Predicción del precio de Apro - Pronóstico de AT
Predicción de precio de Apro hasta $0.164655 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.05516 | $0.164655 |
| 2027 | $0.0531015 | $0.139498 |
| 2028 | $0.095832 | $0.234724 |
| 2029 | $0.210516 | $0.6925052 |
| 2030 | $0.179035 | $0.517644 |
| 2031 | $0.211675 | $0.47255 |
| 2032 | $0.3231067 | $0.876557 |
| 2033 | $0.750829 | $2.33 |
| 2034 | $0.603631 | $1.35 |
| 2035 | $0.713678 | $1.59 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en Apro hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,954.43, equivalente a un ROI del 39.54% en los próximos 90 días.
Predicción del precio a largo plazo de Apro para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'Apro'
'name_with_ticker' => 'Apro <small>AT</small>'
'name_lang' => 'Apro'
'name_lang_with_ticker' => 'Apro <small>AT</small>'
'name_with_lang' => 'Apro'
'name_with_lang_with_ticker' => 'Apro <small>AT</small>'
'image' => '/uploads/coins/apro.png?1762828426'
'price_for_sd' => 0.1596
'ticker' => 'AT'
'marketcap' => '$36.53M'
'low24h' => '$0.1524'
'high24h' => '$0.1624'
'volume24h' => '$12.38M'
'current_supply' => '230M'
'max_supply' => '1B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.1596'
'change_24h_pct' => '0.2471%'
'ath_price' => '$0.8593'
'ath_days' => 74
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '24 oct. 2025'
'ath_pct' => '-81.48%'
'fdv' => '$158.81M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$7.87'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.1610202'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.141105'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.05516'
'current_year_max_price_prediction' => '$0.164655'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.179035'
'grand_prediction_max_price' => '$0.517644'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.162679359322
107 => 0.1632867449971
108 => 0.16465521593698
109 => 0.15296178158684
110 => 0.15821179030886
111 => 0.16129567857375
112 => 0.14736255920015
113 => 0.16102026560213
114 => 0.15275822491035
115 => 0.14995396420787
116 => 0.1537295318105
117 => 0.1522581894439
118 => 0.15099321567721
119 => 0.15028733858039
120 => 0.15305969873358
121 => 0.15293036481874
122 => 0.14839424551622
123 => 0.14247706280195
124 => 0.14446306354576
125 => 0.14374153085668
126 => 0.14112660331188
127 => 0.14288874874952
128 => 0.13512915204354
129 => 0.12177916921965
130 => 0.13059857679415
131 => 0.1302590391962
201 => 0.13008782894251
202 => 0.13671536998422
203 => 0.13607828483645
204 => 0.13492196905488
205 => 0.14110536666575
206 => 0.13884834335935
207 => 0.14580395736811
208 => 0.15038537461519
209 => 0.14922337900801
210 => 0.1535322240728
211 => 0.14450881699174
212 => 0.14750603086781
213 => 0.14812375249371
214 => 0.14102906449906
215 => 0.13618251984559
216 => 0.13585931057185
217 => 0.12745607003773
218 => 0.13194501330247
219 => 0.13589509761035
220 => 0.1340033137658
221 => 0.13340443151605
222 => 0.13646399104831
223 => 0.13670174502732
224 => 0.13128092910981
225 => 0.13240808839398
226 => 0.13710852998358
227 => 0.13228964932601
228 => 0.12292735136804
301 => 0.12060537203056
302 => 0.12029557718437
303 => 0.11399818506264
304 => 0.12076053779287
305 => 0.11780858960634
306 => 0.12713375855782
307 => 0.12180727206462
308 => 0.12157765787781
309 => 0.12123056235737
310 => 0.1158101368162
311 => 0.11699686552371
312 => 0.12094173249133
313 => 0.12234930546748
314 => 0.12220248407416
315 => 0.12092240049107
316 => 0.12150841620032
317 => 0.11962065541942
318 => 0.11895404779734
319 => 0.11685005077718
320 => 0.11375775640156
321 => 0.11418775890063
322 => 0.10806111459969
323 => 0.10472299361891
324 => 0.10379904572716
325 => 0.10256350399187
326 => 0.10393860345381
327 => 0.10804375858615
328 => 0.1030920705393
329 => 0.094602748703503
330 => 0.095112971410935
331 => 0.096259290348053
401 => 0.094123132592392
402 => 0.092101438550789
403 => 0.093859137494741
404 => 0.09026209992016
405 => 0.096693975153891
406 => 0.096520010953941
407 => 0.098917416296579
408 => 0.10041656305704
409 => 0.096961515128704
410 => 0.09609257991817
411 => 0.096587564904993
412 => 0.088406565665484
413 => 0.098248854122345
414 => 0.09833397064163
415 => 0.097605151327775
416 => 0.10284586608449
417 => 0.11390540884108
418 => 0.10974436398697
419 => 0.10813308165122
420 => 0.10507003275311
421 => 0.10915136354399
422 => 0.10883798101793
423 => 0.10742074638829
424 => 0.10656359846224
425 => 0.10814291979757
426 => 0.10636790307121
427 => 0.10604906129296
428 => 0.10411722702003
429 => 0.10342765007745
430 => 0.10291711476201
501 => 0.10235506554388
502 => 0.10359480606514
503 => 0.10078539094252
504 => 0.097397511715006
505 => 0.097115846214599
506 => 0.097893549425506
507 => 0.097549473647874
508 => 0.097114198912151
509 => 0.096283140901635
510 => 0.096036583742659
511 => 0.096837774896801
512 => 0.095933276796121
513 => 0.097267913014235
514 => 0.096904965811698
515 => 0.094877572242167
516 => 0.092350689217295
517 => 0.092328194658057
518 => 0.091783781855267
519 => 0.091090390297901
520 => 0.090897504629291
521 => 0.093711108992302
522 => 0.099535185819642
523 => 0.098391780180088
524 => 0.099218007935589
525 => 0.10328223074499
526 => 0.10457412496065
527 => 0.10365716904656
528 => 0.10240198323598
529 => 0.10245720504147
530 => 0.10674655492681
531 => 0.10701407641773
601 => 0.1076900169196
602 => 0.10855879148525
603 => 0.10380512511178
604 => 0.10223330778277
605 => 0.10148849353118
606 => 0.099194753915679
607 => 0.10166835544063
608 => 0.10022709376222
609 => 0.10042156920315
610 => 0.10029491681712
611 => 0.10036407758409
612 => 0.096692177313681
613 => 0.09803002478282
614 => 0.095805593885593
615 => 0.092827330618293
616 => 0.092817346435507
617 => 0.093546272150876
618 => 0.093112678612508
619 => 0.09194588954947
620 => 0.092111626428786
621 => 0.090659596969442
622 => 0.092287929094992
623 => 0.0923346238339
624 => 0.091707627269713
625 => 0.094216297575655
626 => 0.09524410184688
627 => 0.094831399276764
628 => 0.09521514553438
629 => 0.098439293846579
630 => 0.09896497070092
701 => 0.099198441635355
702 => 0.098885621512184
703 => 0.095274077046874
704 => 0.095434264401384
705 => 0.094258915879973
706 => 0.093265870234558
707 => 0.093305586852536
708 => 0.093816141401177
709 => 0.096045763058722
710 => 0.10073787039365
711 => 0.10091593243713
712 => 0.10113174882825
713 => 0.10025391510491
714 => 0.099989152054211
715 => 0.10033844285922
716 => 0.10210055167494
717 => 0.10663317395684
718 => 0.10503104251875
719 => 0.10372848472092
720 => 0.10487117907668
721 => 0.10469527023734
722 => 0.10321042260497
723 => 0.10316874787737
724 => 0.10031885053633
725 => 0.099265308378373
726 => 0.098384889694919
727 => 0.0974234954765
728 => 0.096853548757595
729 => 0.097729245953984
730 => 0.097929528263743
731 => 0.09601480103927
801 => 0.095753830793735
802 => 0.097317438377497
803 => 0.096629352977049
804 => 0.097337065875107
805 => 0.097501261338105
806 => 0.09747482208682
807 => 0.096756381902648
808 => 0.097214294251844
809 => 0.096131195035753
810 => 0.094953487314495
811 => 0.094202183162117
812 => 0.093546570643132
813 => 0.093910342573088
814 => 0.092613562064925
815 => 0.092198695881329
816 => 0.09705916385129
817 => 0.10064964379954
818 => 0.1005974367991
819 => 0.10027964011051
820 => 0.099807458693975
821 => 0.10206600866328
822 => 0.10127917501511
823 => 0.10185166223631
824 => 0.10199738426131
825 => 0.10243844094235
826 => 0.10259608079571
827 => 0.10211958367092
828 => 0.1005204011209
829 => 0.096535390251953
830 => 0.094680356935128
831 => 0.094068165042552
901 => 0.094090417055129
902 => 0.093476607210891
903 => 0.093657401719047
904 => 0.093413734259128
905 => 0.092952287039533
906 => 0.093881849507602
907 => 0.093988972922574
908 => 0.093772001935082
909 => 0.093823106457101
910 => 0.09202667935019
911 => 0.092163257801494
912 => 0.091402771629084
913 => 0.091260189639555
914 => 0.089337746818808
915 => 0.085931860699312
916 => 0.087819052226878
917 => 0.085539590240864
918 => 0.084676323447275
919 => 0.088762894182594
920 => 0.088352715824596
921 => 0.087650668775951
922 => 0.086612194871579
923 => 0.086227014798822
924 => 0.083886782609948
925 => 0.083748509207576
926 => 0.084908391471967
927 => 0.084373145716062
928 => 0.083621457961353
929 => 0.080898921111162
930 => 0.077837888290573
1001 => 0.077930281630461
1002 => 0.078903939218149
1003 => 0.08173497996997
1004 => 0.080628843370731
1005 => 0.079826328576529
1006 => 0.079676041679081
1007 => 0.081557196847574
1008 => 0.084219425525184
1009 => 0.085468483656709
1010 => 0.084230704982827
1011 => 0.082808811489008
1012 => 0.082895355557557
1013 => 0.083471094473185
1014 => 0.083531596492708
1015 => 0.082606090001245
1016 => 0.082866614657406
1017 => 0.082470853881823
1018 => 0.080042070732585
1019 => 0.07999814174717
1020 => 0.079402079192928
1021 => 0.079384030655676
1022 => 0.078369979556138
1023 => 0.078228106797509
1024 => 0.076214646790874
1025 => 0.07753991226456
1026 => 0.076650993764372
1027 => 0.075311183909913
1028 => 0.075080200185999
1029 => 0.075073256536337
1030 => 0.076448941680865
1031 => 0.077523836582683
1101 => 0.076666456882262
1102 => 0.076471248144083
1103 => 0.078555566760126
1104 => 0.078290318217249
1105 => 0.078060614689787
1106 => 0.083981052146683
1107 => 0.079294563922054
1108 => 0.077250987560719
1109 => 0.074721673748942
1110 => 0.075545231079964
1111 => 0.075718766710185
1112 => 0.069636222935944
1113 => 0.067168535684266
1114 => 0.066321718412323
1115 => 0.065834363100081
1116 => 0.066056457035693
1117 => 0.063835249078338
1118 => 0.065327937561069
1119 => 0.063404559224034
1120 => 0.063082098586616
1121 => 0.066521337314088
1122 => 0.066999887291275
1123 => 0.064958244414773
1124 => 0.066269309653445
1125 => 0.065793899172732
1126 => 0.063437530025192
1127 => 0.063347534056034
1128 => 0.062165190848179
1129 => 0.060315052674644
1130 => 0.059469489883504
1201 => 0.059029113440366
1202 => 0.05921082134357
1203 => 0.059118944267356
1204 => 0.058519384197012
1205 => 0.059153310348769
1206 => 0.0575338909874
1207 => 0.056889025149155
1208 => 0.056597754210793
1209 => 0.055160426317278
1210 => 0.057447854178476
1211 => 0.057898506283389
1212 => 0.058350046312162
1213 => 0.062280393983161
1214 => 0.062084044920565
1215 => 0.06385894482056
1216 => 0.063789975474278
1217 => 0.063283745271327
1218 => 0.061148043315905
1219 => 0.061999296050109
1220 => 0.059379272448275
1221 => 0.061342372275057
1222 => 0.060446495495122
1223 => 0.06103947543459
1224 => 0.059973244036581
1225 => 0.060563340515855
1226 => 0.058005372615555
1227 => 0.055616778181835
1228 => 0.056578018309382
1229 => 0.057622996259168
1230 => 0.059888774709735
1231 => 0.058539295756844
]
'min_raw' => 0.055160426317278
'max_raw' => 0.16465521593698
'avg_raw' => 0.10990782112713
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.05516'
'max' => '$0.164655'
'avg' => '$0.1099078'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.10449357368272
'max_diff' => 0.0050012159369807
'year' => 2026
]
1 => [
'items' => [
101 => 0.059024619417752
102 => 0.057398866395909
103 => 0.054044473538453
104 => 0.05406345903774
105 => 0.053547458776042
106 => 0.053101559212662
107 => 0.058694299648013
108 => 0.057998753966734
109 => 0.056890492954385
110 => 0.058373944359956
111 => 0.058766192457129
112 => 0.05877735920902
113 => 0.059859647061102
114 => 0.060437264281768
115 => 0.060539071820447
116 => 0.062242075140075
117 => 0.062812899389657
118 => 0.065164043687615
119 => 0.060388257496182
120 => 0.060289903322363
121 => 0.058394819563412
122 => 0.057192927483396
123 => 0.058477114142394
124 => 0.059614728213306
125 => 0.058430168403682
126 => 0.058584846907396
127 => 0.056994672145069
128 => 0.057563084797924
129 => 0.058052678348016
130 => 0.057782353566634
131 => 0.057377664285038
201 => 0.059521456832671
202 => 0.059400495655542
203 => 0.061396844561476
204 => 0.062953141293931
205 => 0.065742303259809
206 => 0.062831667346114
207 => 0.062725592204689
208 => 0.063762493727106
209 => 0.062812740645437
210 => 0.06341295180869
211 => 0.06564559996218
212 => 0.065692772299503
213 => 0.064902574871229
214 => 0.064854491285905
215 => 0.065006257345818
216 => 0.065895155899053
217 => 0.065584547431459
218 => 0.065943991413803
219 => 0.066393481617725
220 => 0.068252763681046
221 => 0.068701030291943
222 => 0.067611974827054
223 => 0.067710304341896
224 => 0.067302967702787
225 => 0.06690948561332
226 => 0.067793975886997
227 => 0.06941039924684
228 => 0.069400343561011
301 => 0.069775322361715
302 => 0.070008931048061
303 => 0.069006111554253
304 => 0.068353312938479
305 => 0.068603637466422
306 => 0.069003911837962
307 => 0.068473833882495
308 => 0.065201947185358
309 => 0.066194428600338
310 => 0.066029231163023
311 => 0.065793969923593
312 => 0.066791917660987
313 => 0.066695663167206
314 => 0.063812467380253
315 => 0.063997040220028
316 => 0.063823691865964
317 => 0.064383815861681
318 => 0.062782492111498
319 => 0.063275048511974
320 => 0.063583975268923
321 => 0.063765935502054
322 => 0.06442330063542
323 => 0.0643461664243
324 => 0.064418505864556
325 => 0.065393204819377
326 => 0.070322897656575
327 => 0.070591209960949
328 => 0.069269942043594
329 => 0.06979776251572
330 => 0.068784462630887
331 => 0.069464697632095
401 => 0.069930097143825
402 => 0.067827046241493
403 => 0.067702517215745
404 => 0.066685035081835
405 => 0.067231772347464
406 => 0.066361874046048
407 => 0.066575316661465
408 => 0.065978512501167
409 => 0.06705264116718
410 => 0.068253683918503
411 => 0.068557114748103
412 => 0.067758918870612
413 => 0.067180972451636
414 => 0.066166288927302
415 => 0.067853730241967
416 => 0.068347189506218
417 => 0.067851138310524
418 => 0.067736192409549
419 => 0.067518370134905
420 => 0.067782404434828
421 => 0.068344502021089
422 => 0.068079427179721
423 => 0.068254513782462
424 => 0.067587264201333
425 => 0.069006443529233
426 => 0.071260441846043
427 => 0.071267688819197
428 => 0.071002612548977
429 => 0.07089414905035
430 => 0.07116613338977
501 => 0.071313673736523
502 => 0.072193221216807
503 => 0.073137010705869
504 => 0.077541264443708
505 => 0.076304567618029
506 => 0.080212283544467
507 => 0.083302779488873
508 => 0.084229484091592
509 => 0.083376959461911
510 => 0.080460518756252
511 => 0.080317424261617
512 => 0.084675817965378
513 => 0.083444372116988
514 => 0.08329789555175
515 => 0.081739632373682
516 => 0.082660758906569
517 => 0.082459295021716
518 => 0.082141274423524
519 => 0.083898719682043
520 => 0.087188500317769
521 => 0.086675757154324
522 => 0.086293018168283
523 => 0.084615967345094
524 => 0.085625926523516
525 => 0.085266299404574
526 => 0.086811485732558
527 => 0.085896151581928
528 => 0.083435042703526
529 => 0.083826982404332
530 => 0.083767741507028
531 => 0.084986914975683
601 => 0.084620949362139
602 => 0.083696280847446
603 => 0.087177256205201
604 => 0.086951221027671
605 => 0.087271687230573
606 => 0.087412766363837
607 => 0.089531574722437
608 => 0.09039958271265
609 => 0.090596635723047
610 => 0.091421176179602
611 => 0.090576120405349
612 => 0.093956946016918
613 => 0.096204997771968
614 => 0.098816225569144
615 => 0.10263193121268
616 => 0.1040666718319
617 => 0.10380749878091
618 => 0.10670052325179
619 => 0.11189922391765
620 => 0.10485830482202
621 => 0.11227240972641
622 => 0.10992518971364
623 => 0.10435997328804
624 => 0.10400163895982
625 => 0.10777046813673
626 => 0.11612936851474
627 => 0.11403555877591
628 => 0.11613279323738
629 => 0.11368625783691
630 => 0.11356476673325
701 => 0.11601397047375
702 => 0.12173666851257
703 => 0.11901802918646
704 => 0.11512019307476
