Prédiction du prix de PinGo jusqu'à $0.017256 d'ici 2026
| Année | Prix min. | Prix max. |
|---|---|---|
| 2026 | $0.00578 | $0.017256 |
| 2027 | $0.005565 | $0.014619 |
| 2028 | $0.010043 | $0.024599 |
| 2029 | $0.022062 | $0.072576 |
| 2030 | $0.018763 | $0.05425 |
| 2031 | $0.022184 | $0.049524 |
| 2032 | $0.033862 | $0.091865 |
| 2033 | $0.078689 | $0.244696 |
| 2034 | $0.063262 | $0.141715 |
| 2035 | $0.074795 | $0.166975 |
Calculateur de profit d’investissement
Si vous ouvrez une position short de $10,000.00 sur PinGo aujourd’hui et la fermez le Apr 06, 2026, notre prévision indique que vous pourriez gagner environ $3,954.77, soit un rendement de 39.55% sur les 90 prochains jours.
Prévision du prix à long terme de PinGo pour 2027, 2028, 2029, 2030, 2031, 2032 et 2037
[
'name' => 'PinGo'
'name_with_ticker' => 'PinGo <small>PINGO</small>'
'name_lang' => 'PinGo'
'name_lang_with_ticker' => 'PinGo <small>PINGO</small>'
'name_with_lang' => 'PinGo'
'name_with_lang_with_ticker' => 'PinGo <small>PINGO</small>'
'image' => '/uploads/coins/pingo.png?1732819319'
'price_for_sd' => 0.01673
'ticker' => 'PINGO'
'marketcap' => '$3.1M'
'low24h' => '$0.01602'
'high24h' => '$0.01716'
'volume24h' => '$48.33K'
'current_supply' => '185.03M'
'max_supply' => '1B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.01673'
'change_24h_pct' => '-1.6251%'
'ath_price' => '$0.4024'
'ath_days' => 365
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '6 janv. 2025'
'ath_pct' => '-95.85%'
'fdv' => '$16.73M'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.825012'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.016875'
'next_week_prediction_price_date' => '13 janvier 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.014788'
'next_month_prediction_price_date' => '5 février 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.00578'
'current_year_max_price_prediction' => '$0.017256'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.018763'
'grand_prediction_max_price' => '$0.05425'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.017049256199368
107 => 0.017112911933137
108 => 0.017256331551659
109 => 0.016030826614112
110 => 0.016581042352136
111 => 0.016904242549983
112 => 0.015444012297989
113 => 0.016875378492899
114 => 0.016009493299652
115 => 0.015715598859905
116 => 0.016111289005376
117 => 0.015957088170865
118 => 0.015824515348329
119 => 0.015750537435463
120 => 0.01604108860757
121 => 0.016027534048107
122 => 0.015552135936989
123 => 0.014931998480741
124 => 0.015140136966376
125 => 0.015064518303236
126 => 0.014790466513015
127 => 0.014975144330485
128 => 0.014161916685654
129 => 0.012762800790618
130 => 0.013687099606958
131 => 0.013651515107972
201 => 0.013633571789955
202 => 0.014328156804692
203 => 0.014261388482328
204 => 0.014140203323439
205 => 0.014788240852538
206 => 0.014551698437082
207 => 0.015280666425114
208 => 0.015760811888725
209 => 0.015639031468075
210 => 0.016090610597346
211 => 0.015144932056704
212 => 0.015459048533868
213 => 0.015523787504464
214 => 0.014780244170021
215 => 0.014272312605604
216 => 0.014238439361101
217 => 0.013357756025684
218 => 0.013828209954836
219 => 0.014242189943784
220 => 0.014043925655223
221 => 0.013981161104442
222 => 0.014301811582413
223 => 0.014326728870737
224 => 0.013758612056334
225 => 0.013876741531968
226 => 0.014369361082754
227 => 0.01386432878322
228 => 0.012883133521783
301 => 0.012639783530861
302 => 0.012607316156242
303 => 0.01194733168053
304 => 0.012656045340878
305 => 0.012346672835791
306 => 0.013323976872509
307 => 0.012765746048122
308 => 0.012741681833005
309 => 0.012705305242402
310 => 0.012137229340541
311 => 0.012261601859941
312 => 0.012675035056898
313 => 0.012822552679231
314 => 0.012807165382645
315 => 0.012673009008686
316 => 0.012734425109693
317 => 0.012536582449561
318 => 0.01246672008853
319 => 0.012246215259958
320 => 0.011922134077972
321 => 0.011967199554033
322 => 0.011325109932064
323 => 0.01097526542774
324 => 0.010878433079819
325 => 0.010748944817278
326 => 0.010893059123629
327 => 0.011323290972839
328 => 0.010804340083913
329 => 0.0099146351850205
330 => 0.0099681079654273
331 => 0.01008824542679
401 => 0.0098643700623291
402 => 0.0096524908183016
403 => 0.0098367026306771
404 => 0.009459722936244
405 => 0.010133801621821
406 => 0.01011556968246
407 => 0.010366824531696
408 => 0.010523939345193
409 => 0.010161840566609
410 => 0.010070773703014
411 => 0.010122649527276
412 => 0.0092652577070562
413 => 0.01029675732808
414 => 0.010305677779637
415 => 0.010229295457646
416 => 0.010778537161864
417 => 0.011937608470547
418 => 0.011501519220685
419 => 0.011332652282271
420 => 0.011011636108905
421 => 0.011439371099861
422 => 0.011406527726261
423 => 0.011257997535362
424 => 0.011168166012463
425 => 0.011333683347788
426 => 0.011147656582918
427 => 0.011114241064273
428 => 0.010911779377731
429 => 0.010839509767055
430 => 0.010786004224447
501 => 0.010727099879381
502 => 0.010857028186548
503 => 0.010562593549016
504 => 0.010207534239936
505 => 0.010178014900181
506 => 0.010259520392611
507 => 0.010223460279581
508 => 0.010177842258233
509 => 0.01009074503215
510 => 0.010064905145709
511 => 0.010148872240912
512 => 0.010054078286014
513 => 0.010193951930159
514 => 0.010155914038514
515 => 0.0099434374678659
516 => 0.0096786129919371
517 => 0.0096762554986132
518 => 0.0096191994996735
519 => 0.009546530106597
520 => 0.0095263151438936
521 => 0.0098211888256474
522 => 0.010431568522051
523 => 0.010311736382499
524 => 0.010398327384217
525 => 0.010824269410406
526 => 0.010959663572008
527 => 0.010863564003089
528 => 0.01073201698599
529 => 0.01073780438713
530 => 0.011187340366548
531 => 0.011215377374172
601 => 0.011286217847357
602 => 0.011377267874915
603 => 0.010879070216494
604 => 0.010714339322221
605 => 0.010636280685592
606 => 0.01039589029727
607 => 0.010655130721561
608 => 0.010504082428109
609 => 0.01052446400344
610 => 0.010511190475767
611 => 0.010518438719429
612 => 0.01013361320309
613 => 0.01027382339541
614 => 0.010040696756464
615 => 0.0097285663566092
616 => 0.0097275199860619
617 => 0.0098039134592316
618 => 0.0097584716321134
619 => 0.0096361888437543
620 => 0.0096535585366822
621 => 0.0095013817493838
622 => 0.0096720355539099
623 => 0.0096769292943951
624 => 0.009611218284077
625 => 0.0098741340156363
626 => 0.009981850805375
627 => 0.0099385984107174
628 => 0.0099788161020638
629 => 0.010316715948907
630 => 0.010371808367546
701 => 0.010396276780705
702 => 0.010363492348516
703 => 0.0099849922909726
704 => 0.010001780378031
705 => 0.0098786005342662
706 => 0.0097745265466569
707 => 0.0097786889603651
708 => 0.0098321965186676
709 => 0.010065867163952
710 => 0.010557613261315
711 => 0.010576274666248
712 => 0.010598892833419
713 => 0.010506893380556
714 => 0.010479145465256
715 => 0.010515752127881
716 => 0.010700426107269
717 => 0.011175457720751
718 => 0.011007549822252
719 => 0.01087103808713
720 => 0.010990795682131
721 => 0.010972359939072
722 => 0.010816743714574
723 => 0.010812376085448
724 => 0.010513698797121
725 => 0.010403284604179
726 => 0.010311014240197
727 => 0.010210257411508
728 => 0.010150525386062
729 => 0.010242300924867
730 => 0.010263291076449
731 => 0.010062622256888
801 => 0.010035271838279
802 => 0.010199142328069
803 => 0.01012702903522
804 => 0.010201199345239
805 => 0.010218407493385
806 => 0.010215636585196
807 => 0.010140342025303
808 => 0.010188332532462
809 => 0.010074820676371
810 => 0.0099513935818002
811 => 0.009872654785244
812 => 0.0098039447420629
813 => 0.0098420690674709
814 => 0.0097061628086182
815 => 0.0096626836611586
816 => 0.010172074428457
817 => 0.010548366865134
818 => 0.010542895424077
819 => 0.01050958943378
820 => 0.010460103488073
821 => 0.010696805902111
822 => 0.010614343514074
823 => 0.010674341791334
824 => 0.010689613871017
825 => 0.010735837856559
826 => 0.010752358958305
827 => 0.010702420714187
828 => 0.010534821867483
829 => 0.010117181476316
830 => 0.0099227687468298
831 => 0.0098586093078992
901 => 0.0098609413816482
902 => 0.0097966123768148
903 => 0.009815560151762
904 => 0.0097900231139417
905 => 0.0097416621423829
906 => 0.0098390829137548
907 => 0.0098503097501181
908 => 0.0098275705779884
909 => 0.009832926476195
910 => 0.0096446558429883
911 => 0.0096589696503287
912 => 0.0095792685521468
913 => 0.0095643255570487
914 => 0.0093628481212133
915 => 0.0090059016390095
916 => 0.0092036846397838
917 => 0.0089647905873469
918 => 0.0088743177898535
919 => 0.0093026019417807
920 => 0.0092596140916804
921 => 0.0091860375786781
922 => 0.0090772025812587
923 => 0.0090368346220371
924 => 0.0087915716807493
925 => 0.0087770802377511
926 => 0.0088986391741098
927 => 0.0088425439075678
928 => 0.0087637649084042
929 => 0.0084784353591327
930 => 0.0081576304763842
1001 => 0.0081673135592868
1002 => 0.008269355623702
1003 => 0.0085660566882366
1004 => 0.0084501304493424
1005 => 0.0083660246329244
1006 => 0.0083502741417208
1007 => 0.00854742451502
1008 => 0.0088264335975185
1009 => 0.0089573384165504
1010 => 0.0088276157165283
1011 => 0.008678597263509
1012 => 0.0086876673262592
1013 => 0.008748006390277
1014 => 0.0087543471727569
1015 => 0.0086573514791858
1016 => 0.0086846551987705
1017 => 0.0086431783520169
1018 => 0.00838863502005
1019 => 0.0083840311383403
1020 => 0.0083215620996099
1021 => 0.008319670561944
1022 => 0.0082133951434316
1023 => 0.0081985264777344
1024 => 0.0079875101838213
1025 => 0.0081264017474911
1026 => 0.0080332405787158
1027 => 0.0078928247228732
1028 => 0.0078686169764
1029 => 0.0078678892623093
1030 => 0.0080120649498488
1031 => 0.008124716970639
1101 => 0.0080348611571324
1102 => 0.0080144027301787
1103 => 0.0082328452064347
1104 => 0.0082050464101837
1105 => 0.0081809728319134
1106 => 0.0088014513943792
1107 => 0.0083102941956415
1108 => 0.0080961216227191
1109 => 0.0078310423934591
1110 => 0.0079173535271516
1111 => 0.007935540551195
1112 => 0.0072980727889471
1113 => 0.0070394521971947
1114 => 0.0069507033560167
1115 => 0.0068996271431943
1116 => 0.0069229032147522
1117 => 0.0066901143490052
1118 => 0.0068465523167596
1119 => 0.0066449768361757
1120 => 0.0066111820508724
1121 => 0.0069716239805668
1122 => 0.0070217773694126
1123 => 0.00680780743116
1124 => 0.0069452107701046
1125 => 0.006895386409354
1126 => 0.0066484322692336
1127 => 0.0066390004375527
1128 => 0.006515087530898
1129 => 0.0063211878262502
1130 => 0.0062325704582026
1201 => 0.006186417763512
1202 => 0.0062054612648394
1203 => 0.0061958322878276
1204 => 0.006132996699534
1205 => 0.0061994339501958
1206 => 0.0060297142285221
1207 => 0.0059621304678269
1208 => 0.0059316044510523
1209 => 0.0057809684293642
1210 => 0.0060206973280128
1211 => 0.0060679269410717
1212 => 0.0061152496110583
1213 => 0.0065271611447324
1214 => 0.0065065832085599
1215 => 0.0066925977296975
1216 => 0.0066853695474649
1217 => 0.006632315192801
1218 => 0.0064084875974918
1219 => 0.0064977012876388
1220 => 0.006223115416252
1221 => 0.0064288538211193
1222 => 0.0063349634049791
1223 => 0.006397109376977
1224 => 0.0062853653158483
1225 => 0.0063472090930761
1226 => 0.0060791268344311
1227 => 0.0058287953933275
1228 => 0.0059295360728579
1229 => 0.0060390527126016
1230 => 0.0062765126918867
1231 => 0.0061350834872268
]
'min_raw' => 0.0057809684293642
'max_raw' => 0.017256331551659
'avg_raw' => 0.011518649990512
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.00578'
'max' => '$0.017256'
'avg' => '$0.011518'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.010951221570636
'max_diff' => 0.00052414155165914
'year' => 2026
]
1 => [
'items' => [
101 => 0.0061859467772528
102 => 0.0060155632700776
103 => 0.0056640134271323
104 => 0.0056660031610651
105 => 0.0056119248766576
106 => 0.0055651933433708
107 => 0.0061513283326912
108 => 0.0060784331813462
109 => 0.0059622842979596
110 => 0.0061177541939458
111 => 0.0061588629020836
112 => 0.0061600332092122
113 => 0.0062734600320649
114 => 0.0063339959477543
115 => 0.0063446656652722
116 => 0.0065231452217797
117 => 0.0065829692149187
118 => 0.0068293757760499
119 => 0.006328859898249
120 => 0.0063185521031193
121 => 0.0061199419742113
122 => 0.0059939802905559
123 => 0.0061285666784561
124 => 0.0062477918452616
125 => 0.0061236466324828
126 => 0.0061398573764232
127 => 0.0059732025713042
128 => 0.0060327738222968
129 => 0.0060840846087658
130 => 0.0060557538083862
131 => 0.0060133412289918
201 => 0.0062380167412094
202 => 0.0062253396682996
203 => 0.0064345626705443
204 => 0.0065976669624745
205 => 0.0068899790119931
206 => 0.0065849361497487
207 => 0.0065738191754129
208 => 0.0066824893827636
209 => 0.0065829525780762
210 => 0.0066458564027449
211 => 0.0068798442333496
212 => 0.0068847880274971
213 => 0.0068019731058078
214 => 0.0067969338102967
215 => 0.0068128393219032
216 => 0.0069059984001815
217 => 0.0068734457557417
218 => 0.0069111165000195
219 => 0.0069582243425739
220 => 0.0071530823526899
221 => 0.0072000619592402
222 => 0.0070859258714563
223 => 0.0070962310822556
224 => 0.0070535410523187
225 => 0.0070123030183042
226 => 0.0071050000964376
227 => 0.007274405828692
228 => 0.0072733519644238
301 => 0.0073126508015299
302 => 0.0073371336514779
303 => 0.0072320353369597
304 => 0.0071636201987804
305 => 0.0071898549161267
306 => 0.0072318048004812
307 => 0.0071762511340169
308 => 0.0068333481696379
309 => 0.0069373630243043
310 => 0.0069200498664213
311 => 0.0068953938242439
312 => 0.0069999815649341
313 => 0.0069898938222011
314 => 0.0066877267627194
315 => 0.0067070705174888
316 => 0.0066889031205154
317 => 0.006747605696836
318 => 0.0065797824463094
319 => 0.0066314037478646
320 => 0.0066637801442803
321 => 0.0066828500904964
322 => 0.0067517438126134
323 => 0.0067436599294913
324 => 0.0067512413070882
325 => 0.0068533925097194
326 => 0.0073700382385682
327 => 0.0073981581256749
328 => 0.007259685517196
329 => 0.0073150025930319
330 => 0.0072088059039416
331 => 0.0072800964527839
401 => 0.0073288716357181
402 => 0.0071084659629665
403 => 0.0070954149694471
404 => 0.0069887799688447
405 => 0.0070460795780533
406 => 0.0069549117798148
407 => 0.0069772811685883
408 => 0.0069147344074492
409 => 0.0070273061245636
410 => 0.0071531787961738
411 => 0.007184979203885
412 => 0.0071013260221332
413 => 0.0070407556055316
414 => 0.0069344139071148
415 => 0.0071112625215613
416 => 0.0071629784457893
417 => 0.0071109908798275
418 => 0.0070989442248433
419 => 0.0070761158354163
420 => 0.0071037873755771
421 => 0.0071626967897594
422 => 0.0071349161979171
423 => 0.00715326576826
424 => 0.0070833361281076
425 => 0.0072320701288749
426 => 0.0074682955168799
427 => 0.007469055020129
428 => 0.007441274278539
429 => 0.0074299069976247
430 => 0.0074584117243725
501 => 0.0074738743693081
502 => 0.0075660534287374
503 => 0.0076649652320809
504 => 0.0081265434596839
505 => 0.0079969341404081
506 => 0.0084064738033491
507 => 0.0087303665046659
508 => 0.0088274877636795
509 => 0.0087381407752953
510 => 0.0084324895544626
511 => 0.0084174928473824
512 => 0.0088742648139234
513 => 0.0087452058118941
514 => 0.0087298546542651
515 => 0.0085665442732822
516 => 0.0086630809348273
517 => 0.00864196695084
518 => 0.0086086374941846
519 => 0.0087928227196104
520 => 0.009137601019279
521 => 0.0090838640879653
522 => 0.009043751961524
523 => 0.008867992299923
524 => 0.0089738388735485
525 => 0.008936148936038
526 => 0.0090980888262082
527 => 0.0090021592226792
528 => 0.0087442280630207
529 => 0.0087853044503485
530 => 0.0087790958370381
531 => 0.0089068686590187
601 => 0.0088685144293766
602 => 0.0087716065581371
603 => 0.0091364226045329
604 => 0.0091127334796935
605 => 0.009146319242628
606 => 0.009161104734146
607 => 0.0093831618328073
608 => 0.0094741315210942
609 => 0.0094947832329839
610 => 0.0095811974010083
611 => 0.0094926331697619
612 => 0.0098469532399741
613 => 0.010082555411516
614 => 0.010356219457738
615 => 0.010756116183231
616 => 0.010906481051268
617 => 0.010879318983721
618 => 0.011182516117031
619 => 0.011727354625895
620 => 0.010989446423891
621 => 0.011766465552383
622 => 0.011520470267419
623 => 0.010937219872038
624 => 0.010899665422646
625 => 0.011294649362075
626 => 0.012170685723932
627 => 0.011951248551209
628 => 0.012171044644535
629 => 0.011914640826513
630 => 0.011901908215807
701 => 0.012158591683398
702 => 0.012758346596511
703 => 0.012473425518768
704 => 0.012064921288308
705 => 0.01236655445505
706 => 0.012105251891187
707 => 0.01151646408082
708 => 0.011951080751738
709 => 0.011660464961065
710 => 0.011745282098769
711 => 0.012356113264927
712 => 0.012282616442956
713 => 0.012377728136209
714 => 0.012209858487124
715 => 0.012053041764265
716 => 0.011760331705685
717 => 0.011673674687771
718 => 0.01169762356993
719 => 0.011673662819895
720 => 0.011509894232264
721 => 0.011474528421357
722 => 0.011415583853768
723 => 0.011433853240012
724 => 0.011323020208103
725 => 0.011532185038588
726 => 0.01157100787428
727 => 0.011723220595008
728 => 0.01173902382462
729 => 0.012162934085234
