Prédiction du prix de NFT Protocol jusqu'à $0.003412 d'ici 2026
| Année | Prix min. | Prix max. |
|---|---|---|
| 2026 | $0.001143 | $0.003412 |
| 2027 | $0.00110068 | $0.002891 |
| 2028 | $0.001986 | $0.004865 |
| 2029 | $0.004363 | $0.014354 |
| 2030 | $0.003711 | $0.010729 |
| 2031 | $0.004387 | $0.009795 |
| 2032 | $0.006697 | $0.018169 |
| 2033 | $0.015563 | $0.048396 |
| 2034 | $0.012512 | $0.028028 |
| 2035 | $0.014793 | $0.033024 |
Calculateur de profit d’investissement
Si vous ouvrez une position short de $10,000.00 sur NFT Protocol aujourd’hui et la fermez le Apr 06, 2026, notre prévision indique que vous pourriez gagner environ $3,954.43, soit un rendement de 39.54% sur les 90 prochains jours.
Prévision du prix à long terme de NFT Protocol pour 2027, 2028, 2029, 2030, 2031, 2032 et 2037
[
'name' => 'NFT Protocol'
'name_with_ticker' => 'NFT Protocol <small>NFT</small>'
'name_lang' => 'NFT Protocol'
'name_lang_with_ticker' => 'NFT Protocol <small>NFT</small>'
'name_with_lang' => 'NFT Protocol'
'name_with_lang_with_ticker' => 'NFT Protocol <small>NFT</small>'
'image' => '/uploads/coins/nft-protocol.png?1717137794'
'price_for_sd' => 0.003309
'ticker' => 'NFT'
'marketcap' => '$125.17K'
'low24h' => '$0.003296'
'high24h' => '$0.003312'
'volume24h' => '$3.29'
'current_supply' => '37.82M'
'max_supply' => '88.89M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.003309'
'change_24h_pct' => '0.3691%'
'ath_price' => '$1.16'
'ath_days' => 1759
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '14 mars 2021'
'ath_pct' => '-99.72%'
'fdv' => '$294.16K'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.163171'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.003337'
'next_week_prediction_price_date' => '13 janvier 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.002924'
'next_month_prediction_price_date' => '5 février 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.001143'
'current_year_max_price_prediction' => '$0.003412'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.003711'
'grand_prediction_max_price' => '$0.010729'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0033720196838029
107 => 0.0033846095812591
108 => 0.003412975263084
109 => 0.0031705936175927
110 => 0.003279415860467
111 => 0.0033433387328905
112 => 0.0030545328697474
113 => 0.0033376299695578
114 => 0.0031663742923952
115 => 0.0031082475433923
116 => 0.0031865075533078
117 => 0.0031560095513334
118 => 0.0031297891601385
119 => 0.0031151577313283
120 => 0.0031726232453682
121 => 0.0031699424104521
122 => 0.0030759176759071
123 => 0.0029532662426317
124 => 0.002994432089535
125 => 0.0029794761514232
126 => 0.0029252739023515
127 => 0.0029617996738213
128 => 0.0028009586615382
129 => 0.0025242400596934
130 => 0.0027070488441921
131 => 0.0027000109048466
201 => 0.0026964620566834
202 => 0.0028338378057705
203 => 0.0028206322972935
204 => 0.0027966641700992
205 => 0.0029248337088995
206 => 0.0028780501031138
207 => 0.0030222261525416
208 => 0.0031171898234169
209 => 0.00309310396473
210 => 0.0031824177561875
211 => 0.0029953804675043
212 => 0.0030575067521713
213 => 0.0030703108933379
214 => 0.002923252116686
215 => 0.0028227928817956
216 => 0.0028160933961476
217 => 0.002641910926983
218 => 0.002734957796059
219 => 0.0028168351903047
220 => 0.0027776222724035
221 => 0.0027652086340485
222 => 0.0028286272202142
223 => 0.0028335553875028
224 => 0.0027211926510604
225 => 0.0027445564220319
226 => 0.0028419872308866
227 => 0.0027421014156304
228 => 0.002548039592843
301 => 0.0024999095776771
302 => 0.0024934881464418
303 => 0.0023629557280723
304 => 0.0025031258554331
305 => 0.0024419378385143
306 => 0.002635230050816
307 => 0.0025248225757962
308 => 0.0025200631302167
309 => 0.0025128685301644
310 => 0.0024005138854475
311 => 0.0024251124121303
312 => 0.0025068816612855
313 => 0.0025360578505806
314 => 0.0025330145350036
315 => 0.0025064809473556
316 => 0.0025186278879069
317 => 0.0024794983601164
318 => 0.0024656809094429
319 => 0.0024220692343281
320 => 0.0023579721199421
321 => 0.0023668852168279
322 => 0.0022398920613069
323 => 0.0021706994501421
324 => 0.0021515478473157
325 => 0.0021259375236156
326 => 0.0021544406015241
327 => 0.0022395323056532
328 => 0.0021368936572614
329 => 0.0019609268938579
330 => 0.0019715027961712
331 => 0.0019952637086557
401 => 0.0019509854054351
402 => 0.001909079707433
403 => 0.001945513311929
404 => 0.0018709538745461
405 => 0.0020042738604515
406 => 0.0020006679284577
407 => 0.0020503613747506
408 => 0.0020814357065297
409 => 0.0020098194322132
410 => 0.0019918081328936
411 => 0.002002068187554
412 => 0.0018324923385724
413 => 0.0020365034100969
414 => 0.0020382677063152
415 => 0.002023160730959
416 => 0.0021317903284106
417 => 0.0023610326614546
418 => 0.002274782474512
419 => 0.0022413837952021
420 => 0.0021778928814197
421 => 0.0022624907543173
422 => 0.0022559949576112
423 => 0.0022266185014483
424 => 0.0022088515291008
425 => 0.0022415877204161
426 => 0.0022047951527215
427 => 0.0021981861965714
428 => 0.002158143112917
429 => 0.0021438495538966
430 => 0.0021332671718408
501 => 0.0021216170090009
502 => 0.0021473143651861
503 => 0.0020890807753016
504 => 0.00201885677461
505 => 0.0020130184087867
506 => 0.0020291386501392
507 => 0.0020220066433515
508 => 0.0020129842634821
509 => 0.0019957580832124
510 => 0.0019906474435055
511 => 0.002007254543223
512 => 0.0019885060958959
513 => 0.0020161704512078
514 => 0.0020086472773016
515 => 0.0019666234394173
516 => 0.0019142461781959
517 => 0.001913779910706
518 => 0.0019024953156918
519 => 0.0018881226872909
520 => 0.001884124550871
521 => 0.00194244497538
522 => 0.0020631665087301
523 => 0.002039465983112
524 => 0.0020565920417987
525 => 0.0021408353002536
526 => 0.0021676136988333
527 => 0.0021486070258026
528 => 0.0021225895194776
529 => 0.0021237341577148
530 => 0.002212643852862
531 => 0.0022181890414895
601 => 0.0022321999442055
602 => 0.0022502079136762
603 => 0.0021516738608721
604 => 0.0021190932126888
605 => 0.002103654694074
606 => 0.002056110032199
607 => 0.0021073828738599
608 => 0.0020775083847461
609 => 0.0020815394739854
610 => 0.00207891422183
611 => 0.0020803477870256
612 => 0.0020042365947984
613 => 0.0020319675129595
614 => 0.0019858594830166
615 => 0.0019241260067923
616 => 0.0019239190545335
617 => 0.0019390282353816
618 => 0.0019300407033908
619 => 0.0019058554858942
620 => 0.0019092908818886
621 => 0.0018791931980843
622 => 0.0019129452856386
623 => 0.0019139131747389
624 => 0.0019009167825418
625 => 0.0019529165303099
626 => 0.0019742208693982
627 => 0.0019656663656444
628 => 0.0019736206626103
629 => 0.0020404508469529
630 => 0.0020513470830061
701 => 0.002056186471296
702 => 0.0020497023320837
703 => 0.0019748421956981
704 => 0.0019781625610767
705 => 0.0019537999230258
706 => 0.0019332160611442
707 => 0.0019340393076714
708 => 0.0019446220883932
709 => 0.0019908377124774
710 => 0.0020880957688026
711 => 0.0020917866409454
712 => 0.0020962600856529
713 => 0.0020780643378545
714 => 0.0020725763262087
715 => 0.0020798164301455
716 => 0.0021163414425156
717 => 0.0022102936907757
718 => 0.0021770846913809
719 => 0.0021500852579441
720 => 0.0021737710400632
721 => 0.0021701247995612
722 => 0.0021393468602781
723 => 0.0021384830260316
724 => 0.0020794103202449
725 => 0.002057572485936
726 => 0.002039323157054
727 => 0.0020193953663255
728 => 0.0020075815039961
729 => 0.0020257329658385
730 => 0.0020298844199236
731 => 0.001990195931372
801 => 0.0019847865370364
802 => 0.0020171970135232
803 => 0.0020029343712057
804 => 0.0020176038525258
805 => 0.0020210072980245
806 => 0.0020204592649112
807 => 0.0020055674282777
808 => 0.0020150590408669
809 => 0.0019926085475075
810 => 0.0019681970079342
811 => 0.0019526239665791
812 => 0.0019390344225326
813 => 0.0019465746913986
814 => 0.0019196950096902
815 => 0.0019110956585306
816 => 0.0020118434960898
817 => 0.0020862670069165
818 => 0.0020851848595941
819 => 0.0020785975660749
820 => 0.0020688101840891
821 => 0.0021156254345615
822 => 0.0020993159373974
823 => 0.0021111824592884
824 => 0.002114202987146
825 => 0.0021233452152462
826 => 0.002126612775991
827 => 0.0021167359379534
828 => 0.0020835880631453
829 => 0.0020009867107288
830 => 0.0019625355582008
831 => 0.0019498460374119
901 => 0.0019503072773918
902 => 0.0019375842196818
903 => 0.0019413317303848
904 => 0.0019362809883941
905 => 0.0019267161049695
906 => 0.0019459840868002
907 => 0.0019482045422126
908 => 0.001943707165018
909 => 0.0019447664601548
910 => 0.0019075300978389
911 => 0.0019103610975927
912 => 0.0018945977312178
913 => 0.0018916422900527
914 => 0.0018517938725303
915 => 0.0017811966247688
916 => 0.0018203143530693
917 => 0.0017730656380673
918 => 0.0017551718337611
919 => 0.0018398783202889
920 => 0.0018313761384337
921 => 0.0018168240989073
922 => 0.0017952985995369
923 => 0.0017873145824338
924 => 0.0017388062219483
925 => 0.0017359400892287
926 => 0.0017599821425213
927 => 0.0017488875621633
928 => 0.0017333065694946
929 => 0.0016768737934682
930 => 0.0016134246689646
1001 => 0.0016153397992064
1002 => 0.0016355217851981
1003 => 0.0016942036313805
1004 => 0.0016712756188708
1005 => 0.0016546410827263
1006 => 0.0016515259341388
1007 => 0.0016905185407171
1008 => 0.001745701248229
1009 => 0.00177159173995
1010 => 0.0017459350489604
1011 => 0.0017164620238058
1012 => 0.0017182559102821
1013 => 0.0017301898333337
1014 => 0.0017314439199098
1015 => 0.0017122600104101
1016 => 0.0017176601685639
1017 => 0.0017094568345275
1018 => 0.0016591129886884
1019 => 0.0016582024281592
1020 => 0.0016458472364861
1021 => 0.0016454731261925
1022 => 0.0016244538630095
1023 => 0.0016215131227909
1024 => 0.0015797780999631
1025 => 0.0016072482183737
1026 => 0.0015888227051898
1027 => 0.0015610511106826
1028 => 0.0015562632773218
1029 => 0.0015561193492695
1030 => 0.0015846345672135
1031 => 0.0016069150014496
1101 => 0.0015891432248803
1102 => 0.0015850969358469
1103 => 0.0016283007167685
1104 => 0.001622802641835
1105 => 0.0016180413444014
1106 => 0.0017407602420205
1107 => 0.00164361865868
1108 => 0.0016012593836958
1109 => 0.0015488317370947
1110 => 0.0015659024431911
1111 => 0.0015694994917865
1112 => 0.0014434204525045
1113 => 0.0013922702019699
1114 => 0.0013747173635429
1115 => 0.0013646154568675
1116 => 0.0013692190225913
1117 => 0.0013231777977842
1118 => 0.0013541182623061
1119 => 0.001314250453391
1120 => 0.0013075664854853
1121 => 0.0013788550664993
1122 => 0.0013887744560856
1123 => 0.0013464552583979
1124 => 0.0013736310341692
1125 => 0.0013637767201029
1126 => 0.0013149338725473
1127 => 0.0013130684350344
1128 => 0.00128856081104
1129 => 0.0012502111251001
1130 => 0.0012326842895661
1201 => 0.001223556161445
1202 => 0.0012273226050114
1203 => 0.0012254181758891
1204 => 0.0012129904876609
1205 => 0.0012261305164311
1206 => 0.0011925631727581
1207 => 0.001179196386037
1208 => 0.0011731589185822
1209 => 0.0011433659690082
1210 => 0.0011907798007652
1211 => 0.0012001209229251
1212 => 0.0012094804499812
1213 => 0.0012909487429843
1214 => 0.0012868788172929
1215 => 0.0013236689634092
1216 => 0.0013222393659838
1217 => 0.0013117462203506
1218 => 0.0012674773649627
1219 => 0.0012851221417039
1220 => 0.0012308142615017
1221 => 0.0012715054179261
1222 => 0.0012529356734373
1223 => 0.0012652269686349
1224 => 0.0012431261116082
1225 => 0.0012553576384088
1226 => 0.001202336049522
1227 => 0.0011528252358533
1228 => 0.0011727498325843
1229 => 0.001194410147885
1230 => 0.0012413752304025
1231 => 0.0012134032147086
]
'min_raw' => 0.0011433659690082
'max_raw' => 0.003412975263084
'avg_raw' => 0.0022781706160461
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.001143'
'max' => '$0.003412'
'avg' => '$0.002278'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0021659440309918
'max_diff' => 0.00010366526308398
'year' => 2026
]
1 => [
'items' => [
101 => 0.0012234630092911
102 => 0.0011897643814289
103 => 0.0011202344866119
104 => 0.0011206280182657
105 => 0.0011099323587392
106 => 0.0011006897473164
107 => 0.0012166161371977
108 => 0.001202198858091
109 => 0.0011792268107212
110 => 0.0012099758089985
111 => 0.0012181063321953
112 => 0.0012183377967605
113 => 0.0012407714721571
114 => 0.0012527443287378
115 => 0.0012548545966034
116 => 0.0012901544695517
117 => 0.0013019865213473
118 => 0.001350721068159
119 => 0.0012517285155066
120 => 0.0012496898290286
121 => 0.0012104085104626
122 => 0.001185495677215
123 => 0.0012121143134689
124 => 0.0012356947913837
125 => 0.0012111412216417
126 => 0.0012143473994959
127 => 0.0011813862382176
128 => 0.0011931683024078
129 => 0.0012033166033039
130 => 0.0011977133080386
131 => 0.001189324903824
201 => 0.0012337614611029
202 => 0.001231254176393
203 => 0.0012726345201231
204 => 0.0013048934571976
205 => 0.0013627072394097
206 => 0.0013023755437707
207 => 0.0013001768169849
208 => 0.0013216697240035
209 => 0.0013019832308952
210 => 0.001314424414985
211 => 0.0013607027723129
212 => 0.0013616805610788
213 => 0.001345301339441
214 => 0.0013443046623158
215 => 0.0013474504710003
216 => 0.0013658755707235
217 => 0.0013594372747341
218 => 0.0013668878338508
219 => 0.0013762048721132
220 => 0.0014147440927087
221 => 0.0014240357683204
222 => 0.0014014618137655
223 => 0.001403499989112
224 => 0.0013950567104395
225 => 0.0013869006090359
226 => 0.0014052343338883
227 => 0.0014387395764062
228 => 0.0014385311420315
301 => 0.0014463037070468
302 => 0.0014511459506599
303 => 0.0014303594963333
304 => 0.0014168282789059
305 => 0.0014220170086813
306 => 0.001430313900588
307 => 0.0014193264384587
308 => 0.0013515067323085
309 => 0.0013720788988148
310 => 0.0013686546843806
311 => 0.0013637781866276
312 => 0.0013844636591296
313 => 0.0013824684948443
314 => 0.0013227055784769
315 => 0.0013265314064824
316 => 0.0013229382397494
317 => 0.0013345484965564
318 => 0.0013013562389261
319 => 0.0013115659538199
320 => 0.0013179693912912
321 => 0.0013217410651553
322 => 0.0013353669374134
323 => 0.0013337680985732
324 => 0.0013352675513462
325 => 0.0013554711228082
326 => 0.001457653854234
327 => 0.001463215434852
328 => 0.0014358281778364
329 => 0.0014467688468244
330 => 0.0014257651548287
331 => 0.0014398650739779
401 => 0.0014495118805607
402 => 0.0014059198165873
403 => 0.001403338577469
404 => 0.001382248195765
405 => 0.0013935809722725
406 => 0.0013755497099937
407 => 0.0013799739510501
408 => 0.0013676033873579
409 => 0.0013898679390492
410 => 0.0014147631674016
411 => 0.0014210526852258
412 => 0.0014045076716381
413 => 0.001392527991431
414 => 0.0013714956193394
415 => 0.0014064729228647
416 => 0.0014167013523295
417 => 0.0014064191972791
418 => 0.0014040365972844
419 => 0.0013995215745997
420 => 0.0014049944806909
421 => 0.001416645646106
422 => 0.0014111511716595
423 => 0.0014147803688316
424 => 0.0014009496116233
425 => 0.0014303663775147
426 => 0.0014770872812803
427 => 0.0014772374966256
428 => 0.0014717429925617
429 => 0.0014694947598796
430 => 0.0014751324544834
501 => 0.0014781906725357
502 => 0.0014964219431082
503 => 0.0015159848227983
504 => 0.0016072762463591
505 => 0.0015816419799317
506 => 0.0016626411618659
507 => 0.0017267009983484
508 => 0.0017459097423124
509 => 0.0017282386017068
510 => 0.0016677865842713
511 => 0.0016648205198943
512 => 0.0017551613561264
513 => 0.0017296359320184
514 => 0.001726599764042
515 => 0.0016943000664597
516 => 0.0017133931881262
517 => 0.0017092172423385
518 => 0.0017026253076184
519 => 0.0017390536537198
520 => 0.0018072442656407
521 => 0.0017966161192853
522 => 0.0017886827010565
523 => 0.0017539207717614
524 => 0.0017748552175551
525 => 0.0017674008623808
526 => 0.00179942950286
527 => 0.0017804564457614
528 => 0.0017294425518259
529 => 0.0017375666825791
530 => 0.0017363387365592
531 => 0.0017616097786349
601 => 0.0017540240390696
602 => 0.0017348574991623
603 => 0.0018070111975424
604 => 0.0018023259377096
605 => 0.001808968564953
606 => 0.0018118928548957
607 => 0.0018558115396088
608 => 0.0018738036194947
609 => 0.0018778881366244
610 => 0.0018949792209586
611 => 0.0018774628948766
612 => 0.0019475406881334
613 => 0.0019941383314966
614 => 0.0020482638921557
615 => 0.0021273558838579
616 => 0.0021570952043797
617 => 0.0021517230623138
618 => 0.002211689707758
619 => 0.0023194484366375
620 => 0.0021735041823603
621 => 0.0023271838364945
622 => 0.0022785306323126
623 => 0.0021631747604309
624 => 0.0021557472022381
625 => 0.0022338675379856
626 => 0.0024071309238698
627 => 0.0023637304108429
628 => 0.0024072019115613
629 => 0.0023564900968485
630 => 0.0023539718278153
701 => 0.0024047389519116
702 => 0.0025233591045345
703 => 0.0024670071164333
704 => 0.0023862127234159
705 => 0.0024458700459199
706 => 0.0023941893521423
707 => 0.002277738284546
708 => 0.0023636972232885
709 => 0.002306218928921
710 => 0.0023229941509317
711 => 0.002443804976441
712 => 0.0024292686982899
713 => 0.0024480799882405
714 => 0.0024148785538549
715 => 0.002383863178753
716 => 0.0023259706778934
717 => 0.0023088315624547
718 => 0.0023135681973612
719 => 0.0023088292152137
720 => 0.0022764388930423
721 => 0.0022694442060533
722 => 0.0022577860879607
723 => 0.002261399426238
724 => 0.0022394787535211
725 => 0.0022808475919799
726 => 0.0022885260129388
727 => 0.0023186308036943
728 => 0.0023217563829393
729 => 0.0024055977966784
730 => 0.0023594193548886
731 => 0.0023903998404961
801 => 0.0023876286542637
802 => 0.0021656748719642
803 => 0.0021962581448502
804 => 0.0022438361199012
805 => 0.0022224023066312
806 => 0.0021920999094072
