 0.0063782796555506
125 => 0.006317941056021
126 => 0.0063410787145255
127 => 0.0063780763343468
128 => 0.0063290808850589
129 => 0.0060266582751542
130 => 0.0061183939761681
131 => 0.0061031246698728
201 => 0.0060813793208972
202 => 0.0061736202776379
203 => 0.006164723412337
204 => 0.0058982277554062
205 => 0.0059152879427199
206 => 0.0058992652419019
207 => 0.0059510378661811
208 => 0.0058030264731653
209 => 0.005848553780785
210 => 0.0058771080813321
211 => 0.0058939267837188
212 => 0.0059546874694317
213 => 0.0059475579042605
214 => 0.0059542442856503
215 => 0.0060443363423363
216 => 0.0064999910491935
217 => 0.0065247913295423
218 => 0.0064026656788285
219 => 0.0064514524674667
220 => 0.0063577925017791
221 => 0.0064206670642124
222 => 0.0064636842429886
223 => 0.0062692978838269
224 => 0.0062577875851944
225 => 0.0061637410515117
226 => 0.0062142763316449
227 => 0.0061338710673378
228 => 0.006153599706742
301 => 0.006098436711056
302 => 0.0061977191204479
303 => 0.0063087322810748
304 => 0.0063367785894917
305 => 0.0062630008267418
306 => 0.0062095808643193
307 => 0.0061157930079351
308 => 0.0062717643033008
309 => 0.0063173750632048
310 => 0.0062715247293961
311 => 0.0062609002052031
312 => 0.0062407667510553
313 => 0.0062651716126775
314 => 0.006317126657211
315 => 0.006292625617668
316 => 0.0063088089859389
317 => 0.0062471346743071
318 => 0.0063783103402133
319 => 0.0065866488668154
320 => 0.0065873187092452
321 => 0.0065628175376325
322 => 0.0065527921860937
323 => 0.0065779318750237
324 => 0.0065915691249843
325 => 0.0066728662691535
326 => 0.0067601013438683
327 => 0.007167189373917
328 => 0.0070528806840684
329 => 0.0074140734021029
330 => 0.0076997299470636
331 => 0.0077853858546505
401 => 0.0077065864500924
402 => 0.0074370179437594
403 => 0.0074237916267943
404 => 0.0078266407841435
405 => 0.0077128174455321
406 => 0.0076992785215871
407 => 0.0075552472451856
408 => 0.0076403875681595
409 => 0.0076217661305919
410 => 0.0075923712803996
411 => 0.0077548130857075
412 => 0.0080588896439639
413 => 0.0080114964607478
414 => 0.0079761196479834
415 => 0.0078211087524853
416 => 0.0079144599345121
417 => 0.0078812193666165
418 => 0.0080240419412817
419 => 0.0079394370119574
420 => 0.0077119551217937
421 => 0.0077481823625924
422 => 0.0077427066880248
423 => 0.0078553956826161
424 => 0.0078215692435526
425 => 0.0077361015329027
426 => 0.0080578503433452
427 => 0.008036957765256
428 => 0.0080665786642782
429 => 0.0080796187000845
430 => 0.0082754615311509
501 => 0.0083556920727671
502 => 0.0083739058103474
503 => 0.00845011861963
504 => 0.0083720095662241
505 => 0.008684501470659
506 => 0.0088922903527001
507 => 0.0091336478319089
508 => 0.0094863359798075
509 => 0.0096189499859652
510 => 0.0095949944527348
511 => 0.0098623985812973
512 => 0.010342917856264
513 => 0.0096921211367775
514 => 0.010377411662655
515 => 0.010160456594222
516 => 0.0096460600298216
517 => 0.0096129389554113
518 => 0.0099612942810901
519 => 0.010733912865488
520 => 0.010540380673064
521 => 0.010734229414824
522 => 0.010508094560679
523 => 0.010496865059156
524 => 0.0107232465497
525 => 0.01125219924177
526 => 0.011000913645263
527 => 0.010640634124914
528 => 0.010906658916169
529 => 0.010676203622552
530 => 0.010156923345656
531 => 0.010540232682644
601 => 0.010283924645021
602 => 0.010358728956484
603 => 0.010897450328623
604 => 0.010832629947847
605 => 0.010916513522777
606 => 0.010768461208642
607 => 0.010630157001533
608 => 0.010372001928358
609 => 0.010295574938082
610 => 0.01031669660864
611 => 0.010295564471231
612 => 0.010151129080358
613 => 0.010119938271451
614 => 0.010067952223438
615 => 0.010084064873497
616 => 0.0099863158941775
617 => 0.010170788414122
618 => 0.01020502813939
619 => 0.010339271855674
620 => 0.010353209483635
621 => 0.010727076322647
622 => 0.010521156750297
623 => 0.01065930537767
624 => 0.010646948064132
625 => 0.0096572085631589
626 => 0.0097935859338475
627 => 0.010005746325062
628 => 0.0099101683563968
629 => 0.0097750434705037
630 => 0.0096659228802071
701 => 0.0095005940277544
702 => 0.0097332912127221
703 => 0.010039263266368
704 => 0.010360969439847
705 => 0.010747478328258
706 => 0.010661214043824
707 => 0.010353743925028
708 => 0.01036753680995
709 => 0.010452798997238
710 => 0.010342376717813
711 => 0.010309811031912
712 => 0.010448324972076
713 => 0.010449278841456
714 => 0.010322224663999
715 => 0.010181027196424
716 => 0.01018043557388
717 => 0.010155310848331
718 => 0.010512564193539
719 => 0.010709017411016
720 => 0.0107315404558
721 => 0.010707501430648
722 => 0.010716753097354
723 => 0.010602441298655
724 => 0.01086372417237
725 => 0.011103503175488
726 => 0.011039237280521
727 => 0.01094289356803
728 => 0.01086615116049
729 => 0.011021159208213
730 => 0.011014256943854
731 => 0.011101408915075
801 => 0.011097455198246
802 => 0.011068149268276
803 => 0.011039238327128
804 => 0.011153866940833
805 => 0.011120855740965
806 => 0.011087793265586
807 => 0.011021481409602
808 => 0.011030494292153
809 => 0.010934167214763
810 => 0.010889601901135
811 => 0.010219446511309
812 => 0.010040359093188
813 => 0.010096703640589
814 => 0.010115253728579
815 => 0.010037314654706
816 => 0.010149059265735
817 => 0.010131643986473
818 => 0.010199396650483
819 => 0.010157067727488
820 => 0.010158804921253
821 => 0.010283285258304
822 => 0.010319422429727
823 => 0.010301042772678
824 => 0.010313915254457
825 => 0.010610556163919
826 => 0.010568383312636
827 => 0.010545979825928
828 => 0.010552185744854
829 => 0.010627983857274
830 => 0.010649203190328
831 => 0.010559295385122
901 => 0.010601696425808
902 => 0.010782234675557
903 => 0.010845412845389
904 => 0.011047047236251
905 => 0.010961389363248
906 => 0.011118618096332
907 => 0.011601885618609
908 => 0.011987953154972
909 => 0.011632909493616
910 => 0.012341873358743
911 => 0.012893903422571
912 => 0.012872715589267
913 => 0.012776456378953
914 => 0.012147984827764
915 => 0.011569655936377
916 => 0.012053452611164
917 => 0.012054685908382
918 => 0.01201312734496
919 => 0.011755010676769
920 => 0.012004145444407
921 => 0.012023920857538
922 => 0.012012851884891
923 => 0.011814954440576
924 => 0.011512801620669
925 => 0.011571841558427
926 => 0.011668550180857
927 => 0.011485460583065
928 => 0.01142695236278
929 => 0.011535730275933
930 => 0.011886235376892
1001 => 0.011819974417894
1002 => 0.011818244076473
1003 => 0.012101736558088
1004 => 0.011898817122758
1005 => 0.011572586241114
1006 => 0.011490208641042
1007 => 0.011197823656988
1008 => 0.011399775006914
1009 => 0.011407042876471
1010 => 0.011296436186009
1011 => 0.011581561364457
1012 => 0.011578933885742
1013 => 0.011849617807396
1014 => 0.01236706380136
1015 => 0.012214029558974
1016 => 0.012036067385157
1017 => 0.012055416807807
1018 => 0.01226763221583
1019 => 0.012139321935732
1020 => 0.012185463207066
1021 => 0.012267562375489
1022 => 0.012317094842206
1023 => 0.012048289848107
1024 => 0.011985618545554
1025 => 0.011857415055167
1026 => 0.011823969157557
1027 => 0.011928388225423
1028 => 0.011900877490221
1029 => 0.011406432040177
1030 => 0.011354759739579
1031 => 0.011356344455267
1101 => 0.011226411998529
1102 => 0.011028233814642
1103 => 0.011549034249294
1104 => 0.011507206685794
1105 => 0.011461032292887
1106 => 0.01146668839255
1107 => 0.011692750209669
1108 => 0.011561622939345
1109 => 0.011910246278838
1110 => 0.011838579800815
1111 => 0.011765075348053
1112 => 0.011754914793681
1113 => 0.011726621850473
1114 => 0.011629594820872
1115 => 0.011512428852208
1116 => 0.011435065730954
1117 => 0.010548243681517
1118 => 0.010712832695486
1119 => 0.010902177353296
1120 => 0.010967538370422
1121 => 0.010855733827784
1122 => 0.011634009545672
1123 => 0.011776208018981
1124 => 0.01134547956795
1125 => 0.011264907861289
1126 => 0.011639291813347
1127 => 0.011413492523679
1128 => 0.011515169929991
1129 => 0.011295398992113
1130 => 0.011741956570818
1201 => 0.011738554550257
1202 => 0.01156483356618
1203 => 0.011711661352332
1204 => 0.011686146411234
1205 => 0.011490015848067
1206 => 0.011748174259503
1207 => 0.011748302302854
1208 => 0.0115810996327
1209 => 0.011385843519331
1210 => 0.011350936338004
1211 => 0.011324638465994
1212 => 0.011508702265565
1213 => 0.011673733292708
1214 => 0.011980815119559
1215 => 0.012058022786913
1216 => 0.012359369452604
1217 => 0.012179932185488
1218 => 0.012259474401899
1219 => 0.012345828729746
1220 => 0.012387230170091
1221 => 0.012319768744773
1222 => 0.012787884155826
1223 => 0.012827407439204
1224 => 0.012840659254246
1225 => 0.012682813371461
1226 => 0.012823017459663
1227 => 0.012757420609864
1228 => 0.012928085389711
1229 => 0.012954847806348
1230 => 0.012932180991557
1231 => 0.012940675805013
]
'min_raw' => 0.0058030264731653
'max_raw' => 0.012954847806348
'avg_raw' => 0.0093789371397566
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.005803'
'max' => '$0.012954'
'avg' => '$0.009378'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00089481490790635
'max_diff' => -0.0012362352617811
'year' => 2031
]
6 => [
'items' => [
101 => 0.012541221882897
102 => 0.012520508089747
103 => 0.012238074050376
104 => 0.012353168009067
105 => 0.012138005369892
106 => 0.012206235659195
107 => 0.012236310920598
108 => 0.012220601310797
109 => 0.012359675248806
110 => 0.01224143399057
111 => 0.011929375869423
112 => 0.011617232728249
113 => 0.011613314025378
114 => 0.011531132246091
115 => 0.01147172987201
116 => 0.01148317287667
117 => 0.011523499517628
118 => 0.011469386014327
119 => 0.011480933873881
120 => 0.011672705285453
121 => 0.011711163674393
122 => 0.011580467042113
123 => 0.011055701204076
124 => 0.010926922351146
125 => 0.011019486036837
126 => 0.010975246556941
127 => 0.0088578805543247
128 => 0.0093553242893056
129 => 0.009059760113573
130 => 0.0091959696840045
131 => 0.0088942751965538
201 => 0.0090382596191281
202 => 0.0090116709537479
203 => 0.009811545759167
204 => 0.0097990568142722
205 => 0.0098050346112931
206 => 0.009519698784419
207 => 0.0099742465043413
208 => 0.010198173056182
209 => 0.010156730211049
210 => 0.010167160482318
211 => 0.0099879338647732
212 => 0.0098067699167209
213 => 0.0096058312173992
214 => 0.0099791504839651
215 => 0.0099376437542953
216 => 0.010032845258508
217 => 0.010274969488288
218 => 0.010310623200864
219 => 0.01035854215213
220 => 0.010341366619204
221 => 0.010750557495119
222 => 0.010701001780117
223 => 0.010820416795119
224 => 0.010574771049222
225 => 0.01029679957083
226 => 0.0103496328613
227 => 0.010344544590569
228 => 0.010279765064122
229 => 0.010221285004133
301 => 0.010123932180907
302 => 0.010431970919102
303 => 0.010419465108876
304 => 0.010621919640019
305 => 0.010586133835101
306 => 0.010347147471587
307 => 0.010355682916313
308 => 0.010413087884094
309 => 0.010611767133021
310 => 0.010670748661217
311 => 0.010643426067349
312 => 0.010708096620407
313 => 0.010759209588713
314 => 0.010714515622277
315 => 0.011347287935778
