Predicción del precio de Apro - Pronóstico de AT
Predicción de precio de Apro hasta $0.164243 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.055022 | $0.164243 |
| 2027 | $0.052968 | $0.139149 |
| 2028 | $0.095593 | $0.234137 |
| 2029 | $0.20999 | $0.690774 |
| 2030 | $0.178588 | $0.51635 |
| 2031 | $0.211146 | $0.471369 |
| 2032 | $0.322299 | $0.874366 |
| 2033 | $0.748953 | $2.32 |
| 2034 | $0.602122 | $1.34 |
| 2035 | $0.711895 | $1.58 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en Apro hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,954.48, equivalente a un ROI del 39.54% en los próximos 90 días.
Predicción del precio a largo plazo de Apro para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'Apro'
'name_with_ticker' => 'Apro <small>AT</small>'
'name_lang' => 'Apro'
'name_lang_with_ticker' => 'Apro <small>AT</small>'
'name_with_lang' => 'Apro'
'name_with_lang_with_ticker' => 'Apro <small>AT</small>'
'image' => '/uploads/coins/apro.png?1762828426'
'price_for_sd' => 0.1592
'ticker' => 'AT'
'marketcap' => '$36.65M'
'low24h' => '$0.1524'
'high24h' => '$0.1624'
'volume24h' => '$12.52M'
'current_supply' => '230M'
'max_supply' => '1B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.1592'
'change_24h_pct' => '-0.4782%'
'ath_price' => '$0.8593'
'ath_days' => 74
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '24 oct. 2025'
'ath_pct' => '-81.46%'
'fdv' => '$159.34M'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$7.85'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.160617'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.140752'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.055022'
'current_year_max_price_prediction' => '$0.164243'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.178588'
'grand_prediction_max_price' => '$0.51635'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.16227279848187
107 => 0.16287866620638
108 => 0.16424371712606
109 => 0.15257950647408
110 => 0.15781639461358
111 => 0.16089257576548
112 => 0.14699427740877
113 => 0.16061785109341
114 => 0.15237645851715
115 => 0.14957920609521
116 => 0.15334533797137
117 => 0.15187767271655
118 => 0.15061586031464
119 => 0.14991174731369
120 => 0.15267717891074
121 => 0.15254816822133
122 => 0.14802338538142
123 => 0.1421209906205
124 => 0.14410202804177
125 => 0.14338229857429
126 => 0.14077390613723
127 => 0.14253164770131
128 => 0.13479144342575
129 => 0.12147482427046
130 => 0.13027219078352
131 => 0.12993350174246
201 => 0.12976271936963
202 => 0.13637369716285
203 => 0.13573820418924
204 => 0.13458477821937
205 => 0.14075272256476
206 => 0.13850133990814
207 => 0.14543957076339
208 => 0.1500095383413
209 => 0.14885044674058
210 => 0.15314852333618
211 => 0.14414766714282
212 => 0.14713739051858
213 => 0.14775356836275
214 => 0.14067661108897
215 => 0.13584217869899
216 => 0.13551977717515
217 => 0.12713753763675
218 => 0.13161526233909
219 => 0.13555547477631
220 => 0.13366841879172
221 => 0.13307103324119
222 => 0.13612294646171
223 => 0.13636010625682
224 => 0.13095283779538
225 => 0.13207718013444
226 => 0.13676587459466
227 => 0.13195903706399
228 => 0.12262013693435
301 => 0.1203039605818
302 => 0.11999493996078
303 => 0.11371328599441
304 => 0.12045873856091
305 => 0.11751416774874
306 => 0.12681603166301
307 => 0.12150285688208
308 => 0.12127381653658
309 => 0.12092758846144
310 => 0.11552070940073
311 => 0.11670447228994
312 => 0.12063948042584
313 => 0.12204353565976
314 => 0.12189708119578
315 => 0.12062019673923
316 => 0.12120474790473
317 => 0.11932170492953
318 => 0.11865676326284
319 => 0.11655802445613
320 => 0.11347345820167
321 => 0.1139023860581
322 => 0.10779105318735
323 => 0.10446127468638
324 => 0.10353963588309
325 => 0.10230718195739
326 => 0.10367884483343
327 => 0.10777374054918
328 => 0.1028344275354
329 => 0.0943663218258
330 => 0.094875269407897
331 => 0.096018723516976
401 => 0.093887904349414
402 => 0.091871262833414
403 => 0.093624569016278
404 => 0.090036520994057
405 => 0.096452321978359
406 => 0.096278792541808
407 => 0.098670206398285
408 => 0.10016560655949
409 => 0.09671919332946
410 => 0.0958524297222
411 => 0.096346177665105
412 => 0.088185624006017
413 => 0.098003315064164
414 => 0.098088218864123
415 => 0.09736122098228
416 => 0.10258883838354
417 => 0.11362074163495
418 => 0.10947009587449
419 => 0.10786284038211
420 => 0.10480744651619
421 => 0.10887857743119
422 => 0.10856597809645
423 => 0.107152285355
424 => 0.10629727957397
425 => 0.10787265394142
426 => 0.10610207325595
427 => 0.10578402831254
428 => 0.10385702199177
429 => 0.10316916840846
430 => 0.10265990899961
501 => 0.10209926442927
502 => 0.10333590664752
503 => 0.10053351268713
504 => 0.097154100292966
505 => 0.09687313871814
506 => 0.097648898328629
507 => 0.097305682449498
508 => 0.096871495532555
509 => 0.09604251446434
510 => 0.095796573489779
511 => 0.096595762343505
512 => 0.095693524723253
513 => 0.097024825479361
514 => 0.096662785337931
515 => 0.094640458538003
516 => 0.092119890584014
517 => 0.092097452242154
518 => 0.091554400011027
519 => 0.090862741346237
520 => 0.090670337728699
521 => 0.093476910459926
522 => 0.099286432019912
523 => 0.098145883927618
524 => 0.09897004681237
525 => 0.10302411250136
526 => 0.10431277807389
527 => 0.10339811377423
528 => 0.10214606486682
529 => 0.10220114866449
530 => 0.10647977880209
531 => 0.1067466317155
601 => 0.10742088293767
602 => 0.10828748630153
603 => 0.10354570007439
604 => 0.10197781095961
605 => 0.10123485811385
606 => 0.098946850907847
607 => 0.10141427052061
608 => 0.099976610777695
609 => 0.10017060019446
610 => 0.1000442643323
611 => 0.10011325225584
612 => 0.096450528631229
613 => 0.09778503261295
614 => 0.095566160912035
615 => 0.092595340784548
616 => 0.092585381553776
617 => 0.093312485571221
618 => 0.092879975650062
619 => 0.091716102573069
620 => 0.09188142525033
621 => 0.09043302463683
622 => 0.092057287308949
623 => 0.092103865350494
624 => 0.091478435747543
625 => 0.093980836498997
626 => 0.095006072128633
627 => 0.09459440096597
628 => 0.094977188182429
629 => 0.098193278850119
630 => 0.098717641956826
701 => 0.098950529411342
702 => 0.098638491073965
703 => 0.095035972415974
704 => 0.095195759437548
705 => 0.094023348293592
706 => 0.093032784422592
707 => 0.093072401782608
708 => 0.093581680376592
709 => 0.095805729865314
710 => 0.10048611089945
711 => 0.10066372793838
712 => 0.10087900497102
713 => 0.10000336508971
714 => 0.099739263722759
715 => 0.10008768159611
716 => 0.10184538662979
717 => 0.10636668118867
718 => 0.10476855372445
719 => 0.10346925121971
720 => 0.10460908980581
721 => 0.10443362058983
722 => 0.10295248382098
723 => 0.10291091324495
724 => 0.10006813823746
725 => 0.099017229044043
726 => 0.098139010662835
727 => 0.097180019117028
728 => 0.096611496782985
729 => 0.097485005476854
730 => 0.097684787250193
731 => 0.095774845224729
801 => 0.095514527184137
802 => 0.097074227071093
803 => 0.096387861302316
804 => 0.097093805516555
805 => 0.097257590629736
806 => 0.097231217454223
807 => 0.096514572763013
808 => 0.096971340718538
809 => 0.095890948334641
810 => 0.094716183886842
811 => 0.093966757359558
812 => 0.093312783317499
813 => 0.093675646125228
814 => 0.092382106471806
815 => 0.091968277102866
816 => 0.09681659801281
817 => 0.10039810479722
818 => 0.10034602827014
819 => 0.10002902580455
820 => 0.099558024442287
821 => 0.10181092994645
822 => 0.10102606271707
823 => 0.1015971192043
824 => 0.10174247704746
825 => 0.10218243145974
826 => 0.10233967734677
827 => 0.10186437106188
828 => 0.10026918511599
829 => 0.09629413340458
830 => 0.09444373610247
831 => 0.093833074171969
901 => 0.09385527057333
902 => 0.093242994734679
903 => 0.09342333740944
904 => 0.093180278912132
905 => 0.092719984920395
906 => 0.093647224268313
907 => 0.093754079965328
908 => 0.093537651221839
909 => 0.093588628025765
910 => 0.091796690467602
911 => 0.091932927588265
912 => 0.091174341988235
913 => 0.091032116333116
914 => 0.089114477993844
915 => 0.085717103709703
916 => 0.087599578854219
917 => 0.085325813595706
918 => 0.084464704239141
919 => 0.088541062003138
920 => 0.088131908744197
921 => 0.087431616219537
922 => 0.086395737621815
923 => 0.08601152017354
924 => 0.083677136586288
925 => 0.083539208750501
926 => 0.084696192290002
927 => 0.084162284195895
928 => 0.083412475024962
929 => 0.080696742214777
930 => 0.077643359387896
1001 => 0.07773552182256
1002 => 0.078706746089583
1003 => 0.081530711633392
1004 => 0.080427339440326
1005 => 0.079626830254519
1006 => 0.079476918947236
1007 => 0.081353372818472
1008 => 0.084008948175511
1009 => 0.085254884717884
1010 => 0.084020199444048
1011 => 0.082601859481641
1012 => 0.082688187263198
1013 => 0.08326248731837
1014 => 0.083322838134003
1015 => 0.08239964462618
1016 => 0.082659518190996
1017 => 0.082264746482704
1018 => 0.079842033237613
1019 => 0.079798214037516
1020 => 0.079203641135642
1021 => 0.079185637704472
1022 => 0.078174120875223
1023 => 0.078032602678525
1024 => 0.076024174619369
1025 => 0.077346128049986
1026 => 0.076459431094398
1027 => 0.07512296963166
1028 => 0.074892563171742
1029 => 0.074885636875333
1030 => 0.076257883970249
1031 => 0.07733009254372
1101 => 0.076474855567568
1102 => 0.076280134686171
1103 => 0.078359244268129
1104 => 0.07809465862232
1105 => 0.077865529159444
1106 => 0.083771170528894
1107 => 0.079096394562032
1108 => 0.077057925413596
1109 => 0.074534932747615
1110 => 0.075356431881692
1111 => 0.075529533819575
1112 => 0.069462191261501
1113 => 0.06700067114133
1114 => 0.066155970196516
1115 => 0.065669832860457
1116 => 0.065891371749027
1117 => 0.06367571493336
1118 => 0.06516467295707
1119 => 0.06324610143951
1120 => 0.062924446681019
1121 => 0.06635509021982
1122 => 0.066832444226715
1123 => 0.064795903731035
1124 => 0.066103692415219
1125 => 0.065629470058711
1126 => 0.063278989841545
1127 => 0.063189218786211
1128 => 0.062009830436611
1129 => 0.060164316044073
1130 => 0.059320866444921
1201 => 0.058881590570518
1202 => 0.059062844357613
1203 => 0.0589711968964
1204 => 0.058373135219256
1205 => 0.059005477091668
1206 => 0.057390104909357
1207 => 0.056746850690422
1208 => 0.056456307683114
1209 => 0.055022571893959
1210 => 0.057304283119704
1211 => 0.057753808975416
1212 => 0.05820422053593
1213 => 0.062124745661169
1214 => 0.061928887305201
1215 => 0.063699351456263
1216 => 0.063630554475028
1217 => 0.063125589419527
1218 => 0.06099522491309
1219 => 0.06184435023526
1220 => 0.059230874476994
1221 => 0.061189068214164
1222 => 0.060295430368645
1223 => 0.060886928359675
1224 => 0.059823361638579
1225 => 0.060411983375627
1226 => 0.057860408232116
1227 => 0.055477783264735
1228 => 0.056436621104768
1229 => 0.057478987493291
1230 => 0.059739103413625
1231 => 0.058392997017025
]
'min_raw' => 0.055022571893959
'max_raw' => 0.16424371712606
'avg_raw' => 0.10963314451001
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.055022'
'max' => '$0.164243'
'avg' => '$0.109633'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.10423242810604
'max_diff' => 0.0049887171260592
'year' => 2026
]
1 => [
'items' => [
101 => 0.058877107779161
102 => 0.05725541776517
103 => 0.053909408053455
104 => 0.053928346105048
105 => 0.053413635407685
106 => 0.052968850216171
107 => 0.058547613529534
108 => 0.05785380612432
109 => 0.05674831482738
110 => 0.058228058858812
111 => 0.058619326667419
112 => 0.058630465511872
113 => 0.059710048559483
114 => 0.060286222225519
115 => 0.060387775331438
116 => 0.062086522582789
117 => 0.062655920254424
118 => 0.065001188679714
119 => 0.060237337915457
120 => 0.060139229543906
121 => 0.058248881891911
122 => 0.057049993525801
123 => 0.058330970804032
124 => 0.059465741801709
125 => 0.05828414238997
126 => 0.058438434328218
127 => 0.056852233658179
128 => 0.05741922576004
129 => 0.057907595740246
130 => 0.057637946542237
131 => 0.057234268641648
201 => 0.059372703520657
202 => 0.059252044644189
203 => 0.061243404365928
204 => 0.062795811672523
205 => 0.065578003091941
206 => 0.06267464130686
207 => 0.062568831263593
208 => 0.063603141408986
209 => 0.06265576190693
210 => 0.063254473049801
211 => 0.065481541470787
212 => 0.065528595917154
213 => 0.064740373314277
214 => 0.064692409897258
215 => 0.064843796670351
216 => 0.065730473728836
217 => 0.065420641519768
218 => 0.065779187196094
219 => 0.066227554054586
220 => 0.068082189484917
221 => 0.068529335808331
222 => 0.067443002061223
223 => 0.067541085835423
224 => 0.067134767193476
225 => 0.066742268476513
226 => 0.067624548272412
227 => 0.069236931940669
228 => 0.069226901385551
301 => 0.069600943056327
302 => 0.069833967918492
303 => 0.068833654625456
304 => 0.068182487454229
305 => 0.068432186382521
306 => 0.068831460406595
307 => 0.068302707197794
308 => 0.065038997450763
309 => 0.066028998501427
310 => 0.065864213918018
311 => 0.065629540632754
312 => 0.066624994344648
313 => 0.066528980405711
314 => 0.063652990170257
315 => 0.063837101734003
316 => 0.063664186604245
317 => 0.064222910763601
318 => 0.062625588968749
319 => 0.063116914394719
320 => 0.063425069095997
321 => 0.063606574582407
322 => 0.064262296858794
323 => 0.064185355417978
324 => 0.064257514070802
325 => 0.065229777102421
326 => 0.070147149875968
327 => 0.07041479162646
328 => 0.069096825761663
329 => 0.069623327128922
330 => 0.068612559636976
331 => 0.069291094625873
401 => 0.069755331032357
402 => 0.067657535978986
403 => 0.067533318170502
404 => 0.066518378881567
405 => 0.067063749766341
406 => 0.066196025475111
407 => 0.066408934664472
408 => 0.06581362200993
409 => 0.066885066262538
410 => 0.068083107422559
411 => 0.068385779931659
412 => 0.067589578868924
413 => 0.067013076827297
414 => 0.066000929153779
415 => 0.067684153292022
416 => 0.068176379325371
417 => 0.067681567838216
418 => 0.067566909204798
419 => 0.067349631301654
420 => 0.067613005739089
421 => 0.068173698556682
422 => 0.067909286178276
423 => 0.06808393521256
424 => 0.067418353191171
425 => 0.068833985770779
426 => 0.071082350997729
427 => 0.071089579859579
428 => 0.070825166055891
429 => 0.070716973624297
430 => 0.070988278232852
501 => 0.071135449853495
502 => 0.072012799208805
503 => 0.072954230022193
504 => 0.07734747684983
505 => 0.076113870720491
506 => 0.080011820661394
507 => 0.083094592979195
508 => 0.084018981604009
509 => 0.083168587565026
510 => 0.080259435495051
511 => 0.080116698615655
512 => 0.084464200020521
513 => 0.083235831745468
514 => 0.083089721247785
515 => 0.081535352410029
516 => 0.082454176905469
517 => 0.082253216509974
518 => 0.081935990694366
519 => 0.083689043825796
520 => 0.086970602791701
521 => 0.0864591410526
522 => 0.086077358590388
523 => 0.084404498976179
524 => 0.085411934110655
525 => 0.085053205755417
526 => 0.086594530424158
527 => 0.085681483834918
528 => 0.08322652564765
529 => 0.083617485830621
530 => 0.083558392985467
531 => 0.084774519551357
601 => 0.084409468542394
602 => 0.083487110917108
603 => 0.086959386779907
604 => 0.08673391649919
605 => 0.087053581807565
606 => 0.087194308362289
607 => 0.089307821491611
608 => 0.090173660195818
609 => 0.090370220740312
610 => 0.09119270054294
611 => 0.090349756693561
612 => 0.093722133099855
613 => 0.095964566626422
614 => 0.098569268562103
615 => 0.10237543816801
616 => 0.10380659314887
617 => 0.10354806781135
618 => 0.10643386216734
619 => 0.11161957047744
620 => 0.1045962477259
621 => 0.11199182363723
622 => 0.10965046968973
623 => 0.10409916159937
624 => 0.10374172280398
625 => 0.10750113309478
626 => 0.11583914328996
627 => 0.11375056630499
628 => 0.11584255945369
629 => 0.11340213832298
630 => 0.11328095084435
701 => 0.1157240336465
702 => 0.12143242977921
703 => 0.11872058475259
704 => 0.11483248993524
