Predicción del precio de BlockProtocol - Pronóstico de BLOCK
Predicción de precio de BlockProtocol hasta $0.004513 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.001512 | $0.004513 |
| 2027 | $0.001455 | $0.003823 |
| 2028 | $0.002626 | $0.006434 |
| 2029 | $0.00577 | $0.018982 |
| 2030 | $0.0049076 | $0.014189 |
| 2031 | $0.0058023 | $0.012953 |
| 2032 | $0.008856 | $0.024027 |
| 2033 | $0.020581 | $0.0640015 |
| 2034 | $0.016546 | $0.037066 |
| 2035 | $0.019563 | $0.043673 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en BlockProtocol hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,956.19, equivalente a un ROI del 39.56% en los próximos 90 días.
Predicción del precio a largo plazo de BlockProtocol para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'BlockProtocol'
'name_with_ticker' => 'BlockProtocol <small>BLOCK</small>'
'name_lang' => 'BlockProtocol'
'name_lang_with_ticker' => 'BlockProtocol <small>BLOCK</small>'
'name_with_lang' => 'BlockProtocol'
'name_with_lang_with_ticker' => 'BlockProtocol <small>BLOCK</small>'
'image' => '/uploads/coins/blockgames.png?1717253092'
'price_for_sd' => 0.004376
'ticker' => 'BLOCK'
'marketcap' => '$2.97M'
'low24h' => '$0.002358'
'high24h' => '$0.005798'
'volume24h' => '$18K'
'current_supply' => '679.32M'
'max_supply' => '1B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.004376'
'change_24h_pct' => '-19.4361%'
'ath_price' => '$0.2505'
'ath_days' => 634
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '12 abr. 2024'
'ath_pct' => '-98.25%'
'fdv' => '$4.38M'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.215785'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.004413'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.003867'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.001512'
'current_year_max_price_prediction' => '$0.004513'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.0049076'
'grand_prediction_max_price' => '$0.014189'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0044593100990241
107 => 0.0044759595442043
108 => 0.004513471594337
109 => 0.0041929352330729
110 => 0.0043368466488273
111 => 0.004421381122907
112 => 0.0040394512936247
113 => 0.0044138315981801
114 => 0.0041873554081523
115 => 0.0041104859876986
116 => 0.0042139805355634
117 => 0.0041736486096088
118 => 0.0041389735880431
119 => 0.004119624330217
120 => 0.0041956193038924
121 => 0.0041920740475369
122 => 0.004067731520615
123 => 0.0039055317630952
124 => 0.0039599713257444
125 => 0.0039401929222604
126 => 0.0038685134365693
127 => 0.003916816755311
128 => 0.0037041133853228
129 => 0.0033381682926172
130 => 0.0035799228300598
131 => 0.0035706155433466
201 => 0.003565922387334
202 => 0.0037475942406175
203 => 0.003730130683807
204 => 0.0036984341571924
205 => 0.0038679313050013
206 => 0.0038060625659927
207 => 0.0039967274415089
208 => 0.0041223116599549
209 => 0.0040904594399331
210 => 0.0042085720043827
211 => 0.0039612255033154
212 => 0.0040433840891508
213 => 0.0040603168598246
214 => 0.0038658397365077
215 => 0.0037329879376767
216 => 0.003724128237316
217 => 0.0034937815262486
218 => 0.0036168308800072
219 => 0.0037251092191864
220 => 0.0036732522974581
221 => 0.0036568359452204
222 => 0.0037407035285305
223 => 0.0037472207580309
224 => 0.0035986272347552
225 => 0.0036295245335891
226 => 0.0037583714059751
227 => 0.003626277922992
228 => 0.0033696418629039
301 => 0.0033059925717309
302 => 0.0032975005829992
303 => 0.0031248786572491
304 => 0.003310245921718
305 => 0.0032293281432435
306 => 0.0034849464359006
307 => 0.0033389386380432
308 => 0.0033326445336997
309 => 0.0033231300718401
310 => 0.003174547249425
311 => 0.0032070774446029
312 => 0.003315212767863
313 => 0.0033537966694338
314 => 0.0033497720523913
315 => 0.003314682845786
316 => 0.0033307465048841
317 => 0.0032789998619792
318 => 0.0032607270453562
319 => 0.00320305300976
320 => 0.0031182881102925
321 => 0.0031300751894568
322 => 0.0029621337436693
323 => 0.0028706303306771
324 => 0.0028453033919565
325 => 0.0028114351510136
326 => 0.0028491288998909
327 => 0.0029616579866541
328 => 0.0028259240336402
329 => 0.0025932176918276
330 => 0.0026072037394828
331 => 0.0026386262360693
401 => 0.002580070621561
402 => 0.002524652646629
403 => 0.0025728340796299
404 => 0.0024742333348904
405 => 0.0026505416650005
406 => 0.0026457730187694
407 => 0.0027114898614004
408 => 0.002752583951743
409 => 0.0026578753778731
410 => 0.0026340564276641
411 => 0.0026476247842141
412 => 0.0024233700743302
413 => 0.0026931634672727
414 => 0.0026954966517382
415 => 0.0026755185098266
416 => 0.0028191751626319
417 => 0.0031223355076849
418 => 0.0030082743912794
419 => 0.0029641064794916
420 => 0.0028801432468966
421 => 0.002992019269086
422 => 0.0029834289361197
423 => 0.0029445801926589
424 => 0.0029210843513984
425 => 0.0029643761593428
426 => 0.0029157200173049
427 => 0.0029069800372135
428 => 0.0028540252670519
429 => 0.0028351228233928
430 => 0.0028211282066355
501 => 0.0028057215086683
502 => 0.0028397048452739
503 => 0.0027626941336455
504 => 0.0026698267648748
505 => 0.0026621058480003
506 => 0.0026834239783206
507 => 0.002673992292602
508 => 0.0026620606927177
509 => 0.0026392800191608
510 => 0.0026325214799485
511 => 0.0026544834536113
512 => 0.0026296896658086
513 => 0.002666274250299
514 => 0.002656325267635
515 => 0.0026007510592229
516 => 0.0025314850193342
517 => 0.0025308684062888
518 => 0.0025159451516138
519 => 0.0024969381430589
520 => 0.0024916508281004
521 => 0.0025687763737315
522 => 0.0027284239450146
523 => 0.0026970813067291
524 => 0.0027197295750132
525 => 0.0028311366391556
526 => 0.0028665495947192
527 => 0.002841414317662
528 => 0.0028070076001497
529 => 0.0028085213211032
530 => 0.0029260994904643
531 => 0.002933432696663
601 => 0.0029519613429452
602 => 0.0029757758896127
603 => 0.0028454700379364
604 => 0.0028023839272074
605 => 0.0027819673376176
606 => 0.0027190921438955
607 => 0.0027868976498131
608 => 0.0027473902852362
609 => 0.0027527211784814
610 => 0.002749249427262
611 => 0.0027511452381866
612 => 0.002650492383229
613 => 0.0026871649934173
614 => 0.0026261896662096
615 => 0.0025445505478803
616 => 0.0025442768649293
617 => 0.0025642579234823
618 => 0.0025523724079961
619 => 0.0025203887914271
620 => 0.0025249319132024
621 => 0.0024851293859542
622 => 0.0025297646606583
623 => 0.0025310446406241
624 => 0.0025138576285632
625 => 0.0025826244277259
626 => 0.0026107982414512
627 => 0.0025994853819312
628 => 0.0026100045010695
629 => 0.0026983837348534
630 => 0.0027127934062165
701 => 0.0027191932303866
702 => 0.0027106183138129
703 => 0.002611619911223
704 => 0.0026160109113516
705 => 0.0025837926658825
706 => 0.0025565716435361
707 => 0.0025576603416745
708 => 0.0025716554856457
709 => 0.0026327731001724
710 => 0.0027613915168637
711 => 0.0027662724917583
712 => 0.0027721883757187
713 => 0.0027481255025669
714 => 0.0027408679097737
715 => 0.0027504425480116
716 => 0.0027987448628858
717 => 0.0029229915306927
718 => 0.0028790744601338
719 => 0.0028433691981595
720 => 0.0028746923389805
721 => 0.00286987038697
722 => 0.0028291682593604
723 => 0.0028280258862011
724 => 0.0027499054900609
725 => 0.0027210261583233
726 => 0.0026968924271428
727 => 0.0026705390227207
728 => 0.0026549158412051
729 => 0.002678920148622
730 => 0.0026844102177389
731 => 0.0026319243800484
801 => 0.002624770754313
802 => 0.0026676318223565
803 => 0.0026487702643322
804 => 0.0026681698445044
805 => 0.0026726707135108
806 => 0.002671945969937
807 => 0.0026522523371235
808 => 0.0026648044714062
809 => 0.0026351149318562
810 => 0.0026028320168202
811 => 0.0025822375283239
812 => 0.0025642661056484
813 => 0.002574237695454
814 => 0.0025386907985375
815 => 0.0025273186307962
816 => 0.0026605520907432
817 => 0.0027589730801071
818 => 0.0027575419999427
819 => 0.0027488306674863
820 => 0.0027358873944852
821 => 0.0027977979818471
822 => 0.0027762295711515
823 => 0.0027919223920336
824 => 0.0027959168735737
825 => 0.0028080069661347
826 => 0.0028123281350467
827 => 0.0027992665613499
828 => 0.0027554303246864
829 => 0.0026461945907452
830 => 0.0025953450617194
831 => 0.002578563870175
901 => 0.0025791738346156
902 => 0.0025623482923422
903 => 0.0025673041686096
904 => 0.0025606248408243
905 => 0.0025479758099019
906 => 0.0025734566534386
907 => 0.0025763930832857
908 => 0.0025704455499308
909 => 0.0025718464093397
910 => 0.0025226033733861
911 => 0.0025263472144594
912 => 0.0025055010316189
913 => 0.0025015926236408
914 => 0.0024488952887049
915 => 0.0023555343212651
916 => 0.0024072653599951
917 => 0.002344781539694
918 => 0.0023211179701616
919 => 0.0024331376278879
920 => 0.0024218939611939
921 => 0.0024026496913181
922 => 0.0023741834053145
923 => 0.0023636249829335
924 => 0.0022994753509372
925 => 0.0022956850484538
926 => 0.002327479338257
927 => 0.0023128073674876
928 => 0.0022922023638174
929 => 0.0022175731292198
930 => 0.0021336651606418
1001 => 0.0021361978147864
1002 => 0.0021628873784279
1003 => 0.0022404908842934
1004 => 0.0022101698519974
1005 => 0.002188171595173
1006 => 0.0021840519829349
1007 => 0.0022356175550865
1008 => 0.0023085936430024
1009 => 0.0023428323907046
1010 => 0.0023089028315779
1011 => 0.0022699263809505
1012 => 0.0022722986969007
1013 => 0.0022880806521012
1014 => 0.0022897391124479
1015 => 0.0022643694499333
1016 => 0.0022715108613275
1017 => 0.0022606624043953
1018 => 0.0021940854442273
1019 => 0.0021928812781357
1020 => 0.002176542218412
1021 => 0.0021760474781771
1022 => 0.0021482506616176
1023 => 0.0021443616948306
1024 => 0.0020891694284055
1025 => 0.0021254971453041
1026 => 0.0021011304200992
1027 => 0.0020644040176861
1028 => 0.0020580723720671
1029 => 0.0020578820351541
1030 => 0.002095591838559
1031 => 0.0021250564842955
1101 => 0.0021015542897165
1102 => 0.0020962032955817
1103 => 0.0021533379135987
1104 => 0.0021460670126624
1105 => 0.0021397704593439
1106 => 0.0023020594347383
1107 => 0.0021735950471469
1108 => 0.0021175772416662
1109 => 0.0020482445698911
1110 => 0.0020708196374268
1111 => 0.0020755765358533
1112 => 0.0019088439583875
1113 => 0.0018412005724749
1114 => 0.0018179879115169
1115 => 0.0018046286969567
1116 => 0.0018107166587863
1117 => 0.0017498296776871
1118 => 0.0017907467359635
1119 => 0.00173802375698
1120 => 0.001729184577978
1121 => 0.0018234597955243
1122 => 0.001836577641298
1123 => 0.001780612835832
1124 => 0.0018165513008202
1125 => 0.0018035195138334
1126 => 0.0017389275411305
1127 => 0.0017364606028796
1128 => 0.0017040506214949
1129 => 0.0016533352764369
1130 => 0.001630157002871
1201 => 0.0016180855567549
1202 => 0.0016230664706902
1203 => 0.001620547968186
1204 => 0.0016041130357656
1205 => 0.0016214899992743
1206 => 0.0015770990381665
1207 => 0.0015594221997711
1208 => 0.0015514379819675
1209 => 0.0015120384489359
1210 => 0.001574740627041
1211 => 0.0015870937460289
1212 => 0.0015994712044773
1213 => 0.0017072085298209
1214 => 0.0017018262775093
1215 => 0.0017504792171433
1216 => 0.0017485886533762
1217 => 0.0017347120468672
1218 => 0.0016761689265966
1219 => 0.0016995031709057
1220 => 0.0016276839938691
1221 => 0.0016814958045343
1222 => 0.0016569383413816
1223 => 0.0016731929015398
1224 => 0.0016439657367608
1225 => 0.0016601412565095
1226 => 0.0015900231288114
1227 => 0.0015245478077556
1228 => 0.0015508969882923
1229 => 0.0015795415609299
1230 => 0.0016416502929096
1231 => 0.0016046588445284
]
'min_raw' => 0.0015120384489359
'max_raw' => 0.004513471594337
'avg_raw' => 0.0030127550216365
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.001512'
'max' => '$0.004513'
'avg' => '$0.003012'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0028643415510641
'max_diff' => 0.00013709159433702
'year' => 2026
]
1 => [
'items' => [
101 => 0.0016179623681678
102 => 0.0015733977909587
103 => 0.0014814483389343
104 => 0.0014819687628471
105 => 0.0014678243428808
106 => 0.0014556014989108
107 => 0.0016089077573601
108 => 0.0015898417007086
109 => 0.0015594624347383
110 => 0.0016001262894636
111 => 0.0016108784580751
112 => 0.0016111845571998
113 => 0.0016408518559213
114 => 0.0016566852985672
115 => 0.0016594760114596
116 => 0.0017061581470024
117 => 0.0017218053830841
118 => 0.0017862541340249
119 => 0.0016553419415808
120 => 0.0016526458911266
121 => 0.0016006985132908
122 => 0.0015677526650117
123 => 0.0016029543437088
124 => 0.0016341382255261
125 => 0.0016016674834236
126 => 0.0016059074768474
127 => 0.0015623181585318
128 => 0.0015778992887616
129 => 0.0015913198571203
130 => 0.0015839098080972
131 => 0.0015728166060591
201 => 0.0016315815028334
202 => 0.0016282657570559
203 => 0.0016829889799313
204 => 0.0017256496454579
205 => 0.0018021051845877
206 => 0.0017223198437884
207 => 0.0017194121488516
208 => 0.0017478353332671
209 => 0.0017218010316427
210 => 0.0017382538115958
211 => 0.0017994543873782
212 => 0.0018007474591059
213 => 0.0017790868416385
214 => 0.0017777687910971
215 => 0.0017819289496229
216 => 0.0018062951280488
217 => 0.0017977808366097
218 => 0.0018076337902185
219 => 0.00181995505958
220 => 0.0018709210537691
221 => 0.0018832087824236
222 => 0.0018533559722501
223 => 0.001856051346761
224 => 0.0018448855762782
225 => 0.0018340995818985
226 => 0.0018583449220961
227 => 0.0019026537578506
228 => 0.001902378114883
301 => 0.0019126569035374
302 => 0.001919060503715
303 => 0.001891571564031
304 => 0.001873677275093
305 => 0.001880539084115
306 => 0.001891511266172
307 => 0.0018769809533533
308 => 0.0017872931315411
309 => 0.0018144986873987
310 => 0.0018099703526202
311 => 0.0018035214532314
312 => 0.0018308768500206
313 => 0.0018282383552664
314 => 0.0017492051936913
315 => 0.0017542646402729
316 => 0.0017495128753953
317 => 0.0017648667998343
318 => 0.0017209718693357
319 => 0.0017344736543202
320 => 0.0017429418472911
321 => 0.0017479296780067
322 => 0.0017659491427389
323 => 0.0017638347665325
324 => 0.0017658177101452
325 => 0.0017925358193808
326 => 0.0019276668473466
327 => 0.001935021731049
328 => 0.0018988035937762
329 => 0.0019132720252455
330 => 0.0018854958007226
331 => 0.0019041421663293
401 => 0.0019168995361112
402 => 0.0018592514351682
403 => 0.0018558378887634
404 => 0.0018279470218813
405 => 0.0018429339939243
406 => 0.0018190886438025
407 => 0.0018249394586475
408 => 0.0018085800702761
409 => 0.0018380237122228
410 => 0.0018709462789987
411 => 0.0018792638195178
412 => 0.0018573839513383
413 => 0.0018415414848228
414 => 0.0018137273324543
415 => 0.0018599828877218
416 => 0.0018735094216945
417 => 0.0018599118385973
418 => 0.0018567609814806
419 => 0.0018507901129379
420 => 0.001858027729468
421 => 0.0018734357532856
422 => 0.0018661696137947
423 => 0.0018709690269413
424 => 0.0018526786131599
425 => 0.0018915806640138
426 => 0.0019533664830583
427 => 0.0019535651345695
428 => 0.0019462989559115
429 => 0.0019433257921566
430 => 0.0019507813324083
501 => 0.0019548256571526
502 => 0.0019789355072144
503 => 0.0020048063369095
504 => 0.0021255342107693
505 => 0.0020916343068898
506 => 0.0021987512587116
507 => 0.0022834668602072
508 => 0.0023088693649314
509 => 0.0022855002558653
510 => 0.0022055557961246
511 => 0.0022016333395346
512 => 0.0023211041140674
513 => 0.0022873481481538
514 => 0.0022833329834189
515 => 0.0022406184143682
516 => 0.0022658680149795
517 => 0.0022603455569365
518 => 0.0022516280867477
519 => 0.0022998025658117
520 => 0.002389980890054
521 => 0.0023759257525338
522 => 0.0023654342443741
523 => 0.0023194635096504
524 => 0.0023471481598894
525 => 0.0023372901862038
526 => 0.0023796462971817
527 => 0.0023545554753412
528 => 0.0022870924135121
529 => 0.0022978361284695
530 => 0.002296212237567
531 => 0.0023296317972696
601 => 0.0023196000749714
602 => 0.0022942533827849
603 => 0.0023896726703454
604 => 0.0023834766725611
605 => 0.0023922611808169
606 => 0.002396128393021
607 => 0.0024542084318826
608 => 0.0024780019654502
609 => 0.0024834035141345
610 => 0.0025060055307658
611 => 0.0024828411553707
612 => 0.0025755151728708
613 => 0.0026371379868296
614 => 0.0027087160563236
615 => 0.0028133108542258
616 => 0.002852639465793
617 => 0.0028455351041301
618 => 0.0029248376861756
619 => 0.003067342663314
620 => 0.002874339434383
621 => 0.0030775723030958
622 => 0.0030132311232976
623 => 0.0028606793434446
624 => 0.0028508568072894
625 => 0.0029541666437684
626 => 0.0031832979178757
627 => 0.0031259031324973
628 => 0.0031833917951835
629 => 0.0031163282164699
630 => 0.0031129979445305
701 => 0.0031801346668541
702 => 0.0033370032779953
703 => 0.0032624808809741
704 => 0.0031556347512027
705 => 0.003234528270716
706 => 0.003166183402863
707 => 0.0030121832870664
708 => 0.0031258592437866
709 => 0.0030498473688326
710 => 0.0030720316749577
711 => 0.0032317973301978
