Prédiction du prix de White Monkey jusqu'à $0.003825 d'ici 2026
| Année | Prix min. | Prix max. |
|---|---|---|
| 2026 | $0.001281 | $0.003825 |
| 2027 | $0.001233 | $0.00324 |
| 2028 | $0.002226 | $0.005453 |
| 2029 | $0.00489 | $0.016088 |
| 2030 | $0.004159 | $0.012025 |
| 2031 | $0.004917 | $0.010978 |
| 2032 | $0.0075064 | $0.020364 |
| 2033 | $0.017443 | $0.054243 |
| 2034 | $0.014023 | $0.031414 |
| 2035 | $0.01658 | $0.037014 |
Calculateur de profit d’investissement
Si vous ouvrez une position short de $10,000.00 sur White Monkey aujourd’hui et la fermez le Apr 06, 2026, notre prévision indique que vous pourriez gagner environ $3,955.41, soit un rendement de 39.55% sur les 90 prochains jours.
Prévision du prix à long terme de White Monkey pour 2027, 2028, 2029, 2030, 2031, 2032 et 2037
[
'name' => 'White Monkey'
'name_with_ticker' => 'White Monkey <small>WM</small>'
'name_lang' => 'White Monkey'
'name_lang_with_ticker' => 'White Monkey <small>WM</small>'
'name_with_lang' => 'White Monkey'
'name_with_lang_with_ticker' => 'White Monkey <small>WM</small>'
'image' => '/uploads/coins/placeholder.svg'
'price_for_sd' => 0.003709
'ticker' => 'WM'
'marketcap' => '$3.36M'
'low24h' => '$0.003552'
'high24h' => '$0.00394'
'volume24h' => '$455.6K'
'current_supply' => '908.8M'
'max_supply' => '1B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.003709'
'change_24h_pct' => '-5.0711%'
'ath_price' => '$0.009638'
'ath_days' => 34
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '3 déc. 2025'
'ath_pct' => '-61.72%'
'fdv' => '$3.69M'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.182884'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.00374'
'next_week_prediction_price_date' => '13 janvier 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.003278'
'next_month_prediction_price_date' => '5 février 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.001281'
'current_year_max_price_prediction' => '$0.003825'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.004159'
'grand_prediction_max_price' => '$0.012025'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0037793854940134
107 => 0.0037934963475311
108 => 0.0038252888210246
109 => 0.0035536256159178
110 => 0.0036755944193981
111 => 0.0037472396645114
112 => 0.0034235438406133
113 => 0.0037408412388343
114 => 0.003548896563913
115 => 0.0034837476583325
116 => 0.003571462076981
117 => 0.0035372796827286
118 => 0.0035078916674079
119 => 0.0034914926499088
120 => 0.0035559004382772
121 => 0.0035528957379658
122 => 0.0034475120951821
123 => 0.0033100434291576
124 => 0.0033561824257305
125 => 0.0033394196957202
126 => 0.0032786693997274
127 => 0.0033196077642078
128 => 0.0031393359254682
129 => 0.0028291875966315
130 => 0.0030340810827613
131 => 0.0030261929064265
201 => 0.0030222153302182
202 => 0.0031761871222047
203 => 0.0031613862871388
204 => 0.0031345226265641
205 => 0.0032781760275342
206 => 0.0032257406037692
207 => 0.0033873342244734
208 => 0.0034937702342892
209 => 0.0034667746193557
210 => 0.0035668782010374
211 => 0.0033572453750239
212 => 0.0034268769908164
213 => 0.003441227970326
214 => 0.003276403366865
215 => 0.0031638078868006
216 => 0.0031562990519628
217 => 0.0029610740061441
218 => 0.0030653616498189
219 => 0.0031571304605369
220 => 0.0031131803217504
221 => 0.0030992670207836
222 => 0.003170347057996
223 => 0.0031758705856467
224 => 0.0030499335698524
225 => 0.0030761198633426
226 => 0.0031853210603061
227 => 0.0030733682733606
228 => 0.0028558622957094
301 => 0.0028019178059965
302 => 0.0027947206166746
303 => 0.0026484188821818
304 => 0.0028055226347447
305 => 0.0027369426366322
306 => 0.0029535860289552
307 => 0.0028298404851421
308 => 0.0028245060620754
309 => 0.0028164422992204
310 => 0.0026905143526938
311 => 0.0027180845698446
312 => 0.0028097321707166
313 => 0.0028424330671918
314 => 0.0028390220957789
315 => 0.0028092830474741
316 => 0.0028228974314995
317 => 0.002779040756988
318 => 0.0027635540524202
319 => 0.0027146737528507
320 => 0.002642833216011
321 => 0.0026528230832821
322 => 0.0025104881817036
323 => 0.0024329365730386
324 => 0.0024114713098739
325 => 0.0023827670628749
326 => 0.0024147135309515
327 => 0.0025100849648108
328 => 0.0023950467813981
329 => 0.0021978218849272
330 => 0.0022096754372599
331 => 0.0022363068500004
401 => 0.002186679388543
402 => 0.0021397111611907
403 => 0.0021805462242208
404 => 0.0020969794356162
405 => 0.0022464054971582
406 => 0.0022423639409552
407 => 0.0022980607362524
408 => 0.0023328890853651
409 => 0.0022526210164723
410 => 0.0022324338142138
411 => 0.0022439333620774
412 => 0.0020538714514503
413 => 0.0022825286233053
414 => 0.0022845060600227
415 => 0.0022675740463117
416 => 0.0023893269313264
417 => 0.0026462634943844
418 => 0.0025495936241127
419 => 0.0025121601284812
420 => 0.0024409990259219
421 => 0.0025358169699539
422 => 0.0025285364312426
423 => 0.0024956110741278
424 => 0.0024756977154113
425 => 0.0025123886894233
426 => 0.0024711512976902
427 => 0.0024637439290072
428 => 0.0024188633340849
429 => 0.0024028430036345
430 => 0.0023909821887568
501 => 0.0023779245969961
502 => 0.0024067263906712
503 => 0.002341457737012
504 => 0.002262750139064
505 => 0.0022562064539227
506 => 0.0022742741439246
507 => 0.0022662805360801
508 => 0.0022561681836037
509 => 0.0022368609487908
510 => 0.0022311329046557
511 => 0.002249746269243
512 => 0.0022287328658505
513 => 0.0022597392872155
514 => 0.0022513072562677
515 => 0.0022042066168303
516 => 0.002145501781201
517 => 0.0021449791850264
518 => 0.0021323313244853
519 => 0.0021162223724676
520 => 0.0021117412305392
521 => 0.0021771072091106
522 => 0.0023124128285144
523 => 0.0022858490978364
524 => 0.0023050441156118
525 => 0.0023994646050599
526 => 0.0024294780393322
527 => 0.0024081752145929
528 => 0.0023790145941886
529 => 0.0023802975134938
530 => 0.0024799481809352
531 => 0.0024861632708295
601 => 0.0025018667979285
602 => 0.0025220502680669
603 => 0.0024116125468332
604 => 0.0023750959067552
605 => 0.0023577922968201
606 => 0.0023045038755599
607 => 0.0023619708692851
608 => 0.0023284873130235
609 => 0.0023330053887243
610 => 0.002330062985997
611 => 0.0023316697368505
612 => 0.0022463637295287
613 => 0.002277444755045
614 => 0.0022257665218601
615 => 0.0021565751687794
616 => 0.0021563432151023
617 => 0.0021732777007455
618 => 0.0021632044060384
619 => 0.0021360974289898
620 => 0.0021399478471382
621 => 0.0021062141325576
622 => 0.0021440437308569
623 => 0.0021451285483754
624 => 0.002130562092438
625 => 0.0021888438080967
626 => 0.0022127218745554
627 => 0.0022031339212137
628 => 0.0022120491581894
629 => 0.0022869529407741
630 => 0.0022991655256165
701 => 0.0023045895490855
702 => 0.0022973220761825
703 => 0.0022134182618322
704 => 0.0022171397527852
705 => 0.0021898339214201
706 => 0.0021667633713342
707 => 0.0021676860723486
708 => 0.0021795473340543
709 => 0.002231346159577
710 => 0.002340353734182
711 => 0.0023444904919547
712 => 0.0023495043630531
713 => 0.0023291104295265
714 => 0.0023229594240312
715 => 0.0023310741879887
716 => 0.0023720117016643
717 => 0.0024773141012646
718 => 0.0024400932003351
719 => 0.0024098320285015
720 => 0.0024363792345529
721 => 0.0024322925002652
722 => 0.0023977963501327
723 => 0.0023968281580915
724 => 0.002330619016901
725 => 0.002306143004912
726 => 0.0022856890172963
727 => 0.0022633537967848
728 => 0.0022501127293823
729 => 0.0022704570268701
730 => 0.0022751100084123
731 => 0.0022306268463976
801 => 0.0022245639557859
802 => 0.0022608898661228
803 => 0.00224490418735
804 => 0.0022613458543936
805 => 0.0022651604621817
806 => 0.00226454622247
807 => 0.0022478553378876
808 => 0.0022584936099911
809 => 0.0022333309250449
810 => 0.0022059702844789
811 => 0.002188515900426
812 => 0.0021732846353517
813 => 0.0021817358264612
814 => 0.0021516088732823
815 => 0.0021419706546246
816 => 0.0022548896027711
817 => 0.0023383040438502
818 => 0.0023370911648412
819 => 0.0023297080758008
820 => 0.0023187383030918
821 => 0.0023712091944642
822 => 0.0023529293850986
823 => 0.0023662294737412
824 => 0.0023696149045037
825 => 0.0023798615837953
826 => 0.0023835238909102
827 => 0.0023724538551732
828 => 0.0023353014631486
829 => 0.0022427212345667
830 => 0.0021996248882463
831 => 0.0021854023761342
901 => 0.0021859193374371
902 => 0.0021716592368867
903 => 0.0021758594755917
904 => 0.0021701985652757
905 => 0.0021594781706586
906 => 0.0021810738723029
907 => 0.0021835625757395
908 => 0.0021785218809263
909 => 0.0021797091470307
910 => 0.0021379743468863
911 => 0.0021411473530981
912 => 0.0021234796513049
913 => 0.002120167170206
914 => 0.0020755047585757
915 => 0.0019963788224524
916 => 0.0020402222720052
917 => 0.0019872655502674
918 => 0.00196721003732
919 => 0.0020621497163407
920 => 0.0020526204057838
921 => 0.0020363103684022
922 => 0.0020121844238051
923 => 0.0020032358762719
924 => 0.0019488673342263
925 => 0.0019456549507173
926 => 0.0019726014682292
927 => 0.0019601665775705
928 => 0.0019427032816244
929 => 0.0018794529939332
930 => 0.0018083387291178
1001 => 0.0018104852217642
1002 => 0.0018331053462741
1003 => 0.0018988764090259
1004 => 0.0018731785169578
1005 => 0.0018545344014131
1006 => 0.0018510429190116
1007 => 0.0018947461311795
1008 => 0.0019565953325032
1009 => 0.0019856135939663
1010 => 0.001956857378154
1011 => 0.0019238237857735
1012 => 0.0019258343874788
1013 => 0.0019392100198585
1014 => 0.0019406156097004
1015 => 0.0019191141369688
1016 => 0.0019251666755971
1017 => 0.001915972315965
1018 => 0.0018595465478737
1019 => 0.001858525984657
1020 => 0.001844678191179
1021 => 0.0018442588854959
1022 => 0.0018207003342959
1023 => 0.0018174043301304
1024 => 0.0017706273968208
1025 => 0.0018014161159788
1026 => 0.0017807646596479
1027 => 0.0017496380437713
1028 => 0.0017442718034618
1029 => 0.0017441104877982
1030 => 0.0017760705625196
1031 => 0.0018010426438976
1101 => 0.0017811239005725
1102 => 0.001776588788826
1103 => 0.0018250119174589
1104 => 0.0018188496329538
1105 => 0.0018135131343148
1106 => 0.0019510574148926
1107 => 0.0018421803841012
1108 => 0.0017947037841925
1109 => 0.0017359424762436
1110 => 0.001755075454412
1111 => 0.001759107054034
1112 => 0.001617796700939
1113 => 0.0015604671082874
1114 => 0.0015407937525095
1115 => 0.0015294714581189
1116 => 0.0015346311698491
1117 => 0.0014830278123721
1118 => 0.0015177061220374
1119 => 0.0014730219763856
1120 => 0.0014655305339523
1121 => 0.0015454313216812
1122 => 0.00155654904952
1123 => 0.0015091173685522
1124 => 0.0015395761862252
1125 => 0.0015285313955277
1126 => 0.0014737879578115
1127 => 0.0014716971611562
1128 => 0.0014442288284351
1129 => 0.0014012462066439
1130 => 0.0013816019951076
1201 => 0.0013713711191806
1202 => 0.0013755925779839
1203 => 0.0013734580792342
1204 => 0.0013595290310618
1205 => 0.0013742564759707
1206 => 0.0013366339400289
1207 => 0.0013216523430715
1208 => 0.0013148855032962
1209 => 0.0012814933371755
1210 => 0.0013346351230372
1211 => 0.0013451047243146
1212 => 0.0013555949539407
1213 => 0.0014469052408517
1214 => 0.0014423436369578
1215 => 0.0014835783145674
1216 => 0.0014819760108212
1217 => 0.0014702152128094
1218 => 0.0014205983405553
1219 => 0.0014403747415001
1220 => 0.0013795060533272
1221 => 0.0014251130131748
1222 => 0.0014042999012925
1223 => 0.0014180760791113
1224 => 0.0013933052692453
1225 => 0.0014070144581868
1226 => 0.001347587455174
1227 => 0.0012920953559212
1228 => 0.0013144269965759
1229 => 0.0013387040439004
1230 => 0.0013913428681767
1231 => 0.0013599916186986
]
'min_raw' => 0.0012814933371755
'max_raw' => 0.0038252888210246
'avg_raw' => 0.0025533910791
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.001281'
'max' => '$0.003825'
'avg' => '$0.002553'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0024276066628245
'max_diff' => 0.00011618882102456
'year' => 2026
]
1 => [
'items' => [
101 => 0.0013712667135329
102 => 0.0013334970332661
103 => 0.0012555673944998
104 => 0.0012560084677921
105 => 0.0012440206906574
106 => 0.0012336615009689
107 => 0.0013635926868381
108 => 0.0013474336899671
109 => 0.0013216864432906
110 => 0.0013561501561221
111 => 0.0013652629088074
112 => 0.0013655223360653
113 => 0.00139066617131
114 => 0.0014040854406874
115 => 0.0014064506450776
116 => 0.0014460150131037
117 => 0.0014592764673994
118 => 0.0015138985208121
119 => 0.001402946909436
120 => 0.0014006619340134
121 => 0.0013566351312379
122 => 0.0013287126368814
123 => 0.0013585470083152
124 => 0.0013849761886077
125 => 0.0013574563595406
126 => 0.0013610498682415
127 => 0.0013241067461716
128 => 0.0013373121739761
129 => 0.0013486864673646
130 => 0.0013424062511055
131 => 0.0013330044633998
201 => 0.0013828092972181
202 => 0.0013799991133074
203 => 0.0014263785195671
204 => 0.0014625345833698
205 => 0.0015273327133737
206 => 0.0014597124867117
207 => 0.0014572481368861
208 => 0.0014813375517257
209 => 0.0014592727794355
210 => 0.0014732169538728
211 => 0.0015250860912957
212 => 0.0015261820044351
213 => 0.0015078240473454
214 => 0.0015067069639881
215 => 0.0015102328104612
216 => 0.0015308838033822
217 => 0.0015236677119147
218 => 0.0015320183556499
219 => 0.0015424609635105
220 => 0.0015856560171957
221 => 0.0015960701984031
222 => 0.0015707691372031
223 => 0.0015730535397455
224 => 0.001563590248327
225 => 0.0015544488273915
226 => 0.0015749974066573
227 => 0.0016125503391488
228 => 0.0016123167243047
301 => 0.0016210282747181
302 => 0.0016264554984552
303 => 0.0016031578812049
304 => 0.001587991989052
305 => 0.0015938075571342
306 => 0.0016031067771442
307 => 0.0015907919454167
308 => 0.0015147790992096
309 => 0.0015378365410294
310 => 0.0015339986552593
311 => 0.0015285330392198
312 => 0.0015517174752676
313 => 0.0015494812798519
314 => 0.0014824985453549
315 => 0.0014867865626925
316 => 0.0014827593138916
317 => 0.0014957721786649
318 => 0.0014585700420331
319 => 0.0014700131687008
320 => 0.0014771901904742
321 => 0.0014814175114352
322 => 0.0014966894934473
323 => 0.0014948975026267
324 => 0.0014965781007818
325 => 0.0015192224184521
326 => 0.0016337496066369
327 => 0.0016399830687998
328 => 0.001609287221328
329 => 0.0016215496069441
330 => 0.00159800850805
331 => 0.0016138118054493
401 => 0.0016246240201696
402 => 0.0015757657009178
403 => 0.0015728726283395
404 => 0.0015492343669563
405 => 0.0015619362296841
406 => 0.0015417266527879
407 => 0.0015466853760572
408 => 0.0015328203535024
409 => 0.0015577746336026
410 => 0.0015856773962577
411 => 0.0015927267360178
412 => 0.0015741829580404
413 => 0.0015607560406903
414 => 0.0015371827969249
415 => 0.0015763856266707
416 => 0.0015878497287729
417 => 0.0015763254106228
418 => 0.001573654974296
419 => 0.0015685945022823
420 => 0.0015747285773562
421 => 0.0015877872928108
422 => 0.001581629043759
423 => 0.0015856966757521
424 => 0.0015701950571183
425 => 0.0016031655936856
426 => 0.0016555307405462
427 => 0.0016556991030559
428 => 0.0016495408208088
429 => 0.0016470209843953
430 => 0.0016533397556967
501 => 0.0016567674299181
502 => 0.001677201177642
503 => 0.0016991274030663
504 => 0.0018014475299595
505 => 0.0017727164477685
506 => 0.0018635009513998
507 => 0.0019352997068798
508 => 0.0019568290142691
509 => 0.0019370230645031
510 => 0.0018692679802499
511 => 0.0018659435925737
512 => 0.0019671982939067
513 => 0.001938589203021
514 => 0.0019351862426936
515 => 0.0018989844942014
516 => 0.001920384211234
517 => 0.0019157037792041
518 => 0.0019083154882702
519 => 0.0019491446576513
520 => 0.0020255732178877
521 => 0.0020136611100323
522 => 0.0020047692741051
523 => 0.0019658078374465
524 => 0.0019892713246669
525 => 0.0019809164262812
526 => 0.0020168143718957
527 => 0.0019955492241505
528 => 0.0019383724610198
529 => 0.0019474780490054
530 => 0.0019461017576993
531 => 0.0019744257352544
601 => 0.0019659235802367
602 => 0.0019444415754774
603 => 0.0020253119933776
604 => 0.0020200607182641
605 => 0.0020275058257665
606 => 0.0020307833923366
607 => 0.0020800077906159
608 => 0.0021001734515859
609 => 0.0021047514096756
610 => 0.0021239072279289
611 => 0.0021042747954669
612 => 0.0021828185230019
613 => 0.0022350455186591
614 => 0.0022957098616916
615 => 0.0023843567719003
616 => 0.0024176888301685
617 => 0.002411667692186
618 => 0.002478878767793
619 => 0.0025996555766405
620 => 0.0024360801383952
621 => 0.0026083254720597
622 => 0.0025537945880895
623 => 0.002424502843165
624 => 0.0024161779790414
625 => 0.0025037358498123
626 => 0.0026979307800495
627 => 0.0026492871525657
628 => 0.0026980103435979
629 => 0.0026411721531742
630 => 0.0026383496579498
701 => 0.0026952498395543
702 => 0.0028282002153406
703 => 0.0027650404753748
704 => 0.0026744855007303
705 => 0.0027413498848164
706 => 0.0026834257673144
707 => 0.0025529065186428
708 => 0.0026492499557005
709 => 0.0025848278430431
710 => 0.0026036296403844
711 => 0.0027390353391243
712 => 0.0027227429672129
713 => 0.0027438268050992
714 => 0.0027066143830899
715 => 0.0026718521130728
716 => 0.0026069657546058
717 => 0.0025877561027225
718 => 0.0025930649594122
719 => 0.0025877534719168
720 => 0.002551450150691
721 => 0.0025436104519287
722 => 0.0025305439438599
723 => 0.0025345938010822
724 => 0.002510024943171
725 => 0.0025563914542345
726 => 0.0025649974872681
727 => 0.002598739167374
728 => 0.0026022423405363
729 => 0.0026962124393484
730 => 0.0026444552880261
731 => 0.0026791784536305
801 => 0.0026760724868717
802 => 0.0024273049873243
803 => 0.0024615829538677
804 => 0.0025149087127908
