Predicción del precio de Apro - Pronóstico de AT
Predicción de precio de Apro hasta $0.16489 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.055239 | $0.16489 |
| 2027 | $0.053177 | $0.139697 |
| 2028 | $0.095969 | $0.235059 |
| 2029 | $0.210817 | $0.693494 |
| 2030 | $0.179291 | $0.518383 |
| 2031 | $0.211977 | $0.473225 |
| 2032 | $0.323568 | $0.8778091 |
| 2033 | $0.7519018 | $2.33 |
| 2034 | $0.604493 | $1.35 |
| 2035 | $0.714698 | $1.59 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en Apro hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,954.48, equivalente a un ROI del 39.54% en los próximos 90 días.
Predicción del precio a largo plazo de Apro para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'Apro'
'name_with_ticker' => 'Apro <small>AT</small>'
'name_lang' => 'Apro'
'name_lang_with_ticker' => 'Apro <small>AT</small>'
'name_with_lang' => 'Apro'
'name_with_lang_with_ticker' => 'Apro <small>AT</small>'
'image' => '/uploads/coins/apro.png?1762828426'
'price_for_sd' => 0.1598
'ticker' => 'AT'
'marketcap' => '$36.76M'
'low24h' => '$0.1524'
'high24h' => '$0.1624'
'volume24h' => '$9.66M'
'current_supply' => '230M'
'max_supply' => '1B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.1598'
'change_24h_pct' => '0.2371%'
'ath_price' => '$0.8593'
'ath_days' => 74
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '24 oct. 2025'
'ath_pct' => '-81.46%'
'fdv' => '$159.84M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$7.88'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.16125'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.141306'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.055239'
'current_year_max_price_prediction' => '$0.16489'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.179291'
'grand_prediction_max_price' => '$0.518383'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.16291167980207
107 => 0.16351993287751
108 => 0.16489035811465
109 => 0.15318022450842
110 => 0.15843773070616
111 => 0.16152602303562
112 => 0.14757300593808
113 => 0.16125021674997
114 => 0.15297637713503
115 => 0.15016811170082
116 => 0.15394907114715
117 => 0.15247562757381
118 => 0.15120884731296
119 => 0.15050196216136
120 => 0.15327828148948
121 => 0.1531487628744
122 => 0.14860616559325
123 => 0.14268053261993
124 => 0.14466936954804
125 => 0.14394680644661
126 => 0.14132814455453
127 => 0.14309280649135
128 => 0.13532212839657
129 => 0.12195308061919
130 => 0.13078508308593
131 => 0.13044506059834
201 => 0.1302736058413
202 => 0.13691061159643
203 => 0.13627261663485
204 => 0.13511464953232
205 => 0.14130687758061
206 => 0.13904663104576
207 => 0.1460121782851
208 => 0.15060013820027
209 => 0.14943648316083
210 => 0.15375148163659
211 => 0.14471518833398
212 => 0.14771668249595
213 => 0.14833528628283
214 => 0.14123046644769
215 => 0.13637700050078
216 => 0.13605332965569
217 => 0.12763808855257
218 => 0.1321334424244
219 => 0.13608916780123
220 => 0.13419468232242
221 => 0.13359494481597
222 => 0.13665887366922
223 => 0.13689696718189
224 => 0.13146840986092
225 => 0.132597178828
226 => 0.13730433306297
227 => 0.1324785706186
228 => 0.123102902473
301 => 0.12077760714414
302 => 0.12046736988357
303 => 0.1141609845302
304 => 0.12093299449685
305 => 0.11797683066782
306 => 0.12731531678343
307 => 0.1219812235975
308 => 0.12175128150137
309 => 0.1214036902979
310 => 0.11597552391076
311 => 0.11716394737157
312 => 0.12111444795732
313 => 0.12252403107189
314 => 0.12237700000467
315 => 0.12109508834926
316 => 0.12168194094066
317 => 0.11979148427078
318 => 0.11912392467419
319 => 0.11701692296063
320 => 0.11392021251578
321 => 0.11435082909636
322 => 0.10821543540674
323 => 0.10487254729464
324 => 0.10394727992377
325 => 0.10270997372586
326 => 0.10408703695117
327 => 0.10819805460729
328 => 0.10323929511296
329 => 0.094737849776476
330 => 0.095248801126956
331 => 0.096396757108669
401 => 0.094257548731236
402 => 0.092232967532146
403 => 0.09399317662529
404 => 0.090391002163648
405 => 0.096832062682767
406 => 0.096657850046588
407 => 0.099058679095605
408 => 0.10055996676993
409 => 0.097099984728271
410 => 0.096229808601581
411 => 0.096725500470644
412 => 0.088532818042322
413 => 0.098389162155591
414 => 0.098474400228776
415 => 0.09774454009663
416 => 0.10299273905646
417 => 0.11406807581601
418 => 0.10990108862268
419 => 0.10828750523357
420 => 0.10522008203134
421 => 0.10930724132274
422 => 0.10899341125878
423 => 0.10757415269302
424 => 0.1067157806841
425 => 0.10829735742967
426 => 0.10651980582279
427 => 0.10620050871034
428 => 0.1042659156076
429 => 0.1035753538883
430 => 0.10306408948338
501 => 0.10250123760937
502 => 0.10374274858949
503 => 0.10092932137417
504 => 0.097536603956171
505 => 0.097254536212575
506 => 0.098033350052293
507 => 0.097688782904089
508 => 0.097252886557634
509 => 0.096420641722945
510 => 0.096173732458591
511 => 0.096976067784398
512 => 0.096070277980617
513 => 0.09740682017702
514 => 0.097043354653851
515 => 0.095013065787404
516 => 0.092482574150597
517 => 0.092460047467144
518 => 0.091914857194832
519 => 0.091220475413137
520 => 0.091027314286772
521 => 0.093844936725088
522 => 0.099677330848059
523 => 0.098532292324357
524 => 0.099359700005999
525 => 0.1034297268842
526 => 0.1047234660388
527 => 0.10380520063076
528 => 0.10254822230408
529 => 0.10260352297118
530 => 0.10689899842665
531 => 0.10716690196187
601 => 0.10784380776641
602 => 0.10871382301881
603 => 0.10395336799029
604 => 0.10237930596744
605 => 0.10163342805537
606 => 0.099336412777297
607 => 0.1018135468235
608 => 0.10037022689623
609 => 0.10056498006525
610 => 0.10043814680844
611 => 0.10050740634308
612 => 0.096830262275082
613 => 0.09817002030846
614 => 0.095942412727626
615 => 0.092959896237575
616 => 0.092949897796496
617 => 0.093679864482107
618 => 0.093245651733906
619 => 0.092077196393127
620 => 0.092243169959331
621 => 0.090789066873792
622 => 0.092419724401302
623 => 0.092466485824418
624 => 0.091838593853811
625 => 0.094350846762317
626 => 0.095380118828735
627 => 0.094966826882932
628 => 0.095351121164065
629 => 0.098579873844556
630 => 0.099106301411831
701 => 0.099340105763362
702 => 0.099026838905452
703 => 0.09541013683596
704 => 0.095570552952147
705 => 0.094393525929334
706 => 0.093399062127109
707 => 0.093438835463923
708 => 0.093950119129511
709 => 0.096182924883527
710 => 0.10088173296176
711 => 0.10106004929355
712 => 0.10127617388953
713 => 0.10039708654217
714 => 0.10013194538647
715 => 0.10048173500957
716 => 0.10224636027217
717 => 0.10678545553865
718 => 0.10518103611549
719 => 0.10387661815019
720 => 0.10502094437432
721 => 0.10484478432164
722 => 0.10335781619582
723 => 0.10331608195303
724 => 0.10046211470711
725 => 0.099407067997989
726 => 0.098525391998967
727 => 0.097562624824769
728 => 0.096991864171657
729 => 0.097868811940915
730 => 0.098069380271486
731 => 0.096151918647579
801 => 0.095890575713505
802 => 0.097456416266871
803 => 0.096767348219754
804 => 0.097476071794279
805 => 0.097640501742887
806 => 0.097614024734018
807 => 0.096894558553867
808 => 0.097353124842305
809 => 0.096268478864959
810 => 0.095089089273154
811 => 0.09433671219215
812 => 0.093680163400637
813 => 0.094044454829008
814 => 0.092745822403851
815 => 0.092330363754736
816 => 0.09719777290185
817 => 0.10079338037229
818 => 0.10074109881565
819 => 0.10042284828535
820 => 0.099949992552082
821 => 0.10221176793004
822 => 0.10142381061399
823 => 0.10199711539745
824 => 0.10214304552637
825 => 0.10258473207527
826 => 0.10274259705225
827 => 0.10226541944752
828 => 0.1006639531237
829 => 0.096673251307595
830 => 0.094815568839503
831 => 0.094202502682884
901 => 0.094224786473299
902 => 0.09361010005444
903 => 0.093791152753107
904 => 0.093547137314555
905 => 0.093085031107611
906 => 0.094015921072911
907 => 0.094123197469571
908 => 0.093905916628364
909 => 0.093957094132149
910 => 0.092158101568812
911 => 0.092294875066196
912 => 0.091533302852426
913 => 0.091390517243234
914 => 0.089465329004501
915 => 0.086054578979089
916 => 0.087944465582683
917 => 0.085661748323812
918 => 0.084797248709066
919 => 0.088889655427997
920 => 0.08847889129911
921 => 0.087775841665329
922 => 0.086735884728586
923 => 0.086350154584698
924 => 0.084006580337753
925 => 0.083868109468761
926 => 0.085029648147375
927 => 0.0844936380133
928 => 0.083740876782148
929 => 0.081014451909095
930 => 0.077949047663531
1001 => 0.078041572949261
1002 => 0.079016621005901
1003 => 0.081851704733728
1004 => 0.08074398847382
1005 => 0.079940327617677
1006 => 0.079789826097278
1007 => 0.081673667721346
1008 => 0.084339698296425
1009 => 0.08559054019318
1010 => 0.084350993862129
1011 => 0.082927069778931
1012 => 0.083013737440047
1013 => 0.083590298561651
1014 => 0.083650886983396
1015 => 0.082724058786996
1016 => 0.082984955495355
1017 => 0.082588629538462
1018 => 0.080156377872569
1019 => 0.080112386152687
1020 => 0.079515472368521
1021 => 0.079497398056365
1022 => 0.078481898802376
1023 => 0.078339823436928
1024 => 0.076323488031735
1025 => 0.077650646101459
1026 => 0.076760458147214
1027 => 0.075418734926057
1028 => 0.075187421337003
1029 => 0.075180467771197
1030 => 0.076558117515503
1031 => 0.07763454746209
1101 => 0.0767759433478
1102 => 0.076580455834318
1103 => 0.078667751041267
1104 => 0.078402123700065
1105 => 0.078172092135696
1106 => 0.084100984499706
1107 => 0.079407803556352
1108 => 0.077361308787646
1109 => 0.074828382892557
1110 => 0.075653116336119
1111 => 0.075826899790533
1112 => 0.069735669607053
1113 => 0.06726445828023
1114 => 0.066416431678499
1115 => 0.065928380379866
1116 => 0.066150791485215
1117 => 0.063926411446896
1118 => 0.065421231620497
1119 => 0.063495106529476
1120 => 0.063172185389814
1121 => 0.06661633565367
1122 => 0.067095569042452
1123 => 0.065051010519766
1124 => 0.066363948075288
1125 => 0.065887858666459
1126 => 0.063528124415848
1127 => 0.063437999924505
1128 => 0.062253968226218
1129 => 0.060401187892113
1130 => 0.059554417562694
1201 => 0.059113412223136
1202 => 0.05929537962126
1203 => 0.059203371336474
1204 => 0.058602955041443
1205 => 0.059237786495683
1206 => 0.057616054460568
1207 => 0.056970267697002
1208 => 0.056678580798039
1209 => 0.055239200273461
1210 => 0.057529894783489
1211 => 0.057981190459373
1212 => 0.058433375327152
1213 => 0.062369335881442
1214 => 0.062172706415059
1215 => 0.063950141028729
1216 => 0.063881073188135
1217 => 0.063374120043784
1218 => 0.061235368117513
1219 => 0.062087836515737
1220 => 0.059464071289007
1221 => 0.061429974595566
1222 => 0.060532818424537
1223 => 0.061126645191684
1224 => 0.060058891121154
1225 => 0.06064983031027
1226 => 0.058088209406092
1227 => 0.055696203848748
1228 => 0.056658816712018
1229 => 0.057705286982527
1230 => 0.059974301164655
1231 => 0.05862289503674
]
'min_raw' => 0.055239200273461
'max_raw' => 0.16489035811465
'avg_raw' => 0.11006477919406
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.055239'
'max' => '$0.16489'
'avg' => '$0.110064'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.10464279972654
'max_diff' => 0.0050083581146501
'year' => 2026
]
1 => [
'items' => [
101 => 0.059108911782662
102 => 0.057480837042045
103 => 0.054121653815595
104 => 0.05414066642785
105 => 0.053623929272245
106 => 0.053177392924943
107 => 0.058778120287143
108 => 0.058081581305256
109 => 0.056971737598388
110 => 0.058457307503467
111 => 0.058850115765535
112 => 0.058861298464532
113 => 0.059945131919169
114 => 0.060523574028197
115 => 0.060625526957024
116 => 0.062330962315667
117 => 0.062902601752647
118 => 0.06525710369213
119 => 0.060474497256596
120 => 0.060376002624337
121 => 0.058478212518555
122 => 0.057274604030593
123 => 0.058560624621458
124 => 0.059699863305647
125 => 0.058513611840088
126 => 0.058668511238355
127 => 0.057076065566148
128 => 0.057645289962429
129 => 0.058135582695313
130 => 0.057864871866289
131 => 0.057459604652689
201 => 0.05960645872525
202 => 0.059485324804887
203 => 0.061484524673218
204 => 0.063043043934736
205 => 0.065836189070018
206 => 0.062921396511402
207 => 0.062815169885315
208 => 0.063853552194603
209 => 0.062902442781726
210 => 0.063503511099483
211 => 0.065739347671548
212 => 0.06578658737513
213 => 0.064995261475202
214 => 0.064947109222275
215 => 0.065099092017513
216 => 0.065989259996319
217 => 0.065678207952425
218 => 0.066038165252493
219 => 0.06648829736809
220 => 0.068350234650262
221 => 0.068799141425435
222 => 0.067708530693243
223 => 0.067807000631309
224 => 0.067399082279535
225 => 0.067005038262924
226 => 0.067890791666759
227 => 0.069509523421795
228 => 0.069499453375559
301 => 0.069874967679079
302 => 0.070108909979243
303 => 0.069104658370708
304 => 0.068450927500907
305 => 0.068701609514365
306 => 0.069102455513028
307 => 0.068571620559466
308 => 0.065295061319412
309 => 0.06628896008543
310 => 0.066123526731598
311 => 0.065887929518358
312 => 0.06688730241318
313 => 0.066790910459488
314 => 0.063903597214537
315 => 0.064088433640614
316 => 0.063914837729804
317 => 0.064475761632012
318 => 0.062872151050212
319 => 0.063365410864691
320 => 0.063674778796309
321 => 0.063856998884709
322 => 0.064515302793492
323 => 0.064438058427912
324 => 0.064510501175272
325 => 0.065486592086209
326 => 0.070423324959778
327 => 0.070692020437799
328 => 0.069368865633269
329 => 0.069897439879604
330 => 0.068882692913121
331 => 0.069563899349935
401 => 0.070029963493236
402 => 0.06792390924864
403 => 0.067799202384454
404 => 0.066780267196274
405 => 0.067327785250963
406 => 0.066456644658012
407 => 0.066670392088318
408 => 0.066072735639017
409 => 0.067148398255547
410 => 0.0683511562019
411 => 0.068655020357499
412 => 0.067855684585861
413 => 0.067276912808401
414 => 0.066260780226457
415 => 0.067950631356222
416 => 0.068444795323845
417 => 0.067948035723272
418 => 0.067832925669407
419 => 0.067614792325334
420 => 0.067879203689535
421 => 0.06844210400075
422 => 0.068176650609118
423 => 0.068351987250978
424 => 0.067683784778568
425 => 0.069104990819778
426 => 0.071362208045078
427 => 0.07136946536755
428 => 0.071104010545025
429 => 0.070995392150952
430 => 0.071267764908008
501 => 0.071415515955396
502 => 0.072296319507094
503 => 0.073241456810827
504 => 0.077652000211639
505 => 0.076413537273765
506 => 0.080326833763366
507 => 0.083421743208689
508 => 0.084349771227353
509 => 0.083496029117274
510 => 0.080575423476938
511 => 0.080432124630738
512 => 0.084796742505296
513 => 0.083563538043571
514 => 0.083416852296872
515 => 0.081856363781484
516 => 0.082778805764341
517 => 0.082577054171283
518 => 0.082258579411614
519 => 0.08401853445704
520 => 0.087313013189807
521 => 0.08679953778388
522 => 0.086416252212793
523 => 0.084736806413045
524 => 0.085748207902293
525 => 0.085388067204092
526 => 0.086935460194501
527 => 0.086018818865934
528 => 0.083554195306883
529 => 0.083946694732167
530 => 0.083887369233635
531 => 0.085108283789583
601 => 0.08474179554485
602 => 0.083815806521924
603 => 0.087301753019655
604 => 0.087075395043945
605 => 0.087396318900864
606 => 0.087537599507579
607 => 0.08965943371148
608 => 0.090528681293697
609 => 0.090726015713181
610 => 0.091551733686266
611 => 0.090705471097799
612 => 0.094091124826668
613 => 0.096342386997994
614 => 0.098957343858882
615 => 0.10277849866678
616 => 0.10421528822221
617 => 0.10395574504923
618 => 0.10685290101434
619 => 0.11205902588349
620 => 0.10500805173409
621 => 0.11243274463451
622 => 0.11008217258444
623 => 0.1045090085387
624 => 0.10415016247744
625 => 0.10792437387498
626 => 0.11629521150033
627 => 0.11419841161643
628 => 0.11629864111378
629 => 0.11384861184487
630 => 0.1137269472412
701 => 0.11617964866076
702 => 0.12191051921735
703 => 0.11918799743439
704 => 0.11528459486877
705 => 0.11816680657955
