Prédiction du prix de Sable jusqu'à $0.003644 d'ici 2026
| Année | Prix min. | Prix max. |
|---|---|---|
| 2026 | $0.00122 | $0.003644 |
| 2027 | $0.001175 | $0.003087 |
| 2028 | $0.002121 | $0.005195 |
| 2029 | $0.004659 | $0.015328 |
| 2030 | $0.003962 | $0.011458 |
| 2031 | $0.004685 | $0.010459 |
| 2032 | $0.007151 | $0.0194025 |
| 2033 | $0.016619 | $0.051681 |
| 2034 | $0.013361 | $0.029931 |
| 2035 | $0.015797 | $0.035266 |
Calculateur de profit d’investissement
Si vous ouvrez une position short de $10,000.00 sur Sable aujourd’hui et la fermez le Apr 06, 2026, notre prévision indique que vous pourriez gagner environ $3,955.74, soit un rendement de 39.56% sur les 90 prochains jours.
Prévision du prix à long terme de Sable pour 2027, 2028, 2029, 2030, 2031, 2032 et 2037
[
'name' => 'Sable'
'name_with_ticker' => 'Sable <small>SABLE</small>'
'name_lang' => 'Sable'
'name_lang_with_ticker' => 'Sable <small>SABLE</small>'
'name_with_lang' => 'Sable'
'name_with_lang_with_ticker' => 'Sable <small>SABLE</small>'
'image' => '/uploads/coins/sable.png?1717589478'
'price_for_sd' => 0.003533
'ticker' => 'SABLE'
'marketcap' => '$93.35K'
'low24h' => '$0.02122'
'high24h' => '$0.0241'
'volume24h' => '$17.6'
'current_supply' => '26.41M'
'max_supply' => '100M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.003533'
'change_24h_pct' => '12.5276%'
'ath_price' => '$0.09117'
'ath_days' => 893
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '28 juil. 2023'
'ath_pct' => '-96.12%'
'fdv' => '$353.39K'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.174247'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.003564'
'next_week_prediction_price_date' => '13 janvier 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.003123'
'next_month_prediction_price_date' => '5 février 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.00122'
'current_year_max_price_prediction' => '$0.003644'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.003962'
'grand_prediction_max_price' => '$0.011458'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0036008961146528
107 => 0.0036143405536196
108 => 0.003644631561102
109 => 0.0033857982186678
110 => 0.003502006790473
111 => 0.003570268439138
112 => 0.0032618598270898
113 => 0.0035641721924871
114 => 0.0033812925060282
115 => 0.0033192203936833
116 => 0.0034027923155767
117 => 0.0033702242563385
118 => 0.0033422241514661
119 => 0.0033265996118444
120 => 0.0033879656077865
121 => 0.0033851028107276
122 => 0.0032846961307398
123 => 0.0031537197097956
124 => 0.0031976796958189
125 => 0.0031817086207696
126 => 0.0031238273844811
127 => 0.0031628323491324
128 => 0.0029910742247688
129 => 0.0026955732990116
130 => 0.002890790262005
131 => 0.0028832746212849
201 => 0.0028794848944267
202 => 0.0030261850467156
203 => 0.0030120832120214
204 => 0.0029864882439658
205 => 0.0031233573128209
206 => 0.00307339826154
207 => 0.0032273602857548
208 => 0.003328769632542
209 => 0.0033030489419481
210 => 0.0033984249227554
211 => 0.0031986924451102
212 => 0.0032650355623078
213 => 0.0032787087868146
214 => 0.0031216683697569
215 => 0.0030143904465777
216 => 0.0030072362321595
217 => 0.0028212310971753
218 => 0.0029205935389029
219 => 0.0030080283757259
220 => 0.0029661538741051
221 => 0.0029528976578571
222 => 0.0030206207917456
223 => 0.0030258834592582
224 => 0.0029058940822594
225 => 0.0029308436733069
226 => 0.003034887615499
227 => 0.0029282220329129
228 => 0.002720988229672
301 => 0.0026695913812367
302 => 0.0026627340942236
303 => 0.0025233417649318
304 => 0.0026730259644128
305 => 0.0026076848000522
306 => 0.0028140967553599
307 => 0.0026961953534977
308 => 0.0026911128597099
309 => 0.00268342992491
310 => 0.002563449188864
311 => 0.0025897173448845
312 => 0.0026770366962499
313 => 0.0027081932245399
314 => 0.0027049433433814
315 => 0.0026766087837913
316 => 0.0026895802000752
317 => 0.0026477947486837
318 => 0.0026330394361083
319 => 0.0025864676108522
320 => 0.0025180198935207
321 => 0.0025275379684299
322 => 0.0023919251300767
323 => 0.0023180360582239
324 => 0.0022975845369773
325 => 0.0022702359080385
326 => 0.0023006736373879
327 => 0.0023915409559445
328 => 0.0022819356911882
329 => 0.0020940251526787
330 => 0.0021053188962271
331 => 0.0021306925848378
401 => 0.0020834088839755
402 => 0.0020386588293296
403 => 0.0020775653711576
404 => 0.0019979451988103
405 => 0.0021403143022761
406 => 0.0021364636170122
407 => 0.0021895300147379
408 => 0.002222713522268
409 => 0.0021462362806994
410 => 0.0021270024612613
411 => 0.0021379589189416
412 => 0.0019568730792979
413 => 0.0021747314382889
414 => 0.0021766154864242
415 => 0.0021604831224508
416 => 0.0022764859729913
417 => 0.0025212881698283
418 => 0.0024291837362327
419 => 0.0023935181156732
420 => 0.0023257177449183
421 => 0.0024160577133616
422 => 0.0024091210133082
423 => 0.0023777506250013
424 => 0.0023587777162718
425 => 0.0023937358823471
426 => 0.0023544460126301
427 => 0.0023473884724155
428 => 0.0023046274573946
429 => 0.0022893637205344
430 => 0.00227806305743
501 => 0.0022656221377322
502 => 0.0022930637065014
503 => 0.0022308775014313
504 => 0.0021558870343055
505 => 0.0021496523883721
506 => 0.0021668667939499
507 => 0.0021592507009435
508 => 0.0021496159254489
509 => 0.0021312205151547
510 => 0.0021257629898762
511 => 0.0021434972994166
512 => 0.00212347629792
513 => 0.0021530183762286
514 => 0.0021449845655664
515 => 0.0021001083522728
516 => 0.0020441759752068
517 => 0.0020436780597288
518 => 0.0020316275208374
519 => 0.0020162793477486
520 => 0.002012009837114
521 => 0.002074288770724
522 => 0.0022032042994451
523 => 0.00217789509647
524 => 0.0021961835894109
525 => 0.0022861448738937
526 => 0.0023147408610006
527 => 0.0022944441066852
528 => 0.002266660657529
529 => 0.0022678829882885
530 => 0.0023628274446772
531 => 0.0023687490139609
601 => 0.0023837109091703
602 => 0.0024029411727453
603 => 0.0022977191037261
604 => 0.0022629270383002
605 => 0.0022464406275111
606 => 0.0021956688633247
607 => 0.0022504218581577
608 => 0.0022185196328255
609 => 0.002222824332958
610 => 0.0022200208913495
611 => 0.0022215517600356
612 => 0.0021402745072102
613 => 0.0021698876663331
614 => 0.0021206500457246
615 => 0.002054726398912
616 => 0.0020545053997321
617 => 0.0020706401188955
618 => 0.0020610425565855
619 => 0.0020352157631851
620 => 0.0020388843372886
621 => 0.0020067437678869
622 => 0.0020427867843378
623 => 0.0020438203690815
624 => 0.0020299418444715
625 => 0.0020854710842919
626 => 0.0021082214591538
627 => 0.0020990863169487
628 => 0.0021075805132243
629 => 0.0021789468081178
630 => 0.0021905826281152
701 => 0.0021957504907389
702 => 0.0021888262394337
703 => 0.002108884958086
704 => 0.0021124306938503
705 => 0.0020864144374442
706 => 0.0020644334423065
707 => 0.0020653125668369
708 => 0.002076613655667
709 => 0.0021259661733881
710 => 0.0022298256374424
711 => 0.002233767028183
712 => 0.0022385441087391
713 => 0.0022191133213492
714 => 0.0022132528099449
715 => 0.0022209843372136
716 => 0.0022599884912412
717 => 0.0023603177649247
718 => 0.002324854698838
719 => 0.0022960226740941
720 => 0.0023213161328526
721 => 0.0023174224031334
722 => 0.0022845554057924
723 => 0.0022836329386439
724 => 0.0022205506625318
725 => 0.0021972305813671
726 => 0.002177742576068
727 => 0.0021564621830287
728 => 0.0021438464527098
729 => 0.0021632299482266
730 => 0.00216766318299
731 => 0.0021252808312771
801 => 0.0021195042733467
802 => 0.0021541146166422
803 => 0.0021388838949615
804 => 0.0021545490699138
805 => 0.0021581835248761
806 => 0.0021575982939186
807 => 0.0021416956712467
808 => 0.0021518315287147
809 => 0.0021278572041584
810 => 0.0021017887270304
811 => 0.0020851586627463
812 => 0.0020706467260005
813 => 0.0020786987919458
814 => 0.0020499946471
815 => 0.0020408116134635
816 => 0.0021483977282686
817 => 0.0022278727480207
818 => 0.0022267171497579
819 => 0.0022196827425291
820 => 0.0022092310402646
821 => 0.0022592238841209
822 => 0.0022418073769598
823 => 0.0022544793411174
824 => 0.0022577048878361
825 => 0.0022674676462813
826 => 0.002270956993288
827 => 0.0022604097631264
828 => 0.0022250119704685
829 => 0.0021368040366861
830 => 0.0020957430053976
831 => 0.0020821921811469
901 => 0.0020826847278717
902 => 0.0020690980903753
903 => 0.0020730999640284
904 => 0.0020677064020342
905 => 0.0020574923004598
906 => 0.0020780680999562
907 => 0.0020804392691713
908 => 0.0020756366317063
909 => 0.0020767678266873
910 => 0.002037004039711
911 => 0.0020400271940724
912 => 0.0020231938864242
913 => 0.0020200378441687
914 => 0.0019774847082778
915 => 0.0019020956598715
916 => 0.0019438685108806
917 => 0.0018934127810133
918 => 0.0018743044315835
919 => 0.0019647603858262
920 => 0.0019556811168778
921 => 0.0019401413551016
922 => 0.0019171548086645
923 => 0.0019086288749922
924 => 0.001856828000982
925 => 0.0018537673289985
926 => 0.0018794412408992
927 => 0.0018675936139424
928 => 0.0018509550586478
929 => 0.0017906918979942
930 => 0.0017229361529727
1001 => 0.0017249812730175
1002 => 0.0017465331148684
1003 => 0.0018091980017117
1004 => 0.0017847137463084
1005 => 0.0017669501380889
1006 => 0.0017636235482415
1007 => 0.0018052627848694
1008 => 0.0018641910283877
1009 => 0.0018918388418013
1010 => 0.001864440698385
1011 => 0.0018329671864491
1012 => 0.0018348828332865
1013 => 0.0018476267734703
1014 => 0.001848965981394
1015 => 0.001828479960653
1016 => 0.0018342466554941
1017 => 0.0018254865187129
1018 => 0.001771725575457
1019 => 0.0017707532104712
1020 => 0.0017575594079839
1021 => 0.0017571599048882
1022 => 0.0017347139555089
1023 => 0.0017315736120293
1024 => 0.0016870058171651
1025 => 0.0017163404747084
1026 => 0.001696664326567
1027 => 0.0016670077301838
1028 => 0.001661894921789
1029 => 0.0016617412245948
1030 => 0.0016921919179868
1031 => 0.0017159846406269
1101 => 0.001697006601588
1102 => 0.0016926856699727
1103 => 0.0017388219151453
1104 => 0.0017329506574059
1105 => 0.0017278661860691
1106 => 0.0018589146505113
1107 => 0.0017551795650661
1108 => 0.0017099451468203
1109 => 0.0016539589644581
1110 => 0.0016721883477421
1111 => 0.0016760295466454
1112 => 0.0015413928703322
1113 => 0.0014867707875199
1114 => 0.0014680265470885
1115 => 0.0014572389717155
1116 => 0.0014621550052748
1117 => 0.0014129887242124
1118 => 0.0014460292782216
1119 => 0.0014034554347438
1120 => 0.0013963177913375
1121 => 0.0014724450973629
1122 => 0.0014830377672671
1123 => 0.0014378461465713
1124 => 0.0014668664829168
1125 => 0.0014563433055451
1126 => 0.0014041852410959
1127 => 0.0014021931866827
1128 => 0.0013760221033867
1129 => 0.0013350694257488
1130 => 0.0013163529531613
1201 => 0.0013066052517338
1202 => 0.0013106273433217
1203 => 0.0013085936507368
1204 => 0.0012953224309779
1205 => 0.0013093543415187
1206 => 0.0012735086084727
1207 => 0.0012592345487451
1208 => 0.0012527872871218
1209 => 0.0012209721358401
1210 => 0.0012716041897913
1211 => 0.0012815793422655
1212 => 0.0012915741488716
1213 => 0.0013785721166329
1214 => 0.0013742259440173
1215 => 0.0014135132277909
1216 => 0.0014119865961881
1217 => 0.0014007812264441
1218 => 0.0013535076146879
1219 => 0.0013723500337628
1220 => 0.0013143559966122
1221 => 0.0013578090724566
1222 => 0.0013379789032851
1223 => 0.0013511044723124
1224 => 0.0013275035157165
1225 => 0.0013405652595563
1226 => 0.0012839448209709
1227 => 0.001231073452091
1228 => 0.0012523504343397
1229 => 0.0012754809473622
1230 => 0.00132563379314
1231 => 0.0012957631719467
]
'min_raw' => 0.0012209721358401
'max_raw' => 0.003644631561102
'avg_raw' => 0.002432801848471
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.00122'
'max' => '$0.003644'
'avg' => '$0.002432'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0023129578641599
'max_diff' => 0.00011070156110197
'year' => 2026
]
1 => [
'items' => [
101 => 0.0013065057768611
102 => 0.0012705198486884
103 => 0.0011962705999959
104 => 0.0011966908426801
105 => 0.0011852692133765
106 => 0.0011753992580731
107 => 0.0012991941721166
108 => 0.0012837983176473
109 => 0.0012592670385101
110 => 0.0012921031304695
111 => 0.0013007855143624
112 => 0.0013010326896259
113 => 0.0013249890546973
114 => 0.0013377745710303
115 => 0.0013400280736996
116 => 0.0013777239317509
117 => 0.0013903590861494
118 => 0.0014424014989225
119 => 0.0013366898092969
120 => 0.0013345127466145
121 => 0.0012925652016218
122 => 0.001265961405423
123 => 0.0012943867863081
124 => 0.0013195677933208
125 => 0.0012933476457015
126 => 0.001296771443443
127 => 0.0012615730375288
128 => 0.0012741548114042
129 => 0.0012849919300137
130 => 0.0012790083100939
131 => 0.0012700505414636
201 => 0.0013175032379062
202 => 0.0013148257708043
203 => 0.0013590148126645
204 => 0.0013934633307832
205 => 0.0014552012336611
206 => 0.0013907745135384
207 => 0.0013884265477841
208 => 0.0014113782896578
209 => 0.0013903555723573
210 => 0.0014036412040117
211 => 0.0014530607130065
212 => 0.0014541048693574
213 => 0.0014366139051617
214 => 0.0014355495784008
215 => 0.0014389089094048
216 => 0.0014585846160218
217 => 0.0014517093195564
218 => 0.0014596655866873
219 => 0.0014696150205653
220 => 0.001510770097557
221 => 0.0015206924472898
222 => 0.0014965862815875
223 => 0.0014987627984451
224 => 0.0014897464307434
225 => 0.0014810367325183
226 => 0.001500614862179
227 => 0.0015363942789431
228 => 0.0015361716970484
301 => 0.0015444718262852
302 => 0.0015496427380377
303 => 0.0015274453994571
304 => 0.0015129957482598
305 => 0.0015185366639841
306 => 0.0015273967088925
307 => 0.001515663470833
308 => 0.0014432404901647
309 => 0.0014652089961015
310 => 0.0014615523625086
311 => 0.0014563448716104
312 => 0.0014784343742073
313 => 0.0014763037877941
314 => 0.0014124844529363
315 => 0.0014165699596926
316 => 0.0014127329061338
317 => 0.0014251312111696
318 => 0.0013896860231976
319 => 0.0014005887242908
320 => 0.00140742679621
321 => 0.0014114544731029
322 => 0.0014260052038441
323 => 0.0014242978435355
324 => 0.0014258990719301
325 => 0.0014474739643688
326 => 0.0015565923667149
327 => 0.0015625314405984
328 => 0.0015332852686818
329 => 0.0015449685375072
330 => 0.0015225392162124
331 => 0.001537596169861
401 => 0.0015478977551422
402 => 0.0015013468721372
403 => 0.0014985904309584
404 => 0.001476068535876
405 => 0.001488170526588
406 => 0.0014689153892013
407 => 0.0014736399263999
408 => 0.001460429708515
409 => 0.0014842054705797
410 => 0.001510790466948
411 => 0.0015175068869039
412 => 0.0014998388776004
413 => 0.0014870460744861
414 => 0.0014645861264288
415 => 0.0015019375206008
416 => 0.0015128602065198
417 => 0.0015018801483816
418 => 0.0014993358289919
419 => 0.0014945143483461
420 => 0.0015003587289036
421 => 0.0015128007192265
422 => 0.0015069333063577
423 => 0.001510808835928
424 => 0.0014960393136346
425 => 0.0015274527476998
426 => 0.0015773448410499
427 => 0.0015775052522882
428 => 0.0015716378077919
429 => 0.0015692369759198
430 => 0.0015752573300394
501 => 0.0015785231251814
502 => 0.0015979918464599
503 => 0.0016188825600598
504 => 0.0017163704050982
505 => 0.0016889962083154
506 => 0.0017754932240113
507 => 0.001843901133195
508 => 0.0018644136740439
509 => 0.0018455431016525
510 => 0.0017809878928701
511 => 0.0017778205063503
512 => 0.0018742932427774
513 => 0.0018470352760055
514 => 0.0018437930275921
515 => 0.0018093009823388
516 => 0.0018296900530065
517 => 0.0018252306641618
518 => 0.0018181913007098
519 => 0.0018570922272286
520 => 0.0019299112889622
521 => 0.0019185617552982
522 => 0.0019100898549077
523 => 0.0018729684535298
524 => 0.0018953238285245
525 => 0.0018873635076779
526 => 0.0019215660977793
527 => 0.0019013052410834
528 => 0.0018468287700983
529 => 0.0018555043276594
530 => 0.0018541930345869
531 => 0.0018811793531012
601 => 0.0018730787301248
602 => 0.0018526112579404
603 => 0.0019296624013257
604 => 0.0019246591286552
605 => 0.0019317526253945
606 => 0.0019348754020329
607 => 0.001981775075218
608 => 0.0020009883706999
609 => 0.0020053501251503
610 => 0.0020236012698484
611 => 0.0020048960200438
612 => 0.0020797303558794
613 => 0.0021294908225055
614 => 0.0021872901651419
615 => 0.0022717505397324
616 => 0.0023035084218806
617 => 0.0022977716447243
618 => 0.0023618085368059
619 => 0.0024768814084164
620 => 0.0023210311621361
621 => 0.0024851418499032
622 => 0.0024331863009051
623 => 0.0023100006288711
624 => 0.0023020689238558
625 => 0.0023854916911723
626 => 0.0025705153599364
627 => 0.0025241690294321
628 => 0.00257059116593
629 => 0.0025164372778482
630 => 0.0025137480808602
701 => 0.0025679610324596
702 => 0.0026946325488659
703 => 0.0026344556596321
704 => 0.0025481773329368
705 => 0.0026118839067291
706 => 0.0025566953767451
707 => 0.0024323401723942
708 => 0.0025241335892666
709 => 0.00246275394553
710 => 0.0024806677886937
711 => 0.0026096786702951
712 => 0.0025941557397003
713 => 0.0026142438492746
714 => 0.0025787888616734
715 => 0.0025456683125155
716 => 0.002483846347948
717 => 0.0024655439120256
718 => 0.0024706020468619
719 => 0.0024655414054652
720 => 0.0024309525844629
721 => 0.0024234831318607
722 => 0.0024110337169461
723 => 0.0024148923111963
724 => 0.0023914837689521
725 => 0.0024356605246186
726 => 0.0024438601197545
727 => 0.0024760082784929
728 => 0.0024793460069805
729 => 0.0025688781714665
730 => 0.0025195653597945
731 => 0.0025526486513274
801 => 0.0025496893703407
802 => 0.0023126704359157
803 => 0.0023453295538437
804 => 0.0023961368923439
805 => 0.0023732482552173
806 => 0.0023408890774365
807 => 0.0023147573063892
