Prédiction du prix de Netvrk jusqu'à $0.0045058 d'ici 2026
| Année | Prix min. | Prix max. |
|---|---|---|
| 2026 | $0.0015094 | $0.0045058 |
| 2027 | $0.001453 | $0.003817 |
| 2028 | $0.002622 | $0.006423 |
| 2029 | $0.00576 | $0.01895 |
| 2030 | $0.004899 | $0.014165 |
| 2031 | $0.005792 | $0.012931 |
| 2032 | $0.008841 | $0.023987 |
| 2033 | $0.020546 | $0.063893 |
| 2034 | $0.016518 | $0.0370037 |
| 2035 | $0.01953 | $0.043599 |
Calculateur de profit d’investissement
Si vous ouvrez une position short de $10,000.00 sur Netvrk aujourd’hui et la fermez le Apr 06, 2026, notre prévision indique que vous pourriez gagner environ $3,955.14, soit un rendement de 39.55% sur les 90 prochains jours.
Prévision du prix à long terme de Netvrk pour 2027, 2028, 2029, 2030, 2031, 2032 et 2037
[
'name' => 'Netvrk'
'name_with_ticker' => 'Netvrk <small>NETVR</small>'
'name_lang' => 'Netvrk'
'name_lang_with_ticker' => 'Netvrk <small>NETVR</small>'
'name_with_lang' => 'Netvrk'
'name_with_lang_with_ticker' => 'Netvrk <small>NETVR</small>'
'image' => '/uploads/coins/netvrk.png?1717262466'
'price_for_sd' => 0.004368
'ticker' => 'NETVR'
'marketcap' => '$434.31K'
'low24h' => '$0.004332'
'high24h' => '$0.004681'
'volume24h' => '$5.69K'
'current_supply' => '99.53M'
'max_supply' => '100M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.004368'
'change_24h_pct' => '-6.5543%'
'ath_price' => '$7.33'
'ath_days' => 1503
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '25 nov. 2021'
'ath_pct' => '-99.94%'
'fdv' => '$436.34K'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.215421'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.004406'
'next_week_prediction_price_date' => '13 janvier 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.003861'
'next_month_prediction_price_date' => '5 février 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.0015094'
'current_year_max_price_prediction' => '$0.0045058'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.004899'
'grand_prediction_max_price' => '$0.014165'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.004451790251906
107 => 0.0044684116207068
108 => 0.004505860413323
109 => 0.0041858645806112
110 => 0.0043295333149148
111 => 0.0044139252363781
112 => 0.0040326394650022
113 => 0.0044063884426053
114 => 0.0041802941650902
115 => 0.0041035543714795
116 => 0.0042068743938773
117 => 0.0041666104806668
118 => 0.0041319939324648
119 => 0.0041126773037803
120 => 0.0041885441252145
121 => 0.0041850048473141
122 => 0.0040608720023323
123 => 0.0038989457663556
124 => 0.0039532935261968
125 => 0.0039335484755335
126 => 0.0038619898647675
127 => 0.0039102117284042
128 => 0.0036978670454748
129 => 0.003332539055211
130 => 0.0035738859158783
131 => 0.0035645943242774
201 => 0.0035599090824522
202 => 0.0037412745779063
203 => 0.0037238404703323
204 => 0.0036921973943702
205 => 0.0038614087148626
206 => 0.0037996443066695
207 => 0.0039899876591961
208 => 0.0041153601018063
209 => 0.0040835615949867
210 => 0.0042014749832392
211 => 0.0039545455888165
212 => 0.004036565628556
213 => 0.0040534698450714
214 => 0.0038593206734338
215 => 0.0037266929059427
216 => 0.0037178481459182
217 => 0.0034878898743209
218 => 0.0036107317268499
219 => 0.0037188274735341
220 => 0.0036670579994412
221 => 0.0036506693305124
222 => 0.003734395485801
223 => 0.0037409017251329
224 => 0.0035925587788642
225 => 0.0036234039748036
226 => 0.0037520335694582
227 => 0.0036201628390478
228 => 0.0033639595508221
301 => 0.0033004175930546
302 => 0.0032919399245777
303 => 0.0031196090955359
304 => 0.0033046637705103
305 => 0.003223882445727
306 => 0.0034790696828085
307 => 0.0033333081015842
308 => 0.0033270246111476
309 => 0.003317526193765
310 => 0.0031691939303118
311 => 0.0032016692690009
312 => 0.0033096222409373
313 => 0.0033481410775015
314 => 0.0033441232472724
315 => 0.0033090932124813
316 => 0.0033251297830258
317 => 0.0032734704017903
318 => 0.003255228399079
319 => 0.003197651620664
320 => 0.0031130296623849
321 => 0.0031247968647002
322 => 0.0029571386228095
323 => 0.0028657895143311
324 => 0.0028405052850662
325 => 0.0028066941569924
326 => 0.0028443243419501
327 => 0.0029566636680754
328 => 0.0028211586066507
329 => 0.0025888446834129
330 => 0.0026028071460432
331 => 0.002634176654081
401 => 0.0025757197833826
402 => 0.0025203952611798
403 => 0.0025684954446147
404 => 0.0024700609727986
405 => 0.0026460719897237
406 => 0.0026413113849811
407 => 0.0027069174076425
408 => 0.0027479421999838
409 => 0.0026533933355713
410 => 0.0026296145518589
411 => 0.002643160027747
412 => 0.0024192834842378
413 => 0.0026886219177755
414 => 0.0026909511677332
415 => 0.0026710067154663
416 => 0.0028144211164339
417 => 0.003117070234549
418 => 0.0030032014622815
419 => 0.0029591080319577
420 => 0.00287528638868
421 => 0.0029869737515108
422 => 0.0029783979046397
423 => 0.0029396146727951
424 => 0.0029161584531644
425 => 0.0029593772570409
426 => 0.0029108031650828
427 => 0.0029020779234403
428 => 0.0028492124522436
429 => 0.002830341884252
430 => 0.00281637086697
501 => 0.0028009901497064
502 => 0.0028349161793541
503 => 0.0027580353328315
504 => 0.0026653245686476
505 => 0.00265761667175
506 => 0.0026788988527693
507 => 0.0026694830719403
508 => 0.0026575715926139
509 => 0.0026348293346815
510 => 0.0026280821925644
511 => 0.002650007131197
512 => 0.0026252551537841
513 => 0.0026617780447668
514 => 0.0026518458393232
515 => 0.0025963653471008
516 => 0.0025272161122826
517 => 0.0025266005390472
518 => 0.0025117024498331
519 => 0.0024927274932763
520 => 0.0024874490944503
521 => 0.0025644445813282
522 => 0.0027238229348843
523 => 0.0026925331504804
524 => 0.0027151432264183
525 => 0.0028263624220179
526 => 0.0028617156598211
527 => 0.0028366227690157
528 => 0.0028022740724192
529 => 0.0028037852407469
530 => 0.0029211651350748
531 => 0.0029284859751029
601 => 0.0029469833760614
602 => 0.0029707577636581
603 => 0.0028406716500268
604 => 0.0027976581964933
605 => 0.0027772760359136
606 => 0.0027145068702169
607 => 0.0027821980339992
608 => 0.0027427572916879
609 => 0.0027480791953133
610 => 0.0027446132985956
611 => 0.0027465059125664
612 => 0.0026460227910574
613 => 0.0026826335592979
614 => 0.0026217610563228
615 => 0.0025402596080983
616 => 0.0025399863866657
617 => 0.0025599337506556
618 => 0.002548068278014
619 => 0.0025161385962246
620 => 0.0025206740568189
621 => 0.0024809386495765
622 => 0.0025254986546909
623 => 0.0025267764761942
624 => 0.0025096184470253
625 => 0.0025782692829997
626 => 0.0026063955865122
627 => 0.0025951018041526
628 => 0.0026056031846349
629 => 0.0026938333822873
630 => 0.0027082187542581
701 => 0.0027146077862432
702 => 0.0027060473297677
703 => 0.0026072158706816
704 => 0.0026115994661558
705 => 0.0025794355511268
706 => 0.0025522604322772
707 => 0.0025533472945164
708 => 0.0025673188381233
709 => 0.0026283333884748
710 => 0.0027567349126853
711 => 0.0027616076566688
712 => 0.0027675135645248
713 => 0.0027434912692031
714 => 0.0027362459150717
715 => 0.0027458044073556
716 => 0.0027940252688176
717 => 0.0029180624163342
718 => 0.0028742194042393
719 => 0.002838574352949
720 => 0.0028698446727674
721 => 0.0028650308521362
722 => 0.0028243973615513
723 => 0.0028232569148046
724 => 0.0027452682550592
725 => 0.0027164376232673
726 => 0.0026923445894065
727 => 0.0026660356253951
728 => 0.0026504387896447
729 => 0.0026744026179924
730 => 0.0026798834290672
731 => 0.0026274860995689
801 => 0.0026203445371731
802 => 0.0026631333275163
803 => 0.0026443035762131
804 => 0.0026636704423838
805 => 0.0026681637214613
806 => 0.0026674402000408
807 => 0.0026477797770971
808 => 0.0026603107443992
809 => 0.0026306712710687
810 => 0.0025984427955268
811 => 0.002577883036036
812 => 0.0025599419190239
813 => 0.0025698966934861
814 => 0.0025344097401985
815 => 0.0025230567496306
816 => 0.0026560655346329
817 => 0.0027543205541996
818 => 0.0027528918873018
819 => 0.002744195244985
820 => 0.0027312737985517
821 => 0.0027930799845283
822 => 0.0027715479451878
823 => 0.0027872143028701
824 => 0.0027912020484152
825 => 0.0028032717531482
826 => 0.002807585635164
827 => 0.0027945460875284
828 => 0.0027507837730167
829 => 0.0026417322460495
830 => 0.0025909684658673
831 => 0.0025742155728695
901 => 0.0025748245087117
902 => 0.0025580273397747
903 => 0.0025629748588229
904 => 0.0025563067945565
905 => 0.0025436790940141
906 => 0.0025691169685615
907 => 0.0025720484466329
908 => 0.0025661109427535
909 => 0.0025675094398579
910 => 0.0025183494436781
911 => 0.0025220869714177
912 => 0.0025012759420213
913 => 0.0024973741248902
914 => 0.0024447656547996
915 => 0.0023515621243144
916 => 0.0024032059276888
917 => 0.0023408274754302
918 => 0.0023172038103721
919 => 0.0024290345665236
920 => 0.0024178098603083
921 => 0.0023985980425303
922 => 0.0023701797599429
923 => 0.002359639142496
924 => 0.0022955976876424
925 => 0.0022918137768418
926 => 0.002323554451132
927 => 0.002308907222077
928 => 0.0022883369651443
929 => 0.0022138335797078
930 => 0.0021300671072539
1001 => 0.00213259549052
1002 => 0.002159240046877
1003 => 0.0022367126879928
1004 => 0.0022064427868185
1005 => 0.0021844816262095
1006 => 0.0021803689609775
1007 => 0.0022318475768039
1008 => 0.0023047006033017
1009 => 0.0023388816133398
1010 => 0.0023050092704847
1011 => 0.0022660985468292
1012 => 0.0022684668622832
1013 => 0.0022842222039745
1014 => 0.0022858778676177
1015 => 0.002260550986605
1016 => 0.002267680355257
1017 => 0.0022568501923515
1018 => 0.002190385502591
1019 => 0.0021891833671151
1020 => 0.0021728718603599
1021 => 0.002172377954418
1022 => 0.0021446280123315
1023 => 0.0021407456036073
1024 => 0.0020856464092934
1025 => 0.0021219128658465
1026 => 0.0020975872308651
1027 => 0.002060922761111
1028 => 0.0020546017927057
1029 => 0.0020544117767626
1030 => 0.0020920579891747
1031 => 0.0021214729479358
1101 => 0.0020980103857003
1102 => 0.002092668415082
1103 => 0.0021497066855512
1104 => 0.0021424480457186
1105 => 0.0021361621104368
1106 => 0.0022981774138378
1107 => 0.0021699296589841
1108 => 0.002114006317742
1109 => 0.0020447905634004
1110 => 0.0020673275620302
1111 => 0.0020720764387788
1112 => 0.0019056250266648
1113 => 0.0018380957095003
1114 => 0.0018149221926381
1115 => 0.0018015855060584
1116 => 0.0018076632016044
1117 => 0.0017468788957574
1118 => 0.0017877269545662
1119 => 0.0017350928836722
1120 => 0.0017262686104008
1121 => 0.0018203848492694
1122 => 0.0018334805740888
1123 => 0.0017776101434862
1124 => 0.0018134880045342
1125 => 0.0018004781933786
1126 => 0.0017359951437488
1127 => 0.0017335323655581
1128 => 0.0017011770379426
1129 => 0.0016505472154504
1130 => 0.001627408027992
1201 => 0.00161535693826
1202 => 0.0016203294527544
1203 => 0.0016178151972646
1204 => 0.0016014079794853
1205 => 0.0016187556397821
1206 => 0.0015744395362719
1207 => 0.001556792506775
1208 => 0.0015488217529593
1209 => 0.0015094886603542
1210 => 0.0015720851021945
1211 => 0.0015844173898063
1212 => 0.0015967739758342
1213 => 0.0017043296210081
1214 => 0.0016989564449243
1215 => 0.0017475273398789
1216 => 0.0017456399642171
1217 => 0.0017317867581797
1218 => 0.0016733423606498
1219 => 0.001696637255834
1220 => 0.0016249391892875
1221 => 0.0016786602557388
1222 => 0.0016541442044558
1223 => 0.0016703713541391
1224 => 0.0016411934758655
1225 => 0.0016573417184272
1226 => 0.0015873418326967
1227 => 0.0015219769243266
1228 => 0.0015482816715753
1229 => 0.0015768779401475
1230 => 0.0016388819366056
1231 => 0.001601952867837
]
'min_raw' => 0.0015094886603542
'max_raw' => 0.004505860413323
'avg_raw' => 0.0030076745368386
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.0015094'
'max' => '$0.0045058'
'avg' => '$0.0030076'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0028595113396458
'max_diff' => 0.00013686041332299
'year' => 2026
]
1 => [
'items' => [
101 => 0.0016152339574089
102 => 0.0015707445305706
103 => 0.0014789501352268
104 => 0.0014794696815356
105 => 0.0014653491136616
106 => 0.0014531468813817
107 => 0.0016061946156198
108 => 0.0015871607105407
109 => 0.001556832673893
110 => 0.0015974279561342
111 => 0.0016081619930925
112 => 0.0016084675760345
113 => 0.0016380848460418
114 => 0.0016538915883539
115 => 0.0016566775951967
116 => 0.0017032810094767
117 => 0.0017189018592294
118 => 0.0017832419286156
119 => 0.0016525504967042
120 => 0.0016498589926679
121 => 0.0015979992150059
122 => 0.0015651089241419
123 => 0.0016002512413602
124 => 0.0016313825370109
125 => 0.0015989665511399
126 => 0.0016031993945558
127 => 0.0015596835820074
128 => 0.0015752384373842
129 => 0.0015886363742999
130 => 0.0015812388210294
131 => 0.0015701643257377
201 => 0.0016288301257841
202 => 0.0016255199714324
203 => 0.0016801509131565
204 => 0.0017227396389266
205 => 0.0017990662491519
206 => 0.0017194154523856
207 => 0.0017165126607682
208 => 0.0017448879144508
209 => 0.0017188975151259
210 => 0.0017353225503411
211 => 0.0017964199220487
212 => 0.0017977108132369
213 => 0.0017760867226152
214 => 0.0017747708947356
215 => 0.0017789240378812
216 => 0.0018032491270057
217 => 0.0017947491934311
218 => 0.0018045855317556
219 => 0.0018168860234497
220 => 0.0018677660723971
221 => 0.0018800330799447
222 => 0.0018502306113182
223 => 0.0018529214405511
224 => 0.0018417744991887
225 => 0.0018310066935034
226 => 0.0018552111481722
227 => 0.0018994452648192
228 => 0.0018991700866753
301 => 0.001909431541949
302 => 0.0019158243435741
303 => 0.0018883817591826
304 => 0.0018705176458355
305 => 0.0018773678836158
306 => 0.0018883215630053
307 => 0.0018738157530198
308 => 0.001784279174044
309 => 0.0018114388524865
310 => 0.0018069181539532
311 => 0.0018004801295062
312 => 0.0018277893961996
313 => 0.0018251553508056
314 => 0.0017462554648448
315 => 0.0017513063795539
316 => 0.0017465626276974
317 => 0.0017618906604262
318 => 0.0017180697510562
319 => 0.0017315487676401
320 => 0.0017400026804836
321 => 0.0017449821000944
322 => 0.0017629711781487
323 => 0.0017608603674682
324 => 0.0017628399671931
325 => 0.001789513021007
326 => 0.0019244161741114
327 => 0.0019317586550878
328 => 0.0018956015933736
329 => 0.0019100456263619
330 => 0.0018823162415871
331 => 0.0019009311633571
401 => 0.0019136670200645
402 => 0.0018561161325685
403 => 0.0018527083425131
404 => 0.0018248645087034
405 => 0.0018398262078374
406 => 0.001816021068731
407 => 0.0018218620171993
408 => 0.0018055302160773
409 => 0.0018349242064678
410 => 0.0018677912550888
411 => 0.0018760947695295
412 => 0.0018542517979236
413 => 0.001838436046959
414 => 0.0018106687982975
415 => 0.0018568463516552
416 => 0.0018703500754924
417 => 0.0018567754223426
418 => 0.0018536298785957
419 => 0.0018476690788793
420 => 0.0018548944904341
421 => 0.0018702765313123
422 => 0.0018630226448958
423 => 0.001867813964671
424 => 0.0018495543944757
425 => 0.0018883908438199
426 => 0.0019500724718789
427 => 0.0019502707883991
428 => 0.0019430168628815
429 => 0.0019400487128477
430 => 0.0019474916806338
501 => 0.0019515291853312
502 => 0.0019755983783446
503 => 0.0020014255814069
504 => 0.0021219498688073
505 => 0.002088107131191
506 => 0.0021950434489946
507 => 0.0022796161924342
508 => 0.0023049758602739
509 => 0.0022816461591259
510 => 0.0022018365117445
511 => 0.002197920669692
512 => 0.0023171899776438
513 => 0.002283490935267
514 => 0.0022794825414058
515 => 0.0022368400030104
516 => 0.0022620470245832
517 => 0.0022565338792005
518 => 0.0022478311095017
519 => 0.0022959243507262
520 => 0.0023859506049854
521 => 0.0023719191689982
522 => 0.0023614453529334
523 => 0.0023155521398193
524 => 0.0023431901047342
525 => 0.0023333487547984
526 => 0.0023756334395978
527 => 0.0023505849290431
528 => 0.0022832356318771
529 => 0.002293961229437
530 => 0.0022923400769427
531 => 0.0023257032803986
601 => 0.0023156884748468
602 => 0.0022903845254268
603 => 0.0023856429050354
604 => 0.0023794573557186
605 => 0.0023882270504364
606 => 0.002392087741263
607 => 0.0024500698382898
608 => 0.0024738232482216
609 => 0.0024792156881381
610 => 0.0025017795904185
611 => 0.0024786542776941
612 => 0.0025711720166605
613 => 0.0026326909145134
614 => 0.0027041482801032
615 => 0.0028085666971589
616 => 0.0028478289878963
617 => 0.0028407366064977
618 => 0.0029199054585985
619 => 0.0030621701259988
620 => 0.0028694923632818
621 => 0.003072382515281
622 => 0.0030081498356375
623 => 0.0028558553076994
624 => 0.0028460493355347
625 => 0.0029491849580302
626 => 0.0031779298422895
627 => 0.0031206318431856
628 => 0.0031780235612896
629 => 0.0031110730735807
630 => 0.0031077484175629
701 => 0.0031747719255379
702 => 0.0033313760051827
703 => 0.0032569792771596
704 => 0.0031503133247124
705 => 0.0032290738040934
706 => 0.0031608441879153
707 => 0.0030071037663989
708 => 0.0031205880284855
709 => 0.0030447043342739
710 => 0.0030668512304439
711 => 0.0032263474688291
712 => 0.0032071564594519
713 => 0.0032319914026256
714 => 0.0031881583779676
715 => 0.0031472114211035
716 => 0.0030707808853557
717 => 0.0030481535717006
718 => 0.0030544069471494
719 => 0.0030481504728383
720 => 0.0030053882905203
721 => 0.0029961538013201
722 => 0.0029807625814143
723 => 0.002985532964042
724 => 0.0029565929677588
725 => 0.0030112087200535
726 => 0.0030213458849517
727 => 0.0030610906748961
728 => 0.0030652171108364
729 => 0.0031759057850996
730 => 0.003114940323363
731 => 0.0031558412186007
801 => 0.0031521826575565
802 => 0.0028591559919172
803 => 0.0028995324810461
