Prédiction du prix de Radpie jusqu'à $0.066916 d'ici 2026
| Année | Prix min. | Prix max. |
|---|---|---|
| 2026 | $0.022417 | $0.066916 |
| 2027 | $0.02158 | $0.056692 |
| 2028 | $0.038946 | $0.095392 |
| 2029 | $0.085554 | $0.281436 |
| 2030 | $0.07276 | $0.210372 |
| 2031 | $0.086025 | $0.192046 |
| 2032 | $0.131311 | $0.356236 |
| 2033 | $0.30514 | $0.948883 |
| 2034 | $0.245317 | $0.549542 |
| 2035 | $0.290041 | $0.647498 |
Calculateur de profit d’investissement
Si vous ouvrez une position short de $10,000.00 sur Radpie aujourd’hui et la fermez le Apr 06, 2026, notre prévision indique que vous pourriez gagner environ $3,954.44, soit un rendement de 39.54% sur les 90 prochains jours.
Prévision du prix à long terme de Radpie pour 2027, 2028, 2029, 2030, 2031, 2032 et 2037
[
'name' => 'Radpie'
'name_with_ticker' => 'Radpie <small>RDP</small>'
'name_lang' => 'Radpie'
'name_lang_with_ticker' => 'Radpie <small>RDP</small>'
'name_with_lang' => 'Radpie'
'name_with_lang_with_ticker' => 'Radpie <small>RDP</small>'
'image' => '/uploads/coins/radpie.png?1717243195'
'price_for_sd' => 0.06488
'ticker' => 'RDP'
'marketcap' => '$0'
'low24h' => '$0.0632'
'high24h' => '$0.06495'
'volume24h' => '$359.21'
'current_supply' => '0'
'max_supply' => '10M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.06488'
'change_24h_pct' => '2.6534%'
'ath_price' => '$1.12'
'ath_days' => 722
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '15 janv. 2024'
'ath_pct' => '-94.21%'
'fdv' => '$648.84K'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$3.19'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.065439'
'next_week_prediction_price_date' => '13 janvier 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.057345'
'next_month_prediction_price_date' => '5 février 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.022417'
'current_year_max_price_prediction' => '$0.066916'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.07276'
'grand_prediction_max_price' => '$0.210372'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.066113517671016
107 => 0.066360361546793
108 => 0.066916513403078
109 => 0.06216425668308
110 => 0.064297880431433
111 => 0.06555118449008
112 => 0.059888711157519
113 => 0.065439255598535
114 => 0.062081530466402
115 => 0.060941868125217
116 => 0.062476273328527
117 => 0.061878314128539
118 => 0.061364223921732
119 => 0.061077352753143
120 => 0.06220405058833
121 => 0.062151488787624
122 => 0.06030799244663
123 => 0.057903226620328
124 => 0.058710344965383
125 => 0.05841711130385
126 => 0.057354394686558
127 => 0.058070537373719
128 => 0.054917007410984
129 => 0.049491523016322
130 => 0.053075764194517
131 => 0.052937774808061
201 => 0.052868194302089
202 => 0.055561652486352
203 => 0.055302738630589
204 => 0.054832807447085
205 => 0.057345764031849
206 => 0.056428501074374
207 => 0.059255289374978
208 => 0.061117194974959
209 => 0.060644955488468
210 => 0.062396086704621
211 => 0.058728939341903
212 => 0.059947018595382
213 => 0.06019806304134
214 => 0.057314754537669
215 => 0.055345100139433
216 => 0.055213746646775
217 => 0.05179863735533
218 => 0.053622961173021
219 => 0.05522829063694
220 => 0.054459462402321
221 => 0.054216074351331
222 => 0.055459491119412
223 => 0.055556115251436
224 => 0.053353074801516
225 => 0.053811156672272
226 => 0.0557214342231
227 => 0.053763022579259
228 => 0.049958148660001
301 => 0.049014487321527
302 => 0.048888585503846
303 => 0.046329301111181
304 => 0.049077547284456
305 => 0.047877864181403
306 => 0.051667648729538
307 => 0.049502944120665
308 => 0.049409628031517
309 => 0.049268567076276
310 => 0.047065685276802
311 => 0.047547976390445
312 => 0.049151185507205
313 => 0.049723228581508
314 => 0.049663559802248
315 => 0.049143328907905
316 => 0.049381487947322
317 => 0.04861429470125
318 => 0.048343382798316
319 => 0.047488310312466
320 => 0.046231589978069
321 => 0.04640634464848
322 => 0.043916452827277
323 => 0.042559827614525
324 => 0.042184331635668
325 => 0.041682202719683
326 => 0.042241048432842
327 => 0.043909399276586
328 => 0.041897014198655
329 => 0.038446921134942
330 => 0.038654277606744
331 => 0.039120146034193
401 => 0.03825200330167
402 => 0.037430379063033
403 => 0.038144714678046
404 => 0.036682864765178
405 => 0.039296803612093
406 => 0.039226103891763
407 => 0.040200418648999
408 => 0.04080967766165
409 => 0.039405532887437
410 => 0.039052394273933
411 => 0.03925355807744
412 => 0.035928768503384
413 => 0.039928712408547
414 => 0.039963304089541
415 => 0.039667109115659
416 => 0.041796955760745
417 => 0.046291596497706
418 => 0.044600531855956
419 => 0.043945700513972
420 => 0.04270086565418
421 => 0.044359534193872
422 => 0.044232174329284
423 => 0.043656204721821
424 => 0.043307856506093
425 => 0.043949698774511
426 => 0.043228325146082
427 => 0.043098746620394
428 => 0.042313641737554
429 => 0.042033395014376
430 => 0.041825911497479
501 => 0.041597492532284
502 => 0.042101327851044
503 => 0.040959570733678
504 => 0.039582723577965
505 => 0.03946825363466
506 => 0.039784315212425
507 => 0.039644481492281
508 => 0.039467584164606
509 => 0.039129838990953
510 => 0.039029637212714
511 => 0.039355244380999
512 => 0.038987652872083
513 => 0.039530054167234
514 => 0.039382551027386
515 => 0.038558610478665
516 => 0.037531675493097
517 => 0.037522533617657
518 => 0.037301282159527
519 => 0.037019485162219
520 => 0.03694109568421
521 => 0.038084555324994
522 => 0.040451482560547
523 => 0.03998679810844
524 => 0.040322580247866
525 => 0.041974296038043
526 => 0.042499326818914
527 => 0.042126672406687
528 => 0.041616560062909
529 => 0.041639002417171
530 => 0.04338221071737
531 => 0.043490932480791
601 => 0.043765637301985
602 => 0.044118710628792
603 => 0.042186802320975
604 => 0.041548009709606
605 => 0.041245314331475
606 => 0.040313129724685
607 => 0.04131841090364
608 => 0.040732676611095
609 => 0.040811712178692
610 => 0.04076024016161
611 => 0.04078834736346
612 => 0.039296072962913
613 => 0.039839779322839
614 => 0.038935762045879
615 => 0.037725384392732
616 => 0.037721326782426
617 => 0.038017564998293
618 => 0.037841350915693
619 => 0.037367163350294
620 => 0.037434519455857
621 => 0.036844409095702
622 => 0.037506169537872
623 => 0.037525146459461
624 => 0.037270332642891
625 => 0.038289865909397
626 => 0.038707569520544
627 => 0.038539845607837
628 => 0.038695801563711
629 => 0.040006107845349
630 => 0.040219744941928
701 => 0.040314628428153
702 => 0.040187497126264
703 => 0.038719751557176
704 => 0.038784852314501
705 => 0.03830718615228
706 => 0.037903608580424
707 => 0.037919749566813
708 => 0.038127240900159
709 => 0.039033367722087
710 => 0.040940258199742
711 => 0.04101262329945
712 => 0.041100331911335
713 => 0.040743576907982
714 => 0.040635976185285
715 => 0.040777929312625
716 => 0.041494057116494
717 => 0.043336132254847
718 => 0.042685019872891
719 => 0.042155655371193
720 => 0.042620050754827
721 => 0.042548560725568
722 => 0.041945112933599
723 => 0.041928176163923
724 => 0.040769966917204
725 => 0.04034180332984
726 => 0.03998399778875
727 => 0.03959328347863
728 => 0.039361654938729
729 => 0.039717541649306
730 => 0.039798937150743
731 => 0.03902078463823
801 => 0.038914725326147
802 => 0.039550181465453
803 => 0.039270540910737
804 => 0.039558158156015
805 => 0.039624887824054
806 => 0.039614142810585
807 => 0.039322165954949
808 => 0.039508263295856
809 => 0.039068087606322
810 => 0.038589462656205
811 => 0.038284129757418
812 => 0.038017686306694
813 => 0.03816552461894
814 => 0.037638508029994
815 => 0.037469904816441
816 => 0.03944521770408
817 => 0.04090440257237
818 => 0.040883185446484
819 => 0.040754031649258
820 => 0.04056213530447
821 => 0.041480018703624
822 => 0.041160246481017
823 => 0.041392907490827
824 => 0.041452129482576
825 => 0.041631376615076
826 => 0.041695442058133
827 => 0.041501791792903
828 => 0.040851877850404
829 => 0.039232354097659
830 => 0.038478461418936
831 => 0.038229664277882
901 => 0.038238707581426
902 => 0.03798925289859
903 => 0.03806272848246
904 => 0.037963701089038
905 => 0.037776167163197
906 => 0.038153944927476
907 => 0.038197480295566
908 => 0.038109302451275
909 => 0.03813007152569
910 => 0.037399996636212
911 => 0.037455502644419
912 => 0.037146438137356
913 => 0.03708849226811
914 => 0.03630720410758
915 => 0.03492303888167
916 => 0.035690000780994
917 => 0.034763618657774
918 => 0.034412783710731
919 => 0.036073581784004
920 => 0.035906883720816
921 => 0.035621569098543
922 => 0.035199529307424
923 => 0.035042990643559
924 => 0.034091911276033
925 => 0.034035716433189
926 => 0.034507097049038
927 => 0.03428957111404
928 => 0.03398408231779
929 => 0.032877632864674
930 => 0.031633617346547
1001 => 0.031671166355436
1002 => 0.032066864546021
1003 => 0.033217410402317
1004 => 0.032767872231617
1005 => 0.032441727130917
1006 => 0.032380649957442
1007 => 0.033145158657209
1008 => 0.034227098636902
1009 => 0.034734720668332
1010 => 0.034231682651895
1011 => 0.033653819664103
1012 => 0.033688991506611
1013 => 0.033922974017551
1014 => 0.033947562271117
1015 => 0.033571432871339
1016 => 0.033677311094186
1017 => 0.033516472391974
1018 => 0.032529405573384
1019 => 0.032511552664659
1020 => 0.032269310548774
1021 => 0.032261975553778
1022 => 0.031849861284531
1023 => 0.031792203649452
1024 => 0.030973925754313
1025 => 0.031512518742867
1026 => 0.031151258843546
1027 => 0.030606754962674
1028 => 0.030512882288376
1029 => 0.030510060362432
1030 => 0.031069144099247
1031 => 0.031505985523888
1101 => 0.031157543114163
1102 => 0.031078209531742
1103 => 0.031925284638431
1104 => 0.031817486609844
1105 => 0.03172413421231
1106 => 0.034130222778542
1107 => 0.032225615928937
1108 => 0.031395098631351
1109 => 0.030367175764631
1110 => 0.030701872633272
1111 => 0.030772398181215
1112 => 0.028300428983776
1113 => 0.027297551388239
1114 => 0.026953401590096
1115 => 0.026755338515701
1116 => 0.026845598345822
1117 => 0.025942890884029
1118 => 0.026549525227757
1119 => 0.025767856869807
1120 => 0.025636807625828
1121 => 0.027034527479971
1122 => 0.027229012032314
1123 => 0.026399280510404
1124 => 0.026932102468802
1125 => 0.026738893819908
1126 => 0.02578125633028
1127 => 0.025744681622081
1128 => 0.025264172792371
1129 => 0.024512269518719
1130 => 0.024168629546402
1201 => 0.0239896588652
1202 => 0.024063505656333
1203 => 0.024026166458987
1204 => 0.023782502939099
1205 => 0.024040132966725
1206 => 0.023381994706218
1207 => 0.023119918747903
1208 => 0.023001545117649
1209 => 0.022417409530424
1210 => 0.023347029015974
1211 => 0.023530175765665
1212 => 0.023713683371029
1213 => 0.025310991789767
1214 => 0.025231194775113
1215 => 0.025952520924858
1216 => 0.025924491517112
1217 => 0.025718757614496
1218 => 0.024850800120944
1219 => 0.025196752508019
1220 => 0.024131964833539
1221 => 0.024929776157783
1222 => 0.024565688386796
1223 => 0.024806677716173
1224 => 0.024373357172821
1225 => 0.024613174652879
1226 => 0.023573606654313
1227 => 0.022602872684368
1228 => 0.022993524371365
1229 => 0.02341820743157
1230 => 0.024339028513325
1231 => 0.023790595073641
]
'min_raw' => 0.022417409530424
'max_raw' => 0.066916513403078
'avg_raw' => 0.044666961466751
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.022417'
'max' => '$0.066916'
'avg' => '$0.044666'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.042466590469576
'max_diff' => 0.0020325134030783
'year' => 2026
]
1 => [
'items' => [
101 => 0.023987832477116
102 => 0.023327120192617
103 => 0.021963882026564
104 => 0.021971597806536
105 => 0.021761893314447
106 => 0.021580678015924
107 => 0.023853589251517
108 => 0.023570916809961
109 => 0.023120515269598
110 => 0.02372339562962
111 => 0.023882806765808
112 => 0.02388734497675
113 => 0.024327190924828
114 => 0.024561936786164
115 => 0.024603311761671
116 => 0.025295418864473
117 => 0.025527404036219
118 => 0.026482918126869
119 => 0.024542020239908
120 => 0.024502048725169
121 => 0.023731879392639
122 => 0.023243425826053
123 => 0.023765324226234
124 => 0.024227654962557
125 => 0.023746245297359
126 => 0.023809107236521
127 => 0.023162854093606
128 => 0.023393859183162
129 => 0.023592831886033
130 => 0.023482970854582
131 => 0.023318503573167
201 => 0.024189749114529
202 => 0.024140590026646
203 => 0.024951913904611
204 => 0.025584398885812
205 => 0.026717925042338
206 => 0.025535031405948
207 => 0.025491922060262
208 => 0.025913322829303
209 => 0.025527339521957
210 => 0.025771267648509
211 => 0.026678624450036
212 => 0.026697795469458
213 => 0.026376656193674
214 => 0.026357114839557
215 => 0.02641879315035
216 => 0.026780044943153
217 => 0.026653812466601
218 => 0.026799891884282
219 => 0.026982566432939
220 => 0.027738185818589
221 => 0.027920363094331
222 => 0.027477766762365
223 => 0.0275177282556
224 => 0.027352185077904
225 => 0.027192272442499
226 => 0.027551732693524
227 => 0.028208653367482
228 => 0.028204566698064
301 => 0.028356959525709
302 => 0.028451898994841
303 => 0.028044349293385
304 => 0.027779049423755
305 => 0.027880782275241
306 => 0.028043455320219
307 => 0.027828029599207
308 => 0.026498322254217
309 => 0.026901670520653
310 => 0.026834533646395
311 => 0.02673892257333
312 => 0.027144492374231
313 => 0.02710537417754
314 => 0.025933632314257
315 => 0.026008643426637
316 => 0.025938193988445
317 => 0.026165830535842
318 => 0.025515046401358
319 => 0.025715223218027
320 => 0.025840772240901
321 => 0.025914721579887
322 => 0.02618187729984
323 => 0.026150529659603
324 => 0.026179928686508
325 => 0.026576050092703
326 => 0.028579496232786
327 => 0.028688539385836
328 => 0.028151571019558
329 => 0.028366079290653
330 => 0.027954270317953
331 => 0.028230720440207
401 => 0.028419860592782
402 => 0.027565172612857
403 => 0.027514563537565
404 => 0.027101054882745
405 => 0.027323251011518
406 => 0.026969720994174
407 => 0.027056464894475
408 => 0.026813921387035
409 => 0.027250451410496
410 => 0.027738559806633
411 => 0.027861875263482
412 => 0.027537485387154
413 => 0.027302605738359
414 => 0.02689023444924
415 => 0.027576017093338
416 => 0.02777656083732
417 => 0.027574963722425
418 => 0.02752824926592
419 => 0.027439725455254
420 => 0.027547030010832
421 => 0.027775468633021
422 => 0.027667741197396
423 => 0.027738897066539
424 => 0.027467724268977
425 => 0.028044484209295
426 => 0.028960517799357
427 => 0.028963462997136
428 => 0.02885573498082
429 => 0.028811654997575
430 => 0.028922190479799
501 => 0.028982151444502
502 => 0.029339602925271
503 => 0.029723162605632
504 => 0.031513068273677
505 => 0.031010469924513
506 => 0.032598580715167
507 => 0.033854570160197
508 => 0.034231186476999
509 => 0.033884717186708
510 => 0.032699464460525
511 => 0.032641310307232
512 => 0.034412578280942
513 => 0.033912113949156
514 => 0.033852585309355
515 => 0.03321930115709
516 => 0.033593650524846
517 => 0.033511774826744
518 => 0.033382530031793
519 => 0.034096762548071
520 => 0.035433742058565
521 => 0.03522536126374
522 => 0.03506981466691
523 => 0.034388254758535
524 => 0.034798706055293
525 => 0.034652552210194
526 => 0.035280521880262
527 => 0.034908526558945
528 => 0.033908322439623
529 => 0.034067608242341
530 => 0.034043532513699
531 => 0.034539009303132
601 => 0.034390279469434
602 => 0.034014490626641
603 => 0.035429172407946
604 => 0.035337310841942
605 => 0.035467549540059
606 => 0.035524884642735
607 => 0.036385976513527
608 => 0.036738738301123
609 => 0.036818821402872
610 => 0.037153917817513
611 => 0.03681048389881
612 => 0.038184464437857
613 => 0.039098081322337
614 => 0.040159294347955
615 => 0.041710011805553
616 => 0.042293095914548
617 => 0.042187766989242
618 => 0.043363503267499
619 => 0.045476275224378
620 => 0.042614818608189
621 => 0.045627939373196
622 => 0.044674020127147
623 => 0.042412294755039
624 => 0.042266666305066
625 => 0.043798332986229
626 => 0.047195422267593
627 => 0.046344489932079
628 => 0.047196814088056
629 => 0.046202532686246
630 => 0.046153158234184
701 => 0.047148524059648
702 => 0.049474250565409
703 => 0.048369385081076
704 => 0.046785289485154
705 => 0.047954961021926
706 => 0.046941683288783
707 => 0.044658484957434
708 => 0.046343839240159
709 => 0.045216890827427
710 => 0.045545794286135
711 => 0.047914472228772
712 => 0.04762946663197
713 => 0.04799829026504
714 => 0.047347326206466
715 => 0.046739223128148
716 => 0.04560415357414
717 => 0.045268115437451
718 => 0.045360984289046
719 => 0.04526806941626
720 => 0.04463300843262
721 => 0.044495867073668
722 => 0.04426729213378
723 => 0.044338137065438
724 => 0.043908349306491
725 => 0.044719447606306
726 => 0.044869994598125
727 => 0.045460244300745
728 => 0.04552152598295
