Prédiction du prix de XBot jusqu'à $0.012501 d'ici 2026
| Année | Prix min. | Prix max. |
|---|---|---|
| 2026 | $0.004187 | $0.012501 |
| 2027 | $0.004031 | $0.010591 |
| 2028 | $0.007275 | $0.01782 |
| 2029 | $0.015982 | $0.052576 |
| 2030 | $0.013592 | $0.0393009 |
| 2031 | $0.01607 | $0.035877 |
| 2032 | $0.024531 | $0.06655 |
| 2033 | $0.0570049 | $0.177266 |
| 2034 | $0.045829 | $0.102663 |
| 2035 | $0.054184 | $0.120962 |
Calculateur de profit d’investissement
Si vous ouvrez une position short de $10,000.00 sur XBot aujourd’hui et la fermez le Apr 06, 2026, notre prévision indique que vous pourriez gagner environ $3,954.46, soit un rendement de 39.54% sur les 90 prochains jours.
Prévision du prix à long terme de XBot pour 2027, 2028, 2029, 2030, 2031, 2032 et 2037
[
'name' => 'XBot'
'name_with_ticker' => 'XBot <small>XBOT</small>'
'name_lang' => 'XBot'
'name_lang_with_ticker' => 'XBot <small>XBOT</small>'
'name_with_lang' => 'XBot'
'name_with_lang_with_ticker' => 'XBot <small>XBOT</small>'
'image' => '/uploads/coins/xbot.jpeg?1717144347'
'price_for_sd' => 0.01212
'ticker' => 'XBOT'
'marketcap' => '$0'
'low24h' => '$0'
'high24h' => '$0'
'volume24h' => '$9.07'
'current_supply' => '0'
'max_supply' => '1M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.01212'
'change_24h_pct' => '0%'
'ath_price' => '$1.8'
'ath_days' => 897
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '24 juil. 2023'
'ath_pct' => '-99.33%'
'fdv' => '$12.12K'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.597665'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.012225'
'next_week_prediction_price_date' => '13 janvier 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.010713'
'next_month_prediction_price_date' => '5 février 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.004187'
'current_year_max_price_prediction' => '$0.012501'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.013592'
'grand_prediction_max_price' => '$0.0393009'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.012351033017175
107 => 0.012397147291036
108 => 0.012501045104699
109 => 0.011613249662519
110 => 0.012011843751753
111 => 0.012245980435962
112 => 0.011188142378739
113 => 0.01222507037878
114 => 0.011597795119037
115 => 0.011384888474523
116 => 0.011671539223044
117 => 0.011559831147568
118 => 0.011463791103992
119 => 0.0114101991095
120 => 0.011620683782725
121 => 0.011610864421136
122 => 0.011266470642424
123 => 0.010817222997381
124 => 0.010968005253108
125 => 0.010913224646011
126 => 0.010714692659053
127 => 0.010848479247419
128 => 0.010259350820095
129 => 0.009245785981115
130 => 0.0099153779600759
131 => 0.0098895993972619
201 => 0.0098766006769263
202 => 0.010379780542952
203 => 0.010331411409169
204 => 0.010243620957719
205 => 0.010713080318566
206 => 0.010541721336737
207 => 0.011069809341478
208 => 0.011417642255992
209 => 0.011329420577655
210 => 0.011656559114977
211 => 0.010971478971743
212 => 0.011199035114681
213 => 0.011245934120361
214 => 0.010707287262925
215 => 0.010339325197647
216 => 0.010314786322967
217 => 0.0096767908100711
218 => 0.01001760286334
219 => 0.010317503366456
220 => 0.010173874298683
221 => 0.010128405626622
222 => 0.010360695211229
223 => 0.010378746101378
224 => 0.0099671838930184
225 => 0.010052760708617
226 => 0.010409630255623
227 => 0.010043768511665
228 => 0.0093329589063315
301 => 0.0091566682964971
302 => 0.0091331478794646
303 => 0.0086550337638093
304 => 0.0091684488780126
305 => 0.0089443294219932
306 => 0.0096523200981951
307 => 0.0092479196209788
308 => 0.0092304867246709
309 => 0.0092041343450518
310 => 0.0087926017750618
311 => 0.0088827012536304
312 => 0.0091822056429305
313 => 0.0092890721831912
314 => 0.0092779251275103
315 => 0.0091807379080289
316 => 0.0092252297194284
317 => 0.0090819060929359
318 => 0.0090312955373981
319 => 0.0088715547025908
320 => 0.008636779804956
321 => 0.0086694266944302
322 => 0.008204276190022
323 => 0.0079508375078146
324 => 0.0078806890208478
325 => 0.0077868835323686
326 => 0.0078912846003784
327 => 0.0082029584770861
328 => 0.007827013656475
329 => 0.0071824826310003
330 => 0.0072212200438587
331 => 0.0073082515093106
401 => 0.0071460689492118
402 => 0.0069925767670288
403 => 0.0071260257662226
404 => 0.0068529294740266
405 => 0.0073412538914895
406 => 0.0073280460845105
407 => 0.0075100632295613
408 => 0.0076238822857294
409 => 0.007361566210619
410 => 0.0072955944271068
411 => 0.0073331749532457
412 => 0.0067120525678257
413 => 0.0074593042794252
414 => 0.0074657665432574
415 => 0.0074104327169718
416 => 0.0078083211845902
417 => 0.0086479899557903
418 => 0.0083320727884668
419 => 0.0082097401126322
420 => 0.007977185606446
421 => 0.0082870506782188
422 => 0.0082632578753548
423 => 0.0081556577976512
424 => 0.0080905809349233
425 => 0.0082104870498649
426 => 0.0080757232403398
427 => 0.0080515159570873
428 => 0.0079048461583608
429 => 0.0078524917132661
430 => 0.0078137305664085
501 => 0.0077710583523099
502 => 0.0078651826233582
503 => 0.0076518846420837
504 => 0.0073946681865256
505 => 0.0073732834213666
506 => 0.0074323286381385
507 => 0.0074062055251163
508 => 0.0073731583539517
509 => 0.007310062304337
510 => 0.0072913430542501
511 => 0.0073521715357434
512 => 0.0072834997266582
513 => 0.0073848287217105
514 => 0.0073572728418453
515 => 0.0072033479369253
516 => 0.0070115005150961
517 => 0.0070097926706283
518 => 0.006968459458288
519 => 0.0069158153978826
520 => 0.0069011710246108
521 => 0.00711478706373
522 => 0.0075569658717167
523 => 0.0074701555912668
524 => 0.0075328849155672
525 => 0.0078414511056312
526 => 0.0079395350185434
527 => 0.0078699173804031
528 => 0.0077746204634877
529 => 0.007778813044192
530 => 0.0081044714576304
531 => 0.0081247823734158
601 => 0.0081761015050558
602 => 0.008242061091998
603 => 0.0078811505832767
604 => 0.0077618141916873
605 => 0.0077052659888214
606 => 0.0075311194109028
607 => 0.0077189215649887
608 => 0.0076094972922929
609 => 0.007624262365145
610 => 0.0076146465920803
611 => 0.0076198974543893
612 => 0.0073411173948628
613 => 0.0074426901963057
614 => 0.007273805713538
615 => 0.0070476883492849
616 => 0.007046930324593
617 => 0.0071022722291537
618 => 0.007069352698792
619 => 0.0069807670890274
620 => 0.0069933502567821
621 => 0.0068831084666189
622 => 0.0070067356061
623 => 0.0070102807901011
624 => 0.0069626776073851
625 => 0.0071531422730135
626 => 0.0072311758019258
627 => 0.0071998423673031
628 => 0.0072289773646241
629 => 0.0074737629503444
630 => 0.0075136736815607
701 => 0.0075313993920121
702 => 0.0075076492882139
703 => 0.0072334515957718
704 => 0.0072456134294103
705 => 0.0071563779636749
706 => 0.0070809833985303
707 => 0.0070839987857436
708 => 0.0071227613928354
709 => 0.007292039971402
710 => 0.0076482767604781
711 => 0.0076617956862178
712 => 0.0076781810185893
713 => 0.0076115336372264
714 => 0.0075914321492778
715 => 0.0076179512005162
716 => 0.0077517350084527
717 => 0.0080958632844148
718 => 0.007974225368135
719 => 0.0078753318487926
720 => 0.0079620881267573
721 => 0.0079487326777828
722 => 0.0078359992479894
723 => 0.0078328351960855
724 => 0.0076164637012543
725 => 0.0075364760861557
726 => 0.0074696324480101
727 => 0.0073966409401526
728 => 0.0073533691275971
729 => 0.0074198542983694
730 => 0.0074350602435544
731 => 0.0072896892556989
801 => 0.0072698757272184
802 => 0.007388588813952
803 => 0.0073363476105505
804 => 0.0073900789837684
805 => 0.0074025451232542
806 => 0.0074005377876774
807 => 0.0073459919714623
808 => 0.0073807578481382
809 => 0.007298526185593
810 => 0.0072091116033716
811 => 0.0071520706706396
812 => 0.0071022948914492
813 => 0.0071299133867293
814 => 0.0070314584939937
815 => 0.006999960792302
816 => 0.0073689799513774
817 => 0.0076415783718108
818 => 0.0076376146828169
819 => 0.0076134867454444
820 => 0.0075776375246823
821 => 0.0077491124146629
822 => 0.0076893739917423
823 => 0.0077328386857293
824 => 0.0077439022745565
825 => 0.0077773884257965
826 => 0.0077893568466329
827 => 0.0077531799662627
828 => 0.0076317659371064
829 => 0.0073292137201486
830 => 0.0071883748464307
831 => 0.0071418956722467
901 => 0.0071435851019518
902 => 0.0070969830887398
903 => 0.0071107094701864
904 => 0.0070922096134425
905 => 0.0070571753603654
906 => 0.0071277501203257
907 => 0.0071358832039618
908 => 0.0071194102116814
909 => 0.0071232901976945
910 => 0.0069869008573204
911 => 0.006997270242647
912 => 0.0069395321874709
913 => 0.006928706998168
914 => 0.0067827502225105
915 => 0.0065241666376602
916 => 0.0066674470449832
917 => 0.0064943844612111
918 => 0.0064288430384105
919 => 0.0067391059401659
920 => 0.006707964150183
921 => 0.0066546629427429
922 => 0.0065758193479942
923 => 0.0065465754917607
924 => 0.0063688990787657
925 => 0.0063584010084192
926 => 0.0064464622363662
927 => 0.0064058250096705
928 => 0.0063487549528685
929 => 0.0061420529922305
930 => 0.0059096515518061
1001 => 0.0059166662904692
1002 => 0.0059905888646857
1003 => 0.0062055287190374
1004 => 0.0061215479994449
1005 => 0.0060606190238129
1006 => 0.0060492088581953
1007 => 0.0061920309696993
1008 => 0.0063941541796349
1009 => 0.0064889858674847
1010 => 0.0063950105449067
1011 => 0.0062870567543198
1012 => 0.0062936274013431
1013 => 0.0063373389722876
1014 => 0.0063419324403455
1015 => 0.0062716656205024
1016 => 0.006291445318698
1017 => 0.0062613981484454
1018 => 0.0060769987200679
1019 => 0.0060736635191454
1020 => 0.0060284089255791
1021 => 0.0060270386344713
1022 => 0.0059500492815276
1023 => 0.0059392779388485
1024 => 0.0057864109056591
1025 => 0.0058870284498284
1026 => 0.0058195394838578
1027 => 0.0057178176931025
1028 => 0.005700280818035
1029 => 0.0056997536383941
1030 => 0.0058041991729236
1031 => 0.0058858079429462
1101 => 0.0058207134833154
1102 => 0.0058058927366605
1103 => 0.0059641395366993
1104 => 0.0059440011889428
1105 => 0.005926561509664
1106 => 0.0063760562630919
1107 => 0.0060202460912407
1108 => 0.005865092547379
1109 => 0.0056730605739913
1110 => 0.0057355871528356
1111 => 0.0057487624217046
1112 => 0.005286960142072
1113 => 0.0050996070147389
1114 => 0.0050353144816918
1115 => 0.0049983132199603
1116 => 0.0050151751595639
1117 => 0.0048465353706341
1118 => 0.0049598640978396
1119 => 0.0048138362953929
1120 => 0.0047893542590971
1121 => 0.0050504700592453
1122 => 0.0050868027974196
1123 => 0.0049317960486713
1124 => 0.0050313354746808
1125 => 0.0049952410951082
1126 => 0.0048163395229406
1127 => 0.0048095067987947
1128 => 0.0047197402785753
1129 => 0.0045792730566555
1130 => 0.0045150757669994
1201 => 0.00448164126116
1202 => 0.0044954369898949
1203 => 0.0044884614472903
1204 => 0.0044429413133564
1205 => 0.0044910706080834
1206 => 0.0043681201484536
1207 => 0.0043191602847499
1208 => 0.0042970462501751
1209 => 0.0041879206404893
1210 => 0.0043615880138783
1211 => 0.0043958026742399
1212 => 0.0044300847480518
1213 => 0.0047284867952187
1214 => 0.0047135794722177
1215 => 0.0048483344119862
1216 => 0.0048430980828252
1217 => 0.004804663791118
1218 => 0.0046425158365391
1219 => 0.0047071451212248
1220 => 0.0045082262285829
1221 => 0.0046572697881201
1222 => 0.0045892525317552
1223 => 0.004634273085324
1224 => 0.0045533220706677
1225 => 0.0045981237045639
1226 => 0.0044039162394918
1227 => 0.0042225680411803
1228 => 0.0042955478500648
1229 => 0.0043748852485757
1230 => 0.0045469089433406
1231 => 0.0044444530499033
]
'min_raw' => 0.0041879206404893
'max_raw' => 0.012501045104699
'avg_raw' => 0.008344482872594
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.004187'
'max' => '$0.012501'
'avg' => '$0.008344'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0079334193595107
'max_diff' => 0.00037970510469867
'year' => 2026
]
1 => [
'items' => [
101 => 0.0044813000634696
102 => 0.0043578687361381
103 => 0.0041031946514375
104 => 0.0041046360790993
105 => 0.0040654600195447
106 => 0.0040316061842911
107 => 0.004456221341748
108 => 0.004403413734746
109 => 0.0043192717242769
110 => 0.0044318991489603
111 => 0.0044616796276842
112 => 0.0044625274360471
113 => 0.0045446974977615
114 => 0.0045885516744283
115 => 0.0045962811631407
116 => 0.00472557753065
117 => 0.0047689159675788
118 => 0.0049474208558034
119 => 0.0045848309539302
120 => 0.00457736365351
121 => 0.0044334840477956
122 => 0.004342233327205
123 => 0.0044397320627029
124 => 0.0045261026324494
125 => 0.0044361678221547
126 => 0.0044479114097517
127 => 0.0043271812748751
128 => 0.0043703366172126
129 => 0.0044075078116862
130 => 0.0043869840629197
131 => 0.0043562590176557
201 => 0.0045190212306871
202 => 0.0045098375487576
203 => 0.0046614054634197
204 => 0.0047795634916243
205 => 0.0049913238014409
206 => 0.0047703408788326
207 => 0.0047622873828052
208 => 0.0048410115982946
209 => 0.0047689039153116
210 => 0.0048144734818842
211 => 0.0049839818397633
212 => 0.0049875632842575
213 => 0.0049275694745489
214 => 0.0049239188457759
215 => 0.0049354413131908
216 => 0.0050029287647376
217 => 0.0049793465754872
218 => 0.0050066364819158
219 => 0.0050407629277826
220 => 0.0051819243772007
221 => 0.0052159579247556
222 => 0.0051332740485685
223 => 0.0051407394768161
224 => 0.005109813437399
225 => 0.0050799392708242
226 => 0.0051470920345127
227 => 0.0052698150300443
228 => 0.0052690515766584
301 => 0.0052975209262276
302 => 0.0053152570951564
303 => 0.0052391204744449
304 => 0.0051895583339829
305 => 0.005208563612357
306 => 0.0052389534663582
307 => 0.0051987085922886
308 => 0.0049502985862914
309 => 0.0050256503136183
310 => 0.0050131081016799
311 => 0.0049952464666945
312 => 0.0050710132111994
313 => 0.0050637053238577
314 => 0.0048448057258507
315 => 0.0048588189678971
316 => 0.0048456579175128
317 => 0.0048881839638019
318 => 0.0047666073692534
319 => 0.0048040035109057
320 => 0.0048274580203829
321 => 0.004841272906651
322 => 0.0048911817488077
323 => 0.0048853255222263
324 => 0.0048908177175409
325 => 0.0049648193550134
326 => 0.005339094243054
327 => 0.0053594651994191
328 => 0.0052591511599503
329 => 0.0052992246401111
330 => 0.005222292321309
331 => 0.0052739375023226
401 => 0.0053092718235267
402 => 0.0051496028204045
403 => 0.0051401482582829
404 => 0.0050628984124347
405 => 0.0051044081039386
406 => 0.0050383632001035
407 => 0.005054568309352
408 => 0.0050092574111572
409 => 0.0050908080065979
410 => 0.005181994243982
411 => 0.0052050314885989
412 => 0.0051444304161693
413 => 0.0051005512459251
414 => 0.0050235138776733
415 => 0.0051516287379657
416 => 0.0051890934273448
417 => 0.0051514319519016
418 => 0.0051427049651219
419 => 0.0051261673409437
420 => 0.0051462135002697
421 => 0.0051888893866004
422 => 0.0051687642267067
423 => 0.0051820572493762
424 => 0.0051313979546656
425 => 0.0052391456788344
426 => 0.0054102749957164
427 => 0.0054108252044527
428 => 0.0053906999360768
429 => 0.0053824651098624
430 => 0.0054031148565194
501 => 0.0054143164969839
502 => 0.0054810939911567
503 => 0.0055527489029369
504 => 0.0058871311107276
505 => 0.005793237924832
506 => 0.0060899217120704
507 => 0.0063245600682079
508 => 0.0063949178517217
509 => 0.0063301920014785
510 => 0.0061087683642183
511 => 0.0060979042642171
512 => 0.0064288046609321
513 => 0.0063353101426618
514 => 0.0063241892672106
515 => 0.0062058819414259
516 => 0.006275816223612
517 => 0.0062605205702239
518 => 0.0062363756330618
519 => 0.0063698053718086
520 => 0.0066195739313878
521 => 0.0065806451590627
522 => 0.0065515866363757
523 => 0.0064242606487704
524 => 0.0065009393325977
525 => 0.0064736355219702
526 => 0.0065909500198522
527 => 0.0065214555101412
528 => 0.0063346018297315
529 => 0.0063643588942146
530 => 0.0063598611737808
531 => 0.0064524239415946
601 => 0.006424638896246
602 => 0.0063544356977425
603 => 0.0066187202496045
604 => 0.0066015590808345
605 => 0.006625889694561
606 => 0.0066366007831726
607 => 0.0067974661326748
608 => 0.0068633675192488
609 => 0.0068783282877673
610 => 0.0069409295080164
611 => 0.0068767707123791
612 => 0.0071334516393746
613 => 0.0073041294780793
614 => 0.007502380570736
615 => 0.0077920787019777
616 => 0.0079010078791821
617 => 0.0078813307983074
618 => 0.0081009766151358
619 => 0.0084956752655241
620 => 0.0079611106804172
621 => 0.008524008486559
622 => 0.0083458015401022
623 => 0.0079232760758591
624 => 0.0078960704172099
625 => 0.0081822095672168
626 => 0.0088168386620595
627 => 0.008657871271705
628 => 0.0088170986757616
629 => 0.0086313514510681
630 => 0.0086221275357615
701 => 0.0088080773476538
702 => 0.0092425592187368
703 => 0.0090361531680947
704 => 0.0087402194816592
705 => 0.008958732310485
706 => 0.0087694362757484
707 => 0.0083428993288629
708 => 0.0086577497123375
709 => 0.0084472182273307
710 => 0.008508662507125
711 => 0.0089511683744144
712 => 0.0088979248977369
713 => 0.0089668268867708
714 => 0.0088452166796049
715 => 0.0087316135699424
716 => 0.0085195649294798
717 => 0.0084567877809104
718 => 0.0084741371262898
719 => 0.0084567791834365
720 => 0.0083381399179252
721 => 0.0083125197798338
722 => 0.0082698184272374
723 => 0.0082830533619502
724 => 0.0082027623263477
725 => 0.008354288099504
726 => 0.0083824126182424