807 => 0.0021676290989371
808 => 0.0021305533188061
809 => 0.0021827367673632
810 => 0.0022513524531248
811 => 0.0023234965899634
812 => 0.0024101730433038
813 => 0.0023908278679433
814 => 0.002321876233959
815 => 0.0023249693538904
816 => 0.0023440898042081
817 => 0.0023193270837706
818 => 0.0023120240740878
819 => 0.002343086482823
820 => 0.0023433003925604
821 => 0.0023148078900223
822 => 0.0022831436875241
823 => 0.0022830110133595
824 => 0.0022773766743649
825 => 0.0023574924332389
826 => 0.0024015480000028
827 => 0.0024065988997332
828 => 0.0024012080342075
829 => 0.0024032827643925
830 => 0.0023776478007908
831 => 0.0024362417257721
901 => 0.0024900133056734
902 => 0.0024756013735976
903 => 0.0024539958386391
904 => 0.0024367859893811
905 => 0.0024715472800493
906 => 0.0024699994144952
907 => 0.0024895436578323
908 => 0.0024886570180615
909 => 0.0024820850241234
910 => 0.0024756016083042
911 => 0.0025013076191752
912 => 0.0024939047008703
913 => 0.0024864902837885
914 => 0.0024716195352404
915 => 0.0024736407169451
916 => 0.0024520389124868
917 => 0.0024420449293131
918 => 0.0022917594012988
919 => 0.0022515981974921
920 => 0.0022642337297664
921 => 0.0022683936750725
922 => 0.0022509154677079
923 => 0.0022759747272857
924 => 0.0022720692682248
925 => 0.0022872631248136
926 => 0.0022777706628575
927 => 0.0022781602368073
928 => 0.0023060755434139
929 => 0.002314179475682
930 => 0.0023100577503237
1001 => 0.0023129444654801
1002 => 0.0023794675978549
1003 => 0.0023700101357212
1004 => 0.0023649860474569
1005 => 0.0023663777542414
1006 => 0.0023833758408352
1007 => 0.0023881343770203
1008 => 0.0023679721248275
1009 => 0.0023774807595182
1010 => 0.002417967319206
1011 => 0.0024321353237559
1012 => 0.0024773527932512
1013 => 0.0024581436085332
1014 => 0.0024934028984371
1015 => 0.0026017779348243
1016 => 0.0026883554128724
1017 => 0.0026087351860937
1018 => 0.0027677236989538
1019 => 0.002891519061763
1020 => 0.0028867675895464
1021 => 0.0028651810046023
1022 => 0.002724243275314
1023 => 0.0025945502755598
1024 => 0.0027030439769099
1025 => 0.0027033205496666
1026 => 0.0026940008445023
1027 => 0.0026361169561427
1028 => 0.002691986610658
1029 => 0.0026964213409446
1030 => 0.0026939390712741
1031 => 0.0026495596297847
1101 => 0.0025818004253223
1102 => 0.0025950404116817
1103 => 0.0026167277794267
1104 => 0.0025756690678265
1105 => 0.0025625483216352
1106 => 0.002586942285129
1107 => 0.0026655447181899
1108 => 0.0026506853835327
1109 => 0.0026502973462535
1110 => 0.0027138718812559
1111 => 0.0026683662344375
1112 => 0.00259520741031
1113 => 0.0025767338423714
1114 => 0.0025111651214761
1115 => 0.0025564536705463
1116 => 0.0025580835248017
1117 => 0.0025332794493137
1118 => 0.0025972201243328
1119 => 0.0025966308997559
1120 => 0.002657333054373
1121 => 0.0027733727753128
1122 => 0.002739054119863
1123 => 0.002699145257434
1124 => 0.0027034844573328
1125 => 0.0027510747701642
1126 => 0.0027223005806452
1127 => 0.002732647979817
1128 => 0.0027510591081363
1129 => 0.0027621669989739
1130 => 0.002701886202782
1201 => 0.0026878318656259
1202 => 0.0026590816242065
1203 => 0.0026515812228688
1204 => 0.0026749976946115
1205 => 0.0026688282816234
1206 => 0.0025579465418626
1207 => 0.0025463587831174
1208 => 0.0025467141631346
1209 => 0.002517576192802
1210 => 0.0024731337941305
1211 => 0.0025899257643214
1212 => 0.0025805457346125
1213 => 0.0025701909077705
1214 => 0.0025714593149748
1215 => 0.0026221547507875
1216 => 0.0025927488378353
1217 => 0.0026709292769532
1218 => 0.0026548577289897
1219 => 0.0026383740064644
1220 => 0.0026360954539049
1221 => 0.0026297506270578
1222 => 0.0026079918549929
1223 => 0.0025817168302251
1224 => 0.0025643677829698
1225 => 0.0023654937278215
1226 => 0.0024024035956599
1227 => 0.0024448650341676
1228 => 0.0024595225525869
1229 => 0.0024344498530612
1230 => 0.0026089818779901
1231 => 0.0026408705607771
]
'min_raw' => 0.0011006897473164
'max_raw' => 0.002891519061763
'avg_raw' => 0.0019961044045397
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.00110068'
'max' => '$0.002891'
'avg' => '$0.001996'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -4.2676221691769E-5
'max_diff' => -0.00052145620132097
'year' => 2027
]
2 => [
'items' => [
101 => 0.0025442776605681
102 => 0.0025262090728011
103 => 0.002610166451596
104 => 0.0025595298888106
105 => 0.0025823315299323
106 => 0.0025330468536579
107 => 0.0026331895109033
108 => 0.00263242659164
109 => 0.002593468836147
110 => 0.0026263956643184
111 => 0.0026206738176342
112 => 0.0025766906076314
113 => 0.0026345838571118
114 => 0.0026346125714413
115 => 0.002597116578794
116 => 0.0025533294683102
117 => 0.002545501367161
118 => 0.0025396039445026
119 => 0.0025808811254769
120 => 0.0026178901168682
121 => 0.0026867546745402
122 => 0.0027040688605204
123 => 0.0027716472810721
124 => 0.0027314076219672
125 => 0.0027492453416575
126 => 0.002768610709681
127 => 0.0027778951792492
128 => 0.0027627666343198
129 => 0.0028677437378242
130 => 0.0028766070217753
131 => 0.002879578804217
201 => 0.0028441811155623
202 => 0.0028756225480198
203 => 0.0028609121430038
204 => 0.0028991845301874
205 => 0.0029051861291841
206 => 0.0029001029883469
207 => 0.0029020079905973
208 => 0.0028124285519865
209 => 0.0028077833855253
210 => 0.0027444462112214
211 => 0.002770256577915
212 => 0.0027220053345044
213 => 0.0027373063008328
214 => 0.0027440508209974
215 => 0.0027405278664116
216 => 0.0027717158573223
217 => 0.0027451996937626
218 => 0.0026752191784676
219 => 0.002605219597028
220 => 0.0026043408093034
221 => 0.0025859111551056
222 => 0.0025725898906801
223 => 0.0025751560388057
224 => 0.0025841994795083
225 => 0.0025720642694664
226 => 0.0025746539317996
227 => 0.0026176595813605
228 => 0.0026262840576777
229 => 0.0025969747173515
301 => 0.0024792934866242
302 => 0.0024504142174227
303 => 0.0024711720634239
304 => 0.0024612511500119
305 => 0.0019864217708358
306 => 0.0020979758902295
307 => 0.0020316942205057
308 => 0.0020622398633874
309 => 0.0019945834421546
310 => 0.0020268726325438
311 => 0.0020209099980913
312 => 0.00220028572095
313 => 0.0021974850157608
314 => 0.0021988255651248
315 => 0.002134837651196
316 => 0.0022367721355458
317 => 0.0022869887279821
318 => 0.0022776949731934
319 => 0.0022800340110476
320 => 0.0022398415911092
321 => 0.0021992147156061
322 => 0.0021541532582419
323 => 0.0022378718762602
324 => 0.002228563795061
325 => 0.00224991318439
326 => 0.0023042106925052
327 => 0.0023122062068314
328 => 0.0023229522591682
329 => 0.0023191005643615
330 => 0.002410863561092
331 => 0.0023997504567162
401 => 0.0024265298408036
402 => 0.0023714426159791
403 => 0.0023091061921629
404 => 0.0023209543083991
405 => 0.002319813239529
406 => 0.002305286123155
407 => 0.0022921716920438
408 => 0.0022703398592116
409 => 0.0023394190087958
410 => 0.002336614521476
411 => 0.0023820159113233
412 => 0.0023739907746623
413 => 0.0023203969479555
414 => 0.002322311061961
415 => 0.0023351843985401
416 => 0.0023797391634256
417 => 0.0023929660511633
418 => 0.0023868388297628
419 => 0.0024013415083369
420 => 0.00241280383416
421 => 0.0024027809999832
422 => 0.0025446831956396
423 => 0.0024857555106165
424 => 0.0025144764542806
425 => 0.0025213262301108
426 => 0.0025037806733569
427 => 0.0025075856763575
428 => 0.0025133492191023
429 => 0.0025483443220308
430 => 0.00264018159803
501 => 0.0026808557024126
502 => 0.0028032257522725
503 => 0.0026774782842545
504 => 0.0026700169498971
505 => 0.0026920594910983
506 => 0.0027639036645514
507 => 0.002822126619155
508 => 0.0028414425321599
509 => 0.0028439954489344
510 => 0.0028802333858291
511 => 0.0029010042954597
512 => 0.0028758331471378
513 => 0.002854503234464
514 => 0.0027781021348329
515 => 0.0027869457701485
516 => 0.0028478696476617
517 => 0.0029339282130477
518 => 0.0030077754150165
519 => 0.0029819166987218
520 => 0.0031792004506413
521 => 0.0031987603288122
522 => 0.0031960577860956
523 => 0.0032406180994692
524 => 0.0031521749519726
525 => 0.0031143637929126
526 => 0.0028591150036889
527 => 0.0029308295019979
528 => 0.0030350707369349
529 => 0.0030212740186064
530 => 0.002945571247419
531 => 0.0030077179876761
601 => 0.0029871703318389
602 => 0.002970963543157
603 => 0.0030452099839492
604 => 0.0029635729724225
605 => 0.0030342563452959
606 => 0.0029436041884599
607 => 0.0029820348191597
608 => 0.002960219734494
609 => 0.0029743367678289
610 => 0.0028918088794114
611 => 0.0029363389247503
612 => 0.0028899562831242
613 => 0.0028899342917128
614 => 0.0028889103923282
615 => 0.0029434793645092
616 => 0.0029452588567329
617 => 0.002904932303842
618 => 0.0028991206175513
619 => 0.0029206094677962
620 => 0.0028954516520982
621 => 0.0029072228357219
622 => 0.0028958081892587
623 => 0.0028932385119105
624 => 0.0028727628856062
625 => 0.0028639414228053
626 => 0.0028674005456706
627 => 0.0028555927760311
628 => 0.0028484781677176
629 => 0.0028874951176625
630 => 0.0028666499352462
701 => 0.0028843002944952
702 => 0.0028641854824781
703 => 0.0027944587804202
704 => 0.0027543582167202
705 => 0.0026226509402015
706 => 0.0026600029604398
707 => 0.0026847673885013
708 => 0.0026765827451747
709 => 0.0026941665260767
710 => 0.0026952460274145
711 => 0.0026895293609979
712 => 0.0026829101936377
713 => 0.0026796883490297
714 => 0.0027037013391301
715 => 0.0027176416881235
716 => 0.0026872528301626
717 => 0.0026801331459276
718 => 0.0027108579591409
719 => 0.0027296000774519
720 => 0.0028679813487737
721 => 0.0028577296172285
722 => 0.0028834594516061
723 => 0.0028805626671117
724 => 0.0029075316326234
725 => 0.0029516144932999
726 => 0.0028619817117829
727 => 0.0028775388633859
728 => 0.0028737246090799
729 => 0.0029153676374411
730 => 0.0029154976424302
731 => 0.0028905305667041
801 => 0.0029040656234998
802 => 0.0028965107261113
803 => 0.0029101634467979
804 => 0.0028575926991036
805 => 0.0029216181951337
806 => 0.0029579165256709
807 => 0.0029584205280257
808 => 0.002975625648619
809 => 0.0029931070475951
810 => 0.0030266610706209
811 => 0.0029921712441044
812 => 0.0029301274037182
813 => 0.0029346067685937
814 => 0.0028982304876762
815 => 0.0028988419795303
816 => 0.0028955777880895
817 => 0.0029053738723203
818 => 0.0028597423887106
819 => 0.0028704520067069
820 => 0.0028554584787967
821 => 0.0028775062703844
822 => 0.0028537864912665
823 => 0.002873722769731
824 => 0.0028823266066182
825 => 0.0029140749499592
826 => 0.0028490972351413
827 => 0.0027166032760229
828 => 0.0027444551125636
829 => 0.0027032600586054
830 => 0.0027070728176899
831 => 0.0027147751978366
901 => 0.0026898092637191
902 => 0.0026945719771817
903 => 0.0026944018195421
904 => 0.0026929354929308
905 => 0.0026864408892367
906 => 0.0026770224289621
907 => 0.0027145426758469
908 => 0.0027209180969226
909 => 0.0027350898682264
910 => 0.0027772554468221
911 => 0.0027730421111875
912 => 0.0027799142364171
913 => 0.0027649124256263
914 => 0.0027077687086662
915 => 0.0027108718874239
916 => 0.0026721751985909
917 => 0.0027341003068909
918 => 0.002719435623874
919 => 0.0027099812073335
920 => 0.0027074014821859
921 => 0.0027496715810952
922 => 0.0027623194571915
923 => 0.0027544381495757
924 => 0.0027382733577212
925 => 0.0027693145367735
926 => 0.0027776198467657
927 => 0.0027794790993849
928 => 0.0028344781171099
929 => 0.0027825529335129
930 => 0.0027950518412966
1001 => 0.0028925647518549
1002 => 0.0028041339978404
1003 => 0.002850977740483
1004 => 0.0028486849830437
1005 => 0.0028726486566738
1006 => 0.0028467192623588
1007 => 0.0028470406882774
1008 => 0.0028683188070212
1009 => 0.0028384375267746
1010 => 0.0028310385015641
1011 => 0.0028208168012287
1012 => 0.0028431355099576
1013 => 0.0028565145664523
1014 => 0.0029643399359648
1015 => 0.0030340000421041
1016 => 0.0030309759131811
1017 => 0.0030586107906049
1018 => 0.003046161025219
1019 => 0.0030059574487058
1020 => 0.00307458005151
1021 => 0.0030528649886911
1022 => 0.0030546551520861
1023 => 0.0030545885221151
1024 => 0.0030690271405259
1025 => 0.0030587960561019
1026 => 0.0030386295385029
1027 => 0.0030520170140171
1028 => 0.0030917730301842
1029 => 0.0032151769242302
1030 => 0.0032842353782226
1031 => 0.0032110195185876
1101 => 0.0032615228381644
1102 => 0.003231238842591
1103 => 0.0032257353397245
1104 => 0.0032574551565847
1105 => 0.0032892304947854
1106 => 0.0032872065431106
1107 => 0.0032641392792586
1108 => 0.0032511091672187
1109 => 0.0033497775409921
1110 => 0.0034224747180165
1111 => 0.0034175172579115
1112 => 0.0034393978745626
1113 => 0.0035036400417922
1114 => 0.0035095135404546
1115 => 0.003508773614624
1116 => 0.003494215535353
1117 => 0.0035574702918901
1118 => 0.0036102385226549
1119 => 0.0034908457606251
1120 => 0.00353630896144
1121 => 0.0035567188570187
1122 => 0.0035866866390713
1123 => 0.0036372473105776
1124 => 0.0036921696103892
1125 => 0.0036999362257749
1126 => 0.0036944254404919
1127 => 0.0036582027073756
1128 => 0.0037182993431887
1129 => 0.0037535025430085
1130 => 0.0037744652428903
1201 => 0.0038276231619298
1202 => 0.0035568449015854
1203 => 0.0033651745903609
1204 => 0.0033352425035103
1205 => 0.0033961105791421
1206 => 0.0034121610052724
1207 => 0.0034056910986248
1208 => 0.0031899487374393
1209 => 0.0033341066646276
1210 => 0.0034892084731394
1211 => 0.0034951665652764
1212 => 0.0035728137736432
1213 => 0.0035980988875541
1214 => 0.0036606150677417
1215 => 0.0036567046636497
1216 => 0.0036719263586756
1217 => 0.0036684271545922
1218 => 0.0037842252140549
1219 => 0.0039119676698204
1220 => 0.0039075443547734
1221 => 0.003889179865377
1222 => 0.0039164542637414
1223 => 0.004048298167805
1224 => 0.0040361600938743
1225 => 0.0040479511987793
1226 => 0.004203402592067
1227 => 0.004405511516044
1228 => 0.0043116116294525
1229 => 0.0045153473643915
1230 => 0.0046435882099684
1231 => 0.0048653674920426
]
'min_raw' => 0.0019864217708358
'max_raw' => 0.0048653674920426
'avg_raw' => 0.0034258946314392
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.001986'
'max' => '$0.004865'
'avg' => '$0.003425'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00088573202351941
'max_diff' => 0.0019738484302796
'year' => 2028
]
3 => [
'items' => [
101 => 0.0048375996336409
102 => 0.0049239366806609
103 => 0.004787889371775
104 => 0.0044754972508754
105 => 0.004426060001954
106 => 0.0045250346262451
107 => 0.0047683540822622
108 => 0.0045173716306747
109 => 0.0045681450537506
110 => 0.0045535223044891
111 => 0.0045527431203236
112 => 0.0045824814107484
113 => 0.0045393444694423
114 => 0.0043635968103738
115 => 0.0044441409268374
116 => 0.0044130389754246
117 => 0.0044475489093212
118 => 0.0046337847895815
119 => 0.0045514454676095
120 => 0.0044647076806154
121 => 0.0045734961141618
122 => 0.004712021173828
123 => 0.0047033525245476
124 => 0.0046865317217292
125 => 0.0047813497065077
126 => 0.004937961238299
127 => 0.0049802927060261
128 => 0.0050115409300735
129 => 0.0050158495322265
130 => 0.0050602308121844
131 => 0.0048215814843284
201 => 0.0052003240965852
202 => 0.0052657224831685
203 => 0.0052534302969762
204 => 0.0053261178512787
205 => 0.0053047313288976
206 => 0.00527374561341
207 => 0.0053889708480656
208 => 0.0052568744147299
209 => 0.0050693801580885
210 => 0.0049665171006791
211 => 0.0051019754724019
212 => 0.0051846951731674
213 => 0.0052393676334123
214 => 0.0052559114868484
215 => 0.0048401071523023
216 => 0.0046160116775477
217 => 0.0047596543076056
218 => 0.004934908229961
219 => 0.0048206079399409
220 => 0.0048250882949106
221 => 0.0046621261189298
222 => 0.004949326766534
223 => 0.0049074840479157
224 => 0.0051245641461257
225 => 0.0050727562385113
226 => 0.0052497766316007
227 => 0.0052031612295008
228 => 0.0053966591573853
301 => 0.0054738507195657
302 => 0.0056034673663738
303 => 0.0056988138994006
304 => 0.0057548032072825
305 => 0.0057514418192478
306 => 0.0059732993508382
307 => 0.0058424777155711
308 => 0.0056781349093836
309 => 0.0056751624665146
310 => 0.0057602779345947
311 => 0.0059386566054022
312 => 0.0059849075994385
313 => 0.0060107555954281
314 => 0.0059711684897948
315 => 0.0058291709807835
316 => 0.0057678571763361
317 => 0.0058200983141572
318 => 0.0057562118917341
319 => 0.0058664977802005
320 => 0.0060179438608595
321 => 0.0059866708440861
322 => 0.0060912118504468
323 => 0.0061994007939954
324 => 0.0063541158423396
325 => 0.0063945640850584
326 => 0.0064614234921636
327 => 0.0065302437842461
328 => 0.0065523470073041
329 => 0.0065945489183491
330 => 0.0065943264934465
331 => 0.0067215047928969
401 => 0.0068617863955749
402 => 0.0069147394530593
403 => 0.0070365020888959
404 => 0.0068279878420973
405 => 0.0069861482935331
406 => 0.0071288129797411
407 => 0.0069587222594693
408 => 0.0071931526913089
409 => 0.0072022550937464
410 => 0.0073396905636835
411 => 0.0072003733854521
412 => 0.0071176472897345
413 => 0.0073564744283649
414 => 0.0074720353577638
415 => 0.0074372274653628
416 => 0.0071723376855137
417 => 0.0070181604719845
418 => 0.0066146489656149
419 => 0.0070926257753095
420 => 0.007325434336537
421 => 0.0071717347675826
422 => 0.0072492518899932
423 => 0.0076721601748542
424 => 0.0078331762684457
425 => 0.0077996860465661
426 => 0.0078053453427678
427 => 0.0078922267042209
428 => 0.0082775065073437
429 => 0.0080466379185966
430 => 0.0082231283042127
501 => 0.0083167381683601
502 => 0.0084036882271146
503 => 0.0081901663636619
504 => 0.0079123775565689
505 => 0.0078243901805818
506 => 0.0071564523745375
507 => 0.007121683311026
508 => 0.0071021663820666
509 => 0.0069791149057017
