Prédiction du prix de PinGo jusqu'à $0.0172044 d'ici 2026
| Année | Prix min. | Prix max. |
|---|---|---|
| 2026 | $0.005763 | $0.0172044 |
| 2027 | $0.005548 | $0.014575 |
| 2028 | $0.010013 | $0.024525 |
| 2029 | $0.021996 | $0.072358 |
| 2030 | $0.0187069 | $0.054087 |
| 2031 | $0.022117 | $0.049375 |
| 2032 | $0.03376 | $0.091589 |
| 2033 | $0.078452 | $0.24396 |
| 2034 | $0.063071 | $0.141288 |
| 2035 | $0.07457 | $0.166473 |
Calculateur de profit d’investissement
Si vous ouvrez une position short de $10,000.00 sur PinGo aujourd’hui et la fermez le Apr 06, 2026, notre prévision indique que vous pourriez gagner environ $3,954.44, soit un rendement de 39.54% sur les 90 prochains jours.
Prévision du prix à long terme de PinGo pour 2027, 2028, 2029, 2030, 2031, 2032 et 2037
[
'name' => 'PinGo'
'name_with_ticker' => 'PinGo <small>PINGO</small>'
'name_lang' => 'PinGo'
'name_lang_with_ticker' => 'PinGo <small>PINGO</small>'
'name_with_lang' => 'PinGo'
'name_with_lang_with_ticker' => 'PinGo <small>PINGO</small>'
'image' => '/uploads/coins/pingo.png?1732819319'
'price_for_sd' => 0.01668
'ticker' => 'PINGO'
'marketcap' => '$3.08M'
'low24h' => '$0.01602'
'high24h' => '$0.01716'
'volume24h' => '$48.15K'
'current_supply' => '185.03M'
'max_supply' => '1B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.01668'
'change_24h_pct' => '-1.9179%'
'ath_price' => '$0.4024'
'ath_days' => 365
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '6 janv. 2025'
'ath_pct' => '-95.86%'
'fdv' => '$16.63M'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.822529'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.016824'
'next_week_prediction_price_date' => '13 janvier 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.014743'
'next_month_prediction_price_date' => '5 février 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.005763'
'current_year_max_price_prediction' => '$0.0172044'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.0187069'
'grand_prediction_max_price' => '$0.054087'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.016997952093352
107 => 0.017061416276212
108 => 0.017204404320757
109 => 0.015982587135597
110 => 0.016531147181066
111 => 0.016853374814654
112 => 0.015397538643363
113 => 0.016824597614417
114 => 0.015961318016701
115 => 0.015668307955212
116 => 0.016062807401867
117 => 0.015909070583842
118 => 0.015776896695433
119 => 0.015703141394666
120 => 0.015992818248974
121 => 0.015979304477482
122 => 0.015505336919979
123 => 0.014887065562605
124 => 0.015094577724205
125 => 0.015019186610459
126 => 0.014745959488595
127 => 0.014930081579163
128 => 0.014119301074361
129 => 0.012724395356553
130 => 0.013645912800855
131 => 0.013610435381667
201 => 0.01359254605814
202 => 0.014285040948661
203 => 0.014218473543513
204 => 0.014097653051339
205 => 0.014743740525508
206 => 0.014507909906333
207 => 0.015234684305947
208 => 0.015713384930354
209 => 0.015591970967661
210 => 0.016042191218677
211 => 0.015099358385293
212 => 0.015412529632655
213 => 0.0154770737927
214 => 0.014735767906366
215 => 0.014229364794248
216 => 0.014195593480088
217 => 0.013317560270323
218 => 0.013786598523743
219 => 0.014199332776631
220 => 0.01400166509897
221 => 0.013939089417376
222 => 0.014258775003629
223 => 0.014283617311602
224 => 0.013717210057132
225 => 0.013834984061121
226 => 0.014326121236056
227 => 0.013822608664441
228 => 0.012844365986104
301 => 0.012601748276613
302 => 0.012569378601835
303 => 0.011911380131443
304 => 0.012617961152083
305 => 0.012309519601379
306 => 0.013283882764354
307 => 0.012727331751277
308 => 0.012703339949468
309 => 0.012667072822201
310 => 0.01210070635716
311 => 0.012224704618537
312 => 0.012636893724824
313 => 0.01278396744159
314 => 0.012768626447992
315 => 0.012634873773335
316 => 0.012696105062868
317 => 0.012498857744885
318 => 0.012429205611557
319 => 0.012209364319446
320 => 0.011886258352749
321 => 0.011931188219142
322 => 0.01129103075384
323 => 0.010942238991016
324 => 0.010845698028068
325 => 0.010716599417689
326 => 0.010860280059628
327 => 0.011289217268173
328 => 0.010771827990563
329 => 0.009884800364739
330 => 0.0099381122364726
331 => 0.010057888183821
401 => 0.0098346864983343
402 => 0.0096234448349186
403 => 0.0098071023226807
404 => 0.0094312570241405
405 => 0.010103307292528
406 => 0.010085130216167
407 => 0.010335628996912
408 => 0.010492271025264
409 => 0.010131261863371
410 => 0.010040469035427
411 => 0.010092188756528
412 => 0.0092373769738377
413 => 0.010265772637405
414 => 0.010274666245809
415 => 0.010198513771191
416 => 0.010746102713887
417 => 0.011901686180249
418 => 0.011466909196966
419 => 0.011298550407835
420 => 0.010978500226628
421 => 0.011404948090388
422 => 0.011372203548074
423 => 0.011224120309732
424 => 0.011134559105135
425 => 0.011299578370701
426 => 0.011114111391944
427 => 0.011080796426268
428 => 0.010878943981308
429 => 0.010806891842159
430 => 0.010753547306811
501 => 0.010694820214918
502 => 0.010824357545753
503 => 0.010530808912026
504 => 0.010176818036678
505 => 0.010147387525628
506 => 0.010228647754196
507 => 0.010192696152167
508 => 0.010147215403189
509 => 0.010060380267444
510 => 0.010034618137608
511 => 0.010118332561567
512 => 0.010023823857771
513 => 0.010163276598378
514 => 0.010125353169205
515 => 0.0099135159766261
516 => 0.0096494884024994
517 => 0.009647138003273
518 => 0.0095902536955194
519 => 0.0095178029769823
520 => 0.0094976488445332
521 => 0.0097916352013238
522 => 0.010400178161609
523 => 0.010280706617306
524 => 0.010367037052001
525 => 0.01079169734633
526 => 0.010926684083916
527 => 0.010830873694914
528 => 0.010699722525119
529 => 0.010705492510987
530 => 0.011153675760333
531 => 0.011181628399842
601 => 0.011252255702018
602 => 0.011343031744587
603 => 0.01084633324749
604 => 0.010682098056441
605 => 0.0106042743115
606 => 0.010364607298663
607 => 0.010623067624511
608 => 0.010472473861014
609 => 0.010492794104725
610 => 0.010479560519351
611 => 0.010486786951816
612 => 0.010103119440781
613 => 0.010242907716832
614 => 0.010010482595516
615 => 0.0096992914490176
616 => 0.0096982482271769
617 => 0.009774411819418
618 => 0.0097291067344713
619 => 0.00960719191578
620 => 0.0096245093403534
621 => 0.00947279047884
622 => 0.0096429307570997
623 => 0.009647809771489
624 => 0.0095822964967554
625 => 0.0098444210702486
626 => 0.009951813721882
627 => 0.009908691481022
628 => 0.0099487881505082
629 => 0.010285671199354
630 => 0.010340597835553
701 => 0.010364992619103
702 => 0.010332306840836
703 => 0.0099549457542162
704 => 0.009971683323071
705 => 0.0098488741483657
706 => 0.0097451133370517
707 => 0.0097492632253505
708 => 0.0098026097703272
709 => 0.010035577260974
710 => 0.010525843610856
711 => 0.010544448860454
712 => 0.01056699896572
713 => 0.010475276354828
714 => 0.010447611937715
715 => 0.010484108444679
716 => 0.010668226708714
717 => 0.011141828871435
718 => 0.010974426236305
719 => 0.010838325288166
720 => 0.010957722512236
721 => 0.010939342245457
722 => 0.010784194296594
723 => 0.010779839810406
724 => 0.010482061292739
725 => 0.010371979354847
726 => 0.010279986648053
727 => 0.010179533013765
728 => 0.010119980732123
729 => 0.010211480102754
730 => 0.010232407091405
731 => 0.010032342118387
801 => 0.01000507400183
802 => 0.010168451377499
803 => 0.01009655508579
804 => 0.010170502204755
805 => 0.010187658570662
806 => 0.010184896000606
807 => 0.010109828014825
808 => 0.010157674110402
809 => 0.010044503830754
810 => 0.009921448149263
811 => 0.0098429462911116
812 => 0.009774443008114
813 => 0.0098124526109552
814 => 0.0096769553171055
815 => 0.0096336070057812
816 => 0.010141464929792
817 => 0.010516625038652
818 => 0.010511170062089
819 => 0.010477964295171
820 => 0.010428627261074
821 => 0.010664617397369
822 => 0.010582403152655
823 => 0.010642220884914
824 => 0.010657447008317
825 => 0.01070353189804
826 => 0.010720003284986
827 => 0.010670215313521
828 => 0.010503120800197
829 => 0.010086737159862
830 => 0.0098929094512802
831 => 0.0098289430789923
901 => 0.0098312681351355
902 => 0.0097671327071976
903 => 0.0097860234650736
904 => 0.009760563272535
905 => 0.0097123478273489
906 => 0.0098094754430826
907 => 0.0098206684959895
908 => 0.0097979977498887
909 => 0.0098033375312884
910 => 0.009615633436376
911 => 0.0096299041710403
912 => 0.0095504429069921
913 => 0.0095355448779029
914 => 0.0093346737218727
915 => 0.0089788013522255
916 => 0.0091759891903768
917 => 0.008937814010696
918 => 0.008847613461208
919 => 0.0092746088334208
920 => 0.0092317503410587
921 => 0.0091583952322736
922 => 0.0090498877378362
923 => 0.0090096412526563
924 => 0.0087651163491922
925 => 0.0087506685134059
926 => 0.0088718616582905
927 => 0.0088159351919278
928 => 0.0087373932521454
929 => 0.0084529223079223
930 => 0.0081330827815226
1001 => 0.0081427367263851
1002 => 0.0082444717289068
1003 => 0.0085402799695732
1004 => 0.0084247025724103
1005 => 0.0083408498446708
1006 => 0.008325146749369
1007 => 0.0085217038637286
1008 => 0.0087998733605361
1009 => 0.0089303842647465
1010 => 0.0088010519223491
1011 => 0.0086524818911508
1012 => 0.0086615246605426
1013 => 0.0087216821540742
1014 => 0.0087280038560632
1015 => 0.0086313000389991
1016 => 0.0086585215970568
1017 => 0.0086171695611757
1018 => 0.0083633921933035
1019 => 0.0083588021654554
1020 => 0.0082965211066667
1021 => 0.0082946352609586
1022 => 0.0081886796432208
1023 => 0.0081738557198627
1024 => 0.007963474409798
1025 => 0.0081019480251758
1026 => 0.0080090671941715
1027 => 0.0078690738734748
1028 => 0.00784493897222
1029 => 0.0078442134479445
1030 => 0.0079879552863663
1031 => 0.0081002683181033
1101 => 0.0080106828959925
1102 => 0.0079902860319183
1103 => 0.0082080711776827
1104 => 0.0081803560327285
1105 => 0.0081563548959417
1106 => 0.0087749663330867
1107 => 0.008285287109734
1108 => 0.0080717590184393
1109 => 0.0078074774575774
1110 => 0.0078935288664173
1111 => 0.0079116611626181
1112 => 0.007276111649077
1113 => 0.007018269290586
1114 => 0.0069297875097362
1115 => 0.0068788649939084
1116 => 0.0069020710238159
1117 => 0.0066699826592818
1118 => 0.0068259498786359
1119 => 0.0066249809728905
1120 => 0.0065912878818329
1121 => 0.0069506451805758
1122 => 0.007000647649361
1123 => 0.006787321582974
1124 => 0.0069243114519475
1125 => 0.0068746370211561
1126 => 0.0066284260079638
1127 => 0.0066190225582655
1128 => 0.0064954825265812
1129 => 0.0063021662990591
1130 => 0.0062138155957147
1201 => 0.0061678017823169
1202 => 0.0061867879785162
1203 => 0.0061771879767307
1204 => 0.0061145414713886
1205 => 0.0061807788010855
1206 => 0.0060115697948642
1207 => 0.0059441894051773
1208 => 0.0059137552463689
1209 => 0.0057635725140405
1210 => 0.0060025800277392
1211 => 0.0060496675188751
1212 => 0.0060968477869147
1213 => 0.006507519808862
1214 => 0.0064870037951926
1215 => 0.0066724585670601
1216 => 0.0066652521356547
1217 => 0.00661235743055
1218 => 0.0063892033704699
1219 => 0.0064781486014792
1220 => 0.0062043890055904
1221 => 0.0064095083086733
1222 => 0.0063159004247332
1223 => 0.0063778593889521
1224 => 0.0062664515846719
1225 => 0.006328109263476
1226 => 0.0060608337098542
1227 => 0.0058112555585507
1228 => 0.0059116930922757
1229 => 0.0060208801778599
1230 => 0.0062576255997585
1231 => 0.006116621979583
]
'min_raw' => 0.0057635725140405
'max_raw' => 0.017204404320757
'avg_raw' => 0.011483988417399
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.005763'
'max' => '$0.0172044'
'avg' => '$0.011483'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.010918267485959
'max_diff' => 0.00052256432075715
'year' => 2026
]
1 => [
'items' => [
101 => 0.0061673322133353
102 => 0.0059974614190558
103 => 0.0056469694492635
104 => 0.0056489531957492
105 => 0.0055950376420793
106 => 0.0055484467319087
107 => 0.0061328179415499
108 => 0.0060601421440893
109 => 0.005944342772409
110 => 0.0060993448330871
111 => 0.0061403298381439
112 => 0.0061414966236198
113 => 0.0062545821259083
114 => 0.0063149358787514
115 => 0.0063255734892781
116 => 0.0065035159705032
117 => 0.0065631599430917
118 => 0.006808825025053
119 => 0.0063098152844909
120 => 0.0062995385072665
121 => 0.0061015260299504
122 => 0.0059759433863832
123 => 0.0061101247809961
124 => 0.0062289911790362
125 => 0.0061052195402763
126 => 0.0061213815033365
127 => 0.0059552281908157
128 => 0.0060146201818019
129 => 0.0060657765654044
130 => 0.0060375310172123
131 => 0.0059952460644689
201 => 0.0062192454899315
202 => 0.006206606564486
203 => 0.0064151999792014
204 => 0.0065778134626302
205 => 0.0068692458955717
206 => 0.0065651209590809
207 => 0.006554037437608
208 => 0.006662380637858
209 => 0.0065631433563122
210 => 0.0066258578926946
211 => 0.0068591416141976
212 => 0.0068640705316292
213 => 0.0067815048140971
214 => 0.0067764806826817
215 => 0.0067923383319038
216 => 0.0068852170787018
217 => 0.0068527623906949
218 => 0.0068903197773086
219 => 0.0069372858643681
220 => 0.0071315575136546
221 => 0.007178395750594
222 => 0.0070646031176728
223 => 0.0070748773183435
224 => 0.0070323157499534
225 => 0.0069912018081834
226 => 0.0070836199450733
227 => 0.0072525159067227
228 => 0.007251465213711
301 => 0.0072906457939453
302 => 0.0073150549708418
303 => 0.0072102729149924
304 => 0.0071420636495774
305 => 0.0071682194222059
306 => 0.0072100430722373
307 => 0.0071546565761857
308 => 0.0068127854650343
309 => 0.0069164873213465
310 => 0.0068992262616945
311 => 0.0068746444137334
312 => 0.006978917432158
313 => 0.0069688600451553
314 => 0.0066676022576485
315 => 0.0066868878037761
316 => 0.0066687750755842
317 => 0.0067273010058879
318 => 0.0065599827640101
319 => 0.0066114487283062
320 => 0.0066437276986492
321 => 0.00666274026016
322 => 0.0067314266693724
323 => 0.0067233671120269
324 => 0.0067309256759717
325 => 0.0068327694882939
326 => 0.007347860542444
327 => 0.007375895812037
328 => 0.0072378398911428
329 => 0.0072929905085074
330 => 0.0071871133832815
331 => 0.0072581894067608
401 => 0.00730681781689
402 => 0.0070870753822215
403 => 0.007074063661357
404 => 0.0069677495435728
405 => 0.0070248767285306
406 => 0.0069339832696727
407 => 0.0069562853451582
408 => 0.0068939267978408
409 => 0.0070061597675493
410 => 0.0071316536669237
411 => 0.00716335838181
412 => 0.0070799569266822
413 => 0.007019568776746
414 => 0.0069135470785512
415 => 0.0070898635254968
416 => 0.00714142382773
417 => 0.007089592701179
418 => 0.0070775822966247
419 => 0.0070548226016965
420 => 0.0070824108734957
421 => 0.0071411430192509
422 => 0.0071134460239252
423 => 0.0071317403772961
424 => 0.0070620211673015
425 => 0.0072103076022129
426 => 0.0074458221479261
427 => 0.007446579365701
428 => 0.0074188822210782
429 => 0.0074075491462418
430 => 0.0074359680974282
501 => 0.0074513842126403
502 => 0.0075432858896325
503 => 0.0076419000505694
504 => 0.0081020893109326
505 => 0.0079728700080997
506 => 0.0083811772966756
507 => 0.0087040953498733
508 => 0.0088009243545322
509 => 0.0087118462264027
510 => 0.0084071147619777
511 => 0.0083921631825348
512 => 0.0088475606446914
513 => 0.0087188900031071
514 => 0.0087035850397172
515 => 0.0085407660873926
516 => 0.008637012253736
517 => 0.0086159618053106
518 => 0.008582732642648
519 => 0.0087663636234651
520 => 0.0091101044267038
521 => 0.0090565291989382
522 => 0.0090165377766945
523 => 0.0088413070057505
524 => 0.0089468350690684
525 => 0.0089092585469778
526 => 0.0090707111325292
527 => 0.0089750701974612
528 => 0.008717915196446
529 => 0.0087588679779516
530 => 0.0087526780474126
531 => 0.0088800663792824
601 => 0.0088418275640278
602 => 0.0087452113050231
603 => 0.0091089295580078
604 => 0.0090853117177662
605 => 0.0091187964154388
606 => 0.009133537414903
607 => 0.0093549263060602
608 => 0.009445622251113
609 => 0.009466211818496
610 => 0.00955236595162
611 => 0.0094640682251792
612 => 0.0098173220861542
613 => 0.010052215290768
614 => 0.010325055835421
615 => 0.010723749203784
616 => 0.010873661598409
617 => 0.010846581266134
618 => 0.011148866027802
619 => 0.011692065025107
620 => 0.010956377314143
621 => 0.011731058260177
622 => 0.011485803216784
623 => 0.01090430792085
624 => 0.010866866479171
625 => 0.011260661844877
626 => 0.012134062064614
627 => 0.011915285215593
628 => 0.012134419905165
629 => 0.011878787649755
630 => 0.011866093353636
701 => 0.012122004417101
702 => 0.012719954565872
703 => 0.012435890864017
704 => 0.012028615892131
705 => 0.012329341393471
706 => 0.012068825133379
707 => 0.011481809085481
708 => 0.01191511792106
709 => 0.011625376642633
710 => 0.011709938551172
711 => 0.012318931622662
712 => 0.012245655965105
713 => 0.012340481451127
714 => 0.012173116950312
715 => 0.012016772115592
716 => 0.011724942871266
717 => 0.011638546619029
718 => 0.011662423434936
719 => 0.011638534786865
720 => 0.011475259006714
721 => 0.011439999617536
722 => 0.011381232424157
723 => 0.011399446834716
724 => 0.011288947318214
725 => 0.011497482736218
726 => 0.011536188747408
727 => 0.01168794343422
728 => 0.011703699109232
729 => 0.012126333751913