727 => 0.0084926804397447
728 => 0.0085041288107725
729 => 0.0088112231240924
730 => 0.0086420807368261
731 => 0.0087555560532554
801 => 0.0087454057528829
802 => 0.0079324334838786
803 => 0.0080444538896323
804 => 0.0082187224870453
805 => 0.0081402147201262
806 => 0.0080292231056909
807 => 0.0079395914260406
808 => 0.0078037902660605
809 => 0.0079949277909022
810 => 0.0082462533108593
811 => 0.0085105028407089
812 => 0.0088279813365081
813 => 0.0087571238321028
814 => 0.0085045678010634
815 => 0.0085158972801235
816 => 0.0085859316616876
817 => 0.0084952307742676
818 => 0.0084684813118758
819 => 0.0085822566963209
820 => 0.0085830402048637
821 => 0.0084786778723186
822 => 0.0083626982378
823 => 0.0083622122788965
824 => 0.0083415748231643
825 => 0.0086350228085964
826 => 0.0087963895296464
827 => 0.0088148899641593
828 => 0.0087951443029999
829 => 0.0088027436243029
830 => 0.008708847884797
831 => 0.0089234657013909
901 => 0.0091204202333996
902 => 0.0090676322115014
903 => 0.0089884954624165
904 => 0.0089254592300282
905 => 0.009052782878471
906 => 0.0090471133568319
907 => 0.0091187000073819
908 => 0.0091154524234084
909 => 0.0090913805253386
910 => 0.0090676330711847
911 => 0.0091617890426142
912 => 0.0091346736349412
913 => 0.0091075161095505
914 => 0.0090530475347704
915 => 0.0090604507187103
916 => 0.0089813276337009
917 => 0.0089447216741495
918 => 0.0083942558724747
919 => 0.0082471534232783
920 => 0.008293434848342
921 => 0.0083086718951696
922 => 0.0082446527207624
923 => 0.0083364397716857
924 => 0.0083221348570259
925 => 0.0083777869118722
926 => 0.0083430179241356
927 => 0.0083444448555202
928 => 0.008446693034924
929 => 0.0084763761163997
930 => 0.0084612790615893
1001 => 0.0084718525212818
1002 => 0.0087155134371161
1003 => 0.0086808726467219
1004 => 0.0086624704172416
1005 => 0.0086675679605707
1006 => 0.0087298285487154
1007 => 0.0087472581140938
1008 => 0.0086734078208316
1009 => 0.0087082360460575
1010 => 0.0088565302087095
1011 => 0.008908424772915
1012 => 0.009074047311055
1013 => 0.0090036879131472
1014 => 0.0091328356330903
1015 => 0.0095297916944931
1016 => 0.0098469076636117
1017 => 0.0095552747130385
1018 => 0.01013761780585
1019 => 0.010591055435759
1020 => 0.010573651744283
1021 => 0.010494584405307
1022 => 0.0099783577189188
1023 => 0.0095033182255982
1024 => 0.0099007089330032
1025 => 0.0099017219636405
1026 => 0.0098675857494461
1027 => 0.0096555686548468
1028 => 0.0098602080141277
1029 => 0.0098764515433264
1030 => 0.0098673594864782
1031 => 0.0097048064771493
1101 => 0.0094566180767219
1102 => 0.0095051134960863
1103 => 0.009584549982285
1104 => 0.0094341601417239
1105 => 0.0093861014752229
1106 => 0.0094754516797837
1107 => 0.0097633566557332
1108 => 0.0097089298877499
1109 => 0.0097075085848821
1110 => 0.0099403693788561
1111 => 0.0097736913048753
1112 => 0.0095057251786284
1113 => 0.0094380601977121
1114 => 0.009197895100052
1115 => 0.0093637779884445
1116 => 0.0093697478182822
1117 => 0.0092788954555916
1118 => 0.0095130973471448
1119 => 0.0095109391354837
1120 => 0.0097332789751621
1121 => 0.010158309241597
1122 => 0.010032606877343
1123 => 0.0098864287040941
1124 => 0.0099023223246073
1125 => 0.01007663611284
1126 => 0.0099712420172777
1127 => 0.010009142468876
1128 => 0.010076578745967
1129 => 0.010117264726285
1130 => 0.0098964682381613
1201 => 0.0098449900148628
1202 => 0.0097396836363952
1203 => 0.0097122111678897
1204 => 0.0097979810158618
1205 => 0.0097753836912146
1206 => 0.0093692460772006
1207 => 0.0093268024368078
1208 => 0.0093281041226631
1209 => 0.0092213775708103
1210 => 0.0090585939619273
1211 => 0.0094863795667675
1212 => 0.0094520223958431
1213 => 0.0094140947381764
1214 => 0.0094187406598284
1215 => 0.0096044278918901
1216 => 0.0094967199198643
1217 => 0.0097830792164844
1218 => 0.0097242123538477
1219 => 0.0096638357783094
1220 => 0.0096554898964545
1221 => 0.0096322500659596
1222 => 0.0095525520400326
1223 => 0.0094563118846168
1224 => 0.0093927657978319
1225 => 0.0086643299487784
1226 => 0.0087995234052463
1227 => 0.0089550511536413
1228 => 0.009008738709149
1229 => 0.0089169024303874
1230 => 0.0095561782960668
1231 => 0.0096729801569419
]
'min_raw' => 0.0040316061842911
'max_raw' => 0.010591055435759
'avg_raw' => 0.0073113308100249
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.004031'
'max' => '$0.010591'
'avg' => '$0.007311'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00015631445619822
'max_diff' => -0.00190998966894
'year' => 2027
]
2 => [
'items' => [
101 => 0.0093191797015543
102 => 0.0092529980819286
103 => 0.0095605171520314
104 => 0.009375045560082
105 => 0.0094585634065803
106 => 0.0092780435042707
107 => 0.0096448460090148
108 => 0.009642051588491
109 => 0.0094993571295352
110 => 0.0096199615091151
111 => 0.0095990035302351
112 => 0.009437901837515
113 => 0.009649953220026
114 => 0.0096500583948661
115 => 0.0095127180805662
116 => 0.0093523346611247
117 => 0.0093236618938159
118 => 0.009302060815293
119 => 0.0094532508654338
120 => 0.0095888073916311
121 => 0.0098410444795715
122 => 0.0099044628764851
123 => 0.010151989101641
124 => 0.010004599286394
125 => 0.010069935282475
126 => 0.010140866748562
127 => 0.010174873901823
128 => 0.010119461070509
129 => 0.010503971184035
130 => 0.010536435618702
131 => 0.010547320662829
201 => 0.01041766601597
202 => 0.010532829688429
203 => 0.010478948419905
204 => 0.010619132511956
205 => 0.01064111516755
206 => 0.010622496640318
207 => 0.010629474282176
208 => 0.010301362732514
209 => 0.010284348417738
210 => 0.010052357028482
211 => 0.010146895234398
212 => 0.0099701605897731
213 => 0.010026204966152
214 => 0.01005090879325
215 => 0.010038004915904
216 => 0.010152240282716
217 => 0.010055116884182
218 => 0.0097987922668853
219 => 0.0095423978141181
220 => 0.009539178990618
221 => 0.0094716748569423
222 => 0.0094228817322937
223 => 0.0094322810191301
224 => 0.0094654053319099
225 => 0.0094209564870182
226 => 0.0094304419016895
227 => 0.0095879629862202
228 => 0.0096195527163339
229 => 0.0095121984705033
301 => 0.0090811556823499
302 => 0.0089753767009481
303 => 0.0090514085350914
304 => 0.0090150702154481
305 => 0.0072758652612487
306 => 0.0076844656672462
307 => 0.0074416891807612
308 => 0.0075535717553425
309 => 0.0073057598293078
310 => 0.0074240286693474
311 => 0.0074021887330786
312 => 0.0080592060945575
313 => 0.0080489476721558
314 => 0.0080538578360958
315 => 0.0078194829178736
316 => 0.0081928485265741
317 => 0.0083767818512131
318 => 0.0083427406880493
319 => 0.0083513081154296
320 => 0.008204091327792
321 => 0.0080552832164001
322 => 0.0078902321194623
323 => 0.0081968766566406
324 => 0.0081627830187032
325 => 0.0082409815576279
326 => 0.0084398624593922
327 => 0.0084691484276521
328 => 0.0085085090659824
329 => 0.008494401079022
330 => 0.0088305105649235
331 => 0.008789805488459
401 => 0.0088878930110886
402 => 0.0086861195351213
403 => 0.00845779369455
404 => 0.0085011909723085
405 => 0.0084970114654815
406 => 0.0084438015465591
407 => 0.0083957660109321
408 => 0.0083158003780414
409 => 0.0085688234731944
410 => 0.0085585511976056
411 => 0.0087248473991738
412 => 0.0086954529302315
413 => 0.0084991494725881
414 => 0.0085061604889813
415 => 0.0085533129436047
416 => 0.0087165081274335
417 => 0.0087649555691693
418 => 0.0087425127838605
419 => 0.008795633192014
420 => 0.0088376173967251
421 => 0.0088009057617256
422 => 0.0093206650953324
423 => 0.0091048247825245
424 => 0.0092100238491798
425 => 0.0092351132067082
426 => 0.0091708473449716
427 => 0.0091847843091943
428 => 0.0092058950123963
429 => 0.0093340750683391
430 => 0.0096704566243312
501 => 0.0098194377256534
502 => 0.010267654719579
503 => 0.0098070669191056
504 => 0.0097797375451273
505 => 0.0098604749605899
506 => 0.010123625784612
507 => 0.010336884810981
508 => 0.010407635133236
509 => 0.010416985956283
510 => 0.010549718264226
511 => 0.010625797947828
512 => 0.010533601070836
513 => 0.010455473871
514 => 0.010175631938693
515 => 0.010208024404342
516 => 0.010431176370599
517 => 0.010746391666524
518 => 0.011016879182989
519 => 0.010922163882164
520 => 0.011644774768872
521 => 0.011716418686688
522 => 0.011706519813771
523 => 0.011869735320601
524 => 0.011545785777804
525 => 0.011407291072031
526 => 0.010472365858386
527 => 0.010735041708316
528 => 0.011116856482602
529 => 0.011066321865493
530 => 0.010789037770469
531 => 0.011016668838138
601 => 0.010941406888485
602 => 0.010882044666172
603 => 0.011153994514519
604 => 0.010854974485178
605 => 0.011113873529071
606 => 0.01078183282731
607 => 0.01092259653368
608 => 0.01084269224597
609 => 0.01089440011282
610 => 0.010592116979783
611 => 0.010755221620861
612 => 0.010585331290476
613 => 0.010585250740339
614 => 0.010581500401879
615 => 0.010781375622169
616 => 0.010787893545927
617 => 0.010640185456138
618 => 0.010618898412765
619 => 0.010697607769105
620 => 0.010605459726845
621 => 0.010648575215845
622 => 0.010606765651084
623 => 0.010597353437412
624 => 0.010522355317518
625 => 0.010490044065351
626 => 0.010502714139884
627 => 0.010459464643632
628 => 0.010433405257737
629 => 0.01057631653412
630 => 0.010499964804173
701 => 0.010564614536467
702 => 0.010490938007071
703 => 0.010235543056848
704 => 0.010088662720222
705 => 0.0096062453343754
706 => 0.0097430583065646
707 => 0.0098337654486694
708 => 0.0098037867387449
709 => 0.0098681926078834
710 => 0.0098721466051657
711 => 0.0098512076005687
712 => 0.0098269629156979
713 => 0.0098151619439179
714 => 0.0099031167192107
715 => 0.0099541774266897
716 => 0.0098428691238846
717 => 0.009816791145906
718 => 0.0099293299855418
719 => 0.0099979786127081
720 => 0.010504841505373
721 => 0.010467291465138
722 => 0.010561534697303
723 => 0.010550924355641
724 => 0.010649706277074
725 => 0.010811172970262
726 => 0.010482866036214
727 => 0.010539848767965
728 => 0.010525877918063
729 => 0.010678407993939
730 => 0.010678884176186
731 => 0.010587434776256
801 => 0.010637010979555
802 => 0.010609338902926
803 => 0.010659346085501
804 => 0.010466789961458
805 => 0.010701302535393
806 => 0.010834256053158
807 => 0.010836102112881
808 => 0.010899121025117
809 => 0.010963151889759
810 => 0.011086053558524
811 => 0.010959724228922
812 => 0.010732470062879
813 => 0.010748877079641
814 => 0.010615638045239
815 => 0.010617877817479
816 => 0.010605921737728
817 => 0.010641802833071
818 => 0.010474663844117
819 => 0.010513891030752
820 => 0.010458972739749
821 => 0.010539729386326
822 => 0.010452848584161
823 => 0.010525871180896
824 => 0.01055738531291
825 => 0.010673673138491
826 => 0.010435672777772
827 => 0.0099503739310574
828 => 0.010052389632317
829 => 0.0099015003969939
830 => 0.0099154657701989
831 => 0.0099436780466455
901 => 0.0098522328281995
902 => 0.009869677694109
903 => 0.009869054440741
904 => 0.009863683579925
905 => 0.0098398951468253
906 => 0.0098053972124327
907 => 0.0099428263651487
908 => 0.0099661782561779
909 => 0.010018086617249
910 => 0.010172530690018
911 => 0.010157098085106
912 => 0.010182269304009
913 => 0.010127320674473
914 => 0.0099180146795266
915 => 0.0099293810020537
916 => 0.0097876427780074
917 => 0.010014462052189
918 => 0.0099607482541945
919 => 0.0099261186191987
920 => 0.0099166696024487
921 => 0.010071496512201
922 => 0.010117823150214
923 => 0.010088955498269
924 => 0.010029747101928
925 => 0.010143444726295
926 => 0.010173865414058
927 => 0.010180675484176
928 => 0.010382125875197
929 => 0.010191934323199
930 => 0.010237715320107
1001 => 0.010594885589216
1002 => 0.010270981441262
1003 => 0.010442560692358
1004 => 0.010434162780872
1005 => 0.010521936919807
1006 => 0.010426962739544
1007 => 0.010428140058334
1008 => 0.010506077547373
1009 => 0.010396628400118
1010 => 0.01036952725207
1011 => 0.010332087210145
1012 => 0.010413836171972
1013 => 0.0104628409774
1014 => 0.010857783719086
1015 => 0.011112934741791
1016 => 0.011101857962983
1017 => 0.011203078986432
1018 => 0.01115747798829
1019 => 0.011010220336353
1020 => 0.011261571192052
1021 => 0.011182033264342
1022 => 0.011188590274464
1023 => 0.01118834622222
1024 => 0.011241231990821
1025 => 0.011203757576858
1026 => 0.011129891660267
1027 => 0.011178927302878
1028 => 0.011324545630869
1029 => 0.011776549389072
1030 => 0.012029496680415
1031 => 0.011761321644523
1101 => 0.011946305193274
1102 => 0.011835380980401
1103 => 0.011815222751213
1104 => 0.011931406090006
1105 => 0.012047792792353
1106 => 0.012040379462567
1107 => 0.011955888693186
1108 => 0.011908162001437
1109 => 0.012269564500977
1110 => 0.012535839706308
1111 => 0.012517681522436
1112 => 0.012597825840689
1113 => 0.01283313203785
1114 => 0.012854645487565
1115 => 0.012851935287382
1116 => 0.012798611957567
1117 => 0.013030301467043
1118 => 0.013223580932037
1119 => 0.012786269147374
1120 => 0.012952791750142
1121 => 0.013027549111547
1122 => 0.013137315097601
1123 => 0.013322508714988
1124 => 0.013523678103651
1125 => 0.013552125660918
1126 => 0.013531940757696
1127 => 0.013399264138149
1128 => 0.013619386083675
1129 => 0.013748328356869
1130 => 0.013825110529765
1201 => 0.014019817344893
1202 => 0.013028010787561
1203 => 0.012325960810297
1204 => 0.012216325568623
1205 => 0.012439273143761
1206 => 0.012498062641351
1207 => 0.012474364668588
1208 => 0.011684143591586
1209 => 0.012212165218193
1210 => 0.012780272091102
1211 => 0.012802095389778
1212 => 0.013086501568911
1213 => 0.01317911587904
1214 => 0.013408100131212
1215 => 0.013393777103893
1216 => 0.013449531125361
1217 => 0.013436714241351
1218 => 0.013860859350176
1219 => 0.014328754391369
1220 => 0.014312552673907
1221 => 0.014245287225853
1222 => 0.014345187886677
1223 => 0.014828105711868
1224 => 0.014783646377125
1225 => 0.01482683483379
1226 => 0.015396222165746
1227 => 0.016136506691692
1228 => 0.015792570206039
1229 => 0.016538813414849
1230 => 0.017008533958142
1231 => 0.017820867067756
]
'min_raw' => 0.0072758652612487
'max_raw' => 0.017820867067756
'avg_raw' => 0.012548366164502
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.007275'
'max' => '$0.01782'
'avg' => '$0.012548'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0032442590769577
'max_diff' => 0.0072298116319974
'year' => 2028
]
3 => [
'items' => [
101 => 0.017719158961607
102 => 0.018035394280005
103 => 0.017537080224479
104 => 0.016392850427106
105 => 0.016211771681736
106 => 0.016574295915611
107 => 0.017465526369995
108 => 0.016546227896982
109 => 0.016732200780776
110 => 0.016678640577732
111 => 0.016675786582128
112 => 0.016784711986293
113 => 0.016626710006385
114 => 0.015982981516224
115 => 0.016277998489749
116 => 0.016164078268392
117 => 0.016290481247303
118 => 0.016972625991928
119 => 0.016671033540029
120 => 0.016353330391336
121 => 0.01675180064377
122 => 0.017259190204353
123 => 0.017227438677519
124 => 0.017165827444351
125 => 0.017513126739858
126 => 0.018086763426891
127 => 0.018241815118336
128 => 0.01835627110707
129 => 0.018372052654166
130 => 0.018534612397437
131 => 0.017660487687539
201 => 0.019047746051262
202 => 0.019287287248438
203 => 0.019242263431335
204 => 0.019508503390561
205 => 0.019430168840701
206 => 0.019316674368268
207 => 0.019738721334505
208 => 0.019254878545148
209 => 0.018568124619768
210 => 0.018191357833852
211 => 0.018687514730456
212 => 0.018990500433722
213 => 0.019190754710071
214 => 0.019251351533097
215 => 0.017728343500454
216 => 0.016907526640758
217 => 0.017433660837139
218 => 0.018075580868566
219 => 0.017656921789353
220 => 0.017673332432632
221 => 0.017076434607344
222 => 0.018128393081415
223 => 0.017975131580106
224 => 0.018770252520012
225 => 0.018580490526459
226 => 0.019228880786535
227 => 0.019058137901133
228 => 0.019766882072329
301 => 0.020049619310702
302 => 0.020524379138467
303 => 0.020873614400392
304 => 0.021078692026
305 => 0.021066379934585
306 => 0.021878999656511
307 => 0.021399826197262
308 => 0.020797871399932
309 => 0.020786983936791
310 => 0.021098744856094
311 => 0.021752110215521
312 => 0.021921518347141
313 => 0.022016194381634
314 => 0.021871194739112
315 => 0.021351086291768
316 => 0.021126506101214
317 => 0.02131785493028
318 => 0.021083851755125
319 => 0.021487806885138
320 => 0.022042523558805
321 => 0.02192797675928
322 => 0.022310889536276
323 => 0.022707163976868
324 => 0.023273854224713
325 => 0.023422008039978
326 => 0.023666900662828
327 => 0.023918975614776
328 => 0.023999935295731
329 => 0.024154512446988
330 => 0.024153697749099
331 => 0.024619526398655
401 => 0.025133349824627
402 => 0.025327306272892
403 => 0.025773298430856
404 => 0.025009552489772
405 => 0.025588862559366
406 => 0.026111414743211
407 => 0.025488406487333
408 => 0.026347078225754
409 => 0.026380418503565
410 => 0.026883817115108
411 => 0.026373526182804
412 => 0.026070517056108
413 => 0.026945293051275
414 => 0.027368569600151
415 => 0.027241075258891
416 => 0.026270837026729
417 => 0.025706116760135
418 => 0.024228134896056
419 => 0.025978868258123
420 => 0.026831599409194
421 => 0.026268628659052
422 => 0.026552558359371
423 => 0.028101586739794
424 => 0.028691356454899
425 => 0.028568688476958
426 => 0.028589417345944