730 => 0.01192945143721
731 => 0.012086091755426
801 => 0.012072080371009
802 => 0.010949860676676
803 => 0.011104492649127
804 => 0.011345051472074
805 => 0.011236680048406
806 => 0.011083468210347
807 => 0.010959741436416
808 => 0.010772282722197
809 => 0.011036127262634
810 => 0.01138305477657
811 => 0.011747822478891
812 => 0.012186066972703
813 => 0.012088255903413
814 => 0.011739629802916
815 => 0.011755268915113
816 => 0.011851943752949
817 => 0.011726741054116
818 => 0.011689816333982
819 => 0.01184687086342
820 => 0.011847952411649
821 => 0.011703891575389
822 => 0.011543794318741
823 => 0.01154312350539
824 => 0.011514635744926
825 => 0.011919708735814
826 => 0.012142457923303
827 => 0.012167995758671
828 => 0.012140739023508
829 => 0.012151229059091
830 => 0.012021616214834
831 => 0.01231787274131
901 => 0.012589747026739
902 => 0.012516878910497
903 => 0.012407639245438
904 => 0.012320624590523
905 => 0.012496381023164
906 => 0.012488554865885
907 => 0.012587372442033
908 => 0.012582889505981
909 => 0.01254966087184
910 => 0.012516880097196
911 => 0.012646852163287
912 => 0.01260942229554
913 => 0.012571934288871
914 => 0.012496746352368
915 => 0.012506965641678
916 => 0.012397744838387
917 => 0.012347214297181
918 => 0.011587356197158
919 => 0.011384297283753
920 => 0.011448183751555
921 => 0.011469216835567
922 => 0.011380845336226
923 => 0.011507547365506
924 => 0.011487800988453
925 => 0.011564622590321
926 => 0.01151662778868
927 => 0.011518597512081
928 => 0.011659739990135
929 => 0.011700714251977
930 => 0.011679874411702
1001 => 0.011694469921483
1002 => 0.012030817284012
1003 => 0.011982999444843
1004 => 0.01195759717083
1005 => 0.011964633774334
1006 => 0.012050577736829
1007 => 0.012074637353961
1008 => 0.011972695065532
1009 => 0.012020771638077
1010 => 0.012225475582144
1011 => 0.012297110377328
1012 => 0.012525734256902
1013 => 0.012428610769394
1014 => 0.012606885134122
1015 => 0.013154839753087
1016 => 0.013592583818291
1017 => 0.013190016285391
1018 => 0.013993877514768
1019 => 0.014619798788884
1020 => 0.014595774887857
1021 => 0.014486631035895
1022 => 0.013774036306293
1023 => 0.013118296011924
1024 => 0.013666850612367
1025 => 0.013668248990855
1026 => 0.013621127664188
1027 => 0.013328461151238
1028 => 0.013610943503928
1029 => 0.01363336592726
1030 => 0.013620815332798
1031 => 0.013396428603512
1101 => 0.013053831541492
1102 => 0.013120774187349
1103 => 0.013230427606856
1104 => 0.013022830807629
1105 => 0.012956491051543
1106 => 0.013079829279763
1107 => 0.013477250749628
1108 => 0.013402120522856
1109 => 0.01340015856901
1110 => 0.013721597539315
1111 => 0.013491516607448
1112 => 0.013121618548493
1113 => 0.013028214410251
1114 => 0.012696692644059
1115 => 0.012925675908808
1116 => 0.012933916608855
1117 => 0.012808504814905
1118 => 0.013131795024389
1119 => 0.013128815848194
1120 => 0.013435731786702
1121 => 0.014022439788766
1122 => 0.013848921362408
1123 => 0.013647138311305
1124 => 0.013669077723797
1125 => 0.01390969892775
1126 => 0.013764213854992
1127 => 0.013816531301514
1128 => 0.013909619739029
1129 => 0.013965782304638
1130 => 0.013660996794899
1201 => 0.013589936713003
1202 => 0.013444572724142
1203 => 0.013406649972796
1204 => 0.013525045908604
1205 => 0.013493852762508
1206 => 0.012933224009926
1207 => 0.012874635185972
1208 => 0.012876432021557
1209 => 0.012729107637979
1210 => 0.012504402591118
1211 => 0.013094914037827
1212 => 0.013047487704454
1213 => 0.012995132702916
1214 => 0.013001545891871
1215 => 0.013257866896598
1216 => 0.013109187769335
1217 => 0.013504475597192
1218 => 0.013423216303224
1219 => 0.013339873014986
1220 => 0.013328352433853
1221 => 0.013296272378396
1222 => 0.013186257931773
1223 => 0.013053408876631
1224 => 0.012965690423239
1225 => 0.011960164051635
1226 => 0.012146783897327
1227 => 0.012361473018861
1228 => 0.012435582843302
1229 => 0.012308812860352
1230 => 0.013191263583372
1231 => 0.013352495833974
]
'min_raw' => 0.0055651933433708
'max_raw' => 0.014619798788884
'avg_raw' => 0.010092496066127
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.005565'
'max' => '$0.014619'
'avg' => '$0.010092'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.0002157750859934
'max_diff' => -0.0026365327627755
'year' => 2027
]
2 => [
'items' => [
101 => 0.01286411282998
102 => 0.012772756310479
103 => 0.013197252901581
104 => 0.012941229564549
105 => 0.013056516857538
106 => 0.012807328788873
107 => 0.013313659706235
108 => 0.013309802312981
109 => 0.013112828150125
110 => 0.01327930936375
111 => 0.013250379155981
112 => 0.013027995811243
113 => 0.013320709654922
114 => 0.013320854837336
115 => 0.013131271488175
116 => 0.012909879641486
117 => 0.01287030000834
118 => 0.01284048207154
119 => 0.013049183472958
120 => 0.013236304496877
121 => 0.013584490331155
122 => 0.013672032522584
123 => 0.014013715523744
124 => 0.013810259932796
125 => 0.013900449161073
126 => 0.013998362326411
127 => 0.014045305498512
128 => 0.013968814118683
129 => 0.01449958846182
130 => 0.014544402078886
131 => 0.014559427697052
201 => 0.014380453574915
202 => 0.014539424484787
203 => 0.014465047260621
204 => 0.014658556135314
205 => 0.014688900797711
206 => 0.014663199948203
207 => 0.014672831823006
208 => 0.01421990955615
209 => 0.014196423147258
210 => 0.013876184295499
211 => 0.014006683994677
212 => 0.013762721062077
213 => 0.013840084221101
214 => 0.013874185164456
215 => 0.013856372766859
216 => 0.014014062251868
217 => 0.013879993975777
218 => 0.013526165752306
219 => 0.013172241128572
220 => 0.013167797893222
221 => 0.013074615787081
222 => 0.013007262191496
223 => 0.013020236883503
224 => 0.013065961390451
225 => 0.013004604600029
226 => 0.013017698182134
227 => 0.013235138887153
228 => 0.013278745069828
229 => 0.013130554223062
301 => 0.012535546589458
302 => 0.012389530223708
303 => 0.012494483891779
304 => 0.012444322798323
305 => 0.010043539737819
306 => 0.010607568106566
307 => 0.01027244160245
308 => 0.010426883313976
309 => 0.010084805933861
310 => 0.010248063189463
311 => 0.010217915535554
312 => 0.011124856461686
313 => 0.011110695826581
314 => 0.011117473773242
315 => 0.010793944719281
316 => 0.011309335287011
317 => 0.01156323521352
318 => 0.011516245094451
319 => 0.011528071495058
320 => 0.011324854749885
321 => 0.011119441355545
322 => 0.010891606288327
323 => 0.011314895681952
324 => 0.011267833127172
325 => 0.011375777695265
326 => 0.011650311124382
327 => 0.011690737214671
328 => 0.011745070289979
329 => 0.011725595750173
330 => 0.012189558297128
331 => 0.012133369371368
401 => 0.012268768515792
402 => 0.011990242202955
403 => 0.011675063242019
404 => 0.011734968458516
405 => 0.01172919910444
406 => 0.011655748605296
407 => 0.011589440778863
408 => 0.011479056929965
409 => 0.011828327761613
410 => 0.011814148003691
411 => 0.012043701802275
412 => 0.012003125938608
413 => 0.011732150390447
414 => 0.011741828335162
415 => 0.011806917164427
416 => 0.012032190345685
417 => 0.01209906676365
418 => 0.012068086942284
419 => 0.012141413881558
420 => 0.01219936850458
421 => 0.012148692089925
422 => 0.012866163254349
423 => 0.012568219204965
424 => 0.012713435061553
425 => 0.012748068187688
426 => 0.01265935616335
427 => 0.012678594624889
428 => 0.012707735651955
429 => 0.012884674261898
430 => 0.013349012371988
501 => 0.01355466456009
502 => 0.014173379314696
503 => 0.013537588008685
504 => 0.013499862783752
505 => 0.013611311994452
506 => 0.013974563053014
507 => 0.014268943917541
508 => 0.014366607033545
509 => 0.014379514826567
510 => 0.01456273732471
511 => 0.014667757043749
512 => 0.014540489294205
513 => 0.014432643201956
514 => 0.01404635188587
515 => 0.014091066157544
516 => 0.014399103148363
517 => 0.014834223541184
518 => 0.015207602104785
519 => 0.015076857945368
520 => 0.016074343590723
521 => 0.016173240218096
522 => 0.016159575901904
523 => 0.016384877136852
524 => 0.015937700067279
525 => 0.015746523206389
526 => 0.014455960751206
527 => 0.014818556159754
528 => 0.01534560988056
529 => 0.015275852344261
530 => 0.014893091844025
531 => 0.015207311746622
601 => 0.015103420820259
602 => 0.015021477736198
603 => 0.015396874889731
604 => 0.014984110298956
605 => 0.015341492238018
606 => 0.014883146204528
607 => 0.015077455173675
608 => 0.01496715600512
609 => 0.015038533084933
610 => 0.014621264134819
611 => 0.01484641233167
612 => 0.014611897229612
613 => 0.014611786038919
614 => 0.014606609105043
615 => 0.014882515082615
616 => 0.014891512366638
617 => 0.014687617432342
618 => 0.014658232986872
619 => 0.014766882682784
620 => 0.014639682344271
621 => 0.014699198582072
622 => 0.014641485030484
623 => 0.014628492494388
624 => 0.014524965756279
625 => 0.014480363590975
626 => 0.014497853249247
627 => 0.014438152029027
628 => 0.014402179884357
629 => 0.014599453340062
630 => 0.014494058090668
701 => 0.014583300006512
702 => 0.01448159758018
703 => 0.014129052660874
704 => 0.013926300349687
705 => 0.013260375678051
706 => 0.01344923108885
707 => 0.013574442421595
708 => 0.013533060076869
709 => 0.013621965366181
710 => 0.013627423428886
711 => 0.013598519413048
712 => 0.013565052265543
713 => 0.013548762308986
714 => 0.013670174299047
715 => 0.013740658045817
716 => 0.013587009053947
717 => 0.01355101124493
718 => 0.013706358858904
719 => 0.013801120813686
720 => 0.014500789845659
721 => 0.014448956103869
722 => 0.014579048623903
723 => 0.01456440220258
724 => 0.014700759888939
725 => 0.014923647077079
726 => 0.014470455103353
727 => 0.014549113559792
728 => 0.014529828322763
729 => 0.014740379483795
730 => 0.014741036801537
731 => 0.014614800862688
801 => 0.014683235413082
802 => 0.014645037124456
803 => 0.014714066594812
804 => 0.014448263832646
805 => 0.014771982905329
806 => 0.014955510759544
807 => 0.014958059043978
808 => 0.015045049790308
809 => 0.015133437426745
810 => 0.015303089797944
811 => 0.015128705914191
812 => 0.014815006283249
813 => 0.01483765438336
814 => 0.014653732404517
815 => 0.014656824166209
816 => 0.014640320099988
817 => 0.014689850045085
818 => 0.014459132870284
819 => 0.014513281730059
820 => 0.014437473009279
821 => 0.014548948766439
822 => 0.014429019279338
823 => 0.014529819022837
824 => 0.014573320850567
825 => 0.014733843531418
826 => 0.014405309948859
827 => 0.013735407734252
828 => 0.013876229301542
829 => 0.013667943142225
830 => 0.013687220819271
831 => 0.013726164794924
901 => 0.013599934628158
902 => 0.013624015366007
903 => 0.013623155032597
904 => 0.013615741144064
905 => 0.013582903802448
906 => 0.013535283160434
907 => 0.013724989141355
908 => 0.013757223884178
909 => 0.013828877724432
910 => 0.014042070949763
911 => 0.01402076791911
912 => 0.01405551404596
913 => 0.013979663446139
914 => 0.013690739311052
915 => 0.013706429281643
916 => 0.013510775096957
917 => 0.013823874407039
918 => 0.013749728357702
919 => 0.013701925917347
920 => 0.013688882578609
921 => 0.01390260426871
922 => 0.013966553148065
923 => 0.013926704497901
924 => 0.013844973753843
925 => 0.01400192094396
926 => 0.014043913390965
927 => 0.014053313951228
928 => 0.014331394280477
929 => 0.014068855552546
930 => 0.014132051233769
1001 => 0.014625085898673
1002 => 0.014177971491738
1003 => 0.014414817964933
1004 => 0.01440322556256
1005 => 0.014524388203798
1006 => 0.014393286689506
1007 => 0.014394911849899
1008 => 0.014502496067051
1009 => 0.014351413436977
1010 => 0.014314003253091
1011 => 0.014262321351989
1012 => 0.0143751668923
1013 => 0.014442812690152
1014 => 0.014987988140473
1015 => 0.015340196344402
1016 => 0.015324906057387
1017 => 0.015464630658491
1018 => 0.015401683445963
1019 => 0.015198410292073
1020 => 0.015545372779243
1021 => 0.015435579330775
1022 => 0.015444630569268
1023 => 0.015444293681719
1024 => 0.01551729672664
1025 => 0.015465567378683
1026 => 0.01536360352395
1027 => 0.015431291889175
1028 => 0.015632302134861
1029 => 0.016256244105217
1030 => 0.01660541029796
1031 => 0.016235223861988
1101 => 0.016490573508528
1102 => 0.016337454710986
1103 => 0.016309628470583
1104 => 0.0164700069188
1105 => 0.016630666088261
1106 => 0.016620432793715
1107 => 0.016503802486626
1108 => 0.016437920985536
1109 => 0.016936797783711
1110 => 0.017304361710462
1111 => 0.017279296314837
1112 => 0.017389926819421
1113 => 0.017714741402551
1114 => 0.017744438377323
1115 => 0.017740697241079
1116 => 0.017667090190547
1117 => 0.017986912330141
1118 => 0.018253713585727
1119 => 0.01765005228506
1120 => 0.017879918605847
1121 => 0.017983113003079
1122 => 0.018134632994613
1123 => 0.01839027261803
1124 => 0.018667965054122
1125 => 0.018707233809328
1126 => 0.018679370748327
1127 => 0.018496225121951
1128 => 0.018800079499082
1129 => 0.018978070266944
1130 => 0.01908405969596
1201 => 0.019352831252983
1202 => 0.017983750296545
1203 => 0.017014646747839
1204 => 0.016863307234684
1205 => 0.017171062085817
1206 => 0.017252214585762
1207 => 0.017219502114791
1208 => 0.016128687963683
1209 => 0.016857564323927
1210 => 0.017641774001885
1211 => 0.01767189868941
1212 => 0.018064490451247
1213 => 0.018192334421781
1214 => 0.018508422248238
1215 => 0.018488650868632
1216 => 0.018565613224318
1217 => 0.018547920911548
1218 => 0.019133407049916
1219 => 0.019779285206068
1220 => 0.019756920499287
1221 => 0.019664067872657
1222 => 0.019801969856928
1223 => 0.020468585330587
1224 => 0.020407214060068
1225 => 0.020466831021785
1226 => 0.02125280823403
1227 => 0.022274690413904
1228 => 0.021799923546059
1229 => 0.022830031038796
1230 => 0.023478429101822
1231 => 0.024599766506214
]
'min_raw' => 0.010043539737819
'max_raw' => 0.024599766506214
'avg_raw' => 0.017321653122017
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.010043'
'max' => '$0.024599'
'avg' => '$0.017321'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0044783463944481
'max_diff' => 0.0099799677173308
'year' => 2028
]
3 => [
'items' => [
101 => 0.024459369540481
102 => 0.024895897963257
103 => 0.024208029670088
104 => 0.022628545027853
105 => 0.022378585537195
106 => 0.022879010767475
107 => 0.024109257365338
108 => 0.022840265924032
109 => 0.02309698123987
110 => 0.023023047211639
111 => 0.023019107581474
112 => 0.023169467241241
113 => 0.022951362712516
114 => 0.022062765626239
115 => 0.022470004434344
116 => 0.022312749973321
117 => 0.022487235521923
118 => 0.023428862064415
119 => 0.023012546524406
120 => 0.022573991921735
121 => 0.023124036716541
122 => 0.023824432756228
123 => 0.023780603230797
124 => 0.023695555632141
125 => 0.024174964492819
126 => 0.024966807477043
127 => 0.025180839453796
128 => 0.025338833483344
129 => 0.025360618190688
130 => 0.025585014215448
131 => 0.024378380235235
201 => 0.026293339350391
202 => 0.0266239998899
203 => 0.026561849412948
204 => 0.02692936468629
205 => 0.02682123236991
206 => 0.026664565608916
207 => 0.027247155489904
208 => 0.026579263203931
209 => 0.025631274189292
210 => 0.025111188666765
211 => 0.025796079236931
212 => 0.026214318008745
213 => 0.026490747231932
214 => 0.026574394547845
215 => 0.024472047796272
216 => 0.023338999498671
217 => 0.024065270467008
218 => 0.024951371172925
219 => 0.024373457901073
220 => 0.024396111007195
221 => 0.023572158554471
222 => 0.02502427268214
223 => 0.024812711867941
224 => 0.02591028974625
225 => 0.025648343976979
226 => 0.026543376129013
227 => 0.026307684167588
228 => 0.027286028322101
301 => 0.027676316292946
302 => 0.028331670539468
303 => 0.028813751790981
304 => 0.029096839122615
305 => 0.029079843621057
306 => 0.030201576662537
307 => 0.029540129878344
308 => 0.028709196826359
309 => 0.028694167869009
310 => 0.029124519871044
311 => 0.030026419606004
312 => 0.030260269085172
313 => 0.030390959041694
314 => 0.03019080282393
315 => 0.029472849746006
316 => 0.029162841247063
317 => 0.029426977469973
318 => 0.029103961566839
319 => 0.029661577637904
320 => 0.030427303603843
321 => 0.030269184219885
322 => 0.030797753613873
323 => 0.031344767329529
324 => 0.032127021510839
325 => 0.032331531720622
326 => 0.032669579320567
327 => 0.033017541343762
328 => 0.033129297367772
329 => 0.033342674293467
330 => 0.033341549691742
331 => 0.033984575419245
401 => 0.03469385270953
402 => 0.034961588466805
403 => 0.035577232077625
404 => 0.034522963968822
405 => 0.035322638439908
406 => 0.036043964829978
407 => 0.03518396977094
408 => 0.036369272606674
409 => 0.036415295229831
410 => 0.037110182198936
411 => 0.036405781131513
412 => 0.035987510026206
413 => 0.037195043034815
414 => 0.037779330220747
415 => 0.037603338165258
416 => 0.036264029933181
417 => 0.03548449509648
418 => 0.033444302067794
419 => 0.035860998840053
420 => 0.037038101341809
421 => 0.036260981522069
422 => 0.036652915556785
423 => 0.038791180565161
424 => 0.039605293437945
425 => 0.039435963651484
426 => 0.03946457759799
427 => 0.03990385812695
428 => 0.041851869908564
429 => 0.040684576094462
430 => 0.041576928477678
501 => 0.042050228964121
502 => 0.042489856833251
503 => 0.041410269732482
504 => 0.040005742776666
505 => 0.039560870131728
506 => 0.036183712271353
507 => 0.036007916538468