730 => 0.011893553692811
731 => 0.01204972265372
801 => 0.012035753431937
802 => 0.01091691068716
803 => 0.011071077345757
804 => 0.011310912286372
805 => 0.011202866970714
806 => 0.011050116173083
807 => 0.010926761714017
808 => 0.01073986709489
809 => 0.011002917682318
810 => 0.011348801232473
811 => 0.011712471286859
812 => 0.012149397028597
813 => 0.012051880289417
814 => 0.011704303264036
815 => 0.01171989531549
816 => 0.011816279242329
817 => 0.011691453299669
818 => 0.011654639692287
819 => 0.011811221617986
820 => 0.011812299911652
821 => 0.011668672578903
822 => 0.011509057082077
823 => 0.011508388287317
824 => 0.01147998625136
825 => 0.011883840308857
826 => 0.012105919206229
827 => 0.012131380193915
828 => 0.012104205478896
829 => 0.012114663948181
830 => 0.011985441130974
831 => 0.012280806171272
901 => 0.012551862340825
902 => 0.012479213497114
903 => 0.012370302552751
904 => 0.012283549739703
905 => 0.012458777291404
906 => 0.012450974684361
907 => 0.012549494901648
908 => 0.012545025455512
909 => 0.012511896811971
910 => 0.012479214680243
911 => 0.012608795638324
912 => 0.012571478403403
913 => 0.012534103204509
914 => 0.01245914152127
915 => 0.012469330059004
916 => 0.012360437919651
917 => 0.01231005943342
918 => 0.011552487875407
919 => 0.011350040000741
920 => 0.011413734223317
921 => 0.011434704015209
922 => 0.011346598440711
923 => 0.011472919202077
924 => 0.011453232245224
925 => 0.011529822677851
926 => 0.011481972300716
927 => 0.011483936096885
928 => 0.011624653853263
929 => 0.011665504816596
930 => 0.011644727686937
1001 => 0.011659279276352
1002 => 0.011994614512572
1003 => 0.011946940565399
1004 => 0.01192161473114
1005 => 0.01192863016031
1006 => 0.012014315502832
1007 => 0.012038302720492
1008 => 0.011936667193715
1009 => 0.011984599095691
1010 => 0.012188687050842
1011 => 0.012260106284768
1012 => 0.012488042196279
1013 => 0.012391210969831
1014 => 0.012568948876734
1015 => 0.013115254607235
1016 => 0.01355168142624
1017 => 0.013150325287382
1018 => 0.013951767561865
1019 => 0.014575805332616
1020 => 0.014551853723586
1021 => 0.014443038304001
1022 => 0.013732587892904
1023 => 0.013078820832393
1024 => 0.013625724738926
1025 => 0.013627118909455
1026 => 0.013580139378859
1027 => 0.013288353549127
1028 => 0.013569985864467
1029 => 0.01359234081492
1030 => 0.013579827987327
1031 => 0.0133561164758
1101 => 0.013014550346495
1102 => 0.013081291550567
1103 => 0.013190615004321
1104 => 0.012983642899103
1105 => 0.012917502770604
1106 => 0.013040469853158
1107 => 0.013436695414358
1108 => 0.013361791267192
1109 => 0.013359835217198
1110 => 0.013680306923078
1111 => 0.01345091834379
1112 => 0.013082133370886
1113 => 0.012989010301551
1114 => 0.012658486140629
1115 => 0.012886780355864
1116 => 0.012894996258246
1117 => 0.012769961849672
1118 => 0.013092279224037
1119 => 0.01308930901269
1120 => 0.013395301389039
1121 => 0.013980243887132
1122 => 0.013807247607174
1123 => 0.013606071755524
1124 => 0.0136279451486
1125 => 0.013867842282505
1126 => 0.013722794999027
1127 => 0.013774955013471
1128 => 0.013867763332076
1129 => 0.013923756894991
1130 => 0.013619888536588
1201 => 0.013549042286541
1202 => 0.013404115722599
1203 => 0.013366307087249
1204 => 0.013484346749587
1205 => 0.013453247468964
1206 => 0.012894305743465
1207 => 0.012835893223228
1208 => 0.012837684651829
1209 => 0.012690803592329
1210 => 0.012466774721098
1211 => 0.013055509218625
1212 => 0.013008225599139
1213 => 0.012956028142689
1214 => 0.01296242203327
1215 => 0.013217971724582
1216 => 0.013069739998052
1217 => 0.013463838337735
1218 => 0.013382823566776
1219 => 0.01329973107264
1220 => 0.013288245158891
1221 => 0.013256261637767
1222 => 0.013146578243288
1223 => 0.013014128953505
1224 => 0.012926674459829
1225 => 0.011924173887766
1226 => 0.012110232162663
1227 => 0.012324275248187
1228 => 0.012398162063586
1229 => 0.012271773553034
1230 => 0.013151568832032
1231 => 0.013312315907423
]
'min_raw' => 0.0055484467319087
'max_raw' => 0.014575805332616
'avg_raw' => 0.010062126032263
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.005548'
'max' => '$0.014575'
'avg' => '$0.010062'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00021512578213182
'max_diff' => -0.0026285989881408
'year' => 2027
]
2 => [
'items' => [
101 => 0.012825402530791
102 => 0.012734320918565
103 => 0.013157540127366
104 => 0.012902287208015
105 => 0.013017227581969
106 => 0.012768789362503
107 => 0.013273596644185
108 => 0.013269750858482
109 => 0.013073369424318
110 => 0.013239349667711
111 => 0.013210506515849
112 => 0.012988792360344
113 => 0.013280625378379
114 => 0.013280770123915
115 => 0.013091757263233
116 => 0.012871031622192
117 => 0.012831571090881
118 => 0.012801842881314
119 => 0.013009916264788
120 => 0.013196474209783
121 => 0.013543612293781
122 => 0.013630891055895
123 => 0.013971545874904
124 => 0.013768702516366
125 => 0.013858620349945
126 => 0.013956238877949
127 => 0.014003040790076
128 => 0.013926779585793
129 => 0.014455956738832
130 => 0.014500635504118
131 => 0.014515615907648
201 => 0.014337180349025
202 => 0.014495672888445
203 => 0.014421519477972
204 => 0.014614446051612
205 => 0.014644699401769
206 => 0.01461907589048
207 => 0.014628678781337
208 => 0.014177119434465
209 => 0.014153703700164
210 => 0.013834428501471
211 => 0.013964535504902
212 => 0.013721306698179
213 => 0.013798437058325
214 => 0.013832435386152
215 => 0.013814676589083
216 => 0.013971891559665
217 => 0.013838226717774
218 => 0.01348546322349
219 => 0.013132603619028
220 => 0.013128173754127
221 => 0.013035272048762
222 => 0.012968121131578
223 => 0.012981056780535
224 => 0.01302664369468
225 => 0.012965471537256
226 => 0.012978525718549
227 => 0.013195312107576
228 => 0.013238787071846
229 => 0.013091042156493
301 => 0.012497825001861
302 => 0.012352248024141
303 => 0.012456885868809
304 => 0.012406875718598
305 => 0.010013317021856
306 => 0.010575648133498
307 => 0.010241530081921
308 => 0.01039550705212
309 => 0.01005445904091
310 => 0.010217225027717
311 => 0.010187168093216
312 => 0.011091379880148
313 => 0.011077261856798
314 => 0.011084019407466
315 => 0.010761463907349
316 => 0.011275303577372
317 => 0.011528439475903
318 => 0.011481590758079
319 => 0.011493381571039
320 => 0.011290776339548
321 => 0.01108598106898
322 => 0.010858831596154
323 => 0.011280847240141
324 => 0.011233926304577
325 => 0.011341546049141
326 => 0.011615253360568
327 => 0.011655557801889
328 => 0.011709727379751
329 => 0.01169031144214
330 => 0.012152877847034
331 => 0.01209685800329
401 => 0.012231849708704
402 => 0.011954161528822
403 => 0.011639930994881
404 => 0.011699655946413
405 => 0.011693903953303
406 => 0.011620674479179
407 => 0.011554566184251
408 => 0.011444514499092
409 => 0.011792734315519
410 => 0.011778597226896
411 => 0.012007460259133
412 => 0.011967006495128
413 => 0.011696846358389
414 => 0.011706495180525
415 => 0.011771388146454
416 => 0.01199598344247
417 => 0.012062658617941
418 => 0.012031772020116
419 => 0.012104878306183
420 => 0.012162658533907
421 => 0.012112134613185
422 => 0.012827446785085
423 => 0.012530399299921
424 => 0.012675178177347
425 => 0.012709707086526
426 => 0.012621262011728
427 => 0.012640442581471
428 => 0.012669495918239
429 => 0.01284590208987
430 => 0.013308842927765
501 => 0.013513876273524
502 => 0.014130729210406
503 => 0.01349685110836
504 => 0.013459239405033
505 => 0.01357035324614
506 => 0.013932511220605
507 => 0.01422600624314
508 => 0.014323375474249
509 => 0.01433624442553
510 => 0.014518915576075
511 => 0.014623619272952
512 => 0.01449673449367
513 => 0.01438921292862
514 => 0.014004084028677
515 => 0.014048663747516
516 => 0.014355773802741
517 => 0.014789584844438
518 => 0.01516183984856
519 => 0.015031489120513
520 => 0.016025973162238
521 => 0.016124572192872
522 => 0.016110948994927
523 => 0.016335572260214
524 => 0.015889740822351
525 => 0.015699139245088
526 => 0.014412460311405
527 => 0.014773964608818
528 => 0.015299432335511
529 => 0.015229884711481
530 => 0.014848276002564
531 => 0.015161550364135
601 => 0.015057972063204
602 => 0.014976275559793
603 => 0.015350543079567
604 => 0.014939020567513
605 => 0.015295327083655
606 => 0.014838360291184
607 => 0.015032084551659
608 => 0.014922117292025
609 => 0.014993279586089
610 => 0.014577266269078
611 => 0.014801736956784
612 => 0.014567927550478
613 => 0.014567816694376
614 => 0.014562655338773
615 => 0.014837731068423
616 => 0.014846701278092
617 => 0.014643419898264
618 => 0.014614123875579
619 => 0.014722446626113
620 => 0.014595629055011
621 => 0.014654966198349
622 => 0.014597426316635
623 => 0.014584472877286
624 => 0.014481257668705
625 => 0.014436789718887
626 => 0.014454226747808
627 => 0.014394705178695
628 => 0.014358841280315
629 => 0.014555521106704
630 => 0.014450443009506
701 => 0.014539416381276
702 => 0.014438019994809
703 => 0.014086535943011
704 => 0.013884393747945
705 => 0.013220472956686
706 => 0.013408760069496
707 => 0.013533594620086
708 => 0.013492336801861
709 => 0.013580974560065
710 => 0.013586416198532
711 => 0.013557599159785
712 => 0.013524232720607
713 => 0.013507991783295
714 => 0.013629038424068
715 => 0.01369931007328
716 => 0.013546123437308
717 => 0.013510233951809
718 => 0.013665114098442
719 => 0.013759590898417
720 => 0.014457154507504
721 => 0.014405476742242
722 => 0.0145351777918
723 => 0.014520575444044
724 => 0.014656522806979
725 => 0.014878739289734
726 => 0.014426911047587
727 => 0.014505332807378
728 => 0.0144861056029
729 => 0.014696023179748
730 => 0.014696678519509
731 => 0.014570822446029
801 => 0.014639051065244
802 => 0.014600967721752
803 => 0.014669789470715
804 => 0.01440478655418
805 => 0.014727531501222
806 => 0.01491050708897
807 => 0.014913047705183
808 => 0.014999776681592
809 => 0.015087898344626
810 => 0.015257040203041
811 => 0.015083181069997
812 => 0.014770425414495
813 => 0.014793005362628
814 => 0.01460963683624
815 => 0.014612719294296
816 => 0.014596264891613
817 => 0.014645645792696
818 => 0.014415622885039
819 => 0.014469608801703
820 => 0.014394028202232
821 => 0.014505168509916
822 => 0.014385599911
823 => 0.01448609633096
824 => 0.014529467254306
825 => 0.014689506895162
826 => 0.014361961925921
827 => 0.013694075560794
828 => 0.013834473372083
829 => 0.013626813981176
830 => 0.01364603364842
831 => 0.013684860435039
901 => 0.013559010116272
902 => 0.013583018391093
903 => 0.013582160646573
904 => 0.013574769067689
905 => 0.013542030539207
906 => 0.013494553195789
907 => 0.013683688319212
908 => 0.013715826062221
909 => 0.013787264283906
910 => 0.013999815974633
911 => 0.013978577048416
912 => 0.014013218618271
913 => 0.013937596265781
914 => 0.013649541552461
915 => 0.013665184309268
916 => 0.013470118881235
917 => 0.013782276022345
918 => 0.013708353091057
919 => 0.013660694496359
920 => 0.013647690407242
921 => 0.013860768972498
922 => 0.01392452541882
923 => 0.013884796680008
924 => 0.013803311877632
925 => 0.013959786787013
926 => 0.014001652871617
927 => 0.014011025143998
928 => 0.014288268682332
929 => 0.014026519977999
930 => 0.014089525492691
1001 => 0.014581076532595
1002 => 0.014135307568808
1003 => 0.01437144133076
1004 => 0.014359883811894
1005 => 0.014480681854177
1006 => 0.014349974846596
1007 => 0.014351595116606
1008 => 0.014458855594585
1009 => 0.014308227597792
1010 => 0.0142709299875
1011 => 0.014219403606011
1012 => 0.014331909574936
1013 => 0.014399351815099
1014 => 0.014942886739947
1015 => 0.015294035089603
1016 => 0.015278790813656
1017 => 0.015418094959718
1018 => 0.015355337166038
1019 => 0.015152675695574
1020 => 0.015498594113722
1021 => 0.015389131052379
1022 => 0.015398155054158
1023 => 0.015397819180361
1024 => 0.015470602546728
1025 => 0.015419028861159
1026 => 0.015317371832974
1027 => 0.015384856512418
1028 => 0.015585261884153
1029 => 0.016207326307206
1030 => 0.016555441799604
1031 => 0.016186369317457
1101 => 0.016440950573565
1102 => 0.016288292536477
1103 => 0.016260550029955
1104 => 0.016420445872197
1105 => 0.016580621590945
1106 => 0.016570419090119
1107 => 0.016454139743423
1108 => 0.016388456490953
1109 => 0.016885832084158
1110 => 0.017252289948659
1111 => 0.017227299979065
1112 => 0.01733759757768
1113 => 0.017661434738592
1114 => 0.017691042350127
1115 => 0.017687312471596
1116 => 0.017613926917174
1117 => 0.017932786657661
1118 => 0.018198785062979
1119 => 0.017596940281637
1120 => 0.017826114895645
1121 => 0.017928998763419
1122 => 0.018080062805578
1123 => 0.018334933165973
1124 => 0.018611789978387
1125 => 0.018650940567242
1126 => 0.018623161350921
1127 => 0.018440566840824
1128 => 0.018743506868555
1129 => 0.018920962031983
1130 => 0.019026632520815
1201 => 0.019294595298599
1202 => 0.01792963413916
1203 => 0.016963446787538
1204 => 0.016812562680667
1205 => 0.017119391445213
1206 => 0.01720029974351
1207 => 0.017167685709916
1208 => 0.016080154003754
1209 => 0.016806837051304
1210 => 0.017588686909222
1211 => 0.017618720946448
1212 => 0.018010131333031
1213 => 0.018137590599356
1214 => 0.018452727263888
1215 => 0.018433015379719
1216 => 0.018509746142613
1217 => 0.018492107069015
1218 => 0.019075831380206
1219 => 0.019719765979348
1220 => 0.019697468571767
1221 => 0.019604895354451
1222 => 0.019742382368244
1223 => 0.020406991882784
1224 => 0.020345805288836
1225 => 0.020405242852995
1226 => 0.021188854926389
1227 => 0.022207662089319
1228 => 0.021734323875571
1229 => 0.022761331600001
1230 => 0.02340777852319
1231 => 0.024525741632986
]
'min_raw' => 0.010013317021856
'max_raw' => 0.024525741632986
'avg_raw' => 0.017269529327421
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.010013'
'max' => '$0.024525'
'avg' => '$0.017269'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0044648702899478
'max_diff' => 0.0099499363003694
'year' => 2028
]
3 => [
'items' => [
101 => 0.024385767145555
102 => 0.024820981980206
103 => 0.024135183599497
104 => 0.022560451894668
105 => 0.022311244574548
106 => 0.022810163940363
107 => 0.024036708517378
108 => 0.022771535686731
109 => 0.023027478502606
110 => 0.022953766954416
111 => 0.022949839179267
112 => 0.023099746381294
113 => 0.02288229816612
114 => 0.021996375019314
115 => 0.022402388376717
116 => 0.022245607121061
117 => 0.022419567613028
118 => 0.023358360641412
119 => 0.022943297865533
120 => 0.022506062948106
121 => 0.023054452564755
122 => 0.023752740993866
123 => 0.023709043358917
124 => 0.023624251682922
125 => 0.024102217920959
126 => 0.024891678115228
127 => 0.025105066033431
128 => 0.025262584632125
129 => 0.025284303785586
130 => 0.025508024564616
131 => 0.024305021550876
201 => 0.02621421822899
202 => 0.026543883754807
203 => 0.026481920299189
204 => 0.026848329656688
205 => 0.026740522728804
206 => 0.026584327404688
207 => 0.027165164173829
208 => 0.026499281689119
209 => 0.025554145334347
210 => 0.025035624837441
211 => 0.025718454455622
212 => 0.026135434675975
213 => 0.026411032076705
214 => 0.026494427683646
215 => 0.024398407250322
216 => 0.023268768487383
217 => 0.023992853983092
218 => 0.024876288261569
219 => 0.024300114028853
220 => 0.024322698967934
221 => 0.023501225928006
222 => 0.024948970397768
223 => 0.024738046205971
224 => 0.025832321286131
225 => 0.025571163756145
226 => 0.026463502604501
227 => 0.026228519880197
228 => 0.027203920031075
301 => 0.027593033559165
302 => 0.028246415733512
303 => 0.028727046320706
304 => 0.029009281794505
305 => 0.028992337435297
306 => 0.030110694991641
307 => 0.029451238613102
308 => 0.028622805979721
309 => 0.028607822247055
310 => 0.029036879246864
311 => 0.029936065012423
312 => 0.030169210798812
313 => 0.03029950748707
314 => 0.030099953573343
315 => 0.029384160938103
316 => 0.029075085307357
317 => 0.029338426699536
318 => 0.029016382806085
319 => 0.029572320915738
320 => 0.030335742682263
321 => 0.030178099106372
322 => 0.030705077945329
323 => 0.031250445603858
324 => 0.03203034584955
325 => 0.032234240653396
326 => 0.032571271010729
327 => 0.032918185957129
328 => 0.033029605688293
329 => 0.033242340526597
330 => 0.03324121930899
331 => 0.033882310062925
401 => 0.034589453017444
402 => 0.034856383112378
403 => 0.035470174147066
404 => 0.034419078509965
405 => 0.035216346624823
406 => 0.03593550242134
407 => 0.035078095233419
408 => 0.036259831291715
409 => 0.036305715424987
410 => 0.036998511361244
411 => 0.036296229956205
412 => 0.035879217499655
413 => 0.037083116836463
414 => 0.03766564580307
415 => 0.03749018333755
416 => 0.036154905311292
417 => 0.035377716227241
418 => 0.033343662485701
419 => 0.035753087007137
420 => 0.036926647407652
421 => 0.036151866073366
422 => 0.036542620712041
423 => 0.038674451318036
424 => 0.039486114386989
425 => 0.0393172941426
426 => 0.039345821984884
427 => 0.039783780644165
428 => 0.041725930527653
429 => 0.040562149298785
430 => 0.041451816442203
501 => 0.041923692687139
502 => 0.042361997641384
503 => 0.041285659201462
504 => 0.039885358705674
505 => 0.039441824758042
506 => 0.036074829338942
507 => 0.035899562605258