712 => 0.0032125739038718
713 => 0.003237450797579
714 => 0.0031935437313275
715 => 0.0031525276079398
716 => 0.0030759679677393
717 => 0.0030533024326205
718 => 0.0030595663711068
719 => 0.0030532993285237
720 => 0.0030104649134509
721 => 0.0030012148255943
722 => 0.0029857976072442
723 => 0.0029905760478768
724 => 0.0029615871669124
725 => 0.0030162951747008
726 => 0.0030264494630316
727 => 0.0030662613888308
728 => 0.0030703947950382
729 => 0.0031812704417016
730 => 0.003120201998709
731 => 0.0031611719826641
801 => 0.0031575072416747
802 => 0.0028639856030914
803 => 0.0029044302951249
804 => 0.0029673495436854
805 => 0.0029390045074939
806 => 0.0028989312580361
807 => 0.0028665699605073
808 => 0.0028175392856385
809 => 0.0028865490189656
810 => 0.0029772894799237
811 => 0.0030726961228727
812 => 0.003187320953085
813 => 0.0031617380253617
814 => 0.0030705532914032
815 => 0.0030746437719581
816 => 0.0030999295132037
817 => 0.0030671821808388
818 => 0.0030575243532206
819 => 0.003098602675995
820 => 0.0030988855598277
821 => 0.0030612057962946
822 => 0.0030193316344515
823 => 0.0030191561801845
824 => 0.0030117050775409
825 => 0.0031176537510775
826 => 0.0031759148089035
827 => 0.0031825943452908
828 => 0.0031754652228848
829 => 0.0031782089391541
830 => 0.0031443081133
831 => 0.0032217953482249
901 => 0.0032929052976854
902 => 0.0032738463121875
903 => 0.0032452741835317
904 => 0.0032225151068373
905 => 0.0032684849970121
906 => 0.003266438030166
907 => 0.0032922842143118
908 => 0.0032911116821041
909 => 0.0032824205825
910 => 0.003273846622574
911 => 0.0033078414045242
912 => 0.0032980514532621
913 => 0.0032882462955015
914 => 0.0032685805505182
915 => 0.0032712534518749
916 => 0.0032426862566
917 => 0.0032294697649199
918 => 0.003030725440849
919 => 0.0029776144632992
920 => 0.00299432425801
921 => 0.0029998255562984
922 => 0.0029767115908051
923 => 0.0030098510798319
924 => 0.0030046863255705
925 => 0.0030247793631215
926 => 0.0030122261055979
927 => 0.0030127412956654
928 => 0.0030496577494056
929 => 0.0030603747529802
930 => 0.0030549239984654
1001 => 0.0030587415200866
1002 => 0.0031467146945739
1003 => 0.0031342077223856
1004 => 0.0031275636426837
1005 => 0.0031294040981676
1006 => 0.0031518831304152
1007 => 0.0031581760321349
1008 => 0.0031315125653542
1009 => 0.0031440872104277
1010 => 0.0031976284531902
1011 => 0.0032163648579851
1012 => 0.0032761624681062
1013 => 0.003250759380509
1014 => 0.0032973878472136
1015 => 0.0034407078570476
1016 => 0.0035552017978934
1017 => 0.0034499084382294
1018 => 0.0036601619798772
1019 => 0.0038238745211293
1020 => 0.0038175909611185
1021 => 0.0037890438928119
1022 => 0.0036026615171196
1023 => 0.0034311496762027
1024 => 0.0035746266139071
1025 => 0.0035749923661276
1026 => 0.0035626675699354
1027 => 0.0034861193192913
1028 => 0.0035600038567409
1029 => 0.0035658685430145
1030 => 0.0035625858782472
1031 => 0.0035038965139553
1101 => 0.003414288702289
1102 => 0.0034317978541978
1103 => 0.0034604782022015
1104 => 0.0034061803200832
1105 => 0.0033888288567218
1106 => 0.0034210885283617
1107 => 0.0035250359119551
1108 => 0.003505385261213
1109 => 0.0035048721033076
1110 => 0.0035889459203552
1111 => 0.0035287672116144
1112 => 0.0034320187006755
1113 => 0.0034075884257073
1114 => 0.0033208774077755
1115 => 0.0033807690167151
1116 => 0.0033829244090978
1117 => 0.003350122386959
1118 => 0.0034346804039898
1119 => 0.0034339011869767
1120 => 0.0035141764393475
1121 => 0.0036676325718725
1122 => 0.0036222480423672
1123 => 0.0035694707723753
1124 => 0.0035752091249783
1125 => 0.0036381446895731
1126 => 0.0036000924105399
1127 => 0.0036137762753902
1128 => 0.0036381239774048
1129 => 0.0036528135505496
1130 => 0.0035730955214625
1201 => 0.0035545094355282
1202 => 0.0035164888265363
1203 => 0.0035065699593386
1204 => 0.0035375369520364
1205 => 0.0035293782435406
1206 => 0.0033827432567141
1207 => 0.0033674190847214
1208 => 0.0033678890551985
1209 => 0.0033293556960982
1210 => 0.0032705830744043
1211 => 0.003425034015085
1212 => 0.0034126294430088
1213 => 0.0033989357554743
1214 => 0.0034006131540622
1215 => 0.0034676550725836
1216 => 0.0034287673741431
1217 => 0.0035321566940155
1218 => 0.0035109029580172
1219 => 0.0034891041438882
1220 => 0.0034860908837674
1221 => 0.0034777002001152
1222 => 0.0034489254238358
1223 => 0.0034141781523824
1224 => 0.0033912349940118
1225 => 0.0031282350219724
1226 => 0.0031770462869824
1227 => 0.0032331991980897
1228 => 0.0032525829579853
1229 => 0.0032194256953686
1230 => 0.0034502346746598
1231 => 0.003492405699307
]
'min_raw' => 0.0014556014989108
'max_raw' => 0.0038238745211293
'avg_raw' => 0.0026397380100201
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.001455'
'max' => '$0.003823'
'avg' => '$0.002639'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -5.6436950025059E-5
'max_diff' => -0.00068959707320773
'year' => 2027
]
2 => [
'items' => [
101 => 0.0033646669149028
102 => 0.003340772203881
103 => 0.0034518012079364
104 => 0.0033848371457472
105 => 0.0034149910588507
106 => 0.0033498147920296
107 => 0.0034822479343812
108 => 0.0034812390157227
109 => 0.0034297195322097
110 => 0.0034732634468847
111 => 0.0034656966201468
112 => 0.0034075312501476
113 => 0.0034840918803579
114 => 0.0034841298534753
115 => 0.0034345434707242
116 => 0.003376637431526
117 => 0.0033662851993969
118 => 0.0033584861831144
119 => 0.0034130729789336
120 => 0.0034620153293767
121 => 0.0035530849097135
122 => 0.0035759819659701
123 => 0.0036653507008827
124 => 0.003612135970527
125 => 0.0036357253712475
126 => 0.0036613350026542
127 => 0.0036736132017136
128 => 0.0036536065352308
129 => 0.003792432966189
130 => 0.0038041541704938
131 => 0.0038080841889092
201 => 0.0037612726974882
202 => 0.003802852258236
203 => 0.0037833985587324
204 => 0.0038340116804474
205 => 0.0038419484641931
206 => 0.0038352262907198
207 => 0.0038377455511543
208 => 0.0037192816829921
209 => 0.0037131387064812
210 => 0.0036293787858693
211 => 0.0036635115726407
212 => 0.0035997019637987
213 => 0.0036199366480743
214 => 0.0036288559040998
215 => 0.0036241969909154
216 => 0.0036654413891924
217 => 0.0036303752249831
218 => 0.0035378298522236
219 => 0.0034452592655391
220 => 0.0034440971172297
221 => 0.0034197249157622
222 => 0.0034021082780926
223 => 0.0034055018674916
224 => 0.0034174613191664
225 => 0.0034014131730202
226 => 0.0034048378586621
227 => 0.0034617104588795
228 => 0.0034731158532563
229 => 0.0034343558667888
301 => 0.0032787289280824
302 => 0.0032405376869633
303 => 0.0032679887937145
304 => 0.0032548689327651
305 => 0.0026269332608461
306 => 0.002774457432662
307 => 0.0026868035792165
308 => 0.002727198507644
309 => 0.0026377266211315
310 => 0.0026804272949986
311 => 0.0026725420397143
312 => 0.0029097565424367
313 => 0.0029060527642545
314 => 0.0029078255668707
315 => 0.0028232050789866
316 => 0.0029580078138827
317 => 0.003024416488442
318 => 0.0030121260101907
319 => 0.0030152192587786
320 => 0.0029620669996158
321 => 0.0029083401969245
322 => 0.0028487489042443
323 => 0.0029594621603378
324 => 0.0029471527361985
325 => 0.002975386126383
326 => 0.0030471915869066
327 => 0.0030577652137312
328 => 0.0030719762754105
329 => 0.0030668826214107
330 => 0.0031882341247849
331 => 0.0031735376570233
401 => 0.0032089519158664
402 => 0.0031361020985398
403 => 0.0030536656152665
404 => 0.0030693340956851
405 => 0.0030678250950228
406 => 0.0030486137846418
407 => 0.0030312706726255
408 => 0.00300239927751
409 => 0.0030937526438181
410 => 0.0030900438639769
411 => 0.0031500846986221
412 => 0.003139471897893
413 => 0.0030685970172312
414 => 0.0030711283274595
415 => 0.0030881526052509
416 => 0.003147073825067
417 => 0.0031645656547709
418 => 0.0031564627423232
419 => 0.0031756417350612
420 => 0.0031908000289308
421 => 0.00317754538339
422 => 0.0033652032126737
423 => 0.0032872745984969
424 => 0.0033252564628229
425 => 0.0033343149136625
426 => 0.0033111118823155
427 => 0.0033161437889764
428 => 0.0033237657564552
429 => 0.003370044850452
430 => 0.0034914945840634
501 => 0.0035452838443435
502 => 0.0037071114878118
503 => 0.0035408173950599
504 => 0.0035309501917894
505 => 0.0035601002371047
506 => 0.0036551101950163
507 => 0.0037321068420721
508 => 0.0037576510719436
509 => 0.0037610271636104
510 => 0.0038089498369977
511 => 0.0038364182196784
512 => 0.0038031307639571
513 => 0.0037749231305751
514 => 0.0036738868890614
515 => 0.0036855821091292
516 => 0.0037661505778044
517 => 0.0038799582852672
518 => 0.0039776171379441
519 => 0.0039434204114913
520 => 0.0042043172951997
521 => 0.0042301841555512
522 => 0.0042266101918264
523 => 0.004285538749212
524 => 0.0041685775633936
525 => 0.0041185743904399
526 => 0.0037810219410826
527 => 0.0038758604107665
528 => 0.0040137136961201
529 => 0.0039954682968803
530 => 0.0038953555562276
531 => 0.003977541193453
601 => 0.0039503680516038
602 => 0.0039289354672126
603 => 0.0040271222912195
604 => 0.0039191618449315
605 => 0.004012636708083
606 => 0.0038927542292176
607 => 0.0039435766192572
608 => 0.0039147273726683
609 => 0.003933396370842
610 => 0.0038242577889888
611 => 0.0038831463185675
612 => 0.0038218078325509
613 => 0.003821778750122
614 => 0.0038204246996435
615 => 0.0038925891564256
616 => 0.0038949424367705
617 => 0.003841612794174
618 => 0.0038339271595103
619 => 0.0038623449790663
620 => 0.003829075155005
621 => 0.0038446418962855
622 => 0.0038295466557403
623 => 0.0038261483991391
624 => 0.0037990705123755
625 => 0.0037874046142357
626 => 0.0037919791134895
627 => 0.0037763639892204
628 => 0.0037669553120245
629 => 0.0038185530769362
630 => 0.0037909864725918
701 => 0.0038143280994597
702 => 0.0037877273696956
703 => 0.0036955176509469
704 => 0.0036424868665945
705 => 0.0034683112557237
706 => 0.0035177072429025
707 => 0.0035504568335058
708 => 0.0035396330940068
709 => 0.0035628866746819
710 => 0.0035643142556776
711 => 0.0035567542795579
712 => 0.0035480007957043
713 => 0.0035437400838623
714 => 0.0035754959391964
715 => 0.0035939312820708
716 => 0.0035537436930559
717 => 0.0035443283032338
718 => 0.0035849601745455
719 => 0.0036097455925734
720 => 0.0037927471935679
721 => 0.0037791898438788
722 => 0.0038132161311028
723 => 0.0038093852933374
724 => 0.0038450502631608
725 => 0.0039033474156812
726 => 0.003784813004467
727 => 0.0038053864796422
728 => 0.0038003423386402
729 => 0.0038554129474557
730 => 0.0038555848718853
731 => 0.0038225672909194
801 => 0.0038404666572101
802 => 0.0038304757219901
803 => 0.0038485306922885
804 => 0.0037790087772082
805 => 0.003863678965349
806 => 0.0039116815059985
807 => 0.003912348021322
808 => 0.0039351008446181
809 => 0.0039582190308416
810 => 0.004002592376128
811 => 0.0039569814823252
812 => 0.0038749319245052
813 => 0.0038808556375613
814 => 0.0038327500118322
815 => 0.0038335586760917
816 => 0.0038292419628983
817 => 0.0038421967441386
818 => 0.0037818516231799
819 => 0.0037960145024528
820 => 0.003776186388533
821 => 0.0038053433771949
822 => 0.0037739752772176
823 => 0.0038003399062026
824 => 0.0038117180060713
825 => 0.0038537034395395
826 => 0.003767773994557
827 => 0.0035925580393258
828 => 0.0036293905574035
829 => 0.0035749123700347
830 => 0.0035799545336888
831 => 0.0035901405067244
901 => 0.003557124435473
902 => 0.0035634228614117
903 => 0.0035631978373159
904 => 0.0035612587012255
905 => 0.0035526699459518
906 => 0.0035402145515715
907 => 0.0035898330092143
908 => 0.0035982641520469
909 => 0.0036170055381661
910 => 0.0036727671908534
911 => 0.0036671952867996
912 => 0.0036762832934874
913 => 0.003656444225915
914 => 0.0035808748111336
915 => 0.0035849785939317
916 => 0.0035338043566814
917 => 0.0036156968978643
918 => 0.0035963036631834
919 => 0.0035838007186242
920 => 0.0035803891743623
921 => 0.0036362890494011
922 => 0.0036530151681358
923 => 0.0036425925733884
924 => 0.0036212155274857
925 => 0.0036622657751751
926 => 0.0036732490896859
927 => 0.0036757078487558
928 => 0.0037484410170572
929 => 0.0036797728248992
930 => 0.0036963019412547
1001 => 0.0038252573886165
1002 => 0.0037083125924947
1003 => 0.0037702608591806
1004 => 0.0037672288138895
1005 => 0.003798919450911
1006 => 0.0037646292566734
1007 => 0.0037650543247274
1008 => 0.0037931934634928
1009 => 0.0037536771180172
1010 => 0.0037438923151579
1011 => 0.0037303746800878
1012 => 0.0037598899417306
1013 => 0.003777583006225
1014 => 0.0039201761119259
1015 => 0.0040122977612443
1016 => 0.0040082985174938
1017 => 0.0040448441191026
1018 => 0.0040283799908585
1019 => 0.0039752129777407
1020 => 0.0040659625861063
1021 => 0.0040372456128945
1022 => 0.004039613005275
1023 => 0.0040395248908123
1024 => 0.0040586191675168
1025 => 0.0040450891225069
1026 => 0.0040184200149619
1027 => 0.0040361242131454
1028 => 0.0040886993523838
1029 => 0.0042518941977822
1030 => 0.0043432201953113
1031 => 0.0042463962580587
1101 => 0.0043131841134514
1102 => 0.0042731351991619
1103 => 0.0042658571200835
1104 => 0.0043078048288538
1105 => 0.0043498259615354
1106 => 0.0043471493970459
1107 => 0.0043166442125282
1108 => 0.0042994126078345
1109 => 0.0044298960915862
1110 => 0.0045260340996864
1111 => 0.0045194781320513
1112 => 0.0045484140410775
1113 => 0.0046333707649324
1114 => 0.0046411381430494
1115 => 0.0046401596319378
1116 => 0.0046209073748328
1117 => 0.0047045583024926
1118 => 0.0047743413780445
1119 => 0.0046164510335642
1120 => 0.0046765736098059
1121 => 0.0047035645713093
1122 => 0.0047431953106536
1123 => 0.0048100590108106
1124 => 0.0048826907239016
1125 => 0.0048929616444989
1126 => 0.0048856739348263
1127 => 0.0048377713675975
1128 => 0.0049172458547383
1129 => 0.0049638001453993
1130 => 0.004991522160112
1201 => 0.0050618205769198
1202 => 0.0047037312582987
1203 => 0.0044502578403847
1204 => 0.0044106743059769
1205 => 0.0044911689797408
1206 => 0.0045123947832793
1207 => 0.0045038386884878
1208 => 0.0042185313118308
1209 => 0.0044091722216846
1210 => 0.0046142858111443
1211 => 0.0046221650594668
1212 => 0.0047248492110733
1213 => 0.0047582873800019
1214 => 0.0048409615811645
1215 => 0.004835790287372
1216 => 0.0048559201397212
1217 => 0.0048512926352666
1218 => 0.0050044291838133
1219 => 0.0051733615378579
1220 => 0.0051675119476094
1221 => 0.0051432259229986
1222 => 0.0051792948109281
1223 => 0.0053536511041934
1224 => 0.0053375991707122
1225 => 0.0053531922567888
1226 => 0.0055587681528386
1227 => 0.0058260460605336
1228 => 0.0057018686381461
1229 => 0.0059712979136363
1230 => 0.0061408893607251
1231 => 0.0064341802323824
]
'min_raw' => 0.0026269332608461
'max_raw' => 0.0064341802323824
'avg_raw' => 0.0045305567466142
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.002626'
'max' => '$0.006434'
'avg' => '$0.00453'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0011713317619352
'max_diff' => 0.0026103057112531
'year' => 2028
]
3 => [
'items' => [
101 => 0.0063974587707629
102 => 0.0065116347548313
103 => 0.0063317196904637
104 => 0.0059185983358422
105 => 0.0058532203001084
106 => 0.0059841087832831
107 => 0.0063058853472568
108 => 0.005973974894178
109 => 0.0060411199465548
110 => 0.0060217821669532
111 => 0.0060207517388585
112 => 0.0060600789881791
113 => 0.0060030327618681
114 => 0.0057706161734571
115 => 0.0058771313262864
116 => 0.0058360007105012
117 => 0.0058816381952054
118 => 0.0061279248778231
119 => 0.0060190356646966
120 => 0.0059043297241092
121 => 0.0060481964288917
122 => 0.0062313881820432
123 => 0.0062199243713582
124 => 0.0061976797871282
125 => 0.0063230713437443
126 => 0.0065301814589951
127 => 0.0065861624909115
128 => 0.0066274865441904
129 => 0.006633184432962
130 => 0.0066918762285272
131 => 0.0063762756515361
201 => 0.0068771418724186
202 => 0.0069636276326149
203 => 0.0069473718941655
204 => 0.0070434971767465
205 => 0.0070152146801481
206 => 0.0069742377799648
207 => 0.0071266167992897
208 => 0.0069519265499865
209 => 0.0067039757339914
210 => 0.0065679450124255
211 => 0.0067470812398688
212 => 0.0068564734829757
213 => 0.0069287747970159
214 => 0.0069506531309589
215 => 0.0064007748259283
216 => 0.0061044209171658
217 => 0.0062943803749781
218 => 0.0065261440238106
219 => 0.0063749881927649
220 => 0.006380913215166
221 => 0.0061654047231484
222 => 0.0065452117433918
223 => 0.0064898770552222
224 => 0.0067769535153315
225 => 0.0067084404141939
226 => 0.0069425401231691
227 => 0.0068808938242603
228 => 0.0071367841644324
301 => 0.0072388657490815
302 => 0.0074102766174372
303 => 0.0075363671499674
304 => 0.0076104099223967
305 => 0.0076059646720675
306 => 0.0078993590243952
307 => 0.0077263546252455
308 => 0.0075090203259073
309 => 0.0075050894341132
310 => 0.0076176499473913
311 => 0.0078535459037534
312 => 0.0079147102930915
313 => 0.0079488928425321
314 => 0.0078965410781608
315 => 0.0077087572022208
