Prédiction du prix de Apro jusqu'à $0.165177 d'ici 2026
| Année | Prix min. | Prix max. |
|---|---|---|
| 2026 | $0.055335 | $0.165177 |
| 2027 | $0.053269 | $0.13994 |
| 2028 | $0.096136 | $0.235468 |
| 2029 | $0.211184 | $0.694700021 |
| 2030 | $0.179603 | $0.519285 |
| 2031 | $0.212346 | $0.474048 |
| 2032 | $0.32413 | $0.879335 |
| 2033 | $0.7532092 | $2.34 |
| 2034 | $0.605544 | $1.35 |
| 2035 | $0.71594 | $1.59 |
Calculateur de profit d’investissement
Si vous ouvrez une position short de $10,000.00 sur Apro aujourd’hui et la fermez le Apr 06, 2026, notre prévision indique que vous pourriez gagner environ $3,954.48, soit un rendement de 39.54% sur les 90 prochains jours.
Prévision du prix à long terme de Apro pour 2027, 2028, 2029, 2030, 2031, 2032 et 2037
[
'name' => 'Apro'
'name_with_ticker' => 'Apro <small>AT</small>'
'name_lang' => 'Apro'
'name_lang_with_ticker' => 'Apro <small>AT</small>'
'name_with_lang' => 'Apro'
'name_with_lang_with_ticker' => 'Apro <small>AT</small>'
'image' => '/uploads/coins/apro.png?1762828426'
'price_for_sd' => 0.1601
'ticker' => 'AT'
'marketcap' => '$36.81M'
'low24h' => '$0.1524'
'high24h' => '$0.1624'
'volume24h' => '$12.91M'
'current_supply' => '230M'
'max_supply' => '1B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.1601'
'change_24h_pct' => '0.4812%'
'ath_price' => '$0.8593'
'ath_days' => 74
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '24 oct. 2025'
'ath_pct' => '-81.39%'
'fdv' => '$160.05M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$7.89'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.16153'
'next_week_prediction_price_date' => '13 janvier 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.141552'
'next_month_prediction_price_date' => '5 février 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.055335'
'current_year_max_price_prediction' => '$0.165177'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.179603'
'grand_prediction_max_price' => '$0.519285'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.16319494775584
107 => 0.16380425845099
108 => 0.16517706655935
109 => 0.15344657157947
110 => 0.1587132194362
111 => 0.16180688163386
112 => 0.14782960327644
113 => 0.16153059578111
114 => 0.15324236975986
115 => 0.15042922136328
116 => 0.15421675507516
117 => 0.15274074950414
118 => 0.15147176658814
119 => 0.15076365231711
120 => 0.15354479906028
121 => 0.15341505524052
122 => 0.14886455937138
123 => 0.14292862301202
124 => 0.14492091809469
125 => 0.14419709861329
126 => 0.14157388343812
127 => 0.14334161373798
128 => 0.13555742412526
129 => 0.12216513048354
130 => 0.13101248988031
131 => 0.13067187616761
201 => 0.13050012328806
202 => 0.13714866935168
203 => 0.13650956505572
204 => 0.13534958450042
205 => 0.14155257948556
206 => 0.13928840287393
207 => 0.14626606168387
208 => 0.15086199906278
209 => 0.14969632068049
210 => 0.15401882199945
211 => 0.14496681654952
212 => 0.14797352965656
213 => 0.1485932090608
214 => 0.14147603549031
215 => 0.13661413042247
216 => 0.13628989678422
217 => 0.12786002340838
218 => 0.1323631937222
219 => 0.1363257972445
220 => 0.13442801766777
221 => 0.13382723734833
222 => 0.136896493707
223 => 0.13713500121247
224 => 0.13169700481183
225 => 0.13282773646247
226 => 0.13754307541415
227 => 0.1327089220192
228 => 0.1233169516273
301 => 0.12098761311596
302 => 0.12067683642032
303 => 0.11435948563539
304 => 0.12114327065345
305 => 0.11818196669893
306 => 0.12753669040939
307 => 0.12219332239637
308 => 0.12196298048098
309 => 0.12161478489206
310 => 0.116177180105
311 => 0.11736766997555
312 => 0.121325039622
313 => 0.12273707369481
314 => 0.12258978697257
315 => 0.1213056463518
316 => 0.12189351935212
317 => 0.11999977558955
318 => 0.11933105525212
319 => 0.11722038992116
320 => 0.11411829497083
321 => 0.11454966029993
322 => 0.10840359849603
323 => 0.10505489782908
324 => 0.10412802161964
325 => 0.10288856401554
326 => 0.10426802165409
327 => 0.10838618747516
328 => 0.10341880577733
329 => 0.094902578277732
330 => 0.095414418061404
331 => 0.096564370088718
401 => 0.094421442093512
402 => 0.092393340588362
403 => 0.094156610302013
404 => 0.090548172442988
405 => 0.097000432564466
406 => 0.09682591701043
407 => 0.099230920578627
408 => 0.10073481866546
409 => 0.097268820468095
410 => 0.096397131294512
411 => 0.096893685063849
412 => 0.088686757343905
413 => 0.098560239494374
414 => 0.098645625778017
415 => 0.097914496577953
416 => 0.10317182101352
417 => 0.11426641537317
418 => 0.11009218269604
419 => 0.10847579363661
420 => 0.10540303685305
421 => 0.1094973028249
422 => 0.10918292707876
423 => 0.10776120073126
424 => 0.10690133620023
425 => 0.10848566296353
426 => 0.10670502058129
427 => 0.10638516828066
428 => 0.10444721134157
429 => 0.10375544888574
430 => 0.1032432955033
501 => 0.10267946495239
502 => 0.10392313464989
503 => 0.10110481549698
504 => 0.097706198881802
505 => 0.097423640683792
506 => 0.09820380871127
507 => 0.09785864243579
508 => 0.09742198816046
509 => 0.09658829623314
510 => 0.096340957647314
511 => 0.097144688059626
512 => 0.09623732328452
513 => 0.097576189436906
514 => 0.097212091926301
515 => 0.095178272829403
516 => 0.092643381218397
517 => 0.092620815365944
518 => 0.092074677126408
519 => 0.091379087965925
520 => 0.091185590974403
521 => 0.094008112644889
522 => 0.09985064803183
523 => 0.098703618535351
524 => 0.099532464898868
525 => 0.10360956866798
526 => 0.10490555735339
527 => 0.10398569528166
528 => 0.10272653134325
529 => 0.10278192816618
530 => 0.10708487251856
531 => 0.10735324187972
601 => 0.10803132467613
602 => 0.10890285269569
603 => 0.10413412027198
604 => 0.10255732129786
605 => 0.10181014646645
606 => 0.099509137178744
607 => 0.10199057842191
608 => 0.10054474887542
609 => 0.10073984067781
610 => 0.10061278688557
611 => 0.10068216684748
612 => 0.096998629026264
613 => 0.098340716607266
614 => 0.096109235701684
615 => 0.093121533264595
616 => 0.093111517438403
617 => 0.093842753377205
618 => 0.09340778562754
619 => 0.092237298597236
620 => 0.092403560755348
621 => 0.090946929301025
622 => 0.092580422187066
623 => 0.09262726491812
624 => 0.091998281180035
625 => 0.094514902349562
626 => 0.095545964096084
627 => 0.09513195352554
628 => 0.095516916010787
629 => 0.098751282789457
630 => 0.099278625699697
701 => 0.099512836586108
702 => 0.099199025025313
703 => 0.095576034298091
704 => 0.095736729342989
705 => 0.094557655726362
706 => 0.093561462768028
707 => 0.093601305262017
708 => 0.094113477938621
709 => 0.096350166055877
710 => 0.10105714433868
711 => 0.10123577072375
712 => 0.10145227111336
713 => 0.10057165522444
714 => 0.10030605304598
715 => 0.1006564508771
716 => 0.10242414443896
717 => 0.10697113220418
718 => 0.10536392304485
719 => 0.10405723698062
720 => 0.10520355293899
721 => 0.10502708658232
722 => 0.10353753294256
723 => 0.10349572613301
724 => 0.10063679645921
725 => 0.099579915253487
726 => 0.098696706211797
727 => 0.097732264995028
728 => 0.097160511913365
729 => 0.098038984503928
730 => 0.098239901579172
731 => 0.096319105906833
801 => 0.096057308554277
802 => 0.097625871763563
803 => 0.096935605577087
804 => 0.097645561467655
805 => 0.097810277324156
806 => 0.097783754277532
807 => 0.097063037102284
808 => 0.097522400737691
809 => 0.096435868797062
810 => 0.095254428503449
811 => 0.094500743202454
812 => 0.093843052815489
813 => 0.094207977667367
814 => 0.092907087203067
815 => 0.092490906161785
816 => 0.097366778674024
817 => 0.10096863812328
818 => 0.10091626566039
819 => 0.10059746176168
820 => 0.10012378383521
821 => 0.10238949194828
822 => 0.10160016454595
823 => 0.10217446618166
824 => 0.10232065005131
825 => 0.10276310459698
826 => 0.1029212440668
827 => 0.10244323675407
828 => 0.10083898582887
829 => 0.096841345050877
830 => 0.094980432477295
831 => 0.094366300332062
901 => 0.094388622869138
902 => 0.093772867644383
903 => 0.093954235154287
904 => 0.093709795425996
905 => 0.093246885716935
906 => 0.094179394297278
907 => 0.094286857224244
908 => 0.094069198578944
909 => 0.09412046506927
910 => 0.092318344449412
911 => 0.09245535576614
912 => 0.091692459344044
913 => 0.091549425461755
914 => 0.089620889739689
915 => 0.086204209162325
916 => 0.088097381867393
917 => 0.085810695460037
918 => 0.084944692668618
919 => 0.089044215192129
920 => 0.088632736833824
921 => 0.087928464749748
922 => 0.086886699554236
923 => 0.086500298709581
924 => 0.084152649497095
925 => 0.0840139378574
926 => 0.085177496198969
927 => 0.084640554059933
928 => 0.083886483940836
929 => 0.081155318408331
930 => 0.078084584091963
1001 => 0.078177270259026
1002 => 0.07915401371202
1003 => 0.081994027033399
1004 => 0.080884384696007
1005 => 0.08007932644855
1006 => 0.079928563238764
1007 => 0.081815680453402
1008 => 0.084486346675394
1009 => 0.085739363513964
1010 => 0.084497661881629
1011 => 0.083071261904365
1012 => 0.08315808026168
1013 => 0.083735643897587
1014 => 0.083796337669411
1015 => 0.082867897920499
1016 => 0.083129248271451
1017 => 0.082732233189978
1018 => 0.080295752367813
1019 => 0.080251684155905
1020 => 0.079653732468585
1021 => 0.079635626729134
1022 => 0.078618361742964
1023 => 0.078476039339378
1024 => 0.076456197965766
1025 => 0.07778566367452
1026 => 0.076893927877171
1027 => 0.075549871691355
1028 => 0.075318155898315
1029 => 0.075311190241771
1030 => 0.07669123541914
1031 => 0.077769537043121
1101 => 0.076909440003151
1102 => 0.07671361257943
1103 => 0.078804537138448
1104 => 0.078538447929113
1105 => 0.07830801638992
1106 => 0.084247217807338
1107 => 0.079545876443785
1108 => 0.077495823266093
1109 => 0.074958493164159
1110 => 0.075784660639677
1111 => 0.075958746265695
1112 => 0.06985692475867
1113 => 0.067381416533204
1114 => 0.066531915397783
1115 => 0.066043015484166
1116 => 0.06626581331402
1117 => 0.064037565562946
1118 => 0.065534984903484
1119 => 0.063605510700147
1120 => 0.063282028070906
1121 => 0.066732166962459
1122 => 0.067212233633799
1123 => 0.065164120068836
1124 => 0.06647934053701
1125 => 0.066002423312318
1126 => 0.063638585997437
1127 => 0.063548304799219
1128 => 0.06236221432751
1129 => 0.060506212411659
1130 => 0.059657969732935
1201 => 0.059216197581075
1202 => 0.0593984813809
1203 => 0.059306313113732
1204 => 0.058704852825444
1205 => 0.059340788113413
1206 => 0.057716236239255
1207 => 0.057069326593062
1208 => 0.056777132514066
1209 => 0.055335249220034
1210 => 0.05762992674925
1211 => 0.058082007130091
1212 => 0.058534978248938
1213 => 0.062477782581978
1214 => 0.062280811219748
1215 => 0.064061336405357
1216 => 0.06399214847082
1217 => 0.063484313845289
1218 => 0.061341843094913
1219 => 0.062195793750144
1220 => 0.059567466366741
1221 => 0.061536787951276
1222 => 0.06063807182093
1223 => 0.061232931123579
1224 => 0.060163320461115
1225 => 0.060755287164864
1226 => 0.058189212159465
1227 => 0.055793047425073
1228 => 0.056757334062602
1229 => 0.057805623917148
1230 => 0.060078583421093
1231 => 0.058724827492052
]
'min_raw' => 0.055335249220034
'max_raw' => 0.16517706655935
'avg_raw' => 0.11025615788969
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.055335'
'max' => '$0.165177'
'avg' => '$0.110256'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.10482475077997
'max_diff' => 0.0050170665593522
'year' => 2026
]
1 => [
'items' => [
101 => 0.059211689315314
102 => 0.057580783707071
103 => 0.05421575959211
104 => 0.05423480526316
105 => 0.053717169614108
106 => 0.053269856837285
107 => 0.058880322645381
108 => 0.058182572533805
109 => 0.057070799050286
110 => 0.058558952038099
111 => 0.05895244330824
112 => 0.058963645451517
113 => 0.060049363456638
114 => 0.060628811350596
115 => 0.060730941553377
116 => 0.062439342292924
117 => 0.063011975686469
118 => 0.065370571592371
119 => 0.060579649245171
120 => 0.060480983352184
121 => 0.058579893402458
122 => 0.057374192101299
123 => 0.058662448802071
124 => 0.059803668374379
125 => 0.058615354275707
126 => 0.058770523010314
127 => 0.057175308421676
128 => 0.057745522575291
129 => 0.058236667820526
130 => 0.05796548628429
131 => 0.057559514399211
201 => 0.059710101383746
202 => 0.05958875683786
203 => 0.06159143287964
204 => 0.063152662066945
205 => 0.065950663873695
206 => 0.063030803125218
207 => 0.062924391794149
208 => 0.063964579624271
209 => 0.063011816439132
210 => 0.063613929883872
211 => 0.06585365408911
212 => 0.065900975932256
213 => 0.065108274088817
214 => 0.065060038109603
215 => 0.065212285169844
216 => 0.066104000957021
217 => 0.065792408061323
218 => 0.066152991248792
219 => 0.066603906046168
220 => 0.068469080832026
221 => 0.068918768158377
222 => 0.067826261091491
223 => 0.067924902247348
224 => 0.067516274614343
225 => 0.067121545440949
226 => 0.068008838977172
227 => 0.069630385354416
228 => 0.069620297798561
301 => 0.069996465039725
302 => 0.070230814114632
303 => 0.069224816331123
304 => 0.068569948765623
305 => 0.068821066660542
306 => 0.069222609643153
307 => 0.068690851683142
308 => 0.065408595219706
309 => 0.066404222159358
310 => 0.06623850115293
311 => 0.066002494287413
312 => 0.067003604874188
313 => 0.066907045315868
314 => 0.064014711661602
315 => 0.064199869477994
316 => 0.064025971721678
317 => 0.064587870948469
318 => 0.062981472036889
319 => 0.063475589522829
320 => 0.063785495377947
321 => 0.06396803230742
322 => 0.064627480863423
323 => 0.064550102186703
324 => 0.064622670896233
325 => 0.06560045901682
326 => 0.070545775794386
327 => 0.070814938475363
328 => 0.069489482992609
329 => 0.070018976314516
330 => 0.069002464923915
331 => 0.06968485583046
401 => 0.070151730357868
402 => 0.06804201414332
403 => 0.067917090441039
404 => 0.066896383546336
405 => 0.067444853615756
406 => 0.066572198298916
407 => 0.066786317389481
408 => 0.066187621745693
409 => 0.067265154705398
410 => 0.068470003986041
411 => 0.068774396495272
412 => 0.067973670852701
413 => 0.067393892717089
414 => 0.066375993301744
415 => 0.06806878271483
416 => 0.068563805926039
417 => 0.068066182568639
418 => 0.067950872363445
419 => 0.067732359732962
420 => 0.067997230850978
421 => 0.068561109923319
422 => 0.068295194966014
423 => 0.068470836480133
424 => 0.067801472149056
425 => 0.069225149358249
426 => 0.071486291393026
427 => 0.071493561334402
428 => 0.071227644943716
429 => 0.071118837685896
430 => 0.071391684039896
501 => 0.071539691994197
502 => 0.072422027071566
503 => 0.073368807763363
504 => 0.077787020139203
505 => 0.07654640378383
506 => 0.080466504644305
507 => 0.083566795463552
508 => 0.084496437120957
509 => 0.083641210539164
510 => 0.080715526601283
511 => 0.080571978589579
512 => 0.08494418558467
513 => 0.08370883684879
514 => 0.083561896047504
515 => 0.081998694182225
516 => 0.082922740090922
517 => 0.082720637695755
518 => 0.082401609177795
519 => 0.084164624401994
520 => 0.087464831516241
521 => 0.086950463288339
522 => 0.086566511267066
523 => 0.0848841452766
524 => 0.085897305372908
525 => 0.085536538468416
526 => 0.087086622038449
527 => 0.086168386870117
528 => 0.083699477867117
529 => 0.084092659763475
530 => 0.084033231110813
531 => 0.085256268571444
601 => 0.084889143083419
602 => 0.083961543967122
603 => 0.087453551767103
604 => 0.08722680020414
605 => 0.087548282077797
606 => 0.087689808340738
607 => 0.089815331952507
608 => 0.090686090967079
609 => 0.090883768508169
610 => 0.091710922225093
611 => 0.090863188170172
612 => 0.094254728813995
613 => 0.096509905440255
614 => 0.099129409141983
615 => 0.10295720810643
616 => 0.10439649592618
617 => 0.1041365014641
618 => 0.10703869495288
619 => 0.11225387214007
620 => 0.10519063788126
621 => 0.11262824070666
622 => 0.11027358152339
623 => 0.10469072695837
624 => 0.10433125694192
625 => 0.10811203087162
626 => 0.11649742356171
627 => 0.11439697779918
628 => 0.11650085913851
629 => 0.11404656980194
630 => 0.11392469365001
701 => 0.11638165978351
702 => 0.12212249507669
703 => 0.11939523942089
704 => 0.11548504968778
705 => 0.11837227293742
706 => 0.11587109295869
707 => 0.11023523443041
708 => 0.11439537162789
709 => 0.11161360635782
710 => 0.1124254733504
711 => 0.11827233019173
712 => 0.11756882090772
713 => 0.11847922706443
714 => 0.1168723840273
715 => 0.11537133925473
716 => 0.11256952771768
717 => 0.1117400494492
718 => 0.11196928740111
719 => 0.11173993585026
720 => 0.11017234804526
721 => 0.10983382760802
722 => 0.10926961204837
723 => 0.10944448604279
724 => 0.10838359572356
725 => 0.11038571494707
726 => 0.11075732591757
