Prédiction du prix de Red jusqu'à $0.001364 d'ici 2026
| Année | Prix min. | Prix max. |
|---|---|---|
| 2026 | $0.000457 | $0.001364 |
| 2027 | $0.00044 | $0.001156 |
| 2028 | $0.000794 | $0.001945 |
| 2029 | $0.001744 | $0.005739 |
| 2030 | $0.001483 | $0.00429 |
| 2031 | $0.001754 | $0.003916 |
| 2032 | $0.002678 | $0.007265 |
| 2033 | $0.006223 | $0.019352 |
| 2034 | $0.0050031 | $0.0112077 |
| 2035 | $0.005915 | $0.0132055 |
Calculateur de profit d’investissement
Si vous ouvrez une position short de $10,000.00 sur Red aujourd’hui et la fermez le Apr 06, 2026, notre prévision indique que vous pourriez gagner environ $3,954.46, soit un rendement de 39.54% sur les 90 prochains jours.
Prévision du prix à long terme de Red pour 2027, 2028, 2029, 2030, 2031, 2032 et 2037
[
'name' => 'Red'
'name_with_ticker' => 'Red <small>RED</small>'
'name_lang' => 'Red'
'name_lang_with_ticker' => 'Red <small>RED</small>'
'name_with_lang' => 'Red'
'name_with_lang_with_ticker' => 'Red <small>RED</small>'
'image' => '/uploads/coins/red.png?1717317337'
'price_for_sd' => 0.001323
'ticker' => 'RED'
'marketcap' => '$172.03K'
'low24h' => '$0.001323'
'high24h' => '$0.001323'
'volume24h' => '$0'
'current_supply' => '130M'
'max_supply' => '200M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.001323'
'change_24h_pct' => '0%'
'ath_price' => '$0.04626'
'ath_days' => 1695
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '17 mai 2021'
'ath_pct' => '-97.14%'
'fdv' => '$264.66K'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.065247'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.001334'
'next_week_prediction_price_date' => '13 janvier 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.001169'
'next_month_prediction_price_date' => '5 février 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.000457'
'current_year_max_price_prediction' => '$0.001364'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.001483'
'grand_prediction_max_price' => '$0.00429'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0013483656494495
107 => 0.0013533999573278
108 => 0.0013647425100357
109 => 0.0012678216390197
110 => 0.0013113362646586
111 => 0.0013368970304525
112 => 0.0012214125606873
113 => 0.0013346142737961
114 => 0.0012661344622848
115 => 0.0012428913857256
116 => 0.00127418512627
117 => 0.0012619899251457
118 => 0.0012515052073452
119 => 0.0012456545546623
120 => 0.001268633223954
121 => 0.0012675612415661
122 => 0.0012299636786373
123 => 0.0011809191904694
124 => 0.001197380130529
125 => 0.0011913997166832
126 => 0.0011697259254173
127 => 0.001184331443827
128 => 0.0011200161324345
129 => 0.0010093649820028
130 => 0.0010824645213144
131 => 0.0010796502685679
201 => 0.0010782311947169
202 => 0.0011331634781867
203 => 0.0011278830066345
204 => 0.0011182988990607
205 => 0.0011695499057658
206 => 0.0011508425988951
207 => 0.0012084941106747
208 => 0.0012464671249987
209 => 0.0012368359402678
210 => 0.001272549743779
211 => 0.0011977593573415
212 => 0.0012226017236466
213 => 0.001227721700912
214 => 0.0011689174762985
215 => 0.0011287469570851
216 => 0.001126068041431
217 => 0.0010564178969535
218 => 0.0010936244419371
219 => 0.0011263646618112
220 => 0.0011106846372352
221 => 0.0011057208098818
222 => 0.0011310799273073
223 => 0.0011330505479174
224 => 0.0010881201891699
225 => 0.0010974626335129
226 => 0.0011364221794755
227 => 0.0010964809529145
228 => 0.001018881674069
301 => 0.00099963598002133
302 => 0.00099706824966685
303 => 0.00094487240101434
304 => 0.0010009220693245
305 => 0.00097645488706937
306 => 0.0010537464226513
307 => 0.0010095979120497
308 => 0.0010076947579962
309 => 0.0010048178615123
310 => 0.00095989073839374
311 => 0.00096972692308908
312 => 0.0010024238991096
313 => 0.0010140905485116
314 => 0.0010128736213969
315 => 0.0010022636660894
316 => 0.0010071208492974
317 => 0.00099147416982951
318 => 0.00098594900165193
319 => 0.00096851005106625
320 => 0.00094287961133837
321 => 0.00094644368118315
322 => 0.00089566307351285
323 => 0.00086799510332323
324 => 0.00086033697383273
325 => 0.00085009620302277
326 => 0.00086149369614537
327 => 0.00089551921843156
328 => 0.00085447721963717
329 => 0.00078411359146566
330 => 0.00078834256541256
331 => 0.0007978438142776
401 => 0.00078013829987464
402 => 0.00076338151640343
403 => 0.00077795018011084
404 => 0.00074813618326725
405 => 0.00080144669335809
406 => 0.00080000479346111
407 => 0.00081987565492315
408 => 0.00083230131238649
409 => 0.00080366419478787
410 => 0.00079646203715481
411 => 0.00080056471346242
412 => 0.00073275661292218
413 => 0.00081433428646672
414 => 0.00081503977357512
415 => 0.00080899896463936
416 => 0.00085243655737372
417 => 0.00094410342656817
418 => 0.00090961466308595
419 => 0.00089625957143724
420 => 0.00087087153245053
421 => 0.00090469958700773
422 => 0.00090210212021759
423 => 0.00089035539033257
424 => 0.00088325093144608
425 => 0.00089634111477904
426 => 0.00088162891286848
427 => 0.00087898619714108
428 => 0.00086297421513605
429 => 0.00085725866605903
430 => 0.00085302710106496
501 => 0.00084836856379148
502 => 0.00085864413618161
503 => 0.00083535833728144
504 => 0.00080727794654283
505 => 0.00080494336588696
506 => 0.00081138934833626
507 => 0.0008085374809494
508 => 0.0008049297122431
509 => 0.00079804149926544
510 => 0.00079599791361835
511 => 0.00080263857556458
512 => 0.00079514165540193
513 => 0.00080620376948029
514 => 0.00080319548654567
515 => 0.00078639146261501
516 => 0.00076544742715092
517 => 0.00076526098130369
518 => 0.00076074862321806
519 => 0.00075500145675842
520 => 0.00075340272652671
521 => 0.00077672324788871
522 => 0.00082499602918357
523 => 0.00081551892714563
524 => 0.00082236710462053
525 => 0.00085605335990663
526 => 0.00086676120748105
527 => 0.000859161030902
528 => 0.00084875744044212
529 => 0.00084921514562324
530 => 0.00088476736360565
531 => 0.00088698471183198
601 => 0.00089258723545625
602 => 0.00089978806158643
603 => 0.00086038736272922
604 => 0.00084735937625031
605 => 0.00084118599349143
606 => 0.00082217436399388
607 => 0.00084267677647306
608 => 0.00083073089872228
609 => 0.00083234280576015
610 => 0.00083129304918713
611 => 0.00083186628726023
612 => 0.00080143179198405
613 => 0.00081252052247271
614 => 0.00079408335734066
615 => 0.00076939806289777
616 => 0.00076931530913502
617 => 0.00077535699997828
618 => 0.00077176316585332
619 => 0.00076209225062897
620 => 0.00076346595849116
621 => 0.00075143083213507
622 => 0.00076492724073379
623 => 0.00076531426943993
624 => 0.00076011741697508
625 => 0.00078091049656688
626 => 0.00078942943824118
627 => 0.00078600875862145
628 => 0.00078918943424023
629 => 0.00081591274352186
630 => 0.00082026980895449
701 => 0.00082220492960808
702 => 0.00081961212428663
703 => 0.00078967788727722
704 => 0.0007910055979788
705 => 0.00078126373780056
706 => 0.00077303289252188
707 => 0.00077336208316793
708 => 0.00077759380757616
709 => 0.00079607399625425
710 => 0.00083496446386068
711 => 0.00083644032867779
712 => 0.00083822911989013
713 => 0.0008309532070551
714 => 0.00082875872212295
715 => 0.00083165381419308
716 => 0.00084625902906241
717 => 0.00088382760698349
718 => 0.00087054836242523
719 => 0.0008597521298956
720 => 0.00086922333646747
721 => 0.0008677653184535
722 => 0.00085545817911814
723 => 0.0008551127587072
724 => 0.00083149142349218
725 => 0.00082275915369497
726 => 0.00081546181545335
727 => 0.00080749331259535
728 => 0.00080276931699449
729 => 0.00081002752125501
730 => 0.00081168755844594
731 => 0.0007958173679786
801 => 0.00079365431966027
802 => 0.00080661425977776
803 => 0.00080091107332732
804 => 0.00080677694202381
805 => 0.00080813787387789
806 => 0.00080791873250446
807 => 0.00080196395084341
808 => 0.00080575935110002
809 => 0.00079678209802987
810 => 0.0007870206836559
811 => 0.00078079350944291
812 => 0.00077535947402727
813 => 0.00077837459270386
814 => 0.00076762624516075
815 => 0.00076418763246022
816 => 0.00080447355489229
817 => 0.00083423319893951
818 => 0.00083380048192895
819 => 0.00083116642841296
820 => 0.00082725275918643
821 => 0.00084597271978175
822 => 0.00083945105982776
823 => 0.00084419611234721
824 => 0.00084540392736264
825 => 0.00084905961964372
826 => 0.00085036621541684
827 => 0.00084641677550136
828 => 0.00083316197276156
829 => 0.00080013226456278
830 => 0.00078475684623426
831 => 0.000779682702088
901 => 0.00077986713759055
902 => 0.00077477958307402
903 => 0.00077627809588734
904 => 0.00077425846147144
905 => 0.00077043376248978
906 => 0.00077813842831946
907 => 0.0007790263192824
908 => 0.00077722795821385
909 => 0.00077765153734712
910 => 0.0007627618757896
911 => 0.00076389390441917
912 => 0.00075759062515847
913 => 0.00075640883628425
914 => 0.0007404746952025
915 => 0.0007122450545855
916 => 0.00072788701580484
917 => 0.00070899372624446
918 => 0.00070183855120789
919 => 0.00073571003697298
920 => 0.00073231027925094
921 => 0.00072649137186997
922 => 0.00071788399508695
923 => 0.00071469143531094
924 => 0.00069529445275357
925 => 0.0006941483755452
926 => 0.00070376204386322
927 => 0.00069932566672058
928 => 0.00069309531302491
929 => 0.0006705296035
930 => 0.00064515827474434
1001 => 0.00064592407568099
1002 => 0.00065399422330781
1003 => 0.00067745926594048
1004 => 0.00066829106783454
1005 => 0.00066163943491572
1006 => 0.00066039378401738
1007 => 0.00067598571295693
1008 => 0.0006980515590165
1009 => 0.00070840436029217
1010 => 0.00069814504864723
1011 => 0.00068635970383009
1012 => 0.00068707702316108
1013 => 0.00069184902730543
1014 => 0.0006923504974685
1015 => 0.00068467944954556
1016 => 0.00068683880460245
1017 => 0.00068355854681547
1018 => 0.00066342761083169
1019 => 0.00066306350603563
1020 => 0.00065812304969002
1021 => 0.00065797345463533
1022 => 0.00064956850593685
1023 => 0.00064839259551327
1024 => 0.00063170405972851
1025 => 0.00064268850451958
1026 => 0.00063532071566297
1027 => 0.00062421571997036
1028 => 0.00062230121452723
1029 => 0.00062224366218178
1030 => 0.00063364600972648
1031 => 0.00064255526144975
1101 => 0.00063544888150455
1102 => 0.00063383089654242
1103 => 0.00065110674294416
1104 => 0.00064890823401671
1105 => 0.00064700433946439
1106 => 0.00069607580452218
1107 => 0.00065723191083477
1108 => 0.00064029375605512
1109 => 0.00061932957304695
1110 => 0.000626155616745
1111 => 0.00062759396444762
1112 => 0.00057717888339099
1113 => 0.00055672549128511
1114 => 0.00054970665788419
1115 => 0.00054566722003023
1116 => 0.00054750804258435
1117 => 0.00052909759074544
1118 => 0.00054146971886196
1119 => 0.00052552782376622
1120 => 0.00052285511317401
1121 => 0.00055136119642702
1122 => 0.00055532765138156
1123 => 0.00053840552226455
1124 => 0.00054927226860152
1125 => 0.00054533183532066
1126 => 0.00052580110180162
1127 => 0.00052505517143955
1128 => 0.00051525533589817
1129 => 0.000499920490898
1130 => 0.0004929120552441
1201 => 0.00048926200110552
1202 => 0.00049076808458124
1203 => 0.000490006562689
1204 => 0.0004850371172289
1205 => 0.00049029140548575
1206 => 0.00047686887021131
1207 => 0.00047152390851232
1208 => 0.00046910971331505
1209 => 0.00045719644068668
1210 => 0.0004761557552948
1211 => 0.00047989097911575
1212 => 0.0004836335624815
1213 => 0.00051621019551015
1214 => 0.00051458275898464
1215 => 0.00052929399258145
1216 => 0.0005287223410961
1217 => 0.00052452645896811
1218 => 0.00050682472245922
1219 => 0.00051388031912855
1220 => 0.00049216428926352
1221 => 0.00050843541538489
1222 => 0.00050100995292157
1223 => 0.0005059248590567
1224 => 0.00049708741466651
1225 => 0.00050197842128118
1226 => 0.00048077673925137
1227 => 0.00046097890688764
1228 => 0.00046894613256556
1229 => 0.00047760741804023
1230 => 0.00049638729180381
1231 => 0.00048520215392082
]
'min_raw' => 0.00045719644068668
'max_raw' => 0.0013647425100357
'avg_raw' => 0.00091096947536121
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.000457'
'max' => '$0.001364'
'avg' => '$0.00091'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.00086609355931332
'max_diff' => 4.1452510035747E-5
'year' => 2026
]
1 => [
'items' => [
101 => 0.00048922475246043
102 => 0.00047574972072759
103 => 0.00044794688131021
104 => 0.00044810424236193
105 => 0.00044382738123535
106 => 0.00044013154879003
107 => 0.00048648690155723
108 => 0.00048072188067095
109 => 0.00047153607439593
110 => 0.00048383164112447
111 => 0.00048708278412438
112 => 0.00048717533959502
113 => 0.00049614586768565
114 => 0.00050093344013568
115 => 0.00050177727053052
116 => 0.00051589259030222
117 => 0.00052062385930412
118 => 0.0005401112867287
119 => 0.0005005272480622
120 => 0.00049971204083486
121 => 0.0004840046649634
122 => 0.00047404279886193
123 => 0.00048468676245812
124 => 0.00049411586115841
125 => 0.00048429765334353
126 => 0.00048557970401048
127 => 0.00047239956219605
128 => 0.00047711084271139
129 => 0.00048116883216923
130 => 0.00047892824890821
131 => 0.000475573987321
201 => 0.00049334278259301
202 => 0.00049234019752729
203 => 0.00050888690818743
204 => 0.00052178625241363
205 => 0.00054490418330059
206 => 0.00052077941725506
207 => 0.0005199002148931
208 => 0.00052849455900975
209 => 0.00052062254355481
210 => 0.00052559738558959
211 => 0.00054410265933803
212 => 0.0005444936466121
213 => 0.00053794410601268
214 => 0.00053754556587198
215 => 0.00053880347678823
216 => 0.00054617110031479
217 => 0.0005435966262704
218 => 0.00054657587281227
219 => 0.00055030146623272
220 => 0.00056571210023858
221 => 0.00056942755192494
222 => 0.00056040093056793
223 => 0.00056121593340967
224 => 0.00055783972923585
225 => 0.00055457835830765
226 => 0.00056190944386927
227 => 0.00057530714682596
228 => 0.0005752238004112
301 => 0.00057833180708302
302 => 0.00058026806949145
303 => 0.00057195621380377
304 => 0.0005665455013865
305 => 0.00056862031281986
306 => 0.00057193798148531
307 => 0.00056754443758607
308 => 0.00054042544935243
309 => 0.00054865161801484
310 => 0.00054728238131031
311 => 0.0005453324217382
312 => 0.00055360389793934
313 => 0.00055280609388134
314 => 0.0005289087649518
315 => 0.00053043859441518
316 => 0.00052900179894843
317 => 0.0005336443790422
318 => 0.0005203718289941
319 => 0.00052445437599691
320 => 0.00052701491120557
321 => 0.00052852308611443
322 => 0.00053397164805044
323 => 0.00053333232219432
324 => 0.00053393190665757
325 => 0.00054201068564166
326 => 0.00058287037744102
327 => 0.00058509428031383
328 => 0.00057414296921385
329 => 0.00057851780199323
330 => 0.00057011907972757
331 => 0.00057575719825106
401 => 0.00057961465575214
402 => 0.00056218354705116
403 => 0.00056115138992084
404 => 0.0005527180031408
405 => 0.00055724962750495
406 => 0.00055003948730627
407 => 0.00055180860351103
408 => 0.00054686200037374
409 => 0.000555764901162
410 => 0.00056571972761419
411 => 0.00056823470990402
412 => 0.00056161887426743
413 => 0.00055682857326171
414 => 0.00054841838271894
415 => 0.0005624047170249
416 => 0.00056649474740177
417 => 0.00056238323383651
418 => 0.00056143050630509
419 => 0.00055962508935459
420 => 0.00056181353404589
421 => 0.00056647247221796
422 => 0.00056427540301309
423 => 0.00056572660593029
424 => 0.00056019611688389
425 => 0.00057195896537386
426 => 0.00059064119965957
427 => 0.00059070126609766
428 => 0.00058850418504976
429 => 0.00058760518682174
430 => 0.0005898595253069
501 => 0.0005910824114573
502 => 0.00059837252874333
503 => 0.00060619511504234
504 => 0.000642699712038
505 => 0.00063244936727712
506 => 0.00066483841739987
507 => 0.00069045395085517
508 => 0.00069813492930689
509 => 0.00069106879054927
510 => 0.00066689591156476
511 => 0.00066570987479897
512 => 0.00070183436152809
513 => 0.0006916275394208
514 => 0.00069041347040898
515 => 0.00067749782732515
516 => 0.00068513257202121
517 => 0.00068346274136123
518 => 0.00068082683197355
519 => 0.0006953933930127
520 => 0.00072266069491212
521 => 0.00071841083019996
522 => 0.00071523850333788
523 => 0.00070133829047872
524 => 0.00070970932334488
525 => 0.00070672855887781
526 => 0.0007195358146682
527 => 0.00071194908005343
528 => 0.00069155021270465
529 => 0.00069479879956549
530 => 0.00069430778219672
531 => 0.00070441288485206
601 => 0.000701379583859
602 => 0.00069371548149509
603 => 0.00072256749823857
604 => 0.0007206940087546
605 => 0.00072335018850355
606 => 0.00072451952097412
607 => 0.00074208123513632
608 => 0.00074927570751639
609 => 0.00075090897870364
610 => 0.00075774317102425
611 => 0.0007507389377729
612 => 0.00077876086471199
613 => 0.00079739381100171
614 => 0.00081903693695988
615 => 0.0008506633611086
616 => 0.00086255518914929
617 => 0.00086040703685336
618 => 0.00088438583069553
619 => 0.00092747519021126
620 => 0.00086911662838343
621 => 0.0009305683356938
622 => 0.00091111343465341
623 => 0.00086498621426539
624 => 0.00086201616507661
625 => 0.00089325405427142
626 => 0.00096253668597009
627 => 0.00094518217252668
628 => 0.000962565071737
629 => 0.0009422869964611
630 => 0.00094128001910662
701 => 0.00096158021088236
702 => 0.0010090127154722
703 => 0.00098647931052243
704 => 0.00095417214910932
705 => 0.00097802725434166
706 => 0.00095736175450364
707 => 0.00091079659945938
708 => 0.00094516890185731
709 => 0.00092218512211063
710 => 0.00092889301092565
711 => 0.00097720149737396
712 => 0.0009713888924761
713 => 0.00097891094144665
714 => 0.00096563472189992
715 => 0.00095323263937561
716 => 0.00093008323135324
717 => 0.00092322983288984
718 => 0.00092512386566568
719 => 0.00092322889430126
720 => 0.00091027701326679
721 => 0.00090748005579055
722 => 0.00090281833745931
723 => 0.00090426319889839
724 => 0.00089549780460185
725 => 0.0009120399146623
726 => 0.00091511027605809
727 => 0.00092714824426258
728 => 0.000928398066056
729 => 0.00096192363615575
