Prédiction du prix de Apro jusqu'à $0.164926 d'ici 2026
| Année | Prix min. | Prix max. |
|---|---|---|
| 2026 | $0.055251 | $0.164926 |
| 2027 | $0.053189 | $0.139727 |
| 2028 | $0.09599 | $0.23511 |
| 2029 | $0.210863 | $0.693645 |
| 2030 | $0.17933 | $0.518497 |
| 2031 | $0.212024 | $0.473329 |
| 2032 | $0.323638 | $0.8780013 |
| 2033 | $0.752066 | $2.33 |
| 2034 | $0.604625 | $1.35 |
| 2035 | $0.714854 | $1.59 |
Calculateur de profit d’investissement
Si vous ouvrez une position short de $10,000.00 sur Apro aujourd’hui et la fermez le Apr 06, 2026, notre prévision indique que vous pourriez gagner environ $3,954.43, soit un rendement de 39.54% sur les 90 prochains jours.
Prévision du prix à long terme de Apro pour 2027, 2028, 2029, 2030, 2031, 2032 et 2037
[
'name' => 'Apro'
'name_with_ticker' => 'Apro <small>AT</small>'
'name_lang' => 'Apro'
'name_lang_with_ticker' => 'Apro <small>AT</small>'
'name_with_lang' => 'Apro'
'name_with_lang_with_ticker' => 'Apro <small>AT</small>'
'image' => '/uploads/coins/apro.png?1762828426'
'price_for_sd' => 0.1599
'ticker' => 'AT'
'marketcap' => '$36.81M'
'low24h' => '$0.1524'
'high24h' => '$0.163'
'volume24h' => '$11.67M'
'current_supply' => '230M'
'max_supply' => '1B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.1599'
'change_24h_pct' => '-1.2409%'
'ath_price' => '$0.8593'
'ath_days' => 74
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '24 oct. 2025'
'ath_pct' => '-81.39%'
'fdv' => '$160.04M'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$7.88'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.161285'
'next_week_prediction_price_date' => '13 janvier 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.141337'
'next_month_prediction_price_date' => '5 février 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.055251'
'current_year_max_price_prediction' => '$0.164926'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.17933'
'grand_prediction_max_price' => '$0.518497'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.16294734303366
107 => 0.16355572926266
108 => 0.16492645450157
109 => 0.15321375741305
110 => 0.15847241453908
111 => 0.16156138293108
112 => 0.14760531135838
113 => 0.16128551626828
114 => 0.15300986541514
115 => 0.15020098521947
116 => 0.15398277236111
117 => 0.1525090062341
118 => 0.15124194866056
119 => 0.15053490876371
120 => 0.1533118358599
121 => 0.15318228889172
122 => 0.14863869718402
123 => 0.14271176702181
124 => 0.1447010393291
125 => 0.14397831805033
126 => 0.14135908290319
127 => 0.1431241311447
128 => 0.13535175195953
129 => 0.12197977754456
130 => 0.13081371343774
131 => 0.13047361651533
201 => 0.13030212422488
202 => 0.13694058289655
203 => 0.13630244827057
204 => 0.13514422767578
205 => 0.14133781127368
206 => 0.13907706994499
207 => 0.14604414202235
208 => 0.15063310629447
209 => 0.14946919651762
210 => 0.15378513959594
211 => 0.14474686814529
212 => 0.14774901936869
213 => 0.14836775857502
214 => 0.14126138341348
215 => 0.13640685498733
216 => 0.13608311328698
217 => 0.12766602999125
218 => 0.13216236794751
219 => 0.1361189592779
220 => 0.13422405907453
221 => 0.13362419027868
222 => 0.13668878986103
223 => 0.1369269354951
224 => 0.13149718980078
225 => 0.13262620586831
226 => 0.13733439055323
227 => 0.13250757169421
228 => 0.12312985110754
301 => 0.12080404674491
302 => 0.12049374156986
303 => 0.11418597567654
304 => 0.12095946811369
305 => 0.11800265714656
306 => 0.12734318756367
307 => 0.12200792668369
308 => 0.1217779342506
309 => 0.12143026695544
310 => 0.11600091228054
311 => 0.11718959590085
312 => 0.1211409612964
313 => 0.12255085298485
314 => 0.12240378973084
315 => 0.1211215974503
316 => 0.12170857851045
317 => 0.11981770799796
318 => 0.11915000226494
319 => 0.11704253930458
320 => 0.11394515095436
321 => 0.11437586180185
322 => 0.10823912500431
323 => 0.10489550509574
324 => 0.10397003517325
325 => 0.10273245811484
326 => 0.10410982279506
327 => 0.1082217404
328 => 0.10326189537646
329 => 0.094758588976274
330 => 0.095269652179855
331 => 0.096417859462272
401 => 0.094278182787638
402 => 0.092253158384548
403 => 0.094013752807612
404 => 0.090410789788745
405 => 0.096853260329743
406 => 0.096679009556424
407 => 0.099080364174403
408 => 0.10058198049778
409 => 0.09712124102645
410 => 0.096250874408245
411 => 0.096746674789932
412 => 0.088552198889643
413 => 0.098410700669467
414 => 0.098495957402242
415 => 0.097765937495358
416 => 0.10301528534602
417 => 0.11409304662357
418 => 0.10992514722904
419 => 0.10831121060805
420 => 0.10524311591177
421 => 0.10933116992913
422 => 0.10901727116417
423 => 0.10759770190647
424 => 0.10673914199009
425 => 0.10832106496091
426 => 0.10654312422764
427 => 0.1062237572174
428 => 0.10428874061008
429 => 0.10359802771891
430 => 0.10308665139237
501 => 0.10252367630364
502 => 0.10376545906472
503 => 0.10095141595798
504 => 0.097557955835297
505 => 0.097275826343843
506 => 0.098054810674826
507 => 0.097710168096929
508 => 0.097274176327774
509 => 0.096441749305164
510 => 0.096194785989545
511 => 0.09699729695574
512 => 0.096091308864202
513 => 0.097428143644991
514 => 0.097064598555059
515 => 0.095033865235137
516 => 0.092502819644745
517 => 0.092480288029942
518 => 0.091934978409239
519 => 0.091240444619423
520 => 0.091047241207877
521 => 0.093865480455998
522 => 0.099699151356807
523 => 0.098553862171065
524 => 0.09938145098172
525 => 0.10345236883539
526 => 0.10474639120431
527 => 0.10382792477745
528 => 0.10257067128383
529 => 0.10262598405688
530 => 0.1069223998411
531 => 0.10719036202347
601 => 0.10786741601044
602 => 0.10873762171914
603 => 0.10397612457252
604 => 0.10240171796947
605 => 0.10165567677619
606 => 0.099358158655177
607 => 0.10183583497438
608 => 0.10039219908786
609 => 0.10058699489057
610 => 0.10046013386851
611 => 0.10052940856486
612 => 0.096851459527929
613 => 0.098191510849676
614 => 0.095963415620043
615 => 0.092980246222991
616 => 0.092970245593139
617 => 0.093700372076814
618 => 0.093266064274472
619 => 0.092097353145443
620 => 0.092263363045161
621 => 0.09080894163981
622 => 0.09243995613692
623 => 0.092486727796647
624 => 0.091858698373299
625 => 0.094371501242725
626 => 0.095400998628581
627 => 0.09498761620844
628 => 0.095371994615991
629 => 0.098601454107403
630 => 0.099127996915699
701 => 0.099361852449679
702 => 0.099048517014067
703 => 0.095431023207091
704 => 0.095591474440202
705 => 0.094414189752701
706 => 0.093419508250966
707 => 0.093459290294618
708 => 0.093970685886054
709 => 0.096203980426809
710 => 0.10090381712792
711 => 0.10108217249519
712 => 0.10129834440332
713 => 0.10041906461368
714 => 0.10015386541554
715 => 0.1005037316116
716 => 0.10226874317086
717 => 0.10680883209726
718 => 0.10520406144833
719 => 0.103899357931
720 => 0.10504393466124
721 => 0.10486773604511
722 => 0.10338044240494
723 => 0.10333869902605
724 => 0.10048410701403
725 => 0.099428829343106
726 => 0.098546960335115
727 => 0.097583982400162
728 => 0.097013096801009
729 => 0.097890236544172
730 => 0.098090848781446
731 => 0.09617296740324
801 => 0.095911567258206
802 => 0.097477750591994
803 => 0.096788531699994
804 => 0.097497410422222
805 => 0.097661876366428
806 => 0.097635393561439
807 => 0.096915769881905
808 => 0.097374436555753
809 => 0.096289553136987
810 => 0.095109905363299
811 => 0.09435736357834
812 => 0.09370067106078
813 => 0.094065042236715
814 => 0.092766125526054
815 => 0.092350575928286
816 => 0.09721905060698
817 => 0.10081544519705
818 => 0.10076315219539
819 => 0.1004448319964
820 => 0.099971872749598
821 => 0.10223414325608
822 => 0.10144601344715
823 => 0.1020194437336
824 => 0.10216540580829
825 => 0.10260718904742
826 => 0.10276508858286
827 => 0.10228780651849
828 => 0.10068598961536
829 => 0.096694414188943
830 => 0.094836325052894
831 => 0.094223124689076
901 => 0.094245413357667
902 => 0.093630592376915
903 => 0.09381168471009
904 => 0.093567615853765
905 => 0.093105408486483
906 => 0.094036502234252
907 => 0.094143802114944
908 => 0.093926473708473
909 => 0.0939776624156
910 => 0.092178276032197
911 => 0.092315079470865
912 => 0.091553340540219
913 => 0.091410523673623
914 => 0.089484913989147
915 => 0.086073417311511
916 => 0.087963717632916
917 => 0.085680500661106
918 => 0.084815811797499
919 => 0.088909114391107
920 => 0.08849826034125
921 => 0.087795056801857
922 => 0.086754872206636
923 => 0.086369057622003
924 => 0.084024970339829
925 => 0.083886469157979
926 => 0.085048262110705
927 => 0.084512134637876
928 => 0.083759208618673
929 => 0.081032186900006
930 => 0.077966111602363
1001 => 0.078058657142936
1002 => 0.079033918648758
1003 => 0.081869623008867
1004 => 0.080761664257189
1005 => 0.079957827470485
1006 => 0.07980729300358
1007 => 0.081691547022144
1008 => 0.084358161221835
1009 => 0.085609276942199
1010 => 0.084369459260267
1011 => 0.082945223463788
1012 => 0.083031910097447
1013 => 0.08360859743488
1014 => 0.083669199120125
1015 => 0.082742168030422
1016 => 0.083003121852058
1017 => 0.082606709134876
1018 => 0.080173925021251
1019 => 0.080129923671078
1020 => 0.079532879215651
1021 => 0.079514800946821
1022 => 0.078499079388421
1023 => 0.078356972921049
1024 => 0.076340196116955
1025 => 0.077667644716773
1026 => 0.076777261890194
1027 => 0.075435244950465
1028 => 0.075203880724219
1029 => 0.075196925636197
1030 => 0.076574876963803
1031 => 0.077651542553227
1101 => 0.076792750480668
1102 => 0.076597220172732
1103 => 0.078684972312495
1104 => 0.078419286822427
1105 => 0.078189204901516
1106 => 0.084119395167933
1107 => 0.079425186833547
1108 => 0.07737824406371
1109 => 0.074844763682148
1110 => 0.075669677669301
1111 => 0.075843499166902
1112 => 0.069750935543408
1113 => 0.067279183240137
1114 => 0.066430970995675
1115 => 0.065942812857026
1116 => 0.066165272650713
1117 => 0.06394040567014
1118 => 0.065435553076988
1119 => 0.063509006335136
1120 => 0.06318601450434
1121 => 0.066630918732115
1122 => 0.067110257030571
1123 => 0.06506525093062
1124 => 0.066378475903203
1125 => 0.065902282272952
1126 => 0.063542031449501
1127 => 0.063451887228875
1128 => 0.062267596332496
1129 => 0.060414410403567
1130 => 0.05956745470643
1201 => 0.059126352825754
1202 => 0.059308360058625
1203 => 0.059216331632172
1204 => 0.058615783899141
1205 => 0.059250754325254
1206 => 0.057628667274432
1207 => 0.056982739140751
1208 => 0.056690988388186
1209 => 0.055251292766734
1210 => 0.057542488736013
1211 => 0.057993883205687
1212 => 0.058446167061909
1213 => 0.06238298924302
1214 => 0.062186316732196
1215 => 0.06396414044665
1216 => 0.063895057486314
1217 => 0.063387993364117
1218 => 0.061248773240567
1219 => 0.062101428253882
1220 => 0.059477088654909
1221 => 0.061443422320206
1222 => 0.060546069751421
1223 => 0.061140026514045
1224 => 0.060072038699926
1225 => 0.060663107252395
1226 => 0.058100925580078
1227 => 0.055708396385336
1228 => 0.056671219975581
1229 => 0.057717919330411
1230 => 0.059987430225718
1231 => 0.058635728259531
]
'min_raw' => 0.055251292766734
'max_raw' => 0.16492645450157
'avg_raw' => 0.11008887363415
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.055251'
'max' => '$0.164926'
'avg' => '$0.110088'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.10466570723327
'max_diff' => 0.005009454501573
'year' => 2026
]
1 => [
'items' => [
101 => 0.059121851400082
102 => 0.057493420255268
103 => 0.054133501665156
104 => 0.05415251843949
105 => 0.053635668164207
106 => 0.053189034064986
107 => 0.058790987490519
108 => 0.058094296028275
109 => 0.056984209363915
110 => 0.058470104477252
111 => 0.058862998729544
112 => 0.058874183876563
113 => 0.05995825459475
114 => 0.060536823331376
115 => 0.060638798578867
116 => 0.062344607276832
117 => 0.062916371852229
118 => 0.065271389219139
119 => 0.060487735816309
120 => 0.060389219622448
121 => 0.058491014068687
122 => 0.057287142097049
123 => 0.058573444212542
124 => 0.05971293228912
125 => 0.058526421139537
126 => 0.058681354447055
127 => 0.057088560170262
128 => 0.057657909176279
129 => 0.058148309239854
130 => 0.057877539149131
131 => 0.057472183217898
201 => 0.059619507261392
202 => 0.059498346823427
203 => 0.061497984339494
204 => 0.063056844778719
205 => 0.065850601365446
206 => 0.062935170725372
207 => 0.06282892084506
208 => 0.063867530468122
209 => 0.062916212846508
210 => 0.063517412745
211 => 0.065753738767284
212 => 0.065800988812179
213 => 0.065009489681952
214 => 0.064961326887946
215 => 0.065113342953958
216 => 0.066003705800724
217 => 0.065692585663977
218 => 0.066052621762819
219 => 0.066502852417489
220 => 0.068365197299045
221 => 0.06881420234505
222 => 0.067723352865684
223 => 0.067821844359947
224 => 0.067413836710177
225 => 0.067019706432819
226 => 0.067905653738214
227 => 0.069524739852161
228 => 0.069514667601477
301 => 0.069890264109376
302 => 0.070124257622188
303 => 0.06911978617148
304 => 0.068465912192508
305 => 0.068716649083128
306 => 0.069117582831569
307 => 0.068586631672159
308 => 0.06530935515578
309 => 0.066303471497615
310 => 0.066138001928528
311 => 0.065902353140361
312 => 0.06690194480935
313 => 0.066805531754356
314 => 0.063917586443484
315 => 0.06410246333237
316 => 0.063928829419428
317 => 0.0644898761143
318 => 0.062885914483786
319 => 0.063379282278486
320 => 0.063688717934286
321 => 0.063870977912748
322 => 0.064529425931793
323 => 0.064452164656537
324 => 0.064524623262443
325 => 0.065500927850855
326 => 0.070438741431761
327 => 0.070707495730299
328 => 0.069384051272035
329 => 0.069912741229324
330 => 0.068897772123113
331 => 0.069579127683814
401 => 0.070045293853891
402 => 0.067938778569913
403 => 0.067814044405967
404 => 0.06679488616121
405 => 0.067342524073869
406 => 0.06647119277827
407 => 0.066684987000335
408 => 0.066087199717195
409 => 0.067163097808586
410 => 0.068366119052421
411 => 0.068670049727362
412 => 0.067870538971974
413 => 0.067291640494747
414 => 0.066275285469749
415 => 0.06796550652727
416 => 0.068459778673042
417 => 0.067962910326106
418 => 0.067847775073333
419 => 0.067629593977373
420 => 0.067894063224249
421 => 0.068457086760786
422 => 0.068191575258367
423 => 0.068366950283425
424 => 0.067698601533845
425 => 0.069120118693326
426 => 0.071377830049317
427 => 0.071385088960499
428 => 0.071119576026875
429 => 0.071010933854992
430 => 0.071283366237562
501 => 0.071431149629345
502 => 0.072312145999024
503 => 0.073257490204132
504 => 0.077668999123383
505 => 0.076430265071795
506 => 0.080344418226794
507 => 0.083440005183222
508 => 0.084368236357843
509 => 0.083514307353843
510 => 0.080593062359499
511 => 0.080449732143542
512 => 0.084815305482916
513 => 0.083581831058616
514 => 0.083435113200729
515 => 0.081874283076541
516 => 0.082796926992508
517 => 0.082595131233716
518 => 0.082276586756277
519 => 0.08403692707601
520 => 0.087332127007884
521 => 0.086818539196312
522 => 0.086435169719626
523 => 0.084755356269968
524 => 0.085766979166579
525 => 0.085406759629456
526 => 0.086954491361904
527 => 0.086037649370058
528 => 0.083572486276697
529 => 0.083965071624598
530 => 0.083905733139035
531 => 0.085126914967156
601 => 0.08476034649395
602 => 0.083834154761428
603 => 0.087320864372751
604 => 0.087094456844689
605 => 0.087415450955514
606 => 0.087556762490171
607 => 0.089679061187868
608 => 0.090548499058331
609 => 0.090745876676579
610 => 0.09157177540878
611 => 0.090725327563745
612 => 0.094111722450972
613 => 0.096363477449358
614 => 0.098979006754236
615 => 0.10280099805666
616 => 0.10423810214177
617 => 0.10397850215182
618 => 0.10687629233754
619 => 0.11208355688701
620 => 0.10503103919866
621 => 0.11245735744935
622 => 0.11010627083215
623 => 0.10453188675701
624 => 0.10417296214024
625 => 0.10794799975585
626 => 0.11632066985338
627 => 0.11422341095599
628 => 0.11632410021761
629 => 0.11387353460925
630 => 0.1137518433718
701 => 0.11620508171578
702 => 0.12193720682554
703 => 0.11921408905139
704 => 0.11530983198627
705 => 0.11819267464619
706 => 0.11569528953968
707 => 0.11006798192063
708 => 0.11422180722163
709 => 0.11144426253698
710 => 0.11225489773836
711 => 0.11809288353691
712 => 0.11739044164023
713 => 0.1182994664989
714 => 0.11669506141667
715 => 0.11519629407842
716 => 0.11239873354164
717 => 0.11157051378477
718 => 0.11179940392934
719 => 0.11157040035818
720 => 0.11000519094876
721 => 0.10966718412582
722 => 0.1091038246125
723 => 0.10927843328238
724 => 0.1082191525807
725 => 0.11021823412332
726 => 0.11058928127348
