Prédiction du prix de Wicrypt jusqu'à $0.006028 d'ici 2026
| Année | Prix min. | Prix max. |
|---|---|---|
| 2026 | $0.002019 | $0.006028 |
| 2027 | $0.001944 | $0.0051078 |
| 2028 | $0.0035089 | $0.008594 |
| 2029 | $0.0077082 | $0.025356 |
| 2030 | $0.006555 | $0.018953 |
| 2031 | $0.00775 | $0.0173028 |
| 2032 | $0.01183 | $0.032095 |
| 2033 | $0.027492 | $0.085491 |
| 2034 | $0.0221024 | $0.049512 |
| 2035 | $0.026131 | $0.058337 |
Calculateur de profit d’investissement
Si vous ouvrez une position short de $10,000.00 sur Wicrypt aujourd’hui et la fermez le Apr 06, 2026, notre prévision indique que vous pourriez gagner environ $3,954.70, soit un rendement de 39.55% sur les 90 prochains jours.
Prévision du prix à long terme de Wicrypt pour 2027, 2028, 2029, 2030, 2031, 2032 et 2037
[
'name' => 'Wicrypt'
'name_with_ticker' => 'Wicrypt <small>WNT</small>'
'name_lang' => 'Wicrypt'
'name_lang_with_ticker' => 'Wicrypt <small>WNT</small>'
'name_with_lang' => 'Wicrypt'
'name_with_lang_with_ticker' => 'Wicrypt <small>WNT</small>'
'image' => '/uploads/coins/wicrypt.PNG?1719974156'
'price_for_sd' => 0.005845
'ticker' => 'WNT'
'marketcap' => '$281.31K'
'low24h' => '$0.005604'
'high24h' => '$0.005878'
'volume24h' => '$115.84K'
'current_supply' => '48.12M'
'max_supply' => '200M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.005845'
'change_24h_pct' => '3.4622%'
'ath_price' => '$0.592'
'ath_days' => 732
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '5 janv. 2024'
'ath_pct' => '-99.01%'
'fdv' => '$1.17M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.288241'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.005895'
'next_week_prediction_price_date' => '13 janvier 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.005166'
'next_month_prediction_price_date' => '5 février 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.002019'
'current_year_max_price_prediction' => '$0.006028'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.006555'
'grand_prediction_max_price' => '$0.018953'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0059566359720776
107 => 0.0059788758885385
108 => 0.0060289835559232
109 => 0.0056008190243103
110 => 0.0057930523287543
111 => 0.0059059713852903
112 => 0.0053957989798301
113 => 0.0058958869171637
114 => 0.0055933656323951
115 => 0.0054906853646274
116 => 0.00562893081808
117 => 0.0055750564304214
118 => 0.0055287383955227
119 => 0.0055028921362044
120 => 0.0056044043396261
121 => 0.0055996686740031
122 => 0.0054335750065356
123 => 0.0052169125881683
124 => 0.0052896316074738
125 => 0.0052632121060157
126 => 0.0051674644245479
127 => 0.005231986801238
128 => 0.0049478629083221
129 => 0.0044590425180352
130 => 0.0047819722408323
131 => 0.0047695397977845
201 => 0.0047632707962334
202 => 0.0050059435577934
203 => 0.0049826161711826
204 => 0.0049402767360615
205 => 0.0051666868276189
206 => 0.005084044098555
207 => 0.0053387295164541
208 => 0.0055064818047025
209 => 0.0054639343981846
210 => 0.0056217062360994
211 => 0.0052913069068068
212 => 0.0054010523106775
213 => 0.0054236706863147
214 => 0.0051638929622338
215 => 0.0049864328201268
216 => 0.004974598251842
217 => 0.0046669068209424
218 => 0.0048312730997305
219 => 0.0049759086231253
220 => 0.0049066394315892
221 => 0.0048847108749071
222 => 0.0049967391152722
223 => 0.0050054446690056
224 => 0.0048069571213117
225 => 0.0048482289677604
226 => 0.0050203394283252
227 => 0.0048438922257442
228 => 0.0045010841336162
301 => 0.0044160629870758
302 => 0.0044047195988766
303 => 0.0041741355063468
304 => 0.004421744506632
305 => 0.0043136565424989
306 => 0.0046551051261028
307 => 0.0044600715263737
308 => 0.0044516640176981
309 => 0.0044389548352216
310 => 0.0042404815814723
311 => 0.0042839346104101
312 => 0.0044283790966825
313 => 0.0044799185166681
314 => 0.0044745425329136
315 => 0.0044276712398984
316 => 0.0044491286778209
317 => 0.0043800067940055
318 => 0.0043555984181827
319 => 0.0042785588700332
320 => 0.0041653320169717
321 => 0.0041810769053506
322 => 0.0039567448820182
323 => 0.0038345168895051
324 => 0.0038006857921165
325 => 0.0037554454347896
326 => 0.0038057958108565
327 => 0.0039561093775819
328 => 0.003774799325309
329 => 0.0034639559581085
330 => 0.0034826381741286
331 => 0.003524611566726
401 => 0.0034463944273025
402 => 0.0033723684691052
403 => 0.003436728033842
404 => 0.0033050196013834
405 => 0.0035405279015441
406 => 0.0035341580620292
407 => 0.0036219409925935
408 => 0.0036768334605624
409 => 0.0035503240935416
410 => 0.0035185073298535
411 => 0.0035366316044415
412 => 0.0032370777178224
413 => 0.0035974610492669
414 => 0.0036005776592824
415 => 0.0035738913521803
416 => 0.0037657843505874
417 => 0.0041707384301535
418 => 0.0040183784161806
419 => 0.0039593800136645
420 => 0.0038472240073538
421 => 0.0039966652265981
422 => 0.0039851904726063
423 => 0.0039332972833843
424 => 0.0039019121206262
425 => 0.0039597402453296
426 => 0.0038947465760199
427 => 0.0038830719271053
428 => 0.003812336256826
429 => 0.0037870868408042
430 => 0.0037683931783899
501 => 0.0037478132928731
502 => 0.0037932073921352
503 => 0.0036903383911161
504 => 0.0035662884602596
505 => 0.0035559750507477
506 => 0.0035844512811742
507 => 0.0035718526690165
508 => 0.0035559147334397
509 => 0.0035254848739852
510 => 0.0035164569847161
511 => 0.0035457932451314
512 => 0.0035126743175327
513 => 0.0035615430992859
514 => 0.0035482534946821
515 => 0.0034740188436719
516 => 0.0033814949833253
517 => 0.0033806713268928
518 => 0.0033607372129507
519 => 0.0033353481217313
520 => 0.0033282854573778
521 => 0.0034313078508133
522 => 0.003644561122024
523 => 0.003602694402167
524 => 0.0036329473979377
525 => 0.003781762194639
526 => 0.0038290659434932
527 => 0.0037954908630072
528 => 0.0037495312220171
529 => 0.0037515532129715
530 => 0.0039086112191642
531 => 0.0039184067343591
601 => 0.0039431568411038
602 => 0.0039749677226501
603 => 0.0038009083936886
604 => 0.0037433550342303
605 => 0.0037160830595802
606 => 0.0036320959332401
607 => 0.0037226688484858
608 => 0.0036698958894911
609 => 0.0036770167646404
610 => 0.0036723792853578
611 => 0.0036749116626311
612 => 0.0035404620721746
613 => 0.0035894484364745
614 => 0.0035079991047643
615 => 0.0033989475927208
616 => 0.0033985820138141
617 => 0.0034252722168935
618 => 0.0034093958397141
619 => 0.0033666729169433
620 => 0.0033727415064764
621 => 0.0033195742764966
622 => 0.0033791969708197
623 => 0.0033809067363526
624 => 0.0033579487513681
625 => 0.0034498057383192
626 => 0.0034874396208213
627 => 0.0034723281832968
628 => 0.0034863793620806
629 => 0.003604434153394
630 => 0.0036236822354697
701 => 0.0036322309620708
702 => 0.0036207768009146
703 => 0.0034885371869495
704 => 0.0034944025761551
705 => 0.0034513662419113
706 => 0.0034150050745324
707 => 0.0034164593305383
708 => 0.003435153697192
709 => 0.0035167930927785
710 => 0.0036885983878852
711 => 0.0036951182732465
712 => 0.0037030205645028
713 => 0.00367087797459
714 => 0.0036611834619091
715 => 0.0036739730265012
716 => 0.00373849406225
717 => 0.0039044596834862
718 => 0.0038457963484702
719 => 0.003798102143953
720 => 0.0038399428195798
721 => 0.0038335017755251
722 => 0.0037791328816658
723 => 0.0037776069278964
724 => 0.0036732556377937
725 => 0.0036346793418066
726 => 0.0036024421014941
727 => 0.0035672398766473
728 => 0.0035463708177689
729 => 0.0035784351770238
730 => 0.0035857686753597
731 => 0.0035156593934598
801 => 0.0035061037573995
802 => 0.003563356510413
803 => 0.0035381617084095
804 => 0.0035640751870711
805 => 0.0035700873364023
806 => 0.0035691192418884
807 => 0.0035428129749922
808 => 0.0035595798050477
809 => 0.0035199212535339
810 => 0.0034767985352845
811 => 0.0034492889276817
812 => 0.0034252831464283
813 => 0.0034386029490919
814 => 0.0033911202846961
815 => 0.0033759296247186
816 => 0.0035538995802905
817 => 0.003685367899971
818 => 0.0036834562985356
819 => 0.0036718199164221
820 => 0.0036545306129553
821 => 0.003737229242013
822 => 0.0037084186932605
823 => 0.0037293807746798
824 => 0.0037347165041768
825 => 0.0037508661503453
826 => 0.0037566382607416
827 => 0.0037391909341357
828 => 0.0036806355750349
829 => 0.0035347211874321
830 => 0.0034667976461146
831 => 0.0034443817461238
901 => 0.0034451965215146
902 => 0.0034227213789185
903 => 0.0034293413156783
904 => 0.0034204192350713
905 => 0.0034035229728846
906 => 0.0034375596525143
907 => 0.003441482062768
908 => 0.0034335374950344
909 => 0.0034354087283332
910 => 0.0033696311006683
911 => 0.0033746320308382
912 => 0.0033467862161649
913 => 0.0033415654616
914 => 0.0032711736669184
915 => 0.0031464643991863
916 => 0.0032155654393314
917 => 0.0031321010999127
918 => 0.0031004918898837
919 => 0.0032501249739202
920 => 0.0032351059624587
921 => 0.0032093999434438
922 => 0.0031713753837171
923 => 0.0031572717046353
924 => 0.0030715822152166
925 => 0.0030665192230461
926 => 0.0031089892478128
927 => 0.0030893907926873
928 => 0.0030618671391757
929 => 0.0029621792561846
930 => 0.0028500970701788
1001 => 0.0028534801268508
1002 => 0.0028891313848561
1003 => 0.0029927922257334
1004 => 0.0029522901418519
1005 => 0.002922905415288
1006 => 0.0029174025393042
1007 => 0.0029862825532925
1008 => 0.003083762203895
1009 => 0.0031294974749734
1010 => 0.0030841752103355
1011 => 0.0030321114330435
1012 => 0.003035280313927
1013 => 0.0030563614587609
1014 => 0.0030585767890116
1015 => 0.0030246886222373
1016 => 0.0030342279426832
1017 => 0.0030197368426322
1018 => 0.0029308049883673
1019 => 0.0029291964931296
1020 => 0.0029073711818731
1021 => 0.0029067103201222
1022 => 0.0028695800210959
1023 => 0.0028643852355925
1024 => 0.0027906607732277
1025 => 0.0028391864376145
1026 => 0.0028066379696556
1027 => 0.0027575797510341
1028 => 0.0027491220956526
1029 => 0.0027488678483189
1030 => 0.0027992396696262
1031 => 0.0028385978135546
1101 => 0.0028072041641909
1102 => 0.0028000564387712
1103 => 0.0028763754462798
1104 => 0.0028666631569111
1105 => 0.0028582523769554
1106 => 0.0030750339703497
1107 => 0.0029034344234994
1108 => 0.002828607226513
1109 => 0.002735994360943
1110 => 0.0027661495769672
1111 => 0.0027725037240558
1112 => 0.0025497864770837
1113 => 0.0024594301177247
1114 => 0.0024284232202003
1115 => 0.0024105783123019
1116 => 0.0024187104609134
1117 => 0.0023373791397465
1118 => 0.0023920351326666
1119 => 0.0023216090833015
1120 => 0.0023098019269392
1121 => 0.0024357324273174
1122 => 0.0024532549207697
1123 => 0.0023784985198902
1124 => 0.0024265042312168
1125 => 0.0024090966929605
1126 => 0.0023228163357828
1127 => 0.002319521060774
1128 => 0.0022762286104434
1129 => 0.0022084843087464
1130 => 0.0021775233450486
1201 => 0.0021613986063393
1202 => 0.0021680519877956
1203 => 0.0021646878345345
1204 => 0.0021427344589045
1205 => 0.0021659461763279
1206 => 0.002106649830055
1207 => 0.002083037547186
1208 => 0.0020723724268149
1209 => 0.0020197435065274
1210 => 0.0021034995228919
1211 => 0.0021200005132462
1212 => 0.0021365340156489
1213 => 0.0022804468661631
1214 => 0.0022732573868449
1215 => 0.0023382467784629
1216 => 0.0023357214102125
1217 => 0.0023171853829647
1218 => 0.0022389849330347
1219 => 0.0022701542385878
1220 => 0.0021742199608809
1221 => 0.0022461004446357
1222 => 0.0022132971936507
1223 => 0.0022350096324806
1224 => 0.0021959687097329
1225 => 0.0022175755683416
1226 => 0.0021239135102056
1227 => 0.0020364531981789
1228 => 0.0020716497808641
1229 => 0.0021099124914604
1230 => 0.0021928757971905
1231 => 0.0021434635367301
]
'min_raw' => 0.0020197435065274
'max_raw' => 0.0060289835559232
'avg_raw' => 0.0040243635312253
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.002019'
'max' => '$0.006028'
'avg' => '$0.004024'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0038261164934726
'max_diff' => 0.00018312355592317
'year' => 2026
]
1 => [
'items' => [
101 => 0.0021612340540761
102 => 0.0021017057957157
103 => 0.0019788819953118
104 => 0.0019795771646834
105 => 0.0019606833988532
106 => 0.0019443564266409
107 => 0.0021491391292441
108 => 0.0021236711630399
109 => 0.0020830912920586
110 => 0.0021374090619471
111 => 0.0021517715424445
112 => 0.002152180422073
113 => 0.002191809264839
114 => 0.0022129591853271
115 => 0.0022166869504822
116 => 0.0022790437908124
117 => 0.0022999449811845
118 => 0.0023860340262798
119 => 0.00221116476234
120 => 0.0022075634449251
121 => 0.0021381734243612
122 => 0.0020941651763068
123 => 0.0021411867067562
124 => 0.0021828413636554
125 => 0.002139467750663
126 => 0.0021451314288528
127 => 0.0020869058971649
128 => 0.0021077187849775
129 => 0.0021256456477604
130 => 0.0021157474878239
131 => 0.0021009294633227
201 => 0.0021794261568131
202 => 0.0021749970657353
203 => 0.0022480949913447
204 => 0.0023050800516401
205 => 0.0024072074669873
206 => 0.0023006321850499
207 => 0.0022967481581777
208 => 0.0023347151438707
209 => 0.0022999391686368
210 => 0.0023219163845588
211 => 0.0024036665977358
212 => 0.0024053938509199
213 => 0.0023764601346457
214 => 0.0023746995153809
215 => 0.0023802565520916
216 => 0.0024128042896767
217 => 0.0024014311100735
218 => 0.002414592441444
219 => 0.0024310508878562
220 => 0.002499130000454
221 => 0.0025155436440205
222 => 0.0024756669996523
223 => 0.0024792674141589
224 => 0.0024643524545267
225 => 0.002449944790406
226 => 0.002482331115279
227 => 0.0025415177605393
228 => 0.0025411495634909
301 => 0.0025548797147673
302 => 0.0025634334852657
303 => 0.0025267144405436
304 => 0.0025028116926262
305 => 0.0025119775271491
306 => 0.0025266338961571
307 => 0.0025072246642134
308 => 0.0023874218934258
309 => 0.0024237624010521
310 => 0.002417713563623
311 => 0.0024090992835603
312 => 0.0024456399449914
313 => 0.0024421155090548
314 => 0.0023365449694936
315 => 0.0023433032529135
316 => 0.0023369559630925
317 => 0.0023574653550376
318 => 0.0022988315941656
319 => 0.0023168669441054
320 => 0.0023281785465168
321 => 0.0023348411672369
322 => 0.0023589111218797
323 => 0.0023560867905167
324 => 0.0023587355574766
325 => 0.0023944249459795
326 => 0.0025749296259077
327 => 0.002584754097375
328 => 0.0025363748067381
329 => 0.0025557013791082
330 => 0.0025185985864143
331 => 0.0025435059397169
401 => 0.0025605469182683
402 => 0.0024835420129862
403 => 0.0024789822822531
404 => 0.0024417263531355
405 => 0.0024617455791596
406 => 0.002429893551122
407 => 0.0024377089246658
408 => 0.0024158564589053
409 => 0.0024551865464916
410 => 0.0024991636956908
411 => 0.0025102740602888
412 => 0.0024810474743442
413 => 0.0024598854999945
414 => 0.0024227320442241
415 => 0.002484519069189
416 => 0.0025025874782143
417 => 0.0024844241635284
418 => 0.0024802153266394
419 => 0.00247223958834
420 => 0.0024819074172234
421 => 0.0025024890737783
422 => 0.0024927831446305
423 => 0.0024991940818291
424 => 0.0024747622001579
425 => 0.0025267265960753
426 => 0.002609258562705
427 => 0.0026095239164731
428 => 0.0025998179350067
429 => 0.002595846456509
430 => 0.0026058053825017
501 => 0.0026112076913162
502 => 0.0026434130318218
503 => 0.0026779706453018
504 => 0.0028392359487448
505 => 0.0027939532968515
506 => 0.002937037467782
507 => 0.0030501984698337
508 => 0.0030841305064181
509 => 0.0030529146293861
510 => 0.0029461268003083
511 => 0.0029408872799555
512 => 0.0031004733812563
513 => 0.0030553829981323
514 => 0.0030500196405361
515 => 0.0029929625772484
516 => 0.0030266903683062
517 => 0.003019313605645
518 => 0.0030076690249007
519 => 0.0030720193007408
520 => 0.0031924772725245
521 => 0.0031737027679743
522 => 0.0031596884712518
523 => 0.0030982819025141
524 => 0.0031352623725479
525 => 0.0031220943354831
526 => 0.0031786725793562
527 => 0.0031451568810473
528 => 0.0030550413941325
529 => 0.0030693925824482
530 => 0.0030672234292049
531 => 0.0031118644492449
601 => 0.0030984643230871
602 => 0.0030646068395083
603 => 0.0031920655602724
604 => 0.0031837890999087
605 => 0.0031955232284423
606 => 0.0032006889547127
607 => 0.0032782708319673
608 => 0.0033100536447353
609 => 0.0033172688996701
610 => 0.0033474601136288
611 => 0.0033165177147633
612 => 0.0034403093717819
613 => 0.0035226236002558
614 => 0.0036182358124797
615 => 0.0037579509526788
616 => 0.0038104851378309
617 => 0.0038009953074984
618 => 0.0039069257322505
619 => 0.0040972803508289
620 => 0.00383947141836
621 => 0.0041109448502588
622 => 0.0040249994960311
623 => 0.0038212246072482
624 => 0.0038081039067587
625 => 0.0039461026273176
626 => 0.0042521705076326
627 => 0.0041755039750069
628 => 0.0042522959066149
629 => 0.0041627140393505
630 => 0.0041582655445856
701 => 0.0042479451152724
702 => 0.004457486320361
703 => 0.004357941148358
704 => 0.0042152187348142
705 => 0.0043206027439682
706 => 0.0042293093624093
707 => 0.0040235998223486
708 => 0.0041754453495542
709 => 0.0040739105698234
710 => 0.0041035438164346
711 => 0.0043169548212701
712 => 0.0042912766445528
713 => 0.0043245065829602
714 => 0.0042658566114502
715 => 0.0042110682898082
716 => 0.0041088018188293
717 => 0.0040785257584486
718 => 0.0040868929723193
719 => 0.0040785216120729
720 => 0.0040213044614376
721 => 0.0040089484232056
722 => 0.0039883544848218
723 => 0.0039947374074558
724 => 0.0039560147783251
725 => 0.0040290923799981
726 => 0.0040426562268263
727 => 0.0040958360111577
728 => 0.0041013573127841
729 => 0.0042494622551803
730 => 0.0041678885417109