730 => 0.00094345831551913
731 => 0.00095584644682126
801 => 0.00095473833575598
802 => 0.00086598593100116
803 => 0.00087821522930728
804 => 0.00089724017970638
805 => 0.0008886694653393
806 => 0.00087655248046254
807 => 0.00086676736550293
808 => 0.00085194191575974
809 => 0.00087280845157573
810 => 0.00090024572726506
811 => 0.00092909392064588
812 => 0.00096375313478442
813 => 0.00095601760166643
814 => 0.000928445990746
815 => 0.00092968283307082
816 => 0.00093732850564332
817 => 0.00092742666497933
818 => 0.00092450641886063
819 => 0.00093692730867004
820 => 0.00093701284451175
821 => 0.00092561958015042
822 => 0.00091295805175816
823 => 0.00091290499949189
824 => 0.00091065200281034
825 => 0.00094268779956569
826 => 0.00096030424859675
827 => 0.00096232394608784
828 => 0.00096016830686349
829 => 0.00096099792684668
830 => 0.00095074730330747
831 => 0.00097417718899012
901 => 0.00099567876906806
902 => 0.00098991588629291
903 => 0.00098127650577091
904 => 0.00097439482305619
905 => 0.00098829478054835
906 => 0.00098767583732178
907 => 0.00099549097152364
908 => 0.00099513643189384
909 => 0.00099250849620382
910 => 0.00098991598014477
911 => 0.0010001950132742
912 => 0.00099723481680914
913 => 0.00099427002234135
914 => 0.00098832367314887
915 => 0.00098913188076253
916 => 0.00098049399195139
917 => 0.00097649770934445
918 => 0.00091640320735885
919 => 0.00090034399278379
920 => 0.00090539654860456
921 => 0.00090705998117031
922 => 0.0009000709904068
923 => 0.00091009140783725
924 => 0.00090852973639497
925 => 0.00091460528642967
926 => 0.00091080954653771
927 => 0.00091096532502688
928 => 0.00092212778671207
929 => 0.00092536829682779
930 => 0.00092372014722881
1001 => 0.00092487445471267
1002 => 0.00095147498347554
1003 => 0.00094769323892248
1004 => 0.00094568426250164
1005 => 0.0009462407626998
1006 => 0.00095303776812048
1007 => 0.00095494055853554
1008 => 0.00094687830184025
1009 => 0.0009506805087051
1010 => 0.00096686982296373
1011 => 0.00097253516671842
1012 => 0.00099061622446412
1013 => 0.00098293506976857
1014 => 0.00099703416164484
1015 => 0.0010403699633379
1016 => 0.0010749896003396
1017 => 0.0010431519514358
1018 => 0.0011067265060054
1019 => 0.001156228415966
1020 => 0.0011543284502119
1021 => 0.0011456966472105
1022 => 0.0010893400387967
1023 => 0.0010374798475046
1024 => 0.0010808630996205
1025 => 0.001080973692452
1026 => 0.0010772470326205
1027 => 0.0010541010684687
1028 => 0.0010764416032398
1029 => 0.0010782149137611
1030 => 0.0010772223314305
1031 => 0.0010594763749839
1101 => 0.0010323815794908
1102 => 0.0010376758376744
1103 => 0.001046347940579
1104 => 0.0010299298405904
1105 => 0.0010246832628363
1106 => 0.0010344376490834
1107 => 0.0010658683139789
1108 => 0.0010599265288459
1109 => 0.0010597713648234
1110 => 0.0010851928413316
1111 => 0.0010669965504497
1112 => 0.0010377426152246
1113 => 0.0010303556107683
1114 => 0.0010041367214308
1115 => 0.0010222462016847
1116 => 0.0010228979296393
1117 => 0.0010129795523787
1118 => 0.0010385474368761
1119 => 0.0010383118243193
1120 => 0.0010625847253721
1121 => 0.0011089853956999
1122 => 0.0010952624342457
1123 => 0.0010793041231284
1124 => 0.0010810392340228
1125 => 0.001100069117916
1126 => 0.0010885632157042
1127 => 0.0010927008183615
1128 => 0.0011000628551588
1129 => 0.0011045045547477
1130 => 0.0010804001418058
1201 => 0.0010747802501017
1202 => 0.001063283923989
1203 => 0.0010602847470953
1204 => 0.0010696482648354
1205 => 0.0010671813087289
1206 => 0.0010228431544284
1207 => 0.0010182095706088
1208 => 0.0010183516760093
1209 => 0.0010067003091801
1210 => 0.00098892917811717
1211 => 0.0010356306494915
1212 => 0.0010318798677535
1213 => 0.0010277392950022
1214 => 0.0010282464915384
1215 => 0.0010485180174023
1216 => 0.0010367595086647
1217 => 0.0010680214313254
1218 => 0.0010615949198457
1219 => 0.0010550035925961
1220 => 0.0010540924703935
1221 => 0.001051555371748
1222 => 0.0010428547164798
1223 => 0.001032348152415
1224 => 0.0010254108087565
1225 => 0.00094588726806763
1226 => 0.00096064637465234
1227 => 0.00097762538144314
1228 => 0.00098348646654823
1229 => 0.00097346067490124
1230 => 0.0010432505958419
1231 => 0.0010560018869102
]
'min_raw' => 0.00044013154879003
'max_raw' => 0.001156228415966
'avg_raw' => 0.000798179982378
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.00044'
'max' => '$0.001156'
'avg' => '$0.000798'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -1.706489189665E-5
'max_diff' => -0.00020851409406977
'year' => 2027
]
2 => [
'items' => [
101 => 0.0010173773945182
102 => 0.0010101523290193
103 => 0.0010437242699332
104 => 0.0010234762855593
105 => 0.001032593951683
106 => 0.0010128865446202
107 => 0.0010529304742932
108 => 0.001052625406641
109 => 0.0010370474135651
110 => 0.0010502138266394
111 => 0.0010479258383582
112 => 0.0010303383225423
113 => 0.0010534880299149
114 => 0.0010534995118809
115 => 0.00103850603224
116 => 0.0010209969305143
117 => 0.0010178667166722
118 => 0.0010155085210273
119 => 0.0010320139801144
120 => 0.0010468127231207
121 => 0.0010743495149358
122 => 0.0010812729186562
123 => 0.0011082954242938
124 => 0.0010922048378885
125 => 0.001099337586434
126 => 0.001107081193969
127 => 0.0011107937641831
128 => 0.0011047443302468
129 => 0.0011467214044092
130 => 0.0011502655556128
131 => 0.0011514538788546
201 => 0.0011372994456284
202 => 0.0011498718952196
203 => 0.0011439896624116
204 => 0.0011592935980466
205 => 0.0011616934505646
206 => 0.0011596608608591
207 => 0.0011604226119274
208 => 0.0011246025843932
209 => 0.0011227451269998
210 => 0.0010974185636423
211 => 0.001107739325415
212 => 0.001088445155968
213 => 0.0010945635358516
214 => 0.0010972604594062
215 => 0.0010958517395904
216 => 0.0011083228458005
217 => 0.0010977198578432
218 => 0.0010697368293313
219 => 0.001041746176862
220 => 0.0010413947770209
221 => 0.0010340253323018
222 => 0.001028698573551
223 => 0.0010297246962633
224 => 0.0010333408865408
225 => 0.0010284883939982
226 => 0.0010295239193098
227 => 0.0010467205391512
228 => 0.0010501691986197
229 => 0.0010384493062675
301 => 0.00099139224730078
302 => 0.00097984432699665
303 => 0.00098814474310605
304 => 0.00098417767882102
305 => 0.00079430819872702
306 => 0.0008389152167013
307 => 0.00081241124133218
308 => 0.00082462549257155
309 => 0.00079757179689083
310 => 0.00081048323847534
311 => 0.00080809896666504
312 => 0.00087982573155005
313 => 0.00087870581677331
314 => 0.00087924186071236
315 => 0.00085365508684625
316 => 0.00089441551237159
317 => 0.00091449556368287
318 => 0.00091077928059841
319 => 0.0009117145889866
320 => 0.00089564289205269
321 => 0.00087939746986968
322 => 0.00086137879651617
323 => 0.00089485526443165
324 => 0.00089113325266181
325 => 0.00089967020852425
326 => 0.00092138209091479
327 => 0.00092457924807222
328 => 0.00092887625971417
329 => 0.00092733608692265
330 => 0.00096402925134165
331 => 0.00095958546702121
401 => 0.00097029370866946
402 => 0.00094826604316277
403 => 0.00092333964875675
404 => 0.0009280773414281
405 => 0.00092762106352573
406 => 0.00092181212213717
407 => 0.00091656806958689
408 => 0.00090783819959331
409 => 0.00093546080003064
410 => 0.00093433937289768
411 => 0.00095249397466392
412 => 0.00094928497245734
413 => 0.00092785447034578
414 => 0.0009286198649212
415 => 0.00093376751127702
416 => 0.00095158357408928
417 => 0.00095687259454202
418 => 0.00095442250953729
419 => 0.00096022167901076
420 => 0.0009648051061114
421 => 0.00096079728688691
422 => 0.0010175395553629
423 => 0.0009939762094345
424 => 0.0010054608202873
425 => 0.0010081998323044
426 => 0.0010011839106178
427 => 0.0010027054128103
428 => 0.0010050100740474
429 => 0.0010190035257804
430 => 0.0010557263921655
501 => 0.0010719906997065
502 => 0.0011209226714103
503 => 0.0010706401753753
504 => 0.0010676566201502
505 => 0.001076470745858
506 => 0.0011051989932234
507 => 0.001128480539406
508 => 0.0011362043714194
509 => 0.0011372252033265
510 => 0.0011517156256542
511 => 0.0011600212655021
512 => 0.0011499561072477
513 => 0.0011414269394931
514 => 0.0011108765192753
515 => 0.0011144128136016
516 => 0.001138774374735
517 => 0.0011731865147248
518 => 0.001202715710809
519 => 0.0011923756155367
520 => 0.0012712632434946
521 => 0.0012790846295796
522 => 0.0012780039669183
523 => 0.0012958222483982
524 => 0.0012604565882906
525 => 0.0012453370834172
526 => 0.0011432710423718
527 => 0.0011719474366858
528 => 0.0012136302599269
529 => 0.0012081133819684
530 => 0.0011778422015457
531 => 0.0012026927474041
601 => 0.0011944763797949
602 => 0.0011879957897641
603 => 0.0012176846290194
604 => 0.0011850405307079
605 => 0.0012133046100748
606 => 0.0011770556359323
607 => 0.0011924228482209
608 => 0.0011836996752974
609 => 0.0011893446372508
610 => 0.0011563443050172
611 => 0.0011741504832526
612 => 0.0011556035094613
613 => 0.0011555947157808
614 => 0.0011551852903064
615 => 0.0011770057227221
616 => 0.0011777172862398
617 => 0.0011615919537158
618 => 0.001159268041374
619 => 0.0011678607633132
620 => 0.0011578009363598
621 => 0.0011625078660755
622 => 0.0011579435044659
623 => 0.0011569159705274
624 => 0.001148728405285
625 => 0.0011452009770568
626 => 0.0011465841725557
627 => 0.0011418626132318
628 => 0.0011390177029529
629 => 0.0011546193660466
630 => 0.0011462840268249
701 => 0.0011533418557653
702 => 0.0011452985689187
703 => 0.0011174170324153
704 => 0.0011013820659302
705 => 0.001048716428095
706 => 0.0010636523376536
707 => 0.0010735548611432
708 => 0.001070282077189
709 => 0.001077313283522
710 => 0.0010777449424857
711 => 0.0010754590256322
712 => 0.0010728122267599
713 => 0.001071523911446
714 => 0.0010811259582987
715 => 0.0010867002696867
716 => 0.0010745487118541
717 => 0.0010717017718722
718 => 0.0010839876677469
719 => 0.0010914820571332
720 => 0.0011468164176275
721 => 0.0011427170694744
722 => 0.0011530056288821
723 => 0.0011518472949836
724 => 0.0011626313443389
725 => 0.0011802587073556
726 => 0.0011444173496545
727 => 0.0011506381700505
728 => 0.0011491129685491
729 => 0.0011657647186119
730 => 0.001165816703558
731 => 0.0011558331475788
801 => 0.0011612453952398
802 => 0.0011582244270726
803 => 0.001163683724859
804 => 0.0011426623201806
805 => 0.0011682641219585
806 => 0.0011827786938229
807 => 0.0011829802286673
808 => 0.0011898600205363
809 => 0.0011968502875258
810 => 0.0012102674962883
811 => 0.0011964760888557
812 => 0.0011716666894507
813 => 0.0011734578479539
814 => 0.0011589121061602
815 => 0.0011591566227077
816 => 0.0011578513742142
817 => 0.0011617685231975
818 => 0.001143521914102
819 => 0.0011478043567859
820 => 0.0011418089119505
821 => 0.0011506251371243
822 => 0.0011411403362115
823 => 0.0011491122330508
824 => 0.0011525526394541
825 => 0.0011652478131488
826 => 0.0011392652487347
827 => 0.0010862850410292
828 => 0.0010974221230118
829 => 0.0010809495039606
830 => 0.0010824741075695
831 => 0.0010855540494983
901 => 0.0010755709500128
902 => 0.001077475410791
903 => 0.0010774073700505
904 => 0.0010768210317076
905 => 0.0010742240419659
906 => 0.0010704578930415
907 => 0.0010854610711965
908 => 0.0010880104035212
909 => 0.0010936772534834
910 => 0.00111053795511
911 => 0.0011088531734148
912 => 0.0011116011222606
913 => 0.0011056023653593
914 => 0.0010827523726973
915 => 0.0010839932372335
916 => 0.0010685196365839
917 => 0.0010932815587254
918 => 0.0010874176087209
919 => 0.0010836370820057
920 => 0.0010826055302652
921 => 0.0010995080263099
922 => 0.0011045655180406
923 => 0.0011014140285896
924 => 0.0010949502317821
925 => 0.0011073626325025
926 => 0.0011106836672982
927 => 0.0011114271245139
928 => 0.0011334195187487
929 => 0.0011126562550466
930 => 0.0011176541789888
1001 => 0.0011566465548655
1002 => 0.0011212858505254
1003 => 0.0011400172042522
1004 => 0.0011391004019605
1005 => 0.0011486827286927
1006 => 0.0011383143714813
1007 => 0.0011384428996953
1008 => 0.0011469513566704
1009 => 0.0011350027633572
1010 => 0.0011320441236194
1011 => 0.0011279567840117
1012 => 0.0011368813405126
1013 => 0.0011422312085119
1014 => 0.0011853472155412
1015 => 0.001213202122411
1016 => 0.0012119928674417
1017 => 0.0012230431942307
1018 => 0.0012180649208028
1019 => 0.0012019887627022
1020 => 0.0012294288043014
1021 => 0.0012207456269993
1022 => 0.001221461457586
1023 => 0.0012214348143358
1024 => 0.0012272083681452
1025 => 0.0012231172761328
1026 => 0.0012150533138345
1027 => 0.0012204065483375
1028 => 0.0012363037409951
1029 => 0.0012856491147897
1030 => 0.0013132634397044
1031 => 0.0012839866977562
1101 => 0.0013041814023209
1102 => 0.0012920717756911
1103 => 0.0012898710963023
1104 => 0.0013025548631458
1105 => 0.0013152608312441
1106 => 0.0013144515160057
1107 => 0.001305227635625
1108 => 0.0013000172996452
1109 => 0.0013394717092746
1110 => 0.0013685410462012
1111 => 0.0013665587123061
1112 => 0.0013753080894295
1113 => 0.0014009965312718
1114 => 0.0014033451604559
1115 => 0.0014030492871613
1116 => 0.0013972279646746
1117 => 0.0014225215717341
1118 => 0.0014436219437417
1119 => 0.0013958804967131
1120 => 0.0014140598147602
1121 => 0.0014222210963325
1122 => 0.0014342042790239
1123 => 0.0014544219168389
1124 => 0.0014763836339696
1125 => 0.0014794892615698
1126 => 0.0014772856701695
1127 => 0.0014628013273592
1128 => 0.0014868321003013
1129 => 0.0015009087634998
1130 => 0.0015092910942959
1201 => 0.0015305472905077
1202 => 0.0014222714976291
1203 => 0.0013456285097735
1204 => 0.0013336596004817
1205 => 0.0013579988481807
1206 => 0.0013644169136971
1207 => 0.001361829799535
1208 => 0.001275561148628
1209 => 0.0013332054138884
1210 => 0.0013952257964411
1211 => 0.001397608251921
1212 => 0.0014286569522119
1213 => 0.0014387676817559
1214 => 0.0014637659551362
1215 => 0.00146220230633
1216 => 0.0014682889880887
1217 => 0.001466889765359
1218 => 0.0015131938027887
1219 => 0.0015642740322897
1220 => 0.0015625052863673
1221 => 0.0015551618990226
1222 => 0.001566068081463
1223 => 0.0016187883523981
1224 => 0.0016139347146755
1225 => 0.0016186496102911
1226 => 0.0016808097809079
1227 => 0.0017616268448909
1228 => 0.0017240792047702
1229 => 0.0018055467797896
1230 => 0.0018568262998537
1231 => 0.0019455089274033
]
'min_raw' => 0.00079430819872702
'max_raw' => 0.0019455089274033
'avg_raw' => 0.0013699085630652
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.000794'
'max' => '$0.001945'
'avg' => '$0.001369'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00035417664993699
'max_diff' => 0.00078928051143733
'year' => 2028
]
3 => [
'items' => [
101 => 0.001934405425663
102 => 0.0019689289217848
103 => 0.001914527840177
104 => 0.0017896119605328
105 => 0.0017698435444204
106 => 0.0018094204140935
107 => 0.0019067162863306
108 => 0.0018063562208302
109 => 0.0018266589313717
110 => 0.0018208117493699
111 => 0.0018205001778899
112 => 0.0018323915940269
113 => 0.0018151424747057
114 => 0.0017448664595337
115 => 0.0017770735431479
116 => 0.0017646368414532
117 => 0.001778436289201
118 => 0.0018529062173702
119 => 0.0018199812869852
120 => 0.0017852975474288
121 => 0.0018287986537705
122 => 0.0018841905107454
123 => 0.0018807241878846
124 => 0.0018739980727242
125 => 0.0019119128317156
126 => 0.0019745369055872
127 => 0.0019914639411108
128 => 0.0020039591326763
129 => 0.0020056820084852
130 => 0.0020234287000781
131 => 0.0019280002666408
201 => 0.0020794476412818
202 => 0.002105598419233
203 => 0.0021006831568169
204 => 0.0021297486459167
205 => 0.0021211968417032
206 => 0.0021088066191349
207 => 0.0021548816017649
208 => 0.002102060352239
209 => 0.0020270872385473
210 => 0.001985955505576
211 => 0.0020401210895548
212 => 0.0020731981215724
213 => 0.0020950599356416
214 => 0.0021016753073697
215 => 0.0019354081042786
216 => 0.0018457993034143
217 => 0.0019032375174013
218 => 0.0019733161026392
219 => 0.0019276109765614
220 => 0.0019294025309724
221 => 0.0018642390322812
222 => 0.0019790816263471
223 => 0.0019623500263699
224 => 0.0020491535966491
225 => 0.0020284372279598
226 => 0.0020992221698272
227 => 0.0020805821223718
228 => 0.0021579559172082
301 => 0.0021888224187804
302 => 0.0022406520789073
303 => 0.0022787781878814
304 => 0.0023011665683072
305 => 0.0022998224539232
306 => 0.0023885363710171
307 => 0.002336224873535
308 => 0.0022705093038241
309 => 0.002269320716498
310 => 0.0023033557412481
311 => 0.0023746838160712
312 => 0.0023931781480916
313 => 0.0024035139566478
314 => 0.0023876843060519
315 => 0.0023309039247338
316 => 0.0023063864439638
317 => 0.0023272760479197
318 => 0.0023017298573457
319 => 0.0023458297492715
320 => 0.0024063883201141
321 => 0.0023938832147096
322 => 0.0024356859072065
323 => 0.0024789472961694
324 => 0.0025408130253767
325 => 0.0025569870178729
326 => 0.0025837220124271
327 => 0.0026112411038117
328 => 0.0026200794943041
329 => 0.0026369547241456
330 => 0.0026368657833545
331 => 0.0026877204243158
401 => 0.0027438146681333
402 => 0.0027649889465897
403 => 0.0028136780323436
404 => 0.0027302996792591
405 => 0.0027935431178552
406 => 0.0028505902825548
407 => 0.0027825763010214
408 => 0.00287631772934
409 => 0.0028799574965789
410 => 0.0029349136605566
411 => 0.0028792050600382
412 => 0.0028461254708784
413 => 0.0029416250053065
414 => 0.0029878342218091
415 => 0.0029739156297355
416 => 0.0028679944568092
417 => 0.0028063437909934
418 => 0.0026449921070279
419 => 0.002836120146559
420 => 0.0029292130393333
421 => 0.0028677533687066
422 => 0.0028987500516751
423 => 0.0030678579032435
424 => 0.0031322432241982
425 => 0.003118851527527
426 => 0.0031211145038184
427 => 0.0031558556543293
428 => 0.0033099170479957
429 => 0.0032175998897956
430 => 0.0032881728981817
501 => 0.0033256045673597
502 => 0.0033603731877819
503 => 0.0032749924447604
504 => 0.0031639133525817
