Prédiction du prix de Orange jusqu'à $0.001885 d'ici 2026
| Année | Prix min. | Prix max. |
|---|---|---|
| 2026 | $0.000631 | $0.001885 |
| 2027 | $0.0006081 | $0.001597 |
| 2028 | $0.001097 | $0.002688 |
| 2029 | $0.002411 | $0.007931 |
| 2030 | $0.00205 | $0.005928 |
| 2031 | $0.002424 | $0.005412 |
| 2032 | $0.0037006 | $0.010039 |
| 2033 | $0.008599 | $0.026741 |
| 2034 | $0.006913 | $0.015487 |
| 2035 | $0.008173 | $0.018247 |
Calculateur de profit d’investissement
Si vous ouvrez une position short de $10,000.00 sur Orange aujourd’hui et la fermez le Apr 06, 2026, notre prévision indique que vous pourriez gagner environ $3,956.96, soit un rendement de 39.57% sur les 90 prochains jours.
Prévision du prix à long terme de Orange pour 2027, 2028, 2029, 2030, 2031, 2032 et 2037
[
'name' => 'Orange'
'name_with_ticker' => 'Orange <small>ORNJ</small>'
'name_lang' => 'Orange'
'name_lang_with_ticker' => 'Orange <small>ORNJ</small>'
'name_with_lang' => 'Orange'
'name_with_lang_with_ticker' => 'Orange <small>ORNJ</small>'
'image' => '/uploads/coins/orange.jpg?1717129510'
'price_for_sd' => 0.001828
'ticker' => 'ORNJ'
'marketcap' => '$128.07K'
'low24h' => '$0.001827'
'high24h' => '$0.001949'
'volume24h' => '$55.4K'
'current_supply' => '69.9M'
'max_supply' => '100M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.001828'
'change_24h_pct' => '-4.3792%'
'ath_price' => '$0.7917'
'ath_days' => 697
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '9 févr. 2024'
'ath_pct' => '-99.77%'
'fdv' => '$183.22K'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.09016'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.001844'
'next_week_prediction_price_date' => '13 janvier 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.001616'
'next_month_prediction_price_date' => '5 février 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.000631'
'current_year_max_price_prediction' => '$0.001885'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.00205'
'grand_prediction_max_price' => '$0.005928'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0018632000606827
107 => 0.0018701565733677
108 => 0.0018858299516552
109 => 0.001751902650235
110 => 0.0018120320766737
111 => 0.0018473524813411
112 => 0.0016877736080865
113 => 0.001844198120102
114 => 0.0017495712738786
115 => 0.0017174535010228
116 => 0.0017606958509783
117 => 0.0017438442651461
118 => 0.0017293562612059
119 => 0.0017212717060717
120 => 0.001753024115395
121 => 0.0017515428275478
122 => 0.0016995897230178
123 => 0.0016318190160379
124 => 0.001654565089798
125 => 0.0016463012279553
126 => 0.0016163519265783
127 => 0.001636534139614
128 => 0.0015476618873891
129 => 0.0013947617966139
130 => 0.0014957722800364
131 => 0.0014918834863029
201 => 0.0014899225801597
202 => 0.0015658291667271
203 => 0.0015585324998915
204 => 0.0015452889781359
205 => 0.0016161086989156
206 => 0.0015902585481713
207 => 0.0016699226217036
208 => 0.0017223945328812
209 => 0.001709085958918
210 => 0.0017584360449993
211 => 0.0016550891133968
212 => 0.0016894168185159
213 => 0.0016964917109648
214 => 0.0016152347945542
215 => 0.0015597263248252
216 => 0.0015560245427372
217 => 0.0014597805057655
218 => 0.0015111932934611
219 => 0.0015564344190274
220 => 0.0015347674307343
221 => 0.0015279083095236
222 => 0.0015629500722274
223 => 0.0015656731173018
224 => 0.0015035874010282
225 => 0.0015164969874404
226 => 0.0015703321088196
227 => 0.0015151404805083
228 => 0.0014079121622009
301 => 0.0013813180567132
302 => 0.0013777699128145
303 => 0.0013056445895267
304 => 0.0013830952020065
305 => 0.0013492859341117
306 => 0.0014560890062942
307 => 0.00139508366426
308 => 0.0013924538458947
309 => 0.0013884784897251
310 => 0.0013263972445117
311 => 0.0013399890917445
312 => 0.001385170462043
313 => 0.0014012916839701
314 => 0.0013996101084458
315 => 0.00138494904868
316 => 0.001391660806764
317 => 0.0013700398954437
318 => 0.0013624051016562
319 => 0.0013383075923473
320 => 0.00130289091077
321 => 0.0013078158175664
322 => 0.0012376461040829
323 => 0.0011994139199886
324 => 0.0011888317553234
325 => 0.0011746808424739
326 => 0.0011904301385838
327 => 0.001237447322101
328 => 0.0011807346235274
329 => 0.0010835046797562
330 => 0.0010893483650486
331 => 0.0011024773908949
401 => 0.0010780115380875
402 => 0.0010548566616686
403 => 0.0010749879481003
404 => 0.0010337903391648
405 => 0.0011074559251109
406 => 0.0011054634774564
407 => 0.0011329214524479
408 => 0.0011500914877044
409 => 0.001110520115303
410 => 0.0011005680221565
411 => 0.0011062371867102
412 => 0.0010125385248576
413 => 0.0011252642727737
414 => 0.0011262391297227
415 => 0.0011178918126724
416 => 0.0011779147934207
417 => 0.0013045820044368
418 => 0.0012569247044758
419 => 0.0012384703574814
420 => 0.001203388630355
421 => 0.0012501329488041
422 => 0.0012465437144722
423 => 0.0012303118356465
424 => 0.0012204947446861
425 => 0.001238583035789
426 => 0.0012182534052443
427 => 0.0012146016449775
428 => 0.0011924759509155
429 => 0.0011845780847904
430 => 0.0011787308191344
501 => 0.0011722935541876
502 => 0.0011864925565937
503 => 0.0011543157491071
504 => 0.0011155136736096
505 => 0.0011122877008763
506 => 0.0011211948952235
507 => 0.0011172541247875
508 => 0.0011122688339836
509 => 0.0011027505561758
510 => 0.001099926686476
511 => 0.0011091028930534
512 => 0.0010987434908336
513 => 0.0011140293531147
514 => 0.0011098724443796
515 => 0.0010866522900987
516 => 0.0010577113806625
517 => 0.0010574537458629
518 => 0.0010512184743974
519 => 0.0010432769187069
520 => 0.0010410677595919
521 => 0.0010732925473078
522 => 0.0011399968934728
523 => 0.0011269012342209
524 => 0.0011363641901275
525 => 0.0011829125673566
526 => 0.0011977088967191
527 => 0.0011872068126079
528 => 0.001172830912136
529 => 0.0011734633787978
530 => 0.0012225901825912
531 => 0.0012256541610836
601 => 0.0012333958462571
602 => 0.0012433460995049
603 => 0.0011889013837621
604 => 0.0011708990375825
605 => 0.0011623685272304
606 => 0.0011360978570691
607 => 0.0011644285225611
608 => 0.001147921457019
609 => 0.0011501488241222
610 => 0.0011486982483742
611 => 0.0011494903608201
612 => 0.0011074353340783
613 => 0.0011227579754759
614 => 0.0010972811122772
615 => 0.0010631704523662
616 => 0.0010630561014735
617 => 0.0010714046371621
618 => 0.0010664386014563
619 => 0.0010530751270603
620 => 0.0010549733455244
621 => 0.0010383429543793
622 => 0.0010569925761124
623 => 0.0010575273805321
624 => 0.0010503462603131
625 => 0.0010790785757448
626 => 0.0010908502288205
627 => 0.0010861234616579
628 => 0.0010905185862358
629 => 0.0011274454179862
630 => 0.0011334661027921
701 => 0.0011361400932788
702 => 0.0011325573002625
703 => 0.0010911935409327
704 => 0.0010930281995512
705 => 0.0010795666919233
706 => 0.0010681931365165
707 => 0.0010686480190863
708 => 0.0010744955050241
709 => 0.0011000318190651
710 => 0.0011537714865165
711 => 0.0011558108676131
712 => 0.0011582826569951
713 => 0.0011482286473567
714 => 0.0011451962618458
715 => 0.0011491967610597
716 => 0.001169378554657
717 => 0.0012212916070927
718 => 0.0012029420672057
719 => 0.00118802360565
720 => 0.0012011111184227
721 => 0.0011990963984147
722 => 0.0011820901340042
723 => 0.0011816128248034
724 => 0.0011489723661681
725 => 0.001136905931798
726 => 0.0011268223160813
727 => 0.0011158112709582
728 => 0.0011092835543156
729 => 0.0011193130938727
730 => 0.0011216069682355
731 => 0.0010996772047074
801 => 0.0010966882589718
802 => 0.0011145965772556
803 => 0.0011067157940683
804 => 0.0011148213750105
805 => 0.0011167019393175
806 => 0.001116399125151
807 => 0.0011081706824012
808 => 0.0011134152464342
809 => 0.0011010102890164
810 => 0.0010875217609889
811 => 0.0010789169204723
812 => 0.0010714080558552
813 => 0.0010755744103625
814 => 0.00106072211729
815 => 0.0010559705698185
816 => 0.0011116385061463
817 => 0.0011527610092428
818 => 0.0011521630717614
819 => 0.0011485232811209
820 => 0.0011431152905337
821 => 0.0011689829264613
822 => 0.0011599711593438
823 => 0.0011665279728801
824 => 0.0011681969571137
825 => 0.0011732484697228
826 => 0.0011750539512884
827 => 0.0011695965320096
828 => 0.0011512807663423
829 => 0.0011056396197102
830 => 0.001084393542747
831 => 0.0010773819834677
901 => 0.0010776368403307
902 => 0.0010706067503193
903 => 0.0010726774268942
904 => 0.0010698866535103
905 => 0.0010646016038818
906 => 0.0010752480734409
907 => 0.0010764749798788
908 => 0.0010739899666679
909 => 0.0010745752772378
910 => 0.0010540004292144
911 => 0.0010555646902234
912 => 0.0010468546861486
913 => 0.0010452216653852
914 => 0.0010232035335509
915 => 0.00098419522142713
916 => 0.0010058096129722
917 => 0.00097970246742914
918 => 0.00096981529582419
919 => 0.0010166196284314
920 => 0.0010119217715877
921 => 0.0010038810827807
922 => 0.00099198722820866
923 => 0.00098757568185192
924 => 0.00096077252271425
925 => 0.0009591888490831
926 => 0.0009724732184979
927 => 0.00096634293910021
928 => 0.00095773370510749
929 => 0.00092655193228992
930 => 0.00089149329571278
1001 => 0.00089255149558031
1002 => 0.00090370299558637
1003 => 0.00093612748583868
1004 => 0.00092345867654773
1005 => 0.0009142673100493
1006 => 0.00091254604339561
1007 => 0.00093409129928239
1008 => 0.00096458235023284
1009 => 0.00097888806913998
1010 => 0.00096471153617415
1011 => 0.00094842629842174
1012 => 0.00094941750538521
1013 => 0.00095601156124459
1014 => 0.00095670450328048
1015 => 0.00094610448765315
1016 => 0.0009490883299623
1017 => 0.00094455560064644
1018 => 0.00091673824920183
1019 => 0.00091623512152397
1020 => 0.00090940829486408
1021 => 0.00090920158126597
1022 => 0.00089758744608577
1023 => 0.00089596254828933
1024 => 0.00087290197796143
1025 => 0.00088808051518509
1026 => 0.00087789954932443
1027 => 0.00086255443232535
1028 => 0.00085990892837078
1029 => 0.00085982940132737
1030 => 0.00087558540538005
1031 => 0.00088789639710414
1101 => 0.00087807665158442
1102 => 0.00087584088587735
1103 => 0.0008997130143888
1104 => 0.00089667506843643
1105 => 0.00089404422683434
1106 => 0.000961852211049
1107 => 0.0009081769004201
1108 => 0.00088477140130628
1109 => 0.0008558026515692
1110 => 0.00086523502255671
1111 => 0.00086722256171414
1112 => 0.00079755794060606
1113 => 0.00076929501249869
1114 => 0.00075959624063821
1115 => 0.00075401446031201
1116 => 0.00075655814769824
1117 => 0.00073111819749079
1118 => 0.00074821426476814
1119 => 0.00072618541827394
1120 => 0.00072249221047112
1121 => 0.00076188251685317
1122 => 0.0007673634478714
1123 => 0.00074398009335584
1124 => 0.00075899599237606
1125 => 0.00075355101865471
1126 => 0.00072656303962046
1127 => 0.00072553229733149
1128 => 0.00071199067812543
1129 => 0.00069080066624213
1130 => 0.00068111626220753
1201 => 0.00067607254050246
1202 => 0.00067815367837815
1203 => 0.00067710139138434
1204 => 0.00067023450695533
1205 => 0.00067749499316172
1206 => 0.00065894745114442
1207 => 0.00065156167046543
1208 => 0.00064822568468154
1209 => 0.0006317636735845
1210 => 0.00065796205392945
1211 => 0.00066312346489591
1212 => 0.00066829504543641
1213 => 0.00071331012325347
1214 => 0.00071106129717702
1215 => 0.00073138958968541
1216 => 0.00073059966961987
1217 => 0.00072480171129997
1218 => 0.00070034107886616
1219 => 0.00071009065098543
1220 => 0.00068008298342223
1221 => 0.00070256676828363
1222 => 0.00069230610781819
1223 => 0.00069909762865897
1224 => 0.00068688586182051
1225 => 0.00069364435780041
1226 => 0.00066434742691178
1227 => 0.00063699036506692
1228 => 0.00064799964535571
1229 => 0.00065996799209354
1230 => 0.0006859184172992
1231 => 0.00067046255813307
]
'min_raw' => 0.0006317636735845
'max_raw' => 0.0018858299516552
'avg_raw' => 0.0012587968126199
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.000631'
'max' => '$0.001885'
'avg' => '$0.001258'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0011967863264155
'max_diff' => 5.7279951655242E-5
'year' => 2026
]
1 => [
'items' => [
101 => 0.00067602106953995
102 => 0.00065740098681047
103 => 0.00061898243757587
104 => 0.0006191998823923
105 => 0.00061329002558615
106 => 0.00060818304645241
107 => 0.00067223784948309
108 => 0.00066427162216964
109 => 0.00065157848153971
110 => 0.00066856875467823
111 => 0.00067306125256795
112 => 0.00067318914766716
113 => 0.0006855848123666
114 => 0.00069220038083874
115 => 0.00069336640345547
116 => 0.0007128712496861
117 => 0.00071940901686746
118 => 0.00074633715462806
119 => 0.00069163909607428
120 => 0.00069051262555342
121 => 0.00066880784266399
122 => 0.00065504232621647
123 => 0.00066975037935206
124 => 0.00068277970658073
125 => 0.00066921270018009
126 => 0.00067098426480088
127 => 0.00065277166717317
128 => 0.00065928181384271
129 => 0.00066488922916598
130 => 0.00066179314401311
131 => 0.00065715815468704
201 => 0.00068171145033247
202 => 0.00068032605716701
203 => 0.00070319065054986
204 => 0.00072101523615455
205 => 0.00075296008008395
206 => 0.00071962397012124
207 => 0.00071840906977517
208 => 0.00073028491553421
209 => 0.00071940719873735
210 => 0.00072628154026695
211 => 0.00075185251738663
212 => 0.00075239279183895
213 => 0.00074334249865826
214 => 0.00074279178749572
215 => 0.00074452999530044
216 => 0.00075471073270455
217 => 0.00075115327023309
218 => 0.000755270055869
219 => 0.00076041815934515
220 => 0.00078171289807318
221 => 0.00078684698748751
222 => 0.00077437381193086
223 => 0.0007755000000274
224 => 0.00077083468997288
225 => 0.00076632805891638
226 => 0.00077645830739078
227 => 0.00079497153558827
228 => 0.00079485636575649
301 => 0.00079915107485258
302 => 0.00080182664304015
303 => 0.00079034114574348
304 => 0.00078286450933679
305 => 0.00078573152748585
306 => 0.00079031595194173
307 => 0.00078424486042214
308 => 0.00074677127116005
309 => 0.00075813836432001
310 => 0.00075624632419574
311 => 0.00075355182897883
312 => 0.00076498152905031
313 => 0.00076387910659547
314 => 0.00073085727403111
315 => 0.0007329712246128
316 => 0.0007309858303676
317 => 0.00073740104534729
318 => 0.00071906075607551
319 => 0.00072470210553178
320 => 0.00072824030702638
321 => 0.00073032433488845
322 => 0.00073785327255752
323 => 0.00073696983862072
324 => 0.00073779835706361
325 => 0.00074896178406098
326 => 0.00080542256698817
327 => 0.0008084956028292
328 => 0.00079336285043791
329 => 0.00079940808653789
330 => 0.00078780255517374
331 => 0.00079559342612879
401 => 0.00080092374216958
402 => 0.0007768370689421
403 => 0.00077541081247479
404 => 0.00076375738095438
405 => 0.00077001927496935
406 => 0.00076005615134542
407 => 0.00076250075338746
408 => 0.00075566543296133
409 => 0.00076796764882964
410 => 0.00078172343774148
411 => 0.00078519869325318
412 => 0.00077605679219347
413 => 0.00076943745334561
414 => 0.00075781607487453
415 => 0.00077714268627125
416 => 0.00078279437641146
417 => 0.00077711300034894
418 => 0.00077579650137473
419 => 0.00077330173819748
420 => 0.00077632577717629
421 => 0.00078276359609319
422 => 0.00077972763957983
423 => 0.00078173294234357
424 => 0.00077409079606741
425 => 0.00079034494792099
426 => 0.00081616045283915
427 => 0.00081624345390872
428 => 0.00081320748103042
429 => 0.00081196522633957
430 => 0.00081508031875094
501 => 0.00081677012859633
502 => 0.00082684376624446
503 => 0.00083765318079232
504 => 0.00088809600197015
505 => 0.00087393185963363
506 => 0.00091868773143946
507 => 0.00095408381521527
508 => 0.00096469755305648
509 => 0.00095493341365752
510 => 0.00092153082022213
511 => 0.0009198919296327
512 => 0.00096980950643637
513 => 0.00095570550461948
514 => 0.00095402787848192
515 => 0.0009361807707724
516 => 0.00094673062183602
517 => 0.00094442321465142
518 => 0.00094078085952832
519 => 0.00096090924044872
520 => 0.00099858777265873
521 => 0.00099271522006676
522 => 0.00098833163197673
523 => 0.00096912402500953
524 => 0.00098069129457812
525 => 0.0009765724114412
526 => 0.00099426974730523
527 => 0.00098378623758336
528 => 0.00095559865293404
529 => 0.00096008761869694
530 => 0.00095940912055242
531 => 0.00097337256428768
601 => 0.00096918108507234
602 => 0.00095859066696479
603 => 0.00099845899153181
604 => 0.0009958701642937
605 => 0.00099954052942904
606 => 0.0010011563376714
607 => 0.0010254234842767
608 => 0.0010353649577788
609 => 0.0010376218463138
610 => 0.0010470654772396
611 => 0.0010373868801734
612 => 0.001076108169161
613 => 0.001101855566888
614 => 0.0011317624942968
615 => 0.0011754645534653
616 => 0.0011918969319793
617 => 0.0011889285698813
618 => 0.0012220629723782
619 => 0.0012816047571287
620 => 0.0012009636669442
621 => 0.0012858789307203
622 => 0.0012589957386026
623 => 0.0011952561736996
624 => 0.00119115209716
625 => 0.0012343172705439
626 => 0.0013300534706154
627 => 0.0013060726383285
628 => 0.0013300926946661
629 => 0.0013020720230478
630 => 0.0013006805605252
701 => 0.0013287317931889
702 => 0.0013942750273007
703 => 0.0013631378936256
704 => 0.0013184951773639
705 => 0.0013514586643339
706 => 0.0013229026412938
707 => 0.0012585579290567
708 => 0.0013060543006379
709 => 0.0012742948295804
710 => 0.0012835639316613
711 => 0.0013503176159596
712 => 0.0013422856360565
713 => 0.0013526797617924
714 => 0.0013343344019301
715 => 0.001317196943021
716 => 0.0012852086033228
717 => 0.0012757384329442
718 => 0.0012783556473358
719 => 0.0012757371359827
720 => 0.0012578399539096
721 => 0.0012539750591449
722 => 0.0012475333985455
723 => 0.0012495299385212
724 => 0.00123741773202
725 => 0.0012602759681973
726 => 0.0012645186582578
727 => 0.001281152976329
728 => 0.0012828800064133
729 => 0.0013292063454667
730 => 0.0013036905763986
731 => 0.001320808757215
801 => 0.0013192775460002
802 => 0.0011966376033463