508 => 0.035909237066443
509 => 0.035287076953816
510 => 0.034798229529289
511 => 0.034409479907563
512 => 0.033389284809692
513 => 0.033733570707082
514 => 0.032107592652341
515 => 0.03314783579064
516 => 0.03055273555466
517 => 0.032714012145004
518 => 0.031537727558068
519 => 0.032327571022123
520 => 0.032324815332685
521 => 0.030870463095261
522 => 0.030031623076271
523 => 0.030566164584513
524 => 0.031139235513306
525 => 0.031232214343461
526 => 0.031975215761323
527 => 0.032182571486286
528 => 0.031554273959134
529 => 0.03049895787043
530 => 0.030744083728639
531 => 0.030026655608578
601 => 0.028769390423647
602 => 0.029672380229209
603 => 0.029980700650487
604 => 0.03011687251315
605 => 0.028880496601652
606 => 0.028492000447232
607 => 0.028285168354418
608 => 0.030339357266
609 => 0.030451890371645
610 => 0.029876155092584
611 => 0.0324785331474
612 => 0.031889534844841
613 => 0.032547590256887
614 => 0.030721841126294
615 => 0.03079158720178
616 => 0.029927248304429
617 => 0.0304112203318
618 => 0.030069164502001
619 => 0.030372120174693
620 => 0.030553710555772
621 => 0.031417907623614
622 => 0.03272387988734
623 => 0.031288825400111
624 => 0.030663551609667
625 => 0.031051467952585
626 => 0.032084540292795
627 => 0.033649697770213
628 => 0.032723093041852
629 => 0.03313430448553
630 => 0.03322413589245
701 => 0.032540891870528
702 => 0.03367488995187
703 => 0.034282608736246
704 => 0.034906002459332
705 => 0.035447277761992
706 => 0.034657005297609
707 => 0.035502710115606
708 => 0.034821221319298
709 => 0.034209855417992
710 => 0.034210782607703
711 => 0.033827263847183
712 => 0.033084147922203
713 => 0.032947105944192
714 => 0.033660015620296
715 => 0.034231701667733
716 => 0.034278788468791
717 => 0.034595303238942
718 => 0.034782613419556
719 => 0.036618507825414
720 => 0.037356919742766
721 => 0.038259835857881
722 => 0.038611572570282
723 => 0.039670173970019
724 => 0.038815267364329
725 => 0.038630302942574
726 => 0.03606248221269
727 => 0.036482962713357
728 => 0.037156192565257
729 => 0.036073583524982
730 => 0.036760249778785
731 => 0.036895812242866
801 => 0.036036796884059
802 => 0.03649563410306
803 => 0.035277098485147
804 => 0.032750440633937
805 => 0.033677702844342
806 => 0.034360479944285
807 => 0.033386072836857
808 => 0.035132659862159
809 => 0.034112339778852
810 => 0.033788947296445
811 => 0.032527277924831
812 => 0.033122737302125
813 => 0.033928104636073
814 => 0.033430481257695
815 => 0.034463124486355
816 => 0.035925622694027
817 => 0.036967886010088
818 => 0.03704789804566
819 => 0.036377792559652
820 => 0.037451640877536
821 => 0.037459462690185
822 => 0.036248157400812
823 => 0.035506239655648
824 => 0.035337674382938
825 => 0.035758783483335
826 => 0.036270087672246
827 => 0.037076271869648
828 => 0.037563432095786
829 => 0.038833687595735
830 => 0.039177382312942
831 => 0.039554998605425
901 => 0.040059610424734
902 => 0.040665526293629
903 => 0.039339816867296
904 => 0.039392489774236
905 => 0.03815800751213
906 => 0.036838786172406
907 => 0.037839910725995
908 => 0.039148747905794
909 => 0.038848499210612
910 => 0.03881471509888
911 => 0.038871530603882
912 => 0.03864515289292
913 => 0.037621254896189
914 => 0.037107059732171
915 => 0.037770502678931
916 => 0.038123093078685
917 => 0.03866993003959
918 => 0.038602520841831
919 => 0.04001111412712
920 => 0.040558450884133
921 => 0.040418418719829
922 => 0.040444188008123
923 => 0.041435115062485
924 => 0.042537229746627
925 => 0.043569505585168
926 => 0.044619580905411
927 => 0.043353674121721
928 => 0.042710924727239
929 => 0.043374078035563
930 => 0.043022199555608
1001 => 0.045044197675367
1002 => 0.045184196438113
1003 => 0.047206048344394
1004 => 0.049125026561101
1005 => 0.047919750725253
1006 => 0.049056271551642
1007 => 0.050285511487283
1008 => 0.052656914760129
1009 => 0.051858309564808
1010 => 0.05124659050093
1011 => 0.050668518941371
1012 => 0.051871394090538
1013 => 0.05341887375354
1014 => 0.053752186051375
1015 => 0.054292279308965
1016 => 0.053724437288071
1017 => 0.054408340456491
1018 => 0.056822819163296
1019 => 0.056170405703524
1020 => 0.055243873709951
1021 => 0.057149872759973
1022 => 0.057839646406793
1023 => 0.062680839097434
1024 => 0.068793044849064
1025 => 0.066262551532982
1026 => 0.064691792673181
1027 => 0.065060958264133
1028 => 0.067292928893406
1029 => 0.068009767020322
1030 => 0.066061153882444
1031 => 0.066749436985285
1101 => 0.070541944552437
1102 => 0.072576503184004
1103 => 0.069813299284656
1104 => 0.062189729316613
1105 => 0.055160449641336
1106 => 0.057024931143809
1107 => 0.056813556803025
1108 => 0.060888133058976
1109 => 0.056154845858276
1110 => 0.056234542275544
1111 => 0.060393376453417
1112 => 0.059283870795229
1113 => 0.057486613723711
1114 => 0.055173571606922
1115 => 0.050897699323537
1116 => 0.047110440000623
1117 => 0.05453812768659
1118 => 0.054217832287197
1119 => 0.053753997083758
1120 => 0.054786212136801
1121 => 0.059798355435021
1122 => 0.059682809309273
1123 => 0.058947763809411
1124 => 0.059505289342662
1125 => 0.057388876802136
1126 => 0.057934324503647
1127 => 0.055159336167522
1128 => 0.056413746789201
1129 => 0.057482757617225
1130 => 0.057697377367927
1201 => 0.058180926625014
1202 => 0.054049051166053
1203 => 0.055904141941636
1204 => 0.056993833973792
1205 => 0.052070565729176
1206 => 0.05689651679011
1207 => 0.053977124406905
1208 => 0.052986238784244
1209 => 0.054320335735904
1210 => 0.05380043685639
1211 => 0.053353458329271
1212 => 0.053104036631072
1213 => 0.054083650193464
1214 => 0.054037950049887
1215 => 0.052435112127015
1216 => 0.05034427539666
1217 => 0.051046028832743
1218 => 0.050791075230441
1219 => 0.049867090486027
1220 => 0.050489744641418
1221 => 0.047747890859132
1222 => 0.043030673935865
1223 => 0.046147011927637
1224 => 0.046027036304877
1225 => 0.045966539155421
1226 => 0.048308381026981
1227 => 0.048083266966515
1228 => 0.047674682742446
1229 => 0.049859586516336
1230 => 0.049062067247763
1231 => 0.051519833714333
]
'min_raw' => 0.022062765626239
'max_raw' => 0.072576503184004
'avg_raw' => 0.047319634405121
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.022062'
'max' => '$0.072576'
'avg' => '$0.047319'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.01201922588842
'max_diff' => 0.047976736677789
'year' => 2029
]
4 => [
'items' => [
101 => 0.053138677667584
102 => 0.052728086476924
103 => 0.054250617039509
104 => 0.051062195814568
105 => 0.052121261448237
106 => 0.052339533407534
107 => 0.04983262514292
108 => 0.04812009841084
109 => 0.048005892402044
110 => 0.045036607049337
111 => 0.046622775317519
112 => 0.048018537753417
113 => 0.047350075862162
114 => 0.047138460797122
115 => 0.048219556270705
116 => 0.048303566647959
117 => 0.046388121143548
118 => 0.046786402918186
119 => 0.048447304127259
120 => 0.046744552469151
121 => 0.043436384140351
122 => 0.042615912655803
123 => 0.042506446635475
124 => 0.040281262896967
125 => 0.042670740483637
126 => 0.041627669483038
127 => 0.044922718276023
128 => 0.043040604077171
129 => 0.042959469895792
130 => 0.042836823680842
131 => 0.040921516115926
201 => 0.041340846748497
202 => 0.042734765637021
203 => 0.043232131600067
204 => 0.043180252255322
205 => 0.042727934674018
206 => 0.042935003346498
207 => 0.042267963004931
208 => 0.042032417177079
209 => 0.041288969752395
210 => 0.040196307420703
211 => 0.040348248819613
212 => 0.038183398829879
213 => 0.037003873658187
214 => 0.036677396636555
215 => 0.036240817918814
216 => 0.036726709364415
217 => 0.038177266081857
218 => 0.036427586927848
219 => 0.03342788474402
220 => 0.033608171956512
221 => 0.034013223795227
222 => 0.033258412373467
223 => 0.032544046709292
224 => 0.033165129695974
225 => 0.031894116336311
226 => 0.034166819687404
227 => 0.034105349430935
228 => 0.03495247269719
301 => 0.035482196260299
302 => 0.034261354947373
303 => 0.033954316658678
304 => 0.034129219622031
305 => 0.031238463238976
306 => 0.034716236228263
307 => 0.034746312153492
308 => 0.034488783822057
309 => 0.036340590574658
310 => 0.040248480415656
311 => 0.038778175062968
312 => 0.038208828390192
313 => 0.037126499949057
314 => 0.038568638334566
315 => 0.038457904607422
316 => 0.037957124698759
317 => 0.037654251447472
318 => 0.03821230469957
319 => 0.037585102473835
320 => 0.037472439719728
321 => 0.036789826008127
322 => 0.036546163970031
323 => 0.036365766297489
324 => 0.03616716618553
325 => 0.036605228544447
326 => 0.035612521607238
327 => 0.034415414357226
328 => 0.034315887842267
329 => 0.034590689300529
330 => 0.03446911011181
331 => 0.034315305767886
401 => 0.034021651389215
402 => 0.033934530407996
403 => 0.034217631331866
404 => 0.033898026894626
405 => 0.034369620651528
406 => 0.034241373244123
407 => 0.033524993651545
408 => 0.032632119441496
409 => 0.03262417098816
410 => 0.032431802704212
411 => 0.032186792771839
412 => 0.032118636613721
413 => 0.033112823819177
414 => 0.035170761580952
415 => 0.034766739156039
416 => 0.035058686763922
417 => 0.036494780043541
418 => 0.0369512709123
419 => 0.036627264506234
420 => 0.036183744553765
421 => 0.036203257180772
422 => 0.037718899120977
423 => 0.037813427849663
424 => 0.03805227145093
425 => 0.038359252975752
426 => 0.036679544787336
427 => 0.036124143076151
428 => 0.035860962932878
429 => 0.035050469955129
430 => 0.035924517145215
501 => 0.035415247277984
502 => 0.035483965182209
503 => 0.035439212556934
504 => 0.035463650516494
505 => 0.0341661844205
506 => 0.03463891287307
507 => 0.033852910133481
508 => 0.032800540698121
509 => 0.032797012786765
510 => 0.033054578715179
511 => 0.032901368422403
512 => 0.032489083463938
513 => 0.032547646596358
514 => 0.032034571933338
515 => 0.032609943149965
516 => 0.032626442737681
517 => 0.032404893478597
518 => 0.03329133222374
519 => 0.03365450690089
520 => 0.033508678432516
521 => 0.0336442751868
522 => 0.034783528111846
523 => 0.034969276047718
524 => 0.035051773011013
525 => 0.034941238008951
526 => 0.033665098638914
527 => 0.033721700846539
528 => 0.033306391403143
529 => 0.032955498687704
530 => 0.032969532556132
531 => 0.033149937024728
601 => 0.033937773919666
602 => 0.035595730219542
603 => 0.035658648449172
604 => 0.035734907178937
605 => 0.035424724600413
606 => 0.035331170566683
607 => 0.035454592485518
608 => 0.036077233700551
609 => 0.037678835951055
610 => 0.037112722748309
611 => 0.0366524639024
612 => 0.037056234995156
613 => 0.036994077600289
614 => 0.036469406634616
615 => 0.036454680868081
616 => 0.035447669537501
617 => 0.035075400377124
618 => 0.03476430440285
619 => 0.034424595720308
620 => 0.034223205026159
621 => 0.034532632662806
622 => 0.034603402424347
623 => 0.03392683348895
624 => 0.033834619643064
625 => 0.034387120440463
626 => 0.034143985438834
627 => 0.034394055817468
628 => 0.034452074290375
629 => 0.034442731979958
630 => 0.034188871114379
701 => 0.034350674459859
702 => 0.033967961311901
703 => 0.033551818245152
704 => 0.033286344895196
705 => 0.033054684187429
706 => 0.033183223012297
707 => 0.032725005571903
708 => 0.032578412590626
709 => 0.034295859127101
710 => 0.035564555349257
711 => 0.035546108003728
712 => 0.035433814532093
713 => 0.035266969211141
714 => 0.036065027926108
715 => 0.035787000227501
716 => 0.035989288608229
717 => 0.036040779491141
718 => 0.036196626885653
719 => 0.036252328933655
720 => 0.036083958657033
721 => 0.035518887443993
722 => 0.034110783706455
723 => 0.033455307615527
724 => 0.033238989587704
725 => 0.033246852337169
726 => 0.033029962606065
727 => 0.033093846352191
728 => 0.033007746446241
729 => 0.032844694054175
730 => 0.033173154986557
731 => 0.033211007049188
801 => 0.033134340342755
802 => 0.033152398127495
803 => 0.032517630543003
804 => 0.032565890543809
805 => 0.032297172726736
806 => 0.032246791375476
807 => 0.031567496133852
808 => 0.030364026147894
809 => 0.031030865343773
810 => 0.030225417366931
811 => 0.029920382013573
812 => 0.031364371933641
813 => 0.031219435395712
814 => 0.030971367045176
815 => 0.03060442225276
816 => 0.030468318859843
817 => 0.02964139772958
818 => 0.029592538817751
819 => 0.030002383258658
820 => 0.029813254151066
821 => 0.029547645255212
822 => 0.028585636758769
823 => 0.027504020698701
824 => 0.027536667888759
825 => 0.027880709833284
826 => 0.028881058187369
827 => 0.028490204779226
828 => 0.028206636147092
829 => 0.028153532266335
830 => 0.028818238514513
831 => 0.029758937115948
901 => 0.030200291852797
902 => 0.029762922712723
903 => 0.029260496594232
904 => 0.029291076944046
905 => 0.029494514311121
906 => 0.029515892701951
907 => 0.029188864949053
908 => 0.029280921345918
909 => 0.029141079261267
910 => 0.028282868645893
911 => 0.028267346337276
912 => 0.028056727611747
913 => 0.028050350160444
914 => 0.027692035167016
915 => 0.027641904422521
916 => 0.026930448254906
917 => 0.027398730858918
918 => 0.027084631474087
919 => 0.026611209612592
920 => 0.026529591505227
921 => 0.026527137966362
922 => 0.027013236362927
923 => 0.027393050516134
924 => 0.027090095367364
925 => 0.027021118352527
926 => 0.027757612412391
927 => 0.027663886829981
928 => 0.027582721080079
929 => 0.029674707873862
930 => 0.028018737086818
1001 => 0.027296639304158
1002 => 0.026402906175467
1003 => 0.026693910188763
1004 => 0.026755229010103
1005 => 0.024605961943106
1006 => 0.0237340045617
1007 => 0.023434781647422
1008 => 0.023262574629864
1009 => 0.023341051530204
1010 => 0.022556187616539
1011 => 0.023083629146973
1012 => 0.022404003340634
1013 => 0.022290061862507
1014 => 0.023505316993724
1015 => 0.023674412645815
1016 => 0.022952998060092
1017 => 0.023416263010539
1018 => 0.023248276699642
1019 => 0.022415653574439
1020 => 0.022383853495417
1021 => 0.021966072479308
1022 => 0.021312326087443
1023 => 0.021013546444003
1024 => 0.020857939411576
1025 => 0.020922145905876
1026 => 0.020889681137607
1027 => 0.020677826564635
1028 => 0.020901824393742
1029 => 0.020329602502666
1030 => 0.020101739134935
1031 => 0.019998818538121
1101 => 0.019490938673928
1102 => 0.020299201393059
1103 => 0.020458439330954
1104 => 0.020617991016777
1105 => 0.022006779511304
1106 => 0.021937399562793
1107 => 0.022564560507927
1108 => 0.022540190186874
1109 => 0.022361313725988
1110 => 0.021606663361259
1111 => 0.021907453546291
1112 => 0.020981668109937
1113 => 0.021675329506144
1114 => 0.021358771412908
1115 => 0.021568300896392
1116 => 0.021191547992575
1117 => 0.021400058605294
1118 => 0.020496200553366
1119 => 0.019652190622102
1120 => 0.019991844856629
1121 => 0.020361087853732
1122 => 0.021161700752818
1123 => 0.020684862315036
1124 => 0.02085635144852
1125 => 0.020281891558282
1126 => 0.019096616718366
1127 => 0.019103325245239
1128 => 0.018920996533734
1129 => 0.018763437906566
1130 => 0.020739632945698
1201 => 0.020493861853561
1202 => 0.020102257783967
1203 => 0.020626435392846
1204 => 0.020765036272451
1205 => 0.020768982044644
1206 => 0.021151408497099
1207 => 0.021355509563329
1208 => 0.021391483260876
1209 => 0.021993239546686
1210 => 0.022194940316332
1211 => 0.023025717240743
1212 => 0.021338193013834
1213 => 0.021303439562887
1214 => 0.020633811646757
1215 => 0.020209123035949
1216 => 0.020662890439276
1217 => 0.021064866413196
1218 => 0.020646302160771
1219 => 0.020700957815764
1220 => 0.020139069504838
1221 => 0.020339918136692
1222 => 0.020512916035676
1223 => 0.020417396764203
1224 => 0.020274399791624
1225 => 0.021031908967408
1226 => 0.020989167331008
1227 => 0.02169457729056
1228 => 0.02224449479838
1229 => 0.023230045281908
1230 => 0.022201571974438
1231 => 0.022164090319303
]
'min_raw' => 0.018763437906566
'max_raw' => 0.054250617039509
'avg_raw' => 0.036507027473037
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.018763'
'max' => '$0.05425'
'avg' => '$0.036507'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0032993277196728
'max_diff' => -0.018325886144495
'year' => 2030
]
5 => [
'items' => [
101 => 0.022530479510497
102 => 0.022194884224056
103 => 0.022406968860731
104 => 0.023195875168123
105 => 0.023212543515256
106 => 0.022933327224828
107 => 0.02291633688818
108 => 0.022969963431048
109 => 0.023284055767623
110 => 0.023174302254141
111 => 0.023301311798561
112 => 0.023460139178698
113 => 0.024117116564356
114 => 0.024275511587851
115 => 0.023890693799161
116 => 0.023925438536857
117 => 0.023781506120403
118 => 0.023642469209575
119 => 0.023955003880405
120 => 0.024526167134231
121 => 0.024522613957273
122 => 0.024655112730333
123 => 0.024737658368271
124 => 0.024383312063142
125 => 0.024152645648179
126 => 0.024241097829361
127 => 0.02438253479331
128 => 0.024195231728192
129 => 0.023039110443068
130 => 0.023389803787661
131 => 0.023331431267092
201 => 0.023248301699462
202 => 0.023600926569281
203 => 0.023566915040353
204 => 0.02254813770268
205 => 0.022613356522423
206 => 0.02255210387512
207 => 0.022750023709668
208 => 0.022184195903473
209 => 0.02235824072575
210 => 0.022467400006713
211 => 0.022531695661802
212 => 0.022763975655926
213 => 0.022736720279581
214 => 0.022762281423464