316 => 0.0076276730766757
317 => 0.0076967591008734
318 => 0.0076122728299094
319 => 0.007758119836254
320 => 0.0079583989272048
321 => 0.0079170420869128
322 => 0.0080552918034449
323 => 0.0081983657157612
324 => 0.0084029678362251
325 => 0.0084564584069089
326 => 0.008544876286185
327 => 0.0086358873277205
328 => 0.0086651176214454
329 => 0.0087209273217936
330 => 0.0087206331771243
331 => 0.0088888194655497
401 => 0.0090743341499787
402 => 0.0091443616486759
403 => 0.0093053860205911
404 => 0.0090296374266532
405 => 0.0092387959027267
406 => 0.0094274620837211
407 => 0.0092025264849459
408 => 0.0095125478045847
409 => 0.0095245852299029
410 => 0.0097063360607175
411 => 0.0095220967744409
412 => 0.0094126960743624
413 => 0.0097285317962982
414 => 0.0098813547534109
415 => 0.009835323235014
416 => 0.0094850211071578
417 => 0.0092811302435805
418 => 0.0087475085259881
419 => 0.009379606501219
420 => 0.0096874829864032
421 => 0.0094842237814387
422 => 0.0095867359015409
423 => 0.010146008789152
424 => 0.010358943694516
425 => 0.010314654722728
426 => 0.010322138829902
427 => 0.010437034639794
428 => 0.010946545935137
429 => 0.010641234956588
430 => 0.010874633759905
501 => 0.010998427643602
502 => 0.011113414301888
503 => 0.010831043411044
504 => 0.010463683030909
505 => 0.01034732457778
506 => 0.0094640136593061
507 => 0.0094180334899746
508 => 0.0093922234275871
509 => 0.0092294946351399
510 => 0.009101634379444
511 => 0.0089999551569676
512 => 0.0087331185132036
513 => 0.0088231680474021
514 => 0.0083978861303781
515 => 0.0086699664298243
516 => 0.007991206221463
517 => 0.0085564978924548
518 => 0.0082488353365923
519 => 0.0084554224682961
520 => 0.0084547017052552
521 => 0.0080743092972789
522 => 0.0078549068949451
523 => 0.0079947186449814
524 => 0.0081446079392909
525 => 0.0081689269730045
526 => 0.0083632623555876
527 => 0.0084174971836414
528 => 0.0082531631226562
529 => 0.0079771404248334
530 => 0.0080412542021302
531 => 0.0078536076312946
601 => 0.0075247642336263
602 => 0.0077609453028865
603 => 0.0078415879040806
604 => 0.0078772042708755
605 => 0.0075538245571881
606 => 0.0074522116302324
607 => 0.0073981137605362
608 => 0.0079353961646249
609 => 0.0079648297075673
610 => 0.0078142435403903
611 => 0.0084949072951968
612 => 0.0083408521242148
613 => 0.008512969494635
614 => 0.0080354365488493
615 => 0.0080536789504617
616 => 0.0078276072011218
617 => 0.0079541922746324
618 => 0.0078647260247025
619 => 0.0079439654516308
620 => 0.0079914612374153
621 => 0.0082174958906056
622 => 0.0085590788451098
623 => 0.0081837338510104
624 => 0.008020190662042
625 => 0.0081216519366762
626 => 0.0083918566814375
627 => 0.0088012307012772
628 => 0.0085588730421122
629 => 0.0086664272557497
630 => 0.0086899230666756
701 => 0.0085112175013755
702 => 0.0088078198303728
703 => 0.0089667714280755
704 => 0.0091298228769199
705 => 0.0092713958813536
706 => 0.0090646965426732
707 => 0.0092858944642475
708 => 0.0091076479861481
709 => 0.0089477424685107
710 => 0.0089479849791749
711 => 0.0088476739121141
712 => 0.008653308579676
713 => 0.0086174646302752
714 => 0.0088039293816499
715 => 0.0089534564539747
716 => 0.0089657722198378
717 => 0.0090485580900552
718 => 0.0090975499152876
719 => 0.0095777364037216
720 => 0.0097708713816808
721 => 0.010007033176871
722 => 0.010099031505447
723 => 0.010375913491235
724 => 0.010152308800456
725 => 0.010103930519067
726 => 0.0094323053889522
727 => 0.0095422839663833
728 => 0.0097183702802048
729 => 0.0094352089874105
730 => 0.0096148096529433
731 => 0.0096502666287817
801 => 0.0094255872750344
802 => 0.0095455982256926
803 => 0.0092268847215114
804 => 0.0085660259285574
805 => 0.0088085555551259
806 => 0.0089871389948698
807 => 0.0087322784071759
808 => 0.0091891061461505
809 => 0.0089222368118802
810 => 0.0088376520449037
811 => 0.0085076567122816
812 => 0.0086634018065941
813 => 0.0088740492767065
814 => 0.0087438936305739
815 => 0.0090139861392677
816 => 0.0093965091626192
817 => 0.0096691178486994
818 => 0.0096900453586211
819 => 0.009514776236835
820 => 0.0097956461230498
821 => 0.0097976919535382
822 => 0.0094808695745008
823 => 0.0092868176314148
824 => 0.0092427286216569
825 => 0.0093528716121917
826 => 0.0094866055362187
827 => 0.0096974666606638
828 => 0.0098248856219872
829 => 0.010157126695323
830 => 0.01024702160367
831 => 0.01034578885351
901 => 0.010477772357988
902 => 0.010636252394989
903 => 0.010289507096303
904 => 0.010303283933434
905 => 0.0099803995123135
906 => 0.0096353512020361
907 => 0.0098971998586576
908 => 0.010239532144923
909 => 0.01016100074021
910 => 0.010152164352929
911 => 0.010167024705327
912 => 0.010107814590769
913 => 0.0098400094370542
914 => 0.0097055193654076
915 => 0.0098790458699082
916 => 0.0099712674842742
917 => 0.010114295165586
918 => 0.010096663984916
919 => 0.010465087931923
920 => 0.010608246337168
921 => 0.010571620291013
922 => 0.010578360364961
923 => 0.01083754181952
924 => 0.011125804901722
925 => 0.011395801317868
926 => 0.011670453268988
927 => 0.011339349622065
928 => 0.011171235609791
929 => 0.011344686358049
930 => 0.011252650949527
1001 => 0.011781513706366
1002 => 0.011818131016193
1003 => 0.012346955530235
1004 => 0.012848872965312
1005 => 0.012533627617125
1006 => 0.012830889781503
1007 => 0.013152403048419
1008 => 0.013772654303945
1009 => 0.013563775501786
1010 => 0.01340377761288
1011 => 0.013252580380969
1012 => 0.013567197818692
1013 => 0.013971948126188
1014 => 0.014059127465772
1015 => 0.01420039130097
1016 => 0.014051869651179
1017 => 0.014230747619229
1018 => 0.014862265449404
1019 => 0.014691623757129
1020 => 0.014449285122076
1021 => 0.014947807797383
1022 => 0.015128221215618
1023 => 0.016394457068036
1024 => 0.017993132137308
1025 => 0.017331270161163
1026 => 0.016920431074417
1027 => 0.017016988005036
1028 => 0.017600770021768
1029 => 0.017788262277227
1030 => 0.017278593694433
1031 => 0.017458617254147
1101 => 0.018450564767696
1102 => 0.018982712783229
1103 => 0.018259984301122
1104 => 0.016266005082816
1105 => 0.014427465179474
1106 => 0.014915128752371
1107 => 0.014859842837167
1108 => 0.015925566692504
1109 => 0.014687554009203
1110 => 0.014708398967729
1111 => 0.015796160863772
1112 => 0.015505964638868
1113 => 0.015035883920047
1114 => 0.014430897288944
1115 => 0.01331252354686
1116 => 0.012321948735337
1117 => 0.014264694056489
1118 => 0.014180919345587
1119 => 0.014059601149486
1120 => 0.01432958166691
1121 => 0.015640530424213
1122 => 0.01561030881223
1123 => 0.015418054335997
1124 => 0.015563877661767
1125 => 0.015010320385994
1126 => 0.015152984700226
1127 => 0.01442717394536
1128 => 0.014755270719094
1129 => 0.015034875337949
1130 => 0.015091010104801
1201 => 0.015217484600831
1202 => 0.014136773879695
1203 => 0.014621981265485
1204 => 0.014906995146853
1205 => 0.013619292061939
1206 => 0.014881541397145
1207 => 0.014117961110404
1208 => 0.013858790492493
1209 => 0.014207729586378
1210 => 0.014071747682137
1211 => 0.013954838425995
1212 => 0.013889601052312
1213 => 0.014145823411859
1214 => 0.014133870332534
1215 => 0.013714640821699
1216 => 0.013167773014796
1217 => 0.013351319801116
1218 => 0.013284635532886
1219 => 0.013042963142376
1220 => 0.013205821153944
1221 => 0.012488676891554
1222 => 0.011254867462026
1223 => 0.012069959763777
1224 => 0.012038579596809
1225 => 0.012022756293647
1226 => 0.012635275630916
1227 => 0.012576396029863
1228 => 0.012469528977401
1229 => 0.013041000445152
1230 => 0.012832405672047
1231 => 0.013475245611646
]
'min_raw' => 0.0057706161734571
'max_raw' => 0.018982712783229
'avg_raw' => 0.012376664478343
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.00577'
'max' => '$0.018982'
'avg' => '$0.012376'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0031436829126111
'max_diff' => 0.012548532550846
'year' => 2029
]
4 => [
'items' => [
101 => 0.013898661572147
102 => 0.013791269588493
103 => 0.014189494345891
104 => 0.013355548348361
105 => 0.013632551756634
106 => 0.013689641775169
107 => 0.013033948575947
108 => 0.012586029460772
109 => 0.012556158362441
110 => 0.011779528343784
111 => 0.012194397831012
112 => 0.012559465811307
113 => 0.012384626579166
114 => 0.012329277701443
115 => 0.012612043114021
116 => 0.0126340164083
117 => 0.012133022970107
118 => 0.012237195370307
119 => 0.012671611596357
120 => 0.012226249196007
121 => 0.011360982801662
122 => 0.011146384772621
123 => 0.011117753439721
124 => 0.010535746564976
125 => 0.011160725239062
126 => 0.010887905299436
127 => 0.011749740219829
128 => 0.011257464735414
129 => 0.01123624372318
130 => 0.011204165050741
131 => 0.010703207691247
201 => 0.010812885515476
202 => 0.011177471307614
203 => 0.011307559625602
204 => 0.011293990348254
205 => 0.011175684638333
206 => 0.011229844386512
207 => 0.011055376967123
208 => 0.010993768890111
209 => 0.010799316852426
210 => 0.010513526075775
211 => 0.010553267036125
212 => 0.0099870407263548
213 => 0.0096785305808874
214 => 0.0095931390387203
215 => 0.0094789498997764
216 => 0.0096060370058098
217 => 0.0099854366783618
218 => 0.0095278001791334
219 => 0.0087432145006741
220 => 0.0087903694368185
221 => 0.0088963125779086
222 => 0.0086988882353711
223 => 0.0085120426637285
224 => 0.0086744897290114
225 => 0.008342050434038
226 => 0.0089364862784586
227 => 0.0089204084547543
228 => 0.0091419773778883
301 => 0.009280528972576
302 => 0.0089612124034322
303 => 0.0088809051498164
304 => 0.0089266518112372
305 => 0.0081705613998997
306 => 0.0090801886605785
307 => 0.0090880551549019
308 => 0.0090206974546174
309 => 0.0095050458893379
310 => 0.010527172158663
311 => 0.010142607141209
312 => 0.0099936919429118
313 => 0.009710604042092
314 => 0.010087801861838
315 => 0.010058838954484
316 => 0.0099278577035736
317 => 0.0098486398343364
318 => 0.0099946011873583
319 => 0.0098305536074142
320 => 0.0098010861543303
321 => 0.0096225454495465
322 => 0.0095588145410231
323 => 0.009511630713553
324 => 0.0094596859556956
325 => 0.009574263147702
326 => 0.0093146161567306
327 => 0.0090015073391275
328 => 0.0089754757288281
329 => 0.0090473512935872
330 => 0.0090155517066878
331 => 0.0089753234846402
401 => 0.0088985168532471
402 => 0.0088757299664268
403 => 0.0089497762939669
404 => 0.0088661823073432
405 => 0.0089895297882066
406 => 0.0089559860985392
407 => 0.0087686137748105
408 => 0.0085350784853252
409 => 0.008532999531392
410 => 0.008482684736347
411 => 0.0084186012799772
412 => 0.008400774728446
413 => 0.008660808890275
414 => 0.0091990718230935
415 => 0.0090933979298408
416 => 0.009169758147612
417 => 0.009545374842561
418 => 0.0096647720946972
419 => 0.0095800267532098
420 => 0.0094640221029169
421 => 0.0094691257187963
422 => 0.0098655487258429
423 => 0.00989027314253
424 => 0.0099527437670993
425 => 0.010033036173867
426 => 0.0095937008972766
427 => 0.0094484330667776
428 => 0.0093795971095348
429 => 0.0091676090040949
430 => 0.0093962200013252
501 => 0.0092630181633381
502 => 0.0092809916421053
503 => 0.0092692863904793
504 => 0.0092756782493727
505 => 0.0089363201215255
506 => 0.0090599643871749
507 => 0.008854381814333
508 => 0.0085791298270245
509 => 0.0085782070858473
510 => 0.0086455746197918
511 => 0.0086055017745097
512 => 0.0084976667782227
513 => 0.0085129842304784
514 => 0.0083787872309375
515 => 0.0085292781759378
516 => 0.0085335937177579
517 => 0.0084756465066356
518 => 0.0087074985711572
519 => 0.008802488551165
520 => 0.0087643464554547
521 => 0.0087998124000509
522 => 0.0090977891571945
523 => 0.0091463723702463
524 => 0.009167949824257
525 => 0.0091390388943475
526 => 0.0088052588681678
527 => 0.0088200634316712
528 => 0.0087114373676659
529 => 0.0086196597903141
530 => 0.0086233304120982
531 => 0.0086705160171069
601 => 0.0088765783215793
602 => 0.0093102242933051
603 => 0.009326680840941
604 => 0.0093466266567471
605 => 0.0092654969998999
606 => 0.0092410275190886
607 => 0.0092733090803876
608 => 0.0094361637073458
609 => 0.0098550700224823
610 => 0.009707000552901
611 => 0.0095866177692928
612 => 0.0096922259254826
613 => 0.0096759683776213
614 => 0.0095387383126538
615 => 0.009534886721789
616 => 0.0092714983520107
617 => 0.0091741296687666
618 => 0.0090927611091282
619 => 0.0090039087661831
620 => 0.0089512341189278
621 => 0.009032166317311
622 => 0.0090506764686429
623 => 0.0088737168024252
624 => 0.0088495978538082
625 => 0.0089941069371813
626 => 0.0089305138774304
627 => 0.0089959209164162
628 => 0.009011095910512
629 => 0.0090086523869528
630 => 0.0089422539289566
701 => 0.0089845743260529
702 => 0.0088844739706025
703 => 0.0087756298686375
704 => 0.008706194112811
705 => 0.0086456022065359
706 => 0.0086792221177596
707 => 0.0085593732730004
708 => 0.0085210312154813
709 => 0.0089702371277557
710 => 0.0093020703649302
711 => 0.0092972453782413
712 => 0.0092678745126585
713 => 0.0092242353640648
714 => 0.0094329712318147
715 => 0.0093602518292961
716 => 0.0094131612705378
717 => 0.0094266289439361
718 => 0.0094673915351089
719 => 0.0094819606577901
720 => 0.0094379226501413
721 => 0.009290125717682
722 => 0.0089218298141041
723 => 0.0087503870767928
724 => 0.0086938081178754
725 => 0.0086958646555733
726 => 0.0086391361650765
727 => 0.0086558452479204
728 => 0.0086333254279565
729 => 0.0085906783370743
730 => 0.008676588780074
731 => 0.0086864891583186
801 => 0.0086664366343691
802 => 0.0086711597296712
803 => 0.0085051333959145
804 => 0.0085177560174798
805 => 0.0084474716565991
806 => 0.0084342941862246
807 => 0.0082566214422777
808 => 0.0079418484222998
809 => 0.0081162632311239
810 => 0.0079055946684977
811 => 0.0078258112916816
812 => 0.0082034933886685
813 => 0.0081655845814018
814 => 0.0081007011819235
815 => 0.0080047251112098
816 => 0.0079691266529869
817 => 0.0077528416899269
818 => 0.0077400624204739
819 => 0.0078472590883517
820 => 0.0077977915145382
821 => 0.0077283203060689
822 => 0.0074767026311764
823 => 0.0071938010568481
824 => 0.0072023400771211
825 => 0.0072923258043441
826 => 0.0075539714424734
827 => 0.0074517419651408
828 => 0.0073775733063879
829 => 0.0073636837461051
830 => 0.0075375406728075
831 => 0.0077835846482436
901 => 0.0078990229765945
902 => 0.0077846270991129
903 => 0.0076532152745734
904 => 0.0076612137034294
905 => 0.0077144236672488
906 => 0.0077200152820978
907 => 0.0076344796936765
908 => 0.0076585574607895
909 => 0.0076219811308277
910 => 0.0073975122613664
911 => 0.0073934523313163
912 => 0.007338364050701
913 => 0.0073366959994574
914 => 0.0072429770917152
915 => 0.0072298651686739
916 => 0.0070437805890206
917 => 0.0071662620228644
918 => 0.0070841079076059
919 => 0.0069602822777146
920 => 0.0069389346924487
921 => 0.0069382929582576
922 => 0.0070654341932517
923 => 0.0071647763035082
924 => 0.007085537013614
925 => 0.0070674957632942
926 => 0.0072601291169501
927 => 0.0072356147668053
928 => 0.0072143854976806
929 => 0.0077615541088772
930 => 0.0073284274570159
1001 => 0.0071395595147995
1002 => 0.0069057995712571
1003 => 0.0069819129875944
1004 => 0.0069979512027554
1005 => 0.0064358006769329
1006 => 0.0062077362786181
1007 => 0.006129473171542
1008 => 0.0060844316469418
1009 => 0.006104957635298
1010 => 0.0058996729275288
1011 => 0.0060376276462453
1012 => 0.0058598684416016
1013 => 0.0058300665324646
1014 => 0.0061479220105075
1015 => 0.0061921497433923
1016 => 0.0060034604944258
1017 => 0.0061246295382769
1018 => 0.0060806919586008
1019 => 0.0058629156129654
1020 => 0.0058545981584165
1021 => 0.0057453256433853
1022 => 0.0055743353166899
1023 => 0.0054961881491071
1024 => 0.0054554884257251
1025 => 0.0054722819248143
1026 => 0.0054637906177853
1027 => 0.0054083790956793
1028 => 0.00546696674137
1029 => 0.0053172995167171
1030 => 0.0052577008219095
1031 => 0.0052307814741442
1101 => 0.0050979431977407
1102 => 0.0053093479689482
1103 => 0.0053509973720833
1104 => 0.0053927288374086
1105 => 0.0057559727517844
1106 => 0.0057378261123388
1107 => 0.0059018628951549
1108 => 0.005895488727419
1109 => 0.0058487027797401
1110 => 0.0056513205623979
1111 => 0.0057299935962308
1112 => 0.0054878502265972
1113 => 0.0056692805032753
1114 => 0.0055864833017089
1115 => 0.0056412866861392
1116 => 0.0055427452595116
1117 => 0.0055972821536831
1118 => 0.0053608739906576
1119 => 0.005140119374377
1120 => 0.0052289574761973
1121 => 0.0053255346527452
1122 => 0.005534938578908
1123 => 0.0054102193280303
1124 => 0.005455073086803
1125 => 0.0053048205033432
1126 => 0.004994806506137
1127 => 0.0049965611516938
1128 => 0.0049488722522457
1129 => 0.0049076620804292
1130 => 0.005424544834292
1201 => 0.0053602622931421
1202 => 0.0052578364769105
1203 => 0.0053949375021766
1204 => 0.0054311891893428
1205 => 0.0054322212239125
1206 => 0.005532246592857
1207 => 0.0055856301501931
1208 => 0.0055950392335512