727 => 0.11221430132556
728 => 0.11236556934574
729 => 0.11642322511823
730 => 0.11418833650488
731 => 0.11568769273772
801 => 0.11555357620376
802 => 0.10481172434549
803 => 0.1062918567554
804 => 0.10859447829408
805 => 0.10755715041204
806 => 0.10609061148416
807 => 0.10490630266907
808 => 0.1031119537124
809 => 0.10563746541149
810 => 0.10895824473756
811 => 0.11244978978957
812 => 0.11664465239447
813 => 0.11570840789464
814 => 0.11237136975106
815 => 0.11252106684447
816 => 0.11344643537232
817 => 0.11224799905016
818 => 0.1118945567825
819 => 0.11339787783222
820 => 0.11340823037807
821 => 0.11202928455357
822 => 0.11049683861405
823 => 0.11049041760961
824 => 0.11021773365634
825 => 0.11409507967146
826 => 0.11622722793587
827 => 0.11647167529826
828 => 0.11621077468073
829 => 0.11631118497364
830 => 0.11507053487726
831 => 0.11790629309423
901 => 0.12050866526154
902 => 0.11981117392913
903 => 0.11876553526761
904 => 0.11793263370892
905 => 0.11961496879189
906 => 0.11954005705889
907 => 0.12048593581092
908 => 0.12044302528706
909 => 0.12012496183906
910 => 0.11981118528817
911 => 0.12105527384473
912 => 0.12069699631989
913 => 0.1203381622911
914 => 0.11961846571162
915 => 0.11971628442966
916 => 0.1186708263124
917 => 0.11818714955044
918 => 0.11091381155347
919 => 0.1089701379775
920 => 0.10958165725163
921 => 0.10978298527476
922 => 0.10893709604361
923 => 0.11014988390996
924 => 0.10996087220565
925 => 0.11069620617897
926 => 0.11023680143693
927 => 0.11025565556779
928 => 0.11160666695872
929 => 0.11199887131312
930 => 0.111799393013
1001 => 0.11193910077669
1002 => 0.115158607224
1003 => 0.11470089636121
1004 => 0.11445774658787
1005 => 0.1145251007368
1006 => 0.11534775366108
1007 => 0.1155780515647
1008 => 0.11460226316434
1009 => 0.11506245061491
1010 => 0.11702187037299
1011 => 0.11770755639476
1012 => 0.1198959370283
1013 => 0.11896627403981
1014 => 0.12067271069005
1015 => 0.12591771518578
1016 => 0.13010778770367
1017 => 0.12625442385415
1018 => 0.13394895843074
1019 => 0.13994025731405
1020 => 0.13971030128388
1021 => 0.13866557974234
1022 => 0.13184464525061
1023 => 0.12556791963692
1024 => 0.13081866713662
1025 => 0.13083205237182
1026 => 0.13038100850494
1027 => 0.1275796137853
1028 => 0.13028352604107
1029 => 0.13049815277677
1030 => 0.13037801887863
1031 => 0.1282301961153
1101 => 0.12495086773969
1102 => 0.12559164065468
1103 => 0.12664123976085
1104 => 0.12465412968356
1105 => 0.12401912761062
1106 => 0.1251997172783
1107 => 0.1290038231732
1108 => 0.12828467898945
1109 => 0.12826589922853
1110 => 0.13134270301119
1111 => 0.12914037551862
1112 => 0.12559972285318
1113 => 0.12470566135968
1114 => 0.12153234536976
1115 => 0.12372416602696
1116 => 0.12380304575039
1117 => 0.12260260797631
1118 => 0.12569713176255
1119 => 0.12566861518108
1120 => 0.12860640495704
1121 => 0.13422235562522
1122 => 0.13256144266849
1123 => 0.13062998160663
1124 => 0.13083998497766
1125 => 0.13314320362538
1126 => 0.1317506250536
1127 => 0.13225140601741
1128 => 0.13314244563341
1129 => 0.13368003195701
1130 => 0.13076263457868
1201 => 0.13008244969454
1202 => 0.12869103013405
1203 => 0.12832803474279
1204 => 0.12946131694189
1205 => 0.12916273712188
1206 => 0.12379641621508
1207 => 0.12323560582239
1208 => 0.12325280507648
1209 => 0.12184262067898
1210 => 0.11969175098977
1211 => 0.12534410811127
1212 => 0.12489014472973
1213 => 0.12438900429048
1214 => 0.12445039113482
1215 => 0.12690388778511
1216 => 0.12548073582339
1217 => 0.12926441856364
1218 => 0.12848660714015
1219 => 0.12768884778861
1220 => 0.12757857314589
1221 => 0.12727150385717
1222 => 0.12621844901072
1223 => 0.12494682200485
1224 => 0.12410718370912
1225 => 0.11448231669076
1226 => 0.11626863602409
1227 => 0.11832363358896
1228 => 0.11903301051347
1229 => 0.11781957219671
1230 => 0.12626636295146
1231 => 0.12780967301765
]
'min_raw' => 0.053269856837285
'max_raw' => 0.13994025731405
'avg_raw' => 0.096605057075668
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.053269'
'max' => '$0.13994'
'avg' => '$0.096605'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.0020653923827486
'max_diff' => -0.025236809245301
'year' => 2027
]
2 => [
'items' => [
101 => 0.12313488615953
102 => 0.12226042440866
103 => 0.12632369251827
104 => 0.12387304513385
105 => 0.124976571501
106 => 0.12259135109188
107 => 0.1274379348161
108 => 0.12740101196837
109 => 0.12551558143459
110 => 0.12710913441087
111 => 0.12683221536583
112 => 0.1247035689368
113 => 0.1275054167047
114 => 0.12750680638624
115 => 0.12569212049027
116 => 0.1235729646496
117 => 0.12319410963751
118 => 0.12290869327791
119 => 0.12490637657288
120 => 0.12669749316855
121 => 0.13003031709763
122 => 0.13086826821934
123 => 0.13413884723296
124 => 0.13219137667195
125 => 0.13305466514768
126 => 0.13399188690769
127 => 0.13444122548463
128 => 0.13370905238635
129 => 0.13878960781852
130 => 0.1392185623612
131 => 0.13936238710891
201 => 0.1376492524026
202 => 0.13917091698598
203 => 0.13845898051965
204 => 0.14031124142338
205 => 0.14060169958394
206 => 0.1403556918553
207 => 0.14044788786003
208 => 0.13611253007006
209 => 0.13588771889782
210 => 0.1328224026124
211 => 0.13407154165638
212 => 0.13173633608644
213 => 0.13247685382795
214 => 0.1328032669925
215 => 0.13263276727912
216 => 0.13414216610373
217 => 0.13285886875301
218 => 0.12947203605083
219 => 0.12608428060834
220 => 0.12604175009837
221 => 0.12514981388921
222 => 0.12450510737626
223 => 0.12462930072285
224 => 0.12506697427501
225 => 0.12447966899376
226 => 0.12460500035265
227 => 0.12668633598868
228 => 0.12710373300708
229 => 0.12568525485102
301 => 0.119989860369
302 => 0.1185921962773
303 => 0.11959680950953
304 => 0.1191166690899
305 => 0.096136448630399
306 => 0.10153531055693
307 => 0.098327490128213
308 => 0.099805801366487
309 => 0.09653144736984
310 => 0.098094140720637
311 => 0.097805568319168
312 => 0.10648677853309
313 => 0.10635123337622
314 => 0.10641611166992
315 => 0.10331930167181
316 => 0.10825260408636
317 => 0.11068292625158
318 => 0.11023313829972
319 => 0.1103463402369
320 => 0.10840115590019
321 => 0.10643494530627
322 => 0.10425411515996
323 => 0.10830582801304
324 => 0.10785534670882
325 => 0.10888858874264
326 => 0.11151641415027
327 => 0.11190337142368
328 => 0.11242344592328
329 => 0.1122370362366
330 => 0.1166780712428
331 => 0.11614023260065
401 => 0.11743626898148
402 => 0.1147702238156
403 => 0.11175334064708
404 => 0.11232675150808
405 => 0.11227152743109
406 => 0.11156846154772
407 => 0.11093376510443
408 => 0.10987717435095
409 => 0.11322038384096
410 => 0.11308465564109
411 => 0.11528193743032
412 => 0.11489354653082
413 => 0.11229977704855
414 => 0.11239241403304
415 => 0.11301544227352
416 => 0.11517175012744
417 => 0.11581188911112
418 => 0.11551535122875
419 => 0.1162172344009
420 => 0.11677197424208
421 => 0.11628690118402
422 => 0.12315451275754
423 => 0.12030260162401
424 => 0.12169260326702
425 => 0.12202411046851
426 => 0.12117496174273
427 => 0.12135911169562
428 => 0.12163804869638
429 => 0.12333169954355
430 => 0.12777632942834
501 => 0.12974482574869
502 => 0.13566714405238
503 => 0.12958136953208
504 => 0.12922026485748
505 => 0.13028705322085
506 => 0.13376408100618
507 => 0.13658188544557
508 => 0.13751671374115
509 => 0.13764026673274
510 => 0.13939406676147
511 => 0.1403993122315
512 => 0.13918110930846
513 => 0.13814880988235
514 => 0.13445124147174
515 => 0.13487924508341
516 => 0.13782776553708
517 => 0.14199272434487
518 => 0.14556669229206
519 => 0.14431521328231
520 => 0.1538631147202
521 => 0.15480975014809
522 => 0.15467895574034
523 => 0.15683553212331
524 => 0.15255516718226
525 => 0.1507252282418
526 => 0.13837200473537
527 => 0.14184275665924
528 => 0.1468876984107
529 => 0.14621998145233
530 => 0.14255620990074
531 => 0.1455639129928
601 => 0.14456947229099
602 => 0.1437851156501
603 => 0.14737840547706
604 => 0.1434274357081
605 => 0.14684828446492
606 => 0.14246101055016
607 => 0.14432092993301
608 => 0.14326514973712
609 => 0.14394836891542
610 => 0.13995428355958
611 => 0.14210939506665
612 => 0.13986462383553
613 => 0.13986355952169
614 => 0.13981400607235
615 => 0.14245496947091
616 => 0.14254109119253
617 => 0.14058941525071
618 => 0.14030814825659
619 => 0.14134813975186
620 => 0.1401305820851
621 => 0.14070026965416
622 => 0.14014783734122
623 => 0.14002347319157
624 => 0.13903251848835
625 => 0.13860558795534
626 => 0.13877299841798
627 => 0.13820154020298
628 => 0.1378572159579
629 => 0.13974551131349
630 => 0.13873667127862
701 => 0.13959089210934
702 => 0.13861739966147
703 => 0.13524285070667
704 => 0.13330211191756
705 => 0.1269279017628
706 => 0.12873561985551
707 => 0.12993413882119
708 => 0.12953802831018
709 => 0.13038902696225
710 => 0.13044127136796
711 => 0.13016460303127
712 => 0.12984425654079
713 => 0.1296883295855
714 => 0.1308504813617
715 => 0.13152514958401
716 => 0.13005442623352
717 => 0.1297098563301
718 => 0.13119683883831
719 => 0.13210389730932
720 => 0.1388011074271
721 => 0.13830495646988
722 => 0.13955019800781
723 => 0.13941000292043
724 => 0.14071521443472
725 => 0.14284868363705
726 => 0.13851074422135
727 => 0.13926366050926
728 => 0.13907906282284
729 => 0.14109445195904
730 => 0.14110074378394
731 => 0.13989241732063
801 => 0.14054747069925
802 => 0.14018183787375
803 => 0.14084258580766
804 => 0.13829833007135
805 => 0.14139695892274
806 => 0.14315368181024
807 => 0.14317807390924
808 => 0.1440107466157
809 => 0.14485679031062
810 => 0.14648069750814
811 => 0.14481150042026
812 => 0.14180877735223
813 => 0.142025564259
814 => 0.14026506882287
815 => 0.14029466306921
816 => 0.1401366866629
817 => 0.14061078575015
818 => 0.1384023681601
819 => 0.13892067935436
820 => 0.13819504064717
821 => 0.13926208311242
822 => 0.13811412180825
823 => 0.13907897380424
824 => 0.13949537194037
825 => 0.14103189002707
826 => 0.13788717683754
827 => 0.13147489376572
828 => 0.13282283340883
829 => 0.13082912479829
830 => 0.13101365012078
831 => 0.1313864206392
901 => 0.13017814942609
902 => 0.13040864949655
903 => 0.13040041441203
904 => 0.13032944890258
905 => 0.1300151308944
906 => 0.12955930759662
907 => 0.13137516731997
908 => 0.13168371727131
909 => 0.1323695855919
910 => 0.13441026448505
911 => 0.1342063525411
912 => 0.13453894138191
913 => 0.13381290180984
914 => 0.1310473290142
915 => 0.13119751292257
916 => 0.1293247171786
917 => 0.13232169399411
918 => 0.13161197032604
919 => 0.1311544068602
920 => 0.13102955642926
921 => 0.13307529377067
922 => 0.13368741044622
923 => 0.13330598041164
924 => 0.13252365628262
925 => 0.13402594988371
926 => 0.13442790027468
927 => 0.13451788214386
928 => 0.13717965836876
929 => 0.13466664586618
930 => 0.13527155295275
1001 => 0.1399908653638
1002 => 0.13571110022757
1003 => 0.13797818727038
1004 => 0.13786722515699
1005 => 0.13902699017405
1006 => 0.13777209057459
1007 => 0.13778764655911
1008 => 0.13881743932497
1009 => 0.13737128110942
1010 => 0.13701319199788
1011 => 0.13651849445497
1012 => 0.13759864844176
1013 => 0.13824615190568
1014 => 0.14346455428597
1015 => 0.1468358802117
1016 => 0.14668952206203
1017 => 0.14802696157908
1018 => 0.14742443282711
1019 => 0.14547870854792
1020 => 0.14879982263669
1021 => 0.14774888317769
1022 => 0.1478355213498
1023 => 0.14783229667271
1024 => 0.14853107953822
1025 => 0.1480359278355
1026 => 0.14705993300314
1027 => 0.14770784392063
1028 => 0.14963190771318
1029 => 0.15560426076273
1030 => 0.15894646865242
1031 => 0.15540305565117
1101 => 0.15784725449124
1102 => 0.15638160614429
1103 => 0.15611525424039
1104 => 0.15765039173683
1105 => 0.15918821628824
1106 => 0.15909026351251
1107 => 0.15797388185635
1108 => 0.15734326618593
1109 => 0.16211849931415
1110 => 0.16563680973905
1111 => 0.16539688455512
1112 => 0.16645583628912
1113 => 0.16956495133228
1114 => 0.16984920984713
1115 => 0.16981339980787
1116 => 0.16910883541951
1117 => 0.17217016294911
1118 => 0.17472397623324
1119 => 0.16894574912042
1120 => 0.17114602236244
1121 => 0.17213379590915
1122 => 0.17358414053493
1123 => 0.17603111502461
1124 => 0.17868917834833
1125 => 0.17906505764649
1126 => 0.17879835329697
1127 => 0.1770452890824
1128 => 0.1799537736885
1129 => 0.1816574957584
1130 => 0.18267202326204
1201 => 0.18524469620999
1202 => 0.1721398960623
1203 => 0.16286366716693
1204 => 0.16141505007455
1205 => 0.16436086989596
1206 => 0.16513765909039
1207 => 0.16482453634013
1208 => 0.15438329736056
1209 => 0.16136007911219
1210 => 0.16886650965247
1211 => 0.16915486222042
1212 => 0.17291273830095
1213 => 0.17413645679331
1214 => 0.17716203959421
1215 => 0.17697278856624
1216 => 0.17770946983072
1217 => 0.17754011956555
1218 => 0.1831443745926
1219 => 0.18932670012735
1220 => 0.18911262585267
1221 => 0.1882238434111
1222 => 0.18954383689676
1223 => 0.19592465938689
1224 => 0.1953372155026
1225 => 0.19590786719784
1226 => 0.2034312165211
1227 => 0.21321264082531
1228 => 0.20866818719706
1229 => 0.21852834393905
1230 => 0.22473478994368
1231 => 0.2354681965502
]
'min_raw' => 0.096136448630399
'max_raw' => 0.2354681965502
'avg_raw' => 0.1658023225903
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.096136'
'max' => '$0.235468'
'avg' => '$0.1658023'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.042866591793113
'max_diff' => 0.095527939236149
'year' => 2028
]
3 => [
'items' => [
101 => 0.23412432117992
102 => 0.23830275760646
103 => 0.23171850379187
104 => 0.21659972613633
105 => 0.21420712169998
106 => 0.21899717637194
107 => 0.23077305837625
108 => 0.21862631194082
109 => 0.22108358292475
110 => 0.22037588871607
111 => 0.22033817869919
112 => 0.22177741666555
113 => 0.21968972692975
114 => 0.21118410337788
115 => 0.21508218052775
116 => 0.21357694573915
117 => 0.21524711595979
118 => 0.22426033580999
119 => 0.22027537646589
120 => 0.21607754550869
121 => 0.22134255710228
122 => 0.2280467261152
123 => 0.22762719126692
124 => 0.2268131183093
125 => 0.23140200494794
126 => 0.23898150125735
127 => 0.2410302086529
128 => 0.24254252256832
129 => 0.2427510451065
130 => 0.24489895684582
131 => 0.23334909408005
201 => 0.25167902291085
202 => 0.25484409526586
203 => 0.25424919284193
204 => 0.25776703755792
205 => 0.25673199840337
206 => 0.25523238906109
207 => 0.26080892120297
208 => 0.25441587710524
209 => 0.24534175587039
210 => 0.24036351349519
211 => 0.24691926463822
212 => 0.25092263309708
213 => 0.25356860498633
214 => 0.25436927448128
215 => 0.23424567704831
216 => 0.22340017413782
217 => 0.2303520171595
218 => 0.23883374543653
219 => 0.23330197765121
220 => 0.23351881247538
221 => 0.22563196533652
222 => 0.23953155640544
223 => 0.23750650290066
224 => 0.24801248406571
225 => 0.2455051473449
226 => 0.25407236714517
227 => 0.25181633105296
228 => 0.26118101073844
301 => 0.26491683500356
302 => 0.27118986537932
303 => 0.27580433205955
304 => 0.27851403515487
305 => 0.27835135474487
306 => 0.28908854837723
307 => 0.2827572004212
308 => 0.27480353520428
309 => 0.274659678494
310 => 0.27877899441415
311 => 0.28741195050365
312 => 0.28965035041325
313 => 0.29090131059459
314 => 0.28898542153063
315 => 0.28211319709616
316 => 0.27914580542832
317 => 0.28167410910293
318 => 0.27858221096849
319 => 0.28391969458193
320 => 0.29124919960815
321 => 0.28973568580424
322 => 0.29479513553205
323 => 0.30003113373069
324 => 0.30751884631815
325 => 0.3094764116577
326 => 0.31271219272444
327 => 0.31604287434083
328 => 0.31711259951163
329 => 0.3191550367789
330 => 0.31914427212633
331 => 0.32529929430316
401 => 0.33208847436936
402 => 0.33465123267448
403 => 0.34054415408577
404 => 0.33045273268153
405 => 0.33810719173854
406 => 0.3450117054115
407 => 0.33677985957091
408 => 0.34812554128807
409 => 0.34856606839928
410 => 0.35521750476067
411 => 0.34847499974738
412 => 0.34447132179333
413 => 0.35602979003083
414 => 0.36162256872262
415 => 0.35993797826511
416 => 0.34711816170497
417 => 0.33965647859917
418 => 0.32012781466012
419 => 0.34326036067143
420 => 0.35452754904792
421 => 0.34708898240903
422 => 0.3508405627461
423 => 0.37130796861118
424 => 0.37910063159821
425 => 0.37747981217173
426 => 0.37775370397385
427 => 0.38195848347481
428 => 0.40060479139644
429 => 0.38943149147177
430 => 0.39797306060862
501 => 0.40250347807989
502 => 0.40671158231011
503 => 0.39637780830568
504 => 0.38293372015921
505 => 0.3786754130988
506 => 0.34634936355492