705 => 0.11799829460259
706 => 0.11550501670346
707 => 0.10988696377218
708 => 0.11403395767906
709 => 0.11126098095312
710 => 0.1120702829813
711 => 0.11789866761008
712 => 0.11719738095155
713 => 0.11810491082508
714 => 0.11650314435249
715 => 0.1150068418917
716 => 0.11221388223176
717 => 0.1113870245677
718 => 0.11161553827883
719 => 0.11138691132766
720 => 0.10982427606654
721 => 0.10948682513069
722 => 0.10892439212019
723 => 0.1090987136281
724 => 0.10804117502279
725 => 0.11003696886963
726 => 0.11040740579448
727 => 0.11185977812082
728 => 0.1120105682338
729 => 0.11605540448942
730 => 0.11382757665054
731 => 0.11532219590626
801 => 0.11518850309213
802 => 0.10448058840319
803 => 0.1059560445706
804 => 0.10825139134343
805 => 0.10721734073354
806 => 0.10575543510173
807 => 0.10457486792162
808 => 0.10278618792457
809 => 0.10530372067186
810 => 0.1086140085248
811 => 0.11209452259656
812 => 0.11627613220146
813 => 0.11534284561695
814 => 0.11201635031366
815 => 0.11216557446296
816 => 0.11308801943639
817 => 0.11189336938283
818 => 0.1115410437597
819 => 0.1130396153061
820 => 0.11304993514474
821 => 0.11167534587984
822 => 0.11014774145909
823 => 0.11014134074079
824 => 0.10986951828902
825 => 0.11373461444722
826 => 0.11586002652893
827 => 0.11610370159882
828 => 0.11584362525522
829 => 0.11594371831781
830 => 0.11470698785773
831 => 0.11753378694846
901 => 0.12012793733557
902 => 0.11943264961589
903 => 0.11839031448311
904 => 0.11756004434418
905 => 0.11923706435752
906 => 0.1191623892962
907 => 0.12010527969503
908 => 0.12006250474014
909 => 0.11974544616292
910 => 0.11943266093905
911 => 0.12067281899605
912 => 0.12031567339196
913 => 0.1199579730421
914 => 0.11924055022928
915 => 0.11933805990468
916 => 0.11829590474575
917 => 0.11781375608346
918 => 0.11056339703895
919 => 0.10862586418994
920 => 0.10923545146635
921 => 0.10943614342568
922 => 0.10859292664677
923 => 0.1098018829031
924 => 0.10961346835116
925 => 0.11034647915396
926 => 0.109888525828
927 => 0.10990732039224
928 => 0.11125406347794
929 => 0.11164502872518
930 => 0.11144618064496
1001 => 0.11158544702423
1002 => 0.11479478195392
1003 => 0.11433851715567
1004 => 0.1140961355753
1005 => 0.11416327692953
1006 => 0.11498333081298
1007 => 0.11521290112706
1008 => 0.11424019557467
1009 => 0.11469892913632
1010 => 0.11665215841989
1011 => 0.11733567812593
1012 => 0.11951714491955
1013 => 0.11859041905314
1014 => 0.1202914644887
1015 => 0.12551989822846
1016 => 0.12969673287989
1017 => 0.12585554311944
1018 => 0.1335257680401
1019 => 0.13949813836924
1020 => 0.1392689088485
1021 => 0.1382274879382
1022 => 0.13142810310215
1023 => 0.1251712078029
1024 => 0.13040536640253
1025 => 0.13041870934922
1026 => 0.12996909048357
1027 => 0.12717654632416
1028 => 0.12987191600001
1029 => 0.13008586465673
1030 => 0.12996611030251
1031 => 0.12782507324296
1101 => 0.12455610538282
1102 => 0.12519485387789
1103 => 0.12624113694292
1104 => 0.12426030482329
1105 => 0.12362730893822
1106 => 0.12480416872097
1107 => 0.12859625614944
1108 => 0.12787938398715
1109 => 0.12786066355789
1110 => 0.13092774666925
1111 => 0.12873237707948
1112 => 0.12520291054196
1113 => 0.1243116736933
1114 => 0.12114838328961
1115 => 0.12333327923869
1116 => 0.1234119097542
1117 => 0.12221526457199
1118 => 0.12530001170341
1119 => 0.12527158521554
1120 => 0.12820009351281
1121 => 0.1337983014797
1122 => 0.13214263591281
1123 => 0.13021727699441
1124 => 0.13042661689325
1125 => 0.13272255888865
1126 => 0.13133437994697
1127 => 0.13183357877313
1128 => 0.13272180329144
1129 => 0.13325769119671
1130 => 0.13034951087053
1201 => 0.12967147492215
1202 => 0.12828445133005
1203 => 0.1279226027649
1204 => 0.12905230453947
1205 => 0.12875466803482
1206 => 0.12340530116385
1207 => 0.12284626256223
1208 => 0.12286340747802
1209 => 0.12145767833343
1210 => 0.11931360397428
1211 => 0.12494810337411
1212 => 0.12449557421753
1213 => 0.12399601705165
1214 => 0.12405720995403
1215 => 0.1265029551726
1216 => 0.12508429943274
1217 => 0.12885602823026
1218 => 0.12808067417804
1219 => 0.12728543522005
1220 => 0.12717550897249
1221 => 0.12686940982026
1222 => 0.1258196819328
1223 => 0.12455207242983
1224 => 0.12371508683752
1225 => 0.11412062805286
1226 => 0.11590130379489
1227 => 0.1179498089224
1228 => 0.11865694468355
1229 => 0.1174473400318
1230 => 0.12586744449708
1231 => 0.12740587872103
]
'min_raw' => 0.053101559212662
'max_raw' => 0.13949813836924
'avg_raw' => 0.096299848790951
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.0531015'
'max' => '$0.139498'
'avg' => '$0.096299'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.0020588671046163
'max_diff' => -0.02515707756774
'year' => 2027
]
2 => [
'items' => [
101 => 0.1227458611071
102 => 0.1218741620788
103 => 0.12592459294025
104 => 0.12348168798576
105 => 0.12458172793719
106 => 0.12220404325189
107 => 0.1270353149671
108 => 0.12699850877122
109 => 0.12511903495478
110 => 0.12670755335435
111 => 0.12643150919091
112 => 0.12430958788109
113 => 0.12710258365742
114 => 0.12710396894848
115 => 0.12529501626344
116 => 0.12318255555798
117 => 0.12280489747794
118 => 0.12252038284586
119 => 0.12451175477876
120 => 0.12629721262694
121 => 0.12961950702987
122 => 0.13045481077854
123 => 0.1337150569189
124 => 0.13177373908082
125 => 0.13263430013416
126 => 0.13356856089137
127 => 0.13401647985467
128 => 0.13328661994062
129 => 0.13835112416745
130 => 0.13877872349659
131 => 0.13892209385293
201 => 0.13721437152276
202 => 0.13873122864934
203 => 0.13802154143284
204 => 0.13986795041339
205 => 0.14015749091767
206 => 0.13991226041125
207 => 0.14000416513739
208 => 0.13568250421956
209 => 0.1354584033024
210 => 0.13240277139535
211 => 0.13364796398356
212 => 0.13132013612353
213 => 0.13205831431723
214 => 0.1323836962314
215 => 0.1322137351847
216 => 0.13371836530423
217 => 0.132439122327
218 => 0.12906298978309
219 => 0.12568593741411
220 => 0.12564354127251
221 => 0.12475442299368
222 => 0.12411175332823
223 => 0.12423555430573
224 => 0.12467184509805
225 => 0.12408639531425
226 => 0.12421133070868
227 => 0.12628609069641
228 => 0.12670216901544
229 => 0.12528817231509
301 => 0.11961077152443
302 => 0.11821752312972
303 => 0.11921896244652
304 => 0.11874033895404
305 => 0.095832720839396
306 => 0.10121452592193
307 => 0.09801684009072
308 => 0.099490480840192
309 => 0.096226471643259
310 => 0.097784227913415
311 => 0.097496567210468
312 => 0.10615035052399
313 => 0.10601523360044
314 => 0.10607990692152
315 => 0.10299288080115
316 => 0.10791059723279
317 => 0.11033324118238
318 => 0.10988487426389
319 => 0.10999771855758
320 => 0.10805867972083
321 => 0.10609868105598
322 => 0.10392474089504
323 => 0.10796365300695
324 => 0.10751459492664
325 => 0.10854457259688
326 => 0.11116409580886
327 => 0.11154983055243
328 => 0.11206826195952
329 => 0.11188244120453
330 => 0.11630944546826
331 => 0.11577330604161
401 => 0.117065247802
402 => 0.11440762558102
403 => 0.11140027377416
404 => 0.11197187303491
405 => 0.11191682342959
406 => 0.11121597877086
407 => 0.11058328754984
408 => 0.10953003492649
409 => 0.11286268207883
410 => 0.11272738269057
411 => 0.11491772251811
412 => 0.11453055867777
413 => 0.11194498379689
414 => 0.11203732810958
415 => 0.11265838799161
416 => 0.11480788333445
417 => 0.11544599990101
418 => 0.11515039888283
419 => 0.11585006456694
420 => 0.11640305179599
421 => 0.11591951124897
422 => 0.122765425698
423 => 0.11992252472327
424 => 0.12130813487758
425 => 0.12163859473489
426 => 0.1207921287592
427 => 0.12097569691966
428 => 0.12125375266341
429 => 0.12294205269059
430 => 0.12737264047547
501 => 0.12933491764536
502 => 0.13523852532803
503 => 0.12917197784262
504 => 0.12881201402071
505 => 0.12987543203623
506 => 0.13334147470629
507 => 0.13615037674155
508 => 0.13708225159609
509 => 0.13720541424169
510 => 0.13895367341868
511 => 0.13995574297582
512 => 0.13874138877081
513 => 0.13771235073025
514 => 0.13402646419786
515 => 0.13445311560032
516 => 0.13739232067343
517 => 0.14154412095752
518 => 0.14510679752246
519 => 0.14385927236123
520 => 0.15337700872589
521 => 0.15432065340998
522 => 0.15419027222633
523 => 0.15634003524984
524 => 0.15207319343979
525 => 0.15024903589983
526 => 0.1379348404347
527 => 0.14139462707089
528 => 0.14642363013275
529 => 0.14575802271972
530 => 0.14210582627056
531 => 0.14510402700395
601 => 0.14411272807909
602 => 0.14333084948802
603 => 0.14691278688833
604 => 0.14297429957881
605 => 0.14638434070905
606 => 0.14201092768715
607 => 0.14386497095108
608 => 0.14281252632449
609 => 0.14349358698066
610 => 0.13951212030108
611 => 0.14166042307674
612 => 0.13942274384264
613 => 0.13942168289133
614 => 0.13937228599822
615 => 0.14200490569374
616 => 0.1420907553275
617 => 0.14014524539484
618 => 0.13986486701896
619 => 0.14090157282682
620 => 0.1396878618395
621 => 0.14025574957146
622 => 0.13970506258039
623 => 0.13958109133945
624 => 0.13859326739972
625 => 0.1381676856857
626 => 0.13833456724166
627 => 0.13776491445784
628 => 0.13742167805034
629 => 0.13930400763763
630 => 0.1382983548721
701 => 0.13914987692822
702 => 0.13817946007462
703 => 0.13481557246955
704 => 0.1328809651354
705 => 0.12652689328196
706 => 0.1283289001774
707 => 0.12952363261338
708 => 0.12912877355041
709 => 0.12997708360784
710 => 0.13002916295567
711 => 0.12975336870851
712 => 0.12943403430172
713 => 0.1292785999728
714 => 0.13043708011564
715 => 0.1311096168312
716 => 0.12964353999679
717 => 0.12930005870708
718 => 0.13078234333099
719 => 0.13168653609529
720 => 0.13836258744485
721 => 0.13786800399751
722 => 0.13910931139323
723 => 0.13896955922988
724 => 0.14027064713637
725 => 0.1423973759827
726 => 0.13807314159538
727 => 0.13882367916424
728 => 0.1386396646848
729 => 0.14064868652016
730 => 0.14065495846704
731 => 0.13945044951865
801 => 0.1401034333605
802 => 0.13973895569366
803 => 0.14039761609975
804 => 0.13786139853404
805 => 0.14095023776131
806 => 0.14270141056277
807 => 0.14272572559881
808 => 0.14355576760854
809 => 0.14439913836321
810 => 0.14601791508469
811 => 0.14435399155904
812 => 0.14136075511609
813 => 0.14157685711917
814 => 0.13982192368785
815 => 0.13985142443589
816 => 0.13969394713086
817 => 0.14016654837759
818 => 0.13796510793102
819 => 0.13848178160365
820 => 0.13775843543633
821 => 0.13882210675094
822 => 0.13767777224759
823 => 0.13863957594744
824 => 0.13905465854
825 => 0.14058632224264
826 => 0.13745154427335
827 => 0.13105951978816
828 => 0.13240320083075
829 => 0.13041579102489
830 => 0.13059973336903
831 => 0.13097132617839
901 => 0.12976687230565
902 => 0.12999664414786
903 => 0.12998843508078
904 => 0.12991769377555
905 => 0.12960436880504
906 => 0.12914998560833
907 => 0.13096010841223
908 => 0.13126768354916
909 => 0.13195138497808
910 => 0.13398561667143
911 => 0.13378234895478
912 => 0.13411388703413
913 => 0.13339014126841
914 => 0.13063330585935
915 => 0.13078301528559
916 => 0.12891613634136
917 => 0.13190364468616
918 => 0.13119616327693
919 => 0.13074004540996
920 => 0.13061558942405
921 => 0.1326548635843
922 => 0.13326504637476
923 => 0.13288482140759
924 => 0.132104968907
925 => 0.13360251625083
926 => 0.13400319674359
927 => 0.13409289432939
928 => 0.13674626109644
929 => 0.13424118805644
930 => 0.13484418403545
1001 => 0.13954858653092
1002 => 0.1352823426307
1003 => 0.13754226717324
1004 => 0.13743165562696
1005 => 0.13858775655125
1006 => 0.13733682160711
1007 => 0.13735232844498
1008 => 0.13837886774468
1009 => 0.13693727843558
1010 => 0.13658032064954
1011 => 0.13608718602469
1012 => 0.13716392743707
1013 => 0.13780938521697
1014 => 0.14301130088644
1015 => 0.1463719756451
1016 => 0.14622607989068
1017 => 0.14755929398069
1018 => 0.1469586688223
1019 => 0.14501909174894
1020 => 0.14832971330694
1021 => 0.1472820941237
1022 => 0.14736845857631
1023 => 0.14736524408707
1024 => 0.14806181925946
1025 => 0.14756823190964
1026 => 0.14659532057745
1027 => 0.14724118452363
1028 => 0.1491591695432
1029 => 0.15511265389494
1030 => 0.15844430261134
1031 => 0.15491208445887
1101 => 0.15734856124216
1102 => 0.15588754337763
1103 => 0.15562203297013
1104 => 0.15715232044426
1105 => 0.15868528648403
1106 => 0.15858764317449
1107 => 0.15747478854829
1108 => 0.15684616520759
1109 => 0.16160631174763
1110 => 0.16511350663135
1111 => 0.16487433945282
1112 => 0.16592994559755
1113 => 0.16902923788714
1114 => 0.1693125983325
1115 => 0.16927690142935
1116 => 0.16857456299991
1117 => 0.17162621875298
1118 => 0.17417196367096
1119 => 0.16841199194601
1120 => 0.1706053137753
1121 => 0.17158996660889
1122 => 0.17303572910193
1123 => 0.17547497276561
1124 => 0.17812463836179
1125 => 0.1784993301292
1126 => 0.17823346838957
1127 => 0.17648594270205
1128 => 0.17938523841449
1129 => 0.18108357784598
1130 => 0.18209490011163
1201 => 0.18465944510933
1202 => 0.17159604748957
1203 => 0.16234912536132
1204 => 0.16090508494382
1205 => 0.16384159791689
1206 => 0.16461593296964
1207 => 0.16430379948081
1208 => 0.15389554793209
1209 => 0.16085028765346
1210 => 0.16833300282252
1211 => 0.16862044438648
1212 => 0.17236644805631
1213 => 0.17358630040509
1214 => 0.17660232435923
1215 => 0.17641367123972
1216 => 0.17714802507713
1217 => 0.17697920984715
1218 => 0.18256575912342
1219 => 0.18872855258574
1220 => 0.18851515464462
1221 => 0.18762918016955
1222 => 0.18894500334613
1223 => 0.19530566664433
1224 => 0.19472007869538
1225 => 0.19528892750752
1226 => 0.20278850800737
1227 => 0.21253902946006
1228 => 0.20800893330894
1229 => 0.21783793845683
1230 => 0.22402477618425
1231 => 0.23472427230286
]
'min_raw' => 0.095832720839396
'max_raw' => 0.23472427230286
'avg_raw' => 0.16527849657113
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.095832'
'max' => '$0.234724'
'avg' => '$0.165278'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.042731161626734
'max_diff' => 0.095226133933617
'year' => 2028
]
3 => [
'items' => [
101 => 0.23338464269268
102 => 0.23754987801512
103 => 0.23098642610132
104 => 0.21591541381474
105 => 0.21353036843087
106 => 0.21830528968835
107 => 0.23004396766984
108 => 0.2179355969443
109 => 0.2203851045721
110 => 0.21967964621051
111 => 0.21964205533242
112 => 0.22107674625575
113 => 0.21899565224302
114 => 0.21051690085347
115 => 0.21440266264971
116 => 0.21290218341057
117 => 0.21456707699453
118 => 0.22355182101279
119 => 0.21957945151277
120 => 0.21539488293359
121 => 0.22064326056199
122 => 0.22732624882116
123 => 0.22690803942638
124 => 0.22609653840255
125 => 0.23067092718506
126 => 0.2382264772836
127 => 0.24026871211458
128 => 0.24177624811515
129 => 0.2419841118596
130 => 0.24412523761403
131 => 0.2326118647993
201 => 0.25088388314066
202 => 0.25403895595389
203 => 0.25344593302937
204 => 0.25695266367552
205 => 0.25592089456226
206 => 0.25442602299675
207 => 0.25998493697389
208 => 0.25361209068032
209 => 0.24456663768564
210 => 0.23960412327398
211 => 0.24613916256587
212 => 0.25012988301998
213 => 0.25276749538266
214 => 0.25356563528992
215 => 0.23350561515654
216 => 0.22269437688436
217 => 0.22962425666573
218 => 0.23807918827375
219 => 0.23256489722732
220 => 0.2327810469964
221 => 0.22491911709439
222 => 0.23877479462009
223 => 0.23675613894919
224 => 0.24722892814078
225 => 0.24472951295082
226 => 0.25326966598523
227 => 0.25102075747957
228 => 0.26035585095177
301 => 0.26407987247539
302 => 0.27033308421122
303 => 0.27493297221925
304 => 0.27763411443941
305 => 0.27747194799224
306 => 0.28817521917219
307 => 0.28186387410118
308 => 0.27393533722218
309 => 0.27379193500425
310 => 0.27789823660213
311 => 0.28650391824244
312 => 0.2887352462842
313 => 0.28998225425617
314 => 0.28807241813843
315 => 0.28122190540203
316 => 0.27826388873534