727 => 0.11204404611063
728 => 0.11219508462202
729 => 0.11624658398622
730 => 0.1140150862191
731 => 0.11551216757953
801 => 0.11537825453158
802 => 0.10465270056293
803 => 0.10613058726744
804 => 0.10842971519327
805 => 0.10739396117908
806 => 0.10592964733212
807 => 0.10474713538917
808 => 0.10295550887753
809 => 0.10547718878752
810 => 0.10879292971839
811 => 0.11227917728384
812 => 0.11646767530573
813 => 0.11553285130674
814 => 0.11220087622677
815 => 0.11235034619485
816 => 0.11327431072324
817 => 0.11207769270795
818 => 0.11172478669448
819 => 0.11322582685623
820 => 0.11323616369487
821 => 0.11185931005215
822 => 0.11032918918983
823 => 0.11032277792755
824 => 0.11005050769931
825 => 0.113921970878
826 => 0.1160508841772
827 => 0.11629496065604
828 => 0.11603445588547
829 => 0.1161347138326
830 => 0.1148959460912
831 => 0.11772740180288
901 => 0.12032582556587
902 => 0.11962939249016
903 => 0.11858534030588
904 => 0.11775370245273
905 => 0.11943348504179
906 => 0.11935868696732
907 => 0.12030313060111
908 => 0.12026028518251
909 => 0.11994270431079
910 => 0.11962940383197
911 => 0.12087160481661
912 => 0.12051387088217
913 => 0.12015558128812
914 => 0.11943697665587
915 => 0.11953464696015
916 => 0.1184907750462
917 => 0.11800783213448
918 => 0.11074552948424
919 => 0.10880480491352
920 => 0.10941539637056
921 => 0.10961641893222
922 => 0.10877181311193
923 => 0.10998276089679
924 => 0.10979403596723
925 => 0.11052825426775
926 => 0.11006954654964
927 => 0.11008837207439
928 => 0.11143733366657
929 => 0.11182894295567
930 => 0.11162976731056
1001 => 0.11176926310505
1002 => 0.11498388481169
1003 => 0.11452686840282
1004 => 0.11428408754428
1005 => 0.11435133950129
1006 => 0.1151727442696
1007 => 0.11540269275769
1008 => 0.11442838485546
1009 => 0.11488787409456
1010 => 0.11684432095678
1011 => 0.11752896663325
1012 => 0.11971402698398
1013 => 0.11878577451064
1014 => 0.12048962209928
1015 => 0.12572666870233
1016 => 0.1299103839049
1017 => 0.12606286650527
1018 => 0.13374572668188
1019 => 0.1397279353702
1020 => 0.13949832823685
1021 => 0.13845519178106
1022 => 0.13164460623465
1023 => 0.12537740387474
1024 => 0.13062018476827
1025 => 0.13063354969496
1026 => 0.13018319016661
1027 => 0.12738604581483
1028 => 0.13008585560633
1029 => 0.13030015670331
1030 => 0.13018020507627
1031 => 0.12803564106001
1101 => 0.12476128818886
1102 => 0.12540108890219
1103 => 0.1264490955222
1104 => 0.12446500035343
1105 => 0.12383096172644
1106 => 0.1250097601648
1107 => 0.12880809434558
1108 => 0.12809004127096
1109 => 0.1280712900033
1110 => 0.13114342555844
1111 => 0.12894443950931
1112 => 0.12540915883811
1113 => 0.12451645384401
1114 => 0.12134795251309
1115 => 0.12353644766817
1116 => 0.1236152077127
1117 => 0.12241659128214
1118 => 0.1255064199555
1119 => 0.12547794664032
1120 => 0.12841127910536
1121 => 0.13401870906917
1122 => 0.132360316104
1123 => 0.13043178551815
1124 => 0.13064147026519
1125 => 0.1329411943941
1126 => 0.13155072868817
1127 => 0.13205074985069
1128 => 0.13294043755219
1129 => 0.1334772082322
1130 => 0.13056423722477
1201 => 0.12988508433942
1202 => 0.12849577588628
1203 => 0.12813333124353
1204 => 0.12926489398974
1205 => 0.12896676718481
1206 => 0.12360858823593
1207 => 0.12304862872314
1208 => 0.12306580188196
1209 => 0.12165775706244
1210 => 0.1195101507432
1211 => 0.12515393192327
1212 => 0.12470065730984
1213 => 0.12420027721728
1214 => 0.12426157092349
1215 => 0.12671134504827
1216 => 0.12529035233934
1217 => 0.12906829435215
1218 => 0.12829166304965
1219 => 0.12749511408474
1220 => 0.12738500675431
1221 => 0.12707840336118
1222 => 0.12602694624405
1223 => 0.12475724859234
1224 => 0.12391888422335
1225 => 0.11430862036861
1226 => 0.11609222943971
1227 => 0.11814410909494
1228 => 0.11885240972953
1229 => 0.11764081248115
1230 => 0.12607478748819
1231 => 0.12761575599378
]
'min_raw' => 0.053189034064986
'max_raw' => 0.1397279353702
'avg_raw' => 0.096458484717593
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.053189'
'max' => '$0.139727'
'avg' => '$0.096458'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.0020622587017483
'max_diff' => -0.025198519131373
'year' => 2027
]
2 => [
'items' => [
101 => 0.12294806187546
102 => 0.12207492688661
103 => 0.1261320300727
104 => 0.1236851008908
105 => 0.12478695295158
106 => 0.12240535147702
107 => 0.12724458180561
108 => 0.12720771497844
109 => 0.12532514508164
110 => 0.12691628026713
111 => 0.12663978137274
112 => 0.12451436459582
113 => 0.12731196130848
114 => 0.12731334888154
115 => 0.12550141628648
116 => 0.12338547569849
117 => 0.12300719549764
118 => 0.1227222121811
119 => 0.1247168645255
120 => 0.12650526358039
121 => 0.12983303083979
122 => 0.13066971059461
123 => 0.13393532737858
124 => 0.13199081158372
125 => 0.13285279024989
126 => 0.13378859002633
127 => 0.13423724685206
128 => 0.13350618463079
129 => 0.13857903167779
130 => 0.13900733539657
131 => 0.13915094192867
201 => 0.13744040644647
202 => 0.13895976231048
203 => 0.13824890601749
204 => 0.14009835661028
205 => 0.1403883740782
206 => 0.14014273960054
207 => 0.14023479572248
208 => 0.13590601567941
209 => 0.13568154559804
210 => 0.13262088011093
211 => 0.13386812392022
212 => 0.1315364614007
213 => 0.13227585560443
214 => 0.13260177352422
215 => 0.1324315324986
216 => 0.13393864121385
217 => 0.13265729092392
218 => 0.12927559683529
219 => 0.12589298140637
220 => 0.12585051542508
221 => 0.12495993249077
222 => 0.12431620414766
223 => 0.12444020906403
224 => 0.12487721856354
225 => 0.12429080436111
226 => 0.12441594556315
227 => 0.12649412332856
228 => 0.12691088705852
229 => 0.125494561064
301 => 0.11980780782111
302 => 0.11841226431117
303 => 0.11941535331128
304 => 0.11893594137643
305 => 0.095990587260412
306 => 0.10138125785672
307 => 0.098178304438271
308 => 0.099654372734294
309 => 0.096384986694822
310 => 0.097945309076062
311 => 0.097657174506097
312 => 0.10632521330343
313 => 0.1061898738001
314 => 0.10625465365834
315 => 0.10316254224183
316 => 0.1080883596883
317 => 0.11051499448909
318 => 0.11006588897026
319 => 0.11017891915375
320 => 0.10823668611445
321 => 0.10627345871967
322 => 0.10409593740033
323 => 0.10814150286189
324 => 0.10769170504267
325 => 0.10872337940782
326 => 0.11134721779264
327 => 0.1117335879618
328 => 0.11225287338732
329 => 0.11206674652753
330 => 0.11650104344989
331 => 0.11596402083416
401 => 0.11725809082612
402 => 0.11459609067133
403 => 0.11158378481681
404 => 0.11215632568005
405 => 0.11210118539084
406 => 0.11139918622208
407 => 0.11076545276102
408 => 0.10971046510165
409 => 0.11304860216468
410 => 0.11291307989608
411 => 0.11510702789738
412 => 0.11471922627728
413 => 0.11212939214706
414 => 0.11222188857968
415 => 0.1128439715413
416 => 0.11499700777429
417 => 0.11563617551812
418 => 0.11534008755275
419 => 0.11604090580475
420 => 0.11659480397647
421 => 0.11611046688715
422 => 0.12296765869535
423 => 0.12012007457484
424 => 0.12150796726181
425 => 0.12183897148972
426 => 0.12099111112021
427 => 0.12117498167475
428 => 0.12145349546316
429 => 0.12314457664776
430 => 0.12758246299445
501 => 0.12954797264769
502 => 0.13546130541598
503 => 0.1293847644322
504 => 0.12902420763745
505 => 0.13008937743456
506 => 0.13356112975939
507 => 0.13637465893356
508 => 0.13730806887702
509 => 0.13743143440997
510 => 0.13918257351582
511 => 0.14018629379448
512 => 0.13896993916884
513 => 0.13793920598124
514 => 0.13424724764258
515 => 0.13467460187315
516 => 0.13761864873497
517 => 0.14177728833078
518 => 0.1453458337367
519 => 0.14409625351191
520 => 0.15362966856088
521 => 0.15457486772248
522 => 0.15444427176029
523 => 0.1565975761149
524 => 0.1523237054838
525 => 0.15049654298666
526 => 0.13816206219572
527 => 0.14162754818104
528 => 0.14666483558156
529 => 0.14599813170525
530 => 0.14233991894791
531 => 0.14534305865428
601 => 0.14435012675049
602 => 0.14356696016119
603 => 0.14715479813109
604 => 0.14320982290293
605 => 0.14662548143591
606 => 0.1422448640369
607 => 0.14410196148912
608 => 0.14304778315754
609 => 0.14372996573331
610 => 0.13974194033464
611 => 0.14189378203592
612 => 0.13965241664527
613 => 0.13965135394624
614 => 0.13960187568102
615 => 0.14223883212338
616 => 0.14232482317829
617 => 0.14037610838317
618 => 0.14009526813654
619 => 0.14113368172264
620 => 0.13991797137427
621 => 0.14048679459468
622 => 0.13993520045015
623 => 0.13981102498986
624 => 0.13882157379559
625 => 0.13839529101557
626 => 0.13856244747757
627 => 0.13799185629771
628 => 0.13764805447265
629 => 0.13953348484465
630 => 0.13852617545493
701 => 0.13937910023382
702 => 0.13840708480059
703 => 0.13503765582204
704 => 0.13309986158542
705 => 0.12673532259117
706 => 0.12854029795476
707 => 0.12973699848819
708 => 0.12934148896903
709 => 0.13019119645806
710 => 0.13024336159684
711 => 0.12996711303042
712 => 0.12964725258013
713 => 0.12949156220232
714 => 0.13065195072377
715 => 0.13132559531735
716 => 0.12985710339651
717 => 0.12951305628584
718 => 0.13099778269547
719 => 0.13190346494764
720 => 0.13859051383879
721 => 0.13809511565805
722 => 0.13933846787472
723 => 0.13919848549592
724 => 0.14050171670053
725 => 0.14263194893348
726 => 0.1383005911816
727 => 0.13905236512025
728 => 0.13886804751149
729 => 0.14088037883325
730 => 0.14088666111199
731 => 0.13968016796118
801 => 0.14033422747135
802 => 0.13996914939596
803 => 0.14062889482145
804 => 0.13808849931332
805 => 0.14118242682348
806 => 0.14293648435345
807 => 0.14296083944396
808 => 0.1437922487921
809 => 0.1446370088418
810 => 0.14625845219411
811 => 0.14459178766675
812 => 0.14159362042855
813 => 0.14181007841913
814 => 0.14005225406436
815 => 0.14008180340934
816 => 0.13992406669001
817 => 0.14039744645858
818 => 0.13819237955206
819 => 0.1387099043476
820 => 0.13798536660323
821 => 0.13905079011669
822 => 0.13790457053702
823 => 0.13886795862795
824 => 0.13928372499118
825 => 0.14081791182229
826 => 0.13767796989466
827 => 0.13127541574883
828 => 0.13262131025375
829 => 0.13063062656324
830 => 0.13081487191787
831 => 0.13118707685664
901 => 0.1299806388722
902 => 0.1302107892204
903 => 0.13020256663042
904 => 0.13013170879217
905 => 0.12981786767757
906 => 0.12936273596984
907 => 0.13117584061131
908 => 0.13148392242056
909 => 0.13216875011926
910 => 0.13420633282752
911 => 0.13400273026546
912 => 0.13433481449157
913 => 0.13360987649053
914 => 0.13084849971256
915 => 0.13099845575699
916 => 0.12912850148008
917 => 0.13212093118417
918 => 0.1314122843321
919 => 0.13095541509655
920 => 0.13083075409277
921 => 0.13287338757445
922 => 0.13348457552653
923 => 0.13310372421009
924 => 0.13232258704887
925 => 0.13382260132088
926 => 0.13422394185955
927 => 0.13431378720529
928 => 0.13697152489609
929 => 0.13446232521842
930 => 0.13506631452014
1001 => 0.13977846663576
1002 => 0.13550519489943
1003 => 0.13776884224349
1004 => 0.13765804848545
1005 => 0.13881605386903
1006 => 0.13756305824436
1007 => 0.13757859062683
1008 => 0.13860682095736
1009 => 0.13716285690044
1010 => 0.13680531109344
1011 => 0.13631136412185
1012 => 0.13738987926362
1013 => 0.13803640031407
1014 => 0.14324688516328
1015 => 0.14661309600284
1016 => 0.14646695991255
1017 => 0.14780237022254
1018 => 0.14720075564693
1019 => 0.14525798348438
1020 => 0.14857405867003
1021 => 0.14752471373081
1022 => 0.14761122045265
1023 => 0.14760800066814
1024 => 0.14830572331739
1025 => 0.14781132287506
1026 => 0.14683680885404
1027 => 0.14748373673986
1028 => 0.14940488127977
1029 => 0.15536817287958
1030 => 0.15870530986194
1031 => 0.15516727304301
1101 => 0.15760776346451
1102 => 0.15614433884726
1103 => 0.1558783910612
1104 => 0.15741119939672
1105 => 0.15894669071033
1106 => 0.15884888655176
1107 => 0.15773419870643
1108 => 0.15710453982677
1109 => 0.16187252781481
1110 => 0.16538550014385
1111 => 0.16514593898228
1112 => 0.16620328404
1113 => 0.16930768183195
1114 => 0.16959150906046
1115 => 0.16955575335336
1116 => 0.16885225795318
1117 => 0.17190894073634
1118 => 0.17445887929127
1119 => 0.16868941909397
1120 => 0.17088635400933
1121 => 0.17187262887365
1122 => 0.17332077298904
1123 => 0.17576403484885
1124 => 0.17841806527179
1125 => 0.17879337427356
1126 => 0.17852707457662
1127 => 0.17677667016852
1128 => 0.17968074192648
1129 => 0.18138187905342
1130 => 0.18239486728269
1201 => 0.18496363688694
1202 => 0.17187871977144
1203 => 0.16261656507452
1204 => 0.16117014587145
1205 => 0.1641114961985
1206 => 0.16488710682292
1207 => 0.16457445915275
1208 => 0.15414906196309
1209 => 0.16111525831284
1210 => 0.16861029985074
1211 => 0.16889821492072
1212 => 0.17265038942852
1213 => 0.17387225125509
1214 => 0.17689324354263
1215 => 0.17670427965251
1216 => 0.17743984320004
1217 => 0.17727074987865
1218 => 0.18286650194633
1219 => 0.1890394474542
1220 => 0.18882569798003
1221 => 0.1879382640283
1222 => 0.1892562547766
1223 => 0.19562739607376
1224 => 0.19504084347858
1225 => 0.19561062936237
1226 => 0.20312256401352
1227 => 0.21288914762026
1228 => 0.20835158898597
1229 => 0.21819678557506
1230 => 0.22439381495644
1231 => 0.23511093648675
]
'min_raw' => 0.095990587260412
'max_raw' => 0.23511093648675
'avg_raw' => 0.16555076187358
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.09599'
'max' => '$0.23511'
'avg' => '$0.16555'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.042801553195425
'max_diff' => 0.095383001116555
'year' => 2028
]
3 => [
'items' => [
101 => 0.23376910008822
102 => 0.2379411968541
103 => 0.23136693288515
104 => 0.21627109393446
105 => 0.21388211963596
106 => 0.21866490668002
107 => 0.23042292193029
108 => 0.21829460493656
109 => 0.22074814766844
110 => 0.2200415271966
111 => 0.2200038743946
112 => 0.22144092870195
113 => 0.21935640647742
114 => 0.21086368793632
115 => 0.2147558507958
116 => 0.21325289979874
117 => 0.2149205359824
118 => 0.22392008068011
119 => 0.2199411674469
120 => 0.21574970557638
121 => 0.22100672892187
122 => 0.22770072614988
123 => 0.22728182783362
124 => 0.22646899001416
125 => 0.23105091424363
126 => 0.23861891069288
127 => 0.24066450972244
128 => 0.24217452910563
129 => 0.24238273526659
130 => 0.24452738812383
131 => 0.2329950491883
201 => 0.25129716725046
202 => 0.25445743745399
203 => 0.2538634376355
204 => 0.25737594496222
205 => 0.25634247620299
206 => 0.25484514211715
207 => 0.26041321336173
208 => 0.25402986899999
209 => 0.24496951531922
210 => 0.23999882609647
211 => 0.24654463063905
212 => 0.2505419250561
213 => 0.2531838823901
214 => 0.25398333708306
215 => 0.23389027183151
216 => 0.22306122407341
217 => 0.23000251953107
218 => 0.23847137905203
219 => 0.23294800424606
220 => 0.23316451008132
221 => 0.22528962912538
222 => 0.23916813127927
223 => 0.23714615025203
224 => 0.2476361913982
225 => 0.24513265889083
226 => 0.25368688022448
227 => 0.25143426706416
228 => 0.26078473835077
301 => 0.2645148945009
302 => 0.27077840722942
303 => 0.27538587268961
304 => 0.2780914645346
305 => 0.27792903094864
306 => 0.288649933759
307 => 0.28232819193155
308 => 0.27438659427612
309 => 0.27424295582995
310 => 0.27835602178901
311 => 0.28697587967465
312 => 0.28921088341056
313 => 0.29045994559412
314 => 0.28854696337983
315 => 0.28168516570945
316 => 0.27872227626549
317 => 0.28124674391492
318 => 0.27815953690964
319 => 0.28348892231804
320 => 0.29080730677908
321 => 0.2892960893279
322 => 0.2943478626928
323 => 0.2995759166634
324 => 0.30705226864797
325 => 0.30900686390525
326 => 0.31223773553893
327 => 0.31556336373603
328 => 0.31663146588475
329 => 0.31867080429928
330 => 0.31866005597919
331 => 0.32480573955468
401 => 0.33158461885443
402 => 0.33414348885867
403 => 0.3400274693365
404 => 0.32995135896748
405 => 0.3375942044284
406 => 0.34448824234697
407 => 0.33626888613262
408 => 0.34759735380972
409 => 0.34803721253876
410 => 0.35467855712296
411 => 0.3479462820592
412 => 0.34394867861653
413 => 0.35548960996728
414 => 0.36107390311198
415 => 0.35939186857031
416 => 0.34659150265593
417 => 0.33914114066024
418 => 0.31964210625002
419 => 0.34273955480453
420 => 0.35398964823362
421 => 0.34656236763177
422 => 0.35030825594823
423 => 0.37074460799447
424 => 0.37852544769787
425 => 0.37690708743174
426 => 0.37718056367623
427 => 0.38137896354796
428 => 0.39999698068023
429 => 0.38884063325231
430 => 0.39736924284059
501 => 0.40189278661402
502 => 0.40609450617062
503 => 0.39577641090672
504 => 0.38235272057131
505 => 0.3781008743539
