Predicción del precio de Apro - Pronóstico de AT
Predicción de precio de Apro hasta $0.161733 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.054181 | $0.161733 |
| 2027 | $0.052159 | $0.137022 |
| 2028 | $0.094132 | $0.230559 |
| 2029 | $0.206781 | $0.680216 |
| 2030 | $0.175858 | $0.508459 |
| 2031 | $0.207919 | $0.464165 |
| 2032 | $0.317373 | $0.8610031 |
| 2033 | $0.7375064 | $2.29 |
| 2034 | $0.592919 | $1.32 |
| 2035 | $0.701014 | $1.56 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en Apro hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,954.44, equivalente a un ROI del 39.54% en los próximos 90 días.
Predicción del precio a largo plazo de Apro para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'Apro'
'name_with_ticker' => 'Apro <small>AT</small>'
'name_lang' => 'Apro'
'name_lang_with_ticker' => 'Apro <small>AT</small>'
'name_with_lang' => 'Apro'
'name_with_lang_with_ticker' => 'Apro <small>AT</small>'
'image' => '/uploads/coins/apro.png?1762828426'
'price_for_sd' => 0.1568
'ticker' => 'AT'
'marketcap' => '$36.08M'
'low24h' => '$0.1524'
'high24h' => '$0.1624'
'volume24h' => '$12.68M'
'current_supply' => '230M'
'max_supply' => '1B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.1568'
'change_24h_pct' => '-1.7787%'
'ath_price' => '$0.8593'
'ath_days' => 74
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '24 oct. 2025'
'ath_pct' => '-81.75%'
'fdv' => '$156.86M'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$7.73'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.158163'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.138601'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.054181'
'current_year_max_price_prediction' => '$0.161733'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.175858'
'grand_prediction_max_price' => '$0.508459'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.15979267546215
107 => 0.16038928330759
108 => 0.1617334712469
109 => 0.15024753247792
110 => 0.15540438177575
111 => 0.15843354760679
112 => 0.14474766618016
113 => 0.15816302173445
114 => 0.15004758783786
115 => 0.14729308768363
116 => 0.1510016592635
117 => 0.14955642531212
118 => 0.14831389802771
119 => 0.14762054645368
120 => 0.15034371212183
121 => 0.15021667318852
122 => 0.14576104561175
123 => 0.13994886107248
124 => 0.14189962098231
125 => 0.1411908916186
126 => 0.13862236497659
127 => 0.14035324180821
128 => 0.13273133621845
129 => 0.11961824380344
130 => 0.12828115431768
131 => 0.12794764168632
201 => 0.12777946949399
202 => 0.13428940732018
203 => 0.13366362700801
204 => 0.13252782961376
205 => 0.13860150516674
206 => 0.13638453188744
207 => 0.14321672114964
208 => 0.14771684287603
209 => 0.14657546644253
210 => 0.15080785267717
211 => 0.14194456255065
212 => 0.1448885919972
213 => 0.14549535238589
214 => 0.13852655695321
215 => 0.13376601240623
216 => 0.13344853835913
217 => 0.12519441015813
218 => 0.12960369881811
219 => 0.13348369037013
220 => 0.13162547551622
221 => 0.13103722020606
222 => 0.13404248900865
223 => 0.134276024133
224 => 0.12895139854893
225 => 0.13005855681682
226 => 0.13467559084367
227 => 0.12994221940543
228 => 0.12074605189276
301 => 0.11846527520266
302 => 0.11816097754914
303 => 0.1119753302749
304 => 0.11861768760705
305 => 0.11571812062746
306 => 0.12487781797384
307 => 0.11964584797403
308 => 0.11942030820434
309 => 0.11907937176297
310 => 0.11375512962816
311 => 0.11492080028244
312 => 0.11879566707394
313 => 0.12017826319864
314 => 0.12003404709556
315 => 0.11877667811273
316 => 0.1193522951943
317 => 0.11749803201629
318 => 0.11684325309498
319 => 0.11477659070821
320 => 0.1117391679297
321 => 0.11216154019665
322 => 0.10614361088753
323 => 0.10286472360424
324 => 0.10195717081926
325 => 0.10074355330595
326 => 0.1020942521467
327 => 0.10612656284991
328 => 0.10126274063941
329 => 0.092924058616959
330 => 0.093425227614931
331 => 0.094551205554963
401 => 0.092452953112803
402 => 0.090467133269278
403 => 0.092193642508567
404 => 0.088660433008753
405 => 0.094978177042908
406 => 0.094807299772057
407 => 0.097162164061319
408 => 0.098634709028075
409 => 0.095240969621797
410 => 0.094387453338766
411 => 0.094873655003733
412 => 0.086837824509419
413 => 0.096505465270649
414 => 0.09658907142941
415 => 0.09587318473933
416 => 0.10102090498976
417 => 0.11188420033239
418 => 0.10779699164945
419 => 0.10621430091088
420 => 0.10320560465992
421 => 0.10721451377562
422 => 0.10690669210426
423 => 0.10551460576846
424 => 0.10467266760899
425 => 0.10622396448304
426 => 0.10448044475886
427 => 0.10416726070768
428 => 0.10226970610513
429 => 0.10159236544525
430 => 0.10109088938638
501 => 0.10053881351959
502 => 0.101756555313
503 => 0.09899699220187
504 => 0.095669229613156
505 => 0.095392562160795
506 => 0.096156465321616
507 => 0.095818495038855
508 => 0.095390944089108
509 => 0.094574632889469
510 => 0.094332450794265
511 => 0.095119425113628
512 => 0.09423097699052
513 => 0.095541930592439
514 => 0.095185423751089
515 => 0.093194005515608
516 => 0.090711961076737
517 => 0.090689865674966
518 => 0.09015511327198
519 => 0.089474025686216
520 => 0.089284562701029
521 => 0.09204824071606
522 => 0.097768971497251
523 => 0.096645855159417
524 => 0.097457421815094
525 => 0.10144952652398
526 => 0.10271849656416
527 => 0.10181781168684
528 => 0.10058489867495
529 => 0.10063914059033
530 => 0.10485237758012
531 => 0.10511515200312
601 => 0.10577909819577
602 => 0.10663245668451
603 => 0.1019631423275
604 => 0.10041921630402
605 => 0.099687618500344
606 => 0.097434580428994
607 => 0.099864288828059
608 => 0.098448601794411
609 => 0.098639626342006
610 => 0.098515221354786
611 => 0.098583154890036
612 => 0.094976411104694
613 => 0.0962905189752
614 => 0.094105559765071
615 => 0.091180144655889
616 => 0.09117033763866
617 => 0.091886328842199
618 => 0.091460429257596
619 => 0.090314344426306
620 => 0.090477140367223
621 => 0.089050876622852
622 => 0.090650314609128
623 => 0.09069618076751
624 => 0.090080310020818
625 => 0.092544464918585
626 => 0.09355403119076
627 => 0.093148651872057
628 => 0.093525588697101
629 => 0.09669252571382
630 => 0.097208874630695
701 => 0.097438202711476
702 => 0.097130933463378
703 => 0.093583474492138
704 => 0.093740819382473
705 => 0.092586326977171
706 => 0.091610902552104
707 => 0.091649914413679
708 => 0.092151409364463
709 => 0.094341467226827
710 => 0.09895031488721
711 => 0.099125217286898
712 => 0.099337204097582
713 => 0.098474947202494
714 => 0.098214882272248
715 => 0.098557975043696
716 => 0.10028881590324
717 => 0.10474100851269
718 => 0.10316730629256
719 => 0.10188786189147
720 => 0.10301027956696
721 => 0.10283749216362
722 => 0.10137899259232
723 => 0.10133805736703
724 => 0.098538730379182
725 => 0.097503882929365
726 => 0.096639086943308
727 => 0.095694752302605
728 => 0.095134919073213
729 => 0.095995077353212
730 => 0.096191805728942
731 => 0.09431105461673
801 => 0.094054715189749
802 => 0.095590577146814
803 => 0.094914701562215
804 => 0.095609856361883
805 => 0.095771138238334
806 => 0.095745168141588
807 => 0.09503947640745
808 => 0.095489263274759
809 => 0.094425383245655
810 => 0.093268573503617
811 => 0.092530600959991
812 => 0.091886622037823
813 => 0.092243938972116
814 => 0.090970169344856
815 => 0.090562664805178
816 => 0.09533688560464
817 => 0.098863653840726
818 => 0.098812373233819
819 => 0.098500215727579
820 => 0.098036412992144
821 => 0.10025488584429
822 => 0.099482014262369
823 => 0.1000443429138
824 => 0.10018747915645
825 => 0.10062070945307
826 => 0.10077555204671
827 => 0.10030751018363
828 => 0.098736704524662
829 => 0.094822406170228
830 => 0.093000289719792
831 => 0.092398960941398
901 => 0.092420818100407
902 => 0.091817900080293
903 => 0.091995486458107
904 => 0.09175614278534
905 => 0.091302883772574
906 => 0.092215951505329
907 => 0.092321174055714
908 => 0.092108053136542
909 => 0.092158250828097
910 => 0.09039370064249
911 => 0.090527855560701
912 => 0.089780863928524
913 => 0.089640812002609
914 => 0.087752482204469
915 => 0.084407032249282
916 => 0.08626073627514
917 => 0.084021722482133
918 => 0.083173774032127
919 => 0.087187830111419
920 => 0.086784930213643
921 => 0.086095340725026
922 => 0.08507529414832
923 => 0.084696948950644
924 => 0.082398243299101
925 => 0.08226242350609
926 => 0.083401724097268
927 => 0.082875976075379
928 => 0.0821376267363
929 => 0.07946340027543
930 => 0.076456684327458
1001 => 0.076547438182385
1002 => 0.077503818583496
1003 => 0.080284623585194
1004 => 0.079198114962616
1005 => 0.078409840490685
1006 => 0.078262220377536
1007 => 0.080109995157236
1008 => 0.082724983591296
1009 => 0.083951877657489
1010 => 0.082736062899219
1011 => 0.081339400369034
1012 => 0.081424408745735
1013 => 0.081989931391505
1014 => 0.082049359825516
1015 => 0.081140276097594
1016 => 0.081396177842015
1017 => 0.081007439692093
1018 => 0.078621754383572
1019 => 0.07857860490143
1020 => 0.077993119252347
1021 => 0.07797539097958
1022 => 0.076979333834249
1023 => 0.076839978554199
1024 => 0.074862246635798
1025 => 0.076163995773614
1026 => 0.075290850796864
1027 => 0.073974815362825
1028 => 0.073747930357952
1029 => 0.073741109920734
1030 => 0.075092384051355
1031 => 0.076148205348647
1101 => 0.075306039527561
1102 => 0.075114294694798
1103 => 0.077161627863316
1104 => 0.076901086055766
1105 => 0.076675458530742
1106 => 0.08249084005847
1107 => 0.077887511799394
1108 => 0.075880197929645
1109 => 0.073395765837266
1110 => 0.074204709454139
1111 => 0.074375165760068
1112 => 0.068400554430441
1113 => 0.065976655358102
1114 => 0.065144864539184
1115 => 0.064666157163101
1116 => 0.064884310125611
1117 => 0.062702516665501
1118 => 0.064168717954228
1119 => 0.062279469240184
1120 => 0.061962730545127
1121 => 0.065340941278845
1122 => 0.065810999567221
1123 => 0.063805584873345
1124 => 0.065093385753961
1125 => 0.064626411252878
1126 => 0.062311854986913
1127 => 0.062223455962277
1128 => 0.061062092988602
1129 => 0.059244784818986
1130 => 0.058414226220583
1201 => 0.057981664091295
1202 => 0.058160147656307
1203 => 0.05806990090415
1204 => 0.057480979801067
1205 => 0.058103657172412
1206 => 0.05651297379668
1207 => 0.055879550859456
1208 => 0.055593448414013
1209 => 0.054181625361732
1210 => 0.056428463678472
1211 => 0.056871119131793
1212 => 0.057314646753101
1213 => 0.061175251887414
1214 => 0.060982386964861
1215 => 0.062725791935717
1216 => 0.062658046424466
1217 => 0.06216079908549
1218 => 0.060062994355566
1219 => 0.06089914193114
1220 => 0.058325609659707
1221 => 0.060253875020649
1222 => 0.059373895236202
1223 => 0.059956352970347
1224 => 0.058909041446257
1225 => 0.059488666886121
1226 => 0.056976089161211
1227 => 0.054629879434612
1228 => 0.055574062718727
1229 => 0.056600497929015
1230 => 0.058826070995749
1231 => 0.057500538037782
]
'min_raw' => 0.054181625361732
'max_raw' => 0.1617334712469
'avg_raw' => 0.10795754830432
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.054181'
'max' => '$0.161733'
'avg' => '$0.107957'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.10263937463827
'max_diff' => 0.0049124712469042
'year' => 2026
]
1 => [
'items' => [
101 => 0.057977249813417
102 => 0.056380345165626
103 => 0.05308547474397
104 => 0.053104123352735
105 => 0.052597279321017
106 => 0.052159292077172
107 => 0.057652791443377
108 => 0.056969587957816
109 => 0.055880992619036
110 => 0.057338120739053
111 => 0.057723408541718
112 => 0.057734377143809
113 => 0.058797460206252
114 => 0.059364827827246
115 => 0.059464828829559
116 => 0.061137612997743
117 => 0.061698308186362
118 => 0.06400773231573
119 => 0.059316690648582
120 => 0.059220081732473
121 => 0.057358625519898
122 => 0.056178060561424
123 => 0.057439459812622
124 => 0.058556887351014
125 => 0.057393347108333
126 => 0.057545280900352
127 => 0.055983323189283
128 => 0.056541649574049
129 => 0.057022555471296
130 => 0.056757027501178
131 => 0.056359519278213
201 => 0.058465271035842
202 => 0.058346456269168
203 => 0.060307380716896
204 => 0.061836061550951
205 => 0.064575730889965
206 => 0.061716743112512
207 => 0.061612550234454
208 => 0.06263105233053
209 => 0.061698152258998
210 => 0.06228771290159
211 => 0.064480743555871
212 => 0.064527078837864
213 => 0.06375090316485
214 => 0.063703672804609
215 => 0.063852745833042
216 => 0.06472587121679
217 => 0.064420774379275
218 => 0.064773840163754
219 => 0.065215354333579
220 => 0.067041644138106
221 => 0.067481956427103
222 => 0.066412225840589
223 => 0.066508810535286
224 => 0.066108701931168
225 => 0.065722202032937
226 => 0.066590997360384
227 => 0.068178737897508
228 => 0.06816886064603
301 => 0.068537185589377
302 => 0.068766648977714
303 => 0.067781624137507
304 => 0.067140409186899
305 => 0.067386291800529
306 => 0.067779463454351
307 => 0.06725879153223
308 => 0.064044963230204
309 => 0.065019833436892
310 => 0.064857567365781
311 => 0.064626480748292
312 => 0.065606720279565
313 => 0.065512173785463
314 => 0.062680139220055
315 => 0.062861436884419
316 => 0.062691164531502
317 => 0.063241349338223
318 => 0.061668440473882
319 => 0.062152256646851
320 => 0.062455701615041
321 => 0.06263443303248
322 => 0.063280133469548
323 => 0.063204367975905
324 => 0.063275423780083
325 => 0.06423282706966
326 => 0.069075044367204
327 => 0.069338595570959
328 => 0.068040773054345
329 => 0.068559227551316
330 => 0.067563908290668
331 => 0.0682320727784
401 => 0.068689213951369
402 => 0.066623480893916
403 => 0.06650116158875
404 => 0.065501734291458
405 => 0.066038769910567
406 => 0.065184307626338
407 => 0.065393962783066
408 => 0.064807748687446
409 => 0.065862817345499
410 => 0.067042548046297
411 => 0.067340594610296
412 => 0.066556562417529
413 => 0.065988871439726
414 => 0.064992193091738
415 => 0.066649691396868
416 => 0.067134394412633
417 => 0.06664714545827
418 => 0.066534239228945
419 => 0.066320282128389
420 => 0.066579631239268
421 => 0.067131754615914
422 => 0.066871383427606
423 => 0.067043363184633
424 => 0.066387953695599
425 => 0.067781950221716
426 => 0.069995952188722
427 => 0.070003070567072
428 => 0.069742697975265
429 => 0.069636159120504
430 => 0.069903317200427
501 => 0.070048239499388
502 => 0.070912179741446
503 => 0.071839222042073
504 => 0.076165323958853
505 => 0.074950571851798
506 => 0.07878894683332
507 => 0.081824603093092
508 => 0.082734863672238
509 => 0.081897466770494
510 => 0.079032777204919
511 => 0.078892221868109
512 => 0.083173277519815
513 => 0.081963683213437
514 => 0.081819805819591
515 => 0.080289193433758
516 => 0.081193974923817
517 => 0.080996085939597
518 => 0.080683708496946
519 => 0.082409968552354
520 => 0.08564137327178
521 => 0.085137728542336
522 => 0.084761781115213
523 => 0.083114488926209
524 => 0.08410652676002
525 => 0.083753281088633
526 => 0.085271048668154
527 => 0.084371956776714
528 => 0.081954519346898
529 => 0.082339504225574
530 => 0.082281314535644
531 => 0.083478854231034
601 => 0.083119382539241
602 => 0.082211121918507
603 => 0.085630328681748
604 => 0.085408304413171
605 => 0.085723084064199
606 => 0.085861659801467
607 => 0.08794287070507
608 => 0.088795476220956
609 => 0.088989032600022
610 => 0.089798941897236
611 => 0.088968881318897
612 => 0.092289715455417
613 => 0.094497876380158
614 => 0.097062768925168
615 => 0.10081076631155
616 => 0.10222004799974
617 => 0.10196547387676
618 => 0.10480716271981
619 => 0.10991361440359
620 => 0.10299763376109
621 => 0.11028017817095
622 => 0.10797460869181
623 => 0.10250814493219
624 => 0.10215616911144
625 => 0.10585812183641
626 => 0.11406869668063
627 => 0.11201204080572
628 => 0.11407206063287
629 => 0.11166893808011
630 => 0.11154960279026
701 => 0.11395534633435
702 => 0.11957649725538
703 => 0.11690609915849
704 => 0.11307742867812
