Prédiction du prix de WAL jusqu'à $0.013335 d'ici 2026
| Année | Prix min. | Prix max. |
|---|---|---|
| 2026 | $0.004467 | $0.013335 |
| 2027 | $0.00430056 | $0.011297 |
| 2028 | $0.007761 | $0.0190097 |
| 2029 | $0.017049 | $0.056084 |
| 2030 | $0.014499 | $0.041922 |
| 2031 | $0.017143 | $0.03827 |
| 2032 | $0.026167 | $0.07099 |
| 2033 | $0.0608079 | $0.189092 |
| 2034 | $0.048886 | $0.109512 |
| 2035 | $0.057799 | $0.129032 |
Calculateur de profit d’investissement
Si vous ouvrez une position short de $10,000.00 sur WAL aujourd’hui et la fermez le Apr 06, 2026, notre prévision indique que vous pourriez gagner environ $3,957.09, soit un rendement de 39.57% sur les 90 prochains jours.
Prévision du prix à long terme de WAL pour 2027, 2028, 2029, 2030, 2031, 2032 et 2037
[
'name' => 'WAL'
'name_with_ticker' => 'WAL <small>WAL</small>'
'name_lang' => 'WAL'
'name_lang_with_ticker' => 'WAL <small>WAL</small>'
'name_with_lang' => 'WAL'
'name_with_lang_with_ticker' => 'WAL <small>WAL</small>'
'image' => '/uploads/coins/wal.jpg?ts=1630513719'
'price_for_sd' => 0.0129
'ticker' => 'WAL'
'marketcap' => '$0'
'low24h' => '$0'
'high24h' => '$0'
'volume24h' => '$0'
'current_supply' => '0'
'max_supply' => '10B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.01293'
'change_24h_pct' => '0%'
'ath_price' => '$0.01251'
'ath_days' => 1950
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '4 sept. 2020'
'ath_pct' => '103.33%'
'fdv' => '$0'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.637538'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.0130406'
'next_week_prediction_price_date' => '13 janvier 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.011427'
'next_month_prediction_price_date' => '5 février 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.004467'
'current_year_max_price_prediction' => '$0.013335'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.014499'
'grand_prediction_max_price' => '$0.041922'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.01317501669882
107 => 0.013224207428642
108 => 0.013335036654673
109 => 0.012388013052713
110 => 0.012813198846841
111 => 0.01306295566637
112 => 0.011934545269507
113 => 0.01304065062094
114 => 0.01237152747874
115 => 0.012144417034385
116 => 0.012450191328183
117 => 0.012331030788515
118 => 0.01222858355385
119 => 0.01217141623664
120 => 0.012395943130928
121 => 0.012385468682941
122 => 0.012018099105094
123 => 0.011538880466692
124 => 0.011699721971555
125 => 0.011641286744941
126 => 0.011429509945398
127 => 0.011572221938262
128 => 0.010943790546576
129 => 0.0098626070002011
130 => 0.010576869968484
131 => 0.010549371621174
201 => 0.010535505707509
202 => 0.011072254587395
203 => 0.011020658567498
204 => 0.010927011286154
205 => 0.011427790039637
206 => 0.011244999058191
207 => 0.011808317792036
208 => 0.012179355943318
209 => 0.012085248666326
210 => 0.012434211840989
211 => 0.011703427434973
212 => 0.01194616470067
213 => 0.011996192514711
214 => 0.011421610507553
215 => 0.011029100314451
216 => 0.011002924359515
217 => 0.010322365775914
218 => 0.010685914677997
219 => 0.011005822667154
220 => 0.010852611566211
221 => 0.010804109508703
222 => 0.011051896001695
223 => 0.011071151134348
224 => 0.010632132069287
225 => 0.010723418034839
226 => 0.01110409568622
227 => 0.010713825934742
228 => 0.0099555955578233
301 => 0.0097675439409923
302 => 0.0097424543888281
303 => 0.0092324434894206
304 => 0.0097801104492328
305 => 0.0095410391447128
306 => 0.010296262531177
307 => 0.0098648829831731
308 => 0.009846287073046
309 => 0.009818176627462
310 => 0.009379189178057
311 => 0.0094752995303689
312 => 0.0097947849794735
313 => 0.0099087809869752
314 => 0.009896890269451
315 => 0.0097932193264782
316 => 0.00984067935329
317 => 0.0096877940707596
318 => 0.0096338070954662
319 => 0.0094634093511525
320 => 0.0092129717405898
321 => 0.0092477966263617
322 => 0.0087516141892715
323 => 0.0084812676631497
324 => 0.0084064393078291
325 => 0.0083063757038022
326 => 0.0084177417581631
327 => 0.0087502085667693
328 => 0.008349183058822
329 => 0.0076616529541151
330 => 0.0077029746849023
331 => 0.0077958123454491
401 => 0.0076228099792027
402 => 0.0074590777585385
403 => 0.0076014296403911
404 => 0.0073101140714775
405 => 0.0078310164401757
406 => 0.0078169274909144
407 => 0.0080110876815787
408 => 0.0081325000333693
409 => 0.0078526838702077
410 => 0.0077823108618759
411 => 0.0078223985256966
412 => 0.0071598387391152
413 => 0.0079569424117274
414 => 0.0079638357973886
415 => 0.0079048104442616
416 => 0.0083292435421126
417 => 0.0092249297625814
418 => 0.0088879365775463
419 => 0.0087574426306278
420 => 0.0085093735421452
421 => 0.0088399108736633
422 => 0.0088145307637883
423 => 0.0086997522818128
424 => 0.0086303338977834
425 => 0.0087582393988415
426 => 0.0086144849907348
427 => 0.0085886627489319
428 => 0.0084322080584824
429 => 0.0083763608522268
430 => 0.0083350138040565
501 => 0.008289494766698
502 => 0.0083898984204734
503 => 0.0081623705318176
504 => 0.0078879942029327
505 => 0.007865182779979
506 => 0.0079281671243551
507 => 0.0079003012406016
508 => 0.0078650493688483
509 => 0.0077977439453952
510 => 0.0077777758640096
511 => 0.0078426624413772
512 => 0.0077694092786516
513 => 0.0078774983105594
514 => 0.0078481040747194
515 => 0.0076839102627633
516 => 0.0074792639807309
517 => 0.0074774421995607
518 => 0.007433351493784
519 => 0.0073771953508954
520 => 0.0073615739966223
521 => 0.0075894411619531
522 => 0.0080611193746976
523 => 0.0079685176552328
524 => 0.008035431887752
525 => 0.0083645836842965
526 => 0.0084692111424782
527 => 0.008394949050898
528 => 0.0082932945196568
529 => 0.0082977668031259
530 => 0.0086451511092966
531 => 0.0086668170423622
601 => 0.008721559865524
602 => 0.008791919863607
603 => 0.0084069316628168
604 => 0.0082796338934901
605 => 0.0082193131481717
606 => 0.0080335485996576
607 => 0.0082338797389814
608 => 0.0081171553631321
609 => 0.0081329054693066
610 => 0.0081226481919984
611 => 0.0081282493590027
612 => 0.0078308708373476
613 => 0.0079392199408838
614 => 0.0077590685416007
615 => 0.0075178660409042
616 => 0.0075170574455454
617 => 0.0075760914158795
618 => 0.0075409757003253
619 => 0.0074464802126765
620 => 0.0074599028506909
621 => 0.0073423064177213
622 => 0.0074741811868055
623 => 0.0074779628833122
624 => 0.0074271839139476
625 => 0.007630355190933
626 => 0.0077135946288859
627 => 0.0076801708234592
628 => 0.0077112495255961
629 => 0.0079723656747483
630 => 0.0080149390003564
701 => 0.0080338472593555
702 => 0.008008512697161
703 => 0.007716022249465
704 => 0.0077289954445857
705 => 0.0076338067466399
706 => 0.0075533823276136
707 => 0.0075565988826042
708 => 0.0075979474884263
709 => 0.0077785192751154
710 => 0.0081585219549144
711 => 0.0081729427788344
712 => 0.0081904212381106
713 => 0.0081193275602645
714 => 0.0080978850267513
715 => 0.0081261732632427
716 => 0.0082688822901835
717 => 0.0086359686525981
718 => 0.008506215815247
719 => 0.0084007247387573
720 => 0.0084932688530287
721 => 0.0084790224120214
722 => 0.0083587681128079
723 => 0.0083553929751484
724 => 0.0081245865273326
725 => 0.0080392626387836
726 => 0.0079679596111297
727 => 0.0078900985663443
728 => 0.0078439399290697
729 => 0.007914860574649
730 => 0.0079310809654014
731 => 0.0077760117343616
801 => 0.0077548763711713
802 => 0.0078815092526403
803 => 0.0078257828428555
804 => 0.0078830988372676
805 => 0.0078963966396187
806 => 0.0078942553871659
807 => 0.0078360706152131
808 => 0.0078731558537609
809 => 0.0077854382089536
810 => 0.0076900584449899
811 => 0.0076292120979504
812 => 0.0075761155900616
813 => 0.0076055766186255
814 => 0.0075005534311667
815 => 0.0074669543997995
816 => 0.0078605922093852
817 => 0.0081513766916458
818 => 0.0081471485701104
819 => 0.0081214109676484
820 => 0.008083170111072
821 => 0.0082660847333374
822 => 0.0082023609364334
823 => 0.0082487253229824
824 => 0.0082605270052663
825 => 0.0082962471431004
826 => 0.0083090140221265
827 => 0.008270423646542
828 => 0.0081409096326632
829 => 0.0078181730239001
830 => 0.0076679382613101
831 => 0.0076183582872975
901 => 0.007620160425187
902 => 0.0075704494170946
903 => 0.0075850915368689
904 => 0.0075653574853779
905 => 0.0075279859660338
906 => 0.0076032690326161
907 => 0.0076119447047295
908 => 0.0075943727374235
909 => 0.0075985115718385
910 => 0.0074530231876305
911 => 0.0074640843534977
912 => 0.0074024943763642
913 => 0.0073909469981299
914 => 0.0072352528991894
915 => 0.0069594182346957
916 => 0.0071122574147439
917 => 0.0069276491776866
918 => 0.0068577352410417
919 => 0.0071886969432707
920 => 0.0071554775678156
921 => 0.0070986204371518
922 => 0.0070145168908359
923 => 0.0069833220674006
924 => 0.0067937921952887
925 => 0.0067825937593418
926 => 0.0068765298816975
927 => 0.0068331815933749
928 => 0.0067723041792895
929 => 0.0065518123565167
930 => 0.0063039065453863
1001 => 0.006311389263544
1002 => 0.006390243489613
1003 => 0.0066195227868497
1004 => 0.0065299393988472
1005 => 0.0064649456230005
1006 => 0.0064527742424901
1007 => 0.0066051245520884
1008 => 0.0068207321585467
1009 => 0.0069218904235487
1010 => 0.0068216456551539
1011 => 0.0067064898627837
1012 => 0.0067134988622847
1013 => 0.0067601265958779
1014 => 0.0067650265113978
1015 => 0.0066900719287715
1016 => 0.0067111712047319
1017 => 0.0066791194751899
1018 => 0.0064824180701538
1019 => 0.0064788603654835
1020 => 0.006430586668449
1021 => 0.006429124960088
1022 => 0.0063469993589943
1023 => 0.0063355094196938
1024 => 0.0061724440540544
1025 => 0.0062797741715256
1026 => 0.00620778276381
1027 => 0.0060992747313263
1028 => 0.0060805679056269
1029 => 0.0060800055558573
1030 => 0.006191419043266
1031 => 0.0062784722400572
1101 => 0.0062090350851694
1102 => 0.0061932255909842
1103 => 0.006362029627873
1104 => 0.0063405477754959
1105 => 0.0063219446298805
1106 => 0.0068014268621933
1107 => 0.0064218792608525
1108 => 0.0062563748428483
1109 => 0.0060515316971314
1110 => 0.0061182296582856
1111 => 0.0061322838986977
1112 => 0.005639673059001
1113 => 0.0054398209026868
1114 => 0.0053712391739094
1115 => 0.0053317694193947
1116 => 0.0053497562821571
1117 => 0.0051698659011544
1118 => 0.0052907552123005
1119 => 0.0051349853481075
1120 => 0.0051088700234566
1121 => 0.0053874058368169
1122 => 0.0054261624680633
1123 => 0.0052608146384244
1124 => 0.0053669947124346
1125 => 0.0053284923415851
1126 => 0.0051376555753425
1127 => 0.0051303670145723
1128 => 0.0050346118335084
1129 => 0.0048847735170002
1130 => 0.0048162933856572
1201 => 0.0047806283386819
1202 => 0.0047953444321618
1203 => 0.0047879035249785
1204 => 0.0047393465723838
1205 => 0.0047906867526625
1206 => 0.0046595338072775
1207 => 0.0046073076476541
1208 => 0.00458371830299
1209 => 0.0044673125150789
1210 => 0.0046525658895342
1211 => 0.0046890631380624
1212 => 0.0047256322974448
1213 => 0.005043941863043
1214 => 0.0050280400166792
1215 => 0.0051717849632946
1216 => 0.0051661992989991
1217 => 0.0051252009117107
1218 => 0.004952235459648
1219 => 0.0050211764060275
1220 => 0.0048089868888734
1221 => 0.0049679737026099
1222 => 0.0048954187602686
1223 => 0.0049434428036206
1224 => 0.0048570912435203
1225 => 0.0049048817622483
1226 => 0.0046977179896471
1227 => 0.004504271373665
1228 => 0.004582119938995
1229 => 0.004666750232572
1230 => 0.0048502502724446
1231 => 0.0047409591625389
]
'min_raw' => 0.0044673125150789
'max_raw' => 0.013335036654673
'avg_raw' => 0.0089011745848759
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.004467'
'max' => '$0.013335'
'avg' => '$0.0089011'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0084626874849211
'max_diff' => 0.00040503665467298
'year' => 2026
]
1 => [
'items' => [
101 => 0.0047802643784154
102 => 0.0046485984848428
103 => 0.0043769341378994
104 => 0.0043784717286005
105 => 0.0043366820873528
106 => 0.0043005697359272
107 => 0.0047535125612186
108 => 0.0046971819609272
109 => 0.0046074265217295
110 => 0.004727567743835
111 => 0.0047593349898573
112 => 0.0047602393586921
113 => 0.0048478912930465
114 => 0.0048946711461239
115 => 0.0049029162979843
116 => 0.0050408385105363
117 => 0.0050870682169458
118 => 0.0052774818349735
119 => 0.0048907022024229
120 => 0.0048827367304179
121 => 0.0047292583772089
122 => 0.004631919979207
123 => 0.0047359232205967
124 => 0.0048280558946098
125 => 0.0047321211962093
126 => 0.0047446482425284
127 => 0.0046158637480786
128 => 0.0046618981449707
129 => 0.0047015491690772
130 => 0.0046796562041451
131 => 0.0046468813760102
201 => 0.0048205020660079
202 => 0.0048107057062533
203 => 0.0049723852843016
204 => 0.0050984260772078
205 => 0.0053243137105824
206 => 0.0050885881893673
207 => 0.0050799974144502
208 => 0.0051639736172691
209 => 0.0050870553606267
210 => 0.0051356650436967
211 => 0.0053164819391371
212 => 0.0053203023152102
213 => 0.0052563060937088
214 => 0.0052524119178145
215 => 0.0052647030921958
216 => 0.0053366928844548
217 => 0.0053115374390166
218 => 0.0053406479573357
219 => 0.0053770511062497
220 => 0.0055276299647733
221 => 0.005563934017781
222 => 0.0054757339904656
223 => 0.0054836974653984
224 => 0.0054507082340375
225 => 0.0054188410498968
226 => 0.0054904738260167
227 => 0.0056213841323214
228 => 0.0056205697461001
301 => 0.0056509383926301
302 => 0.0056698578078308
303 => 0.0055886418279309
304 => 0.0055357732114105
305 => 0.0055560464031019
306 => 0.0055884636781092
307 => 0.0055455339177262
308 => 0.0052805515496428
309 => 0.0053609302729801
310 => 0.005347551323098
311 => 0.00532849807153
312 => 0.0054093194993959
313 => 0.0054015240755131
314 => 0.0051680208652879
315 => 0.0051829689832072
316 => 0.0051689299098483
317 => 0.0052142930279951
318 => 0.0050846056033777
319 => 0.0051244965817319
320 => 0.0051495158294009
321 => 0.0051642523584849
322 => 0.0052174908064689
323 => 0.0052112438890738
324 => 0.0052171024893125
325 => 0.0052960410532435
326 => 0.0056952852211627
327 => 0.0057170152003399
328 => 0.0056100088355047
329 => 0.0056527557676492
330 => 0.0055706910056582
331 => 0.0056257816301689
401 => 0.0056634732363089
402 => 0.0054931521158412
403 => 0.005483066804462
404 => 0.0054006633320063
405 => 0.0054449422905327
406 => 0.0053744912837473
407 => 0.0053917774965409
408 => 0.0053434437385852
409 => 0.0054304348797502
410 => 0.0055277044926293
411 => 0.005552278638136
412 => 0.0054876346411428
413 => 0.0054408281270726
414 => 0.0053586513073898
415 => 0.0054953131899522
416 => 0.0055352772891089
417 => 0.0054951032755526
418 => 0.0054857940787921
419 => 0.0054681531677522
420 => 0.0054895366814631
421 => 0.0055350596360422
422 => 0.0055135918513397
423 => 0.0055277717013494
424 => 0.0054737327353103
425 => 0.0055886687137997
426 => 0.0057712147084904
427 => 0.0057718016237126
428 => 0.0057503337232908
429 => 0.0057415495209705
430 => 0.0057635768895845
501 => 0.0057755258334476
502 => 0.0058467583044165
503 => 0.005923193583793
504 => 0.006279883681318
505 => 0.0061797265292515
506 => 0.0064962032033645
507 => 0.006746495163235
508 => 0.0068215467780593
509 => 0.0067525028238723
510 => 0.0065163071862799
511 => 0.0065047183014688
512 => 0.0068576943032579
513 => 0.0067579624154274
514 => 0.0067460996247142
515 => 0.006619899574027
516 => 0.0066944994341635
517 => 0.0066781833504377
518 => 0.0066524276140664
519 => 0.0067947589505356
520 => 0.0070611905063998
521 => 0.007019664649839
522 => 0.0069886675242455
523 => 0.0068528471430222
524 => 0.006934641349099
525 => 0.0069055159989799
526 => 0.0070306569864956
527 => 0.0069565262377036
528 => 0.0067572068482881
529 => 0.0067889491180178
530 => 0.0067841513378047
531 => 0.0068828893146152
601 => 0.006853250624804
602 => 0.0067783639079351
603 => 0.0070602798723066
604 => 0.0070419738176793
605 => 0.0070679276177942
606 => 0.0070793532832526
607 => 0.0072509505628491
608 => 0.0073212484777992
609 => 0.0073372073352311
610 => 0.0074039849173979
611 => 0.0073355458481539
612 => 0.0076093509213596
613 => 0.0077914153180725
614 => 0.0080028924838027
615 => 0.0083119174626379
616 => 0.0084281137133208
617 => 0.0084071239006673
618 => 0.0086414231127668
619 => 0.0090624535887308
620 => 0.0084922261975816
621 => 0.009092677025082
622 => 0.0089025812256335
623 => 0.0084518675048186
624 => 0.0084228468547639
625 => 0.0087280754193936
626 => 0.0094050429985818
627 => 0.0092354702980978
628 => 0.009405320358772
629 => 0.0092071812408784
630 => 0.0091973419636274
701 => 0.0093956971840707
702 => 0.0098591649684166
703 => 0.009638988796904
704 => 0.0093233122656284
705 => 0.0095564029038515
706 => 0.0093544782215025
707 => 0.0088994853970103
708 => 0.0092353406290496
709 => 0.0090107637999912
710 => 0.0090763072578713
711 => 0.0095483343492698
712 => 0.009491538800804
713 => 0.009565037499645
714 => 0.0094353142199865
715 => 0.0093141322213019
716 => 0.0090879370216637
717 => 0.0090209717743394
718 => 0.0090394785595426
719 => 0.0090209626032958
720 => 0.0088944084679394
721 => 0.0088670791144585
722 => 0.0088215289946639
723 => 0.0088356468814517
724 => 0.0087499993300803
725 => 0.0089116339552052
726 => 0.0089416347659478