804 => 0.0029623456272904
805 => 0.0029340483900486
806 => 0.0028940427171223
807 => 0.0028617359912659
808 => 0.0028127879980611
809 => 0.0028816813585339
810 => 0.0029722688015636
811 => 0.0030675145578836
812 => 0.003181946093353
813 => 0.0031564063067662
814 => 0.003065375339925
815 => 0.0030694589225993
816 => 0.0030947020238615
817 => 0.0030620099141494
818 => 0.0030523683727695
819 => 0.0030933774241318
820 => 0.0030936598309304
821 => 0.0030560436077331
822 => 0.0030142400593456
823 => 0.0030140649009515
824 => 0.0030066263632903
825 => 0.0031123963729058
826 => 0.0031705591836402
827 => 0.0031772274561568
828 => 0.0031701103557698
829 => 0.0031728494452412
830 => 0.0031390057872049
831 => 0.0032163623534508
901 => 0.0032873523884095
902 => 0.0032683255425596
903 => 0.0032398015958052
904 => 0.003217080898316
905 => 0.0032629732683053
906 => 0.003260929753311
907 => 0.0032867323523844
908 => 0.0032855617974474
909 => 0.0032768853538639
910 => 0.0032683258524228
911 => 0.0033022633081146
912 => 0.0032924898658942
913 => 0.0032827012428185
914 => 0.0032630686606771
915 => 0.0032657370546528
916 => 0.00323721803296
917 => 0.0032240238285832
918 => 0.0030256146520799
919 => 0.0029725932369113
920 => 0.0029892748534738
921 => 0.0029947668747841
922 => 0.002971691886954
923 => 0.0030047754920244
924 => 0.0029996194472184
925 => 0.0030196786013733
926 => 0.0030071465127245
927 => 0.003007660834014
928 => 0.003044515034607
929 => 0.0030552139658281
930 => 0.0030497724030581
1001 => 0.0030535834870963
1002 => 0.0031414083102001
1003 => 0.0031289224288345
1004 => 0.0031222895532118
1005 => 0.0031241269050892
1006 => 0.0031465680303776
1007 => 0.0031528503202184
1008 => 0.0031262318167144
1009 => 0.0031387852568466
1010 => 0.0031922362116607
1011 => 0.0032109410207836
1012 => 0.0032706377926862
1013 => 0.0032452775429565
1014 => 0.0032918273789013
1015 => 0.0034349057045871
1016 => 0.003549206571412
1017 => 0.0034440907705968
1018 => 0.0036539897563931
1019 => 0.0038174262250568
1020 => 0.0038111532611718
1021 => 0.0037826543325066
1022 => 0.0035965862581164
1023 => 0.0034253636419438
1024 => 0.0035685986308685
1025 => 0.0035689637663118
1026 => 0.0035566597537343
1027 => 0.0034802405883364
1028 => 0.0035540005324266
1029 => 0.0035598553289317
1030 => 0.0035565781998049
1031 => 0.0034979878048686
1101 => 0.0034085311011157
1102 => 0.0034260107268999
1103 => 0.0034546427105092
1104 => 0.0034004363922794
1105 => 0.0033831141891283
1106 => 0.0034153194604701
1107 => 0.0035190915549682
1108 => 0.0034994740416142
1109 => 0.0034989617490599
1110 => 0.0035828937903089
1111 => 0.0035228165624428
1112 => 0.0034262312009586
1113 => 0.0034018421233794
1114 => 0.0033152773284247
1115 => 0.0033750679406331
1116 => 0.0033772196983234
1117 => 0.003344472991062
1118 => 0.0034288884157754
1119 => 0.0034281105127757
1120 => 0.0035082503949632
1121 => 0.0036614477505406
1122 => 0.0036161397541123
1123 => 0.0035634514837623
1124 => 0.0035691801596366
1125 => 0.0036320095944011
1126 => 0.003594021483886
1127 => 0.0036076822732897
1128 => 0.0036319889171602
1129 => 0.0036466537189072
1130 => 0.0035670701203437
1201 => 0.003548515376595
1202 => 0.0035105588827152
1203 => 0.0035006567419535
1204 => 0.0035315715142303
1205 => 0.0035234265639704
1206 => 0.0033770388514215
1207 => 0.0033617405209666
1208 => 0.0033622096989207
1209 => 0.0033237413195959
1210 => 0.0032650678076566
1211 => 0.0034192582938196
1212 => 0.0034068746398862
1213 => 0.0033932040443625
1214 => 0.0033948786143108
1215 => 0.0034618074783537
1216 => 0.0034229853572202
1217 => 0.0035262003290742
1218 => 0.0035049824337871
1219 => 0.0034832203795483
1220 => 0.0034802122007641
1221 => 0.0034718356665334
1222 => 0.0034431094138851
1223 => 0.0034084207376322
1224 => 0.0033855162688884
1225 => 0.0031229598003367
1226 => 0.0031716887536791
1227 => 0.0032277469727158
1228 => 0.0032470980452881
1229 => 0.0032139966965998
1230 => 0.0034444164568864
1231 => 0.0034865163674709
]
'min_raw' => 0.0014531468813817
'max_raw' => 0.0038174262250568
'avg_raw' => 0.0026352865532193
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.001453'
'max' => '$0.003817'
'avg' => '$0.002635'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -5.6341778972457E-5
'max_diff' => -0.00068843418826622
'year' => 2027
]
2 => [
'items' => [
101 => 0.0033589929922014
102 => 0.0033351385754336
103 => 0.0034459803484784
104 => 0.0033791292094767
105 => 0.0034092322732758
106 => 0.0033441659148377
107 => 0.0034763757318404
108 => 0.0034753685145468
109 => 0.0034239359096386
110 => 0.0034674063951118
111 => 0.0034598523285047
112 => 0.0034017850442363
113 => 0.0034782165683244
114 => 0.0034782544774068
115 => 0.0034287517134239
116 => 0.0033709433226404
117 => 0.0033606085477416
118 => 0.0033528226831369
119 => 0.0034073174278653
120 => 0.0034561772455881
121 => 0.0035470932529941
122 => 0.0035699516973671
123 => 0.0036591697275275
124 => 0.003606044734514
125 => 0.003629594355833
126 => 0.0036551608010722
127 => 0.0036674182950947
128 => 0.0036474453663584
129 => 0.0037860376908038
130 => 0.003797739129346
131 => 0.0038016625204722
201 => 0.0037549299684502
202 => 0.0037964394125357
203 => 0.0037770185182964
204 => 0.0038275462898274
205 => 0.0038354696895744
206 => 0.0038287588518718
207 => 0.0038312738640139
208 => 0.0037130097644611
209 => 0.0037068771470065
210 => 0.0036232584728619
211 => 0.0036573337006538
212 => 0.0035936316955649
213 => 0.003613832257582
214 => 0.0036227364728411
215 => 0.0036180854160995
216 => 0.0036592602629071
217 => 0.0036242532316552
218 => 0.0035318639204924
219 => 0.0034394494379237
220 => 0.0034382892493742
221 => 0.003413958147365
222 => 0.0033963712170759
223 => 0.0033997590837795
224 => 0.0034116983679292
225 => 0.0033956772841767
226 => 0.0033990961946849
227 => 0.0034558728892017
228 => 0.0034672590503742
229 => 0.0034285644258497
301 => 0.0032731999247762
302 => 0.0032350730865104
303 => 0.0032624779017678
304 => 0.0032493801651709
305 => 0.0026225033970168
306 => 0.0027697787951001
307 => 0.002682272754559
308 => 0.0027225995639997
309 => 0.0026332785561865
310 => 0.0026759072228301
311 => 0.0026680352646506
312 => 0.0029048497465727
313 => 0.0029011522141652
314 => 0.0029029220272596
315 => 0.0028184442370389
316 => 0.0029530196506824
317 => 0.0030193163386185
318 => 0.0030070465861107
319 => 0.0030101346184755
320 => 0.0029570719913082
321 => 0.0029034357894797
322 => 0.0028439449870997
323 => 0.0029544715446364
324 => 0.0029421828781896
325 => 0.002970368657696
326 => 0.00304205303086
327 => 0.0030526088271109
328 => 0.0030667959243184
329 => 0.0030617108598758
330 => 0.0031828577251484
331 => 0.0031681860404112
401 => 0.0032035405792962
402 => 0.0031308136104544
403 => 0.0030485161419026
404 => 0.0030641582001673
405 => 0.0030626517441709
406 => 0.0030434728303073
407 => 0.0030261589644183
408 => 0.0029973362558647
409 => 0.0030885355706866
410 => 0.0030848330450543
411 => 0.0031447726313255
412 => 0.00313417772723
413 => 0.0030634223646674
414 => 0.0030659494062834
415 => 0.0030829449756057
416 => 0.0031417668350823
417 => 0.0031592291678726
418 => 0.0031511399195705
419 => 0.0031702865702892
420 => 0.0031854193023455
421 => 0.0031721870084478
422 => 0.0033595283855999
423 => 0.0032817311844111
424 => 0.0033196489989611
425 => 0.0033286921743065
426 => 0.0033055282708167
427 => 0.0033105516920464
428 => 0.0033181608064091
429 => 0.0033643618588022
430 => 0.0034856067886639
501 => 0.0035393053427575
502 => 0.003700860092188
503 => 0.0035348464253599
504 => 0.0035249958614032
505 => 0.0035540967502617
506 => 0.0036489464904844
507 => 0.0037258132961518
508 => 0.0037513144501441
509 => 0.0037546848486224
510 => 0.0038025267087966
511 => 0.0038299487708505
512 => 0.0037967174486056
513 => 0.0037685573824674
514 => 0.0036676915209167
515 => 0.0036793670190398
516 => 0.0037597996230737
517 => 0.0038734154137283
518 => 0.0039709095818183
519 => 0.003936770522168
520 => 0.0041972274488796
521 => 0.0042230506892919
522 => 0.0042194827524323
523 => 0.0042783119371049
524 => 0.0041615479858848
525 => 0.0041116291345432
526 => 0.0037746459083968
527 => 0.0038693244495768
528 => 0.0040069452694576
529 => 0.0039887306378948
530 => 0.0038887867198823
531 => 0.0039708337653943
601 => 0.0039437064462997
602 => 0.0039223100042163
603 => 0.0040203312533048
604 => 0.003912552863441
605 => 0.0040058700975725
606 => 0.0038861897795556
607 => 0.0039369264665168
608 => 0.0039081258691402
609 => 0.0039267633853113
610 => 0.0038178088466021
611 => 0.0038765980709677
612 => 0.0038153630215874
613 => 0.003815333988201
614 => 0.0038139822210919
615 => 0.00388602498513
616 => 0.0038883742970789
617 => 0.0038351345856042
618 => 0.0038274619114201
619 => 0.00385583180929
620 => 0.0038226180889723
621 => 0.0038381585796643
622 => 0.003823088794604
623 => 0.0038196962685687
624 => 0.0037926640439287
625 => 0.0037810178182873
626 => 0.0037855846034475
627 => 0.0037699958113564
628 => 0.0037606030002503
629 => 0.0038121137545493
630 => 0.0037845936364652
701 => 0.0038078959017589
702 => 0.0037813400294764
703 => 0.0036892858063027
704 => 0.0036363444490998
705 => 0.0034624625549556
706 => 0.0035117752444351
707 => 0.0035444696085776
708 => 0.0035336641214236
709 => 0.003556878488999
710 => 0.0035583036626288
711 => 0.0035507564350876
712 => 0.0035420177124546
713 => 0.0035377641855585
714 => 0.0035694664901926
715 => 0.0035878707450833
716 => 0.0035477509254135
717 => 0.0035383514130008
718 => 0.0035789147657629
719 => 0.0036036583875151
720 => 0.0037863513882931
721 => 0.0037728169007048
722 => 0.0038067858085423
723 => 0.0038029614308152
724 => 0.0038385662579002
725 => 0.0038967651024617
726 => 0.0037784305788154
727 => 0.0037989693604204
728 => 0.0037939337254806
729 => 0.0038489114673392
730 => 0.0038490831018483
731 => 0.0038161211992622
801 => 0.0038339903813999
802 => 0.003824016294146
803 => 0.0038420408178925
804 => 0.0037726361393715
805 => 0.003857163546038
806 => 0.0039050851387922
807 => 0.0039057505301541
808 => 0.0039284649847903
809 => 0.0039515441862331
810 => 0.0039958427036279
811 => 0.0039503087246261
812 => 0.0038683975290452
813 => 0.0038743112527946
814 => 0.0038262867487957
815 => 0.0038270940493843
816 => 0.0038227846155733
817 => 0.0038357175508392
818 => 0.0037754741913803
819 => 0.0037896131874326
820 => 0.0037698185101616
821 => 0.0037989263306579
822 => 0.0037676111274989
823 => 0.003793931297145
824 => 0.0038052902098368
825 => 0.0038472048422094
826 => 0.0037614203022178
827 => 0.0035864998180721
828 => 0.0036232702245454
829 => 0.0035688839051183
830 => 0.0035739175660446
831 => 0.0035840863622169
901 => 0.0035511259667994
902 => 0.0035574137715436
903 => 0.0035571891269115
904 => 0.0035552532608352
905 => 0.0035466789889963
906 => 0.0035342445984618
907 => 0.0035837793832476
908 => 0.0035921963084314
909 => 0.0036109060904784
910 => 0.003666573710884
911 => 0.0036610112028726
912 => 0.0036700838842255
913 => 0.0036502782717731
914 => 0.0035748362916024
915 => 0.003578933154088
916 => 0.0035278452132449
917 => 0.0036095996569697
918 => 0.0035902391255897
919 => 0.0035777572650614
920 => 0.0035743514737726
921 => 0.0036301570834418
922 => 0.0036468549965006
923 => 0.0036364499776377
924 => 0.0036151089803868
925 => 0.0036560900040079
926 => 0.0036670547970784
927 => 0.0036695094098808
928 => 0.0037421199264056
929 => 0.0036735675311523
930 => 0.003690068774042
1001 => 0.0038188067605797
1002 => 0.0037020591714178
1003 => 0.0037639029731788
1004 => 0.0037608760409022
1005 => 0.0037925132372029
1006 => 0.0037582808673849
1007 => 0.003758705218636
1008 => 0.0037867969056617
1009 => 0.0037473471975965
1010 => 0.003737578895097
1011 => 0.003724084055156
1012 => 0.0037535495444685
1013 => 0.0037712127727019
1014 => 0.0039135654200513
1015 => 0.0040055317223085
1016 => 0.0040015392225836
1017 => 0.0040380231964225
1018 => 0.0040215868320532
1019 => 0.0039685094758109
1020 => 0.0040591060508224
1021 => 0.0040304375037671
1022 => 0.004032800903954
1023 => 0.004032712938081
1024 => 0.004051775015625
1025 => 0.0040382677866713
1026 => 0.0040116436519151
1027 => 0.0040293179950627
1028 => 0.0040818044755175
1029 => 0.004244724121331
1030 => 0.0043358961135265
1031 => 0.0042392354529219
1101 => 0.0043059106822691
1102 => 0.0042659293034742
1103 => 0.0042586634976041
1104 => 0.0043005404688949
1105 => 0.0043424907402804
1106 => 0.0043398186893491
1107 => 0.0043093649464936
1108 => 0.0042921623998896
1109 => 0.0044224258460509
1110 => 0.0045184017342026
1111 => 0.0045118568220612
1112 => 0.004540743935734
1113 => 0.0046255573949222
1114 => 0.0046333116747135
1115 => 0.0046323348136899
1116 => 0.0046131150221518
1117 => 0.004696624887142
1118 => 0.0047662902857331
1119 => 0.0046086661957239
1120 => 0.0046686873857485
1121 => 0.0046956328317125
1122 => 0.0047351967407413
1123 => 0.0048019476869539
1124 => 0.0048744569193549
1125 => 0.0048847105198396
1126 => 0.0048774350996157
1127 => 0.0048296133116945
1128 => 0.0049089537790027
1129 => 0.0049554295639889
1130 => 0.0049831048303688
1201 => 0.0050532847011829
1202 => 0.0046957992376135
1203 => 0.0044427532583187
1204 => 0.0044032364746236
1205 => 0.0044835954081884
1206 => 0.004504785418119
1207 => 0.004496243751686
1208 => 0.0042114174960558
1209 => 0.0044017369233339
1210 => 0.0046065046245731
1211 => 0.0046143705859205
1212 => 0.0047168815786515
1213 => 0.0047502633599524
1214 => 0.0048327981455239
1215 => 0.0048276355722146
1216 => 0.0048477314790859
1217 => 0.0048431117781088
1218 => 0.0049959900886305
1219 => 0.0051646375677846
1220 => 0.0051587978418477
1221 => 0.0051345527713729
1222 => 0.0051705608354268
1223 => 0.0053446231072761
1224 => 0.0053285982425753
1225 => 0.0053441650336374
1226 => 0.0055493942618675
1227 => 0.005816221452084
1228 => 0.0056922534332166
1229 => 0.0059612283633224
1230 => 0.0061305338240756
1231 => 0.006423330111937
]
'min_raw' => 0.0026225033970168
'max_raw' => 0.006423330111937
'avg_raw' => 0.0045229167544769
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.002622'
'max' => '$0.006423'
'avg' => '$0.004522'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0011693565156351
'max_diff' => 0.0026059038868802
'year' => 2028
]
3 => [
'items' => [
101 => 0.0063866705746446
102 => 0.0065006540208706
103 => 0.006321042351815
104 => 0.0059086176541559
105 => 0.005843349867053
106 => 0.0059740176296766
107 => 0.0062952515737128
108 => 0.0059639008296043
109 => 0.0060309326535853
110 => 0.0060116274837693
111 => 0.0060105987933115
112 => 0.0060498597240995
113 => 0.0059929096962791
114 => 0.0057608850378245
115 => 0.0058672205714643
116 => 0.0058261593152743
117 => 0.0058717198403366
118 => 0.0061175912035081
119 => 0.0060088856130088
120 => 0.0058943731039427
121 => 0.0060379972026716
122 => 0.0062208800349483
123 => 0.0062094355559764
124 => 0.00618722848335
125 => 0.0063124085890208
126 => 0.0065191694492593
127 => 0.0065750560789494
128 => 0.0066163104464347
129 => 0.0066219987267127
130 => 0.0066805915488224
131 => 0.0063655231770462
201 => 0.0068655447745847
202 => 0.0069518846916617
203 => 0.0069356563656742
204 => 0.0070316195497661
205 => 0.0070033847466553
206 => 0.0069624769468525
207 => 0.0071145990055929
208 => 0.0069402033408642
209 => 0.0066926706505853
210 => 0.0065568693210569
211 => 0.0067357034665607
212 => 0.0068449112387683
213 => 0.0069170906292787
214 => 0.0069389320692351
215 => 0.0063899810378626
216 => 0.0060941268781727
217 => 0.0062837660025591
218 => 0.0065151388225037
219 => 0.0063642378893491
220 => 0.0063701529202355
221 => 0.0061550078456248
222 => 0.0065341743877083
223 => 0.0064789330118193
224 => 0.0067655253676517
225 => 0.0066971278018849
226 => 0.0069308327426151
227 => 0.0068692903994153
228 => 0.0071247492252513
301 => 0.0072266586671489
302 => 0.007397780481033
303 => 0.0075236583839173
304 => 0.0075975762961515
305 => 0.0075931385419601
306 => 0.0078860381359897
307 => 0.0077133254785228
308 => 0.0074963576754964
309 => 0.0074924334124643
310 => 0.0076048041121092
311 => 0.007840302271169
312 => 0.0079013635174544
313 => 0.0079354884239994
314 => 0.0078832249417291
315 => 0.0076957577304765
316 => 0.0076148103391379
317 => 0.0076837798618301
318 => 0.0075994360621962
319 => 0.0077450371230547
320 => 0.0079449784783218
321 => 0.0079036913791129
322 => 0.0080417079616603
323 => 0.0081845406048288
324 => 0.0083887976995753
325 => 0.0084421980677603
326 => 0.0085304668457361
327 => 0.0086213244130562
328 => 0.0086505054149993
329 => 0.0087062210020419
330 => 0.0087059273533962
331 => 0.0088738300250405
401 => 0.0090590318713771
402 => 0.0091289412809365
403 => 0.0092896941133911
404 => 0.0090144105212637
405 => 0.0092232162881223
406 => 0.0094115643165762
407 => 0.0091870080323757
408 => 0.0094965065552422
409 => 0.0095085236815464
410 => 0.0096899680213498
411 => 0.0095060394224295
412 => 0.0093968232075115
413 => 0.0097121263277016
414 => 0.0098646915756064
415 => 0.0098187376813203
416 => 0.0094690262767796
417 => 0.0092654792395092
418 => 0.0087327573816813
419 => 0.0093637894341501
420 => 0.0096711467394503
421 => 0.0094682302956109
422 => 0.0095705695469389
423 => 0.01012889931857
424 => 0.010341475146432
425 => 0.010297260860254
426 => 0.010304732346789
427 => 0.010419434404979
428 => 0.010928086498571
429 => 0.010623290373627
430 => 0.010856295590653
501 => 0.010979880717601
502 => 0.011094673470985
