Prédiction du prix de yesnoerror jusqu'à $0.001491 d'ici 2026
| Année | Prix min. | Prix max. |
|---|---|---|
| 2026 | $0.000499 | $0.001491 |
| 2027 | $0.000481 | $0.001263 |
| 2028 | $0.000868 | $0.002126 |
| 2029 | $0.0019072 | $0.006274 |
| 2030 | $0.001622 | $0.004689 |
| 2031 | $0.001917 | $0.004281 |
| 2032 | $0.002927 | $0.007941 |
| 2033 | $0.0068024 | $0.021153 |
| 2034 | $0.005468 | $0.01225 |
| 2035 | $0.006465 | $0.014434 |
Calculateur de profit d’investissement
Si vous ouvrez une position short de $10,000.00 sur yesnoerror aujourd’hui et la fermez le Apr 06, 2026, notre prévision indique que vous pourriez gagner environ $3,957.62, soit un rendement de 39.58% sur les 90 prochains jours.
Prévision du prix à long terme de yesnoerror pour 2027, 2028, 2029, 2030, 2031, 2032 et 2037
[
'name' => 'yesnoerror'
'name_with_ticker' => 'yesnoerror <small>YNE</small>'
'name_lang' => 'yesnoerror'
'name_lang_with_ticker' => 'yesnoerror <small>YNE</small>'
'name_with_lang' => 'yesnoerror'
'name_with_lang_with_ticker' => 'yesnoerror <small>YNE</small>'
'image' => '/uploads/coins/yne.jpg?1757893217'
'price_for_sd' => 0.001446
'ticker' => 'YNE'
'marketcap' => '$1.45M'
'low24h' => '$0.001357'
'high24h' => '$0.00149'
'volume24h' => '$535.04K'
'current_supply' => '1000M'
'max_supply' => '1000M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.001446'
'change_24h_pct' => '4.526%'
'ath_price' => '$0.1113'
'ath_days' => 359
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '12 janv. 2025'
'ath_pct' => '-98.70%'
'fdv' => '$1.45M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.071319'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.001458'
'next_week_prediction_price_date' => '13 janvier 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.001278'
'next_month_prediction_price_date' => '5 février 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.000499'
'current_year_max_price_prediction' => '$0.001491'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.001622'
'grand_prediction_max_price' => '$0.004689'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0014738594666673
107 => 0.0014793623229048
108 => 0.0014917605389909
109 => 0.001385819139992
110 => 0.0014333837178664
111 => 0.0014613234511694
112 => 0.0013350907196504
113 => 0.0014588282359365
114 => 0.0013839749359338
115 => 0.001358568601654
116 => 0.0013927748837317
117 => 0.0013794446623393
118 => 0.001367984120763
119 => 0.0013615889416464
120 => 0.0013867062599946
121 => 0.001385534507072
122 => 0.0013444376991928
123 => 0.0012908285886347
124 => 0.0013088215657971
125 => 0.0013022845485089
126 => 0.0012785935545646
127 => 0.0012945584240216
128 => 0.0012242572185688
129 => 0.001103307648526
130 => 0.0011832106392818
131 => 0.0011801344610554
201 => 0.0011785833125001
202 => 0.0012386282016966
203 => 0.0012328562710717
204 => 0.0012223801604685
205 => 0.001278401152578
206 => 0.0012579527368693
207 => 0.0013209699358307
208 => 0.0013624771387635
209 => 0.0013519495694824
210 => 0.0013909872944624
211 => 0.0013092360876502
212 => 0.0013363905592641
213 => 0.0013419870582292
214 => 0.0012777098622312
215 => 0.0012338006303046
216 => 0.001230872385137
217 => 0.0011547398280411
218 => 0.0011954092255212
219 => 0.0012311966122896
220 => 0.0012140572312409
221 => 0.0012086314152254
222 => 0.001236350732533
223 => 0.0012385047608877
224 => 0.0011893926861268
225 => 0.0011996046416468
226 => 0.0012421901937612
227 => 0.0011985315949967
228 => 0.001113710069189
301 => 0.0010926731580393
302 => 0.0010898664463048
303 => 0.0010328126748084
304 => 0.0010940789450342
305 => 0.0010673345762467
306 => 0.0011518197167998
307 => 0.0011035622576188
308 => 0.0011014819750044
309 => 0.0010983373227218
310 => 0.0010492287847332
311 => 0.0010599804335423
312 => 0.0010957205517061
313 => 0.0011084730285081
314 => 0.0011071428406997
315 => 0.0010955454056291
316 => 0.001100854652016
317 => 0.0010837517195399
318 => 0.0010777123181158
319 => 0.0010586503059532
320 => 0.0010306344140894
321 => 0.0010345301956845
322 => 0.00097902338314554
323 => 0.00094878032570479
324 => 0.00094040944600228
325 => 0.00092921555582094
326 => 0.00094167382568407
327 => 0.00097886613931968
328 => 0.00093400431828562
329 => 0.0008570918728136
330 => 0.0008617144418389
331 => 0.00087209998198568
401 => 0.00085274659662937
402 => 0.00083443024159613
403 => 0.00085035482624468
404 => 0.00081776600917932
405 => 0.00087603818483311
406 => 0.00087446208578756
407 => 0.00089618234934413
408 => 0.00090976447589072
409 => 0.00087846207146651
410 => 0.00087058960140452
411 => 0.00087507411813564
412 => 0.00080095504595462
413 => 0.00089012523986412
414 => 0.00089089638740392
415 => 0.00088429335399089
416 => 0.00093177372942682
417 => 0.0010319721310971
418 => 0.00099427346191739
419 => 0.00097967539776269
420 => 0.00095192446713348
421 => 0.00098890093450969
422 => 0.00098606171873794
423 => 0.00097322170827751
424 => 0.00096545602988777
425 => 0.00097976453042957
426 => 0.00096368304832547
427 => 0.00096079437225
428 => 0.00094329213814322
429 => 0.00093704463686802
430 => 0.00093241923564404
501 => 0.00092732712337899
502 => 0.00093855905416038
503 => 0.00091310602132619
504 => 0.00088241215891972
505 => 0.00087986029637282
506 => 0.00088690621322687
507 => 0.00088378891952577
508 => 0.00087984537196989
509 => 0.00087231606572444
510 => 0.00087008228139959
511 => 0.00087734099677726
512 => 0.00086914633032526
513 => 0.00088123800706177
514 => 0.00087794974005243
515 => 0.00085958174784022
516 => 0.00083668842884209
517 => 0.00083648463028265
518 => 0.00083155230225707
519 => 0.00082527024093601
520 => 0.00082352271519059
521 => 0.00084901370214285
522 => 0.000901779282253
523 => 0.00089142013630406
524 => 0.00089890568090015
525 => 0.00093572715159712
526 => 0.00094743158987143
527 => 0.00093912405681914
528 => 0.00092775219319084
529 => 0.0009282524974773
530 => 0.00096711359799242
531 => 0.00096953731716356
601 => 0.00097566127358757
602 => 0.0009835322882223
603 => 0.00094046452464666
604 => 0.00092622400968591
605 => 0.00091947606366381
606 => 0.00089869500169951
607 => 0.0009211055953944
608 => 0.00090804790216569
609 => 0.00090980983109656
610 => 0.00090866237256891
611 => 0.00090928896251582
612 => 0.00087602189657243
613 => 0.00088814266693669
614 => 0.00086798953534403
615 => 0.00084100675443665
616 => 0.00084091629869367
617 => 0.00084752029609427
618 => 0.00084359198002595
619 => 0.00083302098249233
620 => 0.00083452254279828
621 => 0.00082136729450217
622 => 0.00083611982812489
623 => 0.00083654287800209
624 => 0.0008308623489814
625 => 0.00085359066248454
626 => 0.00086290247107131
627 => 0.00085916342518117
628 => 0.00086264012964413
629 => 0.00089185060558698
630 => 0.00089661318770808
701 => 0.00089872841208776
702 => 0.00089589429163252
703 => 0.00086317404352194
704 => 0.00086462532566288
705 => 0.00085397678025347
706 => 0.00084497988149859
707 => 0.00084533971026627
708 => 0.00084996528574125
709 => 0.00087016544512689
710 => 0.00091267548968955
711 => 0.00091428871480627
712 => 0.00091624399070882
713 => 0.0009082909009702
714 => 0.00090589217300421
715 => 0.00090905671435557
716 => 0.00092502125202134
717 => 0.00096608637722742
718 => 0.0009515712193321
719 => 0.00093977017002131
720 => 0.00095012287180692
721 => 0.00094852915451418
722 => 0.00093507657670309
723 => 0.00093469900764914
724 => 0.00090887920978037
725 => 0.00089933421839664
726 => 0.00089135770916617
727 => 0.00088264756931855
728 => 0.00087748390645034
729 => 0.00088541763945871
730 => 0.00088723217806689
731 => 0.00086988493218618
801 => 0.00086752056667291
802 => 0.00088168670212541
803 => 0.00087545271407953
804 => 0.00088186452538018
805 => 0.00088335212060143
806 => 0.00088311258350859
807 => 0.00087660358401972
808 => 0.00088075222619277
809 => 0.00087093945068376
810 => 0.00086026953114893
811 => 0.00085346278724519
812 => 0.00084752300040562
813 => 0.00085081873936665
814 => 0.00083907003174873
815 => 0.00083531138372699
816 => 0.00087934675957194
817 => 0.00091187616516868
818 => 0.00091140317472824
819 => 0.00090852396706536
820 => 0.00090424604850426
821 => 0.00092470829563309
822 => 0.00091757965788895
823 => 0.00092276633746543
824 => 0.0009240865651019
825 => 0.00092808249653036
826 => 0.00092951069855413
827 => 0.00092519368008823
828 => 0.00091070523883726
829 => 0.0008746014207595
830 => 0.00085779499598391
831 => 0.00085224859587482
901 => 0.00085245019698467
902 => 0.00084688913838797
903 => 0.00084852711937386
904 => 0.00084631951544663
905 => 0.0008421388476852
906 => 0.0008505605949132
907 => 0.00085153112282722
908 => 0.00084956538639182
909 => 0.00085002838848305
910 => 0.00083375293037495
911 => 0.00083499031810647
912 => 0.00082810038597773
913 => 0.00082680860676296
914 => 0.00080939145831651
915 => 0.0007785344551876
916 => 0.00079563223028278
917 => 0.00077498052227879
918 => 0.00076715940753324
919 => 0.00080418334830579
920 => 0.00080046717153649
921 => 0.00079410669229066
922 => 0.00078469821784606
923 => 0.0007812085231548
924 => 0.00076000624291379
925 => 0.00075875349908739
926 => 0.00076926192168456
927 => 0.00076441264622871
928 => 0.00075760242692447
929 => 0.00073293650294537
930 => 0.00070520383778609
1001 => 0.00070604091262593
1002 => 0.00071486215742851
1003 => 0.00074051111639898
1004 => 0.00073048962439772
1005 => 0.00072321891696744
1006 => 0.00072185733202241
1007 => 0.00073890041828061
1008 => 0.00076301995597293
1009 => 0.00077433630341392
1010 => 0.00076312214678248
1011 => 0.00075023992745735
1012 => 0.00075102400845721
1013 => 0.00075624014807483
1014 => 0.0007567882905964
1015 => 0.00074840329012928
1016 => 0.00075076361864535
1017 => 0.00074717806379648
1018 => 0.00072517352030734
1019 => 0.00072477552789278
1020 => 0.00071937525804935
1021 => 0.0007192117400247
1022 => 0.00071002453386058
1023 => 0.00070873918021006
1024 => 0.00069049742474764
1025 => 0.00070250420343413
1026 => 0.00069445068667541
1027 => 0.00068231213728747
1028 => 0.00068021944679769
1029 => 0.00068015653799457
1030 => 0.00069262011408601
1031 => 0.00070235855929085
1101 => 0.00069459078104744
1102 => 0.00069282220851347
1103 => 0.00071170593621322
1104 => 0.00070930280973442
1105 => 0.00070722171770229
1106 => 0.00076086031591799
1107 => 0.00071840117995825
1108 => 0.00069988657319705
1109 => 0.00067697123150161
1110 => 0.00068443258230683
1111 => 0.00068600479855154
1112 => 0.00063089753257479
1113 => 0.0006085405216312
1114 => 0.00060086843798154
1115 => 0.00059645304537382
1116 => 0.00059846519523017
1117 => 0.0005783412631651
1118 => 0.00059186487833194
1119 => 0.00057443925419723
1120 => 0.00057151779160316
1121 => 0.00060267696617663
1122 => 0.00060701258328927
1123 => 0.00058851549371609
1124 => 0.00060039361962886
1125 => 0.00059608644605459
1126 => 0.00057473796650844
1127 => 0.00057392261161857
1128 => 0.00056321069501765
1129 => 0.000546448619773
1130 => 0.00053878790159968
1201 => 0.0005347981330616
1202 => 0.00053644438931945
1203 => 0.00053561199177921
1204 => 0.00053018003477374
1205 => 0.00053592334519634
1206 => 0.00052125156036633
1207 => 0.00051540913742841
1208 => 0.00051277025053054
1209 => 0.00049974819701747
1210 => 0.00052047207509024
1211 => 0.00052455494014311
1212 => 0.0005286458497014
1213 => 0.00056425442442371
1214 => 0.00056247552065937
1215 => 0.00057855594432773
1216 => 0.00057793108863398
1217 => 0.00057334469131817
1218 => 0.00055399543546852
1219 => 0.00056170770398287
1220 => 0.00053797054024833
1221 => 0.00055575603728848
1222 => 0.00054763947917947
1223 => 0.0005530118208273
1224 => 0.00054335186613998
1225 => 0.0005486980839137
1226 => 0.00052552313891145
1227 => 0.00050388270134863
1228 => 0.00051259144514767
1229 => 0.00052205884562287
1230 => 0.0005425865821019
1231 => 0.00053036043160514
]
'min_raw' => 0.00049974819701747
'max_raw' => 0.0014917605389909
'avg_raw' => 0.00099575436800416
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.000499'
'max' => '$0.001491'
'avg' => '$0.000995'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.00094670180298253
'max_diff' => 4.5310538990853E-5
'year' => 2026
]
1 => [
'items' => [
101 => 0.00053475741764571
102 => 0.00052002825045638
103 => 0.00048963777136618
104 => 0.00048980977817743
105 => 0.00048513486506198
106 => 0.00048109505758174
107 => 0.00053176475206301
108 => 0.00052546317458493
109 => 0.00051542243560368
110 => 0.00052886236373319
111 => 0.00053241609405097
112 => 0.00053251726375716
113 => 0.0005423226883857
114 => 0.00054755584526767
115 => 0.00054847821184991
116 => 0.00056390725936313
117 => 0.00056907887257551
118 => 0.00059038001548318
119 => 0.00054711184846826
120 => 0.000546220769042
121 => 0.00052905149108382
122 => 0.0005181624635672
123 => 0.00052979707211386
124 => 0.00054010374700374
125 => 0.0005293717482024
126 => 0.00053077312068099
127 => 0.0005163662891267
128 => 0.00052151605350293
129 => 0.00052595172433192
130 => 0.00052350260761683
131 => 0.00051983616135576
201 => 0.00053925871719855
202 => 0.00053816282048028
203 => 0.00055624955100372
204 => 0.00057034945084124
205 => 0.00059561899200866
206 => 0.00056924890846948
207 => 0.00056828787781373
208 => 0.00057768210662791
209 => 0.00056907743436802
210 => 0.00057451529021308
211 => 0.00059474286936309
212 => 0.00059517024623633
213 => 0.0005880111329656
214 => 0.00058757550027245
215 => 0.00058895048628821
216 => 0.00059700382232944
217 => 0.00059418973926262
218 => 0.00059744626743141
219 => 0.00060151860577222
220 => 0.00061836352378549
221 => 0.00062242477649029
222 => 0.00061255803793573
223 => 0.00061344889395402
224 => 0.00060975846288659
225 => 0.00060619355271642
226 => 0.00061420695016565
227 => 0.00062885159150783
228 => 0.0006287604879541
301 => 0.00063215776009434
302 => 0.00063427423249319
303 => 0.00062518878360485
304 => 0.00061927449045976
305 => 0.00062154240678784
306 => 0.00062516885438523
307 => 0.00062036639870805
308 => 0.00059072341755459
309 => 0.00059971520443558
310 => 0.00059821853142267
311 => 0.00059608708705063
312 => 0.00060512839829089
313 => 0.00060425634176535
314 => 0.00057813486315512
315 => 0.00057980707546482
316 => 0.00057823655592421
317 => 0.00058331122585797
318 => 0.00056880338553795
319 => 0.00057326589950859
320 => 0.00057606474643751
321 => 0.0005777132887804
322 => 0.00058366895413897
323 => 0.00058297012554918
324 => 0.00058362551397263
325 => 0.00059245619346204
326 => 0.00063711873999619
327 => 0.00063954962386169
328 => 0.00062757906265397
329 => 0.00063236106574757
330 => 0.00062318066551697
331 => 0.00062934352969511
401 => 0.00063356000484602
402 => 0.00061450656442061
403 => 0.00061337834333442
404 => 0.00060416005232641
405 => 0.00060911343976342
406 => 0.00060123224418997
407 => 0.00060316601391118
408 => 0.00059775902518767
409 => 0.00060749052836927
410 => 0.00061837186104901
411 => 0.00062112091540076
412 => 0.00061388933694362
413 => 0.0006086531975564
414 => 0.00059946026168399
415 => 0.00061474831891775
416 => 0.000619219012748
417 => 0.00061472483626629
418 => 0.00061368343737578
419 => 0.00061170998836003
420 => 0.00061410211391356
421 => 0.00061919466438927
422 => 0.00061679311162957
423 => 0.00061837937953726
424 => 0.00061233416202549
425 => 0.00062519179126648
426 => 0.00064561280085816
427 => 0.00064567845774317
428 => 0.0006432768920382
429 => 0.00064229422309418
430 => 0.00064475837524667
501 => 0.00064609507670458
502 => 0.0006540636929175
503 => 0.00066261433559763
504 => 0.00070251645404814
505 => 0.00069131209885814
506 => 0.00072671563213508
507 => 0.00075471523038371
508 => 0.00076311108562443
509 => 0.00075538729385848
510 => 0.00072896461945821
511 => 0.0007276681969961
512 => 0.0007671548279155
513 => 0.0007559980460785
514 => 0.00075467098237957
515 => 0.00074055326673251
516 => 0.00074889858519302
517 => 0.00074707334162727
518 => 0.00074419210536477
519 => 0.0007601143916475
520 => 0.00078991949017649
521 => 0.0007852740860603
522 => 0.00078180650738166
523 => 0.00076661258700885
524 => 0.00077576272075826
525 => 0.00077250453338936
526 => 0.00078650377402294
527 => 0.00077821093399276
528 => 0.00075591352248309
529 => 0.00075946445875923
530 => 0.00075892774188458
531 => 0.00076997333713265
601 => 0.00076665772360771
602 => 0.00075828031513014
603 => 0.00078981761958994
604 => 0.00078776976245803
605 => 0.00079067315566577
606 => 0.00079195131914623
607 => 0.00081114752062127
608 => 0.00081901159015566
609 => 0.00082079687161989
610 => 0.00082826712944859
611 => 0.00082061100479986
612 => 0.00085124096211915
613 => 0.00087160809642892
614 => 0.00089526557101287
615 => 0.00092983549990972
616 => 0.00094283411296465
617 => 0.00094048602986235
618 => 0.0009666965554108
619 => 0.0010137962871941
620 => 0.00095000623228863
621 => 0.0010171773149984
622 => 0.00099591172573996
623 => 0.0009454913961597
624 => 0.00094224492135137
625 => 0.00097639015393518
626 => 0.0010521209934492
627 => 0.001033151277083
628 => 0.0010521520211095
629 => 0.0010299866439187
630 => 0.0010288859461167
701 => 0.0010510754982134
702 => 0.0011029225961768
703 => 0.0010782919833938
704 => 0.0010429779602953
705 => 0.0010690532854042
706 => 0.0010464644256375
707 => 0.00099556540235929
708 => 0.0010331367712984
709 => 0.0010080138668598
710 => 0.0010153460659821
711 => 0.0010681506743621
712 => 0.0010617970841781
713 => 0.0010700192182027
714 => 0.00105550736686
715 => 0.0010419510093969
716 => 0.0010166470614838
717 => 0.0010091558099763
718 => 0.001011226122386
719 => 0.0010091547840323
720 => 0.00099499745773016
721 => 0.00099194018446315
722 => 0.00098684459507592
723 => 0.00098842393129743
724 => 0.00097884273248219
725 => 0.00099692443422325