506 => 0.34582387095162
507 => 0.34414371275261
508 => 0.3432005890415
509 => 0.33725432745047
510 => 0.33258219465804
511 => 0.32886674119633
512 => 0.31911628178448
513 => 0.32240677560824
514 => 0.3068665783848
515 => 0.31680864585759
516 => 0.29200611585779
517 => 0.31266239985278
518 => 0.30142012360029
519 => 0.30896900974379
520 => 0.30894267239118
521 => 0.29504277962447
522 => 0.28702561156
523 => 0.29213446308353
524 => 0.2976115574579
525 => 0.29850019759298
526 => 0.30560139341613
527 => 0.30758318453068
528 => 0.30157826493262
529 => 0.29149213855243
530 => 0.2938349156705
531 => 0.28697813525648
601 => 0.27496189132315
602 => 0.28359216749956
603 => 0.28653892323264
604 => 0.28784037843734
605 => 0.27602378260385
606 => 0.2723107516422
607 => 0.27033396511356
608 => 0.28996676441678
609 => 0.29104229348115
610 => 0.28553973472335
611 => 0.31041182208263
612 => 0.30478250269585
613 => 0.31107183166762
614 => 0.29362233320286
615 => 0.29428892754308
616 => 0.28602805532925
617 => 0.29065359177731
618 => 0.28738441170382
619 => 0.29027989414275
620 => 0.29201543437813
621 => 0.30027495106412
622 => 0.31275671026589
623 => 0.29904125470184
624 => 0.29306523430364
625 => 0.29677272374827
626 => 0.30664625670656
627 => 0.32160516455522
628 => 0.31274919003273
629 => 0.31667932114161
630 => 0.31753787994954
701 => 0.31100781220266
702 => 0.32184593746744
703 => 0.3276541768456
704 => 0.33361222860181
705 => 0.33878543800091
706 => 0.33123245171002
707 => 0.33931522971933
708 => 0.33280193744621
709 => 0.32695884094545
710 => 0.32696770251091
711 => 0.32330224272197
712 => 0.31619995250322
713 => 0.3148901812182
714 => 0.32170377684875
715 => 0.32716763529453
716 => 0.32761766484624
717 => 0.33064273762501
718 => 0.33243294453476
719 => 0.34997940591858
720 => 0.35703673783909
721 => 0.36566630972304
722 => 0.36902801430786
723 => 0.37914553987037
724 => 0.37097481627339
725 => 0.36920702882692
726 => 0.34466522122966
727 => 0.34868394084886
728 => 0.35511829870795
729 => 0.34477132142084
730 => 0.35133409696364
731 => 0.35262972787438
801 => 0.34441973509194
802 => 0.34880504696989
803 => 0.33715895877642
804 => 0.31301056316342
805 => 0.32187282153494
806 => 0.32839842670029
807 => 0.31908558352802
808 => 0.33577849445751
809 => 0.32602684050413
810 => 0.32293603436285
811 => 0.31087769765376
812 => 0.3165687684125
813 => 0.32426602310199
814 => 0.31951001460579
815 => 0.32937944635367
816 => 0.34335719378998
817 => 0.35331856900234
818 => 0.35408327970026
819 => 0.34767878279902
820 => 0.35794202995621
821 => 0.35801678650711
822 => 0.3464398017872
823 => 0.33934896310717
824 => 0.33773790963982
825 => 0.34176263706691
826 => 0.34664939916906
827 => 0.35435446098679
828 => 0.35901046847196
829 => 0.37115086663773
830 => 0.3744357102889
831 => 0.37804475755916
901 => 0.38286755770119
902 => 0.38865856581227
903 => 0.3759881697475
904 => 0.37649158820372
905 => 0.36469309082178
906 => 0.35208470429351
907 => 0.3616528980109
908 => 0.37416203849293
909 => 0.37129242784498
910 => 0.37096953802626
911 => 0.37151254913918
912 => 0.36934895642335
913 => 0.35956310675613
914 => 0.35464871431592
915 => 0.36098953435902
916 => 0.3643593980145
917 => 0.36958576266115
918 => 0.36894150290327
919 => 0.38240405696246
920 => 0.38763519838336
921 => 0.38629684855473
922 => 0.38654313713238
923 => 0.39601386880303
924 => 0.40654727022532
925 => 0.41641319066203
926 => 0.4264492286814
927 => 0.41435039313582
928 => 0.40820735059821
929 => 0.41454540243765
930 => 0.4111823429171
1001 => 0.43050748047038
1002 => 0.43184551106542
1003 => 0.45116925119129
1004 => 0.46950978159892
1005 => 0.45799042305462
1006 => 0.46885265931859
1007 => 0.48060105344919
1008 => 0.50326561183536
1009 => 0.49563298591968
1010 => 0.48978651408676
1011 => 0.4842616264546
1012 => 0.49575804056591
1013 => 0.51054799366042
1014 => 0.51373360790057
1015 => 0.51889551996791
1016 => 0.51346840059768
1017 => 0.52000476810153
1018 => 0.54308101761555
1019 => 0.53684561129718
1020 => 0.5279903319335
1021 => 0.54620681465825
1022 => 0.55279928894156
1023 => 0.59906872596739
1024 => 0.65748580150762
1025 => 0.63330074864676
1026 => 0.61828830588926
1027 => 0.62181658603717
1028 => 0.64314852448166
1029 => 0.64999966606815
1030 => 0.63137590150595
1031 => 0.63795412999588
1101 => 0.67420081573255
1102 => 0.69364599969737
1103 => 0.66723682803652
1104 => 0.59437497082718
1105 => 0.52719301091451
1106 => 0.54501269192643
1107 => 0.54299249310876
1108 => 0.58193503506668
1109 => 0.53669689891867
1110 => 0.53745859311173
1111 => 0.57720642559648
1112 => 0.56660238533991
1113 => 0.54942519818713
1114 => 0.52731842339013
1115 => 0.48645200554871
1116 => 0.45025547962219
1117 => 0.52124520252617
1118 => 0.51818399658812
1119 => 0.51375091674451
1120 => 0.52361625622712
1121 => 0.57151954442917
1122 => 0.5704152185883
1123 => 0.56339006102068
1124 => 0.56871858111882
1125 => 0.54849108285091
1126 => 0.55370416972613
1127 => 0.52718236894881
1128 => 0.5391713305484
1129 => 0.54938834365817
1130 => 0.55143956030542
1201 => 0.5560610561494
1202 => 0.51657088016104
1203 => 0.53430080980916
1204 => 0.54471548240768
1205 => 0.49766161271852
1206 => 0.54378537869365
1207 => 0.51588344405479
1208 => 0.50641310836537
1209 => 0.51916366774932
1210 => 0.51419476235707
1211 => 0.50992278928472
1212 => 0.50753895490854
1213 => 0.51690155849223
1214 => 0.51646478184432
1215 => 0.50114574517836
1216 => 0.48116268633142
1217 => 0.487869656802
1218 => 0.48543295155185
1219 => 0.4766020173841
1220 => 0.48255300076211
1221 => 0.45634788168911
1222 => 0.41126333634759
1223 => 0.44104756797717
1224 => 0.43990090745844
1225 => 0.43932270922799
1226 => 0.46170473612192
1227 => 0.45955322067728
1228 => 0.45564819907757
1229 => 0.47653029860006
1230 => 0.46890805137048
1231 => 0.49239802130474
]
'min_raw' => 0.21086368793632
'max_raw' => 0.69364599969737
'avg_raw' => 0.45225484381685
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.210863'
'max' => '$0.693645'
'avg' => '$0.452254'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.11487310067591
'max_diff' => 0.45853506321062
'year' => 2029
]
4 => [
'items' => [
101 => 0.50787003473945
102 => 0.50394583166521
103 => 0.51849733508328
104 => 0.48802417185546
105 => 0.49814613430864
106 => 0.50023225674181
107 => 0.4762726167334
108 => 0.45990523521226
109 => 0.45881371746661
110 => 0.43043493347308
111 => 0.44559465081688
112 => 0.45893457472771
113 => 0.45254578639434
114 => 0.45052328686761
115 => 0.46085579832301
116 => 0.46165872295507
117 => 0.44335195625395
118 => 0.44715851275102
119 => 0.46303248613115
120 => 0.44675852935026
121 => 0.41514088966074
122 => 0.40729927786967
123 => 0.40625306230716
124 => 0.3849859892037
125 => 0.40782329186567
126 => 0.39785419725206
127 => 0.42934644768837
128 => 0.41135824313547
129 => 0.41058280758977
130 => 0.40941062303077
131 => 0.3911051746789
201 => 0.39511290449603
202 => 0.40843520880264
203 => 0.41318875706575
204 => 0.41269292303723
205 => 0.40836992224358
206 => 0.41034896986957
207 => 0.40397376792037
208 => 0.40172255142375
209 => 0.39461709291455
210 => 0.38417403183903
211 => 0.38562620353259
212 => 0.36493576696642
213 => 0.35366251900058
214 => 0.35054223254266
215 => 0.34636965508538
216 => 0.35101353626926
217 => 0.36487715355924
218 => 0.34815468977705
219 => 0.31948519856692
220 => 0.32120828383909
221 => 0.32507954485703
222 => 0.31786547556105
223 => 0.31103796440334
224 => 0.31697393142148
225 => 0.30482629005252
226 => 0.32654752928043
227 => 0.32596003063238
228 => 0.33405636538412
301 => 0.3391191696579
302 => 0.32745104490919
303 => 0.32451654308885
304 => 0.32618816869139
305 => 0.29855992107353
306 => 0.33179854812282
307 => 0.3320859971498
308 => 0.32962468406538
309 => 0.34732322684165
310 => 0.3846726724135
311 => 0.3706203086114
312 => 0.36517880861229
313 => 0.35483451313625
314 => 0.36861767267458
315 => 0.36755934107282
316 => 0.36277316420932
317 => 0.35987846950849
318 => 0.36521203325095
319 => 0.35921758193687
320 => 0.35814081376435
321 => 0.35161677017424
322 => 0.34928798343764
323 => 0.34756384244953
324 => 0.34566573263221
325 => 0.34985248990971
326 => 0.34036474710512
327 => 0.32892345937767
328 => 0.32797224009958
329 => 0.33059864015844
330 => 0.32943665364488
331 => 0.3279666769552
401 => 0.32516009113028
402 => 0.32432743706924
403 => 0.32703315882129
404 => 0.3239785567166
405 => 0.32848578851486
406 => 0.32726007086224
407 => 0.32041331169285
408 => 0.31187971477289
409 => 0.31180374786047
410 => 0.30996519840197
411 => 0.3076235292388
412 => 0.30697213044774
413 => 0.31647402083597
414 => 0.33614264957194
415 => 0.33228122712067
416 => 0.3350715005762
417 => 0.34879688434227
418 => 0.35315977110482
419 => 0.3500630974214
420 => 0.34582417948902
421 => 0.34601067036518
422 => 0.36049633614783
423 => 0.36139978935421
424 => 0.36368252414169
425 => 0.36661648344438
426 => 0.35056276337745
427 => 0.34525454159371
428 => 0.34273921162364
429 => 0.33499296887104
430 => 0.34334662756706
501 => 0.33847930838422
502 => 0.33913607603329
503 => 0.33870835524024
504 => 0.3389419197156
505 => 0.32654145775138
506 => 0.33105953434205
507 => 0.3235473557147
508 => 0.3134893918143
509 => 0.31345567399253
510 => 0.31591734640805
511 => 0.31445304733005
512 => 0.31051265616172
513 => 0.31107237012906
514 => 0.30616868681646
515 => 0.31166776606726
516 => 0.31182545998353
517 => 0.3097080149351
518 => 0.31818010524766
519 => 0.32165112756128
520 => 0.32025737987034
521 => 0.32155333850784
522 => 0.3324416866568
523 => 0.33421696249701
524 => 0.3350054227571
525 => 0.33394899045955
526 => 0.32175235752398
527 => 0.32229333005876
528 => 0.31832403253946
529 => 0.31497039440992
530 => 0.31510452234758
531 => 0.31682872828861
601 => 0.32435843675641
602 => 0.34020426432633
603 => 0.34080560189946
604 => 0.34153444058035
605 => 0.33856988738021
606 => 0.33767574976809
607 => 0.33885534807497
608 => 0.34480620777621
609 => 0.36011343457042
610 => 0.35470283828604
611 => 0.35030393928589
612 => 0.35416295964368
613 => 0.3535688937076
614 => 0.34855437936026
615 => 0.34841363864389
616 => 0.33878918237413
617 => 0.33523124002947
618 => 0.3322579570989
619 => 0.32901120975823
620 => 0.32708642910273
621 => 0.33004376698674
622 => 0.33072014515101
623 => 0.32425387418219
624 => 0.32337254534283
625 => 0.32865304180012
626 => 0.32632929218602
627 => 0.32871932629034
628 => 0.32927383470388
629 => 0.32918454607789
630 => 0.32675828459982
701 => 0.32830471131378
702 => 0.32464695112327
703 => 0.3206696862939
704 => 0.31813243912512
705 => 0.31591835445336
706 => 0.31714685731261
707 => 0.31276746893515
708 => 0.31136641445353
709 => 0.32778081673879
710 => 0.33990631219148
711 => 0.33973000268538
712 => 0.33865676391008
713 => 0.33706214878853
714 => 0.34468955174782
715 => 0.34203231707154
716 => 0.34396567731792
717 => 0.3444577986435
718 => 0.34594730167856
719 => 0.34647967098648
720 => 0.34487048118368
721 => 0.3394698436595
722 => 0.32601196842644
723 => 0.31974729117661
724 => 0.31767984333771
725 => 0.31775499114001
726 => 0.31568207927798
727 => 0.31629264472274
728 => 0.31546974953329
729 => 0.31391138512422
730 => 0.31705063270171
731 => 0.3174124017409
801 => 0.3166796638451
802 => 0.31685225014506
803 => 0.31078549332427
804 => 0.31124673566905
805 => 0.30867847968146
806 => 0.30819696264458
807 => 0.30170463515159
808 => 0.29020253591985
809 => 0.29657581543002
810 => 0.28887779000045
811 => 0.28596243112615
812 => 0.29976328660576
813 => 0.29837806349175
814 => 0.29600716366258
815 => 0.29250010867643
816 => 0.29119930786762
817 => 0.28329605393682
818 => 0.28282908753237
819 => 0.28674615358628
820 => 0.28493856238042
821 => 0.28240001973906
822 => 0.27320567562
823 => 0.26286818868745
824 => 0.26318021243882
825 => 0.26646837469628
826 => 0.27602914992894
827 => 0.27229358964245
828 => 0.26958339779398
829 => 0.26907586032883
830 => 0.27542875430684
831 => 0.28441943025815
901 => 0.28863765425947
902 => 0.28445752238353
903 => 0.27965561195873
904 => 0.27994788199638
905 => 0.28189222361756
906 => 0.28209654643044
907 => 0.27897099638826
908 => 0.27985082041712
909 => 0.27851428726449
910 => 0.27031198577384
911 => 0.27016363214966
912 => 0.26815065508387
913 => 0.26808970293833
914 => 0.26466512678877
915 => 0.26418600491247
916 => 0.2573863011106
917 => 0.26186188674439
918 => 0.25885989888004
919 => 0.25433519507111
920 => 0.25355513442898
921 => 0.25353168486413
922 => 0.25817754397064
923 => 0.26180759717578
924 => 0.2589121197442
925 => 0.2582528756595
926 => 0.26529187776091
927 => 0.26439610058158
928 => 0.26362036332142
929 => 0.28361441383731
930 => 0.26778756269877
1001 => 0.26088615223728
1002 => 0.25234434624889
1003 => 0.25512560135024
1004 => 0.25571165266523
1005 => 0.23517014903941
1006 => 0.22683646357669
1007 => 0.2239766567742
1008 => 0.22233079752764
1009 => 0.2230808362537
1010 => 0.21557954189344
1011 => 0.22062053576349
1012 => 0.21412504891614
1013 => 0.21303605940804
1014 => 0.22465079452751
1015 => 0.22626691706709
1016 => 0.21937203622334
1017 => 0.22379966590484
1018 => 0.22219414583367
1019 => 0.21423639539496
1020 => 0.21393246786145
1021 => 0.20993954841976
1022 => 0.20369140267506
1023 => 0.20083583240961
1024 => 0.19934862662216
1025 => 0.19996227671512
1026 => 0.19965199645012
1027 => 0.1976272078393
1028 => 0.19976805496316
1029 => 0.19429907522081
1030 => 0.19212128342084
1031 => 0.19113762538918
1101 => 0.18628359108512
1102 => 0.19400851826174
1103 => 0.1955304262316
1104 => 0.1970553328303
1105 => 0.21032860367407
1106 => 0.20966550857259
1107 => 0.21565956534956
1108 => 0.21542664732557
1109 => 0.21371704523549
1110 => 0.20650451523336
1111 => 0.20937930114123
1112 => 0.20053115695775
1113 => 0.20716078819533
1114 => 0.20413530135852
1115 => 0.20613786805244
1116 => 0.20253707257261
1117 => 0.20452990146435
1118 => 0.19589132707032
1119 => 0.18782474784919
1120 => 0.1910709748059
1121 => 0.19459999475892
1122 => 0.20225180919464
1123 => 0.19769445164283
1124 => 0.19933344975123
1125 => 0.19384308045305
1126 => 0.18251488034447
1127 => 0.18257899672684
1128 => 0.18083639993839
1129 => 0.17933054188987
1130 => 0.19821791897995
1201 => 0.19586897507355
1202 => 0.19212624038089
1203 => 0.19713603949739
1204 => 0.19846070989999
1205 => 0.19849842140409
1206 => 0.20215344151786
1207 => 0.20410412640777
1208 => 0.20444794307437
1209 => 0.21019919619532
1210 => 0.2121269403806
1211 => 0.2200670458552
1212 => 0.20393862442354
1213 => 0.20360647019776
1214 => 0.19720653764477
1215 => 0.19314759924074
1216 => 0.19748445662987
1217 => 0.20132632023657
1218 => 0.19732591505618
1219 => 0.19784828351958
1220 => 0.19247806641003
1221 => 0.19439766633449
1222 => 0.19605108438748
1223 => 0.19513816412204
1224 => 0.19377147829884
1225 => 0.20101133123285
1226 => 0.2006028303571
1227 => 0.20734474785276
1228 => 0.21260055465977
1229 => 0.22201990004577
1230 => 0.21219032209389
1231 => 0.21183209320429
]
'min_raw' => 0.17933054188987
'max_raw' => 0.51849733508328
'avg_raw' => 0.34891393848658
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.17933'
'max' => '$0.518497'
'avg' => '$0.348913'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.031533146046448
'max_diff' => -0.17514866461409
'year' => 2030
]
5 => [
'items' => [
101 => 0.21533383806186
102 => 0.21212640428171
103 => 0.21415339171391
104 => 0.22169332103334
105 => 0.22185262785859
106 => 0.21918403328033
107 => 0.21902164905772
108 => 0.2195341818377
109 => 0.22253610233872
110 => 0.22148713907597
111 => 0.22270102592013
112 => 0.22421901000645
113 => 0.23049803579938
114 => 0.23201188766052
115 => 0.22833401248016
116 => 0.22866608342952
117 => 0.22729045715214
118 => 0.22596161940473
119 => 0.22894865259973
120 => 0.23440751447389
121 => 0.23437355517749
122 => 0.23563990502718
123 => 0.23642883049253
124 => 0.23304218486651
125 => 0.23083760309438
126 => 0.231682980027
127 => 0.23303475615217
128 => 0.23124461724839
129 => 0.22019505066128
130 => 0.22354678331476
131 => 0.22298889110987
201 => 0.22219438476809
202 => 0.22556457786935
203 => 0.22523951452309
204 => 0.21550260527758
205 => 0.21612593061616
206 => 0.21554051175594
207 => 0.21743211985873
208 => 0.21202425123643
209 => 0.2136876752021
210 => 0.21473095911973
211 => 0.21534546136211
212 => 0.21756546482969
213 => 0.21730497304595