729 => 0.047165363003068
730 => 0.046259965195946
731 => 0.046867384213249
801 => 0.046813050939092
802 => 0.042461313202004
803 => 0.043060944266467
804 => 0.043993782028179
805 => 0.043573539880959
806 => 0.042979415806309
807 => 0.042499628761112
808 => 0.041772702326893
809 => 0.04279583732367
810 => 0.044141151046155
811 => 0.045555645359057
812 => 0.047255067594671
813 => 0.046875776335138
814 => 0.045523875842456
815 => 0.045584521110994
816 => 0.045959406298061
817 => 0.045473895918898
818 => 0.045330709429795
819 => 0.045939734673236
820 => 0.045943928695373
821 => 0.045385290328257
822 => 0.04476446601295
823 => 0.044761864736401
824 => 0.044651395045943
825 => 0.046222184998768
826 => 0.047085960648045
827 => 0.047184991134191
828 => 0.047079295107294
829 => 0.047119973313121
830 => 0.046617361294805
831 => 0.047766183323712
901 => 0.048820456024161
902 => 0.048537888419189
903 => 0.048114279409985
904 => 0.04777685443038
905 => 0.048458401817515
906 => 0.048428053585221
907 => 0.04881124787185
908 => 0.048793863965571
909 => 0.048665010139643
910 => 0.048537893020965
911 => 0.049041898027857
912 => 0.048896752679945
913 => 0.048751381881217
914 => 0.048459818489214
915 => 0.048499446796542
916 => 0.048075910929406
917 => 0.047879963857586
918 => 0.044933390040181
919 => 0.044145969234093
920 => 0.044393707849117
921 => 0.044475269833713
922 => 0.044132583289797
923 => 0.044623907764823
924 => 0.044547335365831
925 => 0.044845233776952
926 => 0.044659119782929
927 => 0.044666757966163
928 => 0.045214079538896
929 => 0.045372969319933
930 => 0.0452921566949
1001 => 0.045348755087378
1002 => 0.046653041153358
1003 => 0.046467613383496
1004 => 0.046369108576469
1005 => 0.04639639508121
1006 => 0.046729668135276
1007 => 0.04682296639438
1008 => 0.046427655114603
1009 => 0.046614086199413
1010 => 0.047407886096909
1011 => 0.047685671135849
1012 => 0.048572227635764
1013 => 0.048195602677315
1014 => 0.048886914088494
1015 => 0.051011769681033
1016 => 0.052709251357175
1017 => 0.051148177056397
1018 => 0.054265385981645
1019 => 0.056692580267014
1020 => 0.056599420507638
1021 => 0.056176183041968
1022 => 0.053412886878375
1023 => 0.050870060550212
1024 => 0.05299724274783
1025 => 0.053002665372711
1026 => 0.052819938535431
1027 => 0.05168503784244
1028 => 0.052780446451354
1029 => 0.05286739600879
1030 => 0.05281872737838
1031 => 0.051948601677979
1101 => 0.050620080559577
1102 => 0.050879670406083
1103 => 0.051304883870148
1104 => 0.050499866073851
1105 => 0.050242614110186
1106 => 0.050720894454828
1107 => 0.052262013378933
1108 => 0.051970673773425
1109 => 0.051963065718929
1110 => 0.053209540098512
1111 => 0.052317333448738
1112 => 0.050882944665369
1113 => 0.050520742580304
1114 => 0.049235169186886
1115 => 0.050123119308776
1116 => 0.050155075052875
1117 => 0.049668753845747
1118 => 0.050922406951058
1119 => 0.050910854316991
1120 => 0.052101011358845
1121 => 0.054376144620297
1122 => 0.053703275762377
1123 => 0.05292080248854
1124 => 0.053005879029036
1125 => 0.053938958691489
1126 => 0.053374797427433
1127 => 0.05357767375146
1128 => 0.053938651613875
1129 => 0.054156438520846
1130 => 0.052974542844674
1201 => 0.052698986425952
1202 => 0.05213529470041
1203 => 0.05198823805102
1204 => 0.052447353199661
1205 => 0.052326392578772
1206 => 0.050152389296322
1207 => 0.049925193857266
1208 => 0.049932161617022
1209 => 0.049360867882961
1210 => 0.048489507812312
1211 => 0.050779390051771
1212 => 0.050595480461061
1213 => 0.050392458506389
1214 => 0.05041732753741
1215 => 0.051411287806249
1216 => 0.050834740654125
1217 => 0.052367585752266
1218 => 0.052052478881629
1219 => 0.051729290708768
1220 => 0.051684616258726
1221 => 0.051560216385294
1222 => 0.05113360293214
1223 => 0.050618441551963
1224 => 0.050278287386256
1225 => 0.046379062413606
1226 => 0.047102735887781
1227 => 0.047935256254908
1228 => 0.048222638949524
1229 => 0.047731050964106
1230 => 0.051153013822069
1231 => 0.051778239411073
]
'min_raw' => 0.021580678015924
'max_raw' => 0.056692580267014
'avg_raw' => 0.039136629141469
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.02158'
'max' => '$0.056692'
'avg' => '$0.039136'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00083673151449964
'max_diff' => -0.010223933136065
'year' => 2027
]
2 => [
'items' => [
101 => 0.049884390319523
102 => 0.049530128479843
103 => 0.0511762391693
104 => 0.05018343319471
105 => 0.050630493664277
106 => 0.049664193458075
107 => 0.051627640875424
108 => 0.051612682695778
109 => 0.050848857303958
110 => 0.051494437294674
111 => 0.051382251884344
112 => 0.050519894898198
113 => 0.051654979130044
114 => 0.051655542117661
115 => 0.05092037678503
116 => 0.050061864624903
117 => 0.049908382927824
118 => 0.04979275508644
119 => 0.050602056303413
120 => 0.051327673243931
121 => 0.052677866474541
122 => 0.053017337132516
123 => 0.054342313710435
124 => 0.053553354670223
125 => 0.053903089994019
126 => 0.054282777161082
127 => 0.054464813151505
128 => 0.0541681952737
129 => 0.056226429281325
130 => 0.056400207294229
131 => 0.056458473558782
201 => 0.055764448631934
202 => 0.056380905205532
203 => 0.056092485589641
204 => 0.056842873304912
205 => 0.056960543680097
206 => 0.05686088105856
207 => 0.056898231492944
208 => 0.055141891864796
209 => 0.055050816389647
210 => 0.053808995823568
211 => 0.054315046883319
212 => 0.053369008682773
213 => 0.053669007141439
214 => 0.053801243603529
215 => 0.053732170780087
216 => 0.054343658250965
217 => 0.053823768982081
218 => 0.052451695723788
219 => 0.051079248645054
220 => 0.051062018689951
221 => 0.050700677599824
222 => 0.050439494174583
223 => 0.050489807368264
224 => 0.050667117625249
225 => 0.050429188580115
226 => 0.050479962805203
227 => 0.051323153248561
228 => 0.051492249078617
229 => 0.05091759537808
301 => 0.04861027784829
302 => 0.048044056339012
303 => 0.04845104513122
304 => 0.04825653070198
305 => 0.038946786544298
306 => 0.041133972840758
307 => 0.03983442101323
308 => 0.04043331428486
309 => 0.039106808386268
310 => 0.039739886529207
311 => 0.039622980112518
312 => 0.043139910953679
313 => 0.043084998915974
314 => 0.043111282402543
315 => 0.041856703107355
316 => 0.043855281990129
317 => 0.044839853814356
318 => 0.044657635773222
319 => 0.044703496128442
320 => 0.04391546328314
321 => 0.04311891228304
322 => 0.042235414635609
323 => 0.043876844060926
324 => 0.043694345128966
325 => 0.04411293201784
326 => 0.045177516331957
327 => 0.045334280416173
328 => 0.045544972935104
329 => 0.045469454665182
330 => 0.0472686062345
331 => 0.047050717108271
401 => 0.047575767211503
402 => 0.046495699313509
403 => 0.045273499965943
404 => 0.045505800105208
405 => 0.045483427733757
406 => 0.045198601767374
407 => 0.044941473620352
408 => 0.044513427700967
409 => 0.045867828328777
410 => 0.045812842136714
411 => 0.04670300467176
412 => 0.046545659797113
413 => 0.045494872215399
414 => 0.045532401299449
415 => 0.045784802425544
416 => 0.046658365604825
417 => 0.046917698633152
418 => 0.046797565241797
419 => 0.047081912068355
420 => 0.047306648206313
421 => 0.047110135467184
422 => 0.049892341444555
423 => 0.048736975548027
424 => 0.049300092847011
425 => 0.049434393004738
426 => 0.049090385974747
427 => 0.049164988781584
428 => 0.049277991705894
429 => 0.049964123334063
430 => 0.051764731260166
501 => 0.052562208253485
502 => 0.054961457134705
503 => 0.052495988890605
504 => 0.052349698208122
505 => 0.052781875382005
506 => 0.054190488461568
507 => 0.055332037058255
508 => 0.055710754585294
509 => 0.055760808358437
510 => 0.056471307615829
511 => 0.056878552540139
512 => 0.056385034317996
513 => 0.055966829298241
514 => 0.054468870826999
515 => 0.054642263598851
516 => 0.055836767851571
517 => 0.057524075464488
518 => 0.058971960930807
519 => 0.058464961904405
520 => 0.062333006590319
521 => 0.062716507421381
522 => 0.062663520006595
523 => 0.063537191972331
524 => 0.061803131040546
525 => 0.06106178639636
526 => 0.056057249970341
527 => 0.057463320573664
528 => 0.059507126771226
529 => 0.059236621357099
530 => 0.057752354665333
531 => 0.058970834981424
601 => 0.058567967283522
602 => 0.05825020881519
603 => 0.059705921959127
604 => 0.058105305559969
605 => 0.059491159398236
606 => 0.057713787515836
607 => 0.058467277833251
608 => 0.05803956028686
609 => 0.058316345958466
610 => 0.056698262577919
611 => 0.057571341093308
612 => 0.056661939641263
613 => 0.056661508466567
614 => 0.056641433379109
615 => 0.057711340154538
616 => 0.057746229776074
617 => 0.056955567052493
618 => 0.056841620201551
619 => 0.057262941431443
620 => 0.056769684615445
621 => 0.057000476375129
622 => 0.056776675062734
623 => 0.056726292673338
624 => 0.056324837222767
625 => 0.056151879176413
626 => 0.056219700482968
627 => 0.055988191399416
628 => 0.055848698802526
629 => 0.05661368479061
630 => 0.056204983636624
701 => 0.056551045477162
702 => 0.056156664333382
703 => 0.054789567465357
704 => 0.054003335599769
705 => 0.051421016346015
706 => 0.052153358883023
707 => 0.052638902742722
708 => 0.052478430499988
709 => 0.052823186971895
710 => 0.052844352219274
711 => 0.052732268375881
712 => 0.052602489644061
713 => 0.052539320534625
714 => 0.053010131322879
715 => 0.053283452832223
716 => 0.052687633564781
717 => 0.052548041446817
718 => 0.053150447622284
719 => 0.05351791504132
720 => 0.056231088001375
721 => 0.056030087385061
722 => 0.056534559487631
723 => 0.056477763670637
724 => 0.057006530802838
725 => 0.057870841590323
726 => 0.056113456094268
727 => 0.056418477450565
728 => 0.056343693257973
729 => 0.057160167463226
730 => 0.057162716406574
731 => 0.056673199334613
801 => 0.056938574480831
802 => 0.056790449354398
803 => 0.057058131478173
804 => 0.056027402899286
805 => 0.057282719048096
806 => 0.057994402413685
807 => 0.058004284137907
808 => 0.058341616404928
809 => 0.058684365525189
810 => 0.059342242614372
811 => 0.058666017690235
812 => 0.057449554880881
813 => 0.057537379566566
814 => 0.056824167866528
815 => 0.056836157084058
816 => 0.056772157701272
817 => 0.056964224666662
818 => 0.056069550797327
819 => 0.056279528966211
820 => 0.055985558300142
821 => 0.056417838415748
822 => 0.055952776469819
823 => 0.056343657194771
824 => 0.056512348357759
825 => 0.057134822380845
826 => 0.055860836550491
827 => 0.053263093201142
828 => 0.053809170347769
829 => 0.053001479354473
830 => 0.053076234230999
831 => 0.053227250978732
901 => 0.052737756289725
902 => 0.052831136450637
903 => 0.052827800254183
904 => 0.052799050715503
905 => 0.05267171424171
906 => 0.052487051161958
907 => 0.053222692035394
908 => 0.053347691754694
909 => 0.05362555064651
910 => 0.054452270235065
911 => 0.054369661452778
912 => 0.054504399804093
913 => 0.054210266739695
914 => 0.053089878220263
915 => 0.05315072070722
916 => 0.052392013919932
917 => 0.053606148808153
918 => 0.053318625640825
919 => 0.0531332575844
920 => 0.053082678192781
921 => 0.05391144705929
922 => 0.05415942769351
923 => 0.054004902803626
924 => 0.053687967746261
925 => 0.05429657674984
926 => 0.054459414844045
927 => 0.054495868288099
928 => 0.055574206753239
929 => 0.054556135429455
930 => 0.054801195315848
1001 => 0.056713082594061
1002 => 0.054979264655132
1003 => 0.055897706686136
1004 => 0.05585275372806
1005 => 0.056322597592738
1006 => 0.055814212817442
1007 => 0.055820514856025
1008 => 0.056237704377879
1009 => 0.055651836934962
1010 => 0.055506767917023
1011 => 0.055306356107745
1012 => 0.055743947961385
1013 => 0.056006264487065
1014 => 0.058120343033786
1015 => 0.059486134188662
1016 => 0.059426841592611
1017 => 0.059968664929429
1018 => 0.059724568553659
1019 => 0.058936316966929
1020 => 0.060281766308437
1021 => 0.059856009840792
1022 => 0.059891108686691
1023 => 0.059889802305894
1024 => 0.060172893136601
1025 => 0.059972297338151
1026 => 0.059576902428671
1027 => 0.059839384021892
1028 => 0.060618860514871
1029 => 0.06303837946634
1030 => 0.064392374325945
1031 => 0.062956867275666
1101 => 0.063947060816743
1102 => 0.063353297534131
1103 => 0.063245393082753
1104 => 0.063867307801277
1105 => 0.064490311099188
1106 => 0.064450628482428
1107 => 0.063998360079718
1108 => 0.063742885134913
1109 => 0.065677427007362
1110 => 0.067102764504922
1111 => 0.067005566043172
1112 => 0.067434568442702
1113 => 0.068694132756268
1114 => 0.068809291531726
1115 => 0.068794784172913
1116 => 0.068509351132363
1117 => 0.069749555774163
1118 => 0.070784156305677
1119 => 0.068443281630429
1120 => 0.069334656062464
1121 => 0.069734822763295
1122 => 0.070322386204225
1123 => 0.07131370421614
1124 => 0.072390538511197
1125 => 0.072542814687405
1126 => 0.072434767453299
1127 => 0.07172456628885
1128 => 0.072902851223806
1129 => 0.073593062904521
1130 => 0.074004068165174
1201 => 0.075046309121434
1202 => 0.069737294056606
1203 => 0.065979309318552
1204 => 0.065392445735747
1205 => 0.066585855908651
1206 => 0.066900548653978
1207 => 0.066773696402928
1208 => 0.062543742919222
1209 => 0.065370175906064
1210 => 0.06841118014667
1211 => 0.068527997504432
1212 => 0.070050387811679
1213 => 0.070546140500606
1214 => 0.071771864242199
1215 => 0.071695194888434
1216 => 0.071993639113987
1217 => 0.071925031954866
1218 => 0.074195427079583
1219 => 0.076700010059084
1220 => 0.07661328431459
1221 => 0.076253220878406
1222 => 0.076787976481078
1223 => 0.079372974523347
1224 => 0.079134989327364
1225 => 0.079366171673731
1226 => 0.082414030049671
1227 => 0.086376679491192
1228 => 0.084535630982106
1229 => 0.088530176499384
1230 => 0.091044531160751
1231 => 0.095392847558461
]
'min_raw' => 0.038946786544298
'max_raw' => 0.095392847558461
'avg_raw' => 0.06716981705138
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.038946'
'max' => '$0.095392'
'avg' => '$0.067169'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.017366108528374
'max_diff' => 0.038700267291448
'year' => 2028
]
3 => [
'items' => [
101 => 0.094848416929558
102 => 0.096541184593767
103 => 0.093873772477721
104 => 0.087748855086347
105 => 0.08677956346392
106 => 0.088720109838392
107 => 0.093490753744284
108 => 0.088569865284515
109 => 0.089565354610947
110 => 0.089278653617965
111 => 0.089263376540449
112 => 0.089846440452843
113 => 0.089000675837348
114 => 0.085554878643672
115 => 0.087134067191323
116 => 0.086524266654212
117 => 0.087200885813778
118 => 0.090852320358989
119 => 0.089237934107223
120 => 0.087537309333078
121 => 0.089670270198705
122 => 0.092386262345521
123 => 0.09221630043808
124 => 0.09188650329908
125 => 0.093745552504011
126 => 0.096816157140247
127 => 0.097646129234733
128 => 0.09825879766685
129 => 0.098343274292521
130 => 0.099213436038863
131 => 0.09453435701979
201 => 0.10196017559033
202 => 0.10324240932336
203 => 0.1030014025247
204 => 0.10442655135432
205 => 0.10400723641611
206 => 0.10339971485914
207 => 0.10565887889194
208 => 0.10306892963347
209 => 0.099392822726614
210 => 0.097376037772363
211 => 0.10003190288952
212 => 0.10165374703965
213 => 0.10272568285423
214 => 0.10305004998404
215 => 0.094897580604411
216 => 0.090503851765474
217 => 0.093320181577029
218 => 0.096756298319827
219 => 0.09451526921779
220 => 0.094603113315761
221 => 0.091407994748344
222 => 0.097038995415899
223 => 0.096218605982806
224 => 0.10047478781293
225 => 0.099459015861181
226 => 0.10292976691962
227 => 0.1020158018484
228 => 0.10580961975995
301 => 0.10732307643838
302 => 0.1098644057522
303 => 0.11173381794051
304 => 0.11283157253364
305 => 0.11276566746545
306 => 0.11711551806261
307 => 0.11455056313767
308 => 0.11132837523848
309 => 0.11127009602525
310 => 0.112938912797
311 => 0.11643629493306
312 => 0.1173431152361
313 => 0.11784990407479
314 => 0.11707373932688
315 => 0.11428966458783
316 => 0.11308751523109
317 => 0.11411178131265
318 => 0.11285919191109
319 => 0.1150215126327
320 => 0.11799084083026
321 => 0.11737768629946
322 => 0.11942736996667
323 => 0.12154857692921
324 => 0.12458199815501
325 => 0.1253750467907
326 => 0.12668592602855
327 => 0.1280352513657
328 => 0.12846861829865
329 => 0.12929605023952
330 => 0.12929168926476
331 => 0.13178521111118
401 => 0.13453564292571
402 => 0.13557386726305
403 => 0.13796120687875
404 => 0.13387297144923
405 => 0.13697394498479
406 => 0.13977110073626
407 => 0.13643621633616
408 => 0.14103257755329
409 => 0.14121104384377
410 => 0.14390567294513
411 => 0.14117415012243
412 => 0.13955218058965
413 => 0.14423474585639
414 => 0.14650049168955
415 => 0.14581803060535
416 => 0.14062446805735
417 => 0.13760159189204
418 => 0.12969014189815
419 => 0.13906159616512
420 => 0.14362615816949
421 => 0.14061264694448
422 => 0.14213248672089
423 => 0.15042423973132
424 => 0.15358120242644
425 => 0.15292457625469