706 => 0.11566996805957
707 => 0.11004389205296
708 => 0.11419680823308
709 => 0.11141987145168
710 => 0.11223032923457
711 => 0.1180670373109
712 => 0.11736474915314
713 => 0.11827357505942
714 => 0.11666952112296
715 => 0.11517108181022
716 => 0.11237413355744
717 => 0.11154609506767
718 => 0.11177493511654
719 => 0.1115459816659
720 => 0.10998111482375
721 => 0.10964318197818
722 => 0.10907994576372
723 => 0.10925451621812
724 => 0.10819546735436
725 => 0.11019411137093
726 => 0.1105650773124
727 => 0.11201952375457
728 => 0.11217052920914
729 => 0.11622114184786
730 => 0.11399013247423
731 => 0.11548688617814
801 => 0.11535300243887
802 => 0.10462979590288
803 => 0.10610735915189
804 => 0.10840598388246
805 => 0.10737045655705
806 => 0.105906463195
807 => 0.10472421006079
808 => 0.10293297567086
809 => 0.10545410367707
810 => 0.10876911891316
811 => 0.11225460346614
812 => 0.11644218477855
813 => 0.11550756537844
814 => 0.11217631954632
815 => 0.11232575680087
816 => 0.11324951910712
817 => 0.11205316298787
818 => 0.11170033421266
819 => 0.11320104585146
820 => 0.11321138042774
821 => 0.11183482812808
822 => 0.11030504215342
823 => 0.11029863229433
824 => 0.11002642165612
825 => 0.11389703751269
826 => 0.1160254848704
827 => 0.11626950792979
828 => 0.11600906017422
829 => 0.11610929617854
830 => 0.11487079955823
831 => 0.1177016355675
901 => 0.12029949063028
902 => 0.11960320997837
903 => 0.11855938629905
904 => 0.1177279304611
905 => 0.119407345407
906 => 0.1193325637031
907 => 0.12027680063262
908 => 0.12023396459132
909 => 0.11991645322647
910 => 0.11960322131771
911 => 0.12084515042984
912 => 0.12048749479032
913 => 0.1201292836128
914 => 0.1194108362569
915 => 0.11950848518471
916 => 0.11846484173626
917 => 0.11798200452313
918 => 0.11072129132612
919 => 0.10878099150924
920 => 0.10939144933007
921 => 0.10959242789522
922 => 0.10874800692835
923 => 0.1099586896809
924 => 0.10977000605634
925 => 0.11050406366325
926 => 0.11004545633953
927 => 0.11006427774407
928 => 0.11141294409774
929 => 0.11180446767785
930 => 0.11160533562502
1001 => 0.11174480088897
1002 => 0.11495871903214
1003 => 0.1145018026475
1004 => 0.11425907492484
1005 => 0.11432631216284
1006 => 0.1151475371556
1007 => 0.11537743531635
1008 => 0.1144033406546
1009 => 0.11486272932826
1010 => 0.11681874799559
1011 => 0.11750324382809
1012 => 0.11968782594879
1013 => 0.11875977663607
1014 => 0.1204632513146
1015 => 0.12569915171911
1016 => 0.12988195125898
1017 => 0.12603527594062
1018 => 0.13371645461928
1019 => 0.13969735402026
1020 => 0.13946779713954
1021 => 0.13842488898829
1022 => 0.13161579403071
1023 => 0.12534996333286
1024 => 0.13059159677283
1025 => 0.13060495877442
1026 => 0.13015469781335
1027 => 0.12735816565447
1028 => 0.13005738455606
1029 => 0.13027163875035
1030 => 0.13015171337633
1031 => 0.12800761872694
1101 => 0.12473398249224
1102 => 0.12537364317652
1103 => 0.1264214204261
1104 => 0.12443775950341
1105 => 0.12380385964436
1106 => 0.12498240008672
1107 => 0.12877990295066
1108 => 0.12806200703167
1109 => 0.12804325986798
1110 => 0.13111472304467
1111 => 0.1289162182734
1112 => 0.12538171134623
1113 => 0.1244892017327
1114 => 0.12132139387118
1115 => 0.12350941004447
1116 => 0.1235881528513
1117 => 0.12238979875417
1118 => 0.1254789511767
1119 => 0.12545048409329
1120 => 0.12838317455883
1121 => 0.13398937726069
1122 => 0.13233134725726
1123 => 0.13040323875644
1124 => 0.13061287761113
1125 => 0.13291209841429
1126 => 0.13152193703059
1127 => 0.13202184875672
1128 => 0.13291134173802
1129 => 0.1334479949385
1130 => 0.1305356614742
1201 => 0.12985665723066
1202 => 0.12846765284648
1203 => 0.12810528752964
1204 => 0.12923660261803
1205 => 0.12893854106219
1206 => 0.12358153482329
1207 => 0.12302169786523
1208 => 0.12303886726547
1209 => 0.12163113061562
1210 => 0.11948399432908
1211 => 0.12512654029125
1212 => 0.12467336488311
1213 => 0.12417309430551
1214 => 0.12423437459676
1215 => 0.12668361255531
1216 => 0.12526293084987
1217 => 0.12904004600894
1218 => 0.12826358468271
1219 => 0.12746721005332
1220 => 0.12735712682137
1221 => 0.12705059053254
1222 => 0.12599936354103
1223 => 0.12472994377984
1224 => 0.12389176289824
1225 => 0.11428360237982
1226 => 0.11606682108394
1227 => 0.11811825165753
1228 => 0.11882639727094
1229 => 0.11761506519702
1230 => 0.12604719431447
1231 => 0.12758782555825
]
'min_raw' => 0.053177392924943
'max_raw' => 0.13969735402026
'avg_raw' => 0.096437373472602
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.053177'
'max' => '$0.139697'
'avg' => '$0.096437'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.0020618073485178
'max_diff' => -0.025193004094388
'year' => 2027
]
2 => [
'items' => [
101 => 0.12292115302796
102 => 0.12204820913652
103 => 0.12610442437066
104 => 0.12365803073233
105 => 0.12475964163788
106 => 0.12237856140904
107 => 0.12721673260657
108 => 0.1271798738482
109 => 0.1252977159773
110 => 0.12688850292132
111 => 0.12661206454246
112 => 0.12448711294177
113 => 0.12728409736252
114 => 0.1272854846319
115 => 0.1254739486028
116 => 0.12335847111705
117 => 0.12298027370795
118 => 0.12269535276386
119 => 0.1246895685516
120 => 0.12647757619114
121 => 0.12980461512364
122 => 0.13064111175977
123 => 0.1339060138193
124 => 0.13196192360805
125 => 0.13282371361852
126 => 0.13375930858252
127 => 0.13420786721363
128 => 0.13347696499522
129 => 0.13854870178098
130 => 0.13897691175969
131 => 0.13912048686156
201 => 0.1374103257532
202 => 0.13892934908561
203 => 0.13821864837314
204 => 0.14006769418864
205 => 0.14035764818231
206 => 0.14011206746509
207 => 0.14020410343929
208 => 0.13587627080832
209 => 0.13565184985527
210 => 0.13259185423623
211 => 0.13383882506934
212 => 0.13150767286571
213 => 0.13224690524301
214 => 0.13257275183126
215 => 0.13240254806519
216 => 0.1339093269293
217 => 0.13262825708022
218 => 0.12924730312112
219 => 0.12586542802337
220 => 0.12582297133634
221 => 0.12493258331815
222 => 0.12428899586371
223 => 0.12441297363992
224 => 0.12484988749399
225 => 0.12426360163624
226 => 0.12438871544944
227 => 0.12646643837751
228 => 0.12688311089309
229 => 0.12546709488068
301 => 0.11978158626072
302 => 0.11838634818436
303 => 0.11938921764487
304 => 0.11890991063581
305 => 0.095969578421113
306 => 0.1013590691962
307 => 0.098156816787456
308 => 0.099632562025953
309 => 0.096363891535868
310 => 0.097923872419436
311 => 0.097635800911621
312 => 0.10630194259133
313 => 0.10616663270889
314 => 0.10623139838918
315 => 0.10313996372311
316 => 0.10806470308775
317 => 0.11049080678668
318 => 0.11004179956067
319 => 0.11015480500597
320 => 0.10821299705066
321 => 0.10625019933477
322 => 0.10407315459544
323 => 0.10811783463025
324 => 0.10766813525537
325 => 0.10869958382462
326 => 0.11132284794689
327 => 0.11170913355371
328 => 0.11222830532659
329 => 0.11204221920317
330 => 0.11647554561963
331 => 0.11593864053857
401 => 0.1172324273058
402 => 0.11457100976577
403 => 0.11155936319516
404 => 0.11213177875009
405 => 0.11207665052908
406 => 0.11137480500233
407 => 0.11074121024242
408 => 0.10968645348138
409 => 0.11302385994793
410 => 0.11288836734021
411 => 0.1150818351663
412 => 0.11469411842183
413 => 0.11210485111187
414 => 0.11219732730039
415 => 0.11281927411073
416 => 0.1149718391226
417 => 0.11561086697592
418 => 0.11531484381341
419 => 0.11601550868184
420 => 0.11656928562545
421 => 0.11608505453986
422 => 0.12294074555882
423 => 0.12009378467064
424 => 0.12148137359851
425 => 0.12181230538166
426 => 0.12096463057787
427 => 0.12114846088985
428 => 0.12142691372174
429 => 0.12311762479034
430 => 0.12755453984554
501 => 0.12951961932038
502 => 0.13543165787576
503 => 0.12935644682522
504 => 0.12899596894321
505 => 0.13006090561349
506 => 0.13353189809834
507 => 0.13634481149356
508 => 0.13727801714762
509 => 0.13740135568035
510 => 0.13915211152571
511 => 0.1401556121266
512 => 0.13893952371663
513 => 0.13790901611894
514 => 0.13421786581534
515 => 0.13464512651365
516 => 0.13758852903096
517 => 0.14174625845221
518 => 0.14531402283366
519 => 0.14406471609642
520 => 0.15359604462847
521 => 0.15454103692043
522 => 0.15441046954094
523 => 0.15656330261575
524 => 0.15229036737909
525 => 0.15046360478119
526 => 0.13813182355832
527 => 0.14159655107513
528 => 0.14663273599712
529 => 0.14596617803797
530 => 0.14230876593001
531 => 0.14531124835861
601 => 0.14431853377141
602 => 0.14353553858872
603 => 0.14712259131171
604 => 0.14317847949477
605 => 0.14659339046466
606 => 0.14221373182305
607 => 0.14407042282436
608 => 0.14301647521398
609 => 0.14369850848486
610 => 0.13971135591953
611 => 0.14186272666112
612 => 0.13962185182363
613 => 0.13962078935719
614 => 0.13957132192095
615 => 0.1422077012297
616 => 0.14229367346431
617 => 0.14034538517179
618 => 0.14006460639086
619 => 0.14110279270609
620 => 0.13988734843238
621 => 0.14045604715813
622 => 0.13990457373744
623 => 0.13978042545464
624 => 0.13879119081515
625 => 0.13836500133289
626 => 0.13853212121044
627 => 0.13796165491217
628 => 0.1376179283328
629 => 0.13950294605284
630 => 0.13849585712642
701 => 0.13934859523118
702 => 0.13837679253668
703 => 0.13500810100327
704 => 0.13307073087914
705 => 0.1267075848504
706 => 0.1285121651707
707 => 0.12970860379002
708 => 0.12931318083347
709 => 0.13016270235251
710 => 0.13021485607425
711 => 0.12993866796857
712 => 0.12961887752407
713 => 0.12946322122121
714 => 0.13062335577592
715 => 0.13129685293326
716 => 0.12982868241176
717 => 0.12948471060046
718 => 0.13096911205761
719 => 0.13187459608896
720 => 0.13856018142895
721 => 0.13806489167281
722 => 0.13930797176502
723 => 0.13916802002325
724 => 0.14047096599808
725 => 0.14260073200086
726 => 0.13827032222526
727 => 0.139021931628
728 => 0.13883765435965
729 => 0.14084954525546
730 => 0.14085582615924
731 => 0.13964959706579
801 => 0.14030351342618
802 => 0.13993851525307
803 => 0.14059811628434
804 => 0.13805827677615
805 => 0.1411515271384
806 => 0.14290520076914
807 => 0.1429295505292
808 => 0.14376077791216
809 => 0.14460535307469
810 => 0.14622644155217
811 => 0.1445601417969
812 => 0.14156263074818
813 => 0.141779041364
814 => 0.14002160173288
815 => 0.14005114461059
816 => 0.13989344241407
817 => 0.14036671857708
818 => 0.1381621342793
819 => 0.13867954580753
820 => 0.13795516663805
821 => 0.13902035696916
822 => 0.13787438825516
823 => 0.13883756549557
824 => 0.1392532408627
825 => 0.14078709191625
826 => 0.13764783720741
827 => 0.13124668434722
828 => 0.13259228428491
829 => 0.13060203628247
830 => 0.13078624131251
831 => 0.13115836478919
901 => 0.12995219085004
902 => 0.13018229082672
903 => 0.13017407003636
904 => 0.13010322770631
905 => 0.12978945528009
906 => 0.12933442318408
907 => 0.13114713100307
908 => 0.13145514538444
909 => 0.13213982319933
910 => 0.13417695995504
911 => 0.13397340195415
912 => 0.13430541349914
913 => 0.13358063416059
914 => 0.1308198617473
915 => 0.13096978497182
916 => 0.12910023995972
917 => 0.13209201473006
918 => 0.13138352297495
919 => 0.13092675373141
920 => 0.13080212001138
921 => 0.13284430643508
922 => 0.1334553606204
923 => 0.13307459265843
924 => 0.13229362645965
925 => 0.13379331243323
926 => 0.13419456513309
927 => 0.13428439081496
928 => 0.13694154682389
929 => 0.13443289631854
930 => 0.13503675342902
1001 => 0.13974787422637
1002 => 0.1354755377534
1003 => 0.1377386896676
1004 => 0.13762792015828
1005 => 0.1387856720967
1006 => 0.13753295070708
1007 => 0.13754847969008
1008 => 0.13857648497849
1009 => 0.13713283695265
1010 => 0.13677536939938
1011 => 0.13628153053478
1012 => 0.13735980962891
1013 => 0.13800618917947
1014 => 0.14321553364354
1015 => 0.1465810077423
1016 => 0.14643490363587
1017 => 0.14777002167325
1018 => 0.14716853876913
1019 => 0.14522619180856
1020 => 0.14854154122627
1021 => 0.1474924259504
1022 => 0.14757891373907
1023 => 0.14757569465925
1024 => 0.14827326460246
1025 => 0.14777897236635
1026 => 0.14680467163092
1027 => 0.14745145792781
1028 => 0.14937218199924
1029 => 0.15533416845197
1030 => 0.15867057505673
1031 => 0.15513331258504
1101 => 0.15757326887218
1102 => 0.15611016454522
1103 => 0.15584427496543
1104 => 0.1573767478251
1105 => 0.15891190307565
1106 => 0.15881412032285
1107 => 0.15769967644204
1108 => 0.15707015537174
1109 => 0.16183709982108
1110 => 0.16534930328858
1111 => 0.1651097945582
1112 => 0.16616690820165
1113 => 0.16927062655412
1114 => 0.16955439166321
1115 => 0.16951864378173
1116 => 0.16881530235103
1117 => 0.1718713161378
1118 => 0.17442069660416
1119 => 0.16865249913132
1120 => 0.17084895321773
1121 => 0.17183501222245
1122 => 0.1732828393919
1123 => 0.17572556651077
1124 => 0.17837901606324
1125 => 0.17875424292355
1126 => 0.1784880015099
1127 => 0.1767379802015
1128 => 0.17964141636404
1129 => 0.18134218117411
1130 => 0.18235494769719
1201 => 0.18492315509144
1202 => 0.17184110178716
1203 => 0.16258097423816
1204 => 0.16113487160352
1205 => 0.16407557817624
1206 => 0.16485101904777
1207 => 0.16453843980477
1208 => 0.1541153243544
1209 => 0.16107999605779
1210 => 0.16857339720439
1211 => 0.16886124926027
1212 => 0.17261260255389
1213 => 0.17383419695946
1214 => 0.17685452806195
1215 => 0.17666560552914
1216 => 0.17740100808863
1217 => 0.1772319517756
1218 => 0.1828264791372
1219 => 0.18899807361239
1220 => 0.18878437092018
1221 => 0.18789713119538
1222 => 0.18921483348357
1223 => 0.19558458037023
1224 => 0.19499815615002
1225 => 0.19556781732845
1226 => 0.20307810789103
1227 => 0.21284255394875
1228 => 0.20830598842058
1229 => 0.21814903025514
1230 => 0.22434470333277
1231 => 0.23505947927597
]
'min_raw' => 0.095969578421113
'max_raw' => 0.23505947927597
'avg_raw' => 0.16551452884854
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.095969'
'max' => '$0.235059'
'avg' => '$0.165514'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.04279218549617
'max_diff' => 0.095362125255707
'year' => 2028
]
3 => [
'items' => [
101 => 0.2337179365565
102 => 0.23788912020253
103 => 0.23131629510022
104 => 0.21622376007822
105 => 0.21383530863909
106 => 0.21861704890546
107 => 0.23037249075494
108 => 0.21824682820755
109 => 0.22069983394839
110 => 0.21999336813001
111 => 0.21995572356883
112 => 0.2213924633574
113 => 0.21930839735878
114 => 0.21081753756408
115 => 0.21470884857104
116 => 0.21320622651515
117 => 0.21487349771405
118 => 0.22387107273959
119 => 0.2198930303454
120 => 0.21570248583304
121 => 0.22095835860781
122 => 0.22765089076393
123 => 0.22723208412923
124 => 0.22641942421034
125 => 0.23100034562367
126 => 0.23856668571446
127 => 0.24061183703698
128 => 0.24212152593199
129 => 0.24232968652421
130 => 0.24447386999515
131 => 0.23294405506809
201 => 0.25124216746398
202 => 0.2544017459996
203 => 0.25380787618602
204 => 0.25731961475297
205 => 0.25628637218236
206 => 0.25478936580835
207 => 0.26035621840517
208 => 0.25397427112475
209 => 0.24491590042501
210 => 0.23994629910488
211 => 0.24649067100953
212 => 0.2504870905646
213 => 0.25312846967048
214 => 0.25392774939195
215 => 0.23383908177971
216 => 0.22301240410529
217 => 0.22995218036648
218 => 0.2384191863629
219 => 0.23289702042227
220 => 0.2331134788723
221 => 0.22524032144064
222 => 0.23911578609649
223 => 0.23709424760716
224 => 0.24758199286585
225 => 0.24507900829045
226 => 0.25363135741698
227 => 0.25137923727153
228 => 0.26072766208094
301 => 0.26445700183591
302 => 0.27071914370989
303 => 0.27532560076389
304 => 0.27803060045349
305 => 0.27786820241832
306 => 0.28858675881399
307 => 0.2822664005853
308 => 0.27432654105601
309 => 0.27418293404706
310 => 0.27829509980596
311 => 0.28691307111903
312 => 0.28914758569413
313 => 0.29039637450352
314 => 0.28848381097128
315 => 0.2816235150982
316 => 0.27866127412269
317 => 0.28118518925821