214 => 0.21754927229466
215 => 0.2208409513779
216 => 0.23748913461306
217 => 0.23839525849441
218 => 0.23393317310343
219 => 0.23571568820638
220 => 0.23229364900191
221 => 0.23459088684554
222 => 0.23616259863464
223 => 0.22906033528251
224 => 0.2286397853401
225 => 0.22520362216255
226 => 0.22705002161994
227 => 0.22411226732242
228 => 0.22483308946874
301 => 0.22281760790746
302 => 0.22644507343939
303 => 0.23050114355524
304 => 0.23152586704557
305 => 0.22883026071372
306 => 0.22687846408035
307 => 0.22345175215393
308 => 0.22915045045682
309 => 0.23081692350527
310 => 0.22914169718334
311 => 0.22875351064013
312 => 0.22801789784218
313 => 0.22890957437268
314 => 0.23080784753516
315 => 0.22991265696733
316 => 0.23050394610861
317 => 0.22825056163678
318 => 0.23304330598713
319 => 0.24065533745222
320 => 0.24067981137808
321 => 0.23978461598484
322 => 0.23941832131718
323 => 0.24033684611564
324 => 0.24083510813895
325 => 0.24380544890852
326 => 0.24699274289787
327 => 0.26186645322084
328 => 0.25768997488026
329 => 0.27088681551979
330 => 0.28132380307036
331 => 0.28445339928263
401 => 0.28157431802622
402 => 0.27172513657298
403 => 0.27124188874288
404 => 0.28596072405118
405 => 0.28180197891122
406 => 0.28130730940984
407 => 0.27604486167246
408 => 0.27915562005208
409 => 0.27847525156239
410 => 0.27740125661664
411 => 0.28333636690765
412 => 0.29444636354148
413 => 0.29271476637721
414 => 0.29142220942056
415 => 0.28575860109421
416 => 0.28916935831939
417 => 0.28795485300025
418 => 0.29317313859538
419 => 0.290081941808
420 => 0.28177047232655
421 => 0.28309410123643
422 => 0.28289403738947
423 => 0.28701133718317
424 => 0.28577542598277
425 => 0.28265270589193
426 => 0.29440839078079
427 => 0.29364504199267
428 => 0.2947272960484
429 => 0.29520373775356
430 => 0.30235921598701
501 => 0.30529058646949
502 => 0.30595605888987
503 => 0.3087406341279
504 => 0.30588677612126
505 => 0.31730424291409
506 => 0.32489619210366
507 => 0.33371463176548
508 => 0.34660074228453
509 => 0.35144603904288
510 => 0.35057077955205
511 => 0.36034088148045
512 => 0.37789753746861
513 => 0.35411948169126
514 => 0.37915783216244
515 => 0.37123097948492
516 => 0.35243655438452
517 => 0.35122641497977
518 => 0.36395421786553
519 => 0.3921832596605
520 => 0.385112204862
521 => 0.39219482537301
522 => 0.38393257233138
523 => 0.38352228182812
524 => 0.39179354618447
525 => 0.41111980619624
526 => 0.40193862449867
527 => 0.3887751492171
528 => 0.39849485451865
529 => 0.39007474627019
530 => 0.37110188574649
531 => 0.38510679775966
601 => 0.37574211193338
602 => 0.37847522511157
603 => 0.39815840182651
604 => 0.39579006992894
605 => 0.39885491070603
606 => 0.39344554695532
607 => 0.3883923482338
608 => 0.37896017756462
609 => 0.37616777682986
610 => 0.3769394959329
611 => 0.3761673944042
612 => 0.37089018160092
613 => 0.36975056799849
614 => 0.36785116206684
615 => 0.3684398673881
616 => 0.36486842854578
617 => 0.37160847153815
618 => 0.37285948291059
619 => 0.37776432412749
620 => 0.37827356101382
621 => 0.39193347398684
622 => 0.38440982346681
623 => 0.38945733779638
624 => 0.3890058406057
625 => 0.35284388656613
626 => 0.35782668477316
627 => 0.36557835509508
628 => 0.3620862381222
629 => 0.35714920175206
630 => 0.35316228017603
701 => 0.34712168630469
702 => 0.35562370617928
703 => 0.36680295822534
704 => 0.37855708529428
705 => 0.39267889880669
706 => 0.38952707442675
707 => 0.37829308781359
708 => 0.37879703624663
709 => 0.38191224716324
710 => 0.37787776597947
711 => 0.37668791871594
712 => 0.38174878042058
713 => 0.38178363179374
714 => 0.37714147360847
715 => 0.37198256429152
716 => 0.37196094827311
717 => 0.37104297018931
718 => 0.38409587859319
719 => 0.39127365841742
720 => 0.3920965793067
721 => 0.39121826928488
722 => 0.3915562959534
723 => 0.38737970402527
724 => 0.39692615464313
725 => 0.40568692177619
726 => 0.40333884903804
727 => 0.39981875420534
728 => 0.39701482912036
729 => 0.40267833339804
730 => 0.40242614646774
731 => 0.40561040411801
801 => 0.40546594779783
802 => 0.40439520171603
803 => 0.40333888727775
804 => 0.40752705462515
805 => 0.40632092968901
806 => 0.4051129313077
807 => 0.40269010561869
808 => 0.4030194078687
809 => 0.39949992083001
810 => 0.39787164508514
811 => 0.37338628466208
812 => 0.36684299627481
813 => 0.36890164800236
814 => 0.36957940960394
815 => 0.36673176211235
816 => 0.37081455711467
817 => 0.37017825783831
818 => 0.37265372610001
819 => 0.37110716100244
820 => 0.37117063257351
821 => 0.37571875076302
822 => 0.37703908882251
823 => 0.37636755422902
824 => 0.37683787403945
825 => 0.38767619556108
826 => 0.38613533283072
827 => 0.38531678021574
828 => 0.38554352488418
829 => 0.38831294840919
830 => 0.38908823579128
831 => 0.3858032886749
901 => 0.38735248872504
902 => 0.39394878591575
903 => 0.39625711661441
904 => 0.40362420014294
905 => 0.40049453212055
906 => 0.40623917322451
907 => 0.42389624148559
908 => 0.43800192938873
909 => 0.42502975585079
910 => 0.45093305533639
911 => 0.47110248959355
912 => 0.47032835311281
913 => 0.46681134572265
914 => 0.44384898105303
915 => 0.42271867073448
916 => 0.44039507255631
917 => 0.44044013333974
918 => 0.43892171474682
919 => 0.42949094727441
920 => 0.43859354448116
921 => 0.43931607559165
922 => 0.4389116503063
923 => 0.43168110299681
924 => 0.42064139368372
925 => 0.42279852645817
926 => 0.42633195394703
927 => 0.41964243856042
928 => 0.41750473306237
929 => 0.42147913429836
930 => 0.4342854831801
1001 => 0.43186451710613
1002 => 0.43180129589805
1003 => 0.44215921541186
1004 => 0.43474518041891
1005 => 0.42282573481055
1006 => 0.41981591759626
1007 => 0.40913309414138
1008 => 0.41651175835258
1009 => 0.41677730334156
1010 => 0.4127360843612
1011 => 0.42315365745837
1012 => 0.42305765768831
1013 => 0.43294759289294
1014 => 0.45185343451417
1015 => 0.44626204684681
1016 => 0.43975987133092
1017 => 0.44046683809526
1018 => 0.44822051855751
1019 => 0.44353246635073
1020 => 0.44521832261055
1021 => 0.44821796681215
1022 => 0.45002772663595
1023 => 0.44020644150724
1024 => 0.43791663013737
1025 => 0.43323247968918
1026 => 0.43201047227106
1027 => 0.4358256150731
1028 => 0.43482045973575
1029 => 0.41675498531347
1030 => 0.414867042721
1031 => 0.41492494322495
1101 => 0.41017762180938
1102 => 0.40293681716296
1103 => 0.42196521944778
1104 => 0.42043697244199
1105 => 0.41874990602452
1106 => 0.41895656203439
1107 => 0.42721614653384
1108 => 0.42242517040515
1109 => 0.43516276566883
1110 => 0.43254429900978
1111 => 0.4298586785613
1112 => 0.42948744400932
1113 => 0.42845370926303
1114 => 0.42490864818223
1115 => 0.42062777390202
1116 => 0.41780116989924
1117 => 0.38539949434577
1118 => 0.39141305685662
1119 => 0.39833111237188
1120 => 0.40071919741338
1121 => 0.39663421269944
1122 => 0.42506994827701
1123 => 0.4302654311806
1124 => 0.41452797457267
1125 => 0.41158413899744
1126 => 0.42526294564723
1127 => 0.4170129530713
1128 => 0.42072792422309
1129 => 0.4126981885735
1130 => 0.42901399149062
1201 => 0.42888969240884
1202 => 0.42254247656496
1203 => 0.42790709993235
1204 => 0.42697486460537
1205 => 0.41980887355013
1206 => 0.42924116618882
1207 => 0.42924584448829
1208 => 0.42313678723893
1209 => 0.41600274581627
1210 => 0.41472734770843
1211 => 0.4137665065598
1212 => 0.42049161620116
1213 => 0.42652132847672
1214 => 0.43774112812911
1215 => 0.44056205233759
1216 => 0.45157230732282
1217 => 0.4450162365587
1218 => 0.4479224578131
1219 => 0.45107757209486
1220 => 0.45259024990701
1221 => 0.45012542258687
1222 => 0.46722888058069
1223 => 0.46867293647178
1224 => 0.46915711592103
1225 => 0.46338992611704
1226 => 0.46851254049056
1227 => 0.46611583886835
1228 => 0.47235139066647
1229 => 0.47332920480794
1230 => 0.47250103101686
1231 => 0.47281140465911
]
'min_raw' => 0.21202425123643
'max_raw' => 0.47332920480794
'avg_raw' => 0.34267672802218
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.212024'
'max' => '$0.473329'
'avg' => '$0.342676'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.032693709346556
'max_diff' => -0.045168130275346
'year' => 2031
]
6 => [
'items' => [
101 => 0.45821662051813
102 => 0.4574598039668
103 => 0.44714055658816
104 => 0.45134572617098
105 => 0.44348436319493
106 => 0.44597728237564
107 => 0.4470761373971
108 => 0.44650215789336
109 => 0.45158348014981
110 => 0.44726331818628
111 => 0.43586170046413
112 => 0.42445697637886
113 => 0.42431379935806
114 => 0.42131113681651
115 => 0.41914076176404
116 => 0.41955885299734
117 => 0.42103226103597
118 => 0.41905512461033
119 => 0.4194770469101
120 => 0.4264837683399
121 => 0.42788891635299
122 => 0.42311367437773
123 => 0.4039403887829
124 => 0.39923521640539
125 => 0.40261720100272
126 => 0.4010008301929
127 => 0.32363896679726
128 => 0.34181398907733
129 => 0.33101500800395
130 => 0.33599167531979
131 => 0.32496871202647
201 => 0.33022944787305
202 => 0.3292579820535
203 => 0.35848288004184
204 => 0.35802657345728
205 => 0.3582449832721
206 => 0.34781971374702
207 => 0.36442745117738
208 => 0.3726090198305
209 => 0.37109482921821
210 => 0.37147591837337
211 => 0.36492754407897
212 => 0.35830838584931
213 => 0.35096672069146
214 => 0.3646066270975
215 => 0.36309010234612
216 => 0.36656846449741
217 => 0.37541491880238
218 => 0.37671759280319
219 => 0.37846839987071
220 => 0.37784086016794
221 => 0.39279140183441
222 => 0.39098079259175
223 => 0.39534383991873
224 => 0.38636872054193
225 => 0.37621252104094
226 => 0.3781428825349
227 => 0.37795697320005
228 => 0.37559013399054
229 => 0.37345345738072
301 => 0.36989649283029
302 => 0.38115125499958
303 => 0.38069433220911
304 => 0.38809138107208
305 => 0.38678388083445
306 => 0.37805207424798
307 => 0.37836393242845
308 => 0.380461328566
309 => 0.3877204405457
310 => 0.38987543921931
311 => 0.38887715797184
312 => 0.39124001563803
313 => 0.39310752199591
314 => 0.39147454568395
315 => 0.41459404661913
316 => 0.40499321794486
317 => 0.40967259503857
318 => 0.41078859890292
319 => 0.4079299784714
320 => 0.40854991088348
321 => 0.4094889395663
322 => 0.41519053784772
323 => 0.43015318150891
324 => 0.43678003453229
325 => 0.45671724881631
326 => 0.43622976663895
327 => 0.43501412423217
328 => 0.43860541857092
329 => 0.4503106739241
330 => 0.45979668396912
331 => 0.4629437407621
401 => 0.46335967626954
402 => 0.46926376402556
403 => 0.47264787702259
404 => 0.46854685247905
405 => 0.46507166357358
406 => 0.45262396827048
407 => 0.45406482289576
408 => 0.46399088243718
409 => 0.47801202618141
410 => 0.49004362616533
411 => 0.48583057919456
412 => 0.51797315363394
413 => 0.52115995859896
414 => 0.52071964519453
415 => 0.52797966116502
416 => 0.51357000794015
417 => 0.50740960201263
418 => 0.46582303886001
419 => 0.47750716681203
420 => 0.49449073297506
421 => 0.49224289430828
422 => 0.47990897458866
423 => 0.49003426978122
424 => 0.4866865305433
425 => 0.48404602970853
426 => 0.49614267591889
427 => 0.48284191650776
428 => 0.49435804772539
429 => 0.47958849031966
430 => 0.48584982403824
501 => 0.48229558819294
502 => 0.48459561437561
503 => 0.47114970830897
504 => 0.47840479284161
505 => 0.4708478729399
506 => 0.47084428997593
507 => 0.47067747055026
508 => 0.4795681533021
509 => 0.47985807814745
510 => 0.47328785016076
511 => 0.47234097766163
512 => 0.47584206156689
513 => 0.47174320924916
514 => 0.47366103645076
515 => 0.47180129828137
516 => 0.47138263204737
517 => 0.46804662826461
518 => 0.46660938610967
519 => 0.46717296579179
520 => 0.46524917779147
521 => 0.46409002593482
522 => 0.47044688607054
523 => 0.46705067213503
524 => 0.46992636757636
525 => 0.46664914967927
526 => 0.45528888463208
527 => 0.44875547607082
528 => 0.42729698849381
529 => 0.43338258895148
530 => 0.43741734835092
531 => 0.43608386039347
601 => 0.4389487085174
602 => 0.43912458692488
603 => 0.43819319559612
604 => 0.43711476375604
605 => 0.4365898427773
606 => 0.44050217369308
607 => 0.4427734134727
608 => 0.43782229043477
609 => 0.43666231158056
610 => 0.4416681703309
611 => 0.44472174127681
612 => 0.46726759348816
613 => 0.4655973239342
614 => 0.46978937274079
615 => 0.4693174123774
616 => 0.47371134737245
617 => 0.48089357407389
618 => 0.4662900990077
619 => 0.46882475732902
620 => 0.46820331764244
621 => 0.47498803319026
622 => 0.47500921433163
623 => 0.47094143843903
624 => 0.47314664574253
625 => 0.47191575952242
626 => 0.47414013728642
627 => 0.46557501646599
628 => 0.47600640907762
629 => 0.48192033650432
630 => 0.48200245139237
701 => 0.4848056060568
702 => 0.48765377354363
703 => 0.49312058301148
704 => 0.48750130719468
705 => 0.47739277702574
706 => 0.47812258025358
707 => 0.4721959527141
708 => 0.47229558039377
709 => 0.47176376003172
710 => 0.4733597929718
711 => 0.46592525594362
712 => 0.46767012692419
713 => 0.46522729733344
714 => 0.46881944709456
715 => 0.46495488775522
716 => 0.46820301796541
717 => 0.4696048032869
718 => 0.4747774213015
719 => 0.46419088786874
720 => 0.44260422955402
721 => 0.44714200684471
722 => 0.44043027779707
723 => 0.44105147387378
724 => 0.44230638881136
725 => 0.43823879891604
726 => 0.43901476688358
727 => 0.43898704384737
728 => 0.43874814169857
729 => 0.43769000446902
730 => 0.4361554961401
731 => 0.44226850502576
801 => 0.44330722435523
802 => 0.44561616875453
803 => 0.45248602111493
804 => 0.45179956086185
805 => 0.45291920601558
806 => 0.45047502693152
807 => 0.44116485233142
808 => 0.4416704396048
809 => 0.43536575820418
810 => 0.44545494387626
811 => 0.44306569153837
812 => 0.44152532501312
813 => 0.44110502173531
814 => 0.44799190313093
815 => 0.45005256598314
816 => 0.44876849917958
817 => 0.44613484070327
818 => 0.45119224354902
819 => 0.45254539119584
820 => 0.4528483110518
821 => 0.46180905923364
822 => 0.45334911733367
823 => 0.45538550943358
824 => 0.47127285928335
825 => 0.45686522527403
826 => 0.46449727033734
827 => 0.46412372144674
828 => 0.46802801744681
829 => 0.46380345521687
830 => 0.46385582372881
831 => 0.46732257407695
901 => 0.4624541484447
902 => 0.46124865779333
903 => 0.45958328109236
904 => 0.46321957019235
905 => 0.46539936105259
906 => 0.48296687450613
907 => 0.49431628937306
908 => 0.49382358134173
909 => 0.49832601043726
910 => 0.4962976248922
911 => 0.48974743290613
912 => 0.50092781191554
913 => 0.49738987219003
914 => 0.49768153564241
915 => 0.49767067991414
916 => 0.50002310053954
917 => 0.49835619493026
918 => 0.49507055287002
919 => 0.4972517154041
920 => 0.50372898835046
921 => 0.52383464232294
922 => 0.53508603265042
923 => 0.52315729449756
924 => 0.53138557834324
925 => 0.52645154007314
926 => 0.52555487854454
927 => 0.53072284886503
928 => 0.53589986503343
929 => 0.53557011148436
930 => 0.53181186358882
1001 => 0.52968892471464
1002 => 0.54576452910663
1003 => 0.55760876058188
1004 => 0.5568010634
1005 => 0.56036597608361
1006 => 0.57083266998128
1007 => 0.5717896132984
1008 => 0.57166906043554
1009 => 0.56929717657733
1010 => 0.57960299599154
1011 => 0.58820029186052
1012 => 0.56874815399447
1013 => 0.57615527344668
1014 => 0.57948056801126
1015 => 0.5843630870025
1016 => 0.59260071494592
1017 => 0.60154896381538
1018 => 0.60281434431808
1019 => 0.60191649629738
1020 => 0.59601488562614
1021 => 0.60580616631391
1022 => 0.61154166890702
1023 => 0.61495702944657
1024 => 0.62361781551307
1025 => 0.57950110389842
1026 => 0.54827310267474
1027 => 0.54339639934586
1028 => 0.55331336733203
1029 => 0.55592839270364
1030 => 0.55487427925531
1031 => 0.51972432475239
1101 => 0.54321134210985
1102 => 0.56848139794197
1103 => 0.56945212370202
1104 => 0.58210284202352
1105 => 0.58622243447947
1106 => 0.59640792089584
1107 => 0.59577081594729
1108 => 0.59825081980319
1109 => 0.59768070986439
1110 => 0.61654717864351
1111 => 0.6373596954046
1112 => 0.63663902412891
1113 => 0.63364697860198
1114 => 0.63809067642904
1115 => 0.65957142413133
1116 => 0.65759382110487
1117 => 0.65951489399325
1118 => 0.68484190613613
1119 => 0.71777062464735
1120 => 0.7024719289096
1121 => 0.7356656965794
1122 => 0.75655941380152
1123 => 0.79269293728649
1124 => 0.78816884218481
1125 => 0.80223535771747
1126 => 0.78006976774568
1127 => 0.72917309276562
1128 => 0.72111849912538
1129 => 0.73724399956793
1130 => 0.77688696890264
1201 => 0.73599550138623
1202 => 0.74426779200764
1203 => 0.74188537175217
1204 => 0.74175842270139
1205 => 0.74660355163055
1206 => 0.73957543941387
1207 => 0.71094164590986
1208 => 0.72406434473274
1209 => 0.71899704051347