803 => 0.0012135363053827
804 => 0.0012398253826464
805 => 0.0012279821889731
806 => 0.0012112386839996
807 => 0.0011977174060035
808 => 0.0011772312872178
809 => 0.0012060651060076
810 => 0.0012439785115814
811 => 0.0012838415529453
812 => 0.0013317343852142
813 => 0.0013210452625858
814 => 0.0012829462297596
815 => 0.0012846553245408
816 => 0.0012952202759743
817 => 0.0012815377039409
818 => 0.0012775024463327
819 => 0.0012946658935446
820 => 0.0012947840887727
821 => 0.0012790406360541
822 => 0.0012615446693789
823 => 0.0012614713606397
824 => 0.0012583581223608
825 => 0.0013026258612215
826 => 0.0013269686416217
827 => 0.0013297595021642
828 => 0.0013267807944708
829 => 0.0013279271808413
830 => 0.001313762653283
831 => 0.0013461385629211
901 => 0.0013758498992507
902 => 0.0013678866264242
903 => 0.0013559485484115
904 => 0.0013464392942586
905 => 0.0013656465483542
906 => 0.0013647912795644
907 => 0.0013755903966474
908 => 0.0013751004863178
909 => 0.0013714691494181
910 => 0.0013678867561107
911 => 0.0013820905406393
912 => 0.0013780000788008
913 => 0.0013739032633454
914 => 0.0013656864727583
915 => 0.0013668032710655
916 => 0.0013548672543303
917 => 0.0013493451068336
918 => 0.0012663052579677
919 => 0.0012441142969453
920 => 0.0012510960250216
921 => 0.0012533945911848
922 => 0.0012437370565094
923 => 0.0012575834804168
924 => 0.0012554255299179
925 => 0.0012638208529506
926 => 0.0012585758196023
927 => 0.0012587910776004
928 => 0.0012742156023187
929 => 0.0012786934074651
930 => 0.0012764159596273
1001 => 0.0012780110060265
1002 => 0.0013147681770694
1003 => 0.0013095424827753
1004 => 0.0013067664368335
1005 => 0.0013075354205312
1006 => 0.0013169276658153
1007 => 0.0013195569816973
1008 => 0.0013084163855466
1009 => 0.0013136703550943
1010 => 0.0013360410906002
1011 => 0.0013438695819533
1012 => 0.0013688543684633
1013 => 0.0013582403870847
1014 => 0.0013777228092676
1015 => 0.0014376051330105
1016 => 0.001485443276758
1017 => 0.0014414493427729
1018 => 0.0015292980016142
1019 => 0.0015977007836639
1020 => 0.001595075370958
1021 => 0.0015831477637228
1022 => 0.0015052730149413
1023 => 0.0014336115100655
1024 => 0.0014935594018024
1025 => 0.0014937122213068
1026 => 0.0014885626442414
1027 => 0.001456579063356
1028 => 0.0014874496849551
1029 => 0.001489900082792
1030 => 0.0014885285116167
1031 => 0.0014640067751413
1101 => 0.0014265666159179
1102 => 0.001433882333411
1103 => 0.0014458656279015
1104 => 0.001423178751454
1105 => 0.0014159289197827
1106 => 0.0014294077361965
1107 => 0.0014728392911049
1108 => 0.0014646288072313
1109 => 0.0014644143983162
1110 => 0.0014995423301143
1111 => 0.001474398312029
1112 => 0.0014339746080368
1113 => 0.0014237670896556
1114 => 0.0013875372760107
1115 => 0.0014125613373414
1116 => 0.0014134619087592
1117 => 0.0013997564861081
1118 => 0.0014350867275501
1119 => 0.0014347611531554
1120 => 0.001468301959192
1121 => 0.0015324193829826
1122 => 0.0015134567057409
1123 => 0.0014914051752423
1124 => 0.0014938027880301
1125 => 0.0015200986824999
1126 => 0.0015041995844266
1127 => 0.0015099170109462
1128 => 0.0015200900284901
1129 => 0.0015262276625561
1130 => 0.0014929196769408
1201 => 0.0014851539921888
1202 => 0.001469268126571
1203 => 0.0014651238007551
1204 => 0.0014780625068313
1205 => 0.0014746536149114
1206 => 0.0014133862192188
1207 => 0.0014069834354803
1208 => 0.0014071797997165
1209 => 0.0013910796955704
1210 => 0.0013665231722798
1211 => 0.0014310562492936
1212 => 0.0014258733400696
1213 => 0.0014201518094115
1214 => 0.0014208526642705
1215 => 0.0014488642857733
1216 => 0.0014326161306809
1217 => 0.0014758145140143
1218 => 0.0014669342250632
1219 => 0.001457826190209
1220 => 0.0014565671823546
1221 => 0.0014530613659967
1222 => 0.0014410386172487
1223 => 0.0014265204256803
1224 => 0.0014169342580627
1225 => 0.0013070469542013
1226 => 0.0013274413986129
1227 => 0.0013509033478964
1228 => 0.0013590023187712
1229 => 0.0013451484686582
1230 => 0.0014415856516914
1231 => 0.0014592056543234
]
'min_raw' => 0.00060818304645241
'max_raw' => 0.0015977007836639
'avg_raw' => 0.0011029419150582
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.0006081'
'max' => '$0.001597'
'avg' => '$0.0011029'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -2.3580627132087E-5
'max_diff' => -0.00028812916799135
'year' => 2027
]
2 => [
'items' => [
101 => 0.0014058335170267
102 => 0.0013958497693086
103 => 0.0014422401845297
104 => 0.0014142610931537
105 => 0.0014268600762871
106 => 0.001399627966028
107 => 0.0014549615116632
108 => 0.0014545399627545
109 => 0.0014330139637376
110 => 0.001451207590703
111 => 0.0014480460002946
112 => 0.0014237432004207
113 => 0.0014557319537674
114 => 0.0014557478197899
115 => 0.0014350295137517
116 => 0.0014108350681195
117 => 0.0014065096726878
118 => 0.0014032510682651
119 => 0.0014260586593552
120 => 0.0014465078742092
121 => 0.0014845587932622
122 => 0.0014941256983796
123 => 0.001531465965958
124 => 0.0015092316546797
125 => 0.0015190878368868
126 => 0.0015297881169147
127 => 0.0015349182246499
128 => 0.0015265589893922
129 => 0.0015845637948087
130 => 0.0015894611776072
131 => 0.0015911032276973
201 => 0.0015715443336712
202 => 0.0015889172093825
203 => 0.0015807890161664
204 => 0.0016019363168377
205 => 0.0016052524836052
206 => 0.0016024438083292
207 => 0.0016034964120033
208 => 0.0015539995433292
209 => 0.0015514328695717
210 => 0.0015164360907648
211 => 0.0015306975368117
212 => 0.0015040364469959
213 => 0.0015124909532162
214 => 0.0015162176190006
215 => 0.0015142710202812
216 => 0.0015315038575735
217 => 0.001516852425439
218 => 0.0014781848871175
219 => 0.0014395068138511
220 => 0.0014390212421477
221 => 0.0014288379881813
222 => 0.0014214773607197
223 => 0.0014228952787011
224 => 0.0014278922066095
225 => 0.0014211869301857
226 => 0.0014226178408769
227 => 0.0014463804924582
228 => 0.0014511459227653
229 => 0.0014349511286078
301 => 0.0013699266931677
302 => 0.0013539695336092
303 => 0.0013654392234556
304 => 0.0013599574504517
305 => 0.0010975918028416
306 => 0.0011592307200229
307 => 0.0011226069684937
308 => 0.0011394848781761
309 => 0.0011021015115392
310 => 0.0011199428135285
311 => 0.0011166481765111
312 => 0.0012157617313105
313 => 0.0012142142094785
314 => 0.0012149549262864
315 => 0.0011795985831169
316 => 0.0012359221978154
317 => 0.0012636692357475
318 => 0.0012585339974898
319 => 0.0012598264263249
320 => 0.0012376182169161
321 => 0.0012151699502983
322 => 0.0011902713678556
323 => 0.0012365298564763
324 => 0.0012313867022004
325 => 0.0012431832476608
326 => 0.0012731851841563
327 => 0.0012776030832716
328 => 0.0012835407844844
329 => 0.001281412541274
330 => 0.0013321159288899
331 => 0.0013259754140979
401 => 0.001340772288
402 => 0.0013103339957419
403 => 0.0012758901788226
404 => 0.0012824368223657
405 => 0.0012818063279478
406 => 0.001273779410359
407 => 0.0012665330680675
408 => 0.0012544699497966
409 => 0.0012926394410114
410 => 0.0012910898293738
411 => 0.0013161762405608
412 => 0.0013117419737071
413 => 0.0012821288544089
414 => 0.001283186492758
415 => 0.0012902996189389
416 => 0.0013149182298672
417 => 0.0013222267097536
418 => 0.0013188411306776
419 => 0.0013268545452283
420 => 0.0013331880213559
421 => 0.001327649932318
422 => 0.0014060575942982
423 => 0.0013734972664809
424 => 0.0013893669437057
425 => 0.0013931517682143
426 => 0.0013834570198219
427 => 0.0013855594636053
428 => 0.0013887440930555
429 => 0.0014080805394628
430 => 0.0014588249698813
501 => 0.0014812993326846
502 => 0.001548914562044
503 => 0.001479433149712
504 => 0.0014753104102469
505 => 0.0014874899548389
506 => 0.0015271872522717
507 => 0.0015593581832635
508 => 0.0015700311370591
509 => 0.0015714417440944
510 => 0.0015914649149393
511 => 0.0016029418230576
512 => 0.0015890335753371
513 => 0.0015772477916482
514 => 0.0015350325773798
515 => 0.0015399191033795
516 => 0.0015735824217833
517 => 0.0016211338417883
518 => 0.0016619379070345
519 => 0.0016476497455505
520 => 0.0017566583318033
521 => 0.0017674660878702
522 => 0.0017659728054383
523 => 0.0017905944821683
524 => 0.0017417254679766
525 => 0.001720833017617
526 => 0.001579796011856
527 => 0.0016194216576502
528 => 0.0016770198609445
529 => 0.0016693965227563
530 => 0.0016275671679196
531 => 0.0016619061757179
601 => 0.0016505526258598
602 => 0.0016415976100274
603 => 0.0016826222735707
604 => 0.0016375139708045
605 => 0.0016765698711184
606 => 0.0016264802749843
607 => 0.0016477150126686
608 => 0.0016356611485503
609 => 0.0016434614759009
610 => 0.0015978609215963
611 => 0.0016224658738082
612 => 0.0015968372746907
613 => 0.0015968251233978
614 => 0.0015962593706518
615 => 0.0016264113038589
616 => 0.0016273945573183
617 => 0.0016051122331212
618 => 0.0016019010020891
619 => 0.0016137746062891
620 => 0.0015998737254727
621 => 0.0016063778601156
622 => 0.0016000707290852
623 => 0.0015986508610417
624 => 0.0015873371109008
625 => 0.0015824628362621
626 => 0.0015843741649425
627 => 0.0015778498147987
628 => 0.0015739186578411
629 => 0.0015954773645871
630 => 0.0015839594172484
701 => 0.0015937120739668
702 => 0.0015825976907528
703 => 0.0015440703962268
704 => 0.0015219129417261
705 => 0.0014491384538485
706 => 0.0014697772083341
707 => 0.0014834607239104
708 => 0.0014789383220941
709 => 0.0014886541911328
710 => 0.0014892506665827
711 => 0.0014860919385167
712 => 0.0014824345360743
713 => 0.0014806543148324
714 => 0.0014939226254616
715 => 0.0015016253263726
716 => 0.0014848340477603
717 => 0.0014809000861164
718 => 0.0014978769958653
719 => 0.001508232901005
720 => 0.0015846950860754
721 => 0.0015790305204358
722 => 0.0015932474685763
723 => 0.0015916468583926
724 => 0.0016065484849813
725 => 0.0016309063465567
726 => 0.0015813800034088
727 => 0.0015899760640872
728 => 0.0015878685085208
729 => 0.0016108782475631
730 => 0.0016109500814568
731 => 0.0015971545934792
801 => 0.0016046333513181
802 => 0.0016004589138614
803 => 0.0016080026865547
804 => 0.0015789548667081
805 => 0.0016143319757628
806 => 0.0016343885169463
807 => 0.0016346670020401
808 => 0.0016441736433825
809 => 0.0016538329415739
810 => 0.0016723731233048
811 => 0.0016533158659682
812 => 0.0016190337152061
813 => 0.0016215087757605
814 => 0.0016014091633121
815 => 0.0016017470414286
816 => 0.0015999434215625
817 => 0.0016053562205509
818 => 0.001580142671698
819 => 0.0015860602412176
820 => 0.0015777756092369
821 => 0.0015899580549152
822 => 0.0015768517571957
823 => 0.0015878674921937
824 => 0.0015926215182415
825 => 0.0016101639767045
826 => 0.0015742607218174
827 => 0.001501051554666
828 => 0.0015164410091766
829 => 0.0014936787971399
830 => 0.0014957855265257
831 => 0.0015000414551686
901 => 0.0014862465979837
902 => 0.0014888782220087
903 => 0.0014887842018801
904 => 0.0014879739872054
905 => 0.0014843854120689
906 => 0.0014791812681431
907 => 0.0014999129757925
908 => 0.001503435696906
909 => 0.0015112662695684
910 => 0.0015345647422836
911 => 0.0015322366754435
912 => 0.0015360338490502
913 => 0.001527744640387
914 => 0.0014961700391416
915 => 0.0014978846918992
916 => 0.0014765029445363
917 => 0.0015107194902156
918 => 0.0015026165605624
919 => 0.0014973925491023
920 => 0.0014959671291753
921 => 0.0015193233542979
922 => 0.0015263119029186
923 => 0.0015219571084022
924 => 0.0015130252977996
925 => 0.0015301770146094
926 => 0.0015347660904549
927 => 0.0015357934152981
928 => 0.0015661829689698
929 => 0.0015374918537626
930 => 0.0015443980903581
1001 => 0.0015982785768043
1002 => 0.0015494164105965
1003 => 0.0015752997897931
1004 => 0.001574032933072
1005 => 0.0015872739940232
1006 => 0.0015729467795964
1007 => 0.0015731243825902
1008 => 0.0015848815476877
1009 => 0.0015683707297242
1010 => 0.0015642824190043
1011 => 0.0015586344470257
1012 => 0.001570966587214
1013 => 0.0015783591475221
1014 => 0.0016379377543682
1015 => 0.0016764282515054
1016 => 0.0016747572775132
1017 => 0.0016900268518696
1018 => 0.0016831477687688
1019 => 0.0016609333948258
1020 => 0.0016988506223922
1021 => 0.001686852025066
1022 => 0.0016878411748513
1023 => 0.0016878043586468
1024 => 0.0016957823769332
1025 => 0.0016901292198027
1026 => 0.0016789862668138
1027 => 0.0016863834790276
1028 => 0.0017083505547511
1029 => 0.0017765370318287
1030 => 0.0018146950877521
1031 => 0.0017742398689495
1101 => 0.0018021453371626
1102 => 0.0017854119999697
1103 => 0.0017823710548281
1104 => 0.0017998977510638
1105 => 0.0018174551254611
1106 => 0.0018163367966146
1107 => 0.0018035910443833
1108 => 0.0017963912923594
1109 => 0.0018509102267787
1110 => 0.0018910788489531
1111 => 0.0018883396182147
1112 => 0.0019004296918486
1113 => 0.0019359265219696
1114 => 0.0019391719072551
1115 => 0.0019387630633034
1116 => 0.0019307190372524
1117 => 0.0019656702763524
1118 => 0.0019948272149181
1119 => 0.0019288570776358
1120 => 0.0019539776423004
1121 => 0.0019652550731124
1122 => 0.0019818136874073
1123 => 0.0020097508452688
1124 => 0.0020400980086716
1125 => 0.0020443894303165
1126 => 0.002041344461296
1127 => 0.0020213296912563
1128 => 0.0020545359195686
1129 => 0.0020739873493321
1130 => 0.0020855702306182
1201 => 0.002114942490352
1202 => 0.0019653247186858
1203 => 0.0018594178234147
1204 => 0.001842878932404
1205 => 0.001876511417634
1206 => 0.0018853800357751
1207 => 0.0018818051069227
1208 => 0.0017625972676614
1209 => 0.0018422513278009
1210 => 0.0019279523990074
1211 => 0.001931244526181
1212 => 0.0019741482743519
1213 => 0.0019881194934403
1214 => 0.0020226626342407
1215 => 0.0020205019513786
1216 => 0.002028912656462
1217 => 0.0020269791810164
1218 => 0.0020909630754326
1219 => 0.002161546812674
1220 => 0.0021591027222958
1221 => 0.0021489554749585
1222 => 0.0021640258676172
1223 => 0.0022368758486632
1224 => 0.0022301689898057
1225 => 0.0022366841318969
1226 => 0.0023225783651952
1227 => 0.0024342530867952
1228 => 0.0023823689666533
1229 => 0.0024949425781078
1230 => 0.0025658016992478
1231 => 0.0026883452222894
]
'min_raw' => 0.0010975918028416
'max_raw' => 0.0026883452222894
'avg_raw' => 0.0018929685125655
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.001097'
'max' => '$0.002688'
'avg' => '$0.001892'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00048940875638922
'max_diff' => 0.0010906444386255
'year' => 2028
]
3 => [
'items' => [
101 => 0.002673002169665
102 => 0.0027207074639192
103 => 0.0026455349032756
104 => 0.0024729235091569
105 => 0.0024456070953078
106 => 0.0025002952475956
107 => 0.0026347407336032
108 => 0.0024960610807903
109 => 0.0025241157939376
110 => 0.0025160360346639
111 => 0.0025156054986289
112 => 0.0025320373079657
113 => 0.0025082021114972
114 => 0.0024110932332144
115 => 0.0024555976598652
116 => 0.0024384123634572
117 => 0.0024574807310706
118 => 0.0025603848466868
119 => 0.0025148884842452
120 => 0.0024669617622372
121 => 0.0025270725074262
122 => 0.0026036141423448
123 => 0.0025988243043902
124 => 0.0025895300167612
125 => 0.0026419214294928
126 => 0.0027284566940817
127 => 0.0027518468283733
128 => 0.002769112947317
129 => 0.0027714936534059
130 => 0.0027960164057219
131 => 0.0026641513859894
201 => 0.0028734245588388
202 => 0.0029095602547352
203 => 0.0029027682415778
204 => 0.0029429315467441
205 => 0.0029311144835194
206 => 0.0029139934129474
207 => 0.0029776607946159
208 => 0.0029046712792257
209 => 0.0028010718512538
210 => 0.002744235156104
211 => 0.0028190823011626
212 => 0.0028647888408445
213 => 0.0028949979560924
214 => 0.0029041392161135
215 => 0.0026743876920997
216 => 0.0025505643632599
217 => 0.0026299336974089
218 => 0.0027267697628494
219 => 0.0026636134567565
220 => 0.0026660890643847
221 => 0.0025760447690815
222 => 0.0027347366849723
223 => 0.0027116166076361
224 => 0.002831563609755
225 => 0.0028029372950645
226 => 0.0029007494189766
227 => 0.0028749922087093
228 => 0.0029819089484626
301 => 0.0030245609306054
302 => 0.0030961802468741
303 => 0.0031488637074644
304 => 0.003179800443197
305 => 0.0031779431176244
306 => 0.0033005298772176
307 => 0.0032282447479407
308 => 0.0031374375892719
309 => 0.0031357951742645
310 => 0.0031828254884864
311 => 0.003281388124959
312 => 0.0033069439825683
313 => 0.0033212262205777
314 => 0.0032993524758981
315 => 0.0032208921487898
316 => 0.0031870133773474
317 => 0.0032158790721788
318 => 0.0031805788078574
319 => 0.003241516967581
320 => 0.0033251980765702
321 => 0.0033079182584749
322 => 0.0033656820996324
323 => 0.003425461598297
324 => 0.0035109489662528
325 => 0.0035332985298245
326 => 0.0035702415085307
327 => 0.0036082679687558
328 => 0.0036204810429382
329 => 0.0036437995910468
330 => 0.003643676690788
331 => 0.0037139487050327
401 => 0.0037914609128877
402 => 0.0038207199769413
403 => 0.0038879995813782
404 => 0.0037727856165385
405 => 0.003860176732352
406 => 0.0039390057063574
407 => 0.0038450225538111
408 => 0.0039745564343301
409 => 0.0039795859413805
410 => 0.0040555255265368
411 => 0.0039785462087167
412 => 0.0039328361355219
413 => 0.0040647994041013
414 => 0.0041286522729629
415 => 0.0041094192692099
416 => 0.0039630551609991
417 => 0.0038778649721686
418 => 0.0036549058160387
419 => 0.0039190105675933
420 => 0.0040476482880343
421 => 0.0039627220203798
422 => 0.0040055538899188
423 => 0.0042392306818429
424 => 0.0043281996747559
425 => 0.0043096947461702
426 => 0.0043128217744841
427 => 0.0043608278281585
428 => 0.0045737131075672
429 => 0.0044461473135033
430 => 0.004543666583266
501 => 0.0045953904523163
502 => 0.0046434344644927
503 => 0.0045254535550534
504 => 0.0043719621253567
505 => 0.0043233449464398
506 => 0.0039542777767753
507 => 0.0039350662278168
508 => 0.0039242822032169
509 => 0.0038562904535449