510 => 0.006882430151915
511 => 0.006805542846029
512 => 0.0066037675948912
513 => 0.0066718608189756
514 => 0.0063502731824296
515 => 0.0065560135559257
516 => 0.0060427519229934
517 => 0.0064702114625512
518 => 0.0062375646693702
519 => 0.0063937807339758
520 => 0.0063932357108428
521 => 0.0061055924075556
522 => 0.0059396857531821
523 => 0.0060454079305324
524 => 0.0061587504968889
525 => 0.0061771399469501
526 => 0.006324091542775
527 => 0.0063651025744557
528 => 0.0062408372338411
529 => 0.0060321157164838
530 => 0.0060805969645349
531 => 0.0059387032822377
601 => 0.0056900400618734
602 => 0.0058686343279824
603 => 0.0059296142626675
604 => 0.0059565464757747
605 => 0.0057120147577103
606 => 0.0056351775828526
607 => 0.0055942701156847
608 => 0.0060005497423795
609 => 0.0060228066574543
610 => 0.0059089371331212
611 => 0.006423638180658
612 => 0.0063071454816961
613 => 0.0064372963678407
614 => 0.0060761977994307
615 => 0.0060899922510277
616 => 0.0059190424018811
617 => 0.0060147628945301
618 => 0.0059471107355413
619 => 0.0060070296246524
620 => 0.0060429447597308
621 => 0.0062138665576893
622 => 0.0064721631149284
623 => 0.0061883365408139
624 => 0.0060646692380009
625 => 0.0061413917371348
626 => 0.0063457138627011
627 => 0.0066552723419913
628 => 0.0064720074918065
629 => 0.0065533373202795
630 => 0.0065711042696887
701 => 0.006435971553996
702 => 0.0066602548779702
703 => 0.0067804501333624
704 => 0.0069037455944913
705 => 0.0070107995887291
706 => 0.0068544986759911
707 => 0.0070217630574765
708 => 0.0068869774921373
709 => 0.0067660609061524
710 => 0.0067662442867012
711 => 0.0066903915460034
712 => 0.0065434173028411
713 => 0.0065163129974125
714 => 0.0066573130171484
715 => 0.006770381680225
716 => 0.0067796945568784
717 => 0.0068422951784353
718 => 0.0068793415814349
719 => 0.0072424466929746
720 => 0.0073884905725988
721 => 0.0075670702641342
722 => 0.0076366371181872
723 => 0.0078460084077891
724 => 0.0076769240871308
725 => 0.0076403416307661
726 => 0.0071324753670187
727 => 0.0072156384392562
728 => 0.0073487905419512
729 => 0.0071346709961492
730 => 0.0072704805644349
731 => 0.0072972922500545
801 => 0.0071273952959167
802 => 0.0072181445999358
803 => 0.0069771413537547
804 => 0.0064774163271093
805 => 0.0066608112147788
806 => 0.0067958515821553
807 => 0.0066031323275518
808 => 0.0069485741321634
809 => 0.0067467741612756
810 => 0.0066828132586111
811 => 0.0064332789736085
812 => 0.0065510495506743
813 => 0.0067103359424679
814 => 0.00661191547137
815 => 0.0068161527268062
816 => 0.0071054071485903
817 => 0.0073115470749522
818 => 0.0073273719388486
819 => 0.0071948377765003
820 => 0.0074072246174852
821 => 0.0074087716237538
822 => 0.0071691983994972
823 => 0.0070224611335893
824 => 0.0069891221180371
825 => 0.0070724095153854
826 => 0.0071735357914678
827 => 0.0073329837433681
828 => 0.0074293348012966
829 => 0.0076805672597217
830 => 0.0077485435595724
831 => 0.007823228903982
901 => 0.0079230315562205
902 => 0.0080428702291075
903 => 0.0077806700352501
904 => 0.0077910877377544
905 => 0.0075469305476431
906 => 0.0072860135743263
907 => 0.0074840170333139
908 => 0.0077428802166438
909 => 0.0076834967163695
910 => 0.0076768148594938
911 => 0.0076880518893662
912 => 0.0076432786694432
913 => 0.0074407710551044
914 => 0.0073390729989482
915 => 0.0074702894373309
916 => 0.0075400251345595
917 => 0.0076481791193691
918 => 0.0076348468578877
919 => 0.0079134399078674
920 => 0.008021692742873
921 => 0.0079939970352786
922 => 0.0079990937120104
923 => 0.0081950802989586
924 => 0.0084130576913608
925 => 0.0086172222839958
926 => 0.0088249072766974
927 => 0.0085745349119124
928 => 0.0084474112658953
929 => 0.0085785704192858
930 => 0.008508975526298
1001 => 0.0089088884245918
1002 => 0.0089365775259909
1003 => 0.0093364615060303
1004 => 0.0097159990203862
1005 => 0.0094776183077401
1006 => 0.0097024005828623
1007 => 0.0099455209401747
1008 => 0.010414539554287
1009 => 0.010256590585328
1010 => 0.010135604150481
1011 => 0.010021272554153
1012 => 0.010259178456482
1013 => 0.010565240599188
1014 => 0.0106311634533
1015 => 0.010737983661431
1016 => 0.010625675273935
1017 => 0.01076093835631
1018 => 0.011238476474705
1019 => 0.011109441459769
1020 => 0.010926190995146
1021 => 0.01130316147637
1022 => 0.011439585628089
1023 => 0.012397081770738
1024 => 0.013605960203025
1025 => 0.013105476594135
1026 => 0.012794810267591
1027 => 0.012867824223433
1028 => 0.013309265703786
1029 => 0.013451042696624
1030 => 0.013065643956632
1031 => 0.013201773307007
1101 => 0.013951859411519
1102 => 0.014354256540946
1103 => 0.013807747190039
1104 => 0.012299949565763
1105 => 0.010909691295794
1106 => 0.011278450393135
1107 => 0.011236644555424
1108 => 0.012042518499575
1109 => 0.011106364017337
1110 => 0.011122126457916
1111 => 0.011944665021797
1112 => 0.011725225834834
1113 => 0.011369762455603
1114 => 0.010912286571842
1115 => 0.010066600089311
1116 => 0.009317551988022
1117 => 0.010786607810126
1118 => 0.010723259451772
1119 => 0.010631521641175
1120 => 0.010835674211591
1121 => 0.011826981143811
1122 => 0.011804128310476
1123 => 0.011658750244416
1124 => 0.011769018226219
1125 => 0.011350431945255
1126 => 0.011458311160892
1127 => 0.010909471071781
1128 => 0.011157569713646
1129 => 0.011368999790838
1130 => 0.01141144750911
1201 => 0.011507084385811
1202 => 0.010689877745491
1203 => 0.011056779535068
1204 => 0.011272299962396
1205 => 0.010298570831028
1206 => 0.011253052468247
1207 => 0.010675651996004
1208 => 0.01047967360346
1209 => 0.01074353269083
1210 => 0.010640706547871
1211 => 0.010552302668308
1212 => 0.010502971784541
1213 => 0.01069672077724
1214 => 0.010687682155151
1215 => 0.010370671198035
1216 => 0.0099571433274975
1217 => 0.01009593685444
1218 => 0.010045511864905
1219 => 0.0098627651978799
1220 => 0.0099859143865383
1221 => 0.0094436276840648
1222 => 0.0085106515980693
1223 => 0.0091270041783083
1224 => 0.0091032752744317
1225 => 0.009091310085077
1226 => 0.0095544820143925
1227 => 0.0095099587205834
1228 => 0.0094291485063463
1229 => 0.0098612810549233
1230 => 0.0097035468616897
1231 => 0.010189646478386
]
'min_raw' => 0.0043635968103738
'max_raw' => 0.014354256540946
'avg_raw' => 0.00935892667566
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.004363'
'max' => '$0.014354'
'avg' => '$0.009358'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0023771750395379
'max_diff' => 0.0094888890489036
'year' => 2029
]
4 => [
'items' => [
101 => 0.010509823124894
102 => 0.01042861597071
103 => 0.010729743654299
104 => 0.010099134376977
105 => 0.01030859748325
106 => 0.01035176753915
107 => 0.009855948606352
108 => 0.0095172432820794
109 => 0.0094946554984738
110 => 0.0089073871426539
111 => 0.0092211011580684
112 => 0.009497156509265
113 => 0.0093649474188025
114 => 0.0093230939703963
115 => 0.0095369141613982
116 => 0.0095535298214852
117 => 0.0091746910106541
118 => 0.0092534635956908
119 => 0.0095819583701463
120 => 0.0092451863702052
121 => 0.0085908933857137
122 => 0.0084286196792515
123 => 0.0084069693755116
124 => 0.0079668702134963
125 => 0.0084394635842592
126 => 0.0082331639132063
127 => 0.0088848621022129
128 => 0.0085126155917798
129 => 0.0084965687887147
130 => 0.0084723116923276
131 => 0.0080935001633136
201 => 0.0081764358134391
202 => 0.0084521265459124
203 => 0.0085504961051373
204 => 0.0085402353541921
205 => 0.0084507755109208
206 => 0.0084917297690619
207 => 0.0083598018341799
208 => 0.0083132153345306
209 => 0.0081661755270111
210 => 0.007950067630741
211 => 0.0079801187591841
212 => 0.007551952468966
213 => 0.0073186647495502
214 => 0.0072540937834986
215 => 0.007167746789088
216 => 0.0072638469062779
217 => 0.007550739527662
218 => 0.0072046861586078
219 => 0.0066114019301857
220 => 0.006647059323221
221 => 0.0067271708985963
222 => 0.0065778835078755
223 => 0.0064365955212992
224 => 0.0065594339625706
225 => 0.0063080516138604
226 => 0.0067575492544445
227 => 0.0067453916029693
228 => 0.0069129365266315
301 => 0.0070177058057654
302 => 0.0067762465368187
303 => 0.0067155201836538
304 => 0.0067501126742754
305 => 0.0061783758600264
306 => 0.0068662134312695
307 => 0.0068721618791486
308 => 0.0068212276569996
309 => 0.0071874799290841
310 => 0.0079603864601307
311 => 0.0076695879330578
312 => 0.0075569819539431
313 => 0.0073429179053317
314 => 0.0076281455402409
315 => 0.0076062445081241
316 => 0.0075071997351722
317 => 0.0074472971474524
318 => 0.0075576695020398
319 => 0.0074336207912823
320 => 0.0074113382341997
321 => 0.00727633018194
322 => 0.0072281384497583
323 => 0.0071924592098191
324 => 0.0071531798724158
325 => 0.0072398203029265
326 => 0.0070434816888913
327 => 0.0068067165676765
328 => 0.0067870321096816
329 => 0.0068413826288807
330 => 0.0068173365700554
331 => 0.0067869169864031
401 => 0.0067288377169302
402 => 0.0067116068383449
403 => 0.0067675988345134
404 => 0.0067043871353753
405 => 0.006797659440773
406 => 0.0067722945346969
407 => 0.0066306082312592
408 => 0.0064540146381877
409 => 0.0064524425847917
410 => 0.006414395784836
411 => 0.0063659374647177
412 => 0.006352457468637
413 => 0.006549088851671
414 => 0.0069561099298693
415 => 0.00687620195303
416 => 0.0069339436555953
417 => 0.0072179756831527
418 => 0.0073082609235721
419 => 0.0072441785984455
420 => 0.0071564587593865
421 => 0.0071603179871194
422 => 0.007460083231785
423 => 0.0074787792223952
424 => 0.0075260179591122
425 => 0.0075867330854589
426 => 0.007254518647002
427 => 0.0071446707169437
428 => 0.0070926186735509
429 => 0.0069323185265771
430 => 0.0071051884919924
501 => 0.0070044645661749
502 => 0.0070180556649869
503 => 0.0070092044440558
504 => 0.0070140378092011
505 => 0.0067574236106932
506 => 0.0068509203373843
507 => 0.006695463895272
508 => 0.0064873251700882
509 => 0.0064866274160985
510 => 0.0065375690742173
511 => 0.006507266982621
512 => 0.0064257248332732
513 => 0.00643730751072
514 => 0.0063358310684204
515 => 0.0064496285881054
516 => 0.0064528918937829
517 => 0.0064090736501114
518 => 0.0065843944302177
519 => 0.0066562234968755
520 => 0.0066273813902131
521 => 0.0066541998577849
522 => 0.0068795224902306
523 => 0.006916259910835
524 => 0.0069325762463296
525 => 0.006910714518267
526 => 0.0066583183418754
527 => 0.0066695131855698
528 => 0.0065873728504359
529 => 0.006517972922983
530 => 0.0065207485561265
531 => 0.0065564291401963
601 => 0.0067122483434678
602 => 0.007040160670709
603 => 0.0070526047038271
604 => 0.0070676872349841
605 => 0.0070063390008955
606 => 0.0069878357864708
607 => 0.0070122463023818
608 => 0.0071353929316825
609 => 0.0074521594962277
610 => 0.0073401930361899
611 => 0.0072491625613174
612 => 0.0073290208294204
613 => 0.0073167272749957
614 => 0.0072129573038558
615 => 0.0072100448263825
616 => 0.0070108770744982
617 => 0.0069372492914569
618 => 0.0068757204050035
619 => 0.0068085324672486
620 => 0.0067687012055875
621 => 0.0068299001264837
622 => 0.006843897043777
623 => 0.0067100845336634
624 => 0.0066918463829891
625 => 0.0068011205672915
626 => 0.0067530330729323
627 => 0.0068024922533933
628 => 0.0068139672075132
629 => 0.0068121194756093
630 => 0.0067619106086846
701 => 0.0067939122432124
702 => 0.0067182188374078
703 => 0.0066359136273772
704 => 0.0065834080311734
705 => 0.006537589934629
706 => 0.0065630124775552
707 => 0.006472385753996
708 => 0.0064433924411738
709 => 0.006783070809494
710 => 0.0070339948723299
711 => 0.0070303463370795
712 => 0.0070081368170693
713 => 0.0069751379753709
714 => 0.0071329788608752
715 => 0.0070779902524936
716 => 0.0071179990595432
717 => 0.0071281829801016
718 => 0.0071590066404315
719 => 0.0071700234496162
720 => 0.0071367230005939
721 => 0.0070249626263675
722 => 0.0067464663996529
723 => 0.006616825654331
724 => 0.0065740420490374
725 => 0.0065755971518322
726 => 0.0065327004744674
727 => 0.0065453354684455
728 => 0.0065283065391924
729 => 0.0064960578669273
730 => 0.0065610212129172
731 => 0.0065685076333671
801 => 0.0065533444121589
802 => 0.0065569158996701
803 => 0.0064313709043625
804 => 0.0064409158176863
805 => 0.0063877685273902
806 => 0.0063778040511599
807 => 0.0062434523293553
808 => 0.0060054287795852
809 => 0.0061373169316629
810 => 0.0059780145902336
811 => 0.0059176843797099
812 => 0.0062032782130562
813 => 0.0061746125133281
814 => 0.0061255492960737
815 => 0.0060529745720842
816 => 0.0060260559009949
817 => 0.0058625065768722
818 => 0.0058528432103013
819 => 0.0059339026715397
820 => 0.005896496519264
821 => 0.0058439641146511
822 => 0.0056536970702677
823 => 0.0054397739171274
824 => 0.0054462309124477
825 => 0.0055142758872799
826 => 0.0057121258287195
827 => 0.0056348224337603
828 => 0.0055787379337632
829 => 0.0055682349928076
830 => 0.005699701288263
831 => 0.0058857536393729
901 => 0.005973045239827
902 => 0.0058865419148623
903 => 0.0057871715528128
904 => 0.0057932197663128
905 => 0.0058334558210812
906 => 0.0058376840615301
907 => 0.0057730041712741
908 => 0.0057912111815166
909 => 0.0057635530680744
910 => 0.0055938152769326
911 => 0.0055907452585352
912 => 0.0055490888671974
913 => 0.005547827528223
914 => 0.0054769596148836
915 => 0.0054670447039206
916 => 0.0053263321606103
917 => 0.005418949582734
918 => 0.0053568266786064
919 => 0.0052631928087743
920 => 0.0052470502943226
921 => 0.0052465650308455
922 => 0.0053427060790128
923 => 0.0054178261186101
924 => 0.0053579073331208
925 => 0.0053442649871417
926 => 0.0054899295509106
927 => 0.005471392407409
928 => 0.0054553393606884
929 => 0.0058690946919711
930 => 0.0055415750615297
1001 => 0.0053987578084904
1002 => 0.0052219943375934
1003 => 0.0052795494150362
1004 => 0.0052916771155134
1005 => 0.0048665928320166
1006 => 0.0046941361911428
1007 => 0.0046349555708864
1008 => 0.0046008962872376
1009 => 0.0046164175304859
1010 => 0.0044611863265531
1011 => 0.0045655042628831
1012 => 0.0044310871616443
1013 => 0.0044085516971905
1014 => 0.004648906125289
1015 => 0.0046823500398288
1016 => 0.0045396679101925
1017 => 0.0046312929355575
1018 => 0.0045980684276771
1019 => 0.0044333913570445
1020 => 0.0044271019042289
1021 => 0.0043444727388644
1022 => 0.0042151740952282
1023 => 0.0041560811455407
1024 => 0.0041253050242749
1025 => 0.0041380038517239
1026 => 0.0041315829359752
1027 => 0.0040896821174401
1028 => 0.0041339846418462
1029 => 0.0040208099990556
1030 => 0.0039757429443863
1031 => 0.0039553872013399
1101 => 0.0038549381917739
1102 => 0.0040147972358708
1103 => 0.0040462914814091
1104 => 0.0040778477803401
1105 => 0.0043525238181345
1106 => 0.0043388017795128
1107 => 0.0044628423257498
1108 => 0.004458022338219
1109 => 0.0044226439651086
1110 => 0.0042733884284155
1111 => 0.0043328790251172
1112 => 0.0041497762153607
1113 => 0.0042869692902111
1114 => 0.0042243601001692
1115 => 0.0042658010600788
1116 => 0.0041912864775806
1117 => 0.0042325259241668
1118 => 0.0040537599353857
1119 => 0.0038868307703672
1120 => 0.0039540079393367
1121 => 0.0040270372046477
1122 => 0.0041853832593528
1123 => 0.004091073655497
1124 => 0.0041249909552845
1125 => 0.0040113736786839
1126 => 0.0037769487838863
1127 => 0.0037782756033324
1128 => 0.0037422144404917
1129 => 0.0037110523307814
1130 => 0.0041019062479883
1201 => 0.0040532973848976
1202 => 0.0039758455233332
1203 => 0.0040795179178517
1204 => 0.0041069305444646
1205 => 0.0041077109434066
1206 => 0.0041833476462756
1207 => 0.0042237149681554
1208 => 0.0042308298835987
1209 => 0.004349845869802
1210 => 0.0043897384585186
1211 => 0.0045540503856316
1212 => 0.0042202900829246
1213 => 0.0042134165091275
1214 => 0.0040809768010482
1215 => 0.0039969814443953
1216 => 0.0040867280349793
1217 => 0.0041662312626055
1218 => 0.0040834471879449
1219 => 0.0040942570404284
1220 => 0.0039831261839039
1221 => 0.0040228502359186
1222 => 0.0040570659409213
1223 => 0.004038174039725
1224 => 0.0040098919492558
1225 => 0.004159712904583
1226 => 0.0041512594191304
1227 => 0.0042907761370999
1228 => 0.0043995393956935
1229 => 0.0045944625988511
1230 => 0.0043910500747797
1231 => 0.004383636913911
]
'min_raw' => 0.0037110523307814
'max_raw' => 0.010729743654299
'avg_raw' => 0.00722039799254
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.003711'
'max' => '$0.010729'
'avg' => '$0.00722'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00065254447959234
'max_diff' => -0.0036245128866478
'year' => 2030
]
5 => [
'items' => [
101 => 0.0044561017505111
102 => 0.0043897273645297
103 => 0.004431673685304
104 => 0.0045877043980867
105 => 0.0045910010811779
106 => 0.0045357773918653
107 => 0.0045324170253519
108 => 0.0045430233389653
109 => 0.0046051448490814
110 => 0.0045834376846457
111 => 0.0046085577648889
112 => 0.0046399708098854
113 => 0.0047699084828458
114 => 0.0048012360158947
115 => 0.0047251263520496
116 => 0.004731998202531
117 => 0.004703531098996
118 => 0.0046760322336729
119 => 0.0047378456670324
120 => 0.0048508109314431
121 => 0.0048501081803961
122 => 0.0048763139260084
123 => 0.0048926398884248
124 => 0.0048225569063989
125 => 0.0047769354621227
126 => 0.0047944296268261
127 => 0.0048224031771602
128 => 0.0047853581814708
129 => 0.0045566993071648
130 => 0.0046260598028438
131 => 0.0046145148248079
201 => 0.0045980733721674
202 => 0.0046678158869215
203 => 0.0046610890512354
204 => 0.0044595942061892
205 => 0.0044724932524207
206 => 0.0044603786399135
207 => 0.0044995234313406
208 => 0.0043876134173304
209 => 0.0044220361839145
210 => 0.0044436258204226
211 => 0.0044563422821853
212 => 0.0045022828618317
213 => 0.0044968922650543
214 => 0.0045019477747672