503 => 0.010812778749298
504 => 0.010446037858239
505 => 0.010329875623306
506 => 0.0094480542543171
507 => 0.0094021516225052
508 => 0.009376385084277
509 => 0.0092139307054977
510 => 0.0090862860637766
511 => 0.0089847783055383
512 => 0.0087183916351383
513 => 0.0088082893165356
514 => 0.0083837245631371
515 => 0.0086553460467104
516 => 0.007977730448812
517 => 0.008542068854198
518 => 0.0082349251174651
519 => 0.008441163876077
520 => 0.008440444328477
521 => 0.0080606933858146
522 => 0.007841660967287
523 => 0.0079812369492421
524 => 0.0081308734814532
525 => 0.0081551515053667
526 => 0.0083491591752915
527 => 0.0084033025457866
528 => 0.0082392456054742
529 => 0.0079636883716901
530 => 0.0080276940323068
531 => 0.0078403638946175
601 => 0.0075120750338666
602 => 0.0077478578250315
603 => 0.0078283644365727
604 => 0.0078639207425898
605 => 0.0075410863522717
606 => 0.0074396447777582
607 => 0.0073856381346644
608 => 0.0079220145058807
609 => 0.0079513984142971
610 => 0.0078010661843727
611 => 0.008480582118718
612 => 0.0083267867348572
613 => 0.0084986138594136
614 => 0.0080218861894814
615 => 0.0080400978284718
616 => 0.0078144073096261
617 => 0.0079407789195337
618 => 0.0078514635387981
619 => 0.0079305693422818
620 => 0.0079779850347245
621 => 0.0082036385199768
622 => 0.0085446454545274
623 => 0.0081699334141607
624 => 0.0080066660121976
625 => 0.0081079561901248
626 => 0.0083777052818084
627 => 0.0087863889639109
628 => 0.0085444399985806
629 => 0.0086518128408343
630 => 0.0086752690301815
701 => 0.0084968648205845
702 => 0.0087929669815918
703 => 0.0089516505352054
704 => 0.0091144270262781
705 => 0.0092557612925828
706 => 0.0090494105162119
707 => 0.0092702354261507
708 => 0.0090922895295841
709 => 0.0089326536646552
710 => 0.0089328957663674
711 => 0.0088327538563897
712 => 0.008638716287115
713 => 0.0086029327822704
714 => 0.0087890830934308
715 => 0.0089383580144813
716 => 0.0089506530119577
717 => 0.0090332992782736
718 => 0.0090822084873552
719 => 0.0095615852251998
720 => 0.0097543945147733
721 => 0.0099901580643706
722 => 0.010082001253844
723 => 0.010358416326555
724 => 0.010135188706007
725 => 0.010086892006133
726 => 0.0094163994544195
727 => 0.0095261925722009
728 => 0.0097019819472292
729 => 0.0094192981564664
730 => 0.009598595956866
731 => 0.0096339931407116
801 => 0.0094096926694266
802 => 0.0095295012425912
803 => 0.0092113251930325
804 => 0.008551580822933
805 => 0.0087937014656737
806 => 0.008971983755658
807 => 0.0087175529458026
808 => 0.0091736103246362
809 => 0.0089071910188568
810 => 0.0088227488893068
811 => 0.0084933100361391
812 => 0.0086487924935699
813 => 0.0088590847435394
814 => 0.0087291485821563
815 => 0.008998785627039
816 => 0.009380663592166
817 => 0.0096528125713415
818 => 0.0096737047906753
819 => 0.009498731229631
820 => 0.0097791274778709
821 => 0.0097811698584237
822 => 0.0094648817449568
823 => 0.0092711570365579
824 => 0.0092271423752094
825 => 0.0093370996288407
826 => 0.0094706080339778
827 => 0.0096811135779892
828 => 0.0098083176695036
829 => 0.010139998476336
830 => 0.010229741792631
831 => 0.010328342488766
901 => 0.01046010342613
902 => 0.010618316214247
903 => 0.010272155640906
904 => 0.010285909245809
905 => 0.0099635693128334
906 => 0.0096191028662264
907 => 0.0098805099608523
908 => 0.010222264963547
909 => 0.010143865988323
910 => 0.010135044502065
911 => 0.010149879795075
912 => 0.010090769528028
913 => 0.0098234159808997
914 => 0.0096891527032538
915 => 0.0098623865856322
916 => 0.0099544526843633
917 => 0.010097239174488
918 => 0.010079637725723
919 => 0.010447440390133
920 => 0.010590357383748
921 => 0.010553793101019
922 => 0.01056052180901
923 => 0.010819266199344
924 => 0.011107043176238
925 => 0.011376584290616
926 => 0.011650773089221
927 => 0.011320227790731
928 => 0.011152397273358
929 => 0.011325555527243
930 => 0.011233675320353
1001 => 0.011761646242583
1002 => 0.011798201803716
1003 => 0.012326134547639
1004 => 0.012827205586684
1005 => 0.01251249184468
1006 => 0.012809252728371
1007 => 0.013130223819353
1008 => 0.01374942912954
1009 => 0.013540902564975
1010 => 0.013381174484545
1011 => 0.01323023222034
1012 => 0.013544319110742
1013 => 0.013948386877583
1014 => 0.014035419204447
1015 => 0.014176444822876
1016 => 0.01402817362889
1017 => 0.014206749950509
1018 => 0.014837202836236
1019 => 0.014666848901351
1020 => 0.014424918928053
1021 => 0.014922600931995
1022 => 0.015102710114532
1023 => 0.016366810681488
1024 => 0.01796278986466
1025 => 0.017302044003062
1026 => 0.016891897724633
1027 => 0.016988291828864
1028 => 0.017571089399253
1029 => 0.017758265481792
1030 => 0.017249456365987
1031 => 0.01742917634743
1101 => 0.018419451114863
1102 => 0.018950701755772
1103 => 0.018229192028937
1104 => 0.016238575308091
1105 => 0.014403135780971
1106 => 0.014889976994482
1107 => 0.014834784309311
1108 => 0.015898711007625
1109 => 0.014662786016344
1110 => 0.014683595823491
1111 => 0.015769523399207
1112 => 0.015479816539518
1113 => 0.015010528529672
1114 => 0.014406562102788
1115 => 0.013290074302559
1116 => 0.012301169922331
1117 => 0.014240639143036
1118 => 0.014157005703543
1119 => 0.014035892089376
1120 => 0.014305417331843
1121 => 0.015614155403184
1122 => 0.015583984754668
1123 => 0.015392054482008
1124 => 0.015537631902225
1125 => 0.014985008104052
1126 => 0.015127431839851
1127 => 0.014402845037972
1128 => 0.014730388533839
1129 => 0.015009521648371
1130 => 0.01506556175375
1201 => 0.015191822972646
1202 => 0.014112934681263
1203 => 0.014597323849598
1204 => 0.014881857104868
1205 => 0.013596325506151
1206 => 0.01485644627846
1207 => 0.01409415363642
1208 => 0.01383542006446
1209 => 0.014183770733548
1210 => 0.014048018139022
1211 => 0.013931306029909
1212 => 0.013866178667655
1213 => 0.014121968952973
1214 => 0.014110036030427
1215 => 0.013691513476893
1216 => 0.013145567866968
1217 => 0.013328805133713
1218 => 0.013262233316846
1219 => 0.013020968464585
1220 => 0.01318355184458
1221 => 0.012467616920651
1222 => 0.011235888095091
1223 => 0.01204960588613
1224 => 0.01201827863633
1225 => 0.012002482016403
1226 => 0.012613968446861
1227 => 0.012555188135965
1228 => 0.012448501296109
1229 => 0.013019009077107
1230 => 0.01281076606263
1231 => 0.013452521965022
]
'min_raw' => 0.0057608850378245
'max_raw' => 0.018950701755772
'avg_raw' => 0.012355793396798
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.00576'
'max' => '$0.01895'
'avg' => '$0.012355'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0031383816408077
'max_diff' => 0.012527371643835
'year' => 2029
]
4 => [
'items' => [
101 => 0.013875223908507
102 => 0.013768013022664
103 => 0.014165566243607
104 => 0.013333026550251
105 => 0.013609562840689
106 => 0.013666556586885
107 => 0.013011969099647
108 => 0.012564805321776
109 => 0.012534984595832
110 => 0.011759664227967
111 => 0.012173834110313
112 => 0.012538286467263
113 => 0.01236374207093
114 => 0.012308486529416
115 => 0.012590775107545
116 => 0.012612711347704
117 => 0.012112562747385
118 => 0.012216559479037
119 => 0.012650243138047
120 => 0.012205631763548
121 => 0.011341824489753
122 => 0.011127588342781
123 => 0.01109900529162
124 => 0.010517979869751
125 => 0.011141904626532
126 => 0.010869544750053
127 => 0.011729926336477
128 => 0.011238480988631
129 => 0.011217295761925
130 => 0.011185271184561
131 => 0.0106851586021
201 => 0.010794651473847
202 => 0.011158622455766
203 => 0.011288491402542
204 => 0.011274945007408
205 => 0.011156838799391
206 => 0.01121090721662
207 => 0.011036734006041
208 => 0.010975229820284
209 => 0.010781105691975
210 => 0.010495796851521
211 => 0.010535470795687
212 => 0.0099701993276279
213 => 0.0096622094306018
214 => 0.0095769618863465
215 => 0.0094629653074283
216 => 0.0095898381032687
217 => 0.0099685979845815
218 => 0.0095117332093268
219 => 0.0087284705974905
220 => 0.0087755460150764
221 => 0.008881310501575
222 => 0.0086842190806869
223 => 0.0084976885914454
224 => 0.0086598617181439
225 => 0.0083279830239403
226 => 0.0089214164562003
227 => 0.0089053657449356
228 => 0.0091265610308049
301 => 0.0092648789824431
302 => 0.0089461008848856
303 => 0.0088659290554175
304 => 0.008911598573089
305 => 0.0081567831760866
306 => 0.0090648765093679
307 => 0.0090727297382235
308 => 0.0090054856249282
309 => 0.0094890172906643
310 => 0.010509419922676
311 => 0.010125503406912
312 => 0.0099768393280707
313 => 0.0096942288055197
314 => 0.010070790547066
315 => 0.010041876480594
316 => 0.009911116106671
317 => 0.0098320318245253
318 => 0.0099777470392353
319 => 0.0098139760968638
320 => 0.0097845583354894
321 => 0.0096063187084002
322 => 0.0095426952709157
323 => 0.0094955910107242
324 => 0.0094437338486224
325 => 0.0095581178262194
326 => 0.0092989086845192
327 => 0.0089863278702142
328 => 0.008960340157676
329 => 0.009032094516857
330 => 0.0090003485544032
331 => 0.0089601881702213
401 => 0.0088835110597884
402 => 0.0088607625990701
403 => 0.0089346840604202
404 => 0.0088512310404449
405 => 0.0089743705173396
406 => 0.0089408833932423
407 => 0.0087538270401901
408 => 0.0085206855671551
409 => 0.0085186101190143
410 => 0.0084683801710775
411 => 0.0084044047802568
412 => 0.0083866082900892
413 => 0.008646203949751
414 => 0.0091835591962068
415 => 0.0090780635035063
416 => 0.0091542949531158
417 => 0.0095292782361562
418 => 0.009648474145694
419 => 0.0095638717124139
420 => 0.0094480626836893
421 => 0.0094531576932124
422 => 0.0098489122021414
423 => 0.009873594925421
424 => 0.0099359602042
425 => 0.010016117211857
426 => 0.0095775227974265
427 => 0.0094324999357349
428 => 0.0093637800583033
429 => 0.0091521494337537
430 => 0.009380374918492
501 => 0.0092473977021246
502 => 0.0092653408717611
503 => 0.0092536553589963
504 => 0.0092600364391368
505 => 0.0089212505794618
506 => 0.0090446863406668
507 => 0.0088394504469038
508 => 0.0085646626239655
509 => 0.00856374143883
510 => 0.0086309953692025
511 => 0.0085909900997704
512 => 0.008483336948358
513 => 0.0084986285704076
514 => 0.0083646578706524
515 => 0.0085148950389757
516 => 0.0085192033033888
517 => 0.0084613538101105
518 => 0.0086928148966465
519 => 0.0087876446926546
520 => 0.0087495669169226
521 => 0.0087849730544017
522 => 0.0090824473258225
523 => 0.0091309486117764
524 => 0.0091524896791821
525 => 0.0091236275025031
526 => 0.008790410338002
527 => 0.0088051899361965
528 => 0.0086967470510633
529 => 0.0086051242405555
530 => 0.0086087886724775
531 => 0.0086558947072101
601 => 0.00886160952362
602 => 0.0092945242272038
603 => 0.0093109530237483
604 => 0.009330865204422
605 => 0.0092498723585618
606 => 0.0092254441412533
607 => 0.0092576712653411
608 => 0.0094202512664335
609 => 0.0098384511692826
610 => 0.0096906313929834
611 => 0.0095704516139002
612 => 0.0096758816803919
613 => 0.0096596515480437
614 => 0.0095226528975967
615 => 0.0095188078017669
616 => 0.0092558635904411
617 => 0.009158659102464
618 => 0.0090774277566805
619 => 0.0089887252476828
620 => 0.008936139427014
621 => 0.0090169351473894
622 => 0.0090354140845861
623 => 0.0088587528299179
624 => 0.0088346745536923
625 => 0.0089789399477525
626 => 0.0089154541265826
627 => 0.0089807508680284
628 => 0.0089959002721489
629 => 0.0089934608691652
630 => 0.0089271743805637
701 => 0.0089694234117067
702 => 0.0088694918580111
703 => 0.0087608313026011
704 => 0.0086915126380414
705 => 0.0086310229094264
706 => 0.0086645861265457
707 => 0.0085449393859169
708 => 0.0085066619855766
709 => 0.0089551103905888
710 => 0.009286384049004
711 => 0.0092815671988119
712 => 0.0092522458620606
713 => 0.0092086803032642
714 => 0.0094170641744544
715 => 0.0093444674004988
716 => 0.0093972876192149
717 => 0.0094107325817358
718 => 0.0094514264339228
719 => 0.0094659709883249
720 => 0.0094220072430793
721 => 0.0092744595443158
722 => 0.0089067847074113
723 => 0.0087356310783131
724 => 0.0086791475299215
725 => 0.008681200599628
726 => 0.0086245677718158
727 => 0.0086412486777118
728 => 0.0086187668334884
729 => 0.0085761916594715
730 => 0.0086619572295238
731 => 0.0086718409125108
801 => 0.0086518222036383
802 => 0.0086565373342656
803 => 0.008490790974904
804 => 0.0085033923106241
805 => 0.0084332264720343
806 => 0.0084200712231606
807 => 0.0082426980932441
808 => 0.0079284558829507
809 => 0.0081025765716826
810 => 0.0078922632647683
811 => 0.0078126144286732
812 => 0.008189659630812
813 => 0.0081518147501232
814 => 0.0080870407651583
815 => 0.007991226541314
816 => 0.0079556881136692
817 => 0.0077397678773988
818 => 0.0077270101579503
819 => 0.0078340260573827
820 => 0.0077846419019869
821 => 0.007715287844569
822 => 0.0074640944789094
823 => 0.0071816699686429
824 => 0.0071901945893506
825 => 0.0072800285713716
826 => 0.0075412329898606
827 => 0.0074391759046747
828 => 0.0073651323184021
829 => 0.0073512661804353
830 => 0.0075248299278161
831 => 0.0077704589930893
901 => 0.0078857026548749
902 => 0.0077714996860474
903 => 0.0076403094645829
904 => 0.0076482944054865
905 => 0.0077014146400016
906 => 0.0077069968255694
907 => 0.0076216054779687
908 => 0.0076456426421356
909 => 0.0076091279917617
910 => 0.0073850376498178
911 => 0.0073809845661302
912 => 0.0073259891822723
913 => 0.0073243239439056
914 => 0.0072307630767218
915 => 0.0072176732646471
916 => 0.007031902484115
917 => 0.0071541773744269
918 => 0.0070721617977256
919 => 0.0069485449781178
920 => 0.0069272333918235
921 => 0.006926592739805
922 => 0.007053519573327
923 => 0.0071526941604768
924 => 0.0070735884937962
925 => 0.0070555776668919
926 => 0.0072478861780638
927 => 0.0072234131670862
928 => 0.0072022196974136
929 => 0.0077484656043773
930 => 0.0073160693449158
1001 => 0.007127519895475
1002 => 0.0068941541472226
1003 => 0.0069701392115858
1004 => 0.0069861503811
1005 => 0.006424947823891
1006 => 0.0061972680163246
1007 => 0.0061191368863003
1008 => 0.0060741713163593
1009 => 0.0060946626912235
1010 => 0.0058897241602359
1011 => 0.00602744624243
1012 => 0.0058499867976176
1013 => 0.0058202351441918
1014 => 0.0061375546145232
1015 => 0.0061817077650664
1016 => 0.0059933367075406
1017 => 0.0061143014209762
1018 => 0.0060704379343492
1019 => 0.0058530288304594
1020 => 0.0058447254018439
1021 => 0.0057356371558115
1022 => 0.0055649351744177
1023 => 0.005486919788375
1024 => 0.0054462886979634
1025 => 0.0054630538777514
1026 => 0.0054545768898276
1027 => 0.0053992588095693
1028 => 0.005457747657435
1029 => 0.0053083328203988
1030 => 0.0052488346283738
1031 => 0.0052219606753837
1101 => 0.005089346407517
1102 => 0.0053003946815256
1103 => 0.0053419738502214
1104 => 0.005383634942724
1105 => 0.0057462663097231
1106 => 0.0057281502714134
1107 => 0.0058919104348644
1108 => 0.0058855470160483
1109 => 0.0058388399646933
1110 => 0.0056417905979637
1111 => 0.0057203309634749
1112 => 0.0054785959263142
1113 => 0.0056597202525397
1114 => 0.0055770626739831
1115 => 0.0056317736420837
1116 => 0.0055333983883498
1117 => 0.0055878433155808
1118 => 0.0053518338136046
1119 => 0.0051314514614026
1120 => 0.0052201397532906
1121 => 0.0053165540693093
1122 => 0.0055256048723487
1123 => 0.0054010959386901
1124 => 0.0054458740594378
1125 => 0.0052958748507
1126 => 0.0049863836379183
1127 => 0.004988135324572
1128 => 0.0049405268441181
1129 => 0.0048993861660539
1130 => 0.0054153972874892
1201 => 0.0053512231476101
1202 => 0.0052489700546164
1203 => 0.0053858398829648
1204 => 0.0054220304379964
1205 => 0.0054230607322202
1206 => 0.0055229174258616
1207 => 0.0055762109611583
1208 => 0.0055856041777417
1209 => 0.0057427308427331
1210 => 0.0057953976282874
1211 => 0.006012324664303
1212 => 0.0055716893770296
1213 => 0.0055626147832563
1214 => 0.0053877659221346
1215 => 0.0052768740101602
1216 => 0.0053953587862197
1217 => 0.0055003201230236
1218 => 0.0053910273634477
1219 => 0.0054052986905523
1220 => 0.0052585820903682
1221 => 0.0053110263712763
1222 => 0.0053561984510019
1223 => 0.0053312570836696
1224 => 0.0052939186495972
1225 => 0.005491714490369
1226 => 0.0054805540738645
1227 => 0.005664746108098
1228 => 0.0058083369704817
1229 => 0.0060656774658102
1230 => 0.0057971292434714
1231 => 0.0057873422788669
]
'min_raw' => 0.0048993861660539
'max_raw' => 0.014165566243607
'avg_raw' => 0.0095324762048303
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.004899'
'max' => '$0.014165'
'avg' => '$0.009532'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00086149887177054
'max_diff' => -0.0047851355121654
'year' => 2030
]
5 => [
'items' => [
101 => 0.0058830114277547
102 => 0.0057953829818392
103 => 0.0058507611348266
104 => 0.006056755189221
105 => 0.0060611075189892
106 => 0.0059882003877121
107 => 0.0059837639821481
108 => 0.0059977665942265
109 => 0.0060797803305332
110 => 0.0060511222110401
111 => 0.0060842861124523
112 => 0.006125758078992
113 => 0.0062973037163498
114 => 0.0063386627887517
115 => 0.0062381816850354
116 => 0.0062472540036618
117 => 0.006209671312604
118 => 0.0061733669039518
119 => 0.0062549739127687
120 => 0.0064041123253714
121 => 0.0064031845430469
122 => 0.0064377817559342
123 => 0.0064593355329443
124 => 0.0063668109436882
125 => 0.0063065808383059
126 => 0.0063296768932506
127 => 0.0063666079880739
128 => 0.0063177006369443
129 => 0.0060158218096833
130 => 0.0061073925617801
131 => 0.0060921507110502
201 => 0.0060704444621384
202 => 0.0061625195614675
203 => 0.0061536386935185
204 => 0.0058876222193873
205 => 0.0059046517309729
206 => 0.0058886578403903
207 => 0.0059403373729046