215 => 0.023106691335104
216 => 0.02484859848097
217 => 0.024943406643619
218 => 0.024476536576283
219 => 0.024663041959579
220 => 0.024304992407895
221 => 0.024545353470664
222 => 0.024709802405301
223 => 0.023966689291386
224 => 0.023922686955544
225 => 0.023563159605996
226 => 0.023756349238973
227 => 0.02344897064208
228 => 0.02352439059811
301 => 0.023313509826055
302 => 0.023693053229812
303 => 0.024117441730295
304 => 0.024224659025127
305 => 0.023942616482372
306 => 0.023738399093909
307 => 0.023379860633156
308 => 0.023976118083938
309 => 0.024150481933163
310 => 0.023975202224867
311 => 0.023934586086518
312 => 0.023857618577737
313 => 0.023950915107354
314 => 0.024149532310194
315 => 0.024055868105219
316 => 0.024117734962756
317 => 0.023881962298651
318 => 0.024383429366514
319 => 0.025179879754902
320 => 0.025182440473134
321 => 0.025088775763274
322 => 0.025050450182033
323 => 0.0251465558584
324 => 0.025198689245367
325 => 0.02550947737997
326 => 0.025842965430744
327 => 0.02739920865147
328 => 0.026962221782498
329 => 0.02834301334925
330 => 0.029435040205206
331 => 0.02976249131076
401 => 0.029461251701415
402 => 0.028430727270491
403 => 0.028380164825533
404 => 0.029920203401526
405 => 0.029485071965573
406 => 0.029433314465843
407 => 0.028882702114393
408 => 0.029208182208766
409 => 0.029136994937622
410 => 0.02902462234752
411 => 0.029645615694445
412 => 0.03080805980343
413 => 0.030626881987713
414 => 0.030491641152877
415 => 0.029899055182641
416 => 0.030255924295591
417 => 0.030128850039847
418 => 0.030674841685838
419 => 0.030351408329949
420 => 0.029481775416982
421 => 0.02962026732472
422 => 0.029599334551472
423 => 0.030030129541593
424 => 0.029900815578548
425 => 0.029574083924772
426 => 0.030804086695839
427 => 0.030724217157521
428 => 0.030837453902137
429 => 0.03088730421908
430 => 0.031635985230749
501 => 0.031942695886109
502 => 0.032012324574601
503 => 0.03230367597534
504 => 0.032005075486336
505 => 0.033199690340893
506 => 0.033994039511465
507 => 0.034916716949918
508 => 0.036264996679814
509 => 0.036771962330539
510 => 0.036680383523409
511 => 0.037702633826912
512 => 0.039539594898959
513 => 0.037051685876797
514 => 0.039671460118249
515 => 0.038842069840153
516 => 0.036875600410883
517 => 0.036748982962789
518 => 0.038080698891471
519 => 0.041034316648379
520 => 0.040294468899929
521 => 0.041035526774252
522 => 0.040171043400247
523 => 0.04012811451429
524 => 0.04099354074634
525 => 0.043015656309452
526 => 0.042055025003286
527 => 0.040677724469436
528 => 0.041694701750461
529 => 0.040813701912833
530 => 0.03882856270233
531 => 0.040293903152299
601 => 0.039314071723898
602 => 0.039600038625409
603 => 0.041659498548982
604 => 0.041411698882322
605 => 0.041732374596611
606 => 0.041166390354436
607 => 0.040637671824722
608 => 0.039650779425858
609 => 0.039358609239761
610 => 0.039439354568016
611 => 0.039358569226386
612 => 0.038806411999231
613 => 0.038687173698598
614 => 0.038488437973593
615 => 0.038550034484842
616 => 0.038176353179646
617 => 0.038881567009048
618 => 0.039012460910108
619 => 0.039525656725193
620 => 0.039578938417177
621 => 0.041008181457306
622 => 0.040220978408256
623 => 0.0407491021774
624 => 0.040701861816594
625 => 0.036918219766272
626 => 0.03743957225745
627 => 0.038250633124298
628 => 0.03788525130315
629 => 0.037368686894225
630 => 0.036951533437587
701 => 0.036319503294649
702 => 0.03720907358377
703 => 0.038378763918711
704 => 0.039608603694354
705 => 0.041086175602496
706 => 0.040756398753432
707 => 0.039580981515309
708 => 0.039633709873969
709 => 0.039959655839356
710 => 0.039537526198865
711 => 0.039413031926935
712 => 0.039942552238133
713 => 0.039946198753497
714 => 0.039460487586041
715 => 0.038920708507619
716 => 0.038918446813571
717 => 0.038822398340213
718 => 0.040188130210285
719 => 0.040939144647757
720 => 0.041025247242693
721 => 0.040933349257088
722 => 0.040968717144447
723 => 0.040531718390756
724 => 0.041530567953739
725 => 0.042447211088717
726 => 0.042201531147319
727 => 0.041833221989701
728 => 0.041539846005486
729 => 0.042132421089061
730 => 0.042106034653389
731 => 0.042439205010595
801 => 0.042424090478707
802 => 0.042312057818749
803 => 0.042201535148358
804 => 0.042639745043544
805 => 0.042513547631166
806 => 0.04238715419935
807 => 0.042133652821976
808 => 0.042168107869373
809 => 0.041799862305525
810 => 0.041629495057918
811 => 0.039067580422094
812 => 0.038382953118427
813 => 0.038598350805034
814 => 0.038669265316264
815 => 0.038371314636334
816 => 0.038798499374104
817 => 0.038731923085223
818 => 0.038990932479432
819 => 0.038829114654811
820 => 0.038835755714778
821 => 0.039311627433791
822 => 0.039449775018323
823 => 0.039379512041842
824 => 0.039428721822095
825 => 0.040562740437884
826 => 0.040401519254593
827 => 0.040315873714227
828 => 0.04033959811422
829 => 0.040629364184188
830 => 0.040710482863138
831 => 0.040366777320318
901 => 0.04052887084125
902 => 0.041219044480647
903 => 0.041460566193991
904 => 0.042231387565985
905 => 0.041903928946905
906 => 0.042504993414304
907 => 0.044352460669114
908 => 0.045828345347266
909 => 0.044471060803723
910 => 0.04718133506237
911 => 0.049291672338477
912 => 0.049210674078869
913 => 0.048842687961799
914 => 0.04644012507917
915 => 0.044229250894381
916 => 0.046078741028634
917 => 0.046083455759337
918 => 0.045924582916573
919 => 0.044937837334838
920 => 0.045890246309224
921 => 0.045965845074969
922 => 0.045923529869486
923 => 0.045166994345517
924 => 0.044011904431553
925 => 0.044237606235847
926 => 0.044607310395473
927 => 0.043907383292935
928 => 0.043683714173595
929 => 0.044099557621239
930 => 0.045439491853969
1001 => 0.045186185048982
1002 => 0.045179570184611
1003 => 0.046263324115148
1004 => 0.04548759018962
1005 => 0.044240453058397
1006 => 0.043925534485045
1007 => 0.042807785704218
1008 => 0.04357981876842
1009 => 0.043607602863977
1010 => 0.0431847682447
1011 => 0.044274763757377
1012 => 0.044264719256837
1013 => 0.045299507771702
1014 => 0.047277634763306
1015 => 0.046692605274172
1016 => 0.046012279629335
1017 => 0.046086249890313
1018 => 0.046897521079077
1019 => 0.04640700799883
1020 => 0.046583399922466
1021 => 0.046897254088775
1022 => 0.047086610099869
1023 => 0.04605900447434
1024 => 0.04581942044697
1025 => 0.045329315609538
1026 => 0.045201456405692
1027 => 0.045600636569408
1028 => 0.045495466699512
1029 => 0.04360526771833
1030 => 0.043407731407829
1031 => 0.043413789564455
1101 => 0.04291707511936
1102 => 0.042159466365464
1103 => 0.044150416936235
1104 => 0.043990515742067
1105 => 0.043813997199075
1106 => 0.04383561971339
1107 => 0.044699823876587
1108 => 0.044198541818576
1109 => 0.04553128232831
1110 => 0.045257310945356
1111 => 0.044976313230217
1112 => 0.044937470786585
1113 => 0.044829310639855
1114 => 0.044458389252101
1115 => 0.044010479387467
1116 => 0.043714730497548
1117 => 0.040324528132077
1118 => 0.040953729971208
1119 => 0.041677569333577
1120 => 0.041927435780862
1121 => 0.041500021932549
1122 => 0.04447526615595
1123 => 0.045018871945732
1124 => 0.043372254549954
1125 => 0.043064239666149
1126 => 0.044495459560454
1127 => 0.043632259004672
1128 => 0.044020958162086
1129 => 0.043180803190828
1130 => 0.044887933229609
1201 => 0.044874927758939
1202 => 0.044210815616572
1203 => 0.044772118651657
1204 => 0.044674578436322
1205 => 0.043924797463226
1206 => 0.044911702623817
1207 => 0.044912192116464
1208 => 0.044272998618479
1209 => 0.043526560550282
1210 => 0.043393115053768
1211 => 0.043292581798026
1212 => 0.043996233143974
1213 => 0.04462712474049
1214 => 0.045801057590316
1215 => 0.046096212200719
1216 => 0.047248220294677
1217 => 0.046562255564981
1218 => 0.046866334844925
1219 => 0.047196455917944
1220 => 0.04735472810015
1221 => 0.047096832072599
1222 => 0.048886374827963
1223 => 0.04903746706669
1224 => 0.049088126987392
1225 => 0.048484703239031
1226 => 0.049020684760662
1227 => 0.048769916756533
1228 => 0.049422345437918
1229 => 0.049524654585787
1230 => 0.049438002377296
1231 => 0.049470476915669
]
'min_raw' => 0.022184195903473
'max_raw' => 0.049524654585787
'avg_raw' => 0.03585442524463
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.022184'
'max' => '$0.049524'
'avg' => '$0.035854'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0034207579969068
'max_diff' => -0.0047259624537219
'year' => 2031
]
6 => [
'items' => [
101 => 0.04794341787094
102 => 0.047864231803593
103 => 0.046784524156524
104 => 0.047224513003501
105 => 0.046401974943292
106 => 0.046662810235265
107 => 0.046777783946637
108 => 0.046717728204517
109 => 0.047249389312755
110 => 0.046797368759564
111 => 0.045604412200635
112 => 0.044411130621489
113 => 0.044396149943289
114 => 0.044081979966669
115 => 0.043854892616674
116 => 0.04389863769664
117 => 0.044052801064199
118 => 0.043845932361498
119 => 0.043890078287729
120 => 0.044623194805925
121 => 0.044770216095302
122 => 0.044270580309074
123 => 0.042264470530271
124 => 0.041772166158608
125 => 0.042126024778139
126 => 0.041956903149417
127 => 0.033862495443608
128 => 0.035764156468041
129 => 0.03463425406163
130 => 0.035154965074814
131 => 0.034001627304678
201 => 0.034552060540199
202 => 0.034450415620201
203 => 0.037508230273249
204 => 0.037460486703328
205 => 0.037483339023716
206 => 0.036392538230212
207 => 0.038130213512733
208 => 0.038986254841685
209 => 0.038827824374498
210 => 0.038867697909838
211 => 0.038182538465346
212 => 0.037489972864823
213 => 0.036721811028761
214 => 0.038148960772491
215 => 0.037990286083247
216 => 0.038354228731022
217 => 0.039279837354602
218 => 0.039416136740469
219 => 0.039599324497287
220 => 0.03953366472666
221 => 0.041097946846549
222 => 0.040908501960365
223 => 0.041365009629056
224 => 0.040425938719239
225 => 0.039363290847352
226 => 0.039565265467221
227 => 0.039545813687151
228 => 0.039298170201136
229 => 0.039074608734851
301 => 0.038702441881538
302 => 0.03988003287575
303 => 0.039832224831919
304 => 0.040606181490776
305 => 0.040469377133509
306 => 0.039555764153976
307 => 0.039588394020273
308 => 0.039807845552497
309 => 0.040567369811179
310 => 0.040792848323511
311 => 0.040688397692834
312 => 0.04093562458812
313 => 0.041131022645903
314 => 0.040960163575776
315 => 0.04337916769887
316 => 0.042374628534582
317 => 0.042864233933718
318 => 0.042981001936489
319 => 0.042681903152757
320 => 0.042746766969024
321 => 0.042845017976336
322 => 0.043441578853218
323 => 0.045007127210438
324 => 0.045700497920802
325 => 0.047786537913241
326 => 0.045642923135492
327 => 0.045515729905741
328 => 0.045891488700752
329 => 0.047116215006072
330 => 0.048108740643842
331 => 0.048438018658068
401 => 0.048481538183435
402 => 0.049099285628112
403 => 0.049453366943093
404 => 0.049024274839957
405 => 0.048660664210366
406 => 0.047358256068183
407 => 0.04750901335698
408 => 0.048547581577984
409 => 0.050014620361515
410 => 0.051273492257154
411 => 0.050832679195416
412 => 0.054195771690953
413 => 0.054529208574885
414 => 0.054483138378831
415 => 0.055242757222488
416 => 0.053735068511516
417 => 0.053090502377482
418 => 0.04873928095564
419 => 0.049961796691162
420 => 0.051738795108575
421 => 0.051503602704628
422 => 0.050213098954599
423 => 0.051272513294337
424 => 0.050922237782671
425 => 0.050645960953675
426 => 0.051911638666204
427 => 0.050519974030103
428 => 0.051724912189262
429 => 0.050179566536651
430 => 0.050834692792351
501 => 0.050462811444724
502 => 0.050703464252702
503 => 0.049296612854607
504 => 0.050055715719632
505 => 0.049265031679723
506 => 0.049264656792538
507 => 0.049247202398534
508 => 0.050177438665057
509 => 0.050207773636311
510 => 0.049520327629842
511 => 0.049421255920385
512 => 0.049787575955833
513 => 0.049358711133692
514 => 0.049559374284729
515 => 0.049364789016118
516 => 0.049320983773561
517 => 0.04897193614802
518 => 0.048821556833672
519 => 0.048880524437625
520 => 0.048679237605449
521 => 0.0485579550082
522 => 0.049223076237302
523 => 0.048867728795507
524 => 0.049168614145447
525 => 0.048825717314431
526 => 0.047637087505093
527 => 0.046953493932211
528 => 0.044708282408413
529 => 0.045345021611386
530 => 0.045767180361711
531 => 0.045627656897247
601 => 0.045927407287329
602 => 0.045945809526808
603 => 0.045848357619399
604 => 0.045735520794982
605 => 0.045680598069123
606 => 0.046089947070328
607 => 0.046327587943581
608 => 0.045809549640062
609 => 0.045688180513673
610 => 0.04621194584021
611 => 0.046531442386828
612 => 0.048890425377456
613 => 0.048715664298095
614 => 0.04915428031216
615 => 0.049104898880088
616 => 0.049564638339838
617 => 0.050316118056138
618 => 0.048788149675867
619 => 0.049053352153511
620 => 0.048988330630412
621 => 0.049698218570044
622 => 0.049700434762705
623 => 0.049274821481363
624 => 0.049505553345965
625 => 0.049376765148942
626 => 0.049609502827732
627 => 0.048713330257334
628 => 0.049804771712228
629 => 0.050423548686219
630 => 0.050432140405103
701 => 0.050725435779858
702 => 0.05102344086713
703 => 0.051595435681377
704 => 0.051007488242212
705 => 0.049949828034682
706 => 0.050026187685444
707 => 0.049406081892753
708 => 0.049416505983159
709 => 0.049360861371619
710 => 0.049527855039582
711 => 0.048749975976583
712 => 0.048932542637866
713 => 0.048676948242961
714 => 0.049052796541213
715 => 0.048648445902243
716 => 0.048988299275065
717 => 0.049134968724457
718 => 0.049676182150283
719 => 0.048568508239201
720 => 0.046309886151575
721 => 0.04678467589754
722 => 0.046082424569328
723 => 0.046147420603414
724 => 0.046278722936308
725 => 0.045853129115947
726 => 0.045934319004869
727 => 0.045931418330713
728 => 0.045906421887901
729 => 0.045795708498012
730 => 0.045635152178696
731 => 0.046274759138221
801 => 0.046383440824204
802 => 0.046625026749332
803 => 0.047343822593213
804 => 0.047271997938036
805 => 0.047389146930606
806 => 0.04713341133759
807 => 0.046159283444106
808 => 0.046212183275393
809 => 0.045552521531584
810 => 0.046608157715421
811 => 0.046358169133372
812 => 0.046196999868252
813 => 0.046153023341042
814 => 0.04687360094079
815 => 0.047089209052304
816 => 0.046954856546131
817 => 0.046679295636279
818 => 0.047208454045463
819 => 0.04735003451236
820 => 0.047381729157612
821 => 0.048319296402624
822 => 0.047434128751535
823 => 0.047647197402962
824 => 0.049309498198267
825 => 0.047802020758755
826 => 0.048600565179223
827 => 0.048561480585266
828 => 0.048969988889507
829 => 0.048527970980854
830 => 0.048533450322585
831 => 0.048896178022002
901 => 0.048386792386456
902 => 0.048260661339589
903 => 0.048086412201709
904 => 0.048466878819492
905 => 0.048694951349829
906 => 0.050533048443522
907 => 0.051720542993459
908 => 0.051668990723252
909 => 0.052140081971136
910 => 0.051927851049263
911 => 0.051242501418846
912 => 0.052412309668484
913 => 0.052042133391443
914 => 0.052072650273958
915 => 0.052071514434066
916 => 0.052317649296927
917 => 0.052143240188661
918 => 0.051799461933542
919 => 0.05202767798275
920 => 0.052705398060166
921 => 0.054809061975459
922 => 0.055986300172296
923 => 0.054738190757825
924 => 0.055599119919076
925 => 0.055082869202752
926 => 0.054989051090467
927 => 0.055529778225898
928 => 0.056071451832599
929 => 0.056036949565571
930 => 0.055643722342354
1001 => 0.05542159826173
1002 => 0.057103596217242
1003 => 0.058342863658776
1004 => 0.058258353927418
1005 => 0.058631352397596
1006 => 0.059726487442448
1007 => 0.05982661286627
1008 => 0.059813999364225
1009 => 0.059565828054275
1010 => 0.060644130727188
1011 => 0.061543669787862
1012 => 0.05950838356638
1013 => 0.060283393915667
1014 => 0.060631321030736
1015 => 0.061142181260981
1016 => 0.06200408809952
1017 => 0.062940347535672
1018 => 0.063072744885506
1019 => 0.062978802630002
1020 => 0.062361314363856
1021 => 0.063385780610791
1022 => 0.063985888911556
1023 => 0.064343239671427
1024 => 0.065249421740964
1025 => 0.060633469710151
1026 => 0.05736606943504
1027 => 0.056855817700249
1028 => 0.057893434667604
1029 => 0.058167045987055
1030 => 0.058056753607264
1031 => 0.05437899753859
1101 => 0.056836455075677
1102 => 0.059480472756683
1103 => 0.059582040243912
1104 => 0.060905690778826
1105 => 0.061336725651263
1106 => 0.062402437826711
1107 => 0.062335777239974
1108 => 0.062595261195512
1109 => 0.062535610327769
1110 => 0.064509617720612
1111 => 0.066687241017852
1112 => 0.066611836847486
1113 => 0.066298777734039
1114 => 0.06676372390202
1115 => 0.069011264513066
1116 => 0.068804346989705
1117 => 0.069005349738457
1118 => 0.071655326784719
1119 => 0.075100673899698
1120 => 0.073499964257596
1121 => 0.076973043589167
1122 => 0.079159162928366
1123 => 0.082939830276553
1124 => 0.082466472104381
1125 => 0.083938258159211
1126 => 0.081619062183361
1127 => 0.076293719435969
1128 => 0.075450963561601
1129 => 0.077138182164063
1130 => 0.081286044461833
1201 => 0.077007551219318
1202 => 0.077873084829957
1203 => 0.077623811091866
1204 => 0.077610528353708
1205 => 0.078117476444388
1206 => 0.077382121798222
1207 => 0.074386154681969