507 => 0.34466665229124
508 => 0.34372209546757
509 => 0.33776679830454
510 => 0.33308756602757
511 => 0.32936646679217
512 => 0.3196011911842
513 => 0.32289668503922
514 => 0.30733287389152
515 => 0.31729004871621
516 => 0.29244983032312
517 => 0.31313750233197
518 => 0.30187814301058
519 => 0.30943849997539
520 => 0.30941212260217
521 => 0.29549110841659
522 => 0.2874617579585
523 => 0.29257837257739
524 => 0.29806378960621
525 => 0.29895378006398
526 => 0.30606576642588
527 => 0.30805056894785
528 => 0.30203652464471
529 => 0.29193507200959
530 => 0.29428140906712
531 => 0.28741420951292
601 => 0.27537970643719
602 => 0.28402309664844
603 => 0.2869743300896
604 => 0.28827776290528
605 => 0.27644321130232
606 => 0.27272453824805
607 => 0.27074474791665
608 => 0.29040738000958
609 => 0.29148454338151
610 => 0.28597362327515
611 => 0.31088350472279
612 => 0.30524563136982
613 => 0.3115445172176
614 => 0.29406850357229
615 => 0.29473611082812
616 => 0.28646268590289
617 => 0.29109525103056
618 => 0.28782110331286
619 => 0.29072098554815
620 => 0.29245916300331
621 => 0.30073123034092
622 => 0.31323195605336
623 => 0.29949565932982
624 => 0.29351055813998
625 => 0.29722368125667
626 => 0.30711221742605
627 => 0.32209385590752
628 => 0.31322442439292
629 => 0.31716052748639
630 => 0.31802039090727
701 => 0.3114804004726
702 => 0.32233499468339
703 => 0.32815205990352
704 => 0.33411916514733
705 => 0.33930023543604
706 => 0.3317357720935
707 => 0.33983083219325
708 => 0.33330764272332
709 => 0.32745566741386
710 => 0.32746454244482
711 => 0.32379351284948
712 => 0.31668043042901
713 => 0.31536866889641
714 => 0.3221926180462
715 => 0.32766477903395
716 => 0.32811549242278
717 => 0.33114516191538
718 => 0.33293808911302
719 => 0.35051121301625
720 => 0.35757926882263
721 => 0.36622195367123
722 => 0.36958876649478
723 => 0.37972166602449
724 => 0.37153852670039
725 => 0.36976805303326
726 => 0.34518895322038
727 => 0.34921377943779
728 => 0.35565791454983
729 => 0.34529521463485
730 => 0.35186796256618
731 => 0.35316556223767
801 => 0.34494309405708
802 => 0.34933506958421
803 => 0.33767128471414
804 => 0.31348619469008
805 => 0.32236191960227
806 => 0.32889744067434
807 => 0.31957044628055
808 => 0.33628872272688
809 => 0.32652225076221
810 => 0.32342674802274
811 => 0.31135008820967
812 => 0.31704980676817
813 => 0.32475875773066
814 => 0.31999552229759
815 => 0.32987995102462
816 => 0.34387893818295
817 => 0.35385545008607
818 => 0.35462132279115
819 => 0.34820709401183
820 => 0.35848593656576
821 => 0.3585608067121
822 => 0.34696623032096
823 => 0.33986461684026
824 => 0.33825111531553
825 => 0.34228195846993
826 => 0.34717614619407
827 => 0.35489291614803
828 => 0.35955599861472
829 => 0.37171484457999
830 => 0.37500467967677
831 => 0.37861921103244
901 => 0.38344933960381
902 => 0.38924914737328
903 => 0.37655949815691
904 => 0.37706368157674
905 => 0.36524725592662
906 => 0.35261971047261
907 => 0.36220244342644
908 => 0.37473059202603
909 => 0.37185662089491
910 => 0.37153324043276
911 => 0.37207707667184
912 => 0.3699101962941
913 => 0.3601094766539
914 => 0.35518761660634
915 => 0.36153807176811
916 => 0.36491305606034
917 => 0.37014736236803
918 => 0.36950212363281
919 => 0.38298513455797
920 => 0.3882242248984
921 => 0.38688384139601
922 => 0.38713050421858
923 => 0.39661562702836
924 => 0.40716503435712
925 => 0.41704594643741
926 => 0.42709723460052
927 => 0.41498001441143
928 => 0.40882763728565
929 => 0.41517532003735
930 => 0.4118071502192
1001 => 0.43116165305838
1002 => 0.43250171684209
1003 => 0.45185482013042
1004 => 0.47022321967572
1005 => 0.45868635702538
1006 => 0.46956509887295
1007 => 0.48133134513792
1008 => 0.50403034318772
1009 => 0.49638611920493
1010 => 0.49053076343437
1011 => 0.48499748052407
1012 => 0.49651136387649
1013 => 0.51132379087059
1014 => 0.51451424577346
1015 => 0.51968400156369
1016 => 0.51424863547793
1017 => 0.52079493524229
1018 => 0.54390625000036
1019 => 0.53766136874351
1020 => 0.52879263344403
1021 => 0.54703679681126
1022 => 0.55363928861147
1023 => 0.59997903381715
1024 => 0.65848487633872
1025 => 0.63426307336472
1026 => 0.61922781862606
1027 => 0.62276146013065
1028 => 0.64412581327178
1029 => 0.65098736543003
1030 => 0.63233530134503
1031 => 0.63892352570483
1101 => 0.6752252896673
1102 => 0.69470002133313
1103 => 0.66825071992552
1104 => 0.59527814633641
1105 => 0.52799410086524
1106 => 0.54584085956425
1107 => 0.54381759097718
1108 => 0.58281930761757
1109 => 0.53751243039085
1110 => 0.53827528200739
1111 => 0.57808351284436
1112 => 0.56746335934291
1113 => 0.55026007079704
1114 => 0.52811970390993
1115 => 0.48719118798302
1116 => 0.45093966005046
1117 => 0.5220372545545
1118 => 0.51897139699689
1119 => 0.51453158091886
1120 => 0.52441191116226
1121 => 0.57238799024354
1122 => 0.5712819863373
1123 => 0.56424615377397
1124 => 0.56958277076227
1125 => 0.54932453603683
1126 => 0.55454554439701
1127 => 0.52798344272867
1128 => 0.53999062201411
1129 => 0.55022316026622
1130 => 0.55227749381564
1201 => 0.55690601219937
1202 => 0.51735582937768
1203 => 0.53511270033226
1204 => 0.54554319842427
1205 => 0.49841782857981
1206 => 0.54461168138206
1207 => 0.51666734868597
1208 => 0.50718262245913
1209 => 0.51995255680591
1210 => 0.5149761009718
1211 => 0.51069763647293
1212 => 0.5083101797692
1213 => 0.51768701018726
1214 => 0.51724956984052
1215 => 0.50190725531223
1216 => 0.48189383144281
1217 => 0.48861099341163
1218 => 0.48617058549463
1219 => 0.47732623238453
1220 => 0.48328625850947
1221 => 0.45704131975542
1222 => 0.4118882667223
1223 => 0.4417177566314
1224 => 0.44056935371814
1225 => 0.43999027689335
1226 => 0.46240631413349
1227 => 0.46025152937882
1228 => 0.45634057394938
1229 => 0.47725440462106
1230 => 0.46962057509518
1231 => 0.4931462389375
]
'min_raw' => 0.21118410337788
'max_raw' => 0.69470002133313
'avg_raw' => 0.45294206235551
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.211184'
'max' => '$0.694700021'
'avg' => '$0.452942'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.11504765474748
'max_diff' => 0.45923182478293
'year' => 2029
]
4 => [
'items' => [
101 => 0.50864176268859
102 => 0.50471159663763
103 => 0.51928521162189
104 => 0.48876574325663
105 => 0.49890308641903
106 => 0.50099237879505
107 => 0.47699633119694
108 => 0.46060407881336
109 => 0.45951090246473
110 => 0.43108899582313
111 => 0.44627174893746
112 => 0.45963194337306
113 => 0.45323344703138
114 => 0.45120787423924
115 => 0.46155608634112
116 => 0.46236023104788
117 => 0.44402564651434
118 => 0.44783798721964
119 => 0.46373608170967
120 => 0.4474373960288
121 => 0.41577171212606
122 => 0.40791818470585
123 => 0.40687037937877
124 => 0.38557099014404
125 => 0.40844299496117
126 => 0.39845875192687
127 => 0.42999885604263
128 => 0.41198331772468
129 => 0.41120670387499
130 => 0.41003273813671
131 => 0.39169947395569
201 => 0.39571329367161
202 => 0.40905584172934
203 => 0.4138166131909
204 => 0.41332002572361
205 => 0.40899045596486
206 => 0.41097251082943
207 => 0.40458762151695
208 => 0.40233298421073
209 => 0.39521672868546
210 => 0.38475779897908
211 => 0.3862121773031
212 => 0.36549030082694
213 => 0.3541999227295
214 => 0.35107489487692
215 => 0.34689597702855
216 => 0.35154691476757
217 => 0.36543159835445
218 => 0.34868372414873
219 => 0.3199706685498
220 => 0.32169637211596
221 => 0.32557351566314
222 => 0.31834848431284
223 => 0.31151059849071
224 => 0.31745558543784
225 => 0.30528948526305
226 => 0.32704373074503
227 => 0.32645533937031
228 => 0.33456397681248
301 => 0.33963447421105
302 => 0.32794861930036
303 => 0.32500965839223
304 => 0.32668382409383
305 => 0.29901359429664
306 => 0.33230272871146
307 => 0.33259061452824
308 => 0.33012556138441
309 => 0.34785099777359
310 => 0.38525719725699
311 => 0.37118348035044
312 => 0.36573371178389
313 => 0.3553736977551
314 => 0.36917780133169
315 => 0.36811786155457
316 => 0.36332441191221
317 => 0.36042531861203
318 => 0.36576698690866
319 => 0.35976342679645
320 => 0.3586850224335
321 => 0.35215106530954
322 => 0.34981873989239
323 => 0.34809197900609
324 => 0.34619098493828
325 => 0.35038410415365
326 => 0.34088194436086
327 => 0.32942327115896
328 => 0.32847060646679
329 => 0.33110099744102
330 => 0.3299372452445
331 => 0.328465034869
401 => 0.32565418432953
402 => 0.32482026501879
403 => 0.32753009821856
404 => 0.3244708545291
405 => 0.32898493523852
406 => 0.32775735506104
407 => 0.32090019197914
408 => 0.31235362793215
409 => 0.3122775455851
410 => 0.31043620238036
411 => 0.3080909749613
412 => 0.30743858634486
413 => 0.31695491521907
414 => 0.33665343118894
415 => 0.33278614115852
416 => 0.33558065454132
417 => 0.34932689455316
418 => 0.35369641088907
419 => 0.35059503169151
420 => 0.34634967256115
421 => 0.34653644681733
422 => 0.36104412412336
423 => 0.36194895016146
424 => 0.36423515365179
425 => 0.3671735712179
426 => 0.35109545690909
427 => 0.34577916907926
428 => 0.34326001696907
429 => 0.33550200350423
430 => 0.34386835590425
501 => 0.33899364064369
502 => 0.33965140627632
503 => 0.33922303554517
504 => 0.33945695493068
505 => 0.32703764999007
506 => 0.33156259197098
507 => 0.32403899830078
508 => 0.31396575093942
509 => 0.31393198188213
510 => 0.31639739490306
511 => 0.31493087076659
512 => 0.31098449202312
513 => 0.31154505649725
514 => 0.30663392185024
515 => 0.31214135716236
516 => 0.31229929070056
517 => 0.31017862811336
518 => 0.3186635920913
519 => 0.32213988875614
520 => 0.32074402321225
521 => 0.32204195110849
522 => 0.33294684451905
523 => 0.33472481795883
524 => 0.33551447631444
525 => 0.3344564387276
526 => 0.32224127254164
527 => 0.32278306710488
528 => 0.31880773808613
529 => 0.31544900397514
530 => 0.31558333572534
531 => 0.31731016166326
601 => 0.32485131181117
602 => 0.34072121772235
603 => 0.34132346905093
604 => 0.34205341523008
605 => 0.33908435727793
606 => 0.3381888609895
607 => 0.33937025174114
608 => 0.34533015400137
609 => 0.36066064071236
610 => 0.35524182281992
611 => 0.35083623952443
612 => 0.3547011238113
613 => 0.3541061551693
614 => 0.34908402107555
615 => 0.34894306649828
616 => 0.33930398549898
617 => 0.33574063672479
618 => 0.33276283577705
619 => 0.32951115487958
620 => 0.32758344944623
621 => 0.33054528111831
622 => 0.33122268706507
623 => 0.32474659035011
624 => 0.32386392229786
625 => 0.32915244267156
626 => 0.32682516203101
627 => 0.3292188278836
628 => 0.32977417889388
629 => 0.32968475459041
630 => 0.32725480631519
701 => 0.32880358288371
702 => 0.32514026458665
703 => 0.3211569561512
704 => 0.31861585353827
705 => 0.31639840448014
706 => 0.31762877409649
707 => 0.31324273107083
708 => 0.31183954763331
709 => 0.32827889223088
710 => 0.34042281283783
711 => 0.34024623542269
712 => 0.33917136582001
713 => 0.33757432761977
714 => 0.34521332070968
715 => 0.34255204826365
716 => 0.34448834632489
717 => 0.34498121544765
718 => 0.34647298183957
719 => 0.34700616010302
720 => 0.34539452507475
721 => 0.33998568107521
722 => 0.32650735608583
723 => 0.32023315941923
724 => 0.31816257001424
725 => 0.3182378320065
726 => 0.31616177027558
727 => 0.3167732634979
728 => 0.31594911788773
729 => 0.31438838548431
730 => 0.3175324032686
731 => 0.31789472202969
801 => 0.31716087071062
802 => 0.31733371926207
803 => 0.31125774377217
804 => 0.31171968699235
805 => 0.30914752844152
806 => 0.30866527972108
807 => 0.30216308688807
808 => 0.29064350977647
809 => 0.2970264737287
810 => 0.28931675085495
811 => 0.2863969619813
812 => 0.30021878838884
813 => 0.29883146037531
814 => 0.29645695787314
815 => 0.29294457378275
816 => 0.29164179635735
817 => 0.28372653312982
818 => 0.28325885715205
819 => 0.2871818753377
820 => 0.28537153742784
821 => 0.28282913737381
822 => 0.27362082209708
823 => 0.26326762695762
824 => 0.26358012484102
825 => 0.26687328358683
826 => 0.27644858678326
827 => 0.27270735016999
828 => 0.26999304008132
829 => 0.26948473139357
830 => 0.27584727883704
831 => 0.28485161646445
901 => 0.28907625021853
902 => 0.28488976647227
903 => 0.28008055936086
904 => 0.28037327351401
905 => 0.28232056963668
906 => 0.28252520292589
907 => 0.27939490349084
908 => 0.28027606444597
909 => 0.27893750038008
910 => 0.27072273517849
911 => 0.27057415612529
912 => 0.26855812026384
913 => 0.26849707549918
914 => 0.26506729557514
915 => 0.26458744565481
916 => 0.25777740944286
917 => 0.26225979590026
918 => 0.25925324640049
919 => 0.254721667131
920 => 0.25394042115689
921 => 0.25391693595952
922 => 0.2585698546267
923 => 0.26220542383657
924 => 0.25930554661625
925 => 0.25864530078494
926 => 0.26569499891936
927 => 0.26479786057233
928 => 0.26402094454973
929 => 0.28404537679036
930 => 0.26819447614596
1001 => 0.26128257872723
1002 => 0.25272779313783
1003 => 0.25551327446271
1004 => 0.2561002163051
1005 => 0.23552749907859
1006 => 0.22718115026197
1007 => 0.22431699787362
1008 => 0.22266863768096
1009 => 0.22341981611956
1010 => 0.21590712325552
1011 => 0.22095577710863
1012 => 0.21445042012049
1013 => 0.21335977585117
1014 => 0.22499216000504
1015 => 0.22661073830465
1016 => 0.21970538042566
1017 => 0.22413973805987
1018 => 0.22253177833952
1019 => 0.21456193579455
1020 => 0.21425754643152
1021 => 0.21025855959597
1022 => 0.20400091955476
1023 => 0.20114101014103
1024 => 0.19965154448748
1025 => 0.20026612704524
1026 => 0.1999553752975
1027 => 0.19792750994292
1028 => 0.20007161016589
1029 => 0.19459432009958
1030 => 0.19241321906165
1031 => 0.19142806632398
1101 => 0.18656665612907
1102 => 0.19430332162809
1103 => 0.19582754219534
1104 => 0.19735476594797
1105 => 0.21064820603462
1106 => 0.20998410333476
1107 => 0.21598726831034
1108 => 0.2157539963585
1109 => 0.21404179646264
1110 => 0.20681830674522
1111 => 0.20969746100026
1112 => 0.20083587172316
1113 => 0.20747557693906
1114 => 0.20444549275924
1115 => 0.20645110242988
1116 => 0.20284483540355
1117 => 0.20484069247503
1118 => 0.19618899143669
1119 => 0.18811015473981
1120 => 0.19136131446258
1121 => 0.19489569689645
1122 => 0.20255913855696
1123 => 0.19799485592598
1124 => 0.19963634455472
1125 => 0.19413763243033
1126 => 0.18279221868826
1127 => 0.18285643249793
1128 => 0.18111118776698
1129 => 0.17960304150954
1130 => 0.19851911869175
1201 => 0.19616660547522
1202 => 0.19241818355399
1203 => 0.19743559525192
1204 => 0.19876227854189
1205 => 0.19880004735005
1206 => 0.20246062140673
1207 => 0.20441427043697
1208 => 0.20475860954615
1209 => 0.21051860191626
1210 => 0.21244927538258
1211 => 0.22040144615124
1212 => 0.20424851696614
1213 => 0.2039158580193
1214 => 0.19750620052394
1215 => 0.1934410944077
1216 => 0.19778454181757
1217 => 0.20163224328301
1218 => 0.1976257593339
1219 => 0.19814892155616
1220 => 0.19277054419624
1221 => 0.19469306102623
1222 => 0.19634899151121
1223 => 0.1954346840285
1224 => 0.1940659214739
1225 => 0.20131677564145
1226 => 0.20090765403299
1227 => 0.20765981613023
1228 => 0.21292360933677
1229 => 0.22235726777848
1230 => 0.21251275340682
1231 => 0.21215398017471
]
'min_raw' => 0.17960304150954
'max_raw' => 0.51928521162189
'avg_raw' => 0.34944412656572
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.179603'
'max' => '$0.519285'
'avg' => '$0.349444'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.031581061868338
'max_diff' => -0.17541480971124
'year' => 2030
]
5 => [
'items' => [
101 => 0.21566104606757
102 => 0.21244873846907
103 => 0.21447880598623
104 => 0.22203019251674
105 => 0.22218974141481
106 => 0.21951709180498
107 => 0.21935446083333
108 => 0.21986777242648
109 => 0.22287425446056
110 => 0.22182369725799
111 => 0.22303942864966
112 => 0.22455971937088
113 => 0.23084828638374
114 => 0.2323644386007
115 => 0.22868097474829
116 => 0.22901355029217
117 => 0.22763583369802
118 => 0.22630497673081
119 => 0.22929654883704
120 => 0.23476370566067
121 => 0.23472969476182
122 => 0.23599796887856
123 => 0.23678809314634
124 => 0.23339630138272
125 => 0.23118836966424
126 => 0.23203503117945
127 => 0.23338886138016
128 => 0.23159600229183
129 => 0.22052964546552
130 => 0.22388647120501
131 => 0.22332773126157
201 => 0.22253201763701
202 => 0.22590733187563
203 => 0.22558177458318
204 => 0.21583006973153
205 => 0.21645434223681
206 => 0.21586803381024
207 => 0.21776251628391
208 => 0.21234643019833
209 => 0.21401238180036
210 => 0.21505725102782
211 => 0.21567268702986
212 => 0.21789606387765
213 => 0.21763517626668
214 => 0.21787984673745