726 => 0.0010002805574018
727 => 0.0010134389120401
728 => 0.0010148050560699
729 => 0.0010514508864402
730 => 0.0010312669788804
731 => 0.0010448080866663
801 => 0.0010435968425321
802 => 0.00094658415758952
803 => 0.00095995164962443
804 => 0.00098074727228067
805 => 0.00097137887246184
806 => 0.00095813414698595
807 => 0.00094743832102692
808 => 0.00093123305099462
809 => 0.00095404165737043
810 => 0.00098403254932974
811 => 0.0010155656745825
812 => 0.0010534506584414
813 => 0.0010449951710739
814 => 0.0010148574411615
815 => 0.0010162093977097
816 => 0.0010245666611157
817 => 0.0010137432456675
818 => 0.0010105512091537
819 => 0.0010241281243157
820 => 0.0010242216210687
821 => 0.0010117679735421
822 => 0.00099792802330978
823 => 0.00099787003341296
824 => 0.00099540734794718
825 => 0.0010304247501922
826 => 0.0010496807807682
827 => 0.0010518884536411
828 => 0.0010495321867941
829 => 0.0010504390203866
830 => 0.0010392343604721
831 => 0.001064844890398
901 => 0.0010883476452769
902 => 0.0010820484049062
903 => 0.0010726049481008
904 => 0.0010650827798968
905 => 0.0010802764211353
906 => 0.001079599872208
907 => 0.0010881423692164
908 => 0.0010877548322082
909 => 0.0010848823117639
910 => 0.001082048507493
911 => 0.0010932842211083
912 => 0.0010900485160272
913 => 0.0010868077850023
914 => 0.0010803080028007
915 => 0.0010811914311519
916 => 0.0010717496048924
917 => 0.0010673813840362
918 => 0.0010016938231863
919 => 0.00098413996052424
920 => 0.00098966276305955
921 => 0.00099148101305368
922 => 0.00098384154952726
923 => 0.00099479457780698
924 => 0.00099308755995171
925 => 0.00099972856785451
926 => 0.00099557955443589
927 => 0.00099574983139382
928 => 0.0010079511951951
929 => 0.0010114933030149
930 => 0.0010096917583894
1001 => 0.0010109534984918
1002 => 0.0010400297666031
1003 => 0.0010358960510844
1004 => 0.0010337000971031
1005 => 0.0010343083913633
1006 => 0.001041738001268
1007 => 0.0010438178863996
1008 => 0.0010350052669459
1009 => 0.0010391613492254
1010 => 0.0010568574200862
1011 => 0.0010630500433766
1012 => 0.0010828139242918
1013 => 0.0010744178764041
1014 => 0.0010898291856745
1015 => 0.0011371982962692
1016 => 0.0011750400195054
1017 => 0.001140239206942
1018 => 0.0012097307125509
1019 => 0.0012638398176318
1020 => 0.0012617630200554
1021 => 0.0012523278460184
1022 => 0.0011907260684487
1023 => 0.0011340391942984
1024 => 0.0011814601715769
1025 => 0.0011815810574002
1026 => 0.0011775075533964
1027 => 0.0011522073698785
1028 => 0.0011766271618513
1029 => 0.0011785655162585
1030 => 0.0011774805532405
1031 => 0.0011580829618567
1101 => 0.0011284664250879
1102 => 0.0011342534254805
1103 => 0.0011437326501753
1104 => 0.0011257865002546
1105 => 0.0011200516179594
1106 => 0.0011307138552522
1107 => 0.0011650698053751
1108 => 0.0011585750120148
1109 => 0.0011584054067127
1110 => 0.0011861928869289
1111 => 0.0011663030480076
1112 => 0.001134326418088
1113 => 0.0011262518973134
1114 => 0.0010975927882124
1115 => 0.0011173877369487
1116 => 0.0011181001219134
1117 => 0.00110725863079
1118 => 0.0011352061453418
1119 => 0.0011349486040752
1120 => 0.0011614806097035
1121 => 0.0012121998394986
1122 => 0.0011971996675065
1123 => 0.0011797560994937
1124 => 0.0011816526989944
1125 => 0.0012024537143102
1126 => 0.0011898769456093
1127 => 0.0011943996393225
1128 => 0.0012024468686716
1129 => 0.0012073019619394
1130 => 0.0011809541257888
1201 => 0.0011748111848194
1202 => 0.0011622448834753
1203 => 0.0011589665700157
1204 => 0.001169201560256
1205 => 0.0011665050019352
1206 => 0.0011180402487156
1207 => 0.0011129754123489
1208 => 0.0011131307436493
1209 => 0.0011003949717852
1210 => 0.0010809698627569
1211 => 0.0011320178894702
1212 => 0.0011279180185085
1213 => 0.0011233920782715
1214 => 0.0011239464801259
1215 => 0.001146104698344
1216 => 0.0011332518127606
1217 => 0.0011674233156304
1218 => 0.0011603986819298
1219 => 0.0011531938928811
1220 => 0.0011521979715713
1221 => 0.0011494247424713
1222 => 0.0011399143080142
1223 => 0.0011284298869188
1224 => 0.001120846877348
1225 => 0.0010339219966118
1226 => 0.0010500547488577
1227 => 0.0010686140097699
1228 => 0.0010750205922653
1229 => 0.001064061689585
1230 => 0.0011403470322873
1231 => 0.0011542850995029
]
'min_raw' => 0.00048109505758174
'max_raw' => 0.0012638398176318
'avg_raw' => 0.00087246743760677
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.000481'
'max' => '$0.001263'
'avg' => '$0.000872'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -1.8653139435732E-5
'max_diff' => -0.00022792072135905
'year' => 2027
]
2 => [
'items' => [
101 => 0.0011120657847493
102 => 0.0011041682747622
103 => 0.0011408647917273
104 => 0.0011187323060306
105 => 0.0011286985629846
106 => 0.0011071569667011
107 => 0.0011509278272649
108 => 0.0011505943666437
109 => 0.0011335665132746
110 => 0.0011479583383404
111 => 0.0011454574045698
112 => 0.0011262330000539
113 => 0.001151537275178
114 => 0.0011515498257828
115 => 0.0011351608871325
116 => 0.001116022194789
117 => 0.0011126006486337
118 => 0.0011100229732258
119 => 0.0011280646128486
120 => 0.0011442406905198
121 => 0.001174340360676
122 => 0.0011819081329038
123 => 0.001211445651724
124 => 0.0011938574974222
125 => 0.0012016540984195
126 => 0.0012101184116985
127 => 0.0012141765147493
128 => 0.0012075640535979
129 => 0.0012534479784534
130 => 0.0012573219875584
131 => 0.0012586209093012
201 => 0.0012431491080029
202 => 0.001256891688776
203 => 0.0012504619903387
204 => 0.0012671902794509
205 => 0.0012698134887812
206 => 0.0012675917238018
207 => 0.0012684243718478
208 => 0.0012292705364625
209 => 0.0012272402035449
210 => 0.0011995564701467
211 => 0.0012108377961343
212 => 0.0011897478979286
213 => 0.0011964357218996
214 => 0.0011993836509821
215 => 0.0011978438201229
216 => 0.0012114756253793
217 => 0.0011998858061176
218 => 0.0011692983675432
219 => 0.0011387025954417
220 => 0.0011383184904457
221 => 0.0011302631637116
222 => 0.0011244406378896
223 => 0.0011255622629281
224 => 0.0011295150158597
225 => 0.0011242108967035
226 => 0.0011253427994511
227 => 0.0011441399268908
228 => 0.0011479095567438
229 => 0.0011350988816137
301 => 0.0010836621723947
302 => 0.0010710394749332
303 => 0.0010801124195496
304 => 0.0010757761363954
305 => 0.00086823530295605
306 => 0.00091699394327593
307 => 0.00088802321488483
308 => 0.00090137425940657
309 => 0.000871802647653
310 => 0.00088591577076277
311 => 0.00088330959225313
312 => 0.00096171204301444
313 => 0.00096048789658485
314 => 0.0009610738307003
315 => 0.00093310566872625
316 => 0.00097765971016927
317 => 0.00099960863309561
318 => 0.00099554647161361
319 => 0.0009965688301428
320 => 0.00097900132337554
321 => 0.00096124392256648
322 => 0.00094154823222484
323 => 0.0009781403904187
324 => 0.00097407196707652
325 => 0.00098340346645098
326 => 0.0010071360967012
327 => 0.001010630816657
328 => 0.0010153277557176
329 => 0.0010136442374153
330 => 0.0010537524734587
331 => 0.0010488951014312
401 => 0.0010605999704562
402 => 0.0010365221668212
403 => 0.0010092758465221
404 => 0.0010144544812616
405 => 0.0010139557370922
406 => 0.0010076061513843
407 => 0.0010018740293163
408 => 0.00099233166108846
409 => 0.0010225251261661
410 => 0.0010212993266237
411 => 0.0010411435963792
412 => 0.001037635928943
413 => 0.0010142108673319
414 => 0.0010150474979901
415 => 0.0010206742412371
416 => 0.0010401484638601
417 => 0.0010459297390408
418 => 0.0010432516220331
419 => 0.0010495905263435
420 => 0.0010546005378525
421 => 0.0010502197066536
422 => 0.0011122430380753
423 => 0.0010864866266174
424 => 0.00109904012235
425 => 0.0011020340571128
426 => 0.0010943651561737
427 => 0.0010960282661846
428 => 0.0010985474246808
429 => 0.001113843261768
430 => 0.0011539839641709
501 => 0.0011717620080182
502 => 0.0012252481300859
503 => 0.001170285788959
504 => 0.0011670245510933
505 => 0.0011766590168039
506 => 0.0012080610325386
507 => 0.0012335094168503
508 => 0.001241952114079
509 => 0.0012430679558915
510 => 0.0012589070171524
511 => 0.0012679856716861
512 => 0.0012569837385066
513 => 0.0012476607520874
514 => 0.0012142669719455
515 => 0.0012181323929252
516 => 0.0012447613103216
517 => 0.0012823762245794
518 => 0.0013146537341774
519 => 0.001303351275301
520 => 0.0013895810582357
521 => 0.0013981303889966
522 => 0.0013969491479184
523 => 0.0014164257957028
524 => 0.0013777686162012
525 => 0.0013612419230167
526 => 0.0012496764875717
527 => 0.0012810218242367
528 => 0.0013265841119265
529 => 0.001320553772301
530 => 0.0012874652210972
531 => 0.0013146286335442
601 => 0.0013056475599108
602 => 0.001298563814511
603 => 0.0013310158254389
604 => 0.0012953335063686
605 => 0.0013262281534982
606 => 0.0012866054489902
607 => 0.0013034029039811
608 => 0.0012938678561268
609 => 0.00130003820066
610 => 0.0012639664925996
611 => 0.0012834299106778
612 => 0.0012631567504177
613 => 0.0012631471383001
614 => 0.0012626996071638
615 => 0.0012865508903047
616 => 0.0012873286797917
617 => 0.0012697025455132
618 => 0.0012671623441917
619 => 0.0012765547998507
620 => 0.0012655586941621
621 => 0.0012707037028051
622 => 0.0012657145312325
623 => 0.0012645913636235
624 => 0.0012556417730237
625 => 0.0012517860433192
626 => 0.0012532979742863
627 => 0.0012481369744419
628 => 0.0012450272853541
629 => 0.0012620810117345
630 => 0.0012529698936748
701 => 0.00126068460222
702 => 0.0012518927181589
703 => 0.0012214162175616
704 => 0.0012038888597849
705 => 0.0011463215753297
706 => 0.0011626475857892
707 => 0.0011734717476144
708 => 0.0011698943621957
709 => 0.0011775799703393
710 => 0.0011780518042594
711 => 0.0011755531347064
712 => 0.0011726599954635
713 => 0.0011712517752806
714 => 0.0011817474947904
715 => 0.0011878406132355
716 => 0.0011745580970621
717 => 0.0011714461893649
718 => 0.0011848755465639
719 => 0.0011930674466975
720 => 0.0012535518346524
721 => 0.0012490709558307
722 => 0.0012603170823452
723 => 0.0012590509410855
724 => 0.0012708386733211
725 => 0.0012901066336589
726 => 0.0012509294828857
727 => 0.001257729281616
728 => 0.0012560621279976
729 => 0.0012742636740519
730 => 0.0012743204972919
731 => 0.0012634077611977
801 => 0.0012693237324733
802 => 0.0012660215996034
803 => 0.0012719890000093
804 => 0.0012490111109622
805 => 0.0012769956995117
806 => 0.0012928611579322
807 => 0.0012930814498378
808 => 0.0013006015512131
809 => 0.0013082424097452
810 => 0.0013229083723192
811 => 0.001307833384009
812 => 0.0012807149475595
813 => 0.0012826728110791
814 => 0.0012667732817111
815 => 0.0012670405556722
816 => 0.0012656138263209
817 => 0.0012698955485034
818 => 0.0012499507081991
819 => 0.0012546317223534
820 => 0.0012480782751255
821 => 0.0012577150357016
822 => 0.0012473474743353
823 => 0.0012560613240456
824 => 0.0012598219327119
825 => 0.0012736986596507
826 => 0.0012452978704836
827 => 0.0011873867388076
828 => 0.0011995603607905
829 => 0.0011815546176604
830 => 0.0011832211177398
831 => 0.0011865877131217
901 => 0.0011756754760075
902 => 0.0011777571869648
903 => 0.0011776828136006
904 => 0.001177041904128
905 => 0.001174203209804
906 => 0.0011700865414157
907 => 0.0011864860812311
908 => 0.0011892726826117
909 => 0.001195466952294
910 => 0.0012138968972552
911 => 0.0012120553111456
912 => 0.0012150590144971
913 => 0.0012085019469458
914 => 0.0011835252812974
915 => 0.0011848816344085
916 => 0.0011679678893793
917 => 0.0011950344298063
918 => 0.0011886247157723
919 => 0.0011844923314369
920 => 0.0011833647720848
921 => 0.0012018404013148
922 => 0.0012073685991505
923 => 0.0012039237972428
924 => 0.0011968584080294
925 => 0.001210426044014
926 => 0.0012140561710309
927 => 0.001214868822596
928 => 0.0012389080722246
929 => 0.0012162123496075
930 => 0.0012216754356175
1001 => 0.001264296873161
1002 => 0.0012256451106654
1003 => 0.0012461198112965
1004 => 0.0012451176812458
1005 => 0.0012555918452626
1006 => 0.0012442584940785
1007 => 0.0012443989845493
1008 => 0.0012536993326149
1009 => 0.0012406386710834
1010 => 0.0012374046676157
1011 => 0.0012329369149875
1012 => 0.0012426920894018
1013 => 0.0012485398752746
1014 => 0.0012956687346837
1015 => 0.0013261161271992
1016 => 0.0013247943255908
1017 => 0.0013368731179824
1018 => 0.0013314315113809
1019 => 0.0013138591282414
1020 => 0.0013438530435368
1021 => 0.0013343617137386
1022 => 0.0013351441674352
1023 => 0.0013351150444695
1024 => 0.0013414259490388
1025 => 0.0013369540947656
1026 => 0.0013281396109665
1027 => 0.0013339910766671
1028 => 0.0013513678378604
1029 => 0.0014053058377888
1030 => 0.0014354902571322
1031 => 0.0014034886978436
1101 => 0.0014255629449229
1102 => 0.0014123262625338
1103 => 0.0014099207635865
1104 => 0.0014237850220263
1105 => 0.0014376735480152
1106 => 0.0014367889089515
1107 => 0.0014267065522673
1108 => 0.0014210112848067
1109 => 0.0014641377580729
1110 => 0.0014959126089351
1111 => 0.0014937457771276
1112 => 0.0015033094680344
1113 => 0.0015313887603308
1114 => 0.0015339559789172
1115 => 0.0015336325683822
1116 => 0.0015272694492542
1117 => 0.0015549171590768
1118 => 0.001577981365026
1119 => 0.0015257965710242
1120 => 0.001545667857431
1121 => 0.0015545887181118
1122 => 0.0015676871882914
1123 => 0.0015897865030429
1124 => 0.0016137922204168
1125 => 0.0016171868920627
1126 => 0.0016147782100799
1127 => 0.0015989457941635
1128 => 0.0016252131365618
1129 => 0.0016405999296937
1130 => 0.0016497624128832
1201 => 0.0016729969457601
1202 => 0.0015546438103104
1203 => 0.0014708675785066
1204 => 0.0014577847101669
1205 => 0.0014843892373939
1206 => 0.0014914046390566
1207 => 0.0014885767394429
1208 => 0.001394278973946
1209 => 0.001457288251947
1210 => 0.0015250809371055
1211 => 0.0015276851302368
1212 => 0.0015616235659054
1213 => 0.0015726753117425
1214 => 0.0016000002008682
1215 => 0.0015982910216136
1216 => 0.0016049441972817
1217 => 0.0016034147474126
1218 => 0.0016540283505835
1219 => 0.001709862671074
1220 => 0.0017079293060976
1221 => 0.0016999024619254
1222 => 0.0017118236943015
1223 => 0.001769450696617
1224 => 0.0017641453256977
1225 => 0.0017692990416354
1226 => 0.0018372445250809
1227 => 0.0019255833186924
1228 => 0.0018845410799899
1229 => 0.0019735909283881
1230 => 0.0020296430876251
1231 => 0.0021265795011241
]
'min_raw' => 0.00086823530295605
'max_raw' => 0.0021265795011241
'avg_raw' => 0.0014974074020401
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.000868'
'max' => '$0.002126'
'avg' => '$0.001497'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00038714024537431
'max_diff' => 0.00086273968349231
'year' => 2028
]
3 => [
'items' => [
101 => 0.0021144425847321
102 => 0.002152179219155
103 => 0.0020927149713396
104 => 0.0019561730386482
105 => 0.0019345647551382
106 => 0.001977825085934
107 => 0.0020841763879141
108 => 0.0019744757049625
109 => 0.0019966680102491
110 => 0.0019902766248336
111 => 0.0019899360550665
112 => 0.0020029342178814
113 => 0.0019840797047798
114 => 0.0019072630265418
115 => 0.0019424676574948
116 => 0.0019288734588186
117 => 0.0019439572357644
118 => 0.0020253581589184
119 => 0.0019893688704364
120 => 0.001951457078553
121 => 0.0019990068788749
122 => 0.0020595541145688
123 => 0.0020557651773729
124 => 0.00204841305556
125 => 0.0020898565812747
126 => 0.0021583091439417
127 => 0.0021768115965659
128 => 0.0021904697288271
129 => 0.0021923529545099
130 => 0.0022117513494608
131 => 0.0021074412907847
201 => 0.0022729840327759
202 => 0.0023015686912919
203 => 0.0022961959602036
204 => 0.0023279666051177
205 => 0.0023186188754405
206 => 0.0023050754817521
207 => 0.0023554387117509
208 => 0.0022977013326603
209 => 0.0022157503919751
210 => 0.0021707904851094
211 => 0.0022299973172824
212 => 0.0022661528636568
213 => 0.0022900493798856
214 => 0.0022972804512578
215 => 0.0021155385837071
216 => 0.0020175897969634
217 => 0.002080373846281
218 => 0.0021569747195721
219 => 0.0021070157690659
220 => 0.002108974065341
221 => 0.0020377457309004
222 => 0.0021632768466699
223 => 0.0021449880189851
224 => 0.0022398704893659
225 => 0.0022172260263302
226 => 0.0022945989976094
227 => 0.002274224101221
228 => 0.0023587991569844
301 => 0.0023925384365066
302 => 0.0024491919379241
303 => 0.0024908664841879
304 => 0.0025153385748611
305 => 0.0025138693623296
306 => 0.002610839977524
307 => 0.0025536597936391
308 => 0.0024818280063451
309 => 0.0024805287959394
310 => 0.0025177314964432
311 => 0.0025956981506369
312 => 0.0026159137697006
313 => 0.0026272115428917
314 => 0.0026099086099712
315 => 0.0025478436185049
316 => 0.0025210442698663
317 => 0.0025438780913582
318 => 0.0025159542898063
319 => 0.0025641586053199
320 => 0.0026303534264062
321 => 0.0026166844576145
322 => 0.0026623777709186
323 => 0.0027096655431116
324 => 0.0027772891811743
325 => 0.00279496850426
326 => 0.0028241917530362
327 => 0.002854272075364
328 => 0.0028639330642082
329 => 0.0028823788895407
330 => 0.0028822816709361
331 => 0.0029378694071229
401 => 0.0029991844015457
402 => 0.003022329392495
403 => 0.0030755500229605
404 => 0.0029844115583616
405 => 0.0030535411306831
406 => 0.0031158977353426
407 => 0.0030415536206065
408 => 0.003144019662813
409 => 0.0031479981870389
410 => 0.0032080691793274
411 => 0.0031471757204333
412 => 0.0031110173789208
413 => 0.003215405156032
414 => 0.003265915113192
415 => 0.0032507011030318
416 => 0.003134921734504
417 => 0.0030675331760101
418 => 0.0028911643201494
419 => 0.003100080848484
420 => 0.003201837995257
421 => 0.0031346582080766
422 => 0.0031685397851155
423 => 0.0033533866833019
424 => 0.003423764414181
425 => 0.0034091263381356
426 => 0.003411599932024
427 => 0.0034495744781602
428 => 0.0036179745286925
429 => 0.0035170653149309
430 => 0.0035942066278555
501 => 0.003635122102077
502 => 0.0036731266747781
