Prédiction du prix de Winter jusqu'à $0.004587 d'ici 2026
| Année | Prix min. | Prix max. |
|---|---|---|
| 2026 | $0.001536 | $0.004587 |
| 2027 | $0.001479 | $0.003886 |
| 2028 | $0.002669 | $0.006539 |
| 2029 | $0.005865 | $0.019293 |
| 2030 | $0.004988 | $0.014421 |
| 2031 | $0.005897 | $0.013165 |
| 2032 | $0.0090019 | $0.024421 |
| 2033 | $0.020918 | $0.065049 |
| 2034 | $0.016817 | $0.037673 |
| 2035 | $0.019883 | $0.044388 |
Calculateur de profit d’investissement
Si vous ouvrez une position short de $10,000.00 sur Winter aujourd’hui et la fermez le Apr 06, 2026, notre prévision indique que vous pourriez gagner environ $3,954.65, soit un rendement de 39.55% sur les 90 prochains jours.
Prévision du prix à long terme de Winter pour 2027, 2028, 2029, 2030, 2031, 2032 et 2037
[
'name' => 'Winter'
'name_with_ticker' => 'Winter <small>WINTER</small>'
'name_lang' => 'Winter'
'name_lang_with_ticker' => 'Winter <small>WINTER</small>'
'name_with_lang' => 'Winter'
'name_with_lang_with_ticker' => 'Winter <small>WINTER</small>'
'image' => '/uploads/coins/winter.png?1717263842'
'price_for_sd' => 0.004448
'ticker' => 'WINTER'
'marketcap' => '$0'
'low24h' => '$0.004147'
'high24h' => '$0.00456'
'volume24h' => '$205.22'
'current_supply' => '0'
'max_supply' => '25.16M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.004448'
'change_24h_pct' => '6.2032%'
'ath_price' => '$0.04658'
'ath_days' => 1339
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '8 mai 2022'
'ath_pct' => '-90.49%'
'fdv' => '$111.45K'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.219319'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.004486'
'next_week_prediction_price_date' => '13 janvier 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.003931'
'next_month_prediction_price_date' => '5 février 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.001536'
'current_year_max_price_prediction' => '$0.004587'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.004988'
'grand_prediction_max_price' => '$0.014421'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0045323382078257
107 => 0.004549260313455
108 => 0.0045873866815018
109 => 0.0042616010409219
110 => 0.0044078692289784
111 => 0.0044937880859858
112 => 0.0041056035642717
113 => 0.0044861149260999
114 => 0.004255929837727
115 => 0.0041778015614693
116 => 0.0042829909928326
117 => 0.0042419985691303
118 => 0.0042067556903868
119 => 0.0041870895584985
120 => 0.0042643290675578
121 => 0.0042607257521391
122 => 0.0041343469237753
123 => 0.0039694908940348
124 => 0.0040248219888304
125 => 0.0040047196833593
126 => 0.0039318663350833
127 => 0.0039809606954745
128 => 0.0037647739783988
129 => 0.0033928359680777
130 => 0.0036385496104652
131 => 0.0036290899025183
201 => 0.0036243198888078
202 => 0.0038089669000358
203 => 0.0037912173504375
204 => 0.0037590017441127
205 => 0.0039312746702094
206 => 0.0038683927347862
207 => 0.004062180042913
208 => 0.0041898208974226
209 => 0.0041574470479699
210 => 0.0042774938885779
211 => 0.0040260967055014
212 => 0.0041096007654151
213 => 0.0041268108364316
214 => 0.0039291488490426
215 => 0.0037941213962642
216 => 0.0037851166045895
217 => 0.003550997609401
218 => 0.0036760620868882
219 => 0.0037861136515572
220 => 0.0037334074924272
221 => 0.0037167222969983
222 => 0.003801963341867
223 => 0.0038085873010935
224 => 0.0036575603287541
225 => 0.0036889636187057
226 => 0.0038199205581663
227 => 0.0036856638398322
228 => 0.0034248249668195
301 => 0.0033601333199328
302 => 0.0033515022617345
303 => 0.0031760533846185
304 => 0.0033644563251129
305 => 0.0032822133927022
306 => 0.003542017830766
307 => 0.0033936189291031
308 => 0.0033872217490535
309 => 0.0033775514731463
310 => 0.0032265353769108
311 => 0.0032595983044128
312 => 0.0033695045110555
313 => 0.0034087202837676
314 => 0.0034046297573884
315 => 0.0033689659106838
316 => 0.0033852926370767
317 => 0.0033326985627566
318 => 0.0033141265004631
319 => 0.0032555079632169
320 => 0.0031693549072491
321 => 0.0031813350180888
322 => 0.0030106432710433
323 => 0.0029176413479562
324 => 0.0028918996413913
325 => 0.0028574767555528
326 => 0.0028957877979426
327 => 0.0030101597227702
328 => 0.0028722029160706
329 => 0.0026356856475291
330 => 0.0026499007383743
331 => 0.002681837827005
401 => 0.0026223232736266
402 => 0.0025659977435319
403 => 0.0026149682221146
404 => 0.0025147527374815
405 => 0.0026939483895378
406 => 0.0026891016493397
407 => 0.0027558947070415
408 => 0.0027976617767539
409 => 0.0027014022033161
410 => 0.0026771931809101
411 => 0.0026909837403113
412 => 0.00246305651226
413 => 0.0027372681898286
414 => 0.0027396395838031
415 => 0.0027193342688784
416 => 0.002865343521848
417 => 0.0031734685870418
418 => 0.0030575395432138
419 => 0.0030126483134698
420 => 0.002927310052911
421 => 0.003041018218221
422 => 0.0030322872052489
423 => 0.0029928022534507
424 => 0.0029689216314026
425 => 0.0030129224097461
426 => 0.0029634694480308
427 => 0.0029545863372302
428 => 0.0029007643506986
429 => 0.0028815523502512
430 => 0.0028673285499716
501 => 0.0028516695434657
502 => 0.0028862094098366
503 => 0.0028079375285423
504 => 0.0027135493127885
505 => 0.0027057019539432
506 => 0.0027273692016619
507 => 0.0027177830574832
508 => 0.0027056560591729
509 => 0.0026825023168071
510 => 0.0026756330960486
511 => 0.0026979547310416
512 => 0.0026727549065666
513 => 0.0027099386202849
514 => 0.0026998267076223
515 => 0.0026433423854822
516 => 0.0025729420069211
517 => 0.0025723152958822
518 => 0.0025571476498009
519 => 0.0025378293720457
520 => 0.0025324554691165
521 => 0.0026108440649981
522 => 0.0027731061124999
523 => 0.0027412501899736
524 => 0.0027642693587251
525 => 0.0028775008860739
526 => 0.0029134937836272
527 => 0.0028879468774824
528 => 0.0028529766966867
529 => 0.0028545152071651
530 => 0.0029740189011374
531 => 0.0029814721999442
601 => 0.0030003042815038
602 => 0.0030245088282535
603 => 0.0028920690164573
604 => 0.0028482773039396
605 => 0.002827526361077
606 => 0.0027636214886858
607 => 0.00283253741477
608 => 0.0027923830559149
609 => 0.0027978012507927
610 => 0.0027942726442706
611 => 0.002796199502035
612 => 0.002693898300701
613 => 0.0027311714816743
614 => 0.0026691975890539
615 => 0.0025862215037312
616 => 0.002585943338798
617 => 0.0026062516181286
618 => 0.0025941714589197
619 => 0.0025616640610979
620 => 0.0025662815835279
621 => 0.0025258272282556
622 => 0.0025711934747077
623 => 0.0025724944163277
624 => 0.0025550259403275
625 => 0.0026249189023225
626 => 0.0026535541058791
627 => 0.0026420559807647
628 => 0.0026527473667694
629 => 0.0027425739473754
630 => 0.0027572195994227
701 => 0.0027637242306246
702 => 0.0027550088865125
703 => 0.0026543892317659
704 => 0.0026588521413217
705 => 0.0026261062721881
706 => 0.0025984394634448
707 => 0.0025995459907013
708 => 0.0026137703268287
709 => 0.0026758888369433
710 => 0.0028066135793934
711 => 0.0028115744878109
712 => 0.0028175872535327
713 => 0.002793130313568
714 => 0.0027857538664533
715 => 0.0027954853042202
716 => 0.002844578644304
717 => 0.0029708600437114
718 => 0.0029262237631098
719 => 0.0028899337721755
720 => 0.0029217698779362
721 => 0.002916868958994
722 => 0.0028755002710112
723 => 0.0028743391897223
724 => 0.0027949394511138
725 => 0.0027655871755949
726 => 0.0027410582171915
727 => 0.0027142732349596
728 => 0.0026983941996519
729 => 0.0027227916147771
730 => 0.0027283715922779
731 => 0.0026750262177128
801 => 0.0026677554402775
802 => 0.0027113184246873
803 => 0.0026921479794403
804 => 0.002711865257781
805 => 0.0027164398354877
806 => 0.0027157032231155
807 => 0.002695687076566
808 => 0.0027084447714866
809 => 0.0026782690197476
810 => 0.0026454574219828
811 => 0.0026245256668436
812 => 0.0026062599342903
813 => 0.0026163948243215
814 => 0.0025802657919181
815 => 0.0025687073873185
816 => 0.0027041227515047
817 => 0.0028041555369896
818 => 0.0028027010206713
819 => 0.002793847026655
820 => 0.0027806917875138
821 => 0.0028436162566219
822 => 0.0028216946297991
823 => 0.0028376444449259
824 => 0.0028417043422873
825 => 0.0028539924288374
826 => 0.0028583843635824
827 => 0.0028451088863884
828 => 0.0028005547634623
829 => 0.0026895301252095
830 => 0.0026378478563976
831 => 0.0026207918468533
901 => 0.0026214118004063
902 => 0.0026043107138212
903 => 0.0026093477502374
904 => 0.0026025590381156
905 => 0.0025897028597229
906 => 0.0026156009915335
907 => 0.0026185855099669
908 => 0.0026125405765427
909 => 0.0026139643771939
910 => 0.002563914910266
911 => 0.0025677200625348
912 => 0.0025465324911668
913 => 0.0025425600769553
914 => 0.0024889997415498
915 => 0.0023941098436843
916 => 0.0024466880582871
917 => 0.0023831809686627
918 => 0.0023591298715325
919 => 0.0024729840246338
920 => 0.0024615562254851
921 => 0.0024419968008873
922 => 0.002413064335366
923 => 0.0024023330024672
924 => 0.0023371328209013
925 => 0.002333280446345
926 => 0.002365595416882
927 => 0.0023506831698694
928 => 0.0023297407273541
929 => 0.0022538893234651
930 => 0.0021686072319571
1001 => 0.0021711813622356
1002 => 0.0021983080088146
1003 => 0.0022771823922697
1004 => 0.0022463648061131
1005 => 0.0022240062937654
1006 => 0.0022198192164971
1007 => 0.00227222925475
1008 => 0.0023464004391202
1009 => 0.00238119989934
1010 => 0.0023467146911375
1011 => 0.0023070999407699
1012 => 0.0023095111070677
1013 => 0.0023255515162254
1014 => 0.0023272371364287
1015 => 0.0023014520064016
1016 => 0.002308710369467
1017 => 0.002297684252252
1018 => 0.0022300169912566
1019 => 0.0022287931050804
1020 => 0.0022121864679501
1021 => 0.0022116836255777
1022 => 0.0021834315930993
1023 => 0.0021794789384585
1024 => 0.002123382813197
1025 => 0.0021603054527189
1026 => 0.0021355396846532
1027 => 0.0020982118305241
1028 => 0.0020917764944025
1029 => 0.0020915830404278
1030 => 0.0021299104002629
1031 => 0.0021598575752039
1101 => 0.0021359704957918
1102 => 0.0021305318708412
1103 => 0.00218860215671
1104 => 0.0021812121835108
1105 => 0.0021748125143805
1106 => 0.0023397592230765
1107 => 0.0022091910321914
1108 => 0.0021522558483938
1109 => 0.002081787746746
1110 => 0.0021047325159735
1111 => 0.0021095673159785
1112 => 0.0019401042343457
1113 => 0.0018713530832325
1114 => 0.0018477602790029
1115 => 0.0018341822866155
1116 => 0.0018403699482482
1117 => 0.0017784858485406
1118 => 0.0018200729870126
1119 => 0.0017664865875986
1120 => 0.0017575026533516
1121 => 0.0018533217735849
1122 => 0.0018666544443982
1123 => 0.0018097731285726
1124 => 0.0018463001415812
1125 => 0.0018330549389008
1126 => 0.0017674051726143
1127 => 0.0017648978344291
1128 => 0.0017319570894074
1129 => 0.0016804112020335
1130 => 0.0016568533483428
1201 => 0.001644584213602
1202 => 0.0016496466977167
1203 => 0.0016470869508338
1204 => 0.0016303828709429
1205 => 0.00164804440914
1206 => 0.0016029264772978
1207 => 0.0015849601532984
1208 => 0.0015768451815634
1209 => 0.0015368004201622
1210 => 0.0016005294435377
1211 => 0.0016130848639798
1212 => 0.0016256650224787
1213 => 0.0017351667133727
1214 => 0.0017296963183442
1215 => 0.0017791460252113
1216 => 0.0017772245005347
1217 => 0.001763120643104
1218 => 0.001703618788576
1219 => 0.0017273351672723
1220 => 0.0016543398399887
1221 => 0.0017090329023893
1222 => 0.0016840732727466
1223 => 0.0017005940265
1224 => 0.001670888221635
1225 => 0.0016873286405699
1226 => 0.001616062219942
1227 => 0.0015495146391052
1228 => 0.0015762953282789
1229 => 0.001605409000154
1230 => 0.0016685348588049
1231 => 0.0016309376181695
]
'min_raw' => 0.0015368004201622
'max_raw' => 0.0045873866815018
'avg_raw' => 0.003062093550832
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.001536'
'max' => '$0.004587'
'avg' => '$0.003062'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0029112495798378
'max_diff' => 0.00013933668150179
'year' => 2026
]
1 => [
'items' => [
101 => 0.001644459007611
102 => 0.0015991646164351
103 => 0.0015057093497358
104 => 0.0015062382963961
105 => 0.0014918622396481
106 => 0.0014794392276791
107 => 0.0016352561135289
108 => 0.001615877820673
109 => 0.0015850010471755
110 => 0.0016263308354962
111 => 0.0016372590875201
112 => 0.0016375701994919
113 => 0.0016677233461744
114 => 0.0016838160859642
115 => 0.001686652501102
116 => 0.0017340991289088
117 => 0.0017500026127135
118 => 0.0018155068117598
119 => 0.0016824507294267
120 => 0.001679710526971
121 => 0.0016269124303746
122 => 0.0015934270428083
123 => 0.0016292052035093
124 => 0.0016608997696844
125 => 0.001627897268894
126 => 0.0016322066987764
127 => 0.0015879035378686
128 => 0.0016037398332357
129 => 0.0016173801841851
130 => 0.0016098487841336
131 => 0.0015985739137326
201 => 0.0016583011766981
202 => 0.0016549311304486
203 => 0.0017105505308459
204 => 0.0017539098308371
205 => 0.0018316174478234
206 => 0.0017505254985085
207 => 0.0017475701855642
208 => 0.0017764588436422
209 => 0.0017499981900105
210 => 0.001766720409715
211 => 0.0018289232397045
212 => 0.0018302374874842
213 => 0.0018082221438609
214 => 0.0018068825082007
215 => 0.001811110795765
216 => 0.0018358760080974
217 => 0.0018272222819504
218 => 0.0018372365929333
219 => 0.0018497596421619
220 => 0.0019015602834346
221 => 0.0019140492426753
222 => 0.0018837075465035
223 => 0.0018864470619463
224 => 0.0018750984346799
225 => 0.0018641358029384
226 => 0.0018887781981294
227 => 0.0019338126596885
228 => 0.0019335325026404
301 => 0.0019439796223773
302 => 0.0019504880914248
303 => 0.0019225489777825
304 => 0.0019043616421512
305 => 0.0019113358239225
306 => 0.0019224876924527
307 => 0.0019077194232592
308 => 0.0018165628244694
309 => 0.0018442139134361
310 => 0.0018396114201629
311 => 0.0018330569100595
312 => 0.0018608602938351
313 => 0.0018581785896432
314 => 0.0017778511376523
315 => 0.001782993440507
316 => 0.0017781638581207
317 => 0.0017937692268503
318 => 0.0017491554488866
319 => 0.0017628783465099
320 => 0.001771485219255
321 => 0.001776554733423
322 => 0.0017948692947961
323 => 0.0017927202924049
324 => 0.0017947357097902
325 => 0.0018218913694416
326 => 0.0019592353772616
327 => 0.0019667107085748
328 => 0.0019298994432148
329 => 0.001944604817656
330 => 0.0019163737144407
331 => 0.0019353254431611
401 => 0.0019482917346298
402 => 0.001889699556757
403 => 0.0018862301082434
404 => 0.0018578824852228
405 => 0.0018731148921426
406 => 0.0018488790374843
407 => 0.0018548256684833
408 => 0.0018381983697923
409 => 0.0018681241969739
410 => 0.0019015859217664
411 => 0.0019100396748926
412 => 0.0018878014899872
413 => 0.001871699578548
414 => 0.00184342992636
415 => 0.0018904429879789
416 => 0.0019041910398934
417 => 0.0018903707753149
418 => 0.0018871683180334
419 => 0.0018810996672715
420 => 0.0018884558109808
421 => 0.0019041161650501
422 => 0.0018967310312724
423 => 0.0019016090422419
424 => 0.0018830190946092
425 => 0.0019225582267917
426 => 0.0019853558843079
427 => 0.0019855577890452
428 => 0.0019781726154589
429 => 0.0019751507615432
430 => 0.0019827283978126
501 => 0.0019868389546378
502 => 0.0020113436408322
503 => 0.0020376381454285
504 => 0.0021603431251885
505 => 0.0021258880578838
506 => 0.0022347592156787
507 => 0.002320862166344
508 => 0.0023466806764228
509 => 0.0023229288620051
510 => 0.0022416751879298
511 => 0.0022376884950386
512 => 0.0023591157885233
513 => 0.0023248070163915
514 => 0.002320726097116
515 => 0.0022773120108469
516 => 0.0023029751127712
517 => 0.0022973622159253
518 => 0.0022885019836619
519 => 0.0023374653944261
520 => 0.002429120528383
521 => 0.0024148352162194
522 => 0.0024041718933658
523 => 0.0023574483166682
524 => 0.0023855863459289
525 => 0.0023755669326576
526 => 0.0024186166905477
527 => 0.0023931149676425
528 => 0.002324547093699
529 => 0.0023354667536272
530 => 0.0023338162689963
531 => 0.0023677831257443
601 => 0.0023575871184578
602 => 0.0023318253349336
603 => 0.0024288072610993
604 => 0.0024225097942559
605 => 0.0024314381624385
606 => 0.0024353687062314
607 => 0.0024943998956752
608 => 0.002518583085203
609 => 0.0025240730926121
610 => 0.0025470452522685
611 => 0.0025235015243527
612 => 0.0026176932224094
613 => 0.0026803252053792
614 => 0.0027530754766109
615 => 0.0028593831763099
616 => 0.0028993558547979
617 => 0.0028921351482106
618 => 0.0029727364328494
619 => 0.0031175751496794
620 => 0.0029214111939793
621 => 0.0031279723156548
622 => 0.0030625774493952
623 => 0.002907527397897
624 => 0.0028975440025006
625 => 0.0030025456975432
626 => 0.0032354293511092
627 => 0.0031770946372354
628 => 0.0032355247658032
629 => 0.0031673629171299
630 => 0.0031639781068301
701 => 0.0032322142969533
702 => 0.0033916518745372
703 => 0.0033159090578553
704 => 0.0032073131572412
705 => 0.0032874986803153
706 => 0.0032180345594087
707 => 0.0030615124532229
708 => 0.0031770500297791
709 => 0.0030997933426567
710 => 0.0031223409511504
711 => 0.0032847230164168
712 => 0.0032651847767143
713 => 0.0032904690680817
714 => 0.0032458429556234
715 => 0.0032041551296954
716 => 0.0031263417068222
717 => 0.0031033049884649
718 => 0.0031096715086445
719 => 0.0031033018335336
720 => 0.0030597659385783
721 => 0.0030503643662078
722 => 0.0030346946670313
723 => 0.0030395513620295
724 => 0.0030100877432455
725 => 0.0030656916793852
726 => 0.0030760122599129
727 => 0.003116476167652
728 => 0.0031206772647873
729 => 0.0032333686718728
730 => 0.0031713001385523
731 => 0.0032129410694431
801 => 0.0032092163126445
802 => 0.0029108878026659
803 => 0.0029519948391662