808 => 0.0022751650011417
809 => 0.0023308904104747
810 => 0.0024041633980109
811 => 0.0024812043308633
812 => 0.0025737639637636
813 => 0.0025531057312131
814 => 0.0024794739929094
815 => 0.0024827770589016
816 => 0.0025031953131574
817 => 0.0024767518187022
818 => 0.002468953115949
819 => 0.0025021238911564
820 => 0.0025023523200549
821 => 0.0024719258838811
822 => 0.0024381124680529
823 => 0.002437970788606
824 => 0.0024319540178582
825 => 0.0025175076479979
826 => 0.0025645534941272
827 => 0.0025699472245677
828 => 0.0025641904530935
829 => 0.0025664060059558
830 => 0.0025390310646777
831 => 0.0026016020626528
901 => 0.0026590233980251
902 => 0.0026436332535175
903 => 0.0026205612390625
904 => 0.0026021832682503
905 => 0.0026393039876544
906 => 0.0026376510604528
907 => 0.0026585218727539
908 => 0.0026575750521523
909 => 0.0026505569829664
910 => 0.0026436335041548
911 => 0.0026710843150481
912 => 0.0026631789223574
913 => 0.0026552612504083
914 => 0.0026393811471794
915 => 0.0026415395169488
916 => 0.0026184714862024
917 => 0.0026077991596578
918 => 0.0024473129749198
919 => 0.0024044258223205
920 => 0.0024179189935767
921 => 0.0024223612959043
922 => 0.0024036967521317
923 => 0.0024304569133737
924 => 0.0024262863705902
925 => 0.002442511512875
926 => 0.0024323747483892
927 => 0.0024327907647396
928 => 0.0024626008277062
929 => 0.0024712548158065
930 => 0.0024668533276125
1001 => 0.0024699359790694
1002 => 0.0025409743807886
1003 => 0.0025308749917443
1004 => 0.0025255098926028
1005 => 0.0025269960617308
1006 => 0.0025451478964505
1007 => 0.0025502294191186
1008 => 0.0025286986505016
1009 => 0.0025388526854493
1010 => 0.0025820872775176
1011 => 0.0025972169378755
1012 => 0.0026455035510889
1013 => 0.0026249905395697
1014 => 0.0026626430599956
1015 => 0.0027783740710944
1016 => 0.002870828010737
1017 => 0.0027858035470211
1018 => 0.0029555834332365
1019 => 0.0030877814281334
1020 => 0.003082707448902
1021 => 0.003059655670697
1022 => 0.0029091517681724
1023 => 0.0027706558331825
1024 => 0.0028865135636496
1025 => 0.0028868089088309
1026 => 0.0028768566270346
1027 => 0.0028150438595422
1028 => 0.0028747056767128
1029 => 0.0028794414150999
1030 => 0.0028767906609376
1031 => 0.0028293989570289
1101 => 0.0027570405846111
1102 => 0.0027711792373801
1103 => 0.0027943386390363
1104 => 0.0027504930601437
1105 => 0.0027364817409902
1106 => 0.0027625314490591
1107 => 0.0028464690361293
1108 => 0.002830601121511
1109 => 0.002830186746133
1110 => 0.0028980764139131
1111 => 0.0028494820632899
1112 => 0.0027713575710697
1113 => 0.0027516301064487
1114 => 0.0026816108970565
1115 => 0.0027299734143835
1116 => 0.002731713895284
1117 => 0.0027052262387969
1118 => 0.0027735068984118
1119 => 0.0027728776801129
1120 => 0.0028377000041823
1121 => 0.0029616159416498
1122 => 0.0029249679014077
1123 => 0.0028823502179016
1124 => 0.0028869839417589
1125 => 0.0029378044554685
1126 => 0.0029070772127602
1127 => 0.002918126943476
1128 => 0.0029377877303776
1129 => 0.0029496495712652
1130 => 0.0028852772053985
1201 => 0.0028702689276288
1202 => 0.0028395672585016
1203 => 0.0028315577661002
1204 => 0.0028565636349929
1205 => 0.00284997547201
1206 => 0.0027315676146038
1207 => 0.0027191933346897
1208 => 0.0027195728361883
1209 => 0.0026884571209795
1210 => 0.0026409981866587
1211 => 0.002765717432428
1212 => 0.002755700731548
1213 => 0.0027446430690075
1214 => 0.0027459975695746
1215 => 0.0028001339670356
1216 => 0.0027687321225546
1217 => 0.0028522190727684
1218 => 0.0028350566656519
1219 => 0.0028174541075525
1220 => 0.0028150208978362
1221 => 0.0028082454147476
1222 => 0.0027850097621907
1223 => 0.0027569513154819
1224 => 0.0027384246985838
1225 => 0.0025260520318617
1226 => 0.0025654671634903
1227 => 0.0026108106796268
1228 => 0.0026264630796944
1229 => 0.0025996885662657
1230 => 0.0027860669831734
1231 => 0.0028201201159296
]
'min_raw' => 0.0011753992580731
'max_raw' => 0.0030877814281334
'avg_raw' => 0.0021315903431033
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.001175'
'max' => '$0.003087'
'avg' => '$0.002131'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -4.5572877767026E-5
'max_diff' => -0.00055685013296857
'year' => 2027
]
2 => [
'items' => [
101 => 0.0027169709555803
102 => 0.0026976759592314
103 => 0.0027873319599218
104 => 0.0027332584315052
105 => 0.0027576077380402
106 => 0.00270497785567
107 => 0.0028119177134407
108 => 0.0028111030108978
109 => 0.0027695009908788
110 => 0.0028046627333205
111 => 0.0027985525152833
112 => 0.002751583937143
113 => 0.0028134067011441
114 => 0.0028134373644638
115 => 0.0027733963247013
116 => 0.0027266371563696
117 => 0.0027182777214741
118 => 0.0027119800102124
119 => 0.0027560588871265
120 => 0.0027955798703367
121 => 0.0028691186220081
122 => 0.002887608011416
123 => 0.0029597733291831
124 => 0.0029168023961183
125 => 0.0029358508541792
126 => 0.0029565306499732
127 => 0.0029664453045512
128 => 0.0029502899069661
129 => 0.0030623923498883
130 => 0.0030718572308011
131 => 0.0030750307235002
201 => 0.0030372304104841
202 => 0.0030708059357158
203 => 0.0030550970593644
204 => 0.0030959671915792
205 => 0.0031023761501665
206 => 0.0030969479902484
207 => 0.0030989822948625
208 => 0.0030033226360545
209 => 0.0029983621781004
210 => 0.0029307259819182
211 => 0.002958288231804
212 => 0.0029067619267356
213 => 0.0029231014488525
214 => 0.002930303754513
215 => 0.0029265416787632
216 => 0.0029598465600584
217 => 0.0029315306072198
218 => 0.0028568001521048
219 => 0.0027820493367273
220 => 0.0027811109011309
221 => 0.0027614303309035
222 => 0.0027472048833054
223 => 0.0027499452091876
224 => 0.0027596024750231
225 => 0.002746643585459
226 => 0.0027494090215799
227 => 0.0027953336871908
228 => 0.0028045435513593
229 => 0.0027732448343884
301 => 0.002647575969367
302 => 0.0026167365146742
303 => 0.0026389033031344
304 => 0.0026283090059745
305 => 0.0021212504989287
306 => 0.002240376373854
307 => 0.0021695958241059
308 => 0.0022022147578863
309 => 0.002129966145128
310 => 0.0021644469700105
311 => 0.0021580796206928
312 => 0.0023496305023817
313 => 0.0023466396988338
314 => 0.0023480712382224
315 => 0.0022797401333484
316 => 0.0023885934388043
317 => 0.0024422184913102
318 => 0.0024322939212759
319 => 0.002434791721737
320 => 0.0023918712342055
321 => 0.0023484868023612
322 => 0.0023003667906297
323 => 0.0023897678246136
324 => 0.0023798279557611
325 => 0.0024026264386568
326 => 0.0024606093997132
327 => 0.0024691476109846
328 => 0.0024806230535194
329 => 0.0024765099242483
330 => 0.0025745013505685
331 => 0.0025626339422729
401 => 0.002591230981779
402 => 0.0025324047018524
403 => 0.0024658371822737
404 => 0.0024784894914894
405 => 0.0024772709723685
406 => 0.002461757825408
407 => 0.0024477532499718
408 => 0.0024244395776351
409 => 0.0024982074866826
410 => 0.0024952126442913
411 => 0.0025436956614832
412 => 0.0025351258172556
413 => 0.0024778943001074
414 => 0.0024799383349387
415 => 0.0024936854515089
416 => 0.0025412643789202
417 => 0.0025553890439963
418 => 0.0025488459363625
419 => 0.002564332986803
420 => 0.0025765733200132
421 => 0.0025658701841987
422 => 0.0027174040164163
423 => 0.0026544766043776
424 => 0.0026851469871592
425 => 0.0026924616927322
426 => 0.0026737252282186
427 => 0.0026777884964691
428 => 0.0026839432406943
429 => 0.0027213136424072
430 => 0.0028193843897146
501 => 0.0028628192561069
502 => 0.0029934951946866
503 => 0.0028592125950955
504 => 0.0028512448213524
505 => 0.0028747835039259
506 => 0.0029515041133251
507 => 0.0030136789612428
508 => 0.0030343059452501
509 => 0.0030370321417011
510 => 0.0030757297349548
511 => 0.0030979104737404
512 => 0.003071030829286
513 => 0.003048253145027
514 => 0.0029666663072816
515 => 0.0029761102059042
516 => 0.0030411693023504
517 => 0.0031330691080423
518 => 0.0032119287018712
519 => 0.0031843148206466
520 => 0.0033949892420277
521 => 0.0034158767503798
522 => 0.0034129907720995
523 => 0.0034605756246036
524 => 0.0033661293828697
525 => 0.0033257517847187
526 => 0.0030531779389015
527 => 0.0031297600714335
528 => 0.0032410766985796
529 => 0.0032263435255609
530 => 0.0031455024154254
531 => 0.0032118673766399
601 => 0.0031899250450382
602 => 0.0031726182177157
603 => 0.0032519041487735
604 => 0.0031647260106889
605 => 0.0032402070299644
606 => 0.0031434018419924
607 => 0.00318444095853
608 => 0.0031611451711446
609 => 0.0031762204006073
610 => 0.0030880909172058
611 => 0.003135643447227
612 => 0.0030861125756188
613 => 0.0030860890915365
614 => 0.0030849956948005
615 => 0.0031432685455941
616 => 0.0031451688211664
617 => 0.0031021050963846
618 => 0.0030958989408617
619 => 0.0031188463506075
620 => 0.0030919809437313
621 => 0.0031045510985198
622 => 0.0030923616809144
623 => 0.003089617586263
624 => 0.0030677521732115
625 => 0.0030583319520668
626 => 0.0030620258635068
627 => 0.0030494166394202
628 => 0.0030418191258124
629 => 0.0030834843581173
630 => 0.0030612243052675
701 => 0.0030800726857639
702 => 0.0030585925773329
703 => 0.0029841331630733
704 => 0.0029413107665386
705 => 0.0028006638353935
706 => 0.0028405511305943
707 => 0.0028669964485788
708 => 0.0028582562711427
709 => 0.0028770335542751
710 => 0.0028781863269567
711 => 0.0028720816407986
712 => 0.0028650131962862
713 => 0.0028615726684071
714 => 0.0028872155444464
715 => 0.0029021020970868
716 => 0.0028696505900313
717 => 0.002862047655973
718 => 0.0028948579213029
719 => 0.0029148721642003
720 => 0.0030626460887229
721 => 0.0030516985190908
722 => 0.0030791747705154
723 => 0.0030760813662625
724 => 0.0031048808550655
725 => 0.0031519558476865
726 => 0.0030562392253131
727 => 0.0030728523213254
728 => 0.0030687791738356
729 => 0.0031132487300925
730 => 0.0031133875591931
731 => 0.003086725838798
801 => 0.0031011795899612
802 => 0.0030931119025798
803 => 0.0031076913040913
804 => 0.003051552307624
805 => 0.003119923545491
806 => 0.0031586856316164
807 => 0.0031592238432198
808 => 0.0031775967644083
809 => 0.0031962647164236
810 => 0.0032320962246811
811 => 0.0031952653951059
812 => 0.0031290103181091
813 => 0.0031337937206657
814 => 0.0030949483932643
815 => 0.0030956013902359
816 => 0.0030921156412252
817 => 0.0031025766364012
818 => 0.0030538479077923
819 => 0.0030652844429992
820 => 0.0030492732267373
821 => 0.0030728175160682
822 => 0.0030474877527586
823 => 0.0030687772096405
824 => 0.0030779650334741
825 => 0.0031118683012197
826 => 0.0030424802125467
827 => 0.0029009932025817
828 => 0.0029307354874405
829 => 0.0028867443119283
830 => 0.0028908158627082
831 => 0.002899041043266
901 => 0.0028723805419664
902 => 0.0028774665254454
903 => 0.002877284818326
904 => 0.0028757189645373
905 => 0.0028687835384719
906 => 0.0028587257985447
907 => 0.0028987927388053
908 => 0.0029056008927111
909 => 0.002920734575492
910 => 0.0029657621501727
911 => 0.0029612628336387
912 => 0.0029686014055804
913 => 0.002952581344236
914 => 0.0028915589874073
915 => 0.0028948727949705
916 => 0.002853549561557
917 => 0.0029196778475063
918 => 0.0029040177965428
919 => 0.0028939216598119
920 => 0.0028911668353649
921 => 0.0029363060246939
922 => 0.0029498123776112
923 => 0.0029413961248508
924 => 0.0029241341448978
925 => 0.0029572822494538
926 => 0.0029661512838268
927 => 0.0029681367335455
928 => 0.0030268688193002
929 => 0.0029714192047071
930 => 0.0029847664780614
1001 => 0.0030888980946247
1002 => 0.0029944650875826
1003 => 0.0030444883575202
1004 => 0.0030420399787652
1005 => 0.0030676301909701
1006 => 0.0030399408344421
1007 => 0.0030402840772017
1008 => 0.0030630064520085
1009 => 0.0030310969745942
1010 => 0.0030231957392424
1011 => 0.0030122802391937
1012 => 0.0030361138342146
1013 => 0.0030504009965288
1014 => 0.0031655450320169
1015 => 0.0032399333301482
1016 => 0.0032367039379412
1017 => 0.0032662145375448
1018 => 0.0032529197421373
1019 => 0.0032099873407765
1020 => 0.0032832677148507
1021 => 0.0032600787383126
1022 => 0.0032619904093638
1023 => 0.0032619192568718
1024 => 0.0032773378990541
1025 => 0.0032664123779701
1026 => 0.0032448770544318
1027 => 0.003259173207208
1028 => 0.0033016276699852
1029 => 0.0034334076251076
1030 => 0.0035071534338463
1031 => 0.0034289680348236
1101 => 0.0034828992761253
1102 => 0.0034505597490104
1103 => 0.003444682694916
1104 => 0.0034785554999409
1105 => 0.003512487594827
1106 => 0.0035103262670752
1107 => 0.0034856933086203
1108 => 0.0034717787754273
1109 => 0.0035771442824753
1110 => 0.0036547757932137
1111 => 0.0036494818446296
1112 => 0.0036728476119955
1113 => 0.0037414502276579
1114 => 0.0037477223910781
1115 => 0.0037469322426512
1116 => 0.0037313860311817
1117 => 0.0037989342154767
1118 => 0.0038552840992128
1119 => 0.0037277875323997
1120 => 0.0037763365559895
1121 => 0.0037981317768308
1122 => 0.0038301336273765
1123 => 0.00388412611338
1124 => 0.0039427762739793
1125 => 0.0039510700497544
1126 => 0.0039451852189483
1127 => 0.003906503861432
1128 => 0.0039706795670018
1129 => 0.0040082721902191
1130 => 0.0040306577370531
1201 => 0.0040874237592243
1202 => 0.0037982663766948
1203 => 0.0035935864092859
1204 => 0.0035616226767605
1205 => 0.0036266221837627
1206 => 0.0036437620353978
1207 => 0.0036368529826952
1208 => 0.0034064670706881
1209 => 0.0035604097426132
1210 => 0.0037260391137372
1211 => 0.0037324016124289
1212 => 0.0038153191387604
1213 => 0.0038423204842381
1214 => 0.0039090799611836
1215 => 0.003904904137724
1216 => 0.0039211590079849
1217 => 0.0039174222948071
1218 => 0.0040410801679821
1219 => 0.004177493165466
1220 => 0.0041727696171299
1221 => 0.0041531586347763
1222 => 0.0041822842877408
1223 => 0.0043230771200495
1224 => 0.0043101151722097
1225 => 0.00432270660044
1226 => 0.0044887092844682
1227 => 0.0047045363873113
1228 => 0.0046042630293538
1229 => 0.0048218273632401
1230 => 0.0049587725788317
1231 => 0.0051956051687978
]
'min_raw' => 0.0021212504989287
'max_raw' => 0.0051956051687978
'avg_raw' => 0.0036584278338632
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.002121'
'max' => '$0.005195'
'avg' => '$0.003658'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00094585124085563
'max_diff' => 0.0021078237406644
'year' => 2028
]
3 => [
'items' => [
101 => 0.0051659525621089
102 => 0.0052581497514249
103 => 0.0051128682074501
104 => 0.0047792724162397
105 => 0.0047264796053272
106 => 0.0048321721497008
107 => 0.0050920069567157
108 => 0.0048239890269544
109 => 0.0048782087050778
110 => 0.0048625934341307
111 => 0.0048617613627025
112 => 0.0048935181448356
113 => 0.0048474532760292
114 => 0.0046597767136001
115 => 0.0047457877761765
116 => 0.0047125747743253
117 => 0.0047494270760725
118 => 0.0049483037495568
119 => 0.0048603756315816
120 => 0.004767750501995
121 => 0.0048839229696583
122 => 0.0050318504421846
123 => 0.0050225934068052
124 => 0.0050046308890284
125 => 0.0051058846612493
126 => 0.0052731262283866
127 => 0.0053183309519527
128 => 0.0053517001547194
129 => 0.0053563012040036
130 => 0.0054036948711673
131 => 0.0051488471780863
201 => 0.0055532970119588
202 => 0.0056231343255674
203 => 0.0056100078050691
204 => 0.0056876290399416
205 => 0.0056647909035815
206 => 0.0056317020271894
207 => 0.0057547481949725
208 => 0.0056136856929229
209 => 0.0054134652305386
210 => 0.0053036203249628
211 => 0.0054482729575607
212 => 0.0055366072726071
213 => 0.0055949906357351
214 => 0.0056126574061415
215 => 0.0051686302790418
216 => 0.0049293242844085
217 => 0.0050827166833196
218 => 0.0052698659965691
219 => 0.0051478075542018
220 => 0.0051525920140554
221 => 0.0049785687516339
222 => 0.0052852631938553
223 => 0.0052405803933299
224 => 0.0054723948414981
225 => 0.0054170704630156
226 => 0.0056061061465117
227 => 0.0055563267157715
228 => 0.0057629583496435
301 => 0.0058453893027231
302 => 0.0059838037022973
303 => 0.006085621898072
304 => 0.0061454114901027
305 => 0.0061418219472623
306 => 0.0063787380979442
307 => 0.0062390369211069
308 => 0.0060635393179599
309 => 0.0060603651200069
310 => 0.0061512578154969
311 => 0.0063417439700509
312 => 0.0063911342584659
313 => 0.0064187366917428
314 => 0.0063764626043316
315 => 0.0062248269893483
316 => 0.0061593514996085
317 => 0.0062151385138743
318 => 0.00614691578926
319 => 0.00626468735186
320 => 0.0064264128619582
321 => 0.0063930171836549
322 => 0.006504653929263
323 => 0.0066201862164392
324 => 0.0067854025759808
325 => 0.006828596250309
326 => 0.0068999937514653
327 => 0.0069734852330125
328 => 0.0069970887162345
329 => 0.007042155089436
330 => 0.0070419175674038
331 => 0.0071777281163633
401 => 0.0073275313575682
402 => 0.00738407861317
403 => 0.0075141059093926
404 => 0.0072914387213114
405 => 0.0074603343412873
406 => 0.0076126824182371
407 => 0.0074310467603235
408 => 0.0076813891990769
409 => 0.0076911094286855
410 => 0.0078378733553877
411 => 0.0076890999991088
412 => 0.0076007588550518
413 => 0.0078557964278449
414 => 0.0079792010757113
415 => 0.0079420305914736
416 => 0.0076591613710917
417 => 0.0074945193519978
418 => 0.0070636194309555
419 => 0.0075740390009215
420 => 0.0078226494843089
421 => 0.0076585175299996
422 => 0.0077412961407676
423 => 0.008192909400063
424 => 0.0083648544894096
425 => 0.0083290911128124
426 => 0.0083351345347421
427 => 0.0084279129839294
428 => 0.008839343721651
429 => 0.0085928048867184
430 => 0.0087812745883905
501 => 0.0088812382385793
502 => 0.0089740900479094
503 => 0.0087460753503103
504 => 0.0084494315789351
505 => 0.0083554720442821
506 => 0.0076421978418308
507 => 0.0076050688220004
508 => 0.0075842271780451
509 => 0.0074528235610161