1210 => 0.72461959233731
1211 => 0.75496218561379
1212 => 0.74154700184918
1213 => 0.72741519551419
1214 => 0.74513961675714
1215 => 0.76770889577135
1216 => 0.76629655085153
1217 => 0.76355601139271
1218 => 0.7790042888321
1219 => 0.80452031724139
1220 => 0.81141719718871
1221 => 0.81650833296532
1222 => 0.81721031457347
1223 => 0.82444116141656
1224 => 0.78555907553323
1225 => 0.84726594439286
1226 => 0.85792101602707
1227 => 0.85591830416731
1228 => 0.86776096785478
1229 => 0.86427655577855
1230 => 0.85922818936759
1231 => 0.87800133031903
]
'min_raw' => 0.32363896679726
'max_raw' => 0.87800133031903
'avg_raw' => 0.60082014855815
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.323638'
'max' => '$0.8780013'
'avg' => '$0.60082'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.11161471556084
'max_diff' => 0.40467212551109
'year' => 2032
]
7 => [
'items' => [
101 => 0.85647943913256
102 => 0.82593182412413
103 => 0.80917279836718
104 => 0.83124243539597
105 => 0.84471959260526
106 => 0.85362713621241
107 => 0.85632255352585
108 => 0.78857738117725
109 => 0.75206649060085
110 => 0.77546955286211
111 => 0.80402290401392
112 => 0.78540046022588
113 => 0.78613042476543
114 => 0.75957971381582
115 => 0.80637205279376
116 => 0.79955480259019
117 => 0.83492270870581
118 => 0.82648187406614
119 => 0.85532302852922
120 => 0.84772818598675
121 => 0.87925395275862
122 => 0.89183043464998
123 => 0.91294830511868
124 => 0.92848269660066
125 => 0.93760478840443
126 => 0.93705713222864
127 => 0.97320340456328
128 => 0.95188921062211
129 => 0.92511355966219
130 => 0.92462927261242
131 => 0.93849676165847
201 => 0.96755921433917
202 => 0.97509468547778
203 => 0.97930598583639
204 => 0.97285623274076
205 => 0.94972120281966
206 => 0.939731614197
207 => 0.94824303312975
208 => 0.93783429916956
209 => 0.95580269415979
210 => 0.98047713832344
211 => 0.97538196317698
212 => 0.99241436978027
213 => 1.0100411187532
214 => 1.0352481614514
215 => 1.0418382158268
216 => 1.052731325112
217 => 1.0639439127665
218 => 1.0675450937334
219 => 1.0744208655801
220 => 1.0743846268685
221 => 1.0951052281212
222 => 1.1179606929665
223 => 1.1265881018404
224 => 1.1464263528278
225 => 1.1124540432271
226 => 1.138222430305
227 => 1.1614661604738
228 => 1.13375402714
301 => 1.1719487468417
302 => 1.1734317612566
303 => 1.1958235182061
304 => 1.1731251827963
305 => 1.1596469836855
306 => 1.1985580394967
307 => 1.2173858737169
308 => 1.2117147768238
309 => 1.1685574494504
310 => 1.1434380338143
311 => 1.0776956779211
312 => 1.155570338335
313 => 1.1935008137876
314 => 1.1684592186823
315 => 1.1810887426709
316 => 1.2499913304153
317 => 1.2762249747162
318 => 1.2707685600886
319 => 1.2716906043404
320 => 1.2858458026309
321 => 1.3486177472608
322 => 1.3110033429962
323 => 1.3397581456716
324 => 1.3550095893275
325 => 1.3691759801673
326 => 1.3343878015986
327 => 1.2891288924206
328 => 1.2747934960442
329 => 1.165969325565
330 => 1.1603045548922
331 => 1.1571247474534
401 => 1.1370765113445
402 => 1.1213240894369
403 => 1.1087971786861
404 => 1.0759228240237
405 => 1.0870169536854
406 => 1.0346220937647
407 => 1.0681424683822
408 => 0.98451900683049
409 => 1.0541631104953
410 => 1.0162589911994
411 => 1.0417105878786
412 => 1.0416217896554
413 => 0.99475733073297
414 => 0.96772688886279
415 => 0.984951738463
416 => 1.0034181445447
417 => 1.006414256803
418 => 1.0303564343104
419 => 1.0370381814174
420 => 1.0167921757424
421 => 0.98278609646073
422 => 0.99068493308178
423 => 0.96756681919078
424 => 0.92705321382221
425 => 0.9561507924976
426 => 0.96608598518761
427 => 0.97047393227495
428 => 0.93063345441398
429 => 0.91811471129121
430 => 0.91144983749508
501 => 0.97764319106418
502 => 0.98126941239574
503 => 0.96271715136744
504 => 1.0465751304129
505 => 1.0275954870739
506 => 1.0488003988091
507 => 0.9899681964501
508 => 0.99221566580829
509 => 0.96436355838366
510 => 0.97995887746296
511 => 0.96893660859831
512 => 0.9786989297973
513 => 0.98455042487241
514 => 1.0123979620403
515 => 1.0544810846376
516 => 1.0082384686209
517 => 0.98808989861598
518 => 1.0005899581272
519 => 1.0338792638441
520 => 1.0843142660535
521 => 1.0544557296465
522 => 1.0677064410731
523 => 1.0706011320367
524 => 1.0485845527133
525 => 1.0851260487372
526 => 1.1047089333191
527 => 1.124796920793
528 => 1.142238757464
529 => 1.1167733368516
530 => 1.1440249872315
531 => 1.1220649675892
601 => 1.1023645597849
602 => 1.1023944371715
603 => 1.0900360835789
604 => 1.0660902162403
605 => 1.0616742309076
606 => 1.084646744286
607 => 1.1030685245104
608 => 1.104585830564
609 => 1.1147850746415
610 => 1.120820882226
611 => 1.1799800018363
612 => 1.2037742891335
613 => 1.2328694932377
614 => 1.2442037149521
615 => 1.2783156587692
616 => 1.2507674937003
617 => 1.2448072749016
618 => 1.1620628571331
619 => 1.1756122509073
620 => 1.1973061376617
621 => 1.1624205813353
622 => 1.1845474372762
623 => 1.1889157473499
624 => 1.1612351834805
625 => 1.1760205686497
626 => 1.1367549692015
627 => 1.0553369674051
628 => 1.0852166902478
629 => 1.107218223666
630 => 1.0758193227087
701 => 1.1321006373693
702 => 1.0992222552268
703 => 1.0888013865282
704 => 1.0481458624274
705 => 1.0673337048284
706 => 1.0932855364191
707 => 1.0772503217203
708 => 1.11052579992
709 => 1.1576527512966
710 => 1.1912382233061
711 => 1.1938164988146
712 => 1.1722232903643
713 => 1.2068265447118
714 => 1.2070785916425
715 => 1.1680459793801
716 => 1.1441387217038
717 => 1.1387069424585
718 => 1.1522765919764
719 => 1.1687526515867
720 => 1.1947308054554
721 => 1.2104288597637
722 => 1.2513610597951
723 => 1.2624361395055
724 => 1.2746042943528
725 => 1.2908647017488
726 => 1.3103894899106
727 => 1.2676703649594
728 => 1.2693676754321
729 => 1.2295882177641
730 => 1.1870781622946
731 => 1.2193379954428
801 => 1.2615134359382
802 => 1.2518383432888
803 => 1.2507496977216
804 => 1.2525804976006
805 => 1.245285793702
806 => 1.2122921183227
807 => 1.1957229010986
808 => 1.2171014185759
809 => 1.2284631491667
810 => 1.246084202466
811 => 1.2439120357115
812 => 1.2893019766476
813 => 1.3069391351748
814 => 1.302426795287
815 => 1.3032571744218
816 => 1.3351884074748
817 => 1.3707025057887
818 => 1.4039661453576
819 => 1.4378033482337
820 => 1.3970112794781
821 => 1.376299582669
822 => 1.3976687669543
823 => 1.3863299769794
824 => 1.4514860274783
825 => 1.4559972910478
826 => 1.5211486300226
827 => 1.5829850087869
828 => 1.5441466871989
829 => 1.58076947514
830 => 1.620380006198
831 => 1.6967951471859
901 => 1.6710612160182
902 => 1.6513494280459
903 => 1.6327218836587
904 => 1.671482846489
905 => 1.7213482059487
906 => 1.7320887267719
907 => 1.7494924737001
908 => 1.731194561834
909 => 1.7532323812278
910 => 1.8310355675967
911 => 1.8100124598521
912 => 1.7801562672216
913 => 1.8415744105623
914 => 1.8638013978803
915 => 2.0198020352419
916 => 2.2167592839757
917 => 2.1352176897089
918 => 2.0846021908166
919 => 2.096498033672
920 => 2.168420153486
921 => 2.1915192556762
922 => 2.1287279331851
923 => 2.1509068898161
924 => 2.2731151214401
925 => 2.3386759167969
926 => 2.2496355507128
927 => 2.0039767120791
928 => 1.7774680437389
929 => 1.837548342401
930 => 1.8307371010414
1001 => 1.962034600134
1002 => 1.8095110656852
1003 => 1.8120791708369
1004 => 1.9460917631642
1005 => 1.9103395010888
1006 => 1.8524254153303
1007 => 1.7778908806565
1008 => 1.6401068997019
1009 => 1.5180677853799
1010 => 1.7574145924949
1011 => 1.7470935229482
1012 => 1.7321470847477
1013 => 1.7654087655893
1014 => 1.9269180462633
1015 => 1.9231947345892
1016 => 1.8995089253692
1017 => 1.9174744029055
1018 => 1.8492759802564
1019 => 1.8668522666223
1020 => 1.7774321636085
1021 => 1.8178537846841
1022 => 1.8523011577128
1023 => 1.8592169778504
1024 => 1.8747986737509
1025 => 1.7416547882901
1026 => 1.8014324839629
1027 => 1.836546279758
1028 => 1.6779008729047
1029 => 1.8334103701484
1030 => 1.7393370494626
1031 => 1.707407151488
1101 => 1.7503965526666
1102 => 1.7336435412187
1103 => 1.7192402857457
1104 => 1.7112030217124
1105 => 1.7427696933709
1106 => 1.7412970704077
1107 => 1.6896478687474
1108 => 1.6222735906724
1109 => 1.6448866098796
1110 => 1.6366710880034
1111 => 1.6068969769007
1112 => 1.6269611328441
1113 => 1.5386087443065
1114 => 1.3866030519851
1115 => 1.4870226683929
1116 => 1.4831566223967
1117 => 1.4812071866942
1118 => 1.5566697530303
1119 => 1.5494157684947
1120 => 1.5362497155314
1121 => 1.6066551720131
1122 => 1.5809562333103
1123 => 1.660154306961
1124 => 1.7123192804776
1125 => 1.6990885558336
1126 => 1.7481499655612
1127 => 1.6454075681703
1128 => 1.679534471274
1129 => 1.6865679787059
1130 => 1.6057863796089
1201 => 1.5506026100763
1202 => 1.5469224817895
1203 => 1.4512414302119
1204 => 1.5023534756542
1205 => 1.5473299604832
1206 => 1.5257897145663
1207 => 1.5189707162056
1208 => 1.5538074999704
1209 => 1.5565146164258
1210 => 1.4947920743553
1211 => 1.5076261453505
1212 => 1.561146354887
1213 => 1.5062775733889
1214 => 1.3996764937025
1215 => 1.3732379520651
1216 => 1.3697105632516
1217 => 1.2980071414637
1218 => 1.3750047018381
1219 => 1.3413932033283
1220 => 1.4475715243931
1221 => 1.3869230368466
1222 => 1.3843086017651
1223 => 1.3803564996851
1224 => 1.3186384025212
1225 => 1.3321507434104
1226 => 1.3770678225138
1227 => 1.393094742365
1228 => 1.3914230033198
1229 => 1.3768477043217
1230 => 1.3835202015654
1231 => 1.3620257630913
]
'min_raw' => 0.75206649060085
'max_raw' => 2.3386759167969
'avg_raw' => 1.5453712036989
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.752066'
'max' => '$2.33'
'avg' => '$1.54'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.42842752380359
'max_diff' => 1.4606745864778
'year' => 2033
]
8 => [
'items' => [
101 => 1.3544356294981
102 => 1.330479080047
103 => 1.2952695705196
104 => 1.3001656687719
105 => 1.2304064173289
106 => 1.192397874739
107 => 1.1818776110947
108 => 1.1678094748774
109 => 1.1834666445143
110 => 1.2302087981343
111 => 1.1738278439675
112 => 1.0771666527126
113 => 1.0829761550097
114 => 1.0960283818145
115 => 1.0717056435129
116 => 1.0486862129631
117 => 1.0686997402007
118 => 1.027743119204
119 => 1.1009777937894
120 => 1.0989970010797
121 => 1.1262943589632
122 => 1.1433639570459
123 => 1.1040240598132
124 => 1.0941301820456
125 => 1.0997661844737
126 => 1.0066156186874
127 => 1.1186819704309
128 => 1.1196511248945
129 => 1.111352635987
130 => 1.1710245086299
131 => 1.2969507720305
201 => 1.249572246367
202 => 1.2312258492066
203 => 1.1963493347935
204 => 1.2428202194864
205 => 1.2392519806007
206 => 1.2231150511452
207 => 1.2133553858603
208 => 1.2313378683955
209 => 1.2111271572708
210 => 1.2074967581996
211 => 1.1855004897414
212 => 1.1776488226682
213 => 1.1718357609511
214 => 1.1654361511803
215 => 1.1795520956514
216 => 1.1475635083727
217 => 1.1089884079944
218 => 1.1057813057863
219 => 1.1146363969541
220 => 1.1107186782964
221 => 1.1057625492566
222 => 1.0962999491983
223 => 1.0934925978975
224 => 1.102615127692
225 => 1.0923163234305
226 => 1.1075127701232
227 => 1.1033801774806
228 => 1.0802958509155
301 => 1.0515242331031
302 => 1.0512681053541
303 => 1.0450693074913
304 => 1.0371742064176
305 => 1.0349779699143
306 => 1.067014256759
307 => 1.1333284117621
308 => 1.1203093563718
309 => 1.1297169581378
310 => 1.1759930477808
311 => 1.1907028251077
312 => 1.1802621735812
313 => 1.1659703658204
314 => 1.1665991328297
315 => 1.2154385663728
316 => 1.2184846219353
317 => 1.2261810216467
318 => 1.2360730702782
319 => 1.1819468322376
320 => 1.1640497918855
321 => 1.1555691812767
322 => 1.1294521830109
323 => 1.1576171265384
324 => 1.1412066200881
325 => 1.1434209580709
326 => 1.1419788675547
327 => 1.1427663464903
328 => 1.1009573232053
329 => 1.1161903338728
330 => 1.0908624991471
331 => 1.0569513716323
401 => 1.0568376896421
402 => 1.0651373900595
403 => 1.0602004034839
404 => 1.0469150995506
405 => 1.0488022142695
406 => 1.0322691036168
407 => 1.0508096332443
408 => 1.0513413092928
409 => 1.0442021954768
410 => 1.072766439468
411 => 1.0844692335375
412 => 1.0797701158891
413 => 1.0841395309164
414 => 1.1208503569008
415 => 1.1268358233419
416 => 1.1294941721573
417 => 1.1259323369083
418 => 1.0848105374243
419 => 1.0866344640948
420 => 1.073251700381
421 => 1.0619446752837
422 => 1.0623968969901
423 => 1.0682101777005
424 => 1.0935971155071
425 => 1.1470224294795
426 => 1.1490498810913
427 => 1.1515072115898
428 => 1.1415120134971
429 => 1.1384973661111
430 => 1.1424744641597
501 => 1.1625382031181
502 => 1.2141475869713
503 => 1.1959053838427
504 => 1.1810741887424
505 => 1.1940851453069
506 => 1.192082210527
507 => 1.1751754253028
508 => 1.1747009081513
509 => 1.1422513818797
510 => 1.1302555308571
511 => 1.1202308998687
512 => 1.109284264529
513 => 1.1027947321651
514 => 1.1127656033158
515 => 1.1150460595198
516 => 1.0932445754878
517 => 1.0902731137735
518 => 1.1080766762517
519 => 1.1002419921888
520 => 1.1083001590384
521 => 1.1101697228691
522 => 1.1098686800327
523 => 1.1016883700632
524 => 1.1069022556974
525 => 1.0945698618384
526 => 1.0811602357824
527 => 1.072605729808
528 => 1.0651407887547
529 => 1.069282771916
530 => 1.0545173582422
531 => 1.0497936052389
601 => 1.1051359085607
602 => 1.1460178630545
603 => 1.1454234232451
604 => 1.141804923783
605 => 1.1364285675683
606 => 1.1621448891738
607 => 1.1531858369405
608 => 1.1597042959941
609 => 1.1613635174021
610 => 1.1663854808786
611 => 1.1681804011691
612 => 1.1627549053989
613 => 1.1445462789256
614 => 1.0991721129785
615 => 1.0780503162449
616 => 1.0710797715115
617 => 1.0713331375736
618 => 1.0643441705046
619 => 1.06640273453
620 => 1.0636282859461
621 => 1.0583741515393
622 => 1.0689583439221
623 => 1.0701780734956
624 => 1.0677075965218
625 => 1.0682894832817
626 => 1.047834989093
627 => 1.0493900998613
628 => 1.0407310454893
629 => 1.039107577181
630 => 1.0172182417586
701 => 0.97843811114781
702 => 0.99992606798453
703 => 0.97397163778974
704 => 0.96414230180118
705 => 1.0106728495956
706 => 1.0060024731536
707 => 0.9980088188486
708 => 0.98618453810801
709 => 0.98179879736212
710 => 0.95515242494686
711 => 0.9535780151117
712 => 0.96678467679328
713 => 0.96069025684071
714 => 0.95213138308998
715 => 0.92113200996396
716 => 0.88627845103059
717 => 0.88733046089313
718 => 0.89841672951631
719 => 0.93065155072525
720 => 0.91805684841085
721 => 0.9089192473742
722 => 0.90720804937531
723 => 0.92862727496705
724 => 0.95893996664585
725 => 0.97316200337329
726 => 0.95906839690607
727 => 0.94287842065019
728 => 0.94386382948776
729 => 0.95041931301317
730 => 0.95110820164215
731 => 0.94057019145602
801 => 0.94353657959666
802 => 0.9390303647588
803 => 0.91137573261668
804 => 0.91087554801502
805 => 0.90408865529616
806 => 0.90388315088191
807 => 0.8923369532974
808 => 0.89072156044023
809 => 0.86779588433208
810 => 0.8828856337718
811 => 0.87276422209504
812 => 0.85750886729851
813 => 0.85487883838149
814 => 0.85479977653639
815 => 0.87046361487752
816 => 0.88270259270086
817 => 0.87294028838451
818 => 0.870717600926
819 => 0.89445008795834
820 => 0.89142991265705
821 => 0.88881446032418
822 => 0.95622579757852
823 => 0.90286446396947
824 => 0.87959587675748
825 => 0.85079658149778
826 => 0.86017377725299
827 => 0.86214969017828
828 => 0.79289257654184
829 => 0.76479497416497
830 => 0.75515293586503
831 => 0.74960380650501
901 => 0.75213261443595
902 => 0.72684147677671
903 => 0.74383753956053
904 => 0.72193755215427
905 => 0.71826594799689
906 => 0.75742583836712
907 => 0.76287470834337
908 => 0.73962813619346
909 => 0.75455619879188
910 => 0.7491430757781
911 => 0.72231296458158
912 => 0.72128825168281
913 => 0.70782584500841
914 => 0.68675978539857
915 => 0.67713203087903
916 => 0.67211781273326
917 => 0.67418677686537
918 => 0.67314064528883
919 => 0.66631392912123
920 => 0.67353194466849
921 => 0.65509289763519
922 => 0.64775032053303
923 => 0.64443384880248
924 => 0.62806813324848
925 => 0.65411326456164
926 => 0.65924448353825
927 => 0.66438581260136
928 => 0.70913757196128
929 => 0.70690190053082
930 => 0.72711128144606
1001 => 0.72632598206636
1002 => 0.72056193925907
1003 => 0.69624439079413
1004 => 0.70593693219363
1005 => 0.67610479632133
1006 => 0.69845706090491
1007 => 0.68825642080185
1008 => 0.69500821422515
1009 => 0.68286788086539
1010 => 0.68958684260876
1011 => 0.66046128591328
1012 => 0.63326425087868