510 => 0.0038028675628104
511 => 0.0037603836966335
512 => 0.0036488933450291
513 => 0.003686518065862
514 => 0.0035088257152493
515 => 0.0036225069841411
516 => 0.0033389057020314
517 => 0.0035750972770299
518 => 0.0034465489410714
519 => 0.0035328656913711
520 => 0.0035325645403609
521 => 0.0033736280363084
522 => 0.0032819567776911
523 => 0.0033403732715808
524 => 0.0034030003901376
525 => 0.0034131614294205
526 => 0.0034943591233644
527 => 0.0035170196544056
528 => 0.0034483571874318
529 => 0.0033330286958237
530 => 0.0033598168740615
531 => 0.0032814139161141
601 => 0.0031440157480377
602 => 0.0032426975110921
603 => 0.0032763918037297
604 => 0.0032912731228799
605 => 0.003156157804863
606 => 0.0031137016384458
607 => 0.003091098331687
608 => 0.0033155870049732
609 => 0.0033278850012504
610 => 0.0032649667135351
611 => 0.0035493633401652
612 => 0.0034849956246333
613 => 0.0035569101333556
614 => 0.0033573861276668
615 => 0.0033650082133788
616 => 0.0032705503515717
617 => 0.0033234404425071
618 => 0.0032860594309611
619 => 0.0033191674458295
620 => 0.0033390122534322
621 => 0.0034334546156337
622 => 0.0035761756571014
623 => 0.003419348076096
624 => 0.0033510160532396
625 => 0.0033934088559058
626 => 0.0035063064758642
627 => 0.0036773521492239
628 => 0.00357608966798
629 => 0.0036210282376076
630 => 0.0036308453158934
701 => 0.0035561781111649
702 => 0.0036801052355664
703 => 0.0037465187883153
704 => 0.0038146453510874
705 => 0.0038737977366794
706 => 0.003787434103781
707 => 0.0038798555707228
708 => 0.0038053801829528
709 => 0.0037385680609991
710 => 0.0037386693874093
711 => 0.0036967571673383
712 => 0.0036155469596714
713 => 0.0036005705513894
714 => 0.0036784797185838
715 => 0.0037409554926481
716 => 0.0037461012966389
717 => 0.003780691095282
718 => 0.0038011609818158
719 => 0.0040017936973081
720 => 0.0040824898351999
721 => 0.0041811635451144
722 => 0.0042196025160717
723 => 0.0043352900375192
724 => 0.0042418629682692
725 => 0.0042216494341532
726 => 0.0039410293482213
727 => 0.003986980871572
728 => 0.004060553694119
729 => 0.0039422425369665
730 => 0.0040172837347053
731 => 0.0040320984567288
801 => 0.0039382223691188
802 => 0.0039883656436576
803 => 0.0038551999729273
804 => 0.0035790783048235
805 => 0.0036804126379166
806 => 0.0037550288158408
807 => 0.0036485423298346
808 => 0.0038394152344046
809 => 0.0037279112239713
810 => 0.0036925698058004
811 => 0.0035546903333903
812 => 0.0036197641369003
813 => 0.0037077773879146
814 => 0.0036533954314264
815 => 0.0037662461566313
816 => 0.0039260728797105
817 => 0.0040399749204226
818 => 0.0040487189047812
819 => 0.0039754875234474
820 => 0.0040928412793913
821 => 0.0040936960733854
822 => 0.0039613205572764
823 => 0.0038802412907297
824 => 0.003861819910778
825 => 0.0039078401296215
826 => 0.0039637171710986
827 => 0.0040518196916988
828 => 0.0041050581997186
829 => 0.0042438759931116
830 => 0.0042814361077856
831 => 0.0043227032862972
901 => 0.0043778489631152
902 => 0.0044440654871966
903 => 0.0042991875022154
904 => 0.0043049437746451
905 => 0.0041700354010028
906 => 0.0040258664559483
907 => 0.004135272714332
908 => 0.004278306843464
909 => 0.0042454946562025
910 => 0.0042418026148434
911 => 0.0042480116043225
912 => 0.0042232722866731
913 => 0.004111377269827
914 => 0.0040551842928667
915 => 0.0041276875695028
916 => 0.0041662198342853
917 => 0.0042259800165963
918 => 0.0042186133127421
919 => 0.0043725491246003
920 => 0.004432363926311
921 => 0.0044170607404137
922 => 0.0044198768949106
923 => 0.0045281687362806
924 => 0.0046486115357999
925 => 0.0047614221113769
926 => 0.0048761778741807
927 => 0.004737835323127
928 => 0.0046675935074843
929 => 0.0047400651314579
930 => 0.0047016106676655
1001 => 0.0049225814229514
1002 => 0.0049378809586139
1003 => 0.0051588357351991
1004 => 0.0053685481289838
1005 => 0.0052368315318354
1006 => 0.0053610343503005
1007 => 0.0054953698248748
1008 => 0.005754524750474
1009 => 0.0056672504887124
1010 => 0.005600399771965
1011 => 0.0055372261676591
1012 => 0.0056686804096925
1013 => 0.0058377941920356
1014 => 0.0058742196810006
1015 => 0.0059332428887317
1016 => 0.005871187202817
1017 => 0.0059459264412917
1018 => 0.0062097887951932
1019 => 0.0061384908579916
1020 => 0.00603723632545
1021 => 0.0062455303122454
1022 => 0.0063209110963443
1023 => 0.0068499729163733
1024 => 0.0075179353186137
1025 => 0.0072413944980086
1026 => 0.0070697366867425
1027 => 0.0071100803441677
1028 => 0.0073539976015116
1029 => 0.0074323360830237
1030 => 0.0072193850853799
1031 => 0.0072946029778195
1101 => 0.0077090609604217
1102 => 0.0079314043706837
1103 => 0.0076294321548439
1104 => 0.0067963027877338
1105 => 0.0060281194626445
1106 => 0.0062318762722041
1107 => 0.00620877657331
1108 => 0.0066540599709297
1109 => 0.0061367904257692
1110 => 0.006145499918298
1111 => 0.0065999913050172
1112 => 0.0064787407949954
1113 => 0.0062823304973522
1114 => 0.0060295534751779
1115 => 0.0055622717706441
1116 => 0.0051483873338241
1117 => 0.0059601100263213
1118 => 0.0059251070677989
1119 => 0.0058744175967106
1120 => 0.0059872215294439
1121 => 0.006534965406842
1122 => 0.0065223381375941
1123 => 0.0064420098931281
1124 => 0.0065029381585749
1125 => 0.0062716494778356
1126 => 0.0063312578372075
1127 => 0.006027997778481
1128 => 0.0061650839902841
1129 => 0.0062819090890658
1130 => 0.0063053634572714
1201 => 0.0063582073464483
1202 => 0.0059066620992043
1203 => 0.0061093926585449
1204 => 0.006228477868873
1205 => 0.0056904465562538
1206 => 0.006217842719725
1207 => 0.0058988017010473
1208 => 0.0057905143874728
1209 => 0.0059363089894321
1210 => 0.0058794926912587
1211 => 0.0058306453744541
1212 => 0.0058033877323737
1213 => 0.0059104431972896
1214 => 0.0059054489318924
1215 => 0.0057302854127196
1216 => 0.0055017917425371
1217 => 0.0055784817182994
1218 => 0.0055506195311326
1219 => 0.0054496433705465
1220 => 0.0055176891108734
1221 => 0.0052180501076347
1222 => 0.0047025367764427
1223 => 0.0050431006736285
1224 => 0.0050299893340491
1225 => 0.0050233780020813
1226 => 0.0052793023583217
1227 => 0.0052547011366486
1228 => 0.0052100496784162
1229 => 0.0054488233115
1230 => 0.0053616677234658
1231 => 0.0056302607093479
]
'min_raw' => 0.0024110932332144
'max_raw' => 0.0079314043706837
'avg_raw' => 0.0051712488019491
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.002411'
'max' => '$0.007931'
'avg' => '$0.005171'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.0013135014303728
'max_diff' => 0.0052430591483943
'year' => 2029
]
4 => [
'items' => [
101 => 0.005807173421355
102 => 0.0057623026350633
103 => 0.0059286898957993
104 => 0.005580248500449
105 => 0.005695986754942
106 => 0.0057198402487867
107 => 0.0054458768819316
108 => 0.0052587262007628
109 => 0.0052462453840028
110 => 0.0049217518938086
111 => 0.0050950936970504
112 => 0.005247627310532
113 => 0.0051745755467609
114 => 0.0051514495407103
115 => 0.0052695952902039
116 => 0.0052787762267895
117 => 0.0050694498996865
118 => 0.0051129754715939
119 => 0.0052944843419719
120 => 0.0051084019137641
121 => 0.0047468741521485
122 => 0.0046572102687555
123 => 0.0046452474538776
124 => 0.0044020718907835
125 => 0.0046632020381884
126 => 0.0045492117309933
127 => 0.004909305745609
128 => 0.0047036219756834
129 => 0.0046947553594569
130 => 0.0046813521685806
131 => 0.0044720409159695
201 => 0.0045178667778673
202 => 0.0046701989222914
203 => 0.0047245527475663
204 => 0.0047188831982824
205 => 0.0046694524116792
206 => 0.0046920815726596
207 => 0.0046191851606195
208 => 0.0045934439203205
209 => 0.004512197485251
210 => 0.0043927876705994
211 => 0.0044093923377097
212 => 0.0041728102496072
213 => 0.0040439077716472
214 => 0.0040082292646553
215 => 0.0039605184739982
216 => 0.0040136183254136
217 => 0.0041721400422766
218 => 0.0039809292194815
219 => 0.0036531116756789
220 => 0.0036728140686354
221 => 0.0037170794959155
222 => 0.003634591165024
223 => 0.0035565228825561
224 => 0.003624396920282
225 => 0.0034854963054305
226 => 0.0037338649716148
227 => 0.0037271472952396
228 => 0.0038197237749778
301 => 0.0038776137476188
302 => 0.0037441961027827
303 => 0.0037106419259061
304 => 0.0037297559100073
305 => 0.0034138443297398
306 => 0.0037939070590992
307 => 0.0037971938573652
308 => 0.003769050295139
309 => 0.0039714219654026
310 => 0.0043984893109657
311 => 0.0042378093968207
312 => 0.0041755892774877
313 => 0.0040573087851529
314 => 0.0042149105183883
315 => 0.0042028091642458
316 => 0.0041480822515114
317 => 0.0041149832439312
318 => 0.0041759691802686
319 => 0.0041074264115176
320 => 0.0040951142468206
321 => 0.004020515924524
322 => 0.0039938877174715
323 => 0.0039741732530693
324 => 0.0039524695648657
325 => 0.0040003424928206
326 => 0.0038918561398667
327 => 0.0037610322332525
328 => 0.0037501556409518
329 => 0.0037801868685738
330 => 0.003766900285913
331 => 0.0037500920299057
401 => 0.0037180004917317
402 => 0.0037084796178827
403 => 0.0037394178390207
404 => 0.0037044903911663
405 => 0.003756027743072
406 => 0.0037420124350454
407 => 0.0036637240637078
408 => 0.0035661477669538
409 => 0.0035652791332395
410 => 0.0035442564801611
411 => 0.0035174809706886
412 => 0.0035100326364941
413 => 0.0036186807581408
414 => 0.003843579118385
415 => 0.0037994261889074
416 => 0.0038313312054291
417 => 0.0039882723091608
418 => 0.0040381591666534
419 => 0.0040027506568401
420 => 0.0039542813047059
421 => 0.0039564137102137
422 => 0.004122048159127
423 => 0.0041323785765343
424 => 0.0041584802086038
425 => 0.0041920281821334
426 => 0.0040084640217977
427 => 0.0039477678547695
428 => 0.0039190066435364
429 => 0.003830433244928
430 => 0.0039259520616179
501 => 0.0038702973376562
502 => 0.0038778070613547
503 => 0.0038729163439443
504 => 0.0038755870063592
505 => 0.0037337955475108
506 => 0.0037854569027755
507 => 0.0036995598797633
508 => 0.0035845534083433
509 => 0.0035841678663247
510 => 0.0036123155372752
511 => 0.0035955722011753
512 => 0.0035505163142412
513 => 0.0035569162903224
514 => 0.0035008457654798
515 => 0.003563724267228
516 => 0.003565527397668
517 => 0.0035413157494798
518 => 0.003638188756984
519 => 0.0036778777071993
520 => 0.003661941081698
521 => 0.0036767595510703
522 => 0.0038012609424657
523 => 0.0038215601016397
524 => 0.0038305756472576
525 => 0.0038184960104605
526 => 0.0036790352079546
527 => 0.0036852208875788
528 => 0.0036398344747589
529 => 0.0036014877386285
530 => 0.0036030214069715
531 => 0.0036227366140694
601 => 0.0037088340797472
602 => 0.0038900211205433
603 => 0.0038968970362955
604 => 0.0039052308467718
605 => 0.0038713330513271
606 => 0.0038611091518628
607 => 0.0038745971142686
608 => 0.0039426414404296
609 => 0.00411766992117
610 => 0.0040558031663172
611 => 0.0040055045316084
612 => 0.0040496299946625
613 => 0.0040428372254922
614 => 0.0039854994176929
615 => 0.0039838901363975
616 => 0.0038738405512248
617 => 0.0038331577252942
618 => 0.0037991601108899
619 => 0.0037620356034906
620 => 0.0037400269510795
621 => 0.0037738422439366
622 => 0.0037815762015038
623 => 0.0037076384726817
624 => 0.0036975610334525
625 => 0.0037579401788654
626 => 0.0037313695681306
627 => 0.0037586981001907
628 => 0.0037650385540485
629 => 0.0037640175949444
630 => 0.0037362748257221
701 => 0.0037539572395231
702 => 0.0037121330595024
703 => 0.0036666555455187
704 => 0.0036376437249463
705 => 0.0036123270636374
706 => 0.0036263742187446
707 => 0.0035762986756966
708 => 0.0035602785016539
709 => 0.0037479668355942
710 => 0.0038866142258655
711 => 0.0038845982379005
712 => 0.003872326429634
713 => 0.0038540930117953
714 => 0.0039413075523457
715 => 0.0039109237503278
716 => 0.0039330305049474
717 => 0.0039386576018157
718 => 0.0039556891292629
719 => 0.003961776436416
720 => 0.0039433763662926
721 => 0.0038816234835794
722 => 0.003727741171146
723 => 0.0036561085393109
724 => 0.0036324685776695
725 => 0.0036333278453765
726 => 0.0036096254060778
727 => 0.0036166068367201
728 => 0.0036071975494107
729 => 0.0035893786355977
730 => 0.003625273951029
731 => 0.0036294105517445
801 => 0.0036210321562057
802 => 0.0036230055716574
803 => 0.0035536360350562
804 => 0.0035589100502613
805 => 0.00352954366341
806 => 0.0035240378198925
807 => 0.0034498021511562
808 => 0.0033182829033576
809 => 0.0033911573335203
810 => 0.0033031352695793
811 => 0.0032697999802129
812 => 0.0034276040553722
813 => 0.0034117649030299
814 => 0.003384655159334
815 => 0.0033445541982421
816 => 0.003329680361696
817 => 0.0032393116393265
818 => 0.0032339721731105
819 => 0.0032787613520776
820 => 0.0032580926870859
821 => 0.0032290660536019
822 => 0.0031239345295056
823 => 0.0030057318885699
824 => 0.0030092996833044
825 => 0.0030468977441478
826 => 0.003156219176839
827 => 0.0031135054018065
828 => 0.0030825160679364
829 => 0.0030767126972385
830 => 0.0031493540317025
831 => 0.0032521567387991
901 => 0.0033003894688879
902 => 0.0032525922982197
903 => 0.0031976854821385
904 => 0.0032010274056197
905 => 0.0032232597253318
906 => 0.0032255960277855
907 => 0.0031898573350285
908 => 0.003199917567699
909 => 0.0031846351543456
910 => 0.0030908470118046
911 => 0.0030891506817115
912 => 0.0030661335589938
913 => 0.0030654366096655
914 => 0.0030262787420324
915 => 0.003020800285665
916 => 0.0029430499627669
917 => 0.0029942254607481
918 => 0.0029598996235365
919 => 0.0029081624902123
920 => 0.0028992429889262
921 => 0.002898974857947
922 => 0.0029520973256597
923 => 0.0029936046937834
924 => 0.002960496736171
925 => 0.0029529586959934
926 => 0.0030334452439685
927 => 0.0030232025970875
928 => 0.0030143325309466
929 => 0.0032429518839286
930 => 0.0030619818266527
1001 => 0.0029830685522707
1002 => 0.0028853983899986
1003 => 0.0029172002873301
1004 => 0.0029239014143649
1005 => 0.0026890222804705
1006 => 0.0025937318451019
1007 => 0.0025610317586277
1008 => 0.0025422123965504
1009 => 0.0025507886161677
1010 => 0.0024650160478827
1011 => 0.0025226566323176
1012 => 0.0024483848383574
1013 => 0.0024359329303987
1014 => 0.0025687400985091
1015 => 0.0025872194401035
1016 => 0.0025083808277806
1017 => 0.0025590079797038
1018 => 0.0025406498706464
1019 => 0.0024496580150919
1020 => 0.0024461827955005
1021 => 0.0024005262809016
1022 => 0.0023290826763977
1023 => 0.0022964310320515
1024 => 0.0022794257721815
1025 => 0.0022864424738298
1026 => 0.0022828946147618
1027 => 0.0022597424344788
1028 => 0.0022842216706346
1029 => 0.0022216873377753
1030 => 0.0021967856625573
1031 => 0.0021855381535759
1101 => 0.0021300353338213
1102 => 0.0022183650022668
1103 => 0.0022357670596984
1104 => 0.0022532034045589
1105 => 0.0024049748822715
1106 => 0.0023973928081467
1107 => 0.0024659310656148
1108 => 0.0024632677949634
1109 => 0.0024437195736873
1110 => 0.0023612488436499
1111 => 0.0023941202067434
1112 => 0.0022929472604857
1113 => 0.0023687529109136
1114 => 0.0023341583777779
1115 => 0.0023570564644615
1116 => 0.0023158836399673
1117 => 0.0023386703810266
1118 => 0.0022398937330892
1119 => 0.0021476574890702
1120 => 0.0021847760462073
1121 => 0.0022251281628371
1122 => 0.0023126218332188
1123 => 0.0022605113249466
1124 => 0.0022792522342378
1125 => 0.0022164733253027
1126 => 0.0020869425042608
1127 => 0.0020876756346409
1128 => 0.0020677501398059
1129 => 0.0020505316030986
1130 => 0.0022664968436801
1201 => 0.0022396381521086
1202 => 0.002196842342268
1203 => 0.0022541262343775
1204 => 0.0022692730046689
1205 => 0.0022697042119252
1206 => 0.002311497060897
1207 => 0.0023338019118851
1208 => 0.0023377332385465
1209 => 0.0024034951893979
1210 => 0.0024255377279022
1211 => 0.0025163278244246
1212 => 0.0023319095011141
1213 => 0.0023281115271053
1214 => 0.0022549323362141
1215 => 0.0022085209364336
1216 => 0.0022581101644637
1217 => 0.0023020394508938
1218 => 0.0022562973415959
1219 => 0.0022622702954015
1220 => 0.0022008652509368
1221 => 0.002222814664957
1222 => 0.0022417204572167
1223 => 0.002231281789962
1224 => 0.0022156545998446
1225 => 0.0022984377503695
1226 => 0.0022937668005871
1227 => 0.0023708563735323
1228 => 0.0024309532083713
1229 => 0.0025386574799971
1230 => 0.0024262624578049
1231 => 0.0024221663364665
]
'min_raw' => 0.0020505316030986
'max_raw' => 0.0059286898957993
'avg_raw' => 0.003989610749449
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.00205'
'max' => '$0.005928'
'avg' => '$0.003989'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00036056163011582
'max_diff' => -0.0020027144748844
'year' => 2030
]
5 => [
'items' => [
101 => 0.0024622065795882
102 => 0.0024255315979496
103 => 0.0024487089203679
104 => 0.0025349232550355
105 => 0.0025367448280722
106 => 0.0025062311327423
107 => 0.0025043743716083
108 => 0.0025102348605797
109 => 0.0025445599275341
110 => 0.0025325656944375
111 => 0.0025464457246337
112 => 0.0025638029149327
113 => 0.0026355996133054
114 => 0.0026529095542165
115 => 0.0026108553719779
116 => 0.0026146523937734
117 => 0.002598922975203
118 => 0.0025837285539531
119 => 0.0026178833939559
120 => 0.002680302035376
121 => 0.0026799137322473
122 => 0.0026943936438118
123 => 0.0027034145087584
124 => 0.0026646903527308
125 => 0.0026394823510836
126 => 0.002649148702942
127 => 0.0026646054100692
128 => 0.0026441363011409
129 => 0.0025177914786213
130 => 0.0025561164268352
131 => 0.0025497372814582
201 => 0.0025406526027107
202 => 0.0025791886344979
203 => 0.0025754717402228
204 => 0.0024641363262213
205 => 0.0024712636581988
206 => 0.0024645697628853
207 => 0.0024861991080853
208 => 0.0024243635423274
209 => 0.0024433837458856
210 => 0.002455313039254
211 => 0.0024623394846932
212 => 0.0024877238236981
213 => 0.0024847452645008
214 => 0.0024875386722763
215 => 0.0025251769458035
