Prédiction du prix de yesnoerror jusqu'à $0.0015069 d'ici 2026
| Année | Prix min. | Prix max. |
|---|---|---|
| 2026 | $0.0005048 | $0.0015069 |
| 2027 | $0.000485 | $0.001276 |
| 2028 | $0.000877 | $0.002148 |
| 2029 | $0.001926 | $0.006337 |
| 2030 | $0.001638 | $0.004737 |
| 2031 | $0.001937 | $0.004324 |
| 2032 | $0.002957 | $0.008022 |
| 2033 | $0.006871 | $0.021368 |
| 2034 | $0.005524 | $0.012375 |
| 2035 | $0.006531 | $0.014581 |
Calculateur de profit d’investissement
Si vous ouvrez une position short de $10,000.00 sur yesnoerror aujourd’hui et la fermez le Apr 06, 2026, notre prévision indique que vous pourriez gagner environ $3,956.77, soit un rendement de 39.57% sur les 90 prochains jours.
Prévision du prix à long terme de yesnoerror pour 2027, 2028, 2029, 2030, 2031, 2032 et 2037
[
'name' => 'yesnoerror'
'name_with_ticker' => 'yesnoerror <small>YNE</small>'
'name_lang' => 'yesnoerror'
'name_lang_with_ticker' => 'yesnoerror <small>YNE</small>'
'name_with_lang' => 'yesnoerror'
'name_with_lang_with_ticker' => 'yesnoerror <small>YNE</small>'
'image' => '/uploads/coins/yne.jpg?1757893217'
'price_for_sd' => 0.001461
'ticker' => 'YNE'
'marketcap' => '$1.46M'
'low24h' => '$0.001357'
'high24h' => '$0.00149'
'volume24h' => '$543.55K'
'current_supply' => '1000M'
'max_supply' => '1000M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.001461'
'change_24h_pct' => '5.828%'
'ath_price' => '$0.1113'
'ath_days' => 359
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '12 janv. 2025'
'ath_pct' => '-98.71%'
'fdv' => '$1.46M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.072044'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.001473'
'next_week_prediction_price_date' => '13 janvier 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.001291'
'next_month_prediction_price_date' => '5 février 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.0005048'
'current_year_max_price_prediction' => '$0.0015069'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.001638'
'grand_prediction_max_price' => '$0.004737'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0014888278344404
107 => 0.0014943865771297
108 => 0.0015069107082451
109 => 0.001399893379106
110 => 0.0014479410180258
111 => 0.0014761645044362
112 => 0.0013486497660548
113 => 0.0014736439480495
114 => 0.0013980304454978
115 => 0.0013723660870551
116 => 0.0014069197646761
117 => 0.0013934541629026
118 => 0.0013818772292245
119 => 0.0013754171013151
120 => 0.0014007895086097
121 => 0.0013996058554828
122 => 0.0013580916725767
123 => 0.0013039381133103
124 => 0.0013221138253301
125 => 0.0013155104187551
126 => 0.0012915788214709
127 => 0.0013077058285284
128 => 0.0012366906511387
129 => 0.0011145127294875
130 => 0.0011952272069413
131 => 0.0011921197873597
201 => 0.0011905528854965
202 => 0.0012512075845187
203 => 0.0012453770347497
204 => 0.0012347945298261
205 => 0.0012913844654691
206 => 0.0012707283777173
207 => 0.0013343855729819
208 => 0.0013763143188723
209 => 0.0013656798326617
210 => 0.0014051140208309
211 => 0.0013225325570253
212 => 0.0013499628067082
213 => 0.0013556161431512
214 => 0.0012906861544475
215 => 0.0012463309847995
216 => 0.0012433730006699
217 => 0.0011664672490193
218 => 0.0012075496807895
219 => 0.0012437005206408
220 => 0.0012263870737705
221 => 0.0012209061537159
222 => 0.0012489069856084
223 => 0.0012510828900574
224 => 0.0012014720380292
225 => 0.0012117877051372
226 => 0.0012548057518146
227 => 0.0012107037607339
228 => 0.0011250207960834
301 => 0.0011037702361904
302 => 0.0011009350197751
303 => 0.0010433018159422
304 => 0.0011051903002159
305 => 0.0010781743183222
306 => 0.0011635174814234
307 => 0.0011147699243645
308 => 0.0011126685146102
309 => 0.0011094919255568
310 => 0.0010598846462201
311 => 0.0010707454876878
312 => 0.0011068485788792
313 => 0.0011197305685467
314 => 0.0011183868714854
315 => 0.0011066716540364
316 => 0.0011120348205929
317 => 0.0010947581924632
318 => 0.0010886574554887
319 => 0.0010694018514573
320 => 0.0010411014330275
321 => 0.0010450367797867
322 => 0.00098896624566993
323 => 0.00095841604279463
324 => 0.00094996014928395
325 => 0.00093865257508535
326 => 0.00095123736987799
327 => 0.00098880740489167
328 => 0.0009434899717376
329 => 0.00086579641124329
330 => 0.00087046592661238
331 => 0.00088095694125518
401 => 0.00086140700487334
402 => 0.00084290463078971
403 => 0.00085899094391036
404 => 0.00082607115811281
405 => 0.00088493514009268
406 => 0.00088334303434453
407 => 0.00090528388670239
408 => 0.00091900395195338
409 => 0.00088738364347372
410 => 0.0008794312214015
411 => 0.00088396128243127
412 => 0.00080908946444477
413 => 0.00089916526183073
414 => 0.000899944241067
415 => 0.00089327414791403
416 => 0.00094123672924381
417 => 0.0010424527357539
418 => 0.0010043712027004
419 => 0.00098962488208163
420 => 0.00096159211580588
421 => 0.00099894411244736
422 => 0.00099607606188721
423 => 0.00098310564957835
424 => 0.00097526110374379
425 => 0.00098971491997086
426 => 0.00097347011595996
427 => 0.00097055210278224
428 => 0.00095287211775491
429 => 0.00094656116748822
430 => 0.00094188879115693
501 => 0.00093674496391439
502 => 0.00094809096504954
503 => 0.00092237943378655
504 => 0.00089137384761586
505 => 0.00088879606861086
506 => 0.00089591354308432
507 => 0.00089276459046347
508 => 0.0008887809926372
509 => 0.00088117521951855
510 => 0.00087891874910587
511 => 0.00088625118326325
512 => 0.00087797329260704
513 => 0.00089018777119032
514 => 0.00088686610887359
515 => 0.00086831157318902
516 => 0.00084518575195709
517 => 0.00084497988364008
518 => 0.00083999746338961
519 => 0.00083365160208873
520 => 0.00083188632864847
521 => 0.00085763619948772
522 => 0.00091093766149618
523 => 0.00090047330910803
524 => 0.00090803487613844
525 => 0.00094523030197007
526 => 0.00095705360933647
527 => 0.00094866170581819
528 => 0.00093717435069229
529 => 0.00093767973601851
530 => 0.00097693550594258
531 => 0.00097938384016064
601 => 0.00098556999086712
602 => 0.00099352094273092
603 => 0.00095001578730148
604 => 0.00093563064711014
605 => 0.00092881416963029
606 => 0.00090782205730113
607 => 0.00093046025072044
608 => 0.0009172699448791
609 => 0.00091904976778211
610 => 0.00091789065578163
611 => 0.0009185236093127
612 => 0.00088491868641006
613 => 0.00089716255409304
614 => 0.0008768047493329
615 => 0.00084954793402991
616 => 0.00084945655962755
617 => 0.00085612762655825
618 => 0.00085215941490899
619 => 0.00084148105939289
620 => 0.00084299786939354
621 => 0.0008297090177254
622 => 0.00084461137658848
623 => 0.00084503872291747
624 => 0.00083930050301821
625 => 0.00086225964297601
626 => 0.00087166602134961
627 => 0.00086788900208733
628 => 0.0008714010156094
629 => 0.00090090815019348
630 => 0.00090571910061723
701 => 0.00090785580700191
702 => 0.00090499290350578
703 => 0.00087194035186259
704 => 0.00087340637307827
705 => 0.00086264968211798
706 => 0.00085356141176871
707 => 0.00085392489492098
708 => 0.00085859744727295
709 => 0.00087900275743559
710 => 0.00092194452971412
711 => 0.00092357413858206
712 => 0.00092554927206906
713 => 0.0009175154115549
714 => 0.00091509232235015
715 => 0.00091828900246361
716 => 0.00093441567436031
717 => 0.00097589785282731
718 => 0.00096123528045553
719 => 0.00094931438088073
720 => 0.00095977222365927
721 => 0.0009581623207348
722 => 0.00094457311990318
723 => 0.00094419171629608
724 => 0.00091810969516989
725 => 0.00090846776581843
726 => 0.00090041024796644
727 => 0.0008916116488189
728 => 0.00088639554431253
729 => 0.00089440985151142
730 => 0.0008962428183903
731 => 0.0008787193956338
801 => 0.00087633101786336
802 => 0.00089064102315567
803 => 0.0008843437233573
804 => 0.00089082065236545
805 => 0.00089232335545341
806 => 0.00089208138564606
807 => 0.00088550628141628
808 => 0.00088969705677991
809 => 0.00087978462371466
810 => 0.0008690063415555
811 => 0.00086213046904867
812 => 0.00085613035833431
813 => 0.00085945956848712
814 => 0.00084759154218213
815 => 0.00084379472171098
816 => 0.00088827731638214
817 => 0.00092113708733421
818 => 0.00092065929325067
819 => 0.00091775084464578
820 => 0.00091342947997616
821 => 0.00093409953961861
822 => 0.00092689850415007
823 => 0.00093213785912008
824 => 0.00093347149485498
825 => 0.00093750800855915
826 => 0.00093895071525831
827 => 0.00093458985358921
828 => 0.00091995426919331
829 => 0.00088348378438836
830 => 0.00086650667526145
831 => 0.00086090394647346
901 => 0.00086110759502381
902 => 0.00085549005887808
903 => 0.00085714467503331
904 => 0.00085491465090372
905 => 0.00085069152470306
906 => 0.00085919880234468
907 => 0.00086017918684211
908 => 0.00085819348658615
909 => 0.00085866119087983
910 => 0.00084222044086422
911 => 0.00084347039538048
912 => 0.00083651048979743
913 => 0.00083520559140353
914 => 0.0008176115561579
915 => 0.00078644117242407
916 => 0.00080371259079497
917 => 0.00078285114613186
918 => 0.00077495060093547
919 => 0.00081235055310832
920 => 0.00080859663522336
921 => 0.0008021715595932
922 => 0.0007926675336331
923 => 0.00078914239795527
924 => 0.00076772478949916
925 => 0.00076645932293308
926 => 0.000777074468008
927 => 0.00077217594380076
928 => 0.00076529656059761
929 => 0.00074038013198769
930 => 0.00071236581668413
1001 => 0.00071321139277144
1002 => 0.00072212222524463
1003 => 0.00074803167244993
1004 => 0.00073790840318883
1005 => 0.00073056385518878
1006 => 0.00072918844212467
1007 => 0.00074640461624428
1008 => 0.00077076910952351
1009 => 0.00078220038464532
1010 => 0.00077087233817259
1011 => 0.00075785928833007
1012 => 0.00075865133237732
1013 => 0.00076392044658167
1014 => 0.00076447415598328
1015 => 0.00075600399829894
1016 => 0.00075838829807285
1017 => 0.00075476632869134
1018 => 0.00073253830928263
1019 => 0.00073213627489734
1020 => 0.00072668116045921
1021 => 0.00072651598176203
1022 => 0.0007172354712607
1023 => 0.00071593706368843
1024 => 0.00069751004680132
1025 => 0.00070963876511856
1026 => 0.00070150345765765
1027 => 0.00068924163038903
1028 => 0.00068712768674615
1029 => 0.00068706413904759
1030 => 0.00069965429395806
1031 => 0.00070949164182809
1101 => 0.00070164497481396
1102 => 0.00069985844083609
1103 => 0.00071893394976569
1104 => 0.00071650641737727
1105 => 0.00071440418998481
1106 => 0.00076858753638246
1107 => 0.00072569718972947
1108 => 0.00070699455049338
1109 => 0.00068384648290384
1110 => 0.00069138361043368
1111 => 0.00069297179394766
1112 => 0.00063730486414762
1113 => 0.00061472079766062
1114 => 0.00060697079710488
1115 => 0.00060251056221612
1116 => 0.00060454314726303
1117 => 0.00058421483857794
1118 => 0.00059787579821351
1119 => 0.00058027320120138
1120 => 0.00057732206852849
1121 => 0.00060879769252951
1122 => 0.00061317734173133
1123 => 0.00059449239758604
1124 => 0.00060649115654499
1125 => 0.00060214023975125
1126 => 0.00058057494720464
1127 => 0.00057975131165291
1128 => 0.00056893060590971
1129 => 0.0005519982967231
1130 => 0.00054425977707031
1201 => 0.00054022948884623
1202 => 0.00054189246431624
1203 => 0.00054105161303071
1204 => 0.00053556448961894
1205 => 0.00054136612852168
1206 => 0.00052654533852788
1207 => 0.00052064358053313
1208 => 0.00051797789336665
1209 => 0.00050482358919431
1210 => 0.00052575793687812
1211 => 0.00052988226709579
1212 => 0.00053401472351806
1213 => 0.00056998493532612
1214 => 0.00056818796519495
1215 => 0.00058443170002075
1216 => 0.00058380049835573
1217 => 0.00057916752205236
1218 => 0.00055962175711602
1219 => 0.00056741235064988
1220 => 0.0005434341146797
1221 => 0.00056140023943012
1222 => 0.00055320125037733
1223 => 0.00055862815298393
1224 => 0.00054887009277319
1225 => 0.00055427060619424
1226 => 0.00053086029879296
1227 => 0.00050900008313356
1228 => 0.00051779727205438
1229 => 0.0005273608224919
1230 => 0.00054809703658776
1231 => 0.00053574671854232
]
'min_raw' => 0.00050482358919431
'max_raw' => 0.0015069107082451
'avg_raw' => 0.0010058671487197
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.0005048'
'max' => '$0.0015069'
'avg' => '$0.0010058'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.00095631641080569
'max_diff' => 4.577070824508E-5
'year' => 2026
]
1 => [
'items' => [
101 => 0.00054018835992869
102 => 0.00052530960480613
103 => 0.00049461048308201
104 => 0.00049478423677706
105 => 0.00049006184571652
106 => 0.00048598101035984
107 => 0.00053716530113682
108 => 0.0005307997254748
109 => 0.00052065701376333
110 => 0.00053423343644448
111 => 0.00053782325808817
112 => 0.00053792545526368
113 => 0.00054783046279365
114 => 0.00055311676708797
115 => 0.000554048501132
116 => 0.00056963424449227
117 => 0.00057485838008571
118 => 0.00059637585524774
119 => 0.00055266826110195
120 => 0.0005517681319631
121 => 0.00053442448455337
122 => 0.0005234248691739
123 => 0.00053517763762898
124 => 0.00054558898606731
125 => 0.00053474799417087
126 => 0.00053616359884671
127 => 0.00052161045296733
128 => 0.00052681251783005
129 => 0.00053129323688364
130 => 0.00052881924718674
131 => 0.00052511556486803
201 => 0.00054473537422482
202 => 0.00054362834769025
203 => 0.00056189876522076
204 => 0.00057614186221589
205 => 0.00060166803828928
206 => 0.00057503014284704
207 => 0.00057405935206108
208 => 0.00058354898771358
209 => 0.00057485692727194
210 => 0.00058035000943133
211 => 0.00060078301783068
212 => 0.00060121473510025
213 => 0.00059398291459874
214 => 0.000593542857664
215 => 0.00059493180789876
216 => 0.00060306693280683
217 => 0.00060022427019681
218 => 0.00060351387133654
219 => 0.00060762756793393
220 => 0.00062464356123193
221 => 0.00062874605960871
222 => 0.00061877911545468
223 => 0.00061967901891665
224 => 0.0006159511082043
225 => 0.00061234999316676
226 => 0.00062044477387054
227 => 0.00063523814470999
228 => 0.00063514611591777
301 => 0.00063857789041049
302 => 0.00064071585748909
303 => 0.00063153813770016
304 => 0.00062556377959167
305 => 0.00062785472864875
306 => 0.0006315180060814
307 => 0.00062666677714976
308 => 0.00059672274487588
309 => 0.00060580585143559
310 => 0.00060429397836283
311 => 0.00060214088725718
312 => 0.00061127402114056
313 => 0.00061039310809708
314 => 0.00058400634239032
315 => 0.00058569553751921
316 => 0.00058410906794089
317 => 0.00058923527570958
318 => 0.00057458009522965
319 => 0.00057908793004113
320 => 0.00058191520177656
321 => 0.00058358048654885
322 => 0.00058959663704284
323 => 0.00058889071122052
324 => 0.00058955275570256
325 => 0.0005984731186803
326 => 0.00064358925352279
327 => 0.00064604482519913
328 => 0.0006339526921817
329 => 0.00063878326081538
330 => 0.00062950962536794
331 => 0.00063573507897177
401 => 0.00063999437621813
402 => 0.00062074743097759
403 => 0.00061960775179208
404 => 0.00061029584075233
405 => 0.00061529953429149
406 => 0.00060733829809239
407 => 0.00060929170698343
408 => 0.00060382980542896
409 => 0.00061366014077326
410 => 0.00062465198316786
411 => 0.00062742895663775
412 => 0.00062012393500072
413 => 0.00061483461791113
414 => 0.00060554831951118
415 => 0.00062099164070896
416 => 0.00062550773845388
417 => 0.00062096791957007
418 => 0.00061991594433769
419 => 0.0006179224531732
420 => 0.00062033887291207
421 => 0.00062548314281568
422 => 0.00062305720012889
423 => 0.00062465957801312
424 => 0.00061855296588332
425 => 0.00063154117590729
426 => 0.00065216957920833
427 => 0.00065223590289803
428 => 0.0006498099471345
429 => 0.00064881729830401
430 => 0.0006513064761367
501 => 0.00065265675299951
502 => 0.00066070629767325
503 => 0.00066934377981619
504 => 0.00070965114014857
505 => 0.00069833299465975
506 => 0.00073409608264223
507 => 0.00076238004198061
508 => 0.00077086116467854
509 => 0.0007630589308641
510 => 0.00073636791045329
511 => 0.0007350583216557
512 => 0.0007749459748076
513 => 0.00076367588582194
514 => 0.00076233534459822
515 => 0.00074807425085799
516 => 0.00075650432352929
517 => 0.00075466054297437
518 => 0.0007517500451676
519 => 0.00076783403658048
520 => 0.00079794183267757
521 => 0.00079324925030672
522 => 0.00078974645524951
523 => 0.00077439822695711
524 => 0.00078364128854003
525 => 0.00078035001134954
526 => 0.00079449142685601
527 => 0.00078611436558068
528 => 0.00076359050381343
529 => 0.00076717750303949
530 => 0.00076663533532251
531 => 0.00077779310851948
601 => 0.00077444382195871
602 => 0.00076598133336739
603 => 0.00079783892750365
604 => 0.00079577027254169
605 => 0.00079870315231739
606 => 0.00079999429669697
607 => 0.00081938545285393
608 => 0.00082732938908365
609 => 0.00082913280168598
610 => 0.00083667892669814
611 => 0.00082894504722131
612 => 0.00085988607929122
613 => 0.00088046006015843
614 => 0.00090435779766307
615 => 0.00093927881526364
616 => 0.00095240944091892
617 => 0.00095003751092197
618 => 0.00097651422791865
619 => 0.0010240922998173
620 => 0.00095965439956183
621 => 0.0010275076649983
622 => 0.0010060261045648
623 => 0.00095509371121352
624 => 0.00095181426553517
625 => 0.00098630627364987
626 => 0.0010628062279155
627 => 0.0010436438570273
628 => 0.0010628375706896
629 => 0.0010404470841684
630 => 0.0010393352077908
701 => 0.0010617501147357
702 => 0.0011141237665856
703 => 0.0010892430077887
704 => 0.001053570339041
705 => 0.0010799104825161
706 => 0.0010570922125728
707 => 0.0010056762639588
708 => 0.0010436292039234
709 => 0.0010182511538066
710 => 0.001025657818002
711 => 0.0010789987046475
712 => 0.0010725805880438
713 => 0.0010808862252306
714 => 0.0010662269929924
715 => 0.0010525329585331
716 => 0.0010269720262826
717 => 0.0010194046943819
718 => 0.0010214960326752
719 => 0.0010194036580185
720 => 0.0010051025513415
721 => 0.0010020142287162
722 => 0.00099686688903815
723 => 0.0009984622648387
724 => 0.0009887837603367
725 => 0.001007049098013