705 => 0.11770339864291
706 => 0.11521635183027
707 => 0.10961233928081
708 => 0.11374896920954
709 => 0.11098292258063
710 => 0.11179020203807
711 => 0.11760402063364
712 => 0.11690448659877
713 => 0.117809748415
714 => 0.11621198500417
715 => 0.1147194220343
716 => 0.11193344241184
717 => 0.11110865119276
718 => 0.11133659381284
719 => 0.11110853823572
720 => 0.10954980824143
721 => 0.10921320064757
722 => 0.10865217324402
723 => 0.10882605909556
724 => 0.10777116344253
725 => 0.10976196949236
726 => 0.11013148063813
727 => 0.11158022326175
728 => 0.11173063652695
729 => 0.11576536411216
730 => 0.11354310395907
731 => 0.11503398793048
801 => 0.11490062923533
802 => 0.10421947527873
803 => 0.10569124405333
804 => 0.10798085440012
805 => 0.10694938804239
806 => 0.1054911359385
807 => 0.10431351917809
808 => 0.10252930936856
809 => 0.10504055041275
810 => 0.10834256534516
811 => 0.11181438107479
812 => 0.11598554019156
813 => 0.11505458603434
814 => 0.1117364041565
815 => 0.11188525537161
816 => 0.1128053950126
817 => 0.11161373057401
818 => 0.11126228546702
819 => 0.11275711185171
820 => 0.11276740589948
821 => 0.11139625194542
822 => 0.10987246524401
823 => 0.10986608052209
824 => 0.10959493739661
825 => 0.11345037408265
826 => 0.11557047443136
827 => 0.11581354051963
828 => 0.11555411414697
829 => 0.11565395706154
830 => 0.11442031738185
831 => 0.11724005186514
901 => 0.11982771906984
902 => 0.11913416898154
903 => 0.11809443880521
904 => 0.11726624363958
905 => 0.11893907252093
906 => 0.11886458408412
907 => 0.11980511805424
908 => 0.11976245000057
909 => 0.11944618380169
910 => 0.1191341802764
911 => 0.1203712389869
912 => 0.12001498594483
913 => 0.11965817954339
914 => 0.11894254968096
915 => 0.11903981566462
916 => 0.11800026501237
917 => 0.11751932131404
918 => 0.11028708203639
919 => 0.10835439138117
920 => 0.10896245520485
921 => 0.10916264560397
922 => 0.10832153615401
923 => 0.10952747104197
924 => 0.10933952736708
925 => 0.11007070626269
926 => 0.10961389743281
927 => 0.10963264502653
928 => 0.1109760223933
929 => 0.11136601055801
930 => 0.11116765942985
1001 => 0.11130657776093
1002 => 0.11450789206704
1003 => 0.11405276754498
1004 => 0.11381099171361
1005 => 0.11387796527122
1006 => 0.11469596971339
1007 => 0.11492496629581
1008 => 0.11395469168479
1009 => 0.11441227880044
1010 => 0.1163606266624
1011 => 0.11704243814715
1012 => 0.11921845311839
1013 => 0.11829404328302
1014 => 0.11999083754336
1015 => 0.12520620461983
1016 => 0.12937260071646
1017 => 0.1255410106824
1018 => 0.13319206652652
1019 => 0.13914951097995
1020 => 0.13892085433919
1021 => 0.13788203610056
1022 => 0.13109964397719
1023 => 0.12485838562549
1024 => 0.13007946325451
1025 => 0.13009277285511
1026 => 0.12964427765643
1027 => 0.12685871249611
1028 => 0.12954734602692
1029 => 0.12976075999291
1030 => 0.12964130492331
1031 => 0.12750561864599
1101 => 0.12424482044133
1102 => 0.12488197260528
1103 => 0.12592564084737
1104 => 0.12394975913309
1105 => 0.12331834520248
1106 => 0.12449226383089
1107 => 0.1282748742473
1108 => 0.12755979365925
1109 => 0.12754112001523
1110 => 0.13060053801228
1111 => 0.12841065499012
1112 => 0.12489000913451
1113 => 0.12400099962435
1114 => 0.12084561477186
1115 => 0.12302505032857
1116 => 0.12310348433428
1117 => 0.12190982975317
1118 => 0.12498686762516
1119 => 0.12495851217947
1120 => 0.12787970168228
1121 => 0.13346391886298
1122 => 0.13181239106
1123 => 0.12989184391086
1124 => 0.13010066063697
1125 => 0.13239086471878
1126 => 0.13100615505064
1127 => 0.13150410630184
1128 => 0.13239011100992
1129 => 0.13292465964856
1130 => 0.13002374731411
1201 => 0.12934740588227
1202 => 0.12796384867631
1203 => 0.1276029044266
1204 => 0.12872978290198
1205 => 0.12843289023692
1206 => 0.12309689225981
1207 => 0.12253925078199
1208 => 0.12255635284999
1209 => 0.12115413683961
1210 => 0.11901542085337
1211 => 0.12463583876911
1212 => 0.12418444055278
1213 => 0.12368613185739
1214 => 0.12374717182927
1215 => 0.12618680475285
1216 => 0.12477169445276
1217 => 0.12853399711758
1218 => 0.12776058079486
1219 => 0.12696732926184
1220 => 0.12685767773694
1221 => 0.12655234357376
1222 => 0.1255052391184
1223 => 0.12424079756732
1224 => 0.12340590373125
1225 => 0.11383542298069
1226 => 0.11561164853906
1227 => 0.11765503413592
1228 => 0.11836040265561
1229 => 0.11715382099267
1230 => 0.12555288231665
1231 => 0.12708747175591
]
'min_raw' => 0.052968850216171
'max_raw' => 0.13914951097995
'avg_raw' => 0.096059180598062
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.052968'
'max' => '$0.139149'
'avg' => '$0.096059'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.0020537216777887
'max_diff' => -0.025094206146106
'year' => 2027
]
2 => [
'items' => [
101 => 0.1224391002456
102 => 0.12156957972778
103 => 0.12560988793704
104 => 0.12317308817927
105 => 0.12427037896098
106 => 0.12189863647688
107 => 0.12671783409802
108 => 0.12668111988651
109 => 0.12480634316537
110 => 0.12639089161216
111 => 0.12611553732571
112 => 0.12399891902491
113 => 0.1267849346735
114 => 0.1267863165025
115 => 0.12498188466956
116 => 0.12287470332962
117 => 0.12249798907544
118 => 0.12221418548935
119 => 0.12420058067628
120 => 0.12598157638959
121 => 0.12929556786578
122 => 0.13012878406138
123 => 0.13338088234319
124 => 0.13144441615817
125 => 0.13230282653655
126 => 0.13323475243185
127 => 0.13368155197649
128 => 0.13295351609508
129 => 0.13800536334377
130 => 0.13843189403616
131 => 0.13857490608785
201 => 0.13687145161948
202 => 0.13838451788587
203 => 0.13767660428732
204 => 0.1395183988067
205 => 0.13980721570455
206 => 0.13956259806703
207 => 0.13965427310907
208 => 0.13534341268923
209 => 0.13511987183486
210 => 0.13207187642381
211 => 0.13331395708346
212 => 0.13099194682472
213 => 0.13172828019712
214 => 0.13205284893163
215 => 0.13188331264384
216 => 0.13338418246035
217 => 0.13210813650887
218 => 0.12874044144153
219 => 0.12537182884791
220 => 0.12532953866081
221 => 0.12444264242587
222 => 0.12380157889115
223 => 0.12392507047089
224 => 0.12436027090514
225 => 0.12377628425076
226 => 0.12390090741235
227 => 0.12597048225448
228 => 0.12638552072954
229 => 0.12497505782529
301 => 0.11931184573592
302 => 0.1179220792841
303 => 0.1189210158494
304 => 0.11844358851094
305 => 0.095593220071392
306 => 0.10096157519196
307 => 0.097771880871432
308 => 0.09924183876511
309 => 0.095985986831193
310 => 0.097539850027878
311 => 0.097252908233449
312 => 0.10588506440614
313 => 0.10575028516065
314 => 0.10581479685311
315 => 0.10273548568772
316 => 0.10764091198659
317 => 0.11005750137484
318 => 0.10961025499452
319 => 0.1097228172729
320 => 0.10778862439363
321 => 0.10583352406811
322 => 0.10366501691933
323 => 0.10769383516619
324 => 0.10724589935136
325 => 0.10827330294836
326 => 0.11088627956732
327 => 0.11127105030019
328 => 0.11178818606714
329 => 0.11160282970692
330 => 0.11601877020337
331 => 0.11548397067193
401 => 0.11677268367036
402 => 0.1141217032577
403 => 0.11112186728741
404 => 0.11169203803334
405 => 0.11163712600548
406 => 0.11093803286578
407 => 0.11030692283782
408 => 0.10925630245542
409 => 0.1125806208079
410 => 0.1124456595537
411 => 0.11463052538378
412 => 0.11424432912566
413 => 0.11166521599568
414 => 0.11175732952567
415 => 0.11237683728315
416 => 0.1145209607052
417 => 0.11515748251992
418 => 0.11486262025434
419 => 0.11556053736585
420 => 0.11611214259442
421 => 0.1156298104899
422 => 0.12245861594157
423 => 0.11962281981538
424 => 0.12100496711594
425 => 0.12133460110304
426 => 0.12049025057654
427 => 0.12067335997181
428 => 0.12095072081133
429 => 0.12263480151603
430 => 0.12705431657786
501 => 0.12901168971409
502 => 0.13490054336951
503 => 0.12884915712307
504 => 0.12849009290633
505 => 0.12955085327602
506 => 0.13300823377022
507 => 0.13581011592553
508 => 0.13673966188091
509 => 0.13686251672405
510 => 0.13860640673138
511 => 0.13960597196196
512 => 0.13839465261563
513 => 0.13736818630003
514 => 0.13369151136727
515 => 0.13411709650199
516 => 0.13704895604775
517 => 0.1411903803418
518 => 0.14474415322785
519 => 0.14349974582464
520 => 0.15299369589639
521 => 0.15393498226669
522 => 0.15380492692575
523 => 0.1559493173595
524 => 0.15169313904602
525 => 0.14987354035744
526 => 0.13759011996835
527 => 0.14104126006348
528 => 0.1460576948701
529 => 0.14539375091278
530 => 0.14175068186653
531 => 0.14474138963329
601 => 0.14375256811752
602 => 0.14297264356179
603 => 0.14654562914741
604 => 0.14261698472586
605 => 0.14601850363674
606 => 0.14165602044933
607 => 0.14350543017284
608 => 0.14245561576789
609 => 0.14313497434831
610 => 0.13916345796878
611 => 0.14130639180406
612 => 0.13907430487592
613 => 0.13907324657609
614 => 0.13902397313344
615 => 0.14165001350581
616 => 0.14173564858807
617 => 0.13979500078517
618 => 0.13951532311815
619 => 0.14054943803811
620 => 0.13933876030197
621 => 0.13990522879479
622 => 0.13935591805554
623 => 0.13923225663788
624 => 0.13824690142272
625 => 0.13782238330312
626 => 0.1379888477963
627 => 0.13742061866275
628 => 0.13707824005604
629 => 0.13895586541102
630 => 0.13795272592705
701 => 0.13880211989806
702 => 0.13783412826603
703 => 0.13447864753553
704 => 0.13254887508386
705 => 0.12621068303718
706 => 0.12800818643912
707 => 0.12919993305425
708 => 0.12880606080506
709 => 0.12965225080465
710 => 0.12970419999816
711 => 0.1294290950034
712 => 0.12911055866261
713 => 0.12895551278808
714 => 0.13011109771015
715 => 0.13078195365261
716 => 0.12931954077059
717 => 0.12897691789367
718 => 0.13045549805941
719 => 0.13135743110637
720 => 0.13801679797267
721 => 0.13752345056575
722 => 0.1387616557426
723 => 0.13862225284149
724 => 0.13992008912838
725 => 0.14204150295091
726 => 0.13772807549308
727 => 0.13847673735266
728 => 0.13829318275381
729 => 0.14029718373337
730 => 0.14030344000569
731 => 0.13910194131117
801 => 0.13975329324556
802 => 0.13938972646469
803 => 0.14004674077672
804 => 0.13751686161035
805 => 0.1405979813514
806 => 0.14234477770161
807 => 0.14236903197063
808 => 0.1431969995772
809 => 0.14403826261812
810 => 0.1456529937666
811 => 0.14399322864278
812 => 0.14100747275992
813 => 0.14122303469073
814 => 0.13947248710906
815 => 0.13950191413017
816 => 0.13934483038524
817 => 0.13981625052847
818 => 0.13762031182153
819 => 0.13813569424687
820 => 0.13741415583332
821 => 0.13847516886906
822 => 0.13733369423434
823 => 0.13829309423823
824 => 0.13870713947529
825 => 0.14023497531381
826 => 0.13710803163875
827 => 0.13073198180981
828 => 0.13207230478599
829 => 0.13008986182413
830 => 0.13027334446794
831 => 0.13064400860949
901 => 0.12944256485297
902 => 0.12967176245987
903 => 0.12966357390851
904 => 0.12959300939673
905 => 0.1292804674737
906 => 0.12882721985077
907 => 0.13063281887826
908 => 0.13093962533743
909 => 0.1316216180909
910 => 0.13365076592512
911 => 0.13344800620588
912 => 0.13377871572038
913 => 0.13305677870708
914 => 0.13030683305542
915 => 0.13045616833469
916 => 0.12859395500923
917 => 0.13157399710934
918 => 0.1308682838054
919 => 0.13041330584741
920 => 0.13028916089624
921 => 0.13232333859545
922 => 0.13293199644489
923 => 0.13255272171863
924 => 0.13177481818986
925 => 0.13326862293163
926 => 0.13366830206196
927 => 0.13375777547965
928 => 0.13640451107341
929 => 0.13390569859777
930 => 0.13450718759672
1001 => 0.13919983306389
1002 => 0.13494425116597
1003 => 0.1371985278081
1004 => 0.13708819269716
1005 => 0.1382414043467
1006 => 0.13699359568217
1007 => 0.13700906376605
1008 => 0.13803303758552
1009 => 0.13659505103072
1010 => 0.1362389853373
1011 => 0.13574708313204
1012 => 0.13682113360136
1013 => 0.13746497828259
1014 => 0.14265389356152
1015 => 0.14600616947499
1016 => 0.14586063833659
1017 => 0.14719052051871
1018 => 0.14659139641534
1019 => 0.1446566666446
1020 => 0.14795901444809
1021 => 0.14691401342697
1022 => 0.14700016204147
1023 => 0.14699695558574
1024 => 0.14769178990921
1025 => 0.1471994361104
1026 => 0.14622895623386
1027 => 0.14687320606631
1028 => 0.14878639774514
1029 => 0.15472500342013
1030 => 0.15804832583192
1031 => 0.15452493523806
1101 => 0.15695532288962
1102 => 0.15549795633435
1103 => 0.15523310947836
1104 => 0.15675957252778
1105 => 0.1582887074487
1106 => 0.15819130816487
1107 => 0.15708123473423
1108 => 0.15645418242033
1109 => 0.1612024326191
1110 => 0.16470086248122
1111 => 0.16446229301839
1112 => 0.16551526104036
1113 => 0.16860680771992
1114 => 0.16888946000378
1115 => 0.1688538523127
1116 => 0.16815326913545
1117 => 0.17119729832955
1118 => 0.17373668103786
1119 => 0.16799110437171
1120 => 0.17017894475106
1121 => 0.17116113678516
1122 => 0.17260328609447
1123 => 0.17503643371157
1124 => 0.17767947738427
1125 => 0.17805323273908
1126 => 0.177788035429
1127 => 0.17604487707803
1128 => 0.17893692700276
1129 => 0.18063102202176
1130 => 0.18163981683689
1201 => 0.18419795264062
1202 => 0.17116720246879
1203 => 0.16194338982686
1204 => 0.16050295828935
1205 => 0.16343213246305
1206 => 0.16420453233292
1207 => 0.16389317891388
1208 => 0.15351093919303
1209 => 0.16044829794588
1210 => 0.16791231265424
1211 => 0.16819903585735
1212 => 0.17193567768555
1213 => 0.17315248143493
1214 => 0.17616096787947
1215 => 0.17597278623324
1216 => 0.17670530480701
1217 => 0.17653691147235
1218 => 0.1821094990993
1219 => 0.18825689078909
1220 => 0.18804402616238
1221 => 0.18716026587434
1222 => 0.18847280060561
1223 => 0.194817567624
1224 => 0.19423344314977
1225 => 0.19480087032088
1226 => 0.20228170821097
1227 => 0.21200786160486
1228 => 0.20748908686356
1229 => 0.21729352780978
1230 => 0.22346490367433
1231 => 0.23413766009991
]
'min_raw' => 0.095593220071392
'max_raw' => 0.23413766009991
'avg_raw' => 0.16486544008565
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.095593'
'max' => '$0.234137'
'avg' => '$0.164865'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.042624369855222
'max_diff' => 0.094988149119961
'year' => 2028
]
3 => [
'items' => [
101 => 0.232801378431
102 => 0.23695620418717
103 => 0.23040915535324
104 => 0.21537580785365
105 => 0.2129967230665
106 => 0.2177597110584
107 => 0.22946905227092
108 => 0.21739094223361
109 => 0.21983432816359
110 => 0.21913063285138
111 => 0.21909313591871
112 => 0.22052424132787
113 => 0.21844834829044
114 => 0.20999078660992
115 => 0.21386683728738
116 => 0.21237010797757
117 => 0.21403084073536
118 => 0.22299313049089
119 => 0.21903068855567
120 => 0.21485657785956
121 => 0.2200918389818
122 => 0.22675812542131
123 => 0.22634096119639
124 => 0.22553148823893
125 => 0.23009444491749
126 => 0.23763111252959
127 => 0.23966824350036
128 => 0.24117201193567
129 => 0.24137935619653
130 => 0.24351513094706
131 => 0.23203053182891
201 => 0.25025688557484
202 => 0.2534040733739
203 => 0.25281253250525
204 => 0.25631049929
205 => 0.25528130872707
206 => 0.25379017307645
207 => 0.25933519446915
208 => 0.25297827490257
209 => 0.24395542789173
210 => 0.2390053155699
211 => 0.24552402278945
212 => 0.2495047698169
213 => 0.25213579037898
214 => 0.25293193561136
215 => 0.23292204856599
216 => 0.22213782924774
217 => 0.22905039018941
218 => 0.23748419161772
219 => 0.23198368163614
220 => 0.23219929121357
221 => 0.22435700948843
222 => 0.23817805953639
223 => 0.23616444879773
224 => 0.24661106487191
225 => 0.24411789610647
226 => 0.25263670597967
227 => 0.25039341784365
228 => 0.25970518147571
301 => 0.26341989609448
302 => 0.26965748008856
303 => 0.27424587226613
304 => 0.27694026391476
305 => 0.27677850274659
306 => 0.28745502479905
307 => 0.28115945275398
308 => 0.27325073051297
309 => 0.27310768667933
310 => 0.27720372599541
311 => 0.2857879007084
312 => 0.28801365231682
313 => 0.28925754382331
314 => 0.28735248068095
315 => 0.28051908843374
316 => 0.27756846430749