731 => 0.0042226152314417
801 => 0.0042177199612046
802 => 0.0038256410269876
803 => 0.003879666044781
804 => 0.003963712018483
805 => 0.0039258494212519
806 => 0.0038723205672504
807 => 0.0038290931476086
808 => 0.0037635991866207
809 => 0.003855780679011
810 => 0.0039769895390955
811 => 0.004104431369501
812 => 0.0042575443784136
813 => 0.0042233713372562
814 => 0.0041015690283025
815 => 0.0041070329909055
816 => 0.0041408090577274
817 => 0.0040970659823138
818 => 0.0040841652954081
819 => 0.00413903670145
820 => 0.0041394145706667
821 => 0.0040890828758761
822 => 0.0040331484077194
823 => 0.0040329140402555
824 => 0.0040229610419098
825 => 0.0041644846556455
826 => 0.0042423083335488
827 => 0.0042512306928013
828 => 0.0042417077876815
829 => 0.0042453727759115
830 => 0.0042000888924673
831 => 0.0043035944215023
901 => 0.0043985813305807
902 => 0.0043731228098484
903 => 0.0043349568681286
904 => 0.004304555857228
905 => 0.0043659612978382
906 => 0.004363227010229
907 => 0.0043977517027947
908 => 0.0043961854633156
909 => 0.0043845761077452
910 => 0.004373123224455
911 => 0.0044185326121251
912 => 0.0044054554377286
913 => 0.0043923579508682
914 => 0.0043660889358448
915 => 0.0043696593312686
916 => 0.0043314999794368
917 => 0.0043138457172263
918 => 0.0040483679720778
919 => 0.0039774236438385
920 => 0.0039997441737076
921 => 0.0040070926716927
922 => 0.0039762176091254
923 => 0.0040204845176942
924 => 0.004013585566884
925 => 0.0040404253487352
926 => 0.0040236570182824
927 => 0.0040243451964132
928 => 0.0040736572808898
929 => 0.0040879727888019
930 => 0.0040806918059375
1001 => 0.0040857911567583
1002 => 0.0042033035441213
1003 => 0.0041865970404729
1004 => 0.0041777220433827
1005 => 0.0041801804782295
1006 => 0.0042102074126947
1007 => 0.0042186133149352
1008 => 0.0041829969164702
1009 => 0.0041997938158822
1010 => 0.0042713128817347
1011 => 0.0042963405071546
1012 => 0.0043762166735529
1013 => 0.0043422838583812
1014 => 0.0044045690092067
1015 => 0.0045960123282714
1016 => 0.0047489504984104
1017 => 0.0046083022367134
1018 => 0.0048891537096151
1019 => 0.00510783686702
1020 => 0.0050994434432029
1021 => 0.0050613109764768
1022 => 0.0048123460157638
1023 => 0.0045832447470573
1024 => 0.004774897686484
1025 => 0.0047753862492404
1026 => 0.0047589230917751
1027 => 0.0046566718346835
1028 => 0.0047553649696707
1029 => 0.0047631988723252
1030 => 0.0047588139700416
1031 => 0.0046804181709702
1101 => 0.0045607222757538
1102 => 0.0045841105671676
1103 => 0.0046224210656116
1104 => 0.0045498912996499
1105 => 0.0045267136446916
1106 => 0.0045698053149883
1107 => 0.0047086556551903
1108 => 0.0046824068026804
1109 => 0.0046817213390614
1110 => 0.0047940250613447
1111 => 0.00471363983285
1112 => 0.004584405568422
1113 => 0.0045517722122634
1114 => 0.0044359457823632
1115 => 0.0045159475100549
1116 => 0.0045188266298102
1117 => 0.0044750105011513
1118 => 0.0045879610057782
1119 => 0.0045869201469935
1120 => 0.0046941498406728
1121 => 0.0048991327413539
1122 => 0.0048385092110266
1123 => 0.0047680106410773
1124 => 0.0047756757903441
1125 => 0.0048597435586004
1126 => 0.0048089142668322
1127 => 0.0048271928345464
1128 => 0.004859715891799
1129 => 0.0048793378597416
1130 => 0.0047728524911221
1201 => 0.0047480256579129
1202 => 0.0046972386702013
1203 => 0.0046839892930913
1204 => 0.0047253542348772
1205 => 0.0047144560341616
1206 => 0.0045185846509432
1207 => 0.0044981150015788
1208 => 0.0044987427765009
1209 => 0.0044472708698953
1210 => 0.0043687638576488
1211 => 0.0045750755984226
1212 => 0.0045585058783075
1213 => 0.0045402141896949
1214 => 0.004542454817179
1215 => 0.0046320077512952
1216 => 0.0045800625269762
1217 => 0.0047181674194831
1218 => 0.0046897772053968
1219 => 0.0046606588894452
1220 => 0.0046566338512151
1221 => 0.0046454257838317
1222 => 0.0046069891504359
1223 => 0.0045605746059269
1224 => 0.0045299277032831
1225 => 0.0041786188552062
1226 => 0.0042438197339397
1227 => 0.0043188274016755
1228 => 0.0043447197480036
1229 => 0.0043004290979136
1230 => 0.0046087380152562
1231 => 0.0046650690253933
]
'min_raw' => 0.0019443564266409
'max_raw' => 0.00510783686702
'avg_raw' => 0.0035260966468305
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.001944'
'max' => '$0.0051078'
'avg' => '$0.003526'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -7.5387079886456E-5
'max_diff' => -0.00092114668890318
'year' => 2027
]
2 => [
'items' => [
101 => 0.0044944387213071
102 => 0.0044625207582019
103 => 0.0046108305516036
104 => 0.0045213816160475
105 => 0.0045616604662514
106 => 0.0044745996234637
107 => 0.0046515005346158
108 => 0.0046501528460629
109 => 0.0045813343961365
110 => 0.0046394992787659
111 => 0.0046293916990415
112 => 0.004551695838567
113 => 0.0046539636319764
114 => 0.004654014355526
115 => 0.004587778093714
116 => 0.0045104286408997
117 => 0.004496600385649
118 => 0.0044861826528823
119 => 0.0045590983426094
120 => 0.0046244743220173
121 => 0.0047461228116155
122 => 0.0047767081321973
123 => 0.0048960846746083
124 => 0.0048250017559409
125 => 0.0048565118931083
126 => 0.0048907206043845
127 => 0.004907121518554
128 => 0.0048803971090363
129 => 0.0050658380167457
130 => 0.005081494911119
131 => 0.0050867445323707
201 => 0.0050242149016626
202 => 0.0050797558489737
203 => 0.0050537700790497
204 => 0.0051213778333372
205 => 0.0051319795924686
206 => 0.0051230002796528
207 => 0.0051263654453385
208 => 0.0049681243446264
209 => 0.0049599187087661
210 => 0.0048480342815665
211 => 0.0048936280126583
212 => 0.0048083927177466
213 => 0.004835421707784
214 => 0.0048473358290507
215 => 0.0048411125682214
216 => 0.004896205813806
217 => 0.0048493653002526
218 => 0.0047257454836919
219 => 0.0046020919869949
220 => 0.0046005396180698
221 => 0.004567983835055
222 => 0.0045444519668243
223 => 0.0045489850394834
224 => 0.004564960178792
225 => 0.0045435234626865
226 => 0.0045480980729367
227 => 0.0046240670835589
228 => 0.0046393021268529
229 => 0.004587527497024
301 => 0.0043796448872173
302 => 0.0043286299733367
303 => 0.0043652984817643
304 => 0.0043477732964903
305 => 0.0035089923800606
306 => 0.0037060515145626
307 => 0.0035889656683374
308 => 0.0036429242131387
309 => 0.0035234098833757
310 => 0.0035804483858213
311 => 0.0035699154571322
312 => 0.0038867807140077
313 => 0.0038818332988555
314 => 0.0038842013646774
315 => 0.0037711674130319
316 => 0.0039512335672095
317 => 0.0040399406297268
318 => 0.0040235233133169
319 => 0.00402765519816
320 => 0.0039566557269647
321 => 0.0038848887947558
322 => 0.0038052882220844
323 => 0.0039531762471797
324 => 0.0039367336233219
325 => 0.0039744470865824
326 => 0.0040703630421111
327 => 0.004084487030912
328 => 0.0041034698150917
329 => 0.0040966658382498
330 => 0.0042587641705508
331 => 0.0042391329929499
401 => 0.0042864384826927
402 => 0.0041891275012156
403 => 0.004079010888831
404 => 0.004099940456862
405 => 0.0040979247711556
406 => 0.0040722627786175
407 => 0.0040490962791793
408 => 0.0040105305847354
409 => 0.0041325581486047
410 => 0.0041276040523601
411 => 0.0042078051120532
412 => 0.0041936287957209
413 => 0.0040989558857209
414 => 0.0041023371472227
415 => 0.004125077755801
416 => 0.0042037832617382
417 => 0.0042271484145799
418 => 0.0042163247448433
419 => 0.0042419435682744
420 => 0.0042621916417508
421 => 0.0042444864145582
422 => 0.0044951550945852
423 => 0.0043910599820786
424 => 0.0044417952156252
425 => 0.0044538952698767
426 => 0.0044229012353482
427 => 0.0044296227316243
428 => 0.0044398039669844
429 => 0.0045016224344009
430 => 0.0046638519802194
501 => 0.0047357023417286
502 => 0.0049518676993633
503 => 0.0047297361694106
504 => 0.0047165558036948
505 => 0.0047554937121732
506 => 0.0048824056605317
507 => 0.0049852558744432
508 => 0.0050193772239688
509 => 0.0050238869235906
510 => 0.0050879008436451
511 => 0.0051245924288314
512 => 0.0050801278700172
513 => 0.0050424488120556
514 => 0.004907487103334
515 => 0.004923109288607
516 => 0.0050307306533627
517 => 0.0051827521699469
518 => 0.0053132024463191
519 => 0.0052675233061847
520 => 0.005616022900963
521 => 0.0056505752122921
522 => 0.0056458012000764
523 => 0.0057245165073574
524 => 0.0055682826524981
525 => 0.0055014896526575
526 => 0.0050505954520624
527 => 0.0051772783306942
528 => 0.0053614193346101
529 => 0.0053370475822485
530 => 0.0052033194631016
531 => 0.0053131010015491
601 => 0.0052768037917522
602 => 0.0052481746764128
603 => 0.0053793302038096
604 => 0.0052351193138647
605 => 0.0053599807206673
606 => 0.0051998446749172
607 => 0.0052677319646491
608 => 0.0052291958556585
609 => 0.0052541334409833
610 => 0.0051083488267331
611 => 0.0051870106658611
612 => 0.0051050762356093
613 => 0.0051050373880212
614 => 0.0051032286809321
615 => 0.0051996241747705
616 => 0.0052027676283638
617 => 0.0051315312127718
618 => 0.005121264932363
619 => 0.0051592247518096
620 => 0.0051147837449301
621 => 0.0051355774123407
622 => 0.0051154135639331
623 => 0.005110874256941
624 => 0.005074704286528
625 => 0.0050591212687601
626 => 0.0050652317715518
627 => 0.0050443734753435
628 => 0.0050318055974005
629 => 0.0051007286136804
630 => 0.0050639058264286
701 => 0.0050950849934209
702 => 0.0050595523975086
703 => 0.0049363809392613
704 => 0.0048655437311088
705 => 0.00463288426448
706 => 0.0046988662006027
707 => 0.0047426122925154
708 => 0.0047281542093992
709 => 0.0047592157664682
710 => 0.0047611226938007
711 => 0.0047510242649625
712 => 0.0047393315780567
713 => 0.0047336402247171
714 => 0.0047760589096721
715 => 0.0048006843840358
716 => 0.004747002798086
717 => 0.0047344259535832
718 => 0.00478870100082
719 => 0.0048218087482808
720 => 0.0050662577538949
721 => 0.0050481481819992
722 => 0.0050935996536336
723 => 0.0050884825154372
724 => 0.0051361228986973
725 => 0.0052139947909995
726 => 0.0050556594606257
727 => 0.0050831409991548
728 => 0.0050764031605489
729 => 0.0051499651156923
730 => 0.0051501947680867
731 => 0.005106090701286
801 => 0.0051300002314054
802 => 0.0051166545876164
803 => 0.0051407719697151
804 => 0.0050479063176256
805 => 0.0051610066576429
806 => 0.0052251272624078
807 => 0.0052260175770672
808 => 0.0052564102348331
809 => 0.0052872909353474
810 => 0.0053465637508423
811 => 0.0052856378486936
812 => 0.0051760380817451
813 => 0.0051839508309137
814 => 0.0051196925276528
815 => 0.0051207727213398
816 => 0.0051150065627822
817 => 0.0051323112386698
818 => 0.0050517037208566
819 => 0.0050706221441714
820 => 0.0050441362407446
821 => 0.0050830834239734
822 => 0.0050411826930192
823 => 0.0050763999113591
824 => 0.0050915984953253
825 => 0.0051476815973628
826 => 0.0050328991732485
827 => 0.0047988500403925
828 => 0.0048480500056903
829 => 0.004775279392441
830 => 0.0047820145897545
831 => 0.0047956207602264
901 => 0.0047515187100649
902 => 0.0047599319914204
903 => 0.004759631409807
904 => 0.0047570411598504
905 => 0.0047455685133014
906 => 0.0047289309060114
907 => 0.0047952100126692
908 => 0.0048064721244236
909 => 0.004831506403773
910 => 0.0049059914382029
911 => 0.0048985486267853
912 => 0.0049106881610067
913 => 0.0048841876259619
914 => 0.0047832438735699
915 => 0.0047887256049798
916 => 0.0047203683264591
917 => 0.0048297583544731
918 => 0.0048038533519616
919 => 0.0047871522283204
920 => 0.004782595172
921 => 0.0048572648404233
922 => 0.0048796071755192
923 => 0.0048656849316257
924 => 0.0048371300032236
925 => 0.0048919639072625
926 => 0.0049066351467266
927 => 0.0049099194961881
928 => 0.0050070746607868
929 => 0.0049153493906299
930 => 0.0049374285748275
1001 => 0.0051096840671555
1002 => 0.0049534721052471
1003 => 0.0050362210654124
1004 => 0.0050321709344171
1005 => 0.0050745025023656
1006 => 0.0050286985102795
1007 => 0.0050292663056569
1008 => 0.0050668538702064
1009 => 0.0050140689147497
1010 => 0.0050009986174621
1011 => 0.0049829420953706
1012 => 0.0050223678507728
1013 => 0.0050460018080629
1014 => 0.0052364741465922
1015 => 0.005359527963876
1016 => 0.0053541858731364
1017 => 0.0054030025825219
1018 => 0.0053810102078339
1019 => 0.0053099910286711
1020 => 0.0054312121076358
1021 => 0.005392852686146
1022 => 0.0053960149902469
1023 => 0.0053958972891303
1024 => 0.0054214029509822
1025 => 0.0054033298520006
1026 => 0.0053677059187422
1027 => 0.0053913547481385
1028 => 0.0054615833168342
1029 => 0.0056795749489412
1030 => 0.0058015659542733
1031 => 0.0056722309372438
1101 => 0.0057614445001258
1102 => 0.0057079481524393
1103 => 0.0056982262746862
1104 => 0.0057542589850067
1105 => 0.005810389773169
1106 => 0.0058068144846231
1107 => 0.0057660664147651
1108 => 0.0057430488640464
1109 => 0.0059173454695342
1110 => 0.0060457642393925
1111 => 0.0060370069402185
1112 => 0.0060756588107462
1113 => 0.0061891418980728
1114 => 0.0061995173693616
1115 => 0.0061982102984567
1116 => 0.006172493610299
1117 => 0.0062842324474131
1118 => 0.0063774469511915
1119 => 0.006166540940017
1120 => 0.0062468511881098
1121 => 0.0062829050459133
1122 => 0.0063358428058663
1123 => 0.0064251576803059
1124 => 0.0065221773235477
1125 => 0.0065358969648683
1126 => 0.006526162222806
1127 => 0.0064621751600601
1128 => 0.0065683352113803
1129 => 0.0066305212796842
1130 => 0.0066675516602562
1201 => 0.0067614545441192
1202 => 0.0062831277022649
1203 => 0.0059445441892138
1204 => 0.0058916694844457
1205 => 0.0059991922757867
1206 => 0.0060275451783852
1207 => 0.0060161161588993
1208 => 0.005635009632294
1209 => 0.0058896630374549
1210 => 0.0061636486895416
1211 => 0.0061741735942799
1212 => 0.0063113365404843
1213 => 0.0063560024182676
1214 => 0.0064664365683205
1215 => 0.0064595288821667
1216 => 0.0064864178403134
1217 => 0.0064802365344873
1218 => 0.0066847925428064
1219 => 0.0069104481968435
1220 => 0.0069026344590853
1221 => 0.0068701937889809
1222 => 0.0069183737160421
1223 => 0.007151274533738
1224 => 0.0071298327586041
1225 => 0.0071506616167406
1226 => 0.0074252648065189
1227 => 0.0077822880150789
1228 => 0.0076164148901587
1229 => 0.0079763118425296
1230 => 0.0082028478967294
1231 => 0.0085946185782028
]
'min_raw' => 0.0035089923800606
'max_raw' => 0.0085946185782028
'avg_raw' => 0.0060518054791317
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.0035089'
'max' => '$0.008594'
'avg' => '$0.006051'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0015646359534196
'max_diff' => 0.0034867817111828
'year' => 2028
]
3 => [
'items' => [
101 => 0.008545566959371
102 => 0.0086980804107226
103 => 0.0084577543242804
104 => 0.0079059170518937
105 => 0.0078185866911903
106 => 0.0079934242848755
107 => 0.0084232454485476
108 => 0.0079798876868278
109 => 0.0080695783845934
110 => 0.0080437474576031
111 => 0.0080423710372781
112 => 0.0080949034027751
113 => 0.0080187024667178
114 => 0.007708246144934
115 => 0.0078505264476769
116 => 0.0077955851899266
117 => 0.0078565466115427
118 => 0.0081855302616022
119 => 0.0080400787479202
120 => 0.0078868573937777
121 => 0.0080790309744128
122 => 0.0083237339805682
123 => 0.0083084209062166
124 => 0.0082787071416059
125 => 0.0084462020769542
126 => 0.0087228546387382
127 => 0.0087976327145084
128 => 0.0088528323612714
129 => 0.0088604434599544
130 => 0.0089388425066603
131 => 0.0085172710734189
201 => 0.0091863157646953
202 => 0.0093018413008921
203 => 0.00928012728813
204 => 0.009408529059555
205 => 0.0093707500011632
206 => 0.0093160140729062
207 => 0.0095195581924549
208 => 0.0092862112845557
209 => 0.0089550047263517
210 => 0.0087732982579981
211 => 0.0090125839933689
212 => 0.0091587074420385
213 => 0.0092552857464122
214 => 0.0092845102829615
215 => 0.0085499964637215
216 => 0.0081541342531551
217 => 0.0084078773915587
218 => 0.008717461532827
219 => 0.0085155513178829
220 => 0.0085234658160421
221 => 0.0082355949106029
222 => 0.0087429317203315
223 => 0.0086690170145282
224 => 0.0090524866389884
225 => 0.0089609685355749
226 => 0.0092736731281171
227 => 0.0091913275290286
228 => 0.0095331395069644
301 => 0.0096694975591529
302 => 0.0098984639512134
303 => 0.010066892561274
304 => 0.010165797062628
305 => 0.010159859207348
306 => 0.010551768115737
307 => 0.010320673124714
308 => 0.010030363351082
309 => 0.010025112563193
310 => 0.010175468108678
311 => 0.010490572083986
312 => 0.010572273960207
313 => 0.01061793416304
314 => 0.010548003972959
315 => 0.01029716692293
316 => 0.010188856756501
317 => 0.010281140156346
318 => 0.010168285488338
319 => 0.010363104306748
320 => 0.010630632155478
321 => 0.010575388712635
322 => 0.010760059259499
323 => 0.010951173847595
324 => 0.011224476292067
325 => 0.011295927671412
326 => 0.011414034084416
327 => 0.011535604379334
328 => 0.01157464948165
329 => 0.011649198696955
330 => 0.011648805785792
331 => 0.011873464863855
401 => 0.012121270784071
402 => 0.012214811782233
403 => 0.012429904149624
404 => 0.012061566008202
405 => 0.012340954719634
406 => 0.0125929703309
407 => 0.012292506929765
408 => 0.012706625729235
409 => 0.012722705023805
410 => 0.012965483281595
411 => 0.012719381006639
412 => 0.012573246261356
413 => 0.01299513179539
414 => 0.013199268916039
415 => 0.013137781153976
416 => 0.012669856248655
417 => 0.012397503883515
418 => 0.011684705211095
419 => 0.012529046029188
420 => 0.012940299811921
421 => 0.01266879120071
422 => 0.012805724351492
423 => 0.013552787221437
424 => 0.013837220393573
425 => 0.013778060282107
426 => 0.013788057367086
427 => 0.013941532343944