318 => 0.27809865792997
319 => 0.28342687693024
320 => 0.29074365966378
321 => 0.289232772963
322 => 0.29428344067891
323 => 0.29951035041914
324 => 0.30698506610288
325 => 0.30893923357053
326 => 0.31216939808422
327 => 0.31549429842258
328 => 0.31656216680268
329 => 0.3186010588804
330 => 0.31859031291272
331 => 0.32473465142218
401 => 0.33151204707244
402 => 0.33407035703335
403 => 0.33995304972241
404 => 0.32987914464653
405 => 0.33752031736726
406 => 0.34441284643232
407 => 0.33619528913534
408 => 0.34752127742395
409 => 0.34796103988395
410 => 0.35460093091999
411 => 0.34787012930576
412 => 0.34387340079271
413 => 0.35541180625442
414 => 0.36099487720098
415 => 0.35931321079534
416 => 0.3465156464143
417 => 0.33906691503117
418 => 0.31957214824856
419 => 0.34266454161382
420 => 0.35391217280769
421 => 0.34648651776673
422 => 0.35023158624483
423 => 0.37066346551881
424 => 0.37844260228012
425 => 0.37682459621404
426 => 0.37709801260456
427 => 0.38129549359964
428 => 0.39990943592686
429 => 0.38875553021659
430 => 0.39728227320322
501 => 0.40180482693787
502 => 0.40600562689127
503 => 0.39568978988218
504 => 0.38226903750309
505 => 0.37801812185977
506 => 0.34574818271658
507 => 0.34406839224293
508 => 0.34312547494721
509 => 0.33718051477601
510 => 0.33250940454308
511 => 0.32879476425865
512 => 0.31904643886683
513 => 0.32233621252148
514 => 0.30679941648054
515 => 0.31673930799729
516 => 0.29194220636689
517 => 0.31259396945454
518 => 0.30135415372638
519 => 0.30890138769396
520 => 0.30887505610564
521 => 0.29497820551861
522 => 0.28696279211988
523 => 0.29207052550211
524 => 0.29754642114024
525 => 0.2984348667844
526 => 0.30553450841473
527 => 0.30751586578747
528 => 0.30151226044734
529 => 0.29142834155243
530 => 0.29377060592201
531 => 0.28691532620719
601 => 0.2749017121915
602 => 0.28353009951515
603 => 0.28647621031085
604 => 0.28777738067446
605 => 0.27596337106292
606 => 0.27225115274835
607 => 0.2702747988662
608 => 0.28990330126556
609 => 0.29097859493583
610 => 0.2854772404875
611 => 0.3103438842538
612 => 0.30471579691976
613 => 0.31100374938676
614 => 0.29355806998093
615 => 0.29422451842795
616 => 0.28596545421781
617 => 0.29058997830462
618 => 0.28732151373543
619 => 0.29021636245884
620 => 0.29195152284775
621 => 0.30020923182672
622 => 0.31268825922654
623 => 0.29897580547559
624 => 0.29300109301034
625 => 0.29670777102072
626 => 0.30657914302268
627 => 0.32153477691188
628 => 0.31268074063929
629 => 0.31661001158578
630 => 0.31746838248649
701 => 0.31093974393332
702 => 0.32177549712769
703 => 0.32758246529405
704 => 0.33353921304999
705 => 0.33871129022218
706 => 0.33115995700457
707 => 0.33924096598851
708 => 0.33272909923757
709 => 0.32688728157757
710 => 0.32689614120356
711 => 0.3232314836501
712 => 0.3161307478637
713 => 0.31482126323986
714 => 0.32163336762277
715 => 0.32709603022918
716 => 0.32754596128583
717 => 0.33057037198648
718 => 0.33236018708522
719 => 0.34990280818846
720 => 0.35695859551636
721 => 0.36558627870169
722 => 0.36894724753196
723 => 0.37906255873706
724 => 0.37089362341353
725 => 0.36912622287128
726 => 0.34458978658079
727 => 0.3486076266488
728 => 0.35504057626159
729 => 0.34469586355051
730 => 0.35125720274105
731 => 0.35255255008543
801 => 0.34434435417104
802 => 0.34872870626412
803 => 0.33708516697469
804 => 0.31294205656493
805 => 0.32180237531125
806 => 0.32832655225958
807 => 0.31901574732909
808 => 0.33570500478908
809 => 0.32595548511716
810 => 0.32286535544064
811 => 0.31080965786175
812 => 0.31649948305263
813 => 0.32419505309374
814 => 0.31944008551438
815 => 0.32930735720353
816 => 0.34328204542062
817 => 0.35324124045118
818 => 0.35400578378181
819 => 0.34760268859141
820 => 0.35786368949804
821 => 0.35793842968746
822 => 0.34636397874735
823 => 0.33927469199335
824 => 0.33766399112685
825 => 0.34168783768787
826 => 0.34657353025599
827 => 0.35427690571665
828 => 0.35893189417156
829 => 0.37106963524687
830 => 0.37435375996554
831 => 0.37796201734695
901 => 0.38278376195389
902 => 0.38857350262446
903 => 0.37590587964737
904 => 0.37640918792366
905 => 0.36461327280257
906 => 0.35200764579034
907 => 0.36157374537903
908 => 0.37408014806634
909 => 0.37121116547153
910 => 0.37088834632161
911 => 0.3714312385892
912 => 0.36926811940492
913 => 0.35948441150336
914 => 0.35457109464445
915 => 0.36091052691326
916 => 0.36427965302847
917 => 0.36950487381447
918 => 0.36886075506157
919 => 0.38232036265858
920 => 0.38755035917337
921 => 0.38621230226071
922 => 0.38645853693478
923 => 0.39592719580761
924 => 0.40645829185242
925 => 0.41632205299891
926 => 0.42635589449551
927 => 0.41425970694386
928 => 0.40811800889426
929 => 0.41445467356526
930 => 0.41109235009581
1001 => 0.43041325808116
1002 => 0.43175099583009
1003 => 0.45107050669388
1004 => 0.46940702302818
1005 => 0.45789018565142
1006 => 0.46875004456796
1007 => 0.48049586740348
1008 => 0.50315546534428
1009 => 0.49552450993208
1010 => 0.48967931767866
1011 => 0.48415563924294
1012 => 0.49564953720842
1013 => 0.5104362533215
1014 => 0.51362117034686
1015 => 0.51878195265987
1016 => 0.51335602108817
1017 => 0.51989095801953
1018 => 0.54296215698399
1019 => 0.53672811536869
1020 => 0.52787477410276
1021 => 0.5460872699037
1022 => 0.55267830133478
1023 => 0.59893761166804
1024 => 0.65734190184058
1025 => 0.6331621422059
1026 => 0.61815298512469
1027 => 0.62168049306074
1028 => 0.64300776272176
1029 => 0.64985740484318
1030 => 0.63123771634394
1031 => 0.63781450509952
1101 => 0.67405325775841
1102 => 0.69349418588152
1103 => 0.66709079422534
1104 => 0.59424488381967
1105 => 0.52707762758826
1106 => 0.5448934085218
1107 => 0.54287365185198
1108 => 0.58180767070749
1109 => 0.5365794355379
1110 => 0.53734096302388
1111 => 0.57708009615748
1112 => 0.56647837673865
1113 => 0.54930494904578
1114 => 0.52720301261567
1115 => 0.48634553894294
1116 => 0.45015693511606
1117 => 0.5211311209583
1118 => 0.5180705850066
1119 => 0.51363847540252
1120 => 0.52350165572205
1121 => 0.57139445964109
1122 => 0.57029037549688
1123 => 0.56326675548008
1124 => 0.56859410935947
1125 => 0.54837103815335
1126 => 0.55358298407394
1127 => 0.52706698795171
1128 => 0.53905332560477
1129 => 0.54926810258293
1130 => 0.55131887029366
1201 => 0.55593935466071
1202 => 0.51645782163188
1203 => 0.53418387084492
1204 => 0.54459626405138
1205 => 0.49755269273849
1206 => 0.54366636390313
1207 => 0.51577053598034
1208 => 0.50630227300206
1209 => 0.51905004175351
1210 => 0.51408222387346
1211 => 0.50981118578025
1212 => 0.50742787313848
1213 => 0.51678842758965
1214 => 0.51635174653622
1215 => 0.50103606264878
1216 => 0.48105737736475
1217 => 0.48776287992406
1218 => 0.48532670797984
1219 => 0.47649770658156
1220 => 0.48244738750631
1221 => 0.45624800377832
1222 => 0.41117332579979
1223 => 0.44095103874714
1224 => 0.43980462919058
1225 => 0.43922655750663
1226 => 0.46160368579103
1227 => 0.45945264123467
1228 => 0.45554847430179
1229 => 0.47642600349415
1230 => 0.46880542449655
1231 => 0.49229025333295
]
'min_raw' => 0.21081753756408
'max_raw' => 0.69349418588152
'avg_raw' => 0.4521558617228
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.210817'
'max' => '$0.693494'
'avg' => '$0.452155'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.11484795914296
'max_diff' => 0.45843470660555
'year' => 2029
]
4 => [
'items' => [
101 => 0.50775888050809
102 => 0.50383553629881
103 => 0.5183838549234
104 => 0.48791736115982
105 => 0.49803710828451
106 => 0.50012277414154
107 => 0.47616837802465
108 => 0.45980457872651
109 => 0.45871329987429
110 => 0.43034072696175
111 => 0.44549712639622
112 => 0.45883413068413
113 => 0.45244674062356
114 => 0.45042468374824
115 => 0.46075493379365
116 => 0.46155768269479
117 => 0.44325492267735
118 => 0.44706064605801
119 => 0.4629311452042
120 => 0.44666075019903
121 => 0.41505003045791
122 => 0.40721013490972
123 => 0.40616414832565
124 => 0.384901729809
125 => 0.40773403421817
126 => 0.39776712147585
127 => 0.42925247940689
128 => 0.41126821181604
129 => 0.4104929459849
130 => 0.40932101797436
131 => 0.39101957601763
201 => 0.39502642868884
202 => 0.40834581722884
203 => 0.41309832511356
204 => 0.41260259960503
205 => 0.40828054495862
206 => 0.41025915944325
207 => 0.40388535279329
208 => 0.40163462900587
209 => 0.39453072562243
210 => 0.38408995015218
211 => 0.38554180401832
212 => 0.36485589583424
213 => 0.35358511517131
214 => 0.35046551163032
215 => 0.34629384739809
216 => 0.35093671220572
217 => 0.3647972952554
218 => 0.34807849141075
219 => 0.31941527490683
220 => 0.32113798305846
221 => 0.32500839679854
222 => 0.31779590639926
223 => 0.31096988953478
224 => 0.31690455738619
225 => 0.30475957469298
226 => 0.32647605993367
227 => 0.32588868986766
228 => 0.33398325262695
301 => 0.33904494883748
302 => 0.32737937781581
303 => 0.32444551825092
304 => 0.32611677799556
305 => 0.29849457719365
306 => 0.33172592951951
307 => 0.33201331563439
308 => 0.32955254124165
309 => 0.34724721045227
310 => 0.38458848159242
311 => 0.37053919334034
312 => 0.36509888428716
313 => 0.3547568528002
314 => 0.3685369957075
315 => 0.36747889573594
316 => 0.36269376639203
317 => 0.35979970523432
318 => 0.36513210165416
319 => 0.35913896230688
320 => 0.35806242979966
321 => 0.35153981408479
322 => 0.34921153703469
323 => 0.34748777339817
324 => 0.34559007900788
325 => 0.34977591995688
326 => 0.34029025367322
327 => 0.32885147002645
328 => 0.32790045893558
329 => 0.33052628417123
330 => 0.32936455197415
331 => 0.32789489700877
401 => 0.32508892544314
402 => 0.32425645361971
403 => 0.32696158318794
404 => 0.32390764962426
405 => 0.32841389495383
406 => 0.32718844556612
407 => 0.32034318490265
408 => 0.31181145567587
409 => 0.31173550538984
410 => 0.30989735832278
411 => 0.3075562016656
412 => 0.30690494544199
413 => 0.31640475621288
414 => 0.33606908020323
415 => 0.33220850287653
416 => 0.33499816564295
417 => 0.34872054542301
418 => 0.35308247730873
419 => 0.34998648137426
420 => 0.34574849118645
421 => 0.34593494124655
422 => 0.36041743664517
423 => 0.3613206921186
424 => 0.36360292729867
425 => 0.36653624446466
426 => 0.35048603797165
427 => 0.3451789779641
428 => 0.34266419850804
429 => 0.33491965112552
430 => 0.34327148151026
501 => 0.33840522760611
502 => 0.33906185151268
503 => 0.33863422433212
504 => 0.33886773768873
505 => 0.32646998973346
506 => 0.33098707748191
507 => 0.32347654299654
508 => 0.31342078041768
509 => 0.31338706997551
510 => 0.3158482036207
511 => 0.31438422502437
512 => 0.31044469626399
513 => 0.31100428773035
514 => 0.30610167765522
515 => 0.31159955335809
516 => 0.31175721276091
517 => 0.30964023114399
518 => 0.31811046722491
519 => 0.32158072985832
520 => 0.32018728720792
521 => 0.32148296220733
522 => 0.33236892729392
523 => 0.33414381459099
524 => 0.33493210228587
525 => 0.33387590120284
526 => 0.32168193766547
527 => 0.32222279180109
528 => 0.31825436301627
529 => 0.31490145887583
530 => 0.31503555745778
531 => 0.316759386033
601 => 0.32428744652218
602 => 0.34012980601826
603 => 0.34073101198053
604 => 0.3414596911452
605 => 0.33849578677766
606 => 0.33760184485966
607 => 0.33878118499548
608 => 0.34473074227052
609 => 0.36003461887096
610 => 0.35462520676882
611 => 0.35022727052726
612 => 0.3540854462862
613 => 0.35349151036949
614 => 0.34847809351649
615 => 0.34833738360313
616 => 0.3387150337759
617 => 0.33515787013507
618 => 0.33218523794772
619 => 0.32893920120165
620 => 0.32701484181045
621 => 0.32997153244104
622 => 0.33064776257079
623 => 0.3241829068329
624 => 0.32330177088428
625 => 0.32858111163345
626 => 0.3262578706034
627 => 0.32864738161641
628 => 0.32920176866828
629 => 0.32911249958431
630 => 0.32668676912641
701 => 0.32823285738395
702 => 0.32457589774377
703 => 0.32059950339264
704 => 0.31806281153475
705 => 0.31584921144539
706 => 0.31707744543016
707 => 0.31269901554112
708 => 0.31129826769923
709 => 0.32770907747038
710 => 0.33983191909427
711 => 0.33965564817588
712 => 0.33858264429342
713 => 0.33698837817498
714 => 0.34461411177389
715 => 0.34195745866938
716 => 0.3438903957737
717 => 0.34438240939187
718 => 0.34587158642903
719 => 0.34640383922073
720 => 0.34479500161089
721 => 0.33939554608933
722 => 0.32594061629442
723 => 0.319677310154
724 => 0.31761031480405
725 => 0.31768544615924
726 => 0.31561298798202
727 => 0.31622341979627
728 => 0.31540070470858
729 => 0.31384268136864
730 => 0.31698124187931
731 => 0.31734293174045
801 => 0.31661035421426
802 => 0.31678290274137
803 => 0.31071747371243
804 => 0.31117861510808
805 => 0.30861092121808
806 => 0.30812950956772
807 => 0.30163860300848
808 => 0.29013902116684
809 => 0.29651090579853
810 => 0.28881456518601
811 => 0.28589984437746
812 => 0.29969767935305
813 => 0.29831275941387
814 => 0.29594237848822
815 => 0.29243609106852
816 => 0.29113557495758
817 => 0.28323405076088
818 => 0.28276718655834
819 => 0.28668339530933
820 => 0.28487619971926
821 => 0.28233821267232
822 => 0.27314588085992
823 => 0.26281065642631
824 => 0.26312261188706
825 => 0.2664100544857
826 => 0.2759687372133
827 => 0.27223399450474
828 => 0.26952439581844
829 => 0.26901696943473
830 => 0.2753684729959
831 => 0.28435718121609
901 => 0.28857448200199
902 => 0.28439526500449
903 => 0.27959440554279
904 => 0.27988661161318
905 => 0.28183052768888
906 => 0.28203480578294
907 => 0.2789099398097
908 => 0.27978957127716
909 => 0.2784533306429
910 => 0.27025282433696
911 => 0.27010450318197
912 => 0.26809196668346
913 => 0.26803102787812
914 => 0.2646072012434
915 => 0.26412818422941
916 => 0.25732996863476
917 => 0.26180457472605
918 => 0.25880324388738
919 => 0.25427953037112
920 => 0.25349964045583
921 => 0.25347619602323
922 => 0.25812103832059
923 => 0.26175029703945
924 => 0.2588554533223
925 => 0.25819635352209
926 => 0.26523381504262
927 => 0.26433823391624
928 => 0.26356266643668
929 => 0.28355234098399
930 => 0.26772895376604
1001 => 0.26082905377165
1002 => 0.25228911727312
1003 => 0.25506976365914
1004 => 0.25565568670886
1005 => 0.23511867886915
1006 => 0.2267868173463
1007 => 0.22392763645124
1008 => 0.22228213742325
1009 => 0.22303201199318
1010 => 0.21553235939273
1011 => 0.22057224997304
1012 => 0.2140781847509
1013 => 0.21298943358289
1014 => 0.22460162666038
1015 => 0.22621739548966
1016 => 0.21932402368391
1017 => 0.22375068431873
1018 => 0.22214551563736
1019 => 0.21418950686004
1020 => 0.21388564584518
1021 => 0.20989360030796
1022 => 0.20364682205453
1023 => 0.20079187676928
1024 => 0.19930499647695
1025 => 0.19991851226428
1026 => 0.19960829990831
1027 => 0.19758395444989
1028 => 0.19972433302038
1029 => 0.19425655023827
1030 => 0.19207923507752
1031 => 0.19109579233273
1101 => 0.18624282039978
1102 => 0.19396605687152
1103 => 0.19548763175122
1104 => 0.19701220460348
1105 => 0.21028257041226
1106 => 0.20961962043811
1107 => 0.21561236533463
1108 => 0.2153794982879
1109 => 0.21367027036738
1110 => 0.20645931892507
1111 => 0.20933347564713
1112 => 0.20048726799976
1113 => 0.20711544825282
1114 => 0.20409062358475
1115 => 0.20609275198984
1116 => 0.20249274459284
1117 => 0.20448513732701
1118 => 0.19584845360191
1119 => 0.18778363986083
1120 => 0.19102915633683
1121 => 0.19455740391607
1122 => 0.20220754364863
1123 => 0.1976511835362
1124 => 0.19928982292768
1125 => 0.19380065527114
1126 => 0.18247493449248
1127 => 0.18253903684212
1128 => 0.18079682144456
1129 => 0.17929129297346
1130 => 0.19817453630541
1201 => 0.19582610649718
1202 => 0.19208419095266
1203 => 0.19709289360681
1204 => 0.19841727408737
1205 => 0.19845497733779
1206 => 0.20210919750094
1207 => 0.20405945545706
1208 => 0.20440319687473
1209 => 0.21015319125609
1210 => 0.21208051352846
1211 => 0.2200188812035
1212 => 0.20389398969518
1213 => 0.20356190816584