317 => 0.28078420463736
318 => 0.27770207486241
319 => 0.28302269554685
320 => 0.29032904416983
321 => 0.28882031207162
322 => 0.29386377727418
323 => 0.29908323317083
324 => 0.30654728952346
325 => 0.30849867024724
326 => 0.3117242283793
327 => 0.31504438723783
328 => 0.3161107327824
329 => 0.31814671729457
330 => 0.31813598665121
331 => 0.32427156301621
401 => 0.33103929374979
402 => 0.33359395542839
403 => 0.33946825909346
404 => 0.32940871992718
405 => 0.33703899594046
406 => 0.34392169590264
407 => 0.33571585726732
408 => 0.34702569411093
409 => 0.34746482944692
410 => 0.35409525165497
411 => 0.34737404851192
412 => 0.34338301954041
413 => 0.35490497063925
414 => 0.36048007983792
415 => 0.35880081157553
416 => 0.3460214971831
417 => 0.33858338807613
418 => 0.31911642183908
419 => 0.34217588425722
420 => 0.35340747574736
421 => 0.34599241007449
422 => 0.34973213789127
423 => 0.37013488024881
424 => 0.37790292355882
425 => 0.37628722485306
426 => 0.37656025133766
427 => 0.38075174650779
428 => 0.39933914439066
429 => 0.38820114472673
430 => 0.39671572813692
501 => 0.40123183247606
502 => 0.4054266418715
503 => 0.39512551577944
504 => 0.38172390208728
505 => 0.3774790484695
506 => 0.3452551279283
507 => 0.34357773292274
508 => 0.34263616027584
509 => 0.33669967792528
510 => 0.3320352289371
511 => 0.32832588592181
512 => 0.31859146214611
513 => 0.32187654441341
514 => 0.30636190464708
515 => 0.3162876213645
516 => 0.29152588168337
517 => 0.31214819428888
518 => 0.3009244071192
519 => 0.30846087834085
520 => 0.30843458430274
521 => 0.29455755134329
522 => 0.28655356833857
523 => 0.29165401782886
524 => 0.29712210455663
525 => 0.29800928323136
526 => 0.30509880040558
527 => 0.30707733226024
528 => 0.30108228837179
529 => 0.2910127496667
530 => 0.29335167384617
531 => 0.28650617011473
601 => 0.27450968813388
602 => 0.28312577093101
603 => 0.28606768042036
604 => 0.28736699524775
605 => 0.27556983302485
606 => 0.27186290852557
607 => 0.26988937302626
608 => 0.28948988416614
609 => 0.29056364441204
610 => 0.28507013517964
611 => 0.309901317826
612 => 0.30428125643554
613 => 0.31056024195716
614 => 0.29313944099232
615 => 0.2938049390494
616 => 0.28555765269193
617 => 0.29017558196824
618 => 0.28691177839855
619 => 0.28980249891798
620 => 0.29153518487844
621 => 0.29978111793737
622 => 0.31224234959879
623 => 0.298549450516
624 => 0.2925832582997
625 => 0.29628465039556
626 => 0.30614194531056
627 => 0.32107625169243
628 => 0.31223484173344
629 => 0.31615850933636
630 => 0.31701565615578
701 => 0.3104963277788
702 => 0.32131662862876
703 => 0.32711531575822
704 => 0.33306356888382
705 => 0.3382282704065
706 => 0.33068770578057
707 => 0.3387571908278
708 => 0.33225461033559
709 => 0.32642112340967
710 => 0.32642997040138
711 => 0.3227705388391
712 => 0.31567992906914
713 => 0.31437231183809
714 => 0.32117470180787
715 => 0.32662957437491
716 => 0.32707886380661
717 => 0.3300989615412
718 => 0.33188622427105
719 => 0.34940382868941
720 => 0.3564495540997
721 => 0.36506493376265
722 => 0.36842110967756
723 => 0.37852199592578
724 => 0.37036470992647
725 => 0.36859982978879
726 => 0.34409838372531
727 => 0.34811049414561
728 => 0.35453427003958
729 => 0.34420430942378
730 => 0.35075629180533
731 => 0.35204979191741
801 => 0.34385330131486
802 => 0.34823140109513
803 => 0.33660446609485
804 => 0.31249578500905
805 => 0.32134346848264
806 => 0.32785834161726
807 => 0.3185608143761
808 => 0.33522627209189
809 => 0.3254906557392
810 => 0.3224049327474
811 => 0.3103664272167
812 => 0.31604813842262
813 => 0.32373273418289
814 => 0.31898454743318
815 => 0.32883774788264
816 => 0.34279250747166
817 => 0.35273750017509
818 => 0.35350095322739
819 => 0.34710698918185
820 => 0.35735335737056
821 => 0.3574279909766
822 => 0.34587004580209
823 => 0.33879086873761
824 => 0.33718246481384
825 => 0.34120057316157
826 => 0.34607929847944
827 => 0.35377168852833
828 => 0.35842003872898
829 => 0.37054047075783
830 => 0.37381991214482
831 => 0.37742302396462
901 => 0.3822378925144
902 => 0.38801937671537
903 => 0.37536981842372
904 => 0.37587240895638
905 => 0.36409331542026
906 => 0.35150566468402
907 => 0.36105812252001
908 => 0.37354669043034
909 => 0.37068179915307
910 => 0.37035944035996
911 => 0.3709015584351
912 => 0.36874152397064
913 => 0.35897176814249
914 => 0.35406545792751
915 => 0.36039584983807
916 => 0.3637601714052
917 => 0.36897794075616
918 => 0.3683347405499
919 => 0.38177515405044
920 => 0.38699769231974
921 => 0.38566154354544
922 => 0.38590742707613
923 => 0.39536258315176
924 => 0.40587866130901
925 => 0.41572835622201
926 => 0.42574788894176
927 => 0.41366895117909
928 => 0.40753601150851
929 => 0.413863639768
930 => 0.4105061111457
1001 => 0.42979946651712
1002 => 0.43113529658284
1003 => 0.45042725682507
1004 => 0.46873762433883
1005 => 0.45723721056774
1006 => 0.46808158276387
1007 => 0.47981065544861
1008 => 0.50243793963095
1009 => 0.49481786635579
1010 => 0.4889810096488
1011 => 0.48346520826417
1012 => 0.49494271533677
1013 => 0.50970834482801
1014 => 0.51288871999698
1015 => 0.51804214276754
1016 => 0.51262394885485
1017 => 0.5191495666282
1018 => 0.54218786486986
1019 => 0.53596271332028
1020 => 0.52712199737683
1021 => 0.54530852121693
1022 => 0.55189015349635
1023 => 0.59808349566086
1024 => 0.65640449829534
1025 => 0.63225922024832
1026 => 0.61727146700127
1027 => 0.62079394452859
1028 => 0.64209080040017
1029 => 0.64893067457771
1030 => 0.63033753871715
1031 => 0.63690494863186
1101 => 0.67309202295544
1102 => 0.69250522730969
1103 => 0.66613948825542
1104 => 0.59339745988507
1105 => 0.52632598763449
1106 => 0.5441163623431
1107 => 0.54209948595074
1108 => 0.58097798288197
1109 => 0.53581424551462
1110 => 0.53657468702302
1111 => 0.57625715009774
1112 => 0.56567054927905
1113 => 0.54852161178216
1114 => 0.52645119385636
1115 => 0.48565198505396
1116 => 0.44951498804756
1117 => 0.52038796103049
1118 => 0.51733178956133
1119 => 0.51290600037474
1120 => 0.52275511528908
1121 => 0.57057962159304
1122 => 0.56947711192991
1123 => 0.56246350795847
1124 => 0.56778326475574
1125 => 0.54758903269496
1126 => 0.55279354611114
1127 => 0.5263153631706
1128 => 0.53828460768632
1129 => 0.54848481786427
1130 => 0.55053266107419
1201 => 0.5551465563916
1202 => 0.51572132607058
1203 => 0.53342209702077
1204 => 0.54381964161606
1205 => 0.49684315686864
1206 => 0.54289106755352
1207 => 0.51503502052392
1208 => 0.50558025977828
1209 => 0.51830984955227
1210 => 0.51334911603741
1211 => 0.50908416866539
1212 => 0.5067042547507
1213 => 0.51605146056716
1214 => 0.5156154022435
1215 => 0.5003215593133
1216 => 0.48037136466765
1217 => 0.48706730483354
1218 => 0.4846346069965
1219 => 0.47581819621078
1220 => 0.48175939258286
1221 => 0.45559737053092
1222 => 0.41058697137414
1223 => 0.44032221976292
1224 => 0.43917744504568
1225 => 0.43860019772185
1226 => 0.46094541506411
1227 => 0.45879743800853
1228 => 0.4548988386196
1229 => 0.47574659537569
1230 => 0.46813688371782
1231 => 0.49158822197382
]
'min_raw' => 0.21051690085347
'max_raw' => 0.69250522730969
'avg_raw' => 0.45151106408158
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.210516'
'max' => '$0.6925052'
'avg' => '$0.451511'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.11468418001408
'max_diff' => 0.45778095500683
'year' => 2029
]
4 => [
'items' => [
101 => 0.50703479008668
102 => 0.50311704076913
103 => 0.51764461273902
104 => 0.48722156577107
105 => 0.49732688161303
106 => 0.4994095732027
107 => 0.47548933729343
108 => 0.45914887361931
109 => 0.45805915098717
110 => 0.42972703883083
111 => 0.44486182445593
112 => 0.45817980948603
113 => 0.451801528174
114 => 0.44978235485634
115 => 0.46009787343098
116 => 0.46089947757067
117 => 0.44262281823551
118 => 0.44642311445782
119 => 0.46227098145152
120 => 0.44602378887102
121 => 0.41445814765094
122 => 0.40662943219922
123 => 0.40558493724611
124 => 0.38435284003781
125 => 0.40715258440017
126 => 0.39719988499084
127 => 0.42864034317326
128 => 0.41068172207802
129 => 0.40990756181605
130 => 0.40873730503545
131 => 0.39046196188138
201 => 0.39446310057347
202 => 0.40776349497663
203 => 0.41250922553934
204 => 0.41201420696102
205 => 0.40769831578805
206 => 0.4096741086661
207 => 0.40330939139402
208 => 0.40106187725512
209 => 0.39396810440528
210 => 0.38354221802077
211 => 0.38499200146821
212 => 0.36433559245894
213 => 0.35308088451208
214 => 0.34996572968706
215 => 0.34580001446376
216 => 0.35043625830608
217 => 0.36427707544756
218 => 0.34758211348177
219 => 0.31895977220685
220 => 0.32068002368757
221 => 0.3245449180175
222 => 0.31734271300251
223 => 0.31052643039108
224 => 0.31645263509923
225 => 0.30432497177939
226 => 0.3260104881891
227 => 0.32542395574318
228 => 0.33350697523738
301 => 0.33856145320736
302 => 0.32691251789323
303 => 0.32398284216379
304 => 0.32565171860562
305 => 0.29806890849048
306 => 0.33125287118943
307 => 0.33153984747684
308 => 0.32908258227564
309 => 0.34675201797293
310 => 0.38404003852939
311 => 0.3700107852889
312 => 0.36457823439775
313 => 0.35425095118252
314 => 0.36801144289342
315 => 0.36695485182713
316 => 0.36217654632512
317 => 0.35928661224828
318 => 0.36461140439507
319 => 0.35862681157443
320 => 0.35755181425823
321 => 0.35103850013068
322 => 0.34871354332405
323 => 0.34699223786362
324 => 0.34509724968367
325 => 0.34927712140701
326 => 0.339804982174
327 => 0.32838251082426
328 => 0.32743285592438
329 => 0.33005493659745
330 => 0.32889486109057
331 => 0.32742730192916
401 => 0.32462533182409
402 => 0.32379404714853
403 => 0.3264953190621
404 => 0.32344574056562
405 => 0.32794555975631
406 => 0.3267218579228
407 => 0.31988635895502
408 => 0.31136679641533
409 => 0.31129095443834
410 => 0.30945542866404
411 => 0.30711761061733
412 => 0.30646728311877
413 => 0.31595354666824
414 => 0.33558982831568
415 => 0.33173475637189
416 => 0.33452044093494
417 => 0.3482232518918
418 => 0.35257896343708
419 => 0.34948738255292
420 => 0.34525543595828
421 => 0.34544162013095
422 => 0.3599034627422
423 => 0.36080543012661
424 => 0.3630844107213
425 => 0.36601354482531
426 => 0.34998622675677
427 => 0.34468673489124
428 => 0.34217554164073
429 => 0.33444203838327
430 => 0.34278195862598
501 => 0.33792264425154
502 => 0.33857833177847
503 => 0.33815131441639
504 => 0.33838449477087
505 => 0.32600442664532
506 => 0.33051507279304
507 => 0.32301524871824
508 => 0.31297382617683
509 => 0.3129401638075
510 => 0.31539778774883
511 => 0.31393589686169
512 => 0.31000198607305
513 => 0.31056077953304
514 => 0.3056651608334
515 => 0.31115519628121
516 => 0.31131263085357
517 => 0.30919866816191
518 => 0.31765682524816
519 => 0.32112213910759
520 => 0.31973068357847
521 => 0.32102451087833
522 => 0.33189495201576
523 => 0.33366730823176
524 => 0.33445447178763
525 => 0.33339977690195
526 => 0.32122320258718
527 => 0.32176328543683
528 => 0.31780051583668
529 => 0.31445239311093
530 => 0.31458630046137
531 => 0.31630767076789
601 => 0.32382499585352
602 => 0.3396447633257
603 => 0.34024511193717
604 => 0.34097275196768
605 => 0.33801307428103
606 => 0.33712040717044
607 => 0.33829806550624
608 => 0.34423913840494
609 => 0.35952119088593
610 => 0.35411949288518
611 => 0.34972782832813
612 => 0.35358050212893
613 => 0.35298741319555
614 => 0.34798114573424
615 => 0.34784063648049
616 => 0.33823200862172
617 => 0.3346799176802
618 => 0.33171152462006
619 => 0.32847011689026
620 => 0.32654850173506
621 => 0.32950097597192
622 => 0.33017624176253
623 => 0.32372060524324
624 => 0.32284072584005
625 => 0.3281125379763
626 => 0.32579261000811
627 => 0.32817871345484
628 => 0.3287323099221
629 => 0.32864316814046
630 => 0.32622089689964
701 => 0.32776478035537
702 => 0.32411303572875
703 => 0.3201423119216
704 => 0.31760923751748
705 => 0.31539879413631
706 => 0.31662527659591
707 => 0.31225309057431
708 => 0.31085434027128
709 => 0.32724174737905
710 => 0.33934730120386
711 => 0.33917128165693
712 => 0.33809980793349
713 => 0.33650781532097
714 => 0.34412267422942
715 => 0.34146980964963
716 => 0.34339999028568
717 => 0.34389130226698
718 => 0.34537835566068
719 => 0.34590984943237
720 => 0.34430330610816
721 => 0.3389115504894
722 => 0.32547580812018
723 => 0.31922143377821
724 => 0.31715738607052
725 => 0.3172324102845
726 => 0.31516290753982
727 => 0.31577246884674
728 => 0.31495092699331
729 => 0.31339512547522
730 => 0.3165292102363
731 => 0.31689038430899
801 => 0.31615885147623
802 => 0.31633115394022
803 => 0.31027437452674
804 => 0.31073485831091
805 => 0.30817082608518
806 => 0.30769010095273
807 => 0.30120845076191
808 => 0.28972526791866
809 => 0.29608806591335
810 => 0.28840270068055
811 => 0.2854921364146
812 => 0.29927029496398
813 => 0.29788734999226
814 => 0.29552034935239
815 => 0.29201906207987
816 => 0.29072040057215
817 => 0.28283014435757
818 => 0.28236394592753
819 => 0.28627456996232
820 => 0.28446995152662
821 => 0.28193558378046
822 => 0.27275636070858
823 => 0.26243587483948
824 => 0.26274738543561
825 => 0.26603013997111
826 => 0.27557519152282
827 => 0.2718457747505
828 => 0.26914004009205
829 => 0.26863333732461
830 => 0.27497578331324
831 => 0.28395167317067
901 => 0.28816295986757
902 => 0.28398970264962
903 => 0.27919568946178
904 => 0.27948747883121
905 => 0.28142862278206
906 => 0.28163260956499
907 => 0.27851219981223
908 => 0.27939057687972
909 => 0.27805624179371
910 => 0.26986742983383
911 => 0.26971932019248
912 => 0.2677096536751
913 => 0.26764880177164
914 => 0.26422985769076
915 => 0.2637515237798
916 => 0.25696300279215
917 => 0.26143122786376
918 => 0.25843417707807
919 => 0.25391691461122
920 => 0.25313813685928
921 => 0.25311472585965
922 => 0.2577529443717
923 => 0.26137702757994
924 => 0.25848631205963
925 => 0.25782815216982
926 => 0.26485557790629
927 => 0.26396127392492
928 => 0.26318681244469
929 => 0.28314798068236
930 => 0.26734715843286
1001 => 0.26045709805268
1002 => 0.25192933994522
1003 => 0.2547060209857
1004 => 0.25529110847886
1005 => 0.23478338747436
1006 => 0.22646340761691
1007 => 0.22360830406166
1008 => 0.22196515160037
1009 => 0.22271395681039
1010 => 0.21522499910238
1011 => 0.22025770253809
1012 => 0.21377289818879
1013 => 0.21268569963625
1014 => 0.22428133312591
1015 => 0.22589479778528
1016 => 0.2190112562842
1017 => 0.22343160427204
1018 => 0.22182872464422
1019 => 0.21388406154684
1020 => 0.21358063385351
1021 => 0.20959428117966
1022 => 0.20335641115506
1023 => 0.20050553716943
1024 => 0.19902077724528
1025 => 0.19963341812738
1026 => 0.19932364815027
1027 => 0.19730218951316
1028 => 0.19943951579312
1029 => 0.19397953035201
1030 => 0.19180532015527
1031 => 0.1908232798507
1101 => 0.18597722850669
1102 => 0.19368945124383
1103 => 0.19520885627907
1104 => 0.19673125501159
1105 => 0.20998269659248
1106 => 0.20932069201928
1107 => 0.21530489095167
1108 => 0.21507235598539
1109 => 0.21336556551228
1110 => 0.20616489725962
1111 => 0.20903495528556
1112 => 0.20020136278777
1113 => 0.20682009091302
1114 => 0.20379957980135
1115 => 0.2057988530678
1116 => 0.20220397946752
1117 => 0.20419353094661
1118 => 0.19556916357913
1119 => 0.18751585067951
1120 => 0.19075673888118
1121 => 0.19427995499691
1122 => 0.2019191852346
1123 => 0.19736932272731
1124 => 0.19900562533428
1125 => 0.19352428551468
1126 => 0.18221471579954
1127 => 0.18227872673591
1128 => 0.18053899582761
1129 => 0.17903561431796
1130 => 0.19789192916841
1201 => 0.19554684834253
1202 => 0.19181026896309
1203 => 0.19681182894824
1204 => 0.19813432079374
1205 => 0.19817197027738
1206 => 0.2018209793336
1207 => 0.20376845612103
1208 => 0.20411170734566
1209 => 0.20985350193768
1210 => 0.21177807574882
1211 => 0.21970512290104
1212 => 0.20360322632188
