Prédiction du prix de Prodigy Bot jusqu'à $0.425565 d'ici 2026
| Année | Prix min. | Prix max. |
|---|---|---|
| 2026 | $0.142566 | $0.425565 |
| 2027 | $0.137245 | $0.360544 |
| 2028 | $0.247687 | $0.606664 |
| 2029 | $0.544098 | $1.78 |
| 2030 | $0.462732 | $1.33 |
| 2031 | $0.547093 | $1.22 |
| 2032 | $0.835096 | $2.26 |
| 2033 | $1.94 | $6.03 |
| 2034 | $1.56 | $3.49 |
| 2035 | $1.84 | $4.11 |
Calculateur de profit d’investissement
Si vous ouvrez une position short de $10,000.00 sur Prodigy Bot aujourd’hui et la fermez le Apr 06, 2026, notre prévision indique que vous pourriez gagner environ $3,954.45, soit un rendement de 39.54% sur les 90 prochains jours.
Prévision du prix à long terme de Prodigy Bot pour 2027, 2028, 2029, 2030, 2031, 2032 et 2037
[
'name' => 'Prodigy Bot'
'name_with_ticker' => 'Prodigy Bot <small>PRO</small>'
'name_lang' => 'Prodigy Bot'
'name_lang_with_ticker' => 'Prodigy Bot <small>PRO</small>'
'name_with_lang' => 'Prodigy Bot'
'name_with_lang_with_ticker' => 'Prodigy Bot <small>PRO</small>'
'image' => '/uploads/coins/prodigy-bot.png?1717252057'
'price_for_sd' => 0.4126
'ticker' => 'PRO'
'marketcap' => '$0'
'low24h' => '$0.3818'
'high24h' => '$0.435'
'volume24h' => '$409.41K'
'current_supply' => '0'
'max_supply' => '1M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.4126'
'change_24h_pct' => '6.4286%'
'ath_price' => '$17.08'
'ath_days' => 773
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '25 nov. 2023'
'ath_pct' => '-97.61%'
'fdv' => '$412.64K'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$20.34'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.41617'
'next_week_prediction_price_date' => '13 janvier 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.364698'
'next_month_prediction_price_date' => '5 février 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.142566'
'current_year_max_price_prediction' => '$0.425565'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.462732'
'grand_prediction_max_price' => '$1.33'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.42045829200189
107 => 0.42202813063786
108 => 0.42556505724266
109 => 0.39534240665572
110 => 0.40891148947885
111 => 0.41688205438632
112 => 0.38087075216274
113 => 0.41617022672653
114 => 0.39481629754833
115 => 0.38756845326
116 => 0.39732672076336
117 => 0.39352391442707
118 => 0.39025448484741
119 => 0.38843008696603
120 => 0.39559548163982
121 => 0.39526120741379
122 => 0.3835372309843
123 => 0.36824378166244
124 => 0.37337676524521
125 => 0.37151190418761
126 => 0.36475340714301
127 => 0.36930781812703
128 => 0.34925249708805
129 => 0.31474835962537
130 => 0.33754284972353
131 => 0.33666528665038
201 => 0.33622277955459
202 => 0.35335220886992
203 => 0.35170560948442
204 => 0.3487170154762
205 => 0.36469851927036
206 => 0.35886505540393
207 => 0.37684241650332
208 => 0.38868346922619
209 => 0.38568019523774
210 => 0.39681676255638
211 => 0.37349501881979
212 => 0.38124156658313
213 => 0.38283811934091
214 => 0.36450130999429
215 => 0.35197501350773
216 => 0.35113965234231
217 => 0.32942078046461
218 => 0.34102282651307
219 => 0.35123214691043
220 => 0.34634267471536
221 => 0.34479481388723
222 => 0.3527024991681
223 => 0.35331699403917
224 => 0.33930644585757
225 => 0.34221968248088
226 => 0.35436836348538
227 => 0.34191356688988
228 => 0.31771593158427
301 => 0.31171458347
302 => 0.31091389300477
303 => 0.29463776094594
304 => 0.31211562224756
305 => 0.30448606741184
306 => 0.32858773972177
307 => 0.3148209937582
308 => 0.31422753685496
309 => 0.31333043970451
310 => 0.29932090048293
311 => 0.30238809921979
312 => 0.31258393496868
313 => 0.31622192402819
314 => 0.31584245196412
315 => 0.31253396981119
316 => 0.31404857599863
317 => 0.3091695017451
318 => 0.30744659907704
319 => 0.3020086443349
320 => 0.2940163531373
321 => 0.29512773024789
322 => 0.27929291008869
323 => 0.27066525964845
324 => 0.26827723971719
325 => 0.2650838796629
326 => 0.26863793823253
327 => 0.27924805203272
328 => 0.26645000372848
329 => 0.24450864758957
330 => 0.24582736047977
331 => 0.24879011681468
401 => 0.24326903998517
402 => 0.23804380411489
403 => 0.24258672276731
404 => 0.23328988092347
405 => 0.24991359573532
406 => 0.24946397083708
407 => 0.25566026371531
408 => 0.2595349328128
409 => 0.25060507498211
410 => 0.24835923988659
411 => 0.24963856962451
412 => 0.2284940987989
413 => 0.25393230934515
414 => 0.2541523000463
415 => 0.25226860610283
416 => 0.26581366790207
417 => 0.29439797310919
418 => 0.28364340768926
419 => 0.2794789149002
420 => 0.27156221106398
421 => 0.28211074887839
422 => 0.28130078575706
423 => 0.27763782535305
424 => 0.27542245547157
425 => 0.27950434240515
426 => 0.27491666450826
427 => 0.27409259149702
428 => 0.2690996056492
429 => 0.26731733686791
430 => 0.2659978160164
501 => 0.26454515321233
502 => 0.26774936537709
503 => 0.26048819906254
504 => 0.25173194430812
505 => 0.25100395646928
506 => 0.25301399489766
507 => 0.25212470252286
508 => 0.25099969887952
509 => 0.24885176054787
510 => 0.24821451312831
511 => 0.25028525809338
512 => 0.24794750775975
513 => 0.25139698572088
514 => 0.25045891858377
515 => 0.24521895181101
516 => 0.23868801312798
517 => 0.2386298740746
518 => 0.23722279404823
519 => 0.23543066607874
520 => 0.23493213707597
521 => 0.24220413082963
522 => 0.25725694026727
523 => 0.25430171359146
524 => 0.25643716772855
525 => 0.26694148854636
526 => 0.2702804962584
527 => 0.26791054767313
528 => 0.26466641587754
529 => 0.2648091412123
530 => 0.27589532162328
531 => 0.27658675309693
601 => 0.27833377736659
602 => 0.2805791972621
603 => 0.2682929523908
604 => 0.26423046018375
605 => 0.26230542599756
606 => 0.25637706578609
607 => 0.26277029401497
608 => 0.25904523371133
609 => 0.25954787161247
610 => 0.25922052801996
611 => 0.25939927975634
612 => 0.24990894906824
613 => 0.25336672677389
614 => 0.24761750069123
615 => 0.23991993234746
616 => 0.23989412739926
617 => 0.24177809634626
618 => 0.24065743789687
619 => 0.23764177482433
620 => 0.23807013553026
621 => 0.23431724500403
622 => 0.23852580438842
623 => 0.23864649081261
624 => 0.23702596620784
625 => 0.24350983260877
626 => 0.24616627796356
627 => 0.2450996139537
628 => 0.24609143797312
629 => 0.25442451660189
630 => 0.25578317201609
701 => 0.25638659700334
702 => 0.25557808745892
703 => 0.24624375135321
704 => 0.24665776885216
705 => 0.24361998314979
706 => 0.24105337434526
707 => 0.24115602523735
708 => 0.24247559579867
709 => 0.24823823783174
710 => 0.26036537826403
711 => 0.26082559437861
712 => 0.26138338973494
713 => 0.25911455569528
714 => 0.25843025363911
715 => 0.25933302468455
716 => 0.26388734101617
717 => 0.27560227910591
718 => 0.27146143757059
719 => 0.26809486894633
720 => 0.27104825725019
721 => 0.27059360627023
722 => 0.26675589445483
723 => 0.26664818266607
724 => 0.25928238670162
725 => 0.25655941964463
726 => 0.25428390456125
727 => 0.25179910149403
728 => 0.25032602694442
729 => 0.25258933895302
730 => 0.25310698518811
731 => 0.24815821392538
801 => 0.24748371468861
802 => 0.2515249881284
803 => 0.24974657436141
804 => 0.2515757170233
805 => 0.25200009381095
806 => 0.25193175937392
807 => 0.25007489115166
808 => 0.25125840358392
809 => 0.24845904385958
810 => 0.24541516060961
811 => 0.24347335273675
812 => 0.24177886782424
813 => 0.24271906653774
814 => 0.23936742979762
815 => 0.23829517374933
816 => 0.25085745620174
817 => 0.26013734931663
818 => 0.2600024159955
819 => 0.25918104410514
820 => 0.25796065208528
821 => 0.26379806173856
822 => 0.26176442493805
823 => 0.26324406562646
824 => 0.26362069628199
825 => 0.26476064384237
826 => 0.2651680771134
827 => 0.26393653078774
828 => 0.25980331089811
829 => 0.2495037199079
830 => 0.24470923249874
831 => 0.24312697179522
901 => 0.24318448396665
902 => 0.24159804153291
903 => 0.24206531992901
904 => 0.24143554117625
905 => 0.24024289257836
906 => 0.24264542384762
907 => 0.24292229319527
908 => 0.24236151368892
909 => 0.24249359756318
910 => 0.23785058276262
911 => 0.23820358109381
912 => 0.23623804152889
913 => 0.2358695265554
914 => 0.2309008136944
915 => 0.22209801863469
916 => 0.22697562160576
917 => 0.22108416311148
918 => 0.21885297850953
919 => 0.22941505939476
920 => 0.22835491942041
921 => 0.22654042061608
922 => 0.22385639870979
923 => 0.22286086887627
924 => 0.2168123447542
925 => 0.21645496568144
926 => 0.21945277756023
927 => 0.21806939052658
928 => 0.21612659120169
929 => 0.20908996898536
930 => 0.20117847586865
1001 => 0.20141727411597
1002 => 0.20393377287784
1003 => 0.21125083242404
1004 => 0.20839193067293
1005 => 0.20631776465037
1006 => 0.20592933570355
1007 => 0.21079133720412
1008 => 0.21767208794823
1009 => 0.22090038224924
1010 => 0.21770124064169
1011 => 0.21402623901695
1012 => 0.21424991933753
1013 => 0.2157379642998
1014 => 0.21589433678551
1015 => 0.21350228852408
1016 => 0.21417563609817
1017 => 0.21315275956094
1018 => 0.20687536814
1019 => 0.20676183003502
1020 => 0.20522125694371
1021 => 0.20517460900277
1022 => 0.20255370986048
1023 => 0.20218702795306
1024 => 0.19698307362885
1025 => 0.20040833212407
1026 => 0.19811084855961
1027 => 0.1946479989064
1028 => 0.19405100232096
1029 => 0.19403305588271
1030 => 0.19758862819754
1031 => 0.20036678319141
1101 => 0.19815081426986
1102 => 0.19764628110117
1103 => 0.20303337537633
1104 => 0.20234781852536
1105 => 0.20175413071379
1106 => 0.21705599218783
1107 => 0.20494337481198
1108 => 0.19966158227209
1109 => 0.19312436101876
1110 => 0.19525291322238
1111 => 0.19570143044662
1112 => 0.17998059175508
1113 => 0.17360264945582
1114 => 0.17141398000641
1115 => 0.17015436979502
1116 => 0.17072838998554
1117 => 0.16498749385819
1118 => 0.16884547100143
1119 => 0.16387434022102
1120 => 0.16304091396822
1121 => 0.17192991160853
1122 => 0.17316676370141
1123 => 0.16788996841337
1124 => 0.17127852522385
1125 => 0.1700497874199
1126 => 0.16395955599024
1127 => 0.16372695394633
1128 => 0.16067108989691
1129 => 0.15588925439145
1130 => 0.15370382725168
1201 => 0.15256563782254
1202 => 0.15303527696387
1203 => 0.15279781304282
1204 => 0.15124820033116
1205 => 0.15288663502954
1206 => 0.14870111142314
1207 => 0.14703440219802
1208 => 0.14628158830839
1209 => 0.14256669519796
1210 => 0.14847874215712
1211 => 0.14964348988608
1212 => 0.15081053252787
1213 => 0.16096884195083
1214 => 0.16046136151914
1215 => 0.16504873746859
1216 => 0.16487048047484
1217 => 0.16356208654349
1218 => 0.1580421877675
1219 => 0.16024232103687
1220 => 0.15347065281035
1221 => 0.15854444707434
1222 => 0.15622897925897
1223 => 0.15776158507681
1224 => 0.15500582162684
1225 => 0.15653097490274
1226 => 0.1499196947819
1227 => 0.14374617442829
1228 => 0.14623057923488
1229 => 0.14893141138579
1230 => 0.1547875036482
1231 => 0.15129966340842
]
'min_raw' => 0.14256669519796
'max_raw' => 0.42556505724266
'avg_raw' => 0.28406587622031
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.142566'
'max' => '$0.425565'
'avg' => '$0.284065'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.27007230480204
'max_diff' => 0.012926057242661
'year' => 2026
]
1 => [
'items' => [
101 => 0.15255402264849
102 => 0.14835212917147
103 => 0.13968242271684
104 => 0.13973149231384
105 => 0.13839784685562
106 => 0.13724538246429
107 => 0.15170028381661
108 => 0.14990258833527
109 => 0.14703819586233
110 => 0.15087229901379
111 => 0.15188609674244
112 => 0.15191495813854
113 => 0.15471222082532
114 => 0.15620512042269
115 => 0.15646825044733
116 => 0.16086980372384
117 => 0.16234514632423
118 => 0.16842187369696
119 => 0.15607845832217
120 => 0.15582425380533
121 => 0.1509262527079
122 => 0.14781986297757
123 => 0.15113894987037
124 => 0.15407920775684
125 => 0.15101761471637
126 => 0.1514173941337
127 => 0.14730745561821
128 => 0.14877656524691
129 => 0.15004196036959
130 => 0.14934328355934
131 => 0.14829733055804
201 => 0.15383814014041
202 => 0.15352550594916
203 => 0.15868523521492
204 => 0.16270761315336
205 => 0.16991643350511
206 => 0.16239365366376
207 => 0.16211949366599
208 => 0.16479945162075
209 => 0.16234473603663
210 => 0.16389603155189
211 => 0.16966649581466
212 => 0.16978841663156
213 => 0.16774608586248
214 => 0.16762180984958
215 => 0.16801406181443
216 => 0.17031149382433
217 => 0.16950870048711
218 => 0.17043771326118
219 => 0.17159945796069
220 => 0.17640492660743
221 => 0.17756350882932
222 => 0.17474875468614
223 => 0.1750028954698
224 => 0.17395010015352
225 => 0.17293311306948
226 => 0.17521915151537
227 => 0.17939693170742
228 => 0.17937094195368
301 => 0.18034010575379
302 => 0.18094388677227
303 => 0.17835201664622
304 => 0.17666480449986
305 => 0.17731178899687
306 => 0.17834633129708
307 => 0.17697630087213
308 => 0.16851983842947
309 => 0.17108498893366
310 => 0.17065802246031
311 => 0.17004997028137
312 => 0.17262924894905
313 => 0.17238047122936
314 => 0.16492861267065
315 => 0.16540565647809
316 => 0.1649576232846
317 => 0.16640531019172
318 => 0.16226655619274
319 => 0.16353960904789
320 => 0.16433805586452
321 => 0.16480834717346
322 => 0.16650736186315
323 => 0.16630800209927
324 => 0.16649496938031
325 => 0.16901415964187
326 => 0.18175535950312
327 => 0.1824488348997
328 => 0.17903390842025
329 => 0.18039810419234
330 => 0.17777914662675
331 => 0.17953727038602
401 => 0.18074013401062
402 => 0.17530462458844
403 => 0.17498276899663
404 => 0.17235300206154
405 => 0.17376608985484
406 => 0.17151776557109
407 => 0.17206942570728
408 => 0.17052693587363
409 => 0.17330311046754
410 => 0.17640730503744
411 => 0.17719154717415
412 => 0.17512854374992
413 => 0.17363479331223
414 => 0.17101225961562
415 => 0.17537359160006
416 => 0.17664897798149
417 => 0.17536689253834
418 => 0.17506980532705
419 => 0.17450682559846
420 => 0.17518924413784
421 => 0.17664203195335
422 => 0.17595692404833
423 => 0.17640944988965
424 => 0.17468488802519
425 => 0.17835287466308
426 => 0.1841785201931
427 => 0.18419725059607
428 => 0.18351213899807
429 => 0.1832318060931
430 => 0.1839347721687
501 => 0.18431610242753
502 => 0.18658936581409
503 => 0.18902866799867
504 => 0.20041182694319
505 => 0.19721548146201
506 => 0.20731529726474
507 => 0.21530294026776
508 => 0.21769808514707
509 => 0.21549466455838
510 => 0.20795688175092
511 => 0.20758704216549
512 => 0.21885167204966
513 => 0.21566889815465
514 => 0.21529031732734
515 => 0.21126285694717
516 => 0.21364358484252
517 => 0.21312288472864
518 => 0.21230093412535
519 => 0.21684319710673
520 => 0.22534590791727
521 => 0.22402068069953
522 => 0.22303146005701
523 => 0.21869698315928
524 => 0.22130730639218
525 => 0.22037782028639
526 => 0.22437148246331
527 => 0.22200572546015
528 => 0.21564478551205
529 => 0.21665778616471
530 => 0.21650467315394
531 => 0.21965572806601
601 => 0.2187098595954
602 => 0.2163199771544
603 => 0.22531684657608
604 => 0.22473263991906
605 => 0.22556091139049
606 => 0.22592554210735
607 => 0.23140177798171
608 => 0.23364521659943
609 => 0.23415451644257
610 => 0.23628560961564
611 => 0.23410149290305
612 => 0.24283951700224
613 => 0.24864979315036
614 => 0.25539872789048
615 => 0.26526073548843
616 => 0.26896894157394
617 => 0.26829908733546
618 => 0.27577634894269
619 => 0.2892128218407
620 => 0.27101498267161
621 => 0.29017735150447
622 => 0.28411076677217
623 => 0.26972700350509
624 => 0.26880085872412
625 => 0.27854171020752
626 => 0.30014598127547
627 => 0.29473435640656
628 => 0.30015483275509
629 => 0.29383155916898
630 => 0.29351755533869
701 => 0.29984772547083
702 => 0.31463851302417
703 => 0.30761196428195
704 => 0.29753768367956
705 => 0.3049763757032
706 => 0.29853229225387
707 => 0.28401196865715
708 => 0.29473021823901
709 => 0.28756322998179
710 => 0.2896549381733
711 => 0.30471888148093
712 => 0.3029063479679
713 => 0.30525193416984
714 => 0.3011120359181
715 => 0.29724471814894
716 => 0.29002608234202
717 => 0.28788900015403
718 => 0.28847961278663
719 => 0.28788870747574
720 => 0.28384994708446
721 => 0.2829777771625
722 => 0.28152412241525
723 => 0.28197467080552
724 => 0.279241374599
725 => 0.28439966926852
726 => 0.28535709421392
727 => 0.28911087090832
728 => 0.28950060045741
729 => 0.29995481511965
730 => 0.29419680935962
731 => 0.29805977674575
801 => 0.29771423658307
802 => 0.27003874327048
803 => 0.27385218206601
804 => 0.27978469610884
805 => 0.27711210657387
806 => 0.27333369026108
807 => 0.27028241650263
808 => 0.26565942474982
809 => 0.27216619686521
810 => 0.28072191027887
811 => 0.28971758746865
812 => 0.30052530419206