705 => 0.11590445938012
706 => 0.11345542375671
707 => 0.10793706105526
708 => 0.11201046811974
709 => 0.10928669681968
710 => 0.11008163808868
711 => 0.115806600231
712 => 0.11511775763967
713 => 0.11600918373796
714 => 0.11443584000715
715 => 0.11296608886905
716 => 0.11022268922462
717 => 0.10941050383787
718 => 0.1096349626594
719 => 0.10941039260723
720 => 0.10787548571931
721 => 0.10754402272301
722 => 0.10699156987411
723 => 0.10716279811262
724 => 0.1061240251309
725 => 0.10808440436885
726 => 0.10844826803022
727 => 0.10987486855754
728 => 0.11002298295685
729 => 0.11399604511905
730 => 0.1118077492447
731 => 0.11327584704559
801 => 0.11314452656
802 => 0.10262661977762
803 => 0.10407589453196
804 => 0.10633051124223
805 => 0.10531480947032
806 => 0.10387884480244
807 => 0.10271922634157
808 => 0.10096228579628
809 => 0.10343514587472
810 => 0.10668669391852
811 => 0.11010544758111
812 => 0.1142128561011
813 => 0.11329613033495
814 => 0.11002866243588
815 => 0.11017523865895
816 => 0.11108131519432
817 => 0.10990786375528
818 => 0.10956179001741
819 => 0.11103376997706
820 => 0.11104390669406
821 => 0.1096937089971
822 => 0.1081932113405
823 => 0.10818692420053
824 => 0.10791992513562
825 => 0.11171643662061
826 => 0.11380413406675
827 => 0.11404348521446
828 => 0.11378802382746
829 => 0.11388634077642
830 => 0.11267155563178
831 => 0.11544819423907
901 => 0.11799631240622
902 => 0.11731336230482
903 => 0.11628952301574
904 => 0.11547398570721
905 => 0.11712124763308
906 => 0.11704789765255
907 => 0.11797405681696
908 => 0.1179320408875
909 => 0.11762060839512
910 => 0.11731337342705
911 => 0.11853152534718
912 => 0.11818071715711
913 => 0.11782936406501
914 => 0.11712467164936
915 => 0.11722045105235
916 => 0.11619678854356
917 => 0.11572319542739
918 => 0.1086014912689
919 => 0.10669833920935
920 => 0.10729710958952
921 => 0.10749424034574
922 => 0.10666598613047
923 => 0.10785348991411
924 => 0.10766841870731
925 => 0.10838842250995
926 => 0.10793859539299
927 => 0.10795705645478
928 => 0.10927990209249
929 => 0.10966392980891
930 => 0.10946861021286
1001 => 0.10960540536277
1002 => 0.11275779185486
1003 => 0.11230962330333
1004 => 0.11207154269266
1005 => 0.11213749264889
1006 => 0.11294299498555
1007 => 0.11316849166101
1008 => 0.11221304640169
1009 => 0.11266363990935
1010 => 0.11458220987614
1011 => 0.11525360078286
1012 => 0.11739635827119
1013 => 0.11648607680567
1014 => 0.1181569378317
1015 => 0.1232925949872
1016 => 0.12739531328345
1017 => 0.12362228398621
1018 => 0.13115640365926
1019 => 0.13702279653001
1020 => 0.13679763460064
1021 => 0.13577469331152
1022 => 0.12909596099429
1023 => 0.12295009194169
1024 => 0.12809137237158
1025 => 0.12810447855271
1026 => 0.1276628380042
1027 => 0.12491984648741
1028 => 0.1275673878452
1029 => 0.12777754006372
1030 => 0.12765991070533
1031 => 0.12555686554069
1101 => 0.122345904282
1102 => 0.122973318426
1103 => 0.12400103559276
1104 => 0.12205535259182
1105 => 0.12143358897992
1106 => 0.1225895658298
1107 => 0.12631436409743
1108 => 0.12561021256122
1109 => 0.12559182431891
1110 => 0.12860448319753
1111 => 0.12644806961292
1112 => 0.12298123212761
1113 => 0.1221058099406
1114 => 0.11899865093177
1115 => 0.12114477672649
1116 => 0.12122201197317
1117 => 0.12004660080827
1118 => 0.12307661026558
1119 => 0.12304868819501
1120 => 0.12592523121733
1121 => 0.13142410109579
1122 => 0.12979781468978
1123 => 0.12790662053904
1124 => 0.12811224578035
1125 => 0.13036744715119
1126 => 0.12900390092114
1127 => 0.12949424165245
1128 => 0.13036670496177
1129 => 0.13089308373833
1130 => 0.12803650797492
1201 => 0.12737050351865
1202 => 0.12600809213694
1203 => 0.12565266443806
1204 => 0.12676232008082
1205 => 0.12646996502367
1206 => 0.12121552064975
1207 => 0.12066640197723
1208 => 0.12068324266295
1209 => 0.11930245765171
1210 => 0.1171964290832
1211 => 0.12273094641682
1212 => 0.12228644721941
1213 => 0.12179575450697
1214 => 0.12185586156439
1215 => 0.12425820795672
1216 => 0.12286472572777
1217 => 0.12656952662068
1218 => 0.1258079309336
1219 => 0.12502680319092
1220 => 0.12491882754315
1221 => 0.1246181600049
1222 => 0.1235870591428
1223 => 0.12234194289225
1224 => 0.12151980929351
1225 => 0.11209560056045
1226 => 0.1138446788832
1227 => 0.11585683406003
1228 => 0.11655142196386
1229 => 0.11536328129033
1230 => 0.12363397417839
1231 => 0.12514510946742
]
'min_raw' => 0.052159292077172
'max_raw' => 0.13702279653001
'avg_raw' => 0.094591044303593
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.052159'
'max' => '$0.137022'
'avg' => '$0.094591'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.0020223332845593
'max_diff' => -0.024710674716891
'year' => 2027
]
2 => [
'items' => [
101 => 0.12056778210804
102 => 0.11971155105014
103 => 0.123690108544
104 => 0.12129055201633
105 => 0.12237107217381
106 => 0.12003557860626
107 => 0.1247811212275
108 => 0.12474496814368
109 => 0.12289884488108
110 => 0.12445917562092
111 => 0.12418802975702
112 => 0.12210376114035
113 => 0.12484719626029
114 => 0.12484855696988
115 => 0.12307170346781
116 => 0.12099672758063
117 => 0.12062577090075
118 => 0.12034630487348
119 => 0.12230234066268
120 => 0.12405611623492
121 => 0.12731945777702
122 => 0.12813993937578
123 => 0.13134233367832
124 => 0.12943546379291
125 => 0.13028075451501
126 => 0.13119843716753
127 => 0.13163840797781
128 => 0.13092149915259
129 => 0.13589613566252
130 => 0.13631614740288
131 => 0.13645697370633
201 => 0.13477955426466
202 => 0.13626949533378
203 => 0.1355724012492
204 => 0.13738604639895
205 => 0.13767044911622
206 => 0.13742957013261
207 => 0.13751984404406
208 => 0.13327486936886
209 => 0.13305474503793
210 => 0.13005333416632
211 => 0.13127643128181
212 => 0.12898990984898
213 => 0.12971498934911
214 => 0.13003459748396
215 => 0.12986765233191
216 => 0.1313455833576
217 => 0.13008904006441
218 => 0.12677281571882
219 => 0.12345568787014
220 => 0.12341404403207
221 => 0.12254070282168
222 => 0.12190943708699
223 => 0.12203104126285
224 => 0.12245959023965
225 => 0.1218845290414
226 => 0.12200724750439
227 => 0.12404519165885
228 => 0.12445388682507
229 => 0.12306498096273
301 => 0.11748832350729
302 => 0.11611979777973
303 => 0.11710346693365
304 => 0.11663333643449
305 => 0.094132205361312
306 => 0.099418512342959
307 => 0.096277568240487
308 => 0.097725059790796
309 => 0.094518969205704
310 => 0.096049083678515
311 => 0.095766527406221
312 => 0.10426675259951
313 => 0.1041340332748
314 => 0.10419755899219
315 => 0.10116531098574
316 => 0.10599576439452
317 => 0.10837541944117
318 => 0.10793500862451
319 => 0.10804585053878
320 => 0.10614121921468
321 => 0.10421599998672
322 => 0.10208063557381
323 => 0.10604787871399
324 => 0.1056067889999
325 => 0.10661849010495
326 => 0.10919153086576
327 => 0.10957042089182
328 => 0.11007965292917
329 => 0.10989712949338
330 => 0.11424557823655
331 => 0.11371895240177
401 => 0.11498796914301
402 => 0.11237750542574
403 => 0.10942351794216
404 => 0.10998497438966
405 => 0.10993090161882
406 => 0.10924249318416
407 => 0.10862102883018
408 => 0.10758646577728
409 => 0.11085997636316
410 => 0.1107270778115
411 => 0.11287855088512
412 => 0.11249825712106
413 => 0.10995856229103
414 => 0.11004926798873
415 => 0.11065930739745
416 => 0.11277066075634
417 => 0.11339745418516
418 => 0.11310709849553
419 => 0.11379434887602
420 => 0.1143375235553
421 => 0.11386256325287
422 => 0.12058699953265
423 => 0.11779454476323
424 => 0.11915556778807
425 => 0.11948016375988
426 => 0.1186487180036
427 => 0.1188290288163
428 => 0.11910215056578
429 => 0.1207604923459
430 => 0.12511246102199
501 => 0.12703991832377
502 => 0.13283876871527
503 => 0.12687986982636
504 => 0.12652629342667
505 => 0.12757084149068
506 => 0.13097538054114
507 => 0.13373443966945
508 => 0.13464977875625
509 => 0.13477075592717
510 => 0.1364879929046
511 => 0.13747228111548
512 => 0.13627947516772
513 => 0.13526869701898
514 => 0.13164821515259
515 => 0.13206729578687
516 => 0.13495434577479
517 => 0.13903247392911
518 => 0.14253193214244
519 => 0.14130654384456
520 => 0.15065539156804
521 => 0.1515822916332
522 => 0.15145422401446
523 => 0.15356584030413
524 => 0.14937471199232
525 => 0.14758292343973
526 => 0.13548723872756
527 => 0.13888563275511
528 => 0.14382539805484
529 => 0.14317160159425
530 => 0.13958421199328
531 => 0.14252921078574
601 => 0.14155550208633
602 => 0.14078749763589
603 => 0.14430587490833
604 => 0.14043727457031
605 => 0.14378680580715
606 => 0.13949099734944
607 => 0.14131214131509
608 => 0.14027837192136
609 => 0.14094734741312
610 => 0.13703653035774
611 => 0.1391467123111
612 => 0.13694873985085
613 => 0.13694769772572
614 => 0.13689917736183
615 => 0.13948508221402
616 => 0.13956940847842
617 => 0.13765842088556
618 => 0.1373830177182
619 => 0.1384013275726
620 => 0.13720915342887
621 => 0.13776696420726
622 => 0.13722604894909
623 => 0.13710427753106
624 => 0.13613398215448
625 => 0.13571595222743
626 => 0.13587987253313
627 => 0.13532032802305
628 => 0.13498318221612
629 => 0.136832110575
630 => 0.13584430273841
701 => 0.13668071485688
702 => 0.13572751768426
703 => 0.1324233209957
704 => 0.13052304253886
705 => 0.12428172129336
706 => 0.12605175225625
707 => 0.12722528461587
708 => 0.12683743217802
709 => 0.1276706892935
710 => 0.12772184451296
711 => 0.12745094413066
712 => 0.12713727619245
713 => 0.12698459998706
714 => 0.1281225233368
715 => 0.12878312614207
716 => 0.127343064288
717 => 0.1270056779442
718 => 0.12846165998666
719 => 0.12934980819146
720 => 0.13590739552838
721 => 0.13542158827774
722 => 0.136640869142
723 => 0.13650359682808
724 => 0.1377815974205
725 => 0.13987058826577
726 => 0.13562308578631
727 => 0.13636030534916
728 => 0.13617955613724
729 => 0.13815292863804
730 => 0.13815908929159
731 => 0.13697595390009
801 => 0.13761735079
802 => 0.13725934064185
803 => 0.13790631336753
804 => 0.13541510002572
805 => 0.13844912896618
806 => 0.14016922786691
807 => 0.14019311144181
808 => 0.14100842466921
809 => 0.14183683012801
810 => 0.14342688226725
811 => 0.14179248443685
812 => 0.13885236184537
813 => 0.13906462919993
814 => 0.1373408364003
815 => 0.13736981366869
816 => 0.13721513073903
817 => 0.13767934585492
818 => 0.13551696913858
819 => 0.13602447463181
820 => 0.13531396396934
821 => 0.13635876083774
822 => 0.13523473211845
823 => 0.1361794689745
824 => 0.13658718608304
825 => 0.1380916709911
826 => 0.13501251847427
827 => 0.12873391805216
828 => 0.13005375598156
829 => 0.12810161201294
830 => 0.12828229036958
831 => 0.12864728940472
901 => 0.12746420811157
902 => 0.12768990273912
903 => 0.12768183933884
904 => 0.12761235331138
905 => 0.12730458817427
906 => 0.12685826783597
907 => 0.12863627069358
908 => 0.12893838802575
909 => 0.12960995743074
910 => 0.13160809245011
911 => 0.13140843164241
912 => 0.13173408670362
913 => 0.13102318353347
914 => 0.12831526712872
915 => 0.12846232001768
916 => 0.12662856813602
917 => 0.12956306427229
918 => 0.12886813685377
919 => 0.12842011262627
920 => 0.12829786506489
921 => 0.13030095307449
922 => 0.13090030840152
923 => 0.13052683038295
924 => 0.12976081607078
925 => 0.13123179000195
926 => 0.13162536057052
927 => 0.1317134665065
928 => 0.13431975028127
929 => 0.13185912881731
930 => 0.13245142486016
1001 => 0.13707234950809
1002 => 0.13288180849643
1003 => 0.13510163153052
1004 => 0.13499298274441
1005 => 0.13612856909393
1006 => 0.13489983151846
1007 => 0.13491506319334
1008 => 0.13592338694044
1009 => 0.13450737808979
1010 => 0.13415675438499
1011 => 0.13367237024802
1012 => 0.13473000529025
1013 => 0.13536400966534
1014 => 0.1404736193037
1015 => 0.14377466015659
1016 => 0.14363135326729
1017 => 0.14494090997623
1018 => 0.14435094268469
1019 => 0.14244578267479
1020 => 0.14569765850218
1021 => 0.14466862892613
1022 => 0.14475346087411
1023 => 0.14475030342477
1024 => 0.14543451813351
1025 => 0.14494968930501
1026 => 0.14399404191737
1027 => 0.14462844525148
1028 => 0.14651239635045
1029 => 0.15236023836833
1030 => 0.15563276823514
1031 => 0.15216322796124
1101 => 0.15455647038318
1102 => 0.15312137772948
1103 => 0.152860578704
1104 => 0.1543637118042
1105 => 0.15586947593992
1106 => 0.15577356527407
1107 => 0.15468045783339
1108 => 0.15406298917672
1109 => 0.15873866871219
1110 => 0.1621836297458
1111 => 0.16194870649862
1112 => 0.16298558131054
1113 => 0.16602987782767
1114 => 0.16630821014883
1115 => 0.16627314667376
1116 => 0.16558327097479
1117 => 0.16858077624777
1118 => 0.17108134788257
1119 => 0.1654235846829
1120 => 0.16757798684378
1121 => 0.1685451673843
1122 => 0.16996527536731
1123 => 0.1723612355724
1124 => 0.17496388385217
1125 => 0.17533192685552
1126 => 0.17507078273217
1127 => 0.17335426622871
1128 => 0.1762021150325
1129 => 0.17787031807148
1130 => 0.17886369480505
1201 => 0.18138273291925
1202 => 0.16855114036205
1203 => 0.15946830137853
1204 => 0.15804988491347
1205 => 0.16093429057164
1206 => 0.161694885341
1207 => 0.16138829054318
1208 => 0.15116472949164
1209 => 0.15799605998035
1210 => 0.16534599719162
1211 => 0.16562833821346
1212 => 0.16930787046137
1213 => 0.17050607699041
1214 => 0.17346858273728
1215 => 0.17328327719621
1216 => 0.17400460020182
1217 => 0.1738387805344
1218 => 0.17932619860131
1219 => 0.18537963561857
1220 => 0.18517002434342
1221 => 0.18429977115117
1222 => 0.18559224554188
1223 => 0.19184004126943
1224 => 0.19126484435772
1225 => 0.19182359916229
1226 => 0.19919010243541
1227 => 0.20876760456335
1228 => 0.20431789325943
1229 => 0.21397248641899
1230 => 0.22004954104494
1231 => 0.23055917864135
]
'min_raw' => 0.094132205361312
'max_raw' => 0.23055917864135
'avg_raw' => 0.16234569200133
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.094132'
'max' => '$0.230559'
'avg' => '$0.162345'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.04197291328414
'max_diff' => 0.093536382111339
'year' => 2028
]
3 => [
'items' => [
101 => 0.22924332025323
102 => 0.23333464504622
103 => 0.22688765911055
104 => 0.2120840762514
105 => 0.2097413525981
106 => 0.21443154467922
107 => 0.22596192424839
108 => 0.21406841199345
109 => 0.21647445403248
110 => 0.21578151376338
111 => 0.21574458992124
112 => 0.21715382279538
113 => 0.2151096570108
114 => 0.20678135786603
115 => 0.2105981682851
116 => 0.20912431448401
117 => 0.2107596651594
118 => 0.21958497828458
119 => 0.21568309698275
120 => 0.21157278199437
121 => 0.21672802914172
122 => 0.2232924302954
123 => 0.22288164186857
124 => 0.22208454062427
125 => 0.22657775860353
126 => 0.23399923831593
127 => 0.23600523446027
128 => 0.23748601980324
129 => 0.23769019508396
130 => 0.23979332736962
131 => 0.22848425501203
201 => 0.2464320432811
202 => 0.24953113051753
203 => 0.24894863056109
204 => 0.25239313559484
205 => 0.25137967483525
206 => 0.24991132920173
207 => 0.25537160234747
208 => 0.2491118398072
209 => 0.24022689496348
210 => 0.23535243849793
211 => 0.24177151598295
212 => 0.24569142260812
213 => 0.24828223153447
214 => 0.24906620875018
215 => 0.22936214610635
216 => 0.21874274917874
217 => 0.2255496608577
218 => 0.23385456289399
219 => 0.22843812086189
220 => 0.22865043513487
221 => 0.22092801221303
222 => 0.23453782596814
223 => 0.23255499058057
224 => 0.24284194407885
225 => 0.24038688006853
226 => 0.24877549130914
227 => 0.24656648883651
228 => 0.25573593459673
301 => 0.25939387476332
302 => 0.26553612561595
303 => 0.2700543903466
304 => 0.27270760181707
305 => 0.27254831295233
306 => 0.28306165862303
307 => 0.27686230598934
308 => 0.26907445800618
309 => 0.26893360040651
310 => 0.27296703723165
311 => 0.28142001429778
312 => 0.28361174826521
313 => 0.28483662855116
314 => 0.28296068175484
315 => 0.27623172878257
316 => 0.27332620100571
317 => 0.27580179485284
