Prédiction du prix de Moon Maker Protocol jusqu'à $0.002628 d'ici 2026
| Année | Prix min. | Prix max. |
|---|---|---|
| 2026 | $0.00088 | $0.002628 |
| 2027 | $0.000847 | $0.002227 |
| 2028 | $0.00153 | $0.003747 |
| 2029 | $0.003361 | $0.011056 |
| 2030 | $0.002858 | $0.008264 |
| 2031 | $0.003379 | $0.007544 |
| 2032 | $0.005158 | $0.013995 |
| 2033 | $0.011987 | $0.037278 |
| 2034 | $0.009637 | $0.021589 |
| 2035 | $0.011394 | $0.025437 |
Calculateur de profit d’investissement
Si vous ouvrez une position short de $10,000.00 sur Moon Maker Protocol aujourd’hui et la fermez le Apr 06, 2026, notre prévision indique que vous pourriez gagner environ $3,954.63, soit un rendement de 39.55% sur les 90 prochains jours.
Prévision du prix à long terme de Moon Maker Protocol pour 2027, 2028, 2029, 2030, 2031, 2032 et 2037
[
'name' => 'Moon Maker Protocol'
'name_with_ticker' => 'Moon Maker Protocol <small>MMP</small>'
'name_lang' => 'Moon Maker Protocol'
'name_lang_with_ticker' => 'Moon Maker Protocol <small>MMP</small>'
'name_with_lang' => 'Moon Maker Protocol'
'name_with_lang_with_ticker' => 'Moon Maker Protocol <small>MMP</small>'
'image' => '/uploads/coins/moon-maker-protocol.PNG?1719973955'
'price_for_sd' => 0.002549
'ticker' => 'MMP'
'marketcap' => '$0'
'low24h' => '$0'
'high24h' => '$0'
'volume24h' => '$4.72'
'current_supply' => '0'
'max_supply' => '200M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.002549'
'change_24h_pct' => '0%'
'ath_price' => '$0.6189'
'ath_days' => 1655
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '26 juin 2021'
'ath_pct' => '-99.59%'
'fdv' => '$509.81K'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.125686'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.00257'
'next_week_prediction_price_date' => '13 janvier 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.002252'
'next_month_prediction_price_date' => '5 février 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.00088'
'current_year_max_price_prediction' => '$0.002628'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.002858'
'grand_prediction_max_price' => '$0.008264'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0025973633461944
107 => 0.0026070609580862
108 => 0.0026289101728508
109 => 0.0024422110249148
110 => 0.0025260334611391
111 => 0.0025752712893207
112 => 0.0023528129903086
113 => 0.0025708740040072
114 => 0.0024389610081174
115 => 0.0023941877560457
116 => 0.0024544690415328
117 => 0.002430977365953
118 => 0.0024107806027669
119 => 0.0023995104618847
120 => 0.0024437743849437
121 => 0.0024417094200262
122 => 0.0023692850506443
123 => 0.0022748104131807
124 => 0.0023065192025377
125 => 0.0022949991020928
126 => 0.0022532487719579
127 => 0.0022813834535148
128 => 0.002157492554575
129 => 0.0019443447022376
130 => 0.002085156702387
131 => 0.0020797355935552
201 => 0.0020770020246545
202 => 0.0021828183510089
203 => 0.0021726465528279
204 => 0.002154184639527
205 => 0.0022529097044422
206 => 0.0022168737277086
207 => 0.0023279281168575
208 => 0.0024010757200985
209 => 0.0023825231218395
210 => 0.0024513187962407
211 => 0.0023072497090018
212 => 0.002355103680734
213 => 0.0023649663179853
214 => 0.0022516914524658
215 => 0.0021743107848071
216 => 0.0021691503764785
217 => 0.0020349829624711
218 => 0.0021066541120723
219 => 0.0021697217577677
220 => 0.0021395172497266
221 => 0.0021299554048148
222 => 0.002178804796758
223 => 0.0021826008128788
224 => 0.0020960512430422
225 => 0.0021140476392797
226 => 0.0021890956032417
227 => 0.0021121566231411
228 => 0.0019626767527166
301 => 0.0019256036781304
302 => 0.0019206574465883
303 => 0.0018201123280079
304 => 0.001928081078246
305 => 0.0018809498253845
306 => 0.002029836888455
307 => 0.0019447933965265
308 => 0.0019411273415637
309 => 0.0019355855617941
310 => 0.0018490422247655
311 => 0.0018679897154588
312 => 0.0019309740603076
313 => 0.001953447584119
314 => 0.0019511034114653
315 => 0.0019306654026568
316 => 0.0019400218184298
317 => 0.0019098815432336
318 => 0.0018992383847462
319 => 0.0018656456489288
320 => 0.0018162736075072
321 => 0.0018231390926832
322 => 0.0017253201597297
323 => 0.0016720232134129
324 => 0.0016572713211148
325 => 0.0016375444742099
326 => 0.0016594995209639
327 => 0.0017250430509829
328 => 0.0016459836479444
329 => 0.0015104418468072
330 => 0.0015185881400075
331 => 0.0015368904421725
401 => 0.0015027842231699
402 => 0.0014705055492019
403 => 0.0014985692373654
404 => 0.0014411383894076
405 => 0.0015438306857691
406 => 0.0015410531469443
407 => 0.0015793304845789
408 => 0.0016032660893318
409 => 0.0015481022696204
410 => 0.0015342287181418
411 => 0.0015421317235818
412 => 0.0014115126478213
413 => 0.0015686561194151
414 => 0.001570015102683
415 => 0.0015583786628808
416 => 0.0016420527102442
417 => 0.0018186310487708
418 => 0.0017521951749699
419 => 0.0017264691965992
420 => 0.0016775640929111
421 => 0.0017427272398778
422 => 0.0017377237268942
423 => 0.0017150959436564
424 => 0.0017014105897513
425 => 0.0017266262739374
426 => 0.001698286087431
427 => 0.0016931954111982
428 => 0.0016623514519378
429 => 0.0016513415617925
430 => 0.0016431902774453
501 => 0.0016342165143077
502 => 0.0016540103996668
503 => 0.0016091548513407
504 => 0.001555063457303
505 => 0.0015505663431658
506 => 0.001562983270689
507 => 0.0015574897045915
508 => 0.0015505400420848
509 => 0.0015372712437316
510 => 0.0015333346747032
511 => 0.0015461266142936
512 => 0.0015316852603124
513 => 0.001552994264773
514 => 0.0015471993946407
515 => 0.0015148297211446
516 => 0.0014744851231804
517 => 0.0014741259716328
518 => 0.0014654337941798
519 => 0.0014543629993158
520 => 0.0014512833574501
521 => 0.0014962057918243
522 => 0.0015891938865635
523 => 0.0015709380985497
524 => 0.0015841297763181
525 => 0.0016490197746553
526 => 0.0016696463538164
527 => 0.0016550060964951
528 => 0.0016349656093021
529 => 0.0016358472890314
530 => 0.001704331700438
531 => 0.0017086029891728
601 => 0.0017193951578355
602 => 0.0017332661444336
603 => 0.0016573683854926
604 => 0.0016322725114107
605 => 0.0016203806940045
606 => 0.0015837584991062
607 => 0.0016232523965544
608 => 0.0016002409938086
609 => 0.0016033460182205
610 => 0.0016013238669989
611 => 0.0016024280983031
612 => 0.0015438019811794
613 => 0.0015651622569613
614 => 0.0015296466555803
615 => 0.0014820952521444
616 => 0.0014819358431664
617 => 0.0014935739817913
618 => 0.0014866511615368
619 => 0.001468022030234
620 => 0.0014706682104085
621 => 0.0014474848876378
622 => 0.0014734830855405
623 => 0.0014742286208303
624 => 0.0014642178985064
625 => 0.0015042717094354
626 => 0.0015206817884538
627 => 0.0015140925165698
628 => 0.0015202194675728
629 => 0.0015716967089616
630 => 0.0015800897454175
701 => 0.0015838173777983
702 => 0.0015788228442247
703 => 0.0015211603770473
704 => 0.0015237179526663
705 => 0.0015049521597517
706 => 0.0014890970422295
707 => 0.0014897311637812
708 => 0.0014978827552087
709 => 0.0015334812330569
710 => 0.0016083961310436
711 => 0.0016112390966601
712 => 0.0016146848539225
713 => 0.0016006692274376
714 => 0.0015964419803782
715 => 0.0016020188103946
716 => 0.0016301529072402
717 => 0.0017025214426598
718 => 0.0016769415689106
719 => 0.0016561447333779
720 => 0.0016743891649266
721 => 0.0016715805776943
722 => 0.001647873274991
723 => 0.0016472078899638
724 => 0.0016017059963931
725 => 0.001584884982368
726 => 0.0015708280840175
727 => 0.0015554783179834
728 => 0.0015463784621496
729 => 0.0015603599765209
730 => 0.001563557714282
731 => 0.0015329868887542
801 => 0.0015288201981978
802 => 0.0015537849942409
803 => 0.0015427989182838
804 => 0.0015540983698473
805 => 0.0015567199395349
806 => 0.0015562978064353
807 => 0.0015448270813933
808 => 0.0015521381794731
809 => 0.001534845252971
810 => 0.0015160417927135
811 => 0.0015040463565662
812 => 0.001493578747564
813 => 0.0014993867854194
814 => 0.0014786821909706
815 => 0.0014720583745052
816 => 0.0015496613439486
817 => 0.0016069874918489
818 => 0.0016061539469548
819 => 0.0016010799567822
820 => 0.0015935410366071
821 => 0.0016296013882723
822 => 0.0016170386828016
823 => 0.0016261791006807
824 => 0.0016285057206531
825 => 0.0016355476985763
826 => 0.0016380646004054
827 => 0.0016304567749771
828 => 0.0016049239836223
829 => 0.001541298695151
830 => 0.0015116809516145
831 => 0.0015019066029249
901 => 0.0015022618819356
902 => 0.0014924617007842
903 => 0.0014953482933466
904 => 0.001491457861692
905 => 0.0014840903253347
906 => 0.0014989318608106
907 => 0.0015006422095157
908 => 0.0014971780177925
909 => 0.0014979939603489
910 => 0.0014693119324564
911 => 0.001471492564743
912 => 0.00145935052707
913 => 0.0014570740413808
914 => 0.0014263800274716
915 => 0.0013720011326631
916 => 0.001402132319074
917 => 0.0013657380829755
918 => 0.0013519550343024
919 => 0.0014172018430173
920 => 0.0014106528730871
921 => 0.0013994438833354
922 => 0.0013828634513344
923 => 0.0013767136078212
924 => 0.0013393491054387
925 => 0.0013371414113061
926 => 0.0013556602676133
927 => 0.0013471144526225
928 => 0.0013351128918221
929 => 0.0012916444551819
930 => 0.0012427715404936
1001 => 0.0012442467065839
1002 => 0.0012597922714333
1003 => 0.0013049930978381
1004 => 0.0012873323529795
1005 => 0.0012745192799509
1006 => 0.0012721197765322
1007 => 0.0013021545855179
1008 => 0.0013446601327197
1009 => 0.0013646027844587
1010 => 0.0013448402222526
1011 => 0.0013221380548822
1012 => 0.0013235198306184
1013 => 0.0013327121655443
1014 => 0.0013336781499725
1015 => 0.0013189013728348
1016 => 0.0013230609490436
1017 => 0.0013167421724229
1018 => 0.0012779638519649
1019 => 0.0012772624751152
1020 => 0.0012677456498899
1021 => 0.0012674574842043
1022 => 0.0012512669904128
1023 => 0.0012490018284118
1024 => 0.0012168546202961
1025 => 0.0012380140100286
1026 => 0.0012238214023138
1027 => 0.00120242979479
1028 => 0.0011987418735899
1029 => 0.0011986310102253
1030 => 0.0012205954080764
1031 => 0.0012377573432514
1101 => 0.0012240682888014
1102 => 0.0012209515564543
1103 => 0.0012542301038844
1104 => 0.0012499951053833
1105 => 0.0012463276239941
1106 => 0.0013408542271727
1107 => 0.001266029044754
1108 => 0.0012334009943473
1109 => 0.0011930175860704
1110 => 0.0012061666274362
1111 => 0.0012089373236515
1112 => 0.0011118225064019
1113 => 0.0010724230371387
1114 => 0.0010589026240252
1115 => 0.0010511214351278
1116 => 0.0010546674206184
1117 => 0.0010192032771846
1118 => 0.0010430357680949
1119 => 0.0010123268175906
1120 => 0.001007178362103
1121 => 0.0010620897697136
1122 => 0.0010697303712948
1123 => 0.0010371331912005
1124 => 0.0010580658578251
1125 => 0.0010504753819212
1126 => 0.001012853234407
1127 => 0.0010114163451017
1128 => 0.00099253887396156
1129 => 0.00096299928702587
1130 => 0.00094949890314333
1201 => 0.00094246778600159
1202 => 0.00094536896196801
1203 => 0.00094390203862194
1204 => 0.00093432937152363
1205 => 0.00094445073269465
1206 => 0.00091859483733788
1207 => 0.00090829881147171
1208 => 0.00090364833545395
1209 => 0.00088069974011501
1210 => 0.00091722116058593
1211 => 0.00092441634050344
1212 => 0.00093162569714808
1213 => 0.00099437822470289
1214 => 0.00099124328576306
1215 => 0.001019581607002
1216 => 0.0010184804319495
1217 => 0.0010103978836818
1218 => 0.00097629894205494
1219 => 0.0009898901724322
1220 => 0.00094805847787715
1221 => 0.00097940162771653
1222 => 0.00096509792305107
1223 => 0.00097456553078091
1224 => 0.00095754191842289
1225 => 0.00096696348838954
1226 => 0.00092612258458545
1227 => 0.00088798592326022
1228 => 0.00090333322905604
1229 => 0.0009200175056334
1230 => 0.00095619326832774
1231 => 0.00093464728251056
]
'min_raw' => 0.00088069974011501
'max_raw' => 0.0026289101728508
'avg_raw' => 0.0017548049564829
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.00088'
'max' => '$0.002628'
'avg' => '$0.001754'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.001668360259885
'max_diff' => 7.9850172850789E-5
'year' => 2026
]
1 => [
'items' => [
101 => 0.00094239603375434
102 => 0.00091643901421295
103 => 0.000862882268643
104 => 0.00086318539400668
105 => 0.00085494685549787
106 => 0.00084782755537994
107 => 0.00093712209816705
108 => 0.00092601691023365
109 => 0.00090832224667283
110 => 0.00093200725700696
111 => 0.00093826994967097
112 => 0.0009384482397268
113 => 0.00095572821186798
114 => 0.00096495053609734
115 => 0.0009665760107146
116 => 0.00099376642023726
117 => 0.0010028802868591
118 => 0.0010404190136317
119 => 0.00096416808631927
120 => 0.00096259774864959
121 => 0.00093234055367426
122 => 0.00091315096227358
123 => 0.00093365448141487
124 => 0.00095181780036459
125 => 0.00093290493862408
126 => 0.00093537455909509
127 => 0.00090998558744603
128 => 0.00091906095014842
129 => 0.00092687787509109
130 => 0.00092256182859536
131 => 0.00091610049809223
201 => 0.00095032861534247
202 => 0.00094839733082614
203 => 0.00098027134051058
204 => 0.0010051194103919
205 => 0.001049651593743
206 => 0.0010031799389009
207 => 0.0010014863270904
208 => 0.0010180416542023
209 => 0.0010028777523248
210 => 0.0010124608148713
211 => 0.0010481076142132
212 => 0.0010488607749118
213 => 0.0010362443628174
214 => 0.0010354766529949
215 => 0.0010378997729461
216 => 0.0010520920621847
217 => 0.0010471328402397
218 => 0.0010528717774266
219 => 0.0010600484062565
220 => 0.0010897339859246
221 => 0.0010968910786825
222 => 0.0010795030538079
223 => 0.0010810729977686
224 => 0.0010745693991536
225 => 0.0010682870043813
226 => 0.0010824089103593
227 => 0.0011082169711009
228 => 0.0011080564204945
301 => 0.0011140433889496
302 => 0.0011177732206983
303 => 0.0011017620524289
304 => 0.0010913393706325
305 => 0.0010953360900457
306 => 0.0011017269314247
307 => 0.0010932636263201
308 => 0.0010410241866305
309 => 0.001056870295564
310 => 0.0010542327282023
311 => 0.0010504765115402
312 => 0.0010664098966071
313 => 0.0010648730827477
314 => 0.0010188395411346
315 => 0.0010217864591132
316 => 0.0010190187529774
317 => 0.0010279617777217
318 => 0.0010023947996401
319 => 0.0010102590299017
320 => 0.0010151914013993
321 => 0.0010180966061036
322 => 0.0010285921976131
323 => 0.0010273606610891
324 => 0.0010285156435736
325 => 0.0010440778350488
326 => 0.001122786059231
327 => 0.0011270699742133
328 => 0.0011059744100721
329 => 0.0011144016718549
330 => 0.0010982231720714
331 => 0.0011090839073626
401 => 0.0011165145466161
402 => 0.0010829369166594
403 => 0.0010809486673304
404 => 0.0010647033931233
405 => 0.0010734326833028
406 => 0.001059543754969
407 => 0.001062951612168
408 => 0.0010534229463479
409 => 0.0010705726476857
410 => 0.0010897486785755
411 => 0.0010945933012627
412 => 0.0010818491847139
413 => 0.0010726216044544
414 => 0.0010564210132726
415 => 0.0010833629574617
416 => 0.0010912416029834
417 => 0.0010833215742908
418 => 0.0010814863305867
419 => 0.0010780085470836
420 => 0.0010822241587974
421 => 0.0010911986941879
422 => 0.0010869664690314
423 => 0.0010897619283095
424 => 0.0010791085202065
425 => 0.0011017673527918
426 => 0.0011377550320823
427 => 0.0011378707383558
428 => 0.001133638490386
429 => 0.0011319067457019
430 => 0.0011362492889531
501 => 0.0011386049405265
502 => 0.0011526479291149
503 => 0.0011677166153676
504 => 0.0012380355991261
505 => 0.0012182903098727
506 => 0.0012806814955583
507 => 0.0013300248229541
508 => 0.0013448207293179
509 => 0.0013312091916643
510 => 0.0012846448566325
511 => 0.001282360188209
512 => 0.0013519469637017
513 => 0.0013322855123488
514 => 0.0013299468452725
515 => 0.0013050673788221
516 => 0.0013197742248762
517 => 0.0013165576219077
518 => 0.0013114800567604
519 => 0.0013395396945439
520 => 0.0013920648315734
521 => 0.0013838782963897
522 => 0.0013777674276375
523 => 0.0013509913796127
524 => 0.0013671165411705
525 => 0.0013613746799969
526 => 0.0013860453594738
527 => 0.0013714309954741
528 => 0.0013321365575172
529 => 0.001338394326278
530 => 0.0013374484771187
531 => 0.0013569139857937
601 => 0.0013510709232531
602 => 0.0013363075253798
603 => 0.0013918853063652
604 => 0.0013882763944079
605 => 0.0013933930064512
606 => 0.0013956454973092
607 => 0.0014294747132046
608 => 0.0014433334605428
609 => 0.0014464796388201
610 => 0.0014596443769174
611 => 0.0014461520881435
612 => 0.0015001308630782
613 => 0.0015360235986609
614 => 0.0015777148580636
615 => 0.0016386369936049
616 => 0.0016615442801297
617 => 0.0016574062838542
618 => 0.0017035967517269
619 => 0.0017865999957378
620 => 0.0016741836126224
621 => 0.0017925583370113
622 => 0.0017550822659717
623 => 0.0016662271757025
624 => 0.0016605059554218
625 => 0.0017206796541809
626 => 0.0018541391265247
627 => 0.0018207090423874
628 => 0.0018541938061664
629 => 0.0018151320505703
630 => 0.0018131923051666
701 => 0.0018522966638846
702 => 0.0019436661294967
703 => 0.0019002599213176
704 => 0.0018380264782539
705 => 0.0018839786841525
706 => 0.0018441706307272
707 => 0.0017544719447876
708 => 0.0018206834790321
709 => 0.0017764097116787
710 => 0.0017893311507154
711 => 0.0018823880244663
712 => 0.0018711911752187
713 => 0.0018856809349455
714 => 0.0018601068882907
715 => 0.0018362166960581
716 => 0.0017916238781471
717 => 0.001778422143163
718 => 0.0017820706277639
719 => 0.0017784203351552
720 => 0.0017534710633632
721 => 0.0017480832704951
722 => 0.0017391033796704
723 => 0.0017418866233282
724 => 0.001725001801418
725 => 0.0017568669489447
726 => 0.0017627814011204
727 => 0.0017859701981576
728 => 0.0017883777359919
729 => 0.0018529582056686
730 => 0.0018173883682014
731 => 0.0018412516861264
801 => 0.0018391171263609
802 => 0.0016681529349408
803 => 0.0016917102920887
804 => 0.0017283581471048