1209 => 0.0057524313127765
1210 => 0.005805187061681
1211 => 0.0060224805251459
1212 => 0.0055811009283233
1213 => 0.0055720110059847
1214 => 0.0053968667947612
1215 => 0.0052857875670828
1216 => 0.0054044724845127
1217 => 0.0055096111192488
1218 => 0.0054001337452152
1219 => 0.0054144291790705
1220 => 0.0052674647490605
1221 => 0.0053199976174699
1222 => 0.0053652460006857
1223 => 0.005340262503051
1224 => 0.0053028609978769
1225 => 0.0055009909501856
1226 => 0.0054898116817988
1227 => 0.0056743148483767
1228 => 0.0058181482606721
1229 => 0.0060759234488035
1230 => 0.0058069216018639
1231 => 0.005797118105376
]
'min_raw' => 0.0049076620804292
'max_raw' => 0.014189494345891
'avg_raw' => 0.0095485782131598
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.0049076'
'max' => '$0.014189'
'avg' => '$0.009548'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00086295409302796
'max_diff' => -0.0047932184373381
'year' => 2030
]
5 => [
'items' => [
101 => 0.0058929488560762
102 => 0.0058051723904924
103 => 0.0058606440868008
104 => 0.0060669861009391
105 => 0.0060713457825484
106 => 0.0059983154984608
107 => 0.0059938715990371
108 => 0.0060078978639599
109 => 0.006090050135715
110 => 0.0060613436076794
111 => 0.0060945635286825
112 => 0.0061361055485784
113 => 0.0063079409563192
114 => 0.0063493698913795
115 => 0.0062487190576231
116 => 0.0062578067009717
117 => 0.0062201605262197
118 => 0.0061837947931143
119 => 0.0062655396503463
120 => 0.0064149299836367
121 => 0.0064140006341267
122 => 0.006448656287717
123 => 0.0064702464728008
124 => 0.0063775655934397
125 => 0.006317233748946
126 => 0.0063403688171399
127 => 0.0063773622949981
128 => 0.0063283723308561
129 => 0.0060259835778123
130 => 0.0061177090088174
131 => 0.0061024414119537
201 => 0.0060806984974166
202 => 0.0061729291275841
203 => 0.0061640332583063
204 => 0.0058975674361369
205 => 0.005914625713526
206 => 0.0058986048064837
207 => 0.0059503716347064
208 => 0.0058023768118841
209 => 0.0058478990226239
210 => 0.0058764501264557
211 => 0.0058932669459525
212 => 0.0059540208293761
213 => 0.0059468920623751
214 => 0.0059535776952101
215 => 0.0060436596658968
216 => 0.0064992633612306
217 => 0.0065240608651347
218 => 0.0064019488866499
219 => 0.0064507302135023
220 => 0.0063570807332491
221 => 0.0064199482567401
222 => 0.0064629606196506
223 => 0.0062685960224595
224 => 0.0062570870124297
225 => 0.0061630510074585
226 => 0.0062135806300584
227 => 0.0061331843672935
228 => 0.0061529107980341
301 => 0.006097753977964
302 => 0.0061970252724769
303 => 0.0063080260049419
304 => 0.0063360691735144
305 => 0.0062622996703435
306 => 0.0062088856884006
307 => 0.0061151083317683
308 => 0.0062710621658124
309 => 0.0063166678194939
310 => 0.0062708226187286
311 => 0.0062601992839738
312 => 0.0062400680838095
313 => 0.006264470213255
314 => 0.0063164194413096
315 => 0.0062919211447107
316 => 0.0063081027012187
317 => 0.0062464352941587
318 => 0.0063775962746672
319 => 0.0065859114773236
320 => 0.0065865812447631
321 => 0.0065620828161092
322 => 0.0065520585869301
323 => 0.0065771954614179
324 => 0.006590831184659
325 => 0.0066721192274383
326 => 0.006759344535999
327 => 0.0071663869916682
328 => 0.007052091098923
329 => 0.0074132433806567
330 => 0.0076988679457535
331 => 0.0077845142639775
401 => 0.0077057236811821
402 => 0.0074361853536225
403 => 0.007422960517372
404 => 0.0078257645748926
405 => 0.0077119539790484
406 => 0.007698416570815
407 => 0.0075544014190244
408 => 0.0076395322103562
409 => 0.0076209128574986
410 => 0.0075915212981229
411 => 0.0077539449177217
412 => 0.0080579874339541
413 => 0.0080105995565067
414 => 0.0079752267042525
415 => 0.0078202331625572
416 => 0.0079135738937186
417 => 0.0078803370471759
418 => 0.0080231436325471
419 => 0.0079385481749264
420 => 0.007711091751849
421 => 0.0077473149369303
422 => 0.0077418398753762
423 => 0.0078545162541925
424 => 0.0078206936020715
425 => 0.0077352354597154
426 => 0.0080569482496873
427 => 0.0080360580105671
428 => 0.008065675593466
429 => 0.0080787141694123
430 => 0.008274535075453
501 => 0.0083547566350877
502 => 0.0083729683336009
503 => 0.0084491726106959
504 => 0.0083710723017663
505 => 0.0086835292220611
506 => 0.0088912948416904
507 => 0.0091326253004109
508 => 0.0094852739641136
509 => 0.0096178731238484
510 => 0.0095939202724913
511 => 0.0098612944645872
512 => 0.010341759944389
513 => 0.0096910360829931
514 => 0.010376249889124
515 => 0.010159319109277
516 => 0.0096449801326771
517 => 0.0096118627662423
518 => 0.0099601790927939
519 => 0.010732711180881
520 => 0.010539200654802
521 => 0.010733027694779
522 => 0.010506918156916
523 => 0.010495689912561
524 => 0.010722046059211
525 => 0.01125093953389
526 => 0.010999682069345
527 => 0.010639442883063
528 => 0.010905437892271
529 => 0.010675008398619
530 => 0.010155786256266
531 => 0.01053905268095
601 => 0.010282773337563
602 => 0.010357569274522
603 => 0.010896230335646
604 => 0.010831417211651
605 => 0.010915291395634
606 => 0.010767255656274
607 => 0.010628966932618
608 => 0.010370840760458
609 => 0.010294422326348
610 => 0.010315541632289
611 => 0.010294411860669
612 => 0.010149992639648
613 => 0.010118805322619
614 => 0.010066825094556
615 => 0.010082935940769
616 => 0.009985197904658
617 => 0.010169649772508
618 => 0.010203885664565
619 => 0.010338114351977
620 => 0.01035205041959
621 => 0.010725875403406
622 => 0.010519978884194
623 => 0.010658112045532
624 => 0.010645756115422
625 => 0.0096561274179122
626 => 0.0097924895208611
627 => 0.010004626160264
628 => 0.0099090588917577
629 => 0.0097739491333859
630 => 0.0096648407593738
701 => 0.0094995304158414
702 => 0.0097322015498593
703 => 0.010038139349276
704 => 0.010359809507058
705 => 0.010746275124969
706 => 0.010660020498007
707 => 0.010352584801151
708 => 0.01036637614193
709 => 0.010451628783933
710 => 0.01034121886652
711 => 0.010308656826417
712 => 0.010447155259647
713 => 0.01044810902224
714 => 0.010321069068771
715 => 0.010179887408556
716 => 0.010179295852245
717 => 0.010154173939463
718 => 0.010511387289392
719 => 0.010707818513509
720 => 0.010730339036789
721 => 0.010706302702858
722 => 0.01071555333382
723 => 0.010601254332573
724 => 0.010862507955108
725 => 0.011102260114452
726 => 0.01103800141419
727 => 0.010941668487585
728 => 0.010864934671522
729 => 0.011019925365762
730 => 0.011013023874125
731 => 0.011100166088496
801 => 0.011096212814294
802 => 0.011066910165186
803 => 0.01103800246068
804 => 0.011152618241465
805 => 0.011119610737272
806 => 0.011086551963308
807 => 0.011020247531079
808 => 0.011029259404619
809 => 0.010932943111252
810 => 0.010888382786806
811 => 0.010218302422316
812 => 0.010039235053416
813 => 0.010095573292924
814 => 0.010114121304192
815 => 0.010036190955766
816 => 0.010147923056745
817 => 0.010130509727161
818 => 0.010198254806115
819 => 0.010155930621934
820 => 0.010157667621216
821 => 0.010282134022426
822 => 0.010318267148215
823 => 0.010299889548808
824 => 0.010312760589485
825 => 0.01060936828936
826 => 0.010567200159418
827 => 0.010544799180829
828 => 0.010551004404989
829 => 0.010626794031648
830 => 0.010648010989152
831 => 0.010558113249317
901 => 0.010600509543116
902 => 0.01078102758122
903 => 0.01084419867812
904 => 0.011045810495579
905 => 0.010960162212158
906 => 0.011117373343148
907 => 0.011600586762587
908 => 0.011986611077861
909 => 0.011631607164406
910 => 0.012340491659505
911 => 0.012892459922381
912 => 0.012871274461101
913 => 0.012775026027212
914 => 0.012146624834763
915 => 0.011568360688538
916 => 0.012052103201248
917 => 0.012053336360396
918 => 0.012011782449544
919 => 0.011753694678069
920 => 0.012002801554534
921 => 0.012022574753765
922 => 0.012011507020314
923 => 0.011813631731043
924 => 0.011511512737792
925 => 0.011570546065903
926 => 0.011667243861595
927 => 0.011484174761076
928 => 0.011425673090913
929 => 0.011534438826145
930 => 0.011884904687305
1001 => 0.011818651146363
1002 => 0.011816920998657
1003 => 0.01210038174268
1004 => 0.011897485024617
1005 => 0.011571290665221
1006 => 0.011488922287499
1007 => 0.011196570036572
1008 => 0.01139849877761
1009 => 0.011405765833513
1010 => 0.011295171525708
1011 => 0.01158026478378
1012 => 0.011577637599217
1013 => 0.011848291217224
1014 => 0.012365679281997
1015 => 0.012212662172123
1016 => 0.012034719921554
1017 => 0.012054067177994
1018 => 0.012266258828046
1019 => 0.012137962912561
1020 => 0.01218409901828
1021 => 0.012266188995525
1022 => 0.012315715916976
1023 => 0.012046941016174
1024 => 0.011984276729807
1025 => 0.011856087592077
1026 => 0.011822645438806
1027 => 0.011927052816734
1028 => 0.011899545161417
1029 => 0.011405155065604
1030 => 0.011353488549831
1031 => 0.011355073088107
1101 => 0.011225155177587
1102 => 0.011026999180172
1103 => 0.011547741310098
1104 => 0.011505918429283
1105 => 0.011459749205698
1106 => 0.011465404672149
1107 => 0.011691441181161
1108 => 0.011560328590817
1109 => 0.011908912901178
1110 => 0.011837254446372
1111 => 0.011763758222591
1112 => 0.011753598805715
1113 => 0.011725309029963
1114 => 0.011628292862746
1115 => 0.011511140011064
1116 => 0.011433785550777
1117 => 0.010547062782975
1118 => 0.01071163337085
1119 => 0.010900956831119
1120 => 0.010966310530938
1121 => 0.010854518505059
1122 => 0.011632707093308
1123 => 0.011774889647193
1124 => 0.011344209417137
1125 => 0.011263646730652
1126 => 0.011637988769622
1127 => 0.01141221475867
1128 => 0.011513880781977
1129 => 0.011294134447928
1130 => 0.011740642033553
1201 => 0.011737240393855
1202 => 0.011563538858216
1203 => 0.011710350206682
1204 => 0.011684838122036
1205 => 0.011488729516107
1206 => 0.011746859026154
1207 => 0.01174698705517
1208 => 0.011579803103714
1209 => 0.011384568849687
1210 => 0.011349665576294
1211 => 0.011323370648388
1212 => 0.01150741384162
1213 => 0.011672426393185
1214 => 0.011979473841566
1215 => 0.012056672865356
1216 => 0.01235798579464
1217 => 0.012178568615912
1218 => 0.0122581019274
1219 => 0.012344446587695
1220 => 0.01238584339306
1221 => 0.012318389520193
1222 => 0.01278645252472
1223 => 0.012825971383382
1224 => 0.012839221714855
1225 => 0.012681393503255
1226 => 0.012821581895309
1227 => 0.012755992389218
1228 => 0.012926638062776
1229 => 0.012953397483303
1230 => 0.01293073320611
1231 => 0.012939227068554
]
'min_raw' => 0.0058023768118841
'max_raw' => 0.012953397483303
'avg_raw' => 0.0093778871475935
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.0058023'
'max' => '$0.012953'
'avg' => '$0.009377'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00089471473145494
'max_diff' => -0.0012360968625876
'year' => 2031
]
6 => [
'items' => [
101 => 0.012539817866162
102 => 0.012519106391967
103 => 0.012236703971693
104 => 0.012351785045368
105 => 0.012136646494113
106 => 0.012204869144888
107 => 0.012234941039301
108 => 0.012219233188225
109 => 0.012358291556608
110 => 0.012240063535734
111 => 0.011928040350164
112 => 0.011615932154086
113 => 0.011612013889922
114 => 0.011529841311061
115 => 0.011470445587204
116 => 0.011481887310796
117 => 0.011522209437099
118 => 0.011468101991922
119 => 0.011479648558667
120 => 0.011671398501018
121 => 0.011709852584459
122 => 0.011579170583948
123 => 0.011054463494574
124 => 0.010925699058713
125 => 0.0110182523817
126 => 0.01097401785451
127 => 0.0088568888955659
128 => 0.0093542769406519
129 => 0.0090587458539638
130 => 0.0091949401754412
131 => 0.0088932794633365
201 => 0.0090372477665454
202 => 0.0090106620778234
203 => 0.0098104473355396
204 => 0.009797959788809
205 => 0.0098039369166026
206 => 0.0095186330336875
207 => 0.0099731298660159
208 => 0.010197031348798
209 => 0.01015559314328
210 => 0.010166022246858
211 => 0.0099868156941184
212 => 0.0098056720277593
213 => 0.0096047558239567
214 => 0.0099780332966286
215 => 0.0099365312137264
216 => 0.010031722059926
217 => 0.010273819183378
218 => 0.010309468904444
219 => 0.010357382491081
220 => 0.010340208880993
221 => 0.01074935394711
222 => 0.010699803779978
223 => 0.010819205426212
224 => 0.010573587180883
225 => 0.010295646821996
226 => 0.010348474197666
227 => 0.010343386496578
228 => 0.010278614222337
229 => 0.010220140709317
301 => 0.010122798784948
302 => 0.010430803037545
303 => 0.010418298627371
304 => 0.010620730493295
305 => 0.010584948694675
306 => 0.010345989086197
307 => 0.010354523575362
308 => 0.010411922116533
309 => 0.010610579122891
310 => 0.010669554047979
311 => 0.010642234512934
312 => 0.010706897825984
313 => 0.010758005072084
314 => 0.010713316109234
315 => 0.011346017582515
316 => 0.011083275819016
317 => 0.0112113343264
318 => 0.011241875525846
319 => 0.011163644885676
320 => 0.0111806103103
321 => 0.011206308305803
322 => 0.011362341502317
323 => 0.011771817758537
324 => 0.011953172005018
325 => 0.012498785203416
326 => 0.011938113059421
327 => 0.011904845094688
328 => 0.012003126507659
329 => 0.012323459214142
330 => 0.012583058785425
331 => 0.012669182939878
401 => 0.012680565668644
402 => 0.012842140307823
403 => 0.012934751877812
404 => 0.012822520896792
405 => 0.012727416891451
406 => 0.012386766149062
407 => 0.012426197400055
408 => 0.012697839617304
409 => 0.013081550248815
410 => 0.013410813888939
411 => 0.013295517238164
412 => 0.014175149296826
413 => 0.014262361222467
414 => 0.014250311354243
415 => 0.014448993099729
416 => 0.014054650295773
417 => 0.013886061107049
418 => 0.012747979456882
419 => 0.013067733978832
420 => 0.01353251595501
421 => 0.01347100031762
422 => 0.013133463222861
423 => 0.013410557836785
424 => 0.013318941691872
425 => 0.013246680237222
426 => 0.013577723969546
427 => 0.013213727787329
428 => 0.01352888481465
429 => 0.013124692667228
430 => 0.013296043903553
501 => 0.013198776654488
502 => 0.013261720485259
503 => 0.012893752136728
504 => 0.013092298925669
505 => 0.012885491937547
506 => 0.012885393884108
507 => 0.012880828608383
508 => 0.013124136112785
509 => 0.013132070361769
510 => 0.012952265748398
511 => 0.012926353094535
512 => 0.013022165757237
513 => 0.012909994222589
514 => 0.012962478577652
515 => 0.012911583920238
516 => 0.012900126460848
517 => 0.012808831475107
518 => 0.012769499085042
519 => 0.012784922328657
520 => 0.012732274846971
521 => 0.012700552834912
522 => 0.012874518301753
523 => 0.012781575570567
524 => 0.012860273495212
525 => 0.012770587277609
526 => 0.012459695772971
527 => 0.012280898781035
528 => 0.011693653548431
529 => 0.011860195567922
530 => 0.011970613099145
531 => 0.011934120105735
601 => 0.012012521176494
602 => 0.012017334365492
603 => 0.011991845378183
604 => 0.011962332396222
605 => 0.011947967108773
606 => 0.012055034192155
607 => 0.012117190237771
608 => 0.011981694975599
609 => 0.011949950331453
610 => 0.012086943522407
611 => 0.01217050928975
612 => 0.012787511964267
613 => 0.012741802413246
614 => 0.012856524416262
615 => 0.012843608479275
616 => 0.012963855415083
617 => 0.013160408334983
618 => 0.012760761291766
619 => 0.012830126199713
620 => 0.012813119526154
621 => 0.012998793928683
622 => 0.012999373583901
623 => 0.01288805250446
624 => 0.012948401467603
625 => 0.012914716331964
626 => 0.012975589924883
627 => 0.012741191934325
628 => 0.013026663385125
629 => 0.013188507302355
630 => 0.013190754505303
701 => 0.013267467237597
702 => 0.01334541181651
703 => 0.013495019648191
704 => 0.013341239335284
705 => 0.013064603522577
706 => 0.013084575734726
707 => 0.012922384258953
708 => 0.012925110726963
709 => 0.012910556627048
710 => 0.012954234576473
711 => 0.012750776787999
712 => 0.012798527924289
713 => 0.012731676053854
714 => 0.012829980876803
715 => 0.012724221137679
716 => 0.012813111325021
717 => 0.012851473383122
718 => 0.01299303020339
719 => 0.012703313080229
720 => 0.012112560253979
721 => 0.012236743660243
722 => 0.012053066647983
723 => 0.012070066654775
724 => 0.012104409374027
725 => 0.011993093384694
726 => 0.012014328967489
727 => 0.012013570283039
728 => 0.012007032350324
729 => 0.011978074762271
730 => 0.01193608053051
731 => 0.012103372624703
801 => 0.012131798811407
802 => 0.012194986703189
803 => 0.012382991008379
804 => 0.012364204944844
805 => 0.012394845793896
806 => 0.012327956992456
807 => 0.012073169434433
808 => 0.012087005624653
809 => 0.011914468110893
810 => 0.012190574531045
811 => 0.012125188886327
812 => 0.012083034335817
813 => 0.012071532076152
814 => 0.01226000240765
815 => 0.012316395684744
816 => 0.012281255178871
817 => 0.012209180976113
818 => 0.012347584752234
819 => 0.012384615763938
820 => 0.012392905641807
821 => 0.012638130596803
822 => 0.012406610992682
823 => 0.012462340062501
824 => 0.012897122356663
825 => 0.012502834811713
826 => 0.012711697717935
827 => 0.012701474965545
828 => 0.012808322160833
829 => 0.012692710376896
830 => 0.012694143523517
831 => 0.012789016594476
901 => 0.012655784476762