813 => 0.29811314763509
814 => 0.2895155447222
815 => 0.28990122690832
816 => 0.29228536242256
817 => 0.28919769031007
818 => 0.28828707552557
819 => 0.29216025793461
820 => 0.2921869304132
821 => 0.28863419049013
822 => 0.28468597021019
823 => 0.28466942702305
824 => 0.28396687935952
825 => 0.2939565408376
826 => 0.29944984458185
827 => 0.30007964300323
828 => 0.29940745413012
829 => 0.29966615294916
830 => 0.29646972053707
831 => 0.30377581715852
901 => 0.31048061391643
902 => 0.30868358515822
903 => 0.30598958358697
904 => 0.30384368157478
905 => 0.30817807884189
906 => 0.30798507495456
907 => 0.31042205336589
908 => 0.31031149794848
909 => 0.30949203376815
910 => 0.30868361442387
911 => 0.31188890574436
912 => 0.31096583331946
913 => 0.31004132710813
914 => 0.30818708836648
915 => 0.30843911020711
916 => 0.30574557379322
917 => 0.30449942060031
918 => 0.28576026651856
919 => 0.28075255222839
920 => 0.28232808108551
921 => 0.28284678609386
922 => 0.28066742241721
923 => 0.28379207009692
924 => 0.28330509706586
925 => 0.28519962426003
926 => 0.28401600591992
927 => 0.28406458202946
928 => 0.28754535119368
929 => 0.2885558332903
930 => 0.28804189394037
1001 => 0.28840183944425
1002 => 0.29669663165773
1003 => 0.2955173774575
1004 => 0.29489092216703
1005 => 0.29506445456377
1006 => 0.29718395181666
1007 => 0.29777729532721
1008 => 0.2952632571795
1009 => 0.29644889210344
1010 => 0.30149717513012
1011 => 0.30326378848138
1012 => 0.30890197027609
1013 => 0.30650677043901
1014 => 0.3109032634018
1015 => 0.32441658389451
1016 => 0.33521195935475
1017 => 0.32528408594376
1018 => 0.3451084181937
1019 => 0.36054450448185
1020 => 0.35995204177996
1021 => 0.35726040309252
1022 => 0.33968682924305
1023 => 0.32351536457954
1024 => 0.33704348144723
1025 => 0.3370779673992
1026 => 0.33591589016278
1027 => 0.32869832825144
1028 => 0.33566473465324
1029 => 0.33621770269514
1030 => 0.33590818763774
1031 => 0.33037449984279
1101 => 0.32192558137635
1102 => 0.32357647982084
1103 => 0.32628068515033
1104 => 0.32116106030528
1105 => 0.31952502995828
1106 => 0.32256672164087
1107 => 0.33236768600378
1108 => 0.3305148704641
1109 => 0.33046648596254
1110 => 0.3383936165574
1111 => 0.33271950183333
1112 => 0.32359730293714
1113 => 0.32129382740883
1114 => 0.31311804109037
1115 => 0.31876508582168
1116 => 0.31896831290832
1117 => 0.31587548422038
1118 => 0.32384826893961
1119 => 0.32377479832484
1120 => 0.33134377082335
1121 => 0.34581280346425
1122 => 0.34153359853449
1123 => 0.33655734877734
1124 => 0.33709840510238
1125 => 0.34303245754728
1126 => 0.33944459397785
1127 => 0.34073481473289
1128 => 0.34303050464364
1129 => 0.34441555136557
1130 => 0.33689911819375
1201 => 0.33514667806884
1202 => 0.33156180059618
1203 => 0.33062657297847
1204 => 0.33354638087903
1205 => 0.33277711465557
1206 => 0.31895123245862
1207 => 0.31750635084256
1208 => 0.31755066329891
1209 => 0.31391743977494
1210 => 0.30837590182733
1211 => 0.32293873268561
1212 => 0.321769133561
1213 => 0.32047798664722
1214 => 0.32063614477697
1215 => 0.32695737607242
1216 => 0.32329074269123
1217 => 0.33303908848452
1218 => 0.33103512165151
1219 => 0.3289797606309
1220 => 0.32869564713003
1221 => 0.32790450849225
1222 => 0.32519139973361
1223 => 0.32191515787499
1224 => 0.31975189921672
1225 => 0.29495422500598
1226 => 0.29955652909806
1227 => 0.30485106044277
1228 => 0.30667871144647
1229 => 0.30355238793505
1230 => 0.32531484604101
1231 => 0.32929105684523
]
'min_raw' => 0.13724538246429
'max_raw' => 0.36054450448185
'avg_raw' => 0.24889494347307
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.137245'
'max' => '$0.360544'
'avg' => '$0.248894'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.0053213127336726
'max_diff' => -0.065020552760811
'year' => 2027
]
2 => [
'items' => [
101 => 0.31724685495743
102 => 0.31499387654574
103 => 0.3254625509306
104 => 0.31914866053313
105 => 0.32199180499251
106 => 0.31584648178821
107 => 0.32833330409954
108 => 0.32823817543467
109 => 0.3233805195279
110 => 0.32748617703651
111 => 0.32677271800912
112 => 0.32128843645425
113 => 0.32850716560696
114 => 0.32851074600656
115 => 0.32383535781083
116 => 0.31837552797231
117 => 0.3173994393526
118 => 0.31666408769671
119 => 0.32181095356303
120 => 0.32642561740495
121 => 0.33501236274256
122 => 0.33717127453647
123 => 0.34559765099501
124 => 0.34058015408677
125 => 0.34280434547873
126 => 0.34521901986579
127 => 0.34637670356365
128 => 0.34449032010271
129 => 0.35757995117775
130 => 0.35868511709641
131 => 0.35905566966929
201 => 0.35464191971877
202 => 0.35856236272587
203 => 0.35672811727428
204 => 0.36150031437127
205 => 0.36224865581055
206 => 0.3616148372345
207 => 0.36185237261909
208 => 0.35068268166571
209 => 0.35010347426496
210 => 0.34220594025709
211 => 0.34542424374092
212 => 0.33940777963521
213 => 0.34131566237958
214 => 0.34215663891432
215 => 0.34171736049757
216 => 0.3456062017912
217 => 0.34229989225382
218 => 0.33357399777708
219 => 0.32484572593623
220 => 0.32473614959316
221 => 0.32243814968426
222 => 0.3207771166498
223 => 0.32109709054055
224 => 0.3222247202664
225 => 0.32071157676022
226 => 0.32103448264559
227 => 0.32639687185335
228 => 0.32747226076616
229 => 0.32381766905887
301 => 0.30914395599902
302 => 0.30554299000791
303 => 0.30813129295206
304 => 0.30689425085282
305 => 0.24768761255244
306 => 0.26159733399664
307 => 0.253332649844
308 => 0.25714139654137
309 => 0.24870529415112
310 => 0.25273144438576
311 => 0.25198796144888
312 => 0.27435438191257
313 => 0.27400516102103
314 => 0.27417231458145
315 => 0.26619363962635
316 => 0.27890388547446
317 => 0.2851654096249
318 => 0.28400656814973
319 => 0.28429822358277
320 => 0.27928661694242
321 => 0.27422083788856
322 => 0.26860210930003
323 => 0.27904101252168
324 => 0.27788038468145
325 => 0.28054244736622
326 => 0.28731282229367
327 => 0.28830978571989
328 => 0.28964971467494
329 => 0.28916944552719
330 => 0.30061140509213
331 => 0.29922570829234
401 => 0.30256483888767
402 => 0.29569599391263
403 => 0.28792324382663
404 => 0.28940058950763
405 => 0.28925830923849
406 => 0.28744691811059
407 => 0.28581167519309
408 => 0.28308945646229
409 => 0.2917029593391
410 => 0.29135326685241
411 => 0.29701438173896
412 => 0.29601372469362
413 => 0.28933109204257
414 => 0.28956976357505
415 => 0.29117494433256
416 => 0.29673049326197
417 => 0.29837975843483
418 => 0.29761575309491
419 => 0.29942409706513
420 => 0.30085333840708
421 => 0.2996035877727
422 => 0.31729742126472
423 => 0.30994970798906
424 => 0.31353093231456
425 => 0.31438503321439
426 => 0.31219727171928
427 => 0.3126717188497
428 => 0.31339037697319
429 => 0.31775392837132
430 => 0.32920514984378
501 => 0.33427681788283
502 => 0.34953518141002
503 => 0.33385568645322
504 => 0.33292533011068
505 => 0.33567382214036
506 => 0.34463209679263
507 => 0.35189193699034
508 => 0.35430044481415
509 => 0.3546187688832
510 => 0.35913728967524
511 => 0.36172722152781
512 => 0.35858862240219
513 => 0.35592898826825
514 => 0.34640250892642
515 => 0.34750522484998
516 => 0.35510184405253
517 => 0.36583251611477
518 => 0.37504054908032
519 => 0.37181621686813
520 => 0.39641559562331
521 => 0.39885452354743
522 => 0.3985175425683
523 => 0.40407378334059
524 => 0.39304577691634
525 => 0.38833109051242
526 => 0.35650403135614
527 => 0.36544613677018
528 => 0.37844401214093
529 => 0.37672369459608
530 => 0.36728429006764
531 => 0.37503338844553
601 => 0.37247129418509
602 => 0.37045046414049
603 => 0.37970827833198
604 => 0.36952893133839
605 => 0.37834246536787
606 => 0.36703901681072
607 => 0.37183094534608
608 => 0.36911081494991
609 => 0.37087107268288
610 => 0.36058064194393
611 => 0.36613310858458
612 => 0.36034964107686
613 => 0.36034689896023
614 => 0.36021922859445
615 => 0.36702345246946
616 => 0.36724533796574
617 => 0.3622170062415
618 => 0.36149234508273
619 => 0.36417179719699
620 => 0.36103486052082
621 => 0.36250261344795
622 => 0.36107931726176
623 => 0.36075890331104
624 => 0.35820579043779
625 => 0.35710583921269
626 => 0.3575371584303
627 => 0.35606484358029
628 => 0.35517772062721
629 => 0.36004275751052
630 => 0.35744356455879
701 => 0.35964439391299
702 => 0.35713627109708
703 => 0.34844202468001
704 => 0.34344187162556
705 => 0.32701924610079
706 => 0.33167668232741
707 => 0.33476456736413
708 => 0.33374402137791
709 => 0.33593654905517
710 => 0.33607115244758
711 => 0.33535833934953
712 => 0.334532993099
713 => 0.33413126018876
714 => 0.33712544816814
715 => 0.3388636750699
716 => 0.33507447793813
717 => 0.33418672206666
718 => 0.33801780957419
719 => 0.34035477074063
720 => 0.35760957896861
721 => 0.35633128704279
722 => 0.35953954892449
723 => 0.3591783478714
724 => 0.36254111743962
725 => 0.3680378244712
726 => 0.35686148217254
727 => 0.35880130874675
728 => 0.35832570806789
729 => 0.36351819157047
730 => 0.36353440193719
731 => 0.3604212486936
801 => 0.36210893957209
802 => 0.36116691682309
803 => 0.36286927925254
804 => 0.35631421467478
805 => 0.364297575755
806 => 0.36882362705106
807 => 0.36888647127769
808 => 0.37103178367106
809 => 0.37321154531084
810 => 0.37739540796116
811 => 0.37309485965232
812 => 0.36535859189464
813 => 0.36591712543876
814 => 0.36138135448302
815 => 0.36145760161224
816 => 0.36105058846087
817 => 0.36227206556666
818 => 0.35658226020988
819 => 0.3579176461545
820 => 0.35604809801203
821 => 0.3587972447142
822 => 0.35583961731289
823 => 0.35832547871884
824 => 0.35939829409403
825 => 0.36335700592457
826 => 0.35525491235679
827 => 0.33873419510859
828 => 0.3422070501685
829 => 0.33707042474802
830 => 0.3375458389872
831 => 0.33850625141195
901 => 0.33539324051593
902 => 0.33598710489265
903 => 0.33596588787815
904 => 0.33578305110959
905 => 0.33497323674535
906 => 0.33379884570031
907 => 0.33847725816524
908 => 0.33927221160788
909 => 0.34103929463697
910 => 0.34629693510768
911 => 0.34577157284096
912 => 0.34662846049506
913 => 0.34475787955738
914 => 0.33763260987194
915 => 0.33801954629657
916 => 0.33319444288125
917 => 0.34091590589433
918 => 0.3390873615345
919 => 0.33790848709033
920 => 0.33758682027605
921 => 0.34285749342054
922 => 0.34443456143306
923 => 0.34345183848076
924 => 0.34143624503498
925 => 0.34530678030758
926 => 0.34634237226176
927 => 0.34657420310914
928 => 0.35343204951066
929 => 0.34695748054181
930 => 0.34851597364429
1001 => 0.36067489193839
1002 => 0.34964843086168
1003 => 0.35548939321344
1004 => 0.35520350850122
1005 => 0.35819154719299
1006 => 0.35495840211418
1007 => 0.35499848082232
1008 => 0.35765165675334
1009 => 0.35392574966102
1010 => 0.35300316266742
1011 => 0.35172861534344
1012 => 0.35451154279696
1013 => 0.35617978194436
1014 => 0.36962456428578
1015 => 0.37831050683489
1016 => 0.37793342716129
1017 => 0.38137922951444
1018 => 0.37982686399441
1019 => 0.37481386623693
1020 => 0.38337044213901
1021 => 0.38066278350125
1022 => 0.38088599958954
1023 => 0.38087769147558
1024 => 0.38267804776207
1025 => 0.38140233033286
1026 => 0.37888776033019
1027 => 0.38055704924803
1028 => 0.38551424055231
1029 => 0.40090151446599
1030 => 0.40951243680235
1031 => 0.40038312612915
1101 => 0.40668040238518
1102 => 0.40290428058052
1103 => 0.40221804691872
1104 => 0.40617320177257
1105 => 0.41013527960141
1106 => 0.40988291237225
1107 => 0.40700664732345
1108 => 0.40538191817991
1109 => 0.41768491157899
1110 => 0.4267495475394
1111 => 0.42613140013699
1112 => 0.42885970173892
1113 => 0.43687007962539
1114 => 0.43760244819
1115 => 0.43751018658416
1116 => 0.43569493468201
1117 => 0.44358219199024
1118 => 0.45016188079986
1119 => 0.43527475631433
1120 => 0.44094357843165
1121 => 0.44348849531816
1122 => 0.44722518835037
1123 => 0.45352961583817
1124 => 0.46037789625673
1125 => 0.46134631819549
1126 => 0.46065917648669
1127 => 0.45614255145899
1128 => 0.46363602160995
1129 => 0.46802552068089
1130 => 0.47063936692573
1201 => 0.47726764610011
1202 => 0.44350421185846
1203 => 0.41960477495065
1204 => 0.41587253276544
1205 => 0.42346219401224
1206 => 0.4254635271566
1207 => 0.42465679227556
1208 => 0.39775580319409
1209 => 0.41573090462522
1210 => 0.43507060237565
1211 => 0.43581351892965
1212 => 0.44549537599753
1213 => 0.44864818553156
1214 => 0.45644334950122
1215 => 0.45595575987252
1216 => 0.45785375825098
1217 => 0.45741744129252
1218 => 0.47185634108088
1219 => 0.48778459174481
1220 => 0.48723304707306
1221 => 0.48494317258561
1222 => 0.48834402668109
1223 => 0.50478368834134
1224 => 0.50327018773587
1225 => 0.50474042465441
1226 => 0.52412371225057
1227 => 0.5493247433661
1228 => 0.53761633427078
1229 => 0.56302021300366
1230 => 0.57901060806426
1231 => 0.60666434288386
]
'min_raw' => 0.24768761255244
'max_raw' => 0.60666434288386
'avg_raw' => 0.42717597771815
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.247687'
'max' => '$0.606664'
'avg' => '$0.427175'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.11044223008815
'max_diff' => 0.24611983840201
'year' => 2028
]
3 => [
'items' => [
101 => 0.60320195908693
102 => 0.61396735511972
103 => 0.59700356946912
104 => 0.55805128866863
105 => 0.55188694112861
106 => 0.56422812100987
107 => 0.59456770751322
108 => 0.56327261946146
109 => 0.56960357501552
110 => 0.56778025939004
111 => 0.56768310264895
112 => 0.5713911802913
113 => 0.56601242027075
114 => 0.54409838432659
115 => 0.55414145785957
116 => 0.55026334486048
117 => 0.55456640036545
118 => 0.57778821621067
119 => 0.56752129788655
120 => 0.55670593344881
121 => 0.57027080057523
122 => 0.58754353782124
123 => 0.58646264096648
124 => 0.58436524928841
125 => 0.59618813636185
126 => 0.6157160820263
127 => 0.62099440726976
128 => 0.62489075905388
129 => 0.6254280001355
130 => 0.63096191716972
131 => 0.60120465055005
201 => 0.64843019689628
202 => 0.65658474417088
203 => 0.65505202725462
204 => 0.66411546335453
205 => 0.66144877053675
206 => 0.65758515103508
207 => 0.67195262510159
208 => 0.65548147547971
209 => 0.63210275225152
210 => 0.61927672230982
211 => 0.63616707318337
212 => 0.64648142106984
213 => 0.65329854890706
214 => 0.65536140767158
215 => 0.60351462244966
216 => 0.57557208076958
217 => 0.59348292962462
218 => 0.61533540136852
219 => 0.60108325896615
220 => 0.60164191596545
221 => 0.58132210629681
222 => 0.61713325364375
223 => 0.61191587069446
224 => 0.63898366266478
225 => 0.63252371687846
226 => 0.65459645046462
227 => 0.64878395997353
228 => 0.67291128303009
301 => 0.68253632541855
302 => 0.698698269607
303 => 0.71058706154297
304 => 0.71756838756412
305 => 0.71714925493611
306 => 0.74481274671473
307 => 0.72850055210166
308 => 0.70800859117857
309 => 0.70763795625678
310 => 0.71825103319218
311 => 0.74049313089332
312 => 0.74626018321786
313 => 0.74948317871154
314 => 0.7445470489197
315 => 0.72684133077273
316 => 0.7191960914469
317 => 0.72571005685642
318 => 0.71774403691201
319 => 0.73149562220649
320 => 0.75037948599593
321 => 0.7464800427983
322 => 0.75951529677078
323 => 0.77300541328358
324 => 0.79229688577593
325 => 0.79734039104659
326 => 0.80567711347166
327 => 0.81425833931772
328 => 0.81701439778895
329 => 0.82227656856525
330 => 0.82224883432778
331 => 0.8381067401471
401 => 0.85559850134428
402 => 0.86220123626101
403 => 0.87738386112511
404 => 0.85138414810797
405 => 0.87110522909465
406 => 0.8888941377953
407 => 0.86768546749176
408 => 0.89691667851879
409 => 0.89805166020362
410 => 0.91518853613224
411 => 0.8978170293504
412 => 0.88750188407515
413 => 0.91728132198134
414 => 0.93169065394063
415 => 0.92735044588746
416 => 0.89432124830031
417 => 0.87509683861566
418 => 0.82478285035925
419 => 0.88438194285151
420 => 0.91341092227513
421 => 0.89424607025649
422 => 0.90391170686182
423 => 0.95664428608734
424 => 0.97672143807475
425 => 0.97254553081125
426 => 0.9732511903975
427 => 0.98408445718382
428 => 1.0321251281034
429 => 1.0033380445143
430 => 1.0253446912867
501 => 1.0370169373839
502 => 1.0478587700603
503 => 1.0212346556035
504 => 0.98659707388097
505 => 0.9756258977627
506 => 0.89234050342118
507 => 0.88800513695557
508 => 0.88557156438338
509 => 0.87022823355136
510 => 0.85817257840941
511 => 0.84858547384276
512 => 0.82342604850809
513 => 0.83191661599586
514 => 0.79181774319256
515 => 0.81747158099532
516 => 0.75347281178012
517 => 0.80677288851623
518 => 0.77776408000588
519 => 0.79724271473118
520 => 0.79717475560962
521 => 0.76130841337358
522 => 0.7406214556833
523 => 0.75380399027198
524 => 0.76793671378195