428 => 0.014622124911544
429 => 0.014214298069026
430 => 0.01452606640915
501 => 0.014691427212588
502 => 0.014845023542479
503 => 0.014467839500886
504 => 0.013977128604707
505 => 0.013821699865246
506 => 0.012641795020174
507 => 0.012580375848921
508 => 0.012545899406906
509 => 0.012328530316787
510 => 0.012157737754358
511 => 0.012021917167593
512 => 0.011665483388462
513 => 0.011785769325695
514 => 0.011217688275271
515 => 0.011581126399776
516 => 0.010674455326503
517 => 0.011429557938201
518 => 0.011018589916957
519 => 0.011294543890273
520 => 0.011293581112857
521 => 0.010785462356695
522 => 0.010492390062308
523 => 0.010679147134835
524 => 0.01087936554138
525 => 0.010911850304226
526 => 0.011171438694546
527 => 0.01124388423445
528 => 0.011024370866381
529 => 0.010655666583779
530 => 0.010741308179378
531 => 0.010490654538107
601 => 0.010051393673033
602 => 0.010366878495088
603 => 0.010474598884226
604 => 0.010522174344764
605 => 0.010090211733415
606 => 0.0099544797025647
607 => 0.009882217108242
608 => 0.010599905635007
609 => 0.010639222232594
610 => 0.010438072960535
611 => 0.011347286743998
612 => 0.011141503662585
613 => 0.011371413782603
614 => 0.01073353710223
615 => 0.010757904850435
616 => 0.010455923807519
617 => 0.010625013013171
618 => 0.010505506212616
619 => 0.010611352276327
620 => 0.010674795970495
621 => 0.010976727461294
622 => 0.011433005510827
623 => 0.010931628965096
624 => 0.010713172024277
625 => 0.010848701481713
626 => 0.011209634286727
627 => 0.011756465962135
628 => 0.011432730604281
629 => 0.011576398858714
630 => 0.011607783980951
701 => 0.011369073513404
702 => 0.011765267557567
703 => 0.011977591164508
704 => 0.01219539125105
705 => 0.012384500963575
706 => 0.012108397106959
707 => 0.012403867811471
708 => 0.012165770581235
709 => 0.011952172751673
710 => 0.011952496691411
711 => 0.011818503652761
712 => 0.011558875256167
713 => 0.011510995796421
714 => 0.01176007079253
715 => 0.011959805351919
716 => 0.011976256446895
717 => 0.012086839761705
718 => 0.012152281828311
719 => 0.012793703045225
720 => 0.013051687964782
721 => 0.013367147041012
722 => 0.013490036129503
723 => 0.013859888227684
724 => 0.013561202620484
725 => 0.013496580110546
726 => 0.012599439898057
727 => 0.012746346557594
728 => 0.012981558293895
729 => 0.012603318452955
730 => 0.012843224573221
731 => 0.012890587123268
801 => 0.012590466007895
802 => 0.012750773663084
803 => 0.01232504405881
804 => 0.011442285252816
805 => 0.011766250320468
806 => 0.012004797655722
807 => 0.01166436119564
808 => 0.012274580373627
809 => 0.011918102927328
810 => 0.011805116690786
811 => 0.011364317099534
812 => 0.011572357538673
813 => 0.01185373521146
814 => 0.011679876523343
815 => 0.012040659406199
816 => 0.012551624185603
817 => 0.012915768115885
818 => 0.012943722565259
819 => 0.012709602413836
820 => 0.013084781450626
821 => 0.013087514220317
822 => 0.012664310734166
823 => 0.012405100955306
824 => 0.012346207948167
825 => 0.012493334226655
826 => 0.012671972689748
827 => 0.0129536357567
828 => 0.013123838849037
829 => 0.013567638245107
830 => 0.013687717636958
831 => 0.013819648482805
901 => 0.013995948778823
902 => 0.014207642486661
903 => 0.013744468705642
904 => 0.013762871463426
905 => 0.013331570451618
906 => 0.01287066346568
907 => 0.01322043441514
908 => 0.01367771340348
909 => 0.013572813098306
910 => 0.013561009671055
911 => 0.013580859761694
912 => 0.013501768357316
913 => 0.013144040866583
914 => 0.01296439236023
915 => 0.013196184766648
916 => 0.013319372114766
917 => 0.013510424948631
918 => 0.013486873654221
919 => 0.013979005236682
920 => 0.01417023268834
921 => 0.014121308523122
922 => 0.014130311746948
923 => 0.014476519913961
924 => 0.014861574598819
925 => 0.01522222912363
926 => 0.01558910239674
927 => 0.015146822346698
928 => 0.014922259813329
929 => 0.015153951026433
930 => 0.01503101240747
1001 => 0.015737454177996
1002 => 0.015786366673442
1003 => 0.016492757360188
1004 => 0.017163206237347
1005 => 0.016742109309942
1006 => 0.017139184745863
1007 => 0.017568654203846
1008 => 0.018397170467204
1009 => 0.018118155337259
1010 => 0.017904434120445
1011 => 0.01770246860325
1012 => 0.01812272678341
1013 => 0.018663382218399
1014 => 0.018779834220762
1015 => 0.018968530952679
1016 => 0.018770139411807
1017 => 0.019009080170676
1018 => 0.019852646045374
1019 => 0.019624707099669
1020 => 0.019300997153753
1021 => 0.019966911394899
1022 => 0.020207903170094
1023 => 0.021899309656783
1024 => 0.024034780214745
1025 => 0.023150681381493
1026 => 0.022601892706002
1027 => 0.022730871062184
1028 => 0.023510672619711
1029 => 0.023761120130325
1030 => 0.023080317462043
1031 => 0.023320788473882
1101 => 0.024645807391699
1102 => 0.025356637529411
1103 => 0.024391234725174
1104 => 0.021727726676712
1105 => 0.019271850614911
1106 => 0.019923259536041
1107 => 0.019849409979957
1108 => 0.021272977507675
1109 => 0.019619270831198
1110 => 0.019647115010463
1111 => 0.02110012040707
1112 => 0.020712483478074
1113 => 0.020084561297887
1114 => 0.019276435141726
1115 => 0.017782539199441
1116 => 0.016459353902988
1117 => 0.019054424980706
1118 => 0.018942520797005
1119 => 0.018780466955734
1120 => 0.019141100243425
1121 => 0.020892233120911
1122 => 0.020851863840221
1123 => 0.020595055073059
1124 => 0.020789842259543
1125 => 0.020050414162314
1126 => 0.020240981619435
1127 => 0.019271461591595
1128 => 0.019709725134912
1129 => 0.020083214058903
1130 => 0.020158197489992
1201 => 0.020327138988985
1202 => 0.018883552377159
1203 => 0.019531680384393
1204 => 0.019912394867261
1205 => 0.018192312983152
1206 => 0.019878394378897
1207 => 0.018858422745938
1208 => 0.018512229054252
1209 => 0.018978333252556
1210 => 0.018796691993176
1211 => 0.018640527504693
1212 => 0.018553385036873
1213 => 0.018895640518065
1214 => 0.018879673890784
1215 => 0.018319677494627
1216 => 0.017589185024215
1217 => 0.017834362274883
1218 => 0.017745287081167
1219 => 0.017422467088208
1220 => 0.017640008786028
1221 => 0.016682065244165
1222 => 0.015033973169963
1223 => 0.016122753276606
1224 => 0.016080836426865
1225 => 0.016059700050448
1226 => 0.016877888208919
1227 => 0.016799238296294
1228 => 0.016656487934739
1229 => 0.017419845365872
1230 => 0.017141209634902
1231 => 0.017999899302917
]
'min_raw' => 0.007708246144934
'max_raw' => 0.025356637529411
'avg_raw' => 0.016532441837173
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.0077082'
'max' => '$0.025356'
'avg' => '$0.016532'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0041992537648734
'max_diff' => 0.016762018951209
'year' => 2029
]
4 => [
'items' => [
101 => 0.018565487854837
102 => 0.018422036303197
103 => 0.018953975070005
104 => 0.01784001066355
105 => 0.01821002495488
106 => 0.018286284387505
107 => 0.017410425653665
108 => 0.016812106394679
109 => 0.016772205321444
110 => 0.015734802179836
111 => 0.016288974564458
112 => 0.016776623329713
113 => 0.016543077414229
114 => 0.016469143754372
115 => 0.016846854788325
116 => 0.016876206170539
117 => 0.016206991545531
118 => 0.016346142457341
119 => 0.016926424891504
120 => 0.016331520828852
121 => 0.015175719412146
122 => 0.014889064680598
123 => 0.014850819655314
124 => 0.014073389288483
125 => 0.014908220320453
126 => 0.014543794202917
127 => 0.015695011941717
128 => 0.015037442543419
129 => 0.015009096040926
130 => 0.014966246144879
131 => 0.014297079712903
201 => 0.014443584633761
202 => 0.01493058930402
203 => 0.015104358056869
204 => 0.015086232552302
205 => 0.014928202715452
206 => 0.015000547965518
207 => 0.014767498708298
208 => 0.014685204165073
209 => 0.014425459949758
210 => 0.014043707709415
211 => 0.014096792699857
212 => 0.01334044162083
213 => 0.012928341410386
214 => 0.012814277503529
215 => 0.01266174648022
216 => 0.012831506288481
217 => 0.013338298973254
218 => 0.012726999473352
219 => 0.011678969358445
220 => 0.011741957754107
221 => 0.011883473977738
222 => 0.011619759431226
223 => 0.011370175744836
224 => 0.011587168510787
225 => 0.011143104335164
226 => 0.01193713701182
227 => 0.011915660653168
228 => 0.012211626932374
301 => 0.012396700720601
302 => 0.011970165557088
303 => 0.011862893116938
304 => 0.011924000374108
305 => 0.010914033531187
306 => 0.012129091094313
307 => 0.012139598962575
308 => 0.012049624215002
309 => 0.012696604856673
310 => 0.014061935808921
311 => 0.013548243384375
312 => 0.013349326151155
313 => 0.012971184345396
314 => 0.013475035849731
315 => 0.013436347915506
316 => 0.013261386404977
317 => 0.013155569137496
318 => 0.013350540697364
319 => 0.013131410003573
320 => 0.01309204810966
321 => 0.012853557858706
322 => 0.012768427689731
323 => 0.012705400701751
324 => 0.01263601418089
325 => 0.012789063555867
326 => 0.012442233536847
327 => 0.012023990534074
328 => 0.011989218153846
329 => 0.012085227752876
330 => 0.012042750652379
331 => 0.011989014789831
401 => 0.011886418394135
402 => 0.011855980235157
403 => 0.011954889485339
404 => 0.011843226708651
405 => 0.012007991218241
406 => 0.011963184388469
407 => 0.01171289707969
408 => 0.011400946424722
409 => 0.011398169409554
410 => 0.011330960152643
411 => 0.011245359058987
412 => 0.011221546793019
413 => 0.011568893985281
414 => 0.012287892278036
415 => 0.012146735708997
416 => 0.012248735796434
417 => 0.01275047527343
418 => 0.012909963165335
419 => 0.012796762437338
420 => 0.012641806298941
421 => 0.012648623582614
422 => 0.013178155615933
423 => 0.013211181879314
424 => 0.013294628592201
425 => 0.013401881200299
426 => 0.012815028020271
427 => 0.01262098285061
428 => 0.012529033484008
429 => 0.012245865023759
430 => 0.012551237931109
501 => 0.012373310215368
502 => 0.012397318743098
503 => 0.012381683157918
504 => 0.0123902212447
505 => 0.011936915063505
506 => 0.012102076010861
507 => 0.011827463902389
508 => 0.011459789115801
509 => 0.011458556540993
510 => 0.011548544424126
511 => 0.011495016110012
512 => 0.011350972793071
513 => 0.011371433466377
514 => 0.011192176438483
515 => 0.011393198515117
516 => 0.011398963108983
517 => 0.011321558659733
518 => 0.011631260904488
519 => 0.011758146166858
520 => 0.011707196900197
521 => 0.011754571430489
522 => 0.012152601401724
523 => 0.012217497654301
524 => 0.012246320282889
525 => 0.012207701778847
526 => 0.011761846687689
527 => 0.011781622256904
528 => 0.0116365222513
529 => 0.011513928036826
530 => 0.011518831162483
531 => 0.011581860524855
601 => 0.011857113446956
602 => 0.01243636699447
603 => 0.01245834924317
604 => 0.012484992369861
605 => 0.012376621383846
606 => 0.012343935657493
607 => 0.012387056567454
608 => 0.012604593744196
609 => 0.013164158423544
610 => 0.012966370893794
611 => 0.012805566553361
612 => 0.01294663531246
613 => 0.01292491888273
614 => 0.012741610361168
615 => 0.012736465501496
616 => 0.01238463784134
617 => 0.012254575166109
618 => 0.012145885059663
619 => 0.012027198300851
620 => 0.011956836811811
621 => 0.012064944037701
622 => 0.01208966943935
623 => 0.01185329110055
624 => 0.01182107360642
625 => 0.012014105260464
626 => 0.011929159226465
627 => 0.012016528328993
628 => 0.012036798710218
629 => 0.012033534711975
630 => 0.011944841296489
701 => 0.012001371834644
702 => 0.011867660259344
703 => 0.011722269004034
704 => 0.011629518441341
705 => 0.011548581273815
706 => 0.011593489918455
707 => 0.01143339880031
708 => 0.011382182429618
709 => 0.011982220560295
710 => 0.012425475178922
711 => 0.012419030081219
712 => 0.012379797206497
713 => 0.012321505112758
714 => 0.01260032931446
715 => 0.012503192537853
716 => 0.012573867658884
717 => 0.012591857443412
718 => 0.012646307103001
719 => 0.012665768176198
720 => 0.012606943296413
721 => 0.012409519815
722 => 0.01191755926978
723 => 0.011688550307958
724 => 0.011612973536111
725 => 0.011615720608226
726 => 0.011539944095799
727 => 0.011562263674774
728 => 0.011532182257088
729 => 0.011475215329466
730 => 0.011589972371203
731 => 0.011603197051227
801 => 0.011576411386441
802 => 0.011582720380153
803 => 0.011360946516034
804 => 0.011377807501255
805 => 0.011283923392952
806 => 0.011266321254435
807 => 0.011028990404068
808 => 0.010608524400986
809 => 0.010841503382316
810 => 0.010560097534671
811 => 0.010453524876174
812 => 0.010958023266051
813 => 0.010907385620315
814 => 0.010820715982469
815 => 0.010692513524561
816 => 0.010644961985849
817 => 0.010356053889625
818 => 0.010338983658035
819 => 0.010482174311699
820 => 0.010416096751922
821 => 0.010323298832468
822 => 0.0099871941749777
823 => 0.0096093012595309
824 => 0.0096207074712981
825 => 0.0097409081767541
826 => 0.010090407939141
827 => 0.0099538523355691
828 => 0.0098547796783827
829 => 0.0098362263478049
830 => 0.010068460124015
831 => 0.010397119571834
901 => 0.010551319231409
902 => 0.010398512051883
903 => 0.010222975391766
904 => 0.010233659494909
905 => 0.010304736046555
906 => 0.010312205187165
907 => 0.010197948866889
908 => 0.010230111351786
909 => 0.010181253596228
910 => 0.0098814136405502
911 => 0.0098759904865548
912 => 0.009802404925859
913 => 0.0098001767843259
914 => 0.0096749893888041
915 => 0.009657474806791
916 => 0.0094089076346506
917 => 0.0095725153000841
918 => 0.0094627758678993
919 => 0.0092973726586816
920 => 0.0092688570830682
921 => 0.0092679998704317
922 => 0.0094378319828174
923 => 0.0095705307129698
924 => 0.0094646848323056
925 => 0.0094405857770146
926 => 0.0096979006392529
927 => 0.0096651549775561
928 => 0.0096367974457134
929 => 0.01036769172305
930 => 0.0097891318701464
1001 => 0.0095368467512386
1002 => 0.0092245960089455
1003 => 0.009326266425141
1004 => 0.0093476898756826
1005 => 0.0085967831278945
1006 => 0.0082921403538364
1007 => 0.0081875984340003
1008 => 0.0081274330811289
1009 => 0.0081548511879414
1010 => 0.0078806369602556
1011 => 0.0080649134563452
1012 => 0.0078274671139209
1013 => 0.0077876584618963
1014 => 0.0082122419361082
1015 => 0.0082713202461641
1016 => 0.0080192738212733
1017 => 0.0081811284286629
1018 => 0.0081224376980761
1019 => 0.0078315374499495
1020 => 0.0078204272001884
1021 => 0.0076744636813166
1022 => 0.007446059038389
1023 => 0.0073416719876562
1024 => 0.0072873063053047
1025 => 0.007309738645409
1026 => 0.0072983961678113
1027 => 0.0072243788291392
1028 => 0.0073026387550224
1029 => 0.0071027169836248
1030 => 0.007023106523375
1031 => 0.0069871483254289
1101 => 0.0068097062462456
1102 => 0.0070920955030769
1103 => 0.0071477297441188
1104 => 0.0072034736018019
1105 => 0.0076886858249847
1106 => 0.0076644459935099
1107 => 0.0078835622647645
1108 => 0.0078750478093926
1109 => 0.0078125522993825
1110 => 0.0075488940226624
1111 => 0.0076539835125062
1112 => 0.0073305343972999
1113 => 0.0075728844668144
1114 => 0.0074622860158688
1115 => 0.0075354910192977
1116 => 0.0074038618225036
1117 => 0.0074767108548458
1118 => 0.0071609226865641
1119 => 0.0068660441382822
1120 => 0.0069847118741523
1121 => 0.0071137172743448
1122 => 0.0073934338519268
1123 => 0.0072268369659306
1124 => 0.0072867515058606
1125 => 0.0070860478266681
1126 => 0.0066719388083225
1127 => 0.0066742826203942
1128 => 0.0066105809697771
1129 => 0.0065555334430506
1130 => 0.0072459726223487
1201 => 0.0071601055961748
1202 => 0.0070232877279652
1203 => 0.0072064238814897
1204 => 0.0072548479872432
1205 => 0.0072562265534577
1206 => 0.0073898379636409
1207 => 0.0074611463972069
1208 => 0.0074737148176913
1209 => 0.0076839552584802
1210 => 0.0077544250810941
1211 => 0.0080446803071784
1212 => 0.0074550963748231
1213 => 0.0074429542817227
1214 => 0.0072090009827352
1215 => 0.0070606241018619
1216 => 0.0072191604747105
1217 => 0.0073596020586813
1218 => 0.0072133648942285
1219 => 0.007232460380671
1220 => 0.0070361489354085
1221 => 0.0071063210397778
1222 => 0.007166762709264
1223 => 0.0071333903719708
1224 => 0.0070834303678036
1225 => 0.0073480874503704
1226 => 0.0073331544605725
1227 => 0.0075796092202988
1228 => 0.0077717383296544
1229 => 0.0081160680408059
1230 => 0.0077567420369055
1231 => 0.0077436467691318
]
'min_raw' => 0.0065555334430506
'max_raw' => 0.018953975070005
'avg_raw' => 0.012754754256528
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.006555'
'max' => '$0.018953'
'avg' => '$0.012754'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0011527127018834
'max_diff' => -0.0064026624594066
'year' => 2030
]
5 => [
'items' => [
101 => 0.0078716551121662
102 => 0.0077544054836837
103 => 0.007828503201565
104 => 0.008104129752909
105 => 0.0081099533076123
106 => 0.0080124012631061
107 => 0.0080064652123324
108 => 0.0080252011495822
109 => 0.0081349381192609
110 => 0.0080965926501787
111 => 0.0081409669977891
112 => 0.00819645779896
113 => 0.0084259912802152
114 => 0.0084813310254639
115 => 0.0083468841348778
116 => 0.0083590231837598
117 => 0.0083087363560309
118 => 0.0082601599105369
119 => 0.0083693526659872
120 => 0.0085689045727617
121 => 0.0085676631707064
122 => 0.0086139553343433
123 => 0.0086427949687841
124 => 0.0085189941458615
125 => 0.0084384043624213
126 => 0.0084693076134534
127 => 0.008518722584839
128 => 0.0084532830042314
129 => 0.0080493595981587
130 => 0.0081718841568341
131 => 0.0081514900791256
201 => 0.0081224464324643
202 => 0.0082456458236668
203 => 0.0082337629418384
204 => 0.0078778244970079
205 => 0.0079006105214065
206 => 0.0078792101906213
207 => 0.0079483590374841
208 => 0.007750671219026
209 => 0.0078114786605359
210 => 0.0078496165178166