215 => 0.221176527653
216 => 0.23785000843955
217 => 0.2387575092108
218 => 0.23428864351035
219 => 0.23607386721321
220 => 0.23264662808924
221 => 0.23494735667366
222 => 0.23652145673896
223 => 0.22940840122593
224 => 0.22898721224179
225 => 0.22554582768282
226 => 0.22739503281483
227 => 0.22445281448725
228 => 0.22517473195041
301 => 0.22315618778779
302 => 0.22678916539238
303 => 0.23085139886196
304 => 0.23187767945884
305 => 0.22917797705003
306 => 0.227223214587
307 => 0.22379129564069
308 => 0.2294986533337
309 => 0.2311676586517
310 => 0.22948988675928
311 => 0.22910111035176
312 => 0.22836437976203
313 => 0.22925741122913
314 => 0.23115856889031
315 => 0.23026201804616
316 => 0.23085420567391
317 => 0.22859739709816
318 => 0.23339742420692
319 => 0.24102102244507
320 => 0.24104553355999
321 => 0.2401489778831
322 => 0.23978212661668
323 => 0.24070204714872
324 => 0.24120106630023
325 => 0.24417592061625
326 => 0.24736805782076
327 => 0.26226436931564
328 => 0.25808154465643
329 => 0.27129843840022
330 => 0.28175128535271
331 => 0.28488563710616
401 => 0.28200218097563
402 => 0.27213803331433
403 => 0.27165405117067
404 => 0.28639525231237
405 => 0.28223018780005
406 => 0.28173476662944
407 => 0.27646432240138
408 => 0.27957980769738
409 => 0.27889840536173
410 => 0.27782277843957
411 => 0.28376690735775
412 => 0.29489378605653
413 => 0.29315955766412
414 => 0.29186503661772
415 => 0.28619282222183
416 => 0.28960876222311
417 => 0.28839241141667
418 => 0.29361862639642
419 => 0.29052273241725
420 => 0.28219863333992
421 => 0.28352427355457
422 => 0.28332390570294
423 => 0.28744746189121
424 => 0.28620967267645
425 => 0.28308220749296
426 => 0.29485575559479
427 => 0.29409124686897
428 => 0.29517514545115
429 => 0.29565231112771
430 => 0.30281866238411
501 => 0.30575448719619
502 => 0.30642097082738
503 => 0.30920977733402
504 => 0.30635158278095
505 => 0.3177863988514
506 => 0.32538988429824
507 => 0.33422172391653
508 => 0.34712741537354
509 => 0.35198007474569
510 => 0.35110348526458
511 => 0.36088843323667
512 => 0.37847176723533
513 => 0.35465757979247
514 => 0.37973397699517
515 => 0.37179507916172
516 => 0.3529720952133
517 => 0.35176011695542
518 => 0.36450726022463
519 => 0.39277919712867
520 => 0.38569739759186
521 => 0.39279078041572
522 => 0.38451597256447
523 => 0.3841050586091
524 => 0.39238889146811
525 => 0.41174451847139
526 => 0.40254938561696
527 => 0.38936590793106
528 => 0.39910038269669
529 => 0.39066747977159
530 => 0.37166578926041
531 => 0.38569198227322
601 => 0.37631306644853
602 => 0.37905033269677
603 => 0.39876341875181
604 => 0.39639148808331
605 => 0.39946098600322
606 => 0.39404340251733
607 => 0.38898252526702
608 => 0.37953602205362
609 => 0.37673937815911
610 => 0.37751226991885
611 => 0.37673899515234
612 => 0.37145376342229
613 => 0.3703124181334
614 => 0.36841012598176
615 => 0.36899972586328
616 => 0.365422860083
617 => 0.37217314482857
618 => 0.37342605716065
619 => 0.37833835147144
620 => 0.3788483621627
621 => 0.39252903189613
622 => 0.38499394890127
623 => 0.39004913312199
624 => 0.38959694986405
625 => 0.35338004635174
626 => 0.35837041611129
627 => 0.36613386539285
628 => 0.36263644201461
629 => 0.35769190362882
630 => 0.35369892377291
701 => 0.34764915098807
702 => 0.35616409000714
703 => 0.36736032935442
704 => 0.37913231726916
705 => 0.39327558941751
706 => 0.39011897571983
707 => 0.3788679186342
708 => 0.37937263283616
709 => 0.38249257743495
710 => 0.37845196570265
711 => 0.37726031042069
712 => 0.38232886229832
713 => 0.38236376662947
714 => 0.37771455450723
715 => 0.37254780603019
716 => 0.37252615716541
717 => 0.37160678417879
718 => 0.3846795269764
719 => 0.3918682137117
720 => 0.39269238506076
721 => 0.39181274041326
722 => 0.39215128072623
723 => 0.38796834230686
724 => 0.39752929912169
725 => 0.4063033785756
726 => 0.40395173785109
727 => 0.40042629409961
728 => 0.39761810834318
729 => 0.4032902185323
730 => 0.40303764839431
731 => 0.40622674464591
801 => 0.40608206881883
802 => 0.40500969569739
803 => 0.40395177614891
804 => 0.40814630757683
805 => 0.4069383498877
806 => 0.40572851590664
807 => 0.40330200864129
808 => 0.40363181127867
809 => 0.40010697624476
810 => 0.3984762262726
811 => 0.37395365940756
812 => 0.36740042824324
813 => 0.36946220817085
814 => 0.37014099965712
815 => 0.36728902505621
816 => 0.37137802402175
817 => 0.37074075786429
818 => 0.37321998769473
819 => 0.37167107253232
820 => 0.37173464055087
821 => 0.37628966977998
822 => 0.37761201414367
823 => 0.37693945912767
824 => 0.37741049360704
825 => 0.38826528437291
826 => 0.38672208024267
827 => 0.38590228380568
828 => 0.38612937302132
829 => 0.38890300479133
830 => 0.38967947025226
831 => 0.38638953153306
901 => 0.38794108565194
902 => 0.39454740616861
903 => 0.39685924446409
904 => 0.40423752255791
905 => 0.40110309888522
906 => 0.40685646919112
907 => 0.42454036804299
908 => 0.43866749007859
909 => 0.42567560482665
910 => 0.45161826536688
911 => 0.47181834785109
912 => 0.47104303504034
913 => 0.4675206834229
914 => 0.44452342656161
915 => 0.42336100792807
916 => 0.44106426971879
917 => 0.4411093989738
918 => 0.43958867308573
919 => 0.43014357520132
920 => 0.43926000415279
921 => 0.43998363317695
922 => 0.43957859335191
923 => 0.43233705894913
924 => 0.42128057437536
925 => 0.42344098499559
926 => 0.42697978166271
927 => 0.42028010130153
928 => 0.41813914747818
929 => 0.42211958796891
930 => 0.43494539658776
1001 => 0.43252075176321
1002 => 0.43245743448809
1003 => 0.4428310932569
1004 => 0.43540579235411
1005 => 0.4234682346921
1006 => 0.4204538439454
1007 => 0.40975478753155
1008 => 0.41714466390533
1009 => 0.41741061240008
1010 => 0.41336325263286
1011 => 0.42379665563094
1012 => 0.42370050998555
1013 => 0.43360547332512
1014 => 0.45254004309604
1015 => 0.44694015910119
1016 => 0.44042810328082
1017 => 0.44113614430822
1018 => 0.44890160678459
1019 => 0.44420643090311
1020 => 0.44589484888602
1021 => 0.44889905116175
1022 => 0.45071156098485
1023 => 0.44087535203762
1024 => 0.43858206121176
1025 => 0.43389079301775
1026 => 0.4326669287126
1027 => 0.4364878687701
1028 => 0.43548118606075
1029 => 0.4173882604589
1030 => 0.41549744906542
1031 => 0.4155554375514
1101 => 0.41080090239931
1102 => 0.40354909507319
1103 => 0.42260641174332
1104 => 0.42107584250773
1105 => 0.41938621252829
1106 => 0.41959318255988
1107 => 0.42786531781399
1108 => 0.42306706161376
1109 => 0.4358240121408
1110 => 0.43320156662147
1111 => 0.43051186526997
1112 => 0.43014006661289
1113 => 0.42910476106709
1114 => 0.42555431313035
1115 => 0.42126693389788
1116 => 0.41843603476217
1117 => 0.385985123623
1118 => 0.39200782397216
1119 => 0.39893639173747
1120 => 0.40132810556556
1121 => 0.39723691356105
1122 => 0.42571585832679
1123 => 0.43091923596543
1124 => 0.41515786569006
1125 => 0.41220955684405
1126 => 0.4259091489639
1127 => 0.4176466202086
1128 => 0.42136723640119
1129 => 0.41332529926107
1130 => 0.42966589466497
1201 => 0.42954140670598
1202 => 0.42318454602477
1203 => 0.42855732114262
1204 => 0.42762366924839
1205 => 0.42044678919557
1206 => 0.42989341456381
1207 => 0.42989809997214
1208 => 0.42377975977655
1209 => 0.41663487790499
1210 => 0.41535754178094
1211 => 0.41439524059742
1212 => 0.42113056930018
1213 => 0.42716944395425
1214 => 0.43840629252148
1215 => 0.44123150323222
1216 => 0.45225848872117
1217 => 0.44569245575668
1218 => 0.44860309312547
1219 => 0.45176300172409
1220 => 0.45327797810806
1221 => 0.4508094053885
1222 => 0.46793885274113
1223 => 0.4693851029304
1224 => 0.46987001810885
1225 => 0.46409406483929
1226 => 0.46922446322135
1227 => 0.46682411971932
1228 => 0.47306914667697
1229 => 0.47404844664444
1230 => 0.4732190144116
1231 => 0.47352985967848
]
'min_raw' => 0.21234643019833
'max_raw' => 0.47404844664444
'avg_raw' => 0.34319743842138
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.212346'
'max' => '$0.474048'
'avg' => '$0.343197'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.032743388688785
'max_diff' => -0.045236764977453
'year' => 2031
]
6 => [
'items' => [
101 => 0.45891289820459
102 => 0.45815493164155
103 => 0.44782000377171
104 => 0.4520315632706
105 => 0.44415825465272
106 => 0.44665496191951
107 => 0.44775548669322
108 => 0.44718063500567
109 => 0.45226967852569
110 => 0.44794295191077
111 => 0.43652400899426
112 => 0.42510195499439
113 => 0.42495856041063
114 => 0.42195133520846
115 => 0.41977766218807
116 => 0.42019638872699
117 => 0.42167203566551
118 => 0.41969189490542
119 => 0.42011445833227
120 => 0.42713182674336
121 => 0.42853910993262
122 => 0.42375661179447
123 => 0.40455419165861
124 => 0.39984186959164
125 => 0.40322899324397
126 => 0.40161016629686
127 => 0.32413074858989
128 => 0.3423333885117
129 => 0.3315179979734
130 => 0.33650222752564
131 => 0.32546251441785
201 => 0.33073124415383
202 => 0.32975830215479
203 => 0.35902760849378
204 => 0.35857060853391
205 => 0.3587893502308
206 => 0.34834823910981
207 => 0.36498121263261
208 => 0.37317521349233
209 => 0.37165872200947
210 => 0.37204039024418
211 => 0.3654820654445
212 => 0.35885284915065
213 => 0.3515000280517
214 => 0.3651606608174
215 => 0.36364183164863
216 => 0.3671254793043
217 => 0.37598537613505
218 => 0.37729002959885
219 => 0.37904349708469
220 => 0.37841500381133
221 => 0.39338826339788
222 => 0.3915749028652
223 => 0.39594458000953
224 => 0.38695582259545
225 => 0.37678419036073
226 => 0.37871748511284
227 => 0.37853129328164
228 => 0.37616085756939
229 => 0.37402093419772
301 => 0.37045856470356
302 => 0.38173042891457
303 => 0.38127281181245
304 => 0.38868110077418
305 => 0.38737161373992
306 => 0.37862653883925
307 => 0.37893887090016
308 => 0.38103945411138
309 => 0.38830959658948
310 => 0.39046786986602
311 => 0.38946807169201
312 => 0.39183451981082
313 => 0.39370486391607
314 => 0.39206940623411
315 => 0.41522403813554
316 => 0.40560862063476
317 => 0.41029510822099
318 => 0.41141280789592
319 => 0.40854984368129
320 => 0.40917071810438
321 => 0.41011117367721
322 => 0.41582143575536
323 => 0.43080681572608
324 => 0.43744373850618
325 => 0.4574112481501
326 => 0.43689263445971
327 => 0.43567514483779
328 => 0.43927189628569
329 => 0.45099493822222
330 => 0.46049536262245
331 => 0.46364720148864
401 => 0.46406376902599
402 => 0.46997682826925
403 => 0.47336608355545
404 => 0.46925882734822
405 => 0.46577835776024
406 => 0.45331174770787
407 => 0.45475479176689
408 => 0.46469593433555
409 => 0.47873838374416
410 => 0.49078826620459
411 => 0.48656881734775
412 => 0.51876023365878
413 => 0.52195188109588
414 => 0.52151089861839
415 => 0.52878194646091
416 => 0.51435039721664
417 => 0.50818063031662
418 => 0.46653087479017
419 => 0.47823275722165
420 => 0.49524213056327
421 => 0.49299087621963
422 => 0.48063821463709
423 => 0.49077889560309
424 => 0.48742606934732
425 => 0.4847815561705
426 => 0.4968965836976
427 => 0.48357561327366
428 => 0.49510924369328
429 => 0.48031724337998
430 => 0.48658809143471
501 => 0.48302845479205
502 => 0.48533197595251
503 => 0.47186563831715
504 => 0.47913174722832
505 => 0.4715633442977
506 => 0.47155975588927
507 => 0.4713926829751
508 => 0.48029687545955
509 => 0.48058724085679
510 => 0.4740070291573
511 => 0.47305871784918
512 => 0.47656512178538
513 => 0.47246004110473
514 => 0.47438078251814
515 => 0.47251821840545
516 => 0.47209891599208
517 => 0.46875784302395
518 => 0.46731841692456
519 => 0.46788285298757
520 => 0.46595614171777
521 => 0.46479522848553
522 => 0.47116174811345
523 => 0.46776037350092
524 => 0.4706404386715
525 => 0.46735824091642
526 => 0.45598071351185
527 => 0.4494373771863
528 => 0.42794628261641
529 => 0.43404113037681
530 => 0.43808202074753
531 => 0.43674650650411
601 => 0.43961570787438
602 => 0.43979185353583
603 => 0.43885904692231
604 => 0.43777897636378
605 => 0.43725325774754
606 => 0.44117153359983
607 => 0.44344622461519
608 => 0.43848757815637
609 => 0.43732583666991
610 => 0.44233930201415
611 => 0.44539751297795
612 => 0.46797762447434
613 => 0.46630481688189
614 => 0.47050323566703
615 => 0.47003055814181
616 => 0.47443116988921
617 => 0.48162431025891
618 => 0.46699864465362
619 => 0.46953715448524
620 => 0.46891477049728
621 => 0.47570979567996
622 => 0.47573100900688
623 => 0.47165705197318
624 => 0.47386561017355
625 => 0.47263285357473
626 => 0.47486061136585
627 => 0.46628247551663
628 => 0.47672971902844
629 => 0.48265263289413
630 => 0.48273487255891
701 => 0.48554228672409
702 => 0.48839478211039
703 => 0.49386989860439
704 => 0.488242084083
705 => 0.4781181936157
706 => 0.47884910580748
707 => 0.47291347253069
708 => 0.47301325159843
709 => 0.472480623115
710 => 0.47407908128819
711 => 0.46663324719654
712 => 0.46838076957533
713 => 0.46593422801155
714 => 0.46953183618168
715 => 0.46566140449656
716 => 0.46891447036487
717 => 0.4703183857528
718 => 0.47549886375838
719 => 0.46489624368301
720 => 0.44327678361507
721 => 0.44782145623197
722 => 0.44109952845525
723 => 0.44172166846317
724 => 0.44297849029201
725 => 0.43890471953821
726 => 0.43968186661877
727 => 0.43965410145635
728 => 0.43941483628659
729 => 0.43835509117704
730 => 0.436818251104
731 => 0.44294054894055
801 => 0.44398084664378
802 => 0.44629329957244
803 => 0.45317359093634
804 => 0.45248608758064
805 => 0.45360743407802
806 => 0.45115954097033
807 => 0.44183521920371
808 => 0.4423415747363
809 => 0.43602731313107
810 => 0.4461318297068
811 => 0.44373894680856
812 => 0.44219623963745
813 => 0.44177529769273
814 => 0.44867264396812
815 => 0.45073643807637
816 => 0.44945042008418
817 => 0.44681275966305
818 => 0.45187784742592
819 => 0.45323305123236
820 => 0.45353643138663
821 => 0.46251079576818
822 => 0.45403799866281
823 => 0.45607748513843
824 => 0.47198897642415
825 => 0.45755944946371
826 => 0.46520309171151
827 => 0.46482897519907
828 => 0.46873920392629
829 => 0.46450822231242
830 => 0.4645606704003
831 => 0.46803268860824
901 => 0.46315686521698
902 => 0.46194954277644
903 => 0.46028163547185
904 => 0.46392345005226
905 => 0.46610655318811
906 => 0.48370076115048
907 => 0.49506742188753
908 => 0.4945739651675
909 => 0.49908323587631
910 => 0.49705176812181
911 => 0.4904916228684
912 => 0.50168899089148
913 => 0.4981456751312
914 => 0.49843778177735
915 => 0.49842690955339
916 => 0.50078290477193
917 => 0.4991134662358
918 => 0.49582283151674
919 => 0.49800730841075
920 => 0.50449442382116
921 => 0.52463062910411
922 => 0.53589911634968
923 => 0.5239522520228
924 => 0.53219303906059
925 => 0.52725150333057
926 => 0.52635347929047
927 => 0.53152930253959
928 => 0.53671418538213
929 => 0.53638393075993
930 => 0.53261997206292
1001 => 0.53049380730189
1002 => 0.54659383918982
1003 => 0.55845606842796
1004 => 0.55764714391931
1005 => 0.56121747362413
1006 => 0.57170007206364
1007 => 0.57265846949275
1008 => 0.5725377334452
1009 => 0.57016224541872
1010 => 0.58048372491984
1011 => 0.58909408470882
1012 => 0.56961238857504
1013 => 0.57703076342866
1014 => 0.58036111090555
1015 => 0.58525104907121
1016 => 0.59350119440547
1017 => 0.60246304048145
1018 => 0.60373034377823
1019 => 0.60283113144312
1020 => 0.59692055304866
1021 => 0.60672671196205
1022 => 0.61247092987079
1023 => 0.61589148018136
1024 => 0.62456542664366
1025 => 0.58038167799778
1026 => 0.54910622463144
1027 => 0.54422211096527
1028 => 0.55415414816372
1029 => 0.55677314716644
1030 => 0.55571743195239
1031 => 0.52051406574875
1101 => 0.54403677252771
1102 => 0.5693452271765
1103 => 0.57031742799149
1104 => 0.58298736956351
1105 => 0.58711322189781
1106 => 0.59731418555049
1107 => 0.59667611249659
1108 => 0.59915988481323
1109 => 0.59858890857058
1110 => 0.61748404567084
1111 => 0.63832818784745
1112 => 0.63760642148418
1113 => 0.6346098294296
1114 => 0.63906027962553
1115 => 0.66057366814581
1116 => 0.65859306007589
1117 => 0.66051705210802
1118 => 0.68588254961488
1119 => 0.71886130457374
1120 => 0.70353936188249
1121 => 0.73678356875227
1122 => 0.75770903477711
1123 => 0.7938974645335
1124 => 0.78936649489622
1125 => 0.80345438503742
1126 => 0.7812551136036
1127 => 0.73028109917858
1128 => 0.72221426627513
1129 => 0.73836427003258
1130 => 0.77806747837595
1201 => 0.73711387471012
1202 => 0.74539873539363
1203 => 0.74301269495943
1204 => 0.74288555300471
1205 => 0.74773804429266
1206 => 0.74069925259056
1207 => 0.71202194894178
1208 => 0.72516458820761
1209 => 0.7200895840257