503 => 0.0035797994556928
504 => 0.0034583821149119
505 => 0.0034199241463334
506 => 0.0031279785022103
507 => 0.0031127814635781
508 => 0.0031042509052764
509 => 0.0030504669418556
510 => 0.0030082074792744
511 => 0.0029746011856365
512 => 0.0028864082354419
513 => 0.0029161707672014
514 => 0.0027756096118905
515 => 0.0028655356578769
516 => 0.002641196660033
517 => 0.0028280328437067
518 => 0.002726346403332
519 => 0.0027946261131956
520 => 0.0027943878917202
521 => 0.0026686632977596
522 => 0.0025961479757684
523 => 0.0026423575612797
524 => 0.0026918979050693
525 => 0.0026999356591755
526 => 0.002764166008034
527 => 0.0027820913177736
528 => 0.0027277767924097
529 => 0.0026365477329437
530 => 0.0026577381627444
531 => 0.0025957185523849
601 => 0.0024870315707797
602 => 0.0025650924584612
603 => 0.0025917458776106
604 => 0.0026035175459187
605 => 0.0024966363822942
606 => 0.0024630520001804
607 => 0.0024451719569433
608 => 0.002622750716876
609 => 0.0026324788822065
610 => 0.0025827082129517
611 => 0.0028076763574318
612 => 0.0027567591377052
613 => 0.0028136461471615
614 => 0.0026558153533475
615 => 0.0026618447022186
616 => 0.0025871250750764
617 => 0.0026289630735087
618 => 0.0025993933247184
619 => 0.0026255829766865
620 => 0.0026412809460923
621 => 0.0027159883124789
622 => 0.0028288858818268
623 => 0.0027048295232119
624 => 0.0026507763912436
625 => 0.0026843106503104
626 => 0.0027736168012982
627 => 0.0029089201915424
628 => 0.0028288178612833
629 => 0.0028643659152265
630 => 0.0028721315835903
701 => 0.0028130670908067
702 => 0.0029110979836401
703 => 0.0029636335355111
704 => 0.00301752414103
705 => 0.0030643158438216
706 => 0.0029959990481059
707 => 0.0030691078123497
708 => 0.0030101950538034
709 => 0.0029573442190983
710 => 0.0029574243719987
711 => 0.0029242702713607
712 => 0.0028600300236891
713 => 0.0028481831363962
714 => 0.0029098121401906
715 => 0.0029592327649454
716 => 0.002963303284309
717 => 0.0029906650814967
718 => 0.0030068575112234
719 => 0.0031655653350859
720 => 0.0032293989347434
721 => 0.0033074534520963
722 => 0.0033378600855169
723 => 0.0034293731507313
724 => 0.0033554689182429
725 => 0.0033394792726646
726 => 0.0031174985101499
727 => 0.0031538478475761
728 => 0.0032120466439848
729 => 0.0031184581868668
730 => 0.0031778185218148
731 => 0.0031895375093573
801 => 0.003115278086906
802 => 0.0031549432529975
803 => 0.0030496043317605
804 => 0.0028311819824517
805 => 0.0029113411501542
806 => 0.0029703652788674
807 => 0.0028861305695711
808 => 0.0030371180256512
809 => 0.0029489142708229
810 => 0.0029209579150693
811 => 0.0028118902041139
812 => 0.0028633659652836
813 => 0.0029329876693277
814 => 0.0028899695506203
815 => 0.0029792386061411
816 => 0.0031056673959461
817 => 0.0031957680805257
818 => 0.0032026848923031
819 => 0.0031447561883955
820 => 0.0032375873061035
821 => 0.00323826347945
822 => 0.003133549599449
823 => 0.0030694129309978
824 => 0.0030548409449809
825 => 0.0030912446230571
826 => 0.0031354454087313
827 => 0.0032051377282862
828 => 0.0032472513373892
829 => 0.0033570612945975
830 => 0.0033867727205199
831 => 0.003419416569667
901 => 0.0034630388191179
902 => 0.0035154185140989
903 => 0.0034008147234582
904 => 0.0034053681457086
905 => 0.0032986506826614
906 => 0.0031846077685633
907 => 0.0032711521247139
908 => 0.0033842973578675
909 => 0.0033583417163677
910 => 0.0033554211764733
911 => 0.0033603327144854
912 => 0.0033407630084266
913 => 0.0032522499532095
914 => 0.0032077992510006
915 => 0.0032651519974337
916 => 0.0032956324296858
917 => 0.0033429049219358
918 => 0.0033370775894648
919 => 0.0034588464528058
920 => 0.0035061621510009
921 => 0.0034940567706497
922 => 0.0034962844519665
923 => 0.0035819472634563
924 => 0.0036772219277339
925 => 0.003766459223429
926 => 0.0038572352334411
927 => 0.0037478012103235
928 => 0.0036922373623366
929 => 0.0037495650703548
930 => 0.0037191461815345
1001 => 0.0038939421395248
1002 => 0.0039060446324066
1003 => 0.0040808279506597
1004 => 0.0042467181324922
1005 => 0.0041425254815145
1006 => 0.0042407744584464
1007 => 0.0043470387373548
1008 => 0.0045520397721272
1009 => 0.0044830026356392
1010 => 0.0044301212710393
1011 => 0.0043801486370133
1012 => 0.0044841337554892
1013 => 0.0046179089492056
1014 => 0.0046467228446493
1015 => 0.0046934123630232
1016 => 0.0046443240433757
1017 => 0.0047034455174901
1018 => 0.004912170300406
1019 => 0.0048557710215975
1020 => 0.0047756749790529
1021 => 0.0049404431490238
1022 => 0.0050000721092162
1023 => 0.0054185793797754
1024 => 0.0059469620965294
1025 => 0.0057282081822452
1026 => 0.0055924205685044
1027 => 0.0056243338786587
1028 => 0.0058172813599336
1029 => 0.0058792499670721
1030 => 0.0057107979310097
1031 => 0.0057702980379356
1101 => 0.0060981494770184
1102 => 0.0062740312553529
1103 => 0.0060351601763004
1104 => 0.005376124342959
1105 => 0.0047684632067716
1106 => 0.004929642303426
1107 => 0.0049113695958351
1108 => 0.0052636050668297
1109 => 0.0048544259174504
1110 => 0.0048613154449275
1111 => 0.0052208347724384
1112 => 0.0051249211795801
1113 => 0.0049695534428346
1114 => 0.00476959756319
1115 => 0.0043999606259868
1116 => 0.0040725628826174
1117 => 0.0047146652525621
1118 => 0.0046869766307827
1119 => 0.0046468794032223
1120 => 0.0047361114441849
1121 => 0.0051693969061424
1122 => 0.0051594082738361
1123 => 0.0050958656913484
1124 => 0.0051440621801267
1125 => 0.0049611043653252
1126 => 0.0050082567600715
1127 => 0.0047683669501429
1128 => 0.0048768071629141
1129 => 0.0049692200934507
1130 => 0.0049877733574528
1201 => 0.0050295748086026
1202 => 0.0046723859852857
1203 => 0.0048327532804421
1204 => 0.0049269540419629
1205 => 0.0045013515743586
1206 => 0.0049185412495947
1207 => 0.0046661681225451
1208 => 0.0045805088927074
1209 => 0.0046958377609385
1210 => 0.0046508939888278
1211 => 0.0046122539727539
1212 => 0.0045906921798649
1213 => 0.0046753769723112
1214 => 0.0046714263255234
1215 => 0.0045328655684713
1216 => 0.004352118709356
1217 => 0.0044127832880885
1218 => 0.0043907432779015
1219 => 0.004310867437766
1220 => 0.0043646941097716
1221 => 0.0041276686873142
1222 => 0.0037198787674855
1223 => 0.0039892772794673
1224 => 0.0039789057298052
1225 => 0.0039736759241533
1226 => 0.0041761214602797
1227 => 0.0041566609931943
1228 => 0.0041213400548769
1229 => 0.0043102187410348
1230 => 0.0042412754798103
1231 => 0.0044537423658288
]
'min_raw' => 0.0019072630265418
'max_raw' => 0.0062740312553529
'avg_raw' => 0.0040906471409473
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.0019072'
'max' => '$0.006274'
'avg' => '$0.00409'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0010390277235858
'max_diff' => 0.0041474517542287
'year' => 2029
]
4 => [
'items' => [
101 => 0.0045936867984572
102 => 0.0045581923636145
103 => 0.0046898107789117
104 => 0.0044141808774573
105 => 0.0045057340743682
106 => 0.0045246030613643
107 => 0.0043078880073665
108 => 0.0041598449662811
109 => 0.004149972183255
110 => 0.0038932859516007
111 => 0.0040304056646515
112 => 0.004151065337737
113 => 0.0040932787178979
114 => 0.0040749852003831
115 => 0.0041684428139867
116 => 0.0041757052709741
117 => 0.0040101204820221
118 => 0.0040445508030335
119 => 0.0041881309652158
120 => 0.0040409329513353
121 => 0.0037549512550246
122 => 0.0036840238403333
123 => 0.0036745608157618
124 => 0.0034822000417947
125 => 0.0036887635493356
126 => 0.0035985930427362
127 => 0.0038834405926752
128 => 0.0037207371998181
129 => 0.0037137233817432
130 => 0.0037031209670195
131 => 0.0035375481025425
201 => 0.0035737980371585
202 => 0.003694298340843
203 => 0.0037372942067307
204 => 0.0037328093856638
205 => 0.0036937078236162
206 => 0.0037116083184892
207 => 0.0036539445875574
208 => 0.0036335823239986
209 => 0.0035693134191252
210 => 0.0034748558836994
211 => 0.0034879907833421
212 => 0.003300845689505
213 => 0.0031988791098407
214 => 0.0031706561044875
215 => 0.0031329151222087
216 => 0.0031749190488608
217 => 0.0033003155309677
218 => 0.0031490607691991
219 => 0.0028897450894347
220 => 0.0029053304036409
221 => 0.0029403459773411
222 => 0.0028750946874021
223 => 0.0028133398176004
224 => 0.002867030666562
225 => 0.0027571551945476
226 => 0.0029536239031977
227 => 0.0029483099752259
228 => 0.0030215413602673
301 => 0.0030673344481929
302 => 0.0029617962062126
303 => 0.0029352536237603
304 => 0.0029503734850182
305 => 0.0027004758583315
306 => 0.0030011193927615
307 => 0.0030037193705318
308 => 0.0029814567823707
309 => 0.0031415401831269
310 => 0.0034793660899874
311 => 0.0033522623948108
312 => 0.003303044002309
313 => 0.0032094798021845
314 => 0.0033341485435579
315 => 0.0033245759293557
316 => 0.0032812849376275
317 => 0.0032551024107541
318 => 0.0033033445193184
319 => 0.0032491246796312
320 => 0.0032393853065618
321 => 0.0031803753023039
322 => 0.0031593114155679
323 => 0.0031437165524061
324 => 0.0031265481403845
325 => 0.0031644173792023
326 => 0.0030786007019278
327 => 0.0029751142018474
328 => 0.0029665104191052
329 => 0.0029902662197088
330 => 0.0029797560463531
331 => 0.0029664601004387
401 => 0.0029410745187528
402 => 0.0029335431589437
403 => 0.0029580164246269
404 => 0.0029303875345506
405 => 0.0029711554668817
406 => 0.0029600688450802
407 => 0.0028981398769245
408 => 0.0028209534535618
409 => 0.0028202663324899
410 => 0.0028036366441875
411 => 0.002782456235844
412 => 0.002776564330785
413 => 0.0028625089730184
414 => 0.0030404118103349
415 => 0.0030054852265156
416 => 0.0030307232627453
417 => 0.0031548694219932
418 => 0.0031943317528128
419 => 0.0031663223251136
420 => 0.0031279812929326
421 => 0.0031296681037645
422 => 0.0032606910173466
423 => 0.0032688627557508
424 => 0.0032895101023953
425 => 0.003316047777773
426 => 0.0031708418059825
427 => 0.0031228289155513
428 => 0.0031000777444113
429 => 0.0030300129431112
430 => 0.0031055718244113
501 => 0.0030615469000316
502 => 0.003067487366436
503 => 0.003063618629897
504 => 0.0030657312216501
505 => 0.0029535689861896
506 => 0.0029944350097179
507 => 0.0029264873195065
508 => 0.0028355129897997
509 => 0.0028352080119468
510 => 0.0028574738502593
511 => 0.0028442292583687
512 => 0.0028085884021406
513 => 0.0028136510175477
514 => 0.0027692971794473
515 => 0.0028190363765453
516 => 0.0028204627187427
517 => 0.0028013104185476
518 => 0.0028779405143636
519 => 0.0029093359271436
520 => 0.0028967294728731
521 => 0.0029084514247057
522 => 0.0030069365837574
523 => 0.0030229939618915
524 => 0.0030301255885679
525 => 0.0030205701535811
526 => 0.0029102515526214
527 => 0.0029151446516849
528 => 0.0028792423373794
529 => 0.0028489086650839
530 => 0.0028501218528966
531 => 0.0028657173035578
601 => 0.0029338235512566
602 => 0.0030771491344562
603 => 0.0030825882355689
604 => 0.0030891805847874
605 => 0.0030623661874666
606 => 0.0030542787086555
607 => 0.0030649481807628
608 => 0.0031187737341114
609 => 0.0032572276708192
610 => 0.0032082888025591
611 => 0.0031685007408849
612 => 0.0032034055977576
613 => 0.0031980322686353
614 => 0.0031526759633163
615 => 0.0031514029628898
616 => 0.0030643497116946
617 => 0.0030321681068343
618 => 0.0030052747490617
619 => 0.0029759079044429
620 => 0.0029584982545673
621 => 0.0029852473893205
622 => 0.0029913652329251
623 => 0.0029328777822922
624 => 0.0029249061588895
625 => 0.0029726682736156
626 => 0.0029516499476758
627 => 0.0029732678171343
628 => 0.0029782833482833
629 => 0.0029774757322509
630 => 0.0029555301860303
701 => 0.0029695176227657
702 => 0.0029364331650309
703 => 0.0029004587863693
704 => 0.0028775093740661
705 => 0.0028574829680338
706 => 0.0028685947820421
707 => 0.0028289831940397
708 => 0.002816310649814
709 => 0.002964778993927
710 => 0.003074454156027
711 => 0.0030728594357339
712 => 0.0030631519860787
713 => 0.0030487286849752
714 => 0.0031177185797985
715 => 0.0030936838799385
716 => 0.003111171132253
717 => 0.0031156223719047
718 => 0.0031290949337028
719 => 0.0031339102165398
720 => 0.0031193550873774
721 => 0.0030705062961491
722 => 0.0029487797528119
723 => 0.0028921157182939
724 => 0.0028734156430888
725 => 0.002874095355306
726 => 0.0028553458579865
727 => 0.0028608684252406
728 => 0.00285342533447
729 => 0.0028393299212274
730 => 0.0028677244299942
731 => 0.0028709966326164
801 => 0.0028643690149812
802 => 0.0028659300588575
803 => 0.0028110562155299
804 => 0.0028152281546583
805 => 0.0027919982674466
806 => 0.0027876429436348
807 => 0.0027289198116212
808 => 0.0026248832712049
809 => 0.0026825296136668
810 => 0.0026129009382752
811 => 0.0025865315038577
812 => 0.0027113603051014
813 => 0.0026988309556685
814 => 0.0026773861558167
815 => 0.002645664827348
816 => 0.0026338990780538
817 => 0.0025624141099253
818 => 0.0025581903966508
819 => 0.0025936202771117
820 => 0.0025772706063468
821 => 0.0025543094764882
822 => 0.0024711465916728
823 => 0.0023776439748555
824 => 0.0023804662311207
825 => 0.0024102076738523
826 => 0.0024966849297743
827 => 0.0024628967698138
828 => 0.0024383830720881
829 => 0.0024337923933831
830 => 0.0024912543486129
831 => 0.0025725750539149
901 => 0.0026107289093943
902 => 0.002572919597364
903 => 0.0025294862955015
904 => 0.0025321298793353
905 => 0.0025497164582354
906 => 0.0025515645590169
907 => 0.00252329394452
908 => 0.0025312519569048
909 => 0.0025191630083964
910 => 0.0024449731537146
911 => 0.002443631294502
912 => 0.00242542390769
913 => 0.0024248725952534
914 => 0.0023938972882409
915 => 0.0023895636286676
916 => 0.0023280602765274
917 => 0.0023685419691554
918 => 0.0023413889751248
919 => 0.0023004630083769
920 => 0.0022934073562836
921 => 0.0022931952548617
922 => 0.0023352170718331
923 => 0.0023680509197578
924 => 0.0023418613130811
925 => 0.0023358984473051
926 => 0.0023995662536645
927 => 0.0023914639449604
928 => 0.0023844473978768
929 => 0.0025652936766884
930 => 0.0024221397353979
1001 => 0.002359716446054
1002 => 0.0022824557716297
1003 => 0.0023076122368044
1004 => 0.0023129130736421
1005 => 0.002127115078935
1006 => 0.002051736855622
1007 => 0.0020258698899494
1008 => 0.0020109830854997
1009 => 0.0020177671892241
1010 => 0.0019499179472587
1011 => 0.0019955137599824
1012 => 0.0019367620515939
1013 => 0.001926912136488
1014 => 0.0020319674690266
1015 => 0.002046585304825
1016 => 0.0019842210759034
1017 => 0.0020242690067226
1018 => 0.0020097470702997
1019 => 0.0019377691810066
1020 => 0.0019350201550692
1021 => 0.001898904180367
1022 => 0.001842389673389
1023 => 0.0018165610272133
1024 => 0.0018031092440305
1025 => 0.0018086597119418
1026 => 0.0018058532255187
1027 => 0.0017875390032277
1028 => 0.0018069029753026
1029 => 0.0017574360283969
1030 => 0.0017377378915567
1031 => 0.0017288407001394
1101 => 0.0016849359375493
1102 => 0.0017548079393666
1103 => 0.0017685736039489
1104 => 0.0017823663911429
1105 => 0.0019024231869304
1106 => 0.0018964254886899
1107 => 0.001950641759787
1108 => 0.0019485350151895
1109 => 0.0019330716564273
1110 => 0.0018678342894083
1111 => 0.0018938367411578
1112 => 0.0018138052363509
1113 => 0.0018737702813656
1114 => 0.001846404739021
1115 => 0.0018645179639716
1116 => 0.0018319487523068
1117 => 0.0018499738987919
1118 => 0.0017718379536939
1119 => 0.0016988757075637
1120 => 0.0017282378453072
1121 => 0.0017601578470022
1122 => 0.001829368543742
1123 => 0.0017881472237396
1124 => 0.0018029719691631
1125 => 0.0017533115536267
1126 => 0.0016508479315786
1127 => 0.0016514278645519
1128 => 0.0016356660685911
1129 => 0.0016220455756211
1130 => 0.0017928819882098
1201 => 0.0017716357797804
1202 => 0.0017377827272831
1203 => 0.0017830963833176
1204 => 0.0017950780331975
1205 => 0.0017954191339254
1206 => 0.0018284788076534
1207 => 0.0018461227614483
1208 => 0.0018492325847779
1209 => 0.0019012526956904
1210 => 0.0019186891507064
1211 => 0.0019905074412179
1212 => 0.0018446257952402
1213 => 0.0018416214587414
1214 => 0.0017837340393847
1215 => 0.0017470209228648
1216 => 0.0017862478178822
1217 => 0.0018209974918626
1218 => 0.0017848138086196
1219 => 0.0017895386337719
1220 => 0.0017409649953337
1221 => 0.0017583277854733
1222 => 0.0017732829593618
1223 => 0.001765025591365
1224 => 0.0017526639118127
1225 => 0.0018181484148762
1226 => 0.0018144535225775
1227 => 0.0018754341973125
1228 => 0.0019229729940383
1229 => 0.0020081710163473
1230 => 0.0019192624385945
1231 => 0.0019160222566416
]
'min_raw' => 0.0016220455756211
'max_raw' => 0.0046898107789117
'avg_raw' => 0.0031559281772664
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.001622'
'max' => '$0.004689'
'avg' => '$0.003155'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00028521745092069
'max_diff' => -0.0015842204764412
'year' => 2030
]
5 => [
'items' => [
101 => 0.0019476955549727
102 => 0.0019186843016895
103 => 0.0019370184123301
104 => 0.0020052171076788
105 => 0.0020066580386454
106 => 0.0019825205884198
107 => 0.00198105182238
108 => 0.0019856876837306
109 => 0.0020128400684595
110 => 0.0020033521909267
111 => 0.0020143318030114
112 => 0.002028061976049
113 => 0.0020848557932053
114 => 0.0020985485902472
115 => 0.0020652821923368
116 => 0.0020682857756001
117 => 0.0020558432295985
118 => 0.0020438238860657
119 => 0.0020708416150433
120 => 0.0021202170457847
121 => 0.0021199098837927
122 => 0.0021313640240035
123 => 0.0021384998584636
124 => 0.0021078676332107
125 => 0.0020879271809493
126 => 0.0020955736191903
127 => 0.0021078004404554
128 => 0.002091608625843
129 => 0.0019916652452773
130 => 0.002021981682533
131 => 0.0020169355449756
201 => 0.0020097492314626
202 => 0.0020402326435534
203 => 0.0020372924440924
204 => 0.0019492220552147
205 => 0.0019548600357669
206 => 0.0019495649194856
207 => 0.0019666745234694
208 => 0.0019177603269254
209 => 0.0019328060043402