505 => 0.0031287299413056
506 => 0.0028616424157004
507 => 0.0028477393500904
508 => 0.0028399351380574
509 => 0.0027907306851174
510 => 0.0027520694633406
511 => 0.0027213246243845
512 => 0.0026406409857775
513 => 0.0026678693453143
514 => 0.002539276465359
515 => 0.0026215456329026
516 => 0.0024163082915103
517 => 0.0025872360480823
518 => 0.0024942078413116
519 => 0.0025566737801725
520 => 0.0025564558423965
521 => 0.0024414362441095
522 => 0.0023750953402154
523 => 0.0024173703462034
524 => 0.0024626925084166
525 => 0.0024700458767536
526 => 0.0025288072430926
527 => 0.0025452062773664
528 => 0.0024955164379189
529 => 0.0024120552037935
530 => 0.0024314413449328
531 => 0.002374702480684
601 => 0.0022752698035169
602 => 0.0023466840881863
603 => 0.0023710680648369
604 => 0.0023818374180503
605 => 0.0022840567999766
606 => 0.0022533320068573
607 => 0.0022369743848066
608 => 0.0023994329538766
609 => 0.0024083328010197
610 => 0.0023627999247239
611 => 0.0025686128431857
612 => 0.002522031041055
613 => 0.0025740743268536
614 => 0.0024296822558203
615 => 0.0024351982273835
616 => 0.0023668407069707
617 => 0.0024051163507507
618 => 0.0023780643594086
619 => 0.0024020240569805
620 => 0.0024163854009157
621 => 0.0024847317045319
622 => 0.0025880164530834
623 => 0.00247452304592
624 => 0.0024250723431634
625 => 0.0024557512810323
626 => 0.0025374533354004
627 => 0.0026612361300191
628 => 0.0025879542242439
629 => 0.0026204754896195
630 => 0.0026275799393337
701 => 0.0025735445750586
702 => 0.0026632284909752
703 => 0.0027112908301057
704 => 0.0027605928449539
705 => 0.0028034004030355
706 => 0.002740900536049
707 => 0.0028077843527285
708 => 0.0027538878030678
709 => 0.0027055370262993
710 => 0.0027056103544693
711 => 0.0026752792059102
712 => 0.0026165087836064
713 => 0.0026056706160335
714 => 0.0026620521324573
715 => 0.0027072647692797
716 => 0.0027109886986023
717 => 0.0027360207374563
718 => 0.0027508344401996
719 => 0.0028960288653364
720 => 0.0029544272642376
721 => 0.003025835720989
722 => 0.0030536533392538
723 => 0.0031373743970626
724 => 0.0030697628433901
725 => 0.0030551346584564
726 => 0.0028520547571615
727 => 0.0028853090796218
728 => 0.0029385524584456
729 => 0.0028529327208676
730 => 0.0029072387374139
731 => 0.0029179598954388
801 => 0.0028500233949475
802 => 0.0028863112152228
803 => 0.0027899415231604
804 => 0.0025901170490224
805 => 0.0026634509527378
806 => 0.0027174493897973
807 => 0.002640386962154
808 => 0.0027785183809768
809 => 0.0026978248577118
810 => 0.002672248884809
811 => 0.0025724678960225
812 => 0.0026195606818073
813 => 0.0026832543488849
814 => 0.0026438990678145
815 => 0.0027255671852608
816 => 0.0028412310196561
817 => 0.0029236599559465
818 => 0.0029299878261508
819 => 0.0028769915424258
820 => 0.0029619184253128
821 => 0.0029625370249379
822 => 0.0028667391541048
823 => 0.0028080634916243
824 => 0.0027947322576541
825 => 0.0028280362938541
826 => 0.0028684735420651
827 => 0.0029322318119975
828 => 0.0029707595991937
829 => 0.003071219634642
830 => 0.0030984012398193
831 => 0.0031282655829615
901 => 0.0031681735552218
902 => 0.0032160933081143
903 => 0.0031112476168585
904 => 0.0031154133316289
905 => 0.003017782475619
906 => 0.0029134499042913
907 => 0.0029926253206904
908 => 0.0030961366453679
909 => 0.003072391033117
910 => 0.00306971916666
911 => 0.0030742125049268
912 => 0.0030563090887488
913 => 0.0029753326009075
914 => 0.0029346667156531
915 => 0.002987136082605
916 => 0.003015021215997
917 => 0.0030582686260489
918 => 0.0030529374699179
919 => 0.0031643381537788
920 => 0.0032076250909453
921 => 0.0031965504400657
922 => 0.0031985884423539
923 => 0.0032769573744403
924 => 0.0033641197447205
925 => 0.0034457588065756
926 => 0.003528805566774
927 => 0.0034286894559846
928 => 0.0033778566692291
929 => 0.0034303031296967
930 => 0.0034024742995352
1001 => 0.0035623870122104
1002 => 0.0035734590214783
1003 => 0.0037333601706443
1004 => 0.0038851254018774
1005 => 0.0037898043792964
1006 => 0.0038796878102371
1007 => 0.0039769040691032
1008 => 0.0041644500052253
1009 => 0.0041012911318849
1010 => 0.004052912424732
1011 => 0.0040071947802366
1012 => 0.0041023259409598
1013 => 0.0042247106594727
1014 => 0.0042510711556541
1015 => 0.0042937852299526
1016 => 0.0042488766036563
1017 => 0.0043029640975073
1018 => 0.0044939167180505
1019 => 0.0044423196343943
1020 => 0.0043690434809574
1021 => 0.0045197822355917
1022 => 0.0045743340049117
1023 => 0.0049572068909834
1024 => 0.0054405997253388
1025 => 0.0052404719177872
1026 => 0.0051162461295559
1027 => 0.0051454421364653
1028 => 0.0053219608356918
1029 => 0.0053786530394599
1030 => 0.0052245440866437
1031 => 0.0052789779740881
1101 => 0.0055789140457283
1102 => 0.0057398201250619
1103 => 0.0055212880567572
1104 => 0.004918366747412
1105 => 0.0043624457650722
1106 => 0.0045099010430368
1107 => 0.0044931841905856
1108 => 0.0048154280817761
1109 => 0.0044410890610134
1110 => 0.0044473919700771
1111 => 0.0047762995236751
1112 => 0.0046885526272782
1113 => 0.0045464138928885
1114 => 0.0043634835351334
1115 => 0.004025319849813
1116 => 0.0037257988433328
1117 => 0.0043132285126087
1118 => 0.004287897477098
1119 => 0.0042512143838294
1120 => 0.0043328486383735
1121 => 0.0047292414061524
1122 => 0.0047201032698569
1123 => 0.0046619711090632
1124 => 0.0047060638406719
1125 => 0.0045386842238522
1126 => 0.0045818217622697
1127 => 0.0043623577043483
1128 => 0.0044615646241574
1129 => 0.0045461089270022
1130 => 0.0045630824474981
1201 => 0.0046013246558648
1202 => 0.004274549172435
1203 => 0.0044212617708708
1204 => 0.0045074416773405
1205 => 0.0041180777246589
1206 => 0.0044997452038965
1207 => 0.0042688607382783
1208 => 0.0041904950828793
1209 => 0.0042960041139841
1210 => 0.0042548871419516
1211 => 0.0042195371838677
1212 => 0.0041998112998676
1213 => 0.0042772854877041
1214 => 0.0042736712242399
1215 => 0.0041469084158474
1216 => 0.0039815514998124
1217 => 0.0040370507084895
1218 => 0.0040168873256692
1219 => 0.0039438126252005
1220 => 0.0039930561502435
1221 => 0.0037762125875322
1222 => 0.003403144508435
1223 => 0.0036496047088709
1224 => 0.0036401162592512
1225 => 0.0036353317526861
1226 => 0.003820539781654
1227 => 0.003802736303145
1228 => 0.0037704228153189
1229 => 0.0039432191626561
1230 => 0.0038801461714392
1231 => 0.004074522268504
]
'min_raw' => 0.0017448664595337
'max_raw' => 0.0057398201250619
'avg_raw' => 0.0037423432922978
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.001744'
'max' => '$0.005739'
'avg' => '$0.003742'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.00095055826080667
'max_diff' => 0.0037943111976586
'year' => 2029
]
4 => [
'items' => [
101 => 0.0042025509374886
102 => 0.0041700787257405
103 => 0.0042904903077368
104 => 0.0040383292981647
105 => 0.0041220870706009
106 => 0.0041393494314167
107 => 0.0039410868825524
108 => 0.0038056491724084
109 => 0.0037966170212447
110 => 0.0035617866963211
111 => 0.0036872311604111
112 => 0.0037976170975657
113 => 0.0037447507999635
114 => 0.0037280149094783
115 => 0.0038135149443952
116 => 0.0038201590293666
117 => 0.0036686731879118
118 => 0.0037001718912829
119 => 0.0038315267205644
120 => 0.0036968620866068
121 => 0.0034352307001704
122 => 0.0033703424989973
123 => 0.0033616852168339
124 => 0.0031857032689042
125 => 0.0033746786388747
126 => 0.0032921858256575
127 => 0.0035527796341948
128 => 0.0034039298483509
129 => 0.0033975132315855
130 => 0.0033878135742315
131 => 0.0032363386419257
201 => 0.0032695020253665
202 => 0.0033797421628498
203 => 0.0034190770858478
204 => 0.0034149741311176
205 => 0.0033792019260348
206 => 0.0033955782583384
207 => 0.0033428243860962
208 => 0.0033241958958305
209 => 0.0032653992563823
210 => 0.0031789844393796
211 => 0.0031910009496967
212 => 0.0030197905855474
213 => 0.0029265060923371
214 => 0.0029006861740864
215 => 0.0028661587003128
216 => 0.0029045861441232
217 => 0.0030193055680972
218 => 0.0028809296037011
219 => 0.0026436937186892
220 => 0.0026579519996087
221 => 0.0026899861235132
222 => 0.0026302907455441
223 => 0.0025737940801496
224 => 0.0026229133469908
225 => 0.0025223933750858
226 => 0.0027021334818781
227 => 0.0026972720157052
228 => 0.0027642680124637
301 => 0.002806161984133
302 => 0.0027096099427696
303 => 0.0026853273654711
304 => 0.0026991598250819
305 => 0.0024705400799001
306 => 0.0027455849018268
307 => 0.0027479635008683
308 => 0.0027275964917856
309 => 0.0028740493684054
310 => 0.0031831106178709
311 => 0.003066829343862
312 => 0.0030218017199457
313 => 0.0029362041739657
314 => 0.0030502578217046
315 => 0.0030415002810723
316 => 0.0030018953611345
317 => 0.0029779421819812
318 => 0.0030220766490157
319 => 0.0029724734331011
320 => 0.0029635633325177
321 => 0.0029095778172669
322 => 0.0028903074445068
323 => 0.0028760404276908
324 => 0.0028603338440246
325 => 0.0028949786537555
326 => 0.002816468957001
327 => 0.0027217939591155
328 => 0.002713922757439
329 => 0.002735655837311
330 => 0.0027260405673051
331 => 0.0027138767232255
401 => 0.0026906526322516
402 => 0.0026837625405639
403 => 0.0027061519959518
404 => 0.0026808756062052
405 => 0.0027181722961525
406 => 0.0027080296602068
407 => 0.0026513737203051
408 => 0.0025807594424721
409 => 0.0025801308272809
410 => 0.0025649170969524
411 => 0.0025455401239794
412 => 0.0025401498933834
413 => 0.0026187766593422
414 => 0.0027815317117758
415 => 0.0027495790005847
416 => 0.0027726681090658
417 => 0.0028862436706622
418 => 0.0029223459263574
419 => 0.0028967214003937
420 => 0.0028616449688027
421 => 0.0028631881537768
422 => 0.0029830549388811
423 => 0.0029905308832365
424 => 0.0030094201827914
425 => 0.003033698270835
426 => 0.0029008560637689
427 => 0.0028569312977703
428 => 0.0028361173067869
429 => 0.0027720182705864
430 => 0.0028411435856927
501 => 0.0028008672248213
502 => 0.0028063018819393
503 => 0.0028027625543617
504 => 0.0028046952665473
505 => 0.0027020832408551
506 => 0.002739469669888
507 => 0.0026773074804036
508 => 0.0025940792867172
509 => 0.0025938002766284
510 => 0.0026141702591238
511 => 0.002602053396458
512 => 0.0025694472305774
513 => 0.002574078782544
514 => 0.0025335015137687
515 => 0.0025790055976485
516 => 0.0025803104919527
517 => 0.0025627889410348
518 => 0.002632894260605
519 => 0.0026616164672334
520 => 0.0026500834070713
521 => 0.0026608072769877
522 => 0.0027509067799926
523 => 0.0027655969302993
524 => 0.0027721213246887
525 => 0.0027633795005235
526 => 0.0026624541305046
527 => 0.0026669305998328
528 => 0.0026340852380869
529 => 0.0026063343685705
530 => 0.002607444257817
531 => 0.002621711812109
601 => 0.0026840190584827
602 => 0.0028151409852636
603 => 0.002820116966536
604 => 0.0028261480009978
605 => 0.0028016167528865
606 => 0.0027942178937237
607 => 0.002803978898767
608 => 0.0028532214004025
609 => 0.0029798864838178
610 => 0.0029351145836624
611 => 0.0028987143319199
612 => 0.0029306471661354
613 => 0.0029257313566058
614 => 0.0028842369770796
615 => 0.0028830723680476
616 => 0.0028034313871812
617 => 0.0027739899298923
618 => 0.0027493864445268
619 => 0.0027225200807979
620 => 0.0027065927998108
621 => 0.0027310643422268
622 => 0.0027366612735161
623 => 0.0026831538183342
624 => 0.0026758609499097
625 => 0.0027195562928499
626 => 0.0027003276015485
627 => 0.0027201047874006
628 => 0.0027246932641639
629 => 0.0027239544137234
630 => 0.0027038774516036
701 => 0.0027166739085551
702 => 0.0026864064730573
703 => 0.0026534951829753
704 => 0.0026324998303488
705 => 0.0026141786005527
706 => 0.0026243442836797
707 => 0.0025881054795124
708 => 0.0025765119567163
709 => 0.0027123387568693
710 => 0.0028126754745265
711 => 0.0028112165389141
712 => 0.0028023356435812
713 => 0.0027891404345403
714 => 0.0028522560886733
715 => 0.0028302678568107
716 => 0.002846266132669
717 => 0.0028503383653205
718 => 0.0028626637870784
719 => 0.0028670690659511
720 => 0.002853753253535
721 => 0.0028090637606769
722 => 0.0026977017934242
723 => 0.0026458624970522
724 => 0.0026287546657976
725 => 0.0026293765029713
726 => 0.0026122234577171
727 => 0.0026172757982901
728 => 0.0026104664598505
729 => 0.0025975712202019
730 => 0.0026235480389692
731 => 0.0026265416253413
801 => 0.0026204783254412
802 => 0.0026219064520623
803 => 0.0025717049185582
804 => 0.0025755216321185
805 => 0.0025542696860101
806 => 0.0025502852023108
807 => 0.0024965621331675
808 => 0.0024013839288967
809 => 0.0024541218932346
810 => 0.0023904218483944
811 => 0.0023662976762003
812 => 0.0024804977552889
813 => 0.0024690352347655
814 => 0.0024494163822674
815 => 0.0024203960104956
816 => 0.0024096320723134
817 => 0.0023442337913671
818 => 0.0023403697120426
819 => 0.0023727828659817
820 => 0.0023578253107073
821 => 0.0023368192382329
822 => 0.0022607373730822
823 => 0.0021751961668129
824 => 0.0021777781181373
825 => 0.0022049871843008
826 => 0.0022841012138138
827 => 0.0022531899937965
828 => 0.0022307635490085
829 => 0.0022265637500362
830 => 0.0022791330270496
831 => 0.0023535295676276
901 => 0.002388434759938
902 => 0.0023538447744449
903 => 0.0023141096615674
904 => 0.0023165281537735
905 => 0.0023326172989168
906 => 0.0023343080405831
907 => 0.0023084445669355
908 => 0.0023157249832711
909 => 0.0023046653651221
910 => 0.0022367925089557
911 => 0.0022355649042148
912 => 0.0022189078107139
913 => 0.0022184034405426
914 => 0.0021900655691909
915 => 0.0021861009050984
916 => 0.0021298343415437
917 => 0.0021668691640662
918 => 0.0021420281495336
919 => 0.0021045868812299
920 => 0.0020981319924619
921 => 0.002097937950711
922 => 0.0021363817615445
923 => 0.0021664199257536
924 => 0.0021424602696167
925 => 0.0021370051203528
926 => 0.0021952518426574
927 => 0.0021878394163134
928 => 0.0021814203029046
929 => 0.0023468681734073
930 => 0.0022159032738461
1001 => 0.0021587951024223
1002 => 0.0020881128957377
1003 => 0.0021111273786449
1004 => 0.0021159768683465
1005 => 0.0019459989026955
1006 => 0.0018770388632003
1007 => 0.0018533743763498
1008 => 0.0018397551296006
1009 => 0.001845961591364
1010 => 0.0017838894676124
1011 => 0.0018256029613516
1012 => 0.0017718537490088
1013 => 0.0017628425186444
1014 => 0.0018589527685631
1015 => 0.0018723259483714
1016 => 0.0018152718085881
1017 => 0.0018519098025552
1018 => 0.0018386243566365
1019 => 0.0017727751249848
1020 => 0.0017702601686899
1021 => 0.0017372193389594
1022 => 0.0016855168383967
1023 => 0.0016618874082762
1024 => 0.0016495809959093
1025 => 0.0016546588614991
1026 => 0.0016520913372717
1027 => 0.0016353365049474
1028 => 0.001653051704648
1029 => 0.0016077966898387
1030 => 0.0015897757782973
1031 => 0.001581636150636
1101 => 0.0015414697202113
1102 => 0.0016053923731096
1103 => 0.001617985941007
1104 => 0.0016306043221234
1105 => 0.0017404387148074
1106 => 0.0017349516989377
1107 => 0.0017845516501148
1108 => 0.0017826242872205
1109 => 0.0017684775776789
1110 => 0.0017087949371434
1111 => 0.00173258337392
1112 => 0.0016593662630653
1113 => 0.0017142255007973
1114 => 0.0016891900356729
1115 => 0.0017057609848553
1116 => 0.0016759649240832
1117 => 0.0016924552943637
1118 => 0.001620972343146
1119 => 0.0015542225690912
1120 => 0.0015810846267182
1121 => 0.0016102867554077
1122 => 0.0016736044109705
1123 => 0.0016358929376766
1124 => 0.0016494554095018
1125 => 0.0016040233992178
1126 => 0.0015102841849899
1127 => 0.0015108147387624
1128 => 0.0014963950028732
1129 => 0.001483934245749
1130 => 0.001640224554031
1201 => 0.001620787383612
1202 => 0.0015898167964233
1203 => 0.0016312721580976
1204 => 0.0016422336137094
1205 => 0.0016425456709406
1206 => 0.0016727904327005
1207 => 0.0016889320674734
1208 => 0.0016917771005639
1209 => 0.0017393678866744
1210 => 0.0017553196904409
1211 => 0.0018210229125716
1212 => 0.0016875625625382
1213 => 0.0016848140344553
1214 => 0.0016318555200507
1215 => 0.0015982683929743
1216 => 0.0016341552593767
1217 => 0.0016659461239633
1218 => 0.0016328433508301
1219 => 0.0016371658741636
1220 => 0.0015927281058282
1221 => 0.0016086125170167
1222 => 0.0016222943117936
1223 => 0.0016147400288966
1224 => 0.0016034309017682
1225 => 0.0016633396356055
1226 => 0.0016599593500582
1227 => 0.0017157477403032
1228 => 0.0017592387799654
1229 => 0.0018371824979931
1230 => 0.0017558441649332
1231 => 0.0017528798727859
]
'min_raw' => 0.001483934245749
'max_raw' => 0.0042904903077368
'avg_raw' => 0.0028872122767429
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.001483'
'max' => '$0.00429'
'avg' => '$0.002887'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00026093221378467
'max_diff' => -0.0014493298173251
'year' => 2030
]
5 => [
'items' => [
101 => 0.0017818563040132
102 => 0.0017553152543003
103 => 0.0017720882815529
104 => 0.0018344801039927
105 => 0.0018357983448851
106 => 0.0018137161114799
107 => 0.0018123724055703
108 => 0.001816613540049
109 => 0.0018414539971598
110 => 0.0018327739781751
111 => 0.0018428187158954
112 => 0.0018553798142251
113 => 0.0019073378427119
114 => 0.001919864747477
115 => 0.0018894308633533
116 => 0.0018921787023359
117 => 0.0018807955942448
118 => 0.0018697996544588
119 => 0.0018945169212698
120 => 0.001939688212186
121 => 0.0019394072039296
122 => 0.0019498860654178
123 => 0.0019564143093133
124 => 0.001928390307547
125 => 0.0019101477128683
126 => 0.0019171430844746
127 => 0.0019283288360124
128 => 0.0019135156960087
129 => 0.0018220821337917
130 => 0.0018498172357697
131 => 0.0018452007586234
201 => 0.0018386263337842
202 => 0.0018665141932923
203 => 0.0018638243412099
204 => 0.0017832528282657
205 => 0.0017884107551108
206 => 0.0017835664988808
207 => 0.0017992192818015
208 => 0.0017544699526545
209 => 0.0017682345449088
210 => 0.0017768675681357
211 => 0.0017819524851383
212 => 0.001800322692112
213 => 0.0017981671603518