805 => 0.0024908855306773
806 => 0.0024569223717277
807 => 0.0024294952998866
808 => 0.0023879404814851
809 => 0.0024464280903956
810 => 0.002523333076649
811 => 0.0026041927779003
812 => 0.0027013404108162
813 => 0.0026796581900724
814 => 0.0026023766704774
815 => 0.0026058434629922
816 => 0.0026272738101865
817 => 0.0025995195634176
818 => 0.0025913342942182
819 => 0.0026261492798918
820 => 0.0026263890315642
821 => 0.0025944544164438
822 => 0.0025589649357104
823 => 0.0025588162334903
824 => 0.0025525012231815
825 => 0.0026422955794793
826 => 0.0026916733962096
827 => 0.0026973344833214
828 => 0.0026912923599418
829 => 0.0026936177334273
830 => 0.0026648858698379
831 => 0.0027305583898339
901 => 0.0027908259885213
902 => 0.0027746729846436
903 => 0.0027504573355462
904 => 0.0027311684046564
905 => 0.002770129125537
906 => 0.0027683942659661
907 => 0.0027902996036231
908 => 0.0027893058509756
909 => 0.0027819399098229
910 => 0.0027746732477046
911 => 0.0028034847416177
912 => 0.0027951874940692
913 => 0.0027868773586034
914 => 0.0027702101097087
915 => 0.0027724754656472
916 => 0.002748263997723
917 => 0.0027370626648199
918 => 0.0025686214937124
919 => 0.0025236085088185
920 => 0.0025377705101899
921 => 0.0025424330087576
922 => 0.002522843300046
923 => 0.0025509299101551
924 => 0.0025465526417207
925 => 0.0025635820325826
926 => 0.0025529428085023
927 => 0.0025533794459697
928 => 0.0025846671354682
929 => 0.002593750084837
930 => 0.0025891304234797
1001 => 0.0025923658759416
1002 => 0.0026669255123285
1003 => 0.0026563255163172
1004 => 0.002650694479702
1005 => 0.0026522543153276
1006 => 0.0026713059010011
1007 => 0.0026766393048116
1008 => 0.0026540412980946
1009 => 0.0026646986486999
1010 => 0.0027100762949579
1011 => 0.0027259559029958
1012 => 0.0027766359892086
1013 => 0.0027551061878187
1014 => 0.0027946250700579
1015 => 0.0029160926410813
1016 => 0.0030131293417314
1017 => 0.0029238903816023
1018 => 0.0031020859247969
1019 => 0.0032408367158064
1020 => 0.0032355112293459
1021 => 0.0032113168195698
1022 => 0.0030533527328861
1023 => 0.002907991825208
1024 => 0.0030295923968309
1025 => 0.0030299023816954
1026 => 0.0030194567847507
1027 => 0.0029545800792398
1028 => 0.0030171992160274
1029 => 0.0030221696957063
1030 => 0.0030193875488433
1031 => 0.0029696467308395
1101 => 0.0028937016953876
1102 => 0.0029085411735282
1103 => 0.0029328485414396
1104 => 0.0028868296229351
1105 => 0.0028721237900883
1106 => 0.0028994647312497
1107 => 0.0029875629403828
1108 => 0.0029709084842644
1109 => 0.0029704735691092
1110 => 0.0030417283949724
1111 => 0.0029907253174082
1112 => 0.0029087283468701
1113 => 0.0028880230304021
1114 => 0.002814533105713
1115 => 0.0028652928584579
1116 => 0.0028671196115933
1117 => 0.002839319013767
1118 => 0.0029109842121659
1119 => 0.0029103238047462
1120 => 0.0029783592446688
1121 => 0.0031084174528565
1122 => 0.0030699528409197
1123 => 0.003025222682175
1124 => 0.0030300860906633
1125 => 0.0030834256778652
1126 => 0.0030511753458186
1127 => 0.0030627727900799
1128 => 0.0030834081237443
1129 => 0.0030958579328905
1130 => 0.0030282947547189
1201 => 0.0030125425459667
1202 => 0.0029803190551336
1203 => 0.0029719125478552
1204 => 0.0029981579087736
1205 => 0.0029912431834339
1206 => 0.0028669660800658
1207 => 0.0028539784312926
1208 => 0.0028543767439384
1209 => 0.002821718683569
1210 => 0.0027719073026732
1211 => 0.0029028086375844
1212 => 0.002892295428428
1213 => 0.0028806896591771
1214 => 0.0028821112996888
1215 => 0.0029389311325158
1216 => 0.0029059727600058
1217 => 0.0029935979950948
1218 => 0.0029755848810162
1219 => 0.0029571097985311
1220 => 0.0029545559793669
1221 => 0.0029474446488301
1222 => 0.00292305725041
1223 => 0.0028936080013623
1224 => 0.0028741630562907
1225 => 0.0026512634917438
1226 => 0.0026926323543766
1227 => 0.0027402234599451
1228 => 0.002756651718878
1229 => 0.0027285500451724
1230 => 0.0029241668757696
1231 => 0.0029599079557304
]
'min_raw' => 0.0012336615009689
'max_raw' => 0.0032408367158064
'avg_raw' => 0.0022372491083876
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.001233'
'max' => '$0.00324'
'avg' => '$0.002237'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -4.7831836206624E-5
'max_diff' => -0.00058445210521818
'year' => 2027
]
2 => [
'items' => [
101 => 0.0028516458931962
102 => 0.0028313944816069
103 => 0.0029254945549419
104 => 0.0028687407074548
105 => 0.0028942969615032
106 => 0.0028390583187742
107 => 0.0029512989761889
108 => 0.0029504438904339
109 => 0.0029067797396294
110 => 0.0029436843808901
111 => 0.0029372712912925
112 => 0.0028879745725742
113 => 0.0029528617701012
114 => 0.0029528939533416
115 => 0.0029108681575328
116 => 0.0028617912286577
117 => 0.0028530174329202
118 => 0.0028464075564255
119 => 0.0028926713370783
120 => 0.0029341512981485
121 => 0.0030113352219456
122 => 0.003030741094233
123 => 0.0031064835056929
124 => 0.0030613825874996
125 => 0.00308137524038
126 => 0.0031030800932151
127 => 0.0031134861978338
128 => 0.00309653000878
129 => 0.0032141891505974
130 => 0.0032241231871498
131 => 0.0032274539836767
201 => 0.0031877799830576
202 => 0.0032230197814228
203 => 0.0032065322467872
204 => 0.0032494282315401
205 => 0.0032561548696728
206 => 0.0032504576464815
207 => 0.0032525927875976
208 => 0.0031521914665513
209 => 0.0031469851283959
210 => 0.003075996338222
211 => 0.0031049247949405
212 => 0.0030508444316823
213 => 0.0030679938719609
214 => 0.0030755531818299
215 => 0.0030716046273414
216 => 0.0031065603664795
217 => 0.0030768408472264
218 => 0.0029984061495762
219 => 0.0029199500824451
220 => 0.0029189651304312
221 => 0.0028983090328202
222 => 0.0028833784576004
223 => 0.0028862546160784
224 => 0.0028963905736979
225 => 0.0028827893373174
226 => 0.0028856918506994
227 => 0.0029338929121854
228 => 0.0029435592913122
229 => 0.0029107091581413
301 => 0.0027788111332084
302 => 0.0027464430270487
303 => 0.0027697085798688
304 => 0.0027585891441143
305 => 0.0022263967383555
306 => 0.002351427449967
307 => 0.0022771384467692
308 => 0.0023113742373154
309 => 0.0022355444020946
310 => 0.0022717343740442
311 => 0.0022650514076713
312 => 0.0024660970920148
313 => 0.0024629580401831
314 => 0.00246446053818
315 => 0.0023927423940492
316 => 0.0025069913450094
317 => 0.0025632744865118
318 => 0.002552857974947
319 => 0.0025554795864929
320 => 0.0025104316143193
321 => 0.0024648967010207
322 => 0.0024143914743995
323 => 0.0025082239428269
324 => 0.0024977913741115
325 => 0.002521719933225
326 => 0.0025825769962836
327 => 0.0025915384299924
328 => 0.0026035826877751
329 => 0.0025992656787286
330 => 0.0027021143484431
331 => 0.0026896586959233
401 => 0.0027196732347603
402 => 0.0026579310511642
403 => 0.0025880639098033
404 => 0.0026013433692471
405 => 0.002600064450516
406 => 0.0025837823471945
407 => 0.0025690835923378
408 => 0.00254461430685
409 => 0.0026220387469063
410 => 0.0026188954560337
411 => 0.002669781681586
412 => 0.0026607870469372
413 => 0.0026007186753921
414 => 0.0026028640290331
415 => 0.0026172925632912
416 => 0.0026672298851005
417 => 0.0026820546822056
418 => 0.0026751872455205
419 => 0.0026914419587685
420 => 0.0027042890213618
421 => 0.0026930553520334
422 => 0.0028521004200111
423 => 0.0027860538192033
424 => 0.0028182444728877
425 => 0.0028259217541131
426 => 0.0028062565596901
427 => 0.0028105212362026
428 => 0.0028169810590643
429 => 0.0028562038385176
430 => 0.0029591357610055
501 => 0.0030047236087942
502 => 0.003141876898131
503 => 0.0030009381726488
504 => 0.0029925754519411
505 => 0.0030172809009832
506 => 0.0030978044009741
507 => 0.0031630611345289
508 => 0.0031847105578003
509 => 0.0031875718864786
510 => 0.0032281876437623
511 => 0.0032514678383982
512 => 0.0032232558225276
513 => 0.0031993490929984
514 => 0.0031137181552374
515 => 0.0031236301694485
516 => 0.0031919141180917
517 => 0.0032883692174548
518 => 0.0033711377271509
519 => 0.0033421550798291
520 => 0.003563272220334
521 => 0.0035851950816326
522 => 0.0035821660510521
523 => 0.0036321095916493
524 => 0.0035329818343889
525 => 0.0034906027976503
526 => 0.0032045179992755
527 => 0.0032848961583715
528 => 0.0034017305330614
529 => 0.0033862670654648
530 => 0.0033014188195732
531 => 0.0033710733621478
601 => 0.0033480433920737
602 => 0.0033298786991619
603 => 0.0034130946787898
604 => 0.0033215952908649
605 => 0.0034008177566734
606 => 0.0032992141248226
607 => 0.0033422874701207
608 => 0.0033178369561062
609 => 0.0033336594352159
610 => 0.003241161545647
611 => 0.003291071161599
612 => 0.0032390851415358
613 => 0.0032390604933935
614 => 0.0032379128991193
615 => 0.0032990742211824
616 => 0.0033010686896991
617 => 0.0032558703802848
618 => 0.0032493565977679
619 => 0.0032734414657445
620 => 0.0032452443931809
621 => 0.0032584376259631
622 => 0.0032456440027617
623 => 0.0032427638887041
624 => 0.0032198146498823
625 => 0.0032099274867954
626 => 0.0032138044982026
627 => 0.0032005702595335
628 => 0.0031925961520321
629 => 0.0032363266484319
630 => 0.0032129632082887
701 => 0.003232745866151
702 => 0.0032102010307464
703 => 0.0031320508089168
704 => 0.003087105789919
705 => 0.0029394872654122
706 => 0.0029813516958421
707 => 0.003009107856529
708 => 0.0029999344455876
709 => 0.0030196424819286
710 => 0.0030208523952979
711 => 0.0030144451117838
712 => 0.0030070262982983
713 => 0.0030034152301797
714 => 0.0030303291734432
715 => 0.0030459536233894
716 => 0.0030118935585835
717 => 0.0030039137619504
718 => 0.0030383503679769
719 => 0.0030593566777597
720 => 0.0032144554667699
721 => 0.0032029652475176
722 => 0.0032318034429994
723 => 0.0032285567047463
724 => 0.003258783727896
725 => 0.0033081921358527
726 => 0.0032077310276686
727 => 0.0032251676023656
728 => 0.0032208925569192
729 => 0.0032675663821259
730 => 0.0032677120927135
731 => 0.0032397288029717
801 => 0.0032548989983178
802 => 0.0032464314114481
803 => 0.0032617334853846
804 => 0.0032028117886342
805 => 0.003274572055072
806 => 0.0033152555020128
807 => 0.0033158203917131
808 => 0.0033351040226792
809 => 0.0033546973085734
810 => 0.0033923049146318
811 => 0.003353648452852
812 => 0.003284109241241
813 => 0.003289129747709
814 => 0.0032483589333848
815 => 0.0032490442981395
816 => 0.0032453857673662
817 => 0.0032563652936181
818 => 0.0032052211772142
819 => 0.0032172245991088
820 => 0.0032004197381644
821 => 0.0032251310718799
822 => 0.0031985457617318
823 => 0.0032208904953629
824 => 0.0032305337416584
825 => 0.0032661175280931
826 => 0.0031932900075431
827 => 0.003044789763152
828 => 0.0030760063149145
829 => 0.0030298345828506
830 => 0.0030341079524413
831 => 0.0030427408391162
901 => 0.003014758828898
902 => 0.0030200969146332
903 => 0.0030199062006472
904 => 0.0030182627305479
905 => 0.0030109835289737
906 => 0.0030004272465449
907 => 0.0030424802266889
908 => 0.0030496258474715
909 => 0.003065509677316
910 => 0.0031127691808285
911 => 0.0031080468419718
912 => 0.0031157491725751
913 => 0.0030989350281148
914 => 0.0030348879123787
915 => 0.0030383659789031
916 => 0.0029949944336111
917 => 0.0030644005693903
918 => 0.0030479642803216
919 => 0.0030373676978346
920 => 0.0030344763221263
921 => 0.0030818529728071
922 => 0.0030960288092288
923 => 0.0030871953792758
924 => 0.0030690777567298
925 => 0.0031038689480123
926 => 0.003113177603077
927 => 0.003115261467656
928 => 0.0031769047880593
929 => 0.0031187066444947
930 => 0.0031327155160905
1001 => 0.0032420087332722
1002 => 0.0031428948667214
1003 => 0.0031953976923363
1004 => 0.003192827952234
1005 => 0.0032196866212198
1006 => 0.0031906247574313
1007 => 0.0031909850140633
1008 => 0.0032148336925589
1009 => 0.0031813425247437
1010 => 0.0031730496406053
1011 => 0.0031615930805628
1012 => 0.0031866080602857
1013 => 0.0032016034092993
1014 => 0.0033224549094787
1015 => 0.0034005304900926
1016 => 0.0033971410232284
1017 => 0.0034281144055506
1018 => 0.0034141606131308
1019 => 0.0033691001365828
1020 => 0.0034460128755105
1021 => 0.0034216744667481
1022 => 0.0034236808955953
1023 => 0.0034236062162134
1024 => 0.0034397891303398
1025 => 0.003428322052539
1026 => 0.0034057192651221
1027 => 0.0034207240502373
1028 => 0.0034652828977207
1029 => 0.0036035949275415
1030 => 0.0036809961718199
1031 => 0.0035989352754481
1101 => 0.0036555397829262
1102 => 0.0036215972486876
1103 => 0.0036154288805135
1104 => 0.00365098069425
1105 => 0.0036865947367301
1106 => 0.0036843262761879
1107 => 0.0036584723101486
1108 => 0.0036438680607531
1109 => 0.0037544563299582
1110 => 0.0038359358828865
1111 => 0.0038303795236226
1112 => 0.0038549034863884
1113 => 0.0039269065995665
1114 => 0.0039334896618631
1115 => 0.0039326603473237
1116 => 0.00391634354055
1117 => 0.0039872399562596
1118 => 0.0040463829935483
1119 => 0.0039125666712198
1120 => 0.0039635221749782
1121 => 0.0039863977422992
1122 => 0.0040199858620013
1123 => 0.0040766546499613
1124 => 0.0041382119843395
1125 => 0.0041469168663624
1126 => 0.0041407403360002
1127 => 0.0041001416192278
1128 => 0.0041674983890361
1129 => 0.0042069544050792
1130 => 0.004230449559698
1201 => 0.0042900293625904
1202 => 0.0039865390140152
1203 => 0.0037717134608446
1204 => 0.0037381653485984
1205 => 0.0038063867540654
1206 => 0.0038243761946315
1207 => 0.0038171246736961
1208 => 0.0035753189825179
1209 => 0.0037368922916772
1210 => 0.003910731586863
1211 => 0.0039174094621739
1212 => 0.0040044370481521
1213 => 0.0040327767975279
1214 => 0.0041028454112068
1215 => 0.0040984626003436
1216 => 0.0041155231927392
1217 => 0.0041116012579957
1218 => 0.0042413886101486
1219 => 0.0043845633331815
1220 => 0.0043796056477906
1221 => 0.0043590225873882
1222 => 0.0043895919420191
1223 => 0.0045373635997249
1224 => 0.0045237591534759
1225 => 0.0045369747141828
1226 => 0.0047112058266635
1227 => 0.0049377310569752
1228 => 0.0048324873447342
1229 => 0.0050608359172349
1230 => 0.0052045692393864
1231 => 0.0054531411577445
]
'min_raw' => 0.0022263967383555
'max_raw' => 0.0054531411577445
'avg_raw' => 0.00383976894805
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.002226'
'max' => '$0.005453'
'avg' => '$0.003839'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0009927352373866
'max_diff' => 0.0022123044419381
'year' => 2028
]
3 => [
'items' => [
101 => 0.0054220187293235
102 => 0.0055187859530353
103 => 0.0053663030870032
104 => 0.0050161716047218
105 => 0.0049607619574013
106 => 0.0050716934745327
107 => 0.0053444077848611
108 => 0.0050631047303926
109 => 0.0051200119719417
110 => 0.0051036226825472
111 => 0.0051027493669654
112 => 0.0051360802706929
113 => 0.0050877320564131
114 => 0.0048907527337594
115 => 0.0049810271965252
116 => 0.0049461678911155
117 => 0.0049848468894009
118 => 0.0051935814907146
119 => 0.0051012949478624
120 => 0.0050040785717176
121 => 0.0051260094814441
122 => 0.0052812694295323
123 => 0.0052715535410099
124 => 0.0052527006563501
125 => 0.0053589733800726
126 => 0.0055345047846756
127 => 0.0055819502179975
128 => 0.0056169734668966
129 => 0.0056218025811971
130 => 0.0056715454597705
131 => 0.005404065464862
201 => 0.0058285630861552
202 => 0.0059018620988424
203 => 0.00588808492239
204 => 0.0059695536900979
205 => 0.0059455835119751
206 => 0.0059108544846808
207 => 0.0060399998104016
208 => 0.0058919451159531
209 => 0.0056818001167512
210 => 0.0055665104139923
211 => 0.0057183331947403
212 => 0.0058110460690583
213 => 0.0058723233813361
214 => 0.0058908658590067
215 => 0.0054248291754489
216 => 0.0051736612505906
217 => 0.0053346570107786
218 => 0.0055310829495418
219 => 0.0054029743088544
220 => 0.0054079959250276
221 => 0.0052253466697658
222 => 0.0055472433557905
223 => 0.005500345716214
224 => 0.0057436507532975
225 => 0.0056855840535526
226 => 0.0058839898662471
227 => 0.0058317429664618
228 => 0.0060486169263858
301 => 0.0061351338206276
302 => 0.0062804091513389
303 => 0.0063872742759871
304 => 0.0064500275211846
305 => 0.0064462600517244
306 => 0.0066949196727396
307 => 0.0065482937817324
308 => 0.0063640971055582
309 => 0.0063607655688193
310 => 0.006456163637497
311 => 0.0066560918182635
312 => 0.0067079302866995
313 => 0.0067369009186213
314 => 0.0066925313873581
315 => 0.006533379491442
316 => 0.0064646585097039
317 => 0.0065232107771833
318 => 0.0064516063855097
319 => 0.0065752156541822
320 => 0.0067449575815846
321 => 0.0067099065448084
322 => 0.0068270769056063
323 => 0.0069483359023508
324 => 0.0071217417137777
325 => 0.0071670764140833
326 => 0.0072420129497642
327 => 0.0073191472603495
328 => 0.0073439207220815
329 => 0.0073912209472817
330 => 0.0073909716517468
331 => 0.0075335140640599
401 => 0.0076907427590123
402 => 0.0077500929515041
403 => 0.0078865654465505
404 => 0.0076528610813502
405 => 0.0078301285269569
406 => 0.007990028200186
407 => 0.0077993892178725
408 => 0.0080621406418056
409 => 0.0080723426841894
410 => 0.0082263814117621
411 => 0.0080702336511177
412 => 0.0079775136092884
413 => 0.008245192895875
414 => 0.0083747144708358
415 => 0.0083357015183761
416 => 0.0080388110238506
417 => 0.0078660080218044
418 => 0.0074137492342399
419 => 0.0079494693042358
420 => 0.0082104029231621
421 => 0.0080381352688145
422 => 0.0081250170534564
423 => 0.0085990158989493
424 => 0.0087794839701605
425 => 0.0087419478729156
426 => 0.0087482908554533
427 => 0.0088456681509516
428 => 0.0092774927058476
429 => 0.0090187334229391
430 => 0.0092165451991973
501 => 0.0093214638520612
502 => 0.0094189181440212
503 => 0.0091796012037126
504 => 0.0088682533806352
505 => 0.0087696364555741
506 => 0.008021006645614