727 => 0.0090592589669046
728 => 0.0090714711016512
729 => 0.0093990528270401
730 => 0.0092186263174831
731 => 0.0093396719973693
801 => 0.0093288445324342
802 => 0.0084616358378322
803 => 0.0085811295445013
804 => 0.0087670242528875
805 => 0.0086832789387338
806 => 0.0085648826579061
807 => 0.0084692713131307
808 => 0.0083244103490341
809 => 0.0085282993741917
810 => 0.0087963917610933
811 => 0.0090782703670028
812 => 0.0094169290425852
813 => 0.0093413443686168
814 => 0.0090719393786289
815 => 0.0090840246896793
816 => 0.0091587313271981
817 => 0.0090619794437974
818 => 0.0090334454245614
819 => 0.0091548111911248
820 => 0.0091556469704577
821 => 0.0090443222357494
822 => 0.0089206051653326
823 => 0.0089200867862903
824 => 0.0088980725285747
825 => 0.0092110975284211
826 => 0.0093832296279394
827 => 0.0094029642957445
828 => 0.0093819013275585
829 => 0.009390007628054
830 => 0.0092898477520163
831 => 0.0095187835271499
901 => 0.0097288776338141
902 => 0.0096725679252222
903 => 0.0095881516671462
904 => 0.0095209100515507
905 => 0.0096567279375572
906 => 0.0096506801808905
907 => 0.0097270426450745
908 => 0.0097235784026082
909 => 0.0096979005780406
910 => 0.0096725688422582
911 => 0.009773006311266
912 => 0.0097440819331682
913 => 0.009715112627522
914 => 0.0096570102500698
915 => 0.0096649073281439
916 => 0.009580505645725
917 => 0.0095414575654797
918 => 0.0089542681280368
919 => 0.0087973519233837
920 => 0.0088467209556914
921 => 0.0088629745229935
922 => 0.0087946843896349
923 => 0.0088925948985753
924 => 0.0088773356494698
925 => 0.008936700461377
926 => 0.0088996119042179
927 => 0.0089011340315407
928 => 0.0090102035700315
929 => 0.0090418669210704
930 => 0.0090257626851775
1001 => 0.009037041539976
1002 => 0.0092969579883009
1003 => 0.0092600061810092
1004 => 0.0092403762698623
1005 => 0.0092458138894032
1006 => 0.0093122281146217
1007 => 0.0093308204716007
1008 => 0.0092520433486192
1009 => 0.0092891950952224
1010 => 0.009447382517
1011 => 0.0095027391619895
1012 => 0.009679411000099
1013 => 0.0096043576631786
1014 => 0.0097421213113284
1015 => 0.010165559798652
1016 => 0.010503831762041
1017 => 0.010192742884829
1018 => 0.010813936266917
1019 => 0.011297624419772
1020 => 0.011279059662841
1021 => 0.011194717445482
1022 => 0.010644051342972
1023 => 0.010137320185473
1024 => 0.010561222315662
1025 => 0.010562302929368
1026 => 0.010525889360445
1027 => 0.010299727811213
1028 => 0.010518019428765
1029 => 0.010535346624648
1030 => 0.010525648002627
1031 => 0.010352250473095
1101 => 0.010087504494719
1102 => 0.010139235225181
1103 => 0.010223971216957
1104 => 0.010063548306746
1105 => 0.010012283466566
1106 => 0.010107594557995
1107 => 0.010414706753431
1108 => 0.010356648971863
1109 => 0.010355132848557
1110 => 0.010603528658433
1111 => 0.010425730865732
1112 => 0.010139887715357
1113 => 0.010067708550079
1114 => 0.0098115211390549
1115 => 0.0099884706963576
1116 => 0.0099948387959077
1117 => 0.0098979253317537
1118 => 0.010147751708852
1119 => 0.010145449514806
1120 => 0.010382622478113
1121 => 0.010836008105857
1122 => 0.010701919665981
1123 => 0.010545989399187
1124 => 0.010562943342664
1125 => 0.010748886256719
1126 => 0.010636460926218
1127 => 0.010676889858923
1128 => 0.010748825062687
1129 => 0.010792225357169
1130 => 0.010556698708181
1201 => 0.01050178617976
1202 => 0.01038945441829
1203 => 0.010360149158493
1204 => 0.010451641034332
1205 => 0.010427536157504
1206 => 0.009994303581799
1207 => 0.0099490283671545
1208 => 0.0099504168933495
1209 => 0.0098365702134068
1210 => 0.0096629267001602
1211 => 0.010119251485257
1212 => 0.010082602218752
1213 => 0.010042144264959
1214 => 0.010047100133449
1215 => 0.010245175256377
1216 => 0.010130281682045
1217 => 0.010435745080094
1218 => 0.010372950988525
1219 => 0.010308546465452
1220 => 0.010299643798553
1221 => 0.010274853551906
1222 => 0.010189838572107
1223 => 0.010087177875391
1224 => 0.010019392391102
1225 => 0.0092423598577141
1226 => 0.0093865725761206
1227 => 0.0095524761632445
1228 => 0.0096097454167028
1229 => 0.0095117823957507
1230 => 0.010193706749266
1231 => 0.010318300899839
]
'min_raw' => 0.0043005697359272
'max_raw' => 0.011297624419772
'avg_raw' => 0.0077990970778496
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.00430056'
'max' => '$0.011297'
'avg' => '$0.007799'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00016674277915172
'max_diff' => -0.002037412234901
'year' => 2027
]
2 => [
'items' => [
101 => 0.0099408970906761
102 => 0.0098703002472777
103 => 0.010198335066566
104 => 0.010000489969909
105 => 0.010089579604819
106 => 0.0098970165435686
107 => 0.010288289817509
108 => 0.010285308970723
109 => 0.010133094829853
110 => 0.010261745179399
111 => 0.010239389015236
112 => 0.01006753962508
113 => 0.010293737749699
114 => 0.010293849941147
115 => 0.01014734713998
116 => 0.0099762639418036
117 => 0.0099456783067746
118 => 0.0099226361393821
119 => 0.010083912644151
120 => 0.010228512654029
121 => 0.010497577423029
122 => 0.010565226698777
123 => 0.010829266325688
124 => 0.010672043583718
125 => 0.010741738388858
126 => 0.010817401958769
127 => 0.01085367785662
128 => 0.010794568227744
129 => 0.011204730451383
130 => 0.011239360710104
131 => 0.011250971936302
201 => 0.011112667542243
202 => 0.011235514214714
203 => 0.011178038324919
204 => 0.011327574622904
205 => 0.011351023823803
206 => 0.011331163184871
207 => 0.011338606331357
208 => 0.010988605231056
209 => 0.010970455827602
210 => 0.01072298742369
211 => 0.010823832627479
212 => 0.010635307352633
213 => 0.010695090659312
214 => 0.01072144257126
215 => 0.010707677827916
216 => 0.010829534263994
217 => 0.010725931399703
218 => 0.010452506406951
219 => 0.010179006919742
220 => 0.010175573356468
221 => 0.010103565769153
222 => 0.010051517472372
223 => 0.010061543820844
224 => 0.010096877980619
225 => 0.010049463786771
226 => 0.010059582008989
227 => 0.01022761191517
228 => 0.01026130911452
229 => 0.010146792864783
301 => 0.0096869935974722
302 => 0.0095741577039551
303 => 0.0096552619065822
304 => 0.009616499321506
305 => 0.0077612654894546
306 => 0.0081971251592227
307 => 0.0079381521438423
308 => 0.0080574988241051
309 => 0.007793154436139
310 => 0.0079193134335529
311 => 0.0078960164733194
312 => 0.0085968659242813
313 => 0.0085859231240914
314 => 0.0085911608634622
315 => 0.008341149916437
316 => 0.008739424143585
317 => 0.0089356283493561
318 => 0.0088993161726738
319 => 0.0089084551652296
320 => 0.0087514169941896
321 => 0.0085926813362263
322 => 0.0084166190623023
323 => 0.0087437210052983
324 => 0.0087073528530535
325 => 0.0087907683094549
326 => 0.0090029173012176
327 => 0.0090341570461303
328 => 0.0090761435800952
329 => 0.0090610943964738
330 => 0.0094196270053031
331 => 0.0093762063406995
401 => 0.0094808376494163
402 => 0.0092656031089894
403 => 0.0090220447962462
404 => 0.0090683372689776
405 => 0.009063878931593
406 => 0.0090071191796458
407 => 0.0089558790134879
408 => 0.0088705785736622
409 => 0.0091404817873604
410 => 0.0091295242097854
411 => 0.0093069146539341
412 => 0.0092755591698519
413 => 0.009066159573163
414 => 0.0090736383207242
415 => 0.0091239364922366
416 => 0.0092980190381356
417 => 0.0093496985902019
418 => 0.0093257585626107
419 => 0.0093824228321903
420 => 0.0094272079604776
421 => 0.0093880471547792
422 => 0.0099424815806377
423 => 0.0097122417519879
424 => 0.0098244590424734
425 => 0.0098512222050315
426 => 0.0097826689269076
427 => 0.0097975356782238
428 => 0.0098200547555207
429 => 0.0099567861831797
430 => 0.010315609012915
501 => 0.010474529201614
502 => 0.010952648430302
503 => 0.010461333092219
504 => 0.010432180473322
505 => 0.010518304184226
506 => 0.010799010785526
507 => 0.011026497120449
508 => 0.011101967461745
509 => 0.011111942113227
510 => 0.01125352949067
511 => 0.011334684734973
512 => 0.011236337058931
513 => 0.011152997700916
514 => 0.01085448646497
515 => 0.01088903995335
516 => 0.011127079223242
517 => 0.011463323712407
518 => 0.011751856464388
519 => 0.011650822351026
520 => 0.012421641317009
521 => 0.012498064868973
522 => 0.012487505605161
523 => 0.012661609829885
524 => 0.012316048399517
525 => 0.012168314193097
526 => 0.011171016616061
527 => 0.011451216555969
528 => 0.01185850362419
529 => 0.011804597653463
530 => 0.011508814897706
531 => 0.011751632086644
601 => 0.011671349130386
602 => 0.011608026631842
603 => 0.011898119273342
604 => 0.011579150497663
605 => 0.011855321666654
606 => 0.011501129285799
607 => 0.011651283866345
608 => 0.011566048864267
609 => 0.011621206356621
610 => 0.011298756783375
611 => 0.011472742746077
612 => 0.011291518395314
613 => 0.011291432471375
614 => 0.011287431933788
615 => 0.011500641578789
616 => 0.011507594337658
617 => 0.01135003208786
618 => 0.011327324906079
619 => 0.011411285258439
620 => 0.011312989675077
621 => 0.011358981559867
622 => 0.011314382722415
623 => 0.011304342584709
624 => 0.011224341059281
625 => 0.011189874202439
626 => 0.011203389545108
627 => 0.011157254712941
628 => 0.01112945680779
629 => 0.01128190223079
630 => 0.011200456790912
701 => 0.011269419549037
702 => 0.01119082778236
703 => 0.010918394478254
704 => 0.010761715204134
705 => 0.010247113947259
706 => 0.010393054225348
707 => 0.010489812780707
708 => 0.010457834078738
709 => 0.010526536704682
710 => 0.010530754487936
711 => 0.010508418563901
712 => 0.010482556425277
713 => 0.010469968166462
714 => 0.010563790734308
715 => 0.010618257892865
716 => 0.0104995237962
717 => 0.010471706058618
718 => 0.010591752785835
719 => 0.010664981220089
720 => 0.011205658835118
721 => 0.011165603691031
722 => 0.011266134242264
723 => 0.011254816044962
724 => 0.011360188078428
725 => 0.011532426819599
726 => 0.011182217300088
727 => 0.011243001563341
728 => 0.011228098665705
729 => 0.011390804594346
730 => 0.011391312544495
731 => 0.011293762212511
801 => 0.011346645830053
802 => 0.011317127645527
803 => 0.011370470994587
804 => 0.011165068730161
805 => 0.011415226516427
806 => 0.011557049861429
807 => 0.011559019078712
808 => 0.011626242218663
809 => 0.011694544822155
810 => 0.011825645721654
811 => 0.011690888489223
812 => 0.01144847334643
813 => 0.011465974936744
814 => 0.011323847027221
815 => 0.011326236223058
816 => 0.011313482508437
817 => 0.011351757366068
818 => 0.011173467909029
819 => 0.011215312088236
820 => 0.011156729992307
821 => 0.011242874217305
822 => 0.011150197271358
823 => 0.011228091479076
824 => 0.011261708036894
825 => 0.011385753858953
826 => 0.011131875602581
827 => 0.01061420065179
828 => 0.010723022202649
829 => 0.010562066581181
830 => 0.010576963636749
831 => 0.010607058059845
901 => 0.010509512188307
902 => 0.010528120866573
903 => 0.010527456033638
904 => 0.010521726862577
905 => 0.01049635141399
906 => 0.010459551993159
907 => 0.010606149559485
908 => 0.010631059342645
909 => 0.010686430704941
910 => 0.010851178320378
911 => 0.010834716148579
912 => 0.010861566633791
913 => 0.010802952175332
914 => 0.010579682593367
915 => 0.01059180720585
916 => 0.010440613093902
917 => 0.010682564331567
918 => 0.010625267084888
919 => 0.010588327177213
920 => 0.010578247781158
921 => 0.010743403774068
922 => 0.01079282103565
923 => 0.010762027514501
924 => 0.010698869104235
925 => 0.010820151923054
926 => 0.010852602088859
927 => 0.010859866484266
928 => 0.01107475638554
929 => 0.010871876442618
930 => 0.010920711661333
1001 => 0.011301710097115
1002 => 0.010956197090051
1003 => 0.011139223035752
1004 => 0.011130264868131
1005 => 0.011223894748692
1006 => 0.011122584485074
1007 => 0.011123840347211
1008 => 0.011206977338111
1009 => 0.011090226428227
1010 => 0.011061317261068
1011 => 0.011021379453689
1012 => 0.011108582195005
1013 => 0.011160856294583
1014 => 0.011582147146089
1015 => 0.011854320249359
1016 => 0.01184250449714
1017 => 0.011950478354255
1018 => 0.011901835142698
1019 => 0.011744753381148
1020 => 0.012012872794034
1021 => 0.011928028593204
1022 => 0.011935023046035
1023 => 0.011934762712151
1024 => 0.011991176688494
1025 => 0.01195120221599
1026 => 0.011872408427389
1027 => 0.011924715421414
1028 => 0.012080048493578
1029 => 0.012562207115772
1030 => 0.012832029468505
1031 => 0.012545963471339
1101 => 0.012743287965608
1102 => 0.012624963582953
1103 => 0.012603460522779
1104 => 0.012727394887345
1105 => 0.01285154618261
1106 => 0.012843638281823
1107 => 0.0127535108167
1108 => 0.012702600098552
1109 => 0.013088113112712
1110 => 0.013372152534502
1111 => 0.01335278295016
1112 => 0.013438273996118
1113 => 0.013689278351189
1114 => 0.013712227043728
1115 => 0.013709336035937
1116 => 0.013652455307032
1117 => 0.013899601691633
1118 => 0.014105775553795
1119 => 0.013639289061732
1120 => 0.013816921011153
1121 => 0.013896665716192
1122 => 0.014013754602377
1123 => 0.014211303179747
1124 => 0.014425893331943
1125 => 0.014456238732325
1126 => 0.014434707218593
1127 => 0.014293179244726
1128 => 0.014527986349852
1129 => 0.014665530845131
1130 => 0.014747435444419
1201 => 0.014955131880589
1202 => 0.013897158192342
1203 => 0.013148271831097
1204 => 0.013031322411738
1205 => 0.013269143654813
1206 => 0.013331855220022
1207 => 0.01330657626672
1208 => 0.012463636581369
1209 => 0.013026884508745
1210 => 0.013632891919371
1211 => 0.013656171132056
1212 => 0.013959551112832
1213 => 0.014058344070539
1214 => 0.014302604719987
1215 => 0.014287326149859
1216 => 0.014346799730964
1217 => 0.014333127784607
1218 => 0.014785569202562
1219 => 0.015284679274767
1220 => 0.015267396680039
1221 => 0.015195643701957
1222 => 0.015302209110109
1223 => 0.015817344192511
1224 => 0.015769918808995
1225 => 0.015815988529396
1226 => 0.016423361823288
1227 => 0.017213033503192
1228 => 0.016846151726136
1229 => 0.01764217961496
1230 => 0.018143236975349
1231 => 0.019009763869843
]
'min_raw' => 0.0077612654894546
'max_raw' => 0.019009763869843
'avg_raw' => 0.013385514679649
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.007761'
'max' => '$0.0190097'
'avg' => '$0.013385'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0034606957535274
'max_diff' => 0.0077121394500712
'year' => 2028
]
3 => [
'items' => [
101 => 0.018901270434918
102 => 0.019238602996076
103 => 0.018707044543137
104 => 0.017486478889502
105 => 0.017293319702677
106 => 0.017680029286271
107 => 0.018630717062968
108 => 0.017650088744972
109 => 0.01784846857653
110 => 0.017791335171695
111 => 0.017788290775353
112 => 0.017904483001283
113 => 0.017735940117393
114 => 0.017049266088137
115 => 0.017363964749149
116 => 0.017242444483062
117 => 0.017377280278222
118 => 0.018104933454191
119 => 0.01778322064001
120 => 0.017444322324097
121 => 0.017869376019808
122 => 0.018410615438746
123 => 0.01837674564861
124 => 0.018311024099271
125 => 0.018681493031824
126 => 0.019293399171189
127 => 0.019458794941821
128 => 0.019580886718334
129 => 0.019597721111558
130 => 0.019771125824279
131 => 0.018838684980363
201 => 0.020318492546436
202 => 0.020574014434238
203 => 0.020525986909628
204 => 0.020809988733915
205 => 0.020726428192779
206 => 0.02060536207892
207 => 0.021055565379335
208 => 0.020539443624942
209 => 0.019806873772504
210 => 0.019404971462867
211 => 0.019934228844731
212 => 0.020257427859298
213 => 0.020471041848609
214 => 0.020535681312705
215 => 0.018911067708758
216 => 0.018035491081431
217 => 0.018596725661041
218 => 0.019281470582507
219 => 0.018834881187751
220 => 0.01885238664652
221 => 0.018215667531226
222 => 0.019337806095918
223 => 0.019174319945714
224 => 0.020022486382178
225 => 0.019820064655155
226 => 0.02051171145846
227 => 0.020329577675541
228 => 0.021085604825475
301 => 0.021387204524201
302 => 0.021893637358607
303 => 0.022266171413149
304 => 0.022484930535417
305 => 0.022471797058261
306 => 0.023338629686049
307 => 0.022827488770268
308 => 0.022185375313383
309 => 0.022173761506789
310 => 0.022506321164928
311 => 0.023203274975101
312 => 0.023383984957813
313 => 0.02348497718524
314 => 0.023330304073371
315 => 0.02277549724309
316 => 0.022535934466709
317 => 0.022740048892987
318 => 0.022490434489402
319 => 0.022921338979422
320 => 0.023513062880453
321 => 0.02339087423482
322 => 0.023799332557626
323 => 0.024222043950661
324 => 0.024826540227857
325 => 0.024984577939149
326 => 0.025245808266278
327 => 0.025514700082586
328 => 0.025601060887146
329 => 0.025765950459236
330 => 0.025765081409799
331 => 0.02626198723364
401 => 0.026810089745229
402 => 0.027016985754751
403 => 0.027492731720336
404 => 0.026678033426399
405 => 0.02729599144093
406 => 0.027853405038528
407 => 0.027188833568006
408 => 0.028104790514827
409 => 0.028140355047469
410 => 0.028677337266206
411 => 0.028133002914171
412 => 0.02780977891351
413 => 0.028742914492374
414 => 0.029194429405491
415 => 0.02905842943911
416 => 0.028023462979803
417 => 0.027421068108687
418 => 0.025844484537683
419 => 0.027712015880879
420 => 0.028621635921513
421 => 0.028021107283646
422 => 0.028323978997922
423 => 0.029976348864526
424 => 0.030605464326703
425 => 0.030474612708419
426 => 0.030496724477908
427 => 0.030836183762046
428 => 0.032341533171553
429 => 0.03143949291165