1208 => 0.075759188756003
1209 => 0.075228994361507
1210 => 0.075817284570811
1211 => 0.078992044201087
1212 => 0.077588407291725
1213 => 0.076109789829915
1214 => 0.077964304258507
1215 => 0.0803257384064
1216 => 0.08017796410133
1217 => 0.079891220184627
1218 => 0.081507580629662
1219 => 0.084177334535685
1220 => 0.084898958288543
1221 => 0.085431646189954
1222 => 0.085505094851723
1223 => 0.086261661716031
1224 => 0.082193411007249
1225 => 0.088649829362174
1226 => 0.089764674457112
1227 => 0.089555129784859
1228 => 0.090794233188029
1229 => 0.090429657533797
1230 => 0.089901444610982
1231 => 0.091865687069859
]
'min_raw' => 0.033862495443608
'max_raw' => 0.091865687069859
'avg_raw' => 0.062864091256734
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.033862'
'max' => '$0.091865'
'avg' => '$0.062864'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.011678299540136
'max_diff' => 0.042341032484072
'year' => 2032
]
7 => [
'items' => [
101 => 0.08961384159695
102 => 0.086417630447616
103 => 0.084664125797203
104 => 0.086973282172052
105 => 0.088383403391721
106 => 0.089315403817368
107 => 0.089597426583038
108 => 0.082509217728947
109 => 0.078689066286678
110 => 0.081137739563047
111 => 0.08412528995862
112 => 0.082176815013957
113 => 0.082253191542836
114 => 0.079475178321954
115 => 0.08437108248676
116 => 0.083657790430983
117 => 0.087358350878144
118 => 0.086475182428576
119 => 0.089492845818307
120 => 0.088698193914878
121 => 0.091996749537624
122 => 0.093312632680365
123 => 0.095522205277886
124 => 0.097147575875201
125 => 0.098102024578329
126 => 0.09804472305824
127 => 0.10182672432449
128 => 0.099596610310843
129 => 0.096795061512185
130 => 0.09674439033319
131 => 0.098195352154269
201 => 0.10123617007931
202 => 0.10202460992518
203 => 0.10246524023807
204 => 0.10179039957542
205 => 0.099369770647318
206 => 0.09832455534903
207 => 0.099215109065973
208 => 0.098126038396305
209 => 0.10000607991141
210 => 0.10258777846686
211 => 0.1020546679243
212 => 0.10383677653967
213 => 0.10568107147328
214 => 0.10831849606081
215 => 0.10900801651154
216 => 0.11014776759648
217 => 0.11132094585161
218 => 0.11169773908912
219 => 0.1124171542916
220 => 0.11241336261837
221 => 0.11458136875327
222 => 0.11697274665762
223 => 0.11787543645599
224 => 0.11995112187273
225 => 0.11639658333726
226 => 0.11909274164801
227 => 0.12152474393353
228 => 0.11862521054905
301 => 0.12262154181493
302 => 0.1227767103021
303 => 0.12511957023389
304 => 0.12274463285537
305 => 0.12133440262107
306 => 0.12540568446685
307 => 0.12737564950785
308 => 0.1267822800054
309 => 0.12226670879344
310 => 0.11963845266612
311 => 0.11275979942817
312 => 0.12090786132422
313 => 0.12487654459157
314 => 0.12225643086254
315 => 0.12357786382455
316 => 0.13078717358918
317 => 0.13353201197932
318 => 0.13296110478204
319 => 0.13305757870044
320 => 0.13453864367342
321 => 0.14110650140097
322 => 0.13717088880887
323 => 0.14017951717094
324 => 0.14177528280577
325 => 0.14325751886038
326 => 0.13961761557577
327 => 0.13488215488329
328 => 0.13338223570087
329 => 0.12199591218898
330 => 0.12140320460189
331 => 0.12107049987238
401 => 0.11897284361483
402 => 0.1173246603928
403 => 0.11601396390152
404 => 0.1125743049013
405 => 0.11373508884162
406 => 0.1082529903079
407 => 0.11176024267613
408 => 0.10301068104641
409 => 0.11029757596627
410 => 0.10633165035585
411 => 0.10899466274002
412 => 0.10898537174068
413 => 0.10408192163258
414 => 0.10125371394261
415 => 0.10305595795815
416 => 0.10498810660511
417 => 0.10530159122255
418 => 0.10780667237757
419 => 0.1085057866814
420 => 0.10638743770228
421 => 0.10282936582939
422 => 0.10365582477449
423 => 0.10123696577847
424 => 0.096998008428021
425 => 0.10004250160221
426 => 0.10108202542879
427 => 0.10154113837098
428 => 0.097372610664351
429 => 0.09606276875579
430 => 0.09536541991431
501 => 0.1022912612486
502 => 0.10267067447109
503 => 0.10072954278118
504 => 0.10950364208523
505 => 0.1075177931856
506 => 0.10973647295128
507 => 0.10358083228775
508 => 0.10381598605077
509 => 0.10090180711214
510 => 0.10253355259226
511 => 0.10138028748052
512 => 0.10240172368269
513 => 0.10301396833073
514 => 0.10592766908128
515 => 0.1103308457485
516 => 0.1054924593525
517 => 0.1033843051128
518 => 0.1046921921464
519 => 0.10817526766823
520 => 0.11345230537915
521 => 0.110328192844
522 => 0.11171462093623
523 => 0.11201749379649
524 => 0.109713888874
525 => 0.11353724257847
526 => 0.11558620888956
527 => 0.1176880243509
528 => 0.11951297182446
529 => 0.11684851303573
530 => 0.11969986587483
531 => 0.11740217881805
601 => 0.11534091599759
602 => 0.11534404208244
603 => 0.11405098180492
604 => 0.11154551458115
605 => 0.11108346798432
606 => 0.11348709273107
607 => 0.11541457215385
608 => 0.11557332859111
609 => 0.11664048023703
610 => 0.11727200958855
611 => 0.12346185575596
612 => 0.12595146308958
613 => 0.12899570781128
614 => 0.13018161269462
615 => 0.13375076122302
616 => 0.13086838391426
617 => 0.13024476345251
618 => 0.12158717658219
619 => 0.1230048559472
620 => 0.12527469739629
621 => 0.12162460543165
622 => 0.12393974864786
623 => 0.12439680696017
624 => 0.12150057670342
625 => 0.12304757842227
626 => 0.11893920051104
627 => 0.11042039716006
628 => 0.11354672644183
629 => 0.11584875710426
630 => 0.11256347551063
701 => 0.11845221560925
702 => 0.11501213521191
703 => 0.11392179487893
704 => 0.10966798850559
705 => 0.11167562136978
706 => 0.11439097356514
707 => 0.11271320160199
708 => 0.11619483034426
709 => 0.12112574515979
710 => 0.12463980869839
711 => 0.12490957486258
712 => 0.12265026743124
713 => 0.12627082200868
714 => 0.12629719379613
715 => 0.12221319344237
716 => 0.11971176596551
717 => 0.11914343637971
718 => 0.1205632351126
719 => 0.12228713288363
720 => 0.12500523919116
721 => 0.12664773390602
722 => 0.13093048901051
723 => 0.13208927974557
724 => 0.13336243944
725 => 0.13506377341968
726 => 0.13710666107535
727 => 0.13263693918639
728 => 0.13281452956964
729 => 0.12865238643416
730 => 0.12420453958218
731 => 0.12757990091089
801 => 0.13199273684268
802 => 0.13098042740418
803 => 0.13086652191274
804 => 0.13105807935459
805 => 0.13029483109689
806 => 0.12684268751464
807 => 0.12510904261919
808 => 0.1273458868343
809 => 0.12853466998415
810 => 0.13037836897678
811 => 0.13015109416017
812 => 0.13490026476637
813 => 0.13674564885647
814 => 0.13627352063778
815 => 0.13636040359242
816 => 0.13970138334052
817 => 0.1434172399453
818 => 0.14689763000613
819 => 0.15043803226225
820 => 0.14616993915825
821 => 0.14400286469943
822 => 0.14623873237832
823 => 0.14505234951578
824 => 0.15186965734795
825 => 0.15234167295095
826 => 0.15915848781417
827 => 0.16562845685058
828 => 0.16156478522035
829 => 0.16539664453587
830 => 0.16954111280167
831 => 0.17753646450216
901 => 0.1748439113293
902 => 0.17278145779658
903 => 0.17083244917386
904 => 0.17488802672133
905 => 0.18010546244673
906 => 0.18122924813
907 => 0.18305021025607
908 => 0.18113569123716
909 => 0.18344151851809
910 => 0.1915821020516
911 => 0.18938244452192
912 => 0.18625857721719
913 => 0.19268478608695
914 => 0.19501040609566
915 => 0.21133282525343
916 => 0.23194055368563
917 => 0.22340881879706
918 => 0.21811289563436
919 => 0.21935756319857
920 => 0.22688280800638
921 => 0.22929967779932
922 => 0.22272979255714
923 => 0.22505038709276
924 => 0.23783709113983
925 => 0.24469674761451
926 => 0.23538041274712
927 => 0.2096770143392
928 => 0.18597730714538
929 => 0.1922635367049
930 => 0.19155087335727
1001 => 0.20528859168204
1002 => 0.18932998341732
1003 => 0.18959868545236
1004 => 0.20362048524359
1005 => 0.1998797094538
1006 => 0.19382013175669
1007 => 0.18602154876849
1008 => 0.17160514683319
1009 => 0.15883613760799
1010 => 0.18387910522582
1011 => 0.18279920692445
1012 => 0.18123535415212
1013 => 0.18471553927041
1014 => 0.20161433033703
1015 => 0.20122475850689
1016 => 0.19874650128487
1017 => 0.20062623754542
1018 => 0.19349060490183
1019 => 0.19532961990942
1020 => 0.18597355299067
1021 => 0.19020288598181
1022 => 0.19380713062445
1023 => 0.19453073609821
1024 => 0.19616105617881
1025 => 0.18223014959059
1026 => 0.18848471765878
1027 => 0.19215869042506
1028 => 0.17555954780672
1029 => 0.19183057874581
1030 => 0.18198764350036
1031 => 0.17864680344213
1101 => 0.18314480445833
1102 => 0.18139192908787
1103 => 0.17988490977664
1104 => 0.1790439671071
1105 => 0.18234680262714
1106 => 0.18219272140238
1107 => 0.17678864143885
1108 => 0.1697392394249
1109 => 0.17210525012952
1110 => 0.17124565625906
1111 => 0.16813037718272
1112 => 0.17022969913994
1113 => 0.16098534768285
1114 => 0.14508092148049
1115 => 0.15558787259551
1116 => 0.15518336640695
1117 => 0.15497939604378
1118 => 0.16287507941592
1119 => 0.1621160916441
1120 => 0.16073852140621
1121 => 0.16810507702499
1122 => 0.16541618512998
1123 => 0.1737027163678
1124 => 0.17916076178026
1125 => 0.17777642491439
1126 => 0.18290974300583
1127 => 0.17215975823748
1128 => 0.175730471963
1129 => 0.17646639111303
1130 => 0.16801417487214
1201 => 0.16224027143013
1202 => 0.16185521789787
1203 => 0.15184406502233
1204 => 0.15719194208124
1205 => 0.16189785258289
1206 => 0.15964408664601
1207 => 0.15893061167973
1208 => 0.16257560054859
1209 => 0.16285884740092
1210 => 0.15640078915067
1211 => 0.157743623961
1212 => 0.16334346834781
1213 => 0.15760252225017
1214 => 0.14644880176069
1215 => 0.14368252486705
1216 => 0.14331345253684
1217 => 0.13581109020509
1218 => 0.14386738071655
1219 => 0.14035059401313
1220 => 0.15146008107164
1221 => 0.1451144016452
1222 => 0.14484085208807
1223 => 0.14442734181148
1224 => 0.13796974863386
1225 => 0.1393835511383
1226 => 0.14408324599127
1227 => 0.14576015006067
1228 => 0.14558523522776
1229 => 0.14406021492258
1230 => 0.14475836140893
1231 => 0.14250938832606
]
'min_raw' => 0.078689066286678
'max_raw' => 0.24469674761451
'avg_raw' => 0.16169290695059
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.078689'
'max' => '$0.244696'
'avg' => '$0.161692'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.044826570843069
'max_diff' => 0.15283106054465
'year' => 2033
]
8 => [
'items' => [
101 => 0.14171522912218
102 => 0.13920864422401
103 => 0.13552465688547
104 => 0.1360369379201
105 => 0.12873799503471
106 => 0.12476114356654
107 => 0.1236604034942
108 => 0.12218844786639
109 => 0.12382666479909
110 => 0.12871731804658
111 => 0.12281815262014
112 => 0.11270444727485
113 => 0.11331229819901
114 => 0.11467795875306
115 => 0.11213305934535
116 => 0.10972452563316
117 => 0.11181855028539
118 => 0.10753324000397
119 => 0.11519581802726
120 => 0.11498856676585
121 => 0.11784470200229
122 => 0.11963070197943
123 => 0.11551455025648
124 => 0.11447934922942
125 => 0.1150690467817
126 => 0.10532265981006
127 => 0.1170482142538
128 => 0.11714961733554
129 => 0.11628134258606
130 => 0.12252483834147
131 => 0.13570056178055
201 => 0.13074332463052
202 => 0.12882373257274
203 => 0.12517458666769
204 => 0.13003685692133
205 => 0.12966351042908
206 => 0.12797509600369
207 => 0.12695393769103
208 => 0.12883545319252
209 => 0.12672079709859
210 => 0.12634094675726
211 => 0.12403946697003
212 => 0.12321794339664
213 => 0.12260972004871
214 => 0.12194012590542
215 => 0.12341708373305
216 => 0.12007010298566
217 => 0.11603397231289
218 => 0.11569841171898
219 => 0.11662492402154
220 => 0.11621501129839
221 => 0.11569644921457
222 => 0.11470637297459
223 => 0.11441263850381
224 => 0.11536713303412
225 => 0.11428956435989
226 => 0.11587957563691
227 => 0.1154471805489
228 => 0.11303185673649
301 => 0.11002146899883
302 => 0.10999467023346
303 => 0.10934608713341
304 => 0.10852001904036
305 => 0.10829022579476
306 => 0.11164219736989
307 => 0.11858067821434
308 => 0.1172184884008
309 => 0.11820281014391
310 => 0.12304469890097
311 => 0.12458378973617
312 => 0.12349137951671
313 => 0.12199602103139
314 => 0.12206180921567
315 => 0.12717190183581
316 => 0.12749061204437
317 => 0.12829588992156
318 => 0.12933089956527
319 => 0.12366764613454
320 => 0.12179507048837
321 => 0.12090774026067
322 => 0.11817510659938
323 => 0.12112201772478
324 => 0.11940497881133
325 => 0.11963666602315
326 => 0.11948577942251
327 => 0.11956817370937
328 => 0.11519367618054
329 => 0.11678751316322
330 => 0.11413745004974
331 => 0.11058931302433
401 => 0.11057741842489
402 => 0.11144581993521
403 => 0.11092926073632
404 => 0.10953921321404
405 => 0.10973666290374
406 => 0.10800679585564
407 => 0.10994670008363
408 => 0.11000232959558
409 => 0.10925536080051
410 => 0.11224405091893
411 => 0.11346851969899
412 => 0.11297684883645
413 => 0.11343402276058
414 => 0.11727509353747
415 => 0.11790135567177
416 => 0.11817949994327
417 => 0.11780682346651
418 => 0.11350423048323
419 => 0.11369506877807
420 => 0.11229482399369
421 => 0.11111176470504
422 => 0.11115908087225
423 => 0.11176732713356
424 => 0.11442357422986
425 => 0.12001348964971
426 => 0.12022562285371
427 => 0.12048273448533
428 => 0.11943693226558
429 => 0.11912150830913
430 => 0.11953763392552
501 => 0.12163691225343
502 => 0.1270368260613
503 => 0.12512813587348
504 => 0.12357634104025
505 => 0.12493768346988
506 => 0.12472811547339
507 => 0.12295915068127
508 => 0.12290950173128
509 => 0.11951429272294
510 => 0.11825916125773
511 => 0.11721027946043
512 => 0.11606492791954
513 => 0.11538592513357
514 => 0.11642918201407
515 => 0.11666778720609
516 => 0.11438668780387
517 => 0.1140757823843
518 => 0.1159385773971
519 => 0.11511883076396
520 => 0.11596196050489
521 => 0.11615757383701
522 => 0.11612607558518
523 => 0.11527016595289
524 => 0.11581569722892
525 => 0.1145253531304
526 => 0.11312229772667
527 => 0.11222723579254
528 => 0.11144617554227
529 => 0.11187955316461
530 => 0.1103346410726
531 => 0.10984039260143
601 => 0.11563088350744
602 => 0.11990838139798
603 => 0.11984618488458
604 => 0.11946757960488
605 => 0.11890504895652
606 => 0.12159575963271
607 => 0.12065836983559
608 => 0.12134039923453
609 => 0.12151400434125
610 => 0.12203945471277
611 => 0.1222272580566
612 => 0.12165958591373
613 => 0.11975440886695
614 => 0.11500688880518
615 => 0.11279690540074
616 => 0.11206757406709
617 => 0.11209408387587
618 => 0.1113628250047
619 => 0.11157821351498
620 => 0.11128792167077
621 => 0.11073817914696
622 => 0.1118456081129
623 => 0.1119732289848
624 => 0.11171474183136
625 => 0.11177562491337
626 => 0.1096354616842
627 => 0.10979817364632
628 => 0.10889217276478
629 => 0.1087223085215
630 => 0.10643201718748
701 => 0.10237443410623
702 => 0.10462272901236
703 => 0.10190710492386
704 => 0.10087865693313
705 => 0.10574716976479
706 => 0.10525850610802
707 => 0.10442212634461
708 => 0.10318494635771
709 => 0.10272606426605
710 => 0.09993804194158
711 => 0.099773310709129
712 => 0.10115512985607
713 => 0.10051746786525
714 => 0.099621948928659
715 => 0.096378470117616
716 => 0.092731726055075
717 => 0.092841798335707
718 => 0.094001759771916
719 => 0.097374504089806
720 => 0.096056714535737
721 => 0.095100643094368
722 => 0.094921599652801
723 => 0.097162703176841
724 => 0.10033433418906
725 => 0.10182239249875
726 => 0.10034777190685
727 => 0.098653807170088
728 => 0.098756910954538
729 => 0.099442814241174
730 => 0.099514892978449
731 => 0.098412296077205
801 => 0.098722670646407
802 => 0.098251183294544
803 => 0.095357666286458
804 => 0.095305331739223
805 => 0.094595216001174
806 => 0.094573713978844
807 => 0.09336562996175
808 => 0.093196610656668
809 => 0.090797886515269
810 => 0.092376734009144
811 => 0.091317726003467
812 => 0.089721551144177
813 => 0.089446369996801
814 => 0.08943809771922
815 => 0.091077012401542
816 => 0.092357582336858
817 => 0.091336147901126
818 => 0.091103587079785
819 => 0.093586728222988
820 => 0.093270725878182
821 => 0.092997069885576
822 => 0.10005034941867
823 => 0.09446712829396
824 => 0.092032525204467
825 => 0.089019241562631
826 => 0.090000381910707
827 => 0.090207122597998
828 => 0.082960718624584
829 => 0.080020853435052
830 => 0.079012002488487
831 => 0.078431394505681
901 => 0.078695984854262
902 => 0.076049761371889
903 => 0.07782806731654
904 => 0.075536661460509
905 => 0.075152499811865
906 => 0.079249817333166
907 => 0.079819935130073
908 => 0.077387635486751
909 => 0.078949565611307
910 => 0.07838318803569
911 => 0.075575941037177
912 => 0.075468724850545
913 => 0.074060146986194
914 => 0.071855995382905
915 => 0.070848638954919
916 => 0.070323998980955
917 => 0.070540475659242
918 => 0.070431018426404
919 => 0.069716735942414
920 => 0.070471960262277
921 => 0.06854267420526
922 => 0.067774416952041
923 => 0.067427412974195
924 => 0.06571506055303
925 => 0.068440174741682
926 => 0.06897705656693
927 => 0.069514996215226
928 => 0.074197393586641
929 => 0.073963474246282
930 => 0.076077991159782
1001 => 0.07599582492087
1002 => 0.075392730444237
1003 => 0.072848374051549
1004 => 0.073862509160883
1005 => 0.070741158925941
1006 => 0.073079886753144
1007 => 0.072012589040418
1008 => 0.072719032322866
1009 => 0.071448783603601
1010 => 0.072151791692127