1213 => 0.20327161835798
1214 => 0.19688221115415
1215 => 0.19282994809295
1216 => 0.19715967307281
1217 => 0.20099521833857
1218 => 0.1970013922371
1219 => 0.19752290161168
1220 => 0.19216151637804
1221 => 0.19407795932244
1222 => 0.19572865815891
1223 => 0.194817239285
1224 => 0.1934528011176
1225 => 0.20068074736676
1226 => 0.20027291831283
1227 => 0.20700374802982
1228 => 0.21225091112046
1229 => 0.22165476542148
1230 => 0.21184135322435
1231 => 0.21148371347911
]
'min_raw' => 0.17903561431796
'max_raw' => 0.51764461273902
'avg_raw' => 0.34834011352849
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.179035'
'max' => '$0.517644'
'avg' => '$0.34834'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.031481286535513
'max_diff' => -0.17486061457067
'year' => 2030
]
5 => [
'items' => [
101 => 0.21497969935609
102 => 0.2117775405316
103 => 0.21380119437391
104 => 0.22132872350192
105 => 0.22148776833067
106 => 0.21882356253142
107 => 0.21866144536641
108 => 0.21917313523338
109 => 0.22217011876652
110 => 0.22112288063204
111 => 0.22233477111409
112 => 0.22385025871902
113 => 0.23011895800643
114 => 0.23163032018205
115 => 0.22795849364675
116 => 0.22829001847119
117 => 0.22691665455309
118 => 0.22559000221642
119 => 0.22857212292725
120 => 0.23402200714004
121 => 0.2339881036932
122 => 0.23525237089996
123 => 0.23603999889601
124 => 0.23265892295802
125 => 0.23045796684799
126 => 0.23130195347105
127 => 0.23265150646096
128 => 0.23086431162525
129 => 0.21983291719001
130 => 0.22317913757346
131 => 0.22262216287984
201 => 0.22182896318568
202 => 0.22519361365679
203 => 0.22486908491073
204 => 0.21514818901672
205 => 0.21577048923249
206 => 0.21518603315397
207 => 0.21707453031213
208 => 0.21167555548754
209 => 0.21333624378093
210 => 0.21437781191056
211 => 0.21499130354062
212 => 0.21720765598353
213 => 0.2169475926054
214 => 0.2171914900788
215 => 0.22047775565629
216 => 0.23709855923707
217 => 0.23800319290423
218 => 0.23354844587289
219 => 0.23532802944591
220 => 0.23191161813786
221 => 0.23420507793692
222 => 0.23577420488388
223 => 0.22868362193634
224 => 0.22826376363169
225 => 0.22483325157888
226 => 0.22667661444192
227 => 0.22374369158434
228 => 0.2244633282643
301 => 0.22245116137032
302 => 0.22607266116106
303 => 0.23012206065127
304 => 0.23114509887813
305 => 0.22845392574891
306 => 0.2265053390464
307 => 0.22308426270117
308 => 0.22877358890695
309 => 0.2304373212686
310 => 0.22876485002913
311 => 0.22837730189873
312 => 0.2276428988919
313 => 0.22853310896837
314 => 0.23042826022485
315 => 0.22953454189025
316 => 0.23012485859555
317 => 0.22787518004689
318 => 0.23266004223484
319 => 0.2402595549291
320 => 0.24028398860506
321 => 0.23939026545298
322 => 0.23902457319468
323 => 0.23994158738437
324 => 0.24043902996439
325 => 0.24340448570221
326 => 0.24658653785786
327 => 0.26143578683016
328 => 0.25726617713897
329 => 0.27044131421297
330 => 0.28086113706107
331 => 0.28398558632959
401 => 0.28111124001925
402 => 0.27127825656073
403 => 0.27079580348153
404 => 0.28549043214709
405 => 0.28133852649244
406 => 0.28084467052607
407 => 0.27559087742676
408 => 0.27869651984339
409 => 0.27801727028985
410 => 0.27694504163955
411 => 0.28287039102956
412 => 0.29396211612806
413 => 0.29223336675392
414 => 0.2909429355405
415 => 0.28528864160217
416 => 0.28869378948532
417 => 0.28748128154544
418 => 0.2926909851317
419 => 0.28960487213626
420 => 0.28130707172359
421 => 0.28262852378922
422 => 0.28242878896789
423 => 0.28653931743744
424 => 0.28530543882047
425 => 0.28218785436489
426 => 0.2939242058175
427 => 0.29316211243518
428 => 0.2942425866125
429 => 0.29471824476013
430 => 0.30186195507163
501 => 0.30478850461301
502 => 0.30545288259537
503 => 0.30823287831222
504 => 0.30538371376942
505 => 0.31678240336053
506 => 0.32436186680664
507 => 0.33316580363492
508 => 0.34603072161617
509 => 0.35086804978427
510 => 0.34999422974795
511 => 0.35974826373606
512 => 0.37727604599269
513 => 0.35353709568049
514 => 0.37853426800191
515 => 0.37062045185118
516 => 0.35185693612127
517 => 0.35064878691559
518 => 0.36335565761678
519 => 0.39153827384104
520 => 0.38447884812145
521 => 0.39154982053254
522 => 0.38330115561818
523 => 0.38289153987998
524 => 0.39114920128902
525 => 0.41044367727292
526 => 0.40127759497559
527 => 0.38813576838677
528 => 0.39783948863048
529 => 0.38943322811846
530 => 0.37049157042072
531 => 0.38447344991164
601 => 0.37512416527706
602 => 0.37785278356874
603 => 0.39750358926949
604 => 0.395139152338
605 => 0.39819895266832
606 => 0.39279848517422
607 => 0.38775359695917
608 => 0.37833693846746
609 => 0.37554913012372
610 => 0.37631958005509
611 => 0.375548748327
612 => 0.37028021444444
613 => 0.36914247505413
614 => 0.36724619289143
615 => 0.36783393002607
616 => 0.36426836478328
617 => 0.37099732307979
618 => 0.372246277035
619 => 0.37714305173465
620 => 0.37765145112839
621 => 0.39128889896568
622 => 0.38377762186491
623 => 0.38881683503657
624 => 0.38836608037958
625 => 0.3522635984031
626 => 0.35723820188456
627 => 0.36497712378515
628 => 0.3614907499588
629 => 0.35656183305417
630 => 0.35258146838187
701 => 0.34655080889016
702 => 0.35503884631619
703 => 0.36619971292926
704 => 0.37793450912394
705 => 0.39203309785753
706 => 0.38888645697786
707 => 0.37767094581434
708 => 0.3781740654522
709 => 0.38128415308316
710 => 0.3772563070198
711 => 0.37606841658282
712 => 0.38112095517842
713 => 0.3811557492349
714 => 0.37652122555755
715 => 0.37137080059905
716 => 0.37134922013041
717 => 0.37043275175625
718 => 0.383464193306
719 => 0.39063016853102
720 => 0.39145173604202
721 => 0.39057487049162
722 => 0.39091234124042
723 => 0.38674261814847
724 => 0.39627336864369
725 => 0.40501972779164
726 => 0.40267551670128
727 => 0.39916121102759
728 => 0.3963618972866
729 => 0.40201608734737
730 => 0.40176431516449
731 => 0.40494333597464
801 => 0.40479911722778
802 => 0.40373013209834
803 => 0.40267555487811
804 => 0.40685683435234
805 => 0.40565269301306
806 => 0.40444668130968
807 => 0.4020278402074
808 => 0.40235660088589
809 => 0.39884290200663
810 => 0.39721730412915
811 => 0.37277221240669
812 => 0.36623968513203
813 => 0.36829495119449
814 => 0.36897159814721
815 => 0.36612863390562
816 => 0.37020471433047
817 => 0.3695694615139
818 => 0.37204085861272
819 => 0.37049683700096
820 => 0.37056020418649
821 => 0.37510084252655
822 => 0.37641900915393
823 => 0.37574857896834
824 => 0.37621812528933
825 => 0.38703862207338
826 => 0.38550029345069
827 => 0.38468308702992
828 => 0.38490945879336
829 => 0.38767432771576
830 => 0.38844834005778
831 => 0.38516879537574
901 => 0.38671544760661
902 => 0.39330089650626
903 => 0.39560543091702
904 => 0.40296039851686
905 => 0.39983587755632
906 => 0.40557107100549
907 => 0.4231991003967
908 => 0.43728159004126
909 => 0.42433075058063
910 => 0.45019144941861
911 => 0.4703277129609
912 => 0.46955484962744
913 => 0.46604362631868
914 => 0.44311902562604
915 => 0.42202346628214
916 => 0.43967079743808
917 => 0.4397157841144
918 => 0.43819986271746
919 => 0.42878460511483
920 => 0.43787223216165
921 => 0.43859357499521
922 => 0.43818981482896
923 => 0.43097115890025
924 => 0.41994960552774
925 => 0.42210319067486
926 => 0.42563080707779
927 => 0.41895229328917
928 => 0.41681810346829
929 => 0.42078596839154
930 => 0.43357125591172
1001 => 0.43115427136616
1002 => 0.43109115413187
1003 => 0.44143203897875
1004 => 0.43403019713101
1005 => 0.4221303542803
1006 => 0.41912548702085
1007 => 0.40846023257094
1008 => 0.41582676180783
1009 => 0.41609187008068
1010 => 0.41205729730174
1011 => 0.42245773762551
1012 => 0.42236189573697
1013 => 0.43223556592313
1014 => 0.45111031493791
1015 => 0.44552812288425
1016 => 0.43903664086661
1017 => 0.4397424449512
1018 => 0.44748337368623
1019 => 0.44280303146481
1020 => 0.44448611516014
1021 => 0.44748082613748
1022 => 0.44928760962459
1023 => 0.43948247661222
1024 => 0.43719643107331
1025 => 0.43251998419365
1026 => 0.43129998649277
1027 => 0.43510885489898
1028 => 0.43410535264325
1029 => 0.4160695887569
1030 => 0.41418475108073
1031 => 0.41424255636133
1101 => 0.40950304240546
1102 => 0.40227414600908
1103 => 0.4212712541238
1104 => 0.41974552047783
1105 => 0.41806122861508
1106 => 0.41826754475783
1107 => 0.4265135455187
1108 => 0.42173044864438
1109 => 0.43444709561892
1110 => 0.43183293529836
1111 => 0.4291517316297
1112 => 0.42878110761123
1113 => 0.42774907294834
1114 => 0.42420984208611
1115 => 0.41993600814518
1116 => 0.41711405278422
1117 => 0.38476566512803
1118 => 0.3907693377151
1119 => 0.39767601577456
1120 => 0.40006017336391
1121 => 0.39598190682864
1122 => 0.42437087690625
1123 => 0.42955781530236
1124 => 0.41384624056494
1125 => 0.41090724643094
1126 => 0.42456355687239
1127 => 0.41632713226014
1128 => 0.42003599375871
1129 => 0.41201946383758
1130 => 0.42830843373402
1201 => 0.4281843390749
1202 => 0.42184756188211
1203 => 0.42720336257308
1204 => 0.42627266040324
1205 => 0.41911845455938
1206 => 0.42853523482
1207 => 0.42853990542552
1208 => 0.42244089515088
1209 => 0.41531858639513
1210 => 0.41404528581102
1211 => 0.41308602486477
1212 => 0.4198000743697
1213 => 0.42581987016154
1214 => 0.43702121769621
1215 => 0.43983750260388
1216 => 0.45082965008922
1217 => 0.44428436145964
1218 => 0.44718580313346
1219 => 0.45033572850436
1220 => 0.45184591856184
1221 => 0.44938514490444
1222 => 0.46646047449758
1223 => 0.46790215548982
1224 => 0.46838553865603
1225 => 0.46262783359048
1226 => 0.46774202329634
1227 => 0.46534926329713
1228 => 0.4715745600872
1229 => 0.47255076611246
1230 => 0.4717239543386
1231 => 0.47203381753938
]
'min_raw' => 0.21167555548754
'max_raw' => 0.47255076611246
'avg_raw' => 0.3421131608
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.211675'
'max' => '$0.47255'
'avg' => '$0.342113'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.032639941169576
'max_diff' => -0.045093846626563
'year' => 2031
]
6 => [
'items' => [
101 => 0.45746303602619
102 => 0.45670746413774
103 => 0.44640518782572
104 => 0.45060344157345
105 => 0.44275500741961
106 => 0.44524382673763
107 => 0.44634087457866
108 => 0.44576783904342
109 => 0.45084080454134
110 => 0.44652774752973
111 => 0.43514488094387
112 => 0.42375891310361
113 => 0.42361597155219
114 => 0.42061824719887
115 => 0.41845144155203
116 => 0.41886884519117
117 => 0.42033983005832
118 => 0.41836594523745
119 => 0.41878717364248
120 => 0.42578237179623
121 => 0.42718520889849
122 => 0.42241782030116
123 => 0.40327606715199
124 => 0.39857863291573
125 => 0.40195505549059
126 => 0.40034134296927
127 => 0.32310670913693
128 => 0.34125184071832
129 => 0.3304706196831
130 => 0.33543910235626
131 => 0.32443426746296
201 => 0.32968635148686
202 => 0.32871648334304
203 => 0.35789331797244
204 => 0.35743776183113
205 => 0.35765581244848
206 => 0.34724768835438
207 => 0.36382811264765
208 => 0.37199622586728
209 => 0.37048452549762
210 => 0.37086498791236
211 => 0.36432738309488
212 => 0.35771911075361
213 => 0.35038951972132
214 => 0.36400699389448
215 => 0.36249296322446
216 => 0.36596560485045
217 => 0.37479751024891
218 => 0.37609804186797
219 => 0.37784596955269
220 => 0.37721946190368
221 => 0.39214541586242
222 => 0.3903377843534
223 => 0.39469365619906
224 => 0.38573329733175
225 => 0.37559380074833
226 => 0.37752098756372
227 => 0.37733538397594
228 => 0.37497243727762
229 => 0.37283927465286
301 => 0.36928815989749
302 => 0.3805244124496
303 => 0.38006824111579
304 => 0.38745312476899
305 => 0.38614777485035
306 => 0.37743032862039
307 => 0.37774167391791
308 => 0.37983562067119
309 => 0.38708279429256
310 => 0.38923424884859
311 => 0.38823760937759
312 => 0.39059658108065
313 => 0.39246101613171
314 => 0.39083072541771
315 => 0.41391220394912
316 => 0.40432716482781
317 => 0.40899884620326
318 => 0.41011301468416
319 => 0.40725909554877
320 => 0.40787800841806
321 => 0.40881549277136
322 => 0.41450771418635
323 => 0.42944575023683
324 => 0.43606170471694
325 => 0.45596613019578
326 => 0.4355123417959
327 => 0.43429869863844
328 => 0.43788408672324
329 => 0.44957009157674
330 => 0.45904050089988
331 => 0.46218238203338
401 => 0.46259763349198
402 => 0.46849201136675
403 => 0.47187055884092
404 => 0.46777627885522
405 => 0.46430680525632
406 => 0.45187958147198
407 => 0.45331806646323
408 => 0.46322780157597
409 => 0.47722588610321
410 => 0.48923769888004
411 => 0.48503158069953
412 => 0.51712129336013
413 => 0.52030285729571
414 => 0.51986326803209
415 => 0.52711134415753
416 => 0.51272538909357
417 => 0.50657511458897
418 => 0.4650569448286
419 => 0.47672185702713
420 => 0.49367749196396
421 => 0.4914333500997
422 => 0.47911971478315
423 => 0.48922835788346
424 => 0.48588612434801
425 => 0.48324996608919
426 => 0.49532671811724
427 => 0.48204783317677
428 => 0.49354502492886
429 => 0.47879975758359
430 => 0.48505079389309
501 => 0.48150240335521
502 => 0.4837986469076
503 => 0.47037485402027
504 => 0.47761800681812
505 => 0.4700735150506
506 => 0.47006993797918
507 => 0.46990339290526
508 => 0.47877945401235
509 => 0.47906890204639
510 => 0.47250947947727
511 => 0.47156416420762
512 => 0.4750594902193
513 => 0.47096737888695
514 => 0.47288205202392
515 => 0.47102537238576
516 => 0.47060739469156
517 => 0.46727687731109
518 => 0.46584199884911
519 => 0.46640465166631
520 => 0.46448402753377
521 => 0.46332678202191
522 => 0.4696731876455
523 => 0.46628255913409
524 => 0.46915352519767
525 => 0.46588169702342
526 => 0.45454011510377
527 => 0.44801745140673
528 => 0.42659425452572
529 => 0.43266984658578
530 => 0.43669797040726
531 => 0.43536667550829
601 => 0.43822681209401
602 => 0.4384024012513
603 => 0.43747254169165
604 => 0.43639588344395
605 => 0.4358718257519
606 => 0.43977772243598
607 => 0.44204522692753
608 => 0.43710224652209
609 => 0.43594417537274
610 => 0.44094180147207
611 => 0.44399035050562
612 => 0.46649912373768
613 => 0.46483160111427
614 => 0.46901675566424
615 => 0.46854557148834
616 => 0.47293228020412
617 => 0.48010269499298
618 => 0.46552323684771
619 => 0.468053726662
620 => 0.46743330899708
621 => 0.47420686638042
622 => 0.47422801268722
623 => 0.47016692667161
624 => 0.47236850728427
625 => 0.47113964538349
626 => 0.47336036492884
627 => 0.46480933033299
628 => 0.47522356744359
629 => 0.48112776880669
630 => 0.48120974864835
701 => 0.48400829323581
702 => 0.48685177661746
703 => 0.4923095953533
704 => 0.48669956101515
705 => 0.47660765536664
706 => 0.47733625835781
707 => 0.47141937776857
708 => 0.47151884160025
709 => 0.47098789587164
710 => 0.47258130397093
711 => 0.46515899380567
712 => 0.46690099516596
713 => 0.46446218306041
714 => 0.46804842516077
715 => 0.46419022148784
716 => 0.4674330098129
717 => 0.46883248975385
718 => 0.47399660086463
719 => 0.46342747807797
720 => 0.44187632124926
721 => 0.44640663569717
722 => 0.43970594478018
723 => 0.44032611923588
724 => 0.44157897033642
725 => 0.4375180700122
726 => 0.43829276182038
727 => 0.43826508437757
728 => 0.43802657512799
729 => 0.43697017811425
730 => 0.43543819344255
731 => 0.44154114885461
801 => 0.44257815990301
802 => 0.44488330700511
803 => 0.45174186118475
804 => 0.45105652988636
805 => 0.45217433366816
806 => 0.44973417428869
807 => 0.44043931123095
808 => 0.44094406701392
809 => 0.43464975431211
810 => 0.44472234727778
811 => 0.44233702431178
812 => 0.44079919107815
813 => 0.44037957903243
814 => 0.44725513424129
815 => 0.44931240812091
816 => 0.44803045309765
817 => 0.44540112594434
818 => 0.45045021136949
819 => 0.45180113362544
820 => 0.45210355529846
821 => 0.46104956660572
822 => 0.45260353795275
823 => 0.45463658099582
824 => 0.47049780246017
825 => 0.45611386329095
826 => 0.46373335666901
827 => 0.46336042211808
828 => 0.4672582971007