1013 => 0.64420913170755
1014 => 0.65610746886747
1015 => 0.68190609547012
1016 => 0.66654064629963
1017 => 0.6720666428533
1018 => 0.65355547943916
1019 => 0.61536166186339
1020 => 0.61557783472303
1021 => 0.60970254798654
1022 => 0.60462544244031
1023 => 0.66830555297407
1024 => 0.66038592459563
1025 => 0.64776703326991
1026 => 0.66465792076419
1027 => 0.66912413951211
1028 => 0.6692512864811
1029 => 0.68157444198002
1030 => 0.68815131227884
1031 => 0.6893105141748
1101 => 0.70870126561175
1102 => 0.71520078972322
1103 => 0.74197140969128
1104 => 0.68759331078402
1105 => 0.68647342962153
1106 => 0.66489561019012
1107 => 0.65121061597489
1108 => 0.66583263345206
1109 => 0.6787857448324
1110 => 0.66529809946737
1111 => 0.66705930121231
1112 => 0.64895323929086
1113 => 0.65542530445838
1114 => 0.66099991886198
1115 => 0.657921944449
1116 => 0.65331406777713
1117 => 0.67772373741455
1118 => 0.67634644819134
1119 => 0.69907729373358
1120 => 0.71679761333212
1121 => 0.74855559393873
1122 => 0.71541448559476
1123 => 0.71420669188273
1124 => 0.72601306915402
1125 => 0.71519898222837
1126 => 0.72203311187579
1127 => 0.7474545099973
1128 => 0.74799162408109
1129 => 0.73899427114515
1130 => 0.73844678140132
1201 => 0.74017482145292
1202 => 0.75029600600951
1203 => 0.74675935313285
1204 => 0.75085205737882
1205 => 0.75597004670811
1206 => 0.77714022055657
1207 => 0.78224427780015
1208 => 0.76984406484852
1209 => 0.77096366523876
1210 => 0.76632564520139
1211 => 0.76184537595952
1212 => 0.77191636692447
1213 => 0.79032130085875
1214 => 0.79020680471997
1215 => 0.79447639165193
1216 => 0.79713630893937
1217 => 0.7857179967632
1218 => 0.77828509539949
1219 => 0.78113534275014
1220 => 0.78569295033414
1221 => 0.77965737203655
1222 => 0.742402986832
1223 => 0.75370358748372
1224 => 0.75182261496413
1225 => 0.74914388136217
1226 => 0.76050672270243
1227 => 0.75941074893533
1228 => 0.7265820796048
1229 => 0.72868366450298
1230 => 0.72670988394312
1231 => 0.73308757272954
]
'min_raw' => 0.60462544244031
'max_raw' => 1.3544356294981
'avg_raw' => 0.97953053596918
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.604625'
'max' => '$1.35'
'avg' => '$0.97953'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.14744104816054
'max_diff' => -0.98424028729881
'year' => 2034
]
9 => [
'items' => [
101 => 0.71485456610412
102 => 0.72046291614092
103 => 0.72398042070899
104 => 0.72605225792233
105 => 0.73353715460897
106 => 0.73265888837315
107 => 0.73348256034661
108 => 0.74458068619344
109 => 0.80071119830983
110 => 0.80376625823933
111 => 0.78872202581079
112 => 0.79473189993163
113 => 0.78319425583462
114 => 0.79093955361244
115 => 0.79623868964279
116 => 0.77229291288688
117 => 0.7708749993942
118 => 0.75928973533583
119 => 0.7655150000179
120 => 0.75561015629636
121 => 0.7580404584889
122 => 0.75124512168861
123 => 0.76347537499107
124 => 0.77715069857243
125 => 0.78060562536398
126 => 0.77151720041493
127 => 0.76493658179542
128 => 0.7533831832901
129 => 0.77259674248873
130 => 0.77821537272101
131 => 0.77256723021604
201 => 0.77125843218329
202 => 0.76877826227617
203 => 0.7717846119536
204 => 0.7781847724541
205 => 0.77516657495447
206 => 0.77716014757677
207 => 0.76956270450372
208 => 0.78572177669965
209 => 0.81138627223928
210 => 0.81146878778901
211 => 0.80845057402017
212 => 0.80721558597428
213 => 0.81031245646164
214 => 0.81199238166075
215 => 0.82200709294793
216 => 0.83275327716278
217 => 0.88290102996597
218 => 0.86881974164831
219 => 0.91331381123846
220 => 0.94850284345243
221 => 0.95905449558351
222 => 0.94934747211651
223 => 0.91614026919901
224 => 0.91451096540055
225 => 0.96413654627874
226 => 0.95011504668505
227 => 0.94844723392443
228 => 0.93070452396548
301 => 0.9411926630286
302 => 0.93889875316378
303 => 0.93527770422025
304 => 0.95528834294257
305 => 0.99274647226871
306 => 0.98690827153312
307 => 0.98255032551033
308 => 0.96345507461753
309 => 0.97495468073369
310 => 0.97085989125617
311 => 0.98845370546921
312 => 0.97803151968011
313 => 0.9500088200351
314 => 0.9544715273176
315 => 0.95379699808957
316 => 0.96767876180473
317 => 0.96351180090399
318 => 0.95298333209637
319 => 0.99261844445489
320 => 0.99004476072041
321 => 0.99369365582989
322 => 0.99530001230292
323 => 1.0194252067465
324 => 1.02930852699
325 => 1.0315522137171
326 => 1.0409406035449
327 => 1.0313186220255
328 => 1.0698134084596
329 => 1.0954101952052
330 => 1.1251421802089
331 => 1.1685886015033
401 => 1.1849248578119
402 => 1.1819738593299
403 => 1.2149144401083
404 => 1.2741079315389
405 => 1.1939385563548
406 => 1.2783571030901
407 => 1.2516311658527
408 => 1.1882644494419
409 => 1.1841843799495
410 => 1.2270970560057
411 => 1.3222732413062
412 => 1.2984326863677
413 => 1.3223122359134
414 => 1.2944554729314
415 => 1.2930721498541
416 => 1.3209592951128
417 => 1.3861191300589
418 => 1.3551641349559
419 => 1.3107825589996
420 => 1.3435532240319
421 => 1.315164241199
422 => 1.2511959173006
423 => 1.2984144559447
424 => 1.2668407638599
425 => 1.27605564576
426 => 1.34241885029
427 => 1.3344338539457
428 => 1.344767178606
429 => 1.3265291310508
430 => 1.3094919187581
501 => 1.2776906968138
502 => 1.2682759227774
503 => 1.270877827613
504 => 1.2682746334026
505 => 1.250482141993
506 => 1.2466398551672
507 => 1.2402358754563
508 => 1.2422207365491
509 => 1.2301793811423
510 => 1.2529039066658
511 => 1.2571217788508
512 => 1.2736587934587
513 => 1.2753757211747
514 => 1.321431071468
515 => 1.2960645584552
516 => 1.3130826054235
517 => 1.3115603511226
518 => 1.1896377983312
519 => 1.206437650374
520 => 1.2325729480687
521 => 1.2207990318828
522 => 1.2041534690681
523 => 1.1907112846165
524 => 1.1703450006385
525 => 1.1990101542377
526 => 1.2367017830215
527 => 1.2763316430813
528 => 1.323944323292
529 => 1.3133177273417
530 => 1.2754415571435
531 => 1.27714065447
601 => 1.2876438055725
602 => 1.2740412705829
603 => 1.2700296174614
604 => 1.2870926660367
605 => 1.2872101698746
606 => 1.2715588094478
607 => 1.2541651865021
608 => 1.2540923065869
609 => 1.2509972793862
610 => 1.2950060713948
611 => 1.3192064572088
612 => 1.3219809924415
613 => 1.3190197088813
614 => 1.3201593893945
615 => 1.3060777181084
616 => 1.3382642428784
617 => 1.3678017809248
618 => 1.3598850897509
619 => 1.3480168442573
620 => 1.3385632150695
621 => 1.3576581151549
622 => 1.3568078493123
623 => 1.367543796298
624 => 1.3670567517288
625 => 1.363446656557
626 => 1.3598852186788
627 => 1.374005917299
628 => 1.3699393828679
629 => 1.3658665319856
630 => 1.3576978060188
701 => 1.3588080715458
702 => 1.3469418752721
703 => 1.3414520299157
704 => 1.2588979277361
705 => 1.2368367741006
706 => 1.2437776621305
707 => 1.2460627826901
708 => 1.2364617403558
709 => 1.2502271687577
710 => 1.2480818413225
711 => 1.2564280553985
712 => 1.2512137031943
713 => 1.2514277020276
714 => 1.266762000043
715 => 1.2712136119937
716 => 1.2689494862266
717 => 1.2705352023042
718 => 1.3070773600218
719 => 1.3018822337468
720 => 1.2991224264559
721 => 1.2998869119363
722 => 1.3092242167059
723 => 1.3118381522434
724 => 1.3007627236929
725 => 1.3059859598236
726 => 1.3282258363408
727 => 1.3360085344539
728 => 1.3608471709237
729 => 1.3502952766797
730 => 1.3696637352398
731 => 1.4291957736591
801 => 1.4767540852523
802 => 1.4330174964809
803 => 1.5203522792072
804 => 1.5883549349901
805 => 1.5857448797968
806 => 1.5738870438313
807 => 1.4964678281666
808 => 1.4252255116564
809 => 1.4848227345257
810 => 1.4849746601031
811 => 1.4798552058044
812 => 1.448058714836
813 => 1.4787487568416
814 => 1.4811848209262
815 => 1.4798212728405
816 => 1.4554429777659
817 => 1.4182218270489
818 => 1.4254947508042
819 => 1.4374079482789
820 => 1.4148537801059
821 => 1.4076463567694
822 => 1.4210463280204
823 => 1.4642238273859
824 => 1.456061371241
825 => 1.455848216524
826 => 1.4907706653317
827 => 1.4657737287215
828 => 1.4255864856638
829 => 1.4154386767872
830 => 1.3794207916581
831 => 1.404298473208
901 => 1.4051937766781
902 => 1.391568524737
903 => 1.4266920997658
904 => 1.4263684298385
905 => 1.4597130368742
906 => 1.5234554018639
907 => 1.5046036479652
908 => 1.4826811092459
909 => 1.4850646970508
910 => 1.5112067720739
911 => 1.4954006767494
912 => 1.5010846588321
913 => 1.5111981686863
914 => 1.5172999002856
915 => 1.4841867517739
916 => 1.4764664928709
917 => 1.4606735525979
918 => 1.4565534692699
919 => 1.4694164895917
920 => 1.4660275381941
921 => 1.4051185298883
922 => 1.3987531996258
923 => 1.3989484152173
924 => 1.3829424896174
925 => 1.3585296112151
926 => 1.422685198039
927 => 1.4175326065602
928 => 1.4118445443465
929 => 1.412541299512
930 => 1.4403890653177
1001 => 1.4242359548045
1002 => 1.4671816465465
1003 => 1.45835330339
1004 => 1.449298546544
1005 => 1.4480469033332
1006 => 1.444561594463
1007 => 1.4326091735208
1008 => 1.418175907004
1009 => 1.4086458142615
1010 => 1.2994013029202
1011 => 1.319676448779
1012 => 1.343001155952
1013 => 1.3510527514002
1014 => 1.3372799402326
1015 => 1.433153008052
1016 => 1.4506699413985
1017 => 1.3976100076907
1018 => 1.3876846605168
1019 => 1.4338037121603
1020 => 1.4059882861945
1021 => 1.4185135708038
1022 => 1.391440756443
1023 => 1.446450625111
1024 => 1.4460315420785
1025 => 1.4246314607124
1026 => 1.4427186629416
1027 => 1.4395755664501
1028 => 1.4154149272938
1029 => 1.4472165604668
1030 => 1.4472323336801
1031 => 1.4266352206431
1101 => 1.4025823019037
1102 => 1.3982822081377
1103 => 1.3950426651214
1104 => 1.4177168418093
1105 => 1.4380464377275
1106 => 1.4758747755969
1107 => 1.4853857185164
1108 => 1.5225075619106
1109 => 1.5004033115991
1110 => 1.5102018394642
1111 => 1.5208395275482
1112 => 1.5259396264037
1113 => 1.5176292890051
1114 => 1.5752947917565
1115 => 1.5801635270141
1116 => 1.5817959718316
1117 => 1.5623514887551
1118 => 1.5796227407649
1119 => 1.5715420939133
1120 => 1.592565692153
1121 => 1.5958624607997
1122 => 1.5930702150419
1123 => 1.5941166614463
1124 => 1.5449093277397
1125 => 1.5423576678976
1126 => 1.5075656048937
1127 => 1.5217436277378
1128 => 1.4952384936012
1129 => 1.503643544669
1130 => 1.5073484110934
1201 => 1.5054131991226
1202 => 1.5225452318768
1203 => 1.5079795041927
1204 => 1.469538154007
1205 => 1.4310863305011
1206 => 1.4306035991791
1207 => 1.4204799127811
1208 => 1.413162341761
1209 => 1.4145719655442
1210 => 1.4195396636165
1211 => 1.4128736101182
1212 => 1.4142961506096
1213 => 1.4379198011038
1214 => 1.4426573557343
1215 => 1.4265572940179
1216 => 1.3619132229989
1217 => 1.3460494058235
1218 => 1.357452003016
1219 => 1.3520022959793
1220 => 1.0911713723081
1221 => 1.1524497288648
1222 => 1.1160402102152
1223 => 1.1328193915303
1224 => 1.0956547011882
1225 => 1.1133916393878
1226 => 1.1101162745516
1227 => 1.2086500585365
1228 => 1.2071115890283
1229 => 1.2078479729679
1230 => 1.172698448895
1231 => 1.2286925951567
]
'min_raw' => 0.71485456610412
'max_raw' => 1.5958624607997
'avg_raw' => 1.1553585134519
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.714854'
'max' => '$1.59'
'avg' => '$1.15'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.11022912366381
'max_diff' => 0.24142683130167
'year' => 2035
]
10 => [
'items' => [
101 => 1.2562773250895
102 => 1.2511721257228
103 => 1.2524569944162
104 => 1.2303786932898
105 => 1.2080617391836
106 => 1.1833088025252
107 => 1.229296699281
108 => 1.2241836302013
109 => 1.2359111710459
110 => 1.2657376093748
111 => 1.2701296657184
112 => 1.276032633984
113 => 1.2739168400626
114 => 1.3243236351046
115 => 1.3182190396303
116 => 1.3329293583115
117 => 1.3026691167098
118 => 1.268426781009
119 => 1.2749351295594
120 => 1.2743083232572
121 => 1.2663283596149
122 => 1.2591244052469
123 => 1.2471318509257
124 => 1.2850780673619
125 => 1.2835375202725
126 => 1.3084771869595
127 => 1.3040688586216
128 => 1.27462896308
129 => 1.2756804147087
130 => 1.282751932222
131 => 1.3072265350765
201 => 1.3144922635618
202 => 1.3111264886382
203 => 1.3190930282292
204 => 1.3253894563
205 => 1.3198837626534
206 => 1.3978327742084
207 => 1.3654629100246
208 => 1.3812397565997
209 => 1.3850024415453
210 => 1.3753644031779
211 => 1.3774545485875
212 => 1.3806205493526
213 => 1.3998438860312
214 => 1.4502914837934
215 => 1.4726343814338
216 => 1.5398540913642
217 => 1.4707791148129
218 => 1.466680491565
219 => 1.4787887911643
220 => 1.5182538768224
221 => 1.5502366219812
222 => 1.5608471436793
223 => 1.5622494992823
224 => 1.5821555433619
225 => 1.5935653166026
226 => 1.5797384260297
227 => 1.568021584005
228 => 1.5260533102202
229 => 1.5309112521866
301 => 1.5643776549459
302 => 1.6116509200045
303 => 1.6522162993698
304 => 1.6380117173623
305 => 1.7463826512076
306 => 1.7571271866427
307 => 1.755642639258
308 => 1.7801202899806
309 => 1.7315371380831
310 => 1.7107668993927
311 => 1.5705548982425
312 => 1.6099487513925
313 => 1.6672100304659
314 => 1.6596312854618
315 => 1.6180466140003
316 => 1.6521847536675
317 => 1.6408976170952
318 => 1.6319949841769
319 => 1.672779671436
320 => 1.627935232452
321 => 1.6667626728828
322 => 1.6169660789119
323 => 1.6380766026964
324 => 1.6260932483952
325 => 1.6338479472527
326 => 1.5885141361859
327 => 1.6129751602215
328 => 1.5874964771656
329 => 1.5874843969524
330 => 1.5869219536118
331 => 1.6168975112373
401 => 1.6178750130953
402 => 1.5957230307195
403 => 1.5925305839801
404 => 1.6043347328046
405 => 1.5905151660426
406 => 1.5969812543512
407 => 1.5907110172704
408 => 1.5892994548321
409 => 1.5780518851662
410 => 1.5732061228957
411 => 1.5751062711419
412 => 1.5686200855842
413 => 1.5647119241701
414 => 1.5861445219395
415 => 1.5746939495399
416 => 1.584389557495
417 => 1.5733401885469
418 => 1.5350382617919
419 => 1.5130104186796
420 => 1.4406616296299
421 => 1.461179656456
422 => 1.4747831294691
423 => 1.4702871817194
424 => 1.4799462171866
425 => 1.4805392035168
426 => 1.4773989526243
427 => 1.4737629443817
428 => 1.4719931366531
429 => 1.4851838334859
430 => 1.4928414769757
501 => 1.476148419977
502 => 1.4722374702829
503 => 1.4891150725575
504 => 1.4994104001952
505 => 1.5754253150269
506 => 1.5697938846112
507 => 1.5839276698422
508 => 1.5823364225258
509 => 1.5971508811363
510 => 1.6213662599073
511 => 1.5721296241396
512 => 1.5806754016341
513 => 1.5785801743432
514 => 1.6014553165064
515 => 1.6015267302034
516 => 1.5878119397784
517 => 1.5952469501649
518 => 1.591096931336
519 => 1.5985965762684
520 => 1.5697186734247
521 => 1.6048888419114
522 => 1.6248280611277
523 => 1.6251049172059
524 => 1.634555948867
525 => 1.6441587444015
526 => 1.6625904742029
527 => 1.6436446934612
528 => 1.6095630782416
529 => 1.6120236607775
530 => 1.5920416222442
531 => 1.592377523922
601 => 1.5905844544409
602 => 1.5959655909298
603 => 1.5708995302765
604 => 1.5767824846105
605 => 1.5685463140923
606 => 1.5806574978079
607 => 1.5676278661803
608 => 1.5785791639612
609 => 1.5833053810421
610 => 1.600745223819
611 => 1.5650519872223
612 => 1.4922710615819
613 => 1.5075704945349
614 => 1.4849414314528
615 => 1.487035837396
616 => 1.4912668707234
617 => 1.4775527074013
618 => 1.4801689375802
619 => 1.4800754674281
620 => 1.4792699921538
621 => 1.4757024086076
622 => 1.4705287066407
623 => 1.4911391428953
624 => 1.4946412576357
625 => 1.5024260248833
626 => 1.5255882117541
627 => 1.5232737630837
628 => 1.5270487248907
629 => 1.5188080044616
630 => 1.4874181007818
701 => 1.489122723573
702 => 1.467866050052
703 => 1.5018824439498
704 => 1.4938269128804
705 => 1.4886334595955
706 => 1.4872163777498
707 => 1.5104359792018
708 => 1.5173836478789
709 => 1.513054327
710 => 1.504174763571
711 => 1.521226150362
712 => 1.525788382127
713 => 1.5268096975706
714 => 1.5570214856851
715 => 1.5284982009151
716 => 1.5353640390563
717 => 1.5889293482941
718 => 1.5403530043228
719 => 1.5660849771061
720 => 1.5648255309411
721 => 1.5779891374946
722 => 1.5637457309869
723 => 1.5639222950811
724 => 1.5756106859206
725 => 1.5591964489989
726 => 1.5551320531031
727 => 1.5495171192829
728 => 1.5617771218611
729 => 1.5691264389346
730 => 1.6283565370678
731 => 1.6666218816825
801 => 1.6649606821551
802 => 1.6801409362002
803 => 1.6733020927177
804 => 1.6512176631169
805 => 1.6889130915362
806 => 1.6769846807406
807 => 1.6779680444336
808 => 1.6779314435878
809 => 1.6858627939671
810 => 1.6802427053258
811 => 1.6691649337235
812 => 1.6765188754911
813 => 1.6983574534584
814 => 1.7661450695586