805 => 0.001711848338095
806 => 0.0016885073308555
807 => 0.001669658216044
808 => 0.0016410998796836
809 => 0.0016812951896966
810 => 0.001734147748069
811 => 0.0017897181640922
812 => 0.0018564823778262
813 => 0.0018415813825419
814 => 0.0017884700535567
815 => 0.0017908525889771
816 => 0.001805580485453
817 => 0.0017865065213462
818 => 0.0017808812369631
819 => 0.0018048076577609
820 => 0.0018049724258712
821 => 0.0017830255250007
822 => 0.0017586355609237
823 => 0.0017585333660836
824 => 0.0017541934075552
825 => 0.0018159041195512
826 => 0.0018498387714923
827 => 0.0018537293246489
828 => 0.0018495769062665
829 => 0.0018511750072983
830 => 0.0018314291810328
831 => 0.0018765622844329
901 => 0.001917980883314
902 => 0.0019068798140346
903 => 0.0018902377330747
904 => 0.0018769815139989
905 => 0.001903757070109
906 => 0.0019025647967441
907 => 0.0019176191279856
908 => 0.0019169361765624
909 => 0.001911873971188
910 => 0.0019068799948219
911 => 0.0019266805466199
912 => 0.0019209783056892
913 => 0.0019152672076033
914 => 0.0019038127260667
915 => 0.0019053695803464
916 => 0.0018887303728764
917 => 0.0018810323141424
918 => 0.0017652719810096
919 => 0.0017343370374184
920 => 0.0017440698004111
921 => 0.0017472740786993
922 => 0.0017338111516042
923 => 0.0017531135307163
924 => 0.001750105275378
925 => 0.001761808637129
926 => 0.0017544968848079
927 => 0.0017547969616736
928 => 0.00177629926622
929 => 0.0017825414767072
930 => 0.0017793666380726
1001 => 0.0017815901862252
1002 => 0.0018328309149001
1003 => 0.0018255461218688
1004 => 0.0018216762207622
1005 => 0.0018227482098161
1006 => 0.0018358413146062
1007 => 0.0018395066690904
1008 => 0.0018239763045809
1009 => 0.0018313005142635
1010 => 0.0018624860695115
1011 => 0.0018733992488988
1012 => 0.0019082288788795
1013 => 0.0018934326330164
1014 => 0.0019205917826647
1015 => 0.0020040697494472
1016 => 0.002070757725549
1017 => 0.0020094287067286
1018 => 0.002131892682177
1019 => 0.0022272484534775
1020 => 0.0022235885401516
1021 => 0.0022069610558067
1022 => 0.0020984010453454
1023 => 0.0019985025051804
1024 => 0.0020820718759445
1025 => 0.0020822849114568
1026 => 0.0020751062283941
1027 => 0.0020305200444277
1028 => 0.0020735547258383
1029 => 0.0020769706625696
1030 => 0.002075058646371
1031 => 0.0020408745236618
1101 => 0.0019886816865667
1102 => 0.0019988800420031
1103 => 0.0020155851562487
1104 => 0.0019839588899299
1105 => 0.001973852381538
1106 => 0.0019926423034804
1107 => 0.0020531873470147
1108 => 0.0020417416572481
1109 => 0.0020414427640326
1110 => 0.002090412278582
1111 => 0.0020553606744473
1112 => 0.0019990086759248
1113 => 0.0019847790531063
1114 => 0.0019342734783232
1115 => 0.0019691578587206
1116 => 0.0019704132854676
1117 => 0.0019513074668337
1118 => 0.0020005590078088
1119 => 0.0020001051461881
1120 => 0.0020468621542195
1121 => 0.0021362439924452
1122 => 0.0021098093846687
1123 => 0.0020790688119018
1124 => 0.0020824111645052
1125 => 0.0021190685229352
1126 => 0.0020969046472223
1127 => 0.0021048749314607
1128 => 0.0021190564589554
1129 => 0.0021276125266005
1130 => 0.0020811800780415
1201 => 0.0020703544531616
1202 => 0.0020482090239354
1203 => 0.0020424316948143
1204 => 0.0020604686848395
1205 => 0.0020557165752242
1206 => 0.0019703077717108
1207 => 0.0019613820765336
1208 => 0.0019616558148617
1209 => 0.0019392117299448
1210 => 0.0019049791132491
1211 => 0.0019949403860022
1212 => 0.0019877152367929
1213 => 0.001979739231248
1214 => 0.0019807162464168
1215 => 0.0020197653858485
1216 => 0.0019971149129493
1217 => 0.0020573349074914
1218 => 0.0020449554869923
1219 => 0.0020322585810692
1220 => 0.0020305034819134
1221 => 0.0020256162563821
1222 => 0.0020088561415788
1223 => 0.0019886172958271
1224 => 0.0019752538568031
1225 => 0.001822067271377
1226 => 0.0018504978105867
1227 => 0.0018832045544223
1228 => 0.0018944947913303
1229 => 0.0018751820598385
1230 => 0.0020096187259306
1231 => 0.0020341816002896
]
'min_raw' => 0.00084782755537994
'max_raw' => 0.0022272484534775
'avg_raw' => 0.0015375380044287
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.000847'
'max' => '$0.002227'
'avg' => '$0.001537'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -3.2872184735073E-5
'max_diff' => -0.00040166171937329
'year' => 2027
]
2 => [
'items' => [
101 => 0.0019597790516596
102 => 0.001945861372647
103 => 0.0020105311666497
104 => 0.0019715273753053
105 => 0.0019890907801594
106 => 0.0019511283055336
107 => 0.0020282651231414
108 => 0.0020276774698308
109 => 0.0019976695055673
110 => 0.0020230320314771
111 => 0.0020186246684592
112 => 0.001984745750712
113 => 0.0020293391452628
114 => 0.0020293612630301
115 => 0.0020004792498559
116 => 0.0019667513815541
117 => 0.0019607216353184
118 => 0.0019561790315122
119 => 0.0019879735780898
120 => 0.0020164804691322
121 => 0.0020695247259046
122 => 0.0020828613123576
123 => 0.0021349148971506
124 => 0.0021039195218494
125 => 0.0021176593702632
126 => 0.0021325759193365
127 => 0.0021397274615001
128 => 0.0021280744073173
129 => 0.0022089350506112
130 => 0.0022157621664113
131 => 0.0022180512392847
201 => 0.0021907854853233
202 => 0.0022150038564702
203 => 0.0022036728826387
204 => 0.0022331529287131
205 => 0.0022377757763576
206 => 0.0022338603888652
207 => 0.0022353277536743
208 => 0.002166327459418
209 => 0.0021627494301553
210 => 0.0021139627472724
211 => 0.0021338436811601
212 => 0.002096677228175
213 => 0.0021084630932735
214 => 0.002113658190309
215 => 0.0021109445664368
216 => 0.002134967719333
217 => 0.0021145431317654
218 => 0.0020606392870612
219 => 0.0020067207562906
220 => 0.0020060438530579
221 => 0.0019918480556471
222 => 0.0019815870942091
223 => 0.0019835637194092
224 => 0.0019905296044297
225 => 0.0019811822243084
226 => 0.0019831769617815
227 => 0.002016302894701
228 => 0.0020229460643046
229 => 0.0020003699783375
301 => 0.0019097237354658
302 => 0.0018874789200962
303 => 0.00190346805225
304 => 0.0018958262769125
305 => 0.0015300797686426
306 => 0.001616006485566
307 => 0.0015649517481657
308 => 0.0015884801200753
309 => 0.0015363664537498
310 => 0.0015612378268316
311 => 0.0015566449923805
312 => 0.0016948126104368
313 => 0.0016926553131242
314 => 0.0016936878971862
315 => 0.0016443999695277
316 => 0.0017229169766007
317 => 0.0017615972776651
318 => 0.001754438583381
319 => 0.0017562402725043
320 => 0.0017252812840842
321 => 0.0016939876478671
322 => 0.0016592781892461
323 => 0.0017237640731451
324 => 0.0017165943436663
325 => 0.0017330391235034
326 => 0.0017748628287581
327 => 0.0017810215282296
328 => 0.0017892988827748
329 => 0.0017863320403925
330 => 0.001857014262501
331 => 0.0018484541790273
401 => 0.0018690815172948
402 => 0.0018266495174788
403 => 0.0017786336820046
404 => 0.0017877599225723
405 => 0.0017868809922171
406 => 0.0017756912000053
407 => 0.0017655895559259
408 => 0.0017487731646543
409 => 0.0018019827149953
410 => 0.0017998225044235
411 => 0.0018347938026108
412 => 0.0018286122859631
413 => 0.0017873306049162
414 => 0.0017888049882309
415 => 0.0017987209245863
416 => 0.0018330400935305
417 => 0.0018432283595004
418 => 0.001838508748771
419 => 0.0018496797172949
420 => 0.0018585087953391
421 => 0.0018507885135624
422 => 0.0019600914228879
423 => 0.0019147012343637
424 => 0.0019368240964275
425 => 0.0019421002686742
426 => 0.0019285854644101
427 => 0.0019315163415262
428 => 0.0019359558217407
429 => 0.0019629114762642
430 => 0.0020336509134153
501 => 0.0020649809285899
502 => 0.0021592388250384
503 => 0.0020623794069645
504 => 0.0020566321699401
505 => 0.0020736108634063
506 => 0.0021289502268332
507 => 0.0021737975831286
508 => 0.0021886760385178
509 => 0.002190642472014
510 => 0.0022185554434253
511 => 0.0022345546380921
512 => 0.0022151660745119
513 => 0.0021987362969449
514 => 0.0021398868730391
515 => 0.0021466988540979
516 => 0.0021936266484761
517 => 0.0022599149220687
518 => 0.0023167971569306
519 => 0.002296878980828
520 => 0.0024488406044498
521 => 0.0024639069787243
522 => 0.0024618252929538
523 => 0.0024961487357282
524 => 0.0024280236916684
525 => 0.0023988989154723
526 => 0.0022022886013408
527 => 0.0022575280799813
528 => 0.002337821906286
529 => 0.0023271947172882
530 => 0.0022688831943655
531 => 0.0023167529224115
601 => 0.0023009256932947
602 => 0.002288442101018
603 => 0.0023456318573012
604 => 0.0022827493710421
605 => 0.002337194605383
606 => 0.0022673680291769
607 => 0.0022969699653786
608 => 0.002280166474706
609 => 0.0022910403925296
610 => 0.0022274716911237
611 => 0.0022617718193593
612 => 0.0022260446930207
613 => 0.002226027753711
614 => 0.0022252390754169
615 => 0.0022672718811159
616 => 0.0022686425694008
617 => 0.0022375802624811
618 => 0.0022331036987696
619 => 0.0022496559010732
620 => 0.0022302776072043
621 => 0.0022393445889401
622 => 0.0022305522368444
623 => 0.0022285728931924
624 => 0.0022128011462158
625 => 0.002206006243965
626 => 0.0022086707002206
627 => 0.002199575537399
628 => 0.0021940953728125
629 => 0.0022241489327469
630 => 0.0022080925280311
701 => 0.002221688058443
702 => 0.002206194235646
703 => 0.0021524858954942
704 => 0.0021215976611175
705 => 0.0020201475853365
706 => 0.0020489187009796
707 => 0.0020679939804168
708 => 0.0020616896006766
709 => 0.0020752338478296
710 => 0.002076065354603
711 => 0.0020716619817863
712 => 0.0020665634401715
713 => 0.0020640817520805
714 => 0.0020825782219021
715 => 0.0020933160451961
716 => 0.0020699084399026
717 => 0.0020644243654896
718 => 0.0020880907468106
719 => 0.0021025272257448
720 => 0.0022091180750383
721 => 0.0022012214806387
722 => 0.0022210403829533
723 => 0.0022188090786985
724 => 0.0022395824457229
725 => 0.0022735381213278
726 => 0.0022044967386668
727 => 0.0022164799354253
728 => 0.0022135419323126
729 => 0.002245618279912
730 => 0.002245718418768
731 => 0.0022264870460497
801 => 0.0022369126851937
802 => 0.002231093379436
803 => 0.0022416096514665
804 => 0.0022011160168062
805 => 0.0022504328928047
806 => 0.0022783923835865
807 => 0.0022787806011432
808 => 0.0022920331778735
809 => 0.0023054985633691
810 => 0.0023313441982398
811 => 0.0023047777426402
812 => 0.002256987275209
813 => 0.0022604375925953
814 => 0.0022324180590262
815 => 0.0022328890724476
816 => 0.00223037476589
817 => 0.0022379203891376
818 => 0.0022027718567818
819 => 0.0022110211470718
820 => 0.0021994720923581
821 => 0.0022164548300359
822 => 0.0021981842116417
823 => 0.0022135405155185
824 => 0.0022201677872022
825 => 0.0022446225623901
826 => 0.0021945722214628
827 => 0.0020925161882021
828 => 0.0021139696037033
829 => 0.0020822383170476
830 => 0.0020851751684371
831 => 0.0020911080756403
901 => 0.0020718775822681
902 => 0.0020755461543811
903 => 0.0020754150871698
904 => 0.0020742856207518
905 => 0.0020692830267088
906 => 0.0020620282756134
907 => 0.0020909289710829
908 => 0.0020958397624102
909 => 0.0021067558432124
910 => 0.0021392346952314
911 => 0.0021359892920106
912 => 0.0021412826793142
913 => 0.0021297272445516
914 => 0.0020857111919139
915 => 0.0020881014753398
916 => 0.0020582946027178
917 => 0.0021059936144644
918 => 0.0020946978588867
919 => 0.0020874154117824
920 => 0.0020854283286186
921 => 0.0021179876894297
922 => 0.0021277299604898
923 => 0.0021216592309446
924 => 0.002109207987536
925 => 0.0021331180557602
926 => 0.0021395153813322
927 => 0.0021409475066035
928 => 0.002183311563196
929 => 0.0021433151867611
930 => 0.0021529427120988
1001 => 0.0022280539164851
1002 => 0.0021599384187444
1003 => 0.0021960207170545
1004 => 0.0021942546763154
1005 => 0.0022127131591725
1006 => 0.0021927405419584
1007 => 0.0021929881264857
1008 => 0.0022093780087769
1009 => 0.0021863613750298
1010 => 0.0021806621328304
1011 => 0.0021727886705507
1012 => 0.0021899800873936
1013 => 0.0022002855642901
1014 => 0.0022833401395367
1015 => 0.0023369971828949
1016 => 0.0023346677891323
1017 => 0.0023559540876797
1018 => 0.002346364415224
1019 => 0.0023153968332366
1020 => 0.0023682547195947
1021 => 0.0023515282726831
1022 => 0.0023529071806439
1023 => 0.0023528558576207
1024 => 0.0023639774825656
1025 => 0.0023560967920102
1026 => 0.0023405631419892
1027 => 0.0023508751037982
1028 => 0.0023814979437772
1029 => 0.0024765521786954
1030 => 0.0025297457878567
1031 => 0.002473349856632
1101 => 0.0025122510148192
1102 => 0.0024889241818068
1103 => 0.0024846850023353
1104 => 0.0025091178044498
1105 => 0.0025335933729501
1106 => 0.0025320343850474
1107 => 0.0025142663791506
1108 => 0.0025042296834659
1109 => 0.00258023090573
1110 => 0.0026362273116472
1111 => 0.0026324087321683
1112 => 0.0026492627001195
1113 => 0.0026987464712979
1114 => 0.0027032706471836
1115 => 0.002702700705009
1116 => 0.0026914870630273
1117 => 0.0027402102620321
1118 => 0.002780856011845
1119 => 0.0026888914289018
1120 => 0.0027239103381818
1121 => 0.0027396314547963
1122 => 0.0027627147182316
1123 => 0.0028016600528512
1124 => 0.0028439650159878
1125 => 0.0028499474016256
1126 => 0.0028457026127321
1127 => 0.002817801352325
1128 => 0.0028640919477923
1129 => 0.002891207892969
1130 => 0.0029073548177843
1201 => 0.002948300732524
1202 => 0.0027397285430604
1203 => 0.0025920907806477
1204 => 0.0025690350121319
1205 => 0.0026159198240322
1206 => 0.002628282975031
1207 => 0.0026232994043654
1208 => 0.0024571196801318
1209 => 0.0025681601102754
1210 => 0.0026876302765654
1211 => 0.0026922196122102
1212 => 0.0027520288754583
1213 => 0.0027715052232365
1214 => 0.0028196595195306
1215 => 0.0028166474551864
1216 => 0.0028283722600318
1217 => 0.0028256769304431
1218 => 0.0029148726242445
1219 => 0.0030132687201962
1220 => 0.0030098615762738
1221 => 0.002995715973311
1222 => 0.0030167246058945
1223 => 0.003118279921683
1224 => 0.003108930335596
1225 => 0.0031180126620837
1226 => 0.0032377521028052
1227 => 0.00339343040848
1228 => 0.0033211022056477
1229 => 0.0034780335939141
1230 => 0.0035768135842523
1231 => 0.0037476433635006
]
'min_raw' => 0.0015300797686426
'max_raw' => 0.0037476433635006
'avg_raw' => 0.0026388615660716
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.00153'
'max' => '$0.003747'
'avg' => '$0.002638'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0006822522132627
'max_diff' => 0.0015203949100231
'year' => 2028
]
3 => [
'items' => [
101 => 0.0037262546337843
102 => 0.0037927574132388
103 => 0.0036879643436295
104 => 0.003447338273633
105 => 0.0034092582769764
106 => 0.003485495394622
107 => 0.0036729169092443
108 => 0.00347959282415
109 => 0.0035187020347787
110 => 0.0035074385794866
111 => 0.0035068383978207
112 => 0.0035297448908933
113 => 0.0034965178279691
114 => 0.0033611447961815
115 => 0.0034231854588915
116 => 0.0033992285795818
117 => 0.0034258105232795
118 => 0.0035692623101887
119 => 0.0035058388557327
120 => 0.0034390273985663
121 => 0.0035228237925022
122 => 0.0036295253975475
123 => 0.003622848202865
124 => 0.0036098916543301
125 => 0.0036829270400387
126 => 0.0038035600998693
127 => 0.0038361667311986
128 => 0.0038602362798327
129 => 0.0038635550639309
130 => 0.0038977406027561
131 => 0.0037139163446284
201 => 0.0040056501632188
202 => 0.0040560245347052
203 => 0.0040465562406696
204 => 0.0041025452344992
205 => 0.0040860718522108
206 => 0.0040622045058695
207 => 0.0041509589702899
208 => 0.0040492091389478
209 => 0.0039047880633053
210 => 0.0038255558048829
211 => 0.0039298952342575
212 => 0.0039936116828324
213 => 0.0040357242022131
214 => 0.0040484674251326
215 => 0.0037281860985063
216 => 0.0035555722270714
217 => 0.0036662157396391
218 => 0.003801208461179
219 => 0.0037131664532443
220 => 0.0037166175332697
221 => 0.0035910927669875
222 => 0.0038123146177001
223 => 0.0037800844548199
224 => 0.0039472945968565
225 => 0.0039073885545142
226 => 0.0040437419342848
227 => 0.0040078355196918
228 => 0.0041568810391666
301 => 0.0042163393321315
302 => 0.0043161790599638
303 => 0.0043896215701781
304 => 0.0044327484169073
305 => 0.0044301592427944
306 => 0.0046010492952451
307 => 0.0045002814017586
308 => 0.0043736931783705
309 => 0.0043714035967902
310 => 0.0044369654314518
311 => 0.0045743650508917
312 => 0.0046099907731294
313 => 0.0046299006917098
314 => 0.0045994079583346
315 => 0.004490031632055
316 => 0.004442803488918
317 => 0.0044830432352018
318 => 0.0044338334833376
319 => 0.0045187833208729
320 => 0.0046354375921151
321 => 0.0046113489464046
322 => 0.0046918736774433
323 => 0.0047752083026196
324 => 0.0048943805594139
325 => 0.0049255366002758
326 => 0.0049770363510625
327 => 0.0050300465114088
328 => 0.0050470719462482
329 => 0.0050795787840387
330 => 0.0050794074569577
331 => 0.0051773690006019
401 => 0.0052854236168579
402 => 0.0053262117330245
403 => 0.0054200017570796
404 => 0.0052593896276797
405 => 0.0053812157728087
406 => 0.0054911060052212
407 => 0.0053600903398965
408 => 0.0055406649118118
409 => 0.0055476762132485
410 => 0.005653538540742
411 => 0.0055462267910593
412 => 0.005482505416649
413 => 0.0056664666369629
414 => 0.0057554796767487
415 => 0.0057286682247531
416 => 0.0055246317512217
417 => 0.0054058737720905
418 => 0.0050950612340005
419 => 0.0054632321114705
420 => 0.0056425574061944
421 => 0.0055241673420302
422 => 0.0055838764040558
423 => 0.0059096296857393
424 => 0.0060336554444413
425 => 0.0060078589536368
426 => 0.0060122181359364
427 => 0.0060791401841052
428 => 0.006375909400331
429 => 0.0061980784069119
430 => 0.0063340235381806
501 => 0.0064061283456189
502 => 0.0064731033092121
503 => 0.0063086339662818
504 => 0.0060946617676638
505 => 0.0060268877904197
506 => 0.0055123957833622
507 => 0.0054856142400693
508 => 0.0054705809482552
509 => 0.0053757981698686
510 => 0.0053013248692448