1210 => 0.72572067953215
1211 => 0.75610937954004
1212 => 0.74267381089043
1213 => 0.72852053073502
1214 => 0.74627188491419
1215 => 0.76887545881138
1216 => 0.76746096777942
1217 => 0.76471626396604
1218 => 0.78018801565406
1219 => 0.80574281664476
1220 => 0.81265017666504
1221 => 0.81774904861725
1222 => 0.81845209691332
1223 => 0.82569393130484
1224 => 0.78675276260436
1225 => 0.84855339741216
1226 => 0.85922465983539
1227 => 0.85721890477833
1228 => 0.86907956384638
1229 => 0.86558985707268
1230 => 0.86053381947581
1231 => 0.87933548693319
]
'min_raw' => 0.32413074858989
'max_raw' => 0.87933548693319
'avg_raw' => 0.60173311776154
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.32413'
'max' => '$0.879335'
'avg' => '$0.601733'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.11178431839156
'max_diff' => 0.40528704028875
'year' => 2032
]
7 => [
'items' => [
101 => 0.85778089240963
102 => 0.82718685913142
103 => 0.81040236739363
104 => 0.83250554008028
105 => 0.84600317634559
106 => 0.85492425530607
107 => 0.85762376840924
108 => 0.78977565467929
109 => 0.75320928440774
110 => 0.77664790851752
111 => 0.80524464757886
112 => 0.78659390627499
113 => 0.78732498002358
114 => 0.76073392425284
115 => 0.80759736598015
116 => 0.80076975670407
117 => 0.83619140570622
118 => 0.82773774489537
119 => 0.85662272459613
120 => 0.84901634139984
121 => 0.88059001278051
122 => 0.89318560511728
123 => 0.91433556499814
124 => 0.92989356158233
125 => 0.93902951475361
126 => 0.93848102639331
127 => 0.97468222437173
128 => 0.95333564269738
129 => 0.92651930511138
130 => 0.92603428216891
131 => 0.93992284339514
201 => 0.96902945758463
202 => 0.97657637915995
203 => 0.98079407875058
204 => 0.97433452500835
205 => 0.95116434052413
206 => 0.94115957233934
207 => 0.94968392469882
208 => 0.93925937426913
209 => 0.95725507292303
210 => 0.98196701084864
211 => 0.9768640933886
212 => 0.99392238138539
213 => 1.0115759148778
214 => 1.0368212606418
215 => 1.043421328857
216 => 1.0543309906385
217 => 1.065560616249
218 => 1.0691672693481
219 => 1.0760534891932
220 => 1.0760171954155
221 => 1.0967692824145
222 => 1.1196594770132
223 => 1.1282999955649
224 => 1.1481683915337
225 => 1.1141444597088
226 => 1.1399520028368
227 => 1.1632310527429
228 => 1.1354768097622
301 => 1.1737295678019
302 => 1.1752148357139
303 => 1.1976406177948
304 => 1.1749077913958
305 => 1.1614091116459
306 => 1.2003792942951
307 => 1.2192357381298
308 => 1.213556023788
309 => 1.1703331172044
310 => 1.1451755316552
311 => 1.0793332777369
312 => 1.1573262716768
313 => 1.1953143839381
314 => 1.1702347371709
315 => 1.1828834522044
316 => 1.2518907400671
317 => 1.2781642473942
318 => 1.2726995415359
319 => 1.2736229868692
320 => 1.287799694525
321 => 1.3506670235265
322 => 1.3129954627355
323 => 1.3417939594338
324 => 1.3570685782418
325 => 1.3712564954544
326 => 1.3364154549174
327 => 1.2910877730954
328 => 1.2767305935357
329 => 1.1677410605658
330 => 1.1620676820571
331 => 1.1588830427793
401 => 1.1388043426085
402 => 1.1230279842932
403 => 1.1104820384222
404 => 1.0775577299201
405 => 1.0886687175364
406 => 1.0361942416213
407 => 1.0697655517305
408 => 0.98601502112953
409 => 1.0557649516745
410 => 1.0178032356191
411 => 1.0432935069732
412 => 1.0432045738178
413 => 0.9962689025569
414 => 0.96919738689611
415 => 0.98644841031432
416 => 1.0049428768066
417 => 1.0079435417721
418 => 1.0319221003343
419 => 1.0386140006116
420 => 1.0183372303564
421 => 0.98427947753617
422 => 0.99219031674167
423 => 0.9690370739921
424 => 0.92846190665011
425 => 0.95760370020958
426 => 0.967553989805
427 => 0.97194860454583
428 => 0.93204758755444
429 => 0.91950982172252
430 => 0.91283482039565
501 => 0.97912875729809
502 => 0.98276048881171
503 => 0.96418003691296
504 => 1.0481654413661
505 => 1.0291569577328
506 => 1.0503940911427
507 => 0.99147249100126
508 => 0.99372337547512
509 => 0.96582894570763
510 => 0.98144796247095
511 => 0.97040894484704
512 => 0.98018610026661
513 => 0.98604648691237
514 => 1.0139363394784
515 => 1.0560834089907
516 => 1.0097705255497
517 => 0.98959133902171
518 => 1.0021103928516
519 => 1.0354502829422
520 => 1.0859619230671
521 => 1.0560580154717
522 => 1.0693288618613
523 => 1.0722279514185
524 => 1.0501779170605
525 => 1.0867749392857
526 => 1.1063875808099
527 => 1.1265060927494
528 => 1.1439744329586
529 => 1.1184703166652
530 => 1.1457633769706
531 => 1.1237699882382
601 => 1.1040396449105
602 => 1.104069567697
603 => 1.0916924351132
604 => 1.067710181113
605 => 1.0632874855216
606 => 1.086294906513
607 => 1.1047446793373
608 => 1.1062642909955
609 => 1.1164790332146
610 => 1.1225240124396
611 => 1.1817730265957
612 => 1.2056034702228
613 => 1.2347428856028
614 => 1.2460943301008
615 => 1.2802581083217
616 => 1.2526680827619
617 => 1.2466988071827
618 => 1.1638286561056
619 => 1.177398638702
620 => 1.1991254901474
621 => 1.1641869238834
622 => 1.1863474024285
623 => 1.1907223503164
624 => 1.1629997247712
625 => 1.1778075768988
626 => 1.13848231187
627 => 1.0569405923048
628 => 1.0868657185295
629 => 1.1089006841195
630 => 1.0774540713309
701 => 1.1338209076025
702 => 1.1008925655003
703 => 1.0904558618931
704 => 1.0497385601679
705 => 1.0689555592295
706 => 1.0949468256213
707 => 1.0788872448002
708 => 1.1122132863622
709 => 1.1594118489446
710 => 1.1930483553638
711 => 1.1956305486605
712 => 1.1740045285038
713 => 1.2086603638203
714 => 1.2089127937459
715 => 1.1698208699357
716 => 1.1458772842668
717 => 1.140437251225
718 => 1.1540275203446
719 => 1.1705286159578
720 => 1.1965462446252
721 => 1.2122681527277
722 => 1.2532625508031
723 => 1.2643544595209
724 => 1.276541104345
725 => 1.2928262200522
726 => 1.3123806768766
727 => 1.2695966385806
728 => 1.2712965281816
729 => 1.2314566241057
730 => 1.1888819729804
731 => 1.2211908261793
801 => 1.2634303538702
802 => 1.2537405595474
803 => 1.2526502597415
804 => 1.254483841591
805 => 1.2471780531107
806 => 1.2141342425794
807 => 1.1975398477958
808 => 1.2189508507483
809 => 1.2303298459234
810 => 1.2479776750874
811 => 1.2458022076425
812 => 1.2912611203304
813 => 1.3089250791948
814 => 1.3044058826339
815 => 1.3052375235616
816 => 1.3372172773449
817 => 1.3727853406899
818 => 1.4060995256319
819 => 1.4399881454323
820 => 1.3991340915675
821 => 1.3783909225427
822 => 1.3997925781211
823 => 1.3884365584211
824 => 1.4536916160316
825 => 1.4582097346387
826 => 1.5234600735658
827 => 1.5853904150735
828 => 1.5464930771698
829 => 1.5831715148384
830 => 1.6228422356139
831 => 1.6993734923322
901 => 1.6736004574715
902 => 1.6538587166832
903 => 1.6352028670297
904 => 1.674022728626
905 => 1.7239638604073
906 => 1.7347207018627
907 => 1.7521508944503
908 => 1.733825178207
909 => 1.7558964849106
910 => 1.8338178961979
911 => 1.8127628430368
912 => 1.7828612827792
913 => 1.8443727533387
914 => 1.8666335154143
915 => 2.022871201713
916 => 2.2201277345219
917 => 2.1384622346828
918 => 2.0877698236034
919 => 2.0996837426472
920 => 2.171715150874
921 => 2.1948493530338
922 => 2.1319626167257
923 => 2.1541752751299
924 => 2.2765692068376
925 => 2.3422296243313
926 => 2.2530539580042
927 => 2.0070218313662
928 => 1.7801689744381
929 => 1.8403405674127
930 => 1.8335189761113
1001 => 1.9650159867773
1002 => 1.8122606869822
1003 => 1.814832694468
1004 => 1.9490489240568
1005 => 1.9132423350512
1006 => 1.8552402466235
1007 => 1.7805924538726
1008 => 1.6425991048873
1009 => 1.5203745474618
1010 => 1.7600850512077
1011 => 1.7497482984009
1012 => 1.7347791485157
1013 => 1.768091371754
1014 => 1.9298460719594
1015 => 1.9261171025708
1016 => 1.9023953018574
1017 => 1.9203880786241
1018 => 1.8520860258625
1019 => 1.869689020068
1020 => 1.7801330397865
1021 => 1.8206160830619
1022 => 1.8551158001918
1023 => 1.8620421291827
1024 => 1.8776475020663
1025 => 1.7443012993774
1026 => 1.8041698295459
1027 => 1.8393369820972
1028 => 1.6804505074784
1029 => 1.836196307353
1030 => 1.7419800386571
1031 => 1.7100016219809
1101 => 1.7530563471994
1102 => 1.7362778789096
1103 => 1.7218527371388
1104 => 1.7138032601753
1105 => 1.7454178985992
1106 => 1.743943037929
1107 => 1.6922153533307
1108 => 1.6247386974623
1109 => 1.6473860780175
1110 => 1.6391580723415
1111 => 1.6093387183378
1112 => 1.6294333625337
1113 => 1.5409467191614
1114 => 1.3887100483747
1115 => 1.4892822562317
1116 => 1.4854103356307
1117 => 1.4834579376861
1118 => 1.559035172279
1119 => 1.5517701650363
1120 => 1.5385841057518
1121 => 1.6090965460184
1122 => 1.5833585567949
1123 => 1.6626769749487
1124 => 1.7149212151384
1125 => 1.7016703859022
1126 => 1.7508063463189
1127 => 1.6479078279242
1128 => 1.6820865881629
1129 => 1.6891307832784
1130 => 1.6082264334508
1201 => 1.5529588100691
1202 => 1.5492730896866
1203 => 1.4534466470902
1204 => 1.5046363592412
1205 => 1.5496811875598
1206 => 1.528108210415
1207 => 1.5212788503254
1208 => 1.556168569916
1209 => 1.5588797999384
1210 => 1.4970634681037
1211 => 1.5099170409608
1212 => 1.5635185765035
1213 => 1.5085664197925
1214 => 1.401803355687
1215 => 1.375324639674
1216 => 1.3717918908583
1217 => 1.2999795129775
1218 => 1.3770940740909
1219 => 1.3434315016231
1220 => 1.4497711647091
1221 => 1.3890305194655
1222 => 1.3864121116498
1223 => 1.3824540041995
1224 => 1.3206421240256
1225 => 1.3341749974337
1226 => 1.3791603297573
1227 => 1.3952116031264
1228 => 1.3935373238098
1229 => 1.3789398770873
1230 => 1.3856225134458
1231 => 1.3640954133501
]
'min_raw' => 0.75320928440774
'max_raw' => 2.3422296243313
'avg_raw' => 1.5477194543695
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.7532092'
'max' => '$2.34'
'avg' => '$1.54'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.42907853581785
'max_diff' => 1.4628941373981
'year' => 2033
]
8 => [
'items' => [
101 => 1.3564937462584
102 => 1.3325007939139
103 => 1.2972377821897
104 => 1.3021413202505
105 => 1.2322760669559
106 => 1.1942097689314
107 => 1.183673519344
108 => 1.1695840060554
109 => 1.1852649673607
110 => 1.2320781474715
111 => 1.1756115202876
112 => 1.0788034486543
113 => 1.0846217787124
114 => 1.0976938388752
115 => 1.0733341412422
116 => 1.0502797317869
117 => 1.0703236703449
118 => 1.0293048141956
119 => 1.102650771671
120 => 1.100666969071
121 => 1.1280058063342
122 => 1.1451013423243
123 => 1.1057016666126
124 => 1.0957927547191
125 => 1.1014373212686
126 => 1.0081452096336
127 => 1.1203818504863
128 => 1.1213524776171
129 => 1.1130413788382
130 => 1.1728039251748
131 => 1.2989215383505
201 => 1.2514710192046
202 => 1.2330967439917
203 => 1.1981672333806
204 => 1.2447087323608
205 => 1.2411350713996
206 => 1.2249736212624
207 => 1.2151991257926
208 => 1.2332089333981
209 => 1.2129675113246
210 => 1.2093315957231
211 => 1.1873019030934
212 => 1.1794383051117
213 => 1.1736164102249
214 => 1.1672070760021
215 => 1.181344470191
216 => 1.14930727503
217 => 1.1106735583108
218 => 1.1074615827882
219 => 1.1163301296058
220 => 1.1124064578247
221 => 1.1074427977572
222 => 1.0979658189161
223 => 1.0951542017375
224 => 1.1042905935651
225 => 1.0939761398765
226 => 1.1091956781514
227 => 1.1050568058761
228 => 1.0819374017936
301 => 1.0531220644071
302 => 1.0528655474622
303 => 1.0466573302889
304 => 1.038750232307
305 => 1.0365506585383
306 => 1.0686356257466
307 => 1.1350505476455
308 => 1.1220117093024
309 => 1.1314336062792
310 => 1.1777800142109
311 => 1.1925121436073
312 => 1.1820556271114
313 => 1.1677421024019
314 => 1.1683718248467
315 => 1.2172854717777
316 => 1.2203361559381
317 => 1.2280442506234
318 => 1.2379513306012
319 => 1.183742845671
320 => 1.1658186100814
321 => 1.1573251128603
322 => 1.1311684288164
323 => 1.1593761700531
324 => 1.1429407272104
325 => 1.1451584299645
326 => 1.1437141481366
327 => 1.1445028236765
328 => 1.1026302699811
329 => 1.1178864277911
330 => 1.0925201064515
331 => 1.058557449681
401 => 1.0584435949466
402 => 1.0667559070764
403 => 1.0618114185608
404 => 1.0485059270998
405 => 1.0503959093617
406 => 1.0338376760148
407 => 1.0524063786865
408 => 1.0529388626371
409 => 1.0457889006645
410 => 1.0743965491174
411 => 1.0861171260301
412 => 1.0814108678927
413 => 1.0857869224133
414 => 1.1225535319023
415 => 1.1285480934887
416 => 1.1312104817668
417 => 1.127643234173
418 => 1.0864589485413
419 => 1.0882856467382
420 => 1.0748825474029
421 => 1.0635583408483
422 => 1.0640112497229
423 => 1.0698333639357
424 => 1.0952588781657
425 => 1.1487653739467
426 => 1.1507959063488
427 => 1.153256970855
428 => 1.1432465846763
429 => 1.1402273564184
430 => 1.1442104978196
501 => 1.164304724397
502 => 1.2159925306835
503 => 1.1977226078294
504 => 1.1828688761607
505 => 1.1958996033714
506 => 1.1938936250556
507 => 1.1769611493243
508 => 1.1764859111259
509 => 1.1439870765576
510 => 1.1319729973803
511 => 1.1219331335816
512 => 1.1109698644107
513 => 1.104470470954
514 => 1.1144564932249
515 => 1.1167404146694
516 => 1.0949058024483
517 => 1.0919298254842
518 => 1.1097604411568
519 => 1.1019138519917
520 => 1.1099842635341
521 => 1.1118566682386
522 => 1.1115551679561
523 => 1.1033624276926
524 => 1.1085842360255
525 => 1.0962331026222
526 => 1.0828031001264
527 => 1.0742355952528
528 => 1.066759310936
529 => 1.0709075879991
530 => 1.0561197377144
531 => 1.0513888067877
601 => 1.1068152048567
602 => 1.1477592810445
603 => 1.1471639379611
604 => 1.1435399400507
605 => 1.138155414257
606 => 1.1639108127971
607 => 1.1549381469412
608 => 1.1614665110427
609 => 1.1631282537011
610 => 1.1681578482432
611 => 1.1699554959838
612 => 1.1645217559652
613 => 1.1462854607873
614 => 1.100842347059
615 => 1.0796884549472
616 => 1.0727073182043
617 => 1.0729610692658
618 => 1.065961482194
619 => 1.0680231742862
620 => 1.0652445098215
621 => 1.0599823915565
622 => 1.0705826670245
623 => 1.0718042500238
624 => 1.0693300190657
625 => 1.0699127900248
626 => 1.0494272144496
627 => 1.0509846882682
628 => 1.0423124761318
629 => 1.0406865409013
630 => 1.0187639437962
701 => 0.9799248852932
702 => 1.0014454939025
703 => 0.97545162495797
704 => 0.9656073529173
705 => 1.0122086056594
706 => 1.0075311324017
707 => 0.99952533143313
708 => 0.98768308324555
709 => 0.9832906781988
710 => 0.95660381560115
711 => 0.95502701339001
712 => 0.9682537430993
713 => 0.96215006244244
714 => 0.95357818315558
715 => 0.92253170529605
716 => 0.88762518504636
717 => 0.88867879347813
718 => 0.89978190811066
719 => 0.93206571136374
720 => 0.9194518709173
721 => 0.91030038494626
722 => 0.90858658671654
723 => 0.93003835964108
724 => 0.96039711261466
725 => 0.97464076027106
726 => 0.96052573802958
727 => 0.94431116048534
728 => 0.94529806668934
729 => 0.95186351152279
730 => 0.95255344694439
731 => 0.94199942384859
801 => 0.94497031952952
802 => 0.9404572573258
803 => 0.91276060291206
804 => 0.91225965826075
805 => 0.90546245259874
806 => 0.90525663591267
807 => 0.89369289343916
808 => 0.89207504593074
809 => 0.8691145333806
810 => 0.88422721227194
811 => 0.87409042072288
812 => 0.85881188483106
813 => 0.85617785948448
814 => 0.85609867750188
815 => 0.87178631764467
816 => 0.88404389306308
817 => 0.87426675455182
818 => 0.87204068963467
819 => 0.89580923908908
820 => 0.89278447451586
821 => 0.8901650479031
822 => 0.95767881926359
823 => 0.90423640106649
824 => 0.88093245634596
825 => 0.85208939945524
826 => 0.86148084421818
827 => 0.86345975961876
828 => 0.79409740714834
829 => 0.76595710938962
830 => 0.75630041964358
831 => 0.75074285816918
901 => 0.75327550872053
902 => 0.72794594020997
903 => 0.74496782916146
904 => 0.72303456388644
905 => 0.71935738058607
906 => 0.75857677590798
907 => 0.76403392565065
908 => 0.74075202944492
909 => 0.75570277580561
910 => 0.75028142734431
911 => 0.72341054676729
912 => 0.72238427677807
913 => 0.70890141346165
914 => 0.68780334316824
915 => 0.67816095890734
916 => 0.67313912146525
917 => 0.67521122946752
918 => 0.67416350825402
919 => 0.66732641863002
920 => 0.67455540222806
921 => 0.65608833635731
922 => 0.64873460192832
923 => 0.64541309069208
924 => 0.62902250680714
925 => 0.65510721469382
926 => 0.66024623075399
927 => 0.66539537226332
928 => 0.71021513363381
929 => 0.70797606501507
930 => 0.72821615485783
1001 => 0.72742966218568
1002 => 0.72165686069481
1003 => 0.69730236078458
1004 => 0.70700963037158
1005 => 0.67713216342743
1006 => 0.69951839313225
1007 => 0.68930225276627
1008 => 0.696064305798
1009 => 0.68390552473721
1010 => 0.69063469620002
1011 => 0.66146488210678
1012 => 0.63422652013688