210 => 0.0019422425121703
211 => 0.0019478006877769
212 => 0.0019678806293446
213 => 0.0019655244799635
214 => 0.0019677341677909
215 => 0.0019975074202278
216 => 0.0021480903141071
217 => 0.0021562862087785
218 => 0.0021159266259088
219 => 0.0021320494832077
220 => 0.0021010971228751
221 => 0.0021218756497292
222 => 0.0021360917900853
223 => 0.0020718517854223
224 => 0.0020680479092604
225 => 0.0020369677975263
226 => 0.0020536684891047
227 => 0.0020270964879813
228 => 0.0020336163276079
301 => 0.0020153862876227
302 => 0.0020481967300313
303 => 0.0020848839028714
304 => 0.0020941525315512
305 => 0.0020697707598902
306 => 0.0020521167503706
307 => 0.0020211221252465
308 => 0.0020726668775882
309 => 0.0020877401339708
310 => 0.0020725877041893
311 => 0.0020690765551218
312 => 0.0020624229339834
313 => 0.0020704881523
314 => 0.0020876580417794
315 => 0.002079561038979
316 => 0.0020849092519795
317 => 0.0020645273790749
318 => 0.0021078777737519
319 => 0.0021767286333396
320 => 0.0021769500001114
321 => 0.0021688529536652
322 => 0.0021655398167127
323 => 0.0021738478777364
324 => 0.0021783546600273
325 => 0.0022052214059401
326 => 0.002234050494723
327 => 0.0023685832729558
328 => 0.0023308070071697
329 => 0.0024501724914086
330 => 0.0025445750917734
331 => 0.0025728823038974
401 => 0.0025468410007006
402 => 0.0024577551091878
403 => 0.0024533841303435
404 => 0.0025865160633568
405 => 0.0025489001944517
406 => 0.0025444259065382
407 => 0.0024968270425667
408 => 0.0025249638664078
409 => 0.0025188099302914
410 => 0.0025090956410709
411 => 0.0025627787409317
412 => 0.0026632687115477
413 => 0.0026476064072382
414 => 0.0026359152236246
415 => 0.002584687860282
416 => 0.00261553817506
417 => 0.0026045529688664
418 => 0.0026517523860583
419 => 0.0026237924969089
420 => 0.0025486152172485
421 => 0.002560587446822
422 => 0.0025587778684068
423 => 0.0025960188639645
424 => 0.0025848400414764
425 => 0.0025565950239023
426 => 0.0026629252477528
427 => 0.0026560207544557
428 => 0.002665809747364
429 => 0.0026701191647769
430 => 0.002734840498286
501 => 0.002761354757773
502 => 0.002767373958874
503 => 0.0027925604547003
504 => 0.0027667472959135
505 => 0.0028700183355308
506 => 0.0029386875508441
507 => 0.003018450378116
508 => 0.0031350053069871
509 => 0.003178831038436
510 => 0.0031709143123187
511 => 0.0032592849291657
512 => 0.0034180849632714
513 => 0.0032030123394782
514 => 0.0034294843345696
515 => 0.0033577859156685
516 => 0.0031877902542537
517 => 0.0031768445377758
518 => 0.0032919675733761
519 => 0.0035472993861561
520 => 0.0034833416630042
521 => 0.003547403998079
522 => 0.0034726718813429
523 => 0.0034689608018553
524 => 0.0035437744259743
525 => 0.0037185805366068
526 => 0.0036355367059544
527 => 0.0035164730115315
528 => 0.0036043877906571
529 => 0.0035282278728497
530 => 0.0033566182622111
531 => 0.0034832927557386
601 => 0.0033985891293986
602 => 0.0034233101506571
603 => 0.0036013445745103
604 => 0.0035799230016116
605 => 0.0036076445005267
606 => 0.0035587167805395
607 => 0.0035130105748781
608 => 0.0034276965478238
609 => 0.0034024392703437
610 => 0.0034094194731776
611 => 0.0034024358113019
612 => 0.0033547033972413
613 => 0.0033443955869696
614 => 0.0033272154515879
615 => 0.0033325402939245
616 => 0.0033002366131809
617 => 0.003361200333025
618 => 0.0033725157366385
619 => 0.0034168800479887
620 => 0.003421486097966
621 => 0.0035450400735899
622 => 0.0034769886200565
623 => 0.0035226434103665
624 => 0.0035185596162016
625 => 0.0031914745757085
626 => 0.0032365440083927
627 => 0.0033066579020822
628 => 0.0032750716880122
629 => 0.0032304161713531
630 => 0.0031943544473735
701 => 0.0031397172480438
702 => 0.0032166180568858
703 => 0.0033177344430239
704 => 0.0034240505763859
705 => 0.0035517824445115
706 => 0.0035232741785087
707 => 0.0034216627179598
708 => 0.0034262209338528
709 => 0.0034543980309115
710 => 0.0034179061300612
711 => 0.003407143956094
712 => 0.0034529194734728
713 => 0.0034532347043032
714 => 0.0034112463621815
715 => 0.0033645840036986
716 => 0.0033643884867128
717 => 0.0033560853707256
718 => 0.0034741489872316
719 => 0.0035390720387319
720 => 0.0035465153619576
721 => 0.0035385710437735
722 => 0.0035416284965438
723 => 0.0035038512033576
724 => 0.003590198893073
725 => 0.0036694400720572
726 => 0.0036482017433486
727 => 0.003616362469408
728 => 0.0035910009541271
729 => 0.0036422273763489
730 => 0.0036399463444053
731 => 0.0036687479694873
801 => 0.0036674413614073
802 => 0.0036577564581761
803 => 0.003648202089227
804 => 0.0036860840821336
805 => 0.0036751746765426
806 => 0.0036642483256316
807 => 0.0036423338561389
808 => 0.0036453123965037
809 => 0.0036134786200627
810 => 0.0035987508584666
811 => 0.003377280660902
812 => 0.0033180965873653
813 => 0.0033367171017029
814 => 0.0033428474585043
815 => 0.0033170904738546
816 => 0.0033540193734157
817 => 0.0033482640435365
818 => 0.0033706546653412
819 => 0.0033566659769254
820 => 0.0033572400775774
821 => 0.0033983778275053
822 => 0.0034103202913219
823 => 0.0034042462578373
824 => 0.0034085003026842
825 => 0.0035065329706618
826 => 0.0034925958601837
827 => 0.003485192048019
828 => 0.0034872429545872
829 => 0.0035122924030996
830 => 0.0035193048810339
831 => 0.0034895925192682
901 => 0.003503605040842
902 => 0.0035632685792494
903 => 0.0035841474410282
904 => 0.0036507827454039
905 => 0.003622474883757
906 => 0.0036744351889454
907 => 0.0038341434525212
908 => 0.0039617294644367
909 => 0.0038443960951642
910 => 0.0040786915580665
911 => 0.0042611241836239
912 => 0.0042541221155976
913 => 0.004222310767589
914 => 0.0040146160736142
915 => 0.0038234923196651
916 => 0.0039833754553867
917 => 0.00398378303038
918 => 0.0039700489272281
919 => 0.0038847475920951
920 => 0.0039670806256669
921 => 0.0039736159228821
922 => 0.0039699578943174
923 => 0.0039045575606704
924 => 0.0038047033391935
925 => 0.0038242146150529
926 => 0.0038561744829298
927 => 0.003795667785512
928 => 0.0037763322294569
929 => 0.0038122807069033
930 => 0.0039281141913984
1001 => 0.0039062165421323
1002 => 0.0039056447060146
1003 => 0.0039993321356234
1004 => 0.0039322721550362
1005 => 0.0038244607147252
1006 => 0.0037972369041885
1007 => 0.0037006107169394
1008 => 0.003767350768643
1009 => 0.0037697526242888
1010 => 0.0037331997800375
1011 => 0.003827426776582
1012 => 0.0038265584582205
1013 => 0.0039160129676019
1014 => 0.0040870163919597
1015 => 0.0040364422648097
1016 => 0.0039776300573835
1017 => 0.0039840245750164
1018 => 0.0040541566504344
1019 => 0.0040117531966771
1020 => 0.0040270017742956
1021 => 0.0040541335698858
1022 => 0.00407050285581
1023 => 0.0039816692866809
1024 => 0.0039609579323161
1025 => 0.0039185897699833
1026 => 0.0039075367072699
1027 => 0.0039420446914492
1028 => 0.003932953056803
1029 => 0.0037695507576222
1030 => 0.003752474308196
1031 => 0.0037529980185204
1101 => 0.0037100584744973
1102 => 0.0036445653631907
1103 => 0.003816677349314
1104 => 0.0038028543481226
1105 => 0.0037875948246226
1106 => 0.0037894640291817
1107 => 0.0038641720089414
1108 => 0.0038208376078373
1109 => 0.0039360492155411
1110 => 0.0039123651725751
1111 => 0.0038880737232752
1112 => 0.0038847159050463
1113 => 0.0038753657695149
1114 => 0.0038433006757454
1115 => 0.0038045801482055
1116 => 0.0037790135020089
1117 => 0.0034859401977053
1118 => 0.0035403328982551
1119 => 0.0036029067421869
1120 => 0.0036245069823633
1121 => 0.0035875582768505
1122 => 0.0038447596358441
1123 => 0.0038917528025862
1124 => 0.003749407435236
1125 => 0.0037227804289278
1126 => 0.0038465052979448
1127 => 0.0037718840771774
1128 => 0.0038054860083198
1129 => 0.0037328570124636
1130 => 0.0038804335248386
1201 => 0.0038793092390726
1202 => 0.003821898642592
1203 => 0.0038704216856066
1204 => 0.0038619896127893
1205 => 0.0037971731907589
1206 => 0.0038824883210279
1207 => 0.0038825306362681
1208 => 0.0038272741853696
1209 => 0.0037627467479126
1210 => 0.0037512107661653
1211 => 0.0037425199535598
1212 => 0.0038033486011754
1213 => 0.0038578873764213
1214 => 0.0039593705158448
1215 => 0.0039848857882758
1216 => 0.0040844735952219
1217 => 0.0040251739050278
1218 => 0.0040514606896313
1219 => 0.0040799987128111
1220 => 0.0040936808905745
1221 => 0.0040713865161351
1222 => 0.004226087372299
1223 => 0.004239148864471
1224 => 0.0042435282698148
1225 => 0.0041913640115309
1226 => 0.0042376980820837
1227 => 0.0042160199048952
1228 => 0.0042724204995686
1229 => 0.0042812648329724
1230 => 0.0042737739972257
1231 => 0.0042765813282463
]
'min_raw' => 0.0019177603269254
'max_raw' => 0.0042812648329724
'avg_raw' => 0.0030995125799489
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.001917'
'max' => '$0.004281'
'avg' => '$0.003099'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00029571475130428
'max_diff' => -0.00040854594593929
'year' => 2031
]
6 => [
'items' => [
101 => 0.0041445714386116
102 => 0.0041377260294263
103 => 0.004044388389458
104 => 0.0040824241676621
105 => 0.0040113181034118
106 => 0.0040338665688592
107 => 0.0040438057175787
108 => 0.0040386140703293
109 => 0.0040845746534933
110 => 0.0040454987686771
111 => 0.003942371083977
112 => 0.0038392153022081
113 => 0.0038379202653968
114 => 0.0038107611689079
115 => 0.003791130116583
116 => 0.0037949117537097
117 => 0.0038082387361912
118 => 0.003790355528134
119 => 0.0037941718172747
120 => 0.003857547644811
121 => 0.0038702572150477
122 => 0.0038270651294338
123 => 0.0036536426731056
124 => 0.0036110843673254
125 => 0.0036416744335523
126 => 0.0036270543521484
127 => 0.0029273159421694
128 => 0.0030917091022274
129 => 0.0029940322687852
130 => 0.0030390462475304
131 => 0.0029393434938792
201 => 0.0029869268737906
202 => 0.0029781399609878
203 => 0.0032424792976138
204 => 0.0032383520024593
205 => 0.0032403275202382
206 => 0.0031460309094679
207 => 0.0032962479708569
208 => 0.0033702502969279
209 => 0.0033565544358803
210 => 0.0033600013890403
211 => 0.0033007713134503
212 => 0.0032409009968404
213 => 0.0031744956017444
214 => 0.0032978686178779
215 => 0.0032841516445315
216 => 0.003315613446177
217 => 0.0033956296660249
218 => 0.0034074123583495
219 => 0.0034232484163221
220 => 0.0034175723168263
221 => 0.0035528000349142
222 => 0.0035364230659926
223 => 0.0035758868491183
224 => 0.0034947068531043
225 => 0.0034028439819386
226 => 0.0034203041105237
227 => 0.0034186225597354
228 => 0.0033972144882071
229 => 0.0033778882384509
301 => 0.0033457154777439
302 => 0.0034475148532935
303 => 0.0034433819845537
304 => 0.0035102883255171
305 => 0.0034984619798583
306 => 0.0034194827491511
307 => 0.0034223035078267
308 => 0.0034412744655308
309 => 0.0035069331667511
310 => 0.0035264251396585
311 => 0.003517395681187
312 => 0.0035387677396376
313 => 0.003555659343228
314 => 0.0035408890649809
315 => 0.0037500050572
316 => 0.0036631655177145
317 => 0.0037054905050341
318 => 0.0037155847651165
319 => 0.0036897285301748
320 => 0.0036953358216913
321 => 0.0037038293404433
322 => 0.003755400323104
323 => 0.0038907375037899
324 => 0.0039506774198443
325 => 0.0041310096146773
326 => 0.0039457002442199
327 => 0.0039347047530633
328 => 0.0039671880268633
329 => 0.0040730621153318
330 => 0.004158863119788
331 => 0.0041873282629448
401 => 0.0041910904015213
402 => 0.0042444929024104
403 => 0.0042751022200224
404 => 0.0042380084341773
405 => 0.0042065753345548
406 => 0.004093985873327
407 => 0.0041070184100351
408 => 0.0041967996642086
409 => 0.0043236209738183
410 => 0.0044324468509717
411 => 0.0043943398217573
412 => 0.0046850695552931
413 => 0.0047138942208487
414 => 0.0047099115840819
415 => 0.004775578461903
416 => 0.0046452430822553
417 => 0.0045895221823269
418 => 0.004213371527474
419 => 0.0043190545185018
420 => 0.0044726709525053
421 => 0.0044523392414328
422 => 0.0043407788808805
423 => 0.0044323622224344
424 => 0.0044020819056408
425 => 0.0043781985634542
426 => 0.0044876127840247
427 => 0.004367307354019
428 => 0.0044714708138121
429 => 0.0043378800991944
430 => 0.0043945138914569
501 => 0.0043623658119004
502 => 0.0043831695592939
503 => 0.0042615512771219
504 => 0.004327173550065
505 => 0.0042588211748215
506 => 0.0042587887668958
507 => 0.0042572798844239
508 => 0.0043376961507771
509 => 0.0043403185223358
510 => 0.0042808907799986
511 => 0.004272326313892
512 => 0.0043039936339065
513 => 0.0042669194958538
514 => 0.0042842662517068
515 => 0.0042674449114171
516 => 0.0042636580734063
517 => 0.0042334839038586
518 => 0.0042204840419613
519 => 0.0042255816227764
520 => 0.0042081809514715
521 => 0.0041976964176005
522 => 0.0042551942467451
523 => 0.0042244754760889
524 => 0.0042504861545728
525 => 0.0042208437036311
526 => 0.004118090054066
527 => 0.004058995343601
528 => 0.0038649032248408
529 => 0.0039199475089507
530 => 0.0039564419262629
531 => 0.0039443805215589
601 => 0.0039702930860071
602 => 0.0039718839070111
603 => 0.0039634594681617
604 => 0.0039537050472115
605 => 0.0039489571345462
606 => 0.0039843441856611
607 => 0.0040048875599066
608 => 0.0039601046292725
609 => 0.0039496126152047
610 => 0.0039948906306092
611 => 0.0040225101938496
612 => 0.004226437530725
613 => 0.0042113299349326
614 => 0.0042492470356555
615 => 0.0042449781519994
616 => 0.0042847213142248
617 => 0.0043496845877498
618 => 0.0042175960886566
619 => 0.0042405220848225
620 => 0.0042349011600012
621 => 0.0042962689433147
622 => 0.0042964605268357
623 => 0.0042596674751911
624 => 0.0042796135853867
625 => 0.0042684802138684
626 => 0.0042885997209674
627 => 0.0042111281637801
628 => 0.0043054801578964
629 => 0.0043589716586521
630 => 0.004359714388192
701 => 0.0043850689350154
702 => 0.0044108306230243
703 => 0.0044602779397872
704 => 0.0044094515641974
705 => 0.0043180198623591
706 => 0.0043246209359092
707 => 0.004271014562575
708 => 0.0042719156953956
709 => 0.0042671053777765
710 => 0.0042815415030551
711 => 0.004214296081465
712 => 0.004230078447504
713 => 0.004207983042628
714 => 0.0042404740537274
715 => 0.004205519096741
716 => 0.004234898449421
717 => 0.0042475776040967
718 => 0.0042943639578128
719 => 0.0041986087142563
720 => 0.0040033572905846
721 => 0.0040444015070351
722 => 0.0039836938869512
723 => 0.0039893126083201
724 => 0.0040006633196983
725 => 0.0039638719503999
726 => 0.0039708905842328
727 => 0.0039706398292429
728 => 0.0039684789582089
729 => 0.0039589081021043
730 => 0.0039450284672165
731 => 0.0040003206606834
801 => 0.0040097158817925
802 => 0.0040306002944965
803 => 0.004092738140671
804 => 0.0040865291045268
805 => 0.0040966563000884
806 => 0.0040745486890393
807 => 0.0039903381169905
808 => 0.0039949111562021
809 => 0.0039378852839563
810 => 0.0040291420147315
811 => 0.004007531216354
812 => 0.0039935985940534
813 => 0.0039897969489738
814 => 0.0040520888228502
815 => 0.0040707275278195
816 => 0.0040591131376796
817 => 0.0040352916846567
818 => 0.004081035916641
819 => 0.0040932751433257
820 => 0.0040960150548151
821 => 0.0041770650633047
822 => 0.0041005448499364
823 => 0.0041189640258397
824 => 0.0042626651782512
825 => 0.0041323480624175
826 => 0.0042013799450931
827 => 0.0041980011936607
828 => 0.004233315568926
829 => 0.0041951043841396
830 => 0.0041955780575707
831 => 0.0042269348304033
901 => 0.0041828998981837
902 => 0.0041719962297015
903 => 0.0041569328897868
904 => 0.0041898231414092
905 => 0.0042095393597586
906 => 0.0043684375996885
907 => 0.0044710931093233
908 => 0.0044666365629154
909 => 0.0045073610547783
910 => 0.0044890142982005
911 => 0.0044297677815809
912 => 0.0045308943611075
913 => 0.0044988936800295
914 => 0.0045015317772967
915 => 0.0045014335871847
916 => 0.0045227112425535
917 => 0.0045076340736562
918 => 0.0044779154261201
919 => 0.0044976440512658
920 => 0.0045562310148359
921 => 0.0047380867474253
922 => 0.0048398556246503
923 => 0.0047319601332316
924 => 0.004806384998434
925 => 0.0047617565996035
926 => 0.0047536462919562
927 => 0.0048003906072576
928 => 0.0048472167422951
929 => 0.0048442341199282
930 => 0.0048102407504396
1001 => 0.0047910387585653
1002 => 0.0049364426741765
1003 => 0.0050435738023078
1004 => 0.0050362681775855
1005 => 0.0050685128291935
1006 => 0.0051631841236042
1007 => 0.0051718396803059
1008 => 0.0051707492791072
1009 => 0.0051492955787082
1010 => 0.0052425117626767
1011 => 0.0053202743433259
1012 => 0.0051443296669229
1013 => 0.0052113270964122
1014 => 0.0052414044010323
1015 => 0.0052855668077488
1016 => 0.0053600761903583
1017 => 0.0054410131425099
1018 => 0.0054524585149727
1019 => 0.0054443374754988
1020 => 0.0053909573798528
1021 => 0.0054795195586758
1022 => 0.0055313972059916
1023 => 0.0055622891577693
1024 => 0.005640626007547
1025 => 0.0052415901482261
1026 => 0.0049591327336298
1027 => 0.0049150229296061
1028 => 0.0050047219506207
1029 => 0.005028374867126
1030 => 0.0050188404061409
1031 => 0.0047009089061082
1101 => 0.0049133490860558
1102 => 0.0051419168572019
1103 => 0.0051506970761632
1104 => 0.0052651228815256
1105 => 0.0053023846142238
1106 => 0.0053945123856737
1107 => 0.0053887497684859
1108 => 0.0054111814147609
1109 => 0.0054060247677442
1110 => 0.0055766720645641
1111 => 0.0057649213743253
1112 => 0.0057584028993244
1113 => 0.0057313398337815
1114 => 0.0057715331010511
1115 => 0.0059658265627467
1116 => 0.005947939134283
1117 => 0.0059653152473879
1118 => 0.0061943981886267
1119 => 0.0064922385989054
1120 => 0.0063538618256426
1121 => 0.0066540996067789
1122 => 0.0068430833750833
1123 => 0.0071699112610794
1124 => 0.0071289908000914
1125 => 0.0072562224977359
1126 => 0.007055734634565
1127 => 0.0065953739754424
1128 => 0.0065225201389465
1129 => 0.0066683753645643
1130 => 0.0070269462044011
1201 => 0.0066570826927726
1202 => 0.0067319055994638
1203 => 0.0067103565973031