426 => 0.15303553526872
427 => 0.15473897503609
428 => 0.16229296506598
429 => 0.15776643913995
430 => 0.16122679860471
501 => 0.16306216078756
502 => 0.16476694746884
503 => 0.16058053018298
504 => 0.15513406280476
505 => 0.15340893795893
506 => 0.14031301264296
507 => 0.13963131285755
508 => 0.13924865411037
509 => 0.13683604483761
510 => 0.13494039481851
511 => 0.13343290354235
512 => 0.12947679625871
513 => 0.13081186633419
514 => 0.12450665702783
515 => 0.12854050649914
516 => 0.11847724020158
517 => 0.12685822740576
518 => 0.12229683710726
519 => 0.12535968801451
520 => 0.12534900201623
521 => 0.11970932241822
522 => 0.1164564729232
523 => 0.11852931522422
524 => 0.12075156671335
525 => 0.1211121195409
526 => 0.12399332660325
527 => 0.12479740956302
528 => 0.12236100065589
529 => 0.11826870137531
530 => 0.11921924916278
531 => 0.11643721010262
601 => 0.11156179365928
602 => 0.11506340286549
603 => 0.11625900620338
604 => 0.11678705274941
605 => 0.11199264062275
606 => 0.1104861322408
607 => 0.10968407981908
608 => 0.11764980297541
609 => 0.11808618327152
610 => 0.11585359997868
611 => 0.12594508816454
612 => 0.12366107358766
613 => 0.1262128774672
614 => 0.11913299691424
615 => 0.11940345788569
616 => 0.1160517289718
617 => 0.11792847320097
618 => 0.11660205087008
619 => 0.1177768508136
620 => 0.11848102105586
621 => 0.12183219998402
622 => 0.12689649248605
623 => 0.12133164560412
624 => 0.11890696212759
625 => 0.12041122211949
626 => 0.12441726470699
627 => 0.13048662429261
628 => 0.12689344126068
629 => 0.12848803487404
630 => 0.12883638264003
701 => 0.12618690249915
702 => 0.13058431440458
703 => 0.13294092316921
704 => 0.13535831613024
705 => 0.1374572707045
706 => 0.13439275622199
707 => 0.13767222599917
708 => 0.13502955226311
709 => 0.13265880072728
710 => 0.13266239617876
711 => 0.13117518910917
712 => 0.12829353801171
713 => 0.12776211733688
714 => 0.13052663479839
715 => 0.13274351600174
716 => 0.13292610895579
717 => 0.13415348829744
718 => 0.13487983874881
719 => 0.14199906059782
720 => 0.14486247051878
721 => 0.14836379396856
722 => 0.14972775677602
723 => 0.15383279581876
724 => 0.15051764339678
725 => 0.149800389317
726 => 0.13984290734735
727 => 0.14147344446205
728 => 0.14408409170611
729 => 0.13988595595884
730 => 0.14254870681284
731 => 0.14307439023619
801 => 0.13974330491258
802 => 0.14152258151162
803 => 0.13679735038332
804 => 0.12699948961208
805 => 0.13059522222448
806 => 0.13324289173772
807 => 0.12946434088703
808 => 0.13623724703678
809 => 0.13228065508526
810 => 0.13102660538654
811 => 0.12613411041081
812 => 0.12844317970995
813 => 0.13156622899973
814 => 0.1296365476321
815 => 0.13364092621305
816 => 0.13931219421243
817 => 0.14335387751864
818 => 0.14366414777711
819 => 0.14106561618296
820 => 0.14522977964618
821 => 0.14526011103089
822 => 0.14056291763327
823 => 0.13768591283132
824 => 0.13703225128704
825 => 0.13866522598253
826 => 0.14064795872662
827 => 0.14377417564528
828 => 0.14566328305518
829 => 0.15058907327503
830 => 0.15192185087505
831 => 0.15338616938454
901 => 0.15534295049234
902 => 0.15769256792063
903 => 0.15255173875133
904 => 0.15275599347793
905 => 0.14796892453511
906 => 0.14285325483457
907 => 0.14673541046005
908 => 0.15181081251884
909 => 0.15064650967873
910 => 0.15051550182467
911 => 0.15073582069665
912 => 0.14985797437779
913 => 0.14588750801206
914 => 0.14389356465963
915 => 0.14646626029347
916 => 0.14783353352534
917 => 0.14995405506923
918 => 0.14969265603016
919 => 0.15515489179982
920 => 0.15727735145047
921 => 0.15673433544667
922 => 0.15683426345978
923 => 0.1606768752754
924 => 0.16495064990776
925 => 0.1689536038252
926 => 0.1730255804809
927 => 0.1681166536905
928 => 0.16562420340686
929 => 0.16819577588226
930 => 0.16683126332931
1001 => 0.1746721571993
1002 => 0.17521504367871
1003 => 0.18305537056283
1004 => 0.19049677438461
1005 => 0.18582296197075
1006 => 0.19023015656389
1007 => 0.19499689684022
1008 => 0.20419271220899
1009 => 0.20109588510547
1010 => 0.19872376407765
1011 => 0.19648212116835
1012 => 0.2011466242118
1013 => 0.20714743285994
1014 => 0.20843994956772
1015 => 0.2105343204137
1016 => 0.20833234555663
1017 => 0.2109843817324
1018 => 0.2203472347966
1019 => 0.21781730925046
1020 => 0.21422440826912
1021 => 0.22161548154534
1022 => 0.22429028223193
1023 => 0.24306343425445
1024 => 0.2667653141631
1025 => 0.25695258024598
1026 => 0.25086149964868
1027 => 0.25229304807141
1028 => 0.26094817225478
1029 => 0.26372792344257
1030 => 0.25617160147647
1031 => 0.25884062213931
1101 => 0.27354718840393
1102 => 0.28143678936176
1103 => 0.27072165154625
1104 => 0.24115901128179
1105 => 0.21390090684653
1106 => 0.2211309835912
1107 => 0.22031131726376
1108 => 0.23611168803358
1109 => 0.21775697136289
1110 => 0.21806601771833
1111 => 0.23419312342279
1112 => 0.22989068810942
1113 => 0.22292129391606
1114 => 0.21395179113694
1115 => 0.19737083567114
1116 => 0.18268462102094
1117 => 0.21148766998323
1118 => 0.21024563013703
1119 => 0.20844697237974
1120 => 0.21244969058349
1121 => 0.23188575398952
1122 => 0.23143768981961
1123 => 0.22858733417501
1124 => 0.23074930380956
1125 => 0.22254229018615
1126 => 0.22465742446713
1127 => 0.21389658902352
1128 => 0.21876093605622
1129 => 0.22290634072623
1130 => 0.2237385920875
1201 => 0.22561369690025
1202 => 0.20959113157681
1203 => 0.21678479300923
1204 => 0.22101039514585
1205 => 0.20191897096386
1206 => 0.22063301907339
1207 => 0.20931221436152
1208 => 0.20546976320953
1209 => 0.21064311748124
1210 => 0.2086270562903
1211 => 0.20689376526542
1212 => 0.20592655909181
1213 => 0.20972529950668
1214 => 0.20954808372585
1215 => 0.20333260710339
1216 => 0.19522477122462
1217 => 0.19794602707617
1218 => 0.1969573693134
1219 => 0.19337434604169
1220 => 0.19578887111094
1221 => 0.18515652466915
1222 => 0.16686412523732
1223 => 0.17894864461333
1224 => 0.17848340376279
1225 => 0.17824880822895
1226 => 0.18732999054844
1227 => 0.18645704440694
1228 => 0.18487263861221
1229 => 0.19334524718677
1230 => 0.19025263108439
1231 => 0.19978334519993
]
'min_raw' => 0.085554878643672
'max_raw' => 0.28143678936176
'avg_raw' => 0.18349583400271
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.085554'
'max' => '$0.281436'
'avg' => '$0.183495'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.046608092099374
'max_diff' => 0.1860439418033
'year' => 2029
]
4 => [
'items' => [
101 => 0.20606088992436
102 => 0.20446870152495
103 => 0.21037276268029
104 => 0.19800871931483
105 => 0.20211555856151
106 => 0.20296197243842
107 => 0.19324069651213
108 => 0.1865998691916
109 => 0.18615700172029
110 => 0.17464272230887
111 => 0.18079355743043
112 => 0.18620603779856
113 => 0.18361387972767
114 => 0.18279327992095
115 => 0.18698554636712
116 => 0.18731132137432
117 => 0.17988361668604
118 => 0.18142807169555
119 => 0.18786870582948
120 => 0.18126578424034
121 => 0.16843738617375
122 => 0.16525576608675
123 => 0.16483127931826
124 => 0.15620247330486
125 => 0.16546837715447
126 => 0.16142356181333
127 => 0.17420108501167
128 => 0.16690263228801
129 => 0.16658801057833
130 => 0.16611241371917
131 => 0.15868524393195
201 => 0.16031132209409
202 => 0.16571665356373
203 => 0.16764533672751
204 => 0.1674441592723
205 => 0.16569016449066
206 => 0.16649313431979
207 => 0.16390648872693
208 => 0.16299309033173
209 => 0.16011015374643
210 => 0.1558730333976
211 => 0.15646223096987
212 => 0.14806738685599
213 => 0.14349343023464
214 => 0.14222741932564
215 => 0.14053445662787
216 => 0.14241864396715
217 => 0.14804360531737
218 => 0.14125870852688
219 => 0.12962647888477
220 => 0.13032559570662
221 => 0.13189630363566
222 => 0.12896929980116
223 => 0.12619913631663
224 => 0.12860756871596
225 => 0.12367883967163
226 => 0.13249191699338
227 => 0.1322535479502
228 => 0.1355385181787
301 => 0.13759267747696
302 => 0.13285850533644
303 => 0.13166787384566
304 => 0.132346111654
305 => 0.12113635147567
306 => 0.13462244161909
307 => 0.13473906988668
308 => 0.13374042785256
309 => 0.14092135451762
310 => 0.15607534956807
311 => 0.15037380706205
312 => 0.14816599747369
313 => 0.1439689498323
314 => 0.14956126661842
315 => 0.14913186394297
316 => 0.1471899421985
317 => 0.14601546186828
318 => 0.14817947788824
319 => 0.1457473163353
320 => 0.14531043328906
321 => 0.14266339736229
322 => 0.14171852596889
323 => 0.14101898080564
324 => 0.14024885031678
325 => 0.14194756627064
326 => 0.1380980524345
327 => 0.13345591612062
328 => 0.13306997271473
329 => 0.13413559639088
330 => 0.13366413724053
331 => 0.1330677155497
401 => 0.13192898411612
402 => 0.13159114682492
403 => 0.13268895412596
404 => 0.13144959368923
405 => 0.13327833752508
406 => 0.13278102039074
407 => 0.13000304730503
408 => 0.12654066430288
409 => 0.12650984183157
410 => 0.1257638770932
411 => 0.12481377884234
412 => 0.12454948324425
413 => 0.12840473725696
414 => 0.13638499768521
415 => 0.1348182816117
416 => 0.13595039453833
417 => 0.14151926964403
418 => 0.14328944757821
419 => 0.14203301720949
420 => 0.14031313782753
421 => 0.1403888037918
422 => 0.14626615228284
423 => 0.14663271529893
424 => 0.14755890178286
425 => 0.14874931315498
426 => 0.14223574941365
427 => 0.14008201552534
428 => 0.13906145692446
429 => 0.13591853143961
430 => 0.13930790712095
501 => 0.13733306305897
502 => 0.13759953699321
503 => 0.13742599549396
504 => 0.13752076088738
505 => 0.13248945355866
506 => 0.13432259751152
507 => 0.13127464014578
508 => 0.12719376738232
509 => 0.12718008686588
510 => 0.12817887469337
511 => 0.12758475661101
512 => 0.12598600012755
513 => 0.12621309594011
514 => 0.12422349766066
515 => 0.12645466919407
516 => 0.12651865121013
517 => 0.12565952863703
518 => 0.1290969562266
519 => 0.13050527311472
520 => 0.12993978023291
521 => 0.13046559662664
522 => 0.13488338573785
523 => 0.13560367812463
524 => 0.13592358442299
525 => 0.13549495236265
526 => 0.13054634570174
527 => 0.13076583745026
528 => 0.12915535263474
529 => 0.12779466267434
530 => 0.12784908313688
531 => 0.12854865465384
601 => 0.13160372449772
602 => 0.13803293887798
603 => 0.13827692286401
604 => 0.13857263857261
605 => 0.13736981417096
606 => 0.13700703082194
607 => 0.13748563570162
608 => 0.13990011059081
609 => 0.14611079552935
610 => 0.14391552467437
611 => 0.14213073529785
612 => 0.14369647675682
613 => 0.1434554431319
614 => 0.14142087676989
615 => 0.14136377326845
616 => 0.13745878992954
617 => 0.13601520650132
618 => 0.13480884013835
619 => 0.13349151956298
620 => 0.13271056776891
621 => 0.13391046466084
622 => 0.13418489527679
623 => 0.13156129975198
624 => 0.13120371337646
625 => 0.13334619811627
626 => 0.13240337046216
627 => 0.13337309208541
628 => 0.13359807582012
629 => 0.13356184825702
630 => 0.13257742790307
701 => 0.13320486808084
702 => 0.13172078501149
703 => 0.13010706757564
704 => 0.12907761638972
705 => 0.12817928369312
706 => 0.12867773088459
707 => 0.12690085765984
708 => 0.12633240015385
709 => 0.13299230546646
710 => 0.13791204912693
711 => 0.13784051410568
712 => 0.1374050630611
713 => 0.13675807113687
714 => 0.13985277910169
715 => 0.13877464472739
716 => 0.13955907756584
717 => 0.13975874864576
718 => 0.14036309286762
719 => 0.1405790939818
720 => 0.13992618859234
721 => 0.13773495835967
722 => 0.13227462095575
723 => 0.12973281915433
724 => 0.1288939822228
725 => 0.12892447235209
726 => 0.12808341847253
727 => 0.12833114653345
728 => 0.12799726876266
729 => 0.12736498503849
730 => 0.12863868914635
731 => 0.12878547167941
801 => 0.128488173921
802 => 0.12855819830544
803 => 0.12609669984337
804 => 0.12628384222535
805 => 0.12524180966159
806 => 0.12504644111777
807 => 0.12241227353675
808 => 0.11774546383826
809 => 0.1203313294294
810 => 0.11720796742303
811 => 0.11602510290456
812 => 0.12162459956182
813 => 0.12106256540329
814 => 0.12010060723427
815 => 0.11867767061264
816 => 0.11814988957824
817 => 0.11494325908838
818 => 0.11475379425233
819 => 0.11634308690941
820 => 0.11560968303239
821 => 0.11457970622729
822 => 0.11084923464627
823 => 0.10665494947252
824 => 0.10678154857758
825 => 0.1081156726539
826 => 0.11199481833695
827 => 0.11047916900868
828 => 0.10937954803095
829 => 0.1091736220763
830 => 0.11175121653386
831 => 0.11539905271403
901 => 0.11711053583404
902 => 0.11541450804063
903 => 0.11346620263218
904 => 0.11358478695482
905 => 0.11437367532659
906 => 0.11445657634018
907 => 0.11318842980831
908 => 0.11354540562882
909 => 0.11300312671492
910 => 0.10967516202124
911 => 0.10961496969302
912 => 0.10879823348651
913 => 0.10877350303877
914 => 0.1073840310071
915 => 0.1071896342649
916 => 0.1044307532111
917 => 0.10624665707538
918 => 0.10502864410245
919 => 0.10319281125205
920 => 0.10287631297667
921 => 0.10286679865633
922 => 0.10475178850898
923 => 0.10622462987145
924 => 0.1050498319596
925 => 0.10478235324757
926 => 0.10763832611066
927 => 0.10727487753106
928 => 0.10696013340512
929 => 0.11507242899391
930 => 0.10865091402507
1001 => 0.10585076697139
1002 => 0.10238505325896
1003 => 0.10351350711937
1004 => 0.1037512889282
1005 => 0.095416872191655
1006 => 0.092035600359625
1007 => 0.090875275287413
1008 => 0.090207491803767
1009 => 0.090511809122762
1010 => 0.087468267890306
1011 => 0.089513577934042
1012 => 0.086878128490871
1013 => 0.08643628681523
1014 => 0.091148796889156
1015 => 0.091804515135859
1016 => 0.089007017379735
1017 => 0.090803463812914
1018 => 0.09015204736377
1019 => 0.086923305707376
1020 => 0.086799991525118
1021 => 0.085179922457696
1022 => 0.082644828074369
1023 => 0.081486221915524
1024 => 0.080882809768518
1025 => 0.081131789380641
1026 => 0.08100589766985
1027 => 0.080184369100503
1028 => 0.081052986725798
1029 => 0.078834027630752
1030 => 0.077950420239736
1031 => 0.07755131528075
1101 => 0.075581861365377
1102 => 0.078716138364867
1103 => 0.079333630418348
1104 => 0.079952339121928
1105 => 0.085337775976213
1106 => 0.085068734770059
1107 => 0.087500736245306
1108 => 0.087406233140141
1109 => 0.086712586923589
1110 => 0.08378620763522
1111 => 0.084952610261869
1112 => 0.081362604276258
1113 => 0.084052480857356
1114 => 0.082824933517675
1115 => 0.083637445867008
1116 => 0.082176475401622
1117 => 0.082985036779159
1118 => 0.079480060691674
1119 => 0.076207163337524
1120 => 0.077524272774664
1121 => 0.078956121362569
1122 => 0.082060733929382
1123 => 0.080211652297086
1124 => 0.080876651973577
1125 => 0.078649014376932
1126 => 0.074052761721833
1127 => 0.074078776012709
1128 => 0.073371742676529
1129 => 0.072760762645512
1130 => 0.080424041565907
1201 => 0.079470991693644
1202 => 0.077952431454276
1203 => 0.079985084679855
1204 => 0.080522550455243
1205 => 0.08053785135028
1206 => 0.08202082267329
1207 => 0.082812284734217
1208 => 0.082951783352848
1209 => 0.085285270771319
1210 => 0.086067424974548
1211 => 0.089289007443039
1212 => 0.082745134707985
1213 => 0.082610367955321
1214 => 0.08001368827919
1215 => 0.078366832976706
1216 => 0.080126449870698
1217 => 0.081685230227114
1218 => 0.080062123929948
1219 => 0.080274067346714
1220 => 0.078095179755424
1221 => 0.07887402954312
1222 => 0.07954487990268
1223 => 0.079174475764892
1224 => 0.078619962842861
1225 => 0.081557428013985
1226 => 0.081391684717011
1227 => 0.084127119816394
1228 => 0.086259587089204
1229 => 0.0900813496662
1230 => 0.086093141184115
1231 => 0.085947795015335
]
'min_raw' => 0.072760762645512
'max_raw' => 0.21037276268029
'avg_raw' => 0.1415667626629
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.07276'
'max' => '$0.210372'
'avg' => '$0.141566'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.01279411599816
'max_diff' => -0.071064026681469
'year' => 2030
]
5 => [
'items' => [
101 => 0.08736857712942
102 => 0.086067207460209
103 => 0.086889628169396
104 => 0.089948844975375
105 => 0.090013481405835
106 => 0.088930737916299
107 => 0.088864852876561
108 => 0.089072805607642
109 => 0.09029079124887
110 => 0.089865189640907
111 => 0.090357706596557
112 => 0.090973606591284
113 => 0.093521230105662
114 => 0.09413545351004
115 => 0.092643209075724
116 => 0.09277794204019
117 => 0.092219801658731
118 => 0.091680645043719
119 => 0.092892590376765
120 => 0.095107444293751
121 => 0.095093665802484
122 => 0.095607468860617
123 => 0.09592756390926
124 => 0.09455348163659
125 => 0.093659004603487
126 => 0.094002004015031
127 => 0.094550467543645
128 => 0.093824144684708
129 => 0.089340943533873
130 => 0.090700860375038
131 => 0.090474503716132
201 => 0.090152144307939
202 => 0.091519551207657
203 => 0.091387661476368
204 => 0.087437051975904
205 => 0.087689957178403
206 => 0.087452431978916
207 => 0.088219924491541
208 => 0.086025760345831
209 => 0.08670067045913
210 => 0.087123967755302