1214 => 0.19716337632473
1215 => 0.1931053262743
1216 => 0.19744123448349
1217 => 0.20128225724634
1218 => 0.19728272760878
1219 => 0.19780498174476
1220 => 0.19243593997991
1221 => 0.19435511977395
1222 => 0.19600817595401
1223 => 0.19509545549353
1224 => 0.19372906878803
1225 => 0.20096733718223
1226 => 0.20055892571243
1227 => 0.20729936764818
1228 => 0.21255402415073
1229 => 0.2219713079855
1230 => 0.21214388136981
1231 => 0.21178573088345
]
'min_raw' => 0.17929129297346
'max_raw' => 0.5183838549234
'avg_raw' => 0.34883757394843
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.179291'
'max' => '$0.518383'
'avg' => '$0.348837'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.03152624459062
'max_diff' => -0.17511033095812
'year' => 2030
]
5 => [
'items' => [
101 => 0.21528670933675
102 => 0.2120799775469
103 => 0.21410652134547
104 => 0.22164480044931
105 => 0.22180407240811
106 => 0.21913606188789
107 => 0.21897371320526
108 => 0.21948613381051
109 => 0.2224873973006
110 => 0.22143866361765
111 => 0.22265228478624
112 => 0.2241699366412
113 => 0.23044758818435
114 => 0.23196110871852
115 => 0.22828403849092
116 => 0.22861603676206
117 => 0.22724071155911
118 => 0.22591216464583
119 => 0.22889854408819
120 => 0.23435621121653
121 => 0.23432225935258
122 => 0.23558833204447
123 => 0.2363770848428
124 => 0.23299118043002
125 => 0.23078708116045
126 => 0.23163227307088
127 => 0.23298375334155
128 => 0.2311940062339
129 => 0.220146857994
130 => 0.22349785707542
131 => 0.22294008697279
201 => 0.22214575451948
202 => 0.22551521000836
203 => 0.22519021780662
204 => 0.21545543961549
205 => 0.21607862853088
206 => 0.2154933377975
207 => 0.21738453189625
208 => 0.2119778468592
209 => 0.21364090676202
210 => 0.21468396234285
211 => 0.21529833009309
212 => 0.21751784768286
213 => 0.21725741291128
214 => 0.21750165869179
215 => 0.22079261734651
216 => 0.23743715690143
217 => 0.2383430824653
218 => 0.2338819736621
219 => 0.2356640986375
220 => 0.23224280839263
221 => 0.23453954345466
222 => 0.23611091125336
223 => 0.22901020232769
224 => 0.22858974442834
225 => 0.2251543333016
226 => 0.22700032864948
227 => 0.22406321731925
228 => 0.22478388170389
301 => 0.22276884125803
302 => 0.22639551287003
303 => 0.23045069526004
304 => 0.23147519447576
305 => 0.22878017811384
306 => 0.22682880865758
307 => 0.22340284671344
308 => 0.22910029777908
309 => 0.23076640609735
310 => 0.22909154642137
311 => 0.22870344483804
312 => 0.22796799303891
313 => 0.22885947441393
314 => 0.23075733211363
315 => 0.22986233747038
316 => 0.23045349720003
317 => 0.22820060591189
318 => 0.23299230130527
319 => 0.24060266677424
320 => 0.24062713534364
321 => 0.23973213587604
322 => 0.23936592137693
323 => 0.2402842451438
324 => 0.24078239811572
325 => 0.243752088786
326 => 0.24693868519292
327 => 0.26180914020306
328 => 0.2576335759413
329 => 0.27082752827363
330 => 0.28126223154821
331 => 0.28439114280598
401 => 0.28151269167548
402 => 0.27166566584892
403 => 0.27118252378415
404 => 0.28589813767611
405 => 0.28174030273381
406 => 0.28124574149755
407 => 0.27598444551809
408 => 0.27909452306613
409 => 0.27841430348429
410 => 0.27734054359687
411 => 0.28327435490866
412 => 0.29438191996935
413 => 0.29265070178855
414 => 0.29135842772549
415 => 0.28569605895648
416 => 0.28910606969128
417 => 0.28789183018307
418 => 0.29310897368576
419 => 0.29001845344865
420 => 0.28170880304478
421 => 0.28303214226056
422 => 0.28283212220029
423 => 0.2869485208672
424 => 0.28571288016269
425 => 0.28259084352141
426 => 0.29434395551952
427 => 0.2935807738006
428 => 0.29466279099039
429 => 0.29513912841983
430 => 0.30229304058002
501 => 0.30522376949239
502 => 0.30588909626513
503 => 0.30867306206117
504 => 0.30581982865999
505 => 0.31723479658567
506 => 0.3248250841744
507 => 0.33364159380134
508 => 0.34652488402068
509 => 0.35136912032025
510 => 0.35049405239181
511 => 0.36026201600115
512 => 0.37781482947752
513 => 0.35404197784952
514 => 0.37907484833879
515 => 0.37114973056028
516 => 0.3523594188742
517 => 0.35114954432484
518 => 0.36387456155866
519 => 0.39209742504574
520 => 0.38502791784329
521 => 0.39210898822694
522 => 0.38384854349122
523 => 0.38343834278559
524 => 0.39170779686378
525 => 0.41102982706195
526 => 0.40185065479027
527 => 0.38869006051344
528 => 0.39840763852593
529 => 0.38998937313212
530 => 0.37102066507576
531 => 0.38502251192437
601 => 0.37565987568634
602 => 0.37839239068572
603 => 0.39807125947101
604 => 0.39570344591494
605 => 0.39876761591013
606 => 0.39335943607191
607 => 0.38830734331132
608 => 0.37887723700035
609 => 0.3760854474203
610 => 0.37685699762216
611 => 0.37608506507834
612 => 0.3708090072645
613 => 0.36966964308194
614 => 0.36777065286098
615 => 0.36835922933612
616 => 0.36478857215153
617 => 0.37152713999426
618 => 0.37277787756593
619 => 0.37768164529194
620 => 0.37819077072488
621 => 0.39184769404106
622 => 0.38432569017378
623 => 0.38937209978652
624 => 0.38892070141211
625 => 0.35276666190565
626 => 0.35774836955985
627 => 0.3654983433238
628 => 0.36200699064798
629 => 0.35707103481508
630 => 0.3530849858308
701 => 0.34704571402519
702 => 0.35554587311765
703 => 0.36672267843309
704 => 0.37847423295222
705 => 0.3925929557146
706 => 0.38944182115408
707 => 0.37821029325095
708 => 0.37871413138805
709 => 0.38182866049859
710 => 0.37779506231563
711 => 0.37660547546629
712 => 0.38166522953284
713 => 0.38170007327831
714 => 0.37705893109218
715 => 0.37190115087237
716 => 0.37187953958492
717 => 0.37096176241305
718 => 0.38401181401124
719 => 0.39118802288121
720 => 0.39201076366311
721 => 0.39113264587133
722 => 0.39147059855814
723 => 0.38729492073367
724 => 0.3968392819816
725 => 0.4055981317022
726 => 0.40325057287155
727 => 0.39973124845925
728 => 0.39692793705123
729 => 0.40259020179434
730 => 0.40233807005856
731 => 0.40552163079094
801 => 0.40537720608698
802 => 0.40430669435246
803 => 0.40325061110289
804 => 0.40743786181318
805 => 0.40623200085381
806 => 0.40502426685929
807 => 0.40260197143848
808 => 0.40293120161623
809 => 0.39941248486492
810 => 0.39778456549023
811 => 0.37330456401973
812 => 0.36676270771969
813 => 0.36882090888344
814 => 0.36949852214772
815 => 0.36665149790233
816 => 0.3707333993297
817 => 0.37009723931605
818 => 0.37257216578801
819 => 0.37102593917715
820 => 0.3710893968566
821 => 0.37563651962889
822 => 0.37695656871453
823 => 0.37628518109547
824 => 0.37675539797004
825 => 0.3875913473783
826 => 0.3860508218866
827 => 0.38523244842295
828 => 0.38545914346525
829 => 0.38822796086443
830 => 0.38900307856438
831 => 0.38571885040315
901 => 0.38726771138988
902 => 0.39386256489167
903 => 0.39617039038091
904 => 0.4035358615235
905 => 0.40040687847132
906 => 0.40615026228281
907 => 0.42380346605551
908 => 0.43790606673792
909 => 0.42493673233575
910 => 0.45083436253364
911 => 0.47099938243711
912 => 0.47022541538661
913 => 0.46670917774113
914 => 0.44375183869582
915 => 0.42262615303169
916 => 0.44029868613373
917 => 0.440343737055
918 => 0.43882565078854
919 => 0.42939694736724
920 => 0.43849755234738
921 => 0.43921992532216
922 => 0.43881558855076
923 => 0.43158662374441
924 => 0.42054933062113
925 => 0.42270599127788
926 => 0.4262386454283
927 => 0.41955059413268
928 => 0.41741335650042
929 => 0.4213868878849
930 => 0.43419043392385
1001 => 0.43176999771108
1002 => 0.43170679033981
1003 => 0.44206244288274
1004 => 0.43465003055169
1005 => 0.42273319367534
1006 => 0.41972403520029
1007 => 0.40904354982592
1008 => 0.41642059911658
1009 => 0.41668608598745
1010 => 0.41264575148256
1011 => 0.42306104455286
1012 => 0.42296506579364
1013 => 0.43285283645209
1014 => 0.45175454027398
1015 => 0.44616437635749
1016 => 0.43966362393072
1017 => 0.44037043596582
1018 => 0.44812241943015
1019 => 0.44343539326705
1020 => 0.44512088055441
1021 => 0.44811986824327
1022 => 0.44992923197664
1023 => 0.44011009636912
1024 => 0.43782078615546
1025 => 0.433137660897
1026 => 0.43191592093174
1027 => 0.43573022873814
1028 => 0.43472529339264
1029 => 0.41666377284397
1030 => 0.41477624345328
1031 => 0.41483413128492
1101 => 0.4100878488849
1102 => 0.40284862898658
1103 => 0.42187286664801
1104 => 0.42034495411976
1105 => 0.41865825693961
1106 => 0.41886486772002
1107 => 0.42712264449761
1108 => 0.42233271693888
1109 => 0.43506752440744
1110 => 0.43244963083525
1111 => 0.42976459817116
1112 => 0.42939344486889
1113 => 0.42835993636944
1114 => 0.42481565117324
1115 => 0.42053571382031
1116 => 0.41770972845808
1117 => 0.38531514444987
1118 => 0.39132739081117
1119 => 0.39824393221634
1120 => 0.40063149459311
1121 => 0.39654740393336
1122 => 0.42497691596531
1123 => 0.43017126176714
1124 => 0.4144372495146
1125 => 0.41149405823764
1126 => 0.42516987109544
1127 => 0.41692168414206
1128 => 0.42063584222212
1129 => 0.41260786398887
1130 => 0.42892009597168
1201 => 0.42879582409443
1202 => 0.42244999742465
1203 => 0.42781344667161
1204 => 0.42688141537695
1205 => 0.41971699269584
1206 => 0.42914722094962
1207 => 0.42915189822518
1208 => 0.42304417802569
1209 => 0.41591169798455
1210 => 0.41463657901486
1211 => 0.41367594815932
1212 => 0.4203995859194
1213 => 0.42642797851082
1214 => 0.43764532255819
1215 => 0.44046562936922
1216 => 0.45147347461112
1217 => 0.44491883873183
1218 => 0.44782442392037
1219 => 0.45097884766266
1220 => 0.4524911944048
1221 => 0.45002690654548
1222 => 0.46712662121602
1223 => 0.46857036105593
1224 => 0.46905443453595
1225 => 0.46328850695951
1226 => 0.46841000017954
1227 => 0.46601382310792
1228 => 0.47224801017113
1229 => 0.47322561030473
1230 => 0.4723976177707
1231 => 0.47270792348348
]
'min_raw' => 0.2119778468592
'max_raw' => 0.47322561030473
'avg_raw' => 0.34260172858197
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.211977'
'max' => '$0.473225'
'avg' => '$0.3426017'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.032686553885741
'max_diff' => -0.045158244618663
'year' => 2031
]
6 => [
'items' => [
101 => 0.45811633360855
102 => 0.45735968269677
103 => 0.4470426938251
104 => 0.45124694304963
105 => 0.44338730063927
106 => 0.44587967421089
107 => 0.44697828873305
108 => 0.4464044348525
109 => 0.45148464499279
110 => 0.44716542855517
111 => 0.43576630623139
112 => 0.42436407822436
113 => 0.42422093253978
114 => 0.42121892717157
115 => 0.41904902713507
116 => 0.41946702686344
117 => 0.42094011242678
118 => 0.4189634087242
119 => 0.41938523868057
120 => 0.42639042659454
121 => 0.42779526707197
122 => 0.42302107022305
123 => 0.4038519809613
124 => 0.39914783837444
125 => 0.40252908277867
126 => 0.40091306573348
127 => 0.32356813402878
128 => 0.34173917845921
129 => 0.33094256088901
130 => 0.33591813899385
131 => 0.32489758822524
201 => 0.33015717268857
202 => 0.32918591948747
203 => 0.35840442121131
204 => 0.35794821449562
205 => 0.3581665765085
206 => 0.34774358869477
207 => 0.364347691297
208 => 0.37252746930307
209 => 0.37101361009189
210 => 0.37139461584053
211 => 0.36484767474649
212 => 0.35822996520919
213 => 0.35088990687414
214 => 0.36452682800204
215 => 0.36301063516262
216 => 0.36648823602728
217 => 0.37533275416598
218 => 0.37663514305896
219 => 0.37838556693865
220 => 0.37775816458144
221 => 0.3927054341195
222 => 0.39089522115318
223 => 0.3952573135682
224 => 0.38628415851776
225 => 0.3761301818385
226 => 0.37806012084672
227 => 0.37787425220064
228 => 0.37550793100593
229 => 0.37337172203671
301 => 0.36981553597611
302 => 0.38106783488836
303 => 0.38061101210163
304 => 0.38800644202034
305 => 0.38669922794683
306 => 0.37796933243442
307 => 0.3782811223605
308 => 0.38037805945452
309 => 0.38763558267931
310 => 0.38979010970229
311 => 0.38879204694219
312 => 0.39115438746499
313 => 0.39302148509383
314 => 0.39138886618083
315 => 0.41450330710031
316 => 0.40490457969734
317 => 0.40958293264603
318 => 0.41069869225784
319 => 0.40784069747409
320 => 0.40846049420557
321 => 0.40939931736925
322 => 0.41509966777871
323 => 0.43005903666281
324 => 0.43668443930972
325 => 0.45661729006453
326 => 0.43613429184995
327 => 0.43491891550297
328 => 0.43850942383833
329 => 0.45021211733795
330 => 0.45969605124127
331 => 0.46284241925828
401 => 0.4632582637326
402 => 0.4691610592991
403 => 0.47254443163719
404 => 0.46844430465839
405 => 0.46496987634504
406 => 0.45252490538855
407 => 0.45396544466329
408 => 0.46388933175222
409 => 0.47790740677937
410 => 0.48993637348478
411 => 0.48572424859636
412 => 0.51785978819826
413 => 0.52104589568788
414 => 0.520605678652
415 => 0.52786410566972
416 => 0.5134576061925
417 => 0.50729854855321
418 => 0.46572108718282
419 => 0.47740265790529
420 => 0.49438250698499
421 => 0.49213516028813
422 => 0.47980394001378
423 => 0.48992701914843
424 => 0.48658001260856
425 => 0.48394008968314
426 => 0.49603408837875
427 => 0.48273624001884
428 => 0.49424985077528
429 => 0.4794835258871
430 => 0.48574348922805
501 => 0.48219003127537
502 => 0.48448955406618
503 => 0.47104659081807
504 => 0.47830008747726
505 => 0.47074482150977
506 => 0.47074123932997
507 => 0.47057445641499
508 => 0.47946319332057
509 => 0.47975305471195
510 => 0.47318426470858
511 => 0.47223759944532
512 => 0.47573791709097
513 => 0.47163996186255
514 => 0.47355736932171
515 => 0.4716980381812
516 => 0.47127946357796
517 => 0.46794418992479
518 => 0.46650726232974
519 => 0.46707071866482
520 => 0.46514735171154
521 => 0.46398845355097
522 => 0.47034392240181
523 => 0.46694845177369
524 => 0.46982351783014
525 => 0.46654701719655
526 => 0.45518923849713
527 => 0.44865725986077
528 => 0.42720346876421
529 => 0.43328773730585
530 => 0.43732161364359
531 => 0.43598841753803
601 => 0.43885263865117
602 => 0.43902847856528
603 => 0.43809729108412
604 => 0.43701909527344
605 => 0.43649428918077
606 => 0.44040576382997
607 => 0.44267650651801
608 => 0.43772646710038
609 => 0.43656674212324
610 => 0.44157150527363
611 => 0.44462440790422
612 => 0.46716532565064
613 => 0.46549542165778
614 => 0.46968655297775
615 => 0.46921469590927
616 => 0.47360766923218
617 => 0.48078832400609
618 => 0.46618804510808
619 => 0.46872214868512
620 => 0.46810084500902
621 => 0.47488407563002
622 => 0.4749052521356
623 => 0.47083836653082
624 => 0.47304309119485
625 => 0.47181247437085
626 => 0.47403636529967
627 => 0.46547311907186
628 => 0.47590222863202
629 => 0.48181486171566
630 => 0.48189695863176
701 => 0.48469949978784
702 => 0.48754704391467
703 => 0.49301265689727
704 => 0.48739461093505
705 => 0.47728829315476
706 => 0.47801793665528
707 => 0.47209260623846
708 => 0.47219221211326
709 => 0.4716605081473
710 => 0.47325619177396
711 => 0.46582328189484
712 => 0.46756777098678
713 => 0.46512547604235
714 => 0.46871683961288
715 => 0.46485312608465
716 => 0.46810054539758
717 => 0.46950202391938
718 => 0.47467350983652
719 => 0.46408929340989
720 => 0.44250735962753
721 => 0.44704414376423
722 => 0.44033388366934
723 => 0.44095494378889
724 => 0.44220958407135
725 => 0.43814288442313
726 => 0.43891868255958
727 => 0.43889096559093
728 => 0.4386521157291
729 => 0.43759421008721
730 => 0.43606003760621
731 => 0.44217170857712
801 => 0.44321020056881
802 => 0.44551863962438
803 => 0.4523869884246
804 => 0.45170067841264
805 => 0.45282007851687
806 => 0.45037643437449
807 => 0.44106829743211
808 => 0.44157377405088
809 => 0.43527047251512
810 => 0.44535745003236
811 => 0.44296872061468
812 => 0.44142869121949
813 => 0.44100847993075
814 => 0.44789385403915
815 => 0.4499540658874
816 => 0.44867028011925
817 => 0.44603719805474
818 => 0.45109349401942
819 => 0.45244634551156
820 => 0.45274919906941
821 => 0.46170798607023
822 => 0.45324989574305
823 => 0.45528584215099
824 => 0.4711697148392
825 => 0.45676523413559
826 => 0.46439560882255
827 => 0.46402214168817
828 => 0.46792558318022