829 => 0.46304068259906
830 => 0.46309296498558
831 => 0.46655401390522
901 => 0.46169359490104
902 => 0.46049008680338
903 => 0.45882744898616
904 => 0.46245775783369
905 => 0.46463396380304
906 => 0.48217258566882
907 => 0.49350333525245
908 => 0.4930114375303
909 => 0.49750646191681
910 => 0.49548141226098
911 => 0.4889419927412
912 => 0.50010398446421
913 => 0.49657186324548
914 => 0.49686304702722
915 => 0.49685220915232
916 => 0.49920076097938
917 => 0.4975365967683
918 => 0.4942563582853
919 => 0.49643393367263
920 => 0.50290055407557
921 => 0.52297314222644
922 => 0.53420602848209
923 => 0.52229690836942
924 => 0.53051165995367
925 => 0.5255857362184
926 => 0.52469054934216
927 => 0.52985002040244
928 => 0.53501852243381
929 => 0.53468931119846
930 => 0.5309372441292
1001 => 0.52881779664696
1002 => 0.54486696304952
1003 => 0.55669171546452
1004 => 0.55588534662396
1005 => 0.55944439644098
1006 => 0.56989387678102
1007 => 0.57084924630616
1008 => 0.57072889170491
1009 => 0.56836090865435
1010 => 0.57864977908561
1011 => 0.58723293581482
1012 => 0.56781278899575
1013 => 0.57520772667606
1014 => 0.57852755245077
1015 => 0.58340204163596
1016 => 0.59162612195061
1017 => 0.6005596545019
1018 => 0.60182295395585
1019 => 0.60092658253883
1020 => 0.59503467767501
1021 => 0.60480985559184
1022 => 0.61053592555939
1023 => 0.61394566918628
1024 => 0.62259221169684
1025 => 0.57854805456455
1026 => 0.54737141100967
1027 => 0.54250272792238
1028 => 0.55240338643188
1029 => 0.55501411112456
1030 => 0.55396173127451
1031 => 0.51886958449707
1101 => 0.54231797503208
1102 => 0.56754647165108
1103 => 0.5685156009525
1104 => 0.58114551386296
1105 => 0.58525833122423
1106 => 0.59542706655768
1107 => 0.59479100939392
1108 => 0.5972669346277
1109 => 0.5966977622935
1110 => 0.61553320321886
1111 => 0.63631149164957
1112 => 0.63559200559213
1113 => 0.63260488079266
1114 => 0.63704127050034
1115 => 0.65848669089754
1116 => 0.65651234024323
1117 => 0.65843025372911
1118 => 0.68371561298835
1119 => 0.71659017682577
1120 => 0.70131664137104
1121 => 0.73445581846637
1122 => 0.75531517381558
1123 => 0.79138927199445
1124 => 0.78687261723377
1125 => 0.80091599893084
1126 => 0.77878686255787
1127 => 0.72797389240919
1128 => 0.71993254537893
1129 => 0.73603152577286
1130 => 0.7756092981558
1201 => 0.73478508087519
1202 => 0.74304376686148
1203 => 0.74066526474184
1204 => 0.74053852447186
1205 => 0.74537568508679
1206 => 0.73835913132551
1207 => 0.70977242904815
1208 => 0.72287354623937
1209 => 0.71781457572452
1210 => 0.72342788068198
1211 => 0.75372057243435
1212 => 0.74032745132305
1213 => 0.7262188862011
1214 => 0.74391415780526
1215 => 0.76644631931238
1216 => 0.76503629713945
1217 => 0.76230026478043
1218 => 0.77772313593427
1219 => 0.80319720060316
1220 => 0.81008273792008
1221 => 0.81516550079882
1222 => 0.81586632792581
1223 => 0.8230852828955
1224 => 0.78426714261261
1225 => 0.84587252816209
1226 => 0.85651007643206
1227 => 0.85451065823851
1228 => 0.86633384544411
1229 => 0.86285516384291
1230 => 0.8578150999912
1231 => 0.87655736657612
]
'min_raw' => 0.32310670913693
'max_raw' => 0.87655736657612
'avg_raw' => 0.59983203785652
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.3231067'
'max' => '$0.876557'
'avg' => '$0.599832'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.11143115364939
'max_diff' => 0.40400660046366
'year' => 2032
]
7 => [
'items' => [
101 => 0.85507087035943
102 => 0.82457349405449
103 => 0.8078420302439
104 => 0.82987537147838
105 => 0.84333036411263
106 => 0.85222325834562
107 => 0.85491424276729
108 => 0.7872804843417
109 => 0.75082963969051
110 => 0.77419421320214
111 => 0.80270060542305
112 => 0.7841087881645
113 => 0.78483755220207
114 => 0.75833050663501
115 => 0.80504589078543
116 => 0.79823985225294
117 => 0.83354959219918
118 => 0.82512263938264
119 => 0.8539163615926
120 => 0.846334009552
121 => 0.87780792894892
122 => 0.89036372751869
123 => 0.91144686747136
124 => 0.92695571104436
125 => 0.93606280062733
126 => 0.9355160451286
127 => 0.97160287119034
128 => 0.9503237306394
129 => 0.92359211499907
130 => 0.9231086244093
131 => 0.93695330693935
201 => 0.96596796341918
202 => 0.97349104169831
203 => 0.97769541613914
204 => 0.97125627032769
205 => 0.94815928834939
206 => 0.93818612863552
207 => 0.94668354966199
208 => 0.93629193393833
209 => 0.95423077804978
210 => 0.97886464254513
211 => 0.9737778469397
212 => 0.99078224199365
213 => 1.00838000196
214 => 1.0335455890766
215 => 1.0401248054279
216 => 1.0509999998714
217 => 1.062194147269
218 => 1.0657894057224
219 => 1.0726538696531
220 => 1.0726176905398
221 => 1.0933042146267
222 => 1.1161220913028
223 => 1.124735311513
224 => 1.1445409364506
225 => 1.1106244978169
226 => 1.1363505061245
227 => 1.1595560095818
228 => 1.1318894517094
301 => 1.1700213562552
302 => 1.1715019317
303 => 1.1938568630957
304 => 1.1711958574395
305 => 1.1577398246173
306 => 1.196586887184
307 => 1.215383757089
308 => 1.2097219868996
309 => 1.1666356362023
310 => 1.1415575320359
311 => 1.0759232962275
312 => 1.1536698837306
313 => 1.1915379786042
314 => 1.1665375669848
315 => 1.1791463204185
316 => 1.247935590751
317 => 1.2741260911181
318 => 1.2686786501272
319 => 1.2695991779821
320 => 1.283731096589
321 => 1.3463998062818
322 => 1.3088472627846
323 => 1.3375547752213
324 => 1.352781136305
325 => 1.366924229054
326 => 1.3321932632329
327 => 1.287008786999
328 => 1.2726969666605
329 => 1.1640517687535
330 => 1.1583963143803
331 => 1.1552217364628
401 => 1.1352064717459
402 => 1.1194799563208
403 => 1.1069736473667
404 => 1.0741533579712
405 => 1.0852292421925
406 => 1.0329205510228
407 => 1.066385797927
408 => 0.98289986378256
409 => 1.0524294305359
410 => 1.0145876484735
411 => 1.039997387377
412 => 1.0399087351917
413 => 0.99312134970541
414 => 0.96613536218475
415 => 0.98333188374326
416 => 1.0017679199156
417 => 1.0047591047583
418 => 1.0286619068854
419 => 1.0353326651701
420 => 1.0151199561396
421 => 0.98116980336263
422 => 0.98905564953218
423 => 0.96597555576382
424 => 0.92552857919778
425 => 0.95457830390397
426 => 0.9644971571449
427 => 0.9688778878007
428 => 0.92910293171464
429 => 0.91660477695608
430 => 0.90995086423231
501 => 0.97603535600443
502 => 0.97965561364101
503 => 0.96113386371941
504 => 1.0448539296694
505 => 1.0259055003113
506 => 1.0470755383822
507 => 0.98834009164782
508 => 0.99058386481084
509 => 0.96277756304948
510 => 0.97834723401809
511 => 0.9673430924114
512 => 0.97708935846631
513 => 0.98293123015427
514 => 1.0107329691751
515 => 1.052746881737
516 => 1.0065803164717
517 => 0.98646488286821
518 => 0.99894438474232
519 => 1.0321789427626
520 => 1.0825309994091
521 => 1.0527215684448
522 => 1.0659504877098
523 => 1.0688404180555
524 => 1.0468600472676
525 => 1.0833414470325
526 => 1.1028921255409
527 => 1.1229470762476
528 => 1.1403602280193
529 => 1.1149366879175
530 => 1.1421435201477
531 => 1.1202196160226
601 => 1.1005516075708
602 => 1.100581435821
603 => 1.0882434068154
604 => 1.0643369209254
605 => 1.059928198136
606 => 1.0828629308468
607 => 1.1012544145537
608 => 1.102769225241
609 => 1.1129516956097
610 => 1.118977576686
611 => 1.1780394030227
612 => 1.2017945581603
613 => 1.2308419122005
614 => 1.2421574936184
615 => 1.2762133368256
616 => 1.2487104775554
617 => 1.2427600609512
618 => 1.1601517249119
619 => 1.1736788353105
620 => 1.1953370442307
621 => 1.1605088607997
622 => 1.1825993268439
623 => 1.1869604527811
624 => 1.1593254124539
625 => 1.1740864815323
626 => 1.1348854584121
627 => 1.053601356917
628 => 1.0834319394737
629 => 1.105397289101
630 => 1.0740500268748
701 => 1.1302387811087
702 => 1.0974144708566
703 => 1.0870107403514
704 => 1.0464220784531
705 => 1.0655783644682
706 => 1.0914875155953
707 => 1.0754786724609
708 => 1.1086994257047
709 => 1.1557488719493
710 => 1.1892791091861
711 => 1.1918531444546
712 => 1.1702954482627
713 => 1.2048417939895
714 => 1.205093426403
715 => 1.1661250072972
716 => 1.142257067572
717 => 1.1368342214478
718 => 1.1503815542775
719 => 1.1668305173085
720 => 1.1927659474238
721 => 1.2084381846627
722 => 1.2493030674696
723 => 1.2603599330691
724 => 1.2725080761307
725 => 1.2887417416097
726 => 1.3082344192436
727 => 1.2655855502994
728 => 1.26728006937
729 => 1.2275660331229
730 => 1.185125889824
731 => 1.2173326683493
801 => 1.259438746983
802 => 1.2497795660213
803 => 1.248692710844
804 => 1.2505204997838
805 => 1.2432377927781
806 => 1.2102983789009
807 => 1.1937564114634
808 => 1.2150997697638
809 => 1.2264428148168
810 => 1.2440348884765
811 => 1.2418662940744
812 => 1.2871815865711
813 => 1.304789738972
814 => 1.3002848200926
815 => 1.3011138335833
816 => 1.3329925524302
817 => 1.3684482441465
818 => 1.4016571782295
819 => 1.4354387323355
820 => 1.3947137503442
821 => 1.3740361160567
822 => 1.3953701565144
823 => 1.3840500143492
824 => 1.449098909003
825 => 1.4536027533342
826 => 1.5186469442125
827 => 1.5803816266742
828 => 1.5416071787118
829 => 1.5781697367009
830 => 1.6177151241552
831 => 1.6940045925625
901 => 1.6683129834988
902 => 1.6486336135948
903 => 1.6300367041256
904 => 1.6687339205548
905 => 1.7185172712878
906 => 1.7292401282167
907 => 1.7466152528882
908 => 1.7283474338253
909 => 1.7503490097522
910 => 1.8280242407566
911 => 1.807035707681
912 => 1.7772286166386
913 => 1.838545751508
914 => 1.860736184253
915 => 2.0164802624768
916 => 2.2131135947013
917 => 2.1317061039963
918 => 2.0811738475124
919 => 2.0930501264272
920 => 2.1648539628973
921 => 2.1879150762316
922 => 2.1252270205464
923 => 2.1473695015958
924 => 2.2693767491786
925 => 2.3348297230456
926 => 2.245935793027
927 => 2.0006809656902
928 => 1.7745448142166
929 => 1.834526304631
930 => 1.8277262650604
1001 => 1.958807831874
1002 => 1.8065351381085
1003 => 1.8090990197464
1004 => 1.9428912145439
1005 => 1.9071977507509
1006 => 1.8493789106795
1007 => 1.7749669557353
1008 => 1.6374095747482
1009 => 1.5155711663366
1010 => 1.7545243429415
1011 => 1.7442202474581
1012 => 1.7292983902168
1013 => 1.7625053687938
1014 => 1.923749030798
1015 => 1.920031842494
1016 => 1.8963849870301
1017 => 1.9143209184856
1018 => 1.8462346551764
1019 => 1.8637820355266
1020 => 1.7745089930949
1021 => 1.8148641366456
1022 => 1.8492548574165
1023 => 1.8561593037746
1024 => 1.8717153739691
1025 => 1.7387904573601
1026 => 1.798469842447
1027 => 1.8335258899834
1028 => 1.6751413918641
1029 => 1.8303951377006
1030 => 1.7364765302932
1031 => 1.704599144329
1101 => 1.7475178450036
1102 => 1.7307923856109
1103 => 1.716412817777
1104 => 1.7083887718533
1105 => 1.7399035288646
1106 => 1.7384333277817
1107 => 1.6868690685606
1108 => 1.6196055944346
1109 => 1.6421814241996
1110 => 1.6339794135964
1111 => 1.6042542690903
1112 => 1.6242854274598
1113 => 1.5360783435376
1114 => 1.3843226402548
1115 => 1.4845771062463
1116 => 1.4807174183615
1117 => 1.4787711887071
1118 => 1.5541096490698
1119 => 1.54686759446
1120 => 1.5337231944287
1121 => 1.6040128618757
1122 => 1.5783561877281
1123 => 1.6574240119784
1124 => 1.7095031948158
1125 => 1.6962942294632
1126 => 1.7452749526424
1127 => 1.6427015257206
1128 => 1.6767723036124
1129 => 1.6837942437158
1130 => 1.6031454982902
1201 => 1.5480524841581
1202 => 1.5443784082219
1203 => 1.4488547140019
1204 => 1.4998827004139
1205 => 1.5447852167749
1206 => 1.523280396014
1207 => 1.5164726121994
1208 => 1.5512521032802
1209 => 1.5539547676034
1210 => 1.4923337346193
1211 => 1.5051466986611
1212 => 1.5585788886931
1213 => 1.5038003445651
1214 => 1.3973745813489
1215 => 1.37097952062
1216 => 1.3674579329613
1217 => 1.2958724348458
1218 => 1.3727433647908
1219 => 1.339187143857
1220 => 1.4451908437217
1221 => 1.3846420988682
1222 => 1.3820319634949
1223 => 1.3780863610544
1224 => 1.3164697656667
1225 => 1.3299598841177
1226 => 1.3748030924518
1227 => 1.3908036543803
1228 => 1.3891346646824
1229 => 1.3745833362668
1230 => 1.3812448599006
1231 => 1.3597857712475
]
'min_raw' => 0.75082963969051
'max_raw' => 2.3348297230456
'avg_raw' => 1.5428296813681
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.750829'
'max' => '$2.33'
'avg' => '$1.54'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.42772293055359
'max_diff' => 1.4582723564695
'year' => 2033
]
8 => [
'items' => [
101 => 1.3522081204117
102 => 1.3282909699771
103 => 1.2931393661196
104 => 1.2980274122333
105 => 1.2283828870741
106 => 1.1904368534526
107 => 1.1799338914669
108 => 1.1658888917506
109 => 1.1815203115572
110 => 1.2281855928847
111 => 1.171897363012
112 => 1.0753951410556
113 => 1.0811950890269
114 => 1.0942258500986
115 => 1.0699431130487
116 => 1.0469615403266
117 => 1.0669421532545
118 => 1.0260528896452
119 => 1.099167122255
120 => 1.0971895871632
121 => 1.1244420517263
122 => 1.1414835770944
123 => 1.1022083783801
124 => 1.0923307721149
125 => 1.0979575055558
126 => 1.0049601354823
127 => 1.1168421825521
128 => 1.1178097431411
129 => 1.1095249019545
130 => 1.1690986380485
131 => 1.2948178027211
201 => 1.2475171959296
202 => 1.2292009713115
203 => 1.1943818149235
204 => 1.2407762734536
205 => 1.2372139029048
206 => 1.2211035122941
207 => 1.2113598977853
208 => 1.2293128062733
209 => 1.2091353337476
210 => 1.2055109052421
211 => 1.183550811916
212 => 1.1757120577192
213 => 1.1699085561816
214 => 1.163519471229
215 => 1.1776122005736
216 => 1.1456762218259
217 => 1.1071645621787
218 => 1.103962734381
219 => 1.1128032624381
220 => 1.1088919868728
221 => 1.1039440086984
222 => 1.0944969708618
223 => 1.0916942365397
224 => 1.1008017633931
225 => 1.0905198965775
226 => 1.1056913511462
227 => 1.1015655549784
228 => 1.0785191929692
301 => 1.0497948930498
302 => 1.0495391865293
303 => 1.0433505832289
304 => 1.0354684664632
305 => 1.0332758418973
306 => 1.0652594417642
307 => 1.1314645362999
308 => 1.1184668920889
309 => 1.1278590220835
310 => 1.1740590059243
311 => 1.1887445915053
312 => 1.178321110707
313 => 1.1640528072981
314 => 1.1646805402352
315 => 1.2134396522927
316 => 1.2164806983026
317 => 1.2241644404909
318 => 1.2340402206282
319 => 1.1800029987685
320 => 1.1621353919451
321 => 1.1536687285751
322 => 1.1275946824067
323 => 1.1557133057796
324 => 1.1393297880997
325 => 1.1415404843754
326 => 1.1401007655257
327 => 1.140886949371
328 => 1.0991466853369
329 => 1.1143546437472
330 => 1.089068463258
331 => 1.0552131060899
401 => 1.0550996110615
402 => 1.0633856617655
403 => 1.0584567945736
404 => 1.0451933396928
405 => 1.0470773508569
406 => 1.0305714306098
407 => 1.0490814684242
408 => 1.0496122700766
409 => 1.0424848972695
410 => 1.0710021644155
411 => 1.082685712033
412 => 1.0779943225683
413 => 1.0823565516419
414 => 1.1190070028867
415 => 1.1249826256109
416 => 1.1276366024975
417 => 1.124080625054
418 => 1.0830264546105
419 => 1.0848473816455
420 => 1.0714866272668
421 => 1.0601981977385
422 => 1.0606496757196
423 => 1.0664533958903
424 => 1.0917985822594
425 => 1.1451360327927
426 => 1.1471601500513
427 => 1.1496134392163
428 => 1.1396346792577
429 => 1.1366249897703
430 => 1.140595547071
501 => 1.1606262891414
502 => 1.2121507960399
503 => 1.1939385940959
504 => 1.1791317904255
505 => 1.19212134913
506 => 1.190121708383
507 => 1.1732427281107
508 => 1.1727689913517
509 => 1.1403728316729
510 => 1.1283967090644
511 => 1.1183885646156
512 => 1.1074599321467
513 => 1.1009810724881
514 => 1.1109355455128
515 => 1.1132122512714
516 => 1.0914466220285
517 => 1.0884800471894
518 => 1.106254329873
519 => 1.098432530756
520 => 1.1064774451191
521 => 1.1083439342593
522 => 1.1080433865188
523 => 1.0998765299128
524 => 1.1050818407743
525 => 1.092769728809
526 => 1.0793821562661
527 => 1.070841719059
528 => 1.0633890548712
529 => 1.067524226114
530 => 1.0527830956859
531 => 1.0480671113816
601 => 1.1033183985777