316 => 0.011084516754481
317 => 0.011212589599895
318 => 0.011243134218878
319 => 0.011164894819639
320 => 0.011181862143791
321 => 0.011207563016562
322 => 0.011363613683283
323 => 0.011773135786382
324 => 0.011954510338134
325 => 0.012500184625941
326 => 0.011939449706467
327 => 0.011906178016897
328 => 0.012004470433916
329 => 0.012324839006348
330 => 0.012584467643615
331 => 0.012670601440931
401 => 0.012681985444161
402 => 0.012843578173994
403 => 0.012936200113208
404 => 0.012823956566281
405 => 0.01272884191265
406 => 0.012388153029409
407 => 0.012427588695309
408 => 0.012699261326893
409 => 0.013083014920444
410 => 0.013412315426467
411 => 0.013297005866539
412 => 0.014176736412925
413 => 0.014263958103222
414 => 0.014251906885838
415 => 0.014450610876663
416 => 0.01405622392024
417 => 0.013887615855481
418 => 0.012749406780362
419 => 0.013069197103526
420 => 0.013534031118871
421 => 0.013472508593902
422 => 0.01313493370691
423 => 0.013412059345644
424 => 0.013320432942958
425 => 0.013248163397577
426 => 0.013579244195108
427 => 0.013215207258173
428 => 0.013530399571952
429 => 0.013126162169284
430 => 0.013297532590896
501 => 0.013200254451334
502 => 0.013263205329591
503 => 0.012895195781601
504 => 0.013093764800769
505 => 0.012886934657569
506 => 0.012886836593151
507 => 0.012882270806276
508 => 0.013125605552526
509 => 0.013133540689866
510 => 0.012953715944728
511 => 0.012927800389564
512 => 0.0130236237799
513 => 0.012911439686002
514 => 0.012963929917459
515 => 0.01291302956164
516 => 0.01290157081942
517 => 0.012810265611865
518 => 0.012770928817961
519 => 0.012786353788435
520 => 0.01273370041209
521 => 0.012701974848286
522 => 0.012875959793115
523 => 0.012783006655625
524 => 0.012861713391659
525 => 0.012772017132367
526 => 0.01246109081886
527 => 0.012282273807976
528 => 0.011694962824646
529 => 0.011861523490961
530 => 0.011971953385048
531 => 0.011935456305711
601 => 0.012013866154621
602 => 0.012018679882526
603 => 0.011993188041351
604 => 0.011963671754978
605 => 0.011949304859125
606 => 0.012056383930239
607 => 0.012118546935137
608 => 0.011983036502281
609 => 0.011951288303855
610 => 0.012088296833208
611 => 0.012171871956967
612 => 0.012788943713992
613 => 0.012743229045116
614 => 0.012857963892944
615 => 0.012845046509829
616 => 0.012965306909047
617 => 0.013161881835932
618 => 0.012762190046361
619 => 0.012831562720728
620 => 0.012814554143022
621 => 0.013000249334526
622 => 0.013000829054645
623 => 0.012889495511175
624 => 0.012949851231271
625 => 0.012916162324086
626 => 0.012977042732698
627 => 0.012742618497843
628 => 0.013028121911364
629 => 0.013189983949397
630 => 0.013192231403952
701 => 0.013268952725363
702 => 0.013346906031316
703 => 0.01349653061379
704 => 0.013342733082919
705 => 0.013066066296771
706 => 0.013086040745102
707 => 0.012923831109612
708 => 0.01292655788289
709 => 0.01291200215343
710 => 0.012955684993243
711 => 0.012752204424682
712 => 0.012799960907412
713 => 0.012733101551929
714 => 0.012831417381547
715 => 0.012725645801067
716 => 0.012814545940971
717 => 0.012852912294267
718 => 0.012994484963899
719 => 0.012704735402653
720 => 0.01211391643295
721 => 0.012238113743369
722 => 0.012054416165771
723 => 0.012071418075964
724 => 0.012105764640387
725 => 0.011994436187595
726 => 0.012015674148025
727 => 0.012014915378629
728 => 0.012008376713897
729 => 0.011979415883617
730 => 0.011937416949985
731 => 0.012104727774984
801 => 0.012133157144417
802 => 0.012196352111012
803 => 0.012384377466044
804 => 0.012365589299133
805 => 0.012396233578878
806 => 0.012329337288254
807 => 0.012074521203023
808 => 0.012088358942408
809 => 0.011915802110539
810 => 0.01219193944486
811 => 0.012126546479258
812 => 0.012084387208928
813 => 0.012072883661416
814 => 0.012261375094935
815 => 0.012317774686085
816 => 0.012282630245716
817 => 0.012210547973192
818 => 0.012348967245649
819 => 0.012386002403518
820 => 0.012394293209561
821 => 0.012639545621091
822 => 0.012408000094951
823 => 0.012463735404457
824 => 0.012898566378881
825 => 0.012504234687651
826 => 0.012713120979142
827 => 0.012702897082165
828 => 0.012809756240565
829 => 0.012694131512191
830 => 0.012695564819274
831 => 0.012790448512667
901 => 0.012657201477661
902 => 0.012624207637937
903 => 0.012578626884663
904 => 0.012678150791897
905 => 0.012737810873205
906 => 0.013218627313041
907 => 0.01352925666107
908 => 0.013515771421845
909 => 0.013639001265047
910 => 0.013583485092029
911 => 0.013404208724925
912 => 0.013710211623147
913 => 0.013613379502444
914 => 0.013621362224824
915 => 0.013621065107498
916 => 0.013685450002555
917 => 0.013639827403618
918 => 0.013549900578051
919 => 0.013609598201572
920 => 0.013786878801137
921 => 0.014337163221821
922 => 0.014645109673935
923 => 0.014318624458735
924 => 0.014543829588369
925 => 0.014408786759381
926 => 0.014384245460178
927 => 0.014525690924116
928 => 0.014667383969615
929 => 0.014658358735172
930 => 0.014555496860159
1001 => 0.014497392796987
1002 => 0.014937376229613
1003 => 0.015261548527849
1004 => 0.015239442150388
1005 => 0.015337012511122
1006 => 0.015623482107975
1007 => 0.015649673297757
1008 => 0.015646373809842
1009 => 0.015581456213198
1010 => 0.015863522734078
1011 => 0.016098827588284
1012 => 0.015566429665225
1013 => 0.015769159824725
1014 => 0.015860171924883
1015 => 0.015993804689987
1016 => 0.01621926556417
1017 => 0.016464175874076
1018 => 0.016498808877202
1019 => 0.016474235104142
1020 => 0.016312710171217
1021 => 0.016580693954704
1022 => 0.016737672570077
1023 => 0.016831149743141
1024 => 0.017068192300911
1025 => 0.015860733984629
1026 => 0.015006034973793
1027 => 0.014872561381247
1028 => 0.015143985180278
1029 => 0.015215557471518
1030 => 0.015186706770663
1031 => 0.014224665328133
1101 => 0.014867496432151
1102 => 0.015559128649301
1103 => 0.015585697059522
1104 => 0.015931942608775
1105 => 0.016044694352697
1106 => 0.016323467403287
1107 => 0.01630603007307
1108 => 0.016373906874641
1109 => 0.016358303173422
1110 => 0.016874671547049
1111 => 0.017444302544605
1112 => 0.017424578034475
1113 => 0.017342686839008
1114 => 0.0174643092288
1115 => 0.018052229463645
1116 => 0.01799810318965
1117 => 0.018050682254371
1118 => 0.018743873344986
1119 => 0.019645120368067
1120 => 0.019226400642124
1121 => 0.020134901964066
1122 => 0.020706755388642
1123 => 0.021695716755699
1124 => 0.021571893921806
1125 => 0.021956889324668
1126 => 0.021350225206532
1127 => 0.019957201764247
1128 => 0.019736750472226
1129 => 0.020178099541568
1130 => 0.021263113162333
1201 => 0.020143928601414
1202 => 0.020370338180459
1203 => 0.020305132206463
1204 => 0.020301657657216
1205 => 0.02043426706995
1206 => 0.020241910200338
1207 => 0.019458213709196
1208 => 0.019817377192734
1209 => 0.019678686923293
1210 => 0.019832574117282
1211 => 0.020663039835336
1212 => 0.020295871145554
1213 => 0.019909088757232
1214 => 0.020394199706071
1215 => 0.021011912646152
1216 => 0.020973257280499
1217 => 0.020898249714442
1218 => 0.021321063437037
1219 => 0.022019427833966
1220 => 0.0222081929242
1221 => 0.022347535454679
1222 => 0.022366748435421
1223 => 0.022564654077861
1224 => 0.021500465559816
1225 => 0.023189360068253
1226 => 0.023480985495091
1227 => 0.023426172001481
1228 => 0.023750301389937
1229 => 0.023654934301484
1230 => 0.023516762352954
1231 => 0.024030576377955
]
'min_raw' => 0.0088578805543247
'max_raw' => 0.024030576377955
'avg_raw' => 0.01644422846614
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.008857'
'max' => '$0.02403'
'avg' => '$0.016444'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0030548540811594
'max_diff' => 0.011075728571607
'year' => 2032
]
7 => [
'items' => [
101 => 0.023441530060945
102 => 0.022605452972818
103 => 0.022146764546542
104 => 0.022750802467602
105 => 0.023119667347975
106 => 0.02336346356969
107 => 0.023437236159074
108 => 0.021583075485116
109 => 0.020583785718317
110 => 0.021224319001955
111 => 0.022005813815238
112 => 0.02149612431667
113 => 0.021516103180044
114 => 0.020789419899129
115 => 0.022070109161074
116 => 0.0218835235079
117 => 0.022851530206627
118 => 0.022620507639237
119 => 0.023409879524245
120 => 0.02320201145219
121 => 0.024064860197544
122 => 0.024409073922763
123 => 0.024987062339994
124 => 0.025412232972545
125 => 0.025661901300198
126 => 0.025646912150288
127 => 0.026636222448713
128 => 0.026052860729601
129 => 0.025320020922595
130 => 0.025306766162566
131 => 0.025686314283035
201 => 0.026481743019596
202 => 0.026687986117968
203 => 0.026803247873758
204 => 0.026626720482476
205 => 0.02599352314629
206 => 0.025720111746909
207 => 0.025953066180673
208 => 0.025668182926182
209 => 0.026159971347556
210 => 0.026835301890442
211 => 0.026695848803882
212 => 0.027162019564275
213 => 0.027644457258688
214 => 0.02833436482933
215 => 0.028514732215499
216 => 0.02881287264608
217 => 0.029119757083177
218 => 0.029218320093605
219 => 0.029406507462818
220 => 0.02940551562249
221 => 0.029972630926085
222 => 0.030598176668049
223 => 0.030834305704223
224 => 0.031377271402674
225 => 0.030447461671864
226 => 0.031152733033568
227 => 0.031788905455912
228 => 0.031030434467683
301 => 0.032075810023882
302 => 0.032116399587857
303 => 0.032729253813734
304 => 0.032108008647145
305 => 0.031739115250309
306 => 0.032804096664719
307 => 0.033319407624552
308 => 0.03316419176971
309 => 0.031982991450416
310 => 0.031295482200522
311 => 0.029496137882918
312 => 0.03162753895301
313 => 0.032665682240429
314 => 0.031980302910099
315 => 0.032325968378183
316 => 0.034211807089645
317 => 0.034929812371955
318 => 0.034780472292471
319 => 0.034805708307557
320 => 0.035193130925174
321 => 0.03691117616922
322 => 0.035881683635011
323 => 0.036668692103065
324 => 0.03708611855675
325 => 0.037473847510363
326 => 0.036521707743285
327 => 0.035282987896028
328 => 0.03489063332248
329 => 0.031912155443047
330 => 0.031757112734549
331 => 0.031670082563994
401 => 0.031121369649307
402 => 0.03069023160348
403 => 0.030347374622308
404 => 0.029447615517954
405 => 0.029751257802968
406 => 0.028317229584946
407 => 0.029234670019997
408 => 0.026945926358212
409 => 0.028852060090132
410 => 0.027814638161114
411 => 0.028511239085076
412 => 0.028508808710076
413 => 0.027226145551537
414 => 0.02648633221019
415 => 0.026957770065262
416 => 0.027463188868684
417 => 0.027545191369106
418 => 0.028200480040523
419 => 0.028383357023332
420 => 0.02782923122771
421 => 0.02689849723304
422 => 0.02711468551222
423 => 0.026481951161612
424 => 0.025373108549948
425 => 0.02616949867218
426 => 0.026441421274712
427 => 0.026561517787079
428 => 0.025471098429941
429 => 0.025128464993773
430 => 0.02494604982733
501 => 0.026757737786934
502 => 0.026856986143015
503 => 0.026349217520999
504 => 0.028644379841108
505 => 0.028124913921028
506 => 0.028705284625998
507 => 0.027095068691862
508 => 0.02715658110899
509 => 0.026394279080915
510 => 0.026821117279597
511 => 0.026519441798406
512 => 0.026786632971241