829 => 0.46370194555291
830 => 0.46375430260328
831 => 0.46722029420618
901 => 0.46235293409478
902 => 0.46114770728136
903 => 0.45948269507062
904 => 0.46311818831953
905 => 0.46529750210303
906 => 0.48286117066846
907 => 0.49420810156233
908 => 0.49371550136682
909 => 0.4982169450448
910 => 0.49618900343937
911 => 0.48964024505148
912 => 0.50081817708361
913 => 0.4972810116841
914 => 0.49757261130198
915 => 0.49756175794964
916 => 0.49991366371595
917 => 0.49824712293152
918 => 0.49496219997852
919 => 0.49714288513566
920 => 0.50361874044315
921 => 0.52371999402112
922 => 0.53496892182954
923 => 0.52304279444248
924 => 0.53126927741687
925 => 0.52633631902783
926 => 0.52543985374575
927 => 0.53060669298597
928 => 0.53578257609432
929 => 0.53545289471627
930 => 0.53169546936416
1001 => 0.52957299512388
1002 => 0.54564508115226
1003 => 0.55748672035713
1004 => 0.55667919995072
1005 => 0.56024333240493
1006 => 0.57070773552497
1007 => 0.57166446940209
1008 => 0.57154394292385
1009 => 0.56917257818454
1010 => 0.57947614203068
1011 => 0.58807155626508
1012 => 0.5686236757627
1013 => 0.57602917406656
1014 => 0.57935374084541
1015 => 0.58423519123129
1016 => 0.59247101625833
1017 => 0.60141730668241
1018 => 0.60268241023945
1019 => 0.60178475872495
1020 => 0.59588443970108
1021 => 0.60567357743454
1022 => 0.61140782473528
1023 => 0.61482243777695
1024 => 0.62348132831319
1025 => 0.57937427223802
1026 => 0.54815310568509
1027 => 0.54327746968874
1028 => 0.55319226721223
1029 => 0.55580672025015
1030 => 0.55475283750881
1031 => 0.51961057604921
1101 => 0.54309245295501
1102 => 0.56835697809337
1103 => 0.56932749139695
1104 => 0.58197544093752
1105 => 0.58609413176489
1106 => 0.59627738894969
1107 => 0.59564042344018
1108 => 0.59811988451367
1109 => 0.59754989935115
1110 => 0.61641223894821
1111 => 0.6372202006083
1112 => 0.63649968706128
1113 => 0.63350829638401
1114 => 0.63795102164765
1115 => 0.65942706799755
1116 => 0.65744989779628
1117 => 0.65937055023186
1118 => 0.68469201921532
1119 => 0.71761353083078
1120 => 0.70231818341968
1121 => 0.73550468618412
1122 => 0.75639383053342
1123 => 0.79251944570769
1124 => 0.78799634076547
1125 => 0.8020597776508
1126 => 0.7798990389184
1127 => 0.72901350336457
1128 => 0.72096067258117
1129 => 0.73708264373969
1130 => 0.77671693667397
1201 => 0.73583441880871
1202 => 0.74410489892735
1203 => 0.7417230000968
1204 => 0.74159607883054
1205 => 0.74644014733765
1206 => 0.73941357331846
1207 => 0.71078604670773
1208 => 0.72390587345035
1209 => 0.7188396782792
1210 => 0.72446099953146
1211 => 0.75479695192071
1212 => 0.74138470425064
1213 => 0.72725599085275
1214 => 0.7449765328662
1215 => 0.76754087228821
1216 => 0.7661288364792
1217 => 0.76338889682453
1218 => 0.77883379319931
1219 => 0.8043442370804
1220 => 0.81123960755219
1221 => 0.81632962906483
1222 => 0.8170314570348
1223 => 0.82426072130919
1224 => 0.78538714529664
1225 => 0.8470805087728
1226 => 0.85773324840036
1227 => 0.85573097486119
1228 => 0.86757104662142
1229 => 0.86408739715593
1230 => 0.85904013564829
1231 => 0.87780916784373
]
'min_raw' => 0.32356813402878
'max_raw' => 0.87780916784373
'avg_raw' => 0.60068865093626
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.323568'
'max' => '$0.8778091'
'avg' => '$0.600688'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.11159028716958
'max_diff' => 0.404583557539
'year' => 2032
]
7 => [
'items' => [
101 => 0.85629198701446
102 => 0.82575105776504
103 => 0.80899569994773
104 => 0.83106050673773
105 => 0.84453471428875
106 => 0.85344030835941
107 => 0.85613513574429
108 => 0.78840479034361
109 => 0.75190189066982
110 => 0.77529983085413
111 => 0.80384693271855
112 => 0.7852285647044
113 => 0.78595836948133
114 => 0.75941346951419
115 => 0.80619556735538
116 => 0.7993798091993
117 => 0.83473997456994
118 => 0.82630098732118
119 => 0.85513582950723
120 => 0.84754264919885
121 => 0.87906151612995
122 => 0.89163524548802
123 => 0.91274849402493
124 => 0.92827948559506
125 => 0.93739958090557
126 => 0.93685204459175
127 => 0.97299040582543
128 => 0.9516808767841
129 => 0.92491108603781
130 => 0.92442690498082
131 => 0.93829135893919
201 => 0.96734745090875
202 => 0.97488127280751
203 => 0.97909165146603
204 => 0.97264330998617
205 => 0.94951334347951
206 => 0.93952594121353
207 => 0.94803549730704
208 => 0.93762904143916
209 => 0.95559350380294
210 => 0.98026254763051
211 => 0.97516848763209
212 => 0.99219716646265
213 => 1.009820057583
214 => 1.0350215833787
215 => 1.0416101954315
216 => 1.0525009206123
217 => 1.0637110542402
218 => 1.0673114470399
219 => 1.0741857140309
220 => 1.0741494832506
221 => 1.0948655495192
222 => 1.1177160121367
223 => 1.1263415327854
224 => 1.1461754419031
225 => 1.1122105676022
226 => 1.1379733149198
227 => 1.1612119578836
228 => 1.1335058897253
301 => 1.1716922499956
302 => 1.1731749398328
303 => 1.1955617960431
304 => 1.1728684284712
305 => 1.1593931792468
306 => 1.1982957188467
307 => 1.2171194323406
308 => 1.2114495766438
309 => 1.1683016948357
310 => 1.1431877769236
311 => 1.0774598096349
312 => 1.1553174261253
313 => 1.19323959998
314 => 1.1682034855667
315 => 1.1808302454129
316 => 1.2497177528934
317 => 1.2759456556062
318 => 1.2704904351888
319 => 1.2714122776388
320 => 1.2855643778724
321 => 1.3483225840126
322 => 1.3107164121696
323 => 1.3394649214672
324 => 1.3547130271382
325 => 1.3688763174716
326 => 1.3340957527667
327 => 1.2888467491136
328 => 1.2745144902327
329 => 1.1657141373962
330 => 1.1600506065351
331 => 1.1568714950402
401 => 1.1368276467591
402 => 1.1210786724823
403 => 1.1085545034154
404 => 1.0756873437505
405 => 1.0867790453119
406 => 1.0343956527154
407 => 1.0679086909452
408 => 0.98430353151993
409 => 1.05393239263
410 => 1.0160365691636
411 => 1.0414825954164
412 => 1.0413938166279
413 => 0.99453961462664
414 => 0.96751508873453
415 => 0.98473616844326
416 => 1.003198532902
417 => 1.0061939894206
418 => 1.0301309268584
419 => 1.0368112115746
420 => 1.016569637012
421 => 0.98257100042106
422 => 0.99046810827479
423 => 0.96735505409593
424 => 0.92685031567827
425 => 0.95594152595472
426 => 0.96587454419333
427 => 0.97026153091906
428 => 0.93042977268593
429 => 0.91791376945954
430 => 0.91125035436124
501 => 0.97742922061896
502 => 0.9810546483029
503 => 0.96250644768804
504 => 1.0463460732798
505 => 1.0273705838925
506 => 1.0485708546458
507 => 0.98975152851063
508 => 0.99199850597972
509 => 0.9641524943658
510 => 0.97974440019843
511 => 0.96872454370651
512 => 0.97848472828937
513 => 0.98433494268559
514 => 1.012176385043
515 => 1.0542502971794
516 => 1.0080178019851
517 => 0.98787364176742
518 => 1.0003709654714
519 => 1.0336529853732
520 => 1.0840769491996
521 => 1.0542249477375
522 => 1.0674727590666
523 => 1.0703668164878
524 => 1.0483550557909
525 => 1.0848885542138
526 => 1.1044671528162
527 => 1.1245507437622
528 => 1.1419887630512
529 => 1.1165289158908
530 => 1.1437746018782
531 => 1.1218193884833
601 => 1.10212329238
602 => 1.1021531632275
603 => 1.0897975144278
604 => 1.0658568879665
605 => 1.0614418691319
606 => 1.0844093546648
607 => 1.1028271030332
608 => 1.1043440770039
609 => 1.1145410888388
610 => 1.1205755754051
611 => 1.1797217472413
612 => 1.2035108268367
613 => 1.2325996630616
614 => 1.2439314041282
615 => 1.2780358820847
616 => 1.2504937463046
617 => 1.2445348319804
618 => 1.1618085239478
619 => 1.1753549522537
620 => 1.1970440910074
621 => 1.1621661698572
622 => 1.1842881830362
623 => 1.188655537046
624 => 1.1609810314427
625 => 1.1757631806303
626 => 1.13650617499
627 => 1.0551059926253
628 => 1.0849791758862
629 => 1.106975893971
630 => 1.0755838650882
701 => 1.1318528618213
702 => 1.0989816755577
703 => 1.0885630876074
704 => 1.0479164615182
705 => 1.0671001044002
706 => 1.0930462560813
707 => 1.0770145509063
708 => 1.1102827463172
709 => 1.1573993833227
710 => 1.190977504697
711 => 1.1935552159149
712 => 1.1719667334306
713 => 1.2065624143876
714 => 1.2068144061544
715 => 1.1677903367075
716 => 1.1438883114581
717 => 1.1384577210312
718 => 1.1520244006477
719 => 1.1684968542493
720 => 1.1944693224474
721 => 1.210163941024
722 => 1.2510871824894
723 => 1.2621598382687
724 => 1.2743253299506
725 => 1.2905821785364
726 => 1.310102693434
727 => 1.2673929181415
728 => 1.2690898571349
729 => 1.2293191057396
730 => 1.1868183541711
731 => 1.2190711268182
801 => 1.2612373366476
802 => 1.2515643615232
803 => 1.2504759542207
804 => 1.2523063534045
805 => 1.2450132460505
806 => 1.2120267917837
807 => 1.1954612009571
808 => 1.2168350394564
809 => 1.2281942833787
810 => 1.245811480072
811 => 1.2436397887256
812 => 1.2890197954587
813 => 1.306653093855
814 => 1.3021417415539
815 => 1.302971938949
816 => 1.3348961834194
817 => 1.3704025089922
818 => 1.4036588683633
819 => 1.4374886655096
820 => 1.3967055246503
821 => 1.3759983608765
822 => 1.3973628682265
823 => 1.3860265598994
824 => 1.4511683501147
825 => 1.4556786263331
826 => 1.5208157060555
827 => 1.5826385510913
828 => 1.5438087297956
829 => 1.5804235023439
830 => 1.620025364101
831 => 1.696423780601
901 => 1.6706954816525
902 => 1.6509880078718
903 => 1.6323645403748
904 => 1.6711170198438
905 => 1.7209714655946
906 => 1.7317096357094
907 => 1.749109573592
908 => 1.7308156664716
909 => 1.7528486625904
910 => 1.8306348206788
911 => 1.8096163141259
912 => 1.7797666559272
913 => 1.841171357076
914 => 1.863393479717
915 => 2.0193599742275
916 => 2.2162741162015
917 => 2.1347503684163
918 => 2.0841459474111
919 => 2.0960391867002
920 => 2.1679455653848
921 => 2.1910396120239
922 => 2.1282620322636
923 => 2.1504361347298
924 => 2.2726176194281
925 => 2.3381640659174
926 => 2.2491431875227
927 => 2.0035381146509
928 => 1.7770790207986
929 => 1.8371461700742
930 => 1.830336419447
1001 => 1.9616051823047
1002 => 1.8091150296959
1003 => 1.811682572783
1004 => 1.9456658346406
1005 => 1.9099213974316
1006 => 1.8520199869547
1007 => 1.7775017651727
1008 => 1.6397479401073
1009 => 1.5177355356974
1010 => 1.7570299585239
1011 => 1.7467111478829
1012 => 1.7317679809128
1013 => 1.7650223819853
1014 => 1.9264963141671
1015 => 1.9227738173902
1016 => 1.8990931921301
1017 => 1.9170547376785
1018 => 1.8488712411773
1019 => 1.866443680735
1020 => 1.7770431485212
1021 => 1.8174559227778
1022 => 1.8518957565327
1023 => 1.8588100630494
1024 => 1.8743883486848
1025 => 1.7412736035655
1026 => 1.8010382160805
1027 => 1.8361443267462
1028 => 1.6775336415875
1029 => 1.8330091034728
1030 => 1.7389563720066
1031 => 1.7070334623223
1101 => 1.7500134546886
1102 => 1.7332641098641
1103 => 1.7188640067384
1104 => 1.7108285017692
1105 => 1.7423882646343
1106 => 1.7409159639746
1107 => 1.6892780664412
1108 => 1.6219185341388
1109 => 1.6445266041808
1110 => 1.6363128803827
1111 => 1.6065452857472
1112 => 1.6266050503785
1113 => 1.538271998957
1114 => 1.3862995751389
1115 => 1.4866972133544
1116 => 1.4828320134947
1117 => 1.4808830044526
1118 => 1.5563290547846
1119 => 1.5490766578817
1120 => 1.5359134864873
1121 => 1.6063035337819
1122 => 1.5806102196396
1123 => 1.6597909597199
1124 => 1.711944516226
1125 => 1.6987166873052
1126 => 1.7477673592792
1127 => 1.6450474484526
1128 => 1.6791668824217
1129 => 1.6861988504753
1130 => 1.6054349315246
1201 => 1.5502632397069
1202 => 1.546583916866
1203 => 1.4509238063816
1204 => 1.502024665261
1205 => 1.5469913063776
1206 => 1.525455774835
1207 => 1.5186382689044
1208 => 1.5534674281675
1209 => 1.5561739521338
1210 => 1.4944649188771
1211 => 1.5072961809621
1212 => 1.5608046768764
1213 => 1.5059479041538
1214 => 1.3993701555566
1215 => 1.3729374003518
1216 => 1.3694107835552
1217 => 1.2977230550316
1218 => 1.3747037634478
1219 => 1.3410996212694
1220 => 1.4472547037714
1221 => 1.3866194899674
1222 => 1.3840056270904
1223 => 1.3800543899814
1224 => 1.3183498006584
1225 => 1.3318591841889
1226 => 1.3767664325816
1227 => 1.3927898447244
1228 => 1.391118471562
1229 => 1.3765463625654
1230 => 1.3832173994427
1231 => 1.3617276653174
]
'min_raw' => 0.75190189066982
'max_raw' => 2.3381640659174
'avg_raw' => 1.5450329782936
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.7519018'
'max' => '$2.33'
'avg' => '$1.54'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.42833375664104
'max_diff' => 1.4603548980737
'year' => 2033
]
8 => [
'items' => [
101 => 1.3541391929276
102 => 1.3301878866917
103 => 1.2949860832421
104 => 1.2998811099169
105 => 1.2301371262303
106 => 1.1921369023245
107 => 1.1816189411822
108 => 1.167553883967
109 => 1.1832076268204
110 => 1.2299395502874
111 => 1.1735709358556
112 => 1.0769309002107
113 => 1.0827391310196
114 => 1.0957885011679
115 => 1.0714710862268
116 => 1.0484566937909
117 => 1.0684658407972
118 => 1.0275181837114
119 => 1.100736829897
120 => 1.0987564707105
121 => 1.1260478541978
122 => 1.143113716368
123 => 1.1037824292042
124 => 1.0938907168457
125 => 1.0995254857584
126 => 1.0063953072343
127 => 1.1184371317398
128 => 1.1194060740908
129 => 1.1111094014199
130 => 1.1707682140659
131 => 1.2966669167992
201 => 1.2492987605673
202 => 1.2309563787642
203 => 1.1960874975484
204 => 1.2425482114592
205 => 1.2389807535309
206 => 1.2228473558608
207 => 1.2130898266107
208 => 1.2310683734362
209 => 1.2108620856993
210 => 1.2072324811901
211 => 1.1852410269129
212 => 1.1773910782834
213 => 1.1715792888335
214 => 1.1651810797039
215 => 1.1792939347095
216 => 1.1473123485661
217 => 1.1087456908706
218 => 1.1055392905803
219 => 1.1143924436916
220 => 1.1104755824795
221 => 1.1055205381557
222 => 1.0960600091155
223 => 1.0932532722415
224 => 1.1023738054469
225 => 1.0920772552181
226 => 1.1072703759628
227 => 1.1031386877939
228 => 1.0800594135462
301 => 1.0512940927918
302 => 1.0510380210998
303 => 1.0448405799279
304 => 1.0369472068039
305 => 1.0347514509767
306 => 1.0667807262464
307 => 1.1330803674991
308 => 1.1200641615052
309 => 1.1294697042902
310 => 1.1757356657847
311 => 1.1904422236777
312 => 1.1800038572291
313 => 1.1657151774239
314 => 1.1663438068191
315 => 1.2151725511911
316 => 1.218217940083
317 => 1.2259126553332
318 => 1.235802538956
319 => 1.1816881471752
320 => 1.1637950238326
321 => 1.1553162693202
322 => 1.129204987113
323 => 1.1573637663613
324 => 1.1409568515725
325 => 1.1431707049175
326 => 1.1417289300223
327 => 1.1425162366075
328 => 1.1007163637932
329 => 1.1159460405101
330 => 1.0906237491239
331 => 1.0567200435183
401 => 1.0566063864089
402 => 1.0649042703246
403 => 1.0599683642753
404 => 1.0466859680106
405 => 1.0485726697088
406 => 1.0320431775512
407 => 1.0505796493329
408 => 1.0511112090169
409 => 1.0439736576925
410 => 1.0725316500124
411 => 1.0842318827669
412 => 1.079533793584
413 => 1.0839022523057
414 => 1.1206050436289
415 => 1.1265892000697
416 => 1.1292469670695
417 => 1.1256859113764
418 => 1.0845731119548
419 => 1.0863966394343
420 => 1.0730168047194
421 => 1.0617122543176
422 => 1.0621643770491
423 => 1.0679763854444
424 => 1.093357766976
425 => 1.1467713880953
426 => 1.1487983959719
427 => 1.1512551886504
428 => 1.141262178142
429 => 1.1382481905524
430 => 1.1422244181593
501 => 1.1622837658969
502 => 1.2138818543378
503 => 1.1956436437623
504 => 1.1808156946698
505 => 1.1938238036103
506 => 1.1918213071999
507 => 1.1749182222544
508 => 1.1744438089574
509 => 1.1420013847039
510 => 1.1300081591356
511 => 1.1199857221734
512 => 1.109041482653
513 => 1.1025533706111
514 => 1.1125220595017
515 => 1.114802016597
516 => 1.0930053041149
517 => 1.0900344927452
518 => 1.1078341586728
519 => 1.1000011893365
520 => 1.1080575925472
521 => 1.1099267471986
522 => 1.1096257702495
523 => 1.1014472506515
524 => 1.1066599951563
525 => 1.0943303004086
526 => 1.0809236092308
527 => 1.0723709755258
528 => 1.0649076682759
529 => 1.0690487449081
530 => 1.054286562845
531 => 1.049563843699