216 => 0.0027155384174085
217 => 0.0027258993722991
218 => 0.0026748782410768
219 => 0.0026952601766528
220 => 0.0026561313173862
221 => 0.0026823987827524
222 => 0.0027003703154347
223 => 0.0026191604149705
224 => 0.0026143516917129
225 => 0.0025750613337252
226 => 0.0025961737465881
227 => 0.002562582379687
228 => 0.0025708245261484
301 => 0.0025477787661049
302 => 0.0025892565458181
303 => 0.0026356351485329
304 => 0.0026473522151252
305 => 0.0026165296574353
306 => 0.0025942120943622
307 => 0.0025550298054682
308 => 0.0026201908251332
309 => 0.0026392458930293
310 => 0.0026200907369735
311 => 0.002615652068767
312 => 0.002607240800536
313 => 0.0026174365590848
314 => 0.0026391421150373
315 => 0.0026289061756887
316 => 0.0026356671939625
317 => 0.0026099011642348
318 => 0.0026647031720378
319 => 0.0027517419492503
320 => 0.0027520217931513
321 => 0.0027417857986273
322 => 0.0027375974502056
323 => 0.0027481002017594
324 => 0.0027537975136319
325 => 0.0027877614862814
326 => 0.0028242061821188
327 => 0.0029942776755252
328 => 0.0029465222807287
329 => 0.0030974198272773
330 => 0.0032167601950031
331 => 0.0032525451531622
401 => 0.0032196246754682
402 => 0.0031070054996062
403 => 0.0031014798655602
404 => 0.0032697804608877
405 => 0.0032222278340521
406 => 0.0032165716004012
407 => 0.0031563988307133
408 => 0.0031919683901414
409 => 0.0031841888057205
410 => 0.0031719083511218
411 => 0.0032397725927136
412 => 0.0033668083946908
413 => 0.0033470086736184
414 => 0.0033322291003206
415 => 0.0032674693123984
416 => 0.0033064691693498
417 => 0.0032925820672824
418 => 0.0033522498707365
419 => 0.003316903985774
420 => 0.0032218675761345
421 => 0.0032370024376137
422 => 0.0032347148337482
423 => 0.0032817935591982
424 => 0.0032676616943839
425 => 0.0032319553603349
426 => 0.0033663742001302
427 => 0.0033576457883508
428 => 0.0033700206806613
429 => 0.0033754684909626
430 => 0.0034572868700203
501 => 0.0034908052420242
502 => 0.0034984144992907
503 => 0.0035302543602905
504 => 0.0034976222945436
505 => 0.0036281738237996
506 => 0.0037149829728618
507 => 0.0038158162666556
508 => 0.0039631608103227
509 => 0.0040185637217547
510 => 0.0040085556816968
511 => 0.0041202706330851
512 => 0.0043210199174461
513 => 0.0040491328517078
514 => 0.0043354305921236
515 => 0.0042447920329743
516 => 0.0040298896397494
517 => 0.0040160524591586
518 => 0.0041615868549185
519 => 0.0044843681375476
520 => 0.004403515087204
521 => 0.0044845003841732
522 => 0.0043900267334713
523 => 0.0043853353204275
524 => 0.0044799120098277
525 => 0.0047008955997181
526 => 0.0045959145796072
527 => 0.0044453985448759
528 => 0.0045565372426326
529 => 0.0044602586172349
530 => 0.0042433159275233
531 => 0.0044034532604002
601 => 0.0042963739863541
602 => 0.004327625411168
603 => 0.0045526901183731
604 => 0.0045256097373548
605 => 0.0045606542579682
606 => 0.0044988015963603
607 => 0.0044410214571491
608 => 0.0043331705365019
609 => 0.0043012411958844
610 => 0.0043100653169337
611 => 0.0043012368230882
612 => 0.0042408952241872
613 => 0.0042278644616497
614 => 0.0042061459531964
615 => 0.0042128774271185
616 => 0.0041720402772525
617 => 0.0042491084164353
618 => 0.0042634129421897
619 => 0.0043194967069375
620 => 0.0043253195094443
621 => 0.0044815119959644
622 => 0.0043954837990973
623 => 0.0044531989408729
624 => 0.0044480363553565
625 => 0.0040345472262517
626 => 0.0040915223799969
627 => 0.0041801578394362
628 => 0.0041402276851013
629 => 0.0040837757890889
630 => 0.0040381878562997
701 => 0.0039691174765187
702 => 0.0040663327096813
703 => 0.0041941604036028
704 => 0.00432856143071
705 => 0.0044900354584752
706 => 0.0044539963352429
707 => 0.0043255427860799
708 => 0.00433130511846
709 => 0.0043669255898394
710 => 0.004320793842942
711 => 0.0043071886901833
712 => 0.0043650564507717
713 => 0.0043654549542353
714 => 0.004312374804222
715 => 0.0042533859310471
716 => 0.0042531387655146
717 => 0.004242642265298
718 => 0.0043918940375418
719 => 0.0044739674212196
720 => 0.0044833770023904
721 => 0.0044733340814352
722 => 0.0044771992031216
723 => 0.004429442509523
724 => 0.0045386001492817
725 => 0.004638773994096
726 => 0.0046119252637837
727 => 0.0045716752002737
728 => 0.0045396140859823
729 => 0.0046043726841735
730 => 0.0046014890857356
731 => 0.0046378990629513
801 => 0.0046362472960706
802 => 0.0046240039901814
803 => 0.0046119257010307
804 => 0.0046598147522453
805 => 0.0046460234745702
806 => 0.0046322107752315
807 => 0.0046045072920894
808 => 0.0046082726555545
809 => 0.0045680295417855
810 => 0.0045494112359563
811 => 0.0042694365878478
812 => 0.0041946182134376
813 => 0.0042181575970955
814 => 0.0042259073733955
815 => 0.0041933463209699
816 => 0.0042400305059002
817 => 0.0042327548251296
818 => 0.0042610602428771
819 => 0.0042433762467468
820 => 0.0042441020041164
821 => 0.00429610686611
822 => 0.0043112040987913
823 => 0.0043035255244
824 => 0.0043089033346975
825 => 0.0044328327031723
826 => 0.0044152139100133
827 => 0.0044058542773032
828 => 0.0044084469595288
829 => 0.0044401135702497
830 => 0.0044489784923187
831 => 0.0044114171945853
901 => 0.0044291313197356
902 => 0.0045045558163687
903 => 0.0045309501215335
904 => 0.0046151880736343
905 => 0.0045794022943717
906 => 0.0046450886409804
907 => 0.00484698607633
908 => 0.0050082757179271
909 => 0.0048599470979381
910 => 0.0051561349846192
911 => 0.0053867597400294
912 => 0.0053779079777911
913 => 0.0053376932172386
914 => 0.0050751330646805
915 => 0.0048335212977452
916 => 0.0050356398001641
917 => 0.0050361550417928
918 => 0.005018792883185
919 => 0.0049109580072076
920 => 0.0050150404632467
921 => 0.0050233021506351
922 => 0.0050186778026576
923 => 0.0049360010560779
924 => 0.0048097689452676
925 => 0.004834434397563
926 => 0.0048748369115843
927 => 0.0047983465236945
928 => 0.0047739032100476
929 => 0.0048193479806478
930 => 0.0049657805003156
1001 => 0.0049380982806982
1002 => 0.0049373753860714
1003 => 0.0050558116606825
1004 => 0.0049710368482087
1005 => 0.0048347455079061
1006 => 0.0048003301470178
1007 => 0.0046781788008292
1008 => 0.0047625491707298
1009 => 0.0047655855101409
1010 => 0.0047193767207906
1011 => 0.0048384950964907
1012 => 0.0048373973996883
1013 => 0.0049504825689851
1014 => 0.0051666589398306
1015 => 0.0051027249495784
1016 => 0.0050283766749135
1017 => 0.0050364603938236
1018 => 0.0051251188379493
1019 => 0.0050715139187555
1020 => 0.0050907906214443
1021 => 0.005125089660351
1022 => 0.0051457831221206
1023 => 0.0050334829231293
1024 => 0.0050073003748049
1025 => 0.004953740069759
1026 => 0.004939767185923
1027 => 0.0049833909368104
1028 => 0.0049718976197015
1029 => 0.0047653303175707
1030 => 0.0047437428851684
1031 => 0.0047444049409004
1101 => 0.0046901223156984
1102 => 0.0046073282829426
1103 => 0.0048249060576501
1104 => 0.0048074315173421
1105 => 0.004788140977264
1106 => 0.0047905039583533
1107 => 0.0048849470959589
1108 => 0.0048301653066549
1109 => 0.0049758116720783
1110 => 0.0049458711578777
1111 => 0.0049151627824638
1112 => 0.0049109179495816
1113 => 0.0048990978449628
1114 => 0.0048585623081574
1115 => 0.0048096132116569
1116 => 0.0047772927782491
1117 => 0.004406800061194
1118 => 0.0044755613544224
1119 => 0.0045546649544926
1120 => 0.0045819712002491
1121 => 0.004535261977348
1122 => 0.0048604066729736
1123 => 0.0049198137420367
1124 => 0.0047398658548175
1125 => 0.0047062049523426
1126 => 0.004862613476136
1127 => 0.0047682800161241
1128 => 0.0048107583673914
1129 => 0.0047189434063675
1130 => 0.0049055043187414
1201 => 0.0049040830371642
1202 => 0.0048315066285814
1203 => 0.0048928477121338
1204 => 0.0048821881893366
1205 => 0.0048002496027945
1206 => 0.004908101918086
1207 => 0.0049081554114888
1208 => 0.0048383021961751
1209 => 0.0047567289335238
1210 => 0.0047421455608362
1211 => 0.0047311589485166
1212 => 0.0048080563342523
1213 => 0.0048770022898511
1214 => 0.0050052936200684
1215 => 0.0050375491086119
1216 => 0.0051634444277665
1217 => 0.0050884798949418
1218 => 0.0051217107013898
1219 => 0.0051577874425736
1220 => 0.0051750839589754
1221 => 0.005146900213681
1222 => 0.0053424674649088
1223 => 0.0053589793329382
1224 => 0.0053645156194613
1225 => 0.005298571442694
1226 => 0.0053571453060902
1227 => 0.0053297405351696
1228 => 0.0054010401358403
1229 => 0.0054122208236244
1230 => 0.0054027511788358
1231 => 0.0054063001056136
]
'min_raw' => 0.0024243635423274
'max_raw' => 0.0054122208236244
'avg_raw' => 0.0039182921829759
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.002424'
'max' => '$0.005412'
'avg' => '$0.003918'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00037383193922876
'max_diff' => -0.00051646907217482
'year' => 2031
]
6 => [
'items' => [
101 => 0.0052394179571179
102 => 0.0052307642373449
103 => 0.0051127701542005
104 => 0.0051608536152501
105 => 0.0050709638895182
106 => 0.0050994688475145
107 => 0.0051120335613941
108 => 0.0051054704679047
109 => 0.005163572181994
110 => 0.0051141738556221
111 => 0.0049838035504899
112 => 0.0048533977260552
113 => 0.0048517605871557
114 => 0.004817427035436
115 => 0.0047926101660464
116 => 0.0047973907755166
117 => 0.0048142382668342
118 => 0.0047916309592239
119 => 0.0047964553745222
120 => 0.0048765728133839
121 => 0.0048926397943762
122 => 0.0048380379151897
123 => 0.0046188034912422
124 => 0.0045650028136975
125 => 0.0046036736738028
126 => 0.0045851914933949
127 => 0.0037006073946931
128 => 0.0039084273074617
129 => 0.003784947772192
130 => 0.0038418528230645
131 => 0.0037158121924248
201 => 0.0037759653877215
202 => 0.0037648572889932
203 => 0.0040990255588868
204 => 0.0040938079809858
205 => 0.0040963053594189
206 => 0.0039770989799216
207 => 0.0041669979792668
208 => 0.0042605490548913
209 => 0.0042432352405745
210 => 0.0042475927546266
211 => 0.0041727162260773
212 => 0.0040970303278873
213 => 0.0040130830188183
214 => 0.0041690467428674
215 => 0.0041517062391427
216 => 0.0041914791157709
217 => 0.004292632739334
218 => 0.004307527994649
219 => 0.004327547368845
220 => 0.0043203718482718
221 => 0.0044913218596166
222 => 0.0044706186852782
223 => 0.0045205073787239
224 => 0.0044178825512419
225 => 0.004301752817708
226 => 0.0043238252834858
227 => 0.0043216995275358
228 => 0.0042946362144637
229 => 0.0042702046655047
301 => 0.0042295330200343
302 => 0.0043582241245738
303 => 0.0043529995007471
304 => 0.0044375800875414
305 => 0.0044226296472535
306 => 0.0043227869480177
307 => 0.0043263528495534
308 => 0.0043503352510949
309 => 0.0044333386166564
310 => 0.0044579796668551
311 => 0.004446564950627
312 => 0.0044735827372632
313 => 0.0044949364942165
314 => 0.0044762644403683
315 => 0.0047406213469826
316 => 0.0046308419284571
317 => 0.0046843476532061
318 => 0.0046971084532848
319 => 0.0046644219322141
320 => 0.0046715104682178
321 => 0.0046822476687529
322 => 0.0047474418478425
323 => 0.0049185302378616
324 => 0.004994304121163
325 => 0.0052222735876928
326 => 0.0049880121549782
327 => 0.0049741120510311
328 => 0.0050151762359715
329 => 0.0051490184458432
330 => 0.0052574849857847
331 => 0.0052934695946681
401 => 0.0052982255547732
402 => 0.0053657350732501
403 => 0.005404430270263
404 => 0.0053575376420304
405 => 0.005317801049466
406 => 0.005175469507188
407 => 0.0051919447707626
408 => 0.0053054429990589
409 => 0.0054657659315396
410 => 0.0056033396863662
411 => 0.0055551661523553
412 => 0.0059226962116431
413 => 0.0059591353157958
414 => 0.0059541006098192
415 => 0.0060371143119449
416 => 0.0058723490186719
417 => 0.0058019086636205
418 => 0.0053263925518079
419 => 0.0054599931831771
420 => 0.0056541895469622
421 => 0.0056284869300162
422 => 0.0054874563397518
423 => 0.0056032327020169
424 => 0.0055649534159905
425 => 0.0055347609548924
426 => 0.0056730784722793
427 => 0.005520992680142
428 => 0.005652672374846
429 => 0.0054837918043361
430 => 0.0055553862050008
501 => 0.005514745760552
502 => 0.0055410451088159
503 => 0.0053872996562489
504 => 0.0054702569704942
505 => 0.005383848359238
506 => 0.0053838073903055
507 => 0.0053818999154228
508 => 0.0054835592633713
509 => 0.0054868743710582
510 => 0.0054117479593255
511 => 0.0054009210696997
512 => 0.0054409537552489
513 => 0.0053940859650478
514 => 0.0054160151091005
515 => 0.0053947501764816
516 => 0.005389962992241
517 => 0.0053518178937402
518 => 0.0053353839364847
519 => 0.0053418281145755
520 => 0.0053198308125502
521 => 0.0053065766424027
522 => 0.0053792633273779
523 => 0.0053404297637681
524 => 0.005373311526803
525 => 0.0053358386078155
526 => 0.0052059411444311
527 => 0.005131235739598
528 => 0.0048858714727662
529 => 0.0049554564744662
530 => 0.0050015914025843
531 => 0.0049863438091165
601 => 0.0050191015399207
602 => 0.0050211125985448
603 => 0.0050104627263348
604 => 0.0049981315386488
605 => 0.0049921293984407
606 => 0.0050368644340907
607 => 0.0050628346279976
608 => 0.0050062216598266
609 => 0.0049929580334838
610 => 0.0050501968699923
611 => 0.0050851125271967
612 => 0.0053429101225809
613 => 0.0053238116440396
614 => 0.0053717450772912
615 => 0.0053663485083055
616 => 0.0054165903827479
617 => 0.0054987146136609
618 => 0.0053317330899187
619 => 0.0053607153086537
620 => 0.0053536095379171
621 => 0.0054311884795866
622 => 0.0054314306725745
623 => 0.005384918221688
624 => 0.0054101333758919
625 => 0.0053960589685569
626 => 0.0054214933248815
627 => 0.0053235565722148
628 => 0.0054428329653437
629 => 0.0055104549942468
630 => 0.0055113939261837
701 => 0.0055434462312022
702 => 0.0055760132294452
703 => 0.005638522746585
704 => 0.0055742698729393
705 => 0.0054586852081418
706 => 0.005467030047604
707 => 0.005399262800924
708 => 0.0054004019805839
709 => 0.0053943209502805
710 => 0.0054125705799795
711 => 0.0053275613396681
712 => 0.0053475128384551
713 => 0.0053195806233174
714 => 0.0053606545894731
715 => 0.0053164657916594
716 => 0.0053536061112993
717 => 0.0053696346420347
718 => 0.0054287802655181
719 => 0.0053077299349811
720 => 0.0050609001166293
721 => 0.0051127867369691
722 => 0.0050360423498804
723 => 0.005043145335092
724 => 0.005057494495651
725 => 0.005010984171526
726 => 0.0050198568756603
727 => 0.0050195398802323
728 => 0.0050168081848892
729 => 0.0050047090532703
730 => 0.0049871629186827
731 => 0.0050570613184642
801 => 0.0050689384186468
802 => 0.0050953397410913
803 => 0.005173892168498
804 => 0.0051660429286063
805 => 0.0051788453645315
806 => 0.0051508977187893
807 => 0.0050444417462222
808 => 0.0050502228177077
809 => 0.0049781327636477
810 => 0.0050934962363285
811 => 0.0050661766432742
812 => 0.0050485635239077
813 => 0.0050437576211041
814 => 0.0051225047647846
815 => 0.005146067144384
816 => 0.0051313846506301
817 => 0.0051012704275841
818 => 0.0051590986383033
819 => 0.0051745710279154
820 => 0.0051780347253498
821 => 0.0052804952272846
822 => 0.0051837611292138
823 => 0.0052070459880737
824 => 0.0053887078099425
825 => 0.0052239656051253
826 => 0.0053112332252065
827 => 0.0053069619293223
828 => 0.0053516050907806
829 => 0.0053032998870465
830 => 0.00530389868794
831 => 0.0053435387909253
901 => 0.0052878714154127
902 => 0.0052740873903838
903 => 0.0052550448585293
904 => 0.0052966235301764
905 => 0.0053215480633873
906 => 0.0055224214960147
907 => 0.0056521948944334
908 => 0.005646561088955
909 => 0.0056980435249852
910 => 0.0056748502160285
911 => 0.0055999529033217
912 => 0.0057277934833579
913 => 0.0056873393747574
914 => 0.0056906743623187
915 => 0.0056905502339151
916 => 0.0057174486795749
917 => 0.0056983886656186
918 => 0.0056608194216404
919 => 0.0056857596390763
920 => 0.0057598231685701
921 => 0.0059897186366653
922 => 0.0061183711863212
923 => 0.0059819735916351
924 => 0.006076058826013
925 => 0.0060196412113831
926 => 0.0060093884525261
927 => 0.0060684809325597
928 => 0.006127676846157
929 => 0.0061239063223718
930 => 0.006080933128844
1001 => 0.0060566586622245
1002 => 0.0062404730560099
1003 => 0.0063759043701545
1004 => 0.0063666688624728
1005 => 0.0064074313898315
1006 => 0.0065271114308939
1007 => 0.0065380534739696
1008 => 0.006536675028042
1009 => 0.0065095540325949
1010 => 0.0066273945754381
1011 => 0.006725699229485
1012 => 0.0065032763057498
1013 => 0.0065879720433783
1014 => 0.0066259946887259
1015 => 0.0066818232129068
1016 => 0.0067760152911471
1017 => 0.0068783328713308
1018 => 0.006892801699024
1019 => 0.0068825353733785
1020 => 0.0068150541788032
1021 => 0.0069270112959428
1022 => 0.0069925931494458
1023 => 0.0070316456423928
1024 => 0.0071306762667911
1025 => 0.0066262295036392
1026 => 0.0062691570120493
1027 => 0.0062133949862983
1028 => 0.0063267892583964
1029 => 0.0063566904236463
1030 => 0.0063446373014269
1031 => 0.005942719748532
1101 => 0.0062112789735611
1102 => 0.0065002261185914
1103 => 0.0065113257552063
1104 => 0.0066559787376083
1105 => 0.0067030836782046
1106 => 0.006819548289138
1107 => 0.0068122633960142
1108 => 0.0068406206754198
1109 => 0.0068341018279641
1110 => 0.0070498279952012
1111 => 0.0072878059933095
1112 => 0.0072795655719587
1113 => 0.0072453534191027
1114 => 0.0072961643001327
1115 => 0.0075417830974527
1116 => 0.0075191704545565
1117 => 0.0075411367109898
1118 => 0.0078307351154988
1119 => 0.0082072542362532
1120 => 0.0080323233027611
1121 => 0.0084118730934188
1122 => 0.0086507795675679
1123 => 0.0090639436112183
1124 => 0.0090122134380775
1125 => 0.0091730551683328
1126 => 0.0089196056317424
1127 => 0.0083376342651286
1128 => 0.008245535068665
1129 => 0.0084299199923081
1130 => 0.008883212335067
1201 => 0.0084156442033042
1202 => 0.0085102326273978
1203 => 0.0084829911548955
1204 => 0.0084815395725947
1205 => 0.0085369405650059
1206 => 0.008456578535992
1207 => 0.0081291691729364