318 => 0.272774356308
319 => 0.27800056458561
320 => 0.28517726480863
321 => 0.28369530459232
322 => 0.28864927540753
323 => 0.29377611402835
324 => 0.30110772351684
325 => 0.30302447772585
326 => 0.3061927995457
327 => 0.30945404343783
328 => 0.31050146708299
329 => 0.31250132381808
330 => 0.31249078358593
331 => 0.318517486463
401 => 0.32516512636787
402 => 0.32767445653874
403 => 0.33344452290137
404 => 0.3235634864626
405 => 0.33105836610657
406 => 0.33781893515445
407 => 0.32975870603003
408 => 0.34086785408552
409 => 0.34129919713064
410 => 0.34781196499796
411 => 0.34121002706908
412 => 0.33728981740104
413 => 0.34860731582433
414 => 0.35408349681349
415 => 0.35243402653292
416 => 0.33988147625334
417 => 0.33257535358642
418 => 0.31345382132127
419 => 0.33610410227806
420 => 0.34713639341436
421 => 0.3398529052845
422 => 0.343526273042
423 => 0.3635669764334
424 => 0.37119717874539
425 => 0.36961015000364
426 => 0.36987833173628
427 => 0.37399545040586
428 => 0.39225302192546
429 => 0.38131266186372
430 => 0.38967615720345
501 => 0.39411212497481
502 => 0.39823249906003
503 => 0.38811416256434
504 => 0.37495035545134
505 => 0.37078082515963
506 => 0.33912870593185
507 => 0.33748107566786
508 => 0.33655621087237
509 => 0.33072506916156
510 => 0.326143389061
511 => 0.32249986693816
512 => 0.31293817684001
513 => 0.31616496656178
514 => 0.30092562822516
515 => 0.31067521684394
516 => 0.286352864892
517 => 0.30660924234017
518 => 0.29558461703959
519 => 0.30298735642258
520 => 0.30296152896225
521 => 0.28933073871752
522 => 0.28146878337169
523 => 0.28647872730993
524 => 0.29184978490157
525 => 0.29272122092541
526 => 0.29968493729192
527 => 0.30162836084523
528 => 0.29573969674893
529 => 0.28584883820939
530 => 0.28814625906166
531 => 0.28142222621144
601 => 0.26963861727764
602 => 0.27810181093597
603 => 0.28099151735128
604 => 0.28226777632723
605 => 0.27067995029746
606 => 0.26703880377496
607 => 0.26510028791856
608 => 0.28435299538263
609 => 0.28540770215804
610 => 0.28001167317453
611 => 0.30440223585248
612 => 0.2988819003312
613 => 0.3050494676235
614 => 0.28793779219974
615 => 0.28859148124485
616 => 0.28049053987248
617 => 0.28502652573591
618 => 0.28182063712929
619 => 0.28466006290363
620 => 0.28636200300538
621 => 0.29446161509299
622 => 0.30670172689962
623 => 0.29325180314536
624 => 0.28739147875918
625 => 0.29102719104865
626 => 0.30070957198408
627 => 0.31537887473323
628 => 0.3066943522585
629 => 0.31054839586003
630 => 0.3113903329325
701 => 0.30498668757813
702 => 0.31561498627151
703 => 0.32131077788543
704 => 0.32715348150331
705 => 0.33222653734587
706 => 0.32481977719452
707 => 0.33274607227383
708 => 0.32635887761934
709 => 0.32062890371821
710 => 0.32063759372339
711 => 0.31704309739365
712 => 0.3100783078191
713 => 0.30879389376251
714 => 0.31547557788851
715 => 0.32083365579972
716 => 0.32127497275995
717 => 0.32424147999957
718 => 0.32599702842653
719 => 0.34320378956307
720 => 0.35012449123398
721 => 0.35858699423499
722 => 0.36188361607442
723 => 0.37180526590676
724 => 0.36379272787014
725 => 0.36205916486469
726 => 0.33799248771836
727 => 0.34193340475283
728 => 0.34824319316695
729 => 0.33809653380527
730 => 0.34453225373121
731 => 0.34580280117178
801 => 0.33775175420282
802 => 0.34205216625415
803 => 0.33063154682914
804 => 0.30695066519413
805 => 0.3156413498623
806 => 0.32204061903091
807 => 0.31290807290311
808 => 0.32927780835884
809 => 0.31971494684553
810 => 0.31668397884412
811 => 0.3048590920525
812 => 0.31043998343651
813 => 0.31798821894406
814 => 0.31332428697696
815 => 0.3230026461016
816 => 0.33670978374618
817 => 0.34647830630587
818 => 0.34722821217177
819 => 0.34094770660608
820 => 0.35101225685676
821 => 0.35108556611761
822 => 0.33973271231995
823 => 0.33277915258184
824 => 0.33119928917892
825 => 0.33514609770987
826 => 0.33993825188748
827 => 0.34749414337693
828 => 0.35206001035688
829 => 0.36396536989185
830 => 0.36718661882861
831 => 0.37072579478845
901 => 0.37545522531224
902 => 0.38113411925715
903 => 0.3687090226053
904 => 0.36920269485856
905 => 0.35763261689353
906 => 0.34526832927088
907 => 0.35465128234626
908 => 0.36691824533038
909 => 0.36410419046803
910 => 0.3637875518101
911 => 0.36432005020451
912 => 0.36219834473674
913 => 0.35260194954009
914 => 0.34778269994895
915 => 0.35400076144322
916 => 0.35730538439335
917 => 0.36243056639559
918 => 0.36179877953434
919 => 0.37500069796775
920 => 0.38013056426569
921 => 0.37881812494732
922 => 0.37905964536751
923 => 0.38834702326557
924 => 0.39867649758315
925 => 0.40835141337575
926 => 0.41819315326729
927 => 0.40632855169839
928 => 0.4003044387286
929 => 0.40651978561174
930 => 0.40322183506821
1001 => 0.42217283712704
1002 => 0.42348496339219
1003 => 0.44243459507788
1004 => 0.46042005202776
1005 => 0.44912370876047
1006 => 0.45977565166305
1007 => 0.47129659637783
1008 => 0.49352236793857
1009 => 0.48603750998899
1010 => 0.48030422610228
1011 => 0.47488630053237
1012 => 0.48616014357189
1013 => 0.50066376253819
1014 => 0.5037877031496
1015 => 0.50884968037724
1016 => 0.5035276302715
1017 => 0.50993745341927
1018 => 0.53256694574991
1019 => 0.52645225716612
1020 => 0.51776841639189
1021 => 0.53563222722738
1022 => 0.54209707092494
1023 => 0.58747072965933
1024 => 0.64475684810386
1025 => 0.62104001890689
1026 => 0.60631821768704
1027 => 0.6097781901795
1028 => 0.63069714137795
1029 => 0.63741564456857
1030 => 0.61915243688954
1031 => 0.62560331059289
1101 => 0.66114825893428
1102 => 0.68021698330097
1103 => 0.65431909433965
1104 => 0.58286784582057
1105 => 0.51698653154213
1106 => 0.53446122276302
1107 => 0.53248013508137
1108 => 0.57066874775159
1109 => 0.52630642386566
1110 => 0.52705337162637
1111 => 0.56603168436417
1112 => 0.55563293878318
1113 => 0.53878830271268
1114 => 0.51710951602684
1115 => 0.47703427379299
1116 => 0.44153851416567
1117 => 0.51115387298008
1118 => 0.50815193212069
1119 => 0.50380467689358
1120 => 0.51347902297937
1121 => 0.56045490146092
1122 => 0.55937195541584
1123 => 0.55248280520097
1124 => 0.55770816492077
1125 => 0.53787227188956
1126 => 0.54298443317859
1127 => 0.51697609560535
1128 => 0.52873295039258
1129 => 0.53875216168898
1130 => 0.5407636666937
1201 => 0.5452956901793
1202 => 0.50657004569704
1203 => 0.52395672314439
1204 => 0.53416976723334
1205 => 0.48802686248573
1206 => 0.53325767036723
1207 => 0.50589591838338
1208 => 0.49660892880034
1209 => 0.50911263680607
1210 => 0.50423992963598
1211 => 0.50005066214611
1212 => 0.49771297890601
1213 => 0.50689432208152
1214 => 0.5064660014483
1215 => 0.49144354199125
1216 => 0.4718473560233
1217 => 0.47842447925702
1218 => 0.47603494872535
1219 => 0.46737498182301
1220 => 0.4732107539068
1221 => 0.44751296706646
1222 => 0.4033012604624
1223 => 0.43250886808624
1224 => 0.43138440696449
1225 => 0.43081740267665
1226 => 0.45276611256698
1227 => 0.45065625055392
1228 => 0.44682683034038
1229 => 0.46730465151772
1230 => 0.45982997132243
1231 => 0.48286517442818
]
'min_raw' => 0.20678135786603
'max_raw' => 0.68021698330097
'avg_raw' => 0.4434991705835
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.206781'
'max' => '$0.680216'
'avg' => '$0.443499'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.11264915250471
'max_diff' => 0.44965780465962
'year' => 2029
]
4 => [
'items' => [
101 => 0.49803764901715
102 => 0.49418941868325
103 => 0.50845920436911
104 => 0.47857600289241
105 => 0.48850200371702
106 => 0.49054773873013
107 => 0.46705195838308
108 => 0.45100145007236
109 => 0.44993106415723
110 => 0.42210169464272
111 => 0.43696791920655
112 => 0.45004958161654
113 => 0.44378448050017
114 => 0.4418011366513
115 => 0.45193361024039
116 => 0.45272099021703
117 => 0.43476864330685
118 => 0.43850150470636
119 => 0.45406815727892
120 => 0.43810926500145
121 => 0.40710374417658
122 => 0.39941394632715
123 => 0.39838798554294
124 => 0.37753264388972
125 => 0.39992781538965
126 => 0.39015172287665
127 => 0.42103428198964
128 => 0.40339432985078
129 => 0.4026339067706
130 => 0.4014844157551
131 => 0.38353336167086
201 => 0.38746350166631
202 => 0.40052788558839
203 => 0.40518940495261
204 => 0.40470317029222
205 => 0.40046386297992
206 => 0.40240459615873
207 => 0.39615281839354
208 => 0.39394518554515
209 => 0.38697728901837
210 => 0.37673640605456
211 => 0.37816046364167
212 => 0.35787059481756
213 => 0.34681559741735
214 => 0.34375571983949
215 => 0.3396639236613
216 => 0.34421789910567
217 => 0.35781311616847
218 => 0.34141440000454
219 => 0.31329995137767
220 => 0.31498967764483
221 => 0.31878599088292
222 => 0.31171158627887
223 => 0.30501625603091
224 => 0.3108373024722
225 => 0.29892483996277
226 => 0.32022555506472
227 => 0.31964943041578
228 => 0.3275890197784
301 => 0.33255380794363
302 => 0.32111157859204
303 => 0.3182338888532
304 => 0.31987315171215
305 => 0.2927797881568
306 => 0.32537491395641
307 => 0.32565679795787
308 => 0.32324313600066
309 => 0.34059903422734
310 => 0.37722539292606
311 => 0.36344508349174
312 => 0.35810893116671
313 => 0.34796490169613
314 => 0.36148121867281
315 => 0.36044337641639
316 => 0.35574986014288
317 => 0.352911206856
318 => 0.35814151257494
319 => 0.35226311409619
320 => 0.35120719220182
321 => 0.34480945437629
322 => 0.3425257530511
323 => 0.3408349915067
324 => 0.33897362917711
325 => 0.34307933065359
326 => 0.33377527095788
327 => 0.32255548705307
328 => 0.32162268342113
329 => 0.32419823626185
330 => 0.32305874585719
331 => 0.32161722797946
401 => 0.31886497777685
402 => 0.31804844393426
403 => 0.32070178279678
404 => 0.31770631792026
405 => 0.32212628951699
406 => 0.32092430181086
407 => 0.31421009619355
408 => 0.30584171007709
409 => 0.30576721388737
410 => 0.30396425882548
411 => 0.30166792447806
412 => 0.30102913679562
413 => 0.31034707017713
414 => 0.32963491341459
415 => 0.3258482482681
416 => 0.32858450190949
417 => 0.34204416165535
418 => 0.34632258274247
419 => 0.34328586079479
420 => 0.33912900849596
421 => 0.33931188890072
422 => 0.35351711157061
423 => 0.35440307388405
424 => 0.35664161482784
425 => 0.35951877255221
426 => 0.34377585319643
427 => 0.3385703988148
428 => 0.33610376574117
429 => 0.32850749058152
430 => 0.33669942208579
501 => 0.33192633441174
502 => 0.33257038701086
503 => 0.33215094691077
504 => 0.33237998956783
505 => 0.32021960108074
506 => 0.32465020751424
507 => 0.3172834649883
508 => 0.30742022370174
509 => 0.30738715865845
510 => 0.30980117299009
511 => 0.30836522280524
512 => 0.30450111777946
513 => 0.30504999566031
514 => 0.30024124786761
515 => 0.30563386470753
516 => 0.30578850566279
517 => 0.30371205444159
518 => 0.31202012472122
519 => 0.31542394789352
520 => 0.31405718321783
521 => 0.31532805204036
522 => 0.32600560130071
523 => 0.32774650772428
524 => 0.32851970335981
525 => 0.32748372363699
526 => 0.31552321803978
527 => 0.31605371732302
528 => 0.31216126557445
529 => 0.30887255402338
530 => 0.3090040852384
531 => 0.31069491047823
601 => 0.31807884346615
602 => 0.3336178951326
603 => 0.33420759078444
604 => 0.33492231911711
605 => 0.33201515979446
606 => 0.33113833272499
607 => 0.3322950939579
608 => 0.33813074475929
609 => 0.35314162298422
610 => 0.34783577607668
611 => 0.34352203995043
612 => 0.34730634950806
613 => 0.34672378471407
614 => 0.34180635158023
615 => 0.34166833561018
616 => 0.33223020922787
617 => 0.32874114880007
618 => 0.32582542875495
619 => 0.32264153858248
620 => 0.32075402176328
621 => 0.32365410545863
622 => 0.32431738891254
623 => 0.31797630522786
624 => 0.31711203895275
625 => 0.32229030477145
626 => 0.32001154304985
627 => 0.32235530599109
628 => 0.32289907909789
629 => 0.32281151910353
630 => 0.32043223015206
701 => 0.32194871797831
702 => 0.31836177218246
703 => 0.3144615073713
704 => 0.31197338141686
705 => 0.3098021615196
706 => 0.31100688051065
707 => 0.30671227728058
708 => 0.305338347274
709 => 0.32143496602484
710 => 0.33332571136389
711 => 0.33315281521741
712 => 0.33210035439098
713 => 0.33053661108679
714 => 0.33801634719664
715 => 0.33541055669801
716 => 0.33730648700684
717 => 0.33778908084238
718 => 0.33924974703461
719 => 0.33977180964983
720 => 0.33819377383084
721 => 0.33289769288147
722 => 0.31970036269191
723 => 0.31355696986316
724 => 0.31152954790337
725 => 0.31160324084098
726 => 0.30957046064178
727 => 0.31016920551326
728 => 0.30936224161009
729 => 0.30783404720301
730 => 0.31091251881235
731 => 0.31126728398738
801 => 0.31054873192876
802 => 0.31071797695053
803 => 0.3047686728028
804 => 0.30522098547594
805 => 0.30270245103477
806 => 0.30223025618843
807 => 0.29586362043502
808 => 0.28458420233925
809 => 0.29083409488392
810 => 0.28328510355784
811 => 0.28042618615678
812 => 0.29395985648056
813 => 0.29260145134563
814 => 0.29027645223916
815 => 0.28683729398842
816 => 0.28556167673923
817 => 0.27781143014455
818 => 0.27735350422978
819 => 0.28119473571637
820 => 0.27942213955401
821 => 0.2769327432074
822 => 0.26791640198605
823 => 0.25777904924526
824 => 0.25808503220338
825 => 0.26130953549807
826 => 0.2706852137109
827 => 0.26702197403227
828 => 0.26436425161459
829 => 0.2638665400966
830 => 0.27009644177387
831 => 0.27891305785197
901 => 0.28304961685514
902 => 0.27895041251216
903 => 0.27424146727978
904 => 0.27452807895692
905 => 0.27643477804067
906 => 0.2766351451551
907 => 0.27357010589621
908 => 0.27443289649401
909 => 0.27312223868072
910 => 0.26507873409981
911 => 0.26493325260817
912 => 0.26295924686498
913 => 0.2628994747556
914 => 0.25954119854763
915 => 0.25907135249147
916 => 0.25240329124774
917 => 0.25679222935111
918 => 0.25384836010096
919 => 0.24941125475244
920 => 0.24864629611791
921 => 0.24862330053764
922 => 0.25317921561197
923 => 0.25673899083088
924 => 0.25389956996695
925 => 0.25325308887609
926 => 0.26015581559399
927 => 0.25927738069939
928 => 0.25851666174596
929 => 0.27812362658367
930 => 0.26260318396407
1001 => 0.25583538510604
1002 => 0.24745894884907
1003 => 0.250186358732
1004 => 0.25076106406832
1005 => 0.23061724483644
1006 => 0.22244489988282
1007 => 0.21964045906306
1008 => 0.21802646372231
1009 => 0.21876198166637
1010 => 0.21140591268765
1011 => 0.2163493126995
1012 => 0.20997957875696
1013 => 0.20891167213259
1014 => 0.22030154548046
1015 => 0.22188637981814
1016 => 0.21512498416416
1017 => 0.21946689474454
1018 => 0.21789245761102
1019 => 0.21008876956316
1020 => 0.20979072607978
1021 => 0.20587510973026
1022 => 0.199747928356
1023 => 0.19694764205373
1024 => 0.19548922863431
1025 => 0.19609099843508
1026 => 0.19578672520935
1027 => 0.19380113659315
1028 => 0.19590053682458
1029 => 0.19053743676534
1030 => 0.18840180710831
1031 => 0.18743719273846
1101 => 0.18267713274736
1102 => 0.19025250500149
1103 => 0.19174494876758
1104 => 0.19324033310893
1105 => 0.20625663285811
1106 => 0.20560637530632
1107 => 0.21148438688621
1108 => 0.21125597816519
1109 => 0.20957947404513
1110 => 0.20250657893414
1111 => 0.20532570886315
1112 => 0.19664886513173
1113 => 0.20315014642333
1114 => 0.20018323314184
1115 => 0.20214703005841
1116 => 0.19861594613399
1117 => 0.20057019377265
1118 => 0.19209886255053
1119 => 0.18418845265017
1120 => 0.18737183251334
1121 => 0.19083253048825
1122 => 0.19833620546729
1123 => 0.19386707855375
1124 => 0.19547434558825
1125 => 0.1900902700759
1126 => 0.17898138440878
1127 => 0.17904425949524
1128 => 0.17733539945558
1129 => 0.17585869488367
1130 => 0.1943804115407
1201 => 0.19207694328939
1202 => 0.1884066681014
1203 => 0.19331947729147
1204 => 0.19461850201809
1205 => 0.19465548342584
1206 => 0.19823974219296
1207 => 0.20015266173948
1208 => 0.20048982210063
1209 => 0.20612973071372
1210 => 0.20802015368864
1211 => 0.21580653837964
1212 => 0.19999036388079
1213 => 0.1996646401751