525 => 0.77022970062325
526 => 0.78855314555575
527 => 0.79366682517528
528 => 0.77817213719323
529 => 0.75214657953899
530 => 0.7581917230023
531 => 0.74049895104396
601 => 0.70949304872961
602 => 0.73176202908289
603 => 0.73936563807345
604 => 0.74272382497173
605 => 0.71223308109751
606 => 0.70265222738598
607 => 0.69755146126111
608 => 0.74821060739119
609 => 0.75098582977275
610 => 0.73678739969178
611 => 0.80096565000816
612 => 0.78644013538218
613 => 0.80266869405689
614 => 0.7576431895952
615 => 0.75936322450052
616 => 0.73804742912263
617 => 0.74998285021229
618 => 0.7415472792827
619 => 0.74901858613637
620 => 0.75349685665911
621 => 0.77480915432472
622 => 0.80701624072116
623 => 0.77162580775597
624 => 0.75620568931271
625 => 0.76577224406887
626 => 0.79124924005038
627 => 0.82984819310579
628 => 0.80699683602066
629 => 0.81713788025384
630 => 0.81935324727513
701 => 0.80250350256378
702 => 0.83046946722753
703 => 0.84545665488592
704 => 0.86083040826193
705 => 0.87417900755552
706 => 0.85468979308747
707 => 0.87554604623744
708 => 0.85873958782285
709 => 0.84366245720523
710 => 0.8436853229888
711 => 0.83422721871063
712 => 0.81590094987385
713 => 0.81252130472494
714 => 0.83010264559171
715 => 0.84420121600768
716 => 0.84536244179473
717 => 0.85316813478772
718 => 0.85778746349594
719 => 0.90306316450932
720 => 0.92127342599714
721 => 0.94354058904184
722 => 0.9522149039563
723 => 0.97832148193481
724 => 0.95723829994457
725 => 0.95267682090155
726 => 0.88935080212227
727 => 0.89972043414979
728 => 0.91632321554651
729 => 0.88962457587232
730 => 0.90655871756586
731 => 0.90990187585032
801 => 0.88871736631255
802 => 0.9000329281853
803 => 0.86998215068156
804 => 0.80767126555144
805 => 0.83053883705519
806 => 0.84737706682329
807 => 0.82334683680545
808 => 0.86642009401409
809 => 0.84125758636531
810 => 0.83328227945403
811 => 0.80216776379089
812 => 0.81685261747635
813 => 0.83671409235279
814 => 0.82444201002344
815 => 0.84990842351928
816 => 0.88597565667379
817 => 0.91167931486056
818 => 0.91365252257255
819 => 0.89712679236981
820 => 0.9236093804855
821 => 0.92380227722822
822 => 0.89392980964917
823 => 0.8756330895876
824 => 0.87147603629298
825 => 0.88186117046124
826 => 0.89447064054304
827 => 0.91435226040464
828 => 0.92636630689546
829 => 0.95769256838564
830 => 0.96616855655058
831 => 0.97548109778481
901 => 0.98792552475509
902 => 1.0028682500185
903 => 0.97017441783198
904 => 0.97147340473368
905 => 0.94102936087852
906 => 0.90849553390176
907 => 0.93318465317833
908 => 0.96546239237656
909 => 0.95805784334075
910 => 0.95722468031301
911 => 0.95862582942552
912 => 0.95304304126248
913 => 0.92779229730887
914 => 0.91511153177339
915 => 0.93147295452247
916 => 0.94016832255047
917 => 0.9536540800461
918 => 0.95199167578496
919 => 0.98672953882909
920 => 1.0002276219896
921 => 0.99677423470159
922 => 0.99740974107299
923 => 1.0218473758826
924 => 1.0490270517738
925 => 1.07448440492
926 => 1.1003807179591
927 => 1.0691617018401
928 => 1.0533106107762
929 => 1.0696648906399
930 => 1.0609870795411
1001 => 1.1108523561211
1002 => 1.1143049196803
1003 => 1.1641665904333
1004 => 1.2114912533952
1005 => 1.1817674804982
1006 => 1.2097956595519
1007 => 1.2401104203694
1008 => 1.2985925123791
1009 => 1.2788978012151
1010 => 1.2638119611189
1011 => 1.2495559151222
1012 => 1.2792204837577
1013 => 1.3173834774042
1014 => 1.325603420715
1015 => 1.3389228691386
1016 => 1.3249190977459
1017 => 1.3417850979236
1018 => 1.401329489847
1019 => 1.3852400695364
1020 => 1.362390506192
1021 => 1.4093950849113
1022 => 1.4264058592242
1023 => 1.5457963819635
1024 => 1.6965318486984
1025 => 1.6341263756877
1026 => 1.595389284778
1027 => 1.6044934199978
1028 => 1.6595369097318
1029 => 1.6772151316414
1030 => 1.6291596304427
1031 => 1.6461336458749
1101 => 1.7396621397541
1102 => 1.789837175967
1103 => 1.7216927373835
1104 => 1.5336849339792
1105 => 1.3603331530153
1106 => 1.4063138514594
1107 => 1.401101067203
1108 => 1.5015857659591
1109 => 1.3848563421831
1110 => 1.3868217663102
1111 => 1.4893843822214
1112 => 1.4620224346647
1113 => 1.4176995838763
1114 => 1.3606567588767
1115 => 1.2552078210422
1116 => 1.1618087561411
1117 => 1.3449858309323
1118 => 1.3370869023814
1119 => 1.3256480832841
1120 => 1.3511039373756
1121 => 1.4747103390741
1122 => 1.47186081144
1123 => 1.4537335704741
1124 => 1.4674829229806
1125 => 1.4152892559047
1126 => 1.4287407523379
1127 => 1.3603056932075
1128 => 1.391241198035
1129 => 1.4176044869449
1130 => 1.4228973075087
1201 => 1.4348223024971
1202 => 1.3329245259651
1203 => 1.3786736360665
1204 => 1.4055469521391
1205 => 1.2841323324634
1206 => 1.4031469754858
1207 => 1.3311507123778
1208 => 1.3067140993314
1209 => 1.3396147795194
1210 => 1.3267933524532
1211 => 1.3157702423611
1212 => 1.3096191575286
1213 => 1.3337777859432
1214 => 1.3326507570518
1215 => 1.2931225519779
1216 => 1.2415596198347
1217 => 1.2588658323575
1218 => 1.2525783231014
1219 => 1.2297915784523
1220 => 1.2451470930637
1221 => 1.177529177963
1222 => 1.0611960695056
1223 => 1.1380492843321
1224 => 1.1350905191615
1225 => 1.1335985755931
1226 => 1.1913516424683
1227 => 1.1858000176782
1228 => 1.1757237643225
1229 => 1.2296065201575
1230 => 1.2099385894524
1231 => 1.2705505175383
]
'min_raw' => 0.54409838432659
'max_raw' => 1.789837175967
'avg_raw' => 1.1669677801468
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.544098'
'max' => '$1.78'
'avg' => '$1.16'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.29641077177414
'max_diff' => 1.1831728330832
'year' => 2029
]
4 => [
'items' => [
101 => 1.3104734535093
102 => 1.3003477055754
103 => 1.3378954198205
104 => 1.2592645325404
105 => 1.2853825591712
106 => 1.2907654482618
107 => 1.2289416153145
108 => 1.186708332152
109 => 1.1838918536597
110 => 1.1106651607609
111 => 1.1497822690422
112 => 1.1842037055539
113 => 1.1677185086762
114 => 1.162499787826
115 => 1.1891611008474
116 => 1.1912329132078
117 => 1.1439953718284
118 => 1.1538175524995
119 => 1.1947776787
120 => 1.1527854624121
121 => 1.0712014455544
122 => 1.0509674813863
123 => 1.0482678975804
124 => 0.9933917819808
125 => 1.0523196116245
126 => 1.0265960348174
127 => 1.1078565057353
128 => 1.0614409605557
129 => 1.0594400791725
130 => 1.0564154534965
131 => 1.0091813138961
201 => 1.0195225885824
202 => 1.0538985606603
203 => 1.0661642947707
204 => 1.0648848782128
205 => 1.0537300996434
206 => 1.0588367001508
207 => 1.0423865606589
208 => 1.0365776740243
209 => 1.0182432299453
210 => 0.99129666216864
211 => 0.99504374769089
212 => 0.94165554597231
213 => 0.91256682014971
214 => 0.90451544422525
215 => 0.89374880784891
216 => 0.90573156445289
217 => 0.94150430390472
218 => 0.89835479051577
219 => 0.82437797639685
220 => 0.82882410897576
221 => 0.83881324881195
222 => 0.82019855281198
223 => 0.80258130526103
224 => 0.81789807267411
225 => 0.78655312131282
226 => 0.84260113643168
227 => 0.84108519469546
228 => 0.86197642874577
301 => 0.87504014612871
302 => 0.84493250698977
303 => 0.83736051716603
304 => 0.84167386669738
305 => 0.77038380704903
306 => 0.85615050994485
307 => 0.85689222395303
308 => 0.85054121830734
309 => 0.89620933984949
310 => 0.99258332054774
311 => 0.95632355237467
312 => 0.94228267418076
313 => 0.91559095447032
314 => 0.95115608618699
315 => 0.94842523897363
316 => 0.93607531223177
317 => 0.92860603800418
318 => 0.94236840478897
319 => 0.92690072845818
320 => 0.92412230876585
321 => 0.90728810838076
322 => 0.9012790647506
323 => 0.89683020807375
324 => 0.89193245400817
325 => 0.90273567903257
326 => 0.87825414984465
327 => 0.84873182559792
328 => 0.84627736377278
329 => 0.85305434867048
330 => 0.85005603734044
331 => 0.84626300901166
401 => 0.83902108496223
402 => 0.83687256079599
403 => 0.84385422202053
404 => 0.83597233355416
405 => 0.84760248933497
406 => 0.84443973048847
407 => 0.82677281667132
408 => 0.80475330092591
409 => 0.80455728104827
410 => 0.79981321250017
411 => 0.79377092792868
412 => 0.79209010258963
413 => 0.81660813724452
414 => 0.86735973521711
415 => 0.85739598215228
416 => 0.86459581486811
417 => 0.90001186589362
418 => 0.91126956351682
419 => 0.90327911639706
420 => 0.89234129955021
421 => 0.89282250798111
422 => 0.93020033924912
423 => 0.93253154873673
424 => 0.93842176303522
425 => 0.94599235298315
426 => 0.90456842060135
427 => 0.89087144449112
428 => 0.88438105733079
429 => 0.86439317697291
430 => 0.88594839230753
501 => 0.8733890914184
502 => 0.87508377019515
503 => 0.8739801084186
504 => 0.87458278237788
505 => 0.84258546986919
506 => 0.85424360881812
507 => 0.83485969168229
508 => 0.80890680258423
509 => 0.80881979939971
510 => 0.81517173223903
511 => 0.81139335403505
512 => 0.80122583543911
513 => 0.80267008346633
514 => 0.79001695103871
515 => 0.8042064028354
516 => 0.80461330554063
517 => 0.79914959369424
518 => 0.82101040195406
519 => 0.82996679293484
520 => 0.82637046075349
521 => 0.8297144646819
522 => 0.85781002107577
523 => 0.86239082266304
524 => 0.86442531213733
525 => 0.86169936575998
526 => 0.83022799987705
527 => 0.83162388878053
528 => 0.82138178219357
529 => 0.81272828141419
530 => 0.81307437606373
531 => 0.81752340034069
601 => 0.83695255029
602 => 0.87784005094739
603 => 0.87939170170896
604 => 0.88127234769684
605 => 0.87362281532721
606 => 0.87131564316837
607 => 0.87435939877754
608 => 0.8897145942618
609 => 0.92921232594223
610 => 0.91525118960157
611 => 0.90390056843857
612 => 0.91385812330401
613 => 0.91232523578237
614 => 0.89938612245626
615 => 0.89902296464025
616 => 0.87418866928268
617 => 0.86500799573853
618 => 0.85733593776353
619 => 0.84895825073898
620 => 0.84399167704821
621 => 0.8516225915046
622 => 0.8533678719271
623 => 0.83668274410265
624 => 0.83440862283384
625 => 0.84803405838879
626 => 0.84203801220849
627 => 0.84820509439972
628 => 0.84963591036833
629 => 0.8494055160429
630 => 0.84314495518915
701 => 0.84713524998472
702 => 0.83769701322907
703 => 0.82743434833463
704 => 0.8208874075186
705 => 0.81517433333092
706 => 0.81834427893606
707 => 0.80704400166293
708 => 0.80342881553361
709 => 0.84578342789246
710 => 0.87707123543075
711 => 0.87661629831781
712 => 0.87384698564313
713 => 0.8697323487431
714 => 0.88941358294408
715 => 0.88255703448716
716 => 0.88754574637336
717 => 0.88881558292398
718 => 0.8926589957124
719 => 0.89403268543176
720 => 0.88988044101098
721 => 0.87594500158089
722 => 0.84121921146292
723 => 0.82505426242253
724 => 0.81971955999068
725 => 0.81991346629203
726 => 0.8145646648648
727 => 0.81614012660158
728 => 0.8140167835669
729 => 0.80999568555107
730 => 0.81809598746474
731 => 0.81902947180076
801 => 0.81713876454271
802 => 0.81758409454658
803 => 0.80192984598156
804 => 0.80312000450071
805 => 0.79649305062801
806 => 0.795250576666
807 => 0.77849821435068
808 => 0.74881897621535
809 => 0.76526415517568
810 => 0.7454006915337
811 => 0.73787809687189
812 => 0.77348888999739
813 => 0.76991455405724
814 => 0.76379684465419
815 => 0.75474747740472
816 => 0.75139097906531
817 => 0.73099795769328
818 => 0.72979302919809
819 => 0.73990036124796
820 => 0.735236175279
821 => 0.72868589171323
822 => 0.70496142862959
823 => 0.67828727722381
824 => 0.67909240218701
825 => 0.68757695345896
826 => 0.71224693057979
827 => 0.70260794372374
828 => 0.69561474816505
829 => 0.6943051328516
830 => 0.71069771036487
831 => 0.73389664189731
901 => 0.7447810615255
902 => 0.73399493223871
903 => 0.72160440768048
904 => 0.72235856149818
905 => 0.72737560898045
906 => 0.72790282973361
907 => 0.71983787201271
908 => 0.72210811037038
909 => 0.71865941071013
910 => 0.69749474726097
911 => 0.69711194561304
912 => 0.69191779587632
913 => 0.69176051908658
914 => 0.68292397464303
915 => 0.68168768099123
916 => 0.66414218565867
917 => 0.67569068381922
918 => 0.66794455757649
919 => 0.65626931820223
920 => 0.65425650253345
921 => 0.6541959948639
922 => 0.6661838551655
923 => 0.67555059869192
924 => 0.66807930475888
925 => 0.66637823595528
926 => 0.68454120041887
927 => 0.68222979763178
928 => 0.68022813772511
929 => 0.73181943202669
930 => 0.6909808968681
1001 => 0.67317296455685
1002 => 0.65113226668707
1003 => 0.65830882905232
1004 => 0.65982103618831
1005 => 0.60681713094588
1006 => 0.58531345319024
1007 => 0.5779342013335
1008 => 0.57368733756264
1009 => 0.57562268671178
1010 => 0.55626685460187
1011 => 0.56927429389565
1012 => 0.55251377939622
1013 => 0.54970382459696
1014 => 0.57967370075126
1015 => 0.58384383393665
1016 => 0.56605275020893
1017 => 0.57747750607695
1018 => 0.57333473078322
1019 => 0.55280109031172
1020 => 0.55201685628095
1021 => 0.54171379728471
1022 => 0.52559150502095
1023 => 0.51822318483756
1024 => 0.51438569971136
1025 => 0.51596912086552
1026 => 0.51516849467649
1027 => 0.50994386722863
1028 => 0.51546796420607
1029 => 0.50135617914318
1030 => 0.49573675262475
1031 => 0.49319858803609
1101 => 0.48067356654873
1102 => 0.50060644563745
1103 => 0.50453347392573
1104 => 0.50846823967285
1105 => 0.54271768912287
1106 => 0.54100668341629
1107 => 0.55647334171023
1108 => 0.55587233581029
1109 => 0.5514609943216
1110 => 0.53285027021129
1111 => 0.5402681731374
1112 => 0.5174370209289
1113 => 0.53454367253096
1114 => 0.52673691113063
1115 => 0.53190419864861
1116 => 0.52261294977575
1117 => 0.52775511052825
1118 => 0.50546471801602
1119 => 0.48465026312238
1120 => 0.4930266073834
1121 => 0.50213265154628
1122 => 0.52187687546832
1123 => 0.51011737858666
1124 => 0.51434653834111
1125 => 0.5001795611165
1126 => 0.47094904050514
1127 => 0.47111448207737
1128 => 0.46661800330282
1129 => 0.46273238914496
1130 => 0.51146809826328
1201 => 0.50540704243686
1202 => 0.49574954322885
1203 => 0.50867648969254
1204 => 0.51209457951577
1205 => 0.51219188772776
1206 => 0.52162305417489
1207 => 0.52665646939835
1208 => 0.52754363064755
1209 => 0.54238377482594
1210 => 0.5473579954083
1211 => 0.567846106009
1212 => 0.52622941928315
1213 => 0.52537235100666
1214 => 0.50885839833914
1215 => 0.49838498848214
1216 => 0.50957552167244
1217 => 0.51948880641894
1218 => 0.50916643172939
1219 => 0.51051431594662
1220 => 0.4966573712949
1221 => 0.50161057697804
1222 => 0.50587694498123
1223 => 0.50352130733539
1224 => 0.49999480376542
1225 => 0.51867603011933
1226 => 0.51762196211613
1227 => 0.53501834957643
1228 => 0.54858007762934
1229 => 0.57288511874901
1230 => 0.54752154129018
1231 => 0.54659719171649
]
'min_raw' => 0.46273238914496
'max_raw' => 1.3378954198205
'avg_raw' => 0.90031390448271
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.462732'
'max' => '$1.33'
'avg' => '$0.900313'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.081365995181627
'max_diff' => -0.45194175614658
'year' => 2030
]
5 => [
'items' => [
101 => 0.55563285706964
102 => 0.54735661209502
103 => 0.55258691323271
104 => 0.57204243637559
105 => 0.57245350092199
106 => 0.56556764014308
107 => 0.5651486348889
108 => 0.56647113977455
109 => 0.5742170921975
110 => 0.57151041841184
111 => 0.5746426498412
112 => 0.57855955320604
113 => 0.59476152625563
114 => 0.59866776710636
115 => 0.58917762699275
116 => 0.59003448038842
117 => 0.58648490747576
118 => 0.58305606451814
119 => 0.59076360274456
120 => 0.60484928034537
121 => 0.60476165407606
122 => 0.60802925749301
123 => 0.61006494735147
124 => 0.60132627626288
125 => 0.59563772271405
126 => 0.59781907611674
127 => 0.60130710771134
128 => 0.59668795448113
129 => 0.56817640094436
130 => 0.57682498496232
131 => 0.57538543768758
201 => 0.57333534731342
202 => 0.582031565421
203 => 0.58119279396996
204 => 0.55606833256712
205 => 0.55767671907002
206 => 0.55616614387751
207 => 0.56104712135912
208 => 0.54709302329301
209 => 0.55138520987586
210 => 0.55407722906387
211 => 0.55566284904668
212 => 0.56139119569437
213 => 0.56071904033159
214 => 0.56134941357327
215 => 0.56984303942436
216 => 0.61280088431874
217 => 0.6151389850352
218 => 0.60362532198719
219 => 0.60822480327791
220 => 0.59939480499572
221 => 0.6053224419984
222 => 0.60937798068998
223 => 0.59105178117798
224 => 0.58996662257893
225 => 0.58110017975282
226 => 0.58586450390658
227 => 0.57828412161092
228 => 0.58014408227576
301 => 0.57494347010842
302 => 0.58430353657808
303 => 0.59476954529845
304 => 0.59741367241642
305 => 0.59045811233733
306 => 0.58542182844632
307 => 0.57657977298876
308 => 0.59128430827274
309 => 0.59558436250237
310 => 0.59126172191847
311 => 0.59026007164361
312 => 0.58836194618271
313 => 0.59066276793316
314 => 0.59556094348356