513 => 0.026946786258567
514 => 0.02770896320038
515 => 0.028860762926505
516 => 0.027595119381635
517 => 0.027043660364785
518 => 0.027385782437315
519 => 0.028296898600783
520 => 0.029677286227614
521 => 0.02886006896964
522 => 0.02922273611148
523 => 0.029301962748034
524 => 0.028699376997031
525 => 0.029699504423773
526 => 0.030235480836785
527 => 0.030785281731844
528 => 0.031262658443952
529 => 0.030565679163977
530 => 0.031311546901606
531 => 0.030710509168456
601 => 0.030171316187683
602 => 0.030172133920865
603 => 0.029833890287673
604 => 0.029178500626924
605 => 0.029057636718
606 => 0.02968638603565
607 => 0.030190583445623
608 => 0.030232111559251
609 => 0.030511261152011
610 => 0.030676459005536
611 => 0.032295622545679
612 => 0.032946863515947
613 => 0.033743188647031
614 => 0.034053402164014
615 => 0.034987033632429
616 => 0.034233050395843
617 => 0.034069921379831
618 => 0.03180523682598
619 => 0.032176078794803
620 => 0.032769832567816
621 => 0.031815027607004
622 => 0.032420631588832
623 => 0.032540190643291
624 => 0.031782583699796
625 => 0.03218725430258
626 => 0.031112569158056
627 => 0.02888418812588
628 => 0.029701985248879
629 => 0.03030415919894
630 => 0.02944478272469
701 => 0.030985181792322
702 => 0.030085312457302
703 => 0.029800097079447
704 => 0.028687370203809
705 => 0.029212534456325
706 => 0.02992282662748
707 => 0.029483948646034
708 => 0.030394686355395
709 => 0.031684533836726
710 => 0.032603755963668
711 => 0.032674322424548
712 => 0.032083324180024
713 => 0.033030402638574
714 => 0.033037301071196
715 => 0.031968992701022
716 => 0.031314659772656
717 => 0.031165993954603
718 => 0.03153739031575
719 => 0.031988334061733
720 => 0.032699346664041
721 => 0.033128996688494
722 => 0.034249296083502
723 => 0.034552416978291
724 => 0.03488545494115
725 => 0.035330496364635
726 => 0.035864882699807
727 => 0.034695675821082
728 => 0.034742130590048
729 => 0.03365338133335
730 => 0.032489896610132
731 => 0.033372836484636
801 => 0.034527162917982
802 => 0.034262359158755
803 => 0.034232563326392
804 => 0.034282671651752
805 => 0.034083018264977
806 => 0.033179993396095
807 => 0.032726499960177
808 => 0.033311622191025
809 => 0.033622588615927
810 => 0.034104870421827
811 => 0.034045419009516
812 => 0.03528772514823
813 => 0.035770447748347
814 => 0.035646946650373
815 => 0.03566967382462
816 => 0.036543620034295
817 => 0.037515627960199
818 => 0.038426041650552
819 => 0.039352153559556
820 => 0.038235689506488
821 => 0.03766881791427
822 => 0.038253684699057
823 => 0.037943346150453
824 => 0.039726643503124
825 => 0.039850115142658
826 => 0.041633283542633
827 => 0.043325722689952
828 => 0.042262731984718
829 => 0.043265084341601
830 => 0.044349210138557
831 => 0.046440664693957
901 => 0.045736336377957
902 => 0.045196831926132
903 => 0.044687002826025
904 => 0.045747876250258
905 => 0.047112672962667
906 => 0.04740663710266
907 => 0.047882971312392
908 => 0.047382164134234
909 => 0.047985331218224
910 => 0.050114776069754
911 => 0.049539381273741
912 => 0.048722228164073
913 => 0.050403220360298
914 => 0.051011564901421
915 => 0.055281245483526
916 => 0.060671893590142
917 => 0.058440129877099
918 => 0.057054802121848
919 => 0.057380387004746
920 => 0.059348869208328
921 => 0.059981083215616
922 => 0.058262507606569
923 => 0.058869537565296
924 => 0.06221433231975
925 => 0.064008707391651
926 => 0.061571705027286
927 => 0.054848112156917
928 => 0.048648652467213
929 => 0.050293028342231
930 => 0.050106607148928
1001 => 0.053700171840946
1002 => 0.049525658298152
1003 => 0.049595946400075
1004 => 0.053263822204273
1005 => 0.052285295823023
1006 => 0.05070020840559
1007 => 0.048660225359523
1008 => 0.044889128023277
1009 => 0.041548961947735
1010 => 0.04809979681618
1011 => 0.047817312904732
1012 => 0.047408234339186
1013 => 0.048318594419885
1014 => 0.052739044561544
1015 => 0.052637138878178
1016 => 0.05198886691334
1017 => 0.052480575485063
1018 => 0.05061400951559
1019 => 0.051095066066841
1020 => 0.048647670441124
1021 => 0.049753995476218
1022 => 0.050696807519891
1023 => 0.050886090996229
1024 => 0.051312556333473
1025 => 0.047668456719568
1026 => 0.049304550461067
1027 => 0.050265602252946
1028 => 0.045923535293874
1029 => 0.050179773549975
1030 => 0.04760502105268
1031 => 0.046731111383613
1101 => 0.047907715624167
1102 => 0.047449191807338
1103 => 0.04705497995505
1104 => 0.046835002968054
1105 => 0.047698971265246
1106 => 0.047658666111517
1107 => 0.04624504628829
1108 => 0.044401036855407
1109 => 0.045019946948629
1110 => 0.044795091109448
1111 => 0.043980184541277
1112 => 0.04452933317603
1113 => 0.042111160506342
1114 => 0.037950820113822
1115 => 0.040699268411794
1116 => 0.040593456142058
1117 => 0.040540100797453
1118 => 0.042605483731847
1119 => 0.042406944819197
1120 => 0.042046594748638
1121 => 0.043973566429642
1122 => 0.043270195844649
1123 => 0.045437818252645
1124 => 0.046865554563579
1125 => 0.046503434452695
1126 => 0.047846227353977
1127 => 0.045034205387154
1128 => 0.045968246285793
1129 => 0.046160750820478
1130 => 0.043949787898214
1201 => 0.042439428240679
1202 => 0.042338704470882
1203 => 0.039719948965097
1204 => 0.041118867018431
1205 => 0.042349857014203
1206 => 0.041760308334911
1207 => 0.041573674835313
1208 => 0.042527144908892
1209 => 0.042601237699528
1210 => 0.040911914221024
1211 => 0.041263178066122
1212 => 0.042728006692936
1213 => 0.04122626814309
1214 => 0.038308635448337
1215 => 0.03758502220061
1216 => 0.037488478854525
1217 => 0.0355259823362
1218 => 0.037633377497915
1219 => 0.036713443035147
1220 => 0.039619504980523
1221 => 0.037959577982847
1222 => 0.037888021847631
1223 => 0.03777985425425
1224 => 0.036090652431217
1225 => 0.036460480276085
1226 => 0.037689844358798
1227 => 0.038128495313287
1228 => 0.038082740424972
1229 => 0.037683819804115
1230 => 0.037866443621539
1231 => 0.03727814867526
]
'min_raw' => 0.020583785718317
'max_raw' => 0.064008707391651
'avg_raw' => 0.042296246554984
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.020583'
'max' => '$0.0640087'
'avg' => '$0.042296'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.011725905163993
'max_diff' => 0.039978131013696
'year' => 2033
]
8 => [
'items' => [
101 => 0.037070409485428
102 => 0.036414727459153
103 => 0.035451056017311
104 => 0.035585060441839
105 => 0.033675775157202
106 => 0.032635495200692
107 => 0.032347559419399
108 => 0.03196251965899
109 => 0.032391050684889
110 => 0.03367036639188
111 => 0.032127240227281
112 => 0.029481658655792
113 => 0.02964066261609
114 => 0.029997897306181
115 => 0.029332192824541
116 => 0.028702159401012
117 => 0.029249922346543
118 => 0.028128954558618
119 => 0.030133360907865
120 => 0.030079147333401
121 => 0.030826266068744
122 => 0.031293454746373
123 => 0.030216736098568
124 => 0.029945944270402
125 => 0.030100199602528
126 => 0.027550702570486
127 => 0.030617917769343
128 => 0.030644443173752
129 => 0.030417316557166
130 => 0.032050513960912
131 => 0.035497069889861
201 => 0.034200336911999
202 => 0.03369820270901
203 => 0.032743645222068
204 => 0.034015536397402
205 => 0.03391787499973
206 => 0.03347621312247
207 => 0.033209094641034
208 => 0.033701268633379
209 => 0.033148108836734
210 => 0.033048746137442
211 => 0.032446716287414
212 => 0.032231819021567
213 => 0.03207271764124
214 => 0.03189756265448
215 => 0.032283910909371
216 => 0.031408394935442
217 => 0.030352608498774
218 => 0.030264831280333
219 => 0.030507191897901
220 => 0.030399965366253
221 => 0.030264317920952
222 => 0.030005330006489
223 => 0.029928493824669
224 => 0.030178174139968
225 => 0.029896299621262
226 => 0.030312220828112
227 => 0.030199113273819
228 => 0.029567303670007
301 => 0.028779834977782
302 => 0.02877282485465
303 => 0.028603166016618
304 => 0.028387079978007
305 => 0.028326969785444
306 => 0.029203791279106
307 => 0.031018785529927
308 => 0.030662458729359
309 => 0.030919941360609
310 => 0.03218650106643
311 => 0.032589102310131
312 => 0.032303345483485
313 => 0.031912183914458
314 => 0.031929393038317
315 => 0.03326611053234
316 => 0.033349479962792
317 => 0.033560127617544
318 => 0.033830869382921
319 => 0.032349453976849
320 => 0.031859618505912
321 => 0.031627507284745
322 => 0.030912694561898
323 => 0.031683558800077
324 => 0.031234409220188
325 => 0.03129501484365
326 => 0.031255545351864
327 => 0.031277098363294
328 => 0.03013280063544
329 => 0.030549722584952
330 => 0.029856508980546
331 => 0.028928373781126
401 => 0.028925262346492
402 => 0.029152422121661
403 => 0.029017298598627
404 => 0.028653684672487
405 => 0.028705334314486
406 => 0.028252829102267
407 => 0.02876027664012
408 => 0.028774828419771
409 => 0.028579433476844
410 => 0.029361226423172
411 => 0.029681527631165
412 => 0.029552914493965
413 => 0.029672503790603
414 => 0.030677265716642
415 => 0.030841085751423
416 => 0.030913843789528
417 => 0.03081635765706
418 => 0.029690868994144
419 => 0.029740789202291
420 => 0.029374507837482
421 => 0.029065038681998
422 => 0.029077415825265
423 => 0.029236523199359
424 => 0.029931354433547
425 => 0.031393585803359
426 => 0.031449076414966
427 => 0.03151633265501
428 => 0.031242767726476
429 => 0.031160257926366
430 => 0.031269109650297
501 => 0.031818246872326
502 => 0.033230776896684
503 => 0.032731494446367
504 => 0.032325570042466
505 => 0.032681675181121
506 => 0.032626855586269
507 => 0.032164123037231
508 => 0.032151135675758
509 => 0.031263003969609
510 => 0.030934681899626
511 => 0.030660311403468
512 => 0.030360705984285
513 => 0.03018308984893
514 => 0.030455988957926
515 => 0.030518404213001
516 => 0.02992170554172
517 => 0.029840377717702
518 => 0.030327654733305
519 => 0.030113222286256
520 => 0.030333771375715
521 => 0.030384940656304
522 => 0.030376701223601
523 => 0.030152809121472
524 => 0.03029551127081
525 => 0.029957978146068
526 => 0.029590961568746
527 => 0.029356827858355
528 => 0.029152515142709
529 => 0.029265879712074
530 => 0.028861755721841
531 => 0.028732468323956
601 => 0.030247166993515
602 => 0.031366091186473
603 => 0.031349821585564
604 => 0.031250784574237
605 => 0.031103635664329
606 => 0.031807482013032
607 => 0.031562276018996
608 => 0.031740683867303
609 => 0.031786096152452
610 => 0.03192354546229
611 => 0.031972671776389
612 => 0.031824177934761
613 => 0.031325814465261
614 => 0.030083940082244
615 => 0.029505844204574
616 => 0.029315062935994
617 => 0.029321997472762
618 => 0.029130711991575
619 => 0.029187054138598
620 => 0.029111118492147
621 => 0.028967314748575
622 => 0.029257000236137
623 => 0.029290383789972
624 => 0.029222767735691
625 => 0.029238693764211
626 => 0.028678861713961
627 => 0.02872142452885
628 => 0.028484429366926
629 => 0.028439995631085
630 => 0.02784089249927
701 => 0.026779494459873
702 => 0.0273676120061
703 => 0.026657248712099
704 => 0.026388223368901
705 => 0.027661747501577
706 => 0.027533921000717
707 => 0.02731513759609
708 => 0.026991511342189
709 => 0.026871475216583