427 => 0.028907646379137
428 => 0.030318849164244
429 => 0.029473223743983
430 => 0.030119672692793
501 => 0.030462546884296
502 => 0.030781027541951
503 => 0.029998939703596
504 => 0.028981454917049
505 => 0.028659174774044
506 => 0.026212652312892
507 => 0.02608530019408
508 => 0.026013813590627
509 => 0.025563100667836
510 => 0.025208963771183
511 => 0.024927340962704
512 => 0.024188278613565
513 => 0.024437690460997
514 => 0.02325977933077
515 => 0.024013365129282
516 => 0.022133390523782
517 => 0.023699089238989
518 => 0.022846950611887
519 => 0.023419138781791
520 => 0.02341714247117
521 => 0.022363562637951
522 => 0.021755879777801
523 => 0.02214311894766
524 => 0.022558270076832
525 => 0.022625626950804
526 => 0.023163881226328
527 => 0.02331409642489
528 => 0.02285893736037
529 => 0.022094432228726
530 => 0.022272009334301
531 => 0.021752281183425
601 => 0.020841477590068
602 => 0.021495632631922
603 => 0.021718989924378
604 => 0.02181763722911
605 => 0.020921966501544
606 => 0.020640527312985
607 => 0.0204906914505
608 => 0.021978812385148
609 => 0.022060335009191
610 => 0.021643253738449
611 => 0.023528500631472
612 => 0.023101811197229
613 => 0.023578527836728
614 => 0.022255896073245
615 => 0.02230642238777
616 => 0.021680267314823
617 => 0.022030872315976
618 => 0.021783076001688
619 => 0.022002546896629
620 => 0.022134096846145
621 => 0.022760149173206
622 => 0.023706237750923
623 => 0.022666637832548
624 => 0.022213669260767
625 => 0.022494688415108
626 => 0.023243079455389
627 => 0.024376930190847
628 => 0.023705667734583
629 => 0.024003562613897
630 => 0.024068639392607
701 => 0.023573675308845
702 => 0.024395180222625
703 => 0.024835431379814
704 => 0.025287037969949
705 => 0.025679155318433
706 => 0.025106656366807
707 => 0.025719312309548
708 => 0.025225619768031
709 => 0.024782726521293
710 => 0.02478339820753
711 => 0.024505564804214
712 => 0.023967227576026
713 => 0.023867949931574
714 => 0.024384404775401
715 => 0.024798552651694
716 => 0.02483266385442
717 => 0.025061957398423
718 => 0.025197650955852
719 => 0.026527632285105
720 => 0.027062561777913
721 => 0.027716663436021
722 => 0.027971472895004
723 => 0.028738358012296
724 => 0.028119035996719
725 => 0.027985041782931
726 => 0.026124829334592
727 => 0.026429439018796
728 => 0.026917148513671
729 => 0.026132871484528
730 => 0.026630314743831
731 => 0.026728520580506
801 => 0.026106222051185
802 => 0.026438618583628
803 => 0.025555871942163
804 => 0.023725479215438
805 => 0.024397217972975
806 => 0.024891843803343
807 => 0.024185951756483
808 => 0.025451235928685
809 => 0.024712083036052
810 => 0.024477807054683
811 => 0.023563812925945
812 => 0.023995182971849
813 => 0.024578617135558
814 => 0.024218122653887
815 => 0.024966202831873
816 => 0.026025683869596
817 => 0.026780733150264
818 => 0.02683869645855
819 => 0.026353250355453
820 => 0.027131180833741
821 => 0.027136847207989
822 => 0.026259338450541
823 => 0.025721869222593
824 => 0.025599755083159
825 => 0.025904820145354
826 => 0.026275225448976
827 => 0.026859251375011
828 => 0.027212166010542
829 => 0.028132380208549
830 => 0.028381363785921
831 => 0.028654921250349
901 => 0.029020478384823
902 => 0.029459423451683
903 => 0.028499036634549
904 => 0.028537194593178
905 => 0.027642895686523
906 => 0.026687209049326
907 => 0.027412456078937
908 => 0.028360620094585
909 => 0.028143110221768
910 => 0.028118635917752
911 => 0.0281597949085
912 => 0.027995799567604
913 => 0.027254054718681
914 => 0.02688155509912
915 => 0.027362174643142
916 => 0.027617602540874
917 => 0.028013748934604
918 => 0.027964915529941
919 => 0.028985346097171
920 => 0.029381854559378
921 => 0.029280410727192
922 => 0.029299078833696
923 => 0.030016938464809
924 => 0.030815346013701
925 => 0.031563160042392
926 => 0.032323868591738
927 => 0.031406804744542
928 => 0.030941176279571
929 => 0.031421586000134
930 => 0.031166673840147
1001 => 0.032631474723293
1002 => 0.032732894358309
1003 => 0.034197589319678
1004 => 0.03558775925065
1005 => 0.034714618424488
1006 => 0.035537950896432
1007 => 0.036428452092121
1008 => 0.038146373377217
1009 => 0.037567837925596
1010 => 0.037124688836461
1011 => 0.036705915088509
1012 => 0.037577316779537
1013 => 0.038698361134062
1014 => 0.038939823350797
1015 => 0.039331084387575
1016 => 0.038919721248527
1017 => 0.039415162839347
1018 => 0.041164289363008
1019 => 0.040691659936347
1020 => 0.040020450171518
1021 => 0.041401217574052
1022 => 0.041900911929431
1023 => 0.04540802860745
1024 => 0.049835908285212
1025 => 0.048002737023593
1026 => 0.046864828465439
1027 => 0.047132263968157
1028 => 0.04874917573329
1029 => 0.049268476474036
1030 => 0.047856838046987
1031 => 0.048355452604065
1101 => 0.051102867836262
1102 => 0.052576767960703
1103 => 0.050575013620517
1104 => 0.045052252786672
1105 => 0.039960015076061
1106 => 0.041310705823367
1107 => 0.041157579409437
1108 => 0.044109334329403
1109 => 0.040680387880831
1110 => 0.040738122545001
1111 => 0.043750916630749
1112 => 0.042947154821039
1113 => 0.041645163627342
1114 => 0.039969521052644
1115 => 0.036871940775138
1116 => 0.034128327540935
1117 => 0.0395091849096
1118 => 0.039277152555409
1119 => 0.038941135321272
1120 => 0.039688905314982
1121 => 0.04331986414622
1122 => 0.043236158792893
1123 => 0.042703668041874
1124 => 0.043107557583364
1125 => 0.041574359837941
1126 => 0.0419694998072
1127 => 0.03995920843959
1128 => 0.040867944094933
1129 => 0.041642370138994
1130 => 0.041797847632913
1201 => 0.042148146365589
1202 => 0.039154882048382
1203 => 0.040498769849185
1204 => 0.041288178026898
1205 => 0.037721603161074
1206 => 0.041217678309213
1207 => 0.039102775976032
1208 => 0.038384946359383
1209 => 0.03935140937134
1210 => 0.038974777795664
1211 => 0.038650972083446
1212 => 0.03847028293234
1213 => 0.039179946703691
1214 => 0.039146840040526
1215 => 0.037985692370793
1216 => 0.036471022570061
1217 => 0.036979395472528
1218 => 0.03679469883104
1219 => 0.036125334375948
1220 => 0.036576405199308
1221 => 0.034590117574951
1222 => 0.031172812955492
1223 => 0.033430389061978
1224 => 0.033343474837649
1225 => 0.033299648744496
1226 => 0.034996154793699
1227 => 0.034833074882122
1228 => 0.034537083245727
1229 => 0.036119898257426
1230 => 0.03554214948629
1231 => 0.037322635064202
]
'min_raw' => 0.015982981516224
'max_raw' => 0.052576767960703
'avg_raw' => 0.034279874738463
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.015982'
'max' => '$0.052576'
'avg' => '$0.034279'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0087071162549754
'max_diff' => 0.034755900892947
'year' => 2029
]
4 => [
'items' => [
101 => 0.038495378020402
102 => 0.03819793247245
103 => 0.039300902891115
104 => 0.036991107357432
105 => 0.037758328780809
106 => 0.037916452052844
107 => 0.036100366565876
108 => 0.034859756772499
109 => 0.034777022243268
110 => 0.032625975828114
111 => 0.033775047460449
112 => 0.03478618294509
113 => 0.03430192751523
114 => 0.034148626712856
115 => 0.034931807265298
116 => 0.03499266710171
117 => 0.033605056381869
118 => 0.03389358459044
119 => 0.035096795184008
120 => 0.033863266770603
121 => 0.031466722559079
122 => 0.030872346459805
123 => 0.030793045731637
124 => 0.029181050609843
125 => 0.030912065512879
126 => 0.030156431119388
127 => 0.032543471114534
128 => 0.031180006671259
129 => 0.031121230444231
130 => 0.031032381556481
131 => 0.029644870764473
201 => 0.029948647447012
202 => 0.030958447406266
203 => 0.031318755407938
204 => 0.031281172331448
205 => 0.030953498835571
206 => 0.031103506084024
207 => 0.030620280470768
208 => 0.030449643449256
209 => 0.029911066071955
210 => 0.029119506113119
211 => 0.029229577380314
212 => 0.027661289978931
213 => 0.026806803767345
214 => 0.026570293245925
215 => 0.026254021492228
216 => 0.026606016982072
217 => 0.027656847217768
218 => 0.026389323007448
219 => 0.024216241655341
220 => 0.024346847547353
221 => 0.024640280209467
222 => 0.024093470384869
223 => 0.023575960776157
224 => 0.02402589339405
225 => 0.023105130177937
226 => 0.024751550045136
227 => 0.024707019001766
228 => 0.025320702514336
301 => 0.0257044514088
302 => 0.024820034447242
303 => 0.024597605973127
304 => 0.024724311340793
305 => 0.02263015385297
306 => 0.025149565170076
307 => 0.025171353143767
308 => 0.024984791285161
309 => 0.026326300033422
310 => 0.029157301919325
311 => 0.028092165133061
312 => 0.02767971197549
313 => 0.026895638221446
314 => 0.027940369945017
315 => 0.027860150849
316 => 0.027497369674625
317 => 0.027277958488416
318 => 0.02768223032652
319 => 0.027227864733797
320 => 0.027146248188212
321 => 0.026651740721648
322 => 0.02647522405474
323 => 0.026344538141893
324 => 0.026200665792781
325 => 0.026518012344167
326 => 0.025798863308311
327 => 0.024931640070117
328 => 0.024859539841347
329 => 0.025058614912099
330 => 0.024970539012687
331 => 0.024859118167826
401 => 0.024646385431324
402 => 0.02458327217272
403 => 0.024788359644984
404 => 0.02455682784614
405 => 0.024898465627523
406 => 0.024805559054668
407 => 0.024286590491036
408 => 0.02363976351398
409 => 0.023634005397119
410 => 0.023494647585921
411 => 0.023317154460773
412 => 0.02326777993385
413 => 0.023988001323936
414 => 0.025478838047001
415 => 0.025186151125564
416 => 0.025397647422065
417 => 0.026437999875269
418 => 0.026768696635653
419 => 0.026533975908114
420 => 0.026212675699316
421 => 0.026226811277877
422 => 0.027324791355529
423 => 0.027393271026162
424 => 0.027566297061473
425 => 0.027788684414001
426 => 0.02657184943588
427 => 0.026169498459835
428 => 0.025978842245803
429 => 0.025391694899825
430 => 0.026024882974253
501 => 0.025655951399101
502 => 0.025705732873086
503 => 0.025673312622846
504 => 0.025691016271725
505 => 0.024751089837229
506 => 0.02509354962888
507 => 0.024524143804091
508 => 0.023761773323501
509 => 0.023759217590329
510 => 0.023945806685404
511 => 0.023834816190421
512 => 0.02353614362225
513 => 0.023578568650864
514 => 0.023206880758492
515 => 0.023623698290624
516 => 0.023635651126001
517 => 0.023475153671926
518 => 0.02411731858991
519 => 0.024380414080765
520 => 0.024274771218304
521 => 0.024373001895912
522 => 0.025198313588552
523 => 0.025332875405326
524 => 0.025392638875682
525 => 0.025312563742548
526 => 0.024388087078608
527 => 0.024429091549832
528 => 0.024128227946884
529 => 0.023874029906618
530 => 0.023884196495136
531 => 0.024014887331264
601 => 0.024585621877555
602 => 0.025786699083583
603 => 0.025832279085576
604 => 0.025887523377653
605 => 0.025662817078217
606 => 0.025595043508157
607 => 0.025684454340909
608 => 0.026135515789854
609 => 0.027295768298529
610 => 0.026885657571303
611 => 0.026552231166315
612 => 0.026844736014603
613 => 0.026799707185938
614 => 0.026419618556593
615 => 0.026408950734692
616 => 0.025679439133293
617 => 0.025409755304431
618 => 0.02518438731155
619 => 0.024938291346703
620 => 0.024792397409531
621 => 0.025016556804636
622 => 0.025067824710473
623 => 0.02457769627544
624 => 0.024510893580831
625 => 0.024911143041037
626 => 0.024735008176404
627 => 0.024916167252613
628 => 0.024958197712247
629 => 0.024951429840203
630 => 0.024767524812566
701 => 0.024884740393055
702 => 0.024607490601553
703 => 0.024306023094866
704 => 0.02411370560769
705 => 0.023945883092915
706 => 0.024039000778014
707 => 0.023707053233255
708 => 0.023600856532902
709 => 0.024845030391819
710 => 0.025764114998525
711 => 0.025750751144346
712 => 0.025669402118936
713 => 0.025548533968223
714 => 0.026126673531788
715 => 0.025925261268107
716 => 0.026071805518493
717 => 0.026109107180658
718 => 0.026222008077493
719 => 0.026262360443951
720 => 0.026140387565994
721 => 0.025731031689837
722 => 0.024710955766842
723 => 0.024236107671046
724 => 0.024079399890212
725 => 0.024085095920415
726 => 0.023927973979222
727 => 0.023974253432615
728 => 0.023911879873984
729 => 0.023793759443721
730 => 0.0240317071743
731 => 0.024059128433612
801 => 0.024003588590032
802 => 0.024016670233767
803 => 0.023556824050296
804 => 0.023591785156892
805 => 0.023397117272723
806 => 0.023360619391198
807 => 0.022868515931692
808 => 0.02199668332164
809 => 0.022479763218448
810 => 0.021896270634417
811 => 0.021675293151489
812 => 0.022721366186621
813 => 0.022616369467443
814 => 0.022436660725187
815 => 0.022170834040808
816 => 0.022072236337776
817 => 0.021473187906392
818 => 0.021437792929267
819 => 0.021734697507529
820 => 0.021597686260524
821 => 0.021405270579512
822 => 0.020708360487751
823 => 0.01992480280561
824 => 0.019948453486766
825 => 0.020197688606846
826 => 0.020922373332414
827 => 0.020639226472961
828 => 0.020433800177693
829 => 0.020395330007681
830 => 0.020876864728138
831 => 0.021558337242228
901 => 0.02187806889875
902 => 0.021561224537531
903 => 0.021197250795474
904 => 0.021219404190661
905 => 0.021366780803945
906 => 0.021382268002208
907 => 0.021145358513234
908 => 0.021212047146675
909 => 0.021110741014342
910 => 0.02048902546721
911 => 0.020477780604444
912 => 0.020325201582661
913 => 0.02032058155052
914 => 0.020061006571845
915 => 0.020024690237971
916 => 0.019509288362738
917 => 0.019848527437797
918 => 0.019620983677098
919 => 0.019278021557578
920 => 0.019218894758903
921 => 0.019217117335937
922 => 0.019569262747757
923 => 0.019844412413631
924 => 0.019624941898236
925 => 0.019574972716137
926 => 0.020108512850907
927 => 0.020040615005431
928 => 0.019981815909143
929 => 0.021497318853047
930 => 0.020297680016778
1001 => 0.019774569011173
1002 => 0.019127119805652
1003 => 0.019337932531692
1004 => 0.019382353870552
1005 => 0.017825355242765
1006 => 0.017193681093384
1007 => 0.016976914329455
1008 => 0.016852161992181
1009 => 0.016909013198818
1010 => 0.016340432376387
1011 => 0.016722528092519
1012 => 0.016230185161234
1013 => 0.016147642266582
1014 => 0.017028012417305
1015 => 0.01715051078073
1016 => 0.0166278947051
1017 => 0.016963498829511
1018 => 0.016841804108753
1019 => 0.016238624967681
1020 => 0.016215587961178
1021 => 0.01591293387096
1022 => 0.015439338825149
1023 => 0.015222893180962
1024 => 0.015110166410202
1025 => 0.015156679672818
1026 => 0.01513316114391
1027 => 0.014979686834238
1028 => 0.01514195811169
1029 => 0.014727422052921
1030 => 0.014562350454175
1031 => 0.014487791442654
1101 => 0.014119866830692
1102 => 0.014705398505141
1103 => 0.014820755621342
1104 => 0.014936340026697
1105 => 0.015942423362485
1106 => 0.015892162282191
1107 => 0.01634649796991
1108 => 0.016328843320555
1109 => 0.016199259422668
1110 => 0.015652566272996
1111 => 0.015870468418587
1112 => 0.015199799483971
1113 => 0.01570231025084
1114 => 0.015472985322192
1115 => 0.015624775261784
1116 => 0.015351843264051
1117 => 0.015502895100683
1118 => 0.01484811107306
1119 => 0.014236682961125
1120 => 0.014482739482067
1121 => 0.014750231060307
1122 => 0.015330220957518
1123 => 0.014984783759552
1124 => 0.015109016038367
1125 => 0.014692858700568
1126 => 0.013834207243224
1127 => 0.013839067117223
1128 => 0.013706982297249
1129 => 0.013592841728092
1130 => 0.015024461377142
1201 => 0.014846416843225
1202 => 0.014562726180321
1203 => 0.014942457406037
1204 => 0.015042864369261
1205 => 0.015045722814349
1206 => 0.015322764914349
1207 => 0.015470622332782
1208 => 0.015496682843632
1209 => 0.015932614573874
1210 => 0.016078733139772
1211 => 0.016680574833235
1212 => 0.015458077663851
1213 => 0.015432901139134
1214 => 0.014947801003114
1215 => 0.014640142827721
1216 => 0.014968866621597
1217 => 0.015260071027698
1218 => 0.014956849535741
1219 => 0.014996443861236
1220 => 0.01458939378239
1221 => 0.014734895032091
1222 => 0.014860220309468
1223 => 0.01479102305758
1224 => 0.014687431422318
1225 => 0.015236195587249
1226 => 0.015205232162439
1227 => 0.015716253968856
1228 => 0.016114632010478
1229 => 0.016828596679657
1230 => 0.016083537327549
1231 => 0.016056384403415
]
'min_raw' => 0.013592841728092
'max_raw' => 0.039300902891115
'avg_raw' => 0.026446872309603
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.013592'
'max' => '$0.0393009'
'avg' => '$0.026446'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0023901397881317
'max_diff' => -0.013275865069588
'year' => 2030
]
5 => [
'items' => [
101 => 0.016321808592287
102 => 0.016078692504712
103 => 0.016232333479977
104 => 0.016803842743262
105 => 0.016815917833423
106 => 0.016613644515356
107 => 0.016601336165569
108 => 0.016640184968931
109 => 0.016867723623645
110 => 0.016788214626131
111 => 0.016880224450976
112 => 0.016995284145848
113 => 0.017471219828139
114 => 0.017585966309867
115 => 0.017307191848498
116 => 0.017332362061054
117 => 0.017228092759972
118 => 0.017127369921618
119 => 0.01735378015285
120 => 0.01776754930053
121 => 0.017764975264137
122 => 0.017860961663876
123 => 0.017920760395719
124 => 0.017664060463302
125 => 0.017496958246416
126 => 0.01756103586936
127 => 0.017663497383877
128 => 0.017527808981144
129 => 0.016690277302492
130 => 0.016944330912064
131 => 0.016902043968844
201 => 0.016841822219432
202 => 0.017097275088395
203 => 0.017072636036002
204 => 0.016334600758239
205 => 0.016381847382172
206 => 0.016337473981926
207 => 0.016480853516064