430 => 0.032129068891542
501 => 0.032494817504826
502 => 0.032834545200236
503 => 0.032000281352351
504 => 0.030914916344022
505 => 0.030571135685361
506 => 0.027961396545736
507 => 0.027825548289996
508 => 0.027749292547425
509 => 0.027268510877108
510 => 0.026890748181422
511 => 0.026590337260382
512 => 0.025801969293279
513 => 0.026068020339392
514 => 0.024811526345013
515 => 0.025615386675204
516 => 0.023609991921066
517 => 0.025280144262939
518 => 0.024371156275766
519 => 0.024981517261999
520 => 0.024979387770018
521 => 0.023855519679236
522 => 0.023207296019002
523 => 0.023620369364546
524 => 0.024063216780771
525 => 0.024135067284136
526 => 0.024709230518773
527 => 0.024869467135962
528 => 0.024383942705145
529 => 0.023568434572202
530 => 0.023757858511725
531 => 0.023203457348914
601 => 0.022231890635819
602 => 0.022929686811091
603 => 0.023167945105261
604 => 0.023273173541242
605 => 0.022317749264105
606 => 0.022017534212958
607 => 0.021857702238776
608 => 0.023445101295728
609 => 0.023532062599419
610 => 0.023087156274648
611 => 0.02509817505036
612 => 0.024643019565508
613 => 0.025151539757889
614 => 0.023740670274661
615 => 0.023794567388908
616 => 0.023126639165362
617 => 0.023500634339568
618 => 0.023236306604866
619 => 0.023470419225384
620 => 0.02361074536484
621 => 0.024278563987938
622 => 0.025287769678883
623 => 0.024178814155435
624 => 0.023695626353334
625 => 0.023995393348206
626 => 0.024793712358384
627 => 0.026003206524003
628 => 0.025287161634618
629 => 0.025604930197296
630 => 0.025674348491702
701 => 0.025146363499692
702 => 0.026022674083768
703 => 0.026492296044908
704 => 0.026974031002466
705 => 0.027392307968207
706 => 0.026781615466839
707 => 0.027435143982634
708 => 0.026908515362216
709 => 0.026436075047835
710 => 0.026436791544777
711 => 0.026140422834314
712 => 0.025566171112931
713 => 0.025460270284906
714 => 0.026011179766093
715 => 0.026452956998682
716 => 0.026489343887529
717 => 0.026733934462824
718 => 0.0268786806458
719 => 0.028297390011864
720 => 0.028868006655074
721 => 0.029565745885171
722 => 0.029837554637722
723 => 0.03065560153407
724 => 0.029994962226748
725 => 0.029852028756993
726 => 0.027867714567554
727 => 0.028192645904911
728 => 0.028712892327231
729 => 0.027876293239439
730 => 0.028406922802078
731 => 0.028511680318013
801 => 0.027847865922565
802 => 0.028202437872901
803 => 0.027260799896065
804 => 0.025308294813578
805 => 0.026024847780078
806 => 0.026552471952542
807 => 0.025799487202844
808 => 0.027149183222144
809 => 0.02636071867105
810 => 0.026110813261327
811 => 0.025135843160283
812 => 0.025595991517935
813 => 0.026218348760349
814 => 0.025833804341332
815 => 0.026631791750426
816 => 0.027761954737172
817 => 0.028567376183897
818 => 0.028629206441618
819 => 0.028111374410421
820 => 0.028941203545175
821 => 0.028947247944477
822 => 0.028011197290522
823 => 0.027437871476927
824 => 0.02730761064579
825 => 0.02763302774111
826 => 0.028028144170138
827 => 0.028651132653559
828 => 0.029027591546505
829 => 0.03000919668094
830 => 0.030274790885493
831 => 0.030566598393166
901 => 0.030956543213519
902 => 0.031424771950153
903 => 0.030400314130675
904 => 0.030441017749671
905 => 0.029487056812757
906 => 0.028467612739827
907 => 0.029241243715683
908 => 0.030252663304799
909 => 0.030020642533536
910 => 0.029994535457015
911 => 0.030038440318225
912 => 0.029863504233783
913 => 0.029072274807286
914 => 0.028674924342657
915 => 0.029187607816943
916 => 0.02946007626661
917 => 0.029882651070296
918 => 0.02983055980627
919 => 0.030919067119347
920 => 0.031342028146456
921 => 0.031233816616198
922 => 0.031253730142022
923 => 0.032019480878351
924 => 0.032871153185799
925 => 0.033668856689783
926 => 0.034480314956199
927 => 0.033502070344279
928 => 0.033005378060087
929 => 0.033517837712805
930 => 0.033245919407681
1001 => 0.034808442645135
1002 => 0.034916628363938
1003 => 0.036479038613177
1004 => 0.037961951988056
1005 => 0.037030560666447
1006 => 0.037908820731938
1007 => 0.03885873059836
1008 => 0.04069126084801
1009 => 0.040074129129119
1010 => 0.039601415904136
1011 => 0.039154704190661
1012 => 0.040084240352916
1013 => 0.041280073775954
1014 => 0.041537644841726
1015 => 0.041955008367997
1016 => 0.041516201652907
1017 => 0.042044696008259
1018 => 0.043910513314839
1019 => 0.043406353008576
1020 => 0.042690364325869
1021 => 0.044163247894415
1022 => 0.044696278732182
1023 => 0.048437368302046
1024 => 0.053160648420702
1025 => 0.051205179436849
1026 => 0.049991356735982
1027 => 0.050276633862945
1028 => 0.052001415869156
1029 => 0.052555361107706
1030 => 0.051049546992952
1031 => 0.051581425995027
1101 => 0.054512131589649
1102 => 0.056084361112871
1103 => 0.053949062241739
1104 => 0.048057857343468
1105 => 0.042625897378793
1106 => 0.04406669776577
1107 => 0.043903355715128
1108 => 0.047052033263581
1109 => 0.043394328952009
1110 => 0.04345591531191
1111 => 0.046669704177557
1112 => 0.045812320406492
1113 => 0.044423468502783
1114 => 0.042636037534686
1115 => 0.039331806072805
1116 => 0.036405156121706
1117 => 0.042144990643042
1118 => 0.04189747854127
1119 => 0.041539044338666
1120 => 0.04233670086993
1121 => 0.046209894566989
1122 => 0.046120604915967
1123 => 0.045552589712147
1124 => 0.045983424237988
1125 => 0.044347941127349
1126 => 0.044769442364219
1127 => 0.042625036928582
1128 => 0.043594397743772
1129 => 0.044420488650363
1130 => 0.044586338630346
1201 => 0.044960007103758
1202 => 0.041767050910673
1203 => 0.0432005945011
1204 => 0.044042667055605
1205 => 0.040238152619486
1206 => 0.04396746403765
1207 => 0.041711468647038
1208 => 0.040945749927551
1209 => 0.04197668930757
1210 => 0.041574931228555
1211 => 0.041229523224244
1212 => 0.041036779622976
1213 => 0.041793787723035
1214 => 0.041758472390346
1215 => 0.040519860209709
1216 => 0.03890414111236
1217 => 0.039446429475602
1218 => 0.039249411029255
1219 => 0.038535390763811
1220 => 0.039016554211585
1221 => 0.036897753898836
1222 => 0.033252468086409
1223 => 0.035660655552223
1224 => 0.035567942954393
1225 => 0.035521193058385
1226 => 0.037330879381531
1227 => 0.037156919798128
1228 => 0.036841181450833
1229 => 0.038529591981458
1230 => 0.037913299425453
1231 => 0.03981256786627
]
'min_raw' => 0.017049266088137
'max_raw' => 0.056084361112871
'avg_raw' => 0.036566813600504
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.017049'
'max' => '$0.056084'
'avg' => '$0.036566'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.0092880005986823
'max_diff' => 0.037074597243028
'year' => 2029
]
4 => [
'items' => [
101 => 0.041063548898373
102 => 0.040746259643635
103 => 0.041922813350843
104 => 0.039458922704222
105 => 0.040277328342895
106 => 0.040446000610764
107 => 0.038508757257595
108 => 0.037185381737367
109 => 0.037097127677753
110 => 0.034802576898059
111 => 0.036028307403605
112 => 0.037106899524311
113 => 0.036590337600622
114 => 0.036426809527431
115 => 0.037262238988453
116 => 0.037327159012544
117 => 0.035846975583356
118 => 0.036154752589598
119 => 0.037438233869293
120 => 0.036122412154423
121 => 0.033565985500687
122 => 0.032931956345196
123 => 0.032847365168378
124 => 0.031127827813202
125 => 0.032974325205094
126 => 0.03216827961048
127 => 0.034714567985959
128 => 0.033260141721904
129 => 0.033197444312585
130 => 0.03310266798269
131 => 0.031622591147896
201 => 0.031946633910926
202 => 0.033023801408344
203 => 0.033408146906583
204 => 0.033368056522267
205 => 0.03301852269996
206 => 0.033178537493909
207 => 0.032663074089749
208 => 0.032481053233296
209 => 0.031906545341552
210 => 0.031062177452545
211 => 0.03117959198632
212 => 0.029506678257319
213 => 0.028595186069508
214 => 0.028342897045196
215 => 0.028005525618001
216 => 0.028381004045608
217 => 0.029501939102916
218 => 0.028149853604165
219 => 0.025831797854326
220 => 0.025971116954666
221 => 0.026284125608918
222 => 0.025700836052479
223 => 0.025148801439091
224 => 0.025628750747448
225 => 0.024646559967853
226 => 0.026402818672161
227 => 0.026355316796067
228 => 0.027009941434723
301 => 0.027419291655525
302 => 0.026475871925285
303 => 0.026238604414408
304 => 0.026373762771811
305 => 0.024139896192904
306 => 0.026827386877117
307 => 0.026850628408155
308 => 0.026651620309069
309 => 0.028082626131446
310 => 0.031102494758572
311 => 0.029966298707113
312 => 0.029526329254281
313 => 0.028689947002831
314 => 0.029804376693424
315 => 0.029718805880998
316 => 0.02933182221544
317 => 0.029097773287048
318 => 0.029529015613942
319 => 0.029044337590398
320 => 0.028957276099308
321 => 0.02842977818714
322 => 0.028241485432122
323 => 0.028102080972457
324 => 0.027948610359965
325 => 0.028287128288628
326 => 0.027520002126535
327 => 0.026594923177356
328 => 0.026518012872225
329 => 0.026730368986716
330 => 0.026636417214107
331 => 0.026517563067283
401 => 0.026290638132997
402 => 0.026223314352478
403 => 0.026442083978309
404 => 0.026195105825807
405 => 0.02655953554342
406 => 0.026460430825045
407 => 0.025906839924389
408 => 0.02521686069657
409 => 0.025210718434162
410 => 0.025062063541321
411 => 0.024872729184875
412 => 0.024820060698295
413 => 0.025588330755386
414 => 0.027178626781175
415 => 0.026866413618754
416 => 0.027092019625495
417 => 0.028201777888189
418 => 0.028554536668305
419 => 0.028304156841728
420 => 0.027961421492356
421 => 0.027976500108317
422 => 0.029147730550169
423 => 0.029220778756167
424 => 0.029405348006479
425 => 0.029642571652394
426 => 0.028344557054412
427 => 0.02791536373748
428 => 0.02771198813318
429 => 0.027085669988197
430 => 0.027761100411101
501 => 0.02736755602849
502 => 0.027420658611094
503 => 0.027386075484509
504 => 0.027404960210126
505 => 0.02640232776206
506 => 0.026767634329325
507 => 0.026160241308873
508 => 0.025347010237554
509 => 0.025344284001847
510 => 0.025543321154449
511 => 0.025424926067757
512 => 0.025106327933685
513 => 0.025151583294889
514 => 0.024755098710811
515 => 0.025199723701981
516 => 0.025212473955783
517 => 0.025041269115296
518 => 0.025726275260618
519 => 0.026006922837268
520 => 0.025894232143696
521 => 0.025999016157797
522 => 0.02687938748521
523 => 0.027022926424873
524 => 0.027086676940221
525 => 0.027001259694979
526 => 0.026015107729541
527 => 0.02605884776265
528 => 0.025737912421664
529 => 0.025466755877863
530 => 0.025477600717586
531 => 0.025617010428983
601 => 0.026225820814925
602 => 0.027507026380807
603 => 0.027555647195483
604 => 0.02761457704124
605 => 0.02737487974278
606 => 0.02730258474397
607 => 0.027397960508322
608 => 0.027879113956279
609 => 0.029116771256311
610 => 0.028679300506128
611 => 0.028323629976592
612 => 0.028635648919081
613 => 0.02858761604857
614 => 0.028182170282885
615 => 0.028170790770621
616 => 0.027392610717419
617 => 0.027104935270052
618 => 0.026864532134099
619 => 0.02660201818552
620 => 0.026446391117256
621 => 0.026685505025348
622 => 0.026740193205241
623 => 0.026217366466202
624 => 0.026146107113582
625 => 0.02657305871468
626 => 0.026385173233397
627 => 0.026578418110233
628 => 0.026623252579282
629 => 0.02661603319714
630 => 0.02641985917617
701 => 0.026544894647143
702 => 0.026249148483425
703 => 0.025927568950019
704 => 0.025722421242819
705 => 0.025543402659392
706 => 0.025642732574098
707 => 0.025288639565096
708 => 0.025175358085032
709 => 0.026502535442965
710 => 0.02748293562683
711 => 0.027468680219876
712 => 0.027381904096233
713 => 0.027252972378395
714 => 0.027869681798053
715 => 0.027654832567738
716 => 0.027811153334046
717 => 0.027850943529834
718 => 0.027971376468442
719 => 0.028014420892433
720 => 0.027884310746856
721 => 0.027447645206684
722 => 0.026359516197489
723 => 0.02585298920636
724 => 0.025685826862413
725 => 0.025691902896129
726 => 0.025524298761634
727 => 0.025573665690733
728 => 0.025507130958344
729 => 0.025381130271679
730 => 0.025634952386757
731 => 0.025664203021003
801 => 0.025604957906396
802 => 0.02561891227559
803 => 0.025128388030558
804 => 0.025165681523545
805 => 0.024958026615565
806 => 0.024919093823636
807 => 0.024394160298843
808 => 0.023464164469341
809 => 0.023979472435765
810 => 0.02335705287559
811 => 0.023121333156957
812 => 0.02423719364303
813 => 0.02412519219938
814 => 0.02393349441371
815 => 0.023649933435383
816 => 0.023544757910218
817 => 0.02290574471384
818 => 0.022867988405195
819 => 0.023184700600128
820 => 0.023038548819567
821 => 0.022833296367653
822 => 0.022089892792927
823 => 0.02125406104247
824 => 0.021279289549165
825 => 0.021545152077783
826 => 0.022318183236186
827 => 0.022016146589023
828 => 0.021797015536035
829 => 0.021755978876866
830 => 0.022269638582436
831 => 0.022996574680852
901 => 0.023337636833951
902 => 0.022999654598442
903 => 0.022611398804545
904 => 0.022635030135715
905 => 0.022792238794969
906 => 0.022808759202246
907 => 0.022556044593759
908 => 0.022627182275764
909 => 0.022519117631833
910 => 0.0218559251115
911 => 0.021843930061813
912 => 0.0216811719219
913 => 0.021676243670107
914 => 0.021399351472193
915 => 0.02136061233964
916 => 0.020810826074527
917 => 0.02117269705913
918 => 0.020929973001737
919 => 0.02056413059443
920 => 0.020501059225515
921 => 0.020499163224005
922 => 0.020874801575445
923 => 0.021168307506286
924 => 0.020934195290635
925 => 0.020880892477206
926 => 0.021450027073098
927 => 0.021377599507994
928 => 0.021314877703721
929 => 0.022931485526344
930 => 0.021651814289256
1001 => 0.021093804588806
1002 => 0.020403161621329
1003 => 0.020628038454064
1004 => 0.020675423306849
1005 => 0.019014551467821
1006 => 0.018340735969576
1007 => 0.018109507882779
1008 => 0.017976432849743
1009 => 0.018037076813349
1010 => 0.017430563834253
1011 => 0.017838150587004
1012 => 0.017312961614373
1013 => 0.017224911973998
1014 => 0.018164014915492
1015 => 0.018294685603641
1016 => 0.017737203851797
1017 => 0.018095197384578
1018 => 0.017965383953109
1019 => 0.017321964471925
1020 => 0.017297390580417
1021 => 0.016974545302047
1022 => 0.016469354956562
1023 => 0.016238469412609
1024 => 0.016118222216678
1025 => 0.01616783855329
1026 => 0.016142751015214
1027 => 0.015979037859403
1028 => 0.01615213486167
1029 => 0.015709943549498
1030 => 0.015533859406014
1031 => 0.015454326283523
1101 => 0.015061856042388
1102 => 0.015686450728342
1103 => 0.015809503749911
1104 => 0.015932799223946
1105 => 0.017006002148025
1106 => 0.016952387962778
1107 => 0.017437034086243
1108 => 0.017418201629092
1109 => 0.017279972703933
1110 => 0.016696807606242
1111 => 0.016929246820263
1112 => 0.016213835048579
1113 => 0.016749870191197
1114 => 0.016505246137469
1115 => 0.016667162552562
1116 => 0.01637602223881
1117 => 0.016537151309329
1118 => 0.015838684186292
1119 => 0.015186465414496
1120 => 0.01544893728772
1121 => 0.015734274231213
1122 => 0.016352957427207
1123 => 0.015984474819698
1124 => 0.016116995099229
1125 => 0.01567307434643
1126 => 0.014757139033711
1127 => 0.014762323128111
1128 => 0.014621426434984
1129 => 0.014499671120869
1130 => 0.016026799479797
1201 => 0.015836876928038
1202 => 0.015534260198258
1203 => 0.015939324716579
1204 => 0.016046430204462
1205 => 0.016049479347129
1206 => 0.016345003963468
1207 => 0.016502725504183
1208 => 0.016530524609339
1209 => 0.016995538978379
1210 => 0.017151405661194
1211 => 0.017793398468628
1212 => 0.016489343933393
1213 => 0.016462487788396
1214 => 0.015945024805036
1215 => 0.015616841600222
1216 => 0.015967495789842
1217 => 0.016278127532775
1218 => 0.015954676999171
1219 => 0.015996912810446
1220 => 0.015562706895962
1221 => 0.015717915079103
1222 => 0.015851601275224
1223 => 0.015777787615438
1224 => 0.015667284994116
1225 => 0.016252659272252
1226 => 0.01621963016138
1227 => 0.016764744146877
1228 => 0.017189699480047
1229 => 0.017951295406941
1230 => 0.017156530354334
1231 => 0.017127565956912
]
'min_raw' => 0.014499671120869
'max_raw' => 0.041922813350843
'avg_raw' => 0.028211242235856
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.014499'
'max' => '$0.041922'
'avg' => '$0.028211'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0025495949672678
'max_diff' => -0.014161547762028
'year' => 2030
]
5 => [
'items' => [
101 => 0.017410697587747
102 => 0.017151362315216
103 => 0.017315253255507
104 => 0.017924890042716
105 => 0.017937770707377
106 => 0.017722002978512
107 => 0.017708873492601
108 => 0.01775031404517
109 => 0.017993032655938
110 => 0.017908219315346
111 => 0.01800636746029
112 => 0.018129103218441
113 => 0.018636790353033
114 => 0.018759192002417
115 => 0.018461819452394
116 => 0.018488668864121
117 => 0.018377443367354
118 => 0.018270000931128
119 => 0.018511515837056
120 => 0.018952889074629
121 => 0.018950143314625
122 => 0.019052533326672
123 => 0.019116321455932
124 => 0.018842496109381
125 => 0.018664245877614
126 => 0.01873259835883
127 => 0.018841895464819
128 => 0.018697154780428
129 => 0.017803748225957
130 => 0.018074750703552
131 => 0.018029642639936
201 => 0.017965403272019
202 => 0.01823789835884
203 => 0.01821161554296
204 => 0.017424343167013
205 => 0.017474741790222
206 => 0.017427408074215
207 => 0.017580352994199
208 => 0.017143102787615