511 => 0.0052421009355723
512 => 0.005086679647852
513 => 0.0051391297700179
514 => 0.0048914206763356
515 => 0.0050498961762023
516 => 0.0046545464815401
517 => 0.0049838054551344
518 => 0.0048046047653755
519 => 0.0049249332089615
520 => 0.0049245133943574
521 => 0.0047029505795479
522 => 0.0045751577718637
523 => 0.0046565923226905
524 => 0.0047438966254596
525 => 0.0047580614548569
526 => 0.0048712537622725
527 => 0.0049028433022116
528 => 0.0048071255214214
529 => 0.0046463537378669
530 => 0.0046836973563726
531 => 0.0045744010046266
601 => 0.0043828633522151
602 => 0.0045204290381036
603 => 0.0045674000116022
604 => 0.0045881450693765
605 => 0.0043997897864778
606 => 0.0043406044671989
607 => 0.0043090946998278
608 => 0.004622039436109
609 => 0.0046391832551953
610 => 0.0045514730528581
611 => 0.0049479314844448
612 => 0.004858200731141
613 => 0.0049584519671496
614 => 0.0046803088144105
615 => 0.0046909342574146
616 => 0.0045592568314661
617 => 0.0046329873913085
618 => 0.0045808770080587
619 => 0.0046270306906928
620 => 0.0046546950177649
621 => 0.0047863508367434
622 => 0.0049853087531054
623 => 0.0047666858477227
624 => 0.0046714287171097
625 => 0.0047305257051956
626 => 0.0048879087721782
627 => 0.0051263521749477
628 => 0.0049851888813874
629 => 0.0050478347539613
630 => 0.0050615200901978
701 => 0.0049574315036757
702 => 0.0051301900696032
703 => 0.0052227727885719
704 => 0.0053177435009394
705 => 0.0054002039094693
706 => 0.0052798101099691
707 => 0.0054086487332075
708 => 0.0053048275459559
709 => 0.0052116892081542
710 => 0.0052118304605668
711 => 0.0051534034207298
712 => 0.0050401936687648
713 => 0.0050193160535532
714 => 0.0051279240444359
715 => 0.0052150173679088
716 => 0.0052221907911789
717 => 0.0052704101300701
718 => 0.0052989458381271
719 => 0.0055786345695005
720 => 0.0056911276909654
721 => 0.0058286821505069
722 => 0.0058822673646428
723 => 0.0060435396478296
724 => 0.0059132991812618
725 => 0.005885120837069
726 => 0.0054939270298197
727 => 0.0055579849938417
728 => 0.0056605479749151
729 => 0.0054956182556013
730 => 0.0056002282009175
731 => 0.0056208804200646
801 => 0.0054900140068502
802 => 0.0055599154125519
803 => 0.0053742780033306
804 => 0.004989355141338
805 => 0.0051306185987846
806 => 0.005234636052231
807 => 0.0050861903209035
808 => 0.0053522735486649
809 => 0.0051968332200794
810 => 0.0051475660983695
811 => 0.0049553574915818
812 => 0.0050460725551978
813 => 0.0051687659776531
814 => 0.0050929557072171
815 => 0.0052502734013412
816 => 0.0054730772113176
817 => 0.005631860474503
818 => 0.0056440498818308
819 => 0.005541962881255
820 => 0.0057055579511882
821 => 0.0057067495626719
822 => 0.0055222136554817
823 => 0.0054091864398279
824 => 0.0053835064186201
825 => 0.005447660146462
826 => 0.0055255546154935
827 => 0.0056483724827441
828 => 0.0057225887476825
829 => 0.0059161054053764
830 => 0.005968465464391
831 => 0.00602599329467
901 => 0.0061028682168486
902 => 0.0061951762712495
903 => 0.0059932115033208
904 => 0.00600123594006
905 => 0.0058131691445573
906 => 0.0056121928020561
907 => 0.0057647087939598
908 => 0.0059641031650217
909 => 0.0059183618759889
910 => 0.005913215046563
911 => 0.0059218705860459
912 => 0.005887383147886
913 => 0.0057313977432529
914 => 0.0056530628495665
915 => 0.0057541348477848
916 => 0.0058078501166407
917 => 0.0058911578141725
918 => 0.0058808883820395
919 => 0.0060954800642878
920 => 0.0061788639030939
921 => 0.0061575307489317
922 => 0.0061614565627086
923 => 0.0063124190199357
924 => 0.0064803203201695
925 => 0.0066375820443665
926 => 0.0067975554247678
927 => 0.0066047012708267
928 => 0.006506781825046
929 => 0.0066078096983917
930 => 0.0065542028867242
1001 => 0.0068622435273788
1002 => 0.0068835715929914
1003 => 0.0071915899588016
1004 => 0.0074839360661001
1005 => 0.0073003187140304
1006 => 0.0074734616067249
1007 => 0.0076607297617212
1008 => 0.0080220004158723
1009 => 0.007900337169209
1010 => 0.0078071450289712
1011 => 0.0077190789067475
1012 => 0.0079023305269917
1013 => 0.0081380808089198
1014 => 0.008188859161659
1015 => 0.0082711394919201
1016 => 0.0081846317854106
1017 => 0.00828882078939
1018 => 0.0086566537564055
1019 => 0.0085572620417665
1020 => 0.0084161098289637
1021 => 0.0087064786293687
1022 => 0.0088115619694552
1023 => 0.0095490918827544
1024 => 0.010480253864136
1025 => 0.010094746689505
1026 => 0.0098554499459723
1027 => 0.0099116903568971
1028 => 0.010251719190675
1029 => 0.010360925660109
1030 => 0.01006406483046
1031 => 0.010168921094113
1101 => 0.01074668941608
1102 => 0.011056643583788
1103 => 0.010635684191642
1104 => 0.0094742739242026
1105 => 0.0084034006165806
1106 => 0.0086874444398155
1107 => 0.0086552426851667
1108 => 0.0092759826690537
1109 => 0.0085548915822434
1110 => 0.0085670329068041
1111 => 0.0092006091361828
1112 => 0.009031581860431
1113 => 0.0087577793210909
1114 => 0.0084053996781258
1115 => 0.0077539933169331
1116 => 0.0071770245370145
1117 => 0.0083085931824093
1118 => 0.0082597978847958
1119 => 0.0081891350627936
1120 => 0.0083463875266437
1121 => 0.0091099608542094
1122 => 0.0090923580175634
1123 => 0.0089803777518673
1124 => 0.009065313796449
1125 => 0.0087428896218159
1126 => 0.0088259856730809
1127 => 0.0084032309847774
1128 => 0.0085943337596859
1129 => 0.0087571918638124
1130 => 0.0087898880393712
1201 => 0.0088635541924134
1202 => 0.008234084980229
1203 => 0.0085166981762547
1204 => 0.0086827069516444
1205 => 0.0079326732649828
1206 => 0.0086678811972012
1207 => 0.0082231273216875
1208 => 0.0080721711763591
1209 => 0.0082754137390839
1210 => 0.0081962099147302
1211 => 0.0081281151175554
1212 => 0.0080901170507148
1213 => 0.0082393559577168
1214 => 0.0082323937843261
1215 => 0.0079882099664472
1216 => 0.0076696821302298
1217 => 0.0077765905273842
1218 => 0.0077377497044264
1219 => 0.0075969855514617
1220 => 0.0076918435946313
1221 => 0.0072741367790694
1222 => 0.0065554939134063
1223 => 0.0070302514030896
1224 => 0.0070119737561736
1225 => 0.0070027573377732
1226 => 0.0073595244699371
1227 => 0.0073252295421977
1228 => 0.0072629839125338
1229 => 0.0075958423616593
1230 => 0.0074743445501505
1231 => 0.0078487721767358
]
'min_raw' => 0.0033611447961815
'max_raw' => 0.011056643583788
'avg_raw' => 0.0072088941899846
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.003361'
'max' => '$0.011056'
'avg' => '$0.0072088'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0018310650275388
'max_diff' => 0.0073090002202871
'year' => 2029
]
4 => [
'items' => [
101 => 0.0080953944280655
102 => 0.0080328430477342
103 => 0.0082647924671385
104 => 0.00777905348093
105 => 0.0079403964876829
106 => 0.0079736490577629
107 => 0.0075917349400654
108 => 0.0073308406165084
109 => 0.0073134419395402
110 => 0.0068610871359447
111 => 0.007102731420745
112 => 0.0073153683914493
113 => 0.0072135317837775
114 => 0.0071812933560707
115 => 0.0073459924915628
116 => 0.0073587910249432
117 => 0.0070669831075414
118 => 0.0071276592139242
119 => 0.0073806886641037
120 => 0.0071212835209863
121 => 0.0066173017014989
122 => 0.0064923072421722
123 => 0.006475630677193
124 => 0.0061366357900634
125 => 0.0065006599696286
126 => 0.0063417536600069
127 => 0.006843736788112
128 => 0.0065570067175279
129 => 0.0065446463572651
130 => 0.0065259618598574
131 => 0.0062341749568025
201 => 0.0062980577445464
202 => 0.0065104138606306
203 => 0.0065861849152123
204 => 0.0065782813734455
205 => 0.0065093731998113
206 => 0.0065409190088341
207 => 0.0064392989666833
208 => 0.0064034148147615
209 => 0.006290154560583
210 => 0.0061236932758843
211 => 0.006146840738488
212 => 0.0058170373765354
213 => 0.0056373430009544
214 => 0.0055876059661273
215 => 0.0055210955245029
216 => 0.0055951184974864
217 => 0.0058161030850486
218 => 0.005549548787953
219 => 0.0050925601421925
220 => 0.0051200259384735
221 => 0.0051817334280487
222 => 0.0050667419294611
223 => 0.004957912126553
224 => 0.0050525308105406
225 => 0.004858898696957
226 => 0.0052051329438869
227 => 0.0051957682778177
228 => 0.005324822994091
301 => 0.005405523556646
302 => 0.005219534887074
303 => 0.0051727592396435
304 => 0.0051994047742546
305 => 0.0047590134407954
306 => 0.005288833626681
307 => 0.0052934155336498
308 => 0.0052541824644265
309 => 0.0055362953570475
310 => 0.0061316415536957
311 => 0.0059076483667714
312 => 0.0058209114345644
313 => 0.0056560244630345
314 => 0.0058757265625784
315 => 0.0058588568692201
316 => 0.0057825657182126
317 => 0.0057364245920404
318 => 0.0058214410317769
319 => 0.0057258901143217
320 => 0.0057087265439832
321 => 0.0056047339818802
322 => 0.0055676133685696
323 => 0.0055401307442885
324 => 0.005509875075342
325 => 0.0055766115417951
326 => 0.0054253779288991
327 => 0.0052430050173605
328 => 0.0052278426830683
329 => 0.0052697072211351
330 => 0.0052511852794889
331 => 0.0052277540071376
401 => 0.0051830173270918
402 => 0.0051697449097701
403 => 0.0052128738272041
404 => 0.0051641837939932
405 => 0.0052360285902792
406 => 0.0052164907810433
407 => 0.0051073541668727
408 => 0.0049713295380664
409 => 0.0049701186335487
410 => 0.0049408123503975
411 => 0.0049034863925753
412 => 0.0048931031650114
413 => 0.0050445622888881
414 => 0.0053580781425229
415 => 0.0052965274786559
416 => 0.0053410041412656
417 => 0.0055597853011344
418 => 0.0056293292528777
419 => 0.0055799686031691
420 => 0.0055124007014156
421 => 0.0055153733461799
422 => 0.0057462733206662
423 => 0.0057606742688472
424 => 0.0057970608189787
425 => 0.0058438278187356
426 => 0.0055879332254539
427 => 0.0055033207338485
428 => 0.0054632266412036
429 => 0.0053397523542239
430 => 0.0054729087868462
501 => 0.0053953242358841
502 => 0.0054057930424746
503 => 0.0053989752184488
504 => 0.0054026982113861
505 => 0.0052050361643586
506 => 0.0052770538254841
507 => 0.0051573104958079
508 => 0.004996987619191
509 => 0.0049964501606921
510 => 0.0050356889576148
511 => 0.0050123481857909
512 => 0.0049495387689589
513 => 0.0049584605501678
514 => 0.0048802963588385
515 => 0.0049679510982036
516 => 0.0049704647224848
517 => 0.0049367128732433
518 => 0.0050717570932583
519 => 0.0051270848203841
520 => 0.0051048686301787
521 => 0.0051255260732555
522 => 0.0052990851866242
523 => 0.0053273828950183
524 => 0.0053399508678452
525 => 0.0053231114491944
526 => 0.0051286984152409
527 => 0.0051373214600048
528 => 0.0050740512790074
529 => 0.0050205946433121
530 => 0.0050227326283968
531 => 0.0050502162880204
601 => 0.0051702390414921
602 => 0.0054228198504454
603 => 0.005432405107511
604 => 0.0054440227186962
605 => 0.0053967680554625
606 => 0.005382515596865
607 => 0.0054013182686268
608 => 0.0054961743404016
609 => 0.0057401699101789
610 => 0.0056539255799034
611 => 0.0055838075969165
612 => 0.0056453199716685
613 => 0.0056358506237254
614 => 0.0055559197974703
615 => 0.0055536764053952
616 => 0.0054002635943808
617 => 0.0053435503711895
618 => 0.0052961565569796
619 => 0.0052444037491093
620 => 0.0052137229498339
621 => 0.0052608626016947
622 => 0.0052716439978153
623 => 0.0051685723251614
624 => 0.0051545240370416
625 => 0.0052386945898874
626 => 0.0052016542677745
627 => 0.0052397511576234
628 => 0.0052485899628574
629 => 0.0052471667116398
630 => 0.0052084923613
701 => 0.0052331422389208
702 => 0.0051748379298653
703 => 0.0051114407507916
704 => 0.0050709973003263
705 => 0.0050357050257502
706 => 0.005055287230884
707 => 0.0049854802451511
708 => 0.0049631475854781
709 => 0.0052247914150227
710 => 0.0054180705250524
711 => 0.0054152601702457
712 => 0.0053981528581241
713 => 0.005372734862403
714 => 0.0054943148556957
715 => 0.0054519588171012
716 => 0.0054827763741442
717 => 0.0054906207358204
718 => 0.0055143632560438
719 => 0.005522849166285
720 => 0.0054971988516923
721 => 0.0054111132629969
722 => 0.0051965961607402
723 => 0.0050967378705618
724 => 0.0050637829715316
725 => 0.0050649808195211
726 => 0.0050319388245422
727 => 0.0050416711729018
728 => 0.0050285543109572
729 => 0.0050037141477437
730 => 0.0050537534208034
731 => 0.0050595199808754
801 => 0.0050478402166185
802 => 0.0050505912239146
803 => 0.00495388776436
804 => 0.0049612399183611
805 => 0.0049203021906166
806 => 0.0049126268601761
807 => 0.0048091398492938
808 => 0.0046257976088336
809 => 0.0047273870075105
810 => 0.00460468129954
811 => 0.0045582107886367
812 => 0.0047781949596057
813 => 0.0047561146502516
814 => 0.004718322758717
815 => 0.004662420674617
816 => 0.0046416860478438
817 => 0.004515709019355
818 => 0.0045082656244506
819 => 0.0045707032414355
820 => 0.0045418904295442
821 => 0.0045014263293836
822 => 0.004354869460382
823 => 0.0041900910163124
824 => 0.0041950646417785
825 => 0.0042474775990251
826 => 0.0043998753410698
827 => 0.0043403309067452
828 => 0.0042971307364491
829 => 0.004289040643145
830 => 0.0043903050986036
831 => 0.0045336155186368
901 => 0.0046008535613265
902 => 0.0045342227030707
903 => 0.0044576807607667
904 => 0.0044623395141335
905 => 0.0044933321131248
906 => 0.004496588997067
907 => 0.0044467680612659
908 => 0.0044607923628661
909 => 0.0044394881663264
910 => 0.0043087443514865
911 => 0.0043063796104692
912 => 0.0042742929697786
913 => 0.0042733213990506
914 => 0.0042187340188484
915 => 0.0042110968670133
916 => 0.0041027103104047
917 => 0.0041740506701892
918 => 0.0041261993023828
919 => 0.0040540760041019
920 => 0.0040416419202933
921 => 0.0040412681367194
922 => 0.0041153226375795
923 => 0.00417318530023
924 => 0.0041270316974127
925 => 0.0041165234167012
926 => 0.0042287243627959
927 => 0.004214445769671
928 => 0.0042020806001119
929 => 0.0045207836423653
930 => 0.0042685053157132
1001 => 0.0041584975657495
1002 => 0.0040223420852642
1003 => 0.0040666749962657
1004 => 0.0040760165919997
1005 => 0.0037485872053027
1006 => 0.0036157491438984
1007 => 0.0035701641271212
1008 => 0.0035439293054884
1009 => 0.0035558848431426
1010 => 0.0034363150075282
1011 => 0.0035166679145637
1012 => 0.0034131305439082
1013 => 0.0033957721667781
1014 => 0.003580909811329
1015 => 0.0036066706330099
1016 => 0.0034967669644595
1017 => 0.0035673429114565
1018 => 0.0035417510919963
1019 => 0.0034149053949578
1020 => 0.0034100608223447
1021 => 0.0033464141104127
1022 => 0.0032468193306709
1023 => 0.0032013018438442
1024 => 0.0031775959415039
1025 => 0.0031873774588283
1026 => 0.0031824316243497
1027 => 0.0031501567088855
1028 => 0.0031842815847245
1029 => 0.0030971066283282
1030 => 0.0030623928582748
1031 => 0.003046713453695
1101 => 0.00296934066229
1102 => 0.0030924751812519
1103 => 0.0031167342326952
1104 => 0.0031410410819638
1105 => 0.0033526156098564
1106 => 0.0033420459443463
1107 => 0.0034375905729218
1108 => 0.0034338778843507
1109 => 0.0034066270085606
1110 => 0.0032916600461537
1111 => 0.00333748382828
1112 => 0.003196445349492
1113 => 0.0033021209674843
1114 => 0.0032538950285519
1115 => 0.0032858157290203
1116 => 0.0032284194314046
1117 => 0.0032601849123402
1118 => 0.0031224869537439
1119 => 0.0029939065374692
1120 => 0.0030456510504745
1121 => 0.003101903253814
1122 => 0.0032238723634491
1123 => 0.0031512285679738
1124 => 0.0031773540237927
1125 => 0.0030898381201477
1126 => 0.002909267813246
1127 => 0.0029102898215732
1128 => 0.0028825130137944
1129 => 0.0028585097963931
1130 => 0.0031595725817458
1201 => 0.0031221306652888
1202 => 0.0030624718716916
1203 => 0.0031423275376677
1204 => 0.0031634426432316
1205 => 0.0031640437606027
1206 => 0.0032223043931258
1207 => 0.0032533981031472
1208 => 0.0032588785043063
1209 => 0.0033505528683857
1210 => 0.003381280906011
1211 => 0.0035078453441951
1212 => 0.0032507600190915
1213 => 0.0032454655160007
1214 => 0.0031434512706515
1215 => 0.0030787522234696
1216 => 0.0031478812697645
1217 => 0.0032091201677259
1218 => 0.0031453541339139
1219 => 0.0031536806317553
1220 => 0.0030680799412391
1221 => 0.0030986781602118
1222 => 0.0031250334684163
1223 => 0.0031104816163192
1224 => 0.0030886967894122
1225 => 0.0032040992764523
1226 => 0.0031975878158675
1227 => 0.0033050532648908
1228 => 0.0033888302673326
1229 => 0.0035389736326386
1230 => 0.0033822912037911
1231 => 0.0033765810733276
]
'min_raw' => 0.0028585097963931
'max_raw' => 0.0082647924671385
'avg_raw' => 0.0055616511317658
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.002858'
'max' => '$0.008264'
'avg' => '$0.005561'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00050263499978838
'max_diff' => -0.0027918511166492
'year' => 2030
]
5 => [
'items' => [
101 => 0.0034323985145416
102 => 0.0033812723606516
103 => 0.0034135823250953
104 => 0.0035337679978566
105 => 0.003536307331736
106 => 0.00349377021751
107 => 0.0034911818302436
108 => 0.0034993515483357
109 => 0.0035472018423779
110 => 0.0035304814793485
111 => 0.0035498307067539
112 => 0.0035740272119101
113 => 0.0036741142163421
114 => 0.0036982448542676
115 => 0.0036396199144098
116 => 0.0036449130900833
117 => 0.0036229857532859
118 => 0.0036018042206883
119 => 0.0036494172126533
120 => 0.0037364308913049
121 => 0.0037358895837261
122 => 0.003756075065869
123 => 0.0037686504540185
124 => 0.0037146676823341
125 => 0.0036795268829691
126 => 0.0036930021015128
127 => 0.0037145492694163
128 => 0.0036860146453672
129 => 0.0035098857272125
130 => 0.0035633119898217
131 => 0.0035544192473128
201 => 0.0035417549005856
202 => 0.0035954754207723
203 => 0.0035902939455482
204 => 0.0034350886460406
205 => 0.0034450243857527
206 => 0.0034356928712807
207 => 0.003465844903588
208 => 0.0033796440519565
209 => 0.0034061588533468
210 => 0.0034227886882179
211 => 0.0034325837887134
212 => 0.0034679704082665
213 => 0.0034638181968928
214 => 0.0034677123009776
215 => 0.0035201813160536