315 => 0.59325105434909
316 => 0.59477677681741
317 => 0.58896229608634
318 => 0.60132916912663
319 => 0.62097073976468
320 => 0.621033890626
321 => 0.61872398904037
322 => 0.61777882707905
323 => 0.62014892628246
324 => 0.62143460787375
325 => 0.6290990740957
326 => 0.63732335171765
327 => 0.67570246684588
328 => 0.66492576489438
329 => 0.69897799901992
330 => 0.72590889508401
331 => 0.73398429326828
401 => 0.7265553069156
402 => 0.70114114590905
403 => 0.69989420592541
404 => 0.73787369205121
405 => 0.72714274765001
406 => 0.72586633595907
407 => 0.71228747209904
408 => 0.72031426241532
409 => 0.71855868562724
410 => 0.7157874217815
411 => 0.73110197855391
412 => 0.75976946169194
413 => 0.75530136560293
414 => 0.75196613914149
415 => 0.73735214765729
416 => 0.74615303468395
417 => 0.74301920738364
418 => 0.7564841182417
419 => 0.74850780333368
420 => 0.72706145019199
421 => 0.73047685261791
422 => 0.72996062141207
423 => 0.74058462304775
424 => 0.73739556146065
425 => 0.72933790595458
426 => 0.75967147935113
427 => 0.75770178581896
428 => 0.76049436091295
429 => 0.76172373883258
430 => 0.78018725042154
501 => 0.78775116035307
502 => 0.78946830033241
503 => 0.79665342975357
504 => 0.78928952776691
505 => 0.81875038608669
506 => 0.83834013778061
507 => 0.86109464245249
508 => 0.89434508961239
509 => 0.90684756532835
510 => 0.90458910499558
511 => 0.92979921455011
512 => 0.97510122103034
513 => 0.91374593573917
514 => 0.97835320013304
515 => 0.95789928615268
516 => 0.90940342405544
517 => 0.90628086226503
518 => 0.93912282312582
519 => 1.0119631313935
520 => 0.99371746032035
521 => 1.011992974775
522 => 0.99067361640255
523 => 0.98961493056569
524 => 1.0109575411245
525 => 1.0608257140204
526 => 1.0371352143581
527 => 1.0031690739433
528 => 1.0282491434539
529 => 1.006522466193
530 => 0.95756618141001
531 => 0.99370350819954
601 => 0.96953950690719
602 => 0.97659184711326
603 => 1.0273809837059
604 => 1.0212699004196
605 => 1.0291782080631
606 => 1.0152202520689
607 => 1.0021813202026
608 => 0.97784318559055
609 => 0.97063786378745
610 => 0.9726291555135
611 => 0.97063687700216
612 => 0.9570199143657
613 => 0.95407933258083
614 => 0.94917823410955
615 => 0.95069728946364
616 => 0.9414817904707
617 => 0.95887334108963
618 => 0.96210136613832
619 => 0.97475748634381
620 => 0.97607148672861
621 => 1.0113186013523
622 => 0.99190508292127
623 => 1.0049293471673
624 => 1.0037643343841
625 => 0.9104544764394
626 => 0.92331175158433
627 => 0.94331363687462
628 => 0.93430281466326
629 => 0.92156362026406
630 => 0.91127603775432
701 => 0.89568929829274
702 => 0.91762733476809
703 => 0.9464735198831
704 => 0.97680307358658
705 => 1.0132420450902
706 => 1.005109290847
707 => 0.97612187236074
708 => 0.97742222677871
709 => 0.98546050612
710 => 0.97505020401834
711 => 0.97198000269532
712 => 0.98503870760437
713 => 0.98512863572814
714 => 0.97315032503314
715 => 0.95983862470336
716 => 0.95978284819292
717 => 0.95741415969501
718 => 0.99109500082425
719 => 1.0096160579282
720 => 1.011739467277
721 => 1.0094731355606
722 => 1.0103453566908
723 => 0.99956836164561
724 => 1.0242013765002
725 => 1.0468070668835
726 => 1.0407482589606
727 => 1.031665244574
728 => 1.0244301861178
729 => 1.0390439091218
730 => 1.0383931830406
731 => 1.0466096258987
801 => 1.0462368805902
802 => 1.0434739998931
803 => 1.0407483576318
804 => 1.0515552211051
805 => 1.0484430179777
806 => 1.0453259807392
807 => 1.039074285363
808 => 1.0399239945943
809 => 1.0308425485181
810 => 1.0266410560246
811 => 0.96346068971202
812 => 0.94657683135527
813 => 0.95188883689693
814 => 0.95363768704741
815 => 0.9462898102533
816 => 0.95682477806138
817 => 0.95518291448778
818 => 0.96157044519458
819 => 0.95757979332332
820 => 0.95774357106811
821 => 0.96947922732481
822 => 0.97288613826318
823 => 0.97115335586278
824 => 0.97236693725971
825 => 1.0003334083314
826 => 0.99635747046238
827 => 0.99424533271286
828 => 0.99483040930409
829 => 1.0019764422708
830 => 1.0039769413425
831 => 0.99550068620299
901 => 0.99949813712745
902 => 1.0165187758117
903 => 1.0224750360665
904 => 1.0414845596327
905 => 1.0334089761545
906 => 1.0482320591318
907 => 1.0937931626429
908 => 1.1301905247162
909 => 1.096718006369
910 => 1.1635571266404
911 => 1.215600969274
912 => 1.2136034399102
913 => 1.2045283921512
914 => 1.14527786097
915 => 1.0907546388014
916 => 1.1363656293237
917 => 1.1364819011186
918 => 1.1325638765823
919 => 1.1082293626842
920 => 1.1317170882468
921 => 1.133581458607
922 => 1.1325379069814
923 => 1.113880692231
924 => 1.0853945737367
925 => 1.0909606931044
926 => 1.1000781101743
927 => 1.0828169375684
928 => 1.0773009470295
929 => 1.0875562229015
930 => 1.1206008585326
1001 => 1.114353961581
1002 => 1.114190829856
1003 => 1.1409177041111
1004 => 1.1217870301649
1005 => 1.0910308996948
1006 => 1.0832645711275
1007 => 1.0556993367397
1008 => 1.0747387423154
1009 => 1.0754239366268
1010 => 1.0649962487711
1011 => 1.091877049094
1012 => 1.0916293377867
1013 => 1.1171486570143
1014 => 1.1659320107587
1015 => 1.1515043725734
1016 => 1.1347265990865
1017 => 1.1365508082617
1018 => 1.156557880382
1019 => 1.1444611478611
1020 => 1.148811217217
1021 => 1.1565512960311
1022 => 1.1612210777549
1023 => 1.1358788985355
1024 => 1.1299704243029
1025 => 1.1178837596157
1026 => 1.1147305744071
1027 => 1.1245749105983
1028 => 1.1219812758174
1029 => 1.0753663486982
1030 => 1.0704948294512
1031 => 1.0706442319916
1101 => 1.058394565217
1102 => 1.0397108831288
1103 => 1.0888104841118
1104 => 1.0848670990044
1105 => 1.0805139070396
1106 => 1.0810471482163
1107 => 1.1023596208632
1108 => 1.0899973104223
1109 => 1.1228645388722
1110 => 1.1161080247822
1111 => 1.1091782316005
1112 => 1.1082203230961
1113 => 1.1055529439433
1114 => 1.0964055083404
1115 => 1.0853594301741
1116 => 1.0780658525739
1117 => 0.99445876265403
1118 => 1.0099757522231
1119 => 1.0278266343042
1120 => 1.0339886872656
1121 => 1.023448069274
1122 => 1.0968217161845
1123 => 1.1102277885211
1124 => 1.0696199209571
1125 => 1.0620238469441
1126 => 1.0973197135322
1127 => 1.0760319912354
1128 => 1.0856178512822
1129 => 1.0648984650461
1130 => 1.1069986582708
1201 => 1.1066779253356
1202 => 1.0902999992952
1203 => 1.1041425102333
1204 => 1.1017370333104
1205 => 1.0832463951478
1206 => 1.1075848444817
1207 => 1.107596916049
1208 => 1.0918335183219
1209 => 1.0734253208282
1210 => 1.0701343698985
1211 => 1.06765508045
1212 => 1.085008098061
1213 => 1.1005667593896
1214 => 1.1295175708028
1215 => 1.1367964926464
1216 => 1.1652066091871
1217 => 1.1482897680506
1218 => 1.1557887846166
1219 => 1.1639300278998
1220 => 1.167833239314
1221 => 1.1614731657724
1222 => 1.2056057708307
1223 => 1.2093319148857
1224 => 1.2105812587563
1225 => 1.19569999264
1226 => 1.208918039955
1227 => 1.202733753352
1228 => 1.2188235490487
1229 => 1.2213466344588
1230 => 1.2192096708778
1231 => 1.2200105380112
]
'min_raw' => 0.54709302329301
'max_raw' => 1.2213466344588
'avg_raw' => 0.88421982887588
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.547093'
'max' => '$1.22'
'avg' => '$0.884219'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.084360634148048
'max_diff' => -0.11654878536171
'year' => 2031
]
6 => [
'items' => [
101 => 1.1823511451189
102 => 1.1803983069283
103 => 1.1537712196326
104 => 1.1646219545231
105 => 1.1443370257345
106 => 1.1507695856113
107 => 1.1536049967133
108 => 1.1521239388618
109 => 1.1652354387935
110 => 1.1540879853491
111 => 1.1246680228982
112 => 1.0952400449983
113 => 1.0948706007073
114 => 1.0871227335732
115 => 1.0815224447279
116 => 1.0826012590404
117 => 1.0864031413897
118 => 1.0813014724143
119 => 1.0823901721514
120 => 1.1004698417555
121 => 1.1040955905562
122 => 1.0917738794597
123 => 1.0423004313925
124 => 1.030159523142
125 => 1.0388861672278
126 => 1.0347153934226
127 => 0.83509607871743
128 => 0.88199367571227
129 => 0.85412871606985
130 => 0.86697017147823
131 => 0.83852726327963
201 => 0.85210170989255
202 => 0.84959500526256
203 => 0.92500495342948
204 => 0.92382753081185
205 => 0.92439110071109
206 => 0.89749044104665
207 => 0.9403439223246
208 => 0.96145508816347
209 => 0.95754797322218
210 => 0.95853130987741
211 => 0.94163432819026
212 => 0.92455470042879
213 => 0.90561076470545
214 => 0.9408062557382
215 => 0.93689311794242
216 => 0.94586844814339
217 => 0.96869523990378
218 => 0.97205657170105
219 => 0.97657423572384
220 => 0.97495497476089
221 => 1.0135323402862
222 => 1.0088603667794
223 => 1.0201184787122
224 => 0.99695968831145
225 => 0.97075331872041
226 => 0.9757342928289
227 => 0.97525458496779
228 => 0.96914735331279
229 => 0.96363401764743
301 => 0.9544558671373
302 => 0.98349689346204
303 => 0.9823178808284
304 => 1.0014047249148
305 => 0.99803093982283
306 => 0.97549997727329
307 => 0.97630467500855
308 => 0.98171665400266
309 => 1.0004475750942
310 => 1.0060081877725
311 => 1.0034322904278
312 => 1.009529248378
313 => 1.0143480353488
314 => 1.0101344138302
315 => 1.0697904087925
316 => 1.0450170804827
317 => 1.0570914283292
318 => 1.0599710891444
319 => 1.052594898519
320 => 1.0541945301441
321 => 1.0566175361825
322 => 1.0713295543747
323 => 1.1099381470679
324 => 1.1270376299541
325 => 1.1784822678909
326 => 1.1256177559367
327 => 1.1224809945724
328 => 1.1317477273441
329 => 1.161951175781
330 => 1.1864282338734
331 => 1.194548686158
401 => 1.1956219379815
402 => 1.2108564463049
403 => 1.2195885823691
404 => 1.2090065762871
405 => 1.2000394341148
406 => 1.1679202438963
407 => 1.1716381276217
408 => 1.1972506596421
409 => 1.2334298696916
410 => 1.2644753957193
411 => 1.2536043345502
412 => 1.336542857497
413 => 1.3447658732737
414 => 1.3436297183753
415 => 1.3623629720635
416 => 1.3251812784533
417 => 1.3092853840735
418 => 1.2019782320338
419 => 1.2321271647551
420 => 1.2759504090503
421 => 1.2701502383391
422 => 1.2383246269333
423 => 1.2644512531391
424 => 1.2558129734603
425 => 1.2489996038751
426 => 1.2802129707817
427 => 1.2458925916935
428 => 1.2756080370152
429 => 1.2374976710232
430 => 1.2536539926419
501 => 1.2444828830978
502 => 1.2504177149417
503 => 1.2157228092504
504 => 1.2344433381902
505 => 1.2149439736992
506 => 1.2149347284615
507 => 1.2145042789096
508 => 1.2374451947599
509 => 1.2381932972022
510 => 1.221239925727
511 => 1.218796680036
512 => 1.2278306399126
513 => 1.2172542388949
514 => 1.222202870364
515 => 1.2174041279009
516 => 1.2163238298955
517 => 1.2077158315906
518 => 1.2040072692391
519 => 1.205461492095
520 => 1.2004974797845
521 => 1.1975064828112
522 => 1.2139092943293
523 => 1.2051459338227
524 => 1.2125661836474
525 => 1.204109872462
526 => 1.1747966136539
527 => 1.1579382485313
528 => 1.1025682199835
529 => 1.1182710913933
530 => 1.1286821113839
531 => 1.1252412693391
601 => 1.1326335294804
602 => 1.1330873542156
603 => 1.1306840550885
604 => 1.127901342581
605 => 1.126546872026
606 => 1.136641985846
607 => 1.1425025392045
608 => 1.1297269965214
609 => 1.1267338656196
610 => 1.1396506446292
611 => 1.1475298723633
612 => 1.2057056629962
613 => 1.2013958125208
614 => 1.2122126914486
615 => 1.2109948768799
616 => 1.2223326892602
617 => 1.240865220785
618 => 1.2031834024177
619 => 1.2097236631471
620 => 1.2081201422529
621 => 1.2256269629095
622 => 1.2256816172926
623 => 1.2151854037785
624 => 1.2208755714061
625 => 1.217699475938
626 => 1.223439109724
627 => 1.2013382518401
628 => 1.2282547111025
629 => 1.243514609046
630 => 1.2437264927437
701 => 1.2509595632589
702 => 1.2583087818135
703 => 1.272414966847
704 => 1.257915367969
705 => 1.2318320010951
706 => 1.2337151359346
707 => 1.21842246748
708 => 1.2186795399995
709 => 1.2173072667429
710 => 1.2214255620859
711 => 1.202241986076
712 => 1.2067443330219
713 => 1.2004410209319
714 => 1.2097099609776
715 => 1.1997381136991
716 => 1.2081193689866
717 => 1.2117364409256
718 => 1.2250835142507
719 => 1.1977667401168
720 => 1.1420659884749
721 => 1.1537749617764
722 => 1.1364564705435
723 => 1.1380593628432
724 => 1.1412974603872
725 => 1.1308017268077
726 => 1.1328039820161
727 => 1.1327324473704
728 => 1.13211600044
729 => 1.1293856547715
730 => 1.1254261133698
731 => 1.1411997076316
801 => 1.1438799486653
802 => 1.1498377924717
803 => 1.1675642943955
804 => 1.1657929988336
805 => 1.1686820553854
806 => 1.1623752611542
807 => 1.1383519169393
808 => 1.13965650011
809 => 1.1233883270673
810 => 1.1494217787112
811 => 1.1432567137371
812 => 1.1392820562422
813 => 1.1381975341198
814 => 1.1559679766131
815 => 1.1612851715247
816 => 1.1579718524795
817 => 1.1511761384528
818 => 1.1642259183565
819 => 1.1677174889328
820 => 1.1684991228206
821 => 1.1916208307629
822 => 1.1697913694444
823 => 1.17504593775
824 => 1.2160405796871
825 => 1.178864096324
826 => 1.198557308696
827 => 1.1975934284289
828 => 1.2076678094964
829 => 1.1967670351322
830 => 1.1969021632949
831 => 1.2058475311852
901 => 1.1932853752889
902 => 1.190174808827
903 => 1.1858775835381
904 => 1.1952604177455
905 => 1.2008850025037
906 => 1.2462150248525
907 => 1.27550028659
908 => 1.2742289361436
909 => 1.2858466993554
910 => 1.280612790622
911 => 1.2637111186863
912 => 1.2925602117412
913 => 1.2834311516013
914 => 1.2841837402274
915 => 1.2841557288412
916 => 1.2902257557579
917 => 1.2859245853776
918 => 1.2774465370519
919 => 1.2830746611844
920 => 1.2997881777669
921 => 1.351667446072
922 => 1.3806997719244
923 => 1.3499196636016
924 => 1.3711513701606
925 => 1.3584199118558
926 => 1.3561062271537
927 => 1.3694413078836
928 => 1.382799729907
929 => 1.3819488561741
930 => 1.3722513277477
1001 => 1.3667734400053
1002 => 1.4082538412178
1003 => 1.438815894231
1004 => 1.4367317671061
1005 => 1.445930426441
1006 => 1.4729379747519
1007 => 1.4754072064999
1008 => 1.4750961400543
1009 => 1.4689758915293
1010 => 1.4955683302148
1011 => 1.5177522104156
1012 => 1.4675592308268
1013 => 1.4866720603798
1014 => 1.4952524253431
1015 => 1.5078509467888
1016 => 1.529106764225
1017 => 1.5521962197879
1018 => 1.5554613219674
1019 => 1.5531445757215
1020 => 1.5379164590999
1021 => 1.5631812168913
1022 => 1.577980719474
1023 => 1.5867934845814
1024 => 1.6091411905895
1025 => 1.495305414756
1026 => 1.414726794616
1027 => 1.4021432795117
1028 => 1.4277323522985
1029 => 1.4344799867233
1030 => 1.4317600237475
1031 => 1.3410614608922
1101 => 1.4016657703488
1102 => 1.466870911569
1103 => 1.4693757065995
1104 => 1.5020187636696
1105 => 1.5126486811357
1106 => 1.5389306207003
1107 => 1.5372866782248
1108 => 1.5436859122718
1109 => 1.5422148391837
1110 => 1.5908965979119
1111 => 1.6445998071003
1112 => 1.6427402357318
1113 => 1.6350197640235
1114 => 1.6464859810464
1115 => 1.7019134481145
1116 => 1.6968105751539
1117 => 1.7017675815734
1118 => 1.7671196890018
1119 => 1.8520867248876
1120 => 1.8126110061677
1121 => 1.8982619569578
1122 => 1.9521746903184
1123 => 2.0454111879847
1124 => 2.0337375192775
1125 => 2.070033803618
1126 => 2.0128392159233
1127 => 1.881508881643
1128 => 1.8607253535309
1129 => 1.9023345031342
1130 => 2.0046265372725
1201 => 1.8991129629527
1202 => 1.9204582216165
1203 => 1.9143107856853
1204 => 1.9139832149495
1205 => 1.9264852576104
1206 => 1.9083503926681
1207 => 1.8344656904932
1208 => 1.8683266140946
1209 => 1.855251285357
1210 => 1.8697593374217
1211 => 1.9480533108393
1212 => 1.9134376788962
1213 => 1.8769729225897
1214 => 1.9227078191752
1215 => 1.9809440587442
1216 => 1.9772997395325
1217 => 1.9702282370547
1218 => 2.0100899262704
1219 => 2.0759297584757
1220 => 2.093726000555
1221 => 2.1068628226297
1222 => 2.1086741684454
1223 => 2.127332156092
1224 => 2.0270034540978
1225 => 2.1862276807864
1226 => 2.2137213062551
1227 => 2.208553644161
1228 => 2.2391116517608
1229 => 2.2301207107431
1230 => 2.2170942478439
1231 => 2.2655351897641
]
'min_raw' => 0.83509607871743
'max_raw' => 2.2655351897641
'avg_raw' => 1.5503156342408
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.835096'
'max' => '$2.26'
'avg' => '$1.55'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.28800305542443
'max_diff' => 1.0441885553054
'year' => 2032
]
7 => [
'items' => [
101 => 2.210001558835
102 => 2.1311785612208
103 => 2.0879347057876
104 => 2.1448817030044
105 => 2.1796572470284
106 => 2.2026416694883
107 => 2.209596741837
108 => 2.0347916856344
109 => 1.9405814554741
110 => 2.0009691328844
111 => 2.0746462670598
112 => 2.0265941738974
113 => 2.0284777249747
114 => 1.9599680679931
115 => 2.0807078515277
116 => 2.0631170806482