208 => 0.0057925921174856
209 => 0.005838037562973
210 => 0.0058665405203581
211 => 0.005883328981228
212 => 0.0059439804138453
213 => 0.0059368636682639
214 => 0.0059435380269476
215 => 0.0060334680901346
216 => 0.0064883034894631
217 => 0.0065130591767108
218 => 0.0063911531187359
219 => 0.0064398521844062
220 => 0.0063463606276341
221 => 0.0064091221360342
222 => 0.0064520619661121
223 => 0.0062580251308446
224 => 0.0062465355287487
225 => 0.006152658099065
226 => 0.0062031025122876
227 => 0.0061228418237688
228 => 0.0061425349893316
301 => 0.0060874711815986
302 => 0.0061865750724232
303 => 0.0062973886215528
304 => 0.0063253845002226
305 => 0.006251739396426
306 => 0.0061984154878283
307 => 0.0061047962703184
308 => 0.0062604871154778
309 => 0.0063060158631949
310 => 0.0062602479723482
311 => 0.0062496425519908
312 => 0.0062295452995772
313 => 0.0062539062790962
314 => 0.006305767903857
315 => 0.0062813109193537
316 => 0.0062974651884948
317 => 0.0062359017727389
318 => 0.0063668415731771
319 => 0.006574805488652
320 => 0.0065754741266458
321 => 0.0065510170103102
322 => 0.0065410096852416
323 => 0.0065661041707838
324 => 0.0065797168997608
325 => 0.0066608678644629
326 => 0.0067479460827853
327 => 0.0071543021324927
328 => 0.0070401989797948
329 => 0.0074007422413248
330 => 0.0076858851505119
331 => 0.0077713870411888
401 => 0.0076927293249408
402 => 0.0074236455266629
403 => 0.0074104429917873
404 => 0.0078125677906639
405 => 0.0076989491164987
406 => 0.0076854345367383
407 => 0.0075416622413313
408 => 0.0076266494744621
409 => 0.0076080615198889
410 => 0.0075787195242412
411 => 0.0077408692447927
412 => 0.0080443990464598
413 => 0.0079970910803855
414 => 0.0079617778782645
415 => 0.0078070457060887
416 => 0.0079002290344203
417 => 0.0078670482360105
418 => 0.0080096140030341
419 => 0.0079251612008677
420 => 0.0076980883432948
421 => 0.0077342504443052
422 => 0.0077287846154855
423 => 0.0078412709852817
424 => 0.0078075053691522
425 => 0.0077221913370175
426 => 0.0080433616145956
427 => 0.0080225066032126
428 => 0.0080520742412343
429 => 0.0080650908299011
430 => 0.0082605815182078
501 => 0.0083406677982027
502 => 0.0083588487858692
503 => 0.0084349245577693
504 => 0.0083569559513609
505 => 0.0086688859676685
506 => 0.008876301226892
507 => 0.0091172247239717
508 => 0.0094692787073363
509 => 0.0096016542617628
510 => 0.0095777418027033
511 => 0.0098446651149538
512 => 0.010324320373696
513 => 0.0096746938443638
514 => 0.010358752157167
515 => 0.010142187193167
516 => 0.0096287155593587
517 => 0.0095956540395744
518 => 0.0099433829915173
519 => 0.010714612339255
520 => 0.010521428134858
521 => 0.010714928319407
522 => 0.010489200075763
523 => 0.010477990765879
524 => 0.010703965202449
525 => 0.011231966790719
526 => 0.010981133027975
527 => 0.01062150132212
528 => 0.010887047777234
529 => 0.01065700686265
530 => 0.010138660297694
531 => 0.010521280410538
601 => 0.010265433237473
602 => 0.010340103044157
603 => 0.010877855747544
604 => 0.010813151919555
605 => 0.010896884664386
606 => 0.010749098561428
607 => 0.010611043037535
608 => 0.010353352150052
609 => 0.010277062582275
610 => 0.010298146274197
611 => 0.010277052134244
612 => 0.010132876450999
613 => 0.010101741725929
614 => 0.010049849153436
615 => 0.010065932831523
616 => 0.0099683596135278
617 => 0.01015250043554
618 => 0.010186678594748
619 => 0.010320680928938
620 => 0.010334593495809
621 => 0.010707788089124
622 => 0.010502238778407
623 => 0.01064013900231
624 => 0.010627803908317
625 => 0.0096398440466455
626 => 0.0097759761987401
627 => 0.0099877551067767
628 => 0.0098923489957658
629 => 0.0097574670763881
630 => 0.0096485426945796
701 => 0.0094835111180498
702 => 0.0097157898928647
703 => 0.010021211781652
704 => 0.010342339498932
705 => 0.010728153410122
706 => 0.010642044236513
707 => 0.010335126976229
708 => 0.010348895060322
709 => 0.010434003938644
710 => 0.01032378020826
711 => 0.010291273078347
712 => 0.010429537958175
713 => 0.010430490112414
714 => 0.010303664389623
715 => 0.010162720807604
716 => 0.010162130248849
717 => 0.010137050699782
718 => 0.010493661671827
719 => 0.010689761649016
720 => 0.01071224419537
721 => 0.010688248394515
722 => 0.010697483425905
723 => 0.010583377169947
724 => 0.010844190233908
725 => 0.011083538093137
726 => 0.011019387753942
727 => 0.010923217275981
728 => 0.010846612858088
729 => 0.01100134218761
730 => 0.010994452334133
731 => 0.011081447598389
801 => 0.011077500990693
802 => 0.011048247755381
803 => 0.011019388798667
804 => 0.01113381129997
805 => 0.011100859457164
806 => 0.011067856431045
807 => 0.011001663809652
808 => 0.011010660486242
809 => 0.01091450661347
810 => 0.010870021432224
811 => 0.010201071041157
812 => 0.010022305638079
813 => 0.010078548872992
814 => 0.010097065606281
815 => 0.010019266673767
816 => 0.010130810358086
817 => 0.010113426393039
818 => 0.010181057231757
819 => 0.010138804419916
820 => 0.010140538490052
821 => 0.010264795000429
822 => 0.010300867194017
823 => 0.01028252058522
824 => 0.010295369921136
825 => 0.010591477443964
826 => 0.010549380423203
827 => 0.010527017219949
828 => 0.010533211980083
829 => 0.010608873800783
830 => 0.010630054979596
831 => 0.010540308836588
901 => 0.010582633636447
902 => 0.010762847262429
903 => 0.010825911832315
904 => 0.01102718366668
905 => 0.01094167981412
906 => 0.011098625836014
907 => 0.011581024400474
908 => 0.011966397753205
909 => 0.011611992491806
910 => 0.012319681577097
911 => 0.012870719041967
912 => 0.012849569306264
913 => 0.012753483178538
914 => 0.012126141674873
915 => 0.011548852670066
916 => 0.012031779435573
917 => 0.012033010515213
918 => 0.011991526677769
919 => 0.011733874126215
920 => 0.01198256092747
921 => 0.012002300782655
922 => 0.011991251713003
923 => 0.011793710105824
924 => 0.011492100583454
925 => 0.011551034362174
926 => 0.011647569093933
927 => 0.011464808707457
928 => 0.011406405690136
929 => 0.011514988010965
930 => 0.011864862872702
1001 => 0.011798721056777
1002 => 0.011796993826664
1003 => 0.012079976563683
1004 => 0.011877421995474
1005 => 0.011551777705855
1006 => 0.011469548228006
1007 => 0.011177688978055
1008 => 0.011379277201563
1009 => 0.011386532002847
1010 => 0.011276124193013
1011 => 0.011560736691131
1012 => 0.011558113936856
1013 => 0.011828311144839
1014 => 0.012344826725066
1015 => 0.012192067651805
1016 => 0.012014425469742
1017 => 0.012033740100416
1018 => 0.012245573926335
1019 => 0.012117494359488
1020 => 0.012163552664729
1021 => 0.012245504211574
1022 => 0.012294947614528
1023 => 0.012026625955622
1024 => 0.011964067341622
1025 => 0.011836094372468
1026 => 0.011802708613545
1027 => 0.011906939926677
1028 => 0.011879478658213
1029 => 0.011385922264891
1030 => 0.011334342875667
1031 => 0.011335924741896
1101 => 0.011206225915226
1102 => 0.011008404073269
1103 => 0.011528268062603
1104 => 0.011486515708768
1105 => 0.011440424341509
1106 => 0.011446070271005
1107 => 0.011671725608949
1108 => 0.011540834117074
1109 => 0.011888830600919
1110 => 0.011817292985572
1111 => 0.011743920700328
1112 => 0.011733778415533
1113 => 0.011705536345543
1114 => 0.011608683779136
1115 => 0.011491728485264
1116 => 0.011414504469755
1117 => 0.010529277004925
1118 => 0.010693570073267
1119 => 0.010882574272609
1120 => 0.010947817764835
1121 => 0.01083621425667
1122 => 0.01161309056587
1123 => 0.011755033353727
1124 => 0.011325079390609
1125 => 0.011244652559014
1126 => 0.01161836333556
1127 => 0.011392970053018
1128 => 0.011494464634346
1129 => 0.011275088864083
1130 => 0.011720843492703
1201 => 0.011717447589276
1202 => 0.011544038970918
1203 => 0.011690602747703
1204 => 0.011665133684729
1205 => 0.01146935578169
1206 => 0.011727050001432
1207 => 0.01172717781455
1208 => 0.011560275789609
1209 => 0.011365370764029
1210 => 0.011330526348907
1211 => 0.011304275762801
1212 => 0.011488008599354
1213 => 0.01165274288609
1214 => 0.011959272552612
1215 => 0.012036341393741
1216 => 0.012337146211431
1217 => 0.012158031588417
1218 => 0.012237430780877
1219 => 0.012323629835993
1220 => 0.01236495683288
1221 => 0.012297616709181
1222 => 0.012764890407255
1223 => 0.012804342624269
1224 => 0.012817570611373
1225 => 0.012660008549468
1226 => 0.0127999605383
1227 => 0.012734481637448
1228 => 0.012904839546901
1229 => 0.012931553842342
1230 => 0.012908927784492
1231 => 0.012917407323522
]
'min_raw' => 0.0057925921174856
'max_raw' => 0.012931553842342
'avg_raw' => 0.009362072979914
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.005792'
'max' => '$0.012931'
'avg' => '$0.009362'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00089320595143169
'max_diff' => -0.0012340124012644
'year' => 2031
]
6 => [
'items' => [
101 => 0.012518671654944
102 => 0.01249799510703
103 => 0.012216068909082
104 => 0.012330955918639
105 => 0.01211618016095
106 => 0.012184287766149
107 => 0.012214308949567
108 => 0.012198627587036
109 => 0.012337451457784
110 => 0.012219422807806
111 => 0.011907925794805
112 => 0.011596343914651
113 => 0.011592432257955
114 => 0.011510398248787
115 => 0.011451102685437
116 => 0.011462525114562
117 => 0.011502779244647
118 => 0.011448763042219
119 => 0.011460290137698
120 => 0.011651716727284
121 => 0.011690105964633
122 => 0.011559644336476
123 => 0.011035822073904
124 => 0.01090727477676
125 => 0.010999672024743
126 => 0.010955512091352
127 => 0.0088419533003823
128 => 0.00933850258746
129 => 0.009043469862299
130 => 0.0091794345158562
131 => 0.0088782825018205
201 => 0.0090220080276477
202 => 0.0089954671710433
203 => 0.0097939037307026
204 => 0.0097814372420371
205 => 0.0097874042904494
206 => 0.0095025815226695
207 => 0.0099563119255237
208 => 0.010179835837587
209 => 0.010138467510361
210 => 0.010148879027078
211 => 0.009969974674869
212 => 0.0097891364756443
213 => 0.0095885590819048
214 => 0.0099612070873577
215 => 0.0099197749904649
216 => 0.010014805313939
217 => 0.010256494182905
218 => 0.010292083786947
219 => 0.010339916575693
220 => 0.010322771925897
221 => 0.010731227040368
222 => 0.010681760430932
223 => 0.010800960727158
224 => 0.010555756674073
225 => 0.010278285013025
226 => 0.010331023304558
227 => 0.010325944182989
228 => 0.010261281135868
229 => 0.010202906228208
301 => 0.010105728453982
302 => 0.010413213311237
303 => 0.010400729987566
304 => 0.010602820487527
305 => 0.010567099028657
306 => 0.010328542383796
307 => 0.010337062481036
308 => 0.010394364229599
309 => 0.010592686235636
310 => 0.010651561709819
311 => 0.010624288244395
312 => 0.01068884251407
313 => 0.010739863576731
314 => 0.010695249974006
315 => 0.011326884506832
316 => 0.011064585811397
317 => 0.011192428370489
318 => 0.01122291806754
319 => 0.011144819349672
320 => 0.011161756165073
321 => 0.011187410825398
322 => 0.011343180899196
323 => 0.011751966645275
324 => 0.011933015069515
325 => 0.012477708186612
326 => 0.011917981518197
327 => 0.011884769654073
328 => 0.011982885332618
329 => 0.012302677853977
330 => 0.012561839655953
331 => 0.012647818577072
401 => 0.012659182110855
402 => 0.012820484282644
403 => 0.012912939679407
404 => 0.012800897956321
405 => 0.012705954327263
406 => 0.012365878032815
407 => 0.012405242789895
408 => 0.01267642693002
409 => 0.013059490500613
410 => 0.013388198895154
411 => 0.01327309667203
412 => 0.01415124538496
413 => 0.014238310242931
414 => 0.014226280694704
415 => 0.01442462739815
416 => 0.014030949584413
417 => 0.013862644691891
418 => 0.012726482217521
419 => 0.013045697529354
420 => 0.013509695731961
421 => 0.013448283829942
422 => 0.013111315932502
423 => 0.013387943274787
424 => 0.013296481624491
425 => 0.013224342026155
426 => 0.013554827511082
427 => 0.013191445144809
428 => 0.013506070714885
429 => 0.013102560166878
430 => 0.01327362244929
501 => 0.013176519224441
502 => 0.013239356911442
503 => 0.01287200907722
504 => 0.013070221051702
505 => 0.012863762807422
506 => 0.012863664919332
507 => 0.012859107342147
508 => 0.013102004550966
509 => 0.013109925420226
510 => 0.012930424015911
511 => 0.01290455505921
512 => 0.013000206150601
513 => 0.012888223773642
514 => 0.012940619623013
515 => 0.012889810790543
516 => 0.012878372652157
517 => 0.012787231619453
518 => 0.01274796555659
519 => 0.0127633627916
520 => 0.01271080409069
521 => 0.012679135572261
522 => 0.012852807676746
523 => 0.012760021677232
524 => 0.012838586891582
525 => 0.01274905191411
526 => 0.012438684673659
527 => 0.012260189191602
528 => 0.011673934245449
529 => 0.011840195420931
530 => 0.011950426752285
531 => 0.01191399529793
601 => 0.011992264158986
602 => 0.011997069231381
603 => 0.011971623226795
604 => 0.01194216001332
605 => 0.011927818950418
606 => 0.012034705483876
607 => 0.012096756714184
608 => 0.011961489941091
609 => 0.011929798828739
610 => 0.012066561004619
611 => 0.012149985852901
612 => 0.012765948060242
613 => 0.012720315590391
614 => 0.012834844134798
615 => 0.012821949978282
616 => 0.012941994138648
617 => 0.013138215606401
618 => 0.012739242498075
619 => 0.012808490434228
620 => 0.012791512439452
621 => 0.012976873734551
622 => 0.012977452412282
623 => 0.012866319056386
624 => 0.01292656625155
625 => 0.012892937920005
626 => 0.012953708860249
627 => 0.012719706140935
628 => 0.013004696194026
629 => 0.013166267189776
630 => 0.013168510603208
701 => 0.013245093972887
702 => 0.01332290711189
703 => 0.01347226265611
704 => 0.013318741666824
705 => 0.013042572352067
706 => 0.013062510884571
707 => 0.012900592916375
708 => 0.012903314786673
709 => 0.012888785229704
710 => 0.012932389523902
711 => 0.012729274831429
712 => 0.012776945443773
713 => 0.012710206307333
714 => 0.01280834535638
715 => 0.012702763962571
716 => 0.012791504252149
717 => 0.012829801619343
718 => 0.012971119728773
719 => 0.012681891162906
720 => 0.012092134538051
721 => 0.012216108530704
722 => 0.012032741257624
723 => 0.012049712596876
724 => 0.012083997403133
725 => 0.011972869128762
726 => 0.011994068901457
727 => 0.011993311496396
728 => 0.011986784588762
729 => 0.01195787583262
730 => 0.011915952416792
731 => 0.012082962402106
801 => 0.012111340653014
802 => 0.01217442198946
803 => 0.012362109258247
804 => 0.012343354874125
805 => 0.01237394405274
806 => 0.012307168047574
807 => 0.012052810144237
808 => 0.012066623002141
809 => 0.011894376442743
810 => 0.012170017257674
811 => 0.012104741874417
812 => 0.01206265841019
813 => 0.012051175547075
814 => 0.012239328056298
815 => 0.012295626235987
816 => 0.012260544988435
817 => 0.012188592326223
818 => 0.012326762708565
819 => 0.01236373127394
820 => 0.012372007172379
821 => 0.012616818598346
822 => 0.012385689411575
823 => 0.012441324504057
824 => 0.012875373613868
825 => 0.012481750965952
826 => 0.012690261661386
827 => 0.012680056147882
828 => 0.012786723164048
829 => 0.012671306339179
830 => 0.012672737069049
831 => 0.012767450153156
901 => 0.012634442708123
902 => 0.012601508194245
903 => 0.012556009399204
904 => 0.012655354353636
905 => 0.012714907160832
906 => 0.013194859050115
907 => 0.013504929859057
908 => 0.013491468867488
909 => 0.013614477132515
910 => 0.013559060782494
911 => 0.01338010677018
912 => 0.013685559448082
913 => 0.013588901440111
914 => 0.013596869808849
915 => 0.013596573225766
916 => 0.013660842351077
917 => 0.013615301785616
918 => 0.013525536656448
919 => 0.013585126938353
920 => 0.013762088771695
921 => 0.014311383732242
922 => 0.014618776469354
923 => 0.014292878303494
924 => 0.014517678494354
925 => 0.014382878484336
926 => 0.014358381312563
927 => 0.014499572445027
928 => 0.014641010713877
929 => 0.014632001707606
930 => 0.014529324787356
1001 => 0.014471325200437
1002 => 0.014910517503873
1003 => 0.015234106911599
1004 => 0.015212040283363
1005 => 0.015309435203945
1006 => 0.015595389703085
1007 => 0.015621533798788
1008 => 0.015618240243644
1009 => 0.01555343937459
1010 => 0.015834998714877
1011 => 0.01606988047011
1012 => 0.015538439845682
1013 => 0.015740805478395
1014 => 0.015831653930734
1015 => 0.015965046412288
1016 => 0.016190101887846
1017 => 0.016434571827319
1018 => 0.016469142557237
1019 => 0.016444612969999
1020 => 0.016283378473212
1021 => 0.016550880398116
1022 => 0.016707576752032
1023 => 0.016800885844857
1024 => 0.017037502179109
1025 => 0.015832214979847
1026 => 0.014979052793549
1027 => 0.014845819198347
1028 => 0.015116754953342
1029 => 0.015188198551262
1030 => 0.015159399726523
1031 => 0.014199088119732
1101 => 0.014840763356478
1102 => 0.015531151957631
1103 => 0.015557672595497
1104 => 0.015903295564579
1105 => 0.016015844570876
1106 => 0.016294116362825
1107 => 0.016276710386474
1108 => 0.016344465139542
1109 => 0.01632888949516
1110 => 0.016844329392707
1111 => 0.017412936143266
1112 => 0.017393247099553
1113 => 0.01731150315171
1114 => 0.017432906853671
1115 => 0.018019769955851
1116 => 0.017965741005692
1117 => 0.018018225528596
1118 => 0.018710170200221
1119 => 0.019609796701315
1120 => 0.019191829870533
1121 => 0.020098697626615
1122 => 0.020669522808074
1123 => 0.021656705934983
1124 => 0.021533105745514
1125 => 0.021917408892536
1126 => 0.021311835610228
1127 => 0.019921316947498
1128 => 0.019701262046429
1129 => 0.020141817531046
1130 => 0.021224880201202
1201 => 0.02010770803327
1202 => 0.020333710507835
1203 => 0.020268621779956
1204 => 0.020265153478257
1205 => 0.020397524447519
1206 => 0.020205513452598
1207 => 0.019423226117174
1208 => 0.019781743792951
1209 => 0.019643302900901
1210 => 0.019796913392083
1211 => 0.020625885859206