508 => 0.035801180076515
509 => 0.035180892149279
510 => 0.034693515749634
511 => 0.034305935941511
512 => 0.033288810783867
513 => 0.03363206066655
514 => 0.032010975455785
515 => 0.0330480883259
516 => 0.030460797187047
517 => 0.032615570129255
518 => 0.031442825182315
519 => 0.032230291873311
520 => 0.03222754447621
521 => 0.030777568631545
522 => 0.029941252824565
523 => 0.030474185806671
524 => 0.03104553226776
525 => 0.031138231308832
526 => 0.031878996909303
527 => 0.032085728665691
528 => 0.031459321792452
529 => 0.030407181328999
530 => 0.03065156956189
531 => 0.029936300304826
601 => 0.028682818444257
602 => 0.029583091000211
603 => 0.029890483633004
604 => 0.030026245731418
605 => 0.028793590284912
606 => 0.028406263181368
607 => 0.028200053481431
608 => 0.030248060989879
609 => 0.030360255464307
610 => 0.029786252670432
611 => 0.032380799727927
612 => 0.031793573821243
613 => 0.03244964903285
614 => 0.030629393891311
615 => 0.030698930089017
616 => 0.02983719213413
617 => 0.030319707807515
618 => 0.029978681281772
619 => 0.030280725309419
620 => 0.030461769254216
621 => 0.031323365806384
622 => 0.032625408177879
623 => 0.031194672013203
624 => 0.030571279777734
625 => 0.030958028814528
626 => 0.031987992464702
627 => 0.033548440117585
628 => 0.032624623700142
629 => 0.033034597738783
630 => 0.033124158827751
701 => 0.032442970803071
702 => 0.033573556491691
703 => 0.034179446547084
704 => 0.034800964372636
705 => 0.035340610886029
706 => 0.034552716485641
707 => 0.035395876434282
708 => 0.034716438353444
709 => 0.034106912155915
710 => 0.034107836555555
711 => 0.033725471868088
712 => 0.032984592105069
713 => 0.032847962509634
714 => 0.033558726919505
715 => 0.034128692666582
716 => 0.034175637775463
717 => 0.034491200098942
718 => 0.034677946631426
719 => 0.036508316519374
720 => 0.037244506429921
721 => 0.038144705517176
722 => 0.038495383794102
723 => 0.03955079968253
724 => 0.038698465635937
725 => 0.038514057803524
726 => 0.035953964082104
727 => 0.036373179285568
728 => 0.037044383274563
729 => 0.035965031988663
730 => 0.036649631947147
731 => 0.036784786480762
801 => 0.035928356044987
802 => 0.036385812544909
803 => 0.035170943707516
804 => 0.032651888998681
805 => 0.033576360919692
806 => 0.03425708342744
807 => 0.033285608476404
808 => 0.035026939724864
809 => 0.034009689957887
810 => 0.033687270618355
811 => 0.032429397824048
812 => 0.033023065362997
813 => 0.033826009209926
814 => 0.033329883264765
815 => 0.034359419094659
816 => 0.035817516396965
817 => 0.036856643365783
818 => 0.036936414631558
819 => 0.036268325606708
820 => 0.037338942532718
821 => 0.037346740808205
822 => 0.036139080542067
823 => 0.035399395353338
824 => 0.035231337322148
825 => 0.035651179233779
826 => 0.036160944821591
827 => 0.036964703073894
828 => 0.037450397352216
829 => 0.038716830437739
830 => 0.0390594909192
831 => 0.039435970900158
901 => 0.039939064256845
902 => 0.040543156822037
903 => 0.039221436680407
904 => 0.039273951085628
905 => 0.038043183590203
906 => 0.036727932011428
907 => 0.037726044011294
908 => 0.039030942677844
909 => 0.038731597481953
910 => 0.038697915032348
911 => 0.038754559569851
912 => 0.038528863067849
913 => 0.037508046153997
914 => 0.036995398290512
915 => 0.037656844824826
916 => 0.038008374220215
917 => 0.038553565655879
918 => 0.038486359303838
919 => 0.039890713892823
920 => 0.040436403620624
921 => 0.040296792836873
922 => 0.040322484581004
923 => 0.041310429767649
924 => 0.042409228001623
925 => 0.043438397546937
926 => 0.04448531301229
927 => 0.043223215557
928 => 0.042582400304554
929 => 0.043243558072002
930 => 0.042892738454125
1001 => 0.044908652038308
1002 => 0.045048229521011
1003 => 0.047063997331697
1004 => 0.048977201017203
1005 => 0.047775552060941
1006 => 0.048908652903238
1007 => 0.05013419384725
1008 => 0.052498461165102
1009 => 0.051702259108377
1010 => 0.051092380811002
1011 => 0.050516048766893
1012 => 0.051715304260548
1013 => 0.05325812729456
1014 => 0.053590436599111
1015 => 0.054128904624408
1016 => 0.053562771336545
1017 => 0.05424461652424
1018 => 0.056651829654757
1019 => 0.056001379417833
1020 => 0.055077635516308
1021 => 0.056977899091645
1022 => 0.057665597092472
1023 => 0.062492221812514
1024 => 0.06858603489949
1025 => 0.066063156267348
1026 => 0.064497124087593
1027 => 0.064865178796615
1028 => 0.067090433047388
1029 => 0.067805114086696
1030 => 0.065862364656528
1031 => 0.066548576598676
1101 => 0.07032967186678
1102 => 0.072358108166058
1103 => 0.069603219216298
1104 => 0.06200258986439
1105 => 0.054994462484877
1106 => 0.056853333446012
1107 => 0.056642595166501
1108 => 0.060704910330839
1109 => 0.055985866394801
1110 => 0.056065322992021
1111 => 0.06021164253189
1112 => 0.059105475564566
1113 => 0.057313626744661
1114 => 0.055007544964241
1115 => 0.050744539506386
1116 => 0.046968676689662
1117 => 0.054374013202531
1118 => 0.054054681626365
1119 => 0.05359224218179
1120 => 0.054621351124519
1121 => 0.059618412032744
1122 => 0.059503213604901
1123 => 0.058770379981723
1124 => 0.059326227826005
1125 => 0.057216183930074
1126 => 0.057759990286862
1127 => 0.054993352361694
1128 => 0.056243988248876
1129 => 0.057309782241854
1130 => 0.057523756165294
1201 => 0.058005850340584
1202 => 0.053886408396265
1203 => 0.055735916888803
1204 => 0.056822329852659
1205 => 0.051913876557916
1206 => 0.056725305512903
1207 => 0.053814698076946
1208 => 0.052826794197325
1209 => 0.054156876624795
1210 => 0.053638542209262
1211 => 0.053192908716406
1212 => 0.052944237570436
1213 => 0.053920903309329
1214 => 0.053875340685242
1215 => 0.052277325973762
1216 => 0.050192780926049
1217 => 0.05089242266692
1218 => 0.050638236263285
1219 => 0.049717031945814
1220 => 0.050337812429156
1221 => 0.04760420935033
1222 => 0.042901187333534
1223 => 0.046008147735289
1224 => 0.045888533139544
1225 => 0.04582821803628
1226 => 0.048163012908121
1227 => 0.047938576254076
1228 => 0.047531221529294
1229 => 0.049709550556842
1230 => 0.048914431159127
1231 => 0.051364801789193
]
'min_raw' => 0.021996375019314
'max_raw' => 0.072358108166058
'avg_raw' => 0.047177241592686
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.021996'
'max' => '$0.072358'
'avg' => '$0.047177'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.011983057997457
'max_diff' => 0.047832366533073
'year' => 2029
]
4 => [
'items' => [
101 => 0.05297877436619
102 => 0.05256941871412
103 => 0.054087367723792
104 => 0.050908540999552
105 => 0.051964419724953
106 => 0.052182034866873
107 => 0.049682670314775
108 => 0.047975296866333
109 => 0.047861434522804
110 => 0.04490108425376
111 => 0.046482479472371
112 => 0.047874041822168
113 => 0.047207591446216
114 => 0.046996613166828
115 => 0.048074455440614
116 => 0.048158213016382
117 => 0.046248531412642
118 => 0.046645614689811
119 => 0.048301517965208
120 => 0.046603890175881
121 => 0.043305676687144
122 => 0.042487674140568
123 => 0.042378537522077
124 => 0.040160049739163
125 => 0.042542336982162
126 => 0.041502404759264
127 => 0.044787538191097
128 => 0.042911087593358
129 => 0.042830197558504
130 => 0.042707920406834
131 => 0.040798376327504
201 => 0.04121644512302
202 => 0.042606169472991
203 => 0.043102038777426
204 => 0.043050315546436
205 => 0.042599359065515
206 => 0.04280580463321
207 => 0.04214077152926
208 => 0.041905934498789
209 => 0.041164724233606
210 => 0.040075349908349
211 => 0.040226834089797
212 => 0.038068498501166
213 => 0.036892522720941
214 => 0.036567028124086
215 => 0.036131763145816
216 => 0.036616192461577
217 => 0.038062384207624
218 => 0.036317970135197
219 => 0.03332729456444
220 => 0.033507039262106
221 => 0.033910872231081
222 => 0.033158332165019
223 => 0.032446116148391
224 => 0.033065330190937
225 => 0.031798141526228
226 => 0.034064005927146
227 => 0.034002720645113
228 => 0.03484729477366
301 => 0.035375424308647
302 => 0.03415825671447
303 => 0.033852142356106
304 => 0.034026519006752
305 => 0.031144461400359
306 => 0.034611769180369
307 => 0.034641754602034
308 => 0.034385001217064
309 => 0.036231235568802
310 => 0.040127365905904
311 => 0.038661484951606
312 => 0.038093851539616
313 => 0.037014780008485
314 => 0.038452578754789
315 => 0.038342178244228
316 => 0.037842905267317
317 => 0.037540943413055
318 => 0.038097317388189
319 => 0.037472002520418
320 => 0.037359678787663
321 => 0.036679119176594
322 => 0.036436190358932
323 => 0.036256335533609
324 => 0.0360583330431
325 => 0.036495077198018
326 => 0.035505357484495
327 => 0.034311852533407
328 => 0.034212625510626
329 => 0.034486600044652
330 => 0.034365386708351
331 => 0.034212045187806
401 => 0.033919274465008
402 => 0.03383241564561
403 => 0.034114664670744
404 => 0.033796021977509
405 => 0.034266196628743
406 => 0.034138335139557
407 => 0.033424111254778
408 => 0.032533923854793
409 => 0.032525999319702
410 => 0.032334209904575
411 => 0.032089937248679
412 => 0.03202198618401
413 => 0.033013181711402
414 => 0.035064926789116
415 => 0.034662120136262
416 => 0.034953189224236
417 => 0.036384961055399
418 => 0.036840078265645
419 => 0.036517046849855
420 => 0.03607486152421
421 => 0.03609431543441
422 => 0.037605396550737
423 => 0.037699640826433
424 => 0.037937765706759
425 => 0.038243823472063
426 => 0.036569169810717
427 => 0.03601543939756
428 => 0.035753051208013
429 => 0.034944997141215
430 => 0.035816414174936
501 => 0.035308676787185
502 => 0.035377187907571
503 => 0.035332569950542
504 => 0.035356934372133
505 => 0.034063372571867
506 => 0.034534678504278
507 => 0.033751040980357
508 => 0.032701838303267
509 => 0.032698321007995
510 => 0.032955111876809
511 => 0.032802362619811
512 => 0.032391318296772
513 => 0.032449705202785
514 => 0.03193817446852
515 => 0.032511814295488
516 => 0.032528264233143
517 => 0.032307381653388
518 => 0.033191152953874
519 => 0.033553234776771
520 => 0.033407845131013
521 => 0.033543033851646
522 => 0.034678858571252
523 => 0.034864047560054
524 => 0.034946296275982
525 => 0.034836093892505
526 => 0.033563794642457
527 => 0.033620226524431
528 => 0.033206166817649
529 => 0.032856329997956
530 => 0.032870321636091
531 => 0.033050183237017
601 => 0.033835649397003
602 => 0.035488616624934
603 => 0.035551345522931
604 => 0.035627374777234
605 => 0.035318125590742
606 => 0.03522485307698
607 => 0.03534790359831
608 => 0.035968671180233
609 => 0.037565453937694
610 => 0.037001044265673
611 => 0.03654217041676
612 => 0.036944726493758
613 => 0.036882756141043
614 => 0.036359663999369
615 => 0.036344982545165
616 => 0.035341001482619
617 => 0.034969852543339
618 => 0.034659692709659
619 => 0.034321006268209
620 => 0.034120221592845
621 => 0.034428718109207
622 => 0.034499274912523
623 => 0.0338247418879
624 => 0.03373280552913
625 => 0.034283643757843
626 => 0.034041240390705
627 => 0.03429055826512
628 => 0.034348402150594
629 => 0.034339087952775
630 => 0.034085990997634
701 => 0.034247307449381
702 => 0.03386574595025
703 => 0.03345085512863
704 => 0.033186180633047
705 => 0.032955217031674
706 => 0.033083369061399
707 => 0.032626530475066
708 => 0.032480378616954
709 => 0.034192657065264
710 => 0.035457535565126
711 => 0.035439143730792
712 => 0.035327188169274
713 => 0.035160844914215
714 => 0.035956502135038
715 => 0.035679311068971
716 => 0.035880990729623
717 => 0.035932326667728
718 => 0.036087705090975
719 => 0.036143239522059
720 => 0.035975375900181
721 => 0.035412005082341
722 => 0.034008138567975
723 => 0.033354634915872
724 => 0.033138967825714
725 => 0.033146806914831
726 => 0.032930569841746
727 => 0.032994261350835
728 => 0.032908420534118
729 => 0.032745858794378
730 => 0.033073331332058
731 => 0.033111069491407
801 => 0.033034633488108
802 => 0.033052636933908
803 => 0.03241977947283
804 => 0.032467894251101
805 => 0.032199985051554
806 => 0.032149755306333
807 => 0.031472504179401
808 => 0.03027265563892
809 => 0.030937488202462
810 => 0.030134463955308
811 => 0.029830346505108
812 => 0.031269991214389
813 => 0.031125490815105
814 => 0.030878168944346
815 => 0.030512328351099
816 => 0.030376634516395
817 => 0.029552201732183
818 => 0.029503489845114
819 => 0.029912100994527
820 => 0.029723541008524
821 => 0.029458731374924
822 => 0.028499617725349
823 => 0.02742125643161
824 => 0.027453805380731
825 => 0.027796812044644
826 => 0.028794150180723
827 => 0.028404472916832
828 => 0.028121757590848
829 => 0.028068813508682
830 => 0.028731519542925
831 => 0.029669387422586
901 => 0.030109414048111
902 => 0.029673361026023
903 => 0.029172446793009
904 => 0.02920293512136
905 => 0.029405760310864
906 => 0.029427074370487
907 => 0.02910103069961
908 => 0.02919281008315
909 => 0.02905338880707
910 => 0.028197760693119
911 => 0.028182285093764
912 => 0.027972300155733
913 => 0.027965941895263
914 => 0.027608705132475
915 => 0.027558725239899
916 => 0.026849409964662
917 => 0.027316283426828
918 => 0.027003129220364
919 => 0.026531131965613
920 => 0.026449759460988
921 => 0.026447313305239
922 => 0.026931948949213
923 => 0.027310620177159
924 => 0.027008576671858
925 => 0.026939807220569
926 => 0.027674085044786
927 => 0.027580641498564
928 => 0.027499719990181
929 => 0.029585411640587
930 => 0.027934423950742
1001 => 0.027214499082886
1002 => 0.026323455348891
1003 => 0.026613583681712
1004 => 0.02667471798431
1005 => 0.024531918426756
1006 => 0.023662584913125
1007 => 0.023364262411389
1008 => 0.023192573593979
1009 => 0.023270814344006
1010 => 0.022488312219087
1011 => 0.023014166588423
1012 => 0.022336585891501
1013 => 0.022222987282624
1014 => 0.023434585504861
1015 => 0.023603172319431
1016 => 0.022883928592657
1017 => 0.023345799500228
1018 => 0.023178318688657
1019 => 0.022348201067775
1020 => 0.02231649668059
1021 => 0.021899972838476
1022 => 0.021248193680478
1023 => 0.020950313115703
1024 => 0.020795174331251
1025 => 0.02085918761731
1026 => 0.02082682054104
1027 => 0.02061560347444
1028 => 0.020838927256055
1029 => 0.020268427277785
1030 => 0.020041249589607
1031 => 0.019938638698339
1101 => 0.01943228713087
1102 => 0.020238117650277
1103 => 0.020396876414186
1104 => 0.020555947981902
1105 => 0.021940557376102
1106 => 0.021871386203634
1107 => 0.022496659915024
1108 => 0.022472362928404
1109 => 0.022294024737153
1110 => 0.021541645243473
1111 => 0.021841530299779
1112 => 0.020918530708955
1113 => 0.021610104760272
1114 => 0.021294499244074
1115 => 0.021503398217775
1116 => 0.0211277790274
1117 => 0.021335662196289
1118 => 0.02043452400667
1119 => 0.01959305384456
1120 => 0.019931686001839
1121 => 0.020299817884085
1122 => 0.021098021603054
1123 => 0.020622618053073
1124 => 0.020793591146645
1125 => 0.020220859903731
1126 => 0.019039151757009
1127 => 0.019045840096786
1128 => 0.018864060043324
1129 => 0.018706975536811
1130 => 0.020677223869611
1201 => 0.02043219234441
1202 => 0.020041766677936
1203 => 0.020564366947411
1204 => 0.020702550753441
1205 => 0.020706484652136
1206 => 0.021087760318479
1207 => 0.021291247209954
1208 => 0.021327112656539
1209 => 0.021927058155537
1210 => 0.022128151973328
1211 => 0.022956428948949
1212 => 0.021273982768896
1213 => 0.021239333896982
1214 => 0.020571721004922
1215 => 0.020148310354234
1216 => 0.020600712294418
1217 => 0.021001478654397
1218 => 0.020584173932858
1219 => 0.020638665119708
1220 => 0.02007846762609
1221 => 0.020278711870316
1222 => 0.020451189189257
1223 => 0.020355957351486
1224 => 0.02021339068107
1225 => 0.020968620383158
1226 => 0.020926007363597
1227 => 0.021629294624837
1228 => 0.022177557337528
1229 => 0.023160142132353
1230 => 0.022134763675649
1231 => 0.022097394809177
]
'min_raw' => 0.018706975536811
'max_raw' => 0.054087367723792
'avg_raw' => 0.036397171630301
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.0187069'
'max' => '$0.054087'
'avg' => '$0.036397'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0032893994825032
'max_diff' => -0.018270740442266
'year' => 2030
]
5 => [
'items' => [
101 => 0.0224626814731
102 => 0.022128096049843
103 => 0.022339542487845
104 => 0.023126074842242
105 => 0.023142693031489
106 => 0.022864316950275
107 => 0.022847377740434
108 => 0.022900842911932
109 => 0.023213990091349
110 => 0.023104566844819
111 => 0.023231194195961
112 => 0.023389543637549
113 => 0.024044544066732
114 => 0.024202462452714
115 => 0.023818802646073
116 => 0.023853442830956
117 => 0.023709943531575
118 => 0.023571325006413
119 => 0.023882919207366
120 => 0.024452363734006
121 => 0.02444882124916
122 => 0.024580921310921
123 => 0.024663218555022
124 => 0.024309938538076
125 => 0.024079966237511
126 => 0.024168152251065
127 => 0.02430916360718
128 => 0.024122424168781
129 => 0.022969781848855
130 => 0.023319419897644
131 => 0.023261223029898
201 => 0.023178343613248
202 => 0.023529907374976
203 => 0.023495998192512
204 => 0.022480286528786
205 => 0.022545309094029
206 => 0.02248424076634
207 => 0.022681565026508
208 => 0.022117439892231
209 => 0.022290960984094
210 => 0.022399791786251
211 => 0.022463893964799
212 => 0.022695474988991
213 => 0.0226683016287
214 => 0.022693785854762