815 => 1.8040799175947
816 => 1.7638613440744
817 => 1.7916035775405
818 => 1.7749681230294
819 => 1.7719449660828
820 => 1.7893691388345
821 => 1.806823810294
822 => 1.8057120231806
823 => 1.7930408280083
824 => 1.7858831913752
825 => 1.8400832139456
826 => 1.8800168673022
827 => 1.8772936598619
828 => 1.889313011869
829 => 1.9246022011062
830 => 1.9278286023115
831 => 1.9274221499176
901 => 1.9194251778901
902 => 1.9541719675744
903 => 1.9831583508407
904 => 1.9175741099204
905 => 1.9425477303021
906 => 1.9537591930912
907 => 1.9702209467568
908 => 1.9979946845009
909 => 2.028164330311
910 => 2.0324306490219
911 => 2.0294034917344
912 => 2.009505799319
913 => 2.0425177857632
914 => 2.0618554331959
915 => 2.0733705597078
916 => 2.1025710046078
917 => 1.9538284312686
918 => 1.8485410448735
919 => 1.8320988991196
920 => 1.8655346490656
921 => 1.8743513896812
922 => 1.8707973725943
923 => 1.7522868468963
924 => 1.8314749657281
925 => 1.9166747232651
926 => 1.919947592939
927 => 1.9626003730049
928 => 1.9764898665909
929 => 2.0108309451716
930 => 2.0086829013563
1001 => 2.0170444075048
1002 => 2.0151222420424
1003 => 2.078731858746
1004 => 2.1489027120895
1005 => 2.1464729185679
1006 => 2.1363850281759
1007 => 2.1513672656489
1008 => 2.2237911062651
1009 => 2.2171234795895
1010 => 2.2236005109577
1011 => 2.308992300673
1012 => 2.4200137741432
1013 => 2.3684331533426
1014 => 2.4803482585562
1015 => 2.5507928849233
1016 => 2.6726195821149
1017 => 2.6573662796174
1018 => 2.7047925188285
1019 => 2.6300596846865
1020 => 2.4584579914989
1021 => 2.431301366687
1022 => 2.4856696172756
1023 => 2.6193286561713
1024 => 2.4814602184886
1025 => 2.5093508238716
1026 => 2.501318327645
1027 => 2.500890310057
1028 => 2.5172260005178
1029 => 2.4935302294921
1030 => 2.3969893955457
1031 => 2.4412334908246
1101 => 2.4241487208615
1102 => 2.4431055468896
1103 => 2.5454077185735
1104 => 2.5001774898928
1105 => 2.4525311181832
1106 => 2.5122902418834
1107 => 2.5883841418165
1108 => 2.5836223223126
1109 => 2.5743824021888
1110 => 2.62646734814
1111 => 2.7124964193942
1112 => 2.7357497316613
1113 => 2.7529148513839
1114 => 2.7552816313866
1115 => 2.7796609363597
1116 => 2.6485672691435
1117 => 2.8566162857397
1118 => 2.8925406036678
1119 => 2.8857883208078
1120 => 2.9257166882584
1121 => 2.9139687496695
1122 => 2.8969478298493
1123 => 2.9602427852659
1124 => 2.8876802265203
1125 => 2.784686809753
1126 => 2.7281825843356
1127 => 2.802591906431
1128 => 2.8480310829072
1129 => 2.8780634880836
1130 => 2.8871512757439
1201 => 2.6587436973537
1202 => 2.5356446806664
1203 => 2.6145497390298
1204 => 2.7108193559695
1205 => 2.6480324865606
1206 => 2.6504936129702
1207 => 2.5609760372921
1208 => 2.718739675093
1209 => 2.6957548400665
1210 => 2.8150002048436
1211 => 2.7865413415357
1212 => 2.8837813074331
1213 => 2.8581747655462
1214 => 2.9644660892763
1215 => 3.006868576035
1216 => 3.0780689507228
1217 => 3.1304442361809
1218 => 3.1612000055814
1219 => 3.1593535445486
1220 => 3.281223225377
1221 => 3.2093609323948
1222 => 3.1190849557672
1223 => 3.1174521481671
1224 => 3.164207355683
1225 => 3.2621934439716
1226 => 3.2875998110252
1227 => 3.3017985042079
1228 => 3.2800527113386
1229 => 3.2020513427234
1230 => 3.1683707472313
1231 => 3.1970675904114
]
'min_raw' => 1.1833088025252
'max_raw' => 3.3017985042079
'avg_raw' => 2.2425536533665
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$1.18'
'max' => '$3.30'
'avg' => '$2.24'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.46845423642107
'max_diff' => 1.7059360434082
'year' => 2036
]
11 => [
'items' => [
101 => 3.16197381715
102 => 3.2225555153728
103 => 3.3057471265853
104 => 3.2885683878452
105 => 3.3459943358728
106 => 3.4054241506955
107 => 3.490411455052
108 => 3.5126302834816
109 => 3.5493571619692
110 => 3.5871611840842
111 => 3.5993028171405
112 => 3.6224849619726
113 => 3.6223627806263
114 => 3.692223734416
115 => 3.7692825298596
116 => 3.7983704412244
117 => 3.8652564894909
118 => 3.7507164758012
119 => 3.8375963919257
120 => 3.9159642510153
121 => 3.822530858681
122 => 3.9513070228255
123 => 3.9563071094661
124 => 4.0318024813639
125 => 3.9552734587823
126 => 3.9098307694626
127 => 4.0410221108131
128 => 4.1045014684041
129 => 4.0853809692855
130 => 3.9398730268979
131 => 3.8551811632991
201 => 3.6335262204205
202 => 3.8960860750411
203 => 4.0239713212509
204 => 3.939541835005
205 => 3.9821231568975
206 => 4.2144330421029
207 => 4.3028816054379
208 => 4.2844849225663
209 => 4.2875936591365
210 => 4.3353188984571
211 => 4.5469588923739
212 => 4.4201393022423
213 => 4.5170881270585
214 => 4.5685094341661
215 => 4.6162724099482
216 => 4.4989816370709
217 => 4.3463880649013
218 => 4.2980552751527
219 => 3.9311469865212
220 => 3.912047816696
221 => 3.901326873909
222 => 3.8337328461447
223 => 3.7806224558844
224 => 3.738387101687
225 => 3.6275489197286
226 => 3.6649535524506
227 => 3.4883006241355
228 => 3.6013169074761
301 => 3.319374568451
302 => 3.554184526353
303 => 3.4263881417656
304 => 3.5121999769433
305 => 3.5119005875343
306 => 3.3538937923052
307 => 3.2627587703347
308 => 3.3208335533624
309 => 3.3830943307501
310 => 3.3931959324109
311 => 3.4739186554666
312 => 3.4964466323423
313 => 3.4281858106782
314 => 3.3135319401514
315 => 3.3401634192984
316 => 3.2622190842598
317 => 3.1256246351901
318 => 3.2237291532222
319 => 3.2572263490296
320 => 3.2720206189912
321 => 3.1376956663096
322 => 3.0954878498405
323 => 3.0730167625102
324 => 3.2961922755408
325 => 3.3084183339348
326 => 3.2458680906004
327 => 3.5286011217294
328 => 3.4646099290953
329 => 3.5361037694904
330 => 3.3377468917038
331 => 3.3453243915582
401 => 3.251419066804
402 => 3.3039997739103
403 => 3.2668374248829
404 => 3.2997517723888
405 => 3.3194804965729
406 => 3.4133704123873
407 => 3.5552565983741
408 => 3.3993463899174
409 => 3.3314140794175
410 => 3.3735589027858
411 => 3.4857961211955
412 => 3.6558412524038
413 => 3.5551711122513
414 => 3.5998468109611
415 => 3.6096064636457
416 => 3.5353760293085
417 => 3.658578234399
418 => 3.7246032969999
419 => 3.7923313492668
420 => 3.8511377193533
421 => 3.7652792758196
422 => 3.857160117725
423 => 3.7831203783012
424 => 3.7166990779505
425 => 3.7167998116456
426 => 3.6751327596752
427 => 3.5943975960962
428 => 3.5795087932326
429 => 3.6569622259776
430 => 3.7190725441717
501 => 3.7241882474666
502 => 3.7585757109622
503 => 3.7789258576399
504 => 3.978384959764
505 => 4.0586090606506
506 => 4.1567055726502
507 => 4.1949196924905
508 => 4.3099304926896
509 => 4.2170499308083
510 => 4.1969546369992
511 => 3.9179760554621
512 => 3.9636587825601
513 => 4.0368012363716
514 => 3.9191821475854
515 => 3.9937843872379
516 => 4.0085124496368
517 => 3.9151854959559
518 => 3.9650354543365
519 => 3.8326487443603
520 => 3.5581422668805
521 => 3.6588838385802
522 => 3.7330635445976
523 => 3.627199957819
524 => 3.8169563396331
525 => 3.7061045787441
526 => 3.6709698923652
527 => 3.5338969543811
528 => 3.5985901046884
529 => 3.6860885167957
530 => 3.6320246708956
531 => 3.7442152688656
601 => 3.9031070757307
602 => 4.0163428394734
603 => 4.0250356753595
604 => 3.9522326654799
605 => 4.0688999534346
606 => 4.0697497472588
607 => 3.938148569846
608 => 3.8575435814391
609 => 3.8392299584787
610 => 3.8849809792311
611 => 3.9405311645288
612 => 4.0281183240339
613 => 4.0810454101376
614 => 4.2190511803385
615 => 4.2563915848193
616 => 4.2974173684405
617 => 4.3522404672415
618 => 4.4180696537061
619 => 4.2740391413792
620 => 4.2797617421404
621 => 4.1456425232997
622 => 4.0023169033269
623 => 4.1110831830955
624 => 4.2532806253212
625 => 4.2206603749604
626 => 4.2169899304236
627 => 4.2231626000381
628 => 4.1985679965439
629 => 4.087327516458
630 => 4.0314632437611
701 => 4.103542408036
702 => 4.1418492759736
703 => 4.2012598874349
704 => 4.1939362755664
705 => 4.3469716304568
706 => 4.4064365418183
707 => 4.391222872845
708 => 4.3940225540735
709 => 4.5016809356791
710 => 4.6214191976593
711 => 4.7335698808592
712 => 4.8476543727939
713 => 4.7101210649731
714 => 4.6402901331368
715 => 4.7123378299034
716 => 4.6741083078543
717 => 4.8937864811615
718 => 4.9089965212523
719 => 5.1286588093272
720 => 5.337144477609
721 => 5.2061983647699
722 => 5.3296746512347
723 => 5.4632243222157
724 => 5.7208633051913
725 => 5.6340995595738
726 => 5.5676398901921
727 => 5.5048358237571
728 => 5.6355211161435
729 => 5.80364565705
730 => 5.8398580728845
731 => 5.8985360207438
801 => 5.8368433333678
802 => 5.9111453800856
803 => 6.1734642549731
804 => 6.1025833794257
805 => 6.0019211414791
806 => 6.2089966998303
807 => 6.2839365394117
808 => 6.8099035798927
809 => 7.4739586951148
810 => 7.1990355169919
811 => 7.0283818286155
812 => 7.0684894933436
813 => 7.3109799417384
814 => 7.3888601775007
815 => 7.1771548497716
816 => 7.2519327505385
817 => 7.663966335765
818 => 7.8850091346189
819 => 7.5848033237667
820 => 6.7565473979607
821 => 5.9928576083214
822 => 6.1954225299332
823 => 6.1724579541438
824 => 6.6151366392331
825 => 6.1008928939858
826 => 6.1095514398041
827 => 6.5613842512962
828 => 6.4408430035656
829 => 6.2455816199985
830 => 5.9942832325107
831 => 5.5297349209521
901 => 5.1182715265166
902 => 5.9252459973651
903 => 5.8904477907942
904 => 5.8400548308744
905 => 5.9521989100882
906 => 6.4967387260985
907 => 6.4841853208361
908 => 6.4043269613603
909 => 6.4648988231834
910 => 6.2349630797602
911 => 6.2942227563799
912 => 5.992736635957
913 => 6.1290209535607
914 => 6.2451626767657
915 => 6.2684798472067
916 => 6.3210146228145
917 => 5.8721107171741
918 => 6.0736553916804
919 => 6.1920440057707
920 => 5.6571599402962
921 => 6.1814710675796
922 => 5.864296298898
923 => 5.7566424186023
924 => 5.9015841861002
925 => 5.8451002383458
926 => 5.7965386569152
927 => 5.7694404600831
928 => 5.8758696974944
929 => 5.8709046463587
930 => 5.696765756929
1001 => 5.469608674477
1002 => 5.5458500475249
1003 => 5.5181508419299
1004 => 5.417765347585
1005 => 5.4854130501827
1006 => 5.1875268036614
1007 => 4.6750289993014
1008 => 5.0136007470939
1009 => 5.0005661030991
1010 => 4.9939934445229
1011 => 5.2484207555532
1012 => 5.2239634402344
1013 => 5.1795731734441
1014 => 5.4169500855242
1015 => 5.3303043194449
1016 => 5.5973261541912
1017 => 5.7732040044446
1018 => 5.7285956925679
1019 => 5.8940096608226
1020 => 5.547606494774
1021 => 5.6626677312526
1022 => 5.6863816926228
1023 => 5.4140208912762
1024 => 5.2279649594893
1025 => 5.215557150032
1026 => 4.8929618044003
1027 => 5.0652896341381
1028 => 5.2169309928972
1029 => 5.1443065498964
1030 => 5.1213158208359
1031 => 5.2387704695254
1101 => 5.2478977016596
1102 => 5.0397958417388
1103 => 5.0830668081452
1104 => 5.2635139312594
1105 => 5.0785200036224
1106 => 4.7191070208101
1107 => 4.6299676317995
1108 => 4.6180747941405
1109 => 4.3763217014095
1110 => 4.6359243520097
1111 => 4.5226008381042
1112 => 4.8805884607076
1113 => 4.6761078506027
1114 => 4.6672931001913
1115 => 4.6539683121017
1116 => 4.4458814384935
1117 => 4.491439239203
1118 => 4.6428803074103
1119 => 4.6969161866524
1120 => 4.6912798017445
1121 => 4.6421381635577
1122 => 4.6646349538737
1123 => 4.5921649538644
1124 => 4.5665742885285
1125 => 4.4858031094614
1126 => 4.3670917898405
1127 => 4.3835993269326
1128 => 4.1484011402571
1129 => 4.0202526852437
1130 => 3.9847828818655
1201 => 3.9373511784031
1202 => 3.9901404189826
1203 => 4.1477348533454
1204 => 3.9576425299795
1205 => 3.6317425749947
1206 => 3.6513297175958
1207 => 3.6953362115456
1208 => 3.6133304012022
1209 => 3.5357187839382
1210 => 3.6031957883198
1211 => 3.4651076811295
1212 => 3.7120234995758
1213 => 3.7053451186604
1214 => 3.7973800666054
1215 => 3.8549314083027
1216 => 3.7222941981586
1217 => 3.6889362984966
1218 => 3.7079384741761
1219 => 3.3938748380629
1220 => 3.7717143671889
1221 => 3.774981939127
1222 => 3.7470030043933
1223 => 3.9481908891662
1224 => 4.372760078112
1225 => 4.2130200709745
1226 => 4.1511639120436
1227 => 4.0335753086994
1228 => 4.1902551409352
1229 => 4.1782245744056
1230 => 4.123817790102
1231 => 4.0909123971957
]
'min_raw' => 3.0730167625102
'max_raw' => 7.8850091346189
'avg_raw' => 5.4790129485646
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$3.07'
'max' => '$7.88'
'avg' => '$5.47'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 1.889707959985
'max_diff' => 4.583210630411
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.096458484717593
]
1 => [
'year' => 2028
'avg' => 0.16555076187358
]
2 => [
'year' => 2029
'avg' => 0.45225484381685
]
3 => [
'year' => 2030
'avg' => 0.34891393848658
]
4 => [
'year' => 2031
'avg' => 0.34267672802218
]
5 => [
'year' => 2032
'avg' => 0.60082014855815
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.096458484717593
'min' => '$0.096458'
'max_raw' => 0.60082014855815
'max' => '$0.60082'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.60082014855815
]
1 => [
'year' => 2033
'avg' => 1.5453712036989
]
2 => [
'year' => 2034
'avg' => 0.97953053596918
]
3 => [
'year' => 2035
'avg' => 1.1553585134519
]
4 => [
'year' => 2036
'avg' => 2.2425536533665
]
5 => [
'year' => 2037
'avg' => 5.4790129485646
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.60082014855815
'min' => '$0.60082'
'max_raw' => 5.4790129485646
'max' => '$5.47'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 5.4790129485646
]
]
]
]
'prediction_2025_max_price' => '$0.164926'
'last_price' => 0.159917
'sma_50day_nextmonth' => '$0.142792'
'sma_200day_nextmonth' => '—'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'decrease'
'sma_200day_direction_label' => 'diminuer'
'sma_200day_date_nextmonth' => '4 févr. 2026'
'sma_50day_date_nextmonth' => '4 févr. 2026'
'daily_sma3' => '$0.168181'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.169852'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.171024'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.133858'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.169346'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '—'
'daily_sma100_action' => '—'
'daily_sma200' => '—'
'daily_sma200_action' => '—'
'daily_ema3' => '$0.1659076'
'daily_ema3_action' => 'SELL'
'daily_ema5' => '$0.167266'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.161796'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.151776'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.1925061'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.171123'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.085561'
'daily_ema200_action' => 'BUY'
'weekly_sma21' => '—'
'weekly_sma21_action' => '—'
'weekly_sma50' => '—'
'weekly_sma50_action' => '—'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.162435'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.164993'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.208547'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.139433'
'weekly_ema21_action' => 'BUY'
'weekly_ema50' => '$0.058562'
'weekly_ema50_action' => 'BUY'
'weekly_ema100' => '$0.029281'
'weekly_ema100_action' => 'BUY'
'weekly_ema200' => '$0.01464'
'weekly_ema200_action' => 'BUY'
'rsi_14' => '52.15'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 74.62
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => -0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.172279'
'vwma_10_action' => 'SELL'
'hma_9' => '0.168445'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 70.23
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => 42.32
'cci_20_action' => 'NEUTRAL'
'adx_14' => 24.89
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.042511'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0.01
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -29.77
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 53.32
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '—'
'ichimoku_cloud_action' => '—'
'sell_signals' => 19
'buy_signals' => 8
'sell_pct' => 70.37
'buy_pct' => 29.63
'overall_action' => 'bearish'
'overall_action_label' => 'Baissier'
'overall_action_dir' => -1
'last_updated' => 1767686754
'last_updated_date' => '6 janvier 2026'
]
Prévision du prix de Apro pour 2026
La prévision du prix de Apro pour 2026 suggère que le prix moyen pourrait varier entre $0.055251 à la baisse et $0.164926 à la hausse. Sur le marché des cryptomonnaies, comparé au prix moyen d'aujourd'hui, Apro pourrait potentiellement gagner 3.13% d'ici 2026 si AT atteint l'objectif de prix prévu.