710 => 0.026142173716223
711 => 0.026099082692909
712 => 0.026460544209285
713 => 0.026293742156609
714 => 0.026059488901774
715 => 0.025211047358636
716 => 0.024257118154807
717 => 0.024285911281285
718 => 0.024589338412539
719 => 0.025471593719385
720 => 0.025126881307828
721 => 0.024876788498125
722 => 0.02482995363263
723 => 0.025416190029734
724 => 0.026245837351959
725 => 0.026635089313234
726 => 0.026249352441368
727 => 0.025806238692517
728 => 0.025833208973218
729 => 0.026012630167824
730 => 0.026031484798498
731 => 0.025743063300825
801 => 0.025824252262982
802 => 0.025700918805392
803 => 0.024944021603819
804 => 0.02493033173359
805 => 0.024744576953708
806 => 0.024738952372797
807 => 0.024422937153516
808 => 0.024378724439828
809 => 0.023751257041194
810 => 0.024164257983121
811 => 0.023887238634799
812 => 0.023469705134619
813 => 0.02339772220181
814 => 0.023395558307928
815 => 0.02382427185383
816 => 0.024159248215728
817 => 0.023892057504965
818 => 0.023831223359399
819 => 0.024480772878945
820 => 0.024398111781807
821 => 0.024326527804793
822 => 0.026171551533905
823 => 0.024711071283316
824 => 0.024074218532761
825 => 0.023285992318892
826 => 0.023542642748709
827 => 0.023596722765251
828 => 0.021701180809349
829 => 0.020932159673915
830 => 0.020668260600184
831 => 0.020516382952266
901 => 0.020585595503582
902 => 0.019893386284508
903 => 0.020358562327809
904 => 0.01975916765508
905 => 0.019658677187598
906 => 0.020730469113189
907 => 0.020879602698318
908 => 0.020243352491987
909 => 0.020651928124003
910 => 0.020503772920208
911 => 0.019769442556377
912 => 0.019741396537847
913 => 0.019372935374238
914 => 0.018796365001328
915 => 0.018532856869461
916 => 0.018395619546501
917 => 0.018452246340656
918 => 0.018423614100723
919 => 0.018236769367565
920 => 0.018434323822115
921 => 0.017929653825876
922 => 0.017728690166971
923 => 0.017637919544565
924 => 0.017189995875181
925 => 0.01790284162573
926 => 0.018043281218783
927 => 0.018183997521217
928 => 0.019408836862811
929 => 0.019347647350665
930 => 0.019900770739964
1001 => 0.019879277382184
1002 => 0.019721517631552
1003 => 0.019055955193851
1004 => 0.019321236519009
1005 => 0.018504741834045
1006 => 0.019116515168262
1007 => 0.01883732736679
1008 => 0.019022121491746
1009 => 0.018689844992861
1010 => 0.018873740526704
1011 => 0.018076584656261
1012 => 0.017332211720726
1013 => 0.017631769119586
1014 => 0.01795742227069
1015 => 0.018663521277164
1016 => 0.018242974534099
1017 => 0.018394219045538
1018 => 0.017887575250242
1019 => 0.0168422243849
1020 => 0.016848140957273
1021 => 0.016687336500846
1022 => 0.016548377972659
1023 => 0.018291279386467
1024 => 0.018074522044466
1025 => 0.017729147588487
1026 => 0.01819144502245
1027 => 0.018313683801637
1028 => 0.018317163767833
1029 => 0.018654444042029
1030 => 0.018834450584828
1031 => 0.018866177518189
1101 => 0.019396895317059
1102 => 0.019574784922903
1103 => 0.020307487033495
1104 => 0.018819178287307
1105 => 0.018788527548088
1106 => 0.0181979504954
1107 => 0.017823397191931
1108 => 0.018223596480533
1109 => 0.018578118417583
1110 => 0.01820896648021
1111 => 0.018257169930008
1112 => 0.017761613614906
1113 => 0.017938751679463
1114 => 0.018091326843734
1115 => 0.018007083805977
1116 => 0.017880967901047
1117 => 0.01854905166166
1118 => 0.018511355757644
1119 => 0.019133490714706
1120 => 0.019618489403034
1121 => 0.020487693756402
1122 => 0.019580633701015
1123 => 0.019547576827359
1124 => 0.019870713069831
1125 => 0.019574735452428
1126 => 0.019761783089827
1127 => 0.020457557490272
1128 => 0.020472258106967
1129 => 0.020226003836659
1130 => 0.020211019241932
1201 => 0.020258315068271
1202 => 0.020535328200397
1203 => 0.020438531300278
1204 => 0.020550547123693
1205 => 0.020690624626121
1206 => 0.021270044567791
1207 => 0.021409740754111
1208 => 0.021070351445522
1209 => 0.021100994500107
1210 => 0.02097405358225
1211 => 0.020851430246165
1212 => 0.021127069597983
1213 => 0.021630805931137
1214 => 0.021627672213553
1215 => 0.021744529251609
1216 => 0.021817330218222
1217 => 0.021504815175954
1218 => 0.021301379374933
1219 => 0.021379389606001
1220 => 0.02150412966432
1221 => 0.021338938086292
1222 => 0.020319299142526
1223 => 0.020628592463277
1224 => 0.020577110931033
1225 => 0.02050379496875
1226 => 0.02081479179446
1227 => 0.020784795391938
1228 => 0.019886286678464
1229 => 0.019943806291096
1230 => 0.019889784636619
1231 => 0.020064339654025
]
'min_raw' => 0.016548377972659
'max_raw' => 0.037070409485428
'avg_raw' => 0.026809393729043
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.016548'
'max' => '$0.03707'
'avg' => '$0.0268093'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0040354077456583
'max_diff' => -0.026938297906224
'year' => 2034
]
9 => [
'items' => [
101 => 0.019565308908647
102 => 0.019718807404902
103 => 0.019815080222794
104 => 0.019871785652135
105 => 0.020076644546192
106 => 0.020052606719447
107 => 0.020075150321131
108 => 0.020378901980274
109 => 0.021915173637239
110 => 0.021998789513935
111 => 0.021587034356013
112 => 0.021751522420091
113 => 0.021435741306646
114 => 0.021647727283651
115 => 0.021792762705259
116 => 0.021137375523723
117 => 0.02109856774826
118 => 0.02078148329383
119 => 0.020951866519059
120 => 0.020680774556732
121 => 0.020747291041892
122 => 0.02056130515058
123 => 0.020896042725521
124 => 0.021270331347266
125 => 0.021364891434224
126 => 0.021116144556114
127 => 0.020936035423144
128 => 0.020619823117286
129 => 0.021145691229179
130 => 0.021299471090637
131 => 0.021144883489033
201 => 0.021109062163935
202 => 0.021041180817603
203 => 0.021123463512456
204 => 0.021298633572486
205 => 0.021216026607059
206 => 0.021270589963071
207 => 0.021062650715441
208 => 0.021504918631436
209 => 0.022207346519607
210 => 0.022209604940126
211 => 0.022126997529416
212 => 0.022093196356755
213 => 0.02217795657318
214 => 0.022223935513545
215 => 0.022498034511097
216 => 0.022792153656056
217 => 0.024164679371344
218 => 0.023779279642741
219 => 0.024997066109265
220 => 0.025960177094503
221 => 0.026248971967237
222 => 0.02598329427317
223 => 0.025074425233397
224 => 0.025029831782317
225 => 0.02638806584235
226 => 0.026004302509329
227 => 0.025958655081991
228 => 0.025473043577661
301 => 0.025760100120875
302 => 0.025697316644009
303 => 0.025598209854302
304 => 0.026145893742223
305 => 0.027171109088332
306 => 0.027011319662232
307 => 0.026892044268067
308 => 0.02636941421138
309 => 0.026684154239154
310 => 0.026572081343712
311 => 0.02705361762575
312 => 0.026768366199605
313 => 0.02600139512464
314 => 0.026123537796298
315 => 0.026105076177194
316 => 0.026485014990153
317 => 0.026370966789164
318 => 0.026082806435542
319 => 0.027167605013734
320 => 0.027097164228033
321 => 0.027197033157151
322 => 0.027240998548299
323 => 0.027901296326549
324 => 0.028171799199125
325 => 0.02823320808702
326 => 0.028490164894525
327 => 0.028226814767567
328 => 0.029280403040857
329 => 0.029980977764015
330 => 0.030794731356209
331 => 0.031983844070749
401 => 0.032430961451324
402 => 0.032350193698515
403 => 0.033251765387524
404 => 0.03487186967186
405 => 0.032677663094934
406 => 0.034988167948387
407 => 0.034256688787845
408 => 0.032522364856948
409 => 0.032410694842135
410 => 0.033585199144053
411 => 0.036190136643857
412 => 0.035537629345113
413 => 0.036191203912044
414 => 0.035428774463062
415 => 0.03539091341466
416 => 0.036154174415481
417 => 0.037937575347091
418 => 0.037090348414267
419 => 0.035875640857498
420 => 0.036772562014474
421 => 0.035995565902167
422 => 0.034244776193621
423 => 0.035537130385079
424 => 0.034672969941379
425 => 0.034925177900147
426 => 0.036741514618638
427 => 0.036522968179238
428 => 0.036805787508677
429 => 0.036306618794888
430 => 0.035840316504528
501 => 0.034969928651509
502 => 0.034712249717832
503 => 0.034783462904784
504 => 0.034712214428114
505 => 0.034225240423627
506 => 0.034120078433723
507 => 0.033944803843297
508 => 0.03399912876792
509 => 0.03366956125953
510 => 0.034291523239984
511 => 0.034406964864266
512 => 0.034859576926315
513 => 0.03490656861208
514 => 0.036167086762358
515 => 0.035472814547332
516 => 0.03593859228975
517 => 0.035896928744398
518 => 0.032559952915461
519 => 0.033019758742302
520 => 0.033735072313848
521 => 0.033412824519451
522 => 0.032957241532544
523 => 0.032589333843803
524 => 0.032031916074867
525 => 0.032816470880384
526 => 0.033848077021538
527 => 0.034932731846229
528 => 0.036235873548697
529 => 0.035945027490948
530 => 0.034908370518548
531 => 0.034954874193052
601 => 0.03524234161031
602 => 0.034870045185791
603 => 0.034760247702111
604 => 0.035227257122108
605 => 0.03523047315932
606 => 0.034802101129384
607 => 0.034326044009365
608 => 0.03432404931265
609 => 0.034239339546309
610 => 0.03544384414231
611 => 0.03610619988096
612 => 0.036182137898957
613 => 0.036101088647307
614 => 0.036132281287537
615 => 0.035746871077229
616 => 0.036627804528145
617 => 0.037436236177995
618 => 0.037219559226212
619 => 0.036894729673046
620 => 0.036635987288038
621 => 0.037158607743255
622 => 0.037135336277065
623 => 0.037429175232793
624 => 0.037415845000466
625 => 0.037317038011496
626 => 0.037219562754921
627 => 0.03760604112914
628 => 0.037494741564018
629 => 0.037383269119929
630 => 0.037159694067731
701 => 0.037190081630513
702 => 0.03686530816375
703 => 0.036715053097402
704 => 0.034455577411848
705 => 0.033851771678169
706 => 0.034041741253584
707 => 0.034104284170368
708 => 0.033841507141273
709 => 0.034218261899115
710 => 0.034159545069187
711 => 0.034387977906239
712 => 0.03424526298705
713 => 0.034251120057114
714 => 0.03467081420442
715 => 0.03479265320089
716 => 0.034730684903924
717 => 0.03477408537497
718 => 0.035774230912027
719 => 0.035632042199512
720 => 0.035556507279914
721 => 0.035577430968857
722 => 0.035832989596938
723 => 0.035904532059816
724 => 0.0356014016174
725 => 0.035744359686419
726 => 0.036353057000226
727 => 0.036566066610774
728 => 0.03724589103723
729 => 0.036957089537956
730 => 0.03748719718891
731 => 0.039116567380926
801 => 0.040418221034149
802 => 0.039221166541532
803 => 0.041611487711085
804 => 0.043472695612788
805 => 0.043401259353517
806 => 0.04307671470534
807 => 0.040957778992023
808 => 0.039007902757077
809 => 0.040639057023728
810 => 0.040643215171403
811 => 0.040503097573299
812 => 0.039632839205365
813 => 0.040472814468489
814 => 0.040539488654534
815 => 0.040502168840446
816 => 0.03983494379018
817 => 0.038816214462225
818 => 0.039015271734414
819 => 0.039341331606918
820 => 0.038724032245053
821 => 0.03852676769545
822 => 0.038893520024278
823 => 0.040075272443645
824 => 0.039851868994189
825 => 0.03984603502728
826 => 0.040801849721858
827 => 0.040117692678261
828 => 0.039017782484086
829 => 0.038740040654023
830 => 0.037754244266617
831 => 0.038435137342685
901 => 0.038459641472322
902 => 0.038086723293118
903 => 0.039048042739059
904 => 0.039039184011127