507 => 0.0079820372128711
508 => 0.0079601624893779
509 => 0.007822245451994
510 => 0.0077138804392662
511 => 0.00762770455781
512 => 0.0074015533105726
513 => 0.0074778727177757
514 => 0.0071174348311128
515 => 0.0073480302178653
516 => 0.0067727626476742
517 => 0.0072518625742975
518 => 0.0069911102662371
519 => 0.0071661984281888
520 => 0.0071655875620861
521 => 0.0068431947441806
522 => 0.0066572452949792
523 => 0.0067757395212712
524 => 0.0069027747379396
525 => 0.0069233857744462
526 => 0.0070880902488152
527 => 0.0071340557273007
528 => 0.0069947781815665
529 => 0.0067608415059363
530 => 0.0068151796601577
531 => 0.0066561441340182
601 => 0.0063774404916719
602 => 0.0065776103133038
603 => 0.0066459570912547
604 => 0.0066761429220279
605 => 0.0064020698991099
606 => 0.0063159502048942
607 => 0.006270100802308
608 => 0.0067254621203392
609 => 0.006750407841261
610 => 0.0066227820060556
611 => 0.0071996628831625
612 => 0.0070690969737374
613 => 0.0072149710839897
614 => 0.0068102490422077
615 => 0.0068257099692343
616 => 0.0066341080686963
617 => 0.006741392330154
618 => 0.0066655672720888
619 => 0.0067327248220319
620 => 0.0067729787805668
621 => 0.0069645492411183
622 => 0.0072540500012332
623 => 0.0069359350026238
624 => 0.006797327742239
625 => 0.0068833189070249
626 => 0.007112324710633
627 => 0.0074592802256905
628 => 0.007253875577646
629 => 0.007345030672451
630 => 0.007364944005458
701 => 0.0072134862224834
702 => 0.0074648646901859
703 => 0.0075995804532227
704 => 0.0077377709505993
705 => 0.0078577578874614
706 => 0.0076825746270729
707 => 0.0078700458272226
708 => 0.0077189771330236
709 => 0.0075834528971326
710 => 0.0075836584314565
711 => 0.0074986420985889
712 => 0.0073339122409106
713 => 0.0073035335277453
714 => 0.0074615674300398
715 => 0.0075882956538138
716 => 0.0075987335973111
717 => 0.0076688968535236
718 => 0.0077104187458112
719 => 0.0081173897365046
720 => 0.0082810768356021
721 => 0.0084812303219403
722 => 0.0085592013849014
723 => 0.0087938663302412
724 => 0.0086043553283243
725 => 0.0085633534309795
726 => 0.0079941330319037
727 => 0.008087342840364
728 => 0.0082365807371178
729 => 0.0079965939098534
730 => 0.0081488103143996
731 => 0.0081788610570413
801 => 0.0079884392492951
802 => 0.0080901517644529
803 => 0.0078200334798528
804 => 0.0072599378416894
805 => 0.007465488236743
806 => 0.0076168425150174
807 => 0.007400841298072
808 => 0.0077880151190451
809 => 0.0075618361657226
810 => 0.0074901482960237
811 => 0.0072104683577577
812 => 0.0073424665227512
813 => 0.0075209959309366
814 => 0.0074106855129494
815 => 0.0076395961934654
816 => 0.0079637947653246
817 => 0.0081948379739901
818 => 0.0082125746026765
819 => 0.0080640292981973
820 => 0.0083020740966287
821 => 0.0083038079931059
822 => 0.0080352924880337
823 => 0.0078708282362776
824 => 0.0078334616122429
825 => 0.0079268107652398
826 => 0.0080401538701824
827 => 0.0082188643561729
828 => 0.0083268553600265
829 => 0.0086084386240738
830 => 0.0086846269817001
831 => 0.0087683348878648
901 => 0.0088801944650629
902 => 0.0090145105676962
903 => 0.0087206345817545
904 => 0.0087323108225294
905 => 0.0084586575734105
906 => 0.0081662198308813
907 => 0.0083881436245817
908 => 0.0086782794635599
909 => 0.0086117219815267
910 => 0.008604232905152
911 => 0.0086168274543177
912 => 0.0085666452864288
913 => 0.0083396732009052
914 => 0.0082256892404757
915 => 0.0083727576298394
916 => 0.0084509179335253
917 => 0.0085721377482472
918 => 0.0085571948474429
919 => 0.008869444072109
920 => 0.0089907746788878
921 => 0.0089597331176444
922 => 0.0089654455119701
923 => 0.009185108780038
924 => 0.0094294195113261
925 => 0.0096582487508179
926 => 0.0098910236816734
927 => 0.0096104044171668
928 => 0.0094679232608405
929 => 0.0096149274447461
930 => 0.0095369249555321
1001 => 0.0099851503955971
1002 => 0.010016184552566
1003 => 0.01046437758083
1004 => 0.010889766134486
1005 => 0.010622587205562
1006 => 0.010874524901534
1007 => 0.011147016060509
1008 => 0.011672695716269
1009 => 0.011495665301842
1010 => 0.011360062778811
1011 => 0.011231919049774
1012 => 0.011498565807657
1013 => 0.011841602601886
1014 => 0.011915489441798
1015 => 0.0120352143494
1016 => 0.011909338248322
1017 => 0.012060942147273
1018 => 0.012596170528698
1019 => 0.012451547095445
1020 => 0.012246158570849
1021 => 0.012668669974105
1022 => 0.012821575208472
1023 => 0.01389474422035
1024 => 0.015249664428247
1025 => 0.014688718565291
1026 => 0.014340521366545
1027 => 0.014422355967599
1028 => 0.014917126960579
1029 => 0.015076031700278
1030 => 0.014644073840028
1031 => 0.01479664865879
1101 => 0.015637350910995
1102 => 0.016088360696346
1103 => 0.015475828829144
1104 => 0.013785877700902
1105 => 0.012227665581414
1106 => 0.012640973602708
1107 => 0.012594117299535
1108 => 0.013497346989787
1109 => 0.012448097874393
1110 => 0.012465764538546
1111 => 0.013387672062257
1112 => 0.013141722940427
1113 => 0.012743316861846
1114 => 0.01223057438669
1115 => 0.011282722498426
1116 => 0.010443183648184
1117 => 0.012089712667758
1118 => 0.012018711342415
1119 => 0.011915890901512
1120 => 0.012144706666408
1121 => 0.013255771070257
1122 => 0.013230157439583
1123 => 0.01306721658943
1124 => 0.013190805788176
1125 => 0.012721651077761
1126 => 0.012842562929089
1127 => 0.012227418752653
1128 => 0.012505489611092
1129 => 0.012742462061335
1130 => 0.012790037789158
1201 => 0.012897228333221
1202 => 0.011981296870285
1203 => 0.012392523206808
1204 => 0.012634080152819
1205 => 0.011542717082826
1206 => 0.012612507413925
1207 => 0.011965352541278
1208 => 0.011745698457562
1209 => 0.012041433744061
1210 => 0.0119261854153
1211 => 0.011827101669841
1212 => 0.0117718112374
1213 => 0.011988966592692
1214 => 0.011978836035811
1215 => 0.011623527726515
1216 => 0.011160042521257
1217 => 0.011315603369525
1218 => 0.011259086654958
1219 => 0.011054262790569
1220 => 0.01119228934464
1221 => 0.010584490254151
1222 => 0.0095388035096134
1223 => 0.010229616203306
1224 => 0.010203020666059
1225 => 0.010189609990167
1226 => 0.010708736636817
1227 => 0.010658834588031
1228 => 0.010568261880842
1229 => 0.011052599351773
1230 => 0.010875809659625
1231 => 0.011420633833935
]
'min_raw' => 0.0048907527337594
'max_raw' => 0.016088360696346
'avg_raw' => 0.010489556715053
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.00489'
'max' => '$0.016088'
'avg' => '$0.010489'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0026643559954039
'max_diff' => 0.010635219538601
'year' => 2029
]
4 => [
'items' => [
101 => 0.011779490272154
102 => 0.011688472671632
103 => 0.012025978886281
104 => 0.01131918717728
105 => 0.011553955031449
106 => 0.011602340360819
107 => 0.011046622702564
108 => 0.010666999180361
109 => 0.010641682619455
110 => 0.0099834677473001
111 => 0.010335080819081
112 => 0.01064448577151
113 => 0.01049630481009
114 => 0.010449395144485
115 => 0.010689046452597
116 => 0.010707669411711
117 => 0.010283063970319
118 => 0.01037135288709
119 => 0.010739532346837
120 => 0.010362075709356
121 => 0.0096287391199224
122 => 0.0094468615065714
123 => 0.0094225956802809
124 => 0.0089293291679774
125 => 0.0094590154383772
126 => 0.0092277931866382
127 => 0.0099582215094138
128 => 0.00954100476881
129 => 0.0095230193890031
130 => 0.0094958318495434
131 => 0.0090712569858208
201 => 0.0091642118978358
202 => 0.0094732081828066
203 => 0.0095834615383765
204 => 0.0095719612101115
205 => 0.0094716939324379
206 => 0.0095175957787054
207 => 0.0093697299386146
208 => 0.0093175154329173
209 => 0.0091527120902052
210 => 0.0089104967045038
211 => 0.0089441782394788
212 => 0.0084642861813012
213 => 0.0082028155182067
214 => 0.0081304438847901
215 => 0.0080336655119667
216 => 0.0081413752595179
217 => 0.0084629267073956
218 => 0.0080750674403099
219 => 0.0074101099320558
220 => 0.0074500750113344
221 => 0.0075398646787347
222 => 0.0073725422275523
223 => 0.007214185569817
224 => 0.0073518638358361
225 => 0.0070701125736089
226 => 0.0075739129726923
227 => 0.0075602865837814
228 => 0.007748072217752
301 => 0.007865498428423
302 => 0.0075948690300135
303 => 0.0075268064681733
304 => 0.0075655779966685
305 => 0.0069247709952902
306 => 0.0076957046145334
307 => 0.0077023716804864
308 => 0.0076452842141042
309 => 0.0080557825664461
310 => 0.0089220621275344
311 => 0.0085961329106384
312 => 0.0084699232665935
313 => 0.0082299986410055
314 => 0.0085496839592869
315 => 0.0085251371147107
316 => 0.0084141269744229
317 => 0.0083469876952041
318 => 0.0084706938757674
319 => 0.0083316591304366
320 => 0.0083066846697559
321 => 0.0081553666105121
322 => 0.0081013529478951
323 => 0.0080613633824393
324 => 0.008017338800166
325 => 0.0081144460584185
326 => 0.0078943882356947
327 => 0.0076290200740242
328 => 0.0076069575827045
329 => 0.0076678740609921
330 => 0.0076409230540483
331 => 0.0076068285516521
401 => 0.0075417328614926
402 => 0.0075224203607716
403 => 0.0075851766190214
404 => 0.0075143284623745
405 => 0.0076188687768058
406 => 0.0075904395957599
407 => 0.0074316365014349
408 => 0.0072337090494701
409 => 0.0072319470799807
410 => 0.007189303935121
411 => 0.0071349914787024
412 => 0.0071198829958274
413 => 0.0073402689562879
414 => 0.0077964612988443
415 => 0.0077068998262429
416 => 0.0077716171688263
417 => 0.0080899624412284
418 => 0.0081911548303487
419 => 0.0081193308694242
420 => 0.0080210138018018
421 => 0.0080253392538096
422 => 0.0083613184364758
423 => 0.0083822730459782
424 => 0.0084352185839777
425 => 0.0085032685627142
426 => 0.0081309200750595
427 => 0.0080078016735258
428 => 0.0079494613445303
429 => 0.0077697957117729
430 => 0.0079635496933346
501 => 0.0078506575456513
502 => 0.0078658905533187
503 => 0.0078559700370916
504 => 0.0078613873097739
505 => 0.0075737721502132
506 => 0.0076785639977494
507 => 0.0075043272265075
508 => 0.0072710437488099
509 => 0.0072702617007929
510 => 0.0073273575014669
511 => 0.0072933946850671
512 => 0.0072020016193991
513 => 0.0072149835730142
514 => 0.0071012479990929
515 => 0.0072287931309372
516 => 0.0072324506689401
517 => 0.0071833388457498
518 => 0.0073798397191924
519 => 0.0074603462873713
520 => 0.0074280198332702
521 => 0.0074580781771759
522 => 0.0077106215097753
523 => 0.0077517970922271
524 => 0.0077700845660459
525 => 0.0077455817737547
526 => 0.0074626942056954
527 => 0.0074752414722697
528 => 0.00738317795539
529 => 0.0073053939850411
530 => 0.0073085049359319
531 => 0.0073484960078996
601 => 0.0075231393646278
602 => 0.0078906660130743
603 => 0.0079046133807244
604 => 0.0079215179971897
605 => 0.0078527584264458
606 => 0.007832019881969
607 => 0.0078593793752064
608 => 0.0079974030607298
609 => 0.0083524374529609
610 => 0.0082269445867967
611 => 0.0081249169331923
612 => 0.0082144226918612
613 => 0.0082006439818835
614 => 0.0080843378032676
615 => 0.0080810734762036
616 => 0.0078578447341051
617 => 0.0077753221508238
618 => 0.0077063601035256
619 => 0.0076310553481759
620 => 0.0075864121649663
621 => 0.0076550043843401
622 => 0.0076706922364702
623 => 0.0075207141500225
624 => 0.0075002726910278
625 => 0.0076227480339228
626 => 0.0075688512018557
627 => 0.0076242854302138
628 => 0.0076371466466989
629 => 0.0076350756946259
630 => 0.0075788012119361
701 => 0.0076146688890734
702 => 0.0075298311399746
703 => 0.0074375828300476
704 => 0.0073787341555869
705 => 0.0073273808819761
706 => 0.0073558746628452
707 => 0.0072542995368058
708 => 0.0072218036096824
709 => 0.0076025177271075
710 => 0.007883755339016
711 => 0.0078796660327565
712 => 0.0078547734325862
713 => 0.0078177880780127
714 => 0.0079946973516752
715 => 0.0079330656981437
716 => 0.0079779078755848
717 => 0.0079893220917639
718 => 0.0080238694863958
719 => 0.0080362172105278
720 => 0.007998893812155
721 => 0.007873631928547
722 => 0.0075614912241381
723 => 0.0074161888836281
724 => 0.0073682366910579
725 => 0.0073699796621836
726 => 0.0073219007375697
727 => 0.0073360621356148
728 => 0.0073169759812524
729 => 0.0072808314223268
730 => 0.0073536428381842
731 => 0.0073620336755765
801 => 0.0073450386210838
802 => 0.0073490415716467
803 => 0.0072083297791295
804 => 0.0072190277911046
805 => 0.0071594599009894
806 => 0.0071482916396944
807 => 0.0069977092006527
808 => 0.0067309305826167
809 => 0.0068787518338357
810 => 0.0067002045491765
811 => 0.0066325859870432
812 => 0.0069526817433382
813 => 0.0069205530074805
814 => 0.0068655625777178
815 => 0.006784220271089
816 => 0.0067540496183133
817 => 0.006570742282916
818 => 0.0065599115076341
819 => 0.0066507635727714
820 => 0.0066088384707392
821 => 0.0065499597492083
822 => 0.0063367069882635
823 => 0.0060969402793988
824 => 0.0061041773292196
825 => 0.0061804426582913
826 => 0.0064021943883479
827 => 0.0063155521510709
828 => 0.0062526922138213
829 => 0.0062409204371372
830 => 0.0063882688682222
831 => 0.0065967977686582
901 => 0.0066946348631715
902 => 0.0065976812738655
903 => 0.0064863062108227
904 => 0.0064930850948478
905 => 0.006538181973273
906 => 0.00654292101756
907 => 0.0064704273010606
908 => 0.0064908338576208
909 => 0.0064598344321912
910 => 0.0062695910155503
911 => 0.0062661501154117
912 => 0.0062194613128785
913 => 0.0062180475944931
914 => 0.0061386182943165
915 => 0.006127505586153
916 => 0.0059697938896386
917 => 0.0060736002058794
918 => 0.0060039723790213
919 => 0.0058990268204021
920 => 0.0058809341665398
921 => 0.0058803902795172
922 => 0.0059881459028215
923 => 0.0060723410186827
924 => 0.0060051835848797
925 => 0.0059898931389949
926 => 0.0061531550979758
927 => 0.0061323785255297
928 => 0.0061143861477859
929 => 0.0065781262927891
930 => 0.0062110397819243
1001 => 0.0060509691106217
1002 => 0.0058528512582888
1003 => 0.0059173594300053
1004 => 0.0059309522496082
1005 => 0.0054545145281744
1006 => 0.0052612238039253
1007 => 0.0051948937113702
1008 => 0.005156719805335
1009 => 0.005174116133673
1010 => 0.0050001318111081
1011 => 0.0051170521533068
1012 => 0.0049663964364942
1013 => 0.0049411385152945
1014 => 0.0052105295996173
1015 => 0.005248013795241
1016 => 0.0050880945712838
1017 => 0.0051907886016349
1018 => 0.0051535503186758
1019 => 0.0049689789963509
1020 => 0.0049619297294528
1021 => 0.0048693183279058
1022 => 0.0047243994175859
1023 => 0.0046581675868762
1024 => 0.0046236734743914
1025 => 0.0046379064174795
1026 => 0.0046307098059189
1027 => 0.0045837470475106
1028 => 0.0046334016562582
1029 => 0.0045065546496089
1030 => 0.0044560431494853
1031 => 0.0044332282767374
1101 => 0.0043206442572949
1102 => 0.0044998154985687
1103 => 0.0045351144902395
1104 => 0.0045704830318282
1105 => 0.0048783420392296
1106 => 0.0048629622732203
1107 => 0.0050019878676941
1108 => 0.0049965855887445
1109 => 0.0049569332371353
1110 => 0.0047896464881912
1111 => 0.0048563240047207
1112 => 0.0046511009728295
1113 => 0.0048048680221321
1114 => 0.0047346951622959
1115 => 0.004781142507634
1116 => 0.0046976259927279
1117 => 0.0047438474803893
1118 => 0.0045434851906709
1119 => 0.0043563897037053
1120 => 0.004431682389318
1121 => 0.004513534149342
1122 => 0.0046910096205146
1123 => 0.0045853066940251
1124 => 0.0046233214634609
1125 => 0.0044959783494464
1126 => 0.0042332331314723
1127 => 0.004234720240872
1128 => 0.0041943026133024
1129 => 0.0041593758820121
1130 => 0.0045974479466757
1201 => 0.0045429667605403
1202 => 0.0044561581207548
1203 => 0.0045723549347459
1204 => 0.0046030792166565
1205 => 0.0046039538937693
1206 => 0.0046887280897833
1207 => 0.0047339720933926
1208 => 0.0047419465451275
1209 => 0.0048753405742233
1210 => 0.0049200524932664
1211 => 0.0051042145599374
1212 => 0.0047301334557886
1213 => 0.0047224295016196
1214 => 0.0045739900622087
1215 => 0.0044798474229996
1216 => 0.0045804360892578
1217 => 0.0046695439158404
1218 => 0.0045767588907677
1219 => 0.0045888746562434
1220 => 0.0044643183408983
1221 => 0.0045088413627148
1222 => 0.0045471905870019
1223 => 0.0045260163994138
1224 => 0.0044943176157521
1225 => 0.0046622380902329
1226 => 0.0046527633589771
1227 => 0.0048091347652887
1228 => 0.0049310374587351
1229 => 0.005149508878104
1230 => 0.0049215225628199
1231 => 0.0049132138353274
]
'min_raw' => 0.0041593758820121
'max_raw' => 0.012025978886281
'avg_raw' => 0.0080926773841465
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.004159'
'max' => '$0.012025'
'avg' => '$0.008092'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00073137685174734
'max_diff' => -0.0040623818100647
'year' => 2030
]
5 => [
'items' => [
101 => 0.0049944329793282
102 => 0.0049200400590386
103 => 0.0049670538167053
104 => 0.0051419342349141
105 => 0.0051456291825779
106 => 0.0050837340485381
107 => 0.0050799677240067
108 => 0.0050918553615577
109 => 0.0051614816259969
110 => 0.0051371520698029
111 => 0.0051653068481797
112 => 0.0052005148296611
113 => 0.0053461499689432
114 => 0.0053812621079787
115 => 0.0052959578136793
116 => 0.0053036598363429
117 => 0.0052717536886197
118 => 0.0052409327497019
119 => 0.0053102137193524
120 => 0.0054368260531094
121 => 0.0054360384043523
122 => 0.0054654100047919
123 => 0.0054837082685383
124 => 0.0054051587253911
125 => 0.0053540258611491
126 => 0.0053736334549682
127 => 0.0054049864244827
128 => 0.0053634661095194
129 => 0.0051071834914846
130 => 0.0051849232663993
131 => 0.0051719835665727
201 => 0.0051535558604984
202 => 0.0052317238053191
203 => 0.0052241843163491
204 => 0.0049983473504073
205 => 0.0050128047002407
206 => 0.0049992265497349
207 => 0.0050431003318472
208 => 0.0049176707308231
209 => 0.0049562520313168
210 => 0.0049804498613093