215 => 0.0045700655265194
216 => 0.0049145817396922
217 => 0.004933332997043
218 => 0.0048409949478974
219 => 0.0048778821772436
220 => 0.0048070667632492
221 => 0.0048546056250857
222 => 0.004887130506998
223 => 0.0047401568198113
224 => 0.0047314539919074
225 => 0.004660346297509
226 => 0.004698555544733
227 => 0.0046377618850575
228 => 0.0046526785226699
301 => 0.0046109703034965
302 => 0.0046860367939851
303 => 0.0047699727945047
304 => 0.004791178342969
305 => 0.004735395674522
306 => 0.0046950053463093
307 => 0.004624093235369
308 => 0.0047420216562421
309 => 0.0047765075203089
310 => 0.0047418405166792
311 => 0.0047338074144493
312 => 0.0047185847002389
313 => 0.0047370369852314
314 => 0.004776319702887
315 => 0.0047577946986785
316 => 0.0047700307903268
317 => 0.0047233994267665
318 => 0.0048225801067821
319 => 0.0049801028957773
320 => 0.0049806093573015
321 => 0.0049620842532364
322 => 0.0049545041797818
323 => 0.00497351206075
324 => 0.0049838230564311
325 => 0.0050452910580329
326 => 0.0051112486727448
327 => 0.0054190440810436
328 => 0.0053326163620565
329 => 0.0056057107591299
330 => 0.0058216929703457
331 => 0.0058864565917319
401 => 0.0058268771074205
402 => 0.0056230589100116
403 => 0.0056130586168807
404 => 0.0059176490536329
405 => 0.0058315883041246
406 => 0.0058213516518136
407 => 0.0057124509663218
408 => 0.0057768247590597
409 => 0.0057627452662814
410 => 0.0057405200981384
411 => 0.0058633408103651
412 => 0.0060932502193728
413 => 0.0060574166819022
414 => 0.0060306686084503
415 => 0.0059134663368314
416 => 0.0059840482824211
417 => 0.0059589154035047
418 => 0.0060669022010485
419 => 0.006002933214384
420 => 0.005830936309304
421 => 0.0058583273833472
422 => 0.0058541872776087
423 => 0.0059393903603347
424 => 0.0059138145097709
425 => 0.0058491931823084
426 => 0.0060924644140072
427 => 0.0060766677333664
428 => 0.0060990638148911
429 => 0.0061089232626001
430 => 0.0062569981744152
501 => 0.0063176597279172
502 => 0.0063314309625921
503 => 0.0063890547466861
504 => 0.0063299972303498
505 => 0.0065662694029904
506 => 0.0067233766109329
507 => 0.0069058647176211
508 => 0.0071725288896716
509 => 0.0072727970851441
510 => 0.0072546845330978
511 => 0.0074568662649503
512 => 0.0078201823428419
513 => 0.0073281211000439
514 => 0.0078462627835282
515 => 0.0076822251087705
516 => 0.0072932947328316
517 => 0.0072682522018091
518 => 0.0075316403679694
519 => 0.0081158099703414
520 => 0.007969482110544
521 => 0.0081160493102995
522 => 0.0079450708864095
523 => 0.007936580366544
524 => 0.0081077452698821
525 => 0.0085076813962447
526 => 0.0083176867339914
527 => 0.0080452827970487
528 => 0.0082464216250125
529 => 0.0080721765577105
530 => 0.0076795536529557
531 => 0.0079693702163873
601 => 0.0077755781339211
602 => 0.0078321369661385
603 => 0.0082394590990857
604 => 0.0081904490224088
605 => 0.0082538725998396
606 => 0.0081419316457583
607 => 0.008037361143178
608 => 0.0078421725346046
609 => 0.007784386810288
610 => 0.0078003567055766
611 => 0.0077843788964011
612 => 0.0076751726637801
613 => 0.0076515895882432
614 => 0.0076122834291502
615 => 0.0076244660514274
616 => 0.00755055897291
617 => 0.0076900369000539
618 => 0.007715925232407
619 => 0.0078174256362885
620 => 0.0078279637449341
621 => 0.0081106409249761
622 => 0.007954947084406
623 => 0.0080593999546199
624 => 0.0080500567067594
625 => 0.0073017240334183
626 => 0.0074048376732096
627 => 0.0075652501378822
628 => 0.0074929845399812
629 => 0.0073908178920947
630 => 0.0073083128460973
701 => 0.0071833092648372
702 => 0.0073592494049797
703 => 0.0075905919801191
704 => 0.007833830974413
705 => 0.0081260666884069
706 => 0.0080608430790422
707 => 0.0078283678310148
708 => 0.0078387965008181
709 => 0.0079032624340113
710 => 0.0078197731931784
711 => 0.0077951505861532
712 => 0.0078998796659119
713 => 0.0079006008775261
714 => 0.007804536415936
715 => 0.0076977783464895
716 => 0.0076973310262804
717 => 0.0076783344589831
718 => 0.0079484503335306
719 => 0.0080969867527365
720 => 0.00811401621382
721 => 0.0080958405343219
722 => 0.0081028356319938
723 => 0.0080164055624346
724 => 0.0082139590714061
725 => 0.0083952537072554
726 => 0.0083466628720528
727 => 0.0082738183024899
728 => 0.0082157940941632
729 => 0.0083329942126069
730 => 0.0083277754758227
731 => 0.0083936702567692
801 => 0.0083906808888788
802 => 0.0083685229524746
803 => 0.0083466636633825
804 => 0.0084333332737705
805 => 0.0084083738178501
806 => 0.0083833755930007
807 => 0.0083332378260284
808 => 0.0083400523812601
809 => 0.0082672203893391
810 => 0.0082335249773113
811 => 0.0077268268270108
812 => 0.0075914205244108
813 => 0.0076340221036582
814 => 0.0076480476496959
815 => 0.0075891186532765
816 => 0.0076736076965248
817 => 0.0076604401686306
818 => 0.0077116673169208
819 => 0.0076796628186933
820 => 0.0076809762944642
821 => 0.0077750946996728
822 => 0.0078024176731131
823 => 0.0077885209882979
824 => 0.007798253749992
825 => 0.0080225411352904
826 => 0.0079906546414078
827 => 0.0079737155770541
828 => 0.0079784078136437
829 => 0.0080357180493632
830 => 0.0080517617863418
831 => 0.0079837833453901
901 => 0.0080158423711216
902 => 0.0081523456337903
903 => 0.0082001140503087
904 => 0.008352567905695
905 => 0.0082878027982757
906 => 0.008406681955912
907 => 0.0087720759575947
908 => 0.0090639779694805
909 => 0.0087955328159894
910 => 0.0093315736873207
911 => 0.0097489583961481
912 => 0.0097329384758327
913 => 0.0096601577975664
914 => 0.009184976403313
915 => 0.0087477073997655
916 => 0.0091135014886556
917 => 0.0091144339730144
918 => 0.009083011936372
919 => 0.0088878523654437
920 => 0.0090762208063366
921 => 0.009091172809121
922 => 0.0090828036636202
923 => 0.0089331752781653
924 => 0.0087047203895237
925 => 0.0087493599279205
926 => 0.0088224804024365
927 => 0.0086840480896489
928 => 0.0086398105778036
929 => 0.0087220565288549
930 => 0.0089870701197667
1001 => 0.008936970835524
1002 => 0.0089356625407453
1003 => 0.0091500085241383
1004 => 0.0089965830587873
1005 => 0.0087499229754553
1006 => 0.0086876380513672
1007 => 0.0084665685310066
1008 => 0.0086192620361423
1009 => 0.0086247572035571
1010 => 0.0085411285312841
1011 => 0.0087567089813063
1012 => 0.0087547223695072
1013 => 0.0089593839218878
1014 => 0.0093506199426708
1015 => 0.0092349121997699
1016 => 0.0091003566837429
1017 => 0.0091149865991548
1018 => 0.0092754406615153
1019 => 0.0091784264726022
1020 => 0.0092133134513423
1021 => 0.0092753878558947
1022 => 0.0093128388853819
1023 => 0.0091095979723502
1024 => 0.0090622127933858
1025 => 0.0089652793471626
1026 => 0.0089399912203915
1027 => 0.0090189414897576
1028 => 0.0089981408831338
1029 => 0.0086242953560142
1030 => 0.0085852264183734
1031 => 0.0085864246069132
1101 => 0.0084881839055885
1102 => 0.0083383432555985
1103 => 0.008732115537252
1104 => 0.0087004901121957
1105 => 0.008665578090547
1106 => 0.0086698546139937
1107 => 0.0088407778152786
1108 => 0.0087416337267048
1109 => 0.0090052245355748
1110 => 0.0089510381895362
1111 => 0.0088954621681854
1112 => 0.0088877798691477
1113 => 0.008866387842451
1114 => 0.0087930266232854
1115 => 0.0087044385428171
1116 => 0.0086459450187238
1117 => 0.0079754272568482
1118 => 0.00809987145323
1119 => 0.0082430331577217
1120 => 0.0082924520044278
1121 => 0.008207917647457
1122 => 0.0087963645549416
1123 => 0.0089038794753545
1124 => 0.008578209768399
1125 => 0.0085172902632342
1126 => 0.0088003584275582
1127 => 0.0086296337207951
1128 => 0.0087065110457969
1129 => 0.0085403443187915
1130 => 0.0088779822794314
1201 => 0.0088754100438696
1202 => 0.0087440612512815
1203 => 0.0088550763513392
1204 => 0.0088357847457568
1205 => 0.0086874922824226
1206 => 0.0088826834150236
1207 => 0.0088827802273901
1208 => 0.008756359870293
1209 => 0.0086087285701784
1210 => 0.0085823355806136
1211 => 0.0085624520083757
1212 => 0.0087016209059115
1213 => 0.0088263993042722
1214 => 0.0090585809684333
1215 => 0.0091169569553036
1216 => 0.0093448023183681
1217 => 0.0092091314982526
1218 => 0.0092692726155786
1219 => 0.0093345643059163
1220 => 0.0093658675432867
1221 => 0.009314860597816
1222 => 0.0096687982315482
1223 => 0.009698681412204
1224 => 0.0097087009841895
1225 => 0.0095893552055026
1226 => 0.0096953621902038
1227 => 0.0096457650326445
1228 => 0.0097748030581267
1229 => 0.0097950378681625
1230 => 0.0097778997039364
1231 => 0.0097843225520266
]
'min_raw' => 0.0043876134173304
'max_raw' => 0.0097950378681625
'avg_raw' => 0.0070913256427465
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.004387'
'max' => '$0.009795'
'avg' => '$0.007091'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00067656108654897
'max_diff' => -0.00093470578613596
'year' => 2031
]
6 => [
'items' => [
101 => 0.0094822992205134
102 => 0.0094666377174744
103 => 0.0092530920122487
104 => 0.0093401134655783
105 => 0.0091774310296253
106 => 0.0092290193058808
107 => 0.0092517589265031
108 => 0.0092398810391521
109 => 0.0093450335279836
110 => 0.0092556324312426
111 => 0.0090196882380419
112 => 0.0087836797620036
113 => 0.0087807168678353
114 => 0.00871858000199
115 => 0.0086736664289185
116 => 0.0086823183764867
117 => 0.0087128089682082
118 => 0.0086718942602988
119 => 0.0086806254876596
120 => 0.0088256220377127
121 => 0.0088547000617578
122 => 0.0087558815745352
123 => 0.008359111088897
124 => 0.008261742616498
125 => 0.0083317291435577
126 => 0.0082982800913328
127 => 0.0066973596879122
128 => 0.0070734721899079
129 => 0.0068499989127958
130 => 0.0069529856804001
131 => 0.0067248773325932
201 => 0.0068337425923495
202 => 0.0068136391539953
203 => 0.0074184169272263
204 => 0.0074089741541419
205 => 0.0074134939099169
206 => 0.0071977541906124
207 => 0.0075414334214363
208 => 0.0077107421688455
209 => 0.0076794076257065
210 => 0.0076872938551383
211 => 0.0075517823051707
212 => 0.0074148059579342
213 => 0.0072628781083402
214 => 0.0075451412740361
215 => 0.0075137584284036
216 => 0.007585739385093
217 => 0.0077688072246346
218 => 0.0077957646594141
219 => 0.0078319957251332
220 => 0.0078190094671758
221 => 0.0081283948173404
222 => 0.0080909262100452
223 => 0.0081812147731726
224 => 0.0079954843486098
225 => 0.0077853127435232
226 => 0.0078252594946227
227 => 0.0078214123012603
228 => 0.0077724331141544
229 => 0.0077282168940425
301 => 0.0076546093453991
302 => 0.0078875145211744
303 => 0.0078780589963727
304 => 0.0080311329520667
305 => 0.0080040756435167
306 => 0.0078233803149733
307 => 0.0078298338839822
308 => 0.0078732372370463
309 => 0.0080234567375719
310 => 0.0080680521130514
311 => 0.0080473937583109
312 => 0.0080962905516679
313 => 0.0081349365834545
314 => 0.0081011438982556
315 => 0.0085795770582062
316 => 0.0083808982539512
317 => 0.0084777329207468
318 => 0.0085008274181946
319 => 0.0084416713486071
320 => 0.0084545001818806
321 => 0.0084739323686421
322 => 0.0085919208014459
323 => 0.008901556589351
324 => 0.0090386921720521
325 => 0.0094512713387589
326 => 0.0090273049709283
327 => 0.0090021485612085
328 => 0.0090764665278295
329 => 0.0093186941746265
330 => 0.0095149969310696
331 => 0.0095801218803594
401 => 0.0095887292175038
402 => 0.0097109079517963
403 => 0.0097809385237943
404 => 0.0096960722398335
405 => 0.009624156950047
406 => 0.0093665653084862
407 => 0.0093963822423956
408 => 0.0096017913490008
409 => 0.0098919438106168
410 => 0.010140924807902
411 => 0.010053740340516
412 => 0.010718896284024
413 => 0.010784843778905
414 => 0.01077573196745
415 => 0.010925970175091
416 => 0.010627777928403
417 => 0.010500294965741
418 => 0.0096397058519721
419 => 0.0098814962899674
420 => 0.010232952891448
421 => 0.010186436292348
422 => 0.0099311991138903
423 => 0.010140731187614
424 => 0.010071453331367
425 => 0.010016811011804
426 => 0.010267138070656
427 => 0.0099918931865799
428 => 0.010230207113178
429 => 0.009924567037274
430 => 0.010054138591819
501 => 0.0099805875107885
502 => 0.010028184074297
503 => 0.0097499355365842
504 => 0.0099000716934326
505 => 0.0097436893788575
506 => 0.0097436152332788
507 => 0.009740163085017
508 => 0.0099241461846093
509 => 0.0099301458668818
510 => 0.0097941820783001
511 => 0.0097745875722119
512 => 0.0098470387311163
513 => 0.0097622173990278
514 => 0.0098019047664529
515 => 0.009763419488957
516 => 0.0097547556423687
517 => 0.0096857206387211
518 => 0.0096559784609928
519 => 0.0096676411352415
520 => 0.0096278304155098
521 => 0.0096038430168547
522 => 0.0097353913876705
523 => 0.0096651103997897
524 => 0.0097246198183065
525 => 0.0096568013252193
526 => 0.0094217128810682
527 => 0.0092865110308217
528 => 0.0088424507525306
529 => 0.0089683856965989
530 => 0.0090518806948053
531 => 0.0090242855983962
601 => 0.0090835705433677
602 => 0.0090872101574966
603 => 0.0090679360175478
604 => 0.0090456190326575
605 => 0.0090347563586195
606 => 0.0091157178312766
607 => 0.0091627186911919
608 => 0.0090602605348943
609 => 0.0090362560224157
610 => 0.0091398468753024
611 => 0.0092030372357208
612 => 0.0096695993534539
613 => 0.0096350349247964
614 => 0.0097217848578001
615 => 0.0097120181466301
616 => 0.009802945896766
617 => 0.0099515743393039
618 => 0.0096493711584583
619 => 0.0097018231812533
620 => 0.0096889631565581
621 => 0.0098293655341012
622 => 0.0098298038549985
623 => 0.0097456256160425
624 => 0.0097912600050165
625 => 0.0097657881410052
626 => 0.0098118192420025
627 => 0.0096345732957788
628 => 0.0098504397257617
629 => 0.0099728220814366
630 => 0.0099745213605639
701 => 0.010032529625867
702 => 0.010091469383028
703 => 0.010204599114326
704 => 0.010088314256223
705 => 0.0098791291165983
706 => 0.0098942316080153
707 => 0.0097715864371911
708 => 0.0097736481246703
709 => 0.0097626426753289
710 => 0.0097956708572541
711 => 0.0096418211243756
712 => 0.0096779293491717
713 => 0.0096273776230076
714 => 0.0097017132916732
715 => 0.0096217404003153
716 => 0.0096889569550648
717 => 0.0097179653918306
718 => 0.0098250071480034
719 => 0.0096059302458956
720 => 0.0091592176122952
721 => 0.0092531220237452
722 => 0.0091142300231783
723 => 0.0091270850066299
724 => 0.0091530541190576
725 => 0.0090688797291147
726 => 0.0090849375500759
727 => 0.009084363851714
728 => 0.0090794200291682
729 => 0.0090575230193749
730 => 0.0090257680229832
731 => 0.0091522701549353
801 => 0.0091737653322098
802 => 0.0092215464486018
803 => 0.0093637106407438
804 => 0.0093495050854863
805 => 0.0093726749354941
806 => 0.0093220952830203
807 => 0.0091294312516422
808 => 0.0091398938354807
809 => 0.0090094252473638
810 => 0.0092182100734703
811 => 0.0091687670708232
812 => 0.0091368908453709
813 => 0.0091281931219251
814 => 0.0092707097116017
815 => 0.0093133529089068
816 => 0.0092867805300248
817 => 0.0092322798056977
818 => 0.0093369373080985
819 => 0.0093649392405954
820 => 0.00937120784061
821 => 0.0095566408687786
822 => 0.0093815714869806
823 => 0.0094237124272194
824 => 0.0097524840133005
825 => 0.0094543335521026
826 => 0.0096122705009478
827 => 0.0096045403091661
828 => 0.0096853355079004
829 => 0.0095979127446347
830 => 0.0095989964545606
831 => 0.0096707371174958
901 => 0.0095699902949001
902 => 0.0095450439648196
903 => 0.0095105807884825
904 => 0.0095858298732046
905 => 0.0096309382962721
906 => 0.0099944790577104
907 => 0.010229342969072
908 => 0.010219146907271
909 => 0.01031231982591
910 => 0.010270344572697
911 => 0.010134795407559
912 => 0.01036616130399
913 => 0.010292947453599
914 => 0.01029898311447
915 => 0.010298758466871
916 => 0.010347439276916
917 => 0.010312944461469
918 => 0.010244951639402
919 => 0.010290088447782
920 => 0.010424128631966
921 => 0.010840193476527
922 => 0.011073028875669
923 => 0.010826176493142
924 => 0.010996451961124
925 => 0.010894347355687
926 => 0.010875791911531
927 => 0.010982737488682
928 => 0.011089870259908
929 => 0.011083046365529
930 => 0.011005273474947
1001 => 0.010961341542471
1002 => 0.011294008853454
1003 => 0.011539112461347
1004 => 0.011522398038484
1005 => 0.011596170065179
1006 => 0.011812767017239
1007 => 0.011832569928054
1008 => 0.011830075216456
1009 => 0.011780991635781
1010 => 0.011994259463752
1011 => 0.012172171237935
1012 => 0.011769630205015
1013 => 0.011922912560702
1014 => 0.011991725948619
1015 => 0.012092764418093
1016 => 0.01226323325211
1017 => 0.012448407620477
1018 => 0.012474593306498
1019 => 0.012456013309166
1020 => 0.012333885835474
1021 => 0.012536505838931
1022 => 0.012655195884932
1023 => 0.012725873091152
1024 => 0.012905098726562
1025 => 0.011992150916676
1026 => 0.011345921080389
1027 => 0.011245002959781
1028 => 0.011450223926447
1029 => 0.01150433905875
1030 => 0.011482525316773
1031 => 0.010755134883385
1101 => 0.011241173399686
1102 => 0.011764109975946
1103 => 0.011784198099566
1104 => 0.01204599108373
1105 => 0.012131241610631
1106 => 0.012342019276874
1107 => 0.012328835076462
1108 => 0.012380156083987
1109 => 0.012368358273113
1110 => 0.012758779515353
1111 => 0.01318947212366
1112 => 0.013174558608153
1113 => 0.013112641449985
1114 => 0.013204598988309
1115 => 0.013649119915907
1116 => 0.013608195552196
1117 => 0.013647950085612
1118 => 0.014172065311351
1119 => 0.014853489659334
1120 => 0.01453689963581
1121 => 0.015223808890532
1122 => 0.015656181854884
1123 => 0.016403926188532
1124 => 0.016310304915241
1125 => 0.016601396297129
1126 => 0.0161427032967
1127 => 0.015089451450566
1128 => 0.014922770314229
1129 => 0.015256470170214
1130 => 0.016076838704198
1201 => 0.015230633845635
1202 => 0.015401819986423
1203 => 0.01535251836636
1204 => 0.015349891292545
1205 => 0.015450156014973
1206 => 0.015304716805635