1212 => 0.020259377371255
1213 => 0.019873290451931
1214 => 0.02035752912831
1215 => 0.020974131365802
1216 => 0.020935545505921
1217 => 0.020860672810112
1218 => 0.021282726276177
1219 => 0.021979834952054
1220 => 0.022168260625934
1221 => 0.022307352606199
1222 => 0.022326531040299
1223 => 0.022524080830862
1224 => 0.021461805818047
1225 => 0.023147663544541
1226 => 0.023438764603027
1227 => 0.023384049668934
1228 => 0.023707596244036
1229 => 0.023612400634057
1230 => 0.02347447713093
1231 => 0.023987367272797
]
'min_raw' => 0.0088419533003823
'max_raw' => 0.023987367272797
'avg_raw' => 0.01641466028659
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.008841'
'max' => '$0.023987'
'avg' => '$0.016414'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0030493611828967
'max_diff' => 0.011055813430454
'year' => 2032
]
7 => [
'items' => [
101 => 0.023399380113247
102 => 0.022564806365792
103 => 0.02210694270194
104 => 0.022709894509308
105 => 0.023078096137949
106 => 0.023321453992459
107 => 0.023395093932193
108 => 0.021544267203383
109 => 0.020546774248111
110 => 0.02118615579616
111 => 0.021966245412538
112 => 0.021457472380841
113 => 0.021477415320448
114 => 0.020752038680449
115 => 0.022030425149646
116 => 0.021844174994006
117 => 0.022810441130935
118 => 0.022579833962586
119 => 0.023367786487016
120 => 0.023160292180169
121 => 0.024021589447041
122 => 0.024365184245488
123 => 0.024942133388342
124 => 0.025366539526431
125 => 0.025615758928312
126 => 0.025600796730222
127 => 0.02658832816109
128 => 0.026006015378027
129 => 0.025274493281916
130 => 0.02526126235512
131 => 0.025640128014444
201 => 0.026434126499671
202 => 0.026639998754682
203 => 0.026755053259623
204 => 0.026578843280229
205 => 0.025946784488948
206 => 0.025673864707484
207 => 0.025906400268539
208 => 0.025622029259377
209 => 0.026112933401603
210 => 0.026787049640345
211 => 0.02664784730279
212 => 0.027113179846858
213 => 0.027594750075558
214 => 0.02828341713127
215 => 0.028463460200901
216 => 0.028761064548575
217 => 0.029067397180268
218 => 0.029165782965672
219 => 0.029353631957324
220 => 0.029352641900413
221 => 0.029918737480452
222 => 0.030543158435755
223 => 0.030778862891004
224 => 0.031320852289029
225 => 0.030392714438485
226 => 0.031096717659802
227 => 0.031731746187774
228 => 0.030974638997573
301 => 0.032018134875914
302 => 0.032058651456257
303 => 0.032670403715944
304 => 0.032050275603199
305 => 0.031682045509371
306 => 0.032745111992852
307 => 0.033259496377929
308 => 0.033104559614945
309 => 0.031925483198465
310 => 0.031239210151108
311 => 0.029443101213989
312 => 0.031570669836138
313 => 0.03260694644996
314 => 0.031922799492382
315 => 0.032267843423332
316 => 0.034150291229728
317 => 0.034867005474934
318 => 0.034717933922142
319 => 0.034743124560637
320 => 0.035129850558066
321 => 0.036844806604565
322 => 0.035817165189133
323 => 0.036602758546242
324 => 0.037019434430184
325 => 0.03740646621279
326 => 0.036456038477362
327 => 0.035219545958127
328 => 0.03482789687286
329 => 0.031854774560513
330 => 0.03170001063254
331 => 0.031613136949941
401 => 0.031065410669684
402 => 0.030635047848257
403 => 0.030292807354311
404 => 0.029394666096535
405 => 0.029697762405821
406 => 0.028266312697574
407 => 0.029182103493448
408 => 0.026897475195523
409 => 0.028800181530131
410 => 0.027764624977645
411 => 0.028459973351435
412 => 0.028457547346465
413 => 0.027177190529914
414 => 0.026438707438493
415 => 0.026909297606539
416 => 0.027413807622178
417 => 0.027495662674839
418 => 0.028149773079174
419 => 0.028332321232968
420 => 0.027779191804614
421 => 0.02685013135212
422 => 0.027065930905621
423 => 0.026434334267429
424 => 0.025327485453012
425 => 0.026122443595253
426 => 0.026393877256856
427 => 0.026513757825055
428 => 0.02542529913852
429 => 0.025083281787623
430 => 0.024901194619809
501 => 0.026709625003967
502 => 0.026808694902712
503 => 0.026301839293661
504 => 0.028592874708593
505 => 0.028074342834256
506 => 0.028653669981284
507 => 0.027046349358045
508 => 0.027107751170397
509 => 0.0263468198289
510 => 0.026772890534688
511 => 0.026471757492737
512 => 0.026738468232173
513 => 0.026898333549701
514 => 0.027659140029853
515 => 0.028808868718034
516 => 0.027545500912378
517 => 0.026995033467694
518 => 0.02733654037443
519 => 0.028246018270321
520 => 0.029623923837913
521 => 0.028808176008965
522 => 0.029170191043156
523 => 0.029249275223198
524 => 0.028647772974758
525 => 0.029646102083787
526 => 0.030181114763727
527 => 0.03072992706807
528 => 0.03120644541456
529 => 0.030510719365074
530 => 0.031255245966436
531 => 0.030655288952376
601 => 0.030117065488348
602 => 0.030117881751174
603 => 0.029780246309999
604 => 0.029126035097919
605 => 0.029005388513011
606 => 0.029633007283688
607 => 0.030136298102052
608 => 0.030177751544453
609 => 0.030456399201515
610 => 0.030621300014665
611 => 0.032237552155323
612 => 0.032887622136635
613 => 0.033682515404588
614 => 0.033992171130185
615 => 0.034924123846512
616 => 0.034171496338579
617 => 0.034008660642989
618 => 0.031748048192591
619 => 0.032118223354702
620 => 0.032710909505832
621 => 0.031757821368923
622 => 0.032362336421143
623 => 0.032481680497831
624 => 0.031725435798735
625 => 0.032129378767926
626 => 0.031056626002497
627 => 0.028832251796825
628 => 0.029648578448149
629 => 0.030249669636103
630 => 0.029391838396884
701 => 0.030929467690531
702 => 0.030031216400294
703 => 0.029746513864954
704 => 0.028635787770813
705 => 0.02916000773148
706 => 0.029869022734388
707 => 0.029430933894432
708 => 0.030340034016711
709 => 0.031627562238005
710 => 0.03254513152213
711 => 0.032615571098262
712 => 0.032025635520937
713 => 0.032971011048519
714 => 0.032977897077147
715 => 0.031911509620063
716 => 0.031258353240269
717 => 0.031109954736527
718 => 0.031480683294115
719 => 0.031930816203294
720 => 0.032640550341956
721 => 0.033069427817603
722 => 0.034187712815053
723 => 0.03449028867162
724 => 0.034822727802719
725 => 0.035266969002298
726 => 0.035800394463499
727 => 0.03463328992232
728 => 0.034679661161496
729 => 0.033592869572413
730 => 0.032431476897798
731 => 0.03331282916819
801 => 0.034465080020348
802 => 0.034200752401739
803 => 0.034171010144922
804 => 0.034221028371074
805 => 0.034021733978776
806 => 0.033120332828605
807 => 0.032667654814059
808 => 0.033251724943302
809 => 0.033562132223023
810 => 0.034043546843512
811 => 0.033984202330107
812 => 0.03522427469233
813 => 0.035706129314448
814 => 0.035582850282388
815 => 0.035605536591163
816 => 0.036477911368131
817 => 0.037448171537677
818 => 0.038356948223562
819 => 0.039281394901311
820 => 0.038166938349516
821 => 0.037601086042639
822 => 0.038184901185135
823 => 0.037875120652733
824 => 0.039655211478785
825 => 0.039778461105373
826 => 0.041558423210596
827 => 0.043247819202398
828 => 0.042186739848621
829 => 0.043187289887169
830 => 0.044269466329901
831 => 0.046357160264732
901 => 0.045654098393439
902 => 0.045115564018413
903 => 0.044606651636193
904 => 0.045665617516028
905 => 0.047027960203043
906 => 0.04732139576947
907 => 0.047796873488095
908 => 0.04729696680561
909 => 0.047899049341749
910 => 0.050024665262791
911 => 0.049450305077595
912 => 0.048634621281609
913 => 0.050312590904949
914 => 0.050919841588694
915 => 0.055181844906868
916 => 0.060562800150639
917 => 0.058335049346461
918 => 0.056952212533238
919 => 0.057277211985673
920 => 0.059242154683868
921 => 0.059873231914365
922 => 0.058157746456509
923 => 0.058763684921594
924 => 0.06210246543877
925 => 0.063893614065331
926 => 0.061460993647106
927 => 0.054749490392351
928 => 0.04856117788037
929 => 0.050202597021891
930 => 0.050016511030409
1001 => 0.053603614174762
1002 => 0.049436606777131
1003 => 0.049506768494821
1004 => 0.053168049133391
1005 => 0.052191282229262
1006 => 0.050609044939425
1007 => 0.048572729963594
1008 => 0.044808413394434
1009 => 0.041474253233396
1010 => 0.048013309120419
1011 => 0.047731333140069
1012 => 0.047322990134024
1013 => 0.04823171330665
1014 => 0.052644215087354
1015 => 0.052542492639434
1016 => 0.051895386325018
1017 => 0.052386210761169
1018 => 0.050523001042666
1019 => 0.051003192611621
1020 => 0.048560197620051
1021 => 0.049664533384724
1022 => 0.05060565016882
1023 => 0.050794593296699
1024 => 0.051220291811486
1025 => 0.047582744611513
1026 => 0.049215896511526
1027 => 0.050175220247145
1028 => 0.045840960709122
1029 => 0.050089545871785
1030 => 0.047519423007573
1031 => 0.04664708470551
1101 => 0.047821573307406
1102 => 0.047363873957019
1103 => 0.046970370932564
1104 => 0.046750789483679
1105 => 0.047613204289334
1106 => 0.047572971607842
1107 => 0.046161893598288
1108 => 0.044321199857723
1109 => 0.044938997095769
1110 => 0.044714545567307
1111 => 0.043901104273337
1112 => 0.044449265490196
1113 => 0.042035440909191
1114 => 0.037882581177254
1115 => 0.040626087521705
1116 => 0.040520465511804
1117 => 0.040467206104836
1118 => 0.042528875297745
1119 => 0.042330693375647
1120 => 0.041970991246438
1121 => 0.043894498061652
1122 => 0.043192392199281
1123 => 0.045356117030162
1124 => 0.046781286144728
1125 => 0.046419817157883
1126 => 0.047760195598572
1127 => 0.044953229896359
1128 => 0.045885591306717
1129 => 0.046077749701195
1130 => 0.043870762286131
1201 => 0.04236311838906
1202 => 0.042262575729524
1203 => 0.03964852897813
1204 => 0.041044931652876
1205 => 0.042273708219584
1206 => 0.041685219601045
1207 => 0.041498921685013
1208 => 0.042450677334933
1209 => 0.042524636900168
1210 => 0.040838350974933
1211 => 0.041188983216519
1212 => 0.042651177951696
1213 => 0.041152139660798
1214 => 0.038239753128099
1215 => 0.037517441001096
1216 => 0.0374210712485
1217 => 0.035462103472769
1218 => 0.037565709351292
1219 => 0.036647429012184
1220 => 0.039548265600738
1221 => 0.037891323298855
1222 => 0.037819895827909
1223 => 0.037711922729443
1224 => 0.036025758240932
1225 => 0.036394921102572
1226 => 0.037622074679757
1227 => 0.03805993690097
1228 => 0.038014264283998
1229 => 0.037616060957757
1230 => 0.037798356401379
1231 => 0.037211119261529
]
'min_raw' => 0.020546774248111
'max_raw' => 0.063893614065331
'avg_raw' => 0.042220194156721
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.020546'
'max' => '$0.063893'
'avg' => '$0.04222'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.011704820947728
'max_diff' => 0.039906246792534
'year' => 2033
]
8 => [
'items' => [
101 => 0.037003753605164
102 => 0.036349250553258
103 => 0.035387311878039
104 => 0.035521075350741
105 => 0.033615223130185
106 => 0.032576813689194
107 => 0.032289395641944
108 => 0.031905048217134
109 => 0.032332808706286
110 => 0.033609824090302
111 => 0.032069472603251
112 => 0.029428648021796
113 => 0.029587366078887
114 => 0.029943958429358
115 => 0.02927945094335
116 => 0.02865055037573
117 => 0.02919732839496
118 => 0.028078376206422
119 => 0.030079178455485
120 => 0.030025062361832
121 => 0.030770837711502
122 => 0.031237186342501
123 => 0.03016240373021
124 => 0.02989209880974
125 => 0.030046076777113
126 => 0.027501163966591
127 => 0.030562864040801
128 => 0.030589341750183
129 => 0.030362623527374
130 => 0.031992884297506
131 => 0.03543324301357
201 => 0.034138841676478
202 => 0.033637610355268
203 => 0.032684769247251
204 => 0.033954373449577
205 => 0.033856887655749
206 => 0.033416019925671
207 => 0.033149381746928
208 => 0.033640670766834
209 => 0.033088505600507
210 => 0.03298932156415
211 => 0.032388374217126
212 => 0.0321738633556
213 => 0.03201504805365
214 => 0.031840208011072
215 => 0.032225861577575
216 => 0.031351919858928
217 => 0.030298031819803
218 => 0.030210412432577
219 => 0.030452337264285
220 => 0.03034530353544
221 => 0.030209899996262
222 => 0.029951377765012
223 => 0.029874679741454
224 => 0.030123911109427
225 => 0.029842543426077
226 => 0.030257716769751
227 => 0.030144812592861
228 => 0.029514139038688
301 => 0.028728086284932
302 => 0.028721088766622
303 => 0.028551734990211
304 => 0.02833603749344
305 => 0.028276035384328
306 => 0.029151280275268
307 => 0.030963011005639
308 => 0.030607324912225
309 => 0.030864344566894
310 => 0.032128626886161
311 => 0.03253050421716
312 => 0.032245261206603
313 => 0.03185480298073
314 => 0.031871981161059
315 => 0.033206295118611
316 => 0.033289514643441
317 => 0.033499783535049
318 => 0.033770038482748
319 => 0.032291286792812
320 => 0.031802332089445
321 => 0.031570638224816
322 => 0.030857110798569
323 => 0.031626588954558
324 => 0.031178246985403
325 => 0.031238743634585
326 => 0.031199345112442
327 => 0.031220859369648
328 => 0.03007861919048
329 => 0.030494791477393
330 => 0.029802824332458
331 => 0.028876358002349
401 => 0.028873252162349
402 => 0.02910000348412
403 => 0.02896512292515
404 => 0.028602162809061
405 => 0.028653719580428
406 => 0.028202028012668
407 => 0.028708563114894
408 => 0.028723088729156
409 => 0.028528045123645
410 => 0.029308432336999
411 => 0.029628157615045
412 => 0.029499775735659
413 => 0.029619150000147
414 => 0.030622105275233
415 => 0.030785630747078
416 => 0.030858257959786
417 => 0.03076094711602
418 => 0.029637482181425
419 => 0.029687312628616
420 => 0.029321689870149
421 => 0.029012777167622
422 => 0.029025132055689
423 => 0.029183953340629
424 => 0.029877535206704
425 => 0.031337137354976
426 => 0.031392528189548
427 => 0.031459663496914
428 => 0.031186590462356
429 => 0.031104229022177
430 => 0.031212885021065
501 => 0.031761034845721
502 => 0.033171025015962
503 => 0.032672640319721
504 => 0.032267445803858
505 => 0.032622910633927
506 => 0.032568189609564
507 => 0.032106289094641
508 => 0.032093325085595
509 => 0.031206790318932
510 => 0.030879058601116
511 => 0.030605181447415
512 => 0.030306114745319
513 => 0.030128817979509
514 => 0.030401226391732
515 => 0.030463529418648
516 => 0.02986790366444
517 => 0.029786722075054
518 => 0.030273122923416
519 => 0.030059076044903
520 => 0.03027922856756
521 => 0.03033030584125
522 => 0.030322081223777
523 => 0.030098591699482
524 => 0.030241037257714
525 => 0.029904111047431
526 => 0.029537754398428
527 => 0.029304041681191
528 => 0.029100096337907
529 => 0.029213257067734
530 => 0.028809859728235
531 => 0.028680804800545
601 => 0.030192779907712
602 => 0.031309692175847
603 => 0.031293451829122
604 => 0.031194592895115
605 => 0.031047708571983
606 => 0.031750289342598
607 => 0.031505524250661
608 => 0.031683611305853
609 => 0.031728941935689
610 => 0.031866144099492
611 => 0.031915182080127
612 => 0.031766955243581
613 => 0.031269487875748
614 => 0.030029846492887
615 => 0.029452790082818
616 => 0.02926235185586
617 => 0.029269273923716
618 => 0.02907833239077
619 => 0.029134573229622
620 => 0.02905877412219
621 => 0.028915228950489
622 => 0.029204393557881
623 => 0.029237717085128
624 => 0.029170222610503
625 => 0.029186120002613
626 => 0.028627294579984
627 => 0.028669780863162
628 => 0.028433211839534
629 => 0.028388857999486
630 => 0.027790832108176
701 => 0.026731342556481
702 => 0.027318402615259
703 => 0.026609316617391
704 => 0.026340775005592
705 => 0.027612009229059
706 => 0.027484412571571
707 => 0.027266022558887
708 => 0.02694297821366
709 => 0.026823157923642
710 => 0.026095167771987
711 => 0.026052154230151
712 => 0.026412965806699
713 => 0.02624646367889
714 => 0.02601263163216
715 => 0.025165715662078
716 => 0.024213501707465
717 => 0.024242243061351
718 => 0.024545124603743
719 => 0.025425793537389
720 => 0.025081700949286
721 => 0.02483205782861
722 => 0.024785307176352
723 => 0.025370489468481
724 => 0.026198645011323
725 => 0.026587197063088
726 => 0.02620215378029
727 => 0.025759836789214
728 => 0.025786758574961
729 => 0.025965857154365
730 => 0.025984677882742
731 => 0.025696774992473
801 => 0.025777817969683
802 => 0.025654706276576
803 => 0.024899170043224
804 => 0.024885504788594
805 => 0.024700084012262
806 => 0.024694469544845
807 => 0.024379022548924
808 => 0.024334889333613
809 => 0.023708550176947
810 => 0.024120808506594
811 => 0.023844287263601
812 => 0.023427504525642
813 => 0.023355651024524
814 => 0.023353491021514
815 => 0.023781433702482
816 => 0.024115807747207
817 => 0.023849097469011
818 => 0.023788372708628
819 => 0.024436754280595
820 => 0.024354241815433
821 => 0.024282786552751
822 => 0.026124492765751
823 => 0.024666638588034
824 => 0.024030930955142
825 => 0.023244122041833
826 => 0.023500310991441
827 => 0.023554293767322
828 => 0.021662160163781
829 => 0.020894521796474
830 => 0.020631097236656
831 => 0.020479492678204
901 => 0.020548580779221
902 => 0.019857616213645
903 => 0.020321955829211
904 => 0.019723638921203
905 => 0.019623329144484
906 => 0.020693193893244
907 => 0.020842059322975
908 => 0.02020695315088
909 => 0.020614794127714
910 => 0.0204669053201
911 => 0.019733895347317
912 => 0.019705899758013
913 => 0.019338101120217
914 => 0.018762567471916
915 => 0.018499533151013
916 => 0.018362542592918
917 => 0.01841906756708
918 => 0.018390486810451
919 => 0.018203978040675
920 => 0.018401177274815
921 => 0.017897414719937
922 => 0.017696812411494
923 => 0.017606205002708
924 => 0.017159086739763
925 => 0.017870650730503
926 => 0.018010837800725
927 => 0.018151301082782
928 => 0.019373938054734
929 => 0.019312858566751
930 => 0.019864987391195
1001 => 0.019843532680377
1002 => 0.019686056595752
1003 => 0.019021690898276
1004 => 0.01928649522411
1005 => 0.018471468668921
1006 => 0.019082141980487
1007 => 0.018803456183416
1008 => 0.018987918032165
1009 => 0.01865623899586