905 => 0.039951813751531
906 => 0.041696419047106
907 => 0.041180453414392
908 => 0.040580441520446
909 => 0.040645679449843
910 => 0.041361178514399
911 => 0.040928571446714
912 => 0.041084139964497
913 => 0.041360943042815
914 => 0.041527945212599
915 => 0.040621650407629
916 => 0.040410349735499
917 => 0.039978102716779
918 => 0.039865337537868
919 => 0.040217393715485
920 => 0.040124639351011
921 => 0.038457581995111
922 => 0.038283365225999
923 => 0.038288708205584
924 => 0.037850631856098
925 => 0.037182460272761
926 => 0.038938375299318
927 => 0.03879735074867
928 => 0.038641670559189
929 => 0.038660740494101
930 => 0.039422923693648
1001 => 0.038980818946737
1002 => 0.040156226875943
1003 => 0.039914598341695
1004 => 0.039666772947291
1005 => 0.039632515928838
1006 => 0.039537124295462
1007 => 0.039209990890951
1008 => 0.038814957647334
1009 => 0.038554122482704
1010 => 0.035564140027091
1011 => 0.036119063378925
1012 => 0.036757452112355
1013 => 0.036977821344953
1014 => 0.036600864523508
1015 => 0.03922487544384
1016 => 0.039704307524584
1017 => 0.038252076479432
1018 => 0.037980423345086
1019 => 0.039242684978103
1020 => 0.038481386908185
1021 => 0.038824199382454
1022 => 0.038083226321482
1023 => 0.039588826375743
1024 => 0.039577356225899
1025 => 0.038991643799272
1026 => 0.039486683931472
1027 => 0.039400658526163
1028 => 0.038739390639047
1029 => 0.039609789747246
1030 => 0.039610221454345
1031 => 0.039046485978203
1101 => 0.038388166359633
1102 => 0.038270474360648
1103 => 0.038181809249109
1104 => 0.038802393200285
1105 => 0.039358806830395
1106 => 0.040394154649392
1107 => 0.040654465690345
1108 => 0.041670477013073
1109 => 0.041065491739082
1110 => 0.041333673875171
1111 => 0.041624823520575
1112 => 0.041764411367256
1113 => 0.041536960461787
1114 => 0.043115244252928
1115 => 0.043248499762266
1116 => 0.043293179181891
1117 => 0.042760990767632
1118 => 0.043233698639743
1119 => 0.043012534280822
1120 => 0.043587942501507
1121 => 0.043678173857692
1122 => 0.043601751109077
1123 => 0.043630391965735
1124 => 0.042283605178336
1125 => 0.042213767178543
1126 => 0.041261521095889
1127 => 0.041649568413218
1128 => 0.040924132553063
1129 => 0.041154175737135
1130 => 0.041255576580743
1201 => 0.041202610534489
1202 => 0.041671508026318
1203 => 0.041272849368835
1204 => 0.040220723626184
1205 => 0.039168311232578
1206 => 0.039155099052253
1207 => 0.038878017445639
1208 => 0.038677738194084
1209 => 0.038716319083221
1210 => 0.038852283168727
1211 => 0.038669835714265
1212 => 0.038708770128995
1213 => 0.039355340832164
1214 => 0.039485005975554
1215 => 0.039044353154875
1216 => 0.037275068493951
1217 => 0.036840881600246
1218 => 0.037152966529141
1219 => 0.037003810033973
1220 => 0.029864962726377
1221 => 0.031542129009278
1222 => 0.030545613755163
1223 => 0.031004853831722
1224 => 0.029987669803645
1225 => 0.030473123337026
1226 => 0.030383477795335
1227 => 0.033080311547281
1228 => 0.033038204197618
1229 => 0.03305835875763
1230 => 0.032096329095813
1231 => 0.03362886846904
]
'min_raw' => 0.019565308908647
'max_raw' => 0.043678173857692
'avg_raw' => 0.031621741383169
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.019565'
'max' => '$0.043678'
'avg' => '$0.031621'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0030169309359881
'max_diff' => 0.0066077643722641
'year' => 2035
]
10 => [
'items' => [
101 => 0.034383852472624
102 => 0.034244125026809
103 => 0.034279291414611
104 => 0.033675016360357
105 => 0.033064209461035
106 => 0.03238673060718
107 => 0.033645402578726
108 => 0.033505459741737
109 => 0.033826438259946
110 => 0.034642777005224
111 => 0.034762985986436
112 => 0.034924548076223
113 => 0.034866639567807
114 => 0.03624625517475
115 => 0.036079174621752
116 => 0.03648179068212
117 => 0.035653578899388
118 => 0.034716378652643
119 => 0.034894509780165
120 => 0.034877354320144
121 => 0.034658945623964
122 => 0.034461776018765
123 => 0.034133544178301
124 => 0.035172118290703
125 => 0.035129954078398
126 => 0.035812543665072
127 => 0.035691889325306
128 => 0.034886130115222
129 => 0.034914907963044
130 => 0.035108452819802
131 => 0.035778313778901
201 => 0.035977174119173
202 => 0.035885054086345
203 => 0.036103095371134
204 => 0.036275426312372
205 => 0.0361247374841
206 => 0.038258173517821
207 => 0.037372222133979
208 => 0.037804028674054
209 => 0.03790701198951
210 => 0.037643222392475
211 => 0.037700428910474
212 => 0.037787081197401
213 => 0.038313216915359
214 => 0.03969394927788
215 => 0.040305466242277
216 => 0.042145245201382
217 => 0.040254688271111
218 => 0.040142510446771
219 => 0.040473910193308
220 => 0.041554055202683
221 => 0.04242941127992
222 => 0.042719817391243
223 => 0.042758199352937
224 => 0.043303020523612
225 => 0.04361530185833
226 => 0.043236864903273
227 => 0.042916179207863
228 => 0.041767522851877
229 => 0.04190048295277
301 => 0.042816446197733
302 => 0.044110298231209
303 => 0.045220557878292
304 => 0.044831783646339
305 => 0.047797856604306
306 => 0.048091930622767
307 => 0.048051299101967
308 => 0.048721243480103
309 => 0.047391540321304
310 => 0.046823066459132
311 => 0.042985515095148
312 => 0.044063710496741
313 => 0.045630930833153
314 => 0.045423503344854
315 => 0.044285346044632
316 => 0.045219694483919
317 => 0.044910769670113
318 => 0.044667107852163
319 => 0.045783369876361
320 => 0.044555993927239
321 => 0.045618686819167
322 => 0.044255772193119
323 => 0.044833559534282
324 => 0.044505579495009
325 => 0.044717822776141
326 => 0.043477052891486
327 => 0.044146542203259
328 => 0.04344919993504
329 => 0.043448869304008
330 => 0.043433475434787
331 => 0.044253895520858
401 => 0.044280649390411
402 => 0.043674357707218
403 => 0.043586981603614
404 => 0.043910056854308
405 => 0.043531820349288
406 => 0.043708794829395
407 => 0.043537180726003
408 => 0.043498546776584
409 => 0.043190704894585
410 => 0.043058078147531
411 => 0.043110084512421
412 => 0.042932559977932
413 => 0.04282559502456
414 => 0.043412197413292
415 => 0.043098799420466
416 => 0.043364164676132
417 => 0.043061747475535
418 => 0.042013437701364
419 => 0.041410543664564
420 => 0.039430383679523
421 => 0.0399919545949
422 => 0.040364276692782
423 => 0.040241224241653
424 => 0.040505588521655
425 => 0.040521818341369
426 => 0.040435870819066
427 => 0.040336354598798
428 => 0.040287915606364
429 => 0.040648940170647
430 => 0.040858527081741
501 => 0.040401644196331
502 => 0.040294602928751
503 => 0.040756536751096
504 => 0.041038316115875
505 => 0.043118816627262
506 => 0.04296468642945
507 => 0.043351522979433
508 => 0.043307971120396
509 => 0.043713437452674
510 => 0.04437620354309
511 => 0.04302861476896
512 => 0.043262509584035
513 => 0.043205163976799
514 => 0.04383124827978
515 => 0.043833202846634
516 => 0.043457834031767
517 => 0.04366132755597
518 => 0.043547743053313
519 => 0.043753005601481
520 => 0.042962627926689
521 => 0.043925222618588
522 => 0.044470951780662
523 => 0.044478529230607
524 => 0.044737200522256
525 => 0.045000025535802
526 => 0.045504495262069
527 => 0.044985956148938
528 => 0.044053154763179
529 => 0.044120500010301
530 => 0.043573598899129
531 => 0.043582792405614
601 => 0.043533716747491
602 => 0.04368099649176
603 => 0.042994947548298
604 => 0.043155961864073
605 => 0.042930540879089
606 => 0.043262019562838
607 => 0.042905403294514
608 => 0.04320513632301
609 => 0.043334491161802
610 => 0.043811813301755
611 => 0.042834902426344
612 => 0.040842915020328
613 => 0.041261654923586
614 => 0.040642305715359
615 => 0.040699628842609
616 => 0.040815430682562
617 => 0.040440079031269
618 => 0.040511684297646
619 => 0.040509126053652
620 => 0.040487080488992
621 => 0.040389437027722
622 => 0.040247834690711
623 => 0.040811934818463
624 => 0.040907786422381
625 => 0.041120852664388
626 => 0.041754793276389
627 => 0.041691447659901
628 => 0.041794766988577
629 => 0.04156922147419
630 => 0.040710091252141
701 => 0.040756746156599
702 => 0.04017495875042
703 => 0.041105975052375
704 => 0.040885498103258
705 => 0.040743355179874
706 => 0.040704570166284
707 => 0.041340082194444
708 => 0.0415302373537
709 => 0.04141174541929
710 => 0.041168715004852
711 => 0.041635405246065
712 => 0.041760271866532
713 => 0.041788224897951
714 => 0.042615110526402
715 => 0.041834438619028
716 => 0.042022354106344
717 => 0.043488417095544
718 => 0.042158900267203
719 => 0.042863174982939
720 => 0.042828704400472
721 => 0.043188987513685
722 => 0.042799150669313
723 => 0.042803983164214
724 => 0.043123890161055
725 => 0.042674638479522
726 => 0.042563397445334
727 => 0.042409718753327
728 => 0.042745270555103
729 => 0.042946418684565
730 => 0.044567524881006
731 => 0.045614833415332
801 => 0.045569366989777
802 => 0.045984845009766
803 => 0.045797668356418
804 => 0.045193225568053
805 => 0.046224935703847
806 => 0.045898459448296
807 => 0.045925373754135
808 => 0.045924372002328
809 => 0.046141450171219
810 => 0.045987630393638
811 => 0.045684435822748
812 => 0.045885710528403
813 => 0.046483424447174
814 => 0.048338746791141
815 => 0.049377009754577
816 => 0.048276242057061
817 => 0.049035536874941
818 => 0.04858023054862
819 => 0.048497487844937
820 => 0.048974381102012
821 => 0.049452109097603
822 => 0.049421679889559
823 => 0.049074873896364
824 => 0.048878971990684
825 => 0.050362406852443
826 => 0.051455376388934
827 => 0.051380843193906
828 => 0.051709808477266
829 => 0.052675660723723
830 => 0.052763966148685
831 => 0.052752841694817
901 => 0.052533967485331
902 => 0.053484974453732
903 => 0.054278321198147
904 => 0.052483304429719
905 => 0.053166823316642
906 => 0.053473676966584
907 => 0.053924229164075
908 => 0.054684386242559
909 => 0.055510118451499
910 => 0.055626886039536
911 => 0.055544033847981
912 => 0.054999441259311
913 => 0.055902967295368
914 => 0.056432231656997
915 => 0.056747396472348
916 => 0.057546602005652
917 => 0.053475571990261
918 => 0.050593894602047
919 => 0.050143879065951
920 => 0.051059003354589
921 => 0.051300314331523
922 => 0.051203042179299
923 => 0.047959452288218
924 => 0.050126802236451
925 => 0.05245868854479
926 => 0.0525482657948
927 => 0.053715656838197
928 => 0.054095807214904
929 => 0.055035710018281
930 => 0.054976918842021
1001 => 0.055205770217524
1002 => 0.055153161249449
1003 => 0.05689413327282
1004 => 0.058814683951445
1005 => 0.058748181388421
1006 => 0.058472079505444
1007 => 0.058882137884032
1008 => 0.060864352003091
1009 => 0.060681861491342
1010 => 0.060859135479002
1011 => 0.063196277638065
1012 => 0.066234894899443
1013 => 0.064823152109348
1014 => 0.06788622774581
1015 => 0.0698142714923
1016 => 0.073148623788411
1017 => 0.072731146458907
1018 => 0.074029185339175
1019 => 0.071983774908946
1020 => 0.067287099115489
1021 => 0.066543832193022
1022 => 0.068031871394318
1023 => 0.071690070569961
1024 => 0.067916661683851
1025 => 0.068680017387013
1026 => 0.068460170893149
1027 => 0.068448456207778
1028 => 0.068895558101304
1029 => 0.068247013485478