1013 => 0.64518803213092
1014 => 0.6571044492694
1015 => 0.68294227787223
1016 => 0.66755348031384
1017 => 0.6730878738307
1018 => 0.65454858199551
1019 => 0.61629672745262
1020 => 0.61651322879519
1021 => 0.61062901433571
1022 => 0.60554419393335
1023 => 0.6693210688315
1024 => 0.66138940627473
1025 => 0.64875134006083
1026 => 0.66566789390492
1027 => 0.6701408992431
1028 => 0.67026823941678
1029 => 0.68261012042197
1030 => 0.68919698452684
1031 => 0.69035794787443
1101 => 0.70977816430009
1102 => 0.71628756468712
1103 => 0.74309886363648
1104 => 0.6886381351274
1105 => 0.68751655226264
1106 => 0.66590594450902
1107 => 0.65220015542149
1108 => 0.66684439161366
1109 => 0.67981718574234
1110 => 0.66630904538413
1111 => 0.6680729233425
1112 => 0.64993934856722
1113 => 0.65642124828539
1114 => 0.66200433352886
1115 => 0.65892168201599
1116 => 0.65430680349922
1117 => 0.67875356456358
1118 => 0.6773741824967
1119 => 0.70013956842844
1120 => 0.71788681473059
1121 => 0.74969305280381
1122 => 0.71650158527772
1123 => 0.71529195627693
1124 => 0.7271162737902
1125 => 0.71628575444572
1126 => 0.72313026881461
1127 => 0.7485902957232
1128 => 0.74912822597239
1129 => 0.74011720121442
1130 => 0.73956887953898
1201 => 0.74129954541356
1202 => 0.75143610949732
1203 => 0.7478940825413
1204 => 0.75199300580796
1205 => 0.75711877211785
1206 => 0.77832111485546
1207 => 0.7834329279093
1208 => 0.77101387235966
1209 => 0.77213517402552
1210 => 0.76749010633926
1211 => 0.76300302915685
1212 => 0.7730893233779
1213 => 0.79152222431347
1214 => 0.79140755419342
1215 => 0.79568362892608
1216 => 0.79834758805961
1217 => 0.78691192532123
1218 => 0.77946772937951
1219 => 0.78232230779006
1220 => 0.78688684083316
1221 => 0.78084209124342
1222 => 0.74353109657518
1223 => 0.75484886892196
1224 => 0.75296503819266
1225 => 0.7502822341525
1226 => 0.76166234176492
1227 => 0.76056470262375
1228 => 0.72768614887413
1229 => 0.72979092721098
1230 => 0.72781414741604
1231 => 0.73420152734457
]
'min_raw' => 0.60554419393335
'max_raw' => 1.3564937462584
'avg_raw' => 0.98101897009589
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.605544'
'max' => '$1.35'
'avg' => '$0.981018'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.14766509047439
'max_diff' => -0.98573587807286
'year' => 2034
]
9 => [
'items' => [
101 => 0.71594081496798
102 => 0.72155768710725
103 => 0.72508053665809
104 => 0.72715552210734
105 => 0.73465179238088
106 => 0.7337721915859
107 => 0.73459711516044
108 => 0.74571210503412
109 => 0.80192790961125
110 => 0.8049876118212
111 => 0.78992051910589
112 => 0.79593952546039
113 => 0.78438434947174
114 => 0.79214141652587
115 => 0.79744860479617
116 => 0.77346644151631
117 => 0.77204637344982
118 => 0.76044350513946
119 => 0.7666782293494
120 => 0.75675833483885
121 => 0.75919232996856
122 => 0.75238666739401
123 => 0.76463550503429
124 => 0.77833160879307
125 => 0.78179178547806
126 => 0.77268955031957
127 => 0.76609893219829
128 => 0.75452797786191
129 => 0.77377073279885
130 => 0.77939790075475
131 => 0.77374117568114
201 => 0.7724303888797
202 => 0.76994645025951
203 => 0.77295736820031
204 => 0.77936725398956
205 => 0.77634447022335
206 => 0.77834107215553
207 => 0.77073208447705
208 => 0.78691571100143
209 => 0.81261920472397
210 => 0.81270184565923
211 => 0.80967904559909
212 => 0.80844218094162
213 => 0.81154375724217
214 => 0.8132262351519
215 => 0.82325616417605
216 => 0.83401867762896
217 => 0.88424263186121
218 => 0.87013994648719
219 => 0.91470162651845
220 => 0.94994412981322
221 => 0.96051181558342
222 => 0.95079004192287
223 => 0.91753237939002
224 => 0.9159005998021
225 => 0.96560158864913
226 => 0.95155878285034
227 => 0.94988843578441
228 => 0.93211876509884
301 => 0.94262284129054
302 => 0.94032544574192
303 => 0.93669889447598
304 => 0.95673994012945
305 => 0.99425498851627
306 => 0.98840791641129
307 => 0.98404334832279
308 => 0.96491908146565
309 => 0.97643616167329
310 => 0.97233515000649
311 => 0.98995569869337
312 => 0.97951767599421
313 => 0.95145239478493
314 => 0.95592188332189
315 => 0.95524632912089
316 => 0.96914918670713
317 => 0.96497589394988
318 => 0.95443142673108
319 => 0.99412676615929
320 => 0.9915491716139
321 => 0.99520361135911
322 => 0.99681240875226
323 => 1.0209742623519
324 => 1.0308726006785
325 => 1.0331196967735
326 => 1.0425223526189
327 => 1.0328857501305
328 => 1.0714390308654
329 => 1.0970747129078
330 => 1.1268518768002
331 => 1.1703643165941
401 => 1.1867253964692
402 => 1.1837699138321
403 => 1.2167605490832
404 => 1.2760439872889
405 => 1.1957527916718
406 => 1.2802996156188
407 => 1.2535330672972
408 => 1.1900700627363
409 => 1.1859837934223
410 => 1.2289616769316
411 => 1.3242824860871
412 => 1.3004057045133
413 => 1.3243215399482
414 => 1.296422447549
415 => 1.2950370224594
416 => 1.3229665433023
417 => 1.3882253911106
418 => 1.3572233587082
419 => 1.3127743432491
420 => 1.3455948045608
421 => 1.3171626835823
422 => 1.2530971573682
423 => 1.3003874463884
424 => 1.2687657768705
425 => 1.2779946611363
426 => 1.3444587070946
427 => 1.3364615772428
428 => 1.3468106037853
429 => 1.328544842819
430 => 1.3114817418304
501 => 1.2796321967126
502 => 1.2702031165669
503 => 1.2728089750964
504 => 1.2702018252328
505 => 1.2523822974518
506 => 1.2485341721242
507 => 1.2421204613211
508 => 1.2441083384862
509 => 1.2320486857792
510 => 1.2548077420887
511 => 1.2590320234919
512 => 1.2755941667261
513 => 1.2773137033795
514 => 1.3234390365396
515 => 1.2980339781398
516 => 1.3150778846816
517 => 1.313553317257
518 => 1.1914454984818
519 => 1.2082708785427
520 => 1.2344458898222
521 => 1.2226540827201
522 => 1.2059832263358
523 => 1.1925206159706
524 => 1.1721233846449
525 => 1.2008320960418
526 => 1.2385809986976
527 => 1.2782710778461
528 => 1.325956107346
529 => 1.3153133638765
530 => 1.2773796393886
531 => 1.2790813185585
601 => 1.2896004296009
602 => 1.275977225039
603 => 1.2719594760571
604 => 1.2890484525875
605 => 1.289166134977
606 => 1.2734909917092
607 => 1.256070938488
608 => 1.2559979478289
609 => 1.252898217616
610 => 1.2969738826678
611 => 1.321211041894
612 => 1.3239897931391
613 => 1.3210240097953
614 => 1.3221654220966
615 => 1.3080623531722
616 => 1.3402977865981
617 => 1.3698802080637
618 => 1.3619514871746
619 => 1.3500652074279
620 => 1.3405972130888
621 => 1.3597211286055
622 => 1.3588695707514
623 => 1.3696218314193
624 => 1.3691340467673
625 => 1.3655184659177
626 => 1.3619516162984
627 => 1.3760937718605
628 => 1.3720210581747
629 => 1.3679420184396
630 => 1.3597608797812
701 => 1.3608728323992
702 => 1.3489886049862
703 => 1.3434904175998
704 => 1.2608108713033
705 => 1.2387161949008
706 => 1.2456676298757
707 => 1.2479562227633
708 => 1.2383405912778
709 => 1.252126936775
710 => 1.2499783494326
711 => 1.2583372459002
712 => 1.2531149702883
713 => 1.253329294301
714 => 1.268686893369
715 => 1.2731452697143
716 => 1.2708777035216
717 => 1.2724658291553
718 => 1.3090635140798
719 => 1.3038604936116
720 => 1.3010964926879
721 => 1.3018621398333
722 => 1.3112136329947
723 => 1.3138315405073
724 => 1.3027392824193
725 => 1.3079704554572
726 => 1.3302441263177
727 => 1.3380386505383
728 => 1.3629150302665
729 => 1.3523471020156
730 => 1.3717449916894
731 => 1.4313674913189
801 => 1.4789980695861
802 => 1.4351950213947
803 => 1.5226625126648
804 => 1.590768501085
805 => 1.588154479813
806 => 1.5762786254121
807 => 1.498741768287
808 => 1.4273911963512
809 => 1.4870789794808
810 => 1.4872311359149
811 => 1.4821039024096
812 => 1.4502590954566
813 => 1.4809957721553
814 => 1.4834355379324
815 => 1.4820699178833
816 => 1.4576545790565
817 => 1.420376869377
818 => 1.4276608446181
819 => 1.4395921446522
820 => 1.4170037045577
821 => 1.4097853292657
822 => 1.4232056622857
823 => 1.4664487715135
824 => 1.4582739122042
825 => 1.4580604335905
826 => 1.4930359483952
827 => 1.4680010279835
828 => 1.4277527188724
829 => 1.4175894900119
830 => 1.3815168743283
831 => 1.4064323584672
901 => 1.4073290223852
902 => 1.3936830663524
903 => 1.4288600129973
904 => 1.4285358512412
905 => 1.461931126683
906 => 1.5257703506351
907 => 1.5068899507751
908 => 1.4849340999195
909 => 1.4873213096772
910 => 1.5135031085836
911 => 1.4976729952925
912 => 1.5033656144034
913 => 1.5134944921227
914 => 1.5196054955367
915 => 1.4864420303289
916 => 1.4787100401971
917 => 1.4628931019471
918 => 1.4587667579948
919 => 1.4716493241682
920 => 1.4682552231293
921 => 1.4072536612549
922 => 1.4008786586296
923 => 1.4010741708587
924 => 1.3850439236424
925 => 1.3605939489373
926 => 1.42484702263
927 => 1.4196866015913
928 => 1.4139898961495
929 => 1.4146877100611
930 => 1.4425777916124
1001 => 1.4264001358298
1002 => 1.4694110851935
1003 => 1.4605693270318
1004 => 1.4515008111363
1005 => 1.4502472660058
1006 => 1.4467566610754
1007 => 1.4347860779723
1008 => 1.4203308795548
1009 => 1.4107863054717
1010 => 1.3013757929157
1011 => 1.3216817476344
1012 => 1.3450418975923
1013 => 1.3531057277478
1014 => 1.3393119882667
1015 => 1.4353307388809
1016 => 1.4528742898778
1017 => 1.3997337295706
1018 => 1.3897933004519
1019 => 1.435982431759
1020 => 1.4081247391892
1021 => 1.4206690564476
1022 => 1.3935551039096
1023 => 1.4486485621777
1024 => 1.4482288423325
1025 => 1.426796242724
1026 => 1.444910929149
1027 => 1.4417630566021
1028 => 1.4175657044303
1029 => 1.4494156614016
1030 => 1.4494314585829
1031 => 1.4288030474446
1101 => 1.4047135793749
1102 => 1.4004069514519
1103 => 1.397162485826
1104 => 1.419871116793
1105 => 1.4402316043099
1106 => 1.4781174237861
1107 => 1.4876428189472
1108 => 1.5248210704028
1109 => 1.5026832318372
1110 => 1.5124966489403
1111 => 1.5231505013983
1112 => 1.5282583500492
1113 => 1.5199353847749
1114 => 1.5776885124641
1115 => 1.5825646459512
1116 => 1.584199571331
1117 => 1.5647255416185
1118 => 1.5820230379566
1119 => 1.5739301122529
1120 => 1.5949856566545
1121 => 1.5982874348674
1122 => 1.5954909461852
1123 => 1.596538982705
1124 => 1.5472568765721
1125 => 1.5447013393853
1126 => 1.5098564085105
1127 => 1.5240559754027
1128 => 1.4975105657007
1129 => 1.5059283885652
1130 => 1.509638884676
1201 => 1.5077007320765
1202 => 1.52485879761
1203 => 1.5102709367453
1204 => 1.4717711734572
1205 => 1.4332609209343
1206 => 1.4327774560837
1207 => 1.4226383863568
1208 => 1.4153096960075
1209 => 1.416721461768
1210 => 1.4216967084476
1211 => 1.415020525626
1212 => 1.4164452277221
1213 => 1.4401047752571
1214 => 1.444849528783
1215 => 1.4287250024069
1216 => 1.3639827022487
1217 => 1.3480947793961
1218 => 1.3595147032713
1219 => 1.3540567151963
1220 => 1.092829448957
1221 => 1.1542009203211
1222 => 1.1177360760148
1223 => 1.134540753938
1224 => 1.0973195904269
1225 => 1.1150834805827
1226 => 1.1118031387043
1227 => 1.2104866485439
1228 => 1.2089458412725
1229 => 1.2096833441756
1230 => 1.1744804090561
1231 => 1.2305596405654
]
'min_raw' => 0.71594081496798
'max_raw' => 1.5982874348674
'avg_raw' => 1.1571141249177
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.71594'
'max' => '$1.59'
'avg' => '$1.15'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.11039662103463
'max_diff' => 0.24179368860894
'year' => 2035
]
10 => [
'items' => [
101 => 1.2581862865508
102 => 1.2530733296383
103 => 1.2543601507388
104 => 1.2322483007891
105 => 1.2098974352173
106 => 1.1851068855246
107 => 1.231164662649
108 => 1.2260438240653
109 => 1.2377891853569
110 => 1.2676609461
111 => 1.2720596763412
112 => 1.2779716143929
113 => 1.2758526054418
114 => 1.3263359955374
115 => 1.3202221238967
116 => 1.3349547954699
117 => 1.3046485722733
118 => 1.2703542040333
119 => 1.2768724422684
120 => 1.27624468351
121 => 1.2682525940076
122 => 1.2610376929553
123 => 1.2490269154891
124 => 1.2870307926529
125 => 1.2854879046433
126 => 1.310465468108
127 => 1.3060504411465
128 => 1.2765658105573
129 => 1.277618859907
130 => 1.2847011228617
131 => 1.3092129158117
201 => 1.3164896848494
202 => 1.313118795502
203 => 1.3210974405547
204 => 1.3274034362888
205 => 1.3218893765301
206 => 1.3999568345905
207 => 1.3675377831597
208 => 1.3833386032568
209 => 1.3871070057461
210 => 1.3774543220107
211 => 1.3795476434762
212 => 1.3827184551005
213 => 1.4019710023747
214 => 1.4524952571918
215 => 1.4748721057201
216 => 1.5421939585716
217 => 1.4730140199506
218 => 1.4689091686879
219 => 1.4810358673116
220 => 1.5205609216773
221 => 1.5525922658411
222 => 1.5632189106328
223 => 1.5646233971688
224 => 1.5845596892441
225 => 1.5959868000718
226 => 1.5821388990096
227 => 1.5704042527951
228 => 1.5283722066126
229 => 1.5332375304077
301 => 1.5667547866464
302 => 1.61409988524
303 => 1.6547269052513
304 => 1.6405007388379
305 => 1.7490363464635
306 => 1.7597972086314
307 => 1.7583104054201
308 => 1.7828252508695
309 => 1.7341682750139
310 => 1.7133664751511
311 => 1.5729414165006
312 => 1.6123951301176
313 => 1.6697434198954
314 => 1.6621531586983
315 => 1.6205052977375
316 => 1.6546953116141
317 => 1.6433910238059
318 => 1.6344748629963
319 => 1.6753215241481
320 => 1.6304089423233
321 => 1.6692953825354
322 => 1.6194231207346
323 => 1.6405657227678
324 => 1.6285641593012
325 => 1.6363306417204
326 => 1.5909279441931
327 => 1.6154261376906
328 => 1.589908738801
329 => 1.5898966402315
330 => 1.5893333422367
331 => 1.6193544488689
401 => 1.6203334360783
402 => 1.5981477929178
403 => 1.5949504951335
404 => 1.6067725808137
405 => 1.5929320146913
406 => 1.5994079284685
407 => 1.5931281635225
408 => 1.5917144561611
409 => 1.5804497953827
410 => 1.5755966697911
411 => 1.5774997053852
412 => 1.5710036638204
413 => 1.5670895638055
414 => 1.5885547292272
415 => 1.5770867572447
416 => 1.5867970980471
417 => 1.5757309391601
418 => 1.537370811162
419 => 1.5153094958992
420 => 1.4428507700965
421 => 1.4633999748494
422 => 1.4770241188603
423 => 1.472521339346
424 => 1.482195052087
425 => 1.4827889394827
426 => 1.4796439168588
427 => 1.4760023835626
428 => 1.4742298865434
429 => 1.4874406271447
430 => 1.4951099067168
501 => 1.4783914839793
502 => 1.4744745914475
503 => 1.4913778398845
504 => 1.5016888116665
505 => 1.5778192340696
506 => 1.5721792464799
507 => 1.5863345085383
508 => 1.5847408432607
509 => 1.599577813008
510 => 1.6238299879734
511 => 1.5745185352539
512 => 1.5830772983842
513 => 1.5809788873154
514 => 1.6038887891323
515 => 1.6039603113451
516 => 1.5902246807714
517 => 1.5976709889405
518 => 1.5935146639993
519 => 1.6010257049291
520 => 1.5721039210071
521 => 1.6073275319105
522 => 1.6272970495333
523 => 1.6275743263049
524 => 1.6370397191702
525 => 1.64665710652
526 => 1.6651168440399
527 => 1.6461422744596
528 => 1.6120088709216
529 => 1.6144731924068
530 => 1.5944607904015
531 => 1.5947972024947
601 => 1.5930014083759
602 => 1.5983907217076
603 => 1.5732865722161
604 => 1.5791784659243
605 => 1.5709297802299
606 => 1.5830593673525
607 => 1.5700099367012
608 => 1.580977875398
609 => 1.5857112741466
610 => 1.6031776174319
611 => 1.5674301435965
612 => 1.4945386245549
613 => 1.5098613055817
614 => 1.4871978567725
615 => 1.4892954452456
616 => 1.4935329077901
617 => 1.479797905272
618 => 1.4824181109128
619 => 1.4823244987292
620 => 1.4815177995044
621 => 1.4779447948785
622 => 1.4727632312735
623 => 1.4934049858746
624 => 1.4969124222123
625 => 1.5047090187116
626 => 1.5279064014116
627 => 1.5255884358479
628 => 1.5293691338538
629 => 1.5211158913347
630 => 1.4896782894952
701 => 1.491385502526
702 => 1.4700965286763
703 => 1.5041646117861
704 => 1.496096840029
705 => 1.4908954950932
706 => 1.4894762599374
707 => 1.5127311444622
708 => 1.5196893703876
709 => 1.5153534709401
710 => 1.5064604146747
711 => 1.5235377117003
712 => 1.528106875951
713 => 1.5291297433225
714 => 1.559387439405
715 => 1.5308208124124
716 => 1.5376970834574
717 => 1.591343787232
718 => 1.5426936296475
719 => 1.568464703148
720 => 1.5672033432064
721 => 1.5803869523636
722 => 1.5661219024547
723 => 1.5662987348449
724 => 1.5780048866415
725 => 1.5615657076587
726 => 1.5574951357579
727 => 1.5518716698309
728 => 1.5641503019521
729 => 1.571510786594
730 => 1.6308308871275
731 => 1.6691543773974
801 => 1.6674906536138
802 => 1.6826939746358
803 => 1.6758447392689
804 => 1.6537267515323
805 => 1.6914794595974
806 => 1.6795329231252
807 => 1.6805177810769
808 => 1.6804811246148
809 => 1.6884245269845
810 => 1.6827958984034
811 => 1.6717012937033
812 => 1.6790664100668
813 => 1.7009381725889
814 => 1.7688287945653