510 => 0.0073495763125113
511 => 0.0072674702671757
512 => 0.0070519994852745
513 => 0.007124714548955
514 => 0.0067812990948517
515 => 0.0070010041324906
516 => 0.0064529047756855
517 => 0.0069093782068931
518 => 0.0066609404715869
519 => 0.0068277597291336
520 => 0.0068271777124593
521 => 0.0065200105692222
522 => 0.0063428429714178
523 => 0.0064557410602048
524 => 0.006576776773246
525 => 0.0065964144104739
526 => 0.0067533403717871
527 => 0.0067971350344773
528 => 0.0066644351619485
529 => 0.006441546634783
530 => 0.0064933185560975
531 => 0.0063417938150848
601 => 0.006076252534775
602 => 0.0062669689181995
603 => 0.006332087876708
604 => 0.0063608481185306
605 => 0.0060997187669681
606 => 0.0060176662553131
607 => 0.0059739821865952
608 => 0.0064078381146182
609 => 0.0064316057217297
610 => 0.0063100072833464
611 => 0.006859643755276
612 => 0.0067352440938232
613 => 0.006874228994323
614 => 0.0064886207968858
615 => 0.0065033515493182
616 => 0.0063207984490059
617 => 0.0064230159869782
618 => 0.0063507719257644
619 => 0.0064147578200434
620 => 0.0064531107012506
621 => 0.0066356338463954
622 => 0.0069114623280197
623 => 0.0066083709751213
624 => 0.0064763097323153
625 => 0.0065582397846115
626 => 0.0067764303104923
627 => 0.0071070001261693
628 => 0.006911296141951
629 => 0.0069981462468779
630 => 0.0070171191311122
701 => 0.0068728142585049
702 => 0.0071123208526566
703 => 0.0072406743822106
704 => 0.0073723385445125
705 => 0.0074866588474931
706 => 0.0073197489827321
707 => 0.0074983664636156
708 => 0.0073544323042534
709 => 0.0072253084836655
710 => 0.0072255043112014
711 => 0.0071445030523486
712 => 0.0069875529065059
713 => 0.0069586088915653
714 => 0.0071091793125126
715 => 0.0072299225310405
716 => 0.0072398675208394
717 => 0.007306717170627
718 => 0.0073462781047652
719 => 0.0077340290398009
720 => 0.0078899856735163
721 => 0.0080806864931154
722 => 0.0081549752096585
723 => 0.0083785576124745
724 => 0.0081979966637257
725 => 0.0081589311666823
726 => 0.0076165933906973
727 => 0.0077054011711325
728 => 0.0078475909962855
729 => 0.0076189380485423
730 => 0.0077639657152317
731 => 0.0077925972487422
801 => 0.0076111685088731
802 => 0.0077080774379103
803 => 0.0074507160538826
804 => 0.006917072102904
805 => 0.0071129149509243
806 => 0.007257121207057
807 => 0.0070513210990524
808 => 0.0074202098270866
809 => 0.0072047126475781
810 => 0.0071364103873627
811 => 0.0068699389187487
812 => 0.0069957031945071
813 => 0.0071658011782413
814 => 0.0070607004003066
815 => 0.0072788002954822
816 => 0.0075876879121683
817 => 0.0078078196223943
818 => 0.0078247186017192
819 => 0.007683188659723
820 => 0.0079099912950039
821 => 0.0079116433045959
822 => 0.007655809005483
823 => 0.0074991119217677
824 => 0.0074635100146541
825 => 0.0075524505587889
826 => 0.0076604407986988
827 => 0.0078307113084603
828 => 0.0079336022114417
829 => 0.0082018871172988
830 => 0.0082744773204927
831 => 0.0083542319458283
901 => 0.0084608087206923
902 => 0.0085887814646407
903 => 0.008308784386374
904 => 0.0083199091922734
905 => 0.0080591797898149
906 => 0.0077805530309094
907 => 0.0079919960096028
908 => 0.0082684295771638
909 => 0.0082050154113333
910 => 0.0081978800222436
911 => 0.0082098797675007
912 => 0.0081620675573776
913 => 0.007945814702994
914 => 0.007837213873337
915 => 0.007977336650621
916 => 0.0080518056706001
917 => 0.0081673006262067
918 => 0.0081530634351254
919 => 0.0084505660375153
920 => 0.0085661665527923
921 => 0.0085365909941595
922 => 0.0085420336087235
923 => 0.0087513228198321
924 => 0.0089840954661941
925 => 0.0092021177665681
926 => 0.0094238994147841
927 => 0.0091565329815746
928 => 0.0090207807956599
929 => 0.0091608423997227
930 => 0.0090865237410972
1001 => 0.0095135807979058
1002 => 0.0095431493019466
1003 => 0.0099701754776692
1004 => 0.010375474167761
1005 => 0.010120913322195
1006 => 0.010360952733892
1007 => 0.010620574928342
1008 => 0.01112142826362
1009 => 0.010952758480531
1010 => 0.010823560070078
1011 => 0.010701468196481
1012 => 0.010955522003896
1013 => 0.011282358168527
1014 => 0.011352755547991
1015 => 0.011466826196591
1016 => 0.011346894857483
1017 => 0.011491338945434
1018 => 0.012001290047851
1019 => 0.011863496758515
1020 => 0.011667808136281
1021 => 0.012070365555415
1022 => 0.012216049520496
1023 => 0.013238535882726
1024 => 0.014529467151846
1025 => 0.013995013129719
1026 => 0.013663260271461
1027 => 0.013741230062434
1028 => 0.014212634461136
1029 => 0.014364034592371
1030 => 0.013952476844919
1031 => 0.014097845998964
1101 => 0.014898844330132
1102 => 0.015328554235701
1103 => 0.014744950466199
1104 => 0.013134810812204
1105 => 0.011650188516925
1106 => 0.012043977203046
1107 => 0.011999333786726
1108 => 0.012859906566989
1109 => 0.011860210434135
1110 => 0.011877042753149
1111 => 0.012755411267146
1112 => 0.01252107760666
1113 => 0.012141487087861
1114 => 0.011652959947792
1115 => 0.010749872346084
1116 => 0.0099499824727905
1117 => 0.011518750717956
1118 => 0.011451102578604
1119 => 0.011353138047931
1120 => 0.011571147510075
1121 => 0.012629739575183
1122 => 0.012605335601754
1123 => 0.012450089973816
1124 => 0.012567842414335
1125 => 0.012120844515713
1126 => 0.012236046052141
1127 => 0.011649953345168
1128 => 0.011914891726113
1129 => 0.01214067265709
1130 => 0.012186001521728
1201 => 0.012288129768305
1202 => 0.011415455083121
1203 => 0.011807260396386
1204 => 0.012037409310736
1205 => 0.010997588142814
1206 => 0.012016855389526
1207 => 0.011400263758378
1208 => 0.011190983297871
1209 => 0.01147275186734
1210 => 0.011362946381789
1211 => 0.011268542073307
1212 => 0.011215862847102
1213 => 0.011422762586857
1214 => 0.011413110466699
1215 => 0.01107458233495
1216 => 0.010632986187255
1217 => 0.01078120034932
1218 => 0.010727352754727
1219 => 0.010532202125441
1220 => 0.010663710087003
1221 => 0.010084615578942
1222 => 0.0090883135765356
1223 => 0.0097465011968806
1224 => 0.0097211616894677
1225 => 0.0097083843607749
1226 => 0.010202994166495
1227 => 0.010155448846264
1228 => 0.010069153624481
1229 => 0.01053061724602
1230 => 0.010362176816597
1231 => 0.010881270530522
]
'min_raw' => 0.0046597767136001
'max_raw' => 0.015328554235701
'avg_raw' => 0.0099941654746503
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.004659'
'max' => '$0.015328'
'avg' => '$0.009994'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0025385262146714
'max_diff' => 0.010132949066903
'year' => 2029
]
4 => [
'items' => [
101 => 0.01122317922339
102 => 0.011136460119291
103 => 0.011458026897521
104 => 0.010784614904264
105 => 0.011008295355824
106 => 0.011054395586883
107 => 0.010524922856561
108 => 0.010163227848657
109 => 0.010139106915255
110 => 0.0095119776161915
111 => 0.0098469850257402
112 => 0.010141777682595
113 => 0.010000594876796
114 => 0.009955900618196
115 => 0.010184233892379
116 => 0.010201977343326
117 => 0.0097974247813836
118 => 0.0098815440695249
119 => 0.010232335484742
120 => 0.0098727050258995
121 => 0.0091740017896706
122 => 0.0090007137267579
123 => 0.0089775939048327
124 => 0.0085076229345637
125 => 0.0090122936637308
126 => 0.0087919913661147
127 => 0.0094879236846573
128 => 0.0090904108766656
129 => 0.0090732748940119
130 => 0.0090473713429287
131 => 0.0086428479145619
201 => 0.0087314128365692
202 => 0.0090258161261399
203 => 0.0091308625365492
204 => 0.0091199053353237
205 => 0.0090243733894099
206 => 0.0090681074250465
207 => 0.0089272248583129
208 => 0.0088774762917822
209 => 0.00872045613139
210 => 0.0084896798735399
211 => 0.008521770727627
212 => 0.0080645425749334
213 => 0.0078154204104112
214 => 0.0077464666786488
215 => 0.0076542588667613
216 => 0.0077568817963571
217 => 0.0080632473050245
218 => 0.0076937055025031
219 => 0.0070601520024237
220 => 0.0070982296473012
221 => 0.0071837788099864
222 => 0.0070243585112867
223 => 0.0068734805776989
224 => 0.0070046566998399
225 => 0.006736211729868
226 => 0.0072162191020965
227 => 0.0072032362478829
228 => 0.0073821533127929
301 => 0.0074940338252289
302 => 0.0072361854658099
303 => 0.0071713373007122
304 => 0.0072082777627366
305 => 0.0065977342113682
306 => 0.0073322588790914
307 => 0.0073386110789197
308 => 0.0072842196874577
309 => 0.0076753313971154
310 => 0.0085006990952946
311 => 0.0081901625669009
312 => 0.0080699134370906
313 => 0.0078413197534195
314 => 0.0081459072643613
315 => 0.0081225196958263
316 => 0.0080167522414392
317 => 0.0079527837550113
318 => 0.0080706476526355
319 => 0.0079381791137537
320 => 0.0079143841241785
321 => 0.0077702123765568
322 => 0.0077187496220524
323 => 0.0076806486474087
324 => 0.0076387032180503
325 => 0.0077312243830651
326 => 0.0075215592509688
327 => 0.007268723655387
328 => 0.0072477031113335
329 => 0.0073057426816105
330 => 0.0072800644923007
331 => 0.0072475801740422
401 => 0.0071855587639089
402 => 0.0071671583364001
403 => 0.0072269507991853
404 => 0.0071594485948179
405 => 0.0072590517743973
406 => 0.007231965220847
407 => 0.0070806619345706
408 => 0.0068920820202188
409 => 0.0068904032634214
410 => 0.0068497740302073
411 => 0.0067980265930632
412 => 0.0067836316398706
413 => 0.0069936094127131
414 => 0.0074282571183911
415 => 0.0073429253735284
416 => 0.0074045863043407
417 => 0.0077078970558707
418 => 0.0078043104229096
419 => 0.0077358784986612
420 => 0.0076422046600526
421 => 0.0076463258335486
422 => 0.0079664376970734
423 => 0.0079864026813442
424 => 0.0080368477556486
425 => 0.008101683931906
426 => 0.0077469203798374
427 => 0.0076296165021496
428 => 0.0075740314171297
429 => 0.0074028508694037
430 => 0.0075874544142152
501 => 0.0074798938341655
502 => 0.0074944074312068
503 => 0.0074849554320938
504 => 0.0074901168627509
505 => 0.0072160849302534
506 => 0.0073159277637611
507 => 0.0071499196882185
508 => 0.006927653510348
509 => 0.0069269083961832
510 => 0.0069813077283327
511 => 0.0069489488769241
512 => 0.0068618720398056
513 => 0.0068742408935272
514 => 0.0067658767198065
515 => 0.0068873982662136
516 => 0.0068908830693396
517 => 0.0068440906546495
518 => 0.0070313113636315
519 => 0.007108015840859
520 => 0.0070772160711193
521 => 0.0071058548469081
522 => 0.0073464712927772
523 => 0.0073857022722854
524 => 0.0074031260819299
525 => 0.0073797804852187
526 => 0.0071102528738328
527 => 0.0071222075695177
528 => 0.0070344919446473
529 => 0.0069603814848767
530 => 0.0069633455146094
531 => 0.0070014479246169
601 => 0.0071678433837964
602 => 0.0075180128180916
603 => 0.0075313014921526
604 => 0.0075474077527725
605 => 0.0074818954964734
606 => 0.0074621363731058
607 => 0.0074882037570902
608 => 0.0076197089855773
609 => 0.0079579761365674
610 => 0.0078384099333041
611 => 0.0077412007488922
612 => 0.0078264794110294
613 => 0.0078133514294296
614 => 0.0077025380531938
615 => 0.0076994278907983
616 => 0.0074867415926224
617 => 0.0074081163108195
618 => 0.0073424111403446
619 => 0.007270662809463
620 => 0.0072281279938905
621 => 0.0072934808023378
622 => 0.0073084277628614
623 => 0.0071655327050198
624 => 0.0071460566366514
625 => 0.0072627478254889
626 => 0.0072113963839675
627 => 0.0072642126150267
628 => 0.0072764664336817
629 => 0.0072744932866488
630 => 0.007220876484025
701 => 0.0072550502351414
702 => 0.0071742191260657
703 => 0.0070863274353859
704 => 0.007030258012578
705 => 0.0069813300046485
706 => 0.0070084781071603
707 => 0.0069117000787533
708 => 0.006880738839709
709 => 0.0072434729371969
710 => 0.0075114285150599
711 => 0.0075075323348357
712 => 0.0074838153397372
713 => 0.0074485766958376
714 => 0.007617131059288
715 => 0.0075584100894128
716 => 0.0076011345012983
717 => 0.007612009657261
718 => 0.0076449254789729
719 => 0.0076566900560244
720 => 0.0076211293331506
721 => 0.0075017832038095
722 => 0.0072043839965809
723 => 0.0070659438628022
724 => 0.0070202563127524
725 => 0.0070219169684237
726 => 0.0069761086715159
727 => 0.0069896012679391
728 => 0.0069714164971091
729 => 0.0069369789405255
730 => 0.0070063516850838
731 => 0.0070143462476423
801 => 0.0069981538201198
802 => 0.0070019677229758
803 => 0.006867901338966
804 => 0.0068780941149654
805 => 0.0068213394429655
806 => 0.0068106986261533
807 => 0.0066672277575321
808 => 0.0064130483173348
809 => 0.0065538884009994
810 => 0.0063837733850452
811 => 0.0063193482508402
812 => 0.0066243268160026
813 => 0.0065937154268489
814 => 0.0065413220350689
815 => 0.0064638212888866
816 => 0.0064350755082488
817 => 0.0062604252449018
818 => 0.0062501059756203
819 => 0.0063366673620889
820 => 0.0062967222606291
821 => 0.0062406242097866
822 => 0.0060374427562033
823 => 0.0058089995313083
824 => 0.005815894796325
825 => 0.0058885583358268
826 => 0.0060998373769417
827 => 0.0060172870004136
828 => 0.005957395755086
829 => 0.0059461799251604
830 => 0.00608656951861
831 => 0.0062852502058704
901 => 0.0063784667391032
902 => 0.0062860919856977
903 => 0.0061799768427955
904 => 0.0061864355798537
905 => 0.006229402663937
906 => 0.0062339178969523
907 => 0.0061648478477358
908 => 0.0061842906620101
909 => 0.0061547552492393
910 => 0.0059734964755826
911 => 0.005970218079145
912 => 0.0059257342528971
913 => 0.0059243873003173
914 => 0.0058487092148591
915 => 0.0058381213275656
916 => 0.005687857895557
917 => 0.0057867617415446
918 => 0.0057204222343411
919 => 0.0056204329490776
920 => 0.0056031947586099
921 => 0.0056026765577887
922 => 0.0057053431965593
923 => 0.0057855620220952
924 => 0.0057215762384713
925 => 0.0057070079158524
926 => 0.0058625594875818
927 => 0.0058427641321952
928 => 0.0058256214820967
929 => 0.0062674605294751
930 => 0.0059177104463443
1001 => 0.0057651994470625
1002 => 0.0055764381243979
1003 => 0.0056378997628747
1004 => 0.0056508506331611
1005 => 0.0051969136789386
1006 => 0.0050127515131448
1007 => 0.0049495539978492
1008 => 0.0049131829343149
1009 => 0.0049297576846865
1010 => 0.0047639901354045
1011 => 0.0048753886700643
1012 => 0.0047318479843682
1013 => 0.0047077829212894
1014 => 0.0049644514485928
1015 => 0.0050001653747313
1016 => 0.0048477986703774
1017 => 0.0049456427605014
1018 => 0.0049101631332878
1019 => 0.0047343085774377
1020 => 0.0047275922269028
1021 => 0.0046393545923637
1022 => 0.0045012797804829
1023 => 0.0044381758864116
1024 => 0.0044053108304861
1025 => 0.0044188715930881
1026 => 0.0044120148565504
1027 => 0.0043672700125661
1028 => 0.0044145795786311
1029 => 0.0042937231869975
1030 => 0.0042455971980428
1031 => 0.0042238598053465
1101 => 0.0041165928015373
1102 => 0.0042873023064508
1103 => 0.0043209342294605
1104 => 0.0043546324177479
1105 => 0.0046479521400595
1106 => 0.0046332987156457
1107 => 0.0047657585358389
1108 => 0.0047606113908042
1109 => 0.0047228317043783
1110 => 0.004563445421804
1111 => 0.0046269739532508
1112 => 0.0044314430079834
1113 => 0.0045779480869896
1114 => 0.0045110892871296
1115 => 0.0045553430595031
1116 => 0.0044757707865738
1117 => 0.0045198093678715
1118 => 0.0043289096060682
1119 => 0.0041506500945284
1120 => 0.0042223869256915
1121 => 0.0043003730652676
1122 => 0.0044694668863674
1123 => 0.0043687560015141
1124 => 0.0044049754440075
1125 => 0.004283646374716
1126 => 0.0040333098488323
1127 => 0.0040347267263824
1128 => 0.0039962179057528
1129 => 0.003962940662349
1130 => 0.0043803238581315
1201 => 0.0043284156598841
1202 => 0.0042457067395538
1203 => 0.0043564159161377
1204 => 0.0043856891796174
1205 => 0.0043865225482753
1206 => 0.0044672931056935
1207 => 0.0045104003666665
1208 => 0.0045179982082506
1209 => 0.0046450924255115
1210 => 0.0046876927307241
1211 => 0.004863157358874
1212 => 0.0045067430167466
1213 => 0.0044994028979155
1214 => 0.0043579738212884
1215 => 0.0042682772649863
1216 => 0.0043641154212372
1217 => 0.0044490149444625
1218 => 0.0043606118861316
1219 => 0.0043721554592592
1220 => 0.0042534815762451
1221 => 0.0042959019052974
1222 => 0.0043324400073127
1223 => 0.0043122658149902
1224 => 0.0042820640726415
1225 => 0.0044420541517394
1226 => 0.0044330268844706
1227 => 0.0045820133242826
1228 => 0.0046981589082385
1229 => 0.0049063125581942
1230 => 0.0046890933731703
1231 => 0.0046811770427
]
'min_raw' => 0.003962940662349
'max_raw' => 0.011458026897521
'avg_raw' => 0.007710483779935
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.003962'
'max' => '$0.011458'
'avg' => '$0.00771'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00069683605125111
'max_diff' => -0.0038705273381796
'year' => 2030
]
5 => [
'items' => [
101 => 0.0047585604428668
102 => 0.0046876808837287
103 => 0.0047324743184248
104 => 0.0048990956433609
105 => 0.0049026160893983
106 => 0.0048436440824324
107 => 0.0048400556304492
108 => 0.0048513818494701
109 => 0.0049177198680433
110 => 0.0048945393259924
111 => 0.0049213644361132
112 => 0.0049549096470799
113 => 0.0050936668625131
114 => 0.0051271207573937
115 => 0.0050458451366897
116 => 0.0050531834152347
117 => 0.0050227841020257
118 => 0.0049934187463681
119 => 0.0050594277774206
120 => 0.0051800605790798
121 => 0.0051793101286816
122 => 0.0052072945938999
123 => 0.0052247286838951
124 => 0.0051498888071018
125 => 0.0051011707992479
126 => 0.0051198523834665
127 => 0.0051497246434639
128 => 0.0051101652121576
129 => 0.0048659860764234
130 => 0.0049400544279816
131 => 0.004927725832525
201 => 0.0049101684133863
202 => 0.0049846447136316
203 => 0.0049774612927868
204 => 0.0047622899495902
205 => 0.0047760645208599
206 => 0.0047631276268919
207 => 0.004804929377942
208 => 0.0046854234519904
209 => 0.0047221826699284
210 => 0.0047452377068229
211 => 0.0047588173006709
212 => 0.0048078761052644