211 => 0.087373293114671
212 => 0.088274027276708
213 => 0.088168336519028
214 => 0.088267457390814
215 => 0.089603008368114
216 => 0.096357766905544
217 => 0.096725413509202
218 => 0.094914987172364
219 => 0.09563821678485
220 => 0.094249774081806
221 => 0.095181844970117
222 => 0.095819544199866
223 => 0.09293790400314
224 => 0.09276727197238
225 => 0.091373098672404
226 => 0.092122248433799
227 => 0.090930297297645
228 => 0.091222760413777
301 => 0.090405008044597
302 => 0.091876799496248
303 => 0.093522491032463
304 => 0.093938257704839
305 => 0.092844554588625
306 => 0.092052641453937
307 => 0.09066230286183
308 => 0.092974466926221
309 => 0.093650614160572
310 => 0.092970915412643
311 => 0.092813414361037
312 => 0.092514950152842
313 => 0.092876734953737
314 => 0.093646931717523
315 => 0.093283721147023
316 => 0.093523628127785
317 => 0.092609350108124
318 => 0.094553936514998
319 => 0.097642407719317
320 => 0.097652337659255
321 => 0.097289125130915
322 => 0.09714050638984
323 => 0.097513184485497
324 => 0.097715347064335
325 => 0.098920519688215
326 => 0.10021371792983
327 => 0.10624850985687
328 => 0.10455396443237
329 => 0.10990839084141
330 => 0.11414304694571
331 => 0.11541283515232
401 => 0.11424468975039
402 => 0.11024852743236
403 => 0.11005245664434
404 => 0.11602441028369
405 => 0.11433705984777
406 => 0.11413635488252
407 => 0.11200119314867
408 => 0.1132633381783
409 => 0.11298728854577
410 => 0.11255153069601
411 => 0.11495961549076
412 => 0.11946733525532
413 => 0.11876476485689
414 => 0.11824032864576
415 => 0.11594240182968
416 => 0.11732626703349
417 => 0.11683349914061
418 => 0.11895074272668
419 => 0.11769653452898
420 => 0.11432427650866
421 => 0.1148613197135
422 => 0.11478014671347
423 => 0.11645068130213
424 => 0.11594922828383
425 => 0.11468222996362
426 => 0.11945192835922
427 => 0.11914221067586
428 => 0.11958131953954
429 => 0.11977462884122
430 => 0.12267786020311
501 => 0.12386722119904
502 => 0.1241372269678
503 => 0.12526702792545
504 => 0.12410911649075
505 => 0.12874158780641
506 => 0.13182191091913
507 => 0.13539986472652
508 => 0.14062821690245
509 => 0.14259412568556
510 => 0.14223900186006
511 => 0.14620307880949
512 => 0.15332643697114
513 => 0.14367883620913
514 => 0.15383778323773
515 => 0.15062157789916
516 => 0.14299601289847
517 => 0.14250501641193
518 => 0.14766913756503
519 => 0.15912266125435
520 => 0.15625368347496
521 => 0.15912735387421
522 => 0.1557750647095
523 => 0.15560859529716
524 => 0.15896454067193
525 => 0.16680588996315
526 => 0.16308075884347
527 => 0.1577398699438
528 => 0.16168349919388
529 => 0.1582671625718
530 => 0.15056919998984
531 => 0.15625148962173
601 => 0.15245190436717
602 => 0.15356082534151
603 => 0.16154698840093
604 => 0.16058607213285
605 => 0.16182958676219
606 => 0.15963481598985
607 => 0.1575845540049
608 => 0.15375758775554
609 => 0.15262461171626
610 => 0.15293772553331
611 => 0.1526244565526
612 => 0.15048330410772
613 => 0.1500209224411
614 => 0.14925026607268
615 => 0.149489124706
616 => 0.14804006526989
617 => 0.15077473981679
618 => 0.15128231951056
619 => 0.15327238759286
620 => 0.15347900306297
621 => 0.15902131434533
622 => 0.15596870242576
623 => 0.15801665805124
624 => 0.15783346962399
625 => 0.14316128201477
626 => 0.14518298001352
627 => 0.14832810765578
628 => 0.14691123191606
629 => 0.14490810111796
630 => 0.14329046559741
701 => 0.14083958237206
702 => 0.1442891534467
703 => 0.14882497258886
704 => 0.15359403892165
705 => 0.1593237596389
706 => 0.15804495267611
707 => 0.15348692577835
708 => 0.15369139553535
709 => 0.15495534711719
710 => 0.15331841497659
711 => 0.15283565173162
712 => 0.15488902286067
713 => 0.15490316329912
714 => 0.1530196750415
715 => 0.15092652251787
716 => 0.15091775213237
717 => 0.15054529585825
718 => 0.15584132385325
719 => 0.15875360376168
720 => 0.1590874919598
721 => 0.15873113042566
722 => 0.15886827983667
723 => 0.15717368832566
724 => 0.16104702200432
725 => 0.16460157602085
726 => 0.16364887961245
727 => 0.16222065226248
728 => 0.16108300038548
729 => 0.16338088498532
730 => 0.1632785638013
731 => 0.16457053009244
801 => 0.16451191903872
802 => 0.16407747936831
803 => 0.16364889512766
804 => 0.1653481831969
805 => 0.16485881552269
806 => 0.16436868772531
807 => 0.16338566139287
808 => 0.16351927099778
809 => 0.16209129025141
810 => 0.16143064101818
811 => 0.15149606166958
812 => 0.14884121744589
813 => 0.149676485483
814 => 0.14995147740854
815 => 0.14879608580012
816 => 0.15045262057085
817 => 0.15019445138153
818 => 0.15119883667323
819 => 0.15057134034832
820 => 0.15059709301637
821 => 0.15244242591161
822 => 0.15297813390171
823 => 0.15270566849425
824 => 0.15289649392607
825 => 0.15729398545986
826 => 0.15666880278762
827 => 0.15633668695335
828 => 0.15642868530916
829 => 0.15755233867933
830 => 0.15786690027377
831 => 0.15653408069425
901 => 0.15716264611289
902 => 0.15983899788864
903 => 0.16077556954176
904 => 0.16376465667862
905 => 0.16249483933609
906 => 0.1648256440247
907 => 0.17198974300763
908 => 0.17771292099313
909 => 0.17244964999733
910 => 0.18295953752538
911 => 0.19114299251979
912 => 0.19082889788685
913 => 0.18940192322185
914 => 0.18008527727912
915 => 0.17151196077925
916 => 0.17868390407364
917 => 0.17870218683202
918 => 0.17808611054255
919 => 0.17425971361989
920 => 0.17795296022384
921 => 0.17824611672736
922 => 0.17808202704199
923 => 0.17514833749285
924 => 0.17066913578778
925 => 0.17154436107926
926 => 0.17297799796081
927 => 0.17026382425605
928 => 0.16939648129979
929 => 0.17100903687422
930 => 0.17620502692433
1001 => 0.17522275510367
1002 => 0.17519710401676
1003 => 0.17939967941359
1004 => 0.176391542402
1005 => 0.17155540047304
1006 => 0.1703342108551
1007 => 0.16599981040333
1008 => 0.16899359623397
1009 => 0.16910133725629
1010 => 0.16746167135259
1011 => 0.17168845032441
1012 => 0.17164949981208
1013 => 0.1756621973728
1014 => 0.18333296800851
1015 => 0.18106434367583
1016 => 0.17842618040255
1017 => 0.17871302189869
1018 => 0.18185896512619
1019 => 0.17995685603595
1020 => 0.18064086772677
1021 => 0.18185792979258
1022 => 0.18259221355483
1023 => 0.17860736976529
1024 => 0.17767831206084
1025 => 0.17577778605247
1026 => 0.17528197429189
1027 => 0.17682991306992
1028 => 0.17642208589139
1029 => 0.16909228204055
1030 => 0.1683262767555
1031 => 0.16834976904399
1101 => 0.16642361233315
1102 => 0.16348576101854
1103 => 0.17120625886335
1104 => 0.17058619483811
1105 => 0.16990169214339
1106 => 0.16998553981778
1107 => 0.17333674626026
1108 => 0.17139287728364
1109 => 0.17656097155185
1110 => 0.17549856673744
1111 => 0.17440891524836
1112 => 0.17425829222097
1113 => 0.17383886936237
1114 => 0.17240051231986
1115 => 0.17066360975918
1116 => 0.16951675624069
1117 => 0.1563702470102
1118 => 0.15881016265366
1119 => 0.16161706319614
1120 => 0.16258599401546
1121 => 0.16092857080104
1122 => 0.17246595749048
1123 => 0.17457394921567
1124 => 0.16818870477918
1125 => 0.16699428625293
1126 => 0.17254426337021
1127 => 0.16919694871138
1128 => 0.1707042442973
1129 => 0.16744629568716
1130 => 0.17406619573827
1201 => 0.17401576319125
1202 => 0.17144047255414
1203 => 0.1736170905658
1204 => 0.17323884962233
1205 => 0.1703313528357
1206 => 0.17415836857242
1207 => 0.17416026672448
1208 => 0.17168160547791
1209 => 0.16878707179063
1210 => 0.16826959753318
1211 => 0.16787975019308
1212 => 0.17060836574971
1213 => 0.17305483392562
1214 => 0.1776071046701
1215 => 0.17875165369455
1216 => 0.18321890473392
1217 => 0.18055887424648
1218 => 0.1817380313084
1219 => 0.18301817310106
1220 => 0.18363192015212
1221 => 0.1826318522679
1222 => 0.18957133192592
1223 => 0.19015723662922
1224 => 0.19035368540818
1225 => 0.18801373191204
1226 => 0.19009215828955
1227 => 0.18911973141776
1228 => 0.19164971599019
1229 => 0.19204644987561
1230 => 0.19171043038888
1231 => 0.19183635998613
]
'min_raw' => 0.086025760345831
'max_raw' => 0.19204644987561
'avg_raw' => 0.13903610511072
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.086025'
'max' => '$0.192046'
'avg' => '$0.139036'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.013264997700319
'max_diff' => -0.018326312804677
'year' => 2031
]
6 => [
'items' => [
101 => 0.18591473830611
102 => 0.18560767098296
103 => 0.18142078624328
104 => 0.18312697272259
105 => 0.17993733887916
106 => 0.18094880462778
107 => 0.18139464909217
108 => 0.18116176524543
109 => 0.18322343794618
110 => 0.18147059497863
111 => 0.1768445541932
112 => 0.17221725304606
113 => 0.17215916104947
114 => 0.17094087433608
115 => 0.17006027618263
116 => 0.17022991062788
117 => 0.17082772453872
118 => 0.17002553015137
119 => 0.1701967189962
120 => 0.17303959444566
121 => 0.17360971284258
122 => 0.17167222777018
123 => 0.16389294562673
124 => 0.16198389027587
125 => 0.16335608140386
126 => 0.16270026242511
127 => 0.1313118100119
128 => 0.13868606131489
129 => 0.13430453159657
130 => 0.13632374207526
131 => 0.13185133482447
201 => 0.1339858019835
202 => 0.13359164383749
203 => 0.14544922171273
204 => 0.14526408194377
205 => 0.14535269855379
206 => 0.14112279686814
207 => 0.14786114510773
208 => 0.15118069775372
209 => 0.15056633690598
210 => 0.15072095829547
211 => 0.14806405053884
212 => 0.14537842322859
213 => 0.14239964922644
214 => 0.14793384313484
215 => 0.14731853524407
216 => 0.14872983016471
217 => 0.15231915050666
218 => 0.15284769156151
219 => 0.15355805609917
220 => 0.15330344097961
221 => 0.15936940610832
222 => 0.1586347777067
223 => 0.16040502078758
224 => 0.15676349646156
225 => 0.15264276603001
226 => 0.15342598216822
227 => 0.15335055215588
228 => 0.1523902415243
229 => 0.15152331602451
301 => 0.15008012932209
302 => 0.15464658559998
303 => 0.15446119581443
304 => 0.1574624409505
305 => 0.15693194172016
306 => 0.15338913802476
307 => 0.15351566995183
308 => 0.15436665797055
309 => 0.15731193721973
310 => 0.15818629663079
311 => 0.15778125851439
312 => 0.15873995369259
313 => 0.15949766727229
314 => 0.15883511085224
315 => 0.16821551255236
316 => 0.16432011576714
317 => 0.16621870505626
318 => 0.16667150741458
319 => 0.16551166369516
320 => 0.16576319226701
321 => 0.16614418951593
322 => 0.16845753020449
323 => 0.17452840554177
324 => 0.17721715490281
325 => 0.18530639001605
326 => 0.17699389169758
327 => 0.1765006624479
328 => 0.17795777796329
329 => 0.18270701530726
330 => 0.18655582610137
331 => 0.18783269868499
401 => 0.18800145847579
402 => 0.19039695632756
403 => 0.1917700110228
404 => 0.19010607988051
405 => 0.18869607245826
406 => 0.18364560088835
407 => 0.18423020672454
408 => 0.18825756121021
409 => 0.19394643663122
410 => 0.19882808356905
411 => 0.19711870095399
412 => 0.21016008367081
413 => 0.21145308349791
414 => 0.21127443272949
415 => 0.2142200787598
416 => 0.20837357126002
417 => 0.20587407603311
418 => 0.18900093206721
419 => 0.19374159727503
420 => 0.2006324325641
421 => 0.19972040467429
422 => 0.19471609589481
423 => 0.19882428735209
424 => 0.19746599078129
425 => 0.19639464592012
426 => 0.20130268441955
427 => 0.19590609447832
428 => 0.20057859745126
429 => 0.19458606405761
430 => 0.19712650926979
501 => 0.19568442969985
502 => 0.19661763191622
503 => 0.19116215082773
504 => 0.19410579599877
505 => 0.19103968551081
506 => 0.19103823177522
507 => 0.19097054721626
508 => 0.19457781260812
509 => 0.19469544540305
510 => 0.19202967082818
511 => 0.19164549106472
512 => 0.19306600500701
513 => 0.19140295521378
514 => 0.19218108574492
515 => 0.19142652399488
516 => 0.19125665625144
517 => 0.18990312117111
518 => 0.18931998104229
519 => 0.18954864531247
520 => 0.18876809627383
521 => 0.18829778724435
522 => 0.19087699091279
523 => 0.18949902643752
524 => 0.19066579809416
525 => 0.1893361145331
526 => 0.1847268519949
527 => 0.18207601636711
528 => 0.17336954671131
529 => 0.17583869070535
530 => 0.17747573572791
531 => 0.17693469235772
601 => 0.17809706287289
602 => 0.17816842298213
603 => 0.17779052447869
604 => 0.1773529664235
605 => 0.17713998736071
606 => 0.17872735880427
607 => 0.17964888135572
608 => 0.17764003509677
609 => 0.17716939052504
610 => 0.17920044500428
611 => 0.18043938706332
612 => 0.18958703912583
613 => 0.18890935151451
614 => 0.19061021442944
615 => 0.19041872336709
616 => 0.19220149867065
617 => 0.19511558283491
618 => 0.18919043493822
619 => 0.19021883573689
620 => 0.1899666956103
621 => 0.19271949539772
622 => 0.19272808933818
623 => 0.19107764835307
624 => 0.19197237918644
625 => 0.19147296498091
626 => 0.19237547395019
627 => 0.1889003005833
628 => 0.19313268662238
629 => 0.19553217677762
630 => 0.19556549370075
701 => 0.1967028329908
702 => 0.19785843557974
703 => 0.20007651411743
704 => 0.19779657457318
705 => 0.19369518528073
706 => 0.19399129234024
707 => 0.19158664929871
708 => 0.19162707178267
709 => 0.19141129339531
710 => 0.19205886057881
711 => 0.18904240516421
712 => 0.18975036122081
713 => 0.18875921859579
714 => 0.19021668118639
715 => 0.1886486923661
716 => 0.18996657402069
717 => 0.19053532805435
718 => 0.19263404268293
719 => 0.18833871050904
720 => 0.17958023743806
721 => 0.18142137466381
722 => 0.17869818808873
723 => 0.17895022937415
724 => 0.17945939288279
725 => 0.17780902736337
726 => 0.17812386509548
727 => 0.17811261687621
728 => 0.17801568579932
729 => 0.17758636198758
730 => 0.17696375752143
731 => 0.17944402208703
801 => 0.17986546736785
802 => 0.18080228802109
803 => 0.18358963083362
804 => 0.18331110955658
805 => 0.18376538931517
806 => 0.18277369915284
807 => 0.17899623103655
808 => 0.17920136572921
809 => 0.17664333282465
810 => 0.18073687336848
811 => 0.17976746893561
812 => 0.17914248759138
813 => 0.1789719556412
814 => 0.18176620773743
815 => 0.18260229175916
816 => 0.18208130030433
817 => 0.18101273163073
818 => 0.18306469937802
819 => 0.18361371938162
820 => 0.18373662471335
821 => 0.18737231813575
822 => 0.18393981958815
823 => 0.18476605610466
824 => 0.19121211754686
825 => 0.18536642931446
826 => 0.18846302074556
827 => 0.18831145870889
828 => 0.18989557010211
829 => 0.1881815153379
830 => 0.18820276310098
831 => 0.18960934670116
901 => 0.1876340537134
902 => 0.18714494339103
903 => 0.18646924098374
904 => 0.18794461246997
905 => 0.18882903095066
906 => 0.19595679437118
907 => 0.20056165460634
908 => 0.20036174547907
909 => 0.20218854068805
910 => 0.20136555271488
911 => 0.19870790745625
912 => 0.20324418384742
913 => 0.20180871619139
914 => 0.20192705440086
915 => 0.20192264984679
916 => 0.20287711034729
917 => 0.20220078760767
918 => 0.20086768606476
919 => 0.20175266108218
920 => 0.20438072049958
921 => 0.21253829756987
922 => 0.21710338577193
923 => 0.21226347352802
924 => 0.21560198018486
925 => 0.21360006582231
926 => 0.21323625843084
927 => 0.21533308732504
928 => 0.21743358644065
929 => 0.21729979372769
930 => 0.21577493923158
1001 => 0.21491358761848
1002 => 0.22143603060684
1003 => 0.22624165549375
1004 => 0.22591394409378
1005 => 0.22736035563579
1006 => 0.23160706465895
1007 => 0.23199533051054
1008 => 0.23194641793742
1009 => 0.23098406051291
1010 => 0.23516549705107
1011 => 0.23865372497657
1012 => 0.23076130257432
1013 => 0.2337666337057
1014 => 0.2351158236763
1015 => 0.23709683483976
1016 => 0.24043913272855
1017 => 0.2440697547365
1018 => 0.24458316449617
1019 => 0.24421887570277
1020 => 0.24182438289216
1021 => 0.24579705281559
1022 => 0.24812414968617
1023 => 0.24950988261793
1024 => 0.2530238707689
1025 => 0.23512415581424
1026 => 0.22245384789577
1027 => 0.22047519635284
1028 => 0.22449886207202
1029 => 0.22555987063404
1030 => 0.22513217941308
1031 => 0.21087059591684
1101 => 0.22040011206723
1102 => 0.23065307018057
1103 => 0.23104692805819
1104 => 0.23617977326897
1105 => 0.23785123807204
1106 => 0.24198385124412
1107 => 0.24172535516501
1108 => 0.24273158070818
1109 => 0.2425002668812
1110 => 0.25015506255811
1111 => 0.2585994389379
1112 => 0.25830703703534
1113 => 0.25709305802142
1114 => 0.25889602387127
1115 => 0.26761152524958
1116 => 0.26680914154573
1117 => 0.26758858896714
1118 => 0.2778646562763
1119 => 0.29122500553173
1120 => 0.28501778194545
1121 => 0.29848567104721
1122 => 0.30696299333465
1123 => 0.32162364565929
1124 => 0.31978805978301
1125 => 0.32549534414815
1126 => 0.31650197796613
1127 => 0.29585139135304
1128 => 0.29258335697425
1129 => 0.2991260445604
1130 => 0.31521060356484
1201 => 0.29861948455727
1202 => 0.30197584632418
1203 => 0.30100921390951
1204 => 0.30095770617606
1205 => 0.30292354686491
1206 => 0.30007199241437
1207 => 0.28845424659802
1208 => 0.29377859104185
1209 => 0.29172260595606
1210 => 0.29400387469258
1211 => 0.30631494119678
1212 => 0.3008719252361
1213 => 0.29513815007624
1214 => 0.30232957655327