211 => 0.0049947025690714
212 => 0.0050461931226811
213 => 0.0050401513005167
214 => 0.0050458175545323
215 => 0.0051221644525333
216 => 0.0055083008635312
217 => 0.0055293174164198
218 => 0.005425824223553
219 => 0.0054671677127904
220 => 0.0053877972542819
221 => 0.0054410791748145
222 => 0.0054775333116288
223 => 0.0053128040770922
224 => 0.0053030498809068
225 => 0.0052233518322825
226 => 0.005266177049285
227 => 0.0051980390497919
228 => 0.0052147577315015
301 => 0.0051680108399331
302 => 0.0052521459375429
303 => 0.0053462220499431
304 => 0.0053699893911137
305 => 0.0053074677489777
306 => 0.0052621979596942
307 => 0.0051827191225081
308 => 0.00531489420005
309 => 0.0053535462206858
310 => 0.0053146911774403
311 => 0.0053056876149209
312 => 0.0052886258802156
313 => 0.0053093073425946
314 => 0.0053533357134805
315 => 0.005332572746847
316 => 0.0053462870521048
317 => 0.0052940222625924
318 => 0.0054051847285583
319 => 0.0055817374772166
320 => 0.0055823051231728
321 => 0.0055615420446193
322 => 0.0055530462402219
323 => 0.0055743504188268
324 => 0.0055859070617768
325 => 0.0056548008688669
326 => 0.0057287266687249
327 => 0.0060737061203087
328 => 0.0059768372707615
329 => 0.0062829235631261
330 => 0.0065249980800558
331 => 0.0065975856430473
401 => 0.0065308085006038
402 => 0.0063023675035352
403 => 0.0062911590983837
404 => 0.0066325463933054
405 => 0.0065360888459614
406 => 0.0065246155276302
407 => 0.0064025588050634
408 => 0.0064747094451195
409 => 0.0064589290417532
410 => 0.0064340189030358
411 => 0.0065716772982057
412 => 0.0068293615251142
413 => 0.0067891990218032
414 => 0.0067592195761664
415 => 0.0066278583722713
416 => 0.0067069671576032
417 => 0.0066787980343755
418 => 0.0067998304643291
419 => 0.0067281335340212
420 => 0.0065353580851716
421 => 0.0065660582107971
422 => 0.0065614179485689
423 => 0.006656914216413
424 => 0.0066282486071693
425 => 0.0065558205282975
426 => 0.0068284807884405
427 => 0.0068107757477629
428 => 0.006835877447508
429 => 0.0068469279920316
430 => 0.007012891487568
501 => 0.0070808814214497
502 => 0.0070963163267722
503 => 0.0071609015054296
504 => 0.0070947093886914
505 => 0.0073595250498236
506 => 0.0075356120120543
507 => 0.0077401460800374
508 => 0.0080390253269355
509 => 0.0081514066885568
510 => 0.0081311060014664
511 => 0.0083577128354029
512 => 0.0087649202787997
513 => 0.0082134142682833
514 => 0.0087941514365183
515 => 0.0086102967539881
516 => 0.0081743806091136
517 => 0.0081463127484975
518 => 0.008441520222897
519 => 0.0090962619884487
520 => 0.0089322566021976
521 => 0.0090965302425073
522 => 0.0089048963151779
523 => 0.0088953800754685
524 => 0.0090872230103918
525 => 0.0095354744846543
526 => 0.0093225270116875
527 => 0.0090172145923269
528 => 0.0092426525315954
529 => 0.0090473573253047
530 => 0.0086073025658454
531 => 0.0089321311903696
601 => 0.0087149275397369
602 => 0.0087783191121727
603 => 0.009234848879198
604 => 0.0091799180098016
605 => 0.0092510036412621
606 => 0.0091255393623692
607 => 0.0090083359419824
608 => 0.0087895670541901
609 => 0.0087248003716906
610 => 0.0087426995526723
611 => 0.0087247915017454
612 => 0.0086023923196155
613 => 0.0085759602278883
614 => 0.0085319055836597
615 => 0.0085455599600368
616 => 0.0084627243402463
617 => 0.0086190522695032
618 => 0.0086480681107303
619 => 0.0087618305409761
620 => 0.0087736417338766
621 => 0.0090904684828042
622 => 0.0089159656335521
623 => 0.0090330372106816
624 => 0.0090225652269027
625 => 0.0081838282337864
626 => 0.0082993987911987
627 => 0.0084791903104934
628 => 0.0083981944747528
629 => 0.0082836853131222
630 => 0.0081912130255127
701 => 0.0080511080540075
702 => 0.0082483031109235
703 => 0.0085075936414116
704 => 0.0087802177696243
705 => 0.0091077577966314
706 => 0.0090346546755896
707 => 0.0087740946366515
708 => 0.008785783169659
709 => 0.0088580370814434
710 => 0.0087644617007225
711 => 0.0087368644941395
712 => 0.0088542456490428
713 => 0.0088550539885451
714 => 0.0087473842040632
715 => 0.0086277289419741
716 => 0.0086272275820569
717 => 0.0086059360839009
718 => 0.0089086840254005
719 => 0.009075164781956
720 => 0.0090942515323979
721 => 0.009073880091576
722 => 0.0090817202506348
723 => 0.0089848487665483
724 => 0.0092062682528238
725 => 0.0094094646695477
726 => 0.0093550036892074
727 => 0.0092733589375928
728 => 0.0092083249603877
729 => 0.0093396837509874
730 => 0.00933383455082
731 => 0.0094076899261123
801 => 0.0094043394196798
802 => 0.0093795046348101
803 => 0.0093550045761358
804 => 0.0094521445394182
805 => 0.009424169790013
806 => 0.0093961515880951
807 => 0.0093399567947766
808 => 0.0093475946004852
809 => 0.0092659639459881
810 => 0.0092281978700531
811 => 0.0086602867014772
812 => 0.008508522280201
813 => 0.0085562704565842
814 => 0.0085719903960304
815 => 0.0085059423253995
816 => 0.0086006382923269
817 => 0.0085858800261891
818 => 0.0086432958064343
819 => 0.0086074249196405
820 => 0.0086088970733468
821 => 0.0087143857029279
822 => 0.008745009500876
823 => 0.0087294339900752
824 => 0.0087403425439428
825 => 0.0089917255636086
826 => 0.0089559869369886
827 => 0.0089370015038939
828 => 0.0089422605986099
829 => 0.0090064943498473
830 => 0.0090244762931609
831 => 0.0089482855357722
901 => 0.0089842175374102
902 => 0.009137211439935
903 => 0.0091907506471138
904 => 0.009361622096151
905 => 0.0092890328676022
906 => 0.0094222735381917
907 => 0.0098318099344922
908 => 0.01015897594562
909 => 0.0098581005610796
910 => 0.010458899276176
911 => 0.010926707255335
912 => 0.01090875200592
913 => 0.01082717886416
914 => 0.010294591917206
915 => 0.0098044974681944
916 => 0.010214482285302
917 => 0.010215527420915
918 => 0.010180309361528
919 => 0.0099615730193507
920 => 0.010172697810959
921 => 0.010189456130224
922 => 0.010180075927832
923 => 0.010012371287139
924 => 0.0097563172978
925 => 0.0098063496344102
926 => 0.0098883036224098
927 => 0.0097331476257336
928 => 0.0096835658835623
929 => 0.0097757477755713
930 => 0.010072777038484
1001 => 0.010016625376904
1002 => 0.010015159030093
1003 => 0.010255399650344
1004 => 0.010083439213415
1005 => 0.0098069807024006
1006 => 0.0097371712823296
1007 => 0.0094893948703376
1008 => 0.0096605349206497
1009 => 0.0096666939463857
1010 => 0.0095729622898387
1011 => 0.0098145865097447
1012 => 0.0098123599000212
1013 => 0.010041746135803
1014 => 0.010480246465082
1015 => 0.010350560340423
1016 => 0.010199749487256
1017 => 0.010216146808527
1018 => 0.010395984950829
1019 => 0.010287250704687
1020 => 0.010326352297722
1021 => 0.010395925765884
1022 => 0.010437901166639
1023 => 0.010210107194323
1024 => 0.010156997522731
1025 => 0.010048353773615
1026 => 0.010020010647402
1027 => 0.010108498714131
1028 => 0.010085185234877
1029 => 0.0096661763041215
1030 => 0.0096223875395139
1031 => 0.0096237304784085
1101 => 0.0095136215477603
1102 => 0.0093456789993504
1103 => 0.0097870219892429
1104 => 0.0097515759705634
1105 => 0.0097124463092451
1106 => 0.0097172394694858
1107 => 0.0099088115028964
1108 => 0.0097976900488987
1109 => 0.0100931246468
1110 => 0.010032392175048
1111 => 0.0099701021445608
1112 => 0.0099614917649467
1113 => 0.0099375154175447
1114 => 0.0098552916010975
1115 => 0.009756001401852
1116 => 0.0096904414119404
1117 => 0.0089389199677201
1118 => 0.0090783979763683
1119 => 0.0092388547114975
1120 => 0.0092942437334741
1121 => 0.0091994969785795
1122 => 0.009859032780469
1123 => 0.0099795363269193
1124 => 0.0096145232244694
1125 => 0.0095462441763878
1126 => 0.009863509143494
1127 => 0.0096721595842641
1128 => 0.0097583242790688
1129 => 0.0095720833384692
1130 => 0.0099505105513352
1201 => 0.0099476275700121
1202 => 0.009800410837041
1203 => 0.0099248374116515
1204 => 0.0099032152323253
1205 => 0.0097370079033797
1206 => 0.0099557796201214
1207 => 0.0099558881281635
1208 => 0.0098141952234466
1209 => 0.0096487289313025
1210 => 0.0096191474664066
1211 => 0.0095968618063181
1212 => 0.0097528433728229
1213 => 0.0098926959576094
1214 => 0.010152926945501
1215 => 0.010218355198793
1216 => 0.010473726027196
1217 => 0.010321665132662
1218 => 0.01038907175769
1219 => 0.010462251184408
1220 => 0.010497336092661
1221 => 0.010440167117423
1222 => 0.01083686312876
1223 => 0.010870356426568
1224 => 0.010881586439607
1225 => 0.01074782277657
1226 => 0.010866636217122
1227 => 0.010811047342975
1228 => 0.010955674150472
1229 => 0.010978353480575
1230 => 0.010959144894818
1231 => 0.010966343672162
]
'min_raw' => 0.0049176707308231
'max_raw' => 0.010978353480575
'avg_raw' => 0.0079480121056991
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.004917'
'max' => '$0.010978'
'avg' => '$0.007948'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00075829484881101
'max_diff' => -0.001047625405706
'year' => 2031
]
6 => [
'items' => [
101 => 0.010627833608458
102 => 0.010610280075872
103 => 0.010370936413522
104 => 0.010468470725069
105 => 0.010286135004573
106 => 0.010343955539808
107 => 0.010369442280806
108 => 0.010356129453668
109 => 0.010473985168704
110 => 0.010373783734592
111 => 0.010109335675329
112 => 0.0098448155673683
113 => 0.0098414947328863
114 => 0.0097718512576281
115 => 0.0097215117808551
116 => 0.0097312089499705
117 => 0.0097653830387546
118 => 0.0097195255206899
119 => 0.0097293115472042
120 => 0.009891824791295
121 => 0.0099244156634059
122 => 0.0098136591458971
123 => 0.0093689557460099
124 => 0.0092598244162236
125 => 0.0093382658519057
126 => 0.0093007758979251
127 => 0.0075064520454219
128 => 0.0079280018189856
129 => 0.0076775312580117
130 => 0.0077929596161049
131 => 0.0075372940323879
201 => 0.007659311049519
202 => 0.0076367789618029
203 => 0.0083146185231287
204 => 0.0083040349907164
205 => 0.0083091007676141
206 => 0.0080672980374762
207 => 0.0084524963522454
208 => 0.0086422588933841
209 => 0.0086071388973858
210 => 0.008615977843748
211 => 0.0084640954604158
212 => 0.0083105713210832
213 => 0.0081402894233677
214 => 0.0084566521418445
215 => 0.0084214780080415
216 => 0.0085021548157316
217 => 0.0087073386527379
218 => 0.0087375527521547
219 => 0.008778160808172
220 => 0.0087636057107681
221 => 0.0091103671813754
222 => 0.009068372079279
223 => 0.0091695681925158
224 => 0.00896140010982
225 => 0.0087258381647539
226 => 0.0087706107894108
227 => 0.0087662988256176
228 => 0.008711402577489
229 => 0.0086618446992555
301 => 0.0085793447948424
302 => 0.008840386700094
303 => 0.0088297888754593
304 => 0.0090013553376718
305 => 0.008971029298968
306 => 0.0087685045904638
307 => 0.0087757378000485
308 => 0.0088243846106676
309 => 0.00899275177766
310 => 0.0090427346161342
311 => 0.0090195805738812
312 => 0.0090743844744649
313 => 0.0091176992429513
314 => 0.0090798241425009
315 => 0.0096160556933599
316 => 0.0093933749675099
317 => 0.0095019080038867
318 => 0.0095277924935487
319 => 0.0094614899175715
320 => 0.0094758685721837
321 => 0.0094976483159724
322 => 0.009629890655346
323 => 0.0099769328184915
324 => 0.010130635430153
325 => 0.010593057320889
326 => 0.010117872567898
327 => 0.010089677071165
328 => 0.01017297321749
329 => 0.010444463819681
330 => 0.01066448145294
331 => 0.010737473995014
401 => 0.010747121164425
402 => 0.010884060025808
403 => 0.010962550827395
404 => 0.010867432046187
405 => 0.010786828838465
406 => 0.010498118153242
407 => 0.01053153720119
408 => 0.010761761301473
409 => 0.011086966403256
410 => 0.011366026212409
411 => 0.01126830919346
412 => 0.012013821070578
413 => 0.012087735528051
414 => 0.012077522939969
415 => 0.012245911074039
416 => 0.011911694919557
417 => 0.011768811038383
418 => 0.010804256166859
419 => 0.011075256742076
420 => 0.011469171993458
421 => 0.011417035832831
422 => 0.011130964047892
423 => 0.011365809201308
424 => 0.011288162049302
425 => 0.011226918518931
426 => 0.011507487004201
427 => 0.011198990429529
428 => 0.011466094504138
429 => 0.011123530765614
430 => 0.011268755556571
501 => 0.011186318941491
502 => 0.0112396655345
503 => 0.010927802441822
504 => 0.011096076196582
505 => 0.010920801700391
506 => 0.010920718597458
507 => 0.01091684940324
508 => 0.011123059070723
509 => 0.011129783560576
510 => 0.010977394304741
511 => 0.010955432632208
512 => 0.011036636446142
513 => 0.010941568047337
514 => 0.010986049952785
515 => 0.010942915358939
516 => 0.010933204853311
517 => 0.010855829892358
518 => 0.010822494631711
519 => 0.010835566246355
520 => 0.010790946086697
521 => 0.010764060826522
522 => 0.010911501248299
523 => 0.010832729778673
524 => 0.010899428390837
525 => 0.01082341690424
526 => 0.010559927975067
527 => 0.010408392705555
528 => 0.0099106865437844
529 => 0.01005183539386
530 => 0.010145417227489
531 => 0.010114488432033
601 => 0.010180935452528
602 => 0.010185014759926
603 => 0.010163412156216
604 => 0.010138399108585
605 => 0.010126224140306
606 => 0.01021696637909
607 => 0.010269645302948
608 => 0.010154809416457
609 => 0.010127904974977
610 => 0.010244010396483
611 => 0.010314834636529
612 => 0.010837761032329
613 => 0.010799020955898
614 => 0.010896250945383
615 => 0.010885304340683
616 => 0.010987216859616
617 => 0.011153800756627
618 => 0.010815089116413
619 => 0.010873877745387
620 => 0.01085946413119
621 => 0.011016828191537
622 => 0.011017319464956
623 => 0.010922971849861
624 => 0.010974119222619
625 => 0.0109455701623
626 => 0.010997162172934
627 => 0.010798503558558
628 => 0.011040448306995
629 => 0.011177615388784
630 => 0.011179519953848
701 => 0.01124453606199
702 => 0.011310596193342
703 => 0.011437392862847
704 => 0.011307059903048
705 => 0.011072603596029
706 => 0.011089530584107
707 => 0.010952068937085
708 => 0.010954379692206
709 => 0.010942044700274
710 => 0.010979062939598
711 => 0.010806626980374
712 => 0.010847097355344
713 => 0.010790438593392
714 => 0.010873754580304
715 => 0.010784120351013
716 => 0.010859457180509
717 => 0.010891970058664
718 => 0.01101194327901
719 => 0.01076640020882
720 => 0.0102657212669
721 => 0.010370970050637
722 => 0.010215298832376
723 => 0.010229706796308
724 => 0.010258813176462
725 => 0.01016446987537
726 => 0.010182467604119
727 => 0.0101818245986
728 => 0.010176283524417
729 => 0.010151741188092
730 => 0.010116149944867
731 => 0.010257934503468
801 => 0.010282026462827
802 => 0.010335579904122
803 => 0.010494918619768
804 => 0.010478996924609
805 => 0.010504965869997
806 => 0.010448275808024
807 => 0.010232336485692
808 => 0.01024406302981
809 => 0.010097832836754
810 => 0.010331840469315
811 => 0.010276424373175
812 => 0.01024069725549
813 => 0.01023094878042
814 => 0.010390682465922
815 => 0.010438477288144
816 => 0.010408694762327
817 => 0.010347609932981
818 => 0.010464910863433
819 => 0.010496295643893
820 => 0.010503321538812
821 => 0.010711156297351
822 => 0.010514937193058
823 => 0.010562169081712
824 => 0.010930658794049
825 => 0.010596489473063
826 => 0.010773506415254
827 => 0.010764842357086
828 => 0.010855398234784
829 => 0.010757414131987
830 => 0.010758628762374
831 => 0.010839036246983
901 => 0.010726118436415
902 => 0.010698158398552
903 => 0.010659531806498
904 => 0.010743871557123
905 => 0.010794429423264
906 => 0.011201888693702
907 => 0.011465125964804
908 => 0.011453698140627
909 => 0.011558127061618
910 => 0.011511080876252
911 => 0.011359156333549
912 => 0.01161847300272
913 => 0.011536414358324
914 => 0.011543179173266
915 => 0.011542927386516
916 => 0.011597489211349
917 => 0.011558827157937
918 => 0.011482620282085
919 => 0.011533209962702
920 => 0.011683443227991
921 => 0.01214977189317
922 => 0.012410735592237
923 => 0.01213406155081
924 => 0.012324907599773
925 => 0.012210467975796
926 => 0.012189670891835
927 => 0.012309536313996
928 => 0.012429611544711
929 => 0.012421963271614
930 => 0.012334794820046
1001 => 0.012285555573573
1002 => 0.012658411644224
1003 => 0.012933125645643
1004 => 0.012914391992452
1005 => 0.012997076245125
1006 => 0.013239839768302
1007 => 0.01326203502245
1008 => 0.013259238930579
1009 => 0.013204225677339
1010 => 0.013443257892733
1011 => 0.013642662772187
1012 => 0.013191491698699
1013 => 0.01336329173722
1014 => 0.013440418309564
1015 => 0.013553663000187
1016 => 0.013744725775283
1017 => 0.013952270625935
1018 => 0.013981619743431
1019 => 0.013960795140083
1020 => 0.013823913731973
1021 => 0.014051011784081
1022 => 0.014184040496902
1023 => 0.014263256051078
1024 => 0.014464133516259
1025 => 0.013440894617018
1026 => 0.012716595265862
1027 => 0.01260348546317
1028 => 0.012833498694768
1029 => 0.012894151349619
1030 => 0.012869702340501
1031 => 0.012054437570359
1101 => 0.012599193262878
1102 => 0.013185304583669
1103 => 0.013207819506514
1104 => 0.013501239088711
1105 => 0.01359678853235
1106 => 0.013833029755403
1107 => 0.013818252802579
1108 => 0.013875773780974
1109 => 0.013862550704165
1110 => 0.014300137823412
1111 => 0.014782861398258
1112 => 0.014766146215828
1113 => 0.014696748990618
1114 => 0.01479981570404
1115 => 0.015298038165083
1116 => 0.015252169824722
1117 => 0.015296727010326
1118 => 0.015884159370483
1119 => 0.016647904999965
1120 => 0.016293068476263
1121 => 0.017062961631238
1122 => 0.017547568562012
1123 => 0.018385646139493
1124 => 0.018280714699173
1125 => 0.018606972149989
1126 => 0.018092865521148
1127 => 0.016912372783237
1128 => 0.016725555288718
1129 => 0.017099568643718
1130 => 0.018019043981295
1201 => 0.017070611093203
1202 => 0.017262477831222
1203 => 0.017207220197765
1204 => 0.017204275753308
1205 => 0.017316653222315
1206 => 0.017153643842306
1207 => 0.016489514303321
1208 => 0.016793880957298
1209 => 0.01667635037531