213 => 0.00480211962078
214 => 0.0048075182741064
215 => 0.0048802595302745
216 => 0.0052481598421878
217 => 0.0052681838444389
218 => 0.0051695783339195
219 => 0.0052089692904643
220 => 0.0051333472677535
221 => 0.0051841128382228
222 => 0.0052188453522322
223 => 0.005061895800102
224 => 0.005052602266219
225 => 0.0049766681245202
226 => 0.0050174708311395
227 => 0.0049525507910898
228 => 0.0049684798981114
301 => 0.0049239407262043
302 => 0.0050041023679763
303 => 0.0050937355393372
304 => 0.0051163804181441
305 => 0.0050568114912363
306 => 0.0050136796623715
307 => 0.0049379543793926
308 => 0.0050638872126345
309 => 0.005100713810808
310 => 0.0050636937781919
311 => 0.005055115427731
312 => 0.0050388594691085
313 => 0.0050585642061997
314 => 0.0051005132452455
315 => 0.0050807308531086
316 => 0.0050937974716359
317 => 0.0050440009960484
318 => 0.0051499135822151
319 => 0.0053181282582998
320 => 0.0053186690959893
321 => 0.005298886597218
322 => 0.0052907920249406
323 => 0.0053110900691824
324 => 0.0053221009255142
325 => 0.0053877410785675
326 => 0.0054581755780127
327 => 0.0057868626539436
328 => 0.0056945686382848
329 => 0.0059861993657324
330 => 0.0062168414076329
331 => 0.0062860008712448
401 => 0.0062223774189261
402 => 0.0060047250254154
403 => 0.0059940459606241
404 => 0.0063193105269995
405 => 0.0062274083889375
406 => 0.0062164769220452
407 => 0.0061001845833161
408 => 0.0061689277585913
409 => 0.0061538926177571
410 => 0.006130158912406
411 => 0.0062613161021402
412 => 0.0065068306528394
413 => 0.0064685649076921
414 => 0.0064400013040364
415 => 0.0063148439075573
416 => 0.0063902166151543
417 => 0.0063633778376481
418 => 0.0064786942581236
419 => 0.0064103833652054
420 => 0.0062267121398535
421 => 0.006255962387879
422 => 0.0062515412717333
423 => 0.0063425275287288
424 => 0.0063152157127965
425 => 0.0062462082013335
426 => 0.006505991510796
427 => 0.0064891226276702
428 => 0.006513038847179
429 => 0.0065235675066405
430 => 0.0066816930292149
501 => 0.0067464719963613
502 => 0.0067611779560189
503 => 0.0068227129646229
504 => 0.0067596469089478
505 => 0.0070119560969839
506 => 0.0071797269843786
507 => 0.0073746015034986
508 => 0.0076593655532655
509 => 0.0077664394701926
510 => 0.0077470975254812
511 => 0.0079630023780473
512 => 0.0083509785988133
513 => 0.0078255186123627
514 => 0.0083788292540118
515 => 0.0082036574931442
516 => 0.0077883283993327
517 => 0.0077615861020996
518 => 0.0080428517864987
519 => 0.008666672003677
520 => 0.0085104121145842
521 => 0.008666927588877
522 => 0.0084843439743055
523 => 0.0084752771589065
524 => 0.0086580599102515
525 => 0.0090851417717382
526 => 0.0088822511882701
527 => 0.0085913577860564
528 => 0.0088061489474483
529 => 0.0086200769654671
530 => 0.0082008047117948
531 => 0.0085102926255919
601 => 0.0083033468713441
602 => 0.008363744644275
603 => 0.0087987138388461
604 => 0.0087463771945696
605 => 0.0088141056585062
606 => 0.0086945666924206
607 => 0.0085828984485319
608 => 0.0083744613787209
609 => 0.0083127534381733
610 => 0.0083298072929215
611 => 0.0083127449871298
612 => 0.0081961263622061
613 => 0.0081709425812572
614 => 0.0081289685096823
615 => 0.0081419780295955
616 => 0.0080630544950868
617 => 0.0082119995111389
618 => 0.0082396450186172
619 => 0.0083480347803164
620 => 0.0083592881649452
621 => 0.0086611521084458
622 => 0.0084948905209832
623 => 0.0086064331481879
624 => 0.0085964557257308
625 => 0.0077973298401835
626 => 0.0079074423364646
627 => 0.008078742825473
628 => 0.008001572187367
629 => 0.0078924709602334
630 => 0.0078043658696854
701 => 0.007670877648297
702 => 0.0078587597564869
703 => 0.0081058047497219
704 => 0.00836555363366
705 => 0.0086776248982905
706 => 0.008607974224935
707 => 0.00835971967844
708 => 0.0083708561960457
709 => 0.008439697765826
710 => 0.0083505416780443
711 => 0.0083242478072239
712 => 0.0084360853917451
713 => 0.0084368555557249
714 => 0.0083342707018589
715 => 0.008220266409617
716 => 0.0082197887274698
717 => 0.0081995027648162
718 => 0.0084879528019961
719 => 0.0086465711568568
720 => 0.0086647564956154
721 => 0.0086453471386652
722 => 0.0086528170298255
723 => 0.008560520504049
724 => 0.0087714829922896
725 => 0.0089650830335269
726 => 0.0089131940868137
727 => 0.0088354051792422
728 => 0.00877344256754
729 => 0.0088985976646968
730 => 0.0088930247052328
731 => 0.0089633921060597
801 => 0.0089601998342964
802 => 0.0089365379240501
803 => 0.008913194931855
804 => 0.0090057472573363
805 => 0.0089790936739426
806 => 0.0089523986901719
807 => 0.0088988578134223
808 => 0.0089061349077924
809 => 0.0088283594315725
810 => 0.0087923769375095
811 => 0.0082512865608776
812 => 0.0081066895316035
813 => 0.0081521827005571
814 => 0.0081671602330062
815 => 0.00810423142056
816 => 0.0081944551725223
817 => 0.0081803938963496
818 => 0.0082350980963663
819 => 0.0082009212871761
820 => 0.0082023239153466
821 => 0.0083028306239109
822 => 0.0083320081489932
823 => 0.0083171682242448
824 => 0.0083275615988557
825 => 0.0085670725299947
826 => 0.0085330217347151
827 => 0.0085149329283804
828 => 0.0085199436513562
829 => 0.0085811438294345
830 => 0.0085982765378906
831 => 0.0085256840482681
901 => 0.0085599190860263
902 => 0.0087056875317272
903 => 0.0087566982379431
904 => 0.008919499925656
905 => 0.0088503388751463
906 => 0.008977286976577
907 => 0.009367482160578
908 => 0.009679197073011
909 => 0.009392531157374
910 => 0.0099649558974025
911 => 0.010410670666967
912 => 0.010393563391734
913 => 0.010315842712092
914 => 0.0098084082968835
915 => 0.0093414595825877
916 => 0.0097320820097859
917 => 0.009733077786685
918 => 0.0096995229737628
919 => 0.0094911169125323
920 => 0.0096922708945783
921 => 0.0097082377671892
922 => 0.0096993005644612
923 => 0.0095395161259497
924 => 0.0092955548214429
925 => 0.0093432242763827
926 => 0.0094213078160046
927 => 0.0092734793855676
928 => 0.0092262392448025
929 => 0.0093140676542893
930 => 0.0095970690894316
1001 => 0.0095435693074336
1002 => 0.0095421722119161
1003 => 0.0097710669667417
1004 => 0.0096072277208663
1005 => 0.0093438255408682
1006 => 0.0092773130165708
1007 => 0.00904123836352
1008 => 0.0092042959672512
1009 => 0.0092101641201237
1010 => 0.0091208591369684
1011 => 0.0093510721480634
1012 => 0.009348950694638
1013 => 0.009567503685988
1014 => 0.0099852949206942
1015 => 0.0098617334943335
1016 => 0.009718044998921
1017 => 0.0097336679224222
1018 => 0.009905012832569
1019 => 0.0098014137884704
1020 => 0.0098386687270464
1021 => 0.0099049564427575
1022 => 0.0099449494674774
1023 => 0.0097279135416227
1024 => 0.0096773120852776
1025 => 0.0095737992642933
1026 => 0.0095467947014568
1027 => 0.0096311037342826
1028 => 0.0096088912828151
1029 => 0.0092096709245974
1030 => 0.0091679501759225
1031 => 0.0091692296917209
1101 => 0.0090643208854645
1102 => 0.008904309774925
1103 => 0.0093248094196557
1104 => 0.0092910374132951
1105 => 0.0092537557320186
1106 => 0.0092583225252487
1107 => 0.009440847168971
1108 => 0.0093349736578966
1109 => 0.0096164557394151
1110 => 0.0095585914855808
1111 => 0.0094992432319774
1112 => 0.0094910394955374
1113 => 0.0094681954812552
1114 => 0.0093898548563981
1115 => 0.0092952538443414
1116 => 0.0092327900619823
1117 => 0.0085167607887425
1118 => 0.0086496516569052
1119 => 0.0088025304873425
1120 => 0.008855303646986
1121 => 0.0087650315056243
1122 => 0.0093934193507542
1123 => 0.0095082318653554
1124 => 0.0091604572695934
1125 => 0.0090954028422695
1126 => 0.0093976843081792
1127 => 0.0092153716318294
1128 => 0.0092974670188265
1129 => 0.0091200216959145
1130 => 0.0094805768926909
1201 => 0.0094778300661866
1202 => 0.0093375659511321
1203 => 0.009456116220689
1204 => 0.0094355151939746
1205 => 0.0092771573535334
1206 => 0.0094855971186906
1207 => 0.0094857005022136
1208 => 0.0093506993410785
1209 => 0.009193047540427
1210 => 0.0091648631220398
1211 => 0.009143629948829
1212 => 0.0092922449598338
1213 => 0.0094254927139938
1214 => 0.0096734337495657
1215 => 0.0097357720168422
1216 => 0.0099790824241158
1217 => 0.0098342029231531
1218 => 0.0098984261294262
1219 => 0.0099681495047629
1220 => 0.010001577454892
1221 => 0.0099471084039996
1222 => 0.010325069617055
1223 => 0.010356981123869
1224 => 0.01036768077607
1225 => 0.010240234381603
1226 => 0.01035343660909
1227 => 0.010300473035712
1228 => 0.010438269539936
1229 => 0.010459877791272
1230 => 0.010441576371126
1231 => 0.010448435171164
]
'min_raw' => 0.0046854234519904
'max_raw' => 0.010459877791272
'avg_raw' => 0.0075726506216314
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.004685'
'max' => '$0.010459'
'avg' => '$0.007572'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00072248278964134
'max_diff' => -0.00099814910624858
'year' => 2031
]
6 => [
'items' => [
101 => 0.010125911952748
102 => 0.010109187422428
103 => 0.0098811472647911
104 => 0.0099740753146157
105 => 0.0098003507796259
106 => 0.0098554406192322
107 => 0.0098797236956154
108 => 0.0098670395945652
109 => 0.0099793293271247
110 => 0.0098838601151724
111 => 0.0096319011682385
112 => 0.0093798735752581
113 => 0.0093767095741254
114 => 0.0093103551575502
115 => 0.0092623930677839
116 => 0.0092716322678194
117 => 0.0093041924138324
118 => 0.0092605006129065
119 => 0.0092698244738646
120 => 0.0094246626903294
121 => 0.0094557143903858
122 => 0.0093501885809118
123 => 0.0089264872285721
124 => 0.0088225098539335
125 => 0.0088972467288627
126 => 0.0088615273163178
127 => 0.0071519441581186
128 => 0.0075535853625321
129 => 0.0073149437973161
130 => 0.0074249208099381
131 => 0.0071813295677864
201 => 0.007297584076252
202 => 0.0072761161134733
203 => 0.0079219432847429
204 => 0.0079118595817698
205 => 0.0079166861167653
206 => 0.0076863030259573
207 => 0.0080533095451971
208 => 0.0082341101537022
209 => 0.0082006487729203
210 => 0.0082090702815659
211 => 0.0080643608612405
212 => 0.0079180872202732
213 => 0.0077558472410885
214 => 0.0080572690689462
215 => 0.0080237561071306
216 => 0.0081006227839525
217 => 0.0082961163853954
218 => 0.0083249035608158
219 => 0.0083635938165116
220 => 0.0083497261140046
221 => 0.008680111049386
222 => 0.0086400992537613
223 => 0.0087365161690376
224 => 0.0085381792591454
225 => 0.00831374221929
226 => 0.0083564003631669
227 => 0.0083522920408764
228 => 0.0082999883828059
229 => 0.0082527709789544
301 => 0.0081741673049627
302 => 0.0084228809606274
303 => 0.0084127836404118
304 => 0.0085762475178503
305 => 0.0085473536897096
306 => 0.0083543936338674
307 => 0.0083612852400111
308 => 0.0084076346033206
309 => 0.0085680502789426
310 => 0.0086156725733992
311 => 0.0085936120291866
312 => 0.008645827701018
313 => 0.0086870968390291
314 => 0.0086510104693613
315 => 0.0091619173644375
316 => 0.0089497532012974
317 => 0.0090531605381831
318 => 0.009077822578719
319 => 0.0090146512804733
320 => 0.0090283508730681
321 => 0.0090491020229339
322 => 0.0091750989414269
323 => 0.0095057513130547
324 => 0.0096521949976219
325 => 0.010092778048046
326 => 0.0096400348882131
327 => 0.009613170982746
328 => 0.0096925332944609
329 => 0.0099512021855123
330 => 0.010160829026176
331 => 0.010230374342887
401 => 0.010239565904558
402 => 0.010370037541993
403 => 0.010444821451418
404 => 0.010354194853463
405 => 0.010277398300697
406 => 0.010002322581027
407 => 0.010034163344585
408 => 0.010253514630535
409 => 0.010563361241664
410 => 0.010829241868059
411 => 0.010736139739571
412 => 0.011446443260076
413 => 0.011516866952804
414 => 0.01150713667554
415 => 0.011667572328026
416 => 0.011349140229994
417 => 0.011213004338754
418 => 0.010294002587083
419 => 0.010552204593708
420 => 0.01092751637401
421 => 0.01087784245254
422 => 0.010605281005572
423 => 0.010829035105761
424 => 0.010755055002801
425 => 0.010696703826159
426 => 0.010964021878287
427 => 0.010670094699152
428 => 0.010924584225556
429 => 0.010598198775586
430 => 0.010736565022252
501 => 0.010658021648622
502 => 0.010708848837274
503 => 0.010411714130982
504 => 0.01057204080596
505 => 0.010405044014198
506 => 0.010404964835975
507 => 0.010401278372541
508 => 0.010597749357472
509 => 0.010604156269237
510 => 0.010458963914522
511 => 0.010438039427877
512 => 0.010515408221972
513 => 0.010424829627006
514 => 0.010467210781495
515 => 0.010426113309001
516 => 0.010416861402297
517 => 0.010343140635599
518 => 0.010311379702311
519 => 0.010323833982632
520 => 0.010281321103276
521 => 0.010255705555706
522 => 0.010396182795395
523 => 0.010321131473065
524 => 0.010384680103861
525 => 0.010312258418592
526 => 0.010061213304826
527 => 0.0099168346051448
528 => 0.009442633657134
529 => 0.0095771164577454
530 => 0.0096662786936833
531 => 0.0096368105752377
601 => 0.0097001194963068
602 => 0.0097040061498867
603 => 0.0096834237742891
604 => 0.0096595920201127
605 => 0.0096479920401583
606 => 0.0097344487870532
607 => 0.009784639838626
608 => 0.0096752273168965
609 => 0.0096495934938991
610 => 0.0097602155941986
611 => 0.0098276950114769
612 => 0.010325925115251
613 => 0.010289014619901
614 => 0.01038165271991
615 => 0.010371223091497
616 => 0.010468322578712
617 => 0.010627039203005
618 => 0.010304323927952
619 => 0.010360336141046
620 => 0.010346603239907
621 => 0.010496535453592
622 => 0.010497003525597
623 => 0.010407111673823
624 => 0.010455843504999
625 => 0.010428642733725
626 => 0.010477798203822
627 => 0.010288521657733
628 => 0.010519040059729
629 => 0.010649729139383
630 => 0.010651543757381
701 => 0.010713489343924
702 => 0.010776429647498
703 => 0.010897238079265
704 => 0.010773060365905
705 => 0.010549676748029
706 => 0.010565804323715
707 => 0.010434834590287
708 => 0.010437036215168
709 => 0.010425283769011
710 => 0.01046055374461
711 => 0.010296261433974
712 => 0.010334820510897
713 => 0.010280837577403
714 => 0.010360218792692
715 => 0.010274817727226
716 => 0.010346596617486
717 => 0.010377574007014
718 => 0.010491881241269
719 => 0.010257934455786
720 => 0.0097809011233817
721 => 0.0098811793133232
722 => 0.0097328599937179
723 => 0.0097465875114388
724 => 0.0097743192819534
725 => 0.009684431540445
726 => 0.0097015792888365
727 => 0.0097009666505971
728 => 0.009695687265224
729 => 0.0096723039920284
730 => 0.0096383936196551
731 => 0.009773482106128
801 => 0.0097964362723516
802 => 0.0098474605404472
803 => 0.0099992741522081
804 => 0.0099841043923817
805 => 0.010008846900046
806 => 0.0099548341447382
807 => 0.0097490930082452
808 => 0.0097602657418073
809 => 0.0096209415752577
810 => 0.0098438977082651
811 => 0.0097910987530918
812 => 0.009757058923214
813 => 0.0097477708402551
814 => 0.0098999607685954
815 => 0.0099454983804397
816 => 0.0099171223966538
817 => 0.0098589224260492
818 => 0.0099706835748867
819 => 0.010000586143491
820 => 0.010007280225838
821 => 0.010205299553503
822 => 0.010018347306534
823 => 0.010063348570525
824 => 0.010414435586005
825 => 0.010096048109661
826 => 0.010264705056768
827 => 0.010256450176856
828 => 0.010342729363956
829 => 0.010249372765213
830 => 0.010250530032141
831 => 0.010327140105228
901 => 0.010219555074277
902 => 0.010192915507642
903 => 0.010156113137132
904 => 0.010236469766753
905 => 0.010284639931993
906 => 0.010672856086741
907 => 0.010923661427516
908 => 0.010912773306221
909 => 0.011012270353149
910 => 0.01096744602222
911 => 0.010822696433587
912 => 0.011069766331051
913 => 0.01099158307765
914 => 0.010998028410067
915 => 0.010997788514473
916 => 0.011049773543086
917 => 0.011012937385956
918 => 0.010940329539098
919 => 0.010988530016309
920 => 0.011131668201638
921 => 0.011575973520916
922 => 0.011824612663846
923 => 0.011561005132311
924 => 0.011742838077718
925 => 0.011633803104177
926 => 0.011613988205975
927 => 0.01172819273304
928 => 0.011842597160012
929 => 0.011835310092598
930 => 0.011752258353349
1001 => 0.011705344533207
1002 => 0.012060591696604
1003 => 0.012322331755117
1004 => 0.012304482837854
1005 => 0.012383262153874
1006 => 0.012614560662262
1007 => 0.012635707699141
1008 => 0.012633043658554
1009 => 0.012580628521182
1010 => 0.012808371940597
1011 => 0.012998359507836
1012 => 0.0125684959313
1013 => 0.012732182353917
1014 => 0.012805666462678
1015 => 0.01291356293609
1016 => 0.013095602372286
1017 => 0.01329334548357
1018 => 0.013321308527649
1019 => 0.01330146740972
1020 => 0.013171050512208
1021 => 0.013387423384141
1022 => 0.013514169537951
1023 => 0.013589643972011
1024 => 0.013781034579039
1025 => 0.012806120275516
1026 => 0.012116027475099
1027 => 0.012008259519252
1028 => 0.012227409895231
1029 => 0.012285198101685
1030 => 0.012261903748124
1031 => 0.011485141560761
1101 => 0.012004170027091
1102 => 0.012562601015708
1103 => 0.012584052624263
1104 => 0.012863614853406
1105 => 0.012954651774858
1106 => 0.013179736012378
1107 => 0.013165656932037
1108 => 0.013220461362001
1109 => 0.013207862772632
1110 => 0.013624783925559
1111 => 0.014084709870628
1112 => 0.014068784097625
1113 => 0.014002664301424
1114 => 0.014100863473883
1115 => 0.014575556337853
1116 => 0.014531854225737
1117 => 0.01457430710512
1118 => 0.015133996744259
1119 => 0.015861672890062
1120 => 0.015523594262846
1121 => 0.0162571276044
1122 => 0.016718847959977
1123 => 0.017517345572171
1124 => 0.01741736973844
1125 => 0.017728218999221
1126 => 0.017238392130477
1127 => 0.016113650629496
1128 => 0.015935655981629
1129 => 0.016292005774202
1130 => 0.01716805696714
1201 => 0.016264415804535
1202 => 0.016447221234825
1203 => 0.016394573258604
1204 => 0.01639176787169
1205 => 0.01649883807984
1206 => 0.016343527158512
1207 => 0.015710762525124
1208 => 0.0160007548277