216 => 0.0037855515891167
217 => 0.003799995107573
218 => 0.0037288699402254
219 => 0.0037572830416989
220 => 0.0037027361001321
221 => 0.0037393538274386
222 => 0.0037644067464723
223 => 0.0036511974227582
224 => 0.0036444939013303
225 => 0.0035897218251322
226 => 0.0036191532364321
227 => 0.0035723257448606
228 => 0.0035838155733361
301 => 0.0035516890112533
302 => 0.0036095104266677
303 => 0.0036741637536405
304 => 0.0036904977372711
305 => 0.0036475300585611
306 => 0.0036164186274671
307 => 0.0035617972032085
308 => 0.0036526338490684
309 => 0.0036791972525144
310 => 0.0036524943228185
311 => 0.0036463066705374
312 => 0.0036345810806455
313 => 0.0036487943098633
314 => 0.0036790525825145
315 => 0.0036647833399148
316 => 0.0036742084260436
317 => 0.0036382897168272
318 => 0.0037146855528777
319 => 0.0038360205261852
320 => 0.0038364106379647
321 => 0.0038221413184484
322 => 0.0038163026203392
323 => 0.0038309438080976
324 => 0.0038388860518435
325 => 0.0038862329683195
326 => 0.0039370380960825
327 => 0.0041741234593389
328 => 0.0041075508380489
329 => 0.0043179070766014
330 => 0.0044842715499574
331 => 0.0045341569812801
401 => 0.0044882647317541
402 => 0.0043312698251763
403 => 0.0043235669060758
404 => 0.004558183578043
405 => 0.0044918936220879
406 => 0.0044840086427599
407 => 0.0044001257845933
408 => 0.0044497109428639
409 => 0.0044388659413797
410 => 0.0044217465759813
411 => 0.0045163516038296
412 => 0.0046934437705124
413 => 0.0046658422955751
414 => 0.0046452390749299
415 => 0.0045549617595702
416 => 0.0046093288675851
417 => 0.0045899697817544
418 => 0.0046731487000627
419 => 0.0046238753514955
420 => 0.0044913914104736
421 => 0.0045124899147541
422 => 0.0045093009182764
423 => 0.0045749302398128
424 => 0.0045552299465075
425 => 0.0045054541198301
426 => 0.0046928384887391
427 => 0.0046806707901088
428 => 0.0046979218048434
429 => 0.0047055162350349
430 => 0.0048195737983069
501 => 0.0048662995325444
502 => 0.0048769070922655
503 => 0.0049212929258932
504 => 0.0048758027322902
505 => 0.0050577959406603
506 => 0.0051788108046283
507 => 0.0053193757964951
508 => 0.0055247790299205
509 => 0.0056020125457746
510 => 0.0055880610024259
511 => 0.0057437953897743
512 => 0.0060236466220585
513 => 0.0056446269377235
514 => 0.0060437355856599
515 => 0.0059173823956542
516 => 0.0056178012551474
517 => 0.0055985117615284
518 => 0.0058013915880881
519 => 0.0062513595169381
520 => 0.0061386476542552
521 => 0.0062515438731675
522 => 0.0061198444369705
523 => 0.0061133044499133
524 => 0.0062451475255101
525 => 0.0065532060580337
526 => 0.0064068589966331
527 => 0.0061970345983438
528 => 0.0063519656688114
529 => 0.0062177500373786
530 => 0.0059153246551708
531 => 0.006138561465618
601 => 0.0059892893678902
602 => 0.0060328549017484
603 => 0.0063466026486232
604 => 0.0063088516896457
605 => 0.0063577049262073
606 => 0.0062714802423878
607 => 0.0061909327913158
608 => 0.0060405849923576
609 => 0.005996074421143
610 => 0.0060083755417041
611 => 0.0059960683253186
612 => 0.0059119501135691
613 => 0.0058937847937507
614 => 0.0058635084648792
615 => 0.0058728923651913
616 => 0.0058159640092605
617 => 0.0059233995789005
618 => 0.0059433405673447
619 => 0.0060215232155457
620 => 0.0060296403974429
621 => 0.0062473779598223
622 => 0.0061274517693948
623 => 0.0062079086118627
624 => 0.0062007117945832
625 => 0.0056242940868716
626 => 0.0057037193612178
627 => 0.0058272801630763
628 => 0.0057716161893217
629 => 0.0056929203537967
630 => 0.0056293692472064
701 => 0.005533082822288
702 => 0.0056686041163437
703 => 0.0058468002069441
704 => 0.0060341597443688
705 => 0.0062592599523014
706 => 0.0062090202063461
707 => 0.006029951652558
708 => 0.0060379845370712
709 => 0.0060876406683088
710 => 0.0060233314666209
711 => 0.0060043654275784
712 => 0.0060850350257877
713 => 0.0060855905529753
714 => 0.0060115950444068
715 => 0.005929362577668
716 => 0.0059290180206298
717 => 0.005914385547445
718 => 0.0061224475214439
719 => 0.006236860569705
720 => 0.0062499778413023
721 => 0.0062359776728135
722 => 0.006241365782018
723 => 0.0061747913501544
724 => 0.0063269607593602
725 => 0.0064666064572423
726 => 0.0064291784271147
727 => 0.0063730684892454
728 => 0.0063283742211118
729 => 0.0064186498779467
730 => 0.0064146300450549
731 => 0.0064653867738955
801 => 0.0064630841554902
802 => 0.0064460165766382
803 => 0.0064291790366517
804 => 0.0064959379794692
805 => 0.0064767124760536
806 => 0.0064574571101209
807 => 0.0064188375258939
808 => 0.0064240865687937
809 => 0.0063679863190964
810 => 0.0063420317766136
811 => 0.0059517377313277
812 => 0.0058474384092014
813 => 0.0058802530991508
814 => 0.0058910565471152
815 => 0.0058456653484627
816 => 0.0059107446672882
817 => 0.0059006021243853
818 => 0.0059400608256314
819 => 0.0059154087421905
820 => 0.0059164204722939
821 => 0.0059889169933152
822 => 0.0060099630417899
823 => 0.0059992588516732
824 => 0.0060067556995128
825 => 0.0061795173937538
826 => 0.0061549562054407
827 => 0.006141908563672
828 => 0.0061455228496111
829 => 0.0061896671665422
830 => 0.0062020251650925
831 => 0.0061496634568535
901 => 0.0061743575411585
902 => 0.006279501817983
903 => 0.0063162963642209
904 => 0.0064337268934282
905 => 0.0063838403174597
906 => 0.0064754092866903
907 => 0.006756861079943
908 => 0.006981704247376
909 => 0.0067749291785677
910 => 0.0071878250219537
911 => 0.0075093236624206
912 => 0.0074969840091155
913 => 0.0074409232847526
914 => 0.0070749056300645
915 => 0.0067380907272048
916 => 0.0070198506953632
917 => 0.0070205689594665
918 => 0.0069963655283211
919 => 0.0068460400961705
920 => 0.0069911345291315
921 => 0.0070026515983144
922 => 0.0069962051022079
923 => 0.0068809509458346
924 => 0.0067049791515812
925 => 0.0067393636189614
926 => 0.0067956860779542
927 => 0.006689055912985
928 => 0.0066549811143278
929 => 0.0067183326480272
930 => 0.006922464489423
1001 => 0.0068838745472623
1002 => 0.0068828668079183
1003 => 0.0070479709451638
1004 => 0.0069297920145989
1005 => 0.0067397973172093
1006 => 0.0066918211503963
1007 => 0.0065215380788284
1008 => 0.0066391532028879
1009 => 0.0066433859618166
1010 => 0.0065789693603667
1011 => 0.0067450243693968
1012 => 0.0067434941432552
1013 => 0.006901138660303
1014 => 0.0072024957683216
1015 => 0.0071133696425979
1016 => 0.007009725655276
1017 => 0.007020994630434
1018 => 0.0071445874737157
1019 => 0.0070698604193174
1020 => 0.0070967327890946
1021 => 0.0071445467991656
1022 => 0.0071733941785966
1023 => 0.0070168439364698
1024 => 0.0069803445863664
1025 => 0.0069056797255858
1026 => 0.0068862010570938
1027 => 0.0069470140282661
1028 => 0.0069309919589162
1029 => 0.0066430302148187
1030 => 0.0066129366103565
1031 => 0.0066138595382416
1101 => 0.0065381877389484
1102 => 0.0064227700817137
1103 => 0.0067260807936964
1104 => 0.0067017206986935
1105 => 0.0066748290391319
1106 => 0.0066781231139865
1107 => 0.0068097800139044
1108 => 0.0067334123631192
1109 => 0.0069364482791435
1110 => 0.0068947101986272
1111 => 0.0068519016938379
1112 => 0.006845984254497
1113 => 0.0068295066324031
1114 => 0.00677299873519
1115 => 0.0067047620537071
1116 => 0.0066597062860319
1117 => 0.0061432270181221
1118 => 0.0062390825660244
1119 => 0.006349355636378
1120 => 0.0063874214583725
1121 => 0.0063223072357762
1122 => 0.006775569841574
1123 => 0.0068583852874004
1124 => 0.0066075319000744
1125 => 0.006560607473582
1126 => 0.0067786461991628
1127 => 0.0066471421934874
1128 => 0.0067063584391909
1129 => 0.0065783653055346
1130 => 0.0068384374716202
1201 => 0.0068364561574546
1202 => 0.0067352822108511
1203 => 0.0068207937377111
1204 => 0.0068059340055838
1205 => 0.0066917088690488
1206 => 0.006842058612188
1207 => 0.0068421331837848
1208 => 0.0067447554598902
1209 => 0.006631039597106
1210 => 0.006610709886689
1211 => 0.0065953941808021
1212 => 0.0067025917144126
1213 => 0.0067987046878498
1214 => 0.0069775471029896
1215 => 0.0070225123353467
1216 => 0.0071980146307416
1217 => 0.0070935115588856
1218 => 0.007139836417098
1219 => 0.0071901286037389
1220 => 0.0072142405274484
1221 => 0.0071749514416809
1222 => 0.0074475787460559
1223 => 0.0074705968436299
1224 => 0.0074783146126407
1225 => 0.0073863862195256
1226 => 0.0074680401487201
1227 => 0.0074298369793439
1228 => 0.0075292310129146
1229 => 0.0075448172665052
1230 => 0.007531616264211
1231 => 0.007536563587113
]
'min_raw' => 0.0033796440519565
'max_raw' => 0.0075448172665052
'avg_raw' => 0.0054622306592308
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.003379'
'max' => '$0.007544'
'avg' => '$0.005462'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0005211342555634
'max_diff' => -0.00071997520063329
'year' => 2031
]
6 => [
'items' => [
101 => 0.007303924277581
102 => 0.0072918607021117
103 => 0.0071273729945948
104 => 0.0071944029512397
105 => 0.0070690936601215
106 => 0.0071088305271638
107 => 0.0071263461595293
108 => 0.0071171969871849
109 => 0.0071981927244174
110 => 0.0071293298014339
111 => 0.0069475892255676
112 => 0.0067657991346029
113 => 0.0067635169080939
114 => 0.0067156547860045
115 => 0.0066810592381188
116 => 0.0066877235679846
117 => 0.0067112095356738
118 => 0.0066796941909816
119 => 0.0066864195876402
120 => 0.0067981059832569
121 => 0.0068205038933869
122 => 0.0067443870433368
123 => 0.0064387669067763
124 => 0.0063637669586743
125 => 0.0064176754340564
126 => 0.0063919106549742
127 => 0.0051587707667367
128 => 0.0054484786920556
129 => 0.0052763440803826
130 => 0.0053556716289742
131 => 0.0051799667644977
201 => 0.0052638223353069
202 => 0.0052483372732936
203 => 0.0057141790441256
204 => 0.0057069055656185
205 => 0.0057103869948759
206 => 0.0055442093056022
207 => 0.0058089348768312
208 => 0.0059393482124423
209 => 0.0059152121748592
210 => 0.0059212866955283
211 => 0.0058169063045826
212 => 0.0057113976252245
213 => 0.005594372262147
214 => 0.005811790921973
215 => 0.0057876176784606
216 => 0.0058430624018195
217 => 0.0059840739441234
218 => 0.0060048384293784
219 => 0.0060327461081337
220 => 0.0060227431919038
221 => 0.0062610532386176
222 => 0.0062321923195402
223 => 0.0063017388306636
224 => 0.0061586763807764
225 => 0.0059967876391166
226 => 0.0060275573963645
227 => 0.0060245940213067
228 => 0.0059868668556183
229 => 0.0059528084573304
301 => 0.0058961108200752
302 => 0.0060755105340221
303 => 0.0060682272332582
304 => 0.0061861354067147
305 => 0.0061652939917574
306 => 0.006026109921913
307 => 0.0060310809081965
308 => 0.0060645131799273
309 => 0.0061802226541107
310 => 0.0062145731041501
311 => 0.0061986606070631
312 => 0.0062363243073736
313 => 0.0062660921604263
314 => 0.0062400626914031
315 => 0.0066085850814795
316 => 0.0064555488918284
317 => 0.0065301376658454
318 => 0.0065479266489459
319 => 0.006502360542796
320 => 0.00651224219962
321 => 0.006527210217118
322 => 0.0066180930883276
323 => 0.0068565960395524
324 => 0.0069622273731053
325 => 0.0072800244518575
326 => 0.0069534561613129
327 => 0.0069340789504259
328 => 0.0069913238008615
329 => 0.0071779043283263
330 => 0.0073291103212187
331 => 0.007379274072344
401 => 0.0073859040401685
402 => 0.0074800145721029
403 => 0.0075339569739502
404 => 0.0074685870781734
405 => 0.0074131929360159
406 => 0.0072147779945819
407 => 0.0072377450643188
408 => 0.0073959653994591
409 => 0.007619460941976
410 => 0.0078112433682035
411 => 0.007744087846831
412 => 0.0082564370704935
413 => 0.0083072344032608
414 => 0.0083002158543468
415 => 0.0084159397380472
416 => 0.0081862513956609
417 => 0.0080880551792887
418 => 0.0074251697783006
419 => 0.0076114135372341
420 => 0.0078821297785564
421 => 0.0078462994688836
422 => 0.0076496980981695
423 => 0.0078110942284341
424 => 0.007757731620445
425 => 0.0077156423175074
426 => 0.0079084615736776
427 => 0.0076964488809399
428 => 0.0078800147897651
429 => 0.0076445896129506
430 => 0.0077443946075959
501 => 0.0076877404656108
502 => 0.0077244026387456
503 => 0.0075100763237307
504 => 0.0076257216008356
505 => 0.0075052650999968
506 => 0.0075052079879315
507 => 0.0075025489039992
508 => 0.0076442654430501
509 => 0.0076488868143008
510 => 0.0075441580778203
511 => 0.0075290650307231
512 => 0.0075848719364276
513 => 0.0075195366656994
514 => 0.0075501066276578
515 => 0.007520462598705
516 => 0.007513789103389
517 => 0.007460613557309
518 => 0.0074377040699657
519 => 0.0074466874702578
520 => 0.0074160224938006
521 => 0.0073975457362845
522 => 0.007498873411876
523 => 0.0074447381223542
524 => 0.0074905764023474
525 => 0.007438337897043
526 => 0.0072572564784247
527 => 0.007153114639676
528 => 0.0068110686261624
529 => 0.0069080724512881
530 => 0.0069723860877042
531 => 0.0069511304312523
601 => 0.006996795806158
602 => 0.0069995992892984
603 => 0.0069847530104132
604 => 0.0069675629213902
605 => 0.0069591957367254
606 => 0.0070215578761113
607 => 0.0070577611970379
608 => 0.006978840821524
609 => 0.0069603508817545
610 => 0.0070401437387124
611 => 0.0070888173353619
612 => 0.0074481958256903
613 => 0.0074215719063495
614 => 0.0074883927192145
615 => 0.0074808697211349
616 => 0.0075509085784077
617 => 0.0076653925094192
618 => 0.0074326146674623
619 => 0.0074730168519738
620 => 0.0074631111693543
621 => 0.007571258814785
622 => 0.0075715964399293
623 => 0.0075067565241181
624 => 0.0075419072943868
625 => 0.0075222870987337
626 => 0.0075577434441074
627 => 0.0074212163276749
628 => 0.0075874916182981
629 => 0.0076817589935384
630 => 0.0076830678961351
701 => 0.0077277498838469
702 => 0.0077731493711682
703 => 0.0078602897336195
704 => 0.007770719073755
705 => 0.0076095901761866
706 => 0.0076212231621478
707 => 0.0075267533484583
708 => 0.0075283414030937
709 => 0.0075198642429914
710 => 0.0075453048385893
711 => 0.0074267991077598
712 => 0.0074546121659196
713 => 0.0074156737216229
714 => 0.0074729322074005
715 => 0.0074113315418705
716 => 0.0074631063925342
717 => 0.0074854507017172
718 => 0.0075679016836409
719 => 0.0073991534648016
720 => 0.0070550644233381
721 => 0.0071273961115301
722 => 0.0070204118631627
723 => 0.0070303136626669
724 => 0.007050316873525
725 => 0.0069854799224905
726 => 0.0069978487695007
727 => 0.0069974068672473
728 => 0.006993598792362
729 => 0.0069767321972761
730 => 0.0069522722974474
731 => 0.0070497130100049
801 => 0.0070662700858253
802 => 0.0071030744143864
803 => 0.0072125791315695
804 => 0.0072016370280239
805 => 0.0072194840528904
806 => 0.0071805240978136
807 => 0.007032120903243
808 => 0.0070401799106975
809 => 0.0069396839586032
810 => 0.0071005045069456
811 => 0.0070624200783706
812 => 0.0070378667995144
813 => 0.007031167209894
814 => 0.0071409433680904
815 => 0.0071737901151533
816 => 0.0071533222266469
817 => 0.0071113419901767
818 => 0.0071919564545423
819 => 0.0072135254843554
820 => 0.0072183539946953
821 => 0.0073611873692609
822 => 0.0072263367936527
823 => 0.007258796667501
824 => 0.0075120393371862
825 => 0.0072823831808814
826 => 0.0074040371688195
827 => 0.0073980828391667
828 => 0.0074603169028494
829 => 0.0073929778294685
830 => 0.0073938125779882
831 => 0.0074490722104378
901 => 0.0073714700227896
902 => 0.0073522546298059
903 => 0.0073257087020222
904 => 0.0073836707641746
905 => 0.0074184163990365
906 => 0.0076984406981658
907 => 0.0078793491660629
908 => 0.0078714954523593
909 => 0.0079432636940738
910 => 0.0079109314438597
911 => 0.0078065220791016
912 => 0.007984736133378
913 => 0.0079283417498122
914 => 0.0079329908342742
915 => 0.0079328177951183
916 => 0.007970315130107
917 => 0.0079437448316873
918 => 0.0078913720461167
919 => 0.007926139545314
920 => 0.0080293865883215
921 => 0.0083498685778229
922 => 0.0085292145449695
923 => 0.0083390717254072
924 => 0.0084702296962275
925 => 0.0083915816500988
926 => 0.0083772889605405
927 => 0.0084596658587135
928 => 0.0085421869467419
929 => 0.0085369307101829
930 => 0.0084770246377791
1001 => 0.0084431852175385
1002 => 0.0086994286446378
1003 => 0.0088882244367318
1004 => 0.008875349829414
1005 => 0.008932174159068
1006 => 0.0090990121484424
1007 => 0.0091142657233091
1008 => 0.0091123441234753
1009 => 0.0090745365466224
1010 => 0.0092388102138121
1011 => 0.009375850197102
1012 => 0.0090657851849469
1013 => 0.0091838538825265
1014 => 0.0092368587248058
1015 => 0.0093146855591
1016 => 0.0094459924738461
1017 => 0.0095886266106995
1018 => 0.0096087966415543
1019 => 0.009594485039438
1020 => 0.0095004139919718
1021 => 0.0096564859664959
1022 => 0.0097479092688339
1023 => 0.0098023497531911
1024 => 0.0099404017634882
1025 => 0.0092371860646667
1026 => 0.0087394150409529
1027 => 0.0086616809076993
1028 => 0.0088197563244144
1029 => 0.0088614395511743
1030 => 0.0088446370947337
1031 => 0.0082843505521822
1101 => 0.0086587311150067
1102 => 0.0090615331217941
1103 => 0.0090770063873376
1104 => 0.0092786574941281
1105 => 0.0093443233604572
1106 => 0.0095066789324383
1107 => 0.0094965235472063
1108 => 0.0095360545453423
1109 => 0.0095269670534523
1110 => 0.0098276965625482
1111 => 0.010159445869845
1112 => 0.010147958446232
1113 => 0.010100265558228
1114 => 0.010171097629759
1115 => 0.010513498467306
1116 => 0.010481975685046
1117 => 0.010512597382908
1118 => 0.010916307267241
1119 => 0.011441187543936
1120 => 0.011197327958293
1121 => 0.011726433090432
1122 => 0.012059476724456
1123 => 0.012635441252146
1124 => 0.012563327656594
1125 => 0.012787546420601
1126 => 0.012434229269995
1127 => 0.011622941675026
1128 => 0.011494552307638
1129 => 0.011751591072485
1130 => 0.012383495794387
1201 => 0.011731690144035
1202 => 0.011863549578187
1203 => 0.011825574052281
1204 => 0.011823550497891
1205 => 0.011900781338565
1206 => 0.011788753976077