1010 => 0.018839803869243
1011 => 0.018044081355673
1012 => 0.017301046868619
1013 => 0.017600065636738
1014 => 0.017925133234628
1015 => 0.018629962612536
1016 => 0.01821017204977
1017 => 0.018361144610179
1018 => 0.01785541180531
1019 => 0.01681194057343
1020 => 0.016817846507281
1021 => 0.016657331191513
1022 => 0.016518622523069
1023 => 0.018258390045734
1024 => 0.018042022452637
1025 => 0.017697269010526
1026 => 0.018158735192748
1027 => 0.018280754175781
1028 => 0.01828422788469
1029 => 0.018620901699073
1030 => 0.018800584574162
1031 => 0.018832254459687
1101 => 0.019362017980938
1102 => 0.019539587725512
1103 => 0.020270972372801
1104 => 0.018785339737585
1105 => 0.018754744111111
1106 => 0.018165228968281
1107 => 0.017791349144833
1108 => 0.018190828839661
1109 => 0.018544713314862
1110 => 0.018176225145375
1111 => 0.0182243419211
1112 => 0.017729676660153
1113 => 0.017906496214778
1114 => 0.018058797035387
1115 => 0.017974705474075
1116 => 0.017848816336714
1117 => 0.018515698823541
1118 => 0.0184780707001
1119 => 0.019099087003396
1120 => 0.019583213621116
1121 => 0.020450855068056
1122 => 0.019545425987003
1123 => 0.019512428552535
1124 => 0.019834983767416
1125 => 0.019539538343989
1126 => 0.019726249653166
1127 => 0.020420772989602
1128 => 0.020435447173285
1129 => 0.020189635689971
1130 => 0.020174678038872
1201 => 0.020221888823126
1202 => 0.0204984038611
1203 => 0.020401781010383
1204 => 0.020513595419424
1205 => 0.020653421050093
1206 => 0.021231799143378
1207 => 0.02137124414358
1208 => 0.021032465087034
1209 => 0.021063053042692
1210 => 0.02093634037585
1211 => 0.020813937527387
1212 => 0.021089081255233
1213 => 0.021591911825834
1214 => 0.021588783742951
1215 => 0.021705430661701
1216 => 0.021778100725727
1217 => 0.02146614761319
1218 => 0.021263077607761
1219 => 0.021340947569523
1220 => 0.021465463334166
1221 => 0.02130056878523
1222 => 0.020282763242613
1223 => 0.020591500426574
1224 => 0.020540111462686
1225 => 0.020466927328998
1226 => 0.020777364954864
1227 => 0.020747422488531
1228 => 0.019850529373321
1229 => 0.019907945560594
1230 => 0.019854021041837
1231 => 0.020028262193859
]
'min_raw' => 0.016518622523069
'max_raw' => 0.037003753605164
'avg_raw' => 0.026761188064117
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.016518'
'max' => '$0.0370037'
'avg' => '$0.026761'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0040281517250412
'max_diff' => -0.026889860460167
'year' => 2034
]
9 => [
'items' => [
101 => 0.01953012874997
102 => 0.01968335124233
103 => 0.019779450953167
104 => 0.019836054421122
105 => 0.02004054496074
106 => 0.020016550356136
107 => 0.020039053422427
108 => 0.020342258909179
109 => 0.021875768213608
110 => 0.021959233741551
111 => 0.021548218955879
112 => 0.021712411255847
113 => 0.021397197944818
114 => 0.021608802752257
115 => 0.021753577387328
116 => 0.021099368650005
117 => 0.02106063065436
118 => 0.020744116345868
119 => 0.020914193206965
120 => 0.020643588692001
121 => 0.020709985574629
122 => 0.020524334102425
123 => 0.020858469789553
124 => 0.021232085407198
125 => 0.021326475466744
126 => 0.021078175857556
127 => 0.020898390576763
128 => 0.020582746848643
129 => 0.021107669403086
130 => 0.02126117275473
131 => 0.021106863115328
201 => 0.021071106200146
202 => 0.021003346910488
203 => 0.021085481653766
204 => 0.02126033674251
205 => 0.021177878311725
206 => 0.021232343557989
207 => 0.021024778203548
208 => 0.02146625088265
209 => 0.022167415743251
210 => 0.022169670102929
211 => 0.022087211227663
212 => 0.022053470832505
213 => 0.022138078642551
214 => 0.022183974908708
215 => 0.02245758105198
216 => 0.022751171344661
217 => 0.024121229137123
218 => 0.023736522391375
219 => 0.024952119169949
220 => 0.025913498396316
221 => 0.026201773990285
222 => 0.025936574008248
223 => 0.025029339195523
224 => 0.024984825927419
225 => 0.026340617762288
226 => 0.025957544469737
227 => 0.025911979120518
228 => 0.025427240788692
301 => 0.025713781178811
302 => 0.025651110592198
303 => 0.025552182005279
304 => 0.026098881109051
305 => 0.027122253027145
306 => 0.026962750916589
307 => 0.026843689990149
308 => 0.026321999668603
309 => 0.026636173765925
310 => 0.026524302387477
311 => 0.027004972824621
312 => 0.026720234305811
313 => 0.025954642312783
314 => 0.026076565361097
315 => 0.02605813693762
316 => 0.026437392586935
317 => 0.026323549454714
318 => 0.026035907238937
319 => 0.027118755253184
320 => 0.027048441126256
321 => 0.027148130482192
322 => 0.027192016819672
323 => 0.027851127324022
324 => 0.02812114380847
325 => 0.028182442277744
326 => 0.028438937054146
327 => 0.028176060454046
328 => 0.029227754282285
329 => 0.029927069310028
330 => 0.030739359701173
331 => 0.031926334285711
401 => 0.032372647709626
402 => 0.032292025184393
403 => 0.033191975767636
404 => 0.034809166960946
405 => 0.032618905761827
406 => 0.034925256122869
407 => 0.034195092226658
408 => 0.03246388676383
409 => 0.032352417541596
410 => 0.033524809980732
411 => 0.036125063572144
412 => 0.035473729539328
413 => 0.036126128921288
414 => 0.035365070387998
415 => 0.035327277417115
416 => 0.036089166007041
417 => 0.037869360225787
418 => 0.037023656682043
419 => 0.035811133277069
420 => 0.036706441690348
421 => 0.035930842685884
422 => 0.034183201052334
423 => 0.035473231476468
424 => 0.034610624869801
425 => 0.034862379336316
426 => 0.036675450120481
427 => 0.03645729664694
428 => 0.036739607442169
429 => 0.036241336277949
430 => 0.035775872440416
501 => 0.034907049621863
502 => 0.034649834017736
503 => 0.034720919157069
504 => 0.034649798791472
505 => 0.034163700409385
506 => 0.034058727510055
507 => 0.03388376807887
508 => 0.033937995322466
509 => 0.033609020405652
510 => 0.034229864043366
511 => 0.034345098093381
512 => 0.034796896318847
513 => 0.034843803509398
514 => 0.036102055136374
515 => 0.035409031284295
516 => 0.03587397151707
517 => 0.035832382886464
518 => 0.032501407235684
519 => 0.032960386290914
520 => 0.033674413665291
521 => 0.033352745300976
522 => 0.032897981492639
523 => 0.032530735334514
524 => 0.031974319852107
525 => 0.032757463958582
526 => 0.033787215180505
527 => 0.034869919699734
528 => 0.036170718237977
529 => 0.035880395147206
530 => 0.034845602175878
531 => 0.034892022232655
601 => 0.035178972758032
602 => 0.034807345755465
603 => 0.034697745697387
604 => 0.035163915393075
605 => 0.035167125647567
606 => 0.03473952386849
607 => 0.034264322741346
608 => 0.034262331631272
609 => 0.034177774180595
610 => 0.035380112970628
611 => 0.036041277734983
612 => 0.036117079209696
613 => 0.03603617569178
614 => 0.03606731224488
615 => 0.035682595036273
616 => 0.036561944490804
617 => 0.037368922508929
618 => 0.037152635161501
619 => 0.036828389680648
620 => 0.03657011253737
621 => 0.03709179327471
622 => 0.037068563652678
623 => 0.037361874259933
624 => 0.037348567996544
625 => 0.037249938671294
626 => 0.037152638683865
627 => 0.03753842213573
628 => 0.037427322697085
629 => 0.037316050690326
630 => 0.037092877645879
701 => 0.037123210569131
702 => 0.036799021073832
703 => 0.036649036179404
704 => 0.034393623231296
705 => 0.033790903193817
706 => 0.033980531187105
707 => 0.034042961646185
708 => 0.033780657113467
709 => 0.034156734432878
710 => 0.034098123181012
711 => 0.034326145275587
712 => 0.034183686970465
713 => 0.034189533508999
714 => 0.034608473009048
715 => 0.034730092928208
716 => 0.03466823605573
717 => 0.034711558488884
718 => 0.035709905675665
719 => 0.03556797263105
720 => 0.035492573529929
721 => 0.035513459596227
722 => 0.035768558707254
723 => 0.035839972530447
724 => 0.035537387143419
725 => 0.035680088161167
726 => 0.036287690983279
727 => 0.036500317583678
728 => 0.03717891962559
729 => 0.036890637416996
730 => 0.037419791887432
731 => 0.039046232327499
801 => 0.040345545492143
802 => 0.039150643409549
803 => 0.041536666569884
804 => 0.043394527854898
805 => 0.04332322004435
806 => 0.042999258956202
807 => 0.04088413327701
808 => 0.038937763092271
809 => 0.040565984399049
810 => 0.040570135070007
811 => 0.040430269415757
812 => 0.039561575849463
813 => 0.040400040762652
814 => 0.040466595062604
815 => 0.040429342352848
816 => 0.03976331703233
817 => 0.038746419469954
818 => 0.038945118819534
819 => 0.039270592407502
820 => 0.038654403004575
821 => 0.038457493154107
822 => 0.038823586029759
823 => 0.040003213553586
824 => 0.039780211803324
825 => 0.039774388326403
826 => 0.040728484381486
827 => 0.040045557512862
828 => 0.038947625054655
829 => 0.038670382629008
830 => 0.037686358790836
831 => 0.038366027560834
901 => 0.038390487629876
902 => 0.038018239990594
903 => 0.038977830899009
904 => 0.038968988099856
905 => 0.039879976851138
906 => 0.041621445191839
907 => 0.041106407311041
908 => 0.040507474291635
909 => 0.040572594917456
910 => 0.041286807451309
911 => 0.040854978249455
912 => 0.041010267041262
913 => 0.041286572403124
914 => 0.041453274288211
915 => 0.040548609081588
916 => 0.040337688346785
917 => 0.039906218546497
918 => 0.039793656129367
919 => 0.040145079278789
920 => 0.04005249169488
921 => 0.038388431855787
922 => 0.03821452834386
923 => 0.038219861716294
924 => 0.037782573066893
925 => 0.037115602915255
926 => 0.03886836065104
927 => 0.038727589675028
928 => 0.038572189412319
929 => 0.038591225057799
930 => 0.039352037784432
1001 => 0.038910727981021
1002 => 0.040084022422643
1003 => 0.039842828357905
1004 => 0.039595448575515
1005 => 0.039561253154216
1006 => 0.039466033043447
1007 => 0.039139487853777
1008 => 0.038745164914928
1009 => 0.038484798755031
1010 => 0.035500192552751
1011 => 0.036054118103239
1012 => 0.036691358957172
1013 => 0.036911331946367
1014 => 0.036535052926681
1015 => 0.039154345642922
1016 => 0.039632915662312
1017 => 0.03818329585723
1018 => 0.037912131179286
1019 => 0.039172123154064
1020 => 0.038412193965519
1021 => 0.03875439003259
1022 => 0.038014749306823
1023 => 0.039517642158807
1024 => 0.039506192633309
1025 => 0.038921533369513
1026 => 0.0394156833757
1027 => 0.03932981265169
1028 => 0.038669733782817
1029 => 0.039538567836312
1030 => 0.039538998767163
1031 => 0.038976276937347
1101 => 0.038319141035771
1102 => 0.038201660657427
1103 => 0.038113154973612
1104 => 0.038732623059868
1105 => 0.039288036208979
1106 => 0.040321522380878
1107 => 0.040581365359519
1108 => 0.041595549803881
1109 => 0.040991652347008
1110 => 0.041259352267858
1111 => 0.041549978400408
1112 => 0.041689315255774
1113 => 0.041462273327183
1114 => 0.043037719224249
1115 => 0.043170735128377
1116 => 0.043215334210447
1117 => 0.042684102718103
1118 => 0.043155960619584
1119 => 0.042935193933772
1120 => 0.043509567519502
1121 => 0.043599636631715
1122 => 0.043523351297973
1123 => 0.043551940655833
1124 => 0.042207575510388
1125 => 0.042137863085505
1126 => 0.041187329225665
1127 => 0.041574678799541
1128 => 0.040850547337328
1129 => 0.041080176883376
1130 => 0.041181395399284
1201 => 0.041128524590674
1202 => 0.041596578963274
1203 => 0.041198637129373
1204 => 0.040148403202014
1205 => 0.039097883139123
1206 => 0.039084694715469
1207 => 0.038808111326129
1208 => 0.038608192194411
1209 => 0.038646703711692
1210 => 0.038782423321727
1211 => 0.038600303923951
1212 => 0.038639168331154
1213 => 0.03928457644292
1214 => 0.039414008436895
1215 => 0.038974147949025
1216 => 0.037208044618659
1217 => 0.036774638431453
1218 => 0.037086162203999
1219 => 0.036937273905422
1220 => 0.029811262877705
1221 => 0.031485413467051
1222 => 0.030490690035644
1223 => 0.030949104357861
1224 => 0.029933749316778
1225 => 0.0304183299617
1226 => 0.030328845610634
1227 => 0.033020830216586
1228 => 0.032978798579668
1229 => 0.032998916899996
1230 => 0.032038617052736
1231 => 0.033568400784404
]
'min_raw' => 0.01953012874997
'max_raw' => 0.043599636631715
'avg_raw' => 0.031564882690842
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.01953'
'max' => '$0.043599'
'avg' => '$0.031564'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0030115062269
'max_diff' => 0.0065958830265512
'year' => 2035
]
10 => [
'items' => [
101 => 0.034322027259867
102 => 0.034182551056378
103 => 0.034217654211899
104 => 0.033614465697724
105 => 0.033004757083318
106 => 0.032328496396459
107 => 0.033584905164296
108 => 0.033445213956926
109 => 0.033765615327324
110 => 0.03458048622322
111 => 0.034700479058034
112 => 0.034861750644871
113 => 0.034803946261083
114 => 0.036181081196947
115 => 0.036014301069585
116 => 0.03641619319061
117 => 0.035589470606033
118 => 0.034653955528356
119 => 0.03483176636033
120 => 0.034814641747347
121 => 0.034596625769351
122 => 0.034399810692569
123 => 0.034072169042031
124 => 0.035108875706173
125 => 0.035066787308858
126 => 0.035748149538986
127 => 0.035627712146411
128 => 0.034823401762768
129 => 0.034852127865469
130 => 0.03504532471143
131 => 0.035713981201182
201 => 0.035912483972946
202 => 0.035820529580097
203 => 0.03603817880734
204 => 0.036210199882279
205 => 0.036059782005869
206 => 0.038189381932605
207 => 0.037305023567836
208 => 0.037736053681498
209 => 0.03783885182383
210 => 0.037575536543859
211 => 0.037632640199472
212 => 0.03771913667791
213 => 0.038244326357238
214 => 0.039622576040654
215 => 0.040232993443376
216 => 0.042069464316929
217 => 0.0401823067755
218 => 0.040070330656826
219 => 0.04040113451726
220 => 0.04147933733022
221 => 0.042353119439684
222 => 0.042643003375092
223 => 0.042681316322619
224 => 0.043225157856564
225 => 0.043536877681778
226 => 0.043159121189891
227 => 0.04283901211577
228 => 0.041692421145671
229 => 0.041825142172523
301 => 0.042739458434428
302 => 0.044030984007328
303 => 0.045139247309209
304 => 0.044751172127765
305 => 0.047711911823795
306 => 0.048005457071119
307 => 0.047964898609393
308 => 0.048633638368187
309 => 0.047306326133464
310 => 0.046738874437656
311 => 0.042908223330988
312 => 0.043984480041733
313 => 0.045548882377143
314 => 0.045341827861844
315 => 0.044205717069275
316 => 0.045138385467295
317 => 0.044830016127672
318 => 0.044586792435256
319 => 0.045701047321447
320 => 0.044475878303012
321 => 0.045536660378978
322 => 0.044176196394166
323 => 0.044752944822505
324 => 0.044425554520397
325 => 0.044637416169308
326 => 0.043398877298824
327 => 0.044067162809505
328 => 0.04337107442446
329 => 0.043370744387932
330 => 0.043355378198252
331 => 0.044174323096329
401 => 0.044201028860054
402 => 0.043595827343018
403 => 0.043508608349389
404 => 0.043831102682162
405 => 0.043453546279884
406 => 0.043630202544198
407 => 0.043458897018168
408 => 0.043420332536012
409 => 0.043113044180988
410 => 0.042980655908574
411 => 0.043032568761413
412 => 0.042855363431764
413 => 0.042748590810854
414 => 0.043334138436525
415 => 0.043021303961053
416 => 0.043286192066481
417 => 0.042984318638801
418 => 0.041937893818473
419 => 0.04133608383856
420 => 0.039359484356592
421 => 0.039920045517714
422 => 0.040291698147481
423 => 0.04016886695556
424 => 0.040432755885167
425 => 0.040448956522228
426 => 0.040363163541183
427 => 0.040263826259895
428 => 0.04021547436506
429 => 0.040575849775194
430 => 0.040785059830456
501 => 0.040328998460948
502 => 0.040222149663049
503 => 0.04068325288746
504 => 0.040964525587979
505 => 0.043041285175138
506 => 0.042887432117076
507 => 0.043273573100673
508 => 0.043230099551736
509 => 0.043634836819629
510 => 0.044296411197902
511 => 0.042951245507768
512 => 0.043184719759245
513 => 0.043127477264491
514 => 0.043752435812432
515 => 0.043754386864802
516 => 0.043379692996316
517 => 0.043582820621136
518 => 0.043469440353477
519 => 0.043674333821399
520 => 0.042885377315686
521 => 0.043846241177053
522 => 0.044390989069749
523 => 0.044398552894767
524 => 0.044656759072519
525 => 0.044919111503407
526 => 0.045422674148416
527 => 0.044905067414547
528 => 0.043973943288315
529 => 0.044041167442717
530 => 0.043495249708192
531 => 0.043504426683938
601 => 0.043455439268196
602 => 0.043602454190437
603 => 0.042917638823751
604 => 0.043078363621523
605 => 0.04285334796344
606 => 0.043184230619149
607 => 0.042828255578468
608 => 0.043127449660427
609 => 0.043256571907759
610 => 0.043733035780219
611 => 0.042757881477105
612 => 0.040769475840912
613 => 0.041187462812728
614 => 0.040569227249245
615 => 0.040626447304434
616 => 0.04074204092242
617 => 0.040367364186648
618 => 0.040438840700412
619 => 0.040436287056368
620 => 0.040414281131586
621 => 0.040316813241909
622 => 0.040175465518444
623 => 0.040738551344194
624 => 0.040834230598437
625 => 0.041046913728466
626 => 0.041679714459086
627 => 0.041616482743629
628 => 0.041719616294999
629 => 0.041494476331428
630 => 0.040636890901627
701 => 0.040683461916433
702 => 0.04010272061555
703 => 0.041032062867718
704 => 0.040811982355686
705 => 0.040670095017871
706 => 0.040631379743171
707 => 0.041265749064406
708 => 0.04145556230784
709 => 0.041337283432425
710 => 0.041094690008202
711 => 0.041560541099017
712 => 0.04168518319824
713 => 0.041713085967632
714 => 0.04253848478247
715 => 0.041759216592344
716 => 0.041946794190967
717 => 0.043410221069036
718 => 0.042083094829732
719 => 0.042786103197138
720 => 0.042751694595833
721 => 0.043111329888091
722 => 0.0427221940049
723 => 0.042727017810547
724 => 0.043046349586268
725 => 0.042597905699057
726 => 0.042486864686103
727 => 0.042333462321998
728 => 0.042668410771908
729 => 0.042869197219214
730 => 0.044487388523103
731 => 0.045532813903905
801 => 0.045487429231011
802 => 0.045902160184713
803 => 0.04571532009157