804 => 0.003015944487862
805 => 0.0029871352578063
806 => 0.002946405746829
807 => 0.0029135144829367
808 => 0.0028636808548354
809 => 0.0029338207294179
810 => 0.0030260472059498
811 => 0.003123016280429
812 => 0.0032395182697503
813 => 0.0032135163819664
814 => 0.0031208383567757
815 => 0.0031249958252845
816 => 0.0031506956597018
817 => 0.0031174120390552
818 => 0.003107596049553
819 => 0.0031493470934789
820 => 0.0031496346099725
821 => 0.0031113377819587
822 => 0.0030687778658668
823 => 0.0030685995382644
824 => 0.0030610264122759
825 => 0.0031687101594195
826 => 0.0032279253322936
827 => 0.0032347142564336
828 => 0.0032274683836077
829 => 0.00323025703248
830 => 0.0031958010281018
831 => 0.0032745572364996
901 => 0.0033468317215071
902 => 0.0033274606156059
903 => 0.0032984205740951
904 => 0.0032752887822738
905 => 0.0033220115005918
906 => 0.0033199310114934
907 => 0.0033462004669315
908 => 0.0033450087326931
909 => 0.0033361753028735
910 => 0.0033274609310755
911 => 0.0033620124302264
912 => 0.003352062153351
913 => 0.0033420964209474
914 => 0.0033221086189345
915 => 0.0033248252931903
916 => 0.0032957902658521
917 => 0.0032823573336529
918 => 0.0030803582634891
919 => 0.0030263775114313
920 => 0.0030433609549082
921 => 0.0030489523454758
922 => 0.003025459853002
923 => 0.0030591420524832
924 => 0.0030538927173723
925 => 0.0030743148095304
926 => 0.0030615559729742
927 => 0.0030620796000769
928 => 0.0030996006179179
929 => 0.003110493129023
930 => 0.0031049531099616
1001 => 0.0031088331494115
1002 => 0.003198247020871
1003 => 0.0031855352276441
1004 => 0.0031787823408477
1005 => 0.0031806529366404
1006 => 0.0032035000978533
1007 => 0.0032098960555842
1008 => 0.0031827959332425
1009 => 0.0031955765076028
1010 => 0.0032499945711324
1011 => 0.0032690378135721
1012 => 0.0033298147021648
1013 => 0.0033039955996676
1014 => 0.0033513876797258
1015 => 0.003497054776674
1016 => 0.0036134237331127
1017 => 0.0035064060316212
1018 => 0.0037201028006236
1019 => 0.0038864963882728
1020 => 0.0038801099252358
1021 => 0.0038510953544761
1022 => 0.0036616606787399
1023 => 0.0034873400658155
1024 => 0.0036331666605709
1025 => 0.0036335384025505
1026 => 0.0036210117687338
1027 => 0.0035432099219386
1028 => 0.0036183044331106
1029 => 0.0036242651627042
1030 => 0.0036209287392177
1031 => 0.0035612782456959
1101 => 0.0034702029673421
1102 => 0.0034879988587291
1103 => 0.0035171488918472
1104 => 0.0034619617978206
1105 => 0.0034443261773752
1106 => 0.0034771141510973
1107 => 0.0035827638340756
1108 => 0.0035627913734955
1109 => 0.0035622698118347
1110 => 0.0036477204678378
1111 => 0.0035865562395453
1112 => 0.0034882233219098
1113 => 0.003463392963355
1114 => 0.0033752619182191
1115 => 0.0034361343450065
1116 => 0.0034383250352775
1117 => 0.0034049858292271
1118 => 0.0034909286147379
1119 => 0.0034901366368395
1120 => 0.0035717265207865
1121 => 0.0037276957351321
1122 => 0.0036815679636712
1123 => 0.0036279263841494
1124 => 0.0036337587111631
1125 => 0.0036977249430935
1126 => 0.0036590494990613
1127 => 0.0036729574583901
1128 => 0.0036977038917314
1129 => 0.0037126340293855
1130 => 0.0036316104941164
1201 => 0.0036127200322415
1202 => 0.0035740767768966
1203 => 0.0035639954728876
1204 => 0.0035954695980481
1205 => 0.0035871772780656
1206 => 0.0034381409162429
1207 => 0.003422565787202
1208 => 0.0034230434541735
1209 => 0.003383879051643
1210 => 0.0033241439372504
1211 => 0.0034811242512759
1212 => 0.0034685165351215
1213 => 0.0034545985922469
1214 => 0.0034563034608343
1215 => 0.0035244432945963
1216 => 0.0034849187498703
1217 => 0.0035900012299699
1218 => 0.0035683994311299
1219 => 0.0035462436276607
1220 => 0.003543181020739
1221 => 0.0035346529266477
1222 => 0.0035054069188445
1223 => 0.0034700906070096
1224 => 0.0034467717188897
1225 => 0.003179464715012
1226 => 0.0032290753400784
1227 => 0.0032861478420665
1228 => 0.0033058490410491
1229 => 0.0032721487769079
1230 => 0.0035067376106783
1231 => 0.0035495992511625
]
'min_raw' => 0.0014794392276791
'max_raw' => 0.0038864963882728
'avg_raw' => 0.0026829678079759
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.001479'
'max' => '$0.003886'
'avg' => '$0.002682'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -5.7361192483049E-5
'max_diff' => -0.00070089029322902
'year' => 2027
]
2 => [
'items' => [
101 => 0.0034197685463405
102 => 0.003395482522421
103 => 0.0035083297983633
104 => 0.0034402690959517
105 => 0.0034709168260802
106 => 0.0034046731969544
107 => 0.0035392751371052
108 => 0.0035382496958412
109 => 0.0034858865009998
110 => 0.003530143514712
111 => 0.0035224527694679
112 => 0.0034633348514569
113 => 0.0035411492805528
114 => 0.0035411878755389
115 => 0.0034907894389781
116 => 0.0034319350987115
117 => 0.0034214133327493
118 => 0.0034134865954972
119 => 0.003468967334634
120 => 0.0035187111918604
121 => 0.0036112721776105
122 => 0.0036345442086229
123 => 0.003725376494971
124 => 0.0036712902909945
125 => 0.0036952660046837
126 => 0.0037212950334651
127 => 0.0037337743070487
128 => 0.0037134400004189
129 => 0.0038545399291782
130 => 0.0038664530863556
131 => 0.0038704474649088
201 => 0.0038228693628209
202 => 0.0038651298532684
203 => 0.0038453575693084
204 => 0.0038967995592737
205 => 0.0039048663201445
206 => 0.0038980340606702
207 => 0.0039005945778958
208 => 0.0037801906804329
209 => 0.0037739471031683
210 => 0.0036888154841413
211 => 0.0037235072481559
212 => 0.00365865265815
213 => 0.0036792187167172
214 => 0.003688284039373
215 => 0.0036835488292702
216 => 0.0037254686684422
217 => 0.0036898282414886
218 => 0.0035957672949294
219 => 0.0035016807215281
220 => 0.0035004995412403
221 => 0.0034757282072298
222 => 0.0034578230698362
223 => 0.0034612722345171
224 => 0.0034734275407341
225 => 0.0034571165813418
226 => 0.0034605973515148
227 => 0.0035184013286367
228 => 0.0035299935040094
229 => 0.0034905987627376
301 => 0.0033324231918976
302 => 0.0032936065100601
303 => 0.0033215071711967
304 => 0.0033081724522061
305 => 0.0026699533612041
306 => 0.0028198934697974
307 => 0.0027308041487562
308 => 0.0027718606066946
309 => 0.0026809234794794
310 => 0.0027243234430097
311 => 0.0027163090544585
312 => 0.0029574083120263
313 => 0.0029536438787405
314 => 0.002955445713745
315 => 0.0028694394343239
316 => 0.0030064497727667
317 => 0.0030739459922161
318 => 0.0030614542383497
319 => 0.0030645981436736
320 => 0.0030105754339525
321 => 0.0029559687716629
322 => 0.0028954015792787
323 => 0.0030079279363973
324 => 0.0029954169263747
325 => 0.0030241126820473
326 => 0.0030970940681888
327 => 0.0031078408545275
328 => 0.0031222846443498
329 => 0.0031171075738775
330 => 0.0032404463960509
331 => 0.00322550925087
401 => 0.0032615034730461
402 => 0.0031874606271416
403 => 0.0031036741187891
404 => 0.0031195991948396
405 => 0.0031180654819546
406 => 0.0030985395566144
407 => 0.0030809124242804
408 => 0.003051568215358
409 => 0.0031444176345142
410 => 0.0031406481176594
411 => 0.0032016722139545
412 => 0.0031908856121779
413 => 0.0031188500455845
414 => 0.0031214228099379
415 => 0.003138725886643
416 => 0.0031986120326821
417 => 0.0032163903181862
418 => 0.0032081547079985
419 => 0.0032276477864442
420 => 0.0032430543208509
421 => 0.0032295826099626
422 => 0.0034203136268179
423 => 0.0033411088108995
424 => 0.0033797126870746
425 => 0.0033889194840751
426 => 0.0033653364671563
427 => 0.0033704507790815
428 => 0.0033781975680815
429 => 0.0034252345539128
430 => 0.0035486732149957
501 => 0.003603343357714
502 => 0.0037678211794591
503 => 0.0035988037634063
504 => 0.0035887749694014
505 => 0.003618402391852
506 => 0.003714968284962
507 => 0.0037932258713546
508 => 0.0038191884275494
509 => 0.0038226198079457
510 => 0.0038713272893254
511 => 0.0038992455093114
512 => 0.0038654129199519
513 => 0.0038367433428895
514 => 0.0037340524764508
515 => 0.003745939223859
516 => 0.0038278271259815
517 => 0.0039434986109028
518 => 0.0040427567785321
519 => 0.0040080000277247
520 => 0.004273169501943
521 => 0.0042994599721915
522 => 0.0042958274792759
523 => 0.0043557210830487
524 => 0.00423684447668
525 => 0.0041860224243316
526 => 0.0038429420308639
527 => 0.0039393336273609
528 => 0.0040794444737493
529 => 0.0040609002778411
530 => 0.0039591480360202
531 => 0.0040426795903323
601 => 0.0040150614462035
602 => 0.0039932778700513
603 => 0.0040930726553587
604 => 0.0039833441895694
605 => 0.0040783498483652
606 => 0.0039565041082519
607 => 0.0040081587936347
608 => 0.0039788370959554
609 => 0.003997811827886
610 => 0.0038868859327371
611 => 0.0039467388531856
612 => 0.0038843958544683
613 => 0.0038843662957696
614 => 0.0038829900706175
615 => 0.0039563363321372
616 => 0.0039587281510922
617 => 0.0039045251530091
618 => 0.0038967136541753
619 => 0.0039255968595359
620 => 0.0038917821905821
621 => 0.0039076038613586
622 => 0.0038922614128721
623 => 0.0038888075045564
624 => 0.0038612861754628
625 => 0.0038494292301745
626 => 0.0038540786439379
627 => 0.0038382077978265
628 => 0.0038286450389707
629 => 0.00388108779719
630 => 0.0038530697470083
701 => 0.0038767936291642
702 => 0.0038497572712549
703 => 0.0037560374755607
704 => 0.0037021382299881
705 => 0.0035251102237515
706 => 0.0035753151467177
707 => 0.003608601062585
708 => 0.0035976000675894
709 => 0.0036212344616598
710 => 0.0036226854215052
711 => 0.0036150016390687
712 => 0.0036061048033608
713 => 0.0036017743157641
714 => 0.0036340502224082
715 => 0.0036527874725721
716 => 0.0036119417495504
717 => 0.0036023721681388
718 => 0.0036436694492679
719 => 0.0036688607669001
720 => 0.0038548593025171
721 => 0.0038410799302312
722 => 0.0038756634506035
723 => 0.0038717698769369
724 => 0.0039080189158739
725 => 0.003967270774549
726 => 0.0038467951787823
727 => 0.0038677055764747
728 => 0.0038625788298521
729 => 0.0039185513051724
730 => 0.0039187260451307
731 => 0.0038851677501437
801 => 0.0039033602462773
802 => 0.0038932056940206
803 => 0.0039115563424186
804 => 0.0038408958983134
805 => 0.0039269526919099
806 => 0.0039757413485018
807 => 0.003976418779046
808 => 0.0039995442150598
809 => 0.0040230409973848
810 => 0.0040681410249192
811 => 0.004021783182095
812 => 0.0039383899356992
813 => 0.0039444106587304
814 => 0.003895517228881
815 => 0.00389633913627
816 => 0.003891951730213
817 => 0.0039051186660586
818 => 0.0038437853002905
819 => 0.0038581801186449
820 => 0.0038380272886528
821 => 0.0038676617681581
822 => 0.0038357799669653
823 => 0.0038625763575797
824 => 0.0038741407914544
825 => 0.0039168138014166
826 => 0.0038294771286976
827 => 0.0036513917408504
828 => 0.0036888274484525
829 => 0.0036334570963977
830 => 0.0036385818332901
831 => 0.0036489346174088
901 => 0.0036153778568601
902 => 0.0036217794292777
903 => 0.0036215507200638
904 => 0.0036195798276169
905 => 0.0036108504181746
906 => 0.0035981910474223
907 => 0.0036486220841507
908 => 0.0036571913000041
909 => 0.003676239605345
910 => 0.0037329144414506
911 => 0.003727251288839
912 => 0.0037364881257105
913 => 0.0037163241626826
914 => 0.0036395171817033
915 => 0.0036436881703001
916 => 0.0035916758756636
917 => 0.0036749095340316
918 => 0.0036551987050994
919 => 0.0036424910054603
920 => 0.0036390235918778
921 => 0.0036958389139399
922 => 0.003712838948772
923 => 0.0037022456678945
924 => 0.0036805185397595
925 => 0.0037222410488275
926 => 0.0037334042321228
927 => 0.0037359032571802
928 => 0.0038098275437511
929 => 0.0037400348036031
930 => 0.0037568346098369
1001 => 0.0038879019023567
1002 => 0.0037690419540913
1003 => 0.0038320047195806
1004 => 0.0038289230198523
1005 => 0.0038611326401329
1006 => 0.003826280890861
1007 => 0.0038267129200626
1008 => 0.0038553128808031
1009 => 0.0038151493939732
1010 => 0.0038052043498138
1011 => 0.0037914653425352
1012 => 0.0038214639622964
1013 => 0.0038394467781223
1014 => 0.0039843750667565
1015 => 0.0040780053507471
1016 => 0.0040739406131868
1017 => 0.0041110847056184
1018 => 0.0040943509517771
1019 => 0.0040403132464822
1020 => 0.0041325490202245
1021 => 0.0041033617621037
1022 => 0.0041057679242007
1023 => 0.0041056783667272
1024 => 0.0041250853417832
1025 => 0.0041113337213329
1026 => 0.0040842278658506
1027 => 0.004102221997697
1028 => 0.0041556581362612
1029 => 0.0043215255499854
1030 => 0.0044143471521564
1031 => 0.0043159375729845
1101 => 0.0043838191829405
1102 => 0.0043431144056576
1103 => 0.0043357171367631
1104 => 0.0043783518042271
1105 => 0.0044210610980325
1106 => 0.0044183407006545
1107 => 0.0043873359464982
1108 => 0.0043698221475919
1109 => 0.0045024425004639
1110 => 0.0046001549173312
1111 => 0.0045934915855732
1112 => 0.0046229013649214
1113 => 0.0047092493866981
1114 => 0.0047171439676607
1115 => 0.0047161494319143
1116 => 0.0046965818892841
1117 => 0.0047816027304307
1118 => 0.0048525286119146
1119 => 0.0046920525685259
1120 => 0.0047531597450626
1121 => 0.0047805927253603
1122 => 0.0048208724794357
1123 => 0.0048888311762315
1124 => 0.0049626523461058
1125 => 0.004973091468934
1126 => 0.0049656844117294
1127 => 0.0049169973657777
1128 => 0.0049977733707239
1129 => 0.005045090059991
1130 => 0.0050732660656264
1201 => 0.0051447157278774
1202 => 0.0047807621421073
1203 => 0.0045231377044323
1204 => 0.0044829059283473
1205 => 0.0045647188270525
1206 => 0.0045862922359954
1207 => 0.0045775960219013
1208 => 0.0042876162951089
1209 => 0.0044813792450985
1210 => 0.0046898518872356
1211 => 0.0046978601704517
1212 => 0.0048022259340629
1213 => 0.004836211704792
1214 => 0.0049202398240324
1215 => 0.0049149838422955
1216 => 0.0049354433521511
1217 => 0.0049307400651446
1218 => 0.0050863844618294
1219 => 0.0052580833447893
1220 => 0.0052521379584414
1221 => 0.0052274542125669
1222 => 0.0052641137843946
1223 => 0.0054413254319797
1224 => 0.0054250106232289
1225 => 0.0054408590702382
1226 => 0.0056498015899519
1227 => 0.0059214565873065
1228 => 0.0057952455673195
1229 => 0.0060690871644487
1230 => 0.0062414559341221
1231 => 0.006539549898009
]
'min_raw' => 0.0026699533612041
'max_raw' => 0.006539549898009
'avg_raw' => 0.0046047516296065
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.002669'
'max' => '$0.006539'
'avg' => '$0.0046047'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.001190514133525
'max_diff' => 0.0026530535097362
'year' => 2028
]
3 => [
'items' => [
101 => 0.0065022270655866
102 => 0.0066182728582132
103 => 0.0064354114060404
104 => 0.0060155245494548
105 => 0.0059490758471378
106 => 0.0060821078319256
107 => 0.0064091539854551
108 => 0.0060718079846925
109 => 0.0061400526412864
110 => 0.0061203981755963
111 => 0.0061193508726457
112 => 0.0061593221665783
113 => 0.0061013417199666
114 => 0.0058651189499874
115 => 0.0059733784533994
116 => 0.0059315742600837
117 => 0.0059779591292765
118 => 0.006228279137735
119 => 0.0061176066951118
120 => 0.0060010222671075
121 => 0.0061472450119806
122 => 0.0063334368137907
123 => 0.0063217852654523
124 => 0.0062991763917063
125 => 0.0064266214292501
126 => 0.0066371232933801
127 => 0.0066940211013895
128 => 0.0067360219000375
129 => 0.0067418131005618
130 => 0.0068014660651727
131 => 0.0064806970399772
201 => 0.0069897657208953
202 => 0.0070776678193513
203 => 0.0070611458680103
204 => 0.0071588453509584
205 => 0.0071300996846784
206 => 0.0070884517242955
207 => 0.0072433261860443
208 => 0.0070657751133739
209 => 0.0068137637187768
210 => 0.0066755052834807
211 => 0.0068575751440685
212 => 0.006968758854567
213 => 0.0070422442145944
214 => 0.0070644808401376
215 => 0.0065055974262908
216 => 0.0062043902633225
217 => 0.006397460601438
218 => 0.0066330197389419
219 => 0.0064793884970747
220 => 0.0064854105508935
221 => 0.0062663727735709
222 => 0.0066523997219606
223 => 0.0065961588425779
224 => 0.0068879366243037
225 => 0.0068183015150318
226 => 0.007056234969281
227 => 0.0069935791167588
228 => 0.007253660057537
301 => 0.0073574133862237
302 => 0.007531631373005
303 => 0.007659786833276
304 => 0.0077350421707705
305 => 0.007730524122583
306 => 0.0080287232617965
307 => 0.0078528856476867
308 => 0.0076319921626211
309 => 0.0076279968963863
310 => 0.0077424007623867
311 => 0.0079821598803555
312 => 0.0080443259312915
313 => 0.0080790682729161
314 => 0.0080258591673285
315 => 0.0078350000396076
316 => 0.0077525880359355
317 => 0.0078228054507698
318 => 0.0077369355862787
319 => 0.0078851710632189
320 => 0.008088730034447
321 => 0.0080466959118478
322 => 0.0081872096815891
323 => 0.0083326266507917
324 => 0.0085405794478361
325 => 0.0085949460094533
326 => 0.0086848118684313
327 => 0.0087773133567166
328 => 0.0088070223417688
329 => 0.0088637460123901
330 => 0.0088634470506463
331 => 0.0090343876500072
401 => 0.0092229404246918
402 => 0.0092941147321285
403 => 0.009457776127505
404 => 0.0091775117233021
405 => 0.0093900954933354
406 => 0.0095818513752224
407 => 0.0093532321076697
408 => 0.0096683305065335
409 => 0.0096805650633331
410 => 0.0098652923454715
411 => 0.0096780358555591
412 => 0.0095668435495929
413 => 0.0098878515705958
414 => 0.010043177240301
415 => 0.0099963918845037
416 => 0.0096403530168069
417 => 0.009433123124582
418 => 0.0088907625249685
419 => 0.009533212083445
420 => 0.0098461305228684
421 => 0.0096395426336443
422 => 0.0097437335484691
423 => 0.010312165395735
424 => 0.010528587439938
425 => 0.010483573167648
426 => 0.010491179838667
427 => 0.01060795724538
428 => 0.011125812577241
429 => 0.010815501658598
430 => 0.011052722728772
501 => 0.011178543929029
502 => 0.011295413671919