317 => 0.28008248155087
318 => 0.27700805449418
319 => 0.2823153781259
320 => 0.28960346705542
321 => 0.2880985055117
322 => 0.29312936631591
323 => 0.29833577798627
324 => 0.30578118050947
325 => 0.30772768443149
326 => 0.31094518139567
327 => 0.31425704266451
328 => 0.3153207232469
329 => 0.31735161951938
330 => 0.31734091569355
331 => 0.32346115830575
401 => 0.33021197543515
402 => 0.33276025261972
403 => 0.33861987549281
404 => 0.32858547666831
405 => 0.33619668344356
406 => 0.3430621824757
407 => 0.33487685149828
408 => 0.34615842331314
409 => 0.34659646118212
410 => 0.35321031294119
411 => 0.34650590712269
412 => 0.34252485234888
413 => 0.35401800831268
414 => 0.35957918445255
415 => 0.35790411294087
416 => 0.3451567360285
417 => 0.33773721590479
418 => 0.31831890062249
419 => 0.34132073388317
420 => 0.35252425589177
421 => 0.34512772161307
422 => 0.34885810327254
423 => 0.3692098560263
424 => 0.37695848579653
425 => 0.37534682497133
426 => 0.3756191691206
427 => 0.37980018909703
428 => 0.3983411342023
429 => 0.38723097011948
430 => 0.39572427427089
501 => 0.40022909216791
502 => 0.40441341808689
503 => 0.39413803609966
504 => 0.38076991510961
505 => 0.37653567003652
506 => 0.34439228204881
507 => 0.3427190791124
508 => 0.34177985960095
509 => 0.33585821343649
510 => 0.33120542162663
511 => 0.32750534883234
512 => 0.31779525288486
513 => 0.32107212522428
514 => 0.30559625893852
515 => 0.31549716975712
516 => 0.29079731348719
517 => 0.31136808774898
518 => 0.30017235055663
519 => 0.30768998697291
520 => 0.30766375864765
521 => 0.29382140653649
522 => 0.28583742672128
523 => 0.29092512940067
524 => 0.29637955053532
525 => 0.29726451201354
526 => 0.30433631138957
527 => 0.3063098985876
528 => 0.30032983723959
529 => 0.29028546386668
530 => 0.29261854271344
531 => 0.28579014695292
601 => 0.27382364603306
602 => 0.28241819590876
603 => 0.28535275311201
604 => 0.286648820751
605 => 0.27488114145824
606 => 0.2711834811357
607 => 0.26921487780636
608 => 0.28876640424217
609 => 0.2898374809954
610 => 0.28435770089089
611 => 0.30912682657735
612 => 0.30352081058816
613 => 0.30978410395535
614 => 0.29240684026227
615 => 0.29307067513694
616 => 0.28484400002163
617 => 0.28945038837957
618 => 0.286194741559
619 => 0.28907823772147
620 => 0.29080659343214
621 => 0.29903191863101
622 => 0.31146200775023
623 => 0.29780332933673
624 => 0.29185204755608
625 => 0.29554418930152
626 => 0.30537684931435
627 => 0.32027383255839
628 => 0.31145451864819
629 => 0.31536838039988
630 => 0.31622338507703
701 => 0.30972034950839
702 => 0.32051360875564
703 => 0.32629780407053
704 => 0.33223119159302
705 => 0.33738298572906
706 => 0.32986126613855
707 => 0.33791058429655
708 => 0.33142425475713
709 => 0.32560534661585
710 => 0.32561417149756
711 => 0.32196388541985
712 => 0.31489099617865
713 => 0.31358664688498
714 => 0.32037203663179
715 => 0.32581327662994
716 => 0.32626144321797
717 => 0.32927399326195
718 => 0.33105678934624
719 => 0.34853061456608
720 => 0.35555873162056
721 => 0.36415258011933
722 => 0.36750036843236
723 => 0.37757601100606
724 => 0.36943911132412
725 => 0.36767864189443
726 => 0.34323842872822
727 => 0.34724051226502
728 => 0.35364823415106
729 => 0.34334408970201
730 => 0.34987969766782
731 => 0.35116996512337
801 => 0.34299395881656
802 => 0.34736111704941
803 => 0.33576323955513
804 => 0.31171480978627
805 => 0.32054038153258
806 => 0.3270389729932
807 => 0.31776468170835
808 => 0.33438848987181
809 => 0.32467720432777
810 => 0.32159919303423
811 => 0.30959077358785
812 => 0.31525828532009
813 => 0.32292367608889
814 => 0.3181873557911
815 => 0.32801593157109
816 => 0.34193581606097
817 => 0.35185595469192
818 => 0.35261749975715
819 => 0.34623951521512
820 => 0.35646027614748
821 => 0.35653472323261
822 => 0.34500566314788
823 => 0.33794417804006
824 => 0.33633979376607
825 => 0.34034786024056
826 => 0.34521439287048
827 => 0.35288755844877
828 => 0.35752429170446
829 => 0.36961443290202
830 => 0.37288567845856
831 => 0.37647978554552
901 => 0.38128262099528
902 => 0.38704965637445
903 => 0.37443171128234
904 => 0.37493304576364
905 => 0.36318339000121
906 => 0.35062719774797
907 => 0.36015578251672
908 => 0.37261313956734
909 => 0.36975540809577
910 => 0.36943385492706
911 => 0.36997461816542
912 => 0.36781998196064
913 => 0.35807464226097
914 => 0.35318059367285
915 => 0.35949516495648
916 => 0.36285107856449
917 => 0.3680558079041
918 => 0.36741421515449
919 => 0.3808210389862
920 => 0.38603052532589
921 => 0.38469771579371
922 => 0.38494298482349
923 => 0.394374511004
924 => 0.40486430785803
925 => 0.41468938686244
926 => 0.42468387922269
927 => 0.41263512859074
928 => 0.40651751608346
929 => 0.4128293306228
930 => 0.409480192983
1001 => 0.42872533128004
1002 => 0.43005782290015
1003 => 0.44930156955464
1004 => 0.46756617663247
1005 => 0.45609450417131
1006 => 0.46691177460671
1007 => 0.4786115345276
1008 => 0.50118226963262
1009 => 0.49358124009729
1010 => 0.48775897059654
1011 => 0.48225695405133
1012 => 0.49370577706138
1013 => 0.50843450496439
1014 => 0.51160693188469
1015 => 0.51674747545595
1016 => 0.51134282244654
1017 => 0.51785213169337
1018 => 0.54083285367012
1019 => 0.53462325973556
1020 => 0.52580463810645
1021 => 0.54394571101509
1022 => 0.55051089477909
1023 => 0.59658879264829
1024 => 0.65476404209118
1025 => 0.63067910682254
1026 => 0.61572881028529
1027 => 0.61924248459732
1028 => 0.64048611633739
1029 => 0.64730889661313
1030 => 0.62876222787027
1031 => 0.63531322481346
1101 => 0.67140986205023
1102 => 0.69077454980899
1103 => 0.66447470280806
1104 => 0.59191446799953
1105 => 0.52501061771537
1106 => 0.54275653153037
1107 => 0.54074469562357
1108 => 0.57952602918729
1109 => 0.53447516297387
1110 => 0.53523370402152
1111 => 0.57481699449319
1112 => 0.56425685122474
1113 => 0.54715077157082
1114 => 0.52513551102757
1115 => 0.48443826574823
1116 => 0.44839158067768
1117 => 0.51908743115682
1118 => 0.5160388975321
1119 => 0.51162416907613
1120 => 0.52144866953137
1121 => 0.56915365500895
1122 => 0.56805390068773
1123 => 0.56105782479566
1124 => 0.56636428669921
1125 => 0.54622052314277
1126 => 0.55141202967623
1127 => 0.52500001980367
1128 => 0.53693935132903
1129 => 0.54711406960662
1130 => 0.54915679494012
1201 => 0.55375915942065
1202 => 0.51443245883831
1203 => 0.53208899282851
1204 => 0.54246055235425
1205 => 0.49560146909639
1206 => 0.54153429894168
1207 => 0.51374786847518
1208 => 0.50431673663667
1209 => 0.51701451320009
1210 => 0.51206617732433
1211 => 0.50781188871439
1212 => 0.50543792257208
1213 => 0.51476176827779
1214 => 0.51432679973122
1215 => 0.4990711784762
1216 => 0.47917084244771
1217 => 0.48585004842513
1218 => 0.48342343027564
1219 => 0.47462905306193
1220 => 0.48055540146682
1221 => 0.45445876234796
1222 => 0.40956085112925
1223 => 0.43922178654054
1224 => 0.4380798727921
1225 => 0.43750406809847
1226 => 0.45979344129202
1227 => 0.45765083236279
1228 => 0.45376197617575
1229 => 0.47455763116837
1230 => 0.46696693735504
1231 => 0.49035966709535
]
'min_raw' => 0.20999078660992
'max_raw' => 0.69077454980899
'avg_raw' => 0.45038266820946
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.20999'
'max' => '$0.690774'
'avg' => '$0.450382'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.11439756653853
'max_diff' => 0.45663688970908
'year' => 2029
]
4 => [
'items' => [
101 => 0.50576763184922
102 => 0.50185967359219
103 => 0.51635093891636
104 => 0.48600392384075
105 => 0.49608398493795
106 => 0.49816147155972
107 => 0.47430101601379
108 => 0.4580013896817
109 => 0.4569143904347
110 => 0.42865308460173
111 => 0.44375004606041
112 => 0.45703474738934
113 => 0.45067240638725
114 => 0.44865827929552
115 => 0.4589480177963
116 => 0.45974761860346
117 => 0.44151663546229
118 => 0.44530743415749
119 => 0.46111569488433
120 => 0.44490910654699
121 => 0.41342235273874
122 => 0.40561320245586
123 => 0.40457131785693
124 => 0.38339228293824
125 => 0.40613504721867
126 => 0.39620722114207
127 => 0.42756910476441
128 => 0.40965536503649
129 => 0.40888313952055
130 => 0.40771580739237
131 => 0.38948613714294
201 => 0.39347727637158
202 => 0.40674443103526
203 => 0.41147830128445
204 => 0.410984519834
205 => 0.40667941473953
206 => 0.40865026980608
207 => 0.40230145894532
208 => 0.40005956169131
209 => 0.39298351727525
210 => 0.3825836867908
211 => 0.38402984700553
212 => 0.36342506155216
213 => 0.35219848085843
214 => 0.34909111128636
215 => 0.34493580682868
216 => 0.3495604639817
217 => 0.36336669078382
218 => 0.34671345210605
219 => 0.31816264248188
220 => 0.31987859478851
221 => 0.32373383015068
222 => 0.3165496245582
223 => 0.3097503768896
224 => 0.31566177109705
225 => 0.30356441668062
226 => 0.32519573763611
227 => 0.32461067102534
228 => 0.33267348980564
301 => 0.33771533585465
302 => 0.32609551302871
303 => 0.32317315901133
304 => 0.32483786467322
305 => 0.29732398825994
306 => 0.33042501911178
307 => 0.33071127820114
308 => 0.32826015408513
309 => 0.34588543113407
310 => 0.38308026316909
311 => 0.36908607119886
312 => 0.3636670970913
313 => 0.35336562335158
314 => 0.36709172546877
315 => 0.36603777498672
316 => 0.36127141120803
317 => 0.35838869952272
318 => 0.36370018419167
319 => 0.35773054779264
320 => 0.35665823706074
321 => 0.35016120071098
322 => 0.34784205433044
323 => 0.34612505067816
324 => 0.3442347983663
325 => 0.34840422394474
326 => 0.33895575705038
327 => 0.32756183222041
328 => 0.32661455065477
329 => 0.32923007834334
330 => 0.32807290204428
331 => 0.32660901053985
401 => 0.32381404299075
402 => 0.32298483582397
403 => 0.32567935684189
404 => 0.32263739971299
405 => 0.32712597316066
406 => 0.32590532954699
407 => 0.31908691354669
408 => 0.31058864270938
409 => 0.3105129902732
410 => 0.30868205176126
411 => 0.30635007628286
412 => 0.30570137405314
413 => 0.31516392996512
414 => 0.33475113751245
415 => 0.33090569998876
416 => 0.33368442269592
417 => 0.34735298821219
418 => 0.35169781416171
419 => 0.34861395961558
420 => 0.34439258930898
421 => 0.34457830817865
422 => 0.359004008412
423 => 0.35990372164063
424 => 0.36217700671089
425 => 0.36509882045646
426 => 0.34911155713073
427 => 0.34382530951372
428 => 0.34132039212293
429 => 0.33360621608433
430 => 0.34192529357849
501 => 0.33707812338106
502 => 0.33773217224361
503 => 0.33730622206385
504 => 0.33753881966462
505 => 0.32518969124106
506 => 0.32968906458752
507 => 0.32220798373121
508 => 0.31219165625535
509 => 0.31215807801347
510 => 0.31460955997307
511 => 0.313151322577
512 => 0.3092272432389
513 => 0.30978464018775
514 => 0.30490125639523
515 => 0.31037757139667
516 => 0.31053461251572
517 => 0.30842593294327
518 => 0.31686295178884
519 => 0.32031960529382
520 => 0.31893162722694
521 => 0.32022222105258
522 => 0.33106549527898
523 => 0.3328334221031
524 => 0.33361861841569
525 => 0.3325665593754
526 => 0.32042041620016
527 => 0.32095914929937
528 => 0.31700628327239
529 => 0.31366652802235
530 => 0.31380010071765
531 => 0.31551716905396
601 => 0.32301570718336
602 => 0.33879593861372
603 => 0.3393947868613
604 => 0.34012060840701
605 => 0.33716832741194
606 => 0.3362778912143
607 => 0.33745260640007
608 => 0.34337883164016
609 => 0.35862269191213
610 => 0.35323449358882
611 => 0.34885380447967
612 => 0.3526968498537
613 => 0.35210524314115
614 => 0.3471114871153
615 => 0.34697132901588
616 => 0.3373867146019
617 => 0.33384350088416
618 => 0.33088252629667
619 => 0.32764921934533
620 => 0.32573240660314
621 => 0.32867750215095
622 => 0.32935108034808
623 => 0.32291157746133
624 => 0.32203389701265
625 => 0.32729253407629
626 => 0.32497840396633
627 => 0.32735854417209
628 => 0.32791075711629
629 => 0.32782183811373
630 => 0.32540562050279
701 => 0.32694564555536
702 => 0.32330302720246
703 => 0.31934222684727
704 => 0.31681548298725
705 => 0.31461056384543
706 => 0.31583398113596
707 => 0.3114727218824
708 => 0.31007746727237
709 => 0.32642391971921
710 => 0.33849921989566
711 => 0.33832364024875
712 => 0.33725484430361
713 => 0.33566683032647
714 => 0.3432626585266
715 => 0.34061642386506
716 => 0.34254178068164
717 => 0.34303186479843
718 => 0.34451520181606
719 => 0.34504536730274
720 => 0.34344283897839
721 => 0.33806455818952
722 => 0.32466239381524
723 => 0.31842365012056
724 => 0.31636476078683
725 => 0.31643959750372
726 => 0.31437526676597
727 => 0.31498330468505
728 => 0.31416381599158
729 => 0.31261190266174
730 => 0.31573815486102
731 => 0.31609842630394
801 => 0.31536872168469
802 => 0.31554059353822
803 => 0.30949895095178
804 => 0.30995828391587
805 => 0.30740065960262
806 => 0.3069211358765
807 => 0.30045568433041
808 => 0.28900119973434
809 => 0.29534809611429
810 => 0.28768193779599
811 => 0.2847786474796
812 => 0.29852237228312
813 => 0.29714288350443
814 => 0.29478179836468
815 => 0.29128926134973
816 => 0.28999384539766
817 => 0.28212330815178
818 => 0.28165827482361
819 => 0.28555912560505
820 => 0.2837590171895
821 => 0.28123098321969
822 => 0.27207470044374
823 => 0.26178000706254
824 => 0.26209073914558
825 => 0.26536528957056
826 => 0.27488648656449
827 => 0.27116639018058
828 => 0.26846741757087
829 => 0.26796198113189
830 => 0.27428857636859
831 => 0.2832420340912
901 => 0.28744279613232
902 => 0.28327996852861
903 => 0.27849793632002
904 => 0.27878899646275
905 => 0.28072528919511
906 => 0.28092876618358
907 => 0.27781615481664
908 => 0.27869233668421
909 => 0.27736133630762
910 => 0.26919298945336
911 => 0.26904524996088
912 => 0.26704060591045
913 => 0.2669799060853
914 => 0.26356950647364
915 => 0.26309236799299
916 => 0.25632081256757
917 => 0.26077787085474
918 => 0.25778831016177
919 => 0.25328233703139
920 => 0.25250550556531
921 => 0.25248215307339
922 => 0.25710877996113
923 => 0.2607238060258
924 => 0.25784031484997
925 => 0.25718379980336
926 => 0.26419366291773
927 => 0.2633015939401
928 => 0.26252906795871
929 => 0.28244035015452
930 => 0.26667901659981
1001 => 0.25980617554449
1002 => 0.25129972962141
1003 => 0.25406947130719
1004 => 0.25465309657635
1005 => 0.23419662753348
1006 => 0.22589744059047
1007 => 0.22304947237989
1008 => 0.22141042641035
1009 => 0.22215736024051
1010 => 0.21468711859427
1011 => 0.21970724452694
1012 => 0.2132386467051
1013 => 0.21215416522963
1014 => 0.22372081944058
1015 => 0.22533025180262
1016 => 0.21846391333472
1017 => 0.22287321419033
1018 => 0.22127434040622
1019 => 0.21334953224875
1020 => 0.21304686286808
1021 => 0.20907047270514
1022 => 0.202848192081
1023 => 0.20000444286969
1024 => 0.19852339358987
1025 => 0.1991345033878
1026 => 0.1988255075737
1027 => 0.19680910087388
1028 => 0.19894108564541
1029 => 0.19349474555107
1030 => 0.19132596904135
1031 => 0.19034638300715
1101 => 0.18551244269378
1102 => 0.19320539139537
1103 => 0.19472099920279
1104 => 0.1962395932258
1105 => 0.20945791740786
1106 => 0.20879756728632
1107 => 0.21476681078149
1108 => 0.214534856956
1109 => 0.21283233201585
1110 => 0.20564965934509
1111 => 0.20851254465283
1112 => 0.19970102866678
1113 => 0.20630321556837
1114 => 0.2032902531804
1115 => 0.20528452995423
1116 => 0.2016986404982
1117 => 0.20368321978092
1118 => 0.19508040603928
1119 => 0.18704721961219
1120 => 0.19028000833378
1121 => 0.19379441938838
1122 => 0.20141455801005
1123 => 0.19687606631176
1124 => 0.19850827954584
1125 => 0.19304063844089
1126 => 0.1817593330869
1127 => 0.18182318405006
1128 => 0.18008780099794
1129 => 0.17858817667084
1130 => 0.19739736667867
1201 => 0.1950581465719
1202 => 0.19133090548133
1203 => 0.19631996579573
1204 => 0.1976391525299
1205 => 0.19767670792166
1206 => 0.20131659754076
1207 => 0.20325920728296
1208 => 0.20360160066978
1209 => 0.20932904563046
1210 => 0.21124880963445
1211 => 0.21915604587173
1212 => 0.2030943904186
1213 => 0.2027636111942