1207 => 0.014712171302776
1208 => 0.014983731414843
1209 => 0.014878869014186
1210 => 0.014995221665725
1211 => 0.015623128938597
1212 => 0.01534551616582
1213 => 0.015053073661131
1214 => 0.015419861460199
1215 => 0.015886908370374
1216 => 0.015857681414099
1217 => 0.015800968903006
1218 => 0.016120654358667
1219 => 0.016648681072369
1220 => 0.0167914045713
1221 => 0.016896760140357
1222 => 0.016911286893333
1223 => 0.017060921477313
1224 => 0.016256298606482
1225 => 0.017533255766671
1226 => 0.017753750993006
1227 => 0.017712307029046
1228 => 0.01795737819326
1229 => 0.017885272039893
1230 => 0.017780801536773
1231 => 0.018169291460183
]
'min_raw' => 0.0066973596879122
'max_raw' => 0.018169291460183
'avg_raw' => 0.012433325574048
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.006697'
'max' => '$0.018169'
'avg' => '$0.012433'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0023097462705818
'max_diff' => 0.0083742535920203
'year' => 2032
]
7 => [
'items' => [
101 => 0.017723919112513
102 => 0.017091769135815
103 => 0.01674495915609
104 => 0.017201666513755
105 => 0.017480561760191
106 => 0.017664893777016
107 => 0.017720672533931
108 => 0.016318759189477
109 => 0.015563205650496
110 => 0.016047506806544
111 => 0.016638387641603
112 => 0.016253016233609
113 => 0.016268122063198
114 => 0.015718683709223
115 => 0.016687000744329
116 => 0.016545925097142
117 => 0.017277825804306
118 => 0.017103151826671
119 => 0.017699988441142
120 => 0.017542821358378
121 => 0.018195213131835
122 => 0.018455469873069
123 => 0.018892481447328
124 => 0.01921394894031
125 => 0.019402720800882
126 => 0.019391387646439
127 => 0.020139395803794
128 => 0.019698321526816
129 => 0.019144228281707
130 => 0.019134206483044
131 => 0.019421179226249
201 => 0.020022595368877
202 => 0.020178533824412
203 => 0.02026568214754
204 => 0.020132211457014
205 => 0.019653456941433
206 => 0.019446733168945
207 => 0.019622867812469
208 => 0.019407470278862
209 => 0.019779306851741
210 => 0.020289917886311
211 => 0.020184478726847
212 => 0.020536946028612
213 => 0.020901712605297
214 => 0.021423345192649
215 => 0.021559719266982
216 => 0.021785140426012
217 => 0.022017172845647
218 => 0.022091695405385
219 => 0.022233982094917
220 => 0.022233232173828
221 => 0.022662022689731
222 => 0.023134991907308
223 => 0.023313526837681
224 => 0.0237240580656
225 => 0.023021037724519
226 => 0.023554286728945
227 => 0.024035290679025
228 => 0.023461817940274
301 => 0.024252216508631
302 => 0.024282905893959
303 => 0.02474627917629
304 => 0.024276561583068
305 => 0.023997644775604
306 => 0.024802867147875
307 => 0.02519248888955
308 => 0.025075131650111
309 => 0.024182037263336
310 => 0.023662218023612
311 => 0.022301750807614
312 => 0.023913282992774
313 => 0.024698213311128
314 => 0.024180004483436
315 => 0.024441358873716
316 => 0.025867223682639
317 => 0.026410100683967
318 => 0.026297186062688
319 => 0.026316266774951
320 => 0.026609193350953
321 => 0.027908191106558
322 => 0.027129801540867
323 => 0.027724851198138
324 => 0.028040463390742
325 => 0.028333621584493
326 => 0.027613717714241
327 => 0.026677133356532
328 => 0.026380477775309
329 => 0.024128478828302
330 => 0.024011252503175
331 => 0.02394544981456
401 => 0.023530573170816
402 => 0.02320459377311
403 => 0.022945362853215
404 => 0.022265063506506
405 => 0.022494644565623
406 => 0.021410389396477
407 => 0.022104057430053
408 => 0.020373559999839
409 => 0.02181476968173
410 => 0.02103038477564
411 => 0.021557078144115
412 => 0.02155524056057
413 => 0.020585431080923
414 => 0.02002606521247
415 => 0.020382514914693
416 => 0.020764657290489
417 => 0.020826658605281
418 => 0.021322116170437
419 => 0.021460387727048
420 => 0.021041418455237
421 => 0.020337699286996
422 => 0.020501157199653
423 => 0.020022752743087
424 => 0.019184367334517
425 => 0.019786510371757
426 => 0.019992108479031
427 => 0.020082912315869
428 => 0.019258456555755
429 => 0.018999394656122
430 => 0.018861472274498
501 => 0.020231272401437
502 => 0.02030631314454
503 => 0.019922394093134
504 => 0.021657744610184
505 => 0.021264981342374
506 => 0.021703794141855
507 => 0.020486325107364
508 => 0.020532834064021
509 => 0.019956464712286
510 => 0.020279193036243
511 => 0.02005109905889
512 => 0.020253119776931
513 => 0.020374210162363
514 => 0.020950484937558
515 => 0.02182134981398
516 => 0.020864408703214
517 => 0.020447455757605
518 => 0.020706131020028
519 => 0.021395017331691
520 => 0.0224387153573
521 => 0.021820825119759
522 => 0.022095034314723
523 => 0.022154936825105
524 => 0.021699327439482
525 => 0.022455514325223
526 => 0.022860761020542
527 => 0.023276460275952
528 => 0.023637400291796
529 => 0.023110420851919
530 => 0.023674364392123
531 => 0.023219925448154
601 => 0.02281224673638
602 => 0.022812865016703
603 => 0.022557122205572
604 => 0.022061588283336
605 => 0.021970204225221
606 => 0.022445595636068
607 => 0.022826814527833
608 => 0.022858213541674
609 => 0.023069275907889
610 => 0.023194180442099
611 => 0.024418414676844
612 => 0.024910811813456
613 => 0.025512905711503
614 => 0.025747455216945
615 => 0.026453365137675
616 => 0.025883285545485
617 => 0.025759945239746
618 => 0.024047638673432
619 => 0.02432802877774
620 => 0.02477696038836
621 => 0.024055041390339
622 => 0.024512932831735
623 => 0.024603330301734
624 => 0.024030510859032
625 => 0.024336478473446
626 => 0.023523919202637
627 => 0.021839061385615
628 => 0.022457390053615
629 => 0.022912688080442
630 => 0.022262921658318
701 => 0.023427602820543
702 => 0.02274722012947
703 => 0.022531571480529
704 => 0.021690249216716
705 => 0.022087320939772
706 => 0.022624366130725
707 => 0.022292534640921
708 => 0.022981134807014
709 => 0.023956376285157
710 => 0.024651391439117
711 => 0.0247047460726
712 => 0.024257897891003
713 => 0.024973974953759
714 => 0.024979190793402
715 => 0.024171452941353
716 => 0.023676718004476
717 => 0.023564313185886
718 => 0.023845122460986
719 => 0.024186076761209
720 => 0.024723666663341
721 => 0.025048520982163
722 => 0.025895568756233
723 => 0.026124755597134
724 => 0.026376562450175
725 => 0.026713054060196
726 => 0.027117098512703
727 => 0.02623307225288
728 => 0.026268196264214
729 => 0.025445003251243
730 => 0.024565303459064
731 => 0.025232885945201
801 => 0.026105661241048
802 => 0.02590544562385
803 => 0.025882917276881
804 => 0.02592080370764
805 => 0.025769847670703
806 => 0.02508707911033
807 => 0.024744197013668
808 => 0.025186602396914
809 => 0.025421721168911
810 => 0.025786369879767
811 => 0.025741419229354
812 => 0.026680715148106
813 => 0.027045697139299
814 => 0.026952319127492
815 => 0.026969502928931
816 => 0.027630285390174
817 => 0.028365211387354
818 => 0.029053566565739
819 => 0.029753791018736
820 => 0.028909643110423
821 => 0.028481036862386
822 => 0.028923249105282
823 => 0.028688605064614
824 => 0.030036939322238
825 => 0.030130295060797
826 => 0.031478531818507
827 => 0.032758169046621
828 => 0.031954451830725
829 => 0.032712320965097
830 => 0.033532018223897
831 => 0.03511334722721
901 => 0.034580811250719
902 => 0.03417289703863
903 => 0.033787420079233
904 => 0.034589536438994
905 => 0.035621446321706
906 => 0.035843709826932
907 => 0.036203861616592
908 => 0.03582520604703
909 => 0.036281254973024
910 => 0.037891308079837
911 => 0.037456257518044
912 => 0.036838415782431
913 => 0.038109398079116
914 => 0.038569361631467
915 => 0.041797626726653
916 => 0.045873444762305
917 => 0.044186029332281
918 => 0.04313859612231
919 => 0.043384767772101
920 => 0.044873118543573
921 => 0.045351129573478
922 => 0.044051730813914
923 => 0.044510700422953
924 => 0.047039668093654
925 => 0.048396378109988
926 => 0.046553783677342
927 => 0.041470138716024
928 => 0.036782785894092
929 => 0.038026082936717
930 => 0.037885131636082
1001 => 0.040602191903109
1002 => 0.037445881706026
1003 => 0.037499025874936
1004 => 0.040272272070868
1005 => 0.03953241753127
1006 => 0.03833394793053
1007 => 0.036791536048483
1008 => 0.033940245028687
1009 => 0.031414777058322
1010 => 0.036367801328747
1011 => 0.036154217915716
1012 => 0.035844917482359
1013 => 0.036533232126993
1014 => 0.039875492659815
1015 => 0.039798442736692
1016 => 0.039308290436998
1017 => 0.039680066636311
1018 => 0.038268773765279
1019 => 0.038632496072686
1020 => 0.036782043393456
1021 => 0.037618525286198
1022 => 0.038331376553027
1023 => 0.038474491998787
1024 => 0.038796938405738
1025 => 0.036041669162354
1026 => 0.037278704162179
1027 => 0.038005346330071
1028 => 0.034722350580065
1029 => 0.037940452059729
1030 => 0.035993706054747
1031 => 0.035332951221513
1101 => 0.036222570556633
1102 => 0.035875885036554
1103 => 0.035577825184446
1104 => 0.035411502665652
1105 => 0.036064740921661
1106 => 0.03603426657623
1107 => 0.034965442001316
1108 => 0.033571203914205
1109 => 0.034039155980545
1110 => 0.03386914460777
1111 => 0.033253001460929
1112 => 0.033668207548492
1113 => 0.031839850069854
1114 => 0.02869425605761
1115 => 0.030772331814249
1116 => 0.03069232815813
1117 => 0.030651986686838
1118 => 0.032213603184156
1119 => 0.032063489790562
1120 => 0.031791032511273
1121 => 0.033247997569331
1122 => 0.032716185724194
1123 => 0.034355104520276
1124 => 0.035434602437997
1125 => 0.035160806847964
1126 => 0.036176079857247
1127 => 0.034049936651023
1128 => 0.034756156138071
1129 => 0.034901706995573
1130 => 0.033230018846673
1201 => 0.032088050198237
1202 => 0.032011893908783
1203 => 0.030031877645368
1204 => 0.031089586351151
1205 => 0.03202032624128
1206 => 0.031574574062242
1207 => 0.031433462238826
1208 => 0.032154371941238
1209 => 0.032210392799289
1210 => 0.030933111298891
1211 => 0.031198698569069
1212 => 0.032306241635918
1213 => 0.031170791325447
1214 => 0.028964796846956
1215 => 0.02841767971603
1216 => 0.028344684205395
1217 => 0.026860859153918
1218 => 0.028454240698861
1219 => 0.027758686954523
1220 => 0.029955932898874
1221 => 0.028700877799527
1222 => 0.028646774882641
1223 => 0.028564990388595
1224 => 0.027287800870748
1225 => 0.027567424205529
1226 => 0.028496934758175
1227 => 0.028828594595045
1228 => 0.02879399975685
1229 => 0.028492379649374
1230 => 0.028630459790032
1231 => 0.028185655546663
]
'min_raw' => 0.015563205650496
'max_raw' => 0.048396378109988
'avg_raw' => 0.031979791880242
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.015563'
'max' => '$0.048396'
'avg' => '$0.031979'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0088658459625834
'max_diff' => 0.030227086649806
'year' => 2033
]
8 => [
'items' => [
101 => 0.02802858591053
102 => 0.027532830933486
103 => 0.02680420807304
104 => 0.026905527550689
105 => 0.025461935009603
106 => 0.024675389175964
107 => 0.02445768365572
108 => 0.02416655873551
109 => 0.024490566990112
110 => 0.025457845493312
111 => 0.02429110239887
112 => 0.022290803200963
113 => 0.022411024591101
114 => 0.022681126360691
115 => 0.022177793499963
116 => 0.021701431188809
117 => 0.022115589569861
118 => 0.02126803643023
119 => 0.022783549108382
120 => 0.022742558737614
121 => 0.023307448145354
122 => 0.023660685084711
123 => 0.022846588301309
124 => 0.022641845161836
125 => 0.022758476159137
126 => 0.020830825572506
127 => 0.023149917967238
128 => 0.02316997357457
129 => 0.022998245288481
130 => 0.024233090394731
131 => 0.026838998726765
201 => 0.025858551189834
202 => 0.025478892269351
203 => 0.024757160383983
204 => 0.025718825269036
205 => 0.025644984410173
206 => 0.025311048043081
207 => 0.025109082286319
208 => 0.025481210385761
209 => 0.025062971496638
210 => 0.024987844299716
211 => 0.024532655225561
212 => 0.024370173435871
213 => 0.024249878387371
214 => 0.02411744535892
215 => 0.024409559619429
216 => 0.023747590274285
217 => 0.022949320137696
218 => 0.022882952613241
219 => 0.023066199183353
220 => 0.022985126217181
221 => 0.02288256446707
222 => 0.022686746155077
223 => 0.022628651044905
224 => 0.022817431969224
225 => 0.02260430931228
226 => 0.022918783401993
227 => 0.022833263850236
228 => 0.022355558585974
301 => 0.021760160957562
302 => 0.02175486066978
303 => 0.021626583227387
304 => 0.021463202617856
305 => 0.021417753869927
306 => 0.022080710306191
307 => 0.023453010288641
308 => 0.02318359496573
309 => 0.023378275147326
310 => 0.024335908958719
311 => 0.024640311950307
312 => 0.024424253917057
313 => 0.024128500355267
314 => 0.024141512011011
315 => 0.025152191462342
316 => 0.025215226299997
317 => 0.025374494998941
318 => 0.025579200286414
319 => 0.024459116112685
320 => 0.024088756147156
321 => 0.023913259048699
322 => 0.023372795911378
323 => 0.023955639069171
324 => 0.023616041320958
325 => 0.023661864659503
326 => 0.023632022150161
327 => 0.023648318178203
328 => 0.022783125491703
329 => 0.023098356233475
330 => 0.022574223985271
331 => 0.021872469741532
401 => 0.02187011721524
402 => 0.022041870572221
403 => 0.021939704954779
404 => 0.021664779905162
405 => 0.02170383171085
406 => 0.021361696800779
407 => 0.021745373083486
408 => 0.021756375546414
409 => 0.021608639278583
410 => 0.022199745529218
411 => 0.0224419222424
412 => 0.022344679066096
413 => 0.02243509940192
414 => 0.023194790388734
415 => 0.023318653167227
416 => 0.023373664831517
417 => 0.023299956489017
418 => 0.022448985158574
419 => 0.022486729355689
420 => 0.02220978748093
421 => 0.021975800780175
422 => 0.021985159021106
423 => 0.022105458601436
424 => 0.022630813924216
425 => 0.023736393229617
426 => 0.023778349156089
427 => 0.023829200962914
428 => 0.023622361108487
429 => 0.023559976229201
430 => 0.023642277987883
501 => 0.024057475446393
502 => 0.025125476034693
503 => 0.024747973297427
504 => 0.024441057695849
505 => 0.024710305422285
506 => 0.024668856845233
507 => 0.024318989142547
508 => 0.024309169521403
509 => 0.023637661540477
510 => 0.023389420329425
511 => 0.023181971392938
512 => 0.022955442569886
513 => 0.022821148690265
514 => 0.023027485124839
515 => 0.023074676708727
516 => 0.022623518488388
517 => 0.022562027290043
518 => 0.022930452831698
519 => 0.022768322487104
520 => 0.022935077567158
521 => 0.022973766176129
522 => 0.02296753641901
523 => 0.022798253718703
524 => 0.022906149463796
525 => 0.022650943861381
526 => 0.022373446099396
527 => 0.022196419815972
528 => 0.022041940904555
529 => 0.022127654782976
530 => 0.02182210045714
531 => 0.021724347478712
601 => 0.02286959681309
602 => 0.0237156048099
603 => 0.02370330351857
604 => 0.023628422571237
605 => 0.023517164672545
606 => 0.024049336238121
607 => 0.023863938305781
608 => 0.023998830792074
609 => 0.024033166591256
610 => 0.024137090714097
611 => 0.024174234655432
612 => 0.02406195986659
613 => 0.023685151962026
614 => 0.022746182489672
615 => 0.022309089665592
616 => 0.022164841753288
617 => 0.022170084890935
618 => 0.022025455748249
619 => 0.022068055512593
620 => 0.022010641288694
621 => 0.021901912638622
622 => 0.022120941095223
623 => 0.022146182084455
624 => 0.02209505822549
625 => 0.022107099744987
626 => 0.021683816028036
627 => 0.021715997369711
628 => 0.021536807569853
629 => 0.021503211642545
630 => 0.021050235432343
701 => 0.020247722416019
702 => 0.020692392528886
703 => 0.020155293562623
704 => 0.019951886045722
705 => 0.020914785594373
706 => 0.020818137186365
707 => 0.020652717123907
708 => 0.020408026374971
709 => 0.020317268195992
710 => 0.019765850231063
711 => 0.019733269515995
712 => 0.020006567148951
713 => 0.019880449694939
714 => 0.019703333025091
715 => 0.019061834400932
716 => 0.018340577554482
717 => 0.018362347765017
718 => 0.018591766148412
719 => 0.019258831039418
720 => 0.018998197246162
721 => 0.018809104438727
722 => 0.018773693040003
723 => 0.019216940833815
724 => 0.019844229325342
725 => 0.020138539050778
726 => 0.01984688705119
727 => 0.019511852937723
728 => 0.019532244911811
729 => 0.019667903579655
730 => 0.019682159387535
731 => 0.019464086621731
801 => 0.019525472827936
802 => 0.019432221567438
803 => 0.018859938753889
804 => 0.018849587972521
805 => 0.018709140540769
806 => 0.018704887848353
807 => 0.018465951730689
808 => 0.018432522916141
809 => 0.017958100752134
810 => 0.018270366857166
811 => 0.018060915148617
812 => 0.01774522201917
813 => 0.017690796404661
814 => 0.017689160304969
815 => 0.018013306561218
816 => 0.018266579019434
817 => 0.018064558650761
818 => 0.018018562528814
819 => 0.018509680775536
820 => 0.018447181501999
821 => 0.018393057534192
822 => 0.019788062521086
823 => 0.018683807220363
824 => 0.018202288880559
825 => 0.017606318497198
826 => 0.017800369459164
827 => 0.017841258848052
828 => 0.016408057507805
829 => 0.015826607902561
830 => 0.015627076309507
831 => 0.015512243056742
901 => 0.015564574012013
902 => 0.015041201170056
903 => 0.015392916375639
904 => 0.01493971973411
905 => 0.014863739842328
906 => 0.015674111577673
907 => 0.015786870070523
908 => 0.015305807308706
909 => 0.015614727478779
910 => 0.015502708730799
911 => 0.014947488489776
912 => 0.014926283160492
913 => 0.014647693160482
914 => 0.014211753756119
915 => 0.01401251775051
916 => 0.013908753908942
917 => 0.01395156889229
918 => 0.013929920326549
919 => 0.013788648791437
920 => 0.013938017845575
921 => 0.013556441635806
922 => 0.013404494914507
923 => 0.013335864105633
924 => 0.012997193256755
925 => 0.01353616918493
926 => 0.01364235423262
927 => 0.013748748497657
928 => 0.014674837936349
929 => 0.014628573125094
930 => 0.015046784486967
1001 => 0.015030533562486
1002 => 0.014911252907505
1003 => 0.014408027444855
1004 => 0.014608604145136
1005 => 0.013991260238212
1006 => 0.014453816268585
1007 => 0.014242725013124
1008 => 0.014382446102775