209 => 0.017277598006235
210 => 0.017361952146539
211 => 0.017411637383218
212 => 0.017591134527585
213 => 0.017570072609442
214 => 0.017589825289181
215 => 0.017855972168789
216 => 0.019202051755266
217 => 0.019275315897201
218 => 0.018914536467213
219 => 0.019058660733434
220 => 0.018781973658803
221 => 0.018967715545645
222 => 0.01909479542729
223 => 0.018520545878192
224 => 0.018486542546743
225 => 0.018208713486132
226 => 0.018358003086262
227 => 0.018120472598153
228 => 0.018178754271471
301 => 0.018015793631968
302 => 0.018309090337934
303 => 0.018637041628903
304 => 0.018719895076191
305 => 0.018501943327028
306 => 0.018344131896915
307 => 0.018067067011952
308 => 0.018527832090439
309 => 0.01866257384095
310 => 0.018527124349385
311 => 0.018495737742559
312 => 0.018436260179339
313 => 0.018508356188765
314 => 0.018661840008439
315 => 0.018589459873482
316 => 0.018637268227795
317 => 0.018455072080914
318 => 0.018842586756965
319 => 0.019458053323019
320 => 0.019460032148668
321 => 0.019387651623555
322 => 0.019358035072138
323 => 0.019432301883322
324 => 0.019472588581805
325 => 0.019712753830969
326 => 0.019970460711928
327 => 0.021173066279041
328 => 0.0208353794481
329 => 0.021902402650567
330 => 0.022746279468097
331 => 0.022999321227414
401 => 0.022766534715378
402 => 0.021970184632582
403 => 0.021931111898331
404 => 0.023121195132361
405 => 0.022784942109482
406 => 0.022744945882359
407 => 0.022319453600461
408 => 0.022570972237307
409 => 0.022515961421873
410 => 0.022429124158489
411 => 0.022909004196651
412 => 0.023807296788905
413 => 0.023667289464267
414 => 0.023562780491179
415 => 0.023104852593208
416 => 0.023380627469685
417 => 0.023282429318291
418 => 0.023704350894765
419 => 0.02345441389957
420 => 0.02278239466212
421 => 0.022889415940688
422 => 0.022873239889729
423 => 0.023206141872211
424 => 0.023106212960205
425 => 0.022853727165859
426 => 0.023804226522481
427 => 0.023742506381217
428 => 0.023830011430341
429 => 0.023868533859149
430 => 0.024447086067848
501 => 0.024684100396146
502 => 0.024737906798189
503 => 0.024963052078726
504 => 0.024732304978507
505 => 0.02565545789928
506 => 0.026269300724127
507 => 0.026982310753251
508 => 0.028024210044829
509 => 0.02841597381657
510 => 0.028345205197746
511 => 0.029135161349589
512 => 0.03055469499471
513 => 0.028632133533446
514 => 0.030656595420501
515 => 0.030015674160596
516 => 0.028496061383041
517 => 0.028398216235225
518 => 0.029427315651252
519 => 0.031709759108851
520 => 0.031138032909982
521 => 0.031710694248097
522 => 0.031042654378488
523 => 0.03100948056828
524 => 0.031678249042724
525 => 0.033240863035933
526 => 0.032498523701469
527 => 0.031434198236442
528 => 0.032220079597079
529 => 0.031539276432609
530 => 0.030005236358249
531 => 0.031137595721733
601 => 0.030380419263109
602 => 0.03060140360745
603 => 0.032192875901979
604 => 0.032001385744988
605 => 0.032249191739645
606 => 0.031811820645287
607 => 0.031403247076065
608 => 0.03064061416804
609 => 0.030414836161322
610 => 0.030477233079737
611 => 0.030414805240508
612 => 0.029988119137426
613 => 0.029895976314091
614 => 0.029742400904996
615 => 0.02979000034598
616 => 0.02950123364681
617 => 0.030046196070388
618 => 0.030147345898396
619 => 0.030543924104182
620 => 0.030585098169104
621 => 0.031689562827278
622 => 0.03108124225333
623 => 0.031489356214206
624 => 0.031452850660228
625 => 0.0285289959998
626 => 0.028931877374619
627 => 0.029558634362697
628 => 0.029276281189117
629 => 0.028877099862142
630 => 0.028554739537861
701 => 0.028066330683539
702 => 0.028753756766935
703 => 0.029657648966987
704 => 0.030608022366947
705 => 0.031749833736066
706 => 0.031494994730628
707 => 0.030586676997628
708 => 0.030627423467604
709 => 0.03087930211185
710 => 0.030553096381964
711 => 0.030456891943928
712 => 0.030866085099383
713 => 0.030868902987756
714 => 0.030493563872243
715 => 0.030076443131683
716 => 0.030074695380549
717 => 0.030000472773675
718 => 0.031055858415364
719 => 0.03163621380677
720 => 0.031702750617105
721 => 0.031631735349297
722 => 0.031659066307381
723 => 0.031321370292381
724 => 0.032093243242029
725 => 0.03280159019095
726 => 0.032611738077014
727 => 0.032327122769155
728 => 0.032100412967516
729 => 0.032558332452689
730 => 0.032537942018846
731 => 0.032795403398299
801 => 0.032783723462958
802 => 0.03269714888466
803 => 0.032611741168865
804 => 0.032950373107945
805 => 0.032852852547752
806 => 0.032755180511194
807 => 0.032559284289035
808 => 0.032585909839118
809 => 0.032301343674106
810 => 0.032169690345309
811 => 0.030189940160713
812 => 0.029660886221185
813 => 0.029827337360447
814 => 0.029882137397393
815 => 0.02965189244491
816 => 0.029982004561696
817 => 0.02993055693797
818 => 0.030130709546034
819 => 0.030005662886132
820 => 0.030010794844672
821 => 0.030378530408686
822 => 0.030485285607378
823 => 0.030430989051703
824 => 0.030469016498121
825 => 0.031345342950435
826 => 0.031220757352258
827 => 0.03115457373631
828 => 0.031172907050235
829 => 0.031396827247452
830 => 0.031459512677083
831 => 0.031193910106908
901 => 0.031319169814433
902 => 0.031852509751249
903 => 0.032039148544709
904 => 0.032634809981729
905 => 0.032381762416245
906 => 0.032846242174333
907 => 0.034273894597876
908 => 0.035414402139836
909 => 0.034365544270782
910 => 0.036459941128832
911 => 0.03809072950621
912 => 0.038028137132066
913 => 0.037743771457655
914 => 0.035887162246763
915 => 0.034178682770417
916 => 0.035607898398251
917 => 0.035611541762807
918 => 0.035488770872868
919 => 0.034726251419537
920 => 0.035462236848748
921 => 0.035520656699413
922 => 0.035487957118133
923 => 0.034903335241085
924 => 0.034010725691017
925 => 0.034185139460495
926 => 0.034470832772845
927 => 0.033929955730699
928 => 0.033757112742838
929 => 0.034078460741996
930 => 0.035113910950797
1001 => 0.034918165086778
1002 => 0.034913053371197
1003 => 0.035750537186636
1004 => 0.035151079515101
1005 => 0.034187339376679
1006 => 0.033943982281556
1007 => 0.033080228538854
1008 => 0.033676826325524
1009 => 0.033698296817764
1010 => 0.033371546307086
1011 => 0.034213853379795
1012 => 0.034206091371835
1013 => 0.03500573657651
1014 => 0.036534357874824
1015 => 0.036082269338027
1016 => 0.035556539556824
1017 => 0.035613700960947
1018 => 0.036240620477801
1019 => 0.035861570626731
1020 => 0.035997879596005
1021 => 0.036240414157851
1022 => 0.036386741280807
1023 => 0.0355926467398
1024 => 0.035407505316358
1025 => 0.035028770939807
1026 => 0.034929966210376
1027 => 0.035238437457526
1028 => 0.035157166182352
1029 => 0.033696492306029
1030 => 0.03354384375884
1031 => 0.03354852527185
1101 => 0.033164683241902
1102 => 0.032579232013588
1103 => 0.034117762886121
1104 => 0.033994197325331
1105 => 0.033857790509433
1106 => 0.033874499566054
1107 => 0.034542323672171
1108 => 0.034154951964697
1109 => 0.03518484313799
1110 => 0.034973128474124
1111 => 0.034755984128001
1112 => 0.034725968164989
1113 => 0.034642386117617
1114 => 0.034355752177668
1115 => 0.034009624471151
1116 => 0.03378108097824
1117 => 0.031161261541242
1118 => 0.03164748478996
1119 => 0.032206840316967
1120 => 0.032399927603413
1121 => 0.032069638438713
1122 => 0.034368794007027
1123 => 0.034788871884572
1124 => 0.033516428592486
1125 => 0.033278406406054
1126 => 0.034384398701943
1127 => 0.033717350145462
1128 => 0.034017722069602
1129 => 0.033368482264271
1130 => 0.034687687425187
1201 => 0.034677637292134
1202 => 0.034164436688938
1203 => 0.034598190324514
1204 => 0.034522814956179
1205 => 0.033943412739128
1206 => 0.034706055508929
1207 => 0.034706433770228
1208 => 0.034212489347595
1209 => 0.033635670400297
1210 => 0.033532548796375
1211 => 0.033454860520259
1212 => 0.033998615516055
1213 => 0.034486144545008
1214 => 0.035393315199193
1215 => 0.035621399455498
1216 => 0.036511627492287
1217 => 0.035981540040796
1218 => 0.03621652094226
1219 => 0.036471625950877
1220 => 0.036593932673185
1221 => 0.036394640432525
1222 => 0.037777531006136
1223 => 0.037894289341221
1224 => 0.03793343740102
1225 => 0.037467134480344
1226 => 0.037881320613462
1227 => 0.037687536638179
1228 => 0.038191708707126
1229 => 0.038270769325129
1230 => 0.038203807794343
1231 => 0.038228902882384
]
'min_raw' => 0.017143102787615
'max_raw' => 0.038270769325129
'avg_raw' => 0.027706936056372
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.017143'
'max' => '$0.03827'
'avg' => '$0.0277069'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0026434316667456
'max_diff' => -0.0036520440257148
'year' => 2031
]
6 => [
'items' => [
101 => 0.037048849736422
102 => 0.036987657755527
103 => 0.036153300754047
104 => 0.036493307399406
105 => 0.03585768127285
106 => 0.036059244865255
107 => 0.036148092176219
108 => 0.036101683383012
109 => 0.036512530864992
110 => 0.036163226574714
111 => 0.035241355121727
112 => 0.034319232505479
113 => 0.034307656007177
114 => 0.034064877399135
115 => 0.03388939293264
116 => 0.033923197466533
117 => 0.034042329053166
118 => 0.033882468788256
119 => 0.033916583080895
120 => 0.034483107641057
121 => 0.034596720101329
122 => 0.034210620570071
123 => 0.032660375238173
124 => 0.032279941145229
125 => 0.032553389626901
126 => 0.032422698865
127 => 0.026167648471949
128 => 0.027637179779322
129 => 0.026764034177049
130 => 0.027166419842074
131 => 0.02627516428211
201 => 0.026700518150031
202 => 0.026621970822062
203 => 0.028984933677726
204 => 0.028948039262884
205 => 0.02896569866686
206 => 0.028122769303758
207 => 0.029465578667206
208 => 0.030127094845503
209 => 0.030004665806583
210 => 0.030035478558049
211 => 0.029506013400333
212 => 0.02897082504694
213 => 0.02837721879813
214 => 0.029480065836469
215 => 0.029357448072033
216 => 0.029638689107171
217 => 0.030353964244669
218 => 0.030459291225731
219 => 0.0306008517564
220 => 0.03055011238312
221 => 0.031758930105735
222 => 0.03161253430349
223 => 0.031965306065954
224 => 0.031239627785709
225 => 0.030418453929597
226 => 0.030574532233448
227 => 0.030559500637684
228 => 0.030368131171155
229 => 0.03019537137348
301 => 0.029907774985121
302 => 0.030817772514145
303 => 0.030780828276317
304 => 0.03137891254377
305 => 0.031273195340017
306 => 0.030567189979967
307 => 0.030592405099519
308 => 0.030761988896479
309 => 0.031348920354033
310 => 0.031523161571976
311 => 0.031442446097513
312 => 0.031633493638573
313 => 0.031784489825391
314 => 0.031652456434859
315 => 0.033521770811017
316 => 0.032745501153893
317 => 0.033123849583525
318 => 0.033214083454634
319 => 0.032982951291202
320 => 0.033033075581229
321 => 0.033109000222567
322 => 0.033569999777203
323 => 0.034779795999863
324 => 0.035315606511519
325 => 0.036927618872258
326 => 0.035271114907368
327 => 0.035172824817386
328 => 0.035463196921665
329 => 0.036409618826257
330 => 0.03717660488704
331 => 0.037431058411888
401 => 0.037464688645767
402 => 0.037942060374134
403 => 0.038215680946378
404 => 0.037884094890187
405 => 0.037603110426073
406 => 0.03659665895269
407 => 0.03671315845121
408 => 0.037515724469022
409 => 0.038649396240085
410 => 0.0396222045581
411 => 0.039281560990924
412 => 0.041880430951598
413 => 0.042138098292767
414 => 0.0421024969976
415 => 0.042689501546825
416 => 0.041524417058012
417 => 0.041026320866595
418 => 0.037663862456524
419 => 0.038608576116857
420 => 0.039981772903241
421 => 0.039800025159339
422 => 0.038802772947412
423 => 0.039621448052872
424 => 0.039350768460669
425 => 0.039137272235793
426 => 0.040115339830232
427 => 0.039039914333344
428 => 0.039971044711252
429 => 0.038776860370274
430 => 0.039283117022045
501 => 0.038995741261621
502 => 0.039181708598064
503 => 0.038094547349155
504 => 0.038681153169719
505 => 0.038070142618439
506 => 0.038069852919882
507 => 0.038056364828097
508 => 0.038775216032042
509 => 0.038798657743995
510 => 0.038267425618156
511 => 0.038190866769417
512 => 0.038473944959322
513 => 0.038142534537239
514 => 0.038297599387859
515 => 0.038147231293597
516 => 0.038113380268342
517 => 0.037843649539833
518 => 0.03772744212559
519 => 0.037773010047011
520 => 0.037617463239328
521 => 0.037523740661325
522 => 0.038037721048369
523 => 0.037763122061481
524 => 0.037995634815325
525 => 0.037730657186871
526 => 0.036812129281394
527 => 0.036283874169698
528 => 0.034548860103834
529 => 0.035040907940635
530 => 0.035367136165494
531 => 0.035259317739124
601 => 0.035490953439159
602 => 0.035505173989874
603 => 0.035429866862546
604 => 0.035342670856541
605 => 0.03530022866306
606 => 0.035616558001035
607 => 0.035800197828886
608 => 0.035399877532229
609 => 0.035306088087799
610 => 0.035710834010008
611 => 0.035957728788741
612 => 0.037780661116716
613 => 0.037645612401866
614 => 0.037984558174168
615 => 0.037946398081753
616 => 0.038301667249422
617 => 0.038882382190607
618 => 0.037701626344726
619 => 0.037906564732106
620 => 0.037856318572239
621 => 0.038404892970416
622 => 0.038406605559809
623 => 0.038077707804778
624 => 0.038256008613537
625 => 0.038156485993514
626 => 0.038336336819183
627 => 0.037643808743943
628 => 0.0384872331858
629 => 0.038965400495262
630 => 0.038972039848818
701 => 0.039198687358532
702 => 0.039428974354941
703 => 0.039870990190776
704 => 0.039416646773184
705 => 0.038599327194374
706 => 0.038658335028038
707 => 0.038179140858028
708 => 0.038187196198599
709 => 0.038144196159321
710 => 0.038273242514087
711 => 0.037672127161908
712 => 0.037813207733573
713 => 0.037615694107076
714 => 0.037906135376056
715 => 0.037593668582295
716 => 0.037856294342019
717 => 0.037969634913734
718 => 0.03838786406341
719 => 0.037531895796837
720 => 0.035786518557336
721 => 0.036153418013732
722 => 0.035610744898391
723 => 0.035660971361318
724 => 0.035762436809913
725 => 0.035433554093588
726 => 0.035496294551578
727 => 0.03549405302092
728 => 0.035474736720689
729 => 0.03538918162412
730 => 0.035265109807535
731 => 0.03575937373752
801 => 0.035843358810589
802 => 0.036030047224473
803 => 0.03658550531223
804 => 0.03653000195066
805 => 0.036620530236194
806 => 0.036422907497168
807 => 0.035670138513386
808 => 0.035711017490886
809 => 0.035201255986418
810 => 0.036017011476704
811 => 0.035823829809158
812 => 0.03569928433137
813 => 0.03566530094385
814 => 0.036222135904769
815 => 0.036388749652394
816 => 0.036284927145907
817 => 0.036071984156114
818 => 0.036480897647459
819 => 0.036590305647068
820 => 0.036614798063369
821 => 0.037339314368647
822 => 0.036655290476461
823 => 0.036819941825923
824 => 0.038104504652624
825 => 0.03693958342636
826 => 0.037556668180755
827 => 0.037526465093182
828 => 0.037842144772521
829 => 0.037500570145476
830 => 0.037504804372352
831 => 0.037785106541612
901 => 0.037391472697649
902 => 0.037294003422199
903 => 0.037159350316253
904 => 0.037453360446901
905 => 0.037629606223291
906 => 0.03905001774273
907 => 0.039967668362923
908 => 0.039927830729369
909 => 0.040291872127127
910 => 0.0401278681432
911 => 0.039598256017035
912 => 0.04050223933708
913 => 0.040216181190349
914 => 0.040239763476405
915 => 0.04023888574254
916 => 0.040429089402479
917 => 0.040294312677503
918 => 0.040028653918028
919 => 0.040205010600343
920 => 0.040728726898149
921 => 0.042354358356119
922 => 0.043264083256752
923 => 0.042299591774817
924 => 0.042964885084
925 => 0.042565946166735
926 => 0.042493447098063
927 => 0.042911300461019
928 => 0.043329885220972
929 => 0.043303223181355
930 => 0.042999352140194
1001 => 0.042827703099485
1002 => 0.044127487142385
1003 => 0.04508514588395
1004 => 0.045019839978001
1005 => 0.045308079008242
1006 => 0.046154357715927
1007 => 0.046231730835048
1008 => 0.046221983600439
1009 => 0.046030206251649
1010 => 0.046863477542541
1011 => 0.047558607113418
1012 => 0.045985815336384
1013 => 0.046584713855722
1014 => 0.046853578696358
1015 => 0.047248352051016
1016 => 0.04791440087202
1017 => 0.048637906552354
1018 => 0.04874021818839
1019 => 0.04866762318656
1020 => 0.048190451741503
1021 => 0.048982120290143
1022 => 0.049445861159024
1023 => 0.049722008233922
1024 => 0.050422271269371
1025 => 0.046855239114082
1026 => 0.044330316461567
1027 => 0.043936013329051
1028 => 0.044737844254226
1029 => 0.044949280674713
1030 => 0.044864050918733
1031 => 0.042022020917403
1101 => 0.043921050629266
1102 => 0.045964246924277
1103 => 0.046042734415147
1104 => 0.047065601201649
1105 => 0.047398688556061
1106 => 0.048222230389409
1107 => 0.048170717623507
1108 => 0.048371236954515
1109 => 0.048325141032827
1110 => 0.049850578861913
1111 => 0.051533363317104
1112 => 0.051475093842348
1113 => 0.051233173667112
1114 => 0.051592466380857
1115 => 0.053329280276756
1116 => 0.053169382285097
1117 => 0.053324709563915
1118 => 0.055372511029722
1119 => 0.058034944231633
1120 => 0.056797976705423
1121 => 0.059481840309483
1122 => 0.061171190182742
1123 => 0.064092746106506
1124 => 0.063726952915885
1125 => 0.064864293197639
1126 => 0.06307210676133
1127 => 0.058956884442926
1128 => 0.0583056347586
1129 => 0.059609453118889
1130 => 0.062814763332923
1201 => 0.059508506493518
1202 => 0.060177357946052
1203 => 0.059984728682726
1204 => 0.059974464287905
1205 => 0.06036621448991