1207 => 0.011332334347962
1208 => 0.011541508773829
1209 => 0.011460736482621
1210 => 0.01155035936169
1211 => 0.012034017076738
1212 => 0.011820180471955
1213 => 0.011594920979492
1214 => 0.011877446372124
1215 => 0.012237198283203
1216 => 0.012214685655144
1217 => 0.012171001747161
1218 => 0.012417245649245
1219 => 0.012823968432795
1220 => 0.012933903966844
1221 => 0.013015056130546
1222 => 0.013026245642844
1223 => 0.013141504573751
1224 => 0.012521728253273
1225 => 0.013505329190856
1226 => 0.013675169901349
1227 => 0.013643246886952
1228 => 0.013832017688675
1229 => 0.013776476530155
1230 => 0.013696006105601
1231 => 0.013995247979033
]
'min_raw' => 0.0051587707667367
'max_raw' => 0.013995247979033
'avg_raw' => 0.0095770093728848
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.005158'
'max' => '$0.013995'
'avg' => '$0.009577'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0017791267147802
'max_diff' => 0.0064504307125277
'year' => 2032
]
7 => [
'items' => [
101 => 0.013652191318717
102 => 0.013165265579031
103 => 0.01289812848794
104 => 0.013249916158823
105 => 0.013464740613733
106 => 0.013606725913027
107 => 0.013649690578804
108 => 0.012569839724755
109 => 0.011987860005697
110 => 0.012360902333202
111 => 0.012816039718765
112 => 0.012519199942116
113 => 0.012530835499369
114 => 0.012107619985989
115 => 0.012853484900883
116 => 0.012744818656494
117 => 0.01330857932461
118 => 0.013174033316702
119 => 0.013633758256487
120 => 0.013512697272781
121 => 0.014015214647716
122 => 0.014215682433693
123 => 0.014552299046667
124 => 0.014799915597447
125 => 0.014945320772214
126 => 0.014936591190922
127 => 0.015512758933922
128 => 0.015173012945643
129 => 0.014746211912383
130 => 0.014738492428231
131 => 0.014959538731174
201 => 0.015422791141051
202 => 0.015542905750883
203 => 0.015610033431443
204 => 0.015507225051934
205 => 0.015138455131471
206 => 0.014979222149521
207 => 0.015114893263566
208 => 0.014948979149441
209 => 0.0152353934577
210 => 0.015628701477734
211 => 0.015547484926905
212 => 0.015818979679659
213 => 0.016099948186679
214 => 0.016501745770802
215 => 0.016606790537814
216 => 0.016780425543189
217 => 0.016959152999847
218 => 0.017016555442086
219 => 0.017126154515252
220 => 0.017125576874037
221 => 0.01745586105789
222 => 0.017820174740729
223 => 0.01795769472212
224 => 0.018273914336432
225 => 0.01773239932858
226 => 0.018143144682512
227 => 0.018513647273382
228 => 0.018071918810518
301 => 0.018680738587044
302 => 0.018704377679352
303 => 0.019061299907568
304 => 0.018699490851245
305 => 0.018484649788537
306 => 0.019104887886587
307 => 0.019405001564917
308 => 0.019314604882598
309 => 0.018626681666715
310 => 0.018226280848657
311 => 0.017178354676248
312 => 0.018419668494508
313 => 0.019024276245762
314 => 0.018625115878702
315 => 0.018826429150075
316 => 0.019924729082639
317 => 0.020342890587305
318 => 0.020255915917504
319 => 0.020270613204975
320 => 0.020496245562725
321 => 0.021496823694995
322 => 0.020897254084919
323 => 0.021355602586377
324 => 0.021598708978852
325 => 0.02182451974465
326 => 0.021269999872077
327 => 0.020548577665375
328 => 0.020320072969268
329 => 0.018585427246789
330 => 0.01849513140375
331 => 0.018444445610807
401 => 0.018124878855955
402 => 0.017873786923341
403 => 0.017674109296082
404 => 0.017150095573365
405 => 0.017326934822198
406 => 0.016491766318351
407 => 0.017026077530558
408 => 0.01569312843257
409 => 0.016803248050171
410 => 0.016199060413256
411 => 0.01660475616187
412 => 0.016603340727622
413 => 0.01585632622847
414 => 0.015425463855153
415 => 0.015700026128845
416 => 0.015994378681023
417 => 0.016042136392293
418 => 0.016423772159579
419 => 0.016530278498995
420 => 0.016207559318258
421 => 0.015665506025277
422 => 0.015791412642317
423 => 0.015422912361578
424 => 0.014777129793741
425 => 0.015240942108243
426 => 0.015399308024802
427 => 0.015469251435462
428 => 0.014834198448623
429 => 0.014634651012488
430 => 0.014528413631854
501 => 0.01558352865933
502 => 0.015641330242322
503 => 0.015345609171412
504 => 0.01668229645335
505 => 0.016379762953785
506 => 0.016717766995306
507 => 0.015779987936511
508 => 0.015815812359444
509 => 0.015371852724435
510 => 0.015620440454647
511 => 0.015444746659289
512 => 0.015600357022637
513 => 0.015693629232822
514 => 0.016137516018424
515 => 0.016808316524237
516 => 0.016071214134975
517 => 0.015750048068473
518 => 0.015949297689825
519 => 0.016479925688291
520 => 0.017283854268316
521 => 0.016807912368371
522 => 0.017019127301549
523 => 0.01706526836815
524 => 0.016714326431457
525 => 0.0172967939981
526 => 0.017608943099022
527 => 0.017929143486412
528 => 0.018207164510972
529 => 0.017801248410331
530 => 0.018235636823805
531 => 0.017885596442422
601 => 0.017571574033813
602 => 0.017572050276184
603 => 0.017375059432128
604 => 0.016993364849325
605 => 0.016922974512011
606 => 0.017289153936039
607 => 0.01758279515679
608 => 0.017606980854178
609 => 0.017769555721816
610 => 0.01786576585383
611 => 0.018808755938899
612 => 0.019188034351937
613 => 0.019651808816026
614 => 0.019832475106686
615 => 0.020376215869121
616 => 0.019937101042989
617 => 0.019842095788194
618 => 0.018523158554773
619 => 0.018739134452858
620 => 0.019084932704265
621 => 0.018528860640574
622 => 0.01888156037484
623 => 0.018951190773587
624 => 0.018509965524633
625 => 0.018745642994317
626 => 0.018119753508337
627 => 0.016821959204673
628 => 0.017298238814154
629 => 0.017648940920715
630 => 0.017148445773394
701 => 0.01804556395313
702 => 0.017521486032807
703 => 0.017355378492241
704 => 0.01670733375488
705 => 0.017013185925385
706 => 0.017426855365374
707 => 0.017171255745695
708 => 0.017701663335005
709 => 0.018452861936006
710 => 0.018988210793729
711 => 0.019029308231572
712 => 0.018685114781643
713 => 0.019236686981766
714 => 0.019240704583079
715 => 0.018618528888102
716 => 0.018237449739217
717 => 0.018150867754793
718 => 0.018367166527282
719 => 0.01862979316804
720 => 0.019043882182345
721 => 0.019294107501199
722 => 0.019946562423516
723 => 0.020123098018146
724 => 0.020317057114396
725 => 0.020576246281757
726 => 0.020887469331913
727 => 0.020206531016111
728 => 0.020233585964826
729 => 0.019599505633384
730 => 0.018921899862921
731 => 0.019436118177951
801 => 0.020108390221256
802 => 0.019954170271727
803 => 0.019936817376978
804 => 0.019966000132655
805 => 0.019849723327063
806 => 0.019323807644789
807 => 0.019059696081558
808 => 0.019400467380172
809 => 0.0195815721594
810 => 0.019862449877986
811 => 0.019827825770561
812 => 0.020551336609574
813 => 0.020832471043783
814 => 0.020760544825092
815 => 0.020773780980332
816 => 0.021282761444735
817 => 0.021848852400968
818 => 0.022379071283761
819 => 0.022918432704769
820 => 0.022268211460109
821 => 0.021938069212142
822 => 0.022278691740668
823 => 0.022097952632423
824 => 0.023136533159101
825 => 0.023208442221392
826 => 0.024246947646876
827 => 0.025232612958587
828 => 0.02461353423633
829 => 0.0251972975875
830 => 0.025828685246715
831 => 0.027046734480297
901 => 0.026636538349915
902 => 0.026322334542636
903 => 0.026025413462978
904 => 0.026643259094851
905 => 0.027438107629931
906 => 0.027609310391422
907 => 0.027886724269527
908 => 0.027595057497255
909 => 0.027946337998416
910 => 0.029186512527986
911 => 0.028851406422773
912 => 0.028375501882375
913 => 0.029354500565843
914 => 0.029708796383629
915 => 0.032195429979011
916 => 0.035334907610892
917 => 0.034035143256372
918 => 0.033228337578388
919 => 0.033417956050401
920 => 0.034564387003539
921 => 0.034932584239787
922 => 0.033931697226466
923 => 0.034285227440201
924 => 0.036233213676207
925 => 0.037278245792944
926 => 0.035858951811877
927 => 0.031943176008131
928 => 0.028332651885497
929 => 0.02929032546684
930 => 0.029181755002786
1001 => 0.031274623197143
1002 => 0.02884341425299
1003 => 0.028884349576427
1004 => 0.031020496068657
1005 => 0.030450608807352
1006 => 0.029527464429684
1007 => 0.028339391861066
1008 => 0.026143129834565
1009 => 0.024197839310396
1010 => 0.028013002001945
1011 => 0.027848485249262
1012 => 0.02761024061136
1013 => 0.028140428272248
1014 => 0.030714869057123
1015 => 0.03065551986438
1016 => 0.030277970580373
1017 => 0.030564338384725
1018 => 0.029477262769013
1019 => 0.029757426907434
1020 => 0.028332079960029
1021 => 0.028976396308003
1022 => 0.029525483776455
1023 => 0.029635721215125
1024 => 0.029884091793314
1025 => 0.027761792396297
1026 => 0.028714642518121
1027 => 0.02927435269471
1028 => 0.026745561754451
1029 => 0.029224366628504
1030 => 0.027724847885485
1031 => 0.027215888702089
1101 => 0.027901135192258
1102 => 0.027634093968615
1103 => 0.027404507605714
1104 => 0.02727639447042
1105 => 0.027779563864905
1106 => 0.027756090411235
1107 => 0.026932807620886
1108 => 0.025858868782176
1109 => 0.026219317907288
1110 => 0.026088363360906
1111 => 0.025613767191346
1112 => 0.02593358770667
1113 => 0.024525260014644
1114 => 0.022102305419018
1115 => 0.023702983441995
1116 => 0.023641359079313
1117 => 0.023610285281207
1118 => 0.024813150575983
1119 => 0.024697522832714
1120 => 0.024487657346451
1121 => 0.025609912847113
1122 => 0.025200274492905
1123 => 0.026462683377639
1124 => 0.027294187516613
1125 => 0.027083291170628
1126 => 0.027865324832341
1127 => 0.026227621927126
1128 => 0.026771601139002
1129 => 0.026883714500647
1130 => 0.025596064388438
1201 => 0.024716440961505
1202 => 0.02465778010737
1203 => 0.023132634304644
1204 => 0.023947354881914
1205 => 0.024664275274482
1206 => 0.024320926041712
1207 => 0.024212231931883
1208 => 0.024767526566121
1209 => 0.024810677714979
1210 => 0.02382682694808
1211 => 0.02403140067702
1212 => 0.024884507134253
1213 => 0.024009904583144
1214 => 0.022310694691855
1215 => 0.0218892671454
1216 => 0.021833040942252
1217 => 0.020690096012428
1218 => 0.021917428949188
1219 => 0.021381665231815
1220 => 0.023074136395564
1221 => 0.022107405943735
1222 => 0.022065732126136
1223 => 0.022002736038616
1224 => 0.021018956123056
1225 => 0.021234341402088
1226 => 0.021950314873696
1227 => 0.022205782274385
1228 => 0.02217913493151
1229 => 0.021946806213088
1230 => 0.022053165110666
1231 => 0.02171054604367
]
'min_raw' => 0.011987860005697
'max_raw' => 0.037278245792944
'avg_raw' => 0.02463305289932
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.011987'
'max' => '$0.037278'
'avg' => '$0.024633'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.00682908923896
'max_diff' => 0.023282997813911
'year' => 2033
]
8 => [
'items' => [
101 => 0.021589560120114
102 => 0.021207695265573
103 => 0.020646459422255
104 => 0.020724502708528
105 => 0.019612547647569
106 => 0.019006695514437
107 => 0.018839003628989
108 => 0.018614759031441
109 => 0.018864332652974
110 => 0.019609397618591
111 => 0.018710691195707
112 => 0.017169922070597
113 => 0.017262524920359
114 => 0.017470576029741
115 => 0.017082874163803
116 => 0.016715946885044
117 => 0.017034960384174
118 => 0.016382116194264
119 => 0.017549469131092
120 => 0.017517895505619
121 => 0.017953012491847
122 => 0.018225100072835
123 => 0.017598026288059
124 => 0.017440318926975
125 => 0.017530156207248
126 => 0.01604534607935
127 => 0.017831671826927
128 => 0.017847120046171
129 => 0.017714843014119
130 => 0.018666006328084
131 => 0.020673257595827
201 => 0.019918048927407
202 => 0.019625609304692
203 => 0.019069681368139
204 => 0.019810422335861
205 => 0.0197535449869
206 => 0.0194963240448
207 => 0.019340756016439
208 => 0.019627394878669
209 => 0.019305238289317
210 => 0.019247370113599
211 => 0.01889675192994
212 => 0.018771597190484
213 => 0.018678937603945
214 => 0.018576928503709
215 => 0.018801935159747
216 => 0.018292040475074
217 => 0.017677157470952
218 => 0.017626036602285
219 => 0.017767185815266
220 => 0.017704737795845
221 => 0.017625737625194
222 => 0.017474904785004
223 => 0.017430155903353
224 => 0.017575568059647
225 => 0.017411406213247
226 => 0.017653635959968
227 => 0.017587762872043
228 => 0.017219801157692
301 => 0.016761184624735
302 => 0.016757101975611
303 => 0.016658293795868
304 => 0.016532446723055
305 => 0.016497438946389
306 => 0.017008093957078
307 => 0.018065134546586
308 => 0.017857612186028
309 => 0.018007568359278
310 => 0.018745204314589
311 => 0.018979676603295
312 => 0.018813253726552
313 => 0.01858544382835
314 => 0.018595466307716
315 => 0.019373961692618
316 => 0.019422515494852
317 => 0.019545195289048
318 => 0.019702873493896
319 => 0.018840107006657
320 => 0.018554830083754
321 => 0.018419650051122
322 => 0.01800334787187
323 => 0.018452294081141
324 => 0.018190712350792
325 => 0.018226008663121
326 => 0.018203021893413
327 => 0.018215574224032
328 => 0.017549142832155
329 => 0.017791955404752
330 => 0.017388232408537
331 => 0.016847692636637
401 => 0.016845880557784
402 => 0.016978176901174
403 => 0.016899481859369
404 => 0.016687715525306
405 => 0.016717795933551
406 => 0.016454259905235
407 => 0.016749793978863
408 => 0.016758268838623
409 => 0.016644472122426
410 => 0.017099783138693
411 => 0.017286324433556
412 => 0.017211420997194
413 => 0.017281069008784
414 => 0.017866235677016
415 => 0.01796164337655
416 => 0.018004017174404
417 => 0.017947241898732
418 => 0.017291764781273
419 => 0.017320837978737
420 => 0.017107518146121
421 => 0.016927285366651
422 => 0.016934493732633
423 => 0.017027156809902
424 => 0.017431821902953
425 => 0.018283415734968
426 => 0.018315733098386
427 => 0.018354902685613
428 => 0.018195580289305
429 => 0.018147527130069
430 => 0.018210921650674
501 => 0.018530735519303
502 => 0.019353383618033
503 => 0.019062604837123
504 => 0.018826197162001
505 => 0.019033590428134
506 => 0.019001663860415
507 => 0.018732171499104
508 => 0.018724607746094
509 => 0.018207365742819
510 => 0.018016153151238
511 => 0.017856361597699
512 => 0.017681873392699
513 => 0.017578430935877
514 => 0.017737365563311
515 => 0.017773715793065
516 => 0.017426202452478
517 => 0.017378837668262
518 => 0.017662624563782
519 => 0.017537740531705
520 => 0.017666186855671
521 => 0.017695987504623
522 => 0.017691188913774
523 => 0.017560795641447
524 => 0.017643904424845
525 => 0.017447327376188
526 => 0.017233579360691
527 => 0.017097221443776
528 => 0.016978231076014
529 => 0.017044253847809
530 => 0.016808894721642
531 => 0.016733598600338
601 => 0.017615749039037
602 => 0.018267403052819
603 => 0.018257927745375
604 => 0.018200249248162
605 => 0.018114550700961
606 => 0.018524466136791
607 => 0.018381659795466
608 => 0.018485563340649
609 => 0.018512011153717
610 => 0.018592060718299
611 => 0.018620671557145
612 => 0.018534189730648
613 => 0.018243946158058
614 => 0.017520686770693
615 => 0.017184007573474
616 => 0.017072897830556
617 => 0.017076936458684
618 => 0.016965533065694
619 => 0.016998346357679
620 => 0.016954121941843
621 => 0.016870371597284
622 => 0.017039082500035
623 => 0.017058524859926
624 => 0.017019145719279
625 => 0.017028420932447
626 => 0.016702378466938
627 => 0.016727166767464
628 => 0.016589142360193
629 => 0.016563264447738
630 => 0.016214350765316
701 => 0.015596199601058
702 => 0.015938715351442
703 => 0.015525004489981
704 => 0.015368325918003
705 => 0.01611001790923
706 => 0.016035572604644
707 => 0.01590815460379
708 => 0.015719676824288
709 => 0.015649768582476
710 => 0.015225028235491
711 => 0.01519993230989
712 => 0.01541044509481
713 => 0.015313300687872
714 => 0.015176873149067
715 => 0.014682746432954
716 => 0.01412718440431
717 => 0.014143953329816
718 => 0.014320667274529
719 => 0.014834486901903
720 => 0.014633728684318
721 => 0.014488076294025
722 => 0.014460799979618
723 => 0.014802220161255
724 => 0.015285401248012
725 => 0.01551209900335
726 => 0.015287448412723
727 => 0.015029381910257
728 => 0.015045089222497
729 => 0.01514958293383
730 => 0.01516056374543
731 => 0.01499258898199
801 => 0.01503987289398
802 => 0.014968044307935
803 => 0.014527232407961
804 => 0.01451925951852
805 => 0.014411077169214
806 => 0.014407801450671
807 => 0.014223756287151
808 => 0.01419800709653
809 => 0.013832574253616
810 => 0.014073103257454
811 => 0.013911769030019
812 => 0.013668600294377
813 => 0.013626677912697
814 => 0.013625417675281
815 => 0.013875097595251
816 => 0.014070185602219
817 => 0.013914575507979
818 => 0.013879146105895
819 => 0.014257439429273
820 => 0.014209298155653
821 => 0.014167608123176
822 => 0.015242137681269
823 => 0.014391563689451
824 => 0.014020664879953
825 => 0.013561607171425
826 => 0.013711078676091
827 => 0.013742574518318
828 => 0.012638623480679
829 => 0.012190750682197
830 => 0.012037057615489
831 => 0.011948605082697
901 => 0.011988914012607
902 => 0.011585775963734
903 => 0.011856691399865
904 => 0.011507607925951
905 => 0.011449082945534
906 => 0.012073287440035
907 => 0.012160141848895
908 => 0.011789593957148
909 => 0.012027545689904
910 => 0.01194126108383
911 => 0.011513591960181
912 => 0.011497258145379
913 => 0.011282668812428
914 => 0.010946878059044
915 => 0.010793412674278
916 => 0.010713486569444
917 => 0.010746465638027
918 => 0.010729790411776
919 => 0.010620973280925
920 => 0.010736027682339
921 => 0.010442111230488
922 => 0.010325071331115
923 => 0.010272207123873
924 => 0.010011339355656
925 => 0.010426495983313
926 => 0.010508287068967
927 => 0.010590239308326
928 => 0.011303577600778
929 => 0.01126794123556
930 => 0.011590076621515
1001 => 0.011577559032786
1002 => 0.011485680802464
1003 => 0.011098061661973
1004 => 0.011252559742726
1005 => 0.0107770386645
1006 => 0.011133331388597
1007 => 0.010970734268459
1008 => 0.01107835713872
1009 => 0.010884841514027
1010 => 0.010991941050797
1011 => 0.010527682769625