1030 => 0.065604726049652
1031 => 0.066815670810394
1101 => 0.066348066883928
1102 => 0.066866908302524
1103 => 0.069666881452208
1104 => 0.068428946579709
1105 => 0.067124882753195
1106 => 0.068760468186573
1107 => 0.070843130491396
1108 => 0.070712801227264
1109 => 0.070459907981442
1110 => 0.071885453967081
1111 => 0.074240038289573
1112 => 0.074876472970457
1113 => 0.075346276040551
1114 => 0.075411053946529
1115 => 0.076078306637347
1116 => 0.072490320749489
1117 => 0.078184546499533
1118 => 0.079167781986753
1119 => 0.078982974466091
1120 => 0.080075799329263
1121 => 0.079754262532227
1122 => 0.0792884061609
1123 => 0.081020766019541
1124 => 0.079034755235841
1125 => 0.076215862960183
1126 => 0.07466936290639
1127 => 0.076705918929825
1128 => 0.077949572627327
1129 => 0.078771548610144
1130 => 0.079020278045894
1201 => 0.072768845880277
1202 => 0.069399670663333
1203 => 0.071559273349722
1204 => 0.074194137674932
1205 => 0.072475683945125
1206 => 0.07254304407787
1207 => 0.070092980660861
1208 => 0.074410913922375
1209 => 0.073781827365707
1210 => 0.077045529534534
1211 => 0.076266620819097
1212 => 0.078928043241587
1213 => 0.078227201523767
1214 => 0.081136356310904
1215 => 0.082296896917715
1216 => 0.084245625220272
1217 => 0.085679117692385
1218 => 0.08652089189035
1219 => 0.08647035492492
1220 => 0.089805883667501
1221 => 0.087839038902499
1222 => 0.085368218327938
1223 => 0.085323528979083
1224 => 0.086603201966447
1225 => 0.089285045486822
1226 => 0.089980408492419
1227 => 0.090369021549382
1228 => 0.089773847124925
1229 => 0.08763897809755
1230 => 0.086717152475561
1231 => 0.087502574613355
]
'min_raw' => 0.03238673060718
'max_raw' => 0.090369021549382
'avg_raw' => 0.061377876078281
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.032386'
'max' => '$0.090369'
'avg' => '$0.061377'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.012821421698533
'max_diff' => 0.04669084769169
'year' => 2036
]
11 => [
'items' => [
101 => 0.086542070830926
102 => 0.08820016982916
103 => 0.090477093904571
104 => 0.090006918086932
105 => 0.0915786453526
106 => 0.093205217722036
107 => 0.095531289264266
108 => 0.096139410499584
109 => 0.097144611776787
110 => 0.098179294082446
111 => 0.098511606153554
112 => 0.099146093007678
113 => 0.099142748948765
114 => 0.10105481778956
115 => 0.1031638889328
116 => 0.10396001446426
117 => 0.10579066122525
118 => 0.10265574280058
119 => 0.10503361443704
120 => 0.10717851417511
121 => 0.10462127628354
122 => 0.10814583295706
123 => 0.10828268350588
124 => 0.11034896431653
125 => 0.10825439286343
126 => 0.10701064302068
127 => 0.11060130221399
128 => 0.11233870909293
129 => 0.11181538800151
130 => 0.10783288865623
131 => 0.10551490321985
201 => 0.099448288226843
202 => 0.10663445574433
203 => 0.11013462831871
204 => 0.10782382405484
205 => 0.10898925931408
206 => 0.11534749619483
207 => 0.11776830113367
208 => 0.1172647906291
209 => 0.11734987561588
210 => 0.11865609802016
211 => 0.12444860751055
212 => 0.12097760155459
213 => 0.12363105555181
214 => 0.1250384379842
215 => 0.12634569322167
216 => 0.12313548752069
217 => 0.11895905707101
218 => 0.11763620623297
219 => 0.10759406011178
220 => 0.10707132279534
221 => 0.10677789449906
222 => 0.10492787059728
223 => 0.10347425857468
224 => 0.10231829232515
225 => 0.099284691685641
226 => 0.10030844284919
227 => 0.095473516591481
228 => 0.0985667310719
301 => 0.090850072021213
302 => 0.097276734980387
303 => 0.093778994516217
304 => 0.096127633166479
305 => 0.096119438987483
306 => 0.091794850595789
307 => 0.089300518263316
308 => 0.090890003906434
309 => 0.092594058689384
310 => 0.092870535844789
311 => 0.095079887351265
312 => 0.09569646986687
313 => 0.0938281960591
314 => 0.0906901614143
315 => 0.091419055291337
316 => 0.089285747252163
317 => 0.085547206970018
318 => 0.088232291869305
319 => 0.089149097908771
320 => 0.089554011685088
321 => 0.08587758669185
322 => 0.084722374139906
323 => 0.084107348670422
324 => 0.090215581114241
325 => 0.090550203876069
326 => 0.088838226515669
327 => 0.096576526521032
328 => 0.094825110903528
329 => 0.096781871255524
330 => 0.0913529158119
331 => 0.091560309220905
401 => 0.088990154711023
402 => 0.09042926949877
403 => 0.089412149551625
404 => 0.09031300324553
405 => 0.090852971235297
406 => 0.093422704008115
407 => 0.097306077200834
408 => 0.093038871624892
409 => 0.091179589047944
410 => 0.09233307750168
411 => 0.09540496925891
412 => 0.10005904251836
413 => 0.097303737476812
414 => 0.098526495066137
415 => 0.098793613202706
416 => 0.096761953272006
417 => 0.10013395271793
418 => 0.10194103461508
419 => 0.10379472671864
420 => 0.1054042356329
421 => 0.10305432132892
422 => 0.10556906648116
423 => 0.10354262580073
424 => 0.1017246990208
425 => 0.10172745606532
426 => 0.10058704404059
427 => 0.098377352041532
428 => 0.097969850934147
429 => 0.10008972315648
430 => 0.10178965992614
501 => 0.10192967486064
502 => 0.10287084720223
503 => 0.10342782329914
504 => 0.10888694622112
505 => 0.11108265062057
506 => 0.11376751639766
507 => 0.11481342292859
508 => 0.11796122660842
509 => 0.11541911948484
510 => 0.11486911861805
511 => 0.10723357652951
512 => 0.10848389611876
513 => 0.11048577841904
514 => 0.10726658683131
515 => 0.10930842293796
516 => 0.10971152463742
517 => 0.10715719993299
518 => 0.10852157512348
519 => 0.1048981991266
520 => 0.097385056896022
521 => 0.10014231699298
522 => 0.10217258850806
523 => 0.099275140725372
524 => 0.10446870372912
525 => 0.10143473143923
526 => 0.10047310787969
527 => 0.096721471530369
528 => 0.098492099473523
529 => 0.10088689911959
530 => 0.099407191363662
531 => 0.10247780713645
601 => 0.10682661797403
602 => 0.10992583955306
603 => 0.11016375930271
604 => 0.10817116745911
605 => 0.11136430860502
606 => 0.11138756715224
607 => 0.10778569089529
608 => 0.10557956174324
609 => 0.10507832455816
610 => 0.10633051331983
611 => 0.1078509016433
612 => 0.11024813027329
613 => 0.11169672532794
614 => 0.11547389295502
615 => 0.11649588621502
616 => 0.11761874695877
617 => 0.11911923518985
618 => 0.12092095602854
619 => 0.11697889340551
620 => 0.11713551890244
621 => 0.11346472476944
622 => 0.1095419547932
623 => 0.11251884822499
624 => 0.11641074038751
625 => 0.11551793602527
626 => 0.11541747729618
627 => 0.11558642101358
628 => 0.11491327568072
629 => 0.1118686642881
630 => 0.110339679507
701 => 0.11231245996023
702 => 0.11336090497277
703 => 0.1149869517532
704 => 0.11478650716583
705 => 0.11897502904755
706 => 0.12060256199646
707 => 0.12018616942207
708 => 0.1202627956768
709 => 0.1232093663397
710 => 0.12648655892531
711 => 0.12955608224539
712 => 0.13267853320567
713 => 0.12891429670172
714 => 0.12700304955084
715 => 0.12897496874985
716 => 0.12792864066608
717 => 0.13394115219646
718 => 0.13435744544966
719 => 0.14036952220702
720 => 0.14607569895454
721 => 0.1424917515762
722 => 0.14587125252943
723 => 0.14952645834512
724 => 0.15657794339934
725 => 0.15420325130731
726 => 0.15238427438099
727 => 0.15066534997485
728 => 0.15424215879247
729 => 0.15884366619542
730 => 0.15983478681732
731 => 0.16144078086203
801 => 0.15975227449563
802 => 0.16178589443108
803 => 0.16896546642111
804 => 0.16702548269357
805 => 0.16427039393251
806 => 0.16993797648521
807 => 0.17198905257887
808 => 0.18638457876101
809 => 0.2045595252155
810 => 0.19703497804021
811 => 0.19236424879289
812 => 0.19346198095719
813 => 0.2000988561416
814 => 0.20223040980695
815 => 0.19643611215393
816 => 0.19848275604126
817 => 0.20975996508201
818 => 0.21580982591619
819 => 0.20759330229866
820 => 0.18492423950995
821 => 0.16402232833366
822 => 0.16956645640294
823 => 0.16893792433421
824 => 0.18105387858802
825 => 0.16697921472326
826 => 0.16721619596625
827 => 0.17958269532302
828 => 0.1762835253101
829 => 0.17093929241496
830 => 0.16406134714808
831 => 0.15134682918931
901 => 0.14008522606267
902 => 0.16217182318632
903 => 0.16121940895648
904 => 0.15984017201179
905 => 0.16290951458318
906 => 0.17781337086175
907 => 0.17746978873546
908 => 0.1752840945451
909 => 0.17694192432466
910 => 0.17064866683911
911 => 0.17227058258795
912 => 0.16401901736414
913 => 0.1677490694611
914 => 0.17092782609138
915 => 0.17156600854721
916 => 0.17300386620658
917 => 0.16071752993539
918 => 0.16623373421327
919 => 0.16947398742809
920 => 0.15483440552214
921 => 0.16918460996365
922 => 0.16050365215554
923 => 0.15755720469186
924 => 0.16152420803677
925 => 0.15997826297522
926 => 0.15864915019224
927 => 0.15790748242228
928 => 0.1608204118566
929 => 0.16068452021679
930 => 0.155918402287
1001 => 0.1497011957394
1002 => 0.15178789432962
1003 => 0.15102977716889
1004 => 0.14828226277935
1005 => 0.15013375574175
1006 => 0.14198071775447
1007 => 0.1279538396554
1008 => 0.13722042498254
1009 => 0.13686367152755
1010 => 0.13668378025806
1011 => 0.14364736302181
1012 => 0.14297797521626
1013 => 0.14176302979453
1014 => 0.1482599493539
1015 => 0.14588848631883
1016 => 0.15319677660596
1017 => 0.15801048925964
1018 => 0.15678957602337
1019 => 0.16131689604085
1020 => 0.1518359676506
1021 => 0.15498515175302
1022 => 0.15563419423195
1023 => 0.14817977837503
1024 => 0.14308749533971
1025 => 0.14274789811753
1026 => 0.1339185810941
1027 => 0.13863513098026
1028 => 0.14278549969598
1029 => 0.14079779516277
1030 => 0.14016854728854
1031 => 0.14338323821077
1101 => 0.14363304722739
1102 => 0.13793737517482
1103 => 0.13912168575303
1104 => 0.1440604577394
1105 => 0.13899724137055
1106 => 0.12916023903758
1107 => 0.12672052645181
1108 => 0.12639502382004
1109 => 0.11977832979138
1110 => 0.12688355971273
1111 => 0.12378193644374
1112 => 0.13357992718734
1113 => 0.12798336742227
1114 => 0.1277421109165
1115 => 0.1273774163234
1116 => 0.12168215444074
1117 => 0.12292905484026
1118 => 0.12707394167659
1119 => 0.12855288399528
1120 => 0.12839861819482
1121 => 0.12705362946985
1122 => 0.12766935842069
1123 => 0.12568588093586
1124 => 0.12498547375346
1125 => 0.12277479602362
1126 => 0.11952571047605
1127 => 0.11997751574924
1128 => 0.11354022711005
1129 => 0.11003285060664
1130 => 0.10906205501698
1201 => 0.10776386658215
1202 => 0.10920868885504
1203 => 0.11352199108013
1204 => 0.10831923347856
1205 => 0.09939947050168
1206 => 0.099935563455127
1207 => 0.1011400051541
1208 => 0.098895536016246
1209 => 0.096771334341287
1210 => 0.098618155355735
1211 => 0.094838734195272
1212 => 0.10159673014494
1213 => 0.10141394529357
1214 => 0.10393290827194
1215 => 0.10550806751664
1216 => 0.10187783542147
1217 => 0.10096484186672
1218 => 0.10148492448875
1219 => 0.092889117245022
1220 => 0.1032304474341
1221 => 0.103319879687
1222 => 0.10255410644171
1223 => 0.10806054551464
1224 => 0.11968084945994
1225 => 0.11530882369008
1226 => 0.11361584316681
1227 => 0.11039748595451
1228 => 0.11468575585275
1229 => 0.114356483632
1230 => 0.11286738977697
1231 => 0.11196678116719
]
'min_raw' => 0.084107348670422
'max_raw' => 0.21580982591619
'avg_raw' => 0.14995858729331