1011 => 0.0691043711647
1012 => 0.066258732754552
1013 => 0.067403900720159
1014 => 0.068648829264616
1015 => 0.071348151550893
1016 => 0.069740457466112
1017 => 0.070318645052643
1018 => 0.068381813425197
1019 => 0.064385576549172
1020 => 0.0644081948159
1021 => 0.063793460835277
1022 => 0.063262240923387
1023 => 0.069925120471352
1024 => 0.069096486075024
1025 => 0.067776165613464
1026 => 0.069543467018712
1027 => 0.070010769561104
1028 => 0.070024073007536
1029 => 0.071313450492153
1030 => 0.072001591486827
1031 => 0.072122879319712
1101 => 0.074151742650601
1102 => 0.074831790877761
1103 => 0.077632813281404
1104 => 0.071943207531203
1105 => 0.071826033844926
1106 => 0.069568336573767
1107 => 0.068136469271615
1108 => 0.069666377752961
1109 => 0.071021667814099
1110 => 0.069610449213822
1111 => 0.069794724570568
1112 => 0.067900278900493
1113 => 0.068577454085591
1114 => 0.069160728580346
1115 => 0.068838678687632
1116 => 0.068356554410849
1117 => 0.07091054948461
1118 => 0.070766443073361
1119 => 0.073144782002139
1120 => 0.074998867273771
1121 => 0.07832171953792
1122 => 0.074854149976074
1123 => 0.0747277779589
1124 => 0.075963084697488
1125 => 0.074831601758736
1126 => 0.075546659918564
1127 => 0.078206512613616
1128 => 0.078262711109722
1129 => 0.077321313892282
1130 => 0.077264029786047
1201 => 0.077444835419413
1202 => 0.078503819661401
1203 => 0.078133778027951
1204 => 0.078561999574487
1205 => 0.079097497175591
1206 => 0.081312542300033
1207 => 0.081846582180537
1208 => 0.080549142138846
1209 => 0.08066628644779
1210 => 0.080181008256672
1211 => 0.07971223560457
1212 => 0.080765968067748
1213 => 0.082691684855367
1214 => 0.082679705071177
1215 => 0.083126433935319
1216 => 0.083404742316778
1217 => 0.082210039009369
1218 => 0.081432331086704
1219 => 0.081730553791095
1220 => 0.082207418389861
1221 => 0.081575913028735
1222 => 0.077677969398128
1223 => 0.078860356494051
1224 => 0.078663549465515
1225 => 0.078383272324326
1226 => 0.079572171692405
1227 => 0.079457499448015
1228 => 0.076022620525289
1229 => 0.076242510329484
1230 => 0.07603599275258
1231 => 0.076703293293079
]
'min_raw' => 0.063262240923387
'max_raw' => 0.14171522912218
'avg_raw' => 0.10248873502278
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.063262'
'max' => '$0.141715'
'avg' => '$0.102488'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.015426825363291
'max_diff' => -0.10298151849233
'year' => 2034
]
9 => [
'items' => [
101 => 0.074795565339655
102 => 0.075382369609384
103 => 0.07575040774641
104 => 0.075967185036521
105 => 0.07675033325398
106 => 0.076658439849724
107 => 0.076744621030947
108 => 0.077905823093974
109 => 0.083778784652336
110 => 0.084098436991999
111 => 0.082524351964151
112 => 0.083153167885322
113 => 0.081945978823598
114 => 0.082756372928197
115 => 0.083310823992785
116 => 0.08080536624672
117 => 0.080657009299284
118 => 0.079444837738882
119 => 0.080096190074536
120 => 0.079059841674621
121 => 0.079314125322032
122 => 0.078603126075821
123 => 0.079882783160463
124 => 0.081313638619701
125 => 0.081675129214898
126 => 0.080724203090419
127 => 0.080035669907211
128 => 0.078826832454428
129 => 0.080837156079106
130 => 0.081425035970464
131 => 0.080834068196305
201 => 0.080697128050131
202 => 0.080437626720578
203 => 0.080752182483938
204 => 0.081421834250322
205 => 0.081106038843822
206 => 0.081314627273414
207 => 0.080519703275262
208 => 0.082210434505875
209 => 0.084895722596718
210 => 0.084904356237019
211 => 0.084588559128264
212 => 0.084459341755304
213 => 0.084783368753059
214 => 0.084959140107057
215 => 0.086006984001404
216 => 0.08713136224798
217 => 0.092378344920091
218 => 0.090905013181903
219 => 0.095560448352996
220 => 0.099242293140731
221 => 0.10034631740501
222 => 0.099330667030229
223 => 0.095856181962449
224 => 0.095685707149118
225 => 0.10087805473014
226 => 0.099410978713915
227 => 0.099236474689982
228 => 0.097380046704541
301 => 0.098477425567016
302 => 0.098237412712216
303 => 0.097858540679083
304 => 0.099952263104611
305 => 0.10387152457731
306 => 0.10326067092219
307 => 0.10280469700533
308 => 0.10080675203365
309 => 0.10200996116376
310 => 0.10158152143848
311 => 0.10342237039286
312 => 0.10233189225208
313 => 0.099399864170183
314 => 0.099866799306316
315 => 0.099796222999833
316 => 0.10124867838617
317 => 0.10081268733135
318 => 0.099711088748973
319 => 0.10385812896767
320 => 0.10358884324292
321 => 0.10397062883333
322 => 0.10413870265735
323 => 0.10666293295942
324 => 0.10769702934782
325 => 0.1079317873324
326 => 0.10891409892149
327 => 0.1079073465252
328 => 0.11193507391268
329 => 0.11461327760095
330 => 0.11772414900398
331 => 0.1222699682472
401 => 0.12397923833384
402 => 0.12367047399177
403 => 0.12711706226127
404 => 0.1333105047682
405 => 0.12492234579972
406 => 0.13375509756157
407 => 0.13095875033279
408 => 0.1243286613575
409 => 0.1239017617911
410 => 0.12839173502209
411 => 0.13835006350451
412 => 0.13585561516609
413 => 0.13835414352838
414 => 0.13543947747662
415 => 0.13529473974042
416 => 0.1382125847039
417 => 0.14503028850453
418 => 0.14179145298666
419 => 0.13714778807673
420 => 0.14057659798279
421 => 0.13760624552079
422 => 0.13091321007458
423 => 0.13585370770846
424 => 0.13255013763796
425 => 0.13351429501197
426 => 0.1404579079312
427 => 0.13962243405424
428 => 0.14070361461382
429 => 0.13879535922557
430 => 0.13701274778869
501 => 0.13368537116329
502 => 0.1327002989822
503 => 0.13297253749387
504 => 0.13270016407431
505 => 0.13083852743257
506 => 0.13043650717704
507 => 0.1297664558049
508 => 0.1299741327431
509 => 0.12871424013304
510 => 0.13109191779532
511 => 0.13153323572147
512 => 0.13326351124222
513 => 0.13344315418675
514 => 0.1382619468831
515 => 0.13560783684247
516 => 0.13738844300257
517 => 0.13722916882789
518 => 0.12447235548978
519 => 0.12623013181345
520 => 0.12896468015249
521 => 0.12773276983235
522 => 0.12599113686228
523 => 0.1245846748585
524 => 0.12245374110465
525 => 0.12545298944224
526 => 0.12939668207166
527 => 0.13354317273992
528 => 0.13852490958899
529 => 0.13741304391809
530 => 0.13345004263475
531 => 0.13362781997734
601 => 0.13472676955647
602 => 0.1333035300014
603 => 0.13288378887168
604 => 0.13466910357081
605 => 0.13468139805195
606 => 0.1330437889396
607 => 0.13122388609053
608 => 0.13121626063114
609 => 0.13089242649732
610 => 0.13549708684962
611 => 0.13802918445972
612 => 0.13831948537003
613 => 0.13800964489546
614 => 0.13812889019699
615 => 0.13665551838864
616 => 0.14002320942769
617 => 0.14311373575525
618 => 0.14228540868
619 => 0.14104362864057
620 => 0.14005449102693
621 => 0.14205239929347
622 => 0.14196343558336
623 => 0.14308674270389
624 => 0.14303578300437
625 => 0.14265805706945
626 => 0.14228542216978
627 => 0.14376287742624
628 => 0.14333739403958
629 => 0.14291124975971
630 => 0.14205655216699
701 => 0.14217271976487
702 => 0.14093115413627
703 => 0.1403567490663
704 => 0.13171907500445
705 => 0.12941080625098
706 => 0.13013703458997
707 => 0.13037612781567
708 => 0.12937156629604
709 => 0.13081184946451
710 => 0.13058738285834
711 => 0.13146065111438
712 => 0.13091507102091
713 => 0.13093746181825
714 => 0.1325418965432
715 => 0.13300767076961
716 => 0.1327707742388
717 => 0.13293668844864
718 => 0.13676011138643
719 => 0.13621654291086
720 => 0.13592778299193
721 => 0.13600777146289
722 => 0.13698473799861
723 => 0.13725823528822
724 => 0.13609940805385
725 => 0.13664591767667
726 => 0.13897288628829
727 => 0.13978719360733
728 => 0.14238607168004
729 => 0.14128202208338
730 => 0.1433085529002
731 => 0.14953741773584
801 => 0.1545134659712
802 => 0.14993728637007
803 => 0.1590751652584
804 => 0.16619031472384
805 => 0.16591722343645
806 => 0.16467653255078
807 => 0.15657612405041
808 => 0.14912200737809
809 => 0.155357692493
810 => 0.15537358853674
811 => 0.15483793765521
812 => 0.15151105603402
813 => 0.15472216938623
814 => 0.15497705590308
815 => 0.15483438723344
816 => 0.15228367489475
817 => 0.14838920860402
818 => 0.1491501779952
819 => 0.15039666138129
820 => 0.14803680828774
821 => 0.1472826922358
822 => 0.1486847374528
823 => 0.15320241926967
824 => 0.15234837769134
825 => 0.15232607521427
826 => 0.15598002725637
827 => 0.15336458616643
828 => 0.14915977625618
829 => 0.14809800629921
830 => 0.14432943824592
831 => 0.14693240162351
901 => 0.1470260776415
902 => 0.14560046120124
903 => 0.14927545717329
904 => 0.14924159143843
905 => 0.15273045316293
906 => 0.15939984642354
907 => 0.15742737865547
908 => 0.15513361324508
909 => 0.15538300914441
910 => 0.15811826659847
911 => 0.15646446750189
912 => 0.15705918518772
913 => 0.15811736642202
914 => 0.15875579343384
915 => 0.15529114932224
916 => 0.15448337504674
917 => 0.15283095236931
918 => 0.1523998661367
919 => 0.15374572992853
920 => 0.15339114236945
921 => 0.14701820453492
922 => 0.14635219707252
923 => 0.14637262257055
924 => 0.14469791513942
925 => 0.14214358433111
926 => 0.14885621318419
927 => 0.14831709514411
928 => 0.14772195055228
929 => 0.14779485236893
930 => 0.15070857704195
1001 => 0.14901846958498
1002 => 0.15351189726251
1003 => 0.15258818361681
1004 => 0.15164078020159
1005 => 0.15150982019099
1006 => 0.15114515070479
1007 => 0.14989456334907
1008 => 0.14838440396839
1009 => 0.1473872659375
1010 => 0.13595696196595
1011 => 0.13807835989605
1012 => 0.14051883484312
1013 => 0.14136127701526
1014 => 0.13992022138459
1015 => 0.14995146500871
1016 => 0.1517842698823
1017 => 0.14623258436928
1018 => 0.14519409068362
1019 => 0.15001954848185
1020 => 0.14710920754129
1021 => 0.14841973388862
1022 => 0.14558709274528
1023 => 0.15134280085905
1024 => 0.15129895200667
1025 => 0.14905985155185
1026 => 0.15095232392356
1027 => 0.15062346027752
1028 => 0.14809552137869
1029 => 0.15142294103114
1030 => 0.15142459138978
1031 => 0.14926950588426
1101 => 0.14675283782269
1102 => 0.14630291701433
1103 => 0.14596396212358
1104 => 0.14833637176381
1105 => 0.15046346682891
1106 => 0.15442146339348
1107 => 0.15541659776949
1108 => 0.1593006734889
1109 => 0.1569878955102
1110 => 0.15801312003267
1111 => 0.15912614627867
1112 => 0.15965977199119
1113 => 0.15879025752858
1114 => 0.16482382587017
1115 => 0.16533324390196
1116 => 0.16550404736157
1117 => 0.16346956206427
1118 => 0.16527666118549
1119 => 0.1644311793515
1120 => 0.16663088820191
1121 => 0.16697583063695
1122 => 0.16668367666615
1123 => 0.16679316683958
1124 => 0.16164458065442
1125 => 0.16137759929976
1126 => 0.15773728958489
1127 => 0.15922074270151
1128 => 0.15644749820374
1129 => 0.15732692260157
1130 => 0.15771456449667
1201 => 0.15751208236915
1202 => 0.15930461491497
1203 => 0.15778059606082
1204 => 0.15375845973282
1205 => 0.14973522757647
1206 => 0.149684719174
1207 => 0.14862547316318
1208 => 0.14785983230794
1209 => 0.14800732189923
1210 => 0.1485270944563
1211 => 0.14782962218203
1212 => 0.14797846325449
1213 => 0.15045021678015
1214 => 0.15094590932198
1215 => 0.14926135238526
1216 => 0.14249761320391
1217 => 0.14083777464325
1218 => 0.14203083368462
1219 => 0.14146062830569
1220 => 0.11416976759206
1221 => 0.12058135050567
1222 => 0.11677180565518
1223 => 0.11852741919102
1224 => 0.11463886037553
1225 => 0.11649468445911
1226 => 0.11615198151472
1227 => 0.12646161710727
1228 => 0.12630064632793
1229 => 0.12637769452162
1230 => 0.12269998348904
1231 => 0.12855867702467
]
'min_raw' => 0.074795565339655
'max_raw' => 0.16697583063695
'avg_raw' => 0.1208856979883
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.074795'
'max' => '$0.166975'
'avg' => '$0.120885'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.011533324416268
'max_diff' => 0.02526060151477
'year' => 2035
]
10 => [
'items' => [
101 => 0.13144488013213
102 => 0.13091072075075
103 => 0.13104515715903
104 => 0.12873509425562
105 => 0.12640006098007
106 => 0.12381014971844
107 => 0.12862188471984
108 => 0.12808690192674
109 => 0.12931395997338
110 => 0.13243471407171
111 => 0.13289425696728
112 => 0.13351188727915
113 => 0.13329051077826
114 => 0.13856459716016
115 => 0.13792587049977
116 => 0.13946501797711
117 => 0.13629887484082
118 => 0.13271608334905
119 => 0.13339705488136
120 => 0.13333147184677
121 => 0.13249652454376
122 => 0.13174277145161
123 => 0.13048798492181
124 => 0.13445831517557
125 => 0.13429712701794
126 => 0.13690657592921
127 => 0.13644533048731
128 => 0.13336502054039
129 => 0.13347503441275
130 => 0.13421493057527
131 => 0.1367757196417
201 => 0.13753593618844
202 => 0.1371837735946
203 => 0.13801731633289
204 => 0.13867611452696
205 => 0.13810005124303
206 => 0.14625589253351
207 => 0.14286901860643
208 => 0.14451975739277
209 => 0.1449134488666
210 => 0.14390501643484
211 => 0.14412370932003
212 => 0.14445496945085
213 => 0.14646631609781
214 => 0.15174467168727
215 => 0.15408241944686
216 => 0.16111564892403
217 => 0.15388830203844
218 => 0.15345946118399
219 => 0.15472635819601
220 => 0.15885560844206
221 => 0.16220197792572
222 => 0.16331216174014
223 => 0.16345889085836
224 => 0.16554166949783
225 => 0.16673547937246
226 => 0.16528876538848
227 => 0.16406282676433
228 => 0.15967166678173
229 => 0.16017995550645
301 => 0.16368156077408
302 => 0.16862778445813
303 => 0.17287215894591
304 => 0.17138592693167
305 => 0.182724828084
306 => 0.18384903381799
307 => 0.18369370493548
308 => 0.18625481290176
309 => 0.18117153514925
310 => 0.17899833542619
311 => 0.16432788860987
312 => 0.1684496857655
313 => 0.17444095999588
314 => 0.17364799238537
315 => 0.16929696889205
316 => 0.17286885830442
317 => 0.17168787996138
318 => 0.17075639334339
319 => 0.17502371411798
320 => 0.17033161963444
321 => 0.17439415276414
322 => 0.16918391200378
323 => 0.17139271591432
324 => 0.17013889198687
325 => 0.17095026973081
326 => 0.16620697201891
327 => 0.16876634032721
328 => 0.16610049388286
329 => 0.16609922992454
330 => 0.16604038121653
331 => 0.16917673773613
401 => 0.16927901420964
402 => 0.16696124200288
403 => 0.16662721481748
404 => 0.16786228839264
405 => 0.16641634070241
406 => 0.16709289052598
407 => 0.16643683270735
408 => 0.16628914027369
409 => 0.16511230183444
410 => 0.16460528747697
411 => 0.16480410087069
412 => 0.16412544826261
413 => 0.1637165355183
414 => 0.1659590381795
415 => 0.16476095946992
416 => 0.16577541543439
417 => 0.16461931482833
418 => 0.16061176643866
419 => 0.15830698298071
420 => 0.15073709557256
421 => 0.1528839062511
422 => 0.154307243952
423 => 0.15383683085034
424 => 0.15484746021841
425 => 0.15490950465362
426 => 0.15458093874391
427 => 0.15420050151237
428 => 0.15401532570756
429 => 0.15539547444496
430 => 0.15619669724068
501 => 0.15445009493209
502 => 0.15404089044875
503 => 0.15580680181529
504 => 0.15688400672875
505 => 0.16483748258059
506 => 0.1642482634001
507 => 0.16572708791471
508 => 0.16556059496877
509 => 0.16711063865531
510 => 0.16964430498545
511 => 0.16449265291202
512 => 0.16538680158124
513 => 0.16516757697646
514 => 0.16756101372772
515 => 0.167568485776
516 => 0.16613350088259
517 => 0.16691142947328
518 => 0.16647721107531
519 => 0.16726190240858
520 => 0.16424039401871
521 => 0.16792026508589
522 => 0.17000651485534
523 => 0.17003548243541
524 => 0.17102434826862
525 => 0.17202909322641
526 => 0.17395761367805
527 => 0.17197530783772
528 => 0.16840933260456
529 => 0.16866678449836
530 => 0.1665760545239
531 => 0.16661120007249
601 => 0.1664235903797
602 => 0.16698662119036
603 => 0.16436394761968
604 => 0.16497948386459
605 => 0.16411772951714
606 => 0.16538492829559
607 => 0.16402163188544
608 => 0.16516747125971
609 => 0.16566197754847
610 => 0.16748671639996
611 => 0.16375211647343
612 => 0.15613701441304
613 => 0.15773780119032
614 => 0.15537011180763
615 => 0.15558925047443
616 => 0.15603194545702
617 => 0.15459702617766
618 => 0.15487076355666
619 => 0.15486098373122
620 => 0.15477670647908
621 => 0.15440342855531
622 => 0.15386210171505
623 => 0.15601858123502
624 => 0.15638500912723
625 => 0.15719953294079
626 => 0.15962300331316
627 => 0.15938084147359
628 => 0.15977581748112
629 => 0.15891358707438
630 => 0.15562924687006
701 => 0.15580760234459
702 => 0.15358350671923
703 => 0.1571426578152
704 => 0.15629980385717
705 => 0.15575641042734
706 => 0.15560814049551
707 => 0.15803761818218
708 => 0.15876455598343
709 => 0.15831157712867
710 => 0.15738250428206
711 => 0.15916659880329
712 => 0.15964394723226
713 => 0.15975080794158
714 => 0.16291188136699
715 => 0.15992747683091
716 => 0.16064585266518
717 => 0.16625041585468
718 => 0.16116785041865
719 => 0.16386019868485
720 => 0.16372842224753
721 => 0.16510573651642
722 => 0.16361544227669
723 => 0.16363391625989
724 => 0.16485687802331
725 => 0.1631394487889
726 => 0.1627141891582
727 => 0.16212669602415
728 => 0.16340946578934
729 => 0.16417842824888
730 => 0.17037570093211
731 => 0.17437942171544
801 => 0.17420560963718
802 => 0.17579392666996
803 => 0.17507837529937
804 => 0.17276767117084
805 => 0.1767117613579
806 => 0.17546368619497
807 => 0.17556657599499
808 => 0.1755627464315
809 => 0.17639260730622
810 => 0.17580457482085