726 => 0.0010104393056394
727 => 0.0010237312951974
728 => 0.0010251113136478
729 => 0.0010621293153675
730 => 0.0010417404220826
731 => 0.0010554190519904
801 => 0.0010541955065832
802 => 0.00095619757061796
803 => 0.00096970082155086
804 => 0.00099070764244888
805 => 0.0009812440981084
806 => 0.00096786486053929
807 => 0.0009570604088529
808 => 0.0009406905597361
809 => 0.00096373080801288
810 => 0.0009940262844396
811 => 0.0010258796569252
812 => 0.001064149396851
813 => 0.0010556080364084
814 => 0.0010251642307571
815 => 0.0010265299176394
816 => 0.0010349720565679
817 => 0.0010240387196064
818 => 0.0010208142650923
819 => 0.0010345290660325
820 => 0.001034623512329
821 => 0.0010220433868169
822 => 0.0010080628794489
823 => 0.0010080043006125
824 => 0.0010055166043621
825 => 0.0010408896398049
826 => 0.0010603412326812
827 => 0.0010625713264566
828 => 0.0010601911296016
829 => 0.0010611071729045
830 => 0.0010497887195964
831 => 0.0010756593474756
901 => 0.0010994007939576
902 => 0.0010930375791384
903 => 0.0010834982155401
904 => 0.0010758996529561
905 => 0.0010912475992794
906 => 0.0010905641793895
907 => 0.0010991934331341
908 => 0.0010988019603393
909 => 0.0010959002668676
910 => 0.001093037682767
911 => 0.0011043875051542
912 => 0.0011011189385792
913 => 0.0010978452950176
914 => 0.001091279501685
915 => 0.0010921719020452
916 => 0.0010826341855526
917 => 0.0010782216014869
918 => 0.0010118669244083
919 => 0.00099413478649133
920 => 0.00099971367805097
921 => 0.0010015503940083
922 => 0.00099383334486243
923 => 0.0010048976109903
924 => 0.0010031732568342
925 => 0.001009881710142
926 => 0.0010056905597625
927 => 0.001005862566036
928 => 0.0010181878456548
929 => 0.0010217659267636
930 => 0.001019946085833
1001 => 0.0010212206400403
1002 => 0.0010505922037917
1003 => 0.0010464165066759
1004 => 0.0010441982508079
1005 => 0.0010448127228432
1006 => 0.0010523177871151
1007 => 0.0010544187953499
1008 => 0.0010455166758238
1009 => 0.0010497149668549
1010 => 0.0010675907572227
1011 => 0.0010738462721693
1012 => 0.0010938108730615
1013 => 0.00108532955576
1014 => 0.0011008973807297
1015 => 0.0011487475672237
1016 => 0.0011869736071762
1017 => 0.001151819361078
1018 => 0.001222016615394
1019 => 0.001276675247077
1020 => 0.0012745773577543
1021 => 0.0012650463610434
1022 => 0.0012028189620472
1023 => 0.0011455563817326
1024 => 0.0011934589616633
1025 => 0.0011935810751908
1026 => 0.0011894662010921
1027 => 0.0011639090714676
1028 => 0.0011885768683795
1029 => 0.001190534908518
1030 => 0.0011894389267253
1031 => 0.0011698443353641
1101 => 0.0011399270160413
1102 => 0.001145772788625
1103 => 0.0011553482833677
1104 => 0.0011372198741623
1105 => 0.0011314267489821
1106 => 0.0011421972708792
1107 => 0.001176902136559
1108 => 0.0011703413827338
1109 => 0.0011701700549374
1110 => 0.001198239741994
1111 => 0.0011781479038791
1112 => 0.001145846522538
1113 => 0.0011376899977465
1114 => 0.0011087398296302
1115 => 0.0011287358138651
1116 => 0.0011294554337396
1117 => 0.0011185038375281
1118 => 0.0011467351842129
1119 => 0.0011464750273832
1120 => 0.0011732764893789
1121 => 0.0012245108185454
1122 => 0.0012093583063227
1123 => 0.0011917375831963
1124 => 0.0011936534443697
1125 => 0.0012146657126947
1126 => 0.001201961215602
1127 => 0.0012065298413354
1128 => 0.0012146587975325
1129 => 0.0012195631986368
1130 => 0.0011929477765253
1201 => 0.0011867424484683
1202 => 0.0011740485250379
1203 => 0.0011707369173582
1204 => 0.0011810758531249
1205 => 0.0011783519088303
1206 => 0.0011293949524756
1207 => 0.0011242786781426
1208 => 0.0011244355869721
1209 => 0.0011115704718962
1210 => 0.001091948083424
1211 => 0.0011435145487369
1212 => 0.0011393730399001
1213 => 0.0011348011346715
1214 => 0.0011353611669751
1215 => 0.0011577444218178
1216 => 0.0011447610036275
1217 => 0.0011792795488266
1218 => 0.0011721835736561
1219 => 0.0011649056134981
1220 => 0.0011638995777122
1221 => 0.0011610981839777
1222 => 0.0011514911625095
1223 => 0.0011398901067942
1224 => 0.0011322300849447
1225 => 0.0010444224039057
1226 => 0.0010607189987527
1227 => 0.0010794667456429
1228 => 0.0010859383927426
1229 => 0.0010748681925543
1230 => 0.0011519282814866
1231 => 0.001166007902304
]
'min_raw' => 0.00048598101035984
'max_raw' => 0.001276675247077
'avg_raw' => 0.00088132812871842
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.000485'
'max' => '$0.001276'
'avg' => '$0.000881'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -1.8842578834474E-5
'max_diff' => -0.00023023546116807
'year' => 2027
]
2 => [
'items' => [
101 => 0.0011233598124571
102 => 0.0011153820961568
103 => 0.0011524512992391
104 => 0.0011300940382547
105 => 0.001140161511507
106 => 0.0011184011409489
107 => 0.0011626165339486
108 => 0.0011622796867349
109 => 0.0011450789002082
110 => 0.0011596168871947
111 => 0.0011570905541935
112 => 0.0011376709085684
113 => 0.0011632321713531
114 => 0.0011632448494205
115 => 0.0011466894663658
116 => 0.0011273564033973
117 => 0.0011239001083651
118 => 0.0011212962543462
119 => 0.0011395211230376
120 => 0.0011558614833185
121 => 0.0011862668426825
122 => 0.0011939114724401
123 => 0.001223748971316
124 => 0.0012059821934969
125 => 0.0012138579759858
126 => 0.001222408251975
127 => 0.0012265075687102
128 => 0.0012198279520716
129 => 0.0012661778694303
130 => 0.0012700912225802
131 => 0.0012714033360409
201 => 0.0012557744046924
202 => 0.0012696565537268
203 => 0.0012631615559221
204 => 0.0012800597358476
205 => 0.0012827095862268
206 => 0.0012804652572268
207 => 0.0012813063615622
208 => 0.0012417548837823
209 => 0.0012397039310087
210 => 0.0012117390444123
211 => 0.0012231349424063
212 => 0.0012018308573261
213 => 0.0012085866021614
214 => 0.0012115644701138
215 => 0.001210009000888
216 => 0.0012237792493807
217 => 0.001212071725086
218 => 0.0011811736435771
219 => 0.0011502671439066
220 => 0.0011498791379791
221 => 0.0011417420021609
222 => 0.0011358603433551
223 => 0.0011369933595041
224 => 0.001140986256195
225 => 0.0011356282689407
226 => 0.0011367716671783
227 => 0.0011557596963443
228 => 0.0011595676101771
229 => 0.0011466268311252
301 => 0.0010946677358864
302 => 0.0010819168435852
303 => 0.0010910819321101
304 => 0.0010867016101025
305 => 0.00087705301293595
306 => 0.00092630684107863
307 => 0.00089704188889821
308 => 0.00091052852527866
309 => 0.00088065658722508
310 => 0.00089491304178666
311 => 0.0008922803951915
312 => 0.00097147909331821
313 => 0.00097024251458121
314 => 0.00097083439938432
315 => 0.00094258219558414
316 => 0.00098758872336875
317 => 0.0010097605573378
318 => 0.0010056571409544
319 => 0.0010066898824535
320 => 0.00098894396186314
321 => 0.00097100621868629
322 => 0.00095111050090429
323 => 0.00098807428535821
324 => 0.00098396454351978
325 => 0.0009933908126587
326 => 0.001017364469103
327 => 0.0010208946810814
328 => 0.0010256393217804
329 => 0.0010239387058363
330 => 0.001064454277071
331 => 0.0010595475740642
401 => 0.0010713713165559
402 => 0.0010470489811809
403 => 0.0010195259500068
404 => 0.0010247571784373
405 => 0.0010242533690725
406 => 0.0010178392976139
407 => 0.0010120489606936
408 => 0.0010024096811385
409 => 0.0010329097879957
410 => 0.001031671539357
411 => 0.0010517173455104
412 => 0.0010481740545582
413 => 0.0010245110903891
414 => 0.0010253562177837
415 => 0.0010310401056664
416 => 0.001050712106526
417 => 0.0010565520957531
418 => 0.0010538467800598
419 => 0.0010602500616417
420 => 0.0010653109543211
421 => 0.0010608856318433
422 => 0.00112353886595
423 => 0.0010975208749806
424 => 0.0011102018627471
425 => 0.0011132262036087
426 => 0.0011054794180868
427 => 0.0011071594184749
428 => 0.0011097041612901
429 => 0.0011251553413528
430 => 0.0011657037086721
501 => 0.0011836623045357
502 => 0.001237691626253
503 => 0.001182171093145
504 => 0.0011788767344772
505 => 0.0011886090468477
506 => 0.0012203299782802
507 => 0.0012460368138108
508 => 0.0012545652542192
509 => 0.0012556924284084
510 => 0.0012716923495745
511 => 0.0012808632060061
512 => 0.0012697495383052
513 => 0.0012603318685783
514 => 0.0012265989445805
515 => 0.001230503622385
516 => 0.0012574029803749
517 => 0.0012953999079
518 => 0.001328005224623
519 => 0.0013165879791166
520 => 0.0014036935030112
521 => 0.0014123296599112
522 => 0.001411136422268
523 => 0.0014308108729186
524 => 0.0013917610950093
525 => 0.0013750665583993
526 => 0.0012623680756683
527 => 0.0012940317524044
528 => 0.0013400567660827
529 => 0.0013339651829374
530 => 0.0013005405877521
531 => 0.0013279798690703
601 => 0.0013189075845608
602 => 0.0013117518973588
603 => 0.0013445334876296
604 => 0.0013084887825333
605 => 0.0013396971925766
606 => 0.0012996720838865
607 => 0.0013166401321324
608 => 0.0013070082472958
609 => 0.0013132412572245
610 => 0.0012768032085429
611 => 0.0012964642951279
612 => 0.0012759852427014
613 => 0.0012759755329641
614 => 0.0012755234567467
615 => 0.0012996169711085
616 => 0.0013004026597468
617 => 0.0012825975162302
618 => 0.0012800315168808
619 => 0.0012895193613701
620 => 0.0012784115803436
621 => 0.0012836088411743
622 => 0.0012785690000796
623 => 0.0012774344256939
624 => 0.0012683939439565
625 => 0.0012644990558508
626 => 0.001266026341836
627 => 0.0012608129273988
628 => 0.001257671656623
629 => 0.0012748985789247
630 => 0.001265694929271
701 => 0.0012734879876164
702 => 0.0012646068140694
703 => 0.0012338207972124
704 => 0.0012161154333618
705 => 0.0011579635013843
706 => 0.0011744553171559
707 => 0.0011853894080744
708 => 0.0011817756910911
709 => 0.0011895393534942
710 => 0.0011900159793118
711 => 0.0011874919335234
712 => 0.0011845694118507
713 => 0.0011831468899261
714 => 0.0011937492029023
715 => 0.0011999042024424
716 => 0.0011864867903774
717 => 0.0011833432784601
718 => 0.0011969090228535
719 => 0.0012051841190968
720 => 0.0012662827803824
721 => 0.0012617563942083
722 => 0.0012731167352469
723 => 0.0012718377351846
724 => 0.0012837451824373
725 => 0.0013032088262327
726 => 0.0012636337962761
727 => 0.001270502653075
728 => 0.001268818568013
729 => 0.0012872049671293
730 => 0.0012872623674604
731 => 0.0012762388027214
801 => 0.0012822148560034
802 => 0.0012788791870058
803 => 0.0012849071917271
804 => 0.0012616959415613
805 => 0.0012899647387636
806 => 0.0013059913251762
807 => 0.0013062138543441
808 => 0.0013138103291088
809 => 0.0013215287874279
810 => 0.0013363436960354
811 => 0.0013211156076677
812 => 0.0012937217591186
813 => 0.0012956995065023
814 => 0.0012796385031209
815 => 0.0012799084914894
816 => 0.001278467272419
817 => 0.0012827924793392
818 => 0.0012626450812528
819 => 0.0012673736353136
820 => 0.0012607536319381
821 => 0.0012704882624805
822 => 0.0012600154092089
823 => 0.0012688177558962
824 => 0.001272616556924
825 => 0.0012866342144989
826 => 0.0012579449897877
827 => 0.0011994457185118
828 => 0.0012117429745691
829 => 0.0011935543669317
830 => 0.0011952377918174
831 => 0.0011986385780017
901 => 0.0011876155173104
902 => 0.0011897183699138
903 => 0.0011896432412212
904 => 0.0011889958227367
905 => 0.0011861282989201
906 => 0.0011819698220637
907 => 0.0011985359139479
908 => 0.0012013508157705
909 => 0.0012076079938296
910 => 0.0012262251114491
911 => 0.001224364822377
912 => 0.0012273990310362
913 => 0.0012207753705696
914 => 0.0011955450444294
915 => 0.0011969151725255
916 => 0.0011798296532114
917 => 0.0012071710786873
918 => 0.0012006962682454
919 => 0.0011965219158324
920 => 0.0011953829051014
921 => 0.0012140461709545
922 => 0.0012196305126086
923 => 0.001216150725641
924 => 0.0012090135810488
925 => 0.0012227190085732
926 => 0.0012263860027931
927 => 0.0012272069075654
928 => 0.0012514902973834
929 => 0.0012285640793014
930 => 0.0012340826478608
1001 => 0.001277136944416
1002 => 0.0012380926385272
1003 => 0.0012587752781484
1004 => 0.0012577629705662
1005 => 0.0012683435091341
1006 => 0.0012568950575809
1007 => 0.0012570369748587
1008 => 0.0012664317763192
1009 => 0.0012532384720293
1010 => 0.0012499716243493
1011 => 0.001245458497677
1012 => 0.0012553127446566
1013 => 0.0012612199200516
1014 => 0.0013088274153934
1015 => 0.0013395840285497
1016 => 0.0013382488028578
1017 => 0.0013504502662442
1018 => 0.001344953395236
1019 => 0.0013272025487495
1020 => 0.0013575010792169
1021 => 0.0013479133564326
1022 => 0.0013487037566499
1023 => 0.0013486743379143
1024 => 0.0013550493353926
1025 => 0.0013505320654193
1026 => 0.0013416280626137
1027 => 0.0013475389552085
1028 => 0.0013650921930322
1029 => 0.001419577981836
1030 => 0.0014500689510914
1031 => 0.0014177423872013
1101 => 0.0014400408181027
1102 => 0.0014266697053052
1103 => 0.0014242397763537
1104 => 0.0014382448388009
1105 => 0.001452274415256
1106 => 0.0014513807918873
1107 => 0.0014411960398077
1108 => 0.0014354429317864
1109 => 0.0014790073931561
1110 => 0.001511104946192
1111 => 0.0015089161082597
1112 => 0.0015185769270447
1113 => 0.0015469413897955
1114 => 0.0015495346807944
1115 => 0.0015492079857347
1116 => 0.001542780243412
1117 => 0.0015707087405811
1118 => 0.0015940071842747
1119 => 0.0015412924067796
1120 => 0.0015613655039626
1121 => 0.0015703769640029
1122 => 0.0015836084609217
1123 => 0.0016059322140801
1124 => 0.0016301817310932
1125 => 0.0016336108786813
1126 => 0.0016311777343677
1127 => 0.0016151845260356
1128 => 0.0016417186369082
1129 => 0.0016572616967559
1130 => 0.0016665172331987
1201 => 0.001689987733643
1202 => 0.0015704326157122
1203 => 0.0014858055609659
1204 => 0.0014725898243377
1205 => 0.0014994645444542
1206 => 0.001506551193827
1207 => 0.0015036945743508
1208 => 0.0014084391302785
1209 => 0.0014720883241383
1210 => 0.0015405695049551
1211 => 0.0015432001460087
1212 => 0.0015774832569995
1213 => 0.0015886472432504
1214 => 0.0016162496411881
1215 => 0.0016145231036818
1216 => 0.0016212438483295
1217 => 0.0016196988655221
1218 => 0.0016708264953311
1219 => 0.0017272278635369
1220 => 0.0017252748635013
1221 => 0.001717166499511
1222 => 0.0017292088027181
1223 => 0.0017874210590445
1224 => 0.0017820618073144
1225 => 0.0017872678638702
1226 => 0.001855903394778
1227 => 0.0019451393482486
1228 => 0.0019036802887183
1229 => 0.001993634518376
1230 => 0.0020502559376768
1231 => 0.0021481768275934
]
'min_raw' => 0.00087705301293595
'max_raw' => 0.0021481768275934
'avg_raw' => 0.0015126149202647
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.000877'
'max' => '$0.002148'
'avg' => '$0.001512'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00039107200257611
'max_diff' => 0.00087150158051641
'year' => 2028
]
3 => [
'items' => [
101 => 0.0021359166499053
102 => 0.0021740365337732
103 => 0.0021139683730673
104 => 0.0019760397343084
105 => 0.0019542119992552
106 => 0.001997911677598
107 => 0.0021053430726516
108 => 0.0019945282806519
109 => 0.0020169459687479
110 => 0.0020104896730681
111 => 0.0020101456445089
112 => 0.0020232758153515
113 => 0.0020042298177206
114 => 0.0019266329970627
115 => 0.0019621951626893
116 => 0.0019484629027054
117 => 0.0019636998689653
118 => 0.0020459274916672
119 => 0.002009572699609
120 => 0.0019712758793992
121 => 0.002019308590687
122 => 0.0020804707379868
123 => 0.0020766433207277
124 => 0.0020692165315088
125 => 0.0021110809534818
126 => 0.0021802287134563
127 => 0.0021989190751193
128 => 0.0022127159179912
129 => 0.0022146182695237
130 => 0.002234213672613
131 => 0.0021288442515242
201 => 0.0022960682288708
202 => 0.0023249431902895
203 => 0.0023195158942873
204 => 0.0023516091986599
205 => 0.002342166534385
206 => 0.0023284855953591
207 => 0.0023793603092314
208 => 0.0023210365551546
209 => 0.0022382533289989
210 => 0.0021928368138634
211 => 0.0022526449446396
212 => 0.0022891676830886
213 => 0.0023133068899209
214 => 0.002320611399323
215 => 0.0021370237797351
216 => 0.0020380802350133
217 => 0.0021015019127899
218 => 0.0021788807368077
219 => 0.0021284144082498
220 => 0.0021303925927839
221 => 0.0020584408705782
222 => 0.0021852468676713
223 => 0.0021667723005012
224 => 0.0022626183876609
225 => 0.0022397439497473
226 => 0.0023179027131024
227 => 0.0022973208913256
228 => 0.002382754882807
301 => 0.0024168368150419
302 => 0.0024740656836934
303 => 0.0025161634724369
304 => 0.0025408840991895
305 => 0.002539399965484
306 => 0.002637355404445
307 => 0.002579594504392
308 => 0.0025070332007267
309 => 0.0025057207956714
310 => 0.0025433013230413
311 => 0.0026220597986944
312 => 0.0026424807255421
313 => 0.0026538932377758
314 => 0.0026364145780174
315 => 0.002573719260771
316 => 0.0025466477406564
317 => 0.0025697134601315
318 => 0.0025415060672734
319 => 0.002590199940943
320 => 0.0026570670299417
321 => 0.0026432592404846
322 => 0.0026894166104601
323 => 0.0027371846324879
324 => 0.0028054950493837
325 => 0.0028233539218877
326 => 0.0028528739590247
327 => 0.0028832597740657
328 => 0.0028930188789362
329 => 0.0029116520382063
330 => 0.0029115538322594
331 => 0.0029677061118763
401 => 0.0030296438151851
402 => 0.0030530238643231
403 => 0.0031067849981324
404 => 0.0030147209404988
405 => 0.0030845525857695
406 => 0.0031475424778032
407 => 0.0030724433317522
408 => 0.0031759500087266
409 => 0.0031799689384424
410 => 0.0032406500056569
411 => 0.0031791381189491
412 => 0.0031426125569749
413 => 0.0032480604857995
414 => 0.0032990834169791
415 => 0.0032837148948694
416 => 0.0031667596827772
417 => 0.0030986867328946
418 => 0.0029205266927603
419 => 0.0031315649562403
420 => 0.0032343555383109
421 => 0.0031664934800021
422 => 0.0032007191549129
423 => 0.0033874433395138
424 => 0.0034585358195143
425 => 0.0034437490806481
426 => 0.0034462477961061
427 => 0.0034846080078945
428 => 0.0036547183123189
429 => 0.0035527842747818
430 => 0.0036307090270834
501 => 0.0036720400347256
502 => 0.0037104305780257