1208 => 0.0082792189545893
1209 => 0.0082212775279108
1210 => 0.0082855678606301
1211 => 0.0086325162709662
1212 => 0.0084791221085395
1213 => 0.0083175338191529
1214 => 0.0085202013933557
1215 => 0.0087782668594502
1216 => 0.0087621175863702
1217 => 0.0087307812467226
1218 => 0.0089074225525988
1219 => 0.0091991822388597
1220 => 0.0092780437096707
1221 => 0.0093362576351716
1222 => 0.0093442843519658
1223 => 0.0094269645235231
1224 => 0.0089823724029733
1225 => 0.0096879515162214
1226 => 0.0098097855378496
1227 => 0.0097868857912863
1228 => 0.0099222991787668
1229 => 0.009882457125064
1230 => 0.0098247322402753
1231 => 0.010039391262685
]
'min_raw' => 0.0037006073946931
'max_raw' => 0.010039391262685
'avg_raw' => 0.0068699993286892
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.0037006'
'max' => '$0.010039'
'avg' => '$0.006869'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0012762438523657
'max_diff' => 0.0046271704390609
'year' => 2032
]
7 => [
'items' => [
101 => 0.0097933020155821
102 => 0.0094440093110937
103 => 0.009252380425185
104 => 0.0095047328004108
105 => 0.009658835590077
106 => 0.0097606877312681
107 => 0.0097915081276518
108 => 0.0090168848237001
109 => 0.0085994058254481
110 => 0.0088670050769212
111 => 0.0091934946324321
112 => 0.0089805587370076
113 => 0.0089889054209672
114 => 0.0086853147926607
115 => 0.0092203556666022
116 => 0.009142404711671
117 => 0.009546814403747
118 => 0.0094502987851425
119 => 0.0097800791899367
120 => 0.0096932369572095
121 => 0.010053714209976
122 => 0.010197518345637
123 => 0.010438987870738
124 => 0.01061661383636
125 => 0.010720919200816
126 => 0.010714657097974
127 => 0.011127966916677
128 => 0.010884252556533
129 => 0.010578089881128
130 => 0.01057255236426
131 => 0.010731118352211
201 => 0.011063429162502
202 => 0.011149592520685
203 => 0.011197746083288
204 => 0.011123997225924
205 => 0.010859462755154
206 => 0.010745238111895
207 => 0.010842560817358
208 => 0.010723543511612
209 => 0.010929000771687
210 => 0.011211137473072
211 => 0.011152877359926
212 => 0.011347632183331
213 => 0.01154918293675
214 => 0.01183740956635
215 => 0.011912762680329
216 => 0.012037318512313
217 => 0.012165527377885
218 => 0.012206704610181
219 => 0.012285324723178
220 => 0.012284910356374
221 => 0.012521837358636
222 => 0.012783175179149
223 => 0.012881824156408
224 => 0.013108662040079
225 => 0.01272021011364
226 => 0.013014855362058
227 => 0.01328063275158
228 => 0.012963761991076
301 => 0.013400494513013
302 => 0.013417451847182
303 => 0.013673487460469
304 => 0.013413946315914
305 => 0.013259831612763
306 => 0.013704754986159
307 => 0.013920039391591
308 => 0.013855193976632
309 => 0.013361717166984
310 => 0.013074492497553
311 => 0.01232277013615
312 => 0.013213217745221
313 => 0.013646928800887
314 => 0.013360593960127
315 => 0.013505004598703
316 => 0.014292862217468
317 => 0.014592827388691
318 => 0.014530436729991
319 => 0.014540979724274
320 => 0.014702835485913
321 => 0.015420593068615
322 => 0.014990496087569
323 => 0.015319289114152
324 => 0.0154936797499
325 => 0.015655663491279
326 => 0.01525788261794
327 => 0.014740375546288
328 => 0.014576459333227
329 => 0.013332123603256
330 => 0.013267350524635
331 => 0.01323099143278
401 => 0.013001752501728
402 => 0.01282163349575
403 => 0.012678396174806
404 => 0.012302498670364
405 => 0.012429353043526
406 => 0.011830250877351
407 => 0.012213535212393
408 => 0.011257353689351
409 => 0.012053690074827
410 => 0.011620280385185
411 => 0.011911303335264
412 => 0.011910287983607
413 => 0.011374422463602
414 => 0.011065346414891
415 => 0.011262301702549
416 => 0.011473453405249
417 => 0.011507712058612
418 => 0.011781475752786
419 => 0.011857877315299
420 => 0.011626377014037
421 => 0.011237538952602
422 => 0.011327857165822
423 => 0.011063516119182
424 => 0.010600268602679
425 => 0.010932981056557
426 => 0.011046583716645
427 => 0.011096757123141
428 => 0.010641206394997
429 => 0.010498062465726
430 => 0.010421853838877
501 => 0.01117873307416
502 => 0.011220196627227
503 => 0.01100806322738
504 => 0.011966926310002
505 => 0.011749906063076
506 => 0.011992370850144
507 => 0.011319661734643
508 => 0.011345360128778
509 => 0.011026888852858
510 => 0.011205211487115
511 => 0.011079178796829
512 => 0.011190804780485
513 => 0.011257712934838
514 => 0.011576131952755
515 => 0.012057325908529
516 => 0.011528570769817
517 => 0.011298184583967
518 => 0.011441114877927
519 => 0.011821757085877
520 => 0.012398449515637
521 => 0.012057035990202
522 => 0.012208549515212
523 => 0.012241648480059
524 => 0.01198990278622
525 => 0.012407731738455
526 => 0.012631649668394
527 => 0.012861343131225
528 => 0.013060779529136
529 => 0.012769598511103
530 => 0.013081203939557
531 => 0.012830104969986
601 => 0.012604843236145
602 => 0.012605184865211
603 => 0.012463874889025
604 => 0.01219006900396
605 => 0.012139574997818
606 => 0.012402251194458
607 => 0.012612892628635
608 => 0.012630242066058
609 => 0.012746863987166
610 => 0.012815879638777
611 => 0.013492326846788
612 => 0.013764399509715
613 => 0.01409708481187
614 => 0.014226684486175
615 => 0.014616733041781
616 => 0.014301737154935
617 => 0.014233585813398
618 => 0.01328745560141
619 => 0.01344238437062
620 => 0.013690440278528
621 => 0.013291545951967
622 => 0.013544552589352
623 => 0.013594501458986
624 => 0.013277991675389
625 => 0.013447053226389
626 => 0.012998075870191
627 => 0.01206711238798
628 => 0.012408768166941
629 => 0.012660341820347
630 => 0.012301315198128
701 => 0.012944856522206
702 => 0.012568912966069
703 => 0.012449756907247
704 => 0.011984886639579
705 => 0.012204287511421
706 => 0.012501030332105
707 => 0.012317677768978
708 => 0.012698161867992
709 => 0.013237028823599
710 => 0.013621057506247
711 => 0.013650538459997
712 => 0.013403633744978
713 => 0.013799300126521
714 => 0.013802182124152
715 => 0.013355868829427
716 => 0.013082504421491
717 => 0.013020395452844
718 => 0.013175555833704
719 => 0.013363949180255
720 => 0.01366099297958
721 => 0.013840490326362
722 => 0.014308524208736
723 => 0.014435160757723
724 => 0.014574295931257
725 => 0.014760223430797
726 => 0.014983477064827
727 => 0.014495010823405
728 => 0.014514418497792
729 => 0.014059565497056
730 => 0.01357348983325
731 => 0.013942360671891
801 => 0.014424610224584
802 => 0.014313981644358
803 => 0.014301533669146
804 => 0.014322467710672
805 => 0.014239057373974
806 => 0.013861795512416
807 => 0.013672336967326
808 => 0.013916786826522
809 => 0.014046701047473
810 => 0.014248186674457
811 => 0.014223349318086
812 => 0.014742354655221
813 => 0.014944024435325
814 => 0.014892428675638
815 => 0.014901923537141
816 => 0.015267037041015
817 => 0.015673118348642
818 => 0.016053467080383
819 => 0.016440374146668
820 => 0.015973942577022
821 => 0.015737117391455
822 => 0.01598146053149
823 => 0.015851808622009
824 => 0.01659682695114
825 => 0.016648410403806
826 => 0.017393374859633
827 => 0.01810043483693
828 => 0.017656343133485
829 => 0.018075101607504
830 => 0.018528023039034
831 => 0.019401781964311
901 => 0.019107530697488
902 => 0.018882138838606
903 => 0.018669144621048
904 => 0.019112351775906
905 => 0.019682530700223
906 => 0.019805341779415
907 => 0.020004342645149
908 => 0.019795117567498
909 => 0.020047106128143
910 => 0.020936736476603
911 => 0.020696350503464
912 => 0.020354963777635
913 => 0.021057241496737
914 => 0.021311393073245
915 => 0.023095161937389
916 => 0.025347243812188
917 => 0.024414867128055
918 => 0.023836110832605
919 => 0.023972132290319
920 => 0.024794516353213
921 => 0.025058640013049
922 => 0.024340660856729
923 => 0.024594263232635
924 => 0.02599163725751
925 => 0.02674128358873
926 => 0.025723163179999
927 => 0.022914209351552
928 => 0.020324225638167
929 => 0.021011205947443
930 => 0.020933323699852
1001 => 0.022434627763621
1002 => 0.020690617377506
1003 => 0.020719982039644
1004 => 0.022252331481543
1005 => 0.021843526921565
1006 => 0.021181315890132
1007 => 0.020329060511543
1008 => 0.01875358762014
1009 => 0.017358147344913
1010 => 0.020094927075336
1011 => 0.019976912156849
1012 => 0.019806009066049
1013 => 0.020186335400979
1014 => 0.022033092125883
1015 => 0.021990518406005
1016 => 0.021719686121449
1017 => 0.021925110022279
1018 => 0.021145304087106
1019 => 0.021346277832451
1020 => 0.020323815371514
1021 => 0.020786011105662
1022 => 0.021179895082672
1023 => 0.021258973122609
1024 => 0.021437139984411
1025 => 0.019914723657446
1026 => 0.020598243892458
1027 => 0.020999747993343
1028 => 0.019185737858701
1029 => 0.020963890845469
1030 => 0.019888221776264
1031 => 0.019523123538169
1101 => 0.020014680217729
1102 => 0.01982312010165
1103 => 0.019658427962632
1104 => 0.019566526919291
1105 => 0.019927471893628
1106 => 0.019910633379153
1107 => 0.019320057344736
1108 => 0.018549674982797
1109 => 0.018808240590403
1110 => 0.018714301281094
1111 => 0.018373853105747
1112 => 0.018603274070062
1113 => 0.017593020250515
1114 => 0.01585493106241
1115 => 0.017003166019184
1116 => 0.016958960222387
1117 => 0.016936669655069
1118 => 0.017799536490202
1119 => 0.017716591753729
1120 => 0.017566046244833
1121 => 0.018371088219417
1122 => 0.018077237069351
1123 => 0.018982817073816
1124 => 0.019579290633999
1125 => 0.019428005645238
1126 => 0.019988991911597
1127 => 0.018814197419773
1128 => 0.019204417025383
1129 => 0.019284840745278
1130 => 0.018361154126414
1201 => 0.01773016253841
1202 => 0.017688082593321
1203 => 0.01659403013572
1204 => 0.017178464127688
1205 => 0.017692741855098
1206 => 0.017446442733232
1207 => 0.017368471789226
1208 => 0.017766808432317
1209 => 0.017797762601008
1210 => 0.017092004274482
1211 => 0.017238753779027
1212 => 0.017850723608051
1213 => 0.017223333709488
1214 => 0.016004417620139
1215 => 0.015702109577147
1216 => 0.015661776111569
1217 => 0.014841892722621
1218 => 0.015722311246122
1219 => 0.015337984966864
1220 => 0.016552067078102
1221 => 0.015858589887416
1222 => 0.015828695471761
1223 => 0.015783505677941
1224 => 0.015077798176117
1225 => 0.015232303268965
1226 => 0.015745901729382
1227 => 0.015929159446159
1228 => 0.015910044164913
1229 => 0.015743384816733
1230 => 0.015819680612896
1231 => 0.015573905270238
]
'min_raw' => 0.0085994058254481
'max_raw' => 0.02674128358873
'avg_raw' => 0.017670344707089
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.008599'
'max' => '$0.026741'
'avg' => '$0.01767'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.004898798430755
'max_diff' => 0.016701892326044
'year' => 2033
]
8 => [
'items' => [
101 => 0.015487116881374
102 => 0.015213188853092
103 => 0.014810590326067
104 => 0.01486657412053
105 => 0.014068921092859
106 => 0.013634317388733
107 => 0.013514024811416
108 => 0.013353164549655
109 => 0.013532194406015
110 => 0.014066661442051
111 => 0.013421980803084
112 => 0.012316721066664
113 => 0.012383149060094
114 => 0.012532393038682
115 => 0.01225427787193
116 => 0.011991065207036
117 => 0.012219907264043
118 => 0.01175159414334
119 => 0.012588986441927
120 => 0.012566337327015
121 => 0.012878465391936
122 => 0.013073645476443
123 => 0.012623818571956
124 => 0.012510688321939
125 => 0.012575132453832
126 => 0.011510014504717
127 => 0.012791422531885
128 => 0.012802504201716
129 => 0.01270761621675
130 => 0.013389926432182
131 => 0.014829813804638
201 => 0.014288070255785
202 => 0.014078290779383
203 => 0.013679499841396
204 => 0.014210865088401
205 => 0.01417006452802
206 => 0.013985548920825
207 => 0.01387395330587
208 => 0.014079571648133
209 => 0.013848474917786
210 => 0.013806963594902
211 => 0.01355545014299
212 => 0.013465671283791
213 => 0.013399202590639
214 => 0.013326027090558
215 => 0.013487434009539
216 => 0.013121664696279
217 => 0.012680582761296
218 => 0.012643911570975
219 => 0.012745163951616
220 => 0.012700367310535
221 => 0.012643697101892
222 => 0.012535498240378
223 => 0.01250339794947
224 => 0.012607708322074
225 => 0.012489947993077
226 => 0.01266370977325
227 => 0.012616456183721
228 => 0.012352501473837
301 => 0.012023516176771
302 => 0.012020587517557
303 => 0.011949708174948
304 => 0.011859432675356
305 => 0.011834320096593
306 => 0.012200634824294
307 => 0.012958895347759
308 => 0.012810030663367
309 => 0.012917600654107
310 => 0.013446738542616
311 => 0.013614935565642
312 => 0.013495553302663
313 => 0.01333213549792
314 => 0.01333932505197
315 => 0.013897773160709
316 => 0.013932602884244
317 => 0.014020606359124
318 => 0.014133715694124
319 => 0.013514816311512
320 => 0.013310174946705
321 => 0.013213204514989
322 => 0.012914573117584
323 => 0.013236621476964
324 => 0.013048977689439
325 => 0.013074297247201
326 => 0.013057807851992
327 => 0.013066812176784
328 => 0.012588752373713
329 => 0.012762932239869
330 => 0.012473324429645
331 => 0.012085572081757
401 => 0.012084272199923
402 => 0.01217917403774
403 => 0.012122722711097
404 => 0.011970813642597
405 => 0.011992391608787
406 => 0.011803345919561
407 => 0.012015345178242
408 => 0.012021424558411
409 => 0.011939793296141
410 => 0.012266407404399
411 => 0.012400221471044
412 => 0.012346490025507
413 => 0.012396451529588
414 => 0.012816216663087
415 => 0.012884656695484
416 => 0.01291505323698
417 => 0.012874325898146
418 => 0.012404124065655
419 => 0.012424979516378
420 => 0.012271956056778
421 => 0.01214266735863
422 => 0.012147838228526
423 => 0.012214309425728
424 => 0.012504593042394
425 => 0.013115477800513
426 => 0.013138660430533
427 => 0.013166758454402
428 => 0.013052469670392
429 => 0.013017999079538
430 => 0.013063474686488
501 => 0.013292890882843
502 => 0.013883011625758
503 => 0.013674423542373
504 => 0.013504838183714
505 => 0.013653610263142
506 => 0.013630707967628
507 => 0.013437389545435
508 => 0.013431963741191
509 => 0.013060923881365
510 => 0.012923758893356
511 => 0.012809133562754
512 => 0.012683965694107
513 => 0.012609761985908
514 => 0.012723772606684
515 => 0.012749848184589
516 => 0.012500561969698
517 => 0.012466585179753
518 => 0.012670157684049
519 => 0.012580573014856
520 => 0.012672713068714
521 => 0.012694090351572
522 => 0.012690648116671
523 => 0.0125971114333
524 => 0.012656728925977
525 => 0.012515715782966
526 => 0.012362385169432
527 => 0.012264569790831
528 => 0.012179212899675
529 => 0.01222657386386
530 => 0.012057740674311
531 => 0.012003727539033
601 => 0.012636531860894
602 => 0.013103991217245
603 => 0.01309719417307
604 => 0.013055818914709
605 => 0.012994343673449
606 => 0.01328839358604
607 => 0.013185952476207
608 => 0.013260486942851
609 => 0.013279459092814
610 => 0.013336882076705
611 => 0.013357405857774
612 => 0.013295368736702
613 => 0.013087164581185
614 => 0.012568339621096
615 => 0.012326825201633
616 => 0.01224712142047
617 => 0.012250018501536
618 => 0.012170104072589
619 => 0.012193642453428
620 => 0.012161918384328
621 => 0.012101840672331
622 => 0.012222864234439
623 => 0.012236811072559
624 => 0.012208562727039
625 => 0.012215216235014
626 => 0.011981331999137
627 => 0.011999113709621
628 => 0.011900102886056
629 => 0.011881539550231
630 => 0.011631248810118
701 => 0.011187822483784
702 => 0.011433523713008
703 => 0.011136751178927
704 => 0.011024358923432
705 => 0.011556406380361
706 => 0.011503003572384
707 => 0.011411601178772
708 => 0.01127639798869
709 => 0.011226249810317
710 => 0.010921565353506
711 => 0.010903562970369
712 => 0.011054572814337
713 => 0.010984886967277
714 => 0.010887021645911
715 => 0.010532563372372
716 => 0.010134034915812
717 => 0.010146063984855
718 => 0.010272828472001
719 => 0.010641413314899
720 => 0.010497400840196
721 => 0.010392918137447
722 => 0.01037335166796
723 => 0.010618266998762
724 => 0.010964873503194
725 => 0.01112749352019
726 => 0.01096634202219
727 => 0.010781219858301
728 => 0.010792487386643
729 => 0.010867445204764
730 => 0.010875322211602
731 => 0.010754826713776
801 => 0.010788745490607
802 => 0.010737219767002
803 => 0.010421006496346
804 => 0.010415287201003
805 => 0.010337683364757
806 => 0.010335333551437
807 => 0.010203310066797
808 => 0.01018483906866
809 => 0.0099226984266552
810 => 0.010095240191058
811 => 0.0099795082343458
812 => 0.0098050728771718
813 => 0.0097750001558463
814 => 0.0097740961335294
815 => 0.009953202242315
816 => 0.010093147231896
817 => 0.009981521441282
818 => 0.0099561064125342
819 => 0.010227472428424
820 => 0.010192938629346
821 => 0.010163032582063
822 => 0.010933838692335
823 => 0.010323685509304
824 => 0.010057623895176
825 => 0.0097283221239628
826 => 0.0098355444411535
827 => 0.0098581377588092
828 => 0.0090662263601467
829 => 0.0087449480043356
830 => 0.0086346973797407
831 => 0.0085712465865713
901 => 0.0086001619097835
902 => 0.008310973707361
903 => 0.0085053129621203
904 => 0.0082549004232927
905 => 0.0082129179462453
906 => 0.0086606865858301
907 => 0.0087229909762019
908 => 0.008457181090419
909 => 0.0086278740678032
910 => 0.0085659784213938
911 => 0.0082591930275433
912 => 0.0082474760820588
913 => 0.0080935419554526
914 => 0.0078526648548344
915 => 0.0077425775562564
916 => 0.0076852431353352
917 => 0.0077089004348329
918 => 0.0076969385802816
919 => 0.0076188793880239
920 => 0.007701412841809
921 => 0.0074905739725659
922 => 0.0074066162359891
923 => 0.0073686944741821
924 => 0.0071815628422964
925 => 0.007479372486441
926 => 0.0075380447380445
927 => 0.0075968325921085
928 => 0.0081085407255626
929 => 0.0080829772332874
930 => 0.0083140587535295
1001 => 0.0083050793505846
1002 => 0.0082391711577391
1003 => 0.0079611153334955
1004 => 0.0080719434291705
1005 => 0.0077308317771929
1006 => 0.0079864158201922
1007 => 0.0078697779364121
1008 => 0.007946980434359
1009 => 0.007808163381982
1010 => 0.007884990470383