1215 => 0.31148673370078
1216 => 0.31091369526348
1217 => 0.30980176118364
1218 => 0.31606967537274
1219 => 0.32642243328658
1220 => 0.32922074214994
1221 => 0.33128639654397
1222 => 0.33157121538539
1223 => 0.33450502646593
1224 => 0.31872918487026
1225 => 0.34376585063493
1226 => 0.34808899118856
1227 => 0.34727641994029
1228 => 0.35208140872008
1229 => 0.35066765913027
1230 => 0.34861935778514
1231 => 0.35623628705153
]
'min_raw' => 0.1313118100119
'max_raw' => 0.35623628705153
'avg_raw' => 0.24377404853172
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.131311'
'max' => '$0.356236'
'avg' => '$0.243774'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.045286049666072
'max_diff' => 0.16418983717592
'year' => 2032
]
7 => [
'items' => [
101 => 0.34750409230211
102 => 0.33510984120806
103 => 0.32831010992737
104 => 0.33726454459646
105 => 0.34273270538216
106 => 0.34634681182117
107 => 0.34744043824591
108 => 0.31995381854527
109 => 0.30514005500444
110 => 0.31463550759397
111 => 0.32622061509432
112 => 0.31866482901315
113 => 0.31896100152254
114 => 0.30818843619644
115 => 0.32717374809101
116 => 0.32440774783958
117 => 0.33875776203698
118 => 0.33533301598271
119 => 0.34703489549635
120 => 0.34395339844772
121 => 0.3567445204124
122 => 0.36184724526992
123 => 0.37041551448139
124 => 0.37671836819248
125 => 0.38041952444601
126 => 0.38019732090724
127 => 0.39486314589245
128 => 0.38621522128357
129 => 0.37535138981547
130 => 0.37515489737917
131 => 0.38078142963817
201 => 0.39257309768932
202 => 0.39563050565318
203 => 0.39733917960572
204 => 0.39472228596804
205 => 0.38533558360744
206 => 0.38128245311979
207 => 0.38473583772576
208 => 0.38051264510538
209 => 0.38780306038672
210 => 0.39781435771668
211 => 0.395747064407
212 => 0.40265771599532
213 => 0.40980951336747
214 => 0.42003690481697
215 => 0.42271072366108
216 => 0.42713044453416
217 => 0.43167978911524
218 => 0.43314091598641
219 => 0.43593066054451
220 => 0.43591595721364
221 => 0.44432304021095
222 => 0.45359631310267
223 => 0.45709675894253
224 => 0.46514584113558
225 => 0.45136206995346
226 => 0.46181721873165
227 => 0.47124802463893
228 => 0.46000422904978
301 => 0.47550118180105
302 => 0.47610289335953
303 => 0.48518802350774
304 => 0.47597850360219
305 => 0.47050992008011
306 => 0.48629751580321
307 => 0.49393663606901
308 => 0.49163567087573
309 => 0.47412521214219
310 => 0.46393337410036
311 => 0.43725936808616
312 => 0.46885588044129
313 => 0.48424561992657
314 => 0.47408535643481
315 => 0.47920960235282
316 => 0.50716582653917
317 => 0.51780974667786
318 => 0.51559588569563
319 => 0.51596999175838
320 => 0.5217132578644
321 => 0.54718206265292
322 => 0.53192056446136
323 => 0.54358740799138
324 => 0.54977545973177
325 => 0.55552326705211
326 => 0.54140846888651
327 => 0.52304532386063
328 => 0.51722894499855
329 => 0.47307511846746
330 => 0.47077672004617
331 => 0.4694865593637
401 => 0.46135227875757
402 => 0.45496096236812
403 => 0.44987835028087
404 => 0.43654005836749
405 => 0.44104134033859
406 => 0.41978288694652
407 => 0.43338329207344
408 => 0.3994542871564
409 => 0.42771137065713
410 => 0.41233232479962
411 => 0.42265894047483
412 => 0.42262291188556
413 => 0.40360833837102
414 => 0.39264112919185
415 => 0.39962986173098
416 => 0.40712233777921
417 => 0.40833796681032
418 => 0.41805215758048
419 => 0.4207631794186
420 => 0.41254865668359
421 => 0.39875118394391
422 => 0.40195602217449
423 => 0.3925761832474
424 => 0.37613837631797
425 => 0.38794429623126
426 => 0.39197535635931
427 => 0.39375570215629
428 => 0.37759100693608
429 => 0.37251170874528
430 => 0.36980753300794
501 => 0.39666452477853
502 => 0.39813581141395
503 => 0.39060850096816
504 => 0.42463265795202
505 => 0.41693194334123
506 => 0.42553552828237
507 => 0.40166521669659
508 => 0.4025770947448
509 => 0.39127650670138
510 => 0.39760408090013
511 => 0.39313195540369
512 => 0.39709287543518
513 => 0.39946703457057
514 => 0.41076576829869
515 => 0.4278403840469
516 => 0.40907811425927
517 => 0.40090312463215
518 => 0.40597484221893
519 => 0.41948149449565
520 => 0.4399447640877
521 => 0.42783009662753
522 => 0.43320638032596
523 => 0.43438085913985
524 => 0.42544795186409
525 => 0.44027413312072
526 => 0.44821960410384
527 => 0.45637001324895
528 => 0.46344678514038
529 => 0.45311456060506
530 => 0.46417152192406
531 => 0.45526156291736
601 => 0.44726840859372
602 => 0.4472805309094
603 => 0.44226630844082
604 => 0.43255062057527
605 => 0.43075889866747
606 => 0.44007966230139
607 => 0.4475540320562
608 => 0.44816965694902
609 => 0.45230785209226
610 => 0.45475679335123
611 => 0.47875974686336
612 => 0.48841393332878
613 => 0.5002188897943
614 => 0.50481758562851
615 => 0.51865801136578
616 => 0.50748074351851
617 => 0.50506247131145
618 => 0.47149012564158
619 => 0.47698759536426
620 => 0.48578957481721
621 => 0.47163526704079
622 => 0.48061291745237
623 => 0.48238529581626
624 => 0.47115430907876
625 => 0.47715326435755
626 => 0.46122181770336
627 => 0.42818764604834
628 => 0.44031090959709
629 => 0.44923771221536
630 => 0.43649806421227
701 => 0.45933339016535
702 => 0.44599346416037
703 => 0.44176534804616
704 => 0.42526995965243
705 => 0.43305514800855
706 => 0.44358472673335
707 => 0.43707867127634
708 => 0.45057971323879
709 => 0.469700789254
710 => 0.4833276067022
711 => 0.484373704541
712 => 0.47561257384767
713 => 0.48965234169652
714 => 0.48975460607774
715 => 0.4739176905901
716 => 0.46421766803424
717 => 0.46201380250053
718 => 0.46751949069703
719 => 0.4742044125737
720 => 0.48474467118047
721 => 0.49111392870619
722 => 0.5077215743401
723 => 0.51221512707012
724 => 0.51715217916036
725 => 0.52374960328338
726 => 0.5316715024879
727 => 0.51433883802239
728 => 0.51502749709373
729 => 0.49888755993052
730 => 0.4816397223705
731 => 0.49472868110525
801 => 0.51184075349972
802 => 0.50791522518527
803 => 0.50747352305863
804 => 0.50821634351769
805 => 0.50525662336436
806 => 0.49186991880321
807 => 0.4851471995778
808 => 0.49382122252716
809 => 0.4984310796884
810 => 0.5055805661237
811 => 0.5046992410132
812 => 0.52311555027172
813 => 0.53027157116929
814 => 0.52844075480029
815 => 0.52877766907325
816 => 0.5417333030922
817 => 0.55614263265063
818 => 0.5696388712606
819 => 0.5833678248516
820 => 0.56681703544747
821 => 0.55841356529883
822 => 0.56708380144112
823 => 0.56248325210162
824 => 0.58891937321801
825 => 0.59074975288647
826 => 0.61718396237041
827 => 0.64227317489778
828 => 0.62651509002927
829 => 0.64137425430055
830 => 0.65744565194537
831 => 0.68844998549253
901 => 0.67800881669945
902 => 0.67001104503793
903 => 0.66245318946274
904 => 0.67817988713892
905 => 0.69841203245919
906 => 0.7027698427801
907 => 0.70983116031164
908 => 0.70240704834406
909 => 0.71134857346991
910 => 0.74291608626939
911 => 0.73438626565682
912 => 0.7222725491499
913 => 0.74719206872893
914 => 0.7562103459924
915 => 0.81950533873592
916 => 0.89941788166035
917 => 0.86633356415559
918 => 0.84579706065613
919 => 0.85062362611088
920 => 0.87980498157659
921 => 0.88917710678224
922 => 0.86370043970797
923 => 0.87269922921783
924 => 0.92228344415865
925 => 0.94888378462232
926 => 0.9127569493703
927 => 0.81308444372105
928 => 0.72118184151749
929 => 0.74555855004999
930 => 0.74279498779974
1001 => 0.79606704099685
1002 => 0.73418283225621
1003 => 0.7352248036205
1004 => 0.78959846646165
1005 => 0.77509250541621
1006 => 0.75159470630571
1007 => 0.72135340145522
1008 => 0.66544955245696
1009 => 0.61593395440504
1010 => 0.71304544494605
1011 => 0.70885782088813
1012 => 0.70279352068116
1013 => 0.71628896456596
1014 => 0.78181900932201
1015 => 0.78030832969033
1016 => 0.77069815662908
1017 => 0.77798738819586
1018 => 0.75031686876913
1019 => 0.75744819167142
1020 => 0.72116728367576
1021 => 0.73756776931435
1022 => 0.75154429058221
1023 => 0.75435028415267
1024 => 0.76067233094449
1025 => 0.70665113329672
1026 => 0.73090506506154
1027 => 0.74515197768728
1028 => 0.68078390813703
1029 => 0.7438796279114
1030 => 0.70571074443199
1031 => 0.69275565210169
1101 => 0.71019797722081
1102 => 0.70340068615867
1103 => 0.69755677445377
1104 => 0.69429577131128
1105 => 0.70710348983959
1106 => 0.70650599446171
1107 => 0.68555008107835
1108 => 0.65821394634207
1109 => 0.6673888504376
1110 => 0.66405552176451
1111 => 0.65197510864527
1112 => 0.660115848493
1113 => 0.62426815013777
1114 => 0.56259404831883
1115 => 0.60333784910925
1116 => 0.60176925709955
1117 => 0.60097830187827
1118 => 0.63159614209633
1119 => 0.62865294323312
1120 => 0.62331100847651
1121 => 0.65187699982427
1122 => 0.64145002871554
1123 => 0.67358349676929
1124 => 0.6947486770919
1125 => 0.68938050274023
1126 => 0.70928645713384
1127 => 0.66760022169726
1128 => 0.68144671694782
1129 => 0.68430046042854
1130 => 0.65152449992522
1201 => 0.6291344869663
1202 => 0.62764132836677
1203 => 0.58882013142984
1204 => 0.60955810147979
1205 => 0.62780665692825
1206 => 0.61906701501355
1207 => 0.61630030547273
1208 => 0.63043482449068
1209 => 0.63153319767235
1210 => 0.60649017273004
1211 => 0.61169741062501
1212 => 0.63341245827828
1213 => 0.61115024713922
1214 => 0.56789840740755
1215 => 0.55717135315063
1216 => 0.55574016637392
1217 => 0.52664754445575
1218 => 0.55788818620948
1219 => 0.54425080888683
1220 => 0.58733112044822
1221 => 0.5627238775287
1222 => 0.56166310846831
1223 => 0.56005960045255
1224 => 0.5350183789665
1225 => 0.5405008150193
1226 => 0.55872526745739
1227 => 0.56522795740045
1228 => 0.56454967356442
1229 => 0.55863595769812
1230 => 0.56134322653859
1231 => 0.55262217032846
]
'min_raw' => 0.30514005500444
'max_raw' => 0.94888378462232
'avg_raw' => 0.62701191981338
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.30514'
'max' => '$0.948883'
'avg' => '$0.627011'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.17382824499254
'max_diff' => 0.59264749757079
'year' => 2033
]
8 => [
'items' => [
101 => 0.54954258386758
102 => 0.53982256189004
103 => 0.52553681480766
104 => 0.52752333555904
105 => 0.49921953251979
106 => 0.48379811842748
107 => 0.4795296742577
108 => 0.47382173232331
109 => 0.48017440148744
110 => 0.49913935140196
111 => 0.47626359816648
112 => 0.43704472379176
113 => 0.43940184496739
114 => 0.44469759641347
115 => 0.43482899862859
116 => 0.42548919903384
117 => 0.43360939701959
118 => 0.41699184293373
119 => 0.44670574843344
120 => 0.44590207056193
121 => 0.45697757703664
122 => 0.46390331852754
123 => 0.44794172662644
124 => 0.44392742942805
125 => 0.44621415555189
126 => 0.4084196664702
127 => 0.4538889609575
128 => 0.45428218130438
129 => 0.4509151899634
130 => 0.47512618557092
131 => 0.52621893790168
201 => 0.50699578927365
202 => 0.49955200510213
203 => 0.4854013659507
204 => 0.50425625243817
205 => 0.50280849133798
206 => 0.49626116659584
207 => 0.49230132416289
208 => 0.49959745526099
209 => 0.49139725277713
210 => 0.48992427108453
211 => 0.48099960464728
212 => 0.47781390477564
213 => 0.47545533941704
214 => 0.47285879070506
215 => 0.47858613014405
216 => 0.46560722548105
217 => 0.44995593879518
218 => 0.44865470365652
219 => 0.45224752828012
220 => 0.45065797083851
221 => 0.44864709346703
222 => 0.44480778093501
223 => 0.44366873892069
224 => 0.4473700728826
225 => 0.44319148264078
226 => 0.44935722016217
227 => 0.44768048072217
228 => 0.43831435051183
301 => 0.42664068448422
302 => 0.42653676437023
303 => 0.42402169217323
304 => 0.42081836958671
305 => 0.41992727852523
306 => 0.4329255365943
307 => 0.45983154179214
308 => 0.45454924916567
309 => 0.45836624693942
310 => 0.47714209816472
311 => 0.4831103766597
312 => 0.47887423395039
313 => 0.47307554053598
314 => 0.47333065361734
315 => 0.49314654439825
316 => 0.49438243719959
317 => 0.49750513959444
318 => 0.50151869464742
319 => 0.47955775973101
320 => 0.4722962955577
321 => 0.46885541098168
322 => 0.45825881827748
323 => 0.46968633502577
324 => 0.4630280103916
325 => 0.46392644586551
326 => 0.46334133858449
327 => 0.46366084672471
328 => 0.44669744279129
329 => 0.45287801561436
330 => 0.44260161455418
331 => 0.42884266711476
401 => 0.42879654229843
402 => 0.43216402519195
403 => 0.43016091459727
404 => 0.42477059549167
405 => 0.42553626487903
406 => 0.41882819537055
407 => 0.42635074597088
408 => 0.42656646580511
409 => 0.42366987406789
410 => 0.43525940117963
411 => 0.44000763989347
412 => 0.43810104116102
413 => 0.4398738678438
414 => 0.45476875227242
415 => 0.45719726834366
416 => 0.45827585476373
417 => 0.45683069184615
418 => 0.44014611898823
419 => 0.44088615074276
420 => 0.4354562887468
421 => 0.43086862754497
422 => 0.43105210993393
423 => 0.43341076414588
424 => 0.44371114542271
425 => 0.46538769057915
426 => 0.46621029962249
427 => 0.46720732578021
428 => 0.46315191933154
429 => 0.46192876994161
430 => 0.46354241970858
501 => 0.47168299037074
502 => 0.49262274825719
503 => 0.48522123930071
504 => 0.47920369730774
505 => 0.48448270395325
506 => 0.48367004225839
507 => 0.47681035972001
508 => 0.47661783127804
509 => 0.4634519073137
510 => 0.45858476499767
511 => 0.4545174165791
512 => 0.45007597828685
513 => 0.44744294478884
514 => 0.45148848093411
515 => 0.4524137429159
516 => 0.44356810743042
517 => 0.44236247999949
518 => 0.44958601688324
519 => 0.4464072076213
520 => 0.44967669177789
521 => 0.45043524014733
522 => 0.450313096389
523 => 0.44699405443561
524 => 0.44910951280144
525 => 0.44410582311776
526 => 0.43866506211665
527 => 0.43519419556932
528 => 0.43216540416314
529 => 0.43384595366968
530 => 0.42785510153509
531 => 0.4259385073652
601 => 0.44839284310642
602 => 0.46498010234325
603 => 0.46473891702467
604 => 0.46327076342565
605 => 0.46108938498158
606 => 0.47152340895059
607 => 0.46788840363468
608 => 0.47053317371686
609 => 0.47120637870342
610 => 0.47324396744139
611 => 0.47397223027854
612 => 0.4717709141736
613 => 0.46438302845732
614 => 0.44597311967144
615 => 0.43740325743501
616 => 0.43457506015464
617 => 0.43467785975427
618 => 0.43184218787885
619 => 0.43267742033206
620 => 0.43155172811723
621 => 0.42941993939654
622 => 0.4337143217234
623 => 0.43420920928163
624 => 0.4332068491325
625 => 0.43344294123359
626 => 0.42514382731236
627 => 0.42577479091906
628 => 0.42226150537796
629 => 0.42160280669229
630 => 0.41272152678115
701 => 0.39698705205647
702 => 0.40570547843636
703 => 0.39517484536572
704 => 0.39118673505673
705 => 0.41006582898106
706 => 0.40817089157561
707 => 0.40492758244697
708 => 0.40013005228087
709 => 0.39835060167489
710 => 0.38753922309856
711 => 0.38690042917581
712 => 0.39225884033001
713 => 0.38978611795402
714 => 0.38631347924492
715 => 0.37373593385632
716 => 0.35959460855737
717 => 0.36002144627894
718 => 0.36451953874783
719 => 0.37759834925153
720 => 0.37248823172201
721 => 0.36878078282251
722 => 0.36808648908914
723 => 0.37677702876468
724 => 0.38907596312993
725 => 0.39484634796096
726 => 0.3891280718426
727 => 0.38255922413169
728 => 0.38295903945474
729 => 0.3856188316786
730 => 0.38589833823389
731 => 0.38162269366254
801 => 0.38282626256464
802 => 0.3809979313457
803 => 0.36977746602988
804 => 0.3695745233928
805 => 0.36682084024985
806 => 0.36673745981867
807 => 0.36205275785406
808 => 0.3613973356654
809 => 0.35209557557359
810 => 0.35821802223434
811 => 0.35411140645719
812 => 0.34792176782829
813 => 0.34685467179565
814 => 0.34682259360035
815 => 0.35317796849436
816 => 0.35814375597843
817 => 0.35418284279683
818 => 0.35328101964445
819 => 0.36291013155005
820 => 0.36168473928876
821 => 0.36062355749341
822 => 0.38797472845342
823 => 0.36632414240009
824 => 0.35688325110859
825 => 0.34519835535873
826 => 0.34900301633524
827 => 0.34980471430509
828 => 0.32170464638744
829 => 0.31030445233289
830 => 0.30639233534062
831 => 0.30414085670236
901 => 0.3051668837901
902 => 0.29490537203162
903 => 0.30180127764306
904 => 0.2929156758442
905 => 0.29142597578638
906 => 0.30731453251757
907 => 0.30952533236711
908 => 0.30009337336728
909 => 0.30615021794063
910 => 0.3039539219019
911 => 0.29306799398382
912 => 0.29265223160882
913 => 0.2871900556384
914 => 0.27864280793037
915 => 0.27473648637453
916 => 0.272702040192
917 => 0.27354149233748
918 => 0.27311703964507
919 => 0.27034719871622
920 => 0.27327580368485
921 => 0.26579442817312
922 => 0.26281528416282
923 => 0.26146967392898
924 => 0.25482952255041
925 => 0.26539695628243
926 => 0.26747887385266
927 => 0.26956489344364
928 => 0.28772226979706
929 => 0.28681517858665
930 => 0.29501484135736
1001 => 0.29469621754031
1002 => 0.29235754089237
1003 => 0.28249104880836
1004 => 0.28642365669973
1005 => 0.27431970087303
1006 => 0.28338880756739
1007 => 0.27925004600704
1008 => 0.28198948812061
1009 => 0.27706372419486