902 => 0.012622794330769
903 => 0.012577218680359
904 => 0.012676731445677
905 => 0.012736384847911
906 => 0.013217147459314
907 => 0.013527742031719
908 => 0.013514258302196
909 => 0.013637474349553
910 => 0.013581964391689
911 => 0.01340270809496
912 => 0.0137086767355
913 => 0.013611855455361
914 => 0.013619837284058
915 => 0.013619540199995
916 => 0.013683917887024
917 => 0.013638300395636
918 => 0.01354838363757
919 => 0.013608074577814
920 => 0.013785335330435
921 => 0.014335558145596
922 => 0.014643470122443
923 => 0.014317021457964
924 => 0.0145422013754
925 => 0.014407173664747
926 => 0.014382635112995
927 => 0.014524064741809
928 => 0.014665741924467
929 => 0.014656717700419
930 => 0.014553867341013
1001 => 0.014495769782716
1002 => 0.014935703958251
1003 => 0.015259839964702
1004 => 0.015237736062098
1005 => 0.01533529549962
1006 => 0.015621733025586
1007 => 0.015647921283208
1008 => 0.015644622164678
1009 => 0.015579711835699
1010 => 0.015861746778626
1011 => 0.016097025289947
1012 => 0.01556468696998
1013 => 0.015767394433403
1014 => 0.015858396344561
1015 => 0.01599201414919
1016 => 0.016217449782544
1017 => 0.016462332674214
1018 => 0.016496961800101
1019 => 0.016472390778128
1020 => 0.016310883928266
1021 => 0.016578837710393
1022 => 0.016735798751673
1023 => 0.016829265459766
1024 => 0.017066281480112
1025 => 0.015858958341383
1026 => 0.015004355015937
1027 => 0.014870896366047
1028 => 0.015142289778601
1029 => 0.015213854057169
1030 => 0.015185006586212
1031 => 0.014223072846288
1101 => 0.014865831983984
1102 => 0.01555738677142
1103 => 0.015583952207251
1104 => 0.015930158993571
1105 => 0.016042898114692
1106 => 0.01632163995604
1107 => 0.016304204577971
1108 => 0.016372073780588
1109 => 0.016356471826237
1110 => 0.016872782391315
1111 => 0.017442349617456
1112 => 0.017422627315528
1113 => 0.017340745287956
1114 => 0.01746235406186
1115 => 0.018050208477772
1116 => 0.01799608826333
1117 => 0.018048661441711
1118 => 0.018741774928094
1119 => 0.019642921054635
1120 => 0.019224248205265
1121 => 0.020132647818532
1122 => 0.020704437222889
1123 => 0.021693287873596
1124 => 0.021569478901935
1125 => 0.021954431203734
1126 => 0.02134783500295
1127 => 0.019954967512632
1128 => 0.019734540900607
1129 => 0.020175840559972
1130 => 0.021260732711132
1201 => 0.020141673445329
1202 => 0.020368057677335
1203 => 0.020302859003288
1204 => 0.020299384843024
1205 => 0.02043197940985
1206 => 0.020239644075002
1207 => 0.019456035320366
1208 => 0.01981515859478
1209 => 0.019676483852013
1210 => 0.019830353818
1211 => 0.020660726563633
1212 => 0.020293598979175
1213 => 0.019906859891971
1214 => 0.020391916531598
1215 => 0.021009560317388
1216 => 0.020970909279286
1217 => 0.020895910110487
1218 => 0.021318676498177
1219 => 0.022016962711712
1220 => 0.022205706669289
1221 => 0.022345033600072
1222 => 0.022364244429879
1223 => 0.022562127916358
1224 => 0.021498058536504
1225 => 0.023186763969572
1226 => 0.023478356748317
1227 => 0.023423549391195
1228 => 0.02374764249267
1229 => 0.023652286080768
1230 => 0.023514129600884
1231 => 0.024027886103301
]
'min_raw' => 0.0088568888955659
'max_raw' => 0.024027886103301
'avg_raw' => 0.016442387499433
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.008856'
'max' => '$0.024027'
'avg' => '$0.016442'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0030545120836817
'max_diff' => 0.011074488619998
'year' => 2032
]
7 => [
'items' => [
101 => 0.023438905731291
102 => 0.022602922243791
103 => 0.02214428516867
104 => 0.022748255466387
105 => 0.023117079051544
106 => 0.023360847979747
107 => 0.023434612310133
108 => 0.021580659213445
109 => 0.020581481319283
110 => 0.021221942893843
111 => 0.022003350217103
112 => 0.021493717779369
113 => 0.021513694406066
114 => 0.020787092478906
115 => 0.022067638364936
116 => 0.021881073600428
117 => 0.022848971928725
118 => 0.022617975224808
119 => 0.023407258737937
120 => 0.023199413937159
121 => 0.024062166084742
122 => 0.024406341274495
123 => 0.024984264984681
124 => 0.025409388018467
125 => 0.025659028395214
126 => 0.025644040923371
127 => 0.026633240466383
128 => 0.026049944055869
129 => 0.025317186291854
130 => 0.025303933015724
131 => 0.025683438644965
201 => 0.02647877833157
202 => 0.026684998340584
203 => 0.026800247192573
204 => 0.026623739563911
205 => 0.025990613115528
206 => 0.02571723232514
207 => 0.025950160679155
208 => 0.025665309317957
209 => 0.02615704268256
210 => 0.02683229762074
211 => 0.026692860146254
212 => 0.027158978717828
213 => 0.027641362402304
214 => 0.028331192736312
215 => 0.028511539929965
216 => 0.028809646983084
217 => 0.029116497063809
218 => 0.029215049039896
219 => 0.029403215341129
220 => 0.02940222361184
221 => 0.029969275425658
222 => 0.030594751136432
223 => 0.030830853737453
224 => 0.031373758649728
225 => 0.030444053013114
226 => 0.031149245418174
227 => 0.031785346619649
228 => 0.031026960543877
301 => 0.032072219068036
302 => 0.032112804087923
303 => 0.032725589703452
304 => 0.032104414086594
305 => 0.031735561988167
306 => 0.032800424175619
307 => 0.033315677445283
308 => 0.03316047896719
309 => 0.031979410885809
310 => 0.031291978604052
311 => 0.029492835726911
312 => 0.031623998182073
313 => 0.032662025247122
314 => 0.031976722646479
315 => 0.032322349416572
316 => 0.034207977004338
317 => 0.034925901904415
318 => 0.034776578543873
319 => 0.034801811733733
320 => 0.035189190978556
321 => 0.036907043883746
322 => 0.035877666603437
323 => 0.036664586964202
324 => 0.0370819666861
325 => 0.037469652232623
326 => 0.036517619059638
327 => 0.035279037889729
328 => 0.034886727241119
329 => 0.031908582808684
330 => 0.03175355745755
331 => 0.031666537030209
401 => 0.031117885545112
402 => 0.030686795766115
403 => 0.030343977168519
404 => 0.029444318794129
405 => 0.029747927085738
406 => 0.028314059410256
407 => 0.029231397135879
408 => 0.026942909703864
409 => 0.028848830040017
410 => 0.027811524252613
411 => 0.028508047190605
412 => 0.028505617087691
413 => 0.027223097526049
414 => 0.026483367008394
415 => 0.026954752084986
416 => 0.027460114305687
417 => 0.027542107625753
418 => 0.028197322936195
419 => 0.028380179445533
420 => 0.027826115685484
421 => 0.026895485888485
422 => 0.027111649964922
423 => 0.026478986450284
424 => 0.025370267975933
425 => 0.026166568940579
426 => 0.026438461100792
427 => 0.026558544168096
428 => 0.025468246885749
429 => 0.025125651808129
430 => 0.024943257063456
501 => 0.026754742200701
502 => 0.026853979445715
503 => 0.026346267669487
504 => 0.028641173041244
505 => 0.028121765276489
506 => 0.028702071007712
507 => 0.02709203534071
508 => 0.02715354087139
509 => 0.026391324184665
510 => 0.026818114597893
511 => 0.026516472889921
512 => 0.02678363415013
513 => 0.026943769507952
514 => 0.027705861122419
515 => 0.02885753190209
516 => 0.027592030048733
517 => 0.027040632768905
518 => 0.027382716540134
519 => 0.02829373070219
520 => 0.029673963791661
521 => 0.028856838022914
522 => 0.029219464563389
523 => 0.02929868233035
524 => 0.028696164040117
525 => 0.029696179500445
526 => 0.030232095909746
527 => 0.030781835253413
528 => 0.031259158522173
529 => 0.030562257270525
530 => 0.031308041506658
531 => 0.030707071060975
601 => 0.030167938444014
602 => 0.030168756085649
603 => 0.029830550319559
604 => 0.02917523403109
605 => 0.02905438365314
606 => 0.029683062580953
607 => 0.030187203544943
608 => 0.03022872700941
609 => 0.030507845350773
610 => 0.030673024710044
611 => 0.032292006981349
612 => 0.032943175043792
613 => 0.033739411024566
614 => 0.034049589812479
615 => 0.034983116758846
616 => 0.034229217932303
617 => 0.034066107178934
618 => 0.031801676161385
619 => 0.032172476613653
620 => 0.032766163914656
621 => 0.03181146584631
622 => 0.032417002029471
623 => 0.032536547699038
624 => 0.031779025571267
625 => 0.032183650870308
626 => 0.031109086039095
627 => 0.028880954478963
628 => 0.029698660047817
629 => 0.030300766583211
630 => 0.029441486318003
701 => 0.03098171293465
702 => 0.030081944341936
703 => 0.029796760894554
704 => 0.028684158591081
705 => 0.02920926405033
706 => 0.029919476702751
707 => 0.029480647854638
708 => 0.030391283604956
709 => 0.03168098668509
710 => 0.03260010590314
711 => 0.032670664463953
712 => 0.032079732382952
713 => 0.033026704814035
714 => 0.033033602474362
715 => 0.031965413703605
716 => 0.031311154029217
717 => 0.031162504854621
718 => 0.031533859637147
719 => 0.031984752899009
720 => 0.032695685901929
721 => 0.033125287826139
722 => 0.034245461801223
723 => 0.034548548760976
724 => 0.03488154943952
725 => 0.035326541039661
726 => 0.035860867549134
727 => 0.034691791565631
728 => 0.034738241133886
729 => 0.033649613765007
730 => 0.032486259296403
731 => 0.033369100323892
801 => 0.034523297527913
802 => 0.034258523414036
803 => 0.03422873091738
804 => 0.034278833633005
805 => 0.034079202597856
806 => 0.033176278824548
807 => 0.032722836158195
808 => 0.033307892883352
809 => 0.033618824494895
810 => 0.03410105230831
811 => 0.034041607551713
812 => 0.035283774611586
813 => 0.03576644316987
814 => 0.035642955898109
815 => 0.035665680528
816 => 0.036539528897519
817 => 0.037511428005048
818 => 0.038421739772632
819 => 0.039347748001419
820 => 0.0382314089389
821 => 0.037664600809175
822 => 0.038249402116869
823 => 0.037939098311332
824 => 0.039722196020033
825 => 0.039845653836652
826 => 0.041628622607093
827 => 0.043320872282214
828 => 0.042258000581073
829 => 0.043260240722456
830 => 0.0443442451492
831 => 0.046435465561768
901 => 0.045731216096836
902 => 0.045191772043695
903 => 0.04468200002005
904 => 0.045742754677224
905 => 0.047107398597709
906 => 0.047401329827785
907 => 0.047877610710879
908 => 0.047376859599161
909 => 0.0479799591573
910 => 0.050109165612903
911 => 0.049533835233574
912 => 0.048716773605952
913 => 0.05039757761149
914 => 0.051005854047134
915 => 0.055275056629325
916 => 0.060665101241303
917 => 0.058433587379003
918 => 0.057048414714171
919 => 0.057373963147141
920 => 0.059342224974911
921 => 0.059974368204483
922 => 0.058255984993668
923 => 0.058862946994087
924 => 0.062207367291582
925 => 0.064001541479339
926 => 0.061564811942624
927 => 0.054841971792922
928 => 0.04864320614605
929 => 0.050287397929655
930 => 0.050100997606606
1001 => 0.053694159991336
1002 => 0.049520113794301
1003 => 0.049590394027321
1004 => 0.053257859204942
1005 => 0.052279442371823
1006 => 0.050694532408331
1007 => 0.04865477774275
1008 => 0.044884102588952
1009 => 0.041544310452178
1010 => 0.048094411940586
1011 => 0.047811959653819
1012 => 0.047402926885497
1013 => 0.04831318504943
1014 => 0.052733140312198
1015 => 0.052631246037392
1016 => 0.051983046647993
1017 => 0.052474700171885
1018 => 0.050608343168483
1019 => 0.051089345864419
1020 => 0.048642224229901
1021 => 0.04974842540953
1022 => 0.050691131903369
1023 => 0.050880394189015
1024 => 0.051306811782548
1025 => 0.047663120133424
1026 => 0.049299030710715
1027 => 0.05025997491078
1028 => 0.045918394055433
1029 => 0.050174155816517
1030 => 0.047599691568295
1031 => 0.046725879735294
1101 => 0.047902352252475
1102 => 0.047443879768373
1103 => 0.047049712048949
1104 => 0.046829759688849
1105 => 0.047693631262934
1106 => 0.047653330621453
1107 => 0.046239869056003
1108 => 0.044396066063937
1109 => 0.045014906868845
1110 => 0.044790076202758
1111 => 0.043975260865128
1112 => 0.044524348021512
1113 => 0.04210644607145
1114 => 0.037946571437975
1115 => 0.040694712041254
1116 => 0.04058891161743
1117 => 0.04053556224607
1118 => 0.042600713956407
1119 => 0.042402197270615
1120 => 0.04204188754202
1121 => 0.043968643494405
1122 => 0.04326535165326
1123 => 0.04543273139127
1124 => 0.046860307864057
1125 => 0.046498228293297
1126 => 0.047840870866029
1127 => 0.045029163711107
1128 => 0.045963100041861
1129 => 0.046155583025249
1130 => 0.043944867625035
1201 => 0.042434677055508
1202 => 0.042333964561953
1203 => 0.039715502231473
1204 => 0.041114263672926
1205 => 0.042345115856723
1206 => 0.041755633178673
1207 => 0.041569020573096
1208 => 0.042522383903652
1209 => 0.042596468399441
1210 => 0.04090733404433
1211 => 0.041258558564686
1212 => 0.042723223200788
1213 => 0.041221652773798
1214 => 0.038304346714294
1215 => 0.037580814476625
1216 => 0.037484281938775
1217 => 0.035522005126152
1218 => 0.03762916436045
1219 => 0.036709332886322
1220 => 0.039615069491819
1221 => 0.037955328326537
1222 => 0.037883780202185
1223 => 0.037775624718398
1224 => 0.036086612005139
1225 => 0.036456398446985
1226 => 0.037685624899747
1227 => 0.038124226746319
1228 => 0.038078476980363
1229 => 0.037679601019526
1230 => 0.037862204391822
1231 => 0.037273975306425
]
'min_raw' => 0.020581481319283
'max_raw' => 0.064001541479339
'avg_raw' => 0.042291511399311
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.020581'
'max' => '$0.0640015'
'avg' => '$0.042291'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.011724592423717
'max_diff' => 0.039973655376038
'year' => 2033
]
8 => [
'items' => [
101 => 0.037066259373442
102 => 0.036410650752178
103 => 0.035447087195425
104 => 0.03558107661787
105 => 0.033672005081822
106 => 0.032631841586888
107 => 0.032343938040625
108 => 0.031958941386244
109 => 0.032387424437174
110 => 0.033666596922023
111 => 0.032123643513714
112 => 0.029478358120766
113 => 0.029637344280229
114 => 0.029994538977128
115 => 0.029328909022536
116 => 0.028698946132601
117 => 0.029246647754894
118 => 0.028125805461721
119 => 0.030129987413371
120 => 0.030075779908234
121 => 0.030822815002028
122 => 0.031289951376881
123 => 0.030213353270042
124 => 0.029942591757603
125 => 0.030096829820513
126 => 0.027547618210142
127 => 0.030614490027668
128 => 0.0306410124625
129 => 0.030413911273227
130 => 0.032046925837015
131 => 0.035493095916623
201 => 0.034196508110804
202 => 0.033694430122817
203 => 0.032739979500637
204 => 0.034011728285022
205 => 0.033914077820753
206 => 0.033472465388488
207 => 0.03320537681154
208 => 0.03369749570395
209 => 0.033144397834732
210 => 0.033045046259308
211 => 0.032443083807815
212 => 0.032228210600179
213 => 0.032069127031594
214 => 0.03189399165381
215 => 0.032280296656184
216 => 0.03140487869815
217 => 0.030349210459041
218 => 0.030261443067448
219 => 0.030503776552225
220 => 0.030396562024817
221 => 0.030260929765539
222 => 0.03000197084533
223 => 0.029925143265485
224 => 0.030174795628536
225 => 0.029892952666289
226 => 0.030308827309866
227 => 0.030195732418206
228 => 0.029563993546837
301 => 0.028776613013424
302 => 0.028769603675091
303 => 0.02859996383073
304 => 0.028383901983415
305 => 0.028323798520317
306 => 0.029200521851929
307 => 0.031015312910244
308 => 0.030659026001228
309 => 0.030916479806743
310 => 0.032182897718484
311 => 0.032585453890111
312 => 0.032299729054556
313 => 0.031908611276907
314 => 0.031925818474167
315 => 0.033262386319796
316 => 0.03334574641686
317 => 0.033556370489155
318 => 0.03382708194441
319 => 0.032345832385975
320 => 0.031856051753172
321 => 0.031623966517354
322 => 0.030909233819327
323 => 0.031680011757599
324 => 0.03123091246097
325 => 0.031291511299502
326 => 0.03125204622641
327 => 0.031273596824935
328 => 0.03012942720367
329 => 0.030546302477874
330 => 0.029853166480221
331 => 0.02892513518753
401 => 0.028922024101227
402 => 0.029149158445372
403 => 0.029014050049707
404 => 0.028650476830926
405 => 0.028702120690637
406 => 0.028249666137349
407 => 0.02875705686536
408 => 0.028771607015908
409 => 0.028576233947864
410 => 0.029357939370793
411 => 0.029678204720378
412 => 0.029549605981694
413 => 0.029669181890054
414 => 0.030673831330836
415 => 0.030837633025612
416 => 0.030910382918299
417 => 0.030812907699612
418 => 0.02968754503757
419 => 0.029737459657043
420 => 0.02937121929822
421 => 0.029061784788473
422 => 0.029074160546092
423 => 0.029233250107773
424 => 0.029928003554112
425 => 0.031390071223981
426 => 0.031445555623295
427 => 0.031512804333857
428 => 0.031239270031505
429 => 0.031156769468545
430 => 0.031265609006292
501 => 0.031814684751228
502 => 0.033227056639816
503 => 0.032727830085242
504 => 0.032321951125449
505 => 0.032678016397369
506 => 0.032623202939689
507 => 0.032160522194554
508 => 0.032147536287044
509 => 0.031259504009148
510 => 0.030931218695526
511 => 0.030656878915734
512 => 0.030357307038022
513 => 0.030179710787174
514 => 0.030452579344529
515 => 0.030514987612082
516 => 0.029918355742499
517 => 0.029837037023306
518 => 0.0303242594872
519 => 0.030109851046324
520 => 0.030330375444839
521 => 0.030381538996917
522 => 0.030373300486636
523 => 0.030149433449709
524 => 0.030292119623235
525 => 0.029954624286051
526 => 0.029587648797023
527 => 0.029353541298404
528 => 0.029149251456006
529 => 0.029262603333964
530 => 0.028858524586279
531 => 0.028729251662396
601 => 0.030243780758185
