Prédiction du prix de Mobox jusqu'à $0.036086 d'ici 2026
| Année | Prix min. | Prix max. |
|---|---|---|
| 2026 | $0.012089 | $0.036086 |
| 2027 | $0.011638 | $0.030573 |
| 2028 | $0.0210031 | $0.051443 |
| 2029 | $0.046137 | $0.151772 |
| 2030 | $0.039238 | $0.113449 |
| 2031 | $0.046391 | $0.103566 |
| 2032 | $0.070813 | $0.19211 |
| 2033 | $0.164555 | $0.511713 |
| 2034 | $0.132294 | $0.296356 |
| 2035 | $0.156413 | $0.349182 |
Calculateur de profit d’investissement
Si vous ouvrez une position short de $10,000.00 sur Mobox aujourd’hui et la fermez le Apr 06, 2026, notre prévision indique que vous pourriez gagner environ $3,954.66, soit un rendement de 39.55% sur les 90 prochains jours.
Prévision du prix à long terme de Mobox pour 2027, 2028, 2029, 2030, 2031, 2032 et 2037
[
'name' => 'Mobox'
'name_with_ticker' => 'Mobox <small>MBOX</small>'
'name_lang' => 'Mobox'
'name_lang_with_ticker' => 'Mobox <small>MBOX</small>'
'name_with_lang' => 'Mobox'
'name_with_lang_with_ticker' => 'Mobox <small>MBOX</small>'
'image' => '/uploads/coins/mobox.PNG?1719974039'
'price_for_sd' => 0.03499
'ticker' => 'MBOX'
'marketcap' => '$17.5M'
'low24h' => '$0.03312'
'high24h' => '$0.0384'
'volume24h' => '$14.96M'
'current_supply' => '500.32M'
'max_supply' => '550.32M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.03499'
'change_24h_pct' => '4.841%'
'ath_price' => '$15.44'
'ath_days' => 1497
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '1 déc. 2021'
'ath_pct' => '-99.77%'
'fdv' => '$19.25M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$1.72'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.03529'
'next_week_prediction_price_date' => '13 janvier 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.030925'
'next_month_prediction_price_date' => '5 février 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.012089'
'current_year_max_price_prediction' => '$0.036086'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.039238'
'grand_prediction_max_price' => '$0.113449'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.035653633085955
107 => 0.035786750809629
108 => 0.036086671838226
109 => 0.03352387948662
110 => 0.034674498012861
111 => 0.035350378598651
112 => 0.032296725523304
113 => 0.035290017695595
114 => 0.033479266973477
115 => 0.032864670981827
116 => 0.033692143517719
117 => 0.033369676665738
118 => 0.033092438602294
119 => 0.032937734999338
120 => 0.033545339504886
121 => 0.033516994028458
122 => 0.032522835126429
123 => 0.031225995365833
124 => 0.031661257356803
125 => 0.031503122594881
126 => 0.030930021817884
127 => 0.031316222545128
128 => 0.029615589994061
129 => 0.026689740081137
130 => 0.028622646154821
131 => 0.028548231373581
201 => 0.028510708066438
202 => 0.029963233559212
203 => 0.029823606748547
204 => 0.029570182719959
205 => 0.030925367486862
206 => 0.030430706817135
207 => 0.031955134444521
208 => 0.032959221073715
209 => 0.032704552225752
210 => 0.03364890055368
211 => 0.031671284913969
212 => 0.032328169501313
213 => 0.032463552504362
214 => 0.030908644717198
215 => 0.029846451421565
216 => 0.029775615238637
217 => 0.027933918443263
218 => 0.028917738005694
219 => 0.029783458507415
220 => 0.029368845569715
221 => 0.029237591499849
222 => 0.029908140077262
223 => 0.029960247444587
224 => 0.028772193947482
225 => 0.029019227890291
226 => 0.030049400497782
227 => 0.028993270183733
228 => 0.026941381501443
301 => 0.026432484738655
302 => 0.026364588529671
303 => 0.024984420147877
304 => 0.026466491653729
305 => 0.025819527724378
306 => 0.02786327902538
307 => 0.026695899243106
308 => 0.026645575833904
309 => 0.026569504620057
310 => 0.02538153667981
311 => 0.025641626159423
312 => 0.026506203202403
313 => 0.026814694031495
314 => 0.02678251591063
315 => 0.026501966303224
316 => 0.026630400476848
317 => 0.026216669254172
318 => 0.026070572148374
319 => 0.025609449495302
320 => 0.02493172658367
321 => 0.025025968111248
322 => 0.023683221687459
323 => 0.022951622170832
324 => 0.022749125066956
325 => 0.022478337476717
326 => 0.022779711245812
327 => 0.023679417855547
328 => 0.022594180800801
329 => 0.020733617990967
330 => 0.020845440986083
331 => 0.021096674055563
401 => 0.02062850289266
402 => 0.0201854181776
403 => 0.020570644388745
404 => 0.019782299398852
405 => 0.021191941781228
406 => 0.021153814905262
407 => 0.021679242413712
408 => 0.022007803017603
409 => 0.021250577198392
410 => 0.021060136952617
411 => 0.021168620371637
412 => 0.019375631105036
413 => 0.021532716938356
414 => 0.021551371506217
415 => 0.021391639770671
416 => 0.02254022138436
417 => 0.024964086840834
418 => 0.024052131156347
419 => 0.023698994351306
420 => 0.023027681026784
421 => 0.023922166173069
422 => 0.023853483669976
423 => 0.023542875343925
424 => 0.023355018459173
425 => 0.023701150529336
426 => 0.023312128865205
427 => 0.023242249884727
428 => 0.022818859292109
429 => 0.022667728113589
430 => 0.022555836605719
501 => 0.022432655049786
502 => 0.022704362867243
503 => 0.022088637206745
504 => 0.021346132420515
505 => 0.021284401181553
506 => 0.021454846559793
507 => 0.021379437168087
508 => 0.021284040150397
509 => 0.021101901263795
510 => 0.021047864546922
511 => 0.021223457661872
512 => 0.021025223272808
513 => 0.021317728912258
514 => 0.021238183563403
515 => 0.020793849710908
516 => 0.020240045217238
517 => 0.0202351151956
518 => 0.02011579892586
519 => 0.019963831717025
520 => 0.019921557916066
521 => 0.020538201711726
522 => 0.021814635914146
523 => 0.021564041337729
524 => 0.021745121601155
525 => 0.022635857275489
526 => 0.022918995361003
527 => 0.022718030654398
528 => 0.022442937769034
529 => 0.02245504045987
530 => 0.023395116125439
531 => 0.023453747491581
601 => 0.023601890038624
602 => 0.023792295076654
603 => 0.022750457455709
604 => 0.022405970001615
605 => 0.022242732734428
606 => 0.021740025132267
607 => 0.022282152182305
608 => 0.021966277966443
609 => 0.022008900189962
610 => 0.02198114241098
611 => 0.021996300035277
612 => 0.021191547757454
613 => 0.021484757190958
614 => 0.020997239638852
615 => 0.020344508362996
616 => 0.020342320178883
617 => 0.020502075233925
618 => 0.02040704667597
619 => 0.020151327269921
620 => 0.020187651004588
621 => 0.019869416867269
622 => 0.020226290390674
623 => 0.02023652424637
624 => 0.020099108500827
625 => 0.020648921402688
626 => 0.020874180197185
627 => 0.020783730209738
628 => 0.020867833984945
629 => 0.021574454673746
630 => 0.021689664678043
701 => 0.021740833351605
702 => 0.021672274107581
703 => 0.020880749713974
704 => 0.020915857186652
705 => 0.020658261846314
706 => 0.020440620928457
707 => 0.020449325423795
708 => 0.020561221146913
709 => 0.021049876332364
710 => 0.02207822236235
711 => 0.022117247342477
712 => 0.02216454675683
713 => 0.021972156267876
714 => 0.021914129455479
715 => 0.021990681799022
716 => 0.022376874500019
717 => 0.02337026697728
718 => 0.023019135729363
719 => 0.022733660559123
720 => 0.022984099246977
721 => 0.022945546173985
722 => 0.022620119439494
723 => 0.022610985794924
724 => 0.021986387846214
725 => 0.021755488205984
726 => 0.021562531184068
727 => 0.021351827153407
728 => 0.021226914741169
729 => 0.021418836978043
730 => 0.021462731864374
731 => 0.02104309053922
801 => 0.02098589497723
802 => 0.021328583141937
803 => 0.021177778857352
804 => 0.021332884803814
805 => 0.021368870713868
806 => 0.021363076153523
807 => 0.021205619160655
808 => 0.021305977552474
809 => 0.021068600037544
810 => 0.020810487643008
811 => 0.020645828016265
812 => 0.020502140653001
813 => 0.020581866753298
814 => 0.020297657763149
815 => 0.020206733587203
816 => 0.021271978387461
817 => 0.022058886174723
818 => 0.022047444223846
819 => 0.021977794290517
820 => 0.021874308617562
821 => 0.02236930387847
822 => 0.022196857427312
823 => 0.022322326628913
824 => 0.022354263806646
825 => 0.022450928024782
826 => 0.022485477174195
827 => 0.022381045648741
828 => 0.022030560694081
829 => 0.021157185510179
830 => 0.020750627004442
831 => 0.020616455925781
901 => 0.020621332789663
902 => 0.020486807112514
903 => 0.020526430953452
904 => 0.020473027557673
905 => 0.020371894445737
906 => 0.020575622068622
907 => 0.020599099779305
908 => 0.02055154731776
909 => 0.020562747643878
910 => 0.020169033572207
911 => 0.020198966797974
912 => 0.020032294793173
913 => 0.020001045801533
914 => 0.019579713487186
915 => 0.018833262219225
916 => 0.019246868681453
917 => 0.018747290236951
918 => 0.018558092310169
919 => 0.01945372586924
920 => 0.019363829100917
921 => 0.019209964910734
922 => 0.018982367705348
923 => 0.018897949687946
924 => 0.018385052537713
925 => 0.018354747837877
926 => 0.018608953514921
927 => 0.018491646341648
928 => 0.018326902642673
929 => 0.017730217664786
930 => 0.017059346194034
1001 => 0.017079595586789
1002 => 0.017292987319627
1003 => 0.017913452562652
1004 => 0.017671026058045
1005 => 0.017495142847428
1006 => 0.01746220520911
1007 => 0.017874488712283
1008 => 0.018457956245337
1009 => 0.018731706157495
1010 => 0.018460428308455
1011 => 0.018148798922113
1012 => 0.018167766358908
1013 => 0.018293948218344
1014 => 0.018307208147656
1015 => 0.018104369453166
1016 => 0.01816146735753
1017 => 0.018074730419659
1018 => 0.017542425992046
1019 => 0.017532798292907
1020 => 0.017402162201802
1021 => 0.017398206592881
1022 => 0.017175962013213
1023 => 0.017144868460213
1024 => 0.016703588357998
1025 => 0.016994040257595
1026 => 0.016799220372755
1027 => 0.016505580852935
1028 => 0.016454957289039
1029 => 0.016453435483578
1030 => 0.016754937613838
1031 => 0.01699051702966
1101 => 0.016802609348061
1102 => 0.016759826411398
1103 => 0.017216636245666
1104 => 0.017158503030341
1105 => 0.017108160040789
1106 => 0.01840571312728
1107 => 0.017378598609992
1108 => 0.016930718054808
1109 => 0.016376380817557
1110 => 0.016556875817217
1111 => 0.016594908765669
1112 => 0.015261827636877
1113 => 0.014720996788951
1114 => 0.014535404022723
1115 => 0.014428592761863
1116 => 0.014477267994688
1117 => 0.013990456798423
1118 => 0.014317601973427
1119 => 0.013896064626588
1120 => 0.013825392518589
1121 => 0.014579153513195
1122 => 0.014684034952186
1123 => 0.01423657814934
1124 => 0.014523917853443
1125 => 0.014419724482415
1126 => 0.013903290674514
1127 => 0.013883566701682
1128 => 0.013624438370404
1129 => 0.013218952709086
1130 => 0.01303363488123
1201 => 0.01293711974748
1202 => 0.012976943772708
1203 => 0.012956807526917
1204 => 0.012825404902453
1205 => 0.012964339371537
1206 => 0.012609419214714
1207 => 0.012468087148481
1208 => 0.012404250733042
1209 => 0.012089238665419
1210 => 0.01259056295151
1211 => 0.012689330151386
1212 => 0.012788291953158
1213 => 0.013649686873485
1214 => 0.013606654017542
1215 => 0.013995650077414
1216 => 0.013980534405845
1217 => 0.013869586428251
1218 => 0.013401515160839
1219 => 0.013588080025462
1220 => 0.013013862370772
1221 => 0.01344410528067
1222 => 0.013247760383966
1223 => 0.013377720873589
1224 => 0.013144040195182
1225 => 0.013273368731051
1226 => 0.012712751518499
1227 => 0.012189255053514
1228 => 0.012399925312838
1229 => 0.01262894797779
1230 => 0.013125527469296
1231 => 0.012829768820847
]
'min_raw' => 0.012089238665419
'max_raw' => 0.036086671838226
'avg_raw' => 0.024087955251823
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.012089'
'max' => '$0.036086'
'avg' => '$0.024087'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.022901341334581
'max_diff' => 0.0010960918382264
'year' => 2026
]
1 => [
'items' => [
101 => 0.012936134814702
102 => 0.01257982654074
103 => 0.011844660797131
104 => 0.011848821755401
105 => 0.011735732522203
106 => 0.011638006913421
107 => 0.012863740259422
108 => 0.01271130094187
109 => 0.012468408840116
110 => 0.012793529570462
111 => 0.012879496651926
112 => 0.01288194401388
113 => 0.01311914370616
114 => 0.01324573722445
115 => 0.013268049880737
116 => 0.013641288721578
117 => 0.013766393457889
118 => 0.014281682161267
119 => 0.013234996648883
120 => 0.013213440849546
121 => 0.012798104685878
122 => 0.012534691924674
123 => 0.012816140782997
124 => 0.01306546604987
125 => 0.012805851916911
126 => 0.012839752041922
127 => 0.012491241279679
128 => 0.012615817478225
129 => 0.012723119282639
130 => 0.01266387353315
131 => 0.012575179778638
201 => 0.013045024221254
202 => 0.013018513756467
203 => 0.013456043703107
204 => 0.01379712958458
205 => 0.014408416460575
206 => 0.013770506738369
207 => 0.013747258772631
208 => 0.013974511366817
209 => 0.013766358666701
210 => 0.013897903987987
211 => 0.014387222475633
212 => 0.014397561004219
213 => 0.014224377329962
214 => 0.014213839087644
215 => 0.014247100906707
216 => 0.014441916419872
217 => 0.014373841893496
218 => 0.014452619458855
219 => 0.01455113201062
220 => 0.014958621693179
221 => 0.015056866076094
222 => 0.014818183159482
223 => 0.014839733554433
224 => 0.014750459591628
225 => 0.014664222062158
226 => 0.014858071434427
227 => 0.015212334972368
228 => 0.015210131117285
301 => 0.015292313372188
302 => 0.015343512236159
303 => 0.01512372923214
304 => 0.014980658578168
305 => 0.015035520970723
306 => 0.015123247131166
307 => 0.015007072559235
308 => 0.014289989283983
309 => 0.014507506542238
310 => 0.014471301034414
311 => 0.014419739988532
312 => 0.014638455273718
313 => 0.014617359650902
314 => 0.01398546384598
315 => 0.014025915765231
316 => 0.013987923861171
317 => 0.0141106834756
318 => 0.013759729244659
319 => 0.013867680402383
320 => 0.013935386356529
321 => 0.013975265683662
322 => 0.014119337158779