1204 => 0.0067092083425553
1205 => 0.0067530325559885
1206 => 0.0066894632486865
1207 => 0.0064304704548379
1208 => 0.0065491653260046
1209 => 0.0065033315360513
1210 => 0.0065541875431399
1211 => 0.0068286364387843
1212 => 0.0067072960399754
1213 => 0.0065794737867237
1214 => 0.00673979125833
1215 => 0.006943930490745
1216 => 0.0069311558244539
1217 => 0.006906367632453
1218 => 0.0070460973728947
1219 => 0.0072768899671317
1220 => 0.0073392722779542
1221 => 0.0073853216244532
1222 => 0.0073916710513253
1223 => 0.007457074094255
1224 => 0.007105385448733
1225 => 0.0076635243611815
1226 => 0.007759899533085
1227 => 0.0077417849951088
1228 => 0.0078489019425924
1229 => 0.007817385419348
1230 => 0.007771722921958
1231 => 0.0079415260681476
]
'min_raw' => 0.0029273159421694
'max_raw' => 0.0079415260681476
'avg_raw' => 0.0054344210051585
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.002927'
'max' => '$0.007941'
'avg' => '$0.005434'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.001009555615244
'max_diff' => 0.0036602612351752
'year' => 2032
]
7 => [
'items' => [
101 => 0.0077468604634485
102 => 0.0074705571452963
103 => 0.007318971680298
104 => 0.0075185916486584
105 => 0.0076404925975592
106 => 0.0077210613704262
107 => 0.0077454414324148
108 => 0.0071326860371557
109 => 0.0068024448640833
110 => 0.0070141256698
111 => 0.0072723908622031
112 => 0.0071039507725491
113 => 0.0071105533051642
114 => 0.0068704020025945
115 => 0.0072936389237138
116 => 0.0072319768642895
117 => 0.0075518797376609
118 => 0.0074755323495499
119 => 0.0077364007242263
120 => 0.0076677053385227
121 => 0.0079528560438709
122 => 0.0080666103803815
123 => 0.0082576216158315
124 => 0.0083981302581841
125 => 0.0084806396204756
126 => 0.0084756860678484
127 => 0.0088026292672484
128 => 0.0086098422850876
129 => 0.0083676563990906
130 => 0.0083632760204996
131 => 0.008488707522658
201 => 0.0087515775407298
202 => 0.0088197359118126
203 => 0.0088578271429119
204 => 0.008799489096518
205 => 0.00859023264455
206 => 0.0084998767695445
207 => 0.0085768625929109
208 => 0.008482715546401
209 => 0.0086452397616728
210 => 0.0088684202225401
211 => 0.0088223343399222
212 => 0.0089763925359322
213 => 0.0091358265614077
214 => 0.0093638243784678
215 => 0.009423431450582
216 => 0.0095219596741329
217 => 0.0096233775810022
218 => 0.0096559502793993
219 => 0.0097181416673543
220 => 0.0097178138880412
221 => 0.0099052318216066
222 => 0.01011195960618
223 => 0.010189994559097
224 => 0.010369431630457
225 => 0.010062151933977
226 => 0.010295227113532
227 => 0.01050546675974
228 => 0.010254810386367
301 => 0.010600281801617
302 => 0.010613695673816
303 => 0.01081622921834
304 => 0.010610922670233
305 => 0.010489012297329
306 => 0.010840962975981
307 => 0.011011260823038
308 => 0.010959965725575
309 => 0.010569607501126
310 => 0.010342402271245
311 => 0.0097477623600306
312 => 0.010452139021397
313 => 0.010795220346199
314 => 0.010568719003377
315 => 0.0106829531059
316 => 0.011306177328734
317 => 0.011543460762009
318 => 0.011494107466624
319 => 0.01150244736112
320 => 0.011630481194716
321 => 0.012198253722402
322 => 0.011858031262948
323 => 0.012118118585308
324 => 0.012256067963273
325 => 0.012384203033529
326 => 0.012069543798485
327 => 0.011660176756954
328 => 0.011530513030842
329 => 0.010546197908687
330 => 0.010494960031915
331 => 0.010466198659016
401 => 0.010284862271267
402 => 0.010142381542713
403 => 0.010029075577396
404 => 0.0097317268883801
405 => 0.0098320733421607
406 => 0.0093581615933636
407 => 0.0096613535358428
408 => 0.0089049789417634
409 => 0.0095349101795052
410 => 0.0091920672462611
411 => 0.0094222770552034
412 => 0.009421473874867
413 => 0.0089975846285179
414 => 0.0087530941575667
415 => 0.0089088930013683
416 => 0.0090759217292513
417 => 0.0091030215783982
418 => 0.0093195786839943
419 => 0.0093800151172868
420 => 0.0091968899029033
421 => 0.0088893047595042
422 => 0.0089607497730456
423 => 0.0087516463266476
424 => 0.008385200579883
425 => 0.0086483883127382
426 => 0.0087382521762828
427 => 0.0087779411778554
428 => 0.0084175838724908
429 => 0.0083043517834075
430 => 0.0082440679692888
501 => 0.0088427871565549
502 => 0.0088755863451654
503 => 0.0087077810588958
504 => 0.0094662768647848
505 => 0.0092946059035499
506 => 0.009486404427656
507 => 0.0089542668869179
508 => 0.0089745952575924
509 => 0.0087226728179246
510 => 0.008863732550675
511 => 0.0087640360781344
512 => 0.0088523363182482
513 => 0.0089052631180969
514 => 0.0091571442197713
515 => 0.0095377862570841
516 => 0.0091195215826756
517 => 0.0089372776743754
518 => 0.0090503407701062
519 => 0.0093514426933179
520 => 0.0098076275201075
521 => 0.0095375569210728
522 => 0.0096574096668282
523 => 0.0096835921598983
524 => 0.0094844520987271
525 => 0.0098149700982133
526 => 0.0099920973792614
527 => 0.01017379331829
528 => 0.010331554811145
529 => 0.010101219964663
530 => 0.010347711267602
531 => 0.010149082789005
601 => 0.0099708925098697
602 => 0.0099711627509694
603 => 0.0098593813859231
604 => 0.0096427909057874
605 => 0.0096028482981562
606 => 0.0098106347872488
607 => 0.0099772598740473
608 => 0.0099909839142764
609 => 0.010083236123834
610 => 0.010137830031177
611 => 0.010672924539956
612 => 0.010888143977921
613 => 0.011151310232769
614 => 0.011253828320269
615 => 0.011562371008878
616 => 0.011313197729215
617 => 0.011259287522786
618 => 0.010510863883766
619 => 0.010633418212728
620 => 0.01082963951813
621 => 0.010514099500819
622 => 0.010714237014503
623 => 0.010753748399196
624 => 0.010503377571774
625 => 0.010637111448585
626 => 0.010281953921106
627 => 0.0095455277206496
628 => 0.009815789951093
629 => 0.010014793921982
630 => 0.0097307907185106
701 => 0.010239855468292
702 => 0.0099424703506992
703 => 0.0098482135454253
704 => 0.0094804841430746
705 => 0.0096540382657814
706 => 0.009888772701798
707 => 0.009743734111147
708 => 0.010044710964402
709 => 0.010470974456206
710 => 0.010774755204895
711 => 0.010798075718719
712 => 0.010602765049041
713 => 0.010915751643655
714 => 0.010918031409302
715 => 0.010564981251989
716 => 0.010348739996426
717 => 0.010299609528187
718 => 0.010422347070445
719 => 0.010571373105345
720 => 0.010806345626487
721 => 0.010948334599856
722 => 0.01131856653727
723 => 0.011418740684153
724 => 0.011528801700674
725 => 0.011675877160305
726 => 0.011852478958967
727 => 0.011466084277441
728 => 0.011481436458468
729 => 0.011121631081029
730 => 0.010737127433925
731 => 0.011028917773021
801 => 0.011410394826146
802 => 0.011322883568665
803 => 0.011313036764505
804 => 0.011329596357826
805 => 0.011263615727535
806 => 0.010965187782087
807 => 0.01081531913614
808 => 0.01100868792498
809 => 0.011111454830394
810 => 0.011270837338475
811 => 0.011251190080198
812 => 0.011661742304582
813 => 0.011821270484524
814 => 0.011780456349499
815 => 0.01178796713259
816 => 0.012076785282315
817 => 0.012398010464791
818 => 0.012698880237576
819 => 0.013004937893111
820 => 0.01263597344373
821 => 0.012448636050899
822 => 0.012641920420975
823 => 0.012539361013538
824 => 0.013128697789766
825 => 0.013169502189486
826 => 0.013758796349958
827 => 0.014318106680089
828 => 0.013966813882819
829 => 0.01429806716807
830 => 0.014656344603545
831 => 0.015347519904995
901 => 0.015114756379307
902 => 0.014936463166499
903 => 0.014767976941902
904 => 0.015118570028853
905 => 0.015569602434354
906 => 0.015666750494564
907 => 0.01582416746552
908 => 0.015658662768591
909 => 0.015857994946297
910 => 0.016561725124597
911 => 0.016371571018422
912 => 0.016101521618856
913 => 0.016657049007659
914 => 0.016858092210109
915 => 0.018269118692044
916 => 0.020050597912083
917 => 0.019313053817164
918 => 0.018855236397048
919 => 0.01896283435035
920 => 0.019613370254631
921 => 0.019822301740108
922 => 0.019254353939578
923 => 0.019454962704244
924 => 0.020560336720968
925 => 0.021153334416296
926 => 0.020347963895825
927 => 0.018125978571301
928 => 0.0160772066251
929 => 0.016620633202636
930 => 0.016559025493233
1001 => 0.017746611975986
1002 => 0.016367035905878
1003 => 0.016390264428779
1004 => 0.01760240894232
1005 => 0.017279029567525
1006 => 0.016755196395658
1007 => 0.016081031186963
1008 => 0.014834774445955
1009 => 0.013730930096005
1010 => 0.01589582306643
1011 => 0.015802468944942
1012 => 0.015667278342723
1013 => 0.015968130398811
1014 => 0.017428982584826
1015 => 0.017395305213621
1016 => 0.017181066960362
1017 => 0.01734356478725
1018 => 0.016726709740939
1019 => 0.016885687331902
1020 => 0.016076882089156
1021 => 0.016442495837568
1022 => 0.016754072484937
1023 => 0.016816626109867
1024 => 0.016957562620903
1025 => 0.015753275564963
1026 => 0.01629396509707
1027 => 0.016611569541424
1028 => 0.015176621107281
1029 => 0.016583205224592
1030 => 0.015732311606616
1031 => 0.015443505532681
1101 => 0.015832344863927
1102 => 0.015680813798382
1103 => 0.015550536286429
1104 => 0.015477839196307
1105 => 0.015763359886543
1106 => 0.015750040005073
1107 => 0.015282872738669
1108 => 0.014673472083819
1109 => 0.014878006946481
1110 => 0.014803697513351
1111 => 0.014534390541581
1112 => 0.014715870924306
1113 => 0.013916723163905
1114 => 0.012541830978219
1115 => 0.01345012687017
1116 => 0.013415158466365
1117 => 0.013397525811476
1118 => 0.014080085070822
1119 => 0.014014472747358
1120 => 0.013895385737791
1121 => 0.014532203415261
1122 => 0.014299756396578
1123 => 0.015016103336754
1124 => 0.015487935761969
1125 => 0.015368263796754
1126 => 0.015812024473233
1127 => 0.014882719016614
1128 => 0.01519139701204
1129 => 0.015255015119087
1130 => 0.014524345183972
1201 => 0.014025207734918
1202 => 0.013991920957649
1203 => 0.013126485406367
1204 => 0.01358879409231
1205 => 0.013995606604307
1206 => 0.013800774980987
1207 => 0.013739097109473
1208 => 0.01405419597874
1209 => 0.014078681859521
1210 => 0.013520401182809
1211 => 0.013636485413947
1212 => 0.014120575955191
1213 => 0.013624287574356
1214 => 0.01266008031864
1215 => 0.012420943588014
1216 => 0.012389038339985
1217 => 0.011740480560354
1218 => 0.012436923847832
1219 => 0.012132907689328
1220 => 0.013093291091368
1221 => 0.012544725242762
1222 => 0.012521077665434
1223 => 0.012485330883956
1224 => 0.011927090411443
1225 => 0.012049309596891
1226 => 0.012455584783826
1227 => 0.012600548347541
1228 => 0.012585427460194
1229 => 0.012453593813767
1230 => 0.012513946582004
1231 => 0.012319529287214
]
'min_raw' => 0.0068024448640833
'max_raw' => 0.021153334416296
'avg_raw' => 0.01397788964019
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.0068024'
'max' => '$0.021153'
'avg' => '$0.013977'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0038751289219139
'max_diff' => 0.013211808348149
'year' => 2033
]
8 => [
'items' => [
101 => 0.012250876493978
102 => 0.012034189394086
103 => 0.011715719218583
104 => 0.011760004449778
105 => 0.011129031699853
106 => 0.010785244257435
107 => 0.01069008842442
108 => 0.010562842067675
109 => 0.010704461239004
110 => 0.01112724423333
111 => 0.010617278243757
112 => 0.0097429773245883
113 => 0.0097955242995666
114 => 0.0099135817510059
115 => 0.0096935824712769
116 => 0.0094853716161534
117 => 0.0096663940620027
118 => 0.0092959412368457
119 => 0.0099583492050668
120 => 0.0099404329259033
121 => 0.010187337653422
122 => 0.010341732246535
123 => 0.0099859026952533
124 => 0.0098964125253715
125 => 0.0099473901932376
126 => 0.0091048428975683
127 => 0.01011848356416
128 => 0.010127249570737
129 => 0.010052189700428
130 => 0.010591922062744
131 => 0.011730925693975
201 => 0.011302386711591
202 => 0.011136443464953
203 => 0.010820985231789
204 => 0.011241314597423
205 => 0.011209039860302
206 => 0.01106308125921
207 => 0.01097480504185
208 => 0.011137456679031
209 => 0.010954650704018
210 => 0.010921813727733
211 => 0.01072285737843
212 => 0.010651839013666
213 => 0.010599259843718
214 => 0.010541375343927
215 => 0.010669054126547
216 => 0.010379717207587
217 => 0.010030805247369
218 => 0.010001796993157
219 => 0.010081891333469
220 => 0.010046455550203
221 => 0.010001627340259
222 => 0.0099160380792406
223 => 0.0098906455738216
224 => 0.0099731588977412
225 => 0.0098800061658616
226 => 0.010017458096042
227 => 0.009980078776595
228 => 0.0097712809367155
301 => 0.0095110415213642
302 => 0.0095087248446969
303 => 0.0094526566895377
304 => 0.0093812454640389
305 => 0.0093613804947726
306 => 0.0096511488565259
307 => 0.010250960693318
308 => 0.010133203277475
309 => 0.010218295078687
310 => 0.010636862522199
311 => 0.010769912525729
312 => 0.010675476784686
313 => 0.010546207317802
314 => 0.010551894518291
315 => 0.010993647419161
316 => 0.011021199005723
317 => 0.011090812976487
318 => 0.011180286601824
319 => 0.010690714529975
320 => 0.010528835717734
321 => 0.010452128555799
322 => 0.010215900186448
323 => 0.010470652230103
324 => 0.010322219123835
325 => 0.010342247821068
326 => 0.01032920410572
327 => 0.010336326856312
328 => 0.0099581640485398
329 => 0.01009594670004
330 => 0.0098668563185362
331 => 0.0095601300143047
401 => 0.0095591017601808
402 => 0.0096341725886026
403 => 0.0095895175223355
404 => 0.0094693518871975
405 => 0.0094864208485031
406 => 0.0093368787866613
407 => 0.0095045779623571
408 => 0.0095093869746595
409 => 0.0094448136573808
410 => 0.0097031773755669
411 => 0.0098090292017125
412 => 0.0097665256609851
413 => 0.0098060470399893
414 => 0.010138096629746
415 => 0.010192235201216
416 => 0.010216279978469
417 => 0.010184063162272
418 => 0.009812116296938
419 => 0.0098286137220558
420 => 0.0097075665627552
421 => 0.0096052944687816
422 => 0.009609384816194
423 => 0.0096619659669381
424 => 0.0098915909360809
425 => 0.010374823146511
426 => 0.010393161455659
427 => 0.010415388021312
428 => 0.010324981408623
429 => 0.010297713909162
430 => 0.01033368677929
501 => 0.010515163390385
502 => 0.010981970504541
503 => 0.010816969693399
504 => 0.010682821465551
505 => 0.010800505627476
506 => 0.010782389073187
507 => 0.010629467123128
508 => 0.010625175113312
509 => 0.010331668999043
510 => 0.010223166471409
511 => 0.010132493638044
512 => 0.010033481271084
513 => 0.0099747834210256
514 => 0.010064969996411
515 => 0.010085596733258
516 => 0.009888402209986
517 => 0.0098615253251228
518 => 0.010022558629566
519 => 0.0099516938762073
520 => 0.010024580032398
521 => 0.01004149024584
522 => 0.010038767312001
523 => 0.0099647763707292
524 => 0.010011935990254
525 => 0.0099003894311184
526 => 0.0097790993018098
527 => 0.0097017237559529
528 => 0.009634203329816
529 => 0.009671667586547
530 => 0.0095381143520041
531 => 0.0094953879843783
601 => 0.0099959593722842
602 => 0.010365736838579
603 => 0.010360360127772
604 => 0.010327630783506
605 => 0.010279001616833
606 => 0.010511605863951
607 => 0.010430571195324
608 => 0.010489530687423
609 => 0.010504538352684
610 => 0.010549962035411
611 => 0.010566197097688
612 => 0.01051712346351
613 => 0.010352426353371
614 => 0.0099420168138332
615 => 0.0097509700652991
616 => 0.0096879214561476
617 => 0.0096902131533439
618 => 0.0096269979140832
619 => 0.0096456176351538
620 => 0.0096205227349605
621 => 0.0095729990651028
622 => 0.0096687331338515
623 => 0.0096797655934502
624 => 0.0096574201178673
625 => 0.0096626832862851
626 => 0.0094776722923365
627 => 0.0094917382763836
628 => 0.0094134170897903
629 => 0.00939873281148
630 => 0.0092007436719777
701 => 0.0088499772123649
702 => 0.0090443358807145
703 => 0.0088095779403126
704 => 0.0087206715511191
705 => 0.0091415405697807
706 => 0.0090992969933966
707 => 0.0090269943534681
708 => 0.0089200436798235
709 => 0.0088803746346195
710 => 0.0086393580736532
711 => 0.0086251175294579
712 => 0.0087445718450674
713 => 0.0086894477885857
714 => 0.0086120327361726
715 => 0.0083316432637704
716 => 0.0080163926630264
717 => 0.0080259080970683
718 => 0.008126183447719
719 => 0.0084177475537094
720 => 0.0083038284133887
721 => 0.0082211787700145
722 => 0.0082057009762497
723 => 0.0083994379701726
724 => 0.0086736164057285
725 => 0.0088022547932947
726 => 0.0086747780580225
727 => 0.0085283396483768
728 => 0.0085372526758417
729 => 0.0085965470544589
730 => 0.0086027780552742
731 => 0.0085074617047066
801 => 0.0085342926990726
802 => 0.008493533965153
803 => 0.0082433976903231
804 => 0.0082388735183021
805 => 0.0081774860424666
806 => 0.0081756272540952
807 => 0.0080711918438754
808 => 0.0080565806080577
809 => 0.00784921776229
810 => 0.0079857046153269
811 => 0.0078941564001912
812 => 0.0077561716459409
813 => 0.0077323830222985
814 => 0.0077316679075462
815 => 0.0078733473973348
816 => 0.0079840490079989
817 => 0.0078957489205886
818 => 0.0078756447023106
819 => 0.0080903051565959
820 => 0.0080629876571146
821 => 0.0080393308787428
822 => 0.0086490667340399
823 => 0.0081664132262901
824 => 0.0079559487480121
825 => 0.0076954589900227
826 => 0.0077802757687274
827 => 0.0077981479102182
828 => 0.0071717169990617
829 => 0.0069175740564225
830 => 0.0068303617756835
831 => 0.0067801698751175
901 => 0.0068030429544756
902 => 0.0065742844981063
903 => 0.0067280139641022
904 => 0.0065299284773573
905 => 0.0064967188008786
906 => 0.0068509201892614
907 => 0.0069002052432404
908 => 0.0066899398913
909 => 0.0068249642861141
910 => 0.006776002563575
911 => 0.0065333240844877
912 => 0.0065240555516087
913 => 0.0064022880213637
914 => 0.0062117454153703
915 => 0.0061246623314906
916 => 0.0060793087053161
917 => 0.0060980224954002
918 => 0.0060885602304822
919 => 0.0060268125513698
920 => 0.0060920995351697
921 => 0.0059253182700052
922 => 0.0058589046263687
923 => 0.005828907124323
924 => 0.005680879151918
925 => 0.0059164574843524
926 => 0.0059628693835796
927 => 0.0060093727285857
928 => 0.0064141525976813
929 => 0.0063939309393173