215 => 0.023037159378515
216 => 0.024773824830091
217 => 0.024868347698883
218 => 0.024402882522832
219 => 0.02458882667977
220 => 0.024231854559966
221 => 0.024471492335496
222 => 0.024635446415374
223 => 0.023894569454962
224 => 0.023850699529618
225 => 0.023492254058894
226 => 0.023684862351472
227 => 0.023378408708954
228 => 0.023453601713534
301 => 0.023243355517519
302 => 0.023621756810747
303 => 0.024044868254192
304 => 0.024151762913983
305 => 0.023870569085117
306 => 0.023666966221441
307 => 0.023309506663778
308 => 0.023903969874677
309 => 0.024077809033481
310 => 0.023903056771581
311 => 0.023862562854086
312 => 0.023785826953605
313 => 0.023878842738127
314 => 0.024076862268088
315 => 0.023983479914605
316 => 0.024045160604266
317 => 0.02381009742013
318 => 0.024310055488462
319 => 0.025104109222434
320 => 0.02510666223503
321 => 0.025013279378181
322 => 0.02497506912512
323 => 0.025070885603193
324 => 0.025122862111949
325 => 0.025432715032298
326 => 0.025765199560918
327 => 0.027316759781621
328 => 0.026881087880316
329 => 0.028257724410854
330 => 0.029346465172629
331 => 0.029672930922221
401 => 0.029372597793997
402 => 0.028345174386016
403 => 0.028294764092039
404 => 0.029830168430535
405 => 0.029396346378936
406 => 0.029344744626309
407 => 0.02879578916089
408 => 0.02912028983041
409 => 0.029049316773848
410 => 0.028937282331945
411 => 0.029556407004476
412 => 0.030715353121812
413 => 0.030534720500897
414 => 0.03039988662869
415 => 0.029809083850231
416 => 0.030164879083441
417 => 0.030038187215704
418 => 0.03058253588015
419 => 0.030260075790131
420 => 0.02939305975022
421 => 0.029531134912298
422 => 0.029510265129318
423 => 0.029939763784187
424 => 0.029810838948807
425 => 0.029485090486041
426 => 0.030711391969976
427 => 0.030631762772657
428 => 0.030744658768687
429 => 0.030794359077564
430 => 0.031540787180979
501 => 0.031846574891914
502 => 0.031915994055863
503 => 0.03220646873078
504 => 0.031908766781335
505 => 0.033099786837009
506 => 0.033891745676085
507 => 0.034811646621502
508 => 0.036155869148819
509 => 0.036661309253844
510 => 0.03657000602289
511 => 0.037589180201703
512 => 0.03942061354606
513 => 0.036940191064468
514 => 0.039552081960521
515 => 0.038725187458561
516 => 0.036764635469611
517 => 0.036638399034913
518 => 0.037966107604306
519 => 0.040910837424007
520 => 0.040173216003021
521 => 0.040912043908406
522 => 0.040050161911619
523 => 0.040007362205967
524 => 0.040870184223578
525 => 0.042886214897707
526 => 0.041928474294208
527 => 0.040555318291462
528 => 0.041569235315216
529 => 0.04069088655565
530 => 0.038711720966009
531 => 0.040172651957822
601 => 0.039195769008515
602 => 0.039480875387077
603 => 0.041534138046146
604 => 0.041287084050748
605 => 0.041606794797377
606 => 0.041042513697863
607 => 0.040515386171955
608 => 0.039531463499844
609 => 0.039240172503433
610 => 0.039320674855289
611 => 0.039240132610465
612 => 0.038689636918135
613 => 0.038570757425789
614 => 0.038372619730317
615 => 0.038434030887207
616 => 0.038061474052491
617 => 0.03876456577377
618 => 0.038895065792862
619 => 0.039406717314625
620 => 0.039459838672953
621 => 0.04088478087816
622 => 0.040099946656713
623 => 0.040626481211786
624 => 0.040579383005245
625 => 0.036807126576126
626 => 0.037326910229158
627 => 0.03813553047618
628 => 0.037771248150956
629 => 0.037256238172024
630 => 0.036840340000949
701 => 0.036210211743998
702 => 0.037097105165115
703 => 0.038263275703283
704 => 0.039489414682276
705 => 0.040962540325728
706 => 0.040633755831182
707 => 0.039461875623056
708 => 0.039514445313134
709 => 0.039839410451782
710 => 0.039418551071036
711 => 0.039294431423503
712 => 0.039822358318198
713 => 0.039825993860578
714 => 0.039341744280475
715 => 0.038803589488927
716 => 0.038801334600701
717 => 0.038705575153504
718 => 0.040067197304545
719 => 0.040815951812091
720 => 0.040901795309702
721 => 0.040810173860736
722 => 0.040845435320118
723 => 0.040409751569857
724 => 0.041405595424951
725 => 0.042319480225135
726 => 0.042074539576385
727 => 0.041707338723543
728 => 0.041414845557465
729 => 0.042005637482023
730 => 0.041979330447615
731 => 0.042311498238661
801 => 0.042296429188965
802 => 0.042184733654299
803 => 0.042074543565384
804 => 0.042511434812609
805 => 0.042385617149667
806 => 0.042259604057143
807 => 0.042006865508446
808 => 0.042041216874756
809 => 0.041674079424319
810 => 0.04150422484068
811 => 0.038950019440881
812 => 0.038267452296985
813 => 0.03848220181539
814 => 0.038552902932818
815 => 0.038255848837061
816 => 0.03868174810344
817 => 0.038615372153914
818 => 0.038873602144889
819 => 0.038712271257571
820 => 0.038718892333461
821 => 0.039193332073692
822 => 0.039331063948692
823 => 0.039261012405434
824 => 0.039310074105106
825 => 0.04044068026638
826 => 0.040279944224996
827 => 0.040194556406599
828 => 0.040218209415846
829 => 0.040507103530521
830 => 0.040587978109596
831 => 0.040245306835099
901 => 0.040406912589111
902 => 0.04109500937887
903 => 0.04133580431238
904 => 0.042104306152019
905 => 0.04177783291151
906 => 0.042377088673896
907 => 0.044218996586128
908 => 0.045690440076753
909 => 0.044337239832801
910 => 0.047039358416133
911 => 0.049143345329147
912 => 0.049062590807052
913 => 0.048695712022674
914 => 0.046300378859594
915 => 0.044096157570522
916 => 0.04594008227501
917 => 0.045944782818289
918 => 0.045786388050877
919 => 0.044802611754098
920 => 0.045752154768208
921 => 0.045827526044434
922 => 0.045785338172588
923 => 0.045031079192433
924 => 0.043879465140096
925 => 0.044104487769348
926 => 0.0444730794264
927 => 0.043775258523326
928 => 0.043552262462334
929 => 0.043966854566454
930 => 0.045302756709625
1001 => 0.045050212147813
1002 => 0.045043617188691
1003 => 0.046124109919685
1004 => 0.045350710309219
1005 => 0.044107326025325
1006 => 0.043793355095418
1007 => 0.04267896981041
1008 => 0.04344867969607
1009 => 0.043476380184566
1010 => 0.043054817946435
1011 => 0.044141533477588
1012 => 0.044131519202656
1013 => 0.045163193863224
1014 => 0.047135368334923
1015 => 0.04655209929883
1016 => 0.045873820869344
1017 => 0.04594756854125
1018 => 0.046756398477294
1019 => 0.04626736143417
1020 => 0.046443222564565
1021 => 0.046756132290411
1022 => 0.046944918497125
1023 => 0.045920405111359
1024 => 0.045681542032997
1025 => 0.045192912004216
1026 => 0.045065437550418
1027 => 0.04546341651326
1028 => 0.045358563117356
1029 => 0.04347405206577
1030 => 0.043277110175559
1031 => 0.043283150102163
1101 => 0.042787930355151
1102 => 0.042032601374599
1103 => 0.044017560837139
1104 => 0.043858140812807
1105 => 0.043682153444075
1106 => 0.043703710892574
1107 => 0.044565314518745
1108 => 0.04406554090354
1109 => 0.045394270970847
1110 => 0.045121124014291
1111 => 0.044840971868976
1112 => 0.044802246308851
1113 => 0.044694411634363
1114 => 0.044324606412028
1115 => 0.043878044384209
1116 => 0.043583185452904
1117 => 0.040203184781837
1118 => 0.040830493245828
1119 => 0.041552154452683
1120 => 0.041801269009414
1121 => 0.041375141321923
1122 => 0.044341432530409
1123 => 0.044883402518092
1124 => 0.043241740073571
1125 => 0.042934652058837
1126 => 0.04436156516953
1127 => 0.043500962130749
1128 => 0.043888491626416
1129 => 0.043050864824084
1130 => 0.044752857818793
1201 => 0.044739891483791
1202 => 0.044077777767594
1203 => 0.044637391746565
1204 => 0.044540145046295
1205 => 0.043792620291423
1206 => 0.044776555686858
1207 => 0.044777043706539
1208 => 0.044139773650292
1209 => 0.043395581740951
1210 => 0.043262537804589
1211 => 0.043162307070478
1212 => 0.043863841010081
1213 => 0.044492834146689
1214 => 0.045663234433295
1215 => 0.045957500873373
1216 => 0.047106042379422
1217 => 0.046422141834041
1218 => 0.046725306087814
1219 => 0.047054433770486
1220 => 0.047212229684829
1221 => 0.046955109710203
1222 => 0.048739267427642
1223 => 0.048889905004174
1224 => 0.048940412480575
1225 => 0.048338804536705
1226 => 0.048873173198954
1227 => 0.048623159798317
1228 => 0.04927362521105
1229 => 0.049375626493326
1230 => 0.049289235036039
1231 => 0.049321611853014
]
'min_raw' => 0.022117439892231
'max_raw' => 0.049375626493326
'avg_raw' => 0.035746533192778
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.022117'
'max' => '$0.049375'
'avg' => '$0.035746'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0034104643554203
'max_diff' => -0.0047117412304663
'year' => 2031
]
6 => [
'items' => [
101 => 0.047799147988169
102 => 0.04772020020514
103 => 0.046643741581662
104 => 0.04708240642751
105 => 0.046262343523951
106 => 0.046522393918253
107 => 0.046637021654211
108 => 0.046577146630013
109 => 0.047107207879727
110 => 0.046656547533111
111 => 0.045467180782972
112 => 0.044277489990657
113 => 0.044262554391861
114 => 0.043949329806031
115 => 0.043722925800421
116 => 0.043766539244015
117 => 0.043920238707832
118 => 0.043713992508173
119 => 0.043758005591818
120 => 0.044488916037965
121 => 0.044635494915325
122 => 0.044137362617991
123 => 0.04213728956405
124 => 0.041646466619809
125 => 0.041999260418687
126 => 0.041830647705654
127 => 0.033760597446658
128 => 0.035656536050262
129 => 0.034530033711992
130 => 0.035049177817347
131 => 0.03389931063634
201 => 0.034448087524819
202 => 0.03434674847164
203 => 0.037395361641333
204 => 0.037347761739919
205 => 0.037370545293795
206 => 0.036283026905042
207 => 0.038015473227668
208 => 0.038868938582948
209 => 0.03871098485993
210 => 0.038750738409034
211 => 0.038067640725616
212 => 0.037377159172548
213 => 0.036611308865847
214 => 0.038034164073739
215 => 0.03787596686357
216 => 0.038238814346139
217 => 0.039161637656248
218 => 0.039297526894126
219 => 0.039480163407888
220 => 0.039414701218657
221 => 0.04097427614811
222 => 0.040785401333746
223 => 0.04124053529337
224 => 0.040304290207328
225 => 0.039244840023272
226 => 0.039446206867225
227 => 0.039426813620863
228 => 0.039179915336135
229 => 0.038957026604251
301 => 0.038585979664176
302 => 0.03976002708719
303 => 0.039712362905878
304 => 0.04048399059777
305 => 0.040347597908036
306 => 0.039436734145044
307 => 0.039469265822534
308 => 0.039688056987846
309 => 0.040445295709105
310 => 0.040670095718318
311 => 0.040565959397319
312 => 0.040812442344911
313 => 0.041007252416768
314 => 0.040836907490587
315 => 0.043248632419648
316 => 0.042247116084227
317 => 0.042735248177606
318 => 0.042851664805635
319 => 0.042553466060915
320 => 0.042618134690949
321 => 0.042716090044302
322 => 0.043310855768239
323 => 0.0448716931247
324 => 0.045562977364897
325 => 0.047642740108893
326 => 0.04550557583189
327 => 0.045378765348157
328 => 0.045753393421169
329 => 0.046974434317139
330 => 0.047963973276784
331 => 0.04829226043757
401 => 0.048335649005298
402 => 0.048951537543051
403 => 0.04930455336725
404 => 0.048876752475091
405 => 0.048514236011607
406 => 0.047215747036608
407 => 0.047366050671132
408 => 0.048401493664062
409 => 0.049864117878863
410 => 0.051119201615275
411 => 0.050679715034868
412 => 0.054032687414201
413 => 0.054365120929948
414 => 0.054319189366934
415 => 0.055076522388546
416 => 0.053573370568834
417 => 0.052930744043713
418 => 0.048592616185749
419 => 0.049811453163901
420 => 0.051583104291431
421 => 0.051348619621351
422 => 0.050061999216169
423 => 0.051118225598323
424 => 0.05076900412513
425 => 0.050493558660011
426 => 0.051755427733454
427 => 0.050367950852479
428 => 0.051569263148179
429 => 0.050028567702959
430 => 0.050681722572547
501 => 0.050310960279023
502 => 0.050550888921851
503 => 0.049148270978425
504 => 0.049905089574072
505 => 0.049116784836658
506 => 0.049116411077572
507 => 0.049099009206802
508 => 0.050026446234491
509 => 0.050056689922668
510 => 0.049371312557926
511 => 0.04927253897206
512 => 0.049637756688338
513 => 0.049210182393248
514 => 0.0494102417148
515 => 0.049216241986294
516 => 0.049172568561148
517 => 0.048824571279162
518 => 0.048674644481698
519 => 0.048733434642121
520 => 0.048532753516191
521 => 0.048411835878865
522 => 0.049074955645285
523 => 0.048720677504262
524 => 0.049020657439109
525 => 0.048678792442865
526 => 0.047493739422393
527 => 0.046812202898611
528 => 0.044573747597413
529 => 0.045208570744038
530 => 0.045629459147022
531 => 0.045490355532346
601 => 0.045789203922622
602 => 0.045807550786639
603 => 0.045710392128562
604 => 0.045597894849303
605 => 0.04554313739525
606 => 0.045951254595823
607 => 0.046188180367349
608 => 0.045671700929022
609 => 0.045550697022937
610 => 0.046072886250697
611 => 0.046391421377972
612 => 0.048743305788343
613 => 0.048569070594736
614 => 0.04900636673876
615 => 0.048957133903799
616 => 0.049415489929474
617 => 0.050164708315744
618 => 0.048641337851702
619 => 0.048905742290072
620 => 0.048840916427774
621 => 0.049548668194092
622 => 0.049550877717853
623 => 0.049126545179123
624 => 0.049356582732378
625 => 0.049228182080901
626 => 0.049460219412508
627 => 0.048566743577499
628 => 0.049654900699784
629 => 0.050271815668823
630 => 0.050280381533767
701 => 0.050572794332951
702 => 0.05086990267233
703 => 0.051440176257085
704 => 0.050853998051568
705 => 0.049799520523141
706 => 0.049875650394751
707 => 0.049257410605653
708 => 0.049267803328202
709 => 0.049212326160743
710 => 0.049378817316412
711 => 0.048603279023559
712 => 0.048785296310768
713 => 0.048530471042784
714 => 0.048905188349706
715 => 0.048502054470447
716 => 0.048840885166781
717 => 0.048987113262902
718 => 0.049526698085658
719 => 0.048422357353403
720 => 0.04617053184304
721 => 0.046643892866064
722 => 0.045943754731306
723 => 0.046008555181291
724 => 0.046139462403178
725 => 0.045715149266867
726 => 0.045796094841631
727 => 0.045793202896095
728 => 0.045768281671823
729 => 0.045657901437318
730 => 0.045497828259221
731 => 0.046135510532832
801 => 0.046243865177173
802 => 0.046484724129243
803 => 0.047201356994415
804 => 0.047129748471817
805 => 0.047246544943183
806 => 0.046991578901976
807 => 0.046020382324683
808 => 0.046073122971398
809 => 0.045415446261753
810 => 0.046467905857118
811 => 0.046218669533148
812 => 0.046057985253706
813 => 0.046014141059331
814 => 0.046732550318763
815 => 0.046947509628871
816 => 0.046813561412194
817 => 0.046538829711898
818 => 0.047066395793604
819 => 0.047207550220842
820 => 0.047239149491526
821 => 0.048173895437546
822 => 0.047291391406176
823 => 0.047503818897863
824 => 0.049161117547899
825 => 0.047658176363897
826 => 0.048454317828651
827 => 0.048415350846871
828 => 0.048822629880281
829 => 0.048381942078547
830 => 0.048387404932009
831 => 0.048749041122206
901 => 0.048241188314506
902 => 0.048115436817369
903 => 0.047941712024724
904 => 0.04832103375387
905 => 0.048548419975247
906 => 0.050380985922768
907 => 0.051564907100027
908 => 0.051513509959352
909 => 0.051983183613704
910 => 0.051771591330701
911 => 0.05108830403366
912 => 0.0522545921317
913 => 0.051885529777913
914 => 0.051915954829949
915 => 0.051914822407993
916 => 0.05216021660927
917 => 0.051986332327617
918 => 0.051643588559623
919 => 0.051871117867999
920 => 0.05254679857066
921 => 0.054644132204134
922 => 0.055817827891401
923 => 0.054573474250025
924 => 0.055431812729287
925 => 0.054917115499001
926 => 0.054823579701342
927 => 0.055362679697034
928 => 0.055902723315903
929 => 0.055868324872054
930 => 0.055476280936302
1001 => 0.055254825264742
1002 => 0.056931761802887
1003 => 0.058167300078323
1004 => 0.058083044651092
1005 => 0.058454920705557
1006 => 0.05954676030316
1007 => 0.059646584432586
1008 => 0.059634008886709
1009 => 0.059386584366358
1010 => 0.060461642243486
1011 => 0.06135847443843
1012 => 0.059329312738678
1013 => 0.060101990950266
1014 => 0.060448871093586
1015 => 0.060958194058679
1016 => 0.061817507273232
1017 => 0.06275094934581
1018 => 0.062882948289545
1019 => 0.062789288722234
1020 => 0.062173658583099
1021 => 0.063195042037194
1022 => 0.063793344510214
1023 => 0.064149619940988
1024 => 0.065053075154853
1025 => 0.060451013307259
1026 => 0.057193445194217
1027 => 0.056684728893512
1028 => 0.057719223495276
1029 => 0.057992011471822
1030 => 0.057882050980523
1031 => 0.054215361904159
1101 => 0.056665424534363
1102 => 0.059301485917346
1103 => 0.059402747770764
1104 => 0.060722415216529
1105 => 0.061152153031867
1106 => 0.062214658298474
1107 => 0.062148198304759
1108 => 0.062406901429026
1109 => 0.062347430060871
1110 => 0.06431549733038
1111 => 0.066486567789467
1112 => 0.06641139052305
1113 => 0.066099273457617
1114 => 0.066562820523653
1115 => 0.068803597903481
1116 => 0.068597303030072
1117 => 0.068797700927433
1118 => 0.071439703742929
1119 => 0.074874683223592
1120 => 0.073278790388522
1121 => 0.07674141863483
1122 => 0.078920959569844
1123 => 0.082690250248211
1124 => 0.082218316491132
1125 => 0.083685673691887
1126 => 0.081373456570412
1127 => 0.076064138683324
1128 => 0.07522391880444
1129 => 0.076906060279722
1130 => 0.081041440955738
1201 => 0.076775822425664
1202 => 0.077638751498745
1203 => 0.077390227867645
1204 => 0.077376985099501
1205 => 0.077882407697322
1206 => 0.077149265858113
1207 => 0.074162314115478
1208 => 0.075531216496911