503 => 0.0036161555371364
504 => 0.0034935050941148
505 => 0.0034546565502946
506 => 0.0031597459357182
507 => 0.0031443945574976
508 => 0.0031357773637081
509 => 0.003081447175791
510 => 0.0030387585303792
511 => 0.0030048109346199
512 => 0.0029157223057372
513 => 0.002945787102761
514 => 0.002803798422564
515 => 0.0028946377483842
516 => 0.0026680203863532
517 => 0.0028567540594239
518 => 0.0027540349018386
519 => 0.0028230080535342
520 => 0.0028227674127056
521 => 0.0026957659724764
522 => 0.0026225141922046
523 => 0.0026691930775957
524 => 0.0027192365481095
525 => 0.0027273559328339
526 => 0.0027922385986233
527 => 0.0028103459559969
528 => 0.0027554798178033
529 => 0.0026633242452303
530 => 0.0026847298828942
531 => 0.0026220804076405
601 => 0.0025122896120357
602 => 0.0025911432782025
603 => 0.0026180673867828
604 => 0.0026299586069644
605 => 0.0025219919690452
606 => 0.0024880665073412
607 => 0.0024700048761922
608 => 0.0026493871080619
609 => 0.0026592140716562
610 => 0.0026089379365151
611 => 0.0028361908347319
612 => 0.0027847565048682
613 => 0.0028422212530427
614 => 0.0026827875456395
615 => 0.0026888781279682
616 => 0.0026133996558451
617 => 0.0026556625567607
618 => 0.0026257925005904
619 => 0.0026522481320169
620 => 0.0026681055284132
621 => 0.0027435716152618
622 => 0.0028576157609128
623 => 0.0027322994984589
624 => 0.0026776974083457
625 => 0.0027115722379581
626 => 0.0028017853731887
627 => 0.0029384628909885
628 => 0.0028575470495596
629 => 0.0028934561259457
630 => 0.0029013006616524
701 => 0.00284163631585
702 => 0.0029406628005226
703 => 0.0029937318981483
704 => 0.0030481698112099
705 => 0.0030954367258056
706 => 0.0030264261116177
707 => 0.0031002773610817
708 => 0.0030407662905142
709 => 0.0029873787080738
710 => 0.0029874596749989
711 => 0.0029539688646659
712 => 0.002889076199532
713 => 0.0028771089964492
714 => 0.002939363898177
715 => 0.0029892864338016
716 => 0.0029933982929485
717 => 0.0030210379737827
718 => 0.0030373948521891
719 => 0.0031977144966694
720 => 0.003262196383913
721 => 0.0033410436150548
722 => 0.003371759055171
723 => 0.0034642015178261
724 => 0.0033895467214224
725 => 0.0033733946866198
726 => 0.0031491595099177
727 => 0.0031858780075408
728 => 0.0032446678650434
729 => 0.0031501289330143
730 => 0.0032100921255242
731 => 0.0032219301299197
801 => 0.0031469165362797
802 => 0.0031869845377889
803 => 0.003080575805115
804 => 0.0028599351805036
805 => 0.0029409084366112
806 => 0.0030005320084097
807 => 0.0029154418199199
808 => 0.0030679626893429
809 => 0.0029788631460958
810 => 0.0029506228684188
811 => 0.0028404474768149
812 => 0.0028924460206122
813 => 0.0029627747956455
814 => 0.0029193197892726
815 => 0.0030094954522984
816 => 0.0031372082401139
817 => 0.0032282239781392
818 => 0.0032352110363578
819 => 0.0031766940143884
820 => 0.003270467915545
821 => 0.0032711509560397
822 => 0.0031653736124574
823 => 0.0031005855784839
824 => 0.00308586560085
825 => 0.0031226389910012
826 => 0.0031672886753871
827 => 0.0032376887830952
828 => 0.0032802300937557
829 => 0.0033911552697903
830 => 0.0034211684419512
831 => 0.0034541438187309
901 => 0.0034982090913381
902 => 0.003551120749207
903 => 0.0034353530540522
904 => 0.0034399527203986
905 => 0.0033321514455833
906 => 0.0032169503231765
907 => 0.0033043736150606
908 => 0.003418667939766
909 => 0.0033924486953945
910 => 0.0033894984947922
911 => 0.0033944599138879
912 => 0.0033746914598724
913 => 0.003285279475013
914 => 0.0032403773359653
915 => 0.0032983125510942
916 => 0.0033291025395355
917 => 0.0033768551264388
918 => 0.0033709686121681
919 => 0.0034939741477774
920 => 0.0035417703794209
921 => 0.0035295420580505
922 => 0.0035317923634736
923 => 0.0036183251578185
924 => 0.0037145674219565
925 => 0.0038047110026071
926 => 0.0038964089246017
927 => 0.0037858635006064
928 => 0.0037297353517955
929 => 0.0037876452742219
930 => 0.0037569174542412
1001 => 0.0039334886223134
1002 => 0.0039457140268897
1003 => 0.0041222724268567
1004 => 0.0042898473726085
1005 => 0.0041845965515988
1006 => 0.0042838433352099
1007 => 0.0043911868233943
1008 => 0.0045982698279553
1009 => 0.0045285315572871
1010 => 0.0044751131348933
1011 => 0.004424632983847
1012 => 0.0045296741646759
1013 => 0.0046648079657384
1014 => 0.0046939144921918
1015 => 0.0047410781845952
1016 => 0.004691491328935
1017 => 0.0047512132347647
1018 => 0.004962057805479
1019 => 0.0049050857412955
1020 => 0.0048241762514386
1021 => 0.0049906177902897
1022 => 0.0050508523361748
1023 => 0.0054736099242732
1024 => 0.0060073588424923
1025 => 0.0057863832855652
1026 => 0.0056492166265439
1027 => 0.0056814540450506
1028 => 0.0058763610814431
1029 => 0.0059389590354922
1030 => 0.0057687962175779
1031 => 0.0058289006015757
1101 => 0.0061600816667363
1102 => 0.0063377496826342
1103 => 0.0060964526530468
1104 => 0.005430723718394
1105 => 0.0048168912371269
1106 => 0.0049797072523958
1107 => 0.0049612489690335
1108 => 0.0053170617078693
1109 => 0.0049037269764067
1110 => 0.0049106864732285
1111 => 0.0052738570426911
1112 => 0.0051769693610783
1113 => 0.0050200237253022
1114 => 0.0048180371139545
1115 => 0.0044446461813781
1116 => 0.0041139234196187
1117 => 0.0047625469163322
1118 => 0.0047345770917086
1119 => 0.0046940726407579
1120 => 0.0047842109133093
1121 => 0.0052218967786241
1122 => 0.0052118067027777
1123 => 0.0051476187882449
1124 => 0.0051963047556917
1125 => 0.0050114888398155
1126 => 0.005059120109517
1127 => 0.0048167940029257
1128 => 0.0049263355235371
1129 => 0.0050196869904557
1130 => 0.0050384286795316
1201 => 0.0050806546619942
1202 => 0.0047198382650906
1203 => 0.0048818342342875
1204 => 0.004976991689221
1205 => 0.0045470668459734
1206 => 0.0049684934573838
1207 => 0.0047135572543645
1208 => 0.0046270280780466
1209 => 0.0047435282146066
1210 => 0.0046981279980891
1211 => 0.0046590955579174
1212 => 0.0046373147856392
1213 => 0.004722859628278
1214 => 0.0047188688591207
1215 => 0.0045789008930251
1216 => 0.0043963183870776
1217 => 0.00445759906914
1218 => 0.0044353352228373
1219 => 0.0043546481717428
1220 => 0.0044090215019888
1221 => 0.0041695888732982
1222 => 0.0037576574802611
1223 => 0.0040297919763012
1224 => 0.0040193150942291
1225 => 0.0040140321751995
1226 => 0.0042185337277286
1227 => 0.0041988756221065
1228 => 0.0041631959679096
1229 => 0.0043539928869132
1230 => 0.0042843494448962
1231 => 0.004498974123134
]
'min_raw' => 0.0019266329970627
'max_raw' => 0.0063377496826342
'avg_raw' => 0.0041321913398485
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.001926'
'max' => '$0.006337'
'avg' => '$0.004132'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.0010495799841267
'max_diff' => 0.0041895728550408
'year' => 2029
]
4 => [
'items' => [
101 => 0.0046403398172752
102 => 0.0046044849045399
103 => 0.0047374400231594
104 => 0.0044590108522852
105 => 0.0045514938542102
106 => 0.004570554472731
107 => 0.0043516384825493
108 => 0.0042020919313022
109 => 0.0041921188812895
110 => 0.0039328257702111
111 => 0.0040713380572083
112 => 0.0041932231377379
113 => 0.0041348496428286
114 => 0.0041163703381988
115 => 0.00421077709788
116 => 0.0042181133116465
117 => 0.0040508468603144
118 => 0.004085626852186
119 => 0.0042306651999829
120 => 0.0040819722579516
121 => 0.0037930861604388
122 => 0.0037214384140928
123 => 0.0037118792840003
124 => 0.0035175649134557
125 => 0.0037262262591007
126 => 0.0036351399899502
127 => 0.0039228804228155
128 => 0.0037585246307457
129 => 0.0037514395810434
130 => 0.0037407294892674
131 => 0.0035734750835141
201 => 0.0036100931688021
202 => 0.0037318172613912
203 => 0.003775249788947
204 => 0.0037707194204908
205 => 0.0037312207469312
206 => 0.0037493030374208
207 => 0.003691053679466
208 => 0.0036704846188166
209 => 0.0036055630054413
210 => 0.003510146168833
211 => 0.0035234144651889
212 => 0.0033343687446945
213 => 0.0032313666027534
214 => 0.0032028569674105
215 => 0.0031647326915303
216 => 0.003207163205816
217 => 0.0033338332019207
218 => 0.0031810423120796
219 => 0.0029190930484819
220 => 0.0029348366455639
221 => 0.0029702078338913
222 => 0.002904293858447
223 => 0.0028419118124295
224 => 0.0028961479402263
225 => 0.0027851565840238
226 => 0.0029836206090209
227 => 0.0029782527133338
228 => 0.0030522278289197
301 => 0.0030984859868178
302 => 0.0029918759091192
303 => 0.0029650637628823
304 => 0.0029803371799229
305 => 0.002727901618198
306 => 0.0030315984579762
307 => 0.0030342248408578
308 => 0.0030117361561015
309 => 0.0031734453476954
310 => 0.0035147021803202
311 => 0.0033863076328624
312 => 0.0033365893833411
313 => 0.0032420749546571
314 => 0.003368009819167
315 => 0.0033583399864626
316 => 0.003314609335798
317 => 0.0032881609018281
318 => 0.0033368929523709
319 => 0.0032821224614721
320 => 0.0032722841763142
321 => 0.0032126748724175
322 => 0.0031913970629768
323 => 0.003175643819961
324 => 0.0031583010472822
325 => 0.0031965548822619
326 => 0.0031098666594869
327 => 0.0030053291609716
328 => 0.0029966379990814
329 => 0.0030206350611949
330 => 0.0030100181475808
331 => 0.0029965871693837
401 => 0.002970943774296
402 => 0.0029633359267579
403 => 0.0029880577404537
404 => 0.0029601482541624
405 => 0.0030013302214936
406 => 0.0029901310050817
407 => 0.0029275730925849
408 => 0.0028496027717082
409 => 0.0028489086723041
410 => 0.0028321100945681
411 => 0.0028107145801384
412 => 0.0028047628374871
413 => 0.0028915803248201
414 => 0.0030712899253709
415 => 0.0030360086306965
416 => 0.0030615029818713
417 => 0.0031869099569644
418 => 0.0032267730632271
419 => 0.0031984791746112
420 => 0.0031597487547827
421 => 0.003161452696695
422 => 0.0032938062657443
423 => 0.0033020609954977
424 => 0.0033229180345079
425 => 0.0033497252238344
426 => 0.0032030445548711
427 => 0.0031545440503776
428 => 0.003131561820643
429 => 0.0030607854483028
430 => 0.0031371116979642
501 => 0.0030926396609024
502 => 0.0030986404580831
503 => 0.0030947324310469
504 => 0.0030968664780683
505 => 0.0029835651342812
506 => 0.0030248461890139
507 => 0.0029562084289286
508 => 0.0028643101731245
509 => 0.0028640020979474
510 => 0.0028864940658632
511 => 0.0028731149632361
512 => 0.0028371121420746
513 => 0.0028422261728921
514 => 0.0027974218816949
515 => 0.0028476662250513
516 => 0.0028491070530358
517 => 0.0028297602440157
518 => 0.0029071685873395
519 => 0.0029388828487584
520 => 0.0029261483646126
521 => 0.0029379893634032
522 => 0.0030374747277757
523 => 0.0030536951830192
524 => 0.0030608992377753
525 => 0.0030512467587565
526 => 0.0029398077732361
527 => 0.002944750566119
528 => 0.0029084836315383
529 => 0.0028778418935329
530 => 0.0028790674023584
531 => 0.0028948212388402
601 => 0.0029636191667068
602 => 0.0031084003500427
603 => 0.0031138946901166
604 => 0.0031205539905674
605 => 0.0030934672689378
606 => 0.0030852976545092
607 => 0.0030960754846969
608 => 0.0031504476849248
609 => 0.0032903077458196
610 => 0.00324087185936
611 => 0.0032006797141529
612 => 0.003235939061224
613 => 0.0032305111611143
614 => 0.0031846942217428
615 => 0.0031834082928527
616 => 0.0030954709376372
617 => 0.0030629624996508
618 => 0.0030357960156549
619 => 0.0030061309243304
620 => 0.0029885444638103
621 => 0.0030155652600725
622 => 0.0030217452358783
623 => 0.0029626637926084
624 => 0.0029546112102042
625 => 0.0030028583921399
626 => 0.0029816266062062
627 => 0.0030034640245619
628 => 0.0030085304929384
629 => 0.0030077146748391
630 => 0.0029855462518693
701 => 0.0029996757435983
702 => 0.0029662552834549
703 => 0.0029299155526396
704 => 0.0029067330684248
705 => 0.002886503276237
706 => 0.0028977279407052
707 => 0.0028577140614188
708 => 0.0028449128161148
709 => 0.0029948889897242
710 => 0.003105678001685
711 => 0.0031040670855738
712 => 0.003094261048041
713 => 0.0030796912653494
714 => 0.0031493818145714
715 => 0.0031251030207289
716 => 0.0031427678718104
717 => 0.0031472643178021
718 => 0.0031608737055761
719 => 0.0031657378919389
720 => 0.0031510349423559
721 => 0.0031016900477413
722 => 0.0029787272619334
723 => 0.0029214877532081
724 => 0.0029025977619294
725 => 0.0029032843772352
726 => 0.002884344461916
727 => 0.002889923115805
728 => 0.0028824044337567
729 => 0.002868165868922
730 => 0.0028968487494499
731 => 0.0029001541842312
801 => 0.0028934592571811
802 => 0.0028950361548613
803 => 0.0028396050183271
804 => 0.0028438193272477
805 => 0.0028203535196494
806 => 0.0028159539636093
807 => 0.0027566344454023
808 => 0.002651541320397
809 => 0.0027097731132864
810 => 0.0026394372961052
811 => 0.0026128000563771
812 => 0.0027388966063091
813 => 0.0027262400100698
814 => 0.0027045774189983
815 => 0.0026725339319239
816 => 0.002660648690869
817 => 0.0025884377286295
818 => 0.0025841711197499
819 => 0.0026199608224958
820 => 0.0026034451061271
821 => 0.0025802507853544
822 => 0.0024962433066866
823 => 0.0024017910867436
824 => 0.0024046420055582
825 => 0.002434685499376
826 => 0.0025220410095685
827 => 0.0024879097004707
828 => 0.0024631470441085
829 => 0.0024585097429346
830 => 0.0025165552759737
831 => 0.0025987018661393
901 => 0.0026372432083186
902 => 0.0025990499087369
903 => 0.0025551755026507
904 => 0.0025578459344547
905 => 0.0025756111208725
906 => 0.0025774779907788
907 => 0.0025489202627785
908 => 0.0025569590959327
909 => 0.0025447473732851
910 => 0.0024698040539379
911 => 0.0024684485669388
912 => 0.0024500562677467
913 => 0.0024494993562367
914 => 0.002418209467137
915 => 0.0024138317953551
916 => 0.002351703821387
917 => 0.0023925966419936
918 => 0.0023651678849001
919 => 0.0023238262781705
920 => 0.0023166989695878
921 => 0.0023164847140853
922 => 0.0023589333003825
923 => 0.002392100605548
924 => 0.0023656450198731
925 => 0.0023596215958349
926 => 0.0024239360060005
927 => 0.0024157514110681
928 => 0.0024086636046415
929 => 0.0025913465399816
930 => 0.0024467387417327
1001 => 0.0023836814877717
1002 => 0.0023056361617471
1003 => 0.0023310481134394
1004 => 0.0023364027850402
1005 => 0.0021487178446784
1006 => 0.0020725740877483
1007 => 0.0020464444197869
1008 => 0.0020314064264558
1009 => 0.002038259428852
1010 => 0.001969721116843
1011 => 0.0020157799960321
1012 => 0.0019564316112316
1013 => 0.0019464816613835
1014 => 0.0020526039252608
1015 => 0.0020673702183221
1016 => 0.0020043726245951
1017 => 0.0020448272781518
1018 => 0.0020301578584104
1019 => 0.0019574489689488
1020 => 0.0019546720241818
1021 => 0.001918189259291
1022 => 0.0018611007966923
1023 => 0.0018350098373967
1024 => 0.0018214214392635
1025 => 0.0018270282771659
1026 => 0.0018241932883504
1027 => 0.0018056930686688
1028 => 0.0018252536992869
1029 => 0.0017752843710683
1030 => 0.0017553861819414
1031 => 0.0017463986315473
1101 => 0.0017020479766261
1102 => 0.0017726295914315
1103 => 0.0017865350587119
1104 => 0.0018004679240585
1105 => 0.0019217440045294
1106 => 0.0019156853942717
1107 => 0.0019704522803382
1108 => 0.0019683241398555
1109 => 0.0019527037367846
1110 => 0.00188680382566
1111 => 0.0019130703556813
1112 => 0.0018322260590009
1113 => 0.0018928001029517
1114 => 0.0018651566389251
1115 => 0.0018834538199575
1116 => 0.0018505538386709
1117 => 0.0018687620467218
1118 => 0.001789832560863
1119 => 0.0017161293175358
1120 => 0.0017457896541824
1121 => 0.0017780338321883
1122 => 0.0018479474257687
1123 => 0.0018063074662068
1124 => 0.0018212827702465
1125 => 0.0017711180085493
1126 => 0.0016676137763122
1127 => 0.0016681995990261
1128 => 0.0016522777278587
1129 => 0.0016385189065388
1130 => 0.0018110903164665
1201 => 0.0017896283336917
1202 => 0.0017554314730149
1203 => 0.00180120532996
1204 => 0.0018133086642651
1205 => 0.0018136532291774
1206 => 0.0018470486536103
1207 => 0.0018648717976166
1208 => 0.0018680132039976
1209 => 0.0019205616258986
1210 => 0.0019381751637894
1211 => 0.0020107228336003
1212 => 0.001863359628371
1213 => 0.0018603247801344
1214 => 0.0018018494619977
1215 => 0.0017647634907772
1216 => 0.0018043887701756
1217 => 0.0018394913583325
1218 => 0.0018029401972598
1219 => 0.0018077130072588
1220 => 0.0017586460598582
1221 => 0.0017761851847395
1222 => 0.0017912922418624
1223 => 0.0017829510128709
1224 => 0.0017704637893505
1225 => 0.0018366133464083
1226 => 0.0018328809291569
1227 => 0.0018944809174608
1228 => 0.0019425025134011
1229 => 0.0020285657982133
1230 => 0.0019387542739313
1231 => 0.001935481185018
]
'min_raw' => 0.0016385189065388
'max_raw' => 0.0047374400231594
'avg_raw' => 0.0031879794648491
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.001638'
'max' => '$0.004737'
'avg' => '$0.003187'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00028811409052387
'max_diff' => -0.0016003096594748
'year' => 2030
]
5 => [
'items' => [
101 => 0.0019674761541656
102 => 0.0019381702655263
103 => 0.0019566905755415
104 => 0.002025581889947
105 => 0.0020270374548629
106 => 0.0020026548671324
107 => 0.0020011711844532
108 => 0.0020058541271431
109 => 0.0020332822687469
110 => 0.0020236980332889
111 => 0.0020347891532041
112 => 0.0020486587684913
113 => 0.0021060293779142
114 => 0.0021198612376188
115 => 0.0020862569895337
116 => 0.002089291076885
117 => 0.0020767221656439
118 => 0.002064580754873
119 => 0.0020918728731753
120 => 0.0021417497558007
121 => 0.0021414394743025
122 => 0.0021530099416035
123 => 0.0021602182468771
124 => 0.0021292749238408
125 => 0.0021091319583617
126 => 0.0021168560530566
127 => 0.0021292070486826
128 => 0.0021128507916376
129 => 0.0020118923962007
130 => 0.002042516724129
131 => 0.0020374193385086
201 => 0.0020301600415218
202 => 0.0020609530400647
203 => 0.0020579829802352
204 => 0.0019690181573897
205 => 0.0019747133967026
206 => 0.0019693645037555
207 => 0.0019866478711481
208 => 0.001937236906968
209 => 0.0019524353867618