1214 => 0.19639017210564
1215 => 0.19234803627559
1216 => 0.19666694060412
1217 => 0.20049290024997
1218 => 0.19650905533666
1219 => 0.19702926137878
1220 => 0.19168127507475
1221 => 0.1935929285323
1222 => 0.19523950201747
1223 => 0.19433036092007
1224 => 0.19296933269435
1225 => 0.20017921518968
1226 => 0.19977240536354
1227 => 0.20648641369767
1228 => 0.21172046331748
1229 => 0.22110081593445
1230 => 0.2113119289698
1231 => 0.2109551830215
]
'min_raw' => 0.17858817667084
'max_raw' => 0.51635093891636
'avg_raw' => 0.3474695577936
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.178588'
'max' => '$0.51635'
'avg' => '$0.347469'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.031402609939075
'max_diff' => -0.17442361089263
'year' => 2030
]
5 => [
'items' => [
101 => 0.21444243188992
102 => 0.21124827575482
103 => 0.21326687217368
104 => 0.22077558884399
105 => 0.22093423619515
106 => 0.21827668865761
107 => 0.21811497664843
108 => 0.2186253877234
109 => 0.2216148813319
110 => 0.22057026040723
111 => 0.22177912218782
112 => 0.2232908223552
113 => 0.22954385519507
114 => 0.23105144024322
115 => 0.22738879016945
116 => 0.22771948646216
117 => 0.22634955479257
118 => 0.22502621796495
119 => 0.22800088589562
120 => 0.23343715000619
121 => 0.2334033312893
122 => 0.23466443889707
123 => 0.23545009848914
124 => 0.23207747238202
125 => 0.22988201680119
126 => 0.23072389417135
127 => 0.23207007441994
128 => 0.2302873460601
129 => 0.21928352078304
130 => 0.22262137844502
131 => 0.22206579571717
201 => 0.22127457835153
202 => 0.22463082004154
203 => 0.22430710234294
204 => 0.21461050046888
205 => 0.21523124546031
206 => 0.21464825002778
207 => 0.21653202753992
208 => 0.21114654558713
209 => 0.21280308356403
210 => 0.21384204865407
211 => 0.21445400707381
212 => 0.21666482050971
213 => 0.21640540707012
214 => 0.21664869500608
215 => 0.21992674769842
216 => 0.23650601332443
217 => 0.23740838617237
218 => 0.23296477224177
219 => 0.23473990836063
220 => 0.231332035192
221 => 0.23361976328087
222 => 0.23518496873728
223 => 0.22811210625147
224 => 0.22769329723755
225 => 0.22427135856411
226 => 0.22611011457871
227 => 0.22318452154825
228 => 0.22390235974502
301 => 0.22189522156683
302 => 0.22550767067035
303 => 0.22954695008592
304 => 0.23056743158227
305 => 0.22788298411028
306 => 0.22593926722685
307 => 0.22252674067969
308 => 0.22820184838073
309 => 0.22986142281829
310 => 0.22819313134271
311 => 0.22780655175493
312 => 0.22707398413462
313 => 0.22796196943865
314 => 0.22985238441949
315 => 0.22896089962501
316 => 0.2295497410377
317 => 0.22730568478314
318 => 0.2320785888616
319 => 0.23965910920011
320 => 0.23968348181254
321 => 0.23879199221262
322 => 0.23842721387575
323 => 0.23934193630537
324 => 0.23983813569957
325 => 0.24279618030557
326 => 0.24597028002151
327 => 0.26078241842759
328 => 0.25662322923489
329 => 0.26976543960682
330 => 0.28015922170858
331 => 0.28327586249589
401 => 0.28040869962084
402 => 0.27060029030641
403 => 0.27011904295195
404 => 0.28477694747132
405 => 0.28063541807004
406 => 0.28014279632599
407 => 0.27490213326693
408 => 0.27800001420358
409 => 0.27732246219957
410 => 0.27625291321425
411 => 0.28216345424112
412 => 0.2932274594058
413 => 0.2915030304433
414 => 0.29021582421676
415 => 0.28457566123212
416 => 0.28797229912488
417 => 0.28676282142958
418 => 0.2919595051621
419 => 0.2888811048396
420 => 0.28060404191152
421 => 0.28192219146437
422 => 0.2817229558112
423 => 0.28582321143535
424 => 0.28459241647158
425 => 0.28148262334098
426 => 0.29318964383896
427 => 0.29242945504569
428 => 0.2935072289512
429 => 0.29398169835566
430 => 0.30110755543195
501 => 0.30402679107411
502 => 0.30468950867329
503 => 0.30746255675155
504 => 0.30462051271091
505 => 0.31599071521654
506 => 0.32355123641307
507 => 0.3323331708437
508 => 0.3451659374083
509 => 0.34999117634631
510 => 0.3491195401212
511 => 0.35884919727214
512 => 0.37633317489425
513 => 0.35265355188468
514 => 0.37758825241237
515 => 0.36969421411026
516 => 0.35097759130366
517 => 0.3497724614494
518 => 0.36244757571849
519 => 0.3905597592328
520 => 0.38351797610822
521 => 0.39057127706735
522 => 0.38234322684038
523 => 0.38193463479516
524 => 0.39017165903318
525 => 0.40941791514211
526 => 0.40027474029988
527 => 0.38716575716509
528 => 0.39684522631345
529 => 0.38845997434456
530 => 0.36956565477439
531 => 0.38351259138937
601 => 0.37418667206082
602 => 0.37690847111403
603 => 0.39651016641683
604 => 0.39415163857835
605 => 0.39720379199515
606 => 0.39181682110326
607 => 0.3867845408429
608 => 0.3773914160349
609 => 0.3746105748547
610 => 0.37537909931273
611 => 0.37461019401215
612 => 0.36935482700935
613 => 0.36821993100546
614 => 0.36632838794471
615 => 0.36691465623349
616 => 0.36335800188885
617 => 0.37007014347948
618 => 0.37131597610589
619 => 0.37620051300939
620 => 0.37670764183455
621 => 0.39031100758378
622 => 0.38281850232437
623 => 0.38784512172416
624 => 0.38739549357267
625 => 0.35138323727364
626 => 0.35634540845282
627 => 0.36406498959252
628 => 0.36058732875273
629 => 0.35567072997257
630 => 0.35170031284625
701 => 0.34568472490387
702 => 0.35415154941364
703 => 0.36528452329756
704 => 0.37698999242445
705 => 0.39105334660768
706 => 0.38791456966947
707 => 0.37672708780026
708 => 0.37722895006445
709 => 0.38033126510616
710 => 0.3763134852521
711 => 0.37512856353676
712 => 0.38016847505818
713 => 0.38020318215895
714 => 0.37558024087193
715 => 0.37044268762074
716 => 0.37042116108503
717 => 0.36950698310685
718 => 0.38250585707184
719 => 0.38965392341819
720 => 0.39047343770511
721 => 0.38959876357713
722 => 0.38993539093442
723 => 0.38577608862437
724 => 0.39528302030235
725 => 0.40400752094816
726 => 0.40166916840331
727 => 0.39816364552219
728 => 0.39537132769851
729 => 0.40101138706519
730 => 0.40076024409987
731 => 0.40393132004611
801 => 0.40378746172416
802 => 0.40272114815364
803 => 0.40166920648473
804 => 0.40584003629588
805 => 0.40463890429175
806 => 0.40343590659785
807 => 0.401023110553
808 => 0.4013510496078
809 => 0.39784613200462
810 => 0.39622459674727
811 => 0.37184059708386
812 => 0.36532439560363
813 => 0.36737452523882
814 => 0.36804948114632
815 => 0.36521362191138
816 => 0.36927951558182
817 => 0.36864585036013
818 => 0.37111107105597
819 => 0.36957090819265
820 => 0.36963411701379
821 => 0.37416340759747
822 => 0.37547827992289
823 => 0.37480952524586
824 => 0.37527789809809
825 => 0.38607135278976
826 => 0.38453686868785
827 => 0.38372170459212
828 => 0.38394751061757
829 => 0.38670546970557
830 => 0.38747754767122
831 => 0.38420619907778
901 => 0.38574898598589
902 => 0.39231797683181
903 => 0.3946167518552
904 => 0.40195333825524
905 => 0.39883662595508
906 => 0.40455748627018
907 => 0.4221414604938
908 => 0.43618875582209
909 => 0.42327028250916
910 => 0.4490663514673
911 => 0.46915229137753
912 => 0.46838135954889
913 => 0.46487891132938
914 => 0.44201160275393
915 => 0.42096876447044
916 => 0.43857199222069
917 => 0.43861686646836
918 => 0.43710473359308
919 => 0.42771300617311
920 => 0.43677792183662
921 => 0.43749746192305
922 => 0.4370947108158
923 => 0.42989409542298
924 => 0.41890008661431
925 => 0.42104828961958
926 => 0.42456708996438
927 => 0.41790526681303
928 => 0.41577641066208
929 => 0.41973435927815
930 => 0.4324876943905
1001 => 0.43007675026255
1002 => 0.43001379076798
1003 => 0.44032883214677
1004 => 0.43294548864481
1005 => 0.42107538533898
1006 => 0.41807802770683
1007 => 0.40743942737473
1008 => 0.4147875465175
1009 => 0.41505199224385
1010 => 0.41102750248531
1011 => 0.42140195050265
1012 => 0.42130634813779
1013 => 0.43115534249745
1014 => 0.44998292059978
1015 => 0.44441467930607
1016 => 0.43793942050442
1017 => 0.43864346067561
1018 => 0.44636504363436
1019 => 0.4416963983109
1020 => 0.44337527572017
1021 => 0.44636250245233
1022 => 0.4481647705085
1023 => 0.43838414203765
1024 => 0.43610380967956
1025 => 0.4314390499628
1026 => 0.43022210122456
1027 => 0.43402145068046
1028 => 0.43302045633182
1029 => 0.41502976660453
1030 => 0.41314963942878
1031 => 0.41320730024506
1101 => 0.40847963106645
1102 => 0.40126880079846
1103 => 0.42021843220643
1104 => 0.41869651160445
1105 => 0.41701642904716
1106 => 0.41722222957401
1107 => 0.42544762230562
1108 => 0.42067647912899
1109 => 0.43336134523903
1110 => 0.43075371810878
1111 => 0.42807921518213
1112 => 0.42770951741031
1113 => 0.42668006196141
1114 => 0.42314967618365
1115 => 0.4188865232137
1116 => 0.41607162035496
1117 => 0.38380407631481
1118 => 0.38979274479699
1119 => 0.39668216200144
1120 => 0.3990603612128
1121 => 0.39499228689538
1122 => 0.42331030855291
1123 => 0.42848428398898
1124 => 0.41281197490304
1125 => 0.40988032576922
1126 => 0.42350250698205
1127 => 0.41528666646679
1128 => 0.41898625894775
1129 => 0.41098976357281
1130 => 0.42723802481812
1201 => 0.42711424029071
1202 => 0.42079329968266
1203 => 0.42613571540065
1204 => 0.42520733919926
1205 => 0.41807101282056
1206 => 0.42746425909316
1207 => 0.42746891802612
1208 => 0.42138515011997
1209 => 0.41428064111363
1210 => 0.41301052270431
1211 => 0.41205365909929
1212 => 0.41875092915772
1213 => 0.42475568055029
1214 => 0.43592903418774
1215 => 0.43873828076453
1216 => 0.44970295717588
1217 => 0.44317402623333
1218 => 0.44606821675635
1219 => 0.44921026997734
1220 => 0.45071668583666
1221 => 0.44826206203263
1222 => 0.46529471774031
1223 => 0.46673279574913
1224 => 0.46721497086616
1225 => 0.46147165519468
1226 => 0.46657306375072
1227 => 0.46418628362825
1228 => 0.47039602244032
1229 => 0.47136978877598
1230 => 0.47054504333242
1231 => 0.47085413213721
]
'min_raw' => 0.21114654558713
'max_raw' => 0.47136978877598
'avg_raw' => 0.34125816718155
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.211146'
'max' => '$0.471369'
'avg' => '$0.341258'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.032558368916286
'max_diff' => -0.044981150140386
'year' => 2031
]
6 => [
'items' => [
101 => 0.45631976525706
102 => 0.45556608165943
103 => 0.44528955232682
104 => 0.44947731399013
105 => 0.44164849428521
106 => 0.44413109365942
107 => 0.44522539980849
108 => 0.44465379637754
109 => 0.44971408375131
110 => 0.4454118057352
111 => 0.43405738669069
112 => 0.42269987414231
113 => 0.42255728982389
114 => 0.41956705724665
115 => 0.41740566678172
116 => 0.41782202726471
117 => 0.41928933591353
118 => 0.41732038413563
119 => 0.41774055982583
120 => 0.42471827589919
121 => 0.4261176070949
122 => 0.42136213293787
123 => 0.40226821798571
124 => 0.39758252336299
125 => 0.40095050773644
126 => 0.39934082813191
127 => 0.32229921557619
128 => 0.34039899967177
129 => 0.32964472257277
130 => 0.33460078824048
131 => 0.32362345612896
201 => 0.32886241438385
202 => 0.3278949700903
203 => 0.35699888730443
204 => 0.35654446966826
205 => 0.35676197534345
206 => 0.34637986275869
207 => 0.36291885001128
208 => 0.37106654985465
209 => 0.36955862745765
210 => 0.36993813903806
211 => 0.36341687270457
212 => 0.35682511545634
213 => 0.34951384220388
214 => 0.36309728420626
215 => 0.36158703733268
216 => 0.36505100029099
217 => 0.37386083339402
218 => 0.37515811478375
219 => 0.37690167412726
220 => 0.37627673221762
221 => 0.39116538391252
222 => 0.38936226995378
223 => 0.39370725580305
224 => 0.38476929025623
225 => 0.37465513384052
226 => 0.37657750431846
227 => 0.37639236458271
228 => 0.37403532325308
229 => 0.37190749173113
301 => 0.36836525175989
302 => 0.37957342318176
303 => 0.37911839189056
304 => 0.38648481957912
305 => 0.38518273193151
306 => 0.37648707194584
307 => 0.37679763914338
308 => 0.37888635280038
309 => 0.38611541461574
310 => 0.3882614923546
311 => 0.38726734363955
312 => 0.38962041990804
313 => 0.39148019544801
314 => 0.38985397908225
315 => 0.41287777343453
316 => 0.40331668880612
317 => 0.40797669492841
318 => 0.40908807893023
319 => 0.40624129217946
320 => 0.40685865828991
321 => 0.40779379972505
322 => 0.41347179539972
323 => 0.42837249899136
324 => 0.43497191917958
325 => 0.45482660042548
326 => 0.43442392920131
327 => 0.43321331912551
328 => 0.43678974677183
329 => 0.44844654649463
330 => 0.45789328780244
331 => 0.46102731688982
401 => 0.46144153057089
402 => 0.46732117748513
403 => 0.47069128144745
404 => 0.46660723369968
405 => 0.46314643085106
406 => 0.45075026461799
407 => 0.45218515461311
408 => 0.46207012376753
409 => 0.47603322491993
410 => 0.48801501832176
411 => 0.48381941188009
412 => 0.51582892739341
413 => 0.51900254010941
414 => 0.51856404944725
415 => 0.52579401151119
416 => 0.51144400917043
417 => 0.50530910515156
418 => 0.46389469570872
419 => 0.47553045549034
420 => 0.49244371567716
421 => 0.49020518226996
422 => 0.47792232062956
423 => 0.48800570066977
424 => 0.48467181989203
425 => 0.48204224979978
426 => 0.4940888201596
427 => 0.48084312120315
428 => 0.49231157969763
429 => 0.47760316305244
430 => 0.48383857705691
501 => 0.48029905449493
502 => 0.4825895593801
503 => 0.46919931462411
504 => 0.47642436566463
505 => 0.46889872874706
506 => 0.4688951606153
507 => 0.46872903176323
508 => 0.47758291022296
509 => 0.47787163488167
510 => 0.47132860532246
511 => 0.47038565254165
512 => 0.47387224319388
513 => 0.46979035867966
514 => 0.47170024675278
515 => 0.46984820724376
516 => 0.46943127414036
517 => 0.46610908023713
518 => 0.46467778775799
519 => 0.46523903441892
520 => 0.46332321022268
521 => 0.46216885684605
522 => 0.46849940182197
523 => 0.46511724701479
524 => 0.46798103809084
525 => 0.46471738672043
526 => 0.45340414916539
527 => 0.44689778661217
528 => 0.42552812960836
529 => 0.43158853782567
530 => 0.43560659474368
531 => 0.43427862695625
601 => 0.43713161561897
602 => 0.43730676595185
603 => 0.43637923025482
604 => 0.43530526274234
605 => 0.4347825147514
606 => 0.43867864999651
607 => 0.44094048764418
608 => 0.43600986051007
609 => 0.43485468355936
610 => 0.43983981981932
611 => 0.44288075005808
612 => 0.46533327038999
613 => 0.46366991516312
614 => 0.46784461036559
615 => 0.46737460375171
616 => 0.471750349405
617 => 0.47890284422005
618 => 0.46435982239206
619 => 0.46688398812154
620 => 0.46626512097617
621 => 0.47302175019363
622 => 0.47304284365254
623 => 0.46899190691801
624 => 0.47118798544074
625 => 0.46996219465562
626 => 0.4721773642799
627 => 0.46364770003996
628 => 0.47403591036385
629 => 0.479925356216
630 => 0.48000713117737
701 => 0.48279868176976
702 => 0.48563505884734
703 => 0.49107923765136
704 => 0.48548322365533
705 => 0.47541653923744
706 => 0.47614332133722
707 => 0.47024122794627
708 => 0.47034044320247
709 => 0.46981082438923
710 => 0.47140025031562
711 => 0.46399648964963
712 => 0.46573413747952
713 => 0.46330142034203
714 => 0.46687869986959
715 => 0.46303013844342
716 => 0.4662648225397
717 => 0.46766080496417
718 => 0.47281201016384
719 => 0.46226930124712
720 => 0.44077200408728
721 => 0.44529099657981
722 => 0.43860705172416
723 => 0.43922567626812
724 => 0.44047539630029
725 => 0.43642464479307
726 => 0.4371974005268
727 => 0.43716979225419
728 => 0.43693187907606
729 => 0.43587812216158
730 => 0.43434996615614
731 => 0.4404376693402
801 => 0.44147208873785
802 => 0.44377147492138
803 => 0.45061288851502
804 => 0.44992926996538
805 => 0.45104428018291
806 => 0.44861021913855
807 => 0.43933858537891
808 => 0.43984207969924
809 => 0.43356349745685
810 => 0.44361091745727
811 => 0.4412315557817
812 => 0.4396975658308
813 => 0.43927900246038
814 => 0.44613737459505
815 => 0.44818950702955
816 => 0.44691075580985
817 => 0.44428799975112
818 => 0.44932446673211
819 => 0.45067201282473
820 => 0.45097367869929
821 => 0.45989733254284
822 => 0.45147241181971
823 => 0.45350037397428
824 => 0.46932195579688
825 => 0.45497396431283
826 => 0.46257441540032
827 => 0.46220241287043
828 => 0.46609054646155