804 => 0.045111964144885
805 => 0.046141819174457
806 => 0.045815929952136
807 => 0.045842795863669
808 => 0.0458417959131
809 => 0.046058483756213
810 => 0.045904940560218
811 => 0.045602291160026
812 => 0.04580320395593
813 => 0.046399843132124
814 => 0.048251829442157
815 => 0.049288225516807
816 => 0.048189437097126
817 => 0.048947366635659
818 => 0.048492878990447
819 => 0.048410285065476
820 => 0.048886320826227
821 => 0.049363189824561
822 => 0.049332815330929
823 => 0.048986632925632
824 => 0.048791083268934
825 => 0.050271850783397
826 => 0.051362855063836
827 => 0.051288455886096
828 => 0.051616829660733
829 => 0.052580945219288
830 => 0.052669091863273
831 => 0.052657987412158
901 => 0.052439506757891
902 => 0.053388803731514
903 => 0.054180723968202
904 => 0.052388934798941
905 => 0.053071224658353
906 => 0.05337752655825
907 => 0.053827268622976
908 => 0.054586058871691
909 => 0.05541030634097
910 => 0.055526863970539
911 => 0.055444160754563
912 => 0.054900547391613
913 => 0.055802448807815
914 => 0.056330761505235
915 => 0.056645359626328
916 => 0.057443128117283
917 => 0.053379418174506
918 => 0.050502922297519
919 => 0.050053715929223
920 => 0.05096719474332
921 => 0.051208071821741
922 => 0.051110974573464
923 => 0.047873216944352
924 => 0.050036669805376
925 => 0.052364363175554
926 => 0.052453779357732
927 => 0.053619071328617
928 => 0.053998538161269
929 => 0.054936750936141
930 => 0.054878065471625
1001 => 0.05510650535208
1002 => 0.055053990979591
1003 => 0.056791832581034
1004 => 0.0587089299394
1005 => 0.058642546953876
1006 => 0.058366941526544
1007 => 0.05877626258384
1008 => 0.060754912506313
1009 => 0.06057275012867
1010 => 0.060749705361995
1011 => 0.063082645132413
1012 => 0.066115798690769
1013 => 0.064706594339275
1014 => 0.067764162294389
1015 => 0.069688739247421
1016 => 0.073017096082718
1017 => 0.072600369414436
1018 => 0.073896074305806
1019 => 0.071854341704731
1020 => 0.067166110950422
1021 => 0.066424180487726
1022 => 0.067909544062714
1023 => 0.071561165472166
1024 => 0.067794541509514
1025 => 0.068556524631497
1026 => 0.068337073441104
1027 => 0.068325379819776
1028 => 0.068771677784489
1029 => 0.068124299309336
1030 => 0.065486762940396
1031 => 0.066695530315182
1101 => 0.066228767182
1102 => 0.066746675677762
1103 => 0.069541614227677
1104 => 0.068305905271746
1105 => 0.067004186267517
1106 => 0.068636830773392
1107 => 0.070715748266891
1108 => 0.070585653346322
1109 => 0.07033321482496
1110 => 0.07175619755263
1111 => 0.074106548123921
1112 => 0.074741838438867
1113 => 0.075210796761422
1114 => 0.075275458190987
1115 => 0.075941511102356
1116 => 0.072359976730978
1117 => 0.078043963758681
1118 => 0.079025431301392
1119 => 0.078840956081024
1120 => 0.07993181594828
1121 => 0.07961085730289
1122 => 0.079145838582587
1123 => 0.080875083504736
1124 => 0.078892643744362
1125 => 0.076078820086737
1126 => 0.074535100777043
1127 => 0.076567994892333
1128 => 0.077809412390313
1129 => 0.078629910387496
1130 => 0.078878192585685
1201 => 0.072638001048907
1202 => 0.069274883907473
1203 => 0.071430603436916
1204 => 0.074060730042651
1205 => 0.072345366244885
1206 => 0.072412605258144
1207 => 0.069966947272206
1208 => 0.074277116507197
1209 => 0.073649161103888
1210 => 0.076906994847089
1211 => 0.076129486678525
1212 => 0.078786123627727
1213 => 0.078086542085403
1214 => 0.080990465954515
1215 => 0.082148919806504
1216 => 0.084094144122939
1217 => 0.085525059048596
1218 => 0.086365319661982
1219 => 0.086314873566493
1220 => 0.089644404732905
1221 => 0.087681096529031
1222 => 0.085214718708748
1223 => 0.085170109715302
1224 => 0.08644748173727
1225 => 0.089124503065415
1226 => 0.089818615746727
1227 => 0.090206530042987
1228 => 0.089612425794871
1229 => 0.087481395451131
1230 => 0.086561227353274
1231 => 0.087345237232485
]
'min_raw' => 0.032328496396459
'max_raw' => 0.090206530042987
'avg_raw' => 0.061267513219723
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.032328'
'max' => '$0.0902065'
'avg' => '$0.061267'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.012798367646489
'max_diff' => 0.046606893411272
'year' => 2036
]
11 => [
'items' => [
101 => 0.086386460520947
102 => 0.088041578110293
103 => 0.090314408074507
104 => 0.089845077674641
105 => 0.091413978835448
106 => 0.093037626483669
107 => 0.095359515543202
108 => 0.095966543322667
109 => 0.096969937158924
110 => 0.098002759014137
111 => 0.098334473558702
112 => 0.098967819549254
113 => 0.098964481503256
114 => 0.10087311227489
115 => 0.10297839112137
116 => 0.1037730851486
117 => 0.10560044024454
118 => 0.10247115868091
119 => 0.10484475469352
120 => 0.10698579771185
121 => 0.10443315796055
122 => 0.10795137716893
123 => 0.10808798164834
124 => 0.11015054710305
125 => 0.10805974187497
126 => 0.10681822840462
127 => 0.11040243127461
128 => 0.11213671414207
129 => 0.11161433402833
130 => 0.10763899556968
131 => 0.10532517807646
201 => 0.099269471394644
202 => 0.10644271754632
203 => 0.10993659650034
204 => 0.10762994726725
205 => 0.10879328697065
206 => 0.11514009117822
207 => 0.11755654329532
208 => 0.11705393814724
209 => 0.11713887014368
210 => 0.11844274384436
211 => 0.12422483788954
212 => 0.12076007310978
213 => 0.12340875596165
214 => 0.12481360779574
215 => 0.12611851247249
216 => 0.12291407900575
217 => 0.118745158148
218 => 0.11742468591296
219 => 0.10740059646011
220 => 0.10687879907167
221 => 0.10658589838547
222 => 0.10473920099055
223 => 0.10328820269114
224 => 0.10213431497133
225 => 0.099106169014516
226 => 0.10012807938278
227 => 0.095301846750801
228 => 0.098389499357561
301 => 0.090686715543454
302 => 0.0971018227933
303 => 0.093610371576343
304 => 0.09595478716625
305 => 0.095946607721114
306 => 0.091629795322456
307 => 0.089139948020487
308 => 0.090726575627609
309 => 0.092427566369099
310 => 0.092703546394086
311 => 0.09490892529083
312 => 0.09552439913645
313 => 0.093659484650494
314 => 0.090527092469979
315 => 0.091254675731254
316 => 0.08912520356892
317 => 0.085393385513394
318 => 0.088073642392165
319 => 0.088988799933153
320 => 0.089392985638629
321 => 0.085723171183219
322 => 0.084570035805781
323 => 0.083956116206575
324 => 0.090053365507342
325 => 0.0903873865878
326 => 0.088678487514355
327 => 0.096402873370785
328 => 0.094654606953717
329 => 0.096607848877254
330 => 0.09118865517646
331 => 0.091395675673742
401 => 0.088830142529355
402 => 0.090266669661225
403 => 0.08925137858585
404 => 0.090150612465008
405 => 0.090689609544495
406 => 0.093254721710138
407 => 0.097131112253835
408 => 0.092871579491543
409 => 0.09101564006938
410 => 0.092167054448691
411 => 0.095233422672407
412 => 0.099879127495839
413 => 0.097128776736844
414 => 0.098349335699701
415 => 0.098615973534197
416 => 0.096587966708034
417 => 0.099953903000238
418 => 0.10175773560405
419 => 0.10360809460499
420 => 0.10521470947963
421 => 0.10286902052975
422 => 0.10537924394743
423 => 0.10335644698686
424 => 0.10154178900033
425 => 0.10154454108744
426 => 0.10040617962456
427 => 0.098200460847466
428 => 0.097793692463173
429 => 0.099909752967453
430 => 0.10160663310021
501 => 0.10174639627545
502 => 0.1026858763058
503 => 0.10324185091034
504 => 0.10869115784569
505 => 0.11088291417412
506 => 0.1135629523247
507 => 0.11460697822302
508 => 0.11774912187298
509 => 0.11521158568321
510 => 0.1146625737667
511 => 0.10704076105926
512 => 0.10828883246312
513 => 0.11028711520168
514 => 0.10707371200561
515 => 0.10911187671006
516 => 0.10951425359695
517 => 0.10696452179463
518 => 0.10832644371765
519 => 0.1047095828718
520 => 0.097209949936534
521 => 0.099962252235579
522 => 0.10198887314261
523 => 0.09909663522772
524 => 0.1042808597451
525 => 0.10125234280616
526 => 0.10029244833097
527 => 0.096547557756154
528 => 0.09831500195341
529 => 0.10070549553756
530 => 0.099228448427264
531 => 0.10229354296087
601 => 0.10663453425131
602 => 0.10972818315538
603 => 0.10996567510425
604 => 0.10797666611731
605 => 0.11116406571256
606 => 0.11118728243885
607 => 0.1075918826745
608 => 0.1053897203381
609 => 0.10488938442188
610 => 0.10613932163723
611 => 0.1076569761678
612 => 0.11004989436836
613 => 0.11149588472077
614 => 0.11526626066584
615 => 0.11628641629142
616 => 0.11740725803208
617 => 0.11890504825239
618 => 0.12070352943741
619 => 0.11676855499219
620 => 0.11692489886261
621 => 0.11326070514265
622 => 0.10934498865433
623 => 0.11231652936801
624 => 0.11620142356365
625 => 0.11531022454274
626 => 0.11520994644735
627 => 0.11537858638898
628 => 0.11470665143106
629 => 0.11166751451944
630 => 0.11014127898843
701 => 0.11211051220764
702 => 0.11315707202317
703 => 0.11478019502744
704 => 0.11458011085719
705 => 0.11876110140551
706 => 0.120385707906
707 => 0.11997006404235
708 => 0.12004655251629
709 => 0.1229878249841
710 => 0.12625912488712
711 => 0.12932312893234
712 => 0.13243996544918
713 => 0.12868249737593
714 => 0.12677468681675
715 => 0.12874306033035
716 => 0.12769861363717
717 => 0.13370031413918
718 => 0.13411585886023
719 => 0.14011712537098
720 => 0.1458130419072
721 => 0.14223553878374
722 => 0.14560896309488
723 => 0.1492575965267
724 => 0.15629640238612
725 => 0.15392598020084
726 => 0.15211027395617
727 => 0.15039444032839
728 => 0.15396481772689
729 => 0.15855805121189
730 => 0.15954738971111
731 => 0.16115049603625
801 => 0.15946502575388
802 => 0.16149498906054
803 => 0.1686616515441
804 => 0.16672515607916
805 => 0.16397502121177
806 => 0.16963241294896
807 => 0.17167980102609
808 => 0.18604944277689
809 => 0.20419170906756
810 => 0.19668069169468
811 => 0.19201836083231
812 => 0.19311411917694
813 => 0.19973906067182
814 => 0.20186678161484
815 => 0.19608290262231
816 => 0.19812586646262
817 => 0.20938279808249
818 => 0.21542178073094
819 => 0.20722003115076
820 => 0.18459172934516
821 => 0.16372740165684
822 => 0.1692615608927
823 => 0.16863415898031
824 => 0.18072832767504
825 => 0.16667897130276
826 => 0.16691552643249
827 => 0.17925978972788
828 => 0.17596655191492
829 => 0.17063192842395
830 => 0.16376635031197
831 => 0.15107469418285
901 => 0.13983334041628
902 => 0.16188022388169
903 => 0.160929522177
904 => 0.15955276522252
905 => 0.16261658884406
906 => 0.17749364666874
907 => 0.17715068233354
908 => 0.17496891821497
909 => 0.17662376706972
910 => 0.17034182541864
911 => 0.17196082481927
912 => 0.16372409664073
913 => 0.16744744177359
914 => 0.17062048271784
915 => 0.17125751766508
916 => 0.172692789929
917 => 0.16042854557885
918 => 0.16593483123277
919 => 0.16916925818526
920 => 0.15455599954448
921 => 0.16888040104714
922 => 0.1602150523702
923 => 0.15727390288008
924 => 0.16123377320155
925 => 0.15969060788617
926 => 0.15836388496572
927 => 0.15762355078011
928 => 0.16053124250926
929 => 0.16039559521465
930 => 0.15563804718712
1001 => 0.14943201972767
1002 => 0.15151496624897
1003 => 0.15075821225005
1004 => 0.14801563813478
1005 => 0.14986380194881
1006 => 0.1417254238461
1007 => 0.12772376731647
1008 => 0.13697369050228
1009 => 0.13661757852161
1010 => 0.13643801071256
1011 => 0.1433890723376
1012 => 0.14272088815063
1013 => 0.1415081273084
1014 => 0.14799336483085
1015 => 0.1456261658964
1016 => 0.15292131523016
1017 => 0.15772637240205
1018 => 0.15650765447594
1019 => 0.16102683397096
1020 => 0.15156295312986
1021 => 0.15470647472028
1022 => 0.15535435016333
1023 => 0.1479133380065
1024 => 0.14283021134719
1025 => 0.1424912247509
1026 => 0.13367778362166
1027 => 0.13838585273329
1028 => 0.14252875871839
1029 => 0.14054462825402
1030 => 0.13991651182321
1031 => 0.14312542244637
1101 => 0.14337478228425
1102 => 0.1376893515546
1103 => 0.13887153263747
1104 => 0.14380142427429
1105 => 0.13874731201702
1106 => 0.12892799748569
1107 => 0.12649267171928
1108 => 0.12616775437008
1109 => 0.11956295774344
1110 => 0.12665541183195
1111 => 0.12355936555637
1112 => 0.13333973864462
1113 => 0.1277532419898
1114 => 0.1275124192846
1115 => 0.12714838044468
1116 => 0.12146335914742
1117 => 0.12270801750957
1118 => 0.12684545147217
1119 => 0.12832173452156
1120 => 0.12816774610468
1121 => 0.12682517578859
1122 => 0.12743979760422
1123 => 0.12545988658763
1124 => 0.12476073879938
1125 => 0.12255403606394
1126 => 0.11931079266002
1127 => 0.11976178554731
1128 => 0.11333607172335
1129 => 0.10983500179362
1130 => 0.10886595178043
1201 => 0.1075700976034
1202 => 0.10901232195786
1203 => 0.11331786848344
1204 => 0.10812446590094
1205 => 0.099220741448076
1206 => 0.099755870458901
1207 => 0.100958146465
1208 => 0.09871771308149
1209 => 0.096597330909322
1210 => 0.098440831175978
1211 => 0.094668205749575
1212 => 0.10141405022385
1213 => 0.10123159403583
1214 => 0.10374602769561
1215 => 0.10531835466445
1216 => 0.10169465004818
1217 => 0.10078329813673
1218 => 0.10130244560413
1219 => 0.092722094383315
1220 => 0.10304482994459
1221 => 0.10313410139038
1222 => 0.10236970507322
1223 => 0.10786624308089
1224 => 0.11946565269028
1225 => 0.11510148821006
1226 => 0.11341155181574
1227 => 0.11019898149482
1228 => 0.1144795407039
1229 => 0.11415086054377
1230 => 0.11266444421141
1231 => 0.11176545497569
]
'min_raw' => 0.083956116206575
'max_raw' => 0.21542178073094
'avg_raw' => 0.14968894846876
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.083956'
'max' => '$0.215421'
'avg' => '$0.149688'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.051627619810117
'max_diff' => 0.12521525068796
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0026352865532193
]
1 => [
'year' => 2028
'avg' => 0.0045229167544769
]
2 => [
'year' => 2029
'avg' => 0.012355793396798
]
3 => [
'year' => 2030
'avg' => 0.0095324762048303
]
4 => [
'year' => 2031
'avg' => 0.009362072979914
]
5 => [
'year' => 2032
'avg' => 0.01641466028659
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0026352865532193
'min' => '$0.002635'
'max_raw' => 0.01641466028659
'max' => '$0.016414'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.01641466028659
]
1 => [
'year' => 2033
'avg' => 0.042220194156721
]
2 => [
'year' => 2034
'avg' => 0.026761188064117
]
3 => [
'year' => 2035
'avg' => 0.031564882690842
]
4 => [
'year' => 2036
'avg' => 0.061267513219723
]
5 => [
'year' => 2037
'avg' => 0.14968894846876
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.01641466028659
'min' => '$0.016414'
'max_raw' => 0.14968894846876
'max' => '$0.149688'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.14968894846876
]
]
]
]
'prediction_2025_max_price' => '$0.0045058'
'last_price' => 0.004369
'sma_50day_nextmonth' => '$0.00379'
'sma_200day_nextmonth' => '$0.011725'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'augmenter'
'sma_200day_date_nextmonth' => '4 févr. 2026'
'sma_50day_date_nextmonth' => '4 févr. 2026'
'daily_sma3' => '$0.004515'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.00435'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.003782'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.003482'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.005972'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.0083051'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.0157041'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.0044083'
'daily_ema3_action' => 'SELL'
'daily_ema5' => '$0.004281'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.004016'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.004185'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.00576'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.008897'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.016759'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.010173'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.024617'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.069253'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.191392'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.004347'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.004757'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.006400039'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.011385'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.030212'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.113355'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.41427'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '48.81'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 98.22
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.003939'
'vwma_10_action' => 'BUY'
'hma_9' => '0.004834'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 88.83
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 121.87
'cci_20_action' => 'SELL'
'adx_14' => 22.29
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.000339'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -11.17
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 76.79
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.002322'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 21
'buy_signals' => 12
'sell_pct' => 63.64
'buy_pct' => 36.36
'overall_action' => 'bearish'
'overall_action_label' => 'Baissier'
'overall_action_dir' => -1
'last_updated' => 1767708923
'last_updated_date' => '6 janvier 2026'
]
Prévision du prix de Netvrk pour 2026
La prévision du prix de Netvrk pour 2026 suggère que le prix moyen pourrait varier entre $0.0015094 à la baisse et $0.0045058 à la hausse. Sur le marché des cryptomonnaies, comparé au prix moyen d'aujourd'hui, Netvrk pourrait potentiellement gagner 3.13% d'ici 2026 si NETVR atteint l'objectif de prix prévu.