210 => 0.0019619677308116
211 => 0.0019675823546879
212 => 0.0019878662261126
213 => 0.0019854861479165
214 => 0.0019877182771102
215 => 0.0020177939036895
216 => 0.0021699061022189
217 => 0.0021781852335682
218 => 0.0021374157628541
219 => 0.0021537023622621
220 => 0.0021224356528865
221 => 0.0021434252043591
222 => 0.0021577857223999
223 => 0.0020928933027426
224 => 0.0020890507947988
225 => 0.0020576550365914
226 => 0.0020745253387054
227 => 0.0020476834750244
228 => 0.0020542695294832
301 => 0.0020358543470545
302 => 0.0020689980089999
303 => 0.0021060577730592
304 => 0.002115420532995
305 => 0.0020907911425255
306 => 0.0020729578406696
307 => 0.0020416484372655
308 => 0.0020937166729021
309 => 0.0021089430117529
310 => 0.0020936366954261
311 => 0.0020900898874836
312 => 0.0020833686928415
313 => 0.0020915158207001
314 => 0.0021088600858415
315 => 0.0021006808506991
316 => 0.0021060833796103
317 => 0.0020854945104646
318 => 0.0021292851673683
319 => 0.0021988352693269
320 => 0.0021990588842772
321 => 0.0021908796050457
322 => 0.0021875328202092
323 => 0.0021959252570609
324 => 0.0022004778097772
325 => 0.002227617411646
326 => 0.0022567392857407
327 => 0.0023926383652713
328 => 0.0023544784475481
329 => 0.0024750561955801
330 => 0.0025704175392124
331 => 0.0025990122365216
401 => 0.0025727064604816
402 => 0.002482715821659
403 => 0.0024783004515954
404 => 0.002612784459064
405 => 0.0025747865671964
406 => 0.002570266838867
407 => 0.002522184565644
408 => 0.0025506071442242
409 => 0.0025443907093546
410 => 0.0025345777627947
411 => 0.0025888060627916
412 => 0.0026903165993921
413 => 0.0026744952303032
414 => 0.0026626853122104
415 => 0.0026109376889436
416 => 0.0026421013164003
417 => 0.0026310045455629
418 => 0.0026786833152651
419 => 0.0026504394683076
420 => 0.0025744986957935
421 => 0.0025865925141204
422 => 0.0025847645578097
423 => 0.0026223837691541
424 => 0.0026110914156748
425 => 0.0025825595445571
426 => 0.0026899696474137
427 => 0.0026829950327805
428 => 0.0026928834417114
429 => 0.002697236625132
430 => 0.0027626152619625
501 => 0.0027893987975889
502 => 0.0027954791290879
503 => 0.00282092141642
504 => 0.0027948461018017
505 => 0.0028991659516592
506 => 0.0029685325645825
507 => 0.0030491054550662
508 => 0.0031668441040141
509 => 0.0032111149251619
510 => 0.0032031177975743
511 => 0.0032923858974739
512 => 0.0034527986886753
513 => 0.0032355418090533
514 => 0.0034643138308362
515 => 0.0033918872500397
516 => 0.0032201651298699
517 => 0.0032091082498017
518 => 0.0033254004633156
519 => 0.0035833254001785
520 => 0.0035187181288547
521 => 0.0035834310745294
522 => 0.0035079399859694
523 => 0.0035041912171335
524 => 0.0035797646408573
525 => 0.0037563460646809
526 => 0.003672458849278
527 => 0.0035521859560089
528 => 0.0036409935887453
529 => 0.0035640601985106
530 => 0.0033907077380117
531 => 0.0035186687248919
601 => 0.0034331048570842
602 => 0.0034580769425359
603 => 0.0036379194660029
604 => 0.0036162803377751
605 => 0.0036442833734312
606 => 0.0035948587484652
607 => 0.0035486883551989
608 => 0.0034625078875089
609 => 0.0034369940996716
610 => 0.0034440451927399
611 => 0.0034369906055001
612 => 0.0033887734258669
613 => 0.0033783609305159
614 => 0.0033610063154158
615 => 0.0033663852363129
616 => 0.0033337534826528
617 => 0.0033953363438737
618 => 0.0034067666655826
619 => 0.0034515815363948
620 => 0.0034562343649501
621 => 0.0035810431422622
622 => 0.003512300565045
623 => 0.0035584190207908
624 => 0.0035542937520252
625 => 0.003223886868921
626 => 0.0032694140222081
627 => 0.0033402399855152
628 => 0.0033083329850477
629 => 0.0032632239514749
630 => 0.0032267959882715
701 => 0.0031716038990678
702 => 0.0032492857047518
703 => 0.003351429018687
704 => 0.0034588248879536
705 => 0.0035878539880214
706 => 0.0035590561949505
707 => 0.0034564127786786
708 => 0.0034610172873515
709 => 0.00348948054816
710 => 0.0034526180392531
711 => 0.0034417465657348
712 => 0.0034879869746414
713 => 0.0034883054069243
714 => 0.0034458906354439
715 => 0.0033987543787647
716 => 0.0033985568761281
717 => 0.0033901694345342
718 => 0.0035094320931961
719 => 0.0035750144966453
720 => 0.0035825334135095
721 => 0.0035745084136328
722 => 0.0035775969175845
723 => 0.003539435962027
724 => 0.0036266605901515
725 => 0.0037067065345402
726 => 0.0036852525115118
727 => 0.0036530898811233
728 => 0.0036274707968566
729 => 0.0036792174694448
730 => 0.0036769132715713
731 => 0.0037060074030465
801 => 0.0037046875251869
802 => 0.0036949042630575
803 => 0.0036852528609029
804 => 0.0037235195795006
805 => 0.0037124993790892
806 => 0.0037014620612626
807 => 0.0036793250306327
808 => 0.0036823338207525
809 => 0.0036501767436955
810 => 0.0036352994084412
811 => 0.0034115799819354
812 => 0.0033517948409298
813 => 0.0033706044633289
814 => 0.0033767970794144
815 => 0.003350778509432
816 => 0.0033880824551645
817 => 0.0033822686747367
818 => 0.0034048866934333
819 => 0.0033907559373119
820 => 0.0033913358684721
821 => 0.0034328914092303
822 => 0.0034449551595023
823 => 0.0034388194387476
824 => 0.003443116687244
825 => 0.0035421449650889
826 => 0.0035280663107254
827 => 0.0035205873061928
828 => 0.0035226590415607
829 => 0.0035479628897403
830 => 0.0035550465856917
831 => 0.0035250324681832
901 => 0.0035391872995098
902 => 0.0035994567747828
903 => 0.0036205476801714
904 => 0.0036878597259632
905 => 0.0036592643725346
906 => 0.0037117523813306
907 => 0.0038730826258887
908 => 0.0040019643884455
909 => 0.0038834393933342
910 => 0.0041201143372763
911 => 0.0043043997301395
912 => 0.004297326549818
913 => 0.0042651921289744
914 => 0.0040553881086803
915 => 0.0038623233212039
916 => 0.0040238302138918
917 => 0.0040242419281754
918 => 0.0040103683428602
919 => 0.0039242006959893
920 => 0.0040073698955283
921 => 0.0040139715645615
922 => 0.0040102763854284
923 => 0.0039442118526032
924 => 0.0038433435217458
925 => 0.0038630529521507
926 => 0.0038953374012154
927 => 0.0038342162038943
928 => 0.0038146842778863
929 => 0.0038509978444362
930 => 0.0039680077220919
1001 => 0.0039458876825131
1002 => 0.0039453100388856
1003 => 0.0040399489485601
1004 => 0.0039722079135882
1005 => 0.0038633015511864
1006 => 0.0038358012583816
1007 => 0.0037381937453412
1008 => 0.0038056116022642
1009 => 0.0038080378509132
1010 => 0.0037711137796702
1011 => 0.0038662977360676
1012 => 0.0038654205991526
1013 => 0.0039557835994897
1014 => 0.0041285237173411
1015 => 0.0040774359644675
1016 => 0.0040180264662072
1017 => 0.0040244859259148
1018 => 0.0040953302556021
1019 => 0.0040524961566544
1020 => 0.0040678995972859
1021 => 0.0040953069406499
1022 => 0.0041118424713874
1023 => 0.004022106717509
1024 => 0.0040011850207227
1025 => 0.0039583865716156
1026 => 0.0039472212551145
1027 => 0.0039820796988932
1028 => 0.0039728957305245
1029 => 0.0038078339341091
1030 => 0.0037905840579886
1031 => 0.003791113087062
1101 => 0.0037477374533699
1102 => 0.0036815792006446
1103 => 0.0038554391387028
1104 => 0.0038414757525084
1105 => 0.0038260612548301
1106 => 0.0038279494428418
1107 => 0.0039034161492928
1108 => 0.0038596416483912
1109 => 0.0039760233335378
1110 => 0.0039520987578253
1111 => 0.0039275606070215
1112 => 0.0039241686871301
1113 => 0.0039147235925673
1114 => 0.0038823328489465
1115 => 0.0038432190796425
1116 => 0.0038173927811714
1117 => 0.0035213430540116
1118 => 0.0035762881613304
1119 => 0.0036394974988966
1120 => 0.0036613171089289
1121 => 0.0036239931560976
1122 => 0.0038838066260965
1123 => 0.0039312770506902
1124 => 0.0037874860381767
1125 => 0.0037605886106838
1126 => 0.003885570016965
1127 => 0.0038101909506219
1128 => 0.0038441341395807
1129 => 0.0037707675309835
1130 => 0.0039198428155018
1201 => 0.0039187071116032
1202 => 0.0038607134589076
1203 => 0.0039097292970425
1204 => 0.0039012115889461
1205 => 0.0038357368978847
1206 => 0.0039219184799936
1207 => 0.0039219612249831
1208 => 0.0038661435951543
1209 => 0.0038009608235646
1210 => 0.0037893076835527
1211 => 0.0037805286079328
1212 => 0.0038419750251453
1213 => 0.00389706769068
1214 => 0.0039995814826102
1215 => 0.004025355885569
1216 => 0.0041259550962166
1217 => 0.0040660531643626
1218 => 0.0040926069148936
1219 => 0.0041214347673523
1220 => 0.0041352558999302
1221 => 0.0041127351060774
1222 => 0.0042690070885001
1223 => 0.0042822012318664
1224 => 0.0042866251140082
1225 => 0.0042339310807897
1226 => 0.0042807357154798
1227 => 0.0042588373769149
1228 => 0.0043158107703271
1229 => 0.004324744925887
1230 => 0.0043171780139696
1231 => 0.0043200138559603
]
'min_raw' => 0.001937236906968
'max_raw' => 0.004324744925887
'avg_raw' => 0.0031309909164275
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.001937'
'max' => '$0.004324'
'avg' => '$0.00313'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00029871800042914
'max_diff' => -0.00041269509727244
'year' => 2031
]
6 => [
'items' => [
101 => 0.0041866632872293
102 => 0.0041797483567603
103 => 0.0040854627891546
104 => 0.0041238848548776
105 => 0.0040520566446259
106 => 0.0040748341100093
107 => 0.0040848741997186
108 => 0.0040796298266245
109 => 0.0041260571808256
110 => 0.0040865844452728
111 => 0.0039824094062305
112 => 0.0038782059847684
113 => 0.0038768977956942
114 => 0.0038494628741664
115 => 0.0038296324508583
116 => 0.0038334524939095
117 => 0.003846914823878
118 => 0.0038288499957674
119 => 0.0038327050427548
120 => 0.0038967245087899
121 => 0.0039095631561373
122 => 0.0038659324160675
123 => 0.0036907486988016
124 => 0.0036477581751694
125 => 0.0036786589110171
126 => 0.0036638903495442
127 => 0.0029570454669995
128 => 0.003123108187375
129 => 0.003024439357885
130 => 0.0030699104940486
131 => 0.0029691951693088
201 => 0.003017261801217
202 => 0.0030083856494159
203 => 0.0032754095896267
204 => 0.0032712403780797
205 => 0.0032732359590175
206 => 0.0031779816813993
207 => 0.0033297243320805
208 => 0.0034044782182953
209 => 0.0033906432634672
210 => 0.0033941252235351
211 => 0.0033342936132841
212 => 0.0032738152597901
213 => 0.0032067354582134
214 => 0.0033313614382289
215 => 0.0033175051566876
216 => 0.0033492864812105
217 => 0.0034301153376996
218 => 0.0034420176938565
219 => 0.0034580145812333
220 => 0.0034522808358447
221 => 0.0035888819129694
222 => 0.0035723386212067
223 => 0.003612203194525
224 => 0.0035301987426768
225 => 0.0034374029214765
226 => 0.0034550403733627
227 => 0.0034533417449147
228 => 0.0034317162551757
229 => 0.0034121937299804
301 => 0.0033796942259675
302 => 0.0034825274656858
303 => 0.0034783526239488
304 => 0.0035459384589485
305 => 0.0035339920061185
306 => 0.0034542106703271
307 => 0.0034570600763427
308 => 0.0034762237011757
309 => 0.0035425492255292
310 => 0.0035622391569433
311 => 0.0035531179962042
312 => 0.0035747071071203
313 => 0.0035917702601294
314 => 0.0035768499764293
315 => 0.003788089729529
316 => 0.0037003682564578
317 => 0.0037431230920706
318 => 0.0037533198684381
319 => 0.0037272010401878
320 => 0.0037328652787902
321 => 0.0037414450568601
322 => 0.0037935397892082
323 => 0.0039302514406219
324 => 0.0039908001004053
325 => 0.004172963730782
326 => 0.0039857723770883
327 => 0.003974665216835
328 => 0.0040074783874804
329 => 0.0041144277224901
330 => 0.0042011001132753
331 => 0.0042298543455489
401 => 0.0042336546920245
402 => 0.004287599543315
403 => 0.0043185197260628
404 => 0.0042810492194779
405 => 0.0042492968884727
406 => 0.0041355639800567
407 => 0.0041487288738903
408 => 0.0042394219374066
409 => 0.0043675312314182
410 => 0.0044774623331804
411 => 0.004438968292829
412 => 0.004732650648153
413 => 0.0047617680540986
414 => 0.0047577449700754
415 => 0.0048240787540703
416 => 0.0046924197014806
417 => 0.0046361329057245
418 => 0.0042561621028403
419 => 0.0043629183996431
420 => 0.0045180949466235
421 => 0.0044975567487484
422 => 0.0043848633924503
423 => 0.0044773768451642
424 => 0.0044467890045339
425 => 0.004422663105538
426 => 0.0045331885258736
427 => 0.0044116612860806
428 => 0.004516882619443
429 => 0.0043819351710304
430 => 0.0044391441303628
501 => 0.0044066695581597
502 => 0.004427684586309
503 => 0.0043048311611559
504 => 0.0043711198872702
505 => 0.0043020733322124
506 => 0.0043020405951552
507 => 0.0043005163886254
508 => 0.0043817493544516
509 => 0.0043843983585508
510 => 0.004324367074069
511 => 0.0043157156281103
512 => 0.0043477045582261
513 => 0.0043102538989746
514 => 0.0043277768267267
515 => 0.0043107846506053
516 => 0.0043069593538504
517 => 0.0042764787384866
518 => 0.0042633468513059
519 => 0.0042684962026365
520 => 0.0042509188118726
521 => 0.0042403277981353
522 => 0.0042984095694211
523 => 0.0042673788220351
524 => 0.0042936536623406
525 => 0.0042637101656632
526 => 0.0041599129604189
527 => 0.0041002180900474
528 => 0.003904154791347
529 => 0.0039597580996427
530 => 0.0039966231505685
531 => 0.0039844392514574
601 => 0.004010614981291
602 => 0.0040122219585124
603 => 0.0040037119619135
604 => 0.00399385847605
605 => 0.0039890623440637
606 => 0.0040248087824929
607 => 0.0040455607931708
608 => 0.0040003230516197
609 => 0.0039897244817175
610 => 0.0040354623360699
611 => 0.0040633624008029
612 => 0.0042693608030996
613 => 0.0042540997760914
614 => 0.0042924019590567
615 => 0.0042880897210498
616 => 0.0043282365108137
617 => 0.0043938595447784
618 => 0.0042604295682392
619 => 0.004283588398505
620 => 0.0042779103881393
621 => 0.0043399014164574
622 => 0.0043400949456813
623 => 0.0043029282275231
624 => 0.0043230769083978
625 => 0.0043118304674837
626 => 0.0043321543062631
627 => 0.0042538959557715
628 => 0.0043492061792034
629 => 0.0044032409342341
630 => 0.0044039912068601
701 => 0.0044296032518984
702 => 0.0044556265730068
703 => 0.0045055760717209
704 => 0.0044542335085978
705 => 0.0043618732356372
706 => 0.0043685413490231
707 => 0.0043143905547795
708 => 0.0043153008394139
709 => 0.0043104416686953
710 => 0.0043250244058031
711 => 0.0042570960465082
712 => 0.0042730386966615
713 => 0.0042507188930869
714 => 0.004283539879611
715 => 0.0042482299236145
716 => 0.0042779076500308
717 => 0.0042907155729199
718 => 0.0043379770841154
719 => 0.0042412493599838
720 => 0.0040440149825882
721 => 0.0040854760399524
722 => 0.004024151879415
723 => 0.0040298276639503
724 => 0.004041293652006
725 => 0.0040041286332796
726 => 0.0040112185476483
727 => 0.0040109652460161
728 => 0.0040087824293943
729 => 0.0039991143726425
730 => 0.0039850937775856
731 => 0.0040409475129807
801 => 0.0040504381510058
802 => 0.0040715346636943
803 => 0.004134303575554
804 => 0.0041280314810663
805 => 0.0041382615274024
806 => 0.00411592939369
807 => 0.0040308635875831
808 => 0.0040354830701186
809 => 0.0039778780488782
810 => 0.0040700615737874
811 => 0.0040482312983258
812 => 0.0040341571777214
813 => 0.0040303169235187
814 => 0.00409324142737
815 => 0.004112069425143
816 => 0.0041003370804308
817 => 0.0040762736991388
818 => 0.0041224825049195
819 => 0.0041348460319534
820 => 0.0041376137697069
821 => 0.0042194869138906
822 => 0.0041421895689696
823 => 0.0041607958081616
824 => 0.0043059563749525
825 => 0.0041743157716621
826 => 0.0042440487351608
827 => 0.0042406356694704
828 => 0.0042763086939614
829 => 0.0042377094402445
830 => 0.0042381879242551
831 => 0.0042698631533032
901 => 0.0042253810067628
902 => 0.0042143666017256
903 => 0.0041991502800533
904 => 0.0042323745617468
905 => 0.004252291016017
906 => 0.0044128030104109
907 => 0.0045165010790257
908 => 0.0045119992723829
909 => 0.0045531373580689
910 => 0.0045346042736857
911 => 0.0044747560554317
912 => 0.0045769096662786
913 => 0.004544583989518
914 => 0.0045472488790344
915 => 0.0045471496917135
916 => 0.0045686434407996
917 => 0.0045534131496989
918 => 0.0045233926825822
919 => 0.0045433216696508
920 => 0.0046025036365014
921 => 0.0047862062775298
922 => 0.0048890087091856
923 => 0.0047800174420616
924 => 0.0048551981586726
925 => 0.0048101165183343
926 => 0.0048019238432223
927 => 0.0048491428890653
928 => 0.0048964445855972
929 => 0.004893431672019
930 => 0.0048590930693058
1001 => 0.0048396960639429
1002 => 0.0049865766870243
1003 => 0.0050947958280646
1004 => 0.005087416008156
1005 => 0.0051199881331866
1006 => 0.0052156208996945
1007 => 0.0052243643613551
1008 => 0.0052232628861521
1009 => 0.0052015913041403
1010 => 0.0052957541822513
1011 => 0.0053743065118097
1012 => 0.0051965749590568
1013 => 0.0052642528076682
1014 => 0.005294635574354
1015 => 0.0053392464900094
1016 => 0.0054145125823777
1017 => 0.0054962715220346
1018 => 0.0055078331325432
1019 => 0.0054996296166134
1020 => 0.0054457073981113
1021 => 0.005535169005471
1022 => 0.0055875735169294
1023 => 0.005618779204247
1024 => 0.0056979116351531
1025 => 0.0052948232079775
1026 => 0.005009497184428
1027 => 0.004964939405693
1028 => 0.0050555494008987
1029 => 0.0050794425340333
1030 => 0.0050698112420262
1031 => 0.004748650861814
1101 => 0.0049632485627569
1102 => 0.0051941376450842
1103 => 0.0052030070350617
1104 => 0.0053185949373378
1105 => 0.0053562350964271
1106 => 0.0054492985082121
1107 => 0.0054434773664665
1108 => 0.0054661368262738
1109 => 0.0054609278088712
1110 => 0.0056333081823895
1111 => 0.0058234693331133
1112 => 0.0058168846571391
1113 => 0.005789546741838
1114 => 0.0058301482078674
1115 => 0.0060264148943217
1116 => 0.0060083458029426
1117 => 0.0060258983860959
1118 => 0.0062573078705313
1119 => 0.0065581731179126
1120 => 0.006418391004127
1121 => 0.006721677969822
1122 => 0.0069125810381757
1123 => 0.0072427281551478
1124 => 0.0072013921100941
1125 => 0.0073299159599999
1126 => 0.007127391962355
1127 => 0.0066623559269093
1128 => 0.0065887621942136
1129 => 0.0067360987107605
1130 => 0.0070983111598041
1201 => 0.0067246913517355
1202 => 0.0068002741523043
1203 => 0.0067785063006557