1206 => 0.059797960389585
1207 => 0.0574827909579
1208 => 0.058543819465062
1209 => 0.058134105403673
1210 => 0.058588713700991
1211 => 0.061042047186892
1212 => 0.05995736997261
1213 => 0.058814750639384
1214 => 0.060247848850777
1215 => 0.062072675339854
1216 => 0.061958480977696
1217 => 0.061736896185569
1218 => 0.062985958056986
1219 => 0.065049042327776
1220 => 0.065606685716027
1221 => 0.066018326664717
1222 => 0.06607508499681
1223 => 0.06665973109248
1224 => 0.063515941686278
1225 => 0.068505216212158
1226 => 0.06936672609685
1227 => 0.069204797944454
1228 => 0.070162329923412
1229 => 0.069880599724961
1230 => 0.069472416869519
1231 => 0.070990308729059
]
'min_raw' => 0.026167648471949
'max_raw' => 0.070990308729059
'avg_raw' => 0.048578978600504
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.026167'
'max' => '$0.07099'
'avg' => '$0.048578'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0090245456843338
'max_diff' => 0.032719539403931
'year' => 2032
]
7 => [
'items' => [
101 => 0.069250168199653
102 => 0.066780257795762
103 => 0.065425216098899
104 => 0.067209644313424
105 => 0.068299332356072
106 => 0.069019546835086
107 => 0.06923748330127
108 => 0.063759985108661
109 => 0.060807917378821
110 => 0.062700158948123
111 => 0.065008824258208
112 => 0.063503116933913
113 => 0.063562137810345
114 => 0.061415394858824
115 => 0.065198763374896
116 => 0.064647558405242
117 => 0.067507210762871
118 => 0.066824731777579
119 => 0.06915666726416
120 => 0.068542590498875
121 => 0.071091588819005
122 => 0.07210845326028
123 => 0.073815926919492
124 => 0.075071951493877
125 => 0.075809513147878
126 => 0.075765232712696
127 => 0.078687819437603
128 => 0.076964472153328
129 => 0.07479954180251
130 => 0.074760385042731
131 => 0.07588163314872
201 => 0.078231461579478
202 => 0.07884073790296
203 => 0.079181240248782
204 => 0.078659749053184
205 => 0.076789179089516
206 => 0.07598147646321
207 => 0.076669662502221
208 => 0.07582807011301
209 => 0.077280894685906
210 => 0.079275933131074
211 => 0.078863965581384
212 => 0.080241111334372
213 => 0.081666312308757
214 => 0.083704413711907
215 => 0.084237248889367
216 => 0.085118005175801
217 => 0.086024592707911
218 => 0.086315764190005
219 => 0.086871700894528
220 => 0.086868770833677
221 => 0.088544123511613
222 => 0.09039208939673
223 => 0.091089653737853
224 => 0.092693664476344
225 => 0.089946852297919
226 => 0.092030340888358
227 => 0.093909699750037
228 => 0.091669050638273
301 => 0.094757263434553
302 => 0.094877171739392
303 => 0.096687644780763
304 => 0.094852383508667
305 => 0.093762611223658
306 => 0.096908742977244
307 => 0.098431057030583
308 => 0.097972523648715
309 => 0.094483061972111
310 => 0.092452045606276
311 => 0.087136484023088
312 => 0.093432996333547
313 => 0.096499843808189
314 => 0.094475119578048
315 => 0.095496272708556
316 => 0.10106735307859
317 => 0.10318845978276
318 => 0.10274728441595
319 => 0.10282183579058
320 => 0.10396634646734
321 => 0.10904173710163
322 => 0.10600044538693
323 => 0.10832539894779
324 => 0.10955854593323
325 => 0.11070396157733
326 => 0.10789118276775
327 => 0.1042317988644
328 => 0.10307271837173
329 => 0.094273800656314
330 => 0.093815778777463
331 => 0.093558677217382
401 => 0.091937688248803
402 => 0.090664034945747
403 => 0.089651178551441
404 => 0.086993140908261
405 => 0.087890150585321
406 => 0.083653793357662
407 => 0.086364064584636
408 => 0.079602736158871
409 => 0.085233771385807
410 => 0.082169054923541
411 => 0.084226929602668
412 => 0.084219749871776
413 => 0.080430550137742
414 => 0.078245018809731
415 => 0.079637724434091
416 => 0.081130815416515
417 => 0.081373064405052
418 => 0.083308895837427
419 => 0.083849144779645
420 => 0.082212165262912
421 => 0.079462622655735
422 => 0.080101278692993
423 => 0.078232076465521
424 => 0.074956371459702
425 => 0.077309039983203
426 => 0.07811234445666
427 => 0.078467129475384
428 => 0.075245849819423
429 => 0.074233653814137
430 => 0.073694769154069
501 => 0.079046795903248
502 => 0.079339992010086
503 => 0.077839959273754
504 => 0.084620249480913
505 => 0.083085660985792
506 => 0.084800172318152
507 => 0.080043327351687
508 => 0.080225045235347
509 => 0.077973078596401
510 => 0.079234029437746
511 => 0.078342830025426
512 => 0.079132157070724
513 => 0.079605276447159
514 => 0.081856873560539
515 => 0.085259481008052
516 => 0.081520560035947
517 => 0.079891458626066
518 => 0.080902143978342
519 => 0.083593732258011
520 => 0.087671626281579
521 => 0.085257430944361
522 => 0.086328809839323
523 => 0.086562858465542
524 => 0.084782720202248
525 => 0.087737262518509
526 => 0.089320625748452
527 => 0.09094482879152
528 => 0.092355078784679
529 => 0.090296086379128
530 => 0.092499503398035
531 => 0.09072393823626
601 => 0.089131072731594
602 => 0.089133488451059
603 => 0.08813426065193
604 => 0.086198130880314
605 => 0.085841078844868
606 => 0.08769850862396
607 => 0.089187991407536
608 => 0.089310672343733
609 => 0.09013532654511
610 => 0.090623348406871
611 => 0.095406626085679
612 => 0.097330499937443
613 => 0.099682976466313
614 => 0.10059939865262
615 => 0.10335750087787
616 => 0.10113010932887
617 => 0.10064819915629
618 => 0.093957945326207
619 => 0.095053474016089
620 => 0.096807521151385
621 => 0.093986868917412
622 => 0.09577592353522
623 => 0.096129120814133
624 => 0.093891024233838
625 => 0.095086488319818
626 => 0.091911690137853
627 => 0.085328682932697
628 => 0.087744591287381
629 => 0.089523513022388
630 => 0.086984772367065
701 => 0.091535366728899
702 => 0.088877003446051
703 => 0.088034429909329
704 => 0.084747250143423
705 => 0.086298672457778
706 => 0.088396993352171
707 => 0.087100474995423
708 => 0.089790945258886
709 => 0.093601368674159
710 => 0.096316903314521
711 => 0.09652536834528
712 => 0.094779461498219
713 => 0.097577288362863
714 => 0.097597667477115
715 => 0.094441707344338
716 => 0.092508699335471
717 => 0.092069515848773
718 => 0.093166682305539
719 => 0.094498844932155
720 => 0.096599294099677
721 => 0.097868551540765
722 => 0.10117810178499
723 => 0.10207357118884
724 => 0.10305742057431
725 => 0.10437214676121
726 => 0.10595081263745
727 => 0.10249678157372
728 => 0.102634016667
729 => 0.099417670764774
730 => 0.09598054389758
731 => 0.098588894745867
801 => 0.10199896650563
802 => 0.10121669227615
803 => 0.10112867044492
804 => 0.10127669874983
805 => 0.10068688952748
806 => 0.098019204274173
807 => 0.096679509440555
808 => 0.098408057568526
809 => 0.099326703969716
810 => 0.10075144442358
811 => 0.10057581509002
812 => 0.10424579349321
813 => 0.1056718361263
814 => 0.10530699339695
815 => 0.10537413323958
816 => 0.10795591531012
817 => 0.11082738795655
818 => 0.11351690101411
819 => 0.11625278921354
820 => 0.11295456920559
821 => 0.11127993649149
822 => 0.11300772998942
823 => 0.11209093843897
824 => 0.11735909462593
825 => 0.11772385033016
826 => 0.12299162556947
827 => 0.12799137154658
828 => 0.12485112067811
829 => 0.12781223580707
830 => 0.1310149232423
831 => 0.13719342692217
901 => 0.13511272424517
902 => 0.13351893860336
903 => 0.13201281887296
904 => 0.13514681494215
905 => 0.13917865081834
906 => 0.14004706964963
907 => 0.14145423991785
908 => 0.13997477244141
909 => 0.14175662805878
910 => 0.14804736137512
911 => 0.1463475497032
912 => 0.14393354387073
913 => 0.14889947365552
914 => 0.15069662434008
915 => 0.16330996901941
916 => 0.17923483770835
917 => 0.1726418375028
918 => 0.16854934952043
919 => 0.1695111812714
920 => 0.17532640422578
921 => 0.17719406927277
922 => 0.17211711185229
923 => 0.17391037904239
924 => 0.18379145756999
925 => 0.18909233917709
926 => 0.18189302995127
927 => 0.16203042132595
928 => 0.14371618905772
929 => 0.14857394815588
930 => 0.14802322902797
1001 => 0.15863921521622
1002 => 0.14630700975699
1003 => 0.14651465246922
1004 => 0.15735016600933
1005 => 0.15445943676456
1006 => 0.14977682560466
1007 => 0.14375037730128
1008 => 0.13260993023347
1009 => 0.12274252559117
1010 => 0.1420947784223
1011 => 0.14126027409043
1012 => 0.14005178815128
1013 => 0.14274114283703
1014 => 0.15579988580441
1015 => 0.15549883951199
1016 => 0.15358373659475
1017 => 0.15503632527853
1018 => 0.14952217978523
1019 => 0.15094330063361
1020 => 0.14371328798976
1021 => 0.14698155565678
1022 => 0.14976677882418
1023 => 0.15032595361097
1024 => 0.15158580295777
1025 => 0.14082052822771
1026 => 0.14565382052965
1027 => 0.14849292693879
1028 => 0.1356657408947
1029 => 0.14823937471325
1030 => 0.14063312874523
1031 => 0.13805145462171
1101 => 0.14152733871933
1102 => 0.14017278330608
1103 => 0.13900821610393
1104 => 0.13835836759532
1105 => 0.14091067325729
1106 => 0.14079160514749
1107 => 0.13661553770333
1108 => 0.13116802796071
1109 => 0.13299639103875
1110 => 0.1323321295915
1111 => 0.12992476041525
1112 => 0.13154703657318
1113 => 0.12440335338884
1114 => 0.11211301776651
1115 => 0.12023238994178
1116 => 0.11991980294521
1117 => 0.11976218240685
1118 => 0.1258636661936
1119 => 0.12527714931268
1120 => 0.12421261543063
1121 => 0.12990520941569
1122 => 0.12782733603495
1123 => 0.13423085218585
1124 => 0.13844862207629
1125 => 0.13737885920152
1126 => 0.14134569216973
1127 => 0.13303851283129
1128 => 0.13579782458133
1129 => 0.13636651490878
1130 => 0.12983496368956
1201 => 0.12537311072798
1202 => 0.12507555600429
1203 => 0.11733931785013
1204 => 0.12147195382735
1205 => 0.12510850246721
1206 => 0.12336687787629
1207 => 0.12281553156036
1208 => 0.12563224031602
1209 => 0.12585112270981
1210 => 0.1208605809352
1211 => 0.12189827260004
1212 => 0.12622561934434
1213 => 0.12178923456492
1214 => 0.11317006361784
1215 => 0.1110323900536
1216 => 0.11074718499499
1217 => 0.10494964474775
1218 => 0.11117523962284
1219 => 0.10845760062429
1220 => 0.1170425896584
1221 => 0.11213888996434
1222 => 0.11192750127143
1223 => 0.11160795625811
1224 => 0.10661777387394
1225 => 0.10771030667344
1226 => 0.11134205209642
1227 => 0.11263789977788
1228 => 0.11250273224813
1229 => 0.11132425456255
1230 => 0.11186375561223
1231 => 0.1101258347566
]
'min_raw' => 0.060807917378821
'max_raw' => 0.18909233917709
'avg_raw' => 0.12495012827796
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.0608079'
'max' => '$0.189092'
'avg' => '$0.12495'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.034640268906873
'max_diff' => 0.11810203044803
'year' => 2033
]
8 => [
'items' => [
101 => 0.10951213873078
102 => 0.1075751452629
103 => 0.10472829997323
104 => 0.10512417127147
105 => 0.099483825835041
106 => 0.096410666285483
107 => 0.095560056225757
108 => 0.09442258490445
109 => 0.095688536638194
110 => 0.099467847445092
111 => 0.094909196786458
112 => 0.087093709984394
113 => 0.087563434058139
114 => 0.088618764589516
115 => 0.086652163126005
116 => 0.084790939885142
117 => 0.086409122487258
118 => 0.083097597699481
119 => 0.089018946539122
120 => 0.088858790647398
121 => 0.091065903321061
122 => 0.092446056170414
123 => 0.089265250682447
124 => 0.088465286704036
125 => 0.088920982542474
126 => 0.081389345408108
127 => 0.09045040788454
128 => 0.090528768329105
129 => 0.089857798628734
130 => 0.094682534668516
131 => 0.10486423258536
201 => 0.1010334682712
202 => 0.099550080543286
203 => 0.096730159388179
204 => 0.10048753689701
205 => 0.10019902892855
206 => 0.098894286481785
207 => 0.098105174178937
208 => 0.099559137792439
209 => 0.097925011996921
210 => 0.097631478101273
211 => 0.09585298206167
212 => 0.095218139891945
213 => 0.094748128023276
214 => 0.094230691138284
215 => 0.095372027969339
216 => 0.092785608554804
217 => 0.089666640290698
218 => 0.089407331827241
219 => 0.090123305293477
220 => 0.089806540332624
221 => 0.089405815278477
222 => 0.088640722019137
223 => 0.088413735192722
224 => 0.089151332260218
225 => 0.088318628175595
226 => 0.089547328412196
227 => 0.089213189934925
228 => 0.087346719562882
301 => 0.085020406423477
302 => 0.08499969735693
303 => 0.084498497006963
304 => 0.083860143005304
305 => 0.083682567525603
306 => 0.086272843661986
307 => 0.091634637743857
308 => 0.090581989268727
309 => 0.091342635671763
310 => 0.095084263135285
311 => 0.096273613991275
312 => 0.095429440925012
313 => 0.094273884765584
314 => 0.094324723372052
315 => 0.098273608579455
316 => 0.09851989570604
317 => 0.09914218381968
318 => 0.099941999904309
319 => 0.095565653062727
320 => 0.094118597829372
321 => 0.093432902780241
322 => 0.091321227426297
323 => 0.093598488254163
324 => 0.092271625891797
325 => 0.092450664956553
326 => 0.092334065530755
327 => 0.092397736701659
328 => 0.089017291401444
329 => 0.090248947997868
330 => 0.088201080022588
331 => 0.085459214687655
401 => 0.085450022993631
402 => 0.086121090649958
403 => 0.085721913349095
404 => 0.084647737496259
405 => 0.084800319106187
406 => 0.0834635436493
407 => 0.084962627849754
408 => 0.085005616220642
409 => 0.084428387147799
410 => 0.086737933192353
411 => 0.087684156091218
412 => 0.087304211550027
413 => 0.087657498169353
414 => 0.090625731565292
415 => 0.091109683121932
416 => 0.091324622435347
417 => 0.091036632229374
418 => 0.087711752026968
419 => 0.087859224602427
420 => 0.0867771686933
421 => 0.08586294547433
422 => 0.08589950960862
423 => 0.08636953918387
424 => 0.088422185905856
425 => 0.092741859922143
426 => 0.092905788393421
427 => 0.09310447448274
428 => 0.092296318305851
429 => 0.092052570669889
430 => 0.092374136718326
501 => 0.093996379161174
502 => 0.098169227158705
503 => 0.096694263981231
504 => 0.095495095958774
505 => 0.096547089607846
506 => 0.09638514343137
507 => 0.095018154725043
508 => 0.094979787904953
509 => 0.092356099524785
510 => 0.09138618166913
511 => 0.090575645711852
512 => 0.089690561606081
513 => 0.089165854079892
514 => 0.089972043315424
515 => 0.090156428332141
516 => 0.088393681478874
517 => 0.088153425596347
518 => 0.089592922728259
519 => 0.088959453710367
520 => 0.089610992304544
521 => 0.089762154847188
522 => 0.089737814196254
523 => 0.089076399788121
524 => 0.089497965608203
525 => 0.08850083676889
526 => 0.087416608920045
527 => 0.086724939102265
528 => 0.086121365449563
529 => 0.086456263191988
530 => 0.085262413890153
531 => 0.084880477471057
601 => 0.089355148593891
602 => 0.092660636263149
603 => 0.092612573163321
604 => 0.092320001403945
605 => 0.091885299115527
606 => 0.093964577981183
607 => 0.093240198800881
608 => 0.093767245178456
609 => 0.093901400601616
610 => 0.094307448662492
611 => 0.094452575943245
612 => 0.094013900503432
613 => 0.092541652147727
614 => 0.088872949222484
615 => 0.087165158107309
616 => 0.086601558593791
617 => 0.086622044365679
618 => 0.08605695532448
619 => 0.086223399372628
620 => 0.08599907287707
621 => 0.085574252764893
622 => 0.086430031747173
623 => 0.086528652302748
624 => 0.086328903262487
625 => 0.086375951392489
626 => 0.084722114653054
627 => 0.084847852268409
628 => 0.08414772924815
629 => 0.084016464621961
630 => 0.082246614593433
701 => 0.079111068724033
702 => 0.080848465510483
703 => 0.078749934507408
704 => 0.077955189018611
705 => 0.081717390554298
706 => 0.081339769867342
707 => 0.080693447399041
708 => 0.079737401763018
709 => 0.079382795136803
710 => 0.077228317530737
711 => 0.07710101950008
712 => 0.078168836777435
713 => 0.077676075845284
714 => 0.076984052873387
715 => 0.074477615818418
716 => 0.071659550715843
717 => 0.071744610387564
718 => 0.072640984464728
719 => 0.075247312986596
720 => 0.074228975343161
721 => 0.073490159698771
722 => 0.073351801737293
723 => 0.075083641297197
724 => 0.077534557106066
725 => 0.078684471967437
726 => 0.077544941263252
727 => 0.076235909746974
728 => 0.076315584429902
729 => 0.076845624400534
730 => 0.076901324107086
731 => 0.076049279160604
801 => 0.076289124822157
802 => 0.07592477733031
803 => 0.073688777445385
804 => 0.073648335297899
805 => 0.073099584865769
806 => 0.073082968920772
807 => 0.072149407543509
808 => 0.072018795853425
809 => 0.070165153075744
810 => 0.071385226365361
811 => 0.070566865259408
812 => 0.069333402040869
813 => 0.069120752517072
814 => 0.069114360015605
815 => 0.070380850943716
816 => 0.071370426681479
817 => 0.070581101001217
818 => 0.070401386844257
819 => 0.072320263870016
820 => 0.072076069277535
821 => 0.071864598335334
822 => 0.077315104477262
823 => 0.073000603557628
824 => 0.071119234893564
825 => 0.068790683909567
826 => 0.06954887185153
827 => 0.069708633191
828 => 0.064108887827348
829 => 0.061837071830718
830 => 0.061057470192255
831 => 0.06060879842737
901 => 0.060813263784693
902 => 0.058768362930288
903 => 0.060142570123987
904 => 0.058371858835238
905 => 0.058074993325286
906 => 0.061241244458605
907 => 0.061681809806836
908 => 0.059802221158359
909 => 0.061009221348443
910 => 0.060571546300961
911 => 0.058402212598034
912 => 0.05831936000712
913 => 0.057230864610758
914 => 0.055527580089693
915 => 0.054749133358341
916 => 0.054343711541869
917 => 0.054510996484859
918 => 0.054426412098679
919 => 0.053874441763774
920 => 0.054458050392163
921 => 0.052967171510365
922 => 0.052373491526805
923 => 0.052105340051502
924 => 0.05078209923212
925 => 0.052887963823621
926 => 0.053302845677129