323 => 0.014102432034041
324 => 0.01411828631249
325 => 0.014331906276628
326 => 0.015412322749722
327 => 0.015471127434548
328 => 0.015181551659662
329 => 0.0152972314701
330 => 0.015075151530454
331 => 0.015224235281744
401 => 0.015326234598061
402 => 0.014865319300968
403 => 0.014838026888389
404 => 0.014615030345834
405 => 0.014734856056633
406 => 0.014544204734978
407 => 0.014590983900612
408 => 0.014460185275365
409 => 0.014695596759063
410 => 0.014958823377085
411 => 0.015025324815931
412 => 0.014850388160996
413 => 0.014723722493936
414 => 0.014501339308842
415 => 0.014871167501785
416 => 0.014979316535711
417 => 0.01487059944095
418 => 0.014845407314579
419 => 0.014797668280626
420 => 0.014855535376309
421 => 0.014978727532847
422 => 0.014920632386825
423 => 0.014959005254277
424 => 0.01481276745348
425 => 0.015123801989459
426 => 0.015617799687132
427 => 0.015619387970506
428 => 0.015561292511331
429 => 0.01553752110112
430 => 0.015597130567762
501 => 0.015629466258106
502 => 0.015822232342719
503 => 0.016029078031647
504 => 0.016994336608032
505 => 0.016723295862328
506 => 0.017579730694786
507 => 0.018257059453116
508 => 0.018460160731742
509 => 0.01827331711206
510 => 0.01763413518222
511 => 0.017602773867364
512 => 0.018557981526194
513 => 0.018288091611292
514 => 0.018255989064697
515 => 0.017914472207035
516 => 0.018116350967599
517 => 0.018072197121281
518 => 0.018002498114787
519 => 0.018387668726948
520 => 0.019108673728494
521 => 0.018996298337461
522 => 0.018912415320999
523 => 0.018544864360842
524 => 0.018766212134336
525 => 0.018687394431832
526 => 0.019026045300737
527 => 0.018825436028033
528 => 0.018286046929743
529 => 0.018371946421495
530 => 0.018358962886123
531 => 0.018626163124067
601 => 0.018545956244954
602 => 0.018343301205701
603 => 0.019106209411782
604 => 0.019056670396397
605 => 0.019126905394017
606 => 0.019157825012058
607 => 0.019622193793149
608 => 0.019812430824618
609 => 0.01985561796133
610 => 0.020036328427765
611 => 0.019851121720301
612 => 0.020592080600302
613 => 0.021084775019354
614 => 0.021657064940905
615 => 0.02249333433332
616 => 0.022807779360793
617 => 0.022750977681068
618 => 0.023385027590187
619 => 0.024524401182736
620 => 0.02298127766006
621 => 0.024606190476434
622 => 0.024091761839291
623 => 0.0228720607948
624 => 0.022793526426865
625 => 0.023619522135215
626 => 0.025451501117194
627 => 0.024992611160342
628 => 0.02545225169677
629 => 0.024916056595782
630 => 0.024889429989611
701 => 0.025426209897525
702 => 0.026680425410718
703 => 0.026084594633965
704 => 0.025230325111791
705 => 0.025861104433059
706 => 0.025314665009106
707 => 0.024083384048177
708 => 0.02499226025584
709 => 0.02438452061908
710 => 0.024561891354302
711 => 0.025839269676324
712 => 0.025685572137095
713 => 0.025884470984867
714 => 0.025533419724639
715 => 0.025205482491883
716 => 0.024593363294005
717 => 0.024412144976625
718 => 0.024462227199997
719 => 0.024412120158363
720 => 0.024069645092816
721 => 0.023995687635019
722 => 0.023872421965206
723 => 0.023910627150595
724 => 0.023678851628702
725 => 0.024116259925779
726 => 0.024197446760145
727 => 0.024515756041933
728 => 0.024548803967519
729 => 0.025435290786448
730 => 0.024947028743388
731 => 0.025274597076389
801 => 0.025245296281493
802 => 0.022898495414891
803 => 0.023221863868309
804 => 0.023724923703217
805 => 0.023498295929473
806 => 0.02317789728013
807 => 0.022919158192097
808 => 0.022527142016296
809 => 0.023078897255731
810 => 0.02380439672296
811 => 0.024567203831264
812 => 0.025483666590789
813 => 0.025279122771666
814 => 0.024550071197453
815 => 0.0245827759185
816 => 0.024784943635177
817 => 0.024523118073206
818 => 0.024445900603538
819 => 0.024774335140599
820 => 0.024776596888752
821 => 0.024475334937028
822 => 0.024140537408042
823 => 0.024139134594171
824 => 0.024079560607649
825 => 0.02492665467564
826 => 0.025392470762164
827 => 0.025445875825784
828 => 0.025388876175874
829 => 0.025410813078889
830 => 0.025139764961697
831 => 0.025759300580775
901 => 0.026327847730564
902 => 0.026175464949182
903 => 0.025947021497402
904 => 0.025765055284733
905 => 0.026132599492446
906 => 0.026116233327445
907 => 0.0263228819672
908 => 0.02631350719124
909 => 0.026244019026139
910 => 0.026175467430823
911 => 0.02644726675753
912 => 0.026368992916402
913 => 0.026290597494379
914 => 0.026133363473773
915 => 0.026154734188554
916 => 0.025926330180757
917 => 0.025820660035694
918 => 0.024231634592075
919 => 0.023806995070635
920 => 0.023940595308415
921 => 0.02398457997562
922 => 0.023799776311699
923 => 0.024064737293596
924 => 0.02402344340523
925 => 0.024184093768743
926 => 0.024083726396248
927 => 0.024087845508225
928 => 0.024383004550153
929 => 0.024468690475721
930 => 0.024425109922407
1001 => 0.024455632248094
1002 => 0.025159006360888
1003 => 0.025059009054687
1004 => 0.025005887478787
1005 => 0.025020602518351
1006 => 0.025200329684681
1007 => 0.025250643478514
1008 => 0.025037460398556
1009 => 0.025137998771461
1010 => 0.02556607840307
1011 => 0.025715882046924
1012 => 0.026193983368279
1013 => 0.025990877429394
1014 => 0.026363687170436
1015 => 0.027509577214194
1016 => 0.028424993470707
1017 => 0.027583138850041
1018 => 0.02926418422757
1019 => 0.030573119185614
1020 => 0.030522880081779
1021 => 0.030294636995633
1022 => 0.028804449345736
1023 => 0.027433156452855
1024 => 0.028580301185922
1025 => 0.028583225493759
1026 => 0.028484684743836
1027 => 0.027872656609163
1028 => 0.028463387491398
1029 => 0.02851027756361
1030 => 0.028484031592248
1031 => 0.028014791056369
1101 => 0.02729834748823
1102 => 0.027438338846521
1103 => 0.027667647547148
1104 => 0.027233518338055
1105 => 0.027094787750934
1106 => 0.027352714306967
1107 => 0.028183807411637
1108 => 0.028026694074393
1109 => 0.028022591210213
1110 => 0.028694788693364
1111 => 0.028213640364724
1112 => 0.027440104585864
1113 => 0.027244776600018
1114 => 0.026551493838963
1115 => 0.027030346711412
1116 => 0.027047579773806
1117 => 0.026785316949324
1118 => 0.027461385768657
1119 => 0.027455155675468
1120 => 0.028096982399861
1121 => 0.029323914037792
1122 => 0.028961049978816
1123 => 0.028539078557725
1124 => 0.028584958551196
1125 => 0.0290881488381
1126 => 0.028783908503921
1127 => 0.028893315449331
1128 => 0.029087983237584
1129 => 0.029205431147567
1130 => 0.028568059604371
1201 => 0.028419457808646
1202 => 0.028115470686738
1203 => 0.02803616612082
1204 => 0.028283757288715
1205 => 0.0282185257635
1206 => 0.027046131401642
1207 => 0.026923609667687
1208 => 0.026927367234346
1209 => 0.026619280508726
1210 => 0.026149374302869
1211 => 0.02738425975522
1212 => 0.027285081171186
1213 => 0.027175595690224
1214 => 0.027189007036926
1215 => 0.027725028957641
1216 => 0.027414109173871
1217 => 0.028240740377775
1218 => 0.02807080985306
1219 => 0.027896521251594
1220 => 0.027872429257911
1221 => 0.027805343015951
1222 => 0.027575279330579
1223 => 0.027297463605809
1224 => 0.02711402560033
1225 => 0.025011255374334
1226 => 0.025401517297027
1227 => 0.025850478065592
1228 => 0.026005457523803
1229 => 0.025740354436281
1230 => 0.027585747216297
1231 => 0.027922918259853
]
'min_raw' => 0.011638006913421
'max_raw' => 0.030573119185614
'avg_raw' => 0.021105563049518
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.011638'
'max' => '$0.030573'
'avg' => '$0.0211055'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00045123175199773
'max_diff' => -0.0055135526526126
'year' => 2027
]
2 => [
'items' => [
101 => 0.026901605175798
102 => 0.02671055919771
103 => 0.027598272158815
104 => 0.027062872724773
105 => 0.027303963057139
106 => 0.026782857627924
107 => 0.027841703628981
108 => 0.027833636996505
109 => 0.027421721986973
110 => 0.027769869732357
111 => 0.027709370494102
112 => 0.027244319462841
113 => 0.027856446576169
114 => 0.02785675018358
115 => 0.027460290942709
116 => 0.02699731334546
117 => 0.026914543886115
118 => 0.02685218821701
119 => 0.027288627385011
120 => 0.027679937378331
121 => 0.028408068261925
122 => 0.028591137666024
123 => 0.029305669737841
124 => 0.028880200679009
125 => 0.029068805602043
126 => 0.029273562925791
127 => 0.029371731116497
128 => 0.029211771317737
129 => 0.030321733738403
130 => 0.030415448575077
131 => 0.030446870349184
201 => 0.030072597266068
202 => 0.030405039363581
203 => 0.03024950071548
204 => 0.030654169067958
205 => 0.030717626232691
206 => 0.030663880271716
207 => 0.030684022577406
208 => 0.029736865462156
209 => 0.029687750369078
210 => 0.029018062589918
211 => 0.029290965310008
212 => 0.028780786755367
213 => 0.028942569630465
214 => 0.029013881980285
215 => 0.028976632455679
216 => 0.029306394820342
217 => 0.029026029444378
218 => 0.028286099120875
219 => 0.027545967203851
220 => 0.027536675450531
221 => 0.027341811781192
222 => 0.027200961039321
223 => 0.027228093889154
224 => 0.027323713590958
225 => 0.027195403448425
226 => 0.027222784922824
227 => 0.027677499839653
228 => 0.027768689673345
229 => 0.027458790988292
301 => 0.02621450304964
302 => 0.025909151668434
303 => 0.026128632185864
304 => 0.026023734634888
305 => 0.021003184919567
306 => 0.022182688604315
307 => 0.021481867566998
308 => 0.021804838144219
309 => 0.021089481341847
310 => 0.021430887103001
311 => 0.021367841925058
312 => 0.023264448946082
313 => 0.023234836036146
314 => 0.023249010169052
315 => 0.022572441874949
316 => 0.023650233538287
317 => 0.024181192467782
318 => 0.024082926100946
319 => 0.024107657628413
320 => 0.023682688047065
321 => 0.023253124803537
322 => 0.022776673057155
323 => 0.023661861510717
324 => 0.023563443665352
325 => 0.023789178792997
326 => 0.024363286779709
327 => 0.024447826361577
328 => 0.024561448416923
329 => 0.02452072299825
330 => 0.025490967695222
331 => 0.025373464660538
401 => 0.025656613166196
402 => 0.025074155207529
403 => 0.024415048739879
404 => 0.024540323331566
405 => 0.024528258380992
406 => 0.024374657712679
407 => 0.024235993897275
408 => 0.024005157712917
409 => 0.024735557557554
410 => 0.024705904657729
411 => 0.025185950638179
412 => 0.025101097848217
413 => 0.024534430149848
414 => 0.024554668797554
415 => 0.024690783429739
416 => 0.025161877725863
417 => 0.025301730587498
418 => 0.025236945169816
419 => 0.025390287448073
420 => 0.025511482932539
421 => 0.025405507734963
422 => 0.026905893050722
423 => 0.02628282846112
424 => 0.026586505806836
425 => 0.026658931064419
426 => 0.02647341529006
427 => 0.026513647018697
428 => 0.026574587125091
429 => 0.026944603517823
430 => 0.027915633597456
501 => 0.028345696209701
502 => 0.029639560797554
503 => 0.028309985496514
504 => 0.02823109400048
505 => 0.02846415808372
506 => 0.029223793566266
507 => 0.029839406775936
508 => 0.030043641193162
509 => 0.030070634142941
510 => 0.030453791486904
511 => 0.030673410131002
512 => 0.030407266107308
513 => 0.030181736913668
514 => 0.029373919335765
515 => 0.029467426420022
516 => 0.030111597504035
517 => 0.031021527101693
518 => 0.031802341358521
519 => 0.031528927419904
520 => 0.033614882771393
521 => 0.03382169672413
522 => 0.033793121722957
523 => 0.034264274685334
524 => 0.033329132003649
525 => 0.032929340389692
526 => 0.030230498885198
527 => 0.030988763263647
528 => 0.032090945069027
529 => 0.031945067174115
530 => 0.031144633285644
531 => 0.03180173415764
601 => 0.031584476059914
602 => 0.031413115584191
603 => 0.032198151143342
604 => 0.031334972298572
605 => 0.032082334199753
606 => 0.031123834831019
607 => 0.031530176351745
608 => 0.031299517252053
609 => 0.03144878195807
610 => 0.030576183536676
611 => 0.031047016463731
612 => 0.030556595338955
613 => 0.030556362815487
614 => 0.030545536741977
615 => 0.031122515020415
616 => 0.03114133026136
617 => 0.030714942441829
618 => 0.030653493295605
619 => 0.030880702995996
620 => 0.030614699943152
621 => 0.030739161097375
622 => 0.030618469744723
623 => 0.030591299579093
624 => 0.030374803076725
625 => 0.030281530430809
626 => 0.030318105038613
627 => 0.030193257046677
628 => 0.030118031615586
629 => 0.030530572510336
630 => 0.030310168552123
701 => 0.030496792442702
702 => 0.030284110965575
703 => 0.029546864304944
704 => 0.029122865954173
705 => 0.027730275355042
706 => 0.028125212321453
707 => 0.028387055938774
708 => 0.028300516624811
709 => 0.028486436557472
710 => 0.028497850531359
711 => 0.028437406066021
712 => 0.028367419118576
713 => 0.028333353343081
714 => 0.028587251724057
715 => 0.02873464828004
716 => 0.028413335448788
717 => 0.02833805634807
718 => 0.028662921360634
719 => 0.028861088830629
720 => 0.030324246088391
721 => 0.0302158506728
722 => 0.030487901894407
723 => 0.03045727310182
724 => 0.030742426123223
725 => 0.031208530798557
726 => 0.030260809668685
727 => 0.0304253012871
728 => 0.030384971740931
729 => 0.03082527915103
730 => 0.030826653742703
731 => 0.030562667455362
801 => 0.030705778704418
802 => 0.030625897931247
803 => 0.030770253284901
804 => 0.03021440298594
805 => 0.030891368649743
806 => 0.031275164558416
807 => 0.03128049356498
808 => 0.031462409779698
809 => 0.031647247189729
810 => 0.032002026502337
811 => 0.031637352587257
812 => 0.030981339714319
813 => 0.031028701724837
814 => 0.030644081617459
815 => 0.030650547150951
816 => 0.030616033626456
817 => 0.030719611311522
818 => 0.030237132463133
819 => 0.030350369284485
820 => 0.030191837071478
821 => 0.03042495666903
822 => 0.030174158518114
823 => 0.030384952292803
824 => 0.030475923898034
825 => 0.030811611079816
826 => 0.030124577248426
827 => 0.028723668758122