602 => 1.1441331184808
603 => 1.143539656289
604 => 1.1399271078225
605 => 1.1345595935801
606 => 1.1602336220424
607 => 1.1512893038945
608 => 1.1577970426699
609 => 1.1594535353171
610 => 1.1644672396567
611 => 1.1662592080157
612 => 1.1608426350329
613 => 1.1426639545238
614 => 1.0973644110724
615 => 1.076277351312
616 => 1.0693182703583
617 => 1.0695712197338
618 => 1.062593746742
619 => 1.0646489252465
620 => 1.0618790395294
621 => 1.0566335460886
622 => 1.0672003316754
623 => 1.0684180552779
624 => 1.0659516412582
625 => 1.0665325710454
626 => 1.046111716382
627 => 1.0476642696102
628 => 1.0390194559462
629 => 1.037398657599
630 => 1.0155453214462
701 => 0.97682896875999
702 => 0.99828158643547
703 => 0.97236984097802
704 => 0.96255667034627
705 => 1.0090106938558
706 => 1.0043479983295
707 => 0.99636749041349
708 => 0.98456265592211
709 => 0.98018412797921
710 => 0.95358157827164
711 => 0.95200975771583
712 => 0.96519469968017
713 => 0.95911030262978
714 => 0.95056550482968
715 => 0.91961711336997
716 => 0.88482087470899
717 => 0.8858711544328
718 => 0.89693919054383
719 => 0.92912099826465
720 => 0.9165470092372
721 => 0.90742443592788
722 => 0.90571605217059
723 => 0.92710005163671
724 => 0.95736289096766
725 => 0.97156153808888
726 => 0.95749111001108
727 => 0.94132775984095
728 => 0.94231154807205
729 => 0.94885625042869
730 => 0.94954400610926
731 => 0.93902332676775
801 => 0.94198483637715
802 => 0.93748603247435
803 => 0.90987688122703
804 => 0.90937751923053
805 => 0.90260178825673
806 => 0.90239662181569
807 => 0.89086941314396
808 => 0.88925667696695
809 => 0.86636870449766
810 => 0.88143363728811
811 => 0.87132887131675
812 => 0.85609860552458
813 => 0.85347290196138
814 => 0.85339397014164
815 => 0.86903204768508
816 => 0.88125089724708
817 => 0.87150464804705
818 => 0.8692856160273
819 => 0.89297907253701
820 => 0.8899638642255
821 => 0.88735271327373
822 => 0.9546531856313
823 => 0.90137961023894
824 => 0.87814929061849
825 => 0.84939735877014
826 => 0.85875913275979
827 => 0.86073179609249
828 => 0.79158858292246
829 => 0.76353718995062
830 => 0.75391100897712
831 => 0.74837100573266
901 => 0.75089565477814
902 => 0.72564611100326
903 => 0.74261422200889
904 => 0.72075025139064
905 => 0.71708468556498
906 => 0.75618017345662
907 => 0.76162008220422
908 => 0.73841174143981
909 => 0.75331525329963
910 => 0.74791103272495
911 => 0.72112504641349
912 => 0.72010201876077
913 => 0.70666175240263
914 => 0.68563033810053
915 => 0.67601841741629
916 => 0.67101244566941
917 => 0.67307800717662
918 => 0.67203359607135
919 => 0.66521810714258
920 => 0.67242425191882
921 => 0.65401552980014
922 => 0.64668502832332
923 => 0.64337401087259
924 => 0.62703521042574
925 => 0.65303750783421
926 => 0.65816028799199
927 => 0.66329316160919
928 => 0.70797132208524
929 => 0.70573932744703
930 => 0.725915471951
1001 => 0.72513146407712
1002 => 0.71937690083272
1003 => 0.69509934508429
1004 => 0.70477594609979
1005 => 0.67499287225176
1006 => 0.69730837623087
1007 => 0.68712451213253
1008 => 0.69386520153518
1009 => 0.68174483420576
1010 => 0.68845274592356
1011 => 0.65937508921001
1012 => 0.63222278250457
1013 => 0.64314966334809
1014 => 0.65502843246538
1015 => 0.68078463056576
1016 => 0.6654444514612
1017 => 0.67096135994359
1018 => 0.6524806400469
1019 => 0.61434963614335
1020 => 0.61456545348443
1021 => 0.60869982926295
1022 => 0.60363107354043
1023 => 0.66720645556459
1024 => 0.65929985183182
1025 => 0.64670171357437
1026 => 0.66356482226208
1027 => 0.66802369585264
1028 => 0.66815063371532
1029 => 0.68045352251404
1030 => 0.68701957647133
1031 => 0.68817687194021
1101 => 0.7075357332865
1102 => 0.71402456826022
1103 => 0.74075116118268
1104 => 0.68646249266752
1105 => 0.6853444532651
1106 => 0.66380212078324
1107 => 0.65013963295244
1108 => 0.66473760301378
1109 => 0.6776694116665
1110 => 0.66420394812535
1111 => 0.66596225339238
1112 => 0.64788596875718
1113 => 0.65434738994602
1114 => 0.65991283632128
1115 => 0.65683992395468
1116 => 0.65223962541124
1117 => 0.67660915082938
1118 => 0.67523412670035
1119 => 0.69792758902269
1120 => 0.71561876572801
1121 => 0.74732451706006
1122 => 0.71423791268687
1123 => 0.71303210531617
1124 => 0.72481906578235
1125 => 0.71402276373799
1126 => 0.72084565395434
1127 => 0.74622524396473
1128 => 0.74676147470902
1129 => 0.73777891884795
1130 => 0.73723232950746
1201 => 0.73895752761898
1202 => 0.74906206684369
1203 => 0.74553123035744
1204 => 0.74961720372917
1205 => 0.75472677599715
1206 => 0.77586213331127
1207 => 0.78095779640629
1208 => 0.76857797688379
1209 => 0.76969573597571
1210 => 0.76506534364065
1211 => 0.76059244266363
1212 => 0.77064687084525
1213 => 0.78902153596742
1214 => 0.78890722812935
1215 => 0.79316979328524
1216 => 0.79582533606437
1217 => 0.78442580248024
1218 => 0.77700512528943
1219 => 0.77985068511434
1220 => 0.78440079724261
1221 => 0.77837514507603
1222 => 0.74118202855028
1223 => 0.75246404419871
1224 => 0.75058616513243
1225 => 0.74791183698415
1226 => 0.7592559909599
1227 => 0.75816181963469
1228 => 0.72538714043675
1229 => 0.72748526906182
1230 => 0.72551473458766
1231 => 0.73188193460708
]
'min_raw' => 0.60363107354043
'max_raw' => 1.3522081204117
'avg_raw' => 0.97791959697607
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.603631'
'max' => '$1.35'
'avg' => '$0.977919'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.14719856615009
'max_diff' => -0.98262160263389
'year' => 2034
]
9 => [
'items' => [
101 => 0.71367891404157
102 => 0.71927804056831
103 => 0.72278976023733
104 => 0.72485819010068
105 => 0.73233077710275
106 => 0.73145395526633
107 => 0.73227627262628
108 => 0.74335614646052
109 => 0.79939434616055
110 => 0.8024443817289
111 => 0.78742489109223
112 => 0.79342488135523
113 => 0.7819062121039
114 => 0.78963877194069
115 => 0.7949291929953
116 => 0.77102279753898
117 => 0.76960721595128
118 => 0.75804100505454
119 => 0.76425603164678
120 => 0.7543674774623
121 => 0.75679378277223
122 => 0.75000962160417
123 => 0.76221976099366
124 => 0.77587259409495
125 => 0.77932183890306
126 => 0.77024836080619
127 => 0.76367856469272
128 => 0.75214416694283
129 => 0.77132612746171
130 => 0.77693551727708
131 => 0.771296663725
201 => 0.7699900181456
202 => 0.76751392713369
203 => 0.77051533255901
204 => 0.77690496733547
205 => 0.77389173357292
206 => 0.77588202755943
207 => 0.7682970792651
208 => 0.78442957620019
209 => 0.81005186382992
210 => 0.81013424367432
211 => 0.80712099366931
212 => 0.80588803668864
213 => 0.80897981405308
214 => 0.81065697644193
215 => 0.82065521750351
216 => 0.83138372851008
217 => 0.88144900816164
218 => 0.86739087797494
219 => 0.91181177247862
220 => 0.94694293269979
221 => 0.95747723155067
222 => 0.94778617228492
223 => 0.91463358203754
224 => 0.91300695779722
225 => 0.96255092428938
226 => 0.94855248449792
227 => 0.9468874146274
228 => 0.92917388438493
301 => 0.93964477462163
302 => 0.93735463732817
303 => 0.93373954357309
304 => 0.95371727273618
305 => 0.99111379830529
306 => 0.98528519909295
307 => 0.98093442016187
308 => 0.9618705733786
309 => 0.97335126720646
310 => 0.96926321203256
311 => 0.98682809140354
312 => 0.97642304597389
313 => 0.94844643254866
314 => 0.95290180044875
315 => 0.9522283805536
316 => 0.9660873142766
317 => 0.96192720637284
318 => 0.95141605271805
319 => 0.99098598104642
320 => 0.98841653000028
321 => 0.99205942412542
322 => 0.99366313877955
323 => 1.0177486568527
324 => 1.0276157229566
325 => 1.0298557197095
326 => 1.039228669362
327 => 1.0296225121836
328 => 1.0680539899711
329 => 1.0936086801609
330 => 1.1232917678487
331 => 1.1666667370224
401 => 1.1829761266726
402 => 1.180029981412
403 => 1.2129163880078
404 => 1.2720125296367
405 => 1.1919750012586
406 => 1.2762547129871
407 => 1.2495727293099
408 => 1.1863102259997
409 => 1.1822368666024
410 => 1.2250789683369
411 => 1.3200986265844
412 => 1.2962972798974
413 => 1.3201375570609
414 => 1.2923266073988
415 => 1.290945559339
416 => 1.3187868413111
417 => 1.3838395141881
418 => 1.3529354277672
419 => 1.30862684189
420 => 1.3413436121838
421 => 1.3130013179611
422 => 1.2491381965689
423 => 1.2962790794562
424 => 1.2647573135645
425 => 1.2739570406409
426 => 1.3402111040364
427 => 1.3322392398422
428 => 1.3425555702843
429 => 1.3243475170793
430 => 1.3073383242395
501 => 1.2755894026846
502 => 1.2661901122151
503 => 1.2687877379498
504 => 1.2661888249608
505 => 1.2484255951385
506 => 1.2445896273496
507 => 1.2381961796438
508 => 1.2401777764278
509 => 1.2281562242719
510 => 1.2508433769695
511 => 1.2550543124286
512 => 1.2715641302104
513 => 1.2732782342617
514 => 1.3192578417813
515 => 1.2939330466154
516 => 1.3109231056503
517 => 1.3094033548536
518 => 1.1876813162751
519 => 1.2044535392286
520 => 1.2305458547307
521 => 1.2187913019643
522 => 1.2021731144943
523 => 1.1887530371015
524 => 1.168420247578
525 => 1.1970382583757
526 => 1.2346678993885
527 => 1.2742325840561
528 => 1.3217669603035
529 => 1.3111578408862
530 => 1.2733439619564
531 => 1.2750402649422
601 => 1.2855261425294
602 => 1.2719459783115
603 => 1.2679409227674
604 => 1.2849759093994
605 => 1.2850932199901
606 => 1.2694675998398
607 => 1.252102582501
608 => 1.2520298224443
609 => 1.248939885335
610 => 1.2928763003462
611 => 1.3170368861298
612 => 1.3198068583531
613 => 1.3168504449291
614 => 1.3179882511202
615 => 1.3039297385949
616 => 1.3360633293053
617 => 1.3655522898239
618 => 1.3576486184652
619 => 1.3457998915253
620 => 1.3363618098057
621 => 1.3554253063586
622 => 1.3545764388658
623 => 1.3652947294794
624 => 1.3648084859053
625 => 1.3612043279072
626 => 1.357648747181
627 => 1.371746222856
628 => 1.3676863762601
629 => 1.3636202236011
630 => 1.3554649319467
701 => 1.3565733715276
702 => 1.3447266904375
703 => 1.339245873698
704 => 1.2568275402539
705 => 1.2348026684609
706 => 1.2417321414846
707 => 1.2440135039277
708 => 1.2344282514977
709 => 1.2481710412329
710 => 1.2460292420099
711 => 1.2543617298761
712 => 1.2491559532119
713 => 1.249369600102
714 => 1.2646786792828
715 => 1.2691229700985
716 => 1.2668625679198
717 => 1.2684456761237
718 => 1.3049277364941
719 => 1.29974115414
720 => 1.2969858856368
721 => 1.2977491138421
722 => 1.3070710624509
723 => 1.3096806991018
724 => 1.2986234852359
725 => 1.303838131216
726 => 1.3260414319626
727 => 1.3338113306259
728 => 1.3586091173962
729 => 1.3480745768306
730 => 1.3674111819629
731 => 1.4268453138051
801 => 1.4743254108498
802 => 1.4306607514095
803 => 1.5178519030781
804 => 1.58574272148
805 => 1.5831369587916
806 => 1.5712986242603
807 => 1.4940067324806
808 => 1.4228815813077
809 => 1.4823807903973
810 => 1.4825324661174
811 => 1.4774214312894
812 => 1.4456772329298
813 => 1.476316801996
814 => 1.4787488597219
815 => 1.4773875541317
816 => 1.4530493516776
817 => 1.4158894149819
818 => 1.423150377664
819 => 1.4350439826567
820 => 1.4125269071395
821 => 1.405331337154
822 => 1.4187092707702
823 => 1.4618157602848
824 => 1.4536667281409
825 => 1.4534539239788
826 => 1.4883189392176
827 => 1.4633631126479
828 => 1.4232419616562
829 => 1.4131108418978
830 => 1.3771521918957
831 => 1.4019889595325
901 => 1.4028827905837
902 => 1.3892799467746
903 => 1.4243457574618
904 => 1.4240226198431
905 => 1.4573123882333
906 => 1.5209499223296
907 => 1.5021291720844
908 => 1.4802426872412
909 => 1.48262235499
910 => 1.5087214366746
911 => 1.492941336104
912 => 1.498615970292
913 => 1.5087128474361
914 => 1.5148045441085
915 => 1.4817458535848
916 => 1.4740382914437
917 => 1.4582713242899
918 => 1.4541580168638
919 => 1.4669998826221
920 => 1.4636165047046
921 => 1.4028076675449
922 => 1.3964528057246
923 => 1.3966477002639
924 => 1.3806680980594
925 => 1.3562953691536
926 => 1.4203454454981
927 => 1.4152013279874
928 => 1.4095226203786
929 => 1.4102182296585
930 => 1.4380201969411
1001 => 1.4218936518842
1002 => 1.4647687150068
1003 => 1.4559548909711
1004 => 1.4469150256066
1005 => 1.4456654408522
1006 => 1.4421858639319
1007 => 1.4302530999787
1008 => 1.4158435704573
1009 => 1.4063291509352
1010 => 1.29726430346
1011 => 1.3175061047504
1012 => 1.3407924520367
1013 => 1.3488308058057
1014 => 1.3350806454466
1015 => 1.4307960401179
1016 => 1.4482841650608
1017 => 1.3953114938865
1018 => 1.3854024699697
1019 => 1.4314456740762
1020 => 1.4036759934472
1021 => 1.4161806789341
1022 => 1.3891523886087
1023 => 1.4440717878742
1024 => 1.4436533940669
1025 => 1.4222885073418
1026 => 1.4403459633014
1027 => 1.4372080359563
1028 => 1.413087131463
1029 => 1.4448364635703
1030 => 1.4448522108429
1031 => 1.4242889718826
1101 => 1.4002756106489
1102 => 1.3959825888306
1103 => 1.3927483735768
1104 => 1.4153852602427
1105 => 1.4356814220436
1106 => 1.4734475473098
1107 => 1.4829428485028
1108 => 1.5200036411968
1109 => 1.4979357436047
1110 => 1.5077181567802
1111 => 1.518338350089
1112 => 1.5234300613059
1113 => 1.5151333911142
1114 => 1.5727040569989
1115 => 1.5775647851192
1116 => 1.5791945452128
1117 => 1.5597820405942
1118 => 1.5770248882488
1119 => 1.5689575308543
1120 => 1.5899465536184
1121 => 1.5932379003891
1122 => 1.5904502467673
1123 => 1.5914949721827
1124 => 1.5423685650115
1125 => 1.5398211016373
1126 => 1.5050862577694
1127 => 1.5192409633925
1128 => 1.4927794196827
1129 => 1.5011706477772
1130 => 1.5048694211667
1201 => 1.5029373918516
1202 => 1.5200412492109
1203 => 1.5054994763682
1204 => 1.4671213469476
1205 => 1.4287327614313
1206 => 1.4282508240109
1207 => 1.4181437870592
1208 => 1.4108382505394
1209 => 1.4122455560509
1210 => 1.4172050842314
1211 => 1.4105499937456
1212 => 1.4119701947224
1213 => 1.4355549936869
1214 => 1.4402847569201
1215 => 1.4242111734158
1216 => 1.3596734162388
1217 => 1.3438356887469
1218 => 1.3552195331923
1219 => 1.3497787887609
1220 => 1.0893768284452
1221 => 1.1505544064245
1222 => 1.1142047669834
1223 => 1.1309563532044
1224 => 1.0938527840286
1225 => 1.1115605520039
1226 => 1.108290573843
1227 => 1.2066623088576
1228 => 1.2051263695212
1229 => 1.2058615424015
1230 => 1.1707698253462
1231 => 1.2266718834592
]
'min_raw' => 0.71367891404157
'max_raw' => 1.5932379003891
'avg_raw' => 1.1534584072153
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.713678'
'max' => '$1.59'
'avg' => '$1.15'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.11004784050114
'max_diff' => 0.24102977997734
'year' => 2035
]
10 => [
'items' => [
101 => 1.2542112474586
102 => 1.2491144441188
103 => 1.2503971997131
104 => 1.22835520863
105 => 1.2060749570565
106 => 1.1813627291555
107 => 1.227274994072
108 => 1.2221703339618
109 => 1.2338785876559
110 => 1.2636559733307
111 => 1.2680408064846
112 => 1.2739340667101
113 => 1.2718217524301
114 => 1.3221456482988
115 => 1.3160510924613
116 => 1.3307372185062
117 => 1.3005267429928
118 => 1.2663407223447
119 => 1.2728383672447
120 => 1.2722125917901
121 => 1.264245752021
122 => 1.257053645299
123 => 1.2450808139703
124 => 1.2829646239399
125 => 1.2814266104391
126 => 1.306325261272
127 => 1.3019241828847
128 => 1.2725327042877
129 => 1.2735824266957
130 => 1.2806423143691
131 => 1.305076666215
201 => 1.3123304454604
202 => 1.3089702059008
203 => 1.3169236436958
204 => 1.3232097166412
205 => 1.3177130776757
206 => 1.3955338940417
207 => 1.3632172654381
208 => 1.3789681653618
209 => 1.382724662184
210 => 1.3731024745647
211 => 1.3751891825146
212 => 1.3783499764649
213 => 1.3975416983837
214 => 1.4479063298683
215 => 1.4702124823091
216 => 1.5373216424937
217 => 1.4683602668656
218 => 1.4642683842263
219 => 1.4763567704781
220 => 1.5157569517324
221 => 1.5476870979682
222 => 1.558280169569
223 => 1.5596802188536
224 => 1.5795535253907
225 => 1.5909445340825
226 => 1.5771403832572
227 => 1.5654428107876
228 => 1.5235435581577