211 => 0.0078720800087438
212 => 0.0079532335413325
213 => 0.0079437111109538
214 => 0.0079526416136901
215 => 0.008072970878781
216 => 0.0086815550095932
217 => 0.0087146789010682
218 => 0.0085515647449515
219 => 0.0086167256330357
220 => 0.0084916309770339
221 => 0.0085756078576692
222 => 0.0086330627066184
223 => 0.0083734352921491
224 => 0.0083580618416322
225 => 0.0082324508754864
226 => 0.0082999470937244
227 => 0.008192555757358
228 => 0.0082189058349128
301 => 0.008145228720911
302 => 0.0082778328571472
303 => 0.0084261048860588
304 => 0.0084635642560017
305 => 0.0083650247809546
306 => 0.0082936757069526
307 => 0.0081684102368513
308 => 0.0083767295053529
309 => 0.0084376484078774
310 => 0.0083764095242919
311 => 0.0083622191368691
312 => 0.0083353283783444
313 => 0.0083679241384109
314 => 0.0084373166304513
315 => 0.0084045924126832
316 => 0.0084262073350455
317 => 0.0083438335402114
318 => 0.0085190351290852
319 => 0.0087972974167753
320 => 0.0087981920755307
321 => 0.0087654676813669
322 => 0.0087520775643319
323 => 0.0087856547786263
324 => 0.0088038690399716
325 => 0.0089124515939916
326 => 0.0090289650005748
327 => 0.0095726822303167
328 => 0.0094200086079248
329 => 0.0099024268800346
330 => 0.010283957099101
331 => 0.010398361329504
401 => 0.010293114820668
402 => 0.0099330721992441
403 => 0.009915406790563
404 => 0.010453462473044
405 => 0.010301437098232
406 => 0.010283354163639
407 => 0.010090982291167
408 => 0.010204697893518
409 => 0.010179826623176
410 => 0.010140566106198
411 => 0.010357527553986
412 => 0.010763660015962
413 => 0.010700360463077
414 => 0.01065311028323
415 => 0.010446073749461
416 => 0.010570755986074
417 => 0.010526359029747
418 => 0.010717116529132
419 => 0.010604116012292
420 => 0.010300285356497
421 => 0.010348671389871
422 => 0.010341357938266
423 => 0.010491868254067
424 => 0.010446688793159
425 => 0.010332535923419
426 => 0.010762271899359
427 => 0.010734367235399
428 => 0.010773929669
429 => 0.010791346275781
430 => 0.011052918991538
501 => 0.011160076963791
502 => 0.011184403699556
503 => 0.011286195485301
504 => 0.011181871027197
505 => 0.011599243241693
506 => 0.011876771409988
507 => 0.012199134658933
508 => 0.012670194008713
509 => 0.012847316681774
510 => 0.012815321056249
511 => 0.013172472879127
512 => 0.013814266765799
513 => 0.012945045950335
514 => 0.013860337579651
515 => 0.01357056681736
516 => 0.01288352555272
517 => 0.012839288194961
518 => 0.013304560516089
519 => 0.014336489743548
520 => 0.014078003176114
521 => 0.014336912534972
522 => 0.014034881015083
523 => 0.014019882604399
524 => 0.014322243538198
525 => 0.015028726340854
526 => 0.014693102843424
527 => 0.0142119042616
528 => 0.014567213806139
529 => 0.014259411796313
530 => 0.013565847719817
531 => 0.014077805516307
601 => 0.013735473917513
602 => 0.01383538447739
603 => 0.014554914580073
604 => 0.014468338814478
605 => 0.014580375871858
606 => 0.014382633398102
607 => 0.014197910746488
608 => 0.013853112199565
609 => 0.013751034348184
610 => 0.01377924499393
611 => 0.013751020368389
612 => 0.013558108750249
613 => 0.013516449504678
614 => 0.013447015603595
615 => 0.013468536072896
616 => 0.013337980025255
617 => 0.013584366261411
618 => 0.013630097717989
619 => 0.013809397073757
620 => 0.013828012527675
621 => 0.01432735868132
622 => 0.014052327211064
623 => 0.014236842066387
624 => 0.014220337321005
625 => 0.012898415820216
626 => 0.013080564939612
627 => 0.013363931807851
628 => 0.013236275417804
629 => 0.013055799149273
630 => 0.012910054885909
701 => 0.012689237423796
702 => 0.013000033761296
703 => 0.013408697895603
704 => 0.01383837692452
705 => 0.014354608124077
706 => 0.01423939132993
707 => 0.013828726341327
708 => 0.013847148472725
709 => 0.013961026840184
710 => 0.013813544007383
711 => 0.013770048440784
712 => 0.013955051217253
713 => 0.013956325229699
714 => 0.013786628406666
715 => 0.013598041442056
716 => 0.013597251255788
717 => 0.01356369402697
718 => 0.014040850771542
719 => 0.014303238735069
720 => 0.014333321092228
721 => 0.014301213952749
722 => 0.014313570716448
723 => 0.014160892941796
724 => 0.014509869059462
725 => 0.014830124055195
726 => 0.014744288875088
727 => 0.014615609737919
728 => 0.014513110607137
729 => 0.014720143337345
730 => 0.014710924495769
731 => 0.014827326907191
801 => 0.014822046221436
802 => 0.014782904468591
803 => 0.014744290272964
804 => 0.014897391193875
805 => 0.014853300587378
806 => 0.014809141495991
807 => 0.014720573677796
808 => 0.014732611515244
809 => 0.014603954596342
810 => 0.014544432018718
811 => 0.013649355265886
812 => 0.013410161510052
813 => 0.013485416734876
814 => 0.013510192708888
815 => 0.013406095279815
816 => 0.013555344252671
817 => 0.013532083958345
818 => 0.01362257615675
819 => 0.013566040559901
820 => 0.013568360800516
821 => 0.013734619936189
822 => 0.013782885670591
823 => 0.013758337328522
824 => 0.01377553014584
825 => 0.014171731364287
826 => 0.014115404220826
827 => 0.014085481548503
828 => 0.014093770333232
829 => 0.014195008239195
830 => 0.01422334932548
831 => 0.014103266151398
901 => 0.014159898070487
902 => 0.014401029594311
903 => 0.014485411980787
904 => 0.014754720052575
905 => 0.01464031319711
906 => 0.014850311931728
907 => 0.015495776448101
908 => 0.016011418166526
909 => 0.015537212732467
910 => 0.016484123081779
911 => 0.01722142861494
912 => 0.01719312960053
913 => 0.017064563326639
914 => 0.016225160579417
915 => 0.015452729656633
916 => 0.016098900922691
917 => 0.016100548146135
918 => 0.01604504146132
919 => 0.015700294209081
920 => 0.016033045004225
921 => 0.01605945755397
922 => 0.016044673549776
923 => 0.015780356639788
924 => 0.015376793572165
925 => 0.015455648829585
926 => 0.015584815349842
927 => 0.015340276180036
928 => 0.015262131098132
929 => 0.015407417673102
930 => 0.015875561289314
1001 => 0.01578706145044
1002 => 0.015784750361991
1003 => 0.016163390202465
1004 => 0.015892365792278
1005 => 0.01545664344691
1006 => 0.015346617808234
1007 => 0.014956100913082
1008 => 0.015225832323537
1009 => 0.015235539476805
1010 => 0.015087810339887
1011 => 0.01546863085219
1012 => 0.015465121524127
1013 => 0.015826653922904
1014 => 0.016517768084
1015 => 0.016313371618902
1016 => 0.016075680768264
1017 => 0.016101524354181
1018 => 0.016384964704282
1019 => 0.016213590198297
1020 => 0.016275217665515
1021 => 0.016384871423729
1022 => 0.016451028258609
1023 => 0.016092005403738
1024 => 0.016008300002219
1025 => 0.015837068127315
1026 => 0.015792396927347
1027 => 0.015931861716586
1028 => 0.015895117671985
1029 => 0.015234723628161
1030 => 0.015165708776184
1031 => 0.015167825363163
1101 => 0.014994284236389
1102 => 0.014729592363415
1103 => 0.01542518680166
1104 => 0.015369320833431
1105 => 0.015307649128188
1106 => 0.015315203560187
1107 => 0.015617137529946
1108 => 0.015442000579454
1109 => 0.015907630866717
1110 => 0.015811911277784
1111 => 0.015713736842577
1112 => 0.015700166145165
1113 => 0.01566237736346
1114 => 0.015532785570406
1115 => 0.015376295693034
1116 => 0.015272967521071
1117 => 0.01408850521218
1118 => 0.01430833452701
1119 => 0.014561228115649
1120 => 0.01464852596904
1121 => 0.014499196949987
1122 => 0.015538681990249
1123 => 0.015728605923832
1124 => 0.015153313940578
1125 => 0.015045700299528
1126 => 0.01554573712264
1127 => 0.015244153791288
1128 => 0.01537995674693
1129 => 0.015086425037077
1130 => 0.015682858809854
1201 => 0.015678314983805
1202 => 0.015446288775127
1203 => 0.015642395737855
1204 => 0.015608317327125
1205 => 0.015346360308984
1206 => 0.015691163314573
1207 => 0.015691334332562
1208 => 0.015468014151394
1209 => 0.015207225070865
1210 => 0.015160602142829
1211 => 0.015125478029463
1212 => 0.015371318368189
1213 => 0.015591738047168
1214 => 0.016001884423075
1215 => 0.016105004966815
1216 => 0.016507491314158
1217 => 0.01626783029102
1218 => 0.016374068918447
1219 => 0.016489405976891
1220 => 0.016544702804088
1221 => 0.016454599591561
1222 => 0.017079826558974
1223 => 0.017132614871483
1224 => 0.01715031433605
1225 => 0.016939491320438
1226 => 0.017126751502043
1227 => 0.017039138664475
1228 => 0.017267082928278
1229 => 0.017302827499381
1230 => 0.017272553119307
1231 => 0.017283899010365
]
'min_raw' => 0.007750671219026
'max_raw' => 0.017302827499381
'avg_raw' => 0.012526749359204
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.00775'
'max' => '$0.0173028'
'avg' => '$0.012526'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0011951377759754
'max_diff' => -0.0016511475706237
'year' => 2031
]
6 => [
'items' => [
101 => 0.016750378091273
102 => 0.016722712217071
103 => 0.016345486059246
104 => 0.016499208506875
105 => 0.016211831759142
106 => 0.016302961886156
107 => 0.016343131177825
108 => 0.016322149019444
109 => 0.01650789974342
110 => 0.016349973681675
111 => 0.015933180839281
112 => 0.015516274441955
113 => 0.015511040521741
114 => 0.015401276426335
115 => 0.015321937089652
116 => 0.015337220660612
117 => 0.015391081958139
118 => 0.015318806573126
119 => 0.015334230190973
120 => 0.015590365014273
121 => 0.015641731026416
122 => 0.015467169247158
123 => 0.014766278514294
124 => 0.014594278170398
125 => 0.014717908606676
126 => 0.014658821220955
127 => 0.011830812799399
128 => 0.012495211429602
129 => 0.012100448324381
130 => 0.012282373325444
131 => 0.011879422418424
201 => 0.01207173171172
202 => 0.012036219207259
203 => 0.01310455254364
204 => 0.013087871988037
205 => 0.013095856087289
206 => 0.012714754227538
207 => 0.013321859838165
208 => 0.013620941892771
209 => 0.013565589764275
210 => 0.013579520702503
211 => 0.013340141028343
212 => 0.013098173805793
213 => 0.012829794917497
214 => 0.013328409719318
215 => 0.013272972264994
216 => 0.013400125839447
217 => 0.01372351318015
218 => 0.013771133194498
219 => 0.013835134976695
220 => 0.013812194893734
221 => 0.014358720738431
222 => 0.014292532852545
223 => 0.014452026613977
224 => 0.01412393584589
225 => 0.013752669999139
226 => 0.013823235499012
227 => 0.013816439473922
228 => 0.013729918274417
229 => 0.013651810804128
301 => 0.013521783872739
302 => 0.013933208324017
303 => 0.013916505242644
304 => 0.014186908714859
305 => 0.014139112274586
306 => 0.013819915948669
307 => 0.013831316107894
308 => 0.013907987657415
309 => 0.014173348765725
310 => 0.014252126009834
311 => 0.014215633251632
312 => 0.014302008903479
313 => 0.01437027669688
314 => 0.014310582287261
315 => 0.015155729243101
316 => 0.014804765303596
317 => 0.014975822685719
318 => 0.015016618863427
319 => 0.01491212031208
320 => 0.014934782306054
321 => 0.014969109051902
322 => 0.015177534330824
323 => 0.015724502571057
324 => 0.015966751081317
325 => 0.016695567676766
326 => 0.015946635714802
327 => 0.015902197191567
328 => 0.01603347906856
329 => 0.01646137156316
330 => 0.016808138240135
331 => 0.016923180752337
401 => 0.01693838551947
402 => 0.017154212920243
403 => 0.017277921161423
404 => 0.017128005796965
405 => 0.017000968222379
406 => 0.016545935398698
407 => 0.016598606687053
408 => 0.01696145963221
409 => 0.017474010789177
410 => 0.017913833003714
411 => 0.017759822593535
412 => 0.018934813308794
413 => 0.019051308838806
414 => 0.01903521292331
415 => 0.019300607077535
416 => 0.018773853727977
417 => 0.018548656465676
418 => 0.017028435187942
419 => 0.017455555357965
420 => 0.018076399608982
421 => 0.017994228544314
422 => 0.017543354854011
423 => 0.017913490975589
424 => 0.017791112398568
425 => 0.017694587337381
426 => 0.018136787354985
427 => 0.017650570271053
428 => 0.018071549221633
429 => 0.017531639363045
430 => 0.017760526100116
501 => 0.017630598918149
502 => 0.017714677728158
503 => 0.017223154722856
504 => 0.017488368605471
505 => 0.017212120953397
506 => 0.017211989976042
507 => 0.017205891793811
508 => 0.017530895931406
509 => 0.017541494304665
510 => 0.017301315755928
511 => 0.017266702274761
512 => 0.017394686456296
513 => 0.017244850498829
514 => 0.017314957800271
515 => 0.017246973977571
516 => 0.017231669387122
517 => 0.017109719806568
518 => 0.017057180574192
519 => 0.017077782560976
520 => 0.01700745735903
521 => 0.016965083881084
522 => 0.017197462642523
523 => 0.017073312044419
524 => 0.017178434782793
525 => 0.017058634154868
526 => 0.016643352983831
527 => 0.016404520390849
528 => 0.015620092755344
529 => 0.015842555459694
530 => 0.015990048462832
531 => 0.015941302026175
601 => 0.016046028234481
602 => 0.01605245757312
603 => 0.016018410015243
604 => 0.015978987304982
605 => 0.01595979850984
606 => 0.016102816067744
607 => 0.016185842573857
608 => 0.016004851358899
609 => 0.01596244764957
610 => 0.016145439760692
611 => 0.016257064842765
612 => 0.017081241732078
613 => 0.017020184046061
614 => 0.017173426855997
615 => 0.017156174067301
616 => 0.017316796945608
617 => 0.017579347467346
618 => 0.017045508846371
619 => 0.017138164772222
620 => 0.017115447678941
621 => 0.017363466946639
622 => 0.01736424123572
623 => 0.017215541295254
624 => 0.017296153945362
625 => 0.017251158175564
626 => 0.017332471613132
627 => 0.017019368583439
628 => 0.017400694276221
629 => 0.017616881371944
630 => 0.017619883129977
701 => 0.017722354097583
702 => 0.017826470535389
703 => 0.018026312971126
704 => 0.01782089703832
705 => 0.017451373772042
706 => 0.017478052158315
707 => 0.017261400802499
708 => 0.017265042750932
709 => 0.017245601744774
710 => 0.017303945667703
711 => 0.017032171793559
712 => 0.017095956578607
713 => 0.017006657506016
714 => 0.017137970653478
715 => 0.01699669941365
716 => 0.017115436724071
717 => 0.017166679811044
718 => 0.017355767905161
719 => 0.016968770948406
720 => 0.016179657956194
721 => 0.016345539074227
722 => 0.016100187870975
723 => 0.016122896058954
724 => 0.016168770212653
725 => 0.016020077071426
726 => 0.016048443036913
727 => 0.016047429605018
728 => 0.016038696396443
729 => 0.016000015567609
730 => 0.01594392071303
731 => 0.016167385348586
801 => 0.016205356344661
802 => 0.016289761165326
803 => 0.016540892659285
804 => 0.01651579870095
805 => 0.016556727988133
806 => 0.016467379584021
807 => 0.016127040675163
808 => 0.016145522715334
809 => 0.015915051378249
810 => 0.016283867495066
811 => 0.016196526970469
812 => 0.016140217966077
813 => 0.01612485353253
814 => 0.016376607532889
815 => 0.016451936275556
816 => 0.01640499645825
817 => 0.016308721523501
818 => 0.016493597859349
819 => 0.016543062967515
820 => 0.016554136381031
821 => 0.016881701801632
822 => 0.016572443649244
823 => 0.016646885160286
824 => 0.017227656579164
825 => 0.016700977043219
826 => 0.016979970939764
827 => 0.016966315640342
828 => 0.017109039477176
829 => 0.016954608119925
830 => 0.016956522481683
831 => 0.017083251579841
901 => 0.016905283417191
902 => 0.016861215997347
903 => 0.016800337172449
904 => 0.016933263859406
905 => 0.01701294739648
906 => 0.017655138184185
907 => 0.018070022720501
908 => 0.018052011488599
909 => 0.018216600432567
910 => 0.018142451605847
911 => 0.017903005484899
912 => 0.018311710816014
913 => 0.018182379348292
914 => 0.018193041277353
915 => 0.018192644439821
916 => 0.018278638559503
917 => 0.018217703844463
918 => 0.018097595266299
919 => 0.018177328945717
920 => 0.018414109468277
921 => 0.019149083475615
922 => 0.019560384667232
923 => 0.019124322627435
924 => 0.019425112383384
925 => 0.019244745712163
926 => 0.019211967722559
927 => 0.019400885917483
928 => 0.019590134788699
929 => 0.019578080453748
930 => 0.019440695491282
1001 => 0.019363090211999
1002 => 0.019950743386402
1003 => 0.020383716234892
1004 => 0.020354190389311
1005 => 0.020484507869383
1006 => 0.020867124021441
1007 => 0.020902105647283
1008 => 0.020897698766471
1009 => 0.020810993156865
1010 => 0.021187728447552
1011 => 0.021502007655069
1012 => 0.020790923313407
1013 => 0.021061694921934
1014 => 0.021183253020719
1015 => 0.021361736374397
1016 => 0.021662867709335
1017 => 0.02198997621022
1018 => 0.022036232938807
1019 => 0.022003411576286
1020 => 0.021787674726804
1021 => 0.022145600751689
1022 => 0.022355265422668
1023 => 0.022480115936145
1024 => 0.022796716065179
1025 => 0.021184003722154
1026 => 0.020042445768756
1027 => 0.019864175010036
1028 => 0.020226695608044
1029 => 0.020322289398691
1030 => 0.020283755661546
1031 => 0.018998828399088
1101 => 0.019857410133921
1102 => 0.020781171888999
1103 => 0.020816657340149
1104 => 0.021279111789689
1105 => 0.021429705915107
1106 => 0.021802042362276
1107 => 0.02177875261613
1108 => 0.021869410615848
1109 => 0.021848569911691
1110 => 0.022538244775383
1111 => 0.023299058567744
1112 => 0.023272714005354
1113 => 0.023163338021162
1114 => 0.023325780009064
1115 => 0.024111021376541
1116 => 0.02403872893466
1117 => 0.024108954884092
1118 => 0.025034798710612
1119 => 0.026238527384837
1120 => 0.025679274563276
1121 => 0.026892692265398
1122 => 0.027656474388375
1123 => 0.028977356593518
1124 => 0.028811975635952
1125 => 0.029326185385332
1126 => 0.028515909205861
1127 => 0.026655351313962
1128 => 0.026360910905639
1129 => 0.026950388059519
1130 => 0.028399560121995
1201 => 0.026904748474107
1202 => 0.027207146923628
1203 => 0.027120056149822
1204 => 0.027115415452598
1205 => 0.027292531990564
1206 => 0.027035615214467
1207 => 0.025988890050205
1208 => 0.026468598024596
1209 => 0.026283359738215
1210 => 0.026488895427384
1211 => 0.027598086772465
1212 => 0.027107686838985
1213 => 0.02659109034592
