Prédiction du prix de Wicrypt jusqu'à $0.006057 d'ici 2026
| Année | Prix min. | Prix max. |
|---|---|---|
| 2026 | $0.002029 | $0.006057 |
| 2027 | $0.001953 | $0.005132 |
| 2028 | $0.003525 | $0.008635 |
| 2029 | $0.007744 | $0.025477 |
| 2030 | $0.006586 | $0.019044 |
| 2031 | $0.007787 | $0.017385 |
| 2032 | $0.011887 | $0.032248 |
| 2033 | $0.027623 | $0.085898 |
| 2034 | $0.0222076 | $0.049747 |
| 2035 | $0.026256 | $0.058615 |
Calculateur de profit d’investissement
Si vous ouvrez une position short de $10,000.00 sur Wicrypt aujourd’hui et la fermez le Apr 06, 2026, notre prévision indique que vous pourriez gagner environ $3,956.11, soit un rendement de 39.56% sur les 90 prochains jours.
Prévision du prix à long terme de Wicrypt pour 2027, 2028, 2029, 2030, 2031, 2032 et 2037
[
'name' => 'Wicrypt'
'name_with_ticker' => 'Wicrypt <small>WNT</small>'
'name_lang' => 'Wicrypt'
'name_lang_with_ticker' => 'Wicrypt <small>WNT</small>'
'name_with_lang' => 'Wicrypt'
'name_with_lang_with_ticker' => 'Wicrypt <small>WNT</small>'
'image' => '/uploads/coins/wicrypt.PNG?1719974156'
'price_for_sd' => 0.005873
'ticker' => 'WNT'
'marketcap' => '$282.65K'
'low24h' => '$0.005604'
'high24h' => '$0.005878'
'volume24h' => '$115.45K'
'current_supply' => '48.12M'
'max_supply' => '200M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.005873'
'change_24h_pct' => '2.6865%'
'ath_price' => '$0.592'
'ath_days' => 732
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '5 janv. 2024'
'ath_pct' => '-99.01%'
'fdv' => '$1.17M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.289613'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.005923'
'next_week_prediction_price_date' => '13 janvier 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.005191'
'next_month_prediction_price_date' => '5 février 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.002029'
'current_year_max_price_prediction' => '$0.006057'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.006586'
'grand_prediction_max_price' => '$0.019044'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0059850035254338
107 => 0.0060073493560415
108 => 0.006057695653407
109 => 0.0056274920547348
110 => 0.0058206408404245
111 => 0.0059340976564235
112 => 0.0054214956341459
113 => 0.0059239651625842
114 => 0.0056200031671985
115 => 0.0055168339006086
116 => 0.0056557377265546
117 => 0.005601606770495
118 => 0.0055550681531514
119 => 0.0055290988050387
120 => 0.0056310944445576
121 => 0.0056263362260629
122 => 0.0054594515633095
123 => 0.0052417573238367
124 => 0.0053148226561736
125 => 0.0052882773359445
126 => 0.0051920736710196
127 => 0.0052569033255042
128 => 0.0049714263366916
129 => 0.0044802780152422
130 => 0.0048047456406716
131 => 0.0047922539900454
201 => 0.0047859551333484
202 => 0.0050297835862322
203 => 0.0050063451065669
204 => 0.0049638040364642
205 => 0.0051912923709061
206 => 0.0051082560686849
207 => 0.0053641543863172
208 => 0.0055327055687753
209 => 0.0054899555368444
210 => 0.0056484787386248
211 => 0.0053165059338594
212 => 0.0054267739831653
213 => 0.0054495000753023
214 => 0.0051884852001712
215 => 0.0050101799317087
216 => 0.0049982890031312
217 => 0.0046891322395968
218 => 0.0048542812872507
219 => 0.0049996056148541
220 => 0.0049300065395554
221 => 0.0049079735515291
222 => 0.0050205353089835
223 => 0.005029282321564
224 => 0.0048298495077625
225 => 0.0048713179049677
226 => 0.0050442480148607
227 => 0.0048669605098914
228 => 0.0045225198474855
301 => 0.0044370938009441
302 => 0.004425696391621
303 => 0.0041940141781756
304 => 0.0044428023778545
305 => 0.0043341996615854
306 => 0.0046772743410191
307 => 0.004481311924073
308 => 0.0044728643759436
309 => 0.00446009466796
310 => 0.0042606762161758
311 => 0.0043043361834128
312 => 0.0044494685641093
313 => 0.0045012534325751
314 => 0.0044958518465332
315 => 0.0044487573362672
316 => 0.0044703169619041
317 => 0.0044008658958562
318 => 0.0043763412789358
319 => 0.0042989348419076
320 => 0.0041851687635501
321 => 0.0042009886345136
322 => 0.0039755882647737
323 => 0.0038527781804364
324 => 0.0038187859677027
325 => 0.0037733301602029
326 => 0.0038239203221131
327 => 0.0039749497338463
328 => 0.0037927762206189
329 => 0.0034804525101768
330 => 0.0034992236973481
331 => 0.0035413969817064
401 => 0.0034628073453088
402 => 0.0033884288499867
403 => 0.0034530949171512
404 => 0.0033207592437461
405 => 0.0035573891155963
406 => 0.0035509889407103
407 => 0.0036391899238429
408 => 0.0036943438086621
409 => 0.0035672319604361
410 => 0.0035352636743542
411 => 0.0035534742629841
412 => 0.0032524937975206
413 => 0.0036145933985896
414 => 0.0036177248509761
415 => 0.0035909114544825
416 => 0.0037837183134808
417 => 0.0041906009239346
418 => 0.0040375153190668
419 => 0.0039782359458251
420 => 0.0038655458139596
421 => 0.0040156987237924
422 => 0.0040041693230675
423 => 0.0039520290005943
424 => 0.0039204943708747
425 => 0.0039785978930375
426 => 0.0039132947014756
427 => 0.0039015644538593
428 => 0.0038304919159403
429 => 0.0038051222534976
430 => 0.0037863395654205
501 => 0.0037656616713963
502 => 0.0038112719530035
503 => 0.0037079130543494
504 => 0.0035832723549703
505 => 0.003572909829448
506 => 0.0036015216734977
507 => 0.0035888630624069
508 => 0.0035728492248882
509 => 0.0035422744479558
510 => 0.0035332035647667
511 => 0.0035626795345644
512 => 0.0035294028832186
513 => 0.0035785043949523
514 => 0.0035651515006713
515 => 0.0034905633186692
516 => 0.0033975988278128
517 => 0.0033967712488445
518 => 0.0033767422017818
519 => 0.0033512321989601
520 => 0.0033441358997649
521 => 0.0034476489213429
522 => 0.0036619177781254
523 => 0.0036198516745198
524 => 0.0036502487454825
525 => 0.0037997722495323
526 => 0.0038473012751411
527 => 0.0038135662985506
528 => 0.0037673877819109
529 => 0.0037694194022831
530 => 0.0039272253728287
531 => 0.0039370675376429
601 => 0.0039619355129256
602 => 0.0039938978888529
603 => 0.0038190096293803
604 => 0.0037611821809894
605 => 0.0037337803277971
606 => 0.0036493932258166
607 => 0.0037403974804992
608 => 0.0036873731984864
609 => 0.0036945279856973
610 => 0.0036898684211401
611 => 0.0036924128584667
612 => 0.0035573229727246
613 => 0.0036065426269736
614 => 0.0035247054054756
615 => 0.003415134552549
616 => 0.0034147672326295
617 => 0.0034415845436544
618 => 0.0034256325576953
619 => 0.0033827061736425
620 => 0.0033888036638904
621 => 0.0033353832332382
622 => 0.0033952898713797
623 => 0.0033970077794053
624 => 0.0033739404605842
625 => 0.0034662349021642
626 => 0.0035040480101846
627 => 0.0034888646067867
628 => 0.0035029827021264
629 => 0.0036215997110417
630 => 0.0036409394591178
701 => 0.0036495288977012
702 => 0.003638020187882
703 => 0.003505150803301
704 => 0.0035110441255115
705 => 0.0034678028374121
706 => 0.0034312685056229
707 => 0.0034327296872971
708 => 0.0034515130829675
709 => 0.0035335412734915
710 => 0.0037061647646234
711 => 0.0037127156999257
712 => 0.0037206556246164
713 => 0.003688359960613
714 => 0.0036786192793217
715 => 0.0036914697522281
716 => 0.0037562980593852
717 => 0.0039230540661071
718 => 0.0038641113560724
719 => 0.0038161900153162
720 => 0.0038582299506601
721 => 0.0038517582321338
722 => 0.0037971304148646
723 => 0.0037955971939775
724 => 0.0036907489470683
725 => 0.0036519889374651
726 => 0.0036195981723042
727 => 0.0035842283023308
728 => 0.0035632598578018
729 => 0.0035954769185859
730 => 0.0036028453415683
731 => 0.0035324021751059
801 => 0.0035228010318135
802 => 0.0035803264421681
803 => 0.0035550116538345
804 => 0.0035810485414121
805 => 0.0035870893226704
806 => 0.0035861166177569
807 => 0.0035596850713517
808 => 0.0035765317508303
809 => 0.0035366843316265
810 => 0.0034933562481313
811 => 0.0034657156302963
812 => 0.0034415955252394
813 => 0.0034549787613937
814 => 0.0034072699681859
815 => 0.0033920069650504
816 => 0.0035708244748852
817 => 0.0037029188920124
818 => 0.0037009981868722
819 => 0.0036893063882967
820 => 0.0036719347472083
821 => 0.0037550272156383
822 => 0.0037260794611237
823 => 0.0037471413711989
824 => 0.0037525025112787
825 => 0.0037687290676279
826 => 0.0037745286668031
827 => 0.003756998250015
828 => 0.003698164030114
829 => 0.0035515547479105
830 => 0.0034833077312805
831 => 0.0034607850790487
901 => 0.0034616037346807
902 => 0.0034390215577099
903 => 0.0034456730208899
904 => 0.0034367084502602
905 => 0.00341973172225
906 => 0.0034539304962782
907 => 0.0034578715864014
908 => 0.0034498891838983
909 => 0.0034517693286549
910 => 0.0033856784452579
911 => 0.0033907031915808
912 => 0.0033627247655414
913 => 0.003357479147944
914 => 0.0032867521232768
915 => 0.0031614489470326
916 => 0.0032308790701455
917 => 0.0031470172447779
918 => 0.0031152575007971
919 => 0.0032656031891484
920 => 0.0032505126519782
921 => 0.0032246842120417
922 => 0.003186478566257
923 => 0.0031723077205948
924 => 0.003086210148296
925 => 0.0030811230444119
926 => 0.0031237953260732
927 => 0.0031041035363501
928 => 0.0030764488057148
929 => 0.0029762861746692
930 => 0.0028636702146663
1001 => 0.0028670693826201
1002 => 0.0029028904242026
1003 => 0.0030070449337293
1004 => 0.0029663499649659
1005 => 0.0029368252982071
1006 => 0.0029312962156314
1007 => 0.0030005042599847
1008 => 0.0030984481422781
1009 => 0.0031444012204793
1010 => 0.0030988631155977
1011 => 0.0030465513926553
1012 => 0.0030497353648416
1013 => 0.0030709169053525
1014 => 0.0030731427857693
1015 => 0.0030390932318659
1016 => 0.0030486779818433
1017 => 0.0030341178701797
1018 => 0.0029447624917759
1019 => 0.0029431463363295
1020 => 0.0029212170854191
1021 => 0.0029205530764168
1022 => 0.0028832459501102
1023 => 0.0028780264252479
1024 => 0.0028039508615854
1025 => 0.0028527076219095
1026 => 0.0028200041469289
1027 => 0.0027707122961633
1028 => 0.0027622143625121
1029 => 0.002761958904365
1030 => 0.0028125706136451
1031 => 0.002852116194619
1101 => 0.0028205730378778
1102 => 0.0028133912725262
1103 => 0.0028900737374507
1104 => 0.0028803151948129
1105 => 0.0028718643598244
1106 => 0.0030896783418766
1107 => 0.0029172615788453
1108 => 0.0028420780289588
1109 => 0.0027490241090055
1110 => 0.0027793229345609
1111 => 0.0027857073422878
1112 => 0.0025619294390297
1113 => 0.0024711427715477
1114 => 0.0024399882084912
1115 => 0.0024220583169914
1116 => 0.0024302291936973
1117 => 0.0023485105447495
1118 => 0.0024034268283441
1119 => 0.0023326653858607
1120 => 0.0023208019997507
1121 => 0.0024473322245716
1122 => 0.0024649381661766
1123 => 0.0023898257495525
1124 => 0.0024380600806208
1125 => 0.0024205696416681
1126 => 0.0023338783876945
1127 => 0.0023305674194504
1128 => 0.0022870687955513
1129 => 0.0022190018721426
1130 => 0.0021878934616655
1201 => 0.0021716919313934
1202 => 0.0021783769985452
1203 => 0.0021749968240268
1204 => 0.0021529388988562
1205 => 0.0021762611584775
1206 => 0.0021166824225681
1207 => 0.0020929576898705
1208 => 0.0020822417785207
1209 => 0.002029362221177
1210 => 0.0021135171125566
1211 => 0.0021300966863138
1212 => 0.002146708926953
1213 => 0.0022913071400585
1214 => 0.002284083421962
1215 => 0.0023493823154604
1216 => 0.0023468449205361
1217 => 0.0023282206183384
1218 => 0.0022496477509153
1219 => 0.0022809654954434
1220 => 0.0021845743456439
1221 => 0.0022567971490348
1222 => 0.0022238376776636
1223 => 0.0022456535186099
1224 => 0.0022064266695333
1225 => 0.0022281364274492
1226 => 0.0021340283183133
1227 => 0.0020461514901389
1228 => 0.0020815156910808
1229 => 0.0021199606218916
1230 => 0.0022033190274755
1231 => 0.0021536714488016
]
'min_raw' => 0.002029362221177
'max_raw' => 0.006057695653407
'avg_raw' => 0.004043528937292
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.002029'
'max' => '$0.006057'
'avg' => '$0.004043'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.003844337778823
'max_diff' => 0.00018399565340701
'year' => 2026
]
1 => [
'items' => [
101 => 0.0021715265954755
102 => 0.0021117148430334
103 => 0.0019883061133627
104 => 0.0019890045933705
105 => 0.001970020848916
106 => 0.0019536161220352
107 => 0.0021593740704432
108 => 0.0021337848170068
109 => 0.0020930116906947
110 => 0.0021475881405231
111 => 0.0021620190201025
112 => 0.0021624298469567
113 => 0.0022022474159294
114 => 0.0022234980596278
115 => 0.0022272435776853
116 => 0.0022898973827794
117 => 0.0023108981118233
118 => 0.0023973971426206
119 => 0.00222169509098
120 => 0.0022180766228504
121 => 0.0021483561430945
122 => 0.0021041383125961
123 => 0.0021513837757787
124 => 0.0021932368065097
125 => 0.0021496566334242
126 => 0.0021553472840015
127 => 0.0020968444622652
128 => 0.0021177564682223
129 => 0.002135768704904
130 => 0.0021258234065187
131 => 0.002110934813478
201 => 0.0021898053352754
202 => 0.0021853551513395
203 => 0.0022588011944627
204 => 0.0023160576372541
205 => 0.0024186714185497
206 => 0.0023115885883903
207 => 0.0023076860644436
208 => 0.0023458338620072
209 => 0.0023108922715942
210 => 0.0023329741505925
211 => 0.0024151136864586
212 => 0.0024168491654176
213 => 0.002387777656815
214 => 0.0023860086528745
215 => 0.0023915921541091
216 => 0.0024242948952376
217 => 0.0024128675526336
218 => 0.0024260915627999
219 => 0.0024426283900061
220 => 0.0025110317188004
221 => 0.0025275235297943
222 => 0.0024874569791027
223 => 0.002491074540024
224 => 0.0024760885502139
225 => 0.0024616122718313
226 => 0.0024941528315448
227 => 0.0025536213440074
228 => 0.0025532513934778
301 => 0.0025670469324665
302 => 0.002575641438968
303 => 0.0025387475255002
304 => 0.0025147309444595
305 => 0.0025239404298453
306 => 0.0025386665975336
307 => 0.0025191649321383
308 => 0.0023987916192681
309 => 0.0024353051929159
310 => 0.0024292275488384
311 => 0.0024205722446053
312 => 0.0024572869252592
313 => 0.0024537457047441
314 => 0.0023476724018903
315 => 0.002354462870585
316 => 0.0023480853527824
317 => 0.0023686924175201
318 => 0.0023097794224718
319 => 0.0023279006629635
320 => 0.0023392661351239
321 => 0.0023459604855401
322 => 0.0023701450696022
323 => 0.0023673072877999
324 => 0.0023699686691009
325 => 0.0024058280227716
326 => 0.0025871923281936
327 => 0.0025970635871799
328 => 0.0025484538976879
329 => 0.0025678725098562
330 => 0.0025305930208766
331 => 0.0025556189915795
401 => 0.0025727411251437
402 => 0.0024953694959641
403 => 0.0024907880502218
404 => 0.0024533546955302
405 => 0.0024734692600079
406 => 0.0024414655416355
407 => 0.0024493181346815
408 => 0.002427361599948
409 => 0.0024668789909659
410 => 0.0025110655745056
411 => 0.0025222288504887
412 => 0.0024928630774695
413 => 0.0024716003225048
414 => 0.0024342699291737
415 => 0.0024963512052454
416 => 0.0025145056622613
417 => 0.0024962558476112
418 => 0.0024920269667905
419 => 0.0024840132452766
420 => 0.002493727115693
421 => 0.0025144067891896
422 => 0.0025046546370622
423 => 0.0025110961053531
424 => 0.0024865478706413
425 => 0.0025387597389208
426 => 0.0026216847512189
427 => 0.002621951368693
428 => 0.0026121991639979
429 => 0.0026082087719509
430 => 0.0026182151257813
501 => 0.0026236431622522
502 => 0.0026560018756884
503 => 0.0026907240644335
504 => 0.0028527573688289
505 => 0.0028072590653414
506 => 0.0029510246524054
507 => 0.003064724566148
508 => 0.0030988181987848
509 => 0.0030674536609883
510 => 0.0029601572714658
511 => 0.0029548927987113
512 => 0.0031152389040252
513 => 0.0030699337849572
514 => 0.0030645448852037
515 => 0.0030072160965168
516 => 0.0030411045109394
517 => 0.0030336926175921
518 => 0.0030219925813412
519 => 0.0030866493153721
520 => 0.0032076809495314
521 => 0.0031888170343202
522 => 0.0031747359966868
523 => 0.0031130369887061
524 => 0.0031501935724828
525 => 0.0031369628246874
526 => 0.0031938105136566
527 => 0.0031601352020417
528 => 0.0030695905541214
529 => 0.0030840100877418
530 => 0.0030818306042431
531 => 0.0031266842202054
601 => 0.0031132202780287
602 => 0.0030792015534446
603 => 0.0032072672765636
604 => 0.0031989514008433
605 => 0.0032107414113409
606 => 0.0032159317385801
607 => 0.0032938830874715
608 => 0.0033258172609474
609 => 0.0033330668774128
610 => 0.0033634018723372
611 => 0.0033323121151045
612 => 0.0034566933106566
613 => 0.0035393995478548
614 => 0.0036354670983845
615 => 0.0037758476102317
616 => 0.0038286319812786
617 => 0.0038190969571036
618 => 0.0039255318590455
619 => 0.0041167930119202
620 => 0.0038577563044652
621 => 0.0041305225864056
622 => 0.0040441679307814
623 => 0.0038394225957505
624 => 0.0038262394099634
625 => 0.0039648953279886
626 => 0.0042724208090309
627 => 0.004195389163955
628 => 0.0042725468052064
629 => 0.0041825383182172
630 => 0.0041780686381871
701 => 0.0042681752938961
702 => 0.0044787144064183
703 => 0.0043786951659996
704 => 0.0042352930591355
705 => 0.0043411789432601
706 => 0.0042494507911554
707 => 0.0040427615913704
708 => 0.0041953302593077
709 => 0.0040933119359635
710 => 0.0041230863063077
711 => 0.0043375136478969
712 => 0.0043117131828525
713 => 0.0043451013736786
714 => 0.0042861720907916
715 => 0.0042311228482801
716 => 0.0041283693491219
717 => 0.0040979491037075
718 => 0.0041063561651342
719 => 0.0040979449375853
720 => 0.0040404552991598
721 => 0.0040280404172154
722 => 0.0040073484033997
723 => 0.004013761723711
724 => 0.0039748546840752
725 => 0.0040482803064725
726 => 0.0040619087490137
727 => 0.0041153417938057
728 => 0.0041208893897733
729 => 0.0042696996589471
730 => 0.0041877374633411