229 => 1.5283935107375
301 => 1.5618048745457
302 => 1.6090003938443
303 => 1.6494990592594
304 => 1.635317838152
305 => 1.7435105448194
306 => 1.7542374097579
307 => 1.7527553038645
308 => 1.7771926985659
309 => 1.7286894466725
310 => 1.7079533667818
311 => 1.5679719587286
312 => 1.6073010246241
313 => 1.6644681316183
314 => 1.656901850642
315 => 1.6153855694617
316 => 1.6494675654373
317 => 1.6381989917252
318 => 1.6293110001049
319 => 1.6700286127394
320 => 1.6252579250604
321 => 1.6640215097609
322 => 1.6143068114246
323 => 1.6353826167755
324 => 1.6234189703363
325 => 1.6311609157919
326 => 1.5859016608529
327 => 1.6103224562117
328 => 1.5848856754779
329 => 1.5848736151318
330 => 1.5843120967873
331 => 1.6142383565166
401 => 1.615214250772
402 => 1.593098699616
403 => 1.5899115031845
404 => 1.6016962388688
405 => 1.5878993998097
406 => 1.5943548539692
407 => 1.5880949289399
408 => 1.5866856879616
409 => 1.5754566160841
410 => 1.5706188231695
411 => 1.5725158464259
412 => 1.5660403280693
413 => 1.5621385940298
414 => 1.5835359436816
415 => 1.5721042029292
416 => 1.5817838654571
417 => 1.5707526683358
418 => 1.5325137330498
419 => 1.5105221169974
420 => 1.4382923129932
421 => 1.458776595808
422 => 1.4723576965067
423 => 1.4678691428068
424 => 1.4775122929939
425 => 1.478104304097
426 => 1.4749692176709
427 => 1.4713391892189
428 => 1.4695722921216
429 => 1.482741295493
430 => 1.4903863451983
501 => 1.4737207416535
502 => 1.4698162239195
503 => 1.4866660692365
504 => 1.4969444651461
505 => 1.5728343656103
506 => 1.5672121966628
507 => 1.5813227374261
508 => 1.5797341070801
509 => 1.5945242017855
510 => 1.6186997558686
511 => 1.5695440948265
512 => 1.5780758179086
513 => 1.5759840364351
514 => 1.5988215580677
515 => 1.5988928543175
516 => 1.5852006192799
517 => 1.5926234020249
518 => 1.58848020833
519 => 1.5959675193229
520 => 1.5671371091688
521 => 1.602249436686
522 => 1.6221558637999
523 => 1.6224322645597
524 => 1.6318677530245
525 => 1.6414547557713
526 => 1.659856172692
527 => 1.6409415502408
528 => 1.6069159857525
529 => 1.6093725216067
530 => 1.5894233455966
531 => 1.5897586948495
601 => 1.587968574256
602 => 1.593340860911
603 => 1.5683160239797
604 => 1.5741893031885
605 => 1.5659666779023
606 => 1.578057943527
607 => 1.5650497404726
608 => 1.5759830277147
609 => 1.5807014720443
610 => 1.598112633201
611 => 1.5624780978132
612 => 1.4898168679114
613 => 1.505091139369
614 => 1.4824992921151
615 => 1.4845902535917
616 => 1.4888143285484
617 => 1.4751227195823
618 => 1.4777346471009
619 => 1.47764133067
620 => 1.4768371800829
621 => 1.4732754637958
622 => 1.4681102705154
623 => 1.4886868107819
624 => 1.4921831659333
625 => 1.4999551303283
626 => 1.5230792245939
627 => 1.5207685822731
628 => 1.524537335766
629 => 1.5163101680517
630 => 1.4849718883059
701 => 1.4866737076691
702 => 1.46545199294
703 => 1.4994124433698
704 => 1.491370160452
705 => 1.4861852483367
706 => 1.4847704970282
707 => 1.5079519114508
708 => 1.5148881539702
709 => 1.510565953106
710 => 1.5017009930349
711 => 1.5187243370617
712 => 1.523279065766
713 => 1.524298701551
714 => 1.554460803264
715 => 1.5259844279776
716 => 1.5328389745399
717 => 1.586316190102
718 => 1.5378197349384
719 => 1.5635093888386
720 => 1.5622520139627
721 => 1.5753939716075
722 => 1.5611739898508
723 => 1.5613502635672
724 => 1.5730194316425
725 => 1.5566321896263
726 => 1.5525744780488
727 => 1.5469687785663
728 => 1.5592086183058
729 => 1.5665458486694
730 => 1.6256785367973
731 => 1.6638809501062
801 => 1.6622224825928
802 => 1.6773777711445
803 => 1.6705501748454
804 => 1.6485020653668
805 => 1.6861354997663
806 => 1.6742267064725
807 => 1.6752084529224
808 => 1.6751719122705
809 => 1.6830902187261
810 => 1.6774793729002
811 => 1.6664198198358
812 => 1.6737616672877
813 => 1.6955643294612
814 => 1.7632404618352
815 => 1.8011129221012
816 => 1.7609604921732
817 => 1.7886571006751
818 => 1.7720490048846
819 => 1.7690308198314
820 => 1.7864263367339
821 => 1.803852302186
822 => 1.8027423435212
823 => 1.7900919874362
824 => 1.7829461222747
825 => 1.837057007318
826 => 1.876924985663
827 => 1.8742062568182
828 => 1.8862058417612
829 => 1.9214369942871
830 => 1.9246580893429
831 => 1.9242523054019
901 => 1.9162684852196
902 => 1.9509581302246
903 => 1.979896842394
904 => 1.9144204615221
905 => 1.9393530102094
906 => 1.9505460345916
907 => 1.9669807152054
908 => 1.9947087761733
909 => 2.0248288048892
910 => 2.029088107199
911 => 2.0260659283838
912 => 2.0062009597758
913 => 2.0391586546035
914 => 2.0584644992806
915 => 2.0699606879793
916 => 2.099113109736
917 => 1.9506151588996
918 => 1.8455009284706
919 => 1.8290858235212
920 => 1.8624665849279
921 => 1.8712688255043
922 => 1.867720653365
923 => 1.7494050304494
924 => 1.8284629162526
925 => 1.9135225540009
926 => 1.9167900411031
927 => 1.9593726742731
928 => 1.9732393251543
929 => 2.0075239262895
930 => 2.0053794151538
1001 => 2.013727169943
1002 => 2.0118081656799
1003 => 2.0753131698083
1004 => 2.1453686199462
1005 => 2.1429428224706
1006 => 2.1328715226548
1007 => 2.1478291202931
1008 => 2.2201338524337
1009 => 2.2134771913579
1010 => 2.21994357058
1011 => 2.3051949246899
1012 => 2.4160338118966
1013 => 2.3645380207467
1014 => 2.4762690700271
1015 => 2.5465978429406
1016 => 2.6682241835638
1017 => 2.6529959666954
1018 => 2.7003442085647
1019 => 2.6257342802763
1020 => 2.4544148037717
1021 => 2.4273028408302
1022 => 2.4815816772233
1023 => 2.6150209000442
1024 => 2.4773792012268
1025 => 2.5052239376326
1026 => 2.4972046516745
1027 => 2.4967773380056
1028 => 2.5130861627386
1029 => 2.4894293618523
1030 => 2.3930472992643
1031 => 2.4372186305653
1101 => 2.4201619582685
1102 => 2.439087607841
1103 => 2.5412215330523
1104 => 2.4960656901477
1105 => 2.4484976778105
1106 => 2.5081585214683
1107 => 2.5841272771349
1108 => 2.5793732889342
1109 => 2.5701485648121
1110 => 2.6221478516977
1111 => 2.7080354392713
1112 => 2.7312505090682
1113 => 2.748387398981
1114 => 2.7507502865699
1115 => 2.7750894972615
1116 => 2.6442114271017
1117 => 2.8519182856325
1118 => 2.8877835223146
1119 => 2.8810423442801
1120 => 2.9209050454124
1121 => 2.9091764275201
1122 => 2.8921835003581
1123 => 2.9553743606924
1124 => 2.8829311385586
1125 => 2.7801071050876
1126 => 2.7236958066967
1127 => 2.7979827549875
1128 => 2.8433472020515
1129 => 2.8733302158401
1130 => 2.8824030576962
1201 => 2.6543711191262
1202 => 2.531474551468
1203 => 2.6102498423249
1204 => 2.7063611339504
1205 => 2.643677524024
1206 => 2.6461346028573
1207 => 2.5567642480652
1208 => 2.7142684272923
1209 => 2.6913213931975
1210 => 2.8103706466736
1211 => 2.7819585869016
1212 => 2.8790386316459
1213 => 2.8534742023582
1214 => 2.9595907190437
1215 => 3.0019234705396
1216 => 3.0730067488678
1217 => 3.1252958977671
1218 => 3.1560010861328
1219 => 3.1541576617955
1220 => 3.2758269153644
1221 => 3.2040828073348
1222 => 3.1139552988616
1223 => 3.112325176582
1224 => 3.1590034903369
1225 => 3.2568284303973
1226 => 3.2821930140599
1227 => 3.2963683560272
1228 => 3.2746583263571
1229 => 3.1967852390375
1230 => 3.1631600347584
1231 => 3.1918096830201
]
'min_raw' => 1.1813627291555
'max_raw' => 3.2963683560272
'avg_raw' => 2.2388655425913
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$1.18'
'max' => '$3.29'
'avg' => '$2.23'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.4676838151139
'max_diff' => 1.7031304556382
'year' => 2036
]
11 => [
'items' => [
101 => 3.1567736250884
102 => 3.2172556904602
103 => 3.3003104844878
104 => 3.2831599979554
105 => 3.3404915030887
106 => 3.3998235794515
107 => 3.4846711134205
108 => 3.5068534006951
109 => 3.5435198780432
110 => 3.5812617275447
111 => 3.5933833924332
112 => 3.6165274118372
113 => 3.6164054314307
114 => 3.6861514916766
115 => 3.7630835559834
116 => 3.7921236292779
117 => 3.8588996765395
118 => 3.7445480357158
119 => 3.8312850688576
120 => 3.9095240439202
121 => 3.8162443124362
122 => 3.944808690897
123 => 3.9498005543795
124 => 4.0251717663517
125 => 3.9487686036408
126 => 3.9034006495106
127 => 4.0343762331694
128 => 4.0977511924097
129 => 4.078662138924
130 => 3.933393499355
131 => 3.8488409202608
201 => 3.6275505117969
202 => 3.8896785596567
203 => 4.0173534853892
204 => 3.9330628521414
205 => 3.9755741446582
206 => 4.2075019722974
207 => 4.2958050728477
208 => 4.2774386452185
209 => 4.2805422691507
210 => 4.3281890193929
211 => 4.5394809495117
212 => 4.4128699272759
213 => 4.5096593097507
214 => 4.5609960492152
215 => 4.6086804738574
216 => 4.4915825977533
217 => 4.3392399814513
218 => 4.2909866799604
219 => 3.9246818098517
220 => 3.9056140505811
221 => 3.8949107394903
222 => 3.8274278770761
223 => 3.7744048323303
224 => 3.7322389385289
225 => 3.6215830413924
226 => 3.6589261583381
227 => 3.4825637539831
228 => 3.5953941703896
301 => 3.3139155146199
302 => 3.5483393033283
303 => 3.4207530930761
304 => 3.5064238018403
305 => 3.5061249048081
306 => 3.3483779680502
307 => 3.2573928270228
308 => 3.3153721000801
309 => 3.377530483198
310 => 3.387615471733
311 => 3.4682054379451
312 => 3.4906963652393
313 => 3.4225478055367
314 => 3.3080824951252
315 => 3.334670176058
316 => 3.2568540285173
317 => 3.1204842231072
318 => 3.2184273981411
319 => 3.2518695043551
320 => 3.266639443614
321 => 3.1325354021711
322 => 3.0903970008093
323 => 3.0679628694998
324 => 3.2907713473813
325 => 3.3029772987614
326 => 3.2405299257534
327 => 3.5227979732523
328 => 3.4589120207344
329 => 3.5302882821353
330 => 3.3322576226923
331 => 3.3398226605666
401 => 3.2460717728042
402 => 3.2985660055146
403 => 3.261464773803
404 => 3.2943249902697
405 => 3.3140212685321
406 => 3.4077567726963
407 => 3.5494096122164
408 => 3.3937558141778
409 => 3.3259352253689
410 => 3.3680107372285
411 => 3.4800633699566
412 => 3.6498288444085
413 => 3.5493242666844
414 => 3.5939264915999
415 => 3.6036700935291
416 => 3.5295617387971
417 => 3.6525613251545
418 => 3.7184778027303
419 => 3.7860944692299
420 => 3.8448041261756
421 => 3.7590868857076
422 => 3.8508166200921
423 => 3.7768986466561
424 => 3.7105865829843
425 => 3.7106871510125
426 => 3.6690886248065
427 => 3.5884862385309
428 => 3.5736219218392
429 => 3.6509479744256
430 => 3.7129561457956
501 => 3.7180634357887
502 => 3.752394345554
503 => 3.7727110243166
504 => 3.9718420953755
505 => 4.051934259454
506 => 4.1498694416221
507 => 4.188020714401
508 => 4.3028423674773
509 => 4.2101145572595
510 => 4.1900523122336
511 => 3.9115325397471
512 => 3.9571401368888
513 => 4.0301623003912
514 => 3.9127366483275
515 => 3.9872161969026
516 => 4.0019200374839
517 => 3.9087465696039
518 => 3.9585145445865
519 => 3.8263455582089
520 => 3.5522905349433
521 => 3.6528664267382
522 => 3.7269241365783
523 => 3.6212346533866
524 => 3.8106789612598
525 => 3.7000095075246
526 => 3.6649326037612
527 => 3.5280850963609
528 => 3.5926718521102
529 => 3.6800263640544
530 => 3.6260514317249
531 => 3.7380575206855
601 => 3.8966880135864
602 => 4.0097375494368
603 => 4.0184160890577
604 => 3.9457328112366
605 => 4.0622082278035
606 => 4.063056624054
607 => 3.9316718783506
608 => 3.8511994531605
609 => 3.8329159488419
610 => 3.878591727322
611 => 3.9340505546106
612 => 4.0214936679985
613 => 4.0743337100502
614 => 4.2121125155284
615 => 4.2493915098628
616 => 4.2903498223515
617 => 4.3450827589122
618 => 4.4108036824903
619 => 4.2670100431958
620 => 4.2727232325499
621 => 4.1388245865974
622 => 3.9957346803889
623 => 4.1043220827925
624 => 4.2462856666584
625 => 4.2137190636638
626 => 4.2100546555516
627 => 4.2162171735743
628 => 4.1916630184421
629 => 4.0806054847988
630 => 4.0248330866601
701 => 4.0967937093153
702 => 4.1350375776577
703 => 4.1943504822409
704 => 4.1870389148075
705 => 4.339822587273
706 => 4.3991897024547
707 => 4.3840010539292
708 => 4.3867961307931
709 => 4.4942774570865
710 => 4.6138187971454
711 => 4.7257850369797
712 => 4.8396819052011
713 => 4.7023747850898
714 => 4.6326586974231
715 => 4.7045879043216
716 => 4.6664212546644
717 => 4.8857381445584
718 => 4.9009231701696
719 => 5.1202242009563
720 => 5.3283669930538
721 => 5.1976362346028
722 => 5.3209094515794
723 => 5.4542394863524
724 => 5.7114547554481
725 => 5.624833701759
726 => 5.558483332158
727 => 5.4957825534878
728 => 5.6262529204322
729 => 5.7941009631913
730 => 5.830253823973
731 => 5.8888352698952
801 => 5.8272440425064
802 => 5.901423891845
803 => 6.1633113562877
804 => 6.0925470516507
805 => 5.9920503631365
806 => 6.1987853643746
807 => 6.2736019576607
808 => 6.7987039910965
809 => 7.4616669991924
810 => 7.1871959605909
811 => 7.0168229298059
812 => 7.0568646333427
813 => 7.2989562811852
814 => 7.3767084348674
815 => 7.1653512783846
816 => 7.2400061991812
817 => 7.6513621526805
818 => 7.8720414238539
819 => 7.5723293324202
820 => 6.7454355589087
821 => 5.9830017358939
822 => 6.1852335185999
823 => 6.1623067104239
824 => 6.6042573647587
825 => 6.0908593463884
826 => 6.0995036523352
827 => 6.5505933781677
828 => 6.4302503729513
829 => 6.2353101168683
830 => 5.9844250154971
831 => 5.5206407015494
901 => 5.1098540011036
902 => 5.9155013192051
903 => 5.8807603418739
904 => 5.8304502583741
905 => 5.9424099050834
906 => 6.4860541692036
907 => 6.4735214093108
908 => 6.3937943851436
909 => 6.4542666302927
910 => 6.2247090399146
911 => 6.2838712578842
912 => 5.9828809624809
913 => 6.1189411464683
914 => 6.2348918626308
915 => 6.2581706855802
916 => 6.3106190623311
917 => 5.8624534254627
918 => 6.0636666389648
919 => 6.1818605507688
920 => 5.6478561573069
921 => 6.1713050008651
922 => 5.8546518588033
923 => 5.747175026417
924 => 5.8918784222292
925 => 5.8354873681525
926 => 5.7870056512512
927 => 5.7599520201986
928 => 5.8662062237521
929 => 5.8612493381551
930 => 5.6873968380893
1001 => 5.4606133388879
1002 => 5.5367293251345
1003 => 5.50907567374
1004 => 5.4088552736941
1005 => 5.4763917226678
1006 => 5.1789953808023
1007 => 4.6673404319394
1008 => 5.0053553635732
1009 => 4.9923421563948
1010 => 4.9857803072334
1011 => 5.2397891863097
1012 => 5.2153720935684
1013 => 5.1710548311501
1014 => 5.4080413524157
1015 => 5.3215380842353
1016 => 5.5881207740342
1017 => 5.7637093750232
1018 => 5.7191744261162
1019 => 5.8843163540397
1020 => 5.538482883725
1021 => 5.653354890133
1022 => 5.6770298514479
1023 => 5.4051169755298
1024 => 5.2193670319121
1025 => 5.2069796283772
1026 => 4.8849148240632
1027 => 5.0569592429115
1028 => 5.2083512118162
1029 => 5.1358462072022
1030 => 5.1128932887668
1031 => 5.2301547711726
1101 => 5.2392669926322
1102 => 5.0315073776832
1103 => 5.0747071805224
1104 => 5.2548575397317
1105 => 5.0701678536886
1106 => 4.7113459625957
1107 => 4.6223531725039
1108 => 4.6104798938431
1109 => 4.3691243890069
1110 => 4.6283000962734
1111 => 4.5151629545745
1112 => 4.8725618296104
1113 => 4.6684175089585
1114 => 4.6596172553132
1115 => 4.646314381212
1116 => 4.4385697279291
1117 => 4.4840526041366
1118 => 4.6352446118879
1119 => 4.6891916235534
1120 => 4.6835645082619
1121 => 4.6345036885674
1122 => 4.6569634805915
1123 => 4.5846126649716
1124 => 4.5590640861242
1125 => 4.4784257435917
1126 => 4.3599096569795
1127 => 4.3763900457243
1128 => 4.1415786667246
1129 => 4.0136409650625
1130 => 3.9782294954342
1201 => 3.9308757983001
1202 => 3.9835782215289
1203 => 4.1409134755904
1204 => 3.951133778656
1205 => 3.6257697997599
1206 => 3.6453247292848
1207 => 3.6892588500166
1208 => 3.6073879066862
1209 => 3.5299039297315
1210 => 3.5972699612199
1211 => 3.459408954164
1212 => 3.7059186940805
1213 => 3.6992512964513
1214 => 3.7911348834321
1215 => 3.8485915760123
1216 => 3.7161725014402
1217 => 3.6828694622846
1218 => 3.7018403869264
1219 => 3.3882932608546
1220 => 3.7655113939054
1221 => 3.7687735919844
1222 => 3.7408406714946
1223 => 3.9416976820409