1209 => 0.075002617547348
1210 => 0.07558913749155
1211 => 0.078754343731183
1212 => 0.077354930603549
1213 => 0.075880762552677
1214 => 0.077729696432549
1215 => 0.080084024624238
1216 => 0.079936694997137
1217 => 0.079650813941553
1218 => 0.081262310483632
1219 => 0.083924030646961
1220 => 0.084643482911451
1221 => 0.085174567864543
1222 => 0.085247795506821
1223 => 0.086002085733007
1224 => 0.081946077081193
1225 => 0.088383066977311
1226 => 0.089494557314113
1227 => 0.089285643197349
1228 => 0.090521017928041
1229 => 0.090157539343839
1230 => 0.089630915903374
1231 => 0.091589247623262
]
'min_raw' => 0.033760597446658
'max_raw' => 0.091589247623262
'avg_raw' => 0.06267492253496
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.03376'
'max' => '$0.091589'
'avg' => '$0.062674'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.011643157554428
'max_diff' => 0.042213621129936
'year' => 2032
]
7 => [
'items' => [
101 => 0.089344178335631
102 => 0.086157585128203
103 => 0.08440935707094
104 => 0.086711564802278
105 => 0.088117442727828
106 => 0.089046638605987
107 => 0.089327812717283
108 => 0.082260933486858
109 => 0.078452277528749
110 => 0.080893582331567
111 => 0.083872142680863
112 => 0.081929531028062
113 => 0.082005677727001
114 => 0.079236024019468
115 => 0.084117195577562
116 => 0.083406049938663
117 => 0.087095474771268
118 => 0.086214963925483
119 => 0.089223546653826
120 => 0.088431285992866
121 => 0.091719915701813
122 => 0.093031839128807
123 => 0.095234762747307
124 => 0.096855242328587
125 => 0.09780681893355
126 => 0.097749689843462
127 => 0.10152031042591
128 => 0.099296907203889
129 => 0.096503788741129
130 => 0.096453270040313
131 => 0.097899865670971
201 => 0.1009315332587
202 => 0.10171760055523
203 => 0.10215690493672
204 => 0.10148409498417
205 => 0.099070750139417
206 => 0.098028680071387
207 => 0.098916553961025
208 => 0.097830760489871
209 => 0.099705144640923
210 => 0.10227907442717
211 => 0.10174756810473
212 => 0.10352431405276
213 => 0.10536305918985
214 => 0.10799254731909
215 => 0.10867999288574
216 => 0.10981631426619
217 => 0.11098596222881
218 => 0.11136162163151
219 => 0.11207887199152
220 => 0.11207509172808
221 => 0.1142365739645
222 => 0.1166207558068
223 => 0.11752072925834
224 => 0.11959016858531
225 => 0.11604632625967
226 => 0.11873437137239
227 => 0.12115905535021
228 => 0.11826824715387
301 => 0.12225255278059
302 => 0.12240725433945
303 => 0.12474306420801
304 => 0.1223752734192
305 => 0.12096928680706
306 => 0.12502831747467
307 => 0.12699235455646
308 => 0.12640077060356
309 => 0.1218987875119
310 => 0.11927844025341
311 => 0.11242048605071
312 => 0.12054402904538
313 => 0.12450076987109
314 => 0.12188854050904
315 => 0.12320599705495
316 => 0.13039361278272
317 => 0.13313019148821
318 => 0.13256100224759
319 => 0.1326571858596
320 => 0.13413379405667
321 => 0.14068188798542
322 => 0.13675811831968
323 => 0.13975769320829
324 => 0.14134865691344
325 => 0.14282643266815
326 => 0.1391974824704
327 => 0.134476271583
328 => 0.13298086591201
329 => 0.1216288057804
330 => 0.12103788175105
331 => 0.12070617818654
401 => 0.11861483413275
402 => 0.11697161057381
403 => 0.11566485819076
404 => 0.11223554970836
405 => 0.11339284065276
406 => 0.10792723868411
407 => 0.11142393713462
408 => 0.10270070442108
409 => 0.10996567183717
410 => 0.10601168037013
411 => 0.10866667929799
412 => 0.10865741625684
413 => 0.10376872146247
414 => 0.10094902432954
415 => 0.1027458450869
416 => 0.1046721795706
417 => 0.10498472085961
418 => 0.1074822638002
419 => 0.10817927435042
420 => 0.10606729984296
421 => 0.10251993481232
422 => 0.10334390680216
423 => 0.10093232656346
424 => 0.096706124955245
425 => 0.099741456732669
426 => 0.1007778524556
427 => 0.10123558384901
428 => 0.097079599949858
429 => 0.095773699577945
430 => 0.095078449177504
501 => 0.10198344947956
502 => 0.10236172098326
503 => 0.10042643048811
504 => 0.10917412703795
505 => 0.10719425389476
506 => 0.1094062572764
507 => 0.10326913998055
508 => 0.10350358612597
509 => 0.10059817644645
510 => 0.10222501172744
511 => 0.10107521698618
512 => 0.10209357951343
513 => 0.1027039818134
514 => 0.10560891474379
515 => 0.10999884150498
516 => 0.10517501463496
517 => 0.10307320418922
518 => 0.10437715556873
519 => 0.10784974992506
520 => 0.11311090813373
521 => 0.10999619658352
522 => 0.11137845267827
523 => 0.11168041414268
524 => 0.10938374115844
525 => 0.1131955897426
526 => 0.11523839036625
527 => 0.11733388110808
528 => 0.1191533370049
529 => 0.11649689602497
530 => 0.11933966865936
531 => 0.11704889573296
601 => 0.11499383560223
602 => 0.11499695228016
603 => 0.11370778304051
604 => 0.11120985519292
605 => 0.11074919897274
606 => 0.1131455908046
607 => 0.11506727011461
608 => 0.11522554882681
609 => 0.11628948923227
610 => 0.11691911820477
611 => 0.12309033807433
612 => 0.12557245375688
613 => 0.12860753782945
614 => 0.12978987412368
615 => 0.1333482824783
616 => 0.13047457873215
617 => 0.12985283485023
618 => 0.12122130012843
619 => 0.12263471345557
620 => 0.12489772456644
621 => 0.12125861634812
622 => 0.1235667929054
623 => 0.12402247585167
624 => 0.12113496084339
625 => 0.12267730737147
626 => 0.11858129226676
627 => 0.11008812344114
628 => 0.1132050450674
629 => 0.1155001485288
630 => 0.11222475290517
701 => 0.11809577278522
702 => 0.11466604417374
703 => 0.11357898485991
704 => 0.10933797891203
705 => 0.11133957046814
706 => 0.11404675170781
707 => 0.11237402844529
708 => 0.11584518037568
709 => 0.1207612572315
710 => 0.12426474635641
711 => 0.12453370074842
712 => 0.12228119195665
713 => 0.12589085167078
714 => 0.12591714410104
715 => 0.12184543319761
716 => 0.11935153294064
717 => 0.11878491355504
718 => 0.12020043987253
719 => 0.12191915014254
720 => 0.12462907720679
721 => 0.12626662937624
722 => 0.13053649694362
723 => 0.13169180068065
724 => 0.13296112922145
725 => 0.13465734359837
726 => 0.13669408385831
727 => 0.13223781212125
728 => 0.1324148681049
729 => 0.12826524956463
730 => 0.12383078703886
731 => 0.12719599133236
801 => 0.13159554829175
802 => 0.13058628506419
803 => 0.13047272233371
804 => 0.1306637033467
805 => 0.12990275183257
806 => 0.12646099633636
807 => 0.12473256827269
808 => 0.12696268144385
809 => 0.1281478873434
810 => 0.12998603833279
811 => 0.12975944742469
812 => 0.13449432697036
813 => 0.13633415798648
814 => 0.13586345048175
815 => 0.13595007199083
816 => 0.13928099816373
817 => 0.14298567312522
818 => 0.14645559010157
819 => 0.14998533868631
820 => 0.14573008899897
821 => 0.14356953563505
822 => 0.14579867520857
823 => 0.14461586237345
824 => 0.15141265576911
825 => 0.15188325099704
826 => 0.15867955290718
827 => 0.16513005270848
828 => 0.16107860935599
829 => 0.16489893795637
830 => 0.16903093481364
831 => 0.17700222714365
901 => 0.17431777632035
902 => 0.17226152906041
903 => 0.17031838533548
904 => 0.17436175896168
905 => 0.17956349453731
906 => 0.1806838985587
907 => 0.18249938110063
908 => 0.18059062319444
909 => 0.18288951184966
910 => 0.19100559898545
911 => 0.18881256059868
912 => 0.18569809354095
913 => 0.19210496485736
914 => 0.19442358668069
915 => 0.21069688890849
916 => 0.23124260518767
917 => 0.22273654373764
918 => 0.21745655690672
919 => 0.21869747905495
920 => 0.22620007912372
921 => 0.22860967614519
922 => 0.22205956080294
923 => 0.22437317227568
924 => 0.23712139895974
925 => 0.24396041356365
926 => 0.23467211312933
927 => 0.20904606061038
928 => 0.18541766985852
929 => 0.19168498308621
930 => 0.19097446426357
1001 => 0.20467084346192
1002 => 0.18876025735844
1003 => 0.18902815082345
1004 => 0.20300775663891
1005 => 0.19927823747846
1006 => 0.19323689407926
1007 => 0.18546177835108
1008 => 0.17108875781639
1009 => 0.15835817270748
1010 => 0.18332578178471
1011 => 0.18224913308064
1012 => 0.18068998620677
1013 => 0.18415969885727
1014 => 0.201007638593
1015 => 0.20061923905063
1016 => 0.19814843932528
1017 => 0.20002251914033
1018 => 0.19290835882664
1019 => 0.1947418399259
1020 => 0.1854139270007
1021 => 0.18963053321095
1022 => 0.19322393206963
1023 => 0.19394536009169
1024 => 0.19557077426242
1025 => 0.1816817881369
1026 => 0.18791753514805
1027 => 0.19158045230662
1028 => 0.17503125932613
1029 => 0.19125332797111
1030 => 0.18144001178866
1031 => 0.17810922488527
1101 => 0.18259369065288
1102 => 0.18084608998196
1103 => 0.17934360554765
1104 => 0.17850519341735
1105 => 0.18179809014465
1106 => 0.18164447257646
1107 => 0.17625665440688
1108 => 0.16922846524023
1109 => 0.171587356217
1110 => 0.17073034901042
1111 => 0.16762444433763
1112 => 0.16971744907873
1113 => 0.1605009154444
1114 => 0.14464434836026
1115 => 0.15511968227583
1116 => 0.15471639331505
1117 => 0.15451303673332
1118 => 0.16238496065391
1119 => 0.16162825680513
1120 => 0.16025483190993
1121 => 0.16759922031238
1122 => 0.16491841974952
1123 => 0.1731800154082
1124 => 0.17862163663552
1125 => 0.17724146547426
1126 => 0.18235933654019
1127 => 0.17164170030082
1128 => 0.17520166914261
1129 => 0.17593537378699
1130 => 0.16750859169954
1201 => 0.16175206291311
1202 => 0.16136816807228
1203 => 0.15138714045514
1204 => 0.15671892484418
1205 => 0.1614106744623
1206 => 0.1591636904897
1207 => 0.15845236249071
1208 => 0.16208638296933
1209 => 0.16236877748379
1210 => 0.15593015262707
1211 => 0.15726894661952
1212 => 0.16285194012399
1213 => 0.15712826950769
1214 => 0.1460081124565
1215 => 0.14325015975961
1216 => 0.14288219803069
1217 => 0.13540241158072
1218 => 0.14343445934648
1219 => 0.13992825525123
1220 => 0.15100431197734
1221 => 0.14467772777747
1222 => 0.1444050013774
1223 => 0.14399273542342
1224 => 0.13755457423985
1225 => 0.13896412237257
1226 => 0.14364967504595
1227 => 0.14532153302634
1228 => 0.14514714454186
1229 => 0.14362671328166
1230 => 0.14432275892671
1231 => 0.14208055338561
]
'min_raw' => 0.078452277528749
'max_raw' => 0.24396041356365
'avg_raw' => 0.1612063455462
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.078452'
'max' => '$0.24396'
'avg' => '$0.1612063'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.04469168008209
'max_diff' => 0.15237116594039
'year' => 2033
]
8 => [
'items' => [
101 => 0.14128878394158
102 => 0.13878974178287
103 => 0.13511684018758
104 => 0.13562757968162
105 => 0.12835060055437
106 => 0.12438571610733
107 => 0.12328828834873
108 => 0.12182076208526
109 => 0.12345404934513
110 => 0.12832998578681
111 => 0.12244857195052
112 => 0.11236530046141
113 => 0.11297132225897
114 => 0.11433287330858
115 => 0.11179563193518
116 => 0.10939434590979
117 => 0.11148206928638
118 => 0.10720965423102
119 => 0.11484917425632
120 => 0.11464254664914
121 => 0.11749008728982
122 => 0.11927071288986
123 => 0.11516694736616
124 => 0.11413486143471
125 => 0.11472278448696
126 => 0.10500572604817
127 => 0.11669599630817
128 => 0.11679709425083
129 => 0.11593143228745
130 => 0.1221561403043
131 => 0.13529221575498
201 => 0.13034989577302
202 => 0.1284360800936
203 => 0.12479791508802
204 => 0.12964555394509
205 => 0.12927333091581
206 => 0.12758999721603
207 => 0.12657191174209
208 => 0.12844776544404
209 => 0.12633947270926
210 => 0.12596076540208
211 => 0.12366621115821
212 => 0.12284715968871
213 => 0.12224076658808
214 => 0.12157318736723
215 => 0.12304570077804
216 => 0.11970879166387
217 => 0.11568480639342
218 => 0.11535025555831
219 => 0.11627397982807
220 => 0.11586530060189
221 => 0.11534829895941
222 => 0.11436120202689
223 => 0.11406835145301
224 => 0.11501997374724
225 => 0.11394564766008
226 => 0.11553087432326
227 => 0.11509978038546
228 => 0.11269172469241
301 => 0.10969039572246
302 => 0.10966367759913
303 => 0.10901704619572
304 => 0.10819346388179
305 => 0.10796436212307
306 => 0.11130624704673
307 => 0.11822384882452
308 => 0.11686575807136
309 => 0.11784711782325
310 => 0.12267443651514
311 => 0.12420889596475
312 => 0.12311977299308
313 => 0.12162891429528
314 => 0.12169450451174
315 => 0.12678921999575
316 => 0.12710697115119
317 => 0.12790982581056
318 => 0.12894172093455
319 => 0.12329550919474
320 => 0.12142856844655
321 => 0.12054390834614
322 => 0.1178194976434
323 => 0.12075754101298
324 => 0.11904566896108
325 => 0.11927665898676
326 => 0.11912622642951
327 => 0.11920837277797
328 => 0.11484703885478
329 => 0.11643607971143
330 => 0.1137939910877
331 => 0.1102565310089
401 => 0.11024467220233
402 => 0.1111104605451
403 => 0.11059545576052
404 => 0.10920959112719
405 => 0.10940644665726
406 => 0.10768178507275
407 => 0.10961585179962
408 => 0.10967131391293
409 => 0.10892659287375
410 => 0.11190628951628
411 => 0.11312707366193
412 => 0.11263688232047
413 => 0.11309268053066
414 => 0.11692219287356
415 => 0.11754657047879
416 => 0.11782387776697
417 => 0.11745232273699
418 => 0.11316267698635
419 => 0.11335294101638
420 => 0.11195690980624
421 => 0.11077741054381
422 => 0.11082458432865
423 => 0.11143100027371
424 => 0.1140792542716
425 => 0.11965234868705
426 => 0.11986384354624
427 => 0.12012018148532
428 => 0.11907752626197
429 => 0.11876305146974
430 => 0.11917792489352
501 => 0.12127088613659
502 => 0.12665455068718
503 => 0.12475160407213
504 => 0.12320447885297
505 => 0.12456172477214
506 => 0.12435278740133
507 => 0.12258914572455
508 => 0.12253964617667
509 => 0.11915465392858
510 => 0.117903299367
511 => 0.11685757383309
512 => 0.1157156688494
513 => 0.11503870929808
514 => 0.11607882684153
515 => 0.11631671403003
516 => 0.11404247884312
517 => 0.11373250899073
518 => 0.11558969853714
519 => 0.11477241866077
520 => 0.11561301128118
521 => 0.11580803597958
522 => 0.11577663251134
523 => 0.11492329845642
524 => 0.11546718813624
525 => 0.11418072690215
526 => 0.1127818935303
527 => 0.11188952498946
528 => 0.11111081508207
529 => 0.11154288859758
530 => 0.1100026254083
531 => 0.10950986421468
601 => 0.11528293055062
602 => 0.1195475567239
603 => 0.11948554737037
604 => 0.11910808137822
605 => 0.11854724348007
606 => 0.12122985735109
607 => 0.12029528831899
608 => 0.1209752653757
609 => 0.12114834807518
610 => 0.12167221727733
611 => 0.12185945548902
612 => 0.121293491568
613 => 0.11939404752236
614 => 0.11466081355434
615 => 0.11245748036511
616 => 0.11173034371324
617 => 0.11175677374951
618 => 0.11102771536041
619 => 0.11124245573011
620 => 0.11095303742333
621 => 0.1104049491681
622 => 0.11150904569229
623 => 0.11163628253133
624 => 0.11137857320961
625 => 0.11143927308409
626 => 0.10930554996937
627 => 0.10946777230358
628 => 0.10856449773248
629 => 0.10839514463954
630 => 0.10611174518092
701 => 0.10206637205594
702 => 0.10430790146105
703 => 0.10160044914641
704 => 0.10057509593026
705 => 0.10542895858038
706 => 0.1049417653955
707 => 0.10410790244077
708 => 0.10287444533847
709 => 0.10241694410092
710 => 0.099637311408891
711 => 0.099473075880682
712 => 0.10085073689925
713 => 0.1002149937416
714 => 0.099322169573503
715 => 0.096088450940783
716 => 0.092452680550161
717 => 0.092562421604616
718 => 0.09371889251996
719 => 0.097081487677674
720 => 0.095767663576068
721 => 0.094814469115959
722 => 0.0946359644465
723 => 0.096870324109609
724 => 0.10003241114573
725 => 0.10151599163537
726 => 0.10004580842714
727 => 0.098356941117825
728 => 0.098459734645486
729 => 0.0991435739327
730 => 0.09921543577282
731 => 0.098116156772818
801 => 0.098425597372255
802 => 0.097955528805868
803 => 0.095070718881634
804 => 0.095018541817936
805 => 0.094310562938685
806 => 0.09428912561959
807 => 0.093084676932375
808 => 0.092916166235073
809 => 0.0905246602618
810 => 0.092098756735556
811 => 0.091042935464734
812 => 0.089451563766547
813 => 0.089177210685955
814 => 0.089168963301062
815 => 0.0908029462109
816 => 0.092079662693903
817 => 0.091061301927777
818 => 0.090829440921424
819 => 0.093305109871414
820 => 0.092990058431305
821 => 0.092717225916033
822 => 0.099749280933718
823 => 0.094182860669125
824 => 0.091755583713601
825 => 0.088751367553749
826 => 0.08972955548397
827 => 0.089935674053438
828 => 0.082711075739657
829 => 0.079780057103523
830 => 0.078774241960709
831 => 0.078195381125881
901 => 0.078459175277189
902 => 0.075820914730471
903 => 0.077593869450667
904 => 0.075309358823823
905 => 0.074926353182791
906 => 0.07901134118015
907 => 0.079579743395829
908 => 0.077154762955017
909 => 0.078711992966691
910 => 0.078147319717341
911 => 0.075348520201577
912 => 0.07524162664665
913 => 0.073837287432199
914 => 0.07163976849524
915 => 0.070635443373745
916 => 0.070112382130519
917 => 0.070328207393734
918 => 0.070219079536291
919 => 0.069506946449544
920 => 0.07025989817123
921 => 0.068336417663454
922 => 0.067570472226723
923 => 0.06722451244275
924 => 0.065517312780692
925 => 0.068234226638162
926 => 0.068769492894862
927 => 0.069305813791441
928 => 0.073974121034328
929 => 0.073740905596972
930 => 0.07584905957014
1001 => 0.075767140583389
1002 => 0.075165860920412
1003 => 0.072629160928013
1004 => 0.073640244332654
1005 => 0.070528286770418
1006 => 0.07285997696859
1007 => 0.071795890935855
1008 => 0.072500208410548
1009 => 0.071233782085304
1010 => 0.071934674703155
1011 => 0.068896424381395