731 => 0.0042427247804291
801 => 0.0042378061972281
802 => 0.0038438600480027
803 => 0.0038981423515497
804 => 0.0039825885811435
805 => 0.0039445456691756
806 => 0.0038907618923235
807 => 0.0038473286088118
808 => 0.0037815227430102
809 => 0.0038741432354362
810 => 0.0039959293338851
811 => 0.0041239780862076
812 => 0.0042778202720366
813 => 0.00424348448708
814 => 0.004121102113554
815 => 0.00412659209743
816 => 0.0041605290175223
817 => 0.0041165776225084
818 => 0.0041036154980856
819 => 0.0041587482206736
820 => 0.0041591278894337
821 => 0.0041085564977666
822 => 0.0040523556503955
823 => 0.004052120166793
824 => 0.0040421197688391
825 => 0.0041843173667971
826 => 0.0042625116678753
827 => 0.0042714765184775
828 => 0.0042619082620016
829 => 0.0042655907041687
830 => 0.0042200911632651
831 => 0.0043240896213009
901 => 0.0044195288907761
902 => 0.0043939491277941
903 => 0.0043556014267066
904 => 0.0043250556357149
905 => 0.0043867535101957
906 => 0.0043840062009665
907 => 0.0044186953120166
908 => 0.0044171216135653
909 => 0.0044054569702427
910 => 0.0043939495443753
911 => 0.004439575187199
912 => 0.0044264357347912
913 => 0.0044132758731845
914 => 0.0043868817560584
915 => 0.0043904691549357
916 => 0.0043521280751195
917 => 0.004334389737228
918 => 0.0040676476955646
919 => 0.0039963655059845
920 => 0.0040187923339091
921 => 0.0040261758279743
922 => 0.0039951537277184
923 => 0.0040396314505616
924 => 0.0040326996445701
925 => 0.0040596672467123
926 => 0.004042819059691
927 => 0.0040435105151632
928 => 0.0040930574407807
929 => 0.0041074411240751
930 => 0.004100125466661
1001 => 0.0041052491023478
1002 => 0.0042233211241982
1003 => 0.0042065350584218
1004 => 0.0041976177955368
1005 => 0.0042000879382976
1006 => 0.0042302578713731
1007 => 0.0042387038054169
1008 => 0.0042029177893879
1009 => 0.0042197946814237
1010 => 0.0042916543457156
1011 => 0.0043168011613131
1012 => 0.0043970577255438
1013 => 0.0043629633106119
1014 => 0.0044255450847912
1015 => 0.0046179001229191
1016 => 0.0047715666373319
1017 => 0.0046302485601406
1018 => 0.0049124375445471
1019 => 0.0051321621465131
1020 => 0.0051237287503192
1021 => 0.0050854146836448
1022 => 0.0048352640659872
1023 => 0.0046050717380831
1024 => 0.0047976373948574
1025 => 0.004798128284318
1026 => 0.0047815867236231
1027 => 0.004678848510806
1028 => 0.004778011656515
1029 => 0.0047858828669138
1030 => 0.0047814770822143
1031 => 0.0047027079353299
1101 => 0.0045824420070093
1102 => 0.0046059416815272
1103 => 0.0046444346277679
1104 => 0.0045715594500644
1105 => 0.0045482714151254
1106 => 0.0045915683028069
1107 => 0.0047310798961815
1108 => 0.0047047060375896
1109 => 0.0047040173095567
1110 => 0.0048168558608691
1111 => 0.0047360878102129
1112 => 0.0046062380876792
1113 => 0.004573449320232
1114 => 0.0044570712849549
1115 => 0.0045374540084452
1116 => 0.004540346839561
1117 => 0.0044963220433969
1118 => 0.0046098104572534
1119 => 0.0046087646415405
1120 => 0.0047165049999761
1121 => 0.0049224640998742
1122 => 0.0048615518594025
1123 => 0.0047907175509669
1124 => 0.0047984192043162
1125 => 0.0048828873322576
1126 => 0.0048318159738844
1127 => 0.0048501815904376
1128 => 0.0048828595336973
1129 => 0.0049025749482136
1130 => 0.0047955824595703
1201 => 0.0047706373924252
1202 => 0.0047196085395752
1203 => 0.0047062960643653
1204 => 0.0047478580002597
1205 => 0.0047369078985564
1206 => 0.0045401037083073
1207 => 0.0045195365754181
1208 => 0.0045201673400207
1209 => 0.0044684503064569
1210 => 0.0043895694167619
1211 => 0.0045968636851472
1212 => 0.0045802150543144
1213 => 0.0045618362543767
1214 => 0.0045640875525011
1215 => 0.0046540669685526
1216 => 0.0046018743631733
1217 => 0.0047406369587739
1218 => 0.0047121115407038
1219 => 0.0046828545532965
1220 => 0.0046788103464472
1221 => 0.0046675489023843
1222 => 0.0046289292204937
1223 => 0.0045822936339278
1224 => 0.0045515007801716
1225 => 0.0041985188782873
1226 => 0.0042640302660758
1227 => 0.0043393951461755
1228 => 0.0043654108007801
1229 => 0.0043209092233504
1230 => 0.0046306864140109
1231 => 0.0046872856918319
]
'min_raw' => 0.0019536161220352
'max_raw' => 0.0051321621465131
'avg_raw' => 0.0035428891342742
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.001953'
'max' => '$0.005132'
'avg' => '$0.003542'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -7.57460991418E-5
'max_diff' => -0.00092553350689388
'year' => 2027
]
2 => [
'items' => [
101 => 0.0045158427874327
102 => 0.0044837728199872
103 => 0.0046327889157376
104 => 0.0045429139935233
105 => 0.0045833846654933
106 => 0.0044959092089682
107 => 0.0046736525832252
108 => 0.0046722984765149
109 => 0.0046031522894128
110 => 0.0046615941732589
111 => 0.0046514384577565
112 => 0.0045733725828177
113 => 0.0046761274107043
114 => 0.0046761783758169
115 => 0.0046096266740989
116 => 0.004531908856533
117 => 0.0045180147463652
118 => 0.0045075474007648
119 => 0.0045808103401355
120 => 0.0046464976624881
121 => 0.004768725484118
122 => 0.0047994564625372
123 => 0.0049194015171843
124 => 0.0048479800771606
125 => 0.0048796402764606
126 => 0.0049140119014094
127 => 0.0049304909223845
128 => 0.0049036392420186
129 => 0.0050899632832396
130 => 0.0051056947411398
131 => 0.0051109693628972
201 => 0.0050481419445378
202 => 0.0051039473969813
203 => 0.0050778378738653
204 => 0.0051457675995786
205 => 0.0051564198479407
206 => 0.0051473977725427
207 => 0.0051507789643072
208 => 0.0049917842649383
209 => 0.0049835395510121
210 => 0.004871122291611
211 => 0.0049169331557634
212 => 0.0048312919410024
213 => 0.0048584496524054
214 => 0.0048704205128237
215 => 0.0048641676146815
216 => 0.0049195232332885
217 => 0.0048724596490668
218 => 0.0047482511123361
219 => 0.0046240087350726
220 => 0.0046224489732317
221 => 0.0045897381483584
222 => 0.0045660942132613
223 => 0.0045706488739747
224 => 0.0045867000924023
225 => 0.0045651612872668
226 => 0.0045697576833876
227 => 0.0046460884846198
228 => 0.0046613960824406
229 => 0.0046093748839811
301 => 0.0044005022655431
302 => 0.0043492444010612
303 => 0.0043860875375632
304 => 0.0043684788913171
305 => 0.0035257034110912
306 => 0.0037237010091049
307 => 0.0036060575597283
308 => 0.0036602730737159
309 => 0.0035401895755259
310 => 0.0035974997149775
311 => 0.003586916624852
312 => 0.0039052909032831
313 => 0.0039003199268349
314 => 0.0039026992702025
315 => 0.0037891270119239
316 => 0.0039700507031845
317 => 0.004059180219305
318 => 0.0040426847179763
319 => 0.0040468362802791
320 => 0.0039754986851332
321 => 0.0039033899740597
322 => 0.0038234103160282
323 => 0.0039720026348663
324 => 0.003955481705567
325 => 0.0039933747733369
326 => 0.0040897475137016
327 => 0.0041039387658048
328 => 0.0041230119525449
329 => 0.0041161755728204
330 => 0.0042790458732443
331 => 0.0042593212052101
401 => 0.0043068519799982
402 => 0.0042090775700906
403 => 0.0040984365444479
404 => 0.004119465786295
405 => 0.0041174405011986
406 => 0.004091656297408
407 => 0.0040683794711155
408 => 0.0040296301135437
409 => 0.0041522388147269
410 => 0.0041472611253687
411 => 0.0042278441301479
412 => 0.0042136003013116
413 => 0.0041184765262868
414 => 0.0041218738905211
415 => 0.0041447227977147
416 => 0.0042238031263958
417 => 0.0042472795521476
418 => 0.0042364043363656
419 => 0.004262145165463
420 => 0.0042824896672434
421 => 0.0042647001216571
422 => 0.0045165625723273
423 => 0.0044119717230202
424 => 0.0044629485752341
425 => 0.004475106254114
426 => 0.0044439646153115
427 => 0.0044507181216693
428 => 0.004460947843581
429 => 0.004523060711844
430 => 0.0046860628506695
501 => 0.0047582553883622
502 => 0.0049754501999278
503 => 0.0047522608030755
504 => 0.0047390176679158
505 => 0.0047781410121337
506 => 0.0049056573589284
507 => 0.0050089973810041
508 => 0.0050432812281555
509 => 0.0050478124045212
510 => 0.0051121311809243
511 => 0.0051489975040844
512 => 0.0051043211897172
513 => 0.0050664626910961
514 => 0.0049308582482052
515 => 0.0049465548317084
516 => 0.005054688726493
517 => 0.0052074342219309
518 => 0.0053385057474768
519 => 0.0052926090675345
520 => 0.0056427683374878
521 => 0.0056774851988313
522 => 0.0056726884511241
523 => 0.0057517786278263
524 => 0.0055948007335068
525 => 0.0055276896423818
526 => 0.0050746481282102
527 => 0.0052019343143692
528 => 0.0053869522612069
529 => 0.0053624644421612
530 => 0.0052280994636238
531 => 0.0053384038195917
601 => 0.0053019337499726
602 => 0.0052731682929194
603 => 0.0054049484281383
604 => 0.0052600507562356
605 => 0.0053855067960887
606 => 0.0052246081273005
607 => 0.0052928187197024
608 => 0.0052540990884799
609 => 0.0052791554351804
610 => 0.0051326765443549
611 => 0.0052117129982702
612 => 0.0051293883680242
613 => 0.0051293493354305
614 => 0.005127532014655
615 => 0.0052243865770561
616 => 0.0052275450008588
617 => 0.0051559693329053
618 => 0.0051456541609311
619 => 0.0051837947581201
620 => 0.00513914210785
621 => 0.005160034801871
622 => 0.0051397749262682
623 => 0.0051352140015317
624 => 0.0050988717772543
625 => 0.0050832145477853
626 => 0.0050893541508971
627 => 0.0050683965202939
628 => 0.0050557687897848
629 => 0.0051250200412214
630 => 0.0050880218911663
701 => 0.0051193495440973
702 => 0.0050836477297175
703 => 0.004959889686537
704 => 0.0048887151271864
705 => 0.0046549476559952
706 => 0.0047212438208374
707 => 0.0047651982467161
708 => 0.0047506713092254
709 => 0.0047818807921339
710 => 0.0047837968009116
711 => 0.004773650279875
712 => 0.0047619019083645
713 => 0.0047561834508388
714 => 0.0047988041481905
715 => 0.0048235468975499
716 => 0.0047696096613873
717 => 0.0047569729216166
718 => 0.0048115064453334
719 => 0.0048447718632976
720 => 0.0050903850193218
721 => 0.0050721892034035
722 => 0.0051178571306099
723 => 0.005112715622838
724 => 0.0051605828860216
725 => 0.0052388256311122
726 => 0.0050797362533275
727 => 0.0051073486684142
728 => 0.0051005787418987
729 => 0.0051744910244244
730 => 0.0051747217705027
731 => 0.0051304076649362
801 => 0.005154431060478
802 => 0.0051410218601339
803 => 0.0051652540975178
804 => 0.0050719461871885
805 => 0.0051855851500031
806 => 0.005250011119186
807 => 0.0052509056738306
808 => 0.0052814430719072
809 => 0.0053124708369598
810 => 0.0053720259300295
811 => 0.0053108098777377
812 => 0.0052006881589272
813 => 0.0052086385913343
814 => 0.0051440742678877
815 => 0.0051451596058294
816 => 0.0051393659868375
817 => 0.0051567530735555
818 => 0.0050757616749624
819 => 0.0050947701943289
820 => 0.005068158155902
821 => 0.0051072908190399
822 => 0.0050651905423645
823 => 0.0051005754772352
824 => 0.0051158464420962
825 => 0.0051721966311936
826 => 0.0050568675736179
827 => 0.00482170381813
828 => 0.0048711380906185
829 => 0.0047980209186297
830 => 0.004804788191274
831 => 0.0048184591590189
901 => 0.0047741470796954
902 => 0.0047826004279962
903 => 0.0047822984149096
904 => 0.00477969582929
905 => 0.0047681685460442
906 => 0.0047514517047345
907 => 0.0048180464553402
908 => 0.004829362201152
909 => 0.0048545157023674
910 => 0.0049293554602013
911 => 0.0049218772035506
912 => 0.0049340745504177
913 => 0.0049074478106921
914 => 0.0048060233293625
915 => 0.0048115311666666
916 => 0.0047428483472274
917 => 0.0048527593282543
918 => 0.0048267309571931
919 => 0.0048099502970453
920 => 0.0048053715384523
921 => 0.0048803968095702
922 => 0.0049028455465658
923 => 0.0048888570001488
924 => 0.0048601660833367
925 => 0.0049152611253242
926 => 0.0049300022342868
927 => 0.0049333022249524
928 => 0.0050309200759278
929 => 0.0049387579784228
930 => 0.0049609423113048
1001 => 0.0051340181436523
1002 => 0.0049770622465453
1003 => 0.0050602052857771
1004 => 0.0050561358666622
1005 => 0.0050986690321261
1006 => 0.0050526469056441
1007 => 0.0050532174050588
1008 => 0.0050909839745446
1009 => 0.0050379476389385
1010 => 0.0050248150963908
1011 => 0.0050066725829182
1012 => 0.0050462860973551
1013 => 0.0050700326076949
1014 => 0.0052614120411434
1015 => 0.0053850518831136
1016 => 0.0053796843514968
1017 => 0.0054287335428763
1018 => 0.0054066364329207
1019 => 0.0053352790359511
1020 => 0.0054570774114707
1021 => 0.0054185353091958
1022 => 0.0054217126732787
1023 => 0.0054215944116289
1024 => 0.0054472215402326
1025 => 0.005429062370925
1026 => 0.0053932687842193
1027 => 0.0054170302374913
1028 => 0.0054875932588342
1029 => 0.0057066230422206
1030 => 0.0058291950107623
1031 => 0.0056992440558085
1101 => 0.005788882484423
1102 => 0.0057351313686922
1103 => 0.0057253631920067
1104 => 0.0057816627494045
1105 => 0.0058380608517246
1106 => 0.0058344685364225
1107 => 0.0057935264102127
1108 => 0.0057703992419848
1109 => 0.0059455259079764
1110 => 0.0060745562522742
1111 => 0.0060657572478235
1112 => 0.0061045931918794
1113 => 0.0062186167247779
1114 => 0.0062290416076367
1115 => 0.0062277283120097
1116 => 0.0062018891521201
1117 => 0.0063141601280855
1118 => 0.0064078185514558
1119 => 0.0061959081331708
1120 => 0.0062766008463426
1121 => 0.0063128264050423
1122 => 0.0063660162728524
1123 => 0.006455756495505
1124 => 0.0065532381797241
1125 => 0.006567023158705
1126 => 0.0065572420564461
1127 => 0.0064929502652552
1128 => 0.0065996158873262
1129 => 0.0066620981071187
1130 => 0.0066993048391249
1201 => 0.006793654920883
1202 => 0.0063130501217602
1203 => 0.0059728541573327
1204 => 0.0059197276449981
1205 => 0.0060277624969275
1206 => 0.0060562504258195
1207 => 0.0060447669774039
1208 => 0.0056618454901769
1209 => 0.0059177116426153
1210 => 0.0061930021088018
1211 => 0.0062035771367638
1212 => 0.0063413933001889
1213 => 0.0063862718922756
1214 => 0.0064972319678103
1215 => 0.0064902913848745
1216 => 0.0065173083975068
1217 => 0.006511097654172
1218 => 0.0067166278286996
1219 => 0.0069433581327298
1220 => 0.0069355071832595
1221 => 0.0069029120195039
1222 => 0.0069513213959822
1223 => 0.0071853313676374
1224 => 0.0071637874793807
1225 => 0.007184715531718
1226 => 0.0074606264765235
1227 => 0.0078193499526449
1228 => 0.0076526868827384
1229 => 0.0080142977884291
1230 => 0.0082419126853909
1231 => 0.0086355491138668
]
'min_raw' => 0.0035257034110912
'max_raw' => 0.0086355491138668
'avg_raw' => 0.006080626262479
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.003525'
'max' => '$0.008635'
'avg' => '$0.00608'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.001572087289056
'max_diff' => 0.0035033869673537
'year' => 2028
]
3 => [
'items' => [
101 => 0.0085862638943214
102 => 0.0087395036672895
103 => 0.0084980330651993
104 => 0.0079435677535398
105 => 0.0078558214955617
106 => 0.008031491726123
107 => 0.0084633598463073
108 => 0.0080178906621302
109 => 0.0081080084979089
110 => 0.0080820545551421
111 => 0.0080806715798292
112 => 0.0081334541225551
113 => 0.0080568902913789
114 => 0.0077449554695971
115 => 0.0078879133601762
116 => 0.0078327104532219
117 => 0.0078939621941371
118 => 0.008224512577717
119 => 0.0080783683737994
120 => 0.0079244173267632
121 => 0.0081175061042188
122 => 0.0083633744704224
123 => 0.0083479884699333
124 => 0.0083181331981352
125 => 0.00848642580209
126 => 0.008764395878717
127 => 0.008839530073455
128 => 0.0088949925999596
129 => 0.0089026399453175
130 => 0.0089814123553028
131 => 0.0085578332536087
201 => 0.0092300641662802
202 => 0.0093461398748943
203 => 0.0093243224525201
204 => 0.0094533357174322
205 => 0.0094153767421444
206 => 0.0093603801425332
207 => 0.0095648936093273
208 => 0.0093304354230336
209 => 0.0089976515450545
210 => 0.0088150797278764
211 => 0.0090555050243849
212 => 0.0092023243632761
213 => 0.0092993626068194
214 => 0.0093287263206835
215 => 0.0085907144934981
216 => 0.0081929670506576
217 => 0.0084479186013347
218 => 0.0087589770889768
219 => 0.0085561053080041
220 => 0.0085640574977311
221 => 0.0082748156518302
222 => 0.0087845685742921
223 => 0.0087103018611863
224 => 0.0090955977001546
225 => 0.0090036437559925
226 => 0.0093178375555729
227 => 0.0092350997983625
228 => 0.0095785396027371
301 => 0.0097155470389636
302 => 0.0099456038478927
303 => 0.010114834573041
304 => 0.010214210091715
305 => 0.010208243958322
306 => 0.010602019271999
307 => 0.010369823726985
308 => 0.01007813139816
309 => 0.01007285560421
310 => 0.01022392719462
311 => 0.010540531803654
312 => 0.010622622772367
313 => 0.010668500424822
314 => 0.010598237203075
315 => 0.010346205580568
316 => 0.010237379603798
317 => 0.010330102488998
318 => 0.010216710368167
319 => 0.010412456980931
320 => 0.010681258889475
321 => 0.010625752358319
322 => 0.010811302369971
323 => 0.011003327111601
324 => 0.011277931116502
325 => 0.01134972277194
326 => 0.011468391648386
327 => 0.011590540902945
328 => 0.011629771951495
329 => 0.011704676195856
330 => 0.011704281413514
331 => 0.011930010395532
401 => 0.012178996452943
402 => 0.012272982925575
403 => 0.012489099636948
404 => 0.012119007342354
405 => 0.012399726599117
406 => 0.012652942395576
407 => 0.012351048084176
408 => 0.012767139060088
409 => 0.012783294929801
410 => 0.013027229381323
411 => 0.012779955082519
412 => 0.012633124393216
413 => 0.013057019091559
414 => 0.013262128383529
415 => 0.013200347795553
416 => 0.01273019447057
417 => 0.012456545069605
418 => 0.011740351804253
419 => 0.012588713664309
420 => 0.013001925979288
421 => 0.012729124350499
422 => 0.012866709624137
423 => 0.013617330264932
424 => 0.013903118005859
425 => 0.013843676153553
426 => 0.013853720848097