1011 => 0.0075519581054967
1012 => 0.0072409771690577
1013 => 0.0073661249759802
1014 => 0.0075021749544927
1015 => 0.0077971659727976
1016 => 0.0076214717559183
1017 => 0.007684658040042
1018 => 0.0074729945654838
1019 => 0.007036272358788
1020 => 0.00703874415905
1021 => 0.0069715639620603
1022 => 0.0069135104633918
1023 => 0.0076416523502238
1024 => 0.0075510963963764
1025 => 0.0074068073355909
1026 => 0.0075999439772717
1027 => 0.0076510123708228
1028 => 0.0076524662161935
1029 => 0.0077933737243856
1030 => 0.0078685760867667
1031 => 0.0078818308290821
1101 => 0.0081035518377306
1102 => 0.0081778697952587
1103 => 0.0084839749444461
1104 => 0.0078621956917284
1105 => 0.0078493905571918
1106 => 0.007602661805894
1107 => 0.0074461825311936
1108 => 0.0076133760757066
1109 => 0.0077614867319502
1110 => 0.0076072640168403
1111 => 0.0076274022476144
1112 => 0.0074203708530381
1113 => 0.0074943748348667
1114 => 0.0075581170334303
1115 => 0.0075229223379767
1116 => 0.0074702341754402
1117 => 0.0077493433471699
1118 => 0.0077335949138632
1119 => 0.0079935077912701
1120 => 0.0081961284657569
1121 => 0.0085592609372153
1122 => 0.0081803132727246
1123 => 0.00816650291365
1124 => 0.0083015013888554
1125 => 0.0081778491276955
1126 => 0.0082559930884176
1127 => 0.008546670737042
1128 => 0.0085528122977136
1129 => 0.0084499332435104
1130 => 0.0084436730437125
1201 => 0.0084634320914458
1202 => 0.0085791614511821
1203 => 0.0085387220568862
1204 => 0.0085855195477656
1205 => 0.0086440405266989
1206 => 0.008886108107948
1207 => 0.0089444697822712
1208 => 0.0088026811707246
1209 => 0.0088154830948075
1210 => 0.0087624502619046
1211 => 0.0087112212098199
1212 => 0.0088263766375041
1213 => 0.0090368254449825
1214 => 0.0090355162538735
1215 => 0.0090843362866682
1216 => 0.0091147507626524
1217 => 0.0089841895669713
1218 => 0.0088991990294512
1219 => 0.0089317898096248
1220 => 0.0089839031768573
1221 => 0.0089148901469977
1222 => 0.0084889097567591
1223 => 0.0086181249954248
1224 => 0.0085966172614085
1225 => 0.0085659876327394
1226 => 0.0086959145544097
1227 => 0.0086833827858558
1228 => 0.0083080076643593
1229 => 0.0083320379617359
1230 => 0.0083094690263336
1231 => 0.0083823938737882
]
'min_raw' => 0.0069135104633918
'max_raw' => 0.015487116881374
'avg_raw' => 0.011200313672383
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.006913'
'max' => '$0.015487'
'avg' => '$0.01120031'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0016858953620563
'max_diff' => -0.011254166707356
'year' => 2034
]
9 => [
'items' => [
101 => 0.0081739109466141
102 => 0.0082380388908589
103 => 0.0082782593363271
104 => 0.0083019494876959
105 => 0.0083875345589289
106 => 0.0083774921386389
107 => 0.0083869103079835
108 => 0.0085138103750009
109 => 0.0091556273671306
110 => 0.0091905600499229
111 => 0.0090185387438254
112 => 0.0090872578626411
113 => 0.0089553321817342
114 => 0.0090438947751522
115 => 0.0091044870523229
116 => 0.0088306822030135
117 => 0.0088144692568161
118 => 0.0086819990716955
119 => 0.0087531810456845
120 => 0.008639925406903
121 => 0.0086677143791459
122 => 0.0085900139901556
123 => 0.008729859220345
124 => 0.0088862279174486
125 => 0.0089257328255239
126 => 0.00882181242031
127 => 0.0087465671982467
128 => 0.0086144613756205
129 => 0.0088341563028181
130 => 0.0088984017946122
131 => 0.0088338188485998
201 => 0.0088188535688435
202 => 0.0087904943907469
203 => 0.0088248701025392
204 => 0.0088980518998665
205 => 0.0088635407157025
206 => 0.0088863359608516
207 => 0.0087994639926979
208 => 0.0089842327881597
209 => 0.0092776901023852
210 => 0.0092786336156355
211 => 0.0092441222454434
212 => 0.0092300009363187
213 => 0.0092654116964608
214 => 0.0092846205812125
215 => 0.0093991324862894
216 => 0.0095220083227924
217 => 0.010095416236825
218 => 0.0099344055890931
219 => 0.010443167202612
220 => 0.010845531584478
221 => 0.010966183069337
222 => 0.010855189380358
223 => 0.010475485966119
224 => 0.010456855905146
225 => 0.011024293112665
226 => 0.01086396611127
227 => 0.01084489572461
228 => 0.010642019030479
301 => 0.010761944283478
302 => 0.01073571487145
303 => 0.010694310461376
304 => 0.010923119490033
305 => 0.011351429565756
306 => 0.011284673423788
307 => 0.011234843060537
308 => 0.011016500914173
309 => 0.011147991654768
310 => 0.011101170320582
311 => 0.0113023444858
312 => 0.011183173366878
313 => 0.010862751476548
314 => 0.010913779718708
315 => 0.01090606690256
316 => 0.011064796112346
317 => 0.011017149543469
318 => 0.010896763145287
319 => 0.01134996564848
320 => 0.011320537198767
321 => 0.01136226001218
322 => 0.011380627684965
323 => 0.011656484062335
324 => 0.011769493593724
325 => 0.011795148735859
326 => 0.011902499050208
327 => 0.011792477762244
328 => 0.012232641357947
329 => 0.012525324464832
330 => 0.012865290954814
331 => 0.013362073371055
401 => 0.013548868155056
402 => 0.013515125349261
403 => 0.013891780107556
404 => 0.014568620335646
405 => 0.013651934110961
406 => 0.014617206931442
407 => 0.014311612701089
408 => 0.013587054278325
409 => 0.013540401257882
410 => 0.014031080634073
411 => 0.015119360264327
412 => 0.014846758560114
413 => 0.015119806143058
414 => 0.014801281633777
415 => 0.014785464207156
416 => 0.015104336118602
417 => 0.0158493977205
418 => 0.015495446881655
419 => 0.014987971561864
420 => 0.015362683440807
421 => 0.01503807333332
422 => 0.014306635908502
423 => 0.014846550106728
424 => 0.014485524858245
425 => 0.014590891218911
426 => 0.015349712592768
427 => 0.015258409197473
428 => 0.015376564245452
429 => 0.015168023678426
430 => 0.014973213904995
501 => 0.014609586996122
502 => 0.014501934994995
503 => 0.014531686135193
504 => 0.014501920251807
505 => 0.014298474338197
506 => 0.014254540212523
507 => 0.014181314744934
508 => 0.014204010379239
509 => 0.014066325077307
510 => 0.014326165689288
511 => 0.014374394396579
512 => 0.014563484725069
513 => 0.014583116710256
514 => 0.01510973058357
515 => 0.014819680511535
516 => 0.015014271141574
517 => 0.014996865124066
518 => 0.0136027576564
519 => 0.01379485336513
520 => 0.014093694004959
521 => 0.013959066701785
522 => 0.013768735193034
523 => 0.013615032294787
524 => 0.013382156687016
525 => 0.013709924632974
526 => 0.014140904627675
527 => 0.014594047074147
528 => 0.015138468032514
529 => 0.015016959612365
530 => 0.014583869503022
531 => 0.014603297608954
601 => 0.014723394515152
602 => 0.014567858109672
603 => 0.014521987387264
604 => 0.014717092582286
605 => 0.014718436164536
606 => 0.014539472732829
607 => 0.014340587628448
608 => 0.014339754292598
609 => 0.014304364609276
610 => 0.014807577379822
611 => 0.015084293523072
612 => 0.015116018582946
613 => 0.015082158173771
614 => 0.015095189701391
615 => 0.014934174674657
616 => 0.015302207278247
617 => 0.015639950389953
618 => 0.015549428021186
619 => 0.015413722121893
620 => 0.015305625836623
621 => 0.015523963971726
622 => 0.015514241718266
623 => 0.015637000498512
624 => 0.015631431451151
625 => 0.015590152290546
626 => 0.015549429495395
627 => 0.015710890775072
628 => 0.015664392519514
629 => 0.015617822039322
630 => 0.015524417811712
701 => 0.015537112997524
702 => 0.015401430529768
703 => 0.015338657611776
704 => 0.014394703538472
705 => 0.014142448165496
706 => 0.014221812840966
707 => 0.014247941752834
708 => 0.014138159891241
709 => 0.014295558880119
710 => 0.014271028414429
711 => 0.014366462106586
712 => 0.014306839278976
713 => 0.014309286220618
714 => 0.014484624243693
715 => 0.014535525617733
716 => 0.014509636768072
717 => 0.014527768430957
718 => 0.014945604949242
719 => 0.014886201958001
720 => 0.01485464530285
721 => 0.014863386711989
722 => 0.014970152900927
723 => 0.015000041604612
724 => 0.014873401066857
725 => 0.014933125476562
726 => 0.015187424432931
727 => 0.015276414675586
728 => 0.015560428812399
729 => 0.015439774559132
730 => 0.015661240662798
731 => 0.016341951962108
801 => 0.016885751249636
802 => 0.016385650951369
803 => 0.017384269090492
804 => 0.018161836555064
805 => 0.018131992220667
806 => 0.01799640534776
807 => 0.017111165462046
808 => 0.016296554521028
809 => 0.016978011163397
810 => 0.016979748336521
811 => 0.016921210606588
812 => 0.016557637793439
813 => 0.01690855906078
814 => 0.016936413916623
815 => 0.016920822604555
816 => 0.016642072181155
817 => 0.016216471806314
818 => 0.016299633100814
819 => 0.016435852997651
820 => 0.016177960314492
821 => 0.016095547975954
822 => 0.016248768192885
823 => 0.016742475656537
824 => 0.016649143120386
825 => 0.016646705830681
826 => 0.017046021999489
827 => 0.016760197800445
828 => 0.016300682031057
829 => 0.016184648239019
830 => 0.015772806447009
831 => 0.01605726703968
901 => 0.016067504269995
902 => 0.015911708110506
903 => 0.016313324030758
904 => 0.01630962306935
905 => 0.016690897612989
906 => 0.017419751340247
907 => 0.017204193428383
908 => 0.016953523029519
909 => 0.016980777852212
910 => 0.017279695986516
911 => 0.017098963258879
912 => 0.017163956007851
913 => 0.017279597612207
914 => 0.017349367063335
915 => 0.016970739101886
916 => 0.016882462812203
917 => 0.01670188050428
918 => 0.016654769950871
919 => 0.016801850472701
920 => 0.01676309995163
921 => 0.016066643870428
922 => 0.015993860334897
923 => 0.015996092502021
924 => 0.01581307484126
925 => 0.015533928979329
926 => 0.016267507637551
927 => 0.016208591004869
928 => 0.016143551602173
929 => 0.016151518557894
930 => 0.01646994019014
1001 => 0.01628523956276
1002 => 0.016776296452489
1003 => 0.016675349918482
1004 => 0.016571814486784
1005 => 0.016557502736357
1006 => 0.016517650428381
1007 => 0.016380982035941
1008 => 0.016215946739572
1009 => 0.016106976141797
1010 => 0.014857834079271
1011 => 0.01508966758015
1012 => 0.015356370890624
1013 => 0.015448435804653
1014 => 0.015290952398508
1015 => 0.016387200440688
1016 => 0.016587495521703
1017 => 0.015980788656383
1018 => 0.01586729857356
1019 => 0.016394640831624
1020 => 0.016076588985042
1021 => 0.016219807712083
1022 => 0.015910247160676
1023 => 0.016539250302011
1024 => 0.016534458351943
1025 => 0.016289761923283
1026 => 0.016496577669177
1027 => 0.016460638343843
1028 => 0.016184376678546
1029 => 0.01654800828956
1030 => 0.016548188646302
1031 => 0.016312673653877
1101 => 0.016037643703584
1102 => 0.01598847484439
1103 => 0.015951432713893
1104 => 0.016210697618705
1105 => 0.016443153721659
1106 => 0.016875696898502
1107 => 0.016984448530132
1108 => 0.017408913388393
1109 => 0.017156165232117
1110 => 0.017268205216158
1111 => 0.017389840467857
1112 => 0.017448156880509
1113 => 0.017353133415523
1114 => 0.018012502057107
1115 => 0.01806817297299
1116 => 0.018086838949534
1117 => 0.017864503553488
1118 => 0.018061989423424
1119 => 0.017969592324925
1120 => 0.018209983906566
1121 => 0.018247680376041
1122 => 0.018215752807486
1123 => 0.018227718261896
1124 => 0.017665063446903
1125 => 0.017635886826505
1126 => 0.0172380615371
1127 => 0.017400178283109
1128 => 0.017097108796903
1129 => 0.017193215252941
1130 => 0.017235578063026
1201 => 0.017213450135106
1202 => 0.01740934412069
1203 => 0.017242794214446
1204 => 0.016803241628529
1205 => 0.016363569286803
1206 => 0.016358049558702
1207 => 0.016242291591987
1208 => 0.016158619784182
1209 => 0.016174737942782
1210 => 0.016231540436014
1211 => 0.016155318320014
1212 => 0.016171584173022
1213 => 0.016441705711765
1214 => 0.016495876659941
1215 => 0.016311782612083
1216 => 0.015572618445285
1217 => 0.0153912257047
1218 => 0.015521607209458
1219 => 0.015459293247828
1220 => 0.012476856199365
1221 => 0.013177535544788
1222 => 0.01276121567056
1223 => 0.01295307502256
1224 => 0.012528120236483
1225 => 0.012730930934188
1226 => 0.012693479203782
1227 => 0.013820150856612
1228 => 0.01380255942844
1229 => 0.013810979514188
1230 => 0.013409066882989
1231 => 0.014049324617606
]
'min_raw' => 0.0081739109466141
'max_raw' => 0.018247680376041
'avg_raw' => 0.013210795661327
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.008173'
'max' => '$0.018247'
'avg' => '$0.01321'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0012604004832223
'max_diff' => 0.002760563494667
'year' => 2035
]
10 => [
'items' => [
101 => 0.014364738600602
102 => 0.014306363866821
103 => 0.014321055529679
104 => 0.014068604085963
105 => 0.013813423795995
106 => 0.013530389582455
107 => 0.014056232167126
108 => 0.013997767448143
109 => 0.014131864478548
110 => 0.014472910982712
111 => 0.01452313137596
112 => 0.01459062809377
113 => 0.014566435325178
114 => 0.015142805223776
115 => 0.015073003026045
116 => 0.015241206239114
117 => 0.014895199468222
118 => 0.014503659963693
119 => 0.014578078823113
120 => 0.014570911688513
121 => 0.01447966583899
122 => 0.014397293165918
123 => 0.014260165873611
124 => 0.014694056917492
125 => 0.014676441733489
126 => 0.014961611087094
127 => 0.014911204633857
128 => 0.014574578002589
129 => 0.014586600688579
130 => 0.014667459029775
131 => 0.014947310671875
201 => 0.015030389693003
202 => 0.01499190418029
203 => 0.015082996534255
204 => 0.015154992216695
205 => 0.015092038083505
206 => 0.015983335850965
207 => 0.015613206876852
208 => 0.015793605163494
209 => 0.015836629091889
210 => 0.015726424204
211 => 0.015750323698042
212 => 0.015786524919293
213 => 0.016006331645806
214 => 0.016583168097765
215 => 0.01683864503568
216 => 0.017607260008405
217 => 0.016817431232397
218 => 0.016770566061465
219 => 0.016909016828001
220 => 0.017360275183148
221 => 0.017725977695453
222 => 0.017847302316669
223 => 0.017863337368213
224 => 0.018090950423122
225 => 0.018221413981464
226 => 0.018063312211439
227 => 0.017929337515288
228 => 0.017449456783226
229 => 0.017505004284634
301 => 0.017887671485528
302 => 0.018428211445777
303 => 0.018892050965267
304 => 0.018729630531981
305 => 0.019968783786999
306 => 0.020091640770747
307 => 0.020074665908035
308 => 0.020354552400583
309 => 0.019799034710768
310 => 0.019561540135724
311 => 0.017958304365273
312 => 0.018408748221632
313 => 0.019063494820491
314 => 0.018976836652958
315 => 0.01850134217144
316 => 0.018891690260065
317 => 0.018762628974652
318 => 0.01866083298409
319 => 0.01912718015098
320 => 0.018614412284498
321 => 0.019058379568776
322 => 0.018488986934436
323 => 0.018730372454839
324 => 0.018593350358955
325 => 0.018682020447788
326 => 0.018163656920294
327 => 0.018443353297167
328 => 0.01815202063146
329 => 0.018151882501843
330 => 0.018145451317101
331 => 0.018488202906338
401 => 0.018499380023358
402 => 0.018246086081043
403 => 0.01820958246676
404 => 0.018344555461082
405 => 0.018186537434214
406 => 0.018260473074432
407 => 0.018188776869437
408 => 0.01817263654354
409 => 0.018044027680738
410 => 0.017988619446469
411 => 0.01801034644282
412 => 0.017936181003239
413 => 0.017891493643211
414 => 0.018136561876427
415 => 0.018005631805444
416 => 0.018116494965247
417 => 0.017990152402605
418 => 0.017552194035653
419 => 0.017300319547494
420 => 0.016473056791084
421 => 0.016707667482585
422 => 0.016863214613773
423 => 0.016811806287844
424 => 0.016922251264322
425 => 0.016929031688881
426 => 0.016893124901174
427 => 0.016851549440955
428 => 0.016831312806187
429 => 0.016982140102182
430 => 0.01706970042412
501 => 0.01687882584934
502 => 0.016834106607088
503 => 0.017027091340665
504 => 0.017144811916663
505 => 0.018013994508354
506 => 0.017949602654539
507 => 0.018111213571352
508 => 0.01809301866224
509 => 0.018262412649699
510 => 0.018539300227952
511 => 0.017976310362378
512 => 0.018074025936317
513 => 0.018050068334169
514 => 0.018311631152397
515 => 0.018312447722965
516 => 0.018155627747405
517 => 0.01824064240027
518 => 0.018193189553296
519 => 0.018278943261414
520 => 0.017948742662073
521 => 0.018350891349119
522 => 0.018578883740785
523 => 0.018582049415364
524 => 0.018690115999555
525 => 0.018799917907886
526 => 0.019010673109198
527 => 0.018794040059709
528 => 0.018404338292481
529 => 0.018432473501346
530 => 0.018203991497806
531 => 0.018207832321564
601 => 0.018187329703332
602 => 0.018248859604011
603 => 0.017962245015145
604 => 0.018029512886275
605 => 0.017935337472773
606 => 0.01807382121736
607 => 0.017924835600368
608 => 0.018050056781088
609 => 0.018104098091539
610 => 0.018303511690529
611 => 0.017895382049659
612 => 0.017063178083978
613 => 0.017238117447062
614 => 0.016979368387871
615 => 0.017003316598426
616 => 0.017051695795077
617 => 0.016894882990042
618 => 0.016924797931504
619 => 0.016923729159286
620 => 0.016914519057716
621 => 0.016873725990729
622 => 0.016814567972935
623 => 0.017050235307948
624 => 0.017090279780447
625 => 0.01717929368235
626 => 0.017444138675707
627 => 0.017417674415395
628 => 0.017460838721955
629 => 0.017366611283093
630 => 0.017007687539064
701 => 0.017027178825199
702 => 0.016784122174769
703 => 0.017173078177332
704 => 0.017080968261957
705 => 0.017021584400304
706 => 0.017005380963464
707 => 0.017270882456333
708 => 0.017350324664225
709 => 0.017300821611435
710 => 0.017199289405928
711 => 0.017394261255804
712 => 0.017446427497629
713 => 0.017458105595357
714 => 0.017803558331194
715 => 0.017477412565789
716 => 0.017555919093132
717 => 0.018168404608786
718 => 0.017612964763311
719 => 0.017907193637246
720 => 0.01789279266496
721 => 0.018043310200703
722 => 0.017880445833751
723 => 0.017882464732771
724 => 0.018016114107569
725 => 0.017828427664457
726 => 0.017781953861702
727 => 0.017717750636047
728 => 0.017857936030436
729 => 0.017941970834331
730 => 0.01861922963697
731 => 0.019056769710228
801 => 0.019037774941718
802 => 0.019211351569182
803 => 0.01913315370873
804 => 0.018880632189776
805 => 0.019311655630912
806 => 0.01917526177935
807 => 0.019186505922754
808 => 0.019186087415175