117 => 2.154378031089
118 => 2.1325978728514
119 => 2.2070176352062
120 => 2.1874204177003
121 => 2.2687673719014
122 => 2.3012188743131
123 => 2.3557099975354
124 => 2.3957938895965
125 => 2.4193319176974
126 => 2.4179187827791
127 => 2.5111881767141
128 => 2.4561904736951
129 => 2.3871003967398
130 => 2.3858507752241
131 => 2.4216335050932
201 => 2.4966242903862
202 => 2.5160683099412
203 => 2.5269348642705
204 => 2.5102923580477
205 => 2.4505962931415
206 => 2.4248198349809
207 => 2.4467821241496
208 => 2.4199241317373
209 => 2.4662885616626
210 => 2.529956826858
211 => 2.5168095818667
212 => 2.5607588507273
213 => 2.6062417204001
214 => 2.6712842667956
215 => 2.688288796942
216 => 2.7163966386495
217 => 2.7453288407115
218 => 2.7546210842691
219 => 2.7723628604344
220 => 2.7722693525165
221 => 2.8257353891499
222 => 2.884710083262
223 => 2.906971665022
224 => 2.9581609447683
225 => 2.870501097089
226 => 2.9369920985175
227 => 2.9969686461837
228 => 2.9254621335132
301 => 3.0240172023489
302 => 3.0278438723412
303 => 3.085622045993
304 => 3.0270527980381
305 => 2.9922745655622
306 => 3.0926780195968
307 => 3.141260088325
308 => 3.1266267738501
309 => 3.0152665281601
310 => 2.9504500887029
311 => 2.7808129644859
312 => 2.9817554658993
313 => 3.0796286967647
314 => 3.0150130601366
315 => 3.0476014287847
316 => 3.2253930013146
317 => 3.2930845209822
318 => 3.2790051580908
319 => 3.2813843386534
320 => 3.317909453978
321 => 3.4798819300758
322 => 3.3828242679054
323 => 3.4570212139534
324 => 3.4963750066003
325 => 3.5329290024215
326 => 3.4431639416938
327 => 3.3263809165977
328 => 3.2893908303319
329 => 3.0085883085089
330 => 2.9939713177845
331 => 2.9857663579508
401 => 2.9340352468134
402 => 2.8933887638034
403 => 2.8610651714067
404 => 2.7762384123158
405 => 2.8048649533934
406 => 2.6696688041232
407 => 2.7561625093689
408 => 2.5403861907085
409 => 2.7200911207168
410 => 2.6222858974938
411 => 2.687959474425
412 => 2.6877303455019
413 => 2.5668044685451
414 => 2.497056946375
415 => 2.5415027821159
416 => 2.589152246145
417 => 2.5968832113717
418 => 2.6586619852637
419 => 2.6759031131267
420 => 2.6236616907906
421 => 2.5359147061129
422 => 2.5562963293579
423 => 2.4966439134305
424 => 2.3921053490147
425 => 2.4671867710463
426 => 2.492822869625
427 => 2.5041452312137
428 => 2.401343559446
429 => 2.3690410422437
430 => 2.3518434531296
501 => 2.5226443012158
502 => 2.5320011572351
503 => 2.4841301589144
504 => 2.7005116106384
505 => 2.6515378239378
506 => 2.7062535425514
507 => 2.5544469106785
508 => 2.5602461284508
509 => 2.4883784361129
510 => 2.5286195416212
511 => 2.5001784252793
512 => 2.5253684579665
513 => 2.5404672596968
514 => 2.6123231592535
515 => 2.720911599666
516 => 2.6015902840428
517 => 2.549600278113
518 => 2.5818545853889
519 => 2.6677520560877
520 => 2.7978911212068
521 => 2.7208461753635
522 => 2.7550374140208
523 => 2.762506678605
524 => 2.7056965878991
525 => 2.7999857902842
526 => 2.8505161398465
527 => 2.9023498227149
528 => 2.9473555572027
529 => 2.8816463099302
530 => 2.9519646235624
531 => 2.8953004756282
601 => 2.8444668770992
602 => 2.844543970685
603 => 2.8126553117674
604 => 2.7508670168849
605 => 2.7394723073061
606 => 2.7987490255284
607 => 2.8462833400166
608 => 2.8501984938319
609 => 2.8765159327338
610 => 2.8920903219848
611 => 3.0447405089999
612 => 3.1061376770059
613 => 3.1812129718548
614 => 3.2104590302103
615 => 3.2984791805678
616 => 3.227395760507
617 => 3.2120164154412
618 => 2.9985083218454
619 => 3.0334702602107
620 => 3.089447696859
621 => 2.9994313691579
622 => 3.0565260101817
623 => 3.0677977017497
624 => 2.9963726487878
625 => 3.0345238556691
626 => 2.9332055612369
627 => 2.7231200616137
628 => 2.8002196755014
629 => 2.8569909427722
630 => 2.77597134453
701 => 2.9211958384877
702 => 2.8363586871597
703 => 2.8094693830902
704 => 2.7045646211858
705 => 2.7540756306501
706 => 2.8210399798799
707 => 2.779663797497
708 => 2.8655255886065
709 => 2.9871287833207
710 => 3.0737904614695
711 => 3.0804432690354
712 => 3.0247256158672
713 => 3.1140135106546
714 => 3.1146638754903
715 => 3.0139467654184
716 => 2.9522580962946
717 => 2.9382423008756
718 => 2.9732565057908
719 => 3.0157702145367
720 => 3.0828024839905
721 => 3.1233086805282
722 => 3.2289273582721
723 => 3.2575047441448
724 => 3.2889026270968
725 => 3.3308598814693
726 => 3.3812403229626
727 => 3.2710107851353
728 => 3.2753904101668
729 => 3.1727461907738
730 => 3.0630561216824
731 => 3.1462972110626
801 => 3.2551238623292
802 => 3.2301589082859
803 => 3.2273498409683
804 => 3.2320739130262
805 => 3.2132511529567
806 => 3.1281165067665
807 => 3.0853624204208
808 => 3.1405260995374
809 => 3.169843139935
810 => 3.2153113128771
811 => 3.2097064008453
812 => 3.3268275314187
813 => 3.3723372612004
814 => 3.3606939248511
815 => 3.3628365789519
816 => 3.4452297708936
817 => 3.5368679457851
818 => 3.6226991892933
819 => 3.7100104167274
820 => 3.6047533242403
821 => 3.5513102640304
822 => 3.6064498604103
823 => 3.5771920144251
824 => 3.7453162758971
825 => 3.7569568349874
826 => 3.9250689391617
827 => 4.08462734444
828 => 3.9844115688704
829 => 4.0789105314149
830 => 4.1811188640202
831 => 4.3782953203201
901 => 4.3118932265897
902 => 4.2610302634456
903 => 4.2129650090425
904 => 4.3129811733111
905 => 4.4416503708454
906 => 4.469364483616
907 => 4.5142719339103
908 => 4.4670572409476
909 => 4.5239221380933
910 => 4.7246802127198
911 => 4.6704336088152
912 => 4.5933947106939
913 => 4.7518739296011
914 => 4.8092269428512
915 => 5.2117604258469
916 => 5.7199755759578
917 => 5.5095711666913
918 => 5.3789663601517
919 => 5.4096615876759
920 => 5.5952445563279
921 => 5.6548479157499
922 => 5.4928254383308
923 => 5.5500545164481
924 => 5.865392363513
925 => 6.034561001214
926 => 5.8048072688369
927 => 5.1709258333736
928 => 4.5864582008189
929 => 4.7414853358929
930 => 4.7239100698276
1001 => 5.0627012473014
1002 => 4.6691398452526
1003 => 4.6757664099186
1004 => 5.0215634301564
1005 => 4.9293107136187
1006 => 4.7798731276629
1007 => 4.5875492605739
1008 => 4.2320208044555
1009 => 3.9171193362269
1010 => 4.5347136329001
1011 => 4.5080818438052
1012 => 4.4695150665858
1013 => 4.5553412559265
1014 => 4.9720888691761
1015 => 4.9624814878103
1016 => 4.9013642292902
1017 => 4.9477211312149
1018 => 4.7717465386232
1019 => 4.8170991980011
1020 => 4.5863656181598
1021 => 4.6906668325335
1022 => 4.7795525017193
1023 => 4.7973976157831
1024 => 4.8376035689631
1025 => 4.4940481011101
1026 => 4.6482944199175
1027 => 4.7388996812913
1028 => 4.3295418141569
1029 => 4.7308079924439
1030 => 4.4880675647567
1031 => 4.4056778177608
1101 => 4.516604758067
1102 => 4.4733764215497
1103 => 4.4362112362652
1104 => 4.4154724242975
1105 => 4.4969249266987
1106 => 4.4931250701049
1107 => 4.359852966927
1108 => 4.1860049411973
1109 => 4.2443540449991
1110 => 4.2231552685621
1111 => 4.146328168058
1112 => 4.1981003576583
1113 => 3.9701218359642
1114 => 3.5778966386818
1115 => 3.8370126181893
1116 => 3.8270369348422
1117 => 3.8220067429373
1118 => 4.0167252400975
1119 => 3.9980075495156
1120 => 3.9640347578253
1121 => 4.1457042310968
1122 => 4.0793924295535
1123 => 4.2837497768847
1124 => 4.4183527428415
1125 => 4.384213076725
1126 => 4.5108078168
1127 => 4.2456982905021
1128 => 4.3337570407902
1129 => 4.3519058271804
1130 => 4.1434624579965
1201 => 4.0010699951804
1202 => 3.9915740413035
1203 => 3.7446851336705
1204 => 3.8765711953104
1205 => 3.9926254717375
1206 => 3.9370444795046
1207 => 3.9194491977986
1208 => 4.0093396760836
1209 => 4.0163249361063
1210 => 3.8570602673256
1211 => 3.8901764352212
1212 => 4.0282763604509
1213 => 3.8866966714333
1214 => 3.6116304625831
1215 => 3.5434102397004
1216 => 3.5343084044197
1217 => 3.3492897493477
1218 => 3.5479690412011
1219 => 3.4612402060331
1220 => 3.7352155571579
1221 => 3.5787223059547
1222 => 3.5719761946744
1223 => 3.5617784580349
1224 => 3.4025252585901
1225 => 3.4373915881997
1226 => 3.553292578114
1227 => 3.5946473570335
1228 => 3.5903337147825
1229 => 3.5527246000339
1230 => 3.569941860176
1231 => 3.5144790663671
]
'min_raw' => 1.9405814554741
'max_raw' => 6.034561001214
'avg_raw' => 3.987571228344
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$1.94'
'max' => '$6.03'
'avg' => '$3.98'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 1.1054853767566
'max_diff' => 3.7690258114499
'year' => 2033
]
8 => [
'items' => [
101 => 3.494893999515
102 => 3.4330781412327
103 => 3.3422259066244
104 => 3.3548594670758
105 => 3.1748574175364
106 => 3.0767827475155
107 => 3.0496369714571
108 => 3.0133365052117
109 => 3.0537372057114
110 => 3.1743474943461
111 => 3.0288658973525
112 => 2.7794479036543
113 => 2.7944383500632
114 => 2.8281174324403
115 => 2.7653566852399
116 => 2.7059589051249
117 => 2.7576004558407
118 => 2.6519187638914
119 => 2.8408885600121
120 => 2.8357774566088
121 => 2.9062137107888
122 => 2.950258946025
123 => 2.8487489386198
124 => 2.8232194462697
125 => 2.837762205363
126 => 2.5974027919456
127 => 2.8865712187988
128 => 2.8890719593622
129 => 2.8676591004147
130 => 3.0216323606405
131 => 3.3465639651811
201 => 3.2243116252094
202 => 3.1769718240759
203 => 3.0869788275158
204 => 3.2068891521767
205 => 3.1976819101352
206 => 3.1560432698807
207 => 3.1308600903343
208 => 3.177260870807
209 => 3.125110520139
210 => 3.1157428841633
211 => 3.0589852022386
212 => 3.0387252921015
213 => 3.0237256612062
214 => 3.0072125414239
215 => 3.0436363688507
216 => 2.9610951839479
217 => 2.8615586065672
218 => 2.8532832171586
219 => 2.8761322948952
220 => 2.8660232789106
221 => 2.8532348190793
222 => 2.8288181665317
223 => 2.8215742673
224 => 2.8451134255626
225 => 2.8185390883024
226 => 2.8577509705089
227 => 2.8470875082411
228 => 2.7875222748421
301 => 2.7132819401529
302 => 2.7126210454498
303 => 2.6966260871196
304 => 2.676254102828
305 => 2.6705870828459
306 => 2.7532513484794
307 => 2.9243639044074
308 => 2.8907704153023
309 => 2.91504515398
310 => 3.0344528426822
311 => 3.0724089562062
312 => 3.0454686058667
313 => 3.0085909927135
314 => 3.0102134205352
315 => 3.1362353882922
316 => 3.1440952238395
317 => 3.1639544925885
318 => 3.1894792651596
319 => 3.0498155850078
320 => 3.0036352737598
321 => 2.9817524803044
322 => 2.9143619461686
323 => 2.9870368596063
324 => 2.9446922997962
325 => 2.9504060276108
326 => 2.9466849548759
327 => 2.948716912207
328 => 2.8408357391029
329 => 2.8801419685145
330 => 2.8147877385492
331 => 2.7272857609822
401 => 2.7269924236712
402 => 2.7484084087168
403 => 2.7356693428041
404 => 2.7013888439844
405 => 2.7062582270424
406 => 2.6635973076492
407 => 2.7114380350576
408 => 2.7128099359373
409 => 2.694388649983
410 => 2.7680938913039
411 => 2.7982909888108
412 => 2.7861657037735
413 => 2.7974402464891
414 => 2.8921663764401
415 => 2.9076108688129
416 => 2.914470292119
417 => 2.9052795735883
418 => 2.7991716662534
419 => 2.8038780031493
420 => 2.7693460257103
421 => 2.7401701436645
422 => 2.741337025939
423 => 2.7563372219097
424 => 2.8218439574638
425 => 2.9596990206043
426 => 2.9649305194797
427 => 2.9712712487304
428 => 2.9454803162729
429 => 2.9377015242577
430 => 2.9479637588023
501 => 2.999734872443
502 => 3.1329042324471
503 => 3.0858332865391
504 => 3.0475638748131
505 => 3.0811364662562
506 => 3.0759682289542
507 => 3.0323431049951
508 => 3.0311186930636
509 => 2.9473881323904
510 => 2.9164348505621
511 => 2.8905679714534
512 => 2.8623220147387
513 => 2.8455768647852
514 => 2.8713050256484
515 => 2.8771893604444
516 => 2.8209342870658
517 => 2.813266928434
518 => 2.859206035705
519 => 2.8389899473776
520 => 2.8597826955572
521 => 2.8646067914918
522 => 2.863830000938
523 => 2.8427220829212
524 => 2.8561756404179
525 => 2.8243539662396
526 => 2.7897526750316
527 => 2.7676792069775
528 => 2.7484171784797
529 => 2.759104871406
530 => 2.7210051976194
531 => 2.7088163451802
601 => 2.8516178778526
602 => 2.957106905413
603 => 2.955573053174
604 => 2.9462361221441
605 => 2.9323633365609
606 => 2.9987199917693
607 => 2.9756026599379
608 => 2.992422450363
609 => 2.9967037929505
610 => 3.0096621275052
611 => 3.014293618302
612 => 3.0002940363369
613 => 2.953309729357
614 => 2.836229303497
615 => 2.7817280492067
616 => 2.7637417275006
617 => 2.7643954961338
618 => 2.7463616386805
619 => 2.7516734179213
620 => 2.7445144186328
621 => 2.7309570059283
622 => 2.7582677393752
623 => 2.7614150469879
624 => 2.7550403954624
625 => 2.7565418566624
626 => 2.7037624646807
627 => 2.7077751672223
628 => 2.6854319295613
629 => 2.6812428418516
630 => 2.6247610826929
701 => 2.5246954591815
702 => 2.5801415282119
703 => 2.5131704737202
704 => 2.4878075206072
705 => 2.607871795896
706 => 2.5958206727216
707 => 2.5751943883444
708 => 2.5446838148562
709 => 2.5333671463616
710 => 2.4646106510105
711 => 2.4605481504635
712 => 2.4946257261411
713 => 2.4789000975037
714 => 2.4568153591355
715 => 2.3768266754599
716 => 2.2868929116655
717 => 2.289607446691
718 => 2.3182137036768
719 => 2.4013902539425
720 => 2.3688917367847
721 => 2.3453136897093
722 => 2.3408982302455
723 => 2.3961669498248
724 => 2.4743837671841
725 => 2.5110813478864
726 => 2.4747151599325
727 => 2.4329396413056
728 => 2.4354823235553
729 => 2.4523976494209
730 => 2.4541752109995
731 => 2.4269836429662
801 => 2.434637910092
802 => 2.423010378407
803 => 2.3516522379185
804 => 2.3503615954362
805 => 2.3328491569549
806 => 2.3323188872775
807 => 2.3025258607383
808 => 2.298357610376
809 => 2.2392017478749
810 => 2.2781383157135
811 => 2.2520217102689
812 => 2.2126578255794
813 => 2.2058714770218
814 => 2.2056674711894
815 => 2.246085379162
816 => 2.2776660089264
817 => 2.2524760198021
818 => 2.2467407475659
819 => 2.3079784503526
820 => 2.300185394479
821 => 2.2934366583522
822 => 2.4673803090791
823 => 2.3296903365364
824 => 2.2696496494389
825 => 2.1953378977386
826 => 2.2195341788046
827 => 2.2246326907425
828 => 2.0459263236032
829 => 1.9734251727112
830 => 1.9485455098733
831 => 1.9342269121633
901 => 1.9407520769414
902 => 1.8754925376018
903 => 1.9193480273311
904 => 1.8628387825146
905 => 1.8533648237241
906 => 1.9544103536082
907 => 1.9684702487922
908 => 1.9084863678704
909 => 1.9470057299304
910 => 1.9330380737883
911 => 1.8638074713256
912 => 1.8611633715374
913 => 1.826425888795
914 => 1.7720684548052
915 => 1.7472256488672
916 => 1.7342872998395
917 => 1.7396259148117
918 => 1.7369265477175
919 => 1.7193113515052
920 => 1.7379362301448
921 => 1.6903573615518
922 => 1.6714110727092
923 => 1.6628534735895
924 => 1.6206244891758
925 => 1.6878295826926
926 => 1.7010698327429
927 => 1.7143361701758
928 => 1.8298105802168
929 => 1.8240418050185
930 => 1.8761887233041
1001 => 1.8741623899515
1002 => 1.8592892441324
1003 => 1.7965418884352
1004 => 1.821551866052
1005 => 1.7445750423609
1006 => 1.8022513125855
1007 => 1.7759302714737
1008 => 1.793352142109
1009 => 1.7620260478399
1010 => 1.7793632018312
1011 => 1.7042095872107
1012 => 1.6340321993179
1013 => 1.6622736288116
1014 => 1.6929752924705
1015 => 1.7595443219213
1016 => 1.719896357163
1017 => 1.7341552645456
1018 => 1.6863903117261
1019 => 1.5878375706751
1020 => 1.5883953684866
1021 => 1.5732351763641
1022 => 1.560134556946
1023 => 1.7244504028569
1024 => 1.7040151299688
1025 => 1.6714541971239
1026 => 1.7150382996568
1027 => 1.7265626281392
1028 => 1.7268907095698
1029 => 1.7586885457093
1030 => 1.775659056557
1031 => 1.7786501826483
1101 => 1.8286847648516
1102 => 1.845455696834
1103 => 1.9145327921584
1104 => 1.774219227278
1105 => 1.7713295617451
1106 => 1.7156516173593
1107 => 1.6803397847963
1108 => 1.7180694487454
1109 => 1.7514927803917
1110 => 1.7166901734407
1111 => 1.7212346591854
1112 => 1.6745150028311
1113 => 1.6912150816136
1114 => 1.7055994392046
1115 => 1.6976572424163
1116 => 1.6857673894175
1117 => 1.7487524483513
1118 => 1.7451985844859
1119 => 1.8038517193852
1120 => 1.8495760323652
1121 => 1.931522175424
1122 => 1.8460071031931
1123 => 1.8428905940694
1124 => 1.8733549706576
1125 => 1.8454510328966
1126 => 1.8630853583504
1127 => 1.9286810129678
1128 => 1.9300669457856
1129 => 1.9068507854141
1130 => 1.9054380799456
1201 => 1.9098969975019
1202 => 1.936013016901
1203 => 1.9268872772587
1204 => 1.9374478142082
1205 => 1.9506539273722
1206 => 2.0052800106946
1207 => 2.0184501744478
1208 => 1.9864535044744
1209 => 1.9893424455215
1210 => 1.9773748126232
1211 => 1.9658142291974
1212 => 1.9918007324509
1213 => 2.0392915779126
1214 => 2.0389961398278