1009 => 0.01413121498544
1010 => 0.014270256658852
1011 => 0.013667534646633
1012 => 0.013104721312151
1013 => 0.013331213827492
1014 => 0.013577437094229
1015 => 0.014111311873035
1016 => 0.01379334045915
1017 => 0.013907695003413
1018 => 0.013524626422849
1019 => 0.012734246523016
1020 => 0.012738719987414
1021 => 0.012617137259187
1022 => 0.012512072030629
1023 => 0.013829863301041
1024 => 0.013665975125368
1025 => 0.013404840766588
1026 => 0.013754379482883
1027 => 0.013846803067396
1028 => 0.013849434236915
1029 => 0.014104448661424
1030 => 0.014240549905498
1031 => 0.014264538339662
1101 => 0.014665809046578
1102 => 0.014800309694647
1103 => 0.015354298828802
1104 => 0.014229002665825
1105 => 0.01420582793187
1106 => 0.013759298209435
1107 => 0.013476102000112
1108 => 0.013778688896173
1109 => 0.014046739578852
1110 => 0.013767627291335
1111 => 0.013804073463702
1112 => 0.013429388022022
1113 => 0.013563320436834
1114 => 0.013678681075115
1115 => 0.013614985711241
1116 => 0.013519630668631
1117 => 0.014024762479682
1118 => 0.013996260963275
1119 => 0.014466651318656
1120 => 0.014833354238612
1121 => 0.015490551427161
1122 => 0.014804731900446
1123 => 0.014779737911007
1124 => 0.015024058166937
1125 => 0.014800272290489
1126 => 0.014941697239578
1127 => 0.015467765681442
1128 => 0.015478880678651
1129 => 0.015292690154539
1130 => 0.015281360444225
1201 => 0.015317120371082
1202 => 0.015526567379624
1203 => 0.015453380159183
1204 => 0.015538074263551
1205 => 0.015643985537945
1206 => 0.01608207947429
1207 => 0.016187702439183
1208 => 0.015931093393722
1209 => 0.015954262317398
1210 => 0.015858283490319
1211 => 0.015765569145973
1212 => 0.015973977452221
1213 => 0.016354847728164
1214 => 0.016352478353945
1215 => 0.016440832854904
1216 => 0.016495876977033
1217 => 0.016259587310095
1218 => 0.01610577142553
1219 => 0.016164754223231
1220 => 0.016259069001234
1221 => 0.016134169211868
1222 => 0.015363229852692
1223 => 0.015597083606469
1224 => 0.015558158906976
1225 => 0.015502725401494
1226 => 0.015737867159254
1227 => 0.015715187163086
1228 => 0.015035833225092
1229 => 0.015079323260043
1230 => 0.01503847799816
1231 => 0.015170457395459
]
'min_raw' => 0.012512072030629
'max_raw' => 0.02802858591053
'avg_raw' => 0.02027032897058
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.012512'
'max' => '$0.028028'
'avg' => '$0.02027'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0030511336198663
'max_diff' => -0.020367792199459
'year' => 2034
]
9 => [
'items' => [
101 => 0.014793144969916
102 => 0.014909203730775
103 => 0.014981994697602
104 => 0.01502486913627
105 => 0.015179761008017
106 => 0.015161586234623
107 => 0.015178631238584
108 => 0.015408294994446
109 => 0.016569855460512
110 => 0.016633076633841
111 => 0.01632175245431
112 => 0.016446120323435
113 => 0.016207361210978
114 => 0.016367641802718
115 => 0.0164773017129
116 => 0.015981769665174
117 => 0.015952427473284
118 => 0.01571268291704
119 => 0.01584150806174
120 => 0.015636537993666
121 => 0.015686830478823
122 => 0.015546208305905
123 => 0.015799300219562
124 => 0.016082296305538
125 => 0.01615379229271
126 => 0.015965717131419
127 => 0.015829538319887
128 => 0.015590453186927
129 => 0.0159880570914
130 => 0.016104328589827
131 => 0.015987446366717
201 => 0.015960362201695
202 => 0.015909037757919
203 => 0.015971250925068
204 => 0.016103695350276
205 => 0.016041237005213
206 => 0.016082491842501
207 => 0.01592527094456
208 => 0.016259665531807
209 => 0.016790764612794
210 => 0.016792472183183
211 => 0.016730013501446
212 => 0.01670445675457
213 => 0.016768543152342
214 => 0.016803307394172
215 => 0.017010551053131
216 => 0.017232931756146
217 => 0.018270685464814
218 => 0.017979288376059
219 => 0.018900045202633
220 => 0.019628244307144
221 => 0.019846599378299
222 => 0.019645722987236
223 => 0.01895853570454
224 => 0.018924819018051
225 => 0.019951766941386
226 => 0.01966160711585
227 => 0.019627093527883
228 => 0.019259927263544
301 => 0.019476968000195
302 => 0.019429498007294
303 => 0.019354564301188
304 => 0.019768662907529
305 => 0.020543818531761
306 => 0.020423003258361
307 => 0.020332820261227
308 => 0.019937664619662
309 => 0.020175636577092
310 => 0.020090899321104
311 => 0.02045498434842
312 => 0.020239308443709
313 => 0.019659408869791
314 => 0.019751759788311
315 => 0.019737801132761
316 => 0.020025069274861
317 => 0.019938838509037
318 => 0.01972096319178
319 => 0.020541169134107
320 => 0.020487909522438
321 => 0.020563419474943
322 => 0.020596661291258
323 => 0.021095906194703
324 => 0.021300430857589
325 => 0.021346861536773
326 => 0.02154114414801
327 => 0.021342027608418
328 => 0.022138635734472
329 => 0.022668333654925
330 => 0.023283605047537
331 => 0.024182681921503
401 => 0.024520743143041
402 => 0.024459675409239
403 => 0.025141345234057
404 => 0.026366290756587
405 => 0.024707271921875
406 => 0.026454222783239
407 => 0.025901158310049
408 => 0.024589852393319
409 => 0.024505419751563
410 => 0.025393451342947
411 => 0.027363019942763
412 => 0.026869665347172
413 => 0.027363826894142
414 => 0.026787361200665
415 => 0.026758734820149
416 => 0.027335829242106
417 => 0.028684241814786
418 => 0.028043661545995
419 => 0.027125232653957
420 => 0.027803386255502
421 => 0.027215906845691
422 => 0.025892151310254
423 => 0.02686928808821
424 => 0.026215904552044
425 => 0.026406596603677
426 => 0.027779911613231
427 => 0.027614670717941
428 => 0.027828507737342
429 => 0.027451090995189
430 => 0.02709852424486
501 => 0.026440432223421
502 => 0.026245603619418
503 => 0.026299447236365
504 => 0.026245576937195
505 => 0.025877380499378
506 => 0.025797868513687
507 => 0.025665345054037
508 => 0.025706419615608
509 => 0.025457236740359
510 => 0.025927496309763
511 => 0.026014780629757
512 => 0.026356996327975
513 => 0.026392526297021
514 => 0.027345592145423
515 => 0.026820659491744
516 => 0.027172829636337
517 => 0.027141328223851
518 => 0.024618272368762
519 => 0.024965927204483
520 => 0.025506769028767
521 => 0.025263120520021
522 => 0.024918658533624
523 => 0.024640487010726
524 => 0.024219028709036
525 => 0.024812223175275
526 => 0.02559221081918
527 => 0.026412308070846
528 => 0.027397601183823
529 => 0.027177695231083
530 => 0.026393888701455
531 => 0.026429049689803
601 => 0.026646401084432
602 => 0.026364911279931
603 => 0.02628189444125
604 => 0.026634995845607
605 => 0.026637427460918
606 => 0.02631353942166
607 => 0.025953597136911
608 => 0.025952088965595
609 => 0.025888040712654
610 => 0.026798755242579
611 => 0.027299556150413
612 => 0.027356972167416
613 => 0.027295691595002
614 => 0.027319276055185
615 => 0.027027871041311
616 => 0.027693936489554
617 => 0.028305184011908
618 => 0.028141356618518
619 => 0.027895756066392
620 => 0.027700123396897
621 => 0.028095271778881
622 => 0.028077676443453
623 => 0.028299845298041
624 => 0.028289766435487
625 => 0.028215059405882
626 => 0.028141359286542
627 => 0.028433571929044
628 => 0.028349419380795
629 => 0.028265136120395
630 => 0.02809609313854
701 => 0.028119068887281
702 => 0.027873510741552
703 => 0.027759904307362
704 => 0.026051536117088
705 => 0.025595004314106
706 => 0.025738638512886
707 => 0.025785926620585
708 => 0.025587243394866
709 => 0.025872104103014
710 => 0.025827708863391
711 => 0.026000424770417
712 => 0.02589251937016
713 => 0.025896947845426
714 => 0.026214274619724
715 => 0.026306395932307
716 => 0.026259542289217
717 => 0.026292356974788
718 => 0.027048557553567
719 => 0.026941050013198
720 => 0.026883938775082
721 => 0.026899758978345
722 => 0.027092984439346
723 => 0.027147077018707
724 => 0.026917882958936
725 => 0.027025972202479
726 => 0.02748620248292
727 => 0.027647257034296
728 => 0.028161265851719
729 => 0.0279429057703
730 => 0.028343715150148
731 => 0.029575666537816
801 => 0.030559834550837
802 => 0.029654752973599
803 => 0.031462052196471
804 => 0.032869293883153
805 => 0.032815281603334
806 => 0.032569896465175
807 => 0.030967789218344
808 => 0.029493506243737
809 => 0.030726806553357
810 => 0.030729950489477
811 => 0.030624008899121
812 => 0.02996601478013
813 => 0.030601112130065
814 => 0.030651523851368
815 => 0.030623306692997
816 => 0.030118824144715
817 => 0.029348572537449
818 => 0.029499077857787
819 => 0.029745608642726
820 => 0.029278874435127
821 => 0.029129724575376
822 => 0.029407022541575
823 => 0.030300534365992
824 => 0.030131621131347
825 => 0.030127210124159
826 => 0.030849892572327
827 => 0.030332607904072
828 => 0.029500976211861
829 => 0.029290978241704
830 => 0.028545626919227
831 => 0.029060443732512
901 => 0.029078971073111
902 => 0.028797011165776
903 => 0.029523855704372
904 => 0.02951715770399
905 => 0.030207188416855
906 => 0.031526267976151
907 => 0.031136151242504
908 => 0.030682487925853
909 => 0.030731813707092
910 => 0.031272795780886
911 => 0.030945705669651
912 => 0.031063329554204
913 => 0.031272617743049
914 => 0.031398886503713
915 => 0.030713645575599
916 => 0.030553883136393
917 => 0.030227065254774
918 => 0.030141804569805
919 => 0.030407990915104
920 => 0.03033786021762
921 => 0.029077413921875
922 => 0.028945690270913
923 => 0.02894973004723
924 => 0.028618504663767
925 => 0.028113306450786
926 => 0.029440937190683
927 => 0.029334309862089
928 => 0.029216601543621
929 => 0.029231020140999
930 => 0.029807299647608
1001 => 0.029473028430962
1002 => 0.03036174324639
1003 => 0.030179050197551
1004 => 0.029991671761373
1005 => 0.029965770353806
1006 => 0.029893645642255
1007 => 0.029646303169921
1008 => 0.0293476222716
1009 => 0.029150407271232
1010 => 0.026889709823013
1011 => 0.027309282119531
1012 => 0.027791961801456
1013 => 0.027958580893439
1014 => 0.027673567406911
1015 => 0.029657557239547
1016 => 0.030020051300171
1017 => 0.028922033145638
1018 => 0.02871663878071
1019 => 0.029671022859917
1020 => 0.029095412591447
1021 => 0.029354609860094
1022 => 0.028794367138605
1023 => 0.029932737096032
1024 => 0.029924064624247
1025 => 0.029481212999557
1026 => 0.029855508160228
1027 => 0.02979046516511
1028 => 0.02929048677153
1029 => 0.029948587302904
1030 => 0.029948913712557
1031 => 0.029522678652216
1101 => 0.029024929416592
1102 => 0.028935943609574
1103 => 0.028868904757548
1104 => 0.029338122412052
1105 => 0.029758821493874
1106 => 0.030541638184999
1107 => 0.030738456900414
1108 => 0.031506653449641
1109 => 0.031049229807388
1110 => 0.031251999783371
1111 => 0.031472135275865
1112 => 0.031577676326181
1113 => 0.031405702848336
1114 => 0.0325990282916
1115 => 0.032699781521558
1116 => 0.032733563208051
1117 => 0.032331180582753
1118 => 0.032688590532844
1119 => 0.03252137025337
1120 => 0.03295643096543
1121 => 0.033024654040215
1122 => 0.032966871522979
1123 => 0.032988526603743
1124 => 0.031970233854951
1125 => 0.031917430004004
1126 => 0.03119744574955
1127 => 0.031490844655095
1128 => 0.030942349464155
1129 => 0.031116282939328
1130 => 0.031192951157886
1201 => 0.031152904031395
1202 => 0.031507432989002
1203 => 0.031206010949555
1204 => 0.030410508629081
1205 => 0.029614789574532
1206 => 0.029604799969981
1207 => 0.029395301188526
1208 => 0.02924387194115
1209 => 0.029273042586436
1210 => 0.02937584374521
1211 => 0.02923789695092
1212 => 0.029267334893562
1213 => 0.029756200885402
1214 => 0.029854239473633
1215 => 0.029521066044675
1216 => 0.028183326650715
1217 => 0.027855042047973
1218 => 0.028091006510258
1219 => 0.027978230695343
1220 => 0.022580615782517
1221 => 0.023848705342332
1222 => 0.023095249586143
1223 => 0.023442476663427
1224 => 0.02267339344278
1225 => 0.023040440266778
1226 => 0.022972660120789
1227 => 0.025011710607473
1228 => 0.024979873638746
1229 => 0.024995112310901
1230 => 0.0242677307848
1231 => 0.02542646930644
]
'min_raw' => 0.014793144969916
'max_raw' => 0.033024654040215
'avg_raw' => 0.023908899505066
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.014793'
'max' => '$0.033024'
'avg' => '$0.0239088'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0022810729392865
'max_diff' => 0.0049960681296856
'year' => 2035
]
10 => [
'items' => [
101 => 0.025997305569089
102 => 0.025891658969188
103 => 0.025918247942317
104 => 0.025461361290486
105 => 0.024999535972395
106 => 0.024487300620226
107 => 0.025438970590354
108 => 0.025333161135224
109 => 0.025575849956252
110 => 0.026193075958655
111 => 0.026283964832122
112 => 0.026406120399766
113 => 0.026362336324391
114 => 0.027405450633067
115 => 0.027279122607596
116 => 0.027583536801926
117 => 0.026957333708229
118 => 0.026248725467966
119 => 0.026383408728291
120 => 0.026370437647268
121 => 0.026205300898322
122 => 0.026056222825138
123 => 0.025808049835771
124 => 0.026593305896818
125 => 0.026561425934785
126 => 0.02707752546369
127 => 0.026986299858833
128 => 0.026377072942904
129 => 0.026398831601391
130 => 0.026545169036572
131 => 0.027051644570584
201 => 0.027202000992563
202 => 0.027132349907235
203 => 0.027297208859904
204 => 0.027427506654252
205 => 0.027313572256774
206 => 0.028926643058684
207 => 0.028256783598827
208 => 0.028583268438709
209 => 0.028661133149261
210 => 0.028461684330501
211 => 0.028504937637563
212 => 0.028570454611942
213 => 0.028968260850829
214 => 0.030012219527832
215 => 0.030474581719409
216 => 0.031865621185318
217 => 0.030436188975791
218 => 0.030351372384056
219 => 0.030601940597234
220 => 0.031418628020204
221 => 0.032080476468973
222 => 0.032300049782382
223 => 0.032329070020509
224 => 0.032741004153424
225 => 0.032977117116293
226 => 0.032690984514744
227 => 0.032448517094264
228 => 0.031580028890268
229 => 0.031680558764695
301 => 0.032373109908821
302 => 0.033351379190957
303 => 0.034190836006601
304 => 0.033896887487786
305 => 0.036139507191028
306 => 0.036361853774325
307 => 0.036331132665839
308 => 0.036837671272196
309 => 0.03583229529337
310 => 0.03540247758418
311 => 0.032500941302694
312 => 0.033316154645665
313 => 0.034501115115473
314 => 0.03434428115392
315 => 0.033483731186661
316 => 0.034190183202283
317 => 0.033956608073121
318 => 0.033772377677711
319 => 0.034616372833907
320 => 0.033688365490259
321 => 0.034491857532332
322 => 0.033461370677313
323 => 0.033898230219859
324 => 0.033650247614991
325 => 0.033810722751946
326 => 0.032872588380355
327 => 0.033378782915341
328 => 0.032851529023486
329 => 0.032851279036491
330 => 0.032839639877605
331 => 0.033459951743171
401 => 0.033480180090837
402 => 0.033021768684945
403 => 0.032955704439624
404 => 0.033199978580248
405 => 0.032913997537076
406 => 0.033047806267233
407 => 0.032918050467199
408 => 0.032888839703536
409 => 0.032656083368868
410 => 0.032555805540125
411 => 0.032595127060616
412 => 0.032460902439545
413 => 0.032380027250233
414 => 0.032823551766852
415 => 0.03258659450935
416 => 0.032787234668694
417 => 0.032558579884315
418 => 0.031765962781509
419 => 0.031310120303911
420 => 0.029812940072354
421 => 0.030237538528777
422 => 0.030519047744664
423 => 0.030426008950493
424 => 0.030625892281607
425 => 0.030638163494752
426 => 0.030573179386238
427 => 0.030497936113558
428 => 0.030461311849631
429 => 0.030734279107244
430 => 0.030892745787944
501 => 0.030547300960586
502 => 0.030466368070823
503 => 0.030815631863813
504 => 0.031028682575774
505 => 0.032601729330038
506 => 0.032485192945608
507 => 0.032777676401417
508 => 0.032744747252817
509 => 0.033051316510773
510 => 0.033552427681696
511 => 0.032533528558323
512 => 0.032710374215259
513 => 0.032667015744141
514 => 0.033140392162609
515 => 0.033141869992117
516 => 0.032858057182339
517 => 0.033011916710857
518 => 0.032926036542954
519 => 0.033081233613755
520 => 0.032483636531145
521 => 0.033211445271145
522 => 0.033624065927766
523 => 0.033629795165984
524 => 0.033825374082462
525 => 0.034024093588771
526 => 0.03440551837631
527 => 0.034013455858465
528 => 0.03330817355538
529 => 0.033359092659615
530 => 0.032945585903369
531 => 0.032952537026647
601 => 0.032915431385817
602 => 0.033026788207131
603 => 0.032508073091286
604 => 0.032629814492182
605 => 0.032459375818011
606 => 0.032710003714868
607 => 0.032440369528126
608 => 0.032666994835374
609 => 0.032764798805234
610 => 0.033125697559587
611 => 0.03238706448867
612 => 0.030880941656006
613 => 0.031197546935406
614 => 0.030729262858365
615 => 0.030772604332579
616 => 0.030860161008234
617 => 0.030576361175673
618 => 0.030630501240165
619 => 0.030628566976084
620 => 0.030611898533204
621 => 0.030538071235885
622 => 0.030431007048488
623 => 0.030857517818461
624 => 0.030929990309387
625 => 0.031091087679274
626 => 0.031570404178668
627 => 0.031522509157317
628 => 0.031600627924286
629 => 0.031430095094611
630 => 0.030780514861447
701 => 0.030815790193333
702 => 0.030375906239471
703 => 0.03107983885758
704 => 0.030913138322155
705 => 0.030805665402516
706 => 0.030776340420662
707 => 0.031256845052948
708 => 0.031400619569915
709 => 0.03131102893929
710 => 0.031127275942102
711 => 0.0314801360184
712 => 0.031574546488846
713 => 0.031595681511454
714 => 0.032220881912446
715 => 0.03163062326876
716 => 0.031772704390961
717 => 0.032881180747533
718 => 0.031875945651404
719 => 0.032408441101241
720 => 0.032382378219944
721 => 0.032654784873417
722 => 0.032360032923405
723 => 0.032363686727082
724 => 0.032605565380941
725 => 0.032265890434641
726 => 0.032181782141078
727 => 0.032065587135915
728 => 0.032319294678779
729 => 0.032471380876521
730 => 0.033697083935315
731 => 0.034488944010147
801 => 0.034454567275916
802 => 0.034768706276236
803 => 0.034627183779408
804 => 0.034170170305404
805 => 0.034950236578673
806 => 0.034703390970452
807 => 0.034723740622476