828 => 0.029018156707158
829 => 0.028582585899005
830 => 0.028622899635635
831 => 0.02870433979951
901 => 0.028440365582827
902 => 0.028490723544586
903 => 0.028488924403829
904 => 0.028473420380754
905 => 0.028404750491827
906 => 0.028305165566959
907 => 0.02870188125701
908 => 0.028769290983262
909 => 0.028919134454423
910 => 0.029364966984798
911 => 0.029320417801559
912 => 0.02939307936775
913 => 0.029234459576731
914 => 0.028630257552808
915 => 0.02866306862961
916 => 0.028253913976119
917 => 0.028908671450028
918 => 0.02875361623783
919 => 0.028653651133832
920 => 0.028626374729036
921 => 0.029073312392021
922 => 0.029207043145675
923 => 0.029123711114335
924 => 0.028952794686872
925 => 0.029281004754507
926 => 0.029368819922535
927 => 0.029388478500157
928 => 0.029970003811968
929 => 0.029420979305147
930 => 0.029553134960773
1001 => 0.030584175660472
1002 => 0.029649164019736
1003 => 0.030144460539082
1004 => 0.030120218351859
1005 => 0.030373595291236
1006 => 0.030099434047311
1007 => 0.030102832604509
1008 => 0.030327814161435
1009 => 0.03001186814037
1010 => 0.029933635462395
1011 => 0.029825557578086
1012 => 0.030061541684525
1013 => 0.030203003483691
1014 => 0.031343081692731
1015 => 0.032079624209653
1016 => 0.032047648956501
1017 => 0.032339842915147
1018 => 0.032208206860587
1019 => 0.031783119316576
1020 => 0.032508691920299
1021 => 0.032279090389234
1022 => 0.032298018460489
1023 => 0.032297313956731
1024 => 0.032449978902776
1025 => 0.032341801796967
1026 => 0.032128573617265
1027 => 0.032270124433893
1028 => 0.032690479753937
1029 => 0.03399527556543
1030 => 0.034725456587786
1031 => 0.033951317751042
1101 => 0.034485308354496
1102 => 0.03416510427273
1103 => 0.034106913665827
1104 => 0.034442299226392
1105 => 0.034778271834983
1106 => 0.034756871832265
1107 => 0.034512972970812
1108 => 0.034375200692682
1109 => 0.035418458539783
1110 => 0.036187113150093
1111 => 0.036134696058796
1112 => 0.036366048052831
1113 => 0.037045304662765
1114 => 0.037107407374456
1115 => 0.037099583860197
1116 => 0.036945655809522
1117 => 0.037614472154619
1118 => 0.038172410516403
1119 => 0.0369100259132
1120 => 0.037390725444272
1121 => 0.037606526950942
1122 => 0.037923387588155
1123 => 0.038457984595142
1124 => 0.039038698739583
1125 => 0.039120818086814
1126 => 0.039062550480181
1127 => 0.038679553891488
1128 => 0.039314978237696
1129 => 0.039687194917171
1130 => 0.03990884143177
1201 => 0.040470900114332
1202 => 0.037607859667579
1203 => 0.035581257337025
1204 => 0.035264774118617
1205 => 0.035908355188338
1206 => 0.036078062383961
1207 => 0.0360096536262
1208 => 0.033728528452538
1209 => 0.035252764466667
1210 => 0.036892714256465
1211 => 0.036955711406797
1212 => 0.037776704561303
1213 => 0.038044053586057
1214 => 0.038705060685467
1215 => 0.038663714511426
1216 => 0.038824659221212
1217 => 0.038787660819606
1218 => 0.040012037279797
1219 => 0.041362706337051
1220 => 0.041315936962462
1221 => 0.041121762305091
1222 => 0.041410144782987
1223 => 0.042804179996565
1224 => 0.042675839573058
1225 => 0.042800511362484
1226 => 0.044444157443675
1227 => 0.046581131155152
1228 => 0.045588292317519
1229 => 0.047742466913505
1230 => 0.049098405633789
1231 => 0.051443361443841
]
'min_raw' => 0.021003184919567
'max_raw' => 0.051443361443841
'avg_raw' => 0.036223273181704
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.0210031'
'max' => '$0.051443'
'avg' => '$0.036223'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0093651780061456
'max_diff' => 0.020870242258227
'year' => 2028
]
3 => [
'items' => [
101 => 0.051149761427271
102 => 0.052062635516044
103 => 0.05062415612144
104 => 0.047321116666778
105 => 0.046798398029551
106 => 0.047844893978624
107 => 0.050417602153839
108 => 0.047763870242695
109 => 0.048300716752092
110 => 0.04814610492127
111 => 0.048137866313864
112 => 0.048452300449733
113 => 0.047996197335873
114 => 0.046137951198627
115 => 0.046989574452614
116 => 0.046660721815942
117 => 0.047025608333917
118 => 0.048994750380785
119 => 0.048124145743381
120 => 0.047207034480054
121 => 0.048357295527548
122 => 0.049821973113587
123 => 0.049730316222531
124 => 0.049552463544275
125 => 0.050555009779542
126 => 0.052210922441718
127 => 0.052658508980308
128 => 0.052988908212591
129 => 0.053034464684582
130 => 0.05350372465928
131 => 0.05098039550659
201 => 0.054984983675598
202 => 0.05567646542787
203 => 0.055546495517425
204 => 0.056315048383075
205 => 0.056088920633697
206 => 0.055761297003204
207 => 0.056979616771142
208 => 0.055582911470537
209 => 0.053600464136635
210 => 0.052512854320894
211 => 0.053945106661243
212 => 0.054819733186775
213 => 0.055397805683458
214 => 0.055572730071673
215 => 0.051176274365716
216 => 0.048806828578817
217 => 0.050325616162468
218 => 0.052178641835642
219 => 0.050970101855413
220 => 0.05101747433457
221 => 0.049294413921483
222 => 0.052331094448857
223 => 0.051888675638522
224 => 0.054183945209166
225 => 0.053636160705442
226 => 0.055507863938451
227 => 0.055014981749594
228 => 0.057060908158868
301 => 0.057877083594774
302 => 0.059247569179223
303 => 0.060255703954023
304 => 0.060847699976331
305 => 0.060812158755673
306 => 0.063157941927306
307 => 0.061774715546416
308 => 0.060037057210591
309 => 0.060005628453538
310 => 0.06090558632847
311 => 0.062791651142944
312 => 0.06328068030821
313 => 0.063553980897008
314 => 0.063135411531602
315 => 0.061634018431873
316 => 0.060985724503647
317 => 0.061538089713379
318 => 0.06086259452716
319 => 0.062028688729049
320 => 0.063629985132524
321 => 0.063299323757418
322 => 0.064404675158872
323 => 0.065548597573017
324 => 0.067184458002015
325 => 0.067612132493892
326 => 0.068319062165959
327 => 0.069046725012817
328 => 0.069280430708164
329 => 0.0697266473952
330 => 0.069724295613
331 => 0.07106899963323
401 => 0.07255224980956
402 => 0.073112142413804
403 => 0.074399584584605
404 => 0.072194884984463
405 => 0.073867174956935
406 => 0.075375622372237
407 => 0.073577189177726
408 => 0.076055910355167
409 => 0.076152153481584
410 => 0.077605310425379
411 => 0.076132257471658
412 => 0.07525756332989
413 => 0.077782772542813
414 => 0.079004641737601
415 => 0.07863660479223
416 => 0.075835825465726
417 => 0.074205651766625
418 => 0.069939172759054
419 => 0.074993001441699
420 => 0.077454573970811
421 => 0.075829450587548
422 => 0.076649068294284
423 => 0.081120636740303
424 => 0.08282312049193
425 => 0.082469015772852
426 => 0.082528853641316
427 => 0.083447482971428
428 => 0.087521191319559
429 => 0.085080130849539
430 => 0.086946230114078
501 => 0.087936002435269
502 => 0.088855358127801
503 => 0.086597711112292
504 => 0.083660545516537
505 => 0.082730221878537
506 => 0.075667864094764
507 => 0.075300237701853
508 => 0.075093877867293
509 => 0.073792808300567
510 => 0.072770524014067
511 => 0.071957565594461
512 => 0.06982411993148
513 => 0.070544095214782
514 => 0.067143828112706
515 => 0.069319198506547
516 => 0.063892290109314
517 => 0.068411980683984
518 => 0.065952118589305
519 => 0.067603849828103
520 => 0.067598087093413
521 => 0.06455672620092
522 => 0.062802532709712
523 => 0.063920373076542
524 => 0.065118786684062
525 => 0.065313225259934
526 => 0.06686699978388
527 => 0.067300624855241
528 => 0.065986720644997
529 => 0.063779829495237
530 => 0.064292439975499
531 => 0.062792144674691
601 => 0.06016293486805
602 => 0.062051279252779
603 => 0.062696043050367
604 => 0.062980807474765
605 => 0.06039528159672
606 => 0.059582853231341
607 => 0.059150323186547
608 => 0.063446070572025
609 => 0.063681401310903
610 => 0.062477415978391
611 => 0.067919543847922
612 => 0.066687822702897
613 => 0.068063957000897
614 => 0.064245925947344
615 => 0.06439177987525
616 => 0.062584262787836
617 => 0.063596351578453
618 => 0.062881039842389
619 => 0.063514584805827
620 => 0.063894329044708
621 => 0.065701549536354
622 => 0.06843261623902
623 => 0.065431611060394
624 => 0.064124030128881
625 => 0.064935245984678
626 => 0.067095620709439
627 => 0.070368699004999
628 => 0.068430970777188
629 => 0.069290901659931
630 => 0.069478758302149
701 => 0.068049949245559
702 => 0.070421381232948
703 => 0.071692250900468
704 => 0.072995900209921
705 => 0.074127822377895
706 => 0.072475194007863
707 => 0.074243743258769
708 => 0.072818604753507
709 => 0.071540108186177
710 => 0.07154204713773
711 => 0.070740027565189
712 => 0.069186013582422
713 => 0.068899429561148
714 => 0.070390275831388
715 => 0.071585793356454
716 => 0.071684261905962
717 => 0.072346161835746
718 => 0.072737867396081
719 => 0.076577114385253
720 => 0.078121291284215
721 => 0.080009481566492
722 => 0.080745038094013
723 => 0.082958799530239
724 => 0.081171007377573
725 => 0.080784207299604
726 => 0.075414346171165
727 => 0.076293660630122
728 => 0.077701527920137
729 => 0.075437561384228
730 => 0.076873527057999
731 => 0.077157017099913
801 => 0.075360632667655
802 => 0.076320159210113
803 => 0.073771941193137
804 => 0.068488160428314
805 => 0.070427263591388
806 => 0.071855096214477
807 => 0.069817403010836
808 => 0.073469889208746
809 => 0.071336182174546
810 => 0.070659899480705
811 => 0.068021479579842
812 => 0.069266712210954
813 => 0.070950907174547
814 => 0.069910270495726
815 => 0.072069747856662
816 => 0.075128143711323
817 => 0.077307738727977
818 => 0.077475060969217
819 => 0.076073727395033
820 => 0.078319373390853
821 => 0.078335730470305
822 => 0.075802632613287
823 => 0.074251124280211
824 => 0.073898618322535
825 => 0.074779247317674
826 => 0.075848493490854
827 => 0.077534396690253
828 => 0.078553152684866
829 => 0.081209528012387
830 => 0.081928267011765
831 => 0.082717943264032
901 => 0.083773194264199
902 => 0.085040293650702
903 => 0.082267952329042
904 => 0.082378102618042
905 => 0.07979653676499
906 => 0.077037763417011
907 => 0.079131328502174
908 => 0.081868386355733
909 => 0.081240502259947
910 => 0.081169852472663
911 => 0.081288665818258
912 => 0.080815261714812
913 => 0.078674072500103
914 => 0.077598780681029
915 => 0.078986181463834
916 => 0.07972352323379
917 => 0.080867076016032
918 => 0.08072610899815
919 => 0.083671778156603
920 => 0.084816376119166
921 => 0.084523538980234
922 => 0.084577428061317
923 => 0.086649667999412
924 => 0.088954424999222
925 => 0.091113134069017
926 => 0.093309065653524
927 => 0.090661784419732
928 => 0.089317658270821
929 => 0.090704453357845
930 => 0.089968600364116
1001 => 0.094197029934262
1002 => 0.094489797223405
1003 => 0.098717921029965
1004 => 0.10273091399801
1005 => 0.10021042501502
1006 => 0.10258713260066
1007 => 0.10515773563035
1008 => 0.11011684593992
1009 => 0.10844679205126
1010 => 0.10716755694563
1011 => 0.10595868595202
1012 => 0.10847415458685
1013 => 0.11171026479995
1014 => 0.11240729194478
1015 => 0.11353674220426
1016 => 0.11234926335902
1017 => 0.11377945083161
1018 => 0.11882864106604
1019 => 0.11746430529426
1020 => 0.11552672917042
1021 => 0.11951257993112
1022 => 0.12095504382681
1023 => 0.13107901087101
1024 => 0.14386093746454
1025 => 0.13856913592416
1026 => 0.13528434394269
1027 => 0.13605634797464
1028 => 0.14072387487107
1029 => 0.14222293637031
1030 => 0.1381479704579
1031 => 0.13958731730805
1101 => 0.14751825996583
1102 => 0.15177295624662
1103 => 0.14599450721536
1104 => 0.13005199551471
1105 => 0.11535227163994
1106 => 0.11925130034872
1107 => 0.1188092714941
1108 => 0.12733007997463
1109 => 0.11743176633732
1110 => 0.11759842855333
1111 => 0.12629543832956
1112 => 0.12397522522575
1113 => 0.12021677714804
1114 => 0.11537971247026
1115 => 0.10643795103905
1116 => 0.098517983579974
1117 => 0.11405086362681
1118 => 0.11338105759448
1119 => 0.11241107919997
1120 => 0.11456966115432
1121 => 0.12505112240045
1122 => 0.12480949079355
1123 => 0.12327235379196
1124 => 0.12443825865996
1125 => 0.12001238838761
1126 => 0.12115303593199
1127 => 0.11534994312858
1128 => 0.11797318343428
1129 => 0.12020871320647
1130 => 0.12065752890582
1201 => 0.12166873359355
1202 => 0.11302810025166
1203 => 0.1169074909465
1204 => 0.11918626952997
1205 => 0.10889066498719
1206 => 0.11898275853105
1207 => 0.11287768604885
1208 => 0.11080553275328
1209 => 0.11359541418033
1210 => 0.11250819467496
1211 => 0.11157346718792
1212 => 0.11105187318949
1213 => 0.11310045420154
1214 => 0.11300488544874
1215 => 0.10965300930059
1216 => 0.10528062350528
1217 => 0.10674813969686
1218 => 0.10621497730642
1219 => 0.10428272802416
1220 => 0.10558483073974
1221 => 0.099851029359439
1222 => 0.089986322101698
1223 => 0.096503249880317
1224 => 0.096252355249893
1225 => 0.096125842800068
1226 => 0.10102313391105
1227 => 0.10055237237045
1228 => 0.099697935564571
1229 => 0.10426703562216
1230 => 0.10259925263807
1231 => 0.10773896681594
]
'min_raw' => 0.046137951198627
'max_raw' => 0.15177295624662
'avg_raw' => 0.098955453722624
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.046137'
'max' => '$0.151772'
'avg' => '$0.098955'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.02513476627906
'max_diff' => 0.10032959480278
'year' => 2029
]
4 => [
'items' => [
101 => 0.11112431498936
102 => 0.11026568118804
103 => 0.11344961750795
104 => 0.10678194830595
105 => 0.1089966805544
106 => 0.10945313380131
107 => 0.10421065363669
108 => 0.1006293947805
109 => 0.10039056564413
110 => 0.094181156315365
111 => 0.097498172658193
112 => 0.10041700977242
113 => 0.099019113305614
114 => 0.098576581045193
115 => 0.10083738239015
116 => 0.1010130660171
117 => 0.097007460704368
118 => 0.097840352889909