427 => 0.014007926725687
428 => 0.014691760509648
429 => 0.014281991455155
430 => 0.014595244543562
501 => 0.014761392852134
502 => 0.014915720660682
503 => 0.014536740338693
504 => 0.014043692508112
505 => 0.013887523563427
506 => 0.012701999604848
507 => 0.012640287934335
508 => 0.01260564730362
509 => 0.012387243026981
510 => 0.012215637091509
511 => 0.012079169680302
512 => 0.011721038440676
513 => 0.011841897220997
514 => 0.011271110772831
515 => 0.011636279714938
516 => 0.010725290761544
517 => 0.011483989432113
518 => 0.011071064239518
519 => 0.011348332400758
520 => 0.011347365038264
521 => 0.01083682644547
522 => 0.010542358439815
523 => 0.010730004913885
524 => 0.010931176829483
525 => 0.010963816295965
526 => 0.011224640935662
527 => 0.011297431486195
528 => 0.011076872719815
529 => 0.010706412540352
530 => 0.010792461990744
531 => 0.01054061465045
601 => 0.010099261873752
602 => 0.010416249143256
603 => 0.010524482534012
604 => 0.010572284565289
605 => 0.010138264799116
606 => 0.010001886365557
607 => 0.0099292796318558
608 => 0.010650386038725
609 => 0.010689889875499
610 => 0.010487782661284
611 => 0.01140132643413
612 => 0.011194563342763
613 => 0.011425568374007
614 => 0.010784653905048
615 => 0.010809137700869
616 => 0.010505718520153
617 => 0.010675612986877
618 => 0.010555537053751
619 => 0.010661887192895
620 => 0.010725633027801
621 => 0.011029002420414
622 => 0.011487453423268
623 => 0.010983689149635
624 => 0.010764191841576
625 => 0.010900366736996
626 => 0.011263018428418
627 => 0.01181245430472
628 => 0.011487177207522
629 => 0.011631529659695
630 => 0.011663064248701
701 => 0.01142321695964
702 => 0.011821297816383
703 => 0.012034632581514
704 => 0.01225346990713
705 => 0.012443480225279
706 => 0.012166061466943
707 => 0.012462939304779
708 => 0.012223708173476
709 => 0.012009093117438
710 => 0.012009418599888
711 => 0.01187478744021
712 => 0.011613922603714
713 => 0.01156581512548
714 => 0.01181607630256
715 => 0.012016762066756
716 => 0.012033291507516
717 => 0.012144401458182
718 => 0.012210155182462
719 => 0.012854631068266
720 => 0.013113844600921
721 => 0.01343080600199
722 => 0.013554280330672
723 => 0.013925893792008
724 => 0.013625785741009
725 => 0.013560855476408
726 => 0.012659442773043
727 => 0.012807049052721
728 => 0.013043380948373
729 => 0.012663339798956
730 => 0.012904388434846
731 => 0.012951976541679
801 => 0.012650426146123
802 => 0.012811497241613
803 => 0.012383740166243
804 => 0.011496777358586
805 => 0.011822285259539
806 => 0.012061968639416
807 => 0.011719910903584
808 => 0.0123330361556
809 => 0.011974861040847
810 => 0.011861336724907
811 => 0.011418437894088
812 => 0.011627469093495
813 => 0.011910186783732
814 => 0.011735500120625
815 => 0.012098001175907
816 => 0.012611399345687
817 => 0.012977277454861
818 => 0.013005365032957
819 => 0.012770129920687
820 => 0.01314709568935
821 => 0.013149841473432
822 => 0.01272462254643
823 => 0.01246417832127
824 => 0.012405004845335
825 => 0.012552831789865
826 => 0.012732320990885
827 => 0.013015325434432
828 => 0.013186339092553
829 => 0.013632252014295
830 => 0.013752903265593
831 => 0.013885462411596
901 => 0.014062602310383
902 => 0.014275304176614
903 => 0.013809924602424
904 => 0.013828415000483
905 => 0.013395059984616
906 => 0.012931958000768
907 => 0.013283394680032
908 => 0.013742851388507
909 => 0.013637451511928
910 => 0.013625591872689
911 => 0.0136455364963
912 => 0.013566068431398
913 => 0.013206637319068
914 => 0.013026133264615
915 => 0.013259029546356
916 => 0.01338280355508
917 => 0.013574766248384
918 => 0.013551102794593
919 => 0.014045578077255
920 => 0.014237716219941
921 => 0.014188559060987
922 => 0.014197605161268
923 => 0.014545462090887
924 => 0.014932350538857
925 => 0.015294722624809
926 => 0.015663343074882
927 => 0.015218956734818
928 => 0.014993324757272
929 => 0.015226119363782
930 => 0.015102595268747
1001 => 0.015812401358448
1002 => 0.015861546792054
1003 => 0.016571301554696
1004 => 0.017244943340468
1005 => 0.01682184100437
1006 => 0.017220807450362
1007 => 0.017652322189914
1008 => 0.018484784133253
1009 => 0.0182044402371
1010 => 0.017989701206197
1011 => 0.017786773859604
1012 => 0.018209033454054
1013 => 0.018752263676552
1014 => 0.018869270263484
1015 => 0.01905886563427
1016 => 0.018859529284507
1017 => 0.019099607961617
1018 => 0.019947191187732
1019 => 0.019718166718211
1020 => 0.019392915153972
1021 => 0.020062000708231
1022 => 0.020304140169313
1023 => 0.022003601716607
1024 => 0.024149242121321
1025 => 0.023260932904735
1026 => 0.022709530708441
1027 => 0.022839123304005
1028 => 0.023622638545295
1029 => 0.023874278773266
1030 => 0.023190233888051
1031 => 0.023431850105722
1101 => 0.024763179220272
1102 => 0.025477394576077
1103 => 0.024507394190975
1104 => 0.021831201599252
1105 => 0.019363629809267
1106 => 0.020018140964177
1107 => 0.019943939711056
1108 => 0.02137428675795
1109 => 0.019712704560357
1110 => 0.019740681343199
1111 => 0.02120060645226
1112 => 0.020811123462615
1113 => 0.020180210900603
1114 => 0.019368236169179
1115 => 0.01786722577957
1116 => 0.016537739018721
1117 => 0.01914516871926
1118 => 0.01903273160927
1119 => 0.018869906011757
1120 => 0.019232256759451
1121 => 0.020991729135199
1122 => 0.020951167602082
1123 => 0.020693135823065
1124 => 0.020888850653261
1125 => 0.020145901144602
1126 => 0.02033737614963
1127 => 0.019363238933288
1128 => 0.019803589638638
1129 => 0.020178857245602
1130 => 0.020254197773632
1201 => 0.020423943830266
1202 => 0.018973482361487
1203 => 0.019624696977657
1204 => 0.0200072245541
1205 => 0.01827895104726
1206 => 0.019973062143693
1207 => 0.018948233054301
1208 => 0.018600390668945
1209 => 0.019068714616077
1210 => 0.01888620831842
1211 => 0.018729300120823
1212 => 0.018641742650539
1213 => 0.018985628070285
1214 => 0.018969585404422
1215 => 0.018406922112434
1216 => 0.017672950785125
1217 => 0.017919295654357
1218 => 0.01782979625387
1219 => 0.01750543888085
1220 => 0.017724016587207
1221 => 0.016761510988058
1222 => 0.015105570131411
1223 => 0.016199535384152
1224 => 0.016157418911927
1225 => 0.016136181876801
1226 => 0.016958266529258
1227 => 0.016879242058644
1228 => 0.01673581187067
1229 => 0.017502804672969
1230 => 0.017222841982621
1231 => 0.018085621026768
]
'min_raw' => 0.0077449554695971
'max_raw' => 0.025477394576077
'avg_raw' => 0.016611175022837
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.007744'
'max' => '$0.025477'
'avg' => '$0.016611'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.0042192520585058
'max_diff' => 0.01684184546221
'year' => 2029
]
4 => [
'items' => [
101 => 0.018653903106293
102 => 0.018509768388926
103 => 0.019044240431465
104 => 0.017924970942598
105 => 0.018296747369502
106 => 0.018373369975827
107 => 0.017493340100846
108 => 0.016892171439348
109 => 0.016852080343451
110 => 0.015809736730559
111 => 0.016366548275062
112 => 0.016856519391798
113 => 0.016621861250176
114 => 0.016547575492751
115 => 0.01692708531682
116 => 0.016956576480432
117 => 0.016284174824746
118 => 0.016423988421154
119 => 0.017007034360253
120 => 0.01640929715943
121 => 0.01524799141805
122 => 0.014959971537879
123 => 0.014921544376605
124 => 0.014140411618438
125 => 0.014979218403493
126 => 0.014613056763192
127 => 0.015769756997612
128 => 0.015109056027219
129 => 0.015080574528912
130 => 0.015037520566893
131 => 0.014365167333751
201 => 0.014512369961532
202 => 0.015001693915869
203 => 0.015176290215406
204 => 0.015158078390939
205 => 0.014999295961543
206 => 0.015071985744623
207 => 0.014837826626524
208 => 0.014755140168323
209 => 0.014494158961537
210 => 0.014110588685461
211 => 0.014163926484923
212 => 0.013403973401393
213 => 0.012989910627724
214 => 0.012875303509232
215 => 0.012722046080623
216 => 0.012892614343596
217 => 0.013401820549791
218 => 0.012787609830996
219 => 0.011734588635495
220 => 0.011797877003606
221 => 0.011940067176265
222 => 0.011675096730197
223 => 0.011424324440278
224 => 0.011642350600563
225 => 0.011196171638297
226 => 0.01199398577221
227 => 0.011972407135735
228 => 0.012269782908363
301 => 0.012455738081752
302 => 0.012027171610792
303 => 0.011919388302313
304 => 0.011980786573301
305 => 0.010966009920206
306 => 0.012186854006197
307 => 0.012197411916549
308 => 0.012107008678219
309 => 0.012757070464677
310 => 0.014128903593459
311 => 0.013612764788551
312 => 0.013412900242913
313 => 0.013032957595555
314 => 0.013539208614398
315 => 0.013500336434897
316 => 0.013324541697357
317 => 0.01321822049158
318 => 0.01341412057321
319 => 0.013193946303536
320 => 0.013154396954718
321 => 0.012914770930998
322 => 0.012829235342819
323 => 0.012765908198602
324 => 0.012696191235215
325 => 0.012849969484061
326 => 0.012501487740961
327 => 0.012081252920869
328 => 0.012046314942582
329 => 0.012142781772411
330 => 0.012100102381322
331 => 0.012046110610078
401 => 0.011943025614987
402 => 0.011912442499006
403 => 0.012011822789126
404 => 0.011899628235812
405 => 0.01206517741078
406 => 0.012020157195442
407 => 0.011768677932242
408 => 0.011455241660746
409 => 0.011452451420475
410 => 0.011384922089919
411 => 0.011298913334354
412 => 0.01127498766617
413 => 0.011623989045469
414 => 0.012346411455885
415 => 0.012204582650617
416 => 0.012307068497623
417 => 0.012811197430925
418 => 0.012971444859135
419 => 0.01285770503026
420 => 0.012702010937328
421 => 0.012708860687256
422 => 0.013240914534612
423 => 0.013274098080441
424 => 0.013357942195333
425 => 0.013465705577314
426 => 0.012876057600193
427 => 0.01268108832056
428 => 0.012588701059386
429 => 0.012304184053339
430 => 0.012611011251716
501 => 0.012432236182872
502 => 0.012456359047485
503 => 0.01244064900026
504 => 0.012449227748354
505 => 0.0119937627669
506 => 0.012159710267607
507 => 0.011883790361634
508 => 0.011514364580999
509 => 0.011513126136245
510 => 0.01160354257269
511 => 0.011549759338297
512 => 0.011405030037439
513 => 0.011425588151523
514 => 0.011245477439883
515 => 0.011447456852925
516 => 0.011453248899774
517 => 0.01137547582386
518 => 0.011686652977439
519 => 0.011814142511157
520 => 0.01176295060653
521 => 0.011810550750661
522 => 0.012210476277794
523 => 0.012275681588691
524 => 0.01230464148057
525 => 0.012265839061903
526 => 0.011817860655144
527 => 0.011837730402435
528 => 0.011691939380597
529 => 0.011568761330224
530 => 0.011573687806256
531 => 0.011637017336173
601 => 0.01191358110755
602 => 0.012495593260089
603 => 0.012517680195832
604 => 0.012544450206274
605 => 0.012435563120276
606 => 0.012402721733229
607 => 0.012446047999825
608 => 0.012664621163573
609 => 0.013226850682768
610 => 0.013028121220638
611 => 0.012866551074517
612 => 0.013008291651663
613 => 0.012986471800811
614 => 0.012802290300896
615 => 0.012797120939629
616 => 0.012443617754904
617 => 0.012312935676389
618 => 0.012203727950198
619 => 0.012084475964137
620 => 0.012013779389437
621 => 0.012122401459195
622 => 0.012147244611727
623 => 0.011909740557814
624 => 0.011877369632873
625 => 0.012071320570179
626 => 0.011985969993891
627 => 0.012073755178196
628 => 0.012094122093962
629 => 0.012090842551434
630 => 0.012001726747337
701 => 0.012058526503397
702 => 0.011924178147494
703 => 0.011778094488919
704 => 0.011684902216082
705 => 0.011603579597871
706 => 0.011648702112953
707 => 0.011487848585731
708 => 0.011436388305031
709 => 0.012039284024079
710 => 0.012484649573961
711 => 0.012478173782481
712 => 0.012438754067289
713 => 0.01238018436651
714 => 0.012660336425153
715 => 0.012562737049739
716 => 0.012633748750053
717 => 0.012651824208135
718 => 0.012706533175768
719 => 0.012726086929303
720 => 0.012666981905167
721 => 0.012468618225097
722 => 0.011974314794214
723 => 0.011744215212792
724 => 0.011668278518311
725 => 0.011671038672931
726 => 0.011594901286636
727 => 0.011617327159138
728 => 0.011587102483374
729 => 0.01152986425961
730 => 0.011645167813929
731 => 0.011658455474437
801 => 0.011631542247084
802 => 0.011637881286399
803 => 0.011415051258708
804 => 0.011431992541752
805 => 0.011337661324969
806 => 0.011319975359002
807 => 0.011081514257333
808 => 0.010659045850237
809 => 0.010893134357769
810 => 0.010610388358496
811 => 0.01050330816427
812 => 0.011010209149348
813 => 0.010959330349691
814 => 0.010872247961161
815 => 0.010743434958964
816 => 0.010695656963438
817 => 0.010405372987292
818 => 0.010388221461376
819 => 0.010532094038281
820 => 0.010465701794392
821 => 0.010372461939264
822 => 0.010034756635562
823 => 0.0096550640638172
824 => 0.0096665245958958
825 => 0.0097872977385364
826 => 0.010138461939241
827 => 0.010001256010823
828 => 0.0099017115354997
829 => 0.0098830698475675
830 => 0.010116409601056
831 => 0.010446634238432
901 => 0.010601568249929
902 => 0.010448033349951
903 => 0.010271660723763
904 => 0.010282395708287
905 => 0.010353810750968
906 => 0.010361315462199
907 => 0.010246515013949
908 => 0.010278830667684
909 => 0.010229740234656
910 => 0.009928472337774
911 => 0.0099230233568503
912 => 0.0098490873563544
913 => 0.0098468486036434
914 => 0.0097210650226003
915 => 0.0097034670301116
916 => 0.0094537160954328
917 => 0.0096181029169539
918 => 0.009507840867773
919 => 0.0093416499514696
920 => 0.0093129985748577
921 => 0.0093121372798792
922 => 0.009482778191314
923 => 0.0096161088785517
924 => 0.0095097589233258
925 => 0.0094855451000281
926 => 0.0097440853843198
927 => 0.0097111837764967
928 => 0.0096826911963145
929 => 0.01041706624409
930 => 0.0098357510897761
1001 => 0.0095822645021862
1002 => 0.0092685267142462
1003 => 0.0093706813200027
1004 => 0.009392206796399
1005 => 0.0086377239718902
1006 => 0.0083316303839518
1007 => 0.0082265905994649
1008 => 0.0081661387184481
1009 => 0.0081936873997344
1010 => 0.0079181672693929
1011 => 0.0081033213536647
1012 => 0.0078647442099259
1013 => 0.0078247459753809
1014 => 0.0082513514624227
1015 => 0.0083107111237515
1016 => 0.0080574643669217
1017 => 0.0082200897817322
1018 => 0.0081611195456596
1019 => 0.0078688339302974
1020 => 0.007857670769698
1021 => 0.0077110121222454
1022 => 0.0074815197376922
1023 => 0.0073766355598486
1024 => 0.0073220109693814
1025 => 0.0073445501400202
1026 => 0.0073331536456353
1027 => 0.0072587838108875
1028 => 0.0073374164375088
1029 => 0.007136542569736
1030 => 0.0070565529770381
1031 => 0.0070204235337609
1101 => 0.0068421364142441
1102 => 0.0071258705060372
1103 => 0.0071817696965084
1104 => 0.0072377790256529
1105 => 0.007725301996663
1106 => 0.0077009467267569
1107 => 0.0079211065052101
1108 => 0.0079125515010672
1109 => 0.0078497583659005
1110 => 0.0075848444576011
1111 => 0.0076904344198129
1112 => 0.0073654449284486
1113 => 0.0076089491525161
1114 => 0.0074978239936312
1115 => 0.0075713776245152
1116 => 0.0074391215641222
1117 => 0.0075123175286626
1118 => 0.0071950254682924
1119 => 0.0068987426067384
1120 => 0.0070179754792637
1121 => 0.0071475952476315
1122 => 0.0074286439319557
1123 => 0.0072612536541735
1124 => 0.0073214535277911
1125 => 0.0071197940285091
1126 => 0.0067037128803022
1127 => 0.0067060678544148
1128 => 0.0066420628345837
1129 => 0.0065867531525637
1130 => 0.0072804804411822
1201 => 0.007194204486637
1202 => 0.0070567350445869
1203 => 0.0072407433555894
1204 => 0.0072893980736231
1205 => 0.007290783205045
1206 => 0.0074250309188105
1207 => 0.0074966789477124
1208 => 0.0075093072233466
1209 => 0.0077205489015705
1210 => 0.007791354325766
1211 => 0.0080829918472686
1212 => 0.007490600113037
1213 => 0.0074784001951047
1214 => 0.0072433327298792
1215 => 0.0070942492271636
1216 => 0.0072535406048566
1217 => 0.0073946510200512
1218 => 0.007247717423823
1219 => 0.0072669038495529
1220 => 0.0070696575015325
1221 => 0.0071401637896465
1222 => 0.007200893303193
1223 => 0.0071673620353284
1224 => 0.0071171641044035
1225 => 0.0073830815752072
1226 => 0.0073680774693655
1227 => 0.0076157059315941
1228 => 0.0078087500259826
1229 => 0.0081547195538863
1230 => 0.0077936823157194
1231 => 0.0077805246837676
]
'min_raw' => 0.0065867531525637
'max_raw' => 0.019044240431465
'avg_raw' => 0.012815496792015
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.006586'
'max' => '$0.019044'
'avg' => '$0.012815'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0011582023170333
'max_diff' => -0.0064331541446111
'year' => 2030
]
5 => [
'items' => [
101 => 0.0079091426466474
102 => 0.007791334635026
103 => 0.0078657852317764
104 => 0.008142724411748
105 => 0.0081485757002258
106 => 0.008050559079264
107 => 0.0080445947589707
108 => 0.0080634199232108
109 => 0.0081736794981581
110 => 0.008135151414737
111 => 0.0081797370882836
112 => 0.0082354921557737
113 => 0.0084661187545716
114 => 0.0085217220467591
115 => 0.0083866348737452
116 => 0.0083988317329614
117 => 0.0083483054220283
118 => 0.0082994976387598
119 => 0.0084092104077431
120 => 0.0086097126494699
121 => 0.0086084653354302
122 => 0.0086549779583042
123 => 0.0086839549370233
124 => 0.008559564531916
125 => 0.0084785909521531
126 => 0.008509641375117
127 => 0.0085592916776264
128 => 0.0084935404511832
129 => 0.0080876934226452
130 => 0.008210801485495
131 => 0.0081903102841601
201 => 0.0081611283216439
202 => 0.008284914430806
203 => 0.0082729749585991
204 => 0.007915341412226
205 => 0.0079382359515256
206 => 0.0079167337049899
207 => 0.0079862118624925
208 => 0.007787582586513
209 => 0.0078486796140157