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.0841073'
'max' => '$0.2158098'
'avg' => '$0.149958'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.051720618063242
'max_diff' => 0.12544080436681
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0026400335674499
]
1 => [
'year' => 2028
'avg' => 0.0045310640089648
]
2 => [
'year' => 2029
'avg' => 0.01237805022766
]
3 => [
'year' => 2030
'avg' => 0.0095496473166939
]
4 => [
'year' => 2031
'avg' => 0.0093789371397566
]
5 => [
'year' => 2032
'avg' => 0.01644422846614
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0026400335674499
'min' => '$0.00264'
'max_raw' => 0.01644422846614
'max' => '$0.016444'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.01644422846614
]
1 => [
'year' => 2033
'avg' => 0.042296246554984
]
2 => [
'year' => 2034
'avg' => 0.026809393729043
]
3 => [
'year' => 2035
'avg' => 0.031621741383169
]
4 => [
'year' => 2036
'avg' => 0.061377876078281
]
5 => [
'year' => 2037
'avg' => 0.14995858729331
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.01644422846614
'min' => '$0.016444'
'max_raw' => 0.14995858729331
'max' => '$0.149958'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.14995858729331
]
]
]
]
'prediction_2025_max_price' => '$0.004513'
'last_price' => 0.00437687
'sma_50day_nextmonth' => '$0.002675'
'sma_200day_nextmonth' => '$0.001012'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'augmenter'
'sma_200day_date_nextmonth' => '4 févr. 2026'
'sma_50day_date_nextmonth' => '4 févr. 2026'
'daily_sma3' => '$0.003788'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.0023076'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.001199'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.000623'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.000358'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.000377'
'daily_sma100_action' => 'BUY'
'daily_sma200' => '$0.000525'
'daily_sma200_action' => 'BUY'
'daily_ema3' => '$0.003898'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.00301'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.001875'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.00105'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.000577'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.000532'
'daily_ema100_action' => 'BUY'
'daily_ema200' => '$0.002163'
'daily_ema200_action' => 'BUY'
'weekly_sma21' => '$0.000562'
'weekly_sma21_action' => 'BUY'
'weekly_sma50' => '$0.0020043'
'weekly_sma50_action' => 'BUY'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.0023055'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.001593'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.000989'
'weekly_ema10_action' => 'BUY'
'weekly_ema21' => '$0.001078'
'weekly_ema21_action' => 'BUY'
'weekly_ema50' => '$0.009845'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.02597'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.012985'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '71.99'
'rsi_14_action' => 'SELL'
'stoch_rsi_14' => 286.92
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.006259'
'vwma_10_action' => 'SELL'
'hma_9' => '0.004159'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 65.87
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => 256.61
'cci_20_action' => 'SELL'
'adx_14' => 20.72
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.001870'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -34.13
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 74.04
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.000066'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 7
'buy_signals' => 27
'sell_pct' => 20.59
'buy_pct' => 79.41
'overall_action' => 'bullish'
'overall_action_label' => 'Haussier'
'overall_action_dir' => 1
'last_updated' => 1767699317
'last_updated_date' => '6 janvier 2026'
]
Prévision du prix de BlockProtocol pour 2026
La prévision du prix de BlockProtocol pour 2026 suggère que le prix moyen pourrait varier entre $0.001512 à la baisse et $0.004513 à la hausse. Sur le marché des cryptomonnaies, comparé au prix moyen d'aujourd'hui, BlockProtocol pourrait potentiellement gagner 3.13% d'ici 2026 si BLOCK atteint l'objectif de prix prévu.
Prévision du prix de BlockProtocol de 2027 à 2032
La prévision du prix de BLOCK pour 2027-2032 se situe actuellement dans une fourchette de prix comprise entre $0.00264 à la baisse et $0.016444 à la hausse. Compte tenu de la volatilité des prix sur le marché, si BlockProtocol atteint l'objectif de prix le plus élevé, il pourrait gagner 275.71% d'ici 2032 par rapport au prix actuel.
| Prévision du Prix de BlockProtocol | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2027 | $0.001455 | $0.00264 | $0.003824 |
| 2028 | $0.002627 | $0.004531 | $0.006434 |
| 2029 | $0.005771 | $0.012378 | $0.018984 |
| 2030 | $0.0049082 | $0.009549 | $0.014191 |
| 2031 | $0.005803 | $0.009378 | $0.012954 |
| 2032 | $0.008857 | $0.016444 | $0.02403 |
Prévision du prix de BlockProtocol de 2032 à 2037
La prévision du prix de BlockProtocol pour 2032-2037 est actuellement estimée entre $0.016444 à la baisse et $0.149958 à la hausse. Par rapport au prix actuel, BlockProtocol pourrait potentiellement gagner 3326.16% d'ici 2037 s'il atteint l'objectif de prix le plus élevé. Veuillez noter que ces informations sont à titre général seulement et ne doivent pas être considérées comme un conseil en investissement à long terme.
| Prévision du Prix de BlockProtocol | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2032 | $0.008857 | $0.016444 | $0.02403 |
| 2033 | $0.020583 | $0.042296 | $0.0640087 |
| 2034 | $0.016548 | $0.0268093 | $0.03707 |
| 2035 | $0.019565 | $0.031621 | $0.043678 |
| 2036 | $0.032386 | $0.061377 | $0.090369 |
| 2037 | $0.0841073 | $0.149958 | $0.2158098 |
BlockProtocol Histogramme des prix potentiels
Prévision du prix de BlockProtocol basée sur l'analyse technique
Au 6 janvier 2026, le sentiment global de prévision du prix pour BlockProtocol est Haussier, avec 27 indicateurs techniques montrant des signaux haussiers et 7 indiquant des signaux baissiers. La prévision du prix de BLOCK a été mise à jour pour la dernière fois le 6 janvier 2026.
Moyennes Mobiles Simples sur 50 et 200 jours de BlockProtocol et Indice de Force Relative sur 14 jours - RSI (14)
Selon nos indicateurs techniques, le SMA sur 200 jours de BlockProtocol devrait augmenter au cours du prochain mois, atteignant $0.001012 d'ici le 4 févr. 2026. Le SMA à court terme sur 50 jours pour BlockProtocol devrait atteindre $0.002675 d'ici le 4 févr. 2026.
Le Relative Strength Index (RSI), un oscillateur de momentum, est un outil couramment utilisé pour identifier si une cryptomonnaie est survendue (en dessous de 30) ou surachetée (au-dessus de 70). Actuellement, le RSI est à 71.99, ce qui suggère que le marché de BLOCK est dans un état SELL.
Moyennes Mobiles et Oscillateurs Populaires de BLOCK pour le Samedi 19 Octobre 2024
Les moyennes mobiles (MA) sont des indicateurs largement utilisés sur les marchés financiers, conçus pour lisser les mouvements de prix sur une période donnée. En tant qu'indicateurs retardés, ils sont basés sur des données historiques de prix. Le tableau ci-dessous met en évidence deux types : la moyenne mobile simple (SMA) et la moyenne mobile exponentielle (EMA).
Moyenne Mobile Simple Quotidienne (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 3 | $0.003788 | BUY |
| SMA 5 | $0.0023076 | BUY |
| SMA 10 | $0.001199 | BUY |
| SMA 21 | $0.000623 | BUY |
| SMA 50 | $0.000358 | BUY |
| SMA 100 | $0.000377 | BUY |
| SMA 200 | $0.000525 | BUY |
Moyenne Mobile Exponentielle Quotidienne (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 3 | $0.003898 | BUY |
| EMA 5 | $0.00301 | BUY |
| EMA 10 | $0.001875 | BUY |
| EMA 21 | $0.00105 | BUY |
| EMA 50 | $0.000577 | BUY |
| EMA 100 | $0.000532 | BUY |
| EMA 200 | $0.002163 | BUY |
Moyenne Mobile Simple Hebdomadaire (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 21 | $0.000562 | BUY |
| SMA 50 | $0.0020043 | BUY |
| SMA 100 | — | — |
| SMA 200 | — | — |
Moyenne Mobile Exponentielle Hebdomadaire (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 21 | $0.001078 | BUY |
| EMA 50 | $0.009845 | SELL |
| EMA 100 | $0.02597 | SELL |
| EMA 200 | $0.012985 | SELL |
Oscillateurs de BlockProtocol
Un oscillateur est un outil d'analyse technique qui établit des limites hautes et basses entre deux extrêmes, créant un indicateur de tendance qui fluctue à l'intérieur de ces limites. Les traders utilisent cet indicateur pour identifier les conditions de surachat ou de survente à court terme.
| Période | Valeur | Action |
|---|---|---|
| RSI (14) | 71.99 | SELL |
| Stoch RSI (14) | 286.92 | SELL |
| Stochastique Rapide (14) | 65.87 | NEUTRAL |
| Indice de Canal des Matières Premières (20) | 256.61 | SELL |
| Indice Directionnel Moyen (14) | 20.72 | NEUTRAL |
| Oscillateur Impressionnant (5, 34) | 0.001870 | BUY |
| Momentum (10) | 0 | SELL |
| MACD (12, 26) | 0 | BUY |
| Plage de Pourcentage de Williams (14) | -34.13 | NEUTRAL |
| Oscillateur Ultime (7, 14, 28) | 74.04 | SELL |
| VWMA (10) | 0.006259 | SELL |
| Moyenne Mobile de Hull (9) | 0.004159 | BUY |
| Nuage Ichimoku B/L (9, 26, 52, 26) | -0.000066 | NEUTRAL |
Prévision du cours de BlockProtocol basée sur les flux monétaires mondiaux
Définitions des flux monétaires mondiaux utilisés pour la prédiction du cours de BlockProtocol
M0 : le total de toutes les devises physiques, plus les comptes à la banque centrale qui peuvent être échangés contre des devises physiques.
M1 : M0 plus le montant des comptes à vue, y compris les comptes de "chèques" et les comptes "courants".
M2 : M1 plus la plupart des comptes d'épargne, comptes du marché monétaire et comptes de certificats de dépôt (CD) de moins de 100 000 $.
Prédictions du cours de BlockProtocol par des sociétés Internet ou des niches technologiques
| Comparaison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Action Facebook | $0.00615 | $0.008642 | $0.012143 | $0.017063 | $0.023977 | $0.033692 |
| Action Amazon.com | $0.009132 | $0.019055 | $0.03976 | $0.082963 | $0.1731081 | $0.36120039 |
| Action Apple | $0.0062082 | $0.0088059 | $0.01249 | $0.017716 | $0.02513 | $0.035645 |
| Action Netflix | $0.006906 | $0.010896 | $0.017193 | $0.027128 | $0.0428038 | $0.067537 |
| Action Google | $0.005668 | $0.00734 | $0.0095053 | $0.0123093 | $0.01594 | $0.020643 |
| Action Tesla | $0.009922 | $0.022492 | $0.050988 | $0.115587 | $0.262028 | $0.593999 |
| Action Kodak | $0.003282 | $0.002461 | $0.001845 | $0.001384 | $0.001037 | $0.000778 |
| Action Nokia | $0.002899 | $0.00192 | $0.001272 | $0.000842 | $0.000558 | $0.000369 |
Ce calcul montre la valeur potentielle des cryptomonnaies si l'on suppose que leur capitalisation se comportera comme celle de certaines sociétés Internet ou niches technologiques. En extrapolant les données, vous pourrez obtenir une potentielle image des cours futurs pour 2024, 2025, 2026, 2027, 2028, 2029 et 2030.