1012 => 0.066059348980271
1013 => 0.067201070941077
1014 => 0.068442253284217
1015 => 0.071133452851524
1016 => 0.069530596591151
1017 => 0.070107044313086
1018 => 0.068176040940784
1019 => 0.064191829419881
1020 => 0.064214379624405
1021 => 0.063601495482681
1022 => 0.063071874101681
1023 => 0.069714703914062
1024 => 0.068888563019293
1025 => 0.067572215626127
1026 => 0.069334198921446
1027 => 0.069800095271164
1028 => 0.069813358685267
1029 => 0.071098856214161
1030 => 0.07178492647577
1031 => 0.071905849332977
1101 => 0.073928607469704
1102 => 0.07460660931631
1103 => 0.077399202968067
1104 => 0.071726718207379
1105 => 0.071609897116615
1106 => 0.069358993639788
1107 => 0.067931435069409
1108 => 0.069456739796432
1109 => 0.070807951559715
1110 => 0.069400979555761
1111 => 0.069584700396678
1112 => 0.067695955435206
1113 => 0.068371092885222
1114 => 0.068952612208011
1115 => 0.068631531418093
1116 => 0.068150857935099
1117 => 0.070697167604142
1118 => 0.070553494833546
1119 => 0.072924676936765
1120 => 0.074773182951083
1121 => 0.078086036188716
1122 => 0.074628901132301
1123 => 0.074502909389978
1124 => 0.075734498880897
1125 => 0.074606420766376
1126 => 0.07531932719482
1127 => 0.077971175941603
1128 => 0.078027205326894
1129 => 0.077088640933484
1130 => 0.077031529204849
1201 => 0.077211790763372
1202 => 0.078267588342013
1203 => 0.077898660226653
1204 => 0.078325593181865
1205 => 0.078859479379786
1206 => 0.081067859057445
1207 => 0.081600291921295
1208 => 0.08030675609693
1209 => 0.080423547898763
1210 => 0.079939729992099
1211 => 0.079472367956481
1212 => 0.080522929559805
1213 => 0.082442851538721
1214 => 0.082430907803734
1215 => 0.082876292384892
1216 => 0.083153763289188
1217 => 0.081962655046832
1218 => 0.081187287379323
1219 => 0.081484612680972
1220 => 0.081960042313213
1221 => 0.081330437258917
1222 => 0.077444223202371
1223 => 0.078623052294812
1224 => 0.078426837492032
1225 => 0.078147403752338
1226 => 0.079332725520404
1227 => 0.079218398344262
1228 => 0.075793855555285
1229 => 0.076013083673734
1230 => 0.075807187543274
1231 => 0.076472480063173
]
'min_raw' => 0.063071874101681
'max_raw' => 0.14128878394158
'avg_raw' => 0.10218032902163
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.063071'
'max' => '$0.141288'
'avg' => '$0.10218'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.015380403427068
'max_diff' => -0.10267162962207
'year' => 2034
]
9 => [
'items' => [
101 => 0.074570492786998
102 => 0.07515553126307
103 => 0.075522461910867
104 => 0.075738586881313
105 => 0.076519378472846
106 => 0.076427761591443
107 => 0.076513683438862
108 => 0.077671391247767
109 => 0.083526680067865
110 => 0.083845370519377
111 => 0.082276022180578
112 => 0.082902945887901
113 => 0.081699389462985
114 => 0.082507344954158
115 => 0.083060127581375
116 => 0.08056220918297
117 => 0.080414298666772
118 => 0.079205774736362
119 => 0.07985516704227
120 => 0.07882193719061
121 => 0.079075455655362
122 => 0.078366595926575
123 => 0.079642402305827
124 => 0.0810689520781
125 => 0.081429354886734
126 => 0.080481290260384
127 => 0.079794828990402
128 => 0.078589629134715
129 => 0.080593903354353
130 => 0.081180014215326
131 => 0.080590824763516
201 => 0.080454296693488
202 => 0.080195576247485
203 => 0.080509185459157
204 => 0.081176822129703
205 => 0.080861977005187
206 => 0.081069937756787
207 => 0.080277405819884
208 => 0.081963049353223
209 => 0.084640256956372
210 => 0.084648864616584
211 => 0.084334017794935
212 => 0.084205189258986
213 => 0.0845282412045
214 => 0.084703483632657
215 => 0.085748174386854
216 => 0.086869169188424
217 => 0.092100362798999
218 => 0.090631464566109
219 => 0.095272890742511
220 => 0.098943656234287
221 => 0.10004435830215
222 => 0.09903176419175
223 => 0.095567734439333
224 => 0.095397772613653
225 => 0.1005744955394
226 => 0.099111834203947
227 => 0.098937855292244
228 => 0.09708701361374
301 => 0.098181090276937
302 => 0.09794179966156
303 => 0.097564067718689
304 => 0.099651489778029
305 => 0.10355895752766
306 => 0.10294994203488
307 => 0.10249534022094
308 => 0.10050340740483
309 => 0.10170299587443
310 => 0.10127584539701
311 => 0.10311115492439
312 => 0.10202395821745
313 => 0.099100753105764
314 => 0.09956628315481
315 => 0.099495919224413
316 => 0.10094400392594
317 => 0.10050932484221
318 => 0.099411041156966
319 => 0.10354560222769
320 => 0.10327712682939
321 => 0.10365776356216
322 => 0.1038253316235
323 => 0.10634196608811
324 => 0.10737295070494
325 => 0.10760700226289
326 => 0.10858635790967
327 => 0.10758263500222
328 => 0.11159824227429
329 => 0.11426838679304
330 => 0.11736989705595
331 => 0.12190203715742
401 => 0.12360616376021
402 => 0.12329832854246
403 => 0.1267345454428
404 => 0.13290935082989
405 => 0.12454643325564
406 => 0.13335260576808
407 => 0.13056467322279
408 => 0.12395453531068
409 => 0.12352892035754
410 => 0.1280053824969
411 => 0.13793374467849
412 => 0.13544680255856
413 => 0.13793781242488
414 => 0.13503191709804
415 => 0.13488761490225
416 => 0.13779667957494
417 => 0.14459386774753
418 => 0.14136477843552
419 => 0.13673508710157
420 => 0.14015357913658
421 => 0.13719216496935
422 => 0.13051927000295
423 => 0.13544490084079
424 => 0.13215127177341
425 => 0.13311252783422
426 => 0.1400352462435
427 => 0.13920228644925
428 => 0.14028021355301
429 => 0.13837770042915
430 => 0.13660045317268
501 => 0.13328308918837
502 => 0.13230098125668
503 => 0.13257240055646
504 => 0.13230084675475
505 => 0.13044481209368
506 => 0.13004400158534
507 => 0.12937596651152
508 => 0.12958301851456
509 => 0.12832691713523
510 => 0.13069743996182
511 => 0.13113742988741
512 => 0.1328624987154
513 => 0.13304160108382
514 => 0.13784589321496
515 => 0.13519976984198
516 => 0.13697501785588
517 => 0.13681622296423
518 => 0.12409779704292
519 => 0.12585028391926
520 => 0.12857660353816
521 => 0.12734840024528
522 => 0.12561200814446
523 => 0.1242097784236
524 => 0.12208525701114
525 => 0.12507548010136
526 => 0.12900730549022
527 => 0.13314131866418
528 => 0.13810806462143
529 => 0.13699954474307
530 => 0.13304846880331
531 => 0.1332257111837
601 => 0.134321353837
602 => 0.13290239705135
603 => 0.13248391899393
604 => 0.13426386137808
605 => 0.13427611886304
606 => 0.13264343759449
607 => 0.13082901114202
608 => 0.13082140862894
609 => 0.130498548967
610 => 0.13508935311466
611 => 0.13761383121322
612 => 0.13790325855882
613 => 0.13759435044682
614 => 0.13771323691901
615 => 0.13624429873653
616 => 0.13960185582158
617 => 0.1426830822308
618 => 0.14185724773233
619 => 0.14061920441983
620 => 0.13963304328917
621 => 0.1416249395106
622 => 0.14153624350739
623 => 0.14265617040612
624 => 0.14260536405298
625 => 0.14222877475952
626 => 0.14185726118152
627 => 0.14333027052431
628 => 0.14290606748939
629 => 0.14248120554999
630 => 0.14162907988742
701 => 0.14174489791727
702 => 0.1405070683704
703 => 0.1399343917828
704 => 0.13132270994845
705 => 0.12902138716749
706 => 0.12974543016212
707 => 0.12998380391572
708 => 0.12898226529222
709 => 0.13041821440416
710 => 0.13019442325611
711 => 0.13106506369972
712 => 0.13052112534937
713 => 0.130543448769
714 => 0.13214305547751
715 => 0.13260742811021
716 => 0.13237124444127
717 => 0.13253665938709
718 => 0.13634857699623
719 => 0.13580664421047
720 => 0.13551875321916
721 => 0.13559850099124
722 => 0.13657252766881
723 => 0.13684520195864
724 => 0.13568986183213
725 => 0.13623472691474
726 => 0.13855469328279
727 => 0.13936655021289
728 => 0.14195760782032
729 => 0.1408568804963
730 => 0.14287731313789
731 => 0.14908743426189
801 => 0.15404850872343
802 => 0.14948609962352
803 => 0.15859648108312
804 => 0.16569021985602
805 => 0.16541795034668
806 => 0.16418099291049
807 => 0.15610495991434
808 => 0.14867327394442
809 => 0.15489019482432
810 => 0.15490604303416
811 => 0.15437200401706
812 => 0.1510551335474
813 => 0.15425658411445
814 => 0.1545107036345
815 => 0.15436846427911
816 => 0.15182542746684
817 => 0.14794268028626
818 => 0.14870135979136
819 => 0.14994409229736
820 => 0.14759134040234
821 => 0.14683949361362
822 => 0.14823731983856
823 => 0.15274140718397
824 => 0.15188993556172
825 => 0.1518677001966
826 => 0.15551065687674
827 => 0.15290308609301
828 => 0.14871092916955
829 => 0.14765235425862
830 => 0.14389512646631
831 => 0.14649025708524
901 => 0.1465836512162
902 => 0.1451623246978
903 => 0.14882626198314
904 => 0.14879249815603
905 => 0.15227086130336
906 => 0.15892018522752
907 => 0.15695365294979
908 => 0.15466678986889
909 => 0.15491543529362
910 => 0.15764246189369
911 => 0.15599363935933
912 => 0.15658656743868
913 => 0.15764156442603
914 => 0.1582780703026
915 => 0.15482385189325
916 => 0.15401850834766
917 => 0.15237105809057
918 => 0.15194126906961
919 => 0.15328308292884
920 => 0.15292956238391
921 => 0.14657580180113
922 => 0.14591179846824
923 => 0.14593216250248
924 => 0.14426249455029
925 => 0.14171585015697
926 => 0.14840827957037
927 => 0.14787078382799
928 => 0.14727743012726
929 => 0.14735011256997
930 => 0.15025506935085
1001 => 0.1485700477141
1002 => 0.153049953905
1003 => 0.15212901987046
1004 => 0.15118446735293
1005 => 0.15105390142324
1006 => 0.15069032928943
1007 => 0.14944350516335
1008 => 0.14793789010859
1009 => 0.1469437526353
1010 => 0.13554784438869
1011 => 0.13766285867231
1012 => 0.140095989816
1013 => 0.14093589693664
1014 => 0.13949917768698
1015 => 0.14950023559623
1016 => 0.15132752524884
1017 => 0.14579254569993
1018 => 0.14475717701805
1019 => 0.14956811419464
1020 => 0.14666653096401
1021 => 0.1479731137151
1022 => 0.1451489964698
1023 => 0.15088738468081
1024 => 0.15084366777708
1025 => 0.14861130515561
1026 => 0.15049808275671
1027 => 0.15017020871721
1028 => 0.14764987681564
1029 => 0.15096728369753
1030 => 0.15096892908995
1031 => 0.14882032860255
1101 => 0.14631123362238
1102 => 0.1458626667021
1103 => 0.14552473178416
1104 => 0.14789000244107
1105 => 0.15001069671604
1106 => 0.15395678299708
1107 => 0.15494892284482
1108 => 0.15882131072108
1109 => 0.15651549228391
1110 => 0.15753763173176
1111 => 0.15864730869285
1112 => 0.15917932863502
1113 => 0.15831243068902
1114 => 0.16432784299928
1115 => 0.16483572810574
1116 => 0.16500601758874
1117 => 0.16297765440306
1118 => 0.16477931565626
1119 => 0.16393637802064
1120 => 0.16612946757371
1121 => 0.16647337201841
1122 => 0.1661820971885
1123 => 0.16629125788741
1124 => 0.16115816467206
1125 => 0.16089198670961
1126 => 0.15726263130462
1127 => 0.15874162045899
1128 => 0.15597672112468
1129 => 0.15685349918521
1130 => 0.15723997460004
1201 => 0.15703810177562
1202 => 0.15882524028673
1203 => 0.15730580746401
1204 => 0.15329577442698
1205 => 0.14928464885913
1206 => 0.14923429244502
1207 => 0.14817823388525
1208 => 0.14741489697332
1209 => 0.14756194274339
1210 => 0.1480801512166
1211 => 0.1473847777548
1212 => 0.1475331709392
1213 => 0.14999748653893
1214 => 0.15049168745776
1215 => 0.14881219963881
1216 => 0.1420688136968
1217 => 0.14041396987213
1218 => 0.14160343879633
1219 => 0.14103494926217
1220 => 0.11382621138105
1221 => 0.12021850075331
1222 => 0.11642041946995
1223 => 0.11817075006664
1224 => 0.11429389258471
1225 => 0.1161441321786
1226 => 0.11580246048554
1227 => 0.12608107263453
1228 => 0.12592058624359
1229 => 0.12599740258618
1230 => 0.12233075841039
1231 => 0.12817182214266
]
'min_raw' => 0.074570492786998
'max_raw' => 0.16647337201841
'avg_raw' => 0.1205219324027
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.07457'
'max' => '$0.166473'
'avg' => '$0.120521'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.011498618685317
'max_diff' => 0.025184588076824
'year' => 2035
]
10 => [
'items' => [
101 => 0.13104934017504
102 => 0.13051678816991
103 => 0.13065082003622
104 => 0.12834770850422
105 => 0.12601970174017
106 => 0.12343758396116
107 => 0.12823483963515
108 => 0.12770146669609
109 => 0.12892483231677
110 => 0.13203619553627
111 => 0.13249435558926
112 => 0.13311012734668
113 => 0.13288941700526
114 => 0.13814763276596
115 => 0.13751082814251
116 => 0.13904534406382
117 => 0.13588872838969
118 => 0.13231671812569
119 => 0.13299564049907
120 => 0.13293025481496
121 => 0.13209782001011
122 => 0.13134633508897
123 => 0.13009532442484
124 => 0.1340537072809
125 => 0.1338930041658
126 => 0.13649460080234
127 => 0.13603474332627
128 => 0.13296370255487
129 => 0.13307338537681
130 => 0.13381105506618
131 => 0.13636413828362
201 => 0.13712206720972
202 => 0.1367709643329
203 => 0.1376019987996
204 => 0.13825881455807
205 => 0.13768448474635
206 => 0.14581578372594
207 => 0.14243910147742
208 => 0.14408487291054
209 => 0.1444773796999
210 => 0.1434719818125
211 => 0.14369001661368
212 => 0.14402027992653
213 => 0.14602557409
214 => 0.1512880462115
215 => 0.15361875929124
216 => 0.16063082458703
217 => 0.15342522601506
218 => 0.15299767561553
219 => 0.15426076031939
220 => 0.15837758495051
221 => 0.16171388464035
222 => 0.16282072772322
223 => 0.16296701530861
224 => 0.16504352651361
225 => 0.16623374401167
226 => 0.16479138343565
227 => 0.16356913386893
228 => 0.15919118763211
229 => 0.15969794682978
301 => 0.16318901517276
302 => 0.16812035483012
303 => 0.17235195727458
304 => 0.17087019758477
305 => 0.18217497805874
306 => 0.18329580086685
307 => 0.18314093939531
308 => 0.18569434055298
309 => 0.18062635924611
310 => 0.17845969904991
311 => 0.16383339809838
312 => 0.1679427920667
313 => 0.17391603753589
314 => 0.17312545609952
315 => 0.16878752557448
316 => 0.17234866656529
317 => 0.17117124198655
318 => 0.17024255836991
319 => 0.17449703805191
320 => 0.16981906287716
321 => 0.17386937115506
322 => 0.16867480889358
323 => 0.17087696613822
324 => 0.1696269151798
325 => 0.17043585135038
326 => 0.16570682702646
327 => 0.16825849376107
328 => 0.1656006693012
329 => 0.16559940914635
330 => 0.16554073752409
331 => 0.16866765621453
401 => 0.16876962492076
402 => 0.16645882728401
403 => 0.16612580524312
404 => 0.16735716227224
405 => 0.16591556568405
406 => 0.16659007965436
407 => 0.16593599602508
408 => 0.16578874802301
409 => 0.1646154508904
410 => 0.1641099622252
411 => 0.16430817735566
412 => 0.16363156692848
413 => 0.16322388467204
414 => 0.16545963926207
415 => 0.1642651657747
416 => 0.16527656906896
417 => 0.16412394736588
418 => 0.16012845836959
419 => 0.1578306103963
420 => 0.15028350206436
421 => 0.15242385262514
422 => 0.15384290726129
423 => 0.15337390971251
424 => 0.15438149792525
425 => 0.15444335565822
426 => 0.15411577845911
427 => 0.15373648602778
428 => 0.1535518674484
429 => 0.15492786308396
430 => 0.15572667486429
501 => 0.15398532837853
502 => 0.15357735526094
503 => 0.15533795270042
504 => 0.15641191612144
505 => 0.16434145861433
506 => 0.16375401249438
507 => 0.16522838697499
508 => 0.16506239503459
509 => 0.16660777437655
510 => 0.16913381647462
511 => 0.16399766659677
512 => 0.16488912462087
513 => 0.16467055970013
514 => 0.16705679419392
515 => 0.16706424375755
516 => 0.16563357697727
517 => 0.16640916464877
518 => 0.16597625288767
519 => 0.16675858295152
520 => 0.16374616679329
521 => 0.16741496450378
522 => 0.16949493639352
523 => 0.16952381680523
524 => 0.17050970697329
525 => 0.17151142848295
526 => 0.17343414568918
527 => 0.17145780494362
528 => 0.16790256033526
529 => 0.16815923751261
530 => 0.16607479889955
531 => 0.16610983868922
601 => 0.16592279354584
602 => 0.16648413010122
603 => 0.16386934860051
604 => 0.16448303259237
605 => 0.16362387141003
606 => 0.16488725697225
607 => 0.16352806295242
608 => 0.16467045430151
609 => 0.1651634725369
610 => 0.16698272043944
611 => 0.16325935855803
612 => 0.1556671716324
613 => 0.15726314137054
614 => 0.15490257676712
615 => 0.15512105600847
616 => 0.15556241884671
617 => 0.15413181748304
618 => 0.1544047311398
619 => 0.15439498074351
620 => 0.15431095709593
621 => 0.1539388024288
622 => 0.15339910453289
623 => 0.15554909483993
624 => 0.1559144200884
625 => 0.15672649286154
626 => 0.15914267060018
627 => 0.15890123746669
628 => 0.15929502492437
629 => 0.15843538911528
630 => 0.15516093204816
701 => 0.15533875082079
702 => 0.1531213478767
703 => 0.15666978888286
704 => 0.15582947121547
705 => 0.15528771294871
706 => 0.15513988918627
707 => 0.15756205616218
708 => 0.15828680648419
709 => 0.1578351907197
710 => 0.15690891361099
711 => 0.15868763948895
712 => 0.15916355149547
713 => 0.15927009064277
714 => 0.16242165186166
715 => 0.15944622790543
716 => 0.16016244202487
717 => 0.16575014013236
718 => 0.1606828689985
719 => 0.16336711553174
720 => 0.16323573563208
721 => 0.16460890532853
722 => 0.16312309563715
723 => 0.163141514029
724 => 0.16436079569288
725 => 0.16264853449457
726 => 0.16222455454228
727 => 0.1616388292748
728 => 0.16291773896802
729 => 0.16368438748899
730 => 0.16986301152672
731 => 0.17385468443459
801 => 0.17368139538637
802 => 0.17526493290358
803 => 0.17455153474854
804 => 0.17224778392097
805 => 0.17618000567115
806 => 0.17493568617824
807 => 0.17503826636539
808 => 0.1750344483257
809 => 0.17586181200818
810 => 0.17527554901238
811 => 0.17411996446898