1214 => 0.19338861059168
1215 => 0.18940825340978
1216 => 0.19366114905327
1217 => 0.19742863401526
1218 => 0.19350567685128
1219 => 0.19401793223875
1220 => 0.18875168276347
1221 => 0.19063411915082
1222 => 0.19225552695916
1223 => 0.19136028086934
1224 => 0.19002005414247
1225 => 0.19711974321221
1226 => 0.19671915093099
1227 => 0.20333054461388
1228 => 0.20848459877498
1229 => 0.21772158522907
1230 => 0.20808230832924
1231 => 0.20773101476635
]
'min_raw' => 0.17585869488367
'max_raw' => 0.50845920436911
'avg_raw' => 0.34215894962639
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.175858'
'max' => '$0.508459'
'avg' => '$0.342158'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.030922662982359
'max_diff' => -0.17175777893186
'year' => 2030
]
5 => [
'items' => [
101 => 0.21116496569282
102 => 0.20801962796864
103 => 0.21000737283695
104 => 0.21740132880037
105 => 0.21755755143863
106 => 0.21494062096622
107 => 0.21478138050914
108 => 0.21528399063245
109 => 0.21822779382342
110 => 0.21719913853456
111 => 0.2183895244772
112 => 0.2198781203263
113 => 0.22603558390975
114 => 0.22752012753372
115 => 0.22391345617508
116 => 0.22423909821658
117 => 0.22289010412311
118 => 0.22158699273166
119 => 0.2245161968355
120 => 0.22986937490892
121 => 0.22983607306595
122 => 0.23107790632807
123 => 0.23185155816247
124 => 0.22853047814148
125 => 0.22636857716731
126 => 0.22719758756614
127 => 0.22852319324736
128 => 0.22676771150978
129 => 0.21593206500717
130 => 0.21921890797229
131 => 0.21867181658448
201 => 0.21789269191966
202 => 0.22119763793749
203 => 0.2208788678316
204 => 0.21133046556799
205 => 0.21194172330119
206 => 0.21136763817529
207 => 0.21322262466383
208 => 0.20791945261071
209 => 0.20955067261684
210 => 0.21057375851295
211 => 0.21117636396547
212 => 0.21335338807041
213 => 0.21309793941882
214 => 0.21333750902356
215 => 0.21656546105813
216 => 0.23289133474962
217 => 0.23377991603364
218 => 0.2294042168078
219 => 0.23115222234167
220 => 0.22779643396342
221 => 0.23004919718357
222 => 0.23159048056481
223 => 0.22462571733673
224 => 0.2242133092593
225 => 0.2208436703487
226 => 0.22265432343315
227 => 0.21977344418522
228 => 0.22048031118379
301 => 0.21850384943224
302 => 0.22206108707541
303 => 0.22603863149932
304 => 0.22704351629879
305 => 0.22440009702149
306 => 0.22248608725491
307 => 0.21912571661881
308 => 0.22471408787739
309 => 0.22634829793593
310 => 0.22470550406766
311 => 0.22432483283263
312 => 0.2236034615301
313 => 0.2244778751646
314 => 0.22633939767699
315 => 0.22546153803707
316 => 0.22604137979513
317 => 0.22383162094362
318 => 0.22853157755715
319 => 0.2359962397656
320 => 0.23602023987519
321 => 0.23514237550328
322 => 0.23478317231615
323 => 0.23568391443499
324 => 0.23617253008409
325 => 0.23908536492857
326 => 0.24221095276916
327 => 0.25679670742038
328 => 0.25270108588016
329 => 0.26564243511714
330 => 0.27587736213972
331 => 0.27894636923467
401 => 0.27612302711525
402 => 0.26646452623868
403 => 0.26599063410736
404 => 0.28042451213085
405 => 0.27634628047572
406 => 0.27586118779717
407 => 0.27070062127439
408 => 0.27375115523795
409 => 0.27308395871149
410 => 0.27203075635409
411 => 0.27785096265453
412 => 0.28874586927555
413 => 0.28704779590687
414 => 0.28578026290852
415 => 0.28022630228302
416 => 0.28357102710159
417 => 0.28238003465768
418 => 0.28749729401918
419 => 0.2844659429346
420 => 0.27631538385988
421 => 0.27761338725713
422 => 0.27741719665485
423 => 0.28145478534741
424 => 0.28024280144102
425 => 0.27718053734548
426 => 0.28870863166914
427 => 0.2879600613464
428 => 0.28902136291705
429 => 0.2894885806903
430 => 0.2965055285573
501 => 0.29938014758113
502 => 0.30003273642682
503 => 0.30276340216844
504 => 0.29996479497559
505 => 0.3111612191201
506 => 0.31860618784674
507 => 0.32725390213732
508 => 0.33989053700233
509 => 0.34464202860698
510 => 0.34378371417755
511 => 0.35336466651228
512 => 0.37058142488519
513 => 0.34726371329068
514 => 0.37181732021952
515 => 0.36404393175087
516 => 0.345613367529
517 => 0.34442665647519
518 => 0.35690804854949
519 => 0.38459057488083
520 => 0.37765641600745
521 => 0.38460191668066
522 => 0.37649962121337
523 => 0.37609727395191
524 => 0.38420840627447
525 => 0.40316050906095
526 => 0.39415707543604
527 => 0.38124844560225
528 => 0.390779976991
529 => 0.38252288240047
530 => 0.36391733727277
531 => 0.37765111358684
601 => 0.36846772848105
602 => 0.37114792847052
603 => 0.39045003803745
604 => 0.38812755714731
605 => 0.39113306247509
606 => 0.38582842423933
607 => 0.38087305566245
608 => 0.37162349222322
609 => 0.36888515248683
610 => 0.36964193107482
611 => 0.36888477746494
612 => 0.36370973172856
613 => 0.36259218109451
614 => 0.36072954774341
615 => 0.36130685570433
616 => 0.35780456007165
617 => 0.36441411554171
618 => 0.36564090728016
619 => 0.37045079056008
620 => 0.37095016859838
621 => 0.38434562506857
622 => 0.37696763274629
623 => 0.38191742698129
624 => 0.38147467079564
625 => 0.34601281374204
626 => 0.35089914476141
627 => 0.35850074241241
628 => 0.35507623297436
629 => 0.35023477784075
630 => 0.34632504323796
701 => 0.34040139552385
702 => 0.34873881592789
703 => 0.35970163717338
704 => 0.37122820383658
705 => 0.38507661843184
706 => 0.38198581350749
707 => 0.37096931735847
708 => 0.37146350932816
709 => 0.37451840962741
710 => 0.37056203617292
711 => 0.36939522440361
712 => 0.37435810760792
713 => 0.374392284257
714 => 0.36983999845391
715 => 0.36478096584328
716 => 0.36475976831192
717 => 0.36385956232332
718 => 0.37665976585892
719 => 0.38369858355696
720 => 0.38450557266242
721 => 0.38364426676041
722 => 0.38397574921808
723 => 0.37988001628936
724 => 0.38924164721255
725 => 0.39783280551701
726 => 0.39553019156809
727 => 0.39207824592279
728 => 0.38932860494809
729 => 0.39488246353929
730 => 0.39463515895881
731 => 0.39775776924398
801 => 0.39761610960438
802 => 0.39656609321279
803 => 0.39553022906748
804 => 0.39963731331485
805 => 0.39845453900936
806 => 0.39726992752869
807 => 0.39489400784925
808 => 0.39521693479353
809 => 0.39176558517532
810 => 0.39016883291893
811 => 0.36615751012708
812 => 0.35974090008449
813 => 0.36175969622603
814 => 0.36242433633385
815 => 0.3596318194202
816 => 0.36363557133563
817 => 0.36301159084063
818 => 0.36543913393028
819 => 0.36392251039954
820 => 0.36398475315826
821 => 0.36844481958395
822 => 0.36973959584181
823 => 0.36908106218694
824 => 0.3695422765856
825 => 0.38017076773629
826 => 0.37865973617467
827 => 0.37785703077354
828 => 0.37807938565544
829 => 0.38079519302186
830 => 0.38155547080688
831 => 0.378334120408
901 => 0.37985332787852
902 => 0.38632192047183
903 => 0.38858556178885
904 => 0.39581001826332
905 => 0.39274094074849
906 => 0.39837436535352
907 => 0.41568959201342
908 => 0.4295221931919
909 => 0.41680116149175
910 => 0.44220297198489
911 => 0.46198192512709
912 => 0.46122277596192
913 => 0.45777385798615
914 => 0.43525604568443
915 => 0.41453481908272
916 => 0.4318690050048
917 => 0.43191319340953
918 => 0.43042417146589
919 => 0.42117598405748
920 => 0.43010235459069
921 => 0.4308108974678
922 => 0.43041430187337
923 => 0.42332373827086
924 => 0.41249775820503
925 => 0.41461312879616
926 => 0.41807814897682
927 => 0.4115181428959
928 => 0.40942182346826
929 => 0.41331928012533
930 => 0.42587769754176
1001 => 0.42350360147514
1002 => 0.42344160423237
1003 => 0.43359899397877
1004 => 0.42632849502225
1005 => 0.41463981039367
1006 => 0.41168826337014
1007 => 0.40121225983694
1008 => 0.40844807279157
1009 => 0.40870847681814
1010 => 0.4047454960111
1011 => 0.41496138444493
1012 => 0.41486724323454
1013 => 0.42456570886812
1014 => 0.44310553258219
1015 => 0.43762239442062
1016 => 0.43124610130246
1017 => 0.43193938115983
1018 => 0.43954295003475
1019 => 0.43494565872038
1020 => 0.43659887673048
1021 => 0.43954044769129
1022 => 0.44131517048704
1023 => 0.43168402586096
1024 => 0.42943854533771
1025 => 0.42484508024373
1026 => 0.4236467309418
1027 => 0.42738801241505
1028 => 0.42640231692828
1029 => 0.40868659086804
1030 => 0.40683519892537
1031 => 0.40689197847308
1101 => 0.40223656540436
1102 => 0.3951359430474
1103 => 0.41379595464535
1104 => 0.41229729456734
1105 => 0.41064288982829
1106 => 0.41084554496892
1107 => 0.41894522355712
1108 => 0.41424700093239
1109 => 0.42673799580377
1110 => 0.42417022277189
1111 => 0.42153659605084
1112 => 0.42117254861576
1113 => 0.42015882701862
1114 => 0.41668239847286
1115 => 0.41248440210289
1116 => 0.40971252127522
1117 => 0.37793814355445
1118 => 0.38383528323638
1119 => 0.39061940489923
1120 => 0.39296125651159
1121 => 0.38895535727745
1122 => 0.41684057579087
1123 => 0.42193547392192
1124 => 0.40650269515098
1125 => 0.40361585235914
1126 => 0.4170298367237
1127 => 0.40893956435897
1128 => 0.41258261350943
1129 => 0.40470833388748
1130 => 0.42070826215818
1201 => 0.42058636951197
1202 => 0.4143620360399
1203 => 0.4196228000681
1204 => 0.41870861285716
1205 => 0.41168135569704
1206 => 0.42093103874445
1207 => 0.42093562647184
1208 => 0.41494484083365
1209 => 0.40794891475986
1210 => 0.40669820841426
1211 => 0.40575596919161
1212 => 0.41235088042098
1213 => 0.41826385720748
1214 => 0.42926644105589
1215 => 0.43203275205033
1216 => 0.44282984802536
1217 => 0.43640070307329
1218 => 0.43925065975918
1219 => 0.44234469089269
1220 => 0.44382808319733
1221 => 0.44141097504015
1222 => 0.45818330935138
1223 => 0.45959940825829
1224 => 0.46007421397257
1225 => 0.4544186772113
1226 => 0.45944211755017
1227 => 0.45709181617447
1228 => 0.46320664742151
1229 => 0.46416553103913
1230 => 0.46335339072828
1231 => 0.46365775552346
]
'min_raw' => 0.20791945261071
'max_raw' => 0.46416553103913
'avg_raw' => 0.33604249182492
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.207919'
'max' => '$0.464165'
'avg' => '$0.336042'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.032060757727047
'max_diff' => -0.044293673329977
'year' => 2031
]
6 => [
'items' => [
101 => 0.44934552703135
102 => 0.44860336248101
103 => 0.43848389617559
104 => 0.44260765349437
105 => 0.43489848684374
106 => 0.43734314300187
107 => 0.43842072414284
108 => 0.43785785690699
109 => 0.44284080454594
110 => 0.43860428110388
111 => 0.42742339919136
112 => 0.41623947105504
113 => 0.41609906594752
114 => 0.41315453508196
115 => 0.41102617858388
116 => 0.41143617555291
117 => 0.41288105834853
118 => 0.41094219936915
119 => 0.41135595323504
120 => 0.41822702423651
121 => 0.41960496852362
122 => 0.41492217543844
123 => 0.39612008547761
124 => 0.39150600543975
125 => 0.39482251466978
126 => 0.39323743686838
127 => 0.31737330247637
128 => 0.33519645554316
129 => 0.32460654320796
130 => 0.32948686203046
131 => 0.31867730378073
201 => 0.32383619155499
202 => 0.3228835333555
203 => 0.35154263606146
204 => 0.35109516359201
205 => 0.35130934498342
206 => 0.34108590912487
207 => 0.35737212004407
208 => 0.36539529317607
209 => 0.36391041735918
210 => 0.3642841286119
211 => 0.35786253112557
212 => 0.351371520084
213 => 0.34417198987947
214 => 0.35754782711067
215 => 0.35606066234371
216 => 0.35947168325411
217 => 0.36814686982314
218 => 0.36942432399926
219 => 0.37114123536662
220 => 0.37052584485949
221 => 0.38518694339609
222 => 0.38341138762627
223 => 0.38768996616929
224 => 0.37888860548976
225 => 0.36892903044805
226 => 0.37082202006044
227 => 0.37063970993831
228 => 0.36831869283772
229 => 0.366223382379
301 => 0.36273528081528
302 => 0.37377215030477
303 => 0.37332407355919
304 => 0.38057791523793
305 => 0.37929572826116
306 => 0.37073296982586
307 => 0.37103879041854
308 => 0.37309558087663
309 => 0.3802141561361
310 => 0.38232743394267
311 => 0.38134847946311
312 => 0.38366559210322
313 => 0.38549694345767
314 => 0.38389558163736
315 => 0.40656748803979
316 => 0.3971525318217
317 => 0.40174131597355
318 => 0.40283571395508
319 => 0.4000324365381
320 => 0.40064036703201
321 => 0.40156121607913
322 => 0.40715243117252
323 => 0.42182539740871
324 => 0.42832395427246
325 => 0.44787518323019
326 => 0.4277843395892
327 => 0.42659223207172
328 => 0.43011399879756
329 => 0.44159263990351
330 => 0.45089500038596
331 => 0.45398113002403
401 => 0.45438901300215
402 => 0.4601787973652
403 => 0.46349739378902
404 => 0.45947576525708
405 => 0.45606785615833
406 => 0.44386114877183
407 => 0.44527410838958
408 => 0.45500799899123
409 => 0.46875769278935
410 => 0.48055636047996
411 => 0.47642487827979
412 => 0.50794517109517
413 => 0.51107027937897
414 => 0.510638490461
415 => 0.51775795220995
416 => 0.50362727049145
417 => 0.49758613028773
418 => 0.45680468478689
419 => 0.46826260751908
420 => 0.48491737111053
421 => 0.48271305069704
422 => 0.47061791619382
423 => 0.48054718523584
424 => 0.4772642583736
425 => 0.47467487774859
426 => 0.48653733236789
427 => 0.47349407623119
428 => 0.48478725465299
429 => 0.47030363651406
430 => 0.47644375054247
501 => 0.47295832485605
502 => 0.47521382243287
503 => 0.46202822968615
504 => 0.46914285547011
505 => 0.46173223786282
506 => 0.46172872426518
507 => 0.46156513447076
508 => 0.47028369322203
509 => 0.47056800510991
510 => 0.46412497701971
511 => 0.46319643601289
512 => 0.46662973878312
513 => 0.46261024042261
514 => 0.46449093840707
515 => 0.46266720484866
516 => 0.46225664401095
517 => 0.45898522540496
518 => 0.45757580831996
519 => 0.45812847707519
520 => 0.45624193369332
521 => 0.45510522306649
522 => 0.4613390141165
523 => 0.45800855102889
524 => 0.46082857288276
525 => 0.45761480206515
526 => 0.44647447223802
527 => 0.44006755074758
528 => 0.41902450041326
529 => 0.42499228338425
530 => 0.42894892966813
531 => 0.42764125809491
601 => 0.43045064263591
602 => 0.43062311602986
603 => 0.42970975647729
604 => 0.42865220312403
605 => 0.42813744463802
606 => 0.43197403265896
607 => 0.43420130113872
608 => 0.42934603205582
609 => 0.42820851044213
610 => 0.4331174555517
611 => 0.43611190923273
612 => 0.45822127277529
613 => 0.45658333971175
614 => 0.4606942302731
615 => 0.46023140708265
616 => 0.46454027530716
617 => 0.47158345379066
618 => 0.45726270263003
619 => 0.4597482898572
620 => 0.45913888126969
621 => 0.46579224443261
622 => 0.46581301550617
623 => 0.46182399192986
624 => 0.46398650632509
625 => 0.46277945011515
626 => 0.46496076382994
627 => 0.45656146411709
628 => 0.46679090451897
629 => 0.47259033805626
630 => 0.47267086319655
701 => 0.47541974866607
702 => 0.47821277550782
703 => 0.48357374730918
704 => 0.47806326091395
705 => 0.46815043232397
706 => 0.46886610652993
707 => 0.46305421875459
708 => 0.46315191763809
709 => 0.46263039334114
710 => 0.46419552701483
711 => 0.45690492294336
712 => 0.45861601314668
713 => 0.4562204768419
714 => 0.45974308242911
715 => 0.45595334112484
716 => 0.45913858739441
717 => 0.46051323409178
718 => 0.46558570999908
719 => 0.45520413230903
720 => 0.43403539262799
721 => 0.43848531835511
722 => 0.43190352867058
723 => 0.43251269836452
724 => 0.43374331809493
725 => 0.42975447691497
726 => 0.43051542210928
727 => 0.43048823579225
728 => 0.43025395879932
729 => 0.42921630715206
730 => 0.42771150697041
731 => 0.43370616774104
801 => 0.4347247774196
802 => 0.436989020556
803 => 0.44372587227914
804 => 0.44305270192609
805 => 0.44415067070148
806 => 0.44175381102964
807 => 0.43262388181034
808 => 0.43311968089237
809 => 0.4269370583949
810 => 0.43683091699831
811 => 0.43448792068847
812 => 0.43297737572542
813 => 0.43256520953716
814 => 0.43931876061266
815 => 0.4413395289434
816 => 0.4400803217284
817 => 0.4374976509935
818 => 0.44245714230257
819 => 0.44378409295273
820 => 0.44408114826725
821 => 0.45286841597878
822 => 0.44457225891796
823 => 0.4465692263792
824 => 0.46214899645237
825 => 0.44802029485732
826 => 0.45550458319986
827 => 0.45513826623185
828 => 0.45896697489339
829 => 0.45482420036997