208 => 0.016070949539337
209 => 0.016197033241833
210 => 0.016276111758077
211 => 0.016322689611654
212 => 0.01649096075751
213 => 0.016471216080722
214 => 0.016489733400678
215 => 0.016739235088046
216 => 0.018001129004113
217 => 0.018069811105752
218 => 0.017731595317981
219 => 0.017866705854184
220 => 0.0176073231701
221 => 0.017781448503638
222 => 0.017900580634542
223 => 0.017362245442781
224 => 0.017330368726492
225 => 0.017069915477803
226 => 0.017209868300822
227 => 0.016987193296434
228 => 0.01704182995367
301 => 0.016889061096901
302 => 0.01716401462311
303 => 0.01747145538887
304 => 0.017549127067505
305 => 0.017344806320777
306 => 0.017196864634752
307 => 0.016937127769114
308 => 0.017369075965284
309 => 0.017495390781227
310 => 0.01736841248733
311 => 0.017338988842103
312 => 0.017283231087566
313 => 0.017350818113312
314 => 0.017494702843611
315 => 0.017426849461936
316 => 0.017471667815955
317 => 0.017300866466919
318 => 0.01766414544166
319 => 0.018241119881396
320 => 0.018242974948564
321 => 0.018175121201134
322 => 0.018147356909614
323 => 0.018216978972188
324 => 0.018254746085087
325 => 0.018479891068947
326 => 0.0187214806068
327 => 0.019848873566186
328 => 0.019532306134526
329 => 0.020532596237002
330 => 0.021323695836646
331 => 0.021560912015986
401 => 0.021342684292877
402 => 0.020596139040549
403 => 0.020559509968888
404 => 0.021675163759141
405 => 0.021359940463213
406 => 0.021322445655195
407 => 0.020923564246358
408 => 0.021159352561404
409 => 0.021107782198098
410 => 0.02102637585671
411 => 0.021476243536662
412 => 0.022318355673567
413 => 0.022187104599753
414 => 0.022089131761713
415 => 0.021659843304884
416 => 0.021918370840943
417 => 0.021826314137121
418 => 0.022221848157367
419 => 0.021987542565925
420 => 0.021357552336716
421 => 0.021457880357193
422 => 0.021442715978729
423 => 0.02175479781294
424 => 0.021661118592657
425 => 0.021424423607472
426 => 0.022315477425832
427 => 0.02225761734717
428 => 0.022339649710058
429 => 0.022375762893136
430 => 0.022918131650243
501 => 0.023140322776165
502 => 0.023190764051753
503 => 0.0234018284365
504 => 0.023185512577585
505 => 0.02405093024384
506 => 0.024626382493379
507 => 0.025294799893721
508 => 0.02627153736928
509 => 0.026638799695417
510 => 0.026572457043438
511 => 0.027313008250056
512 => 0.02864376230682
513 => 0.026841440486024
514 => 0.028739289739701
515 => 0.028138452577711
516 => 0.026713878475229
517 => 0.026622152697655
518 => 0.027586890819501
519 => 0.029726587121151
520 => 0.029190617465822
521 => 0.029727463775501
522 => 0.02910120403899
523 => 0.029070104964541
524 => 0.029697047737937
525 => 0.031161933700849
526 => 0.030466021290299
527 => 0.029468260205051
528 => 0.030204991463516
529 => 0.029566766666175
530 => 0.028128667569891
531 => 0.029190207619928
601 => 0.028480386019388
602 => 0.028687549698618
603 => 0.030179489124957
604 => 0.029999975025998
605 => 0.030232282892609
606 => 0.029822265588595
607 => 0.029439244772853
608 => 0.028724307976769
609 => 0.028512650437407
610 => 0.028571144966647
611 => 0.028512621450424
612 => 0.028112620883623
613 => 0.028026240799307
614 => 0.027882270207715
615 => 0.027926892714133
616 => 0.027656185881858
617 => 0.028167065605247
618 => 0.028261889383764
619 => 0.028633665042613
620 => 0.028672264024833
621 => 0.029707653942831
622 => 0.029137378575018
623 => 0.029519968526953
624 => 0.029485746080576
625 => 0.026744753315717
626 => 0.02712243793473
627 => 0.027709996677953
628 => 0.027445302260548
629 => 0.027071086283293
630 => 0.026768886817467
701 => 0.02631102372526
702 => 0.02695545723506
703 => 0.027802818772583
704 => 0.028693754511784
705 => 0.029764155426011
706 => 0.029525254402796
707 => 0.028673744111248
708 => 0.028711942240898
709 => 0.028948068047985
710 => 0.028642263673515
711 => 0.028552075993473
712 => 0.028935677645674
713 => 0.028938319299429
714 => 0.028586454408907
715 => 0.028195420973688
716 => 0.028193782529317
717 => 0.028124201906455
718 => 0.029113582277223
719 => 0.029657641443508
720 => 0.029720016950127
721 => 0.02965344307493
722 => 0.029679064717271
723 => 0.029362488675935
724 => 0.030086087628719
725 => 0.030750133584313
726 => 0.030572155082941
727 => 0.03030534000825
728 => 0.030092808949703
729 => 0.030522089519882
730 => 0.030502974331842
731 => 0.030744333722192
801 => 0.030733384266086
802 => 0.030652224181097
803 => 0.030572157981423
804 => 0.030889611412858
805 => 0.030798189922751
806 => 0.030706626429818
807 => 0.030522981827073
808 => 0.0305479421786
809 => 0.030281173173293
810 => 0.030157753624919
811 => 0.028301819742278
812 => 0.027805853564447
813 => 0.027961894620315
814 => 0.028013267387511
815 => 0.027797422271321
816 => 0.028106888721877
817 => 0.028058658703364
818 => 0.028246293491781
819 => 0.028129067422133
820 => 0.028133878420922
821 => 0.028478615296521
822 => 0.028578693878123
823 => 0.028527793103787
824 => 0.028563442261356
825 => 0.029384962050953
826 => 0.029268168207597
827 => 0.029206123806101
828 => 0.029223310529334
829 => 0.029433226449159
830 => 0.029491991445726
831 => 0.02924300002593
901 => 0.029360425818908
902 => 0.029860409941857
903 => 0.030035376088239
904 => 0.030593784038974
905 => 0.030356562416592
906 => 0.030791992971186
907 => 0.032130358046792
908 => 0.033199536677006
909 => 0.032216275822986
910 => 0.034179686218295
911 => 0.035708482845537
912 => 0.03564980508464
913 => 0.035383224030977
914 => 0.033642729716023
915 => 0.032041100898095
916 => 0.033380931413044
917 => 0.033384346916565
918 => 0.033269254287094
919 => 0.032554423850092
920 => 0.033244379737371
921 => 0.033299145930152
922 => 0.033268491425701
923 => 0.03272043260566
924 => 0.031883648085658
925 => 0.032047153777887
926 => 0.032314979437184
927 => 0.031807929589849
928 => 0.031645896440392
929 => 0.031947146893301
930 => 0.032917838620598
1001 => 0.032734334972387
1002 => 0.032729542950536
1003 => 0.033514649375241
1004 => 0.032952682611723
1005 => 0.032049216108284
1006 => 0.031821078900906
1007 => 0.031011345506354
1008 => 0.031570631246143
1009 => 0.031590758944241
1010 => 0.03128444386032
1011 => 0.032074071889145
1012 => 0.032066795327848
1013 => 0.032816429620596
1014 => 0.034249448838547
1015 => 0.033825634541206
1016 => 0.033332784624263
1017 => 0.03338637107548
1018 => 0.033974082182706
1019 => 0.033618738631138
1020 => 0.033746522649825
1021 => 0.03397388876629
1022 => 0.034111064389536
1023 => 0.033366633614308
1024 => 0.033193071190363
1025 => 0.032838023383103
1026 => 0.03274539803747
1027 => 0.033034577068167
1028 => 0.032958388610425
1029 => 0.031589067289154
1030 => 0.031445965592249
1031 => 0.031450354316991
1101 => 0.031090518296009
1102 => 0.030541681993472
1103 => 0.031983991027227
1104 => 0.031868153426715
1105 => 0.031740277680867
1106 => 0.031755941730085
1107 => 0.032381999197249
1108 => 0.032018854249634
1109 => 0.032984334611156
1110 => 0.032785860873823
1111 => 0.032582297034038
1112 => 0.032554158310673
1113 => 0.032475803599607
1114 => 0.032207096140855
1115 => 0.031882615737598
1116 => 0.031668365669356
1117 => 0.029212393346506
1118 => 0.029668207523893
1119 => 0.030192580186207
1120 => 0.030373591527947
1121 => 0.030063959102298
1122 => 0.032219322316252
1123 => 0.032613127945038
1124 => 0.031420265008139
1125 => 0.031197129056918
1126 => 0.032233951072066
1127 => 0.031608620650595
1128 => 0.031890206901094
1129 => 0.03128157144696
1130 => 0.032518271701038
1201 => 0.032508850117142
1202 => 0.032027745786163
1203 => 0.032434371872246
1204 => 0.032363710583212
1205 => 0.031820544978446
1206 => 0.032535491019536
1207 => 0.032535845623853
1208 => 0.032072793165396
1209 => 0.031532049269136
1210 => 0.031435377032286
1211 => 0.031362547487907
1212 => 0.031872295297709
1213 => 0.032329333590037
1214 => 0.03317976854266
1215 => 0.033393588095585
1216 => 0.034228140045426
1217 => 0.033731204992892
1218 => 0.033951489865294
1219 => 0.034190640255484
1220 => 0.034305297747005
1221 => 0.034118469517431
1222 => 0.035414872210821
1223 => 0.035524328318896
1224 => 0.035561028005141
1225 => 0.035123888311058
1226 => 0.035512170673223
1227 => 0.035330506214526
1228 => 0.035803146668216
1229 => 0.035877262726331
1230 => 0.035814489061863
1231 => 0.035838014668551
]
'min_raw' => 0.016070949539337
'max_raw' => 0.035877262726331
'avg_raw' => 0.025974106132834
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.01607'
'max' => '$0.035877'
'avg' => '$0.025974'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0024781078112445
'max_diff' => -0.003423640164784
'year' => 2031
]
6 => [
'items' => [
101 => 0.034731763670849
102 => 0.034674398720679
103 => 0.033892223554684
104 => 0.034210965716374
105 => 0.033615092522803
106 => 0.033804050050659
107 => 0.033887340728484
108 => 0.033843834405092
109 => 0.034228986919959
110 => 0.033901528600862
111 => 0.033037312257633
112 => 0.032172860459239
113 => 0.032162007971077
114 => 0.031934413071402
115 => 0.031769903645022
116 => 0.031801593996828
117 => 0.031913274930031
118 => 0.031763412546159
119 => 0.031795393283974
120 => 0.03232648661824
121 => 0.032432993598843
122 => 0.032071041263791
123 => 0.030617750409085
124 => 0.030261109188037
125 => 0.030517455825224
126 => 0.030394938643486
127 => 0.024531087712991
128 => 0.02590871250938
129 => 0.025090174635083
130 => 0.025467394546676
131 => 0.024631879336374
201 => 0.025030630987834
202 => 0.024956996117888
203 => 0.027172176023601
204 => 0.027137589036254
205 => 0.027154143996795
206 => 0.026363932596474
207 => 0.027622760813762
208 => 0.028242904859597
209 => 0.028128132701312
210 => 0.028157018380884
211 => 0.027660666703016
212 => 0.027158949766007
213 => 0.026602468469182
214 => 0.027636341935517
215 => 0.027521392854869
216 => 0.027785044688501
217 => 0.028455585534221
218 => 0.02855432522089
219 => 0.028687032361092
220 => 0.028639466298067
221 => 0.029772682896199
222 => 0.029635442888961
223 => 0.029966151819759
224 => 0.029285858458161
225 => 0.028516041945474
226 => 0.028662358897338
227 => 0.028648267398267
228 => 0.028468866441622
229 => 0.028306911279522
301 => 0.028037301565208
302 => 0.028890386596025
303 => 0.02885575290169
304 => 0.029416432155707
305 => 0.029317326651412
306 => 0.028655475838498
307 => 0.028679113969761
308 => 0.028838091762603
309 => 0.029388315718805
310 => 0.02955165965111
311 => 0.029475992233536
312 => 0.029655091398374
313 => 0.029796644075801
314 => 0.029672868235276
315 => 0.031425273116969
316 => 0.030697552432848
317 => 0.031052238430841
318 => 0.031136828951431
319 => 0.030920152111686
320 => 0.030967141559611
321 => 0.031038317769359
322 => 0.031470485777216
323 => 0.032604619678653
324 => 0.033106919863289
325 => 0.034618114751822
326 => 0.033065210825311
327 => 0.032973067932868
328 => 0.033245279766006
329 => 0.034132511141799
330 => 0.034851528838474
331 => 0.035090068489587
401 => 0.035121595442342
402 => 0.035569111685646
403 => 0.035825619650625
404 => 0.035514771442864
405 => 0.03525136013395
406 => 0.034307853521237
407 => 0.034417066980742
408 => 0.035169439414953
409 => 0.036232209792791
410 => 0.037144177339388
411 => 0.036824838089847
412 => 0.039261171145464
413 => 0.0395027236164
414 => 0.039469348875243
415 => 0.040019641351863
416 => 0.038927422850886
417 => 0.038460478280982
418 => 0.035308312648783
419 => 0.036193942616265
420 => 0.037481257785226
421 => 0.03731087679543
422 => 0.036375994109697
423 => 0.037143468147038
424 => 0.036889717229161
425 => 0.036689573352096
426 => 0.037606471252729
427 => 0.036598304346893
428 => 0.037471200549132
429 => 0.036351702140806
430 => 0.03682629680464
501 => 0.036556893919887
502 => 0.036731230603098
503 => 0.03571206191533
504 => 0.036261980600328
505 => 0.035689183490069
506 => 0.035688911909658
507 => 0.035676267381702
508 => 0.036350160641751
509 => 0.036372136276767
510 => 0.035874128139395
511 => 0.03580235738645
512 => 0.036067731476661
513 => 0.035757047918609
514 => 0.035902414800002
515 => 0.035761450933359
516 => 0.035729716997824
517 => 0.035476855600399
518 => 0.035367915957819
519 => 0.035410633998703
520 => 0.035264815302506
521 => 0.035176954263554
522 => 0.035658789609624
523 => 0.035401364421401
524 => 0.035619335507532
525 => 0.035370929944742
526 => 0.034509848038959
527 => 0.034014630729167
528 => 0.032388126831478
529 => 0.032849401319191
530 => 0.033155226781767
531 => 0.03305415146821
601 => 0.033271300352685
602 => 0.033284631530582
603 => 0.033214034214668
604 => 0.033132291566916
605 => 0.033092503766643
606 => 0.033389049432349
607 => 0.033561204172559
608 => 0.033185920458354
609 => 0.033097996734893
610 => 0.033477429289936
611 => 0.033708882929321
612 => 0.035417806559976
613 => 0.035291203977667
614 => 0.035608951614761
615 => 0.035573178107059
616 => 0.035906228251903
617 => 0.036450624481229
618 => 0.035343714731429
619 => 0.035535835989935
620 => 0.035488732294077
621 => 0.036002998094202
622 => 0.036004603575896
623 => 0.035696275539239
624 => 0.035863425169962
625 => 0.035770126831603
626 => 0.035938729539044
627 => 0.035289513122994
628 => 0.036080188639162
629 => 0.036528450706824
630 => 0.036534674826068
701 => 0.036747147488513
702 => 0.036963032019143
703 => 0.037377403576107
704 => 0.03695147542132
705 => 0.036185272134127
706 => 0.036240589536641
707 => 0.035791364829702
708 => 0.035798916378185
709 => 0.035758605620559
710 => 0.035879581238647
711 => 0.035316060468115
712 => 0.03544831766661
713 => 0.03526315681422
714 => 0.035535433486403
715 => 0.03524250879608
716 => 0.035488709579249
717 => 0.035594961675579
718 => 0.035987034198482
719 => 0.035184599365663
720 => 0.033548380421483
721 => 0.033892333480787
722 => 0.033383599889147
723 => 0.033430685119938
724 => 0.033525804779696
725 => 0.033217490841204
726 => 0.03327630742458
727 => 0.033274206082336
728 => 0.033256097850113
729 => 0.033175893487062
730 => 0.033059581292688
731 => 0.033522933276067
801 => 0.033601665807049
802 => 0.033776678470526
803 => 0.034297397444807
804 => 0.034245365339877
805 => 0.034330231861809
806 => 0.034144968720937
807 => 0.033439278945696
808 => 0.033477601295667
809 => 0.032999720977448
810 => 0.033764457996367
811 => 0.033583358176252
812 => 0.033466601944099
813 => 0.033434743924418
814 => 0.033956753660318
815 => 0.034112947154799
816 => 0.034015617850794
817 => 0.03381599260873
818 => 0.034199332087398
819 => 0.034301897560095
820 => 0.034324858186963
821 => 0.035004062245109
822 => 0.034362818148797
823 => 0.034517171976198
824 => 0.035721396475332
825 => 0.034629331026239
826 => 0.035207822450589
827 => 0.035179508305691
828 => 0.035475444943306
829 => 0.035155232863663
830 => 0.035159202276161
831 => 0.035421973961879
901 => 0.035052958520412
902 => 0.034961585107628
903 => 0.034835353392297
904 => 0.035110975724628
905 => 0.035276198847535
906 => 0.036607775875148
907 => 0.037468035362276
908 => 0.037430689229167
909 => 0.037771962976754
910 => 0.037618216027757
911 => 0.03712172657305
912 => 0.037969173531796
913 => 0.037701005855362
914 => 0.037723113272783
915 => 0.037722290433603
916 => 0.037900598494806
917 => 0.03777425089175
918 => 0.03752520679681
919 => 0.037690533889432
920 => 0.038181496249003
921 => 0.039705458477677
922 => 0.040558287930657
923 => 0.039654117073763
924 => 0.040277802023518
925 => 0.039903813295335
926 => 0.039835848418224
927 => 0.040227568656626
928 => 0.040619974549449
929 => 0.040594979990494
930 => 0.040310113462569
1001 => 0.040149199589165
1002 => 0.041367693348683
1003 => 0.042265458794196
1004 => 0.042204237209508
1005 => 0.042474449373996
1006 => 0.043267800646278
1007 => 0.043340334744014
1008 => 0.043331197114876
1009 => 0.043151413785488
1010 => 0.043932571142731
1011 => 0.044584226353299
1012 => 0.043109799139174
1013 => 0.043671241720643
1014 => 0.043923291384015
1015 => 0.04429337506961
1016 => 0.044917768280437
1017 => 0.045596024919514
1018 => 0.045691937844985
1019 => 0.045623883034507
1020 => 0.045176554548519
1021 => 0.045918711056281
1022 => 0.046353448932817
1023 => 0.046612325389495
1024 => 0.047268793010694
1025 => 0.043924847956928
1026 => 0.04155783744302
1027 => 0.041188194571227
1028 => 0.041939877886506
1029 => 0.042138090782183
1030 => 0.042058191412473
1031 => 0.039393905879888
1101 => 0.041174167659284
1102 => 0.043089579645252
1103 => 0.043163158420394
1104 => 0.044122053709946
1105 => 0.04443430932267
1106 => 0.045206345716037
1107 => 0.045158054629429
1108 => 0.045346033205432
1109 => 0.045302820186144
1110 => 0.046732855033415
1111 => 0.048310395832185
1112 => 0.048255770610596
1113 => 0.048028980456157
1114 => 0.048365802508966
1115 => 0.049993993672843
1116 => 0.049844095921705
1117 => 0.049989708818675
1118 => 0.051909437961718
1119 => 0.05440535892596
1120 => 0.053245753051702
1121 => 0.055761764131241
1122 => 0.057345459737794
1123 => 0.060084297532145
1124 => 0.059741381551232
1125 => 0.060807591006053
1126 => 0.059127490376672
1127 => 0.055269639727256
1128 => 0.054659120094726
1129 => 0.055881395859869
1130 => 0.058886241560548
1201 => 0.055786762575417
1202 => 0.056413783137339
1203 => 0.056233201173324
1204 => 0.056223578727885