602 => 0.031362579685176
603 => 0.031346311905684
604 => 0.031247285981763
605 => 0.031100153545492
606 => 0.031803921097083
607 => 0.031558742554385
608 => 0.031737130429551
609 => 0.031782537630696
610 => 0.031919971552789
611 => 0.031969092367092
612 => 0.031820615149668
613 => 0.03132230747303
614 => 0.030080572120518
615 => 0.029502540961923
616 => 0.029311781051716
617 => 0.029318714812148
618 => 0.029127450745781
619 => 0.02918378658518
620 => 0.029107859439888
621 => 0.028964071795454
622 => 0.029253724852103
623 => 0.029287104668577
624 => 0.029219496184059
625 => 0.029235420429626
626 => 0.028675651053777
627 => 0.028718209103667
628 => 0.028481240473861
629 => 0.028436811712472
630 => 0.02783777565154
701 => 0.026776496437934
702 => 0.027364548143137
703 => 0.026654264375834
704 => 0.026385269150601
705 => 0.027658650709514
706 => 0.027530838519106
707 => 0.027312079607751
708 => 0.026988489584504
709 => 0.026868466897201
710 => 0.02613924704371
711 => 0.026096160844529
712 => 0.026457581894511
713 => 0.026290798515683
714 => 0.026056571486004
715 => 0.025208224927719
716 => 0.024254402518314
717 => 0.02428319242134
718 => 0.024586585583275
719 => 0.025468742119743
720 => 0.025124068299482
721 => 0.024874003488206
722 => 0.024827173865975
723 => 0.025413344632655
724 => 0.026242899074079
725 => 0.026632107457761
726 => 0.026246413769967
727 => 0.025803349628652
728 => 0.025830316889972
729 => 0.02600971799799
730 => 0.026028570517848
731 => 0.025740181309581
801 => 0.025821361182459
802 => 0.025698041532314
803 => 0.02494122906701
804 => 0.024927540729391
805 => 0.024741806745155
806 => 0.024736182793928
807 => 0.02442020295323
808 => 0.024375995189251
809 => 0.023748598036939
810 => 0.024161552742524
811 => 0.023884564407113
812 => 0.023467077650705
813 => 0.02339510277654
814 => 0.023392939124911
815 => 0.023821604675411
816 => 0.024156543535985
817 => 0.023889382737796
818 => 0.023828555402743
819 => 0.024478032203825
820 => 0.024395380360775
821 => 0.024323804397741
822 => 0.026168621572483
823 => 0.024708304825795
824 => 0.024071523372274
825 => 0.023283385402022
826 => 0.023540007099273
827 => 0.023594081061441
828 => 0.021698751315534
829 => 0.020929816273667
830 => 0.020665946744005
831 => 0.020514086099116
901 => 0.020583290901938
902 => 0.019891159177173
903 => 0.020356283143017
904 => 0.01975695557381
905 => 0.019656476356451
906 => 0.020728148292633
907 => 0.020877265181937
908 => 0.020241086205183
909 => 0.02064961609628
910 => 0.020501477478778
911 => 0.019767229324809
912 => 0.019739186446091
913 => 0.0193707665325
914 => 0.018794260707883
915 => 0.018530782076317
916 => 0.018393560117371
917 => 0.018450180572035
918 => 0.018421551537542
919 => 0.018234727722053
920 => 0.018432260059958
921 => 0.017927646562609
922 => 0.017726705402017
923 => 0.017635944941577
924 => 0.017188071418211
925 => 0.017900837364147
926 => 0.018041261234685
927 => 0.018181961783627
928 => 0.019406664001825
929 => 0.019345481339977
930 => 0.019898542805924
1001 => 0.019877051854372
1002 => 0.019719309765282
1003 => 0.019053821838726
1004 => 0.01931907346507
1005 => 0.01850267018844
1006 => 0.019114375033317
1007 => 0.01883521848752
1008 => 0.019019991924377
1009 => 0.018687752624559
1010 => 0.018871627570903
1011 => 0.018074560943772
1012 => 0.017330271342386
1013 => 0.017629795205152
1014 => 0.017955411898686
1015 => 0.01866143185586
1016 => 0.018240932193905
1017 => 0.018392159773197
1018 => 0.017885572697762
1019 => 0.016840338861695
1020 => 0.016846254771695
1021 => 0.016685468317673
1022 => 0.016546525346192
1023 => 0.018289231638442
1024 => 0.018072498562891
1025 => 0.017727162772324
1026 => 0.018189408451096
1027 => 0.018311633545389
1028 => 0.018315113121995
1029 => 0.01865235563694
1030 => 0.01883234202762
1031 => 0.018864065409083
1101 => 0.019394723792955
1102 => 0.019572593483675
1103 => 0.020305213566692
1104 => 0.018817071439866
1105 => 0.018786424132063
1106 => 0.018195913195744
1107 => 0.017821401824323
1108 => 0.018221556309754
1109 => 0.018576038557312
1110 => 0.018206927947291
1111 => 0.01825512600061
1112 => 0.017759625164102
1113 => 0.017936743397672
1114 => 0.018089301480825
1115 => 0.018005067874258
1116 => 0.017878966088274
1117 => 0.018546975055474
1118 => 0.018509283371596
1119 => 0.019131348679313
1120 => 0.019616293070996
1121 => 0.020485400115069
1122 => 0.019578441607004
1123 => 0.019545388434136
1124 => 0.019868488500811
1125 => 0.019572544018738
1126 => 0.019759570715752
1127 => 0.020455267222759
1128 => 0.020469966193688
1129 => 0.020223739492075
1130 => 0.020208756574905
1201 => 0.020256047106375
1202 => 0.020533029226285
1203 => 0.020436243162788
1204 => 0.020548246445791
1205 => 0.020688308266241
1206 => 0.021267663340604
1207 => 0.021407343887636
1208 => 0.021067992574409
1209 => 0.021098632198438
1210 => 0.020971705491889
1211 => 0.02084909588375
1212 => 0.021124704377151
1213 => 0.02162838431594
1214 => 0.021625250949182
1215 => 0.021742094904842
1216 => 0.021814887721231
1217 => 0.021502407665692
1218 => 0.021298994639747
1219 => 0.021376996137402
1220 => 0.021501722230803
1221 => 0.021336549146328
1222 => 0.020317024353332
1223 => 0.020626283048031
1224 => 0.020574807279256
1225 => 0.020501499524852
1226 => 0.020812461533799
1227 => 0.020782468489439
1228 => 0.019884060365945
1229 => 0.019941573539133
1230 => 0.019887557932496
1231 => 0.020062093408093
]
'min_raw' => 0.016546525346192
'max_raw' => 0.037066259373442
'avg_raw' => 0.026806392359817
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.016546'
'max' => '$0.037066'
'avg' => '$0.0268063'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0040349559730913
'max_diff' => -0.026935282105897
'year' => 2034
]
9 => [
'items' => [
101 => 0.01956311853028
102 => 0.019716599842048
103 => 0.019812861881991
104 => 0.019869560963038
105 => 0.020074396922701
106 => 0.020050361787042
107 => 0.020072902864922
108 => 0.020376620518414
109 => 0.021912720186466
110 => 0.021996326702186
111 => 0.021584617641138
112 => 0.021749087290424
113 => 0.021433341529353
114 => 0.021645303774073
115 => 0.021790322958653
116 => 0.02113500914912
117 => 0.021096205718271
118 => 0.020779156762127
119 => 0.020949520912588
120 => 0.020678459299588
121 => 0.020744968338086
122 => 0.020559003268293
123 => 0.020893703368644
124 => 0.021267950087973
125 => 0.021362499588727
126 => 0.021113780558364
127 => 0.020933691588998
128 => 0.020617514683787
129 => 0.021143323923615
130 => 0.021297086569087
131 => 0.021142516273897
201 => 0.021106698959074
202 => 0.021038825212205
203 => 0.021121098695333
204 => 0.021296249144698
205 => 0.021213651427298
206 => 0.021268208674825
207 => 0.021060292706441
208 => 0.021502511109593
209 => 0.022204860359452
210 => 0.022207118527136
211 => 0.022124520364504
212 => 0.022090722975957
213 => 0.022175473703293
214 => 0.022221447496217
215 => 0.022495515807797
216 => 0.022789602025486
217 => 0.024161974083571
218 => 0.023776617501296
219 => 0.024994267634009
220 => 0.025957270796903
221 => 0.02624603333843
222 => 0.025980385387552
223 => 0.02507161809762
224 => 0.025027029638873
225 => 0.026385111641685
226 => 0.026001391271794
227 => 0.025955748954784
228 => 0.025470191815705
301 => 0.025757216222322
302 => 0.025694439774201
303 => 0.025595344079713
304 => 0.026142966653245
305 => 0.027168067224293
306 => 0.027008295686963
307 => 0.026889033645934
308 => 0.026366462098805
309 => 0.026681166890758
310 => 0.026569106542117
311 => 0.027050588915133
312 => 0.026765369423499
313 => 0.025998484212593
314 => 0.026120613210116
315 => 0.02610215365783
316 => 0.026482049935823
317 => 0.026368014502775
318 => 0.026079886409324
319 => 0.027164563541984
320 => 0.02709413064228
321 => 0.027193988390858
322 => 0.027237948859985
323 => 0.02789817271648
324 => 0.028168645305679
325 => 0.028230047318716
326 => 0.028486975359355
327 => 0.028223654715009
328 => 0.029277125036829
329 => 0.029977621329141
330 => 0.030791283819872
331 => 0.031980263410689
401 => 0.032427330735513
402 => 0.032346572024828
403 => 0.033248042780949
404 => 0.034867965691129
405 => 0.032674004760344
406 => 0.034984250947814
407 => 0.034252853677936
408 => 0.03251872390833
409 => 0.032407066395214
410 => 0.033581439208852
411 => 0.036186085080307
412 => 0.035533650831156
413 => 0.03618715222901
414 => 0.035424808135643
415 => 0.035386951325867
416 => 0.036150126877979
417 => 0.037933328154024
418 => 0.037086196070075
419 => 0.035871624502427
420 => 0.036768445247152
421 => 0.035991536121229
422 => 0.034240942417353
423 => 0.035533151926982
424 => 0.034669088227901
425 => 0.034921267951445
426 => 0.036737401327139
427 => 0.036518879354482
428 => 0.03680166702169
429 => 0.036302554190911
430 => 0.035836304104094
501 => 0.034966013692865
502 => 0.034708363606899
503 => 0.034779568821381
504 => 0.034708328321131
505 => 0.03422140883443
506 => 0.034116258617637
507 => 0.033941003649578
508 => 0.033995322492409
509 => 0.03366579187981
510 => 0.034287684230283
511 => 0.034403112930628
512 => 0.034855674321784
513 => 0.034902660746729
514 => 0.036163037779291
515 => 0.035468843289531
516 => 0.035934568887131
517 => 0.035892910006102
518 => 0.032556307758778
519 => 0.033016062109369
520 => 0.033731295600024
521 => 0.03340908388196
522 => 0.032953551898548
523 => 0.032585685397862
524 => 0.032028330033043
525 => 0.032812797005964
526 => 0.033844287656594
527 => 0.034928821051847
528 => 0.036231816864802
529 => 0.035941003367894
530 => 0.034904462451469
531 => 0.034950960919786
601 => 0.03523839615445
602 => 0.034866141409316
603 => 0.0347563562177
604 => 0.035223313354989
605 => 0.035226529032158
606 => 0.034798204959392
607 => 0.03432220113499
608 => 0.034320206661585
609 => 0.034235506378684
610 => 0.035439876127809
611 => 0.036102157714311
612 => 0.036178087230883
613 => 0.036097047052871
614 => 0.036128236201018
615 => 0.035742869138211
616 => 0.036623703966735
617 => 0.037432045110924
618 => 0.037215392416592
619 => 0.036890599228792
620 => 0.03663188581055
621 => 0.037154447757285
622 => 0.037131178896385
623 => 0.037424984956211
624 => 0.037411656216231
625 => 0.037312860288917
626 => 0.037215395944905
627 => 0.037601831052041
628 => 0.037490543947144
629 => 0.037379083982634
630 => 0.037155533960144
701 => 0.037185918120973
702 => 0.036861181013297
703 => 0.036710942768327
704 => 0.03445172003593
705 => 0.033847981899601
706 => 0.034037930207513
707 => 0.034100466122483
708 => 0.033837718511842
709 => 0.034214431091179
710 => 0.034155720834726
711 => 0.034384128098231
712 => 0.034241429156284
713 => 0.034247285570637
714 => 0.034666932732281
715 => 0.034788758088613
716 => 0.034726796729132
717 => 0.034770192341402
718 => 0.035770225910017
719 => 0.035628053115833
720 => 0.035552526652532
721 => 0.035573447999024
722 => 0.035828978016766
723 => 0.035900512470313
724 => 0.035597415964
725 => 0.035740358028557
726 => 0.036348987197392
727 => 0.036561972961056
728 => 0.037241721279707
729 => 0.036952952112381
730 => 0.037483000416645
731 => 0.039112188197167
801 => 0.040413696127468
802 => 0.039216775647673
803 => 0.041606829215635
804 => 0.043467828751115
805 => 0.043396400489286
806 => 0.04307189217458
807 => 0.040953193680669
808 => 0.039003535738557
809 => 0.040634507393983
810 => 0.040638665076145
811 => 0.040498563164506
812 => 0.039628402223867
813 => 0.040468283449955
814 => 0.040534950171682
815 => 0.040497634535627
816 => 0.039830484182639
817 => 0.038811868903621
818 => 0.03901090389092
819 => 0.039336927260321
820 => 0.038719697006446
821 => 0.038522454541033
822 => 0.03888916581115
823 => 0.040070785930795
824 => 0.039847407491835
825 => 0.039841574178051
826 => 0.04079728186712
827 => 0.040113201416375
828 => 0.039013414359509
829 => 0.038735703623241
830 => 0.037750017597858
831 => 0.038430834446483
901 => 0.03845533583283
902 => 0.038082459402618
903 => 0.039043671226781
904 => 0.039034813490603
905 => 0.039947341060147
906 => 0.041691751043411
907 => 0.041175843174158
908 => 0.040575898452833
909 => 0.040641129078703
910 => 0.041356548041602
911 => 0.040923989405207
912 => 0.04107954050676
913 => 0.04135631259638
914 => 0.041523296069911
915 => 0.040617102726592
916 => 0.040405825710026
917 => 0.039973627082289
918 => 0.039860874527681
919 => 0.040212891291853
920 => 0.04012014731143
921 => 0.038453276586182
922 => 0.038279079321012
923 => 0.038284421702438
924 => 0.037846394396541
925 => 0.037178297616448
926 => 0.038934016064546
927 => 0.0387930073019
928 => 0.03863734454115
929 => 0.038656412341142
930 => 0.039418510212642
1001 => 0.038976454960307
1002 => 0.04015173130007
1003 => 0.039910129816656
1004 => 0.039662332166837
1005 => 0.039628078983531
1006 => 0.039532698029453
1007 => 0.039205601248229
1008 => 0.038810612229433
1009 => 0.03854980626586
1010 => 0.035560158545207
1011 => 0.036115019772179
1012 => 0.036753337036619
1013 => 0.036973681598408
1014 => 0.036596766978089
1015 => 0.039220484134761
1016 => 0.039699862542053
1017 => 0.038247794077287
1018 => 0.037976171355094
1019 => 0.039238291675208
1020 => 0.038477078834245
1021 => 0.038819852929921
1022 => 0.038078962822475
1023 => 0.039584394321575
1024 => 0.039572925455839
1025 => 0.038987278600977
1026 => 0.03948226331237
1027 => 0.03939624753779
1028 => 0.038735053681035
1029 => 0.039605355346184
1030 => 0.039605787004952
1031 => 0.039042114640208
1101 => 0.038383868721934
1102 => 0.038266189898821
1103 => 0.038177534713531
1104 => 0.038798049189001
1105 => 0.039354400527409
1106 => 0.040389632436994
1107 => 0.040649914335567
1108 => 0.041665811913644
1109 => 0.041060894369054
1110 => 0.041329046481577
1111 => 0.041620163532153
1112 => 0.041759735751674
1113 => 0.041532310309823
1114 => 0.043110417408702
1115 => 0.0432436579998
1116 => 0.043288332417468
1117 => 0.042756203582845
1118 => 0.043228858534295
1119 => 0.043007718935198
1120 => 0.043583062737697
1121 => 0.043673283992288
1122 => 0.043596869799364
1123 => 0.043625507449617
1124 => 0.042278871437892
1125 => 0.042209041256613
1126 => 0.041256901779953
1127 => 0.041644905654552
1128 => 0.040919551008499
1129 => 0.041149568438743
1130 => 0.041250957930308
1201 => 0.041197997813718
1202 => 0.041666842811465
1203 => 0.041268228784675
1204 => 0.040216220829762
1205 => 0.039163926255984
1206 => 0.039150715554791
1207 => 0.038873664968058
1208 => 0.038673408138195
1209 => 0.03871198470812
1210 => 0.038847933572154
1211 => 0.038665506543076
1212 => 0.038704436599015
1213 => 0.039350934917205
1214 => 0.039480585544303
1215 => 0.039039982055654
1216 => 0.037270895469949
1217 => 0.0368367571844
1218 => 0.037148807174716
1219 => 0.036999667377938
1220 => 0.029861619279636
1221 => 0.031538597800168
1222 => 0.030542194108078
1223 => 0.031001382771722
1224 => 0.029984312619583
1225 => 0.030469711805398
1226 => 0.030380076299718
1227 => 0.033076608135332
1228 => 0.033034505499677
1229 => 0.033054657803343
1230 => 0.032092735842813
1231 => 0.033625103644964
]
'min_raw' => 0.01956311853028
'max_raw' => 0.043673283992288
'avg_raw' => 0.031618201261284
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.019563'
'max' => '$0.043673'
'avg' => '$0.031618'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0030165931840881
'max_diff' => 0.006607024618846
'year' => 2035
]
10 => [
'items' => [
101 => 0.034380003126468
102 => 0.034240291323441
103 => 0.03427545377429
104 => 0.033671246369926
105 => 0.033060507851749
106 => 0.032383104843107
107 => 0.033641635903621
108 => 0.033501708733534
109 => 0.033822651317508
110 => 0.03463889867191
111 => 0.034759094195468
112 => 0.034920638198032
113 => 0.034862736172598
114 => 0.036242197328609
115 => 0.036075135480638
116 => 0.036477706467274
117 => 0.03564958740463
118 => 0.034712492079466
119 => 0.034890603264826
120 => 0.034873449725396
121 => 0.034655065480538
122 => 0.0344579179489
123 => 0.034129722854696
124 => 0.035168180696494
125 => 0.035126021204564
126 => 0.035808534373867
127 => 0.035687893541614
128 => 0.034882224538005
129 => 0.034910999164084
130 => 0.03510452235308
131 => 0.035774308319805
201 => 0.035973146397235
202 => 0.035881036677442
203 => 0.036099053552041
204 => 0.03627136520046
205 => 0.036120693242126
206 => 0.0382538904331
207 => 0.037368038233418
208 => 0.037799796431823
209 => 0.037902768218076
210 => 0.037639008152853
211 => 0.03769620826646
212 => 0.037782850852477
213 => 0.038308927668411
214 => 0.039689505454977
215 => 0.040300953958737
216 => 0.042140526950634
217 => 0.040250181672274
218 => 0.040138016406482
219 => 0.040469379052105
220 => 0.041549403136926
221 => 0.042424661216169
222 => 0.042715034815904
223 => 0.042753412480655
224 => 0.04329817265743
225 => 0.043610419031581
226 => 0.043232024443354
227 => 0.042911374649397
228 => 0.041762846887958
229 => 0.041895792103682