214 => 0.0018001887012313
215 => 0.0018274268686185
216 => 0.0019651881722526
217 => 0.0019726862160562
218 => 0.0019357631060865
219 => 0.0019505131602433
220 => 0.0019221962817445
221 => 0.0019412055919873
222 => 0.0019542112792713
223 => 0.0018954410792848
224 => 0.001891961089457
225 => 0.0018635273371279
226 => 0.0018788060250595
227 => 0.0018544965339837
228 => 0.0018604612327838
301 => 0.0018437834149457
302 => 0.001873800166534
303 => 0.0019073635589413
304 => 0.0019158429973219
305 => 0.0018935372455703
306 => 0.0018773864112814
307 => 0.0018490308666856
308 => 0.0018961867692929
309 => 0.0019099765922653
310 => 0.0018961143372233
311 => 0.0018929021498338
312 => 0.001886815060535
313 => 0.0018941935546041
314 => 0.0019099014899279
315 => 0.0019024939177092
316 => 0.0019073867496643
317 => 0.0018887403197179
318 => 0.0019283995846577
319 => 0.0019913880419039
320 => 0.0019915905600936
321 => 0.0019841829479454
322 => 0.0019811519126535
323 => 0.0019887525722491
324 => 0.0019928756182844
325 => 0.002017454757694
326 => 0.0020438291535566
327 => 0.0021669069509971
328 => 0.0021323471979796
329 => 0.0022415491417996
330 => 0.0023279137012636
331 => 0.0023538106563824
401 => 0.002329986676219
402 => 0.0022484861270262
403 => 0.0022444873212639
404 => 0.0023662835504023
405 => 0.00233187053705
406 => 0.0023277772186131
407 => 0.0022842312262145
408 => 0.0023099723009981
409 => 0.0023043423503442
410 => 0.0022954551978103
411 => 0.0023445673753586
412 => 0.0024365009874547
413 => 0.0024221722718616
414 => 0.0024114765503613
415 => 0.0023646110122248
416 => 0.0023928345339799
417 => 0.0023827846784688
418 => 0.0024259652355402
419 => 0.0024003860300976
420 => 0.0023316098246277
421 => 0.0023425626620381
422 => 0.0023409071626976
423 => 0.0023749772218158
424 => 0.0023647502357394
425 => 0.0023389101795289
426 => 0.002436186768363
427 => 0.002429870167765
428 => 0.0024388256632371
429 => 0.0024427681493018
430 => 0.0025019786947194
501 => 0.0025262353606509
502 => 0.00253174204849
503 => 0.002554784005047
504 => 0.0025311687436201
505 => 0.0026256466267237
506 => 0.0026884689060503
507 => 0.0027614402162931
508 => 0.0028680709133969
509 => 0.002908165041897
510 => 0.0029009223964521
511 => 0.0029817685740369
512 => 0.0031270473580472
513 => 0.00293028739238
514 => 0.0031374761139981
515 => 0.0030718825568426
516 => 0.0029163614128047
517 => 0.0029063476846025
518 => 0.0030116684089826
519 => 0.0032452596389135
520 => 0.0031867476851856
521 => 0.0032453553435085
522 => 0.0031769863969458
523 => 0.0031735913024902
524 => 0.0032420348163763
525 => 0.0034019568172328
526 => 0.0033259838692124
527 => 0.0032170580188941
528 => 0.0032974871716952
529 => 0.0032278119961722
530 => 0.0030708143248652
531 => 0.0031867029421973
601 => 0.0031092115241051
602 => 0.0031318276395748
603 => 0.0032947030744261
604 => 0.0032751054711899
605 => 0.0033004665844668
606 => 0.0032557048833489
607 => 0.0032138903962324
608 => 0.003135840550845
609 => 0.0031127338394366
610 => 0.0031191197031775
611 => 0.0031127306749197
612 => 0.0030690625037405
613 => 0.003059632366332
614 => 0.0030439150575075
615 => 0.0030487865087264
616 => 0.0030192333698753
617 => 0.0030750062488773
618 => 0.003085358186689
619 => 0.0031259450369546
620 => 0.0031301588983908
621 => 0.0032431926986627
622 => 0.0031809355809288
623 => 0.0032227030305257
624 => 0.0032189669567032
625 => 0.0029197320275773
626 => 0.0029609639606388
627 => 0.0030251079091889
628 => 0.0029962111473122
629 => 0.0029553578868193
630 => 0.0029223666885581
701 => 0.0028723816496691
702 => 0.0029427346320277
703 => 0.0030352413226237
704 => 0.0031325050207236
705 => 0.0032493609810208
706 => 0.0032232800910358
707 => 0.0031303204798292
708 => 0.0031344905800809
709 => 0.0031602684989629
710 => 0.0031268837518398
711 => 0.0031170379381655
712 => 0.0031589158353568
713 => 0.003159204225419
714 => 0.0031207910391725
715 => 0.0030781018121983
716 => 0.0030779229427786
717 => 0.0030703268071675
718 => 0.0031783377325961
719 => 0.0032377328204455
720 => 0.0032445423715475
721 => 0.0032372744834007
722 => 0.0032400716050962
723 => 0.0032055109121581
724 => 0.0032845064075595
725 => 0.0033570004859847
726 => 0.0033375705243566
727 => 0.0033084422497444
728 => 0.003285240176008
729 => 0.0033321048531569
730 => 0.0033300180428553
731 => 0.0033563673134521
801 => 0.003355171958337
802 => 0.0033463116896815
803 => 0.0033375708407847
804 => 0.0033722273186397
805 => 0.0033622468095835
806 => 0.00335225079804
807 => 0.0033322022665767
808 => 0.0033349271949735
809 => 0.0033058039497685
810 => 0.0032923302039477
811 => 0.0030897173948391
812 => 0.0030355726316808
813 => 0.0030526076763887
814 => 0.0030582160554212
815 => 0.0030346521851063
816 => 0.0030684367220763
817 => 0.0030631714377762
818 => 0.0030836555788995
819 => 0.0030708579768437
820 => 0.0030713831948961
821 => 0.0031090182138059
822 => 0.0031199438199062
823 => 0.0031143869684631
824 => 0.0031182787967361
825 => 0.0032079643366497
826 => 0.0031952139208562
827 => 0.003188440516591
828 => 0.0031903167958627
829 => 0.0032132333741903
830 => 0.0032196487649233
831 => 0.0031924663035863
901 => 0.0032052857094927
902 => 0.0032598691128175
903 => 0.0032789702148282
904 => 0.0033399317633969
905 => 0.0033140342140598
906 => 0.0033615702866878
907 => 0.0035076799677049
908 => 0.0036244024909222
909 => 0.0035170596348092
910 => 0.0037314056841742
911 => 0.0038983048297194
912 => 0.0038918989625283
913 => 0.0038627962360557
914 => 0.0036727859960958
915 => 0.0034979357403917
916 => 0.0036442054038222
917 => 0.0036445782752749
918 => 0.0036320135814661
919 => 0.0035539753473286
920 => 0.0036292980200758
921 => 0.0036352768603067
922 => 0.0036319302996794
923 => 0.0035720985685364
924 => 0.0034807465738334
925 => 0.0034985965349326
926 => 0.0035278351353424
927 => 0.0034724803649556
928 => 0.0034547911617533
929 => 0.0034876787560151
930 => 0.0035936494371292
1001 => 0.0035736162937109
1002 => 0.003573093147376
1003 => 0.0036588034302942
1004 => 0.0035974533651615
1005 => 0.0034988216801056
1006 => 0.0034739158788369
1007 => 0.003385517062891
1008 => 0.0034465744399306
1009 => 0.0034487717862319
1010 => 0.0034153312848186
1011 => 0.0035015351924941
1012 => 0.003500740808309
1013 => 0.0035825785888886
1014 => 0.00373902168849
1015 => 0.0036927537658405
1016 => 0.0036389492057347
1017 => 0.0036447992532569
1018 => 0.0037089598354269
1019 => 0.0036701668828033
1020 => 0.0036841170990408
1021 => 0.0037089387201038
1022 => 0.0037239142203773
1023 => 0.0036426445092274
1024 => 0.0036236966519786
1025 => 0.003584935985842
1026 => 0.003574824051549
1027 => 0.0036063938053495
1028 => 0.0035980762905989
1029 => 0.0034485871077838
1030 => 0.0034329646564297
1031 => 0.003433443774709
1101 => 0.0033941603779719
1102 => 0.0033342437688524
1103 => 0.0034917010401836
1104 => 0.0034790550176826
1105 => 0.0034650947875659
1106 => 0.0034668048360993
1107 => 0.0035351517008621
1108 => 0.0034955070677003
1109 => 0.0036009088225886
1110 => 0.0035792413904503
1111 => 0.0035570182704364
1112 => 0.0035539463583177
1113 => 0.0035453923530999
1114 => 0.0035160574864027
1115 => 0.0034806338721136
1116 => 0.0034572441336191
1117 => 0.0031891249640302
1118 => 0.0032388863223284
1119 => 0.00329613222916
1120 => 0.0033158932867997
1121 => 0.0032820906302834
1122 => 0.0035173922213116
1123 => 0.0035603840894149
1124 => 0.0034301589166396
1125 => 0.0034057991038721
1126 => 0.0035189892465811
1127 => 0.0034507217535954
1128 => 0.0034814626015068
1129 => 0.0034150177026672
1130 => 0.0035500286073377
1201 => 0.0035490000504492
1202 => 0.0034964777591728
1203 => 0.0035408692401025
1204 => 0.0035331551278703
1205 => 0.0034738575903759
1206 => 0.0035519084450434
1207 => 0.0035519471572935
1208 => 0.003501395593873
1209 => 0.0034423624349581
1210 => 0.0034318087004451
1211 => 0.0034238578791843
1212 => 0.0034795071868708
1213 => 0.0035294021821317
1214 => 0.0036222443982939
1215 => 0.0036455871373137
1216 => 0.0037366954017222
1217 => 0.0036824448662478
1218 => 0.0037064934259616
1219 => 0.0037326015394073
1220 => 0.0037451187290873
1221 => 0.0037247226402132
1222 => 0.0038662512764973
1223 => 0.0038782006297251
1224 => 0.0038822071445008
1225 => 0.0038344844846477
1226 => 0.0038768733762249
1227 => 0.0038570410176285
1228 => 0.0039086393051084
1229 => 0.0039167305754253
1230 => 0.0039098775573222
1231 => 0.0039124458542328
]
'min_raw' => 0.0017544699526545
'max_raw' => 0.0039167305754253
'avg_raw' => 0.0028356002640399
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.001754'
'max' => '$0.003916'
'avg' => '$0.002835'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00027053570690548
'max_diff' => -0.00037375973231153
'year' => 2031
]
6 => [
'items' => [
101 => 0.0037916761305266
102 => 0.0037854135832414
103 => 0.0037000233066375
104 => 0.0037348204755266
105 => 0.0036697688361601
106 => 0.0036903973811093
107 => 0.003699490247167
108 => 0.0036947406499541
109 => 0.0037367878552464
110 => 0.0037010391410714
111 => 0.0036066924067308
112 => 0.0035123199676856
113 => 0.0035111351985875
114 => 0.0034862886011988
115 => 0.0034683290621681
116 => 0.0034717887065343
117 => 0.0034839809445293
118 => 0.0034676204271315
119 => 0.0034711117730176
120 => 0.0035290913774427
121 => 0.0035407187736185
122 => 0.0035012043382961
123 => 0.0033425481785709
124 => 0.0033036135590155
125 => 0.0033315989914449
126 => 0.0033182237572363
127 => 0.0026780655488356
128 => 0.0028284612242985
129 => 0.002739101220893
130 => 0.0027802824217183
131 => 0.002689068997902
201 => 0.0027326008246523
202 => 0.0027245620857793
203 => 0.0029663938813919
204 => 0.0029626180105322
205 => 0.0029644253200981
206 => 0.002878157725597
207 => 0.0030155843460577
208 => 0.0030832856409981
209 => 0.0030707559331163
210 => 0.0030739093906482
211 => 0.0030197225423455
212 => 0.0029649499672363
213 => 0.0029041987520013
214 => 0.0030170670008307
215 => 0.0030045179782862
216 => 0.0030333009210076
217 => 0.0031065040483625
218 => 0.0031172834869372
219 => 0.0031317711616958
220 => 0.0031265783615977
221 => 0.0032502919272713
222 => 0.0032353093981799
223 => 0.0032714129825225
224 => 0.0031971451703442
225 => 0.003113104091299
226 => 0.0031290775529156
227 => 0.0031275391801115
228 => 0.0031079539286526
229 => 0.0030902732393513
301 => 0.0030608398731679
302 => 0.0031539713990907
303 => 0.0031501904292164
304 => 0.0032113999365851
305 => 0.0032005805616002
306 => 0.0031283261275012
307 => 0.0031309067087504
308 => 0.0031482623578362
309 => 0.0032083304574855
310 => 0.0032261627592096
311 => 0.0032179021265566
312 => 0.0032374544313215
313 => 0.003252907775796
314 => 0.0032393951334636
315 => 0.0034307056532491
316 => 0.0033512601873112
317 => 0.0033899813546313
318 => 0.0033992161248788
319 => 0.0033755614550762
320 => 0.0033806913059462
321 => 0.0033884616322135
322 => 0.0034356415317227
323 => 0.0035594552396488
324 => 0.0036142914880609
325 => 0.0037792690469814
326 => 0.0036097381009877
327 => 0.0035996788362412
328 => 0.0036293962764478
329 => 0.0037262555681823
330 => 0.0038047509266025
331 => 0.0038307923654963
401 => 0.0038342341715435
402 => 0.0038830896421104
403 => 0.0039110926867388
404 => 0.0038771573029572
405 => 0.003848400618385
406 => 0.0037453977436585
407 => 0.0037573206068756
408 => 0.0038394573111069
409 => 0.0039554802436614
410 => 0.0040550399899218
411 => 0.0040201776367888
412 => 0.0042861527822073
413 => 0.0043125231314645
414 => 0.0043088796018526
415 => 0.0043689551818947
416 => 0.0042497173896903
417 => 0.0041987409233996
418 => 0.0038546181399917
419 => 0.0039513026055434
420 => 0.0040918391543023
421 => 0.0040732386150891
422 => 0.0039711772168276
423 => 0.0040549625671991
424 => 0.0040272605101562
425 => 0.004005410748407
426 => 0.0041055087427647
427 => 0.0039954468861694
428 => 0.0040907412030899
429 => 0.0039685252559459
430 => 0.0040203368850814
501 => 0.0039909260985375
502 => 0.0040099584818818
503 => 0.0038986955577466
504 => 0.0039587303308552
505 => 0.0038961979138093
506 => 0.0038961682653016
507 => 0.0038947878587295
508 => 0.0039683569700728
509 => 0.0039707560561525
510 => 0.003916388371713
511 => 0.0039085531390024
512 => 0.0039375241009451
513 => 0.0039036066920172
514 => 0.003919476434181
515 => 0.0039040873703406
516 => 0.0039006229679268
517 => 0.0038730180200746
518 => 0.003861125049526
519 => 0.0038657885897222
520 => 0.0038498695228129
521 => 0.0038402777091822
522 => 0.0038928798055759
523 => 0.0038647766274352
524 => 0.0038885725904695
525 => 0.003861454087302
526 => 0.0037674495403539
527 => 0.003713386531324
528 => 0.0035358206563653
529 => 0.0035861781182338
530 => 0.0036195651675512
531 => 0.003608530747951
601 => 0.0036322369510058
602 => 0.0036336923193395
603 => 0.0036259851910703
604 => 0.0036170613238788
605 => 0.0036127176788507
606 => 0.003645091650208
607 => 0.0036638858302387
608 => 0.0036229160046113
609 => 0.0036133173476956
610 => 0.0036547401034109
611 => 0.0036800079604682
612 => 0.0038665716201963
613 => 0.003852750381691
614 => 0.0038874389780583
615 => 0.0038835335744473
616 => 0.003919892749767
617 => 0.0039793246348808
618 => 0.003858482995028
619 => 0.003879456925317
620 => 0.0038743146019689
621 => 0.0039304571398934
622 => 0.0039306324107687
623 => 0.0038969721547551
624 => 0.0039152199256154
625 => 0.0039050345205226
626 => 0.0039234409241653
627 => 0.0038525657906243
628 => 0.0039388840527793
629 => 0.0039878209451953
630 => 0.0039885004339939
701 => 0.0040116961326119
702 => 0.004035264305812
703 => 0.0040805013619143
704 => 0.0040340026688698
705 => 0.0039503560466391
706 => 0.0039563950625872
707 => 0.0039073530785785
708 => 0.0039081774831898
709 => 0.0039037767467647
710 => 0.0039169836880485
711 => 0.0038554639715454
712 => 0.0038699025260448
713 => 0.0038496884651936
714 => 0.0038794129838964
715 => 0.0038474343154111
716 => 0.0038743121221849
717 => 0.003885911692575
718 => 0.0039287143570356
719 => 0.0038411123270685
720 => 0.0036624858578296
721 => 0.0037000353073002
722 => 0.0036444967220876
723 => 0.0036496370295993
724 => 0.0036600212688469
725 => 0.0036263625519338
726 => 0.0036327835744128
727 => 0.0036325541703058
728 => 0.0036305772896459
729 => 0.0036218213574155
730 => 0.003609123523373
731 => 0.0036597077860111
801 => 0.0036683030379323
802 => 0.0036874092182268
803 => 0.0037442562509375
804 => 0.0037385758918243
805 => 0.0037478407932137
806 => 0.0037276155655009
807 => 0.0036505752199055
808 => 0.0036547588813237
809 => 0.0036025885564012
810 => 0.0036860751057237
811 => 0.0036663043888755
812 => 0.0036535580791074
813 => 0.0036500801303934
814 => 0.0037070680759026
815 => 0.0037241197623756
816 => 0.0037134942956618
817 => 0.0036917011534373
818 => 0.0037335504290724
819 => 0.0037447475297532
820 => 0.0037472541476624
821 => 0.0038214030402851
822 => 0.0037513982470686
823 => 0.0037682490965836
824 => 0.0038997146142127
825 => 0.0037804935307245
826 => 0.0038436475975956
827 => 0.0038405565346602
828 => 0.0038728640182544
829 => 0.0038379063780207
830 => 0.0038383397198677
831 => 0.0038670265766009
901 => 0.0038267410600211
902 => 0.0038167657995794
903 => 0.0038029850487234
904 => 0.0038330748140588
905 => 0.0038511122675343
906 => 0.0039964808954971
907 => 0.0040903956587759
908 => 0.0040863185712194
909 => 0.0041235755194977
910 => 0.0041067909230638
911 => 0.0040525890336259
912 => 0.0041451050496802
913 => 0.0041158291111661
914 => 0.0041182425839669
915 => 0.0041181527543887
916 => 0.0041376186941536
917 => 0.004123825291803
918 => 0.0040966370799062
919 => 0.004114685883784
920 => 0.0041682843787357
921 => 0.0043346557516681
922 => 0.0044277593760887
923 => 0.0043290507965737
924 => 0.0043971386529626
925 => 0.0043563102013131
926 => 0.0043488904571072
927 => 0.0043916546625725
928 => 0.0044344937211184
929 => 0.0044317650582873
930 => 0.004400666101593
1001 => 0.0043830990900632
1002 => 0.0045161223867476
1003 => 0.0046141316857519
1004 => 0.0046074481086225
1005 => 0.004636947244456
1006 => 0.0047235576196372
1007 => 0.0047314761869072
1008 => 0.0047304786294374
1009 => 0.0047108516342416
1010 => 0.0047961307963859
1011 => 0.0048672721737908
1012 => 0.0047063085519322
1013 => 0.0047676013919674
1014 => 0.0047951177225912
1015 => 0.0048355198596743
1016 => 0.0049036850371179
1017 => 0.004977730499742
1018 => 0.0049882013400243
1019 => 0.0049807717777682
1020 => 0.0049319368047187
1021 => 0.0050129582334681
1022 => 0.0050604186862432
1023 => 0.0050886802997577
1024 => 0.0051603470493462
1025 => 0.0047952876540814
1026 => 0.0045368804694839
1027 => 0.004496526456164
1028 => 0.0045785879290932
1029 => 0.0046002268850766
1030 => 0.0045915042490526
1031 => 0.0043006434694347
1101 => 0.0044949951343543
1102 => 0.0047041011842557
1103 => 0.0047121337992436
1104 => 0.0048168166600255
1105 => 0.0048509056905916
1106 => 0.0049351891146173
1107 => 0.0049299171634966
1108 => 0.0049504388360046
1109 => 0.0049457212588808
1110 => 0.0051018385539196
1111 => 0.00527405911399
1112 => 0.0052680956636226
1113 => 0.0052433369204913
1114 => 0.0052801078760343
1115 => 0.0054578579503038
1116 => 0.005441493571852
1117 => 0.0054573901716035
1118 => 0.0056669675267224
1119 => 0.0059394479004082
1120 => 0.0058128534102489
1121 => 0.0060875270273113
1122 => 0.0062604195094293
1123 => 0.0065594191798359
1124 => 0.0065219829484966
1125 => 0.006638381326025
1126 => 0.0064549642812219
1127 => 0.0060338016716534
1128 => 0.0059671510765435
1129 => 0.0061005872558155
1130 => 0.0064286270820436
1201 => 0.0060902561142929
1202 => 0.0061587081203736
1203 => 0.0061389939380173
1204 => 0.0061379434530194
1205 => 0.0061780361927574
1206 => 0.0061198795826708
1207 => 0.0058829390910038
1208 => 0.0059915275220357