1012 => 0.010094164918957
1013 => 0.010268625157241
1014 => 0.010458283388203
1015 => 0.010869510756949
1016 => 0.010624587128676
1017 => 0.010712670926991
1018 => 0.010417604947687
1019 => 0.0098087995509513
1020 => 0.0098122453233808
1021 => 0.0097185938766396
1022 => 0.0096376653533201
1023 => 0.010652719553669
1024 => 0.010526481518223
1025 => 0.010325337730366
1026 => 0.010594576683549
1027 => 0.010665767736168
1028 => 0.010667794445353
1029 => 0.010864224235532
1030 => 0.010969058849763
1031 => 0.0109875364049
1101 => 0.011296622923893
1102 => 0.01140022464811
1103 => 0.011826945487895
1104 => 0.010960164365184
1105 => 0.010942313578363
1106 => 0.010598365427761
1107 => 0.010380228073044
1108 => 0.010613301479063
1109 => 0.010819772699103
1110 => 0.010604781064104
1111 => 0.010632854432914
1112 => 0.010344245728389
1113 => 0.010447409759955
1114 => 0.010536268521635
1115 => 0.010487205936312
1116 => 0.010413756871427
1117 => 0.010802844413627
1118 => 0.010780890569649
1119 => 0.01114321783403
1120 => 0.011425677846885
1121 => 0.01193189668569
1122 => 0.011403630937613
1123 => 0.011384378834086
1124 => 0.011572571234189
1125 => 0.011400195836834
1126 => 0.011509131137766
1127 => 0.011914345524576
1128 => 0.011922907066041
1129 => 0.011779490215582
1130 => 0.011770763287198
1201 => 0.011798308062137
1202 => 0.011959638669301
1203 => 0.011903264797969
1204 => 0.011968502069086
1205 => 0.012050082275566
1206 => 0.01238753259886
1207 => 0.012468890729374
1208 => 0.01227123265158
1209 => 0.012289078962921
1210 => 0.012215149415991
1211 => 0.012143734399991
1212 => 0.012304264926634
1213 => 0.012597637619309
1214 => 0.012595812563014
1215 => 0.012663869325364
1216 => 0.012706268124496
1217 => 0.012524261440805
1218 => 0.012405781782293
1219 => 0.012451214422423
1220 => 0.012523862203385
1221 => 0.01242765572618
1222 => 0.011833824781693
1223 => 0.012013955156183
1224 => 0.011983972653942
1225 => 0.011941273924755
1226 => 0.012122396409211
1227 => 0.012104926703734
1228 => 0.011581641200356
1229 => 0.011615140240487
1230 => 0.011583678387939
1231 => 0.011685338070011
]
'min_raw' => 0.0096376653533201
'max_raw' => 0.021589560120114
'avg_raw' => 0.015613612736717
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.009637'
'max' => '$0.021589'
'avg' => '$0.015613'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0023501946523766
'max_diff' => -0.01568868567283
'year' => 2034
]
9 => [
'items' => [
101 => 0.011394705880384
102 => 0.011484102384476
103 => 0.011540171033802
104 => 0.011573195898994
105 => 0.011692504357433
106 => 0.011678504886888
107 => 0.011691634130687
108 => 0.011868537078286
109 => 0.012763251481479
110 => 0.012811948812368
111 => 0.012572145344855
112 => 0.012667942100213
113 => 0.012484033278374
114 => 0.012607492502556
115 => 0.012691960168218
116 => 0.012310267029293
117 => 0.012287665638774
118 => 0.012102997759808
119 => 0.012202227817841
120 => 0.012044345660616
121 => 0.012083084419516
122 => 0.011974767472449
123 => 0.01216971641148
124 => 0.01238769961732
125 => 0.012442770783533
126 => 0.012297902254855
127 => 0.012193007892791
128 => 0.012008847947357
129 => 0.012315110040886
130 => 0.012404670410202
131 => 0.012314639618393
201 => 0.012293777516719
202 => 0.012254243871744
203 => 0.012302164766388
204 => 0.012404182645196
205 => 0.012356072897525
206 => 0.012387850233446
207 => 0.012266747797559
208 => 0.012524321692591
209 => 0.012933411026434
210 => 0.012934726315535
211 => 0.012886616308534
212 => 0.012866930730214
213 => 0.012916294516956
214 => 0.012943072346256
215 => 0.01310270578081
216 => 0.013273998816164
217 => 0.014073348671155
218 => 0.013848894430523
219 => 0.014558125175407
220 => 0.015119034612523
221 => 0.015287226827117
222 => 0.015132497903746
223 => 0.014603178615184
224 => 0.014577207685636
225 => 0.015368234175587
226 => 0.015144732960867
227 => 0.015118148202551
228 => 0.014835331289728
301 => 0.015002511112763
302 => 0.014965946433085
303 => 0.014908227297408
304 => 0.015227194753911
305 => 0.015824273358062
306 => 0.015731213058238
307 => 0.015661747861362
308 => 0.015357371589666
309 => 0.015540674090128
310 => 0.015475403580641
311 => 0.015755847111085
312 => 0.015589718576235
313 => 0.015143039719346
314 => 0.015214174799578
315 => 0.015203422875305
316 => 0.015424696714958
317 => 0.015358275800649
318 => 0.015190453125769
319 => 0.015822232608304
320 => 0.01578120836285
321 => 0.015839371363456
322 => 0.015864976515073
323 => 0.016249529552889
324 => 0.016407068628157
325 => 0.016442832756353
326 => 0.016592482693349
327 => 0.016439109329592
328 => 0.017052712137972
329 => 0.017460722200828
330 => 0.017934646884842
331 => 0.018627178227131
401 => 0.018887576418105
402 => 0.018840537815639
403 => 0.019365607175612
404 => 0.020309145143847
405 => 0.019031253815803
406 => 0.020376876487196
407 => 0.019950867885394
408 => 0.018940809154088
409 => 0.018875773279602
410 => 0.019559796779465
411 => 0.02107689506734
412 => 0.020696879153014
413 => 0.021077516637239
414 => 0.02063348279314
415 => 0.02061143277017
416 => 0.021055950904533
417 => 0.022094591754897
418 => 0.021601172419759
419 => 0.020893734811455
420 => 0.021416095732479
421 => 0.020963578360467
422 => 0.019943930069687
423 => 0.020696588562006
424 => 0.020193307262672
425 => 0.020340191501723
426 => 0.02139801393548
427 => 0.021270733941599
428 => 0.021435446039491
429 => 0.021144733497978
430 => 0.020873162143046
501 => 0.02036625404191
502 => 0.020216183543431
503 => 0.02025765763024
504 => 0.020216162990933
505 => 0.019932552567074
506 => 0.019871306923044
507 => 0.019769228166428
508 => 0.019800866641494
509 => 0.019608928714862
510 => 0.019971155238815
511 => 0.02003838767359
512 => 0.020301985930538
513 => 0.020329353576028
514 => 0.021063470969541
515 => 0.020659131445536
516 => 0.020930397307233
517 => 0.02090613273531
518 => 0.018962700189561
519 => 0.019230488047315
520 => 0.01964708191752
521 => 0.019459406943672
522 => 0.019194078439832
523 => 0.018979811446966
524 => 0.01865517504285
525 => 0.019112094547554
526 => 0.019712895108267
527 => 0.020344590869719
528 => 0.021103531936759
529 => 0.020934145125643
530 => 0.020330402994379
531 => 0.020357486425354
601 => 0.020524905538702
602 => 0.020308082575286
603 => 0.020244137250488
604 => 0.020516120433022
605 => 0.020517993431721
606 => 0.02026851240838
607 => 0.019991259905483
608 => 0.019990098207372
609 => 0.019940763802423
610 => 0.020642259274184
611 => 0.02102801085446
612 => 0.021072236651469
613 => 0.021025034105948
614 => 0.021043200492317
615 => 0.02081874014721
616 => 0.021331789934477
617 => 0.021802615154637
618 => 0.021676423937921
619 => 0.021487245364924
620 => 0.021336555519457
621 => 0.021640926199321
622 => 0.02162737305207
623 => 0.021798502907078
624 => 0.021790739468361
625 => 0.021733194934641
626 => 0.021676425993017
627 => 0.021901508429687
628 => 0.02183668830264
629 => 0.021771767492031
630 => 0.021641558867476
701 => 0.021659256382089
702 => 0.02147011047344
703 => 0.021382602921371
704 => 0.02006669929823
705 => 0.019715046851735
706 => 0.019825683869948
707 => 0.019862108449033
708 => 0.019709068853663
709 => 0.019928488320777
710 => 0.01989429202925
711 => 0.020027329795419
712 => 0.019944213574945
713 => 0.019947624693625
714 => 0.020192051775794
715 => 0.020263009997615
716 => 0.020226920073294
717 => 0.020252196219198
718 => 0.020834674333168
719 => 0.020751864571963
720 => 0.020707873536782
721 => 0.020720059354167
722 => 0.020868895000758
723 => 0.020910560855679
724 => 0.020734019700573
725 => 0.020817277529893
726 => 0.021171778800146
727 => 0.0212958341817
728 => 0.021691759409661
729 => 0.021523563335813
730 => 0.021832294508715
731 => 0.022781228880004
801 => 0.023539303317053
802 => 0.022842146735991
803 => 0.024234253899434
804 => 0.025318209012087
805 => 0.025276605009441
806 => 0.025087592363217
807 => 0.0238535382859
808 => 0.022717943325243
809 => 0.023667916729741
810 => 0.023670338407313
811 => 0.023588734849377
812 => 0.023081902159495
813 => 0.023571098170393
814 => 0.023609928773239
815 => 0.023588193961536
816 => 0.023199606526535
817 => 0.022606305336251
818 => 0.02272223496867
819 => 0.022912130071473
820 => 0.022552619025599
821 => 0.0224377334629
822 => 0.02265132758183
823 => 0.023339572337126
824 => 0.023209463652868
825 => 0.023206065989311
826 => 0.023762726115237
827 => 0.023364277599848
828 => 0.022723697212593
829 => 0.022561942216594
830 => 0.021987820952019
831 => 0.022384368554411
901 => 0.022398639596661
902 => 0.022181454527449
903 => 0.022741320583985
904 => 0.022736161319711
905 => 0.023267670815326
906 => 0.024283717345093
907 => 0.023983222389627
908 => 0.02363377945018
909 => 0.0236717735867
910 => 0.024088475486801
911 => 0.02383652800562
912 => 0.023927130076493
913 => 0.024088338349715
914 => 0.024185599303527
915 => 0.023657779232207
916 => 0.02353471912503
917 => 0.023282981333974
918 => 0.023217307643196
919 => 0.02342234282133
920 => 0.023368323295891
921 => 0.02239744017082
922 => 0.022295977482307
923 => 0.022299089198108
924 => 0.022043956443555
925 => 0.021654817753985
926 => 0.022677450995912
927 => 0.022595319234843
928 => 0.022504652127115
929 => 0.022515758330472
930 => 0.022959648760537
1001 => 0.022702169894095
1002 => 0.023386719660486
1003 => 0.023245996807966
1004 => 0.023101664945274
1005 => 0.023081713885394
1006 => 0.023026158432073
1007 => 0.022835638111364
1008 => 0.022605573375611
1009 => 0.022453664709201
1010 => 0.020712318798012
1011 => 0.021035502470186
1012 => 0.021407295825903
1013 => 0.021535637402428
1014 => 0.021316100254815
1015 => 0.022844306776047
1016 => 0.02312352483364
1017 => 0.022277755124246
1018 => 0.022119546144168
1019 => 0.022854678930442
1020 => 0.022411303993991
1021 => 0.022610955700726
1022 => 0.022179417914409
1023 => 0.023056269380025
1024 => 0.023049589240985
1025 => 0.022708474216272
1026 => 0.022996782299304
1027 => 0.022946681674964
1028 => 0.022561563652192
1029 => 0.023068478308269
1030 => 0.023068729731615
1031 => 0.022740413936808
1101 => 0.022357012966043
1102 => 0.022288469927997
1103 => 0.022236831956291
1104 => 0.022598255925152
1105 => 0.022922307525489
1106 => 0.023525287214511
1107 => 0.023676890634776
1108 => 0.024268608876878
1109 => 0.023916269473944
1110 => 0.024072456967706
1111 => 0.024242020586254
1112 => 0.024323315620481
1113 => 0.02419084972474
1114 => 0.025110031715671
1115 => 0.025187638838714
1116 => 0.025213659835771
1117 => 0.024903716840148
1118 => 0.025179018763323
1119 => 0.025050214110511
1120 => 0.025385328034164
1121 => 0.025437878176342
1122 => 0.025393370075443
1123 => 0.025410050320018
1124 => 0.024625690645573
1125 => 0.024585017458626
1126 => 0.024030435668568
1127 => 0.024256431847278
1128 => 0.023833942823458
1129 => 0.023967918445031
1130 => 0.024026973622453
1201 => 0.02399612654912
1202 => 0.024269209332141
1203 => 0.024037033179446
1204 => 0.023424282139191
1205 => 0.022811364155325
1206 => 0.022803669469309
1207 => 0.022642298983058
1208 => 0.022525657677978
1209 => 0.022548126931409
1210 => 0.022627311511211
1211 => 0.02252105532625
1212 => 0.022543730470637
1213 => 0.022920288951154
1214 => 0.022995805068929
1215 => 0.022739171794676
1216 => 0.021708752166546
1217 => 0.021455884605191
1218 => 0.021637640793711
1219 => 0.021550773042196
1220 => 0.017393155813926
1221 => 0.0183699263109
1222 => 0.01778956244959
1223 => 0.018057020818139
1224 => 0.017464619600235
1225 => 0.017747344511827
1226 => 0.017695135544116
1227 => 0.01926575359851
1228 => 0.019241230557905
1229 => 0.019252968439713
1230 => 0.01869268875817
1231 => 0.019585229504118
]
'min_raw' => 0.011394705880384
'max_raw' => 0.025437878176342
'avg_raw' => 0.018416292028363
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.011394'
'max' => '$0.025437'
'avg' => '$0.018416'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0017570405270638
'max_diff' => 0.0038483180562282
'year' => 2035
]
10 => [
'items' => [
101 => 0.020024927170299
102 => 0.019943550834464
103 => 0.019964031505009
104 => 0.019612105729329
105 => 0.019256375850493
106 => 0.018861816668427
107 => 0.019594858859716
108 => 0.019513357081492
109 => 0.019700292837324
110 => 0.020175723097313
111 => 0.02024573200908
112 => 0.020339824696456
113 => 0.020306099166005
114 => 0.021109578126777
115 => 0.021012271523103
116 => 0.021246752440937
117 => 0.020764407402841
118 => 0.020218588207625
119 => 0.020322330592461
120 => 0.020312339366558
121 => 0.020185139593413
122 => 0.020070309325704
123 => 0.019879149283195
124 => 0.020484007944055
125 => 0.020459451787026
126 => 0.020856987425921
127 => 0.020786719140291
128 => 0.020317450331289
129 => 0.020334210358607
130 => 0.020446929596914
131 => 0.020837052167701
201 => 0.02095286710828
202 => 0.020899217013376
203 => 0.021026202808569
204 => 0.021126567203461
205 => 0.02103880703133
206 => 0.022281305998884
207 => 0.02176533380083
208 => 0.02201681506005
209 => 0.022076791858561
210 => 0.021923162550353
211 => 0.02195647924625
212 => 0.022006944962278
213 => 0.022313362907801
214 => 0.023117492259599
215 => 0.023473635675617
216 => 0.024545110714514
217 => 0.023444062922673
218 => 0.023378731303293
219 => 0.023571736313245
220 => 0.024200805588229
221 => 0.024710607150131
222 => 0.024879737739371
223 => 0.024902091138781
224 => 0.025219391367785
225 => 0.025401261941752
226 => 0.02518086277416
227 => 0.02499409755638
228 => 0.024325127728447
229 => 0.024402562807574
301 => 0.024936013714091
302 => 0.025689544539647
303 => 0.026336152379495
304 => 0.026109732850538
305 => 0.027837154029197
306 => 0.028008420783178
307 => 0.027984757255495
308 => 0.028374928408975
309 => 0.027600518126292
310 => 0.027269442726952
311 => 0.025034478316339
312 => 0.025662412152708
313 => 0.026575150861131
314 => 0.026454346470476
315 => 0.025791491222844
316 => 0.02633564954435
317 => 0.026155733785856
318 => 0.02601382676242
319 => 0.026663930346809
320 => 0.02594911475099
321 => 0.026568020028757
322 => 0.025774267608266
323 => 0.026110767115874
324 => 0.025919753720706
325 => 0.026043362797101
326 => 0.025320746662243
327 => 0.025710652788097
328 => 0.025304525285515
329 => 0.025304332728199
330 => 0.02529536744107
331 => 0.025773174646813
401 => 0.025788755922639
402 => 0.025435655675668
403 => 0.025384768413617
404 => 0.025572925292513
405 => 0.02535264286569
406 => 0.02545571162676
407 => 0.025355764713465
408 => 0.025333264558079
409 => 0.025153979491872
410 => 0.025076738555805
411 => 0.02510702671709
412 => 0.025003637608005
413 => 0.024941341930033
414 => 0.025282975262762
415 => 0.025100454354534
416 => 0.025255001315858
417 => 0.025078875548048
418 => 0.024468346902476
419 => 0.024117225422184
420 => 0.022963993406732
421 => 0.023291048575735
422 => 0.023507886491146
423 => 0.023436221561396
424 => 0.023590185561145
425 => 0.023599637700286
426 => 0.02354958243449
427 => 0.023491624849176
428 => 0.0234634143019
429 => 0.023673672608825
430 => 0.023795734632964
501 => 0.023529649076875
502 => 0.023467308954015
503 => 0.023736336142208
504 => 0.023900442571594
505 => 0.025112112242741
506 => 0.025022347839861
507 => 0.025247638875716
508 => 0.025222274562451
509 => 0.025458415459703
510 => 0.025844406026121
511 => 0.025059579279934
512 => 0.025195798065805
513 => 0.025162400365261
514 => 0.025527027702457
515 => 0.025528166029204
516 => 0.025309553726068
517 => 0.025428067002177
518 => 0.025361916142695
519 => 0.025481459686605
520 => 0.025021148981534
521 => 0.02558175773284
522 => 0.025899586770001
523 => 0.02590399982649
524 => 0.026054648267657
525 => 0.026207715808852
526 => 0.026501515624803
527 => 0.026199521891445
528 => 0.025656264563633
529 => 0.025695485987991
530 => 0.025376974415465
531 => 0.025382328652542
601 => 0.025353747315401
602 => 0.025439522059665
603 => 0.025039971714368
604 => 0.025133745381799
605 => 0.025002461698257
606 => 0.025195512680716
607 => 0.024987821736061
608 => 0.025162384259878
609 => 0.025237719658318
610 => 0.025515708900418
611 => 0.024946762498977
612 => 0.023786642272153
613 => 0.024030513608929
614 => 0.023669808746157
615 => 0.023703193354507
616 => 0.023770635576494
617 => 0.02355203326931
618 => 0.023593735700571
619 => 0.023592245796271
620 => 0.023579406605924
621 => 0.023522539703003
622 => 0.023440071442995
623 => 0.023768599608476
624 => 0.023824422945583
625 => 0.023948511308923
626 => 0.024317714108281
627 => 0.024280822042223
628 => 0.0243409945326
629 => 0.024209638323962
630 => 0.023709286592287
701 => 0.023736458098582
702 => 0.023397628979692
703 => 0.023939846686561
704 => 0.02381144237665
705 => 0.023728659282732
706 => 0.023706071148576
707 => 0.024076189130262
708 => 0.024186934231271
709 => 0.024117925316149
710 => 0.023976386017923
711 => 0.024248183312854
712 => 0.024320904802771
713 => 0.024337184462498
714 => 0.024818757157153
715 => 0.024364099026523
716 => 0.024473539757479
717 => 0.025327365099161
718 => 0.024553063334099
719 => 0.024963228248042
720 => 0.0249431528099
721 => 0.02515297930065
722 => 0.024925940913282
723 => 0.024928755326197
724 => 0.025115067035105
725 => 0.024853425841437
726 => 0.024788639802417
727 => 0.024699138353516
728 => 0.024894561492845
729 => 0.025011708826645
730 => 0.025955830301832
731 => 0.026565775831972
801 => 0.026539296487892
802 => 0.026781268125531
803 => 0.026672257686568
804 => 0.026320234223658
805 => 0.026921095350158
806 => 0.026730957748636
807 => 0.026746632461489
808 => 0.026746049047893
809 => 0.026872473930788
810 => 0.026782890314587
811 => 0.026606311811485
812 => 0.026723532862418
813 => 0.027071637476396