1205 => 0.056590828332957
1206 => 0.056058113626349
1207 => 0.053887738078084
1208 => 0.054882408401751
1209 => 0.054498318421791
1210 => 0.054924494890361
1211 => 0.057224393522689
1212 => 0.056207553514601
1213 => 0.055136395167455
1214 => 0.056479865443842
1215 => 0.058190564772157
1216 => 0.058083512282613
1217 => 0.057875785708429
1218 => 0.059046729530895
1219 => 0.060980785671258
1220 => 0.061503553274332
1221 => 0.061889449631407
1222 => 0.061942658219276
1223 => 0.062490739743273
1224 => 0.059543567254412
1225 => 0.064220805682991
1226 => 0.065028435553503
1227 => 0.064876634610675
1228 => 0.065774281221489
1229 => 0.065510170817491
1230 => 0.065127516279751
1231 => 0.066550477092799
]
'min_raw' => 0.024531087712991
'max_raw' => 0.066550477092799
'avg_raw' => 0.045540782402895
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.024531'
'max' => '$0.06655'
'avg' => '$0.04554'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0084601381736537
'max_diff' => 0.030673214366469
'year' => 2032
]
7 => [
'items' => [
101 => 0.064919167347655
102 => 0.06260372854061
103 => 0.061333433016877
104 => 0.063006260634345
105 => 0.064027798086694
106 => 0.064702969360712
107 => 0.06490727578028
108 => 0.059772347865198
109 => 0.057004906515128
110 => 0.058778804691744
111 => 0.060943082895127
112 => 0.059531544579715
113 => 0.059586874209284
114 => 0.057574391517251
115 => 0.061121142957978
116 => 0.060604411105939
117 => 0.063285216868401
118 => 0.062645421058379
119 => 0.064831514089386
120 => 0.064255842530366
121 => 0.066645422986494
122 => 0.067598691325751
123 => 0.069199377231734
124 => 0.070376848300139
125 => 0.071068281832939
126 => 0.071026770757132
127 => 0.073766574884903
128 => 0.072151008112221
129 => 0.070121475485881
130 => 0.070084767643764
131 => 0.071135891349645
201 => 0.073338758275467
202 => 0.073909929618922
203 => 0.074229136479286
204 => 0.073740260060968
205 => 0.071986678117936
206 => 0.071229490325797
207 => 0.071874636262542
208 => 0.071085678219926
209 => 0.072447641144011
210 => 0.074317907138362
211 => 0.073931704606362
212 => 0.075222721768119
213 => 0.076558788711572
214 => 0.07846942444723
215 => 0.078968935379168
216 => 0.079794607954961
217 => 0.080644496254765
218 => 0.080917457471529
219 => 0.081438625129225
220 => 0.081435878318413
221 => 0.083006452133508
222 => 0.08473884368818
223 => 0.085392781395112
224 => 0.086896475093866
225 => 0.084321452330461
226 => 0.086274636676233
227 => 0.088036457847495
228 => 0.085935942015756
301 => 0.088831013732389
302 => 0.088943422806772
303 => 0.09064066637176
304 => 0.088920184866121
305 => 0.087898568440044
306 => 0.09084793678266
307 => 0.092275043219419
308 => 0.09184518714649
309 => 0.088573961206886
310 => 0.086669967400556
311 => 0.081686848356413
312 => 0.087589568118923
313 => 0.090464610730545
314 => 0.088566515541081
315 => 0.089523804349043
316 => 0.094746461683347
317 => 0.09673491145423
318 => 0.096321327802199
319 => 0.096391216631226
320 => 0.097464148034678
321 => 0.1022221167517
322 => 0.099371031607609
323 => 0.10155057937214
324 => 0.10270660364751
325 => 0.1037803834204
326 => 0.10114351966976
327 => 0.097712998673399
328 => 0.096626408670376
329 => 0.088377787381856
330 => 0.087948410821842
331 => 0.087707388747265
401 => 0.086187778660305
402 => 0.084993781388188
403 => 0.084044270427125
404 => 0.081552470117319
405 => 0.082393379574313
406 => 0.078421969959626
407 => 0.080962737092988
408 => 0.074624271454909
409 => 0.079903133986825
410 => 0.07703008911113
411 => 0.078959261474865
412 => 0.078952530774227
413 => 0.075400312807936
414 => 0.073351467617877
415 => 0.07465707151523
416 => 0.076056782532159
417 => 0.076283880935463
418 => 0.078098642805107
419 => 0.078605103834749
420 => 0.077070503270529
421 => 0.074492920843145
422 => 0.075091634452631
423 => 0.07333933470569
424 => 0.070268496800413
425 => 0.072474026195669
426 => 0.073227090901492
427 => 0.073559687176733
428 => 0.070539870785009
429 => 0.069590978911326
430 => 0.069085796839751
501 => 0.074103100468204
502 => 0.074377959686893
503 => 0.072971741062902
504 => 0.079327982586464
505 => 0.077889369368408
506 => 0.079496652801772
507 => 0.075037307467989
508 => 0.075207660465045
509 => 0.073096534919853
510 => 0.0742786241597
511 => 0.073443161585491
512 => 0.074183123030754
513 => 0.07462665287007
514 => 0.076737432000333
515 => 0.079927235693901
516 => 0.076422151986552
517 => 0.074894936821537
518 => 0.075842412520529
519 => 0.07836566516383
520 => 0.082188522081357
521 => 0.079925313844015
522 => 0.08092968722798
523 => 0.081149098130914
524 => 0.079480292165221
525 => 0.082250053337672
526 => 0.083734390851488
527 => 0.085257014000294
528 => 0.08657906501747
529 => 0.08464884483146
530 => 0.086714457116685
531 => 0.085049938244447
601 => 0.083556692741252
602 => 0.083558957378295
603 => 0.082622222661305
604 => 0.080807181110965
605 => 0.08047245960135
606 => 0.082213723165038
607 => 0.083610051644844
608 => 0.083725059946403
609 => 0.084498139138771
610 => 0.084955639441465
611 => 0.089439764349372
612 => 0.091243316481959
613 => 0.093448665890191
614 => 0.09430777377138
615 => 0.096893380486537
616 => 0.094805293071338
617 => 0.094353522224374
618 => 0.088081686078914
619 => 0.089108698896379
620 => 0.090753045509136
621 => 0.088108800748908
622 => 0.089785965428028
623 => 0.090117073262891
624 => 0.088018950323788
625 => 0.089139648440104
626 => 0.086163406507004
627 => 0.079992109634912
628 => 0.08225692375525
629 => 0.083924589276008
630 => 0.08154462495621
701 => 0.08581061888211
702 => 0.083318513298589
703 => 0.082528635470777
704 => 0.079447040452705
705 => 0.080901434679765
706 => 0.082868523696783
707 => 0.08165309138291
708 => 0.084175295932277
709 => 0.087747410221565
710 => 0.090293111587195
711 => 0.090488538927949
712 => 0.088851823498594
713 => 0.091474670419513
714 => 0.091493774995905
715 => 0.088535192954464
716 => 0.086723077927534
717 => 0.086311361580693
718 => 0.087339909736847
719 => 0.088588757078881
720 => 0.090557841263896
721 => 0.091747717597304
722 => 0.094850284013187
723 => 0.095689749527775
724 => 0.096612067618266
725 => 0.097844569019527
726 => 0.099324502958614
727 => 0.096086491752578
728 => 0.096215143974202
729 => 0.093199952772458
730 => 0.089977788551237
731 => 0.092423009546703
801 => 0.095619810724158
802 => 0.094886461001898
803 => 0.094803944177169
804 => 0.094942714588106
805 => 0.094389792846485
806 => 0.091888948301369
807 => 0.090633039826928
808 => 0.092253482175381
809 => 0.093114675165992
810 => 0.094450310390509
811 => 0.094285665157248
812 => 0.097726118058852
813 => 0.09906297402252
814 => 0.098720949059722
815 => 0.098783889884167
816 => 0.10120420374982
817 => 0.10389609054395
818 => 0.10641739775239
819 => 0.10898217973748
820 => 0.10589023494931
821 => 0.10432033607052
822 => 0.10594007098453
823 => 0.10508061683974
824 => 0.11001929528639
825 => 0.11036123866674
826 => 0.11529955999074
827 => 0.11998661497157
828 => 0.11704275971542
829 => 0.11981868262782
830 => 0.12282106958189
831 => 0.12861316113603
901 => 0.12666258846883
902 => 0.12516848037513
903 => 0.12375655544606
904 => 0.12669454708668
905 => 0.13047422639678
906 => 0.13128833311886
907 => 0.13260749702133
908 => 0.13122055747757
909 => 0.13289097339165
910 => 0.13878827558629
911 => 0.13719477247637
912 => 0.13493174189188
913 => 0.13958709559162
914 => 0.14127184999833
915 => 0.15309633873733
916 => 0.1680252442156
917 => 0.16184457931912
918 => 0.15800804116906
919 => 0.15890971863823
920 => 0.16436124954355
921 => 0.16611210824739
922 => 0.16135267073315
923 => 0.16303378452449
924 => 0.17229688679825
925 => 0.17726624397223
926 => 0.17051718945626
927 => 0.15189681571811
928 => 0.1347279807481
929 => 0.13928192890486
930 => 0.13876565250935
1001 => 0.14871770030696
1002 => 0.1371567679542
1003 => 0.13735142440536
1004 => 0.14750927001203
1005 => 0.14479933095373
1006 => 0.14040957674206
1007 => 0.13476003081184
1008 => 0.12431632264008
1009 => 0.115066039068
1010 => 0.13320797536592
1011 => 0.13242566208378
1012 => 0.13129275651892
1013 => 0.13381391526034
1014 => 0.14605594646531
1015 => 0.14577372802245
1016 => 0.14397839827807
1017 => 0.14534014006587
1018 => 0.14017085682273
1019 => 0.14150309881688
1020 => 0.13472526111692
1021 => 0.13778912682481
1022 => 0.14040015830106
1023 => 0.1409243615269
1024 => 0.14210541816119
1025 => 0.13201341853269
1026 => 0.13654443008034
1027 => 0.13920597486622
1028 => 0.12718101869579
1029 => 0.13896828014591
1030 => 0.13183773927183
1031 => 0.12941752660203
1101 => 0.13267602412314
1102 => 0.13140618447017
1103 => 0.13031445090404
1104 => 0.12970524481577
1105 => 0.13209792576802
1106 => 0.13198630434173
1107 => 0.12807141390448
1108 => 0.12296459892044
1109 => 0.12467861365457
1110 => 0.12405589603269
1111 => 0.12179908703881
1112 => 0.12331990381253
1113 => 0.11662299640884
1114 => 0.10510131529574
1115 => 0.11271289075769
1116 => 0.11241985338221
1117 => 0.1122720906493
1118 => 0.11799197924046
1119 => 0.1174421439327
1120 => 0.11644418746512
1121 => 0.12178075878568
1122 => 0.11983283846666
1123 => 0.12583586990212
1124 => 0.12978985465725
1125 => 0.12878699622534
1126 => 0.13250573799881
1127 => 0.12471810109222
1128 => 0.12730484168683
1129 => 0.12783796533831
1130 => 0.12171490632396
1201 => 0.11753210378898
1202 => 0.11725315854733
1203 => 0.11000075537738
1204 => 0.11387493061142
1205 => 0.1172840444931
1206 => 0.1156513435017
1207 => 0.11513447914338
1208 => 0.11777502705585
1209 => 0.11798022024341
1210 => 0.11330179382158
1211 => 0.11427458682118
1212 => 0.11833129534287
1213 => 0.11417236817487
1214 => 0.10609225204435
1215 => 0.10408827152763
1216 => 0.10382090358601
1217 => 0.09838594948698
1218 => 0.10422218708816
1219 => 0.1016745129738
1220 => 0.10972258497525
1221 => 0.1051255694107
1222 => 0.10492740125765
1223 => 0.10462784102937
1224 => 0.099949751521204
1225 => 0.10097395581539
1226 => 0.10437856688
1227 => 0.10559337046354
1228 => 0.10546665649718
1229 => 0.1043618824284
1230 => 0.10486764233973
1231 => 0.10323841344691
]
'min_raw' => 0.057004906515128
'max_raw' => 0.17726624397223
'avg_raw' => 0.11713557524368
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.0570049'
'max' => '$0.177266'
'avg' => '$0.117135'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.032473818802137
'max_diff' => 0.11071576687943
'year' => 2033
]
8 => [
'items' => [
101 => 0.10266309881538
102 => 0.10084724758554
103 => 0.098178447919373
104 => 0.098549560881653
105 => 0.093261970413559
106 => 0.090381010492875
107 => 0.089583598757271
108 => 0.088517266458291
109 => 0.089704043827843
110 => 0.093246991334114
111 => 0.088973444963307
112 => 0.081646749464983
113 => 0.082087096348514
114 => 0.083076425055645
115 => 0.081232817554971
116 => 0.079487997777832
117 => 0.081004977012351
118 => 0.077900559543591
119 => 0.083451579075215
120 => 0.083301439553437
121 => 0.085370516362081
122 => 0.086664352552257
123 => 0.083682479018342
124 => 0.082932545888406
125 => 0.083359741881778
126 => 0.076299143702175
127 => 0.084793514857478
128 => 0.084866974531966
129 => 0.084237968200342
130 => 0.088760958606254
131 => 0.098305879118815
201 => 0.094714696078452
202 => 0.093324081461141
203 => 0.0906805220571
204 => 0.094202908003959
205 => 0.093932443721021
206 => 0.092709301663041
207 => 0.091969541529939
208 => 0.093332572257463
209 => 0.091800646938806
210 => 0.091525471057083
211 => 0.089858204608151
212 => 0.089263066341673
213 => 0.088822449662309
214 => 0.088337373992431
215 => 0.089407330046857
216 => 0.086982668863085
217 => 0.084058765167923
218 => 0.083815674212747
219 => 0.084486869712764
220 => 0.084189915668634
221 => 0.08381425251103
222 => 0.083097009237389
223 => 0.082884218479578
224 => 0.083575685211065
225 => 0.082795059586231
226 => 0.083946915218552
227 => 0.08363367422164
228 => 0.081883935476128
301 => 0.079703113162966
302 => 0.079683699269949
303 => 0.079213844679844
304 => 0.078615414216234
305 => 0.078448944551492
306 => 0.080877221252419
307 => 0.085903681351131
308 => 0.084916866960757
309 => 0.085629941490609
310 => 0.089137562421675
311 => 0.090252529637819
312 => 0.089461152317246
313 => 0.088377866230817
314 => 0.08842552532085
315 => 0.092127441811175
316 => 0.092358325801813
317 => 0.092941695160158
318 => 0.093691489645792
319 => 0.089588845560352
320 => 0.088232291153371
321 => 0.08758948041657
322 => 0.085609872146285
323 => 0.087744709947001
324 => 0.086500831383393
325 => 0.086668673098566
326 => 0.086559365961374
327 => 0.086619055049597
328 => 0.083450027452125
329 => 0.084604654549457
330 => 0.082684863056535
331 => 0.08011447775422
401 => 0.080105860921393
402 => 0.080734959082673
403 => 0.08036074687973
404 => 0.079353751463488
405 => 0.079496790409481
406 => 0.078243618729931
407 => 0.079648948140784
408 => 0.079689247959777
409 => 0.079148119587788
410 => 0.081313223443295
411 => 0.082200268259452
412 => 0.081844085972916
413 => 0.08217527756072
414 => 0.084957873553877
415 => 0.085411558113937
416 => 0.085613054826795
417 => 0.085343075924764
418 => 0.082226138307391
419 => 0.082364387744964
420 => 0.081350005101999
421 => 0.080492958661703
422 => 0.080527236024698
423 => 0.080967869303249
424 => 0.08289214067348
425 => 0.086941656330137
426 => 0.08709533248915
427 => 0.087281592476923
428 => 0.08652397949988
429 => 0.086295476176624
430 => 0.08659693104171
501 => 0.088117716208933
502 => 0.092029588548175
503 => 0.090646871598318
504 => 0.089522701194813
505 => 0.090508901712851
506 => 0.090357083873194
507 => 0.089075588522417
508 => 0.089039621216073
509 => 0.086580021919084
510 => 0.085670764061353
511 => 0.084910920138662
512 => 0.084081190411311
513 => 0.083589298816146
514 => 0.084345067867052
515 => 0.084517921190991
516 => 0.082865418952602
517 => 0.082640189003715
518 => 0.083989658003322
519 => 0.08339580700987
520 => 0.084006597483431
521 => 0.084148306112561
522 => 0.084125487759445
523 => 0.083505439118928
524 => 0.083900639632277
525 => 0.082965872603265
526 => 0.081949453856682
527 => 0.081301042021488
528 => 0.080735216695932
529 => 0.081049169472512
530 => 0.079929985149518
531 => 0.079571935559863
601 => 0.083766754590647
602 => 0.086865512510592
603 => 0.086820455343193
604 => 0.086546181424416
605 => 0.086138666015545
606 => 0.088087903918517
607 => 0.087408828409364
608 => 0.08790291258093
609 => 0.088028677739242
610 => 0.088409330995407
611 => 0.088545381816233
612 => 0.088134141742326
613 => 0.086753969825548
614 => 0.083314712631745
615 => 0.081713729123933
616 => 0.081185377899865
617 => 0.081204582463378
618 => 0.080674834868742
619 => 0.080830869276984
620 => 0.080620572469277
621 => 0.08022232119174
622 => 0.081024578578367
623 => 0.08111703126863
624 => 0.08092977480833
625 => 0.080973880483514
626 => 0.079423476970507
627 => 0.079541350782301
628 => 0.078885014419549
629 => 0.078761959263786
630 => 0.077102798092495
701 => 0.074163353578296
702 => 0.075792091177945
703 => 0.073824805192732
704 => 0.073079764180885
705 => 0.07660667245332
706 => 0.076252668683976
707 => 0.075646768112598
708 => 0.074750514886786
709 => 0.074418085847141
710 => 0.072398352236506
711 => 0.07227901559993
712 => 0.073280050114756
713 => 0.072818107129658
714 => 0.072169364227092
715 => 0.069819683196011
716 => 0.067177863764422
717 => 0.067257603687177
718 => 0.068097917295567
719 => 0.070541242443692
720 => 0.069586593038366
721 => 0.068893983941461
722 => 0.068764279077364
723 => 0.070387807007066
724 => 0.072685439167211
725 => 0.073763436770129
726 => 0.072695173884911
727 => 0.071468011001732
728 => 0.071542702720306
729 => 0.072039593261498
730 => 0.072091809431724
731 => 0.071293052549156
801 => 0.071517897932854
802 => 0.071176337234724
803 => 0.069080179860777
804 => 0.069042267020869
805 => 0.068527836196198
806 => 0.068512259435275
807 => 0.067637084271727
808 => 0.067514641216547
809 => 0.065776927809987
810 => 0.066920696036466
811 => 0.066153516360671
812 => 0.064997195629858
813 => 0.064797845500022
814 => 0.064791852794397
815 => 0.065979135636358
816 => 0.066906821945187
817 => 0.06616686177959
818 => 0.065998387193408
819 => 0.067797255008366
820 => 0.067568332681869
821 => 0.067370087423512
822 => 0.07247971140792
823 => 0.06843504531533
824 => 0.066671340037491
825 => 0.064488419837617
826 => 0.065199189661935
827 => 0.0653489593073
828 => 0.060099429727544
829 => 0.057969696230824
830 => 0.057238851952064
831 => 0.056818240737016
901 => 0.057009918549416
902 => 0.055092908609545
903 => 0.056381170993556
904 => 0.054721202426444
905 => 0.054442903294162
906 => 0.057411132722805
907 => 0.057824144507656
908 => 0.056062107920778
909 => 0.057193620657365
910 => 0.056783318409875
911 => 0.054749657823128
912 => 0.054671986947309
913 => 0.053651567551506
914 => 0.052054808789204
915 => 0.051325047188074
916 => 0.050944981010125
917 => 0.051101803722489
918 => 0.051022509360263
919 => 0.05050506000997
920 => 0.051052168951318
921 => 0.049654531687196
922 => 0.049097981267094
923 => 0.048846600354205
924 => 0.047606116837298
925 => 0.049580277758222
926 => 0.049969212329468