503 => 0.011008418520443
504 => 0.010635042045168
505 => 0.010516778042171
506 => 0.0096190015394633
507 => 0.0095722683736516
508 => 0.0095460356315217
509 => 0.0093806419030875
510 => 0.0092506877376932
511 => 0.0091473433604828
512 => 0.0088761368534394
513 => 0.008967661088216
514 => 0.008535414521186
515 => 0.0088119505568941
516 => 0.0081220745989559
517 => 0.0086966237965016
518 => 0.0083839227898239
519 => 0.0085938931057414
520 => 0.0085931605390895
521 => 0.0082065386163362
522 => 0.0079835431598857
523 => 0.0081256445438489
524 => 0.0082779885074794
525 => 0.0083027058030318
526 => 0.0085002237284631
527 => 0.0085553467358173
528 => 0.0083883214500868
529 => 0.0081077784531234
530 => 0.0081729421928135
531 => 0.0079822226187808
601 => 0.0076479939012109
602 => 0.0078880428012431
603 => 0.0079700060499192
604 => 0.0080062056898779
605 => 0.0076775301325754
606 => 0.0075742531365775
607 => 0.0075192693304861
608 => 0.0080653505660065
609 => 0.008095266128797
610 => 0.0079422138799265
611 => 0.008634024557831
612 => 0.0084774464948458
613 => 0.008652382553757
614 => 0.0081670292664506
615 => 0.0081855704156406
616 => 0.0079557963912983
617 => 0.0080844544914241
618 => 0.0079935230930993
619 => 0.0080740601883581
620 => 0.0081223337911893
621 => 0.0083520701118752
622 => 0.0086992470162533
623 => 0.0083177551665959
624 => 0.0081515337046362
625 => 0.008254656564771
626 => 0.0085292863306815
627 => 0.008945364484075
628 => 0.0086990378429128
629 => 0.008808353423363
630 => 0.0088322340145797
701 => 0.0086506018688946
702 => 0.0089520615203638
703 => 0.00911361619664
704 => 0.0092793378654695
705 => 0.0094232293470984
706 => 0.0092131449866414
707 => 0.0094379653667406
708 => 0.0092567998265201
709 => 0.009094275608393
710 => 0.0090945220905449
711 => 0.0089925682744138
712 => 0.0087950199086523
713 => 0.0087585889590702
714 => 0.0089481073595181
715 => 0.009100083169218
716 => 0.0091126006248199
717 => 0.0091967422418688
718 => 0.0092465363841108
719 => 0.0097345866699359
720 => 0.0099308845322584
721 => 0.010170913842578
722 => 0.010264418786258
723 => 0.010545835143358
724 => 0.010318568579481
725 => 0.010269398028812
726 => 0.0095867739970772
727 => 0.0096985536440326
728 => 0.0098775236439397
729 => 0.009589725146457
730 => 0.0097722670510272
731 => 0.0098083046897555
801 => 0.0095799458636399
802 => 0.0097019221794707
803 => 0.0093779892480815
804 => 0.008706307868951
805 => 0.0089528092937491
806 => 0.0091343173138829
807 => 0.0088752829893745
808 => 0.009339591990043
809 => 0.0090683522571357
810 => 0.0089823822836074
811 => 0.008646982766365
812 => 0.0088052784277921
813 => 0.0090193755764478
814 => 0.0088870884300436
815 => 0.0091616041218472
816 => 0.0095503915521021
817 => 0.0098274646275934
818 => 0.0098487348578996
819 => 0.009670595432813
820 => 0.0099560649983848
821 => 0.0099581443325158
822 => 0.0096361334963733
823 => 0.0094389036521999
824 => 0.0093940926166286
825 => 0.0095060393692068
826 => 0.0096419633933474
827 => 0.0098562776952563
828 => 0.0099857833393992
829 => 0.010323465374838
830 => 0.010414832451525
831 => 0.010515217168037
901 => 0.010649362106798
902 => 0.010810437499836
903 => 0.010458013709895
904 => 0.01047201616407
905 => 0.010143844010517
906 => 0.0097931449997981
907 => 0.010059281833685
908 => 0.010407220341292
909 => 0.010327402863209
910 => 0.010318421766402
911 => 0.010333525480084
912 => 0.010273345708204
913 => 0.01000115483036
914 => 0.0098644622755111
915 => 0.010040830545255
916 => 0.010134562431376
917 => 0.01027993241247
918 => 0.010262012493912
919 => 0.010636469953613
920 => 0.010781972799446
921 => 0.010744746945064
922 => 0.010751597398161
923 => 0.011015023350421
924 => 0.011308007187014
925 => 0.011582425212606
926 => 0.011861575014766
927 => 0.011525049032859
928 => 0.011354181893285
929 => 0.01153047316616
930 => 0.011436930535293
1001 => 0.011974454238801
1002 => 0.012011671213783
1003 => 0.012549156048209
1004 => 0.013059293158583
1005 => 0.012738885179613
1006 => 0.013041015472289
1007 => 0.013367794016863
1008 => 0.013998202847254
1009 => 0.013785903331228
1010 => 0.01362328522911
1011 => 0.013469611908373
1012 => 0.013789381693874
1013 => 0.014200760414473
1014 => 0.014289367450753
1015 => 0.014432944700021
1016 => 0.014281990778207
1017 => 0.014463798150003
1018 => 0.01510565806265
1019 => 0.014932221848399
1020 => 0.014685914542899
1021 => 0.015192601299053
1022 => 0.01537596926641
1023 => 0.016662941691873
1024 => 0.018287797541199
1025 => 0.017615096550199
1026 => 0.01719752933716
1027 => 0.017295667537051
1028 => 0.017889009888384
1029 => 0.018079572619887
1030 => 0.017561557424749
1031 => 0.017744529149047
1101 => 0.018752721339315
1102 => 0.019293584102715
1103 => 0.018559019822457
1104 => 0.016532386106467
1105 => 0.014663737264945
1106 => 0.015159387084071
1107 => 0.015103195776387
1108 => 0.016186372510292
1109 => 0.014928085452048
1110 => 0.014949271779052
1111 => 0.01605484746071
1112 => 0.015759898823209
1113 => 0.015282119804625
1114 => 0.014667225580523
1115 => 0.013530536736438
1116 => 0.012523739728318
1117 => 0.014498300512744
1118 => 0.014413153861214
1119 => 0.014289848891771
1120 => 0.014564250758275
1121 => 0.015896668331686
1122 => 0.015865951794004
1123 => 0.015670548852986
1124 => 0.015818760261545
1125 => 0.015256137628113
1126 => 0.015401138291428
1127 => 0.014663441261422
1128 => 0.014996911127934
1129 => 0.015281094705433
1130 => 0.015338148766026
1201 => 0.015466694477794
1202 => 0.014368285444951
1203 => 0.014861438853103
1204 => 0.015151120278166
1205 => 0.013842329061029
1206 => 0.015125249683888
1207 => 0.014349164587429
1208 => 0.014085749649284
1209 => 0.014440403161217
1210 => 0.014302194342705
1211 => 0.014183370516442
1212 => 0.014117064779735
1213 => 0.014377483177219
1214 => 0.014365334347709
1215 => 0.013939239304393
1216 => 0.013383415690242
1217 => 0.013569968339439
1218 => 0.013502192013046
1219 => 0.013256561862875
1220 => 0.013422086926592
1221 => 0.012693198316297
1222 => 0.011439183346617
1223 => 0.012267624047105
1224 => 0.012235729981306
1225 => 0.01221964754705
1226 => 0.012842197837047
1227 => 0.012782353991343
1228 => 0.012673736825397
1229 => 0.013254567023443
1230 => 0.013042556187888
1231 => 0.013695923627035
]
'min_raw' => 0.0058651189499874
'max_raw' => 0.019293584102715
'avg_raw' => 0.012579351526351
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.005865'
'max' => '$0.019293'
'avg' => '$0.012579'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.0031951655887834
'max_diff' => 0.012754034204706
'year' => 2029
]
4 => [
'items' => [
101 => 0.014126273679614
102 => 0.014017122985914
103 => 0.014421869290427
104 => 0.013574266135693
105 => 0.01385580590376
106 => 0.013913830859761
107 => 0.013247399668959
108 => 0.012792145184601
109 => 0.012761784900776
110 => 0.011972436362831
111 => 0.012394099980403
112 => 0.012765146514239
113 => 0.012587444018906
114 => 0.012531188717594
115 => 0.012818584851708
116 => 0.012840917992711
117 => 0.012331720011102
118 => 0.012437598395681
119 => 0.012879128860194
120 => 0.012426472960826
121 => 0.011547036489275
122 => 0.01132892408517
123 => 0.011299823869853
124 => 0.010708285731207
125 => 0.011343499398958
126 => 0.011066211610317
127 => 0.011942160412215
128 => 0.011441823154378
129 => 0.011420254615205
130 => 0.011387650604826
131 => 0.010878489292761
201 => 0.010989963261214
202 => 0.011360519710316
203 => 0.011492738425973
204 => 0.011478946930694
205 => 0.011358703781559
206 => 0.011413750479488
207 => 0.011236425885917
208 => 0.011173808881235
209 => 0.010976172390293
210 => 0.010685701347084
211 => 0.010726093127204
212 => 0.010150593984723
213 => 0.009837031507848
214 => 0.009750241546936
215 => 0.0096341823840024
216 => 0.0097633507382111
217 => 0.01014896366796
218 => 0.009683832662336
219 => 0.00888639817834
220 => 0.0089343253495904
221 => 0.0090420034736852
222 => 0.0088413460017966
223 => 0.0086514405445591
224 => 0.0088165479321104
225 => 0.0084786644288482
226 => 0.0090828350807969
227 => 0.0090664939578304
228 => 0.0092916914152144
301 => 0.0094325120068336
302 => 0.0091079661343592
303 => 0.0090263437250972
304 => 0.0090728395589445
305 => 0.0083043669961987
306 => 0.0092288908119693
307 => 0.0092368861323198
308 => 0.0091684253453793
309 => 0.0096607057358067
310 => 0.010699570905713
311 => 0.010308708040539
312 => 0.010157354125252
313 => 0.0098696302216506
314 => 0.010253005239844
315 => 0.010223568020029
316 => 0.01009044174829
317 => 0.010009926563763
318 => 0.010158278259984
319 => 0.0099915441468654
320 => 0.0099615941186023
321 => 0.0097801295332798
322 => 0.0097153549324323
323 => 0.0096673983967159
324 => 0.009614602963004
325 => 0.00973105653397
326 => 0.009467157421418
327 => 0.0091489209620293
328 => 0.0091224630437974
329 => 0.0091955156822398
330 => 0.0091631953278583
331 => 0.0091223083063751
401 => 0.009044243847446
402 => 0.009021083790065
403 => 0.0090963427408908
404 => 0.0090113797732779
405 => 0.0091367472601631
406 => 0.0091026542406298
407 => 0.008912213404925
408 => 0.008674853613409
409 => 0.0086727406133855
410 => 0.0086216018356515
411 => 0.0085564689134405
412 => 0.0085383504245207
413 => 0.0088026430484527
414 => 0.0093497208703794
415 => 0.0092423164034724
416 => 0.0093199271380652
417 => 0.0097016951380944
418 => 0.0098230477051394
419 => 0.0097369145274439
420 => 0.0096190101213514
421 => 0.0096241973168445
422 => 0.010027112364554
423 => 0.010052241681854
424 => 0.010115735359646
425 => 0.01019734267892
426 => 0.0097508126067963
427 => 0.0096031657906032
428 => 0.0095332025379574
429 => 0.0093177427989947
430 => 0.0095500976553441
501 => 0.0094147144309763
502 => 0.009432982253293
503 => 0.0094210853100443
504 => 0.0094275818455258
505 => 0.0090826662027866
506 => 0.0092083353347683
507 => 0.0089993860289198
508 => 0.0087196263640489
509 => 0.0087186885115559
510 => 0.0087871592931978
511 => 0.0087464301930152
512 => 0.0086368292316649
513 => 0.0086523975309227
514 => 0.0085160028476895
515 => 0.0086689583149727
516 => 0.0086733445304734
517 => 0.0086144483440288
518 => 0.0088500973451656
519 => 0.0089466429332026
520 => 0.0089078762016062
521 => 0.0089439229559696
522 => 0.0092467795439745
523 => 0.0092961583823786
524 => 0.0093180892006148
525 => 0.009288704809455
526 => 0.0089494586184367
527 => 0.0089645056295945
528 => 0.008854100645567
529 => 0.0087608200682543
530 => 0.0087645508021546
531 => 0.0088125091445196
601 => 0.009021946038347
602 => 0.0094626936344275
603 => 0.0094794196835165
604 => 0.0094996921429456
605 => 0.0094172338623257
606 => 0.0093923636558713
607 => 0.0094251738777296
608 => 0.0095906955014098
609 => 0.010016462056198
610 => 0.0098659677197435
611 => 0.0097436134816225
612 => 0.0098509511349204
613 => 0.0098344273445355
614 => 0.0096949499247322
615 => 0.0096910352581023
616 => 0.0094233334958712
617 => 0.0093243702496486
618 => 0.0092416691538344
619 => 0.009151361716172
620 => 0.0090978244399931
621 => 0.0091800820284608
622 => 0.0091988953121866
623 => 0.0090190376573852
624 => 0.0089945237236327
625 => 0.0091413993670406
626 => 0.0090767648724527
627 => 0.0091432430529947
628 => 0.0091586665611197
629 => 0.0091561830210781
630 => 0.0090886971855038
701 => 0.0091317106446423
702 => 0.0090299709908506
703 => 0.008919344398154
704 => 0.0088487715242939
705 => 0.0087871873317176
706 => 0.0088213578210532
707 => 0.0086995462658566
708 => 0.008660576297767
709 => 0.0091171386525196
710 => 0.0094544061728479
711 => 0.0094495021695297
712 => 0.0094196503105376
713 => 0.0093752965033038
714 => 0.0095874507441478
715 => 0.0095135404487957
716 => 0.0095673163640762
717 => 0.0095810045914831
718 => 0.0096224347332136
719 => 0.0096372424478412
720 => 0.0095924832496175
721 => 0.0094422659135028
722 => 0.0090679385941408
723 => 0.0088936882165004
724 => 0.0088361826895095
725 => 0.0088382729061971
726 => 0.0087806153988156
727 => 0.0087975981187677
728 => 0.0087747095018764
729 => 0.0087313639988354
730 => 0.0088186813583848
731 => 0.0088287438706554
801 => 0.0088083629555718
802 => 0.0088131633988739
803 => 0.0086444181267846
804 => 0.0086572474633261
805 => 0.0085858120871898
806 => 0.0085724188153306
807 => 0.0083918364050479
808 => 0.0080719084893932
809 => 0.0082491796108201
810 => 0.0080350610242281
811 => 0.0079539710710597
812 => 0.0083378382972838
813 => 0.0082993086745904
814 => 0.0082333627089637
815 => 0.0081358148814583
816 => 0.0080996334433523
817 => 0.0078798064790716
818 => 0.0078668179292906
819 => 0.0079757701086155
820 => 0.0079254924266726
821 => 0.0078548835195777
822 => 0.0075991452155901
823 => 0.0073116106898654
824 => 0.0073202895498194
825 => 0.0074117489326824
826 => 0.0076776794233347
827 => 0.0075737757799927
828 => 0.0074983924945911
829 => 0.0074842754712486
830 => 0.00766097957437
831 => 0.0079110529009409
901 => 0.0080283817106926
902 => 0.0079121124235576
903 => 0.0077785485268798
904 => 0.0077866779423951
905 => 0.0078407593017759
906 => 0.0078464424879776
907 => 0.0077595061218308
908 => 0.0077839781996684
909 => 0.0077468028756593
910 => 0.0075186579808359
911 => 0.0075145315631438
912 => 0.0074585411266208
913 => 0.0074568457584549
914 => 0.0073615920584602
915 => 0.0073482654073732
916 => 0.0071591334045474
917 => 0.0072836206615518
918 => 0.0072001211454276
919 => 0.0070742676790838
920 => 0.0070525704940491
921 => 0.0070519182504668
922 => 0.0071811416200818
923 => 0.0072821106112403
924 => 0.0072015736552598
925 => 0.0071832369515263
926 => 0.0073790249746708
927 => 0.0073541091640782
928 => 0.0073325322327948
929 => 0.0078886615773747
930 => 0.0074484418058258
1001 => 0.0072564808585643
1002 => 0.0070188927339331
1003 => 0.0070962526253363
1004 => 0.0071125534911083
1005 => 0.0065411968798485
1006 => 0.0063093975738183
1007 => 0.0062298527871614
1008 => 0.0061840736378421
1009 => 0.0062049357710453
1010 => 0.0059962892082713
1011 => 0.006136503149151
1012 => 0.0059558328622437
1013 => 0.0059255429006917
1014 => 0.0062486037544358
1015 => 0.0062935557849401
1016 => 0.0061017764573074
1017 => 0.0062249298319005
1018 => 0.0061802727063131
1019 => 0.0059589299357576
1020 => 0.0059504762700096
1021 => 0.0058394142483194
1022 => 0.0056656236902194
1023 => 0.0055861967417445
1024 => 0.0055448304973623
1025 => 0.0055618990160064
1026 => 0.0055532686506747
1027 => 0.005496949679081
1028 => 0.0055564967882018
1029 => 0.0054043785309624
1030 => 0.0053438038152296
1031 => 0.0053164436214558
1101 => 0.0051814299125557
1102 => 0.0053962967642847
1103 => 0.0054386282408966
1104 => 0.0054810431235943
1105 => 0.0058502357196072
1106 => 0.0058317919008378
1107 => 0.0059985150400088
1108 => 0.0059920364854048
1109 => 0.0059444843453775
1110 => 0.0057438696885494
1111 => 0.0058238311151487
1112 => 0.0055777222728409
1113 => 0.0057621237512725
1114 => 0.0056779706173062
1115 => 0.005733671492028
1116 => 0.0056335162969327
1117 => 0.0056889463172051
1118 => 0.0054486666043955
1119 => 0.0052242967894007
1120 => 0.0053145897527178
1121 => 0.0054127485300964
1122 => 0.0056255817698445
1123 => 0.0054988200480866
1124 => 0.0055444083566221
1125 => 0.0053916951544189
1126 => 0.0050766041979039
1127 => 0.005078387578499
1128 => 0.0050299176994688
1129 => 0.0049880326472685
1130 => 0.0055133801566986
1201 => 0.0054480448893859
1202 => 0.0053439416917914
1203 => 0.0054832879586682
1204 => 0.0055201333233531
1205 => 0.0055211822590872
1206 => 0.0056228456983528
1207 => 0.0056771034941131
1208 => 0.0056866666657826
1209 => 0.005846636284051
1210 => 0.0059002559900443
1211 => 0.0061211079704859
1212 => 0.005672500099221
1213 => 0.0056632613153269
1214 => 0.0054852488464067
1215 => 0.0053723505243518
1216 => 0.0054929790911065
1217 => 0.0055998395338098
1218 => 0.0054885692982338
1219 => 0.0055030988419572
1220 => 0.0053537276418087
1221 => 0.0054071208172936
1222 => 0.0054531102128586
1223 => 0.0054277175717593
1224 => 0.0053897035590159
1225 => 0.0055910781961286
1226 => 0.0055797158499091
1227 => 0.0057672405415713
1228 => 0.0059134294487413
1229 => 0.006175426104783
1230 => 0.005902018936009
1231 => 0.0058920548920838
]
'min_raw' => 0.0049880326472685
'max_raw' => 0.014421869290427
'avg_raw' => 0.0097049509688477
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.004988'
'max' => '$0.014421'
'avg' => '$0.0097049'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00087708630271892
'max_diff' => -0.0048717148122882
'year' => 2030
]
5 => [
'items' => [
101 => 0.0059894550197355
102 => 0.0059002410785923
103 => 0.0059566212098342
104 => 0.0061663423940065
105 => 0.0061707734721537
106 => 0.0060965472040656
107 => 0.0060920305289068
108 => 0.0061062864956395
109 => 0.0061897841380701
110 => 0.0061606074961814
111 => 0.0061943714448371
112 => 0.006236593779643
113 => 0.0064112432582993
114 => 0.0064533506563303
115 => 0.0063510515092977
116 => 0.0063602879768798
117 => 0.0063220252877153
118 => 0.0062850640094124
119 => 0.006368147565276
120 => 0.0065199843966281
121 => 0.0065190398275806
122 => 0.0065542630211681
123 => 0.0065762067789684
124 => 0.0064820081066771
125 => 0.0064206882347966
126 => 0.0064442021755604
127 => 0.0064818014789087
128 => 0.0064320092282353
129 => 0.0061246683910647
130 => 0.0062178959680536
131 => 0.006202378340647
201 => 0.0061802793522121
202 => 0.0062740204017819
203 => 0.0062649788488681
204 => 0.0059941492361972
205 => 0.0060114868692959
206 => 0.00599520359509
207 => 0.0060478181852937