1210 => 0.016806759318511
1211 => 0.017510522600225
1212 => 0.017199372077758
1213 => 0.016871600278155
1214 => 0.017282698853242
1215 => 0.017806168608125
1216 => 0.01777341081163
1217 => 0.017709846994733
1218 => 0.018068152902488
1219 => 0.018659969288318
1220 => 0.018819934879298
1221 => 0.018938018208206
1222 => 0.018954299904228
1223 => 0.019122011492275
1224 => 0.018220184014584
1225 => 0.019651407382252
1226 => 0.0198985401211
1227 => 0.019852089408799
1228 => 0.020126767047094
1229 => 0.020045949918009
1230 => 0.019928858577783
1231 => 0.020364281060089
]
'min_raw' => 0.0075064520454219
'max_raw' => 0.020364281060089
'avg_raw' => 0.013935366552756
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.0075064'
'max' => '$0.020364'
'avg' => '$0.013935'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0025887813145988
'max_diff' => 0.0093859275795143
'year' => 2032
]
7 => [
'items' => [
101 => 0.019865104320908
102 => 0.019156585784243
103 => 0.018767878502121
104 => 0.019279759607341
105 => 0.01959234753611
106 => 0.019798948272701
107 => 0.019861465530761
108 => 0.018290190314504
109 => 0.01744336011986
110 => 0.017986168565699
111 => 0.01864843233226
112 => 0.018216505105923
113 => 0.018233435835449
114 => 0.01761762111917
115 => 0.018702918270211
116 => 0.01854479960409
117 => 0.019365119523632
118 => 0.019169343591355
119 => 0.019838282641106
120 => 0.019662128570718
121 => 0.020393334268258
122 => 0.020685032017611
123 => 0.021174837937903
124 => 0.02153514116674
125 => 0.021746718114215
126 => 0.021734015827893
127 => 0.022572389101006
128 => 0.022078029672383
129 => 0.02145699771846
130 => 0.021445765209745
131 => 0.021767406458772
201 => 0.022441478278766
202 => 0.022616255294344
203 => 0.022713931802533
204 => 0.022564336830098
205 => 0.022027745101386
206 => 0.021796047513511
207 => 0.021993460571306
208 => 0.02175204136552
209 => 0.022168798644972
210 => 0.022741095404213
211 => 0.022622918386536
212 => 0.02301796643854
213 => 0.023426799612097
214 => 0.02401144941213
215 => 0.024164298519378
216 => 0.024416952281328
217 => 0.024677015994812
218 => 0.024760541450669
219 => 0.024920017462328
220 => 0.024919176945027
221 => 0.025399768640134
222 => 0.025929876162522
223 => 0.026129979480207
224 => 0.026590106025461
225 => 0.025802155441471
226 => 0.026399825010751
227 => 0.026938937922882
228 => 0.026296185284023
301 => 0.027182070054532
302 => 0.027216466952713
303 => 0.027735819277365
304 => 0.027209356200464
305 => 0.02689674410593
306 => 0.027799243509428
307 => 0.028235934542315
308 => 0.0281043996493
309 => 0.027103412618775
310 => 0.026520795232656
311 => 0.024995973154682
312 => 0.026802190773454
313 => 0.027681946687468
314 => 0.027101134263491
315 => 0.027394062266304
316 => 0.028992182467426
317 => 0.029600643169393
318 => 0.029474087596845
319 => 0.029495473405323
320 => 0.029823787755762
321 => 0.031279714391621
322 => 0.030407289403299
323 => 0.031074225617731
324 => 0.031427966181048
325 => 0.031756540130432
326 => 0.030949666357607
327 => 0.02989993543449
328 => 0.029567441586433
329 => 0.027043383914488
330 => 0.026911995751237
331 => 0.026838243593735
401 => 0.026373246673135
402 => 0.02600788646692
403 => 0.025717338465982
404 => 0.024954853746545
405 => 0.025212169956382
406 => 0.023996928456528
407 => 0.02477439690262
408 => 0.022834842125821
409 => 0.024450160978121
410 => 0.02357101636635
411 => 0.024161338328635
412 => 0.024159278750921
413 => 0.023072308856605
414 => 0.022445367306046
415 => 0.022844878862992
416 => 0.023273186965305
417 => 0.023342678513904
418 => 0.023897991148538
419 => 0.02405296696846
420 => 0.023583382998969
421 => 0.022794649164145
422 => 0.022977854044871
423 => 0.022441654664986
424 => 0.021501985876348
425 => 0.022176872405391
426 => 0.022407308339072
427 => 0.022509081975031
428 => 0.021585025643096
429 => 0.021294667081362
430 => 0.02114008261944
501 => 0.022675365095494
502 => 0.022759471335237
503 => 0.02232917192129
504 => 0.024274166074993
505 => 0.023833953995545
506 => 0.024325778742866
507 => 0.022961230122208
508 => 0.023013357717125
509 => 0.022367358532244
510 => 0.022729074910096
511 => 0.022473425432893
512 => 0.022699851801317
513 => 0.022835570832959
514 => 0.023481464015731
515 => 0.024457536040755
516 => 0.023384989112864
517 => 0.022917665057227
518 => 0.023207590273014
519 => 0.023979699328553
520 => 0.02514948407123
521 => 0.024456947959453
522 => 0.024764283725834
523 => 0.024831422918372
524 => 0.024320772428628
525 => 0.025168312483171
526 => 0.025622516083804
527 => 0.026088434993861
528 => 0.026492979328713
529 => 0.025902336735408
530 => 0.026534408975534
531 => 0.026025070325763
601 => 0.025568140902456
602 => 0.025568833875779
603 => 0.025282195373865
604 => 0.024726797157631
605 => 0.02462437320522
606 => 0.025157195540381
607 => 0.025584468594717
608 => 0.025619660849972
609 => 0.025856221166935
610 => 0.025996215125748
611 => 0.027368346234678
612 => 0.027920228717554
613 => 0.028595060171013
614 => 0.028857945053553
615 => 0.029649134300549
616 => 0.02901018472635
617 => 0.028871943966791
618 => 0.026952777649608
619 => 0.027267041026533
620 => 0.027770207014896
621 => 0.026961074671429
622 => 0.027474282906766
623 => 0.027575601083658
624 => 0.026933580664016
625 => 0.027276511510212
626 => 0.026365788854626
627 => 0.024477387305929
628 => 0.025170414813923
629 => 0.025680716330343
630 => 0.024952453146688
701 => 0.026257836715712
702 => 0.025495258583275
703 => 0.025253557925498
704 => 0.024310597487005
705 => 0.024755638516098
706 => 0.02535756288032
707 => 0.024985643604449
708 => 0.025757431945842
709 => 0.026850490065687
710 => 0.027629468374624
711 => 0.027689268656572
712 => 0.027188437791419
713 => 0.027991022449087
714 => 0.027996868402117
715 => 0.027091549629612
716 => 0.026537046922289
717 => 0.026411062740502
718 => 0.02672579592726
719 => 0.027107940118937
720 => 0.027710474999622
721 => 0.028074574208805
722 => 0.029023951843057
723 => 0.029280826210095
724 => 0.029563053260028
725 => 0.029940195634338
726 => 0.030393051752017
727 => 0.029402228347649
728 => 0.02944159560863
729 => 0.028518954573366
730 => 0.027532980307078
731 => 0.028281211871763
801 => 0.029259425109516
802 => 0.029035021911946
803 => 0.029009771968078
804 => 0.029052235369913
805 => 0.028883042687269
806 => 0.028117790454241
807 => 0.027733485573547
808 => 0.028229336916274
809 => 0.028492859837129
810 => 0.028901560905761
811 => 0.028851179872419
812 => 0.029903949933926
813 => 0.030313024545713
814 => 0.030208365754728
815 => 0.030227625491024
816 => 0.030968235535714
817 => 0.031791946223483
818 => 0.032563459980777
819 => 0.033348276911983
820 => 0.032402149469487
821 => 0.031921764303217
822 => 0.032417399172759
823 => 0.032154408334414
824 => 0.033665631699694
825 => 0.033770265526651
826 => 0.035281379613281
827 => 0.036715606821611
828 => 0.035814794408908
829 => 0.036664219940604
830 => 0.037582942907814
831 => 0.03935530856899
901 => 0.038758438166881
902 => 0.038301244793018
903 => 0.037869199263859
904 => 0.038768217424742
905 => 0.039924789926552
906 => 0.040173904565928
907 => 0.040577565450834
908 => 0.04015316538766
909 => 0.04066430851762
910 => 0.042468868374049
911 => 0.041981260371551
912 => 0.041288778621107
913 => 0.042713305315987
914 => 0.043228835989156
915 => 0.046847100238971
916 => 0.051415308317403
917 => 0.049524040176461
918 => 0.048350069010537
919 => 0.048625980081497
920 => 0.050294135028138
921 => 0.050829893452408
922 => 0.049373517368239
923 => 0.04988793402213
924 => 0.052722420361396
925 => 0.054243031341204
926 => 0.052177837385324
927 => 0.046480049167834
928 => 0.041226428216086
929 => 0.042619925066124
930 => 0.042461945768572
1001 => 0.045507247730742
1002 => 0.041969631081954
1003 => 0.042029195473596
1004 => 0.045137471055313
1005 => 0.044308236419445
1006 => 0.042964982509687
1007 => 0.041236235456161
1008 => 0.038040486637971
1009 => 0.035209922789652
1010 => 0.040761310336129
1011 => 0.040521924410582
1012 => 0.040175258115383
1013 => 0.040946726442137
1014 => 0.044692757651752
1015 => 0.044606399507651
1016 => 0.04405703305519
1017 => 0.044473722667488
1018 => 0.042891934805986
1019 => 0.043299597554535
1020 => 0.041225596015686
1021 => 0.042163131329201
1022 => 0.042962100490082
1023 => 0.04312250537807
1024 => 0.043483905781182
1025 => 0.040395778905599
1026 => 0.041782257210094
1027 => 0.042596683318536
1028 => 0.038917076531519
1029 => 0.042523949323195
1030 => 0.040342021487157
1031 => 0.03960144240815
1101 => 0.040598534574159
1102 => 0.040209966787361
1103 => 0.039875899021738
1104 => 0.039689483468508
1105 => 0.040421637910179
1106 => 0.040387482030361
1107 => 0.039189535258735
1108 => 0.037626862529705
1109 => 0.038151346790551
1110 => 0.03796079674152
1111 => 0.037270218782384
1112 => 0.037735584946141
1113 => 0.035686347877381
1114 => 0.032160742010655
1115 => 0.034489865238443
1116 => 0.034400196527772
1117 => 0.034354981497699
1118 => 0.036105253231143
1119 => 0.035937004989612
1120 => 0.035631632783741
1121 => 0.037264610382347
1122 => 0.036668551592208
1123 => 0.038505464334304
1124 => 0.039715373870316
1125 => 0.03940850167551
1126 => 0.04054642744213
1127 => 0.038163429848612
1128 => 0.038954966059909
1129 => 0.039118100576036
1130 => 0.037244459692261
1201 => 0.035964532482688
1202 => 0.035879175930047
1203 => 0.033659958533482
1204 => 0.03484544655383
1205 => 0.035888626952909
1206 => 0.03538902449582
1207 => 0.035230865283104
1208 => 0.036038866400321
1209 => 0.03610165500719
1210 => 0.034670068116531
1211 => 0.03496774036356
1212 => 0.036209083117563
1213 => 0.034936461711116
1214 => 0.032463966199916
1215 => 0.031850753128213
1216 => 0.031768939200689
1217 => 0.03010585671569
1218 => 0.031891730957857
1219 => 0.031112148992697
1220 => 0.033574839079812
1221 => 0.032168163709724
1222 => 0.032107524746006
1223 => 0.032015860058544
1224 => 0.030584376262632
1225 => 0.030897780238396
1226 => 0.031939582786607
1227 => 0.032311309672554
1228 => 0.032272535512881
1229 => 0.031934477385767
1230 => 0.032089238665222
1231 => 0.031590698661693
]
'min_raw' => 0.01744336011986
'max_raw' => 0.054243031341204
'avg_raw' => 0.035843195730532
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.017443'
'max' => '$0.054243'
'avg' => '$0.035843'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0099369080744379
'max_diff' => 0.033878750281114
'year' => 2033
]
8 => [
'items' => [
101 => 0.031414653810234
102 => 0.030859007834078
103 => 0.030042361750248
104 => 0.030155921396986
105 => 0.028537931817846
106 => 0.027656365221925
107 => 0.027412359207035
108 => 0.02708606416621
109 => 0.027449215100134
110 => 0.028533348256658
111 => 0.02722565365821
112 => 0.02498370299328
113 => 0.025118448048341
114 => 0.025421180180895
115 => 0.024857040854653
116 => 0.02432313032699
117 => 0.024787322213263
118 => 0.023837378161419
119 => 0.025535976381149
120 => 0.025490034059572
121 => 0.026123166435278
122 => 0.026519077102992
123 => 0.025606631191513
124 => 0.025377153512292
125 => 0.025507874427556
126 => 0.023347348882693
127 => 0.025946605404838
128 => 0.025969083883178
129 => 0.025776609504551
130 => 0.027160633359551
131 => 0.030081355381468
201 => 0.028982462271051
202 => 0.028556937644478
203 => 0.027748015018306
204 => 0.028825856388608
205 => 0.028743094988313
206 => 0.028368816549852
207 => 0.028142451782451
208 => 0.02855953580711
209 => 0.028090770456132
210 => 0.028006567318286
211 => 0.027496387916855
212 => 0.027314277082229
213 => 0.027179449470312
214 => 0.02703101751748
215 => 0.02735842141849
216 => 0.02661648110523
217 => 0.025721773820745
218 => 0.025647388590907
219 => 0.025852772750506
220 => 0.025761905548935
221 => 0.025646953553705
222 => 0.025427478889496
223 => 0.025362365444959
224 => 0.025573952551151
225 => 0.025335083044555
226 => 0.025687548013432
227 => 0.025591697044674
228 => 0.025056281324879
301 => 0.024388955101726
302 => 0.024383014498576
303 => 0.024239240158432
304 => 0.024056121919642
305 => 0.024005182614789
306 => 0.024748229267337
307 => 0.026286313600599
308 => 0.025984350842741
309 => 0.026202549881681
310 => 0.027275873193742
311 => 0.027617050398688
312 => 0.027374890899843
313 => 0.027043408042075
314 => 0.027057991605513
315 => 0.028190768877189
316 => 0.028261418806131
317 => 0.028439928384035
318 => 0.028669363638443
319 => 0.027413964715774
320 => 0.026998862429151
321 => 0.026802163936751
322 => 0.026196408712056
323 => 0.026849663788362
324 => 0.02646904003057
325 => 0.026520399179455
326 => 0.026486951466367
327 => 0.026505216179437
328 => 0.025535501588329
329 => 0.025888814618631
330 => 0.025301363179565
331 => 0.024514831647176
401 => 0.024512194917686
402 => 0.02470469739596
403 => 0.02459018938926
404 => 0.0242820512875
405 => 0.024325820850484
406 => 0.023942353422244
407 => 0.024372380739174
408 => 0.024384712383912
409 => 0.024219128443148
410 => 0.024881644857213
411 => 0.025153078372617
412 => 0.025044087475654
413 => 0.025145431280738
414 => 0.02599689875861
415 => 0.026135725109633
416 => 0.026197382604404
417 => 0.026114769729464
418 => 0.025160994543173
419 => 0.02520329852845
420 => 0.024892899953621
421 => 0.024630645866886
422 => 0.024641134655014
423 => 0.024775967346241
424 => 0.02536478961666
425 => 0.026603931371788
426 => 0.026650955895595
427 => 0.02670795099025
428 => 0.026476123296847
429 => 0.026406201846225
430 => 0.026498446287853
501 => 0.026963802780101
502 => 0.028160826021218
503 => 0.027737718061314
504 => 0.027393724703843
505 => 0.027695499618288
506 => 0.027649043735599
507 => 0.027256909334158
508 => 0.027245903427553
509 => 0.026493272138235
510 => 0.026215041487159
511 => 0.025982531129917
512 => 0.025728635889646
513 => 0.025578118280567
514 => 0.025809381737142
515 => 0.025862274425889
516 => 0.025356612836295
517 => 0.025287693030117
518 => 0.025700627199643
519 => 0.025518910267372
520 => 0.025705810638576
521 => 0.025749173127897
522 => 0.025742190768393
523 => 0.025552457421046
524 => 0.025673387798715
525 => 0.025387351404446
526 => 0.025076329786956
527 => 0.024877917372329
528 => 0.024704776224979
529 => 0.024800844996551
530 => 0.02445837736736
531 => 0.024348815080271
601 => 0.02563241930778
602 => 0.026580631551713
603 => 0.026566844170153
604 => 0.026482917030733
605 => 0.026358218325553
606 => 0.026954680293117
607 => 0.026746884870251
608 => 0.026898073402275
609 => 0.026936557229038
610 => 0.027053036182061
611 => 0.027094667396063
612 => 0.026968828952613
613 => 0.026546499766523
614 => 0.02549409558864
615 => 0.025004198602925
616 => 0.024842524437759
617 => 0.0248484009866
618 => 0.024686299535501
619 => 0.024734045677727
620 => 0.024669695375742
621 => 0.024547831471792
622 => 0.024793320243886
623 => 0.024821610537983
624 => 0.024764310525204
625 => 0.024777806752504
626 => 0.024303387119849
627 => 0.024339456214134
628 => 0.024138618913714
629 => 0.024100964341014
630 => 0.023593265134455
701 => 0.022693802397859
702 => 0.023192192066893
703 => 0.022590207430892
704 => 0.022362226727682
705 => 0.023441451918403
706 => 0.023333127642302
707 => 0.023147723569047
708 => 0.02287347230311
709 => 0.022771749840829
710 => 0.022153716361428
711 => 0.022117199646384
712 => 0.022423513727083
713 => 0.022282160318465
714 => 0.022083646598042
715 => 0.021364650025684
716 => 0.02055625982677
717 => 0.020580660045515
718 => 0.020837793927156
719 => 0.021585445367253
720 => 0.021293325015106
721 => 0.021081388347928
722 => 0.021041698980959
723 => 0.021538494503901
724 => 0.022241564250743
725 => 0.022571428845663
726 => 0.022244543050234
727 => 0.021869034249227
728 => 0.021891889730004
729 => 0.022043937004178
730 => 0.022059915022861
731 => 0.021815497396334
801 => 0.021884299526517
802 => 0.02177978279937
803 => 0.021138363837794
804 => 0.021126762602741
805 => 0.020969348045292
806 => 0.020964581595053
807 => 0.020696780163931
808 => 0.020659312892493
809 => 0.020127576896616
810 => 0.020477567139347
811 => 0.020242812059835
812 => 0.019888980781886
813 => 0.019827980136201
814 => 0.019826146383131
815 => 0.020189451990359
816 => 0.0204733217018
817 => 0.020246895724951
818 => 0.020195342919106
819 => 0.020745792012396
820 => 0.02067574234782
821 => 0.020615079790069
822 => 0.02217861206625
823 => 0.020940954265708
824 => 0.020401264821633
825 => 0.019733296650346
826 => 0.019950790455105
827 => 0.019996619595417
828 => 0.018390276553783
829 => 0.01773858338185
830 => 0.017514946843781
831 => 0.017386240854366
901 => 0.017444893789931
902 => 0.016858293499206
903 => 0.017252498596046
904 => 0.016744552328367
905 => 0.01665939348359
906 => 0.017567664332669
907 => 0.017694044915277
908 => 0.017154866086502
909 => 0.017501106179699
910 => 0.017375554708809
911 => 0.016753259609232
912 => 0.016729492513721
913 => 0.016417246707484
914 => 0.015928642483425
915 => 0.015705337242028
916 => 0.015589037933484
917 => 0.015637025294818
918 => 0.01561276141649
919 => 0.015454423197681
920 => 0.015621837177848
921 => 0.015194163638754
922 => 0.015023860589488
923 => 0.014946938653134
924 => 0.014567353771219
925 => 0.01517144212051
926 => 0.015290455135425
927 => 0.015409702642744
928 => 0.016447670780227
929 => 0.016395816825346
930 => 0.016864551323571
1001 => 0.016846337162918
1002 => 0.016712646491028
1003 => 0.016148627537376
1004 => 0.01637343543963
1005 => 0.015681511659395
1006 => 0.016199948001791
1007 => 0.015963355305541
1008 => 0.016119955773198
1009 => 0.015838374012255