830 => 0.45487555502526
831 => 0.45827518893752
901 => 0.45350101623496
902 => 0.45231886393447
903 => 0.45068572899807
904 => 0.45425161938465
905 => 0.45638920940005
906 => 0.47361661503733
907 => 0.48474630474416
908 => 0.48426313556152
909 => 0.48867839743605
910 => 0.48668928152241
911 => 0.480265901535
912 => 0.49122982792577
913 => 0.48776038286557
914 => 0.48804639970095
915 => 0.48803575414006
916 => 0.49034263180094
917 => 0.48870799755597
918 => 0.48548596566737
919 => 0.48762490080096
920 => 0.4939767734644
921 => 0.51369318111098
922 => 0.52472674403767
923 => 0.51302894676865
924 => 0.52109793068507
925 => 0.51625941560816
926 => 0.51538011348533
927 => 0.52044803167807
928 => 0.52552482059073
929 => 0.52520145108455
930 => 0.52151596302996
1001 => 0.51943412434372
1002 => 0.53519850434307
1003 => 0.54681343098739
1004 => 0.5460213708577
1005 => 0.54951726667838
1006 => 0.55978132493189
1007 => 0.56071974178523
1008 => 0.56060152283097
1009 => 0.55827555874631
1010 => 0.56838185705328
1011 => 0.57681270890435
1012 => 0.55773716526427
1013 => 0.56500088256521
1014 => 0.56826179928396
1015 => 0.57304979249748
1016 => 0.58112793960951
1017 => 0.58990294999588
1018 => 0.59114383267761
1019 => 0.59026336703322
1020 => 0.58447601179847
1021 => 0.59407773287088
1022 => 0.59970219588703
1023 => 0.6030514348996
1024 => 0.61154454777525
1025 => 0.56828193759547
1026 => 0.53765851181897
1027 => 0.53287622167635
1028 => 0.54260119673565
1029 => 0.54516559510357
1030 => 0.54413188933694
1031 => 0.50966243946544
1101 => 0.53269474715639
1102 => 0.55747557362042
1103 => 0.55842750608799
1104 => 0.57083330595853
1105 => 0.5748731429273
1106 => 0.58486143788844
1107 => 0.5842366673191
1108 => 0.58666865819365
1109 => 0.58610958560781
1110 => 0.60461079873968
1111 => 0.62502038428087
1112 => 0.62431366523208
1113 => 0.62137954583528
1114 => 0.62573721348123
1115 => 0.64680209298385
1116 => 0.64486277643707
1117 => 0.64674665727168
1118 => 0.67158333736985
1119 => 0.70387455447401
1120 => 0.68887204214394
1121 => 0.72142317704357
1122 => 0.74191239100137
1123 => 0.77734636791713
1124 => 0.77290985949126
1125 => 0.78670404667803
1126 => 0.76496758348171
1127 => 0.71505627031895
1128 => 0.70715761395812
1129 => 0.72297092401835
1130 => 0.7618464037612
1201 => 0.72174659681516
1202 => 0.72985873553424
1203 => 0.72752243903741
1204 => 0.72739794772572
1205 => 0.73214927475036
1206 => 0.72525722708856
1207 => 0.69717778505868
1208 => 0.71004642786779
1209 => 0.70507722687621
1210 => 0.71059092585484
1211 => 0.74034608522008
1212 => 0.7271906199903
1213 => 0.71333240603394
1214 => 0.73071368171908
1215 => 0.75284601852059
1216 => 0.75146101665919
1217 => 0.74877353416219
1218 => 0.76392273228574
1219 => 0.78894476928726
1220 => 0.79570812534208
1221 => 0.80070069651102
1222 => 0.80138908772504
1223 => 0.80847994506216
1224 => 0.77035061803433
1225 => 0.83086283925807
1226 => 0.84131162824703
1227 => 0.83934768897504
1228 => 0.85096107818402
1229 => 0.84754412447549
1230 => 0.84259349465544
1231 => 0.86100318679039
]
'min_raw' => 0.31737330247637
'max_raw' => 0.86100318679039
'avg_raw' => 0.58918824463338
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.317373'
'max' => '$0.8610031'
'avg' => '$0.589188'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.10945384986565
'max_diff' => 0.39683765575126
'year' => 2032
]
7 => [
'items' => [
101 => 0.83989796034322
102 => 0.80994174847558
103 => 0.7935071781783
104 => 0.81514954608472
105 => 0.82836578495062
106 => 0.83710087813032
107 => 0.83974411204861
108 => 0.77331048915122
109 => 0.73750645098717
110 => 0.7604564289562
111 => 0.78845698600128
112 => 0.77019507352616
113 => 0.77091090592081
114 => 0.74487421787746
115 => 0.79076065515967
116 => 0.78407538721334
117 => 0.81875856914495
118 => 0.81048114942704
119 => 0.83876393789891
120 => 0.83131613183481
121 => 0.86223155840566
122 => 0.87456455906654
123 => 0.89527358665443
124 => 0.91050723164898
125 => 0.91945271936298
126 => 0.91891566583432
127 => 0.95436214478146
128 => 0.93346059455198
129 => 0.90720332134659
130 => 0.90672841011494
131 => 0.92032742397645
201 => 0.94882722632291
202 => 0.95621681041609
203 => 0.96034657981858
204 => 0.95402169422036
205 => 0.93133455947386
206 => 0.9215383697167
207 => 0.92988500721274
208 => 0.91967778678982
209 => 0.93729831288
210 => 0.9614950587431
211 => 0.95649852640667
212 => 0.97320118488535
213 => 0.99048667923987
214 => 1.015205712507
215 => 1.0216681831461
216 => 1.0323504013669
217 => 1.043345912842
218 => 1.0468773747905
219 => 1.0536200313984
220 => 1.0535844942698
221 => 1.0739039437908
222 => 1.0963169258534
223 => 1.1047773077203
224 => 1.1242314893151
225 => 1.0909168850899
226 => 1.1161863950853
227 => 1.1389801256381
228 => 1.1118045003979
301 => 1.1492597686829
302 => 1.150714071875
303 => 1.1726723234466
304 => 1.1504134287867
305 => 1.1371961681907
306 => 1.1753539042873
307 => 1.193817230827
308 => 1.1882559266137
309 => 1.145934126955
310 => 1.1213010242863
311 => 1.0568314432316
312 => 1.1331984468695
313 => 1.1703945866855
314 => 1.1458377979388
315 => 1.1582228137996
316 => 1.2257914444809
317 => 1.2515172042995
318 => 1.2461664260939
319 => 1.2470706195293
320 => 1.2609517725719
321 => 1.3225084496531
322 => 1.2856222618734
323 => 1.3138203703319
324 => 1.3287765453825
325 => 1.3426686742861
326 => 1.3085539963512
327 => 1.2641713016021
328 => 1.2501134391162
329 => 1.1433961092594
330 => 1.1378410087905
331 => 1.1347227625605
401 => 1.1150626611652
402 => 1.0996152068234
403 => 1.0873308176037
404 => 1.0550929118619
405 => 1.0659722586961
406 => 1.0145917655176
407 => 1.0474631842403
408 => 0.96545867650196
409 => 1.0337544673236
410 => 0.99658417340793
411 => 1.0215430260804
412 => 1.0214559469947
413 => 0.97549878601321
414 => 0.94899165466055
415 => 0.96588303043145
416 => 0.98399192609693
417 => 0.98693003349301
418 => 1.0104086894138
419 => 1.0169610776093
420 => 0.99710703547526
421 => 0.96375931535151
422 => 0.97150523015574
423 => 0.94883468394427
424 => 0.90910542371863
425 => 0.93763967201902
426 => 0.94738251895111
427 => 0.95168551519406
428 => 0.91261635069851
429 => 0.90033997098118
430 => 0.89380412942848
501 => 0.95871597682469
502 => 0.96227199435527
503 => 0.94407890589864
504 => 1.026313390862
505 => 1.0077011942346
506 => 1.0284955779663
507 => 0.9708023695761
508 => 0.97300632783081
509 => 0.94569343840419
510 => 0.96098683143517
511 => 0.95017795416994
512 => 0.95975127641052
513 => 0.96548948628924
514 => 0.99279789393946
515 => 1.0340662854728
516 => 0.98871892849166
517 => 0.96896043566885
518 => 0.98121849349014
519 => 1.0138633168162
520 => 1.0633218952129
521 => 1.0340414213554
522 => 1.0470355984387
523 => 1.0498742480607
524 => 1.0282839106602
525 => 1.064117961749
526 => 1.0833217208428
527 => 1.1030208040151
528 => 1.1201249659777
529 => 1.095152557004
530 => 1.1218766142601
531 => 1.1003417415428
601 => 1.0810227344812
602 => 1.0810520334403
603 => 1.0689329381049
604 => 1.0454506637882
605 => 1.0411201721215
606 => 1.0636479366526
607 => 1.0817130704193
608 => 1.0832010013625
609 => 1.0932027876358
610 => 1.0991217417257
611 => 1.1571355382353
612 => 1.1804691671067
613 => 1.2090010868077
614 => 1.2201158775021
615 => 1.2535674126193
616 => 1.2265525812113
617 => 1.220707752505
618 => 1.1395652702244
619 => 1.1528523471521
620 => 1.1741262393257
621 => 1.1399160688706
622 => 1.1616145479286
623 => 1.1658982873313
624 => 1.1387536203693
625 => 1.1532527598455
626 => 1.1147473440919
627 => 1.0349055983131
628 => 1.0642068484361
629 => 1.0857824312207
630 => 1.0549914143368
701 => 1.1101831203243
702 => 1.0779412650745
703 => 1.0677221448423
704 => 1.0278537134371
705 => 1.0466700783837
706 => 1.0721194813984
707 => 1.056394709146
708 => 1.0890259726561
709 => 1.1352405442266
710 => 1.1681758000531
711 => 1.1707041600367
712 => 1.1495289970311
713 => 1.1834623308857
714 => 1.183709498177
715 => 1.1454325589672
716 => 1.1219881468281
717 => 1.1166615270627
718 => 1.1299684675821
719 => 1.1461255499695
720 => 1.1716007656617
721 => 1.1869949049632
722 => 1.227134655841
723 => 1.2379953215317
724 => 1.2499279003777
725 => 1.2658735055869
726 => 1.2850202930099
727 => 1.2431282121557
728 => 1.2447926626246
729 => 1.2057833369685
730 => 1.1640962780017
731 => 1.1957315593922
801 => 1.2370904815452
802 => 1.2276026991058
803 => 1.2265351297635
804 => 1.2283304852781
805 => 1.2211770071608
806 => 1.1888220907564
807 => 1.1725736542906
808 => 1.1935382827497
809 => 1.2046800497475
810 => 1.2219599586968
811 => 1.2198298451842
812 => 1.2643410349109
813 => 1.2816367372902
814 => 1.2772117564968
815 => 1.2780260594559
816 => 1.3093391024632
817 => 1.3441656463058
818 => 1.3767853003816
819 => 1.4099674135542
820 => 1.3699650810047
821 => 1.3496543635369
822 => 1.3706098394951
823 => 1.359490568982
824 => 1.4233851955401
825 => 1.4278091208527
826 => 1.4916991271021
827 => 1.5523383509131
828 => 1.5142519409019
829 => 1.5501657100929
830 => 1.5890093795654
831 => 1.6639451201363
901 => 1.6387093989832
902 => 1.619379232074
903 => 1.6011123177476
904 => 1.6391228666699
905 => 1.6880228306252
906 => 1.6985554145031
907 => 1.715622224142
908 => 1.6976785606369
909 => 1.7192897268991
910 => 1.7955866402326
911 => 1.7749705407584
912 => 1.7456923653017
913 => 1.805921450745
914 => 1.8277181226323
915 => 1.980698580943
916 => 2.1738427288678
917 => 2.0938797833741
918 => 2.044244202718
919 => 2.0559097415439
920 => 2.126439446024
921 => 2.1490913486021
922 => 2.0875156688158
923 => 2.1092652398923
924 => 2.2291075148943
925 => 2.2933990504324
926 => 2.2060825096665
927 => 1.9651796367175
928 => 1.7430561859413
929 => 1.8019733274365
930 => 1.7952939520027
1001 => 1.9240495258641
1002 => 1.7744788536041
1003 => 1.7769972401296
1004 => 1.908415342904
1005 => 1.8733552461605
1006 => 1.8165623795938
1007 => 1.743470836718
1008 => 1.6083543595625
1009 => 1.4886779277442
1010 => 1.7233909703761
1011 => 1.7132697171799
1012 => 1.698612642666
1013 => 1.7312303759355
1014 => 1.8896128299871
1015 => 1.8859616017873
1016 => 1.8627343508527
1017 => 1.880352015971
1018 => 1.8134739177184
1019 => 1.8307099264241
1020 => 1.7430210004518
1021 => 1.7826600572043
1022 => 1.8164405276092
1023 => 1.8232224571713
1024 => 1.8385024907688
1025 => 1.7079362766587
1026 => 1.7665566735715
1027 => 1.8009906647694
1028 => 1.6454166398181
1029 => 1.7979154665047
1030 => 1.7056634093547
1031 => 1.6743516755785
1101 => 1.7165088001009
1102 => 1.7000801276754
1103 => 1.6859557198479
1104 => 1.6780740575921
1105 => 1.7090295971292
1106 => 1.70758548421
1107 => 1.6569362133159
1108 => 1.590866304163
1109 => 1.6130415343455
1110 => 1.6049850653263
1111 => 1.5757873822955
1112 => 1.5954630953166
1113 => 1.5088212128222
1114 => 1.3597583572438
1115 => 1.4582338455576
1116 => 1.4544426463783
1117 => 1.4525309518348
1118 => 1.5265325596401
1119 => 1.5194190125572
1120 => 1.5065078549457
1121 => 1.5755502587609
1122 => 1.550348852617
1123 => 1.6280136481545
1124 => 1.6791687055396
1125 => 1.666194128294
1126 => 1.7143057070185
1127 => 1.6135524068613
1128 => 1.6470186116527
1129 => 1.653915950078
1130 => 1.574698286215
1201 => 1.5205828768347
1202 => 1.5169739959898
1203 => 1.4231453336872
1204 => 1.4732678477308
1205 => 1.5173735858786
1206 => 1.4962503600493
1207 => 1.4895633777902
1208 => 1.5237257199225
1209 => 1.5263804264869
1210 => 1.4658528354864
1211 => 1.4784384383149
1212 => 1.5309224942922
1213 => 1.4771159747645
1214 => 1.3725786965671
1215 => 1.3466520062332
1216 => 1.3431929078189
1217 => 1.2728776673617
1218 => 1.3483845516546
1219 => 1.315423773202
1220 => 1.4195464774029
1221 => 1.3600721471846
1222 => 1.3575083276788
1223 => 1.3536327384651
1224 => 1.2931095063175
1225 => 1.3063602477058
1226 => 1.3504077302252
1227 => 1.3661243682186
1228 => 1.3644849941133
1229 => 1.3501918735309
1230 => 1.3567351909409
1231 => 1.3356568857204
]
'min_raw' => 0.73750645098717
'max_raw' => 2.2933990504324
'avg_raw' => 1.5154527507098
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.7375064'
'max' => '$2.29'
'avg' => '$1.51'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.4201331485108
'max_diff' => 1.432395863642
'year' => 2033
]
8 => [
'items' => [
101 => 1.32821369744
102 => 1.304720947817
103 => 1.2701930959089
104 => 1.2749944054883
105 => 1.2065856961544
106 => 1.1693130005844
107 => 1.1589964096968
108 => 1.1452006332019
109 => 1.160554679361
110 => 1.206391902876
111 => 1.1511024864075
112 => 1.0563126599739
113 => 1.0620096900566
114 => 1.0748092251889
115 => 1.0509573761472
116 => 1.0283836027632
117 => 1.0480096672525
118 => 1.0078459682003
119 => 1.079662816335
120 => 1.0777203718574
121 => 1.1044892517179
122 => 1.1212283816474
123 => 1.0826501065176
124 => 1.0729477746492
125 => 1.0784746638278
126 => 0.9871274970027
127 => 1.0970242393551
128 => 1.0979746309465
129 => 1.0898368011413
130 => 1.1483534237627
131 => 1.2718417492861
201 => 1.2253804739178
202 => 1.2073892637957
203 => 1.1731879602021
204 => 1.2187591665681
205 => 1.2152600089408
206 => 1.1994354911338
207 => 1.1898647733886
208 => 1.2074991142883
209 => 1.1876796834006
210 => 1.1841195690116
211 => 1.162549149257
212 => 1.1548494907962
213 => 1.149148970204
214 => 1.1428732571537
215 => 1.1567159163325
216 => 1.1253466294797
217 => 1.0875183447044
218 => 1.084373332133
219 => 1.0930569883549
220 => 1.0892151168989
221 => 1.0843549387306
222 => 1.0750755350165
223 => 1.0723225341576
224 => 1.0812684513828
225 => 1.0711690324149
226 => 1.0860712752459
227 => 1.0820186897745
228 => 1.0593812767649
301 => 1.0311666787112
302 => 1.0309155096064
303 => 1.024836720737
304 => 1.0170944691597
305 => 1.0149407518896
306 => 1.0463568148427
307 => 1.111387124952
308 => 1.0986201190341
309 => 1.1078455892252
310 => 1.1532257717818
311 => 1.1676507671868
312 => 1.1574122471231
313 => 1.1433971293754
314 => 1.1440137234284
315 => 1.1919076234369
316 => 1.1948947072325
317 => 1.2024421043145
318 => 1.2121426424589
319 => 1.1590642907154
320 => 1.1415137378345
321 => 1.1331973122119
322 => 1.1075859401562
323 => 1.1352056091652
324 => 1.1191128108258
325 => 1.12128427913
326 => 1.1198701075482
327 => 1.1206423408578
328 => 1.0796427420623
329 => 1.0945808409879
330 => 1.0697433542322
331 => 1.036488747605
401 => 1.036377266503
402 => 1.0445162843633
403 => 1.0396748780602
404 => 1.0266467781826
405 => 1.0284973582793
406 => 1.0122843293602
407 => 1.0304659135364
408 => 1.0309872963138
409 => 1.0239863960483
410 => 1.051997635047
411 => 1.0634738625198
412 => 1.0588657199912
413 => 1.0631505429556
414 => 1.0991506457696
415 => 1.1050202333229
416 => 1.1076271163908
417 => 1.1041342384256
418 => 1.0638085587487
419 => 1.0655971741204
420 => 1.0524735012879
421 => 1.0413853806829
422 => 1.0418288473576
423 => 1.0475295827033
424 => 1.0724250283018
425 => 1.1248160258972
426 => 1.1268042259586
427 => 1.1292139824329
428 => 1.1194122918052
429 => 1.1164560081224
430 => 1.1203561093816
501 => 1.1400314134907
502 => 1.1906416374521
503 => 1.1727526041609
504 => 1.1582085416358
505 => 1.1709676055214
506 => 1.1690034476451
507 => 1.1524239785101
508 => 1.1519586480311
509 => 1.1201373459842
510 => 1.1083737351535
511 => 1.0985431814523
512 => 1.0878084734437
513 => 1.0814445787056
514 => 1.0912224133618
515 => 1.0934587198356
516 => 1.0720793134724
517 => 1.0691653793847
518 => 1.0866242641275
519 => 1.078941259885
520 => 1.0868434202777
521 => 1.0886767892723
522 => 1.0883815746381
523 => 1.0803596358216
524 => 1.0854725804056
525 => 1.0733789422223
526 => 1.0602289271037
527 => 1.0518400367329
528 => 1.0445196172595
529 => 1.0485814114486
530 => 1.0341018568189
531 => 1.0294695558769