208 => 0.0058973997180549
209 => 0.0059436674254937
210 => 0.0059726860978665
211 => 0.0059897783188261
212 => 0.0060515271411775
213 => 0.0060442816295768
214 => 0.0060510767500033
215 => 0.0061426339524658
216 => 0.0066056988638834
217 => 0.0066309024653167
218 => 0.0065067907140749
219 => 0.0065563709106999
220 => 0.0064611877751769
221 => 0.0065250848517251
222 => 0.0065688016086896
223 => 0.0063712539902159
224 => 0.0063595565023233
225 => 0.0062639805121415
226 => 0.0063153376355644
227 => 0.0062336247594907
228 => 0.0062536742410841
301 => 0.0061976141426665
302 => 0.0062985111583639
303 => 0.0064113296997249
304 => 0.0064398321186118
305 => 0.0063648545255831
306 => 0.0063105658069661
307 => 0.0062152527008903
308 => 0.0063737605204854
309 => 0.0064201130373733
310 => 0.0063735170504471
311 => 0.0063627197421339
312 => 0.0063422588623906
313 => 0.0063670606144962
314 => 0.0064198605916116
315 => 0.0063949610974665
316 => 0.006411407652022
317 => 0.0063487303456698
318 => 0.0064820392903572
319 => 0.0066937659770654
320 => 0.006694446712984
321 => 0.0066695470846212
322 => 0.0066593586931652
323 => 0.0066849072229011
324 => 0.0066987662522273
325 => 0.0067813855125942
326 => 0.0068700392706645
327 => 0.0072837476769133
328 => 0.0071675800119195
329 => 0.0075346467215667
330 => 0.0078249488312507
331 => 0.0079119977405722
401 => 0.0078319168399641
402 => 0.007557964404869
403 => 0.0075445229914442
404 => 0.0079539235892109
405 => 0.0078382491686065
406 => 0.0078244900643486
407 => 0.0076781164414176
408 => 0.0077646413812957
409 => 0.0077457171077001
410 => 0.0077158442160223
411 => 0.00788092777393
412 => 0.0081899494572226
413 => 0.0081417855298944
414 => 0.0081058333924043
415 => 0.0079483015914323
416 => 0.008043170921619
417 => 0.0080093897702418
418 => 0.0081545350346065
419 => 0.0080685541953581
420 => 0.0078373728211015
421 => 0.0078741892169357
422 => 0.0078686244927696
423 => 0.0079831461217858
424 => 0.0079487695713567
425 => 0.0078619119195744
426 => 0.008188893254704
427 => 0.0081676609055665
428 => 0.0081977635222528
429 => 0.0082110156250724
430 => 0.0084100434017084
501 => 0.0084915787136177
502 => 0.0085100886568976
503 => 0.0085875408970441
504 => 0.0085081615746054
505 => 0.0088257354608578
506 => 0.0090369035642657
507 => 0.0092821861829852
508 => 0.0096406100146869
509 => 0.0097753806910126
510 => 0.0097510355746199
511 => 0.010022788433182
512 => 0.01051112227929
513 => 0.0098497418069175
514 => 0.010546177050283
515 => 0.010325693692965
516 => 0.0098029316190903
517 => 0.0097692719044927
518 => 0.010123292450313
519 => 0.010908475947728
520 => 0.010711796387103
521 => 0.010908797645031
522 => 0.01067898521332
523 => 0.010667573089075
524 => 0.010897636168174
525 => 0.011435191092574
526 => 0.011179818897937
527 => 0.010813680237092
528 => 0.011084031326511
529 => 0.010849828193045
530 => 0.010322102984015
531 => 0.01071164598995
601 => 0.010451169675427
602 => 0.010527190511687
603 => 0.011074672981887
604 => 0.011008798442614
605 => 0.011094046196251
606 => 0.010943586142403
607 => 0.010803032726735
608 => 0.010540679338759
609 => 0.010463009434445
610 => 0.010484474601727
611 => 0.010462998797374
612 => 0.010316214487953
613 => 0.010284516430309
614 => 0.010231684945512
615 => 0.010248059631782
616 => 0.010148720983967
617 => 0.010336193536805
618 => 0.010370990094614
619 => 0.010507416984656
620 => 0.010521581276959
621 => 0.010901528223811
622 => 0.010692259830234
623 => 0.010832655136009
624 => 0.010820096858409
625 => 0.0098142614583844
626 => 0.0099528567019469
627 => 0.010168467407347
628 => 0.010071335076818
629 => 0.0099340126869141
630 => 0.0098231174943064
701 => 0.00965509993789
702 => 0.0098915814220547
703 => 0.010202529426729
704 => 0.0105294674315
705 => 0.010922262022406
706 => 0.010834594842349
707 => 0.010522124409845
708 => 0.010536141605188
709 => 0.010622790391231
710 => 0.010510572340433
711 => 0.010477477046496
712 => 0.010618243606057
713 => 0.010619212987988
714 => 0.010490092558541
715 => 0.010346598829999
716 => 0.010345997586037
717 => 0.010320464263027
718 => 0.010683527534761
719 => 0.010883175624378
720 => 0.010906064956103
721 => 0.01088163498998
722 => 0.01089103711435
723 => 0.010774866289948
724 => 0.011040398345144
725 => 0.01128407681739
726 => 0.011218765781397
727 => 0.011120855253932
728 => 0.011042864802796
729 => 0.011200393709682
730 => 0.011193379195431
731 => 0.011281948498516
801 => 0.011277930483327
802 => 0.011248147957959
803 => 0.011218766845025
804 => 0.01133525963672
805 => 0.011301711583529
806 => 0.011268111420945
807 => 0.011200721150955
808 => 0.01120988060788
809 => 0.011111986986048
810 => 0.011066696917282
811 => 0.0103856429491
812 => 0.010203643074721
813 => 0.01026090394015
814 => 0.010279755703826
815 => 0.010200549125258
816 => 0.010314111012425
817 => 0.010296412512602
818 => 0.010365267022137
819 => 0.010322249713895
820 => 0.01032401515923
821 => 0.010450519890515
822 => 0.010487244752196
823 => 0.010468566191139
824 => 0.01048164801504
825 => 0.010783113125343
826 => 0.010740254426969
827 => 0.010717486597664
828 => 0.01072379344198
829 => 0.010800824241147
830 => 0.010822388659188
831 => 0.010731018704643
901 => 0.01077410930341
902 => 0.010957583603948
903 => 0.01102178922539
904 => 0.011226702748587
905 => 0.011139651841886
906 => 0.011299437548611
907 => 0.011790564336124
908 => 0.012182910397378
909 => 0.011822092745062
910 => 0.012542586321586
911 => 0.013103593919574
912 => 0.013082061513556
913 => 0.012984236862508
914 => 0.012345544627356
915 => 0.011757810510205
916 => 0.012249475055711
917 => 0.012250728409749
918 => 0.012208493989254
919 => 0.011946179630833
920 => 0.012199366018181
921 => 0.01221946303417
922 => 0.012208214049444
923 => 0.012007098245871
924 => 0.011700031586228
925 => 0.011760031676509
926 => 0.011858313048357
927 => 0.011672245907806
928 => 0.011612786182195
929 => 0.011723333124782
930 => 0.012079538407169
1001 => 0.01201219986189
1002 => 0.012010441380337
1003 => 0.012298544233025
1004 => 0.012092324766987
1005 => 0.011760788469794
1006 => 0.011677071182326
1007 => 0.011379931210538
1008 => 0.011585166847428
1009 => 0.011592552912626
1010 => 0.011480147451758
1011 => 0.011769909553442
1012 => 0.011767239344663
1013 => 0.012042325334814
1014 => 0.012568186430403
1015 => 0.012412663428384
1016 => 0.012231807097891
1017 => 0.012251471195618
1018 => 0.012467137812551
1019 => 0.012336740852763
1020 => 0.012383632508663
1021 => 0.012467066836414
1022 => 0.012517404837904
1023 => 0.012244228331861
1024 => 0.01218053782076
1025 => 0.012050249387379
1026 => 0.012016259567058
1027 => 0.01212237677749
1028 => 0.012094418641718
1029 => 0.011591932142446
1030 => 0.011539419507464
1031 => 0.011541029995008
1101 => 0.011408984477505
1102 => 0.011207583368758
1103 => 0.01173685345751
1104 => 0.011694345662253
1105 => 0.011647420346132
1106 => 0.011653168429605
1107 => 0.011882906636504
1108 => 0.011749646874445
1109 => 0.012103939792725
1110 => 0.012031107819747
1111 => 0.011956407981482
1112 => 0.011946082188421
1113 => 0.011917329123779
1114 => 0.01181872416658
1115 => 0.011699652755522
1116 => 0.011621031496153
1117 => 0.010719787269801
1118 => 0.010887052955915
1119 => 0.011079476881043
1120 => 0.011145900848907
1121 => 0.011032278055477
1122 => 0.011823210687004
1123 => 0.0119677217004
1124 => 0.011529988414602
1125 => 0.011448106389362
1126 => 0.011828578858946
1127 => 0.011599107448919
1128 => 0.011702438410804
1129 => 0.011479093390223
1130 => 0.011932913229049
1201 => 0.011929455882234
1202 => 0.011752909714944
1203 => 0.011902125326601
1204 => 0.01187619544206
1205 => 0.011676875254005
1206 => 0.011939232034532
1207 => 0.011939362160221
1208 => 0.01176944031265
1209 => 0.011571008795363
1210 => 0.011535533926815
1211 => 0.011508808378742
1212 => 0.011695865564284
1213 => 0.011863580451927
1214 => 0.012175656277786
1215 => 0.012254119555145
1216 => 0.012560366950276
1217 => 0.012378011537391
1218 => 0.012458847330025
1219 => 0.01254660601785
1220 => 0.012588680760012
1221 => 0.012520122225514
1222 => 0.012995850486608
1223 => 0.013036016527782
1224 => 0.013049483853953
1225 => 0.012889070960966
1226 => 0.013031555155043
1227 => 0.012964891519215
1228 => 0.013138331779948
1229 => 0.013165529427428
1230 => 0.013142493987597
1231 => 0.013151126950193
]
'min_raw' => 0.0058973997180549
'max_raw' => 0.013165529427428
'avg_raw' => 0.0095314645727413
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.005897'
'max' => '$0.013165'
'avg' => '$0.009531'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00090936707078639
'max_diff' => -0.0012563398629993
'year' => 2031
]
6 => [
'items' => [
101 => 0.012745176803565
102 => 0.012724126146904
103 => 0.012437098949655
104 => 0.012554064654132
105 => 0.012335402875924
106 => 0.01240474277826
107 => 0.012435307146515
108 => 0.012419342055051
109 => 0.012560677719569
110 => 0.01244051353176
111 => 0.01212338048331
112 => 0.011806161032173
113 => 0.011802178600365
114 => 0.011718660318269
115 => 0.01165829189745
116 => 0.011669920996985
117 => 0.011710903460552
118 => 0.011655909922166
119 => 0.011667645581823
120 => 0.011862535726435
121 => 0.011901619555044
122 => 0.011768797434393
123 => 0.01123549745384
124 => 0.011104624300931
125 => 0.011198693327915
126 => 0.011153734391838
127 => 0.0090019341674904
128 => 0.009507467712097
129 => 0.0092070968461888
130 => 0.0093455215605983
131 => 0.0090389206871648
201 => 0.0091852466942959
202 => 0.0091582256237489
203 => 0.0099711086036512
204 => 0.009958416554004
205 => 0.0099644915665217
206 => 0.0096745153906867
207 => 0.010136455312503
208 => 0.010364023528812
209 => 0.010321906708505
210 => 0.010332506604805
211 => 0.010150365267235
212 => 0.0099662550928107
213 => 0.009762048575021
214 => 0.010141439044386
215 => 0.010099257300604
216 => 0.010196007044327
217 => 0.010442068883101
218 => 0.010478302423559
219 => 0.010527000669378
220 => 0.010509545814829
221 => 0.010925391265028
222 => 0.010875029637173
223 => 0.010996386670276
224 => 0.010746746045802
225 => 0.010464253983105
226 => 0.010517946488862
227 => 0.01051277546879
228 => 0.010446942448249
229 => 0.010387511340898
301 => 0.010288575291769
302 => 0.010601623590993
303 => 0.010588914401738
304 => 0.010794661402963
305 => 0.010758293621977
306 => 0.010515420679845
307 => 0.010524094934487
308 => 0.01058243346566
309 => 0.010784343788148
310 => 0.010844284518966
311 => 0.010816517584226
312 => 0.010882239859169
313 => 0.010934184065571
314 => 0.010888763251746
315 => 0.011531826191488
316 => 0.011264781624716
317 => 0.011394937288476
318 => 0.011425978647362
319 => 0.011346466859307
320 => 0.011363710119032
321 => 0.011389828959009
322 => 0.011548417440757
323 => 0.01196459950481
324 => 0.012148923707932
325 => 0.012703472167421
326 => 0.01213361814878
327 => 0.012099805369604
328 => 0.012199696292917
329 => 0.012525274943552
330 => 0.012789125859845
331 => 0.012876660430704
401 => 0.012888229569281
402 => 0.0130524502434
403 => 0.013146578471271
404 => 0.01303250953413
405 => 0.012935848053418
406 => 0.012589618627572
407 => 0.012629695626366
408 => 0.012905786405602
409 => 0.01329578089294
410 => 0.013630436735086
411 => 0.0135132519231
412 => 0.014407289318968
413 => 0.014495929474953
414 => 0.014483682271475
415 => 0.014685617738233
416 => 0.014284816960162
417 => 0.014113466862387
418 => 0.012956747362702
419 => 0.013281738360138
420 => 0.013754131860964
421 => 0.013691608809745
422 => 0.013348544022331
423 => 0.013630176489681
424 => 0.013537059988514
425 => 0.013463615140636
426 => 0.013800080226749
427 => 0.013430123043343
428 => 0.013750441255057
429 => 0.013339629835267
430 => 0.01351378721345
501 => 0.013414927062549
502 => 0.013478901696026
503 => 0.013104907295933
504 => 0.013306705596022
505 => 0.013096511823198
506 => 0.013096412163981
507 => 0.013091772124796
508 => 0.013339064166383
509 => 0.013347128350981
510 => 0.013164379158611
511 => 0.013138042144911
512 => 0.013235423888346
513 => 0.013121415371103
514 => 0.01317475923876
515 => 0.013123031102512
516 => 0.013111386009482
517 => 0.013018595926965
518 => 0.0129786194081
519 => 0.012994295231215
520 => 0.012940785565483
521 => 0.01290854405635
522 => 0.013085358477123
523 => 0.012990893664777
524 => 0.013070880389815
525 => 0.012979725421505
526 => 0.012663742587015
527 => 0.012482017517442
528 => 0.011885155234715
529 => 0.012054424637691
530 => 0.012166650426986
531 => 0.012129559804293
601 => 0.012209244814002
602 => 0.012214136826424
603 => 0.012188230417475
604 => 0.012158234114728
605 => 0.012143633573451
606 => 0.012252454046133
607 => 0.012315627993254
608 => 0.012177913786329
609 => 0.012145649274473
610 => 0.012284885941084
611 => 0.012369820227282
612 => 0.012996927276118
613 => 0.012950469160411
614 => 0.013067069913891
615 => 0.013053942458433
616 => 0.013176158624036
617 => 0.013375930402392
618 => 0.012969738519927
619 => 0.013040239385665
620 => 0.013022954201489
621 => 0.013211669309904
622 => 0.013212258457874
623 => 0.01309911432336
624 => 0.013160451594234
625 => 0.013126214812332
626 => 0.013188085304607
627 => 0.012949848683952
628 => 0.013239995171856
629 => 0.013404489533871
630 => 0.013406773538247
701 => 0.013484742560334
702 => 0.013563963602436
703 => 0.013716021494051
704 => 0.013559722790368
705 => 0.013278556637814
706 => 0.013298855925867
707 => 0.0131340083135
708 => 0.013136779431646
709 => 0.013121986985806
710 => 0.013166380229295
711 => 0.012959590504449
712 => 0.013008123639545
713 => 0.012940176966201
714 => 0.013040091682867
715 => 0.012932599964229
716 => 0.013022945866049
717 => 0.013061936162261
718 => 0.013205811194683
719 => 0.012911349504959
720 => 0.012310922186308
721 => 0.012437139288166
722 => 0.012250454280378
723 => 0.012267732688609
724 => 0.012302637823073
725 => 0.012189498862025
726 => 0.012211082210375
727 => 0.012210311101292
728 => 0.012203666099804
729 => 0.012174234286401
730 => 0.012131552334061
731 => 0.012301584095373
801 => 0.012330475804907
802 => 0.012394698496274
803 => 0.012585781663114
804 => 0.012566687948695
805 => 0.012597830589103
806 => 0.012529846379952
807 => 0.012270886281088
808 => 0.012284949060351
809 => 0.012109585977601
810 => 0.012390214067978
811 => 0.012323757632067
812 => 0.01228091273551
813 => 0.01226922210853
814 => 0.012460778933581
815 => 0.012518095737922
816 => 0.012482379751845
817 => 0.012409125222398
818 => 0.012549795574693
819 => 0.012587433026562
820 => 0.012595858664019
821 => 0.012845099557422
822 => 0.012609788461239
823 => 0.012666430180882
824 => 0.013108332708438
825 => 0.012707588094325
826 => 0.012919871454092
827 => 0.012909481288301
828 => 0.01301807827188
829 => 0.012900573165939
830 => 0.012902029782555
831 => 0.012998456546977
901 => 0.012863042547005
902 => 0.012829512136281
903 => 0.012783190114015
904 => 0.012884332554976
905 => 0.012944962874053
906 => 0.013433598717753
907 => 0.013749279757285
908 => 0.01373557521081
909 => 0.013860809111761
910 => 0.013804390092371
911 => 0.013622198196177
912 => 0.013933177547046
913 => 0.013834770668502
914 => 0.013842883212005
915 => 0.013842581262731
916 => 0.013908013234083
917 => 0.013861648685628
918 => 0.013770259401399
919 => 0.013830927873229
920 => 0.014011091545191
921 => 0.014570325111055
922 => 0.014883279623372
923 => 0.014551484856456
924 => 0.014780352443765
925 => 0.014643113445239
926 => 0.014618173036701
927 => 0.014761918794713
928 => 0.014905916160646
929 => 0.014896744150953
930 => 0.014792209457633
1001 => 0.014733160461846
1002 => 0.015180299240811
1003 => 0.015509743476342
1004 => 0.015487277588101
1005 => 0.015586434712499
1006 => 0.015877563096545
1007 => 0.015904180227443
1008 => 0.015900827080737
1009 => 0.015834853744598
1010 => 0.016121507446489
1011 => 0.016360639007799
1012 => 0.015819582823434
1013 => 0.016025609935495
1014 => 0.016118102143878
1015 => 0.016253908146985
1016 => 0.016483035637957
1017 => 0.016731928866218
1018 => 0.01676712509767
1019 => 0.01674215168716
1020 => 0.016577999912513
1021 => 0.01685034185279
1022 => 0.017009873374199
1023 => 0.017104870744385
1024 => 0.01734576826912
1025 => 0.016118673344268
1026 => 0.015250074565883
1027 => 0.01511443032392
1028 => 0.015390268223899
1029 => 0.015463004478357
1030 => 0.015433684585388
1031 => 0.01445599769077
1101 => 0.015109283004757
1102 => 0.015812163072817
1103 => 0.015839163558801
1104 => 0.016191040017401
1105 => 0.016305625416225
1106 => 0.0165889320869
1107 => 0.016571211177513
1108 => 0.016640191843428
1109 => 0.016624334382913
1110 => 0.017149100333081
1111 => 0.017727995104613
1112 => 0.017707949819448
1113 => 0.017624726846868
1114 => 0.017748327152774
1115 => 0.01834580859513
1116 => 0.018290802078363
1117 => 0.018344236223958
1118 => 0.019048700517073
1119 => 0.019964604307001
1120 => 0.019539075041342
1121 => 0.020462351105073
1122 => 0.02104350444643
1123 => 0.022048549057931
1124 => 0.021922712522622
1125 => 0.022313969014521
1126 => 0.021697438861542
1127 => 0.020281761008999
1128 => 0.020057724569837
1129 => 0.020506251194546
1130 => 0.021608910134803
1201 => 0.020471524540487
1202 => 0.020701616164883
1203 => 0.020635349761578
1204 => 0.02063181870656
1205 => 0.02076658471476
1206 => 0.020571099590943
1207 => 0.019774658029411
1208 => 0.020139662503602
1209 => 0.019998716747162
1210 => 0.020155106572134
1211 => 0.020999077957437