1215 => 2.0500130928848
1216 => 2.0568765633699
1217 => 2.0274135236802
1218 => 2.0082341682282
1219 => 2.0155887535226
1220 => 2.0273488955704
1221 => 2.0117750979558
1222 => 1.9156464045934
1223 => 1.9448057094349
1224 => 1.9399521752921
1225 => 1.9330401524629
1226 => 1.9623600589631
1227 => 1.9595320824548
1228 => 1.8748232067013
1229 => 1.8802459940897
1230 => 1.8751529843632
1231 => 1.8916095407214
]
'min_raw' => 1.560134556946
'max_raw' => 3.494893999515
'avg_raw' => 2.5275142782305
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$1.56'
'max' => '$3.49'
'avg' => '$2.52'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.3804468985281
'max_diff' => -2.539667001699
'year' => 2034
]
9 => [
'items' => [
101 => 1.8445623248475
102 => 1.8590337315825
103 => 1.8681100622256
104 => 1.8734560907021
105 => 1.8927696113652
106 => 1.8905033926312
107 => 1.8926287400268
108 => 1.9212655925897
109 => 2.0661009658721
110 => 2.0739840356786
111 => 2.035164916854
112 => 2.0506723891512
113 => 2.020901433452
114 => 2.0408868754609
115 => 2.0545604073082
116 => 1.9927723461591
117 => 1.9891136581791
118 => 1.9592198271556
119 => 1.9752830786745
120 => 1.9497252905193
121 => 1.9559962777591
122 => 1.9384620507417
123 => 1.9700201683432
124 => 2.0053070474573
125 => 2.0142219066426
126 => 1.9907707502143
127 => 1.9737905674536
128 => 1.9439789601458
129 => 1.9935563274937
130 => 2.0080542605491
131 => 1.9934801760233
201 => 1.9901030421886
202 => 1.9837033796743
203 => 1.9914607608442
204 => 2.0079753016921
205 => 2.0001873492039
206 => 2.0053314290284
207 => 1.9857275012895
208 => 2.0274232771723
209 => 2.0936462039092
210 => 2.0938591214472
211 => 2.086071126979
212 => 2.0828844474374
213 => 2.0908754023767
214 => 2.0952101676251
215 => 2.1210514506084
216 => 2.1487801768115
217 => 2.2781780430106
218 => 2.2418436399758
219 => 2.3566531247811
220 => 2.4474525211164
221 => 2.4746792899009
222 => 2.4496319437376
223 => 2.3639463255439
224 => 2.3597421803305
225 => 2.4877926694467
226 => 2.4516125411874
227 => 2.4473090300552
228 => 2.4015269425051
301 => 2.4285898264691
302 => 2.4226707767576
303 => 2.4133272672182
304 => 2.4649613646046
305 => 2.5616157855043
306 => 2.5465512875876
307 => 2.5353063387148
308 => 2.4860342461095
309 => 2.5157070511782
310 => 2.5051411336384
311 => 2.5505390206864
312 => 2.5236463180855
313 => 2.4513384411317
314 => 2.4628537088665
315 => 2.4611131993139
316 => 2.4969327625727
317 => 2.4861806187786
318 => 2.4590136706724
319 => 2.5612854312013
320 => 2.554644471938
321 => 2.5640598338387
322 => 2.5682047673272
323 => 2.6304557857306
324 => 2.6559580361601
325 => 2.6617474934873
326 => 2.6859726589804
327 => 2.6611447493012
328 => 2.7604740900178
329 => 2.8265223055666
330 => 2.9032407067367
331 => 3.0153469108083
401 => 3.0574998805797
402 => 3.0498853238871
403 => 3.1348829683638
404 => 3.287621846097
405 => 3.0807582180486
406 => 3.2985861206877
407 => 3.2296243216562
408 => 3.0661171367224
409 => 3.0555892016358
410 => 3.1663181656304
411 => 3.4119043505026
412 => 3.3503877966076
413 => 3.4120049695471
414 => 3.3401252643243
415 => 3.3365558311103
416 => 3.408513932703
417 => 3.5766479593061
418 => 3.4967737856767
419 => 3.382254571828
420 => 3.4668137772176
421 => 3.3935607679241
422 => 3.2285012357597
423 => 3.3503407560582
424 => 3.2688701386243
425 => 3.2926475960078
426 => 3.463886716014
427 => 3.4432827720523
428 => 3.4699461834125
429 => 3.4228859602647
430 => 3.3789242911286
501 => 3.2968665710496
502 => 3.2725733255309
503 => 3.2792871046129
504 => 3.2725699985155
505 => 3.2266594582806
506 => 3.2167450814881
507 => 3.2002206858084
508 => 3.2053422869918
509 => 3.1742715887315
510 => 3.2329084158825
511 => 3.2437919277077
512 => 3.2864629206026
513 => 3.2908931646405
514 => 3.4097312724693
515 => 3.3442772396705
516 => 3.3881894559012
517 => 3.3842615339637
518 => 3.0696608332171
519 => 3.1130100340345
520 => 3.1804477867778
521 => 3.1500671705766
522 => 3.1071160872376
523 => 3.0724307845499
524 => 3.0198790042238
525 => 3.0938446258652
526 => 3.1911015529568
527 => 3.2933597608099
528 => 3.4162162973222
529 => 3.3887961485804
530 => 3.291063043317
531 => 3.2954472790251
601 => 3.322548899039
602 => 3.2874498386791
603 => 3.277098440564
604 => 3.3211267758945
605 => 3.3214299748424
606 => 3.2810442640352
607 => 3.2361629369801
608 => 3.235974882581
609 => 3.2279886839338
610 => 3.3415459913222
611 => 3.4039910284471
612 => 3.4111502513183
613 => 3.4035091557062
614 => 3.4064499101431
615 => 3.3701145189226
616 => 3.4531664483271
617 => 3.5293831117331
618 => 3.5089554178088
619 => 3.4783314006484
620 => 3.4539378959276
621 => 3.5032090833333
622 => 3.5010151149182
623 => 3.5287174256682
624 => 3.5274606888363
625 => 3.5181454436677
626 => 3.5089557504855
627 => 3.5453918451969
628 => 3.5348988350658
629 => 3.5243895263917
630 => 3.5033114989512
701 => 3.5061763529493
702 => 3.4755576234573
703 => 3.4613919981765
704 => 3.2483749820413
705 => 3.1914498747982
706 => 3.2093596723543
707 => 3.2152560427375
708 => 3.1904821631138
709 => 3.2260015426066
710 => 3.220465884937
711 => 3.2420018906781
712 => 3.2285471292758
713 => 3.2290993173769
714 => 3.2686669018037
715 => 3.2801535398954
716 => 3.2743113430534
717 => 3.2784030174627
718 => 3.3726939272375
719 => 3.3592887751211
720 => 3.3521675552338
721 => 3.3541401818099
722 => 3.3782335308772
723 => 3.384978353168
724 => 3.3564000671718
725 => 3.3698777520567
726 => 3.4272640237238
727 => 3.4473459710257
728 => 3.5114379069315
729 => 3.4842105134154
730 => 3.5341875725883
731 => 3.6878000140506
801 => 3.8105162614632
802 => 3.6976613288792
803 => 3.9230140894324
804 => 4.0984835384567
805 => 4.0917487287435
806 => 4.0611515716246
807 => 3.8613842690072
808 => 3.6775554187759
809 => 3.8313360577796
810 => 3.8317280762537
811 => 3.818518182982
812 => 3.7364726703929
813 => 3.8156631769879
814 => 3.8219490318237
815 => 3.8184306246593
816 => 3.7555265225232
817 => 3.6594835851825
818 => 3.6782501452446
819 => 3.7089901534537
820 => 3.6507929048764
821 => 3.6321953576603
822 => 3.6667717362631
823 => 3.778184032396
824 => 3.7571221831796
825 => 3.7565721731789
826 => 3.8466836957409
827 => 3.7821832928702
828 => 3.6784868516658
829 => 3.6523021326737
830 => 3.5593640203918
831 => 3.6235567055791
901 => 3.625866886039
902 => 3.5907092083952
903 => 3.6813397034416
904 => 3.6805045274745
905 => 3.7665446939521
906 => 3.9310211770463
907 => 3.8823773875992
908 => 3.8258099529014
909 => 3.8319604014978
910 => 3.8994156420006
911 => 3.8586306637393
912 => 3.873297226285
913 => 3.8993934424016
914 => 3.9151379375173
915 => 3.8296950109447
916 => 3.809774177553
917 => 3.769023143696
918 => 3.7583919596168
919 => 3.7915828263951
920 => 3.7828382056497
921 => 3.6256727243168
922 => 3.609248057057
923 => 3.6097517781528
924 => 3.5684511713778
925 => 3.5054578327644
926 => 3.6710005655035
927 => 3.6577051672955
928 => 3.6430280766559
929 => 3.644825936513
930 => 3.7166824260312
1001 => 3.6750020332709
1002 => 3.7858161887061
1003 => 3.7630361297271
1004 => 3.7396718481922
1005 => 3.7364421927907
1006 => 3.7274489377466
1007 => 3.6966077199576
1008 => 3.6593650962076
1009 => 3.634774290107
1010 => 3.3528871491817
1011 => 3.4052037628753
1012 => 3.4653892581205
1013 => 3.4861650499009
1014 => 3.4506266204195
1015 => 3.6980109937628
1016 => 3.7432105026278
1017 => 3.6062982419848
1018 => 3.5806875481093
1019 => 3.6996900265896
1020 => 3.6279169846046
1021 => 3.6602363810157
1022 => 3.5903795237396
1023 => 3.7323232645383
1024 => 3.7312418910543
1025 => 3.6760225699388
1026 => 3.72269356202
1027 => 3.7145833286292
1028 => 3.652240851089
1029 => 3.7342996322746
1030 => 3.7343403324063
1031 => 3.6811929364042
1101 => 3.6191284133348
1102 => 3.6080327425086
1103 => 3.5996736450347
1104 => 3.6581805554592
1105 => 3.7106376683994
1106 => 3.80824735036
1107 => 3.8327887435538
1108 => 3.928575435002
1109 => 3.8715391240139
1110 => 3.8968225819311
1111 => 3.9242713520636
1112 => 3.9374313018602
1113 => 3.9159878698685
1114 => 4.0647840290627
1115 => 4.0773469838952
1116 => 4.0815592339814
1117 => 4.0313860062933
1118 => 4.0759515756705
1119 => 4.0551008216154
1120 => 4.1093486911604
1121 => 4.1178554497767
1122 => 4.1106505278654
1123 => 4.1133507073203
1124 => 3.9863794348892
1125 => 3.9797953045868
1126 => 3.8900202207254
1127 => 3.9266042309828
1128 => 3.8582121773238
1129 => 3.8799000020553
1130 => 3.8894597885477
1201 => 3.8844662985972
1202 => 3.9286726360326
1203 => 3.8910882184544
1204 => 3.7918967610153
1205 => 3.6926782789299
1206 => 3.6914326717089
1207 => 3.6653101967275
1208 => 3.6464284318859
1209 => 3.650065729661
1210 => 3.6628840414406
1211 => 3.6456834083029
1212 => 3.649354035477
1213 => 3.7103109038293
1214 => 3.7225353690529
1215 => 3.6809918598163
1216 => 3.5141886755319
1217 => 3.4732547557144
1218 => 3.5026772455243
1219 => 3.4886151904462
1220 => 2.8155847339422
1221 => 2.9737032564959
1222 => 2.8797545995921
1223 => 2.9230504630633
1224 => 2.8271532122513
1225 => 2.8729204067443
1226 => 2.8644688770718
1227 => 3.118718782271
1228 => 3.1147490197106
1229 => 3.1166491349731
1230 => 3.0259516827704
1231 => 3.1704351868335
]
'min_raw' => 1.8445623248475
'max_raw' => 4.1178554497767
'avg_raw' => 2.9812088873121
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$1.84'
'max' => '$4.11'
'avg' => '$2.98'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.28442776790153
'max_diff' => 0.62296145026164
'year' => 2035
]
10 => [
'items' => [
101 => 3.2416129563938
102 => 3.2284398455832
103 => 3.2317552337707
104 => 3.1747858803028
105 => 3.1172007228435
106 => 3.0533299209289
107 => 3.1719939762165
108 => 3.1588005589315
109 => 3.1890615113416
110 => 3.2660236334775
111 => 3.2773565983127
112 => 3.2925882179787
113 => 3.287128766589
114 => 3.4171950478432
115 => 3.4014431629783
116 => 3.4394006733761
117 => 3.3613191946447
118 => 3.2729625898982
119 => 3.2897562918655
120 => 3.2881389233196
121 => 3.2675479654015
122 => 3.2489593692769
123 => 3.218014594034
124 => 3.3159284418676
125 => 3.3119533184573
126 => 3.3763059458955
127 => 3.3649309939077
128 => 3.2889662806104
129 => 3.291679375207
130 => 3.309926240238
131 => 3.3730788484492
201 => 3.3918268423237
202 => 3.3831420245827
203 => 3.4036983439876
204 => 3.4199452206967
205 => 3.405738701561
206 => 3.6068730536251
207 => 3.52334804761
208 => 3.5640575543785
209 => 3.5737665318685
210 => 3.5488971901858
211 => 3.5542904598924
212 => 3.5624597939199
213 => 3.6120623904153
214 => 3.7422339562461
215 => 3.7998860566448
216 => 3.9733352451987
217 => 3.7950988522627
218 => 3.7845230423214
219 => 3.8157664788436
220 => 3.917599513986
221 => 4.0001256242783
222 => 4.0275042961077
223 => 4.0311228395626
224 => 4.0824870480144
225 => 4.1119280544132
226 => 4.0762500820955
227 => 4.0460167361958
228 => 3.9377246438838
229 => 3.9502597484385
301 => 4.0366141883552
302 => 4.1585949209887
303 => 4.2632670795204
304 => 4.2266145377956
305 => 4.5062475584937
306 => 4.5339720302974
307 => 4.5301414047336
308 => 4.5933018774572
309 => 4.4679412015075
310 => 4.4143470837904
311 => 4.0525535287424
312 => 4.1542027603435
313 => 4.3019558881258
314 => 4.2824002076181
315 => 4.1750979367701
316 => 4.2631856811259
317 => 4.2340611180834
318 => 4.2110893668326
319 => 4.3163274126058
320 => 4.2006138583375
321 => 4.3008015569058
322 => 4.172309797183
323 => 4.2267819635188
324 => 4.1958609273844
325 => 4.215870627303
326 => 4.0988943304439
327 => 4.16201190079
328 => 4.0962684320062
329 => 4.0962372610419
330 => 4.0947859703247
331 => 4.1721328697977
401 => 4.1746551494126
402 => 4.1174956738374
403 => 4.1092581004082
404 => 4.139716726863
405 => 4.1040576524113
406 => 4.1207423089117
407 => 4.1045630136598
408 => 4.1009207135105
409 => 4.0718982462345
410 => 4.0593945693427
411 => 4.0642975832321
412 => 4.0475610691508
413 => 4.0374767140307
414 => 4.0927799382717
415 => 4.0632336564854
416 => 4.0882515468347
417 => 4.0597405032722
418 => 3.9609088046145
419 => 3.9040696495902
420 => 3.7173857325291
421 => 3.770329059827
422 => 3.8054305405993
423 => 3.7938295014134
424 => 3.8187530225908
425 => 3.8202831243707
426 => 3.8121802335707
427 => 3.8027981240689
428 => 3.7982314320266
429 => 3.8322678130891
430 => 3.8520270779079
501 => 3.808953443792
502 => 3.7988618939829
503 => 3.8424117162345
504 => 3.8689770826501
505 => 4.0651208224728
506 => 4.0505898606908
507 => 4.0870597232064
508 => 4.0829537763628
509 => 4.1211800023838
510 => 4.1836637263198
511 => 4.056616844834
512 => 4.0786677905093
513 => 4.0732614078604
514 => 4.1322868759913
515 => 4.13247114706
516 => 4.0970824303747
517 => 4.1162672278061
518 => 4.1055588001873
519 => 4.1249103762253
520 => 4.0503957908371
521 => 4.1411465124875
522 => 4.192596323816
523 => 4.1933107044962
524 => 4.2176975067349
525 => 4.2424759101979
526 => 4.2900358979008
527 => 4.241149487954
528 => 4.153207595456
529 => 4.1595567160438
530 => 4.1079964166488
531 => 4.1088631545968
601 => 4.1042364395031
602 => 4.1181215597821
603 => 4.0534427939103
604 => 4.0686227709823
605 => 4.0473707141876
606 => 4.0786215926883
607 => 4.0450008133769
608 => 4.073258800739
609 => 4.0854540113174
610 => 4.1304546008958
611 => 4.0383541897073
612 => 3.8505552166441
613 => 3.8900328376245
614 => 3.8316423352944
615 => 3.8370465985933
616 => 3.8479640705394
617 => 3.8125769719877
618 => 3.8193277152157
619 => 3.8190865311634
620 => 3.8170081372983
621 => 3.8078025862505
622 => 3.7944527159683
623 => 3.8476344902992
624 => 3.8566711100729
625 => 3.8767583964295
626 => 3.9365245352902
627 => 3.9305524886354
628 => 3.9402931445072
629 => 3.9190293474305
630 => 3.8380329651537
701 => 3.8424314583967
702 => 3.7875821771756
703 => 3.8753557769907
704 => 3.8545698299995
705 => 3.8411689947538
706 => 3.8375124526991
707 => 3.897426740258
708 => 3.915354034137
709 => 3.9041829476476
710 => 3.881270723345
711 => 3.925268967397
712 => 3.9370410413684
713 => 3.9396763745932
714 => 4.0176328272267
715 => 3.9440332743072
716 => 3.9617494182116
717 => 4.0999657156571
718 => 3.9746226064193
719 => 4.0410196468675
720 => 4.037769857251
721 => 4.071736336391
722 => 4.0349836145543
723 => 4.0354392085892
724 => 4.0655991409769
725 => 4.0232449553109
726 => 4.0127574633117
727 => 3.9982690682278
728 => 4.0299039488463
729 => 4.0488676290546
730 => 4.2017009642447
731 => 4.3004382688243
801 => 4.2961518220314
802 => 4.3353219218265
803 => 4.3176754331118
804 => 4.2606902661436
805 => 4.3579569975575
806 => 4.3271777339253
807 => 4.3297151390223
808 => 4.3296206966779
809 => 4.3500862162234
810 => 4.3355845199881
811 => 4.3070001881396
812 => 4.3259758015955
813 => 4.3823265896536
814 => 4.5572411648392
815 => 4.6551256784229
816 => 4.551348394214
817 => 4.6229325752281
818 => 4.5800075746714
819 => 4.572206825162
820 => 4.6171669808683
821 => 4.6622058333754
822 => 4.659337053179
823 => 4.6266411590295
824 => 4.6081720780521
825 => 4.7480261468093
826 => 4.8510682423178
827 => 4.8440414622071
828 => 4.8750553843844
829 => 4.9661132191215
830 => 4.974438406356
831 => 4.9733896241167
901 => 4.9527547789127
902 => 5.0424130425654
903 => 5.1172075434916
904 => 4.947978408446
905 => 5.0124186476993
906 => 5.041347947235
907 => 5.0838247418897
908 => 5.1554902144097
909 => 5.2333379258941
910 => 5.2443464458547
911 => 5.2365353741365
912 => 5.1851927157537
913 => 5.2703746105763
914 => 5.3202721668022
915 => 5.3499850196494
916 => 5.4253318707227
917 => 5.0415266047402
918 => 4.7698501611183
919 => 4.7274239613914
920 => 4.813699306864
921 => 4.8364494274322
922 => 4.8272788823574
923 => 4.5214823453194
924 => 4.7258140059099
925 => 4.9456576920113
926 => 4.9541027833361
927 => 5.0641611293132
928 => 5.1000006382073
929 => 5.188612032396
930 => 5.1830693655633
1001 => 5.204644829933
1002 => 5.1996850043093
1003 => 5.3638189527135
1004 => 5.5448830719304
1005 => 5.5386133972306
1006 => 5.5125832878397
1007 => 5.5512424390783
1008 => 5.7381200141205
1009 => 5.7209153216627
1010 => 5.7376282148932
1011 => 5.9579674078265
1012 => 6.2444397015245
1013 => 6.1113445597537
1014 => 6.4001227203009
1015 => 6.5818932648928
1016 => 6.8962466263394
1017 => 6.8568880372633
1018 => 6.979263494043
1019 => 6.7864279484318
1020 => 6.3436385572147
1021 => 6.2735654411249
1022 => 6.4138535940706
1023 => 6.7587383289698
1024 => 6.4029919464281
1025 => 6.4749589762912
1026 => 6.4542324668491
1027 => 6.4531280392429