1010 => 0.015994212984987
1011 => 0.015318677536353
1012 => 0.014687872039459
1013 => 0.014941726585769
1014 => 0.015217695509398
1015 => 0.015816066451398
1016 => 0.015459681654796
1017 => 0.015587851104055
1018 => 0.015158504904343
1019 => 0.014272641057658
1020 => 0.014277654950826
1021 => 0.014141384097606
1022 => 0.014023626184554
1023 => 0.015500616735783
1024 => 0.015316929612972
1025 => 0.01502424822315
1026 => 0.015416013894123
1027 => 0.015519602955686
1028 => 0.015522551990639
1029 => 0.015808374111246
1030 => 0.01596091742825
1031 => 0.015987803849033
1101 => 0.016437551131403
1102 => 0.016588300488143
1103 => 0.017209215753709
1104 => 0.015947975193563
1105 => 0.015922000774209
1106 => 0.015421526840525
1107 => 0.015104118359602
1108 => 0.015443260070768
1109 => 0.015743693329401
1110 => 0.015430862139325
1111 => 0.015471711288522
1112 => 0.015051760975092
1113 => 0.015201873451644
1114 => 0.015331170538785
1115 => 0.015259780286998
1116 => 0.015152905624744
1117 => 0.015719061228289
1118 => 0.015687116510355
1119 => 0.016214333624238
1120 => 0.016625337066167
1121 => 0.017361928709757
1122 => 0.01659325693028
1123 => 0.016565243475442
1124 => 0.01683907948998
1125 => 0.016588258565276
1126 => 0.016746768731645
1127 => 0.017336390271397
1128 => 0.017348848045418
1129 => 0.017140164279623
1130 => 0.017127465853509
1201 => 0.01716754585348
1202 => 0.017402295665188
1203 => 0.017320266867844
1204 => 0.017415192668846
1205 => 0.017533898836553
1206 => 0.018024917876563
1207 => 0.018143300904773
1208 => 0.017855691520787
1209 => 0.017881659427935
1210 => 0.01777408562327
1211 => 0.01767017067586
1212 => 0.017903756302079
1213 => 0.018330638625132
1214 => 0.018327983012355
1215 => 0.018427011413897
1216 => 0.018488705287662
1217 => 0.018223870018787
1218 => 0.018051471997013
1219 => 0.018117580368532
1220 => 0.018223289094245
1221 => 0.01808330045349
1222 => 0.017219225713705
1223 => 0.017481330792448
1224 => 0.017437703691061
1225 => 0.01737557339345
1226 => 0.017639122076925
1227 => 0.017613702163472
1228 => 0.016852277065366
1229 => 0.016901021029709
1230 => 0.016855241347283
1231 => 0.017003164866844
]
'min_raw' => 0.014023626184554
'max_raw' => 0.031414653810234
'avg_raw' => 0.022719139997394
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.014023'
'max' => '$0.031414'
'avg' => '$0.022719'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0034197339353056
'max_diff' => -0.022828377530969
'year' => 2034
]
9 => [
'items' => [
101 => 0.016580270209776
102 => 0.016710349758051
103 => 0.016791934431309
104 => 0.016839988430621
105 => 0.017013592427072
106 => 0.016993222001819
107 => 0.017012326172837
108 => 0.017269735069818
109 => 0.018571620938681
110 => 0.018642479714073
111 => 0.018293545188659
112 => 0.018432937649133
113 => 0.018165334606803
114 => 0.018344978321904
115 => 0.01846788598932
116 => 0.017912489874052
117 => 0.017879602920597
118 => 0.017610895385319
119 => 0.017755283594405
120 => 0.01752555157187
121 => 0.017581919774515
122 => 0.017424309365829
123 => 0.017707976721545
124 => 0.018025160902687
125 => 0.018105294152826
126 => 0.017894498071243
127 => 0.017741867816038
128 => 0.01747389936743
129 => 0.017919536869532
130 => 0.018049854855703
131 => 0.017918852364629
201 => 0.017888496224986
202 => 0.017830971395215
203 => 0.017900700389559
204 => 0.018049145115963
205 => 0.017979141324335
206 => 0.018025380062013
207 => 0.017849165675161
208 => 0.018223957690281
209 => 0.018819217608902
210 => 0.018821131466875
211 => 0.0187511272979
212 => 0.018722483100216
213 => 0.018794311625793
214 => 0.018833275654358
215 => 0.019065555934974
216 => 0.019314801930529
217 => 0.02047792423724
218 => 0.020151324147825
219 => 0.021183315452795
220 => 0.021999486587726
221 => 0.022244220624254
222 => 0.022019076826274
223 => 0.021248872055417
224 => 0.021211082134902
225 => 0.022362093234631
226 => 0.022036879879309
227 => 0.021998196785514
228 => 0.021586674023652
301 => 0.021829934943998
302 => 0.021776730212296
303 => 0.02169274394044
304 => 0.022156868830758
305 => 0.023025669192718
306 => 0.022890258508748
307 => 0.022789180714686
308 => 0.022346287244407
309 => 0.022613008037353
310 => 0.022518033871685
311 => 0.022926103159488
312 => 0.022684371953235
313 => 0.022034416068287
314 => 0.022137923685247
315 => 0.022122278717172
316 => 0.022444251051545
317 => 0.022347602948611
318 => 0.022103406623928
319 => 0.023022699727531
320 => 0.02296300594676
321 => 0.023047638079995
322 => 0.023084895762381
323 => 0.023644453274783
324 => 0.023873686083771
325 => 0.023925725944697
326 => 0.024143479383733
327 => 0.023920308040765
328 => 0.024813152531111
329 => 0.025406842018271
330 => 0.026096442908588
331 => 0.027104135156588
401 => 0.02748303676351
402 => 0.027414591579636
403 => 0.028178612341437
404 => 0.029551540667165
405 => 0.027692099647789
406 => 0.029650095556268
407 => 0.029030216657793
408 => 0.027560494940655
409 => 0.027465862188953
410 => 0.028461174799618
411 => 0.030668682374786
412 => 0.03011572676455
413 => 0.030669586812074
414 => 0.030023479646629
415 => 0.029991394980046
416 => 0.030638206829186
417 => 0.032149517970581
418 => 0.031431550697955
419 => 0.030402168559849
420 => 0.031162248311666
421 => 0.030503796888582
422 => 0.029020121543422
423 => 0.030115303929816
424 => 0.029382986657033
425 => 0.029596715769359
426 => 0.031135937752775
427 => 0.030950734491454
428 => 0.031190404660964
429 => 0.03076739308504
430 => 0.030372233570324
501 => 0.029634638991177
502 => 0.029416273599264
503 => 0.029476621937625
504 => 0.029416243693625
505 => 0.029003566305436
506 => 0.028914448662748
507 => 0.028765915353934
508 => 0.028811952037207
509 => 0.028532665961686
510 => 0.029059736489643
511 => 0.029157565424161
512 => 0.029541123400374
513 => 0.029580945661869
514 => 0.030649149166016
515 => 0.030060800626363
516 => 0.030455515622331
517 => 0.03042020859789
518 => 0.027592348266852
519 => 0.027982002470046
520 => 0.028588182129991
521 => 0.028315099014843
522 => 0.027929023381631
523 => 0.027617246607747
524 => 0.0271448729145
525 => 0.027809729816612
526 => 0.028683945943239
527 => 0.029603117225517
528 => 0.030707441294686
529 => 0.030460969018197
530 => 0.029582472655196
531 => 0.029621881360298
601 => 0.029865490468486
602 => 0.029549994539161
603 => 0.029456948630391
604 => 0.029852707389438
605 => 0.029855432762506
606 => 0.029492416566861
607 => 0.029088990496664
608 => 0.0290873001267
609 => 0.029015514354142
610 => 0.030036250176094
611 => 0.030597551670136
612 => 0.030661903981846
613 => 0.030593220246826
614 => 0.030619653890475
615 => 0.030293044918526
616 => 0.031039576175519
617 => 0.031724667081224
618 => 0.031541048083663
619 => 0.03126577710334
620 => 0.031046510508665
621 => 0.03148939584235
622 => 0.031469674855607
623 => 0.031718683409823
624 => 0.031707386943461
625 => 0.031623654732364
626 => 0.031541051074004
627 => 0.031868565242306
628 => 0.031774246421552
629 => 0.031679781097617
630 => 0.031490316428549
701 => 0.03151606782375
702 => 0.031240844372842
703 => 0.031113513411084
704 => 0.029198761255939
705 => 0.028687076913753
706 => 0.0288480632241
707 => 0.028901064097474
708 => 0.028678378416013
709 => 0.02899765247997
710 => 0.028947893955297
711 => 0.029141475267036
712 => 0.029020534067785
713 => 0.029025497536788
714 => 0.029381159816402
715 => 0.029484410089269
716 => 0.029431896167157
717 => 0.029468675118132
718 => 0.030316230519938
719 => 0.030195735245097
720 => 0.030131724531898
721 => 0.030149455936911
722 => 0.030366024513865
723 => 0.030426651891206
724 => 0.030169769433201
725 => 0.030290916685416
726 => 0.030806746309472
727 => 0.030987257484463
728 => 0.031563362504755
729 => 0.031318622852685
730 => 0.031767853076144
731 => 0.033148633629189
801 => 0.034251696677709
802 => 0.033237274312282
803 => 0.035262909126655
804 => 0.036840156389701
805 => 0.036779619012703
806 => 0.036504589470004
807 => 0.034708935394314
808 => 0.033056547742171
809 => 0.034438840177275
810 => 0.034442363924963
811 => 0.034323623778893
812 => 0.033586138929559
813 => 0.034297960904727
814 => 0.034354462748158
815 => 0.03432283674089
816 => 0.03375740883603
817 => 0.032894104933854
818 => 0.033062792449882
819 => 0.033339106042267
820 => 0.032815986766828
821 => 0.03264881846141
822 => 0.032959616146253
823 => 0.033961071044085
824 => 0.033771751796683
825 => 0.033766807906034
826 => 0.034576795930275
827 => 0.033997019311275
828 => 0.033064920139671
829 => 0.032829552805963
830 => 0.031994157333736
831 => 0.03257116796198
901 => 0.032591933547258
902 => 0.032275910723075
903 => 0.033090563650152
904 => 0.033083056480012
905 => 0.033856448189186
906 => 0.035334882664466
907 => 0.034897636840783
908 => 0.034389167520051
909 => 0.03444445223354
910 => 0.035050789086209
911 => 0.034684183983761
912 => 0.034816017734663
913 => 0.035050589540038
914 => 0.035192112534311
915 => 0.034424089252579
916 => 0.034245026286807
917 => 0.033878726301399
918 => 0.033783165472519
919 => 0.034081509167534
920 => 0.034002906144536
921 => 0.032590188280224
922 => 0.032442551403115
923 => 0.032447079215359
924 => 0.032075839268119
925 => 0.031509609240781
926 => 0.032997627944787
927 => 0.032878119218047
928 => 0.032746190832967
929 => 0.032762351307366
930 => 0.033408249793142
1001 => 0.033033596052737
1002 => 0.034029674426145
1003 => 0.033824910657429
1004 => 0.033614895470689
1005 => 0.033585864974663
1006 => 0.033505027045422
1007 => 0.033227803707587
1008 => 0.03289303986861
1009 => 0.032671999785371
1010 => 0.030138192766631
1011 => 0.030608452610831
1012 => 0.031149443696051
1013 => 0.031336191650783
1014 => 0.031016746351649
1015 => 0.033240417355039
1016 => 0.033646703475185
1017 => 0.032416036315874
1018 => 0.032185828738176
1019 => 0.033255509725507
1020 => 0.032610361326964
1021 => 0.032900871611325
1022 => 0.032272947277166
1023 => 0.033548841046288
1024 => 0.033539120873474
1025 => 0.033042769379918
1026 => 0.033462282263403
1027 => 0.033389381576192
1028 => 0.032829001962427
1029 => 0.033566606079575
1030 => 0.033566971922015
1031 => 0.033089244401079
1101 => 0.032531363244628
1102 => 0.032431627270419
1103 => 0.032356489611496
1104 => 0.032882392353252
1105 => 0.033353915107055
1106 => 0.034231302051479
1107 => 0.034451897975507
1108 => 0.03531289855289
1109 => 0.034800214630416
1110 => 0.03502748077288
1111 => 0.035274210319284
1112 => 0.035392501537009
1113 => 0.035199752345583
1114 => 0.036537240644235
1115 => 0.036650165636224
1116 => 0.03668802840924
1117 => 0.036237034880228
1118 => 0.036637622690341
1119 => 0.036450200920063
1120 => 0.036937820299059
1121 => 0.037014285243922
1122 => 0.036949522155942
1123 => 0.036973793336359
1124 => 0.035832483022563
1125 => 0.035773300061901
1126 => 0.034966336193846
1127 => 0.035295179934854
1128 => 0.03468042232293
1129 => 0.034875368294376
1130 => 0.034961298621077
1201 => 0.034916413494912
1202 => 0.035313772266578
1203 => 0.034975936135628
1204 => 0.034084331040647
1205 => 0.033192483028455
1206 => 0.033181286603146
1207 => 0.032946478763961
1208 => 0.032776755703431
1209 => 0.032809450386138
1210 => 0.032924670712432
1211 => 0.032770058888608
1212 => 0.032803053160239
1213 => 0.033350977909003
1214 => 0.033460860309748
1215 => 0.033087436978193
1216 => 0.031588088417274
1217 => 0.031220144519593
1218 => 0.031484615296601
1219 => 0.031358215299291
1220 => 0.025308527154886
1221 => 0.026729811648121
1222 => 0.025885332664501
1223 => 0.026274507432763
1224 => 0.02541251306726
1225 => 0.025823901959474
1226 => 0.025747933452599
1227 => 0.028033316858856
1228 => 0.027997633740409
1229 => 0.028014713360901
1230 => 0.027199458574114
1231 => 0.028498181586045
]
'min_raw' => 0.016580270209776
'max_raw' => 0.037014285243922
'avg_raw' => 0.026797277726849
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.01658'
'max' => '$0.037014'
'avg' => '$0.026797'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.002556644025222
'max_diff' => 0.0055996314336876
'year' => 2035
]
10 => [
'items' => [
101 => 0.029137979242292
102 => 0.029019569723784
103 => 0.02904937084856
104 => 0.028537288789066
105 => 0.028019671434593
106 => 0.027445554127742
107 => 0.028512193120826
108 => 0.02839360107293
109 => 0.028665608562732
110 => 0.029357400194677
111 => 0.029459269140342
112 => 0.029596182036368
113 => 0.029547108509266
114 => 0.030716239017531
115 => 0.030574649598809
116 => 0.030915839359874
117 => 0.030213986135234
118 => 0.029419772591034
119 => 0.029570726620989
120 => 0.029556188534009
121 => 0.029371102000709
122 => 0.029204014154225
123 => 0.028925859966537
124 => 0.029805980975456
125 => 0.029770249669784
126 => 0.030348697975521
127 => 0.030246451618735
128 => 0.029563625424189
129 => 0.029588012695311
130 => 0.029752028813725
131 => 0.03031969047226
201 => 0.030488211101866
202 => 0.030410145631847
203 => 0.030594920808951
204 => 0.030740959575043
205 => 0.030613261029519
206 => 0.032421203141732
207 => 0.031670419527457
208 => 0.032036346237136
209 => 0.032123617601229
210 => 0.031900073837223
211 => 0.031948552475134
212 => 0.032021984401931
213 => 0.032467848681994
214 => 0.033637925564749
215 => 0.034156144651139
216 => 0.035715232341021
217 => 0.034113113769972
218 => 0.034018050684192
219 => 0.034298889457077
220 => 0.035214238977231
221 => 0.035956043788906
222 => 0.036202143240686
223 => 0.036234669345897
224 => 0.036696368277817
225 => 0.036961005495418
226 => 0.036640305883595
227 => 0.036368546541223
228 => 0.035395138308859
229 => 0.035507812962258
301 => 0.036284029590098
302 => 0.037380481295852
303 => 0.038321350925746
304 => 0.037991891173975
305 => 0.040505436517656
306 => 0.040754644271569
307 => 0.04072021181783
308 => 0.041287944168332
309 => 0.040161111069268
310 => 0.039679368088055
311 => 0.036427303995643
312 => 0.03734100135564
313 => 0.038669114127961
314 => 0.038493333422377
315 => 0.037528822426562
316 => 0.038320619257666
317 => 0.038058826463527
318 => 0.037852339624996
319 => 0.038798295861749
320 => 0.037758178121699
321 => 0.038658738157855
322 => 0.037503760596384
323 => 0.037993396118369
324 => 0.037715455315085
325 => 0.037895317077953
326 => 0.036843848887404
327 => 0.037411195600077
328 => 0.036820245398894
329 => 0.036819965211554
330 => 0.03680691995311
331 => 0.037502170244128
401 => 0.037524842331157
402 => 0.03701105131563
403 => 0.036937006003369
404 => 0.037210790331519
405 => 0.036890260587484
406 => 0.037040234437328
407 => 0.036894803142615
408 => 0.036862063494924
409 => 0.036601188411926
410 => 0.03648879625326
411 => 0.036532868114662
412 => 0.036382428131096
413 => 0.036291782599345
414 => 0.03678888827533
415 => 0.036523304765837
416 => 0.036748183793496
417 => 0.036491905759482
418 => 0.035603534438567
419 => 0.035092622697552
420 => 0.033414571624407
421 => 0.033890464827135
422 => 0.034205982512891
423 => 0.034101703919631
424 => 0.034325734688412
425 => 0.034339488358113
426 => 0.034266653671459
427 => 0.034182320435014
428 => 0.034141271679434
429 => 0.034447215472917
430 => 0.034624826142628
501 => 0.034237648933739
502 => 0.034146938730881
503 => 0.034538396265708
504 => 0.034777185135815
505 => 0.036540267988808
506 => 0.036409653116376
507 => 0.036737470814307
508 => 0.036700563572293
509 => 0.037044168745179
510 => 0.037605817984468
511 => 0.036463828041397
512 => 0.036662038008473
513 => 0.036613441501882
514 => 0.037144005418148
515 => 0.037145661780782
516 => 0.036827562209347
517 => 0.037000009147598
518 => 0.036903753997501
519 => 0.03707770006339
520 => 0.036407908675122
521 => 0.03722364228652
522 => 0.03768611067947
523 => 0.037692532053555
524 => 0.037911738401437
525 => 0.038134464746461
526 => 0.038561968570357
527 => 0.03812254189684
528 => 0.037332056088508
529 => 0.037389126610616
530 => 0.036925665070418
531 => 0.03693345594264
601 => 0.036891867656138
602 => 0.037016677234551
603 => 0.036435297358933
604 => 0.036571746053695
605 => 0.036380717081985
606 => 0.036661622748795
607 => 0.036359414686678
608 => 0.036613418067175
609 => 0.036723037505852
610 => 0.037127535594509
611 => 0.036299669990096
612 => 0.034611595981123
613 => 0.034966449603729
614 => 0.034441593222745
615 => 0.034490170679074
616 => 0.034588304871904
617 => 0.034270219845433
618 => 0.034330900444472
619 => 0.034328732506472
620 => 0.034310050387998
621 => 0.034227304187587
622 => 0.034107305826153
623 => 0.034585342364557
624 => 0.034666570087586
625 => 0.034847129253892
626 => 0.035384350858365
627 => 0.035330669751521
628 => 0.035418225863992
629 => 0.035227091362073
630 => 0.034499036860431
701 => 0.034538573722646
702 => 0.03404554841729
703 => 0.034834521488362
704 => 0.034647682251196
705 => 0.034527225779534
706 => 0.03449435811522
707 => 0.035032911388141
708 => 0.035194054968187
709 => 0.035093641103046
710 => 0.0348876893361
711 => 0.035283177612809
712 => 0.035388993591346
713 => 0.035412681886597
714 => 0.036113411285571
715 => 0.035451844875867
716 => 0.035611090486087
717 => 0.036853479278361
718 => 0.035726804081703
719 => 0.036323629061228
720 => 0.036294417584208
721 => 0.036599733048276
722 => 0.036269372804663
723 => 0.036273468015816
724 => 0.036544567464048
725 => 0.036163857182049
726 => 0.036069587962286
727 => 0.035939355710351
728 => 0.036223713067999
729 => 0.036394172443531
730 => 0.037767949821708
731 => 0.03865547265987
801 => 0.038616942952791
802 => 0.038969032350909
803 => 0.038810412852287
804 => 0.038298188649529
805 => 0.03917249290455
806 => 0.038895826455818