829 => 0.46188347242984
830 => 0.4619356241546
831 => 0.46538802337853
901 => 0.460539751312
902 => 0.45933925096692
903 => 0.45768076833835
904 => 0.46130200448347
905 => 0.46347277177805
906 => 0.48096756191945
907 => 0.49226999421016
908 => 0.49177932581637
909 => 0.49626311644282
910 => 0.49424312769879
911 => 0.48772005119822
912 => 0.49885414738026
913 => 0.49533085347789
914 => 0.4956213095464
915 => 0.49561049875702
916 => 0.4979531811904
917 => 0.49629317598266
918 => 0.49302113532217
919 => 0.49519326861235
920 => 0.50164372793231
921 => 0.52166615158576
922 => 0.53287096512405
923 => 0.52099160774157
924 => 0.52918582939307
925 => 0.52427221630188
926 => 0.52337926663589
927 => 0.52852584338125
928 => 0.53368142852792
929 => 0.53335304004228
930 => 0.52961034996803
1001 => 0.52749619931233
1002 => 0.54350525636972
1003 => 0.55530045690244
1004 => 0.55449610330213
1005 => 0.55804625850407
1006 => 0.56846962397912
1007 => 0.56942260588828
1008 => 0.56930255207177
1009 => 0.56694048697651
1010 => 0.57720364393175
1011 => 0.58576535002687
1012 => 0.56639373715358
1013 => 0.5737701937427
1014 => 0.57708172276014
1015 => 0.58194402984413
1016 => 0.5901475569121
1017 => 0.59905876318602
1018 => 0.60031890545955
1019 => 0.59942477421312
1020 => 0.59354759412939
1021 => 0.60329834236711
1022 => 0.60901010200158
1023 => 0.61241132415261
1024 => 0.62103625761823
1025 => 0.57710217363597
1026 => 0.54600344532767
1027 => 0.54114692983125
1028 => 0.55102284506626
1029 => 0.55362704515479
1030 => 0.55257729536449
1031 => 0.51757284928083
1101 => 0.54096263866696
1102 => 0.56612808537709
1103 => 0.56709479267473
1104 => 0.5796931414825
1105 => 0.58379568027807
1106 => 0.59393900237165
1107 => 0.59330453481297
1108 => 0.59577427232724
1109 => 0.5952065224426
1110 => 0.61399489069249
1111 => 0.63472125097181
1112 => 0.63400356302113
1113 => 0.63102390350781
1114 => 0.63544920599253
1115 => 0.65684103097253
1116 => 0.65487161452538
1117 => 0.6567847348493
1118 => 0.68200690209114
1119 => 0.714799307317
1120 => 0.69956394278594
1121 => 0.7326202999603
1122 => 0.75342752455937
1123 => 0.78941146799627
1124 => 0.78490610105331
1125 => 0.79891438617092
1126 => 0.77684055392696
1127 => 0.72615457323729
1128 => 0.71813332277501
1129 => 0.73419206933091
1130 => 0.77367093074901
1201 => 0.73294873949151
1202 => 0.74118678574621
1203 => 0.73881422787065
1204 => 0.73868780434419
1205 => 0.74351287614777
1206 => 0.73651385783785
1207 => 0.70799859814388
1208 => 0.72106697362015
1209 => 0.71602064625382
1210 => 0.72161992269538
1211 => 0.75183690833322
1212 => 0.73847725869977
1213 => 0.72440395306073
1214 => 0.74205500144861
1215 => 0.76453085160468
1216 => 0.7631243532949
1217 => 0.76039515870324
1218 => 0.77577948572045
1219 => 0.80118988676799
1220 => 0.80805821606388
1221 => 0.81312827633329
1222 => 0.81382735198508
1223 => 0.82102826567153
1224 => 0.78230713791557
1225 => 0.84375856209337
1226 => 0.85436952548754
1227 => 0.85237510414881
1228 => 0.86416874338383
1229 => 0.86069875554514
1230 => 0.85567128759128
1231 => 0.8743667143578
]
'min_raw' => 0.32229921557619
'max_raw' => 0.8743667143578
'avg_raw' => 0.598332964967
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.322299'
'max' => '$0.874366'
'avg' => '$0.598332'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.11115266998906
'max_diff' => 0.40299692558183
'year' => 2032
]
7 => [
'items' => [
101 => 0.85293391621313
102 => 0.82251275756103
103 => 0.80582310826219
104 => 0.82780138477451
105 => 0.84122275130443
106 => 0.85009342082147
107 => 0.85277768005753
108 => 0.78531294883835
109 => 0.74895320047674
110 => 0.77225938231117
111 => 0.80069453265592
112 => 0.78214917921968
113 => 0.78287612196338
114 => 0.75643532159645
115 => 0.80303395678802
116 => 0.79624492759682
117 => 0.83146642305035
118 => 0.82306053049021
119 => 0.85178229274199
120 => 0.84421889017002
121 => 0.87561415138211
122 => 0.88813857107238
123 => 0.90916902100262
124 => 0.92463910558063
125 => 0.9337234351404
126 => 0.93317804606809
127 => 0.96917468557892
128 => 0.94794872488618
129 => 0.92128391568127
130 => 0.92080163340915
131 => 0.93461171593964
201 => 0.96355386031244
202 => 0.97105813725723
203 => 0.97525200431708
204 => 0.96882895092535
205 => 0.94578969187169
206 => 0.93584145662401
207 => 0.94431764128316
208 => 0.93395199581188
209 => 0.95184600798175
210 => 0.97641830864573
211 => 0.97134422572803
212 => 0.98830612417289
213 => 1.0058599046196
214 => 1.0309625990479
215 => 1.0375253729216
216 => 1.0483733885748
217 => 1.0595395600695
218 => 1.0631258334168
219 => 1.0699731419921
220 => 1.069937053296
221 => 1.0905718785647
222 => 1.1133327298435
223 => 1.1219244242863
224 => 1.1416805519088
225 => 1.1078488756926
226 => 1.1335105907328
227 => 1.1566581000535
228 => 1.1290606851816
301 => 1.1670972922096
302 => 1.1685741674677
303 => 1.1908732304378
304 => 1.168268858134
305 => 1.1548464540158
306 => 1.1935964317743
307 => 1.2123463253987
308 => 1.2066987048473
309 => 1.1637200335939
310 => 1.1387046034824
311 => 1.0732343977646
312 => 1.1507866845398
313 => 1.1885601411967
314 => 1.1636222094665
315 => 1.1761994516784
316 => 1.2448168070017
317 => 1.270941853264
318 => 1.2655080262693
319 => 1.266426253583
320 => 1.2805228543431
321 => 1.3430349452529
322 => 1.3055762513608
323 => 1.3342120192908
324 => 1.349400327347
325 => 1.3635080743232
326 => 1.3288639065489
327 => 1.2837923532986
328 => 1.2695163004091
329 => 1.1611426236289
330 => 1.1555013031094
331 => 1.1523346589524
401 => 1.1323694154728
402 => 1.1166822030383
403 => 1.1042071492815
404 => 1.0714688828573
405 => 1.0825170867336
406 => 1.0303391230607
407 => 1.0637207351451
408 => 0.98044344524216
409 => 1.0497992468714
410 => 1.0120520372659
411 => 1.037398273308
412 => 1.0373098426782
413 => 0.99063938609328
414 => 0.96372084072265
415 => 0.98087438551827
416 => 0.99926434718926
417 => 1.0022480565991
418 => 1.0260911219327
419 => 1.0327452089623
420 => 1.0125830146129
421 => 0.97871770851038
422 => 0.98658384673261
423 => 0.96356143368264
424 => 0.92321554035691
425 => 0.95219266531517
426 => 0.96208672981016
427 => 0.96645651234357
428 => 0.92678096001488
429 => 0.91431404007505
430 => 0.90767675650668
501 => 0.97359609292899
502 => 0.9772073029827
503 => 0.95873184177431
504 => 1.0422426783513
505 => 1.0233416040443
506 => 1.0444587349209
507 => 0.9858700771379
508 => 0.9881082427653
509 => 0.96037143324593
510 => 0.9759021932025
511 => 0.96492555264495
512 => 0.97464746127597
513 => 0.98047473322446
514 => 1.0082069914063
515 => 1.0501159047129
516 => 1.0040647168233
517 => 0.9839995547946
518 => 0.99644786846643
519 => 1.0295993681941
520 => 1.0798255872756
521 => 1.0500906546825
522 => 1.0632865128354
523 => 1.0661692207989
524 => 1.0442437823518
525 => 1.0806340094652
526 => 1.100135827809
527 => 1.1201406580969
528 => 1.1375102917134
529 => 1.1121502889643
530 => 1.1392891271194
531 => 1.1174200142162
601 => 1.0978011591547
602 => 1.0978309128595
603 => 1.0855237184937
604 => 1.0616769786036
605 => 1.0572792738932
606 => 1.0801566891654
607 => 1.0985022097144
608 => 1.1000132346559
609 => 1.1101702574587
610 => 1.1161810789278
611 => 1.17509530064
612 => 1.1987910879766
613 => 1.2277658481936
614 => 1.2390531502261
615 => 1.2730238826222
616 => 1.2455897572443
617 => 1.2396542116501
618 => 1.157252326599
619 => 1.1707456306599
620 => 1.1923497123715
621 => 1.1576085699492
622 => 1.1796438285075
623 => 1.1839940553175
624 => 1.1564280792235
625 => 1.1711522581108
626 => 1.1320492044009
627 => 1.0509682444274
628 => 1.0807242757519
629 => 1.1026347305785
630 => 1.0713658100013
701 => 1.1274141398616
702 => 1.0946718626296
703 => 1.0842941326535
704 => 1.043806908089
705 => 1.0629153195873
706 => 1.0887597197448
707 => 1.0727908851815
708 => 1.1059286146329
709 => 1.1528604770459
710 => 1.1863069170421
711 => 1.1888745193989
712 => 1.1673706992188
713 => 1.2018307082929
714 => 1.2020817118382
715 => 1.1632106808293
716 => 1.1394023907711
717 => 1.1339930971768
718 => 1.1475065731298
719 => 1.1639144276621
720 => 1.1897850411326
721 => 1.2054181110305
722 => 1.2461808661848
723 => 1.2572100989697
724 => 1.269327881946
725 => 1.2855209769881
726 => 1.3049649394105
727 => 1.2624226565757
728 => 1.2641129407814
729 => 1.2244981560436
730 => 1.1821640772165
731 => 1.2142903660289
801 => 1.2562912150699
802 => 1.2466561738931
803 => 1.2455720349347
804 => 1.2473952559477
805 => 1.2401307495514
806 => 1.207273656356
807 => 1.1907730298496
808 => 1.2120630478017
809 => 1.2233777448335
810 => 1.2409258531846
811 => 1.2387626784347
812 => 1.2839647210179
813 => 1.3015288679269
814 => 1.2970352075353
815 => 1.2978621491933
816 => 1.3296611981991
817 => 1.3650282806667
818 => 1.3981542204952
819 => 1.4318513492809
820 => 1.3912281453084
821 => 1.370602187622
822 => 1.3918829110182
823 => 1.3805910596363
824 => 1.4454773870574
825 => 1.4499699755862
826 => 1.5148516109873
827 => 1.5764320089444
828 => 1.537754464315
829 => 1.5742256468256
830 => 1.61367220425
831 => 1.689771013495
901 => 1.6641436117297
902 => 1.6445134236101
903 => 1.6259629906894
904 => 1.664563496799
905 => 1.714222431251
906 => 1.7249184901046
907 => 1.7422501916564
908 => 1.7240280266943
909 => 1.7459746172855
910 => 1.8234557258928
911 => 1.8025196464025
912 => 1.7727870478834
913 => 1.8339509417642
914 => 1.856085917191
915 => 2.0114407669131
916 => 2.207582682076
917 => 2.1263786412613
918 => 2.0759726726896
919 => 2.0878192709495
920 => 2.1594436585442
921 => 2.1824471385951
922 => 2.1199157500415
923 => 2.1420028936115
924 => 2.263705226242
925 => 2.32899462302
926 => 2.2403228526596
927 => 1.9956809550089
928 => 1.7701099526982
929 => 1.8299415401056
930 => 1.8231584948839
1001 => 1.9539124686202
1002 => 1.8020203278306
1003 => 1.8045778019324
1004 => 1.9380356293747
1005 => 1.9024313690595
1006 => 1.844757027198
1007 => 1.77053103922
1008 => 1.6333174353698
1009 => 1.5117835199552
1010 => 1.7501395156723
1011 => 1.7398611717148
1012 => 1.724976606499
1013 => 1.7581005957085
1014 => 1.9189412849019
1015 => 1.9152333864255
1016 => 1.891645628105
1017 => 1.9095367348982
1018 => 1.8416206296749
1019 => 1.8591241564119
1020 => 1.7700742210989
1021 => 1.8103285109142
1022 => 1.8446332839632
1023 => 1.8515204750437
1024 => 1.8670376682166
1025 => 1.7344449515007
1026 => 1.7939751885885
1027 => 1.8289436256487
1028 => 1.6709549548481
1029 => 1.8258206975993
1030 => 1.7321368072948
1031 => 1.7003390878407
1101 => 1.7431505280547
1102 => 1.7264668681678
1103 => 1.7121232370944
1104 => 1.7041192445006
1105 => 1.7355552412676
1106 => 1.7340887144442
1107 => 1.6826533222695
1108 => 1.6155579499523
1109 => 1.6380773592325
1110 => 1.6298958467204
1111 => 1.6002449899406
1112 => 1.6202260873521
1113 => 1.5322394465537
1114 => 1.3808630042077
1115 => 1.4808669188073
1116 => 1.4770168768786
1117 => 1.4750755111526
1118 => 1.550225689069
1119 => 1.5430017334719
1120 => 1.529890183326
1121 => 1.6000041860399
1122 => 1.5744116318829
1123 => 1.6532818534306
1124 => 1.7052308823481
1125 => 1.6920549282396
1126 => 1.7409132410278
1127 => 1.6385961609395
1128 => 1.6725817906961
1129 => 1.6795861818869
1130 => 1.59913899013
1201 => 1.5441836619478
1202 => 1.5405187680946
1203 => 1.4452338023374
1204 => 1.4961342619315
1205 => 1.5409245599702
1206 => 1.5194734830772
1207 => 1.5126827129656
1208 => 1.5473752847276
1209 => 1.5500711946753
1210 => 1.4886041621682
1211 => 1.5013851046342
1212 => 1.5546837593722
1213 => 1.5000421152851
1214 => 1.3938823264856
1215 => 1.3675532310894
1216 => 1.364040444422
1217 => 1.2926338495207
1218 => 1.3693126671412
1219 => 1.3358403083853
1220 => 1.4415790886348
1221 => 1.3811816644448
1222 => 1.3785780522027
1223 => 1.374642310432
1224 => 1.3131797044311
1225 => 1.3266361089929
1226 => 1.3713672472247
1227 => 1.3873278212781
1228 => 1.3856630026432
1229 => 1.3711480402444
1230 => 1.3777929157019
1231 => 1.356387456625
]
'min_raw' => 0.74895320047674
'max_raw' => 2.32899462302
'avg_raw' => 1.5389739117484
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.748953'
'max' => '$2.32'
'avg' => '$1.53'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.42665398490054
'max_diff' => 1.4546279086622
'year' => 2033
]
8 => [
'items' => [
101 => 1.3488287435089
102 => 1.3249713657265
103 => 1.2899076111552
104 => 1.2947834412868
105 => 1.2253129685506
106 => 1.1874617679269
107 => 1.176985054465
108 => 1.1629751553719
109 => 1.1785675098465
110 => 1.2251161674299
111 => 1.1689686105358
112 => 1.072707562534
113 => 1.0784930155398
114 => 1.0914912107273
115 => 1.067269159987
116 => 1.044345021764
117 => 1.0642757000548
118 => 1.0234886250295
119 => 1.0964201338815
120 => 1.0944475409553
121 => 1.1216318974011
122 => 1.1386308333658
123 => 1.099453789438
124 => 1.0896008688361
125 => 1.0952135402012
126 => 1.0024485849163
127 => 1.1140510214735
128 => 1.1150161639793
129 => 1.1067520278901
130 => 1.1661768800181
131 => 1.2915818530845
201 => 1.2443994578136
202 => 1.2261290082692
203 => 1.1913968703298
204 => 1.2376753819438
205 => 1.2341219143091
206 => 1.2180517860523
207 => 1.2083325223408
208 => 1.2262405637382
209 => 1.2061135178322
210 => 1.2024981473332
211 => 1.1805929356714
212 => 1.1727737717318
213 => 1.1669847740408
214 => 1.1606116563981
215 => 1.1746691658358
216 => 1.1428130000306
217 => 1.1043975869679
218 => 1.1012037610323
219 => 1.1100221952446
220 => 1.1061206945609
221 => 1.101185082148
222 => 1.0917616539178
223 => 1.0889659240616
224 => 1.098050689799
225 => 1.0877945189563
226 => 1.1029280577173
227 => 1.0988125725512
228 => 1.0758238069595
301 => 1.0471712935012
302 => 1.0469162260308
303 => 1.0407430890057
304 => 1.032880670867
305 => 1.0306935260085
306 => 1.0625971939203
307 => 1.1286368317013
308 => 1.1156716706103
309 => 1.1250403282217
310 => 1.1711248511686
311 => 1.1857737352034
312 => 1.1753763042933
313 => 1.161143659578
314 => 1.1617698237136
315 => 1.2104070792205
316 => 1.2134405251868
317 => 1.2211050645169
318 => 1.2309561635546
319 => 1.1770539890568
320 => 1.1592310361421
321 => 1.1507855322713
322 => 1.1247766491705
323 => 1.1528249997615
324 => 1.1364824270223
325 => 1.1386875984266
326 => 1.1372514776566
327 => 1.1380356967071
328 => 1.0963997480384
329 => 1.1115696994123
330 => 1.0863467129928
331 => 1.0525759655903
401 => 1.0524627542035
402 => 1.0607280967872
403 => 1.0558115475955
404 => 1.0425812401366
405 => 1.0444605428659
406 => 1.0279958734624
407 => 1.0464596518339
408 => 1.046989126931
409 => 1.0398795665292
410 => 1.0683255646209
411 => 1.0799799132488
412 => 1.0753002482908
413 => 1.0796515754803
414 => 1.1162104315878
415 => 1.1221711203081
416 => 1.1248184644966
417 => 1.1212713739899
418 => 1.0803198042579
419 => 1.082136180515
420 => 1.0688088167248
421 => 1.057548598725
422 => 1.0579989483929
423 => 1.0637881641707
424 => 1.0890700090052
425 => 1.1422741610132
426 => 1.1442932196902
427 => 1.1467403777068
428 => 1.1367865562102
429 => 1.1337843884016
430 => 1.1377450226664
501 => 1.1577257048192
502 => 1.2091214440185
503 => 1.1909547571795
504 => 1.176184957998
505 => 1.1891420537894
506 => 1.1871474104534
507 => 1.1703106133594
508 => 1.1698380605416
509 => 1.1375228638685
510 => 1.1255766714399
511 => 1.1155935388895
512 => 1.1046922187608
513 => 1.0982295507729
514 => 1.1081591460323
515 => 1.1104301619517
516 => 1.0887189283773
517 => 1.0857597674669
518 => 1.1034896294732
519 => 1.0956873782401
520 => 1.1037121871199
521 => 1.1055740116155
522 => 1.1052742149903
523 => 1.0971277686201
524 => 1.1023200706059
525 => 1.0900387285096
526 => 1.0766846135779
527 => 1.0681655202422
528 => 1.060731481413
529 => 1.0648563182243
530 => 1.0501520281575
531 => 1.0454478298262