1224 => 4.3655686231663
1225 => 4.2060913249458
1226 => 4.144336894848
1227 => 4.0269416780898
1228 => 4.1833638341818
1229 => 4.1713530531597
1230 => 4.1170357464243
1231 => 4.0841844698304
]
'min_raw' => 3.0679628694998
'max_raw' => 7.8720414238539
'avg_raw' => 5.4700021466768
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$3.06'
'max' => '$7.87'
'avg' => '$5.47'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 1.8866001403443
'max_diff' => 4.5756730678267
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.096299848790951
]
1 => [
'year' => 2028
'avg' => 0.16527849657113
]
2 => [
'year' => 2029
'avg' => 0.45151106408158
]
3 => [
'year' => 2030
'avg' => 0.34834011352849
]
4 => [
'year' => 2031
'avg' => 0.3421131608
]
5 => [
'year' => 2032
'avg' => 0.59983203785652
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.096299848790951
'min' => '$0.096299'
'max_raw' => 0.59983203785652
'max' => '$0.599832'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.59983203785652
]
1 => [
'year' => 2033
'avg' => 1.5428296813681
]
2 => [
'year' => 2034
'avg' => 0.97791959697607
]
3 => [
'year' => 2035
'avg' => 1.1534584072153
]
4 => [
'year' => 2036
'avg' => 2.2388655425913
]
5 => [
'year' => 2037
'avg' => 5.4700021466768
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.59983203785652
'min' => '$0.599832'
'max_raw' => 5.4700021466768
'max' => '$5.47'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 5.4700021466768
]
]
]
]
'prediction_2025_max_price' => '$0.164655'
'last_price' => 0.159654
'sma_50day_nextmonth' => '$0.142641'
'sma_200day_nextmonth' => '—'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'decrease'
'sma_200day_direction_label' => 'disminuir'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.168093'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.169799'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.170997'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.133846'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.16934'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '—'
'daily_sma100_action' => '—'
'daily_sma200' => '—'
'daily_sma200_action' => '—'
'daily_ema3' => '$0.165776'
'daily_ema3_action' => 'SELL'
'daily_ema5' => '$0.167178'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.161748'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.151752'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.192495'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.171121'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.08556'
'daily_ema200_action' => 'BUY'
'weekly_sma21' => '—'
'weekly_sma21_action' => '—'
'weekly_sma50' => '—'
'weekly_sma50_action' => '—'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.1623043'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.164906'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.208500019'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.139421'
'weekly_ema21_action' => 'BUY'
'weekly_ema50' => '$0.058556'
'weekly_ema50_action' => 'BUY'
'weekly_ema100' => '$0.029278'
'weekly_ema100_action' => 'BUY'
'weekly_ema200' => '$0.014639'
'weekly_ema200_action' => 'BUY'
'rsi_14' => '52.05'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 74.53
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => -0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.172252'
'vwma_10_action' => 'SELL'
'hma_9' => '0.168366'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 69.97
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => 41.89
'cci_20_action' => 'NEUTRAL'
'adx_14' => 24.87
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.042466'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0.01
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -30.03
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 53.09
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '—'
'ichimoku_cloud_action' => '—'
'sell_signals' => 19
'buy_signals' => 8
'sell_pct' => 70.37
'buy_pct' => 29.63
'overall_action' => 'bearish'
'overall_action_label' => 'Bajista'
'overall_action_dir' => -1
'last_updated' => 1767701766
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de Apro para 2026
La previsión del precio de Apro para 2026 sugiere que el precio medio podría oscilar entre $0.05516 en el extremo inferior y $0.164655 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, Apro podría potencialmente ganar 3.13% para 2026 si AT alcanza el objetivo de precio previsto.
Predicción de precio de Apro 2027-2032
La predicción del precio de AT para 2027-2032 está actualmente dentro de un rango de precios de $0.096299 en el extremo inferior y $0.599832 en el extremo superior. Considerando la volatilidad de precios en el mercado, si Apro alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de Apro | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.0531015 | $0.096299 | $0.139498 |
| 2028 | $0.095832 | $0.165278 | $0.234724 |
| 2029 | $0.210516 | $0.451511 | $0.6925052 |
| 2030 | $0.179035 | $0.34834 | $0.517644 |
| 2031 | $0.211675 | $0.342113 | $0.47255 |
| 2032 | $0.3231067 | $0.599832 | $0.876557 |
Predicción de precio de Apro 2032-2037
La predicción de precio de Apro para 2032-2037 se estima actualmente entre $0.599832 en el extremo inferior y $5.47 en el extremo superior. Comparado con el precio actual, Apro podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de Apro | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.3231067 | $0.599832 | $0.876557 |
| 2033 | $0.750829 | $1.54 | $2.33 |
| 2034 | $0.603631 | $0.977919 | $1.35 |
| 2035 | $0.713678 | $1.15 | $1.59 |
| 2036 | $1.18 | $2.23 | $3.29 |
| 2037 | $3.06 | $5.47 | $7.87 |
Apro Histograma de precios potenciales
Pronóstico de precio de Apro basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para Apro es Bajista, con 8 indicadores técnicos mostrando señales alcistas y 19 indicando señales bajistas. La predicción de precio de AT se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de Apro
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de Apro disminuir durante el próximo mes, alcanzando — para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para Apro alcance $0.142641 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 52.05, lo que sugiere que el mercado de AT está en un estado NEUTRAL.
Promedios Móviles y Osciladores Populares de AT para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.168093 | SELL |
| SMA 5 | $0.169799 | SELL |
| SMA 10 | $0.170997 | SELL |
| SMA 21 | $0.133846 | BUY |
| SMA 50 | $0.16934 | SELL |
| SMA 100 | — | — |
| SMA 200 | — | — |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.165776 | SELL |
| EMA 5 | $0.167178 | SELL |
| EMA 10 | $0.161748 | SELL |
| EMA 21 | $0.151752 | BUY |
| EMA 50 | $0.192495 | SELL |
| EMA 100 | $0.171121 | SELL |
| EMA 200 | $0.08556 | BUY |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | — | — |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.139421 | BUY |
| EMA 50 | $0.058556 | BUY |
| EMA 100 | $0.029278 | BUY |
| EMA 200 | $0.014639 | BUY |
Osciladores de Apro
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 52.05 | NEUTRAL |
| Stoch RSI (14) | 74.53 | NEUTRAL |
| Estocástico Rápido (14) | 69.97 | NEUTRAL |
| Índice de Canal de Materias Primas (20) | 41.89 | NEUTRAL |
| Índice Direccional Medio (14) | 24.87 | NEUTRAL |
| Oscilador Asombroso (5, 34) | 0.042466 | BUY |
| Momentum (10) | -0 | SELL |
| MACD (12, 26) | 0.01 | NEUTRAL |
| Rango Percentil de Williams (14) | -30.03 | NEUTRAL |
| Oscilador Ultimate (7, 14, 28) | 53.09 | NEUTRAL |
| VWMA (10) | 0.172252 | SELL |
| Promedio Móvil de Hull (9) | 0.168366 | SELL |
| Nube Ichimoku B/L (9, 26, 52, 26) | — | — |
Predicción de precios de Apro basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de Apro
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de Apro por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.22434 | $0.315235 | $0.442959 | $0.622431 | $0.87462 | $1.22 |
| Amazon.com acción | $0.333127 | $0.69509 | $1.45 | $3.02 | $6.31 | $13.17 |
| Apple acción | $0.226457 | $0.321211 | $0.455614 | $0.646254 | $0.916662 | $1.30 |
| Netflix acción | $0.2519089 | $0.397472 | $0.627149 | $0.989544 | $1.56 | $2.46 |
| Google acción | $0.206751 | $0.267741 | $0.346724 | $0.4490067 | $0.581461 | $0.75299 |
| Tesla acción | $0.361923 | $0.820453 | $1.85 | $4.21 | $9.55 | $21.66 |
| Kodak acción | $0.119723 | $0.089779 | $0.067325 | $0.050486 | $0.037859 | $0.02839 |
| Nokia acción | $0.105764 | $0.070064 | $0.046414 | $0.030747 | $0.020369 | $0.013493 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de Apro
Podría preguntarse cosas como: "¿Debo invertir en Apro ahora?", "¿Debería comprar AT hoy?", "¿Será Apro una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de Apro regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como Apro, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de Apro a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de Apro es de $0.1596 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Pronóstico a corto plazo de Apro
basado en el historial de precios de las últimas 4 horas
Pronóstico a largo plazo de Apro
basado en el historial de precios del último mes
Predicción de precios de Apro basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Apro ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.1638039 | $0.168061 | $0.17243 | $0.176912 |
| Si Apro ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.167953 | $0.176685 | $0.18587 | $0.195533 |
| Si Apro ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.1804036 | $0.203849 | $0.230343 | $0.26028 |
| Si Apro ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.201153 | $0.253439 | $0.319316 | $0.402317 |
| Si Apro ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.242652 | $0.368798 | $0.560523 | $0.85192 |
| Si Apro ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.36715 | $0.84432 | $1.94 | $4.46 |
| Si Apro ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.574646 | $2.06 | $7.44 | $26.79 |
Cuadro de preguntas
¿Es AT una buena inversión?
La decisión de adquirir Apro depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de Apro ha experimentado un aumento de 0.2471% durante las últimas 24 horas, y Apro ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en Apro dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede Apro subir?
Parece que el valor medio de Apro podría potencialmente aumentar hasta $0.164655 para el final de este año. Mirando las perspectivas de Apro en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.517644. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de Apro la próxima semana?
Basado en nuestro nuevo pronóstico experimental de Apro, el precio de Apro aumentará en un 0.86% durante la próxima semana y alcanzará $0.1610202 para el 13 de enero de 2026.
¿Cuál será el precio de Apro el próximo mes?
Basado en nuestro nuevo pronóstico experimental de Apro, el precio de Apro disminuirá en un -11.62% durante el próximo mes y alcanzará $0.141105 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de Apro este año en 2026?
Según nuestra predicción más reciente sobre el valor de Apro en 2026, se anticipa que AT fluctúe dentro del rango de $0.05516 y $0.164655. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de Apro no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará Apro en 5 años?
El futuro de Apro parece estar en una tendencia alcista, con un precio máximo de $0.517644 proyectada después de un período de cinco años. Basado en el pronóstico de Apro para 2030, el valor de Apro podría potencialmente alcanzar su punto más alto de aproximadamente $0.517644, mientras que su punto más bajo se anticipa que esté alrededor de $0.179035.
¿Cuánto será Apro en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de Apro, se espera que el valor de AT en 2026 crezca en un 3.13% hasta $0.164655 si ocurre lo mejor. El precio estará entre $0.164655 y $0.05516 durante 2026.
¿Cuánto será Apro en 2027?
Según nuestra última simulación experimental para la predicción de precios de Apro, el valor de AT podría disminuir en un -12.62% hasta $0.139498 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.139498 y $0.0531015 a lo largo del año.
¿Cuánto será Apro en 2028?
Nuestro nuevo modelo experimental de predicción de precios de Apro sugiere que el valor de AT en 2028 podría aumentar en un 47.02% , alcanzando $0.234724 en el mejor escenario. Se espera que el precio oscile entre $0.234724 y $0.095832 durante el año.
¿Cuánto será Apro en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de Apro podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.6925052 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.6925052 y $0.210516.
¿Cuánto será Apro en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de Apro, se espera que el valor de AT en 2030 aumente en un 224.23% , alcanzando $0.517644 en el mejor escenario. Se pronostica que el precio oscile entre $0.517644 y $0.179035 durante el transcurso de 2030.
¿Cuánto será Apro en 2031?
Nuestra simulación experimental indica que el precio de Apro podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.47255 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.47255 y $0.211675 durante el año.
¿Cuánto será Apro en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de Apro, AT podría experimentar un 449.04% aumento en valor, alcanzando $0.876557 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.876557 y $0.3231067 a lo largo del año.
¿Cuánto será Apro en 2033?
Según nuestra predicción experimental de precios de Apro, se anticipa que el valor de AT aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $2.33. A lo largo del año, el precio de AT podría oscilar entre $2.33 y $0.750829.
¿Cuánto será Apro en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de Apro sugieren que AT podría aumentar en un 746.96% en 2034, alcanzando potencialmente $1.35 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $1.35 y $0.603631.
¿Cuánto será Apro en 2035?
Basado en nuestra predicción experimental para el precio de Apro, AT podría crecer en un 897.93% , con el valor potencialmente alcanzando $1.59 en 2035. El rango de precios esperado para el año está entre $1.59 y $0.713678.
¿Cuánto será Apro en 2036?
Nuestra reciente simulación de predicción de precios de Apro sugiere que el valor de AT podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $3.29 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $3.29 y $1.18.
¿Cuánto será Apro en 2037?
Según la simulación experimental, el valor de Apro podría aumentar en un 4830.69% en 2037, con un máximo de $7.87 bajo condiciones favorables. Se espera que el precio caiga entre $7.87 y $3.06 durante el transcurso del año.
Predicciones relacionadas
¿Cómo leer y predecir los movimientos de precio de Apro?
Los traders de Apro utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de Apro
Las medias móviles son herramientas populares para la predicción de precios de Apro. Una media móvil simple (SMA) calcula el precio de cierre promedio de AT durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de AT por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de AT.
¿Cómo leer gráficos de Apro y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de Apro en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de AT dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de Apro?
La acción del precio de Apro está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de AT. La capitalización de mercado de Apro puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de AT, grandes poseedores de Apro, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de Apro.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