812 => 0.17488709541776
813 => 0.1771652000813
814 => 0.18423650685772
815 => 0.18819370381215
816 => 0.18399827863226
817 => 0.18689222674237
818 => 0.18515688909545
819 => 0.18484152662318
820 => 0.18665913989741
821 => 0.18847993466307
822 => 0.18836395790801
823 => 0.18704215440699
824 => 0.18629550114878
825 => 0.19194940976711
826 => 0.19611511332527
827 => 0.19583104026984
828 => 0.19708484635102
829 => 0.20076605978415
830 => 0.201102623806
831 => 0.20106022447508
901 => 0.20022601543009
902 => 0.20385064812097
903 => 0.20687438048105
904 => 0.20003292013879
905 => 0.20263805867583
906 => 0.20380758929743
907 => 0.20552480723404
908 => 0.20842204173224
909 => 0.21156920685078
910 => 0.21201425050545
911 => 0.21169847073516
912 => 0.20962283073914
913 => 0.21306649636534
914 => 0.21508371492527
915 => 0.21628492241448
916 => 0.21933098474525
917 => 0.20381481192039
918 => 0.19283169359113
919 => 0.19111652106586
920 => 0.19460439184182
921 => 0.19552411555019
922 => 0.19515337607658
923 => 0.18279087785557
924 => 0.19105143507121
925 => 0.19993910006786
926 => 0.20028051147654
927 => 0.20472986240618
928 => 0.20617875345392
929 => 0.20976106414204
930 => 0.20953698963314
1001 => 0.21040922527868
1002 => 0.21020871340879
1003 => 0.21684418961401
1004 => 0.22416410524612
1005 => 0.22391063984368
1006 => 0.22285831536626
1007 => 0.22442119666322
1008 => 0.23197613404539
1009 => 0.23128059647665
1010 => 0.23195625197893
1011 => 0.24086394893012
1012 => 0.25244522207178
1013 => 0.24706455795667
1014 => 0.25873905084208
1015 => 0.26608752527517
1016 => 0.27879595196075
1017 => 0.2772047943494
1018 => 0.28215209159935
1019 => 0.27435629014045
1020 => 0.2564555541994
1021 => 0.25362269421547
1022 => 0.25929415164275
1023 => 0.27323687631499
1024 => 0.25885504562487
1025 => 0.26176447124255
1026 => 0.26092655646893
1027 => 0.26088190755155
1028 => 0.26258597512758
1029 => 0.26011413623036
1030 => 0.25004341988776
1031 => 0.25465876984047
1101 => 0.25287656157642
1102 => 0.25485405451781
1103 => 0.26552576834238
1104 => 0.26080754927865
1105 => 0.25583728877201
1106 => 0.26207109843644
1107 => 0.27000888030867
1108 => 0.26951214818467
1109 => 0.26854828024619
1110 => 0.2739815533489
1111 => 0.28295572871493
1112 => 0.28538141225522
1113 => 0.28717200225373
1114 => 0.28741889436226
1115 => 0.28996203652271
1116 => 0.27628692017164
1117 => 0.29798968102269
1118 => 0.30173714829499
1119 => 0.3010327797644
1120 => 0.30519793192004
1121 => 0.30397243849614
1122 => 0.30219689079894
1123 => 0.30879954291889
1124 => 0.30123013506991
1125 => 0.29048631359024
1126 => 0.28459204063779
1127 => 0.29235409473901
1128 => 0.29709411032026
1129 => 0.30022695909786
1130 => 0.30117495724504
1201 => 0.27734848052591
1202 => 0.26450733105128
1203 => 0.27273836064044
1204 => 0.28278078481453
1205 => 0.2762311339983
1206 => 0.27648786791017
1207 => 0.26714978706417
1208 => 0.2836069977648
1209 => 0.28120932059265
1210 => 0.2936484740032
1211 => 0.29067977021133
1212 => 0.30082341693247
1213 => 0.29815225480017
1214 => 0.30924009946868
1215 => 0.31366334089836
1216 => 0.32109065168135
1217 => 0.32655421172791
1218 => 0.3297625186885
1219 => 0.32956990397264
1220 => 0.34228281452268
1221 => 0.33478645532658
1222 => 0.32536926142008
1223 => 0.32519893409318
1224 => 0.33007623226003
1225 => 0.34029771119633
1226 => 0.34294799196804
1227 => 0.34442913736148
1228 => 0.34216071163239
1229 => 0.33402395099394
1230 => 0.33051053900456
1231 => 0.33350406781285
]
'min_raw' => 0.12343758396116
'max_raw' => 0.34442913736148
'avg_raw' => 0.23393336066132
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.123437'
'max' => '$0.344429'
'avg' => '$0.233933'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.048867091174162
'max_diff' => 0.17795576534307
'year' => 2036
]
11 => [
'items' => [
101 => 0.32984323931718
102 => 0.33616285634777
103 => 0.34484104032814
104 => 0.34304902965345
105 => 0.34903945266568
106 => 0.35523891027245
107 => 0.36410441308519
108 => 0.36642218380907
109 => 0.3702533706787
110 => 0.37419692044687
111 => 0.37546348235077
112 => 0.37788174201637
113 => 0.37786899659425
114 => 0.38515658486421
115 => 0.3931950204038
116 => 0.39622934372978
117 => 0.40320660290431
118 => 0.39125829108025
119 => 0.40032122285111
120 => 0.40849621416833
121 => 0.39874965250461
122 => 0.41218301710044
123 => 0.41270460420704
124 => 0.42057995025992
125 => 0.41259677830157
126 => 0.4078563962759
127 => 0.42154170156423
128 => 0.42816358971018
129 => 0.4261690231099
130 => 0.41099027279793
131 => 0.40215558906914
201 => 0.37903351766767
202 => 0.40642261004186
203 => 0.41976303798656
204 => 0.41095572431237
205 => 0.41539762103879
206 => 0.43963116928828
207 => 0.44885773545563
208 => 0.44693867419139
209 => 0.44726296395461
210 => 0.45224145158449
211 => 0.47431880743861
212 => 0.46108954406172
213 => 0.47120282022231
214 => 0.47656686543175
215 => 0.48154928956377
216 => 0.46931403060685
217 => 0.45339613847554
218 => 0.4483542738499
219 => 0.41008001054065
220 => 0.4080876689187
221 => 0.40696930719217
222 => 0.39991819470182
223 => 0.39437795174666
224 => 0.38997214485268
225 => 0.37840999187757
226 => 0.38231187909611
227 => 0.36388422046267
228 => 0.37567358342022
301 => 0.34626259528986
302 => 0.37075694015706
303 => 0.35742578186704
304 => 0.36637729611844
305 => 0.3663460651285
306 => 0.34986348931151
307 => 0.34035668356285
308 => 0.34641479019631
309 => 0.35290956140048
310 => 0.35396331617732
311 => 0.36238395657441
312 => 0.36473397630817
313 => 0.35761330680293
314 => 0.34565311793303
315 => 0.34843119702464
316 => 0.34030038587873
317 => 0.32605145209264
318 => 0.33628528510032
319 => 0.33977956563902
320 => 0.34132283898968
321 => 0.32731064911217
322 => 0.32290771483321
323 => 0.32056362956729
324 => 0.34384432017739
325 => 0.3451196889622
326 => 0.33859472194014
327 => 0.36808819160259
328 => 0.36141291106999
329 => 0.36887083490834
330 => 0.34817911546553
331 => 0.34896956701334
401 => 0.3391737754296
402 => 0.34465876416146
403 => 0.34078215091522
404 => 0.34421563127564
405 => 0.34627364524691
406 => 0.35606782943764
407 => 0.3708687740079
408 => 0.35460490492681
409 => 0.34751850426528
410 => 0.35191486738026
411 => 0.36362296170141
412 => 0.38136132392428
413 => 0.37085985647053
414 => 0.37552022940003
415 => 0.37653831355956
416 => 0.36879492024462
417 => 0.38164683388087
418 => 0.38853427880729
419 => 0.39559937214588
420 => 0.40173379473237
421 => 0.39277741850172
422 => 0.40236202491462
423 => 0.39463852405661
424 => 0.38770974534613
425 => 0.38772025344336
426 => 0.38337372934498
427 => 0.37495179120707
428 => 0.37339865659873
429 => 0.38147825897061
430 => 0.38795733493166
501 => 0.38849098266049
502 => 0.39207813201947
503 => 0.39420097005954
504 => 0.41500766871058
505 => 0.42337629503007
506 => 0.43360929288355
507 => 0.43759562224764
508 => 0.44959304445537
509 => 0.43990415163964
510 => 0.43780789873296
511 => 0.40870607678389
512 => 0.41347149849774
513 => 0.42110139845641
514 => 0.40883189102394
515 => 0.41661406943853
516 => 0.41815043630664
517 => 0.40841497785637
518 => 0.41361510685899
519 => 0.39980510595884
520 => 0.37116979428915
521 => 0.38167871316859
522 => 0.38941681472771
523 => 0.37837358970181
524 => 0.39816814312891
525 => 0.38660457365932
526 => 0.38293947728668
527 => 0.36864062963583
528 => 0.37538913531391
529 => 0.38451658587281
530 => 0.37887688260743
531 => 0.39058011368881
601 => 0.40715501003775
602 => 0.41896726822816
603 => 0.41987406673862
604 => 0.41227957608203
605 => 0.42444979582661
606 => 0.42453844259092
607 => 0.41081038500222
608 => 0.40240202616729
609 => 0.40049162934865
610 => 0.40526417515696
611 => 0.41105892682881
612 => 0.42019563512699
613 => 0.42571675659654
614 => 0.44011291321259
615 => 0.44400810042273
616 => 0.44828773021971
617 => 0.45400663541742
618 => 0.46087364740448
619 => 0.44584901611602
620 => 0.44644597272653
621 => 0.43245524410089
622 => 0.41750414409097
623 => 0.42885016531758
624 => 0.44368357877341
625 => 0.44028077733718
626 => 0.43989789266268
627 => 0.44054179848184
628 => 0.43797619732402
629 => 0.42637207837284
630 => 0.42054456248118
701 => 0.42806354473928
702 => 0.43205954917806
703 => 0.4382570035744
704 => 0.43749303650766
705 => 0.45345701347461
706 => 0.45966013219837
707 => 0.45807310898241
708 => 0.458365159448
709 => 0.46959560959778
710 => 0.48208617988257
711 => 0.4937852472302
712 => 0.50568604102284
713 => 0.49133916960993
714 => 0.48405471309846
715 => 0.49157041280412
716 => 0.48758247674917
717 => 0.51049834021961
718 => 0.51208498488646
719 => 0.53499919127915
720 => 0.55674750171875
721 => 0.54308777759309
722 => 0.5559682821961
723 => 0.5698995980872
724 => 0.59677536671569
725 => 0.58772455334255
726 => 0.58079177214306
727 => 0.5742403274085
728 => 0.58787284388856
729 => 0.6054108585554
730 => 0.60918837893762
731 => 0.61530940508067
801 => 0.60887389453472
802 => 0.61662475813908
803 => 0.64398871256452
804 => 0.63659473053046
805 => 0.62609408740017
806 => 0.64769530135693
807 => 0.65551269671529
808 => 0.710379271342
809 => 0.77965058823336
810 => 0.75097180818035
811 => 0.73316996394299
812 => 0.73735381960416
813 => 0.76264935955083
814 => 0.77077348414139
815 => 0.74868931295056
816 => 0.75648981556209
817 => 0.79947135188015
818 => 0.82252956710201
819 => 0.79121341369927
820 => 0.70481338847776
821 => 0.62514861937631
822 => 0.64627930349332
823 => 0.64388373967592
824 => 0.69006203839382
825 => 0.6364183865043
826 => 0.6373216080253
827 => 0.68445482505702
828 => 0.67188049082087
829 => 0.65151167975735
830 => 0.62529733423855
831 => 0.57683769201358
901 => 0.53391563549783
902 => 0.61809567268449
903 => 0.61446567640953
904 => 0.60920890386809
905 => 0.62090728231687
906 => 0.67771128742147
907 => 0.67640177124719
908 => 0.66807129746743
909 => 0.67438988840795
910 => 0.65040400021553
911 => 0.65658570975124
912 => 0.62513600006986
913 => 0.63935258230174
914 => 0.6514679774369
915 => 0.65390032238177
916 => 0.65938051974119
917 => 0.61255283332094
918 => 0.63357708973499
919 => 0.64592687067182
920 => 0.59013011111033
921 => 0.64482394813555
922 => 0.61173766748256
923 => 0.60050768688968
924 => 0.61562737632055
925 => 0.60973521864496
926 => 0.60466948747459
927 => 0.60184272244122
928 => 0.61294495366003
929 => 0.61242702130363
930 => 0.59426161617944
1001 => 0.57056558571157
1002 => 0.57851875133228
1003 => 0.57562929170095
1004 => 0.56515751724931
1005 => 0.57221422886285
1006 => 0.54114004223686
1007 => 0.48767851924252
1008 => 0.52299683890332
1009 => 0.52163712201532
1010 => 0.52095149110213
1011 => 0.54749223220056
1012 => 0.54494095234303
1013 => 0.5403103544194
1014 => 0.56507247268709
1015 => 0.55603396642189
1016 => 0.58388851299132
1017 => 0.60223531888107
1018 => 0.59758197545043
1019 => 0.61483723506755
1020 => 0.57870197620504
1021 => 0.59070465970421
1022 => 0.59317839613839
1023 => 0.56476691199139
1024 => 0.54535837327993
1025 => 0.54406404502142
1026 => 0.51041231355714
1027 => 0.52838879687807
1028 => 0.54420735828307
1029 => 0.53663149494003
1030 => 0.5342332029281
1031 => 0.54648555669096
1101 => 0.54743766951265
1102 => 0.52572939627778
1103 => 0.53024323369491
1104 => 0.54906668608741
1105 => 0.52976893099063
1106 => 0.49227654510797
1107 => 0.48297791503629
1108 => 0.48173730637697
1109 => 0.4565186841389
1110 => 0.48359929396081
1111 => 0.47177788205832
1112 => 0.50912158061601
1113 => 0.48779106027813
1114 => 0.48687154417914
1115 => 0.48548156073182
1116 => 0.46377485080335
1117 => 0.4685272407443
1118 => 0.48432490871746
1119 => 0.48996169462374
1120 => 0.48937373167289
1121 => 0.484247491526
1122 => 0.48659425801465
1123 => 0.47903450548706
1124 => 0.47636499952693
1125 => 0.46793930441128
1126 => 0.45555586024896
1127 => 0.45727785411181
1128 => 0.43274301092183
1129 => 0.41937512618925
1130 => 0.41567507188116
1201 => 0.41072720462447
1202 => 0.41623394665358
1203 => 0.43267350679372
1204 => 0.41284390941746
1205 => 0.37884745560041
1206 => 0.38089070040195
1207 => 0.38548126482619
1208 => 0.37692677839124
1209 => 0.36883067490418
1210 => 0.37586958002854
1211 => 0.36146483437892
1212 => 0.38722200951846
1213 => 0.38652535011459
1214 => 0.39612603219358
1215 => 0.40212953572341
1216 => 0.38829340374451
1217 => 0.3848136539687
1218 => 0.38679587758681
1219 => 0.35403413663707
1220 => 0.39344869900728
1221 => 0.39378955777938
1222 => 0.39087091803128
1223 => 0.41185795570532
1224 => 0.45614715121877
1225 => 0.43948377433785
1226 => 0.43303121115632
1227 => 0.42076488383145
1228 => 0.43710903668939
1229 => 0.43585406075841
1230 => 0.43017858366299
1231 => 0.42674603740712
]
'min_raw' => 0.32056362956729
'max_raw' => 0.82252956710201
'avg_raw' => 0.57154659833465
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.320563'
'max' => '$0.822529'
'avg' => '$0.571546'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.19712604560613
'max_diff' => 0.47810042974053
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.010062126032263
]
1 => [
'year' => 2028
'avg' => 0.017269529327421
]
2 => [
'year' => 2029
'avg' => 0.047177241592686
]
3 => [
'year' => 2030
'avg' => 0.036397171630301
]
4 => [
'year' => 2031
'avg' => 0.035746533192778
]
5 => [
'year' => 2032
'avg' => 0.06267492253496
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.010062126032263
'min' => '$0.010062'
'max_raw' => 0.06267492253496
'max' => '$0.062674'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.06267492253496
]
1 => [
'year' => 2033
'avg' => 0.1612063455462
]
2 => [
'year' => 2034
'avg' => 0.10218032902163
]
3 => [
'year' => 2035
'avg' => 0.1205219324027
]
4 => [
'year' => 2036
'avg' => 0.23393336066132
]
5 => [
'year' => 2037
'avg' => 0.57154659833465
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.06267492253496
'min' => '$0.062674'
'max_raw' => 0.57154659833465
'max' => '$0.571546'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.57154659833465
]
]
]
]
'prediction_2025_max_price' => '$0.0172044'
'last_price' => 0.01668184
'sma_50day_nextmonth' => '$0.016626'
'sma_200day_nextmonth' => '$0.031429'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'augmenter'
'sma_200day_date_nextmonth' => '4 févr. 2026'
'sma_50day_date_nextmonth' => '4 févr. 2026'
'daily_sma3' => '$0.016735'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.01680079'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.017726'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.01868'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.01874'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.02789'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.0375018'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.016757'
'daily_ema3_action' => 'SELL'
'daily_ema5' => '$0.016953'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.017495'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.018252'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.020659'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.026577'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.047047'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.029141'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.068856'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.017396'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.018266'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.021567'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.03223'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.07832'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.055593'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.027796'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '36.63'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => -1.62
'stoch_rsi_14_action' => 'BUY'
'momentum_10' => -0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.017712'
'vwma_10_action' => 'SELL'
'hma_9' => '0.016342'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 0.53
'stochastic_fast_14_action' => 'BUY'
'cci_20' => -108.23
'cci_20_action' => 'BUY'
'adx_14' => 19.36
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.002142'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => -0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -99.47
'williams_percent_r_14_action' => 'BUY'
'ultimate_oscillator' => 15.3
'ultimate_oscillator_action' => 'BUY'
'ichimoku_cloud' => '-0.013089'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 29
'buy_signals' => 2
'sell_pct' => 93.55
'buy_pct' => 6.45
'overall_action' => 'bearish'
'overall_action_label' => 'Baissier'
'overall_action_dir' => -1
'last_updated' => 1767703165
'last_updated_date' => '6 janvier 2026'
]
Prévision du prix de PinGo pour 2026
La prévision du prix de PinGo pour 2026 suggère que le prix moyen pourrait varier entre $0.005763 à la baisse et $0.0172044 à la hausse. Sur le marché des cryptomonnaies, comparé au prix moyen d'aujourd'hui, PinGo pourrait potentiellement gagner 3.13% d'ici 2026 si PINGO atteint l'objectif de prix prévu.