1212 => 0.02062593809023
1213 => 0.020232865551548
1214 => 0.020725865744834
1215 => 0.021353624404133
1216 => 0.021314340395425
1217 => 0.021238112999089
1218 => 0.021667802841097
1219 => 0.022377524572782
1220 => 0.022569359504963
1221 => 0.022710968130007
1222 => 0.022730493566904
1223 => 0.022931617701926
1224 => 0.021850122538101
1225 => 0.023566483137857
1226 => 0.02386285119993
1227 => 0.023807146287458
1228 => 0.024136546915378
1229 => 0.024039628894556
1230 => 0.023899209888358
1231 => 0.024421379949133
]
'min_raw' => 0.0090019341674904
'max_raw' => 0.024421379949133
'avg_raw' => 0.016711657058312
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.0090019'
'max' => '$0.024421'
'avg' => '$0.016711'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0031045344494355
'max_diff' => 0.011255850521706
'year' => 2032
]
7 => [
'items' => [
101 => 0.023822754111405
102 => 0.022973080099647
103 => 0.022506932132151
104 => 0.023120793378834
105 => 0.023495657021379
106 => 0.023743418043295
107 => 0.023818390378826
108 => 0.021934075929047
109 => 0.020918534949487
110 => 0.021569485074184
111 => 0.022363689152492
112 => 0.021845710694346
113 => 0.021866014469242
114 => 0.02112751331027
115 => 0.022429030118307
116 => 0.022239410066855
117 => 0.023223159229218
118 => 0.02298837959654
119 => 0.023790588849524
120 => 0.023579340268254
121 => 0.024456221318359
122 => 0.024806032909852
123 => 0.025393421015797
124 => 0.025825506097629
125 => 0.026079234722152
126 => 0.026064001807247
127 => 0.027069401024705
128 => 0.026476552232143
129 => 0.025731794424954
130 => 0.025718324105903
131 => 0.026104044727546
201 => 0.026912409333225
202 => 0.027122006514251
203 => 0.027239142744671
204 => 0.027059744530241
205 => 0.026416249655771
206 => 0.026138391831569
207 => 0.026375134748105
208 => 0.026085618504731
209 => 0.026585404764706
210 => 0.027271718048235
211 => 0.027129997069163
212 => 0.027603749054204
213 => 0.028094032518559
214 => 0.028795159892595
215 => 0.028978460550839
216 => 0.029281449568618
217 => 0.029593324794619
218 => 0.029693490711938
219 => 0.029884738527758
220 => 0.029883730557366
221 => 0.030460068722802
222 => 0.031095787566986
223 => 0.03133575671374
224 => 0.031887552534726
225 => 0.03094262152852
226 => 0.031659362551312
227 => 0.032305880895062
228 => 0.031535075072821
301 => 0.032597451324058
302 => 0.032638700986497
303 => 0.033261521915474
304 => 0.032630173585903
305 => 0.032255280963139
306 => 0.033337581918015
307 => 0.033861273257919
308 => 0.033703533164398
309 => 0.032503123264118
310 => 0.031804433214153
311 => 0.029975826586148
312 => 0.032141890126948
313 => 0.033196916492731
314 => 0.032500391000707
315 => 0.032851677944416
316 => 0.034768185604118
317 => 0.035497867636251
318 => 0.035346098874429
319 => 0.035371745296851
320 => 0.035765468476724
321 => 0.037511453883597
322 => 0.036465218956174
323 => 0.037265026356514
324 => 0.037689241317735
325 => 0.038083275815473
326 => 0.03711565162491
327 => 0.03585678677021
328 => 0.035458051427175
329 => 0.032431135267542
330 => 0.032273571136202
331 => 0.0321851256146
401 => 0.031627489111762
402 => 0.031189339570025
403 => 0.030840906786987
404 => 0.029926515113456
405 => 0.030235095461024
406 => 0.02877774598179
407 => 0.02971010653331
408 => 0.02738414157552
409 => 0.029321274308789
410 => 0.028266981032688
411 => 0.028974910612463
412 => 0.02897244071285
413 => 0.027668917907207
414 => 0.026917073156738
415 => 0.027396177893972
416 => 0.027909816203668
417 => 0.02799315229133
418 => 0.028659097767182
419 => 0.028844948835043
420 => 0.028281811422869
421 => 0.02733594112172
422 => 0.027555645219673
423 => 0.026912620860206
424 => 0.025785745403815
425 => 0.026595087029953
426 => 0.026871431845356
427 => 0.026993481458854
428 => 0.025885328870015
429 => 0.025537123267438
430 => 0.025351741526354
501 => 0.027192892538085
502 => 0.027293754946672
503 => 0.026777728603838
504 => 0.029110216605072
505 => 0.028582302733786
506 => 0.029172111870051
507 => 0.027535709375613
508 => 0.027598222154609
509 => 0.026823522989228
510 => 0.027257302756424
511 => 0.026950721198345
512 => 0.02722225763793
513 => 0.027385015460231
514 => 0.028159587505101
515 => 0.029330118677329
516 => 0.028043892271299
517 => 0.02748346500709
518 => 0.027831150929843
519 => 0.028757084359648
520 => 0.030159920903463
521 => 0.029329413434808
522 => 0.029697978546466
523 => 0.029778493627042
524 => 0.029166108166714
525 => 0.030182500428883
526 => 0.030727193299335
527 => 0.031285935476111
528 => 0.031771075652606
529 => 0.031062761563703
530 => 0.031820759171665
531 => 0.031209946904238
601 => 0.030661985155744
602 => 0.030662816187528
603 => 0.030319071778254
604 => 0.029653023670702
605 => 0.029530194180659
606 => 0.030169168699521
607 => 0.030681565752536
608 => 0.030723769228039
609 => 0.031007458564499
610 => 0.031175342991584
611 => 0.032820838604826
612 => 0.033482670552726
613 => 0.03429194613078
614 => 0.034607204576704
615 => 0.035556019472529
616 => 0.034789774385172
617 => 0.034623992440615
618 => 0.032322477858332
619 => 0.032699350742248
620 => 0.033302760592221
621 => 0.032332427864509
622 => 0.032947880640436
623 => 0.033069384055476
624 => 0.032299456329723
625 => 0.032710707994661
626 => 0.031618545500207
627 => 0.029353924835173
628 => 0.030185021599059
629 => 0.030796988561426
630 => 0.029923636251146
701 => 0.03148908646392
702 => 0.030574582767069
703 => 0.030284728999087
704 => 0.029153906109857
705 => 0.029687610984209
706 => 0.030409454468687
707 => 0.029963439118592
708 => 0.030888987939582
709 => 0.032199811904957
710 => 0.033133983123601
711 => 0.033205697190118
712 => 0.032605087681141
713 => 0.033567568252315
714 => 0.033574578872512
715 => 0.032488896856379
716 => 0.0318239226666
717 => 0.031672839131565
718 => 0.032050275423755
719 => 0.032508552761058
720 => 0.03323112839289
721 => 0.033667765713914
722 => 0.034806284272602
723 => 0.035114334750698
724 => 0.035452788831056
725 => 0.035905067857787
726 => 0.03644814479134
727 => 0.035259923378113
728 => 0.035307133629982
729 => 0.03420067830203
730 => 0.033018272102369
731 => 0.033915571018898
801 => 0.035088669989588
802 => 0.034819559789553
803 => 0.034789279394626
804 => 0.034840202619811
805 => 0.034637302317302
806 => 0.033719591768889
807 => 0.033258723276648
808 => 0.033853361211731
809 => 0.034169384809938
810 => 0.034659509850603
811 => 0.034599091594056
812 => 0.035861601063222
813 => 0.036352174066636
814 => 0.03622666449956
815 => 0.036249761280458
816 => 0.037137920270317
817 => 0.038125735730868
818 => 0.039050955263404
819 => 0.039992128311004
820 => 0.038857507467513
821 => 0.038281416976874
822 => 0.038875795311636
823 => 0.03856040980073
824 => 0.040372708495814
825 => 0.040498188125373
826 => 0.042310355770632
827 => 0.044030318654893
828 => 0.042950040783625
829 => 0.043968694159447
830 => 0.045070450837427
831 => 0.047195918222829
901 => 0.04648013558227
902 => 0.045931857297345
903 => 0.045413736967353
904 => 0.046491863124781
905 => 0.047878855202825
906 => 0.048177600011991
907 => 0.048661680732141
908 => 0.048152729045478
909 => 0.048765705292874
910 => 0.050929780801593
911 => 0.050345028496314
912 => 0.049514586219194
913 => 0.051222915993307
914 => 0.051841153897594
915 => 0.056180271283588
916 => 0.061658586223404
917 => 0.059390527865765
918 => 0.057982670853392
919 => 0.058313550646114
920 => 0.060314045809471
921 => 0.060956541363399
922 => 0.059210016966325
923 => 0.059826918909475
924 => 0.063226109268693
925 => 0.06504966583733
926 => 0.062573031080799
927 => 0.05574009401229
928 => 0.049439813978205
929 => 0.051110931948552
930 => 0.050921479031543
1001 => 0.054573485014889
1002 => 0.050331082347224
1003 => 0.050402513527899
1004 => 0.054130039127439
1005 => 0.053135599203449
1006 => 0.051524733884827
1007 => 0.049451575077722
1008 => 0.045619149278808
1009 => 0.042224662873611
1010 => 0.048882032417734
1011 => 0.048594954537351
1012 => 0.048179223223997
1013 => 0.049104388275039
1014 => 0.053596727150218
1015 => 0.053493164198864
1016 => 0.052834349540626
1017 => 0.053334054652373
1018 => 0.051437133162699
1019 => 0.051926013022687
1020 => 0.049438815981659
1021 => 0.050563132918727
1022 => 0.051521277691329
1023 => 0.051713639440005
1024 => 0.052147040282006
1025 => 0.048443677539308
1026 => 0.050106378685762
1027 => 0.051083059835274
1028 => 0.046670378869813
1029 => 0.050995835320438
1030 => 0.048379210233196
1031 => 0.047491088378197
1101 => 0.048686827454797
1102 => 0.048220846773751
1103 => 0.047820223947492
1104 => 0.047596669526866
1105 => 0.048474688335815
1106 => 0.048433727708918
1107 => 0.04699711852137
1108 => 0.045123120399896
1109 => 0.045752095681354
1110 => 0.045523583064926
1111 => 0.044695423864275
1112 => 0.04525350317319
1113 => 0.042796004334201
1114 => 0.038568005311395
1115 => 0.041361150972973
1116 => 0.04125361790336
1117 => 0.041199394853425
1118 => 0.043298366621225
1119 => 0.043096598917269
1120 => 0.042730388558874
1121 => 0.044688698123857
1122 => 0.043973888789658
1123 => 0.0461767627274
1124 => 0.047627717975751
1125 => 0.047259708791284
1126 => 0.048624339215434
1127 => 0.045766586001487
1128 => 0.046715816986002
1129 => 0.046911452176333
1130 => 0.044664532887806
1201 => 0.04312961060894
1202 => 0.043027248792334
1203 => 0.0403659050861
1204 => 0.041787573412354
1205 => 0.043038582706826
1206 => 0.042439446337017
1207 => 0.042249777661025
1208 => 0.04321875379255
1209 => 0.043294051536688
1210 => 0.041577254990627
1211 => 0.041934231356429
1212 => 0.043422882144207
1213 => 0.041896721176062
1214 => 0.038931639711935
1215 => 0.038196258513372
1216 => 0.03809814510572
1217 => 0.036103732971401
1218 => 0.038245400201422
1219 => 0.037310505062405
1220 => 0.040263827604798
1221 => 0.03857690560757
1222 => 0.038504185771877
1223 => 0.038394259074548
1224 => 0.036677586162412
1225 => 0.037053428429915
1226 => 0.038302785369488
1227 => 0.03874857000054
1228 => 0.038702071011316
1229 => 0.038296662838899
1230 => 0.038482256624206
1231 => 0.037884394376572
]
'min_raw' => 0.020918534949487
'max_raw' => 0.06504966583733
'avg_raw' => 0.042984100393408
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.020918'
'max' => '$0.065049'
'avg' => '$0.042984'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.011916600781997
'max_diff' => 0.040628285888197
'year' => 2033
]
8 => [
'items' => [
101 => 0.037673276773506
102 => 0.037006931545758
103 => 0.036027588143536
104 => 0.036163771850277
105 => 0.034223436311335
106 => 0.033166238528317
107 => 0.032873620115621
108 => 0.032482318544798
109 => 0.032917818669259
110 => 0.034217939584543
111 => 0.032649717924672
112 => 0.029961111886781
113 => 0.03012270169082
114 => 0.030485746004053
115 => 0.029809215328123
116 => 0.029168935820271
117 => 0.02972560690483
118 => 0.028586409083308
119 => 0.030623412618201
120 => 0.030568317381219
121 => 0.031327586331574
122 => 0.031802372787998
123 => 0.030708143719881
124 => 0.030432948068359
125 => 0.030589712018411
126 => 0.027998753120072
127 => 0.031115849713135
128 => 0.031142806493912
129 => 0.030911986170962
130 => 0.032571743877208
131 => 0.036074350328796
201 => 0.03475652888969
202 => 0.034246228597105
203 => 0.033276147367872
204 => 0.034568723008101
205 => 0.034469473366252
206 => 0.034020628846505
207 => 0.033749166280481
208 => 0.034249344381876
209 => 0.033687188678492
210 => 0.033586210067159
211 => 0.032974389548292
212 => 0.032755997459116
213 => 0.03259430865073
214 => 0.032416305159911
215 => 0.032808936504951
216 => 0.031919182222135
217 => 0.030846225780745
218 => 0.030757021062194
219 => 0.031003323133075
220 => 0.030894352801742
221 => 0.030756499354171
222 => 0.030493299580605
223 => 0.030415213830161
224 => 0.030668954637283
225 => 0.030382496060051
226 => 0.030805181294963
227 => 0.030690234299307
228 => 0.030048149725574
301 => 0.029247874616547
302 => 0.029240750489443
303 => 0.029068332529917
304 => 0.028848732335247
305 => 0.028787644584862
306 => 0.02967872561877
307 => 0.03152323669115
308 => 0.031161115032232
309 => 0.03142278504252
310 => 0.032709942508809
311 => 0.033119091161167
312 => 0.032828687138941
313 => 0.032431164201977
314 => 0.03244865319374
315 => 0.033807109407722
316 => 0.033891834655472
317 => 0.034105908023135
318 => 0.034381052797708
319 => 0.03287554548381
320 => 0.032377743934644
321 => 0.03214185794367
322 => 0.031415420390839
323 => 0.032198821011518
324 => 0.031742367018407
325 => 0.031803958256767
326 => 0.031763846881986
327 => 0.031785750404936
328 => 0.030622843234199
329 => 0.031046545486614
330 => 0.030342058313571
331 => 0.029398829071263
401 => 0.029395667036104
402 => 0.029626521056887
403 => 0.029489200052006
404 => 0.029119672758719
405 => 0.029172162366611
406 => 0.028712298169317
407 => 0.029227998206272
408 => 0.029242786638069
409 => 0.02904421403347
410 => 0.029838721093291
411 => 0.030164231283955
412 => 0.030033526541771
413 => 0.030155060690811
414 => 0.031176162822042
415 => 0.031342647023242
416 => 0.031416588308086
417 => 0.031317516781738
418 => 0.030173724563307
419 => 0.030224456611974
420 => 0.029852218500095
421 => 0.029537716521044
422 => 0.02955029495086
423 => 0.029711989850488
424 => 0.030418120960444
425 => 0.031904132252644
426 => 0.031960525294923
427 => 0.032028875307266
428 => 0.031750861457103
429 => 0.03166700981966
430 => 0.031777631773392
501 => 0.03233569948398
502 => 0.033771201149519
503 => 0.033263798986985
504 => 0.03285127313066
505 => 0.033213169522829
506 => 0.033157458409892
507 => 0.032687200551023
508 => 0.032674001979167
509 => 0.031771426797465
510 => 0.031437765303432
511 => 0.031158932784888
512 => 0.030854454953746
513 => 0.030673950289255
514 => 0.030951287491815
515 => 0.031014717791398
516 => 0.030408315150975
517 => 0.03032566471182
518 => 0.0308208661981
519 => 0.03060294648696
520 => 0.030827082314016
521 => 0.030879083748495
522 => 0.030870710319849
523 => 0.0306431771135
524 => 0.030788199994089
525 => 0.030445177648095
526 => 0.030072192367116
527 => 0.029834250995656
528 => 0.029626615590714
529 => 0.029741823781216
530 => 0.02933112761826
531 => 0.029199737650049
601 => 0.030739069505264
602 => 0.031876190497316
603 => 0.031859656307743
604 => 0.031759008680961
605 => 0.031609466723188
606 => 0.03232475955833
607 => 0.032075565837298
608 => 0.032256875090181
609 => 0.032303025904565
610 => 0.032442710519969
611 => 0.032492635763678
612 => 0.032341727001879
613 => 0.031835258765329
614 => 0.030573188073401
615 => 0.029985690759414
616 => 0.029791806860256
617 => 0.029798854171753
618 => 0.029604457860097
619 => 0.029661716286111
620 => 0.02958454571623
621 => 0.029438403326441
622 => 0.029732799900465
623 => 0.029766726363128
624 => 0.029698010684973
625 => 0.029714195714722
626 => 0.029145259248455
627 => 0.02918851425232
628 => 0.028947664894218
629 => 0.028902508543056
630 => 0.028293662338927
701 => 0.027215003034643
702 => 0.027812684997208
703 => 0.027090769233231
704 => 0.026817368794604
705 => 0.028111603948573
706 => 0.02798169863561
707 => 0.027759357208299
708 => 0.027430467897293
709 => 0.027308479652611
710 => 0.02656731769471
711 => 0.026523525892292
712 => 0.026890865771684
713 => 0.026721351056738
714 => 0.026483288196711
715 => 0.025621048649738
716 => 0.024651605921238
717 => 0.024680867303512
718 => 0.024989228998324
719 => 0.025885832214233
720 => 0.025535513826384
721 => 0.02528135381656
722 => 0.025233757286741
723 => 0.025829527507502
724 => 0.026672667187598
725 => 0.027068249461312
726 => 0.026676239442073
727 => 0.026225919439291
728 => 0.026253328331278
729 => 0.026435667410271
730 => 0.026454828669337
731 => 0.02616171664117
801 => 0.026244225960185
802 => 0.02611888675979
803 => 0.025349680318325
804 => 0.025335767812979
805 => 0.025146992147114
806 => 0.025141276094976
807 => 0.024820121595043
808 => 0.024775189860466
809 => 0.024137518108164
810 => 0.024557235586577
811 => 0.024275711138214
812 => 0.023851387389628
813 => 0.023778233815434
814 => 0.023776034730658
815 => 0.024211720343403
816 => 0.024552144346524
817 => 0.024280608376525
818 => 0.02421878489966
819 => 0.024878897889174
820 => 0.024794892494195
821 => 0.02472214436392
822 => 0.026597173276882
823 => 0.025112941581942
824 => 0.024465731845964
825 => 0.023664686895897
826 => 0.023925511170858
827 => 0.023980470677898
828 => 0.022054101972191
829 => 0.0212725744282
830 => 0.021004383626346
831 => 0.020850036028218
901 => 0.02092037416686
902 => 0.02021690771323
903 => 0.020689648804331
904 => 0.020080506318026
905 => 0.019978381597876
906 => 0.021067603821663
907 => 0.021219162730959
908 => 0.02057256533824
909 => 0.020987785538975
910 => 0.020837220922196
911 => 0.020090948317609
912 => 0.020062446193324
913 => 0.019687992833092
914 => 0.019102045832789
915 => 0.018834252330593
916 => 0.01869478314956
917 => 0.018752330851854
918 => 0.018723232972586
919 => 0.018533349627792
920 => 0.01873411686364
921 => 0.0182212395388
922 => 0.018017007655515
923 => 0.017924760851979
924 => 0.017469552706066
925 => 0.018193991298195
926 => 0.018336714827081
927 => 0.018479719565409
928 => 0.01972447817907
929 => 0.019662293556383
930 => 0.020224412260336
1001 => 0.02020256936117
1002 => 0.020042244001084
1003 => 0.01936585767912
1004 => 0.019635453211628
1005 => 0.018805680067017
1006 => 0.019427402526048
1007 => 0.019143674359497
1008 => 0.019331473747533
1009 => 0.018993793514656