601 => 1.0837404298254
602 => 1.1238309079214
603 => 1.1232479764923
604 => 1.1196995313355
605 => 1.1144272616084
606 => 1.1396457141212
607 => 1.1308601095246
608 => 1.1372523709304
609 => 1.1388794697406
610 => 1.1438042077881
611 => 1.1455643783446
612 => 1.1402439204059
613 => 1.1223878137246
614 => 1.0778920935823
615 => 1.0571792157422
616 => 1.0503436210547
617 => 1.0505920819389
618 => 1.0437384215731
619 => 1.0457571317104
620 => 1.0430363965704
621 => 1.0378839824318
622 => 1.0482632643947
623 => 1.0494593799512
624 => 1.0470367315179
625 => 1.0476073529251
626 => 1.0275488586239
627 => 1.0290738623808
628 => 1.020582447674
629 => 1.0189904097819
630 => 0.99752485283502
701 => 0.95949550722131
702 => 0.9805674562892
703 => 0.9551155049796
704 => 0.94547646535866
705 => 0.99110617974598
706 => 0.98652622199276
707 => 0.97868732517904
708 => 0.96709196302229
709 => 0.96279113040592
710 => 0.93666063290702
711 => 0.935116703714
712 => 0.94806768385724
713 => 0.94209125213715
714 => 0.93369807855046
715 => 0.90329885462182
716 => 0.86912006208888
717 => 0.87015170499522
718 => 0.8810233429809
719 => 0.91263409666442
720 => 0.90028322832868
721 => 0.89132253164121
722 => 0.8896444625092
723 => 0.91064901097198
724 => 0.94037484763576
725 => 0.9543215451203
726 => 0.94050079148062
727 => 0.92462425386158
728 => 0.92559058514166
729 => 0.93201915422399
730 => 0.93269470593947
731 => 0.92236071208391
801 => 0.92526967082254
802 => 0.9208506964978
803 => 0.89373145922372
804 => 0.89324095821746
805 => 0.88658546003363
806 => 0.88638393419368
807 => 0.87506127149115
808 => 0.87347715270919
809 => 0.85099531867681
810 => 0.86579292991819
811 => 0.85586746920693
812 => 0.84090745873558
813 => 0.83832834729155
814 => 0.83825081608718
815 => 0.85361140184412
816 => 0.86561343253025
817 => 0.85604012684546
818 => 0.85386047071177
819 => 0.87713349577415
820 => 0.87417179119663
821 => 0.87160697413344
822 => 0.93771322499835
823 => 0.88538496910369
824 => 0.86256686274119
825 => 0.83432512307673
826 => 0.84352077591869
827 => 0.84545843508474
828 => 0.77754214214791
829 => 0.74998851056187
830 => 0.74053314253825
831 => 0.73509144456137
901 => 0.73757129466198
902 => 0.7127697945159
903 => 0.72943681279301
904 => 0.70796081008513
905 => 0.7043602883422
906 => 0.74276204155011
907 => 0.7481054211692
908 => 0.72530890365623
909 => 0.7399479583205
910 => 0.73463963360116
911 => 0.7083289545117
912 => 0.70732408009873
913 => 0.69412230619673
914 => 0.67346408640725
915 => 0.66402272562942
916 => 0.65910558296268
917 => 0.66113449186018
918 => 0.66010861343596
919 => 0.65341406278707
920 => 0.6604923372428
921 => 0.64241027095335
922 => 0.63520984645979
923 => 0.63195758176463
924 => 0.61590870716784
925 => 0.64144960361825
926 => 0.64648148197472
927 => 0.65152327468597
928 => 0.69540863805937
929 => 0.69321624932398
930 => 0.71303437575524
1001 => 0.71226427980532
1002 => 0.70661182911476
1003 => 0.6827650694343
1004 => 0.69226996281531
1005 => 0.66301537837695
1006 => 0.68493490215655
1007 => 0.67493174688474
1008 => 0.68155282529688
1009 => 0.66964752931327
1010 => 0.67623641166822
1011 => 0.64767472700342
1012 => 0.62100422773717
1013 => 0.63173721520232
1014 => 0.64340520004293
1015 => 0.66870436412463
1016 => 0.65363639071114
1017 => 0.65905540373379
1018 => 0.64090261723975
1019 => 0.60344823361542
1020 => 0.6036602213592
1021 => 0.5978986804267
1022 => 0.59291986786227
1023 => 0.65536712871644
1024 => 0.64760082468412
1025 => 0.63522623563736
1026 => 0.65179011482307
1027 => 0.65616986738388
1028 => 0.65629455278208
1029 => 0.66837913146037
1030 => 0.67482867326726
1031 => 0.67596543296463
1101 => 0.69498077861953
1102 => 0.70135447166458
1103 => 0.72760681127832
1104 => 0.67428147470538
1105 => 0.67318327449038
1106 => 0.65202320257149
1107 => 0.63860315043302
1108 => 0.65294208502276
1109 => 0.66564442360951
1110 => 0.65241789963901
1111 => 0.65414500444239
1112 => 0.63638947665871
1113 => 0.64273624236615
1114 => 0.64820293199506
1115 => 0.64518454729914
1116 => 0.64066587931787
1117 => 0.66460297670095
1118 => 0.66325235185636
1119 => 0.68554312725097
1120 => 0.70292038069971
1121 => 0.73406352543547
1122 => 0.70156403037485
1123 => 0.70037961960105
1124 => 0.71195742490043
1125 => 0.70135269916291
1126 => 0.70805451976633
1127 => 0.73298375852652
1128 => 0.73351047405854
1129 => 0.72468731026253
1130 => 0.72415041994369
1201 => 0.72584500506555
1202 => 0.73577024305369
1203 => 0.73230205992888
1204 => 0.73631552924456
1205 => 0.74133443408025
1206 => 0.76209475245222
1207 => 0.76709999492797
1208 => 0.75493985063258
1209 => 0.75603777551109
1210 => 0.75148954774118
1211 => 0.74709601670458
1212 => 0.75697203285118
1213 => 0.77502064647267
1214 => 0.77490836698405
1215 => 0.77909529452932
1216 => 0.78170371570365
1217 => 0.77050646254245
1218 => 0.76321746246893
1219 => 0.76601252890824
1220 => 0.77048190101334
1221 => 0.76456317177125
1222 => 0.72803003306703
1223 => 0.73911185360396
1224 => 0.73726729679327
1225 => 0.73464042358909
1226 => 0.74578327983215
1227 => 0.74470852416433
1228 => 0.7125154192844
1229 => 0.71457631740854
1230 => 0.71264074932524
1231 => 0.71889496578236
]
'min_raw' => 0.59291986786227
'max_raw' => 1.32821369744
'avg_raw' => 0.96056678265114
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.592919'
'max' => '$1.32'
'avg' => '$0.960566'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.1445865831249
'max_diff' => -0.9651853529924
'year' => 2034
]
9 => [
'items' => [
101 => 0.70101495094964
102 => 0.70651472308844
103 => 0.70996412861674
104 => 0.71199585497249
105 => 0.71933584373727
106 => 0.71847458077355
107 => 0.71928230642218
108 => 0.73016557207514
109 => 0.78520939506209
110 => 0.78820530889992
111 => 0.77345233345844
112 => 0.77934585615774
113 => 0.76803158134682
114 => 0.77562692982644
115 => 0.78082347435527
116 => 0.75734128886756
117 => 0.7559508262411
118 => 0.74458985339332
119 => 0.75069459668332
120 => 0.74098151116235
121 => 0.74336476259989
122 => 0.73670098381241
123 => 0.74869445888476
124 => 0.76210502761324
125 => 0.76549306687347
126 => 0.75658059422243
127 => 0.75012737666251
128 => 0.73879765244931
129 => 0.75763923631524
130 => 0.7631490896245
131 => 0.75761029540142
201 => 0.75632683575489
202 => 0.75389468204387
203 => 0.75684282866221
204 => 0.76311908178007
205 => 0.76015931671389
206 => 0.76211429368445
207 => 0.75466393743615
208 => 0.77051016929917
209 => 0.79567779910101
210 => 0.79575871714614
211 => 0.79279893612572
212 => 0.79158785750153
213 => 0.79462477244302
214 => 0.796272174218
215 => 0.80609300026381
216 => 0.81663113788993
217 => 0.86580802804137
218 => 0.85199935407135
219 => 0.89563201656
220 => 0.93013978759639
221 => 0.94048715928826
222 => 0.9309680642132
223 => 0.89840375417284
224 => 0.89680599376601
225 => 0.94547082126339
226 => 0.93172077850507
227 => 0.93008525467124
228 => 0.91268604434044
301 => 0.92297113258007
302 => 0.92072163290892
303 => 0.91717068762872
304 => 0.93679391952447
305 => 0.97352685785532
306 => 0.96780168493715
307 => 0.96352810893686
308 => 0.94480254292285
309 => 0.95607951616987
310 => 0.9520640019928
311 => 0.96931719920575
312 => 0.95909678738191
313 => 0.93161660840764
314 => 0.93599291748515
315 => 0.93533144717199
316 => 0.9489444593444
317 => 0.94485817098598
318 => 0.93453353378742
319 => 0.97340130866549
320 => 0.97087745155883
321 => 0.97445570390201
322 => 0.97603096124461
323 => 0.99968909088587
324 => 1.0093810696242
325 => 1.0115813184798
326 => 1.0207879486766
327 => 1.0113522491334
328 => 1.049101774846
329 => 1.074203006699
330 => 1.1033593791938
331 => 1.1459646759028
401 => 1.1619846615865
402 => 1.1590907945621
403 => 1.1913936442793
404 => 1.2494411471693
405 => 1.1708238545377
406 => 1.2536080545764
407 => 1.2273995326337
408 => 1.1652595985788
409 => 1.1612585194073
410 => 1.2033404042088
411 => 1.2966739744672
412 => 1.2732949736981
413 => 1.2967122141372
414 => 1.269394759285
415 => 1.268038217402
416 => 1.2953854663287
417 => 1.3592838040669
418 => 1.3289280990008
419 => 1.2854057522644
420 => 1.3175419758119
421 => 1.289702604908
422 => 1.2269727105123
423 => 1.2732770962168
424 => 1.2423146721692
425 => 1.2513511535592
426 => 1.3164295635944
427 => 1.3085991571228
428 => 1.3187324281731
429 => 1.3008474700032
430 => 1.2841400988735
501 => 1.2529545499542
502 => 1.2437220463482
503 => 1.2462735781942
504 => 1.2437207819358
505 => 1.2262727539254
506 => 1.2225048539378
507 => 1.2162248555497
508 => 1.2181712896462
509 => 1.2063630553982
510 => 1.2286476331299
511 => 1.232783847128
512 => 1.2490007044216
513 => 1.2506843923432
514 => 1.2958481090733
515 => 1.2709726928438
516 => 1.2876612696906
517 => 1.2861684862985
518 => 1.1666063593745
519 => 1.183080965559
520 => 1.208710282766
521 => 1.197164310104
522 => 1.1808410061014
523 => 1.1676590629192
524 => 1.1476870710751
525 => 1.1757972660675
526 => 1.2127591832964
527 => 1.2516218075605
528 => 1.2983127042339
529 => 1.2878918396383
530 => 1.2507489537247
531 => 1.2524151564539
601 => 1.2627149660992
602 => 1.2493757767722
603 => 1.2454417894278
604 => 1.2621744966485
605 => 1.262289725607
606 => 1.2469413761915
607 => 1.2298844945344
608 => 1.2298130255774
609 => 1.2267779182365
610 => 1.2699346981384
611 => 1.2936665634419
612 => 1.2963873835531
613 => 1.2934834305701
614 => 1.2946010468195
615 => 1.2807919972954
616 => 1.3123553895611
617 => 1.3413210796001
618 => 1.3335576559079
619 => 1.3219191801577
620 => 1.3126485736376
621 => 1.3313737956359
622 => 1.3305399909766
623 => 1.3410680895667
624 => 1.3405904742014
625 => 1.3370502706274
626 => 1.3335577823397
627 => 1.3474051036272
628 => 1.3434172974776
629 => 1.3394232971636
630 => 1.3314127180829
701 => 1.3325014888216
702 => 1.3208650226183
703 => 1.3154814609042
704 => 1.2345256096944
705 => 1.2128915609424
706 => 1.2196980730815
707 => 1.2219389536087
708 => 1.212523787867
709 => 1.2260227169829
710 => 1.2239189231791
711 => 1.2321035541915
712 => 1.2269901520703
713 => 1.227200007877
714 => 1.2422374332231
715 => 1.2466028617749
716 => 1.2443825695801
717 => 1.2459375861262
718 => 1.2817722860983
719 => 1.2766777376914
720 => 1.2739713603884
721 => 1.2747210453971
722 => 1.2838775795446
723 => 1.2864409091777
724 => 1.2755799014004
725 => 1.2807020154549
726 => 1.3025113270059
727 => 1.3101433517487
728 => 1.3345011111478
729 => 1.3241535020304
730 => 1.3431469863994
731 => 1.4015264819938
801 => 1.4481640626284
802 => 1.4052742160973
803 => 1.4909181936726
804 => 1.557604315114
805 => 1.5550447907015
806 => 1.5434165229504
807 => 1.4674961466317
808 => 1.3976330844342
809 => 1.4560765025047
810 => 1.4562254867964
811 => 1.4512051453532
812 => 1.4200242358179
813 => 1.45012011729
814 => 1.452509019069
815 => 1.451171869333
816 => 1.4272655390998
817 => 1.390764991462
818 => 1.3978971111005
819 => 1.4095796685596
820 => 1.3874621500527
821 => 1.3803942627421
822 => 1.3935348099732
823 => 1.4358763910934
824 => 1.4278719604507
825 => 1.4276629324181
826 => 1.4619092811145
827 => 1.4373962862725
828 => 1.3979870699694
829 => 1.3880357231091
830 => 1.3527151457857
831 => 1.3771111943506
901 => 1.377989164707
902 => 1.3646276982296
903 => 1.3990712793347
904 => 1.3987538756712
905 => 1.4314529296801
906 => 1.4939612397412
907 => 1.475474456609
908 => 1.4539763391825
909 => 1.4563137806249
910 => 1.4819497439509
911 => 1.4664496553119
912 => 1.472023595257
913 => 1.4819413071253
914 => 1.4879249089383
915 => 1.4554528324064
916 => 1.4478820380479
917 => 1.432394849778
918 => 1.4283545314405
919 => 1.4409685231355
920 => 1.4376451819828
921 => 1.3779153746982
922 => 1.3716732775034
923 => 1.3718647137127
924 => 1.356168663521
925 => 1.3322284194949
926 => 1.3951419513978
927 => 1.3900891143116
928 => 1.3845111732271
929 => 1.3851944391827
930 => 1.4125030710443
1001 => 1.3966626854456
1002 => 1.4387769467478
1003 => 1.4301195206947
1004 => 1.4212400643307
1005 => 1.4200126529863
1006 => 1.4165948198458
1007 => 1.4048737982873
1008 => 1.3907199604312
1009 => 1.3813743706941
1010 => 1.2742448377924
1011 => 1.2941274559551
1012 => 1.3170005957937
1013 => 1.3248963120076
1014 => 1.3113901430568
1015 => 1.4054071041585
1016 => 1.4225849089218
1017 => 1.3705522178134
1018 => 1.3608190257878
1019 => 1.4060452106073
1020 => 1.3787682924849
1021 => 1.3910510870453
1022 => 1.3645024035352
1023 => 1.4184472787792
1024 => 1.4180363092122
1025 => 1.397050534342
1026 => 1.4147875675579
1027 => 1.4117053215497
1028 => 1.388012433407
1029 => 1.4191983855936
1030 => 1.4192138534368
1031 => 1.3990155013943
1101 => 1.3754282481965
1102 => 1.3712114044308
1103 => 1.3680345791066
1104 => 1.3902697827584
1105 => 1.410205796825
1106 => 1.4473017764458
1107 => 1.4566285871012
1108 => 1.4930317500102
1109 => 1.4713554389357
1110 => 1.4809642668798
1111 => 1.4913960088648
1112 => 1.496397369587
1113 => 1.488247920678
1114 => 1.5447970168153
1115 => 1.5495714931488
1116 => 1.5511723337644
1117 => 1.5321042967168
1118 => 1.5490411765447
1119 => 1.5411169713637
1120 => 1.561733551837
1121 => 1.5649664949009
1122 => 1.5622283071411
1123 => 1.5632544942981
1124 => 1.5149998166891
1125 => 1.5124975570913
1126 => 1.478379069924
1127 => 1.4922826056358
1128 => 1.4662906120364
1129 => 1.474532940954
1130 => 1.478166081005
1201 => 1.4762683348212
1202 => 1.4930686906843
1203 => 1.4787849561148
1204 => 1.4410878321224
1205 => 1.4033804375739
1206 => 1.4029070519511
1207 => 1.3929793605573
1208 => 1.3858034580269
1209 => 1.3871857914331
1210 => 1.392057314657
1211 => 1.3855203162412
1212 => 1.3869153162875
1213 => 1.4100816118918
1214 => 1.4147274472608
1215 => 1.3989390834319
1216 => 1.335546524409
1217 => 1.3199898314165
1218 => 1.3311716738369
1219 => 1.3258274733628
1220 => 1.0700462475955
1221 => 1.1301382525329
1222 => 1.0944336237308
1223 => 1.1108879593738
1224 => 1.0744427790356
1225 => 1.0918363293485
1226 => 1.0886243757165
1227 => 1.1852505414043
1228 => 1.183741856732
1229 => 1.1844639842468
1230 => 1.1499949564722
1231 => 1.2049050536532
]
'min_raw' => 0.70101495094964
'max_raw' => 1.5649664949009
'avg_raw' => 1.1329907229253
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.701014'
'max' => '$1.56'
'avg' => '$1.13'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.10809508308736
'max_diff' => 0.23675279746093
'year' => 2035
]
10 => [
'items' => [
101 => 1.2319557420278
102 => 1.2269493795405
103 => 1.2282093731207
104 => 1.2065585088539
105 => 1.1846736119393
106 => 1.1603998931996
107 => 1.2054974622957
108 => 1.2004833824534
109 => 1.2119838776027
110 => 1.2412328748024
111 => 1.2455399007461
112 => 1.2513285872921
113 => 1.2492537552322
114 => 1.2986846725535
115 => 1.2926982623102
116 => 1.3071237885888
117 => 1.2774493865664
118 => 1.243869983958
119 => 1.2502523306004
120 => 1.2496376592952
121 => 1.2418121880923
122 => 1.2347477025908
123 => 1.2229873246373
124 => 1.2601989006907
125 => 1.2586881786593
126 => 1.2831450123262
127 => 1.2788220294146
128 => 1.2499520915173
129 => 1.2509831869972
130 => 1.2579177996272
131 => 1.2819185731175
201 => 1.2890436367867
202 => 1.2857430234105
203 => 1.2935553304522
204 => 1.2997298594046
205 => 1.2943307562239
206 => 1.3707706715617
207 => 1.3390274893412
208 => 1.3544988954878
209 => 1.358188734691
210 => 1.348737289161
211 => 1.3507869692656
212 => 1.3538916761196
213 => 1.3727428481731
214 => 1.4222137782722
215 => 1.4441241164531
216 => 1.5100424499073
217 => 1.4423047678738
218 => 1.4382854941483
219 => 1.4501593765464
220 => 1.4888604164483
221 => 1.5202239742849
222 => 1.5306290758263
223 => 1.5320042817646
224 => 1.5515249439744
225 => 1.5627138235143
226 => 1.5491546221378
227 => 1.5376646186787
228 => 1.49650885248