814 => 0.028152164879338
815 => 0.028756842329108
816 => 0.028115762537606
817 => 0.028557970793383
818 => 0.028292803414829
819 => 0.0282446146141
820 => 0.028522354077662
821 => 0.028800579687388
822 => 0.02878285791885
823 => 0.028580880413232
824 => 0.028466788445298
825 => 0.029330731050109
826 => 0.029967269244455
827 => 0.029923861607006
828 => 0.030115448801783
829 => 0.030677954731215
830 => 0.030729383223849
831 => 0.030722904415847
901 => 0.030595433530847
902 => 0.031149293668998
903 => 0.031611333540486
904 => 0.030565927703957
905 => 0.03096400456114
906 => 0.031142714087565
907 => 0.031405112693084
908 => 0.031847823123706
909 => 0.032328724074505
910 => 0.032396728741758
911 => 0.032348476176019
912 => 0.032031309071656
913 => 0.032557516630361
914 => 0.032865756677165
915 => 0.033049306571089
916 => 0.033514758562289
917 => 0.03114381773676
918 => 0.029465547977046
919 => 0.029203461919557
920 => 0.029736424223486
921 => 0.029876962132737
922 => 0.029820311477737
923 => 0.027931266281568
924 => 0.029193516487547
925 => 0.030551591576168
926 => 0.030603760771257
927 => 0.031283641556632
928 => 0.031505038609605
929 => 0.032052431755843
930 => 0.032018192165507
1001 => 0.032151473685689
1002 => 0.032120834572313
1003 => 0.033134765108494
1004 => 0.034253281060043
1005 => 0.034214550409303
1006 => 0.034053750507588
1007 => 0.034292565782093
1008 => 0.035446994111545
1009 => 0.035340712850306
1010 => 0.035443956042584
1011 => 0.036805092103738
1012 => 0.038574762602585
1013 => 0.037752572983857
1014 => 0.039536487877806
1015 => 0.040659367742282
1016 => 0.042601272359948
1017 => 0.042358136337734
1018 => 0.043114105555037
1019 => 0.041922872113953
1020 => 0.039187559345224
1021 => 0.038754685629215
1022 => 0.039621309770772
1023 => 0.041751820658842
1024 => 0.039554212401062
1025 => 0.03999878568944
1026 => 0.039870748552479
1027 => 0.039863925997573
1028 => 0.040124315168993
1029 => 0.039746607094863
1030 => 0.038207756452471
1031 => 0.038913002633375
1101 => 0.038640673214225
1102 => 0.038942843008275
1103 => 0.040573528762464
1104 => 0.039852563719844
1105 => 0.039093085613888
1106 => 0.04004563970044
1107 => 0.041258568385718
1108 => 0.041182665488436
1109 => 0.041035382142758
1110 => 0.041865610650837
1111 => 0.043236904912053
1112 => 0.043607560240554
1113 => 0.043881170426338
1114 => 0.043918896648276
1115 => 0.04430750018095
1116 => 0.04221788104506
1117 => 0.045534160278943
1118 => 0.04610679009227
1119 => 0.045999159420438
1120 => 0.046635613358005
1121 => 0.046448352464295
1122 => 0.046177040809643
1123 => 0.04718595567832
1124 => 0.046029316196613
1125 => 0.044387612069192
1126 => 0.043486940715662
1127 => 0.044673017409075
1128 => 0.04539731305737
1129 => 0.045876026407038
1130 => 0.046020884777401
1201 => 0.042380092230196
1202 => 0.040417906974865
1203 => 0.041675645227033
1204 => 0.043210172699135
1205 => 0.042209356667472
1206 => 0.042248586761118
1207 => 0.040821686109794
1208 => 0.043336421744984
1209 => 0.042970045915193
1210 => 0.044870804368258
1211 => 0.044417173108894
1212 => 0.045967167840351
1213 => 0.045559002281579
1214 => 0.047253274695815
1215 => 0.047929165832449
1216 => 0.049064092244912
1217 => 0.049898948733901
1218 => 0.050389192432495
1219 => 0.05035976003969
1220 => 0.052302349811962
1221 => 0.05115687249217
1222 => 0.049717883010236
1223 => 0.049691856230462
1224 => 0.050437129273794
1225 => 0.051999017116944
1226 => 0.052403991910128
1227 => 0.052630317571841
1228 => 0.052283691942475
1229 => 0.05104035840894
1230 => 0.050503493293004
1231 => 0.050960917926262
]
'min_raw' => 0.018861816668427
'max_raw' => 0.052630317571841
'avg_raw' => 0.035746067120134
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.018861'
'max' => '$0.05263'
'avg' => '$0.035746'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.0074671107880432
'max_diff' => 0.027192439395499
'year' => 2036
]
11 => [
'items' => [
101 => 0.050401526906735
102 => 0.051367192743837
103 => 0.052693258193271
104 => 0.052419430921794
105 => 0.053334794435864
106 => 0.054282099373875
107 => 0.055636787981358
108 => 0.055990953747328
109 => 0.056576376290759
110 => 0.057178968389237
111 => 0.057372504730955
112 => 0.057742025658096
113 => 0.057740078100409
114 => 0.058853654285975
115 => 0.060081963303238
116 => 0.060545621521836
117 => 0.061611778029238
118 => 0.059786022372892
119 => 0.061170879011
120 => 0.062420054363783
121 => 0.06093073601074
122 => 0.062983414393738
123 => 0.063063115243881
124 => 0.064266503455826
125 => 0.063046638961734
126 => 0.062322287319087
127 => 0.064413463370306
128 => 0.065425317590063
129 => 0.065120538864329
130 => 0.062801157712716
131 => 0.06145117839954
201 => 0.057918022145395
202 => 0.062103198349421
203 => 0.064141675595138
204 => 0.06279587854911
205 => 0.063474620298787
206 => 0.067177615202278
207 => 0.068587475910363
208 => 0.068294234738752
209 => 0.068343787669593
210 => 0.069104522916894
211 => 0.072478041947977
212 => 0.070456551146993
213 => 0.07200190512053
214 => 0.072821555295906
215 => 0.073582892058396
216 => 0.071713289592676
217 => 0.06928096425469
218 => 0.068510544718078
219 => 0.062662065555643
220 => 0.06235762681658
221 => 0.062186736126907
222 => 0.061109294501482
223 => 0.060262720519998
224 => 0.059589493458645
225 => 0.057822744607037
226 => 0.058418970480998
227 => 0.055603141560677
228 => 0.057404609117049
301 => 0.052910478169649
302 => 0.056653323966466
303 => 0.054616263165574
304 => 0.055984094706798
305 => 0.055979322471408
306 => 0.05346071093263
307 => 0.052008028359144
308 => 0.052933734234221
309 => 0.053926164414927
310 => 0.054087182872811
311 => 0.055373894507174
312 => 0.055732988066551
313 => 0.054644917817164
314 => 0.052817347294924
315 => 0.053241850244795
316 => 0.051999425820414
317 => 0.049822124805853
318 => 0.05138590040654
319 => 0.051919842150974
320 => 0.052155661243306
321 => 0.050014535760196
322 => 0.049341747647307
323 => 0.048983560901244
324 => 0.052540954882157
325 => 0.052735836954795
326 => 0.051738792717634
327 => 0.056245527213214
328 => 0.055225514397217
329 => 0.056365118621893
330 => 0.053203331051524
331 => 0.053324115594623
401 => 0.051827274688917
402 => 0.052665405577167
403 => 0.052073041679571
404 => 0.052597692883967
405 => 0.052912166652664
406 => 0.054408761941507
407 => 0.05667041268065
408 => 0.054185220512409
409 => 0.053102386696098
410 => 0.053774170705649
411 => 0.055563220049743
412 => 0.058273721385796
413 => 0.056669050040929
414 => 0.057381175934695
415 => 0.057536743762206
416 => 0.056353518520664
417 => 0.058317348588187
418 => 0.059369781075499
419 => 0.060449359037264
420 => 0.061386726332376
421 => 0.060018151858907
422 => 0.061482722722964
423 => 0.060302537138094
424 => 0.059243788663122
425 => 0.059245394347526
426 => 0.058581225963329
427 => 0.057294316028346
428 => 0.057056990091594
429 => 0.058291589585538
430 => 0.059281621462674
501 => 0.059363165230008
502 => 0.059911297746864
503 => 0.060235676924126
504 => 0.063415033833402
505 => 0.064693797483332
506 => 0.066257445468709
507 => 0.066866574481386
508 => 0.068699834424704
509 => 0.067219328130382
510 => 0.066899011280784
511 => 0.062452122313051
512 => 0.063180300132398
513 => 0.064346183079881
514 => 0.062471347293433
515 => 0.063660499072223
516 => 0.063895262823034
517 => 0.062407641090825
518 => 0.063202244134338
519 => 0.061092014034149
520 => 0.056716409930241
521 => 0.058322219886387
522 => 0.059504636523897
523 => 0.05781718219125
524 => 0.060841878769019
525 => 0.059074913470697
526 => 0.058514870300422
527 => 0.05632994222337
528 => 0.057361144170144
529 => 0.058755859568546
530 => 0.057894087605402
531 => 0.059682393824637
601 => 0.062215112354922
602 => 0.064020078405599
603 => 0.064158641286617
604 => 0.062998169039365
605 => 0.064857833221621
606 => 0.064871378844948
607 => 0.062773670050412
608 => 0.06148883509385
609 => 0.061196917888403
610 => 0.061926184301348
611 => 0.06281164835667
612 => 0.064207778379171
613 => 0.065051430511861
614 => 0.067251227835399
615 => 0.067846429918017
616 => 0.068500376552817
617 => 0.069374250926585
618 => 0.070423561169082
619 => 0.068127730095762
620 => 0.06821894774427
621 => 0.066081101636739
622 => 0.063796506472698
623 => 0.065530229423398
624 => 0.067796841553938
625 => 0.067276878226808
626 => 0.067218371730619
627 => 0.067316763428861
628 => 0.066924728060619
629 => 0.065151566619573
630 => 0.064261096044458
701 => 0.065410030269629
702 => 0.066020637677128
703 => 0.066967636515597
704 => 0.066850898920035
705 => 0.069290266227682
706 => 0.070238130600795
707 => 0.069995626332749
708 => 0.070040252954261
709 => 0.071756316125878
710 => 0.073664931308025
711 => 0.075452601290062
712 => 0.077271095978002
713 => 0.075078829654635
714 => 0.073965732015818
715 => 0.075114164652248
716 => 0.074504790129999
717 => 0.07800643688707
718 => 0.078248883311114
719 => 0.081750276859268
720 => 0.085073516274655
721 => 0.082986249139869
722 => 0.084954448035395
723 => 0.087083215610518
724 => 0.09118995364302
725 => 0.089806948750459
726 => 0.088747588677207
727 => 0.087746498526775
728 => 0.089829608211239
729 => 0.092509495541812
730 => 0.093086717605176
731 => 0.094022037863624
801 => 0.093038662977385
802 => 0.094223029712669
803 => 0.098404364725336
804 => 0.097274531095249
805 => 0.095669985710705
806 => 0.098970748123522
807 => 0.10016528120933
808 => 0.10854913998738
809 => 0.11913410801459
810 => 0.11475186174668
811 => 0.11203166007398
812 => 0.11267097199111
813 => 0.11653624399087
814 => 0.11777764667959
815 => 0.11440308623448
816 => 0.11559503803278
817 => 0.12216280963153
818 => 0.12568620837492
819 => 0.12090095962581
820 => 0.10769864811274
821 => 0.095525513954538
822 => 0.098754377296669
823 => 0.098388324396967
824 => 0.10544457563363
825 => 0.097247584936832
826 => 0.097385601237812
827 => 0.10458776827735
828 => 0.1026663535876
829 => 0.099553907866413
830 => 0.095548238252741
831 => 0.088143387492275
901 => 0.08158470467419
902 => 0.0944477920549
903 => 0.093893112337037
904 => 0.093089853906643
905 => 0.094877418621844
906 => 0.10355732546977
907 => 0.10335722552281
908 => 0.10208429175213
909 => 0.10304980079806
910 => 0.099384649462493
911 => 0.10032924241561
912 => 0.095523585667893
913 => 0.097695943219817
914 => 0.099547229955766
915 => 0.099918903176777
916 => 0.10075630192182
917 => 0.093600821330564
918 => 0.096813422042164
919 => 0.09870052398025
920 => 0.090174528770621
921 => 0.098531992468121
922 => 0.093476260332978
923 => 0.091760268911762
924 => 0.094070625295751
925 => 0.093170277166015
926 => 0.092396210714285
927 => 0.091964268334069
928 => 0.093660739077741
929 => 0.093581596689828
930 => 0.090805841282398
1001 => 0.087184981507672
1002 => 0.08840026089874
1003 => 0.08795873850266
1004 => 0.086358604381742
1005 => 0.08743690157831
1006 => 0.082688626438347
1007 => 0.074519465853907
1008 => 0.079916263564144
1009 => 0.079708492722886
1010 => 0.079603725243067
1011 => 0.083659269565777
1012 => 0.083269422556475
1013 => 0.0825618464172
1014 => 0.086345609191057
1015 => 0.084964484879808
1016 => 0.089220784573263
1017 => 0.092024258831578
1018 => 0.091313207076778
1019 => 0.093949888167089
1020 => 0.088428258481391
1021 => 0.090262322373648
1022 => 0.090640320399939
1023 => 0.086298918145765
1024 => 0.083333206348516
1025 => 0.08313542718323
1026 => 0.07799329162706
1027 => 0.080740178935298
1028 => 0.083157326092627
1029 => 0.081999700182463
1030 => 0.081633230402396
1031 => 0.083505445031163
1101 => 0.083650932142252
1102 => 0.080333810591387
1103 => 0.08102354520139
1104 => 0.083899853183939
1105 => 0.080951069620075
1106 => 0.075222064836548
1107 => 0.073801192440545
1108 => 0.073611621871045
1109 => 0.069758103242274
1110 => 0.073896141928212
1111 => 0.072089777149258
1112 => 0.077796061842401
1113 => 0.074536662629096
1114 => 0.074396156443489
1115 => 0.074183760736168
1116 => 0.070866878065536
1117 => 0.071593064571514
1118 => 0.074007019118713
1119 => 0.074868345296298
1120 => 0.074778501919338
1121 => 0.073995189424503
1122 => 0.07435378587343
1123 => 0.073198621768153
1124 => 0.072790709279917
1125 => 0.071503225261878
1126 => 0.069610979431898
1127 => 0.069874107820375
1128 => 0.066125073698129
1129 => 0.06408240093203
1130 => 0.063517016032367
1201 => 0.062760959715478
1202 => 0.063602414605149
1203 => 0.066114453155502
1204 => 0.063084401705068
1205 => 0.057889591026695
1206 => 0.058201807999992
1207 => 0.058903266840939
1208 => 0.057596102931449
1209 => 0.056358981993068
1210 => 0.057434558278196
1211 => 0.055233448511791
1212 => 0.059169260440283
1213 => 0.059062807757603
1214 => 0.060529835055568
1215 => 0.061447197331416
1216 => 0.059332974285149
1217 => 0.05880125290648
1218 => 0.05910414556916
1219 => 0.054098004556817
1220 => 0.060120726532055
1221 => 0.060172811281796
1222 => 0.059726830032946
1223 => 0.062933743554081
1224 => 0.069701331345085
1225 => 0.067155092592521
1226 => 0.066169111987055
1227 => 0.064294762135315
1228 => 0.066792222024876
1229 => 0.066600456071801
1230 => 0.065733217706919
1231 => 0.065208709237889
]
'min_raw' => 0.048983560901244
'max_raw' => 0.12568620837492
'avg_raw' => 0.087334884638081
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.048983'
'max' => '$0.125686'
'avg' => '$0.087334'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.030121744232817
'max_diff' => 0.073055890803076
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0015375380044287
]
1 => [
'year' => 2028
'avg' => 0.0026388615660716
]
2 => [
'year' => 2029
'avg' => 0.0072088941899846
]
3 => [
'year' => 2030
'avg' => 0.0055616511317658
]
4 => [
'year' => 2031
'avg' => 0.0054622306592308
]
5 => [
'year' => 2032
'avg' => 0.0095770093728848
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0015375380044287
'min' => '$0.001537'
'max_raw' => 0.0095770093728848
'max' => '$0.009577'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.0095770093728848
]
1 => [
'year' => 2033
'avg' => 0.02463305289932
]
2 => [
'year' => 2034
'avg' => 0.015613612736717
]
3 => [
'year' => 2035
'avg' => 0.018416292028363
]
4 => [
'year' => 2036
'avg' => 0.035746067120134
]
5 => [
'year' => 2037
'avg' => 0.087334884638081
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.0095770093728848
'min' => '$0.009577'
'max_raw' => 0.087334884638081
'max' => '$0.087334'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.087334884638081
]
]
]
]
'prediction_2025_max_price' => '$0.002628'
'last_price' => 0.00254906
'sma_50day_nextmonth' => '$0.002443'
'sma_200day_nextmonth' => '$0.002426'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'augmenter'
'sma_200day_date_nextmonth' => '4 févr. 2026'
'sma_50day_date_nextmonth' => '4 févr. 2026'
'daily_sma3' => '$0.002551'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.002529'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.002562'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.0026098'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.00306'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.002768'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.002391'
'daily_sma200_action' => 'BUY'
'daily_ema3' => '$0.002545'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.002543'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.002564'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.002662'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.0028021'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.002718'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.002448'
'daily_ema200_action' => 'BUY'
'weekly_sma21' => '$0.002834'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.002362'
'weekly_sma50_action' => 'BUY'
'weekly_sma100' => '$0.001964'
'weekly_sma100_action' => 'BUY'
'weekly_sma200' => '$0.001453'
'weekly_sma200_action' => 'BUY'
'weekly_ema3' => '$0.002547'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.00259'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.002692'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.002686'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.002435'
'weekly_ema50_action' => 'BUY'
'weekly_ema100' => '$0.002784'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.005078'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '39.70'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 74.26
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => -0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.002546'
'vwma_10_action' => 'BUY'
'hma_9' => '0.002539'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 44.22
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => -30.96
'cci_20_action' => 'NEUTRAL'
'adx_14' => 23.66
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.0003067'
'ao_5_34_action' => 'SELL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -55.78
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 37.25
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '0.00020054'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 18
'buy_signals' => 16
'sell_pct' => 52.94
'buy_pct' => 47.06
'overall_action' => 'bearish'
'overall_action_label' => 'Baissier'
'overall_action_dir' => -1
'last_updated' => 1767685452
'last_updated_date' => '6 janvier 2026'
]
Prévision du prix de Moon Maker Protocol pour 2026
La prévision du prix de Moon Maker Protocol pour 2026 suggère que le prix moyen pourrait varier entre $0.00088 à la baisse et $0.002628 à la hausse. Sur le marché des cryptomonnaies, comparé au prix moyen d'aujourd'hui, Moon Maker Protocol pourrait potentiellement gagner 3.13% d'ici 2026 si MMP atteint l'objectif de prix prévu.