930 => 0.0065767248825806
1001 => 0.0065696218460819
1002 => 0.0065174860523977
1003 => 0.0062975337147656
1004 => 0.0063852027962723
1005 => 0.0061153709901948
1006 => 0.0063175473260874
1007 => 0.0062252824894716
1008 => 0.0062863524920175
1009 => 0.0061765431209799
1010 => 0.0062373161608299
1011 => 0.0059738753666543
1012 => 0.0057278780597652
1013 => 0.0058268745571664
1014 => 0.0059344950714643
1015 => 0.0061678437676592
1016 => 0.0060288632092905
1017 => 0.0060788458735166
1018 => 0.005911412315356
1019 => 0.0055659490598392
1020 => 0.0055679043443482
1021 => 0.0055147623488131
1022 => 0.0054688399058123
1023 => 0.0060448267982726
1024 => 0.0059731937231898
1025 => 0.0058590557931506
1026 => 0.0060118339481691
1027 => 0.0060522309172714
1028 => 0.0060533809621903
1029 => 0.0061648439603169
1030 => 0.006224331782398
1031 => 0.0062348167688747
1101 => 0.0064102062047444
1102 => 0.0064689944302054
1103 => 0.0067111348108579
1104 => 0.0062192846563127
1105 => 0.0062091553260508
1106 => 0.0060139838501191
1107 => 0.0058902030145443
1108 => 0.0060224592298301
1109 => 0.0061396201817995
1110 => 0.0060176243674817
1111 => 0.0060335544453594
1112 => 0.0058697850320621
1113 => 0.0059283248912488
1114 => 0.005978747304151
1115 => 0.0059509070114388
1116 => 0.0059092287457633
1117 => 0.0061300143198239
1118 => 0.0061175567324697
1119 => 0.0063231573348734
1120 => 0.0064834377070871
1121 => 0.0067706887876378
1122 => 0.0064709273103457
1123 => 0.0064600028106692
1124 => 0.0065667915473517
1125 => 0.0064689780814062
1126 => 0.0065307928154776
1127 => 0.0067607294783268
1128 => 0.0067655876776834
1129 => 0.0066842065790248
1130 => 0.0066792545317755
1201 => 0.0066948846619845
1202 => 0.0067864308228172
1203 => 0.0067544417812929
1204 => 0.0067914603100083
1205 => 0.0068377525470147
1206 => 0.007029236866775
1207 => 0.0070754030880021
1208 => 0.0069632431048616
1209 => 0.0069733698955371
1210 => 0.0069314189829821
1211 => 0.0068908949270975
1212 => 0.0069819870866631
1213 => 0.0071484597986902
1214 => 0.0071474241805887
1215 => 0.0071860426140118
1216 => 0.0072101015781021
1217 => 0.0071068228919886
1218 => 0.0070395922649912
1219 => 0.007065372765378
1220 => 0.0071065963469226
1221 => 0.0070520045134806
1222 => 0.0067150384280792
1223 => 0.0068172524129131
1224 => 0.0068002390078283
1225 => 0.0067760098500867
1226 => 0.0068787868022345
1227 => 0.0068688737144738
1228 => 0.0065719382494942
1229 => 0.0065909470945574
1230 => 0.0065730942403218
1231 => 0.0066307804647076
]
'min_raw' => 0.0054688399058123
'max_raw' => 0.012250876493978
'avg_raw' => 0.0088598581998951
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.005468'
'max' => '$0.01225'
'avg' => '$0.008859'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.001333604958271
'max_diff' => -0.0089024579223183
'year' => 2034
]
9 => [
'items' => [
101 => 0.0064658628359793
102 => 0.0065165903878389
103 => 0.006548406232824
104 => 0.0065671460099411
105 => 0.0066348469348734
106 => 0.0066269030127337
107 => 0.0066343531295194
108 => 0.0067347357288125
109 => 0.0072424364688886
110 => 0.0072700694999924
111 => 0.0071339943485309
112 => 0.0071883536875761
113 => 0.00708399564369
114 => 0.0071540518976889
115 => 0.007201982607439
116 => 0.0069853929466238
117 => 0.0069725679125656
118 => 0.0068677791459102
119 => 0.0069240866935717
120 => 0.0068344973365863
121 => 0.0068564794310878
122 => 0.006795015578497
123 => 0.0069056382758295
124 => 0.0070293316404766
125 => 0.0070605814691855
126 => 0.0069783766237497
127 => 0.0069188548980908
128 => 0.0068143543555092
129 => 0.0069881410867689
130 => 0.0070389616230439
131 => 0.0069878741481268
201 => 0.0069760360639051
202 => 0.006953602915696
203 => 0.006980795362346
204 => 0.0070386848434891
205 => 0.0070113852332329
206 => 0.0070294171067643
207 => 0.0069606981992497
208 => 0.0071068570815311
209 => 0.0073389925616445
210 => 0.0073397389151711
211 => 0.0073124391577598
212 => 0.0073012686852086
213 => 0.0073292798930004
214 => 0.0073444748241475
215 => 0.007435057933769
216 => 0.0075322572193832
217 => 0.0079858438739738
218 => 0.0078584785564211
219 => 0.0082609276203648
220 => 0.0085792125784736
221 => 0.0086746523204961
222 => 0.0085868522486223
223 => 0.0082864929456087
224 => 0.0082717558852632
225 => 0.0087206194923922
226 => 0.0085937949641226
227 => 0.0085787095900373
228 => 0.0084182266969108
301 => 0.0085130919629415
302 => 0.0084923435376711
303 => 0.008459591133334
304 => 0.008640587452549
305 => 0.0089793964044665
306 => 0.00892658985198
307 => 0.0088871722101742
308 => 0.0087144555780844
309 => 0.0088184695682588
310 => 0.0087814321786145
311 => 0.0089405683090349
312 => 0.0088462995906707
313 => 0.0085928341435856
314 => 0.008633199351467
315 => 0.0086270982314992
316 => 0.0087526588481053
317 => 0.0087149686676062
318 => 0.008619738618851
319 => 0.0089782383923021
320 => 0.0089549594110947
321 => 0.0089879636841308
322 => 0.0090024931858124
323 => 0.0092207056804375
324 => 0.0093101003574644
325 => 0.0093303945142236
326 => 0.0094153125433667
327 => 0.0093282816762999
328 => 0.0096764671965235
329 => 0.0099079902502838
330 => 0.010176916191294
331 => 0.010569889271588
401 => 0.010717650784983
402 => 0.01069095899015
403 => 0.010988906694689
404 => 0.011524312096741
405 => 0.010799179729731
406 => 0.011562745872951
407 => 0.011321009647803
408 => 0.010747857406625
409 => 0.010710953159314
410 => 0.011099098511474
411 => 0.01195996754496
412 => 0.011744329615967
413 => 0.011960320251361
414 => 0.011708355702156
415 => 0.011695843538564
416 => 0.011948082895602
417 => 0.012537453902172
418 => 0.012257465829192
419 => 0.011856034270684
420 => 0.01215244508652
421 => 0.011895666606317
422 => 0.011317072822648
423 => 0.011744164721707
424 => 0.011458580531683
425 => 0.011541929180823
426 => 0.01214218467081
427 => 0.012069960342176
428 => 0.012163425311221
429 => 0.01199846208726
430 => 0.011844360423767
501 => 0.011556718225119
502 => 0.011471561550688
503 => 0.011495095791884
504 => 0.011471549888287
505 => 0.011310616721711
506 => 0.011275863219711
507 => 0.011217939193793
508 => 0.0112358922715
509 => 0.011126978156502
510 => 0.011332521594307
511 => 0.011370672267606
512 => 0.011520249640741
513 => 0.011535779259823
514 => 0.011952350114902
515 => 0.011722909888114
516 => 0.01187683820116
517 => 0.011863069404011
518 => 0.01076027935364
519 => 0.010912234092583
520 => 0.011148627980353
521 => 0.011042132854337
522 => 0.010891573662172
523 => 0.010769989042025
524 => 0.010585775909838
525 => 0.010845052355892
526 => 0.011185973311477
527 => 0.011544425577862
528 => 0.011975082489202
529 => 0.01187896487999
530 => 0.011536374746464
531 => 0.011551743089591
601 => 0.011646744139587
602 => 0.011523709148087
603 => 0.011487423727165
604 => 0.011641759079953
605 => 0.011642821902706
606 => 0.01150125527571
607 => 0.011343929876223
608 => 0.011343270677055
609 => 0.011315276141799
610 => 0.011713335867788
611 => 0.011932228468704
612 => 0.011957324152636
613 => 0.011930539329223
614 => 0.011940847744703
615 => 0.011813478963199
616 => 0.012104606227678
617 => 0.012371773395065
618 => 0.012300166887012
619 => 0.012192818551974
620 => 0.01210731043252
621 => 0.012280023891555
622 => 0.012272333233101
623 => 0.01236943992293
624 => 0.012365034602564
625 => 0.012332381275142
626 => 0.012300168053165
627 => 0.012427889837086
628 => 0.012391108014465
629 => 0.012354269059515
630 => 0.012280382895601
701 => 0.012290425252396
702 => 0.012183095452562
703 => 0.012133439776081
704 => 0.011386737542437
705 => 0.011187194306408
706 => 0.01124997467054
707 => 0.011270643596504
708 => 0.011183802124462
709 => 0.011308310487626
710 => 0.011288905991114
711 => 0.011364397535791
712 => 0.011317233696139
713 => 0.011319169316569
714 => 0.011457868112597
715 => 0.011498132963151
716 => 0.011477653935182
717 => 0.011491996744392
718 => 0.0118225207289
719 => 0.011775530787865
720 => 0.011750568318235
721 => 0.011757483092919
722 => 0.011841939057475
723 => 0.011865582116426
724 => 0.011765404814282
725 => 0.011812649009091
726 => 0.012013808794407
727 => 0.01208420333461
728 => 0.012308868915641
729 => 0.012213426983707
730 => 0.012388614780402
731 => 0.012927082341523
801 => 0.013357247488467
802 => 0.01296164984201
803 => 0.013751593353172
804 => 0.014366677687278
805 => 0.014343069726059
806 => 0.01423581554525
807 => 0.013535558383734
808 => 0.01289117130346
809 => 0.01343022845823
810 => 0.013431602625775
811 => 0.013385297138114
812 => 0.013097697731164
813 => 0.01337528930216
814 => 0.013397323513001
815 => 0.0133849902143
816 => 0.013164488423304
817 => 0.012827822943995
818 => 0.012893606572789
819 => 0.013001361498702
820 => 0.012797358943916
821 => 0.012732167766711
822 => 0.012853370568264
823 => 0.013243911248474
824 => 0.013170081795129
825 => 0.013168153809734
826 => 0.013484027519707
827 => 0.013257930113179
828 => 0.012894436315016
829 => 0.012802649337086
830 => 0.012476867400551
831 => 0.012701886144511
901 => 0.012709984168513
902 => 0.012586743702082
903 => 0.01290443659965
904 => 0.01290150900367
905 => 0.013203111127564
906 => 0.013779661111865
907 => 0.013609146911205
908 => 0.013410857447731
909 => 0.013432417010381
910 => 0.013668872199118
911 => 0.013525905994261
912 => 0.013577317638323
913 => 0.013668794381437
914 => 0.013723984571797
915 => 0.013424475991317
916 => 0.013354646214055
917 => 0.0132117989967
918 => 0.013174532824061
919 => 0.013290878901992
920 => 0.013260225821025
921 => 0.012709303560953
922 => 0.012651729119473
923 => 0.012653494845396
924 => 0.012508721174778
925 => 0.012287906577425
926 => 0.012868194155115
927 => 0.012821588941507
928 => 0.012770140392641
929 => 0.012776442546316
930 => 0.01302832571602
1001 => 0.012882220757187
1002 => 0.013270664736377
1003 => 0.013190812331951
1004 => 0.013108912014661
1005 => 0.013097590896067
1006 => 0.013066066261317
1007 => 0.01295795655896
1008 => 0.012827407596978
1009 => 0.01274120786432
1010 => 0.011753090757136
1011 => 0.011936479544617
1012 => 0.012147451628199
1013 => 0.012220278346034
1014 => 0.012095703205722
1015 => 0.012962875544794
1016 => 0.013121316287423
1017 => 0.012641388943166
1018 => 0.012551614132359
1019 => 0.012968761166445
1020 => 0.01271717051074
1021 => 0.012830461767599
1022 => 0.012585588037275
1023 => 0.01308315255221
1024 => 0.013079361944255
1025 => 0.012885798109941
1026 => 0.013049396937235
1027 => 0.013020967615024
1028 => 0.01280243452281
1029 => 0.013090080441024
1030 => 0.013090223109811
1031 => 0.012903922127724
1101 => 0.012686363367176
1102 => 0.012647468999299
1103 => 0.012618167317826
1104 => 0.012823255350182
1105 => 0.0130071366387
1106 => 0.013349294128593
1107 => 0.013435320651013
1108 => 0.01377108789513
1109 => 0.013571154849469
1110 => 0.013659782579044
1111 => 0.013756000516656
1112 => 0.013802130934245
1113 => 0.013726963894279
1114 => 0.014248548631704
1115 => 0.014292586364486
1116 => 0.014307351835363
1117 => 0.014131476396567
1118 => 0.014287694950377
1119 => 0.014214605462464
1120 => 0.014404764005169
1121 => 0.014434583292732
1122 => 0.014409327417018
1123 => 0.014418792529556
1124 => 0.013973711970016
1125 => 0.013950632195017
1126 => 0.013635937825238
1127 => 0.013764178107026
1128 => 0.013524439046939
1129 => 0.013600462772479
1130 => 0.013633973306316
1201 => 0.013616469305145
1202 => 0.013771428620148
1203 => 0.013639681546299
1204 => 0.013291979357188
1205 => 0.012944182436847
1206 => 0.012939816129821
1207 => 0.012848247339821
1208 => 0.012782059876312
1209 => 0.01279480992991
1210 => 0.012839742781806
1211 => 0.012779448297276
1212 => 0.012792315182559
1213 => 0.013005991209856
1214 => 0.013048842413263
1215 => 0.012903217281041
1216 => 0.012318511361561
1217 => 0.012175023062297
1218 => 0.012278159606311
1219 => 0.012228866981117
1220 => 0.0098696500776966
1221 => 0.010423913094396
1222 => 0.010094588830867
1223 => 0.010246356602982
1224 => 0.0099102018080231
1225 => 0.01007063249556
1226 => 0.010041006805562
1227 => 0.01093224533458
1228 => 0.010918329870808
1229 => 0.010924990466926
1230 => 0.010607062860135
1231 => 0.011113530170428
]
'min_raw' => 0.0064658628359793
'max_raw' => 0.014434583292732
'avg_raw' => 0.010450223064355
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.006465'
'max' => '$0.014434'
'avg' => '$0.01045'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.00099702293016699
'max_diff' => 0.0021837067987537
'year' => 2035
]
10 => [
'items' => [
101 => 0.011363034179454
102 => 0.011316857627718
103 => 0.011328479270955
104 => 0.011128780935791
105 => 0.010926923983329
106 => 0.010703033557486
107 => 0.011118994295009
108 => 0.011072746561683
109 => 0.011178822222524
110 => 0.011448602494295
111 => 0.011488328664109
112 => 0.011541721039202
113 => 0.011522583673459
114 => 0.011978513366291
115 => 0.011923297272168
116 => 0.012056352172249
117 => 0.011782648147882
118 => 0.011472926064086
119 => 0.011531794106638
120 => 0.011526124640753
121 => 0.011453945832932
122 => 0.011388786032563
123 => 0.011280313323609
124 => 0.01162353702568
125 => 0.011609602770176
126 => 0.011835182169985
127 => 0.011795308819908
128 => 0.011529024829425
129 => 0.011538535214239
130 => 0.011602497122648
131 => 0.011823870017956
201 => 0.0118895885655
202 => 0.011859145115846
203 => 0.011931202503062
204 => 0.011988153723901
205 => 0.011938354699563
206 => 0.012643403867342
207 => 0.012350618297024
208 => 0.012493319946808
209 => 0.012527353449434
210 => 0.012440177348104
211 => 0.01245908272294
212 => 0.012487719214411
213 => 0.012661594383023
214 => 0.013117893136645
215 => 0.013319984748494
216 => 0.013927987333766
217 => 0.013303203853381
218 => 0.013266131787266
219 => 0.013375651412793
220 => 0.013732613293957
221 => 0.014021897370916
222 => 0.014117869588442
223 => 0.014130553901317
224 => 0.014310604161508
225 => 0.014413805612911
226 => 0.014288741324129
227 => 0.014182762434163
228 => 0.013803159204888
229 => 0.013847099312302
301 => 0.014149803079075
302 => 0.014577389978805
303 => 0.014944304021608
304 => 0.014815823512064
305 => 0.015796039106781
306 => 0.015893223479176
307 => 0.015879795741258
308 => 0.016101196204547
309 => 0.015661761372339
310 => 0.015473894467921
311 => 0.014205676273085
312 => 0.014561993855886
313 => 0.015079922388285
314 => 0.01501137260489
315 => 0.014635239060392
316 => 0.014944018690586
317 => 0.014841926488412
318 => 0.014761402132748
319 => 0.015130299816459
320 => 0.014724681659737
321 => 0.01507587603689
322 => 0.014625465615551
323 => 0.014816410400209
324 => 0.014708020905477
325 => 0.014778162192285
326 => 0.014368117662825
327 => 0.014589367737654
328 => 0.01435891293231
329 => 0.014358803666726
330 => 0.014353716364125
331 => 0.014624845420619
401 => 0.014633686929418
402 => 0.014433322147015
403 => 0.014404446451585
404 => 0.014511215031955
405 => 0.014386216987077
406 => 0.014444702785547
407 => 0.014387988462332
408 => 0.01437522087359
409 => 0.014273486554266
410 => 0.014229656612259
411 => 0.014246843461878
412 => 0.014188175883698
413 => 0.014152826545745
414 => 0.014346684491076
415 => 0.014243114011093
416 => 0.014330810829609
417 => 0.014230869236689
418 => 0.01388442813315
419 => 0.013685186190956
420 => 0.013030791061477
421 => 0.013216376708422
422 => 0.01333942018435
423 => 0.01329875431629
424 => 0.013386120336484
425 => 0.013391483900567
426 => 0.01336308031681
427 => 0.013330192605545
428 => 0.013314184686505
429 => 0.013433494599984
430 => 0.013502758020545
501 => 0.013351769243268
502 => 0.01331639468531
503 => 0.013469052675456
504 => 0.013562173961257
505 => 0.014249729215285
506 => 0.014198792901292
507 => 0.014326633053666
508 => 0.014312240214376
509 => 0.014446237060598
510 => 0.014665265272878
511 => 0.014219919676061
512 => 0.014297216272777
513 => 0.014278264932301
514 => 0.014485170698304
515 => 0.014485816635521
516 => 0.014361766293093
517 => 0.01442901599621
518 => 0.014391479056829
519 => 0.014459313379712
520 => 0.014198112615764
521 => 0.014516226951373
522 => 0.014696577280828
523 => 0.014699081445328
524 => 0.014784566070141
525 => 0.014871423399886
526 => 0.015038138480654
527 => 0.014866773806768
528 => 0.014558505440463
529 => 0.01458076142081
530 => 0.014400023790436
531 => 0.014403062022655
601 => 0.014386843700957
602 => 0.014435516105232
603 => 0.014208793471416
604 => 0.014262004820406
605 => 0.014187508620215
606 => 0.014297054332586
607 => 0.014179201254629
608 => 0.014278255793391
609 => 0.01432100444861
610 => 0.014478747906683
611 => 0.014155902417615
612 => 0.013497598610686
613 => 0.013635982052065
614 => 0.013431302072481
615 => 0.013450245983863
616 => 0.013488515699756
617 => 0.013364471029475
618 => 0.013388134843468
619 => 0.013387289405512
620 => 0.013380003877954
621 => 0.013347735068382
622 => 0.013300938910312
623 => 0.013487360400964
624 => 0.013519037044886
625 => 0.013589450300421
626 => 0.013798952387124
627 => 0.013778018188263
628 => 0.013812162735157
629 => 0.013737625381001
630 => 0.013453703557944
701 => 0.013469121878925
702 => 0.013276855169229
703 => 0.01358453360838
704 => 0.013511671292832
705 => 0.013464696484001
706 => 0.013451878972193
707 => 0.013661900374047
708 => 0.013724742069163
709 => 0.013685583341916
710 => 0.013605267649889
711 => 0.013759497521784
712 => 0.013800762929067
713 => 0.013810000731948
714 => 0.014083266494302
715 => 0.01382527325246
716 => 0.013887374790003
717 => 0.014371873258253
718 => 0.013932500003769
719 => 0.014165245815862
720 => 0.014153854119511
721 => 0.014272919001289
722 => 0.014144087323961
723 => 0.014145684347005
724 => 0.01425140589587
725 => 0.014102939047471
726 => 0.014066176567914
727 => 0.014015389465703