Prévision du prix de Apro de 2027 à 2032
La prévision du prix de AT pour 2027-2032 se situe actuellement dans une fourchette de prix comprise entre $0.096458 à la baisse et $0.60082 à la hausse. Compte tenu de la volatilité des prix sur le marché, si Apro atteint l'objectif de prix le plus élevé, il pourrait gagner 275.71% d'ici 2032 par rapport au prix actuel.
| Prévision du Prix de Apro | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2027 | $0.053189 | $0.096458 | $0.139727 |
| 2028 | $0.09599 | $0.16555 | $0.23511 |
| 2029 | $0.210863 | $0.452254 | $0.693645 |
| 2030 | $0.17933 | $0.348913 | $0.518497 |
| 2031 | $0.212024 | $0.342676 | $0.473329 |
| 2032 | $0.323638 | $0.60082 | $0.8780013 |
Prévision du prix de Apro de 2032 à 2037
La prévision du prix de Apro pour 2032-2037 est actuellement estimée entre $0.60082 à la baisse et $5.47 à la hausse. Par rapport au prix actuel, Apro pourrait potentiellement gagner 3326.16% d'ici 2037 s'il atteint l'objectif de prix le plus élevé. Veuillez noter que ces informations sont à titre général seulement et ne doivent pas être considérées comme un conseil en investissement à long terme.
| Prévision du Prix de Apro | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2032 | $0.323638 | $0.60082 | $0.8780013 |
| 2033 | $0.752066 | $1.54 | $2.33 |
| 2034 | $0.604625 | $0.97953 | $1.35 |
| 2035 | $0.714854 | $1.15 | $1.59 |
| 2036 | $1.18 | $2.24 | $3.30 |
| 2037 | $3.07 | $5.47 | $7.88 |
Apro Histogramme des prix potentiels
Prévision du prix de Apro basée sur l'analyse technique
Au 6 janvier 2026, le sentiment global de prévision du prix pour Apro est Baissier, avec 8 indicateurs techniques montrant des signaux haussiers et 19 indiquant des signaux baissiers. La prévision du prix de AT a été mise à jour pour la dernière fois le 6 janvier 2026.
Moyennes Mobiles Simples sur 50 et 200 jours de Apro et Indice de Force Relative sur 14 jours - RSI (14)
Selon nos indicateurs techniques, le SMA sur 200 jours de Apro devrait diminuer au cours du prochain mois, atteignant — d'ici le 4 févr. 2026. Le SMA à court terme sur 50 jours pour Apro devrait atteindre $0.142792 d'ici le 4 févr. 2026.
Le Relative Strength Index (RSI), un oscillateur de momentum, est un outil couramment utilisé pour identifier si une cryptomonnaie est survendue (en dessous de 30) ou surachetée (au-dessus de 70). Actuellement, le RSI est à 52.15, ce qui suggère que le marché de AT est dans un état NEUTRAL.
Moyennes Mobiles et Oscillateurs Populaires de AT pour le Samedi 19 Octobre 2024
Les moyennes mobiles (MA) sont des indicateurs largement utilisés sur les marchés financiers, conçus pour lisser les mouvements de prix sur une période donnée. En tant qu'indicateurs retardés, ils sont basés sur des données historiques de prix. Le tableau ci-dessous met en évidence deux types : la moyenne mobile simple (SMA) et la moyenne mobile exponentielle (EMA).
Moyenne Mobile Simple Quotidienne (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 3 | $0.168181 | SELL |
| SMA 5 | $0.169852 | SELL |
| SMA 10 | $0.171024 | SELL |
| SMA 21 | $0.133858 | BUY |
| SMA 50 | $0.169346 | SELL |
| SMA 100 | — | — |
| SMA 200 | — | — |
Moyenne Mobile Exponentielle Quotidienne (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 3 | $0.1659076 | SELL |
| EMA 5 | $0.167266 | SELL |
| EMA 10 | $0.161796 | SELL |
| EMA 21 | $0.151776 | BUY |
| EMA 50 | $0.1925061 | SELL |
| EMA 100 | $0.171123 | SELL |
| EMA 200 | $0.085561 | BUY |
Moyenne Mobile Simple Hebdomadaire (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 21 | — | — |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Moyenne Mobile Exponentielle Hebdomadaire (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 21 | $0.139433 | BUY |
| EMA 50 | $0.058562 | BUY |
| EMA 100 | $0.029281 | BUY |
| EMA 200 | $0.01464 | BUY |
Oscillateurs de Apro
Un oscillateur est un outil d'analyse technique qui établit des limites hautes et basses entre deux extrêmes, créant un indicateur de tendance qui fluctue à l'intérieur de ces limites. Les traders utilisent cet indicateur pour identifier les conditions de surachat ou de survente à court terme.
| Période | Valeur | Action |
|---|---|---|
| RSI (14) | 52.15 | NEUTRAL |
| Stoch RSI (14) | 74.62 | NEUTRAL |
| Stochastique Rapide (14) | 70.23 | NEUTRAL |
| Indice de Canal des Matières Premières (20) | 42.32 | NEUTRAL |
| Indice Directionnel Moyen (14) | 24.89 | NEUTRAL |
| Oscillateur Impressionnant (5, 34) | 0.042511 | BUY |
| Momentum (10) | -0 | SELL |
| MACD (12, 26) | 0.01 | NEUTRAL |
| Plage de Pourcentage de Williams (14) | -29.77 | NEUTRAL |
| Oscillateur Ultime (7, 14, 28) | 53.32 | NEUTRAL |
| VWMA (10) | 0.172279 | SELL |
| Moyenne Mobile de Hull (9) | 0.168445 | SELL |
| Nuage Ichimoku B/L (9, 26, 52, 26) | — | — |
Prévision du cours de Apro basée sur les flux monétaires mondiaux
Définitions des flux monétaires mondiaux utilisés pour la prédiction du cours de Apro
M0 : le total de toutes les devises physiques, plus les comptes à la banque centrale qui peuvent être échangés contre des devises physiques.
M1 : M0 plus le montant des comptes à vue, y compris les comptes de "chèques" et les comptes "courants".
M2 : M1 plus la plupart des comptes d'épargne, comptes du marché monétaire et comptes de certificats de dépôt (CD) de moins de 100 000 $.
Prédictions du cours de Apro par des sociétés Internet ou des niches technologiques
| Comparaison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Action Facebook | $0.22471 | $0.315755 | $0.443688 | $0.623456 | $0.876061 | $1.23 |
| Action Amazon.com | $0.333676 | $0.696235 | $1.45 | $3.03 | $6.32 | $13.19 |
| Action Apple | $0.22683 | $0.321741 | $0.456365 | $0.647319 | $0.918172 | $1.30 |
| Action Netflix | $0.252323 | $0.398127 | $0.628183 | $0.991174 | $1.56 | $2.46 |
| Action Google | $0.207091 | $0.268182 | $0.347295 | $0.449746 | $0.582419 | $0.75423 |
| Action Tesla | $0.362519 | $0.8218048 | $1.86 | $4.22 | $9.57 | $21.70 |
| Action Kodak | $0.11992 | $0.089927 | $0.067436 | $0.05057 | $0.037922 | $0.028437 |
| Action Nokia | $0.105938 | $0.070179 | $0.046491 | $0.030798 | $0.0204026 | $0.013515 |
Ce calcul montre la valeur potentielle des cryptomonnaies si l'on suppose que leur capitalisation se comportera comme celle de certaines sociétés Internet ou niches technologiques. En extrapolant les données, vous pourrez obtenir une potentielle image des cours futurs pour 2024, 2025, 2026, 2027, 2028, 2029 et 2030.
Aperçu des prévisions relatives à Apro
Vous vous posez peut-être des questions telles que : "Devrais-je investir dans Apro maintenant ?", "Devrais-je acheter AT aujourd'hui ?", " Apro sera-t-il un bon ou un mauvais investissement à court ou à long terme ?".
Nous mettons régulièrement à jour les prévisions de Apro avec de nouvelles valeurs. Regardez nos prévisions similaires. Nous faisons une prévision des cours futurs pour une grande quantité de devises numériques comme Apro en utilisant des méthodes d'analyse technique.
Si vous souhaitez trouver des cryptomonnaies ayant un bon rendement, vous devriez consulter un maximum d'informations disponibles à propos de Apro afin de prendre une décision responsable concernant cet investissement.
Le cours de Apro est de $0.1599 USD actuellement, mais ce cours peut subir une hausse ou une baisse, ce qui pourrait causer la perte de votre investissement, car les cryptomonnaies sont des actifs à haut risque.
Prévision à court terme de Apro
basée sur l'historique des cours sur 4 heures
Prévision à long terme de Apro
basée sur l'historique des cours sur 1 mois
Prévision du cours de Apro basée sur le modèle de croissance du Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Apro présente 1 % de la précédente croissance annuelle moyenne du Bitcoin | $0.164073 | $0.168338 | $0.172714 | $0.1772036 |
| Si Apro présente 2 % de la précédente croissance annuelle moyenne du Bitcoin | $0.16823 | $0.176976 | $0.186176 | $0.195855 |
| Si Apro présente 5 % de la précédente croissance annuelle moyenne du Bitcoin | $0.18070078 | $0.204185 | $0.230722 | $0.2607091 |
| Si Apro présente 10 % de la précédente croissance annuelle moyenne du Bitcoin | $0.201484 | $0.253856 | $0.319842 | $0.402979 |
| Si Apro présente 20 % de la précédente croissance annuelle moyenne du Bitcoin | $0.243052 | $0.3694062 | $0.561447 | $0.853323 |
| Si Apro présente 50 % de la précédente croissance annuelle moyenne du Bitcoin | $0.367754 | $0.845711 | $1.94 | $4.47 |
| Si Apro présente 100 % de la précédente croissance annuelle moyenne du Bitcoin | $0.575592 | $2.07 | $7.45 | $26.83 |
Boîte à questions
Est-ce que AT est un bon investissement ?
La décision d'acquérir Apro dépend entièrement de votre tolérance individuelle au risque. Comme vous pouvez le discerner, la valeur de Apro a connu une baisse de -1.2409% au cours des 24 heures précédentes, et Apro a enregistré une déclin de sur une période de 30 jours précédents. Par conséquent, la détermination de si investir ou non dans Apro dépendra de la mesure dans laquelle cet investissement s'aligne avec vos aspirations de trading.
Est-ce que Apro peut monter ?
Il semble que la valeur moyenne de Apro pourrait potentiellement s'envoler jusqu'à $0.164926 pour la fin de cette année. En regardant les perspectives de Apro sur une période de cinq ans plus longue, la monnaie numérique pourrait potentiellement croître jusqu'à $0.518497. Cependant, compte tenu de l'imprévisibilité du marché, il est essentiel de mener des recherches approfondies avant d'investir des fonds dans un projet, un réseau ou un actif particulier.
Quel sera le prix de Apro la semaine prochaine ?
Basé sur notre nouveau pronostic expérimental de Apro, le prix de Apro va augmenter de 0.86% durant la prochaine semaine et atteindre $0.161285 d'ici 13 janvier 2026.
Quel sera le prix de Apro le mois prochain ?
Basé sur notre nouveau pronostic expérimental de Apro, le prix de Apro va diminuer de -11.62% durant le prochain mois et atteindre $0.141337 d'ici 5 février 2026.
Jusqu'où le prix de Apro peut-il monter cette année en 2026 ?
Selon notre prédiction la plus récente sur la valeur de Apro en 2026, AT devrait fluctuer dans la fourchette de $0.055251 et $0.164926. Cependant, il est crucial de garder à l'esprit que le marché des cryptomonnaies est exceptionnellement instable, et cette prévision de prix de Apro ne prend pas en compte les fluctuations de prix soudaines et extrêmes.
Où sera Apro dans 5 ans ?
L'avenir de Apro semble suivre une tendance haussière, avec un prix maximum de $0.518497 prévue après une période de cinq ans. Selon la prévision de Apro pour 2030, la valeur de Apro pourrait potentiellement atteindre son point le plus élevé d'environ $0.518497, tandis que son point le plus bas devrait être autour de $0.17933.
Combien vaudra Apro en 2026 ?
Basé sur notre nouvelle simulation expérimentale de prédiction de prix de Apro, il est attendu que la valeur de AT en 2026 augmente de 3.13% jusqu'à $0.164926 si le meilleur scénario se produit. Le prix sera entre $0.164926 et $0.055251 durant 2026.
Combien vaudra Apro en 2027 ?
Selon notre dernière simulation expérimentale pour la prédiction de prix de Apro, le valeur de AT pourrait diminuer de -12.62% jusqu'à $0.139727 en 2027, en supposant les conditions les plus favorables. Il est prévu que le prix fluctue entre $0.139727 et $0.053189 tout au long de l'année.
Combien vaudra Apro en 2028 ?
Notre nouveau modèle expérimental de prédiction de prix de Apro suggère que la valeur de AT en 2028 pourrait augmenter de 47.02%, atteignant $0.23511 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.23511 et $0.09599 durant l'année.
Combien vaudra Apro en 2029 ?
Basé sur notre modèle de prévision expérimental, la valeur de Apro pourrait connaître un 333.75% croissance en 2029, atteignant potentiellement $0.693645 sous des conditions optimales. Le range de prix prévu pour 2029 se situe entre $0.693645 et $0.210863.
Combien vaudra Apro en 2030 ?
En utilisant notre nouvelle simulation expérimentale pour les prédictions de prix de Apro, il est prévu que la valeur de AT en 2030 augmente de 224.23%, atteignant $0.518497 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.518497 et $0.17933 au cours de 2030.
Combien vaudra Apro en 2031 ?
Notre simulation expérimentale indique que le prix de Apro pourrait augmenter de 195.98% en 2031, atteignant potentiellement $0.473329 dans des conditions idéales. Il est probable que le prix fluctue entre $0.473329 et $0.212024 durant l'année.
Combien vaudra Apro en 2032 ?
Basé sur les résultats de notre dernière prédiction expérimentale de prix de Apro, AT pourrait connaître une 449.04% hausse en valeur, atteignant $0.8780013 si le scénario le plus positif se réalise en 2032. Il est prévu que le prix reste dans une fourchette de $0.8780013 et $0.323638 tout au long de l'année.
Combien vaudra Apro en 2033 ?
Selon notre prédiction expérimentale de prix de Apro, la valeur de AT est anticipée à augmenter de 1362.43% en 2033, avec le prix potentiel le plus élevé étant $2.33. Tout au long de l'année, le prix de AT pourrait osciller entre $2.33 et $0.752066.
Combien vaudra Apro en 2034 ?
Les résultats de notre nouvelle simulation de prédiction de prix de Apro suggèrent que AT pourrait augmenter de 746.96% en 2034, atteignant potentiellement $1.35 dans les meilleures circonstances. La fourchette de prix prévue pour l'année est entre $1.35 et $0.604625.
Combien vaudra Apro en 2035 ?
Basé sur notre prédiction expérimentale pour le prix de Apro, AT pourrait augmenter de 897.93%, avec la valeur potentiellement atteignant $1.59 en 2035. La fourchette de prix attendue pour l'année se situe entre $1.59 et $0.714854.
Combien vaudra Apro en 2036 ?
Notre récente simulation de prédiction de prix de Apro suggère que la valeur de AT pourrait augmenter de 1964.7% en 2036, pouvant atteindre $3.30 si les conditions sont optimales. La fourchette de prix attendue pour 2036 est entre $3.30 et $1.18.
Combien vaudra Apro en 2037 ?
Selon la simulation expérimentale, la valeur de Apro pourrait augmenter de 4830.69% en 2037, avec un maximum de $7.88 sous des conditions favorables. Il est prévu que le prix chute entre $7.88 et $3.07 au cours de l'année.
Prévisions liées
Comment lire et prédire les mouvements de prix de Apro ?
Les traders de Apro utilisent des indicateurs et des modèles graphiques pour prédire la direction du marché. Ils identifient également des niveaux clés de support et de résistance pour évaluer quand une tendance baissière pourrait ralentir ou une tendance haussière pourrait s'arrêter.
Indicateurs de prédiction du prix de Apro
Les moyennes mobiles sont des outils populaires pour la prédiction du prix de Apro. Une moyenne mobile simple (SMA) calcule le prix de clôture moyen de AT sur une période spécifique, comme une SMA de 12 jours. Une moyenne mobile exponentielle (EMA) donne plus de poids aux prix récents, réagissant plus rapidement aux changements de prix.
Les moyennes mobiles couramment utilisées sur le marché des cryptomonnaies incluent les moyennes sur 50 jours, 100 jours et 200 jours, qui aident à identifier les niveaux clés de résistance et de support. Un mouvement de prix de AT au-dessus de ces moyennes est considéré comme haussier, tandis qu'une chute en dessous indique une faiblesse.
Les traders utilisent également le RSI et les niveaux de retracement de Fibonacci pour évaluer la direction future de AT.
Comment lire les graphiques de Apro et prédire les mouvements de prix ?
La plupart des traders préfèrent les graphiques en chandeliers aux simples graphiques linéaires parce qu'ils fournissent des informations plus détaillées. Les chandeliers peuvent représenter l'action des prix de Apro dans différentes périodes, comme 5 minutes pour les tendances à court terme et hebdomadaire pour les tendances à long terme. Les options populaires incluent les graphiques de 1 heure, 4 heures et 1 jour.
Par exemple, un graphique en chandeliers de 1 heure montre les prix d'ouverture, de clôture, les plus hauts et les plus bas de AT au sein de chaque heure. La couleur du chandelier est cruciale : le vert indique que le prix a clôturé plus haut qu'il n'a ouvert, tandis que le rouge signifie le contraire. Certains graphiques utilisent des chandeliers creux et pleins pour transmettre la même information.
Qu'est-ce qui affecte le prix de Apro ?
L'action du prix de Apro est déterminée par l'offre et la demande, influencée par des facteurs tels que les réductions de récompenses de bloc, les hard forks et les mises à jour de protocole. Les événements du monde réel, tels que les réglementations, l'adoption par les entreprises et les gouvernements et les piratages d'échanges de cryptomonnaies, impactent également le prix de AT. La capitalisation boursière de Apro peut changer rapidement.
Les traders surveillent souvent l'activité des « baleines » de AT, de grands détenteurs de Apro, car leurs actions peuvent influencer significativement les mouvements de prix sur le marché relativement petit de Apro.
Modèles de prédiction de prix haussiers et baissiers
Les traders identifient souvent des modèles de chandeliers pour obtenir un avantage dans les prédictions de prix des cryptomonnaies. Certaines formations indiquent des tendances haussières, tandis que d'autres suggèrent des mouvements baissiers.
Modèles de chandeliers haussiers couramment suivis :
- Marteau
- Englobante haussière
- Ligne pénétrante
- Étoile du matin
- Trois soldats blancs
Modèles de chandeliers baissiers courants :
- Harami baissier
- Nuage sombre
- Étoile du soir
- Étoile filante
- Pendu