119 => 0.10131365176042
120 => 0.097752834669939
121 => 0.090834748719305
122 => 0.089118967753527
123 => 0.088890050944575
124 => 0.084236716885079
125 => 0.089233624441986
126 => 0.087052340384599
127 => 0.093942990586089
128 => 0.090007088146296
129 => 0.089837419258705
130 => 0.089580939850097
131 => 0.08557562299828
201 => 0.086452532837663
202 => 0.089367514700911
203 => 0.090407613069339
204 => 0.090299122288238
205 => 0.089353229699518
206 => 0.08978625448288
207 => 0.088391330779836
208 => 0.087898754187465
209 => 0.086344046968076
210 => 0.084059056854405
211 => 0.08437679874437
212 => 0.079849635429002
213 => 0.077382996580047
214 => 0.076700263456434
215 => 0.075787284190157
216 => 0.076803386893905
217 => 0.079836810544138
218 => 0.076177858045229
219 => 0.069904840631526
220 => 0.070281859666791
221 => 0.071128909501076
222 => 0.069550437738682
223 => 0.06805654668667
224 => 0.069355363753182
225 => 0.066697403579269
226 => 0.071450111289538
227 => 0.071321563865285
228 => 0.0730930793942
301 => 0.074200844409589
302 => 0.0716478046923
303 => 0.071005722107556
304 => 0.071371481528853
305 => 0.065326293033992
306 => 0.072599058523955
307 => 0.07266195370192
308 => 0.072123407003411
309 => 0.075995930105373
310 => 0.084168161720757
311 => 0.081093439459794
312 => 0.079902814066377
313 => 0.07763943432315
314 => 0.080655253444809
315 => 0.080423685590373
316 => 0.079376447933111
317 => 0.078743075330418
318 => 0.079910083771144
319 => 0.078598470069902
320 => 0.078362868208425
321 => 0.076935377265227
322 => 0.076425827945204
323 => 0.076048577914403
324 => 0.075633262698313
325 => 0.076549344574904
326 => 0.074473382521941
327 => 0.071969975795138
328 => 0.071761844613041
329 => 0.072336513105893
330 => 0.072082265076843
331 => 0.071760627371294
401 => 0.071146533398583
402 => 0.070964344834921
403 => 0.071556369281496
404 => 0.070888008198483
405 => 0.071874211383981
406 => 0.071606018686637
407 => 0.070107916080553
408 => 0.068240725564748
409 => 0.068224103652593
410 => 0.067821820518769
411 => 0.06730945246417
412 => 0.067166923392774
413 => 0.069245981002536
414 => 0.073549568033785
415 => 0.072704670923441
416 => 0.073315195674204
417 => 0.076318373189398
418 => 0.07727299301278
419 => 0.076595426473553
420 => 0.075667931604176
421 => 0.075708736671312
422 => 0.078878267411766
423 => 0.079075947156222
424 => 0.079575420096562
425 => 0.080217383975934
426 => 0.076704755698141
427 => 0.075543292195314
428 => 0.074992926352133
429 => 0.073298012573521
430 => 0.075125831772828
501 => 0.074060839800414
502 => 0.074204543602799
503 => 0.074110956312975
504 => 0.074162061301564
505 => 0.071448782810873
506 => 0.072437358887161
507 => 0.070793659422848
508 => 0.068592930354057
509 => 0.068585552738543
510 => 0.069124178060359
511 => 0.068803782642532
512 => 0.067941606811279
513 => 0.068064074818753
514 => 0.066991126206384
515 => 0.068194350206656
516 => 0.068228854365642
517 => 0.067765547585483
518 => 0.069619280170817
519 => 0.070378755923531
520 => 0.070073797475837
521 => 0.070357359225884
522 => 0.072739780212858
523 => 0.07312821878605
524 => 0.07330073754145
525 => 0.073069585263569
526 => 0.070400905508054
527 => 0.070519272803314
528 => 0.069650772128632
529 => 0.068916980578873
530 => 0.068946328392634
531 => 0.069323592635434
601 => 0.07097112771
602 => 0.074438268146924
603 => 0.074569843592059
604 => 0.074729316869889
605 => 0.074080658904108
606 => 0.073885017454807
607 => 0.074143119025777
608 => 0.075445194680302
609 => 0.078794486773833
610 => 0.077610623256282
611 => 0.076648123788579
612 => 0.077492495309748
613 => 0.077362510932466
614 => 0.07626531197656
615 => 0.076234517256202
616 => 0.074128641664092
617 => 0.073350147406156
618 => 0.072699579334939
619 => 0.07198917598468
620 => 0.07156802506571
621 => 0.072215104286917
622 => 0.072363098960823
623 => 0.070948248934646
624 => 0.070755410104128
625 => 0.071910807177164
626 => 0.071402360002865
627 => 0.071925310530515
628 => 0.072046639538716
629 => 0.072027102773951
630 => 0.071496225529198
701 => 0.071834590854016
702 => 0.071034255989262
703 => 0.070164012030251
704 => 0.069608850602517
705 => 0.069124398625342
706 => 0.069393200738793
707 => 0.068434970285666
708 => 0.068128413078342
709 => 0.071719960295429
710 => 0.074373074840329
711 => 0.074334497504098
712 => 0.074099667891074
713 => 0.073750758719567
714 => 0.075419669801186
715 => 0.07483825455128
716 => 0.075261282724456
717 => 0.075368961148966
718 => 0.075694871309291
719 => 0.075811356178682
720 => 0.075459257999438
721 => 0.074277573504725
722 => 0.071332928095091
723 => 0.069962187707988
724 => 0.069509820548757
725 => 0.069526263235828
726 => 0.069072700523036
727 => 0.069206295069208
728 => 0.069026241791834
729 => 0.068685264444053
730 => 0.069372146348416
731 => 0.069451303089147
801 => 0.069290976645041
802 => 0.06932873932653
803 => 0.068001304845653
804 => 0.068102226806198
805 => 0.067540280505341
806 => 0.067434922348294
807 => 0.06601437103399
808 => 0.063497658468495
809 => 0.064892161532979
810 => 0.063207797927887
811 => 0.062569903908364
812 => 0.065589594983908
813 => 0.065286501753117
814 => 0.064767737893462
815 => 0.06400037802517
816 => 0.063715756785624
817 => 0.061986488234276
818 => 0.061884313822974
819 => 0.0627413860112
820 => 0.062345876686387
821 => 0.061790431803255
822 => 0.059778666741094
823 => 0.057516776738704
824 => 0.057585048980142
825 => 0.058304514105943
826 => 0.0603964559923
827 => 0.059579098106338
828 => 0.058986095581972
829 => 0.058875044034748
830 => 0.060265086650411
831 => 0.062232288174505
901 => 0.063155255115956
902 => 0.0622406229079
903 => 0.061189942674581
904 => 0.061253892712
905 => 0.061679323660825
906 => 0.061724030438277
907 => 0.06104014561806
908 => 0.061232655189073
909 => 0.06094021554726
910 => 0.059145514005256
911 => 0.059113053545421
912 => 0.058672604843541
913 => 0.058659268231894
914 => 0.057909955114919
915 => 0.057805121030097
916 => 0.056317314356288
917 => 0.057296593214483
918 => 0.056639744370854
919 => 0.055649718228526
920 => 0.055479037348425
921 => 0.055473906475066
922 => 0.056490441957442
923 => 0.057284714405515
924 => 0.05665117053771
925 => 0.056506924879743
926 => 0.05804709112942
927 => 0.057851090935221
928 => 0.057681356031111
929 => 0.062056146854477
930 => 0.058593158548598
1001 => 0.057083097986773
1002 => 0.055214111288791
1003 => 0.055822662781902
1004 => 0.055950893522983
1005 => 0.05145631742451
1006 => 0.049632868461123
1007 => 0.049007129492113
1008 => 0.048647007868798
1009 => 0.048811119814665
1010 => 0.047169801878386
1011 => 0.048272794676459
1012 => 0.046851552080792
1013 => 0.046613276134505
1014 => 0.049154633953729
1015 => 0.049508249047877
1016 => 0.047999617196644
1017 => 0.048968403070447
1018 => 0.048617107845475
1019 => 0.046875915205881
1020 => 0.046809414454395
1021 => 0.045935745193728
1022 => 0.044568621976488
1023 => 0.043943809981396
1024 => 0.043618402469486
1025 => 0.043752671950966
1026 => 0.043684781192416
1027 => 0.043241748069797
1028 => 0.043710175332408
1029 => 0.042513537243944
1030 => 0.042037026315149
1031 => 0.041821797383582
1101 => 0.040759712204151
1102 => 0.042449962036048
1103 => 0.042782962546139
1104 => 0.043116619170103
1105 => 0.046020872284658
1106 => 0.045875784006389
1107 => 0.047187311381084
1108 => 0.047136347839048
1109 => 0.04676227898645
1110 => 0.045184144028679
1111 => 0.045813160495295
1112 => 0.043877145581912
1113 => 0.045327739591236
1114 => 0.044665749063635
1115 => 0.045103919927952
1116 => 0.044316049205636
1117 => 0.04475208939375
1118 => 0.042861929320585
1119 => 0.041096924439534
1120 => 0.041807213927374
1121 => 0.042579379832111
1122 => 0.044253632257795
1123 => 0.04325646132534
1124 => 0.043615081699858
1125 => 0.042413763477548
1126 => 0.039935100845335
1127 => 0.039949129806652
1128 => 0.039567841561286
1129 => 0.039238352848296
1130 => 0.043370998402306
1201 => 0.042857038600206
1202 => 0.042038110920957
1203 => 0.043134278162525
1204 => 0.043424122179709
1205 => 0.043432373631405
1206 => 0.044232108954682
1207 => 0.044658927840075
1208 => 0.044734156518564
1209 => 0.045992557329165
1210 => 0.04641435668217
1211 => 0.04815168852192
1212 => 0.044622715239667
1213 => 0.044550038357224
1214 => 0.043149703483572
1215 => 0.042261588968283
1216 => 0.043210513444249
1217 => 0.044051130988846
1218 => 0.043175823813895
1219 => 0.0432901204522
1220 => 0.042115092085053
1221 => 0.042535109436084
1222 => 0.04289688496124
1223 => 0.042697133780432
1224 => 0.042398096594695
1225 => 0.043982209936465
1226 => 0.043892828053532
1227 => 0.045367990815997
1228 => 0.046517985679239
1229 => 0.048578982060341
1230 => 0.04642822489449
1231 => 0.046349842754881
]
'min_raw' => 0.039238352848296
'max_raw' => 0.11344961750795
'avg_raw' => 0.076343985178121
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.039238'
'max' => '$0.113449'
'avg' => '$0.076343'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0068995983503312
'max_diff' => -0.038323338738673
'year' => 2030
]
5 => [
'items' => [
101 => 0.04711604074245
102 => 0.04641423938125
103 => 0.046857753616169
104 => 0.048507525060392
105 => 0.048542382131333
106 => 0.047958481282278
107 => 0.047922950862548
108 => 0.048035095407784
109 => 0.048691929512005
110 => 0.048462411493517
111 => 0.048728015555196
112 => 0.0490601575014
113 => 0.050434037416167
114 => 0.050765275212369
115 => 0.049960539094705
116 => 0.050033197755882
117 => 0.049732204357376
118 => 0.049441448505854
119 => 0.050095025198592
120 => 0.051289449450651
121 => 0.05128201899937
122 => 0.051559102209558
123 => 0.051731722754024
124 => 0.050990709011214
125 => 0.050508336312476
126 => 0.050693308699345
127 => 0.050989083574122
128 => 0.050597392893809
129 => 0.048179696566141
130 => 0.048913071188916
131 => 0.048791001791499
201 => 0.048617160125432
202 => 0.04935457397965
203 => 0.049283448614478
204 => 0.047152967790627
205 => 0.047289354260642
206 => 0.047161261903595
207 => 0.047575154514445
208 => 0.046391887821985
209 => 0.046755852687162
210 => 0.046984128038643
211 => 0.04711858397436
212 => 0.047604331011464
213 => 0.047547334203131
214 => 0.047600788009831
215 => 0.048321022633394
216 => 0.051963722204701
217 => 0.052161986305204
218 => 0.051185661362641
219 => 0.051575683920037
220 => 0.050826925898393
221 => 0.051329572174565
222 => 0.051673469990891
223 => 0.050119461886663
224 => 0.050027443612159
225 => 0.049275595199813
226 => 0.049679595949737
227 => 0.049036801707926
228 => 0.049194520930878
301 => 0.048753524233788
302 => 0.049547230486983
303 => 0.050434717407538
304 => 0.050658931651591
305 => 0.050069120505789
306 => 0.049642058365781
307 => 0.04889227793094
308 => 0.050139179504027
309 => 0.050503811522635
310 => 0.050137264247262
311 => 0.050052327234342
312 => 0.049891371748336
313 => 0.050086474701584
314 => 0.050501825658352
315 => 0.050305953817468
316 => 0.05043533061919
317 => 0.049942279663805
318 => 0.050990954317597
319 => 0.052656502045117
320 => 0.052661857053406
321 => 0.052465984156699
322 => 0.052385837187507
323 => 0.05258681466609
324 => 0.052695836703693
325 => 0.053345761016461
326 => 0.054043155698188
327 => 0.057297592380672
328 => 0.056383759583069
329 => 0.059271289415073
330 => 0.061554950613366
331 => 0.062239720754333
401 => 0.061609764445569
402 => 0.059454717942856
403 => 0.059348981080241
404 => 0.062569530392458
405 => 0.061659577701253
406 => 0.06155134172408
407 => 0.060399893794526
408 => 0.061080542130493
409 => 0.060931674354908
410 => 0.060696679288287
411 => 0.061995308898938
412 => 0.064426227600612
413 => 0.064047346123945
414 => 0.063764528677419
415 => 0.062525304953663
416 => 0.063271594426003
417 => 0.063005855039136
418 => 0.064147640087499
419 => 0.063471271918484
420 => 0.061652683914654
421 => 0.061942300048409
422 => 0.061898525152418
423 => 0.062799409409974
424 => 0.062528986317178
425 => 0.061845720703415
426 => 0.064417918984765
427 => 0.064250894735692
428 => 0.064487696933818
429 => 0.064591944584784
430 => 0.066157596351424
501 => 0.066798993784948
502 => 0.0669446022316
503 => 0.06755388018599
504 => 0.066929442841055
505 => 0.069427637437075
506 => 0.071088791069733
507 => 0.073018306496248
508 => 0.075837847139242
509 => 0.076898020503217
510 => 0.076706509674258
511 => 0.078844253210804
512 => 0.082685730826606
513 => 0.077482982132461
514 => 0.082961489140656
515 => 0.081227057074267
516 => 0.077114749845957
517 => 0.076849965741371
518 => 0.079634867941251
519 => 0.085811512983681
520 => 0.084264333455481
521 => 0.085814043615128
522 => 0.084006224396198
523 => 0.083916450934481
524 => 0.085726241870792
525 => 0.089954917040051
526 => 0.087946031976655
527 => 0.08506580263945
528 => 0.08719251916071
529 => 0.085350160491672
530 => 0.081198810766606
531 => 0.084263150356454
601 => 0.08221411374009
602 => 0.082812131557523
603 => 0.087118901753927
604 => 0.086600699769595
605 => 0.087271301121532
606 => 0.086087707288056
607 => 0.084982044011973
608 => 0.082918241399531
609 => 0.082307251190226
610 => 0.082476106902954
611 => 0.082307167513721
612 => 0.081152488919385
613 => 0.080903136186876
614 => 0.080487537374967
615 => 0.080616348824907
616 => 0.079834901470798
617 => 0.081309654083264
618 => 0.081583381163613
619 => 0.082656583130804
620 => 0.082768006519249
621 => 0.085756858721803
622 => 0.084110649154257
623 => 0.085215068659063
624 => 0.085116278983353
625 => 0.0772038760132
626 => 0.078294135330765