1010 => 0.27978984533118
1011 => 0.26797257374261
1012 => 0.2569377718067
1013 => 0.26137849823166
1014 => 0.26620607571426
1015 => 0.2766734937404
1016 => 0.27043918591835
1017 => 0.27268127875644
1018 => 0.26517064307066
1019 => 0.24967405634388
1020 => 0.24976176534183
1021 => 0.24737795308541
1022 => 0.24531799125357
1023 => 0.27115527116673
1024 => 0.26794199698258
1025 => 0.26282206511306
1026 => 0.26967529737841
1027 => 0.27148740076479
1028 => 0.27153898880069
1029 => 0.27653893015396
1030 => 0.2792073997505
1031 => 0.2796777290827
1101 => 0.28754524483296
1102 => 0.29018233233741
1103 => 0.30104412255363
1104 => 0.27898099874879
1105 => 0.27852662323307
1106 => 0.26977173641061
1107 => 0.26421924877852
1108 => 0.27015191998914
1109 => 0.27540745679137
1110 => 0.26993504058881
1111 => 0.27064962261585
1112 => 0.26330335097674
1113 => 0.26592929741352
1114 => 0.26819111623805
1115 => 0.26694227282671
1116 => 0.26507269379523
1117 => 0.27497656270694
1118 => 0.27441774760936
1119 => 0.28364045802891
1120 => 0.2908302203233
1121 => 0.30371555967859
1122 => 0.29026903633341
1123 => 0.28977899157763
1124 => 0.2945692576711
1125 => 0.29018159897263
1126 => 0.29295444781323
1127 => 0.30326881086229
1128 => 0.30348673710035
1129 => 0.29983619183065
1130 => 0.29961405581922
1201 => 0.30031518297086
1202 => 0.3044217065973
1203 => 0.3029867610615
1204 => 0.30464731636391
1205 => 0.30672386619689
1206 => 0.31531335674501
1207 => 0.31738425383658
1208 => 0.31235304754111
1209 => 0.31280730913756
1210 => 0.31092549987335
1211 => 0.30910769570313
1212 => 0.31319385400881
1213 => 0.32066138862609
1214 => 0.32061493348081
1215 => 0.32234725636388
1216 => 0.32342647916871
1217 => 0.31879366485104
1218 => 0.31577787308354
1219 => 0.31693431954702
1220 => 0.31878350262624
1221 => 0.31633465439709
1222 => 0.30121922870994
1223 => 0.30580428328629
1224 => 0.30504110600707
1225 => 0.30395424875593
1226 => 0.30856455658763
1227 => 0.30811988115035
1228 => 0.29480012539679
1229 => 0.29565281294429
1230 => 0.29485198015074
1231 => 0.29743963474167
]
'min_raw' => 0.24531799125357
'max_raw' => 0.54954258386758
'avg_raw' => 0.39743028756057
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.245317'
'max' => '$0.549542'
'avg' => '$0.39743'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.059822063750875
'max_diff' => -0.39934120075474
'year' => 2034
]
9 => [
'items' => [
101 => 0.29004185713276
102 => 0.29231736370047
103 => 0.29374454008818
104 => 0.29458515794463
105 => 0.2976220460592
106 => 0.29726570229058
107 => 0.29759989523021
108 => 0.30210279859537
109 => 0.32487693860649
110 => 0.32611648479899
111 => 0.32001250600441
112 => 0.32245092513719
113 => 0.3177696936259
114 => 0.32091223570095
115 => 0.32306228317679
116 => 0.31334663206384
117 => 0.31277133425898
118 => 0.30807078164004
119 => 0.31059659236455
120 => 0.30657784588963
121 => 0.30756390570479
122 => 0.30480679649846
123 => 0.3097690441349
124 => 0.31531760804776
125 => 0.31671939441158
126 => 0.31303189799535
127 => 0.31036190757214
128 => 0.30567428393851
129 => 0.31346990651174
130 => 0.31574958411945
131 => 0.31345793233576
201 => 0.3129269065439
202 => 0.31192061362786
203 => 0.31314039634309
204 => 0.31573716850561
205 => 0.31451257870862
206 => 0.31532144184403
207 => 0.31223888966789
208 => 0.31879519850535
209 => 0.32920819480089
210 => 0.32924167428667
211 => 0.32801707788868
212 => 0.32751599942692
213 => 0.32877250964598
214 => 0.32945411489508
215 => 0.33351743853895
216 => 0.33787754669879
217 => 0.3582242690165
218 => 0.35251099080841
219 => 0.37056381328061
220 => 0.38484125199051
221 => 0.38912243158289
222 => 0.38518394780297
223 => 0.37171060754459
224 => 0.37104954119355
225 => 0.3911843998371
226 => 0.38549538003535
227 => 0.38481868923224
228 => 0.37761984237433
301 => 0.38187525246189
302 => 0.38094453185264
303 => 0.37947534383853
304 => 0.38759436985114
305 => 0.4027924617563
306 => 0.40042369660608
307 => 0.39865552330529
308 => 0.39090790260875
309 => 0.3955737007618
310 => 0.39391229940697
311 => 0.40105073397865
312 => 0.39682208347408
313 => 0.38545228011504
314 => 0.38726295877533
315 => 0.38698927833841
316 => 0.39262160233707
317 => 0.39093091847555
318 => 0.38665914517994
319 => 0.40274051633041
320 => 0.40169628153719
321 => 0.40317676772867
322 => 0.40382852353572
323 => 0.41361697076947
324 => 0.41762698440576
325 => 0.41853732770637
326 => 0.42234653051526
327 => 0.41844255127038
328 => 0.43406125173993
329 => 0.44444677617575
330 => 0.45651009724215
331 => 0.47413785163518
401 => 0.4807660503528
402 => 0.47956872558117
403 => 0.49293388777919
404 => 0.51695078715816
405 => 0.4844232276151
406 => 0.51867482679703
407 => 0.50783116594976
408 => 0.48212104115001
409 => 0.48046561221536
410 => 0.49787680723044
411 => 0.53649316200847
412 => 0.52682020311965
413 => 0.53650898350397
414 => 0.52520650653578
415 => 0.52464524328956
416 => 0.53596004742523
417 => 0.56239770402608
418 => 0.54983816437576
419 => 0.53183098456154
420 => 0.54512720591361
421 => 0.53360878847125
422 => 0.50765457017158
423 => 0.52681280639028
424 => 0.51400223942599
425 => 0.51774104391337
426 => 0.54466695024428
427 => 0.54142715395744
428 => 0.54561975034967
429 => 0.53821992745672
430 => 0.53130732602974
501 => 0.51840444212976
502 => 0.51458453431147
503 => 0.51564021940656
504 => 0.51458401116636
505 => 0.50736496620795
506 => 0.50580601413651
507 => 0.50320769238485
508 => 0.50401302094367
509 => 0.49912741588472
510 => 0.50834756204847
511 => 0.51005890242411
512 => 0.51676855590571
513 => 0.51746517438859
514 => 0.53615146382891
515 => 0.52585936961552
516 => 0.53276419499052
517 => 0.53214656241824
518 => 0.48267825751433
519 => 0.48949455346754
520 => 0.50009857089923
521 => 0.49532147541966
522 => 0.48856778007974
523 => 0.48311380898251
524 => 0.47485048507304
525 => 0.48648095479254
526 => 0.50177378571112
527 => 0.5178530258177
528 => 0.53717117925222
529 => 0.53285959229373
530 => 0.51749188637667
531 => 0.51818127043799
601 => 0.52244277144246
602 => 0.51692374044348
603 => 0.5152960704576
604 => 0.52221915458098
605 => 0.52226683005647
606 => 0.51591651789497
607 => 0.50885930802231
608 => 0.50882973805527
609 => 0.50757397572299
610 => 0.52542990386501
611 => 0.53524885890516
612 => 0.53637458627647
613 => 0.53517308848374
614 => 0.53563549729842
615 => 0.52992206370647
616 => 0.54298127863157
617 => 0.55496570566935
618 => 0.55175362321328
619 => 0.54693825498722
620 => 0.5431025822556
621 => 0.55085006061715
622 => 0.55050507760137
623 => 0.55486103215416
624 => 0.55466342089443
625 => 0.55319867721406
626 => 0.55175367552389
627 => 0.55748294388984
628 => 0.55583300660968
629 => 0.5541805065212
630 => 0.55086616460865
701 => 0.55131663871996
702 => 0.54650210193511
703 => 0.54427467692022
704 => 0.51077954903625
705 => 0.50182855638078
706 => 0.50464472088445
707 => 0.50557187536074
708 => 0.50167639188606
709 => 0.50726151452114
710 => 0.50639107907457
711 => 0.50977743420947
712 => 0.50766178653964
713 => 0.50774861345797
714 => 0.51397028215131
715 => 0.51577645904186
716 => 0.51485782289769
717 => 0.51550120416406
718 => 0.5303276538933
719 => 0.52821980686497
720 => 0.52710005514213
721 => 0.52741023402187
722 => 0.53119870981036
723 => 0.53225927618803
724 => 0.52776558192118
725 => 0.52988483411516
726 => 0.538908340984
727 => 0.54206605770184
728 => 0.55214397367516
729 => 0.54786269584902
730 => 0.55572116658827
731 => 0.57987542649061
801 => 0.59917152064826
802 => 0.58142603501607
803 => 0.61686085459381
804 => 0.64445194445805
805 => 0.6433929524737
806 => 0.63858180776246
807 => 0.6071700854991
808 => 0.57826455034995
809 => 0.60244525789606
810 => 0.60250689949241
811 => 0.60042975526939
812 => 0.58752879089415
813 => 0.59998082967359
814 => 0.60096922729274
815 => 0.60041598746216
816 => 0.59052484832358
817 => 0.57542290704704
818 => 0.57837379022354
819 => 0.58320739706302
820 => 0.57405637091986
821 => 0.57113206358689
822 => 0.57656890729111
823 => 0.59408755051748
824 => 0.59077575249413
825 => 0.59068926806371
826 => 0.60485854442856
827 => 0.59471640047255
828 => 0.57841101031043
829 => 0.57429368425282
830 => 0.55967995051147
831 => 0.56977370845896
901 => 0.57013696483791
902 => 0.56460871676579
903 => 0.57885959717357
904 => 0.57872827280179
905 => 0.59225736278536
906 => 0.61811990153978
907 => 0.61047107621186
908 => 0.60157632454531
909 => 0.60254343067618
910 => 0.61315019791044
911 => 0.60673710431166
912 => 0.60904329748346
913 => 0.61314670721087
914 => 0.61562239618135
915 => 0.60218721713201
916 => 0.59905483421671
917 => 0.59264707808902
918 => 0.59097541412174
919 => 0.59619439778553
920 => 0.59481937997953
921 => 0.57010643454586
922 => 0.56752379424651
923 => 0.56760300013733
924 => 0.56110882830677
925 => 0.55120365748533
926 => 0.57723385499705
927 => 0.57514326584448
928 => 0.57283541721879
929 => 0.57311811550703
930 => 0.58441694200162
1001 => 0.57786305203035
1002 => 0.59528764268043
1003 => 0.59170567067391
1004 => 0.58803183460144
1005 => 0.58752399854845
1006 => 0.58610988509751
1007 => 0.58126036390581
1008 => 0.5754042756558
1009 => 0.57153757894746
1010 => 0.52721320521692
1011 => 0.53543955115828
1012 => 0.5449032123088
1013 => 0.54817003021472
1014 => 0.54258191212973
1015 => 0.58148101686779
1016 => 0.58858825814453
1017 => 0.5670599607234
1018 => 0.5630328952705
1019 => 0.58174503060845
1020 => 0.57045932553415
1021 => 0.57554127783808
1022 => 0.56455687663629
1023 => 0.58687633184529
1024 => 0.58670629499191
1025 => 0.57802352280785
1026 => 0.58536214240076
1027 => 0.58408687665193
1028 => 0.57428404824085
1029 => 0.5871870989909
1030 => 0.5871934987431
1031 => 0.57883651929569
1101 => 0.56907739687915
1102 => 0.56733269629125
1103 => 0.56601829876582
1104 => 0.57521801662085
1105 => 0.5834664548829
1106 => 0.59881475352732
1107 => 0.60267368047311
1108 => 0.61773532924583
1109 => 0.60876685074004
1110 => 0.61274246110042
1111 => 0.61705854853103
1112 => 0.61912783956412
1113 => 0.61575604086997
1114 => 0.63915298103598
1115 => 0.64112839964971
1116 => 0.64179074042359
1117 => 0.63390142384102
1118 => 0.64090898348388
1119 => 0.63763037839297
1120 => 0.6461603980168
1121 => 0.64749801401058
1122 => 0.64636510085092
1123 => 0.64678968128017
1124 => 0.62682452035157
1125 => 0.6257892214328
1126 => 0.61167284721402
1127 => 0.61742537405114
1128 => 0.60667130085493
1129 => 0.61008152824468
1130 => 0.61158472398424
1201 => 0.6107995398355
1202 => 0.61775061328749
1203 => 0.61184078084281
1204 => 0.59624376135488
1205 => 0.58064249246942
1206 => 0.58044663124708
1207 => 0.5763390925348
1208 => 0.57337009437907
1209 => 0.57394202875473
1210 => 0.57595760009314
1211 => 0.57325294570877
1212 => 0.57383012085114
1213 => 0.58341507391221
1214 => 0.58533726789185
1215 => 0.57880490169936
1216 => 0.55257650882058
1217 => 0.54613999541918
1218 => 0.5507664336105
1219 => 0.54855529413583
1220 => 0.44272693535294
1221 => 0.46758973847475
1222 => 0.45281710512079
1223 => 0.45962501422647
1224 => 0.44454598092694
1225 => 0.45174248597733
1226 => 0.4504135542688
1227 => 0.49039220594484
1228 => 0.48976799428775
1229 => 0.49006677137545
1230 => 0.47580536251996
1231 => 0.49852417406621
]
'min_raw' => 0.29004185713276
'max_raw' => 0.64749801401058
'avg_raw' => 0.46876993557167
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.290041'
'max' => '$0.647498'
'avg' => '$0.468769'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.04472386587919
'max_diff' => 0.097955430142998
'year' => 2035
]
10 => [
'items' => [
101 => 0.50971627757593
102 => 0.50764491708447
103 => 0.50816623389446
104 => 0.4992082838936
105 => 0.49015350391257
106 => 0.48011035939296
107 => 0.49876928054021
108 => 0.49669472702705
109 => 0.50145300638546
110 => 0.51355465051668
111 => 0.51533666358468
112 => 0.51773170721946
113 => 0.51687325456721
114 => 0.5373250795108
115 => 0.53484822856465
116 => 0.54081672670623
117 => 0.52853907319795
118 => 0.51464574284776
119 => 0.51728641074014
120 => 0.5170320931872
121 => 0.51379433884609
122 => 0.51087143899672
123 => 0.50600563426943
124 => 0.52140176043016
125 => 0.52077670582466
126 => 0.53089561334116
127 => 0.5291069981478
128 => 0.51716218813812
129 => 0.51758879936441
130 => 0.52045796488359
131 => 0.53038817950503
201 => 0.53333614330524
202 => 0.53197052901694
203 => 0.53520283674421
204 => 0.53775752098005
205 => 0.53552366575162
206 => 0.56715034500232
207 => 0.55401674277305
208 => 0.56041796911658
209 => 0.5619446238813
210 => 0.55803412980357
211 => 0.55888217594473
212 => 0.56016673476986
213 => 0.5679663244136
214 => 0.58843470446825
215 => 0.59750001066148
216 => 0.62477343161813
217 => 0.59674726317728
218 => 0.59508430632582
219 => 0.59999707301852
220 => 0.61600945830488
221 => 0.6289859926126
222 => 0.6332910576767
223 => 0.6338600430938
224 => 0.64193663134935
225 => 0.64656598111798
226 => 0.64095592109977
227 => 0.6362019826321
228 => 0.61917396512147
229 => 0.62114500451408
301 => 0.63472351134343
302 => 0.65390395200994
303 => 0.67036276548654
304 => 0.6645994626546
305 => 0.7085693950046
306 => 0.71292883419604
307 => 0.71232650065732
308 => 0.72225795190695
309 => 0.70254604368132
310 => 0.69411882101463
311 => 0.6372298380883
312 => 0.65321332181914
313 => 0.676446254099
314 => 0.67337128839274
315 => 0.65649891195304
316 => 0.67034996627603
317 => 0.66577037455433
318 => 0.662158260556
319 => 0.67870605502513
320 => 0.66051107526039
321 => 0.67626474525741
322 => 0.65606050053538
323 => 0.66462578893647
324 => 0.65976371698363
325 => 0.66291007341024
326 => 0.64451653803087
327 => 0.65444124324375
328 => 0.64410363766461
329 => 0.64409873629357
330 => 0.64387053307745
331 => 0.65603268019734
401 => 0.65642928737829
402 => 0.6474414422807
403 => 0.64614615338561
404 => 0.65093551531915
405 => 0.64532842683086
406 => 0.64795194824394
407 => 0.64540789062183
408 => 0.64483516966505
409 => 0.64027163164093
410 => 0.63830553398305
411 => 0.6390764915348
412 => 0.63644481595482
413 => 0.63485913622601
414 => 0.64355510146841
415 => 0.63890919803363
416 => 0.6428430501354
417 => 0.63835992917372
418 => 0.62281947871774
419 => 0.61388200132322
420 => 0.58452753101238
421 => 0.59285242237843
422 => 0.59837183396684
423 => 0.5965476684698
424 => 0.60046668181579
425 => 0.60070727740632
426 => 0.59943316621793
427 => 0.59795790868552
428 => 0.5972398349056
429 => 0.6025917685543
430 => 0.60569874617516
501 => 0.59892578075994
502 => 0.59733896972701
503 => 0.60418681170747
504 => 0.60836399135968
505 => 0.63920593895712
506 => 0.63692106786092
507 => 0.64265564592906
508 => 0.64201002044286
509 => 0.64802077184821
510 => 0.65784581006287
511 => 0.63786876024857
512 => 0.64133608534193
513 => 0.64048597730127
514 => 0.6497672339789
515 => 0.64979620904916
516 => 0.64423163203777
517 => 0.6472482795106
518 => 0.64556446964866
519 => 0.64860734164973
520 => 0.63689055201441
521 => 0.65116033704095
522 => 0.65925038562636
523 => 0.65936271595882
524 => 0.66319733478171
525 => 0.66709352959191
526 => 0.67457193624304
527 => 0.66688496088933
528 => 0.65305684053995
529 => 0.65405518616462
530 => 0.6459477642633
531 => 0.64608405149018
601 => 0.64535653959204
602 => 0.64753985756291
603 => 0.63736966753039
604 => 0.63975659080314
605 => 0.63641488424349
606 => 0.64132882112449
607 => 0.6360422373434
608 => 0.64048556735343
609 => 0.64240316128703
610 => 0.64947912418488
611 => 0.6349971118701
612 => 0.60546730841423
613 => 0.61167483111491
614 => 0.60249341745022
615 => 0.60334319224099
616 => 0.60505987255901
617 => 0.59949554998546
618 => 0.60055704738054
619 => 0.60051912322394
620 => 0.6001923133307
621 => 0.59874481812498
622 => 0.5966456636985
623 => 0.60500804884795
624 => 0.60642898103662
625 => 0.60958753727575
626 => 0.61898525817427
627 => 0.61804620424299
628 => 0.61957784016588
629 => 0.61623428754597
630 => 0.60349829005749
701 => 0.60418991599585
702 => 0.59556532946198
703 => 0.60936698720737
704 => 0.60609857248028
705 => 0.60399140424343
706 => 0.60341644386723
707 => 0.61283745989812
708 => 0.6156563755509
709 => 0.61389981648648
710 => 0.61029706259835
711 => 0.61721541512214
712 => 0.61906647439565
713 => 0.61948085830255
714 => 0.63173885251219
715 => 0.62016594400954
716 => 0.62295165811094
717 => 0.64468500431296
718 => 0.6249758583045
719 => 0.63541623251159
720 => 0.63490523052323
721 => 0.64024617268458
722 => 0.63446711737558
723 => 0.63453875569227
724 => 0.63928115050479
725 => 0.63262131228602
726 => 0.63097224268554
727 => 0.62869406484334
728 => 0.63366838281632
729 => 0.63665026147208
730 => 0.66068201348891
731 => 0.67620762127282