809 => 0.019276777402706
810 => 0.019212515234925
811 => 0.019085847905852
812 => 0.019169935590207
813 => 0.019419645950846
814 => 0.020194754572318
815 => 0.020628515625717
816 => 0.020168641612257
817 => 0.020485856548783
818 => 0.020295640622106
819 => 0.020261072729795
820 => 0.020460307151934
821 => 0.020659890307554
822 => 0.020647177723362
823 => 0.020502290601091
824 => 0.020420447542094
825 => 0.021040190604253
826 => 0.021496806735403
827 => 0.021465668576452
828 => 0.021603102283391
829 => 0.022006611897626
830 => 0.022043503759805
831 => 0.02203885623312
901 => 0.021947415903443
902 => 0.022344723521003
903 => 0.022676164525533
904 => 0.021926250109088
905 => 0.02221180770177
906 => 0.022340003705216
907 => 0.022528233472315
908 => 0.022845808640382
909 => 0.023190779505557
910 => 0.023239562168306
911 => 0.02320494853462
912 => 0.022977430975723
913 => 0.023354902212756
914 => 0.02357601601062
915 => 0.023707684217148
916 => 0.024041572881405
917 => 0.02234079540009
918 => 0.021136900564689
919 => 0.02094889500169
920 => 0.021331211707003
921 => 0.021432025573276
922 => 0.021391387630191
923 => 0.020036294539619
924 => 0.020941760717011
925 => 0.021915966190126
926 => 0.021953389389925
927 => 0.022441097019442
928 => 0.022599914615424
929 => 0.022992583182486
930 => 0.022968021656704
1001 => 0.023063630204062
1002 => 0.023041651454734
1003 => 0.023768987289093
1004 => 0.024571346724809
1005 => 0.024543563568897
1006 => 0.024428214906927
1007 => 0.024599527339822
1008 => 0.025427648263543
1009 => 0.025351408159254
1010 => 0.025425468926454
1011 => 0.026401870166371
1012 => 0.02767133066972
1013 => 0.027081538814164
1014 => 0.028361217432686
1015 => 0.029166707290197
1016 => 0.030559718709557
1017 => 0.030385306819127
1018 => 0.030927595942294
1019 => 0.030073073134398
1020 => 0.028110916039916
1021 => 0.027800397168879
1022 => 0.028422063812286
1023 => 0.029950370593758
1024 => 0.028373931992955
1025 => 0.02869284346874
1026 => 0.028600996942259
1027 => 0.028596102831186
1028 => 0.028782891145074
1029 => 0.028511944953556
1030 => 0.027408061427022
1031 => 0.027913964742006
1101 => 0.027718611176618
1102 => 0.027935370521989
1103 => 0.029105131310602
1104 => 0.028587952182342
1105 => 0.028043145982941
1106 => 0.028726453859164
1107 => 0.029596539595657
1108 => 0.029542091193961
1109 => 0.029436438537006
1110 => 0.03003199703247
1111 => 0.031015685184709
1112 => 0.031281572139481
1113 => 0.031477844453673
1114 => 0.031504907089752
1115 => 0.031783669060703
1116 => 0.030284695685839
1117 => 0.032663604928115
1118 => 0.033074376838215
1119 => 0.032997168743867
1120 => 0.033453724434019
1121 => 0.033319394168276
1122 => 0.033124770688988
1123 => 0.033848508570058
1124 => 0.033018801492047
1125 => 0.031841136752026
1126 => 0.031195046584084
1127 => 0.032045870235838
1128 => 0.032565438550311
1129 => 0.032908840155426
1130 => 0.033012753273645
1201 => 0.0304010567219
1202 => 0.02899349713184
1203 => 0.029895726691365
1204 => 0.030996509022543
1205 => 0.030278580784409
1206 => 0.030306722212126
1207 => 0.02928314521277
1208 => 0.031087072874625
1209 => 0.030824255787712
1210 => 0.032187751299529
1211 => 0.031862342152899
1212 => 0.032974219812195
1213 => 0.032681425161424
1214 => 0.033896799386846
1215 => 0.03438164507031
1216 => 0.035195776433051
1217 => 0.035794654777594
1218 => 0.036146327596227
1219 => 0.036125214479288
1220 => 0.037518717389415
1221 => 0.036697017408597
1222 => 0.035664768572873
1223 => 0.035646098448138
1224 => 0.036180714747238
1225 => 0.037301123845334
1226 => 0.037591629623181
1227 => 0.03775398272147
1228 => 0.037505333299888
1229 => 0.036613436862478
1230 => 0.036228320502822
1231 => 0.036556450799144
]
'min_raw' => 0.013530389582455
'max_raw' => 0.03775398272147
'avg_raw' => 0.025642186151962
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.01353'
'max' => '$0.037753'
'avg' => '$0.025642'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.0053564786358408
'max_diff' => 0.019506302345429
'year' => 2036
]
11 => [
'items' => [
101 => 0.0361551756433
102 => 0.03684788914021
103 => 0.037799132727086
104 => 0.037602704688021
105 => 0.038259334172479
106 => 0.038938876609456
107 => 0.039910652814494
108 => 0.040164711099259
109 => 0.040584659783005
110 => 0.041016924924536
111 => 0.041155756838124
112 => 0.041420830038175
113 => 0.041419432971567
114 => 0.042218248901407
115 => 0.04309936760929
116 => 0.043431969523571
117 => 0.044196769285683
118 => 0.042887076494846
119 => 0.043880493521362
120 => 0.044776580546121
121 => 0.043708228653872
122 => 0.045180702843272
123 => 0.045237875679348
124 => 0.04610111762538
125 => 0.04522605653593
126 => 0.044706448054309
127 => 0.046206538271274
128 => 0.046932384674864
129 => 0.046713753830969
130 => 0.045049962313789
131 => 0.044081564287415
201 => 0.041547079862366
202 => 0.044549286145416
203 => 0.046011573250332
204 => 0.04504617534345
205 => 0.045533065893838
206 => 0.048189382861967
207 => 0.049200736379644
208 => 0.048990381917862
209 => 0.049025928359174
210 => 0.049571636359947
211 => 0.051991606162261
212 => 0.050541504162254
213 => 0.051650052806974
214 => 0.052238023010965
215 => 0.052784162504366
216 => 0.051443016517731
217 => 0.049698205294466
218 => 0.049145550337866
219 => 0.044950185547524
220 => 0.04473179859064
221 => 0.04460921137394
222 => 0.043836316312949
223 => 0.043229032508785
224 => 0.042746097880711
225 => 0.041478733200159
226 => 0.041906431575965
227 => 0.03988651679473
228 => 0.04117878669038
301 => 0.037954953926982
302 => 0.040639857649047
303 => 0.039178586620719
304 => 0.040159790815483
305 => 0.040156367486483
306 => 0.038349659472849
307 => 0.037307587995619
308 => 0.037971636498939
309 => 0.038683549206733
310 => 0.038799054648411
311 => 0.039722068056889
312 => 0.039979661259088
313 => 0.039199141830547
314 => 0.037888147158613
315 => 0.038192661320298
316 => 0.037301417025852
317 => 0.035739545681052
318 => 0.036861308948545
319 => 0.037244328248516
320 => 0.037413491391512
321 => 0.035877570306037
322 => 0.035394950554511
323 => 0.035138007848371
324 => 0.037689879033749
325 => 0.037829676297808
326 => 0.037114453729543
327 => 0.040347327558285
328 => 0.039615628643904
329 => 0.040433115601854
330 => 0.038165029851892
331 => 0.038251673781923
401 => 0.037177925640204
402 => 0.03777915285169
403 => 0.037354224837069
404 => 0.037730579634445
405 => 0.037956165148223
406 => 0.039029737098437
407 => 0.040652116116216
408 => 0.038869381249545
409 => 0.038092618138903
410 => 0.038574517604063
411 => 0.039857879383756
412 => 0.041802238174071
413 => 0.040651138636337
414 => 0.041161977064246
415 => 0.041273572535124
416 => 0.04042479435202
417 => 0.041833533836367
418 => 0.042588488770607
419 => 0.043362916317226
420 => 0.044035330056988
421 => 0.04305359292508
422 => 0.044104192382712
423 => 0.04325759467563
424 => 0.042498109012715
425 => 0.042499260838964
426 => 0.042022824388302
427 => 0.041099668730289
428 => 0.040929424663203
429 => 0.041815055799642
430 => 0.042525248101485
501 => 0.042583742941057
502 => 0.042976941890355
503 => 0.043209632978279
504 => 0.045490321968124
505 => 0.046407633946689
506 => 0.04752930567025
507 => 0.047966260020532
508 => 0.049281335958076
509 => 0.048219305333264
510 => 0.0479895283271
511 => 0.04479958426068
512 => 0.045321937422852
513 => 0.046158275235073
514 => 0.044813375163161
515 => 0.045666404705465
516 => 0.045834810806752
517 => 0.04476767597335
518 => 0.045337678796044
519 => 0.043823920293027
520 => 0.040685111914958
521 => 0.041837028227367
522 => 0.042685226364139
523 => 0.04147474304089
524 => 0.04364448754564
525 => 0.042376967598583
526 => 0.041975224627053
527 => 0.040407882063405
528 => 0.041147607420899
529 => 0.042148096558757
530 => 0.041529910590907
531 => 0.042812739295285
601 => 0.044629566858604
602 => 0.045924346374176
603 => 0.046023743468041
604 => 0.045191286983018
605 => 0.046525303812933
606 => 0.04653502066916
607 => 0.045030244235397
608 => 0.044108577048347
609 => 0.043899172324245
610 => 0.044422306381266
611 => 0.045057487702365
612 => 0.046058991610725
613 => 0.046664179447507
614 => 0.04824218835901
615 => 0.048669152325402
616 => 0.04913825627708
617 => 0.049765123822823
618 => 0.050517839037028
619 => 0.04887094100045
620 => 0.048936375329645
621 => 0.047402806680839
622 => 0.045763968643599
623 => 0.047007642429819
624 => 0.048633580466311
625 => 0.048260588484238
626 => 0.04821861926672
627 => 0.048289199849295
628 => 0.048007976075591
629 => 0.046736011369768
630 => 0.046097238657424
701 => 0.046921418424647
702 => 0.047359433290904
703 => 0.048038756149559
704 => 0.047955015268464
705 => 0.04970487799841
706 => 0.050384821742165
707 => 0.050210863036079
708 => 0.050242875624549
709 => 0.051473881294271
710 => 0.052843012774627
711 => 0.054125385078791
712 => 0.055429869265759
713 => 0.053857262663485
714 => 0.053058790015741
715 => 0.05388260997186
716 => 0.053445479507038
717 => 0.055957360819224
718 => 0.056131278031328
719 => 0.058642977705905
720 => 0.061026879784713
721 => 0.059529593601056
722 => 0.060941467032993
723 => 0.062468523261364
724 => 0.065414462481834
725 => 0.064422373791771
726 => 0.063662449403195
727 => 0.062944324527918
728 => 0.064438628394255
729 => 0.066361026446212
730 => 0.066775092574103
731 => 0.067446037886723
801 => 0.066740620929793
802 => 0.067590217955286
803 => 0.070589668787127
804 => 0.069779190695479
805 => 0.068628181514484
806 => 0.070995959875902
807 => 0.071852849660394
808 => 0.077866950924623
809 => 0.085460002200843
810 => 0.082316429113825
811 => 0.080365111856243
812 => 0.080823717697639
813 => 0.083596442982708
814 => 0.084486954342371
815 => 0.082066237489134
816 => 0.082921275605453
817 => 0.087632619691859
818 => 0.090160104636201
819 => 0.086727440595269
820 => 0.077256856647768
821 => 0.068524545731199
822 => 0.070840747807358
823 => 0.070578162372041
824 => 0.07563991384074
825 => 0.069759861061036
826 => 0.06985886606961
827 => 0.075025289198195
828 => 0.073646976082404
829 => 0.071414285355829
830 => 0.068540846844347
831 => 0.063229029994978
901 => 0.058524205680521
902 => 0.067751449617501
903 => 0.067353554080284
904 => 0.066777342377579
905 => 0.068059639169331
906 => 0.074286108403781
907 => 0.074142568134813
908 => 0.073229438178526
909 => 0.073922039202411
910 => 0.071292869047665
911 => 0.071970466061635
912 => 0.068523162488535
913 => 0.070081487675691
914 => 0.071409495004283
915 => 0.071676112136982
916 => 0.072276814150762
917 => 0.067143881212684
918 => 0.069448417406887
919 => 0.070802116515142
920 => 0.064686054696053
921 => 0.070681221637616
922 => 0.067054528269977
923 => 0.065823574069894
924 => 0.067480891734422
925 => 0.066835033428761
926 => 0.066279762383626
927 => 0.065969911599673
928 => 0.067186862781026
929 => 0.067130090553845
930 => 0.065138922221105
1001 => 0.06254152430145
1002 => 0.063413296299966
1003 => 0.063096573359999
1004 => 0.061948728567486
1005 => 0.062722237366331
1006 => 0.059316096080061
1007 => 0.053456007032852
1008 => 0.05732736135682
1009 => 0.057178318426571
1010 => 0.05710316422258
1011 => 0.060012380000668
1012 => 0.059732726030632
1013 => 0.059225151336638
1014 => 0.061939406560186
1015 => 0.060948666891706
1016 => 0.064001893102336
1017 => 0.066012945354947
1018 => 0.06550287745296
1019 => 0.0673942818168
1020 => 0.06343338016608
1021 => 0.064749032810657
1022 => 0.065020186997289
1023 => 0.06190591307205
1024 => 0.059778480878669
1025 => 0.059636605405873
1026 => 0.055947931160765
1027 => 0.057918391168564
1028 => 0.059652314432251
1029 => 0.058821899746825
1030 => 0.058559015265353
1031 => 0.059902035068509
1101 => 0.060006399209401
1102 => 0.057626885737048
1103 => 0.058121661937342
1104 => 0.060184960942266
1105 => 0.058069672096298
1106 => 0.053960011399053
1107 => 0.052940758725632
1108 => 0.052804771630444
1109 => 0.050040477542177
1110 => 0.053008870063016
1111 => 0.051713087179696
1112 => 0.055806449782242
1113 => 0.053468343016812
1114 => 0.053367551907269
1115 => 0.053215191362354
1116 => 0.050835849249031
1117 => 0.051356773956769
1118 => 0.053088407024363
1119 => 0.053706273211123
1120 => 0.053641824705816
1121 => 0.053079921077643
1122 => 0.053337157681208
1123 => 0.05250850895395
1124 => 0.052215895841523
1125 => 0.051292328369127
1126 => 0.049934939326731
1127 => 0.050123692598427
1128 => 0.047434349725277
1129 => 0.045969052993756
1130 => 0.045563478170771
1201 => 0.045021126567337
1202 => 0.045624738227521
1203 => 0.047426731154816
1204 => 0.045253145370373
1205 => 0.041526685002261
1206 => 0.041750651619964
1207 => 0.042253838113657
1208 => 0.041316153411572
1209 => 0.04042871353496
1210 => 0.041200270507401
1211 => 0.039621320124373
1212 => 0.042444646723922
1213 => 0.042368283651685
1214 => 0.043420645214651
1215 => 0.044078708496607
1216 => 0.042562085682216
1217 => 0.042180659145781
1218 => 0.042397937035804
1219 => 0.038806817506205
1220 => 0.043127174134853
1221 => 0.043164536758384
1222 => 0.042844615292203
1223 => 0.045145071820912
1224 => 0.049999752626873
1225 => 0.048173226428587
1226 => 0.047465940277565
1227 => 0.046121388787448
1228 => 0.047912923816461
1229 => 0.047775361878533
1230 => 0.047153254626406
1231 => 0.046777002219227
]
'min_raw' => 0.035138007848371
'max_raw' => 0.090160104636201
'avg_raw' => 0.062649056242286
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.035138'
'max' => '$0.09016'
'avg' => '$0.062649'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.021607618265916
'max_diff' => 0.052406121914731
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0011029419150582
]
1 => [
'year' => 2028
'avg' => 0.0018929685125655
]
2 => [
'year' => 2029
'avg' => 0.0051712488019491
]
3 => [
'year' => 2030
'avg' => 0.003989610749449
]
4 => [
'year' => 2031
'avg' => 0.0039182921829759
]
5 => [
'year' => 2032
'avg' => 0.0068699993286892
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0011029419150582
'min' => '$0.0011029'
'max_raw' => 0.0068699993286892
'max' => '$0.006869'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.0068699993286892
]
1 => [
'year' => 2033
'avg' => 0.017670344707089
]
2 => [
'year' => 2034
'avg' => 0.011200313672383
]
3 => [
'year' => 2035
'avg' => 0.013210795661327
]
4 => [
'year' => 2036
'avg' => 0.025642186151962
]
5 => [
'year' => 2037
'avg' => 0.062649056242286
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.0068699993286892
'min' => '$0.006869'
'max_raw' => 0.062649056242286
'max' => '$0.062649'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.062649056242286
]
]
]
]
'prediction_2025_max_price' => '$0.001885'
'last_price' => 0.00182855
'sma_50day_nextmonth' => '$0.002272'
'sma_200day_nextmonth' => '$0.003841'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'augmenter'
'sma_200day_date_nextmonth' => '4 févr. 2026'
'sma_50day_date_nextmonth' => '4 févr. 2026'
'daily_sma3' => '$0.001886'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.001929'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.002161'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.003281'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.004199'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.003584'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.0049068'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.00189'
'daily_ema3_action' => 'SELL'
'daily_ema5' => '$0.001971'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.002318'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.0031028'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.003733'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.004221'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.00979'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.003733'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.010882'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.107465'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.00236'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.002852'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.003355'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.005217'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.033882'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.1126051'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.059749'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '31.82'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => -1.98
'stoch_rsi_14_action' => 'BUY'
'momentum_10' => -0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.0022031'
'vwma_10_action' => 'SELL'
'hma_9' => '0.0018029'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 0
'stochastic_fast_14_action' => 'BUY'
'cci_20' => -88.89
'cci_20_action' => 'NEUTRAL'
'adx_14' => 28.78
'adx_14_action' => 'SELL'
'ao_5_34' => '-0.002735'
'ao_5_34_action' => 'SELL'
'macd_12_26' => -0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -100
'williams_percent_r_14_action' => 'BUY'
'ultimate_oscillator' => 7.45
'ultimate_oscillator_action' => 'BUY'
'ichimoku_cloud' => '0.000848'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 30
'buy_signals' => 3
'sell_pct' => 90.91
'buy_pct' => 9.09
'overall_action' => 'bearish'
'overall_action_label' => 'Baissier'
'overall_action_dir' => -1
'last_updated' => 1767701445
'last_updated_date' => '6 janvier 2026'
]
Prévision du prix de Orange pour 2026
La prévision du prix de Orange pour 2026 suggère que le prix moyen pourrait varier entre $0.000631 à la baisse et $0.001885 à la hausse. Sur le marché des cryptomonnaies, comparé au prix moyen d'aujourd'hui, Orange pourrait potentiellement gagner 3.13% d'ici 2026 si ORNJ atteint l'objectif de prix prévu.