815 => 1.8068212860544
816 => 1.7665415988729
817 => 1.7943259877242
818 => 1.7776652550034
819 => 1.7746375042542
820 => 1.792088153703
821 => 1.8095693482036
822 => 1.8084558716872
823 => 1.7957654221491
824 => 1.7885969092132
825 => 1.8428792907917
826 => 1.8828736248624
827 => 1.8801462794042
828 => 1.8921838952765
829 => 1.927526707787
830 => 1.9307580116324
831 => 1.9303509416185
901 => 1.922341817886
902 => 1.9571414066467
903 => 1.9861718358314
904 => 1.9204879371477
905 => 1.9454995059011
906 => 1.9567280049369
907 => 1.973214772867
908 => 2.0010307138682
909 => 2.0312462036095
910 => 2.0355190051549
911 => 2.032487247986
912 => 2.0125593202657
913 => 2.0456214696863
914 => 2.0649885014142
915 => 2.0765211256014
916 => 2.1057659416947
917 => 1.9567973483243
918 => 1.8513499737172
919 => 1.8348828434938
920 => 1.8683694003411
921 => 1.8771995383314
922 => 1.8736401207796
923 => 1.7549495138035
924 => 1.8342579620117
925 => 1.91958718384
926 => 1.9228650267646
927 => 1.9655826193617
928 => 1.9794932185646
929 => 2.0138864797282
930 => 2.0117351718781
1001 => 2.0201093836551
1002 => 2.0181842973887
1003 => 2.0818905713386
1004 => 2.1521680519785
1005 => 2.1497345662927
1006 => 2.1396313469653
1007 => 2.1546363505214
1008 => 2.2271702419343
1009 => 2.2204924835449
1010 => 2.2269793570101
1011 => 2.312500902817
1012 => 2.4236910776639
1013 => 2.3720320781365
1014 => 2.4841172426343
1015 => 2.5546689123065
1016 => 2.6766807298256
1017 => 2.6614042493513
1018 => 2.7089025545475
1019 => 2.6340561610047
1020 => 2.4621937124787
1021 => 2.4349958221365
1022 => 2.4894466873619
1023 => 2.6233088262811
1024 => 2.4852308922325
1025 => 2.5131638784574
1026 => 2.5051191765455
1027 => 2.5046905085684
1028 => 2.5210510217358
1029 => 2.4973192440795
1030 => 2.4006317126422
1031 => 2.4449430385167
1101 => 2.4278323075919
1102 => 2.4468179392425
1103 => 2.5492755629903
1104 => 2.5039766052467
1105 => 2.4562578330523
1106 => 2.5161077630274
1107 => 2.5923172905528
1108 => 2.587548235282
1109 => 2.5782942747461
1110 => 2.6304583657654
1111 => 2.7166181614848
1112 => 2.7399068080497
1113 => 2.7570980108284
1114 => 2.7594683872439
1115 => 2.7838847375036
1116 => 2.6525918684444
1117 => 2.8609570234814
1118 => 2.8969359297851
1119 => 2.8901733865729
1120 => 2.9301624267055
1121 => 2.9183966366745
1122 => 2.9013498529154
1123 => 2.9647409874384
1124 => 2.8920681671085
1125 => 2.7889182479038
1126 => 2.7323281621541
1127 => 2.8068505520614
1128 => 2.8523587751047
1129 => 2.8824368156698
1130 => 2.8915384125711
1201 => 2.6627837601266
1202 => 2.5394976897736
1203 => 2.6185226473922
1204 => 2.7149385496981
1205 => 2.6520562732389
1206 => 2.6545211394242
1207 => 2.564867538365
1208 => 2.7228709040496
1209 => 2.6998511426868
1210 => 2.8192777053581
1211 => 2.7907755977186
1212 => 2.8881633234646
1213 => 2.8625178714576
1214 => 2.9689707089208
1215 => 3.0114376278805
1216 => 3.0827461942618
1217 => 3.13520106597
1218 => 3.1660035699389
1219 => 3.1641543031379
1220 => 3.2862091696091
1221 => 3.2142376791233
1222 => 3.1238245246952
1223 => 3.1221892359814
1224 => 3.169015489824
1225 => 3.2671504717228
1226 => 3.2925954447232
1227 => 3.3068157133634
1228 => 3.2850368769298
1229 => 3.2069169822507
1230 => 3.1731852078051
1231 => 3.2019256569363
]
'min_raw' => 1.1851068855246
'max_raw' => 3.3068157133634
'avg_raw' => 2.245961299444
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$1.18'
'max' => '$3.30'
'avg' => '$2.24'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.46916607055659
'max_diff' => 1.708528278496
'year' => 2036
]
11 => [
'items' => [
101 => 3.1667785573437
102 => 3.2274523117749
103 => 3.3107703358235
104 => 3.2935654933327
105 => 3.3510787022855
106 => 3.4105988229857
107 => 3.4957152688028
108 => 3.5179678595922
109 => 3.5547505459769
110 => 3.5926120127499
111 => 3.6047720954822
112 => 3.6279894664703
113 => 3.6278670994647
114 => 3.6978342096466
115 => 3.7750100988783
116 => 3.8041422104373
117 => 3.8711298946132
118 => 3.7564158329904
119 => 3.8434277664715
120 => 3.9219147085214
121 => 3.8283393405726
122 => 3.9573111850255
123 => 3.9623188694891
124 => 4.037928959493
125 => 3.9612836481335
126 => 3.9157719069088
127 => 4.0471625985219
128 => 4.1107384154255
129 => 4.091588861977
130 => 3.9458598147037
131 => 3.8610392585778
201 => 3.6390475025329
202 => 3.9020063268983
203 => 4.0300858996326
204 => 3.9455281195521
205 => 3.9881741453923
206 => 4.2208370343565
207 => 4.3094199986676
208 => 4.2909953613326
209 => 4.2941088217469
210 => 4.3419065813946
211 => 4.5538681703797
212 => 4.4268558730287
213 => 4.5239520152935
214 => 4.5754514590446
215 => 4.6232870124959
216 => 4.5058180118016
217 => 4.3529925678607
218 => 4.304586334589
219 => 3.9371205147748
220 => 3.9179923230303
221 => 3.9072550893605
222 => 3.8395583498848
223 => 3.7863672563545
224 => 3.7440677239204
225 => 3.6330611191039
226 => 3.6705225895964
227 => 3.4936012303979
228 => 3.6067892463051
301 => 3.3244184851086
302 => 3.5595852457255
303 => 3.4315946696423
304 => 3.5175368991867
305 => 3.517237054844
306 => 3.3589901622441
307 => 3.2677166571209
308 => 3.3258796870034
309 => 3.3882350720245
310 => 3.3983520234554
311 => 3.4791974077774
312 => 3.5017596167759
313 => 3.4333950701815
314 => 3.3185669787118
315 => 3.3452389254103
316 => 3.2671761509723
317 => 3.1303741414111
318 => 3.2286277330119
319 => 3.2621758290899
320 => 3.2769925795108
321 => 3.1424635149243
322 => 3.1001915620631
323 => 3.0776863290559
324 => 3.3012009658173
325 => 3.3134456021749
326 => 3.2508003113525
327 => 3.5339629661398
328 => 3.4698745364402
329 => 3.5414770144612
330 => 3.3428187258095
331 => 3.3504077399649
401 => 3.2563597224769
402 => 3.3090203279794
403 => 3.2718015093408
404 => 3.304765871457
405 => 3.3245245741923
406 => 3.4185571593261
407 => 3.5606589468011
408 => 3.4045118268175
409 => 3.3364762905727
410 => 3.3786851546126
411 => 3.4910929217699
412 => 3.661396443061
413 => 3.5605733307789
414 => 3.6053169159222
415 => 3.6150913987725
416 => 3.5407481684502
417 => 3.6641375840051
418 => 3.7302629742148
419 => 3.7980939418484
420 => 3.8569896704642
421 => 3.7710007617406
422 => 3.8630212201007
423 => 3.78886897446
424 => 3.7223467444021
425 => 3.7224476311659
426 => 3.6807172645159
427 => 3.5998594207668
428 => 3.5849479937976
429 => 3.6625191199971
430 => 3.7247238171961
501 => 3.7298472939978
502 => 3.7642870105599
503 => 3.7846680800641
504 => 3.9844302679253
505 => 4.0647762724025
506 => 4.1630218458053
507 => 4.2012940334628
508 => 4.3164795969732
509 => 4.2234578995245
510 => 4.2033320701476
511 => 3.923929569982
512 => 3.9696817137317
513 => 4.0429353103002
514 => 3.9251374948084
515 => 3.9998530954184
516 => 4.0146035376716
517 => 3.9211347701139
518 => 3.9710604774135
519 => 3.8384726007663
520 => 3.5635490001912
521 => 3.6644436525636
522 => 3.7387360774824
523 => 3.6327116269333
524 => 3.8227563508297
525 => 3.7117361464488
526 => 3.6765480715697
527 => 3.5392668460118
528 => 3.6040583000362
529 => 3.6916896693284
530 => 3.637543671346
531 => 3.7499047472221
601 => 3.909037996267
602 => 4.0224458260852
603 => 4.031151871068
604 => 3.9582382342294
605 => 4.0750828025919
606 => 4.0759338877103
607 => 3.9441327372733
608 => 3.8634052665025
609 => 3.8450638152914
610 => 3.8908843564702
611 => 3.9465189523998
612 => 4.034239203945
613 => 4.087246714781
614 => 4.2254621900299
615 => 4.262859334684
616 => 4.3039474585531
617 => 4.3588538631503
618 => 4.4247830795824
619 => 4.2805337073813
620 => 4.2862650038533
621 => 4.1519419857281
622 => 4.0083985769921
623 => 4.1173301312842
624 => 4.2597436479639
625 => 4.2270738298846
626 => 4.2233978079669
627 => 4.229579857189
628 => 4.2049478812538
629 => 4.0935383670023
630 => 4.0375892064056
701 => 4.1097778977285
702 => 4.1481429744176
703 => 4.207643862576
704 => 4.2003091221991
705 => 4.3535770201665
706 => 4.4131322907359
707 => 4.3978955040105
708 => 4.4006994394618
709 => 4.5085214120973
710 => 4.6284416209479
711 => 4.7407627214018
712 => 4.855020569087
713 => 4.7172782741427
714 => 4.6473412315338
715 => 4.7194984075322
716 => 4.6812107942617
717 => 4.9012227769582
718 => 4.9164559292869
719 => 5.1364520026129
720 => 5.3452544728444
721 => 5.2141093823768
722 => 5.3377732957831
723 => 5.4715259005988
724 => 5.7295563758664
725 => 5.6426607894179
726 => 5.5761001320257
727 => 5.5132006324089
728 => 5.6440845060972
729 => 5.8124645186761
730 => 5.8487319606619
731 => 5.9074990719081
801 => 5.8457126401332
802 => 5.9201275916538
803 => 6.1828450701082
804 => 6.1118564883585
805 => 6.0110412902899
806 => 6.2184315078748
807 => 6.2934852214097
808 => 6.8202514889325
809 => 7.4853156613093
810 => 7.2099747268985
811 => 7.0390617237133
812 => 7.0792303335724
813 => 7.3220892554814
814 => 7.4000878332417
815 => 7.1880608111672
816 => 7.2629523398153
817 => 7.6756120258392
818 => 7.8969907076831
819 => 7.5963287226154
820 => 6.7668142302406
821 => 6.0019639847468
822 => 6.2048367115072
823 => 6.1818372401663
824 => 6.6251885924547
825 => 6.1101634341612
826 => 6.1188351369712
827 => 6.5713545257077
828 => 6.4506301109392
829 => 6.2550720202289
830 => 6.0033917752266
831 => 5.5381375647347
901 => 5.1260489359286
902 => 5.9342496353608
903 => 5.8993985515837
904 => 5.8489290176331
905 => 5.9612435040661
906 => 6.5066107691611
907 => 6.4940382885191
908 => 6.4140585812106
909 => 6.4747224842953
910 => 6.2444373447125
911 => 6.3037870686782
912 => 6.0018428285602
913 => 6.1383342353989
914 => 6.2546524403959
915 => 6.2780050421695
916 => 6.3306196463788
917 => 5.8810336140786
918 => 6.082884543429
919 => 6.2014530535479
920 => 5.6657562112711
921 => 6.1908640493728
922 => 5.8732073214949
923 => 5.7653898570092
924 => 5.9105518690684
925 => 5.8539820917942
926 => 5.8053467191827
927 => 5.7782073456037
928 => 5.8847983063133
929 => 5.8798257105925
930 => 5.7054222104576
1001 => 5.4779199541277
1002 => 5.554277178859
1003 => 5.5265358832613
1004 => 5.425997849317
1005 => 5.4937483451869
1006 => 5.1954094491168
1007 => 4.6821328847346
1008 => 5.0212191052519
1009 => 5.0081646546168
1010 => 5.0015820086344
1011 => 5.2563959316983
1012 => 5.2319014525531
1013 => 5.187443733054
1014 => 5.4251813484342
1015 => 5.3384039207983
1016 => 5.6058315054388
1017 => 5.7819766088148
1018 => 5.7373005129015
1019 => 5.9029658340098
1020 => 5.5560362950969
1021 => 5.6712723715266
1022 => 5.6950223671684
1023 => 5.4222477031634
1024 => 5.2359090522696
1025 => 5.2234823886711
1026 => 4.9003968470691
1027 => 5.0729865355375
1028 => 5.2248583191432
1029 => 5.1521235205226
1030 => 5.1290978561696
1031 => 5.2467309816917
1101 => 5.2558720830044
1102 => 5.0474540043453
1103 => 5.0907907226407
1104 => 5.2715120420625
1105 => 5.0862370090744
1106 => 4.7262778844835
1107 => 4.6370030447607
1108 => 4.62509213548
1109 => 4.3829716896749
1110 => 4.6429688164353
1111 => 4.5294731031146
1112 => 4.8880047016072
1113 => 4.6832133753917
1114 => 4.6743852306298
1115 => 4.6610401950149
1116 => 4.4526371254408
1117 => 4.4982641529716
1118 => 4.6499353416762
1119 => 4.7040533305042
1120 => 4.6984083808938
1121 => 4.6491920701076
1122 => 4.6717230451572
1123 => 4.5991429242102
1124 => 4.5735133728793
1125 => 4.4926194589152
1126 => 4.3737277529022
1127 => 4.3902603738285
1128 => 4.1547047945095
1129 => 4.0263616130157
1130 => 3.9908379119142
1201 => 3.9433341341635
1202 => 3.9962035900139
1203 => 4.1540374951493
1204 => 3.963656319225
1205 => 3.6372611467896
1206 => 3.6568780528033
1207 => 3.7009514163044
1208 => 3.6188209949946
1209 => 3.5410914439087
1210 => 3.6086709821801
1211 => 3.4703730448277
1212 => 3.7176640613072
1213 => 3.7109755323365
1214 => 3.8031503309062
1215 => 3.8607891240691
1216 => 3.7279503666095
1217 => 3.6945417783426
1218 => 3.7135728285551
1219 => 3.3990319607306
1220 => 3.7774456314775
1221 => 3.780718168616
1222 => 3.7526967188205
1223 => 3.9541903162819
1224 => 4.3794046543545
1225 => 4.2194219161645
1226 => 4.1574717644334
1227 => 4.0397044807074
1228 => 4.1966223939429
1229 => 4.1845735465072
1230 => 4.1300840890133
1231 => 4.0971286951034
]
'min_raw' => 3.0776863290559
'max_raw' => 7.8969907076831
'avg_raw' => 5.4873385183695
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$3.07'
'max' => '$7.89'
'avg' => '$5.48'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 1.8925794435313
'max_diff' => 4.5901749943197
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.096605057075668
]
1 => [
'year' => 2028
'avg' => 0.1658023225903
]
2 => [
'year' => 2029
'avg' => 0.45294206235551
]
3 => [
'year' => 2030
'avg' => 0.34944412656572
]
4 => [
'year' => 2031
'avg' => 0.34319743842138
]
5 => [
'year' => 2032
'avg' => 0.60173311776154
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.096605057075668
'min' => '$0.096605'
'max_raw' => 0.60173311776154
'max' => '$0.601733'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.60173311776154
]
1 => [
'year' => 2033
'avg' => 1.5477194543695
]
2 => [
'year' => 2034
'avg' => 0.98101897009589
]
3 => [
'year' => 2035
'avg' => 1.1571141249177
]
4 => [
'year' => 2036
'avg' => 2.245961299444
]
5 => [
'year' => 2037
'avg' => 5.4873385183695
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.60173311776154
'min' => '$0.601733'
'max_raw' => 5.4873385183695
'max' => '$5.48'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 5.4873385183695
]
]
]
]
'prediction_2025_max_price' => '$0.165177'
'last_price' => 0.16016
'sma_50day_nextmonth' => '$0.142931'
'sma_200day_nextmonth' => '—'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'decrease'
'sma_200day_direction_label' => 'diminuer'
'sma_200day_date_nextmonth' => '4 févr. 2026'
'sma_50day_date_nextmonth' => '4 févr. 2026'
'daily_sma3' => '$0.168262'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.16990076'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.171048'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.13387'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.169351'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '—'
'daily_sma100_action' => '—'
'daily_sma200' => '—'
'daily_sma200_action' => '—'
'daily_ema3' => '$0.166029'
'daily_ema3_action' => 'SELL'
'daily_ema5' => '$0.167347'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.16184'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.151798'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.192515'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.171126'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.085563'
'daily_ema200_action' => 'BUY'
'weekly_sma21' => '—'
'weekly_sma21_action' => '—'
'weekly_sma50' => '—'
'weekly_sma50_action' => '—'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.162557'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.165074'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.208592'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.139445'
'weekly_ema21_action' => 'BUY'
'weekly_ema50' => '$0.058566'
'weekly_ema50_action' => 'BUY'
'weekly_ema100' => '$0.029283'
'weekly_ema100_action' => 'BUY'
'weekly_ema200' => '$0.014641'
'weekly_ema200_action' => 'BUY'
'rsi_14' => '52.23'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 74.7
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => -0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.172252'
'vwma_10_action' => 'SELL'
'hma_9' => '0.168518'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 70.48
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => 42.73
'cci_20_action' => 'NEUTRAL'
'adx_14' => 24.9
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.042553'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0.01
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -29.52
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 53.54
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '—'
'ichimoku_cloud_action' => '—'
'sell_signals' => 19
'buy_signals' => 8
'sell_pct' => 70.37
'buy_pct' => 29.63
'overall_action' => 'bearish'
'overall_action_label' => 'Baissier'
'overall_action_dir' => -1
'last_updated' => 1767711668
'last_updated_date' => '6 janvier 2026'
]
Prévision du prix de Apro pour 2026
La prévision du prix de Apro pour 2026 suggère que le prix moyen pourrait varier entre $0.055335 à la baisse et $0.165177 à la hausse. Sur le marché des cryptomonnaies, comparé au prix moyen d'aujourd'hui, Apro pourrait potentiellement gagner 3.13% d'ici 2026 si AT atteint l'objectif de prix prévu.