210 => 0.0078869990969163
211 => 0.0079095695667289
212 => 0.0079911095804082
213 => 0.0079815418009342
214 => 0.0079905148338023
215 => 0.008111417148323
216 => 0.0087228995665048
217 => 0.0087561812053665
218 => 0.0085922902434238
219 => 0.0086577614501137
220 => 0.0085320710502482
221 => 0.0086164478577304
222 => 0.0086741763264711
223 => 0.0084133124767777
224 => 0.0083978658125913
225 => 0.008271656643735
226 => 0.0083394743022256
227 => 0.0082315715313048
228 => 0.0082580470970101
301 => 0.0081840191071998
302 => 0.0083172547500325
303 => 0.0084662329014453
304 => 0.0085038706658177
305 => 0.0084048619118304
306 => 0.0083331730489488
307 => 0.0082073110215081
308 => 0.0084166223781601
309 => 0.0084778313974932
310 => 0.0084163008732391
311 => 0.0084020429063009
312 => 0.0083750240847166
313 => 0.0084077750770262
314 => 0.0084774980400286
315 => 0.0084446179782576
316 => 0.0084663358383295
317 => 0.0083835697510956
318 => 0.008559605710316
319 => 0.0088391931789186
320 => 0.0088400920983473
321 => 0.0088072118593406
322 => 0.0087937579739536
323 => 0.0088274950945143
324 => 0.0088457960984493
325 => 0.0089548957600127
326 => 0.0090719640435926
327 => 0.0096182706421657
328 => 0.0094648699353676
329 => 0.0099495856495467
330 => 0.010332932847004
331 => 0.01044788190978
401 => 0.010342134180798
402 => 0.0099803769123277
403 => 0.0099626273748824
404 => 0.010503245463956
405 => 0.010350496091915
406 => 0.010332327040156
407 => 0.01013903902653
408 => 0.010253296181769
409 => 0.010228306465867
410 => 0.010188858976776
411 => 0.01040685366975
412 => 0.010814920274477
413 => 0.010751319267306
414 => 0.010703844065819
415 => 0.010495821552724
416 => 0.010621097569118
417 => 0.010576489179184
418 => 0.010768155131522
419 => 0.010654616467278
420 => 0.010349338865189
421 => 0.01039795532953
422 => 0.010390607048747
423 => 0.010541834146544
424 => 0.010496439525472
425 => 0.010381743020426
426 => 0.010813525547185
427 => 0.010785487991598
428 => 0.010825238835143
429 => 0.010842738385807
430 => 0.011105556800983
501 => 0.01121322509643
502 => 0.011237667684495
503 => 0.011339944237805
504 => 0.011235122950677
505 => 0.011654482835499
506 => 0.011933332688578
507 => 0.012257231142411
508 => 0.012730533839158
509 => 0.01290850003143
510 => 0.012876352031709
511 => 0.013235204734654
512 => 0.013880055064998
513 => 0.013006694720449
514 => 0.013926345283944
515 => 0.013635194533418
516 => 0.012944881341498
517 => 0.012900433310196
518 => 0.013367921418465
519 => 0.014404765048543
520 => 0.014145047478992
521 => 0.014405189853446
522 => 0.014101719955369
523 => 0.014086650117085
524 => 0.014390450997853
525 => 0.015100298315094
526 => 0.014763076462902
527 => 0.014279586247594
528 => 0.014636587898636
529 => 0.01432732002956
530 => 0.013630452961906
531 => 0.014144848877861
601 => 0.013800886978014
602 => 0.01390127334641
603 => 0.014624230099416
604 => 0.014537242030188
605 => 0.014649812646648
606 => 0.014451128455083
607 => 0.01426552609054
608 => 0.013919085494108
609 => 0.01381652151282
610 => 0.013844866507382
611 => 0.013816507466448
612 => 0.013622677136698
613 => 0.013580819495443
614 => 0.013511054926193
615 => 0.013532677883386
616 => 0.013401500082852
617 => 0.013649059695177
618 => 0.013695008940712
619 => 0.013875162181804
620 => 0.01389386628893
621 => 0.014395590501051
622 => 0.014119249236148
623 => 0.014304642814801
624 => 0.014288059468135
625 => 0.01295984252158
626 => 0.013142859097858
627 => 0.013427575456781
628 => 0.01329931112301
629 => 0.013117975364289
630 => 0.012971537016515
701 => 0.012749667945546
702 => 0.013061944402316
703 => 0.01347255473607
704 => 0.013904280044604
705 => 0.014422969715045
706 => 0.014307204218816
707 => 0.013894583502008
708 => 0.013913093365945
709 => 0.014027514061436
710 => 0.013879328864558
711 => 0.01383562615708
712 => 0.01402150998053
713 => 0.014022790060262
714 => 0.013852285082474
715 => 0.013662800001745
716 => 0.013662006052338
717 => 0.013628289012431
718 => 0.014107718141866
719 => 0.014371355687303
720 => 0.014401581307014
721 => 0.014369321262271
722 => 0.014381736873137
723 => 0.014228331994304
724 => 0.014578970056513
725 => 0.014900750216905
726 => 0.014814506260089
727 => 0.014685214308522
728 => 0.014582227041554
729 => 0.014790245732974
730 => 0.014780982988097
731 => 0.014897939747919
801 => 0.014892633913718
802 => 0.014853305754357
803 => 0.014814507664622
804 => 0.014968337704883
805 => 0.014924037123722
806 => 0.014879667731523
807 => 0.014790678122854
808 => 0.014802773288633
809 => 0.014673503661144
810 => 0.014613697616492
811 => 0.013714358199689
812 => 0.013474025320756
813 => 0.013549638936895
814 => 0.013574532902635
815 => 0.013469939725728
816 => 0.01361989947363
817 => 0.013596528405766
818 => 0.013687451559206
819 => 0.013630646720361
820 => 0.013632978010762
821 => 0.013800028929737
822 => 0.013848524522201
823 => 0.013823859272466
824 => 0.013841133967905
825 => 0.014239222033099
826 => 0.014182626640368
827 => 0.014152561465968
828 => 0.014160889724746
829 => 0.014262609760507
830 => 0.014291085816812
831 => 0.014170430765271
901 => 0.014227332385076
902 => 0.014469612260318
903 => 0.0145543965048
904 => 0.014824987114438
905 => 0.014710035414099
906 => 0.014921034235064
907 => 0.015569572675912
908 => 0.016087670057909
909 => 0.015611206294145
910 => 0.016562626156877
911 => 0.017303442993088
912 => 0.017275009209019
913 => 0.017145830658223
914 => 0.016302430385832
915 => 0.015526320880789
916 => 0.016175569437108
917 => 0.016177224505197
918 => 0.016121453478419
919 => 0.015775064420954
920 => 0.016109399890061
921 => 0.016135938225471
922 => 0.016121083814755
923 => 0.015855508136548
924 => 0.015450023162516
925 => 0.015529253955848
926 => 0.01565903561159
927 => 0.01541333186198
928 => 0.015334814626265
929 => 0.015480793105975
930 => 0.015951166183426
1001 => 0.01586224487782
1002 => 0.015859922783171
1003 => 0.016240365837057
1004 => 0.015968050715224
1005 => 0.015530253309884
1006 => 0.015419703691197
1007 => 0.015027327020005
1008 => 0.015298342984395
1009 => 0.015308096366473
1010 => 0.015159663692493
1011 => 0.015542297803318
1012 => 0.015538771762626
1013 => 0.015902025903283
1014 => 0.016596431388194
1015 => 0.016391061516687
1016 => 0.016152238700303
1017 => 0.016178205362283
1018 => 0.016462995553013
1019 => 0.01629080490257
1020 => 0.016352725861025
1021 => 0.016462901828227
1022 => 0.016529373724755
1023 => 0.016168641079317
1024 => 0.016084537043828
1025 => 0.015912489703723
1026 => 0.015867605764106
1027 => 0.016007734732735
1028 => 0.015970815700331
1029 => 0.015307276632476
1030 => 0.015237933107989
1031 => 0.015240059774885
1101 => 0.015065692185457
1102 => 0.014799739758563
1103 => 0.015498646857247
1104 => 0.015442514836024
1105 => 0.015380549428868
1106 => 0.015388139837675
1107 => 0.015691511721054
1108 => 0.015515540708047
1109 => 0.015983388487209
1110 => 0.015887213048605
1111 => 0.015788571072904
1112 => 0.015774935747154
1113 => 0.015736967002246
1114 => 0.015606758048412
1115 => 0.015449522912312
1116 => 0.015345702655985
1117 => 0.014155599529373
1118 => 0.014376475747161
1119 => 0.014630573702225
1120 => 0.014718287298079
1121 => 0.014568247122774
1122 => 0.015612682549039
1123 => 0.015803510965848
1124 => 0.015225479243904
1125 => 0.015117353109608
1126 => 0.015619771280402
1127 => 0.01531675170529
1128 => 0.015453201401409
1129 => 0.015158271792393
1130 => 0.015757545988347
1201 => 0.015752980523032
1202 => 0.015519849325585
1203 => 0.015716890217254
1204 => 0.015682649513388
1205 => 0.015419444965647
1206 => 0.01576589004198
1207 => 0.015766061874415
1208 => 0.015541678165581
1209 => 0.015279647117573
1210 => 0.015232802155087
1211 => 0.015197510768588
1212 => 0.015444521883732
1213 => 0.015665991277186
1214 => 0.016078090911485
1215 => 0.016181702550794
1216 => 0.016586105676833
1217 => 0.016345303305307
1218 => 0.016452047877692
1219 => 0.016567934210957
1220 => 0.016623494380703
1221 => 0.016532962065625
1222 => 0.017161166579331
1223 => 0.017214206287976
1224 => 0.017231990043493
1225 => 0.017020163016025
1226 => 0.01720831499515
1227 => 0.017120284915056
1228 => 0.017349314728
1229 => 0.017385229527069
1230 => 0.017354810969964
1231 => 0.017366210894065
]
'min_raw' => 0.007787582586513
'max_raw' => 0.017385229527069
'avg_raw' => 0.012586406056791
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.007787'
'max' => '$0.017385'
'avg' => '$0.012586'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0012008294339493
'max_diff' => -0.001659010904396
'year' => 2031
]
6 => [
'items' => [
101 => 0.016830149164487
102 => 0.016802351535858
103 => 0.016423328897065
104 => 0.016577783423967
105 => 0.016289038089121
106 => 0.016380602209207
107 => 0.016420962800886
108 => 0.016399880718237
109 => 0.016586516051176
110 => 0.016427837891098
111 => 0.016009060137547
112 => 0.015590168288278
113 => 0.015584909442332
114 => 0.015474622612475
115 => 0.015394905434528
116 => 0.01541026179112
117 => 0.015464379594708
118 => 0.015391760009403
119 => 0.015407257079834
120 => 0.015664611705435
121 => 0.01571622234023
122 => 0.01554082923762
123 => 0.014836600621536
124 => 0.014663781152725
125 => 0.014788000359747
126 => 0.014728631579532
127 => 0.011887155207246
128 => 0.012554717932699
129 => 0.012158074829523
130 => 0.012340866220138
131 => 0.011935996322029
201 => 0.012129221458456
202 => 0.01209353983121
203 => 0.013166960939123
204 => 0.013150200944965
205 => 0.013158223067249
206 => 0.012775306269101
207 => 0.013385303125875
208 => 0.013685809512299
209 => 0.013630193777891
210 => 0.013644191060048
211 => 0.013403671377381
212 => 0.013160551823528
213 => 0.012890894822473
214 => 0.01339188419982
215 => 0.013336182733233
216 => 0.013463941856828
217 => 0.013788869279498
218 => 0.013836716076765
219 => 0.013901022657507
220 => 0.013877973325965
221 => 0.014427101915086
222 => 0.014360598819676
223 => 0.014520852145367
224 => 0.014191198895972
225 => 0.013818164953308
226 => 0.01388906651041
227 => 0.013882238120307
228 => 0.013795304877031
229 => 0.01371682543205
301 => 0.013586179267603
302 => 0.013999563063908
303 => 0.013982780436706
304 => 0.014254471663445
305 => 0.014206447600051
306 => 0.013885731151225
307 => 0.013897185601937
308 => 0.0139742222878
309 => 0.01424084713716
310 => 0.014319999545655
311 => 0.014283332996362
312 => 0.014370119998831
313 => 0.014438712906992
314 => 0.014378734212021
315 => 0.01522790604893
316 => 0.014875270698192
317 => 0.015047142714521
318 => 0.015088133177686
319 => 0.014983136968224
320 => 0.015005906886424
321 => 0.015040397108066
322 => 0.015249814979997
323 => 0.015799388071493
324 => 0.016042790252646
325 => 0.016775077723896
326 => 0.016022579089823
327 => 0.015977928935026
328 => 0.016109836021561
329 => 0.016539766287686
330 => 0.016888184387085
331 => 0.017003774771377
401 => 0.017019051948851
402 => 0.017235907194088
403 => 0.017360204576546
404 => 0.017209575263457
405 => 0.01708193269216
406 => 0.016624732845353
407 => 0.016677654972535
408 => 0.017042235948468
409 => 0.017557228050687
410 => 0.017999144850187
411 => 0.017844400989357
412 => 0.019024987415344
413 => 0.019142037737218
414 => 0.019125865167425
415 => 0.019392523220076
416 => 0.018863261289532
417 => 0.018636991560257
418 => 0.017109530464879
419 => 0.017538684728352
420 => 0.018162485653655
421 => 0.018079923262058
422 => 0.017626902355856
423 => 0.017998801193206
424 => 0.017875839807226
425 => 0.017778855060431
426 => 0.018223160986917
427 => 0.017734628369664
428 => 0.01815761216709
429 => 0.017615131071684
430 => 0.017845107846279
501 => 0.017714561906294
502 => 0.017799041128573
503 => 0.017305177321325
504 => 0.01757165424385
505 => 0.017294091005253
506 => 0.017293959404138
507 => 0.017287832180262
508 => 0.017614384099567
509 => 0.017625032945932
510 => 0.017383710584173
511 => 0.01734893226168
512 => 0.017477525947994
513 => 0.01732697642006
514 => 0.017397417596633
515 => 0.017329110011539
516 => 0.017313732535357
517 => 0.017191202188872
518 => 0.017138412746564
519 => 0.01715911284711
520 => 0.017088452732316
521 => 0.017045877457264
522 => 0.017279362886451
523 => 0.017154621040412
524 => 0.017260244409495
525 => 0.017139873249693
526 => 0.016722614366599
527 => 0.016482644370499
528 => 0.015694481020255
529 => 0.01591800316867
530 => 0.016066198584321
531 => 0.016017220000332
601 => 0.016122444950935
602 => 0.0161289049083
603 => 0.016094695204218
604 => 0.016055084749425
605 => 0.016035804570627
606 => 0.016179503227431
607 => 0.01626292513438
608 => 0.01608107197688
609 => 0.016038466326474
610 => 0.016222329909094
611 => 0.016334486588278
612 => 0.017162588491976
613 => 0.017101240028216
614 => 0.017255212633226
615 => 0.017237877680804
616 => 0.017399265500613
617 => 0.01766306637842
618 => 0.017126685433953
619 => 0.017219782619255
620 => 0.017196957339347
621 => 0.017446157760273
622 => 0.017446935736786
623 => 0.017297527635957
624 => 0.017378524191286
625 => 0.017333314136126
626 => 0.017415014816306
627 => 0.01710042068208
628 => 0.017483562379229
629 => 0.017700779032407
630 => 0.017703795085847
701 => 0.017806754055515
702 => 0.017911366331679
703 => 0.018112160485968
704 => 0.017905766291698
705 => 0.017534483228275
706 => 0.017561288666217
707 => 0.01734360554198
708 => 0.017347264834626
709 => 0.017327731243697
710 => 0.017386353020495
711 => 0.017113284865499
712 => 0.017177373415676
713 => 0.017087649070126
714 => 0.017219587576051
715 => 0.017077643553892
716 => 0.017196946332306
717 => 0.01724843345652
718 => 0.017438422053306
719 => 0.017049582083672
720 => 0.016256711063436
721 => 0.016423382164521
722 => 0.016176862514283
723 => 0.016199678846479
724 => 0.016245771468708
725 => 0.016096370199498
726 => 0.016124871253488
727 => 0.016123852995281
728 => 0.016115078196157
729 => 0.016076213155885
730 => 0.016019851158277
731 => 0.016244380009441
801 => 0.016282531836486
802 => 0.016367338621994
803 => 0.016619666090677
804 => 0.016594452626264
805 => 0.016635576832818
806 => 0.016545802920813
807 => 0.016203843200779
808 => 0.016222413258795
809 => 0.015990844337774
810 => 0.016361416884046
811 => 0.01627366041377
812 => 0.016217083246494
813 => 0.016201645642219
814 => 0.01645459858189
815 => 0.016530286065991
816 => 0.016483122705098
817 => 0.016386389275929
818 => 0.016572146056603
819 => 0.016621846734662
820 => 0.016632972883589
821 => 0.016962098283614
822 => 0.016651367337323
823 => 0.016726163364495
824 => 0.017309700617024
825 => 0.016780512851617
826 => 0.017060835413248
827 => 0.017047115082585
828 => 0.017190518619517
829 => 0.017035351806921
830 => 0.017037275285529
831 => 0.017164607911327
901 => 0.016985792202953
902 => 0.016941514918869
903 => 0.016880346168026
904 => 0.017013905897677
905 => 0.017093968915216
906 => 0.017739218036773
907 => 0.018156078396234
908 => 0.018137981388639
909 => 0.01830335416188
910 => 0.018228852212894
911 => 0.017988265766996
912 => 0.018398917493752
913 => 0.018268970105008
914 => 0.01827968280985
915 => 0.018279284082441
916 => 0.018365687735757
917 => 0.018304462828604
918 => 0.018183782251997
919 => 0.018263895650676
920 => 0.018501803803686
921 => 0.019240278010544
922 => 0.019653537960184
923 => 0.019215399242672
924 => 0.019517621463101
925 => 0.019336395823631
926 => 0.019303461733944
927 => 0.01949327962242
928 => 0.019683429761982
929 => 0.019671318020133
930 => 0.019533278783129
1001 => 0.019455303920761
1002 => 0.020045755702106
1003 => 0.020480790516516
1004 => 0.020451124058684
1005 => 0.020582062155507
1006 => 0.020966500457544
1007 => 0.021001648677944
1008 => 0.020997220810046
1009 => 0.020910102278446
1010 => 0.021288631712423
1011 => 0.021604407625838
1012 => 0.020889936855477
1013 => 0.021161997971721
1014 => 0.021284134972065
1015 => 0.021463468324985
1016 => 0.02176603375112
1017 => 0.022094700055419
1018 => 0.022141177074489
1019 => 0.022108199405329
1020 => 0.021891435142619
1021 => 0.022251065734587
1022 => 0.022461728900987
1023 => 0.022587173995637
1024 => 0.022905281883597
1025 => 0.021284889248599
1026 => 0.020137894802808
1027 => 0.019958775057297
1028 => 0.020323022103329
1029 => 0.020419071144552
1030 => 0.020380353896471
1031 => 0.01908930736756
1101 => 0.01995197796451
1102 => 0.020880138991425
1103 => 0.020915793436524
1104 => 0.021380450253529
1105 => 0.021531761560072
1106 => 0.021905871201723
1107 => 0.021882470541778
1108 => 0.021973560286136
1109 => 0.021952620331362
1110 => 0.022645579664441
1111 => 0.023410016714283
1112 => 0.023383546690008
1113 => 0.023273649819684
1114 => 0.023436865412316
1115 => 0.024225846369805
1116 => 0.024153209646402
1117 => 0.024223770036007
1118 => 0.025154023049906
1119 => 0.026363484294922
1120 => 0.025801568118689
1121 => 0.027020764534092
1122 => 0.027788184050763
1123 => 0.029115356752188
1124 => 0.028949188193506
1125 => 0.029465846786927
1126 => 0.028651711793041
1127 => 0.026782293283249
1128 => 0.026486450648228
1129 => 0.027078735095469
1130 => 0.02853480861474
1201 => 0.027032878158622
1202 => 0.027336716733776
1203 => 0.027249211203691
1204 => 0.027244548405868
1205 => 0.027422508433827
1206 => 0.027164368131501
1207 => 0.02611265810127
1208 => 0.026594650610358
1209 => 0.026408530155418
1210 => 0.026615044676374
1211 => 0.027729518372904
1212 => 0.027236782985933
1213 => 0.026717726282332