1204 => 0.0067773463843488
1205 => 0.006821615672064
1206 => 0.0067574007613023
1207 => 0.0064957776628172
1208 => 0.0066156779870983
1209 => 0.0065693787138069
1210 => 0.0066207512093632
1211 => 0.0068979873802519
1212 => 0.0067754146606171
1213 => 0.0066462942574811
1214 => 0.0068082398971249
1215 => 0.0070144523469509
1216 => 0.0070015479424402
1217 => 0.0069765080040668
1218 => 0.0071176568256292
1219 => 0.0073507933261259
1220 => 0.0074138091853919
1221 => 0.0074603262043994
1222 => 0.0074667401154091
1223 => 0.0075328073850322
1224 => 0.0071775470251732
1225 => 0.0077413543400026
1226 => 0.0078387082884108
1227 => 0.0078204097810178
1228 => 0.0079286145973932
1229 => 0.0078967779955243
1230 => 0.0078506517544261
1231 => 0.0080221794042056
]
'min_raw' => 0.0029570454669995
'max_raw' => 0.0080221794042056
'avg_raw' => 0.0054896124356025
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.002957'
'max' => '$0.008022'
'avg' => '$0.005489'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0010198085600315
'max_diff' => 0.0036974344783186
'year' => 2032
]
7 => [
'items' => [
101 => 0.007825536795301
102 => 0.007546427368577
103 => 0.0073933024169177
104 => 0.0075949497055002
105 => 0.0077180886681169
106 => 0.0077994756892976
107 => 0.0078241033527315
108 => 0.0072051248756125
109 => 0.0068715298065655
110 => 0.0070853604211494
111 => 0.0073462485287424
112 => 0.0071760977785629
113 => 0.007182767365832
114 => 0.0069401771109066
115 => 0.0073677123834181
116 => 0.0073054240903508
117 => 0.00762857586497
118 => 0.0075514531005021
119 => 0.0078149708280244
120 => 0.0077455777789271
121 => 0.0080336244460172
122 => 0.0081485340600716
123 => 0.0083414851863224
124 => 0.0084834208202448
125 => 0.0085667681392801
126 => 0.0085617642788731
127 => 0.0088920278803604
128 => 0.0086972829730947
129 => 0.0084526374717185
130 => 0.0084482126064453
131 => 0.0085749179782616
201 => 0.0088404576776674
202 => 0.0089093082582778
203 => 0.00894778634007
204 => 0.0088888558183735
205 => 0.0086774741790299
206 => 0.0085862006588905
207 => 0.0086639683424977
208 => 0.0085688651480994
209 => 0.0087330399428743
210 => 0.0089584870019442
211 => 0.0089119330757606
212 => 0.0090675558712379
213 => 0.0092286090925613
214 => 0.0094589224324066
215 => 0.0095191348679204
216 => 0.0096186637341509
217 => 0.0097211116310315
218 => 0.0097540151344613
219 => 0.0098168381318663
220 => 0.0098165070236597
221 => 0.010005828354815
222 => 0.010214655645873
223 => 0.010293483113885
224 => 0.010474742530005
225 => 0.010164342131986
226 => 0.010399784399506
227 => 0.010612159218312
228 => 0.010358957204146
301 => 0.01070793719217
302 => 0.0107214872943
303 => 0.010926077749031
304 => 0.010718686128372
305 => 0.010595537646043
306 => 0.010951062700214
307 => 0.011123090074994
308 => 0.011071274029705
309 => 0.010676951366584
310 => 0.010447438663353
311 => 0.0098467596493036
312 => 0.010558289888848
313 => 0.010904855512908
314 => 0.010676053845342
315 => 0.010791448097864
316 => 0.011421001722912
317 => 0.011660694982752
318 => 0.011610840460288
319 => 0.011619265053909
320 => 0.011748599186178
321 => 0.012322137954267
322 => 0.011978460229904
323 => 0.012241188972821
324 => 0.012380539350726
325 => 0.012509975747804
326 => 0.012192120865373
327 => 0.011778596333545
328 => 0.011647615755736
329 => 0.01065330402869
330 => 0.010601545785221
331 => 0.010572492314726
401 => 0.010389314292951
402 => 0.010245386544519
403 => 0.010130929855271
404 => 0.0098305613230237
405 => 0.0099319268852464
406 => 0.0094532021366292
407 => 0.0097594732658311
408 => 0.0089954170078247
409 => 0.0096317457635468
410 => 0.0092854209521255
411 => 0.0095179687486189
412 => 0.0095171574112643
413 => 0.0090889631885739
414 => 0.0088419896971115
415 => 0.0089993708182234
416 => 0.0091680958729844
417 => 0.0091954709454601
418 => 0.0094142273831321
419 => 0.0094752776027325
420 => 0.0092902925871811
421 => 0.0089795836401548
422 => 0.0090517542420325
423 => 0.008840527162168
424 => 0.0084703598294377
425 => 0.0087362204703062
426 => 0.0088269969821659
427 => 0.0088670890612269
428 => 0.0085030720034921
429 => 0.008388689940757
430 => 0.0083277938903153
501 => 0.0089325936091317
502 => 0.0089657259029867
503 => 0.0087962164031906
504 => 0.0095624154158192
505 => 0.0093890009816536
506 => 0.0095827473921845
507 => 0.0090452055163685
508 => 0.0090657403399208
509 => 0.0088112594014189
510 => 0.0089537517225575
511 => 0.0088530427427186
512 => 0.0089422397511461
513 => 0.0089957040702244
514 => 0.0092501432509085
515 => 0.0096346510502789
516 => 0.0092121385221132
517 => 0.0090280437631006
518 => 0.0091422551162038
519 => 0.0094464150001138
520 => 0.0099072327938953
521 => 0.0096344193851543
522 => 0.0097554893432814
523 => 0.0097819377431047
524 => 0.0095807752356004
525 => 0.0099146499424822
526 => 0.010093576110293
527 => 0.010277117334914
528 => 0.010436481037544
529 => 0.010203806933643
530 => 0.01045280157734
531 => 0.010252155847991
601 => 0.010072155886392
602 => 0.010072428872033
603 => 0.0099595122667411
604 => 0.009740722115581
605 => 0.009700373854864
606 => 0.0099102706025378
607 => 0.010078587916876
608 => 0.010092451337071
609 => 0.010185640450744
610 => 0.010240788808292
611 => 0.010781317682817
612 => 0.010998722867641
613 => 0.011264561812373
614 => 0.011368121063209
615 => 0.011679797280177
616 => 0.01142809342187
617 => 0.011373635708834
618 => 0.010617611154983
619 => 0.010741410133323
620 => 0.01093962424247
621 => 0.010620879632636
622 => 0.01082304972268
623 => 0.010862962381003
624 => 0.010610048812763
625 => 0.01074514087731
626 => 0.01038637640588
627 => 0.0096424711353659
628 => 0.0099154781217049
629 => 0.010116503156808
630 => 0.0098296156455076
701 => 0.010343850405434
702 => 0.010043445074645
703 => 0.0099482310067841
704 => 0.0095767669817914
705 => 0.0097520837026264
706 => 0.0099892020778494
707 => 0.0098426904899314
708 => 0.010146724033687
709 => 0.010577316614429
710 => 0.010884182529697
711 => 0.010907739884302
712 => 0.010710445659204
713 => 0.011026610914038
714 => 0.011028913832754
715 => 0.010672278133728
716 => 0.010453840753831
717 => 0.010404211321522
718 => 0.010528195373853
719 => 0.010678734902101
720 => 0.010916093780418
721 => 0.011059524779449
722 => 0.011433516754998
723 => 0.011534708260392
724 => 0.011645887045471
725 => 0.011794456188606
726 => 0.011972851537285
727 => 0.011582532670428
728 => 0.011598040766653
729 => 0.011234581242169
730 => 0.010846172614889
731 => 0.011140926347175
801 => 0.011526277642694
802 => 0.011437877629727
803 => 0.01142793082242
804 => 0.011444658593296
805 => 0.011378007870393
806 => 0.011076549120895
807 => 0.010925158424128
808 => 0.011120491046843
809 => 0.011224301642561
810 => 0.011385302823284
811 => 0.011365456029438
812 => 0.011780177780717
813 => 0.011941326112729
814 => 0.011900097473474
815 => 0.01190768453532
816 => 0.01219943589298
817 => 0.012523923405942
818 => 0.012827848781729
819 => 0.013137014727879
820 => 0.012764303112843
821 => 0.012575063140385
822 => 0.012770310486987
823 => 0.012666709496575
824 => 0.013262031517535
825 => 0.013303250322615
826 => 0.013898529295017
827 => 0.014463519924329
828 => 0.014108659432917
829 => 0.014443276893051
830 => 0.014805192957947
831 => 0.015503387765898
901 => 0.01526826031737
902 => 0.015088156376714
903 => 0.01491795902305
904 => 0.015272112697956
905 => 0.015727725742979
906 => 0.015825860429069
907 => 0.015984876110871
908 => 0.015817690564969
909 => 0.016019047140124
910 => 0.016729924330985
911 => 0.016537839038928
912 => 0.016265047044955
913 => 0.016826216313769
914 => 0.017029301290662
915 => 0.018454658014928
916 => 0.020254229757863
917 => 0.019509195239663
918 => 0.019046728272103
919 => 0.019155418979342
920 => 0.019812561660514
921 => 0.020023615033041
922 => 0.019449899212054
923 => 0.019652545339057
924 => 0.020769145422569
925 => 0.021368165542554
926 => 0.020554615760479
927 => 0.018310064177587
928 => 0.01624048511058
929 => 0.01678943067351
930 => 0.016727197282438
1001 => 0.017926844773475
1002 => 0.016533257868239
1003 => 0.016556722297671
1004 => 0.017781177228374
1005 => 0.017454513645334
1006 => 0.01692536047672
1007 => 0.016244348514307
1008 => 0.014985434915803
1009 => 0.013870380034206
1010 => 0.016057259438821
1011 => 0.015962957222312
1012 => 0.015826393638001
1013 => 0.016130301117162
1014 => 0.017605989570322
1015 => 0.017571970175139
1016 => 0.017355556139835
1017 => 0.017519704278227
1018 => 0.016896584514416
1019 => 0.017057176665723
1020 => 0.016240157278682
1021 => 0.016609484163368
1022 => 0.016924225151675
1023 => 0.016987414064898
1024 => 0.017129781912894
1025 => 0.015913264239338
1026 => 0.016459444959682
1027 => 0.016780274962672
1028 => 0.015330753337269
1029 => 0.016751622580705
1030 => 0.015892087373148
1031 => 0.015600348213918
1101 => 0.01599313655811
1102 => 0.015840066558379
1103 => 0.015708465961183
1104 => 0.015635030566762
1105 => 0.015923450976269
1106 => 0.015909995819428
1107 => 0.015438084049486
1108 => 0.01482249438318
1109 => 0.015029106481234
1110 => 0.014954042369012
1111 => 0.014682000342857
1112 => 0.014865323822006
1113 => 0.014058059997724
1114 => 0.012669204545968
1115 => 0.013586724999191
1116 => 0.013551401459812
1117 => 0.013533589729462
1118 => 0.014223080991656
1119 => 0.014156802316066
1120 => 0.014036505870868
1121 => 0.014679791004304
1122 => 0.014444983277194
1123 => 0.015168605364489
1124 => 0.015645229672124
1125 => 0.015524342330526
1126 => 0.015972609795582
1127 => 0.015033866406676
1128 => 0.015345679304623
1129 => 0.015409943510736
1130 => 0.014671852965612
1201 => 0.014167646327075
1202 => 0.014134021492661
1203 => 0.013259796665394
1204 => 0.013726800511624
1205 => 0.014137744570374
1206 => 0.01394093425678
1207 => 0.013878629991037
1208 => 0.014196928972571
1209 => 0.014221663529483
1210 => 0.013657713010646
1211 => 0.013774976181503
1212 => 0.014263983097354
1213 => 0.013762654461886
1214 => 0.012788654814738
1215 => 0.012547089435647
1216 => 0.012514860161143
1217 => 0.011859715694255
1218 => 0.012563231989368
1219 => 0.012256128273487
1220 => 0.013226265232287
1221 => 0.012672128204369
1222 => 0.012648240464635
1223 => 0.012612130642458
1224 => 0.012048220736131
1225 => 0.012171681167272
1226 => 0.012582082443941
1227 => 0.012728518242958
1228 => 0.012713243789408
1229 => 0.012580071253792
1230 => 0.012641036958643
1231 => 0.012444645181458
]
'min_raw' => 0.0068715298065655
'max_raw' => 0.021368165542554
'avg_raw' => 0.01411984767456
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.006871'
'max' => '$0.021368'
'avg' => '$0.014119'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.003914484339566
'max_diff' => 0.013345986138348
'year' => 2033
]
8 => [
'items' => [
101 => 0.012375295157393
102 => 0.012156407405216
103 => 0.0118347028788
104 => 0.011879437866327
105 => 0.011242057020929
106 => 0.010894778107995
107 => 0.010798655881957
108 => 0.010670117224075
109 => 0.010813174665393
110 => 0.011240251401077
111 => 0.010725106248458
112 => 0.009841926017525
113 => 0.00989500665427
114 => 0.010014263085253
115 => 0.009792029515076
116 => 0.0095817040915527
117 => 0.0097645649830652
118 => 0.0093903498764595
119 => 0.010059485193053
120 => 0.010041386957969
121 => 0.010290799224945
122 => 0.01044676183394
123 => 0.010087318513701
124 => 0.0099969194906988
125 => 0.010048414882607
126 => 0.0091973107617637
127 => 0.010221245860512
128 => 0.010230100893766
129 => 0.010154278723
130 => 0.010699492552634
131 => 0.01185006378962
201 => 0.011417172608645
202 => 0.011249544059166
203 => 0.010930882064072
204 => 0.011355480252258
205 => 0.011322877736169
206 => 0.011175436794277
207 => 0.011086264052576
208 => 0.011250567563345
209 => 0.011065905029326
210 => 0.011032734564029
211 => 0.010831757634152
212 => 0.010760018014054
213 => 0.01070690485537
214 => 0.01064843248645
215 => 0.010777407961881
216 => 0.010485132566417
217 => 0.010132677091597
218 => 0.010103374232487
219 => 0.010184282002824
220 => 0.010148486337325
221 => 0.010103202856612
222 => 0.010016744359709
223 => 0.0099910939705719
224 => 0.010074445291469
225 => 0.00998034650986
226 => 0.01011919438795
227 => 0.010081435447913
228 => 0.0098705170782761
301 => 0.0096076346977263
302 => 0.0096052944931249
303 => 0.009548656915449
304 => 0.0094765204447618
305 => 0.0094564537288756
306 => 0.0097491649488225
307 => 0.010355068414003
308 => 0.010236115065747
309 => 0.010322071050692
310 => 0.010744889422853
311 => 0.010879290668771
312 => 0.010783895847887
313 => 0.010653313533363
314 => 0.010659058492486
315 => 0.011105297791167
316 => 0.011133129188857
317 => 0.011203450152072
318 => 0.011293832462504
319 => 0.010799288346177
320 => 0.01063576550908
321 => 0.010558279316962
322 => 0.010319651836169
323 => 0.010576991115831
324 => 0.010427050537938
325 => 0.010447282644595
326 => 0.010434106458593
327 => 0.01044130154712
328 => 0.010059298156095
329 => 0.010198480114277
330 => 0.0099670631140143
331 => 0.0096572217284394
401 => 0.0096561830314706
402 => 0.0097320162716381
403 => 0.0096869076930315
404 => 0.0095655216678487
405 => 0.0095827639798001
406 => 0.0094317031838932
407 => 0.0096011054954672
408 => 0.0096059633476125
409 => 0.0095407342302503
410 => 0.0098017218642441
411 => 0.009908648710837
412 => 0.0098657135084461
413 => 0.0099056362625808
414 => 0.010241058114409
415 => 0.010295746511739
416 => 0.01032003548532
417 => 0.010287491478394
418 => 0.0099117671582897
419 => 0.0099284321295894
420 => 0.0098061556275738
421 => 0.009702844868551
422 => 0.0097069767571183
423 => 0.0097600919167147
424 => 0.0099920489338348
425 => 0.010480188801751
426 => 0.010498713352913
427 => 0.01052116564932
428 => 0.010429840876211
429 => 0.010402296450781
430 => 0.010438634657743
501 => 0.010621954326957
502 => 0.011093502286982
503 => 0.01092682574428
504 => 0.010791315120588
505 => 0.010910194470967
506 => 0.010891893926784
507 => 0.010737418916856
508 => 0.010733083317822
509 => 0.010436596385123
510 => 0.010326991916785
511 => 0.01023539821929
512 => 0.010135380292739
513 => 0.010076086313248
514 => 0.010167188814377
515 => 0.010188025034279
516 => 0.0099888278233599
517 => 0.0099616779795706
518 => 0.010124346721977
519 => 0.010052762273346
520 => 0.010126388653972
521 => 0.010143470605833
522 => 0.010140720018153
523 => 0.01006597763236
524 => 0.010113616200214
525 => 0.010000936785499
526 => 0.0098784148458961
527 => 0.0098002534818162
528 => 0.0097320473250561
529 => 0.0097698920649917
530 => 0.0096349824772978
531 => 0.0095918221850009
601 => 0.010097477325327
602 => 0.010471010214195
603 => 0.010465578898055
604 => 0.010432517157878
605 => 0.010383394118303
606 => 0.010618360670644
607 => 0.010536503022113
608 => 0.010596061300855
609 => 0.010611221382448
610 => 0.010657106383505
611 => 0.010673506327433
612 => 0.010623934306387
613 => 0.010457564549043
614 => 0.010042986931705
615 => 0.0098499999317026
616 => 0.0097863110072492
617 => 0.0097886259786906
618 => 0.0097247687318494
619 => 0.0097435775529252
620 => 0.009718227791462
621 => 0.0096702214760167
622 => 0.0097669278102912
623 => 0.0097780723144345
624 => 0.0097554999004602
625 => 0.0097608165210845
626 => 0.0095739265741813
627 => 0.0095881354109407
628 => 0.0095090188022926
629 => 0.0094941853919361
630 => 0.0092941854947448
701 => 0.0089398566864218
702 => 0.0091361892417624
703 => 0.0088990471234459
704 => 0.00880923780995
705 => 0.0092343811318258
706 => 0.0091917085339497
707 => 0.0091186715957181
708 => 0.009010634741842
709 => 0.0089705628218244
710 => 0.0087270985210257
711 => 0.008712713351303
712 => 0.0088333808328679
713 => 0.0087776969420402
714 => 0.0086994956701796
715 => 0.0084162585906361
716 => 0.0080978063366549
717 => 0.0081074184084831
718 => 0.0082087121454597
719 => 0.0085032373470406
720 => 0.0083881612554452
721 => 0.0083046722306468
722 => 0.0082890372459729
723 => 0.0084847418132241
724 => 0.008761704777259
725 => 0.0088916496032871
726 => 0.0087628782271763
727 => 0.0086149526038434
728 => 0.0086239561511144
729 => 0.0086838527174476
730 => 0.0086901469996774
731 => 0.0085938626258875
801 => 0.0086209661131204
802 => 0.0085797934376188
803 => 0.0083271168040642
804 => 0.0083225466850095
805 => 0.0082605357641741
806 => 0.0082586580981359
807 => 0.0081531620524457
808 => 0.0081384024263939
809 => 0.0079289336245238
810 => 0.0080668066242447
811 => 0.0079743286546893
812 => 0.0078349425412217
813 => 0.007810912322722
814 => 0.0078101899453366
815 => 0.0079533083177032
816 => 0.008065134202736
817 => 0.007975937348563
818 => 0.0079556289538762
819 => 0.0081724694780383
820 => 0.0081448745447934
821 => 0.0081209775105716
822 => 0.008736905781586
823 => 0.0082493504935957
824 => 0.0080367485593491
825 => 0.0077736132937065
826 => 0.0078592914630429
827 => 0.0078773451121963
828 => 0.0072445522320226
829 => 0.0069878282393454
830 => 0.0068997302394982
831 => 0.0068490285950632
901 => 0.0068721339711034
902 => 0.006641052266973
903 => 0.0067963429938873
904 => 0.0065962457709605
905 => 0.0065626988203642
906 => 0.0069204974422465
907 => 0.0069702830302522
908 => 0.0067578822446501
909 => 0.0068942779335703
910 => 0.006844818960726
911 => 0.0065996758635338
912 => 0.0065903132003716
913 => 0.0064673090113971
914 => 0.0062748312739563
915 => 0.0061868637830787
916 => 0.0061410495500609
917 => 0.0061599533955056
918 => 0.0061503950327815
919 => 0.0060880202504812
920 => 0.0061539702822897
921 => 0.0059854952034536
922 => 0.0059184070695651
923 => 0.0058881049159205
924 => 0.0057385735863898
925 => 0.0059765444285573
926 => 0.006023427682342
927 => 0.0060704033106196
928 => 0.0064792940831526
929 => 0.0064588670556702