1214 => 0.027239016990163
1215 => 0.028064050260034
1216 => 0.028012421160733
1217 => 0.027912239128799
1218 => 0.028476959997449
1219 => 0.029409713424768
1220 => 0.029661832928066
1221 => 0.029847942391044
1222 => 0.029873603741644
1223 => 0.030137931601259
1224 => 0.028716574080908
1225 => 0.030972304968755
1226 => 0.031361807379778
1227 => 0.031288597069727
1228 => 0.031721512606812
1229 => 0.031594137873794
1230 => 0.031409591870135
1231 => 0.03209585508019
]
'min_raw' => 0.011830812799399
'max_raw' => 0.03209585508019
'avg_raw' => 0.021963333939794
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.01183'
'max' => '$0.032095'
'avg' => '$0.021963'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0040801415803728
'max_diff' => 0.014793027580809
'year' => 2032
]
7 => [
'items' => [
101 => 0.031309109688447
102 => 0.030192423653359
103 => 0.029579787608964
104 => 0.030386556172163
105 => 0.030879221581366
106 => 0.031204842077444
107 => 0.031303374642812
108 => 0.028826910019127
109 => 0.027492232937986
110 => 0.028347745644894
111 => 0.029391530191654
112 => 0.028710775805049
113 => 0.028737460088166
114 => 0.027766883231973
115 => 0.029477404707097
116 => 0.029228196115922
117 => 0.030521090727783
118 => 0.030212531052535
119 => 0.031266836418628
120 => 0.030989202482116
121 => 0.032141645430276
122 => 0.032601386123445
123 => 0.0333733623002
124 => 0.033941231118329
125 => 0.034274694549935
126 => 0.034254674656291
127 => 0.035576022903133
128 => 0.034796870006362
129 => 0.033818070335779
130 => 0.033800366937812
131 => 0.034307301156905
201 => 0.035369696209513
202 => 0.035645159789435
203 => 0.035799106351179
204 => 0.03556333183295
205 => 0.034717617205896
206 => 0.034352441917805
207 => 0.034663581843405
208 => 0.034283084450955
209 => 0.034939929699037
210 => 0.035841918519228
211 => 0.035655661394709
212 => 0.036278291036748
213 => 0.03692264721371
214 => 0.037844105486612
215 => 0.038085008800649
216 => 0.038483212818021
217 => 0.038893095555102
218 => 0.039024738843603
219 => 0.039276086727864
220 => 0.039274762000446
221 => 0.040032215767332
222 => 0.040867710728598
223 => 0.041183090734723
224 => 0.041908289668653
225 => 0.0406664119083
226 => 0.041608390455191
227 => 0.042458078683739
228 => 0.04144504534913
301 => 0.042841275794394
302 => 0.042895488258658
303 => 0.043714032105033
304 => 0.042884281102705
305 => 0.042391577606182
306 => 0.043813994139285
307 => 0.044502256693952
308 => 0.04429494641122
309 => 0.042717304923456
310 => 0.041799049909351
311 => 0.039395799419274
312 => 0.042242553437465
313 => 0.043629124278773
314 => 0.042713714039948
315 => 0.043175393718178
316 => 0.045694168342462
317 => 0.046653154640809
318 => 0.046453692194573
319 => 0.046487398064556
320 => 0.047004849664311
321 => 0.049299515023429
322 => 0.047924498350319
323 => 0.04897564707602
324 => 0.049533172569933
325 => 0.050051033319913
326 => 0.048779330989533
327 => 0.047124864942727
328 => 0.046600826095944
329 => 0.042622694532461
330 => 0.042415615508432
331 => 0.042299375777108
401 => 0.041566500713546
402 => 0.040990661664961
403 => 0.040532733073993
404 => 0.03933099170224
405 => 0.039736544137719
406 => 0.037821219214062
407 => 0.03904657622527
408 => 0.035989671399977
409 => 0.038535552574898
410 => 0.037149945198401
411 => 0.038080343285928
412 => 0.03807709721465
413 => 0.03636393935253
414 => 0.035375825650352
415 => 0.036005490159341
416 => 0.036680540495807
417 => 0.036790065141757
418 => 0.037665285523602
419 => 0.037909540719376
420 => 0.037169436072997
421 => 0.035926323842093
422 => 0.03621507046096
423 => 0.035369974209337
424 => 0.033888975534525
425 => 0.034952654638531
426 => 0.035315841451308
427 => 0.035476245438126
428 => 0.034019853335296
429 => 0.033562223316776
430 => 0.033318584934803
501 => 0.035738321910206
502 => 0.035870880563966
503 => 0.035192691749425
504 => 0.038258169499651
505 => 0.037564357473349
506 => 0.038339515494802
507 => 0.036188869731797
508 => 0.036271027296172
509 => 0.035252877126338
510 => 0.035822973188627
511 => 0.035420047666855
512 => 0.035776915060593
513 => 0.03599081990498
514 => 0.037008803006389
515 => 0.038547176306708
516 => 0.036856750277784
517 => 0.036120207449635
518 => 0.036577154477744
519 => 0.037794064629375
520 => 0.03963774580158
521 => 0.038546249440093
522 => 0.039030636990511
523 => 0.039136454121375
524 => 0.038331625113806
525 => 0.039667420995085
526 => 0.040383284859849
527 => 0.041117613057942
528 => 0.041755209656938
529 => 0.040824306227401
530 => 0.04182050633677
531 => 0.04101774490161
601 => 0.04029758490632
602 => 0.040298677091764
603 => 0.03984691020686
604 => 0.038971554941067
605 => 0.038810125999695
606 => 0.039649899738937
607 => 0.040323318750941
608 => 0.040378784766229
609 => 0.040751624132792
610 => 0.040972266629373
611 => 0.043134863044797
612 => 0.044004677213016
613 => 0.045068269513176
614 => 0.045482598654865
615 => 0.046729580826132
616 => 0.045722541447894
617 => 0.045504662143837
618 => 0.042479891281103
619 => 0.042975197340425
620 => 0.043768230131325
621 => 0.042492968099733
622 => 0.043301828333921
623 => 0.043461514478152
624 => 0.042449635183884
625 => 0.042990123635676
626 => 0.041554746551374
627 => 0.038578463604713
628 => 0.03967073444882
629 => 0.040475013444475
630 => 0.039327208150791
701 => 0.041384604713519
702 => 0.040182716114859
703 => 0.039801775129911
704 => 0.038315588532361
705 => 0.039017011397837
706 => 0.0399656958668
707 => 0.039379519161388
708 => 0.040595923839993
709 => 0.042318677268177
710 => 0.04354641395284
711 => 0.043640664330622
712 => 0.042851311894352
713 => 0.044116254211054
714 => 0.044125467934862
715 => 0.042698607834182
716 => 0.041824663967305
717 => 0.041626102081957
718 => 0.042122148601907
719 => 0.042724440652366
720 => 0.043674087347683
721 => 0.044247938956697
722 => 0.045744239605632
723 => 0.046149095658932
724 => 0.046593909716823
725 => 0.047188318473741
726 => 0.047902058589698
727 => 0.046340435849232
728 => 0.046402482031939
729 => 0.044948320558156
730 => 0.043394340475569
731 => 0.044573617651901
801 => 0.046115365687286
802 => 0.045761686984488
803 => 0.045721890905424
804 => 0.045788816871899
805 => 0.045522154680056
806 => 0.044316051469313
807 => 0.043710353987484
808 => 0.044491858268951
809 => 0.044907193013798
810 => 0.045551340982058
811 => 0.045471936148656
812 => 0.047131192138454
813 => 0.047775928842792
814 => 0.047610977603983
815 => 0.047641332601697
816 => 0.048808597608264
817 => 0.050106836361923
818 => 0.051322808272417
819 => 0.05255974712698
820 => 0.051068569059259
821 => 0.050311440799547
822 => 0.051092603900694
823 => 0.050678107763559
824 => 0.053059925515077
825 => 0.053224837408435
826 => 0.05560648292742
827 => 0.057866948126009
828 => 0.056447190435216
829 => 0.057785957990343
830 => 0.059233944252533
831 => 0.062027344679603
901 => 0.061086625688778
902 => 0.060366049684752
903 => 0.059685108842745
904 => 0.061102038638646
905 => 0.062924896185067
906 => 0.063317522241454
907 => 0.063953726447497
908 => 0.063284835516192
909 => 0.06409044096703
910 => 0.066934582209462
911 => 0.066166070139828
912 => 0.065074659456467
913 => 0.067319835813139
914 => 0.068132356408716
915 => 0.073835051468818
916 => 0.081034939548779
917 => 0.078054138606661
918 => 0.076203859272043
919 => 0.076638718804891
920 => 0.0792678742001
921 => 0.08011227546782
922 => 0.077816901739585
923 => 0.078627666545148
924 => 0.083095060336435
925 => 0.085491673774308
926 => 0.082236750817549
927 => 0.073256547471968
928 => 0.064976389865813
929 => 0.067172660523322
930 => 0.066923671588974
1001 => 0.071723328898987
1002 => 0.066147741381131
1003 => 0.06624161997554
1004 => 0.071140529115799
1005 => 0.069833584145743
1006 => 0.067716500675117
1007 => 0.064991846918054
1008 => 0.059955072448154
1009 => 0.055493860839317
1010 => 0.064243324159921
1011 => 0.06386603139167
1012 => 0.063319655551587
1013 => 0.064535555859651
1014 => 0.070439622616287
1015 => 0.070303514767947
1016 => 0.069437666079645
1017 => 0.070094404678482
1018 => 0.067601371223456
1019 => 0.068243882710133
1020 => 0.064975078246544
1021 => 0.066452714381419
1022 => 0.067711958364819
1023 => 0.067964770237913
1024 => 0.068534368296886
1025 => 0.063667215247118
1026 => 0.065852424074358
1027 => 0.067136029533984
1028 => 0.061336653369427
1029 => 0.067021394513626
1030 => 0.063582488940959
1031 => 0.062415272738968
1101 => 0.063986775585908
1102 => 0.063374359398119
1103 => 0.062847839922143
1104 => 0.062554033007795
1105 => 0.063707971258148
1106 => 0.063654138659515
1107 => 0.061766071712174
1108 => 0.059303165346823
1109 => 0.06012979756518
1110 => 0.059829474330533
1111 => 0.058741064185701
1112 => 0.059474521208176
1113 => 0.056244747675304
1114 => 0.050688090181017
1115 => 0.054358988326765
1116 => 0.054217662741322
1117 => 0.054146399972537
1118 => 0.056904978472894
1119 => 0.056639804801319
1120 => 0.056158511990822
1121 => 0.058732224865802
1122 => 0.057792785045111
1123 => 0.060687917212621
1124 => 0.062594838503552
1125 => 0.062111181581731
1126 => 0.063904650272801
1127 => 0.060148841501929
1128 => 0.061396370518719
1129 => 0.061653484520079
1130 => 0.058700465648432
1201 => 0.056683190493447
1202 => 0.05654866123923
1203 => 0.053050984118125
1204 => 0.054919415003956
1205 => 0.056563556862563
1206 => 0.055776140502853
1207 => 0.055526868006763
1208 => 0.056800347128678
1209 => 0.056899307363061
1210 => 0.054643003531774
1211 => 0.055112160546148
1212 => 0.057068623286954
1213 => 0.055062862704847
1214 => 0.051165997532944
1215 => 0.050199521091935
1216 => 0.05007057531901
1217 => 0.047449414558783
1218 => 0.050264105669111
1219 => 0.049035417570421
1220 => 0.052916828552239
1221 => 0.050699787415849
1222 => 0.050604215203603
1223 => 0.050459743787398
1224 => 0.048203602442283
1225 => 0.048697554011601
1226 => 0.050339524258961
1227 => 0.050925397741338
1228 => 0.050864286337206
1229 => 0.050331477708975
1230 => 0.050575394770558
1231 => 0.049789652928863
]
'min_raw' => 0.027492232937986
'max_raw' => 0.085491673774308
'avg_raw' => 0.056491953356147
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.027492'
'max' => '$0.085491'
'avg' => '$0.056491'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.015661420138587
'max_diff' => 0.053395818694118
'year' => 2033
]
8 => [
'items' => [
101 => 0.049512191130758
102 => 0.04863644537406
103 => 0.047349341042653
104 => 0.047528320794205
105 => 0.044978230324519
106 => 0.04358880569309
107 => 0.043204231267433
108 => 0.042689962272972
109 => 0.043262319318775
110 => 0.044971006238621
111 => 0.042909967295134
112 => 0.039376460591598
113 => 0.039588830365283
114 => 0.040065962193602
115 => 0.039176830188073
116 => 0.038335341364034
117 => 0.03906694762439
118 => 0.037569754252706
119 => 0.040246890859644
120 => 0.040174481817015
121 => 0.041172352791064
122 => 0.041796341989511
123 => 0.040358248905993
124 => 0.039996572384505
125 => 0.040202599768426
126 => 0.036797426043886
127 => 0.040894077450574
128 => 0.040929505462056
129 => 0.040626149318776
130 => 0.042807489722915
131 => 0.047410798352783
201 => 0.045678848478566
202 => 0.045008185138807
203 => 0.043733253639674
204 => 0.045432024164327
205 => 0.045301585092982
206 => 0.044711690144811
207 => 0.044354919839573
208 => 0.045012280066149
209 => 0.044273465632817
210 => 0.044140754259328
211 => 0.043336667727381
212 => 0.043049645419082
213 => 0.042837145528705
214 => 0.042603204029207
215 => 0.043119220682509
216 => 0.041949859058483
217 => 0.040539723573842
218 => 0.040422486066172
219 => 0.040746189132477
220 => 0.040602974622496
221 => 0.040421800410196
222 => 0.040075889499056
223 => 0.039973265120938
224 => 0.040306744563552
225 => 0.0399302657159
226 => 0.040485780763474
227 => 0.040334711408583
228 => 0.039490850272534
301 => 0.038439086859609
302 => 0.038429723959086
303 => 0.038203123257009
304 => 0.03791451319327
305 => 0.037834228476042
306 => 0.039005333785759
307 => 0.041429486728639
308 => 0.040953567500888
309 => 0.041297467917102
310 => 0.042989117594125
311 => 0.04352684215677
312 => 0.043145177998909
313 => 0.042622732559609
314 => 0.042645717507482
315 => 0.044431071728561
316 => 0.04454242208137
317 => 0.044823768499932
318 => 0.045185378156272
319 => 0.043206761687028
320 => 0.042552524849715
321 => 0.042242511140518
322 => 0.041287788906597
323 => 0.042317374984183
324 => 0.041717479268045
325 => 0.041798425695508
326 => 0.041745709228432
327 => 0.041774495984127
328 => 0.040246142545402
329 => 0.040802994210582
330 => 0.039877120314064
331 => 0.038637479100849
401 => 0.038633323388828
402 => 0.038936723819564
403 => 0.038756249371302
404 => 0.038270597271452
405 => 0.038339581860023
406 => 0.037735204275151
407 => 0.038412964241436
408 => 0.038432399972127
409 => 0.038171425467272
410 => 0.039215608208186
411 => 0.039643410729111
412 => 0.0394716317194
413 => 0.039631358255862
414 => 0.040973344093448
415 => 0.041192146339921
416 => 0.04128932384454
417 => 0.041159118861903
418 => 0.039655887293455
419 => 0.03972256200575
420 => 0.039233347206297
421 => 0.038820012252944
422 => 0.038836543483422
423 => 0.039049051379228
424 => 0.039977085823636
425 => 0.041930079601273
426 => 0.042004194287515
427 => 0.042094023449317
428 => 0.041728643103747
429 => 0.041618440895304
430 => 0.041763826053843
501 => 0.04249726783319
502 => 0.044383879217169
503 => 0.043717024751533
504 => 0.043174861690763
505 => 0.04365048486117
506 => 0.043577266402143
507 => 0.042959228923507
508 => 0.042941882669919
509 => 0.041755671149881
510 => 0.041317155759652
511 => 0.040950699477269
512 => 0.04055053878349
513 => 0.04031331011071
514 => 0.040677801170604
515 => 0.040761164588533
516 => 0.039964198515862
517 => 0.039855574985048
518 => 0.040506394683698
519 => 0.040219993199326
520 => 0.040514564228418
521 => 0.040582907233951
522 => 0.040571902435987
523 => 0.040272866393301
524 => 0.040463463049526
525 => 0.040012645137957
526 => 0.039522448369786
527 => 0.039209733372031
528 => 0.038936848060865
529 => 0.039088260691687
530 => 0.038548502309659
531 => 0.038375822740058
601 => 0.040398893190958
602 => 0.04189335708471
603 => 0.041871626987822
604 => 0.041739350611544
605 => 0.041542814747679
606 => 0.042482890010602
607 => 0.042155386586398
608 => 0.042393672691333
609 => 0.042454326505875
610 => 0.042637907334735
611 => 0.042703521701746
612 => 0.042505189512529
613 => 0.041839562461277
614 => 0.04018088313548
615 => 0.039408763431802
616 => 0.039153951068917
617 => 0.03916321301435
618 => 0.038907727212155
619 => 0.038982979230972
620 => 0.038881557631025
621 => 0.038689489657245
622 => 0.03907640103554
623 => 0.039120988967559
624 => 0.039030679228619
625 => 0.0390519504414
626 => 0.038304224374764
627 => 0.038361072363635
628 => 0.03804453553771
629 => 0.037985188698758
630 => 0.037185011166834
701 => 0.035767380681444
702 => 0.036552885583071
703 => 0.035604106120609
704 => 0.03524478896182
705 => 0.036945740506245
706 => 0.036775012148237
707 => 0.03648279941316
708 => 0.036050555875511
709 => 0.035890232542802
710 => 0.034916158725463
711 => 0.034858605247853
712 => 0.035341382533932
713 => 0.035118597427758
714 => 0.034805722763373
715 => 0.033672522444568
716 => 0.032398430096498
717 => 0.032436886935827
718 => 0.032842152006417
719 => 0.034020514856599
720 => 0.033560108105149
721 => 0.033226077724413
722 => 0.033163523875017
723 => 0.033946516265556
724 => 0.035054614540144
725 => 0.03557450945828
726 => 0.035059309383851
727 => 0.034467475278689
728 => 0.034503497478375
729 => 0.034743137034656
730 => 0.034768319763701
731 => 0.034383096602769
801 => 0.034491534666114
802 => 0.034326807332109
803 => 0.033315875987384
804 => 0.033297591445056
805 => 0.033049492589591
806 => 0.033041980254848
807 => 0.032619902210541
808 => 0.032560850574455
809 => 0.031722788999178
810 => 0.032274403665909
811 => 0.031904409508536
812 => 0.031346741040575
813 => 0.031250598786501
814 => 0.031247708634248
815 => 0.031820309458456
816 => 0.032267712491894
817 => 0.031910845715311
818 => 0.031829594067855
819 => 0.032697149091042
820 => 0.032586744806402
821 => 0.032491135407935
822 => 0.034955396493383
823 => 0.03300474155556
824 => 0.032154144663178
825 => 0.031101369484886
826 => 0.031444158391491
827 => 0.03151638905073
828 => 0.028984654523927
829 => 0.027957530141711
830 => 0.0276050597601
831 => 0.027402208072283
901 => 0.027494650133673
902 => 0.026570117720004
903 => 0.027191418792344
904 => 0.026390851870887
905 => 0.026256634221234
906 => 0.027688147048011
907 => 0.02788733369508
908 => 0.027037541576242
909 => 0.027583245685383
910 => 0.027385365789554
911 => 0.026404575292989
912 => 0.026367116310226
913 => 0.025874990115503
914 => 0.025104907915169
915 => 0.024752959685552
916 => 0.024569661991814
917 => 0.024645294192651
918 => 0.024607052237524
919 => 0.024357497612465
920 => 0.024621356416514
921 => 0.023947306206155
922 => 0.023678893981198
923 => 0.023557658406301
924 => 0.022959400047725
925 => 0.02391149514292
926 => 0.024099069870851
927 => 0.024287014178941
928 => 0.025922941065838
929 => 0.02584121478165
930 => 0.026579980588394
1001 => 0.026551273507647
1002 => 0.026340565532351
1003 => 0.025451623244356
1004 => 0.025805939796478
1005 => 0.024715408522064
1006 => 0.025532508701774
1007 => 0.025159618302674