Prévision du prix de Netvrk de 2027 à 2032
La prévision du prix de NETVR pour 2027-2032 se situe actuellement dans une fourchette de prix comprise entre $0.002635 à la baisse et $0.016414 à la hausse. Compte tenu de la volatilité des prix sur le marché, si Netvrk atteint l'objectif de prix le plus élevé, il pourrait gagner 275.71% d'ici 2032 par rapport au prix actuel.
| Prévision du Prix de Netvrk | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2027 | $0.001453 | $0.002635 | $0.003817 |
| 2028 | $0.002622 | $0.004522 | $0.006423 |
| 2029 | $0.00576 | $0.012355 | $0.01895 |
| 2030 | $0.004899 | $0.009532 | $0.014165 |
| 2031 | $0.005792 | $0.009362 | $0.012931 |
| 2032 | $0.008841 | $0.016414 | $0.023987 |
Prévision du prix de Netvrk de 2032 à 2037
La prévision du prix de Netvrk pour 2032-2037 est actuellement estimée entre $0.016414 à la baisse et $0.149688 à la hausse. Par rapport au prix actuel, Netvrk pourrait potentiellement gagner 3326.16% d'ici 2037 s'il atteint l'objectif de prix le plus élevé. Veuillez noter que ces informations sont à titre général seulement et ne doivent pas être considérées comme un conseil en investissement à long terme.
| Prévision du Prix de Netvrk | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2032 | $0.008841 | $0.016414 | $0.023987 |
| 2033 | $0.020546 | $0.04222 | $0.063893 |
| 2034 | $0.016518 | $0.026761 | $0.0370037 |
| 2035 | $0.01953 | $0.031564 | $0.043599 |
| 2036 | $0.032328 | $0.061267 | $0.0902065 |
| 2037 | $0.083956 | $0.149688 | $0.215421 |
Netvrk Histogramme des prix potentiels
Prévision du prix de Netvrk basée sur l'analyse technique
Au 6 janvier 2026, le sentiment global de prévision du prix pour Netvrk est Baissier, avec 12 indicateurs techniques montrant des signaux haussiers et 21 indiquant des signaux baissiers. La prévision du prix de NETVR a été mise à jour pour la dernière fois le 6 janvier 2026.
Moyennes Mobiles Simples sur 50 et 200 jours de Netvrk et Indice de Force Relative sur 14 jours - RSI (14)
Selon nos indicateurs techniques, le SMA sur 200 jours de Netvrk devrait augmenter au cours du prochain mois, atteignant $0.011725 d'ici le 4 févr. 2026. Le SMA à court terme sur 50 jours pour Netvrk devrait atteindre $0.00379 d'ici le 4 févr. 2026.
Le Relative Strength Index (RSI), un oscillateur de momentum, est un outil couramment utilisé pour identifier si une cryptomonnaie est survendue (en dessous de 30) ou surachetée (au-dessus de 70). Actuellement, le RSI est à 48.81, ce qui suggère que le marché de NETVR est dans un état NEUTRAL.
Moyennes Mobiles et Oscillateurs Populaires de NETVR pour le Samedi 19 Octobre 2024
Les moyennes mobiles (MA) sont des indicateurs largement utilisés sur les marchés financiers, conçus pour lisser les mouvements de prix sur une période donnée. En tant qu'indicateurs retardés, ils sont basés sur des données historiques de prix. Le tableau ci-dessous met en évidence deux types : la moyenne mobile simple (SMA) et la moyenne mobile exponentielle (EMA).
Moyenne Mobile Simple Quotidienne (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 3 | $0.004515 | SELL |
| SMA 5 | $0.00435 | BUY |
| SMA 10 | $0.003782 | BUY |
| SMA 21 | $0.003482 | BUY |
| SMA 50 | $0.005972 | SELL |
| SMA 100 | $0.0083051 | SELL |
| SMA 200 | $0.0157041 | SELL |
Moyenne Mobile Exponentielle Quotidienne (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 3 | $0.0044083 | SELL |
| EMA 5 | $0.004281 | BUY |
| EMA 10 | $0.004016 | BUY |
| EMA 21 | $0.004185 | BUY |
| EMA 50 | $0.00576 | SELL |
| EMA 100 | $0.008897 | SELL |
| EMA 200 | $0.016759 | SELL |
Moyenne Mobile Simple Hebdomadaire (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 21 | $0.010173 | SELL |
| SMA 50 | $0.024617 | SELL |
| SMA 100 | $0.069253 | SELL |
| SMA 200 | $0.191392 | SELL |
Moyenne Mobile Exponentielle Hebdomadaire (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 21 | $0.011385 | SELL |
| EMA 50 | $0.030212 | SELL |
| EMA 100 | $0.113355 | SELL |
| EMA 200 | $0.41427 | SELL |
Oscillateurs de Netvrk
Un oscillateur est un outil d'analyse technique qui établit des limites hautes et basses entre deux extrêmes, créant un indicateur de tendance qui fluctue à l'intérieur de ces limites. Les traders utilisent cet indicateur pour identifier les conditions de surachat ou de survente à court terme.
| Période | Valeur | Action |
|---|---|---|
| RSI (14) | 48.81 | NEUTRAL |
| Stoch RSI (14) | 98.22 | SELL |
| Stochastique Rapide (14) | 88.83 | SELL |
| Indice de Canal des Matières Premières (20) | 121.87 | SELL |
| Indice Directionnel Moyen (14) | 22.29 | NEUTRAL |
| Oscillateur Impressionnant (5, 34) | -0.000339 | NEUTRAL |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | NEUTRAL |
| Plage de Pourcentage de Williams (14) | -11.17 | SELL |
| Oscillateur Ultime (7, 14, 28) | 76.79 | SELL |
| VWMA (10) | 0.003939 | BUY |
| Moyenne Mobile de Hull (9) | 0.004834 | BUY |
| Nuage Ichimoku B/L (9, 26, 52, 26) | -0.002322 | SELL |
Prévision du cours de Netvrk basée sur les flux monétaires mondiaux
Définitions des flux monétaires mondiaux utilisés pour la prédiction du cours de Netvrk
M0 : le total de toutes les devises physiques, plus les comptes à la banque centrale qui peuvent être échangés contre des devises physiques.
M1 : M0 plus le montant des comptes à vue, y compris les comptes de "chèques" et les comptes "courants".
M2 : M1 plus la plupart des comptes d'épargne, comptes du marché monétaire et comptes de certificats de dépôt (CD) de moins de 100 000 $.
Prédictions du cours de Netvrk par des sociétés Internet ou des niches technologiques
| Comparaison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Action Facebook | $0.006139 | $0.008626 | $0.012121 | $0.017033 | $0.023934 | $0.033631 |
| Action Amazon.com | $0.009116 | $0.019021 | $0.039689 | $0.082814 | $0.172796 | $0.36055 |
| Action Apple | $0.006197 | $0.00879 | $0.012468 | $0.017685 | $0.025084 | $0.03558 |
| Action Netflix | $0.006893 | $0.010877 | $0.017162 | $0.027079 | $0.042726 | $0.067416 |
| Action Google | $0.005657 | $0.007326 | $0.009488 | $0.012287 | $0.015911 | $0.0206059 |
| Action Tesla | $0.0099041 | $0.022452 | $0.050897 | $0.115379 | $0.261557 | $0.592931 |
| Action Kodak | $0.003276 | $0.002456 | $0.001842 | $0.001381 | $0.001036 | $0.000776 |
| Action Nokia | $0.002894 | $0.001917 | $0.00127 | $0.000841 | $0.000557 | $0.000369 |
Ce calcul montre la valeur potentielle des cryptomonnaies si l'on suppose que leur capitalisation se comportera comme celle de certaines sociétés Internet ou niches technologiques. En extrapolant les données, vous pourrez obtenir une potentielle image des cours futurs pour 2024, 2025, 2026, 2027, 2028, 2029 et 2030.
Aperçu des prévisions relatives à Netvrk
Vous vous posez peut-être des questions telles que : "Devrais-je investir dans Netvrk maintenant ?", "Devrais-je acheter NETVR aujourd'hui ?", " Netvrk sera-t-il un bon ou un mauvais investissement à court ou à long terme ?".
Nous mettons régulièrement à jour les prévisions de Netvrk avec de nouvelles valeurs. Regardez nos prévisions similaires. Nous faisons une prévision des cours futurs pour une grande quantité de devises numériques comme Netvrk en utilisant des méthodes d'analyse technique.
Si vous souhaitez trouver des cryptomonnaies ayant un bon rendement, vous devriez consulter un maximum d'informations disponibles à propos de Netvrk afin de prendre une décision responsable concernant cet investissement.
Le cours de Netvrk est de $0.004368 USD actuellement, mais ce cours peut subir une hausse ou une baisse, ce qui pourrait causer la perte de votre investissement, car les cryptomonnaies sont des actifs à haut risque.
Prévision à court terme de Netvrk
basée sur l'historique des cours sur 4 heures
Prévision à long terme de Netvrk
basée sur l'historique des cours sur 1 mois
Prévision du cours de Netvrk basée sur le modèle de croissance du Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Netvrk présente 1 % de la précédente croissance annuelle moyenne du Bitcoin | $0.004482 | $0.004599 | $0.004718 | $0.004841 |
| Si Netvrk présente 2 % de la précédente croissance annuelle moyenne du Bitcoin | $0.004596 | $0.004835 | $0.005086 | $0.00535 |
| Si Netvrk présente 5 % de la précédente croissance annuelle moyenne du Bitcoin | $0.004936 | $0.005578 | $0.0063034 | $0.007122 |
| Si Netvrk présente 10 % de la précédente croissance annuelle moyenne du Bitcoin | $0.0055046 | $0.006935 | $0.008738 | $0.0110095 |
| Si Netvrk présente 20 % de la précédente croissance annuelle moyenne du Bitcoin | $0.00664 | $0.010092 | $0.015338 | $0.023313 |
| Si Netvrk présente 50 % de la précédente croissance annuelle moyenne du Bitcoin | $0.010047 | $0.0231051 | $0.053134 | $0.12219 |
| Si Netvrk présente 100 % de la précédente croissance annuelle moyenne du Bitcoin | $0.015725 | $0.05660089 | $0.203724 | $0.73327 |
Boîte à questions
Est-ce que NETVR est un bon investissement ?
La décision d'acquérir Netvrk dépend entièrement de votre tolérance individuelle au risque. Comme vous pouvez le discerner, la valeur de Netvrk a connu une baisse de -6.5543% au cours des 24 heures précédentes, et Netvrk a enregistré une déclin de sur une période de 30 jours précédents. Par conséquent, la détermination de si investir ou non dans Netvrk dépendra de la mesure dans laquelle cet investissement s'aligne avec vos aspirations de trading.
Est-ce que Netvrk peut monter ?
Il semble que la valeur moyenne de Netvrk pourrait potentiellement s'envoler jusqu'à $0.0045058 pour la fin de cette année. En regardant les perspectives de Netvrk sur une période de cinq ans plus longue, la monnaie numérique pourrait potentiellement croître jusqu'à $0.014165. Cependant, compte tenu de l'imprévisibilité du marché, il est essentiel de mener des recherches approfondies avant d'investir des fonds dans un projet, un réseau ou un actif particulier.
Quel sera le prix de Netvrk la semaine prochaine ?
Basé sur notre nouveau pronostic expérimental de Netvrk, le prix de Netvrk va augmenter de 0.86% durant la prochaine semaine et atteindre $0.004406 d'ici 13 janvier 2026.
Quel sera le prix de Netvrk le mois prochain ?
Basé sur notre nouveau pronostic expérimental de Netvrk, le prix de Netvrk va diminuer de -11.62% durant le prochain mois et atteindre $0.003861 d'ici 5 février 2026.
Jusqu'où le prix de Netvrk peut-il monter cette année en 2026 ?
Selon notre prédiction la plus récente sur la valeur de Netvrk en 2026, NETVR devrait fluctuer dans la fourchette de $0.0015094 et $0.0045058. Cependant, il est crucial de garder à l'esprit que le marché des cryptomonnaies est exceptionnellement instable, et cette prévision de prix de Netvrk ne prend pas en compte les fluctuations de prix soudaines et extrêmes.
Où sera Netvrk dans 5 ans ?
L'avenir de Netvrk semble suivre une tendance haussière, avec un prix maximum de $0.014165 prévue après une période de cinq ans. Selon la prévision de Netvrk pour 2030, la valeur de Netvrk pourrait potentiellement atteindre son point le plus élevé d'environ $0.014165, tandis que son point le plus bas devrait être autour de $0.004899.
Combien vaudra Netvrk en 2026 ?
Basé sur notre nouvelle simulation expérimentale de prédiction de prix de Netvrk, il est attendu que la valeur de NETVR en 2026 augmente de 3.13% jusqu'à $0.0045058 si le meilleur scénario se produit. Le prix sera entre $0.0045058 et $0.0015094 durant 2026.
Combien vaudra Netvrk en 2027 ?
Selon notre dernière simulation expérimentale pour la prédiction de prix de Netvrk, le valeur de NETVR pourrait diminuer de -12.62% jusqu'à $0.003817 en 2027, en supposant les conditions les plus favorables. Il est prévu que le prix fluctue entre $0.003817 et $0.001453 tout au long de l'année.
Combien vaudra Netvrk en 2028 ?
Notre nouveau modèle expérimental de prédiction de prix de Netvrk suggère que la valeur de NETVR en 2028 pourrait augmenter de 47.02%, atteignant $0.006423 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.006423 et $0.002622 durant l'année.
Combien vaudra Netvrk en 2029 ?
Basé sur notre modèle de prévision expérimental, la valeur de Netvrk pourrait connaître un 333.75% croissance en 2029, atteignant potentiellement $0.01895 sous des conditions optimales. Le range de prix prévu pour 2029 se situe entre $0.01895 et $0.00576.
Combien vaudra Netvrk en 2030 ?
En utilisant notre nouvelle simulation expérimentale pour les prédictions de prix de Netvrk, il est prévu que la valeur de NETVR en 2030 augmente de 224.23%, atteignant $0.014165 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.014165 et $0.004899 au cours de 2030.
Combien vaudra Netvrk en 2031 ?
Notre simulation expérimentale indique que le prix de Netvrk pourrait augmenter de 195.98% en 2031, atteignant potentiellement $0.012931 dans des conditions idéales. Il est probable que le prix fluctue entre $0.012931 et $0.005792 durant l'année.
Combien vaudra Netvrk en 2032 ?
Basé sur les résultats de notre dernière prédiction expérimentale de prix de Netvrk, NETVR pourrait connaître une 449.04% hausse en valeur, atteignant $0.023987 si le scénario le plus positif se réalise en 2032. Il est prévu que le prix reste dans une fourchette de $0.023987 et $0.008841 tout au long de l'année.
Combien vaudra Netvrk en 2033 ?
Selon notre prédiction expérimentale de prix de Netvrk, la valeur de NETVR est anticipée à augmenter de 1362.43% en 2033, avec le prix potentiel le plus élevé étant $0.063893. Tout au long de l'année, le prix de NETVR pourrait osciller entre $0.063893 et $0.020546.
Combien vaudra Netvrk en 2034 ?
Les résultats de notre nouvelle simulation de prédiction de prix de Netvrk suggèrent que NETVR pourrait augmenter de 746.96% en 2034, atteignant potentiellement $0.0370037 dans les meilleures circonstances. La fourchette de prix prévue pour l'année est entre $0.0370037 et $0.016518.
Combien vaudra Netvrk en 2035 ?
Basé sur notre prédiction expérimentale pour le prix de Netvrk, NETVR pourrait augmenter de 897.93%, avec la valeur potentiellement atteignant $0.043599 en 2035. La fourchette de prix attendue pour l'année se situe entre $0.043599 et $0.01953.
Combien vaudra Netvrk en 2036 ?
Notre récente simulation de prédiction de prix de Netvrk suggère que la valeur de NETVR pourrait augmenter de 1964.7% en 2036, pouvant atteindre $0.0902065 si les conditions sont optimales. La fourchette de prix attendue pour 2036 est entre $0.0902065 et $0.032328.
Combien vaudra Netvrk en 2037 ?
Selon la simulation expérimentale, la valeur de Netvrk pourrait augmenter de 4830.69% en 2037, avec un maximum de $0.215421 sous des conditions favorables. Il est prévu que le prix chute entre $0.215421 et $0.083956 au cours de l'année.
Prévisions liées
Prévision du cours de Humanode
Prévision du cours de Unmarshal
Prévision du cours de REVV
Prévision du cours de Planet IX (OLD)
Prévision du cours de Mind
Prévision du cours de White Whale
Prévision du cours de Nolus
Prévision du cours de Neoxa
Prévision du cours de Banano
Prévision du cours de Hacash
Prévision du cours de Rupiah Token
Prévision du cours de PlayZap
Prévision du cours de Gigachad
Prévision du cours de MahaDAOPrévision du cours de DOSE
Prévision du cours de Paint Swap
Prévision du cours de DeFi Land
Prévision du cours de YUSD Stablecoin
Prévision du cours de Rainbow Token
Prévision du cours de Tornado Cash
Prévision du cours de holoride
Prévision du cours de Plebbit
Prévision du cours de Precipitate.ai
Prévision du cours de UniCrypt
Prévision du cours de Adappter Token
Comment lire et prédire les mouvements de prix de Netvrk ?
Les traders de Netvrk utilisent des indicateurs et des modèles graphiques pour prédire la direction du marché. Ils identifient également des niveaux clés de support et de résistance pour évaluer quand une tendance baissière pourrait ralentir ou une tendance haussière pourrait s'arrêter.
Indicateurs de prédiction du prix de Netvrk
Les moyennes mobiles sont des outils populaires pour la prédiction du prix de Netvrk. Une moyenne mobile simple (SMA) calcule le prix de clôture moyen de NETVR sur une période spécifique, comme une SMA de 12 jours. Une moyenne mobile exponentielle (EMA) donne plus de poids aux prix récents, réagissant plus rapidement aux changements de prix.
Les moyennes mobiles couramment utilisées sur le marché des cryptomonnaies incluent les moyennes sur 50 jours, 100 jours et 200 jours, qui aident à identifier les niveaux clés de résistance et de support. Un mouvement de prix de NETVR au-dessus de ces moyennes est considéré comme haussier, tandis qu'une chute en dessous indique une faiblesse.
Les traders utilisent également le RSI et les niveaux de retracement de Fibonacci pour évaluer la direction future de NETVR.
Comment lire les graphiques de Netvrk et prédire les mouvements de prix ?
La plupart des traders préfèrent les graphiques en chandeliers aux simples graphiques linéaires parce qu'ils fournissent des informations plus détaillées. Les chandeliers peuvent représenter l'action des prix de Netvrk dans différentes périodes, comme 5 minutes pour les tendances à court terme et hebdomadaire pour les tendances à long terme. Les options populaires incluent les graphiques de 1 heure, 4 heures et 1 jour.
Par exemple, un graphique en chandeliers de 1 heure montre les prix d'ouverture, de clôture, les plus hauts et les plus bas de NETVR au sein de chaque heure. La couleur du chandelier est cruciale : le vert indique que le prix a clôturé plus haut qu'il n'a ouvert, tandis que le rouge signifie le contraire. Certains graphiques utilisent des chandeliers creux et pleins pour transmettre la même information.
Qu'est-ce qui affecte le prix de Netvrk ?
L'action du prix de Netvrk est déterminée par l'offre et la demande, influencée par des facteurs tels que les réductions de récompenses de bloc, les hard forks et les mises à jour de protocole. Les événements du monde réel, tels que les réglementations, l'adoption par les entreprises et les gouvernements et les piratages d'échanges de cryptomonnaies, impactent également le prix de NETVR. La capitalisation boursière de Netvrk peut changer rapidement.
Les traders surveillent souvent l'activité des « baleines » de NETVR, de grands détenteurs de Netvrk, car leurs actions peuvent influencer significativement les mouvements de prix sur le marché relativement petit de Netvrk.
Modèles de prédiction de prix haussiers et baissiers
Les traders identifient souvent des modèles de chandeliers pour obtenir un avantage dans les prédictions de prix des cryptomonnaies. Certaines formations indiquent des tendances haussières, tandis que d'autres suggèrent des mouvements baissiers.
Modèles de chandeliers haussiers couramment suivis :
- Marteau
- Englobante haussière
- Ligne pénétrante
- Étoile du matin
- Trois soldats blancs
Modèles de chandeliers baissiers courants :
- Harami baissier
- Nuage sombre
- Étoile du soir
- Étoile filante
- Pendu