Prévision du prix de PinGo de 2027 à 2032
La prévision du prix de PINGO pour 2027-2032 se situe actuellement dans une fourchette de prix comprise entre $0.010062 à la baisse et $0.062674 à la hausse. Compte tenu de la volatilité des prix sur le marché, si PinGo atteint l'objectif de prix le plus élevé, il pourrait gagner 275.71% d'ici 2032 par rapport au prix actuel.
| Prévision du Prix de PinGo | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2027 | $0.005548 | $0.010062 | $0.014575 |
| 2028 | $0.010013 | $0.017269 | $0.024525 |
| 2029 | $0.021996 | $0.047177 | $0.072358 |
| 2030 | $0.0187069 | $0.036397 | $0.054087 |
| 2031 | $0.022117 | $0.035746 | $0.049375 |
| 2032 | $0.03376 | $0.062674 | $0.091589 |
Prévision du prix de PinGo de 2032 à 2037
La prévision du prix de PinGo pour 2032-2037 est actuellement estimée entre $0.062674 à la baisse et $0.571546 à la hausse. Par rapport au prix actuel, PinGo pourrait potentiellement gagner 3326.16% d'ici 2037 s'il atteint l'objectif de prix le plus élevé. Veuillez noter que ces informations sont à titre général seulement et ne doivent pas être considérées comme un conseil en investissement à long terme.
| Prévision du Prix de PinGo | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2032 | $0.03376 | $0.062674 | $0.091589 |
| 2033 | $0.078452 | $0.1612063 | $0.24396 |
| 2034 | $0.063071 | $0.10218 | $0.141288 |
| 2035 | $0.07457 | $0.120521 | $0.166473 |
| 2036 | $0.123437 | $0.233933 | $0.344429 |
| 2037 | $0.320563 | $0.571546 | $0.822529 |
PinGo Histogramme des prix potentiels
Prévision du prix de PinGo basée sur l'analyse technique
Au 6 janvier 2026, le sentiment global de prévision du prix pour PinGo est Baissier, avec 2 indicateurs techniques montrant des signaux haussiers et 29 indiquant des signaux baissiers. La prévision du prix de PINGO a été mise à jour pour la dernière fois le 6 janvier 2026.
Moyennes Mobiles Simples sur 50 et 200 jours de PinGo et Indice de Force Relative sur 14 jours - RSI (14)
Selon nos indicateurs techniques, le SMA sur 200 jours de PinGo devrait augmenter au cours du prochain mois, atteignant $0.031429 d'ici le 4 févr. 2026. Le SMA à court terme sur 50 jours pour PinGo devrait atteindre $0.016626 d'ici le 4 févr. 2026.
Le Relative Strength Index (RSI), un oscillateur de momentum, est un outil couramment utilisé pour identifier si une cryptomonnaie est survendue (en dessous de 30) ou surachetée (au-dessus de 70). Actuellement, le RSI est à 36.63, ce qui suggère que le marché de PINGO est dans un état NEUTRAL.
Moyennes Mobiles et Oscillateurs Populaires de PINGO pour le Samedi 19 Octobre 2024
Les moyennes mobiles (MA) sont des indicateurs largement utilisés sur les marchés financiers, conçus pour lisser les mouvements de prix sur une période donnée. En tant qu'indicateurs retardés, ils sont basés sur des données historiques de prix. Le tableau ci-dessous met en évidence deux types : la moyenne mobile simple (SMA) et la moyenne mobile exponentielle (EMA).
Moyenne Mobile Simple Quotidienne (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 3 | $0.016735 | SELL |
| SMA 5 | $0.01680079 | SELL |
| SMA 10 | $0.017726 | SELL |
| SMA 21 | $0.01868 | SELL |
| SMA 50 | $0.01874 | SELL |
| SMA 100 | $0.02789 | SELL |
| SMA 200 | $0.0375018 | SELL |
Moyenne Mobile Exponentielle Quotidienne (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 3 | $0.016757 | SELL |
| EMA 5 | $0.016953 | SELL |
| EMA 10 | $0.017495 | SELL |
| EMA 21 | $0.018252 | SELL |
| EMA 50 | $0.020659 | SELL |
| EMA 100 | $0.026577 | SELL |
| EMA 200 | $0.047047 | SELL |
Moyenne Mobile Simple Hebdomadaire (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 21 | $0.029141 | SELL |
| SMA 50 | $0.068856 | SELL |
| SMA 100 | — | — |
| SMA 200 | — | — |
Moyenne Mobile Exponentielle Hebdomadaire (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 21 | $0.03223 | SELL |
| EMA 50 | $0.07832 | SELL |
| EMA 100 | $0.055593 | SELL |
| EMA 200 | $0.027796 | SELL |
Oscillateurs de PinGo
Un oscillateur est un outil d'analyse technique qui établit des limites hautes et basses entre deux extrêmes, créant un indicateur de tendance qui fluctue à l'intérieur de ces limites. Les traders utilisent cet indicateur pour identifier les conditions de surachat ou de survente à court terme.
| Période | Valeur | Action |
|---|---|---|
| RSI (14) | 36.63 | NEUTRAL |
| Stoch RSI (14) | -1.62 | BUY |
| Stochastique Rapide (14) | 0.53 | BUY |
| Indice de Canal des Matières Premières (20) | -108.23 | BUY |
| Indice Directionnel Moyen (14) | 19.36 | NEUTRAL |
| Oscillateur Impressionnant (5, 34) | -0.002142 | NEUTRAL |
| Momentum (10) | -0 | SELL |
| MACD (12, 26) | -0 | NEUTRAL |
| Plage de Pourcentage de Williams (14) | -99.47 | BUY |
| Oscillateur Ultime (7, 14, 28) | 15.3 | BUY |
| VWMA (10) | 0.017712 | SELL |
| Moyenne Mobile de Hull (9) | 0.016342 | BUY |
| Nuage Ichimoku B/L (9, 26, 52, 26) | -0.013089 | SELL |
Prévision du cours de PinGo basée sur les flux monétaires mondiaux
Définitions des flux monétaires mondiaux utilisés pour la prédiction du cours de PinGo
M0 : le total de toutes les devises physiques, plus les comptes à la banque centrale qui peuvent être échangés contre des devises physiques.
M1 : M0 plus le montant des comptes à vue, y compris les comptes de "chèques" et les comptes "courants".
M2 : M1 plus la plupart des comptes d'épargne, comptes du marché monétaire et comptes de certificats de dépôt (CD) de moins de 100 000 $.
Prédictions du cours de PinGo par des sociétés Internet ou des niches technologiques
| Comparaison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Action Facebook | $0.02344 | $0.032938 | $0.046283 | $0.065036 | $0.091386 | $0.128413 |
| Action Amazon.com | $0.0348076 | $0.072628 | $0.151543 | $0.3162037 | $0.659777 | $1.37 |
| Action Apple | $0.023661 | $0.033562 | $0.047606 | $0.067525 | $0.095779 | $0.135856 |
| Action Netflix | $0.026321 | $0.04153 | $0.065529 | $0.103394 | $0.163141 | $0.257411 |
| Action Google | $0.0216029 | $0.027975 | $0.036228 | $0.046915 | $0.060755 | $0.078678 |
| Action Tesla | $0.037816 | $0.085727 | $0.194336 | $0.440546 | $0.998686 | $2.26 |
| Action Kodak | $0.0125096 | $0.00938 | $0.007034 | $0.005275 | $0.003955 | $0.002966 |
| Action Nokia | $0.011051 | $0.00732 | $0.004849 | $0.003212 | $0.002128 | $0.0014099 |
Ce calcul montre la valeur potentielle des cryptomonnaies si l'on suppose que leur capitalisation se comportera comme celle de certaines sociétés Internet ou niches technologiques. En extrapolant les données, vous pourrez obtenir une potentielle image des cours futurs pour 2024, 2025, 2026, 2027, 2028, 2029 et 2030.
Aperçu des prévisions relatives à PinGo
Vous vous posez peut-être des questions telles que : "Devrais-je investir dans PinGo maintenant ?", "Devrais-je acheter PINGO aujourd'hui ?", " PinGo sera-t-il un bon ou un mauvais investissement à court ou à long terme ?".
Nous mettons régulièrement à jour les prévisions de PinGo avec de nouvelles valeurs. Regardez nos prévisions similaires. Nous faisons une prévision des cours futurs pour une grande quantité de devises numériques comme PinGo en utilisant des méthodes d'analyse technique.
Si vous souhaitez trouver des cryptomonnaies ayant un bon rendement, vous devriez consulter un maximum d'informations disponibles à propos de PinGo afin de prendre une décision responsable concernant cet investissement.
Le cours de PinGo est de $0.01668 USD actuellement, mais ce cours peut subir une hausse ou une baisse, ce qui pourrait causer la perte de votre investissement, car les cryptomonnaies sont des actifs à haut risque.
Prévision du cours de PinGo basée sur le modèle de croissance du Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si PinGo présente 1 % de la précédente croissance annuelle moyenne du Bitcoin | $0.017115 | $0.01756 | $0.018016 | $0.018485 |
| Si PinGo présente 2 % de la précédente croissance annuelle moyenne du Bitcoin | $0.017549 | $0.018461 | $0.019421 | $0.02043 |
| Si PinGo présente 5 % de la précédente croissance annuelle moyenne du Bitcoin | $0.018849 | $0.021299 | $0.024068 | $0.027196 |
| Si PinGo présente 10 % de la précédente croissance annuelle moyenne du Bitcoin | $0.021017 | $0.026481 | $0.033364 | $0.042037 |
| Si PinGo présente 20 % de la précédente croissance annuelle moyenne du Bitcoin | $0.025354 | $0.038534 | $0.058567 | $0.089014 |
| Si PinGo présente 50 % de la précédente croissance annuelle moyenne du Bitcoin | $0.038362 | $0.08822 | $0.202878 | $0.46655 |
| Si PinGo présente 100 % de la précédente croissance annuelle moyenne du Bitcoin | $0.060043 | $0.216115 | $0.777867 | $2.79 |
Boîte à questions
Est-ce que PINGO est un bon investissement ?
La décision d'acquérir PinGo dépend entièrement de votre tolérance individuelle au risque. Comme vous pouvez le discerner, la valeur de PinGo a connu une baisse de -1.9179% au cours des 24 heures précédentes, et PinGo a enregistré une déclin de sur une période de 30 jours précédents. Par conséquent, la détermination de si investir ou non dans PinGo dépendra de la mesure dans laquelle cet investissement s'aligne avec vos aspirations de trading.
Est-ce que PinGo peut monter ?
Il semble que la valeur moyenne de PinGo pourrait potentiellement s'envoler jusqu'à $0.0172044 pour la fin de cette année. En regardant les perspectives de PinGo sur une période de cinq ans plus longue, la monnaie numérique pourrait potentiellement croître jusqu'à $0.054087. Cependant, compte tenu de l'imprévisibilité du marché, il est essentiel de mener des recherches approfondies avant d'investir des fonds dans un projet, un réseau ou un actif particulier.
Quel sera le prix de PinGo la semaine prochaine ?
Basé sur notre nouveau pronostic expérimental de PinGo, le prix de PinGo va augmenter de 0.86% durant la prochaine semaine et atteindre $0.016824 d'ici 13 janvier 2026.
Quel sera le prix de PinGo le mois prochain ?
Basé sur notre nouveau pronostic expérimental de PinGo, le prix de PinGo va diminuer de -11.62% durant le prochain mois et atteindre $0.014743 d'ici 5 février 2026.
Jusqu'où le prix de PinGo peut-il monter cette année en 2026 ?
Selon notre prédiction la plus récente sur la valeur de PinGo en 2026, PINGO devrait fluctuer dans la fourchette de $0.005763 et $0.0172044. Cependant, il est crucial de garder à l'esprit que le marché des cryptomonnaies est exceptionnellement instable, et cette prévision de prix de PinGo ne prend pas en compte les fluctuations de prix soudaines et extrêmes.
Où sera PinGo dans 5 ans ?
L'avenir de PinGo semble suivre une tendance haussière, avec un prix maximum de $0.054087 prévue après une période de cinq ans. Selon la prévision de PinGo pour 2030, la valeur de PinGo pourrait potentiellement atteindre son point le plus élevé d'environ $0.054087, tandis que son point le plus bas devrait être autour de $0.0187069.
Combien vaudra PinGo en 2026 ?
Basé sur notre nouvelle simulation expérimentale de prédiction de prix de PinGo, il est attendu que la valeur de PINGO en 2026 augmente de 3.13% jusqu'à $0.0172044 si le meilleur scénario se produit. Le prix sera entre $0.0172044 et $0.005763 durant 2026.
Combien vaudra PinGo en 2027 ?
Selon notre dernière simulation expérimentale pour la prédiction de prix de PinGo, le valeur de PINGO pourrait diminuer de -12.62% jusqu'à $0.014575 en 2027, en supposant les conditions les plus favorables. Il est prévu que le prix fluctue entre $0.014575 et $0.005548 tout au long de l'année.
Combien vaudra PinGo en 2028 ?
Notre nouveau modèle expérimental de prédiction de prix de PinGo suggère que la valeur de PINGO en 2028 pourrait augmenter de 47.02%, atteignant $0.024525 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.024525 et $0.010013 durant l'année.
Combien vaudra PinGo en 2029 ?
Basé sur notre modèle de prévision expérimental, la valeur de PinGo pourrait connaître un 333.75% croissance en 2029, atteignant potentiellement $0.072358 sous des conditions optimales. Le range de prix prévu pour 2029 se situe entre $0.072358 et $0.021996.
Combien vaudra PinGo en 2030 ?
En utilisant notre nouvelle simulation expérimentale pour les prédictions de prix de PinGo, il est prévu que la valeur de PINGO en 2030 augmente de 224.23%, atteignant $0.054087 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.054087 et $0.0187069 au cours de 2030.
Combien vaudra PinGo en 2031 ?
Notre simulation expérimentale indique que le prix de PinGo pourrait augmenter de 195.98% en 2031, atteignant potentiellement $0.049375 dans des conditions idéales. Il est probable que le prix fluctue entre $0.049375 et $0.022117 durant l'année.
Combien vaudra PinGo en 2032 ?
Basé sur les résultats de notre dernière prédiction expérimentale de prix de PinGo, PINGO pourrait connaître une 449.04% hausse en valeur, atteignant $0.091589 si le scénario le plus positif se réalise en 2032. Il est prévu que le prix reste dans une fourchette de $0.091589 et $0.03376 tout au long de l'année.
Combien vaudra PinGo en 2033 ?
Selon notre prédiction expérimentale de prix de PinGo, la valeur de PINGO est anticipée à augmenter de 1362.43% en 2033, avec le prix potentiel le plus élevé étant $0.24396. Tout au long de l'année, le prix de PINGO pourrait osciller entre $0.24396 et $0.078452.
Combien vaudra PinGo en 2034 ?
Les résultats de notre nouvelle simulation de prédiction de prix de PinGo suggèrent que PINGO pourrait augmenter de 746.96% en 2034, atteignant potentiellement $0.141288 dans les meilleures circonstances. La fourchette de prix prévue pour l'année est entre $0.141288 et $0.063071.
Combien vaudra PinGo en 2035 ?
Basé sur notre prédiction expérimentale pour le prix de PinGo, PINGO pourrait augmenter de 897.93%, avec la valeur potentiellement atteignant $0.166473 en 2035. La fourchette de prix attendue pour l'année se situe entre $0.166473 et $0.07457.
Combien vaudra PinGo en 2036 ?
Notre récente simulation de prédiction de prix de PinGo suggère que la valeur de PINGO pourrait augmenter de 1964.7% en 2036, pouvant atteindre $0.344429 si les conditions sont optimales. La fourchette de prix attendue pour 2036 est entre $0.344429 et $0.123437.
Combien vaudra PinGo en 2037 ?
Selon la simulation expérimentale, la valeur de PinGo pourrait augmenter de 4830.69% en 2037, avec un maximum de $0.822529 sous des conditions favorables. Il est prévu que le prix chute entre $0.822529 et $0.320563 au cours de l'année.
Prévisions liées
Comment lire et prédire les mouvements de prix de PinGo ?
Les traders de PinGo utilisent des indicateurs et des modèles graphiques pour prédire la direction du marché. Ils identifient également des niveaux clés de support et de résistance pour évaluer quand une tendance baissière pourrait ralentir ou une tendance haussière pourrait s'arrêter.
Indicateurs de prédiction du prix de PinGo
Les moyennes mobiles sont des outils populaires pour la prédiction du prix de PinGo. Une moyenne mobile simple (SMA) calcule le prix de clôture moyen de PINGO sur une période spécifique, comme une SMA de 12 jours. Une moyenne mobile exponentielle (EMA) donne plus de poids aux prix récents, réagissant plus rapidement aux changements de prix.
Les moyennes mobiles couramment utilisées sur le marché des cryptomonnaies incluent les moyennes sur 50 jours, 100 jours et 200 jours, qui aident à identifier les niveaux clés de résistance et de support. Un mouvement de prix de PINGO au-dessus de ces moyennes est considéré comme haussier, tandis qu'une chute en dessous indique une faiblesse.
Les traders utilisent également le RSI et les niveaux de retracement de Fibonacci pour évaluer la direction future de PINGO.
Comment lire les graphiques de PinGo et prédire les mouvements de prix ?
La plupart des traders préfèrent les graphiques en chandeliers aux simples graphiques linéaires parce qu'ils fournissent des informations plus détaillées. Les chandeliers peuvent représenter l'action des prix de PinGo dans différentes périodes, comme 5 minutes pour les tendances à court terme et hebdomadaire pour les tendances à long terme. Les options populaires incluent les graphiques de 1 heure, 4 heures et 1 jour.
Par exemple, un graphique en chandeliers de 1 heure montre les prix d'ouverture, de clôture, les plus hauts et les plus bas de PINGO au sein de chaque heure. La couleur du chandelier est cruciale : le vert indique que le prix a clôturé plus haut qu'il n'a ouvert, tandis que le rouge signifie le contraire. Certains graphiques utilisent des chandeliers creux et pleins pour transmettre la même information.
Qu'est-ce qui affecte le prix de PinGo ?
L'action du prix de PinGo est déterminée par l'offre et la demande, influencée par des facteurs tels que les réductions de récompenses de bloc, les hard forks et les mises à jour de protocole. Les événements du monde réel, tels que les réglementations, l'adoption par les entreprises et les gouvernements et les piratages d'échanges de cryptomonnaies, impactent également le prix de PINGO. La capitalisation boursière de PinGo peut changer rapidement.
Les traders surveillent souvent l'activité des « baleines » de PINGO, de grands détenteurs de PinGo, car leurs actions peuvent influencer significativement les mouvements de prix sur le marché relativement petit de PinGo.
Modèles de prédiction de prix haussiers et baissiers
Les traders identifient souvent des modèles de chandeliers pour obtenir un avantage dans les prédictions de prix des cryptomonnaies. Certaines formations indiquent des tendances haussières, tandis que d'autres suggèrent des mouvements baissiers.
Modèles de chandeliers haussiers couramment suivis :
- Marteau
- Englobante haussière
- Ligne pénétrante
- Étoile du matin
- Trois soldats blancs
Modèles de chandeliers baissiers courants :
- Harami baissier
- Nuage sombre
- Étoile du soir
- Étoile filante
- Pendu