1008 => 0.025406434082744
1009 => 0.024962637055696
1010 => 0.025208252654395
1011 => 0.024143550797407
1012 => 0.023149347184112
1013 => 0.023549443740715
1014 => 0.023984394454333
1015 => 0.024927478424839
1016 => 0.024365785392279
1017 => 0.024567791446753
1018 => 0.023891104979672
1019 => 0.022494907512151
1020 => 0.022502809838191
1021 => 0.022288035275628
1022 => 0.022102438695974
1023 => 0.024430302593902
1024 => 0.024140795920112
1025 => 0.023679504925125
1026 => 0.024296961252891
1027 => 0.024460226506302
1028 => 0.024464874438542
1029 => 0.024915354636426
1030 => 0.025155775998789
1031 => 0.025198151305952
1101 => 0.02590699163059
1102 => 0.026144585557579
1103 => 0.027123201317295
1104 => 0.025135377925923
1105 => 0.025094440011302
1106 => 0.024305650129667
1107 => 0.02380538711646
1108 => 0.024339903566175
1109 => 0.024813412171851
1110 => 0.024320363361946
1111 => 0.024384745127691
1112 => 0.023722867383961
1113 => 0.023959457533102
1114 => 0.024163240841677
1115 => 0.024050723676511
1116 => 0.023882280034365
1117 => 0.024774589866007
1118 => 0.024724242248315
1119 => 0.025555181677654
1120 => 0.026202958383872
1121 => 0.027363890045353
1122 => 0.026152397335862
1123 => 0.02610824572628
1124 => 0.026539834792078
1125 => 0.026144519483542
1126 => 0.026394345112716
1127 => 0.027323639274203
1128 => 0.027343273795473
1129 => 0.027014370266554
1130 => 0.026994356456929
1201 => 0.027057525977468
1202 => 0.02742751183233
1203 => 0.027298227406124
1204 => 0.027447838617211
1205 => 0.027634929727603
1206 => 0.028408817885171
1207 => 0.028595399699974
1208 => 0.028142102621581
1209 => 0.028183030272408
1210 => 0.028013484721806
1211 => 0.027849705844324
1212 => 0.028217856842919
1213 => 0.028890660028878
1214 => 0.028886474555177
1215 => 0.029042551816894
1216 => 0.029139786657931
1217 => 0.02872238353995
1218 => 0.028450669458482
1219 => 0.028554861926933
1220 => 0.028721467953003
1221 => 0.028500833838138
1222 => 0.027138977873533
1223 => 0.027552077977498
1224 => 0.027483317920635
1225 => 0.027385395238154
1226 => 0.0278007705871
1227 => 0.027760706621379
1228 => 0.026560635303805
1229 => 0.026637459975934
1230 => 0.026565307266568
1231 => 0.026798447431584
]
'min_raw' => 0.022102438695974
'max_raw' => 0.049512191130758
'avg_raw' => 0.035807314913366
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.0221024'
'max' => '$0.049512'
'avg' => '$0.0358073'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0053897942420117
'max_diff' => -0.03597948264355
'year' => 2034
]
9 => [
'items' => [
101 => 0.02613192914953
102 => 0.026336945684021
103 => 0.026465530132543
104 => 0.026541267360555
105 => 0.026814882161636
106 => 0.02678277662278
107 => 0.026812886436263
108 => 0.027218584954638
109 => 0.029270468841658
110 => 0.029382148354402
111 => 0.028832197588788
112 => 0.029051892072352
113 => 0.028630126705812
114 => 0.028913260621953
115 => 0.029106973656554
116 => 0.028231621702064
117 => 0.028179789040306
118 => 0.027756282898068
119 => 0.027983851110293
120 => 0.02762177372191
121 => 0.027710614848089
122 => 0.02746220731426
123 => 0.027909291417706
124 => 0.028409200915204
125 => 0.028535497796296
126 => 0.028203265076368
127 => 0.027962706691937
128 => 0.027540365413735
129 => 0.028242728371875
130 => 0.028448120704958
131 => 0.028241649533387
201 => 0.02819380565145
202 => 0.028103141581631
203 => 0.028213040462459
204 => 0.028447002094202
205 => 0.028336670109265
206 => 0.028409546329115
207 => 0.028131817328677
208 => 0.02872252171775
209 => 0.02966070244835
210 => 0.029663718852806
211 => 0.029553386273139
212 => 0.029508240558687
213 => 0.029621448480967
214 => 0.029682859134772
215 => 0.030048952796642
216 => 0.030441785881644
217 => 0.032274966482843
218 => 0.031760216705617
219 => 0.033386723591403
220 => 0.034673079362574
221 => 0.035058801212828
222 => 0.03470395526021
223 => 0.033490046424706
224 => 0.033430486265978
225 => 0.035244578565312
226 => 0.034732014400059
227 => 0.034671046523568
228 => 0.034022451324555
301 => 0.03440585141725
302 => 0.034321996192837
303 => 0.034189626618764
304 => 0.034921127287744
305 => 0.036290431238559
306 => 0.036077012376574
307 => 0.035917705096318
308 => 0.035219666967887
309 => 0.035640041833663
310 => 0.03549035439571
311 => 0.036133506623149
312 => 0.035752517491181
313 => 0.034728131222387
314 => 0.034891268112113
315 => 0.034866610299417
316 => 0.035374066337436
317 => 0.035221740630656
318 => 0.034836866260428
319 => 0.036285751106518
320 => 0.036191668583734
321 => 0.036325056090783
322 => 0.036383777396531
323 => 0.037265688070132
324 => 0.037626978655112
325 => 0.037708997943184
326 => 0.038052196055699
327 => 0.037700458861498
328 => 0.039107658422668
329 => 0.040043364018475
330 => 0.041130234218975
331 => 0.042718443705074
401 => 0.043315625163607
402 => 0.043207749678287
403 => 0.044411911984663
404 => 0.046575764882196
405 => 0.0436451262158
406 => 0.046731095847662
407 => 0.045754113491447
408 => 0.043437705900024
409 => 0.043288556559788
410 => 0.044857254674745
411 => 0.048336476112121
412 => 0.047464970603061
413 => 0.048337901582925
414 => 0.047319581226455
415 => 0.047269013037678
416 => 0.048288444036145
417 => 0.050670400130354
418 => 0.049538822076285
419 => 0.047916427461453
420 => 0.049114378397789
421 => 0.04807660243161
422 => 0.045738202724605
423 => 0.047464304179223
424 => 0.046310109293059
425 => 0.046646964721216
426 => 0.049072910698401
427 => 0.048781014460169
428 => 0.049158755221305
429 => 0.048492052665097
430 => 0.047869247348256
501 => 0.046706734974242
502 => 0.046362572371463
503 => 0.046457686533198
504 => 0.046362525237609
505 => 0.045712110248388
506 => 0.045571653193392
507 => 0.045337551948168
508 => 0.04541010971293
509 => 0.044969930883174
510 => 0.045800639280511
511 => 0.045954826079234
512 => 0.046559346375485
513 => 0.046622109678061
514 => 0.048305690098311
515 => 0.047378402294257
516 => 0.048000507011394
517 => 0.047944860110016
518 => 0.043487909476492
519 => 0.044102037949784
520 => 0.045057429130093
521 => 0.044627026698366
522 => 0.044018538358562
523 => 0.043527151399089
524 => 0.042782649908592
525 => 0.043830521459582
526 => 0.045208361120418
527 => 0.046657053965641
528 => 0.048397563497062
529 => 0.048009102031413
530 => 0.046624516350625
531 => 0.046686627852824
601 => 0.047070576719448
602 => 0.046573328051737
603 => 0.046426679712183
604 => 0.047050429489531
605 => 0.047054724911441
606 => 0.046482580224731
607 => 0.045846746106826
608 => 0.045844081938656
609 => 0.045730941398804
610 => 0.047339708677151
611 => 0.048224368015524
612 => 0.048325792782969
613 => 0.048217541320565
614 => 0.048259203012098
615 => 0.047744439235236
616 => 0.048921036580685
617 => 0.050000798658285
618 => 0.049711399355736
619 => 0.04927754866068
620 => 0.048931965684987
621 => 0.049629990989448
622 => 0.049598909021434
623 => 0.049991367878501
624 => 0.049973563677793
625 => 0.049841594525285
626 => 0.04971140406877
627 => 0.05022759451279
628 => 0.050078939954677
629 => 0.049930054494976
630 => 0.049631441912322
701 => 0.049672028321735
702 => 0.049238252537118
703 => 0.049037568010925
704 => 0.046019754246487
705 => 0.04521329579872
706 => 0.045467024043363
707 => 0.04555055796955
708 => 0.045199586219577
709 => 0.045702789551793
710 => 0.045624365845492
711 => 0.045929466610378
712 => 0.045738852898412
713 => 0.04574667575164
714 => 0.046307230035402
715 => 0.046469961328747
716 => 0.046387194879549
717 => 0.046445161663499
718 => 0.047780981733381
719 => 0.047591070836565
720 => 0.047490184457696
721 => 0.047518130674112
722 => 0.047859461342272
723 => 0.047955015293394
724 => 0.047550146488036
725 => 0.047741084957161
726 => 0.048554076724998
727 => 0.048838577832391
728 => 0.049746568798913
729 => 0.049360838098082
730 => 0.050068863493491
731 => 0.052245092175334
801 => 0.053983614229961
802 => 0.052384797501064
803 => 0.055577371854937
804 => 0.058063248937019
805 => 0.057967836834164
806 => 0.05753436666553
807 => 0.054704261698042
808 => 0.052099956912471
809 => 0.054278568450223
810 => 0.054284122179068
811 => 0.054096977515861
812 => 0.052934638085452
813 => 0.054056530623199
814 => 0.05414558237873
815 => 0.054095737076406
816 => 0.053204574160361
817 => 0.051843933101998
818 => 0.052109799107887
819 => 0.052545293049054
820 => 0.051720812164872
821 => 0.051457340565317
822 => 0.051947184396412
823 => 0.053525563283215
824 => 0.053227179897591
825 => 0.053219387901531
826 => 0.054495998559477
827 => 0.053582220838211
828 => 0.052113152529642
829 => 0.051742193407099
830 => 0.050425538430075
831 => 0.051334956712469
901 => 0.051367685057447
902 => 0.050869605958209
903 => 0.052153568903475
904 => 0.052141736958897
905 => 0.053360668682763
906 => 0.055690808328946
907 => 0.055001671376361
908 => 0.054200280078393
909 => 0.054287413532652
910 => 0.05524305246219
911 => 0.054665251350277
912 => 0.054873032658693
913 => 0.055242737960294
914 => 0.055465790348016
915 => 0.054255319726641
916 => 0.053973101121295
917 => 0.053395780900029
918 => 0.053245168830493
919 => 0.053715384104533
920 => 0.053591498992774
921 => 0.051364934366782
922 => 0.051132245974877
923 => 0.051139382195654
924 => 0.05055427617048
925 => 0.049661849040552
926 => 0.052007094253946
927 => 0.051818738241625
928 => 0.05161080778162
929 => 0.051636278076536
930 => 0.052654269535935
1001 => 0.052063783079682
1002 => 0.053633688102457
1003 => 0.053310962825439
1004 => 0.05297996086282
1005 => 0.052934206309019
1006 => 0.052806798793171
1007 => 0.05236987101508
1008 => 0.051842254467745
1009 => 0.051493876321833
1010 => 0.047500378950887
1011 => 0.048241548833829
1012 => 0.049094197224393
1013 => 0.049388528032042
1014 => 0.048885054818487
1015 => 0.052389751206256
1016 => 0.053030093008397
1017 => 0.051090455921252
1018 => 0.050727629017107
1019 => 0.052413538077688
1020 => 0.051396728820157
1021 => 0.051854597966563
1022 => 0.050864935313066
1023 => 0.052875853419658
1024 => 0.052860533592895
1025 => 0.052078241030785
1026 => 0.052739429347372
1027 => 0.05262453160632
1028 => 0.0517413252304
1029 => 0.052903852637121
1030 => 0.052904429236211
1031 => 0.052151489653688
1101 => 0.051272221060969
1102 => 0.051115028603988
1103 => 0.050996605203489
1104 => 0.051825473069527
1105 => 0.052568633406414
1106 => 0.05395147054829
1107 => 0.054299148661157
1108 => 0.055656159481922
1109 => 0.054848125609814
1110 => 0.055206316559529
1111 => 0.055595183504648
1112 => 0.055781620618247
1113 => 0.055477831346405
1114 => 0.057585827718991
1115 => 0.057763807200177
1116 => 0.057823482180702
1117 => 0.057112677664374
1118 => 0.057744038440742
1119 => 0.05744864564195
1120 => 0.058217175641922
1121 => 0.058337690959002
1122 => 0.058235618772892
1123 => 0.058273872236738
1124 => 0.056475069208779
1125 => 0.056381791782337
1126 => 0.055109947454142
1127 => 0.05562823341888
1128 => 0.054659322649895
1129 => 0.054966574235627
1130 => 0.055102007807017
1201 => 0.05503126499511
1202 => 0.055657536529696
1203 => 0.055125077786476
1204 => 0.053719831618797
1205 => 0.052314202592739
1206 => 0.052296556065317
1207 => 0.051926478754169
1208 => 0.051658980641249
1209 => 0.051710510267803
1210 => 0.051892107392893
1211 => 0.051648425886214
1212 => 0.05170042769063
1213 => 0.052564004130147
1214 => 0.052737188226346
1215 => 0.052148641000065
1216 => 0.049785538959587
1217 => 0.049205627791461
1218 => 0.049622456438972
1219 => 0.049423239192665
1220 => 0.039888411354145
1221 => 0.042128477722705
1222 => 0.040797506351973
1223 => 0.041410879194654
1224 => 0.040052302078503
1225 => 0.040700686287458
1226 => 0.040580953399264
1227 => 0.044182913831525
1228 => 0.04412667417371
1229 => 0.04415359312177
1230 => 0.042868681593936
1231 => 0.044915580546925
]
'min_raw' => 0.02613192914953
'max_raw' => 0.058337690959002
'avg_raw' => 0.042234810054266
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.026131'
'max' => '$0.058337'
'avg' => '$0.042234'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0040294904535559
'max_diff' => 0.0088254998282433
'year' => 2035
]
10 => [
'items' => [
101 => 0.045923956575273
102 => 0.045737333009485
103 => 0.045784302140347
104 => 0.044977216855962
105 => 0.044161407471524
106 => 0.043256549312017
107 => 0.044937663928531
108 => 0.044750752680758
109 => 0.045179459834605
110 => 0.046269782831969
111 => 0.046430337035065
112 => 0.046646123512206
113 => 0.046568779420878
114 => 0.048411429463489
115 => 0.048188272385132
116 => 0.048726016737298
117 => 0.04761983580613
118 => 0.046368087082856
119 => 0.046606003592401
120 => 0.046583090319328
121 => 0.046291378054479
122 => 0.046028033265109
123 => 0.045589638387743
124 => 0.046976784649963
125 => 0.046920469044944
126 => 0.047832153230482
127 => 0.04767100419506
128 => 0.046594811496657
129 => 0.046633247929419
130 => 0.046891751411664
131 => 0.047786434915253
201 => 0.048052037893817
202 => 0.047929000011697
203 => 0.048220221552455
204 => 0.048450391184212
205 => 0.04824912731445
206 => 0.051098599282339
207 => 0.049915299856779
208 => 0.050492031763452
209 => 0.050629578924892
210 => 0.050277254763169
211 => 0.050353661258065
212 => 0.050469396278308
213 => 0.051172116657982
214 => 0.053016258268028
215 => 0.053833016033621
216 => 0.056290272069526
217 => 0.053765195671006
218 => 0.053615368087323
219 => 0.054057994101412
220 => 0.055500663521456
221 => 0.056669811583353
222 => 0.057057685445255
223 => 0.057108949379204
224 => 0.057836626529498
225 => 0.05825371750167
226 => 0.057748267383643
227 => 0.057319951331448
228 => 0.055785776397031
229 => 0.05596336132311
301 => 0.057186745361292
302 => 0.058914847372185
303 => 0.060397738675901
304 => 0.059878481825319
305 => 0.063840045057049
306 => 0.064232817869941
307 => 0.064178549367065
308 => 0.065073344287263
309 => 0.063297358592486
310 => 0.062538090299867
311 => 0.057412558123526
312 => 0.058852623597337
313 => 0.060945843335602
314 => 0.060668797854071
315 => 0.05914864572822
316 => 0.060396585504198
317 => 0.059983977587575
318 => 0.059658536604616
319 => 0.06114944483739
320 => 0.05951012999232
321 => 0.060929489916012
322 => 0.059109146132479
323 => 0.059880853746874
324 => 0.059442795181646
325 => 0.059726272759787
326 => 0.058069068630373
327 => 0.058963255752249
328 => 0.058031867506289
329 => 0.05803142590699
330 => 0.058010865459838
331 => 0.059106639600802
401 => 0.059142372756199
402 => 0.058332594010404
403 => 0.058215892242014
404 => 0.058647399845626
405 => 0.058142217453816
406 => 0.058378589115364
407 => 0.058149376910649
408 => 0.05809777641542
409 => 0.057686614890334
410 => 0.057509475200206
411 => 0.057578936237033
412 => 0.057341829908724
413 => 0.057198964769407
414 => 0.057982445987765
415 => 0.057563863578338
416 => 0.057918292230203
417 => 0.057514376048941
418 => 0.056114226586784
419 => 0.055308985824785
420 => 0.052664233284694
421 => 0.053414281824258
422 => 0.053911564781971
423 => 0.053747212767413
424 => 0.05410030449047
425 => 0.054121981454573
426 => 0.054007187736063
427 => 0.053874271316015
428 => 0.053809574953475
429 => 0.054291768635115
430 => 0.0545716982972
501 => 0.053961473779565
502 => 0.053818506713031
503 => 0.05443547739178
504 => 0.054811829149404
505 => 0.057590599073914
506 => 0.057384738822598
507 => 0.057901407655368
508 => 0.057843238673727
509 => 0.05838478992227
510 => 0.059269997337003
511 => 0.057470123154965
512 => 0.057782519078
513 => 0.057705926811947
514 => 0.058542141089142
515 => 0.05854475165884
516 => 0.05804339942766
517 => 0.058315190605693
518 => 0.058163484226316
519 => 0.058437638158198
520 => 0.057381989433434
521 => 0.058667655629958
522 => 0.059396545516888
523 => 0.059406666153675
524 => 0.059752154175251
525 => 0.06010319001449
526 => 0.060776972739131
527 => 0.060084398579996
528 => 0.058838525088448
529 => 0.058928473130391
530 => 0.058198017958144
531 => 0.058210297041557
601 => 0.05814475033197
602 => 0.058341460941568
603 => 0.057425156350244
604 => 0.057640211206344
605 => 0.057339133148444
606 => 0.057781864593102
607 => 0.05730555874478
608 => 0.057705889876837
609 => 0.057878659522246
610 => 0.058516183233269
611 => 0.057211395974307
612 => 0.054550846426953
613 => 0.055110126197852
614 => 0.054282907486214
615 => 0.05435946972742
616 => 0.054514137639446
617 => 0.054012808332378
618 => 0.054108446165464
619 => 0.054105029309073
620 => 0.054075584686631
621 => 0.053945169571607
622 => 0.053756041852976
623 => 0.054509468473557
624 => 0.054637490337875
625 => 0.054922067083701
626 => 0.055768774449026
627 => 0.055684168416496
628 => 0.055822164365824
629 => 0.055520919983255
630 => 0.054373443590338
701 => 0.054435757079148
702 => 0.053658706875171
703 => 0.054902196162938
704 => 0.054607721486338
705 => 0.054417871746663
706 => 0.054366069486247
707 => 0.05521487567536
708 => 0.055468851790549
709 => 0.055310590919266
710 => 0.054985993255058
711 => 0.055609316729023
712 => 0.05577609179475
713 => 0.055813426581538
714 => 0.056917836266983
715 => 0.055875150814493
716 => 0.05612613556631
717 => 0.058084246953223
718 => 0.056308510126194
719 => 0.057249157527128
720 => 0.057203117731745
721 => 0.057684321112291
722 => 0.057163645009266
723 => 0.057170099413588
724 => 0.057597375415972
725 => 0.056997343330257
726 => 0.056848766947563
727 => 0.056643509738997
728 => 0.057091681344717
729 => 0.057360339953288