Aperçu des prévisions relatives à BlockProtocol
Vous vous posez peut-être des questions telles que : "Devrais-je investir dans BlockProtocol maintenant ?", "Devrais-je acheter BLOCK aujourd'hui ?", " BlockProtocol sera-t-il un bon ou un mauvais investissement à court ou à long terme ?".
Nous mettons régulièrement à jour les prévisions de BlockProtocol avec de nouvelles valeurs. Regardez nos prévisions similaires. Nous faisons une prévision des cours futurs pour une grande quantité de devises numériques comme BlockProtocol en utilisant des méthodes d'analyse technique.
Si vous souhaitez trouver des cryptomonnaies ayant un bon rendement, vous devriez consulter un maximum d'informations disponibles à propos de BlockProtocol afin de prendre une décision responsable concernant cet investissement.
Le cours de BlockProtocol est de $0.004376 USD actuellement, mais ce cours peut subir une hausse ou une baisse, ce qui pourrait causer la perte de votre investissement, car les cryptomonnaies sont des actifs à haut risque.
Prévision à court terme de BlockProtocol
basée sur l'historique des cours sur 4 heures
Prévision à long terme de BlockProtocol
basée sur l'historique des cours sur 1 mois
Prévision du cours de BlockProtocol basée sur le modèle de croissance du Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si BlockProtocol présente 1 % de la précédente croissance annuelle moyenne du Bitcoin | $0.00449 | $0.0046073 | $0.004727 | $0.004849 |
| Si BlockProtocol présente 2 % de la précédente croissance annuelle moyenne du Bitcoin | $0.0046044 | $0.004843 | $0.005095 | $0.00536 |
| Si BlockProtocol présente 5 % de la précédente croissance annuelle moyenne du Bitcoin | $0.004945 | $0.005588 | $0.006314 | $0.007135 |
| Si BlockProtocol présente 10 % de la précédente croissance annuelle moyenne du Bitcoin | $0.005514 | $0.006947 | $0.008753 | $0.011029 |
| Si BlockProtocol présente 20 % de la précédente croissance annuelle moyenne du Bitcoin | $0.006652 | $0.01011 | $0.015366 | $0.023355 |
| Si BlockProtocol présente 50 % de la précédente croissance annuelle moyenne du Bitcoin | $0.010065 | $0.023146 | $0.053229 | $0.12241 |
| Si BlockProtocol présente 100 % de la précédente croissance annuelle moyenne du Bitcoin | $0.015753 | $0.0567028 | $0.204091 | $0.734591 |
Boîte à questions
Est-ce que BLOCK est un bon investissement ?
La décision d'acquérir BlockProtocol dépend entièrement de votre tolérance individuelle au risque. Comme vous pouvez le discerner, la valeur de BlockProtocol a connu une baisse de -13.5932% au cours des 24 heures précédentes, et BlockProtocol a enregistré une déclin de sur une période de 30 jours précédents. Par conséquent, la détermination de si investir ou non dans BlockProtocol dépendra de la mesure dans laquelle cet investissement s'aligne avec vos aspirations de trading.
Est-ce que BlockProtocol peut monter ?
Il semble que la valeur moyenne de BlockProtocol pourrait potentiellement s'envoler jusqu'à $0.004513 pour la fin de cette année. En regardant les perspectives de BlockProtocol sur une période de cinq ans plus longue, la monnaie numérique pourrait potentiellement croître jusqu'à $0.014191. Cependant, compte tenu de l'imprévisibilité du marché, il est essentiel de mener des recherches approfondies avant d'investir des fonds dans un projet, un réseau ou un actif particulier.
Quel sera le prix de BlockProtocol la semaine prochaine ?
Basé sur notre nouveau pronostic expérimental de BlockProtocol, le prix de BlockProtocol va augmenter de 0.86% durant la prochaine semaine et atteindre $0.004414 d'ici 13 janvier 2026.
Quel sera le prix de BlockProtocol le mois prochain ?
Basé sur notre nouveau pronostic expérimental de BlockProtocol, le prix de BlockProtocol va diminuer de -11.62% durant le prochain mois et atteindre $0.003868 d'ici 5 février 2026.
Jusqu'où le prix de BlockProtocol peut-il monter cette année en 2026 ?
Selon notre prédiction la plus récente sur la valeur de BlockProtocol en 2026, BLOCK devrait fluctuer dans la fourchette de $0.001512 et $0.004513. Cependant, il est crucial de garder à l'esprit que le marché des cryptomonnaies est exceptionnellement instable, et cette prévision de prix de BlockProtocol ne prend pas en compte les fluctuations de prix soudaines et extrêmes.
Où sera BlockProtocol dans 5 ans ?
L'avenir de BlockProtocol semble suivre une tendance haussière, avec un prix maximum de $0.014191 prévue après une période de cinq ans. Selon la prévision de BlockProtocol pour 2030, la valeur de BlockProtocol pourrait potentiellement atteindre son point le plus élevé d'environ $0.014191, tandis que son point le plus bas devrait être autour de $0.0049082.
Combien vaudra BlockProtocol en 2026 ?
Basé sur notre nouvelle simulation expérimentale de prédiction de prix de BlockProtocol, il est attendu que la valeur de BLOCK en 2026 augmente de 3.13% jusqu'à $0.004513 si le meilleur scénario se produit. Le prix sera entre $0.004513 et $0.001512 durant 2026.
Combien vaudra BlockProtocol en 2027 ?
Selon notre dernière simulation expérimentale pour la prédiction de prix de BlockProtocol, le valeur de BLOCK pourrait diminuer de -12.62% jusqu'à $0.003824 en 2027, en supposant les conditions les plus favorables. Il est prévu que le prix fluctue entre $0.003824 et $0.001455 tout au long de l'année.
Combien vaudra BlockProtocol en 2028 ?
Notre nouveau modèle expérimental de prédiction de prix de BlockProtocol suggère que la valeur de BLOCK en 2028 pourrait augmenter de 47.02%, atteignant $0.006434 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.006434 et $0.002627 durant l'année.
Combien vaudra BlockProtocol en 2029 ?
Basé sur notre modèle de prévision expérimental, la valeur de BlockProtocol pourrait connaître un 333.75% croissance en 2029, atteignant potentiellement $0.018984 sous des conditions optimales. Le range de prix prévu pour 2029 se situe entre $0.018984 et $0.005771.
Combien vaudra BlockProtocol en 2030 ?
En utilisant notre nouvelle simulation expérimentale pour les prédictions de prix de BlockProtocol, il est prévu que la valeur de BLOCK en 2030 augmente de 224.23%, atteignant $0.014191 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.014191 et $0.0049082 au cours de 2030.
Combien vaudra BlockProtocol en 2031 ?
Notre simulation expérimentale indique que le prix de BlockProtocol pourrait augmenter de 195.98% en 2031, atteignant potentiellement $0.012954 dans des conditions idéales. Il est probable que le prix fluctue entre $0.012954 et $0.005803 durant l'année.
Combien vaudra BlockProtocol en 2032 ?
Basé sur les résultats de notre dernière prédiction expérimentale de prix de BlockProtocol, BLOCK pourrait connaître une 449.04% hausse en valeur, atteignant $0.02403 si le scénario le plus positif se réalise en 2032. Il est prévu que le prix reste dans une fourchette de $0.02403 et $0.008857 tout au long de l'année.
Combien vaudra BlockProtocol en 2033 ?
Selon notre prédiction expérimentale de prix de BlockProtocol, la valeur de BLOCK est anticipée à augmenter de 1362.43% en 2033, avec le prix potentiel le plus élevé étant $0.0640087. Tout au long de l'année, le prix de BLOCK pourrait osciller entre $0.0640087 et $0.020583.
Combien vaudra BlockProtocol en 2034 ?
Les résultats de notre nouvelle simulation de prédiction de prix de BlockProtocol suggèrent que BLOCK pourrait augmenter de 746.96% en 2034, atteignant potentiellement $0.03707 dans les meilleures circonstances. La fourchette de prix prévue pour l'année est entre $0.03707 et $0.016548.
Combien vaudra BlockProtocol en 2035 ?
Basé sur notre prédiction expérimentale pour le prix de BlockProtocol, BLOCK pourrait augmenter de 897.93%, avec la valeur potentiellement atteignant $0.043678 en 2035. La fourchette de prix attendue pour l'année se situe entre $0.043678 et $0.019565.
Combien vaudra BlockProtocol en 2036 ?
Notre récente simulation de prédiction de prix de BlockProtocol suggère que la valeur de BLOCK pourrait augmenter de 1964.7% en 2036, pouvant atteindre $0.090369 si les conditions sont optimales. La fourchette de prix attendue pour 2036 est entre $0.090369 et $0.032386.
Combien vaudra BlockProtocol en 2037 ?
Selon la simulation expérimentale, la valeur de BlockProtocol pourrait augmenter de 4830.69% en 2037, avec un maximum de $0.2158098 sous des conditions favorables. Il est prévu que le prix chute entre $0.2158098 et $0.0841073 au cours de l'année.
Prévisions liées
Comment lire et prédire les mouvements de prix de BlockProtocol ?
Les traders de BlockProtocol utilisent des indicateurs et des modèles graphiques pour prédire la direction du marché. Ils identifient également des niveaux clés de support et de résistance pour évaluer quand une tendance baissière pourrait ralentir ou une tendance haussière pourrait s'arrêter.
Indicateurs de prédiction du prix de BlockProtocol
Les moyennes mobiles sont des outils populaires pour la prédiction du prix de BlockProtocol. Une moyenne mobile simple (SMA) calcule le prix de clôture moyen de BLOCK sur une période spécifique, comme une SMA de 12 jours. Une moyenne mobile exponentielle (EMA) donne plus de poids aux prix récents, réagissant plus rapidement aux changements de prix.
Les moyennes mobiles couramment utilisées sur le marché des cryptomonnaies incluent les moyennes sur 50 jours, 100 jours et 200 jours, qui aident à identifier les niveaux clés de résistance et de support. Un mouvement de prix de BLOCK au-dessus de ces moyennes est considéré comme haussier, tandis qu'une chute en dessous indique une faiblesse.
Les traders utilisent également le RSI et les niveaux de retracement de Fibonacci pour évaluer la direction future de BLOCK.
Comment lire les graphiques de BlockProtocol et prédire les mouvements de prix ?
La plupart des traders préfèrent les graphiques en chandeliers aux simples graphiques linéaires parce qu'ils fournissent des informations plus détaillées. Les chandeliers peuvent représenter l'action des prix de BlockProtocol dans différentes périodes, comme 5 minutes pour les tendances à court terme et hebdomadaire pour les tendances à long terme. Les options populaires incluent les graphiques de 1 heure, 4 heures et 1 jour.
Par exemple, un graphique en chandeliers de 1 heure montre les prix d'ouverture, de clôture, les plus hauts et les plus bas de BLOCK au sein de chaque heure. La couleur du chandelier est cruciale : le vert indique que le prix a clôturé plus haut qu'il n'a ouvert, tandis que le rouge signifie le contraire. Certains graphiques utilisent des chandeliers creux et pleins pour transmettre la même information.
Qu'est-ce qui affecte le prix de BlockProtocol ?
L'action du prix de BlockProtocol est déterminée par l'offre et la demande, influencée par des facteurs tels que les réductions de récompenses de bloc, les hard forks et les mises à jour de protocole. Les événements du monde réel, tels que les réglementations, l'adoption par les entreprises et les gouvernements et les piratages d'échanges de cryptomonnaies, impactent également le prix de BLOCK. La capitalisation boursière de BlockProtocol peut changer rapidement.
Les traders surveillent souvent l'activité des « baleines » de BLOCK, de grands détenteurs de BlockProtocol, car leurs actions peuvent influencer significativement les mouvements de prix sur le marché relativement petit de BlockProtocol.
Modèles de prédiction de prix haussiers et baissiers
Les traders identifient souvent des modèles de chandeliers pour obtenir un avantage dans les prédictions de prix des cryptomonnaies. Certaines formations indiquent des tendances haussières, tandis que d'autres suggèrent des mouvements baissiers.
Modèles de chandeliers haussiers couramment suivis :
- Marteau
- Englobante haussière
- Ligne pénétrante
- Étoile du matin
- Trois soldats blancs
Modèles de chandeliers baissiers courants :
- Harami baissier
- Nuage sombre
- Étoile du soir
- Étoile filante
- Pendu