808 => 0.034722983207411
809 => 0.034887113957261
810 => 0.03477081227863
811 => 0.034541569731926
812 => 0.03469375163273
813 => 0.035145677472092
814 => 0.036548469144249
815 => 0.037333489948506
816 => 0.036501209906132
817 => 0.037075305534688
818 => 0.036731052728743
819 => 0.036668491753269
820 => 0.037029066233335
821 => 0.037390271851298
822 => 0.037367264614968
823 => 0.037105047884441
824 => 0.03695692830687
825 => 0.038078539371939
826 => 0.038904923298536
827 => 0.03884856945489
828 => 0.039097296993491
829 => 0.039827568739676
830 => 0.039894335636083
831 => 0.039885924541756
901 => 0.039720435822604
902 => 0.040439483194493
903 => 0.041039325162557
904 => 0.039682129965549
905 => 0.04019893212958
906 => 0.040430941271339
907 => 0.040771599525452
908 => 0.041346347101093
909 => 0.041970675412505
910 => 0.04205896228115
911 => 0.041996318522931
912 => 0.041584557218709
913 => 0.042267704706841
914 => 0.04266787648361
915 => 0.042906169618907
916 => 0.043510441361823
917 => 0.040432374080813
918 => 0.038253565069444
919 => 0.037913312579936
920 => 0.03860522939712
921 => 0.038787682343878
922 => 0.038714135789817
923 => 0.036261688158872
924 => 0.037900400950704
925 => 0.039663518127831
926 => 0.039731246639125
927 => 0.040613899963036
928 => 0.040901328066484
929 => 0.041611979684248
930 => 0.041567528232068
1001 => 0.041740560592056
1002 => 0.041700783448998
1003 => 0.043017115925553
1004 => 0.044469226124458
1005 => 0.044418944165697
1006 => 0.044210186144017
1007 => 0.044520227404744
1008 => 0.0460189607476
1009 => 0.045880981398103
1010 => 0.046015016583087
1011 => 0.047782107659223
1012 => 0.050079577423976
1013 => 0.049012172056055
1014 => 0.051328134566822
1015 => 0.052785910203452
1016 => 0.05530698243019
1017 => 0.05499133177086
1018 => 0.055972766688246
1019 => 0.054426251212379
1020 => 0.050875139077441
1021 => 0.050313161988976
1022 => 0.051438254351609
1023 => 0.054204184140237
1024 => 0.051351145379457
1025 => 0.051928311404957
1026 => 0.051762087550785
1027 => 0.051753230188002
1028 => 0.052091279699929
1029 => 0.051600921251403
1030 => 0.049603112718306
1031 => 0.050518696595865
1101 => 0.050165145690791
1102 => 0.050557436778936
1103 => 0.052674469988509
1104 => 0.051738479142788
1105 => 0.050752488820544
1106 => 0.051989139493407
1107 => 0.053563820759237
1108 => 0.053465280035596
1109 => 0.053274069844904
1110 => 0.054351911678392
1111 => 0.056132190609286
1112 => 0.056613392850567
1113 => 0.056968606507334
1114 => 0.057017584469218
1115 => 0.057522087916259
1116 => 0.05480924573028
1117 => 0.059114595950158
1118 => 0.059858011000231
1119 => 0.059718279782214
1120 => 0.060544554322683
1121 => 0.060301443392315
1122 => 0.059949213797149
1123 => 0.061259034697427
1124 => 0.059757430732354
1125 => 0.057626092950616
1126 => 0.056456798890473
1127 => 0.05799661963313
1128 => 0.058936934428333
1129 => 0.059558422692709
1130 => 0.059746484665995
1201 => 0.055019835946706
1202 => 0.052472434438965
1203 => 0.05410528959941
1204 => 0.056097485588795
1205 => 0.054798178980971
1206 => 0.054849109340084
1207 => 0.052996639569097
1208 => 0.056261388058694
1209 => 0.055785741664616
1210 => 0.058253395998494
1211 => 0.057664470487551
1212 => 0.059676746803038
1213 => 0.059146847010447
1214 => 0.061346431423195
1215 => 0.06222390519681
1216 => 0.063697320230598
1217 => 0.064781170327331
1218 => 0.065417627834881
1219 => 0.06537941731342
1220 => 0.067901379040204
1221 => 0.066414266320551
1222 => 0.064546102259109
1223 => 0.06451231306522
1224 => 0.06547986170473
1225 => 0.067507578219137
1226 => 0.068033335609247
1227 => 0.068327162265177
1228 => 0.067877156513441
1229 => 0.066263002238586
1230 => 0.065566018606652
1231 => 0.06615986885462
]
'min_raw' => 0.024487300620226
'max_raw' => 0.068327162265177
'avg_raw' => 0.046407231442701
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.024487'
'max' => '$0.068327'
'avg' => '$0.0464072'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.00969415565031
'max_diff' => 0.035302508224961
'year' => 2036
]
11 => [
'items' => [
101 => 0.065433641031489
102 => 0.066687313997751
103 => 0.068408874750526
104 => 0.068053379262867
105 => 0.069241747379249
106 => 0.070471583359732
107 => 0.072230304047213
108 => 0.072690098760159
109 => 0.073450121936232
110 => 0.074232435439019
111 => 0.074483693452174
112 => 0.074963422960069
113 => 0.074960894548762
114 => 0.076406591710325
115 => 0.078001240449044
116 => 0.078603183431707
117 => 0.079987318129011
118 => 0.077617035965743
119 => 0.079414922214421
120 => 0.081036660614741
121 => 0.079103157237453
122 => 0.081768041194535
123 => 0.081871512599832
124 => 0.0834338079729
125 => 0.081850122312717
126 => 0.080909734823004
127 => 0.083624598269946
128 => 0.084938235174524
129 => 0.084542557048133
130 => 0.081531426969263
131 => 0.079778820109915
201 => 0.075191909906388
202 => 0.080625303182241
203 => 0.083271750552654
204 => 0.081524573309908
205 => 0.082405747883918
206 => 0.087213150637903
207 => 0.089043498350342
208 => 0.088662798821251
209 => 0.08872713077482
210 => 0.089714753177291
211 => 0.094094414803442
212 => 0.091470020037291
213 => 0.093476271501817
214 => 0.094540380044525
215 => 0.095528783362404
216 => 0.093101577201768
217 => 0.089943817649521
218 => 0.088943622645596
219 => 0.081350850966217
220 => 0.080955614226569
221 => 0.080733755867706
222 => 0.079334970297561
223 => 0.078235907999041
224 => 0.077361892853691
225 => 0.075068216109277
226 => 0.075842264678929
227 => 0.072186622675874
228 => 0.074525372881431
301 => 0.068690879975992
302 => 0.073550019040534
303 => 0.070905410565647
304 => 0.072681194030017
305 => 0.072674998488798
306 => 0.069405218118233
307 => 0.067519277039066
308 => 0.068721072096636
309 => 0.070009491796961
310 => 0.070218533558575
311 => 0.071889003331242
312 => 0.072355195538166
313 => 0.070942611386754
314 => 0.068569973078926
315 => 0.069121082843716
316 => 0.067508108817272
317 => 0.064681433878079
318 => 0.066711601168417
319 => 0.067404789541493
320 => 0.067710941017114
321 => 0.064931230860228
322 => 0.064057785578491
323 => 0.06359277063941
324 => 0.068211147403777
325 => 0.068464152508325
326 => 0.06716974262214
327 => 0.073020598048678
328 => 0.071696369269399
329 => 0.073175857259781
330 => 0.069071075409021
331 => 0.069227883603541
401 => 0.067284614093344
402 => 0.068372715169739
403 => 0.067603680400078
404 => 0.068284807355591
405 => 0.068693072044333
406 => 0.070636022683126
407 => 0.073572204415825
408 => 0.070345810649384
409 => 0.068940024682536
410 => 0.069812166389928
411 => 0.072134794686204
412 => 0.075653695448216
413 => 0.073570435372627
414 => 0.074494950818123
415 => 0.074696916314135
416 => 0.073160797460875
417 => 0.075710334341432
418 => 0.077076651868124
419 => 0.078478210930934
420 => 0.079695145394379
421 => 0.077918397420303
422 => 0.079819772439382
423 => 0.078287599811878
424 => 0.076913082571911
425 => 0.076915167147188
426 => 0.076052912404065
427 => 0.074382185188173
428 => 0.074074077456009
429 => 0.075676892788446
430 => 0.076962198897884
501 => 0.077068062865259
502 => 0.077779674368856
503 => 0.078200798726504
504 => 0.082328389922252
505 => 0.083988541246407
506 => 0.086018542860527
507 => 0.086809342893849
508 => 0.089189367476645
509 => 0.087267304329892
510 => 0.086851453877747
511 => 0.081078292739991
512 => 0.08202364755288
513 => 0.083537251821488
514 => 0.081103251516886
515 => 0.082647064480513
516 => 0.082951845861963
517 => 0.081020545117917
518 => 0.082052136291891
519 => 0.079312535979283
520 => 0.073631920216176
521 => 0.075716658490667
522 => 0.077251727576008
523 => 0.075060994718573
524 => 0.078987798572455
525 => 0.076693840826702
526 => 0.07596676635069
527 => 0.073130189598997
528 => 0.074468944635944
529 => 0.07627962999254
530 => 0.07516083695693
531 => 0.077482500493441
601 => 0.080770595226188
602 => 0.08311388734217
603 => 0.083293776214062
604 => 0.081787196371864
605 => 0.08420150018385
606 => 0.084219085751365
607 => 0.081495741188724
608 => 0.079827707807752
609 => 0.079448727114023
610 => 0.0803954951905
611 => 0.081545046418371
612 => 0.083357568306739
613 => 0.084452837323251
614 => 0.087308718032516
615 => 0.088081437467926
616 => 0.088930421853548
617 => 0.090064926809826
618 => 0.091427190890939
619 => 0.088446634635202
620 => 0.088565057691694
621 => 0.085789604974962
622 => 0.082823635706953
623 => 0.085074436668083
624 => 0.088017059513257
625 => 0.087342018581265
626 => 0.087266062686581
627 => 0.087393799433031
628 => 0.086884840615085
629 => 0.084582838744408
630 => 0.083426787816248
701 => 0.08491838845362
702 => 0.085711107808877
703 => 0.086940546396488
704 => 0.086788992140265
705 => 0.089955893909884
706 => 0.09118645617542
707 => 0.090871625689168
708 => 0.090929562075457
709 => 0.093157436277894
710 => 0.09563529058828
711 => 0.097956128131631
712 => 0.10031698376302
713 => 0.097470880153617
714 => 0.09602580426403
715 => 0.097516753715226
716 => 0.096725634949788
717 => 0.10127163803706
718 => 0.1015863934275
719 => 0.10613206778701
720 => 0.11044645404301
721 => 0.10773666533587
722 => 0.11029187403514
723 => 0.11305554057262
724 => 0.11838710171215
725 => 0.11659161948694
726 => 0.11521630824122
727 => 0.11391664575947
728 => 0.11662103706838
729 => 0.12010019328359
730 => 0.1208495702094
731 => 0.12206384711324
801 => 0.12078718342357
802 => 0.12232478421788
803 => 0.12775319067782
804 => 0.12628638733448
805 => 0.12420329078652
806 => 0.12848849633695
807 => 0.13003929556733
808 => 0.14092361672602
809 => 0.15466552179775
810 => 0.14897628286384
811 => 0.14544478866697
812 => 0.1462747735714
813 => 0.15129285211075
814 => 0.15290449967174
815 => 0.14852348603274
816 => 0.15007093411385
817 => 0.1585975251825
818 => 0.16317176772504
819 => 0.15695933194954
820 => 0.1398194680337
821 => 0.12401573073403
822 => 0.12820759351747
823 => 0.12773236636647
824 => 0.13689312475584
825 => 0.12625140455984
826 => 0.12643058383573
827 => 0.13578077700718
828 => 0.13328630577193
829 => 0.12924558183856
830 => 0.12404523249048
831 => 0.11443190574646
901 => 0.10591711416183
902 => 0.12261658129867
903 => 0.12189646990972
904 => 0.12085364190399
905 => 0.12317434278497
906 => 0.13444300752056
907 => 0.13418322832529
908 => 0.13253064562554
909 => 0.13378411503811
910 => 0.1290258425901
911 => 0.1302521577438
912 => 0.1240132273413
913 => 0.12683348444398
914 => 0.12923691225978
915 => 0.12971943597716
916 => 0.13080658655069
917 => 0.12151700392986
918 => 0.12568775379879
919 => 0.12813767860038
920 => 0.11706882921779
921 => 0.12791888303715
922 => 0.12135529296389
923 => 0.11912751191121
924 => 0.12212692561081
925 => 0.12095805117505
926 => 0.11995312157379
927 => 0.11939235358941
928 => 0.12159479197718
929 => 0.12149204559391
930 => 0.11788842891664
1001 => 0.11318765786335
1002 => 0.11476539092638
1003 => 0.11419218571326
1004 => 0.11211481607594
1005 => 0.11351471238893
1006 => 0.10735027749786
1007 => 0.096744687667215
1008 => 0.10375106516734
1009 => 0.10348132725506
1010 => 0.10334531316804
1011 => 0.10861041221734
1012 => 0.10810429443025
1013 => 0.10718568569077
1014 => 0.11209794510606
1015 => 0.11030490434027
1016 => 0.11583063348691
1017 => 0.11947023608465
1018 => 0.11854711513705
1019 => 0.12197017897195
1020 => 0.11480173870958
1021 => 0.11718280701684
1022 => 0.11767354189494
1023 => 0.11203732858739
1024 => 0.10818710155948
1025 => 0.10793033531252
1026 => 0.1012545722401
1027 => 0.10482071098851
1028 => 0.10795876551026
1029 => 0.10645588091721
1030 => 0.10598011255245
1031 => 0.10841070994644
1101 => 0.10859958818061
1102 => 0.10429314442508
1103 => 0.10518859044919
1104 => 0.10892274922526
1105 => 0.1050944992289
1106 => 0.097656834827049
1107 => 0.095812191221635
1108 => 0.095566081761146
1109 => 0.090563262002735
1110 => 0.095935459127856
1111 => 0.093590351116808
1112 => 0.100998519225
1113 => 0.096767013332403
1114 => 0.096584601570777
1115 => 0.096308859439091
1116 => 0.092002725809145
1117 => 0.092945495405034
1118 => 0.096079405129635
1119 => 0.097197619425393
1120 => 0.097080980513086
1121 => 0.096064047262286
1122 => 0.096529594096961
1123 => 0.095029905535203
1124 => 0.094500334290728
1125 => 0.092828861773119
1126 => 0.090372258928301
1127 => 0.090713864621093
1128 => 0.085846691580409
1129 => 0.083194797387419
1130 => 0.082460788026203
1201 => 0.081479240032023
1202 => 0.082571656483946
1203 => 0.085832903490713
1204 => 0.081899147688403
1205 => 0.075154999286228
1206 => 0.075560334096669
1207 => 0.076471001070743
1208 => 0.074773979189221
1209 => 0.07316789039861
1210 => 0.074564254295944
1211 => 0.071706669711405
1212 => 0.076816326515513
1213 => 0.076678124618609
1214 => 0.078582688696124
1215 => 0.079773651699383
1216 => 0.077028867555722
1217 => 0.076338561766276
1218 => 0.076731791316593
1219 => 0.070232582779503
1220 => 0.078051564702202
1221 => 0.07811918358256
1222 => 0.077540189676323
1223 => 0.081703556166177
1224 => 0.090489558046341
1225 => 0.087183910722916
1226 => 0.085903864165567
1227 => 0.083470494724338
1228 => 0.086712815025595
1229 => 0.086463855414534
1230 => 0.08533796563819
1231 => 0.084657023988466
]
'min_raw' => 0.06359277063941
'max_raw' => 0.16317176772504
'avg_raw' => 0.11338226918223
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.063592'
'max' => '$0.163171'
'avg' => '$0.113382'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.039105470019184
'max_diff' => 0.094844605459867
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0019961044045397
]
1 => [
'year' => 2028
'avg' => 0.0034258946314392
]
2 => [
'year' => 2029
'avg' => 0.00935892667566
]
3 => [
'year' => 2030
'avg' => 0.00722039799254
]
4 => [
'year' => 2031
'avg' => 0.0070913256427465
]
5 => [
'year' => 2032
'avg' => 0.012433325574048
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0019961044045397
'min' => '$0.001996'
'max_raw' => 0.012433325574048
'max' => '$0.012433'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.012433325574048
]
1 => [
'year' => 2033
'avg' => 0.031979791880242
]
2 => [
'year' => 2034
'avg' => 0.02027032897058
]
3 => [
'year' => 2035
'avg' => 0.023908899505066
]
4 => [
'year' => 2036
'avg' => 0.046407231442701
]
5 => [
'year' => 2037
'avg' => 0.11338226918223
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.012433325574048
'min' => '$0.012433'
'max_raw' => 0.11338226918223
'max' => '$0.113382'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.11338226918223
]
]
]
]
'prediction_2025_max_price' => '$0.003412'
'last_price' => 0.00330931
'sma_50day_nextmonth' => '$0.003421'
'sma_200day_nextmonth' => '$0.00683'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'augmenter'
'sma_200day_date_nextmonth' => '4 févr. 2026'
'sma_50day_date_nextmonth' => '4 févr. 2026'
'daily_sma3' => '$0.00322'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.00304'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.002654'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.004092'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.005581'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.006257'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.007592'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.003203'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.003088'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.003129'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.003743'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.004955'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.005947'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.006732'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.006151'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.006839'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.008589'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.021484'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.0034085'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.003787'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.004678'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.005763'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.006873'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.012266'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.041891'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '43.01'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 59.9
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.002470'
'vwma_10_action' => 'BUY'
'hma_9' => '0.003397'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 41.3
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => -23.81
'cci_20_action' => 'NEUTRAL'
'adx_14' => 24.17
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.001418'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -58.7
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 68.89
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.000545'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 19
'buy_signals' => 14
'sell_pct' => 57.58
'buy_pct' => 42.42
'overall_action' => 'bearish'
'overall_action_label' => 'Baissier'
'overall_action_dir' => -1
'last_updated' => 1767686260
'last_updated_date' => '6 janvier 2026'
]
Prévision du prix de NFT Protocol pour 2026
La prévision du prix de NFT Protocol pour 2026 suggère que le prix moyen pourrait varier entre $0.001143 à la baisse et $0.003412 à la hausse. Sur le marché des cryptomonnaies, comparé au prix moyen d'aujourd'hui, NFT Protocol pourrait potentiellement gagner 3.13% d'ici 2026 si NFT atteint l'objectif de prix prévu.