1209 => 0.0059495963139695
1210 => 0.0059961221154976
1211 => 0.0062472026776444
1212 => 0.0061361939761063
1213 => 0.0060192553266505
1214 => 0.0061659223438318
1215 => 0.0063526798569587
1216 => 0.0063409929074227
1217 => 0.006318315340557
1218 => 0.0064461475976202
1219 => 0.0066572890349515
1220 => 0.0067143597170272
1221 => 0.0067564881277767
1222 => 0.0067622969238537
1223 => 0.0068221311335937
1224 => 0.0065003875076593
1225 => 0.0070110029049796
1226 => 0.0070991720786311
1227 => 0.0070825999282225
1228 => 0.0071805962540102
1229 => 0.0071517632490366
1230 => 0.0071099887485898
1231 => 0.0072653337693795
]
'min_raw' => 0.0026780655488356
'max_raw' => 0.0072653337693795
'avg_raw' => 0.0049716996591076
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.002678'
'max' => '$0.007265'
'avg' => '$0.004971'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.00092359559618113
'max_diff' => 0.0033486031939542
'year' => 2032
]
7 => [
'items' => [
101 => 0.0070872432387408
102 => 0.0068344661514736
103 => 0.0066957876420349
104 => 0.00687841069014
105 => 0.0069899322129518
106 => 0.0070636408454293
107 => 0.007085945033081
108 => 0.006525363549454
109 => 0.0062232412210534
110 => 0.0064168981697186
111 => 0.0066531730125788
112 => 0.0064990749889774
113 => 0.0065051153397564
114 => 0.006285412054349
115 => 0.0066726118782959
116 => 0.0066162001208099
117 => 0.0069088644184377
118 => 0.0068390177350311
119 => 0.007077674108584
120 => 0.0070148278871814
121 => 0.0072756990385384
122 => 0.0073797676036191
123 => 0.0075545149213685
124 => 0.0076830597596545
125 => 0.007758543747367
126 => 0.0077540119718781
127 => 0.0080531171371682
128 => 0.0078767452711351
129 => 0.0076551806397404
130 => 0.0076511732345859
131 => 0.0077659246967804
201 => 0.0080064122810137
202 => 0.0080687672126533
203 => 0.0081036151128237
204 => 0.0080502443406487
205 => 0.0078588053207553
206 => 0.0077761429225832
207 => 0.007846573680786
208 => 0.007760442915688
209 => 0.0079091287802716
210 => 0.0081133062299319
211 => 0.0080711443939822
212 => 0.0082120850903064
213 => 0.0083579438836082
214 => 0.0085665285089582
215 => 0.008621060253891
216 => 0.0087111991546084
217 => 0.0088039816925329
218 => 0.0088337809431548
219 => 0.0088906769587564
220 => 0.0088903770886695
221 => 0.0090618370612284
222 => 0.0092509627206341
223 => 0.0093223532787907
224 => 0.0094865119307735
225 => 0.0092053959920583
226 => 0.0094186256608009
227 => 0.0096109641594916
228 => 0.009381650272167
301 => 0.0096977060425607
302 => 0.0097099777719273
303 => 0.0098952663156949
304 => 0.0097074408795966
305 => 0.0095959107352014
306 => 0.0099178940830903
307 => 0.010073691682753
308 => 0.010026764177812
309 => 0.009669643548111
310 => 0.0094617840240007
311 => 0.0089177755562963
312 => 0.0095621770857091
313 => 0.0098760462732357
314 => 0.0096688307027405
315 => 0.0097733381834884
316 => 0.010343497111784
317 => 0.010560576716623
318 => 0.010515425676317
319 => 0.01052305545888
320 => 0.010640187673377
321 => 0.011159616418346
322 => 0.010848362674096
323 => 0.01108630449912
324 => 0.01121250798515
325 => 0.01132973281637
326 => 0.01104186568018
327 => 0.010667354765605
328 => 0.010548731438061
329 => 0.0096482271980273
330 => 0.0096013520416419
331 => 0.0095750395959001
401 => 0.0094091433474677
402 => 0.0092787943390067
403 => 0.0091751359679301
404 => 0.0089031054472152
405 => 0.0089949077624168
406 => 0.0085613478895793
407 => 0.0088387241318023
408 => 0.0081467521060845
409 => 0.008723046971162
410 => 0.0084093958770125
411 => 0.0086200041511148
412 => 0.0086192693586869
413 => 0.0082314727526506
414 => 0.0080077997633975
415 => 0.0081503328976325
416 => 0.0083031397318268
417 => 0.0083279321265709
418 => 0.0085260501757702
419 => 0.0085813406647685
420 => 0.0084138079018375
421 => 0.0081324125239063
422 => 0.0081977742522544
423 => 0.0080064752100587
424 => 0.007671230996822
425 => 0.007912009243571
426 => 0.0079942215232833
427 => 0.0080305311495345
428 => 0.0077008569688743
429 => 0.0075972661837362
430 => 0.0075421153189395
501 => 0.0080898557270541
502 => 0.0081198621830647
503 => 0.0079663449116292
504 => 0.0086602575356224
505 => 0.0085032037375011
506 => 0.0086786713091173
507 => 0.0081918433604961
508 => 0.0082104408437342
509 => 0.0079799686910929
510 => 0.0081090176964172
511 => 0.0080178100188976
512 => 0.0080985918120741
513 => 0.0081470120858283
514 => 0.0083774464202572
515 => 0.0087256781611094
516 => 0.0083430272150014
517 => 0.0081763007181196
518 => 0.0082797368990797
519 => 0.0085552010796368
520 => 0.0089725434139327
521 => 0.0087254683522323
522 => 0.0088351160690083
523 => 0.0088590692172365
524 => 0.0086768852139545
525 => 0.0089792607979983
526 => 0.0091413063299822
527 => 0.0093075315151995
528 => 0.0094518601859998
529 => 0.0092411375208536
530 => 0.0094666409784676
531 => 0.0092849249983496
601 => 0.009121906978731
602 => 0.0091221542097758
603 => 0.0090198906247558
604 => 0.0088217420427386
605 => 0.00878520040407
606 => 0.0089752946231245
607 => 0.0091277321848166
608 => 0.0091402876725243
609 => 0.0092246849392017
610 => 0.0092746303722605
611 => 0.0097641635137601
612 => 0.0099610577929017
613 => 0.010201816390418
614 => 0.010295605432562
615 => 0.010577876824182
616 => 0.010349919750487
617 => 0.010300599803676
618 => 0.0096159017378744
619 => 0.0097280210077919
620 => 0.0099075347768303
621 => 0.0096188618538068
622 => 0.0098019583801176
623 => 0.0098381055129261
624 => 0.0096090528583445
625 => 0.0097313997779375
626 => 0.0094064826328322
627 => 0.0087327604669766
628 => 0.0089800108433626
629 => 0.0091620703439594
630 => 0.0089022489888332
701 => 0.0093679687114219
702 => 0.009095904863892
703 => 0.0090096736855929
704 => 0.008673255115413
705 => 0.0088320317305996
706 => 0.0090467793761016
707 => 0.0089140902982748
708 => 0.0091894400581308
709 => 0.0095794087511855
710 => 0.0098573236648934
711 => 0.0098786585210847
712 => 0.0096999778504236
713 => 0.0099863147654828
714 => 0.0099884004173079
715 => 0.0096654112074005
716 => 0.0094675821147437
717 => 0.0094226349286561
718 => 0.0095349218119178
719 => 0.0096712588174997
720 => 0.0098862242760372
721 => 0.010016123400493
722 => 0.010354831423903
723 => 0.010446476103517
724 => 0.010547165821483
725 => 0.010681718336244
726 => 0.010843283128772
727 => 0.01048978856061
728 => 0.0105038335588
729 => 0.010174664311393
730 => 0.0098228997628947
731 => 0.010089845207135
801 => 0.010438840865215
802 => 0.010358780875646
803 => 0.010349772491342
804 => 0.010364922095024
805 => 0.010304559477403
806 => 0.010031541595048
807 => 0.0098944337237117
808 => 0.010071337857684
809 => 0.010165354531793
810 => 0.010311166194221
811 => 0.010293191829116
812 => 0.0106687870125
813 => 0.010814731943354
814 => 0.010777392984706
815 => 0.01078426425171
816 => 0.011048490577783
817 => 0.011342364594665
818 => 0.011617616391567
819 => 0.011897614341716
820 => 0.011560065884306
821 => 0.011388679594727
822 => 0.011565506497889
823 => 0.011471679654053
824 => 0.012010836529586
825 => 0.012048166581856
826 => 0.012587284470211
827 => 0.013098971543223
828 => 0.01277759006049
829 => 0.013080638323367
830 => 0.013408409727557
831 => 0.014040733945232
901 => 0.013827789394153
902 => 0.013664677205293
903 => 0.013510536974973
904 => 0.013831278325197
905 => 0.014243906948291
906 => 0.014332783201598
907 => 0.014476796685297
908 => 0.014325384116318
909 => 0.014507743878105
910 => 0.015151553970153
911 => 0.014977590800213
912 => 0.014730535132923
913 => 0.015238761368416
914 => 0.015422686467361
915 => 0.016713569134083
916 => 0.018343361824523
917 => 0.017668616948885
918 => 0.017249781030695
919 => 0.017348217406391
920 => 0.017943362524975
921 => 0.018134504248102
922 => 0.017614915154139
923 => 0.01779844280611
924 => 0.018809698212513
925 => 0.01935220429309
926 => 0.018615408167379
927 => 0.0165826168783
928 => 0.014708290473178
929 => 0.015205446237834
930 => 0.015149084202662
1001 => 0.01623555198016
1002 => 0.014973441836143
1003 => 0.014994692534107
1004 => 0.016103627314654
1005 => 0.015807782527159
1006 => 0.015328551860355
1007 => 0.014711789387394
1008 => 0.013571646912502
1009 => 0.012561790927265
1010 => 0.014542351070259
1011 => 0.014456945715478
1012 => 0.014333266105391
1013 => 0.014608501694108
1014 => 0.015944967585934
1015 => 0.015914157721409
1016 => 0.015718161082635
1017 => 0.01586682280571
1018 => 0.015302490741531
1019 => 0.015447931964072
1020 => 0.014707993570299
1021 => 0.015042476626842
1022 => 0.015327523646577
1023 => 0.015384751055983
1024 => 0.015513687331477
1025 => 0.014411940974358
1026 => 0.01490659274313
1027 => 0.015197154314682
1028 => 0.013884386563693
1029 => 0.015171205117115
1030 => 0.014392762021445
1031 => 0.014128546742951
1101 => 0.014484277807726
1102 => 0.014345649065824
1103 => 0.014226464214089
1104 => 0.014159957018965
1105 => 0.014421166652331
1106 => 0.014408980910721
1107 => 0.013981591251929
1108 => 0.013424078864666
1109 => 0.013611198321552
1110 => 0.013543216068611
1111 => 0.013296839614068
1112 => 0.013462867596823
1113 => 0.012731764385608
1114 => 0.011473939310151
1115 => 0.012304897083222
1116 => 0.012272906112867
1117 => 0.012256774814939
1118 => 0.012881216615416
1119 => 0.012821190944624
1120 => 0.012712243764362
1121 => 0.013294838713665
1122 => 0.013082183720162
1123 => 0.013737536302322
1124 => 0.014169193898479
1125 => 0.014059711569433
1126 => 0.014465687625002
1127 => 0.01361550917591
1128 => 0.01389790435346
1129 => 0.01395610560817
1130 => 0.013287649582425
1201 => 0.012831011886715
1202 => 0.012800559358462
1203 => 0.012008812522653
1204 => 0.012431757291585
1205 => 0.012803931185602
1206 => 0.012625688772229
1207 => 0.012569262548995
1208 => 0.012857531886139
1209 => 0.012879932882496
1210 => 0.012369187791627
1211 => 0.012475387869212
1212 => 0.012918259847036
1213 => 0.012464228631663
1214 => 0.011582120145773
1215 => 0.011363345045168
1216 => 0.011334156413922
1217 => 0.01074082098981
1218 => 0.011377964643504
1219 => 0.011099834364279
1220 => 0.011978444583841
1221 => 0.011476587138508
1222 => 0.011454953067089
1223 => 0.011422249995112
1224 => 0.010911541685201
1225 => 0.011023354347865
1226 => 0.011395036668111
1227 => 0.011527657107275
1228 => 0.011513823708943
1229 => 0.011393215221971
1230 => 0.011448429169691
1231 => 0.011270565806269
]
'min_raw' => 0.0062232412210534
'max_raw' => 0.01935220429309
'avg_raw' => 0.012787722757072
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.006223'
'max' => '$0.019352'
'avg' => '$0.012787'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0035451756722178
'max_diff' => 0.012086870523711
'year' => 2033
]
8 => [
'items' => [
101 => 0.011207758550739
102 => 0.011009521575789
103 => 0.010718167986974
104 => 0.010758682490474
105 => 0.010181434794219
106 => 0.0098669196124452
107 => 0.0097798659553737
108 => 0.0096634541669149
109 => 0.0097930149766401
110 => 0.010179799524023
111 => 0.0097132552989599
112 => 0.0089133979493618
113 => 0.0089614707389633
114 => 0.0090694760242584
115 => 0.0088682088896374
116 => 0.0086777264377888
117 => 0.0088433354753413
118 => 0.0085044253719835
119 => 0.009110431691087
120 => 0.0090940409184683
121 => 0.0093199225990508
122 => 0.0094611710494777
123 => 0.0091356391009725
124 => 0.0090537686962555
125 => 0.0091004057995847
126 => 0.0083295983669834
127 => 0.0092569311871255
128 => 0.0092649507998625
129 => 0.0091962820067608
130 => 0.0096900581052978
131 => 0.010732079685838
201 => 0.010340029252018
202 => 0.010188215474256
203 => 0.0098996173717543
204 => 0.010284157208078
205 => 0.010254630548404
206 => 0.010121099795706
207 => 0.010040339979833
208 => 0.01018914241681
209 => 0.010021901711168
210 => 0.0099918606849677
211 => 0.0098098447511513
212 => 0.0097448733439762
213 => 0.00969677110069
214 => 0.0096438152572606
215 => 0.0097606226520917
216 => 0.0094959217281119
217 => 0.0091767183627438
218 => 0.0091501800567417
219 => 0.0092234546528852
220 => 0.0091910360987438
221 => 0.0091500248491768
222 => 0.0090717232050041
223 => 0.009048492779828
224 => 0.0091239803918503
225 => 0.0090387592790783
226 => 0.0091645076732076
227 => 0.0091303110679804
228 => 0.0089392916110105
301 => 0.008701210643165
302 => 0.0086990912231594
303 => 0.0086477970691681
304 => 0.0085824662519326
305 => 0.0085642927131443
306 => 0.0088293883441198
307 => 0.0093781283665946
308 => 0.0092703975699469
309 => 0.009348244111221
310 => 0.0097311720467356
311 => 0.0098528933223909
312 => 0.0097664984440572
313 => 0.0096482358059899
314 => 0.0096534387618719
315 => 0.010057577996683
316 => 0.010082783665031
317 => 0.010146470257289
318 => 0.01022832552617
319 => 0.0097804387502997
320 => 0.0096323433350062
321 => 0.0095621675112193
322 => 0.0093460531354172
323 => 0.0095791139614734
324 => 0.0094433193987901
325 => 0.0094616427246989
326 => 0.009449709634663
327 => 0.0094562259087346
328 => 0.0091102622999704
329 => 0.0092363132556921
330 => 0.0090267290938198
331 => 0.008746119427999
401 => 0.0087451787260048
402 => 0.008813857544175
403 => 0.0087730046957249
404 => 0.0086630707309686
405 => 0.0086786863317885
406 => 0.0085418772370984
407 => 0.0086952974328925
408 => 0.0086996969751441
409 => 0.0086406218429088
410 => 0.0088769868224369
411 => 0.008973825747405
412 => 0.0089349412298558
413 => 0.0089710975059956
414 => 0.009274874270923
415 => 0.0093244031383157
416 => 0.0093464005895182
417 => 0.0093169269190107
418 => 0.0089766499876076
419 => 0.0089917427164846
420 => 0.0088810022861684
421 => 0.0087874382920902
422 => 0.0087911803611748
423 => 0.0088392844165988
424 => 0.009049357647901
425 => 0.0094914443786831
426 => 0.0095082212469551
427 => 0.0095285553007166
428 => 0.0094458464849922
429 => 0.009420900714753
430 => 0.0094538106247482
501 => 0.0096198351570139
502 => 0.010046895329222
503 => 0.0098959437419739
504 => 0.0097732177518396
505 => 0.0098808815318767
506 => 0.0098643075368366
507 => 0.009724406339219
508 => 0.0097204797785573
509 => 0.0094519646512105
510 => 0.0093527007224241
511 => 0.0092697483537538
512 => 0.0091791665326923
513 => 0.0091254665928369
514 => 0.0092079741066409
515 => 0.0092268445512482
516 => 0.009046440430331
517 => 0.0090218520152661
518 => 0.0091691739147005
519 => 0.0091043430394734
520 => 0.0091710232023728
521 => 0.0091864935721373
522 => 0.0091840024862924
523 => 0.0091163116067767
524 => 0.0091594557548089
525 => 0.0090574069828232
526 => 0.0089464442705187
527 => 0.0088756569732897
528 => 0.0088138856678849
529 => 0.0088481599782928
530 => 0.0087259783199305
531 => 0.0086868899483894
601 => 0.0091448394882297
602 => 0.0094831317370969
603 => 0.0094782128338199
604 => 0.0094482702751606
605 => 0.0094037817066191
606 => 0.0096165805411229
607 => 0.0095424456822288
608 => 0.009596384986249
609 => 0.0096101148029476
610 => 0.0096516708229381
611 => 0.009666523528224
612 => 0.0096216283369827
613 => 0.0094709545916911
614 => 0.0090954899440542
615 => 0.0089207101370318
616 => 0.0088630298895265
617 => 0.0088651264569729
618 => 0.008807293767311
619 => 0.0088243280862958
620 => 0.008801369926334
621 => 0.0087578927255417
622 => 0.0088454753836595
623 => 0.0088555684691186
624 => 0.0088351256301791
625 => 0.0088399406587909
626 => 0.0086706826836226
627 => 0.0086835509998656
628 => 0.0086118985797978
629 => 0.0085984646148178
630 => 0.0084173335363762
701 => 0.0080964335755472
702 => 0.0082742433043594
703 => 0.0080594741557856
704 => 0.0079781378249371
705 => 0.0083631713647793
706 => 0.0083245246765472
707 => 0.0082583783456053
708 => 0.008160534136039
709 => 0.0081242427669436
710 => 0.007903747896771
711 => 0.0078907198835468
712 => 0.0080000030950666
713 => 0.007949572653156
714 => 0.0078787492132115
715 => 0.0076222338929895
716 => 0.0073338257437562
717 => 0.0073425309729126
718 => 0.0074342682391593
719 => 0.0077010067132276
720 => 0.0075967873767866
721 => 0.0075211750524197
722 => 0.0075070151369638
723 => 0.0076842561246843
724 => 0.0079350892554436
725 => 0.0080527745483209
726 => 0.007936151997235
727 => 0.0078021822899516
728 => 0.0078103364052781
729 => 0.0078645820814372
730 => 0.007870282535009
731 => 0.0077830820278759
801 => 0.0078076284598539
802 => 0.0077703401851065
803 => 0.00754150211181
804 => 0.0075373631567174
805 => 0.0074812026030181
806 => 0.0074795020837717
807 => 0.0073839589720224
808 => 0.0073705918302303
809 => 0.0071808851827998
810 => 0.0073057506726232
811 => 0.0072219974577821
812 => 0.0070957616076304
813 => 0.0070739984994831
814 => 0.0070733442741725
815 => 0.0072029602664586
816 => 0.0073042360342872
817 => 0.0072234543808121
818 => 0.0072050619642024
819 => 0.0074014448551085
820 => 0.0073764533421709
821 => 0.0073548108531449
822 => 0.007912629899746
823 => 0.0074710725971982
824 => 0.0072785284100777
825 => 0.0070402184153666
826 => 0.0071178133513079
827 => 0.0071341637444175
828 => 0.0065610711657425
829 => 0.0063285675779483
830 => 0.0062487811083301
831 => 0.0062028628670498
901 => 0.0062237883862062
902 => 0.0060145078872405
903 => 0.0061551478437255
904 => 0.0059739286216614
905 => 0.005943546629344
906 => 0.0062675890471483
907 => 0.0063126776565574
908 => 0.0061203156408852
909 => 0.0062438431955283
910 => 0.0061990503870532
911 => 0.005977035105093
912 => 0.0059685557543559
913 => 0.0058571562900828
914 => 0.0056828376996822
915 => 0.0056031694262768
916 => 0.0055616774977757
917 => 0.0055787978761368
918 => 0.0055701412889452
919 => 0.0055136512019787
920 => 0.0055733792346052
921 => 0.0054207987925716
922 => 0.0053600400311296
923 => 0.0053325967081788
924 => 0.0051971727836714
925 => 0.0054126924708553
926 => 0.005455152564276
927 => 0.0054976963171973
928 => 0.0058680106405238
929 => 0.0058495107834278
930 => 0.0060167404817796