730 => 0.059525531030366
731 => 0.060924343210868
801 => 0.060863617085007
802 => 0.061418540200826
803 => 0.061168542254636
804 => 0.060361232940265
805 => 0.061739211499014
806 => 0.061303161425954
807 => 0.061339108864176
808 => 0.06133777089873
809 => 0.061627706077156
810 => 0.061422260431073
811 => 0.061017305974079
812 => 0.061286133641065
813 => 0.062084455704362
814 => 0.064562471884351
815 => 0.06594920256802
816 => 0.064478988955964
817 => 0.065493122618616
818 => 0.064885003793796
819 => 0.064774490513358
820 => 0.065411441397393
821 => 0.066049507179631
822 => 0.066008865147737
823 => 0.065545662154872
824 => 0.065284010537544
825 => 0.067265324243677
826 => 0.068725122431558
827 => 0.068625573981756
828 => 0.069064948464293
829 => 0.070354965534362
830 => 0.070472908528229
831 => 0.070458050421891
901 => 0.070165716405513
902 => 0.071435905740881
903 => 0.072495520031301
904 => 0.070098049527063
905 => 0.071010974909883
906 => 0.07142081652685
907 => 0.072022585615086
908 => 0.073037870935149
909 => 0.074140740083868
910 => 0.074296697873842
911 => 0.074186038358588
912 => 0.073458666508294
913 => 0.074665439090788
914 => 0.075372338167314
915 => 0.075793280390287
916 => 0.07686071982964
917 => 0.07142334756915
918 => 0.067574505228239
919 => 0.066973452918748
920 => 0.068195716425312
921 => 0.068518017564624
922 => 0.068388098379498
923 => 0.064055876403366
924 => 0.066950644666618
925 => 0.070065171918848
926 => 0.070184813594917
927 => 0.071744011059077
928 => 0.072251749667071
929 => 0.073507107994404
930 => 0.073428584989232
1001 => 0.073734244764823
1002 => 0.073663978875704
1003 => 0.075989265830204
1004 => 0.078554402649471
1005 => 0.078465580118056
1006 => 0.078096811350965
1007 => 0.078644495854513
1008 => 0.081291991948765
1009 => 0.081048252933666
1010 => 0.081285024625194
1011 => 0.084406571726658
1012 => 0.088465026993459
1013 => 0.086579467059783
1014 => 0.090670589560604
1015 => 0.093245734313785
1016 => 0.097699180889475
1017 => 0.097141587444512
1018 => 0.098875281515528
1019 => 0.096143378804764
1020 => 0.089870377972221
1021 => 0.088877651578388
1022 => 0.090865114958677
1023 => 0.095751099745277
1024 => 0.090711237910003
1025 => 0.091730795395349
1026 => 0.09143716277098
1027 => 0.091421516336286
1028 => 0.092018677109919
1029 => 0.091152464261953
1030 => 0.087623357290625
1031 => 0.089240726218427
1101 => 0.088616182402967
1102 => 0.089309160329045
1103 => 0.093048876390252
1104 => 0.091395458775896
1105 => 0.089653717631913
1106 => 0.091838247549769
1107 => 0.094619904821124
1108 => 0.094445833708201
1109 => 0.09410806299305
1110 => 0.096012058829255
1111 => 0.099156902132228
1112 => 0.10000694064002
1113 => 0.1006344216882
1114 => 0.10072094072336
1115 => 0.10161214055684
1116 => 0.09681993444096
1117 => 0.10442528861944
1118 => 0.10573852319239
1119 => 0.10549168952067
1120 => 0.10695129447915
1121 => 0.10652184167376
1122 => 0.10589963193784
1123 => 0.1082134162639
1124 => 0.10556084924683
1125 => 0.101795864315
1126 => 0.099730319118444
1127 => 0.10245039565605
1128 => 0.10411145147998
1129 => 0.1052093037166
1130 => 0.10554151314007
1201 => 0.097191939760074
1202 => 0.092691982796828
1203 => 0.095576403618157
1204 => 0.099095596092271
1205 => 0.096800385149078
1206 => 0.096890353072642
1207 => 0.093617985438475
1208 => 0.099385128016654
1209 => 0.098544903852317
1210 => 0.10290398830323
1211 => 0.10186365781518
1212 => 0.10541832196621
1213 => 0.10448225976548
1214 => 0.1083678016262
1215 => 0.10991784947129
1216 => 0.11252062104887
1217 => 0.11443523041653
1218 => 0.11555952565786
1219 => 0.1154920271887
1220 => 0.11994704505651
1221 => 0.11732007666633
1222 => 0.11401998523935
1223 => 0.11396029699709
1224 => 0.11566946110978
1225 => 0.1192514002037
1226 => 0.12018014489566
1227 => 0.12069918647679
1228 => 0.11990425622733
1229 => 0.11705287031631
1230 => 0.11582165633678
1231 => 0.11687068631904
]
'min_raw' => 0.043256549312017
'max_raw' => 0.12069918647679
'avg_raw' => 0.081977867894403
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.043256'
'max' => '$0.120699'
'avg' => '$0.081977'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.017124620162487
'max_diff' => 0.062361495517788
'year' => 2036
]
11 => [
'items' => [
101 => 0.11558781279491
102 => 0.11780241240829
103 => 0.12084353069042
104 => 0.12021555179104
105 => 0.12231479109979
106 => 0.12448728293793
107 => 0.12759404383918
108 => 0.12840626618179
109 => 0.12974883882808
110 => 0.13113078709324
111 => 0.13157463163146
112 => 0.1324220685718
113 => 0.13241760216082
114 => 0.13497141041961
115 => 0.13778834001391
116 => 0.13885166572369
117 => 0.14129672456121
118 => 0.13710964698704
119 => 0.14028559342473
120 => 0.14315037661062
121 => 0.13973486399525
122 => 0.14444235242316
123 => 0.14462513353142
124 => 0.14738491125838
125 => 0.14458734782266
126 => 0.14292616358468
127 => 0.14772194023598
128 => 0.150042465492
129 => 0.14934350439983
130 => 0.14402437597642
131 => 0.14092841508585
201 => 0.13282568826896
202 => 0.14242371819531
203 => 0.14709863859407
204 => 0.14401226906197
205 => 0.14556885433056
206 => 0.15406107883157
207 => 0.15729436809073
208 => 0.15662186652722
209 => 0.15673550822114
210 => 0.15848013241703
211 => 0.16621675688371
212 => 0.16158079216973
213 => 0.16512481348729
214 => 0.1670045496152
215 => 0.16875055328964
216 => 0.16446292009535
217 => 0.15888477230741
218 => 0.15711793874825
219 => 0.14370539043769
220 => 0.14300720905038
221 => 0.14261529868063
222 => 0.14014435923612
223 => 0.13820287768002
224 => 0.13665893946402
225 => 0.13260718452625
226 => 0.13397453287724
227 => 0.12751688117341
228 => 0.13164825788839
301 => 0.12134168984364
302 => 0.12992530597263
303 => 0.12525363396276
304 => 0.12839053607317
305 => 0.12837959171722
306 => 0.12260356037623
307 => 0.11927206604144
308 => 0.12139502389526
309 => 0.12367100323517
310 => 0.12404027322576
311 => 0.12699113984908
312 => 0.12781466329499
313 => 0.12531934880726
314 => 0.12112810912945
315 => 0.1221016385146
316 => 0.11925233749952
317 => 0.11425904706737
318 => 0.11784531543023
319 => 0.1190698251264
320 => 0.119610638367
321 => 0.11470031071026
322 => 0.11315737915211
323 => 0.112335935337
324 => 0.12049424749022
325 => 0.12094117824632
326 => 0.11865461730846
327 => 0.12899008956817
328 => 0.12665085388108
329 => 0.12926435327022
330 => 0.12201330092695
331 => 0.1222903008913
401 => 0.11885753650873
402 => 0.12077965518557
403 => 0.11942116365756
404 => 0.12062436699123
405 => 0.12134556210844
406 => 0.12477776320815
407 => 0.12996449619597
408 => 0.12426510681768
409 => 0.1217818012488
410 => 0.12332243005709
411 => 0.12742532759527
412 => 0.13364142738906
413 => 0.12996137120047
414 => 0.13159451764556
415 => 0.13195128749019
416 => 0.1292377502998
417 => 0.13374147937582
418 => 0.13615506437589
419 => 0.13863090316492
420 => 0.14078060461401
421 => 0.13764199870772
422 => 0.14100075692893
423 => 0.13829419070328
424 => 0.13586612099919
425 => 0.13586980337867
426 => 0.13434663978486
427 => 0.13139531839088
428 => 0.13085104944444
429 => 0.13368240523743
430 => 0.13595288445301
501 => 0.13613989199607
502 => 0.13739694595125
503 => 0.13814085753324
504 => 0.1454322023355
505 => 0.14836484153214
506 => 0.15195081722977
507 => 0.15334775685851
508 => 0.15755204431045
509 => 0.15415674073748
510 => 0.153422145452
511 => 0.14322391930554
512 => 0.1448938782657
513 => 0.14756764368801
514 => 0.14326800871254
515 => 0.14599513746493
516 => 0.14653353044913
517 => 0.14312190876135
518 => 0.14494420331227
519 => 0.14010472925771
520 => 0.1300699835056
521 => 0.13375265091643
522 => 0.13646433370324
523 => 0.13259442801838
524 => 0.13953108417246
525 => 0.1354788328489
526 => 0.13419446372169
527 => 0.12918368184582
528 => 0.13154857800855
529 => 0.1347471339307
530 => 0.13277079824285
531 => 0.13687199154343
601 => 0.14268037500535
602 => 0.14681977495553
603 => 0.14713754668458
604 => 0.14447618983487
605 => 0.14874103117108
606 => 0.14877209588418
607 => 0.14396133743454
608 => 0.14101477467056
609 => 0.14034530941096
610 => 0.14201776488583
611 => 0.14404843458464
612 => 0.14725023472012
613 => 0.14918501548495
614 => 0.15422989759121
615 => 0.15559489804106
616 => 0.15709461969316
617 => 0.1590987103174
618 => 0.1615051349501
619 => 0.1562400148516
620 => 0.15644920788852
621 => 0.15154640095335
622 => 0.14630704860948
623 => 0.15028306394399
624 => 0.1554811750867
625 => 0.15428872264716
626 => 0.15415454738812
627 => 0.15438019295671
628 => 0.15348112275915
629 => 0.1494146615767
630 => 0.14737251022826
701 => 0.15000740647612
702 => 0.15140773656611
703 => 0.15357952641408
704 => 0.15331180747439
705 => 0.15890610488955
706 => 0.16107987970231
707 => 0.16052373508413
708 => 0.16062607907825
709 => 0.16456159454372
710 => 0.16893869714182
711 => 0.1730384313345
712 => 0.17720885704297
713 => 0.17218124607692
714 => 0.1696285352883
715 => 0.17226228122288
716 => 0.17086477855733
717 => 0.17889524339978
718 => 0.17945125536202
719 => 0.18748113951046
720 => 0.19510245574814
721 => 0.19031564356931
722 => 0.19482939185119
723 => 0.19971137862934
724 => 0.20912952319819
725 => 0.20595782344172
726 => 0.20352835113514
727 => 0.20123251154454
728 => 0.2060097892783
729 => 0.21215568076391
730 => 0.21347944692529
731 => 0.21562445382433
801 => 0.21336924134896
802 => 0.21608539637204
803 => 0.2256746171425
804 => 0.22308352504393
805 => 0.21940375772511
806 => 0.22697352656484
807 => 0.22971299648121
808 => 0.24894003102579
809 => 0.27321495636752
810 => 0.26316497787829
811 => 0.25692663191925
812 => 0.25839279119517
813 => 0.26725717217188
814 => 0.27010413000021
815 => 0.26236511721759
816 => 0.26509866736534
817 => 0.28016079743614
818 => 0.28824114696814
819 => 0.27726694696796
820 => 0.24698956441055
821 => 0.21907243493926
822 => 0.22647731479977
823 => 0.22563783122377
824 => 0.24182021094585
825 => 0.22302172835431
826 => 0.22333824658975
827 => 0.23985526078705
828 => 0.23544880457252
829 => 0.22831090984126
830 => 0.21912454947007
831 => 0.20214271268844
901 => 0.1871014262774
902 => 0.21660085273083
903 => 0.21532878382093
904 => 0.21348663952935
905 => 0.21758613230944
906 => 0.23749210558821
907 => 0.23703320847479
908 => 0.23411393917055
909 => 0.23632817920856
910 => 0.2279227428569
911 => 0.23008901519295
912 => 0.21906801272332
913 => 0.22404996611731
914 => 0.22829559512495
915 => 0.22914796800585
916 => 0.23106840762975
917 => 0.21465846130868
918 => 0.22202604543612
919 => 0.22635381086172
920 => 0.20680080922341
921 => 0.22596731088703
922 => 0.21437280065206
923 => 0.21043744973461
924 => 0.2157358813019
925 => 0.21367107736723
926 => 0.21189588019356
927 => 0.2109052896689
928 => 0.21479587304536
929 => 0.21461437268059
930 => 0.20824862314701
1001 => 0.1999447623816
1002 => 0.20273181061941
1003 => 0.2017192498659
1004 => 0.19804959907223
1005 => 0.20052250063183
1006 => 0.18963309367017
1007 => 0.17089843497474
1008 => 0.18327512436706
1009 => 0.1827986352887
1010 => 0.18255836788833
1011 => 0.19185910790009
1012 => 0.19096505635254
1013 => 0.18934234403916
1014 => 0.19801979668805
1015 => 0.19485240974299
1016 => 0.20461354997743
1017 => 0.21104286824679
1018 => 0.20941218516702
1019 => 0.21545899007495
1020 => 0.20279601858176
1021 => 0.20700214976156
1022 => 0.20786902756828
1023 => 0.19791271826932
1024 => 0.19111133424264
1025 => 0.19065775946951
1026 => 0.17886509685569
1027 => 0.18516464203695
1028 => 0.19070798110356
1029 => 0.18805315187114
1030 => 0.18721271224693
1031 => 0.19150633601793
1101 => 0.19183998735734
1102 => 0.18423270146005
1103 => 0.18581449708951
1104 => 0.192410847816
1105 => 0.1856482859757
1106 => 0.17250973297819
1107 => 0.1692511901801
1108 => 0.16881644050398
1109 => 0.15997901399727
1110 => 0.1694689415912
1111 => 0.1653263338822
1112 => 0.17841278199886
1113 => 0.17093787301865
1114 => 0.17061564463243
1115 => 0.17012854916602
1116 => 0.16252181110221
1117 => 0.16418720330476
1118 => 0.16972322063244
1119 => 0.17169853398265
1120 => 0.17149249261696
1121 => 0.16969609112737
1122 => 0.17051847453024
1123 => 0.16786929105222
1124 => 0.16693380922815
1125 => 0.16398117126682
1126 => 0.15964160915073
1127 => 0.16024505187905
1128 => 0.15164724381888
1129 => 0.14696270166748
1130 => 0.14566608214125
1201 => 0.14393218832131
1202 => 0.14586193006193
1203 => 0.1516228873089
1204 => 0.14467395061379
1205 => 0.13276048606126
1206 => 0.13347650558042
1207 => 0.13508518885188
1208 => 0.13208741821803
1209 => 0.1292502798969
1210 => 0.13171694148281
1211 => 0.12666904949948
1212 => 0.13569520248148
1213 => 0.13545107033881
1214 => 0.13881546199695
1215 => 0.14091928514505
1216 => 0.13607065390951
1217 => 0.13485123626587
1218 => 0.13554587197513
1219 => 0.12406509102121
1220 => 0.13787723725792
1221 => 0.13799668527214
1222 => 0.13697389885542
1223 => 0.1443284403243
1224 => 0.15984881676264
1225 => 0.15400942684084
1226 => 0.15174823856663
1227 => 0.14744971800442
1228 => 0.15317724143266
1229 => 0.15273745699666
1230 => 0.15074858499375
1231 => 0.14954570900073
]
'min_raw' => 0.112335935337
'max_raw' => 0.28824114696814
'avg_raw' => 0.20028854115257
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.112335'
'max' => '$0.288241'
'avg' => '$0.200288'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.069079386024987
'max_diff' => 0.16754196049135
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0035260966468305
]
1 => [
'year' => 2028
'avg' => 0.0060518054791317
]
2 => [
'year' => 2029
'avg' => 0.016532441837173
]
3 => [
'year' => 2030
'avg' => 0.012754754256528
]
4 => [
'year' => 2031
'avg' => 0.012526749359204
]
5 => [
'year' => 2032
'avg' => 0.021963333939794
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0035260966468305
'min' => '$0.003526'
'max_raw' => 0.021963333939794
'max' => '$0.021963'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.021963333939794
]
1 => [
'year' => 2033
'avg' => 0.056491953356147
]
2 => [
'year' => 2034
'avg' => 0.035807314913366
]
3 => [
'year' => 2035
'avg' => 0.042234810054266
]
4 => [
'year' => 2036
'avg' => 0.081977867894403
]
5 => [
'year' => 2037
'avg' => 0.20028854115257
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.021963333939794
'min' => '$0.021963'
'max_raw' => 0.20028854115257
'max' => '$0.200288'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.20028854115257
]
]
]
]
'prediction_2025_max_price' => '$0.006028'
'last_price' => 0.00584586
'sma_50day_nextmonth' => '$0.005349'
'sma_200day_nextmonth' => '$0.011654'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'augmenter'
'sma_200day_date_nextmonth' => '4 févr. 2026'
'sma_50day_date_nextmonth' => '4 févr. 2026'
'daily_sma3' => '$0.005698'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.005599'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.005416'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.005287'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.0051026'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.007682'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.012795'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.005711'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.005621'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.005481'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.005351'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.005845'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.007792'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.011485'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.009694'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.012926'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.05840034'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.073682'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.005627'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.005599'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.006427'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.009066'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.019535'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.041913'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.069775'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '66.93'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 113.93
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.005426'
'vwma_10_action' => 'BUY'
'hma_9' => '0.005784'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 243.46
'cci_20_action' => 'SELL'
'adx_14' => 13.88
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000421'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 86.45
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.003951'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 14
'buy_signals' => 21
'sell_pct' => 40
'buy_pct' => 60
'overall_action' => 'bullish'
'overall_action_label' => 'Haussier'
'overall_action_dir' => 1
'last_updated' => 1767706400
'last_updated_date' => '6 janvier 2026'
]
Prévision du prix de Wicrypt pour 2026
La prévision du prix de Wicrypt pour 2026 suggère que le prix moyen pourrait varier entre $0.002019 à la baisse et $0.006028 à la hausse. Sur le marché des cryptomonnaies, comparé au prix moyen d'aujourd'hui, Wicrypt pourrait potentiellement gagner 3.13% d'ici 2026 si WNT atteint l'objectif de prix prévu.