1209 => 0.015888774873101
1210 => 0.016013024981388
1211 => 0.016683551571166
1212 => 0.016387095782467
1213 => 0.016074803691186
1214 => 0.016466487276816
1215 => 0.016965235078405
1216 => 0.016934024337317
1217 => 0.01687346245453
1218 => 0.017214846616885
1219 => 0.017778713236922
1220 => 0.017931124118518
1221 => 0.018043630715409
1222 => 0.018059143474306
1223 => 0.018218934532069
1224 => 0.017359697741948
1225 => 0.018723328594635
1226 => 0.018958789973352
1227 => 0.018914532993027
1228 => 0.019176238405742
1229 => 0.019099238034496
1230 => 0.018987676577548
1231 => 0.019402535323038
]
'min_raw' => 0.0071519441581186
'max_raw' => 0.019402535323038
'avg_raw' => 0.013277239740578
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.007151'
'max' => '$0.0194025'
'avg' => '$0.013277'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0024665207061282
'max_diff' => 0.0089426575317659
'year' => 2032
]
7 => [
'items' => [
101 => 0.018926933248708
102 => 0.018251875980833
103 => 0.017881526212558
104 => 0.018369232662687
105 => 0.01866705797317
106 => 0.018863901558153
107 => 0.018923466308032
108 => 0.017426397848032
109 => 0.016619560979315
110 => 0.017136734161759
111 => 0.017767721137727
112 => 0.017356192577437
113 => 0.017372323717874
114 => 0.016785592138704
115 => 0.017819633863376
116 => 0.017668982681751
117 => 0.018450561278518
118 => 0.018264031273839
119 => 0.018901378278796
120 => 0.018733543452567
121 => 0.019430216432726
122 => 0.019708138146179
123 => 0.020174811958129
124 => 0.020518099113902
125 => 0.02071968389781
126 => 0.020707581503509
127 => 0.021506360846491
128 => 0.021035348575159
129 => 0.020443646153298
130 => 0.020432944123284
131 => 0.020739395192054
201 => 0.021381632561451
202 => 0.021548155367162
203 => 0.021641218898096
204 => 0.021498688860906
205 => 0.020987438798129
206 => 0.020766683613119
207 => 0.020954773426641
208 => 0.020724755747446
209 => 0.0211218307933
210 => 0.02166709964191
211 => 0.021554503780899
212 => 0.021930894862945
213 => 0.022320420035366
214 => 0.022877458526599
215 => 0.023023089015282
216 => 0.023263810675245
217 => 0.023511592336293
218 => 0.023591173127918
219 => 0.023743117551601
220 => 0.023742316729486
221 => 0.024200211477293
222 => 0.024705283563943
223 => 0.024895936584208
224 => 0.025334332691638
225 => 0.024583594720896
226 => 0.02515303809556
227 => 0.0256666902736
228 => 0.025054292971548
301 => 0.025898339982155
302 => 0.025931112414926
303 => 0.026425937240532
304 => 0.025924337482814
305 => 0.025626489147844
306 => 0.026486366130671
307 => 0.026902433516789
308 => 0.026777110634022
309 => 0.025823397308206
310 => 0.025268295245892
311 => 0.023815486077626
312 => 0.025536401294123
313 => 0.026374608896293
314 => 0.025821226553012
315 => 0.026100320418635
316 => 0.02762296605298
317 => 0.028202690926535
318 => 0.028082112205418
319 => 0.028102488024392
320 => 0.028415297043412
321 => 0.029802464500817
322 => 0.02897124160605
323 => 0.029606680363772
324 => 0.029943714789623
325 => 0.030256771147485
326 => 0.029488003675052
327 => 0.028487848488854
328 => 0.028171057357726
329 => 0.025766203584947
330 => 0.025641020502323
331 => 0.025570751444611
401 => 0.02512771497549
402 => 0.024779609668664
403 => 0.024502783404354
404 => 0.023776308619484
405 => 0.024021472533487
406 => 0.022863623353476
407 => 0.023604374227191
408 => 0.021756418978648
409 => 0.023295451021922
410 => 0.022457825851968
411 => 0.023020268625735
412 => 0.023018306315883
413 => 0.021982670846734
414 => 0.02138533792129
415 => 0.021765981709928
416 => 0.02217406206689
417 => 0.02224027173186
418 => 0.022769358566648
419 => 0.022917015329554
420 => 0.022469608444514
421 => 0.021718124213595
422 => 0.021892676860907
423 => 0.021381800617463
424 => 0.020486509651399
425 => 0.021129523253507
426 => 0.021349076368579
427 => 0.02144604353186
428 => 0.020565627691597
429 => 0.020288981919829
430 => 0.020141698032223
501 => 0.021604473584406
502 => 0.021684607731183
503 => 0.021274630106442
504 => 0.023127767845946
505 => 0.022708345702051
506 => 0.023176942997702
507 => 0.021876838037738
508 => 0.021926503798032
509 => 0.021311013274878
510 => 0.021655646840753
511 => 0.021412070944451
512 => 0.021627803854365
513 => 0.021757113271068
514 => 0.022372502798283
515 => 0.023302477781809
516 => 0.022280584124349
517 => 0.021835330424007
518 => 0.022111563315497
519 => 0.022847207907081
520 => 0.023961747120283
521 => 0.023301917473875
522 => 0.023594738666317
523 => 0.023658707070157
524 => 0.023172173117117
525 => 0.023979686321116
526 => 0.024412439207365
527 => 0.024856354123064
528 => 0.025241793006152
529 => 0.024679044743835
530 => 0.025281266051308
531 => 0.024795981983857
601 => 0.024360632007607
602 => 0.024361292253817
603 => 0.024088190854267
604 => 0.023559022479649
605 => 0.02346143571247
606 => 0.023969094399186
607 => 0.024376188590474
608 => 0.024409718817919
609 => 0.024635107079471
610 => 0.024768489530974
611 => 0.026075818880353
612 => 0.026601637559469
613 => 0.027244598687053
614 => 0.027495068281551
615 => 0.02824889196267
616 => 0.0276401181176
617 => 0.027508406066852
618 => 0.025679876390305
619 => 0.025979298022403
620 => 0.026458700945283
621 => 0.025687781567928
622 => 0.02617675247168
623 => 0.0262732856859
624 => 0.025661586022481
625 => 0.025988321242696
626 => 0.025120609368048
627 => 0.023321391529493
628 => 0.023981689364904
629 => 0.024467890825615
630 => 0.023774021392973
701 => 0.025017755494529
702 => 0.024291191708283
703 => 0.024060905869256
704 => 0.02316247870838
705 => 0.02358650174468
706 => 0.024159998972702
707 => 0.023805644361993
708 => 0.024540983385826
709 => 0.025582419551328
710 => 0.026324608981461
711 => 0.026381585070103
712 => 0.025904406989358
713 => 0.026669087909062
714 => 0.026674657774741
715 => 0.025812094573502
716 => 0.025283779415514
717 => 0.025163745100035
718 => 0.025463614354216
719 => 0.02582771098771
720 => 0.026401789899278
721 => 0.026748693762294
722 => 0.027653235053445
723 => 0.027897977991599
724 => 0.028166876279208
725 => 0.028526207316615
726 => 0.028957676357609
727 => 0.028013646659461
728 => 0.02805115471926
729 => 0.027172087335325
730 => 0.026232677764576
731 => 0.026945572529719
801 => 0.027877587602726
802 => 0.027663782315193
803 => 0.0276397248527
804 => 0.02768018283163
805 => 0.027518980627058
806 => 0.026789869030211
807 => 0.026423713750755
808 => 0.026896147477428
809 => 0.027147224977548
810 => 0.027536624283976
811 => 0.027488622600237
812 => 0.028491673395163
813 => 0.028881428603389
814 => 0.028781712542559
815 => 0.028800062697553
816 => 0.029505695884912
817 => 0.030290505113788
818 => 0.03102558252133
819 => 0.031773334832591
820 => 0.030871890236096
821 => 0.03041419226337
822 => 0.030886419740257
823 => 0.030635849193938
824 => 0.032075701877139
825 => 0.03217539415292
826 => 0.033615142718385
827 => 0.03498163554908
828 => 0.034123365885382
829 => 0.034932675520935
830 => 0.035808009875767
831 => 0.037496671864121
901 => 0.036927989914288
902 => 0.036492388453099
903 => 0.036080747177086
904 => 0.036937307326257
905 => 0.038039258274282
906 => 0.038276607954132
907 => 0.038661205110044
908 => 0.038256848226905
909 => 0.038743851554197
910 => 0.040463187299642
911 => 0.039998607604226
912 => 0.039338829751823
913 => 0.040696080196092
914 => 0.041187263855695
915 => 0.044634648013671
916 => 0.048987112917452
917 => 0.047185163867461
918 => 0.046066635943599
919 => 0.046329516537544
920 => 0.04791888938017
921 => 0.048429345493049
922 => 0.04704174981347
923 => 0.047531872065683
924 => 0.050232493863134
925 => 0.051681290811145
926 => 0.049713629956356
927 => 0.044284931696553
928 => 0.039279423975
929 => 0.040607110023706
930 => 0.040456591628678
1001 => 0.043358072840608
1002 => 0.039987527532137
1003 => 0.040044278870887
1004 => 0.043005759641558
1005 => 0.042215687344576
1006 => 0.040935871408281
1007 => 0.039288768047664
1008 => 0.036243945146943
1009 => 0.033547060592605
1010 => 0.038836272259081
1011 => 0.038608191834215
1012 => 0.038277897579384
1013 => 0.039012931701939
1014 => 0.042582048757988
1015 => 0.042499769057742
1016 => 0.041976347584246
1017 => 0.042373358158667
1018 => 0.040866273535067
1019 => 0.041254683558248
1020 => 0.039278631077003
1021 => 0.040171889325767
1022 => 0.040933125498076
1023 => 0.041085954929962
1024 => 0.041430287443663
1025 => 0.038488003814365
1026 => 0.039809002783011
1027 => 0.040584965916226
1028 => 0.037079136250581
1029 => 0.040515666935838
1030 => 0.038436785202369
1031 => 0.037731181518274
1101 => 0.038681183922692
1102 => 0.038310967061783
1103 => 0.037992676344637
1104 => 0.03781506465554
1105 => 0.038512641573405
1106 => 0.038480098776402
1107 => 0.03733872754493
1108 => 0.035849855301717
1109 => 0.036349569697105
1110 => 0.036168018772413
1111 => 0.035510054800795
1112 => 0.035953443074793
1113 => 0.034000985509777
1114 => 0.030641883749081
1115 => 0.032861009264266
1116 => 0.032775575345876
1117 => 0.032732495690103
1118 => 0.034400107182641
1119 => 0.034239804815976
1120 => 0.033948854450795
1121 => 0.035504711269172
1122 => 0.034936802601237
1123 => 0.036686963299702
1124 => 0.037839732329008
1125 => 0.037547352815005
1126 => 0.038631537658883
1127 => 0.036361082107493
1128 => 0.037115236366799
1129 => 0.037270666514429
1130 => 0.035485512237543
1201 => 0.034266032265656
1202 => 0.03418470685462
1203 => 0.032070296638059
1204 => 0.033199797508823
1205 => 0.034193711533174
1206 => 0.033717703846354
1207 => 0.033567014033032
1208 => 0.034336855608661
1209 => 0.034396678892335
1210 => 0.033032701684789
1211 => 0.033316315737778
1212 => 0.034499033485657
1213 => 0.033286514285073
1214 => 0.030930787542226
1215 => 0.030346534739529
1216 => 0.030268584645734
1217 => 0.028684044707146
1218 => 0.030385577305519
1219 => 0.029642812728091
1220 => 0.0319891971285
1221 => 0.030648954942898
1222 => 0.030591179780985
1223 => 0.030503844149979
1224 => 0.029139965168317
1225 => 0.02943856798627
1226 => 0.030431169231639
1227 => 0.03078534053844
1228 => 0.030748397569501
1229 => 0.030426304944025
1230 => 0.030573757298587
1231 => 0.030098761888738
]
'min_raw' => 0.016619560979315
'max_raw' => 0.051681290811145
'avg_raw' => 0.03415042589523
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.016619'
'max' => '$0.051681'
'avg' => '$0.03415'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.009467616821196
'max_diff' => 0.032278755488107
'year' => 2033
]
8 => [
'items' => [
101 => 0.029931031123345
102 => 0.029401626689786
103 => 0.02862354842416
104 => 0.028731744979227
105 => 0.02719016833977
106 => 0.026350235568929
107 => 0.026117753248097
108 => 0.025806868172574
109 => 0.02615286854461
110 => 0.027185801246839
111 => 0.025939865259054
112 => 0.023803795400243
113 => 0.023932176838444
114 => 0.024220611813289
115 => 0.023683115145853
116 => 0.023174419658801
117 => 0.023616689113024
118 => 0.022711608154534
119 => 0.024329986523047
120 => 0.024286213923632
121 => 0.024889445299567
122 => 0.025266658258493
123 => 0.024397304512314
124 => 0.024178664396132
125 => 0.024303211742949
126 => 0.02224472153272
127 => 0.024721222732824
128 => 0.024742639618041
129 => 0.024559255244241
130 => 0.0258779156799
131 => 0.028660700499644
201 => 0.027613704913196
202 => 0.027208276576515
203 => 0.026437557012116
204 => 0.027464495070877
205 => 0.027385642250694
206 => 0.02702903989378
207 => 0.026813365675651
208 => 0.027210752035486
209 => 0.026764125107988
210 => 0.026683898639322
211 => 0.026197813526465
212 => 0.026024303256639
213 => 0.025895843160502
214 => 0.025754421216884
215 => 0.026066362784353
216 => 0.025359462153138
217 => 0.024507009290217
218 => 0.024436137058333
219 => 0.024631821521715
220 => 0.024545245713663
221 => 0.024435722566672
222 => 0.024226613052211
223 => 0.024164574726188
224 => 0.024366169189045
225 => 0.024138580794167
226 => 0.024474399868191
227 => 0.024383075661773
228 => 0.023872946068434
301 => 0.023237135720968
302 => 0.023231475675218
303 => 0.023094491378795
304 => 0.022920021281573
305 => 0.02287148769186
306 => 0.023579442413179
307 => 0.025044887499006
308 => 0.024757185563529
309 => 0.024965079696791
310 => 0.025987713072055
311 => 0.026312777470393
312 => 0.026082054460025
313 => 0.025766226573058
314 => 0.025780121397231
315 => 0.026859400894601
316 => 0.026926714232981
317 => 0.027096793322961
318 => 0.02731539301793
319 => 0.02611928293333
320 => 0.025723784719811
321 => 0.02553637572484
322 => 0.024959228556737
323 => 0.025581632296677
324 => 0.0252189842914
325 => 0.025267917897131
326 => 0.025236049822204
327 => 0.025253451946024
328 => 0.024329534153311
329 => 0.024666161237286
330 => 0.02410645342028
331 => 0.023357067483461
401 => 0.023354555279032
402 => 0.023537966425414
403 => 0.023428866298667
404 => 0.023135280662811
405 => 0.0231769831167
406 => 0.022811625739255
407 => 0.02322134411733
408 => 0.023233093374371
409 => 0.023075329481301
410 => 0.023706557172966
411 => 0.023965171673274
412 => 0.023861328099226
413 => 0.023957885731293
414 => 0.024769140877845
415 => 0.024901410864276
416 => 0.024960156454984
417 => 0.024881445145735
418 => 0.02397271398613
419 => 0.024013020077282
420 => 0.023717280723922
421 => 0.023467412134578
422 => 0.023477405567764
423 => 0.02360587050333
424 => 0.024166884411313
425 => 0.025347505107089
426 => 0.025392308799471
427 => 0.025446612181654
428 => 0.025225733035622
429 => 0.02515911377165
430 => 0.02524700177672
501 => 0.025690380835966
502 => 0.026830872152588
503 => 0.02642774635044
504 => 0.026099998798267
505 => 0.026387521761628
506 => 0.026343259855098
507 => 0.025969644820377
508 => 0.025959158690715
509 => 0.025242071987132
510 => 0.024976981360092
511 => 0.024755451790447
512 => 0.024513547283571
513 => 0.024370138183183
514 => 0.02459047973965
515 => 0.024640874460619
516 => 0.024159093796492
517 => 0.024093428872212
518 => 0.024486861362496
519 => 0.024313726392164
520 => 0.024491800002691
521 => 0.024533114607821
522 => 0.024526462004839
523 => 0.024345689211387
524 => 0.024460908399211
525 => 0.024188380671514
526 => 0.023892047699986
527 => 0.023703005726347
528 => 0.023538041531568
529 => 0.023629573254607
530 => 0.023303279375006
531 => 0.023198891395924
601 => 0.02442187473089
602 => 0.025325305669716
603 => 0.025312169426068
604 => 0.025232205921225
605 => 0.025113396373034
606 => 0.025681689177497
607 => 0.025483707327796
608 => 0.025627755665391
609 => 0.025664422012998
610 => 0.025775400004009
611 => 0.025815065096915
612 => 0.025695169636976
613 => 0.025292785829421
614 => 0.024290083638501
615 => 0.023823323061884
616 => 0.023669284297088
617 => 0.023674883313627
618 => 0.02352043744237
619 => 0.023565928673234
620 => 0.02350461744876
621 => 0.023388508822385
622 => 0.023622403874113
623 => 0.023649358099942
624 => 0.023594764200031
625 => 0.023607623039788
626 => 0.023155608865883
627 => 0.023189974521802
628 => 0.022998622182669
629 => 0.022962745925869
630 => 0.022479023875497
701 => 0.02162204014663
702 => 0.022096892321845
703 => 0.021523337668505
704 => 0.021306123830513
705 => 0.022334380355882
706 => 0.022231171920131
707 => 0.022054523941755
708 => 0.021793224765072
709 => 0.021696306358685
710 => 0.021107460802119
711 => 0.021072668665268
712 => 0.02136451642327
713 => 0.02122983872482
714 => 0.021040700229764
715 => 0.020355659773332
716 => 0.019585447491202
717 => 0.019608695358617
718 => 0.019853685555254
719 => 0.020566027593404
720 => 0.020287703235457
721 => 0.020085775720362
722 => 0.020047960766703
723 => 0.020521294082707
724 => 0.021191159891248
725 => 0.021505445941213
726 => 0.021193998010707
727 => 0.020836223397689
728 => 0.020857999480616
729 => 0.021002866004469
730 => 0.021018089427823
731 => 0.020785214934573
801 => 0.020850767740353
802 => 0.020751187034099
803 => 0.020140060423633
804 => 0.020129007081153
805 => 0.019979026755196
806 => 0.019974485410532
807 => 0.019719331461735
808 => 0.019683633660502
809 => 0.019177010008427
810 => 0.019510471230421
811 => 0.019286802950207
812 => 0.018949682093912
813 => 0.018891562331219
814 => 0.01888981518097
815 => 0.019235962921541
816 => 0.019506426292535
817 => 0.019290693755702
818 => 0.019241575638865
819 => 0.019766028623215
820 => 0.019699287200461
821 => 0.019641489558792
822 => 0.021131180755246
823 => 0.019951973931199
824 => 0.019437772449143
825 => 0.018801350470884
826 => 0.019008572676123
827 => 0.019052237439495
828 => 0.017521757305468
829 => 0.016900841705702
830 => 0.016687766870573
831 => 0.016565139290521
901 => 0.016621022218611
902 => 0.016062125352686
903 => 0.016437713289889
904 => 0.015953755846374
905 => 0.015872618806035
906 => 0.016737994665862
907 => 0.016858406661305
908 => 0.016344691679672
909 => 0.016674579860781
910 => 0.016554957820522
911 => 0.015962051907701
912 => 0.015939407262951
913 => 0.015641907917548
914 => 0.015176379049216
915 => 0.014963619864582
916 => 0.014852813033964
917 => 0.014898534091859
918 => 0.0148754161259
919 => 0.014724555760422
920 => 0.014884063265458
921 => 0.014476587503142
922 => 0.014314327371332
923 => 0.0142410382342
924 => 0.013879380041714
925 => 0.014454939056087
926 => 0.01456833143262
927 => 0.014681947227163
928 => 0.015670895149866
929 => 0.015621490106386
930 => 0.016068087638216
1001 => 0.01605073367937
1002 => 0.015923356828891
1003 => 0.015385974849197
1004 => 0.01560016572839
1005 => 0.014940919494887
1006 => 0.015434871597414
1007 => 0.015209452485754
1008 => 0.015358657169011
1009 => 0.015090373695271