Prévision du prix de Orange de 2027 à 2032
La prévision du prix de ORNJ pour 2027-2032 se situe actuellement dans une fourchette de prix comprise entre $0.0011029 à la baisse et $0.006869 à la hausse. Compte tenu de la volatilité des prix sur le marché, si Orange atteint l'objectif de prix le plus élevé, il pourrait gagner 275.71% d'ici 2032 par rapport au prix actuel.
| Prévision du Prix de Orange | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2027 | $0.0006081 | $0.0011029 | $0.001597 |
| 2028 | $0.001097 | $0.001892 | $0.002688 |
| 2029 | $0.002411 | $0.005171 | $0.007931 |
| 2030 | $0.00205 | $0.003989 | $0.005928 |
| 2031 | $0.002424 | $0.003918 | $0.005412 |
| 2032 | $0.0037006 | $0.006869 | $0.010039 |
Prévision du prix de Orange de 2032 à 2037
La prévision du prix de Orange pour 2032-2037 est actuellement estimée entre $0.006869 à la baisse et $0.062649 à la hausse. Par rapport au prix actuel, Orange pourrait potentiellement gagner 3326.16% d'ici 2037 s'il atteint l'objectif de prix le plus élevé. Veuillez noter que ces informations sont à titre général seulement et ne doivent pas être considérées comme un conseil en investissement à long terme.
| Prévision du Prix de Orange | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2032 | $0.0037006 | $0.006869 | $0.010039 |
| 2033 | $0.008599 | $0.01767 | $0.026741 |
| 2034 | $0.006913 | $0.01120031 | $0.015487 |
| 2035 | $0.008173 | $0.01321 | $0.018247 |
| 2036 | $0.01353 | $0.025642 | $0.037753 |
| 2037 | $0.035138 | $0.062649 | $0.09016 |
Orange Histogramme des prix potentiels
Prévision du prix de Orange basée sur l'analyse technique
Au 6 janvier 2026, le sentiment global de prévision du prix pour Orange est Baissier, avec 3 indicateurs techniques montrant des signaux haussiers et 30 indiquant des signaux baissiers. La prévision du prix de ORNJ a été mise à jour pour la dernière fois le 6 janvier 2026.
Moyennes Mobiles Simples sur 50 et 200 jours de Orange et Indice de Force Relative sur 14 jours - RSI (14)
Selon nos indicateurs techniques, le SMA sur 200 jours de Orange devrait augmenter au cours du prochain mois, atteignant $0.003841 d'ici le 4 févr. 2026. Le SMA à court terme sur 50 jours pour Orange devrait atteindre $0.002272 d'ici le 4 févr. 2026.
Le Relative Strength Index (RSI), un oscillateur de momentum, est un outil couramment utilisé pour identifier si une cryptomonnaie est survendue (en dessous de 30) ou surachetée (au-dessus de 70). Actuellement, le RSI est à 31.82, ce qui suggère que le marché de ORNJ est dans un état NEUTRAL.
Moyennes Mobiles et Oscillateurs Populaires de ORNJ pour le Samedi 19 Octobre 2024
Les moyennes mobiles (MA) sont des indicateurs largement utilisés sur les marchés financiers, conçus pour lisser les mouvements de prix sur une période donnée. En tant qu'indicateurs retardés, ils sont basés sur des données historiques de prix. Le tableau ci-dessous met en évidence deux types : la moyenne mobile simple (SMA) et la moyenne mobile exponentielle (EMA).
Moyenne Mobile Simple Quotidienne (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 3 | $0.001886 | SELL |
| SMA 5 | $0.001929 | SELL |
| SMA 10 | $0.002161 | SELL |
| SMA 21 | $0.003281 | SELL |
| SMA 50 | $0.004199 | SELL |
| SMA 100 | $0.003584 | SELL |
| SMA 200 | $0.0049068 | SELL |
Moyenne Mobile Exponentielle Quotidienne (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 3 | $0.00189 | SELL |
| EMA 5 | $0.001971 | SELL |
| EMA 10 | $0.002318 | SELL |
| EMA 21 | $0.0031028 | SELL |
| EMA 50 | $0.003733 | SELL |
| EMA 100 | $0.004221 | SELL |
| EMA 200 | $0.00979 | SELL |
Moyenne Mobile Simple Hebdomadaire (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 21 | $0.003733 | SELL |
| SMA 50 | $0.010882 | SELL |
| SMA 100 | $0.107465 | SELL |
| SMA 200 | — | — |
Moyenne Mobile Exponentielle Hebdomadaire (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 21 | $0.005217 | SELL |
| EMA 50 | $0.033882 | SELL |
| EMA 100 | $0.1126051 | SELL |
| EMA 200 | $0.059749 | SELL |
Oscillateurs de Orange
Un oscillateur est un outil d'analyse technique qui établit des limites hautes et basses entre deux extrêmes, créant un indicateur de tendance qui fluctue à l'intérieur de ces limites. Les traders utilisent cet indicateur pour identifier les conditions de surachat ou de survente à court terme.
| Période | Valeur | Action |
|---|---|---|
| RSI (14) | 31.82 | NEUTRAL |
| Stoch RSI (14) | -1.98 | BUY |
| Stochastique Rapide (14) | 0 | BUY |
| Indice de Canal des Matières Premières (20) | -88.89 | NEUTRAL |
| Indice Directionnel Moyen (14) | 28.78 | SELL |
| Oscillateur Impressionnant (5, 34) | -0.002735 | SELL |
| Momentum (10) | -0 | BUY |
| MACD (12, 26) | -0 | NEUTRAL |
| Plage de Pourcentage de Williams (14) | -100 | BUY |
| Oscillateur Ultime (7, 14, 28) | 7.45 | BUY |
| VWMA (10) | 0.0022031 | SELL |
| Moyenne Mobile de Hull (9) | 0.0018029 | BUY |
| Nuage Ichimoku B/L (9, 26, 52, 26) | 0.000848 | NEUTRAL |
Prévision du cours de Orange basée sur les flux monétaires mondiaux
Définitions des flux monétaires mondiaux utilisés pour la prédiction du cours de Orange
M0 : le total de toutes les devises physiques, plus les comptes à la banque centrale qui peuvent être échangés contre des devises physiques.
M1 : M0 plus le montant des comptes à vue, y compris les comptes de "chèques" et les comptes "courants".
M2 : M1 plus la plupart des comptes d'épargne, comptes du marché monétaire et comptes de certificats de dépôt (CD) de moins de 100 000 $.
Prédictions du cours de Orange par des sociétés Internet ou des niches technologiques
| Comparaison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Action Facebook | $0.002569 | $0.00361 | $0.005073 | $0.007128 | $0.010017 | $0.014075 |
| Action Amazon.com | $0.003815 | $0.007961 | $0.016611 | $0.03466 | $0.07232 | $0.15090075 |
| Action Apple | $0.002593 | $0.003678 | $0.005218 | $0.0074016 | $0.010498 | $0.014891 |
| Action Netflix | $0.002885 | $0.004552 | $0.007182 | $0.011333 | $0.017882 | $0.028215 |
| Action Google | $0.002367 | $0.003066 | $0.003971 | $0.005142 | $0.006659 | $0.008624 |
| Action Tesla | $0.004145 | $0.009396 | $0.0213018 | $0.048289 | $0.109469 | $0.248158 |
| Action Kodak | $0.001371 | $0.001028 | $0.000771 | $0.000578 | $0.000433 | $0.000325 |
| Action Nokia | $0.001211 | $0.0008024 | $0.000531 | $0.000352 | $0.000233 | $0.000154 |
Ce calcul montre la valeur potentielle des cryptomonnaies si l'on suppose que leur capitalisation se comportera comme celle de certaines sociétés Internet ou niches technologiques. En extrapolant les données, vous pourrez obtenir une potentielle image des cours futurs pour 2024, 2025, 2026, 2027, 2028, 2029 et 2030.
Aperçu des prévisions relatives à Orange
Vous vous posez peut-être des questions telles que : "Devrais-je investir dans Orange maintenant ?", "Devrais-je acheter ORNJ aujourd'hui ?", " Orange sera-t-il un bon ou un mauvais investissement à court ou à long terme ?".
Nous mettons régulièrement à jour les prévisions de Orange avec de nouvelles valeurs. Regardez nos prévisions similaires. Nous faisons une prévision des cours futurs pour une grande quantité de devises numériques comme Orange en utilisant des méthodes d'analyse technique.
Si vous souhaitez trouver des cryptomonnaies ayant un bon rendement, vous devriez consulter un maximum d'informations disponibles à propos de Orange afin de prendre une décision responsable concernant cet investissement.
Le cours de Orange est de $0.001828 USD actuellement, mais ce cours peut subir une hausse ou une baisse, ce qui pourrait causer la perte de votre investissement, car les cryptomonnaies sont des actifs à haut risque.
Prévision du cours de Orange basée sur le modèle de croissance du Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Orange présente 1 % de la précédente croissance annuelle moyenne du Bitcoin | $0.001876 | $0.001924 | $0.001974 | $0.002026 |
| Si Orange présente 2 % de la précédente croissance annuelle moyenne du Bitcoin | $0.001923 | $0.002023 | $0.002128 | $0.002239 |
| Si Orange présente 5 % de la précédente croissance annuelle moyenne du Bitcoin | $0.002066 | $0.002334 | $0.002638 | $0.002981 |
| Si Orange présente 10 % de la précédente croissance annuelle moyenne du Bitcoin | $0.0023038 | $0.0029026 | $0.003657 | $0.0046078 |
| Si Orange présente 20 % de la précédente croissance annuelle moyenne du Bitcoin | $0.002779 | $0.004223 | $0.006419 | $0.009757 |
| Si Orange présente 50 % de la précédente croissance annuelle moyenne du Bitcoin | $0.004205 | $0.00967 | $0.022238 | $0.05114 |
| Si Orange présente 100 % de la précédente croissance annuelle moyenne du Bitcoin | $0.006581 | $0.023689 | $0.085264 | $0.306894 |
Boîte à questions
Est-ce que ORNJ est un bon investissement ?
La décision d'acquérir Orange dépend entièrement de votre tolérance individuelle au risque. Comme vous pouvez le discerner, la valeur de Orange a connu une baisse de -4.3792% au cours des 24 heures précédentes, et Orange a enregistré une déclin de sur une période de 30 jours précédents. Par conséquent, la détermination de si investir ou non dans Orange dépendra de la mesure dans laquelle cet investissement s'aligne avec vos aspirations de trading.
Est-ce que Orange peut monter ?
Il semble que la valeur moyenne de Orange pourrait potentiellement s'envoler jusqu'à $0.001885 pour la fin de cette année. En regardant les perspectives de Orange sur une période de cinq ans plus longue, la monnaie numérique pourrait potentiellement croître jusqu'à $0.005928. Cependant, compte tenu de l'imprévisibilité du marché, il est essentiel de mener des recherches approfondies avant d'investir des fonds dans un projet, un réseau ou un actif particulier.
Quel sera le prix de Orange la semaine prochaine ?
Basé sur notre nouveau pronostic expérimental de Orange, le prix de Orange va augmenter de 0.86% durant la prochaine semaine et atteindre $0.001844 d'ici 13 janvier 2026.
Quel sera le prix de Orange le mois prochain ?
Basé sur notre nouveau pronostic expérimental de Orange, le prix de Orange va diminuer de -11.62% durant le prochain mois et atteindre $0.001616 d'ici 5 février 2026.
Jusqu'où le prix de Orange peut-il monter cette année en 2026 ?
Selon notre prédiction la plus récente sur la valeur de Orange en 2026, ORNJ devrait fluctuer dans la fourchette de $0.000631 et $0.001885. Cependant, il est crucial de garder à l'esprit que le marché des cryptomonnaies est exceptionnellement instable, et cette prévision de prix de Orange ne prend pas en compte les fluctuations de prix soudaines et extrêmes.
Où sera Orange dans 5 ans ?
L'avenir de Orange semble suivre une tendance haussière, avec un prix maximum de $0.005928 prévue après une période de cinq ans. Selon la prévision de Orange pour 2030, la valeur de Orange pourrait potentiellement atteindre son point le plus élevé d'environ $0.005928, tandis que son point le plus bas devrait être autour de $0.00205.
Combien vaudra Orange en 2026 ?
Basé sur notre nouvelle simulation expérimentale de prédiction de prix de Orange, il est attendu que la valeur de ORNJ en 2026 augmente de 3.13% jusqu'à $0.001885 si le meilleur scénario se produit. Le prix sera entre $0.001885 et $0.000631 durant 2026.
Combien vaudra Orange en 2027 ?
Selon notre dernière simulation expérimentale pour la prédiction de prix de Orange, le valeur de ORNJ pourrait diminuer de -12.62% jusqu'à $0.001597 en 2027, en supposant les conditions les plus favorables. Il est prévu que le prix fluctue entre $0.001597 et $0.0006081 tout au long de l'année.
Combien vaudra Orange en 2028 ?
Notre nouveau modèle expérimental de prédiction de prix de Orange suggère que la valeur de ORNJ en 2028 pourrait augmenter de 47.02%, atteignant $0.002688 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.002688 et $0.001097 durant l'année.
Combien vaudra Orange en 2029 ?
Basé sur notre modèle de prévision expérimental, la valeur de Orange pourrait connaître un 333.75% croissance en 2029, atteignant potentiellement $0.007931 sous des conditions optimales. Le range de prix prévu pour 2029 se situe entre $0.007931 et $0.002411.
Combien vaudra Orange en 2030 ?
En utilisant notre nouvelle simulation expérimentale pour les prédictions de prix de Orange, il est prévu que la valeur de ORNJ en 2030 augmente de 224.23%, atteignant $0.005928 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.005928 et $0.00205 au cours de 2030.
Combien vaudra Orange en 2031 ?
Notre simulation expérimentale indique que le prix de Orange pourrait augmenter de 195.98% en 2031, atteignant potentiellement $0.005412 dans des conditions idéales. Il est probable que le prix fluctue entre $0.005412 et $0.002424 durant l'année.
Combien vaudra Orange en 2032 ?
Basé sur les résultats de notre dernière prédiction expérimentale de prix de Orange, ORNJ pourrait connaître une 449.04% hausse en valeur, atteignant $0.010039 si le scénario le plus positif se réalise en 2032. Il est prévu que le prix reste dans une fourchette de $0.010039 et $0.0037006 tout au long de l'année.
Combien vaudra Orange en 2033 ?
Selon notre prédiction expérimentale de prix de Orange, la valeur de ORNJ est anticipée à augmenter de 1362.43% en 2033, avec le prix potentiel le plus élevé étant $0.026741. Tout au long de l'année, le prix de ORNJ pourrait osciller entre $0.026741 et $0.008599.
Combien vaudra Orange en 2034 ?
Les résultats de notre nouvelle simulation de prédiction de prix de Orange suggèrent que ORNJ pourrait augmenter de 746.96% en 2034, atteignant potentiellement $0.015487 dans les meilleures circonstances. La fourchette de prix prévue pour l'année est entre $0.015487 et $0.006913.
Combien vaudra Orange en 2035 ?
Basé sur notre prédiction expérimentale pour le prix de Orange, ORNJ pourrait augmenter de 897.93%, avec la valeur potentiellement atteignant $0.018247 en 2035. La fourchette de prix attendue pour l'année se situe entre $0.018247 et $0.008173.
Combien vaudra Orange en 2036 ?
Notre récente simulation de prédiction de prix de Orange suggère que la valeur de ORNJ pourrait augmenter de 1964.7% en 2036, pouvant atteindre $0.037753 si les conditions sont optimales. La fourchette de prix attendue pour 2036 est entre $0.037753 et $0.01353.
Combien vaudra Orange en 2037 ?
Selon la simulation expérimentale, la valeur de Orange pourrait augmenter de 4830.69% en 2037, avec un maximum de $0.09016 sous des conditions favorables. Il est prévu que le prix chute entre $0.09016 et $0.035138 au cours de l'année.
Prévisions liées
Prévision du cours de KRYLL
Prévision du cours de Beefy.Finance
Prévision du cours de Aura Finance
Prévision du cours de Sora Validator Token
Prévision du cours de StarLink
Prévision du cours de Magpie
Prévision du cours de AS Roma Fan Token
Prévision du cours de AirSwap
Prévision du cours de Holdstation [OLD]
Prévision du cours de FIO Protocol
Prévision du cours de Grape
Prévision du cours de Enjinstarter
Prévision du cours de Tectonic
Prévision du cours de Wing Finance
Prévision du cours de Volt Inu
Prévision du cours de OORT
Prévision du cours de Base God
Prévision du cours de Token dForce USD
Prévision du cours de Kava Lend
Prévision du cours de TENET
Prévision du cours de HyperGPT
Prévision du cours de Crypto Asset Governance Alliance
Prévision du cours de Koinos
Prévision du cours de QORPO WORLD
Prévision du cours de Dexalot
Comment lire et prédire les mouvements de prix de Orange ?
Les traders de Orange utilisent des indicateurs et des modèles graphiques pour prédire la direction du marché. Ils identifient également des niveaux clés de support et de résistance pour évaluer quand une tendance baissière pourrait ralentir ou une tendance haussière pourrait s'arrêter.
Indicateurs de prédiction du prix de Orange
Les moyennes mobiles sont des outils populaires pour la prédiction du prix de Orange. Une moyenne mobile simple (SMA) calcule le prix de clôture moyen de ORNJ sur une période spécifique, comme une SMA de 12 jours. Une moyenne mobile exponentielle (EMA) donne plus de poids aux prix récents, réagissant plus rapidement aux changements de prix.
Les moyennes mobiles couramment utilisées sur le marché des cryptomonnaies incluent les moyennes sur 50 jours, 100 jours et 200 jours, qui aident à identifier les niveaux clés de résistance et de support. Un mouvement de prix de ORNJ au-dessus de ces moyennes est considéré comme haussier, tandis qu'une chute en dessous indique une faiblesse.
Les traders utilisent également le RSI et les niveaux de retracement de Fibonacci pour évaluer la direction future de ORNJ.
Comment lire les graphiques de Orange et prédire les mouvements de prix ?
La plupart des traders préfèrent les graphiques en chandeliers aux simples graphiques linéaires parce qu'ils fournissent des informations plus détaillées. Les chandeliers peuvent représenter l'action des prix de Orange dans différentes périodes, comme 5 minutes pour les tendances à court terme et hebdomadaire pour les tendances à long terme. Les options populaires incluent les graphiques de 1 heure, 4 heures et 1 jour.
Par exemple, un graphique en chandeliers de 1 heure montre les prix d'ouverture, de clôture, les plus hauts et les plus bas de ORNJ au sein de chaque heure. La couleur du chandelier est cruciale : le vert indique que le prix a clôturé plus haut qu'il n'a ouvert, tandis que le rouge signifie le contraire. Certains graphiques utilisent des chandeliers creux et pleins pour transmettre la même information.
Qu'est-ce qui affecte le prix de Orange ?
L'action du prix de Orange est déterminée par l'offre et la demande, influencée par des facteurs tels que les réductions de récompenses de bloc, les hard forks et les mises à jour de protocole. Les événements du monde réel, tels que les réglementations, l'adoption par les entreprises et les gouvernements et les piratages d'échanges de cryptomonnaies, impactent également le prix de ORNJ. La capitalisation boursière de Orange peut changer rapidement.
Les traders surveillent souvent l'activité des « baleines » de ORNJ, de grands détenteurs de Orange, car leurs actions peuvent influencer significativement les mouvements de prix sur le marché relativement petit de Orange.
Modèles de prédiction de prix haussiers et baissiers
Les traders identifient souvent des modèles de chandeliers pour obtenir un avantage dans les prédictions de prix des cryptomonnaies. Certaines formations indiquent des tendances haussières, tandis que d'autres suggèrent des mouvements baissiers.
Modèles de chandeliers haussiers couramment suivis :
- Marteau
- Englobante haussière
- Ligne pénétrante
- Étoile du matin
- Trois soldats blancs
Modèles de chandeliers baissiers courants :
- Harami baissier
- Nuage sombre
- Étoile du soir
- Étoile filante
- Pendu