1001 => 0.0060102422432173
1002 => 0.0059625456243059
1003 => 0.0057613214348315
1004 => 0.0058415258102797
1005 => 0.0055946692091775
1006 => 0.0057796309593405
1007 => 0.0056952221407535
1008 => 0.0057510922528686
1009 => 0.0056506327536807
1010 => 0.0057062311884024
1011 => 0.0054652214275917
1012 => 0.0052401699040455
1013 => 0.005330737206784
1014 => 0.0054291942224881
1015 => 0.0056426741189157
1016 => 0.0055155272537744
1017 => 0.0055612540744345
1018 => 0.0054080768798004
1019 => 0.0050920285743679
1020 => 0.0050938173734539
1021 => 0.0050452002271498
1022 => 0.0050031879145234
1023 => 0.005530131600737
1024 => 0.0054645978236094
1025 => 0.0053601783266052
1026 => 0.0054999479728112
1027 => 0.0055369052857106
1028 => 0.005537957408453
1029 => 0.0056399297343481
1030 => 0.0056943523829578
1031 => 0.0057039446106566
1101 => 0.0058644002687104
1102 => 0.0059181828888288
1103 => 0.006139705889495
1104 => 0.0056897350014532
1105 => 0.0056804681471255
1106 => 0.005501914818365
1107 => 0.0053886734744487
1108 => 0.0055096685500652
1109 => 0.0056168536695865
1110 => 0.0055052453588059
1111 => 0.0055198190480138
1112 => 0.0053699940095249
1113 => 0.0054235494108614
1114 => 0.0054696785371841
1115 => 0.0054442087449734
1116 => 0.0054060792332822
1117 => 0.0056080657121087
1118 => 0.0055966688433819
1119 => 0.0057847632961143
1120 => 0.0059313963727825
1121 => 0.0061941890599697
1122 => 0.0059199511911972
1123 => 0.0059099568732624
1124 => 0.0060076529342148
1125 => 0.0059181679320709
1126 => 0.0059747193645085
1127 => 0.0061850777499223
1128 => 0.0061895222911276
1129 => 0.0061150704994695
1130 => 0.0061105401011809
1201 => 0.0061248393821822
1202 => 0.0062085907176368
1203 => 0.0061793254276103
1204 => 0.0062131919621354
1205 => 0.0062555425821418
1206 => 0.0064307227027789
1207 => 0.0064729580367951
1208 => 0.0063703480716459
1209 => 0.0063796126026238
1210 => 0.0063412336589515
1211 => 0.0063041600802508
1212 => 0.0063874960710086
1213 => 0.0065397942320915
1214 => 0.0065388467931357
1215 => 0.0065741770062537
1216 => 0.0065961874363349
1217 => 0.0065017025578067
1218 => 0.0064401963761901
1219 => 0.0064637817599619
1220 => 0.0065014953022359
1221 => 0.0064515517664929
1222 => 0.0061432771277907
1223 => 0.0062367879605128
1224 => 0.0062212231855018
1225 => 0.0061990570531447
1226 => 0.0062930829185446
1227 => 0.0062840138944492
1228 => 0.0060123614132346
1229 => 0.0060297517237076
1230 => 0.0060134189756129
1231 => 0.0060661934260727
]
'min_raw' => 0.0050031879145234
'max_raw' => 0.011207758550739
'avg_raw' => 0.008105473232631
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.0050031'
'max' => '$0.0112077'
'avg' => '$0.0081054'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.00122005330653
'max_diff' => -0.0081444457423516
'year' => 2034
]
9 => [
'items' => [
101 => 0.0059153179385551
102 => 0.0059617262223536
103 => 0.0059908330629013
104 => 0.0060079772155933
105 => 0.0060699136509721
106 => 0.006062646125148
107 => 0.0060694618913628
108 => 0.0061612972744168
109 => 0.0066257691278063
110 => 0.006651049305987
111 => 0.0065265604628348
112 => 0.0065762913002403
113 => 0.0064808189673605
114 => 0.0065449101840317
115 => 0.0065887597667378
116 => 0.0063906119342789
117 => 0.0063788789056095
118 => 0.0062830125244505
119 => 0.006334525687536
120 => 0.0062525645411395
121 => 0.006272674939586
122 => 0.0062164445123365
123 => 0.0063176480860192
124 => 0.0064308094068417
125 => 0.0064593984253575
126 => 0.0063841930259889
127 => 0.0063297393605687
128 => 0.0062341366622432
129 => 0.0063931260802035
130 => 0.0064396194311298
131 => 0.0063928818704239
201 => 0.0063820517563725
202 => 0.0063615287098146
203 => 0.0063864058177184
204 => 0.0064393662183557
205 => 0.0064143910714402
206 => 0.0064308875959833
207 => 0.0063680198555671
208 => 0.006501733836233
209 => 0.0067141038175523
210 => 0.0067147866217683
211 => 0.0066898113402274
212 => 0.0066795919931208
213 => 0.0067052181476086
214 => 0.0067191192851783
215 => 0.0068019895697585
216 => 0.0068909126868109
217 => 0.0073058780738987
218 => 0.0071893574537153
219 => 0.0075575394315409
220 => 0.0078487235735548
221 => 0.0079360369658054
222 => 0.0078557127533474
223 => 0.0075809279615573
224 => 0.007567445708742
225 => 0.007978090198823
226 => 0.007862064321666
227 => 0.0078482634127694
228 => 0.0077014450591137
301 => 0.0077882328899311
302 => 0.0077692511182306
303 => 0.0077392874629815
304 => 0.0079048725984884
305 => 0.0082148331902703
306 => 0.008166522925249
307 => 0.0081304615534594
308 => 0.0079724511195847
309 => 0.0080676086936853
310 => 0.0080337249041714
311 => 0.0081793111671076
312 => 0.0080930690900747
313 => 0.0078611853115319
314 => 0.0078981135675638
315 => 0.0078925319359539
316 => 0.0080074015189665
317 => 0.0079729205213845
318 => 0.0078857989677758
319 => 0.0082137737786646
320 => 0.0081924769187372
321 => 0.0082226709969742
322 => 0.0082359633639971
323 => 0.0084355958518207
324 => 0.0085173788945549
325 => 0.0085359450770692
326 => 0.0086136326423392
327 => 0.0085340121396736
328 => 0.0088525509187925
329 => 0.0090643606196536
330 => 0.0093103884868312
331 => 0.0096699013268343
401 => 0.0098050814803551
402 => 0.0097806623955722
403 => 0.010053240927799
404 => 0.010543058491131
405 => 0.0098796685295416
406 => 0.010578219769932
407 => 0.010357066512386
408 => 0.0098327161171227
409 => 0.0097989541333528
410 => 0.010154050308858
411 => 0.01094161944939
412 => 0.010744342312222
413 => 0.010941942124113
414 => 0.01071143144741
415 => 0.010699984649415
416 => 0.010930746735055
417 => 0.01146993492634
418 => 0.011213786827828
419 => 0.01084653571852
420 => 0.011117708222573
421 => 0.010882793503732
422 => 0.010353464893693
423 => 0.010744191458113
424 => 0.010482923731737
425 => 0.01055917554405
426 => 0.011108321444251
427 => 0.011042246756679
428 => 0.011127753520748
429 => 0.010976836320267
430 => 0.01083585585756
501 => 0.01057270535457
502 => 0.010494799463797
503 => 0.010516329849246
504 => 0.010494788794407
505 => 0.010347558506463
506 => 0.010315764139799
507 => 0.010262772135749
508 => 0.010279196573648
509 => 0.010179556102677
510 => 0.01036759825817
511 => 0.010402500539252
512 => 0.010539341938605
513 => 0.01055354926664
514 => 0.010934650616025
515 => 0.010724746396932
516 => 0.010865568269358
517 => 0.010852971835621
518 => 0.0098440803801575
519 => 0.0099830967211957
520 => 0.01019936252212
521 => 0.010101935071945
522 => 0.0099641954519098
523 => 0.0098529633236001
524 => 0.0096844352751419
525 => 0.0099216352670523
526 => 0.010233528033008
527 => 0.010561459381886
528 => 0.010955447410651
529 => 0.010867513869157
530 => 0.010554094049741
531 => 0.010568153833887
601 => 0.010655065887154
602 => 0.01054250688138
603 => 0.010509311033164
604 => 0.010650505287366
605 => 0.010651477614596
606 => 0.010521964875242
607 => 0.010378035166032
608 => 0.010377432095295
609 => 0.010351821193738
610 => 0.010715987569902
611 => 0.010916242255419
612 => 0.010939201132387
613 => 0.010914696940072
614 => 0.010924127631158
615 => 0.010807603841966
616 => 0.011073942670001
617 => 0.011318361516787
618 => 0.011252852044601
619 => 0.011154644033075
620 => 0.011076416621556
621 => 0.01123442415255
622 => 0.011227388325922
623 => 0.011316226731386
624 => 0.011312196508159
625 => 0.011282323493783
626 => 0.011252853111461
627 => 0.011369699846187
628 => 0.011336049863087
629 => 0.011302347612269
630 => 0.011234752588696
701 => 0.011243939875034
702 => 0.011145748820506
703 => 0.011100321145764
704 => 0.01041719791388
705 => 0.010234645064625
706 => 0.010292079907206
707 => 0.010310988948679
708 => 0.010231541714736
709 => 0.010345448639891
710 => 0.010327696366263
711 => 0.010396760078217
712 => 0.010353612069386
713 => 0.010355382878719
714 => 0.010482271972566
715 => 0.010519108416335
716 => 0.010500373103728
717 => 0.010513494674469
718 => 0.010815875733932
719 => 0.010772886816879
720 => 0.010750049811495
721 => 0.010756375818057
722 => 0.010833640661873
723 => 0.010855270599637
724 => 0.010763623033421
725 => 0.010806844555457
726 => 0.010990876310658
727 => 0.011055277009683
728 => 0.011260813126882
729 => 0.011173497731183
730 => 0.011333768918911
731 => 0.011826387909512
801 => 0.012219926045845
802 => 0.011858012112022
803 => 0.012580694782619
804 => 0.013143406904351
805 => 0.013121809075873
806 => 0.013023687201683
807 => 0.012383054411567
808 => 0.011793534566805
809 => 0.012286692949283
810 => 0.012287950111419
811 => 0.012245587369004
812 => 0.011982476014153
813 => 0.012236431664182
814 => 0.012256589741449
815 => 0.012245306578645
816 => 0.012043579719778
817 => 0.011735580091645
818 => 0.011795762481735
819 => 0.011894342464391
820 => 0.011707709991285
821 => 0.011648069607667
822 => 0.01175895242786
823 => 0.012116239977873
824 => 0.012048696836168
825 => 0.012046933011775
826 => 0.012335911214735
827 => 0.012129065186815
828 => 0.011796521574405
829 => 0.01171254992656
830 => 0.01141450714679
831 => 0.011620366356369
901 => 0.011627774862838
902 => 0.011515027877581
903 => 0.011805670370874
904 => 0.011802992049132
905 => 0.012078913840087
906 => 0.012606372672902
907 => 0.012450377141366
908 => 0.012268971310455
909 => 0.012288695154113
910 => 0.012505017036448
911 => 0.01237422388824
912 => 0.012421258016258
913 => 0.012504945844662
914 => 0.01255543678939
915 => 0.012281430284178
916 => 0.012217546260567
917 => 0.012086861968504
918 => 0.012052768876043
919 => 0.012159208505111
920 => 0.012131165423419
921 => 0.011627152206556
922 => 0.011574480021091
923 => 0.011576095401821
924 => 0.011443648687042
925 => 0.011241635656152
926 => 0.011772513839761
927 => 0.011729876891982
928 => 0.011682809001471
929 => 0.011688574549493
930 => 0.011919010775867
1001 => 0.011785346127262
1002 => 0.012140715502783
1003 => 0.012067662242557
1004 => 0.011992735441862
1005 => 0.011982378275679
1006 => 0.011953537849866
1007 => 0.011854633298701
1008 => 0.011735200109928
1009 => 0.011656339973574
1010 => 0.010752357473822
1011 => 0.010920131367552
1012 => 0.011113139939216
1013 => 0.011179765724722
1014 => 0.011065797708251
1015 => 0.011859133450635
1016 => 0.012004083535542
1017 => 0.011565020273498
1018 => 0.011482889464005
1019 => 0.011864517932832
1020 => 0.011634349313946
1021 => 0.011737994228937
1022 => 0.011513970613464
1023 => 0.011969169304721
1024 => 0.01196570145336
1025 => 0.011788618881333
1026 => 0.011938287858601
1027 => 0.011912279190628
1028 => 0.011712353402944
1029 => 0.011975507308792
1030 => 0.011975637829846
1031 => 0.011805199704377
1101 => 0.011606165287532
1102 => 0.011570582634783
1103 => 0.011543775885793
1104 => 0.011731401411969
1105 => 0.011899625872049
1106 => 0.012212649885876
1107 => 0.012291351560219
1108 => 0.012598529434648
1109 => 0.012415619966645
1110 => 0.012496701364737
1111 => 0.012584726692029
1112 => 0.012626929270957
1113 => 0.012558162433309
1114 => 0.013035336111755
1115 => 0.013075624190439
1116 => 0.013089132434732
1117 => 0.012928232155147
1118 => 0.013071149262598
1119 => 0.013004283080939
1120 => 0.013178250309655
1121 => 0.013205530592443
1122 => 0.013182425163446
1123 => 0.013191084355792
1124 => 0.012783900800444
1125 => 0.012762786185035
1126 => 0.012474886905706
1127 => 0.012592207990077
1128 => 0.012372881846192
1129 => 0.012442432425727
1130 => 0.012473089658484
1201 => 0.012457076059875
1202 => 0.01259884114816
1203 => 0.012478311862423
1204 => 0.012160215260516
1205 => 0.011842031993401
1206 => 0.011838037461669
1207 => 0.011754265423839
1208 => 0.011693713584102
1209 => 0.011705378016627
1210 => 0.011746484998262
1211 => 0.011691324371601
1212 => 0.011703095688014
1213 => 0.01189857797234
1214 => 0.011937780550345
1215 => 0.011804554872846
1216 => 0.011269634553313
1217 => 0.011138363765154
1218 => 0.01123271860447
1219 => 0.011187623068507
1220 => 0.0090292849744651
1221 => 0.0095363544945787
1222 => 0.0092350710041811
1223 => 0.0093739162979432
1224 => 0.0090663838712288
1225 => 0.0092131544644124
1226 => 0.0091860512950553
1227 => 0.01000140407812
1228 => 0.0099886734658936
1229 => 0.0099947669362774
1230 => 0.0097039097184057
1231 => 0.010167253164109
]
'min_raw' => 0.0059153179385551
'max_raw' => 0.013205530592443
'avg_raw' => 0.0095604242654989
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.005915'
'max' => '$0.0132055'
'avg' => '$0.00956'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.00091213002403171
'max_diff' => 0.0019977720417041
'year' => 2035
]
10 => [
'items' => [
101 => 0.010395512806754
102 => 0.010353268021834
103 => 0.010363900124071
104 => 0.010181205381813
105 => 0.0099965358207334
106 => 0.0097917088570543
107 => 0.010172252038192
108 => 0.010129942132538
109 => 0.010226985833485
110 => 0.010473795288241
111 => 0.010510138917992
112 => 0.010558985124937
113 => 0.010541477236857
114 => 0.010958586160931
115 => 0.010908071518052
116 => 0.011029797273335
117 => 0.010779398159363
118 => 0.010496047793801
119 => 0.010549903434873
120 => 0.010544716703558
121 => 0.010478683660866
122 => 0.01041907198246
123 => 0.010319835333401
124 => 0.010633834775285
125 => 0.010621086971375
126 => 0.01082745909898
127 => 0.010790980820834
128 => 0.010547369951626
129 => 0.010556070561478
130 => 0.010614586344103
131 => 0.010817110135892
201 => 0.010877232986166
202 => 0.010849381686438
203 => 0.010915303647051
204 => 0.010967405676865
205 => 0.010921846859818
206 => 0.011566863634149
207 => 0.011299007699034
208 => 0.01142955881808
209 => 0.01146069449072
210 => 0.011380941119964
211 => 0.011398236770327
212 => 0.011424434967844
213 => 0.011583505293035
214 => 0.012000951853705
215 => 0.012185836093771
216 => 0.012742069452037
217 => 0.012170484031346
218 => 0.012136568517938
219 => 0.0122367629424
220 => 0.012563330806983
221 => 0.012827983388267
222 => 0.012915783917653
223 => 0.01292738820704
224 => 0.013092107837037
225 => 0.013186522057111
226 => 0.013072106541399
227 => 0.012975151371636
228 => 0.012627869988065
229 => 0.012668068753829
301 => 0.012944998386746
302 => 0.013336177804316
303 => 0.013671850439872
304 => 0.013554309582273
305 => 0.014451063354843
306 => 0.014539972828483
307 => 0.014527688414013
308 => 0.014730237426468
309 => 0.014328218885134
310 => 0.014156348169972
311 => 0.012996114179827
312 => 0.013322092605728
313 => 0.013795921391817
314 => 0.013733208375211
315 => 0.013389101245274
316 => 0.013671589403758
317 => 0.013578189984341
318 => 0.013504521987102
319 => 0.013842009363698
320 => 0.013470928129914
321 => 0.013792219572648
322 => 0.013380159974007
323 => 0.01355484649901
324 => 0.013455685978782
325 => 0.013519854988025
326 => 0.013144724271174
327 => 0.013347135700204
328 => 0.01313630329026
329 => 0.013136203328246
330 => 0.013131549191111
331 => 0.013379592586436
401 => 0.013387681272653
402 => 0.013204376828735
403 => 0.013177959794613
404 => 0.01327563741549
405 => 0.013161282503252
406 => 0.013214788446947
407 => 0.013162903143779
408 => 0.013151222669164
409 => 0.013058150660165
410 => 0.013018052679619
411 => 0.013033776130989
412 => 0.01298010388547
413 => 0.012947764416135
414 => 0.013125116056688
415 => 0.013030364229485
416 => 0.013110593980237
417 => 0.013019162053454
418 => 0.01270221916023
419 => 0.012519941950727
420 => 0.01192126620605
421 => 0.012091049904586
422 => 0.012203616672369
423 => 0.012166413356288
424 => 0.012246340475002
425 => 0.01225124735095
426 => 0.012225262229895
427 => 0.012195174788614
428 => 0.012180529886139
429 => 0.012289680990848
430 => 0.01235304688099
501 => 0.012214914253465
502 => 0.012182551711517
503 => 0.012322211424456
504 => 0.012407403768669
505 => 0.013036416172902
506 => 0.012989816902313
507 => 0.013106771926846
508 => 0.013093604585905
509 => 0.013216192084012
510 => 0.013416570834075
511 => 0.013009144808417
512 => 0.013079859878739
513 => 0.013062522176546
514 => 0.013251810662905
515 => 0.013252401600898
516 => 0.013138913697664
517 => 0.013200437331138
518 => 0.013166096526746
519 => 0.013228155001721
520 => 0.012989194540644
521 => 0.013280222588048
522 => 0.013445216737493
523 => 0.013447507681418
524 => 0.013525713598781
525 => 0.013605175340202
526 => 0.013757695233202
527 => 0.013600921643167
528 => 0.013318901216295
529 => 0.013339262180195
530 => 0.013173913707108
531 => 0.013176693244813
601 => 0.013161855854706
602 => 0.013206383979323
603 => 0.012998965959964
604 => 0.013047646554526
605 => 0.012979493437066
606 => 0.013079711727172
607 => 0.012971893413694
608 => 0.013062513815781
609 => 0.013101622577207
610 => 0.013245934748823
611 => 0.01295057838861
612 => 0.012348326776269
613 => 0.012474927366778
614 => 0.012287675149154
615 => 0.012305006054814
616 => 0.012340017242442
617 => 0.012226534528393
618 => 0.012248183453982
619 => 0.012247410002019
620 => 0.012240744810853
621 => 0.012211223574018
622 => 0.01216841194001
623 => 0.012338960313174
624 => 0.012367939805128
625 => 0.012432357625942
626 => 0.012624021365659
627 => 0.012604869638319
628 => 0.012636106900208
629 => 0.012567916132894
630 => 0.012308169228934
701 => 0.012322274735499
702 => 0.012146378842607
703 => 0.012427859572493
704 => 0.012361201220292
705 => 0.01231822614699
706 => 0.012306500000078
707 => 0.012498638837134
708 => 0.012556129788588
709 => 0.012520305285716
710 => 0.012446828185158
711 => 0.012587925939784
712 => 0.012625677746486
713 => 0.012634128983774
714 => 0.012884127152162
715 => 0.012648101104253
716 => 0.012704914919882
717 => 0.013148160091198
718 => 0.012746197884467
719 => 0.012959126230199
720 => 0.012948704495701
721 => 0.013057631432276
722 => 0.012939769307563
723 => 0.012941230349856
724 => 0.013037950090184
725 => 0.01290212465839
726 => 0.01286849237136
727 => 0.012822029607708
728 => 0.012923479352337
729 => 0.012984293886064