801 => 0.67553361369304
802 => 0.68169278128289
803 => 0.67891801987215
804 => 0.66995758333182
805 => 0.68525195589734
806 => 0.68041217647388
807 => 0.68081116200922
808 => 0.68079631174767
809 => 0.68401434196341
810 => 0.68173407262742
811 => 0.67723942770134
812 => 0.68022318275957
813 => 0.68908386857055
814 => 0.7165877092069
815 => 0.73197922280442
816 => 0.71566112076217
817 => 0.72691712904282
818 => 0.72016753500027
819 => 0.71894093297971
820 => 0.72601053799243
821 => 0.73309251741287
822 => 0.73264142594003
823 => 0.72750027254446
824 => 0.72459616544324
825 => 0.74658703736093
826 => 0.76278953718516
827 => 0.76168463532008
828 => 0.76656131281919
829 => 0.78087938878652
830 => 0.782188454213
831 => 0.78202354205779
901 => 0.7787788868114
902 => 0.79287689203836
903 => 0.80463769602948
904 => 0.77802784286897
905 => 0.78816052660393
906 => 0.79270941478724
907 => 0.79938853223465
908 => 0.81065732291848
909 => 0.82289821850022
910 => 0.82462921535007
911 => 0.82340099024928
912 => 0.81532779056018
913 => 0.82872192456999
914 => 0.83656789414184
915 => 0.84123998947005
916 => 0.85308764585987
917 => 0.79273750717204
918 => 0.75001867941227
919 => 0.74334751759024
920 => 0.75691358748583
921 => 0.76049085192992
922 => 0.75904886111802
923 => 0.7109649366485
924 => 0.7430943656791
925 => 0.7776629297969
926 => 0.77899084912958
927 => 0.79629659512154
928 => 0.80193205540301
929 => 0.81586544924252
930 => 0.81499391166421
1001 => 0.81838647133541
1002 => 0.81760658061794
1003 => 0.8434152586834
1004 => 0.87188606321539
1005 => 0.87090020978606
1006 => 0.86680719478332
1007 => 0.87288602002515
1008 => 0.902270941419
1009 => 0.89956564874082
1010 => 0.90219361014139
1011 => 0.93684008852632
1012 => 0.98188543883083
1013 => 0.96095735113516
1014 => 1.0063652795397
1015 => 1.0349471634996
1016 => 1.0843765763861
1017 => 1.0781877704478
1018 => 1.0974302781547
1019 => 1.0671085161753
1020 => 0.9974836216313
1021 => 0.98646521555633
1022 => 1.0085243435489
1023 => 1.0627545572204
1024 => 1.0068164411314
1025 => 1.0181326491623
1026 => 1.0148735804881
1027 => 1.0146999185686
1028 => 1.0213278877017
1029 => 1.0117136727825
1030 => 0.97254363163759
1031 => 0.99049503066382
1101 => 0.98356313340281
1102 => 0.99125459022108
1103 => 1.0327622104712
1104 => 1.0144107021405
1105 => 0.99507887886967
1106 => 1.0193252753263
1107 => 1.0501992699815
1108 => 1.0482672308818
1109 => 1.0445182674989
1110 => 1.0656509777992
1111 => 1.1005560239122
1112 => 1.1099907176167
1113 => 1.1169552156256
1114 => 1.1179155022348
1115 => 1.127807051125
1116 => 1.0746176997512
1117 => 1.1590305663809
1118 => 1.1736063365895
1119 => 1.1708666958941
1120 => 1.1870670510387
1121 => 1.1823004955918
1122 => 1.1753945045989
1123 => 1.2010755134176
1124 => 1.1716343091575
1125 => 1.1298462262549
1126 => 1.1069204575
1127 => 1.1371109591655
1128 => 1.1555472450293
1129 => 1.1677324572173
1130 => 1.1714196950629
1201 => 1.0787466376876
1202 => 1.0288009996458
1203 => 1.0608155810027
1204 => 1.0998755797865
1205 => 1.0744007194857
1206 => 1.0753992857792
1207 => 1.0390788296658
1208 => 1.1030891342305
1209 => 1.0937633712668
1210 => 1.1421454460193
1211 => 1.1305986755892
1212 => 1.1700523793686
1213 => 1.1596628969259
1214 => 1.2027890576774
1215 => 1.2199932507954
1216 => 1.2488817686594
1217 => 1.2701322799975
1218 => 1.2826109867128
1219 => 1.281861811968
1220 => 1.3313086648409
1221 => 1.3021515832432
1222 => 1.26552341696
1223 => 1.2648609289924
1224 => 1.2838311753356
1225 => 1.3235876074379
1226 => 1.3338958718495
1227 => 1.3396567853763
1228 => 1.3308337457712
1229 => 1.2991858234038
1230 => 1.2855204109842
1231 => 1.2971637382908
]
'min_raw' => 0.48011035939296
'max_raw' => 1.3396567853763
'avg_raw' => 0.90988357238464
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.48011'
'max' => '$1.33'
'avg' => '$0.909883'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.1900685022602
'max_diff' => 0.69215877136575
'year' => 2036
]
11 => [
'items' => [
101 => 1.2829249495173
102 => 1.3075050936389
103 => 1.3412588815533
104 => 1.3342888578259
105 => 1.3575886021422
106 => 1.381701386305
107 => 1.4161837506306
108 => 1.4251987175436
109 => 1.4401001150423
110 => 1.4554385479225
111 => 1.4603648391812
112 => 1.4697706577326
113 => 1.469721084426
114 => 1.4980661517152
115 => 1.5293316387089
116 => 1.5411336362513
117 => 1.5682716788342
118 => 1.5217987319415
119 => 1.5570489960023
120 => 1.5888456165566
121 => 1.550936374711
122 => 1.6031854328746
123 => 1.6052141454042
124 => 1.6358452960024
125 => 1.6047947566527
126 => 1.5863570455037
127 => 1.6395860267389
128 => 1.6653418540614
129 => 1.6575839892639
130 => 1.5985462551026
131 => 1.5641837615732
201 => 1.4742504879767
202 => 1.58078033538
203 => 1.632667916532
204 => 1.5984118788025
205 => 1.6156886316786
206 => 1.7099449933641
207 => 1.7458317132465
208 => 1.738367526378
209 => 1.7396288510878
210 => 1.7589926737463
211 => 1.844862527266
212 => 1.7934073205894
213 => 1.8327428981038
214 => 1.8536063465825
215 => 1.8729854802621
216 => 1.8253964527831
217 => 1.7634838272545
218 => 1.7438734998344
219 => 1.5950057909631
220 => 1.5872565802166
221 => 1.5829067133995
222 => 1.5554814184186
223 => 1.5339326489842
224 => 1.5167962674754
225 => 1.4718252850396
226 => 1.4870016714746
227 => 1.4153273116454
228 => 1.4611820270808
301 => 1.3467880181555
302 => 1.4420587480248
303 => 1.3902072211855
304 => 1.4250241269158
305 => 1.4249026540116
306 => 1.3607936918522
307 => 1.3238169803986
308 => 1.347379980092
309 => 1.3726413861965
310 => 1.3767399643474
311 => 1.4094920367522
312 => 1.4186324361569
313 => 1.3909365992361
314 => 1.3444174565855
315 => 1.3552227924346
316 => 1.3235980106125
317 => 1.2681767968988
318 => 1.3079812801495
319 => 1.3215722808109
320 => 1.3275748409652
321 => 1.2730744424472
322 => 1.2559492339717
323 => 1.2468319166737
324 => 1.3373821395235
325 => 1.3423426851368
326 => 1.3169638324288
327 => 1.4316786531907
328 => 1.4057151562337
329 => 1.4347227435458
330 => 1.3542423214624
331 => 1.3573167819673
401 => 1.319216060397
402 => 1.3405499185852
403 => 1.3254718352402
404 => 1.3388263536689
405 => 1.3468309969524
406 => 1.3849254665691
407 => 1.4424937256759
408 => 1.379235423147
409 => 1.3516728748596
410 => 1.3687725247995
411 => 1.4143111459548
412 => 1.4833044880842
413 => 1.4424590409232
414 => 1.4605855567726
415 => 1.4645453940931
416 => 1.4344274735372
417 => 1.4844149787749
418 => 1.5112036889295
419 => 1.5386833624057
420 => 1.5625431929221
421 => 1.5277073765283
422 => 1.5649866935877
423 => 1.5349461447232
424 => 1.5079966668568
425 => 1.5080375380905
426 => 1.4911317369558
427 => 1.4583746169895
428 => 1.4523337014833
429 => 1.48375930683
430 => 1.5089596663021
501 => 1.5110352886098
502 => 1.5249875024548
503 => 1.5332442788891
504 => 1.6141719124879
505 => 1.6467216761899
506 => 1.6865229111091
507 => 1.7020277351848
508 => 1.7486916968657
509 => 1.7110067579467
510 => 1.7028533843622
511 => 1.5896618769899
512 => 1.608196979981
513 => 1.6378734682412
514 => 1.5901512313508
515 => 1.620420006513
516 => 1.6263957039104
517 => 1.5885296480024
518 => 1.6087555445586
519 => 1.5550415598659
520 => 1.4436645437588
521 => 1.4845389732326
522 => 1.5146363115096
523 => 1.4716836988133
524 => 1.5486745945757
525 => 1.503698102686
526 => 1.4894427140093
527 => 1.4338273603686
528 => 1.4600756664557
529 => 1.4955768762781
530 => 1.4736412560665
531 => 1.5191609616556
601 => 1.5836290044317
602 => 1.6295727708523
603 => 1.6330997627521
604 => 1.6035609989369
605 => 1.6508970564646
606 => 1.6512418479658
607 => 1.5978465817011
608 => 1.56514227842
609 => 1.5577117919041
610 => 1.5762746040535
611 => 1.5988132848871
612 => 1.6343505026771
613 => 1.6558248991125
614 => 1.711818735876
615 => 1.7269690626351
616 => 1.7436146784513
617 => 1.7658583544995
618 => 1.7925675907569
619 => 1.7341293023834
620 => 1.7364511645231
621 => 1.6820342395229
622 => 1.6238819509837
623 => 1.6680122891998
624 => 1.7257068360045
625 => 1.7124716432207
626 => 1.7109824136621
627 => 1.7134868847019
628 => 1.7035079815639
629 => 1.6583737725061
630 => 1.6357076552724
701 => 1.6649527292471
702 => 1.6804951845162
703 => 1.7046001771939
704 => 1.7016287280517
705 => 1.7637206005025
706 => 1.7878476245761
707 => 1.7816748993645
708 => 1.7828108293584
709 => 1.8264916539868
710 => 1.8750737146203
711 => 1.9205772253711
712 => 1.9668653509281
713 => 1.9110632089128
714 => 1.8827303225951
715 => 1.9119626290854
716 => 1.8964515557872
717 => 1.9855827838421
718 => 1.9917540366874
719 => 2.0808788195401
720 => 2.165468851249
721 => 2.1123393679204
722 => 2.1624380776948
723 => 2.2166239169234
724 => 2.3211571921311
725 => 2.2859540625661
726 => 2.2589890170227
727 => 2.2335071792783
728 => 2.2865308384966
729 => 2.3547449290071
730 => 2.3694375907567
731 => 2.3932453158197
801 => 2.368214403986
802 => 2.3983613802252
803 => 2.504793453602
804 => 2.4760345678737
805 => 2.4351923269179
806 => 2.5192102270039
807 => 2.5496159784337
808 => 2.7630194655838
809 => 3.0324501833691
810 => 2.9209040970285
811 => 2.8516638416672
812 => 2.8679369440779
813 => 2.9663239214077
814 => 2.9979226958795
815 => 2.9120263341145
816 => 2.9423663812224
817 => 3.1095430237547
818 => 3.1992279288044
819 => 3.0774237814571
820 => 2.7413709697486
821 => 2.4315149299845
822 => 2.5137027047292
823 => 2.5043851616568
824 => 2.6839956083468
825 => 2.4753486779603
826 => 2.4788617571631
827 => 2.6621863576799
828 => 2.6132784972414
829 => 2.5340540269764
830 => 2.4320933562925
831 => 2.2436096263127
901 => 2.0766643304121
902 => 2.4040825008788
903 => 2.389963633997
904 => 2.3695174224532
905 => 2.4150182537327
906 => 2.6359573747893
907 => 2.6308640129388
908 => 2.5984626435019
909 => 2.6230387966472
910 => 2.529745708506
911 => 2.5537894615642
912 => 2.4314658472047
913 => 2.4867612295806
914 => 2.5338840468447
915 => 2.5433446500757
916 => 2.5646598722255
917 => 2.3825236327165
918 => 2.464297457017
919 => 2.5123319176224
920 => 2.2953104770986
921 => 2.5080421015204
922 => 2.3793530460032
923 => 2.3356740477159
924 => 2.3944820646393
925 => 2.3715645232516
926 => 2.3518613669296
927 => 2.3408666671588
928 => 2.3840487843833
929 => 2.382034287001
930 => 2.3113799619339
1001 => 2.2192142751225
1002 => 2.2501481048519
1003 => 2.238909554505
1004 => 2.198179598246
1005 => 2.2256266710109
1006 => 2.1047636531999
1007 => 1.896825112969
1008 => 2.0341956819753
1009 => 2.028907064499
1010 => 2.0262403037477
1011 => 2.1294704897122
1012 => 2.1195472892574
1013 => 2.1015365832635
1014 => 2.1978488175063
1015 => 2.1626935564253
1016 => 2.2710337874556
1017 => 2.342393670619
1018 => 2.3242944959984
1019 => 2.3914088110258
1020 => 2.2508607578113
1021 => 2.29754518328
1022 => 2.3071667786673
1023 => 2.1966603394859
1024 => 2.1211708475741
1025 => 2.1161365591068
1026 => 1.9852481832245
1027 => 2.0551676971267
1028 => 2.1166939758946
1029 => 2.0872276629969
1030 => 2.0778995086146
1031 => 2.1255550263242
1101 => 2.1292582681921
1102 => 2.044823961151
1103 => 2.0623805272716
1104 => 2.1355943265308
1105 => 2.0605357273775
1106 => 1.9147091299752
1107 => 1.878542117609
1108 => 1.873716771469
1109 => 1.7756289654899
1110 => 1.8809589703146
1111 => 1.83497960054
1112 => 1.9802278787405
1113 => 1.8972628412145
1114 => 1.8936863842669
1115 => 1.8882800450384
1116 => 1.8038518184759
1117 => 1.8223362343994
1118 => 1.883781248185
1119 => 1.9057055213314
1120 => 1.903418640022
1121 => 1.8834801340963
1122 => 1.8926078800074
1123 => 1.8632042301102
1124 => 1.8528211893475
1125 => 1.82004945662
1126 => 1.7718840629327
1127 => 1.7785817563405
1128 => 1.6831535082852
1129 => 1.6311591339842
1130 => 1.6167677764525
1201 => 1.597523051705
1202 => 1.618941519321
1203 => 1.6828831720484
1204 => 1.6057559728808
1205 => 1.4735267997521
1206 => 1.4814739983647
1207 => 1.4993289941027
1208 => 1.4660563276675
1209 => 1.4345665412498
1210 => 1.4619443556929
1211 => 1.4059171118918
1212 => 1.5060996188428
1213 => 1.503389962788
1214 => 1.5407318061346
1215 => 1.564082427111
1216 => 1.5102668056137
1217 => 1.49673232234
1218 => 1.5044421791207
1219 => 1.3770154204548
1220 => 1.5303183213835
1221 => 1.5316440912368
1222 => 1.5202920448548
1223 => 1.6019211069033
1224 => 1.7741838885685
1225 => 1.7093717008517
1226 => 1.6842744628091
1227 => 1.6365645949439
1228 => 1.7001351611426
1229 => 1.6952539335138
1230 => 1.6731791710261
1231 => 1.659828285796
]
'min_raw' => 1.2468319166737
'max_raw' => 3.1992279288044
'avg_raw' => 2.2230299227391
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$1.24'
'max' => '$3.19'
'avg' => '$2.22'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.76672155728075
'max_diff' => 1.8595711434281
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.039136629141469
]
1 => [
'year' => 2028
'avg' => 0.06716981705138
]
2 => [
'year' => 2029
'avg' => 0.18349583400271
]
3 => [
'year' => 2030
'avg' => 0.1415667626629
]
4 => [
'year' => 2031
'avg' => 0.13903610511072
]
5 => [
'year' => 2032
'avg' => 0.24377404853172
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.039136629141469
'min' => '$0.039136'
'max_raw' => 0.24377404853172
'max' => '$0.243774'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.24377404853172
]
1 => [
'year' => 2033
'avg' => 0.62701191981338
]
2 => [
'year' => 2034
'avg' => 0.39743028756057
]
3 => [
'year' => 2035
'avg' => 0.46876993557167
]
4 => [
'year' => 2036
'avg' => 0.90988357238464
]
5 => [
'year' => 2037
'avg' => 2.2230299227391
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.24377404853172
'min' => '$0.243774'
'max_raw' => 2.2230299227391
'max' => '$2.22'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 2.2230299227391
]
]
]
]
'prediction_2025_max_price' => '$0.066916'
'last_price' => 0.064884344177198
'sma_50day_nextmonth' => '$0.060152'
'sma_200day_nextmonth' => '$0.073536'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'augmenter'
'sma_200day_date_nextmonth' => '4 févr. 2026'
'sma_50day_date_nextmonth' => '4 févr. 2026'
'daily_sma3' => '$0.061484'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.060606'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.05978'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.060989'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.065158'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.075461'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.073088'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.062246'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.061274'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.060629'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.061499'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.065776'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.070242'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.0759043'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.075116'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.066976'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.208437'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.062588'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.062836'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.065755'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.069795'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.109552'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.237829'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.134267'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '57.92'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 159.27
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0.01
'momentum_10_action' => 'BUY'
'vwma_10' => '0.0616037'
'vwma_10_action' => 'BUY'
'hma_9' => '0.061515'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 137.58
'cci_20_action' => 'SELL'
'adx_14' => 23.94
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.002575'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 72.31
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.011442'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 15
'buy_signals' => 18
'sell_pct' => 45.45
'buy_pct' => 54.55
'overall_action' => 'bullish'
'overall_action_label' => 'Haussier'
'overall_action_dir' => 1
'last_updated' => 1767710501
'last_updated_date' => '6 janvier 2026'
]
Prévision du prix de Radpie pour 2026
La prévision du prix de Radpie pour 2026 suggère que le prix moyen pourrait varier entre $0.022417 à la baisse et $0.066916 à la hausse. Sur le marché des cryptomonnaies, comparé au prix moyen d'aujourd'hui, Radpie pourrait potentiellement gagner 3.13% d'ici 2026 si RDP atteint l'objectif de prix prévu.