1010 => 0.019180679698005
1011 => 0.018370559870474
1012 => 0.017614081374219
1013 => 0.017918510404096
1014 => 0.018249459575254
1015 => 0.018967041702607
1016 => 0.01853965570748
1017 => 0.018693359872581
1018 => 0.018178476649258
1019 => 0.01711612549042
1020 => 0.017122138282608
1021 => 0.016958718701398
1022 => 0.016817500323584
1023 => 0.01858874613022
1024 => 0.018368463714912
1025 => 0.018017472515969
1026 => 0.01848728818359
1027 => 0.018611514903086
1028 => 0.018615051463148
1029 => 0.018957816846547
1030 => 0.019140750793111
1031 => 0.019172993694074
1101 => 0.019712342430788
1102 => 0.019893125013153
1103 => 0.020637742884605
1104 => 0.019125230125833
1105 => 0.019094080920903
1106 => 0.018493899453505
1107 => 0.018113254878388
1108 => 0.018519962513219
1109 => 0.018880249956551
1110 => 0.018505094588667
1111 => 0.01855408195975
1112 => 0.018050466529685
1113 => 0.018230485348625
1114 => 0.01838554180665
1115 => 0.018299928744326
1116 => 0.018171761846308
1117 => 0.018850710494862
1118 => 0.018812401551289
1119 => 0.019444654141784
1120 => 0.019937540248891
1121 => 0.020820880266758
1122 => 0.019899068908557
1123 => 0.019865474438796
1124 => 0.020193865769434
1125 => 0.019893074738151
1126 => 0.020083164286968
1127 => 0.020790253901671
1128 => 0.020805193591012
1129 => 0.020554934545841
1130 => 0.020539706260198
1201 => 0.020587771247357
1202 => 0.020869289378431
1203 => 0.020770918293256
1204 => 0.020884755803472
1205 => 0.021027111353139
1206 => 0.021615954264066
1207 => 0.021757922296372
1208 => 0.021413013579854
1209 => 0.021444154975176
1210 => 0.021315149647242
1211 => 0.02119053211689
1212 => 0.021470654126193
1213 => 0.021982582604006
1214 => 0.021979397923514
1215 => 0.022098155379899
1216 => 0.022172140291387
1217 => 0.021854542891016
1218 => 0.021647798661754
1219 => 0.02172707755473
1220 => 0.021853846231068
1221 => 0.021685968181539
1222 => 0.020649747091167
1223 => 0.020964070375926
1224 => 0.020911751611719
1225 => 0.020837243329308
1226 => 0.021153297822724
1227 => 0.021122813595814
1228 => 0.020209692647974
1229 => 0.020268147688441
1230 => 0.020213247492594
1231 => 0.0203906412569
]
'min_raw' => 0.016817500323584
'max_raw' => 0.037673276773506
'avg_raw' => 0.027245388548545
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.016817'
'max' => '$0.037673'
'avg' => '$0.027245'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0041010346259028
'max_diff' => -0.027376389063824
'year' => 2034
]
9 => [
'items' => [
101 => 0.019883494892722
102 => 0.02003948969866
103 => 0.020137328178584
104 => 0.02019495579489
105 => 0.020403146260613
106 => 0.020378717512386
107 => 0.020401627735324
108 => 0.020710319235746
109 => 0.02227157491475
110 => 0.022356550616641
111 => 0.021938099182124
112 => 0.022105262276624
113 => 0.021784345689734
114 => 0.021999779144467
115 => 0.02214717324278
116 => 0.021481127654762
117 => 0.021441688757639
118 => 0.021119447633838
119 => 0.021292601761099
120 => 0.021017101094405
121 => 0.021084699321408
122 => 0.020895688785602
123 => 0.02123587011843
124 => 0.021616245707368
125 => 0.02171234360262
126 => 0.021459551412956
127 => 0.021276513207821
128 => 0.020955158416138
129 => 0.021489578596566
130 => 0.021645859343482
131 => 0.021488757720333
201 => 0.021452353841511
202 => 0.021383368556923
203 => 0.02146698939575
204 => 0.021645008204972
205 => 0.021561057822034
206 => 0.02161650852898
207 => 0.021405187614624
208 => 0.02185464802897
209 => 0.022568499335492
210 => 0.022570794484169
211 => 0.022486843648708
212 => 0.022452492775583
213 => 0.022538631427329
214 => 0.022585358112309
215 => 0.022863914716929
216 => 0.02316281705187
217 => 0.024557663827736
218 => 0.024165996434643
219 => 0.025403587473997
220 => 0.026382361305043
221 => 0.026675852780381
222 => 0.026405854432911
223 => 0.02548220467124
224 => 0.025436886007428
225 => 0.026817208706236
226 => 0.026427204321038
227 => 0.026380814540402
228 => 0.025887305651211
301 => 0.026179030526988
302 => 0.02611522601731
303 => 0.026014507477359
304 => 0.026571098218611
305 => 0.027612986399037
306 => 0.027450598355352
307 => 0.027329383213706
308 => 0.02679825374821
309 => 0.0271181123185
310 => 0.027004216808107
311 => 0.027493584200631
312 => 0.027203693798115
313 => 0.02642424965424
314 => 0.026548378703234
315 => 0.026529616847191
316 => 0.026915734515064
317 => 0.026799831575198
318 => 0.026506984938007
319 => 0.027609425338504
320 => 0.027537838990992
321 => 0.027639332064847
322 => 0.027684012454736
323 => 0.02835504849934
324 => 0.028629950496055
325 => 0.028692358062147
326 => 0.028953493697343
327 => 0.028685860769654
328 => 0.029756583299455
329 => 0.03046855130338
330 => 0.031295538777479
331 => 0.032503989750414
401 => 0.032958378495034
402 => 0.032876297235394
403 => 0.033792530971214
404 => 0.035438982627749
405 => 0.033209092189035
406 => 0.035557172235598
407 => 0.034813797202744
408 => 0.033051268372592
409 => 0.032937782294781
410 => 0.03413138728194
411 => 0.036778688263236
412 => 0.03611556939286
413 => 0.036779772888152
414 => 0.036004944229648
415 => 0.035966467455985
416 => 0.036742141189658
417 => 0.03855454514816
418 => 0.037693539964422
419 => 0.036459077906402
420 => 0.037370585479687
421 => 0.036580953263664
422 => 0.034801690876822
423 => 0.036115062318357
424 => 0.035236848238068
425 => 0.035493157795125
426 => 0.037339033167408
427 => 0.037116932559034
428 => 0.037404351312232
429 => 0.036897064735896
430 => 0.036423179081848
501 => 0.035538636317356
502 => 0.035276766812221
503 => 0.035349138122362
504 => 0.035276730948594
505 => 0.034781837401228
506 => 0.034674965186793
507 => 0.034496840147224
508 => 0.034552048545227
509 => 0.034217121358517
510 => 0.034849198159326
511 => 0.034966517183398
512 => 0.035426489968196
513 => 0.035474245868615
514 => 0.036755263526974
515 => 0.036049700527377
516 => 0.036523053102885
517 => 0.036480711993164
518 => 0.033089467716797
519 => 0.033556751256879
520 => 0.034283697803593
521 => 0.033956209369651
522 => 0.033493217344548
523 => 0.033119326460216
524 => 0.032552843538147
525 => 0.033350157372618
526 => 0.034398540280074
527 => 0.035500834589243
528 => 0.036825168976525
529 => 0.036529592958235
530 => 0.03547607707906
531 => 0.035523337031806
601 => 0.035815479463576
602 => 0.035437128470496
603 => 0.035325545376347
604 => 0.035800149659915
605 => 0.035803417998778
606 => 0.035368079455994
607 => 0.034884280331802
608 => 0.034882253195807
609 => 0.034796165814602
610 => 0.03602025898352
611 => 0.036693386456647
612 => 0.036770559436642
613 => 0.036688192100211
614 => 0.036719892018961
615 => 0.0363282139737
616 => 0.037223473836649
617 => 0.038045052818916
618 => 0.037824852101194
619 => 0.037494739921951
620 => 0.037231789670828
621 => 0.037762909378708
622 => 0.037739259454176
623 => 0.038037877043236
624 => 0.038024330024497
625 => 0.037923916160872
626 => 0.037824855687289
627 => 0.038217619267758
628 => 0.038104509664173
629 => 0.037991224370132
630 => 0.037764013369822
701 => 0.037794895118339
702 => 0.037464839937619
703 => 0.03731214130872
704 => 0.035015920305325
705 => 0.034402295022032
706 => 0.03459535402765
707 => 0.034658914065075
708 => 0.034391863555404
709 => 0.034774745386625
710 => 0.034715073658801
711 => 0.03494722144497
712 => 0.034802185586857
713 => 0.034808137909064
714 => 0.035234657442869
715 => 0.035358477878077
716 => 0.035295501805377
717 => 0.035339608088002
718 => 0.03635601875501
719 => 0.036211517661145
720 => 0.036134754335043
721 => 0.036156018300983
722 => 0.036415733018494
723 => 0.0364884389595
724 => 0.036180378778505
725 => 0.036325661740737
726 => 0.036944258154767
727 => 0.037160731890153
728 => 0.037851612140217
729 => 0.037558113930572
730 => 0.03809684259668
731 => 0.039752710850157
801 => 0.041075532988402
802 => 0.039859011082135
803 => 0.042288205478639
804 => 0.044179681763557
805 => 0.044107083753323
806 => 0.043777261112413
807 => 0.041623865649532
808 => 0.039642279039272
809 => 0.041299960381367
810 => 0.041304186152013
811 => 0.041161789854602
812 => 0.040277378680981
813 => 0.041131014262832
814 => 0.041198772755371
815 => 0.041160846017987
816 => 0.040482770044783
817 => 0.039447473363088
818 => 0.039649767856541
819 => 0.039981130363513
820 => 0.039353792008354
821 => 0.03915331939211
822 => 0.039526036127184
823 => 0.04072700710621
824 => 0.040499970499376
825 => 0.040494041656045
826 => 0.041465400538583
827 => 0.040770117211052
828 => 0.03965231943794
829 => 0.039370060758288
830 => 0.038368232597752
831 => 0.039060198876624
901 => 0.039085101511117
902 => 0.038706118651903
903 => 0.039683071808272
904 => 0.039674069012946
905 => 0.040601540634631
906 => 0.042374518032859
907 => 0.041850161373284
908 => 0.04124039162804
909 => 0.041306690506429
910 => 0.042033825562782
911 => 0.041594183108832
912 => 0.041752281600569
913 => 0.042033586261779
914 => 0.04220330434829
915 => 0.041282270685594
916 => 0.041067533680686
917 => 0.040628257131093
918 => 0.04051365807879
919 => 0.040871439662627
920 => 0.040777176855896
921 => 0.039083008541115
922 => 0.038905958525957
923 => 0.038911388397153
924 => 0.038466187715768
925 => 0.037787149816251
926 => 0.039571620872937
927 => 0.039428302873429
928 => 0.039270090893903
929 => 0.03928947095865
930 => 0.040064049363022
1001 => 0.039614754771339
1002 => 0.040809278081263
1003 => 0.0405637199994
1004 => 0.040311864279313
1005 => 0.040277050147084
1006 => 0.040180107182171
1007 => 0.039847653684595
1008 => 0.039446196108914
1009 => 0.03918111904379
1010 => 0.03614251121178
1011 => 0.036706459150632
1012 => 0.03735522984881
1013 => 0.037579182894035
1014 => 0.037196095713098
1015 => 0.039862780301442
1016 => 0.040350009272545
1017 => 0.038874160937916
1018 => 0.038598089972997
1019 => 0.039880879467942
1020 => 0.039107200587852
1021 => 0.039455588140183
1022 => 0.038702564809846
1023 => 0.040232650081136
1024 => 0.040220993394963
1025 => 0.039625755665888
1026 => 0.04012884651849
1027 => 0.040041422102392
1028 => 0.039369400172272
1029 => 0.040253954374985
1030 => 0.040254393102833
1031 => 0.039681489730183
1101 => 0.039012464015602
1102 => 0.038892858019516
1103 => 0.038802750968271
1104 => 0.03943342732924
1105 => 0.03999888978241
1106 => 0.04105107521773
1107 => 0.041315619635479
1108 => 0.042348154109671
1109 => 0.041733330103481
1110 => 0.042005873622121
1111 => 0.04230175816524
1112 => 0.042443616096005
1113 => 0.04221246621034
1114 => 0.043816417256906
1115 => 0.043951839869026
1116 => 0.043997245899469
1117 => 0.043456402631096
1118 => 0.043936798039355
1119 => 0.043712036936854
1120 => 0.044296802885128
1121 => 0.044388501652483
1122 => 0.044310836058811
1123 => 0.044339942694937
1124 => 0.042971253433047
1125 => 0.042900279674406
1126 => 0.041932547439281
1127 => 0.04232690547821
1128 => 0.041589672026505
1129 => 0.041823456348387
1130 => 0.041926506249893
1201 => 0.041872678829377
1202 => 0.042349201890041
1203 => 0.041944059941247
1204 => 0.040874823726875
1205 => 0.039805296199812
1206 => 0.039791869152928
1207 => 0.039510281433781
1208 => 0.039306745088201
1209 => 0.039345953409199
1210 => 0.03948412864642
1211 => 0.039298714092225
1212 => 0.039338281688119
1213 => 0.039995367417471
1214 => 0.040127141274372
1215 => 0.039679322221254
1216 => 0.037881264103005
1217 => 0.037440016130699
1218 => 0.037757176422865
1219 => 0.037605594230949
1220 => 0.030350649540667
1221 => 0.032055091181533
1222 => 0.0310423698359
1223 => 0.031509078425036
1224 => 0.030475352174066
1225 => 0.030968700523264
1226 => 0.030877597097364
1227 => 0.033618288817781
1228 => 0.033575496686265
1229 => 0.033595979015113
1230 => 0.032618304092795
1231 => 0.034175766790814
]
'min_raw' => 0.019883494892722
'max_raw' => 0.044388501652483
'avg_raw' => 0.032135998272603
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.019883'
'max' => '$0.044388'
'avg' => '$0.032135'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0030659945691377
'max_diff' => 0.0067152248789772
'year' => 2035
]
10 => [
'items' => [
101 => 0.034943028920406
102 => 0.034801029120239
103 => 0.034836767410675
104 => 0.034222665174356
105 => 0.033601924867121
106 => 0.03291342833515
107 => 0.03419256979081
108 => 0.034050351096613
109 => 0.034376549612429
110 => 0.035206164281344
111 => 0.035328328192741
112 => 0.035492517728524
113 => 0.035433667467753
114 => 0.036835719436502
115 => 0.03666592169205
116 => 0.037075085402035
117 => 0.036233404607271
118 => 0.03528096289492
119 => 0.035461990926772
120 => 0.035444556471569
121 => 0.035222595846501
122 => 0.035022219718719
123 => 0.034688649921586
124 => 0.035744114118756
125 => 0.035701264199855
126 => 0.036394954579283
127 => 0.03627233806657
128 => 0.035453474985324
129 => 0.035482720840467
130 => 0.035679413271384
131 => 0.036360168020581
201 => 0.03656226237946
202 => 0.036468644220359
203 => 0.036690231458913
204 => 0.036865364977426
205 => 0.036712225532435
206 => 0.038880357130997
207 => 0.037979997729666
208 => 0.038418826637214
209 => 0.038523484745934
210 => 0.038255405201171
211 => 0.038313542055221
212 => 0.038401603547763
213 => 0.03893629568627
214 => 0.040339482572129
215 => 0.040960944492059
216 => 0.042830643340562
217 => 0.040909340730777
218 => 0.040795338585053
219 => 0.041132127807164
220 => 0.042229838958958
221 => 0.043119430744721
222 => 0.04341455966184
223 => 0.043453565820285
224 => 0.0440072472886
225 => 0.044324607180689
226 => 0.043940015795078
227 => 0.043614114864169
228 => 0.042446778181964
229 => 0.042581900581481
301 => 0.04351275991972
302 => 0.044827653562324
303 => 0.045955969099045
304 => 0.045560872323852
305 => 0.048575181823719
306 => 0.048874038298281
307 => 0.048832745996683
308 => 0.049513585521542
309 => 0.048162257715256
310 => 0.047584538897326
311 => 0.043684578344564
312 => 0.044780308182566
313 => 0.04637301585206
314 => 0.046162215019655
315 => 0.045005548136871
316 => 0.045955091663493
317 => 0.04564114287862
318 => 0.045393518446244
319 => 0.046527933975318
320 => 0.04528059750188
321 => 0.046360572716575
322 => 0.044975493332816
323 => 0.04556267709264
324 => 0.045229363191681
325 => 0.045445058135017
326 => 0.044184109903647
327 => 0.044864486961506
328 => 0.044155803981168
329 => 0.044155467973162
330 => 0.044139823757092
331 => 0.044973586140679
401 => 0.045000775102074
402 => 0.044384623440859
403 => 0.04429582636038
404 => 0.044624155707345
405 => 0.044239768031641
406 => 0.044419620605796
407 => 0.044245215582893
408 => 0.044205953338706
409 => 0.043893105097103
410 => 0.043758321472679
411 => 0.043811173604762
412 => 0.043630762030822
413 => 0.043522057531751
414 => 0.044118199696174
415 => 0.043799704986029
416 => 0.044069385813987
417 => 0.043762050474095
418 => 0.042696692286395
419 => 0.04208399352669
420 => 0.04007163066888
421 => 0.040642334279027
422 => 0.04102071136299
423 => 0.040895657738997
424 => 0.041164321312661
425 => 0.041180815074089
426 => 0.04109346980759
427 => 0.040992335178605
428 => 0.040943108434312
429 => 0.041310004255563
430 => 0.041522999628945
501 => 0.041058686565397
502 => 0.040949904511039
503 => 0.041419350653711
504 => 0.041705712529552
505 => 0.043820047727917
506 => 0.04366341094721
507 => 0.04405653852837
508 => 0.044012278395766
509 => 0.044424338730957
510 => 0.045097883229304
511 => 0.043728378938161
512 => 0.043966077529208
513 => 0.043907799323946
514 => 0.044544065487637
515 => 0.044546051841149
516 => 0.044164578492164
517 => 0.044371381383347
518 => 0.04425594968283
519 => 0.044464550367195
520 => 0.043661318967507
521 => 0.044639568108856
522 => 0.045194172335019
523 => 0.045201873015237
524 => 0.045464751016827
525 => 0.045731850291309
526 => 0.046244524089234
527 => 0.045717552097339
528 => 0.04476958078361
529 => 0.044838021250532
530 => 0.044282226016142
531 => 0.044291569034445
601 => 0.044241695270519
602 => 0.044391370190381
603 => 0.043694164195465
604 => 0.043857797048917
605 => 0.043628710095852
606 => 0.043965579538912
607 => 0.043603163704693
608 => 0.043907771220431
609 => 0.044039229726324
610 => 0.044524314443169
611 => 0.043531516297605
612 => 0.041507133672275
613 => 0.041932683443386
614 => 0.0413032619057
615 => 0.04136151726539
616 => 0.041479202363234
617 => 0.041097746456951
618 => 0.041170516222813
619 => 0.041167916374703
620 => 0.041145512288247
621 => 0.041046280874497
622 => 0.040902375692222
623 => 0.041475649646726
624 => 0.041573060062572
625 => 0.041789591350401
626 => 0.042433841588405
627 => 0.042369465797161
628 => 0.042474465383605
629 => 0.042245251875946
630 => 0.04137214982261
701 => 0.041419563464727
702 => 0.040828314587777
703 => 0.041774471787309
704 => 0.041550409273795
705 => 0.04140595471372
706 => 0.041366538948641
707 => 0.042012386158373
708 => 0.042205633765939
709 => 0.042085214825268
710 => 0.041838232064771
711 => 0.042312511978824
712 => 0.042439409275562
713 => 0.042467816900509
714 => 0.043308149974059
715 => 0.042514782184385
716 => 0.042705753696757
717 => 0.044195658921063
718 => 0.042844520475484
719 => 0.04356024864409
720 => 0.043525217474707
721 => 0.043891359786845
722 => 0.043495183118218
723 => 0.043500094202839
724 => 0.043825203771389
725 => 0.04336864601618
726 => 0.043255595895404
727 => 0.043099417963233
728 => 0.043440426764474
729 => 0.043644846118317
730 => 0.045292315980817
731 => 0.046356656645746
801 => 0.046310450810482
802 => 0.04673268565109
803 => 0.046542464988169
804 => 0.045928192289919