1214 => 0.027368738576552
1215 => 0.028197700939188
1216 => 0.028145825964323
1217 => 0.028045166831027
1218 => 0.028612577095075
1219 => 0.029549772615674
1220 => 0.029803092798935
1221 => 0.029990088579315
1222 => 0.03001587213811
1223 => 0.03028145881809
1224 => 0.028853332303379
1225 => 0.031119805759115
1226 => 0.031511163114855
1227 => 0.031437604152076
1228 => 0.031872581382146
1229 => 0.031744600046752
1230 => 0.031559175171423
1231 => 0.032248706603393
]
'min_raw' => 0.011887155207246
'max_raw' => 0.032248706603393
'avg_raw' => 0.022067930905319
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.011887'
'max' => '$0.032248'
'avg' => '$0.022067'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0040995726207325
'max_diff' => 0.014863477076324
'year' => 2032
]
7 => [
'items' => [
101 => 0.031458214458956
102 => 0.030336210380121
103 => 0.029720656751748
104 => 0.030531267424885
105 => 0.031026279076555
106 => 0.031353450289655
107 => 0.031452452101057
108 => 0.028964193699361
109 => 0.027623160425985
110 => 0.028482747379241
111 => 0.029531502787737
112 => 0.028847506414132
113 => 0.028874317777001
114 => 0.027899118699325
115 => 0.029617786267218
116 => 0.029367390858845
117 => 0.030666442680424
118 => 0.030356413537662
119 => 0.031415739869258
120 => 0.031136783744257
121 => 0.032294715022907
122 => 0.032756645159699
123 => 0.033532297753057
124 => 0.034102870958205
125 => 0.034437922457594
126 => 0.034417807222317
127 => 0.035745448184892
128 => 0.034962584693504
129 => 0.033979123641563
130 => 0.033961335933913
131 => 0.034470684348464
201 => 0.03553813889245
202 => 0.035814914324874
203 => 0.0359695940332
204 => 0.035732696675459
205 => 0.03488295446389
206 => 0.034516040085225
207 => 0.03482866176638
208 => 0.034446352314214
209 => 0.035106325685739
210 => 0.036012610087548
211 => 0.035825465942411
212 => 0.036451060761385
213 => 0.037098485584528
214 => 0.038024332159291
215 => 0.038266382737933
216 => 0.03866648314007
217 => 0.039078317880004
218 => 0.039210588099214
219 => 0.039463132988723
220 => 0.039461801952496
221 => 0.040222862975264
222 => 0.041062336851475
223 => 0.04137921880588
224 => 0.042107871387061
225 => 0.040860079376821
226 => 0.04180654395019
227 => 0.042660278686914
228 => 0.04164242093844
301 => 0.043045300714272
302 => 0.043099771356974
303 => 0.043922213391243
304 => 0.043088510828682
305 => 0.042593460908306
306 => 0.044022651479152
307 => 0.044714191777304
308 => 0.044505894211559
309 => 0.042920739451322
310 => 0.041998111390378
311 => 0.039583415793226
312 => 0.04244372703514
313 => 0.043836901204653
314 => 0.042917131466789
315 => 0.043381009822757
316 => 0.045911779719856
317 => 0.046875333041455
318 => 0.046674920686309
319 => 0.04670878707526
320 => 0.047228702957865
321 => 0.049534296304242
322 => 0.048152731327858
323 => 0.049208885986052
324 => 0.049769066608509
325 => 0.050289393589852
326 => 0.049011634974704
327 => 0.047349289790398
328 => 0.046822755290025
329 => 0.042825678493039
330 => 0.042617613287331
331 => 0.042500819982346
401 => 0.041764454715158
402 => 0.04118587332257
403 => 0.040725763917835
404 => 0.039518299439509
405 => 0.039925783255452
406 => 0.038001336894424
407 => 0.039232529478019
408 => 0.036161066618435
409 => 0.038719072156908
410 => 0.037326866040557
411 => 0.038261695004423
412 => 0.038258433474234
413 => 0.036537116963964
414 => 0.035544297523799
415 => 0.036176960712183
416 => 0.036855225870997
417 => 0.036965272111056
418 => 0.03784466059399
419 => 0.038090079017185
420 => 0.037346449737414
421 => 0.036097417377648
422 => 0.036387539107427
423 => 0.035538418216205
424 => 0.034050366515302
425 => 0.035119111225781
426 => 0.035484027659326
427 => 0.03564519554521
428 => 0.034181867601264
429 => 0.033722058190881
430 => 0.033477259518968
501 => 0.03590852011577
502 => 0.036041710059524
503 => 0.035360291476122
504 => 0.038440368087861
505 => 0.037743251889578
506 => 0.038522101480675
507 => 0.036361213601362
508 => 0.036443762428373
509 => 0.035420763476541
510 => 0.035993574532752
511 => 0.035588730140785
512 => 0.03594729706004
513 => 0.036162220593014
514 => 0.037185051680784
515 => 0.038730751244934
516 => 0.037032274824682
517 => 0.036292224325748
518 => 0.036751347493085
519 => 0.037974052990246
520 => 0.039826514407588
521 => 0.038729819964261
522 => 0.03921651433513
523 => 0.039322835403639
524 => 0.038514173522965
525 => 0.039856330924591
526 => 0.04057560397979
527 => 0.041313429301837
528 => 0.041954062355574
529 => 0.041018725643085
530 => 0.042019670000699
531 => 0.041213085538926
601 => 0.040489495893547
602 => 0.040490593280355
603 => 0.04003667492585
604 => 0.039157150916605
605 => 0.038994953194981
606 => 0.039838726226184
607 => 0.040515352291605
608 => 0.040571082455173
609 => 0.040945697411293
610 => 0.041167390683483
611 => 0.043340286128341
612 => 0.044214242651397
613 => 0.045282900144639
614 => 0.045699202464493
615 => 0.046952123194612
616 => 0.045940287947794
617 => 0.045721371027403
618 => 0.042682195163383
619 => 0.043179860040859
620 => 0.043976669527215
621 => 0.04269533425833
622 => 0.043508046563714
623 => 0.043668493188397
624 => 0.042651794976202
625 => 0.043194857420272
626 => 0.041752644575616
627 => 0.038762187543835
628 => 0.039859660158135
629 => 0.040667769407548
630 => 0.039514497869484
701 => 0.041581692463692
702 => 0.040374080057314
703 => 0.03999132490011
704 => 0.038498060569793
705 => 0.039202823852688
706 => 0.040156026284041
707 => 0.039567058003141
708 => 0.04078925562004
709 => 0.042520213393767
710 => 0.043753796983643
711 => 0.043848496214205
712 => 0.043055384609597
713 => 0.044326351017552
714 => 0.044335608620289
715 => 0.042901953320065
716 => 0.042023847431304
717 => 0.041824339925827
718 => 0.042322748790259
719 => 0.042927909163032
720 => 0.043882078403192
721 => 0.044458662891337
722 => 0.045962089439638
723 => 0.046368873556991
724 => 0.046815805972723
725 => 0.047413045508995
726 => 0.048130184701363
727 => 0.046561124975219
728 => 0.046623466643232
729 => 0.045162379951357
730 => 0.043600999280063
731 => 0.044785892580727
801 => 0.046334982951595
802 => 0.045979619908925
803 => 0.045939634307217
804 => 0.04600687899821
805 => 0.045738946869108
806 => 0.044527099779212
807 => 0.04391851775723
808 => 0.044703743831419
809 => 0.045121056543459
810 => 0.045768272166339
811 => 0.045688489179755
812 => 0.047355647118411
813 => 0.048003454281134
814 => 0.047837717487678
815 => 0.047868217046352
816 => 0.049041040971159
817 => 0.05034546238518
818 => 0.051567225172976
819 => 0.052810054756656
820 => 0.051311775185066
821 => 0.05055104121965
822 => 0.051335924488699
823 => 0.05091945437811
824 => 0.053312615166615
825 => 0.053478312427244
826 => 0.055871300162985
827 => 0.058142530475882
828 => 0.056716011409669
829 => 0.058061154637278
830 => 0.059516036709073
831 => 0.062322740271676
901 => 0.061377541252814
902 => 0.060653533617522
903 => 0.05996934990055
904 => 0.061393027604461
905 => 0.063224566226737
906 => 0.063619062103716
907 => 0.064258296133446
908 => 0.063586219713003
909 => 0.064395661734637
910 => 0.067253347757852
911 => 0.066481175768887
912 => 0.065384567411715
913 => 0.067640436071961
914 => 0.068456826170636
915 => 0.074186679429955
916 => 0.081420855858276
917 => 0.078425859314788
918 => 0.07656676831231
919 => 0.07700369879612
920 => 0.079645375135417
921 => 0.080493797732983
922 => 0.078187492643991
923 => 0.079002118590974
924 => 0.08349078765111
925 => 0.085898814588128
926 => 0.082628390566493
927 => 0.0736054203977
928 => 0.065285829827404
929 => 0.067492559882692
930 => 0.067242385177229
1001 => 0.072064900109476
1002 => 0.066462759722325
1003 => 0.066557085398954
1004 => 0.071479324832868
1005 => 0.070166155740447
1006 => 0.068038989988716
1007 => 0.065301360491454
1008 => 0.060240599165687
1009 => 0.055758141729685
1010 => 0.064549273009981
1011 => 0.06417018344354
1012 => 0.063621205573407
1013 => 0.064842896417778
1014 => 0.070775080375049
1015 => 0.070638324334228
1016 => 0.069768352176072
1017 => 0.070428218390451
1018 => 0.067923312250929
1019 => 0.068568883598736
1020 => 0.065284511961752
1021 => 0.066769185109144
1022 => 0.068034426046371
1023 => 0.068288441896732
1024 => 0.068860752577965
1025 => 0.063970420467988
1026 => 0.06616603601276
1027 => 0.067455754443959
1028 => 0.061628759651447
1029 => 0.067340573492127
1030 => 0.063885290665961
1031 => 0.062712515778153
1101 => 0.064291502663243
1102 => 0.063676169938509
1103 => 0.063147142995332
1104 => 0.062851936871202
1105 => 0.064011370573189
1106 => 0.063957281605169
1107 => 0.062060223032334
1108 => 0.05958558745807
1109 => 0.060416156383937
1110 => 0.060114402906544
1111 => 0.0590208093775
1112 => 0.05975775937509
1113 => 0.056512604547565
1114 => 0.05092948433528
1115 => 0.054617864563113
1116 => 0.054475865936527
1117 => 0.054404263789877
1118 => 0.057175979591752
1119 => 0.056909543071765
1120 => 0.056425958179035
1121 => 0.059011927961714
1122 => 0.058068014204834
1123 => 0.060976933989486
1124 => 0.062892936696793
1125 => 0.062406976434025
1126 => 0.064208986241093
1127 => 0.060435291014475
1128 => 0.061688761194384
1129 => 0.061947099661228
1130 => 0.058980017496005
1201 => 0.056953135381511
1202 => 0.056817965452622
1203 => 0.053303631187649
1204 => 0.055180960185283
1205 => 0.056832932014047
1206 => 0.056041765706262
1207 => 0.055791306088638
1208 => 0.057070849957015
1209 => 0.05717028147414
1210 => 0.05490323234641
1211 => 0.055374623648174
1212 => 0.057340403738813
1213 => 0.055325091033562
1214 => 0.051409667646719
1215 => 0.050438588511819
1216 => 0.050309028654684
1217 => 0.047675385023576
1218 => 0.050503480663008
1219 => 0.049268941128145
1220 => 0.053168836726724
1221 => 0.050941237276375
1222 => 0.050845209916317
1223 => 0.050700050477439
1224 => 0.048433164609696
1225 => 0.048929468546619
1226 => 0.050579258422176
1227 => 0.051167922035987
1228 => 0.051106519598288
1229 => 0.050571173551746
1230 => 0.050816252230438
1231 => 0.050026768415299
]
'min_raw' => 0.027623160425985
'max_raw' => 0.085898814588128
'avg_raw' => 0.056760987507057
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.027623'
'max' => '$0.085898'
'avg' => '$0.05676'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.015736005218739
'max_diff' => 0.053650107984735
'year' => 2033
]
8 => [
'items' => [
101 => 0.049747985248489
102 => 0.048868068888686
103 => 0.047574834922874
104 => 0.047754667037685
105 => 0.045192432158336
106 => 0.043796390607969
107 => 0.04340998470636
108 => 0.042893266585713
109 => 0.043468349393021
110 => 0.045185173668851
111 => 0.043114319347612
112 => 0.039563984867389
113 => 0.039777366019126
114 => 0.040256770113646
115 => 0.039363403755083
116 => 0.038517907471257
117 => 0.039252997892762
118 => 0.037748674370259
119 => 0.04043856042435
120 => 0.040365806544905
121 => 0.041368429724433
122 => 0.04199539057449
123 => 0.040550448796093
124 => 0.040187049846365
125 => 0.040394058403692
126 => 0.036972668068338
127 => 0.041088829140868
128 => 0.041124425872751
129 => 0.04081962504297
130 => 0.043011353741877
131 => 0.047636584913894
201 => 0.045896386897488
202 => 0.045222529627773
203 => 0.043941526465456
204 => 0.045648387120801
205 => 0.045517326853645
206 => 0.044924622622433
207 => 0.044566153254047
208 => 0.04522664405657
209 => 0.044484311134286
210 => 0.044350967743499
211 => 0.043543051874372
212 => 0.043254662666923
213 => 0.043041150778834
214 => 0.042806095169292
215 => 0.043324569271733
216 => 0.042149638744652
217 => 0.040732787708853
218 => 0.040614991875767
219 => 0.040940236527633
220 => 0.040796339980799
221 => 0.040614302954462
222 => 0.04026674469635
223 => 0.040163631585575
224 => 0.040498699172223
225 => 0.040120427402552
226 => 0.040678588004232
227 => 0.040526799205009
228 => 0.039678919311407
301 => 0.038622147038637
302 => 0.038612739548755
303 => 0.03838505969604
304 => 0.038095075171713
305 => 0.038014408110993
306 => 0.039191090627796
307 => 0.041626788222436
308 => 0.041148602503304
309 => 0.04149414069182
310 => 0.043193846587604
311 => 0.043734131979935
312 => 0.043350650205819
313 => 0.042825716701285
314 => 0.042848811111402
315 => 0.044642667804574
316 => 0.044754548446138
317 => 0.045037234733307
318 => 0.045400566499454
319 => 0.043412527176685
320 => 0.042755174638081
321 => 0.04244368453676
322 => 0.041484415586531
323 => 0.042518904907848
324 => 0.041916152281566
325 => 0.041997484203813
326 => 0.041944516682753
327 => 0.0419734405309
328 => 0.040437808546378
329 => 0.040997312131097
330 => 0.040067028903997
331 => 0.038821484092102
401 => 0.038817308589149
402 => 0.039122153917298
403 => 0.038940819987516
404 => 0.038452855044994
405 => 0.03852216816195
406 => 0.03791491232273
407 => 0.038595900015553
408 => 0.038615428305892
409 => 0.038353210950505
410 => 0.039402366449492
411 => 0.039832206313456
412 => 0.0396596092329
413 => 0.039820096442176
414 => 0.041168473278813
415 => 0.041388317536991
416 => 0.041485957834377
417 => 0.04135513277074
418 => 0.039844742295499
419 => 0.039911734535752
420 => 0.039420189926824
421 => 0.039004886529975
422 => 0.039021496487869
423 => 0.039235016419513
424 => 0.040167470483776
425 => 0.04212976509085
426 => 0.04220423273677
427 => 0.042294489695999
428 => 0.041927369283301
429 => 0.041816642253962
430 => 0.041962719786731
501 => 0.042699654468599
502 => 0.044595250546178
503 => 0.043925220289757
504 => 0.043380475261644
505 => 0.043858363513504
506 => 0.043784796362942
507 => 0.043163815576836
508 => 0.04314638671441
509 => 0.041954526046305
510 => 0.041513922294661
511 => 0.041145720821168
512 => 0.040743654424257
513 => 0.04050529598678
514 => 0.040871522878717
515 => 0.040955283301972
516 => 0.040154521802202
517 => 0.040045380968698
518 => 0.040699300095048
519 => 0.040411534668104
520 => 0.040707508545955
521 => 0.040776177024434
522 => 0.04076511981783
523 => 0.040464659662451
524 => 0.040656164005638
525 => 0.040203199143807
526 => 0.039710667889688
527 => 0.039396463635342
528 => 0.039122278750278
529 => 0.039274412460231
530 => 0.038732083562768
531 => 0.038558581633546
601 => 0.040591286643151
602 => 0.042092867689007
603 => 0.042071034105909
604 => 0.041938127783941
605 => 0.041740655948559
606 => 0.042685208173865
607 => 0.042356145065486
608 => 0.042595565970975
609 => 0.042656508639885
610 => 0.04284096374392
611 => 0.04290689058916
612 => 0.042707613873705
613 => 0.042038816877038
614 => 0.040372238348655
615 => 0.039596441544849
616 => 0.039340415677676
617 => 0.039349721731685
618 => 0.039093019218051
619 => 0.039168629612916
620 => 0.039066725008356
621 => 0.038873742340692
622 => 0.039262496324313
623 => 0.039307296599432
624 => 0.03921655677439
625 => 0.039237929288017
626 => 0.038486642292161
627 => 0.038543761010747
628 => 0.038225716727368
629 => 0.038166087258315
630 => 0.037362099005217
701 => 0.035937717274892
702 => 0.036726963021572
703 => 0.035773665144328
704 => 0.035412636793396
705 => 0.037121688855281
706 => 0.036950147429993
707 => 0.036656543077165
708 => 0.036222241046824
709 => 0.036061154199152
710 => 0.035082441506596
711 => 0.035024613939491
712 => 0.035509690377387
713 => 0.035285844291759
714 => 0.034971479610396
715 => 0.033832882601132
716 => 0.032552722586206
717 => 0.032591362570258
718 => 0.032998557652782
719 => 0.03418253227296
720 => 0.033719932905887
721 => 0.03338431175736
722 => 0.033321460004976
723 => 0.034108181275123
724 => 0.035221556695584
725 => 0.035743927532493
726 => 0.035226273897754
727 => 0.034631621274618
728 => 0.034667815024433
729 => 0.034908595826869
730 => 0.034933898484748
731 => 0.034546840758363
801 => 0.034655795241137
802 => 0.034490283418797
803 => 0.033474537670608
804 => 0.033456166050988
805 => 0.033206885663269
806 => 0.033199337552199
807 => 0.032775249426783
808 => 0.032715916566455
809 => 0.031873863853132
810 => 0.032428105499012
811 => 0.032056349301948
812 => 0.031496025024552
813 => 0.031399424907929
814 => 0.031396520991776
815 => 0.031971848738446
816 => 0.03242138245932
817 => 0.032062816160159
818 => 0.031981177564355
819 => 0.032852864183551
820 => 0.032741934115658
821 => 0.032645869392285
822 => 0.03512186613829
823 => 0.033161921509392
824 => 0.032307273781464
825 => 0.031249484924952
826 => 0.031593906310466
827 => 0.031666480956997
828 => 0.029122689437857
829 => 0.028090673535351
830 => 0.02773652456831
831 => 0.027532706830846
901 => 0.02762558913319
902 => 0.026696653777543
903 => 0.027320913699711
904 => 0.026516534202671
905 => 0.026381677362315
906 => 0.027820007546521
907 => 0.02802014278905
908 => 0.027166303667274
909 => 0.027714606607452
910 => 0.027515784339362
911 => 0.026530322980439
912 => 0.026492685605091
913 => 0.025998215735825
914 => 0.025224466138657
915 => 0.024870841810278
916 => 0.024686671189751
917 => 0.024762663577194
918 => 0.024724239500697
919 => 0.024473496410509
920 => 0.024738611801117
921 => 0.024061351531356
922 => 0.02379166103488
923 => 0.023669848094394
924 => 0.023068740623333
925 => 0.024025369923496
926 => 0.024213837946926
927 => 0.024402677310583
928 => 0.026046395045111
929 => 0.025964279552192
930 => 0.026706563616311
1001 => 0.026677719822553
1002 => 0.026466008383261
1003 => 0.025572832645731
1004 => 0.025928836575384
1005 => 0.024833111815208
1006 => 0.025654103307573
1007 => 0.025279437075882