927 => 0.053718544976053
928 => 0.057336923563219
929 => 0.057156159594436
930 => 0.058790177836612
1001 => 0.058726682892488
1002 => 0.058260634420479
1003 => 0.056294452578325
1004 => 0.057078137616786
1005 => 0.054666076880099
1006 => 0.056473356788212
1007 => 0.055648589711962
1008 => 0.056194502210091
1009 => 0.05521290231551
1010 => 0.055756160226437
1011 => 0.053401229555699
1012 => 0.051202228430131
1013 => 0.052087170675904
1014 => 0.053049204102481
1015 => 0.055135137692857
1016 => 0.053892772855007
1017 => 0.054339574229713
1018 => 0.052842864418094
1019 => 0.049754724562702
1020 => 0.049772203098912
1021 => 0.049297160060944
1022 => 0.04888665351872
1023 => 0.054035473401544
1024 => 0.053395136258318
1025 => 0.05237484282584
1026 => 0.053740546130061
1027 => 0.054101659760323
1028 => 0.05411194015771
1029 => 0.055108322034566
1030 => 0.055640091220855
1031 => 0.055733817844758
1101 => 0.057301646256245
1102 => 0.057827161659618
1103 => 0.059991685232391
1104 => 0.055594974320663
1105 => 0.055504426952771
1106 => 0.053759764376259
1107 => 0.052653271788211
1108 => 0.053835526870409
1109 => 0.054882843479323
1110 => 0.053792307422682
1111 => 0.053934708409207
1112 => 0.052470752853235
1113 => 0.052994048078984
1114 => 0.053444780422878
1115 => 0.053195912515402
1116 => 0.052823345212568
1117 => 0.054796975460833
1118 => 0.054685615507507
1119 => 0.056523505368255
1120 => 0.057956271943473
1121 => 0.060524045783924
1122 => 0.057844439920335
1123 => 0.057746784432197
1124 => 0.058701382493177
1125 => 0.057827015515629
1126 => 0.058379585263317
1127 => 0.060435018254876
1128 => 0.060478446315079
1129 => 0.059750970352788
1130 => 0.059706703374369
1201 => 0.059846423090642
1202 => 0.060664765832919
1203 => 0.060378811733635
1204 => 0.060709725056799
1205 => 0.061123537234539
1206 => 0.062835239854402
1207 => 0.063247925561109
1208 => 0.062245313246818
1209 => 0.062335837913024
1210 => 0.061960833385156
1211 => 0.061598583710028
1212 => 0.062412868077399
1213 => 0.063900988763569
1214 => 0.063891731242014
1215 => 0.064236946316272
1216 => 0.06445201244762
1217 => 0.063528791173848
1218 => 0.062927808072409
1219 => 0.063158263235049
1220 => 0.06352676605877
1221 => 0.063038762735873
1222 => 0.06002658016182
1223 => 0.06094028393582
1224 => 0.060788198949994
1225 => 0.060571611436012
1226 => 0.061490347646232
1227 => 0.061401733297484
1228 => 0.058747389516374
1229 => 0.058917311993244
1230 => 0.058757723064993
1231 => 0.059273387540992
]
'min_raw' => 0.04888665351872
'max_raw' => 0.10951213873078
'avg_raw' => 0.079199396124749
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.048886'
'max' => '$0.109512'
'avg' => '$0.079199'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.011921263860101
'max_diff' => -0.079580200446316
'year' => 2034
]
9 => [
'items' => [
101 => 0.057799167941658
102 => 0.058252627961393
103 => 0.058537033834847
104 => 0.05870455107922
105 => 0.059309738233546
106 => 0.05923872650603
107 => 0.059305324044858
108 => 0.060202656831238
109 => 0.064741058137321
110 => 0.064988073306993
111 => 0.063771680269974
112 => 0.064257605295972
113 => 0.063324735506178
114 => 0.063950977245751
115 => 0.064379435939151
116 => 0.062443313491545
117 => 0.062328668885528
118 => 0.061391948810272
119 => 0.061895289120178
120 => 0.061094438495669
121 => 0.061290939226358
122 => 0.060741506052726
123 => 0.061730376374209
124 => 0.062836087048541
125 => 0.063115433230715
126 => 0.062380593691508
127 => 0.061848521436837
128 => 0.060914377833132
129 => 0.062467879464842
130 => 0.062922170684059
131 => 0.062465493266465
201 => 0.06235967113021
202 => 0.062159138373223
203 => 0.062402215102585
204 => 0.062919696516515
205 => 0.062675661838087
206 => 0.062836851042526
207 => 0.062222564012788
208 => 0.063529096798504
209 => 0.065604185296459
210 => 0.065610857045291
211 => 0.065366821051425
212 => 0.065266966780564
213 => 0.065517362519613
214 => 0.065653191936276
215 => 0.066462925841635
216 => 0.067331802583307
217 => 0.071386471216068
218 => 0.070247936489007
219 => 0.073845479713309
220 => 0.076690669321209
221 => 0.077543817279556
222 => 0.07675896130159
223 => 0.074074011398057
224 => 0.07394227494656
225 => 0.077954723659048
226 => 0.076821023115977
227 => 0.076686173043784
228 => 0.075251596108442
301 => 0.076099608753039
302 => 0.07591413594807
303 => 0.075621358051788
304 => 0.077239307104606
305 => 0.080267963296174
306 => 0.079795918826161
307 => 0.079443559526808
308 => 0.077899623647295
309 => 0.078829417897325
310 => 0.078498335973925
311 => 0.079920874026631
312 => 0.079078193997284
313 => 0.076812434219338
314 => 0.077173263932018
315 => 0.077118725246835
316 => 0.078241127523247
317 => 0.077904210219605
318 => 0.077052936735969
319 => 0.080257611678569
320 => 0.080049517913135
321 => 0.080344547295662
322 => 0.080474428353938
323 => 0.082425057518791
324 => 0.08322416787446
325 => 0.083405579915593
326 => 0.084164672948066
327 => 0.083386692989427
328 => 0.086499167514292
329 => 0.088568781455404
330 => 0.090972744549364
331 => 0.094485580754005
401 => 0.095806439662502
402 => 0.095567838323231
403 => 0.098231230642145
404 => 0.10301728743535
405 => 0.096535237239738
406 => 0.10336085183536
407 => 0.1011999410599
408 => 0.096076460484396
409 => 0.095746568737202
410 => 0.099216249267764
411 => 0.10691166674018
412 => 0.10498405194404
413 => 0.10691481962743
414 => 0.10466247656599
415 => 0.10455062874875
416 => 0.10680542835226
417 => 0.11207389052859
418 => 0.10957104163397
419 => 0.1059825940198
420 => 0.10863224789567
421 => 0.1063368724945
422 => 0.10116474928054
423 => 0.10498257793333
424 => 0.10242970463871
425 => 0.10317476878429
426 => 0.10854052873834
427 => 0.10789490630463
428 => 0.10873040151688
429 => 0.10725577433598
430 => 0.10587824002165
501 => 0.10330696992691
502 => 0.10254574361395
503 => 0.1027561191808
504 => 0.10254563936226
505 => 0.10110703737545
506 => 0.10079637141337
507 => 0.10027858119931
508 => 0.10043906603788
509 => 0.09946546895058
510 => 0.10130284780973
511 => 0.10164388151692
512 => 0.10298097262593
513 => 0.1031197938605
514 => 0.10684357356679
515 => 0.10479257828014
516 => 0.10616856299284
517 => 0.10604548196887
518 => 0.096187501844219
519 => 0.0975458445277
520 => 0.099658999471781
521 => 0.098707026033787
522 => 0.09736115831994
523 => 0.096274297980148
524 => 0.094627593428186
525 => 0.096945298462912
526 => 0.099992834123124
527 => 0.10319708439404
528 => 0.10704678114375
529 => 0.10618757364463
530 => 0.1031251169911
531 => 0.10326249655945
601 => 0.10411172299413
602 => 0.10301189760086
603 => 0.10268753762124
604 => 0.10406716091382
605 => 0.1040766616212
606 => 0.10281117958791
607 => 0.10140482788867
608 => 0.1013989352237
609 => 0.10114868852257
610 => 0.1047069948982
611 => 0.10666370361944
612 => 0.10688803712094
613 => 0.10664860418739
614 => 0.10674075242076
615 => 0.105602186729
616 => 0.10820461026919
617 => 0.11059285146268
618 => 0.10995275180549
619 => 0.10899315142384
620 => 0.10822878349924
621 => 0.10977269101442
622 => 0.10970394324311
623 => 0.11057199225931
624 => 0.11053261254184
625 => 0.11024072030667
626 => 0.10995276222989
627 => 0.11109448345502
628 => 0.11076568607766
629 => 0.11043637798716
630 => 0.10977590019712
701 => 0.10986567009816
702 => 0.10890623540504
703 => 0.10846235701527
704 => 0.10178749104616
705 => 0.10000374875167
706 => 0.10056495038894
707 => 0.10074971253952
708 => 0.099973425607034
709 => 0.10108642165647
710 => 0.10091296240112
711 => 0.10158779089342
712 => 0.10116618734908
713 => 0.1011834901056
714 => 0.10242333623415
715 => 0.10278326883995
716 => 0.10260020421163
717 => 0.10272841640221
718 => 0.10568301221935
719 => 0.10526296317681
720 => 0.10503982049485
721 => 0.10510163254274
722 => 0.10585659512126
723 => 0.10606794342382
724 => 0.1051724458147
725 => 0.10559476766397
726 => 0.10739296049755
727 => 0.10802222622041
728 => 0.11003054034307
729 => 0.10917737280883
730 => 0.11074339874216
731 => 0.11555682856365
801 => 0.11940212936906
802 => 0.11586583183462
803 => 0.12292723706766
804 => 0.12842555393999
805 => 0.12821451938051
806 => 0.12725576065546
807 => 0.12099607307662
808 => 0.11523581523989
809 => 0.12005451551378
810 => 0.12006679937175
811 => 0.11965286874473
812 => 0.11708198117042
813 => 0.11956340742987
814 => 0.11976037403513
815 => 0.11965012511383
816 => 0.11767903163837
817 => 0.1146695362203
818 => 0.11525758442128
819 => 0.11622081937034
820 => 0.11439721465991
821 => 0.11381446245883
822 => 0.11489790967379
823 => 0.11838900234559
824 => 0.11772903149851
825 => 0.11771179699254
826 => 0.12053543214754
827 => 0.11851431875516
828 => 0.11526500159229
829 => 0.11444450615543
830 => 0.11153230010655
831 => 0.11354377119743
901 => 0.11361616046104
902 => 0.1125144983013
903 => 0.11535439540494
904 => 0.11532822525318
905 => 0.11802428489018
906 => 0.12317813832238
907 => 0.12165389025675
908 => 0.11988135559415
909 => 0.12007407925903
910 => 0.12218778218023
911 => 0.12090978914293
912 => 0.12136936434963
913 => 0.12218708655811
914 => 0.12268043866939
915 => 0.12000309348248
916 => 0.11937887624718
917 => 0.11810194685425
918 => 0.11776881981065
919 => 0.11880885215719
920 => 0.11853484037876
921 => 0.11361007642374
922 => 0.11309541118931
923 => 0.11311119523728
924 => 0.11181704503431
925 => 0.10984315534316
926 => 0.11503041959669
927 => 0.11461380968142
928 => 0.114153904578
929 => 0.11421024032899
930 => 0.11646185592875
1001 => 0.11515580517157
1002 => 0.11862815516704
1003 => 0.11791434439636
1004 => 0.11718222707288
1005 => 0.11708102615793
1006 => 0.11679922344971
1007 => 0.11583281710903
1008 => 0.11466582338064
1009 => 0.11389527303789
1010 => 0.1050623688961
1011 => 0.10670170452618
1012 => 0.10858761073844
1013 => 0.10923861800561
1014 => 0.10812502502678
1015 => 0.11587678854726
1016 => 0.11729311044031
1017 => 0.11300297904188
1018 => 0.11220047062215
1019 => 0.11592940086566
1020 => 0.11368040008564
1021 => 0.11469312499917
1022 => 0.11250416766702
1023 => 0.11695195997102
1024 => 0.11691807524575
1025 => 0.11518778358155
1026 => 0.11665021424761
1027 => 0.11639608093073
1028 => 0.11444258590337
1029 => 0.11701388924777
1030 => 0.11701516458215
1031 => 0.11534979647514
1101 => 0.11340501112212
1102 => 0.11305732943477
1103 => 0.11279539798782
1104 => 0.11462870591991
1105 => 0.11627244407922
1106 => 0.11933103327644
1107 => 0.1201000352709
1108 => 0.12310150125067
1109 => 0.12131427439845
1110 => 0.12210652891357
1111 => 0.12296663326099
1112 => 0.12337899891443
1113 => 0.12270707121091
1114 => 0.12736958333018
1115 => 0.12776324220872
1116 => 0.12789523262556
1117 => 0.12632305977228
1118 => 0.12771951723763
1119 => 0.1270661610354
1120 => 0.12876601236603
1121 => 0.12903257075946
1122 => 0.12880680528331
1123 => 0.12889141512472
1124 => 0.12491278355443
1125 => 0.12470647051856
1126 => 0.12189337763512
1127 => 0.12303973377845
1128 => 0.12089667591477
1129 => 0.12157626163929
1130 => 0.12187581655132
1201 => 0.12171934606487
1202 => 0.12310454703482
1203 => 0.1219268432325
1204 => 0.11881868926574
1205 => 0.11570968848452
1206 => 0.11567065751225
1207 => 0.11485211248497
1208 => 0.11426045435425
1209 => 0.11437442870043
1210 => 0.11477608916226
1211 => 0.11423710911803
1212 => 0.11435212783745
1213 => 0.11626220494552
1214 => 0.11664525728749
1215 => 0.11534349576125
1216 => 0.11011673539008
1217 => 0.10883407528466
1218 => 0.10975602593218
1219 => 0.10931539290389
1220 => 0.088226053790049
1221 => 0.093180681192258
1222 => 0.090236809833114
1223 => 0.091593481196416
1224 => 0.088588550850523
1225 => 0.090022661113476
1226 => 0.08975783331323
1227 => 0.097724727557899
1228 => 0.097600335462373
1229 => 0.097659875375818
1230 => 0.09481788017667
1231 => 0.099345255697491
]
'min_raw' => 0.057799167941658
'max_raw' => 0.12903257075946
'avg_raw' => 0.093415869350558
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.057799'
'max' => '$0.129032'
'avg' => '$0.093415'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0089125144229383
'max_diff' => 0.019520432028681
'year' => 2035
]
10 => [
'items' => [
101 => 0.10157560367821
102 => 0.10116282562577
103 => 0.10126671296861
104 => 0.099481584223294
105 => 0.097677159324171
106 => 0.095675774412043
107 => 0.099394100200125
108 => 0.098980685846429
109 => 0.09992890963202
110 => 0.10234050969701
111 => 0.10269562696736
112 => 0.10317290817995
113 => 0.10300183684042
114 => 0.10707745018918
115 => 0.10658386652088
116 => 0.10777326114776
117 => 0.10532658616068
118 => 0.10255794117227
119 => 0.10308417007074
120 => 0.10303348999615
121 => 0.10238827447876
122 => 0.10180580275919
123 => 0.1008361514565
124 => 0.10390427165961
125 => 0.10377971158241
126 => 0.10579619444703
127 => 0.10543976151364
128 => 0.10305941515051
129 => 0.10314442968655
130 => 0.10371619329796
131 => 0.10569507368535
201 => 0.10628254011677
202 => 0.10601040225925
203 => 0.10665453238245
204 => 0.10716362656852
205 => 0.10671846677407
206 => 0.11302099070464
207 => 0.11040374335823
208 => 0.11167937150418
209 => 0.11198360130055
210 => 0.11120432307441
211 => 0.1113733206178
212 => 0.11162930584696
213 => 0.11318359803138
214 => 0.11726251046135
215 => 0.11906903301049
216 => 0.12450404523183
217 => 0.1189190264608
218 => 0.11858763456003
219 => 0.11956664438274
220 => 0.12275757191113
221 => 0.12534351896432
222 => 0.12620142678873
223 => 0.12631481347024
224 => 0.12792430558145
225 => 0.12884683644435
226 => 0.12772887090531
227 => 0.12678151216684
228 => 0.12338819075613
229 => 0.12378097694912
301 => 0.12648688431155
302 => 0.13030913783812
303 => 0.13358902900162
304 => 0.13244052543191
305 => 0.14120279695163
306 => 0.14207154038214
307 => 0.14195150812988
308 => 0.14393063495094
309 => 0.1400024712533
310 => 0.13832310516798
311 => 0.12698634187907
312 => 0.13017150994269
313 => 0.13480133878152
314 => 0.13418856357373
315 => 0.13082625811529
316 => 0.13358647839142
317 => 0.13267386324807
318 => 0.13195404582006
319 => 0.13525166900122
320 => 0.13162579685465
321 => 0.13476516793321
322 => 0.13073889205232
323 => 0.13244577169947
324 => 0.13147686425927
325 => 0.13210386611791
326 => 0.12843842606404
327 => 0.13041620854358
328 => 0.12835614381055
329 => 0.12835516707163
330 => 0.12830969102847
331 => 0.13073334805116
401 => 0.13081238341966
402 => 0.12902129721795
403 => 0.12876317371426
404 => 0.12971759159541
405 => 0.12860021821902
406 => 0.12912303018917
407 => 0.128616053661
408 => 0.12850192256595
409 => 0.12759250658278
410 => 0.12720070517232
411 => 0.12735434060084
412 => 0.12682990367881
413 => 0.12651391146357
414 => 0.12824683222345
415 => 0.12732100256727
416 => 0.12810493555038
417 => 0.1272115449759
418 => 0.12411466401301
419 => 0.12233361502234
420 => 0.11648389396446
421 => 0.11814286759992
422 => 0.11924276883656
423 => 0.11887925148441
424 => 0.11966022741936
425 => 0.11970817299895
426 => 0.11945426976139
427 => 0.11916028233931
428 => 0.11901718552077
429 => 0.12008371196916
430 => 0.12070286647008
501 => 0.11935315864044
502 => 0.11903694098037
503 => 0.12040157011555
504 => 0.1212339930997
505 => 0.12738013671653
506 => 0.12692481054561
507 => 0.12806758988137
508 => 0.12793893046554
509 => 0.12913674526844
510 => 0.13109466623687
511 => 0.12711366546474
512 => 0.12780462954613
513 => 0.12763522111006
514 => 0.12948477799376
515 => 0.12949055210847
516 => 0.12838165036447
517 => 0.12898280398977
518 => 0.12864725652791
519 => 0.12925363614344
520 => 0.126918729387
521 => 0.12976239377874
522 => 0.13137456824716
523 => 0.13139695329122
524 => 0.13216111119425
525 => 0.13293753988076
526 => 0.13442782713184
527 => 0.13289597657818
528 => 0.1301403265548
529 => 0.13033927558579
530 => 0.12872363898533
531 => 0.12875079812848
601 => 0.12860582049388
602 => 0.12904090928871
603 => 0.1270142069103
604 => 0.1274898699076
605 => 0.1268239389259
606 => 0.12780318194223
607 => 0.12674967833133
608 => 0.12763513941619
609 => 0.12801727506691
610 => 0.12942736384487
611 => 0.12654140707232
612 => 0.12065674585099
613 => 0.12189377298434
614 => 0.12006411268774
615 => 0.1202334547142
616 => 0.12057555255823
617 => 0.11946670151828
618 => 0.11967823535279
619 => 0.11967067787568
620 => 0.11960555162083
621 => 0.11931709663948
622 => 0.11889877984744
623 => 0.1205652251958
624 => 0.1208483867333
625 => 0.12147781975488
626 => 0.1233505854786
627 => 0.12316345201994
628 => 0.1234686744551
629 => 0.12280237559289
630 => 0.12026436240742
701 => 0.12040218873414
702 => 0.11868349223142
703 => 0.12143386882115
704 => 0.1207825433415
705 => 0.12036262956765
706 => 0.12024805220398
707 => 0.1221254601517
708 => 0.12268721003442
709 => 0.12233716520514
710 => 0.12161921304785
711 => 0.12299789343335
712 => 0.12336677014265
713 => 0.12344934803421
714 => 0.12589210534157
715 => 0.12358587103205
716 => 0.12414100455235
717 => 0.12847199780788
718 => 0.12454438456133
719 => 0.12662492889425
720 => 0.12652309707579
721 => 0.12758743315473
722 => 0.12643579045167
723 => 0.12645006644321
724 => 0.12739512477694
725 => 0.12606796078938