301 => 0.042811652804592
302 => 0.044105359988553
303 => 0.045215495339683
304 => 0.04482676463184
305 => 0.047792505531568
306 => 0.04808654662781
307 => 0.048045919655796
308 => 0.048715789032219
309 => 0.047386234736546
310 => 0.046817824516244
311 => 0.04298070277438
312 => 0.044058777469682
313 => 0.04562582235241
314 => 0.045418418086064
315 => 0.044280388204997
316 => 0.045214632041969
317 => 0.04490574181296
318 => 0.044662107273474
319 => 0.04577824432974
320 => 0.044551005787992
321 => 0.045613579709168
322 => 0.04425081766434
323 => 0.04482854032097
324 => 0.044500596999766
325 => 0.044712816519806
326 => 0.043472185542006
327 => 0.044141599903013
328 => 0.043444335703758
329 => 0.043444005109741
330 => 0.043428612963897
331 => 0.044248941202177
401 => 0.044275692076577
402 => 0.04366946826904
403 => 0.043582101947379
404 => 0.043905141029105
405 => 0.043526946868473
406 => 0.043703901535907
407 => 0.043532306645083
408 => 0.043493677020817
409 => 0.043185869602379
410 => 0.043053257703174
411 => 0.04310525824584
412 => 0.042927753585604
413 => 0.042820800607188
414 => 0.043407337324523
415 => 0.043093974417274
416 => 0.04335930996473
417 => 0.043056926620389
418 => 0.042008734206749
419 => 0.041405907665232
420 => 0.039425969363356
421 => 0.039987477409662
422 => 0.040359757825285
423 => 0.040236719150143
424 => 0.040501053833995
425 => 0.040517281836747
426 => 0.040431343936453
427 => 0.04033183885724
428 => 0.040283405287655
429 => 0.040644389434462
430 => 0.040853952881852
501 => 0.040397121145462
502 => 0.040290091861382
503 => 0.040751973969243
504 => 0.041033721788217
505 => 0.043113989383101
506 => 0.042959876440496
507 => 0.043346669683297
508 => 0.043303122699984
509 => 0.043708543639434
510 => 0.044371235531763
511 => 0.043023797623091
512 => 0.043257666253139
513 => 0.043200327065867
514 => 0.043826341277365
515 => 0.043828295625402
516 => 0.043452968833879
517 => 0.043656439576546
518 => 0.043542867789917
519 => 0.043748107358502
520 => 0.04295781816819
521 => 0.043920305095544
522 => 0.044465973162066
523 => 0.044473549763699
524 => 0.044732192096541
525 => 0.044994987686262
526 => 0.04549940093606
527 => 0.044980919874496
528 => 0.044048222917857
529 => 0.044115560625534
530 => 0.043568720741117
531 => 0.043577913218368
601 => 0.043528843054371
602 => 0.043676106310356
603 => 0.042990134171547
604 => 0.043151130461424
605 => 0.042925734712803
606 => 0.043257176286801
607 => 0.042900599942434
608 => 0.043200299415175
609 => 0.043329639772414
610 => 0.043806908475128
611 => 0.042830106966988
612 => 0.040838342568243
613 => 0.041257035592668
614 => 0.040637755721916
615 => 0.040695072431718
616 => 0.040810861307407
617 => 0.040435551677538
618 => 0.040507148927551
619 => 0.040504590969959
620 => 0.040482547873346
621 => 0.040384915343472
622 => 0.040243328859146
623 => 0.040807365834677
624 => 0.040903206707802
625 => 0.041116249096586
626 => 0.041750118737573
627 => 0.041686780212763
628 => 0.041790087974618
629 => 0.041564567710536
630 => 0.040705533669961
701 => 0.040752183351302
702 => 0.040170461077474
703 => 0.041101373150154
704 => 0.040880920883904
705 => 0.040738793873726
706 => 0.040700013202202
707 => 0.041335454083425
708 => 0.041525587954402
709 => 0.041407109285419
710 => 0.041164106078758
711 => 0.041630744072995
712 => 0.041755596714377
713 => 0.041783546616394
714 => 0.042610339673221
715 => 0.041829755163745
716 => 0.042017649613519
717 => 0.043483548473817
718 => 0.042154180487742
719 => 0.04285837635841
720 => 0.042823909634999
721 => 0.043184152413743
722 => 0.042794359212443
723 => 0.042799191166336
724 => 0.043119062348902
725 => 0.04266986096206
726 => 0.042558632381545
727 => 0.042404970894197
728 => 0.042740485130228
729 => 0.042941610740724
730 => 0.044562535450844
731 => 0.045609726736729
801 => 0.045564265401238
802 => 0.04597969690757
803 => 0.045792541209051
804 => 0.045188166089355
805 => 0.046219760722983
806 => 0.04589332101715
807 => 0.045920232309875
808 => 0.045919230670215
809 => 0.04613628453674
810 => 0.045982481979613
811 => 0.045679321352006
812 => 0.045880573524525
813 => 0.046478220527939
814 => 0.048333335164584
815 => 0.049371481892251
816 => 0.048270837428043
817 => 0.049030047241237
818 => 0.048574791887437
819 => 0.048492058446978
820 => 0.048968898314828
821 => 0.049446572827744
822 => 0.049416147026315
823 => 0.049069379858796
824 => 0.048873499884755
825 => 0.050356768672795
826 => 0.051449615848998
827 => 0.051375090998121
828 => 0.051704019453111
829 => 0.052669763570334
830 => 0.052758059109314
831 => 0.052746935900852
901 => 0.052528086194804
902 => 0.053478986695931
903 => 0.054272244623474
904 => 0.05247742881103
905 => 0.053160871176545
906 => 0.053467690473562
907 => 0.053918192230766
908 => 0.054678264208032
909 => 0.055503903974478
910 => 0.055620658490132
911 => 0.055537815574057
912 => 0.054993283953698
913 => 0.055896708838074
914 => 0.056425913947421
915 => 0.056741043479393
916 => 0.057540159539921
917 => 0.053469585285086
918 => 0.050588230506847
919 => 0.050138265350958
920 => 0.051053287189465
921 => 0.051294571151117
922 => 0.051197309888719
923 => 0.047954083124496
924 => 0.050121190433245
925 => 0.052452815681902
926 => 0.052542382903546
927 => 0.053709643255009
928 => 0.054089751073063
929 => 0.055029548652302
930 => 0.054970764057841
1001 => 0.055199589812941
1002 => 0.055146986734553
1003 => 0.056887763852365
1004 => 0.058808099521215
1005 => 0.058741604403297
1006 => 0.058465533430519
1007 => 0.05887554590219
1008 => 0.06085753810812
1009 => 0.060675068026576
1010 => 0.060852322168031
1011 => 0.063189202679009
1012 => 0.066227479760657
1013 => 0.0648158950182
1014 => 0.067878627736763
1015 => 0.069806455634614
1016 => 0.073140434642821
1017 => 0.072723004050801
1018 => 0.074020897612828
1019 => 0.071975716170691
1020 => 0.06727956618018
1021 => 0.066536382468042
1022 => 0.068024255080152
1023 => 0.071682044712538
1024 => 0.06790905826766
1025 => 0.06867232851151
1026 => 0.068452506629933
1027 => 0.068440793256047
1028 => 0.068887845095556
1029 => 0.068239373085692
1030 => 0.065597381459622
1031 => 0.066808190652496
1101 => 0.066340639075294
1102 => 0.066859422408478
1103 => 0.069659082095153
1104 => 0.068421285812123
1105 => 0.067117367978356
1106 => 0.068752770304431
1107 => 0.070835199450734
1108 => 0.070704884777244
1109 => 0.070452019843364
1110 => 0.071877406236067
1111 => 0.074231726957785
1112 => 0.074868090388439
1113 => 0.07533784086307
1114 => 0.075402611517022
1115 => 0.076069789507468
1116 => 0.072482205302339
1117 => 0.078175793571576
1118 => 0.079158918983471
1119 => 0.078974132152408
1120 => 0.080066834671489
1121 => 0.079745333871188
1122 => 0.079279529653482
1123 => 0.081011695570715
1124 => 0.079025907125189
1125 => 0.076207330430578
1126 => 0.074661003510788
1127 => 0.076697331537402
1128 => 0.0779408460052
1129 => 0.07876272996604
1130 => 0.079011431555995
1201 => 0.07276069925164
1202 => 0.0693919012211
1203 => 0.071551262135329
1204 => 0.074185831481816
1205 => 0.072467570136596
1206 => 0.07253492272823
1207 => 0.070085133601084
1208 => 0.074402583460693
1209 => 0.073773567331616
1210 => 0.077036904121973
1211 => 0.076258082607041
1212 => 0.078919207077572
1213 => 0.078218443820489
1214 => 0.081127272921497
1215 => 0.082287683603293
1216 => 0.08423619374153
1217 => 0.085669525731081
1218 => 0.086511205690617
1219 => 0.086460674382908
1220 => 0.089795829705881
1221 => 0.087829205133376
1222 => 0.085358661172486
1223 => 0.0853139768267
1224 => 0.086593506551923
1225 => 0.089275049834154
1226 => 0.089970334992369
1227 => 0.090358904543265
1228 => 0.089763796749864
1229 => 0.087629166725663
1230 => 0.086707444304033
1231 => 0.087492778512131
]
'min_raw' => 0.032383104843107
'max_raw' => 0.090358904543265
'avg_raw' => 0.061371004693186
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.032383'
'max' => '$0.090358'
'avg' => '$0.061371'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.012819986312828
'max_diff' => 0.046685620550977
'year' => 2036
]
11 => [
'items' => [
101 => 0.086532382260165
102 => 0.088190295630654
103 => 0.090466964799522
104 => 0.089996841619076
105 => 0.0915683929265
106 => 0.093194783197665
107 => 0.095520594331188
108 => 0.096128647486027
109 => 0.097133736228787
110 => 0.098168302699539
111 => 0.098500577567597
112 => 0.099134993389555
113 => 0.099131649705017
114 => 0.1010435044856
115 => 0.10315233951379
116 => 0.10394837591729
117 => 0.10577881773344
118 => 0.10264425026962
119 => 0.10502185569824
120 => 0.10716651531018
121 => 0.10460956370689
122 => 0.10813372579871
123 => 0.10827056102682
124 => 0.1103366105129
125 => 0.10824227355156
126 => 0.10699866294929
127 => 0.11058892016058
128 => 0.11232613253309
129 => 0.11180287002859
130 => 0.10782081653267
131 => 0.10550309059974
201 => 0.099437154777316
202 => 0.10662251778791
203 => 0.11012229851045
204 => 0.10781175294609
205 => 0.10897705773234
206 => 0.11533458279481
207 => 0.11775511671934
208 => 0.11725166258385
209 => 0.11733673804518
210 => 0.11864281421506
211 => 0.12443467522157
212 => 0.12096405785218
213 => 0.12361721478952
214 => 0.12502443966242
215 => 0.12633154854987
216 => 0.12312170223831
217 => 0.11894573934899
218 => 0.11762303660695
219 => 0.10758201472559
220 => 0.10705933593071
221 => 0.10676594048436
222 => 0.10491612369673
223 => 0.10346267440912
224 => 0.1023068375725
225 => 0.099273576551098
226 => 0.10029721310351
227 => 0.095462828126177
228 => 0.09855569631459
301 => 0.090839901160462
302 => 0.097265844640911
303 => 0.093768495756301
304 => 0.09611687147142
305 => 0.09610867820978
306 => 0.091784573965047
307 => 0.089290520878438
308 => 0.090879828575224
309 => 0.09258369258558
310 => 0.092860138788773
311 => 0.0950692429536
312 => 0.095685756441469
313 => 0.093817691790965
314 => 0.090680008455886
315 => 0.091408820731688
316 => 0.089275751520931
317 => 0.085537629776403
318 => 0.088222414074667
319 => 0.089139117475728
320 => 0.089543985921076
321 => 0.085867972511516
322 => 0.084712889288098
323 => 0.084097932672038
324 => 0.090205481286111
325 => 0.090540066586202
326 => 0.088828280885345
327 => 0.096565714571398
328 => 0.094814495028635
329 => 0.096771036317106
330 => 0.091342688656707
331 => 0.091550058847574
401 => 0.088980192072011
402 => 0.090419145747767
403 => 0.089402139669385
404 => 0.090302892510783
405 => 0.090842800049974
406 => 0.093412245135686
407 => 0.097295183576433
408 => 0.093028455723323
409 => 0.091169381297055
410 => 0.09232274061528
411 => 0.095394288467628
412 => 0.10004784069358
413 => 0.097292844114349
414 => 0.098515464813335
415 => 0.098782553045454
416 => 0.096751120563448
417 => 0.10012274250679
418 => 0.10192962209724
419 => 0.10378310667599
420 => 0.10539243540226
421 => 0.10304278417624
422 => 0.10555724779735
423 => 0.10353103398131
424 => 0.10171331072219
425 => 0.10171606745805
426 => 0.10057578310491
427 => 0.098366338485611
428 => 0.097958882998851
429 => 0.10007851789693
430 => 0.10177826435502
501 => 0.10191826361455
502 => 0.10285933058987
503 => 0.10341624433211
504 => 0.10887475609355
505 => 0.11107021467918
506 => 0.11375477987978
507 => 0.11480056931922
508 => 0.11794802059567
509 => 0.11540619806644
510 => 0.11485625877343
511 => 0.10722157150023
512 => 0.10847175111352
513 => 0.11047340929877
514 => 0.10725457810645
515 => 0.10929618562517
516 => 0.10969924219652
517 => 0.10714520345424
518 => 0.10850942589999
519 => 0.10488645554784
520 => 0.097374154429675
521 => 0.10013110584544
522 => 0.10216115006726
523 => 0.09926402666008
524 => 0.10445700823329
525 => 0.10142337560312
526 => 0.1004618596994
527 => 0.096710643353829
528 => 0.098481073071381
529 => 0.10087560461448
530 => 0.099396062515017
531 => 0.10246633452577
601 => 0.10681465850464
602 => 0.10991353311915
603 => 0.11015142623317
604 => 0.10815905746452
605 => 0.11135184113141
606 => 0.11137509707479
607 => 0.10777362405562
608 => 0.10556774188447
609 => 0.10506656081397
610 => 0.10631860939042
611 => 0.10783882750314
612 => 0.11023578775825
613 => 0.11168422063957
614 => 0.11546096540461
615 => 0.11648284425028
616 => 0.11760557928735
617 => 0.11910589953555
618 => 0.12090741866772
619 => 0.11696579736707
620 => 0.11712240532944
621 => 0.11345202214973
622 => 0.10952969133602
623 => 0.11250625149819
624 => 0.11639770795502
625 => 0.11550500354415
626 => 0.11540455606163
627 => 0.11557348086542
628 => 0.11490041089262
629 => 0.11185614035078
630 => 0.11032732674282
701 => 0.11229988633904
702 => 0.11334821397591
703 => 0.11497407871691
704 => 0.11477365656974
705 => 0.11896170953744
706 => 0.12058906028054
707 => 0.12017271432219
708 => 0.12024933199845
709 => 0.12319557278643
710 => 0.12647239848329
711 => 0.12954157816364
712 => 0.13266367955882
713 => 0.12889986446924
714 => 0.12698883128659
715 => 0.128960529725
716 => 0.12791431877991
717 => 0.13392615719671
718 => 0.13434240384498
719 => 0.14035380753743
720 => 0.1460593454662
721 => 0.14247579931847
722 => 0.14585492192932
723 => 0.14950971853686
724 => 0.15656041416218
725 => 0.15418598792203
726 => 0.15236721463408
727 => 0.15064848266522
728 => 0.15422489105141
729 => 0.15882588330572
730 => 0.15981689296954
731 => 0.16142270721976
801 => 0.15973438988528
802 => 0.16176778215261
803 => 0.16894655037413
804 => 0.16700678383193
805 => 0.16425200350899
806 => 0.16991895156364
807 => 0.17196979803492
808 => 0.18636371260698
809 => 0.20453662433717
810 => 0.1970129195511
811 => 0.19234271320195
812 => 0.19344032247278
813 => 0.20007645464475
814 => 0.20220776967809
815 => 0.19641412070914
816 => 0.19846053547028
817 => 0.20973648200326
818 => 0.21578566554252
819 => 0.20757006178246
820 => 0.18490353684403
821 => 0.16400396568161
822 => 0.16954747307384
823 => 0.16891901137062
824 => 0.18103360921732
825 => 0.16696052104142
826 => 0.16719747575386
827 => 0.17956259065445
828 => 0.17626378999071
829 => 0.17092015539392
830 => 0.16404298012778
831 => 0.15132988558662
901 => 0.14006954322065
902 => 0.1621536677023
903 => 0.16120136009728
904 => 0.15982227756112
905 => 0.16289127651302
906 => 0.17779346427286
907 => 0.17744992061132
908 => 0.17526447111413
909 => 0.17692211529608
910 => 0.17062956235423
911 => 0.17225129652611
912 => 0.16400065508276
913 => 0.16773028959238
914 => 0.17090869035402
915 => 0.17154680136395
916 => 0.17298449805207
917 => 0.16069953726262
918 => 0.16621512398958
919 => 0.16945501445109
920 => 0.15481707147779
921 => 0.16916566938308
922 => 0.16048568342685
923 => 0.15753956582429
924 => 0.16150612505465
925 => 0.15996035306497
926 => 0.15863138907903
927 => 0.15788980434037
928 => 0.16080240766598
929 => 0.16066653123953
930 => 0.15590094688688
1001 => 0.14968443636891
1002 => 0.15177090134874
1003 => 0.15101286906086
1004 => 0.14826566226145
1005 => 0.15011694794524
1006 => 0.14196482270808
1007 => 0.12793951494815
1008 => 0.13720506286115
1009 => 0.13684834934548
1010 => 0.13666847821521
1011 => 0.1436312813909
1012 => 0.14296196852475
1013 => 0.14174715911877
1014 => 0.14824335133404
1015 => 0.14587215378935
1016 => 0.15317962589768
1017 => 0.15799279964589
1018 => 0.15677202309348
1019 => 0.16129883626776
1020 => 0.15181896928781
1021 => 0.1549678008323
1022 => 0.15561677064953
1023 => 0.14816318933048
1024 => 0.14307147638719
1025 => 0.14273191718364
1026 => 0.13390358862123
1027 => 0.13861961047949
1028 => 0.14276951455252
1029 => 0.14078203254711
1030 => 0.14015285511853
1031 => 0.1433671861492
1101 => 0.14361696719917
1102 => 0.13792193278932
1103 => 0.13910611078141
1104 => 0.14404432986165
1105 => 0.13898168033075
1106 => 0.12914577927133
1107 => 0.12670633981662
1108 => 0.12638087362557
1109 => 0.11976492035002
1110 => 0.12686935482562
1111 => 0.12376807879001
1112 => 0.1335649726275
1113 => 0.12796903940932
1114 => 0.12772780991274
1115 => 0.12736315614797
1116 => 0.12166853186212
1117 => 0.12291529266847
1118 => 0.1270597154758
1119 => 0.12853849222373
1120 => 0.12838424369366
1121 => 0.12703940554307
1122 => 0.12765506556172
1123 => 0.12567181013146
1124 => 0.12497148136115
1125 => 0.12276105112142
1126 => 0.11951232931597
1127 => 0.11996408400859
1128 => 0.11352751603768
1129 => 0.11002053219262
1130 => 0.10904984528561
1201 => 0.10775180218576
1202 => 0.1091964627077
1203 => 0.11350928204933
1204 => 0.10830710690765
1205 => 0.099388342517402
1206 => 0.099924375454091
1207 => 0.10112868231322
1208 => 0.098884464448517
1209 => 0.096760500582499
1210 => 0.098607114841366
1211 => 0.094828116795222
1212 => 0.10158535617272
1213 => 0.10140259178451
1214 => 0.10392127275956
1215 => 0.1054962556618
1216 => 0.10186642997891
1217 => 0.10095353863576
1218 => 0.10147356303342
1219 => 0.092878718108778
1220 => 0.10321889056372
1221 => 0.10330831280449
1222 => 0.10254262528916