805 => 0.046976680883256
806 => 0.046644895221698
807 => 0.046672247228517
808 => 0.046671229185457
809 => 0.046891837645187
810 => 0.046735516333
811 => 0.046427390980626
812 => 0.04663193896914
813 => 0.047239373367783
814 => 0.049124868379535
815 => 0.050180016367598
816 => 0.049061347145771
817 => 0.049832990195409
818 => 0.049370279330158
819 => 0.049286191001486
820 => 0.049770839860632
821 => 0.050256337033449
822 => 0.050225412962403
823 => 0.049872966945493
824 => 0.049673879133527
825 => 0.051181438745042
826 => 0.052292182986197
827 => 0.052216437675474
828 => 0.052550752843311
829 => 0.053532312516058
830 => 0.053622054031227
831 => 0.053610748663001
901 => 0.053388314954094
902 => 0.054354787923544
903 => 0.055161036678132
904 => 0.05333682797721
905 => 0.054031462769876
906 => 0.054343306708039
907 => 0.054801186129189
908 => 0.055573705462171
909 => 0.056412866358423
910 => 0.056531532910084
911 => 0.056447333312963
912 => 0.05589388414403
913 => 0.05681210400998
914 => 0.057349975672548
915 => 0.057670265938633
916 => 0.058482468762207
917 => 0.054345232550037
918 => 0.051416691125081
919 => 0.050959357092923
920 => 0.051889363831089
921 => 0.052134599191278
922 => 0.052035745125085
923 => 0.04873940549996
924 => 0.05094200254699
925 => 0.053311811769976
926 => 0.053402845793583
927 => 0.054589221840983
928 => 0.054975554513214
929 => 0.055930742733235
930 => 0.055870995450003
1001 => 0.056103568581213
1002 => 0.056050104045953
1003 => 0.057819389084932
1004 => 0.059771173224296
1005 => 0.059703589145843
1006 => 0.059422997083348
1007 => 0.059839724144209
1008 => 0.061854174541933
1009 => 0.06166871623022
1010 => 0.061848873182748
1011 => 0.064224023731113
1012 => 0.067312057305213
1013 => 0.065877355676542
1014 => 0.068990245386486
1015 => 0.070949644451703
1016 => 0.074338222529351
1017 => 0.073913955864931
1018 => 0.075233104444024
1019 => 0.073154429988493
1020 => 0.068381373269174
1021 => 0.067626018772815
1022 => 0.069138257603149
1023 => 0.072855949205417
1024 => 0.069021174264452
1025 => 0.069796944240588
1026 => 0.069573522435272
1027 => 0.069561617236748
1028 => 0.070015990242458
1029 => 0.069356898499174
1030 => 0.066671640168695
1031 => 0.067902278237227
1101 => 0.067427069778873
1102 => 0.067954348992554
1103 => 0.070799857442303
1104 => 0.06954179032822
1105 => 0.068216518820606
1106 => 0.069878703392444
1107 => 0.071995235540981
1108 => 0.0718627867629
1109 => 0.071605780774127
1110 => 0.073054510076442
1111 => 0.075447386446007
1112 => 0.076094171313345
1113 => 0.076571614679479
1114 => 0.076637446053197
1115 => 0.077315550116465
1116 => 0.073669213664048
1117 => 0.079456043258595
1118 => 0.080455268871631
1119 => 0.080267455870039
1120 => 0.081378053085088
1121 => 0.081051287211288
1122 => 0.080577854728148
1123 => 0.082338387544802
1124 => 0.08032007873818
1125 => 0.077455343485194
1126 => 0.075883693067367
1127 => 0.077953369118984
1128 => 0.079217248061967
1129 => 0.08005259164548
1130 => 0.080305366109123
1201 => 0.073952268383061
1202 => 0.070528301067667
1203 => 0.072723024860969
1204 => 0.075400739360543
1205 => 0.073654338824802
1206 => 0.07372279441943
1207 => 0.07123288620145
1208 => 0.075621040988747
1209 => 0.074981723746429
1210 => 0.078298502730509
1211 => 0.077506926807144
1212 => 0.080211631312042
1213 => 0.079499391971384
1214 => 0.082455857653692
1215 => 0.083635271857478
1216 => 0.085615691866798
1217 => 0.087072496887413
1218 => 0.087927960659757
1219 => 0.08787660182363
1220 => 0.091266375480018
1221 => 0.089267544384517
1222 => 0.086756541440249
1223 => 0.0867111253191
1224 => 0.088011609325123
1225 => 0.090737067031385
1226 => 0.091443738560821
1227 => 0.091838671539873
1228 => 0.091233817934739
1229 => 0.089064230038088
1230 => 0.088127412984374
1231 => 0.088925608256341
]
'min_raw' => 0.03291342833515
'max_raw' => 0.091838671539873
'avg_raw' => 0.062376049937512
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.032913'
'max' => '$0.091838'
'avg' => '$0.062376'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.013029933442428
'max_diff' => 0.04745016988739
'year' => 2036
]
11 => [
'items' => [
101 => 0.087949484028427
102 => 0.089634548297892
103 => 0.091948501450174
104 => 0.091470679274591
105 => 0.093067967168463
106 => 0.094720992099035
107 => 0.097084891991746
108 => 0.097702902958661
109 => 0.098724451586118
110 => 0.099775960685015
111 => 0.10011367706862
112 => 0.10075848243215
113 => 0.1007550839896
114 => 0.10269824835301
115 => 0.10484161882065
116 => 0.10565069155304
117 => 0.10751110968865
118 => 0.10432520882825
119 => 0.10674175122786
120 => 0.10892153296228
121 => 0.10632270731665
122 => 0.10990458302043
123 => 0.11004365913731
124 => 0.11214354338332
125 => 0.11001490841084
126 => 0.10875093175903
127 => 0.11239998499223
128 => 0.11416564690768
129 => 0.11363381516931
130 => 0.10958654938057
131 => 0.10723086709613
201 => 0.10106559218058
202 => 0.10836862663811
203 => 0.11192572168994
204 => 0.10957733736372
205 => 0.11076172582051
206 => 0.11722336520148
207 => 0.11968353911759
208 => 0.11917184014096
209 => 0.11925830884473
210 => 0.12058577403454
211 => 0.12647248573462
212 => 0.12294503163103
213 => 0.12564163812204
214 => 0.12707190848154
215 => 0.12840042330127
216 => 0.12513801078543
217 => 0.12089366003667
218 => 0.11954929598881
219 => 0.10934383682408
220 => 0.10881259835449
221 => 0.10851439810334
222 => 0.10663428770108
223 => 0.10515703593049
224 => 0.10398227047568
225 => 0.10089933510758
226 => 0.1019397352938
227 => 0.097026179775669
228 => 0.10016969847045
301 => 0.092327545221575
302 => 0.098858723478081
303 => 0.095304100089301
304 => 0.097690934093577
305 => 0.09768260665459
306 => 0.093287688506306
307 => 0.090752791437978
308 => 0.092368126509587
309 => 0.094099893931809
310 => 0.094380867369699
311 => 0.096626149036364
312 => 0.097252758887362
313 => 0.095354101785221
314 => 0.092165034026343
315 => 0.092905781731839
316 => 0.090737780209369
317 => 0.086938440932216
318 => 0.089667192731167
319 => 0.090598908570076
320 => 0.091010407363219
321 => 0.087274193541203
322 => 0.086100194041177
323 => 0.085475166558173
324 => 0.091682735739284
325 => 0.092022800391821
326 => 0.090282981549148
327 => 0.09814712769442
328 => 0.096367229219611
329 => 0.098355811901686
330 => 0.092838566641715
331 => 0.093049332840602
401 => 0.090437380516754
402 => 0.091899899287391
403 => 0.090866238159485
404 => 0.091781742223616
405 => 0.092330491584891
406 => 0.094942015313065
407 => 0.098888542884108
408 => 0.094551940754717
409 => 0.092662421105655
410 => 0.093834668468871
411 => 0.096956517674067
412 => 0.10168627902446
413 => 0.098886165109709
414 => 0.10012880811606
415 => 0.10040027033161
416 => 0.09833556999672
417 => 0.10176240747087
418 => 0.10359887751284
419 => 0.10548271577197
420 => 0.10711839974843
421 => 0.10473026934478
422 => 0.10728591120173
423 => 0.10522651499655
424 => 0.10337902370403
425 => 0.10338182558571
426 => 0.10222286731038
427 => 0.099977239613773
428 => 0.099563111412409
429 => 0.10171745861453
430 => 0.10344504105319
501 => 0.1035873330174
502 => 0.10454381142183
503 => 0.10510984548907
504 => 0.11065774883395
505 => 0.11288916145392
506 => 0.11561769056715
507 => 0.11668060642822
508 => 0.11987960209364
509 => 0.11729615328409
510 => 0.11673720788349
511 => 0.10897749078271
512 => 0.11024814402325
513 => 0.11228258246117
514 => 0.10901103792322
515 => 0.1110860799268
516 => 0.1114957371737
517 => 0.10889987209169
518 => 0.1102864357927
519 => 0.1066041336903
520 => 0.09896880700737
521 => 0.10177090777214
522 => 0.10383419711192
523 => 0.10088962882231
524 => 0.10616765351092
525 => 0.10308434044838
526 => 0.10210707823268
527 => 0.098294429910108
528 => 0.10009385315607
529 => 0.10252759886149
530 => 0.10102382696885
531 => 0.10414437943857
601 => 0.10856391395664
602 => 0.11171353744205
603 => 0.11195532642423
604 => 0.10993032953149
605 => 0.11317539997546
606 => 0.11319903677092
607 => 0.10953858405363
608 => 0.10729657714577
609 => 0.10678718845908
610 => 0.10805974126996
611 => 0.10960485530858
612 => 0.11204106949992
613 => 0.1135132227128
614 => 0.11735181752224
615 => 0.11839043121654
616 => 0.11953155277858
617 => 0.12105644309432
618 => 0.12288746489221
619 => 0.11888129343854
620 => 0.11904046609884
621 => 0.1153099747104
622 => 0.11132340965528
623 => 0.11434871559977
624 => 0.1183039006826
625 => 0.11739657685451
626 => 0.11729448438891
627 => 0.11746617559796
628 => 0.11678208306201
629 => 0.11368795787553
630 => 0.11213410757713
701 => 0.11413897089155
702 => 0.11520446651697
703 => 0.11685695731101
704 => 0.1166532529408
705 => 0.12090989176168
706 => 0.12256389289341
707 => 0.12214072862521
708 => 0.12221860103458
709 => 0.12521309107817
710 => 0.12854357987049
711 => 0.1316630221212
712 => 0.13483625276178
713 => 0.13101079937126
714 => 0.12906847006071
715 => 0.13107245811453
716 => 0.130009113845
717 => 0.13611940542613
718 => 0.1365424687579
719 => 0.14265231849539
720 => 0.14845129344365
721 => 0.14480906117808
722 => 0.14824352215477
723 => 0.15195817171678
724 => 0.15912433340205
725 => 0.15671102225506
726 => 0.15486246373787
727 => 0.15311558487129
728 => 0.15675056248343
729 => 0.16142690311125
730 => 0.16243414209305
731 => 0.16406625403847
801 => 0.16235028789301
802 => 0.16441698010774
803 => 0.17171331177632
804 => 0.16974177855297
805 => 0.16694188443603
806 => 0.17270163754122
807 => 0.17478606979952
808 => 0.1894157070139
809 => 0.20788622831722
810 => 0.20023931121367
811 => 0.19549262300302
812 => 0.19660820732547
813 => 0.20335301643884
814 => 0.20551923505651
815 => 0.19963070611334
816 => 0.20171063408539
817 => 0.21317124170538
818 => 0.21931948999319
819 => 0.21096934299843
820 => 0.18793161861152
821 => 0.1666897846051
822 => 0.17232407551586
823 => 0.17168532177898
824 => 0.18399831492675
825 => 0.16969475813762
826 => 0.16993559335043
827 => 0.18250320615681
828 => 0.1791503825235
829 => 0.17371923763474
830 => 0.16672943797326
831 => 0.15380814682079
901 => 0.1423633989102
902 => 0.16480918513091
903 => 0.16384128201406
904 => 0.16243961486565
905 => 0.1655588734282
906 => 0.18070510759095
907 => 0.18035593786993
908 => 0.17813469825271
909 => 0.17981948892526
910 => 0.17342388568399
911 => 0.17507217826445
912 => 0.16668641979007
913 => 0.1704771328407
914 => 0.17370758483706
915 => 0.17435614590298
916 => 0.17581738710087
917 => 0.16333124105334
918 => 0.16893715405469
919 => 0.17223010273997
920 => 0.15735244078137
921 => 0.17193601919838
922 => 0.16311388502982
923 => 0.160119520189
924 => 0.16415103796959
925 => 0.16257995156971
926 => 0.16122922374039
927 => 0.16047549440317
928 => 0.16343579611886
929 => 0.1632976945055
930 => 0.15845406632883
1001 => 0.15213575082391
1002 => 0.154256384899
1003 => 0.15348593865847
1004 => 0.15069374209325
1005 => 0.15257534544711
1006 => 0.14428971653437
1007 => 0.13003472263951
1008 => 0.13945200824872
1009 => 0.1390894529968
1010 => 0.13890663619822
1011 => 0.14598346605888
1012 => 0.14530319215802
1013 => 0.1440684883667
1014 => 0.15067106578985
1015 => 0.1482610362132
1016 => 0.15568817949405
1017 => 0.16058017641633
1018 => 0.15933940775731
1019 => 0.16394035450779
1020 => 0.15430524002501
1021 => 0.15750563856249
1022 => 0.15816523626551
1023 => 0.15058959100934
1024 => 0.14541449338129
1025 => 0.14506937336993
1026 => 0.13609646725528
1027 => 0.14088972127496
1028 => 0.14510758645395
1029 => 0.14308755635278
1030 => 0.14244807516943
1031 => 0.14571504584861
1101 => 0.1459689174501
1102 => 0.14018061803214
1103 => 0.14138418877274
1104 => 0.14640327883801
1105 => 0.14125772058075
1106 => 0.13126074140907
1107 => 0.12878135235544
1108 => 0.12845055615148
1109 => 0.12172625639522
1110 => 0.12894703698767
1111 => 0.12579497275418
1112 => 0.13575230590025
1113 => 0.13006473060946
1114 => 0.12981955060629
1115 => 0.1294489250714
1116 => 0.12366104249386
1117 => 0.12492822093922
1118 => 0.1291405150883
1119 => 0.13064350909559
1120 => 0.13048673450696
1121 => 0.12911987254896
1122 => 0.12974561495387
1123 => 0.12772988064456
1124 => 0.12701808290607
1125 => 0.12477145344798
1126 => 0.12146952879181
1127 => 0.12192868166713
1128 => 0.11538670492769
1129 => 0.11182228879105
1130 => 0.11083570538268
1201 => 0.10951640481685
1202 => 0.11098472389211
1203 => 0.11536817232954
1204 => 0.11008080351354
1205 => 0.10101598054432
1206 => 0.10156079185047
1207 => 0.10278482109948
1208 => 0.10050385069172
1209 => 0.098345103628109
1210 => 0.10022195905523
1211 => 0.096381074063722
1212 => 0.10324897370066
1213 => 0.10306321626255
1214 => 0.10562314453913
1215 => 0.1072239202255
1216 => 0.10353465052571
1217 => 0.10260680917306
1218 => 0.10313534977556
1219 => 0.094399750954843
1220 => 0.10490925974709
1221 => 0.10500014641554
1222 => 0.10422191958135
1223 => 0.10981790856854
1224 => 0.12162719076425
1225 => 0.11718406377495
1226 => 0.11546355071047
1227 => 0.1121928541172
1228 => 0.11655086313298
1229 => 0.1162162360361
1230 => 0.11470292540045
1231 => 0.11378767040619
]
'min_raw' => 0.085475166558173
'max_raw' => 0.21931948999319
'avg_raw' => 0.15239732827568
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.085475'
'max' => '$0.219319'
'avg' => '$0.152397'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.052561738223023
'max_diff' => 0.12748081845332
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0026829678079759
]
1 => [
'year' => 2028
'avg' => 0.0046047516296065
]
2 => [
'year' => 2029
'avg' => 0.012579351526351
]
3 => [
'year' => 2030
'avg' => 0.0097049509688477
]
4 => [
'year' => 2031
'avg' => 0.0095314645727413
]
5 => [
'year' => 2032
'avg' => 0.016711657058312
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0026829678079759
'min' => '$0.002682'
'max_raw' => 0.016711657058312
'max' => '$0.016711'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.016711657058312
]
1 => [
'year' => 2033
'avg' => 0.042984100393408
]
2 => [
'year' => 2034
'avg' => 0.027245388548545
]
3 => [
'year' => 2035
'avg' => 0.032135998272603
]
4 => [
'year' => 2036
'avg' => 0.062376049937512
]
5 => [
'year' => 2037
'avg' => 0.15239732827568
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.016711657058312
'min' => '$0.016711'
'max_raw' => 0.15239732827568
'max' => '$0.152397'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.15239732827568
]
]
]
]
'prediction_2025_max_price' => '$0.004587'
'last_price' => 0.00444805
'sma_50day_nextmonth' => '$0.004169'
'sma_200day_nextmonth' => '$0.004814'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'augmenter'
'sma_200day_date_nextmonth' => '4 févr. 2026'
'sma_50day_date_nextmonth' => '4 févr. 2026'
'daily_sma3' => '$0.004314'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.004353'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.00431'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.004285'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.004383'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.00482'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.004733'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.004376'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.004348'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.004321'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.004334'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.004465'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.00462'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.004557'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.004937'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.003955'
'weekly_sma50_action' => 'BUY'
'weekly_sma100' => '$0.004086'
'weekly_sma100_action' => 'BUY'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.004371'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.004398'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.004522'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.004586'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.004371'
'weekly_ema50_action' => 'BUY'
'weekly_ema100' => '$0.004773'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.005915'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '52.09'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 68.67
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => 0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.004260'
'vwma_10_action' => 'BUY'
'hma_9' => '0.004371'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 84.85
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 86.82
'cci_20_action' => 'NEUTRAL'
'adx_14' => 7.57
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.000044'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -15.15
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 56.2
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.000328'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 11
'buy_signals' => 21
'sell_pct' => 34.38
'buy_pct' => 65.63
'overall_action' => 'bullish'
'overall_action_label' => 'Haussier'
'overall_action_dir' => 1
'last_updated' => 1767688053
'last_updated_date' => '6 janvier 2026'
]
Prévision du prix de Winter pour 2026
La prévision du prix de Winter pour 2026 suggère que le prix moyen pourrait varier entre $0.001536 à la baisse et $0.004587 à la hausse. Sur le marché des cryptomonnaies, comparé au prix moyen d'aujourd'hui, Winter pourrait potentiellement gagner 3.13% d'ici 2026 si WINTER atteint l'objectif de prix prévu.