1008 => 0.025527428277758
1009 => 0.02508151773632
1010 => 0.025328303041147
1011 => 0.024258530706984
1012 => 0.023259592353446
1013 => 0.023661594307738
1014 => 0.024098616406554
1015 => 0.025046191667945
1016 => 0.024481823659587
1017 => 0.02468479173651
1018 => 0.024004882655264
1019 => 0.022602036014226
1020 => 0.022609975973866
1021 => 0.022394178580817
1022 => 0.022207698126288
1023 => 0.024546648114358
1024 => 0.024255762710014
1025 => 0.023792274888332
1026 => 0.024412671755927
1027 => 0.024576714534742
1028 => 0.024581384602037
1029 => 0.025034010141874
1030 => 0.025275576473622
1031 => 0.025318153586601
1101 => 0.026030369653156
1102 => 0.026269095084308
1103 => 0.027252371349535
1104 => 0.025255081258103
1105 => 0.025213948383024
1106 => 0.024421402012129
1107 => 0.023918756574046
1108 => 0.024455818575307
1109 => 0.02493158219215
1110 => 0.024436185313891
1111 => 0.024500873687792
1112 => 0.023835843854141
1113 => 0.02407356072711
1114 => 0.024278314522031
1115 => 0.024165261511347
1116 => 0.023996015682526
1117 => 0.024892575001106
1118 => 0.024841987610707
1119 => 0.025676884259978
1120 => 0.026327745902117
1121 => 0.027494206320265
1122 => 0.026276944064971
1123 => 0.026232582190209
1124 => 0.026666226631878
1125 => 0.026269028695603
1126 => 0.026520044080522
1127 => 0.027453763861072
1128 => 0.027473491888699
1129 => 0.027143022007824
1130 => 0.02712291288554
1201 => 0.027186383241106
1202 => 0.027558131096119
1203 => 0.02742823097292
1204 => 0.027578554684155
1205 => 0.027766536786892
1206 => 0.028544110466574
1207 => 0.028731580848282
1208 => 0.02827612501298
1209 => 0.028317247575385
1210 => 0.02814689459044
1211 => 0.0279823357415
1212 => 0.028352240002028
1213 => 0.029028247308629
1214 => 0.02902404190226
1215 => 0.029180862457687
1216 => 0.029278560364546
1217 => 0.028859169429066
1218 => 0.028586161351501
1219 => 0.028690850020395
1220 => 0.028858249481779
1221 => 0.028636564631222
1222 => 0.027268223039171
1223 => 0.0276832904682
1224 => 0.027614202952249
1225 => 0.027515813928206
1226 => 0.027933167437716
1227 => 0.027892912673583
1228 => 0.02668712620281
1229 => 0.026764316740504
1230 => 0.02669182041507
1231 => 0.0269260708739
]
'min_raw' => 0.022207698126288
'max_raw' => 0.049747985248489
'avg_raw' => 0.035977841687389
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.0222076'
'max' => '$0.049747'
'avg' => '$0.035977'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0054154622996966
'max_diff' => -0.036150829339639
'year' => 2034
]
9 => [
'items' => [
101 => 0.026256378402082
102 => 0.026462371295966
103 => 0.026591568107946
104 => 0.026667666022739
105 => 0.0269425838718
106 => 0.026910325435303
107 => 0.026940578642095
108 => 0.027348209236632
109 => 0.02940986490187
110 => 0.029522076270943
111 => 0.028969506450251
112 => 0.02919024719466
113 => 0.02876647323609
114 => 0.029050955533517
115 => 0.029245591096349
116 => 0.028366070414175
117 => 0.028313990907419
118 => 0.027888467882977
119 => 0.028117119853456
120 => 0.027753318127766
121 => 0.027842582346006
122 => 0.027592991809891
123 => 0.028042205081918
124 => 0.028544495320728
125 => 0.028671393671094
126 => 0.028337578744456
127 => 0.028095874738094
128 => 0.027671522125171
129 => 0.028377229977776
130 => 0.028583600459935
131 => 0.028376146001488
201 => 0.028328074270496
202 => 0.028236978427131
203 => 0.028347400684304
204 => 0.028582476521969
205 => 0.028471619098095
206 => 0.02854484237962
207 => 0.028265790737967
208 => 0.028859308264917
209 => 0.029801956935484
210 => 0.029804987705099
211 => 0.029694129683663
212 => 0.02964876896976
213 => 0.029762516027181
214 => 0.029824219139683
215 => 0.03019205626574
216 => 0.030586760157275
217 => 0.032428670996274
218 => 0.031911469803208
219 => 0.033545722675334
220 => 0.034838204516008
221 => 0.035225763306646
222 => 0.034869227455309
223 => 0.033649537567577
224 => 0.033589693762847
225 => 0.035412425394907
226 => 0.034897420222453
227 => 0.034836161995922
228 => 0.034184477963044
301 => 0.034569703939112
302 => 0.034485449367222
303 => 0.034352449403618
304 => 0.035087433730884
305 => 0.036463258779021
306 => 0.036248823542863
307 => 0.036088757586436
308 => 0.03538739515987
309 => 0.035809771995632
310 => 0.035659371694512
311 => 0.036305586834511
312 => 0.035922783300994
313 => 0.03489351855175
314 => 0.035057432355568
315 => 0.03503265711387
316 => 0.035542529832428
317 => 0.035389478698136
318 => 0.035002771423516
319 => 0.036458556358578
320 => 0.036364025782396
321 => 0.036498048526723
322 => 0.036557049483567
323 => 0.037443160119731
324 => 0.03780617129499
325 => 0.037888581187179
326 => 0.038233413727383
327 => 0.037880001439443
328 => 0.039293902569892
329 => 0.040234064318222
330 => 0.041326110569188
331 => 0.04292188365621
401 => 0.043521909098657
402 => 0.043413519873099
403 => 0.044623416815372
404 => 0.046797574726141
405 => 0.043852979348418
406 => 0.046953645431196
407 => 0.0459720103483
408 => 0.043644571225615
409 => 0.043494711584819
410 => 0.045070880380825
411 => 0.048566671069742
412 => 0.047691015151098
413 => 0.04856810332913
414 => 0.047544933380174
415 => 0.047494124368255
416 => 0.048518410248467
417 => 0.0509117100385
418 => 0.049774743019756
419 => 0.048144622002637
420 => 0.049348277994186
421 => 0.048305559781203
422 => 0.045956023808902
423 => 0.04769034555352
424 => 0.046530653993534
425 => 0.046869113643332
426 => 0.049306612811322
427 => 0.049013326462607
428 => 0.049392866155429
429 => 0.048722988531881
430 => 0.048097217201481
501 => 0.046929168542901
502 => 0.046583366919198
503 => 0.046678934047351
504 => 0.046583319560876
505 => 0.045929807071321
506 => 0.045788681111424
507 => 0.045553464995391
508 => 0.045626368305235
509 => 0.04518409319219
510 => 0.046018757709206
511 => 0.046173678798602
512 => 0.046781078028842
513 => 0.046844140231895
514 => 0.048535738442325
515 => 0.047604034574173
516 => 0.048229101968372
517 => 0.048173190057272
518 => 0.043695013888816
519 => 0.044312067053546
520 => 0.045272008135917
521 => 0.044839555979478
522 => 0.044228169808494
523 => 0.043734442694972
524 => 0.042986395631797
525 => 0.044039257508245
526 => 0.045423658916395
527 => 0.046879250936216
528 => 0.048628049373863
529 => 0.048237737920838
530 => 0.046846558365863
531 => 0.046908965664442
601 => 0.04729474302789
602 => 0.046795126290655
603 => 0.046647779561168
604 => 0.047274499849921
605 => 0.04727881572811
606 => 0.046703946291222
607 => 0.046065084112118
608 => 0.046062407256261
609 => 0.045948727902166
610 => 0.047565156684728
611 => 0.048454029075754
612 => 0.048555936862895
613 => 0.04844716986972
614 => 0.048489029968586
615 => 0.047971814709215
616 => 0.049154015416717
617 => 0.050238919693453
618 => 0.049948142171689
619 => 0.049512225330103
620 => 0.049164996569181
621 => 0.049866346110704
622 => 0.049835116119647
623 => 0.050229444001046
624 => 0.050211555010597
625 => 0.050078957375505
626 => 0.049948146907168
627 => 0.050466795627978
628 => 0.050317433125628
629 => 0.050167838622057
630 => 0.049867803943373
701 => 0.049908583639255
702 => 0.049472742064858
703 => 0.049271101809788
704 => 0.046238916176164
705 => 0.045428617095336
706 => 0.045683553681323
707 => 0.045767485424856
708 => 0.045414842226453
709 => 0.045920441986358
710 => 0.045841644799339
711 => 0.046148198559216
712 => 0.045956677079062
713 => 0.045964537187413
714 => 0.04652776102386
715 => 0.046691267299706
716 => 0.046608106688153
717 => 0.046666349529906
718 => 0.048008531235329
719 => 0.047817715917372
720 => 0.047716349082799
721 => 0.047744428388729
722 => 0.048087384591165
723 => 0.048183393603132
724 => 0.047776596672992
725 => 0.047968444456911
726 => 0.04878530797173
727 => 0.049071163971446
728 => 0.049983479103875
729 => 0.049595911420511
730 => 0.050307308676862
731 => 0.05249390130969
801 => 0.054240702805494
802 => 0.052634271960327
803 => 0.055842050453543
804 => 0.058339766139006
805 => 0.058243899650835
806 => 0.057808365147869
807 => 0.054964782245177
808 => 0.052348074862686
809 => 0.054537061699404
810 => 0.05454264187702
811 => 0.054354605966429
812 => 0.053186731075072
813 => 0.054313966451726
814 => 0.054403442302407
815 => 0.054353359619574
816 => 0.053457952678599
817 => 0.052090831778593
818 => 0.052357963930029
819 => 0.052795531843429
820 => 0.051967124497133
821 => 0.05170239815502
822 => 0.052194574791255
823 => 0.05378047046228
824 => 0.05348066607214
825 => 0.053472836967909
826 => 0.054755527285772
827 => 0.053837397840078
828 => 0.052361333321934
829 => 0.051988607564204
830 => 0.050665682222416
831 => 0.051579431468087
901 => 0.051612315676722
902 => 0.051111864553159
903 => 0.052401942172468
904 => 0.052390053880092
905 => 0.053614790576912
906 => 0.055956027151134
907 => 0.055263608290882
908 => 0.054458400491366
909 => 0.054545948905164
910 => 0.055506138916629
911 => 0.054925586116691
912 => 0.055134356951307
913 => 0.055505822916967
914 => 0.05572993755703
915 => 0.054513702257387
916 => 0.054230139629781
917 => 0.053650070010657
918 => 0.05349874067454
919 => 0.053971195275767
920 => 0.053846720180411
921 => 0.051609551886321
922 => 0.051375755352101
923 => 0.051382925558021
924 => 0.050795033056307
925 => 0.049898355880827
926 => 0.052254769960178
927 => 0.052065516931612
928 => 0.051856596235096
929 => 0.051882187828335
930 => 0.052905027313898
1001 => 0.052311728757639
1002 => 0.053889110209174
1003 => 0.053564848003165
1004 => 0.053232269695125
1005 => 0.053186297242371
1006 => 0.053058282968024
1007 => 0.052619274389273
1008 => 0.052089145150106
1009 => 0.051739107907399
1010 => 0.04772659212568
1011 => 0.048471291715036
1012 => 0.049328000711088
1013 => 0.049623733223479
1014 => 0.049117862296967
1015 => 0.052639249256771
1016 => 0.053282640587256
1017 => 0.051333766279838
1018 => 0.050969211468934
1019 => 0.052663149409482
1020 => 0.05164149775584
1021 => 0.052101547432919
1022 => 0.051107171664795
1023 => 0.05312766645644
1024 => 0.053112273671382
1025 => 0.052326255562488
1026 => 0.052990592685706
1027 => 0.052875147762013
1028 => 0.051987735252948
1029 => 0.053155799015826
1030 => 0.05315637836088
1031 => 0.052399853020576
1101 => 0.051516397047794
1102 => 0.051358455986159
1103 => 0.051239468612613
1104 => 0.052072283833085
1105 => 0.052818983355615
1106 => 0.054208406044532
1107 => 0.054557739920395
1108 => 0.05592121329436
1109 => 0.055109331286477
1110 => 0.055469228064939
1111 => 0.055859946928468
1112 => 0.056047271919854
1113 => 0.055742035898803
1114 => 0.057860071276602
1115 => 0.058038898357415
1116 => 0.058098857530763
1117 => 0.057384667918362
1118 => 0.058019035452335
1119 => 0.057722235891233
1120 => 0.058494425895926
1121 => 0.058615515148479
1122 => 0.058512956859442
1123 => 0.058551392499466
1124 => 0.05674402295156
1125 => 0.056650301305867
1126 => 0.05537240001666
1127 => 0.055893154237781
1128 => 0.054919629181795
1129 => 0.055228344005467
1130 => 0.055364422558199
1201 => 0.055293342844642
1202 => 0.05592259690011
1203 => 0.055387602404852
1204 => 0.053975663970627
1205 => 0.052563340854719
1206 => 0.052545610288452
1207 => 0.052173770541608
1208 => 0.051904998510485
1209 => 0.05195677353888
1210 => 0.052139235492064
1211 => 0.051894393490069
1212 => 0.051946642944999
1213 => 0.052814332033138
1214 => 0.052988340891689
1215 => 0.052396990800683
1216 => 0.050022634853884
1217 => 0.049439961948919
1218 => 0.049858775678102
1219 => 0.049658609690611
1220 => 0.040078373715902
1221 => 0.042329108052511
1222 => 0.040991798137414
1223 => 0.041608092072961
1224 => 0.040243044944371
1225 => 0.040894516982384
1226 => 0.040774213884913
1227 => 0.044393328094109
1228 => 0.044336820603661
1229 => 0.044363867749029
1230 => 0.043072837029676
1231 => 0.045129484020909
]
'min_raw' => 0.026256378402082
'max_raw' => 0.058615515148479
'avg_raw' => 0.04243594677528
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.026256'
'max' => '$0.058615'
'avg' => '$0.042435'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0040486802757937
'max_diff' => 0.0088675298999895
'year' => 2035
]
10 => [
'items' => [
101 => 0.046142662283425
102 => 0.045955149951899
103 => 0.04600234276595
104 => 0.045191413863292
105 => 0.044371719313409
106 => 0.043462551907503
107 => 0.045151672571189
108 => 0.044963871187639
109 => 0.045394619992699
110 => 0.046490135483938
111 => 0.046651454301482
112 => 0.046868268428194
113 => 0.046790555997648
114 => 0.048641981374801
115 => 0.04841776154553
116 => 0.048958066821626
117 => 0.047846617875636
118 => 0.046588907893547
119 => 0.046827957443505
120 => 0.046804935049529
121 => 0.04651183355034
122 => 0.046247234622326
123 => 0.045806751957468
124 => 0.047200504288247
125 => 0.047143920488908
126 => 0.048059946428734
127 => 0.047898029946069
128 => 0.046816712047144
129 => 0.046855331527445
130 => 0.047115066092361
131 => 0.048014010387133
201 => 0.048280878258615
202 => 0.048157254427699
203 => 0.048449862865799
204 => 0.048681128644666
205 => 0.048478906286994
206 => 0.051341948422418
207 => 0.050153013717188
208 => 0.050732492219963
209 => 0.050870694428389
210 => 0.050516692377585
211 => 0.050593462746541
212 => 0.050709748936836
213 => 0.05141581591314
214 => 0.053268739961087
215 => 0.054089387408642
216 => 0.056558345744643
217 => 0.054021244062086
218 => 0.053870702947814
219 => 0.054315436899526
220 => 0.055764976808541
221 => 0.056939692756437
222 => 0.057329413807343
223 => 0.057380921877813
224 => 0.058112064477478
225 => 0.058531141780604
226 => 0.058023284534919
227 => 0.057592928694072
228 => 0.056051447489889
229 => 0.056229878136587
301 => 0.057459088351179
302 => 0.059195420179409
303 => 0.060685373522568
304 => 0.06016364379191
305 => 0.064144073353038
306 => 0.064538716685427
307 => 0.064484189737237
308 => 0.065383245979222
309 => 0.063598802428502
310 => 0.062835918238604
311 => 0.057685976511609
312 => 0.059132900073502
313 => 0.061236088445554
314 => 0.060957723577961
315 => 0.05943033196379
316 => 0.060684214859064
317 => 0.060269641961343
318 => 0.059942651116265
319 => 0.061440659567861
320 => 0.059793537740536
321 => 0.061219657145343
322 => 0.059390644257362
323 => 0.060166027009373
324 => 0.059725882258288
325 => 0.060010709854351
326 => 0.058345613547746
327 => 0.059244059096862
328 => 0.058308235259087
329 => 0.05830779155674
330 => 0.058287133193654
331 => 0.059388125788717
401 => 0.059424029117715
402 => 0.058610393926456
403 => 0.058493136384025
404 => 0.058926698975558
405 => 0.058419110731095
406 => 0.058656608075957
407 => 0.058426304283729
408 => 0.058374458049158
409 => 0.05796133843119
410 => 0.057783355140809
411 => 0.057853146975032
412 => 0.057614911464672
413 => 0.057471365952326
414 => 0.05825857837826
415 => 0.057838002535142
416 => 0.058194119098395
417 => 0.057788279329075
418 => 0.05638146187264
419 => 0.05557238627662
420 => 0.052915038513462
421 => 0.053668659042664
422 => 0.054168310233201
423 => 0.054003175517709
424 => 0.054357948785238
425 => 0.054379728982515
426 => 0.054264388576756
427 => 0.054130839162908
428 => 0.054065834693993
429 => 0.054550324748125
430 => 0.054831587531734
501 => 0.054218456914642
502 => 0.054074808989667
503 => 0.054694717895416
504 => 0.055072861969813
505 => 0.057864865354362
506 => 0.057658024725582
507 => 0.058177154113395
508 => 0.058118708111017
509 => 0.058662838413242
510 => 0.059552261490757
511 => 0.057743815687566
512 => 0.058057699347649
513 => 0.057980742322829
514 => 0.058820938940599
515 => 0.05882356194273
516 => 0.058319822099443
517 => 0.058592907640734
518 => 0.058440478783295
519 => 0.058715938330683
520 => 0.05765526224288
521 => 0.058947051224916
522 => 0.059679412336687
523 => 0.059689581171434
524 => 0.060036714526036
525 => 0.06038942211892
526 => 0.061066413629104
527 => 0.060370541193139
528 => 0.059118734422655
529 => 0.059209110828172
530 => 0.058475176976656
531 => 0.058487514537296
601 => 0.058421655671687
602 => 0.058619303085002
603 => 0.057698634735424
604 => 0.057914713756864
605 => 0.057612201861491
606 => 0.058057041745868
607 => 0.057578467564946
608 => 0.057980705211822
609 => 0.058154297645824
610 => 0.058794857464471
611 => 0.057483856358908
612 => 0.054810636357695
613 => 0.055372579611609
614 => 0.054541421399379
615 => 0.054618348256364
616 => 0.054773752750291
617 => 0.054270035940287
618 => 0.054366129233695
619 => 0.054362696105056
620 => 0.054333111257175
621 => 0.054202075060427
622 => 0.05401204665042
623 => 0.054769061348225
624 => 0.054897692896781
625 => 0.055183624895145
626 => 0.056034364572748
627 => 0.055949355617132
628 => 0.056088008750729
629 => 0.055785329738592
630 => 0.054632388667632
701 => 0.054694998914752
702 => 0.053914248129906
703 => 0.055163659342209
704 => 0.054867782275714
705 => 0.05467702840615
706 => 0.054624979445517
707 => 0.055477827942229
708 => 0.055733013579208
709 => 0.055573999015114
710 => 0.055247855504961
711 => 0.055874147460128
712 => 0.056041716766194
713 => 0.056079229354104
714 => 0.057188898619087
715 => 0.056141247539128
716 => 0.056393427566831
717 => 0.058360864155
718 => 0.056576670657221
719 => 0.057521797745258
720 => 0.057475538692502
721 => 0.057959033729385
722 => 0.057435877987315
723 => 0.057442363129735
724 => 0.057871673967696
725 => 0.057268784322397
726 => 0.057119500367765
727 => 0.056913265653633
728 => 0.057363571606995
729 => 0.057633509660448