1223 => 0.10804844790441
1224 => 0.11966745093172
1225 => 0.11529591461953
1226 => 0.11360312362907
1227 => 0.11038512671877
1228 => 0.11467291653599
1229 => 0.11434368117797
1230 => 0.11285475403019
1231 => 0.11195424624548
]
'min_raw' => 0.084097932672038
'max_raw' => 0.21578566554252
'avg_raw' => 0.14994179910728
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.084097'
'max' => '$0.215785'
'avg' => '$0.149941'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.05171482782893
'max_diff' => 0.12542676099926
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0026397380100201
]
1 => [
'year' => 2028
'avg' => 0.0045305567466142
]
2 => [
'year' => 2029
'avg' => 0.012376664478343
]
3 => [
'year' => 2030
'avg' => 0.0095485782131598
]
4 => [
'year' => 2031
'avg' => 0.0093778871475935
]
5 => [
'year' => 2032
'avg' => 0.016442387499433
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0026397380100201
'min' => '$0.002639'
'max_raw' => 0.016442387499433
'max' => '$0.016442'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.016442387499433
]
1 => [
'year' => 2033
'avg' => 0.042291511399311
]
2 => [
'year' => 2034
'avg' => 0.026806392359817
]
3 => [
'year' => 2035
'avg' => 0.031618201261284
]
4 => [
'year' => 2036
'avg' => 0.061371004693186
]
5 => [
'year' => 2037
'avg' => 0.14994179910728
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.016442387499433
'min' => '$0.016442'
'max_raw' => 0.14994179910728
'max' => '$0.149941'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.14994179910728
]
]
]
]
'prediction_2025_max_price' => '$0.004513'
'last_price' => 0.00437638
'sma_50day_nextmonth' => '$0.002675'
'sma_200day_nextmonth' => '$0.001012'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.003788'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.0023075'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.001199'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.000623'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.000358'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.000377'
'daily_sma100_action' => 'BUY'
'daily_sma200' => '$0.000525'
'daily_sma200_action' => 'BUY'
'daily_ema3' => '$0.003898'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.00301'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.001875'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.00105'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.000577'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.000532'
'daily_ema100_action' => 'BUY'
'daily_ema200' => '$0.002163'
'daily_ema200_action' => 'BUY'
'weekly_sma21' => '$0.000562'
'weekly_sma21_action' => 'BUY'
'weekly_sma50' => '$0.0020043'
'weekly_sma50_action' => 'BUY'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.0023053'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.001593'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.000989'
'weekly_ema10_action' => 'BUY'
'weekly_ema21' => '$0.001078'
'weekly_ema21_action' => 'BUY'
'weekly_ema50' => '$0.009845'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.02597'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.012985'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '71.98'
'rsi_14_action' => 'SELL'
'stoch_rsi_14' => 286.92
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.006259'
'vwma_10_action' => 'SELL'
'hma_9' => '0.004159'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 65.86
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => 256.59
'cci_20_action' => 'SELL'
'adx_14' => 20.72
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.001870'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -34.14
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 74.04
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.000066'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 7
'buy_signals' => 27
'sell_pct' => 20.59
'buy_pct' => 79.41
'overall_action' => 'bullish'
'overall_action_label' => 'Alcista'
'overall_action_dir' => 1
'last_updated' => 1767698508
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de BlockProtocol para 2026
La previsión del precio de BlockProtocol para 2026 sugiere que el precio medio podría oscilar entre $0.001512 en el extremo inferior y $0.004513 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, BlockProtocol podría potencialmente ganar 3.13% para 2026 si BLOCK alcanza el objetivo de precio previsto.
Predicción de precio de BlockProtocol 2027-2032
La predicción del precio de BLOCK para 2027-2032 está actualmente dentro de un rango de precios de $0.002639 en el extremo inferior y $0.016442 en el extremo superior. Considerando la volatilidad de precios en el mercado, si BlockProtocol alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de BlockProtocol | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.001455 | $0.002639 | $0.003823 |
| 2028 | $0.002626 | $0.00453 | $0.006434 |
| 2029 | $0.00577 | $0.012376 | $0.018982 |
| 2030 | $0.0049076 | $0.009548 | $0.014189 |
| 2031 | $0.0058023 | $0.009377 | $0.012953 |
| 2032 | $0.008856 | $0.016442 | $0.024027 |
Predicción de precio de BlockProtocol 2032-2037
La predicción de precio de BlockProtocol para 2032-2037 se estima actualmente entre $0.016442 en el extremo inferior y $0.149941 en el extremo superior. Comparado con el precio actual, BlockProtocol podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de BlockProtocol | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.008856 | $0.016442 | $0.024027 |
| 2033 | $0.020581 | $0.042291 | $0.0640015 |
| 2034 | $0.016546 | $0.0268063 | $0.037066 |
| 2035 | $0.019563 | $0.031618 | $0.043673 |
| 2036 | $0.032383 | $0.061371 | $0.090358 |
| 2037 | $0.084097 | $0.149941 | $0.215785 |
BlockProtocol Histograma de precios potenciales
Pronóstico de precio de BlockProtocol basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para BlockProtocol es Alcista, con 27 indicadores técnicos mostrando señales alcistas y 7 indicando señales bajistas. La predicción de precio de BLOCK se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de BlockProtocol
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de BlockProtocol aumentar durante el próximo mes, alcanzando $0.001012 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para BlockProtocol alcance $0.002675 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 71.98, lo que sugiere que el mercado de BLOCK está en un estado SELL.
Promedios Móviles y Osciladores Populares de BLOCK para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.003788 | BUY |
| SMA 5 | $0.0023075 | BUY |
| SMA 10 | $0.001199 | BUY |
| SMA 21 | $0.000623 | BUY |
| SMA 50 | $0.000358 | BUY |
| SMA 100 | $0.000377 | BUY |
| SMA 200 | $0.000525 | BUY |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.003898 | BUY |
| EMA 5 | $0.00301 | BUY |
| EMA 10 | $0.001875 | BUY |
| EMA 21 | $0.00105 | BUY |
| EMA 50 | $0.000577 | BUY |
| EMA 100 | $0.000532 | BUY |
| EMA 200 | $0.002163 | BUY |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.000562 | BUY |
| SMA 50 | $0.0020043 | BUY |
| SMA 100 | — | — |
| SMA 200 | — | — |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.001078 | BUY |
| EMA 50 | $0.009845 | SELL |
| EMA 100 | $0.02597 | SELL |
| EMA 200 | $0.012985 | SELL |
Osciladores de BlockProtocol
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 71.98 | SELL |
| Stoch RSI (14) | 286.92 | SELL |
| Estocástico Rápido (14) | 65.86 | NEUTRAL |
| Índice de Canal de Materias Primas (20) | 256.59 | SELL |
| Índice Direccional Medio (14) | 20.72 | NEUTRAL |
| Oscilador Asombroso (5, 34) | 0.001870 | BUY |
| Momentum (10) | 0 | SELL |
| MACD (12, 26) | 0 | BUY |
| Rango Percentil de Williams (14) | -34.14 | NEUTRAL |
| Oscilador Ultimate (7, 14, 28) | 74.04 | SELL |
| VWMA (10) | 0.006259 | SELL |
| Promedio Móvil de Hull (9) | 0.004159 | BUY |
| Nube Ichimoku B/L (9, 26, 52, 26) | -0.000066 | NEUTRAL |
Predicción de precios de BlockProtocol basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de BlockProtocol
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de BlockProtocol por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.006149 | $0.008641 | $0.012142 | $0.017061 | $0.023974 | $0.033688 |
| Amazon.com acción | $0.009131 | $0.019053 | $0.039756 | $0.082954 | $0.173088 | $0.361159 |
| Apple acción | $0.0062075 | $0.0088049 | $0.012489 | $0.017714 | $0.025127 | $0.035641 |
| Netflix acción | $0.0069052 | $0.010895 | $0.017191 | $0.027125 | $0.042799 | $0.06753 |
| Google acción | $0.005667 | $0.007339 | $0.0095042 | $0.012308 | $0.015938 | $0.02064 |
| Tesla acción | $0.00992 | $0.022489 | $0.050983 | $0.115574 | $0.261999 | $0.593932 |
| Kodak acción | $0.003281 | $0.002461 | $0.001845 | $0.001383 | $0.001037 | $0.000778 |
| Nokia acción | $0.002899 | $0.00192 | $0.001272 | $0.000842 | $0.000558 | $0.000369 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de BlockProtocol
Podría preguntarse cosas como: "¿Debo invertir en BlockProtocol ahora?", "¿Debería comprar BLOCK hoy?", "¿Será BlockProtocol una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de BlockProtocol regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como BlockProtocol, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de BlockProtocol a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de BlockProtocol es de $0.004376 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Pronóstico a corto plazo de BlockProtocol
basado en el historial de precios de las últimas 4 horas
Pronóstico a largo plazo de BlockProtocol
basado en el historial de precios del último mes
Predicción de precios de BlockProtocol basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si BlockProtocol ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.00449 | $0.0046068 | $0.004726 | $0.004849 |
| Si BlockProtocol ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.0046038 | $0.004843 | $0.005095 | $0.005359 |
| Si BlockProtocol ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.004945 | $0.005587 | $0.006314 | $0.007134 |
| Si BlockProtocol ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.005513 | $0.006947 | $0.008752 | $0.011028 |
| Si BlockProtocol ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.006651 | $0.0101093 | $0.015364 | $0.023352 |
| Si BlockProtocol ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.010064 | $0.023144 | $0.053223 | $0.122396 |
| Si BlockProtocol ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.015751 | $0.056696 | $0.204068 | $0.7345095 |
Cuadro de preguntas
¿Es BLOCK una buena inversión?
La decisión de adquirir BlockProtocol depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de BlockProtocol ha experimentado una caída de -19.4361% durante las últimas 24 horas, y BlockProtocol ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en BlockProtocol dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede BlockProtocol subir?
Parece que el valor medio de BlockProtocol podría potencialmente aumentar hasta $0.004513 para el final de este año. Mirando las perspectivas de BlockProtocol en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.014189. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de BlockProtocol la próxima semana?
Basado en nuestro nuevo pronóstico experimental de BlockProtocol, el precio de BlockProtocol aumentará en un 0.86% durante la próxima semana y alcanzará $0.004413 para el 13 de enero de 2026.
¿Cuál será el precio de BlockProtocol el próximo mes?
Basado en nuestro nuevo pronóstico experimental de BlockProtocol, el precio de BlockProtocol disminuirá en un -11.62% durante el próximo mes y alcanzará $0.003867 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de BlockProtocol este año en 2026?
Según nuestra predicción más reciente sobre el valor de BlockProtocol en 2026, se anticipa que BLOCK fluctúe dentro del rango de $0.001512 y $0.004513. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de BlockProtocol no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará BlockProtocol en 5 años?
El futuro de BlockProtocol parece estar en una tendencia alcista, con un precio máximo de $0.014189 proyectada después de un período de cinco años. Basado en el pronóstico de BlockProtocol para 2030, el valor de BlockProtocol podría potencialmente alcanzar su punto más alto de aproximadamente $0.014189, mientras que su punto más bajo se anticipa que esté alrededor de $0.0049076.
¿Cuánto será BlockProtocol en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de BlockProtocol, se espera que el valor de BLOCK en 2026 crezca en un 3.13% hasta $0.004513 si ocurre lo mejor. El precio estará entre $0.004513 y $0.001512 durante 2026.
¿Cuánto será BlockProtocol en 2027?
Según nuestra última simulación experimental para la predicción de precios de BlockProtocol, el valor de BLOCK podría disminuir en un -12.62% hasta $0.003823 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.003823 y $0.001455 a lo largo del año.
¿Cuánto será BlockProtocol en 2028?
Nuestro nuevo modelo experimental de predicción de precios de BlockProtocol sugiere que el valor de BLOCK en 2028 podría aumentar en un 47.02% , alcanzando $0.006434 en el mejor escenario. Se espera que el precio oscile entre $0.006434 y $0.002626 durante el año.
¿Cuánto será BlockProtocol en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de BlockProtocol podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.018982 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.018982 y $0.00577.
¿Cuánto será BlockProtocol en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de BlockProtocol, se espera que el valor de BLOCK en 2030 aumente en un 224.23% , alcanzando $0.014189 en el mejor escenario. Se pronostica que el precio oscile entre $0.014189 y $0.0049076 durante el transcurso de 2030.
¿Cuánto será BlockProtocol en 2031?
Nuestra simulación experimental indica que el precio de BlockProtocol podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.012953 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.012953 y $0.0058023 durante el año.
¿Cuánto será BlockProtocol en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de BlockProtocol, BLOCK podría experimentar un 449.04% aumento en valor, alcanzando $0.024027 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.024027 y $0.008856 a lo largo del año.
¿Cuánto será BlockProtocol en 2033?
Según nuestra predicción experimental de precios de BlockProtocol, se anticipa que el valor de BLOCK aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.0640015. A lo largo del año, el precio de BLOCK podría oscilar entre $0.0640015 y $0.020581.
¿Cuánto será BlockProtocol en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de BlockProtocol sugieren que BLOCK podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.037066 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.037066 y $0.016546.
¿Cuánto será BlockProtocol en 2035?
Basado en nuestra predicción experimental para el precio de BlockProtocol, BLOCK podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.043673 en 2035. El rango de precios esperado para el año está entre $0.043673 y $0.019563.
¿Cuánto será BlockProtocol en 2036?
Nuestra reciente simulación de predicción de precios de BlockProtocol sugiere que el valor de BLOCK podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.090358 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.090358 y $0.032383.
¿Cuánto será BlockProtocol en 2037?
Según la simulación experimental, el valor de BlockProtocol podría aumentar en un 4830.69% en 2037, con un máximo de $0.215785 bajo condiciones favorables. Se espera que el precio caiga entre $0.215785 y $0.084097 durante el transcurso del año.
Predicciones relacionadas
¿Cómo leer y predecir los movimientos de precio de BlockProtocol?
Los traders de BlockProtocol utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de BlockProtocol
Las medias móviles son herramientas populares para la predicción de precios de BlockProtocol. Una media móvil simple (SMA) calcula el precio de cierre promedio de BLOCK durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de BLOCK por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de BLOCK.
¿Cómo leer gráficos de BlockProtocol y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de BlockProtocol en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de BLOCK dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de BlockProtocol?
La acción del precio de BlockProtocol está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de BLOCK. La capitalización de mercado de BlockProtocol puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de BLOCK, grandes poseedores de BlockProtocol, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de BlockProtocol.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