601 => 1.1005610355236
602 => 1.141273753139
603 => 1.1406817741009
604 => 1.1370782539509
605 => 1.1317241539554
606 => 1.1573340190559
607 => 1.1484120541403
608 => 1.1549035290716
609 => 1.1565558818879
610 => 1.1615570562061
611 => 1.1633445461594
612 => 1.1579415100289
613 => 1.1398082608497
614 => 1.0946219279526
615 => 1.0735875680108
616 => 1.066645878875
617 => 1.066898196091
618 => 1.0599381608817
619 => 1.0619882031777
620 => 1.0592252398328
621 => 1.0539928556901
622 => 1.064533233248
623 => 1.0657479135711
624 => 1.063287663501
625 => 1.0638671414548
626 => 1.0434973216606
627 => 1.0450459948187
628 => 1.0364227858789
629 => 1.034806038157
630 => 1.013007316866
701 => 0.97438772232373
702 => 0.99578672659489
703 => 0.96993973859067
704 => 0.96015109258769
705 => 1.006489020319
706 => 1.0018379775888
707 => 0.99387741419445
708 => 0.98210208180739
709 => 0.97773449648195
710 => 0.95119843065411
711 => 0.94963053832059
712 => 0.96278252907892
713 => 0.95671333787632
714 => 0.94818989484542
715 => 0.91731884819507
716 => 0.88260957070778
717 => 0.88365722562038
718 => 0.89469760100002
719 => 0.92679898141379
720 => 0.91425641672661
721 => 0.90515664213672
722 => 0.90345252789425
723 => 0.92478308544355
724 => 0.95497029326578
725 => 0.96913345577527
726 => 0.95509819187001
727 => 0.93897523640792
728 => 0.93995656600032
729 => 0.94648491213512
730 => 0.94717094900805
731 => 0.93667656246883
801 => 0.9396306708084
802 => 0.93514311011126
803 => 0.90760295839635
804 => 0.90710484438259
805 => 0.90034604700682
806 => 0.90014139330839
807 => 0.88864299291118
808 => 0.88703428721092
809 => 0.86420351531923
810 => 0.87923079851628
811 => 0.86915128591548
812 => 0.85395908290941
813 => 0.85133994138487
814 => 0.85126120682794
815 => 0.86686020240074
816 => 0.87904851517084
817 => 0.86932662335258
818 => 0.86711313703652
819 => 0.89074737993963
820 => 0.8877397070993
821 => 0.88513508181699
822 => 0.9522673599015
823 => 0.89912692340062
824 => 0.87595465993617
825 => 0.84727458360542
826 => 0.85661296107621
827 => 0.85858069441861
828 => 0.78961028081549
829 => 0.76162899260642
830 => 0.75202686894567
831 => 0.74650071102481
901 => 0.74901905058247
902 => 0.72383260931655
903 => 0.74075831439254
904 => 0.71894898521313
905 => 0.71529258020251
906 => 0.75429036243273
907 => 0.75971667600833
908 => 0.73656633647135
909 => 0.75143260215362
910 => 0.74604188756068
911 => 0.71932284356534
912 => 0.7183023726167
913 => 0.70489569555966
914 => 0.6839168420096
915 => 0.67432894299943
916 => 0.66933548194898
917 => 0.67139588129901
918 => 0.67035408033838
919 => 0.6635556243689
920 => 0.67074375987656
921 => 0.65238104399715
922 => 0.64506886257551
923 => 0.64176611986868
924 => 0.62546815260721
925 => 0.65140546625914
926 => 0.65651544379824
927 => 0.66163548957165
928 => 0.70620199242541
929 => 0.70397557588646
930 => 0.72410129708969
1001 => 0.72331924857255
1002 => 0.71757906687033
1003 => 0.69336218448269
1004 => 0.70301460217798
1005 => 0.67330596083064
1006 => 0.69556569491931
1007 => 0.68540728186996
1008 => 0.69213112524888
1009 => 0.68004104858907
1010 => 0.68673219619964
1011 => 0.65772720904043
1012 => 0.63064276014235
1013 => 0.64154233302329
1014 => 0.65339141526222
1015 => 0.67908324464624
1016 => 0.66378140301811
1017 => 0.66928452389428
1018 => 0.65084999017043
1019 => 0.61281428153388
1020 => 0.6130295595141
1021 => 0.60717859439332
1022 => 0.60212250627408
1023 => 0.66553900360116
1024 => 0.65765215969207
1025 => 0.64508550612755
1026 => 0.66190647130262
1027 => 0.66635420147952
1028 => 0.66648082210489
1029 => 0.67875296408467
1030 => 0.68530260845918
1031 => 0.68645701166797
1101 => 0.70576749223034
1102 => 0.71224011060344
1103 => 0.73889990964303
1104 => 0.68474691689382
1105 => 0.68363167164452
1106 => 0.66214317677813
1107 => 0.6485148336142
1108 => 0.66307632109412
1109 => 0.67597581116006
1110 => 0.66254399989166
1111 => 0.66429791088231
1112 => 0.64626680167378
1113 => 0.65271207477328
1114 => 0.65826361223862
1115 => 0.65519837955455
1116 => 0.65060957786756
1117 => 0.6749182000785
1118 => 0.6735466123471
1119 => 0.69618336020274
1120 => 0.71383032392558
1121 => 0.745456837689
1122 => 0.71245292184942
1123 => 0.71125012797754
1124 => 0.72300763100936
1125 => 0.71223831059099
1126 => 0.71904414935109
1127 => 0.74436031184689
1128 => 0.74489520246774
1129 => 0.73593509540087
1130 => 0.73538987207155
1201 => 0.73711075864658
1202 => 0.74719004506741
1203 => 0.74366803268678
1204 => 0.74774379458008
1205 => 0.75284059723794
1206 => 0.77392313403038
1207 => 0.77900606227645
1208 => 0.76665718183465
1209 => 0.76777214747399
1210 => 0.76315332720441
1211 => 0.75869160469764
1212 => 0.76872090531061
1213 => 0.78704964930721
1214 => 0.78693562714207
1215 => 0.7911875394894
1216 => 0.79383644565705
1217 => 0.78246540126768
1218 => 0.77506326949509
1219 => 0.77790171782658
1220 => 0.782440458522
1221 => 0.77642986539068
1222 => 0.73932970020654
1223 => 0.75058352035568
1224 => 0.74871033439918
1225 => 0.74604268980991
1226 => 0.75735849299309
1227 => 0.75626705617099
1228 => 0.72357428595748
1229 => 0.72566717103511
1230 => 0.7237015612309
1231 => 0.73005284863424
]
'min_raw' => 0.60212250627408
'max_raw' => 1.3488287435089
'avg_raw' => 0.97547562489149
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.602122'
'max' => '$1.34'
'avg' => '$0.975475'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.14683069420266
'max_diff' => -0.98016587951107
'year' => 2034
]
9 => [
'items' => [
101 => 0.71189532022806
102 => 0.71748045367298
103 => 0.72098339701226
104 => 0.72304665754998
105 => 0.7305005694032
106 => 0.72962593887995
107 => 0.73044620114184
108 => 0.74149838466039
109 => 0.79739653624587
110 => 0.80043894930435
111 => 0.78545699469411
112 => 0.79144199005491
113 => 0.77995210773677
114 => 0.78766534271246
115 => 0.7929425421879
116 => 0.76909589250549
117 => 0.76768384867477
118 => 0.75614654352513
119 => 0.76234603780618
120 => 0.75248219664561
121 => 0.7549024382439
122 => 0.74813523174222
123 => 0.76031485610787
124 => 0.77393356867095
125 => 0.77737419328364
126 => 0.76832339120968
127 => 0.76177001403121
128 => 0.75026444252246
129 => 0.7693984643599
130 => 0.77499383544391
131 => 0.76936907425762
201 => 0.76806569418729
202 => 0.76559579130918
203 => 0.76858969575887
204 => 0.77496336185132
205 => 0.77195765862525
206 => 0.77394297855975
207 => 0.76637698622248
208 => 0.78246916555652
209 => 0.80802741913284
210 => 0.80810959309729
211 => 0.80510387366935
212 => 0.80387399803857
213 => 0.80695804857394
214 => 0.808631019475
215 => 0.81860427338821
216 => 0.82930597218906
217 => 0.87924613097563
218 => 0.86522313422714
219 => 0.90953301405592
220 => 0.94457637608269
221 => 0.95508434809402
222 => 0.94541750828189
223 => 0.91234777147701
224 => 0.91072521242185
225 => 0.96014536089109
226 => 0.94618190536233
227 => 0.94452099675853
228 => 0.92685173536349
301 => 0.93729645722856
302 => 0.93501204334184
303 => 0.93140598426431
304 => 0.95133378599722
305 => 0.98863685187411
306 => 0.98282281923126
307 => 0.97848291356859
308 => 0.95946671028229
309 => 0.97091871208342
310 => 0.96684087359068
311 => 0.98436185561571
312 => 0.97398281400136
313 => 0.94607611845326
314 => 0.95052035170097
315 => 0.94984861478613
316 => 0.96367291289364
317 => 0.95952320174194
318 => 0.94903831708328
319 => 0.98850935405031
320 => 0.98594632445911
321 => 0.98958011442929
322 => 0.99117982115285
323 => 1.015205145797
324 => 1.0250475525791
325 => 1.0272819512342
326 => 1.0366314764381
327 => 1.0270493265299
328 => 1.0653847581198
329 => 1.0908755831926
330 => 1.1204844882606
331 => 1.1637510566883
401 => 1.1800196866552
402 => 1.1770809042665
403 => 1.2098851226539
404 => 1.2688335738992
405 => 1.1889960716639
406 => 1.2730651553782
407 => 1.2464498540985
408 => 1.1833454535532
409 => 1.1792822741101
410 => 1.2220173068165
411 => 1.316799496265
412 => 1.2930576328189
413 => 1.3168383294483
414 => 1.289096883644
415 => 1.2877192870365
416 => 1.3154909893457
417 => 1.3803810855477
418 => 1.349554233211
419 => 1.305356381332
420 => 1.3379913873647
421 => 1.309719924912
422 => 1.2460164073219
423 => 1.2930394778633
424 => 1.2615964897322
425 => 1.2707732252701
426 => 1.3368617095301
427 => 1.3289097682555
428 => 1.3392003165948
429 => 1.3210377681265
430 => 1.3040710838861
501 => 1.2724015077889
502 => 1.2630257075978
503 => 1.2656168414646
504 => 1.2630244235605
505 => 1.2453055867925
506 => 1.2414792056795
507 => 1.2351017361869
508 => 1.2370783806545
509 => 1.2250868722138
510 => 1.2477173262134
511 => 1.2519177378946
512 => 1.2683862950922
513 => 1.2700961153328
514 => 1.315960812713
515 => 1.2906993081209
516 => 1.3076469063747
517 => 1.3061309536699
518 => 1.1847131172623
519 => 1.2014434238406
520 => 1.2274705306171
521 => 1.2157453542932
522 => 1.1991686982399
523 => 1.1857821596928
524 => 1.1655001849502
525 => 1.1940466749197
526 => 1.2315822736487
527 => 1.2710480800598
528 => 1.3184636605606
529 => 1.307881054971
530 => 1.2701616787639
531 => 1.2718537424265
601 => 1.2823134141864
602 => 1.268767188896
603 => 1.2647721426041
604 => 1.281764556174
605 => 1.2818815735874
606 => 1.2662950042748
607 => 1.2489733847958
608 => 1.2489008065778
609 => 1.2458185916985
610 => 1.2896452028238
611 => 1.3137454075726
612 => 1.3165084572076
613 => 1.3135594323173
614 => 1.314694394955
615 => 1.3006710168235
616 => 1.3327243007285
617 => 1.3621395637811
618 => 1.3542556449176
619 => 1.3424365297761
620 => 1.3330220352801
621 => 1.3520378892113
622 => 1.3511911431694
623 => 1.3618826471196
624 => 1.3613976187433
625 => 1.3578024680927
626 => 1.3542557733117
627 => 1.3683180172181
628 => 1.3642683168058
629 => 1.3602123260902
630 => 1.3520774157689
701 => 1.3531830851881
702 => 1.3413660107835
703 => 1.3358988914514
704 => 1.2536865341497
705 => 1.2317167059124
706 => 1.238628861113
707 => 1.240904522079
708 => 1.231343224675
709 => 1.2450516690565
710 => 1.2429152225205
711 => 1.2512268862128
712 => 1.2460341195883
713 => 1.2462472325419
714 => 1.2615180519698
715 => 1.2659512358164
716 => 1.2636964827318
717 => 1.2652756345038
718 => 1.3016665205718
719 => 1.2964929002879
720 => 1.2937445176262
721 => 1.2945058384063
722 => 1.303804490026
723 => 1.306407604792
724 => 1.295378024611
725 => 1.3005796383856
726 => 1.3227274496549
727 => 1.3304779301416
728 => 1.3552137434134
729 => 1.3447055302915
730 => 1.3639938102616
731 => 1.4232794070304
801 => 1.4706408439806
802 => 1.4270853092671
803 => 1.5140585567834
804 => 1.5817797055463
805 => 1.5791804550613
806 => 1.5673717063561
807 => 1.4902729789495
808 => 1.4193255805126
809 => 1.4786760918907
810 => 1.4788273885498
811 => 1.473729126987
812 => 1.4420642622811
813 => 1.4726272583328
814 => 1.4750532379709
815 => 1.4736953344936
816 => 1.4494179569658
817 => 1.4123508886902
818 => 1.4195937051053
819 => 1.4314575861425
820 => 1.4089967842741
821 => 1.4018191971292
822 => 1.4151636972234
823 => 1.4581624569642
824 => 1.45003379051
825 => 1.4498215181784
826 => 1.4845994003602
827 => 1.4597059422547
828 => 1.419685060215
829 => 1.4095792596893
830 => 1.3737104759063
831 => 1.3984851726255
901 => 1.3993767698548
902 => 1.385807921653
903 => 1.4207860974643
904 => 1.4204637674165
905 => 1.4536703395349
906 => 1.5171488336064
907 => 1.4983751193225
908 => 1.4765433321846
909 => 1.4789170527763
910 => 1.5049509088254
911 => 1.489210245163
912 => 1.4948706975638
913 => 1.5049423410527
914 => 1.5110188136345
915 => 1.4780427418833
916 => 1.4703544421303
917 => 1.4546268790621
918 => 1.4505238514265
919 => 1.4633336233792
920 => 1.4599587010456
921 => 1.3993018345602
922 => 1.3929628545208
923 => 1.3931572619886
924 => 1.3772175952776
925 => 1.352905777585
926 => 1.416795782898
927 => 1.4116645213313
928 => 1.4060000056898
929 => 1.4066938765346
930 => 1.4344263624078
1001 => 1.4183401200773
1002 => 1.4611080317963
1003 => 1.452316234868
1004 => 1.4432989615229
1005 => 1.4420524996738
1006 => 1.4385816187535
1007 => 1.4266786766201
1008 => 1.4123051587381
1009 => 1.4028145172196
1010 => 1.2940222396403
1011 => 1.3142134535434
1012 => 1.337441604652
1013 => 1.3454598693337
1014 => 1.3317440727486
1015 => 1.4272202598681
1016 => 1.4446646792862
1017 => 1.3918243949973
1018 => 1.3819401352614
1019 => 1.4278682702908
1020 => 1.4001679903819
1021 => 1.4126414247288
1022 => 1.3856806822747
1023 => 1.4404628294806
1024 => 1.4400454813041
1025 => 1.4187339887301
1026 => 1.4367463163189
1027 => 1.4336162311387
1028 => 1.4095556085105
1029 => 1.4412255941341
1030 => 1.4412413020518
1031 => 1.4207294538012
1101 => 1.3967761056653
1102 => 1.3924938127715
1103 => 1.389267680321
1104 => 1.4118479939115
1105 => 1.4320934324699
1106 => 1.4697651743572
1107 => 1.4792367453262
1108 => 1.5162049173763
1109 => 1.4941921708681
1110 => 1.5039501362824
1111 => 1.5145437880881
1112 => 1.5196227743324
1113 => 1.5113468388007
1114 => 1.5687736267013
1115 => 1.5736222071114
1116 => 1.5752478941828
1117 => 1.555883904411
1118 => 1.5730836595266
1119 => 1.565036463704
1120 => 1.585973031659
1121 => 1.5892561528459
1122 => 1.5864754660011
1123 => 1.5875175804863
1124 => 1.5385139477928
1125 => 1.5359728509229
1126 => 1.5013248147936
1127 => 1.5154441456216
1128 => 1.4890487333958
1129 => 1.4974189905155
1130 => 1.5011085200991
1201 => 1.4991813192236
1202 => 1.5162424314022
1203 => 1.5017370006954
1204 => 1.4634547841466
1205 => 1.4251621376336
1206 => 1.4246814046491
1207 => 1.4145996267436
1208 => 1.4073123478876
1209 => 1.4087161363254
1210 => 1.4136632698791
1211 => 1.4070248114921
1212 => 1.4084414631673
1213 => 1.4319673200772
1214 => 1.4366852629017
1215 => 1.4206518497647
1216 => 1.3562753824089
1217 => 1.3404772358437
1218 => 1.3518326303039
1219 => 1.346405483133
1220 => 1.0866543075278
1221 => 1.1476789932926
1222 => 1.1114201972137
1223 => 1.1281299186338
1224 => 1.091119077007
1225 => 1.1087825905357
1226 => 1.1055207845552
1227 => 1.2036466734132
1228 => 1.2021145726265
1229 => 1.2028479081961
1230 => 1.1678438907607
1231 => 1.223606240998
]
'min_raw' => 0.71189532022806
'max_raw' => 1.5892561528459
'avg_raw' => 1.150575736537
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.711895'
'max' => '$1.58'
'avg' => '$1.15'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.10977281395399
'max_diff' => 0.24042740933701
'year' => 2035
]
10 => [
'items' => [
101 => 1.2510767798741
102 => 1.2459927142329
103 => 1.2472722640229
104 => 1.2252853592792
105 => 1.203060789495
106 => 1.1784103212676
107 => 1.2242078443442
108 => 1.2191159415679
109 => 1.230794934528
110 => 1.2604979019178
111 => 1.2648717766965
112 => 1.2707503087546
113 => 1.2686432734742
114 => 1.318841402156
115 => 1.3127620775548
116 => 1.3274115007028
117 => 1.2972765258329
118 => 1.2631759413295
119 => 1.2696573476115
120 => 1.2690331360663
121 => 1.2610862066601
122 => 1.2539120741234
123 => 1.2419691647491
124 => 1.2797582972274
125 => 1.2782241274599
126 => 1.3030605527194
127 => 1.2986704733066
128 => 1.2693524485534
129 => 1.270399547543
130 => 1.2774417914669
131 => 1.3018150780944
201 => 1.3090507290253
202 => 1.3056988872232
203 => 1.313632448149
204 => 1.3199028112274
205 => 1.3144199092114
206 => 1.3920462393401
207 => 1.3598103749818
208 => 1.3755219109744
209 => 1.3792690197308
210 => 1.3696708794443
211 => 1.3717523723888
212 => 1.3749052670269
213 => 1.3940490258691
214 => 1.4442877883622
215 => 1.4665381942835
216 => 1.5334796383137
217 => 1.4646906078124
218 => 1.4606089514197
219 => 1.4726671269275
220 => 1.5119688410447
221 => 1.5438191889144
222 => 1.5543857867934
223 => 1.5557823371386
224 => 1.5756059772138
225 => 1.5869685180159
226 => 1.5731988658952
227 => 1.5615305274656
228 => 1.5197359875381