Prévision du prix de Winter de 2027 à 2032
La prévision du prix de WINTER pour 2027-2032 se situe actuellement dans une fourchette de prix comprise entre $0.002682 à la baisse et $0.016711 à la hausse. Compte tenu de la volatilité des prix sur le marché, si Winter atteint l'objectif de prix le plus élevé, il pourrait gagner 275.71% d'ici 2032 par rapport au prix actuel.
| Prévision du Prix de Winter | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2027 | $0.001479 | $0.002682 | $0.003886 |
| 2028 | $0.002669 | $0.0046047 | $0.006539 |
| 2029 | $0.005865 | $0.012579 | $0.019293 |
| 2030 | $0.004988 | $0.0097049 | $0.014421 |
| 2031 | $0.005897 | $0.009531 | $0.013165 |
| 2032 | $0.0090019 | $0.016711 | $0.024421 |
Prévision du prix de Winter de 2032 à 2037
La prévision du prix de Winter pour 2032-2037 est actuellement estimée entre $0.016711 à la baisse et $0.152397 à la hausse. Par rapport au prix actuel, Winter pourrait potentiellement gagner 3326.16% d'ici 2037 s'il atteint l'objectif de prix le plus élevé. Veuillez noter que ces informations sont à titre général seulement et ne doivent pas être considérées comme un conseil en investissement à long terme.
| Prévision du Prix de Winter | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2032 | $0.0090019 | $0.016711 | $0.024421 |
| 2033 | $0.020918 | $0.042984 | $0.065049 |
| 2034 | $0.016817 | $0.027245 | $0.037673 |
| 2035 | $0.019883 | $0.032135 | $0.044388 |
| 2036 | $0.032913 | $0.062376 | $0.091838 |
| 2037 | $0.085475 | $0.152397 | $0.219319 |
Winter Histogramme des prix potentiels
Prévision du prix de Winter basée sur l'analyse technique
Au 6 janvier 2026, le sentiment global de prévision du prix pour Winter est Haussier, avec 21 indicateurs techniques montrant des signaux haussiers et 11 indiquant des signaux baissiers. La prévision du prix de WINTER a été mise à jour pour la dernière fois le 6 janvier 2026.
Moyennes Mobiles Simples sur 50 et 200 jours de Winter et Indice de Force Relative sur 14 jours - RSI (14)
Selon nos indicateurs techniques, le SMA sur 200 jours de Winter devrait augmenter au cours du prochain mois, atteignant $0.004814 d'ici le 4 févr. 2026. Le SMA à court terme sur 50 jours pour Winter devrait atteindre $0.004169 d'ici le 4 févr. 2026.
Le Relative Strength Index (RSI), un oscillateur de momentum, est un outil couramment utilisé pour identifier si une cryptomonnaie est survendue (en dessous de 30) ou surachetée (au-dessus de 70). Actuellement, le RSI est à 52.09, ce qui suggère que le marché de WINTER est dans un état NEUTRAL.
Moyennes Mobiles et Oscillateurs Populaires de WINTER pour le Samedi 19 Octobre 2024
Les moyennes mobiles (MA) sont des indicateurs largement utilisés sur les marchés financiers, conçus pour lisser les mouvements de prix sur une période donnée. En tant qu'indicateurs retardés, ils sont basés sur des données historiques de prix. Le tableau ci-dessous met en évidence deux types : la moyenne mobile simple (SMA) et la moyenne mobile exponentielle (EMA).
Moyenne Mobile Simple Quotidienne (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 3 | $0.004314 | BUY |
| SMA 5 | $0.004353 | BUY |
| SMA 10 | $0.00431 | BUY |
| SMA 21 | $0.004285 | BUY |
| SMA 50 | $0.004383 | BUY |
| SMA 100 | $0.00482 | SELL |
| SMA 200 | $0.004733 | SELL |
Moyenne Mobile Exponentielle Quotidienne (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 3 | $0.004376 | BUY |
| EMA 5 | $0.004348 | BUY |
| EMA 10 | $0.004321 | BUY |
| EMA 21 | $0.004334 | BUY |
| EMA 50 | $0.004465 | SELL |
| EMA 100 | $0.00462 | SELL |
| EMA 200 | $0.004557 | SELL |
Moyenne Mobile Simple Hebdomadaire (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 21 | $0.004937 | SELL |
| SMA 50 | $0.003955 | BUY |
| SMA 100 | $0.004086 | BUY |
| SMA 200 | — | — |
Moyenne Mobile Exponentielle Hebdomadaire (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 21 | $0.004586 | SELL |
| EMA 50 | $0.004371 | BUY |
| EMA 100 | $0.004773 | SELL |
| EMA 200 | $0.005915 | SELL |
Oscillateurs de Winter
Un oscillateur est un outil d'analyse technique qui établit des limites hautes et basses entre deux extrêmes, créant un indicateur de tendance qui fluctue à l'intérieur de ces limites. Les traders utilisent cet indicateur pour identifier les conditions de surachat ou de survente à court terme.
| Période | Valeur | Action |
|---|---|---|
| RSI (14) | 52.09 | NEUTRAL |
| Stoch RSI (14) | 68.67 | NEUTRAL |
| Stochastique Rapide (14) | 84.85 | SELL |
| Indice de Canal des Matières Premières (20) | 86.82 | NEUTRAL |
| Indice Directionnel Moyen (14) | 7.57 | NEUTRAL |
| Oscillateur Impressionnant (5, 34) | -0.000044 | NEUTRAL |
| Momentum (10) | 0 | SELL |
| MACD (12, 26) | 0 | BUY |
| Plage de Pourcentage de Williams (14) | -15.15 | SELL |
| Oscillateur Ultime (7, 14, 28) | 56.2 | NEUTRAL |
| VWMA (10) | 0.004260 | BUY |
| Moyenne Mobile de Hull (9) | 0.004371 | BUY |
| Nuage Ichimoku B/L (9, 26, 52, 26) | -0.000328 | SELL |
Prévision du cours de Winter basée sur les flux monétaires mondiaux
Définitions des flux monétaires mondiaux utilisés pour la prédiction du cours de Winter
M0 : le total de toutes les devises physiques, plus les comptes à la banque centrale qui peuvent être échangés contre des devises physiques.
M1 : M0 plus le montant des comptes à vue, y compris les comptes de "chèques" et les comptes "courants".
M2 : M1 plus la plupart des comptes d'épargne, comptes du marché monétaire et comptes de certificats de dépôt (CD) de moins de 100 000 $.
Prédictions du cours de Winter par des sociétés Internet ou des niches technologiques
| Comparaison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Action Facebook | $0.00625 | $0.008782 | $0.012341 | $0.017341 | $0.024367 | $0.03424 |
| Action Amazon.com | $0.009281 | $0.019365 | $0.0404074 | $0.084312 | $0.175923 | $0.367074 |
| Action Apple | $0.0063092 | $0.008949 | $0.012693 | $0.018005 | $0.025538 | $0.036224 |
| Action Netflix | $0.007018 | $0.011073 | $0.017472 | $0.027569 | $0.043499 | $0.068636 |
| Action Google | $0.00576 | $0.007459 | $0.009659 | $0.0125095 | $0.016199 | $0.020978 |
| Action Tesla | $0.010083 | $0.022858 | $0.051818 | $0.117467 | $0.266289 | $0.603659 |
| Action Kodak | $0.003335 | $0.0025013 | $0.001875 | $0.0014065 | $0.001054 | $0.00079 |
| Action Nokia | $0.002946 | $0.001952 | $0.001293 | $0.000856 | $0.000567 | $0.000375 |
Ce calcul montre la valeur potentielle des cryptomonnaies si l'on suppose que leur capitalisation se comportera comme celle de certaines sociétés Internet ou niches technologiques. En extrapolant les données, vous pourrez obtenir une potentielle image des cours futurs pour 2024, 2025, 2026, 2027, 2028, 2029 et 2030.
Aperçu des prévisions relatives à Winter
Vous vous posez peut-être des questions telles que : "Devrais-je investir dans Winter maintenant ?", "Devrais-je acheter WINTER aujourd'hui ?", " Winter sera-t-il un bon ou un mauvais investissement à court ou à long terme ?".
Nous mettons régulièrement à jour les prévisions de Winter avec de nouvelles valeurs. Regardez nos prévisions similaires. Nous faisons une prévision des cours futurs pour une grande quantité de devises numériques comme Winter en utilisant des méthodes d'analyse technique.
Si vous souhaitez trouver des cryptomonnaies ayant un bon rendement, vous devriez consulter un maximum d'informations disponibles à propos de Winter afin de prendre une décision responsable concernant cet investissement.
Le cours de Winter est de $0.004448 USD actuellement, mais ce cours peut subir une hausse ou une baisse, ce qui pourrait causer la perte de votre investissement, car les cryptomonnaies sont des actifs à haut risque.
Prévision du cours de Winter basée sur le modèle de croissance du Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Winter présente 1 % de la précédente croissance annuelle moyenne du Bitcoin | $0.004563 | $0.004682 | $0.004804 | $0.004928 |
| Si Winter présente 2 % de la précédente croissance annuelle moyenne du Bitcoin | $0.004679 | $0.004922 | $0.005178 | $0.005447 |
| Si Winter présente 5 % de la précédente croissance annuelle moyenne du Bitcoin | $0.005026 | $0.005679 | $0.006417 | $0.007251 |
| Si Winter présente 10 % de la précédente croissance annuelle moyenne du Bitcoin | $0.0056042 | $0.00706 | $0.008896 | $0.0112087 |
| Si Winter présente 20 % de la précédente croissance annuelle moyenne du Bitcoin | $0.00676 | $0.010274 | $0.015616 | $0.023734 |
| Si Winter présente 50 % de la précédente croissance annuelle moyenne du Bitcoin | $0.010229 | $0.023523 | $0.054095 | $0.1244012 |
| Si Winter présente 100 % de la précédente croissance annuelle moyenne du Bitcoin | $0.0160099 | $0.057624 | $0.20741 | $0.746538 |
Boîte à questions
Est-ce que WINTER est un bon investissement ?
La décision d'acquérir Winter dépend entièrement de votre tolérance individuelle au risque. Comme vous pouvez le discerner, la valeur de Winter a connu une hausse de 6.2032% au cours des 24 heures précédentes, et Winter a enregistré une déclin de sur une période de 30 jours précédents. Par conséquent, la détermination de si investir ou non dans Winter dépendra de la mesure dans laquelle cet investissement s'aligne avec vos aspirations de trading.
Est-ce que Winter peut monter ?
Il semble que la valeur moyenne de Winter pourrait potentiellement s'envoler jusqu'à $0.004587 pour la fin de cette année. En regardant les perspectives de Winter sur une période de cinq ans plus longue, la monnaie numérique pourrait potentiellement croître jusqu'à $0.014421. Cependant, compte tenu de l'imprévisibilité du marché, il est essentiel de mener des recherches approfondies avant d'investir des fonds dans un projet, un réseau ou un actif particulier.
Quel sera le prix de Winter la semaine prochaine ?
Basé sur notre nouveau pronostic expérimental de Winter, le prix de Winter va augmenter de 0.86% durant la prochaine semaine et atteindre $0.004486 d'ici 13 janvier 2026.
Quel sera le prix de Winter le mois prochain ?
Basé sur notre nouveau pronostic expérimental de Winter, le prix de Winter va diminuer de -11.62% durant le prochain mois et atteindre $0.003931 d'ici 5 février 2026.
Jusqu'où le prix de Winter peut-il monter cette année en 2026 ?
Selon notre prédiction la plus récente sur la valeur de Winter en 2026, WINTER devrait fluctuer dans la fourchette de $0.001536 et $0.004587. Cependant, il est crucial de garder à l'esprit que le marché des cryptomonnaies est exceptionnellement instable, et cette prévision de prix de Winter ne prend pas en compte les fluctuations de prix soudaines et extrêmes.
Où sera Winter dans 5 ans ?
L'avenir de Winter semble suivre une tendance haussière, avec un prix maximum de $0.014421 prévue après une période de cinq ans. Selon la prévision de Winter pour 2030, la valeur de Winter pourrait potentiellement atteindre son point le plus élevé d'environ $0.014421, tandis que son point le plus bas devrait être autour de $0.004988.
Combien vaudra Winter en 2026 ?
Basé sur notre nouvelle simulation expérimentale de prédiction de prix de Winter, il est attendu que la valeur de WINTER en 2026 augmente de 3.13% jusqu'à $0.004587 si le meilleur scénario se produit. Le prix sera entre $0.004587 et $0.001536 durant 2026.
Combien vaudra Winter en 2027 ?
Selon notre dernière simulation expérimentale pour la prédiction de prix de Winter, le valeur de WINTER pourrait diminuer de -12.62% jusqu'à $0.003886 en 2027, en supposant les conditions les plus favorables. Il est prévu que le prix fluctue entre $0.003886 et $0.001479 tout au long de l'année.
Combien vaudra Winter en 2028 ?
Notre nouveau modèle expérimental de prédiction de prix de Winter suggère que la valeur de WINTER en 2028 pourrait augmenter de 47.02%, atteignant $0.006539 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.006539 et $0.002669 durant l'année.
Combien vaudra Winter en 2029 ?
Basé sur notre modèle de prévision expérimental, la valeur de Winter pourrait connaître un 333.75% croissance en 2029, atteignant potentiellement $0.019293 sous des conditions optimales. Le range de prix prévu pour 2029 se situe entre $0.019293 et $0.005865.
Combien vaudra Winter en 2030 ?
En utilisant notre nouvelle simulation expérimentale pour les prédictions de prix de Winter, il est prévu que la valeur de WINTER en 2030 augmente de 224.23%, atteignant $0.014421 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.014421 et $0.004988 au cours de 2030.
Combien vaudra Winter en 2031 ?
Notre simulation expérimentale indique que le prix de Winter pourrait augmenter de 195.98% en 2031, atteignant potentiellement $0.013165 dans des conditions idéales. Il est probable que le prix fluctue entre $0.013165 et $0.005897 durant l'année.
Combien vaudra Winter en 2032 ?
Basé sur les résultats de notre dernière prédiction expérimentale de prix de Winter, WINTER pourrait connaître une 449.04% hausse en valeur, atteignant $0.024421 si le scénario le plus positif se réalise en 2032. Il est prévu que le prix reste dans une fourchette de $0.024421 et $0.0090019 tout au long de l'année.
Combien vaudra Winter en 2033 ?
Selon notre prédiction expérimentale de prix de Winter, la valeur de WINTER est anticipée à augmenter de 1362.43% en 2033, avec le prix potentiel le plus élevé étant $0.065049. Tout au long de l'année, le prix de WINTER pourrait osciller entre $0.065049 et $0.020918.
Combien vaudra Winter en 2034 ?
Les résultats de notre nouvelle simulation de prédiction de prix de Winter suggèrent que WINTER pourrait augmenter de 746.96% en 2034, atteignant potentiellement $0.037673 dans les meilleures circonstances. La fourchette de prix prévue pour l'année est entre $0.037673 et $0.016817.
Combien vaudra Winter en 2035 ?
Basé sur notre prédiction expérimentale pour le prix de Winter, WINTER pourrait augmenter de 897.93%, avec la valeur potentiellement atteignant $0.044388 en 2035. La fourchette de prix attendue pour l'année se situe entre $0.044388 et $0.019883.
Combien vaudra Winter en 2036 ?
Notre récente simulation de prédiction de prix de Winter suggère que la valeur de WINTER pourrait augmenter de 1964.7% en 2036, pouvant atteindre $0.091838 si les conditions sont optimales. La fourchette de prix attendue pour 2036 est entre $0.091838 et $0.032913.
Combien vaudra Winter en 2037 ?
Selon la simulation expérimentale, la valeur de Winter pourrait augmenter de 4830.69% en 2037, avec un maximum de $0.219319 sous des conditions favorables. Il est prévu que le prix chute entre $0.219319 et $0.085475 au cours de l'année.
Prévisions liées
Prévision du cours de SolPod
Prévision du cours de zuzalu
Prévision du cours de SOFT COQ INU
Prévision du cours de All Street Bets
Prévision du cours de MagicRing
Prévision du cours de AI INU
Prévision du cours de Wall Street Baby On Solana
Prévision du cours de Meta Masters Guild Games
Prévision du cours de Morfey
Prévision du cours de PANTIESPrévision du cours de Celer Bridged BUSD (zkSync)
Prévision du cours de Bridged BUSD
Prévision du cours de Multichain Bridged BUSD (Moonriver)
Prévision du cours de tooker kurlson
Prévision du cours de dogwifsaudihatPrévision du cours de Harmony Horizen Bridged BUSD (Harmony)
Prévision du cours de IoTeX Bridged BUSD (IoTeX)
Prévision du cours de MIMANY
Prévision du cours de The Open League MEME
Prévision du cours de Sandwich Cat
Prévision du cours de Hege
Prévision du cours de DexNet
Prévision du cours de SolDocs
Prévision du cours de Secret Society
Prévision du cours de duk
Comment lire et prédire les mouvements de prix de Winter ?
Les traders de Winter utilisent des indicateurs et des modèles graphiques pour prédire la direction du marché. Ils identifient également des niveaux clés de support et de résistance pour évaluer quand une tendance baissière pourrait ralentir ou une tendance haussière pourrait s'arrêter.
Indicateurs de prédiction du prix de Winter
Les moyennes mobiles sont des outils populaires pour la prédiction du prix de Winter. Une moyenne mobile simple (SMA) calcule le prix de clôture moyen de WINTER sur une période spécifique, comme une SMA de 12 jours. Une moyenne mobile exponentielle (EMA) donne plus de poids aux prix récents, réagissant plus rapidement aux changements de prix.
Les moyennes mobiles couramment utilisées sur le marché des cryptomonnaies incluent les moyennes sur 50 jours, 100 jours et 200 jours, qui aident à identifier les niveaux clés de résistance et de support. Un mouvement de prix de WINTER au-dessus de ces moyennes est considéré comme haussier, tandis qu'une chute en dessous indique une faiblesse.
Les traders utilisent également le RSI et les niveaux de retracement de Fibonacci pour évaluer la direction future de WINTER.
Comment lire les graphiques de Winter et prédire les mouvements de prix ?
La plupart des traders préfèrent les graphiques en chandeliers aux simples graphiques linéaires parce qu'ils fournissent des informations plus détaillées. Les chandeliers peuvent représenter l'action des prix de Winter dans différentes périodes, comme 5 minutes pour les tendances à court terme et hebdomadaire pour les tendances à long terme. Les options populaires incluent les graphiques de 1 heure, 4 heures et 1 jour.
Par exemple, un graphique en chandeliers de 1 heure montre les prix d'ouverture, de clôture, les plus hauts et les plus bas de WINTER au sein de chaque heure. La couleur du chandelier est cruciale : le vert indique que le prix a clôturé plus haut qu'il n'a ouvert, tandis que le rouge signifie le contraire. Certains graphiques utilisent des chandeliers creux et pleins pour transmettre la même information.
Qu'est-ce qui affecte le prix de Winter ?
L'action du prix de Winter est déterminée par l'offre et la demande, influencée par des facteurs tels que les réductions de récompenses de bloc, les hard forks et les mises à jour de protocole. Les événements du monde réel, tels que les réglementations, l'adoption par les entreprises et les gouvernements et les piratages d'échanges de cryptomonnaies, impactent également le prix de WINTER. La capitalisation boursière de Winter peut changer rapidement.
Les traders surveillent souvent l'activité des « baleines » de WINTER, de grands détenteurs de Winter, car leurs actions peuvent influencer significativement les mouvements de prix sur le marché relativement petit de Winter.
Modèles de prédiction de prix haussiers et baissiers
Les traders identifient souvent des modèles de chandeliers pour obtenir un avantage dans les prédictions de prix des cryptomonnaies. Certaines formations indiquent des tendances haussières, tandis que d'autres suggèrent des mouvements baissiers.
Modèles de chandeliers haussiers couramment suivis :
- Marteau
- Englobante haussière
- Ligne pénétrante
- Étoile du matin
- Trois soldats blancs
Modèles de chandeliers baissiers courants :
- Harami baissier
- Nuage sombre
- Étoile du soir
- Étoile filante
- Pendu