927 => 0.050358913221967
928 => 0.053750993431074
929 => 0.053581534689746
930 => 0.055113359181596
1001 => 0.055053835298687
1002 => 0.0546169341397
1003 => 0.052773720016686
1004 => 0.053508392313987
1005 => 0.05124718517632
1006 => 0.052941435311
1007 => 0.052168250303109
1008 => 0.052680020682078
1009 => 0.051759811396217
1010 => 0.052269093209522
1011 => 0.050061443144831
1012 => 0.047999970576897
1013 => 0.04882956731637
1014 => 0.049731433848071
1015 => 0.051686910280118
1016 => 0.050522244649521
1017 => 0.050941102451167
1018 => 0.049537998931602
1019 => 0.046642995594034
1020 => 0.046659380998528
1021 => 0.046214047806119
1022 => 0.045829214908167
1023 => 0.05065602050743
1024 => 0.050055730930657
1025 => 0.049099248054027
1026 => 0.050379538393515
1027 => 0.050718067480216
1028 => 0.050727704927398
1029 => 0.051661771710012
1030 => 0.052160283319334
1031 => 0.05224814815115
1101 => 0.053717922415442
1102 => 0.054210571362041
1103 => 0.056239722650795
1104 => 0.05211798809219
1105 => 0.052033103681338
1106 => 0.05039755470414
1107 => 0.049360263685794
1108 => 0.050468578907607
1109 => 0.051450394894018
1110 => 0.050428062463639
1111 => 0.050561557496431
1112 => 0.049189159736275
1113 => 0.049679727358214
1114 => 0.050102270280823
1115 => 0.049868966914883
1116 => 0.049519700484061
1117 => 0.051369897179615
1118 => 0.051265501831072
1119 => 0.05298844752981
1120 => 0.054331606911005
1121 => 0.056738788640565
1122 => 0.054226769016547
1123 => 0.054135221037074
1124 => 0.05503011722118
1125 => 0.054210434358098
1126 => 0.054728445633075
1127 => 0.056655329015743
1128 => 0.056696041025276
1129 => 0.056014062411141
1130 => 0.055972563950493
1201 => 0.056103545403366
1202 => 0.056870707863975
1203 => 0.056602637727717
1204 => 0.0569128552761
1205 => 0.057300787070573
1206 => 0.058905437452185
1207 => 0.059292313226674
1208 => 0.058352405666758
1209 => 0.05843726879572
1210 => 0.058085717567272
1211 => 0.057746123485515
1212 => 0.058509481387571
1213 => 0.059904532957417
1214 => 0.059895854414004
1215 => 0.06021947926228
1216 => 0.060421094861704
1217 => 0.05955561311734
1218 => 0.058992216326405
1219 => 0.059208258505918
1220 => 0.059553714655748
1221 => 0.059096231732471
1222 => 0.0562724352033
1223 => 0.05712899468543
1224 => 0.056986421303985
1225 => 0.056783379471291
1226 => 0.057644656654151
1227 => 0.057561584368765
1228 => 0.05507324690181
1229 => 0.055232542193054
1230 => 0.055082934176073
1231 => 0.055566348285857
]
'min_raw' => 0.045829214908167
'max_raw' => 0.10266309881538
'avg_raw' => 0.074246156861776
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.045829'
'max' => '$0.102663'
'avg' => '$0.074246'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.011175691606961
'max_diff' => -0.074603145156841
'year' => 2034
]
9 => [
'items' => [
101 => 0.05418432840974
102 => 0.054609428415588
103 => 0.05487604715419
104 => 0.055033087639489
105 => 0.055600425556056
106 => 0.055533854999737
107 => 0.055596287436806
108 => 0.056437499795419
109 => 0.060692063236059
110 => 0.060923629736968
111 => 0.059783311595023
112 => 0.060238846200949
113 => 0.059364319372039
114 => 0.059951395091107
115 => 0.060353057387987
116 => 0.058538022703604
117 => 0.058430548129072
118 => 0.057552411816852
119 => 0.058024272530856
120 => 0.05727350820689
121 => 0.05745771951137
122 => 0.056942648644791
123 => 0.057869673655047
124 => 0.058906231661637
125 => 0.059168107149017
126 => 0.058479225486205
127 => 0.057980429762815
128 => 0.057104708786068
129 => 0.058561052287113
130 => 0.058986931508083
131 => 0.058558815324867
201 => 0.058459611450693
202 => 0.05827162028839
203 => 0.058499494664467
204 => 0.058984612078383
205 => 0.058755839664692
206 => 0.058906947874386
207 => 0.058331079201142
208 => 0.05955589962781
209 => 0.061501209234446
210 => 0.061507463722921
211 => 0.061278690076062
212 => 0.061185080828764
213 => 0.061419816473587
214 => 0.061547150931544
215 => 0.062306242963747
216 => 0.063120778957861
217 => 0.066921863032496
218 => 0.065854533834622
219 => 0.069227081753141
220 => 0.071894329286152
221 => 0.072694120196703
222 => 0.071958350192066
223 => 0.069441320751719
224 => 0.069317823279253
225 => 0.07307932792555
226 => 0.072016530575144
227 => 0.071890114212106
228 => 0.070545257693202
301 => 0.071340234459595
302 => 0.071166361379179
303 => 0.07089189421558
304 => 0.072408654507297
305 => 0.075247894371264
306 => 0.074805372212242
307 => 0.074475049948544
308 => 0.073027673944386
309 => 0.073899317582023
310 => 0.073588941977895
311 => 0.074922512542457
312 => 0.074132534882215
313 => 0.072008478839925
314 => 0.07234674176564
315 => 0.072295614004908
316 => 0.073347819697806
317 => 0.073031973666149
318 => 0.07223393999808
319 => 0.075238190158074
320 => 0.075043110863202
321 => 0.075319688701995
322 => 0.075441446820086
323 => 0.077270080951649
324 => 0.078019213845585
325 => 0.078189280127925
326 => 0.078900898437147
327 => 0.078171574416123
328 => 0.081089390499434
329 => 0.083029567935548
330 => 0.085283183868212
331 => 0.088576322460692
401 => 0.0898145730347
402 => 0.089590894151656
403 => 0.092087714248403
404 => 0.096574444461065
405 => 0.090497790608161
406 => 0.096896521870537
407 => 0.094870757429774
408 => 0.09006770638267
409 => 0.089758446519489
410 => 0.093011128453157
411 => 0.100225263923
412 => 0.098418204809849
413 => 0.10022821962434
414 => 0.098116741198638
415 => 0.098011888497864
416 => 0.10012566983012
417 => 0.10506463512915
418 => 0.10271831784992
419 => 0.099354296689556
420 => 0.1018382375644
421 => 0.099686418100735
422 => 0.094837766592744
423 => 0.098416822985802
424 => 0.096023609901421
425 => 0.096722076709649
426 => 0.10175225464944
427 => 0.10114701033152
428 => 0.10193025252302
429 => 0.10054785055604
430 => 0.099256469134106
501 => 0.096846009810819
502 => 0.096132391639402
503 => 0.096329610028689
504 => 0.096132293907762
505 => 0.094783664069648
506 => 0.094492427584511
507 => 0.094007020683253
508 => 0.094157468579085
509 => 0.093244761593922
510 => 0.094967228249809
511 => 0.095286933239466
512 => 0.096540400829821
513 => 0.096670539993271
514 => 0.10016142939042
515 => 0.098238706172482
516 => 0.099528634907009
517 => 0.099413251539713
518 => 0.090171803062986
519 => 0.091445193125088
520 => 0.093426188449905
521 => 0.092533752741251
522 => 0.091272057447009
523 => 0.090253170849086
524 => 0.088709453466729
525 => 0.09088220603793
526 => 0.093739144622582
527 => 0.096742996670445
528 => 0.10035192808577
529 => 0.099546456606461
530 => 0.096675530207955
531 => 0.096804317868979
601 => 0.097600432513352
602 => 0.096569391714246
603 => 0.096265317654283
604 => 0.097558657406888
605 => 0.097567563926958
606 => 0.096381226882143
607 => 0.095062830354219
608 => 0.095057306224628
609 => 0.094822710296684
610 => 0.098158475293062
611 => 0.099992808757188
612 => 0.10020311213267
613 => 0.099978653664408
614 => 0.10006503882041
615 => 0.09899768059441
616 => 0.10143734498379
617 => 0.10367622228528
618 => 0.10307615534184
619 => 0.10217656968909
620 => 0.10146000638675
621 => 0.10290735580052
622 => 0.10284290760947
623 => 0.1036566676452
624 => 0.10361975078948
625 => 0.10334611389652
626 => 0.10307616511428
627 => 0.10414648152225
628 => 0.10383824758551
629 => 0.10352953487633
630 => 0.10291036427652
701 => 0.10299451984436
702 => 0.10209508951776
703 => 0.10167897189354
704 => 0.095421561231044
705 => 0.093749376635235
706 => 0.094275479949533
707 => 0.094448686820866
708 => 0.093720949941807
709 => 0.094764337686112
710 => 0.094601726811383
711 => 0.095234350600773
712 => 0.094839114722494
713 => 0.094855335340803
714 => 0.096017639785647
715 => 0.096355061710782
716 => 0.096183446196329
717 => 0.096303639820016
718 => 0.099073451147324
719 => 0.098679672550161
720 => 0.098470485518717
721 => 0.098528431756037
722 => 0.099236177935588
723 => 0.099434308224354
724 => 0.098594816268485
725 => 0.098990725527918
726 => 0.10067645690622
727 => 0.10126636748449
728 => 0.10314907887719
729 => 0.10234926961505
730 => 0.10381735413065
731 => 0.10832974542472
801 => 0.11193455582416
802 => 0.10861942320575
803 => 0.11523919843447
804 => 0.12039364300039
805 => 0.12019580683277
806 => 0.11929701019825
807 => 0.11342881209795
808 => 0.10802880871615
809 => 0.11254614084128
810 => 0.11255765644987
811 => 0.1121696136141
812 => 0.10975951288788
813 => 0.11208574733302
814 => 0.11227039537563
815 => 0.11216704157365
816 => 0.11031922299763
817 => 0.10749794556602
818 => 0.10804921642297
819 => 0.10895220933228
820 => 0.1072426553709
821 => 0.10669634929471
822 => 0.10771203622933
823 => 0.11098479115945
824 => 0.11036609579769
825 => 0.11034993916145
826 => 0.11299698028672
827 => 0.11110227010825
828 => 0.10805616971389
829 => 0.10728698919119
830 => 0.10455691651767
831 => 0.10644258743746
901 => 0.10651044937686
902 => 0.10547768668519
903 => 0.10813997271444
904 => 0.10811543928
905 => 0.11064288363579
906 => 0.11547440797932
907 => 0.11404548848606
908 => 0.11238381058141
909 => 0.11256448104297
910 => 0.11454599007367
911 => 0.11334792448026
912 => 0.11377875722086
913 => 0.11454533795671
914 => 0.11500783514778
915 => 0.11249793481461
916 => 0.11191275698453
917 => 0.11071568851371
918 => 0.11040339569401
919 => 0.11137838298585
920 => 0.11112150828126
921 => 0.10650474584363
922 => 0.10602226848147
923 => 0.10603706537335
924 => 0.10482385310566
925 => 0.10297341319313
926 => 0.10783625879924
927 => 0.10744570424159
928 => 0.10701456223646
929 => 0.10706737467203
930 => 0.10917817113251
1001 => 0.10795380258766
1002 => 0.11120898703421
1003 => 0.1105398189718
1004 => 0.10985348927359
1005 => 0.10975861760319
1006 => 0.10949443922427
1007 => 0.10858847326654
1008 => 0.10749446493246
1009 => 0.10677210586892
1010 => 0.098491623711916
1011 => 0.10002843303491
1012 => 0.10179639207643
1013 => 0.10240668445291
1014 => 0.10136273711199
1015 => 0.10862969467049
1016 => 0.10995743784257
1017 => 0.10593561716779
1018 => 0.10518329872939
1019 => 0.10867901654207
1020 => 0.1065706713669
1021 => 0.10752005907018
1022 => 0.105468002143
1023 => 0.10963762339328
1024 => 0.10960585786538
1025 => 0.10798378102385
1026 => 0.10935474926281
1027 => 0.10911650979342
1028 => 0.10728518903433
1029 => 0.10969567952781
1030 => 0.10969687510102
1031 => 0.10813566140804
1101 => 0.10631250560827
1102 => 0.10598656841229
1103 => 0.10574101851862
1104 => 0.10745966884882
1105 => 0.1090006053608
1106 => 0.11186790617904
1107 => 0.11258881373013
1108 => 0.11540256389558
1109 => 0.11372711267106
1110 => 0.11446981849816
1111 => 0.11527613073564
1112 => 0.11566270647343
1113 => 0.11503280205349
1114 => 0.1194037142462
1115 => 0.11977275315656
1116 => 0.11989648871102
1117 => 0.1184226417123
1118 => 0.11973176280535
1119 => 0.11911926839945
1120 => 0.12071280868776
1121 => 0.12096269615232
1122 => 0.12075105035985
1123 => 0.1208303685853
1124 => 0.11710056611057
1125 => 0.11690715617598
1126 => 0.1142699979941
1127 => 0.1153446594461
1128 => 0.11333563137144
1129 => 0.1139727148692
1130 => 0.11425353520466
1201 => 0.11410685059783
1202 => 0.11540541919219
1203 => 0.11430137060695
1204 => 0.11138760486809
1205 => 0.10847304527571
1206 => 0.10843645535418
1207 => 0.10766910325975
1208 => 0.10711444824303
1209 => 0.10722129447669
1210 => 0.1075978345403
1211 => 0.10709256305002
1212 => 0.10720038834039
1213 => 0.10899100659662
1214 => 0.1093501023178
1215 => 0.10812975474947
1216 => 0.1032298831673
1217 => 0.10202744239064
1218 => 0.10289173297547
1219 => 0.10247865774336
1220 => 0.082708274930199
1221 => 0.087353033113918
1222 => 0.084593275522236
1223 => 0.085865098790825
1224 => 0.083048100925481
1225 => 0.084392519958331
1226 => 0.084144254853286
1227 => 0.09161288856432
1228 => 0.091496276121692
1229 => 0.091552092326985
1230 => 0.088887839420006
1231 => 0.093132066643173
]
'min_raw' => 0.05418432840974
'max_raw' => 0.12096269615232
'avg_raw' => 0.087573512281028
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.054184'
'max' => '$0.120962'
'avg' => '$0.087573'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.008355113501573
'max_diff' => 0.018299597336932
'year' => 2035
]
10 => [
'items' => [
101 => 0.09522292559078
102 => 0.094835963245987
103 => 0.094933353331395
104 => 0.093259868995296
105 => 0.091568295313414
106 => 0.089692079768884
107 => 0.093177856343371
108 => 0.092790297492479
109 => 0.093679218057153
110 => 0.095939993334163
111 => 0.096272901081553
112 => 0.096720332470063
113 => 0.096559960167617
114 => 0.10038067904687
115 => 0.099917964780682
116 => 0.10103297303023
117 => 0.098739316465033
118 => 0.096143826345636
119 => 0.096637144164369
120 => 0.096589633691413
121 => 0.09598477084071
122 => 0.09543872770434
123 => 0.094529719728985
124 => 0.097405955470878
125 => 0.09728918555238
126 => 0.099179554802675
127 => 0.098845413675618
128 => 0.096613937450929
129 => 0.096693635060844
130 => 0.097229639788885
131 => 0.099084758272633
201 => 0.099635483744707
202 => 0.099380365763427
203 => 0.099984211101983
204 => 0.10046146583682
205 => 0.10004414694874
206 => 0.10595250235637
207 => 0.10349894126202
208 => 0.10469478986763
209 => 0.10497999271372
210 => 0.10424945162063
211 => 0.10440787982501
212 => 0.10464785538554
213 => 0.10610493999703
214 => 0.10992875162843
215 => 0.11162229177041
216 => 0.11671739084536
217 => 0.11148166683684
218 => 0.11117100064175
219 => 0.1120887818424
220 => 0.1150801443704
221 => 0.11750436273495
222 => 0.11830861582299
223 => 0.11841491114534
224 => 0.11992374340423
225 => 0.12078857791697
226 => 0.11974053148177
227 => 0.11885242186298
228 => 0.11567132344469
229 => 0.11603954424845
301 => 0.11857622043936
302 => 0.1221594249685
303 => 0.12523418722339
304 => 0.12415751264801
305 => 0.13237177964437
306 => 0.13318619066478
307 => 0.13307366539482
308 => 0.13492901489994
309 => 0.13124652396764
310 => 0.12967218774917
311 => 0.11904444124304
312 => 0.12203040451112
313 => 0.12637067748074
314 => 0.12579622607802
315 => 0.12264420383165
316 => 0.12523179613187
317 => 0.12437625719593
318 => 0.1237014581408
319 => 0.12679284342855
320 => 0.12339373831756
321 => 0.12633676880708
322 => 0.12256230176252
323 => 0.12416243080678
324 => 0.12325412017173
325 => 0.12384190847097
326 => 0.12040571008407
327 => 0.12225979932464
328 => 0.12032857387599
329 => 0.12032765822367
330 => 0.12028502631485
331 => 0.12255710449083
401 => 0.12263119687858
402 => 0.12095212767361
403 => 0.12071014756919
404 => 0.12160487484216
405 => 0.12055738353495
406 => 0.12104749812476
407 => 0.12057222860659
408 => 0.12046523542734
409 => 0.1196126955717
410 => 0.11924539796082
411 => 0.11938942481814
412 => 0.11889778690318
413 => 0.11860155727609
414 => 0.12022609878603
415 => 0.11935817179109
416 => 0.12009307652623
417 => 0.11925555982816
418 => 0.116352362064
419 => 0.11468270232907
420 => 0.10919883087913
421 => 0.11075405001961
422 => 0.11178516191874
423 => 0.11144437944223
424 => 0.11217651206709
425 => 0.11222145906412
426 => 0.11198343528457
427 => 0.11170783424059
428 => 0.11157368689407
429 => 0.11257351131015
430 => 0.11315394303623
501 => 0.11188864779232
502 => 0.11159220682003
503 => 0.11287149017049
504 => 0.11365185227526
505 => 0.11941360760925
506 => 0.11898675816388
507 => 0.12005806650678
508 => 0.11993745362793
509 => 0.12106035544409
510 => 0.1228958253398
511 => 0.11916380183638
512 => 0.11981155207291
513 => 0.11965273867365
514 => 0.12138662172366
515 => 0.12139203471728
516 => 0.12035248521492
517 => 0.12091604186491
518 => 0.12060148000325
519 => 0.12116993580286
520 => 0.1189810573293
521 => 0.12164687503526
522 => 0.12315822189304
523 => 0.12317920694563
524 => 0.12389557336143
525 => 0.12462344312902
526 => 0.12602052576383
527 => 0.12458447925261
528 => 0.12200117137523
529 => 0.12218767785994
530 => 0.12067308539663
531 => 0.12069854596958
601 => 0.12056263543583
602 => 0.12097051317847
603 => 0.11907056355685
604 => 0.11951647793548
605 => 0.11889219519413
606 => 0.11981019500415
607 => 0.11882257895937
608 => 0.11965266208902
609 => 0.12001089845008
610 => 0.12133279833468
611 => 0.11862733327162
612 => 0.11311070686415
613 => 0.11427036861763
614 => 0.11255513779477
615 => 0.11271388893777
616 => 0.11303459151169
617 => 0.11199508954227
618 => 0.11219339375956
619 => 0.11218630893748
620 => 0.11212525576826
621 => 0.11185484115855
622 => 0.11146268647456
623 => 0.11302491003672
624 => 0.11329036226186
625 => 0.11388042967576
626 => 0.11563607005299
627 => 0.11546064017845
628 => 0.11574677358234
629 => 0.11512214596823
630 => 0.11274286362131
701 => 0.11287207009983
702 => 0.11126086324241
703 => 0.11383922749393
704 => 0.11322863680642
705 => 0.11283498501806
706 => 0.11272757348045
707 => 0.11448756575059
708 => 0.11501418302232
709 => 0.11468603047855
710 => 0.11401298003754
711 => 0.11530543585378
712 => 0.11565124250587
713 => 0.11572865586242
714 => 0.11801863976497
715 => 0.11585664052402
716 => 0.11637705522974
717 => 0.12043718220484
718 => 0.11675520729765
719 => 0.11870563152383
720 => 0.11861016840747
721 => 0.11960793944283
722 => 0.11852832205982
723 => 0.11854170521119