930 => 0.0066435174357454
1001 => 0.0066363422615259
1002 => 0.0065836769819906
1003 => 0.0063614908306492
1004 => 0.0064500502704866
1005 => 0.0061774780798599
1006 => 0.0063817076981847
1007 => 0.006288505829214
1008 => 0.0063501960525331
1009 => 0.0062392714686222
1010 => 0.0063006617133223
1011 => 0.0060345454410684
1012 => 0.0057860498103946
1013 => 0.0058860517062174
1014 => 0.0059947652035807
1015 => 0.0062304837655484
1016 => 0.0060900917346764
1017 => 0.0061405820177884
1018 => 0.0059714480213345
1019 => 0.0056224762759123
1020 => 0.0056244514180932
1021 => 0.0055707697178227
1022 => 0.0055243808911325
1023 => 0.0061062174482547
1024 => 0.0060338568749017
1025 => 0.0059185597715815
1026 => 0.0060728895261004
1027 => 0.0061136967627377
1028 => 0.0061148584873966
1029 => 0.006227453492466
1030 => 0.0062875454668554
1031 => 0.006298136937795
1101 => 0.0064753076110479
1102 => 0.0065346928837846
1103 => 0.0067792924176687
1104 => 0.0062824470826677
1105 => 0.0062722148799515
1106 => 0.0060750612622373
1107 => 0.0059500233210075
1108 => 0.0060836227170479
1109 => 0.0062019735438035
1110 => 0.0060787387523262
1111 => 0.0060948306144647
1112 => 0.0059293979755589
1113 => 0.0059885323596386
1114 => 0.0060394668574698
1115 => 0.0060113438215588
1116 => 0.0059692422756297
1117 => 0.0061922701256645
1118 => 0.0061796860203124
1119 => 0.0063873746816529
1120 => 0.0065492828451265
1121 => 0.0068394512186174
1122 => 0.0065366453940603
1123 => 0.0065256099462693
1124 => 0.0066334832185678
1125 => 0.0065346763689487
1126 => 0.0065971188872115
1127 => 0.0068293907635677
1128 => 0.0068342983023059
1129 => 0.0067520907054349
1130 => 0.0067470883656942
1201 => 0.0067628772339259
1202 => 0.0068553531283149
1203 => 0.0068230392093182
1204 => 0.0068604336944696
1205 => 0.006907196070756
1206 => 0.0071006250859135
1207 => 0.0071472601666172
1208 => 0.0070339610980244
1209 => 0.0070441907353625
1210 => 0.0070018137735798
1211 => 0.0069608781594796
1212 => 0.0070528954418106
1213 => 0.0072210588338748
1214 => 0.0072200126981405
1215 => 0.0072590233364702
1216 => 0.007283326640968
1217 => 0.0071789990669572
1218 => 0.0071110856525074
1219 => 0.0071371279770503
1220 => 0.0071787702211224
1221 => 0.0071236239585378
1222 => 0.006783235679632
1223 => 0.0068864877393646
1224 => 0.0068693015478573
1225 => 0.0068448263212387
1226 => 0.0069486470657243
1227 => 0.0069386333016463
1228 => 0.0066386821900971
1229 => 0.0066578840870695
1230 => 0.0066398499210507
1231 => 0.0066981220009007
]
'min_raw' => 0.0055243808911325
'max_raw' => 0.012375295157393
'avg_raw' => 0.0089498380242627
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.005524'
'max' => '$0.012375'
'avg' => '$0.008949'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.001347148915433
'max_diff' => -0.008992870385161
'year' => 2034
]
9 => [
'items' => [
101 => 0.0065315294854041
102 => 0.0065827722211532
103 => 0.0066149111846441
104 => 0.0066338412810435
105 => 0.0067022297697265
106 => 0.0066942051699165
107 => 0.0067017309493353
108 => 0.0068031330241606
109 => 0.007315989921637
110 => 0.0073439035910117
111 => 0.0072064464740658
112 => 0.007261357881064
113 => 0.0071559399874322
114 => 0.0072267077256657
115 => 0.0072751252148594
116 => 0.0070563358913408
117 => 0.007043380607533
118 => 0.006937527616755
119 => 0.0069944070181792
120 => 0.0069039078007395
121 => 0.006926113143171
122 => 0.0068640250699057
123 => 0.0069757712401712
124 => 0.0071007208221273
125 => 0.0071322880209379
126 => 0.0070492483114007
127 => 0.0069891220891123
128 => 0.0068835602495826
129 => 0.0070591119413194
130 => 0.0071104486058242
131 => 0.0070588422916755
201 => 0.007046883981067
202 => 0.0070242230040721
203 => 0.0070516916144618
204 => 0.0071101690153241
205 => 0.0070825921529855
206 => 0.007100807156402
207 => 0.0070313903466084
208 => 0.0071790336037252
209 => 0.0074135266283116
210 => 0.0074142805617291
211 => 0.0073867035507409
212 => 0.0073754196319995
213 => 0.0074037153187864
214 => 0.0074190645681184
215 => 0.0075105676306456
216 => 0.00760875406238
217 => 0.0080669472971884
218 => 0.0079382884703441
219 => 0.0083448247663036
220 => 0.0086663421942763
221 => 0.0087627512126722
222 => 0.0086740594521428
223 => 0.0083706497304067
224 => 0.0083557630019658
225 => 0.0088091852225199
226 => 0.00868107267716
227 => 0.0086658340975402
228 => 0.008503721356372
301 => 0.008599550064456
302 => 0.0085785909202757
303 => 0.0085455058858306
304 => 0.0087283403853693
305 => 0.0090705902467574
306 => 0.0090172473962612
307 => 0.0089774294328694
308 => 0.0088029587081214
309 => 0.0089080290538669
310 => 0.0088706155162368
311 => 0.0090313678171131
312 => 0.0089361417151735
313 => 0.0086801020986268
314 => 0.0087208772514795
315 => 0.008714714169154
316 => 0.0088415499666912
317 => 0.0088034770085286
318 => 0.0087072798130236
319 => 0.0090694204739385
320 => 0.0090459050737509
321 => 0.009079244534848
322 => 0.0090939215966801
323 => 0.0093143502353447
324 => 0.009404652795676
325 => 0.00942515305784
326 => 0.009510933505904
327 => 0.009423018762148
328 => 0.009774740419322
329 => 0.010008614797815
330 => 0.0102802719235
331 => 0.010677235998678
401 => 0.010826498163068
402 => 0.010799535289065
403 => 0.011100508920376
404 => 0.011641351845575
405 => 0.010908855107538
406 => 0.011680175951332
407 => 0.011435984677514
408 => 0.010857011560106
409 => 0.01081973251699
410 => 0.011211819834115
411 => 0.012081431766492
412 => 0.011863603840488
413 => 0.012081788054944
414 => 0.011827264579245
415 => 0.011814625343384
416 => 0.012069426417836
417 => 0.012664783016779
418 => 0.01238195141323
419 => 0.011976442956388
420 => 0.012275864090509
421 => 0.012016477794015
422 => 0.011432007870361
423 => 0.011863437271579
424 => 0.011574952717386
425 => 0.011659147846982
426 => 0.012265499471055
427 => 0.012192541639439
428 => 0.012286955829263
429 => 0.012120317255473
430 => 0.011964650551062
501 => 0.011674087087317
502 => 0.011588065570308
503 => 0.011611838822879
504 => 0.011588053789465
505 => 0.011425486201916
506 => 0.011390379746862
507 => 0.011331867450392
508 => 0.011350002857741
509 => 0.011239982621999
510 => 0.011447613538184
511 => 0.011486151665865
512 => 0.011637248131682
513 => 0.011652935468007
514 => 0.012073736974585
515 => 0.011841966576044
516 => 0.011997458169479
517 => 0.011983549537818
518 => 0.01086955966316
519 => 0.011023057639072
520 => 0.011261852319273
521 => 0.011154275639521
522 => 0.011002187383418
523 => 0.010879367962159
524 => 0.01069328398002
525 => 0.010955193611454
526 => 0.011299576925805
527 => 0.011661669597178
528 => 0.01209670021658
529 => 0.011999606446644
530 => 0.011653537002349
531 => 0.011669061424816
601 => 0.011765027295873
602 => 0.011640742773436
603 => 0.011604088841447
604 => 0.011759991608477
605 => 0.011761065225151
606 => 0.0116180608618
607 => 0.011459137681458
608 => 0.01145847178753
609 => 0.011430192942604
610 => 0.011832295322935
611 => 0.012053410974981
612 => 0.012078761528143
613 => 0.012051704680771
614 => 0.012062117787476
615 => 0.011933455461502
616 => 0.012227539385052
617 => 0.012497419875188
618 => 0.012425086138676
619 => 0.012316647584798
620 => 0.012230271053526
621 => 0.012404738572994
622 => 0.012396969808989
623 => 0.012495062704545
624 => 0.012490612644191
625 => 0.012457627692876
626 => 0.012425087316673
627 => 0.012554106230121
628 => 0.012516950855029
629 => 0.012479737767376
630 => 0.012405101223049
701 => 0.012415245569004
702 => 0.012306825738571
703 => 0.012256665764059
704 => 0.011502380098003
705 => 0.011300810321038
706 => 0.011364228276202
707 => 0.011385107113689
708 => 0.011297383688435
709 => 0.01142315654595
710 => 0.011403554979333
711 => 0.011479813208508
712 => 0.011432170377667
713 => 0.011434125656063
714 => 0.011574233063044
715 => 0.011614906839351
716 => 0.011594219828444
717 => 0.011608708301774
718 => 0.011942589054461
719 => 0.011895121888334
720 => 0.011869905902385
721 => 0.011876890902822
722 => 0.011962204593618
723 => 0.011986087769086
724 => 0.011884893076387
725 => 0.011932617078464
726 => 0.012135819822227
727 => 0.012206929282265
728 => 0.012433876544229
729 => 0.012337465313681
730 => 0.012514432299932
731 => 0.013058368483178
801 => 0.013492902343875
802 => 0.013093287047706
803 => 0.013891253145324
804 => 0.014512584213758
805 => 0.01448873649247
806 => 0.014380393049042
807 => 0.013673024146572
808 => 0.013022092736242
809 => 0.01356662450099
810 => 0.013568012624443
811 => 0.013521236862929
812 => 0.013230716625471
813 => 0.013511127388405
814 => 0.013533385376464
815 => 0.013520926822028
816 => 0.01329818563713
817 => 0.012958101017242
818 => 0.01302455273792
819 => 0.01313340201197
820 => 0.012927327627857
821 => 0.012861474375645
822 => 0.0129839081006
823 => 0.013378415072485
824 => 0.013303835814674
825 => 0.013301888248854
826 => 0.013620969940299
827 => 0.013392576311363
828 => 0.013025390906926
829 => 0.012932671749725
830 => 0.012603581204771
831 => 0.012830885216351
901 => 0.012839065483066
902 => 0.012714573398914
903 => 0.01303549275344
904 => 0.013032535425091
905 => 0.013337200589671
906 => 0.013919605957337
907 => 0.01374736003169
908 => 0.013547056760467
909 => 0.013568835279856
910 => 0.01380769188359
911 => 0.013663273728407
912 => 0.01371520750393
913 => 0.013807613275601
914 => 0.013863363971956
915 => 0.013560813612605
916 => 0.013490274651184
917 => 0.013345976691927
918 => 0.013308332047806
919 => 0.013425859724745
920 => 0.013394895334186
921 => 0.012838377963324
922 => 0.012780218801636
923 => 0.012782002460093
924 => 0.01263575848271
925 => 0.012412701314625
926 => 0.012998882234301
927 => 0.012951803702854
928 => 0.012899832647726
929 => 0.012906198805437
930 => 0.013160640075153
1001 => 0.013013051289126
1002 => 0.013405440266107
1003 => 0.013324776888732
1004 => 0.013242044800098
1005 => 0.013230608705368
1006 => 0.013198763909614
1007 => 0.013089556256047
1008 => 0.012957681452002
1009 => 0.012870606283572
1010 => 0.011872453958921
1011 => 0.012057705224392
1012 => 0.012270819919131
1013 => 0.012344386257751
1014 => 0.012218545944905
1015 => 0.013094525198604
1016 => 0.013254575049401
1017 => 0.012769773611544
1018 => 0.012679087056833
1019 => 0.013100470594033
1020 => 0.012846324809059
1021 => 0.012960766640471
1022 => 0.012713405997293
1023 => 0.01321602372715
1024 => 0.013212194622164
1025 => 0.013016664973113
1026 => 0.013181925293562
1027 => 0.013153207246027
1028 => 0.012932454753817
1029 => 0.013223021974903
1030 => 0.013223166092619
1031 => 0.013034973056589
1101 => 0.012815204791258
1102 => 0.012775915416112
1103 => 0.012746316149724
1104 => 0.012953487035408
1105 => 0.013139235803705
1106 => 0.013484868210482
1107 => 0.013571768409569
1108 => 0.01391094567188
1109 => 0.013708982126415
1110 => 0.013798509950254
1111 => 0.013895705067515
1112 => 0.013942303980962
1113 => 0.013866373552135
1114 => 0.014393255451435
1115 => 0.01443774042698
1116 => 0.014452655854487
1117 => 0.014274994242511
1118 => 0.014432799336164
1119 => 0.014358967558799
1120 => 0.014551057332444
1121 => 0.014581179461676
1122 => 0.014555667089842
1123 => 0.014565228329106
1124 => 0.01411562757639
1125 => 0.014092313405529
1126 => 0.013774423031538
1127 => 0.013903965708666
1128 => 0.013661791882917
1129 => 0.013738587697729
1130 => 0.01377243856116
1201 => 0.013754756791123
1202 => 0.013911289857267
1203 => 0.013778204773452
1204 => 0.013426971356052
1205 => 0.013075642245342
1206 => 0.013071231594543
1207 => 0.012978732841167
1208 => 0.012911873184468
1209 => 0.012924752726322
1210 => 0.012970141911721
1211 => 0.0129092350825
1212 => 0.012922232642569
1213 => 0.013138078742003
1214 => 0.0131813651379
1215 => 0.013034261051554
1216 => 0.012443616917855
1217 => 0.012298671365927
1218 => 0.012402855354257
1219 => 0.012353062118144
1220 => 0.0099698852463104
1221 => 0.010529777302185
1222 => 0.010197108454722
1223 => 0.010350417564991
1224 => 0.010010848815911
1225 => 0.010172908821295
1226 => 0.010142982255785
1227 => 0.011043272113221
1228 => 0.011029215325406
1229 => 0.011035943565864
1230 => 0.010714787118433
1231 => 0.011226398059539
]
'min_raw' => 0.0065315294854041
'max_raw' => 0.014581179461676
'avg_raw' => 0.01055635447354
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.006531'
'max' => '$0.014581'
'avg' => '$0.010556'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0010071485942716
'max_diff' => 0.0022058843042836
'year' => 2035
]
10 => [
'items' => [
101 => 0.011478436006062
102 => 0.011431790489933
103 => 0.011443530161404
104 => 0.011241803710133
105 => 0.011037896718865
106 => 0.010811732484487
107 => 0.011231917677217
108 => 0.011185200256586
109 => 0.011292353211116
110 => 0.011564873344059
111 => 0.011605002968839
112 => 0.011658937591496
113 => 0.011639605868601
114 => 0.01210016593731
115 => 0.012044389074116
116 => 0.012178795266314
117 => 0.01190231153154
118 => 0.011589443941566
119 => 0.011648909842008
120 => 0.011643182797601
121 => 0.011570270949103
122 => 0.011504449392387
123 => 0.011394875045565
124 => 0.011741584492863
125 => 0.011727508722468
126 => 0.011955379083862
127 => 0.011915100784071
128 => 0.011646112440296
129 => 0.011655719411616
130 => 0.011720330910702
131 => 0.01194395204676
201 => 0.01201033802523
202 => 0.011979585394979
203 => 0.012052374589736
204 => 0.012109904201418
205 => 0.012059599423222
206 => 0.012771808999086
207 => 0.012476049928109
208 => 0.012620200841425
209 => 0.012654579984864
210 => 0.01256651853186
211 => 0.012585615907772
212 => 0.012614543228556
213 => 0.012790184255806
214 => 0.01325111713345
215 => 0.013455261167282
216 => 0.014069438565355
217 => 0.013438309847094
218 => 0.013400861280823
219 => 0.013511493176596
220 => 0.013872080326546
221 => 0.014164302343351
222 => 0.014261249245018
223 => 0.014274062378492
224 => 0.014455941210927
225 => 0.01456019076584
226 => 0.014433856336781
227 => 0.014326801135921
228 => 0.013943342694618
229 => 0.013987729053321
301 => 0.014293507048954
302 => 0.014725436478019
303 => 0.015096076862755
304 => 0.014966291518142
305 => 0.015956462083365
306 => 0.016054633450422
307 => 0.016041069341755
308 => 0.016264718325771
309 => 0.015820820637823
310 => 0.015631045776113
311 => 0.014349947685475
312 => 0.014709883993632
313 => 0.015233072555857
314 => 0.01516382658779
315 => 0.014783873069032
316 => 0.01509578863394
317 => 0.01499265959368
318 => 0.014911317440799
319 => 0.015283961612099
320 => 0.014874224038376
321 => 0.015228985110126
322 => 0.014774000366073
323 => 0.014966884366664
324 => 0.014857394079179
325 => 0.014928247713807
326 => 0.014514038813551
327 => 0.014737535881776
328 => 0.014504740600722
329 => 0.014504630225448
330 => 0.014499491256716
331 => 0.014773373872504
401 => 0.014782305174772
402 => 0.014579905507891
403 => 0.014550736553817
404 => 0.014658589465098
405 => 0.01453232195271
406 => 0.014591401727038
407 => 0.014534111418889
408 => 0.014521214163806
409 => 0.014418446641018
410 => 0.01437417156655
411 => 0.014391532964077
412 => 0.014332269563902
413 => 0.014296561221646
414 => 0.014492387968676
415 => 0.014387765637366
416 => 0.014476353095907
417 => 0.014375396506271
418 => 0.014025436981901
419 => 0.01382417155868
420 => 0.013163130458409
421 => 0.013350600894427
422 => 0.013474893987459
423 => 0.013433815120954
424 => 0.013522068421619
425 => 0.013527486457516
426 => 0.013498794409834
427 => 0.013465572694297
428 => 0.01344940220045
429 => 0.01356992381335
430 => 0.01363989066621
501 => 0.013487368462172
502 => 0.013451634643779
503 => 0.013605843013043
504 => 0.01369991002921
505 => 0.014394448024903
506 => 0.014342994406854
507 => 0.014472132890894
508 => 0.014457593879383
509 => 0.014592951584031
510 => 0.014814204224697
511 => 0.014364335743012
512 => 0.014442417356151
513 => 0.014423273547777
514 => 0.014632280627827
515 => 0.014632933125117
516 => 0.014507622939949
517 => 0.014575555624254
518 => 0.014537637463511
519 => 0.014606160704921
520 => 0.014342307212415
521 => 0.014663652285063
522 => 0.014845834234235
523 => 0.014848363830776
524 => 0.014934716628798
525 => 0.015022456072806
526 => 0.015190864295083
527 => 0.01501775925889
528 => 0.014706360150215
529 => 0.014728842160048
530 => 0.014546268976569
531 => 0.014549338064767
601 => 0.014532955031433
602 => 0.014582121747726
603 => 0.014353096541757
604 => 0.014406848299829
605 => 0.014331595523758
606 => 0.014442253771313
607 => 0.014323203789408
608 => 0.014423264316053
609 => 0.014466447122294
610 => 0.014625792606983
611 => 0.01429966833176
612 => 0.013634678857906
613 => 0.013774467707528
614 => 0.01356770901876
615 => 0.013586845322591
616 => 0.013625503701851
617 => 0.013500199246436
618 => 0.013524103387732
619 => 0.013523249363594
620 => 0.013515889844954
621 => 0.013483293316613
622 => 0.013436021901492
623 => 0.01362433666996
624 => 0.013656335018677
625 => 0.013727463384118
626 => 0.013939093152838
627 => 0.013917946348369
628 => 0.01395243766383
629 => 0.013877143315839
630 => 0.013590338011445
701 => 0.013605912919336
702 => 0.013411693568369
703 => 0.013722496758649
704 => 0.013648894460789
705 => 0.013601442580548
706 => 0.013588494895385
707 => 0.013800649253368
708 => 0.013864129162389
709 => 0.013824572743066
710 => 0.013743441372988
711 => 0.013899237587873
712 => 0.013940922082462
713 => 0.013950253703535
714 => 0.014226294725351
715 => 0.013965681330222
716 => 0.014028413564704
717 => 0.014517832550426
718 => 0.014073997065579
719 => 0.014309106620615
720 => 0.014297599231347
721 => 0.01441787332403
722 => 0.014287733245209
723 => 0.014289346487458
724 => 0.014396141733687
725 => 0.014246167070982
726 => 0.014209031235398
727 => 0.01415772834451