728 => 0.014126281245371
729 => 0.014192755852079
730 => 0.014728492361923
731 => 0.015074602579836
801 => 0.015059577022476
802 => 0.015196882490084
803 => 0.015135025119353
804 => 0.01493527135211
805 => 0.015276226675416
806 => 0.015168334144946
807 => 0.015177228674068
808 => 0.01517689761925
809 => 0.015248636719884
810 => 0.015197802992293
811 => 0.015097604497235
812 => 0.015164120934322
813 => 0.01536165097241
814 => 0.015974790271597
815 => 0.016317911146438
816 => 0.015954133964097
817 => 0.016205062593305
818 => 0.016054594830792
819 => 0.016027250362316
820 => 0.016184852084939
821 => 0.016342729668514
822 => 0.016332673548964
823 => 0.016218062530392
824 => 0.016153321674147
825 => 0.016643561127408
826 => 0.017004761205559
827 => 0.016980129781745
828 => 0.017088844875891
829 => 0.017408035754736
830 => 0.017437218568467
831 => 0.017433542204696
901 => 0.017361209555951
902 => 0.017675494428347
903 => 0.017937676398216
904 => 0.017344466637658
905 => 0.017570353148793
906 => 0.01767176088125
907 => 0.017820657518815
908 => 0.018071871104362
909 => 0.018344755689379
910 => 0.018383344561727
911 => 0.018355963910148
912 => 0.018175989190799
913 => 0.018474582759914
914 => 0.018649491869821
915 => 0.018753646242047
916 => 0.019017764400376
917 => 0.017672387140882
918 => 0.016720062247024
919 => 0.01657134296311
920 => 0.016873769475046
921 => 0.016953516934437
922 => 0.016921370833552
923 => 0.015849442583923
924 => 0.016565699482716
925 => 0.017336331681227
926 => 0.01736593480247
927 => 0.017751729394204
928 => 0.017877359927527
929 => 0.018187975141126
930 => 0.018168546074944
1001 => 0.018244175936488
1002 => 0.018226789941046
1003 => 0.018802139216488
1004 => 0.019436834907495
1005 => 0.019414857413924
1006 => 0.019323612398963
1007 => 0.019459126805767
1008 => 0.02011420077701
1009 => 0.020053892063084
1010 => 0.020112476841579
1011 => 0.020884845972026
1012 => 0.021889035709834
1013 => 0.021422488757621
1014 => 0.022434761398654
1015 => 0.023071933367918
1016 => 0.024173856403948
1017 => 0.024035890212751
1018 => 0.024464860764393
1019 => 0.023788901936097
1020 => 0.02223676383251
1021 => 0.021991132036272
1022 => 0.022482893112729
1023 => 0.023691839733855
1024 => 0.022444819081354
1025 => 0.022697089735232
1026 => 0.022624435769944
1027 => 0.022620564348893
1028 => 0.022768320744192
1029 => 0.022553992386356
1030 => 0.021680780099596
1031 => 0.022080968144746
1101 => 0.021926436321905
1102 => 0.022097900900457
1103 => 0.023023224513533
1104 => 0.022614116887232
1105 => 0.02218315523613
1106 => 0.022723676784659
1107 => 0.023411946459292
1108 => 0.023368875779993
1109 => 0.023285300660005
1110 => 0.023756409235523
1111 => 0.024534542580418
1112 => 0.02474486889675
1113 => 0.024900127483534
1114 => 0.024921535019536
1115 => 0.025142045945068
1116 => 0.023956303122573
1117 => 0.025838107433908
1118 => 0.02616304305468
1119 => 0.026101968625177
1120 => 0.026463120892284
1121 => 0.026356860733753
1122 => 0.026202906435748
1123 => 0.026775409598404
1124 => 0.026119080921042
1125 => 0.02518750499301
1126 => 0.024676424014409
1127 => 0.025349456674757
1128 => 0.025760454234829
1129 => 0.026032097477682
1130 => 0.026114296558838
1201 => 0.024048348962507
1202 => 0.022934917790791
1203 => 0.023648614406346
1204 => 0.024519373534034
1205 => 0.023951466011653
1206 => 0.02397372691134
1207 => 0.023164040027897
1208 => 0.024591012856909
1209 => 0.024383114918452
1210 => 0.02546168979093
1211 => 0.025204279241509
1212 => 0.026083815179979
1213 => 0.02585220389092
1214 => 0.026813609402588
1215 => 0.027197140090208
1216 => 0.027841147806506
1217 => 0.028314882504198
1218 => 0.028593068579784
1219 => 0.028576367331255
1220 => 0.029678679154477
1221 => 0.029028684384165
1222 => 0.028212137760648
1223 => 0.0281973690084
1224 => 0.028620270075275
1225 => 0.029506554694202
1226 => 0.029736355400974
1227 => 0.02986478264607
1228 => 0.02966809184962
1229 => 0.028962569111991
1230 => 0.028657927970964
1231 => 0.028917491049423
]
'min_raw' => 0.010703033557486
'max_raw' => 0.02986478264607
'avg_raw' => 0.020283908101778
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.010703'
'max' => '$0.029864'
'avg' => '$0.020283'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.0042371707215072
'max_diff' => 0.015430199353338
'year' => 2036
]
11 => [
'items' => [
101 => 0.028600067708978
102 => 0.029148029447845
103 => 0.029900497953621
104 => 0.029745116182761
105 => 0.030264534146609
106 => 0.030802077094828
107 => 0.031570787653345
108 => 0.031771757058611
109 => 0.032103951843334
110 => 0.032445889397116
111 => 0.032555710523915
112 => 0.032765393130469
113 => 0.03276428799963
114 => 0.033396180647748
115 => 0.034093177806709
116 => 0.034356278098695
117 => 0.034961262712683
118 => 0.033925247762418
119 => 0.034711077003076
120 => 0.035419914648731
121 => 0.034574809185635
122 => 0.035739590182194
123 => 0.03578481598884
124 => 0.036467671974642
125 => 0.035775466613654
126 => 0.035364437279897
127 => 0.036551063565385
128 => 0.037125234646555
129 => 0.036952289644147
130 => 0.035636169636477
131 => 0.034870131340971
201 => 0.032865261363878
202 => 0.035240116455682
203 => 0.036396839095427
204 => 0.035633174004284
205 => 0.036018322256511
206 => 0.038119566235921
207 => 0.038919583897807
208 => 0.03875318581668
209 => 0.038781304353245
210 => 0.039212979362252
211 => 0.041127264079956
212 => 0.039980180304335
213 => 0.040857082870388
214 => 0.041322188829515
215 => 0.041754205164989
216 => 0.04069330958523
217 => 0.039313100023615
218 => 0.038875929718196
219 => 0.035557242561164
220 => 0.035384490482312
221 => 0.035287519505529
222 => 0.03467613121373
223 => 0.034195747489722
224 => 0.033813728516888
225 => 0.032811196651647
226 => 0.033149521726534
227 => 0.031551695178003
228 => 0.032573927980257
301 => 0.030023758227931
302 => 0.032147615376372
303 => 0.03099169649041
304 => 0.031767864933995
305 => 0.031765156955414
306 => 0.030335984766346
307 => 0.029511668073755
308 => 0.03003695475316
309 => 0.030600103770791
310 => 0.03069147280424
311 => 0.031421610205292
312 => 0.031625375859675
313 => 0.031007956413987
314 => 0.029970911628107
315 => 0.030211793479394
316 => 0.029506786610727
317 => 0.028271289191085
318 => 0.029158645007587
319 => 0.029461627297622
320 => 0.029595441537422
321 => 0.028380471723041
322 => 0.027998701829085
323 => 0.027795450740902
324 => 0.029814074282008
325 => 0.029924659036375
326 => 0.029358891797926
327 => 0.031916213363967
328 => 0.03133741273248
329 => 0.031984074847449
330 => 0.030189935976194
331 => 0.030258474497204
401 => 0.029409100403201
402 => 0.029884693140645
403 => 0.029548559522889
404 => 0.029846269947359
405 => 0.03002471634828
406 => 0.030873951068352
407 => 0.032157312272731
408 => 0.030747103720655
409 => 0.030132655659958
410 => 0.030513855781027
411 => 0.031529041937401
412 => 0.033067100930729
413 => 0.032156539050357
414 => 0.032560630950523
415 => 0.032648907053912
416 => 0.031977492434158
417 => 0.033091856945455
418 => 0.033689053940141
419 => 0.034301654484182
420 => 0.034833558371896
421 => 0.034056968355518
422 => 0.034888030992849
423 => 0.034218341209464
424 => 0.03361756024251
425 => 0.033618471379245
426 => 0.033241592702666
427 => 0.032511342777024
428 => 0.032376673486692
429 => 0.033077240141857
430 => 0.03363902825539
501 => 0.033685299815204
502 => 0.033996334580572
503 => 0.034180401750803
504 => 0.035984510246257
505 => 0.036710137607497
506 => 0.037597421009398
507 => 0.03794306789899
508 => 0.038983341115397
509 => 0.038143236006289
510 => 0.037961473981425
511 => 0.035438111429198
512 => 0.035851311905764
513 => 0.036512885736661
514 => 0.035449020537997
515 => 0.036123798138536
516 => 0.036257013530626
517 => 0.03541287080564
518 => 0.035863763908309
519 => 0.034666325508107
520 => 0.032183413157633
521 => 0.03309462113668
522 => 0.033765576918547
523 => 0.032808040289571
524 => 0.034524387635225
525 => 0.033521732948495
526 => 0.033203939548714
527 => 0.031964114194642
528 => 0.03254926403651
529 => 0.033340687576175
530 => 0.032851679841523
531 => 0.033866444315805
601 => 0.035303621439188
602 => 0.036327839442688
603 => 0.036406466183231
604 => 0.035747962624258
605 => 0.036803218780027
606 => 0.036810905169072
607 => 0.035620571914517
608 => 0.034891499423905
609 => 0.034725852620056
610 => 0.035139670813039
611 => 0.035642122494373
612 => 0.03643434875466
613 => 0.036913074491727
614 => 0.038161337317487
615 => 0.038499081447638
616 => 0.038870159849051
617 => 0.039366035029681
618 => 0.039961460323813
619 => 0.038658703677832
620 => 0.03871046462802
621 => 0.037497355677176
622 => 0.036200974785778
623 => 0.037184766286189
624 => 0.038470942804679
625 => 0.038175892490238
626 => 0.038142693302533
627 => 0.038198525127567
628 => 0.037976066825921
629 => 0.036969896172268
630 => 0.036464603568965
701 => 0.037116559941117
702 => 0.037463045737677
703 => 0.038000414991403
704 => 0.037934172888392
705 => 0.039318378376747
706 => 0.03985623877332
707 => 0.039718631067533
708 => 0.039743954197112
709 => 0.040717724753547
710 => 0.041800757883492
711 => 0.042815161328494
712 => 0.043847056082392
713 => 0.04260306668103
714 => 0.041971445581619
715 => 0.042623117330014
716 => 0.042277331127371
717 => 0.044264321214605
718 => 0.044401896097134
719 => 0.046388742502369
720 => 0.048274496330206
721 => 0.047090088137731
722 => 0.048206931716318
723 => 0.049414889104153
724 => 0.051745234889311
725 => 0.050960456411423
726 => 0.050359328396408
727 => 0.049791265326847
728 => 0.050973314397129
729 => 0.052494001642352
730 => 0.052821543110012
731 => 0.053352285418091
801 => 0.052794274777227
802 => 0.053466337131292
803 => 0.055839012560302
804 => 0.055197894715198
805 => 0.054287404310314
806 => 0.056160403687347
807 => 0.056838234880794
808 => 0.061595609179361
809 => 0.067601990748631
810 => 0.065115309338926
811 => 0.063571745943214
812 => 0.063934519955019
813 => 0.066127847175269
814 => 0.066832274265687
815 => 0.064917398603352
816 => 0.065593765059477
817 => 0.069320610731613
818 => 0.071319943863189
819 => 0.068604580924245
820 => 0.061113002268554
821 => 0.054205424611246
822 => 0.056037625258239
823 => 0.055829910564676
824 => 0.059833941305919
825 => 0.055182604266624
826 => 0.055260920853347
827 => 0.059347750709977
828 => 0.05825745457023
829 => 0.056491314458418
830 => 0.054218319388589
831 => 0.050016477775416
901 => 0.046294789481606
902 => 0.053593877279393
903 => 0.053279127341023
904 => 0.052823322786935
905 => 0.053837666498853
906 => 0.058763031637445
907 => 0.058649486029149
908 => 0.05792716680065
909 => 0.058475039569237
910 => 0.056395269713158
911 => 0.056931273760549
912 => 0.054204330415653
913 => 0.05543702269476
914 => 0.056487525114952
915 => 0.056698429028759
916 => 0.057173606315588
917 => 0.053113268425849
918 => 0.054936240933085
919 => 0.056007066491661
920 => 0.051169037661046
921 => 0.055911434217128
922 => 0.053042586976625
923 => 0.052068857134559
924 => 0.053379856087749
925 => 0.052868958520703
926 => 0.052429718793468
927 => 0.052184615478574
928 => 0.053147268420123
929 => 0.053102359509781
930 => 0.051527272454523
1001 => 0.0494726355997
1002 => 0.050162239169334
1003 => 0.049911699727418
1004 => 0.049003712469684
1005 => 0.049615586250597
1006 => 0.046921203781687
1007 => 0.042285658785742
1008 => 0.045348041800647
1009 => 0.045230143385805
1010 => 0.045170693658774
1011 => 0.047471989856425
1012 => 0.047250773326957
1013 => 0.046849263159815
1014 => 0.048996338420596
1015 => 0.048212627068173
1016 => 0.050627840790722
1017 => 0.052218656754622
1018 => 0.051815174368671
1019 => 0.0533113444718
1020 => 0.050178126242775
1021 => 0.051218855655561
1022 => 0.051433348545147
1023 => 0.04896984384516
1024 => 0.047286967087009
1025 => 0.04717473839344
1026 => 0.04425686200951
1027 => 0.04581556802153
1028 => 0.047187164808471
1029 => 0.046530276387737
1030 => 0.046322325137716
1031 => 0.04738470297495
1101 => 0.047467258831554
1102 => 0.045584976552106
1103 => 0.045976362642131
1104 => 0.047608507700058
1105 => 0.045935236774324
1106 => 0.042684344692877
1107 => 0.041878078509579
1108 => 0.041770507738293
1109 => 0.039583849903411
1110 => 0.041931957071259
1111 => 0.040906945367133
1112 => 0.04414494505894
1113 => 0.04229541700072
1114 => 0.042215687542736
1115 => 0.042095164773223
1116 => 0.040213018045042
1117 => 0.040625088561849
1118 => 0.041994873719827
1119 => 0.042483628495928
1120 => 0.042432647368531
1121 => 0.041988161025269
1122 => 0.042191644597076
1123 => 0.04153615311391
1124 => 0.041304685428329
1125 => 0.040574109742432
1126 => 0.039500365310847
1127 => 0.039649676059717
1128 => 0.037522307380234
1129 => 0.036363204015651
1130 => 0.036042379481071
1201 => 0.03561335950525
1202 => 0.036090838428918
1203 => 0.037516280812055
1204 => 0.035796894873521
1205 => 0.032849128282804
1206 => 0.033026294077656
1207 => 0.033424333017691
1208 => 0.032682590086226
1209 => 0.031980592651359
1210 => 0.032590922466124
1211 => 0.031341914901917
1212 => 0.033575269614622
1213 => 0.033514863628547
1214 => 0.034347320155715
1215 => 0.03486787230588
1216 => 0.033668168130509
1217 => 0.033366445774748
1218 => 0.033538320541106
1219 => 0.030697613508983
1220 => 0.034115173786529
1221 => 0.034144728989727
1222 => 0.033891659396466
1223 => 0.035711404738923
1224 => 0.039551635004315
1225 => 0.03810678590557
1226 => 0.037547296663741
1227 => 0.03648370720604
1228 => 0.037900877008734
1229 => 0.037792060479179
1230 => 0.037299950865093
1231 => 0.037002321435017
]
'min_raw' => 0.027795450740902
'max_raw' => 0.071319943863189
'avg_raw' => 0.049557697302045
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.027795'
'max' => '$0.071319'
'avg' => '$0.049557'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.017092417183416
'max_diff' => 0.041455161217119
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.00087246743760677
]
1 => [
'year' => 2028
'avg' => 0.0014974074020401
]
2 => [
'year' => 2029
'avg' => 0.0040906471409473
]
3 => [
'year' => 2030
'avg' => 0.0031559281772664
]
4 => [
'year' => 2031
'avg' => 0.0030995125799489
]
5 => [
'year' => 2032
'avg' => 0.0054344210051585
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.00087246743760677
'min' => '$0.000872'
'max_raw' => 0.0054344210051585
'max' => '$0.005434'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.0054344210051585
]
1 => [
'year' => 2033
'avg' => 0.01397788964019
]
2 => [
'year' => 2034
'avg' => 0.0088598581998951
]
3 => [
'year' => 2035
'avg' => 0.010450223064355
]
4 => [
'year' => 2036
'avg' => 0.020283908101778
]
5 => [
'year' => 2037
'avg' => 0.049557697302045
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.0054344210051585
'min' => '$0.005434'
'max_raw' => 0.049557697302045
'max' => '$0.049557'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.049557697302045
]
]
]
]
'prediction_2025_max_price' => '$0.001491'
'last_price' => 0.00144645
'sma_50day_nextmonth' => '$0.001339'
'sma_200day_nextmonth' => '$0.003075'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'augmenter'
'sma_200day_date_nextmonth' => '4 févr. 2026'
'sma_50day_date_nextmonth' => '4 févr. 2026'
'daily_sma3' => '$0.001435'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.0014058'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.001378'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.001354'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.001442'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.001922'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.003372'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.001429'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.001411'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.001388'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.001385'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.001553'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.002227'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.005668'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.0028039'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.007652'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.001434'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.001458'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.001711'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.003135'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.010361'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.006479'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.003239'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '54.74'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 115.01
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.001380'
'vwma_10_action' => 'BUY'
'hma_9' => '0.001451'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 148.22
'cci_20_action' => 'SELL'
'adx_14' => 14.86
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000021'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 63.6
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.000429'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 15
'buy_signals' => 18
'sell_pct' => 45.45
'buy_pct' => 54.55
'overall_action' => 'bullish'
'overall_action_label' => 'Haussier'
'overall_action_dir' => 1
'last_updated' => 1767694274
'last_updated_date' => '6 janvier 2026'
]
Prévision du prix de yesnoerror pour 2026
La prévision du prix de yesnoerror pour 2026 suggère que le prix moyen pourrait varier entre $0.000499 à la baisse et $0.001491 à la hausse. Sur le marché des cryptomonnaies, comparé au prix moyen d'aujourd'hui, yesnoerror pourrait potentiellement gagner 3.13% d'ici 2026 si YNE atteint l'objectif de prix prévu.