627 => 0.079990236686674
628 => 0.079226145324848
629 => 0.078145898909069
630 => 0.077273542009179
701 => 0.075951832102772
702 => 0.077812113414849
703 => 0.080258185521367
704 => 0.082830042944504
705 => 0.085919961123629
706 => 0.085230327356661
707 => 0.082772279073448
708 => 0.082882545323827
709 => 0.083564167895503
710 => 0.082681404733242
711 => 0.082421060643107
712 => 0.083528400615374
713 => 0.08353602625718
714 => 0.082520300553506
715 => 0.081391507309714
716 => 0.081386777624806
717 => 0.081185919769923
718 => 0.084041956562373
719 => 0.085612488020332
720 => 0.085792546920949
721 => 0.085600368621686
722 => 0.085674330421789
723 => 0.084760472770702
724 => 0.086849280365018
725 => 0.088766176775224
726 => 0.08825240758877
727 => 0.087482194541683
728 => 0.086868682751191
729 => 0.088107883708616
730 => 0.088052704040665
731 => 0.088749434357345
801 => 0.088717826645671
802 => 0.088483542445524
803 => 0.088252415955797
804 => 0.089168806362211
805 => 0.088904900641943
806 => 0.088640585003199
807 => 0.088110459524999
808 => 0.088182512381938
809 => 0.087412432322992
810 => 0.087056158051258
811 => 0.081698647825881
812 => 0.080266946031963
813 => 0.080717388561307
814 => 0.080865685937702
815 => 0.080242607482213
816 => 0.081135941931662
817 => 0.080996716703991
818 => 0.081538360620825
819 => 0.081199965017032
820 => 0.081213852890649
821 => 0.082209002207855
822 => 0.082497898288307
823 => 0.082350963410112
824 => 0.082453871562167
825 => 0.084825346491465
826 => 0.084488198592018
827 => 0.084309095490044
828 => 0.084358708273303
829 => 0.084964670962734
830 => 0.085134307431439
831 => 0.084415545793395
901 => 0.084754517937008
902 => 0.086197818302543
903 => 0.086702891746754
904 => 0.08831484373167
905 => 0.087630057878316
906 => 0.088887011948985
907 => 0.092750460235001
908 => 0.095836850056158
909 => 0.092998478426168
910 => 0.098666240283349
911 => 0.10307940588131
912 => 0.10291002123515
913 => 0.10214048373479
914 => 0.097116212031582
915 => 0.092492802302621
916 => 0.096360480861244
917 => 0.096370340369285
918 => 0.096038103351025
919 => 0.093974607764533
920 => 0.095966298177501
921 => 0.096124391329725
922 => 0.096035901204842
923 => 0.0944538239768
924 => 0.092038284466327
925 => 0.092510275104689
926 => 0.093283405398674
927 => 0.091819708460285
928 => 0.091351968599945
929 => 0.092221585991467
930 => 0.095023674418929
1001 => 0.09449395583311
1002 => 0.094480122740073
1003 => 0.096746483485845
1004 => 0.095124258303133
1005 => 0.092516228418162
1006 => 0.091857666476518
1007 => 0.089520215244166
1008 => 0.091134701136067
1009 => 0.091192803609103
1010 => 0.090308566185755
1011 => 0.092587979411756
1012 => 0.092566974217596
1013 => 0.094730937829798
1014 => 0.098867623508713
1015 => 0.097644201999518
1016 => 0.096221495892207
1017 => 0.096376183493433
1018 => 0.098072724677351
1019 => 0.097046957149286
1020 => 0.097415830304284
1021 => 0.098072166343652
1022 => 0.09846815017211
1023 => 0.096319207514363
1024 => 0.095818186185033
1025 => 0.094793272379814
1026 => 0.094525891498954
1027 => 0.095360662407777
1028 => 0.095140729766194
1029 => 0.091187920321229
1030 => 0.090774829741005
1031 => 0.090787498639343
1101 => 0.089748762733986
1102 => 0.088164441153134
1103 => 0.092327943672687
1104 => 0.091993556152186
1105 => 0.091624418209092
1106 => 0.091669635500849
1107 => 0.093476870830394
1108 => 0.092428583071686
1109 => 0.095215627889196
1110 => 0.094642695260952
1111 => 0.094055069072666
1112 => 0.093973841233913
1113 => 0.093747655285334
1114 => 0.09297197950757
1115 => 0.092035304395033
1116 => 0.091416830352327
1117 => 0.084327193724652
1118 => 0.08564298904423
1119 => 0.087156691620886
1120 => 0.087679215684566
1121 => 0.086785402116077
1122 => 0.093007272715112
1123 => 0.094144068428992
1124 => 0.090700640060299
1125 => 0.09005651520677
1126 => 0.093049501433274
1127 => 0.091244364861006
1128 => 0.092057217748969
1129 => 0.090300274411953
1130 => 0.093870247630783
1201 => 0.093843050416196
1202 => 0.092454250202569
1203 => 0.093628054633033
1204 => 0.093424077227332
1205 => 0.091856125206611
1206 => 0.093919954506545
1207 => 0.093920978140129
1208 => 0.092584288129634
1209 => 0.091023326836444
1210 => 0.090744263825482
1211 => 0.090534027333563
1212 => 0.092005512459688
1213 => 0.093324841422557
1214 => 0.095779785533069
1215 => 0.096397016810485
1216 => 0.098806111577654
1217 => 0.0973716129405
1218 => 0.098007507606483
1219 => 0.0986978612192
1220 => 0.09902884212805
1221 => 0.098489526498494
1222 => 0.10223184229487
1223 => 0.10254780840968
1224 => 0.10265374911488
1225 => 0.10139186128424
1226 => 0.10251271302637
1227 => 0.10198830361494
1228 => 0.10335267121836
1229 => 0.1035666214797
1230 => 0.10338541321984
1231 => 0.10345332440977
]
'min_raw' => 0.046391887821985
'max_raw' => 0.1035666214797
'avg_raw' => 0.07497925465084
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.046391'
'max' => '$0.103566'
'avg' => '$0.074979'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0071535349736889
'max_diff' => -0.0098829960282516
'year' => 2031
]
6 => [
'items' => [
101 => 0.1002599180673
102 => 0.10009432310189
103 => 0.09783642399834
104 => 0.098756534572583
105 => 0.097036431956084
106 => 0.097581894214796
107 => 0.097822328781081
108 => 0.097696739408195
109 => 0.098808556243928
110 => 0.097863284804382
111 => 0.095368558058406
112 => 0.092873151625797
113 => 0.09284182383075
114 => 0.092184827364626
115 => 0.091709939254524
116 => 0.09180141955209
117 => 0.092123808052677
118 => 0.091691201448799
119 => 0.091783520001448
120 => 0.09331662309072
121 => 0.093624075981682
122 => 0.092579230928593
123 => 0.088384027270017
124 => 0.08735451376933
125 => 0.088094507657484
126 => 0.087740838240656
127 => 0.070813704351864
128 => 0.07479048337531
129 => 0.072427616318233
130 => 0.07351653416842
131 => 0.071104658764603
201 => 0.072255732124525
202 => 0.072043170905416
203 => 0.078437713893671
204 => 0.078337871900316
205 => 0.078385660979014
206 => 0.076104563738954
207 => 0.079738413580909
208 => 0.08152857868207
209 => 0.081197266765547
210 => 0.081280650837101
211 => 0.079847836223158
212 => 0.078399533756455
213 => 0.076793143428729
214 => 0.079777618101798
215 => 0.079445795464834
216 => 0.080206877208013
217 => 0.082142522368153
218 => 0.082427553470785
219 => 0.082810638163222
220 => 0.082673329570809
221 => 0.085944577306972
222 => 0.085548407621735
223 => 0.086503062577358
224 => 0.084539264903795
225 => 0.082317041430771
226 => 0.082739413463034
227 => 0.082698735639826
228 => 0.082180860262553
229 => 0.081713345527722
301 => 0.08093506521569
302 => 0.083397659286774
303 => 0.083297682464713
304 => 0.08491619100354
305 => 0.08463010389795
306 => 0.082719544189423
307 => 0.082787780203181
308 => 0.083246700188815
309 => 0.08483502749895
310 => 0.085306551186167
311 => 0.085088122627278
312 => 0.085605126824438
313 => 0.086013745861914
314 => 0.085656443084336
315 => 0.090715096929973
316 => 0.088614391165149
317 => 0.089638260538307
318 => 0.089882447350817
319 => 0.089256967965269
320 => 0.089392612047257
321 => 0.089598075870668
322 => 0.090845611972482
323 => 0.094119507681122
324 => 0.095569493804317
325 => 0.099931848597003
326 => 0.095449092641567
327 => 0.095183104454659
328 => 0.095968896283316
329 => 0.098530060348775
330 => 0.10060564326592
331 => 0.10129423386279
401 => 0.10138524247756
402 => 0.10267708421392
403 => 0.10341754380578
404 => 0.10252022064831
405 => 0.10175983322601
406 => 0.099036219862089
407 => 0.099351485525116
408 => 0.10152335330946
409 => 0.10459124447721
410 => 0.10722381425882
411 => 0.10630198007562
412 => 0.11333492417992
413 => 0.11403221186086
414 => 0.11393586924937
415 => 0.11552439435687
416 => 0.11237149551599
417 => 0.11102357017697
418 => 0.10192423761748
419 => 0.10448077890974
420 => 0.10819686181846
421 => 0.1077050243109
422 => 0.10500630557141
423 => 0.10722176703866
424 => 0.1064892661937
425 => 0.10591151238579
426 => 0.1085583145829
427 => 0.10564804684254
428 => 0.10816782967151
429 => 0.10493618212954
430 => 0.10630619093652
501 => 0.10552850767781
502 => 0.10603176405547
503 => 0.10308973755487
504 => 0.10467718364094
505 => 0.10302369457865
506 => 0.10302291060954
507 => 0.10298640974685
508 => 0.10493173229594
509 => 0.10499516919442
510 => 0.10355757289143
511 => 0.10335039280469
512 => 0.10411644617283
513 => 0.10321959830843
514 => 0.10363922777949
515 => 0.10323230845763
516 => 0.10314070234724
517 => 0.10241076927421
518 => 0.10209629403641
519 => 0.10221960788018
520 => 0.10179867415876
521 => 0.10154504636577
522 => 0.1029359567951
523 => 0.10219284946187
524 => 0.10282206493862
525 => 0.10210499448954
526 => 0.099619315900308
527 => 0.098189775858064
528 => 0.093494559425524
529 => 0.094826116981395
530 => 0.095708941018533
531 => 0.095417167679525
601 => 0.096044009713007
602 => 0.096082492722862
603 => 0.095878699987879
604 => 0.095642734108235
605 => 0.095527878967756
606 => 0.096383915085836
607 => 0.096880872865233
608 => 0.095797544221321
609 => 0.095543735477431
610 => 0.09663904054864
611 => 0.09730717600934
612 => 0.10224031285826
613 => 0.10187485014667
614 => 0.10279208983433
615 => 0.10268882272169
616 => 0.10365023604209
617 => 0.10522174049737
618 => 0.10202643254024
619 => 0.10258102751616
620 => 0.10244505363553
621 => 0.10392958080996
622 => 0.10393421534176
623 => 0.10304416714305
624 => 0.10352667671095
625 => 0.10325735310711
626 => 0.10374405726053
627 => 0.10186996916935
628 => 0.10415240616909
629 => 0.10544640087096
630 => 0.10546436798865
701 => 0.10607771120756
702 => 0.10670090344041
703 => 0.10789706666277
704 => 0.10666754309736
705 => 0.10445574989489
706 => 0.10461543422006
707 => 0.10331866067472
708 => 0.1033404596723
709 => 0.1032240949148
710 => 0.10357331431157
711 => 0.10194660318863
712 => 0.10232838903776
713 => 0.10179388661324
714 => 0.10257986561227
715 => 0.1017342821363
716 => 0.10244498806481
717 => 0.10275170518328
718 => 0.10388349795359
719 => 0.10156711542389
720 => 0.096843854640521
721 => 0.097836741321187
722 => 0.096368183930917
723 => 0.096504104508579
724 => 0.096778685707055
725 => 0.095888678205416
726 => 0.096058463589369
727 => 0.096052397660693
728 => 0.096000124764441
729 => 0.095768599439545
730 => 0.095432841912554
731 => 0.096770396559366
801 => 0.096997673157822
802 => 0.097502880882576
803 => 0.099006036385772
804 => 0.098855835704155
805 => 0.099100819247638
806 => 0.098566021547737
807 => 0.09652891224004
808 => 0.096639537076277
809 => 0.095260043595765
810 => 0.097467604132755
811 => 0.096944824659221
812 => 0.096607785331751
813 => 0.096515821028604
814 => 0.098022702563548
815 => 0.098473585136278
816 => 0.098192625374557
817 => 0.097616368706361
818 => 0.098722951864288
819 => 0.099019026834353
820 => 0.099085307101326
821 => 0.1010459602909
822 => 0.099194885834483
823 => 0.09964045785424
824 => 0.10311668355824
825 => 0.099964226531068
826 => 0.10163415332654
827 => 0.10155241909978
828 => 0.1024066971411
829 => 0.10148234336589
830 => 0.10149380183876
831 => 0.10225234286564
901 => 0.10118710879698
902 => 0.10092334186115
903 => 0.10055894972845
904 => 0.10135458661919
905 => 0.10183153495163
906 => 0.10567538823112
907 => 0.10815869275068
908 => 0.10805088595224
909 => 0.10903603828415
910 => 0.10859221813566
911 => 0.10715900580236
912 => 0.10960532449368
913 => 0.10883120690142
914 => 0.10889502421518
915 => 0.10889264893157
916 => 0.10940736945589
917 => 0.10904264279097
918 => 0.10832372909599
919 => 0.10880097755701
920 => 0.11021823486681
921 => 0.11461744504319
922 => 0.11707930133968
923 => 0.11446923820295
924 => 0.11626962480453
925 => 0.11519003438692
926 => 0.114993840693
927 => 0.11612461652632
928 => 0.11725737163304
929 => 0.11718522002978
930 => 0.11636289798992
1001 => 0.11589838913525
1002 => 0.11941580580469
1003 => 0.1220073784891
1004 => 0.12183065060614
1005 => 0.12261067000651
1006 => 0.12490083109109
1007 => 0.12511021471943
1008 => 0.12508383719488
1009 => 0.12456485802512
1010 => 0.12681981902788
1011 => 0.12870094716865
1012 => 0.12444472934207
1013 => 0.12606544137245
1014 => 0.12679303121897
1015 => 0.12786134897983
1016 => 0.12966378011326
1017 => 0.13162169839541
1018 => 0.13189856950799
1019 => 0.13170211620411
1020 => 0.13041081646537
1021 => 0.13255319401252
1022 => 0.13380814853471
1023 => 0.13455544523354
1024 => 0.13645046532348
1025 => 0.12679752456616
1026 => 0.11996469331584
1027 => 0.11889764804882
1028 => 0.12106752655878
1029 => 0.1216397062174
1030 => 0.12140906131446
1031 => 0.11371808852839
1101 => 0.11885715666878
1102 => 0.12438636188273
1103 => 0.12459876117339
1104 => 0.12736679691372
1105 => 0.12826818281639
1106 => 0.13049681440209
1107 => 0.13035741288962
1108 => 0.13090004921546
1109 => 0.1307753065213
1110 => 0.13490337724007
1111 => 0.1394572522673
1112 => 0.13929956605554
1113 => 0.13864489264138
1114 => 0.13961719429982
1115 => 0.14431728135083
1116 => 0.14388457265254
1117 => 0.14430491229489
1118 => 0.14984657981333
1119 => 0.15705153588032
1120 => 0.15370411042144
1121 => 0.16096706047148
1122 => 0.16553870253553
1123 => 0.17344488476871
1124 => 0.17245499181435
1125 => 0.17553281053948
1126 => 0.17068287682915
1127 => 0.1595464486969
1128 => 0.15778406631644
1129 => 0.16131240047276
1130 => 0.16998646570624
1201 => 0.16103922329018
1202 => 0.16284923877803
1203 => 0.16232795419576
1204 => 0.16230017715569
1205 => 0.16336031379786
1206 => 0.16182253030538