1010 => 0.015238852846791
1011 => 0.014595220971676
1012 => 0.013994206582838
1013 => 0.01423607231761
1014 => 0.014499008032009
1015 => 0.015069119655601
1016 => 0.014729565875908
1017 => 0.014851682255036
1018 => 0.014442612826994
1019 => 0.013598585752039
1020 => 0.013603362853622
1021 => 0.01347352767627
1022 => 0.013361331126791
1023 => 0.014768567712136
1024 => 0.01459355559763
1025 => 0.014314696698184
1026 => 0.014687960416505
1027 => 0.01478665726812
1028 => 0.014789467028735
1029 => 0.01506179060229
1030 => 0.015207129742314
1031 => 0.015232746395679
1101 => 0.015661253422609
1102 => 0.015804883325891
1103 => 0.016396474570248
1104 => 0.015194798731711
1105 => 0.015170051008601
1106 => 0.01469321300249
1107 => 0.014390794800504
1108 => 0.01471391983551
1109 => 0.015000164505559
1110 => 0.014702107422292
1111 => 0.014741027385038
1112 => 0.01434091010291
1113 => 0.014483933204003
1114 => 0.014607123965957
1115 => 0.014539105268024
1116 => 0.014437277985077
1117 => 0.014976695706907
1118 => 0.014946259645046
1119 => 0.015448577828773
1120 => 0.015840170774106
1121 => 0.016541975337756
1122 => 0.015809605689688
1123 => 0.015782915228807
1124 => 0.016043818765206
1125 => 0.015804843382919
1126 => 0.015955867575375
1127 => 0.016517643005526
1128 => 0.016529512435131
1129 => 0.016330684196352
1130 => 0.016318585479952
1201 => 0.016356772618153
1202 => 0.016580435879345
1203 => 0.016502281063406
1204 => 0.016592723795048
1205 => 0.016705823815874
1206 => 0.017173653455427
1207 => 0.017286445597693
1208 => 0.017012419168007
1209 => 0.017037160686464
1210 => 0.016934667279567
1211 => 0.016835659932744
1212 => 0.017058213989541
1213 => 0.017464935902648
1214 => 0.017462405706735
1215 => 0.017556757285032
1216 => 0.01761553753666
1217 => 0.017363209666898
1218 => 0.017198953502036
1219 => 0.017261939767536
1220 => 0.017362656177732
1221 => 0.017229278793131
1222 => 0.01640601178896
1223 => 0.016655738407526
1224 => 0.016614171687189
1225 => 0.016554975622743
1226 => 0.016806077668789
1227 => 0.016781858263881
1228 => 0.01605639305751
1229 => 0.016102834986255
1230 => 0.016059217345017
1231 => 0.016200154867188
]
'min_raw' => 0.013361331126791
'max_raw' => 0.029931031123345
'avg_raw' => 0.021646181125068
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.013361'
'max' => '$0.029931'
'avg' => '$0.021646'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0032582298525234
'max_diff' => -0.0217502596878
'year' => 2034
]
9 => [
'items' => [
101 => 0.015797232294205
102 => 0.015921168563929
103 => 0.01599890023047
104 => 0.016044684779226
105 => 0.016210089964089
106 => 0.016190681574745
107 => 0.016208883511357
108 => 0.01645413573516
109 => 0.017694537322755
110 => 0.017762049644376
111 => 0.017429594281243
112 => 0.017562403641423
113 => 0.017307438712092
114 => 0.017478598377268
115 => 0.017595701473198
116 => 0.017066535100323
117 => 0.017035201301983
118 => 0.016779184041693
119 => 0.016916753215814
120 => 0.016697870768213
121 => 0.016751576864671
122 => 0.016601409936961
123 => 0.016871680508903
124 => 0.017173885004134
125 => 0.017250233794046
126 => 0.017049392998007
127 => 0.016903971025621
128 => 0.016648657947087
129 => 0.017073249286712
130 => 0.017197412733605
131 => 0.017072597108984
201 => 0.017043674601484
202 => 0.016988866502033
203 => 0.017055302398877
204 => 0.017196736512808
205 => 0.017130038796556
206 => 0.017174093813203
207 => 0.017006201519081
208 => 0.017363293197922
209 => 0.017930440722716
210 => 0.017932264194746
211 => 0.017865566118968
212 => 0.01783827470339
213 => 0.017906710976716
214 => 0.017943834847592
215 => 0.01816514520646
216 => 0.018402620038919
217 => 0.019510811463619
218 => 0.019199635746063
219 => 0.02018288910466
220 => 0.020960514851841
221 => 0.021193690811968
222 => 0.020979179900428
223 => 0.020245349659701
224 => 0.020209344447169
225 => 0.02130599664195
226 => 0.020996142167072
227 => 0.020959285963234
228 => 0.020567198223937
301 => 0.020798970638873
302 => 0.02074827861183
303 => 0.020668258767204
304 => 0.021110464389496
305 => 0.021938233838457
306 => 0.021809218207064
307 => 0.021712914023091
308 => 0.021290937122652
309 => 0.021545061468669
310 => 0.021454572656484
311 => 0.021843370019252
312 => 0.021613055074464
313 => 0.020993794714675
314 => 0.02109241396808
315 => 0.021077507866322
316 => 0.02138427438424
317 => 0.021292190689974
318 => 0.021059527047126
319 => 0.02193540461247
320 => 0.021878529995264
321 => 0.021959165199115
322 => 0.021994663309577
323 => 0.022527794548908
324 => 0.022746201359365
325 => 0.022795783529088
326 => 0.023003253106834
327 => 0.022790621496994
328 => 0.023641299540122
329 => 0.024206950800363
330 => 0.02486398384728
331 => 0.02582408572266
401 => 0.026185092909242
402 => 0.026119880192236
403 => 0.026847818476658
404 => 0.028155907392606
405 => 0.026384282361843
406 => 0.028249807821078
407 => 0.027659203999211
408 => 0.026258892962074
409 => 0.026168729439865
410 => 0.02711703633216
411 => 0.029220289748113
412 => 0.02869344862232
413 => 0.02922115147146
414 => 0.028605558067351
415 => 0.028574988666208
416 => 0.029191253473852
417 => 0.030631189787758
418 => 0.029947130020227
419 => 0.028966362605135
420 => 0.029690546002008
421 => 0.029063191323627
422 => 0.027649585647717
423 => 0.02869304575684
424 => 0.027995313697902
425 => 0.028198949006177
426 => 0.029665478014253
427 => 0.029489021364046
428 => 0.029717372608859
429 => 0.029314338638757
430 => 0.028937841358059
501 => 0.02823508122458
502 => 0.028027028594712
503 => 0.028084526856658
504 => 0.028027000101429
505 => 0.027633812265447
506 => 0.027548903389702
507 => 0.027407384876851
508 => 0.027451247381534
509 => 0.027185151174673
510 => 0.027687329695302
511 => 0.027780538453912
512 => 0.028145982103013
513 => 0.028183923674975
514 => 0.029201679035955
515 => 0.028641116485811
516 => 0.029017190241089
517 => 0.028983550664674
518 => 0.026289241948364
519 => 0.026660493917384
520 => 0.027238045475894
521 => 0.026977859281638
522 => 0.026610016877153
523 => 0.026312964413069
524 => 0.025862899554808
525 => 0.02649635720008
526 => 0.027329286642903
527 => 0.028205048140188
528 => 0.02925721819701
529 => 0.029022386088937
530 => 0.02818537855285
531 => 0.028222926099484
601 => 0.028455030258363
602 => 0.028154434283728
603 => 0.028065782662478
604 => 0.028442850886942
605 => 0.028445447548571
606 => 0.028099575551516
607 => 0.027715202120697
608 => 0.027713591581987
609 => 0.02764519604258
610 => 0.02861772548187
611 => 0.029152518339663
612 => 0.029213831478947
613 => 0.029148391476872
614 => 0.02917357673645
615 => 0.028862392555856
616 => 0.02957366731389
617 => 0.030226403369645
618 => 0.030051456163031
619 => 0.029789185430106
620 => 0.02958027415866
621 => 0.030002243306774
622 => 0.02998345368485
623 => 0.030220702289633
624 => 0.030209939322505
625 => 0.030130161540088
626 => 0.030051459012147
627 => 0.030363505639304
628 => 0.030273641221998
629 => 0.030183637220431
630 => 0.030003120416365
701 => 0.030027655648104
702 => 0.029765430199919
703 => 0.029644112708968
704 => 0.02781978872643
705 => 0.02733226974679
706 => 0.027485653142149
707 => 0.027536150938499
708 => 0.027323982053787
709 => 0.027628177732749
710 => 0.027580769158406
711 => 0.027765208188087
712 => 0.027649978689754
713 => 0.027654707748559
714 => 0.027993573133638
715 => 0.028091947196563
716 => 0.028041913354183
717 => 0.028076955342326
718 => 0.02888448316878
719 => 0.028769678535145
720 => 0.028708690861667
721 => 0.028725584864018
722 => 0.028931925537268
723 => 0.028989689659996
724 => 0.028744939012988
725 => 0.028860364833003
726 => 0.029351833324912
727 => 0.029523819482372
728 => 0.030072716738947
729 => 0.029839535428484
730 => 0.030267549815691
731 => 0.031583120121108
801 => 0.032634088711616
802 => 0.031667574562671
803 => 0.033597544539096
804 => 0.035100303003493
805 => 0.035042624630654
806 => 0.034780583932957
807 => 0.033069733374142
808 => 0.031495383182575
809 => 0.032812393968261
810 => 0.032815751299599
811 => 0.03270261890511
812 => 0.031999963319225
813 => 0.032678168013815
814 => 0.032732001439594
815 => 0.032701869036621
816 => 0.032163144646386
817 => 0.031340612075407
818 => 0.031501332970912
819 => 0.031764597076366
820 => 0.031266183202096
821 => 0.031106909769305
822 => 0.031403029383874
823 => 0.032357188480985
824 => 0.032176810230744
825 => 0.032172099825664
826 => 0.03294383447248
827 => 0.03239143901612
828 => 0.031503360176104
829 => 0.031279108556679
830 => 0.030483166381712
831 => 0.03103292647701
901 => 0.031052711364121
902 => 0.030751613378338
903 => 0.031527792618204
904 => 0.031520639989865
905 => 0.032257506659084
906 => 0.033666118976149
907 => 0.033249523000391
908 => 0.032765067206097
909 => 0.032817740983439
910 => 0.033395442310918
911 => 0.033046150900686
912 => 0.033171758527152
913 => 0.033395252188732
914 => 0.033530091463799
915 => 0.032798339686815
916 => 0.032627733343867
917 => 0.032278732640884
918 => 0.032187684871882
919 => 0.032471938662323
920 => 0.032397047831377
921 => 0.03105104852097
922 => 0.030910384103963
923 => 0.030914698080811
924 => 0.030560990716018
925 => 0.030021502085215
926 => 0.031439245995773
927 => 0.031325381318442
928 => 0.031199683527094
929 => 0.031215080789313
930 => 0.031830475369086
1001 => 0.031473515434646
1002 => 0.032422551924937
1003 => 0.032227458553182
1004 => 0.032027361772595
1005 => 0.031999702302421
1006 => 0.03192268211335
1007 => 0.031658551227077
1008 => 0.031339597310096
1009 => 0.03112899630679
1010 => 0.028714853620495
1011 => 0.02916290446065
1012 => 0.029678346111128
1013 => 0.02985627450337
1014 => 0.02955191567617
1015 => 0.031670569168664
1016 => 0.032057667577595
1017 => 0.030885121247137
1018 => 0.030665785703459
1019 => 0.031684948770392
1020 => 0.031070268853414
1021 => 0.031347059182392
1022 => 0.030748789887357
1023 => 0.031964426906448
1024 => 0.031955165789112
1025 => 0.031482255532278
1026 => 0.031881956043004
1027 => 0.031812498243119
1028 => 0.03127858372788
1029 => 0.031981352948908
1030 => 0.031981701513673
1031 => 0.031526535673426
1101 => 0.030995001620632
1102 => 0.030899975886267
1103 => 0.030828386760334
1104 => 0.031329452645905
1105 => 0.031778706752117
1106 => 0.032614657264238
1107 => 0.032824835084679
1108 => 0.033645173110192
1109 => 0.033156701757533
1110 => 0.033373234781404
1111 => 0.033608312009282
1112 => 0.033721016677005
1113 => 0.033537370469016
1114 => 0.03481169308724
1115 => 0.034919284960454
1116 => 0.034955359584877
1117 => 0.034525665167907
1118 => 0.034907334381407
1119 => 0.034728763995966
1120 => 0.035193354530601
1121 => 0.035266208258621
1122 => 0.035204503742834
1123 => 0.035227628666026
1124 => 0.034140219117286
1125 => 0.034083831195642
1126 => 0.033314977882914
1127 => 0.033628291290928
1128 => 0.03304256689215
1129 => 0.033228306132632
1130 => 0.033310178220048
1201 => 0.033267412887782
1202 => 0.033646005560925
1203 => 0.03332412444738
1204 => 0.032474627266581
1205 => 0.031624898640843
1206 => 0.03161423099012
1207 => 0.031390512441919
1208 => 0.031228804907666
1209 => 0.031259955515646
1210 => 0.031369734321206
1211 => 0.03122242436392
1212 => 0.031253860412112
1213 => 0.031775908269382
1214 => 0.031880601244082
1215 => 0.031524813609864
1216 => 0.030096274918567
1217 => 0.029745707940504
1218 => 0.02999768853229
1219 => 0.029877258039045
1220 => 0.024113279061892
1221 => 0.025467440424266
1222 => 0.024662843725718
1223 => 0.025033638902123
1224 => 0.024212354022211
1225 => 0.024604314214133
1226 => 0.02453193347878
1227 => 0.026709384876928
1228 => 0.026675386968333
1229 => 0.026691659968048
1230 => 0.025914907292555
1231 => 0.027152295395749
]
'min_raw' => 0.015797232294205
'max_raw' => 0.035266208258621
'avg_raw' => 0.025531720276413
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.015797'
'max' => '$0.035266'
'avg' => '$0.025531'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0024359011674133
'max_diff' => 0.0053351771352758
'year' => 2035
]
10 => [
'items' => [
101 => 0.027761877270419
102 => 0.027649059888914
103 => 0.027677453593284
104 => 0.027189555679368
105 => 0.026696383886347
106 => 0.026149380469292
107 => 0.027165645206514
108 => 0.027052653915953
109 => 0.027311815283518
110 => 0.02797093560971
111 => 0.028067993581496
112 => 0.028198440479842
113 => 0.028151684552627
114 => 0.029265600429006
115 => 0.029130697866523
116 => 0.02945577422799
117 => 0.028787067488848
118 => 0.028030362339282
119 => 0.028174187249659
120 => 0.028160335754223
121 => 0.027983990319314
122 => 0.027824793545614
123 => 0.027559775770818
124 => 0.028398331225524
125 => 0.028364287405445
126 => 0.028915417280913
127 => 0.028817999722034
128 => 0.028167421421721
129 => 0.028190656952991
130 => 0.028346927067398
131 => 0.028887779717622
201 => 0.029048341608265
202 => 0.028973962943234
203 => 0.029150011726396
204 => 0.029289153506519
205 => 0.029167485791715
206 => 0.030890044058844
207 => 0.030174717769989
208 => 0.030523362825969
209 => 0.030606512617484
210 => 0.030393526174969
211 => 0.030439715307878
212 => 0.030509679258449
213 => 0.030934486665972
214 => 0.032049304222327
215 => 0.032543049329217
216 => 0.034028505844249
217 => 0.032502050671353
218 => 0.032411477138493
219 => 0.03267905271334
220 => 0.033551172939205
221 => 0.034257944468181
222 => 0.03449242135897
223 => 0.034523411350879
224 => 0.034963305585728
225 => 0.035215444757602
226 => 0.034909890855251
227 => 0.034650965915835
228 => 0.033723528921794
229 => 0.033830882279182
301 => 0.034570440454378
302 => 0.035615109936602
303 => 0.036511545031685
304 => 0.036197644705304
305 => 0.038592482616494
306 => 0.038829921013353
307 => 0.038797114704209
308 => 0.039338034707825
309 => 0.038264418657091
310 => 0.037805426995071
311 => 0.03470694842666
312 => 0.035577494519085
313 => 0.036842884389804
314 => 0.036675405295446
315 => 0.035756445347361
316 => 0.036510847918159
317 => 0.036261418835904
318 => 0.036064683769907
319 => 0.036965965246207
320 => 0.035974969240413
321 => 0.036832998446574
322 => 0.035732567114496
323 => 0.036199078575554
324 => 0.035934264107637
325 => 0.03610563152282
326 => 0.035103821115274
327 => 0.035644373693613
328 => 0.035081332350843
329 => 0.035081065395936
330 => 0.035068636227088
331 => 0.035731051869949
401 => 0.035752653220281
402 => 0.035263127059352
403 => 0.035192578691727
404 => 0.035453432982735
405 => 0.035148040925811
406 => 0.035290931947131
407 => 0.035152368949282
408 => 0.035121175499883
409 => 0.034872620787942
410 => 0.034765536583884
411 => 0.034807527059515
412 => 0.034664191918612
413 => 0.034577827311559
414 => 0.03505145613298
415 => 0.034798415359827
416 => 0.035012674005378
417 => 0.034768499237175
418 => 0.033922083108701
419 => 0.033435300242527
420 => 0.031836498638656
421 => 0.032289916790207
422 => 0.03259053349378
423 => 0.032491179675042
424 => 0.032704630122515
425 => 0.032717734246417
426 => 0.032648339330074
427 => 0.032567988906988
428 => 0.032528878764687
429 => 0.032820373723061
430 => 0.032989596357666
501 => 0.032620704401716
502 => 0.032534278177784
503 => 0.032907248312332
504 => 0.033134759878949
505 => 0.034814577459138
506 => 0.034690131147058
507 => 0.035002466969023
508 => 0.034967302748654
509 => 0.035294680449071
510 => 0.035829804629114
511 => 0.034741747548012
512 => 0.034930596635108
513 => 0.034884295200115
514 => 0.035389802126488
515 => 0.035391380263934
516 => 0.03508830360963
517 => 0.035252606380785
518 => 0.035160897081337
519 => 0.035326628180695
520 => 0.034688469090689
521 => 0.0354656779773
522 => 0.035906305333774
523 => 0.035912423445046
524 => 0.036121277314979
525 => 0.036333484942832
526 => 0.036740799005107
527 => 0.036322125174706
528 => 0.035568971710889
529 => 0.035623346958306
530 => 0.035181773358039
531 => 0.035189196290036
601 => 0.035149572097289
602 => 0.035268487282493
603 => 0.03471456428666
604 => 0.034844568906617
605 => 0.034662561677372
606 => 0.034930200986937
607 => 0.034642265332208
608 => 0.034884272872161
609 => 0.034988715303728
610 => 0.035374110124694
611 => 0.034585342203796
612 => 0.032976991018191
613 => 0.033315085936778
614 => 0.032815016995405
615 => 0.032861300279825
616 => 0.032954799880286
617 => 0.032651737084028
618 => 0.032709551914948
619 => 0.032707486362351
620 => 0.03268968654597
621 => 0.032610848207823
622 => 0.03249651701982
623 => 0.03295197728354
624 => 0.033029368857572
625 => 0.033201400739857
626 => 0.033713250931197
627 => 0.033662105026823
628 => 0.03374552611888
629 => 0.03356341834331
630 => 0.032869747737236
701 => 0.032907417388496
702 => 0.032437676233672
703 => 0.033189388402406
704 => 0.033011373038734
705 => 0.032896605375716
706 => 0.032865289955547
707 => 0.033378408924508
708 => 0.033531942162175
709 => 0.033436270551693
710 => 0.033240045287408
711 => 0.033616855803628
712 => 0.033717674401409
713 => 0.033740243967405
714 => 0.034407879955897
715 => 0.033777557402651
716 => 0.033929282306085
717 => 0.03511299669089
718 => 0.034039531085291
719 => 0.034608169757716
720 => 0.034580337853754
721 => 0.034871234156883
722 => 0.03455647586627
723 => 0.034560377672517
724 => 0.034818673882673
725 => 0.034455943439476
726 => 0.03436612628065
727 => 0.034242044519015
728 => 0.034512972506104
729 => 0.034675381581345
730 => 0.035984279451465
731 => 0.036829887168557
801 => 0.036793177107426
802 => 0.037128638347805
803 => 0.036977509986542
804 => 0.036489476642374
805 => 0.037322490051542
806 => 0.03705888975412
807 => 0.037080620642365