229 => 1.5012727444809
301 => 1.5340912362429
302 => 1.5804492888563
303 => 1.6202293207318
304 => 1.6062997400431
305 => 1.7125726079467
306 => 1.7231091287136
307 => 1.7216533222302
308 => 1.7456570845817
309 => 1.6980145045951
310 => 1.6776463786193
311 => 1.5401488878436
312 => 1.5787800743018
313 => 1.6349327725488
314 => 1.627500752374
315 => 1.5867211619411
316 => 1.6201983857557
317 => 1.609129768633
318 => 1.600399491071
319 => 1.6403945850301
320 => 1.5964183363142
321 => 1.6344940758278
322 => 1.5856615460585
323 => 1.6063633691943
324 => 1.5946120131479
325 => 1.602216580702
326 => 1.5577604341677
327 => 1.5817478917257
328 => 1.5567624770699
329 => 1.5567506307301
330 => 1.5561990763168
331 => 1.585594305857
401 => 1.586552883237
402 => 1.564829764193
403 => 1.5616991233599
404 => 1.5732747433553
405 => 1.5597227240004
406 => 1.5660636285611
407 => 1.5599147835399
408 => 1.5585305490112
409 => 1.5475007327779
410 => 1.5427487846735
411 => 1.5446121459679
412 => 1.5382515332416
413 => 1.5344190340007
414 => 1.5554366957552
415 => 1.5442078069298
416 => 1.5537157074977
417 => 1.5428802548078
418 => 1.5053198550027
419 => 1.4837184718807
420 => 1.4127703584997
421 => 1.4328911554437
422 => 1.446231264634
423 => 1.4418223586262
424 => 1.4512943947511
425 => 1.4518759008405
426 => 1.4487964453403
427 => 1.4452308303738
428 => 1.4434952861989
429 => 1.4564306105735
430 => 1.463940001756
501 => 1.4475701230589
502 => 1.4437348895191
503 => 1.4602857406876
504 => 1.4703817503393
505 => 1.5449250131495
506 => 1.539402607469
507 => 1.5532627620098
508 => 1.5517023213099
509 => 1.5662299713644
510 => 1.5899765393605
511 => 1.5416931269795
512 => 1.5500734578541
513 => 1.5480187942538
514 => 1.5704510726805
515 => 1.5705211038052
516 => 1.557071832313
517 => 1.5643629005784
518 => 1.5602932262926
519 => 1.5676476777765
520 => 1.5393288523743
521 => 1.5738181248859
522 => 1.5933713199604
523 => 1.593642816093
524 => 1.6029108753745
525 => 1.6123277603744
526 => 1.6304026510938
527 => 1.6118236614824
528 => 1.5784018677997
529 => 1.5808148133519
530 => 1.5612196279442
531 => 1.5615490265511
601 => 1.5597906709722
602 => 1.5650676284272
603 => 1.5404868477866
604 => 1.5462559078716
605 => 1.538179189969
606 => 1.5500559006467
607 => 1.5372785232481
608 => 1.5480178034328
609 => 1.5526525207477
610 => 1.5697547274181
611 => 1.5347525134175
612 => 1.4633806296287
613 => 1.4783838649015
614 => 1.4561929014543
615 => 1.4582467596083
616 => 1.4623958799485
617 => 1.4489472234182
618 => 1.4515128032683
619 => 1.4514211427024
620 => 1.450631261464
621 => 1.4471327464888
622 => 1.4420592076145
623 => 1.4622706249366
624 => 1.4657049385849
625 => 1.4733389924037
626 => 1.4960527583402
627 => 1.4937831174957
628 => 1.4974849958796
629 => 1.4894038161526
630 => 1.4586216223584
701 => 1.4602932435791
702 => 1.4394481001719
703 => 1.4728059352205
704 => 1.4649063595791
705 => 1.4598134517733
706 => 1.458423804693
707 => 1.481193873662
708 => 1.4880070351746
709 => 1.4837615301342
710 => 1.4750538754352
711 => 1.4917751466443
712 => 1.4962490534061
713 => 1.4972505961387
714 => 1.5268774827356
715 => 1.4989064099858
716 => 1.5056393252052
717 => 1.5581676077517
718 => 1.5105317038895
719 => 1.5357655045728
720 => 1.5345304413397
721 => 1.5474391999039
722 => 1.533471546359
723 => 1.5336446921647
724 => 1.5451067952548
725 => 1.529010338666
726 => 1.5250246296497
727 => 1.5195184011898
728 => 1.5315410495906
729 => 1.5387480835693
730 => 1.5968314844545
731 => 1.6343560103512
801 => 1.6327269717181
802 => 1.6476133353918
803 => 1.6409068922133
804 => 1.6192500181197
805 => 1.6562156614231
806 => 1.6445181851737
807 => 1.6454825109033
808 => 1.6454466186514
809 => 1.6532244177462
810 => 1.6477131342627
811 => 1.6368498287952
812 => 1.6440613979338
813 => 1.6654771800922
814 => 1.7319524250283
815 => 1.7691528527744
816 => 1.7297129125677
817 => 1.7569180552004
818 => 1.7406046638043
819 => 1.7376400353062
820 => 1.7547268753238
821 => 1.7718436235929
822 => 1.7707533607259
823 => 1.7583274804373
824 => 1.7513084159573
825 => 1.804459123759
826 => 1.8436196598686
827 => 1.8409491738415
828 => 1.8527358306765
829 => 1.8873418196919
830 => 1.8905057576311
831 => 1.8901071741731
901 => 1.882265023868
902 => 1.9163391142091
903 => 1.9447643198483
904 => 1.8804497926539
905 => 1.9049399226705
906 => 1.9159343310577
907 => 1.9320773844641
908 => 1.9593134214506
909 => 1.9888989816199
910 => 1.993082704217
911 => 1.9901141528248
912 => 1.9706016805906
913 => 2.002974553557
914 => 2.0219378233034
915 => 2.0332300164707
916 => 2.0618651395011
917 => 1.916002228781
918 => 1.8127532107162
919 => 1.7966293856115
920 => 1.829417818
921 => 1.8380638661381
922 => 1.8345786549748
923 => 1.7183624981529
924 => 1.7960175315973
925 => 1.8795678181629
926 => 1.8827773249391
927 => 1.9246043453479
928 => 1.9382249377405
929 => 1.9719011715625
930 => 1.9697947139679
1001 => 1.9779943409976
1002 => 1.9761093887412
1003 => 2.0384875205288
1004 => 2.1072998631327
1005 => 2.1049171105181
1006 => 2.0950245221181
1007 => 2.1097167028291
1008 => 2.1807384147751
1009 => 2.1741998736389
1010 => 2.1805515094011
1011 => 2.2642901103937
1012 => 2.3731622033612
1013 => 2.3225801855984
1014 => 2.4323286095602
1015 => 2.5014094249301
1016 => 2.6208775520229
1017 => 2.6059195541179
1018 => 2.6524276192975
1019 => 2.5791416160397
1020 => 2.4108621390149
1021 => 2.3842312676277
1022 => 2.4375469465459
1023 => 2.5686183406982
1024 => 2.4334190419005
1025 => 2.4607696839634
1026 => 2.4528926972093
1027 => 2.4524729660602
1028 => 2.4684923968508
1029 => 2.4452553769717
1030 => 2.3505835777239
1031 => 2.3939711054147
1101 => 2.3772170973331
1102 => 2.3958069183937
1103 => 2.4961285156325
1104 => 2.4517739461251
1105 => 2.4050500102216
1106 => 2.463652194716
1107 => 2.5382729134727
1108 => 2.5336032829992
1109 => 2.5245422481266
1110 => 2.5756188272833
1111 => 2.6599823720168
1112 => 2.6827854991581
1113 => 2.6996183014243
1114 => 2.7019392604643
1115 => 2.7258465810443
1116 => 2.5972908928653
1117 => 2.8013120715496
1118 => 2.836540893137
1119 => 2.8299193347636
1120 => 2.8690746873026
1121 => 2.8575541893102
1122 => 2.84086279523
1123 => 2.9029323575867
1124 => 2.8317746131001
1125 => 2.7307751533125
1126 => 2.6753648521301
1127 => 2.7483336065485
1128 => 2.7928930786132
1129 => 2.8223440551333
1130 => 2.8312559028335
1201 => 2.6072703049876
1202 => 2.4865544905593
1203 => 2.5639319435982
1204 => 2.6583377766122
1205 => 2.5967664636963
1206 => 2.5991799425927
1207 => 2.511395431031
1208 => 2.6661047580167
1209 => 2.6435649103852
1210 => 2.76050167977
1211 => 2.7325937812801
1212 => 2.8279511772542
1213 => 2.8028403791199
1214 => 2.9070738982497
1215 => 2.9486554710405
1216 => 3.0184774034112
1217 => 3.0698387010894
1218 => 3.0999990374712
1219 => 3.0981883240034
1220 => 3.2176986025678
1221 => 3.1472275666695
1222 => 3.0586993368333
1223 => 3.0570981404585
1224 => 3.1029481651454
1225 => 3.1990372385492
1226 => 3.2239517372436
1227 => 3.2378755431154
1228 => 3.2165507497316
1229 => 3.1400594909686
1230 => 3.1070309532542
1231 => 3.1351722243157
]
'min_raw' => 1.1603998931996
'max_raw' => 3.2378755431154
'avg_raw' => 2.1991377181575
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$1.16'
'max' => '$3.23'
'avg' => '$2.19'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.45938494224997
'max_diff' => 1.6729090482145
'year' => 2036
]
11 => [
'items' => [
101 => 3.1007578680145
102 => 3.1601667019534
103 => 3.2417477199936
104 => 3.2249015623746
105 => 3.2812157415779
106 => 3.3394949926288
107 => 3.4228369391166
108 => 3.4446256100718
109 => 3.4806414546119
110 => 3.5177135892323
111 => 3.5296201597503
112 => 3.552353497261
113 => 3.5522336813509
114 => 3.6207421240696
115 => 3.6963090579183
116 => 3.7248338260676
117 => 3.790424957562
118 => 3.6781024434651
119 => 3.7633003606757
120 => 3.8401510146418
121 => 3.7485264968028
122 => 3.8748095488691
123 => 3.8797128336173
124 => 3.9537466118671
125 => 3.8786991944552
126 => 3.8341362775558
127 => 3.9627877488936
128 => 4.0250381433906
129 => 4.0062878179576
130 => 3.8635969155947
131 => 3.7805446901188
201 => 3.5631809964705
202 => 3.8206576810097
203 => 3.9460670633509
204 => 3.8632721355911
205 => 3.9050290812598
206 => 4.1328414370931
207 => 4.2195776324367
208 => 4.201537110137
209 => 4.2045856614333
210 => 4.2513869380674
211 => 4.4589295725968
212 => 4.3345652151862
213 => 4.4296371065831
214 => 4.4800628949728
215 => 4.5269011774888
216 => 4.4118811590206
217 => 4.2622418049731
218 => 4.2148447401135
219 => 3.8550398117351
220 => 3.8363104026594
221 => 3.825797017786
222 => 3.7595116133072
223 => 3.7074294424873
224 => 3.6660117665642
225 => 3.5573194165771
226 => 3.5939998940004
227 => 3.4207669739774
228 => 3.5315952572104
301 => 3.2551113339986
302 => 3.4853753610135
303 => 3.3600531199299
304 => 3.4442036342867
305 => 3.4439100410695
306 => 3.2889622641938
307 => 3.1995916201695
308 => 3.2565420728993
309 => 3.3175974789582
310 => 3.3275035131762
311 => 3.4066634408407
312 => 3.4287552751149
313 => 3.361815985895
314 => 3.2493818192343
315 => 3.2754977117992
316 => 3.1990623824403
317 => 3.0651124077811
318 => 3.1613176181235
319 => 3.1941663067789
320 => 3.2086741590376
321 => 3.0769497432189
322 => 3.0355590718925
323 => 3.0135230257797
324 => 3.2323778512764
325 => 3.244367212654
326 => 3.1830279447216
327 => 3.4602872522041
328 => 3.3975349318125
329 => 3.4676446483817
330 => 3.2731279682828
331 => 3.280558767414
401 => 3.1884714537871
402 => 3.2400341961417
403 => 3.2035913117902
404 => 3.2358684361124
405 => 3.2552152113475
406 => 3.3472874143524
407 => 3.4864266776742
408 => 3.3335348975608
409 => 3.2669177595148
410 => 3.3082466572896
411 => 3.4183109583222
412 => 3.5850640084744
413 => 3.4863428465664
414 => 3.5301536218271
415 => 3.5397243272159
416 => 3.466930997281
417 => 3.5877480023805
418 => 3.6524948169289
419 => 3.7189116511901
420 => 3.7765795274217
421 => 3.6923833070487
422 => 3.7824853319019
423 => 3.7098790050187
424 => 3.6447436239003
425 => 3.6448424073868
426 => 3.6039820313352
427 => 3.5248099039964
428 => 3.5102093489968
429 => 3.5861632799517
430 => 3.6470711397134
501 => 3.6520878027724
502 => 3.6858095234953
503 => 3.7057656904578
504 => 3.9013632557836
505 => 3.9800342146256
506 => 4.0762315739325
507 => 4.1137058667687
508 => 4.2264900529279
509 => 4.1354076627206
510 => 4.1157014146641
511 => 3.8421238704679
512 => 3.8869221780039
513 => 3.9586485907629
514 => 3.8433066125958
515 => 3.9164645496791
516 => 3.9309074761563
517 => 3.8393873363138
518 => 3.8882721973555
519 => 3.75844849978
520 => 3.4892564795141
521 => 3.5880476900516
522 => 3.6607912737692
523 => 3.5569772105851
524 => 3.7430599006835
525 => 3.6343542346544
526 => 3.5998997573154
527 => 3.4654805573078
528 => 3.5289212454419
529 => 3.6147256845264
530 => 3.5617085170089
531 => 3.6717271001755
601 => 3.8275427548238
602 => 3.9385862693088
603 => 3.9471108115182
604 => 3.875717271042
605 => 3.9901258752826
606 => 3.9909592170618
607 => 3.8619058441055
608 => 3.782861371742
609 => 3.76490230131
610 => 3.8097675803322
611 => 3.8642423116527
612 => 3.9501337799816
613 => 4.0020361954213
614 => 4.1373701679737
615 => 4.1739876606173
616 => 4.2142191833026
617 => 4.2679809045522
618 => 4.3325356351348
619 => 4.191293559723
620 => 4.1969053706873
621 => 4.0653827056935
622 => 3.9248318758895
623 => 4.0314924358025
624 => 4.1709369294289
625 => 4.1389482085185
626 => 4.1353488239459
627 => 4.1414019904111
628 => 4.1172835394986
629 => 4.008196679893
630 => 3.9534139419189
701 => 4.0240976504725
702 => 4.0616628957988
703 => 4.1199233152662
704 => 4.1127414888386
705 => 4.2628140726743
706 => 4.3211277407935
707 => 4.3062086091061
708 => 4.3089540883855
709 => 4.4145281990915
710 => 4.5319483231685
711 => 4.6419277643166
712 => 4.7538035755793
713 => 4.6189329185148
714 => 4.5504539165232
715 => 4.6211067667808
716 => 4.5836173699232
717 => 4.7990425643441
718 => 4.8139581374044
719 => 5.0293677541318
720 => 5.2338171309061
721 => 5.1054061404452
722 => 5.2264919206918
723 => 5.357456064297
724 => 5.6101071454779
725 => 5.5250231497084
726 => 5.4598501423851
727 => 5.3982619653783
728 => 5.5264171848817
729 => 5.6912868274432
730 => 5.7267981693492
731 => 5.7843401096135
801 => 5.7238417953193
802 => 5.7967053512159
803 => 6.0539457214
804 => 5.9844371026527
805 => 5.8857236899635
806 => 6.0887902565961
807 => 6.1622792576591
808 => 6.6780635536081
809 => 7.3292625332304
810 => 7.0596618796637
811 => 6.8923120540362
812 => 6.9316432326496
813 => 7.169439055531
814 => 7.2458115265784
815 => 7.0382048231022
816 => 7.1115350204931
817 => 7.515591617783
818 => 7.7323550185413
819 => 7.4379612051028
820 => 6.6257403496538
821 => 5.8768356271977
822 => 6.0754788832122
823 => 6.0529589025981
824 => 6.487067309299
825 => 5.9827793450836
826 => 5.9912702610824
827 => 6.4343555699051
828 => 6.3161480059165
829 => 6.1246668911359
830 => 5.8782336512413
831 => 5.4226790149804
901 => 5.0191815695633
902 => 5.8105329799382
903 => 5.7764084681437
904 => 5.7269911180959
905 => 5.8369640831115
906 => 6.3709615848565
907 => 6.35865121406
908 => 6.2803389158593
909 => 6.3397381038316
910 => 6.1142539262934
911 => 6.1723663330243
912 => 5.8767169968634
913 => 6.0103628442151
914 => 6.1242560586621
915 => 6.1471218076802
916 => 6.198639507772
917 => 5.7584264010578
918 => 5.9560691619947
919 => 6.0721657674228
920 => 5.5476370804679
921 => 6.06179752177
922 => 5.7507632702557
923 => 5.645193573714
924 => 5.7873292623574
925 => 5.7319388462616
926 => 5.6843174191368
927 => 5.6577438445611
928 => 5.7621126073574
929 => 5.7572436798253
930 => 5.5864761267867
1001 => 5.3637168152239
1002 => 5.4384821520095
1003 => 5.4113192042265
1004 => 5.3128771773709
1005 => 5.3792152175359
1006 => 5.0870960615631
1007 => 4.5845202367443
1008 => 4.9165372209334
1009 => 4.9037549282071
1010 => 4.8973095165837
1011 => 5.1468111039264
1012 => 5.1228272832844
1013 => 5.0792964139689
1014 => 5.3120776988186
1015 => 5.2271093984984
1016 => 5.4889616790361
1017 => 5.6614345265419
1018 => 5.6176898335023
1019 => 5.7799013802151
1020 => 5.4402045943643
1021 => 5.5530382403544
1022 => 5.5762930984123
1023 => 5.3092052138973
1024 => 5.1267513329544
1025 => 5.114583739222
1026 => 4.7982338533605
1027 => 4.9672254089007
1028 => 5.1159309844303
1029 => 5.0447125537704
1030 => 5.0221669262136
1031 => 5.1373476478513
1101 => 5.1462981763788
1102 => 4.9422251774191
1103 => 4.9846584160542
1104 => 5.1616120751016
1105 => 4.9801996378625
1106 => 4.6277449058603
1107 => 4.5403312592559
1108 => 4.5286686674457
1109 => 4.2915959249906
1110 => 4.5461726571066
1111 => 4.4350430913057
1112 => 4.786100058134
1113 => 4.585578201438
1114 => 4.5769341049738
1115 => 4.5638672853548
1116 => 4.3598089825721
1117 => 4.4044847822999
1118 => 4.5529939449113
1119 => 4.6059836872065
1120 => 4.600456422953
1121 => 4.5522661689956
1122 => 4.5743274204833
1123 => 4.503260442792
1124 => 4.478165213838
1125 => 4.3989577682726
1126 => 4.2825447049068
1127 => 4.2987326553706
1128 => 4.0680879157079
1129 => 3.9424204202968
1130 => 3.907637313838
1201 => 3.8611238901952
1202 => 3.9128911288059
1203 => 4.0674345281394
1204 => 3.8810224003321
1205 => 3.5614318824968
1206 => 3.5806398171745
1207 => 3.6237943435081
1208 => 3.5433761691811
1209 => 3.4672671161663
1210 => 3.53343776284
1211 => 3.3980230473459
1212 => 3.6401585649242
1213 => 3.6336094777506
1214 => 3.7238626251438
1215 => 3.7802997703898
1216 => 3.6502304223405
1217 => 3.6175183330511
1218 => 3.6361526257919
1219 => 3.3281692751856
1220 => 3.6986938147722
1221 => 3.701898126377
1222 => 3.6744608650234
1223 => 3.8717537436916
1224 => 4.2881032548734