811 => 0.17464550243188
812 => 0.17541494877532
813 => 0.17769992933323
814 => 0.18479257909677
815 => 0.18876171986955
816 => 0.18455363183844
817 => 0.18745631461376
818 => 0.18571573928019
819 => 0.18539942496446
820 => 0.18722252425392
821 => 0.18904881463736
822 => 0.18893248783521
823 => 0.18760669479788
824 => 0.18685778795185
825 => 0.1925287614922
826 => 0.19670703819422
827 => 0.19642210773467
828 => 0.1976796981188
829 => 0.2013720223824
830 => 0.20170960223935
831 => 0.20166707493656
901 => 0.2008303480383
902 => 0.20446592078471
903 => 0.20749877953159
904 => 0.20063666993671
905 => 0.20324967143883
906 => 0.20442273199878
907 => 0.20614513293217
908 => 0.20905111201472
909 => 0.21220777607125
910 => 0.21265416297991
911 => 0.21233743010664
912 => 0.21025552530567
913 => 0.21370958478316
914 => 0.21573289181741
915 => 0.21693772485375
916 => 0.21999298096881
917 => 0.20442997642144
918 => 0.1934137082713
919 => 0.19169335892282
920 => 0.19519175697236
921 => 0.19611425663882
922 => 0.19574239817999
923 => 0.18334258682172
924 => 0.19162807648222
925 => 0.20054256669315
926 => 0.20088500856756
927 => 0.20534778876035
928 => 0.20680105292666
929 => 0.21039417593183
930 => 0.21016942510956
1001 => 0.21104429338224
1002 => 0.21084317631696
1003 => 0.21749868006272
1004 => 0.22484068904617
1005 => 0.22458645862123
1006 => 0.22353095796316
1007 => 0.22509855643001
1008 => 0.23267629651842
1009 => 0.23197865964189
1010 => 0.23265635444288
1011 => 0.24159093706984
1012 => 0.25320716541444
1013 => 0.24781026109812
1014 => 0.25951999054716
1015 => 0.26689064452925
1016 => 0.27963742845143
1017 => 0.27804146832514
1018 => 0.28300369776582
1019 => 0.27518436661215
1020 => 0.25722960173576
1021 => 0.25438819146599
1022 => 0.26007676678203
1023 => 0.27406157411346
1024 => 0.25963633543146
1025 => 0.26255454242936
1026 => 0.26171409861765
1027 => 0.26166931493858
1028 => 0.26337852582029
1029 => 0.26089922628992
1030 => 0.25079811398573
1031 => 0.25542739422851
1101 => 0.25363980681048
1102 => 0.25562326832426
1103 => 0.26632719207237
1104 => 0.26159473223366
1105 => 0.25660947022739
1106 => 0.26286209510145
1107 => 0.27082383520114
1108 => 0.27032560381433
1109 => 0.26935882667934
1110 => 0.27480849877046
1111 => 0.28380976046088
1112 => 0.2862427653258
1113 => 0.28803875977649
1114 => 0.28828639706767
1115 => 0.29083721507249
1116 => 0.27712082377164
1117 => 0.29888908902801
1118 => 0.30264786710159
1119 => 0.30194137260914
1120 => 0.30611909624437
1121 => 0.30488990397227
1122 => 0.30310899722435
1123 => 0.30973157781348
1124 => 0.30213932358274
1125 => 0.29136307454042
1126 => 0.28545101118577
1127 => 0.29323649312372
1128 => 0.29799081526735
1129 => 0.30113311977261
1130 => 0.30208397921727
1201 => 0.27818558818277
1202 => 0.2653056808807
1203 => 0.27356155379289
1204 => 0.28363428853567
1205 => 0.27706486922156
1206 => 0.27732237802112
1207 => 0.26795611249222
1208 => 0.28446299520498
1209 => 0.28205808123847
1210 => 0.29453477915095
1211 => 0.29155711506238
1212 => 0.30173137786739
1213 => 0.29905215349415
1214 => 0.31017346407404
1215 => 0.31461005596182
1216 => 0.32205978424179
1217 => 0.32753983469039
1218 => 0.33075782513047
1219 => 0.33056462905482
1220 => 0.34331591037488
1221 => 0.33579692527628
1222 => 0.32635130790371
1223 => 0.32618046648599
1224 => 0.33107248556867
1225 => 0.34132481550609
1226 => 0.34398309549353
1227 => 0.34546871135728
1228 => 0.34319343894728
1229 => 0.33503211951327
1230 => 0.33150810316049
1231 => 0.33451066719364
]
'min_raw' => 0.12381014971844
'max_raw' => 0.34546871135728
'avg_raw' => 0.23463943053786
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.12381'
'max' => '$0.345468'
'avg' => '$0.234639'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.049014584378786
'max_diff' => 0.17849288072033
'year' => 2036
]
11 => [
'items' => [
101 => 0.33083878939436
102 => 0.33717748062286
103 => 0.34588185755097
104 => 0.34408443813615
105 => 0.35009294175571
106 => 0.35631111088894
107 => 0.3652033720249
108 => 0.36752813836532
109 => 0.37137088872309
110 => 0.37532634111896
111 => 0.37659672582609
112 => 0.37902228440921
113 => 0.37900950051819
114 => 0.38631908456735
115 => 0.39438178213255
116 => 0.39742526381154
117 => 0.40442358211381
118 => 0.3924392072715
119 => 0.40152949325597
120 => 0.40972915875858
121 => 0.39995317951384
122 => 0.41342708939168
123 => 0.4139502507797
124 => 0.421849366613
125 => 0.41384209942847
126 => 0.40908740973439
127 => 0.42281402072529
128 => 0.42945589539959
129 => 0.42745530869432
130 => 0.41223074508608
131 => 0.40336939605384
201 => 0.38017753640988
202 => 0.40764929597193
203 => 0.42102998869239
204 => 0.41219609232447
205 => 0.41665139581539
206 => 0.44095808702479
207 => 0.45021250129562
208 => 0.44828764782053
209 => 0.44861291637203
210 => 0.45360643033307
211 => 0.47575042121469
212 => 0.46248122858474
213 => 0.47262502916318
214 => 0.47800526441379
215 => 0.48300272675832
216 => 0.47073053870434
217 => 0.45476460236035
218 => 0.4497075201158
219 => 0.41131773542775
220 => 0.40931938041636
221 => 0.4081976431921
222 => 0.40112524866608
223 => 0.39556828386052
224 => 0.39114917913027
225 => 0.37955212866171
226 => 0.38346579275986
227 => 0.36498251480551
228 => 0.37680746103355
301 => 0.34730770312406
302 => 0.37187597810113
303 => 0.3585045830135
304 => 0.36748311519232
305 => 0.36745178993938
306 => 0.35091946555195
307 => 0.34138396586608
308 => 0.34746035739311
309 => 0.35397473145465
310 => 0.35503166672915
311 => 0.3634777227425
312 => 0.36583483542845
313 => 0.35869267394693
314 => 0.34669638621086
315 => 0.34948285024576
316 => 0.34132749826135
317 => 0.32703555759976
318 => 0.33730027889626
319 => 0.34080510605482
320 => 0.34235303739364
321 => 0.32829855519344
322 => 0.32388233174848
323 => 0.32153117144209
324 => 0.34488212904745
325 => 0.34616134721687
326 => 0.33961668619886
327 => 0.3691991745905
328 => 0.36250374637787
329 => 0.36998418011112
330 => 0.34923000784093
331 => 0.35002284517085
401 => 0.34019748741777
402 => 0.34569903122885
403 => 0.34181071738621
404 => 0.34525456085623
405 => 0.34731878643266
406 => 0.35714253194121
407 => 0.37198814949473
408 => 0.35567519195528
409 => 0.34856740274948
410 => 0.35297703519703
411 => 0.36472046749943
412 => 0.38251236857281
413 => 0.37197920504199
414 => 0.37665364415225
415 => 0.37767480114652
416 => 0.36990803631781
417 => 0.38279874027044
418 => 0.38970697324255
419 => 0.39679339081454
420 => 0.40294632863539
421 => 0.39396291980262
422 => 0.40357645497475
423 => 0.39582964264342
424 => 0.38887995113148
425 => 0.38889049094479
426 => 0.38453084794056
427 => 0.37608349026948
428 => 0.37452566790922
429 => 0.38262965655859
430 => 0.38912828800481
501 => 0.38966354641706
502 => 0.39326152269743
503 => 0.39539076799805
504 => 0.41626026651272
505 => 0.42465415145686
506 => 0.43491803507845
507 => 0.43891639618985
508 => 0.45095002964335
509 => 0.44123189330572
510 => 0.43912931337913
511 => 0.40993965479243
512 => 0.41471945975077
513 => 0.42237238867165
514 => 0.41006584877159
515 => 0.41787151576316
516 => 0.41941251977393
517 => 0.40964767725494
518 => 0.41486350155827
519 => 0.40101181859275
520 => 0.3722900783311
521 => 0.3828307157779
522 => 0.39059217287894
523 => 0.37951561661499
524 => 0.39936991499619
525 => 0.3877714437578
526 => 0.38409528520004
527 => 0.36975328002105
528 => 0.37652215439113
529 => 0.3856771538976
530 => 0.38002042858553
531 => 0.39175898296966
601 => 0.4083839065357
602 => 0.42023181710018
603 => 0.42114135255723
604 => 0.41352393981263
605 => 0.42573089234953
606 => 0.42581980667212
607 => 0.41205031434364
608 => 0.4036165769613
609 => 0.40170041408329
610 => 0.40648736463841
611 => 0.41229960633214
612 => 0.42146389152008
613 => 0.42700167712657
614 => 0.44144128497375
615 => 0.4453482288412
616 => 0.44964077564015
617 => 0.45537694193596
618 => 0.46226468029694
619 => 0.44719470088229
620 => 0.44779345925839
621 => 0.43376050308554
622 => 0.41876427688537
623 => 0.43014454326531
624 => 0.4450227277037
625 => 0.4416096557546
626 => 0.44122561543759
627 => 0.4418714647269
628 => 0.43929811993779
629 => 0.42765897682924
630 => 0.42181387202503
701 => 0.42935554846774
702 => 0.43336361385564
703 => 0.43957977373224
704 => 0.43881350082023
705 => 0.45482566109552
706 => 0.46104750239591
707 => 0.45945568914367
708 => 0.45974862109121
709 => 0.47101296757167
710 => 0.4835412375475
711 => 0.49527561563069
712 => 0.50721232902017
713 => 0.4928221551313
714 => 0.48551571229306
715 => 0.49305409627577
716 => 0.48905412362411
717 => 0.5120391529495
718 => 0.51363058651008
719 => 0.53661395375624
720 => 0.55842790608131
721 => 0.54472695346348
722 => 0.55764633467763
723 => 0.57161969879334
724 => 0.59857658526916
725 => 0.5894984542588
726 => 0.58254474817732
727 => 0.57597352953038
728 => 0.58964719238308
729 => 0.60723814120097
730 => 0.61102706309233
731 => 0.6171665640359
801 => 0.6107116294962
802 => 0.61848588716155
803 => 0.64593243290218
804 => 0.6385161339657
805 => 0.62798379724636
806 => 0.64965020911431
807 => 0.65749119934327
808 => 0.71252337512863
809 => 0.78200377032344
810 => 0.75323843047991
811 => 0.73538285578732
812 => 0.73957933937998
813 => 0.76495122764532
814 => 0.77309987289266
815 => 0.75094904610391
816 => 0.75877309259949
817 => 0.80188435803338
818 => 0.82501216876366
819 => 0.79360149531254
820 => 0.70694069302628
821 => 0.62703547556157
822 => 0.64822993741205
823 => 0.64582714317893
824 => 0.69214481964775
825 => 0.6383392576888
826 => 0.63924520536013
827 => 0.68652068232706
828 => 0.67390839557914
829 => 0.65347810630716
830 => 0.62718463928277
831 => 0.57857873363685
901 => 0.53552712753032
902 => 0.619961241298
903 => 0.61632028877886
904 => 0.61104764997222
905 => 0.62278133707729
906 => 0.67975679099432
907 => 0.67844332236998
908 => 0.67008770511955
909 => 0.67642536716097
910 => 0.65236708350915
911 => 0.65856745100316
912 => 0.62702281816688
913 => 0.64128230962911
914 => 0.65343427208209
915 => 0.6558739584574
916 => 0.66137069643446
917 => 0.61440167224744
918 => 0.63548938516931
919 => 0.64787644085942
920 => 0.59191127260657
921 => 0.64677018942479
922 => 0.61358404603299
923 => 0.60232017052666
924 => 0.61748549499317
925 => 0.61157555329981
926 => 0.60649453247528
927 => 0.60365923555217
928 => 0.6147949761046
929 => 0.61427548049774
930 => 0.59605524759987
1001 => 0.57228769653631
1002 => 0.58026486681651
1003 => 0.57736668606734
1004 => 0.5668633051596
1005 => 0.57394131570837
1006 => 0.54277333935076
1007 => 0.48915045599793
1008 => 0.52457537525415
1009 => 0.52321155439768
1010 => 0.5225238540775
1011 => 0.54914470182569
1012 => 0.54658572156216
1013 => 0.54194114732623
1014 => 0.56677800391144
1015 => 0.55771221715498
1016 => 0.58565083577041
1017 => 0.60405301694708
1018 => 0.59938562855248
1019 => 0.61669296889461
1020 => 0.58044864470815
1021 => 0.592487555333
1022 => 0.59496875812757
1023 => 0.56647152095651
1024 => 0.54700440238071
1025 => 0.54570616751311
1026 => 0.51195286663687
1027 => 0.52998360751783
1028 => 0.54584991333032
1029 => 0.53825118412121
1030 => 0.53584565345918
1031 => 0.54813498791553
1101 => 0.54908997445382
1102 => 0.52731618017587
1103 => 0.53184364149264
1104 => 0.55072390781142
1105 => 0.53136790722318
1106 => 0.49376235986499
1107 => 0.48443566418278
1108 => 0.48319131105367
1109 => 0.45789657265398
1110 => 0.4850589185856
1111 => 0.47320182668083
1112 => 0.51065823793822
1113 => 0.48926333671076
1114 => 0.48834104528029
1115 => 0.4869468665124
1116 => 0.4651746402593
1117 => 0.46994137411157
1118 => 0.48578672343057
1119 => 0.49144052257823
1120 => 0.49085078500692
1121 => 0.48570907257451
1122 => 0.48806292219624
1123 => 0.48048035242908
1124 => 0.47780278922675
1125 => 0.46935166323842
1126 => 0.45693084271873
1127 => 0.45865803399331
1128 => 0.43404913845932
1129 => 0.42064090607945
1130 => 0.41692968407437
1201 => 0.41196688290653
1202 => 0.41749024567179
1203 => 0.43397942455021
1204 => 0.41408997644839
1205 => 0.37999091276037
1206 => 0.38204032459
1207 => 0.38664474449534
1208 => 0.37806443846303
1209 => 0.36994389889394
1210 => 0.37700404920906
1211 => 0.36255582640444
1212 => 0.38839074319408
1213 => 0.38769198109644
1214 => 0.39732164045508
1215 => 0.40334326407254
1216 => 0.38946537115809
1217 => 0.38597511861991
1218 => 0.38796332508879
1219 => 0.35510270094291
1220 => 0.39463622640204
1221 => 0.39497811397187
1222 => 0.39205066503298
1223 => 0.4131010468793
1224 => 0.45752391835379
1225 => 0.44081024719922
1226 => 0.43433820855479
1227 => 0.42203485836069
1228 => 0.43842834199368
1229 => 0.43716957822885
1230 => 0.4314769711123
1231 => 0.4280340645662
]
'min_raw' => 0.32153117144209
'max_raw' => 0.82501216876366
'avg_raw' => 0.57327167010288
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.321531'
'max' => '$0.825012'
'avg' => '$0.573271'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.19772102172365
'max_diff' => 0.47954345740639
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.010092496066127
]
1 => [
'year' => 2028
'avg' => 0.017321653122017
]
2 => [
'year' => 2029
'avg' => 0.047319634405121
]
3 => [
'year' => 2030
'avg' => 0.036507027473037
]
4 => [
'year' => 2031
'avg' => 0.03585442524463
]
5 => [
'year' => 2032
'avg' => 0.062864091256734
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.010092496066127
'min' => '$0.010092'
'max_raw' => 0.062864091256734
'max' => '$0.062864'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.062864091256734
]
1 => [
'year' => 2033
'avg' => 0.16169290695059
]
2 => [
'year' => 2034
'avg' => 0.10248873502278
]
3 => [
'year' => 2035
'avg' => 0.1208856979883
]
4 => [
'year' => 2036
'avg' => 0.23463943053786
]
5 => [
'year' => 2037
'avg' => 0.57327167010288
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.062864091256734
'min' => '$0.062864'
'max_raw' => 0.57327167010288
'max' => '$0.573271'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.57327167010288
]
]
]
]
'prediction_2025_max_price' => '$0.017256'
'last_price' => 0.01673219
'sma_50day_nextmonth' => '$0.016654'
'sma_200day_nextmonth' => '$0.031436'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'augmenter'
'sma_200day_date_nextmonth' => '4 févr. 2026'
'sma_50day_date_nextmonth' => '4 févr. 2026'
'daily_sma3' => '$0.016752'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.01681'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.017731'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.018682'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.018741'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.02789'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.037502'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.016782'
'daily_ema3_action' => 'SELL'
'daily_ema5' => '$0.01697'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.0175043'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.018256'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.020661'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.026578'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.047047'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.029143'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.068857'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.017421'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.018283'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.021576'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.032234'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.078322'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.055594'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.027797'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '37.04'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => -0.81
'stoch_rsi_14_action' => 'BUY'
'momentum_10' => -0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.017717'
'vwma_10_action' => 'SELL'
'hma_9' => '0.016357'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 1.84
'stochastic_fast_14_action' => 'BUY'
'cci_20' => -105.71
'cci_20_action' => 'BUY'
'adx_14' => 19.31
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.002134'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => -0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -98.16
'williams_percent_r_14_action' => 'BUY'
'ultimate_oscillator' => 16.85
'ultimate_oscillator_action' => 'BUY'
'ichimoku_cloud' => '-0.013089'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 29
'buy_signals' => 2
'sell_pct' => 93.55
'buy_pct' => 6.45
'overall_action' => 'bearish'
'overall_action_label' => 'Baissier'
'overall_action_dir' => -1
'last_updated' => 1767702072
'last_updated_date' => '6 janvier 2026'
]
Prévision du prix de PinGo pour 2026
La prévision du prix de PinGo pour 2026 suggère que le prix moyen pourrait varier entre $0.00578 à la baisse et $0.017256 à la hausse. Sur le marché des cryptomonnaies, comparé au prix moyen d'aujourd'hui, PinGo pourrait potentiellement gagner 3.13% d'ici 2026 si PINGO atteint l'objectif de prix prévu.