728 => 0.014269746329885
729 => 0.014336896045979
730 => 0.014878073441668
731 => 0.015227698719971
801 => 0.015212520564568
802 => 0.015351220492628
803 => 0.015288734904692
804 => 0.015086952458379
805 => 0.015431370489487
806 => 0.015322382213382
807 => 0.015331367074443
808 => 0.015331032657466
809 => 0.015403500333155
810 => 0.015352150343364
811 => 0.015250934242518
812 => 0.015318126213817
813 => 0.015517662347007
814 => 0.016137028626943
815 => 0.016483634202707
816 => 0.016116162536071
817 => 0.016369639571075
818 => 0.016217643673175
819 => 0.016190021497041
820 => 0.016349223806829
821 => 0.016508704779185
822 => 0.016498546530701
823 => 0.016382771534209
824 => 0.016317373176372
825 => 0.016812591451969
826 => 0.017177459841605
827 => 0.017152578263541
828 => 0.017262397457195
829 => 0.017584830006343
830 => 0.017614309197781
831 => 0.017610595497231
901 => 0.017537528245417
902 => 0.01785500496321
903 => 0.018119849626665
904 => 0.017520615287738
905 => 0.017748795879448
906 => 0.017851233498586
907 => 0.018001642315353
908 => 0.018255407200683
909 => 0.018531063173963
910 => 0.018570043950999
911 => 0.01854238522429
912 => 0.018360582699881
913 => 0.018662208755104
914 => 0.018838894224253
915 => 0.018944106377755
916 => 0.019210906893405
917 => 0.017851866118448
918 => 0.016889869509223
919 => 0.016739639847294
920 => 0.017045137772318
921 => 0.017125695138846
922 => 0.017093222565409
923 => 0.016010407920822
924 => 0.016733939052284
925 => 0.017512397713511
926 => 0.017542301481061
927 => 0.017932014163675
928 => 0.018058920587997
929 => 0.018372690378309
930 => 0.018353063992495
1001 => 0.018429461943268
1002 => 0.018411899377414
1003 => 0.018993091841944
1004 => 0.019634233438236
1005 => 0.019612032743462
1006 => 0.019519861053352
1007 => 0.019656751730774
1008 => 0.020318478567057
1009 => 0.020257557363929
1010 => 0.020316737123513
1011 => 0.021096950356781
1012 => 0.022111338544068
1013 => 0.021640053388164
1014 => 0.022662606567824
1015 => 0.023306249591206
1016 => 0.024419363646213
1017 => 0.024279996284324
1018 => 0.02471332341753
1019 => 0.024030499619696
1020 => 0.022462598158411
1021 => 0.022214471750478
1022 => 0.022711227102723
1023 => 0.023932451663539
1024 => 0.022672766395333
1025 => 0.022927599084474
1026 => 0.022854207252858
1027 => 0.022850296514046
1028 => 0.022999553508361
1029 => 0.022783048453386
1030 => 0.021900967910902
1031 => 0.022305220225389
1101 => 0.022149118992975
1102 => 0.022322324948456
1103 => 0.023257046054619
1104 => 0.022843783572616
1105 => 0.022408445118544
1106 => 0.022954456149287
1107 => 0.023649715821169
1108 => 0.023606207720404
1109 => 0.023521783819946
1110 => 0.023997676926539
1111 => 0.024783712915035
1112 => 0.024996175284177
1113 => 0.025153010661475
1114 => 0.025174635610249
1115 => 0.025397386022453
1116 => 0.024199600915702
1117 => 0.026100516641419
1118 => 0.026428752275513
1119 => 0.026367057580277
1120 => 0.026731877673305
1121 => 0.026624538347344
1122 => 0.02646902050505
1123 => 0.027047337951959
1124 => 0.026384343666889
1125 => 0.025443306747891
1126 => 0.024927035282529
1127 => 0.025606903194549
1128 => 0.026022074804299
1129 => 0.02629647682847
1130 => 0.026379510715186
1201 => 0.024292581563882
1202 => 0.023167842497726
1203 => 0.023888787343973
1204 => 0.024768389813348
1205 => 0.024194714679572
1206 => 0.024217201658706
1207 => 0.023399291677114
1208 => 0.024840756697946
1209 => 0.02463074736904
1210 => 0.025720276138905
1211 => 0.025460251353962
1212 => 0.026348719770524
1213 => 0.026114756260624
1214 => 0.027085925709494
1215 => 0.027473351496012
1216 => 0.028123899689584
1217 => 0.028602445588983
1218 => 0.028883456894234
1219 => 0.028866586029514
1220 => 0.029980092820196
1221 => 0.029323496768695
1222 => 0.028498657380202
1223 => 0.028483738637999
1224 => 0.028910934645364
1225 => 0.0298062202813
1226 => 0.030038354820822
1227 => 0.030168086360039
1228 => 0.029969397991741
1229 => 0.0292567100365
1230 => 0.028948974990836
1231 => 0.029211174165684
]
'min_raw' => 0.010811732484487
'max_raw' => 0.030168086360039
'avg_raw' => 0.020489909422263
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.010811'
'max' => '$0.030168'
'avg' => '$0.020489'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.0042802029990826
'max_diff' => 0.015586906898362
'year' => 2036
]
11 => [
'items' => [
101 => 0.028890527105877
102 => 0.029444053888779
103 => 0.030204164388644
104 => 0.030047204576225
105 => 0.030571897696413
106 => 0.031114899876482
107 => 0.031891417381734
108 => 0.032094427811967
109 => 0.032429996333346
110 => 0.032775406570363
111 => 0.032886343029426
112 => 0.033098155151339
113 => 0.033097038796903
114 => 0.033735348882886
115 => 0.034439424674544
116 => 0.034705196986503
117 => 0.035316325763082
118 => 0.034269789149698
119 => 0.035063599192696
120 => 0.035779635721834
121 => 0.034925947453074
122 => 0.036102557847704
123 => 0.036148242963071
124 => 0.036838033965245
125 => 0.036138798636575
126 => 0.035723594930449
127 => 0.036922272472554
128 => 0.03750227477719
129 => 0.037327573362819
130 => 0.035998086973378
131 => 0.035224268870369
201 => 0.033199037636432
202 => 0.035598011516509
203 => 0.036766481714468
204 => 0.035995060917847
205 => 0.036384120696794
206 => 0.038506704697676
207 => 0.039314847258075
208 => 0.039146759254855
209 => 0.039175163360435
210 => 0.039611222417201
211 => 0.041544948417012
212 => 0.040386214974508
213 => 0.041272023274388
214 => 0.041741852802626
215 => 0.042178256652337
216 => 0.0411065867243
217 => 0.039712359893882
218 => 0.039270749731027
219 => 0.035918358322665
220 => 0.035743851791162
221 => 0.03564589598694
222 => 0.035028298497445
223 => 0.034543036044891
224 => 0.034157137325981
225 => 0.033144423848448
226 => 0.0334861849186
227 => 0.031872131005142
228 => 0.032904745500414
301 => 0.030328676481841
302 => 0.032474103308813
303 => 0.03130644502748
304 => 0.032090496159326
305 => 0.032087760678789
306 => 0.030644073961422
307 => 0.029811385591818
308 => 0.030342007029646
309 => 0.03091087533178
310 => 0.031003172299898
311 => 0.031740724902596
312 => 0.031946559980369
313 => 0.031322870085196
314 => 0.030275293177291
315 => 0.030518621400312
316 => 0.029806454553145
317 => 0.028558409546587
318 => 0.029454777259073
319 => 0.029760836606621
320 => 0.029896009850315
321 => 0.028668700925303
322 => 0.028283053814891
323 => 0.0280777385292
324 => 0.030116863006958
325 => 0.030228570848913
326 => 0.029657057735575
327 => 0.032240351200959
328 => 0.03165567232876
329 => 0.032308901878808
330 => 0.030496541914519
331 => 0.030565776505821
401 => 0.02970777625437
402 => 0.030188199063585
403 => 0.029848651706782
404 => 0.030149385648231
405 => 0.030329644332764
406 => 0.031187503794816
407 => 0.032483898685871
408 => 0.031059368198277
409 => 0.030438679865181
410 => 0.03082375141615
411 => 0.031849247700518
412 => 0.033402927065523
413 => 0.032483117610729
414 => 0.032891313427389
415 => 0.032980486053961
416 => 0.032302252615193
417 => 0.033427934499833
418 => 0.034031196566834
419 => 0.034650018620083
420 => 0.035187324469918
421 => 0.034402847483827
422 => 0.035242350309303
423 => 0.034565859224167
424 => 0.033958976786437
425 => 0.033959897176585
426 => 0.033579190958259
427 => 0.032841524688182
428 => 0.032705487710149
429 => 0.033413169249454
430 => 0.033980662826286
501 => 0.034027404315384
502 => 0.034341597918391
503 => 0.034527534456199
504 => 0.036349965295182
505 => 0.03708296205456
506 => 0.037979256617008
507 => 0.038328413861475
508 => 0.039379251987522
509 => 0.03853061485584
510 => 0.038347006874222
511 => 0.035798017306965
512 => 0.036215414205806
513 => 0.036883706913661
514 => 0.03580903720757
515 => 0.036490667781217
516 => 0.036625236095364
517 => 0.035772520342184
518 => 0.03622799266963
519 => 0.035018393206067
520 => 0.032510264648722
521 => 0.033430726763904
522 => 0.034108496704875
523 => 0.033141235430678
524 => 0.034875013826495
525 => 0.033862176280109
526 => 0.033541155402681
527 => 0.032288738507628
528 => 0.032879831072146
529 => 0.033679292229287
530 => 0.033185318181509
531 => 0.034210388501224
601 => 0.03566216145021
602 => 0.03669678130823
603 => 0.036776206574003
604 => 0.036111015319443
605 => 0.03717698855007
606 => 0.037184753001305
607 => 0.03598233084253
608 => 0.035245853965394
609 => 0.035078524869349
610 => 0.035496545758073
611 => 0.036004100287897
612 => 0.036804372318009
613 => 0.037287959945274
614 => 0.038548900002125
615 => 0.038890074227524
616 => 0.039264921263675
617 => 0.039765832502519
618 => 0.040367304875756
619 => 0.039051317564954
620 => 0.03910360419412
621 => 0.037878175031386
622 => 0.036568628226687
623 => 0.03756241101414
624 => 0.038861649811351
625 => 0.038563602995739
626 => 0.038530066640439
627 => 0.038586465487845
628 => 0.038361747922173
629 => 0.03734535870106
630 => 0.03683493439715
701 => 0.037493511972321
702 => 0.037843516643609
703 => 0.038386343365162
704 => 0.038319428514049
705 => 0.039717691853434
706 => 0.040261014705831
707 => 0.040122009470092
708 => 0.040147589778816
709 => 0.041131249850598
710 => 0.042225282155543
711 => 0.043249987779402
712 => 0.044292362352121
713 => 0.043035739120136
714 => 0.04239770334068
715 => 0.043055993401484
716 => 0.042706695429118
717 => 0.044713865186843
718 => 0.044852837265973
719 => 0.046859861882479
720 => 0.048764767235589
721 => 0.047568330313225
722 => 0.048696516442311
723 => 0.049916741723283
724 => 0.052270754264695
725 => 0.051478005655907
726 => 0.05087077264553
727 => 0.050296940384853
728 => 0.051490994226017
729 => 0.053027125417198
730 => 0.053357993362897
731 => 0.053894125836213
801 => 0.053330448095681
802 => 0.054009335847085
803 => 0.056406107927934
804 => 0.055758478954796
805 => 0.054838741701388
806 => 0.05673076307078
807 => 0.057415478249317
808 => 0.062221167960408
809 => 0.0682885497338
810 => 0.065776613839039
811 => 0.064217374169496
812 => 0.064583832477498
813 => 0.066799434907306
814 => 0.067511016088055
815 => 0.065576693142038
816 => 0.066259928707529
817 => 0.070024623847619
818 => 0.072044262004397
819 => 0.0693013221139
820 => 0.061733659742594
821 => 0.054755929424782
822 => 0.056606737716357
823 => 0.05639691349336
824 => 0.060441608766104
825 => 0.055743033217972
826 => 0.055822145180034
827 => 0.059950480467611
828 => 0.05884911139047
829 => 0.057065034538195
830 => 0.054768955160181
831 => 0.050524440068285
901 => 0.046764954684333
902 => 0.054138171280039
903 => 0.053820224773108
904 => 0.053359791114039
905 => 0.054384436398171
906 => 0.059359823047279
907 => 0.059245124281262
908 => 0.058515469251687
909 => 0.059068906160735
910 => 0.056968014372211
911 => 0.05750946202253
912 => 0.054754824116649
913 => 0.056000035493948
914 => 0.05706120671054
915 => 0.057274252543179
916 => 0.057754255682505
917 => 0.053652681411556
918 => 0.055494167843318
919 => 0.056575868598034
920 => 0.051688705235619
921 => 0.056479265091787
922 => 0.053581282128678
923 => 0.052597663184756
924 => 0.053921976510805
925 => 0.053405890319707
926 => 0.052962189718198
927 => 0.052714597158812
928 => 0.053687026706335
929 => 0.053641661705639
930 => 0.052050578225449
1001 => 0.049975074686402
1002 => 0.050671681800188
1003 => 0.050418597905023
1004 => 0.049501389220473
1005 => 0.050119477129661
1006 => 0.047397730784731
1007 => 0.042715107662345
1008 => 0.045808591929619
1009 => 0.045689496150392
1010 => 0.045629442657943
1011 => 0.047954110587173
1012 => 0.047730647404992
1013 => 0.047325059541175
1014 => 0.049493940281288
1015 => 0.048702269635584
1016 => 0.051142012024581
1017 => 0.052748984154619
1018 => 0.052341404042339
1019 => 0.053852769097809
1020 => 0.050687730221141
1021 => 0.051739029176651
1022 => 0.051955700434344
1023 => 0.049467176629622
1024 => 0.047767208745213
1025 => 0.047653840268375
1026 => 0.044706330226814
1027 => 0.046280866299546
1028 => 0.047666392884821
1029 => 0.047002833171681
1030 => 0.046792769989783
1031 => 0.047865937228953
1101 => 0.047949331514492
1102 => 0.046047932966466
1103 => 0.046443293934062
1104 => 0.048092014892228
1105 => 0.046401750396098
1106 => 0.043117842583256
1107 => 0.042303388042094
1108 => 0.042194724792927
1109 => 0.03998585948209
1110 => 0.042357813789
1111 => 0.041322392169611
1112 => 0.044593276659006
1113 => 0.042724964980769
1114 => 0.042644425798467
1115 => 0.042522679011889
1116 => 0.040621417391775
1117 => 0.041037672855101
1118 => 0.042421369412692
1119 => 0.042915087932898
1120 => 0.042863589046324
1121 => 0.042414588544687
1122 => 0.042620138675082
1123 => 0.041957990086667
1124 => 0.041724171638666
1125 => 0.040986176299946
1126 => 0.039901527028443
1127 => 0.040052354162186
1128 => 0.037903380141419
1129 => 0.036732505040221
1130 => 0.036408422244095
1201 => 0.035975045184764
1202 => 0.036457373336119
1203 => 0.037897292368022
1204 => 0.036160444519683
1205 => 0.033182740709417
1206 => 0.033361705782174
1207 => 0.033763787165453
1208 => 0.033014511167747
1209 => 0.032305384317887
1210 => 0.032921912580561
1211 => 0.031660220221775
1212 => 0.033916256659206
1213 => 0.033855237196042
1214 => 0.034696148067559
1215 => 0.035221986892747
1216 => 0.034010098643031
1217 => 0.033705312025521
1218 => 0.033878932334634
1219 => 0.031009375369018
1220 => 0.034461644043313
1221 => 0.034491499406167
1222 => 0.034235859663695
1223 => 0.03607408615592
1224 => 0.039953317411736
1225 => 0.038493794571582
1226 => 0.037928623213563
1227 => 0.036854232048832
1228 => 0.038285794484801
1229 => 0.038175872825572
1230 => 0.037678765395984
1231 => 0.0373781132715
]
'min_raw' => 0.0280777385292
'max_raw' => 0.072044262004397
'avg_raw' => 0.050061000266799
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.028077'
'max' => '$0.072044'
'avg' => '$0.050061'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.017266006044714
'max_diff' => 0.041876175644358
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.00088132812871842
]
1 => [
'year' => 2028
'avg' => 0.0015126149202647
]
2 => [
'year' => 2029
'avg' => 0.0041321913398485
]
3 => [
'year' => 2030
'avg' => 0.0031879794648491
]
4 => [
'year' => 2031
'avg' => 0.0031309909164275
]
5 => [
'year' => 2032
'avg' => 0.0054896124356025
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.00088132812871842
'min' => '$0.000881'
'max_raw' => 0.0054896124356025
'max' => '$0.005489'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.0054896124356025
]
1 => [
'year' => 2033
'avg' => 0.01411984767456
]
2 => [
'year' => 2034
'avg' => 0.0089498380242627
]
3 => [
'year' => 2035
'avg' => 0.01055635447354
]
4 => [
'year' => 2036
'avg' => 0.020489909422263
]
5 => [
'year' => 2037
'avg' => 0.050061000266799
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.0054896124356025
'min' => '$0.005489'
'max_raw' => 0.050061000266799
'max' => '$0.050061'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.050061000266799
]
]
]
]
'prediction_2025_max_price' => '$0.0015069'
'last_price' => 0.00146114
'sma_50day_nextmonth' => '$0.001347'
'sma_200day_nextmonth' => '$0.003077'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'augmenter'
'sma_200day_date_nextmonth' => '4 févr. 2026'
'sma_50day_date_nextmonth' => '4 févr. 2026'
'daily_sma3' => '$0.00144'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.0014087'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.00138'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.001354'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.001442'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.001922'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.003372'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.001436'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.001416'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.00139'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.001386'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.001553'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.002227'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.005668'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.0028046'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.007652'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.001441'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.001463'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.001714'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.003137'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.010362'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.006479'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.003239'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '56.01'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 117.52
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.001382'
'vwma_10_action' => 'BUY'
'hma_9' => '0.001455'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 167.88
'cci_20_action' => 'SELL'
'adx_14' => 15.04
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000024'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 65.08
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.000429'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 15
'buy_signals' => 18
'sell_pct' => 45.45
'buy_pct' => 54.55
'overall_action' => 'bullish'
'overall_action_label' => 'Haussier'
'overall_action_dir' => 1
'last_updated' => 1767698602
'last_updated_date' => '6 janvier 2026'
]
Prévision du prix de yesnoerror pour 2026
La prévision du prix de yesnoerror pour 2026 suggère que le prix moyen pourrait varier entre $0.0005048 à la baisse et $0.0015069 à la hausse. Sur le marché des cryptomonnaies, comparé au prix moyen d'aujourd'hui, yesnoerror pourrait potentiellement gagner 3.13% d'ici 2026 si YNE atteint l'objectif de prix prévu.