601 => 1.1048940346085
602 => 1.1457670415332
603 => 1.1451727318251
604 => 1.1415550243206
605 => 1.1361798447942
606 => 1.1618905380346
607 => 1.1529334466112
608 => 1.1594504790118
609 => 1.1611093372767
610 => 1.1661302016285
611 => 1.1679247290764
612 => 1.1625004207494
613 => 1.1442957794805
614 => 1.0989315442838
615 => 1.0778143703413
616 => 1.0708453512059
617 => 1.0710986618154
618 => 1.0641112243765
619 => 1.0661693378573
620 => 1.063395496499
621 => 1.0581425120307
622 => 1.0687243879197
623 => 1.0699438505389
624 => 1.0674739142624
625 => 1.0680556736685
626 => 1.0476056562227
627 => 1.049160426634
628 => 1.0405032674132
629 => 1.0388801544229
630 => 1.0169956097778
701 => 0.97822396672357
702 => 0.99970722063009
703 => 0.97375847091365
704 => 0.96393128620832
705 => 1.0104516501626
706 => 1.0057822958956
707 => 0.99779039111009
708 => 0.98596869827339
709 => 0.98158391740622
710 => 0.95494337691024
711 => 0.95336931165598
712 => 0.96657308288089
713 => 0.96047999677462
714 => 0.95192299624926
715 => 0.92093040775563
716 => 0.88608447699539
717 => 0.88713625661133
718 => 0.89822009885457
719 => 0.93044786503658
720 => 0.91785591924325
721 => 0.90872031809427
722 => 0.90700949461422
723 => 0.92842403231852
724 => 0.95873008965445
725 => 0.97294901369666
726 => 0.95885849180598
727 => 0.94267205894554
728 => 0.94365725211304
729 => 0.95021130088215
730 => 0.95090003873853
731 => 0.94036433493856
801 => 0.94333007384502
802 => 0.93882484525327
803 => 0.91117626570171
804 => 0.91067619057221
805 => 0.90389078325669
806 => 0.90368532381986
807 => 0.89214165327697
808 => 0.8905266139704
809 => 0.86760595545677
810 => 0.88269240230059
811 => 0.87257320583177
812 => 0.85732118987612
813 => 0.85469173657653
814 => 0.85461269203519
815 => 0.87027310213328
816 => 0.88250940129065
817 => 0.87274923358674
818 => 0.87052703259347
819 => 0.8942543254498
820 => 0.89123481115475
821 => 0.88861993124902
822 => 0.95601651461977
823 => 0.90266685986084
824 => 0.87940336529411
825 => 0.85061037314999
826 => 0.85998551657898
827 => 0.86196099704899
828 => 0.7927190412693
829 => 0.76462758843302
830 => 0.75498766042367
831 => 0.74943974556572
901 => 0.75196800003282
902 => 0.72668239768138
903 => 0.74367474064681
904 => 0.72177954634922
905 => 0.71810874577211
906 => 0.75726006547028
907 => 0.76270774288759
908 => 0.73946625856464
909 => 0.7543910539545
910 => 0.74897911567596
911 => 0.72215487661244
912 => 0.72113038798596
913 => 0.70767092774148
914 => 0.68660947872393
915 => 0.67698383136878
916 => 0.67197071065252
917 => 0.67403922196382
918 => 0.67299331934734
919 => 0.66616809729898
920 => 0.67338453308583
921 => 0.65494952168756
922 => 0.64760855160778
923 => 0.64429280573196
924 => 0.62793067203633
925 => 0.65397010301996
926 => 0.65910019895985
927 => 0.6642404027735
928 => 0.70898236760515
929 => 0.70674718548164
930 => 0.72695214330032
1001 => 0.72616701579402
1002 => 0.72040423452552
1003 => 0.69609200828521
1004 => 0.70578242834083
1005 => 0.67595682163526
1006 => 0.69830419412319
1007 => 0.68810578656829
1008 => 0.69485610227021
1009 => 0.68271842598673
1010 => 0.68943591719438
1011 => 0.66031673502121
1012 => 0.63312565242585
1013 => 0.6440681378194
1014 => 0.65596387086719
1015 => 0.68175685109121
1016 => 0.66639476485725
1017 => 0.67191955197178
1018 => 0.65341243997631
1019 => 0.61522698163448
1020 => 0.61544310718177
1021 => 0.60956910633131
1022 => 0.60449311197835
1023 => 0.66815928525798
1024 => 0.6602413901974
1025 => 0.64762526068685
1026 => 0.66451245138178
1027 => 0.66897769263727
1028 => 0.66910481177843
1029 => 0.68142527018797
1030 => 0.68800070104971
1031 => 0.68915964923863
1101 => 0.70854615674717
1102 => 0.71504425834981
1103 => 0.74180901920534
1104 => 0.68744282168107
1105 => 0.68632318561972
1106 => 0.66475008878616
1107 => 0.65106808971715
1108 => 0.66568690696788
1109 => 0.67863718338447
1110 => 0.66515248997318
1111 => 0.66691330625528
1112 => 0.64881120709056
1113 => 0.65528185575902
1114 => 0.6608552500828
1115 => 0.65777794932618
1116 => 0.65317108115049
1117 => 0.67757540840131
1118 => 0.67619842061649
1119 => 0.69892429120551
1120 => 0.71664073247226
1121 => 0.74839176241495
1122 => 0.71525790745112
1123 => 0.7140503780811
1124 => 0.72585417136692
1125 => 0.71504245125056
1126 => 0.7218750851562
1127 => 0.74729091946064
1128 => 0.74782791598975
1129 => 0.73883253224628
1130 => 0.73828516232799
1201 => 0.74001282417464
1202 => 0.75013179357299
1203 => 0.74659591474068
1204 => 0.75068772324293
1205 => 0.75580459243098
1206 => 0.77697013290035
1207 => 0.78207307305192
1208 => 0.76967557405474
1209 => 0.77079492940527
1210 => 0.76615792446137
1211 => 0.76167863578706
1212 => 0.77174742257933
1213 => 0.7901483283447
1214 => 0.79003385726494
1215 => 0.79430250974001
1216 => 0.79696184486855
1217 => 0.78554603174456
1218 => 0.77811475717192
1219 => 0.78096438070735
1220 => 0.78552099079724
1221 => 0.77948673346766
1222 => 0.74224050188956
1223 => 0.75353862925187
1224 => 0.75165806840858
1225 => 0.74897992108372
1226 => 0.76034027551236
1227 => 0.75924454161395
1228 => 0.72642305728205
1229 => 0.72852418221994
1230 => 0.72655083364867
1231 => 0.73292712659156
]
'min_raw' => 0.60449311197835
'max_raw' => 1.3541391929276
'avg_raw' => 0.97931615245298
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.604493'
'max' => '$1.35'
'avg' => '$0.979316'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.14740877869147
'max_diff' => -0.98402487298979
'year' => 2034
]
9 => [
'items' => [
101 => 0.71469811050644
102 => 0.72030523307993
103 => 0.72382196779451
104 => 0.72589335155823
105 => 0.73337661007392
106 => 0.73249853605855
107 => 0.73332202776025
108 => 0.74441772463202
109 => 0.80053595182608
110 => 0.80359034311436
111 => 0.78854940331973
112 => 0.79455796209827
113 => 0.78302284317083
114 => 0.7907664457854
115 => 0.7960644220281
116 => 0.77212388612956
117 => 0.77070628296644
118 => 0.75912355449992
119 => 0.76534745669855
120 => 0.75544478078612
121 => 0.75787455107413
122 => 0.75108070152528
123 => 0.76330827807126
124 => 0.77698060862296
125 => 0.78043477925701
126 => 0.77134834343277
127 => 0.76476916507072
128 => 0.75321829518305
129 => 0.77242764923418
130 => 0.77804504975319
131 => 0.77239814342065
201 => 0.77108963183606
202 => 0.7686100047477
203 => 0.77161569644481
204 => 0.77801445618356
205 => 0.77499691925731
206 => 0.77699005555925
207 => 0.76939427528945
208 => 0.78554981085371
209 => 0.81120868937111
210 => 0.8112911868612
211 => 0.80827363366929
212 => 0.80703891591726
213 => 0.81013510861259
214 => 0.81181466613733
215 => 0.8218271855694
216 => 0.83257101783637
217 => 0.88270779512508
218 => 0.86862958868797
219 => 0.91311392014874
220 => 0.94829525076671
221 => 0.9588445935259
222 => 0.94913969457238
223 => 0.91593975950071
224 => 0.91431081229744
225 => 0.96392553194555
226 => 0.94990710114684
227 => 0.94823965340961
228 => 0.9305008266829
301 => 0.94098667027481
302 => 0.93869326246322
303 => 0.93507300603526
304 => 0.95507926515844
305 => 0.99252919626597
306 => 0.98669227329963
307 => 0.98233528107232
308 => 0.96324420943363
309 => 0.97474129870535
310 => 0.97064740542793
311 => 0.98823736899659
312 => 0.97781746424392
313 => 0.94980089774603
314 => 0.95426262830463
315 => 0.95358824670645
316 => 0.96746697220973
317 => 0.96330092330479
318 => 0.95277475879507
319 => 0.99240119647277
320 => 0.98982807602381
321 => 0.99347617252321
322 => 0.99508217742338
323 => 1.0192020917416
324 => 1.0290832488867
325 => 1.0313264445526
326 => 1.0407127796042
327 => 1.0310929039857
328 => 1.0695792653148
329 => 1.0951704498571
330 => 1.1248959276134
331 => 1.1683328400705
401 => 1.1846655209683
402 => 1.1817151683523
403 => 1.2146485396386
404 => 1.2738290757725
405 => 1.1936772467412
406 => 1.278077317335
407 => 1.2513572294307
408 => 1.1880043816834
409 => 1.1839252051695
410 => 1.2268284892056
411 => 1.3219838439097
412 => 1.2981485067994
413 => 1.3220228299825
414 => 1.2941721638301
415 => 1.2927891435118
416 => 1.3206701852913
417 => 1.3858157591255
418 => 1.3548675389422
419 => 1.3104956764945
420 => 1.3432591692232
421 => 1.3148763997035
422 => 1.2509220761385
423 => 1.2981302803664
424 => 1.2665634986115
425 => 1.27577636371
426 => 1.3421250437543
427 => 1.3341417950346
428 => 1.3444728581069
429 => 1.3262388021952
430 => 1.3092053187271
501 => 1.2774110569107
502 => 1.267998343425
503 => 1.2705996787985
504 => 1.2679970543324
505 => 1.2502084570504
506 => 1.246367011161
507 => 1.2399644330478
508 => 1.2419488597268
509 => 1.2299101397337
510 => 1.2526296916872
511 => 1.2568466407338
512 => 1.2733800359922
513 => 1.2750965879353
514 => 1.3211418583918
515 => 1.2957808971837
516 => 1.3127952195221
517 => 1.3112732983872
518 => 1.1893774299967
519 => 1.2061736051646
520 => 1.2323031827956
521 => 1.2205318434906
522 => 1.2038899237826
523 => 1.190450681335
524 => 1.1700888547939
525 => 1.1987477346363
526 => 1.2364311140969
527 => 1.2760523006255
528 => 1.3236545601566
529 => 1.3130302899807
530 => 1.275162409495
531 => 1.2768611349511
601 => 1.2873619872968
602 => 1.2737624294061
603 => 1.2697516542892
604 => 1.2868109683854
605 => 1.2869284465059
606 => 1.2712805115912
607 => 1.2538906954754
608 => 1.2538178315109
609 => 1.2507234816988
610 => 1.2947226417876
611 => 1.3189177310196
612 => 1.3216916590077
613 => 1.3187310235645
614 => 1.3198704546431
615 => 1.3057918653215
616 => 1.3379713456349
617 => 1.3675024189912
618 => 1.3595874604924
619 => 1.3477218125249
620 => 1.3382702523918
621 => 1.3573609732999
622 => 1.3565108935494
623 => 1.3672444908278
624 => 1.366757552855
625 => 1.3631482478013
626 => 1.359587589392
627 => 1.3737051975062
628 => 1.3696395530912
629 => 1.3655675936074
630 => 1.3574006554769
701 => 1.3585106780073
702 => 1.3466470788112
703 => 1.3411584349818
704 => 1.2586224008849
705 => 1.2365660756315
706 => 1.2435054445541
707 => 1.245790064984
708 => 1.2361911239678
709 => 1.2499535396195
710 => 1.2478086817182
711 => 1.2561530691122
712 => 1.2509398581396
713 => 1.2511538101364
714 => 1.2664847520331
715 => 1.2709353896882
716 => 1.2686717594558
717 => 1.2702571284779
718 => 1.3067912884497
719 => 1.3015972991983
720 => 1.2988380959286
721 => 1.2996024140911
722 => 1.3089376752651
723 => 1.3115510387075
724 => 1.3004780341644
725 => 1.3057001271192
726 => 1.3279351361384
727 => 1.3357161309026
728 => 1.3605493311006
729 => 1.3499997462816
730 => 1.3693639657923
731 => 1.4288829748192
801 => 1.4764308776321
802 => 1.4327038612052
803 => 1.5200195295322
804 => 1.5880073020135
805 => 1.5853978180661
806 => 1.5735425773485
807 => 1.496140305927
808 => 1.4249135817621
809 => 1.4844977609725
810 => 1.4846496532989
811 => 1.4795313194621
812 => 1.4477417875861
813 => 1.4784251126606
814 => 1.4808606435796
815 => 1.4794973939249
816 => 1.4551244343701
817 => 1.4179114300058
818 => 1.4251827619832
819 => 1.4370933520934
820 => 1.4145441202054
821 => 1.4073382743111
822 => 1.4207353127969
823 => 1.4639033621823
824 => 1.4557426925015
825 => 1.4555295844363
826 => 1.4904443899933
827 => 1.4654529243011
828 => 1.4252744767655
829 => 1.4151288888741
830 => 1.3791188867467
831 => 1.4039911234794
901 => 1.4048862310002
902 => 1.3912639611298
903 => 1.4263798488889
904 => 1.4260562498011
905 => 1.4593935589182
906 => 1.5231219730285
907 => 1.5042743450913
908 => 1.4823566044164
909 => 1.4847396705408
910 => 1.510876024017
911 => 1.4950733880703
912 => 1.5007561261366
913 => 1.5108674225123
914 => 1.5169678186651
915 => 1.4838619174142
916 => 1.4761433481943
917 => 1.46035386442
918 => 1.456234682828
919 => 1.4690948879037
920 => 1.465706678224
921 => 1.4048110006791
922 => 1.3984470635553
923 => 1.3986422364213
924 => 1.3826398139348
925 => 1.3582322786214
926 => 1.4223738241267
927 => 1.4172223603623
928 => 1.411535543058
929 => 1.4122321457292
930 => 1.4400738166744
1001 => 1.4239242414881
1002 => 1.4668605339842
1003 => 1.4580341230301
1004 => 1.4489813479401
1005 => 1.4477299786684
1006 => 1.4442454326053
1007 => 1.4322956276122
1008 => 1.4178655200111
1009 => 1.4083375130583
1010 => 1.299116911357
1011 => 1.3193876197258
1012 => 1.3427072219708
1013 => 1.3507570552184
1014 => 1.3369872584169
1015 => 1.4328393431178
1016 => 1.4503524426463
1017 => 1.3973041218232
1018 => 1.3873809469459
1019 => 1.4334899048107
1020 => 1.4056805666274
1021 => 1.4182031099086
1022 => 1.3911362207996
1023 => 1.4461340498133
1024 => 1.4457150585028
1025 => 1.4243196608342
1026 => 1.4424029044343
1027 => 1.439260495852
1028 => 1.4151051445787
1029 => 1.4468998175338
1030 => 1.4469155872949
1031 => 1.4263229822149
1101 => 1.4022753277824
1102 => 1.3979761751501
1103 => 1.3947373411515
1104 => 1.4174065552891
1105 => 1.4377317018
1106 => 1.4755517604256
1107 => 1.4850606217465
1108 => 1.5221743405228
1109 => 1.5000749280257
1110 => 1.5098713113504
1111 => 1.5205066712323
1112 => 1.5256056538621
1113 => 1.5172971352933
1114 => 1.574950017169
1115 => 1.579817686838
1116 => 1.5814497743728
1117 => 1.5620095469846
1118 => 1.5792770189472
1119 => 1.5711981406545
1120 => 1.5922171375951
1121 => 1.5955131846994
1122 => 1.5927215500624
1123 => 1.5937677674378
1124 => 1.5445712034222
1125 => 1.5420201020455
1126 => 1.5072356537555
1127 => 1.5214105735473
1128 => 1.4949112404181
1129 => 1.5033144519267
1130 => 1.507018507491
1201 => 1.5050837190675
1202 => 1.5222120022445
1203 => 1.507649462467
1204 => 1.4692165256911
1205 => 1.4307731178872
1206 => 1.4302904922176
1207 => 1.4201690215253
1208 => 1.4128530520547
1209 => 1.4142623673227
1210 => 1.419228978147
1211 => 1.4125643836047
1212 => 1.4139866127539
1213 => 1.4376050928924
1214 => 1.4423416106449
1215 => 1.426245072645
1216 => 1.3616151498559
1217 => 1.3457548046916
1218 => 1.3571549062714
1219 => 1.3517063919768
1220 => 1.0909325546837
1221 => 1.1521974996427
1222 => 1.115795949709
1223 => 1.1325714586733
1224 => 1.0954149023266
1225 => 1.1131479585572
1226 => 1.109873310579
1227 => 1.2083855291115
1228 => 1.2068473963183
1229 => 1.2075836190902
1230 => 1.1724417879665
1231 => 1.2284236791513
]
'min_raw' => 0.71469811050644
'max_raw' => 1.5955131846994
'avg_raw' => 1.1551056476029
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.714698'
'max' => '$1.59'
'avg' => '$1.15'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.11020499852809
'max_diff' => 0.24137399177182
'year' => 2035
]
10 => [
'items' => [
101 => 1.2560023717926
102 => 1.2508982897679
103 => 1.2521828772504
104 => 1.230109408259
105 => 1.2077973385203
106 => 1.1830498193771
107 => 1.2290276510593
108 => 1.223915701044
109 => 1.2356406751575
110 => 1.2654605855667
111 => 1.2698516806492
112 => 1.2757533569703
113 => 1.2736380261191
114 => 1.3240337889518
115 => 1.3179305295508
116 => 1.3326376286796
117 => 1.3023840099413
118 => 1.2681491686392
119 => 1.2746560927494
120 => 1.2740294236323
121 => 1.266051206513
122 => 1.2588488288279
123 => 1.2468588992396
124 => 1.2847968106327
125 => 1.2832566007129
126 => 1.3081908090163
127 => 1.3037834455007
128 => 1.2743499932787
129 => 1.275401214783
130 => 1.2824711845989
131 => 1.3069404308554
201 => 1.3142045691377
202 => 1.3108395308595
203 => 1.3188043268654
204 => 1.3250993768777
205 => 1.3195948882267
206 => 1.3975268395854
207 => 1.3651640599846
208 => 1.3809374535833
209 => 1.3846993150143
210 => 1.3750633860621
211 => 1.3771530740151
212 => 1.380318381858
213 => 1.3995375112492
214 => 1.4499740678718
215 => 1.4723120754666
216 => 1.5395170734537
217 => 1.470457214896
218 => 1.4663594886873
219 => 1.4784651382212
220 => 1.5179215864111
221 => 1.5498973317133
222 => 1.5605055311551
223 => 1.5619075798336
224 => 1.581809267206
225 => 1.5932165432634
226 => 1.5793926788927
227 => 1.5676784012574