1028 => 6.4952795489389
1029 => 6.43413658565
1030 => 6.1850291538022
1031 => 6.2991936218188
1101 => 6.2551092380895
1102 => 6.3040241485456
1103 => 6.5679977462336
1104 => 6.4512887263511
1105 => 6.3283452545759
1106 => 6.4825436515225
1107 => 6.6788911991535
1108 => 6.6666041224933
1109 => 6.6427620581727
1110 => 6.7771585264178
1111 => 6.9991421174883
1112 => 7.0591433901524
1113 => 7.103435102961
1114 => 7.1095421818427
1115 => 7.1724488898524
1116 => 6.8341836663525
1117 => 7.3710192633139
1118 => 7.463715941125
1119 => 7.4462928075802
1120 => 7.5493212636948
1121 => 7.5190076783262
1122 => 7.4750880491829
1123 => 7.6384100669056
1124 => 7.4511745529938
1125 => 7.1854173132916
1126 => 7.0396176355089
1127 => 7.2316184125378
1128 => 7.3488665871656
1129 => 7.4263601722101
1130 => 7.4498096842217
1201 => 6.8604422327352
1202 => 6.5428058642014
1203 => 6.7464071347232
1204 => 6.9948147365689
1205 => 6.8328037495818
1206 => 6.8391542735444
1207 => 6.6081691818393
1208 => 7.0152517918089
1209 => 6.95594327964
1210 => 7.2636359456873
1211 => 7.1902026215472
1212 => 7.4411140461483
1213 => 7.3750406590933
1214 => 7.6493075946453
1215 => 7.7587201007178
1216 => 7.9424407271104
1217 => 8.0775863677623
1218 => 8.1569464728772
1219 => 8.1521819898384
1220 => 8.4666462633512
1221 => 8.2812176678056
1222 => 8.0482756496359
1223 => 8.0440624634499
1224 => 8.1647064354739
1225 => 8.4175431037788
1226 => 8.4830999732464
1227 => 8.5197373198462
1228 => 8.4636259481734
1229 => 8.2623564974959
1230 => 8.1754493691526
1231 => 8.249496760443
]
'min_raw' => 3.0533299209289
'max_raw' => 8.5197373198462
'avg_raw' => 5.7865336203875
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$3.05'
'max' => '$8.51'
'avg' => '$5.78'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 1.2087675960814
'max_diff' => 4.4018818700695
'year' => 2036
]
11 => [
'items' => [
101 => 8.1589431638597
102 => 8.3152640764141
103 => 8.5299260776966
104 => 8.4855992232974
105 => 8.6337772517008
106 => 8.7871259223151
107 => 9.0064214086133
108 => 9.06375336922
109 => 9.1585209199637
110 => 9.2560678591976
111 => 9.2873973071158
112 => 9.3472149441485
113 => 9.3468996756745
114 => 9.5271641510638
115 => 9.7260014497442
116 => 9.801057926902
117 => 9.9736461574881
118 => 9.6780948608224
119 => 9.902273914392
120 => 10.104489032277
121 => 9.8633998323836
122 => 10.195685127858
123 => 10.208587012907
124 => 10.403390159317
125 => 10.205919850663
126 => 10.088662611732
127 => 10.427179866955
128 => 10.590977703564
129 => 10.541640462146
130 => 10.166181618878
131 => 9.9476484679088
201 => 9.3757050599255
202 => 10.053196732798
203 => 10.383183163952
204 => 10.16532703374
205 => 10.275200993885
206 => 10.87463769368
207 => 11.102864378311
208 => 11.055394823332
209 => 11.063416396708
210 => 11.186563373127
211 => 11.732664884848
212 => 11.405428200491
213 => 11.655588384358
214 => 11.788272443861
215 => 11.91151679289
216 => 11.60886762345
217 => 11.215125500809
218 => 11.090410842398
219 => 10.143665535066
220 => 10.094383330313
221 => 10.066719735381
222 => 9.8923046824309
223 => 9.7552622271157
224 => 9.6462809785889
225 => 9.3602816378991
226 => 9.4567980197832
227 => 9.000974763425
228 => 9.2925943294586
301 => 8.5650894060735
302 => 9.1709771241942
303 => 8.8412199855552
304 => 9.0626430353615
305 => 9.0618705112
306 => 8.6541604742648
307 => 8.419001833652
308 => 8.5688540719617
309 => 8.7295075667152
310 => 8.7555730557357
311 => 8.9638645051688
312 => 9.0219941714959
313 => 8.8458585687103
314 => 8.5500134835705
315 => 8.6187315493405
316 => 8.4176092642425
317 => 8.0651501956652
318 => 8.3182924520624
319 => 8.4047263482757
320 => 8.442900480874
321 => 8.0962974671257
322 => 7.9873872750885
323 => 7.9294044026929
324 => 8.5052713869499
325 => 8.5368186802937
326 => 8.375418267209
327 => 9.1049634389671
328 => 8.9398448978656
329 => 9.1243227633008
330 => 8.6124961051406
331 => 8.6320485727483
401 => 8.3897416303892
402 => 8.5254173271546
403 => 8.4295261177127
404 => 8.5144560716293
405 => 8.5653627358276
406 => 8.8076299180017
407 => 9.1737434262555
408 => 8.7714432798835
409 => 8.596155345065
410 => 8.7049029939696
411 => 8.9945123136002
412 => 9.4332852576689
413 => 9.1735228436518
414 => 9.2888009919408
415 => 9.313984138974
416 => 9.1224449518051
417 => 9.4403475807085
418 => 9.6107141821741
419 => 9.7854750628771
420 => 9.9372150389027
421 => 9.7156717240502
422 => 9.9527548279291
423 => 9.7617076970043
424 => 9.5903186704754
425 => 9.5905785968823
426 => 9.4830637569466
427 => 9.2747402068294
428 => 9.2363221479311
429 => 9.436177741986
430 => 9.5964430020228
501 => 9.6096432164583
502 => 9.698374299141
503 => 9.7508844398699
504 => 10.265555203087
505 => 10.472560041633
506 => 10.725681639806
507 => 10.824286767445
508 => 11.121052849747
509 => 10.881390136126
510 => 10.829537600485
511 => 10.109680156267
512 => 10.227556772431
513 => 10.41628860831
514 => 10.112792274727
515 => 10.305290843159
516 => 10.343294138245
517 => 10.102479585446
518 => 10.231109043078
519 => 9.8895073395829
520 => 9.1811894099019
521 => 9.4411361410476
522 => 9.6325444322944
523 => 9.3593812002131
524 => 9.8490157208419
525 => 9.5629813419987
526 => 9.4723221759769
527 => 9.1186284469997
528 => 9.2855582721569
529 => 9.5113332508867
530 => 9.3718305631901
531 => 9.6613195865944
601 => 10.071313247637
602 => 10.363499146041
603 => 10.385929551234
604 => 10.198073593495
605 => 10.499113964652
606 => 10.501306715103
607 => 10.161731946652
608 => 9.9537442917354
609 => 9.9064890589287
610 => 10.024541895414
611 => 10.167879832663
612 => 10.39388380917
613 => 10.530453278849
614 => 10.886554024923
615 => 10.982904676603
616 => 11.088764831106
617 => 11.230226643584
618 => 11.400087819529
619 => 11.028441236764
620 => 11.043207448333
621 => 10.697135296259
622 => 10.327307570001
623 => 10.607960714554
624 => 10.974877367334
625 => 10.890706281779
626 => 10.881235315195
627 => 10.897162853962
628 => 10.833700604225
629 => 10.546663200683
630 => 10.402514813574
701 => 10.588503009121
702 => 10.687347457672
703 => 10.840646577232
704 => 10.821749224995
705 => 11.216631293859
706 => 11.370070525206
707 => 11.330814203792
708 => 11.338038311689
709 => 11.615832710829
710 => 11.924797215449
711 => 12.214183245483
712 => 12.508559144652
713 => 12.153677508516
714 => 11.973490499743
715 => 12.159397498662
716 => 12.060752628205
717 => 12.627595313819
718 => 12.66684227151
719 => 13.233643967946
720 => 13.771606271354
721 => 13.433721787179
722 => 13.752331637104
723 => 14.096934166441
724 => 14.761728355277
725 => 14.537849060219
726 => 14.36636102884
727 => 14.204305667811
728 => 14.541517148548
729 => 14.975334331431
730 => 15.068774397575
731 => 15.22018300158
801 => 15.060995367832
802 => 15.252719338739
803 => 15.929589203823
804 => 15.746692991382
805 => 15.486950967682
806 => 16.021274718893
807 => 16.214644407326
808 => 17.571814149236
809 => 19.285297010283
810 => 18.575903854475
811 => 18.13556063069
812 => 18.23905173336
813 => 18.86475766916
814 => 19.065714556825
815 => 18.519444462158
816 => 18.712396294637
817 => 19.775579862202
818 => 20.345943735188
819 => 19.571312985585
820 => 17.434137469732
821 => 15.463564040347
822 => 15.986248849898
823 => 15.926992613293
824 => 17.06925072179
825 => 15.742330977203
826 => 15.764672902627
827 => 16.930551699135
828 => 16.61951522445
829 => 16.11567597
830 => 15.467242624486
831 => 14.268553612479
901 => 13.206841326627
902 => 15.289103616918
903 => 15.199312680613
904 => 15.069282098571
905 => 15.358651088126
906 => 16.763744762587
907 => 16.731352805546
908 => 16.525291701375
909 => 16.681587232749
910 => 16.088276607673
911 => 16.241186265187
912 => 15.463251891448
913 => 15.814910717787
914 => 16.114594957246
915 => 16.174761005218
916 => 16.310318183455
917 => 15.151996937311
918 => 15.672049170305
919 => 15.977531134884
920 => 14.597352505386
921 => 15.950249440991
922 => 15.131833141448
923 => 14.854050357183
924 => 15.228048281097
925 => 15.082300926423
926 => 14.956995909446
927 => 14.887073556959
928 => 15.161696355637
929 => 15.148884873833
930 => 14.699548673208
1001 => 14.113407916779
1002 => 14.310135994051
1003 => 14.238662839242
1004 => 13.979634905996
1005 => 14.154188457852
1006 => 13.385542955008
1007 => 12.063128318082
1008 => 12.936755933891
1009 => 12.903122221007
1010 => 12.886162577803
1011 => 13.54266958579
1012 => 13.479561585165
1013 => 13.365019946077
1014 => 13.977531258969
1015 => 13.753956390324
1016 => 14.442961454625
1017 => 14.896784752028
1018 => 14.781680484161
1019 => 15.208503488886
1020 => 14.314668211616
1021 => 14.611564436278
1022 => 14.672754336701
1023 => 13.969972964446
1024 => 13.489886834537
1025 => 13.457870563055
1026 => 12.625467373737
1027 => 13.070130438547
1028 => 13.461415534172
1029 => 13.274020338317
1030 => 13.214696617582
1031 => 13.517768641073
1101 => 13.541319932935
1102 => 13.004347982636
1103 => 13.116001454794
1104 => 13.581614994534
1105 => 13.104269188233
1106 => 12.176864260586
1107 => 11.946855016153
1108 => 11.916167543034
1109 => 11.292364229869
1110 => 11.962225333698
1111 => 11.669813010715
1112 => 12.59354003538
1113 => 12.065912112939
1114 => 12.043167127759
1115 => 12.008784746696
1116 => 11.471851466064
1117 => 11.589405730632
1118 => 11.980174010077
1119 => 12.119604534503
1120 => 12.105060788484
1121 => 11.978259032325
1122 => 12.036308226965
1123 => 11.84931154535
1124 => 11.783279125072
1125 => 11.574862643028
1126 => 11.268547990945
1127 => 11.311142922054
1128 => 10.70425344469
1129 => 10.37358784736
1130 => 10.282063968122
1201 => 10.159674411758
1202 => 10.295888194179
1203 => 10.702534203053
1204 => 10.212032841588
1205 => 9.3711026620262
1206 => 9.4216439986932
1207 => 9.5351953763263
1208 => 9.3235931353245
1209 => 9.1233293726463
1210 => 9.2974424663824
1211 => 8.9411292635155
1212 => 9.5782541245863
1213 => 9.5610216826161
1214 => 9.7985024312862
1215 => 9.9470040170252
1216 => 9.6047559398562
1217 => 9.5186814739854
1218 => 9.5677134016117
1219 => 8.7573248579164
1220 => 9.732276398147
1221 => 9.7407078195527
1222 => 9.668512870613
1223 => 10.187644467534
1224 => 11.283174058243
1225 => 10.870991758643
1226 => 10.711382313961
1227 => 10.407964642949
1228 => 10.812250674414
1229 => 10.781207815042
1230 => 10.640820232307
1231 => 10.555913384233
]
'min_raw' => 7.9294044026929
'max_raw' => 20.345943735188
'avg_raw' => 14.13767406894
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$7.92'
'max' => '$20.34'
'avg' => '$14.13'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 4.8760744817639
'max_diff' => 11.826206415342
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.24889494347307
]
1 => [
'year' => 2028
'avg' => 0.42717597771815
]
2 => [
'year' => 2029
'avg' => 1.1669677801468
]
3 => [
'year' => 2030
'avg' => 0.90031390448271
]
4 => [
'year' => 2031
'avg' => 0.88421982887588
]
5 => [
'year' => 2032
'avg' => 1.5503156342408
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.24889494347307
'min' => '$0.248894'
'max_raw' => 1.5503156342408
'max' => '$1.55'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 1.5503156342408
]
1 => [
'year' => 2033
'avg' => 3.987571228344
]
2 => [
'year' => 2034
'avg' => 2.5275142782305
]
3 => [
'year' => 2035
'avg' => 2.9812088873121
]
4 => [
'year' => 2036
'avg' => 5.7865336203875
]
5 => [
'year' => 2037
'avg' => 14.13767406894
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 1.5503156342408
'min' => '$1.55'
'max_raw' => 14.13767406894
'max' => '$14.13'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 14.13767406894
]
]
]
]
'prediction_2025_max_price' => '$0.425565'
'last_price' => 0.412639
'sma_50day_nextmonth' => '$0.36161'
'sma_200day_nextmonth' => '$0.571717'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'augmenter'
'sma_200day_date_nextmonth' => '4 févr. 2026'
'sma_50day_date_nextmonth' => '4 févr. 2026'
'daily_sma3' => '$0.39369'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.376713'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.3438045'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.335463'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.369343'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.489749'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.643325'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.3952039'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.380041'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.359714'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.353393'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.388673'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.464259'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.528657'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.536063'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.48503'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.5528031'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.387253'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.386089'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.421905'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.4903033'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.525776'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.669627'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.446084'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '60.74'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 90.52
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0.08
'momentum_10_action' => 'BUY'
'vwma_10' => '0.369276'
'vwma_10_action' => 'BUY'
'hma_9' => '0.417258'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 210.41
'cci_20_action' => 'SELL'
'adx_14' => 23.25
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.015656'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0.01
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 65.78
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.1222093'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 13
'buy_signals' => 21
'sell_pct' => 38.24
'buy_pct' => 61.76
'overall_action' => 'bullish'
'overall_action_label' => 'Haussier'
'overall_action_dir' => 1
'last_updated' => 1767695921
'last_updated_date' => '6 janvier 2026'
]
Prévision du prix de Prodigy Bot pour 2026
La prévision du prix de Prodigy Bot pour 2026 suggère que le prix moyen pourrait varier entre $0.142566 à la baisse et $0.425565 à la hausse. Sur le marché des cryptomonnaies, comparé au prix moyen d'aujourd'hui, Prodigy Bot pourrait potentiellement gagner 3.13% d'ici 2026 si PRO atteint l'objectif de prix prévu.
Prévision du prix de Prodigy Bot de 2027 à 2032
La prévision du prix de PRO pour 2027-2032 se situe actuellement dans une fourchette de prix comprise entre $0.248894 à la baisse et $1.55 à la hausse. Compte tenu de la volatilité des prix sur le marché, si Prodigy Bot atteint l'objectif de prix le plus élevé, il pourrait gagner 275.71% d'ici 2032 par rapport au prix actuel.
| Prévision du Prix de Prodigy Bot | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2027 | $0.137245 | $0.248894 | $0.360544 |
| 2028 | $0.247687 | $0.427175 | $0.606664 |
| 2029 | $0.544098 | $1.16 | $1.78 |
| 2030 | $0.462732 | $0.900313 | $1.33 |
| 2031 | $0.547093 | $0.884219 | $1.22 |
| 2032 | $0.835096 | $1.55 | $2.26 |
Prévision du prix de Prodigy Bot de 2032 à 2037
La prévision du prix de Prodigy Bot pour 2032-2037 est actuellement estimée entre $1.55 à la baisse et $14.13 à la hausse. Par rapport au prix actuel, Prodigy Bot pourrait potentiellement gagner 3326.16% d'ici 2037 s'il atteint l'objectif de prix le plus élevé. Veuillez noter que ces informations sont à titre général seulement et ne doivent pas être considérées comme un conseil en investissement à long terme.
| Prévision du Prix de Prodigy Bot | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2032 | $0.835096 | $1.55 | $2.26 |
| 2033 | $1.94 | $3.98 | $6.03 |
| 2034 | $1.56 | $2.52 | $3.49 |
| 2035 | $1.84 | $2.98 | $4.11 |
| 2036 | $3.05 | $5.78 | $8.51 |
| 2037 | $7.92 | $14.13 | $20.34 |
Prodigy Bot Histogramme des prix potentiels
Prévision du prix de Prodigy Bot basée sur l'analyse technique
Au 6 janvier 2026, le sentiment global de prévision du prix pour Prodigy Bot est Haussier, avec 21 indicateurs techniques montrant des signaux haussiers et 13 indiquant des signaux baissiers. La prévision du prix de PRO a été mise à jour pour la dernière fois le 6 janvier 2026.