808 => 0.037079811817619
809 => 0.037255082971067
810 => 0.037130887295484
811 => 0.036886084870485
812 => 0.03704859614465
813 => 0.037531196530077
814 => 0.039029202934429
815 => 0.03986750716425
816 => 0.038978735967188
817 => 0.039591798437801
818 => 0.039224179411927
819 => 0.039157372099207
820 => 0.039542420635713
821 => 0.039928143148709
822 => 0.039903574292156
823 => 0.03962355955479
824 => 0.039465386334764
825 => 0.040663126948722
826 => 0.041545601830108
827 => 0.041485422959384
828 => 0.041751032923542
829 => 0.042530871993316
830 => 0.042602170704595
831 => 0.042593188705756
901 => 0.0424164674106
902 => 0.043184320249693
903 => 0.043824876597149
904 => 0.042375561536741
905 => 0.042927441738817
906 => 0.043175198541999
907 => 0.043538979035201
908 => 0.044152737703922
909 => 0.0448194424096
910 => 0.044913721765028
911 => 0.044846826050669
912 => 0.04440711637529
913 => 0.045136632619684
914 => 0.045563966126389
915 => 0.045818433450279
916 => 0.046463720244337
917 => 0.043176728603669
918 => 0.040850032546319
919 => 0.040486685359066
920 => 0.041225566152268
921 => 0.041420403124972
922 => 0.04134186458558
923 => 0.038722956639082
924 => 0.040472897350723
925 => 0.042355686417254
926 => 0.0424280120132
927 => 0.043370575587168
928 => 0.043677512923839
929 => 0.044436400145515
930 => 0.044388931543176
1001 => 0.044573708505122
1002 => 0.044531231481461
1003 => 0.045936910257059
1004 => 0.047487582691861
1005 => 0.04743388783628
1006 => 0.047210960327054
1007 => 0.047542045693044
1008 => 0.049142505825917
1009 => 0.048995161103733
1010 => 0.049138293950541
1011 => 0.051025326645179
1012 => 0.053478737575479
1013 => 0.052338881879925
1014 => 0.054812040754637
1015 => 0.05636876316975
1016 => 0.059060953618585
1017 => 0.058723878115073
1018 => 0.059771928100599
1019 => 0.058120442614007
1020 => 0.054328298116508
1021 => 0.053728176734032
1022 => 0.054929634939242
1023 => 0.057883302700171
1024 => 0.054836613430239
1025 => 0.05545295470153
1026 => 0.055275448373934
1027 => 0.05526598981609
1028 => 0.055626984498269
1029 => 0.055103342883552
1030 => 0.052969932743866
1031 => 0.053947662038619
1101 => 0.053570113803498
1102 => 0.05398903171845
1103 => 0.056249758930559
1104 => 0.05525023754108
1105 => 0.054197322951789
1106 => 0.055517911507213
1107 => 0.057199474541729
1108 => 0.057094245349088
1109 => 0.056890056732975
1110 => 0.058041057271037
1111 => 0.059942172948401
1112 => 0.060456036876691
1113 => 0.060835360723069
1114 => 0.060887663072756
1115 => 0.061426409780258
1116 => 0.05852943295237
1117 => 0.06312700957787
1118 => 0.063920884055602
1119 => 0.063771668556514
1120 => 0.064654026627169
1121 => 0.064394414499519
1122 => 0.064018277258448
1123 => 0.06541700248338
1124 => 0.063813476884301
1125 => 0.061537474174667
1126 => 0.060288814073933
1127 => 0.061933150421117
1128 => 0.062937289248912
1129 => 0.063600961138861
1130 => 0.063801787851757
1201 => 0.058754317016883
1202 => 0.056034010182452
1203 => 0.057777695674941
1204 => 0.059905112318522
1205 => 0.058517615045499
1206 => 0.058572002311721
1207 => 0.056593795828259
1208 => 0.060080139697477
1209 => 0.059572208720499
1210 => 0.062207355527574
1211 => 0.061578456593691
1212 => 0.063727316519051
1213 => 0.063161449684565
1214 => 0.065510331277326
1215 => 0.066447363738109
1216 => 0.06802078707722
1217 => 0.069178203690456
1218 => 0.069857860863599
1219 => 0.069817056796254
1220 => 0.072510197120108
1221 => 0.070922146362288
1222 => 0.068927180335638
1223 => 0.068891097694254
1224 => 0.069924318868342
1225 => 0.072089666998846
1226 => 0.072651110264552
1227 => 0.072964880456582
1228 => 0.072484330485069
1229 => 0.070760615204077
1230 => 0.07001632368518
1231 => 0.070650481623482
]
'min_raw' => 0.026149380469292
'max_raw' => 0.072964880456582
'avg_raw' => 0.049557130462937
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.026149'
'max' => '$0.072964'
'avg' => '$0.049557'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.010352148175088
'max_diff' => 0.037698672197961
'year' => 2036
]
11 => [
'items' => [
101 => 0.069874960958752
102 => 0.071213727198743
103 => 0.073052139191289
104 => 0.072672514384697
105 => 0.073941543196602
106 => 0.075254854511199
107 => 0.077132948675575
108 => 0.077623952035768
109 => 0.078435561918982
110 => 0.079270975088768
111 => 0.079539287283886
112 => 0.080051578516753
113 => 0.080048878489082
114 => 0.081592702600502
115 => 0.083295588403651
116 => 0.083938388372443
117 => 0.085416471456483
118 => 0.082885305973274
119 => 0.084805224068222
120 => 0.086537038248531
121 => 0.084472297988448
122 => 0.087318061414193
123 => 0.087428555959376
124 => 0.089096892406474
125 => 0.08740571380275
126 => 0.086401497346292
127 => 0.089300632628586
128 => 0.090703432869783
129 => 0.090280898020768
130 => 0.087065386956642
131 => 0.085193821597563
201 => 0.080295574054857
202 => 0.086097759857739
203 => 0.088923835310242
204 => 0.087058068103949
205 => 0.087999052557606
206 => 0.093132758621525
207 => 0.095087341507814
208 => 0.094680801931031
209 => 0.094749500427297
210 => 0.095804157874549
211 => 0.10048108980613
212 => 0.097678563782293
213 => 0.09982098991887
214 => 0.10095732501662
215 => 0.10201281638405
216 => 0.09942086317711
217 => 0.096048770138237
218 => 0.09498068672199
219 => 0.086872554325536
220 => 0.086450490822466
221 => 0.08621357378836
222 => 0.084719845400902
223 => 0.083546184054999
224 => 0.082612844977485
225 => 0.080163484519448
226 => 0.080990071772305
227 => 0.07708630242345
228 => 0.079583795711756
301 => 0.073353285571178
302 => 0.07854223955686
303 => 0.07571812781524
304 => 0.077614442895496
305 => 0.077607826830825
306 => 0.07411610954083
307 => 0.072102159878241
308 => 0.073385526987336
309 => 0.074761398402094
310 => 0.074984628910151
311 => 0.076768482113303
312 => 0.077266317198506
313 => 0.075757853648642
314 => 0.073224172097146
315 => 0.073812688534435
316 => 0.072090233611424
317 => 0.069071697612118
318 => 0.071239662865402
319 => 0.071979901521576
320 => 0.072306833082609
321 => 0.069338449608494
322 => 0.068405719074186
323 => 0.067909141164088
324 => 0.072840991066001
325 => 0.07311116893665
326 => 0.071728900751111
327 => 0.077976884021794
328 => 0.076562772980532
329 => 0.078142681479238
330 => 0.073759286836289
331 => 0.073926738414673
401 => 0.071851569143685
402 => 0.073013525272578
403 => 0.072192292132271
404 => 0.072919650700037
405 => 0.073355626426545
406 => 0.075430455182675
407 => 0.078565930768412
408 => 0.07512054495595
409 => 0.073619341018627
410 => 0.074550679498251
411 => 0.077030956599839
412 => 0.080788703371794
413 => 0.078564041651095
414 => 0.079551308745535
415 => 0.079766982685214
416 => 0.078126599493825
417 => 0.080849186639878
418 => 0.082308243209707
419 => 0.083804933341136
420 => 0.08510446744595
421 => 0.083207122389722
422 => 0.085237553573616
423 => 0.08360138445875
424 => 0.082133571618661
425 => 0.082135797684853
426 => 0.081215017248941
427 => 0.079430889128561
428 => 0.079101868529727
429 => 0.080813475235584
430 => 0.082186021723924
501 => 0.082299071226758
502 => 0.083058983486687
503 => 0.083508691734395
504 => 0.087916443910646
505 => 0.089689278298773
506 => 0.091857066630536
507 => 0.092701542355614
508 => 0.095243111526795
509 => 0.093190588004911
510 => 0.092746511629973
511 => 0.086581496161627
512 => 0.087591017099198
513 => 0.089207357524531
514 => 0.086608149019906
515 => 0.088256748560763
516 => 0.088582217032241
517 => 0.086519828909518
518 => 0.087621439516395
519 => 0.084695888349313
520 => 0.078629699789246
521 => 0.080855940041858
522 => 0.082495202212147
523 => 0.080155772975576
524 => 0.084349109333714
525 => 0.081899448801323
526 => 0.081123024016998
527 => 0.078093914117923
528 => 0.079523537389154
529 => 0.081457123333727
530 => 0.080262392023474
531 => 0.082741638882058
601 => 0.086252913624798
602 => 0.088755257106501
603 => 0.088947355967303
604 => 0.087338516752561
605 => 0.08991669186166
606 => 0.089935471052672
607 => 0.087027278997454
608 => 0.085246027556514
609 => 0.084841323481347
610 => 0.085852353608021
611 => 0.087079930828261
612 => 0.089015477959523
613 => 0.090185088553733
614 => 0.093234812669906
615 => 0.0940599805733
616 => 0.094966589923853
617 => 0.096178099604161
618 => 0.097632827600078
619 => 0.094449965562723
620 => 0.094576426605065
621 => 0.091612589545605
622 => 0.088445304590344
623 => 0.090848879063744
624 => 0.093991232953601
625 => 0.093270373499275
626 => 0.093189262084842
627 => 0.093325668985489
628 => 0.092782164497996
629 => 0.090323913844282
630 => 0.089089395755451
701 => 0.090682239049197
702 => 0.091528764370525
703 => 0.092841651319138
704 => 0.09267981029104
705 => 0.096061666076903
706 => 0.097375752973278
707 => 0.097039553312237
708 => 0.097101422140965
709 => 0.099480513697882
710 => 0.10212655280667
711 => 0.10460491760766
712 => 0.10712601673148
713 => 0.10408673333754
714 => 0.10254357266705
715 => 0.10413572057524
716 => 0.10329090448405
717 => 0.10814546833277
718 => 0.10848158780085
719 => 0.11333580060935
720 => 0.11794302659352
721 => 0.11504931049989
722 => 0.11777795444035
723 => 0.12072920533156
724 => 0.12642264712391
725 => 0.12450529622595
726 => 0.12303663548682
727 => 0.12164875818487
728 => 0.12453671053092
729 => 0.12825201508794
730 => 0.12905225610478
731 => 0.13034895226766
801 => 0.12898563480486
802 => 0.13062760052431
803 => 0.13642446103026
804 => 0.13485809815125
805 => 0.13263361105766
806 => 0.13720967569071
807 => 0.13886573569241
808 => 0.1504888320697
809 => 0.16516347137219
810 => 0.15908807434208
811 => 0.15531687935366
812 => 0.15620319962988
813 => 0.16156188113526
814 => 0.16328291955874
815 => 0.1586045438462
816 => 0.16025702523878
817 => 0.16936236018028
818 => 0.17424708024227
819 => 0.16761297429266
820 => 0.14930973909012
821 => 0.13243332033352
822 => 0.13690970654281
823 => 0.13640222326511
824 => 0.14618476974609
825 => 0.13482074091462
826 => 0.13501208201546
827 => 0.14499692119777
828 => 0.14233313728741
829 => 0.13801814850429
830 => 0.13246482452689
831 => 0.12219899153436
901 => 0.11310625696894
902 => 0.13093920338343
903 => 0.13017021430693
904 => 0.12905660416636
905 => 0.131534823029
906 => 0.14356835037126
907 => 0.1432909386173
908 => 0.14152618657528
909 => 0.14286473544534
910 => 0.13778349441558
911 => 0.13909304592666
912 => 0.13243064702256
913 => 0.13544232957357
914 => 0.13800889047632
915 => 0.13852416557614
916 => 0.13968510668661
917 => 0.12976499200675
918 => 0.13421883225874
919 => 0.13683504613839
920 => 0.12501489665146
921 => 0.13660139978771
922 => 0.12959230488043
923 => 0.12721331279583
924 => 0.13041631222937
925 => 0.1291681002351
926 => 0.1280949608599
927 => 0.12749613064966
928 => 0.1298480599315
929 => 0.12973833961934
930 => 0.12589012682444
1001 => 0.12087029010671
1002 => 0.1225551120797
1003 => 0.12194300046162
1004 => 0.11972462899373
1005 => 0.1212195435159
1006 => 0.11463669651921
1007 => 0.10331125040803
1008 => 0.11079318701687
1009 => 0.11050514059621
1010 => 0.11035989452905
1011 => 0.11598236310506
1012 => 0.1154418924839
1013 => 0.11446093301418
1014 => 0.1197066129038
1015 => 0.11779186917974
1016 => 0.12369265816693
1017 => 0.127579299433
1018 => 0.12659352148825
1019 => 0.13024892638475
1020 => 0.1225939269751
1021 => 0.12513661071372
1022 => 0.12566065430824
1023 => 0.11964188202822
1024 => 0.11553032016163
1025 => 0.11525612586037
1026 => 0.10812724419183
1027 => 0.11193543523684
1028 => 0.1152864857628
1029 => 0.11368159261289
1030 => 0.11317353138645
1031 => 0.1157691060073
1101 => 0.11597080438494
1102 => 0.11137205999985
1103 => 0.1123282845808
1104 => 0.11631590004249
1105 => 0.11222780690234
1106 => 0.10428530971724
1107 => 0.10231546060172
1108 => 0.10205264641819
1109 => 0.096710259386193
1110 => 0.10244709533882
1111 => 0.099942812707851
1112 => 0.10785381153316
1113 => 0.10333509143168
1114 => 0.10314029843956
1115 => 0.10284584026204
1116 => 0.098247427052379
1117 => 0.099254187300891
1118 => 0.10260081170086
1119 => 0.10379492498919
1120 => 0.10367036919014
1121 => 0.10258441141555
1122 => 0.10308155732375
1123 => 0.10148007713633
1124 => 0.10091456115022
1125 => 0.099129637140635
1126 => 0.096506291944389
1127 => 0.096871084183838
1128 => 0.091673550914466
1129 => 0.088841658935343
1130 => 0.088057828559258
1201 => 0.087009657821831
1202 => 0.088176222233126
1203 => 0.09165882695575
1204 => 0.087458066784458
1205 => 0.080256158119843
1206 => 0.080689005102042
1207 => 0.08166148375762
1208 => 0.079849276216541
1209 => 0.07813417386596
1210 => 0.079625316209138
1211 => 0.076573772566856
1212 => 0.082030248227867
1213 => 0.081882665852833
1214 => 0.083916502553067
1215 => 0.085188302380254
1216 => 0.082257215528672
1217 => 0.081520055112001
1218 => 0.08193997518741
1219 => 0.074999631724428
1220 => 0.083349328424369
1221 => 0.083421536948159
1222 => 0.082803243728405
1223 => 0.08724919945316
1224 => 0.096631552760757
1225 => 0.093101534042152
1226 => 0.091734604098927
1227 => 0.089136069277637
1228 => 0.092598462641275
1229 => 0.092332604852698
1230 => 0.091130295109181
1231 => 0.090403134424867
]
'min_raw' => 0.067909141164088
'max_raw' => 0.17424708024227
'avg_raw' => 0.12107811070318
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.0679091'
'max' => '$0.174247'
'avg' => '$0.121078'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.041759760694796
'max_diff' => 0.10128219978569
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0021315903431033
]
1 => [
'year' => 2028
'avg' => 0.0036584278338632
]
2 => [
'year' => 2029
'avg' => 0.0099941654746503
]
3 => [
'year' => 2030
'avg' => 0.007710483779935
]
4 => [
'year' => 2031
'avg' => 0.0075726506216314
]
5 => [
'year' => 2032
'avg' => 0.013277239740578
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0021315903431033
'min' => '$0.002131'
'max_raw' => 0.013277239740578
'max' => '$0.013277'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.013277239740578
]
1 => [
'year' => 2033
'avg' => 0.03415042589523
]
2 => [
'year' => 2034
'avg' => 0.021646181125068
]
3 => [
'year' => 2035
'avg' => 0.025531720276413
]
4 => [
'year' => 2036
'avg' => 0.049557130462937
]
5 => [
'year' => 2037
'avg' => 0.12107811070318
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.013277239740578
'min' => '$0.013277'
'max_raw' => 0.12107811070318
'max' => '$0.121078'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.12107811070318
]
]
]
]
'prediction_2025_max_price' => '$0.003644'
'last_price' => 0.0035339257781093
'sma_50day_nextmonth' => '$0.003414'
'sma_200day_nextmonth' => '$0.003835'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'augmenter'
'sma_200day_date_nextmonth' => '4 févr. 2026'
'sma_50day_date_nextmonth' => '4 févr. 2026'
'daily_sma3' => '$0.003614'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.003615'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.003598'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.003664'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.00404'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.004243'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.003875'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.003586'
'daily_ema3_action' => 'SELL'
'daily_ema5' => '$0.003596'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.003614'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.003689'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.003927'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.004036'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.004262'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.004161'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.003864'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.0065026'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.003599'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.003675'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.00386'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.003982'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.004797'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.008843'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.006696'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '37.19'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 85.7
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => -0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.003638'
'vwma_10_action' => 'SELL'
'hma_9' => '0.003636'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 14.56
'stochastic_fast_14_action' => 'BUY'
'cci_20' => -135.16
'cci_20_action' => 'BUY'
'adx_14' => 24.71
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.000134'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -85.44
'williams_percent_r_14_action' => 'BUY'
'ultimate_oscillator' => 37.72
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.0005049'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 32
'buy_signals' => 0
'sell_pct' => 100
'buy_pct' => 0
'overall_action' => 'bearish'
'overall_action_label' => 'Baissier'
'overall_action_dir' => -1
'last_updated' => 1767676369
'last_updated_date' => '6 janvier 2026'
]
Prévision du prix de Sable pour 2026
La prévision du prix de Sable pour 2026 suggère que le prix moyen pourrait varier entre $0.00122 à la baisse et $0.003644 à la hausse. Sur le marché des cryptomonnaies, comparé au prix moyen d'aujourd'hui, Sable pourrait potentiellement gagner 3.13% d'ici 2026 si SABLE atteint l'objectif de prix prévu.