1207 => 0.15555732371506
1208 => 0.15842863097431
1209 => 0.15731988135001
1210 => 0.15855012172093
1211 => 0.16518922161305
1212 => 0.16225391729437
1213 => 0.1591618126394
1214 => 0.16303999806969
1215 => 0.16797826081154
1216 => 0.16766923320407
1217 => 0.16706959048205
1218 => 0.17044974510979
1219 => 0.17603277026245
1220 => 0.1775418395268
1221 => 0.17865580360618
1222 => 0.17880940043215
1223 => 0.18039154319953
1224 => 0.17188396278802
1225 => 0.18538571139125
1226 => 0.18771709039675
1227 => 0.18727888776947
1228 => 0.18987011741466
1229 => 0.18910771191989
1230 => 0.18800310597574
1231 => 0.19211075613371
]
'min_raw' => 0.070813704351864
'max_raw' => 0.19211075613371
'avg_raw' => 0.13146223024279
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.070813'
'max' => '$0.19211'
'avg' => '$0.131462'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.024421816529879
'max_diff' => 0.088544134654013
'year' => 2032
]
7 => [
'items' => [
101 => 0.18740166669787
102 => 0.18071770710157
103 => 0.1770507546733
104 => 0.18187969343545
105 => 0.18482855783076
106 => 0.18677756961306
107 => 0.18736733940076
108 => 0.17254438203739
109 => 0.16455563013744
110 => 0.16967632851408
111 => 0.1759239339453
112 => 0.1718492570244
113 => 0.17200897664531
114 => 0.16619955816236
115 => 0.17643793857466
116 => 0.17494629266692
117 => 0.18268495427495
118 => 0.18083806057555
119 => 0.18714863870379
120 => 0.18548685199212
121 => 0.19238483572301
122 => 0.19513662818872
123 => 0.19975731602093
124 => 0.2031563127999
125 => 0.20515226872095
126 => 0.20503243901409
127 => 0.2129414107546
128 => 0.20827776643765
129 => 0.20241913003899
130 => 0.20231316579029
131 => 0.20534743659868
201 => 0.21170643580152
202 => 0.21335523177514
203 => 0.21427668379151
204 => 0.21286544795246
205 => 0.20780339629281
206 => 0.20561762805136
207 => 0.20747996592088
208 => 0.20520248673897
209 => 0.20913405475474
210 => 0.214532937378
211 => 0.21341808946579
212 => 0.21714485888896
213 => 0.22100167317437
214 => 0.22651709082286
215 => 0.2279590252315
216 => 0.23034248797713
217 => 0.23279585406911
218 => 0.23358380913778
219 => 0.23508825985198
220 => 0.2350803306541
221 => 0.23961409414254
222 => 0.24461497566925
223 => 0.24650269267492
224 => 0.25084339384011
225 => 0.24341009521102
226 => 0.24904833760877
227 => 0.2541341733859
228 => 0.24807063030801
301 => 0.25642781181654
302 => 0.25675230223673
303 => 0.26165172232892
304 => 0.25668522145017
305 => 0.253736129082
306 => 0.26225004824785
307 => 0.26636966554626
308 => 0.26512880328942
309 => 0.25568578024595
310 => 0.25018953580434
311 => 0.23580480395426
312 => 0.25284414020485
313 => 0.26114350384826
314 => 0.25566428689909
315 => 0.25842768522123
316 => 0.27350389043193
317 => 0.27924393326416
318 => 0.27805004448098
319 => 0.27825179203226
320 => 0.28134901495538
321 => 0.29508380706834
322 => 0.28685360126427
323 => 0.29314528522155
324 => 0.29648237170614
325 => 0.29958204361088
326 => 0.29197022907421
327 => 0.28206737020177
328 => 0.27893071910313
329 => 0.25511948675706
330 => 0.25388000870651
331 => 0.2531842521167
401 => 0.24879760523471
402 => 0.24535090238917
403 => 0.24260995631852
404 => 0.23541689531336
405 => 0.23784434224808
406 => 0.22638010431437
407 => 0.23371451747671
408 => 0.2154173169208
409 => 0.23065576924801
410 => 0.22236217245372
411 => 0.22793109964552
412 => 0.22791167018317
413 => 0.21765750959309
414 => 0.21174312376361
415 => 0.21551200060549
416 => 0.21955253575381
417 => 0.22020809898764
418 => 0.22544675827619
419 => 0.22690875547902
420 => 0.22247883570032
421 => 0.21503814810869
422 => 0.21676645013221
423 => 0.21170809977826
424 => 0.20284353534961
425 => 0.20921022028271
426 => 0.21138408644225
427 => 0.21234418958073
428 => 0.20362690856725
429 => 0.20088774961144
430 => 0.19942944436713
501 => 0.21391285659677
502 => 0.21470629061317
503 => 0.21064697000503
504 => 0.22899548407439
505 => 0.22484265023792
506 => 0.22948238310225
507 => 0.21660962483878
508 => 0.21710138153991
509 => 0.21100721148288
510 => 0.21441953950223
511 => 0.21200781604262
512 => 0.21414385711955
513 => 0.21542419133383
514 => 0.22151736139752
515 => 0.23072534346255
516 => 0.22060724497932
517 => 0.21619864457634
518 => 0.21893371547144
519 => 0.22621756968852
520 => 0.23725298168103
521 => 0.2307197956731
522 => 0.23361911268272
523 => 0.23425248446769
524 => 0.22943515497714
525 => 0.23743060349071
526 => 0.24171542930404
527 => 0.24611077396875
528 => 0.24992712858636
529 => 0.24435517665397
530 => 0.25031796392956
531 => 0.24551300995908
601 => 0.24120246952055
602 => 0.24120900683108
603 => 0.23850494184704
604 => 0.23326547520635
605 => 0.23229923716997
606 => 0.23732572945765
607 => 0.24135650026177
608 => 0.24168849385129
609 => 0.24392013567694
610 => 0.24524079832162
611 => 0.25818508759327
612 => 0.26339138781911
613 => 0.26975755318505
614 => 0.2722375333725
615 => 0.27970138461462
616 => 0.27367371855225
617 => 0.27236959508386
618 => 0.25426473337759
619 => 0.25722940346774
620 => 0.26197612633018
621 => 0.25434300508927
622 => 0.25918446361431
623 => 0.26014027008326
624 => 0.25408363455035
625 => 0.25731874528025
626 => 0.24872725032512
627 => 0.23091261457472
628 => 0.23745043627289
629 => 0.24226447364972
630 => 0.23539424874645
701 => 0.24770886097114
702 => 0.24051491873467
703 => 0.23823478441584
704 => 0.22933916751148
705 => 0.23353755626664
706 => 0.23921593717313
707 => 0.23570735795556
708 => 0.24298818664785
709 => 0.25329978180222
710 => 0.26064843857533
711 => 0.26121257719374
712 => 0.25648788321039
713 => 0.26405923547129
714 => 0.26411438450668
715 => 0.2555738682265
716 => 0.25034284955868
717 => 0.2491543511112
718 => 0.25212345325186
719 => 0.25572849137712
720 => 0.2614126317199
721 => 0.26484743868301
722 => 0.27380359356195
723 => 0.2762268722791
724 => 0.27888932089706
725 => 0.28244717331939
726 => 0.28671928736704
727 => 0.27737214504237
728 => 0.27774352443219
729 => 0.26903959491945
730 => 0.25973819796534
731 => 0.26679679881801
801 => 0.27602498046656
802 => 0.27390802540015
803 => 0.27366982470971
804 => 0.27407041219967
805 => 0.27247429721288
806 => 0.26525512828243
807 => 0.26162970683995
808 => 0.2663074254444
809 => 0.26879342470137
810 => 0.272648992747
811 => 0.27217371260421
812 => 0.28210524183199
813 => 0.28596433377605
814 => 0.2849770129169
815 => 0.28515870371619
816 => 0.29214540534665
817 => 0.2999160544845
818 => 0.30719429282957
819 => 0.31459802948178
820 => 0.30567253597478
821 => 0.30114072081983
822 => 0.30581639727868
823 => 0.3033354175347
824 => 0.31759186304998
825 => 0.31857894840568
826 => 0.33283436301768
827 => 0.34636444898765
828 => 0.33786644440658
829 => 0.345879679968
830 => 0.35454664755636
831 => 0.37126663419911
901 => 0.36563593091405
902 => 0.36132290044207
903 => 0.35724710748646
904 => 0.36572818561318
905 => 0.37663895713467
906 => 0.37898903281833
907 => 0.38279705322387
908 => 0.37879338539003
909 => 0.38361536230634
910 => 0.40063905970495
911 => 0.39603910639551
912 => 0.38950643321672
913 => 0.40294500733964
914 => 0.40780837507359
915 => 0.44194203679592
916 => 0.48503719471159
917 => 0.46719551635644
918 => 0.45612061085403
919 => 0.45872347634737
920 => 0.47446036915502
921 => 0.47951455966082
922 => 0.4657755275821
923 => 0.47062838597936
924 => 0.4973681128708
925 => 0.5117131184349
926 => 0.49223067408756
927 => 0.43847938281821
928 => 0.38891823747249
929 => 0.40206408498564
930 => 0.40057375384079
1001 => 0.42930225453677
1002 => 0.39592939903039
1003 => 0.39649131232766
1004 => 0.42581388799402
1005 => 0.41799112752245
1006 => 0.40531925742196
1007 => 0.38901075614776
1008 => 0.35886298318861
1009 => 0.33216025994584
1010 => 0.3845304494948
1011 => 0.38227215169244
1012 => 0.37900180181363
1013 => 0.38627961158009
1014 => 0.42161858996367
1015 => 0.42080391213081
1016 => 0.41562134741049
1017 => 0.41955227707383
1018 => 0.40463014644621
1019 => 0.40847591927955
1020 => 0.38891038673385
1021 => 0.39775482457332
1022 => 0.40529206927995
1023 => 0.40680528274562
1024 => 0.41021462995037
1025 => 0.38108213136844
1026 => 0.3941617679465
1027 => 0.40184482903991
1028 => 0.36713247950776
1029 => 0.40115867749837
1030 => 0.38057499938208
1031 => 0.37358858987295
1101 => 0.38299486988754
1102 => 0.37932923341794
1103 => 0.37617773443478
1104 => 0.37441914385256
1105 => 0.38132607776203
1106 => 0.38100386103958
1107 => 0.36970277658558
1108 => 0.35496097260647
1109 => 0.35990880590508
1110 => 0.35811121168151
1111 => 0.35159649832102
1112 => 0.3559866285365
1113 => 0.3366547168616
1114 => 0.30339516761026
1115 => 0.32536744461324
1116 => 0.32452153584986
1117 => 0.32409499029246
1118 => 0.34060654919106
1119 => 0.33901934378944
1120 => 0.33613855044353
1121 => 0.35154359029208
1122 => 0.34592054352033
1123 => 0.36324944871441
1124 => 0.37466338643854
1125 => 0.3717684426295
1126 => 0.3825033062274
1127 => 0.36002279399106
1128 => 0.36748991839437
1129 => 0.3690288823849
1130 => 0.35135349449161
1201 => 0.33927903022245
1202 => 0.33847380111466
1203 => 0.31753834403561
1204 => 0.32872189622213
1205 => 0.33856295933944
1206 => 0.3338498538036
1207 => 0.33235782539098
1208 => 0.3399802749696
1209 => 0.34057260458372
1210 => 0.3270674266094
1211 => 0.32987558076363
1212 => 0.34158605040354
1213 => 0.32958050697467
1214 => 0.30625569718677
1215 => 0.30047082186865
1216 => 0.2996990128648
1217 => 0.2840099721978
1218 => 0.30085739489886
1219 => 0.29350304340699
1220 => 0.31673535165115
1221 => 0.30346518177946
1222 => 0.30289313127904
1223 => 0.3020283930461
1224 => 0.2885241876379
1225 => 0.29148075038527
1226 => 0.30130881525475
1227 => 0.30481557952125
1228 => 0.30444979527818
1229 => 0.30126065237521
1230 => 0.30272062566514
1231 => 0.29801754300986
]
'min_raw' => 0.16455563013744
'max_raw' => 0.5117131184349
'avg_raw' => 0.33813437428617
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.164555'
'max' => '$0.511713'
'avg' => '$0.338134'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.093741925785572
'max_diff' => 0.31960236230119
'year' => 2033
]
8 => [
'items' => [
101 => 0.29635678663808
102 => 0.29111498270172
103 => 0.28341097900056
104 => 0.28448226796661
105 => 0.2692186207724
106 => 0.26090217567792
107 => 0.25860029328475
108 => 0.25552211994632
109 => 0.25894798115404
110 => 0.26917538077767
111 => 0.2568389669677
112 => 0.23568905078931
113 => 0.23696019678933
114 => 0.23981608444475
115 => 0.23449415669246
116 => 0.22945739871046
117 => 0.23383645113072
118 => 0.22487495283152
119 => 0.24089903870015
120 => 0.24046563208438
121 => 0.24643842037338
122 => 0.25017332746445
123 => 0.24156557581007
124 => 0.23940074954683
125 => 0.24063393297224
126 => 0.22025215790024
127 => 0.24477279451792
128 => 0.24498485000163
129 => 0.24316910220747
130 => 0.25622558421667
131 => 0.28377883367493
201 => 0.27341219290184
202 => 0.26939791626112
203 => 0.2617667734327
204 => 0.27193481815914
205 => 0.27115407097036
206 => 0.2676232360931
207 => 0.26548777614246
208 => 0.2694224265783
209 => 0.26500022941061
210 => 0.26420588128545
211 => 0.25939299590622
212 => 0.25767501479817
213 => 0.25640308998056
214 => 0.25500282573313
215 => 0.25809145973886
216 => 0.25109220873825
217 => 0.24265179817656
218 => 0.24195006936486
219 => 0.24388760431058
220 => 0.24303038932961
221 => 0.24194596534933
222 => 0.23987550464566
223 => 0.23926124318327
224 => 0.24125729493873
225 => 0.23900386888387
226 => 0.24232892177828
227 => 0.24142469137457
228 => 0.23637373384397
301 => 0.23007837065686
302 => 0.23002232871952
303 => 0.22866600304733
304 => 0.22693851837885
305 => 0.22645797166358
306 => 0.23346765955006
307 => 0.24797750369276
308 => 0.24512887409641
309 => 0.24718730091908
310 => 0.25731272358672
311 => 0.26053129097068
312 => 0.25824682807749
313 => 0.25511971436976
314 => 0.25525729150253
315 => 0.26594358568354
316 => 0.26661007674353
317 => 0.26829408463397
318 => 0.27045851067376
319 => 0.25861543919131
320 => 0.25469948390073
321 => 0.25284388703513
322 => 0.24712936689544
323 => 0.25329198694017
324 => 0.24970129214981
325 => 0.25018579955263
326 => 0.24987026347093
327 => 0.25004256750799
328 => 0.24089455964157
329 => 0.24422761290296
330 => 0.2386857653996
331 => 0.23126585369417
401 => 0.23124097954838
402 => 0.2330569924265
403 => 0.231976756906
404 => 0.22906987089573
405 => 0.22948278033338
406 => 0.2258652591759
407 => 0.22992201289923
408 => 0.23003834608025
409 => 0.2284762749239
410 => 0.23472626375883
411 => 0.23728688928401
412 => 0.23625870058609
413 => 0.23721474882402
414 => 0.24524724751693
415 => 0.24655689528636
416 => 0.24713855431507
417 => 0.24635920827165
418 => 0.23736156815466
419 => 0.23776065175477
420 => 0.2348324410933
421 => 0.2323584116516
422 => 0.23245735985469
423 => 0.23372933258904
424 => 0.23928411212017
425 => 0.25097381817127
426 => 0.25141743397085
427 => 0.25195510926112
428 => 0.24976811364164
429 => 0.24910849483607
430 => 0.24997870230267
501 => 0.25436874127992
502 => 0.26566111341337
503 => 0.26166963490923
504 => 0.25842450075431
505 => 0.26127135829006
506 => 0.26083310688684
507 => 0.25713382400302
508 => 0.25702999745331
509 => 0.24992989086697
510 => 0.24730514312361
511 => 0.24511170745029
512 => 0.24271653295611
513 => 0.24129659322899
514 => 0.24347826600091
515 => 0.24397724037665
516 => 0.23920697473172
517 => 0.23855680515105
518 => 0.24245230705004
519 => 0.24073804190324
520 => 0.24250120611845
521 => 0.24291027534052