Prévision du prix de PinGo de 2027 à 2032
La prévision du prix de PINGO pour 2027-2032 se situe actuellement dans une fourchette de prix comprise entre $0.010092 à la baisse et $0.062864 à la hausse. Compte tenu de la volatilité des prix sur le marché, si PinGo atteint l'objectif de prix le plus élevé, il pourrait gagner 275.71% d'ici 2032 par rapport au prix actuel.
| Prévision du Prix de PinGo | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2027 | $0.005565 | $0.010092 | $0.014619 |
| 2028 | $0.010043 | $0.017321 | $0.024599 |
| 2029 | $0.022062 | $0.047319 | $0.072576 |
| 2030 | $0.018763 | $0.036507 | $0.05425 |
| 2031 | $0.022184 | $0.035854 | $0.049524 |
| 2032 | $0.033862 | $0.062864 | $0.091865 |
Prévision du prix de PinGo de 2032 à 2037
La prévision du prix de PinGo pour 2032-2037 est actuellement estimée entre $0.062864 à la baisse et $0.573271 à la hausse. Par rapport au prix actuel, PinGo pourrait potentiellement gagner 3326.16% d'ici 2037 s'il atteint l'objectif de prix le plus élevé. Veuillez noter que ces informations sont à titre général seulement et ne doivent pas être considérées comme un conseil en investissement à long terme.
| Prévision du Prix de PinGo | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2032 | $0.033862 | $0.062864 | $0.091865 |
| 2033 | $0.078689 | $0.161692 | $0.244696 |
| 2034 | $0.063262 | $0.102488 | $0.141715 |
| 2035 | $0.074795 | $0.120885 | $0.166975 |
| 2036 | $0.12381 | $0.234639 | $0.345468 |
| 2037 | $0.321531 | $0.573271 | $0.825012 |
PinGo Histogramme des prix potentiels
Prévision du prix de PinGo basée sur l'analyse technique
Au 6 janvier 2026, le sentiment global de prévision du prix pour PinGo est Baissier, avec 2 indicateurs techniques montrant des signaux haussiers et 29 indiquant des signaux baissiers. La prévision du prix de PINGO a été mise à jour pour la dernière fois le 6 janvier 2026.
Moyennes Mobiles Simples sur 50 et 200 jours de PinGo et Indice de Force Relative sur 14 jours - RSI (14)
Selon nos indicateurs techniques, le SMA sur 200 jours de PinGo devrait augmenter au cours du prochain mois, atteignant $0.031436 d'ici le 4 févr. 2026. Le SMA à court terme sur 50 jours pour PinGo devrait atteindre $0.016654 d'ici le 4 févr. 2026.
Le Relative Strength Index (RSI), un oscillateur de momentum, est un outil couramment utilisé pour identifier si une cryptomonnaie est survendue (en dessous de 30) ou surachetée (au-dessus de 70). Actuellement, le RSI est à 37.04, ce qui suggère que le marché de PINGO est dans un état NEUTRAL.
Moyennes Mobiles et Oscillateurs Populaires de PINGO pour le Samedi 19 Octobre 2024
Les moyennes mobiles (MA) sont des indicateurs largement utilisés sur les marchés financiers, conçus pour lisser les mouvements de prix sur une période donnée. En tant qu'indicateurs retardés, ils sont basés sur des données historiques de prix. Le tableau ci-dessous met en évidence deux types : la moyenne mobile simple (SMA) et la moyenne mobile exponentielle (EMA).
Moyenne Mobile Simple Quotidienne (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 3 | $0.016752 | SELL |
| SMA 5 | $0.01681 | SELL |
| SMA 10 | $0.017731 | SELL |
| SMA 21 | $0.018682 | SELL |
| SMA 50 | $0.018741 | SELL |
| SMA 100 | $0.02789 | SELL |
| SMA 200 | $0.037502 | SELL |
Moyenne Mobile Exponentielle Quotidienne (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 3 | $0.016782 | SELL |
| EMA 5 | $0.01697 | SELL |
| EMA 10 | $0.0175043 | SELL |
| EMA 21 | $0.018256 | SELL |
| EMA 50 | $0.020661 | SELL |
| EMA 100 | $0.026578 | SELL |
| EMA 200 | $0.047047 | SELL |
Moyenne Mobile Simple Hebdomadaire (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 21 | $0.029143 | SELL |
| SMA 50 | $0.068857 | SELL |
| SMA 100 | — | — |
| SMA 200 | — | — |
Moyenne Mobile Exponentielle Hebdomadaire (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 21 | $0.032234 | SELL |
| EMA 50 | $0.078322 | SELL |
| EMA 100 | $0.055594 | SELL |
| EMA 200 | $0.027797 | SELL |
Oscillateurs de PinGo
Un oscillateur est un outil d'analyse technique qui établit des limites hautes et basses entre deux extrêmes, créant un indicateur de tendance qui fluctue à l'intérieur de ces limites. Les traders utilisent cet indicateur pour identifier les conditions de surachat ou de survente à court terme.
| Période | Valeur | Action |
|---|---|---|
| RSI (14) | 37.04 | NEUTRAL |
| Stoch RSI (14) | -0.81 | BUY |
| Stochastique Rapide (14) | 1.84 | BUY |
| Indice de Canal des Matières Premières (20) | -105.71 | BUY |
| Indice Directionnel Moyen (14) | 19.31 | NEUTRAL |
| Oscillateur Impressionnant (5, 34) | -0.002134 | NEUTRAL |
| Momentum (10) | -0 | SELL |
| MACD (12, 26) | -0 | NEUTRAL |
| Plage de Pourcentage de Williams (14) | -98.16 | BUY |
| Oscillateur Ultime (7, 14, 28) | 16.85 | BUY |
| VWMA (10) | 0.017717 | SELL |
| Moyenne Mobile de Hull (9) | 0.016357 | BUY |
| Nuage Ichimoku B/L (9, 26, 52, 26) | -0.013089 | SELL |
Prévision du cours de PinGo basée sur les flux monétaires mondiaux
Définitions des flux monétaires mondiaux utilisés pour la prédiction du cours de PinGo
M0 : le total de toutes les devises physiques, plus les comptes à la banque centrale qui peuvent être échangés contre des devises physiques.
M1 : M0 plus le montant des comptes à vue, y compris les comptes de "chèques" et les comptes "courants".
M2 : M1 plus la plupart des comptes d'épargne, comptes du marché monétaire et comptes de certificats de dépôt (CD) de moins de 100 000 $.
Prédictions du cours de PinGo par des sociétés Internet ou des niches technologiques
| Comparaison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Action Facebook | $0.023511 | $0.033037 | $0.046423 | $0.065232 | $0.091662 | $0.1288013 |
| Action Amazon.com | $0.034912 | $0.072847 | $0.15200051 | $0.317158 | $0.661769 | $1.38 |
| Action Apple | $0.023733 | $0.033663 | $0.047749 | $0.067729 | $0.096068 | $0.136266 |
| Action Netflix | $0.02640077 | $0.041656 | $0.065727 | $0.103707 | $0.163633 | $0.258187 |
| Action Google | $0.021668 | $0.02806 | $0.036337 | $0.047057 | $0.060938 | $0.078915 |
| Action Tesla | $0.03793 | $0.085985 | $0.194923 | $0.441876 | $1.00 | $2.27 |
| Action Kodak | $0.012547 | $0.0094091 | $0.007055 | $0.005291 | $0.003967 | $0.002975 |
| Action Nokia | $0.011084 | $0.007342 | $0.004864 | $0.003222 | $0.002134 | $0.001414 |
Ce calcul montre la valeur potentielle des cryptomonnaies si l'on suppose que leur capitalisation se comportera comme celle de certaines sociétés Internet ou niches technologiques. En extrapolant les données, vous pourrez obtenir une potentielle image des cours futurs pour 2024, 2025, 2026, 2027, 2028, 2029 et 2030.
Aperçu des prévisions relatives à PinGo
Vous vous posez peut-être des questions telles que : "Devrais-je investir dans PinGo maintenant ?", "Devrais-je acheter PINGO aujourd'hui ?", " PinGo sera-t-il un bon ou un mauvais investissement à court ou à long terme ?".
Nous mettons régulièrement à jour les prévisions de PinGo avec de nouvelles valeurs. Regardez nos prévisions similaires. Nous faisons une prévision des cours futurs pour une grande quantité de devises numériques comme PinGo en utilisant des méthodes d'analyse technique.
Si vous souhaitez trouver des cryptomonnaies ayant un bon rendement, vous devriez consulter un maximum d'informations disponibles à propos de PinGo afin de prendre une décision responsable concernant cet investissement.
Le cours de PinGo est de $0.01673 USD actuellement, mais ce cours peut subir une hausse ou une baisse, ce qui pourrait causer la perte de votre investissement, car les cryptomonnaies sont des actifs à haut risque.
Prévision du cours de PinGo basée sur le modèle de croissance du Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si PinGo présente 1 % de la précédente croissance annuelle moyenne du Bitcoin | $0.017167 | $0.017613 | $0.018071 | $0.01854 |
| Si PinGo présente 2 % de la précédente croissance annuelle moyenne du Bitcoin | $0.017602 | $0.018517 | $0.019479 | $0.020492 |
| Si PinGo présente 5 % de la précédente croissance annuelle moyenne du Bitcoin | $0.0189068 | $0.021364 | $0.02414 | $0.027278 |
| Si PinGo présente 10 % de la précédente croissance annuelle moyenne du Bitcoin | $0.021081 | $0.026561 | $0.033465 | $0.042163 |
| Si PinGo présente 20 % de la précédente croissance annuelle moyenne du Bitcoin | $0.02543 | $0.038651 | $0.058744 | $0.089283 |
| Si PinGo présente 50 % de la précédente croissance annuelle moyenne du Bitcoin | $0.038478 | $0.088487 | $0.20349 | $0.467958 |
| Si PinGo présente 100 % de la précédente croissance annuelle moyenne du Bitcoin | $0.060224 | $0.216767 | $0.780215 | $2.80 |
Boîte à questions
Est-ce que PINGO est un bon investissement ?
La décision d'acquérir PinGo dépend entièrement de votre tolérance individuelle au risque. Comme vous pouvez le discerner, la valeur de PinGo a connu une baisse de -1.6251% au cours des 24 heures précédentes, et PinGo a enregistré une déclin de sur une période de 30 jours précédents. Par conséquent, la détermination de si investir ou non dans PinGo dépendra de la mesure dans laquelle cet investissement s'aligne avec vos aspirations de trading.
Est-ce que PinGo peut monter ?
Il semble que la valeur moyenne de PinGo pourrait potentiellement s'envoler jusqu'à $0.017256 pour la fin de cette année. En regardant les perspectives de PinGo sur une période de cinq ans plus longue, la monnaie numérique pourrait potentiellement croître jusqu'à $0.05425. Cependant, compte tenu de l'imprévisibilité du marché, il est essentiel de mener des recherches approfondies avant d'investir des fonds dans un projet, un réseau ou un actif particulier.
Quel sera le prix de PinGo la semaine prochaine ?
Basé sur notre nouveau pronostic expérimental de PinGo, le prix de PinGo va augmenter de 0.86% durant la prochaine semaine et atteindre $0.016875 d'ici 13 janvier 2026.
Quel sera le prix de PinGo le mois prochain ?
Basé sur notre nouveau pronostic expérimental de PinGo, le prix de PinGo va diminuer de -11.62% durant le prochain mois et atteindre $0.014788 d'ici 5 février 2026.
Jusqu'où le prix de PinGo peut-il monter cette année en 2026 ?
Selon notre prédiction la plus récente sur la valeur de PinGo en 2026, PINGO devrait fluctuer dans la fourchette de $0.00578 et $0.017256. Cependant, il est crucial de garder à l'esprit que le marché des cryptomonnaies est exceptionnellement instable, et cette prévision de prix de PinGo ne prend pas en compte les fluctuations de prix soudaines et extrêmes.
Où sera PinGo dans 5 ans ?
L'avenir de PinGo semble suivre une tendance haussière, avec un prix maximum de $0.05425 prévue après une période de cinq ans. Selon la prévision de PinGo pour 2030, la valeur de PinGo pourrait potentiellement atteindre son point le plus élevé d'environ $0.05425, tandis que son point le plus bas devrait être autour de $0.018763.
Combien vaudra PinGo en 2026 ?
Basé sur notre nouvelle simulation expérimentale de prédiction de prix de PinGo, il est attendu que la valeur de PINGO en 2026 augmente de 3.13% jusqu'à $0.017256 si le meilleur scénario se produit. Le prix sera entre $0.017256 et $0.00578 durant 2026.
Combien vaudra PinGo en 2027 ?
Selon notre dernière simulation expérimentale pour la prédiction de prix de PinGo, le valeur de PINGO pourrait diminuer de -12.62% jusqu'à $0.014619 en 2027, en supposant les conditions les plus favorables. Il est prévu que le prix fluctue entre $0.014619 et $0.005565 tout au long de l'année.
Combien vaudra PinGo en 2028 ?
Notre nouveau modèle expérimental de prédiction de prix de PinGo suggère que la valeur de PINGO en 2028 pourrait augmenter de 47.02%, atteignant $0.024599 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.024599 et $0.010043 durant l'année.
Combien vaudra PinGo en 2029 ?
Basé sur notre modèle de prévision expérimental, la valeur de PinGo pourrait connaître un 333.75% croissance en 2029, atteignant potentiellement $0.072576 sous des conditions optimales. Le range de prix prévu pour 2029 se situe entre $0.072576 et $0.022062.
Combien vaudra PinGo en 2030 ?
En utilisant notre nouvelle simulation expérimentale pour les prédictions de prix de PinGo, il est prévu que la valeur de PINGO en 2030 augmente de 224.23%, atteignant $0.05425 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.05425 et $0.018763 au cours de 2030.
Combien vaudra PinGo en 2031 ?
Notre simulation expérimentale indique que le prix de PinGo pourrait augmenter de 195.98% en 2031, atteignant potentiellement $0.049524 dans des conditions idéales. Il est probable que le prix fluctue entre $0.049524 et $0.022184 durant l'année.
Combien vaudra PinGo en 2032 ?
Basé sur les résultats de notre dernière prédiction expérimentale de prix de PinGo, PINGO pourrait connaître une 449.04% hausse en valeur, atteignant $0.091865 si le scénario le plus positif se réalise en 2032. Il est prévu que le prix reste dans une fourchette de $0.091865 et $0.033862 tout au long de l'année.
Combien vaudra PinGo en 2033 ?
Selon notre prédiction expérimentale de prix de PinGo, la valeur de PINGO est anticipée à augmenter de 1362.43% en 2033, avec le prix potentiel le plus élevé étant $0.244696. Tout au long de l'année, le prix de PINGO pourrait osciller entre $0.244696 et $0.078689.
Combien vaudra PinGo en 2034 ?
Les résultats de notre nouvelle simulation de prédiction de prix de PinGo suggèrent que PINGO pourrait augmenter de 746.96% en 2034, atteignant potentiellement $0.141715 dans les meilleures circonstances. La fourchette de prix prévue pour l'année est entre $0.141715 et $0.063262.
Combien vaudra PinGo en 2035 ?
Basé sur notre prédiction expérimentale pour le prix de PinGo, PINGO pourrait augmenter de 897.93%, avec la valeur potentiellement atteignant $0.166975 en 2035. La fourchette de prix attendue pour l'année se situe entre $0.166975 et $0.074795.
Combien vaudra PinGo en 2036 ?
Notre récente simulation de prédiction de prix de PinGo suggère que la valeur de PINGO pourrait augmenter de 1964.7% en 2036, pouvant atteindre $0.345468 si les conditions sont optimales. La fourchette de prix attendue pour 2036 est entre $0.345468 et $0.12381.
Combien vaudra PinGo en 2037 ?
Selon la simulation expérimentale, la valeur de PinGo pourrait augmenter de 4830.69% en 2037, avec un maximum de $0.825012 sous des conditions favorables. Il est prévu que le prix chute entre $0.825012 et $0.321531 au cours de l'année.
Prévisions liées
Comment lire et prédire les mouvements de prix de PinGo ?
Les traders de PinGo utilisent des indicateurs et des modèles graphiques pour prédire la direction du marché. Ils identifient également des niveaux clés de support et de résistance pour évaluer quand une tendance baissière pourrait ralentir ou une tendance haussière pourrait s'arrêter.
Indicateurs de prédiction du prix de PinGo
Les moyennes mobiles sont des outils populaires pour la prédiction du prix de PinGo. Une moyenne mobile simple (SMA) calcule le prix de clôture moyen de PINGO sur une période spécifique, comme une SMA de 12 jours. Une moyenne mobile exponentielle (EMA) donne plus de poids aux prix récents, réagissant plus rapidement aux changements de prix.
Les moyennes mobiles couramment utilisées sur le marché des cryptomonnaies incluent les moyennes sur 50 jours, 100 jours et 200 jours, qui aident à identifier les niveaux clés de résistance et de support. Un mouvement de prix de PINGO au-dessus de ces moyennes est considéré comme haussier, tandis qu'une chute en dessous indique une faiblesse.
Les traders utilisent également le RSI et les niveaux de retracement de Fibonacci pour évaluer la direction future de PINGO.
Comment lire les graphiques de PinGo et prédire les mouvements de prix ?
La plupart des traders préfèrent les graphiques en chandeliers aux simples graphiques linéaires parce qu'ils fournissent des informations plus détaillées. Les chandeliers peuvent représenter l'action des prix de PinGo dans différentes périodes, comme 5 minutes pour les tendances à court terme et hebdomadaire pour les tendances à long terme. Les options populaires incluent les graphiques de 1 heure, 4 heures et 1 jour.
Par exemple, un graphique en chandeliers de 1 heure montre les prix d'ouverture, de clôture, les plus hauts et les plus bas de PINGO au sein de chaque heure. La couleur du chandelier est cruciale : le vert indique que le prix a clôturé plus haut qu'il n'a ouvert, tandis que le rouge signifie le contraire. Certains graphiques utilisent des chandeliers creux et pleins pour transmettre la même information.
Qu'est-ce qui affecte le prix de PinGo ?
L'action du prix de PinGo est déterminée par l'offre et la demande, influencée par des facteurs tels que les réductions de récompenses de bloc, les hard forks et les mises à jour de protocole. Les événements du monde réel, tels que les réglementations, l'adoption par les entreprises et les gouvernements et les piratages d'échanges de cryptomonnaies, impactent également le prix de PINGO. La capitalisation boursière de PinGo peut changer rapidement.
Les traders surveillent souvent l'activité des « baleines » de PINGO, de grands détenteurs de PinGo, car leurs actions peuvent influencer significativement les mouvements de prix sur le marché relativement petit de PinGo.
Modèles de prédiction de prix haussiers et baissiers
Les traders identifient souvent des modèles de chandeliers pour obtenir un avantage dans les prédictions de prix des cryptomonnaies. Certaines formations indiquent des tendances haussières, tandis que d'autres suggèrent des mouvements baissiers.
Modèles de chandeliers haussiers couramment suivis :
- Marteau
- Englobante haussière
- Ligne pénétrante
- Étoile du matin
- Trois soldats blancs
Modèles de chandeliers baissiers courants :
- Harami baissier
- Nuage sombre
- Étoile du soir
- Étoile filante
- Pendu