229 => 1.5245738193374
301 => 1.5579016829881
302 => 1.604979253396
303 => 1.6453767063923
304 => 1.6312309263464
305 => 1.7391532427325
306 => 1.7498532995791
307 => 1.7483748976972
308 => 1.7727512195756
309 => 1.7243691847985
310 => 1.7036849275736
311 => 1.5640533546753
312 => 1.6032841311619
313 => 1.6603083687278
314 => 1.6527609970561
315 => 1.6113484714734
316 => 1.6453452912781
317 => 1.6341048794718
318 => 1.6252391003151
319 => 1.6658549533479
320 => 1.6211961545311
321 => 1.6598628630474
322 => 1.6102724094193
323 => 1.6312955430781
324 => 1.6193617956388
325 => 1.6270843927771
326 => 1.5819382477052
327 => 1.6062980117253
328 => 1.5809248014345
329 => 1.5809127712292
330 => 1.5803526562057
331 => 1.6102041255907
401 => 1.6111775809357
402 => 1.5891172999571
403 => 1.5859380688217
404 => 1.5976933526316
405 => 1.5839309940039
406 => 1.5903703149866
407 => 1.5841260344766
408 => 1.5827203154091
409 => 1.5715193067162
410 => 1.5666936041932
411 => 1.5685858864955
412 => 1.5621265514593
413 => 1.5582345684556
414 => 1.5795784428265
415 => 1.5681752717595
416 => 1.577830743316
417 => 1.5668271148598
418 => 1.5286837445779
419 => 1.50674708897
420 => 1.4346977983999
421 => 1.4551308878287
422 => 1.4686780472596
423 => 1.4642007111485
424 => 1.4738197616142
425 => 1.4744102931901
426 => 1.4712830418291
427 => 1.4676620853787
428 => 1.4658996040301
429 => 1.4790356960285
430 => 1.4866616395741
501 => 1.4700376859461
502 => 1.4661429262048
503 => 1.4829506611564
504 => 1.4932033697674
505 => 1.5689036096513
506 => 1.5632954913722
507 => 1.5773707677152
508 => 1.5757861076017
509 => 1.5905392395766
510 => 1.6146543752167
511 => 1.5656215617623
512 => 1.5741319627509
513 => 1.5720454089623
514 => 1.5948258561018
515 => 1.5948969741712
516 => 1.5812389581434
517 => 1.5886431902081
518 => 1.584510350994
519 => 1.5919789500405
520 => 1.5632205915334
521 => 1.5982451679221
522 => 1.6181018458006
523 => 1.6183775557922
524 => 1.6277894635143
525 => 1.6373525068609
526 => 1.6557079357991
527 => 1.6368405839102
528 => 1.6029000545618
529 => 1.6053504511535
530 => 1.585451131215
531 => 1.5857856423782
601 => 1.5839999955726
602 => 1.5893588560536
603 => 1.5643965600541
604 => 1.5702551610313
605 => 1.5620530853554
606 => 1.5741141330402
607 => 1.5611384394939
608 => 1.5720444027629
609 => 1.5767510549714
610 => 1.5941187029478
611 => 1.5585732237666
612 => 1.4860935854989
613 => 1.5013296841934
614 => 1.4787942974544
615 => 1.4808800332954
616 => 1.4850935516365
617 => 1.4714361601155
618 => 1.4740415600238
619 => 1.4739484768052
620 => 1.4731463359146
621 => 1.4695935209065
622 => 1.4644412362417
623 => 1.4849663525566
624 => 1.4884539697766
625 => 1.4962065108324
626 => 1.5192728144156
627 => 1.5169679467468
628 => 1.5207272815427
629 => 1.5125206747909
630 => 1.4812607142455
701 => 1.4829582804993
702 => 1.4617896021125
703 => 1.4956651801324
704 => 1.4876429961215
705 => 1.4824710419023
706 => 1.4810598262757
707 => 1.504183306764
708 => 1.5111022145422
709 => 1.5067908155255
710 => 1.4979480103585
711 => 1.5149288104198
712 => 1.5194721561537
713 => 1.5204892437114
714 => 1.5505759656746
715 => 1.5221707572474
716 => 1.5290081732393
717 => 1.5823517409818
718 => 1.5339764859485
719 => 1.5596019374365
720 => 1.5583477049346
721 => 1.5714568187979
722 => 1.5572723749715
723 => 1.5574482081526
724 => 1.5690882131749
725 => 1.552741925407
726 => 1.5486943546774
727 => 1.5431026647036
728 => 1.5553119151935
729 => 1.5626308086853
730 => 1.6216157150943
731 => 1.659722654673
801 => 1.658068331926
802 => 1.6731857450713
803 => 1.6663752119897
804 => 1.6443822041414
805 => 1.6819215867769
806 => 1.6700425553965
807 => 1.6710218483105
808 => 1.6709853989793
809 => 1.6788839163643
810 => 1.6732870929086
811 => 1.6622551793751
812 => 1.6695786784165
813 => 1.6913268523704
814 => 1.758833851639
815 => 1.7966116627785
816 => 1.7565595799732
817 => 1.7841869703735
818 => 1.767620380779
819 => 1.7646097386364
820 => 1.7819617814559
821 => 1.7993441967293
822 => 1.7982370120227
823 => 1.7856182711311
824 => 1.7784902645901
825 => 1.8324659181757
826 => 1.8722342602864
827 => 1.8695223259648
828 => 1.881491922092
829 => 1.9166350265273
830 => 1.9198480715691
831 => 1.9194433017449
901 => 1.9114794343621
902 => 1.9460823845874
903 => 1.9749487744463
904 => 1.9096360291612
905 => 1.9345062675592
906 => 1.9456713188451
907 => 1.9620649266542
908 => 1.9897236909158
909 => 2.0197684450289
910 => 2.0240171026844
911 => 2.0210024767608
912 => 2.0011871537769
913 => 2.0340624822359
914 => 2.0533200786258
915 => 2.0647875365738
916 => 2.0938671019267
917 => 1.9457402704008
918 => 1.8408887366655
919 => 1.8245146555982
920 => 1.8578119933274
921 => 1.8665922357453
922 => 1.8630529310362
923 => 1.7450329971327
924 => 1.823893305071
925 => 1.9087403656496
926 => 1.9119996867969
927 => 1.9544758993909
928 => 1.9683078953703
929 => 2.0025068139929
930 => 2.0003676623217
1001 => 2.0086945547827
1002 => 2.0067803464076
1003 => 2.0701266417241
1004 => 2.140007012474
1005 => 2.1375872774409
1006 => 2.1275411473586
1007 => 2.1424613636506
1008 => 2.2145853951002
1009 => 2.2079453700484
1010 => 2.2143955887902
1011 => 2.2994338866016
1012 => 2.4099957703132
1013 => 2.3586286750975
1014 => 2.4700804912321
1015 => 2.5402335016819
1016 => 2.6615558792981
1017 => 2.6463657200952
1018 => 2.6935956313965
1019 => 2.6191721648402
1020 => 2.4482808421628
1021 => 2.4212366362034
1022 => 2.4753798214025
1023 => 2.6084855589997
1024 => 2.4711878480425
1025 => 2.4989629961522
1026 => 2.4909637516281
1027 => 2.490537505882
1028 => 2.5068055723435
1029 => 2.4832078934558
1030 => 2.3870667045257
1031 => 2.4311276448488
1101 => 2.4141135998099
1102 => 2.4329919512616
1103 => 2.5348706280221
1104 => 2.489827636542
1105 => 2.4423785040131
1106 => 2.5018902460097
1107 => 2.5776691440247
1108 => 2.5729270367747
1109 => 2.5637253666626
1110 => 2.6155946993005
1111 => 2.7012676405299
1112 => 2.7244246922824
1113 => 2.741518754461
1114 => 2.7438757368289
1115 => 2.7681541200745
1116 => 2.6376031344225
1117 => 2.8447909014394
1118 => 2.8805665053566
1119 => 2.8738421745671
1120 => 2.9136052526535
1121 => 2.9019059463886
1122 => 2.8849554871755
1123 => 2.9479884237919
1124 => 2.8757262484569
1125 => 2.7731591881239
1126 => 2.7168888702788
1127 => 2.7909901640143
1128 => 2.8362412383198
1129 => 2.8661493199269
1130 => 2.8751994873503
1201 => 2.6477374358077
1202 => 2.5251480056499
1203 => 2.6037264248904
1204 => 2.6995975195565
1205 => 2.637070565651
1206 => 2.6395215038649
1207 => 2.55037449939
1208 => 2.7074850513513
1209 => 2.6845953654382
1210 => 2.8033470964461
1211 => 2.7750060427989
1212 => 2.8718434695202
1213 => 2.8463429296889
1214 => 2.9521942448126
1215 => 2.9944212002254
1216 => 3.0653268304643
1217 => 3.1174853007059
1218 => 3.1481137520643
1219 => 3.1462749347292
1220 => 3.2676401180451
1221 => 3.1960753096202
1222 => 3.1061730437083
1223 => 3.104546995356
1224 => 3.1511086527967
1225 => 3.2486891132256
1226 => 3.2739903068769
1227 => 3.2881302224756
1228 => 3.2664744495221
1229 => 3.188795979073
1230 => 3.1552548093719
1231 => 3.1838328577385
]
'min_raw' => 1.1784103212676
'max_raw' => 3.2881302224756
'avg_raw' => 2.2332702718716
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$1.17'
'max' => '$3.28'
'avg' => '$2.23'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.46651500103952
'max_diff' => 1.6988740696297
'year' => 2036
]
11 => [
'items' => [
101 => 3.1488843603258
102 => 3.2092152716765
103 => 3.2920624989484
104 => 3.2749548741302
105 => 3.332143098979
106 => 3.3913268953208
107 => 3.4759623822002
108 => 3.4980892325135
109 => 3.5346640746726
110 => 3.572311601464
111 => 3.5844029724401
112 => 3.6074891513656
113 => 3.607367475807
114 => 3.6769392298781
115 => 3.7536790290763
116 => 3.7826465267432
117 => 3.8492556903511
118 => 3.7351898319361
119 => 3.821710095838
120 => 3.8997535396202
121 => 3.8067069285895
122 => 3.9349500048154
123 => 3.9399293928602
124 => 4.0151122405348
125 => 3.9389000211258
126 => 3.8936454485187
127 => 4.0242937039686
128 => 4.0875102793993
129 => 4.068468932406
130 => 3.9235633415999
131 => 3.8392220724576
201 => 3.6184847028963
202 => 3.8799576522864
203 => 4.0073134986637
204 => 3.9232335207247
205 => 3.9656385709569
206 => 4.1969867751402
207 => 4.2850691926062
208 => 4.2667486655159
209 => 4.2698445330126
210 => 4.3173722066683
211 => 4.5281360856257
212 => 4.401841483886
213 => 4.4983889747476
214 => 4.5495974157727
215 => 4.5971626696742
216 => 4.4803574392449
217 => 4.328395550666
218 => 4.2802628416269
219 => 3.9148734239539
220 => 3.8958533179582
221 => 3.8851767560946
222 => 3.8178625437744
223 => 3.7649720118053
224 => 3.7229114970838
225 => 3.6125321461219
226 => 3.6497819368518
227 => 3.4738602893794
228 => 3.5864087251518
301 => 3.3056335280093
302 => 3.5394714554697
303 => 3.4122041028589
304 => 3.4976607072925
305 => 3.4973625572502
306 => 3.3400098544467
307 => 3.2492520993368
308 => 3.3070864732375
309 => 3.3690895129574
310 => 3.3791492975487
311 => 3.4595378569904
312 => 3.4819725759843
313 => 3.4139943300559
314 => 3.299815086131
315 => 3.3263363203435
316 => 3.248714647372
317 => 3.112685651164
318 => 3.210384051079
319 => 3.2437425803054
320 => 3.2584756072053
321 => 3.1247067124705
322 => 3.0826736214808
323 => 3.0602955565297
324 => 3.2825472016186
325 => 3.2947226484413
326 => 3.2324313410617
327 => 3.5139939571216
328 => 3.4502676654644
329 => 3.521465546566
330 => 3.3239297963211
331 => 3.3314759279977
401 => 3.2379593381809
402 => 3.2903223796975
403 => 3.2533138696932
404 => 3.2860919634046
405 => 3.3057390176261
406 => 3.3992402622907
407 => 3.5405390894906
408 => 3.3852742943295
409 => 3.317623199645
410 => 3.3595935583031
411 => 3.4713661541987
412 => 3.6407073585145
413 => 3.5404539572502
414 => 3.5849447143181
415 => 3.5946639654815
416 => 3.5207408189718
417 => 3.6434330103692
418 => 3.7091847524886
419 => 3.7766324344972
420 => 3.8351953669441
421 => 3.7496923470966
422 => 3.8411928347099
423 => 3.767459593704
424 => 3.7013132541194
425 => 3.7014135708125
426 => 3.6599190057472
427 => 3.5795180572816
428 => 3.5646908888127
429 => 3.6418236916529
430 => 3.7036768950272
501 => 3.708771421114
502 => 3.7430165326343
503 => 3.7632824368794
504 => 3.9619158486416
505 => 4.0418078500341
506 => 4.1394982770587
507 => 4.1775542039156
508 => 4.2920888999499
509 => 4.199592830849
510 => 4.1795807244715
511 => 3.9017570159058
512 => 3.9472506326195
513 => 4.0200903024591
514 => 3.902958115233
515 => 3.9772515279149
516 => 3.991918621328
517 => 3.8989780083322
518 => 3.9486216054601
519 => 3.8167829297892
520 => 3.5434128123467
521 => 3.6437373494569
522 => 3.717609977644
523 => 3.6121846287916
524 => 3.8011554860851
525 => 3.6907626124045
526 => 3.6557733712402
527 => 3.5192678668932
528 => 3.5836932103663
529 => 3.6708294098957
530 => 3.616989369257
531 => 3.7287155377051
601 => 3.8869495885083
602 => 3.9997165961114
603 => 4.0083734467216
604 => 3.9358718156356
605 => 4.0520561421502
606 => 4.0529024181275
607 => 3.9218460231922
608 => 3.8415747110194
609 => 3.8233369000014
610 => 3.8688985276577
611 => 3.9242187547729
612 => 4.0114433343173
613 => 4.0641513209444
614 => 4.2015857959116
615 => 4.2387716242826
616 => 4.2796275756235
617 => 4.3342237261238
618 => 4.3997804029651
619 => 4.2563461261801
620 => 4.2620450373917
621 => 4.1284810248322
622 => 3.9857487223955
623 => 4.0940647481123
624 => 4.23567354306
625 => 4.2031883290352
626 => 4.1995330788447
627 => 4.2056801957832
628 => 4.1811874052764
629 => 4.0704074215594
630 => 4.0147744072561
701 => 4.086555189203
702 => 4.1247034802127
703 => 4.1838681526882
704 => 4.1765748579909
705 => 4.3289767004658
706 => 4.3881954480591
707 => 4.3730447583117
708 => 4.3758328498469
709 => 4.4830455637085
710 => 4.6022881514988
711 => 4.7139745704098
712 => 4.8275867927694
713 => 4.6906228243544
714 => 4.6210809679565
715 => 4.6928304126595
716 => 4.6547591473535
717 => 4.8735279304725
718 => 4.8886750063598
719 => 5.1074279700057
720 => 5.3150505811241
721 => 5.1846465390261
722 => 5.3076116771974
723 => 5.4406084996246
724 => 5.6971809480433
725 => 5.6107763737434
726 => 5.544591823962
727 => 5.48204774422
728 => 5.6121920455701
729 => 5.7796206101509
730 => 5.8156831193508
731 => 5.8741181611933
801 => 5.8126808597928
802 => 5.886675322233
803 => 6.147908289461
804 => 6.0773208357488
805 => 5.977075303978
806 => 6.1832936425237
807 => 6.2579232575899
808 => 6.7817129799572
809 => 7.4430191411202
810 => 7.1692340480283
811 => 6.9992868057565
812 => 7.0392284388929
813 => 7.2807150623233
814 => 7.3582729013668
815 => 7.1474439590561
816 => 7.2219123056774
817 => 7.6322402171267
818 => 7.8523679767238
819 => 7.5534049120886
820 => 6.7285776738072
821 => 5.9680492906522
822 => 6.1697756649044
823 => 6.1469061543624
824 => 6.5877523057653
825 => 6.0756373483226
826 => 6.0842600508139
827 => 6.5342224337636
828 => 6.4141801843008
829 => 6.2197271140207
830 => 5.9694690132599
831 => 5.506843767931
901 => 5.0970836868838
902 => 5.9007175679282
903 => 5.8660634136642
904 => 5.8158790628319
905 => 5.9275589050951
906 => 6.469844518249
907 => 6.4573430796585
908 => 6.3778153056362
909 => 6.4381364213065
910 => 6.2091525307954
911 => 6.2681668932464
912 => 5.9679288190707
913 => 6.1036489676476
914 => 6.2193099050652
915 => 6.2425305506412
916 => 6.2948478507996
917 => 5.847802249064
918 => 6.048512599674
919 => 6.1664111266407
920 => 5.6337412926198
921 => 6.1558819566862
922 => 5.8400201797245
923 => 5.732811948539
924 => 5.8771537082198
925 => 5.8209035840952
926 => 5.772543030491
927 => 5.7455570106401
928 => 5.851545668531
929 => 5.8466011709565
930 => 5.673183155135
1001 => 5.4469664229183
1002 => 5.5228921835614
1003 => 5.4953076429119
1004 => 5.3953377091219
1005 => 5.4627053740806
1006 => 5.1660522715978
1007 => 4.6556760274626
1008 => 4.9928462075855
1009 => 4.9798655224213
1010 => 4.9733200723343
1011 => 5.2266941439973
1012 => 5.2023380733413
1013 => 5.1581315666054
1014 => 5.3945258219586
1015 => 5.3082387388032
1016 => 5.5741551972943
1017 => 5.7493049752548
1018 => 5.7048813260622
1019 => 5.8696105388064
1020 => 5.5246413597381
1021 => 5.6392262832634
1022 => 5.6628420771941
1023 => 5.391608753542
1024 => 5.2063230277173
1025 => 5.1939665822167
1026 => 4.8727066675823
1027 => 5.0443211208606
1028 => 5.1953347378568
1029 => 5.1230109344457
1030 => 5.1001153788979
1031 => 5.2170838067514
1101 => 5.2261732553625
1102 => 5.0189328637738
1103 => 5.0620247036348
1104 => 5.2417248392773
1105 => 5.0574967212796
1106 => 4.6995715815024
1107 => 4.6108011981354
1108 => 4.5989575926315
1109 => 4.3582052724724
1110 => 4.6167332596241
1111 => 4.5038788651131
1112 => 4.8603845451702
1113 => 4.6567504126999
1114 => 4.6479721522475
1115 => 4.6347025240828
1116 => 4.4274770567687
1117 => 4.472846264245
1118 => 4.6236604198217
1119 => 4.6774726095745
1120 => 4.671859557313
1121 => 4.622921348183
1122 => 4.6453250097185
1123 => 4.5731550099594
1124 => 4.5476702809558
1125 => 4.4672334660935
1126 => 4.3490135694832
1127 => 4.3654527711916
1128 => 4.131228222088
1129 => 4.0036102564986
1130 => 3.9682872856012
1201 => 3.9210519326687
1202 => 3.9736226444034
1203 => 4.1305646933691
1204 => 3.9412592852034
1205 => 3.6167084411337
1206 => 3.6362144998701
1207 => 3.6800388224497
1208 => 3.5983724872494
1209 => 3.5210821547183
1210 => 3.5882798280912
1211 => 3.4507633569807
1212 => 3.6966570309907
1213 => 3.6900062962178
1214 => 3.781660251926
1215 => 3.8389733513588
1216 => 3.7068852125024
1217 => 3.6736654027844
1218 => 3.692588916156
1219 => 3.3798253927706
1220 => 3.7561007994564
1221 => 3.7593548447986
1222 => 3.7314917329905
1223 => 3.9318467708509