1225 => 4.1314558211465
1226 => 4.0707972001137
1227 => 3.9554851171892
1228 => 4.1091316211321
1229 => 4.0973339668882
1230 => 4.0439805002694
1231 => 4.0117121571854
]
'min_raw' => 3.0135230257797
'max_raw' => 7.7323550185413
'avg_raw' => 5.3729390221605
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$3.01'
'max' => '$7.73'
'avg' => '$5.37'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 1.85312313258
'max_diff' => 4.4944794754259
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.094591044303593
]
1 => [
'year' => 2028
'avg' => 0.16234569200133
]
2 => [
'year' => 2029
'avg' => 0.4434991705835
]
3 => [
'year' => 2030
'avg' => 0.34215894962639
]
4 => [
'year' => 2031
'avg' => 0.33604249182492
]
5 => [
'year' => 2032
'avg' => 0.58918824463338
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.094591044303593
'min' => '$0.094591'
'max_raw' => 0.58918824463338
'max' => '$0.589188'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.58918824463338
]
1 => [
'year' => 2033
'avg' => 1.5154527507098
]
2 => [
'year' => 2034
'avg' => 0.96056678265114
]
3 => [
'year' => 2035
'avg' => 1.1329907229253
]
4 => [
'year' => 2036
'avg' => 2.1991377181575
]
5 => [
'year' => 2037
'avg' => 5.3729390221605
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.58918824463338
'min' => '$0.589188'
'max_raw' => 5.3729390221605
'max' => '$5.37'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 5.3729390221605
]
]
]
]
'prediction_2025_max_price' => '$0.161733'
'last_price' => 0.156821
'sma_50day_nextmonth' => '$0.141021'
'sma_200day_nextmonth' => '—'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'decrease'
'sma_200day_direction_label' => 'disminuir'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.167149'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.169232'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.170714'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.133711'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.169284'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '—'
'daily_sma100_action' => '—'
'daily_sma200' => '—'
'daily_sma200_action' => '—'
'daily_ema3' => '$0.164359'
'daily_ema3_action' => 'SELL'
'daily_ema5' => '$0.166234'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.161233'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.151494'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.192384'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.171092'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.085546'
'daily_ema200_action' => 'BUY'
'weekly_sma21' => '—'
'weekly_sma21_action' => '—'
'weekly_sma50' => '—'
'weekly_sma50_action' => '—'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.160887'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.163961'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.207984'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.139286'
'weekly_ema21_action' => 'BUY'
'weekly_ema50' => '$0.05850019'
'weekly_ema50_action' => 'BUY'
'weekly_ema100' => '$0.02925'
'weekly_ema100_action' => 'BUY'
'weekly_ema200' => '$0.014625'
'weekly_ema200_action' => 'BUY'
'rsi_14' => '51.05'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 73.56
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => -0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.172163'
'vwma_10_action' => 'SELL'
'hma_9' => '0.167516'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 67.14
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => 37.19
'cci_20_action' => 'NEUTRAL'
'adx_14' => 24.73
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.041983'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0.01
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -32.86
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 50.75
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '—'
'ichimoku_cloud_action' => '—'
'sell_signals' => 19
'buy_signals' => 8
'sell_pct' => 70.37
'buy_pct' => 29.63
'overall_action' => 'bearish'
'overall_action_label' => 'Bajista'
'overall_action_dir' => -1
'last_updated' => 1767693097
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de Apro para 2026
La previsión del precio de Apro para 2026 sugiere que el precio medio podría oscilar entre $0.054181 en el extremo inferior y $0.161733 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, Apro podría potencialmente ganar 3.13% para 2026 si AT alcanza el objetivo de precio previsto.
Predicción de precio de Apro 2027-2032
La predicción del precio de AT para 2027-2032 está actualmente dentro de un rango de precios de $0.094591 en el extremo inferior y $0.589188 en el extremo superior. Considerando la volatilidad de precios en el mercado, si Apro alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de Apro | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.052159 | $0.094591 | $0.137022 |
| 2028 | $0.094132 | $0.162345 | $0.230559 |
| 2029 | $0.206781 | $0.443499 | $0.680216 |
| 2030 | $0.175858 | $0.342158 | $0.508459 |
| 2031 | $0.207919 | $0.336042 | $0.464165 |
| 2032 | $0.317373 | $0.589188 | $0.8610031 |
Predicción de precio de Apro 2032-2037
La predicción de precio de Apro para 2032-2037 se estima actualmente entre $0.589188 en el extremo inferior y $5.37 en el extremo superior. Comparado con el precio actual, Apro podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de Apro | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.317373 | $0.589188 | $0.8610031 |
| 2033 | $0.7375064 | $1.51 | $2.29 |
| 2034 | $0.592919 | $0.960566 | $1.32 |
| 2035 | $0.701014 | $1.13 | $1.56 |
| 2036 | $1.16 | $2.19 | $3.23 |
| 2037 | $3.01 | $5.37 | $7.73 |
Apro Histograma de precios potenciales
Pronóstico de precio de Apro basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para Apro es Bajista, con 8 indicadores técnicos mostrando señales alcistas y 19 indicando señales bajistas. La predicción de precio de AT se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de Apro
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de Apro disminuir durante el próximo mes, alcanzando — para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para Apro alcance $0.141021 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 51.05, lo que sugiere que el mercado de AT está en un estado NEUTRAL.
Promedios Móviles y Osciladores Populares de AT para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.167149 | SELL |
| SMA 5 | $0.169232 | SELL |
| SMA 10 | $0.170714 | SELL |
| SMA 21 | $0.133711 | BUY |
| SMA 50 | $0.169284 | SELL |
| SMA 100 | — | — |
| SMA 200 | — | — |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.164359 | SELL |
| EMA 5 | $0.166234 | SELL |
| EMA 10 | $0.161233 | SELL |
| EMA 21 | $0.151494 | BUY |
| EMA 50 | $0.192384 | SELL |
| EMA 100 | $0.171092 | SELL |
| EMA 200 | $0.085546 | BUY |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | — | — |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.139286 | BUY |
| EMA 50 | $0.05850019 | BUY |
| EMA 100 | $0.02925 | BUY |
| EMA 200 | $0.014625 | BUY |
Osciladores de Apro
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 51.05 | NEUTRAL |
| Stoch RSI (14) | 73.56 | NEUTRAL |
| Estocástico Rápido (14) | 67.14 | NEUTRAL |
| Índice de Canal de Materias Primas (20) | 37.19 | NEUTRAL |
| Índice Direccional Medio (14) | 24.73 | NEUTRAL |
| Oscilador Asombroso (5, 34) | 0.041983 | BUY |
| Momentum (10) | -0 | SELL |
| MACD (12, 26) | 0.01 | NEUTRAL |
| Rango Percentil de Williams (14) | -32.86 | NEUTRAL |
| Oscilador Ultimate (7, 14, 28) | 50.75 | NEUTRAL |
| VWMA (10) | 0.172163 | SELL |
| Promedio Móvil de Hull (9) | 0.167516 | SELL |
| Nube Ichimoku B/L (9, 26, 52, 26) | — | — |
Predicción de precios de Apro basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de Apro
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de Apro por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.220359 | $0.309642 | $0.435098 | $0.611386 | $0.85910043 | $1.20 |
| Amazon.com acción | $0.327216 | $0.682756 | $1.42 | $2.97 | $6.20 | $12.94 |
| Apple acción | $0.222438 | $0.315512 | $0.447529 | $0.634787 | $0.900397 | $1.27 |
| Netflix acción | $0.247438 | $0.390419 | $0.616021 | $0.971985 | $1.53 | $2.41 |
| Google acción | $0.203082 | $0.26299 | $0.340572 | $0.441039 | $0.571143 | $0.739628 |
| Tesla acción | $0.3555013 | $0.805894 | $1.82 | $4.14 | $9.38 | $21.28 |
| Kodak acción | $0.117599 | $0.088186 | $0.06613 | $0.049591 | $0.037187 | $0.027887 |
| Nokia acción | $0.103887 | $0.068821 | $0.045591 | $0.0302021 | $0.0200076 | $0.013254 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de Apro
Podría preguntarse cosas como: "¿Debo invertir en Apro ahora?", "¿Debería comprar AT hoy?", "¿Será Apro una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de Apro regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como Apro, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de Apro a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de Apro es de $0.1568 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Pronóstico a corto plazo de Apro
basado en el historial de precios de las últimas 4 horas
Pronóstico a largo plazo de Apro
basado en el historial de precios del último mes
Predicción de precios de Apro basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Apro ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.160897 | $0.165079 | $0.16937 | $0.173772 |
| Si Apro ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.164973 | $0.173549 | $0.182572 | $0.192063 |
| Si Apro ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.1772024 | $0.200232 | $0.226256 | $0.255661 |
| Si Apro ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.197583 | $0.248942 | $0.31365 | $0.395178 |
| Si Apro ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.238346 | $0.362254 | $0.550577 | $0.8368033 |
| Si Apro ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.360635 | $0.829338 | $1.90 | $4.38 |
| Si Apro ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.564449 | $2.03 | $7.31 | $26.32 |
Cuadro de preguntas
¿Es AT una buena inversión?
La decisión de adquirir Apro depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de Apro ha experimentado una caída de -1.7787% durante las últimas 24 horas, y Apro ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en Apro dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede Apro subir?
Parece que el valor medio de Apro podría potencialmente aumentar hasta $0.161733 para el final de este año. Mirando las perspectivas de Apro en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.508459. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de Apro la próxima semana?
Basado en nuestro nuevo pronóstico experimental de Apro, el precio de Apro aumentará en un 0.86% durante la próxima semana y alcanzará $0.158163 para el 13 de enero de 2026.
¿Cuál será el precio de Apro el próximo mes?
Basado en nuestro nuevo pronóstico experimental de Apro, el precio de Apro disminuirá en un -11.62% durante el próximo mes y alcanzará $0.138601 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de Apro este año en 2026?
Según nuestra predicción más reciente sobre el valor de Apro en 2026, se anticipa que AT fluctúe dentro del rango de $0.054181 y $0.161733. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de Apro no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará Apro en 5 años?
El futuro de Apro parece estar en una tendencia alcista, con un precio máximo de $0.508459 proyectada después de un período de cinco años. Basado en el pronóstico de Apro para 2030, el valor de Apro podría potencialmente alcanzar su punto más alto de aproximadamente $0.508459, mientras que su punto más bajo se anticipa que esté alrededor de $0.175858.
¿Cuánto será Apro en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de Apro, se espera que el valor de AT en 2026 crezca en un 3.13% hasta $0.161733 si ocurre lo mejor. El precio estará entre $0.161733 y $0.054181 durante 2026.
¿Cuánto será Apro en 2027?
Según nuestra última simulación experimental para la predicción de precios de Apro, el valor de AT podría disminuir en un -12.62% hasta $0.137022 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.137022 y $0.052159 a lo largo del año.
¿Cuánto será Apro en 2028?
Nuestro nuevo modelo experimental de predicción de precios de Apro sugiere que el valor de AT en 2028 podría aumentar en un 47.02% , alcanzando $0.230559 en el mejor escenario. Se espera que el precio oscile entre $0.230559 y $0.094132 durante el año.
¿Cuánto será Apro en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de Apro podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.680216 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.680216 y $0.206781.
¿Cuánto será Apro en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de Apro, se espera que el valor de AT en 2030 aumente en un 224.23% , alcanzando $0.508459 en el mejor escenario. Se pronostica que el precio oscile entre $0.508459 y $0.175858 durante el transcurso de 2030.
¿Cuánto será Apro en 2031?
Nuestra simulación experimental indica que el precio de Apro podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.464165 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.464165 y $0.207919 durante el año.
¿Cuánto será Apro en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de Apro, AT podría experimentar un 449.04% aumento en valor, alcanzando $0.8610031 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.8610031 y $0.317373 a lo largo del año.
¿Cuánto será Apro en 2033?
Según nuestra predicción experimental de precios de Apro, se anticipa que el valor de AT aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $2.29. A lo largo del año, el precio de AT podría oscilar entre $2.29 y $0.7375064.
¿Cuánto será Apro en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de Apro sugieren que AT podría aumentar en un 746.96% en 2034, alcanzando potencialmente $1.32 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $1.32 y $0.592919.
¿Cuánto será Apro en 2035?
Basado en nuestra predicción experimental para el precio de Apro, AT podría crecer en un 897.93% , con el valor potencialmente alcanzando $1.56 en 2035. El rango de precios esperado para el año está entre $1.56 y $0.701014.
¿Cuánto será Apro en 2036?
Nuestra reciente simulación de predicción de precios de Apro sugiere que el valor de AT podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $3.23 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $3.23 y $1.16.
¿Cuánto será Apro en 2037?
Según la simulación experimental, el valor de Apro podría aumentar en un 4830.69% en 2037, con un máximo de $7.73 bajo condiciones favorables. Se espera que el precio caiga entre $7.73 y $3.01 durante el transcurso del año.
Predicciones relacionadas
¿Cómo leer y predecir los movimientos de precio de Apro?
Los traders de Apro utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de Apro
Las medias móviles son herramientas populares para la predicción de precios de Apro. Una media móvil simple (SMA) calcula el precio de cierre promedio de AT durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de AT por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de AT.
¿Cómo leer gráficos de Apro y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de Apro en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de AT dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de Apro?
La acción del precio de Apro está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de AT. La capitalización de mercado de Apro puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de AT, grandes poseedores de Apro, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de Apro.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