724 => 0.11942765829572
725 => 0.11818349697098
726 => 0.11787542513029
727 => 0.11744982608884
728 => 0.11837910602563
729 => 0.11893616732002
730 => 0.12342567223635
731 => 0.12632609715861
801 => 0.12620018206341
802 => 0.12735081033037
803 => 0.12683244175755
804 => 0.12515849289722
805 => 0.12801571948549
806 => 0.12711157344152
807 => 0.12718611014285
808 => 0.12718333588311
809 => 0.12778451396053
810 => 0.12735852419551
811 => 0.12651885464172
812 => 0.12707626647726
813 => 0.12873158035046
814 => 0.13386972540407
815 => 0.13674509944745
816 => 0.13369662427624
817 => 0.13579942162863
818 => 0.1345384925205
819 => 0.13430934419216
820 => 0.13563005632497
821 => 0.13695308018953
822 => 0.13686880928894
823 => 0.1359083619013
824 => 0.13536582954247
825 => 0.1394740663252
826 => 0.14250094520473
827 => 0.1422945323576
828 => 0.14320557153578
829 => 0.1458804107403
830 => 0.14612496451498
831 => 0.14609415636038
901 => 0.14548800431327
902 => 0.14812173088188
903 => 0.15031883192143
904 => 0.14534769762779
905 => 0.14724064048988
906 => 0.14809044352748
907 => 0.14933820651188
908 => 0.15144339181593
909 => 0.15373018142894
910 => 0.15405355855359
911 => 0.15382410700863
912 => 0.15231590778665
913 => 0.15481814026828
914 => 0.15628388937145
915 => 0.15715670941932
916 => 0.1593700358373
917 => 0.14809569162173
918 => 0.1401151504147
919 => 0.1388688736648
920 => 0.14140322644312
921 => 0.14207151505968
922 => 0.14180212875631
923 => 0.13281930406872
924 => 0.13882158095186
925 => 0.14527952619235
926 => 0.14552760216985
927 => 0.1487605845865
928 => 0.14981337618579
929 => 0.15241635078789
930 => 0.15225353401781
1001 => 0.15288731691105
1002 => 0.15274162119949
1003 => 0.1575630835289
1004 => 0.16288187247234
1005 => 0.16269769972394
1006 => 0.16193306088427
1007 => 0.16306867995148
1008 => 0.16855824013716
1009 => 0.16805284940367
1010 => 0.16854379345218
1011 => 0.17501629428916
1012 => 0.18343146607974
1013 => 0.17952177391358
1014 => 0.18800468093053
1015 => 0.19334422123812
1016 => 0.20257840408132
1017 => 0.20142223891004
1018 => 0.20501703852734
1019 => 0.1993524619545
1020 => 0.18634544914346
1021 => 0.18428703957727
1022 => 0.18840802765602
1023 => 0.19853907472748
1024 => 0.1880889649304
1025 => 0.1902030085321
1026 => 0.18959416383259
1027 => 0.18956172108598
1028 => 0.19079992877002
1029 => 0.18900384394374
1030 => 0.18168627125199
1031 => 0.18503987169389
1101 => 0.18374488551015
1102 => 0.18518176922863
1103 => 0.19293603804132
1104 => 0.18950769096055
1105 => 0.18589620580726
1106 => 0.19042580964219
1107 => 0.19619355186482
1108 => 0.19583261692216
1109 => 0.19513225227429
1110 => 0.19908017112442
1111 => 0.20560097643314
1112 => 0.20736352390537
1113 => 0.20866460041568
1114 => 0.20884399688458
1115 => 0.21069189200857
1116 => 0.20075529419736
1117 => 0.21652493011367
1118 => 0.21924791060902
1119 => 0.21873610313187
1120 => 0.22176258135192
1121 => 0.22087211468524
1122 => 0.21958196819516
1123 => 0.22437957992431
1124 => 0.21887950522414
1125 => 0.21107284162741
1126 => 0.20678995157995
1127 => 0.21243000668533
1128 => 0.2158741915274
1129 => 0.2181505786167
1130 => 0.21883941197449
1201 => 0.20152664399958
1202 => 0.19219602227123
1203 => 0.19817684382331
1204 => 0.20547385889109
1205 => 0.20071475891022
1206 => 0.20090130661931
1207 => 0.19411608071606
1208 => 0.20607420082475
1209 => 0.20433200330854
1210 => 0.21337052710456
1211 => 0.21121341086195
1212 => 0.21858397614413
1213 => 0.21664305929079
1214 => 0.22469969663381
1215 => 0.22791370739468
1216 => 0.23331053168303
1217 => 0.23728045759856
1218 => 0.23961167402874
1219 => 0.23947171653844
1220 => 0.24870915744224
1221 => 0.24326216127288
1222 => 0.23641945032573
1223 => 0.23629568727317
1224 => 0.23983962423466
1225 => 0.24726674387433
1226 => 0.2491924879367
1227 => 0.25026871615272
1228 => 0.2486204351761
1229 => 0.24270811122399
1230 => 0.24015519971763
1231 => 0.24233035428602
]
'min_raw' => 0.089692079768884
'max_raw' => 0.25026871615272
'avg_raw' => 0.1699803979608
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.089692'
'max' => '$0.250268'
'avg' => '$0.16998'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.035507751359144
'max_diff' => 0.12930602000041
'year' => 2036
]
11 => [
'items' => [
101 => 0.23967032716204
102 => 0.24426228024981
103 => 0.25056801262757
104 => 0.24926590382713
105 => 0.25361865832393
106 => 0.258123301305
107 => 0.2645651430841
108 => 0.26624927906587
109 => 0.26903309180177
110 => 0.27189854954187
111 => 0.27281885734173
112 => 0.27457601048642
113 => 0.27456674942199
114 => 0.27986204869354
115 => 0.28570292777183
116 => 0.28790772440723
117 => 0.29297753269712
118 => 0.28429566366795
119 => 0.2908809610567
120 => 0.29682106414203
121 => 0.28973902836199
122 => 0.29949996478207
123 => 0.29987895982451
124 => 0.30560133500162
125 => 0.29980061148518
126 => 0.29635616037768
127 => 0.30630016166313
128 => 0.31111175065206
129 => 0.30966246089058
130 => 0.29863329424551
131 => 0.29221384619486
201 => 0.27541291242727
202 => 0.29531434422131
203 => 0.30500775111546
204 => 0.29860819066341
205 => 0.30183575671522
206 => 0.31944431055212
207 => 0.32614850778378
208 => 0.32475408162547
209 => 0.32498971669201
210 => 0.32860717982843
211 => 0.34464900354864
212 => 0.33503637092893
213 => 0.34238486838822
214 => 0.34628248494366
215 => 0.34990280841687
216 => 0.34101243818164
217 => 0.32944619713107
218 => 0.32578268307259
219 => 0.297971880498
220 => 0.2965242074478
221 => 0.29571158469574
222 => 0.29058811319176
223 => 0.28656246802659
224 => 0.28336112552863
225 => 0.27495984681218
226 => 0.27779503175686
227 => 0.26440514696598
228 => 0.2729715207468
301 => 0.25160094131048
302 => 0.26939899489525
303 => 0.25971232350725
304 => 0.2662166628221
305 => 0.26619396979497
306 => 0.25421741891369
307 => 0.2473095943096
308 => 0.25171152900388
309 => 0.25643075242216
310 => 0.2571964305444
311 => 0.26331502689053
312 => 0.26502259561195
313 => 0.2598485826673
314 => 0.25115808355231
315 => 0.25317668828754
316 => 0.24726868734907
317 => 0.23691514295237
318 => 0.24435123929362
319 => 0.2468902495266
320 => 0.24801162108971
321 => 0.23783009928816
322 => 0.23463084408653
323 => 0.23292758746153
324 => 0.24984377694181
325 => 0.25077048398768
326 => 0.24602931971784
327 => 0.26745983179314
328 => 0.2626094468877
329 => 0.26802851520023
330 => 0.25299352106583
331 => 0.25356787808907
401 => 0.24645007091938
402 => 0.25043556732236
403 => 0.24761874692328
404 => 0.25011357859844
405 => 0.25160897041796
406 => 0.25872560962553
407 => 0.26948025548338
408 => 0.25766262104693
409 => 0.25251350849132
410 => 0.25570798896111
411 => 0.26421531141587
412 => 0.27710434041666
413 => 0.26947377583231
414 => 0.27286009081946
415 => 0.27359984999748
416 => 0.26797335417184
417 => 0.27731179734331
418 => 0.28231634490427
419 => 0.28744997515662
420 => 0.29190736246369
421 => 0.28539949034289
422 => 0.29236384637897
423 => 0.28675180478822
424 => 0.28171722331912
425 => 0.28172485870103
426 => 0.27856659220196
427 => 0.27244705289284
428 => 0.27131851595366
429 => 0.27718930762978
430 => 0.28189712658798
501 => 0.28228488510631
502 => 0.28489137557805
503 => 0.28643386979023
504 => 0.30155240998884
505 => 0.30763321192385
506 => 0.31506870142628
507 => 0.31796524362871
508 => 0.32668279719016
509 => 0.3196426646842
510 => 0.31811948773203
511 => 0.296973554282
512 => 0.30043619969982
513 => 0.30598022910935
514 => 0.29706497328497
515 => 0.30271965109652
516 => 0.30383600427897
517 => 0.29676203630352
518 => 0.30054054824732
519 => 0.2905059407753
520 => 0.26969898250485
521 => 0.27733496143584
522 => 0.28295761217177
523 => 0.27493339630377
524 => 0.28931649266712
525 => 0.28091418469903
526 => 0.27825105645505
527 => 0.26786124370153
528 => 0.27276483538062
529 => 0.27939701333927
530 => 0.27529909843427
531 => 0.28380288716716
601 => 0.29584651989055
602 => 0.30442952977997
603 => 0.30508842670362
604 => 0.29957012636173
605 => 0.30841323787693
606 => 0.30847765029007
607 => 0.29850258437575
608 => 0.29239291204463
609 => 0.29100478163614
610 => 0.29447260355555
611 => 0.29868317956095
612 => 0.3053220843678
613 => 0.3093338355004
614 => 0.31979435478582
615 => 0.32262467137786
616 => 0.32573433121414
617 => 0.329889795739
618 => 0.33487949634031
619 => 0.32396231548844
620 => 0.32439607543586
621 => 0.31423014778525
622 => 0.30336639614908
623 => 0.31161062945517
624 => 0.32238886781849
625 => 0.31991632802905
626 => 0.31963811679334
627 => 0.32010599092245
628 => 0.31824177666681
629 => 0.30981000467957
630 => 0.30557562157326
701 => 0.31103905608674
702 => 0.31394262838116
703 => 0.31844581579169
704 => 0.31789070289259
705 => 0.3294904300551
706 => 0.33399773327291
707 => 0.33284457223141
708 => 0.33305678161542
709 => 0.3412170387944
710 => 0.35029292306231
711 => 0.35879368634763
712 => 0.36744102787772
713 => 0.35701632015171
714 => 0.35172329647502
715 => 0.3571843458239
716 => 0.35428663616955
717 => 0.37093773535998
718 => 0.37209062134055
719 => 0.38874051646698
720 => 0.4045432495746
721 => 0.39461783604507
722 => 0.40397705395297
723 => 0.41409981118859
724 => 0.43362825225427
725 => 0.42705176032219
726 => 0.42201427056898
727 => 0.41725386709318
728 => 0.42715951103356
729 => 0.43990296371634
730 => 0.44264778136894
731 => 0.4470954345672
801 => 0.44241927106239
802 => 0.44805119494142
803 => 0.46793436102713
804 => 0.46256175403721
805 => 0.45493178842185
806 => 0.47062763844694
807 => 0.47630790555495
808 => 0.51617499489796
809 => 0.56650884202082
810 => 0.54567029880209
811 => 0.53273514257064
812 => 0.53577521111104
813 => 0.55415542817206
814 => 0.56005857053313
815 => 0.54401179466054
816 => 0.54967978717967
817 => 0.58091098322481
818 => 0.59766551788629
819 => 0.57491060938178
820 => 0.51213071929061
821 => 0.45424479349944
822 => 0.46959874765647
823 => 0.46785808574373
824 => 0.50141210972318
825 => 0.46243361913733
826 => 0.46308991695289
827 => 0.4973378026139
828 => 0.48820105387694
829 => 0.47340069106944
830 => 0.454352852527
831 => 0.41914116126949
901 => 0.38795318437206
902 => 0.44911998923004
903 => 0.44648236537995
904 => 0.44266269517106
905 => 0.45116295788946
906 => 0.49243782080834
907 => 0.49148630162436
908 => 0.48543322204528
909 => 0.49002442955662
910 => 0.47259583019454
911 => 0.47708757709198
912 => 0.45423562407305
913 => 0.46456566121946
914 => 0.47336893613804
915 => 0.47513632391265
916 => 0.47911833881392
917 => 0.4450924574655
918 => 0.46036907924355
919 => 0.46934266331227
920 => 0.42879968402803
921 => 0.46854125896743
922 => 0.44450014257198
923 => 0.43634022658192
924 => 0.44732647847536
925 => 0.443045125428
926 => 0.43936426948737
927 => 0.43731028862737
928 => 0.44537737950954
929 => 0.44500104007762
930 => 0.43180171363953
1001 => 0.41458373037441
1002 => 0.42036265071922
1003 => 0.41826311478028
1004 => 0.41065412569205
1005 => 0.41578166562467
1006 => 0.39320257474998
1007 => 0.3543564224591
1008 => 0.38001938055228
1009 => 0.37903138458162
1010 => 0.37853319221116
1011 => 0.39781819594613
1012 => 0.39596438781775
1013 => 0.39259970791219
1014 => 0.41059233070697
1015 => 0.40402478135195
1016 => 0.42426442095489
1017 => 0.4375955566152
1018 => 0.43421434939469
1019 => 0.44675234691818
1020 => 0.42049578537219
1021 => 0.42921716188736
1022 => 0.43101462549983
1023 => 0.41037030453461
1024 => 0.39626769375398
1025 => 0.39532721039645
1026 => 0.37087522676231
1027 => 0.38393727905015
1028 => 0.395431344519
1029 => 0.38992657913493
1030 => 0.38818393486453
1031 => 0.39708672650861
1101 => 0.39777854966661
1102 => 0.3820049083481
1103 => 0.38528474786447
1104 => 0.39896222387571
1105 => 0.38494011056178
1106 => 0.35769743489202
1107 => 0.35094087466646
1108 => 0.35003942498425
1109 => 0.33171509778299
1110 => 0.35139238032848
1111 => 0.34280271917899
1112 => 0.36993735583029
1113 => 0.35443819690104
1114 => 0.35377005913738
1115 => 0.3527600709131
1116 => 0.33698756552255
1117 => 0.34044074180807
1118 => 0.35191962571474
1119 => 0.35601542081152
1120 => 0.35558819582707
1121 => 0.35186337292131
1122 => 0.35356857777339
1123 => 0.3480755188121
1124 => 0.34613580536473
1125 => 0.34001353616463
1126 => 0.33101549176051
1127 => 0.33226672502311
1128 => 0.31443924459216
1129 => 0.30472588707737
1130 => 0.30203735773727
1201 => 0.29844214394232
1202 => 0.30244344670191
1203 => 0.31438874158
1204 => 0.29998018162135
1205 => 0.2752777162152
1206 => 0.27676237647706
1207 => 0.28009796728588
1208 => 0.27388211588079
1209 => 0.26799933418274
1210 => 0.27311393558403
1211 => 0.2626471753446
1212 => 0.28136282525528
1213 => 0.2808566193752
1214 => 0.28783265629387
1215 => 0.29219491534181
1216 => 0.28214132053445
1217 => 0.27961286862821
1218 => 0.28105318974574
1219 => 0.25724789002798
1220 => 0.28588725543614
1221 => 0.28613492985747
1222 => 0.28401419109458
1223 => 0.29926376903322
1224 => 0.33144513494639
1225 => 0.31933721059741
1226 => 0.31464865632553
1227 => 0.30573571122739
1228 => 0.31761168137235
1229 => 0.31669979215921
1230 => 0.31257588331368
1231 => 0.31008173037653
]
'min_raw' => 0.23292758746153
'max_raw' => 0.59766551788629
'avg_raw' => 0.41529655267391
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.232927'
'max' => '$0.597665'
'avg' => '$0.415296'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.14323550769264
'max_diff' => 0.34739680173356
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0073113308100249
]
1 => [
'year' => 2028
'avg' => 0.012548366164502
]
2 => [
'year' => 2029
'avg' => 0.034279874738463
]
3 => [
'year' => 2030
'avg' => 0.026446872309603
]
4 => [
'year' => 2031
'avg' => 0.025974106132834
]
5 => [
'year' => 2032
'avg' => 0.045540782402895
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0073113308100249
'min' => '$0.007311'
'max_raw' => 0.045540782402895
'max' => '$0.04554'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.045540782402895
]
1 => [
'year' => 2033
'avg' => 0.11713557524368
]
2 => [
'year' => 2034
'avg' => 0.074246156861776
]
3 => [
'year' => 2035
'avg' => 0.087573512281028
]
4 => [
'year' => 2036
'avg' => 0.1699803979608
]
5 => [
'year' => 2037
'avg' => 0.41529655267391
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.045540782402895
'min' => '$0.04554'
'max_raw' => 0.41529655267391
'max' => '$0.415296'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.41529655267391
]
]
]
]
'prediction_2025_max_price' => '$0.012501'
'last_price' => false
'sma_50day_nextmonth' => '—'
'sma_200day_nextmonth' => '—'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'decrease'
'sma_200day_direction_label' => 'diminuer'
'sma_200day_date_nextmonth' => '4 févr. 2026'
'sma_50day_date_nextmonth' => '4 févr. 2026'
'daily_sma3' => '—'
'daily_sma3_action' => '—'
'daily_sma5' => '—'
'daily_sma5_action' => '—'
'daily_sma10' => '—'
'daily_sma10_action' => '—'
'daily_sma21' => '—'
'daily_sma21_action' => '—'
'daily_sma50' => '—'
'daily_sma50_action' => '—'
'daily_sma100' => '—'
'daily_sma100_action' => '—'
'daily_sma200' => '—'
'daily_sma200_action' => '—'
'daily_ema3' => '—'
'daily_ema3_action' => '—'
'daily_ema5' => '—'
'daily_ema5_action' => '—'
'daily_ema10' => '—'
'daily_ema10_action' => '—'
'daily_ema21' => '—'
'daily_ema21_action' => '—'
'daily_ema50' => '—'
'daily_ema50_action' => '—'
'daily_ema100' => '—'
'daily_ema100_action' => '—'
'daily_ema200' => '—'
'daily_ema200_action' => '—'
'weekly_sma21' => '—'
'weekly_sma21_action' => '—'
'weekly_sma50' => '—'
'weekly_sma50_action' => '—'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '—'
'weekly_ema3_action' => '—'
'weekly_ema5' => '—'
'weekly_ema5_action' => '—'
'weekly_ema10' => '—'
'weekly_ema10_action' => '—'
'weekly_ema21' => '—'
'weekly_ema21_action' => '—'
'weekly_ema50' => '—'
'weekly_ema50_action' => '—'
'weekly_ema100' => '—'
'weekly_ema100_action' => '—'
'weekly_ema200' => '—'
'weekly_ema200_action' => '—'
'rsi_14' => '—'
'rsi_14_action' => '—'
'stoch_rsi_14' => '—'
'stoch_rsi_14_action' => '—'
'momentum_10' => '—'
'momentum_10_action' => '—'
'vwma_10' => '—'
'vwma_10_action' => '—'
'hma_9' => '—'
'hma_9_action' => '—'
'stochastic_fast_14' => '—'
'stochastic_fast_14_action' => '—'
'cci_20' => '—'
'cci_20_action' => '—'
'adx_14' => '—'
'adx_14_action' => '—'
'ao_5_34' => '—'
'ao_5_34_action' => '—'
'macd_12_26' => '—'
'macd_12_26_action' => '—'
'williams_percent_r_14' => '—'
'williams_percent_r_14_action' => '—'
'ultimate_oscillator' => '—'
'ultimate_oscillator_action' => '—'
'ichimoku_cloud' => '—'
'ichimoku_cloud_action' => '—'
'sell_signals' => 0
'buy_signals' => 0
'sell_pct' => 0
'buy_pct' => 0
'overall_action' => 'neutral'
'overall_action_label' => 'Neutre'
'overall_action_dir' => 0
'last_updated' => 1767714777
'last_updated_date' => '6 janvier 2026'
]
Prévision du prix de XBot pour 2026
La prévision du prix de XBot pour 2026 suggère que le prix moyen pourrait varier entre $0.004187 à la baisse et $0.012501 à la hausse. Sur le marché des cryptomonnaies, comparé au prix moyen d'aujourd'hui, XBot pourrait potentiellement gagner 3.13% d'ici 2026 si XBOT atteint l'objectif de prix prévu.