Prévision du prix de yesnoerror de 2027 à 2032
La prévision du prix de YNE pour 2027-2032 se situe actuellement dans une fourchette de prix comprise entre $0.000881 à la baisse et $0.005489 à la hausse. Compte tenu de la volatilité des prix sur le marché, si yesnoerror atteint l'objectif de prix le plus élevé, il pourrait gagner 275.71% d'ici 2032 par rapport au prix actuel.
| Prévision du Prix de yesnoerror | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2027 | $0.000485 | $0.000881 | $0.001276 |
| 2028 | $0.000877 | $0.001512 | $0.002148 |
| 2029 | $0.001926 | $0.004132 | $0.006337 |
| 2030 | $0.001638 | $0.003187 | $0.004737 |
| 2031 | $0.001937 | $0.00313 | $0.004324 |
| 2032 | $0.002957 | $0.005489 | $0.008022 |
Prévision du prix de yesnoerror de 2032 à 2037
La prévision du prix de yesnoerror pour 2032-2037 est actuellement estimée entre $0.005489 à la baisse et $0.050061 à la hausse. Par rapport au prix actuel, yesnoerror pourrait potentiellement gagner 3326.16% d'ici 2037 s'il atteint l'objectif de prix le plus élevé. Veuillez noter que ces informations sont à titre général seulement et ne doivent pas être considérées comme un conseil en investissement à long terme.
| Prévision du Prix de yesnoerror | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2032 | $0.002957 | $0.005489 | $0.008022 |
| 2033 | $0.006871 | $0.014119 | $0.021368 |
| 2034 | $0.005524 | $0.008949 | $0.012375 |
| 2035 | $0.006531 | $0.010556 | $0.014581 |
| 2036 | $0.010811 | $0.020489 | $0.030168 |
| 2037 | $0.028077 | $0.050061 | $0.072044 |
yesnoerror Histogramme des prix potentiels
Prévision du prix de yesnoerror basée sur l'analyse technique
Au 6 janvier 2026, le sentiment global de prévision du prix pour yesnoerror est Haussier, avec 18 indicateurs techniques montrant des signaux haussiers et 15 indiquant des signaux baissiers. La prévision du prix de YNE a été mise à jour pour la dernière fois le 6 janvier 2026.
Moyennes Mobiles Simples sur 50 et 200 jours de yesnoerror et Indice de Force Relative sur 14 jours - RSI (14)
Selon nos indicateurs techniques, le SMA sur 200 jours de yesnoerror devrait augmenter au cours du prochain mois, atteignant $0.003077 d'ici le 4 févr. 2026. Le SMA à court terme sur 50 jours pour yesnoerror devrait atteindre $0.001347 d'ici le 4 févr. 2026.
Le Relative Strength Index (RSI), un oscillateur de momentum, est un outil couramment utilisé pour identifier si une cryptomonnaie est survendue (en dessous de 30) ou surachetée (au-dessus de 70). Actuellement, le RSI est à 56.01, ce qui suggère que le marché de YNE est dans un état NEUTRAL.
Moyennes Mobiles et Oscillateurs Populaires de YNE pour le Samedi 19 Octobre 2024
Les moyennes mobiles (MA) sont des indicateurs largement utilisés sur les marchés financiers, conçus pour lisser les mouvements de prix sur une période donnée. En tant qu'indicateurs retardés, ils sont basés sur des données historiques de prix. Le tableau ci-dessous met en évidence deux types : la moyenne mobile simple (SMA) et la moyenne mobile exponentielle (EMA).
Moyenne Mobile Simple Quotidienne (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 3 | $0.00144 | BUY |
| SMA 5 | $0.0014087 | BUY |
| SMA 10 | $0.00138 | BUY |
| SMA 21 | $0.001354 | BUY |
| SMA 50 | $0.001442 | BUY |
| SMA 100 | $0.001922 | SELL |
| SMA 200 | $0.003372 | SELL |
Moyenne Mobile Exponentielle Quotidienne (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 3 | $0.001436 | BUY |
| EMA 5 | $0.001416 | BUY |
| EMA 10 | $0.00139 | BUY |
| EMA 21 | $0.001386 | BUY |
| EMA 50 | $0.001553 | SELL |
| EMA 100 | $0.002227 | SELL |
| EMA 200 | $0.005668 | SELL |
Moyenne Mobile Simple Hebdomadaire (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 21 | $0.0028046 | SELL |
| SMA 50 | $0.007652 | SELL |
| SMA 100 | — | — |
| SMA 200 | — | — |
Moyenne Mobile Exponentielle Hebdomadaire (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 21 | $0.003137 | SELL |
| EMA 50 | $0.010362 | SELL |
| EMA 100 | $0.006479 | SELL |
| EMA 200 | $0.003239 | SELL |
Oscillateurs de yesnoerror
Un oscillateur est un outil d'analyse technique qui établit des limites hautes et basses entre deux extrêmes, créant un indicateur de tendance qui fluctue à l'intérieur de ces limites. Les traders utilisent cet indicateur pour identifier les conditions de surachat ou de survente à court terme.
| Période | Valeur | Action |
|---|---|---|
| RSI (14) | 56.01 | NEUTRAL |
| Stoch RSI (14) | 117.52 | SELL |
| Stochastique Rapide (14) | 100 | SELL |
| Indice de Canal des Matières Premières (20) | 167.88 | SELL |
| Indice Directionnel Moyen (14) | 15.04 | NEUTRAL |
| Oscillateur Impressionnant (5, 34) | 0.000024 | BUY |
| Momentum (10) | 0 | SELL |
| MACD (12, 26) | 0 | BUY |
| Plage de Pourcentage de Williams (14) | -0 | SELL |
| Oscillateur Ultime (7, 14, 28) | 65.08 | NEUTRAL |
| VWMA (10) | 0.001382 | BUY |
| Moyenne Mobile de Hull (9) | 0.001455 | BUY |
| Nuage Ichimoku B/L (9, 26, 52, 26) | -0.000429 | SELL |
Prévision du cours de yesnoerror basée sur les flux monétaires mondiaux
Définitions des flux monétaires mondiaux utilisés pour la prédiction du cours de yesnoerror
M0 : le total de toutes les devises physiques, plus les comptes à la banque centrale qui peuvent être échangés contre des devises physiques.
M1 : M0 plus le montant des comptes à vue, y compris les comptes de "chèques" et les comptes "courants".
M2 : M1 plus la plupart des comptes d'épargne, comptes du marché monétaire et comptes de certificats de dépôt (CD) de moins de 100 000 $.
Prédictions du cours de yesnoerror par des sociétés Internet ou des niches technologiques
| Comparaison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Action Facebook | $0.002053 | $0.002885 | $0.004053 | $0.005696 | $0.0080044 | $0.011247 |
| Action Amazon.com | $0.003048 | $0.006361 | $0.013273 | $0.027695 | $0.057789 | $0.12058 |
| Action Apple | $0.002072 | $0.002939 | $0.004169 | $0.005914 | $0.008389 | $0.011899 |
| Action Netflix | $0.0023054 | $0.003637 | $0.005739 | $0.009056 | $0.014289 | $0.022546 |
| Action Google | $0.001892 | $0.00245 | $0.003173 | $0.0041092 | $0.005321 | $0.006891 |
| Action Tesla | $0.003312 | $0.0075087 | $0.017021 | $0.038586 | $0.087473 | $0.198296 |
| Action Kodak | $0.001095 | $0.000821 | $0.000616 | $0.000462 | $0.000346 | $0.000259 |
| Action Nokia | $0.000967 | $0.000641 | $0.000424 | $0.000281 | $0.000186 | $0.000123 |
Ce calcul montre la valeur potentielle des cryptomonnaies si l'on suppose que leur capitalisation se comportera comme celle de certaines sociétés Internet ou niches technologiques. En extrapolant les données, vous pourrez obtenir une potentielle image des cours futurs pour 2024, 2025, 2026, 2027, 2028, 2029 et 2030.
Aperçu des prévisions relatives à yesnoerror
Vous vous posez peut-être des questions telles que : "Devrais-je investir dans yesnoerror maintenant ?", "Devrais-je acheter YNE aujourd'hui ?", " yesnoerror sera-t-il un bon ou un mauvais investissement à court ou à long terme ?".
Nous mettons régulièrement à jour les prévisions de yesnoerror avec de nouvelles valeurs. Regardez nos prévisions similaires. Nous faisons une prévision des cours futurs pour une grande quantité de devises numériques comme yesnoerror en utilisant des méthodes d'analyse technique.
Si vous souhaitez trouver des cryptomonnaies ayant un bon rendement, vous devriez consulter un maximum d'informations disponibles à propos de yesnoerror afin de prendre une décision responsable concernant cet investissement.
Le cours de yesnoerror est de $0.001461 USD actuellement, mais ce cours peut subir une hausse ou une baisse, ce qui pourrait causer la perte de votre investissement, car les cryptomonnaies sont des actifs à haut risque.
Prévision du cours de yesnoerror basée sur le modèle de croissance du Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si yesnoerror présente 1 % de la précédente croissance annuelle moyenne du Bitcoin | $0.001499 | $0.001538 | $0.001578 | $0.001619 |
| Si yesnoerror présente 2 % de la précédente croissance annuelle moyenne du Bitcoin | $0.001537 | $0.001617 | $0.001701 | $0.001789 |
| Si yesnoerror présente 5 % de la précédente croissance annuelle moyenne du Bitcoin | $0.001651 | $0.001865 | $0.002108 | $0.002382 |
| Si yesnoerror présente 10 % de la précédente croissance annuelle moyenne du Bitcoin | $0.00184 | $0.002319 | $0.002922 | $0.003681 |
| Si yesnoerror présente 20 % de la précédente croissance annuelle moyenne du Bitcoin | $0.00222 | $0.003375 | $0.005129 | $0.007796 |
| Si yesnoerror présente 50 % de la précédente croissance annuelle moyenne du Bitcoin | $0.00336 | $0.007727 | $0.017769 | $0.040864 |
| Si yesnoerror présente 100 % de la précédente croissance annuelle moyenne du Bitcoin | $0.005259 | $0.018929 | $0.068132 | $0.24523 |
Boîte à questions
Est-ce que YNE est un bon investissement ?
La décision d'acquérir yesnoerror dépend entièrement de votre tolérance individuelle au risque. Comme vous pouvez le discerner, la valeur de yesnoerror a connu une hausse de 5.828% au cours des 24 heures précédentes, et yesnoerror a enregistré une déclin de sur une période de 30 jours précédents. Par conséquent, la détermination de si investir ou non dans yesnoerror dépendra de la mesure dans laquelle cet investissement s'aligne avec vos aspirations de trading.
Est-ce que yesnoerror peut monter ?
Il semble que la valeur moyenne de yesnoerror pourrait potentiellement s'envoler jusqu'à $0.0015069 pour la fin de cette année. En regardant les perspectives de yesnoerror sur une période de cinq ans plus longue, la monnaie numérique pourrait potentiellement croître jusqu'à $0.004737. Cependant, compte tenu de l'imprévisibilité du marché, il est essentiel de mener des recherches approfondies avant d'investir des fonds dans un projet, un réseau ou un actif particulier.
Quel sera le prix de yesnoerror la semaine prochaine ?
Basé sur notre nouveau pronostic expérimental de yesnoerror, le prix de yesnoerror va augmenter de 0.86% durant la prochaine semaine et atteindre $0.001473 d'ici 13 janvier 2026.
Quel sera le prix de yesnoerror le mois prochain ?
Basé sur notre nouveau pronostic expérimental de yesnoerror, le prix de yesnoerror va diminuer de -11.62% durant le prochain mois et atteindre $0.001291 d'ici 5 février 2026.
Jusqu'où le prix de yesnoerror peut-il monter cette année en 2026 ?
Selon notre prédiction la plus récente sur la valeur de yesnoerror en 2026, YNE devrait fluctuer dans la fourchette de $0.0005048 et $0.0015069. Cependant, il est crucial de garder à l'esprit que le marché des cryptomonnaies est exceptionnellement instable, et cette prévision de prix de yesnoerror ne prend pas en compte les fluctuations de prix soudaines et extrêmes.
Où sera yesnoerror dans 5 ans ?
L'avenir de yesnoerror semble suivre une tendance haussière, avec un prix maximum de $0.004737 prévue après une période de cinq ans. Selon la prévision de yesnoerror pour 2030, la valeur de yesnoerror pourrait potentiellement atteindre son point le plus élevé d'environ $0.004737, tandis que son point le plus bas devrait être autour de $0.001638.
Combien vaudra yesnoerror en 2026 ?
Basé sur notre nouvelle simulation expérimentale de prédiction de prix de yesnoerror, il est attendu que la valeur de YNE en 2026 augmente de 3.13% jusqu'à $0.0015069 si le meilleur scénario se produit. Le prix sera entre $0.0015069 et $0.0005048 durant 2026.
Combien vaudra yesnoerror en 2027 ?
Selon notre dernière simulation expérimentale pour la prédiction de prix de yesnoerror, le valeur de YNE pourrait diminuer de -12.62% jusqu'à $0.001276 en 2027, en supposant les conditions les plus favorables. Il est prévu que le prix fluctue entre $0.001276 et $0.000485 tout au long de l'année.
Combien vaudra yesnoerror en 2028 ?
Notre nouveau modèle expérimental de prédiction de prix de yesnoerror suggère que la valeur de YNE en 2028 pourrait augmenter de 47.02%, atteignant $0.002148 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.002148 et $0.000877 durant l'année.
Combien vaudra yesnoerror en 2029 ?
Basé sur notre modèle de prévision expérimental, la valeur de yesnoerror pourrait connaître un 333.75% croissance en 2029, atteignant potentiellement $0.006337 sous des conditions optimales. Le range de prix prévu pour 2029 se situe entre $0.006337 et $0.001926.
Combien vaudra yesnoerror en 2030 ?
En utilisant notre nouvelle simulation expérimentale pour les prédictions de prix de yesnoerror, il est prévu que la valeur de YNE en 2030 augmente de 224.23%, atteignant $0.004737 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.004737 et $0.001638 au cours de 2030.
Combien vaudra yesnoerror en 2031 ?
Notre simulation expérimentale indique que le prix de yesnoerror pourrait augmenter de 195.98% en 2031, atteignant potentiellement $0.004324 dans des conditions idéales. Il est probable que le prix fluctue entre $0.004324 et $0.001937 durant l'année.
Combien vaudra yesnoerror en 2032 ?
Basé sur les résultats de notre dernière prédiction expérimentale de prix de yesnoerror, YNE pourrait connaître une 449.04% hausse en valeur, atteignant $0.008022 si le scénario le plus positif se réalise en 2032. Il est prévu que le prix reste dans une fourchette de $0.008022 et $0.002957 tout au long de l'année.
Combien vaudra yesnoerror en 2033 ?
Selon notre prédiction expérimentale de prix de yesnoerror, la valeur de YNE est anticipée à augmenter de 1362.43% en 2033, avec le prix potentiel le plus élevé étant $0.021368. Tout au long de l'année, le prix de YNE pourrait osciller entre $0.021368 et $0.006871.
Combien vaudra yesnoerror en 2034 ?
Les résultats de notre nouvelle simulation de prédiction de prix de yesnoerror suggèrent que YNE pourrait augmenter de 746.96% en 2034, atteignant potentiellement $0.012375 dans les meilleures circonstances. La fourchette de prix prévue pour l'année est entre $0.012375 et $0.005524.
Combien vaudra yesnoerror en 2035 ?
Basé sur notre prédiction expérimentale pour le prix de yesnoerror, YNE pourrait augmenter de 897.93%, avec la valeur potentiellement atteignant $0.014581 en 2035. La fourchette de prix attendue pour l'année se situe entre $0.014581 et $0.006531.
Combien vaudra yesnoerror en 2036 ?
Notre récente simulation de prédiction de prix de yesnoerror suggère que la valeur de YNE pourrait augmenter de 1964.7% en 2036, pouvant atteindre $0.030168 si les conditions sont optimales. La fourchette de prix attendue pour 2036 est entre $0.030168 et $0.010811.
Combien vaudra yesnoerror en 2037 ?
Selon la simulation expérimentale, la valeur de yesnoerror pourrait augmenter de 4830.69% en 2037, avec un maximum de $0.072044 sous des conditions favorables. Il est prévu que le prix chute entre $0.072044 et $0.028077 au cours de l'année.
Prévisions liées
Comment lire et prédire les mouvements de prix de yesnoerror ?
Les traders de yesnoerror utilisent des indicateurs et des modèles graphiques pour prédire la direction du marché. Ils identifient également des niveaux clés de support et de résistance pour évaluer quand une tendance baissière pourrait ralentir ou une tendance haussière pourrait s'arrêter.
Indicateurs de prédiction du prix de yesnoerror
Les moyennes mobiles sont des outils populaires pour la prédiction du prix de yesnoerror. Une moyenne mobile simple (SMA) calcule le prix de clôture moyen de YNE sur une période spécifique, comme une SMA de 12 jours. Une moyenne mobile exponentielle (EMA) donne plus de poids aux prix récents, réagissant plus rapidement aux changements de prix.
Les moyennes mobiles couramment utilisées sur le marché des cryptomonnaies incluent les moyennes sur 50 jours, 100 jours et 200 jours, qui aident à identifier les niveaux clés de résistance et de support. Un mouvement de prix de YNE au-dessus de ces moyennes est considéré comme haussier, tandis qu'une chute en dessous indique une faiblesse.
Les traders utilisent également le RSI et les niveaux de retracement de Fibonacci pour évaluer la direction future de YNE.
Comment lire les graphiques de yesnoerror et prédire les mouvements de prix ?
La plupart des traders préfèrent les graphiques en chandeliers aux simples graphiques linéaires parce qu'ils fournissent des informations plus détaillées. Les chandeliers peuvent représenter l'action des prix de yesnoerror dans différentes périodes, comme 5 minutes pour les tendances à court terme et hebdomadaire pour les tendances à long terme. Les options populaires incluent les graphiques de 1 heure, 4 heures et 1 jour.
Par exemple, un graphique en chandeliers de 1 heure montre les prix d'ouverture, de clôture, les plus hauts et les plus bas de YNE au sein de chaque heure. La couleur du chandelier est cruciale : le vert indique que le prix a clôturé plus haut qu'il n'a ouvert, tandis que le rouge signifie le contraire. Certains graphiques utilisent des chandeliers creux et pleins pour transmettre la même information.
Qu'est-ce qui affecte le prix de yesnoerror ?
L'action du prix de yesnoerror est déterminée par l'offre et la demande, influencée par des facteurs tels que les réductions de récompenses de bloc, les hard forks et les mises à jour de protocole. Les événements du monde réel, tels que les réglementations, l'adoption par les entreprises et les gouvernements et les piratages d'échanges de cryptomonnaies, impactent également le prix de YNE. La capitalisation boursière de yesnoerror peut changer rapidement.
Les traders surveillent souvent l'activité des « baleines » de YNE, de grands détenteurs de yesnoerror, car leurs actions peuvent influencer significativement les mouvements de prix sur le marché relativement petit de yesnoerror.
Modèles de prédiction de prix haussiers et baissiers
Les traders identifient souvent des modèles de chandeliers pour obtenir un avantage dans les prédictions de prix des cryptomonnaies. Certaines formations indiquent des tendances haussières, tandis que d'autres suggèrent des mouvements baissiers.
Modèles de chandeliers haussiers couramment suivis :
- Marteau
- Englobante haussière
- Ligne pénétrante
- Étoile du matin
- Trois soldats blancs
Modèles de chandeliers baissiers courants :
- Harami baissier
- Nuage sombre
- Étoile du soir
- Étoile filante
- Pendu