730 => 0.059809012123633
731 => 0.061214485929816
801 => 0.061153470605216
802 => 0.061711036456157
803 => 0.06145984793359
804 => 0.060648693934038
805 => 0.062033234901582
806 => 0.061595108207796
807 => 0.061631226840108
808 => 0.061629882502809
809 => 0.061921198452476
810 => 0.061714774403423
811 => 0.061307891413744
812 => 0.061577999330727
813 => 0.062380123278818
814 => 0.064869940625864
815 => 0.066263275398963
816 => 0.064786060123001
817 => 0.065805023439659
818 => 0.065194008543417
819 => 0.065082968960651
820 => 0.06572295322431
821 => 0.066364057695703
822 => 0.066323222112446
823 => 0.065857813187294
824 => 0.06559491549479
825 => 0.067585664899619
826 => 0.069052415149566
827 => 0.068952392615738
828 => 0.069393859550984
829 => 0.070690020126925
830 => 0.070808524805975
831 => 0.070793595940214
901 => 0.070499869728502
902 => 0.071776108143235
903 => 0.072840768682084
904 => 0.070431880597057
905 => 0.071349153645175
906 => 0.071760947069167
907 => 0.072365581989191
908 => 0.073385702447849
909 => 0.074493823839541
910 => 0.074650524354259
911 => 0.074539337840256
912 => 0.073808501994534
913 => 0.07502102164396
914 => 0.07573128721751
915 => 0.07615423411242
916 => 0.077226757066259
917 => 0.071763490165162
918 => 0.067896318310583
919 => 0.067292403582852
920 => 0.068520487929467
921 => 0.06884432397788
922 => 0.068713786072821
923 => 0.064360932562609
924 => 0.067269486709964
925 => 0.07039884641434
926 => 0.070519057865304
927 => 0.07208568076514
928 => 0.072595837399369
929 => 0.073857174175695
930 => 0.073778277216911
1001 => 0.074085392649694
1002 => 0.074014792130195
1003 => 0.076351152902544
1004 => 0.078928505787378
1005 => 0.078839260252456
1006 => 0.078468735281406
1007 => 0.079019028047311
1008 => 0.08167913243038
1009 => 0.081434232646091
1010 => 0.081672131926013
1011 => 0.084808544910564
1012 => 0.088886327940026
1013 => 0.086991788320118
1014 => 0.091102394156227
1015 => 0.093689802636204
1016 => 0.098164458059295
1017 => 0.097604209162182
1018 => 0.099346159681853
1019 => 0.096601246708875
1020 => 0.09029837168448
1021 => 0.089300917585433
1022 => 0.091297845951285
1023 => 0.096207099481314
1024 => 0.091143236087075
1025 => 0.09216764905654
1026 => 0.091872618052418
1027 => 0.091856897104009
1028 => 0.092456901763048
1029 => 0.091586563710974
1030 => 0.088040649916
1031 => 0.089665721312035
1101 => 0.089038203203688
1102 => 0.089734481329473
1103 => 0.093492007207395
1104 => 0.091830715448537
1105 => 0.090080679532963
1106 => 0.092275612935151
1107 => 0.095070517417084
1108 => 0.094895617317531
1109 => 0.094556238021828
1110 => 0.096469301342385
1111 => 0.099629121472985
1112 => 0.1004832081571
1113 => 0.10111367748628
1114 => 0.10120060855491
1115 => 0.10209605258913
1116 => 0.097281024336174
1117 => 0.10492259783231
1118 => 0.10624208648089
1119 => 0.10599407730215
1120 => 0.10746063340247
1121 => 0.10702913539482
1122 => 0.1064039624817
1123 => 0.10872876584614
1124 => 0.10606356639077
1125 => 0.10228065130315
1126 => 0.10020526926851
1127 => 0.10293829974802
1128 => 0.10460726609224
1129 => 0.10571034667957
1130 => 0.1060441381988
1201 => 0.097654801272824
1202 => 0.093133413963681
1203 => 0.096031571391031
1204 => 0.099567523472538
1205 => 0.097261381943827
1206 => 0.097351778325649
1207 => 0.09406382654904
1208 => 0.099858434247728
1209 => 0.099014208646351
1210 => 0.1033940525597
1211 => 0.10234876765934
1212 => 0.10592036034612
1213 => 0.10497984029458
1214 => 0.10888388644473
1215 => 0.11044131615186
1216 => 0.1130564830247
1217 => 0.114980210422
1218 => 0.11610985994474
1219 => 0.11604204002461
1220 => 0.12051827422286
1221 => 0.11787879530386
1222 => 0.11456298770418
1223 => 0.11450301520594
1224 => 0.11622031894717
1225 => 0.11981931646952
1226 => 0.12075248416378
1227 => 0.12127399759979
1228 => 0.12047528161852
1229 => 0.11761031642511
1230 => 0.1163732389803
1231 => 0.11742726480486
]
'min_raw' => 0.043462551907503
'max_raw' => 0.12127399759979
'avg_raw' => 0.082368274753647
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.043462'
'max' => '$0.121273'
'avg' => '$0.082368'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.017206173505421
'max_diff' => 0.062658482451313
'year' => 2036
]
11 => [
'items' => [
101 => 0.11613828179489
102 => 0.11836342809486
103 => 0.12141902923031
104 => 0.120788059679
105 => 0.1228972962888
106 => 0.12508013428179
107 => 0.12820169064914
108 => 0.12901778107447
109 => 0.13036674751439
110 => 0.13175527709346
111 => 0.13220123537234
112 => 0.13305270809944
113 => 0.13304822041787
114 => 0.13561419079172
115 => 0.13844453557556
116 => 0.13951292520883
117 => 0.14196962825918
118 => 0.13776261037859
119 => 0.14095368176775
120 => 0.14383210803847
121 => 0.14040032957493
122 => 0.14513023668509
123 => 0.14531388825998
124 => 0.14808680899959
125 => 0.14527592260266
126 => 0.14360682723283
127 => 0.14842544302534
128 => 0.15075701942236
129 => 0.15005472963658
130 => 0.14471026969047
131 => 0.14159956476716
201 => 0.1334582499727
202 => 0.14310198902536
203 => 0.14779917300619
204 => 0.14469810511871
205 => 0.14626210338281
206 => 0.15479477078359
207 => 0.15804345808051
208 => 0.15736775383279
209 => 0.15748193672761
210 => 0.15923486942518
211 => 0.16700833836388
212 => 0.16235029558821
213 => 0.16591119475668
214 => 0.16779988283585
215 => 0.16955420158152
216 => 0.16524614920029
217 => 0.15964143635017
218 => 0.1578661885207
219 => 0.14438976503267
220 => 0.14368825866498
221 => 0.14329448188297
222 => 0.14081177497327
223 => 0.13886104741289
224 => 0.13730975643102
225 => 0.13323870563986
226 => 0.13461256577493
227 => 0.12812416050817
228 => 0.13227521226288
301 => 0.1219195607891
302 => 0.13054405505631
303 => 0.1258501349343
304 => 0.12900197605365
305 => 0.12899097957691
306 => 0.12318744078405
307 => 0.11984008072509
308 => 0.12197314883586
309 => 0.12425996717376
310 => 0.12463099575531
311 => 0.12759591542246
312 => 0.12842336077083
313 => 0.12591616273555
314 => 0.12170496292994
315 => 0.12268312859754
316 => 0.11982025822906
317 => 0.11480318802701
318 => 0.11840653543577
319 => 0.11963687666912
320 => 0.12018026544876
321 => 0.11524655311945
322 => 0.11369627358947
323 => 0.11287091777582
324 => 0.12106808262313
325 => 0.12151714181752
326 => 0.11921969148846
327 => 0.12960438482902
328 => 0.12725400889541
329 => 0.12987995466933
330 => 0.12259437031586
331 => 0.1228726894495
401 => 0.11942357705989
402 => 0.1213548495283
403 => 0.11998988839545
404 => 0.12119882179806
405 => 0.12192345149496
406 => 0.12537199791917
407 => 0.13058343191699
408 => 0.12485690008228
409 => 0.12236176815645
410 => 0.12390973397008
411 => 0.12803217092033
412 => 0.13427787392362
413 => 0.13058029203919
414 => 0.13222121609049
415 => 0.13257968499607
416 => 0.1298532250064
417 => 0.13437840239242
418 => 0.13680348171607
419 => 0.13929111130267
420 => 0.14145105037091
421 => 0.13829749734163
422 => 0.14167225112703
423 => 0.13895279530024
424 => 0.13651316229142
425 => 0.13651686220766
426 => 0.13498644478388
427 => 0.13202106818031
428 => 0.13147420723757
429 => 0.13431904692262
430 => 0.13660033894271
501 => 0.13678823708014
502 => 0.13805127755948
503 => 0.1387987319048
504 => 0.14612480060385
505 => 0.14907140603903
506 => 0.15267445938878
507 => 0.15407805172547
508 => 0.15830236144319
509 => 0.15489088826447
510 => 0.15415279458308
511 => 0.14390600096905
512 => 0.14558391284931
513 => 0.14827041166402
514 => 0.14395030034501
515 => 0.14669041662437
516 => 0.14723137362151
517 => 0.1438035046155
518 => 0.14563447756109
519 => 0.14077195626324
520 => 0.13068942159355
521 => 0.13438962713576
522 => 0.13711422389054
523 => 0.13322588838111
524 => 0.1401955792824
525 => 0.13612402974149
526 => 0.13483354400586
527 => 0.12979889905981
528 => 0.13217505767309
529 => 0.13538884622087
530 => 0.13340309854136
531 => 0.13752382313785
601 => 0.14335986812358
602 => 0.14751898132291
603 => 0.14783826639044
604 => 0.14516423524222
605 => 0.14944938722268
606 => 0.14948059987665
607 => 0.14464693093733
608 => 0.14168633562597
609 => 0.14101368214209
610 => 0.14269410242632
611 => 0.14473444287407
612 => 0.14795149108524
613 => 0.14989548594286
614 => 0.15496439351635
615 => 0.15633589456876
616 => 0.15784275841223
617 => 0.1598563932067
618 => 0.16227427806283
619 => 0.15698408364789
620 => 0.15719427293415
621 => 0.15226811714268
622 => 0.14700381319729
623 => 0.15099876368709
624 => 0.15622163002651
625 => 0.15502349871749
626 => 0.15488868446962
627 => 0.15511540464018
628 => 0.15421205276049
629 => 0.15012622568844
630 => 0.14807434891149
701 => 0.15072179344335
702 => 0.15212879238784
703 => 0.15431092504753
704 => 0.15404193113799
705 => 0.15966287052542
706 => 0.16184699760299
707 => 0.16128820443248
708 => 0.16139103582397
709 => 0.1653452935704
710 => 0.16974324143957
711 => 0.17386249997938
712 => 0.17805278669235
713 => 0.17300123251019
714 => 0.17043636483304
715 => 0.17308265357344
716 => 0.17167849551857
717 => 0.17974720420217
718 => 0.18030586408499
719 => 0.18837398930911
720 => 0.19603160088128
721 => 0.19122199225316
722 => 0.19575723655995
723 => 0.20066247304163
724 => 0.21012547006073
725 => 0.20693866557695
726 => 0.20449762328596
727 => 0.20219085011601
728 => 0.20699087889275
729 => 0.21316603923169
730 => 0.21449610962375
731 => 0.21665133178488
801 => 0.21438537921048
802 => 0.21711446949986
803 => 0.22674935744439
804 => 0.22414592567227
805 => 0.22044863403332
806 => 0.22805445272105
807 => 0.23080696893728
808 => 0.25012556924665
809 => 0.2745161001488
810 => 0.26441826019845
811 => 0.25815020508601
812 => 0.25962334671769
813 => 0.26852994293158
814 => 0.27139045895425
815 => 0.26361459032563
816 => 0.26636115858125
817 => 0.28149501970637
818 => 0.28961385064759
819 => 0.27858738772494
820 => 0.24816581383719
821 => 0.22011573337417
822 => 0.22755587782455
823 => 0.22671239633844
824 => 0.24297184212975
825 => 0.22408383468552
826 => 0.22440186028989
827 => 0.24099753420111
828 => 0.23657009292347
829 => 0.22939820507754
830 => 0.22016809609233
831 => 0.20310538595144
901 => 0.18799246775077
902 => 0.21763238063948
903 => 0.21635425369903
904 => 0.21450333648147
905 => 0.218622352459
906 => 0.23862312484279
907 => 0.23816204230316
908 => 0.23522887043242
909 => 0.23745365544459
910 => 0.22900818950823
911 => 0.23118477837971
912 => 0.22011129009812
913 => 0.22511696927112
914 => 0.22938281742728
915 => 0.23023924960159
916 => 0.23216883502082
917 => 0.21568073887995
918 => 0.22308340998214
919 => 0.22743178571819
920 => 0.20778566594745
921 => 0.22704344509741
922 => 0.21539371780884
923 => 0.21143962539407
924 => 0.2167632899185
925 => 0.2146886526759
926 => 0.21290500140149
927 => 0.21190969334336
928 => 0.21581880501868
929 => 0.21563644028663
930 => 0.20924037485992
1001 => 0.20089696824775
1002 => 0.20369728936978
1003 => 0.202679906453
1004 => 0.19899277951756
1005 => 0.20147745788664
1006 => 0.19053619181617
1007 => 0.17171231221944
1008 => 0.18414794367206
1009 => 0.1836691853885
1010 => 0.18342777375197
1011 => 0.19277280709301
1012 => 0.19187449776387
1013 => 0.19024405753521
1014 => 0.19896283520416
1015 => 0.19578036407088
1016 => 0.20558799021913
1017 => 0.21204792711785
1018 => 0.21040947816327
1019 => 0.21648508004011
1020 => 0.20376180311258
1021 => 0.20798796533863
1022 => 0.20885897151622
1023 => 0.1988552468411
1024 => 0.1920214722797
1025 => 0.19156573742718
1026 => 0.17971691408985
1027 => 0.18604645987629
1028 => 0.19161619823396
1029 => 0.18894872578979
1030 => 0.18810428370244
1031 => 0.19241835518958
1101 => 0.19275359549165
1102 => 0.18511008107719
1103 => 0.18669940976258
1104 => 0.19332717458455
1105 => 0.18653240709416
1106 => 0.17333128377929
1107 => 0.17005722267739
1108 => 0.16962040257348
1109 => 0.16074088919607
1110 => 0.17027601109575
1111 => 0.16611367486116
1112 => 0.17926244515379
1113 => 0.17175193808091
1114 => 0.17142817513206
1115 => 0.17093875994917
1116 => 0.16329579597716
1117 => 0.16496911935133
1118 => 0.17053150110142
1119 => 0.17251622157457
1120 => 0.17230919896888
1121 => 0.1705042423963
1122 => 0.17133054227235
1123 => 0.16866874246962
1124 => 0.1677288055587
1125 => 0.16476210611782
1126 => 0.16040187751137
1127 => 0.16100819404194
1128 => 0.15236944025668
1129 => 0.14766258870111
1130 => 0.14635979422584
1201 => 0.14461764300597
1202 => 0.14655657484181
1203 => 0.15234496775261
1204 => 0.14536293782612
1205 => 0.13339273724961
1206 => 0.13411216670049
1207 => 0.13572851107609
1208 => 0.13271646402535
1209 => 0.12986581427377
1210 => 0.13234422295224
1211 => 0.12727229116761
1212 => 0.13634142980082
1213 => 0.13609613501676
1214 => 0.13947654906746
1215 => 0.14159039134643
1216 => 0.13671866925795
1217 => 0.13549344432724
1218 => 0.13619138813114
1219 => 0.12465593174165
1220 => 0.13853385617888
1221 => 0.1386538730457
1222 => 0.13762621576758
1223 => 0.14501578209756
1224 => 0.16061007191735
1225 => 0.15474287280829
1226 => 0.15247091597623
1227 => 0.14815192437769
1228 => 0.1539067242464
1229 => 0.15346484540534
1230 => 0.15146650170852
1231 => 0.15025789720548
]
'min_raw' => 0.11287091777582
'max_raw' => 0.28961385064759
'avg_raw' => 0.20124238421171
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.11287'
'max' => '$0.289613'
'avg' => '$0.201242'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.069408365868318
'max_diff' => 0.1683398530478
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0035428891342742
]
1 => [
'year' => 2028
'avg' => 0.006080626262479
]
2 => [
'year' => 2029
'avg' => 0.016611175022837
]
3 => [
'year' => 2030
'avg' => 0.012815496792015
]
4 => [
'year' => 2031
'avg' => 0.012586406056791
]
5 => [
'year' => 2032
'avg' => 0.022067930905319
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0035428891342742
'min' => '$0.003542'
'max_raw' => 0.022067930905319
'max' => '$0.022067'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.022067930905319
]
1 => [
'year' => 2033
'avg' => 0.056760987507057
]
2 => [
'year' => 2034
'avg' => 0.035977841687389
]
3 => [
'year' => 2035
'avg' => 0.04243594677528
]
4 => [
'year' => 2036
'avg' => 0.082368274753647
]
5 => [
'year' => 2037
'avg' => 0.20124238421171
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.022067930905319
'min' => '$0.022067'
'max_raw' => 0.20124238421171
'max' => '$0.201242'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.20124238421171
]
]
]
]
'prediction_2025_max_price' => '$0.006057'
'last_price' => 0.0058737
'sma_50day_nextmonth' => '$0.005365'
'sma_200day_nextmonth' => '$0.011658'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'augmenter'
'sma_200day_date_nextmonth' => '4 févr. 2026'
'sma_50day_date_nextmonth' => '4 févr. 2026'
'daily_sma3' => '$0.0057081'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.0056054'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.005419'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.005289'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.0051031'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.007682'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.012795'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.005725'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.00563'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.005486'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.005353'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.005846'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.007793'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.011485'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.009695'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.012927'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.05840061'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.073683'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.005641'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.0056088'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.006433'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.009068'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.019536'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.041914'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.069776'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '67.51'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 115.06
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.005429'
'vwma_10_action' => 'BUY'
'hma_9' => '0.005792'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 252.11
'cci_20_action' => 'SELL'
'adx_14' => 13.96
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000426'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 86.71
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.003951'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 14
'buy_signals' => 21
'sell_pct' => 40
'buy_pct' => 60
'overall_action' => 'bullish'
'overall_action_label' => 'Haussier'
'overall_action_dir' => 1
'last_updated' => 1767702062
'last_updated_date' => '6 janvier 2026'
]
Prévision du prix de Wicrypt pour 2026
La prévision du prix de Wicrypt pour 2026 suggère que le prix moyen pourrait varier entre $0.002029 à la baisse et $0.006057 à la hausse. Sur le marché des cryptomonnaies, comparé au prix moyen d'aujourd'hui, Wicrypt pourrait potentiellement gagner 3.13% d'ici 2026 si WNT atteint l'objectif de prix prévu.