Prévision du prix de XBot de 2027 à 2032
La prévision du prix de XBOT pour 2027-2032 se situe actuellement dans une fourchette de prix comprise entre $0.007311 à la baisse et $0.04554 à la hausse. Compte tenu de la volatilité des prix sur le marché, si XBot atteint l'objectif de prix le plus élevé, il pourrait gagner 275.71% d'ici 2032 par rapport au prix actuel.
| Prévision du Prix de XBot | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2027 | $0.004031 | $0.007311 | $0.010591 |
| 2028 | $0.007275 | $0.012548 | $0.01782 |
| 2029 | $0.015982 | $0.034279 | $0.052576 |
| 2030 | $0.013592 | $0.026446 | $0.0393009 |
| 2031 | $0.01607 | $0.025974 | $0.035877 |
| 2032 | $0.024531 | $0.04554 | $0.06655 |
Prévision du prix de XBot de 2032 à 2037
La prévision du prix de XBot pour 2032-2037 est actuellement estimée entre $0.04554 à la baisse et $0.415296 à la hausse. Par rapport au prix actuel, XBot pourrait potentiellement gagner 3326.16% d'ici 2037 s'il atteint l'objectif de prix le plus élevé. Veuillez noter que ces informations sont à titre général seulement et ne doivent pas être considérées comme un conseil en investissement à long terme.
| Prévision du Prix de XBot | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2032 | $0.024531 | $0.04554 | $0.06655 |
| 2033 | $0.0570049 | $0.117135 | $0.177266 |
| 2034 | $0.045829 | $0.074246 | $0.102663 |
| 2035 | $0.054184 | $0.087573 | $0.120962 |
| 2036 | $0.089692 | $0.16998 | $0.250268 |
| 2037 | $0.232927 | $0.415296 | $0.597665 |
XBot Histogramme des prix potentiels
Prévision du prix de XBot basée sur l'analyse technique
Au 6 janvier 2026, le sentiment global de prévision du prix pour XBot est Neutre, avec 0 indicateurs techniques montrant des signaux haussiers et 0 indiquant des signaux baissiers. La prévision du prix de XBOT a été mise à jour pour la dernière fois le 6 janvier 2026.
Moyennes Mobiles Simples sur 50 et 200 jours de XBot et Indice de Force Relative sur 14 jours - RSI (14)
Selon nos indicateurs techniques, le SMA sur 200 jours de XBot devrait diminuer au cours du prochain mois, atteignant — d'ici le 4 févr. 2026. Le SMA à court terme sur 50 jours pour XBot devrait atteindre — d'ici le 4 févr. 2026.
Le Relative Strength Index (RSI), un oscillateur de momentum, est un outil couramment utilisé pour identifier si une cryptomonnaie est survendue (en dessous de 30) ou surachetée (au-dessus de 70). Actuellement, le RSI est à —, ce qui suggère que le marché de XBOT est dans un état —.
Moyennes Mobiles et Oscillateurs Populaires de XBOT pour le Samedi 19 Octobre 2024
Les moyennes mobiles (MA) sont des indicateurs largement utilisés sur les marchés financiers, conçus pour lisser les mouvements de prix sur une période donnée. En tant qu'indicateurs retardés, ils sont basés sur des données historiques de prix. Le tableau ci-dessous met en évidence deux types : la moyenne mobile simple (SMA) et la moyenne mobile exponentielle (EMA).
Moyenne Mobile Simple Quotidienne (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 3 | — | — |
| SMA 5 | — | — |
| SMA 10 | — | — |
| SMA 21 | — | — |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Moyenne Mobile Exponentielle Quotidienne (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 3 | — | — |
| EMA 5 | — | — |
| EMA 10 | — | — |
| EMA 21 | — | — |
| EMA 50 | — | — |
| EMA 100 | — | — |
| EMA 200 | — | — |
Moyenne Mobile Simple Hebdomadaire (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 21 | — | — |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Moyenne Mobile Exponentielle Hebdomadaire (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 21 | — | — |
| EMA 50 | — | — |
| EMA 100 | — | — |
| EMA 200 | — | — |
Oscillateurs de XBot
Un oscillateur est un outil d'analyse technique qui établit des limites hautes et basses entre deux extrêmes, créant un indicateur de tendance qui fluctue à l'intérieur de ces limites. Les traders utilisent cet indicateur pour identifier les conditions de surachat ou de survente à court terme.
| Période | Valeur | Action |
|---|---|---|
| RSI (14) | — | — |
| Stoch RSI (14) | — | — |
| Stochastique Rapide (14) | — | — |
| Indice de Canal des Matières Premières (20) | — | — |
| Indice Directionnel Moyen (14) | — | — |
| Oscillateur Impressionnant (5, 34) | — | — |
| Momentum (10) | — | — |
| MACD (12, 26) | — | — |
| Plage de Pourcentage de Williams (14) | — | — |
| Oscillateur Ultime (7, 14, 28) | — | — |
| VWMA (10) | — | — |
| Moyenne Mobile de Hull (9) | — | — |
| Nuage Ichimoku B/L (9, 26, 52, 26) | — | — |
Prévision du cours de XBot basée sur les flux monétaires mondiaux
Définitions des flux monétaires mondiaux utilisés pour la prédiction du cours de XBot
M0 : le total de toutes les devises physiques, plus les comptes à la banque centrale qui peuvent être échangés contre des devises physiques.
M1 : M0 plus le montant des comptes à vue, y compris les comptes de "chèques" et les comptes "courants".
M2 : M1 plus la plupart des comptes d'épargne, comptes du marché monétaire et comptes de certificats de dépôt (CD) de moins de 100 000 $.
Prédictions du cours de XBot par des sociétés Internet ou des niches technologiques
| Comparaison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Action Facebook | $0.017032 | $0.023933 | $0.03363 | $0.047256 | $0.0664034 | $0.0933078 |
| Action Amazon.com | $0.025291 | $0.052773 | $0.110114 | $0.229759 | $0.479407 | $1.00 |
| Action Apple | $0.017193 | $0.024387 | $0.034591 | $0.049065 | $0.069595 | $0.098715 |
| Action Netflix | $0.019125 | $0.030177 | $0.047614 | $0.075128 | $0.118541 | $0.187039 |
| Action Google | $0.015697 | $0.020327 | $0.026324 | $0.034089 | $0.044146 | $0.057168 |
| Action Tesla | $0.027478 | $0.06229 | $0.1412087 | $0.3201096 | $0.725664 | $1.64 |
| Action Kodak | $0.009089 | $0.006816 | $0.005111 | $0.003833 | $0.002874 | $0.002155 |
| Action Nokia | $0.008029 | $0.005319 | $0.003523 | $0.002334 | $0.001546 | $0.001024 |
Ce calcul montre la valeur potentielle des cryptomonnaies si l'on suppose que leur capitalisation se comportera comme celle de certaines sociétés Internet ou niches technologiques. En extrapolant les données, vous pourrez obtenir une potentielle image des cours futurs pour 2024, 2025, 2026, 2027, 2028, 2029 et 2030.
Aperçu des prévisions relatives à XBot
Vous vous posez peut-être des questions telles que : "Devrais-je investir dans XBot maintenant ?", "Devrais-je acheter XBOT aujourd'hui ?", " XBot sera-t-il un bon ou un mauvais investissement à court ou à long terme ?".
Nous mettons régulièrement à jour les prévisions de XBot avec de nouvelles valeurs. Regardez nos prévisions similaires. Nous faisons une prévision des cours futurs pour une grande quantité de devises numériques comme XBot en utilisant des méthodes d'analyse technique.
Si vous souhaitez trouver des cryptomonnaies ayant un bon rendement, vous devriez consulter un maximum d'informations disponibles à propos de XBot afin de prendre une décision responsable concernant cet investissement.
Le cours de XBot est de $0.01212 USD actuellement, mais ce cours peut subir une hausse ou une baisse, ce qui pourrait causer la perte de votre investissement, car les cryptomonnaies sont des actifs à haut risque.
Prévision du cours de XBot basée sur le modèle de croissance du Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si XBot présente 1 % de la précédente croissance annuelle moyenne du Bitcoin | $0.012436 | $0.012759 | $0.013091 | $0.013431 |
| Si XBot présente 2 % de la précédente croissance annuelle moyenne du Bitcoin | $0.012751 | $0.013414 | $0.014111 | $0.014845 |
| Si XBot présente 5 % de la précédente croissance annuelle moyenne du Bitcoin | $0.013696 | $0.015476 | $0.017488 | $0.019761 |
| Si XBot présente 10 % de la précédente croissance annuelle moyenne du Bitcoin | $0.015272 | $0.019241 | $0.024243 | $0.030544 |
| Si XBot présente 20 % de la précédente croissance annuelle moyenne du Bitcoin | $0.018422 | $0.02800014 | $0.042556 | $0.064679 |
| Si XBot présente 50 % de la précédente croissance annuelle moyenne du Bitcoin | $0.027874 | $0.0641029 | $0.147415 | $0.3390046 |
| Si XBot présente 100 % de la précédente croissance annuelle moyenne du Bitcoin | $0.043628 | $0.157033 | $0.565213 | $2.03 |
Boîte à questions
Est-ce que XBOT est un bon investissement ?
La décision d'acquérir XBot dépend entièrement de votre tolérance individuelle au risque. Comme vous pouvez le discerner, la valeur de XBot a connu une baisse de 0% au cours des 24 heures précédentes, et XBot a enregistré une déclin de sur une période de 30 jours précédents. Par conséquent, la détermination de si investir ou non dans XBot dépendra de la mesure dans laquelle cet investissement s'aligne avec vos aspirations de trading.
Est-ce que XBot peut monter ?
Il semble que la valeur moyenne de XBot pourrait potentiellement s'envoler jusqu'à $0.012501 pour la fin de cette année. En regardant les perspectives de XBot sur une période de cinq ans plus longue, la monnaie numérique pourrait potentiellement croître jusqu'à $0.0393009. Cependant, compte tenu de l'imprévisibilité du marché, il est essentiel de mener des recherches approfondies avant d'investir des fonds dans un projet, un réseau ou un actif particulier.
Quel sera le prix de XBot la semaine prochaine ?
Basé sur notre nouveau pronostic expérimental de XBot, le prix de XBot va augmenter de 0.86% durant la prochaine semaine et atteindre $0.012225 d'ici 13 janvier 2026.
Quel sera le prix de XBot le mois prochain ?
Basé sur notre nouveau pronostic expérimental de XBot, le prix de XBot va diminuer de -11.62% durant le prochain mois et atteindre $0.010713 d'ici 5 février 2026.
Jusqu'où le prix de XBot peut-il monter cette année en 2026 ?
Selon notre prédiction la plus récente sur la valeur de XBot en 2026, XBOT devrait fluctuer dans la fourchette de $0.004187 et $0.012501. Cependant, il est crucial de garder à l'esprit que le marché des cryptomonnaies est exceptionnellement instable, et cette prévision de prix de XBot ne prend pas en compte les fluctuations de prix soudaines et extrêmes.
Où sera XBot dans 5 ans ?
L'avenir de XBot semble suivre une tendance haussière, avec un prix maximum de $0.0393009 prévue après une période de cinq ans. Selon la prévision de XBot pour 2030, la valeur de XBot pourrait potentiellement atteindre son point le plus élevé d'environ $0.0393009, tandis que son point le plus bas devrait être autour de $0.013592.
Combien vaudra XBot en 2026 ?
Basé sur notre nouvelle simulation expérimentale de prédiction de prix de XBot, il est attendu que la valeur de XBOT en 2026 augmente de 3.13% jusqu'à $0.012501 si le meilleur scénario se produit. Le prix sera entre $0.012501 et $0.004187 durant 2026.
Combien vaudra XBot en 2027 ?
Selon notre dernière simulation expérimentale pour la prédiction de prix de XBot, le valeur de XBOT pourrait diminuer de -12.62% jusqu'à $0.010591 en 2027, en supposant les conditions les plus favorables. Il est prévu que le prix fluctue entre $0.010591 et $0.004031 tout au long de l'année.
Combien vaudra XBot en 2028 ?
Notre nouveau modèle expérimental de prédiction de prix de XBot suggère que la valeur de XBOT en 2028 pourrait augmenter de 47.02%, atteignant $0.01782 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.01782 et $0.007275 durant l'année.
Combien vaudra XBot en 2029 ?
Basé sur notre modèle de prévision expérimental, la valeur de XBot pourrait connaître un 333.75% croissance en 2029, atteignant potentiellement $0.052576 sous des conditions optimales. Le range de prix prévu pour 2029 se situe entre $0.052576 et $0.015982.
Combien vaudra XBot en 2030 ?
En utilisant notre nouvelle simulation expérimentale pour les prédictions de prix de XBot, il est prévu que la valeur de XBOT en 2030 augmente de 224.23%, atteignant $0.0393009 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.0393009 et $0.013592 au cours de 2030.
Combien vaudra XBot en 2031 ?
Notre simulation expérimentale indique que le prix de XBot pourrait augmenter de 195.98% en 2031, atteignant potentiellement $0.035877 dans des conditions idéales. Il est probable que le prix fluctue entre $0.035877 et $0.01607 durant l'année.
Combien vaudra XBot en 2032 ?
Basé sur les résultats de notre dernière prédiction expérimentale de prix de XBot, XBOT pourrait connaître une 449.04% hausse en valeur, atteignant $0.06655 si le scénario le plus positif se réalise en 2032. Il est prévu que le prix reste dans une fourchette de $0.06655 et $0.024531 tout au long de l'année.
Combien vaudra XBot en 2033 ?
Selon notre prédiction expérimentale de prix de XBot, la valeur de XBOT est anticipée à augmenter de 1362.43% en 2033, avec le prix potentiel le plus élevé étant $0.177266. Tout au long de l'année, le prix de XBOT pourrait osciller entre $0.177266 et $0.0570049.
Combien vaudra XBot en 2034 ?
Les résultats de notre nouvelle simulation de prédiction de prix de XBot suggèrent que XBOT pourrait augmenter de 746.96% en 2034, atteignant potentiellement $0.102663 dans les meilleures circonstances. La fourchette de prix prévue pour l'année est entre $0.102663 et $0.045829.
Combien vaudra XBot en 2035 ?
Basé sur notre prédiction expérimentale pour le prix de XBot, XBOT pourrait augmenter de 897.93%, avec la valeur potentiellement atteignant $0.120962 en 2035. La fourchette de prix attendue pour l'année se situe entre $0.120962 et $0.054184.
Combien vaudra XBot en 2036 ?
Notre récente simulation de prédiction de prix de XBot suggère que la valeur de XBOT pourrait augmenter de 1964.7% en 2036, pouvant atteindre $0.250268 si les conditions sont optimales. La fourchette de prix attendue pour 2036 est entre $0.250268 et $0.089692.
Combien vaudra XBot en 2037 ?
Selon la simulation expérimentale, la valeur de XBot pourrait augmenter de 4830.69% en 2037, avec un maximum de $0.597665 sous des conditions favorables. Il est prévu que le prix chute entre $0.597665 et $0.232927 au cours de l'année.
Prévisions liées
Prévision du cours de SolPod
Prévision du cours de zuzalu
Prévision du cours de SOFT COQ INU
Prévision du cours de All Street Bets
Prévision du cours de MagicRing
Prévision du cours de AI INU
Prévision du cours de Wall Street Baby On Solana
Prévision du cours de Meta Masters Guild Games
Prévision du cours de Morfey
Prévision du cours de PANTIESPrévision du cours de Celer Bridged BUSD (zkSync)
Prévision du cours de Bridged BUSD
Prévision du cours de Multichain Bridged BUSD (Moonriver)
Prévision du cours de tooker kurlson
Prévision du cours de dogwifsaudihatPrévision du cours de Harmony Horizen Bridged BUSD (Harmony)
Prévision du cours de IoTeX Bridged BUSD (IoTeX)
Prévision du cours de MIMANY
Prévision du cours de The Open League MEME
Prévision du cours de Sandwich Cat
Prévision du cours de Hege
Prévision du cours de DexNet
Prévision du cours de SolDocs
Prévision du cours de Secret Society
Prévision du cours de duk
Comment lire et prédire les mouvements de prix de XBot ?
Les traders de XBot utilisent des indicateurs et des modèles graphiques pour prédire la direction du marché. Ils identifient également des niveaux clés de support et de résistance pour évaluer quand une tendance baissière pourrait ralentir ou une tendance haussière pourrait s'arrêter.
Indicateurs de prédiction du prix de XBot
Les moyennes mobiles sont des outils populaires pour la prédiction du prix de XBot. Une moyenne mobile simple (SMA) calcule le prix de clôture moyen de XBOT sur une période spécifique, comme une SMA de 12 jours. Une moyenne mobile exponentielle (EMA) donne plus de poids aux prix récents, réagissant plus rapidement aux changements de prix.
Les moyennes mobiles couramment utilisées sur le marché des cryptomonnaies incluent les moyennes sur 50 jours, 100 jours et 200 jours, qui aident à identifier les niveaux clés de résistance et de support. Un mouvement de prix de XBOT au-dessus de ces moyennes est considéré comme haussier, tandis qu'une chute en dessous indique une faiblesse.
Les traders utilisent également le RSI et les niveaux de retracement de Fibonacci pour évaluer la direction future de XBOT.
Comment lire les graphiques de XBot et prédire les mouvements de prix ?
La plupart des traders préfèrent les graphiques en chandeliers aux simples graphiques linéaires parce qu'ils fournissent des informations plus détaillées. Les chandeliers peuvent représenter l'action des prix de XBot dans différentes périodes, comme 5 minutes pour les tendances à court terme et hebdomadaire pour les tendances à long terme. Les options populaires incluent les graphiques de 1 heure, 4 heures et 1 jour.
Par exemple, un graphique en chandeliers de 1 heure montre les prix d'ouverture, de clôture, les plus hauts et les plus bas de XBOT au sein de chaque heure. La couleur du chandelier est cruciale : le vert indique que le prix a clôturé plus haut qu'il n'a ouvert, tandis que le rouge signifie le contraire. Certains graphiques utilisent des chandeliers creux et pleins pour transmettre la même information.
Qu'est-ce qui affecte le prix de XBot ?
L'action du prix de XBot est déterminée par l'offre et la demande, influencée par des facteurs tels que les réductions de récompenses de bloc, les hard forks et les mises à jour de protocole. Les événements du monde réel, tels que les réglementations, l'adoption par les entreprises et les gouvernements et les piratages d'échanges de cryptomonnaies, impactent également le prix de XBOT. La capitalisation boursière de XBot peut changer rapidement.
Les traders surveillent souvent l'activité des « baleines » de XBOT, de grands détenteurs de XBot, car leurs actions peuvent influencer significativement les mouvements de prix sur le marché relativement petit de XBot.
Modèles de prédiction de prix haussiers et baissiers
Les traders identifient souvent des modèles de chandeliers pour obtenir un avantage dans les prédictions de prix des cryptomonnaies. Certaines formations indiquent des tendances haussières, tandis que d'autres suggèrent des mouvements baissiers.
Modèles de chandeliers haussiers couramment suivis :
- Marteau
- Englobante haussière
- Ligne pénétrante
- Étoile du matin
- Trois soldats blancs
Modèles de chandeliers baissiers courants :
- Harami baissier
- Nuage sombre
- Étoile du soir
- Étoile filante
- Pendu