Prévision du prix de Radpie de 2027 à 2032
La prévision du prix de RDP pour 2027-2032 se situe actuellement dans une fourchette de prix comprise entre $0.039136 à la baisse et $0.243774 à la hausse. Compte tenu de la volatilité des prix sur le marché, si Radpie atteint l'objectif de prix le plus élevé, il pourrait gagner 275.71% d'ici 2032 par rapport au prix actuel.
| Prévision du Prix de Radpie | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2027 | $0.02158 | $0.039136 | $0.056692 |
| 2028 | $0.038946 | $0.067169 | $0.095392 |
| 2029 | $0.085554 | $0.183495 | $0.281436 |
| 2030 | $0.07276 | $0.141566 | $0.210372 |
| 2031 | $0.086025 | $0.139036 | $0.192046 |
| 2032 | $0.131311 | $0.243774 | $0.356236 |
Prévision du prix de Radpie de 2032 à 2037
La prévision du prix de Radpie pour 2032-2037 est actuellement estimée entre $0.243774 à la baisse et $2.22 à la hausse. Par rapport au prix actuel, Radpie pourrait potentiellement gagner 3326.16% d'ici 2037 s'il atteint l'objectif de prix le plus élevé. Veuillez noter que ces informations sont à titre général seulement et ne doivent pas être considérées comme un conseil en investissement à long terme.
| Prévision du Prix de Radpie | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2032 | $0.131311 | $0.243774 | $0.356236 |
| 2033 | $0.30514 | $0.627011 | $0.948883 |
| 2034 | $0.245317 | $0.39743 | $0.549542 |
| 2035 | $0.290041 | $0.468769 | $0.647498 |
| 2036 | $0.48011 | $0.909883 | $1.33 |
| 2037 | $1.24 | $2.22 | $3.19 |
Radpie Histogramme des prix potentiels
Prévision du prix de Radpie basée sur l'analyse technique
Au 6 janvier 2026, le sentiment global de prévision du prix pour Radpie est Haussier, avec 18 indicateurs techniques montrant des signaux haussiers et 15 indiquant des signaux baissiers. La prévision du prix de RDP a été mise à jour pour la dernière fois le 6 janvier 2026.
Moyennes Mobiles Simples sur 50 et 200 jours de Radpie et Indice de Force Relative sur 14 jours - RSI (14)
Selon nos indicateurs techniques, le SMA sur 200 jours de Radpie devrait augmenter au cours du prochain mois, atteignant $0.073536 d'ici le 4 févr. 2026. Le SMA à court terme sur 50 jours pour Radpie devrait atteindre $0.060152 d'ici le 4 févr. 2026.
Le Relative Strength Index (RSI), un oscillateur de momentum, est un outil couramment utilisé pour identifier si une cryptomonnaie est survendue (en dessous de 30) ou surachetée (au-dessus de 70). Actuellement, le RSI est à 57.92, ce qui suggère que le marché de RDP est dans un état NEUTRAL.
Moyennes Mobiles et Oscillateurs Populaires de RDP pour le Samedi 19 Octobre 2024
Les moyennes mobiles (MA) sont des indicateurs largement utilisés sur les marchés financiers, conçus pour lisser les mouvements de prix sur une période donnée. En tant qu'indicateurs retardés, ils sont basés sur des données historiques de prix. Le tableau ci-dessous met en évidence deux types : la moyenne mobile simple (SMA) et la moyenne mobile exponentielle (EMA).
Moyenne Mobile Simple Quotidienne (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 3 | $0.061484 | BUY |
| SMA 5 | $0.060606 | BUY |
| SMA 10 | $0.05978 | BUY |
| SMA 21 | $0.060989 | BUY |
| SMA 50 | $0.065158 | SELL |
| SMA 100 | $0.075461 | SELL |
| SMA 200 | $0.073088 | SELL |
Moyenne Mobile Exponentielle Quotidienne (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 3 | $0.062246 | BUY |
| EMA 5 | $0.061274 | BUY |
| EMA 10 | $0.060629 | BUY |
| EMA 21 | $0.061499 | BUY |
| EMA 50 | $0.065776 | SELL |
| EMA 100 | $0.070242 | SELL |
| EMA 200 | $0.0759043 | SELL |
Moyenne Mobile Simple Hebdomadaire (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 21 | $0.075116 | SELL |
| SMA 50 | $0.066976 | SELL |
| SMA 100 | $0.208437 | SELL |
| SMA 200 | — | — |
Moyenne Mobile Exponentielle Hebdomadaire (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 21 | $0.069795 | SELL |
| EMA 50 | $0.109552 | SELL |
| EMA 100 | $0.237829 | SELL |
| EMA 200 | $0.134267 | SELL |
Oscillateurs de Radpie
Un oscillateur est un outil d'analyse technique qui établit des limites hautes et basses entre deux extrêmes, créant un indicateur de tendance qui fluctue à l'intérieur de ces limites. Les traders utilisent cet indicateur pour identifier les conditions de surachat ou de survente à court terme.
| Période | Valeur | Action |
|---|---|---|
| RSI (14) | 57.92 | NEUTRAL |
| Stoch RSI (14) | 159.27 | SELL |
| Stochastique Rapide (14) | 100 | SELL |
| Indice de Canal des Matières Premières (20) | 137.58 | SELL |
| Indice Directionnel Moyen (14) | 23.94 | NEUTRAL |
| Oscillateur Impressionnant (5, 34) | -0.002575 | NEUTRAL |
| Momentum (10) | 0.01 | BUY |
| MACD (12, 26) | 0 | BUY |
| Plage de Pourcentage de Williams (14) | -0 | SELL |
| Oscillateur Ultime (7, 14, 28) | 72.31 | SELL |
| VWMA (10) | 0.0616037 | BUY |
| Moyenne Mobile de Hull (9) | 0.061515 | BUY |
| Nuage Ichimoku B/L (9, 26, 52, 26) | -0.011442 | SELL |
Prévision du cours de Radpie basée sur les flux monétaires mondiaux
Définitions des flux monétaires mondiaux utilisés pour la prédiction du cours de Radpie
M0 : le total de toutes les devises physiques, plus les comptes à la banque centrale qui peuvent être échangés contre des devises physiques.
M1 : M0 plus le montant des comptes à vue, y compris les comptes de "chèques" et les comptes "courants".
M2 : M1 plus la plupart des comptes d'épargne, comptes du marché monétaire et comptes de certificats de dépôt (CD) de moins de 100 000 $.
Prédictions du cours de Radpie par des sociétés Internet ou des niches technologiques
| Comparaison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Action Facebook | $0.091172 | $0.128113 | $0.18002 | $0.252958 | $0.355449 | $0.499465 |
| Action Amazon.com | $0.135384 | $0.282487 | $0.589426 | $1.22 | $2.56 | $5.35 |
| Action Apple | $0.092033 | $0.130541 | $0.185163 | $0.26264 | $0.372535 | $0.528412 |
| Action Netflix | $0.102376 | $0.161534 | $0.254876 | $0.402154 | $0.634536 | $1.00 |
| Action Google | $0.084024 | $0.108811 | $0.14091 | $0.182478 | $0.2363083 | $0.306018 |
| Action Tesla | $0.147087 | $0.333435 | $0.755872 | $1.71 | $3.88 | $8.80 |
| Action Kodak | $0.048656 | $0.036486 | $0.027361 | $0.020518 | $0.015386 | $0.011538 |
| Action Nokia | $0.042982 | $0.028474 | $0.018863 | $0.012496 | $0.008278 | $0.005483 |
Ce calcul montre la valeur potentielle des cryptomonnaies si l'on suppose que leur capitalisation se comportera comme celle de certaines sociétés Internet ou niches technologiques. En extrapolant les données, vous pourrez obtenir une potentielle image des cours futurs pour 2024, 2025, 2026, 2027, 2028, 2029 et 2030.
Aperçu des prévisions relatives à Radpie
Vous vous posez peut-être des questions telles que : "Devrais-je investir dans Radpie maintenant ?", "Devrais-je acheter RDP aujourd'hui ?", " Radpie sera-t-il un bon ou un mauvais investissement à court ou à long terme ?".
Nous mettons régulièrement à jour les prévisions de Radpie avec de nouvelles valeurs. Regardez nos prévisions similaires. Nous faisons une prévision des cours futurs pour une grande quantité de devises numériques comme Radpie en utilisant des méthodes d'analyse technique.
Si vous souhaitez trouver des cryptomonnaies ayant un bon rendement, vous devriez consulter un maximum d'informations disponibles à propos de Radpie afin de prendre une décision responsable concernant cet investissement.
Le cours de Radpie est de $0.06488 USD actuellement, mais ce cours peut subir une hausse ou une baisse, ce qui pourrait causer la perte de votre investissement, car les cryptomonnaies sont des actifs à haut risque.
Prévision du cours de Radpie basée sur le modèle de croissance du Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Radpie présente 1 % de la précédente croissance annuelle moyenne du Bitcoin | $0.06657 | $0.06830092 | $0.070076 | $0.071897 |
| Si Radpie présente 2 % de la précédente croissance annuelle moyenne du Bitcoin | $0.068257 | $0.0718055 | $0.075538 | $0.079465 |
| Si Radpie présente 5 % de la précédente croissance annuelle moyenne du Bitcoin | $0.073316 | $0.082845 | $0.093612 | $0.105778 |
| Si Radpie présente 10 % de la précédente croissance annuelle moyenne du Bitcoin | $0.081749 | $0.102998 | $0.129771 | $0.1635031 |
| Si Radpie présente 20 % de la précédente croissance annuelle moyenne du Bitcoin | $0.098614 | $0.149881 | $0.227799 | $0.346223 |
| Si Radpie présente 50 % de la précédente croissance annuelle moyenne du Bitcoin | $0.149211 | $0.343135 | $0.789094 | $1.81 |
| Si Radpie présente 100 % de la précédente croissance annuelle moyenne du Bitcoin | $0.233538 | $0.840579 | $3.02 | $10.88 |
Boîte à questions
Est-ce que RDP est un bon investissement ?
La décision d'acquérir Radpie dépend entièrement de votre tolérance individuelle au risque. Comme vous pouvez le discerner, la valeur de Radpie a connu une hausse de 2.6534% au cours des 24 heures précédentes, et Radpie a enregistré une déclin de sur une période de 30 jours précédents. Par conséquent, la détermination de si investir ou non dans Radpie dépendra de la mesure dans laquelle cet investissement s'aligne avec vos aspirations de trading.
Est-ce que Radpie peut monter ?
Il semble que la valeur moyenne de Radpie pourrait potentiellement s'envoler jusqu'à $0.066916 pour la fin de cette année. En regardant les perspectives de Radpie sur une période de cinq ans plus longue, la monnaie numérique pourrait potentiellement croître jusqu'à $0.210372. Cependant, compte tenu de l'imprévisibilité du marché, il est essentiel de mener des recherches approfondies avant d'investir des fonds dans un projet, un réseau ou un actif particulier.
Quel sera le prix de Radpie la semaine prochaine ?
Basé sur notre nouveau pronostic expérimental de Radpie, le prix de Radpie va augmenter de 0.86% durant la prochaine semaine et atteindre $0.065439 d'ici 13 janvier 2026.
Quel sera le prix de Radpie le mois prochain ?
Basé sur notre nouveau pronostic expérimental de Radpie, le prix de Radpie va diminuer de -11.62% durant le prochain mois et atteindre $0.057345 d'ici 5 février 2026.
Jusqu'où le prix de Radpie peut-il monter cette année en 2026 ?
Selon notre prédiction la plus récente sur la valeur de Radpie en 2026, RDP devrait fluctuer dans la fourchette de $0.022417 et $0.066916. Cependant, il est crucial de garder à l'esprit que le marché des cryptomonnaies est exceptionnellement instable, et cette prévision de prix de Radpie ne prend pas en compte les fluctuations de prix soudaines et extrêmes.
Où sera Radpie dans 5 ans ?
L'avenir de Radpie semble suivre une tendance haussière, avec un prix maximum de $0.210372 prévue après une période de cinq ans. Selon la prévision de Radpie pour 2030, la valeur de Radpie pourrait potentiellement atteindre son point le plus élevé d'environ $0.210372, tandis que son point le plus bas devrait être autour de $0.07276.
Combien vaudra Radpie en 2026 ?
Basé sur notre nouvelle simulation expérimentale de prédiction de prix de Radpie, il est attendu que la valeur de RDP en 2026 augmente de 3.13% jusqu'à $0.066916 si le meilleur scénario se produit. Le prix sera entre $0.066916 et $0.022417 durant 2026.
Combien vaudra Radpie en 2027 ?
Selon notre dernière simulation expérimentale pour la prédiction de prix de Radpie, le valeur de RDP pourrait diminuer de -12.62% jusqu'à $0.056692 en 2027, en supposant les conditions les plus favorables. Il est prévu que le prix fluctue entre $0.056692 et $0.02158 tout au long de l'année.
Combien vaudra Radpie en 2028 ?
Notre nouveau modèle expérimental de prédiction de prix de Radpie suggère que la valeur de RDP en 2028 pourrait augmenter de 47.02%, atteignant $0.095392 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.095392 et $0.038946 durant l'année.
Combien vaudra Radpie en 2029 ?
Basé sur notre modèle de prévision expérimental, la valeur de Radpie pourrait connaître un 333.75% croissance en 2029, atteignant potentiellement $0.281436 sous des conditions optimales. Le range de prix prévu pour 2029 se situe entre $0.281436 et $0.085554.
Combien vaudra Radpie en 2030 ?
En utilisant notre nouvelle simulation expérimentale pour les prédictions de prix de Radpie, il est prévu que la valeur de RDP en 2030 augmente de 224.23%, atteignant $0.210372 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.210372 et $0.07276 au cours de 2030.
Combien vaudra Radpie en 2031 ?
Notre simulation expérimentale indique que le prix de Radpie pourrait augmenter de 195.98% en 2031, atteignant potentiellement $0.192046 dans des conditions idéales. Il est probable que le prix fluctue entre $0.192046 et $0.086025 durant l'année.
Combien vaudra Radpie en 2032 ?
Basé sur les résultats de notre dernière prédiction expérimentale de prix de Radpie, RDP pourrait connaître une 449.04% hausse en valeur, atteignant $0.356236 si le scénario le plus positif se réalise en 2032. Il est prévu que le prix reste dans une fourchette de $0.356236 et $0.131311 tout au long de l'année.
Combien vaudra Radpie en 2033 ?
Selon notre prédiction expérimentale de prix de Radpie, la valeur de RDP est anticipée à augmenter de 1362.43% en 2033, avec le prix potentiel le plus élevé étant $0.948883. Tout au long de l'année, le prix de RDP pourrait osciller entre $0.948883 et $0.30514.
Combien vaudra Radpie en 2034 ?
Les résultats de notre nouvelle simulation de prédiction de prix de Radpie suggèrent que RDP pourrait augmenter de 746.96% en 2034, atteignant potentiellement $0.549542 dans les meilleures circonstances. La fourchette de prix prévue pour l'année est entre $0.549542 et $0.245317.
Combien vaudra Radpie en 2035 ?
Basé sur notre prédiction expérimentale pour le prix de Radpie, RDP pourrait augmenter de 897.93%, avec la valeur potentiellement atteignant $0.647498 en 2035. La fourchette de prix attendue pour l'année se situe entre $0.647498 et $0.290041.
Combien vaudra Radpie en 2036 ?
Notre récente simulation de prédiction de prix de Radpie suggère que la valeur de RDP pourrait augmenter de 1964.7% en 2036, pouvant atteindre $1.33 si les conditions sont optimales. La fourchette de prix attendue pour 2036 est entre $1.33 et $0.48011.
Combien vaudra Radpie en 2037 ?
Selon la simulation expérimentale, la valeur de Radpie pourrait augmenter de 4830.69% en 2037, avec un maximum de $3.19 sous des conditions favorables. Il est prévu que le prix chute entre $3.19 et $1.24 au cours de l'année.
Prévisions liées
Prévision du cours de SolPod
Prévision du cours de zuzalu
Prévision du cours de SOFT COQ INU
Prévision du cours de All Street Bets
Prévision du cours de MagicRing
Prévision du cours de AI INU
Prévision du cours de Wall Street Baby On Solana
Prévision du cours de Meta Masters Guild Games
Prévision du cours de Morfey
Prévision du cours de PANTIESPrévision du cours de Celer Bridged BUSD (zkSync)
Prévision du cours de Bridged BUSD
Prévision du cours de Multichain Bridged BUSD (Moonriver)
Prévision du cours de tooker kurlson
Prévision du cours de dogwifsaudihatPrévision du cours de Harmony Horizen Bridged BUSD (Harmony)
Prévision du cours de IoTeX Bridged BUSD (IoTeX)
Prévision du cours de MIMANY
Prévision du cours de The Open League MEME
Prévision du cours de Sandwich Cat
Prévision du cours de Hege
Prévision du cours de DexNet
Prévision du cours de SolDocs
Prévision du cours de Secret Society
Prévision du cours de duk
Comment lire et prédire les mouvements de prix de Radpie ?
Les traders de Radpie utilisent des indicateurs et des modèles graphiques pour prédire la direction du marché. Ils identifient également des niveaux clés de support et de résistance pour évaluer quand une tendance baissière pourrait ralentir ou une tendance haussière pourrait s'arrêter.
Indicateurs de prédiction du prix de Radpie
Les moyennes mobiles sont des outils populaires pour la prédiction du prix de Radpie. Une moyenne mobile simple (SMA) calcule le prix de clôture moyen de RDP sur une période spécifique, comme une SMA de 12 jours. Une moyenne mobile exponentielle (EMA) donne plus de poids aux prix récents, réagissant plus rapidement aux changements de prix.
Les moyennes mobiles couramment utilisées sur le marché des cryptomonnaies incluent les moyennes sur 50 jours, 100 jours et 200 jours, qui aident à identifier les niveaux clés de résistance et de support. Un mouvement de prix de RDP au-dessus de ces moyennes est considéré comme haussier, tandis qu'une chute en dessous indique une faiblesse.
Les traders utilisent également le RSI et les niveaux de retracement de Fibonacci pour évaluer la direction future de RDP.
Comment lire les graphiques de Radpie et prédire les mouvements de prix ?
La plupart des traders préfèrent les graphiques en chandeliers aux simples graphiques linéaires parce qu'ils fournissent des informations plus détaillées. Les chandeliers peuvent représenter l'action des prix de Radpie dans différentes périodes, comme 5 minutes pour les tendances à court terme et hebdomadaire pour les tendances à long terme. Les options populaires incluent les graphiques de 1 heure, 4 heures et 1 jour.
Par exemple, un graphique en chandeliers de 1 heure montre les prix d'ouverture, de clôture, les plus hauts et les plus bas de RDP au sein de chaque heure. La couleur du chandelier est cruciale : le vert indique que le prix a clôturé plus haut qu'il n'a ouvert, tandis que le rouge signifie le contraire. Certains graphiques utilisent des chandeliers creux et pleins pour transmettre la même information.
Qu'est-ce qui affecte le prix de Radpie ?
L'action du prix de Radpie est déterminée par l'offre et la demande, influencée par des facteurs tels que les réductions de récompenses de bloc, les hard forks et les mises à jour de protocole. Les événements du monde réel, tels que les réglementations, l'adoption par les entreprises et les gouvernements et les piratages d'échanges de cryptomonnaies, impactent également le prix de RDP. La capitalisation boursière de Radpie peut changer rapidement.
Les traders surveillent souvent l'activité des « baleines » de RDP, de grands détenteurs de Radpie, car leurs actions peuvent influencer significativement les mouvements de prix sur le marché relativement petit de Radpie.
Modèles de prédiction de prix haussiers et baissiers
Les traders identifient souvent des modèles de chandeliers pour obtenir un avantage dans les prédictions de prix des cryptomonnaies. Certaines formations indiquent des tendances haussières, tandis que d'autres suggèrent des mouvements baissiers.
Modèles de chandeliers haussiers couramment suivis :
- Marteau
- Englobante haussière
- Ligne pénétrante
- Étoile du matin
- Trois soldats blancs
Modèles de chandeliers baissiers courants :
- Harami baissier
- Nuage sombre
- Étoile du soir
- Étoile filante
- Pendu