807 => 0.038918634501701
808 => 0.038917785585095
809 => 0.039101744586901
810 => 0.038971392774526
811 => 0.038714455971997
812 => 0.038885022612254
813 => 0.03939154455513
814 => 0.040963804207806
815 => 0.041843661539114
816 => 0.04091083569168
817 => 0.041554286470204
818 => 0.041168445288045
819 => 0.041098326467466
820 => 0.041502461107018
821 => 0.041907303130758
822 => 0.041881516444026
823 => 0.041587621923658
824 => 0.0414216083664
825 => 0.04267871864058
826 => 0.043604936076282
827 => 0.043541774256607
828 => 0.043820549987326
829 => 0.044639044154924
830 => 0.044713877003906
831 => 0.044704449784948
901 => 0.044518968760745
902 => 0.045324882563644
903 => 0.045997190036726
904 => 0.044476035262704
905 => 0.045055271087273
906 => 0.045315308710735
907 => 0.045697121091664
908 => 0.046341302577475
909 => 0.047041054531767
910 => 0.047140007130494
911 => 0.047069795526379
912 => 0.046608290302182
913 => 0.047373967240345
914 => 0.047822482833387
915 => 0.048089563604947
916 => 0.04876683600362
917 => 0.045316914614571
918 => 0.042874888783183
919 => 0.042493531186332
920 => 0.043269036855676
921 => 0.043473531516141
922 => 0.043391099974922
923 => 0.04064237788242
924 => 0.042479059733376
925 => 0.044455174972407
926 => 0.044531085606721
927 => 0.045520370214002
928 => 0.045842521834278
929 => 0.046639025611637
930 => 0.046589204083498
1001 => 0.046783140078142
1002 => 0.046738557551476
1003 => 0.048213913075375
1004 => 0.04984144931065
1005 => 0.04978509290607
1006 => 0.049551115316115
1007 => 0.049898611936306
1008 => 0.051578403748493
1009 => 0.051423755436542
1010 => 0.05157398309869
1011 => 0.053554552314176
1012 => 0.056129574026993
1013 => 0.054933217913436
1014 => 0.057528966437656
1015 => 0.059162852538935
1016 => 0.061988489604122
1017 => 0.061634705927005
1018 => 0.062734705700999
1019 => 0.061001359308083
1020 => 0.057021245622845
1021 => 0.056391377396893
1022 => 0.057652389536053
1023 => 0.060752464832413
1024 => 0.057554757132739
1025 => 0.05820164923568
1026 => 0.058015344266514
1027 => 0.058005416866452
1028 => 0.058384305349153
1029 => 0.057834707843501
1030 => 0.055595548734773
1031 => 0.056621742158855
1101 => 0.056225479595961
1102 => 0.056665162452823
1103 => 0.059037949492304
1104 => 0.057988883781972
1105 => 0.056883778275314
1106 => 0.058269825823206
1107 => 0.060034740649285
1108 => 0.059924295451326
1109 => 0.059709985604774
1110 => 0.060918038988889
1111 => 0.062913389253018
1112 => 0.063452724411445
1113 => 0.063850850599174
1114 => 0.063905745474065
1115 => 0.064471196802414
1116 => 0.061430622497796
1117 => 0.066256092006712
1118 => 0.067089317289996
1119 => 0.066932705470388
1120 => 0.067858800305279
1121 => 0.067586319712096
1122 => 0.067191538083469
1123 => 0.068659595382791
1124 => 0.066976586155233
1125 => 0.064587766441684
1126 => 0.063277212701334
1127 => 0.065003055585981
1128 => 0.066056967612019
1129 => 0.066753536419836
1130 => 0.066964317720202
1201 => 0.061666653625659
1202 => 0.05881150650062
1203 => 0.060641623073441
1204 => 0.062874491600182
1205 => 0.06141821880039
1206 => 0.061475301937052
1207 => 0.059399039626308
1208 => 0.063058194744071
1209 => 0.062525086621751
1210 => 0.065290852503396
1211 => 0.064630780279083
1212 => 0.066886154989152
1213 => 0.066292239242153
1214 => 0.068757550302562
1215 => 0.069741029630191
1216 => 0.071392444487616
1217 => 0.072607231979205
1218 => 0.073320578429448
1219 => 0.07327775178427
1220 => 0.076104385807924
1221 => 0.074437618479246
1222 => 0.07234376588753
1223 => 0.072305894700166
1224 => 0.073390330627537
1225 => 0.075663010830838
1226 => 0.076252283741402
1227 => 0.076581606908318
1228 => 0.076077237014364
1229 => 0.074268080537375
1230 => 0.073486895943243
1231 => 0.07415248785054
]
'min_raw' => 0.027445554127742
'max_raw' => 0.076581606908318
'avg_raw' => 0.05201358051803
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.027445'
'max' => '$0.076581'
'avg' => '$0.052013'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.010865283917966
'max_diff' => 0.039567321664396
'year' => 2036
]
11 => [
'items' => [
101 => 0.07333852614288
102 => 0.074743652407619
103 => 0.076673190887882
104 => 0.07627474882193
105 => 0.077606680910634
106 => 0.078985090499102
107 => 0.080956278118858
108 => 0.081471619555529
109 => 0.082323459353665
110 => 0.083200282320745
111 => 0.083481894226729
112 => 0.084019578734296
113 => 0.084016744871533
114 => 0.085637093325426
115 => 0.087424387848086
116 => 0.088099050154426
117 => 0.08965039892676
118 => 0.086993768519883
119 => 0.08900885320067
120 => 0.09082651002358
121 => 0.088659424626111
122 => 0.091646246980383
123 => 0.091762218524114
124 => 0.093513251146699
125 => 0.091738244126449
126 => 0.090684250623848
127 => 0.093727090373237
128 => 0.095199424679412
129 => 0.094755945604138
130 => 0.09138104794404
131 => 0.089416712749693
201 => 0.084275668654126
202 => 0.090365457461903
203 => 0.093331615948596
204 => 0.091373366310131
205 => 0.092360993523194
206 => 0.097749167358466
207 => 0.099800635096517
208 => 0.099373944147844
209 => 0.099446047894239
210 => 0.10055298264892
211 => 0.10546174095127
212 => 0.10252029919237
213 => 0.10476892120333
214 => 0.10596158220993
215 => 0.10706939222058
216 => 0.10434896096137
217 => 0.10080971986421
218 => 0.099688693641508
219 => 0.091178656976468
220 => 0.090735672610836
221 => 0.090487012062607
222 => 0.088919242479757
223 => 0.087687405035866
224 => 0.086707802165293
225 => 0.084137031698728
226 => 0.085004591265435
227 => 0.080907319703226
228 => 0.083528608850339
301 => 0.076989264504972
302 => 0.08243542479346
303 => 0.079471327354959
304 => 0.081461639065767
305 => 0.081454695055707
306 => 0.077789900167206
307 => 0.075676122957837
308 => 0.077023104065086
309 => 0.078467174735552
310 => 0.078701470343398
311 => 0.080573745661757
312 => 0.081096257458688
313 => 0.079513022320244
314 => 0.076853751128496
315 => 0.077471439174821
316 => 0.075663605529293
317 => 0.072495446602822
318 => 0.074770873654561
319 => 0.07554780449349
320 => 0.075890941412735
321 => 0.072775420974062
322 => 0.071796456810991
323 => 0.071275264504877
324 => 0.076451576562894
325 => 0.076735146622295
326 => 0.075284362105629
327 => 0.081842045689993
328 => 0.08035783992951
329 => 0.082016061403209
330 => 0.077415390458917
331 => 0.077591142284614
401 => 0.075413110930563
402 => 0.076632662952724
403 => 0.075770722891457
404 => 0.076534135201181
405 => 0.076991721391963
406 => 0.0791693953525
407 => 0.082460290332044
408 => 0.078844123481823
409 => 0.077268507800718
410 => 0.078246010907676
411 => 0.080849230495359
412 => 0.084793241427058
413 => 0.082458307574875
414 => 0.083494511568726
415 => 0.083720876043875
416 => 0.081999182265225
417 => 0.084856722732475
418 => 0.086388101883491
419 => 0.087958980018169
420 => 0.089322929487504
421 => 0.087331536746828
422 => 0.089462612434287
423 => 0.087745341615695
424 => 0.086204772163223
425 => 0.086207108571163
426 => 0.085240686849499
427 => 0.083368122986802
428 => 0.083022793480236
429 => 0.084819241183699
430 => 0.086259822117645
501 => 0.086378475263282
502 => 0.087176054888035
503 => 0.087648054294241
504 => 0.092274290127133
505 => 0.094135000449352
506 => 0.096410241809918
507 => 0.097296576545435
508 => 0.099964126330753
509 => 0.097809863231308
510 => 0.097343774858793
511 => 0.090873171628497
512 => 0.091932732544968
513 => 0.09362919180466
514 => 0.090901145616844
515 => 0.092631463013339
516 => 0.09297306432054
517 => 0.090808447651282
518 => 0.091964662941898
519 => 0.088894097923965
520 => 0.082527220258549
521 => 0.084863810887385
522 => 0.08658432807811
523 => 0.084128937908706
524 => 0.088530129750641
525 => 0.085959044335623
526 => 0.085144133692928
527 => 0.081964876739151
528 => 0.083465363640511
529 => 0.085494793659503
530 => 0.084240841854329
531 => 0.086842980131876
601 => 0.090528301897814
602 => 0.093154681652926
603 => 0.093356302478636
604 => 0.091667716249877
605 => 0.094373686457877
606 => 0.094393396496668
607 => 0.09134105104783
608 => 0.089471506455948
609 => 0.089046741991117
610 => 0.090107886904244
611 => 0.091396312726937
612 => 0.093427801144808
613 => 0.094655387049165
614 => 0.097856280026472
615 => 0.098722349889338
616 => 0.099673898092652
617 => 0.10094545993888
618 => 0.10247229595704
619 => 0.099131665672127
620 => 0.09926439514106
621 => 0.096153646473927
622 => 0.092829365396611
623 => 0.095352080356808
624 => 0.098650194584558
625 => 0.097893603536619
626 => 0.097808471587974
627 => 0.097951639911962
628 => 0.09738119496977
629 => 0.094801093637913
630 => 0.093505382901343
701 => 0.095177180322582
702 => 0.096065666248827
703 => 0.097443630436318
704 => 0.097273767264915
705 => 0.10082325502934
706 => 0.10220247864366
707 => 0.10184961422281
708 => 0.1019145497684
709 => 0.10441156824182
710 => 0.10718876633528
711 => 0.10978997883336
712 => 0.11243604391109
713 => 0.10924610918221
714 => 0.10762645705471
715 => 0.10929752462149
716 => 0.10841083264858
717 => 0.11350602773486
718 => 0.11385880798775
719 => 0.11895363463344
720 => 0.12378923180087
721 => 0.12075207985873
722 => 0.12361597734384
723 => 0.12671351597097
724 => 0.13268917054025
725 => 0.13067678030738
726 => 0.12913532092718
727 => 0.12767864926116
728 => 0.13070975175802
729 => 0.13460921669719
730 => 0.13544912409647
731 => 0.13681009495264
801 => 0.13537920050898
802 => 0.13710255525851
803 => 0.14318675480481
804 => 0.14154275038068
805 => 0.13920799981153
806 => 0.14401089102059
807 => 0.14574903867839
808 => 0.15794826921578
809 => 0.17335030169432
810 => 0.16697375911301
811 => 0.16301563336304
812 => 0.16394588680228
813 => 0.16957018767174
814 => 0.17137653460463
815 => 0.16646626095592
816 => 0.16820065261994
817 => 0.17775732121029
818 => 0.18288416729438
819 => 0.17592122168489
820 => 0.15671073090276
821 => 0.13899778106784
822 => 0.14369605298858
823 => 0.14316341475712
824 => 0.15343086293877
825 => 0.14150354141888
826 => 0.14170436692395
827 => 0.15218413506058
828 => 0.14938831259044
829 => 0.14485943825069
830 => 0.13903084686247
831 => 0.12825615660188
901 => 0.11871271296362
902 => 0.13742960366207
903 => 0.13662249730069
904 => 0.13545368768296
905 => 0.13805474700881
906 => 0.15068475277158
907 => 0.1503935902594
908 => 0.14854136290939
909 => 0.14994626102959
910 => 0.14461315281764
911 => 0.14598761623648
912 => 0.13899497524608
913 => 0.14215594101223
914 => 0.14484972132038
915 => 0.14539053759934
916 => 0.14660902429061
917 => 0.13619718892344
918 => 0.14087179732787
919 => 0.1436176918139
920 => 0.13121164062953
921 => 0.14337246407048
922 => 0.13601594203395
923 => 0.13351902796349
924 => 0.13688079381594
925 => 0.13557071039382
926 => 0.13444437759816
927 => 0.13381586454532
928 => 0.1362843743628
929 => 0.13616921542931
930 => 0.1321302542508
1001 => 0.12686159404255
1002 => 0.12862992934632
1003 => 0.12798747655223
1004 => 0.12565914474839
1005 => 0.12722815926032
1006 => 0.12031901340984
1007 => 0.10843218708023
1008 => 0.1162849886569
1009 => 0.11598266433841
1010 => 0.1158302187077
1011 => 0.12173138205708
1012 => 0.12116412136404
1013 => 0.12013453765154
1014 => 0.1256402356361
1015 => 0.12363058180965
1016 => 0.12982386136878
1017 => 0.13390315584263
1018 => 0.13286851481271
1019 => 0.1367051109823
1020 => 0.12867066822018
1021 => 0.13133938781986
1022 => 0.13188940723067
1023 => 0.12557229617759
1024 => 0.12125693222885
1025 => 0.12096914665222
1026 => 0.11348690025889
1027 => 0.11748385588763
1028 => 0.12100101143565
1029 => 0.11931656687044
1030 => 0.11878332204245
1031 => 0.12150755422198
1101 => 0.1217192503938
1102 => 0.11689255524174
1103 => 0.11789617800541
1104 => 0.12208145176832
1105 => 0.11779071984489
1106 => 0.10945452860476
1107 => 0.10738703792034
1108 => 0.10711119655163
1109 => 0.10150399784074
1110 => 0.10752519753397
1111 => 0.10489678250975
1112 => 0.11319991407799
1113 => 0.1084572098568
1114 => 0.10825276135695
1115 => 0.10794370746335
1116 => 0.10311735990243
1117 => 0.10417402328788
1118 => 0.1076865333155
1119 => 0.10893983646462
1120 => 0.10880910667816
1121 => 0.10766932010013
1122 => 0.1081911085589
1123 => 0.10651024613005
1124 => 0.10591669862229
1125 => 0.10404329941972
1126 => 0.10128992013168
1127 => 0.10167279440914
1128 => 0.096217629578641
1129 => 0.093245366251477
1130 => 0.092422682936319
1201 => 0.091322556424988
1202 => 0.092546945153099
1203 => 0.096202175782082
1204 => 0.091793192143092
1205 => 0.084234298948285
1206 => 0.08468860130902
1207 => 0.085709283830011
1208 => 0.083807248704636
1209 => 0.082007132084176
1210 => 0.083572187437588
1211 => 0.08036938474382
1212 => 0.086096327233982
1213 => 0.085941429489194
1214 => 0.088076079497778
1215 => 0.089410919955574
1216 => 0.086334544860085
1217 => 0.085560844842972
1218 => 0.086001579535425
1219 => 0.078717216817843
1220 => 0.08748079165655
1221 => 0.08755657941567
1222 => 0.086907638609998
1223 => 0.091573971666591
1224 => 0.10142138988178
1225 => 0.097716395037748
1226 => 0.096281709050075
1227 => 0.093554369938761
1228 => 0.097188387371215
1229 => 0.096909351531905
1230 => 0.095647445645349
1231 => 0.094884241027773
]
'min_raw' => 0.071275264504877
'max_raw' => 0.18288416729438
'avg_raw' => 0.12707971589963
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.071275'
'max' => '$0.182884'
'avg' => '$0.127079'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.043829710377135
'max_diff' => 0.10630256038606
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0022372491083876
]
1 => [
'year' => 2028
'avg' => 0.00383976894805
]
2 => [
'year' => 2029
'avg' => 0.010489556715053
]
3 => [
'year' => 2030
'avg' => 0.0080926773841465
]
4 => [
'year' => 2031
'avg' => 0.0079480121056991
]
5 => [
'year' => 2032
'avg' => 0.013935366552756
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0022372491083876
'min' => '$0.002237'
'max_raw' => 0.013935366552756
'max' => '$0.013935'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.013935366552756
]
1 => [
'year' => 2033
'avg' => 0.035843195730532
]
2 => [
'year' => 2034
'avg' => 0.022719139997394
]
3 => [
'year' => 2035
'avg' => 0.026797277726849
]
4 => [
'year' => 2036
'avg' => 0.05201358051803
]
5 => [
'year' => 2037
'avg' => 0.12707971589963
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.013935366552756
'min' => '$0.013935'
'max_raw' => 0.12707971589963
'max' => '$0.127079'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.12707971589963
]
]
]
]
'prediction_2025_max_price' => '$0.003825'
'last_price' => 0.0037091
'sma_50day_nextmonth' => '$0.003462'
'sma_200day_nextmonth' => '—'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'decrease'
'sma_200day_direction_label' => 'diminuer'
'sma_200day_date_nextmonth' => '4 févr. 2026'
'sma_50day_date_nextmonth' => '4 févr. 2026'
'daily_sma3' => '$0.00392'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.0041059'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.003698'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.0036035'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '—'
'daily_sma50_action' => '—'
'daily_sma100' => '—'
'daily_sma100_action' => '—'
'daily_sma200' => '—'
'daily_sma200_action' => '—'
'daily_ema3' => '$0.003862'
'daily_ema3_action' => 'SELL'
'daily_ema5' => '$0.003876'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.003818'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.0042031'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.00336'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.00168'
'daily_ema100_action' => 'BUY'
'daily_ema200' => '$0.00084'
'daily_ema200_action' => 'BUY'
'weekly_sma21' => '—'
'weekly_sma21_action' => '—'
'weekly_sma50' => '—'
'weekly_sma50_action' => '—'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.003772'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.004044'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.002914'
'weekly_ema10_action' => 'BUY'
'weekly_ema21' => '$0.001387'
'weekly_ema21_action' => 'BUY'
'weekly_ema50' => '$0.000582'
'weekly_ema50_action' => 'BUY'
'weekly_ema100' => '$0.000291'
'weekly_ema100_action' => 'BUY'
'weekly_ema200' => '$0.000145'
'weekly_ema200_action' => 'BUY'
'rsi_14' => '41.03'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 74.82
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => 0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.003975'
'vwma_10_action' => 'SELL'
'hma_9' => '0.004118'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 44.06
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => 24.65
'cci_20_action' => 'NEUTRAL'
'adx_14' => 33.01
'adx_14_action' => 'SELL'
'ao_5_34' => '-0.000577'
'ao_5_34_action' => 'SELL'
'macd_12_26' => 0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -55.94
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 52.12
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '—'
'ichimoku_cloud_action' => '—'
'sell_signals' => 16
'buy_signals' => 10
'sell_pct' => 61.54
'buy_pct' => 38.46
'overall_action' => 'bearish'
'overall_action_label' => 'Baissier'
'overall_action_dir' => -1
'last_updated' => 1767699542
'last_updated_date' => '6 janvier 2026'
]
Prévision du prix de White Monkey pour 2026
La prévision du prix de White Monkey pour 2026 suggère que le prix moyen pourrait varier entre $0.001281 à la baisse et $0.003825 à la hausse. Sur le marché des cryptomonnaies, comparé au prix moyen d'aujourd'hui, White Monkey pourrait potentiellement gagner 3.13% d'ici 2026 si WM atteint l'objectif de prix prévu.