730 => 0.013474414364554
731 => 0.013791054545868
801 => 0.013777308360518
802 => 0.013902922762836
803 => 0.013846332324096
804 => 0.013663586869601
805 => 0.01397551107699
806 => 0.013876805206309
807 => 0.01388494239836
808 => 0.013884639531665
809 => 0.013950270306651
810 => 0.013903764887601
811 => 0.013812097932971
812 => 0.013872950735372
813 => 0.014053661803229
814 => 0.014614594502749
815 => 0.014928499872771
816 => 0.014595697005323
817 => 0.01482525996688
818 => 0.014687603991593
819 => 0.014662587805972
820 => 0.0148067703104
821 => 0.014951205187215
822 => 0.014942005309971
823 => 0.014837153006217
824 => 0.014777924600354
825 => 0.015226421932516
826 => 0.015556867126899
827 => 0.015534332979975
828 => 0.015633791376002
829 => 0.015925804302868
830 => 0.015952502305276
831 => 0.015949138970619
901 => 0.015882965186004
902 => 0.016170489835174
903 => 0.016410347956027
904 => 0.01586764786681
905 => 0.016074300956318
906 => 0.016167074186145
907 => 0.016303292812107
908 => 0.016533116466999
909 => 0.016782765913926
910 => 0.016818069082988
911 => 0.016793019795126
912 => 0.016628369273941
913 => 0.016901538677705
914 => 0.017061554907819
915 => 0.017156840910946
916 => 0.017398470360796
917 => 0.016167647122028
918 => 0.015296409257744
919 => 0.015160352884409
920 => 0.015437028869739
921 => 0.015509986120621
922 => 0.015480577144271
923 => 0.014499919718538
924 => 0.015155189926014
925 => 0.015860205572575
926 => 0.015887288094826
927 => 0.016240233668676
928 => 0.01635516721525
929 => 0.016639334663833
930 => 0.016621559912554
1001 => 0.016690750164192
1002 => 0.016674844523548
1003 => 0.017201204883533
1004 => 0.017781858525866
1005 => 0.017761752336597
1006 => 0.01767827650553
1007 => 0.017802252349409
1008 => 0.018401549134923
1009 => 0.018346375490448
1010 => 0.018399971986376
1011 => 0.019106576671383
1012 => 0.020025263275236
1013 => 0.019598441113119
1014 => 0.020524522390145
1015 => 0.021107441464573
1016 => 0.022115539728839
1017 => 0.021989320861165
1018 => 0.022381766117677
1019 => 0.021763362745354
1020 => 0.02034338360256
1021 => 0.020118666467751
1022 => 0.020568555862383
1023 => 0.02167456503952
1024 => 0.020533723697442
1025 => 0.020764514415109
1026 => 0.020698046672895
1027 => 0.020694504889382
1028 => 0.020829680360594
1029 => 0.020633601289323
1030 => 0.01983473987901
1031 => 0.020200853355637
1101 => 0.020059479360098
1102 => 0.020216344348278
1103 => 0.021062879993441
1104 => 0.020688606405825
1105 => 0.020294339584789
1106 => 0.02078883767318
1107 => 0.02141850366768
1108 => 0.021379100301363
1109 => 0.021302641301378
1110 => 0.02173363668103
1111 => 0.022445514778417
1112 => 0.022637932567583
1113 => 0.022779971445736
1114 => 0.022799556207267
1115 => 0.023001291422897
1116 => 0.021916510324636
1117 => 0.02363808578673
1118 => 0.023935354311471
1119 => 0.023879480149338
1120 => 0.024209881603616
1121 => 0.024112669114292
1122 => 0.023971823469433
1123 => 0.024495580052868
1124 => 0.023895135394936
1125 => 0.023042879796882
1126 => 0.022575315520085
1127 => 0.023191041877106
1128 => 0.02356704447745
1129 => 0.02381555827802
1130 => 0.023890758403916
1201 => 0.022000718793318
1202 => 0.020982092269609
1203 => 0.02163502019273
1204 => 0.022431637321616
1205 => 0.021912085076263
1206 => 0.021932450540638
1207 => 0.021191705574694
1208 => 0.022497176814559
1209 => 0.022306980635652
1210 => 0.023293718748273
1211 => 0.023058225778628
1212 => 0.023862872404517
1213 => 0.023650981981275
1214 => 0.024530527281518
1215 => 0.024881401714522
1216 => 0.025470574496783
1217 => 0.025903972393778
1218 => 0.026158471928474
1219 => 0.026143192731015
1220 => 0.027151646678646
1221 => 0.026556996618425
1222 => 0.025809975994529
1223 => 0.025796464748263
1224 => 0.026183357314743
1225 => 0.026994177995292
1226 => 0.027204412000798
1227 => 0.027321904129225
1228 => 0.027141960844608
1229 => 0.026496510823192
1230 => 0.026217808776451
1231 => 0.02645527099505
]
'min_raw' => 0.0097917088570543
'max_raw' => 0.027321904129225
'avg_raw' => 0.01855680649314
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.009791'
'max' => '$0.027321'
'avg' => '$0.018556'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.0038763909184992
'max_diff' => 0.014116373536782
'year' => 2036
]
11 => [
'items' => [
101 => 0.026164875107064
102 => 0.026666179880423
103 => 0.027354578407167
104 => 0.027212426833618
105 => 0.02768761823144
106 => 0.028179391336593
107 => 0.028882648963874
108 => 0.029066506549199
109 => 0.029370416146265
110 => 0.029683238950748
111 => 0.029783709204737
112 => 0.02997553809369
113 => 0.029974527060756
114 => 0.030552616329191
115 => 0.03119026669421
116 => 0.031430964945364
117 => 0.031984437301715
118 => 0.031036635287449
119 => 0.031755554002835
120 => 0.032404036679815
121 => 0.031630888898516
122 => 0.032696492994708
123 => 0.032737867987052
124 => 0.033362581248798
125 => 0.032729314677439
126 => 0.032353283008825
127 => 0.033438872346391
128 => 0.033964154831096
129 => 0.033805935471812
130 => 0.03260187833541
131 => 0.031901065437584
201 => 0.03006690290726
202 => 0.032239547654353
203 => 0.033297779533746
204 => 0.032599137770492
205 => 0.032951492038313
206 => 0.034873822672288
207 => 0.035605721716015
208 => 0.03545349183128
209 => 0.035479216175883
210 => 0.03587413561497
211 => 0.037625425893992
212 => 0.036576012164211
213 => 0.037378249639846
214 => 0.037803753504241
215 => 0.038198985207078
216 => 0.037228421059172
217 => 0.035965731363164
218 => 0.035565784532332
219 => 0.032529671615861
220 => 0.032371628753388
221 => 0.032282914505494
222 => 0.031723583721398
223 => 0.031284102938694
224 => 0.030934611503413
225 => 0.030017441610258
226 => 0.030326959525394
227 => 0.028865182143938
228 => 0.029800375510384
301 => 0.027467343513732
302 => 0.029410361886964
303 => 0.028352865324619
304 => 0.029062945824955
305 => 0.029060468420983
306 => 0.027752985088637
307 => 0.02699885598902
308 => 0.027479416402439
309 => 0.027994615312558
310 => 0.028078204602387
311 => 0.028746173437423
312 => 0.02893258918134
313 => 0.028367740774354
314 => 0.027418996611261
315 => 0.027639368241797
316 => 0.026994390164961
317 => 0.02586409089403
318 => 0.026675891563545
319 => 0.026953076004473
320 => 0.027075496444436
321 => 0.025963976927224
322 => 0.025614713362653
323 => 0.025428768371481
324 => 0.027275513399453
325 => 0.027376682260877
326 => 0.026859088061998
327 => 0.029198662921224
328 => 0.028669145075712
329 => 0.02926074624417
330 => 0.027619371826152
331 => 0.027682074539324
401 => 0.026905021585642
402 => 0.027340119317007
403 => 0.027032606264333
404 => 0.027304967720032
405 => 0.02746822005359
406 => 0.028245145500528
407 => 0.029419233127575
408 => 0.028129098746936
409 => 0.027566968722227
410 => 0.027915711028017
411 => 0.02884445774506
412 => 0.030251556563051
413 => 0.029418525742298
414 => 0.029788210674767
415 => 0.029868970386374
416 => 0.029254724299628
417 => 0.03027420469242
418 => 0.030820552517162
419 => 0.031380992334594
420 => 0.031867606524903
421 => 0.031157140347176
422 => 0.03191744099867
423 => 0.031304772884698
424 => 0.030755146249999
425 => 0.030755979806728
426 => 0.030411190990017
427 => 0.029743119211454
428 => 0.029619916525427
429 => 0.030260832456924
430 => 0.03077478633902
501 => 0.030817118042422
502 => 0.031101669319454
503 => 0.031270063834091
504 => 0.032920558998769
505 => 0.033584401807615
506 => 0.03439613622837
507 => 0.034712352532099
508 => 0.035664050236505
509 => 0.034895477047089
510 => 0.034729191403007
511 => 0.032420684070064
512 => 0.032798702016508
513 => 0.033403945222072
514 => 0.032430664307599
515 => 0.033047987029447
516 => 0.033169859611423
517 => 0.032397592594555
518 => 0.032810093775952
519 => 0.031714612936239
520 => 0.029443111616277
521 => 0.030276733522733
522 => 0.030890559839983
523 => 0.030014554001027
524 => 0.031584760561248
525 => 0.03066747830441
526 => 0.030376743866306
527 => 0.02924248516895
528 => 0.029777811612481
529 => 0.030501848292493
530 => 0.030054477802544
531 => 0.030982838742205
601 => 0.032297645417583
602 => 0.033234654952549
603 => 0.03330658690975
604 => 0.03270415255353
605 => 0.033669557454057
606 => 0.033676589374801
607 => 0.032587608703212
608 => 0.031920614105333
609 => 0.031769071529326
610 => 0.032147654595863
611 => 0.032607324328928
612 => 0.033332095380797
613 => 0.033770059348168
614 => 0.034912037096932
615 => 0.03522102353268
616 => 0.035560505946732
617 => 0.036014159144406
618 => 0.036558886122506
619 => 0.035367054505748
620 => 0.035414408197734
621 => 0.03430459109824
622 => 0.03311859236356
623 => 0.034018617566353
624 => 0.035195280793669
625 => 0.034925352949226
626 => 0.0348949805526
627 => 0.034946058499124
628 => 0.034742541719433
629 => 0.033822042867573
630 => 0.033359774106796
701 => 0.033956218745536
702 => 0.03427320252633
703 => 0.03476481672645
704 => 0.034704214899568
705 => 0.035970560283567
706 => 0.036462623807492
707 => 0.036336732901487
708 => 0.036359899857925
709 => 0.037250757363975
710 => 0.038241574129521
711 => 0.039169604780243
712 => 0.040113637418001
713 => 0.038975569226963
714 => 0.038397728385841
715 => 0.03899391263551
716 => 0.038677568880735
717 => 0.040495373929327
718 => 0.040621234806856
719 => 0.042438908407453
720 => 0.044164097098965
721 => 0.043080536991792
722 => 0.044102285368237
723 => 0.04520738954173
724 => 0.047339314789088
725 => 0.046621357367812
726 => 0.046071413234942
727 => 0.045551718686691
728 => 0.046633120542416
729 => 0.048024326753989
730 => 0.048323979247155
731 => 0.048809530762146
801 => 0.048299032714547
802 => 0.048913871383364
803 => 0.051084522058088
804 => 0.050497993084914
805 => 0.04966502765377
806 => 0.051378547889958
807 => 0.051998664202293
808 => 0.056350965239695
809 => 0.061845925084003
810 => 0.059570975626608
811 => 0.058158841086242
812 => 0.058490726199507
813 => 0.060497299518519
814 => 0.061141747183132
815 => 0.059389916276282
816 => 0.060008692568395
817 => 0.06341821077468
818 => 0.065247307901911
819 => 0.062763148322613
820 => 0.055909450566528
821 => 0.049590028230367
822 => 0.051266223601214
823 => 0.051076195064558
824 => 0.054739297031152
825 => 0.050484004562882
826 => 0.050555652774742
827 => 0.054294503810713
828 => 0.05329704245445
829 => 0.051681282802502
830 => 0.049601825063933
831 => 0.045757755107629
901 => 0.042352955147509
902 => 0.049030551947906
903 => 0.048742601831451
904 => 0.048325607391007
905 => 0.049253583394703
906 => 0.053759571458062
907 => 0.053655693848742
908 => 0.052994877497067
909 => 0.053496100875644
910 => 0.051593415920858
911 => 0.052083781157038
912 => 0.049589027201582
913 => 0.050716760179577
914 => 0.051677816107964
915 => 0.051870762314264
916 => 0.052305479969135
917 => 0.048590865204633
918 => 0.050258618178535
919 => 0.051238266803381
920 => 0.046812178676404
921 => 0.051150777272069
922 => 0.048526202025855
923 => 0.047635381767493
924 => 0.048834753888733
925 => 0.048367357406658
926 => 0.047965517357813
927 => 0.047741283706068
928 => 0.048621970222036
929 => 0.048580885143418
930 => 0.047139911069408
1001 => 0.045260219131479
1002 => 0.045891105444632
1003 => 0.045661898532473
1004 => 0.044831223114527
1005 => 0.04539099805009
1006 => 0.042926032529482
1007 => 0.038685187469034
1008 => 0.041486819616563
1009 => 0.041378959826473
1010 => 0.041324572029257
1011 => 0.0434299211567
1012 => 0.043227540416765
1013 => 0.042860217392065
1014 => 0.04482447693912
1015 => 0.044107495781426
1016 => 0.046317062767433
1017 => 0.047772426490251
1018 => 0.04740329917406
1019 => 0.048772075789753
1020 => 0.045905639791076
1021 => 0.046857754848385
1022 => 0.047053984442122
1023 => 0.044800238281213
1024 => 0.043260652408703
1025 => 0.04315797958357
1026 => 0.040488549848639
1027 => 0.041914537666155
1028 => 0.043169347934184
1029 => 0.042568391193009
1030 => 0.042378146241825
1031 => 0.043350066438329
1101 => 0.043425592961531
1102 => 0.041703580228585
1103 => 0.042061641204815
1104 => 0.043554814998382
1105 => 0.042024017056307
1106 => 0.039049926709279
1107 => 0.038312311183201
1108 => 0.03821389967507
1109 => 0.036213427867319
1110 => 0.038361602179699
1111 => 0.037423866524853
1112 => 0.040386162222714
1113 => 0.038694114807206
1114 => 0.038621174024976
1115 => 0.038510913334549
1116 => 0.036789024611168
1117 => 0.037166008809851
1118 => 0.038419161702589
1119 => 0.038866300772496
1120 => 0.038819660504202
1121 => 0.038413020569759
1122 => 0.038599178249414
1123 => 0.037999499501612
1124 => 0.037787740454529
1125 => 0.037119370653021
1126 => 0.036137051686675
1127 => 0.036273649163858
1128 => 0.034327418253787
1129 => 0.033267008359688
1130 => 0.032973500876979
1201 => 0.032581010404578
1202 => 0.033017833720214
1203 => 0.03432190482615
1204 => 0.032748918398272
1205 => 0.030052143499845
1206 => 0.030214224266322
1207 => 0.030578371626382
1208 => 0.029899785429985
1209 => 0.029257560544517
1210 => 0.02981592297708
1211 => 0.028673263901661
1212 => 0.030716456516528
1213 => 0.030661193882277
1214 => 0.031422769738916
1215 => 0.031898998751183
1216 => 0.030801445058883
1217 => 0.03052541327337
1218 => 0.030682653523343
1219 => 0.028083822448271
1220 => 0.031210389795691
1221 => 0.031237428479945
1222 => 0.0310059068497
1223 => 0.032670707440264
1224 => 0.036183955950679
1225 => 0.034862130540967
1226 => 0.034350279789942
1227 => 0.033377251138083
1228 => 0.034673754043961
1229 => 0.034574202849385
1230 => 0.034123994593846
1231 => 0.03385170723616
]
'min_raw' => 0.025428768371481
'max_raw' => 0.065247307901911
'avg_raw' => 0.045338038136696
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.025428'
'max' => '$0.065247'
'avg' => '$0.045338'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.015637059514426
'max_diff' => 0.037925403772686
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.000798179982378
]
1 => [
'year' => 2028
'avg' => 0.0013699085630652
]
2 => [
'year' => 2029
'avg' => 0.0037423432922978
]
3 => [
'year' => 2030
'avg' => 0.0028872122767429
]
4 => [
'year' => 2031
'avg' => 0.0028356002640399
]
5 => [
'year' => 2032
'avg' => 0.0049716996591076
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.000798179982378
'min' => '$0.000798'
'max_raw' => 0.0049716996591076
'max' => '$0.004971'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.0049716996591076
]
1 => [
'year' => 2033
'avg' => 0.012787722757072
]
2 => [
'year' => 2034
'avg' => 0.008105473232631
]
3 => [
'year' => 2035
'avg' => 0.0095604242654989
]
4 => [
'year' => 2036
'avg' => 0.01855680649314
]
5 => [
'year' => 2037
'avg' => 0.045338038136696
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.0049716996591076
'min' => '$0.004971'
'max_raw' => 0.045338038136696
'max' => '$0.045338'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.045338038136696
]
]
]
]
'prediction_2025_max_price' => '$0.001364'
'last_price' => 0.0013232942416886
'sma_50day_nextmonth' => '$0.001085'
'sma_200day_nextmonth' => '$0.001038'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'augmenter'
'sma_200day_date_nextmonth' => '4 févr. 2026'
'sma_50day_date_nextmonth' => '4 févr. 2026'
'daily_sma3' => '$0.001323'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.00111'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.00098'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.000885'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.000952'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.001069'
'daily_sma100_action' => 'BUY'
'daily_sma200' => '$0.001016'
'daily_sma200_action' => 'BUY'
'daily_ema3' => '$0.001257'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.00117'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.001044'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.000957'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.000965'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.001016'
'daily_ema100_action' => 'BUY'
'daily_ema200' => '$0.001136'
'daily_ema200_action' => 'BUY'
'weekly_sma21' => '$0.001057'
'weekly_sma21_action' => 'BUY'
'weekly_sma50' => '$0.001398'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.001573'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.00283'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.0012096'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.001138'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.001092'
'weekly_ema10_action' => 'BUY'
'weekly_ema21' => '$0.001112'
'weekly_ema21_action' => 'BUY'
'weekly_ema50' => '$0.001311'
'weekly_ema50_action' => 'BUY'
'weekly_ema100' => '$0.00170011'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.002582'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '73.51'
'rsi_14_action' => 'SELL'
'stoch_rsi_14' => 188.26
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.0013090'
'vwma_10_action' => 'BUY'
'hma_9' => '0.001350'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 222.22
'cci_20_action' => 'SELL'
'adx_14' => 20.05
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000237'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 83.54
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.000220'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 10
'buy_signals' => 25
'sell_pct' => 28.57
'buy_pct' => 71.43
'overall_action' => 'bullish'
'overall_action_label' => 'Haussier'
'overall_action_dir' => 1
'last_updated' => 1767678539
'last_updated_date' => '6 janvier 2026'
]
Prévision du prix de Red pour 2026
La prévision du prix de Red pour 2026 suggère que le prix moyen pourrait varier entre $0.000457 à la baisse et $0.001364 à la hausse. Sur le marché des cryptomonnaies, comparé au prix moyen d'aujourd'hui, Red pourrait potentiellement gagner 3.13% d'ici 2026 si RED atteint l'objectif de prix prévu.