Prévision du prix de Wicrypt de 2027 à 2032
La prévision du prix de WNT pour 2027-2032 se situe actuellement dans une fourchette de prix comprise entre $0.003526 à la baisse et $0.021963 à la hausse. Compte tenu de la volatilité des prix sur le marché, si Wicrypt atteint l'objectif de prix le plus élevé, il pourrait gagner 275.71% d'ici 2032 par rapport au prix actuel.
| Prévision du Prix de Wicrypt | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2027 | $0.001944 | $0.003526 | $0.0051078 |
| 2028 | $0.0035089 | $0.006051 | $0.008594 |
| 2029 | $0.0077082 | $0.016532 | $0.025356 |
| 2030 | $0.006555 | $0.012754 | $0.018953 |
| 2031 | $0.00775 | $0.012526 | $0.0173028 |
| 2032 | $0.01183 | $0.021963 | $0.032095 |
Prévision du prix de Wicrypt de 2032 à 2037
La prévision du prix de Wicrypt pour 2032-2037 est actuellement estimée entre $0.021963 à la baisse et $0.200288 à la hausse. Par rapport au prix actuel, Wicrypt pourrait potentiellement gagner 3326.16% d'ici 2037 s'il atteint l'objectif de prix le plus élevé. Veuillez noter que ces informations sont à titre général seulement et ne doivent pas être considérées comme un conseil en investissement à long terme.
| Prévision du Prix de Wicrypt | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2032 | $0.01183 | $0.021963 | $0.032095 |
| 2033 | $0.027492 | $0.056491 | $0.085491 |
| 2034 | $0.0221024 | $0.0358073 | $0.049512 |
| 2035 | $0.026131 | $0.042234 | $0.058337 |
| 2036 | $0.043256 | $0.081977 | $0.120699 |
| 2037 | $0.112335 | $0.200288 | $0.288241 |
Wicrypt Histogramme des prix potentiels
Prévision du prix de Wicrypt basée sur l'analyse technique
Au 6 janvier 2026, le sentiment global de prévision du prix pour Wicrypt est Haussier, avec 21 indicateurs techniques montrant des signaux haussiers et 14 indiquant des signaux baissiers. La prévision du prix de WNT a été mise à jour pour la dernière fois le 6 janvier 2026.
Moyennes Mobiles Simples sur 50 et 200 jours de Wicrypt et Indice de Force Relative sur 14 jours - RSI (14)
Selon nos indicateurs techniques, le SMA sur 200 jours de Wicrypt devrait augmenter au cours du prochain mois, atteignant $0.011654 d'ici le 4 févr. 2026. Le SMA à court terme sur 50 jours pour Wicrypt devrait atteindre $0.005349 d'ici le 4 févr. 2026.
Le Relative Strength Index (RSI), un oscillateur de momentum, est un outil couramment utilisé pour identifier si une cryptomonnaie est survendue (en dessous de 30) ou surachetée (au-dessus de 70). Actuellement, le RSI est à 66.93, ce qui suggère que le marché de WNT est dans un état NEUTRAL.
Moyennes Mobiles et Oscillateurs Populaires de WNT pour le Samedi 19 Octobre 2024
Les moyennes mobiles (MA) sont des indicateurs largement utilisés sur les marchés financiers, conçus pour lisser les mouvements de prix sur une période donnée. En tant qu'indicateurs retardés, ils sont basés sur des données historiques de prix. Le tableau ci-dessous met en évidence deux types : la moyenne mobile simple (SMA) et la moyenne mobile exponentielle (EMA).
Moyenne Mobile Simple Quotidienne (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 3 | $0.005698 | BUY |
| SMA 5 | $0.005599 | BUY |
| SMA 10 | $0.005416 | BUY |
| SMA 21 | $0.005287 | BUY |
| SMA 50 | $0.0051026 | BUY |
| SMA 100 | $0.007682 | SELL |
| SMA 200 | $0.012795 | SELL |
Moyenne Mobile Exponentielle Quotidienne (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 3 | $0.005711 | BUY |
| EMA 5 | $0.005621 | BUY |
| EMA 10 | $0.005481 | BUY |
| EMA 21 | $0.005351 | BUY |
| EMA 50 | $0.005845 | BUY |
| EMA 100 | $0.007792 | SELL |
| EMA 200 | $0.011485 | SELL |
Moyenne Mobile Simple Hebdomadaire (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 21 | $0.009694 | SELL |
| SMA 50 | $0.012926 | SELL |
| SMA 100 | $0.05840034 | SELL |
| SMA 200 | $0.073682 | SELL |
Moyenne Mobile Exponentielle Hebdomadaire (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 21 | $0.009066 | SELL |
| EMA 50 | $0.019535 | SELL |
| EMA 100 | $0.041913 | SELL |
| EMA 200 | $0.069775 | SELL |
Oscillateurs de Wicrypt
Un oscillateur est un outil d'analyse technique qui établit des limites hautes et basses entre deux extrêmes, créant un indicateur de tendance qui fluctue à l'intérieur de ces limites. Les traders utilisent cet indicateur pour identifier les conditions de surachat ou de survente à court terme.
| Période | Valeur | Action |
|---|---|---|
| RSI (14) | 66.93 | NEUTRAL |
| Stoch RSI (14) | 113.93 | SELL |
| Stochastique Rapide (14) | 100 | SELL |
| Indice de Canal des Matières Premières (20) | 243.46 | SELL |
| Indice Directionnel Moyen (14) | 13.88 | NEUTRAL |
| Oscillateur Impressionnant (5, 34) | 0.000421 | BUY |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Plage de Pourcentage de Williams (14) | -0 | SELL |
| Oscillateur Ultime (7, 14, 28) | 86.45 | SELL |
| VWMA (10) | 0.005426 | BUY |
| Moyenne Mobile de Hull (9) | 0.005784 | BUY |
| Nuage Ichimoku B/L (9, 26, 52, 26) | -0.003951 | NEUTRAL |
Prévision du cours de Wicrypt basée sur les flux monétaires mondiaux
Définitions des flux monétaires mondiaux utilisés pour la prédiction du cours de Wicrypt
M0 : le total de toutes les devises physiques, plus les comptes à la banque centrale qui peuvent être échangés contre des devises physiques.
M1 : M0 plus le montant des comptes à vue, y compris les comptes de "chèques" et les comptes "courants".
M2 : M1 plus la plupart des comptes d'épargne, comptes du marché monétaire et comptes de certificats de dépôt (CD) de moins de 100 000 $.
Prédictions du cours de Wicrypt par des sociétés Internet ou des niches technologiques
| Comparaison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Action Facebook | $0.008214 | $0.011542 | $0.016219 | $0.02279 | $0.032024 | $0.04500036 |
| Action Amazon.com | $0.012197 | $0.025451 | $0.0531056 | $0.110808 | $0.2312076 | $0.482428 |
| Action Apple | $0.008291 | $0.011761 | $0.016682 | $0.023663 | $0.033564 | $0.0476084 |
| Action Netflix | $0.009223 | $0.014553 | $0.022963 | $0.036232 | $0.057169 | $0.0902052 |
| Action Google | $0.00757 | $0.0098035 | $0.012695 | $0.01644 | $0.02129 | $0.027571 |
| Action Tesla | $0.013252 | $0.030041 | $0.0681019 | $0.154381 | $0.349972 | $0.79336 |
| Action Kodak | $0.004383 | $0.003287 | $0.002465 | $0.001848 | $0.001386 | $0.001039 |
| Action Nokia | $0.003872 | $0.002565 | $0.001699 | $0.001125 | $0.000745 | $0.000494 |
Ce calcul montre la valeur potentielle des cryptomonnaies si l'on suppose que leur capitalisation se comportera comme celle de certaines sociétés Internet ou niches technologiques. En extrapolant les données, vous pourrez obtenir une potentielle image des cours futurs pour 2024, 2025, 2026, 2027, 2028, 2029 et 2030.
Aperçu des prévisions relatives à Wicrypt
Vous vous posez peut-être des questions telles que : "Devrais-je investir dans Wicrypt maintenant ?", "Devrais-je acheter WNT aujourd'hui ?", " Wicrypt sera-t-il un bon ou un mauvais investissement à court ou à long terme ?".
Nous mettons régulièrement à jour les prévisions de Wicrypt avec de nouvelles valeurs. Regardez nos prévisions similaires. Nous faisons une prévision des cours futurs pour une grande quantité de devises numériques comme Wicrypt en utilisant des méthodes d'analyse technique.
Si vous souhaitez trouver des cryptomonnaies ayant un bon rendement, vous devriez consulter un maximum d'informations disponibles à propos de Wicrypt afin de prendre une décision responsable concernant cet investissement.
Le cours de Wicrypt est de $0.005845 USD actuellement, mais ce cours peut subir une hausse ou une baisse, ce qui pourrait causer la perte de votre investissement, car les cryptomonnaies sont des actifs à haut risque.
Prévision du cours de Wicrypt basée sur le modèle de croissance du Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Wicrypt présente 1 % de la précédente croissance annuelle moyenne du Bitcoin | $0.005997 | $0.006153 | $0.006313 | $0.006477 |
| Si Wicrypt présente 2 % de la précédente croissance annuelle moyenne du Bitcoin | $0.006149 | $0.006469 | $0.0068057 | $0.007159 |
| Si Wicrypt présente 5 % de la précédente croissance annuelle moyenne du Bitcoin | $0.0066056 | $0.007464 | $0.008434 | $0.00953 |
| Si Wicrypt présente 10 % de la précédente croissance annuelle moyenne du Bitcoin | $0.007365 | $0.009279 | $0.011692 | $0.014731 |
| Si Wicrypt présente 20 % de la précédente croissance annuelle moyenne du Bitcoin | $0.008884 | $0.0135038 | $0.020524 | $0.031193 |
| Si Wicrypt présente 50 % de la précédente croissance annuelle moyenne du Bitcoin | $0.013443 | $0.030915 | $0.071095 | $0.163494 |
| Si Wicrypt présente 100 % de la précédente croissance annuelle moyenne du Bitcoin | $0.021041 | $0.075733 | $0.27259 | $0.981139 |
Boîte à questions
Est-ce que WNT est un bon investissement ?
La décision d'acquérir Wicrypt dépend entièrement de votre tolérance individuelle au risque. Comme vous pouvez le discerner, la valeur de Wicrypt a connu une hausse de 3.4622% au cours des 24 heures précédentes, et Wicrypt a enregistré une déclin de sur une période de 30 jours précédents. Par conséquent, la détermination de si investir ou non dans Wicrypt dépendra de la mesure dans laquelle cet investissement s'aligne avec vos aspirations de trading.
Est-ce que Wicrypt peut monter ?
Il semble que la valeur moyenne de Wicrypt pourrait potentiellement s'envoler jusqu'à $0.006028 pour la fin de cette année. En regardant les perspectives de Wicrypt sur une période de cinq ans plus longue, la monnaie numérique pourrait potentiellement croître jusqu'à $0.018953. Cependant, compte tenu de l'imprévisibilité du marché, il est essentiel de mener des recherches approfondies avant d'investir des fonds dans un projet, un réseau ou un actif particulier.
Quel sera le prix de Wicrypt la semaine prochaine ?
Basé sur notre nouveau pronostic expérimental de Wicrypt, le prix de Wicrypt va augmenter de 0.86% durant la prochaine semaine et atteindre $0.005895 d'ici 13 janvier 2026.
Quel sera le prix de Wicrypt le mois prochain ?
Basé sur notre nouveau pronostic expérimental de Wicrypt, le prix de Wicrypt va diminuer de -11.62% durant le prochain mois et atteindre $0.005166 d'ici 5 février 2026.
Jusqu'où le prix de Wicrypt peut-il monter cette année en 2026 ?
Selon notre prédiction la plus récente sur la valeur de Wicrypt en 2026, WNT devrait fluctuer dans la fourchette de $0.002019 et $0.006028. Cependant, il est crucial de garder à l'esprit que le marché des cryptomonnaies est exceptionnellement instable, et cette prévision de prix de Wicrypt ne prend pas en compte les fluctuations de prix soudaines et extrêmes.
Où sera Wicrypt dans 5 ans ?
L'avenir de Wicrypt semble suivre une tendance haussière, avec un prix maximum de $0.018953 prévue après une période de cinq ans. Selon la prévision de Wicrypt pour 2030, la valeur de Wicrypt pourrait potentiellement atteindre son point le plus élevé d'environ $0.018953, tandis que son point le plus bas devrait être autour de $0.006555.
Combien vaudra Wicrypt en 2026 ?
Basé sur notre nouvelle simulation expérimentale de prédiction de prix de Wicrypt, il est attendu que la valeur de WNT en 2026 augmente de 3.13% jusqu'à $0.006028 si le meilleur scénario se produit. Le prix sera entre $0.006028 et $0.002019 durant 2026.
Combien vaudra Wicrypt en 2027 ?
Selon notre dernière simulation expérimentale pour la prédiction de prix de Wicrypt, le valeur de WNT pourrait diminuer de -12.62% jusqu'à $0.0051078 en 2027, en supposant les conditions les plus favorables. Il est prévu que le prix fluctue entre $0.0051078 et $0.001944 tout au long de l'année.
Combien vaudra Wicrypt en 2028 ?
Notre nouveau modèle expérimental de prédiction de prix de Wicrypt suggère que la valeur de WNT en 2028 pourrait augmenter de 47.02%, atteignant $0.008594 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.008594 et $0.0035089 durant l'année.
Combien vaudra Wicrypt en 2029 ?
Basé sur notre modèle de prévision expérimental, la valeur de Wicrypt pourrait connaître un 333.75% croissance en 2029, atteignant potentiellement $0.025356 sous des conditions optimales. Le range de prix prévu pour 2029 se situe entre $0.025356 et $0.0077082.
Combien vaudra Wicrypt en 2030 ?
En utilisant notre nouvelle simulation expérimentale pour les prédictions de prix de Wicrypt, il est prévu que la valeur de WNT en 2030 augmente de 224.23%, atteignant $0.018953 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.018953 et $0.006555 au cours de 2030.
Combien vaudra Wicrypt en 2031 ?
Notre simulation expérimentale indique que le prix de Wicrypt pourrait augmenter de 195.98% en 2031, atteignant potentiellement $0.0173028 dans des conditions idéales. Il est probable que le prix fluctue entre $0.0173028 et $0.00775 durant l'année.
Combien vaudra Wicrypt en 2032 ?
Basé sur les résultats de notre dernière prédiction expérimentale de prix de Wicrypt, WNT pourrait connaître une 449.04% hausse en valeur, atteignant $0.032095 si le scénario le plus positif se réalise en 2032. Il est prévu que le prix reste dans une fourchette de $0.032095 et $0.01183 tout au long de l'année.
Combien vaudra Wicrypt en 2033 ?
Selon notre prédiction expérimentale de prix de Wicrypt, la valeur de WNT est anticipée à augmenter de 1362.43% en 2033, avec le prix potentiel le plus élevé étant $0.085491. Tout au long de l'année, le prix de WNT pourrait osciller entre $0.085491 et $0.027492.
Combien vaudra Wicrypt en 2034 ?
Les résultats de notre nouvelle simulation de prédiction de prix de Wicrypt suggèrent que WNT pourrait augmenter de 746.96% en 2034, atteignant potentiellement $0.049512 dans les meilleures circonstances. La fourchette de prix prévue pour l'année est entre $0.049512 et $0.0221024.
Combien vaudra Wicrypt en 2035 ?
Basé sur notre prédiction expérimentale pour le prix de Wicrypt, WNT pourrait augmenter de 897.93%, avec la valeur potentiellement atteignant $0.058337 en 2035. La fourchette de prix attendue pour l'année se situe entre $0.058337 et $0.026131.
Combien vaudra Wicrypt en 2036 ?
Notre récente simulation de prédiction de prix de Wicrypt suggère que la valeur de WNT pourrait augmenter de 1964.7% en 2036, pouvant atteindre $0.120699 si les conditions sont optimales. La fourchette de prix attendue pour 2036 est entre $0.120699 et $0.043256.
Combien vaudra Wicrypt en 2037 ?
Selon la simulation expérimentale, la valeur de Wicrypt pourrait augmenter de 4830.69% en 2037, avec un maximum de $0.288241 sous des conditions favorables. Il est prévu que le prix chute entre $0.288241 et $0.112335 au cours de l'année.
Prévisions liées
Prévision du cours de AI Network
Prévision du cours de Permission Coin
Prévision du cours de BlueMove
Prévision du cours de Efinity
Prévision du cours de AshSwap
Prévision du cours de ScPrime
Prévision du cours de analoSPrévision du cours de Cypherium
Prévision du cours de Fuel Token
Prévision du cours de Etherisc
Prévision du cours de SolarX
Prévision du cours de Augur
Prévision du cours de GensoKishi Metaverse
Prévision du cours de Moonsama
Prévision du cours de MagicCraft
Prévision du cours de ValleyDAO
Prévision du cours de PolyDoge
Prévision du cours de GameZone
Prévision du cours de Divi
Prévision du cours de Noxbox
Prévision du cours de Hourglass
Prévision du cours de KLEVA
Prévision du cours de Acquire.Fi
Prévision du cours de Striker League
Prévision du cours de Aladdin DAO
Comment lire et prédire les mouvements de prix de Wicrypt ?
Les traders de Wicrypt utilisent des indicateurs et des modèles graphiques pour prédire la direction du marché. Ils identifient également des niveaux clés de support et de résistance pour évaluer quand une tendance baissière pourrait ralentir ou une tendance haussière pourrait s'arrêter.
Indicateurs de prédiction du prix de Wicrypt
Les moyennes mobiles sont des outils populaires pour la prédiction du prix de Wicrypt. Une moyenne mobile simple (SMA) calcule le prix de clôture moyen de WNT sur une période spécifique, comme une SMA de 12 jours. Une moyenne mobile exponentielle (EMA) donne plus de poids aux prix récents, réagissant plus rapidement aux changements de prix.
Les moyennes mobiles couramment utilisées sur le marché des cryptomonnaies incluent les moyennes sur 50 jours, 100 jours et 200 jours, qui aident à identifier les niveaux clés de résistance et de support. Un mouvement de prix de WNT au-dessus de ces moyennes est considéré comme haussier, tandis qu'une chute en dessous indique une faiblesse.
Les traders utilisent également le RSI et les niveaux de retracement de Fibonacci pour évaluer la direction future de WNT.
Comment lire les graphiques de Wicrypt et prédire les mouvements de prix ?
La plupart des traders préfèrent les graphiques en chandeliers aux simples graphiques linéaires parce qu'ils fournissent des informations plus détaillées. Les chandeliers peuvent représenter l'action des prix de Wicrypt dans différentes périodes, comme 5 minutes pour les tendances à court terme et hebdomadaire pour les tendances à long terme. Les options populaires incluent les graphiques de 1 heure, 4 heures et 1 jour.
Par exemple, un graphique en chandeliers de 1 heure montre les prix d'ouverture, de clôture, les plus hauts et les plus bas de WNT au sein de chaque heure. La couleur du chandelier est cruciale : le vert indique que le prix a clôturé plus haut qu'il n'a ouvert, tandis que le rouge signifie le contraire. Certains graphiques utilisent des chandeliers creux et pleins pour transmettre la même information.
Qu'est-ce qui affecte le prix de Wicrypt ?
L'action du prix de Wicrypt est déterminée par l'offre et la demande, influencée par des facteurs tels que les réductions de récompenses de bloc, les hard forks et les mises à jour de protocole. Les événements du monde réel, tels que les réglementations, l'adoption par les entreprises et les gouvernements et les piratages d'échanges de cryptomonnaies, impactent également le prix de WNT. La capitalisation boursière de Wicrypt peut changer rapidement.
Les traders surveillent souvent l'activité des « baleines » de WNT, de grands détenteurs de Wicrypt, car leurs actions peuvent influencer significativement les mouvements de prix sur le marché relativement petit de Wicrypt.
Modèles de prédiction de prix haussiers et baissiers
Les traders identifient souvent des modèles de chandeliers pour obtenir un avantage dans les prédictions de prix des cryptomonnaies. Certaines formations indiquent des tendances haussières, tandis que d'autres suggèrent des mouvements baissiers.
Modèles de chandeliers haussiers couramment suivis :
- Marteau
- Englobante haussière
- Ligne pénétrante
- Étoile du matin
- Trois soldats blancs
Modèles de chandeliers baissiers courants :
- Harami baissier
- Nuage sombre
- Étoile du soir
- Étoile filante
- Pendu