Prévision du prix de White Monkey de 2027 à 2032
La prévision du prix de WM pour 2027-2032 se situe actuellement dans une fourchette de prix comprise entre $0.002237 à la baisse et $0.013935 à la hausse. Compte tenu de la volatilité des prix sur le marché, si White Monkey atteint l'objectif de prix le plus élevé, il pourrait gagner 275.71% d'ici 2032 par rapport au prix actuel.
| Prévision du Prix de White Monkey | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2027 | $0.001233 | $0.002237 | $0.00324 |
| 2028 | $0.002226 | $0.003839 | $0.005453 |
| 2029 | $0.00489 | $0.010489 | $0.016088 |
| 2030 | $0.004159 | $0.008092 | $0.012025 |
| 2031 | $0.004917 | $0.007948 | $0.010978 |
| 2032 | $0.0075064 | $0.013935 | $0.020364 |
Prévision du prix de White Monkey de 2032 à 2037
La prévision du prix de White Monkey pour 2032-2037 est actuellement estimée entre $0.013935 à la baisse et $0.127079 à la hausse. Par rapport au prix actuel, White Monkey pourrait potentiellement gagner 3326.16% d'ici 2037 s'il atteint l'objectif de prix le plus élevé. Veuillez noter que ces informations sont à titre général seulement et ne doivent pas être considérées comme un conseil en investissement à long terme.
| Prévision du Prix de White Monkey | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2032 | $0.0075064 | $0.013935 | $0.020364 |
| 2033 | $0.017443 | $0.035843 | $0.054243 |
| 2034 | $0.014023 | $0.022719 | $0.031414 |
| 2035 | $0.01658 | $0.026797 | $0.037014 |
| 2036 | $0.027445 | $0.052013 | $0.076581 |
| 2037 | $0.071275 | $0.127079 | $0.182884 |
White Monkey Histogramme des prix potentiels
Prévision du prix de White Monkey basée sur l'analyse technique
Au 6 janvier 2026, le sentiment global de prévision du prix pour White Monkey est Baissier, avec 10 indicateurs techniques montrant des signaux haussiers et 16 indiquant des signaux baissiers. La prévision du prix de WM a été mise à jour pour la dernière fois le 6 janvier 2026.
Moyennes Mobiles Simples sur 50 et 200 jours de White Monkey et Indice de Force Relative sur 14 jours - RSI (14)
Selon nos indicateurs techniques, le SMA sur 200 jours de White Monkey devrait diminuer au cours du prochain mois, atteignant — d'ici le 4 févr. 2026. Le SMA à court terme sur 50 jours pour White Monkey devrait atteindre $0.003462 d'ici le 4 févr. 2026.
Le Relative Strength Index (RSI), un oscillateur de momentum, est un outil couramment utilisé pour identifier si une cryptomonnaie est survendue (en dessous de 30) ou surachetée (au-dessus de 70). Actuellement, le RSI est à 41.03, ce qui suggère que le marché de WM est dans un état NEUTRAL.
Moyennes Mobiles et Oscillateurs Populaires de WM pour le Samedi 19 Octobre 2024
Les moyennes mobiles (MA) sont des indicateurs largement utilisés sur les marchés financiers, conçus pour lisser les mouvements de prix sur une période donnée. En tant qu'indicateurs retardés, ils sont basés sur des données historiques de prix. Le tableau ci-dessous met en évidence deux types : la moyenne mobile simple (SMA) et la moyenne mobile exponentielle (EMA).
Moyenne Mobile Simple Quotidienne (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 3 | $0.00392 | SELL |
| SMA 5 | $0.0041059 | SELL |
| SMA 10 | $0.003698 | BUY |
| SMA 21 | $0.0036035 | BUY |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Moyenne Mobile Exponentielle Quotidienne (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 3 | $0.003862 | SELL |
| EMA 5 | $0.003876 | SELL |
| EMA 10 | $0.003818 | SELL |
| EMA 21 | $0.0042031 | SELL |
| EMA 50 | $0.00336 | BUY |
| EMA 100 | $0.00168 | BUY |
| EMA 200 | $0.00084 | BUY |
Moyenne Mobile Simple Hebdomadaire (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 21 | — | — |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Moyenne Mobile Exponentielle Hebdomadaire (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 21 | $0.001387 | BUY |
| EMA 50 | $0.000582 | BUY |
| EMA 100 | $0.000291 | BUY |
| EMA 200 | $0.000145 | BUY |
Oscillateurs de White Monkey
Un oscillateur est un outil d'analyse technique qui établit des limites hautes et basses entre deux extrêmes, créant un indicateur de tendance qui fluctue à l'intérieur de ces limites. Les traders utilisent cet indicateur pour identifier les conditions de surachat ou de survente à court terme.
| Période | Valeur | Action |
|---|---|---|
| RSI (14) | 41.03 | NEUTRAL |
| Stoch RSI (14) | 74.82 | NEUTRAL |
| Stochastique Rapide (14) | 44.06 | NEUTRAL |
| Indice de Canal des Matières Premières (20) | 24.65 | NEUTRAL |
| Indice Directionnel Moyen (14) | 33.01 | SELL |
| Oscillateur Impressionnant (5, 34) | -0.000577 | SELL |
| Momentum (10) | 0 | SELL |
| MACD (12, 26) | 0 | NEUTRAL |
| Plage de Pourcentage de Williams (14) | -55.94 | NEUTRAL |
| Oscillateur Ultime (7, 14, 28) | 52.12 | NEUTRAL |
| VWMA (10) | 0.003975 | SELL |
| Moyenne Mobile de Hull (9) | 0.004118 | SELL |
| Nuage Ichimoku B/L (9, 26, 52, 26) | — | — |
Prévision du cours de White Monkey basée sur les flux monétaires mondiaux
Définitions des flux monétaires mondiaux utilisés pour la prédiction du cours de White Monkey
M0 : le total de toutes les devises physiques, plus les comptes à la banque centrale qui peuvent être échangés contre des devises physiques.
M1 : M0 plus le montant des comptes à vue, y compris les comptes de "chèques" et les comptes "courants".
M2 : M1 plus la plupart des comptes d'épargne, comptes du marché monétaire et comptes de certificats de dépôt (CD) de moins de 100 000 $.
Prédictions du cours de White Monkey par des sociétés Internet ou des niches technologiques
| Comparaison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Action Facebook | $0.005211 | $0.007323 | $0.01029 | $0.01446 | $0.020319 | $0.028551 |
| Action Amazon.com | $0.007739 | $0.016148 | $0.033694 | $0.0703058 | $0.146697 | $0.306092 |
| Action Apple | $0.005261 | $0.007462 | $0.010584 | $0.015013 | $0.021296 | $0.0302067 |
| Action Netflix | $0.005852 | $0.009234 | $0.01457 | $0.022989 | $0.036273 | $0.057233 |
| Action Google | $0.0048032 | $0.00622 | $0.008055 | $0.010431 | $0.0135085 | $0.017493 |
| Action Tesla | $0.0084082 | $0.01906 | $0.0432095 | $0.097952 | $0.222051 | $0.503373 |
| Action Kodak | $0.002781 | $0.002085 | $0.001564 | $0.001172 | $0.000879 | $0.000659 |
| Action Nokia | $0.002457 | $0.001627 | $0.001078 | $0.000714 | $0.000473 | $0.000313 |
Ce calcul montre la valeur potentielle des cryptomonnaies si l'on suppose que leur capitalisation se comportera comme celle de certaines sociétés Internet ou niches technologiques. En extrapolant les données, vous pourrez obtenir une potentielle image des cours futurs pour 2024, 2025, 2026, 2027, 2028, 2029 et 2030.
Aperçu des prévisions relatives à White Monkey
Vous vous posez peut-être des questions telles que : "Devrais-je investir dans White Monkey maintenant ?", "Devrais-je acheter WM aujourd'hui ?", " White Monkey sera-t-il un bon ou un mauvais investissement à court ou à long terme ?".
Nous mettons régulièrement à jour les prévisions de White Monkey avec de nouvelles valeurs. Regardez nos prévisions similaires. Nous faisons une prévision des cours futurs pour une grande quantité de devises numériques comme White Monkey en utilisant des méthodes d'analyse technique.
Si vous souhaitez trouver des cryptomonnaies ayant un bon rendement, vous devriez consulter un maximum d'informations disponibles à propos de White Monkey afin de prendre une décision responsable concernant cet investissement.
Le cours de White Monkey est de $0.003709 USD actuellement, mais ce cours peut subir une hausse ou une baisse, ce qui pourrait causer la perte de votre investissement, car les cryptomonnaies sont des actifs à haut risque.
Prévision du cours de White Monkey basée sur le modèle de croissance du Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si White Monkey présente 1 % de la précédente croissance annuelle moyenne du Bitcoin | $0.0038055 | $0.0039044 | $0.0040059 | $0.00411 |
| Si White Monkey présente 2 % de la précédente croissance annuelle moyenne du Bitcoin | $0.0039019 | $0.0041047 | $0.004318 | $0.004542 |
| Si White Monkey présente 5 % de la précédente croissance annuelle moyenne du Bitcoin | $0.004191 | $0.004735 | $0.005351 | $0.006046 |
| Si White Monkey présente 10 % de la précédente croissance annuelle moyenne du Bitcoin | $0.004673 | $0.005887 | $0.007418 | $0.009346 |
| Si White Monkey présente 20 % de la précédente croissance annuelle moyenne du Bitcoin | $0.005637 | $0.008567 | $0.013022 | $0.019791 |
| Si White Monkey présente 50 % de la précédente croissance annuelle moyenne du Bitcoin | $0.008529 | $0.019615 | $0.0451086 | $0.103734 |
| Si White Monkey présente 100 % de la précédente croissance annuelle moyenne du Bitcoin | $0.01335 | $0.048051 | $0.172953 | $0.622516 |
Boîte à questions
Est-ce que WM est un bon investissement ?
La décision d'acquérir White Monkey dépend entièrement de votre tolérance individuelle au risque. Comme vous pouvez le discerner, la valeur de White Monkey a connu une baisse de -5.0711% au cours des 24 heures précédentes, et White Monkey a enregistré une déclin de sur une période de 30 jours précédents. Par conséquent, la détermination de si investir ou non dans White Monkey dépendra de la mesure dans laquelle cet investissement s'aligne avec vos aspirations de trading.
Est-ce que White Monkey peut monter ?
Il semble que la valeur moyenne de White Monkey pourrait potentiellement s'envoler jusqu'à $0.003825 pour la fin de cette année. En regardant les perspectives de White Monkey sur une période de cinq ans plus longue, la monnaie numérique pourrait potentiellement croître jusqu'à $0.012025. Cependant, compte tenu de l'imprévisibilité du marché, il est essentiel de mener des recherches approfondies avant d'investir des fonds dans un projet, un réseau ou un actif particulier.
Quel sera le prix de White Monkey la semaine prochaine ?
Basé sur notre nouveau pronostic expérimental de White Monkey, le prix de White Monkey va augmenter de 0.86% durant la prochaine semaine et atteindre $0.00374 d'ici 13 janvier 2026.
Quel sera le prix de White Monkey le mois prochain ?
Basé sur notre nouveau pronostic expérimental de White Monkey, le prix de White Monkey va diminuer de -11.62% durant le prochain mois et atteindre $0.003278 d'ici 5 février 2026.
Jusqu'où le prix de White Monkey peut-il monter cette année en 2026 ?
Selon notre prédiction la plus récente sur la valeur de White Monkey en 2026, WM devrait fluctuer dans la fourchette de $0.001281 et $0.003825. Cependant, il est crucial de garder à l'esprit que le marché des cryptomonnaies est exceptionnellement instable, et cette prévision de prix de White Monkey ne prend pas en compte les fluctuations de prix soudaines et extrêmes.
Où sera White Monkey dans 5 ans ?
L'avenir de White Monkey semble suivre une tendance haussière, avec un prix maximum de $0.012025 prévue après une période de cinq ans. Selon la prévision de White Monkey pour 2030, la valeur de White Monkey pourrait potentiellement atteindre son point le plus élevé d'environ $0.012025, tandis que son point le plus bas devrait être autour de $0.004159.
Combien vaudra White Monkey en 2026 ?
Basé sur notre nouvelle simulation expérimentale de prédiction de prix de White Monkey, il est attendu que la valeur de WM en 2026 augmente de 3.13% jusqu'à $0.003825 si le meilleur scénario se produit. Le prix sera entre $0.003825 et $0.001281 durant 2026.
Combien vaudra White Monkey en 2027 ?
Selon notre dernière simulation expérimentale pour la prédiction de prix de White Monkey, le valeur de WM pourrait diminuer de -12.62% jusqu'à $0.00324 en 2027, en supposant les conditions les plus favorables. Il est prévu que le prix fluctue entre $0.00324 et $0.001233 tout au long de l'année.
Combien vaudra White Monkey en 2028 ?
Notre nouveau modèle expérimental de prédiction de prix de White Monkey suggère que la valeur de WM en 2028 pourrait augmenter de 47.02%, atteignant $0.005453 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.005453 et $0.002226 durant l'année.
Combien vaudra White Monkey en 2029 ?
Basé sur notre modèle de prévision expérimental, la valeur de White Monkey pourrait connaître un 333.75% croissance en 2029, atteignant potentiellement $0.016088 sous des conditions optimales. Le range de prix prévu pour 2029 se situe entre $0.016088 et $0.00489.
Combien vaudra White Monkey en 2030 ?
En utilisant notre nouvelle simulation expérimentale pour les prédictions de prix de White Monkey, il est prévu que la valeur de WM en 2030 augmente de 224.23%, atteignant $0.012025 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.012025 et $0.004159 au cours de 2030.
Combien vaudra White Monkey en 2031 ?
Notre simulation expérimentale indique que le prix de White Monkey pourrait augmenter de 195.98% en 2031, atteignant potentiellement $0.010978 dans des conditions idéales. Il est probable que le prix fluctue entre $0.010978 et $0.004917 durant l'année.
Combien vaudra White Monkey en 2032 ?
Basé sur les résultats de notre dernière prédiction expérimentale de prix de White Monkey, WM pourrait connaître une 449.04% hausse en valeur, atteignant $0.020364 si le scénario le plus positif se réalise en 2032. Il est prévu que le prix reste dans une fourchette de $0.020364 et $0.0075064 tout au long de l'année.
Combien vaudra White Monkey en 2033 ?
Selon notre prédiction expérimentale de prix de White Monkey, la valeur de WM est anticipée à augmenter de 1362.43% en 2033, avec le prix potentiel le plus élevé étant $0.054243. Tout au long de l'année, le prix de WM pourrait osciller entre $0.054243 et $0.017443.
Combien vaudra White Monkey en 2034 ?
Les résultats de notre nouvelle simulation de prédiction de prix de White Monkey suggèrent que WM pourrait augmenter de 746.96% en 2034, atteignant potentiellement $0.031414 dans les meilleures circonstances. La fourchette de prix prévue pour l'année est entre $0.031414 et $0.014023.
Combien vaudra White Monkey en 2035 ?
Basé sur notre prédiction expérimentale pour le prix de White Monkey, WM pourrait augmenter de 897.93%, avec la valeur potentiellement atteignant $0.037014 en 2035. La fourchette de prix attendue pour l'année se situe entre $0.037014 et $0.01658.
Combien vaudra White Monkey en 2036 ?
Notre récente simulation de prédiction de prix de White Monkey suggère que la valeur de WM pourrait augmenter de 1964.7% en 2036, pouvant atteindre $0.076581 si les conditions sont optimales. La fourchette de prix attendue pour 2036 est entre $0.076581 et $0.027445.
Combien vaudra White Monkey en 2037 ?
Selon la simulation expérimentale, la valeur de White Monkey pourrait augmenter de 4830.69% en 2037, avec un maximum de $0.182884 sous des conditions favorables. Il est prévu que le prix chute entre $0.182884 et $0.071275 au cours de l'année.
Prévisions liées
Comment lire et prédire les mouvements de prix de White Monkey ?
Les traders de White Monkey utilisent des indicateurs et des modèles graphiques pour prédire la direction du marché. Ils identifient également des niveaux clés de support et de résistance pour évaluer quand une tendance baissière pourrait ralentir ou une tendance haussière pourrait s'arrêter.
Indicateurs de prédiction du prix de White Monkey
Les moyennes mobiles sont des outils populaires pour la prédiction du prix de White Monkey. Une moyenne mobile simple (SMA) calcule le prix de clôture moyen de WM sur une période spécifique, comme une SMA de 12 jours. Une moyenne mobile exponentielle (EMA) donne plus de poids aux prix récents, réagissant plus rapidement aux changements de prix.
Les moyennes mobiles couramment utilisées sur le marché des cryptomonnaies incluent les moyennes sur 50 jours, 100 jours et 200 jours, qui aident à identifier les niveaux clés de résistance et de support. Un mouvement de prix de WM au-dessus de ces moyennes est considéré comme haussier, tandis qu'une chute en dessous indique une faiblesse.
Les traders utilisent également le RSI et les niveaux de retracement de Fibonacci pour évaluer la direction future de WM.
Comment lire les graphiques de White Monkey et prédire les mouvements de prix ?
La plupart des traders préfèrent les graphiques en chandeliers aux simples graphiques linéaires parce qu'ils fournissent des informations plus détaillées. Les chandeliers peuvent représenter l'action des prix de White Monkey dans différentes périodes, comme 5 minutes pour les tendances à court terme et hebdomadaire pour les tendances à long terme. Les options populaires incluent les graphiques de 1 heure, 4 heures et 1 jour.
Par exemple, un graphique en chandeliers de 1 heure montre les prix d'ouverture, de clôture, les plus hauts et les plus bas de WM au sein de chaque heure. La couleur du chandelier est cruciale : le vert indique que le prix a clôturé plus haut qu'il n'a ouvert, tandis que le rouge signifie le contraire. Certains graphiques utilisent des chandeliers creux et pleins pour transmettre la même information.
Qu'est-ce qui affecte le prix de White Monkey ?
L'action du prix de White Monkey est déterminée par l'offre et la demande, influencée par des facteurs tels que les réductions de récompenses de bloc, les hard forks et les mises à jour de protocole. Les événements du monde réel, tels que les réglementations, l'adoption par les entreprises et les gouvernements et les piratages d'échanges de cryptomonnaies, impactent également le prix de WM. La capitalisation boursière de White Monkey peut changer rapidement.
Les traders surveillent souvent l'activité des « baleines » de WM, de grands détenteurs de White Monkey, car leurs actions peuvent influencer significativement les mouvements de prix sur le marché relativement petit de White Monkey.
Modèles de prédiction de prix haussiers et baissiers
Les traders identifient souvent des modèles de chandeliers pour obtenir un avantage dans les prédictions de prix des cryptomonnaies. Certaines formations indiquent des tendances haussières, tandis que d'autres suggèrent des mouvements baissiers.
Modèles de chandeliers haussiers couramment suivis :
- Marteau
- Englobante haussière
- Ligne pénétrante
- Étoile du matin
- Trois soldats blancs
Modèles de chandeliers baissiers courants :
- Harami baissier
- Nuage sombre
- Étoile du soir
- Étoile filante
- Pendu