Prévision du prix de Red de 2027 à 2032
La prévision du prix de RED pour 2027-2032 se situe actuellement dans une fourchette de prix comprise entre $0.000798 à la baisse et $0.004971 à la hausse. Compte tenu de la volatilité des prix sur le marché, si Red atteint l'objectif de prix le plus élevé, il pourrait gagner 275.71% d'ici 2032 par rapport au prix actuel.
| Prévision du Prix de Red | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2027 | $0.00044 | $0.000798 | $0.001156 |
| 2028 | $0.000794 | $0.001369 | $0.001945 |
| 2029 | $0.001744 | $0.003742 | $0.005739 |
| 2030 | $0.001483 | $0.002887 | $0.00429 |
| 2031 | $0.001754 | $0.002835 | $0.003916 |
| 2032 | $0.002678 | $0.004971 | $0.007265 |
Prévision du prix de Red de 2032 à 2037
La prévision du prix de Red pour 2032-2037 est actuellement estimée entre $0.004971 à la baisse et $0.045338 à la hausse. Par rapport au prix actuel, Red pourrait potentiellement gagner 3326.16% d'ici 2037 s'il atteint l'objectif de prix le plus élevé. Veuillez noter que ces informations sont à titre général seulement et ne doivent pas être considérées comme un conseil en investissement à long terme.
| Prévision du Prix de Red | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2032 | $0.002678 | $0.004971 | $0.007265 |
| 2033 | $0.006223 | $0.012787 | $0.019352 |
| 2034 | $0.0050031 | $0.0081054 | $0.0112077 |
| 2035 | $0.005915 | $0.00956 | $0.0132055 |
| 2036 | $0.009791 | $0.018556 | $0.027321 |
| 2037 | $0.025428 | $0.045338 | $0.065247 |
Red Histogramme des prix potentiels
Prévision du prix de Red basée sur l'analyse technique
Au 6 janvier 2026, le sentiment global de prévision du prix pour Red est Haussier, avec 25 indicateurs techniques montrant des signaux haussiers et 10 indiquant des signaux baissiers. La prévision du prix de RED a été mise à jour pour la dernière fois le 6 janvier 2026.
Moyennes Mobiles Simples sur 50 et 200 jours de Red et Indice de Force Relative sur 14 jours - RSI (14)
Selon nos indicateurs techniques, le SMA sur 200 jours de Red devrait augmenter au cours du prochain mois, atteignant $0.001038 d'ici le 4 févr. 2026. Le SMA à court terme sur 50 jours pour Red devrait atteindre $0.001085 d'ici le 4 févr. 2026.
Le Relative Strength Index (RSI), un oscillateur de momentum, est un outil couramment utilisé pour identifier si une cryptomonnaie est survendue (en dessous de 30) ou surachetée (au-dessus de 70). Actuellement, le RSI est à 73.51, ce qui suggère que le marché de RED est dans un état SELL.
Moyennes Mobiles et Oscillateurs Populaires de RED pour le Samedi 19 Octobre 2024
Les moyennes mobiles (MA) sont des indicateurs largement utilisés sur les marchés financiers, conçus pour lisser les mouvements de prix sur une période donnée. En tant qu'indicateurs retardés, ils sont basés sur des données historiques de prix. Le tableau ci-dessous met en évidence deux types : la moyenne mobile simple (SMA) et la moyenne mobile exponentielle (EMA).
Moyenne Mobile Simple Quotidienne (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 3 | $0.001323 | SELL |
| SMA 5 | $0.00111 | BUY |
| SMA 10 | $0.00098 | BUY |
| SMA 21 | $0.000885 | BUY |
| SMA 50 | $0.000952 | BUY |
| SMA 100 | $0.001069 | BUY |
| SMA 200 | $0.001016 | BUY |
Moyenne Mobile Exponentielle Quotidienne (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 3 | $0.001257 | BUY |
| EMA 5 | $0.00117 | BUY |
| EMA 10 | $0.001044 | BUY |
| EMA 21 | $0.000957 | BUY |
| EMA 50 | $0.000965 | BUY |
| EMA 100 | $0.001016 | BUY |
| EMA 200 | $0.001136 | BUY |
Moyenne Mobile Simple Hebdomadaire (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 21 | $0.001057 | BUY |
| SMA 50 | $0.001398 | SELL |
| SMA 100 | $0.001573 | SELL |
| SMA 200 | $0.00283 | SELL |
Moyenne Mobile Exponentielle Hebdomadaire (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 21 | $0.001112 | BUY |
| EMA 50 | $0.001311 | BUY |
| EMA 100 | $0.00170011 | SELL |
| EMA 200 | $0.002582 | SELL |
Oscillateurs de Red
Un oscillateur est un outil d'analyse technique qui établit des limites hautes et basses entre deux extrêmes, créant un indicateur de tendance qui fluctue à l'intérieur de ces limites. Les traders utilisent cet indicateur pour identifier les conditions de surachat ou de survente à court terme.
| Période | Valeur | Action |
|---|---|---|
| RSI (14) | 73.51 | SELL |
| Stoch RSI (14) | 188.26 | SELL |
| Stochastique Rapide (14) | 100 | SELL |
| Indice de Canal des Matières Premières (20) | 222.22 | SELL |
| Indice Directionnel Moyen (14) | 20.05 | NEUTRAL |
| Oscillateur Impressionnant (5, 34) | 0.000237 | NEUTRAL |
| Momentum (10) | 0 | SELL |
| MACD (12, 26) | 0 | BUY |
| Plage de Pourcentage de Williams (14) | -0 | SELL |
| Oscillateur Ultime (7, 14, 28) | 83.54 | SELL |
| VWMA (10) | 0.0013090 | BUY |
| Moyenne Mobile de Hull (9) | 0.001350 | BUY |
| Nuage Ichimoku B/L (9, 26, 52, 26) | -0.000220 | NEUTRAL |
Prévision du cours de Red basée sur les flux monétaires mondiaux
Définitions des flux monétaires mondiaux utilisés pour la prédiction du cours de Red
M0 : le total de toutes les devises physiques, plus les comptes à la banque centrale qui peuvent être échangés contre des devises physiques.
M1 : M0 plus le montant des comptes à vue, y compris les comptes de "chèques" et les comptes "courants".
M2 : M1 plus la plupart des comptes d'épargne, comptes du marché monétaire et comptes de certificats de dépôt (CD) de moins de 100 000 $.
Prédictions du cours de Red par des sociétés Internet ou des niches technologiques
| Comparaison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Action Facebook | $0.001859 | $0.002612 | $0.003671 | $0.005159 | $0.007249 | $0.010186 |
| Action Amazon.com | $0.002761 | $0.005761 | $0.012021 | $0.025082 | $0.052337 | $0.1092042 |
| Action Apple | $0.001876 | $0.002662 | $0.003776 | $0.005356 | $0.007597 | $0.010776 |
| Action Netflix | $0.002087 | $0.003294 | $0.005198 | $0.0082018 | $0.012941 | $0.020419 |
| Action Google | $0.001713 | $0.002219 | $0.002873 | $0.003721 | $0.004819 | $0.006241 |
| Action Tesla | $0.002999 | $0.00680031 | $0.015415 | $0.034946 | $0.07922 | $0.179587 |
| Action Kodak | $0.000992 | $0.000744 | $0.000558 | $0.000418 | $0.000313 | $0.000235 |
| Action Nokia | $0.000876 | $0.00058 | $0.000384 | $0.000254 | $0.000168 | $0.000111 |
Ce calcul montre la valeur potentielle des cryptomonnaies si l'on suppose que leur capitalisation se comportera comme celle de certaines sociétés Internet ou niches technologiques. En extrapolant les données, vous pourrez obtenir une potentielle image des cours futurs pour 2024, 2025, 2026, 2027, 2028, 2029 et 2030.
Aperçu des prévisions relatives à Red
Vous vous posez peut-être des questions telles que : "Devrais-je investir dans Red maintenant ?", "Devrais-je acheter RED aujourd'hui ?", " Red sera-t-il un bon ou un mauvais investissement à court ou à long terme ?".
Nous mettons régulièrement à jour les prévisions de Red avec de nouvelles valeurs. Regardez nos prévisions similaires. Nous faisons une prévision des cours futurs pour une grande quantité de devises numériques comme Red en utilisant des méthodes d'analyse technique.
Si vous souhaitez trouver des cryptomonnaies ayant un bon rendement, vous devriez consulter un maximum d'informations disponibles à propos de Red afin de prendre une décision responsable concernant cet investissement.
Le cours de Red est de $0.001323 USD actuellement, mais ce cours peut subir une hausse ou une baisse, ce qui pourrait causer la perte de votre investissement, car les cryptomonnaies sont des actifs à haut risque.
Prévision du cours de Red basée sur le modèle de croissance du Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Red présente 1 % de la précédente croissance annuelle moyenne du Bitcoin | $0.001357 | $0.001392 | $0.001429 | $0.001466 |
| Si Red présente 2 % de la précédente croissance annuelle moyenne du Bitcoin | $0.001392 | $0.001464 | $0.00154 | $0.00162 |
| Si Red présente 5 % de la précédente croissance annuelle moyenne du Bitcoin | $0.001495 | $0.001689 | $0.0019091 | $0.002157 |
| Si Red présente 10 % de la précédente croissance annuelle moyenne du Bitcoin | $0.001667 | $0.00210062 | $0.002646 | $0.003334 |
| Si Red présente 20 % de la précédente croissance annuelle moyenne du Bitcoin | $0.002011 | $0.003056 | $0.004645 | $0.007061 |
| Si Red présente 50 % de la précédente croissance annuelle moyenne du Bitcoin | $0.003043 | $0.006998 | $0.016093 | $0.0370092 |
| Si Red présente 100 % de la précédente croissance annuelle moyenne du Bitcoin | $0.004762 | $0.017143 | $0.0617045 | $0.222094 |
Boîte à questions
Est-ce que RED est un bon investissement ?
La décision d'acquérir Red dépend entièrement de votre tolérance individuelle au risque. Comme vous pouvez le discerner, la valeur de Red a connu une baisse de 0% au cours des 24 heures précédentes, et Red a enregistré une déclin de sur une période de 30 jours précédents. Par conséquent, la détermination de si investir ou non dans Red dépendra de la mesure dans laquelle cet investissement s'aligne avec vos aspirations de trading.
Est-ce que Red peut monter ?
Il semble que la valeur moyenne de Red pourrait potentiellement s'envoler jusqu'à $0.001364 pour la fin de cette année. En regardant les perspectives de Red sur une période de cinq ans plus longue, la monnaie numérique pourrait potentiellement croître jusqu'à $0.00429. Cependant, compte tenu de l'imprévisibilité du marché, il est essentiel de mener des recherches approfondies avant d'investir des fonds dans un projet, un réseau ou un actif particulier.
Quel sera le prix de Red la semaine prochaine ?
Basé sur notre nouveau pronostic expérimental de Red, le prix de Red va augmenter de 0.86% durant la prochaine semaine et atteindre $0.001334 d'ici 13 janvier 2026.
Quel sera le prix de Red le mois prochain ?
Basé sur notre nouveau pronostic expérimental de Red, le prix de Red va diminuer de -11.62% durant le prochain mois et atteindre $0.001169 d'ici 5 février 2026.
Jusqu'où le prix de Red peut-il monter cette année en 2026 ?
Selon notre prédiction la plus récente sur la valeur de Red en 2026, RED devrait fluctuer dans la fourchette de $0.000457 et $0.001364. Cependant, il est crucial de garder à l'esprit que le marché des cryptomonnaies est exceptionnellement instable, et cette prévision de prix de Red ne prend pas en compte les fluctuations de prix soudaines et extrêmes.
Où sera Red dans 5 ans ?
L'avenir de Red semble suivre une tendance haussière, avec un prix maximum de $0.00429 prévue après une période de cinq ans. Selon la prévision de Red pour 2030, la valeur de Red pourrait potentiellement atteindre son point le plus élevé d'environ $0.00429, tandis que son point le plus bas devrait être autour de $0.001483.
Combien vaudra Red en 2026 ?
Basé sur notre nouvelle simulation expérimentale de prédiction de prix de Red, il est attendu que la valeur de RED en 2026 augmente de 3.13% jusqu'à $0.001364 si le meilleur scénario se produit. Le prix sera entre $0.001364 et $0.000457 durant 2026.
Combien vaudra Red en 2027 ?
Selon notre dernière simulation expérimentale pour la prédiction de prix de Red, le valeur de RED pourrait diminuer de -12.62% jusqu'à $0.001156 en 2027, en supposant les conditions les plus favorables. Il est prévu que le prix fluctue entre $0.001156 et $0.00044 tout au long de l'année.
Combien vaudra Red en 2028 ?
Notre nouveau modèle expérimental de prédiction de prix de Red suggère que la valeur de RED en 2028 pourrait augmenter de 47.02%, atteignant $0.001945 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.001945 et $0.000794 durant l'année.
Combien vaudra Red en 2029 ?
Basé sur notre modèle de prévision expérimental, la valeur de Red pourrait connaître un 333.75% croissance en 2029, atteignant potentiellement $0.005739 sous des conditions optimales. Le range de prix prévu pour 2029 se situe entre $0.005739 et $0.001744.
Combien vaudra Red en 2030 ?
En utilisant notre nouvelle simulation expérimentale pour les prédictions de prix de Red, il est prévu que la valeur de RED en 2030 augmente de 224.23%, atteignant $0.00429 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.00429 et $0.001483 au cours de 2030.
Combien vaudra Red en 2031 ?
Notre simulation expérimentale indique que le prix de Red pourrait augmenter de 195.98% en 2031, atteignant potentiellement $0.003916 dans des conditions idéales. Il est probable que le prix fluctue entre $0.003916 et $0.001754 durant l'année.
Combien vaudra Red en 2032 ?
Basé sur les résultats de notre dernière prédiction expérimentale de prix de Red, RED pourrait connaître une 449.04% hausse en valeur, atteignant $0.007265 si le scénario le plus positif se réalise en 2032. Il est prévu que le prix reste dans une fourchette de $0.007265 et $0.002678 tout au long de l'année.
Combien vaudra Red en 2033 ?
Selon notre prédiction expérimentale de prix de Red, la valeur de RED est anticipée à augmenter de 1362.43% en 2033, avec le prix potentiel le plus élevé étant $0.019352. Tout au long de l'année, le prix de RED pourrait osciller entre $0.019352 et $0.006223.
Combien vaudra Red en 2034 ?
Les résultats de notre nouvelle simulation de prédiction de prix de Red suggèrent que RED pourrait augmenter de 746.96% en 2034, atteignant potentiellement $0.0112077 dans les meilleures circonstances. La fourchette de prix prévue pour l'année est entre $0.0112077 et $0.0050031.
Combien vaudra Red en 2035 ?
Basé sur notre prédiction expérimentale pour le prix de Red, RED pourrait augmenter de 897.93%, avec la valeur potentiellement atteignant $0.0132055 en 2035. La fourchette de prix attendue pour l'année se situe entre $0.0132055 et $0.005915.
Combien vaudra Red en 2036 ?
Notre récente simulation de prédiction de prix de Red suggère que la valeur de RED pourrait augmenter de 1964.7% en 2036, pouvant atteindre $0.027321 si les conditions sont optimales. La fourchette de prix attendue pour 2036 est entre $0.027321 et $0.009791.
Combien vaudra Red en 2037 ?
Selon la simulation expérimentale, la valeur de Red pourrait augmenter de 4830.69% en 2037, avec un maximum de $0.065247 sous des conditions favorables. Il est prévu que le prix chute entre $0.065247 et $0.025428 au cours de l'année.
Prévisions liées
Prévision du cours de Golden Doge
Prévision du cours de Squid Game
Prévision du cours de Metagalaxy Land
Prévision du cours de YFLink
Prévision du cours de Helmet Insure
Prévision du cours de Rocki
Prévision du cours de WePower
Prévision du cours de X
Prévision du cours de OST
Prévision du cours de Exactly Protocol
Prévision du cours de Game Fantasy Token
Prévision du cours de FoxGirl
Prévision du cours de Gas DAO
Prévision du cours de Idle Mystic
Prévision du cours de Babylons
Prévision du cours de BlazeX
Prévision du cours de Autonio
Prévision du cours de VERA
Prévision du cours de Alliance Fan Token
Prévision du cours de Zero
Prévision du cours de Stablecomp
Prévision du cours de Atlas DEX
Prévision du cours de Knit Finance
Prévision du cours de Grumpy Cat
Prévision du cours de Atlas USV
Comment lire et prédire les mouvements de prix de Red ?
Les traders de Red utilisent des indicateurs et des modèles graphiques pour prédire la direction du marché. Ils identifient également des niveaux clés de support et de résistance pour évaluer quand une tendance baissière pourrait ralentir ou une tendance haussière pourrait s'arrêter.
Indicateurs de prédiction du prix de Red
Les moyennes mobiles sont des outils populaires pour la prédiction du prix de Red. Une moyenne mobile simple (SMA) calcule le prix de clôture moyen de RED sur une période spécifique, comme une SMA de 12 jours. Une moyenne mobile exponentielle (EMA) donne plus de poids aux prix récents, réagissant plus rapidement aux changements de prix.
Les moyennes mobiles couramment utilisées sur le marché des cryptomonnaies incluent les moyennes sur 50 jours, 100 jours et 200 jours, qui aident à identifier les niveaux clés de résistance et de support. Un mouvement de prix de RED au-dessus de ces moyennes est considéré comme haussier, tandis qu'une chute en dessous indique une faiblesse.
Les traders utilisent également le RSI et les niveaux de retracement de Fibonacci pour évaluer la direction future de RED.
Comment lire les graphiques de Red et prédire les mouvements de prix ?
La plupart des traders préfèrent les graphiques en chandeliers aux simples graphiques linéaires parce qu'ils fournissent des informations plus détaillées. Les chandeliers peuvent représenter l'action des prix de Red dans différentes périodes, comme 5 minutes pour les tendances à court terme et hebdomadaire pour les tendances à long terme. Les options populaires incluent les graphiques de 1 heure, 4 heures et 1 jour.
Par exemple, un graphique en chandeliers de 1 heure montre les prix d'ouverture, de clôture, les plus hauts et les plus bas de RED au sein de chaque heure. La couleur du chandelier est cruciale : le vert indique que le prix a clôturé plus haut qu'il n'a ouvert, tandis que le rouge signifie le contraire. Certains graphiques utilisent des chandeliers creux et pleins pour transmettre la même information.
Qu'est-ce qui affecte le prix de Red ?
L'action du prix de Red est déterminée par l'offre et la demande, influencée par des facteurs tels que les réductions de récompenses de bloc, les hard forks et les mises à jour de protocole. Les événements du monde réel, tels que les réglementations, l'adoption par les entreprises et les gouvernements et les piratages d'échanges de cryptomonnaies, impactent également le prix de RED. La capitalisation boursière de Red peut changer rapidement.
Les traders surveillent souvent l'activité des « baleines » de RED, de grands détenteurs de Red, car leurs actions peuvent influencer significativement les mouvements de prix sur le marché relativement petit de Red.
Modèles de prédiction de prix haussiers et baissiers
Les traders identifient souvent des modèles de chandeliers pour obtenir un avantage dans les prédictions de prix des cryptomonnaies. Certaines formations indiquent des tendances haussières, tandis que d'autres suggèrent des mouvements baissiers.
Modèles de chandeliers haussiers couramment suivis :
- Marteau
- Englobante haussière
- Ligne pénétrante
- Étoile du matin
- Trois soldats blancs
Modèles de chandeliers baissiers courants :
- Harami baissier
- Nuage sombre
- Étoile du soir
- Étoile filante
- Pendu