Moyennes Mobiles Simples sur 50 et 200 jours de Prodigy Bot et Indice de Force Relative sur 14 jours - RSI (14)
Selon nos indicateurs techniques, le SMA sur 200 jours de Prodigy Bot devrait augmenter au cours du prochain mois, atteignant $0.571717 d'ici le 4 févr. 2026. Le SMA à court terme sur 50 jours pour Prodigy Bot devrait atteindre $0.36161 d'ici le 4 févr. 2026.
Le Relative Strength Index (RSI), un oscillateur de momentum, est un outil couramment utilisé pour identifier si une cryptomonnaie est survendue (en dessous de 30) ou surachetée (au-dessus de 70). Actuellement, le RSI est à 60.74, ce qui suggère que le marché de PRO est dans un état NEUTRAL.
Moyennes Mobiles et Oscillateurs Populaires de PRO pour le Samedi 19 Octobre 2024
Les moyennes mobiles (MA) sont des indicateurs largement utilisés sur les marchés financiers, conçus pour lisser les mouvements de prix sur une période donnée. En tant qu'indicateurs retardés, ils sont basés sur des données historiques de prix. Le tableau ci-dessous met en évidence deux types : la moyenne mobile simple (SMA) et la moyenne mobile exponentielle (EMA).
Moyenne Mobile Simple Quotidienne (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 3 | $0.39369 | BUY |
| SMA 5 | $0.376713 | BUY |
| SMA 10 | $0.3438045 | BUY |
| SMA 21 | $0.335463 | BUY |
| SMA 50 | $0.369343 | BUY |
| SMA 100 | $0.489749 | SELL |
| SMA 200 | $0.643325 | SELL |
Moyenne Mobile Exponentielle Quotidienne (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 3 | $0.3952039 | BUY |
| EMA 5 | $0.380041 | BUY |
| EMA 10 | $0.359714 | BUY |
| EMA 21 | $0.353393 | BUY |
| EMA 50 | $0.388673 | BUY |
| EMA 100 | $0.464259 | SELL |
| EMA 200 | $0.528657 | SELL |
Moyenne Mobile Simple Hebdomadaire (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 21 | $0.536063 | SELL |
| SMA 50 | $0.48503 | SELL |
| SMA 100 | $0.5528031 | SELL |
| SMA 200 | — | — |
Moyenne Mobile Exponentielle Hebdomadaire (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 21 | $0.4903033 | SELL |
| EMA 50 | $0.525776 | SELL |
| EMA 100 | $0.669627 | SELL |
| EMA 200 | $0.446084 | SELL |
Oscillateurs de Prodigy Bot
Un oscillateur est un outil d'analyse technique qui établit des limites hautes et basses entre deux extrêmes, créant un indicateur de tendance qui fluctue à l'intérieur de ces limites. Les traders utilisent cet indicateur pour identifier les conditions de surachat ou de survente à court terme.
| Période | Valeur | Action |
|---|---|---|
| RSI (14) | 60.74 | NEUTRAL |
| Stoch RSI (14) | 90.52 | SELL |
| Stochastique Rapide (14) | 100 | SELL |
| Indice de Canal des Matières Premières (20) | 210.41 | SELL |
| Indice Directionnel Moyen (14) | 23.25 | NEUTRAL |
| Oscillateur Impressionnant (5, 34) | 0.015656 | BUY |
| Momentum (10) | 0.08 | BUY |
| MACD (12, 26) | 0.01 | BUY |
| Plage de Pourcentage de Williams (14) | -0 | SELL |
| Oscillateur Ultime (7, 14, 28) | 65.78 | NEUTRAL |
| VWMA (10) | 0.369276 | BUY |
| Moyenne Mobile de Hull (9) | 0.417258 | BUY |
| Nuage Ichimoku B/L (9, 26, 52, 26) | -0.1222093 | NEUTRAL |
Prévision du cours de Prodigy Bot basée sur les flux monétaires mondiaux
Définitions des flux monétaires mondiaux utilisés pour la prédiction du cours de Prodigy Bot
M0 : le total de toutes les devises physiques, plus les comptes à la banque centrale qui peuvent être échangés contre des devises physiques.
M1 : M0 plus le montant des comptes à vue, y compris les comptes de "chèques" et les comptes "courants".
M2 : M1 plus la plupart des comptes d'épargne, comptes du marché monétaire et comptes de certificats de dépôt (CD) de moins de 100 000 $.
Prédictions du cours de Prodigy Bot par des sociétés Internet ou des niches technologiques
| Comparaison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Action Facebook | $0.579826 | $0.814753 | $1.14 | $1.60 | $2.26 | $3.17 |
| Action Amazon.com | $0.860995 | $1.79 | $3.74 | $7.82 | $16.32 | $34.05 |
| Action Apple | $0.585296 | $0.830199 | $1.17 | $1.67 | $2.36 | $3.36 |
| Action Netflix | $0.651079 | $1.02 | $1.62 | $2.55 | $4.03 | $6.36 |
| Action Google | $0.534365 | $0.6920011 | $0.896138 | $1.16 | $1.50 | $1.94 |
| Action Tesla | $0.935421 | $2.12 | $4.80 | $10.89 | $24.70 | $56.00 |
| Action Kodak | $0.309435 | $0.232043 | $0.174008 | $0.130487 | $0.097851 | $0.073378 |
| Action Nokia | $0.273356 | $0.181087 | $0.119962 | $0.07947 | $0.052645 | $0.034875 |
Ce calcul montre la valeur potentielle des cryptomonnaies si l'on suppose que leur capitalisation se comportera comme celle de certaines sociétés Internet ou niches technologiques. En extrapolant les données, vous pourrez obtenir une potentielle image des cours futurs pour 2024, 2025, 2026, 2027, 2028, 2029 et 2030.
Aperçu des prévisions relatives à Prodigy Bot
Vous vous posez peut-être des questions telles que : "Devrais-je investir dans Prodigy Bot maintenant ?", "Devrais-je acheter PRO aujourd'hui ?", " Prodigy Bot sera-t-il un bon ou un mauvais investissement à court ou à long terme ?".
Nous mettons régulièrement à jour les prévisions de Prodigy Bot avec de nouvelles valeurs. Regardez nos prévisions similaires. Nous faisons une prévision des cours futurs pour une grande quantité de devises numériques comme Prodigy Bot en utilisant des méthodes d'analyse technique.
Si vous souhaitez trouver des cryptomonnaies ayant un bon rendement, vous devriez consulter un maximum d'informations disponibles à propos de Prodigy Bot afin de prendre une décision responsable concernant cet investissement.
Le cours de Prodigy Bot est de $0.4126 USD actuellement, mais ce cours peut subir une hausse ou une baisse, ce qui pourrait causer la perte de votre investissement, car les cryptomonnaies sont des actifs à haut risque.
Prévision du cours de Prodigy Bot basée sur le modèle de croissance du Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Prodigy Bot présente 1 % de la précédente croissance annuelle moyenne du Bitcoin | $0.423364 | $0.434369 | $0.44566 | $0.457244 |
| Si Prodigy Bot présente 2 % de la précédente croissance annuelle moyenne du Bitcoin | $0.43409 | $0.456657 | $0.480397 | $0.505371 |
| Si Prodigy Bot présente 5 % de la précédente croissance annuelle moyenne du Bitcoin | $0.466268 | $0.526867 | $0.595341 | $0.672716 |
| Si Prodigy Bot présente 10 % de la précédente croissance annuelle moyenne du Bitcoin | $0.519897 | $0.655035 | $0.825299 | $1.03 |
| Si Prodigy Bot présente 20 % de la précédente croissance annuelle moyenne du Bitcoin | $0.627155 | $0.95319 | $1.44 | $2.20 |
| Si Prodigy Bot présente 50 % de la précédente croissance annuelle moyenne du Bitcoin | $0.948929 | $2.18 | $5.01 | $11.54 |
| Si Prodigy Bot présente 100 % de la précédente croissance annuelle moyenne du Bitcoin | $1.48 | $5.34 | $19.24 | $69.25 |
Boîte à questions
Est-ce que PRO est un bon investissement ?
La décision d'acquérir Prodigy Bot dépend entièrement de votre tolérance individuelle au risque. Comme vous pouvez le discerner, la valeur de Prodigy Bot a connu une hausse de 6.4286% au cours des 24 heures précédentes, et Prodigy Bot a enregistré une déclin de sur une période de 30 jours précédents. Par conséquent, la détermination de si investir ou non dans Prodigy Bot dépendra de la mesure dans laquelle cet investissement s'aligne avec vos aspirations de trading.
Est-ce que Prodigy Bot peut monter ?
Il semble que la valeur moyenne de Prodigy Bot pourrait potentiellement s'envoler jusqu'à $0.425565 pour la fin de cette année. En regardant les perspectives de Prodigy Bot sur une période de cinq ans plus longue, la monnaie numérique pourrait potentiellement croître jusqu'à $1.33. Cependant, compte tenu de l'imprévisibilité du marché, il est essentiel de mener des recherches approfondies avant d'investir des fonds dans un projet, un réseau ou un actif particulier.
Quel sera le prix de Prodigy Bot la semaine prochaine ?
Basé sur notre nouveau pronostic expérimental de Prodigy Bot, le prix de Prodigy Bot va augmenter de 0.86% durant la prochaine semaine et atteindre $0.41617 d'ici 13 janvier 2026.
Quel sera le prix de Prodigy Bot le mois prochain ?
Basé sur notre nouveau pronostic expérimental de Prodigy Bot, le prix de Prodigy Bot va diminuer de -11.62% durant le prochain mois et atteindre $0.364698 d'ici 5 février 2026.
Jusqu'où le prix de Prodigy Bot peut-il monter cette année en 2026 ?
Selon notre prédiction la plus récente sur la valeur de Prodigy Bot en 2026, PRO devrait fluctuer dans la fourchette de $0.142566 et $0.425565. Cependant, il est crucial de garder à l'esprit que le marché des cryptomonnaies est exceptionnellement instable, et cette prévision de prix de Prodigy Bot ne prend pas en compte les fluctuations de prix soudaines et extrêmes.
Où sera Prodigy Bot dans 5 ans ?
L'avenir de Prodigy Bot semble suivre une tendance haussière, avec un prix maximum de $1.33 prévue après une période de cinq ans. Selon la prévision de Prodigy Bot pour 2030, la valeur de Prodigy Bot pourrait potentiellement atteindre son point le plus élevé d'environ $1.33, tandis que son point le plus bas devrait être autour de $0.462732.
Combien vaudra Prodigy Bot en 2026 ?
Basé sur notre nouvelle simulation expérimentale de prédiction de prix de Prodigy Bot, il est attendu que la valeur de PRO en 2026 augmente de 3.13% jusqu'à $0.425565 si le meilleur scénario se produit. Le prix sera entre $0.425565 et $0.142566 durant 2026.
Combien vaudra Prodigy Bot en 2027 ?
Selon notre dernière simulation expérimentale pour la prédiction de prix de Prodigy Bot, le valeur de PRO pourrait diminuer de -12.62% jusqu'à $0.360544 en 2027, en supposant les conditions les plus favorables. Il est prévu que le prix fluctue entre $0.360544 et $0.137245 tout au long de l'année.
Combien vaudra Prodigy Bot en 2028 ?
Notre nouveau modèle expérimental de prédiction de prix de Prodigy Bot suggère que la valeur de PRO en 2028 pourrait augmenter de 47.02%, atteignant $0.606664 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.606664 et $0.247687 durant l'année.
Combien vaudra Prodigy Bot en 2029 ?
Basé sur notre modèle de prévision expérimental, la valeur de Prodigy Bot pourrait connaître un 333.75% croissance en 2029, atteignant potentiellement $1.78 sous des conditions optimales. Le range de prix prévu pour 2029 se situe entre $1.78 et $0.544098.
Combien vaudra Prodigy Bot en 2030 ?
En utilisant notre nouvelle simulation expérimentale pour les prédictions de prix de Prodigy Bot, il est prévu que la valeur de PRO en 2030 augmente de 224.23%, atteignant $1.33 dans le meilleur scénario. Il est prévu que le prix oscille entre $1.33 et $0.462732 au cours de 2030.
Combien vaudra Prodigy Bot en 2031 ?
Notre simulation expérimentale indique que le prix de Prodigy Bot pourrait augmenter de 195.98% en 2031, atteignant potentiellement $1.22 dans des conditions idéales. Il est probable que le prix fluctue entre $1.22 et $0.547093 durant l'année.
Combien vaudra Prodigy Bot en 2032 ?
Basé sur les résultats de notre dernière prédiction expérimentale de prix de Prodigy Bot, PRO pourrait connaître une 449.04% hausse en valeur, atteignant $2.26 si le scénario le plus positif se réalise en 2032. Il est prévu que le prix reste dans une fourchette de $2.26 et $0.835096 tout au long de l'année.
Combien vaudra Prodigy Bot en 2033 ?
Selon notre prédiction expérimentale de prix de Prodigy Bot, la valeur de PRO est anticipée à augmenter de 1362.43% en 2033, avec le prix potentiel le plus élevé étant $6.03. Tout au long de l'année, le prix de PRO pourrait osciller entre $6.03 et $1.94.
Combien vaudra Prodigy Bot en 2034 ?
Les résultats de notre nouvelle simulation de prédiction de prix de Prodigy Bot suggèrent que PRO pourrait augmenter de 746.96% en 2034, atteignant potentiellement $3.49 dans les meilleures circonstances. La fourchette de prix prévue pour l'année est entre $3.49 et $1.56.
Combien vaudra Prodigy Bot en 2035 ?
Basé sur notre prédiction expérimentale pour le prix de Prodigy Bot, PRO pourrait augmenter de 897.93%, avec la valeur potentiellement atteignant $4.11 en 2035. La fourchette de prix attendue pour l'année se situe entre $4.11 et $1.84.
Combien vaudra Prodigy Bot en 2036 ?
Notre récente simulation de prédiction de prix de Prodigy Bot suggère que la valeur de PRO pourrait augmenter de 1964.7% en 2036, pouvant atteindre $8.51 si les conditions sont optimales. La fourchette de prix attendue pour 2036 est entre $8.51 et $3.05.
Combien vaudra Prodigy Bot en 2037 ?
Selon la simulation expérimentale, la valeur de Prodigy Bot pourrait augmenter de 4830.69% en 2037, avec un maximum de $20.34 sous des conditions favorables. Il est prévu que le prix chute entre $20.34 et $7.92 au cours de l'année.
Prévisions liées
Prévision du cours de SolPod
Prévision du cours de zuzalu
Prévision du cours de SOFT COQ INU
Prévision du cours de All Street Bets
Prévision du cours de MagicRing
Prévision du cours de AI INU
Prévision du cours de Wall Street Baby On Solana
Prévision du cours de Meta Masters Guild Games
Prévision du cours de Morfey
Prévision du cours de PANTIESPrévision du cours de Celer Bridged BUSD (zkSync)
Prévision du cours de Bridged BUSD
Prévision du cours de Multichain Bridged BUSD (Moonriver)
Prévision du cours de tooker kurlson
Prévision du cours de dogwifsaudihatPrévision du cours de Harmony Horizen Bridged BUSD (Harmony)
Prévision du cours de IoTeX Bridged BUSD (IoTeX)
Prévision du cours de MIMANY
Prévision du cours de The Open League MEME
Prévision du cours de Sandwich Cat
Prévision du cours de Hege
Prévision du cours de DexNet
Prévision du cours de SolDocs
Prévision du cours de Secret Society
Prévision du cours de duk
Comment lire et prédire les mouvements de prix de Prodigy Bot ?
Les traders de Prodigy Bot utilisent des indicateurs et des modèles graphiques pour prédire la direction du marché. Ils identifient également des niveaux clés de support et de résistance pour évaluer quand une tendance baissière pourrait ralentir ou une tendance haussière pourrait s'arrêter.
Indicateurs de prédiction du prix de Prodigy Bot
Les moyennes mobiles sont des outils populaires pour la prédiction du prix de Prodigy Bot. Une moyenne mobile simple (SMA) calcule le prix de clôture moyen de PRO sur une période spécifique, comme une SMA de 12 jours. Une moyenne mobile exponentielle (EMA) donne plus de poids aux prix récents, réagissant plus rapidement aux changements de prix.
Les moyennes mobiles couramment utilisées sur le marché des cryptomonnaies incluent les moyennes sur 50 jours, 100 jours et 200 jours, qui aident à identifier les niveaux clés de résistance et de support. Un mouvement de prix de PRO au-dessus de ces moyennes est considéré comme haussier, tandis qu'une chute en dessous indique une faiblesse.
Les traders utilisent également le RSI et les niveaux de retracement de Fibonacci pour évaluer la direction future de PRO.
Comment lire les graphiques de Prodigy Bot et prédire les mouvements de prix ?
La plupart des traders préfèrent les graphiques en chandeliers aux simples graphiques linéaires parce qu'ils fournissent des informations plus détaillées. Les chandeliers peuvent représenter l'action des prix de Prodigy Bot dans différentes périodes, comme 5 minutes pour les tendances à court terme et hebdomadaire pour les tendances à long terme. Les options populaires incluent les graphiques de 1 heure, 4 heures et 1 jour.
Par exemple, un graphique en chandeliers de 1 heure montre les prix d'ouverture, de clôture, les plus hauts et les plus bas de PRO au sein de chaque heure. La couleur du chandelier est cruciale : le vert indique que le prix a clôturé plus haut qu'il n'a ouvert, tandis que le rouge signifie le contraire. Certains graphiques utilisent des chandeliers creux et pleins pour transmettre la même information.
Qu'est-ce qui affecte le prix de Prodigy Bot ?
L'action du prix de Prodigy Bot est déterminée par l'offre et la demande, influencée par des facteurs tels que les réductions de récompenses de bloc, les hard forks et les mises à jour de protocole. Les événements du monde réel, tels que les réglementations, l'adoption par les entreprises et les gouvernements et les piratages d'échanges de cryptomonnaies, impactent également le prix de PRO. La capitalisation boursière de Prodigy Bot peut changer rapidement.
Les traders surveillent souvent l'activité des « baleines » de PRO, de grands détenteurs de Prodigy Bot, car leurs actions peuvent influencer significativement les mouvements de prix sur le marché relativement petit de Prodigy Bot.
Modèles de prédiction de prix haussiers et baissiers
Les traders identifient souvent des modèles de chandeliers pour obtenir un avantage dans les prédictions de prix des cryptomonnaies. Certaines formations indiquent des tendances haussières, tandis que d'autres suggèrent des mouvements baissiers.
Modèles de chandeliers haussiers couramment suivis :
- Marteau
- Englobante haussière
- Ligne pénétrante
- Étoile du matin
- Trois soldats blancs
Modèles de chandeliers baissiers courants :
- Harami baissier
- Nuage sombre
- Étoile du soir
- Étoile filante
- Pendu