Prévision du prix de Moon Maker Protocol de 2027 à 2032
La prévision du prix de MMP pour 2027-2032 se situe actuellement dans une fourchette de prix comprise entre $0.001537 à la baisse et $0.009577 à la hausse. Compte tenu de la volatilité des prix sur le marché, si Moon Maker Protocol atteint l'objectif de prix le plus élevé, il pourrait gagner 275.71% d'ici 2032 par rapport au prix actuel.
| Prévision du Prix de Moon Maker Protocol | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2027 | $0.000847 | $0.001537 | $0.002227 |
| 2028 | $0.00153 | $0.002638 | $0.003747 |
| 2029 | $0.003361 | $0.0072088 | $0.011056 |
| 2030 | $0.002858 | $0.005561 | $0.008264 |
| 2031 | $0.003379 | $0.005462 | $0.007544 |
| 2032 | $0.005158 | $0.009577 | $0.013995 |
Prévision du prix de Moon Maker Protocol de 2032 à 2037
La prévision du prix de Moon Maker Protocol pour 2032-2037 est actuellement estimée entre $0.009577 à la baisse et $0.087334 à la hausse. Par rapport au prix actuel, Moon Maker Protocol pourrait potentiellement gagner 3326.16% d'ici 2037 s'il atteint l'objectif de prix le plus élevé. Veuillez noter que ces informations sont à titre général seulement et ne doivent pas être considérées comme un conseil en investissement à long terme.
| Prévision du Prix de Moon Maker Protocol | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2032 | $0.005158 | $0.009577 | $0.013995 |
| 2033 | $0.011987 | $0.024633 | $0.037278 |
| 2034 | $0.009637 | $0.015613 | $0.021589 |
| 2035 | $0.011394 | $0.018416 | $0.025437 |
| 2036 | $0.018861 | $0.035746 | $0.05263 |
| 2037 | $0.048983 | $0.087334 | $0.125686 |
Moon Maker Protocol Histogramme des prix potentiels
Prévision du prix de Moon Maker Protocol basée sur l'analyse technique
Au 6 janvier 2026, le sentiment global de prévision du prix pour Moon Maker Protocol est Baissier, avec 16 indicateurs techniques montrant des signaux haussiers et 18 indiquant des signaux baissiers. La prévision du prix de MMP a été mise à jour pour la dernière fois le 6 janvier 2026.
Moyennes Mobiles Simples sur 50 et 200 jours de Moon Maker Protocol et Indice de Force Relative sur 14 jours - RSI (14)
Selon nos indicateurs techniques, le SMA sur 200 jours de Moon Maker Protocol devrait augmenter au cours du prochain mois, atteignant $0.002426 d'ici le 4 févr. 2026. Le SMA à court terme sur 50 jours pour Moon Maker Protocol devrait atteindre $0.002443 d'ici le 4 févr. 2026.
Le Relative Strength Index (RSI), un oscillateur de momentum, est un outil couramment utilisé pour identifier si une cryptomonnaie est survendue (en dessous de 30) ou surachetée (au-dessus de 70). Actuellement, le RSI est à 39.70, ce qui suggère que le marché de MMP est dans un état NEUTRAL.
Moyennes Mobiles et Oscillateurs Populaires de MMP pour le Samedi 19 Octobre 2024
Les moyennes mobiles (MA) sont des indicateurs largement utilisés sur les marchés financiers, conçus pour lisser les mouvements de prix sur une période donnée. En tant qu'indicateurs retardés, ils sont basés sur des données historiques de prix. Le tableau ci-dessous met en évidence deux types : la moyenne mobile simple (SMA) et la moyenne mobile exponentielle (EMA).
Moyenne Mobile Simple Quotidienne (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 3 | $0.002551 | SELL |
| SMA 5 | $0.002529 | BUY |
| SMA 10 | $0.002562 | SELL |
| SMA 21 | $0.0026098 | SELL |
| SMA 50 | $0.00306 | SELL |
| SMA 100 | $0.002768 | SELL |
| SMA 200 | $0.002391 | BUY |
Moyenne Mobile Exponentielle Quotidienne (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 3 | $0.002545 | BUY |
| EMA 5 | $0.002543 | BUY |
| EMA 10 | $0.002564 | SELL |
| EMA 21 | $0.002662 | SELL |
| EMA 50 | $0.0028021 | SELL |
| EMA 100 | $0.002718 | SELL |
| EMA 200 | $0.002448 | BUY |
Moyenne Mobile Simple Hebdomadaire (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 21 | $0.002834 | SELL |
| SMA 50 | $0.002362 | BUY |
| SMA 100 | $0.001964 | BUY |
| SMA 200 | $0.001453 | BUY |
Moyenne Mobile Exponentielle Hebdomadaire (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 21 | $0.002686 | SELL |
| EMA 50 | $0.002435 | BUY |
| EMA 100 | $0.002784 | SELL |
| EMA 200 | $0.005078 | SELL |
Oscillateurs de Moon Maker Protocol
Un oscillateur est un outil d'analyse technique qui établit des limites hautes et basses entre deux extrêmes, créant un indicateur de tendance qui fluctue à l'intérieur de ces limites. Les traders utilisent cet indicateur pour identifier les conditions de surachat ou de survente à court terme.
| Période | Valeur | Action |
|---|---|---|
| RSI (14) | 39.70 | NEUTRAL |
| Stoch RSI (14) | 74.26 | NEUTRAL |
| Stochastique Rapide (14) | 44.22 | NEUTRAL |
| Indice de Canal des Matières Premières (20) | -30.96 | NEUTRAL |
| Indice Directionnel Moyen (14) | 23.66 | NEUTRAL |
| Oscillateur Impressionnant (5, 34) | -0.0003067 | SELL |
| Momentum (10) | -0 | SELL |
| MACD (12, 26) | 0 | BUY |
| Plage de Pourcentage de Williams (14) | -55.78 | NEUTRAL |
| Oscillateur Ultime (7, 14, 28) | 37.25 | NEUTRAL |
| VWMA (10) | 0.002546 | BUY |
| Moyenne Mobile de Hull (9) | 0.002539 | BUY |
| Nuage Ichimoku B/L (9, 26, 52, 26) | 0.00020054 | NEUTRAL |
Prévision du cours de Moon Maker Protocol basée sur les flux monétaires mondiaux
Définitions des flux monétaires mondiaux utilisés pour la prédiction du cours de Moon Maker Protocol
M0 : le total de toutes les devises physiques, plus les comptes à la banque centrale qui peuvent être échangés contre des devises physiques.
M1 : M0 plus le montant des comptes à vue, y compris les comptes de "chèques" et les comptes "courants".
M2 : M1 plus la plupart des comptes d'épargne, comptes du marché monétaire et comptes de certificats de dépôt (CD) de moins de 100 000 $.
Prédictions du cours de Moon Maker Protocol par des sociétés Internet ou des niches technologiques
| Comparaison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Action Facebook | $0.003581 | $0.005033 | $0.007072 | $0.009937 | $0.013964 | $0.019622 |
| Action Amazon.com | $0.005318 | $0.011097 | $0.023156 | $0.048317 | $0.100817 | $0.21036 |
| Action Apple | $0.003615 | $0.005128 | $0.007274 | $0.010318 | $0.014635 | $0.020759 |
| Action Netflix | $0.004022 | $0.006346 | $0.010013 | $0.015799 | $0.024928 | $0.039333 |
| Action Google | $0.003301 | $0.004274 | $0.005535 | $0.007168 | $0.009283 | $0.012022 |
| Action Tesla | $0.005778 | $0.013099 | $0.029695 | $0.067317 | $0.1526037 | $0.345941 |
| Action Kodak | $0.001911 | $0.001433 | $0.001074 | $0.000806 | $0.0006044 | $0.000453 |
| Action Nokia | $0.001688 | $0.001118 | $0.000741 | $0.00049 | $0.000325 | $0.000215 |
Ce calcul montre la valeur potentielle des cryptomonnaies si l'on suppose que leur capitalisation se comportera comme celle de certaines sociétés Internet ou niches technologiques. En extrapolant les données, vous pourrez obtenir une potentielle image des cours futurs pour 2024, 2025, 2026, 2027, 2028, 2029 et 2030.
Aperçu des prévisions relatives à Moon Maker Protocol
Vous vous posez peut-être des questions telles que : "Devrais-je investir dans Moon Maker Protocol maintenant ?", "Devrais-je acheter MMP aujourd'hui ?", " Moon Maker Protocol sera-t-il un bon ou un mauvais investissement à court ou à long terme ?".
Nous mettons régulièrement à jour les prévisions de Moon Maker Protocol avec de nouvelles valeurs. Regardez nos prévisions similaires. Nous faisons une prévision des cours futurs pour une grande quantité de devises numériques comme Moon Maker Protocol en utilisant des méthodes d'analyse technique.
Si vous souhaitez trouver des cryptomonnaies ayant un bon rendement, vous devriez consulter un maximum d'informations disponibles à propos de Moon Maker Protocol afin de prendre une décision responsable concernant cet investissement.
Le cours de Moon Maker Protocol est de $0.002549 USD actuellement, mais ce cours peut subir une hausse ou une baisse, ce qui pourrait causer la perte de votre investissement, car les cryptomonnaies sont des actifs à haut risque.
Prévision du cours de Moon Maker Protocol basée sur le modèle de croissance du Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Moon Maker Protocol présente 1 % de la précédente croissance annuelle moyenne du Bitcoin | $0.002615 | $0.002683 | $0.002753 | $0.002824 |
| Si Moon Maker Protocol présente 2 % de la précédente croissance annuelle moyenne du Bitcoin | $0.002681 | $0.00282 | $0.002967 | $0.003121 |
| Si Moon Maker Protocol présente 5 % de la précédente croissance annuelle moyenne du Bitcoin | $0.00288 | $0.003254 | $0.003677 | $0.004155 |
| Si Moon Maker Protocol présente 10 % de la précédente croissance annuelle moyenne du Bitcoin | $0.003211 | $0.004046 | $0.005098 | $0.006423 |
| Si Moon Maker Protocol présente 20 % de la précédente croissance annuelle moyenne du Bitcoin | $0.003874 | $0.005888 | $0.008949 | $0.0136018 |
| Si Moon Maker Protocol présente 50 % de la précédente croissance annuelle moyenne du Bitcoin | $0.005861 | $0.01348 | $0.03100068 | $0.071291 |
| Si Moon Maker Protocol présente 100 % de la précédente croissance annuelle moyenne du Bitcoin | $0.009174 | $0.033023 | $0.118861 | $0.427821 |
Boîte à questions
Est-ce que MMP est un bon investissement ?
La décision d'acquérir Moon Maker Protocol dépend entièrement de votre tolérance individuelle au risque. Comme vous pouvez le discerner, la valeur de Moon Maker Protocol a connu une baisse de 0% au cours des 24 heures précédentes, et Moon Maker Protocol a enregistré une déclin de sur une période de 30 jours précédents. Par conséquent, la détermination de si investir ou non dans Moon Maker Protocol dépendra de la mesure dans laquelle cet investissement s'aligne avec vos aspirations de trading.
Est-ce que Moon Maker Protocol peut monter ?
Il semble que la valeur moyenne de Moon Maker Protocol pourrait potentiellement s'envoler jusqu'à $0.002628 pour la fin de cette année. En regardant les perspectives de Moon Maker Protocol sur une période de cinq ans plus longue, la monnaie numérique pourrait potentiellement croître jusqu'à $0.008264. Cependant, compte tenu de l'imprévisibilité du marché, il est essentiel de mener des recherches approfondies avant d'investir des fonds dans un projet, un réseau ou un actif particulier.
Quel sera le prix de Moon Maker Protocol la semaine prochaine ?
Basé sur notre nouveau pronostic expérimental de Moon Maker Protocol, le prix de Moon Maker Protocol va augmenter de 0.86% durant la prochaine semaine et atteindre $0.00257 d'ici 13 janvier 2026.
Quel sera le prix de Moon Maker Protocol le mois prochain ?
Basé sur notre nouveau pronostic expérimental de Moon Maker Protocol, le prix de Moon Maker Protocol va diminuer de -11.62% durant le prochain mois et atteindre $0.002252 d'ici 5 février 2026.
Jusqu'où le prix de Moon Maker Protocol peut-il monter cette année en 2026 ?
Selon notre prédiction la plus récente sur la valeur de Moon Maker Protocol en 2026, MMP devrait fluctuer dans la fourchette de $0.00088 et $0.002628. Cependant, il est crucial de garder à l'esprit que le marché des cryptomonnaies est exceptionnellement instable, et cette prévision de prix de Moon Maker Protocol ne prend pas en compte les fluctuations de prix soudaines et extrêmes.
Où sera Moon Maker Protocol dans 5 ans ?
L'avenir de Moon Maker Protocol semble suivre une tendance haussière, avec un prix maximum de $0.008264 prévue après une période de cinq ans. Selon la prévision de Moon Maker Protocol pour 2030, la valeur de Moon Maker Protocol pourrait potentiellement atteindre son point le plus élevé d'environ $0.008264, tandis que son point le plus bas devrait être autour de $0.002858.
Combien vaudra Moon Maker Protocol en 2026 ?
Basé sur notre nouvelle simulation expérimentale de prédiction de prix de Moon Maker Protocol, il est attendu que la valeur de MMP en 2026 augmente de 3.13% jusqu'à $0.002628 si le meilleur scénario se produit. Le prix sera entre $0.002628 et $0.00088 durant 2026.
Combien vaudra Moon Maker Protocol en 2027 ?
Selon notre dernière simulation expérimentale pour la prédiction de prix de Moon Maker Protocol, le valeur de MMP pourrait diminuer de -12.62% jusqu'à $0.002227 en 2027, en supposant les conditions les plus favorables. Il est prévu que le prix fluctue entre $0.002227 et $0.000847 tout au long de l'année.
Combien vaudra Moon Maker Protocol en 2028 ?
Notre nouveau modèle expérimental de prédiction de prix de Moon Maker Protocol suggère que la valeur de MMP en 2028 pourrait augmenter de 47.02%, atteignant $0.003747 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.003747 et $0.00153 durant l'année.
Combien vaudra Moon Maker Protocol en 2029 ?
Basé sur notre modèle de prévision expérimental, la valeur de Moon Maker Protocol pourrait connaître un 333.75% croissance en 2029, atteignant potentiellement $0.011056 sous des conditions optimales. Le range de prix prévu pour 2029 se situe entre $0.011056 et $0.003361.
Combien vaudra Moon Maker Protocol en 2030 ?
En utilisant notre nouvelle simulation expérimentale pour les prédictions de prix de Moon Maker Protocol, il est prévu que la valeur de MMP en 2030 augmente de 224.23%, atteignant $0.008264 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.008264 et $0.002858 au cours de 2030.
Combien vaudra Moon Maker Protocol en 2031 ?
Notre simulation expérimentale indique que le prix de Moon Maker Protocol pourrait augmenter de 195.98% en 2031, atteignant potentiellement $0.007544 dans des conditions idéales. Il est probable que le prix fluctue entre $0.007544 et $0.003379 durant l'année.
Combien vaudra Moon Maker Protocol en 2032 ?
Basé sur les résultats de notre dernière prédiction expérimentale de prix de Moon Maker Protocol, MMP pourrait connaître une 449.04% hausse en valeur, atteignant $0.013995 si le scénario le plus positif se réalise en 2032. Il est prévu que le prix reste dans une fourchette de $0.013995 et $0.005158 tout au long de l'année.
Combien vaudra Moon Maker Protocol en 2033 ?
Selon notre prédiction expérimentale de prix de Moon Maker Protocol, la valeur de MMP est anticipée à augmenter de 1362.43% en 2033, avec le prix potentiel le plus élevé étant $0.037278. Tout au long de l'année, le prix de MMP pourrait osciller entre $0.037278 et $0.011987.
Combien vaudra Moon Maker Protocol en 2034 ?
Les résultats de notre nouvelle simulation de prédiction de prix de Moon Maker Protocol suggèrent que MMP pourrait augmenter de 746.96% en 2034, atteignant potentiellement $0.021589 dans les meilleures circonstances. La fourchette de prix prévue pour l'année est entre $0.021589 et $0.009637.
Combien vaudra Moon Maker Protocol en 2035 ?
Basé sur notre prédiction expérimentale pour le prix de Moon Maker Protocol, MMP pourrait augmenter de 897.93%, avec la valeur potentiellement atteignant $0.025437 en 2035. La fourchette de prix attendue pour l'année se situe entre $0.025437 et $0.011394.
Combien vaudra Moon Maker Protocol en 2036 ?
Notre récente simulation de prédiction de prix de Moon Maker Protocol suggère que la valeur de MMP pourrait augmenter de 1964.7% en 2036, pouvant atteindre $0.05263 si les conditions sont optimales. La fourchette de prix attendue pour 2036 est entre $0.05263 et $0.018861.
Combien vaudra Moon Maker Protocol en 2037 ?
Selon la simulation expérimentale, la valeur de Moon Maker Protocol pourrait augmenter de 4830.69% en 2037, avec un maximum de $0.125686 sous des conditions favorables. Il est prévu que le prix chute entre $0.125686 et $0.048983 au cours de l'année.
Prévisions liées
Prévision du cours de SolPod
Prévision du cours de zuzalu
Prévision du cours de SOFT COQ INU
Prévision du cours de All Street Bets
Prévision du cours de MagicRing
Prévision du cours de AI INU
Prévision du cours de Wall Street Baby On Solana
Prévision du cours de Meta Masters Guild Games
Prévision du cours de Morfey
Prévision du cours de PANTIESPrévision du cours de Celer Bridged BUSD (zkSync)
Prévision du cours de Bridged BUSD
Prévision du cours de Multichain Bridged BUSD (Moonriver)
Prévision du cours de tooker kurlson
Prévision du cours de dogwifsaudihatPrévision du cours de Harmony Horizen Bridged BUSD (Harmony)
Prévision du cours de IoTeX Bridged BUSD (IoTeX)
Prévision du cours de MIMANY
Prévision du cours de The Open League MEME
Prévision du cours de Sandwich Cat
Prévision du cours de Hege
Prévision du cours de DexNet
Prévision du cours de SolDocs
Prévision du cours de Secret Society
Prévision du cours de duk
Comment lire et prédire les mouvements de prix de Moon Maker Protocol ?
Les traders de Moon Maker Protocol utilisent des indicateurs et des modèles graphiques pour prédire la direction du marché. Ils identifient également des niveaux clés de support et de résistance pour évaluer quand une tendance baissière pourrait ralentir ou une tendance haussière pourrait s'arrêter.
Indicateurs de prédiction du prix de Moon Maker Protocol
Les moyennes mobiles sont des outils populaires pour la prédiction du prix de Moon Maker Protocol. Une moyenne mobile simple (SMA) calcule le prix de clôture moyen de MMP sur une période spécifique, comme une SMA de 12 jours. Une moyenne mobile exponentielle (EMA) donne plus de poids aux prix récents, réagissant plus rapidement aux changements de prix.
Les moyennes mobiles couramment utilisées sur le marché des cryptomonnaies incluent les moyennes sur 50 jours, 100 jours et 200 jours, qui aident à identifier les niveaux clés de résistance et de support. Un mouvement de prix de MMP au-dessus de ces moyennes est considéré comme haussier, tandis qu'une chute en dessous indique une faiblesse.
Les traders utilisent également le RSI et les niveaux de retracement de Fibonacci pour évaluer la direction future de MMP.
Comment lire les graphiques de Moon Maker Protocol et prédire les mouvements de prix ?
La plupart des traders préfèrent les graphiques en chandeliers aux simples graphiques linéaires parce qu'ils fournissent des informations plus détaillées. Les chandeliers peuvent représenter l'action des prix de Moon Maker Protocol dans différentes périodes, comme 5 minutes pour les tendances à court terme et hebdomadaire pour les tendances à long terme. Les options populaires incluent les graphiques de 1 heure, 4 heures et 1 jour.
Par exemple, un graphique en chandeliers de 1 heure montre les prix d'ouverture, de clôture, les plus hauts et les plus bas de MMP au sein de chaque heure. La couleur du chandelier est cruciale : le vert indique que le prix a clôturé plus haut qu'il n'a ouvert, tandis que le rouge signifie le contraire. Certains graphiques utilisent des chandeliers creux et pleins pour transmettre la même information.
Qu'est-ce qui affecte le prix de Moon Maker Protocol ?
L'action du prix de Moon Maker Protocol est déterminée par l'offre et la demande, influencée par des facteurs tels que les réductions de récompenses de bloc, les hard forks et les mises à jour de protocole. Les événements du monde réel, tels que les réglementations, l'adoption par les entreprises et les gouvernements et les piratages d'échanges de cryptomonnaies, impactent également le prix de MMP. La capitalisation boursière de Moon Maker Protocol peut changer rapidement.
Les traders surveillent souvent l'activité des « baleines » de MMP, de grands détenteurs de Moon Maker Protocol, car leurs actions peuvent influencer significativement les mouvements de prix sur le marché relativement petit de Moon Maker Protocol.
Modèles de prédiction de prix haussiers et baissiers
Les traders identifient souvent des modèles de chandeliers pour obtenir un avantage dans les prédictions de prix des cryptomonnaies. Certaines formations indiquent des tendances haussières, tandis que d'autres suggèrent des mouvements baissiers.
Modèles de chandeliers haussiers couramment suivis :
- Marteau
- Englobante haussière
- Ligne pénétrante
- Étoile du matin
- Trois soldats blancs
Modèles de chandeliers baissiers courants :
- Harami baissier
- Nuage sombre
- Étoile du soir
- Étoile filante
- Pendu