1224 => 4.3546583930396
1225 => 4.1955796532141
1226 => 4.1339795569733
1227 => 4.0168777289902
1228 => 4.1729089619592
1229 => 4.1609281977336
1230 => 4.1067466383354
1231 => 4.0739774621547
]
'min_raw' => 3.0602955565297
'max_raw' => 7.8523679767238
'avg_raw' => 5.4563317666267
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$3.06'
'max' => '$7.85'
'avg' => '$5.45'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 1.8818852352621
'max_diff' => 4.5642377542482
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.096059180598062
]
1 => [
'year' => 2028
'avg' => 0.16486544008565
]
2 => [
'year' => 2029
'avg' => 0.45038266820946
]
3 => [
'year' => 2030
'avg' => 0.3474695577936
]
4 => [
'year' => 2031
'avg' => 0.34125816718155
]
5 => [
'year' => 2032
'avg' => 0.598332964967
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.096059180598062
'min' => '$0.096059'
'max_raw' => 0.598332964967
'max' => '$0.598332'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.598332964967
]
1 => [
'year' => 2033
'avg' => 1.5389739117484
]
2 => [
'year' => 2034
'avg' => 0.97547562489149
]
3 => [
'year' => 2035
'avg' => 1.150575736537
]
4 => [
'year' => 2036
'avg' => 2.2332702718716
]
5 => [
'year' => 2037
'avg' => 5.4563317666267
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.598332964967
'min' => '$0.598332'
'max_raw' => 5.4563317666267
'max' => '$5.45'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 5.4563317666267
]
]
]
]
'prediction_2025_max_price' => '$0.164243'
'last_price' => 0.159255
'sma_50day_nextmonth' => '$0.142413'
'sma_200day_nextmonth' => '—'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'decrease'
'sma_200day_direction_label' => 'disminuir'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.16796'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.169719'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.170958'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.133827'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.169332'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '—'
'daily_sma100_action' => '—'
'daily_sma200' => '—'
'daily_sma200_action' => '—'
'daily_ema3' => '$0.165576'
'daily_ema3_action' => 'SELL'
'daily_ema5' => '$0.167045'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.161675'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.151716'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.19248'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.171117'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.085558'
'daily_ema200_action' => 'BUY'
'weekly_sma21' => '—'
'weekly_sma21_action' => '—'
'weekly_sma50' => '—'
'weekly_sma50_action' => '—'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.1621048'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.164773'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.208427'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.139402'
'weekly_ema21_action' => 'BUY'
'weekly_ema50' => '$0.058548'
'weekly_ema50_action' => 'BUY'
'weekly_ema100' => '$0.029274'
'weekly_ema100_action' => 'BUY'
'weekly_ema200' => '$0.014637'
'weekly_ema200_action' => 'BUY'
'rsi_14' => '51.91'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 74.39
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => -0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.172237'
'vwma_10_action' => 'SELL'
'hma_9' => '0.168247'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 69.57
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => 41.23
'cci_20_action' => 'NEUTRAL'
'adx_14' => 24.85
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.042398'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0.01
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -30.43
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 52.74
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '—'
'ichimoku_cloud_action' => '—'
'sell_signals' => 19
'buy_signals' => 8
'sell_pct' => 70.37
'buy_pct' => 29.63
'overall_action' => 'bearish'
'overall_action_label' => 'Bajista'
'overall_action_dir' => -1
'last_updated' => 1767706991
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de Apro para 2026
La previsión del precio de Apro para 2026 sugiere que el precio medio podría oscilar entre $0.055022 en el extremo inferior y $0.164243 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, Apro podría potencialmente ganar 3.13% para 2026 si AT alcanza el objetivo de precio previsto.
Predicción de precio de Apro 2027-2032
La predicción del precio de AT para 2027-2032 está actualmente dentro de un rango de precios de $0.096059 en el extremo inferior y $0.598332 en el extremo superior. Considerando la volatilidad de precios en el mercado, si Apro alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de Apro | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.052968 | $0.096059 | $0.139149 |
| 2028 | $0.095593 | $0.164865 | $0.234137 |
| 2029 | $0.20999 | $0.450382 | $0.690774 |
| 2030 | $0.178588 | $0.347469 | $0.51635 |
| 2031 | $0.211146 | $0.341258 | $0.471369 |
| 2032 | $0.322299 | $0.598332 | $0.874366 |
Predicción de precio de Apro 2032-2037
La predicción de precio de Apro para 2032-2037 se estima actualmente entre $0.598332 en el extremo inferior y $5.45 en el extremo superior. Comparado con el precio actual, Apro podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de Apro | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.322299 | $0.598332 | $0.874366 |
| 2033 | $0.748953 | $1.53 | $2.32 |
| 2034 | $0.602122 | $0.975475 | $1.34 |
| 2035 | $0.711895 | $1.15 | $1.58 |
| 2036 | $1.17 | $2.23 | $3.28 |
| 2037 | $3.06 | $5.45 | $7.85 |
Apro Histograma de precios potenciales
Pronóstico de precio de Apro basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para Apro es Bajista, con 8 indicadores técnicos mostrando señales alcistas y 19 indicando señales bajistas. La predicción de precio de AT se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de Apro
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de Apro disminuir durante el próximo mes, alcanzando — para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para Apro alcance $0.142413 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 51.91, lo que sugiere que el mercado de AT está en un estado NEUTRAL.
Promedios Móviles y Osciladores Populares de AT para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.16796 | SELL |
| SMA 5 | $0.169719 | SELL |
| SMA 10 | $0.170958 | SELL |
| SMA 21 | $0.133827 | BUY |
| SMA 50 | $0.169332 | SELL |
| SMA 100 | — | — |
| SMA 200 | — | — |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.165576 | SELL |
| EMA 5 | $0.167045 | SELL |
| EMA 10 | $0.161675 | SELL |
| EMA 21 | $0.151716 | BUY |
| EMA 50 | $0.19248 | SELL |
| EMA 100 | $0.171117 | SELL |
| EMA 200 | $0.085558 | BUY |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | — | — |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.139402 | BUY |
| EMA 50 | $0.058548 | BUY |
| EMA 100 | $0.029274 | BUY |
| EMA 200 | $0.014637 | BUY |
Osciladores de Apro
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 51.91 | NEUTRAL |
| Stoch RSI (14) | 74.39 | NEUTRAL |
| Estocástico Rápido (14) | 69.57 | NEUTRAL |
| Índice de Canal de Materias Primas (20) | 41.23 | NEUTRAL |
| Índice Direccional Medio (14) | 24.85 | NEUTRAL |
| Oscilador Asombroso (5, 34) | 0.042398 | BUY |
| Momentum (10) | -0 | SELL |
| MACD (12, 26) | 0.01 | NEUTRAL |
| Rango Percentil de Williams (14) | -30.43 | NEUTRAL |
| Oscilador Ultimate (7, 14, 28) | 52.74 | NEUTRAL |
| VWMA (10) | 0.172237 | SELL |
| Promedio Móvil de Hull (9) | 0.168247 | SELL |
| Nube Ichimoku B/L (9, 26, 52, 26) | — | — |
Predicción de precios de Apro basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de Apro
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de Apro por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.223779 | $0.314448 | $0.441852 | $0.620875 | $0.872434 | $1.22 |
| Amazon.com acción | $0.332295 | $0.693353 | $1.44 | $3.01 | $6.29 | $13.14 |
| Apple acción | $0.225891 | $0.3204092 | $0.454476 | $0.644639 | $0.914372 | $1.29 |
| Netflix acción | $0.251279 | $0.396479 | $0.625582 | $0.987071 | $1.55 | $2.45 |
| Google acción | $0.206234 | $0.267072 | $0.345858 | $0.447884 | $0.5800086 | $0.7511085 |
| Tesla acción | $0.361019 | $0.8184028 | $1.85 | $4.20 | $9.53 | $21.61 |
| Kodak acción | $0.119424 | $0.089555 | $0.067157 | $0.05036 | $0.037765 | $0.028319 |
| Nokia acción | $0.105499 | $0.069889 | $0.046298 | $0.03067 | $0.020318 | $0.013459 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de Apro
Podría preguntarse cosas como: "¿Debo invertir en Apro ahora?", "¿Debería comprar AT hoy?", "¿Será Apro una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de Apro regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como Apro, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de Apro a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de Apro es de $0.1592 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Pronóstico a corto plazo de Apro
basado en el historial de precios de las últimas 4 horas
Pronóstico a largo plazo de Apro
basado en el historial de precios del último mes
Predicción de precios de Apro basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Apro ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.163394 | $0.167641 | $0.171999 | $0.17647 |
| Si Apro ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.167534 | $0.176243 | $0.1854058 | $0.195044 |
| Si Apro ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.179952 | $0.20334 | $0.229767 | $0.259629 |
| Si Apro ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.20065 | $0.2528059 | $0.318518 | $0.401311 |
| Si Apro ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.242045 | $0.367877 | $0.559123 | $0.849791 |
| Si Apro ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.366232 | $0.84221 | $1.93 | $4.45 |
| Si Apro ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.5732099 | $2.06 | $7.42 | $26.72 |
Cuadro de preguntas
¿Es AT una buena inversión?
La decisión de adquirir Apro depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de Apro ha experimentado una caída de -0.4782% durante las últimas 24 horas, y Apro ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en Apro dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede Apro subir?
Parece que el valor medio de Apro podría potencialmente aumentar hasta $0.164243 para el final de este año. Mirando las perspectivas de Apro en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.51635. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de Apro la próxima semana?
Basado en nuestro nuevo pronóstico experimental de Apro, el precio de Apro aumentará en un 0.86% durante la próxima semana y alcanzará $0.160617 para el 13 de enero de 2026.
¿Cuál será el precio de Apro el próximo mes?
Basado en nuestro nuevo pronóstico experimental de Apro, el precio de Apro disminuirá en un -11.62% durante el próximo mes y alcanzará $0.140752 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de Apro este año en 2026?
Según nuestra predicción más reciente sobre el valor de Apro en 2026, se anticipa que AT fluctúe dentro del rango de $0.055022 y $0.164243. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de Apro no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará Apro en 5 años?
El futuro de Apro parece estar en una tendencia alcista, con un precio máximo de $0.51635 proyectada después de un período de cinco años. Basado en el pronóstico de Apro para 2030, el valor de Apro podría potencialmente alcanzar su punto más alto de aproximadamente $0.51635, mientras que su punto más bajo se anticipa que esté alrededor de $0.178588.
¿Cuánto será Apro en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de Apro, se espera que el valor de AT en 2026 crezca en un 3.13% hasta $0.164243 si ocurre lo mejor. El precio estará entre $0.164243 y $0.055022 durante 2026.
¿Cuánto será Apro en 2027?
Según nuestra última simulación experimental para la predicción de precios de Apro, el valor de AT podría disminuir en un -12.62% hasta $0.139149 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.139149 y $0.052968 a lo largo del año.
¿Cuánto será Apro en 2028?
Nuestro nuevo modelo experimental de predicción de precios de Apro sugiere que el valor de AT en 2028 podría aumentar en un 47.02% , alcanzando $0.234137 en el mejor escenario. Se espera que el precio oscile entre $0.234137 y $0.095593 durante el año.
¿Cuánto será Apro en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de Apro podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.690774 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.690774 y $0.20999.
¿Cuánto será Apro en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de Apro, se espera que el valor de AT en 2030 aumente en un 224.23% , alcanzando $0.51635 en el mejor escenario. Se pronostica que el precio oscile entre $0.51635 y $0.178588 durante el transcurso de 2030.
¿Cuánto será Apro en 2031?
Nuestra simulación experimental indica que el precio de Apro podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.471369 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.471369 y $0.211146 durante el año.
¿Cuánto será Apro en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de Apro, AT podría experimentar un 449.04% aumento en valor, alcanzando $0.874366 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.874366 y $0.322299 a lo largo del año.
¿Cuánto será Apro en 2033?
Según nuestra predicción experimental de precios de Apro, se anticipa que el valor de AT aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $2.32. A lo largo del año, el precio de AT podría oscilar entre $2.32 y $0.748953.
¿Cuánto será Apro en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de Apro sugieren que AT podría aumentar en un 746.96% en 2034, alcanzando potencialmente $1.34 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $1.34 y $0.602122.
¿Cuánto será Apro en 2035?
Basado en nuestra predicción experimental para el precio de Apro, AT podría crecer en un 897.93% , con el valor potencialmente alcanzando $1.58 en 2035. El rango de precios esperado para el año está entre $1.58 y $0.711895.
¿Cuánto será Apro en 2036?
Nuestra reciente simulación de predicción de precios de Apro sugiere que el valor de AT podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $3.28 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $3.28 y $1.17.
¿Cuánto será Apro en 2037?
Según la simulación experimental, el valor de Apro podría aumentar en un 4830.69% en 2037, con un máximo de $7.85 bajo condiciones favorables. Se espera que el precio caiga entre $7.85 y $3.06 durante el transcurso del año.
Predicciones relacionadas
¿Cómo leer y predecir los movimientos de precio de Apro?
Los traders de Apro utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de Apro
Las medias móviles son herramientas populares para la predicción de precios de Apro. Una media móvil simple (SMA) calcula el precio de cierre promedio de AT durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de AT por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de AT.
¿Cómo leer gráficos de Apro y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de Apro en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de AT dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de Apro?
La acción del precio de Apro está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de AT. La capitalización de mercado de Apro puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de AT, grandes poseedores de Apro, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de Apro.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