Prévision du prix de NFT Protocol de 2027 à 2032
La prévision du prix de NFT pour 2027-2032 se situe actuellement dans une fourchette de prix comprise entre $0.001996 à la baisse et $0.012433 à la hausse. Compte tenu de la volatilité des prix sur le marché, si NFT Protocol atteint l'objectif de prix le plus élevé, il pourrait gagner 275.71% d'ici 2032 par rapport au prix actuel.
| Prévision du Prix de NFT Protocol | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2027 | $0.00110068 | $0.001996 | $0.002891 |
| 2028 | $0.001986 | $0.003425 | $0.004865 |
| 2029 | $0.004363 | $0.009358 | $0.014354 |
| 2030 | $0.003711 | $0.00722 | $0.010729 |
| 2031 | $0.004387 | $0.007091 | $0.009795 |
| 2032 | $0.006697 | $0.012433 | $0.018169 |
Prévision du prix de NFT Protocol de 2032 à 2037
La prévision du prix de NFT Protocol pour 2032-2037 est actuellement estimée entre $0.012433 à la baisse et $0.113382 à la hausse. Par rapport au prix actuel, NFT Protocol pourrait potentiellement gagner 3326.16% d'ici 2037 s'il atteint l'objectif de prix le plus élevé. Veuillez noter que ces informations sont à titre général seulement et ne doivent pas être considérées comme un conseil en investissement à long terme.
| Prévision du Prix de NFT Protocol | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2032 | $0.006697 | $0.012433 | $0.018169 |
| 2033 | $0.015563 | $0.031979 | $0.048396 |
| 2034 | $0.012512 | $0.02027 | $0.028028 |
| 2035 | $0.014793 | $0.0239088 | $0.033024 |
| 2036 | $0.024487 | $0.0464072 | $0.068327 |
| 2037 | $0.063592 | $0.113382 | $0.163171 |
NFT Protocol Histogramme des prix potentiels
Prévision du prix de NFT Protocol basée sur l'analyse technique
Au 6 janvier 2026, le sentiment global de prévision du prix pour NFT Protocol est Baissier, avec 14 indicateurs techniques montrant des signaux haussiers et 19 indiquant des signaux baissiers. La prévision du prix de NFT a été mise à jour pour la dernière fois le 6 janvier 2026.
Moyennes Mobiles Simples sur 50 et 200 jours de NFT Protocol et Indice de Force Relative sur 14 jours - RSI (14)
Selon nos indicateurs techniques, le SMA sur 200 jours de NFT Protocol devrait augmenter au cours du prochain mois, atteignant $0.00683 d'ici le 4 févr. 2026. Le SMA à court terme sur 50 jours pour NFT Protocol devrait atteindre $0.003421 d'ici le 4 févr. 2026.
Le Relative Strength Index (RSI), un oscillateur de momentum, est un outil couramment utilisé pour identifier si une cryptomonnaie est survendue (en dessous de 30) ou surachetée (au-dessus de 70). Actuellement, le RSI est à 43.01, ce qui suggère que le marché de NFT est dans un état NEUTRAL.
Moyennes Mobiles et Oscillateurs Populaires de NFT pour le Samedi 19 Octobre 2024
Les moyennes mobiles (MA) sont des indicateurs largement utilisés sur les marchés financiers, conçus pour lisser les mouvements de prix sur une période donnée. En tant qu'indicateurs retardés, ils sont basés sur des données historiques de prix. Le tableau ci-dessous met en évidence deux types : la moyenne mobile simple (SMA) et la moyenne mobile exponentielle (EMA).
Moyenne Mobile Simple Quotidienne (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 3 | $0.00322 | BUY |
| SMA 5 | $0.00304 | BUY |
| SMA 10 | $0.002654 | BUY |
| SMA 21 | $0.004092 | SELL |
| SMA 50 | $0.005581 | SELL |
| SMA 100 | $0.006257 | SELL |
| SMA 200 | $0.007592 | SELL |
Moyenne Mobile Exponentielle Quotidienne (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 3 | $0.003203 | BUY |
| EMA 5 | $0.003088 | BUY |
| EMA 10 | $0.003129 | BUY |
| EMA 21 | $0.003743 | SELL |
| EMA 50 | $0.004955 | SELL |
| EMA 100 | $0.005947 | SELL |
| EMA 200 | $0.006732 | SELL |
Moyenne Mobile Simple Hebdomadaire (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 21 | $0.006151 | SELL |
| SMA 50 | $0.006839 | SELL |
| SMA 100 | $0.008589 | SELL |
| SMA 200 | $0.021484 | SELL |
Moyenne Mobile Exponentielle Hebdomadaire (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 21 | $0.005763 | SELL |
| EMA 50 | $0.006873 | SELL |
| EMA 100 | $0.012266 | SELL |
| EMA 200 | $0.041891 | SELL |
Oscillateurs de NFT Protocol
Un oscillateur est un outil d'analyse technique qui établit des limites hautes et basses entre deux extrêmes, créant un indicateur de tendance qui fluctue à l'intérieur de ces limites. Les traders utilisent cet indicateur pour identifier les conditions de surachat ou de survente à court terme.
| Période | Valeur | Action |
|---|---|---|
| RSI (14) | 43.01 | NEUTRAL |
| Stoch RSI (14) | 59.9 | NEUTRAL |
| Stochastique Rapide (14) | 41.3 | NEUTRAL |
| Indice de Canal des Matières Premières (20) | -23.81 | NEUTRAL |
| Indice Directionnel Moyen (14) | 24.17 | NEUTRAL |
| Oscillateur Impressionnant (5, 34) | -0.001418 | NEUTRAL |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Plage de Pourcentage de Williams (14) | -58.7 | NEUTRAL |
| Oscillateur Ultime (7, 14, 28) | 68.89 | NEUTRAL |
| VWMA (10) | 0.002470 | BUY |
| Moyenne Mobile de Hull (9) | 0.003397 | BUY |
| Nuage Ichimoku B/L (9, 26, 52, 26) | -0.000545 | SELL |
Prévision du cours de NFT Protocol basée sur les flux monétaires mondiaux
Définitions des flux monétaires mondiaux utilisés pour la prédiction du cours de NFT Protocol
M0 : le total de toutes les devises physiques, plus les comptes à la banque centrale qui peuvent être échangés contre des devises physiques.
M1 : M0 plus le montant des comptes à vue, y compris les comptes de "chèques" et les comptes "courants".
M2 : M1 plus la plupart des comptes d'épargne, comptes du marché monétaire et comptes de certificats de dépôt (CD) de moins de 100 000 $.
Prédictions du cours de NFT Protocol par des sociétés Internet ou des niches technologiques
| Comparaison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Action Facebook | $0.00465 | $0.006534 | $0.009181 | $0.0129017 | $0.018129 | $0.025474 |
| Action Amazon.com | $0.006905 | $0.0144078 | $0.030062 | $0.062727 | $0.130885 | $0.2731002 |
| Action Apple | $0.004694 | $0.006658 | $0.009443 | $0.013395 | $0.01900059 | $0.02695 |
| Action Netflix | $0.005221 | $0.008238 | $0.012999 | $0.020511 | $0.032363 | $0.051064 |
| Action Google | $0.004285 | $0.005549 | $0.007186 | $0.009307 | $0.012052 | $0.0156079 |
| Action Tesla | $0.0075019 | $0.0170063 | $0.038552 | $0.087394 | $0.198117 | $0.449117 |
| Action Kodak | $0.002481 | $0.00186 | $0.001395 | $0.001046 | $0.000784 | $0.000588 |
| Action Nokia | $0.002192 | $0.001452 | $0.000962 | $0.000637 | $0.000422 | $0.000279 |
Ce calcul montre la valeur potentielle des cryptomonnaies si l'on suppose que leur capitalisation se comportera comme celle de certaines sociétés Internet ou niches technologiques. En extrapolant les données, vous pourrez obtenir une potentielle image des cours futurs pour 2024, 2025, 2026, 2027, 2028, 2029 et 2030.
Aperçu des prévisions relatives à NFT Protocol
Vous vous posez peut-être des questions telles que : "Devrais-je investir dans NFT Protocol maintenant ?", "Devrais-je acheter NFT aujourd'hui ?", " NFT Protocol sera-t-il un bon ou un mauvais investissement à court ou à long terme ?".
Nous mettons régulièrement à jour les prévisions de NFT Protocol avec de nouvelles valeurs. Regardez nos prévisions similaires. Nous faisons une prévision des cours futurs pour une grande quantité de devises numériques comme NFT Protocol en utilisant des méthodes d'analyse technique.
Si vous souhaitez trouver des cryptomonnaies ayant un bon rendement, vous devriez consulter un maximum d'informations disponibles à propos de NFT Protocol afin de prendre une décision responsable concernant cet investissement.
Le cours de NFT Protocol est de $0.003309 USD actuellement, mais ce cours peut subir une hausse ou une baisse, ce qui pourrait causer la perte de votre investissement, car les cryptomonnaies sont des actifs à haut risque.
Prévision du cours de NFT Protocol basée sur le modèle de croissance du Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si NFT Protocol présente 1 % de la précédente croissance annuelle moyenne du Bitcoin | $0.003395 | $0.003483 | $0.003574 | $0.003667 |
| Si NFT Protocol présente 2 % de la précédente croissance annuelle moyenne du Bitcoin | $0.003481 | $0.003662 | $0.003852 | $0.004053 |
| Si NFT Protocol présente 5 % de la précédente croissance annuelle moyenne du Bitcoin | $0.003739 | $0.004225 | $0.004774 | $0.005395 |
| Si NFT Protocol présente 10 % de la précédente croissance annuelle moyenne du Bitcoin | $0.004169 | $0.005253 | $0.006618 | $0.008339 |
| Si NFT Protocol présente 20 % de la précédente croissance annuelle moyenne du Bitcoin | $0.005029 | $0.007644 | $0.011618 | $0.017658 |
| Si NFT Protocol présente 50 % de la précédente croissance annuelle moyenne du Bitcoin | $0.00761 | $0.017501 | $0.040246 | $0.092553 |
| Si NFT Protocol présente 100 % de la précédente croissance annuelle moyenne du Bitcoin | $0.011911 | $0.042872 | $0.154311 | $0.555417 |
Boîte à questions
Est-ce que NFT est un bon investissement ?
La décision d'acquérir NFT Protocol dépend entièrement de votre tolérance individuelle au risque. Comme vous pouvez le discerner, la valeur de NFT Protocol a connu une hausse de 0.3691% au cours des 24 heures précédentes, et NFT Protocol a enregistré une déclin de sur une période de 30 jours précédents. Par conséquent, la détermination de si investir ou non dans NFT Protocol dépendra de la mesure dans laquelle cet investissement s'aligne avec vos aspirations de trading.
Est-ce que NFT Protocol peut monter ?
Il semble que la valeur moyenne de NFT Protocol pourrait potentiellement s'envoler jusqu'à $0.003412 pour la fin de cette année. En regardant les perspectives de NFT Protocol sur une période de cinq ans plus longue, la monnaie numérique pourrait potentiellement croître jusqu'à $0.010729. Cependant, compte tenu de l'imprévisibilité du marché, il est essentiel de mener des recherches approfondies avant d'investir des fonds dans un projet, un réseau ou un actif particulier.
Quel sera le prix de NFT Protocol la semaine prochaine ?
Basé sur notre nouveau pronostic expérimental de NFT Protocol, le prix de NFT Protocol va augmenter de 0.86% durant la prochaine semaine et atteindre $0.003337 d'ici 13 janvier 2026.
Quel sera le prix de NFT Protocol le mois prochain ?
Basé sur notre nouveau pronostic expérimental de NFT Protocol, le prix de NFT Protocol va diminuer de -11.62% durant le prochain mois et atteindre $0.002924 d'ici 5 février 2026.
Jusqu'où le prix de NFT Protocol peut-il monter cette année en 2026 ?
Selon notre prédiction la plus récente sur la valeur de NFT Protocol en 2026, NFT devrait fluctuer dans la fourchette de $0.001143 et $0.003412. Cependant, il est crucial de garder à l'esprit que le marché des cryptomonnaies est exceptionnellement instable, et cette prévision de prix de NFT Protocol ne prend pas en compte les fluctuations de prix soudaines et extrêmes.
Où sera NFT Protocol dans 5 ans ?
L'avenir de NFT Protocol semble suivre une tendance haussière, avec un prix maximum de $0.010729 prévue après une période de cinq ans. Selon la prévision de NFT Protocol pour 2030, la valeur de NFT Protocol pourrait potentiellement atteindre son point le plus élevé d'environ $0.010729, tandis que son point le plus bas devrait être autour de $0.003711.
Combien vaudra NFT Protocol en 2026 ?
Basé sur notre nouvelle simulation expérimentale de prédiction de prix de NFT Protocol, il est attendu que la valeur de NFT en 2026 augmente de 3.13% jusqu'à $0.003412 si le meilleur scénario se produit. Le prix sera entre $0.003412 et $0.001143 durant 2026.
Combien vaudra NFT Protocol en 2027 ?
Selon notre dernière simulation expérimentale pour la prédiction de prix de NFT Protocol, le valeur de NFT pourrait diminuer de -12.62% jusqu'à $0.002891 en 2027, en supposant les conditions les plus favorables. Il est prévu que le prix fluctue entre $0.002891 et $0.00110068 tout au long de l'année.
Combien vaudra NFT Protocol en 2028 ?
Notre nouveau modèle expérimental de prédiction de prix de NFT Protocol suggère que la valeur de NFT en 2028 pourrait augmenter de 47.02%, atteignant $0.004865 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.004865 et $0.001986 durant l'année.
Combien vaudra NFT Protocol en 2029 ?
Basé sur notre modèle de prévision expérimental, la valeur de NFT Protocol pourrait connaître un 333.75% croissance en 2029, atteignant potentiellement $0.014354 sous des conditions optimales. Le range de prix prévu pour 2029 se situe entre $0.014354 et $0.004363.
Combien vaudra NFT Protocol en 2030 ?
En utilisant notre nouvelle simulation expérimentale pour les prédictions de prix de NFT Protocol, il est prévu que la valeur de NFT en 2030 augmente de 224.23%, atteignant $0.010729 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.010729 et $0.003711 au cours de 2030.
Combien vaudra NFT Protocol en 2031 ?
Notre simulation expérimentale indique que le prix de NFT Protocol pourrait augmenter de 195.98% en 2031, atteignant potentiellement $0.009795 dans des conditions idéales. Il est probable que le prix fluctue entre $0.009795 et $0.004387 durant l'année.
Combien vaudra NFT Protocol en 2032 ?
Basé sur les résultats de notre dernière prédiction expérimentale de prix de NFT Protocol, NFT pourrait connaître une 449.04% hausse en valeur, atteignant $0.018169 si le scénario le plus positif se réalise en 2032. Il est prévu que le prix reste dans une fourchette de $0.018169 et $0.006697 tout au long de l'année.
Combien vaudra NFT Protocol en 2033 ?
Selon notre prédiction expérimentale de prix de NFT Protocol, la valeur de NFT est anticipée à augmenter de 1362.43% en 2033, avec le prix potentiel le plus élevé étant $0.048396. Tout au long de l'année, le prix de NFT pourrait osciller entre $0.048396 et $0.015563.
Combien vaudra NFT Protocol en 2034 ?
Les résultats de notre nouvelle simulation de prédiction de prix de NFT Protocol suggèrent que NFT pourrait augmenter de 746.96% en 2034, atteignant potentiellement $0.028028 dans les meilleures circonstances. La fourchette de prix prévue pour l'année est entre $0.028028 et $0.012512.
Combien vaudra NFT Protocol en 2035 ?
Basé sur notre prédiction expérimentale pour le prix de NFT Protocol, NFT pourrait augmenter de 897.93%, avec la valeur potentiellement atteignant $0.033024 en 2035. La fourchette de prix attendue pour l'année se situe entre $0.033024 et $0.014793.
Combien vaudra NFT Protocol en 2036 ?
Notre récente simulation de prédiction de prix de NFT Protocol suggère que la valeur de NFT pourrait augmenter de 1964.7% en 2036, pouvant atteindre $0.068327 si les conditions sont optimales. La fourchette de prix attendue pour 2036 est entre $0.068327 et $0.024487.
Combien vaudra NFT Protocol en 2037 ?
Selon la simulation expérimentale, la valeur de NFT Protocol pourrait augmenter de 4830.69% en 2037, avec un maximum de $0.163171 sous des conditions favorables. Il est prévu que le prix chute entre $0.163171 et $0.063592 au cours de l'année.
Prévisions liées
Prévision du cours de BattleFly
Prévision du cours de Revolt 2 Earn
Prévision du cours de Onix Coin
Prévision du cours de Koyo
Prévision du cours de Nelore Coin
Prévision du cours de Kaicoin
Prévision du cours de Garlicoin
Prévision du cours de Tokoin
Prévision du cours de Monsta Infinite
Prévision du cours de Primecoin
Prévision du cours de KleeKai
Prévision du cours de Public Mint
Prévision du cours de xWIN Finance
Prévision du cours de Konomi Network
Prévision du cours de Zasset zUSD
Prévision du cours de Hive Game Token
Prévision du cours de Zclassic
Prévision du cours de BlockBank
Prévision du cours de YfDAI.finance
Prévision du cours de Cook
Prévision du cours de Genesis Vision
Prévision du cours de ELYFI
Prévision du cours de Waves Ducks
Prévision du cours de Rio DeFi
Prévision du cours de Phoenixcoin
Comment lire et prédire les mouvements de prix de NFT Protocol ?
Les traders de NFT Protocol utilisent des indicateurs et des modèles graphiques pour prédire la direction du marché. Ils identifient également des niveaux clés de support et de résistance pour évaluer quand une tendance baissière pourrait ralentir ou une tendance haussière pourrait s'arrêter.
Indicateurs de prédiction du prix de NFT Protocol
Les moyennes mobiles sont des outils populaires pour la prédiction du prix de NFT Protocol. Une moyenne mobile simple (SMA) calcule le prix de clôture moyen de NFT sur une période spécifique, comme une SMA de 12 jours. Une moyenne mobile exponentielle (EMA) donne plus de poids aux prix récents, réagissant plus rapidement aux changements de prix.
Les moyennes mobiles couramment utilisées sur le marché des cryptomonnaies incluent les moyennes sur 50 jours, 100 jours et 200 jours, qui aident à identifier les niveaux clés de résistance et de support. Un mouvement de prix de NFT au-dessus de ces moyennes est considéré comme haussier, tandis qu'une chute en dessous indique une faiblesse.
Les traders utilisent également le RSI et les niveaux de retracement de Fibonacci pour évaluer la direction future de NFT.
Comment lire les graphiques de NFT Protocol et prédire les mouvements de prix ?
La plupart des traders préfèrent les graphiques en chandeliers aux simples graphiques linéaires parce qu'ils fournissent des informations plus détaillées. Les chandeliers peuvent représenter l'action des prix de NFT Protocol dans différentes périodes, comme 5 minutes pour les tendances à court terme et hebdomadaire pour les tendances à long terme. Les options populaires incluent les graphiques de 1 heure, 4 heures et 1 jour.
Par exemple, un graphique en chandeliers de 1 heure montre les prix d'ouverture, de clôture, les plus hauts et les plus bas de NFT au sein de chaque heure. La couleur du chandelier est cruciale : le vert indique que le prix a clôturé plus haut qu'il n'a ouvert, tandis que le rouge signifie le contraire. Certains graphiques utilisent des chandeliers creux et pleins pour transmettre la même information.
Qu'est-ce qui affecte le prix de NFT Protocol ?
L'action du prix de NFT Protocol est déterminée par l'offre et la demande, influencée par des facteurs tels que les réductions de récompenses de bloc, les hard forks et les mises à jour de protocole. Les événements du monde réel, tels que les réglementations, l'adoption par les entreprises et les gouvernements et les piratages d'échanges de cryptomonnaies, impactent également le prix de NFT. La capitalisation boursière de NFT Protocol peut changer rapidement.
Les traders surveillent souvent l'activité des « baleines » de NFT, de grands détenteurs de NFT Protocol, car leurs actions peuvent influencer significativement les mouvements de prix sur le marché relativement petit de NFT Protocol.
Modèles de prédiction de prix haussiers et baissiers
Les traders identifient souvent des modèles de chandeliers pour obtenir un avantage dans les prédictions de prix des cryptomonnaies. Certaines formations indiquent des tendances haussières, tandis que d'autres suggèrent des mouvements baissiers.
Modèles de chandeliers haussiers couramment suivis :
- Marteau
- Englobante haussière
- Ligne pénétrante
- Étoile du matin
- Trois soldats blancs
Modèles de chandeliers baissiers courants :
- Harami baissier
- Nuage sombre
- Étoile du soir
- Étoile filante
- Pendu