Prévision du prix de Sable de 2027 à 2032
La prévision du prix de SABLE pour 2027-2032 se situe actuellement dans une fourchette de prix comprise entre $0.002131 à la baisse et $0.013277 à la hausse. Compte tenu de la volatilité des prix sur le marché, si Sable atteint l'objectif de prix le plus élevé, il pourrait gagner 275.71% d'ici 2032 par rapport au prix actuel.
| Prévision du Prix de Sable | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2027 | $0.001175 | $0.002131 | $0.003087 |
| 2028 | $0.002121 | $0.003658 | $0.005195 |
| 2029 | $0.004659 | $0.009994 | $0.015328 |
| 2030 | $0.003962 | $0.00771 | $0.011458 |
| 2031 | $0.004685 | $0.007572 | $0.010459 |
| 2032 | $0.007151 | $0.013277 | $0.0194025 |
Prévision du prix de Sable de 2032 à 2037
La prévision du prix de Sable pour 2032-2037 est actuellement estimée entre $0.013277 à la baisse et $0.121078 à la hausse. Par rapport au prix actuel, Sable pourrait potentiellement gagner 3326.16% d'ici 2037 s'il atteint l'objectif de prix le plus élevé. Veuillez noter que ces informations sont à titre général seulement et ne doivent pas être considérées comme un conseil en investissement à long terme.
| Prévision du Prix de Sable | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2032 | $0.007151 | $0.013277 | $0.0194025 |
| 2033 | $0.016619 | $0.03415 | $0.051681 |
| 2034 | $0.013361 | $0.021646 | $0.029931 |
| 2035 | $0.015797 | $0.025531 | $0.035266 |
| 2036 | $0.026149 | $0.049557 | $0.072964 |
| 2037 | $0.0679091 | $0.121078 | $0.174247 |
Sable Histogramme des prix potentiels
Prévision du prix de Sable basée sur l'analyse technique
Au 6 janvier 2026, le sentiment global de prévision du prix pour Sable est Baissier, avec 0 indicateurs techniques montrant des signaux haussiers et 32 indiquant des signaux baissiers. La prévision du prix de SABLE a été mise à jour pour la dernière fois le 6 janvier 2026.
Moyennes Mobiles Simples sur 50 et 200 jours de Sable et Indice de Force Relative sur 14 jours - RSI (14)
Selon nos indicateurs techniques, le SMA sur 200 jours de Sable devrait augmenter au cours du prochain mois, atteignant $0.003835 d'ici le 4 févr. 2026. Le SMA à court terme sur 50 jours pour Sable devrait atteindre $0.003414 d'ici le 4 févr. 2026.
Le Relative Strength Index (RSI), un oscillateur de momentum, est un outil couramment utilisé pour identifier si une cryptomonnaie est survendue (en dessous de 30) ou surachetée (au-dessus de 70). Actuellement, le RSI est à 37.19, ce qui suggère que le marché de SABLE est dans un état NEUTRAL.
Moyennes Mobiles et Oscillateurs Populaires de SABLE pour le Samedi 19 Octobre 2024
Les moyennes mobiles (MA) sont des indicateurs largement utilisés sur les marchés financiers, conçus pour lisser les mouvements de prix sur une période donnée. En tant qu'indicateurs retardés, ils sont basés sur des données historiques de prix. Le tableau ci-dessous met en évidence deux types : la moyenne mobile simple (SMA) et la moyenne mobile exponentielle (EMA).
Moyenne Mobile Simple Quotidienne (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 3 | $0.003614 | SELL |
| SMA 5 | $0.003615 | SELL |
| SMA 10 | $0.003598 | SELL |
| SMA 21 | $0.003664 | SELL |
| SMA 50 | $0.00404 | SELL |
| SMA 100 | $0.004243 | SELL |
| SMA 200 | $0.003875 | SELL |
Moyenne Mobile Exponentielle Quotidienne (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 3 | $0.003586 | SELL |
| EMA 5 | $0.003596 | SELL |
| EMA 10 | $0.003614 | SELL |
| EMA 21 | $0.003689 | SELL |
| EMA 50 | $0.003927 | SELL |
| EMA 100 | $0.004036 | SELL |
| EMA 200 | $0.004262 | SELL |
Moyenne Mobile Simple Hebdomadaire (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 21 | $0.004161 | SELL |
| SMA 50 | $0.003864 | SELL |
| SMA 100 | $0.0065026 | SELL |
| SMA 200 | — | — |
Moyenne Mobile Exponentielle Hebdomadaire (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 21 | $0.003982 | SELL |
| EMA 50 | $0.004797 | SELL |
| EMA 100 | $0.008843 | SELL |
| EMA 200 | $0.006696 | SELL |
Oscillateurs de Sable
Un oscillateur est un outil d'analyse technique qui établit des limites hautes et basses entre deux extrêmes, créant un indicateur de tendance qui fluctue à l'intérieur de ces limites. Les traders utilisent cet indicateur pour identifier les conditions de surachat ou de survente à court terme.
| Période | Valeur | Action |
|---|---|---|
| RSI (14) | 37.19 | NEUTRAL |
| Stoch RSI (14) | 85.7 | SELL |
| Stochastique Rapide (14) | 14.56 | BUY |
| Indice de Canal des Matières Premières (20) | -135.16 | BUY |
| Indice Directionnel Moyen (14) | 24.71 | NEUTRAL |
| Oscillateur Impressionnant (5, 34) | -0.000134 | NEUTRAL |
| Momentum (10) | -0 | SELL |
| MACD (12, 26) | 0 | NEUTRAL |
| Plage de Pourcentage de Williams (14) | -85.44 | BUY |
| Oscillateur Ultime (7, 14, 28) | 37.72 | NEUTRAL |
| VWMA (10) | 0.003638 | SELL |
| Moyenne Mobile de Hull (9) | 0.003636 | SELL |
| Nuage Ichimoku B/L (9, 26, 52, 26) | -0.0005049 | SELL |
Prévision du cours de Sable basée sur les flux monétaires mondiaux
Définitions des flux monétaires mondiaux utilisés pour la prédiction du cours de Sable
M0 : le total de toutes les devises physiques, plus les comptes à la banque centrale qui peuvent être échangés contre des devises physiques.
M1 : M0 plus le montant des comptes à vue, y compris les comptes de "chèques" et les comptes "courants".
M2 : M1 plus la plupart des comptes d'épargne, comptes du marché monétaire et comptes de certificats de dépôt (CD) de moins de 100 000 $.
Prédictions du cours de Sable par des sociétés Internet ou des niches technologiques
| Comparaison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Action Facebook | $0.004965 | $0.006977 | $0.0098048 | $0.013777 | $0.019359 | $0.0272035 |
| Action Amazon.com | $0.007373 | $0.015385 | $0.0321033 | $0.066985 | $0.139769 | $0.291636 |
| Action Apple | $0.005012 | $0.00711 | $0.010084 | $0.0143048 | $0.02029 | $0.02878 |
| Action Netflix | $0.005575 | $0.008798 | $0.013881 | $0.0219034 | $0.03456 | $0.05453 |
| Action Google | $0.004576 | $0.005926 | $0.007674 | $0.009938 | $0.01287 | $0.016667 |
| Action Tesla | $0.008011 | $0.01816 | $0.041168 | $0.093326 | $0.211564 | $0.4796011 |
| Action Kodak | $0.00265 | $0.001987 | $0.00149 | $0.001117 | $0.000838 | $0.000628 |
| Action Nokia | $0.002341 | $0.00155 | $0.001027 | $0.00068 | $0.00045 | $0.000298 |
Ce calcul montre la valeur potentielle des cryptomonnaies si l'on suppose que leur capitalisation se comportera comme celle de certaines sociétés Internet ou niches technologiques. En extrapolant les données, vous pourrez obtenir une potentielle image des cours futurs pour 2024, 2025, 2026, 2027, 2028, 2029 et 2030.
Aperçu des prévisions relatives à Sable
Vous vous posez peut-être des questions telles que : "Devrais-je investir dans Sable maintenant ?", "Devrais-je acheter SABLE aujourd'hui ?", " Sable sera-t-il un bon ou un mauvais investissement à court ou à long terme ?".
Nous mettons régulièrement à jour les prévisions de Sable avec de nouvelles valeurs. Regardez nos prévisions similaires. Nous faisons une prévision des cours futurs pour une grande quantité de devises numériques comme Sable en utilisant des méthodes d'analyse technique.
Si vous souhaitez trouver des cryptomonnaies ayant un bon rendement, vous devriez consulter un maximum d'informations disponibles à propos de Sable afin de prendre une décision responsable concernant cet investissement.
Le cours de Sable est de $0.003533 USD actuellement, mais ce cours peut subir une hausse ou une baisse, ce qui pourrait causer la perte de votre investissement, car les cryptomonnaies sont des actifs à haut risque.
Prévision du cours de Sable basée sur le modèle de croissance du Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Sable présente 1 % de la précédente croissance annuelle moyenne du Bitcoin | $0.003625 | $0.00372 | $0.003816 | $0.003915 |
| Si Sable présente 2 % de la précédente croissance annuelle moyenne du Bitcoin | $0.003717 | $0.00391 | $0.004114 | $0.004328 |
| Si Sable présente 5 % de la précédente croissance annuelle moyenne du Bitcoin | $0.003993 | $0.004512 | $0.005098 | $0.005761 |
| Si Sable présente 10 % de la précédente croissance annuelle moyenne du Bitcoin | $0.004452 | $0.0056098 | $0.007068 | $0.0089052 |
| Si Sable présente 20 % de la précédente croissance annuelle moyenne du Bitcoin | $0.005371 | $0.008163 | $0.0124071 | $0.018857 |
| Si Sable présente 50 % de la précédente croissance annuelle moyenne du Bitcoin | $0.008126 | $0.018688 | $0.042978 | $0.098835 |
| Si Sable présente 100 % de la précédente croissance annuelle moyenne du Bitcoin | $0.012719 | $0.045782 | $0.164785 | $0.593117 |
Boîte à questions
Est-ce que SABLE est un bon investissement ?
La décision d'acquérir Sable dépend entièrement de votre tolérance individuelle au risque. Comme vous pouvez le discerner, la valeur de Sable a connu une hausse de 12.5276% au cours des 24 heures précédentes, et Sable a enregistré une déclin de sur une période de 30 jours précédents. Par conséquent, la détermination de si investir ou non dans Sable dépendra de la mesure dans laquelle cet investissement s'aligne avec vos aspirations de trading.
Est-ce que Sable peut monter ?
Il semble que la valeur moyenne de Sable pourrait potentiellement s'envoler jusqu'à $0.003644 pour la fin de cette année. En regardant les perspectives de Sable sur une période de cinq ans plus longue, la monnaie numérique pourrait potentiellement croître jusqu'à $0.011458. Cependant, compte tenu de l'imprévisibilité du marché, il est essentiel de mener des recherches approfondies avant d'investir des fonds dans un projet, un réseau ou un actif particulier.
Quel sera le prix de Sable la semaine prochaine ?
Basé sur notre nouveau pronostic expérimental de Sable, le prix de Sable va augmenter de 0.86% durant la prochaine semaine et atteindre $0.003564 d'ici 13 janvier 2026.
Quel sera le prix de Sable le mois prochain ?
Basé sur notre nouveau pronostic expérimental de Sable, le prix de Sable va diminuer de -11.62% durant le prochain mois et atteindre $0.003123 d'ici 5 février 2026.
Jusqu'où le prix de Sable peut-il monter cette année en 2026 ?
Selon notre prédiction la plus récente sur la valeur de Sable en 2026, SABLE devrait fluctuer dans la fourchette de $0.00122 et $0.003644. Cependant, il est crucial de garder à l'esprit que le marché des cryptomonnaies est exceptionnellement instable, et cette prévision de prix de Sable ne prend pas en compte les fluctuations de prix soudaines et extrêmes.
Où sera Sable dans 5 ans ?
L'avenir de Sable semble suivre une tendance haussière, avec un prix maximum de $0.011458 prévue après une période de cinq ans. Selon la prévision de Sable pour 2030, la valeur de Sable pourrait potentiellement atteindre son point le plus élevé d'environ $0.011458, tandis que son point le plus bas devrait être autour de $0.003962.
Combien vaudra Sable en 2026 ?
Basé sur notre nouvelle simulation expérimentale de prédiction de prix de Sable, il est attendu que la valeur de SABLE en 2026 augmente de 3.13% jusqu'à $0.003644 si le meilleur scénario se produit. Le prix sera entre $0.003644 et $0.00122 durant 2026.
Combien vaudra Sable en 2027 ?
Selon notre dernière simulation expérimentale pour la prédiction de prix de Sable, le valeur de SABLE pourrait diminuer de -12.62% jusqu'à $0.003087 en 2027, en supposant les conditions les plus favorables. Il est prévu que le prix fluctue entre $0.003087 et $0.001175 tout au long de l'année.
Combien vaudra Sable en 2028 ?
Notre nouveau modèle expérimental de prédiction de prix de Sable suggère que la valeur de SABLE en 2028 pourrait augmenter de 47.02%, atteignant $0.005195 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.005195 et $0.002121 durant l'année.
Combien vaudra Sable en 2029 ?
Basé sur notre modèle de prévision expérimental, la valeur de Sable pourrait connaître un 333.75% croissance en 2029, atteignant potentiellement $0.015328 sous des conditions optimales. Le range de prix prévu pour 2029 se situe entre $0.015328 et $0.004659.
Combien vaudra Sable en 2030 ?
En utilisant notre nouvelle simulation expérimentale pour les prédictions de prix de Sable, il est prévu que la valeur de SABLE en 2030 augmente de 224.23%, atteignant $0.011458 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.011458 et $0.003962 au cours de 2030.
Combien vaudra Sable en 2031 ?
Notre simulation expérimentale indique que le prix de Sable pourrait augmenter de 195.98% en 2031, atteignant potentiellement $0.010459 dans des conditions idéales. Il est probable que le prix fluctue entre $0.010459 et $0.004685 durant l'année.
Combien vaudra Sable en 2032 ?
Basé sur les résultats de notre dernière prédiction expérimentale de prix de Sable, SABLE pourrait connaître une 449.04% hausse en valeur, atteignant $0.0194025 si le scénario le plus positif se réalise en 2032. Il est prévu que le prix reste dans une fourchette de $0.0194025 et $0.007151 tout au long de l'année.
Combien vaudra Sable en 2033 ?
Selon notre prédiction expérimentale de prix de Sable, la valeur de SABLE est anticipée à augmenter de 1362.43% en 2033, avec le prix potentiel le plus élevé étant $0.051681. Tout au long de l'année, le prix de SABLE pourrait osciller entre $0.051681 et $0.016619.
Combien vaudra Sable en 2034 ?
Les résultats de notre nouvelle simulation de prédiction de prix de Sable suggèrent que SABLE pourrait augmenter de 746.96% en 2034, atteignant potentiellement $0.029931 dans les meilleures circonstances. La fourchette de prix prévue pour l'année est entre $0.029931 et $0.013361.
Combien vaudra Sable en 2035 ?
Basé sur notre prédiction expérimentale pour le prix de Sable, SABLE pourrait augmenter de 897.93%, avec la valeur potentiellement atteignant $0.035266 en 2035. La fourchette de prix attendue pour l'année se situe entre $0.035266 et $0.015797.
Combien vaudra Sable en 2036 ?
Notre récente simulation de prédiction de prix de Sable suggère que la valeur de SABLE pourrait augmenter de 1964.7% en 2036, pouvant atteindre $0.072964 si les conditions sont optimales. La fourchette de prix attendue pour 2036 est entre $0.072964 et $0.026149.
Combien vaudra Sable en 2037 ?
Selon la simulation expérimentale, la valeur de Sable pourrait augmenter de 4830.69% en 2037, avec un maximum de $0.174247 sous des conditions favorables. Il est prévu que le prix chute entre $0.174247 et $0.0679091 au cours de l'année.
Prévisions liées
Prévision du cours de Web3Frontier
Prévision du cours de CoTrader
Prévision du cours de pBTC35A
Prévision du cours de MILK
Prévision du cours de Vidulum
Prévision du cours de Alex
Prévision du cours de Cred
Prévision du cours de Equilibria
Prévision du cours de Museum of Crypto Art
Prévision du cours de Unique Utility
Prévision du cours de PowerTrade FuelPrévision du cours de Busy DAO
Prévision du cours de Spellfire
Prévision du cours de Robot
Prévision du cours de 8Pay
Prévision du cours de LuckysLeprecoin
Prévision du cours de EXMO Coin
Prévision du cours de ESports Token
Prévision du cours de Swapr
Prévision du cours de MoveZ
Prévision du cours de Friends With Benefits
Prévision du cours de CrossSwap
Prévision du cours de Smartcoin
Prévision du cours de Shopping.io
Prévision du cours de Moonft
Comment lire et prédire les mouvements de prix de Sable ?
Les traders de Sable utilisent des indicateurs et des modèles graphiques pour prédire la direction du marché. Ils identifient également des niveaux clés de support et de résistance pour évaluer quand une tendance baissière pourrait ralentir ou une tendance haussière pourrait s'arrêter.
Indicateurs de prédiction du prix de Sable
Les moyennes mobiles sont des outils populaires pour la prédiction du prix de Sable. Une moyenne mobile simple (SMA) calcule le prix de clôture moyen de SABLE sur une période spécifique, comme une SMA de 12 jours. Une moyenne mobile exponentielle (EMA) donne plus de poids aux prix récents, réagissant plus rapidement aux changements de prix.
Les moyennes mobiles couramment utilisées sur le marché des cryptomonnaies incluent les moyennes sur 50 jours, 100 jours et 200 jours, qui aident à identifier les niveaux clés de résistance et de support. Un mouvement de prix de SABLE au-dessus de ces moyennes est considéré comme haussier, tandis qu'une chute en dessous indique une faiblesse.
Les traders utilisent également le RSI et les niveaux de retracement de Fibonacci pour évaluer la direction future de SABLE.
Comment lire les graphiques de Sable et prédire les mouvements de prix ?
La plupart des traders préfèrent les graphiques en chandeliers aux simples graphiques linéaires parce qu'ils fournissent des informations plus détaillées. Les chandeliers peuvent représenter l'action des prix de Sable dans différentes périodes, comme 5 minutes pour les tendances à court terme et hebdomadaire pour les tendances à long terme. Les options populaires incluent les graphiques de 1 heure, 4 heures et 1 jour.
Par exemple, un graphique en chandeliers de 1 heure montre les prix d'ouverture, de clôture, les plus hauts et les plus bas de SABLE au sein de chaque heure. La couleur du chandelier est cruciale : le vert indique que le prix a clôturé plus haut qu'il n'a ouvert, tandis que le rouge signifie le contraire. Certains graphiques utilisent des chandeliers creux et pleins pour transmettre la même information.
Qu'est-ce qui affecte le prix de Sable ?
L'action du prix de Sable est déterminée par l'offre et la demande, influencée par des facteurs tels que les réductions de récompenses de bloc, les hard forks et les mises à jour de protocole. Les événements du monde réel, tels que les réglementations, l'adoption par les entreprises et les gouvernements et les piratages d'échanges de cryptomonnaies, impactent également le prix de SABLE. La capitalisation boursière de Sable peut changer rapidement.
Les traders surveillent souvent l'activité des « baleines » de SABLE, de grands détenteurs de Sable, car leurs actions peuvent influencer significativement les mouvements de prix sur le marché relativement petit de Sable.
Modèles de prédiction de prix haussiers et baissiers
Les traders identifient souvent des modèles de chandeliers pour obtenir un avantage dans les prédictions de prix des cryptomonnaies. Certaines formations indiquent des tendances haussières, tandis que d'autres suggèrent des mouvements baissiers.
Modèles de chandeliers haussiers couramment suivis :
- Marteau
- Englobante haussière
- Ligne pénétrante
- Étoile du matin
- Trois soldats blancs
Modèles de chandeliers baissiers courants :
- Harami baissier
- Nuage sombre
- Étoile du soir
- Étoile filante
- Pendu