Prévision du prix de Wicrypt de 2027 à 2032
La prévision du prix de WNT pour 2027-2032 se situe actuellement dans une fourchette de prix comprise entre $0.003542 à la baisse et $0.022067 à la hausse. Compte tenu de la volatilité des prix sur le marché, si Wicrypt atteint l'objectif de prix le plus élevé, il pourrait gagner 275.71% d'ici 2032 par rapport au prix actuel.
| Prévision du Prix de Wicrypt | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2027 | $0.001953 | $0.003542 | $0.005132 |
| 2028 | $0.003525 | $0.00608 | $0.008635 |
| 2029 | $0.007744 | $0.016611 | $0.025477 |
| 2030 | $0.006586 | $0.012815 | $0.019044 |
| 2031 | $0.007787 | $0.012586 | $0.017385 |
| 2032 | $0.011887 | $0.022067 | $0.032248 |
Prévision du prix de Wicrypt de 2032 à 2037
La prévision du prix de Wicrypt pour 2032-2037 est actuellement estimée entre $0.022067 à la baisse et $0.201242 à la hausse. Par rapport au prix actuel, Wicrypt pourrait potentiellement gagner 3326.16% d'ici 2037 s'il atteint l'objectif de prix le plus élevé. Veuillez noter que ces informations sont à titre général seulement et ne doivent pas être considérées comme un conseil en investissement à long terme.
| Prévision du Prix de Wicrypt | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2032 | $0.011887 | $0.022067 | $0.032248 |
| 2033 | $0.027623 | $0.05676 | $0.085898 |
| 2034 | $0.0222076 | $0.035977 | $0.049747 |
| 2035 | $0.026256 | $0.042435 | $0.058615 |
| 2036 | $0.043462 | $0.082368 | $0.121273 |
| 2037 | $0.11287 | $0.201242 | $0.289613 |
Wicrypt Histogramme des prix potentiels
Prévision du prix de Wicrypt basée sur l'analyse technique
Au 6 janvier 2026, le sentiment global de prévision du prix pour Wicrypt est Haussier, avec 21 indicateurs techniques montrant des signaux haussiers et 14 indiquant des signaux baissiers. La prévision du prix de WNT a été mise à jour pour la dernière fois le 6 janvier 2026.
Moyennes Mobiles Simples sur 50 et 200 jours de Wicrypt et Indice de Force Relative sur 14 jours - RSI (14)
Selon nos indicateurs techniques, le SMA sur 200 jours de Wicrypt devrait augmenter au cours du prochain mois, atteignant $0.011658 d'ici le 4 févr. 2026. Le SMA à court terme sur 50 jours pour Wicrypt devrait atteindre $0.005365 d'ici le 4 févr. 2026.
Le Relative Strength Index (RSI), un oscillateur de momentum, est un outil couramment utilisé pour identifier si une cryptomonnaie est survendue (en dessous de 30) ou surachetée (au-dessus de 70). Actuellement, le RSI est à 67.51, ce qui suggère que le marché de WNT est dans un état NEUTRAL.
Moyennes Mobiles et Oscillateurs Populaires de WNT pour le Samedi 19 Octobre 2024
Les moyennes mobiles (MA) sont des indicateurs largement utilisés sur les marchés financiers, conçus pour lisser les mouvements de prix sur une période donnée. En tant qu'indicateurs retardés, ils sont basés sur des données historiques de prix. Le tableau ci-dessous met en évidence deux types : la moyenne mobile simple (SMA) et la moyenne mobile exponentielle (EMA).
Moyenne Mobile Simple Quotidienne (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 3 | $0.0057081 | BUY |
| SMA 5 | $0.0056054 | BUY |
| SMA 10 | $0.005419 | BUY |
| SMA 21 | $0.005289 | BUY |
| SMA 50 | $0.0051031 | BUY |
| SMA 100 | $0.007682 | SELL |
| SMA 200 | $0.012795 | SELL |
Moyenne Mobile Exponentielle Quotidienne (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 3 | $0.005725 | BUY |
| EMA 5 | $0.00563 | BUY |
| EMA 10 | $0.005486 | BUY |
| EMA 21 | $0.005353 | BUY |
| EMA 50 | $0.005846 | BUY |
| EMA 100 | $0.007793 | SELL |
| EMA 200 | $0.011485 | SELL |
Moyenne Mobile Simple Hebdomadaire (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 21 | $0.009695 | SELL |
| SMA 50 | $0.012927 | SELL |
| SMA 100 | $0.05840061 | SELL |
| SMA 200 | $0.073683 | SELL |
Moyenne Mobile Exponentielle Hebdomadaire (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 21 | $0.009068 | SELL |
| EMA 50 | $0.019536 | SELL |
| EMA 100 | $0.041914 | SELL |
| EMA 200 | $0.069776 | SELL |
Oscillateurs de Wicrypt
Un oscillateur est un outil d'analyse technique qui établit des limites hautes et basses entre deux extrêmes, créant un indicateur de tendance qui fluctue à l'intérieur de ces limites. Les traders utilisent cet indicateur pour identifier les conditions de surachat ou de survente à court terme.
| Période | Valeur | Action |
|---|---|---|
| RSI (14) | 67.51 | NEUTRAL |
| Stoch RSI (14) | 115.06 | SELL |
| Stochastique Rapide (14) | 100 | SELL |
| Indice de Canal des Matières Premières (20) | 252.11 | SELL |
| Indice Directionnel Moyen (14) | 13.96 | NEUTRAL |
| Oscillateur Impressionnant (5, 34) | 0.000426 | BUY |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Plage de Pourcentage de Williams (14) | -0 | SELL |
| Oscillateur Ultime (7, 14, 28) | 86.71 | SELL |
| VWMA (10) | 0.005429 | BUY |
| Moyenne Mobile de Hull (9) | 0.005792 | BUY |
| Nuage Ichimoku B/L (9, 26, 52, 26) | -0.003951 | NEUTRAL |
Prévision du cours de Wicrypt basée sur les flux monétaires mondiaux
Définitions des flux monétaires mondiaux utilisés pour la prédiction du cours de Wicrypt
M0 : le total de toutes les devises physiques, plus les comptes à la banque centrale qui peuvent être échangés contre des devises physiques.
M1 : M0 plus le montant des comptes à vue, y compris les comptes de "chèques" et les comptes "courants".
M2 : M1 plus la plupart des comptes d'épargne, comptes du marché monétaire et comptes de certificats de dépôt (CD) de moins de 100 000 $.
Prédictions du cours de Wicrypt par des sociétés Internet ou des niches technologiques
| Comparaison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Action Facebook | $0.008253 | $0.011597 | $0.016296 | $0.022899 | $0.032177 | $0.045214 |
| Action Amazon.com | $0.012255 | $0.025572 | $0.053358 | $0.111335 | $0.2323087 | $0.484726 |
| Action Apple | $0.008331 | $0.011817 | $0.016762 | $0.023775 | $0.033724 | $0.047835 |
| Action Netflix | $0.009267 | $0.014623 | $0.023072 | $0.0364055 | $0.057442 | $0.090634 |
| Action Google | $0.0076064 | $0.00985 | $0.012756 | $0.016519 | $0.021392 | $0.0277026 |
| Action Tesla | $0.013315 | $0.030184 | $0.068426 | $0.155117 | $0.351638 | $0.797138 |
| Action Kodak | $0.0044046 | $0.003303 | $0.002476 | $0.001857 | $0.001392 | $0.001044 |
| Action Nokia | $0.003891 | $0.002577 | $0.0017076 | $0.001131 | $0.000749 | $0.000496 |
Ce calcul montre la valeur potentielle des cryptomonnaies si l'on suppose que leur capitalisation se comportera comme celle de certaines sociétés Internet ou niches technologiques. En extrapolant les données, vous pourrez obtenir une potentielle image des cours futurs pour 2024, 2025, 2026, 2027, 2028, 2029 et 2030.
Aperçu des prévisions relatives à Wicrypt
Vous vous posez peut-être des questions telles que : "Devrais-je investir dans Wicrypt maintenant ?", "Devrais-je acheter WNT aujourd'hui ?", " Wicrypt sera-t-il un bon ou un mauvais investissement à court ou à long terme ?".
Nous mettons régulièrement à jour les prévisions de Wicrypt avec de nouvelles valeurs. Regardez nos prévisions similaires. Nous faisons une prévision des cours futurs pour une grande quantité de devises numériques comme Wicrypt en utilisant des méthodes d'analyse technique.
Si vous souhaitez trouver des cryptomonnaies ayant un bon rendement, vous devriez consulter un maximum d'informations disponibles à propos de Wicrypt afin de prendre une décision responsable concernant cet investissement.
Le cours de Wicrypt est de $0.005873 USD actuellement, mais ce cours peut subir une hausse ou une baisse, ce qui pourrait causer la perte de votre investissement, car les cryptomonnaies sont des actifs à haut risque.
Prévision du cours de Wicrypt basée sur le modèle de croissance du Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Wicrypt présente 1 % de la précédente croissance annuelle moyenne du Bitcoin | $0.006026 | $0.006183 | $0.006343 | $0.0065086 |
| Si Wicrypt présente 2 % de la précédente croissance annuelle moyenne du Bitcoin | $0.006179 | $0.00650027 | $0.006838 | $0.007193 |
| Si Wicrypt présente 5 % de la précédente croissance annuelle moyenne du Bitcoin | $0.006637 | $0.007499 | $0.008474 | $0.009575 |
| Si Wicrypt présente 10 % de la précédente croissance annuelle moyenne du Bitcoin | $0.00740046 | $0.009324 | $0.011747 | $0.0148013 |
| Si Wicrypt présente 20 % de la précédente croissance annuelle moyenne du Bitcoin | $0.008927 | $0.013568 | $0.020621 | $0.031342 |
| Si Wicrypt présente 50 % de la précédente croissance annuelle moyenne du Bitcoin | $0.0135075 | $0.031062 | $0.071433 | $0.164273 |
| Si Wicrypt présente 100 % de la précédente croissance annuelle moyenne du Bitcoin | $0.021141 | $0.076094 | $0.273888 | $0.985812 |
Boîte à questions
Est-ce que WNT est un bon investissement ?
La décision d'acquérir Wicrypt dépend entièrement de votre tolérance individuelle au risque. Comme vous pouvez le discerner, la valeur de Wicrypt a connu une hausse de 2.6865% au cours des 24 heures précédentes, et Wicrypt a enregistré une déclin de sur une période de 30 jours précédents. Par conséquent, la détermination de si investir ou non dans Wicrypt dépendra de la mesure dans laquelle cet investissement s'aligne avec vos aspirations de trading.
Est-ce que Wicrypt peut monter ?
Il semble que la valeur moyenne de Wicrypt pourrait potentiellement s'envoler jusqu'à $0.006057 pour la fin de cette année. En regardant les perspectives de Wicrypt sur une période de cinq ans plus longue, la monnaie numérique pourrait potentiellement croître jusqu'à $0.019044. Cependant, compte tenu de l'imprévisibilité du marché, il est essentiel de mener des recherches approfondies avant d'investir des fonds dans un projet, un réseau ou un actif particulier.
Quel sera le prix de Wicrypt la semaine prochaine ?
Basé sur notre nouveau pronostic expérimental de Wicrypt, le prix de Wicrypt va augmenter de 0.86% durant la prochaine semaine et atteindre $0.005923 d'ici 13 janvier 2026.
Quel sera le prix de Wicrypt le mois prochain ?
Basé sur notre nouveau pronostic expérimental de Wicrypt, le prix de Wicrypt va diminuer de -11.62% durant le prochain mois et atteindre $0.005191 d'ici 5 février 2026.
Jusqu'où le prix de Wicrypt peut-il monter cette année en 2026 ?
Selon notre prédiction la plus récente sur la valeur de Wicrypt en 2026, WNT devrait fluctuer dans la fourchette de $0.002029 et $0.006057. Cependant, il est crucial de garder à l'esprit que le marché des cryptomonnaies est exceptionnellement instable, et cette prévision de prix de Wicrypt ne prend pas en compte les fluctuations de prix soudaines et extrêmes.
Où sera Wicrypt dans 5 ans ?
L'avenir de Wicrypt semble suivre une tendance haussière, avec un prix maximum de $0.019044 prévue après une période de cinq ans. Selon la prévision de Wicrypt pour 2030, la valeur de Wicrypt pourrait potentiellement atteindre son point le plus élevé d'environ $0.019044, tandis que son point le plus bas devrait être autour de $0.006586.
Combien vaudra Wicrypt en 2026 ?
Basé sur notre nouvelle simulation expérimentale de prédiction de prix de Wicrypt, il est attendu que la valeur de WNT en 2026 augmente de 3.13% jusqu'à $0.006057 si le meilleur scénario se produit. Le prix sera entre $0.006057 et $0.002029 durant 2026.
Combien vaudra Wicrypt en 2027 ?
Selon notre dernière simulation expérimentale pour la prédiction de prix de Wicrypt, le valeur de WNT pourrait diminuer de -12.62% jusqu'à $0.005132 en 2027, en supposant les conditions les plus favorables. Il est prévu que le prix fluctue entre $0.005132 et $0.001953 tout au long de l'année.
Combien vaudra Wicrypt en 2028 ?
Notre nouveau modèle expérimental de prédiction de prix de Wicrypt suggère que la valeur de WNT en 2028 pourrait augmenter de 47.02%, atteignant $0.008635 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.008635 et $0.003525 durant l'année.
Combien vaudra Wicrypt en 2029 ?
Basé sur notre modèle de prévision expérimental, la valeur de Wicrypt pourrait connaître un 333.75% croissance en 2029, atteignant potentiellement $0.025477 sous des conditions optimales. Le range de prix prévu pour 2029 se situe entre $0.025477 et $0.007744.
Combien vaudra Wicrypt en 2030 ?
En utilisant notre nouvelle simulation expérimentale pour les prédictions de prix de Wicrypt, il est prévu que la valeur de WNT en 2030 augmente de 224.23%, atteignant $0.019044 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.019044 et $0.006586 au cours de 2030.
Combien vaudra Wicrypt en 2031 ?
Notre simulation expérimentale indique que le prix de Wicrypt pourrait augmenter de 195.98% en 2031, atteignant potentiellement $0.017385 dans des conditions idéales. Il est probable que le prix fluctue entre $0.017385 et $0.007787 durant l'année.
Combien vaudra Wicrypt en 2032 ?
Basé sur les résultats de notre dernière prédiction expérimentale de prix de Wicrypt, WNT pourrait connaître une 449.04% hausse en valeur, atteignant $0.032248 si le scénario le plus positif se réalise en 2032. Il est prévu que le prix reste dans une fourchette de $0.032248 et $0.011887 tout au long de l'année.
Combien vaudra Wicrypt en 2033 ?
Selon notre prédiction expérimentale de prix de Wicrypt, la valeur de WNT est anticipée à augmenter de 1362.43% en 2033, avec le prix potentiel le plus élevé étant $0.085898. Tout au long de l'année, le prix de WNT pourrait osciller entre $0.085898 et $0.027623.
Combien vaudra Wicrypt en 2034 ?
Les résultats de notre nouvelle simulation de prédiction de prix de Wicrypt suggèrent que WNT pourrait augmenter de 746.96% en 2034, atteignant potentiellement $0.049747 dans les meilleures circonstances. La fourchette de prix prévue pour l'année est entre $0.049747 et $0.0222076.
Combien vaudra Wicrypt en 2035 ?
Basé sur notre prédiction expérimentale pour le prix de Wicrypt, WNT pourrait augmenter de 897.93%, avec la valeur potentiellement atteignant $0.058615 en 2035. La fourchette de prix attendue pour l'année se situe entre $0.058615 et $0.026256.
Combien vaudra Wicrypt en 2036 ?
Notre récente simulation de prédiction de prix de Wicrypt suggère que la valeur de WNT pourrait augmenter de 1964.7% en 2036, pouvant atteindre $0.121273 si les conditions sont optimales. La fourchette de prix attendue pour 2036 est entre $0.121273 et $0.043462.
Combien vaudra Wicrypt en 2037 ?
Selon la simulation expérimentale, la valeur de Wicrypt pourrait augmenter de 4830.69% en 2037, avec un maximum de $0.289613 sous des conditions favorables. Il est prévu que le prix chute entre $0.289613 et $0.11287 au cours de l'année.
Prévisions liées
Prévision du cours de AI Network
Prévision du cours de Permission Coin
Prévision du cours de BlueMove
Prévision du cours de Efinity
Prévision du cours de AshSwap
Prévision du cours de ScPrime
Prévision du cours de analoSPrévision du cours de Cypherium
Prévision du cours de Fuel Token
Prévision du cours de Etherisc
Prévision du cours de SolarX
Prévision du cours de Augur
Prévision du cours de GensoKishi Metaverse
Prévision du cours de Moonsama
Prévision du cours de MagicCraft
Prévision du cours de ValleyDAO
Prévision du cours de PolyDoge
Prévision du cours de GameZone
Prévision du cours de Divi
Prévision du cours de Noxbox
Prévision du cours de Hourglass
Prévision du cours de KLEVA
Prévision du cours de Acquire.Fi
Prévision du cours de Striker League
Prévision du cours de Aladdin DAO
Comment lire et prédire les mouvements de prix de Wicrypt ?
Les traders de Wicrypt utilisent des indicateurs et des modèles graphiques pour prédire la direction du marché. Ils identifient également des niveaux clés de support et de résistance pour évaluer quand une tendance baissière pourrait ralentir ou une tendance haussière pourrait s'arrêter.
Indicateurs de prédiction du prix de Wicrypt
Les moyennes mobiles sont des outils populaires pour la prédiction du prix de Wicrypt. Une moyenne mobile simple (SMA) calcule le prix de clôture moyen de WNT sur une période spécifique, comme une SMA de 12 jours. Une moyenne mobile exponentielle (EMA) donne plus de poids aux prix récents, réagissant plus rapidement aux changements de prix.
Les moyennes mobiles couramment utilisées sur le marché des cryptomonnaies incluent les moyennes sur 50 jours, 100 jours et 200 jours, qui aident à identifier les niveaux clés de résistance et de support. Un mouvement de prix de WNT au-dessus de ces moyennes est considéré comme haussier, tandis qu'une chute en dessous indique une faiblesse.
Les traders utilisent également le RSI et les niveaux de retracement de Fibonacci pour évaluer la direction future de WNT.
Comment lire les graphiques de Wicrypt et prédire les mouvements de prix ?
La plupart des traders préfèrent les graphiques en chandeliers aux simples graphiques linéaires parce qu'ils fournissent des informations plus détaillées. Les chandeliers peuvent représenter l'action des prix de Wicrypt dans différentes périodes, comme 5 minutes pour les tendances à court terme et hebdomadaire pour les tendances à long terme. Les options populaires incluent les graphiques de 1 heure, 4 heures et 1 jour.
Par exemple, un graphique en chandeliers de 1 heure montre les prix d'ouverture, de clôture, les plus hauts et les plus bas de WNT au sein de chaque heure. La couleur du chandelier est cruciale : le vert indique que le prix a clôturé plus haut qu'il n'a ouvert, tandis que le rouge signifie le contraire. Certains graphiques utilisent des chandeliers creux et pleins pour transmettre la même information.
Qu'est-ce qui affecte le prix de Wicrypt ?
L'action du prix de Wicrypt est déterminée par l'offre et la demande, influencée par des facteurs tels que les réductions de récompenses de bloc, les hard forks et les mises à jour de protocole. Les événements du monde réel, tels que les réglementations, l'adoption par les entreprises et les gouvernements et les piratages d'échanges de cryptomonnaies, impactent également le prix de WNT. La capitalisation boursière de Wicrypt peut changer rapidement.
Les traders surveillent souvent l'activité des « baleines » de WNT, de grands détenteurs de Wicrypt, car leurs actions peuvent influencer significativement les mouvements de prix sur le marché relativement petit de Wicrypt.
Modèles de prédiction de prix haussiers et baissiers
Les traders identifient souvent des modèles de chandeliers pour obtenir un avantage dans les prédictions de prix des cryptomonnaies. Certaines formations indiquent des tendances haussières, tandis que d'autres suggèrent des mouvements baissiers.
Modèles de chandeliers haussiers couramment suivis :
- Marteau
- Englobante haussière
- Ligne pénétrante
- Étoile du matin
- Trois soldats blancs
Modèles de chandeliers baissiers courants :
- Harami baissier
- Nuage sombre
- Étoile du soir
- Étoile filante
- Pendu