726 => 0.12573933632211
727 => 0.12528534397424
728 => 0.12627661965685
729 => 0.12687084459703
730 => 0.13165986120479
731 => 0.13475378433909
801 => 0.13461946897619
802 => 0.13584685996529
803 => 0.13529390908309
804 => 0.13350828482338
805 => 0.13655612770101
806 => 0.13559166268737
807 => 0.13567117201127
808 => 0.13566821267026
809 => 0.13630949758934
810 => 0.13585508845127
811 => 0.134959401396
812 => 0.13555400026326
813 => 0.13731974632602
814 => 0.14280067628453
815 => 0.14586787730197
816 => 0.14261602693198
817 => 0.14485910977319
818 => 0.1435140593606
819 => 0.14326962368885
820 => 0.14467844547565
821 => 0.14608973321849
822 => 0.14599984029043
823 => 0.14497531785956
824 => 0.14439659113466
825 => 0.14877890378332
826 => 0.1520077170921
827 => 0.15178753367068
828 => 0.15275935168535
829 => 0.1556126394336
830 => 0.15587350830673
831 => 0.15584064482472
901 => 0.15519405410381
902 => 0.1580034864382
903 => 0.1603471643188
904 => 0.15504438703372
905 => 0.15706361520543
906 => 0.15797011178717
907 => 0.1593011177146
908 => 0.16154674781666
909 => 0.16398609773146
910 => 0.16433104855552
911 => 0.16408628943843
912 => 0.16247747259637
913 => 0.16514663838065
914 => 0.16671017309743
915 => 0.16764122224042
916 => 0.17000220795524
917 => 0.15797571000145
918 => 0.14946275699403
919 => 0.14813333645339
920 => 0.15083676539966
921 => 0.15154963805335
922 => 0.15126227998052
923 => 0.14168017740684
924 => 0.1480828886664
925 => 0.15497166762644
926 => 0.15523629368173
927 => 0.1586849604667
928 => 0.15980798773752
929 => 0.16258461652651
930 => 0.16241093763976
1001 => 0.16308700256406
1002 => 0.16293158694578
1003 => 0.16807470708921
1004 => 0.17374833236815
1005 => 0.17355187276576
1006 => 0.17273622200463
1007 => 0.17394760247403
1008 => 0.17980339178453
1009 => 0.17926428454193
1010 => 0.17978798130707
1011 => 0.18669228692197
1012 => 0.19566886634737
1013 => 0.19149834397043
1014 => 0.20054717749289
1015 => 0.20624293853723
1016 => 0.21609316831072
1017 => 0.21485987102968
1018 => 0.21869449319617
1019 => 0.21265201149969
1020 => 0.19877725213755
1021 => 0.19658151835804
1022 => 0.20097743298945
1023 => 0.21178436016368
1024 => 0.20063708439414
1025 => 0.20289216376408
1026 => 0.20224270075383
1027 => 0.20220809363005
1028 => 0.20352890678724
1029 => 0.20161299841376
1030 => 0.19380724303486
1031 => 0.1973845747254
1101 => 0.19600319516211
1102 => 0.19753593877625
1103 => 0.20580752391025
1104 => 0.20215045895255
1105 => 0.19829803809544
1106 => 0.20312982877088
1107 => 0.20928235868412
1108 => 0.2088973444193
1109 => 0.20815025582209
1110 => 0.21236155512829
1111 => 0.2193173877872
1112 => 0.22119752140411
1113 => 0.22258539760247
1114 => 0.22277676228186
1115 => 0.2247479374121
1116 => 0.21414843193672
1117 => 0.23097011934075
1118 => 0.23387476006569
1119 => 0.23332880799442
1120 => 0.23655719391423
1121 => 0.23560732088038
1122 => 0.23423110388484
1123 => 0.2393487822651
1124 => 0.23348177697748
1125 => 0.22515430160712
1126 => 0.22058568392016
1127 => 0.22660200823023
1128 => 0.2302759675456
1129 => 0.23270422094537
1130 => 0.23343900895695
1201 => 0.21497124137385
1202 => 0.20501813891591
1203 => 0.2113979634789
1204 => 0.21918178975772
1205 => 0.21410519238873
1206 => 0.21430418539432
1207 => 0.20706629165246
1208 => 0.21982218275076
1209 => 0.21796375671167
1210 => 0.22760527428996
1211 => 0.22530424874189
1212 => 0.23316653204544
1213 => 0.23109612935781
1214 => 0.2396902551595
1215 => 0.24311868461847
1216 => 0.24887555127251
1217 => 0.25311032581788
1218 => 0.25559706642926
1219 => 0.25544777185048
1220 => 0.26530147704199
1221 => 0.2594910913528
1222 => 0.2521918775244
1223 => 0.25205985777497
1224 => 0.25584022404736
1225 => 0.26376283466144
1226 => 0.26581705232437
1227 => 0.26696507975642
1228 => 0.26520683578111
1229 => 0.25890007854958
1230 => 0.25617685275299
1231 => 0.25849712003113
]
'min_raw' => 0.095675774412043
'max_raw' => 0.26696507975642
'avg_raw' => 0.18132042708423
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.095675'
'max' => '$0.266965'
'avg' => '$0.18132'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.037876606470384
'max_diff' => 0.13793250899696
'year' => 2036
]
11 => [
'items' => [
101 => 0.25565963253281
102 => 0.2605579320133
103 => 0.26728434342032
104 => 0.26589536606388
105 => 0.27053850911933
106 => 0.27534367370882
107 => 0.28221527488524
108 => 0.28401176588741
109 => 0.28698129719956
110 => 0.29003792035999
111 => 0.29101962534081
112 => 0.29289400475437
113 => 0.29288412584964
114 => 0.29853269437269
115 => 0.30476324037522
116 => 0.30711512725371
117 => 0.31252316144698
118 => 0.30326209241112
119 => 0.31028671965832
120 => 0.31662310927311
121 => 0.30906860435567
122 => 0.31948072941046
123 => 0.31988500863196
124 => 0.32598914489413
125 => 0.31980143338141
126 => 0.31612719003703
127 => 0.32673459290015
128 => 0.33186718101556
129 => 0.33032120370481
130 => 0.31855624003571
131 => 0.31170852655726
201 => 0.29378673955888
202 => 0.31501587042204
203 => 0.32535596080325
204 => 0.3185294616996
205 => 0.32197235077374
206 => 0.34075563720174
207 => 0.34790709654578
208 => 0.34641964299469
209 => 0.34667099815926
210 => 0.35052979581314
211 => 0.36764182968912
212 => 0.35738790233679
213 => 0.36522664559032
214 => 0.3693842867473
215 => 0.37324613556176
216 => 0.36376265542329
217 => 0.35142478710314
218 => 0.34751686629767
219 => 0.31785070089933
220 => 0.31630644815673
221 => 0.31543961229665
222 => 0.30997433481525
223 => 0.30568012378036
224 => 0.30226520773159
225 => 0.29330344823934
226 => 0.29632777899277
227 => 0.2820446048267
228 => 0.29118247349354
301 => 0.26838618264519
302 => 0.28737161105913
303 => 0.27703870553493
304 => 0.28397697369183
305 => 0.28395276672786
306 => 0.27117721527108
307 => 0.26380854380977
308 => 0.2685041480579
309 => 0.27353820854943
310 => 0.27435496792756
311 => 0.28088175875725
312 => 0.28270324578492
313 => 0.27718405505399
314 => 0.26791378018696
315 => 0.27006705360611
316 => 0.26376490779266
317 => 0.25272063966312
318 => 0.26065282584818
319 => 0.26336122296536
320 => 0.26455740542629
321 => 0.25369663616366
322 => 0.25028394666256
323 => 0.24846705940742
324 => 0.26651179125885
325 => 0.26750032240335
326 => 0.26244285730387
327 => 0.28530307912205
328 => 0.2801291068692
329 => 0.28590970152961
330 => 0.26987166661287
331 => 0.27048434114477
401 => 0.26289167839427
402 => 0.26714306219264
403 => 0.26413832115245
404 => 0.26679959239472
405 => 0.26839474740451
406 => 0.27598616427377
407 => 0.28745829284552
408 => 0.27485225974494
409 => 0.2693596306013
410 => 0.2727672268303
411 => 0.28184210463589
412 => 0.29559100904582
413 => 0.28745138091266
414 => 0.29106360965831
415 => 0.29185272094236
416 => 0.28585086050237
417 => 0.29581230620121
418 => 0.30115072587785
419 => 0.30662683983579
420 => 0.31138159614824
421 => 0.30443955949866
422 => 0.31186853381557
423 => 0.30588209190664
424 => 0.30051163464735
425 => 0.30051977941418
426 => 0.29715081312556
427 => 0.29062301642429
428 => 0.28941919055821
429 => 0.29568164474002
430 => 0.30070353993722
501 => 0.30111716727892
502 => 0.30389754649438
503 => 0.3055429462739
504 => 0.32167010092578
505 => 0.32815657593759
506 => 0.33608811479934
507 => 0.33917789618303
508 => 0.3484770304
509 => 0.34096722428104
510 => 0.33934243048831
511 => 0.31678577260156
512 => 0.32047942406687
513 => 0.32639331644718
514 => 0.31688329050869
515 => 0.32291521306044
516 => 0.32410604234574
517 => 0.31656014346636
518 => 0.32059073409688
519 => 0.30988668036906
520 => 0.28769161196598
521 => 0.29583701565714
522 => 0.30183477448706
523 => 0.29327523311843
524 => 0.30861787972171
525 => 0.29965502231258
526 => 0.29681422680692
527 => 0.28573127072261
528 => 0.2909619993723
529 => 0.29803663476784
530 => 0.29366533260804
531 => 0.30273644094394
601 => 0.3155835495238
602 => 0.32473916415635
603 => 0.32544201856212
604 => 0.31955557173193
605 => 0.32898864034411
606 => 0.32905734995064
607 => 0.31841681002088
608 => 0.31189953856068
609 => 0.31041880077246
610 => 0.31411797408316
611 => 0.31860945338742
612 => 0.3256912644044
613 => 0.32997065448376
614 => 0.34112903419759
615 => 0.34414817181234
616 => 0.34746528870561
617 => 0.35189797983599
618 => 0.35722056205669
619 => 0.34557505517258
620 => 0.34603775287102
621 => 0.33519361810355
622 => 0.32360510489827
623 => 0.33239934189251
624 => 0.34389663691416
625 => 0.34125914473282
626 => 0.34096237298334
627 => 0.34146146074834
628 => 0.33947287777605
629 => 0.33047859069268
630 => 0.32596171602663
701 => 0.33178963672346
702 => 0.33488691720291
703 => 0.33969052911531
704 => 0.33909838255516
705 => 0.35147197097123
706 => 0.35627997327182
707 => 0.35504988053731
708 => 0.3552762472043
709 => 0.3639809057094
710 => 0.37366227621663
711 => 0.38273015726601
712 => 0.39195439534399
713 => 0.38083421631285
714 => 0.37518807519812
715 => 0.38101345160709
716 => 0.37792242488638
717 => 0.39568438128165
718 => 0.39691418060489
719 => 0.41467485260855
720 => 0.43153184524149
721 => 0.42094427019313
722 => 0.43092787658888
723 => 0.44172596088126
724 => 0.4625572174073
725 => 0.45554198306177
726 => 0.45016842349583
727 => 0.44509043567087
728 => 0.45565692222675
729 => 0.46925053837714
730 => 0.47217847309789
731 => 0.47692284590267
801 => 0.47193471801275
802 => 0.47794236863189
803 => 0.4991520152129
804 => 0.49342098148398
805 => 0.48528199227928
806 => 0.50202497125887
807 => 0.5080841902649
808 => 0.55061096248687
809 => 0.60430276911044
810 => 0.58207400860887
811 => 0.56827589964793
812 => 0.57151878254927
813 => 0.59112521274585
814 => 0.597422175848
815 => 0.580304859443
816 => 0.58635098497635
817 => 0.61966573110702
818 => 0.6375380235411
819 => 0.61326504984651
820 => 0.54629687810321
821 => 0.484549165352
822 => 0.50092743930937
823 => 0.49907065131962
824 => 0.5348631899378
825 => 0.49328429822493
826 => 0.49398438012636
827 => 0.53051707053822
828 => 0.52077077506521
829 => 0.50498302461014
830 => 0.48466443340209
831 => 0.44710363831181
901 => 0.41383499464009
902 => 0.4790824661914
903 => 0.47626887657328
904 => 0.47219438185562
905 => 0.48126172894339
906 => 0.52529019259024
907 => 0.52427519399695
908 => 0.51781829080328
909 => 0.52271579496715
910 => 0.50412446845113
911 => 0.50891587661094
912 => 0.48453938419882
913 => 0.49555857682135
914 => 0.5049491511883
915 => 0.5068344480223
916 => 0.51108211805493
917 => 0.47478624269503
918 => 0.49108202514071
919 => 0.50065427061922
920 => 0.45740651730604
921 => 0.49979940158835
922 => 0.47415441225605
923 => 0.46545011770185
924 => 0.47716930361547
925 => 0.47260232546765
926 => 0.46867590583811
927 => 0.46648489622038
928 => 0.47509017295599
929 => 0.47468872651074
930 => 0.46060882355904
1001 => 0.44224216412881
1002 => 0.44840661789864
1003 => 0.446167014052
1004 => 0.43805040079713
1005 => 0.44352001812729
1006 => 0.41943459151524
1007 => 0.37799686688074
1008 => 0.40537189704612
1009 => 0.40431798816306
1010 => 0.40378655951325
1011 => 0.42435813809228
1012 => 0.42238065547897
1013 => 0.41879150517226
1014 => 0.4379844832371
1015 => 0.43097878806145
1016 => 0.45256868984343
1017 => 0.46678919550434
1018 => 0.46318241528357
1019 => 0.47655686959132
1020 => 0.44854863446305
1021 => 0.45785184667731
1022 => 0.45976922582097
1023 => 0.43774764486703
1024 => 0.42270419609045
1025 => 0.42170096956492
1026 => 0.39561770250127
1027 => 0.4095511732299
1028 => 0.42181205086489
1029 => 0.41594004196027
1030 => 0.41408113936234
1031 => 0.42357786958837
1101 => 0.42431584686093
1102 => 0.40748988683932
1103 => 0.41098853673667
1104 => 0.42557848841076
1105 => 0.41062090738844
1106 => 0.38156077076905
1107 => 0.37435345509963
1108 => 0.37339186633214
1109 => 0.35384505461723
1110 => 0.37483508239578
1111 => 0.36567237277267
1112 => 0.39461726268595
1113 => 0.37808409680204
1114 => 0.37737138506521
1115 => 0.3762940167429
1116 => 0.35946926843126
1117 => 0.36315281904297
1118 => 0.37539750229691
1119 => 0.37976654322814
1120 => 0.37931081646452
1121 => 0.3753374966689
1122 => 0.37715646212464
1123 => 0.37129694062212
1124 => 0.36922782162418
1125 => 0.36269711291067
1126 => 0.35309877525615
1127 => 0.35443348297704
1128 => 0.33541666454176
1129 => 0.32505529255927
1130 => 0.32218740135521
1201 => 0.31835233737971
1202 => 0.32262058203596
1203 => 0.33536279228447
1204 => 0.31999298331406
1205 => 0.29364252390103
1206 => 0.29522623141075
1207 => 0.29878435197812
1208 => 0.29215381784016
1209 => 0.28587857373713
1210 => 0.29133438935807
1211 => 0.2801693523328
1212 => 0.30013359336103
1213 => 0.29959361659035
1214 => 0.30703505106529
1215 => 0.31168833275608
1216 => 0.30096402497665
1217 => 0.29826689057174
1218 => 0.2998033009067
1219 => 0.27440986046607
1220 => 0.30495986522854
1221 => 0.30522406293834
1222 => 0.30296184174794
1223 => 0.31922877615837
1224 => 0.35355708154847
1225 => 0.34064139220783
1226 => 0.33564004691636
1227 => 0.32613248586131
1228 => 0.33880074646405
1229 => 0.33782802170541
1230 => 0.33342899145193
1231 => 0.33076844422882
]
'min_raw' => 0.24846705940742
'max_raw' => 0.6375380235411
'avg_raw' => 0.44300254147426
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.248467'
'max' => '$0.637538'
'avg' => '$0.4430025'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.15279128499538
'max_diff' => 0.37057294378468
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0077990970778496
]
1 => [
'year' => 2028
'avg' => 0.013385514679649
]
2 => [
'year' => 2029
'avg' => 0.036566813600504
]
3 => [
'year' => 2030
'avg' => 0.028211242235856
]
4 => [
'year' => 2031
'avg' => 0.027706936056372
]
5 => [
'year' => 2032
'avg' => 0.048578978600504
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0077990970778496
'min' => '$0.007799'
'max_raw' => 0.048578978600504
'max' => '$0.048578'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.048578978600504
]
1 => [
'year' => 2033
'avg' => 0.12495012827796
]
2 => [
'year' => 2034
'avg' => 0.079199396124749
]
3 => [
'year' => 2035
'avg' => 0.093415869350558
]
4 => [
'year' => 2036
'avg' => 0.18132042708423
]
5 => [
'year' => 2037
'avg' => 0.44300254147426
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.048578978600504
'min' => '$0.048578'
'max_raw' => 0.44300254147426
'max' => '$0.4430025'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.44300254147426
]
]
]
]
'prediction_2025_max_price' => '$0.013335'
'last_price' => false
'sma_50day_nextmonth' => '—'
'sma_200day_nextmonth' => '—'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'decrease'
'sma_200day_direction_label' => 'diminuer'
'sma_200day_date_nextmonth' => '4 févr. 2026'
'sma_50day_date_nextmonth' => '4 févr. 2026'
'daily_sma3' => '—'
'daily_sma3_action' => '—'
'daily_sma5' => '—'
'daily_sma5_action' => '—'
'daily_sma10' => '—'
'daily_sma10_action' => '—'
'daily_sma21' => '—'
'daily_sma21_action' => '—'
'daily_sma50' => '—'
'daily_sma50_action' => '—'
'daily_sma100' => '—'
'daily_sma100_action' => '—'
'daily_sma200' => '—'
'daily_sma200_action' => '—'
'daily_ema3' => '—'
'daily_ema3_action' => '—'
'daily_ema5' => '—'
'daily_ema5_action' => '—'
'daily_ema10' => '—'
'daily_ema10_action' => '—'
'daily_ema21' => '—'
'daily_ema21_action' => '—'
'daily_ema50' => '—'
'daily_ema50_action' => '—'
'daily_ema100' => '—'
'daily_ema100_action' => '—'
'daily_ema200' => '—'
'daily_ema200_action' => '—'
'weekly_sma21' => '—'
'weekly_sma21_action' => '—'
'weekly_sma50' => '—'
'weekly_sma50_action' => '—'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '—'
'weekly_ema3_action' => '—'
'weekly_ema5' => '—'
'weekly_ema5_action' => '—'
'weekly_ema10' => '—'
'weekly_ema10_action' => '—'
'weekly_ema21' => '—'
'weekly_ema21_action' => '—'
'weekly_ema50' => '—'
'weekly_ema50_action' => '—'
'weekly_ema100' => '—'
'weekly_ema100_action' => '—'
'weekly_ema200' => '—'
'weekly_ema200_action' => '—'
'rsi_14' => '—'
'rsi_14_action' => '—'
'stoch_rsi_14' => '—'
'stoch_rsi_14_action' => '—'
'momentum_10' => '—'
'momentum_10_action' => '—'
'vwma_10' => '—'
'vwma_10_action' => '—'
'hma_9' => '—'
'hma_9_action' => '—'
'stochastic_fast_14' => '—'
'stochastic_fast_14_action' => '—'
'cci_20' => '—'
'cci_20_action' => '—'
'adx_14' => '—'
'adx_14_action' => '—'
'ao_5_34' => '—'
'ao_5_34_action' => '—'
'macd_12_26' => '—'
'macd_12_26_action' => '—'
'williams_percent_r_14' => '—'
'williams_percent_r_14_action' => '—'
'ultimate_oscillator' => '—'
'ultimate_oscillator_action' => '—'
'ichimoku_cloud' => '—'
'ichimoku_cloud_action' => '—'
'sell_signals' => 0
'buy_signals' => 0
'sell_pct' => 0
'buy_pct' => 0
'overall_action' => 'neutral'
'overall_action_label' => 'Neutre'
'overall_action_dir' => 0
'last_updated' => 1767696031
'last_updated_date' => '6 janvier 2026'
]
Prévision du prix de WAL pour 2026
La prévision du prix de WAL pour 2026 suggère que le prix moyen pourrait varier entre $0.004467 à la baisse et $0.013335 à la hausse. Sur le marché des cryptomonnaies, comparé au prix moyen d'aujourd'hui, WAL pourrait potentiellement gagner 3.13% d'ici 2026 si WAL atteint l'objectif de prix prévu.