228 => 1.5257193127975
229 => 1.5305761915375
301 => 1.5640352697215
302 => 1.6112981883863
303 => 1.6518546894692
304 => 1.6376532163267
305 => 1.7460004317262
306 => 1.7567426155744
307 => 1.755258393103
308 => 1.7797306865604
309 => 1.7311581677433
310 => 1.7103924749007
311 => 1.5702111610448
312 => 1.6095963923169
313 => 1.6668451389843
314 => 1.6592680526911
315 => 1.6176924825978
316 => 1.6518231506711
317 => 1.6405384844414
318 => 1.6316377999848
319 => 1.6724135609631
320 => 1.6275789367915
321 => 1.6663978793115
322 => 1.6166121839991
323 => 1.6377180874598
324 => 1.6257373558778
325 => 1.6334903575146
326 => 1.5881664683659
327 => 1.6126221387753
328 => 1.5871490320741
329 => 1.5871369545048
330 => 1.5865746342625
331 => 1.6165436313315
401 => 1.61752091925
402 => 1.5953737851354
403 => 1.5921820371062
404 => 1.6039836024329
405 => 1.5901670602702
406 => 1.5966317333878
407 => 1.5903628686332
408 => 1.5889516151345
409 => 1.5777065071515
410 => 1.5728618054417
411 => 1.5747615378147
412 => 1.5682767718465
413 => 1.5643694657864
414 => 1.5857973727417
415 => 1.5743493064548
416 => 1.5840427923948
417 => 1.5729958417507
418 => 1.5347022978908
419 => 1.5126792758701
420 => 1.4403463213323
421 => 1.4608598575104
422 => 1.4744603532194
423 => 1.4699653894687
424 => 1.4796223109252
425 => 1.4802151674724
426 => 1.4770756038662
427 => 1.4734403914133
428 => 1.471670971031
429 => 1.4848587809013
430 => 1.4925147484122
501 => 1.4758253449149
502 => 1.4719152511851
503 => 1.488789159568
504 => 1.4990822339339
505 => 1.5750805118726
506 => 1.5694503139717
507 => 1.5835810058324
508 => 1.581990106782
509 => 1.5968013230478
510 => 1.6210114019554
511 => 1.5717855422918
512 => 1.5803294494272
513 => 1.5782346807053
514 => 1.601104816334
515 => 1.6011762144011
516 => 1.5874644256436
517 => 1.5948978087774
518 => 1.5907486982363
519 => 1.59824670177
520 => 1.5693751192462
521 => 1.6045375902654
522 => 1.6244724455137
523 => 1.6247492409982
524 => 1.6341982041731
525 => 1.6437988980059
526 => 1.6622265937737
527 => 1.6432849595726
528 => 1.6092108035757
529 => 1.6116708475799
530 => 1.5916931823862
531 => 1.5920290105473
601 => 1.5902363335037
602 => 1.5956162922581
603 => 1.5705557176514
604 => 1.5764373844212
605 => 1.5682030165005
606 => 1.5803115495195
607 => 1.5672847696033
608 => 1.5782336705444
609 => 1.5829588532287
610 => 1.60039487906
611 => 1.5647094544112
612 => 1.4919444578615
613 => 1.5072405423265
614 => 1.4846164319212
615 => 1.4867103794753
616 => 1.4909404867838
617 => 1.4772293249919
618 => 1.4798449825734
619 => 1.4797515328785
620 => 1.4789462338934
621 => 1.4753794311611
622 => 1.4702068615289
623 => 1.4908127869106
624 => 1.4943141351658
625 => 1.5020971986117
626 => 1.5252543161244
627 => 1.5229403740025
628 => 1.5267145096079
629 => 1.5184755927721
630 => 1.4870925591975
701 => 1.4887968089089
702 => 1.4675447876987
703 => 1.5015537366483
704 => 1.4934999686408
705 => 1.4883076520136
706 => 1.4868908803153
707 => 1.5101053998433
708 => 1.5170515479291
709 => 1.5127231745807
710 => 1.5038455545643
711 => 1.5208932094285
712 => 1.5254544426873
713 => 1.5264755346022
714 => 1.556680710458
715 => 1.5281636683949
716 => 1.5350280038545
717 => 1.5885815895993
718 => 1.5400158772184
719 => 1.5657422182112
720 => 1.564483047693
721 => 1.577643773213
722 => 1.5634034840676
723 => 1.5635800095184
724 => 1.5752658421954
725 => 1.5588551977516
726 => 1.5547916914039
727 => 1.5491779864879
728 => 1.5614353057986
729 => 1.5687830143746
730 => 1.6280001491991
731 => 1.6662571189252
801 => 1.6645962829738
802 => 1.6797732146149
803 => 1.6729358679058
804 => 1.6508562717813
805 => 1.6885434500459
806 => 1.6766176499445
807 => 1.677600798415
808 => 1.6775642055798
809 => 1.6854938200757
810 => 1.6798749614669
811 => 1.6687996143848
812 => 1.6761519466427
813 => 1.6979857449417
814 => 1.7657585248045
815 => 1.8036850702857
816 => 1.7634752991446
817 => 1.7912114608474
818 => 1.7745796472306
819 => 1.7715571519429
820 => 1.7889775111785
821 => 1.8064283624469
822 => 1.8053168186632
823 => 1.7926483967535
824 => 1.785492326666
825 => 1.8396804868279
826 => 1.8796054001639
827 => 1.8768827887344
828 => 1.8888995101436
829 => 1.9241809758641
830 => 1.9274066709279
831 => 1.9270003074916
901 => 1.9190050857096
902 => 1.9537442705887
903 => 1.9827243097926
904 => 1.9171544228712
905 => 1.942122577438
906 => 1.9533315864468
907 => 1.9697897372347
908 => 1.9975573963204
909 => 2.0277204390952
910 => 2.0319858240645
911 => 2.0289593293113
912 => 2.0090659917752
913 => 2.0420707530994
914 => 2.0614041682261
915 => 2.0729167744968
916 => 2.1021108284842
917 => 1.9534008094704
918 => 1.848136466645
919 => 1.8316979194772
920 => 1.8651263515568
921 => 1.8739411625094
922 => 1.8703879232672
923 => 1.7519033352018
924 => 1.831074122642
925 => 1.9162552330588
926 => 1.9195273864209
927 => 1.9621708313486
928 => 1.9760572850309
929 => 2.0103908476018
930 => 2.0082432739149
1001 => 2.0166029500346
1002 => 2.0146812052641
1003 => 2.0782769001421
1004 => 2.1484323956446
1005 => 2.1460031339161
1006 => 2.1359174513955
1007 => 2.1508964098031
1008 => 2.2233043994814
1009 => 2.2166382321062
1010 => 2.2231138458884
1011 => 2.3084869464547
1012 => 2.4194841213728
1013 => 2.3679147896891
1014 => 2.4798054007671
1015 => 2.5502346093743
1016 => 2.6720346431442
1017 => 2.6567846790384
1018 => 2.7042005383751
1019 => 2.6294840605255
1020 => 2.4579199246911
1021 => 2.4307692434742
1022 => 2.4851255948352
1023 => 2.6187553806411
1024 => 2.4809171173321
1025 => 2.5088016184786
1026 => 2.5007708802725
1027 => 2.5003429563619
1028 => 2.5166750715358
1029 => 2.4929844866503
1030 => 2.3964647819722
1031 => 2.440699193832
1101 => 2.423618163102
1102 => 2.4425708401721
1103 => 2.544850621641
1104 => 2.4996302922081
1105 => 2.4519943485519
1106 => 2.511740393159
1107 => 2.5878176389121
1108 => 2.5830568615969
1109 => 2.5738189637547
1110 => 2.6258925102105
1111 => 2.7119027528379
1112 => 2.7351509758029
1113 => 2.7523123387067
1114 => 2.7546786007076
1115 => 2.7790525699398
1116 => 2.647987594347
1117 => 2.8559910766
1118 => 2.8919075320048
1119 => 2.8851567269733
1120 => 2.9250763555603
1121 => 2.9133309881668
1122 => 2.8963137936052
1123 => 2.9595948960641
1124 => 2.8870482186166
1125 => 2.7840773433526
1126 => 2.7275854846498
1127 => 2.8019785212579
1128 => 2.8474077527553
1129 => 2.8774335849333
1130 => 2.8865193836083
1201 => 2.6581617953082
1202 => 2.5350897205069
1203 => 2.6139775094303
1204 => 2.7102260564612
1205 => 2.6474529288086
1206 => 2.6499135165673
1207 => 2.5604155330224
1208 => 2.7181446421157
1209 => 2.6951648376314
1210 => 2.8143841039465
1211 => 2.785931469246
1212 => 2.8831501528607
1213 => 2.857549215312
1214 => 2.9638172757473
1215 => 3.0062104821477
1216 => 3.0773952736699
1217 => 3.1297590960878
1218 => 3.1605081341719
1219 => 3.1586620772621
1220 => 3.2805050852612
1221 => 3.2086585203146
1222 => 3.1184023018064
1223 => 3.1167698515683
1224 => 3.1635148260742
1225 => 3.2614794687811
1226 => 3.2868802753074
1227 => 3.3010758609139
1228 => 3.2793348274057
1229 => 3.2013505304458
1230 => 3.1676773064079
1231 => 3.1963678688954
]
'min_raw' => 1.1830498193771
'max_raw' => 3.3010758609139
'avg_raw' => 2.2420628401455
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$1.18'
'max' => '$3.30'
'avg' => '$2.24'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.46835170887069
'max_diff' => 1.7055626762144
'year' => 2036
]
11 => [
'items' => [
101 => 3.1612817763813
102 => 3.2218502154795
103 => 3.3050236190818
104 => 3.2878486401412
105 => 3.3452620197228
106 => 3.4046788275262
107 => 3.4896475312607
108 => 3.511861496799
109 => 3.5485803371122
110 => 3.5863760853051
111 => 3.5985150610008
112 => 3.6216921321066
113 => 3.6215699775014
114 => 3.6914156412757
115 => 3.768457571359
116 => 3.7975391164406
117 => 3.8644105257901
118 => 3.7498955807328
119 => 3.8367564820117
120 => 3.9151071892346
121 => 3.8216942460629
122 => 3.9504422258007
123 => 3.9554412181048
124 => 4.0309200668185
125 => 3.9544077936494
126 => 3.9089750500774
127 => 4.0401376784271
128 => 4.1036031427014
129 => 4.0844868283629
130 => 3.939010732358
131 => 3.8543374047199
201 => 3.6327309740257
202 => 3.8952333638683
203 => 4.0230906206609
204 => 3.9386796129509
205 => 3.9812516153448
206 => 4.2135106563873
207 => 4.3019398615571
208 => 4.2835472050486
209 => 4.2866552612296
210 => 4.3343700552356
211 => 4.5459637288752
212 => 4.4191718949274
213 => 4.5160995011811
214 => 4.5675095540395
215 => 4.6152620762479
216 => 4.4979969740438
217 => 4.3454367990429
218 => 4.2971145875796
219 => 3.9302866017933
220 => 3.9111916120799
221 => 3.9004730157164
222 => 3.83289378182
223 => 3.7797950154874
224 => 3.737568905069
225 => 3.626754981547
226 => 3.6641514277588
227 => 3.4875371623281
228 => 3.6005287105254
301 => 3.3186480783975
302 => 3.5534066449618
303 => 3.4256382303431
304 => 3.5114312844391
305 => 3.5111319605555
306 => 3.3531597472522
307 => 3.2620446714148
308 => 3.3201067439902
309 => 3.3823538947641
310 => 3.3924532855526
311 => 3.4731583413478
312 => 3.4956813876708
313 => 3.4274355058115
314 => 3.3128067288362
315 => 3.3394323793235
316 => 3.2615051034575
317 => 3.1249405499319
318 => 3.2230235964624
319 => 3.256513460955
320 => 3.2713044929904
321 => 3.1370089391429
322 => 3.0948103604257
323 => 3.072344191197
324 => 3.2954708592458
325 => 3.3076942418015
326 => 3.2451576884344
327 => 3.5278288396127
328 => 3.4638516523173
329 => 3.5353298453177
330 => 3.3370163806186
331 => 3.3445922220346
401 => 3.2507074497318
402 => 3.3032766488386
403 => 3.2661224332943
404 => 3.2990295770497
405 => 3.3187539833355
406 => 3.412623350071
407 => 3.5544784823455
408 => 3.3986023969482
409 => 3.330684954354
410 => 3.3728205537573
411 => 3.4850332075326
412 => 3.6550411220622
413 => 3.5543930149325
414 => 3.599058935761
415 => 3.6088164524135
416 => 3.5346022644115
417 => 3.6577775050318
418 => 3.7237881171541
419 => 3.7915013462201
420 => 3.8502948457364
421 => 3.7644551934853
422 => 3.8563159260248
423 => 3.7822923912001
424 => 3.71588562805
425 => 3.7159863396982
426 => 3.6743284071261
427 => 3.5936109135305
428 => 3.5787253692829
429 => 3.6561618502958
430 => 3.7182585748061
501 => 3.72337315846
502 => 3.7577530957938
503 => 3.7780987885664
504 => 3.9775142363663
505 => 4.0577207791225
506 => 4.1557958213727
507 => 4.1940015775356
508 => 4.3089872060644
509 => 4.2161269723512
510 => 4.1960360766691
511 => 3.9171185533707
512 => 3.9627912821856
513 => 4.035917727781
514 => 3.9183243815244
515 => 3.992910293467
516 => 4.0076351324301
517 => 3.9143286046163
518 => 3.9641676526587
519 => 3.8318099173059
520 => 3.5573635192843
521 => 3.6580830423275
522 => 3.7322465131122
523 => 3.6264060960124
524 => 3.8161209470739
525 => 3.7052934475932
526 => 3.670166450916
527 => 3.5331235131997
528 => 3.5978025045354
529 => 3.6852817664309
530 => 3.6312297531352
531 => 3.7433957966743
601 => 3.9022528279168
602 => 4.01546380848
603 => 4.0241547418213
604 => 3.9513676658658
605 => 4.0680094196054
606 => 4.0688590274407
607 => 3.9372866527268
608 => 3.8566993058127
609 => 3.8383896910366
610 => 3.8841306985587
611 => 3.9396687259465
612 => 4.0272367158163
613 => 4.0801522181107
614 => 4.2181277838808
615 => 4.2554600159087
616 => 4.2964768204819
617 => 4.3512879205057
618 => 4.4171026993618
619 => 4.273103710062
620 => 4.2788250583546
621 => 4.1447351933203
622 => 4.0014409420994
623 => 4.1101834168955
624 => 4.2523497372862
625 => 4.2197366263087
626 => 4.2160669850984
627 => 4.2222383037406
628 => 4.1976490831083
629 => 4.0864329495071
630 => 4.0305809034624
701 => 4.1026442922367
702 => 4.1409427761977
703 => 4.2003403848425
704 => 4.1930183758456
705 => 4.3460202368772
706 => 4.405472133538
707 => 4.390261794282
708 => 4.3930608627624
709 => 4.500695681874
710 => 4.6204077375149
711 => 4.7325338750197
712 => 4.8465933980192
713 => 4.7090901912243
714 => 4.6392745428327
715 => 4.7113064709857
716 => 4.6730853159849
717 => 4.8927154097504
718 => 4.9079221209181
719 => 5.127536332928
720 => 5.3359763712993
721 => 5.2050589177895
722 => 5.3285081797977
723 => 5.4620286216255
724 => 5.7196112168224
725 => 5.6328664606251
726 => 5.5664213368415
727 => 5.5036310159266
728 => 5.6342877060678
729 => 5.802375450643
730 => 5.8385799409
731 => 5.8972450462963
801 => 5.8355658611999
802 => 5.9098516459091
803 => 6.1721131087602
804 => 6.1012477464518
805 => 6.0006075397985
806 => 6.2076377768609
807 => 6.282561214844
808 => 6.8084131403191
809 => 7.4723229180909
810 => 7.1974599106268
811 => 7.0268435721199
812 => 7.0669424587427
813 => 7.3093798348207
814 => 7.3872430254393
815 => 7.1755840322866
816 => 7.2503455668978
817 => 7.6622889729971
818 => 7.8832833936426
819 => 7.5831432868955
820 => 6.7550686361097
821 => 5.9915459903178
822 => 6.1940665778546
823 => 6.1711070281735
824 => 6.6136888270407
825 => 6.0995576309975
826 => 6.1082142817759
827 => 6.5599482035415
828 => 6.4394333378945
829 => 6.2442146899241
830 => 5.9929713024898
831 => 5.5285246636171
901 => 5.1171513235149
902 => 5.9239491770776
903 => 5.8891585865653
904 => 5.8387766558268
905 => 5.950896190791
906 => 6.495316826892
907 => 6.4827661691122
908 => 6.4029252877193
909 => 6.4634838925706
910 => 6.2335984736971
911 => 6.2928451805345
912 => 5.9914250444297
913 => 6.1276795343659
914 => 6.2437958383827
915 => 6.2671079055453
916 => 6.3196311832064
917 => 5.870825526262
918 => 6.0723260899882
919 => 6.1906887931278
920 => 5.655921794271
921 => 6.1801181689674
922 => 5.863012818277
923 => 5.7553824994902
924 => 5.9002925445204
925 => 5.8438209590425
926 => 5.7952700059713
927 => 5.7681777399463
928 => 5.8745836838785
929 => 5.8696197194115
930 => 5.6955189426347
1001 => 5.4684115765849
1002 => 5.5446362631764
1003 => 5.5169431199275
1004 => 5.4165795963068
1005 => 5.4842124932891
1006 => 5.1863914432049
1007 => 4.6740058059262
1008 => 5.012503452709
1009 => 4.9994716615225
1010 => 4.9929004414615
1011 => 5.247272067631
1012 => 5.2228201051267
1013 => 5.1784395537471
1014 => 5.415764512677
1015 => 5.3291377101965
1016 => 5.5961011036
1017 => 5.7719404606052
1018 => 5.7273419118614
1019 => 5.8927196770302
1020 => 5.5463923260032
1021 => 5.6614283797728
1022 => 5.6851371510216
1023 => 5.4128359595228
1024 => 5.226820748595
1025 => 5.2144156547547
1026 => 4.8918909134809
1027 => 5.0641810269406
1028 => 5.2157891969359
1029 => 5.1431806487774
1030 => 5.1201949515491
1031 => 5.237623893699
1101 => 5.2467491282149
1102 => 5.0386928142029
1103 => 5.0819543101726
1104 => 5.2623619399914
1105 => 5.0774085007795
1106 => 4.7180741803633
1107 => 4.6289543007145
1108 => 4.6170640659641
1109 => 4.3753638841696
1110 => 4.6349097172159
1111 => 4.5216110056953
1112 => 4.8795202778619
1113 => 4.6750844211063
1114 => 4.6662715999223
1115 => 4.652949728143
1116 => 4.4449083971637
1117 => 4.4904562269318
1118 => 4.6418641502115
1119 => 4.69588820297
1120 => 4.6902530516613
1121 => 4.6411221687871
1122 => 4.6636140353761
1123 => 4.5911598964072
1124 => 4.5655748319348
1125 => 4.4848213307335
1126 => 4.3661359926917
1127 => 4.3826399168859
1128 => 4.147493206517
1129 => 4.0193727985276
1130 => 3.9839107581959
1201 => 3.9364894358038
1202 => 3.9892671227435
1203 => 4.1468270654312
1204 => 3.9567763463433
1205 => 3.6309477189749
1206 => 3.6505305746647
1207 => 3.6945274371976
1208 => 3.6125395749358
1209 => 3.5349449440248
1210 => 3.6024071801506
1211 => 3.4643492954117
1212 => 3.711211072989
1213 => 3.7045341537277
1214 => 3.7965489585786
1215 => 3.8540877043857
1216 => 3.7214795236904
1217 => 3.6881289248562
1218 => 3.7071269416524
1219 => 3.3931320426169
1220 => 3.7708888764478
1221 => 3.7741557332334
1222 => 3.7461829220683
1223 => 3.9473267741495