522 => 0.2428444057741
523 => 0.24105451607875
524 => 0.24219533839529
525 => 0.23949695352118
526 => 0.23656286525488
527 => 0.23469109974114
528 => 0.23305773607673
529 => 0.2339640211694
530 => 0.23073328029517
531 => 0.22969970126754
601 => 0.24180885346376
602 => 0.25075401438644
603 => 0.25062394820395
604 => 0.24983220376836
605 => 0.24865583213656
606 => 0.25428268236789
607 => 0.25232240025972
608 => 0.25374866928046
609 => 0.25411171460657
610 => 0.25521054346642
611 => 0.25560328033629
612 => 0.25441615674226
613 => 0.25043202496576
614 => 0.2405039473786
615 => 0.23588240046144
616 => 0.23435721300083
617 => 0.23441265066828
618 => 0.23288343231536
619 => 0.23333385565506
620 => 0.23272679345947
621 => 0.23157716452515
622 => 0.23389303482227
623 => 0.23415991730019
624 => 0.23361936550026
625 => 0.2337466850174
626 => 0.22927114698661
627 => 0.22961141242273
628 => 0.22771677123556
629 => 0.2273615488532
630 => 0.2225720609173
701 => 0.21408678879148
702 => 0.21878845323448
703 => 0.2131095037414
704 => 0.21095879951824
705 => 0.22113989880753
706 => 0.22011799881863
707 => 0.21836895024686
708 => 0.21578174287556
709 => 0.21482212249481
710 => 0.20899177284027
711 => 0.20864728467897
712 => 0.21153696340045
713 => 0.21020347609826
714 => 0.20833075489486
715 => 0.20154794853083
716 => 0.19392182846765
717 => 0.19415201309628
718 => 0.19657773999937
719 => 0.20363086812394
720 => 0.20087508894531
721 => 0.1988757395323
722 => 0.19850132148746
723 => 0.20318794721585
724 => 0.20982050449995
725 => 0.21293235198255
726 => 0.20984860563551
727 => 0.20630616387272
728 => 0.20652177588873
729 => 0.20795614603533
730 => 0.20810687805684
731 => 0.20580111263816
801 => 0.20645017209742
802 => 0.20546419142757
803 => 0.19941322987664
804 => 0.19930378716999
805 => 0.19781878362046
806 => 0.19777381830315
807 => 0.1952474568139
808 => 0.19489400137764
809 => 0.18987775730155
810 => 0.19317946434302
811 => 0.190964852607
812 => 0.18762691034673
813 => 0.18705144784291
814 => 0.18703414874515
815 => 0.19046146909623
816 => 0.19313941410924
817 => 0.19100337672631
818 => 0.19051704241956
819 => 0.19570982046132
820 => 0.19504899212229
821 => 0.19447671904257
822 => 0.20922663174169
823 => 0.19755092489029
824 => 0.19245965027704
825 => 0.1861582311363
826 => 0.18821000498304
827 => 0.18864234387938
828 => 0.17348856676209
829 => 0.16734068127289
830 => 0.16523095865118
831 => 0.16401678345528
901 => 0.1645700983387
902 => 0.15903628032338
903 => 0.16275509755058
904 => 0.1579632789113
905 => 0.1571599149225
906 => 0.16572828024195
907 => 0.16692051822049
908 => 0.16183406060474
909 => 0.16510038981674
910 => 0.16391597343909
911 => 0.15804542088852
912 => 0.15782120896195
913 => 0.15487557205197
914 => 0.15026622067555
915 => 0.14815962341112
916 => 0.14706248926548
917 => 0.14751518819669
918 => 0.14728628976426
919 => 0.14579257265976
920 => 0.1473719078802
921 => 0.14333735901834
922 => 0.14173076915298
923 => 0.1410051097834
924 => 0.13742421544852
925 => 0.14312301076624
926 => 0.14424574523536
927 => 0.14537069183822
928 => 0.15516258398242
929 => 0.1546734087225
930 => 0.1590953148342
1001 => 0.15892348769406
1002 => 0.15766228844088
1003 => 0.15234149624889
1004 => 0.15446226918261
1005 => 0.14793485973389
1006 => 0.15282563871357
1007 => 0.15059369143106
1008 => 0.15207101509222
1009 => 0.14941465394455
1010 => 0.15088479388213
1011 => 0.1445119872287
1012 => 0.13856115004353
1013 => 0.1409559406426
1014 => 0.14355935190133
1015 => 0.14920421084709
1016 => 0.14584217942807
1017 => 0.14705129305883
1018 => 0.14300096479895
1019 => 0.13464398067975
1020 => 0.1346912803023
1021 => 0.13340574036236
1022 => 0.13229484616234
1023 => 0.14622834917978
1024 => 0.14449549782348
1025 => 0.14173442597718
1026 => 0.14543023036408
1027 => 0.14640745970428
1028 => 0.14643528004977
1029 => 0.14913164352794
1030 => 0.15057069319958
1031 => 0.15082433194141
1101 => 0.15506711813309
1102 => 0.15648924410084
1103 => 0.16234677969519
1104 => 0.15044859988903
1105 => 0.15020356470573
1106 => 0.14548223791096
1107 => 0.14248789781648
1108 => 0.14568726293899
1109 => 0.14852146368064
1110 => 0.1455703044283
1111 => 0.14595566352429
1112 => 0.14199397334659
1113 => 0.14341009117027
1114 => 0.14462984261169
1115 => 0.14395636755941
1116 => 0.14294814280959
1117 => 0.14828909154063
1118 => 0.14798773428188
1119 => 0.1529613485281
1120 => 0.1568386364996
1121 => 0.16378742969266
1122 => 0.15653600174692
1123 => 0.15627173089076
1124 => 0.15885502090009
1125 => 0.1564888486126
1126 => 0.1579841878208
1127 => 0.16354650742836
1128 => 0.16366403047668
1129 => 0.16169536799744
1130 => 0.16157557470666
1201 => 0.16195367787061
1202 => 0.16416823991168
1203 => 0.16339440388791
1204 => 0.16428990652575
1205 => 0.16540974628678
1206 => 0.17004187834065
1207 => 0.17115866969683
1208 => 0.16844544569125
1209 => 0.16869041944027
1210 => 0.16767559918252
1211 => 0.16669529552919
1212 => 0.16889887498002
1213 => 0.17292595973788
1214 => 0.17290090745261
1215 => 0.17383511284109
1216 => 0.17441711505873
1217 => 0.17191873548893
1218 => 0.17029238225694
1219 => 0.17091602957363
1220 => 0.17191325521428
1221 => 0.17059264273864
1222 => 0.16244121077174
1223 => 0.16491383451501
1224 => 0.164502269019
1225 => 0.16391614970462
1226 => 0.16640239199871
1227 => 0.16616258786421
1228 => 0.15897952302118
1229 => 0.15943935952703
1230 => 0.15900748720213
1231 => 0.16040295503667
]
'min_raw' => 0.13229484616234
'max_raw' => 0.29635678663808
'avg_raw' => 0.21432581640021
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.132294'
'max' => '$0.296356'
'avg' => '$0.214325'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.032260783975095
'max_diff' => -0.21535633179682
'year' => 2034
]
9 => [
'items' => [
101 => 0.15641348877
102 => 0.15764062172416
103 => 0.15841026800935
104 => 0.15886359558403
105 => 0.16050132563341
106 => 0.16030915691472
107 => 0.16048938015604
108 => 0.16291770147456
109 => 0.17519931740438
110 => 0.17586777866158
111 => 0.1725760309529
112 => 0.17389101923566
113 => 0.17136652928908
114 => 0.17306123630283
115 => 0.17422071180075
116 => 0.16898126497997
117 => 0.16867101894297
118 => 0.16613610952836
119 => 0.16749822626316
120 => 0.16533100059844
121 => 0.16586276197023
122 => 0.16437591081658
123 => 0.16705194686403
124 => 0.17004417097904
125 => 0.170800124957
126 => 0.16881153549963
127 => 0.16737166567807
128 => 0.164843728594
129 => 0.16904774430355
130 => 0.17027712661208
131 => 0.16904128688165
201 => 0.16875491581248
202 => 0.16821224315386
203 => 0.16887004638238
204 => 0.17027043113201
205 => 0.16961003554513
206 => 0.17004623846493
207 => 0.16838388274514
208 => 0.17191956255652
209 => 0.17753507300469
210 => 0.17755312778901
211 => 0.17689272864235
212 => 0.17662250754004
213 => 0.17730011714088
214 => 0.17766769255233
215 => 0.1798589577491
216 => 0.18221027260908
217 => 0.19318283310159
218 => 0.1901017820227
219 => 0.1998372904522
220 => 0.20753681362238
221 => 0.20984556396177
222 => 0.20772162228463
223 => 0.20045573254019
224 => 0.20009923332557
225 => 0.21095754018328
226 => 0.20788957115402
227 => 0.20752464600018
228 => 0.20364245891416
301 => 0.20593731230023
302 => 0.20543539420123
303 => 0.20464309192728
304 => 0.20902151232702
305 => 0.21721752445103
306 => 0.21594009909979
307 => 0.21498656033314
308 => 0.21080843102866
309 => 0.21332459808892
310 => 0.21242863919277
311 => 0.21627824720021
312 => 0.21399782469586
313 => 0.20786632827119
314 => 0.2088427892865
315 => 0.2086951991684
316 => 0.21173259334048
317 => 0.21082084300278
318 => 0.20851716528189
319 => 0.21718951137261
320 => 0.21662637745561
321 => 0.21742477259959
322 => 0.21777625083316
323 => 0.2230549550747
324 => 0.22521747130276
325 => 0.22570840034671
326 => 0.22776262350836
327 => 0.22565728940309
328 => 0.23408012690195
329 => 0.2396808223525
330 => 0.24618631832746
331 => 0.25569259645936
401 => 0.25926704497494
402 => 0.25862135284425
403 => 0.2658289044302
404 => 0.27878071441528
405 => 0.26123928394865
406 => 0.27971045282393
407 => 0.27386269401791
408 => 0.25999776308555
409 => 0.2591050249903
410 => 0.26849451719286
411 => 0.289319507193
412 => 0.28410308339304
413 => 0.2893280393936
414 => 0.28323285067907
415 => 0.28293017318511
416 => 0.28903200968245
417 => 0.30328928325228
418 => 0.29651618700516
419 => 0.28680529270359
420 => 0.29397566593762
421 => 0.28776402505558
422 => 0.27376745961954
423 => 0.28409909449207
424 => 0.27719062448083
425 => 0.27920688330458
426 => 0.29372745971085
427 => 0.29198030554096
428 => 0.29424128481891
429 => 0.29025071557347
430 => 0.28652289464321
501 => 0.27956464004526
502 => 0.27750464389662
503 => 0.27807395272121
504 => 0.27750436177544
505 => 0.27361128227755
506 => 0.27277057213064
507 => 0.27136935172011
508 => 0.27180364851691
509 => 0.26916894420362
510 => 0.27414117560049
511 => 0.2750640655629
512 => 0.27868244092385
513 => 0.27905811265733
514 => 0.28913523653324
515 => 0.28358492604157
516 => 0.28730855351013
517 => 0.2869754772212
518 => 0.260298258181
519 => 0.26397414358964
520 => 0.2696926677291
521 => 0.26711648035555
522 => 0.26347435414436
523 => 0.26053314195036
524 => 0.25607690472208
525 => 0.26234897304644
526 => 0.27059607593286
527 => 0.27926727279632
528 => 0.28968514766844
529 => 0.28735999927441
530 => 0.27907251787211
531 => 0.27944428823381
601 => 0.28174242632358
602 => 0.27876612868946
603 => 0.27788836041293
604 => 0.28162183444143
605 => 0.28164754482519
606 => 0.27822295469955
607 => 0.27441714946827
608 => 0.27440120300539
609 => 0.2737239967242
610 => 0.28335332417207
611 => 0.28864848063359
612 => 0.28925556178833
613 => 0.2886076192349
614 => 0.2888569866078
615 => 0.28577585173365
616 => 0.29281841237378
617 => 0.29928136245422
618 => 0.29754915377187
619 => 0.29495232670906
620 => 0.29288382887339
621 => 0.2970618814196
622 => 0.29687583931658
623 => 0.29922491422342
624 => 0.29911834661673
625 => 0.29832844107874
626 => 0.29754918198189
627 => 0.30063885621745
628 => 0.29974907965626
629 => 0.2988579210263
630 => 0.29707056596437
701 => 0.29731349720211
702 => 0.2947171185181
703 => 0.29351591493667
704 => 0.2754526951624
705 => 0.27062561260598
706 => 0.27214431104255
707 => 0.27264430600086
708 => 0.27054355348623
709 => 0.27355549295317
710 => 0.27308608537768
711 => 0.27491227565966
712 => 0.27377135125544
713 => 0.27381817519096
714 => 0.27717339059303
715 => 0.27814742389835
716 => 0.27765202269785
717 => 0.27799898471732
718 => 0.28599457801254
719 => 0.28485786033064
720 => 0.28425400171776
721 => 0.28442127468037
722 => 0.28646432019475
723 => 0.28703626139263
724 => 0.28461290634763
725 => 0.2857557745961
726 => 0.29062196254651
727 => 0.29232485292677
728 => 0.29775966158681
729 => 0.29545085827201
730 => 0.299688766679
731 => 0.31271465231265
801 => 0.32312063107953
802 => 0.31355086296025
803 => 0.33266011777223
804 => 0.34753941370315
805 => 0.34696832154255
806 => 0.34437377213268
807 => 0.32743408930188
808 => 0.31184594060453
809 => 0.32488608889761
810 => 0.32491933091734
811 => 0.32379917061423
812 => 0.31684195117572
813 => 0.32355707445842
814 => 0.32409009655886
815 => 0.32379174592463
816 => 0.31845766209318
817 => 0.31031350198604
818 => 0.31190485137661
819 => 0.31451151414101
820 => 0.30957655772118
821 => 0.30799954012549
822 => 0.31093151587575
823 => 0.32037895264451
824 => 0.31859296944865
825 => 0.31854633020968
826 => 0.3261875236963
827 => 0.32071807823264
828 => 0.31192492338863
829 => 0.30970453582305
830 => 0.30182365579754
831 => 0.30726700770189
901 => 0.30746290424632
902 => 0.30448163603801
903 => 0.31216683687303
904 => 0.31209601639438
905 => 0.31939197079604
906 => 0.33333909537667
907 => 0.32921424434186
908 => 0.32441749137089
909 => 0.32493903141836
910 => 0.33065903846867
911 => 0.32720059163099
912 => 0.32844427322697
913 => 0.33065715600762
914 => 0.33199224313197
915 => 0.32474693292699
916 => 0.32305770453496
917 => 0.31960213608347
918 => 0.31870064277572
919 => 0.32151513117666
920 => 0.32077361292035
921 => 0.30744643990031
922 => 0.30605367616802
923 => 0.30609639024329
924 => 0.30259421961615
925 => 0.29725256879251
926 => 0.31129010822364
927 => 0.31016269735208
928 => 0.30891812300455
929 => 0.30907057626068
930 => 0.31516379635138
1001 => 0.31162942098379
1002 => 0.32102613717127
1003 => 0.31909445481427
1004 => 0.31711323209371
1005 => 0.31683936676421
1006 => 0.31607676504678
1007 => 0.3134615200061
1008 => 0.31030345446761
1009 => 0.30821822605215
1010 => 0.28431502117932
1011 => 0.28875131696517
1012 => 0.29385487088571
1013 => 0.29561659724787
1014 => 0.29260304239764
1015 => 0.31358051351942
1016 => 0.31741329963731
1017 => 0.30580354047976
1018 => 0.30363182856473
1019 => 0.31372289059101
1020 => 0.307636746607
1021 => 0.31037733687034
1022 => 0.30445367974373
1023 => 0.31649009369858
1024 => 0.31639839639076
1025 => 0.31171595950758
1026 => 0.3156735230973
1027 => 0.31498579903273
1028 => 0.30969933932395
1029 => 0.31665768390064
1030 => 0.31666113515274
1031 => 0.31215439145764
1101 => 0.30689150147481
1102 => 0.30595062104979
1103 => 0.30524179403904
1104 => 0.31020300887759
1105 => 0.31465121858851
1106 => 0.32292823405582
1107 => 0.32500927240134
1108 => 0.33313170360648
1109 => 0.32829519129782
1110 => 0.33043915456093
1111 => 0.33276672996515
1112 => 0.33388265520769
1113 => 0.33206431490882
1114 => 0.34468179389646
1115 => 0.34574709571258
1116 => 0.3461042821967