Prévision du prix de Apro de 2027 à 2032
La prévision du prix de AT pour 2027-2032 se situe actuellement dans une fourchette de prix comprise entre $0.096605 à la baisse et $0.601733 à la hausse. Compte tenu de la volatilité des prix sur le marché, si Apro atteint l'objectif de prix le plus élevé, il pourrait gagner 275.71% d'ici 2032 par rapport au prix actuel.
| Prévision du Prix de Apro | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2027 | $0.053269 | $0.096605 | $0.13994 |
| 2028 | $0.096136 | $0.1658023 | $0.235468 |
| 2029 | $0.211184 | $0.452942 | $0.694700021 |
| 2030 | $0.179603 | $0.349444 | $0.519285 |
| 2031 | $0.212346 | $0.343197 | $0.474048 |
| 2032 | $0.32413 | $0.601733 | $0.879335 |
Prévision du prix de Apro de 2032 à 2037
La prévision du prix de Apro pour 2032-2037 est actuellement estimée entre $0.601733 à la baisse et $5.48 à la hausse. Par rapport au prix actuel, Apro pourrait potentiellement gagner 3326.16% d'ici 2037 s'il atteint l'objectif de prix le plus élevé. Veuillez noter que ces informations sont à titre général seulement et ne doivent pas être considérées comme un conseil en investissement à long terme.
| Prévision du Prix de Apro | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2032 | $0.32413 | $0.601733 | $0.879335 |
| 2033 | $0.7532092 | $1.54 | $2.34 |
| 2034 | $0.605544 | $0.981018 | $1.35 |
| 2035 | $0.71594 | $1.15 | $1.59 |
| 2036 | $1.18 | $2.24 | $3.30 |
| 2037 | $3.07 | $5.48 | $7.89 |
Apro Histogramme des prix potentiels
Prévision du prix de Apro basée sur l'analyse technique
Au 6 janvier 2026, le sentiment global de prévision du prix pour Apro est Baissier, avec 8 indicateurs techniques montrant des signaux haussiers et 19 indiquant des signaux baissiers. La prévision du prix de AT a été mise à jour pour la dernière fois le 6 janvier 2026.
Moyennes Mobiles Simples sur 50 et 200 jours de Apro et Indice de Force Relative sur 14 jours - RSI (14)
Selon nos indicateurs techniques, le SMA sur 200 jours de Apro devrait diminuer au cours du prochain mois, atteignant — d'ici le 4 févr. 2026. Le SMA à court terme sur 50 jours pour Apro devrait atteindre $0.142931 d'ici le 4 févr. 2026.
Le Relative Strength Index (RSI), un oscillateur de momentum, est un outil couramment utilisé pour identifier si une cryptomonnaie est survendue (en dessous de 30) ou surachetée (au-dessus de 70). Actuellement, le RSI est à 52.23, ce qui suggère que le marché de AT est dans un état NEUTRAL.
Moyennes Mobiles et Oscillateurs Populaires de AT pour le Samedi 19 Octobre 2024
Les moyennes mobiles (MA) sont des indicateurs largement utilisés sur les marchés financiers, conçus pour lisser les mouvements de prix sur une période donnée. En tant qu'indicateurs retardés, ils sont basés sur des données historiques de prix. Le tableau ci-dessous met en évidence deux types : la moyenne mobile simple (SMA) et la moyenne mobile exponentielle (EMA).
Moyenne Mobile Simple Quotidienne (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 3 | $0.168262 | SELL |
| SMA 5 | $0.16990076 | SELL |
| SMA 10 | $0.171048 | SELL |
| SMA 21 | $0.13387 | BUY |
| SMA 50 | $0.169351 | SELL |
| SMA 100 | — | — |
| SMA 200 | — | — |
Moyenne Mobile Exponentielle Quotidienne (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 3 | $0.166029 | SELL |
| EMA 5 | $0.167347 | SELL |
| EMA 10 | $0.16184 | SELL |
| EMA 21 | $0.151798 | BUY |
| EMA 50 | $0.192515 | SELL |
| EMA 100 | $0.171126 | SELL |
| EMA 200 | $0.085563 | BUY |
Moyenne Mobile Simple Hebdomadaire (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 21 | — | — |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Moyenne Mobile Exponentielle Hebdomadaire (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 21 | $0.139445 | BUY |
| EMA 50 | $0.058566 | BUY |
| EMA 100 | $0.029283 | BUY |
| EMA 200 | $0.014641 | BUY |
Oscillateurs de Apro
Un oscillateur est un outil d'analyse technique qui établit des limites hautes et basses entre deux extrêmes, créant un indicateur de tendance qui fluctue à l'intérieur de ces limites. Les traders utilisent cet indicateur pour identifier les conditions de surachat ou de survente à court terme.
| Période | Valeur | Action |
|---|---|---|
| RSI (14) | 52.23 | NEUTRAL |
| Stoch RSI (14) | 74.7 | NEUTRAL |
| Stochastique Rapide (14) | 70.48 | NEUTRAL |
| Indice de Canal des Matières Premières (20) | 42.73 | NEUTRAL |
| Indice Directionnel Moyen (14) | 24.9 | NEUTRAL |
| Oscillateur Impressionnant (5, 34) | 0.042553 | BUY |
| Momentum (10) | -0 | SELL |
| MACD (12, 26) | 0.01 | NEUTRAL |
| Plage de Pourcentage de Williams (14) | -29.52 | NEUTRAL |
| Oscillateur Ultime (7, 14, 28) | 53.54 | NEUTRAL |
| VWMA (10) | 0.172252 | SELL |
| Moyenne Mobile de Hull (9) | 0.168518 | SELL |
| Nuage Ichimoku B/L (9, 26, 52, 26) | — | — |
Prévision du cours de Apro basée sur les flux monétaires mondiaux
Définitions des flux monétaires mondiaux utilisés pour la prédiction du cours de Apro
M0 : le total de toutes les devises physiques, plus les comptes à la banque centrale qui peuvent être échangés contre des devises physiques.
M1 : M0 plus le montant des comptes à vue, y compris les comptes de "chèques" et les comptes "courants".
M2 : M1 plus la plupart des comptes d'épargne, comptes du marché monétaire et comptes de certificats de dépôt (CD) de moins de 100 000 $.
Prédictions du cours de Apro par des sociétés Internet ou des niches technologiques
| Comparaison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Action Facebook | $0.225051 | $0.316235 | $0.444363 | $0.6244042 | $0.877392 | $1.23 |
| Action Amazon.com | $0.334183 | $0.697293 | $1.45 | $3.03 | $6.33 | $13.21 |
| Action Apple | $0.227174 | $0.32223 | $0.457058 | $0.6483028 | $0.919568 | $1.30 |
| Action Netflix | $0.2527073 | $0.398732 | $0.629137 | $0.99268 | $1.56 | $2.47 |
| Action Google | $0.2074064 | $0.26859 | $0.347823 | $0.450429 | $0.5833046 | $0.755376 |
| Action Tesla | $0.36307 | $0.823053 | $1.86 | $4.22 | $9.58 | $21.73 |
| Action Kodak | $0.1201029 | $0.090064 | $0.067538 | $0.050646 | $0.037979 | $0.02848 |
| Action Nokia | $0.106099 | $0.070286 | $0.046561 | $0.030845 | $0.020433 | $0.013536 |
Ce calcul montre la valeur potentielle des cryptomonnaies si l'on suppose que leur capitalisation se comportera comme celle de certaines sociétés Internet ou niches technologiques. En extrapolant les données, vous pourrez obtenir une potentielle image des cours futurs pour 2024, 2025, 2026, 2027, 2028, 2029 et 2030.
Aperçu des prévisions relatives à Apro
Vous vous posez peut-être des questions telles que : "Devrais-je investir dans Apro maintenant ?", "Devrais-je acheter AT aujourd'hui ?", " Apro sera-t-il un bon ou un mauvais investissement à court ou à long terme ?".
Nous mettons régulièrement à jour les prévisions de Apro avec de nouvelles valeurs. Regardez nos prévisions similaires. Nous faisons une prévision des cours futurs pour une grande quantité de devises numériques comme Apro en utilisant des méthodes d'analyse technique.
Si vous souhaitez trouver des cryptomonnaies ayant un bon rendement, vous devriez consulter un maximum d'informations disponibles à propos de Apro afin de prendre une décision responsable concernant cet investissement.
Le cours de Apro est de $0.1601 USD actuellement, mais ce cours peut subir une hausse ou une baisse, ce qui pourrait causer la perte de votre investissement, car les cryptomonnaies sont des actifs à haut risque.
Prévision à court terme de Apro
basée sur l'historique des cours sur 4 heures
Prévision à long terme de Apro
basée sur l'historique des cours sur 1 mois
Prévision du cours de Apro basée sur le modèle de croissance du Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Apro présente 1 % de la précédente croissance annuelle moyenne du Bitcoin | $0.164323 | $0.168594 | $0.172976 | $0.177472 |
| Si Apro présente 2 % de la précédente croissance annuelle moyenne du Bitcoin | $0.168486 | $0.177245 | $0.186459 | $0.196152 |
| Si Apro présente 5 % de la précédente croissance annuelle moyenne du Bitcoin | $0.180975 | $0.204496 | $0.231073 | $0.2611052 |
| Si Apro présente 10 % de la précédente croissance annuelle moyenne du Bitcoin | $0.20179 | $0.254242 | $0.320328 | $0.403592 |
| Si Apro présente 20 % de la précédente croissance annuelle moyenne du Bitcoin | $0.243421 | $0.369967 | $0.56230048 | $0.85462 |
| Si Apro présente 50 % de la précédente croissance annuelle moyenne du Bitcoin | $0.368313 | $0.846996 | $1.94 | $4.47 |
| Si Apro présente 100 % de la précédente croissance annuelle moyenne du Bitcoin | $0.576467 | $2.07 | $7.46 | $26.88 |
Boîte à questions
Est-ce que AT est un bon investissement ?
La décision d'acquérir Apro dépend entièrement de votre tolérance individuelle au risque. Comme vous pouvez le discerner, la valeur de Apro a connu une hausse de 0.4812% au cours des 24 heures précédentes, et Apro a enregistré une déclin de sur une période de 30 jours précédents. Par conséquent, la détermination de si investir ou non dans Apro dépendra de la mesure dans laquelle cet investissement s'aligne avec vos aspirations de trading.
Est-ce que Apro peut monter ?
Il semble que la valeur moyenne de Apro pourrait potentiellement s'envoler jusqu'à $0.165177 pour la fin de cette année. En regardant les perspectives de Apro sur une période de cinq ans plus longue, la monnaie numérique pourrait potentiellement croître jusqu'à $0.519285. Cependant, compte tenu de l'imprévisibilité du marché, il est essentiel de mener des recherches approfondies avant d'investir des fonds dans un projet, un réseau ou un actif particulier.
Quel sera le prix de Apro la semaine prochaine ?
Basé sur notre nouveau pronostic expérimental de Apro, le prix de Apro va augmenter de 0.86% durant la prochaine semaine et atteindre $0.16153 d'ici 13 janvier 2026.
Quel sera le prix de Apro le mois prochain ?
Basé sur notre nouveau pronostic expérimental de Apro, le prix de Apro va diminuer de -11.62% durant le prochain mois et atteindre $0.141552 d'ici 5 février 2026.
Jusqu'où le prix de Apro peut-il monter cette année en 2026 ?
Selon notre prédiction la plus récente sur la valeur de Apro en 2026, AT devrait fluctuer dans la fourchette de $0.055335 et $0.165177. Cependant, il est crucial de garder à l'esprit que le marché des cryptomonnaies est exceptionnellement instable, et cette prévision de prix de Apro ne prend pas en compte les fluctuations de prix soudaines et extrêmes.
Où sera Apro dans 5 ans ?
L'avenir de Apro semble suivre une tendance haussière, avec un prix maximum de $0.519285 prévue après une période de cinq ans. Selon la prévision de Apro pour 2030, la valeur de Apro pourrait potentiellement atteindre son point le plus élevé d'environ $0.519285, tandis que son point le plus bas devrait être autour de $0.179603.
Combien vaudra Apro en 2026 ?
Basé sur notre nouvelle simulation expérimentale de prédiction de prix de Apro, il est attendu que la valeur de AT en 2026 augmente de 3.13% jusqu'à $0.165177 si le meilleur scénario se produit. Le prix sera entre $0.165177 et $0.055335 durant 2026.
Combien vaudra Apro en 2027 ?
Selon notre dernière simulation expérimentale pour la prédiction de prix de Apro, le valeur de AT pourrait diminuer de -12.62% jusqu'à $0.13994 en 2027, en supposant les conditions les plus favorables. Il est prévu que le prix fluctue entre $0.13994 et $0.053269 tout au long de l'année.
Combien vaudra Apro en 2028 ?
Notre nouveau modèle expérimental de prédiction de prix de Apro suggère que la valeur de AT en 2028 pourrait augmenter de 47.02%, atteignant $0.235468 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.235468 et $0.096136 durant l'année.
Combien vaudra Apro en 2029 ?
Basé sur notre modèle de prévision expérimental, la valeur de Apro pourrait connaître un 333.75% croissance en 2029, atteignant potentiellement $0.694700021 sous des conditions optimales. Le range de prix prévu pour 2029 se situe entre $0.694700021 et $0.211184.
Combien vaudra Apro en 2030 ?
En utilisant notre nouvelle simulation expérimentale pour les prédictions de prix de Apro, il est prévu que la valeur de AT en 2030 augmente de 224.23%, atteignant $0.519285 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.519285 et $0.179603 au cours de 2030.
Combien vaudra Apro en 2031 ?
Notre simulation expérimentale indique que le prix de Apro pourrait augmenter de 195.98% en 2031, atteignant potentiellement $0.474048 dans des conditions idéales. Il est probable que le prix fluctue entre $0.474048 et $0.212346 durant l'année.
Combien vaudra Apro en 2032 ?
Basé sur les résultats de notre dernière prédiction expérimentale de prix de Apro, AT pourrait connaître une 449.04% hausse en valeur, atteignant $0.879335 si le scénario le plus positif se réalise en 2032. Il est prévu que le prix reste dans une fourchette de $0.879335 et $0.32413 tout au long de l'année.
Combien vaudra Apro en 2033 ?
Selon notre prédiction expérimentale de prix de Apro, la valeur de AT est anticipée à augmenter de 1362.43% en 2033, avec le prix potentiel le plus élevé étant $2.34. Tout au long de l'année, le prix de AT pourrait osciller entre $2.34 et $0.7532092.
Combien vaudra Apro en 2034 ?
Les résultats de notre nouvelle simulation de prédiction de prix de Apro suggèrent que AT pourrait augmenter de 746.96% en 2034, atteignant potentiellement $1.35 dans les meilleures circonstances. La fourchette de prix prévue pour l'année est entre $1.35 et $0.605544.
Combien vaudra Apro en 2035 ?
Basé sur notre prédiction expérimentale pour le prix de Apro, AT pourrait augmenter de 897.93%, avec la valeur potentiellement atteignant $1.59 en 2035. La fourchette de prix attendue pour l'année se situe entre $1.59 et $0.71594.
Combien vaudra Apro en 2036 ?
Notre récente simulation de prédiction de prix de Apro suggère que la valeur de AT pourrait augmenter de 1964.7% en 2036, pouvant atteindre $3.30 si les conditions sont optimales. La fourchette de prix attendue pour 2036 est entre $3.30 et $1.18.
Combien vaudra Apro en 2037 ?
Selon la simulation expérimentale, la valeur de Apro pourrait augmenter de 4830.69% en 2037, avec un maximum de $7.89 sous des conditions favorables. Il est prévu que le prix chute entre $7.89 et $3.07 au cours de l'année.
Prévisions liées
Comment lire et prédire les mouvements de prix de Apro ?
Les traders de Apro utilisent des indicateurs et des modèles graphiques pour prédire la direction du marché. Ils identifient également des niveaux clés de support et de résistance pour évaluer quand une tendance baissière pourrait ralentir ou une tendance haussière pourrait s'arrêter.
Indicateurs de prédiction du prix de Apro
Les moyennes mobiles sont des outils populaires pour la prédiction du prix de Apro. Une moyenne mobile simple (SMA) calcule le prix de clôture moyen de AT sur une période spécifique, comme une SMA de 12 jours. Une moyenne mobile exponentielle (EMA) donne plus de poids aux prix récents, réagissant plus rapidement aux changements de prix.
Les moyennes mobiles couramment utilisées sur le marché des cryptomonnaies incluent les moyennes sur 50 jours, 100 jours et 200 jours, qui aident à identifier les niveaux clés de résistance et de support. Un mouvement de prix de AT au-dessus de ces moyennes est considéré comme haussier, tandis qu'une chute en dessous indique une faiblesse.
Les traders utilisent également le RSI et les niveaux de retracement de Fibonacci pour évaluer la direction future de AT.
Comment lire les graphiques de Apro et prédire les mouvements de prix ?
La plupart des traders préfèrent les graphiques en chandeliers aux simples graphiques linéaires parce qu'ils fournissent des informations plus détaillées. Les chandeliers peuvent représenter l'action des prix de Apro dans différentes périodes, comme 5 minutes pour les tendances à court terme et hebdomadaire pour les tendances à long terme. Les options populaires incluent les graphiques de 1 heure, 4 heures et 1 jour.
Par exemple, un graphique en chandeliers de 1 heure montre les prix d'ouverture, de clôture, les plus hauts et les plus bas de AT au sein de chaque heure. La couleur du chandelier est cruciale : le vert indique que le prix a clôturé plus haut qu'il n'a ouvert, tandis que le rouge signifie le contraire. Certains graphiques utilisent des chandeliers creux et pleins pour transmettre la même information.
Qu'est-ce qui affecte le prix de Apro ?
L'action du prix de Apro est déterminée par l'offre et la demande, influencée par des facteurs tels que les réductions de récompenses de bloc, les hard forks et les mises à jour de protocole. Les événements du monde réel, tels que les réglementations, l'adoption par les entreprises et les gouvernements et les piratages d'échanges de cryptomonnaies, impactent également le prix de AT. La capitalisation boursière de Apro peut changer rapidement.
Les traders surveillent souvent l'activité des « baleines » de AT, de grands détenteurs de Apro, car leurs actions peuvent influencer significativement les mouvements de prix sur le marché relativement petit de Apro.
Modèles de prédiction de prix haussiers et baissiers
Les traders identifient souvent des modèles de chandeliers pour obtenir un avantage dans les prédictions de prix des cryptomonnaies. Certaines formations indiquent des tendances haussières, tandis que d'autres suggèrent des mouvements baissiers.
Modèles de chandeliers haussiers couramment suivis :
- Marteau
- Englobante haussière
- Ligne pénétrante
- Étoile du matin
- Trois soldats blancs
Modèles de chandeliers baissiers courants :
- Harami baissier
- Nuage sombre
- Étoile du soir
- Étoile filante
- Pendu