1224 => 4.3718030403815
1225 => 4.2120979945068
1226 => 4.1502553736335
1227 => 4.0326925061468
1228 => 4.1893380468805
1229 => 4.1773101134033
1230 => 4.1229152367608
1231 => 4.0900170456451
]
'min_raw' => 3.072344191197
'max_raw' => 7.8832833936426
'avg_raw' => 5.4778137924198
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$3.07'
'max' => '$7.88'
'avg' => '$5.47'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 1.8892943718199
'max_diff' => 4.5822075327287
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.096437373472602
]
1 => [
'year' => 2028
'avg' => 0.16551452884854
]
2 => [
'year' => 2029
'avg' => 0.4521558617228
]
3 => [
'year' => 2030
'avg' => 0.34883757394843
]
4 => [
'year' => 2031
'avg' => 0.34260172858197
]
5 => [
'year' => 2032
'avg' => 0.60068865093626
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.096437373472602
'min' => '$0.096437'
'max_raw' => 0.60068865093626
'max' => '$0.600688'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.60068865093626
]
1 => [
'year' => 2033
'avg' => 1.5450329782936
]
2 => [
'year' => 2034
'avg' => 0.97931615245298
]
3 => [
'year' => 2035
'avg' => 1.1551056476029
]
4 => [
'year' => 2036
'avg' => 2.2420628401455
]
5 => [
'year' => 2037
'avg' => 5.4778137924198
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.60068865093626
'min' => '$0.600688'
'max_raw' => 5.4778137924198
'max' => '$5.47'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 5.4778137924198
]
]
]
]
'prediction_2025_max_price' => '$0.16489'
'last_price' => 0.159882
'sma_50day_nextmonth' => '$0.142772'
'sma_200day_nextmonth' => '—'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'decrease'
'sma_200day_direction_label' => 'disminuir'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.168169'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.169845'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.17102'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.133857'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.169345'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '—'
'daily_sma100_action' => '—'
'daily_sma200' => '—'
'daily_sma200_action' => '—'
'daily_ema3' => '$0.16589'
'daily_ema3_action' => 'SELL'
'daily_ema5' => '$0.167254'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.161789'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.151773'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.1925047'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.171123'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.085561'
'daily_ema200_action' => 'BUY'
'weekly_sma21' => '—'
'weekly_sma21_action' => '—'
'weekly_sma50' => '—'
'weekly_sma50_action' => '—'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.162418'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.164982'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.208541'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.139431'
'weekly_ema21_action' => 'BUY'
'weekly_ema50' => '$0.058561'
'weekly_ema50_action' => 'BUY'
'weekly_ema100' => '$0.02928'
'weekly_ema100_action' => 'BUY'
'weekly_ema200' => '$0.01464'
'weekly_ema200_action' => 'BUY'
'rsi_14' => '52.13'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 74.61
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => -0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.172335'
'vwma_10_action' => 'SELL'
'hma_9' => '0.168435'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 70.2
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => 42.27
'cci_20_action' => 'NEUTRAL'
'adx_14' => 24.89
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.0425056'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0.01
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -29.8
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 53.29
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '—'
'ichimoku_cloud_action' => '—'
'sell_signals' => 19
'buy_signals' => 8
'sell_pct' => 70.37
'buy_pct' => 29.63
'overall_action' => 'bearish'
'overall_action_label' => 'Bajista'
'overall_action_dir' => -1
'last_updated' => 1767696967
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de Apro para 2026
La previsión del precio de Apro para 2026 sugiere que el precio medio podría oscilar entre $0.055239 en el extremo inferior y $0.16489 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, Apro podría potencialmente ganar 3.13% para 2026 si AT alcanza el objetivo de precio previsto.
Predicción de precio de Apro 2027-2032
La predicción del precio de AT para 2027-2032 está actualmente dentro de un rango de precios de $0.096437 en el extremo inferior y $0.600688 en el extremo superior. Considerando la volatilidad de precios en el mercado, si Apro alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de Apro | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.053177 | $0.096437 | $0.139697 |
| 2028 | $0.095969 | $0.165514 | $0.235059 |
| 2029 | $0.210817 | $0.452155 | $0.693494 |
| 2030 | $0.179291 | $0.348837 | $0.518383 |
| 2031 | $0.211977 | $0.3426017 | $0.473225 |
| 2032 | $0.323568 | $0.600688 | $0.8778091 |
Predicción de precio de Apro 2032-2037
La predicción de precio de Apro para 2032-2037 se estima actualmente entre $0.600688 en el extremo inferior y $5.47 en el extremo superior. Comparado con el precio actual, Apro podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de Apro | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.323568 | $0.600688 | $0.8778091 |
| 2033 | $0.7519018 | $1.54 | $2.33 |
| 2034 | $0.604493 | $0.979316 | $1.35 |
| 2035 | $0.714698 | $1.15 | $1.59 |
| 2036 | $1.18 | $2.24 | $3.30 |
| 2037 | $3.07 | $5.47 | $7.88 |
Apro Histograma de precios potenciales
Pronóstico de precio de Apro basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para Apro es Bajista, con 8 indicadores técnicos mostrando señales alcistas y 19 indicando señales bajistas. La predicción de precio de AT se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de Apro
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de Apro disminuir durante el próximo mes, alcanzando — para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para Apro alcance $0.142772 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 52.13, lo que sugiere que el mercado de AT está en un estado NEUTRAL.
Promedios Móviles y Osciladores Populares de AT para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.168169 | SELL |
| SMA 5 | $0.169845 | SELL |
| SMA 10 | $0.17102 | SELL |
| SMA 21 | $0.133857 | BUY |
| SMA 50 | $0.169345 | SELL |
| SMA 100 | — | — |
| SMA 200 | — | — |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.16589 | SELL |
| EMA 5 | $0.167254 | SELL |
| EMA 10 | $0.161789 | SELL |
| EMA 21 | $0.151773 | BUY |
| EMA 50 | $0.1925047 | SELL |
| EMA 100 | $0.171123 | SELL |
| EMA 200 | $0.085561 | BUY |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | — | — |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.139431 | BUY |
| EMA 50 | $0.058561 | BUY |
| EMA 100 | $0.02928 | BUY |
| EMA 200 | $0.01464 | BUY |
Osciladores de Apro
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 52.13 | NEUTRAL |
| Stoch RSI (14) | 74.61 | NEUTRAL |
| Estocástico Rápido (14) | 70.2 | NEUTRAL |
| Índice de Canal de Materias Primas (20) | 42.27 | NEUTRAL |
| Índice Direccional Medio (14) | 24.89 | NEUTRAL |
| Oscilador Asombroso (5, 34) | 0.0425056 | BUY |
| Momentum (10) | -0 | SELL |
| MACD (12, 26) | 0.01 | NEUTRAL |
| Rango Percentil de Williams (14) | -29.8 | NEUTRAL |
| Oscilador Ultimate (7, 14, 28) | 53.29 | NEUTRAL |
| VWMA (10) | 0.172335 | SELL |
| Promedio Móvil de Hull (9) | 0.168435 | SELL |
| Nube Ichimoku B/L (9, 26, 52, 26) | — | — |
Predicción de precios de Apro basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de Apro
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de Apro por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.22466 | $0.315686 | $0.443591 | $0.62332 | $0.875869 | $1.23 |
| Amazon.com acción | $0.3336032 | $0.696083 | $1.45 | $3.03 | $6.32 | $13.19 |
| Apple acción | $0.22678 | $0.32167 | $0.456265 | $0.647177 | $0.917971 | $1.30 |
| Netflix acción | $0.252268 | $0.39804 | $0.628045 | $0.990957 | $1.56 | $2.46 |
| Google acción | $0.207046 | $0.268124 | $0.347219 | $0.449647 | $0.582292 | $0.754065 |
| Tesla acción | $0.36244 | $0.821625 | $1.86 | $4.22 | $9.57 | $21.69 |
| Kodak acción | $0.119894 | $0.0899081 | $0.067421 | $0.050558 | $0.037913 | $0.028431 |
| Nokia acción | $0.105915 | $0.070164 | $0.04648 | $0.030791 | $0.020398 | $0.013512 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de Apro
Podría preguntarse cosas como: "¿Debo invertir en Apro ahora?", "¿Debería comprar AT hoy?", "¿Será Apro una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de Apro regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como Apro, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de Apro a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de Apro es de $0.1598 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Pronóstico a corto plazo de Apro
basado en el historial de precios de las últimas 4 horas
Pronóstico a largo plazo de Apro
basado en el historial de precios del último mes
Predicción de precios de Apro basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Apro ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.164037 | $0.1683017 | $0.172676 | $0.177164 |
| Si Apro ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.168193 | $0.176937 | $0.186135 | $0.195812 |
| Si Apro ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.180661 | $0.204141 | $0.230672 | $0.260652 |
| Si Apro ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.20144 | $0.2538013 | $0.319772 | $0.402891 |
| Si Apro ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.242998 | $0.369325 | $0.561324 | $0.853136 |
| Si Apro ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.367674 | $0.845526 | $1.94 | $4.47 |
| Si Apro ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.575466 | $2.07 | $7.45 | $26.83 |
Cuadro de preguntas
¿Es AT una buena inversión?
La decisión de adquirir Apro depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de Apro ha experimentado un aumento de 0.2371% durante las últimas 24 horas, y Apro ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en Apro dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede Apro subir?
Parece que el valor medio de Apro podría potencialmente aumentar hasta $0.16489 para el final de este año. Mirando las perspectivas de Apro en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.518383. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de Apro la próxima semana?
Basado en nuestro nuevo pronóstico experimental de Apro, el precio de Apro aumentará en un 0.86% durante la próxima semana y alcanzará $0.16125 para el 13 de enero de 2026.
¿Cuál será el precio de Apro el próximo mes?
Basado en nuestro nuevo pronóstico experimental de Apro, el precio de Apro disminuirá en un -11.62% durante el próximo mes y alcanzará $0.141306 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de Apro este año en 2026?
Según nuestra predicción más reciente sobre el valor de Apro en 2026, se anticipa que AT fluctúe dentro del rango de $0.055239 y $0.16489. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de Apro no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará Apro en 5 años?
El futuro de Apro parece estar en una tendencia alcista, con un precio máximo de $0.518383 proyectada después de un período de cinco años. Basado en el pronóstico de Apro para 2030, el valor de Apro podría potencialmente alcanzar su punto más alto de aproximadamente $0.518383, mientras que su punto más bajo se anticipa que esté alrededor de $0.179291.
¿Cuánto será Apro en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de Apro, se espera que el valor de AT en 2026 crezca en un 3.13% hasta $0.16489 si ocurre lo mejor. El precio estará entre $0.16489 y $0.055239 durante 2026.
¿Cuánto será Apro en 2027?
Según nuestra última simulación experimental para la predicción de precios de Apro, el valor de AT podría disminuir en un -12.62% hasta $0.139697 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.139697 y $0.053177 a lo largo del año.
¿Cuánto será Apro en 2028?
Nuestro nuevo modelo experimental de predicción de precios de Apro sugiere que el valor de AT en 2028 podría aumentar en un 47.02% , alcanzando $0.235059 en el mejor escenario. Se espera que el precio oscile entre $0.235059 y $0.095969 durante el año.
¿Cuánto será Apro en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de Apro podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.693494 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.693494 y $0.210817.
¿Cuánto será Apro en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de Apro, se espera que el valor de AT en 2030 aumente en un 224.23% , alcanzando $0.518383 en el mejor escenario. Se pronostica que el precio oscile entre $0.518383 y $0.179291 durante el transcurso de 2030.
¿Cuánto será Apro en 2031?
Nuestra simulación experimental indica que el precio de Apro podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.473225 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.473225 y $0.211977 durante el año.
¿Cuánto será Apro en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de Apro, AT podría experimentar un 449.04% aumento en valor, alcanzando $0.8778091 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.8778091 y $0.323568 a lo largo del año.
¿Cuánto será Apro en 2033?
Según nuestra predicción experimental de precios de Apro, se anticipa que el valor de AT aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $2.33. A lo largo del año, el precio de AT podría oscilar entre $2.33 y $0.7519018.
¿Cuánto será Apro en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de Apro sugieren que AT podría aumentar en un 746.96% en 2034, alcanzando potencialmente $1.35 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $1.35 y $0.604493.
¿Cuánto será Apro en 2035?
Basado en nuestra predicción experimental para el precio de Apro, AT podría crecer en un 897.93% , con el valor potencialmente alcanzando $1.59 en 2035. El rango de precios esperado para el año está entre $1.59 y $0.714698.
¿Cuánto será Apro en 2036?
Nuestra reciente simulación de predicción de precios de Apro sugiere que el valor de AT podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $3.30 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $3.30 y $1.18.
¿Cuánto será Apro en 2037?
Según la simulación experimental, el valor de Apro podría aumentar en un 4830.69% en 2037, con un máximo de $7.88 bajo condiciones favorables. Se espera que el precio caiga entre $7.88 y $3.07 durante el transcurso del año.
Predicciones relacionadas
¿Cómo leer y predecir los movimientos de precio de Apro?
Los traders de Apro utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de Apro
Las medias móviles son herramientas populares para la predicción de precios de Apro. Una media móvil simple (SMA) calcula el precio de cierre promedio de AT durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de AT por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de AT.
¿Cómo leer gráficos de Apro y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de Apro en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de AT dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de Apro?
La acción del precio de Apro está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de AT. La capitalización de mercado de Apro puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de AT, grandes poseedores de Apro, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de Apro.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