Prévision du prix de yesnoerror de 2027 à 2032
La prévision du prix de YNE pour 2027-2032 se situe actuellement dans une fourchette de prix comprise entre $0.000872 à la baisse et $0.005434 à la hausse. Compte tenu de la volatilité des prix sur le marché, si yesnoerror atteint l'objectif de prix le plus élevé, il pourrait gagner 275.71% d'ici 2032 par rapport au prix actuel.
| Prévision du Prix de yesnoerror | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2027 | $0.000481 | $0.000872 | $0.001263 |
| 2028 | $0.000868 | $0.001497 | $0.002126 |
| 2029 | $0.0019072 | $0.00409 | $0.006274 |
| 2030 | $0.001622 | $0.003155 | $0.004689 |
| 2031 | $0.001917 | $0.003099 | $0.004281 |
| 2032 | $0.002927 | $0.005434 | $0.007941 |
Prévision du prix de yesnoerror de 2032 à 2037
La prévision du prix de yesnoerror pour 2032-2037 est actuellement estimée entre $0.005434 à la baisse et $0.049557 à la hausse. Par rapport au prix actuel, yesnoerror pourrait potentiellement gagner 3326.16% d'ici 2037 s'il atteint l'objectif de prix le plus élevé. Veuillez noter que ces informations sont à titre général seulement et ne doivent pas être considérées comme un conseil en investissement à long terme.
| Prévision du Prix de yesnoerror | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2032 | $0.002927 | $0.005434 | $0.007941 |
| 2033 | $0.0068024 | $0.013977 | $0.021153 |
| 2034 | $0.005468 | $0.008859 | $0.01225 |
| 2035 | $0.006465 | $0.01045 | $0.014434 |
| 2036 | $0.010703 | $0.020283 | $0.029864 |
| 2037 | $0.027795 | $0.049557 | $0.071319 |
yesnoerror Histogramme des prix potentiels
Prévision du prix de yesnoerror basée sur l'analyse technique
Au 6 janvier 2026, le sentiment global de prévision du prix pour yesnoerror est Haussier, avec 18 indicateurs techniques montrant des signaux haussiers et 15 indiquant des signaux baissiers. La prévision du prix de YNE a été mise à jour pour la dernière fois le 6 janvier 2026.
Moyennes Mobiles Simples sur 50 et 200 jours de yesnoerror et Indice de Force Relative sur 14 jours - RSI (14)
Selon nos indicateurs techniques, le SMA sur 200 jours de yesnoerror devrait augmenter au cours du prochain mois, atteignant $0.003075 d'ici le 4 févr. 2026. Le SMA à court terme sur 50 jours pour yesnoerror devrait atteindre $0.001339 d'ici le 4 févr. 2026.
Le Relative Strength Index (RSI), un oscillateur de momentum, est un outil couramment utilisé pour identifier si une cryptomonnaie est survendue (en dessous de 30) ou surachetée (au-dessus de 70). Actuellement, le RSI est à 54.74, ce qui suggère que le marché de YNE est dans un état NEUTRAL.
Moyennes Mobiles et Oscillateurs Populaires de YNE pour le Samedi 19 Octobre 2024
Les moyennes mobiles (MA) sont des indicateurs largement utilisés sur les marchés financiers, conçus pour lisser les mouvements de prix sur une période donnée. En tant qu'indicateurs retardés, ils sont basés sur des données historiques de prix. Le tableau ci-dessous met en évidence deux types : la moyenne mobile simple (SMA) et la moyenne mobile exponentielle (EMA).
Moyenne Mobile Simple Quotidienne (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 3 | $0.001435 | BUY |
| SMA 5 | $0.0014058 | BUY |
| SMA 10 | $0.001378 | BUY |
| SMA 21 | $0.001354 | BUY |
| SMA 50 | $0.001442 | BUY |
| SMA 100 | $0.001922 | SELL |
| SMA 200 | $0.003372 | SELL |
Moyenne Mobile Exponentielle Quotidienne (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 3 | $0.001429 | BUY |
| EMA 5 | $0.001411 | BUY |
| EMA 10 | $0.001388 | BUY |
| EMA 21 | $0.001385 | BUY |
| EMA 50 | $0.001553 | SELL |
| EMA 100 | $0.002227 | SELL |
| EMA 200 | $0.005668 | SELL |
Moyenne Mobile Simple Hebdomadaire (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 21 | $0.0028039 | SELL |
| SMA 50 | $0.007652 | SELL |
| SMA 100 | — | — |
| SMA 200 | — | — |
Moyenne Mobile Exponentielle Hebdomadaire (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 21 | $0.003135 | SELL |
| EMA 50 | $0.010361 | SELL |
| EMA 100 | $0.006479 | SELL |
| EMA 200 | $0.003239 | SELL |
Oscillateurs de yesnoerror
Un oscillateur est un outil d'analyse technique qui établit des limites hautes et basses entre deux extrêmes, créant un indicateur de tendance qui fluctue à l'intérieur de ces limites. Les traders utilisent cet indicateur pour identifier les conditions de surachat ou de survente à court terme.
| Période | Valeur | Action |
|---|---|---|
| RSI (14) | 54.74 | NEUTRAL |
| Stoch RSI (14) | 115.01 | SELL |
| Stochastique Rapide (14) | 100 | SELL |
| Indice de Canal des Matières Premières (20) | 148.22 | SELL |
| Indice Directionnel Moyen (14) | 14.86 | NEUTRAL |
| Oscillateur Impressionnant (5, 34) | 0.000021 | BUY |
| Momentum (10) | 0 | SELL |
| MACD (12, 26) | 0 | BUY |
| Plage de Pourcentage de Williams (14) | -0 | SELL |
| Oscillateur Ultime (7, 14, 28) | 63.6 | NEUTRAL |
| VWMA (10) | 0.001380 | BUY |
| Moyenne Mobile de Hull (9) | 0.001451 | BUY |
| Nuage Ichimoku B/L (9, 26, 52, 26) | -0.000429 | SELL |
Prévision du cours de yesnoerror basée sur les flux monétaires mondiaux
Définitions des flux monétaires mondiaux utilisés pour la prédiction du cours de yesnoerror
M0 : le total de toutes les devises physiques, plus les comptes à la banque centrale qui peuvent être échangés contre des devises physiques.
M1 : M0 plus le montant des comptes à vue, y compris les comptes de "chèques" et les comptes "courants".
M2 : M1 plus la plupart des comptes d'épargne, comptes du marché monétaire et comptes de certificats de dépôt (CD) de moins de 100 000 $.
Prédictions du cours de yesnoerror par des sociétés Internet ou des niches technologiques
| Comparaison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Action Facebook | $0.002032 | $0.002856 | $0.004013 | $0.005639 | $0.007923 | $0.011134 |
| Action Amazon.com | $0.003018 | $0.006297 | $0.01314 | $0.027417 | $0.057208 | $0.119368 |
| Action Apple | $0.002051 | $0.00291 | $0.004127 | $0.005855 | $0.0083048 | $0.011779 |
| Action Netflix | $0.002282 | $0.003601 | $0.005681 | $0.008965 | $0.014145 | $0.022319 |
| Action Google | $0.001873 | $0.002425 | $0.003141 | $0.004067 | $0.005267 | $0.006822 |
| Action Tesla | $0.003278 | $0.007433 | $0.01685 | $0.038198 | $0.086594 | $0.1963024 |
| Action Kodak | $0.001084 | $0.000813 | $0.0006099 | $0.000457 | $0.000343 | $0.000257 |
| Action Nokia | $0.000958 | $0.000634 | $0.00042 | $0.000278 | $0.000184 | $0.000122 |
Ce calcul montre la valeur potentielle des cryptomonnaies si l'on suppose que leur capitalisation se comportera comme celle de certaines sociétés Internet ou niches technologiques. En extrapolant les données, vous pourrez obtenir une potentielle image des cours futurs pour 2024, 2025, 2026, 2027, 2028, 2029 et 2030.
Aperçu des prévisions relatives à yesnoerror
Vous vous posez peut-être des questions telles que : "Devrais-je investir dans yesnoerror maintenant ?", "Devrais-je acheter YNE aujourd'hui ?", " yesnoerror sera-t-il un bon ou un mauvais investissement à court ou à long terme ?".
Nous mettons régulièrement à jour les prévisions de yesnoerror avec de nouvelles valeurs. Regardez nos prévisions similaires. Nous faisons une prévision des cours futurs pour une grande quantité de devises numériques comme yesnoerror en utilisant des méthodes d'analyse technique.
Si vous souhaitez trouver des cryptomonnaies ayant un bon rendement, vous devriez consulter un maximum d'informations disponibles à propos de yesnoerror afin de prendre une décision responsable concernant cet investissement.
Le cours de yesnoerror est de $0.001446 USD actuellement, mais ce cours peut subir une hausse ou une baisse, ce qui pourrait causer la perte de votre investissement, car les cryptomonnaies sont des actifs à haut risque.
Prévision du cours de yesnoerror basée sur le modèle de croissance du Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si yesnoerror présente 1 % de la précédente croissance annuelle moyenne du Bitcoin | $0.001484 | $0.001522 | $0.001562 | $0.0016028 |
| Si yesnoerror présente 2 % de la précédente croissance annuelle moyenne du Bitcoin | $0.001521 | $0.00160075 | $0.001683 | $0.001771 |
| Si yesnoerror présente 5 % de la précédente croissance annuelle moyenne du Bitcoin | $0.001634 | $0.001846 | $0.002086 | $0.002358 |
| Si yesnoerror présente 10 % de la précédente croissance annuelle moyenne du Bitcoin | $0.001822 | $0.002296 | $0.002892 | $0.003644 |
| Si yesnoerror présente 20 % de la précédente croissance annuelle moyenne du Bitcoin | $0.002198 | $0.003341 | $0.005078 | $0.007718 |
| Si yesnoerror présente 50 % de la précédente croissance annuelle moyenne du Bitcoin | $0.003326 | $0.007649 | $0.017591 | $0.040453 |
| Si yesnoerror présente 100 % de la précédente croissance annuelle moyenne du Bitcoin | $0.0052062 | $0.018738 | $0.067447 | $0.242764 |
Boîte à questions
Est-ce que YNE est un bon investissement ?
La décision d'acquérir yesnoerror dépend entièrement de votre tolérance individuelle au risque. Comme vous pouvez le discerner, la valeur de yesnoerror a connu une hausse de 4.526% au cours des 24 heures précédentes, et yesnoerror a enregistré une déclin de sur une période de 30 jours précédents. Par conséquent, la détermination de si investir ou non dans yesnoerror dépendra de la mesure dans laquelle cet investissement s'aligne avec vos aspirations de trading.
Est-ce que yesnoerror peut monter ?
Il semble que la valeur moyenne de yesnoerror pourrait potentiellement s'envoler jusqu'à $0.001491 pour la fin de cette année. En regardant les perspectives de yesnoerror sur une période de cinq ans plus longue, la monnaie numérique pourrait potentiellement croître jusqu'à $0.004689. Cependant, compte tenu de l'imprévisibilité du marché, il est essentiel de mener des recherches approfondies avant d'investir des fonds dans un projet, un réseau ou un actif particulier.
Quel sera le prix de yesnoerror la semaine prochaine ?
Basé sur notre nouveau pronostic expérimental de yesnoerror, le prix de yesnoerror va augmenter de 0.86% durant la prochaine semaine et atteindre $0.001458 d'ici 13 janvier 2026.
Quel sera le prix de yesnoerror le mois prochain ?
Basé sur notre nouveau pronostic expérimental de yesnoerror, le prix de yesnoerror va diminuer de -11.62% durant le prochain mois et atteindre $0.001278 d'ici 5 février 2026.
Jusqu'où le prix de yesnoerror peut-il monter cette année en 2026 ?
Selon notre prédiction la plus récente sur la valeur de yesnoerror en 2026, YNE devrait fluctuer dans la fourchette de $0.000499 et $0.001491. Cependant, il est crucial de garder à l'esprit que le marché des cryptomonnaies est exceptionnellement instable, et cette prévision de prix de yesnoerror ne prend pas en compte les fluctuations de prix soudaines et extrêmes.
Où sera yesnoerror dans 5 ans ?
L'avenir de yesnoerror semble suivre une tendance haussière, avec un prix maximum de $0.004689 prévue après une période de cinq ans. Selon la prévision de yesnoerror pour 2030, la valeur de yesnoerror pourrait potentiellement atteindre son point le plus élevé d'environ $0.004689, tandis que son point le plus bas devrait être autour de $0.001622.
Combien vaudra yesnoerror en 2026 ?
Basé sur notre nouvelle simulation expérimentale de prédiction de prix de yesnoerror, il est attendu que la valeur de YNE en 2026 augmente de 3.13% jusqu'à $0.001491 si le meilleur scénario se produit. Le prix sera entre $0.001491 et $0.000499 durant 2026.
Combien vaudra yesnoerror en 2027 ?
Selon notre dernière simulation expérimentale pour la prédiction de prix de yesnoerror, le valeur de YNE pourrait diminuer de -12.62% jusqu'à $0.001263 en 2027, en supposant les conditions les plus favorables. Il est prévu que le prix fluctue entre $0.001263 et $0.000481 tout au long de l'année.
Combien vaudra yesnoerror en 2028 ?
Notre nouveau modèle expérimental de prédiction de prix de yesnoerror suggère que la valeur de YNE en 2028 pourrait augmenter de 47.02%, atteignant $0.002126 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.002126 et $0.000868 durant l'année.
Combien vaudra yesnoerror en 2029 ?
Basé sur notre modèle de prévision expérimental, la valeur de yesnoerror pourrait connaître un 333.75% croissance en 2029, atteignant potentiellement $0.006274 sous des conditions optimales. Le range de prix prévu pour 2029 se situe entre $0.006274 et $0.0019072.
Combien vaudra yesnoerror en 2030 ?
En utilisant notre nouvelle simulation expérimentale pour les prédictions de prix de yesnoerror, il est prévu que la valeur de YNE en 2030 augmente de 224.23%, atteignant $0.004689 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.004689 et $0.001622 au cours de 2030.
Combien vaudra yesnoerror en 2031 ?
Notre simulation expérimentale indique que le prix de yesnoerror pourrait augmenter de 195.98% en 2031, atteignant potentiellement $0.004281 dans des conditions idéales. Il est probable que le prix fluctue entre $0.004281 et $0.001917 durant l'année.
Combien vaudra yesnoerror en 2032 ?
Basé sur les résultats de notre dernière prédiction expérimentale de prix de yesnoerror, YNE pourrait connaître une 449.04% hausse en valeur, atteignant $0.007941 si le scénario le plus positif se réalise en 2032. Il est prévu que le prix reste dans une fourchette de $0.007941 et $0.002927 tout au long de l'année.
Combien vaudra yesnoerror en 2033 ?
Selon notre prédiction expérimentale de prix de yesnoerror, la valeur de YNE est anticipée à augmenter de 1362.43% en 2033, avec le prix potentiel le plus élevé étant $0.021153. Tout au long de l'année, le prix de YNE pourrait osciller entre $0.021153 et $0.0068024.
Combien vaudra yesnoerror en 2034 ?
Les résultats de notre nouvelle simulation de prédiction de prix de yesnoerror suggèrent que YNE pourrait augmenter de 746.96% en 2034, atteignant potentiellement $0.01225 dans les meilleures circonstances. La fourchette de prix prévue pour l'année est entre $0.01225 et $0.005468.
Combien vaudra yesnoerror en 2035 ?
Basé sur notre prédiction expérimentale pour le prix de yesnoerror, YNE pourrait augmenter de 897.93%, avec la valeur potentiellement atteignant $0.014434 en 2035. La fourchette de prix attendue pour l'année se situe entre $0.014434 et $0.006465.
Combien vaudra yesnoerror en 2036 ?
Notre récente simulation de prédiction de prix de yesnoerror suggère que la valeur de YNE pourrait augmenter de 1964.7% en 2036, pouvant atteindre $0.029864 si les conditions sont optimales. La fourchette de prix attendue pour 2036 est entre $0.029864 et $0.010703.
Combien vaudra yesnoerror en 2037 ?
Selon la simulation expérimentale, la valeur de yesnoerror pourrait augmenter de 4830.69% en 2037, avec un maximum de $0.071319 sous des conditions favorables. Il est prévu que le prix chute entre $0.071319 et $0.027795 au cours de l'année.
Prévisions liées
Comment lire et prédire les mouvements de prix de yesnoerror ?
Les traders de yesnoerror utilisent des indicateurs et des modèles graphiques pour prédire la direction du marché. Ils identifient également des niveaux clés de support et de résistance pour évaluer quand une tendance baissière pourrait ralentir ou une tendance haussière pourrait s'arrêter.
Indicateurs de prédiction du prix de yesnoerror
Les moyennes mobiles sont des outils populaires pour la prédiction du prix de yesnoerror. Une moyenne mobile simple (SMA) calcule le prix de clôture moyen de YNE sur une période spécifique, comme une SMA de 12 jours. Une moyenne mobile exponentielle (EMA) donne plus de poids aux prix récents, réagissant plus rapidement aux changements de prix.
Les moyennes mobiles couramment utilisées sur le marché des cryptomonnaies incluent les moyennes sur 50 jours, 100 jours et 200 jours, qui aident à identifier les niveaux clés de résistance et de support. Un mouvement de prix de YNE au-dessus de ces moyennes est considéré comme haussier, tandis qu'une chute en dessous indique une faiblesse.
Les traders utilisent également le RSI et les niveaux de retracement de Fibonacci pour évaluer la direction future de YNE.
Comment lire les graphiques de yesnoerror et prédire les mouvements de prix ?
La plupart des traders préfèrent les graphiques en chandeliers aux simples graphiques linéaires parce qu'ils fournissent des informations plus détaillées. Les chandeliers peuvent représenter l'action des prix de yesnoerror dans différentes périodes, comme 5 minutes pour les tendances à court terme et hebdomadaire pour les tendances à long terme. Les options populaires incluent les graphiques de 1 heure, 4 heures et 1 jour.
Par exemple, un graphique en chandeliers de 1 heure montre les prix d'ouverture, de clôture, les plus hauts et les plus bas de YNE au sein de chaque heure. La couleur du chandelier est cruciale : le vert indique que le prix a clôturé plus haut qu'il n'a ouvert, tandis que le rouge signifie le contraire. Certains graphiques utilisent des chandeliers creux et pleins pour transmettre la même information.
Qu'est-ce qui affecte le prix de yesnoerror ?
L'action du prix de yesnoerror est déterminée par l'offre et la demande, influencée par des facteurs tels que les réductions de récompenses de bloc, les hard forks et les mises à jour de protocole. Les événements du monde réel, tels que les réglementations, l'adoption par les entreprises et les gouvernements et les piratages d'échanges de cryptomonnaies, impactent également le prix de YNE. La capitalisation boursière de yesnoerror peut changer rapidement.
Les traders surveillent souvent l'activité des « baleines » de YNE, de grands détenteurs de yesnoerror, car leurs actions peuvent influencer significativement les mouvements de prix sur le marché relativement petit de yesnoerror.
Modèles de prédiction de prix haussiers et baissiers
Les traders identifient souvent des modèles de chandeliers pour obtenir un avantage dans les prédictions de prix des cryptomonnaies. Certaines formations indiquent des tendances haussières, tandis que d'autres suggèrent des mouvements baissiers.
Modèles de chandeliers haussiers couramment suivis :
- Marteau
- Englobante haussière
- Ligne pénétrante
- Étoile du matin
- Trois soldats blancs
Modèles de chandeliers baissiers courants :
- Harami baissier
- Nuage sombre
- Étoile du soir
- Étoile filante
- Pendu