Prévision du prix de WAL de 2027 à 2032
La prévision du prix de WAL pour 2027-2032 se situe actuellement dans une fourchette de prix comprise entre $0.007799 à la baisse et $0.048578 à la hausse. Compte tenu de la volatilité des prix sur le marché, si WAL atteint l'objectif de prix le plus élevé, il pourrait gagner 275.71% d'ici 2032 par rapport au prix actuel.
| Prévision du Prix de WAL | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2027 | $0.00430056 | $0.007799 | $0.011297 |
| 2028 | $0.007761 | $0.013385 | $0.0190097 |
| 2029 | $0.017049 | $0.036566 | $0.056084 |
| 2030 | $0.014499 | $0.028211 | $0.041922 |
| 2031 | $0.017143 | $0.0277069 | $0.03827 |
| 2032 | $0.026167 | $0.048578 | $0.07099 |
Prévision du prix de WAL de 2032 à 2037
La prévision du prix de WAL pour 2032-2037 est actuellement estimée entre $0.048578 à la baisse et $0.4430025 à la hausse. Par rapport au prix actuel, WAL pourrait potentiellement gagner 3326.16% d'ici 2037 s'il atteint l'objectif de prix le plus élevé. Veuillez noter que ces informations sont à titre général seulement et ne doivent pas être considérées comme un conseil en investissement à long terme.
| Prévision du Prix de WAL | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2032 | $0.026167 | $0.048578 | $0.07099 |
| 2033 | $0.0608079 | $0.12495 | $0.189092 |
| 2034 | $0.048886 | $0.079199 | $0.109512 |
| 2035 | $0.057799 | $0.093415 | $0.129032 |
| 2036 | $0.095675 | $0.18132 | $0.266965 |
| 2037 | $0.248467 | $0.4430025 | $0.637538 |
WAL Histogramme des prix potentiels
Prévision du prix de WAL basée sur l'analyse technique
Au 6 janvier 2026, le sentiment global de prévision du prix pour WAL est Neutre, avec 0 indicateurs techniques montrant des signaux haussiers et 0 indiquant des signaux baissiers. La prévision du prix de WAL a été mise à jour pour la dernière fois le 6 janvier 2026.
Moyennes Mobiles Simples sur 50 et 200 jours de WAL et Indice de Force Relative sur 14 jours - RSI (14)
Selon nos indicateurs techniques, le SMA sur 200 jours de WAL devrait diminuer au cours du prochain mois, atteignant — d'ici le 4 févr. 2026. Le SMA à court terme sur 50 jours pour WAL devrait atteindre — d'ici le 4 févr. 2026.
Le Relative Strength Index (RSI), un oscillateur de momentum, est un outil couramment utilisé pour identifier si une cryptomonnaie est survendue (en dessous de 30) ou surachetée (au-dessus de 70). Actuellement, le RSI est à —, ce qui suggère que le marché de WAL est dans un état —.
Moyennes Mobiles et Oscillateurs Populaires de WAL pour le Samedi 19 Octobre 2024
Les moyennes mobiles (MA) sont des indicateurs largement utilisés sur les marchés financiers, conçus pour lisser les mouvements de prix sur une période donnée. En tant qu'indicateurs retardés, ils sont basés sur des données historiques de prix. Le tableau ci-dessous met en évidence deux types : la moyenne mobile simple (SMA) et la moyenne mobile exponentielle (EMA).
Moyenne Mobile Simple Quotidienne (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 3 | — | — |
| SMA 5 | — | — |
| SMA 10 | — | — |
| SMA 21 | — | — |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Moyenne Mobile Exponentielle Quotidienne (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 3 | — | — |
| EMA 5 | — | — |
| EMA 10 | — | — |
| EMA 21 | — | — |
| EMA 50 | — | — |
| EMA 100 | — | — |
| EMA 200 | — | — |
Moyenne Mobile Simple Hebdomadaire (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 21 | — | — |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Moyenne Mobile Exponentielle Hebdomadaire (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 21 | — | — |
| EMA 50 | — | — |
| EMA 100 | — | — |
| EMA 200 | — | — |
Oscillateurs de WAL
Un oscillateur est un outil d'analyse technique qui établit des limites hautes et basses entre deux extrêmes, créant un indicateur de tendance qui fluctue à l'intérieur de ces limites. Les traders utilisent cet indicateur pour identifier les conditions de surachat ou de survente à court terme.
| Période | Valeur | Action |
|---|---|---|
| RSI (14) | — | — |
| Stoch RSI (14) | — | — |
| Stochastique Rapide (14) | — | — |
| Indice de Canal des Matières Premières (20) | — | — |
| Indice Directionnel Moyen (14) | — | — |
| Oscillateur Impressionnant (5, 34) | — | — |
| Momentum (10) | — | — |
| MACD (12, 26) | — | — |
| Plage de Pourcentage de Williams (14) | — | — |
| Oscillateur Ultime (7, 14, 28) | — | — |
| VWMA (10) | — | — |
| Moyenne Mobile de Hull (9) | — | — |
| Nuage Ichimoku B/L (9, 26, 52, 26) | — | — |
Prévision du cours de WAL basée sur les flux monétaires mondiaux
Définitions des flux monétaires mondiaux utilisés pour la prédiction du cours de WAL
M0 : le total de toutes les devises physiques, plus les comptes à la banque centrale qui peuvent être échangés contre des devises physiques.
M1 : M0 plus le montant des comptes à vue, y compris les comptes de "chèques" et les comptes "courants".
M2 : M1 plus la plupart des comptes d'épargne, comptes du marché monétaire et comptes de certificats de dépôt (CD) de moins de 100 000 $.
Prédictions du cours de WAL par des sociétés Internet ou des niches technologiques
| Comparaison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Action Facebook | $0.018174 | $0.025538 | $0.035885 | $0.050425 | $0.070856 | $0.099564 |
| Action Amazon.com | $0.026987 | $0.056311 | $0.117498 | $0.245166 | $0.511555 | $1.06 |
| Action Apple | $0.018346 | $0.026022 | $0.036911 | $0.052355 | $0.074262 | $0.105335 |
| Action Netflix | $0.020408 | $0.03220078 | $0.0508077 | $0.080166 | $0.12649 | $0.199582 |
| Action Google | $0.016749 | $0.02169 | $0.028089 | $0.036375 | $0.0471064 | $0.0610025 |
| Action Tesla | $0.02932 | $0.066468 | $0.150677 | $0.341575 | $0.774326 | $1.75 |
| Action Kodak | $0.009699 | $0.007273 | $0.005454 | $0.00409 | $0.003067 | $0.002300047 |
| Action Nokia | $0.008568 | $0.005676 | $0.00376 | $0.00249 | $0.00165 | $0.001093 |
Ce calcul montre la valeur potentielle des cryptomonnaies si l'on suppose que leur capitalisation se comportera comme celle de certaines sociétés Internet ou niches technologiques. En extrapolant les données, vous pourrez obtenir une potentielle image des cours futurs pour 2024, 2025, 2026, 2027, 2028, 2029 et 2030.
Aperçu des prévisions relatives à WAL
Vous vous posez peut-être des questions telles que : "Devrais-je investir dans WAL maintenant ?", "Devrais-je acheter WAL aujourd'hui ?", " WAL sera-t-il un bon ou un mauvais investissement à court ou à long terme ?".
Nous mettons régulièrement à jour les prévisions de WAL avec de nouvelles valeurs. Regardez nos prévisions similaires. Nous faisons une prévision des cours futurs pour une grande quantité de devises numériques comme WAL en utilisant des méthodes d'analyse technique.
Si vous souhaitez trouver des cryptomonnaies ayant un bon rendement, vous devriez consulter un maximum d'informations disponibles à propos de WAL afin de prendre une décision responsable concernant cet investissement.
Le cours de WAL est de $0.01293 USD actuellement, mais ce cours peut subir une hausse ou une baisse, ce qui pourrait causer la perte de votre investissement, car les cryptomonnaies sont des actifs à haut risque.
Prévision à court terme de WAL
basée sur l'historique des cours sur 4 heures
Prévision à long terme de WAL
basée sur l'historique des cours sur 1 mois
Prévision du cours de WAL basée sur le modèle de croissance du Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si WAL présente 1 % de la précédente croissance annuelle moyenne du Bitcoin | $0.01327 | $0.013615 | $0.013969 | $0.014332 |
| Si WAL présente 2 % de la précédente croissance annuelle moyenne du Bitcoin | $0.0136065 | $0.014313 | $0.015058 | $0.01584 |
| Si WAL présente 5 % de la précédente croissance annuelle moyenne du Bitcoin | $0.014615 | $0.016514 | $0.01866 | $0.021086 |
| Si WAL présente 10 % de la précédente croissance annuelle moyenne du Bitcoin | $0.016296 | $0.020532 | $0.025869 | $0.032593 |
| Si WAL présente 20 % de la précédente croissance annuelle moyenne du Bitcoin | $0.019658 | $0.029877 | $0.04541 | $0.069017 |
| Si WAL présente 50 % de la précédente croissance annuelle moyenne du Bitcoin | $0.029744 | $0.0684015 | $0.15730043 | $0.361737 |
| Si WAL présente 100 % de la précédente croissance annuelle moyenne du Bitcoin | $0.046554 | $0.167563 | $0.603115 | $2.17 |
Boîte à questions
Est-ce que WAL est un bon investissement ?
La décision d'acquérir WAL dépend entièrement de votre tolérance individuelle au risque. Comme vous pouvez le discerner, la valeur de WAL a connu une baisse de 0% au cours des 24 heures précédentes, et WAL a enregistré une déclin de sur une période de 30 jours précédents. Par conséquent, la détermination de si investir ou non dans WAL dépendra de la mesure dans laquelle cet investissement s'aligne avec vos aspirations de trading.
Est-ce que WAL peut monter ?
Il semble que la valeur moyenne de WAL pourrait potentiellement s'envoler jusqu'à $0.013335 pour la fin de cette année. En regardant les perspectives de WAL sur une période de cinq ans plus longue, la monnaie numérique pourrait potentiellement croître jusqu'à $0.041922. Cependant, compte tenu de l'imprévisibilité du marché, il est essentiel de mener des recherches approfondies avant d'investir des fonds dans un projet, un réseau ou un actif particulier.
Quel sera le prix de WAL la semaine prochaine ?
Basé sur notre nouveau pronostic expérimental de WAL, le prix de WAL va augmenter de 0.86% durant la prochaine semaine et atteindre $0.0130406 d'ici 13 janvier 2026.
Quel sera le prix de WAL le mois prochain ?
Basé sur notre nouveau pronostic expérimental de WAL, le prix de WAL va diminuer de -11.62% durant le prochain mois et atteindre $0.011427 d'ici 5 février 2026.
Jusqu'où le prix de WAL peut-il monter cette année en 2026 ?
Selon notre prédiction la plus récente sur la valeur de WAL en 2026, WAL devrait fluctuer dans la fourchette de $0.004467 et $0.013335. Cependant, il est crucial de garder à l'esprit que le marché des cryptomonnaies est exceptionnellement instable, et cette prévision de prix de WAL ne prend pas en compte les fluctuations de prix soudaines et extrêmes.
Où sera WAL dans 5 ans ?
L'avenir de WAL semble suivre une tendance haussière, avec un prix maximum de $0.041922 prévue après une période de cinq ans. Selon la prévision de WAL pour 2030, la valeur de WAL pourrait potentiellement atteindre son point le plus élevé d'environ $0.041922, tandis que son point le plus bas devrait être autour de $0.014499.
Combien vaudra WAL en 2026 ?
Basé sur notre nouvelle simulation expérimentale de prédiction de prix de WAL, il est attendu que la valeur de WAL en 2026 augmente de 3.13% jusqu'à $0.013335 si le meilleur scénario se produit. Le prix sera entre $0.013335 et $0.004467 durant 2026.
Combien vaudra WAL en 2027 ?
Selon notre dernière simulation expérimentale pour la prédiction de prix de WAL, le valeur de WAL pourrait diminuer de -12.62% jusqu'à $0.011297 en 2027, en supposant les conditions les plus favorables. Il est prévu que le prix fluctue entre $0.011297 et $0.00430056 tout au long de l'année.
Combien vaudra WAL en 2028 ?
Notre nouveau modèle expérimental de prédiction de prix de WAL suggère que la valeur de WAL en 2028 pourrait augmenter de 47.02%, atteignant $0.0190097 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.0190097 et $0.007761 durant l'année.
Combien vaudra WAL en 2029 ?
Basé sur notre modèle de prévision expérimental, la valeur de WAL pourrait connaître un 333.75% croissance en 2029, atteignant potentiellement $0.056084 sous des conditions optimales. Le range de prix prévu pour 2029 se situe entre $0.056084 et $0.017049.
Combien vaudra WAL en 2030 ?
En utilisant notre nouvelle simulation expérimentale pour les prédictions de prix de WAL, il est prévu que la valeur de WAL en 2030 augmente de 224.23%, atteignant $0.041922 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.041922 et $0.014499 au cours de 2030.
Combien vaudra WAL en 2031 ?
Notre simulation expérimentale indique que le prix de WAL pourrait augmenter de 195.98% en 2031, atteignant potentiellement $0.03827 dans des conditions idéales. Il est probable que le prix fluctue entre $0.03827 et $0.017143 durant l'année.
Combien vaudra WAL en 2032 ?
Basé sur les résultats de notre dernière prédiction expérimentale de prix de WAL, WAL pourrait connaître une 449.04% hausse en valeur, atteignant $0.07099 si le scénario le plus positif se réalise en 2032. Il est prévu que le prix reste dans une fourchette de $0.07099 et $0.026167 tout au long de l'année.
Combien vaudra WAL en 2033 ?
Selon notre prédiction expérimentale de prix de WAL, la valeur de WAL est anticipée à augmenter de 1362.43% en 2033, avec le prix potentiel le plus élevé étant $0.189092. Tout au long de l'année, le prix de WAL pourrait osciller entre $0.189092 et $0.0608079.
Combien vaudra WAL en 2034 ?
Les résultats de notre nouvelle simulation de prédiction de prix de WAL suggèrent que WAL pourrait augmenter de 746.96% en 2034, atteignant potentiellement $0.109512 dans les meilleures circonstances. La fourchette de prix prévue pour l'année est entre $0.109512 et $0.048886.
Combien vaudra WAL en 2035 ?
Basé sur notre prédiction expérimentale pour le prix de WAL, WAL pourrait augmenter de 897.93%, avec la valeur potentiellement atteignant $0.129032 en 2035. La fourchette de prix attendue pour l'année se situe entre $0.129032 et $0.057799.
Combien vaudra WAL en 2036 ?
Notre récente simulation de prédiction de prix de WAL suggère que la valeur de WAL pourrait augmenter de 1964.7% en 2036, pouvant atteindre $0.266965 si les conditions sont optimales. La fourchette de prix attendue pour 2036 est entre $0.266965 et $0.095675.
Combien vaudra WAL en 2037 ?
Selon la simulation expérimentale, la valeur de WAL pourrait augmenter de 4830.69% en 2037, avec un maximum de $0.637538 sous des conditions favorables. Il est prévu que le prix chute entre $0.637538 et $0.248467 au cours de l'année.
Prévisions liées
Prévision du cours de SolPod
Prévision du cours de zuzalu
Prévision du cours de SOFT COQ INU
Prévision du cours de All Street Bets
Prévision du cours de MagicRing
Prévision du cours de AI INU
Prévision du cours de Wall Street Baby On Solana
Prévision du cours de Meta Masters Guild Games
Prévision du cours de Morfey
Prévision du cours de PANTIESPrévision du cours de Celer Bridged BUSD (zkSync)
Prévision du cours de Bridged BUSD
Prévision du cours de Multichain Bridged BUSD (Moonriver)
Prévision du cours de tooker kurlson
Prévision du cours de dogwifsaudihatPrévision du cours de Harmony Horizen Bridged BUSD (Harmony)
Prévision du cours de IoTeX Bridged BUSD (IoTeX)
Prévision du cours de MIMANY
Prévision du cours de The Open League MEME
Prévision du cours de Sandwich Cat
Prévision du cours de Hege
Prévision du cours de DexNet
Prévision du cours de SolDocs
Prévision du cours de Secret Society
Prévision du cours de duk
Comment lire et prédire les mouvements de prix de WAL ?
Les traders de WAL utilisent des indicateurs et des modèles graphiques pour prédire la direction du marché. Ils identifient également des niveaux clés de support et de résistance pour évaluer quand une tendance baissière pourrait ralentir ou une tendance haussière pourrait s'arrêter.
Indicateurs de prédiction du prix de WAL
Les moyennes mobiles sont des outils populaires pour la prédiction du prix de WAL. Une moyenne mobile simple (SMA) calcule le prix de clôture moyen de WAL sur une période spécifique, comme une SMA de 12 jours. Une moyenne mobile exponentielle (EMA) donne plus de poids aux prix récents, réagissant plus rapidement aux changements de prix.
Les moyennes mobiles couramment utilisées sur le marché des cryptomonnaies incluent les moyennes sur 50 jours, 100 jours et 200 jours, qui aident à identifier les niveaux clés de résistance et de support. Un mouvement de prix de WAL au-dessus de ces moyennes est considéré comme haussier, tandis qu'une chute en dessous indique une faiblesse.
Les traders utilisent également le RSI et les niveaux de retracement de Fibonacci pour évaluer la direction future de WAL.
Comment lire les graphiques de WAL et prédire les mouvements de prix ?
La plupart des traders préfèrent les graphiques en chandeliers aux simples graphiques linéaires parce qu'ils fournissent des informations plus détaillées. Les chandeliers peuvent représenter l'action des prix de WAL dans différentes périodes, comme 5 minutes pour les tendances à court terme et hebdomadaire pour les tendances à long terme. Les options populaires incluent les graphiques de 1 heure, 4 heures et 1 jour.
Par exemple, un graphique en chandeliers de 1 heure montre les prix d'ouverture, de clôture, les plus hauts et les plus bas de WAL au sein de chaque heure. La couleur du chandelier est cruciale : le vert indique que le prix a clôturé plus haut qu'il n'a ouvert, tandis que le rouge signifie le contraire. Certains graphiques utilisent des chandeliers creux et pleins pour transmettre la même information.
Qu'est-ce qui affecte le prix de WAL ?
L'action du prix de WAL est déterminée par l'offre et la demande, influencée par des facteurs tels que les réductions de récompenses de bloc, les hard forks et les mises à jour de protocole. Les événements du monde réel, tels que les réglementations, l'adoption par les entreprises et les gouvernements et les piratages d'échanges de cryptomonnaies, impactent également le prix de WAL. La capitalisation boursière de WAL peut changer rapidement.
Les traders surveillent souvent l'activité des « baleines » de WAL, de grands détenteurs de WAL, car leurs actions peuvent influencer significativement les mouvements de prix sur le marché relativement petit de WAL.
Modèles de prédiction de prix haussiers et baissiers
Les traders identifient souvent des modèles de chandeliers pour obtenir un avantage dans les prédictions de prix des cryptomonnaies. Certaines formations indiquent des tendances haussières, tandis que d'autres suggèrent des mouvements baissiers.
Modèles de chandeliers haussiers couramment suivis :
- Marteau
- Englobante haussière
- Ligne pénétrante
- Étoile du matin
- Trois soldats blancs
Modèles de chandeliers baissiers courants :
- Harami baissier
- Nuage sombre
- Étoile du soir
- Étoile filante
- Pendu