1117 => 0.34184973927352
1118 => 0.34562876917748
1119 => 0.34386068623373
1120 => 0.34846074686577
1121 => 0.3491820951094
1122 => 0.34857113880975
1123 => 0.34880010612799
1124 => 0.33803331368786
1125 => 0.33747499870048
1126 => 0.3298623342314
1127 => 0.33296455127252
1128 => 0.32716510520727
1129 => 0.32900416929547
1130 => 0.32981481122231
1201 => 0.32939137788326
1202 => 0.3331399459695
1203 => 0.32995289731433
1204 => 0.32154175191401
1205 => 0.31312831490276
1206 => 0.31302269105452
1207 => 0.31080758159895
1208 => 0.30920646318011
1209 => 0.30951489539031
1210 => 0.31060185072849
1211 => 0.30914328735988
1212 => 0.30945454580561
1213 => 0.31462350990893
1214 => 0.31566010879649
1215 => 0.31213734075124
1216 => 0.29799291871659
1217 => 0.29452184207069
1218 => 0.29701678312932
1219 => 0.29582436199808
1220 => 0.23875334827726
1221 => 0.25216133640466
1222 => 0.24419476515161
1223 => 0.24786612770933
1224 => 0.2397343213936
1225 => 0.24361524559196
1226 => 0.24289858060118
1227 => 0.26445822873881
1228 => 0.26412160448747
1229 => 0.26428272870283
1230 => 0.25659185009684
1231 => 0.26884362854629
]
'min_raw' => 0.15641348877
'max_raw' => 0.3491820951094
'avg_raw' => 0.2527977919397
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.156413'
'max' => '$0.349182'
'avg' => '$0.252797'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.024118642607655
'max_diff' => 0.052825308471317
'year' => 2035
]
10 => [
'items' => [
101 => 0.27487929517019
102 => 0.27376225391217
103 => 0.27404338913111
104 => 0.26921255462428
105 => 0.26432950174054
106 => 0.25891344459602
107 => 0.26897580932564
108 => 0.267857046138
109 => 0.27042308637216
110 => 0.276949249172
111 => 0.27791025143476
112 => 0.27920184822143
113 => 0.27873890271553
114 => 0.28976814284922
115 => 0.28843242909576
116 => 0.29165111493053
117 => 0.28503003396614
118 => 0.27753765237615
119 => 0.278961709172
120 => 0.27882456105101
121 => 0.27707850805963
122 => 0.27550224949032
123 => 0.2728782230805
124 => 0.28118103092399
125 => 0.28084395208825
126 => 0.28630086662757
127 => 0.2853363039771
128 => 0.27889471852879
129 => 0.27912478101326
130 => 0.28067206178559
131 => 0.28602721820518
201 => 0.28761699323737
202 => 0.28688054610088
203 => 0.28862366184769
204 => 0.29000134946141
205 => 0.28879667820072
206 => 0.30585228282522
207 => 0.29876960667252
208 => 0.3022216537484
209 => 0.30304494663536
210 => 0.3009360992174
211 => 0.30139343271019
212 => 0.30208616833585
213 => 0.30629232340331
214 => 0.31733049136108
215 => 0.32221922081023
216 => 0.33692720456366
217 => 0.32181327988388
218 => 0.32091648214102
219 => 0.32356583415357
220 => 0.33220097761503
221 => 0.33919895033276
222 => 0.34152058160596
223 => 0.34182742350467
224 => 0.34618295811232
225 => 0.34867946932352
226 => 0.34565408164902
227 => 0.34309038236618
228 => 0.3339075297531
229 => 0.33497046994714
301 => 0.34229307381701
302 => 0.35263668308243
303 => 0.36151257590127
304 => 0.35840454759221
305 => 0.38211660966433
306 => 0.38446756376369
307 => 0.3841427379226
308 => 0.38949856122983
309 => 0.37886834265943
310 => 0.3743237182698
311 => 0.34364468325035
312 => 0.35226424070924
313 => 0.3647932736846
314 => 0.36313500918885
315 => 0.35403609054013
316 => 0.36150567355556
317 => 0.3590359958152
318 => 0.35708805851436
319 => 0.36601193691574
320 => 0.3561997660407
321 => 0.3646953897742
322 => 0.35379966446001
323 => 0.35841874480372
324 => 0.35579673140085
325 => 0.35749349541439
326 => 0.34757424766186
327 => 0.352926432973
328 => 0.34735157915657
329 => 0.34734893594999
330 => 0.34722587074301
331 => 0.35378466153535
401 => 0.35399854346762
402 => 0.34915158716229
403 => 0.34845306503501
404 => 0.35103586744985
405 => 0.3480120822591
406 => 0.34942689231837
407 => 0.3480549354145
408 => 0.34774607901761
409 => 0.34528505869956
410 => 0.34422478347939
411 => 0.34464054471315
412 => 0.34322133728272
413 => 0.34236621347092
414 => 0.34705576509368
415 => 0.34455032683761
416 => 0.3466717707479
417 => 0.34425411766456
418 => 0.33587347875642
419 => 0.33105368469669
420 => 0.31522343468484
421 => 0.31971287395084
422 => 0.32268937682886
423 => 0.32170564264543
424 => 0.32381908432602
425 => 0.32394883248055
426 => 0.3232617310462
427 => 0.32246615560837
428 => 0.32207891348331
429 => 0.32496509902196
430 => 0.32664062687167
501 => 0.32298810871314
502 => 0.32213237481275
503 => 0.32582527233209
504 => 0.32807793768557
505 => 0.34471035299233
506 => 0.34347816994441
507 => 0.34657070759097
508 => 0.34622253531083
509 => 0.34946400744431
510 => 0.35476244443422
511 => 0.34398924056745
512 => 0.34585909624936
513 => 0.34540065081743
514 => 0.3504058378324
515 => 0.35042146347993
516 => 0.34742060383682
517 => 0.34904741853273
518 => 0.3481393751988
519 => 0.34978033223264
520 => 0.34346171338858
521 => 0.35115710908789
522 => 0.35551990256905
523 => 0.35558047996077
524 => 0.35764840944557
525 => 0.35974954556853
526 => 0.36378249338615
527 => 0.35963706884278
528 => 0.35217985363819
529 => 0.35271824048931
530 => 0.34834607794335
531 => 0.34841957478564
601 => 0.34802724288143
602 => 0.34920466045934
603 => 0.34372009033499
604 => 0.34500730798077
605 => 0.34320519573874
606 => 0.34585517880929
607 => 0.34300423508328
608 => 0.34540042974116
609 => 0.34643454792039
610 => 0.35025046626473
611 => 0.34244062084119
612 => 0.32651581734253
613 => 0.32986340410753
614 => 0.32491206033483
615 => 0.32537032605209
616 => 0.3262960957334
617 => 0.32329537330328
618 => 0.32386781657932
619 => 0.32384736487728
620 => 0.32367112315799
621 => 0.32289051936052
622 => 0.32175848941643
623 => 0.32626814829324
624 => 0.32703442721288
625 => 0.32873777032936
626 => 0.33380576405535
627 => 0.3332993519706
628 => 0.33412533109166
629 => 0.33232222330806
630 => 0.32545396705073
701 => 0.32582694640968
702 => 0.32117588782698
703 => 0.3286188323044
704 => 0.32685624481008
705 => 0.32571989318618
706 => 0.32540982911737
707 => 0.33049038541955
708 => 0.33201056749312
709 => 0.3310632920405
710 => 0.32912040245072
711 => 0.33285132482684
712 => 0.33384956225971
713 => 0.33407303080735
714 => 0.34068350992442
715 => 0.33444248315673
716 => 0.33594476033018
717 => 0.34766509799354
718 => 0.33703636902892
719 => 0.34266664381042
720 => 0.3423910711584
721 => 0.34527132921851
722 => 0.34215480592904
723 => 0.34219343897033
724 => 0.34475091300212
725 => 0.34115940196734
726 => 0.3402700933276
727 => 0.33904151981114
728 => 0.34172406513786
729 => 0.34333212974015
730 => 0.35629194944123
731 => 0.36466458400771
801 => 0.36430110585993
802 => 0.36762261572809
803 => 0.36612624511094
804 => 0.36129406966554
805 => 0.36954200392982
806 => 0.36693201242037
807 => 0.36714717694927
808 => 0.36713916851476
809 => 0.36887458469912
810 => 0.36764488328395
811 => 0.36522101556837
812 => 0.36683009207514
813 => 0.37160847404487
814 => 0.38644071829759
815 => 0.39474103868251
816 => 0.38594102858823
817 => 0.39201115771443
818 => 0.38837124324687
819 => 0.38770976251003
820 => 0.39152225218031
821 => 0.39534141510906
822 => 0.3950981509412
823 => 0.39232563477111
824 => 0.39075951073662
825 => 0.40261872661582
826 => 0.41135639485914
827 => 0.41076054446301
828 => 0.41339043433057
829 => 0.42111187232116
830 => 0.4218178238428
831 => 0.42172889017719
901 => 0.41997911567236
902 => 0.42758187412952
903 => 0.43392422899228
904 => 0.41957409343034
905 => 0.42503843719526
906 => 0.42749155716149
907 => 0.43109346507982
908 => 0.4371704874879
909 => 0.44377174567366
910 => 0.44470523596024
911 => 0.44404287993029
912 => 0.43968917270543
913 => 0.44691234818168
914 => 0.45114351497136
915 => 0.45366307796608
916 => 0.46005227050539
917 => 0.42750670679526
918 => 0.40446933918176
919 => 0.40087172156529
920 => 0.40818761845771
921 => 0.41011676212505
922 => 0.40933912673169
923 => 0.38340847501687
924 => 0.40073520205049
925 => 0.41937730346608
926 => 0.4200934225038
927 => 0.4294260482604
928 => 0.432465133764
929 => 0.43997912075329
930 => 0.43950911882127
1001 => 0.44133865507951
1002 => 0.4409180763769
1003 => 0.45483615501791
1004 => 0.47018986261363
1005 => 0.46965821254139
1006 => 0.46745093541769
1007 => 0.47072911834307
1008 => 0.48657578998515
1009 => 0.48511688239809
1010 => 0.48653408684947
1011 => 0.50521820579476
1012 => 0.52951021820857
1013 => 0.51822413956419
1014 => 0.54271168274086
1015 => 0.55812529314169
1016 => 0.58478153853285
1017 => 0.5814440453251
1018 => 0.59182112604332
1019 => 0.57546923592738
1020 => 0.53792199095894
1021 => 0.5319799957176
1022 => 0.54387602066604
1023 => 0.57312123720464
1024 => 0.54295498472235
1025 => 0.54905757831091
1026 => 0.54730003094686
1027 => 0.54720637871692
1028 => 0.55078070342238
1029 => 0.54559595901288
1030 => 0.52447237757083
1031 => 0.53415319046367
1101 => 0.53041496369493
1102 => 0.53456280499812
1103 => 0.55694699381155
1104 => 0.54705041036472
1105 => 0.53662516363663
1106 => 0.5497007365811
1107 => 0.56635043419376
1108 => 0.56530852603954
1109 => 0.56328678873654
1110 => 0.57468321605884
1111 => 0.59350677515539
1112 => 0.59859470754
1113 => 0.60235051520812
1114 => 0.60286837763067
1115 => 0.60820268243256
1116 => 0.57951878109486
1117 => 0.62504086917263
1118 => 0.63290127626136
1119 => 0.63142384550917
1120 => 0.6401603571718
1121 => 0.63758985381674
1122 => 0.63386559775489
1123 => 0.64771482704947
1124 => 0.63183780323841
1125 => 0.60930236680032
1126 => 0.59693898066999
1127 => 0.61322008485232
1128 => 0.62316238704423
1129 => 0.6297336163439
1130 => 0.63172206635954
1201 => 0.58174543070311
1202 => 0.55481079591558
1203 => 0.57207558800817
1204 => 0.59313982591343
1205 => 0.57940176818973
1206 => 0.57994027404292
1207 => 0.56035341402699
1208 => 0.59487282840796
1209 => 0.58984364008663
1210 => 0.6159350779942
1211 => 0.60970814694068
1212 => 0.63098470169052
1213 => 0.62538187176989
1214 => 0.64863890552043
1215 => 0.65791676594257
1216 => 0.67349573757501
1217 => 0.68495569252566
1218 => 0.69168519726669
1219 => 0.69128118304377
1220 => 0.71794683345368
1221 => 0.70222303103382
1222 => 0.68247022937879
1223 => 0.68211296351615
1224 => 0.69234321939265
1225 => 0.71378302917616
1226 => 0.71934205991648
1227 => 0.7224487997234
1228 => 0.71769071956271
1229 => 0.70062365897103
1230 => 0.69325418873951
1231 => 0.69953319089088
]
'min_raw' => 0.25891344459602
'max_raw' => 0.7224487997234
'avg_raw' => 0.49068112215971
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.258913'
'max' => '$0.722448'
'avg' => '$0.490681'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.10249995582602
'max_diff' => 0.373266704614
'year' => 2036
]
11 => [
'items' => [
101 => 0.69185451082056
102 => 0.70511006687903
103 => 0.7233127765813
104 => 0.71955398900909
105 => 0.73211905231404
106 => 0.74512257095146
107 => 0.76371818662753
108 => 0.7685797691589
109 => 0.77661578021385
110 => 0.7848874752815
111 => 0.7875441208088
112 => 0.7926164814291
113 => 0.79258974758485
114 => 0.80787564772338
115 => 0.82473646894111
116 => 0.83110103862189
117 => 0.84573601565844
118 => 0.82067413035412
119 => 0.83968385824763
120 => 0.85683110865193
121 => 0.83638744982177
122 => 0.86456427075755
123 => 0.86565831286444
124 => 0.88217704977182
125 => 0.86543214530912
126 => 0.85548907449079
127 => 0.8841943473813
128 => 0.89808392472539
129 => 0.89390027099222
130 => 0.86206245951033
131 => 0.8435314876399
201 => 0.79503235989746
202 => 0.85248167171478
203 => 0.8804635556816
204 => 0.86198999319078
205 => 0.8713069835682
206 => 0.92213746202307
207 => 0.94149041718894
208 => 0.93746513780181
209 => 0.93814534375649
210 => 0.94858784708301
211 => 0.9948956576244
212 => 0.96714694414135
213 => 0.98835979587469
214 => 0.99961101594542
215 => 1.0100617761844
216 => 0.98439801203412
217 => 0.95100983195015
218 => 0.94043439377711
219 => 0.8601531614752
220 => 0.85597417469016
221 => 0.85362838277146
222 => 0.83883849654291
223 => 0.82721769725806
224 => 0.81797640621414
225 => 0.79372449883176
226 => 0.8019088056511
227 => 0.76325632705004
228 => 0.78798481309927
301 => 0.72629452395525
302 => 0.77767202989123
303 => 0.74970958925882
304 => 0.76848561609605
305 => 0.76842010830722
306 => 0.73384748995515
307 => 0.71390672520181
308 => 0.72661375660881
309 => 0.74023670296253
310 => 0.74244698017532
311 => 0.7601094857182
312 => 0.76503871136093
313 => 0.75010292753991
314 => 0.7250161298325
315 => 0.730843220771
316 => 0.71378863938992
317 => 0.68390114151459
318 => 0.7053668642743
319 => 0.71269620580568
320 => 0.71593326056931
321 => 0.68654233901124
322 => 0.67730707334974
323 => 0.67239029540295
324 => 0.72122213093474
325 => 0.72389724911681
326 => 0.71021096627376
327 => 0.77207426251095
328 => 0.75807269328967
329 => 0.77371587657758
330 => 0.73031447334501
331 => 0.73197246539623
401 => 0.71142554556759
402 => 0.72293044772595
403 => 0.71479915370073
404 => 0.72200096532521
405 => 0.72631770151875
406 => 0.74686124980003
407 => 0.77790660421304
408 => 0.74379272875377
409 => 0.72892882469646
410 => 0.73815030717585
411 => 0.76270833021119
412 => 0.7999149922118
413 => 0.77788789945358
414 => 0.78766314917539
415 => 0.78979860636901
416 => 0.7735566436564
417 => 0.80051385654431
418 => 0.81496044593094
419 => 0.82977965734117
420 => 0.8426467633838
421 => 0.82386053842248
422 => 0.84396449203066
423 => 0.82776425424801
424 => 0.81323096620718
425 => 0.81325300720605
426 => 0.80413606332058
427 => 0.78647083573361
428 => 0.78321309673336
429 => 0.80016026641975
430 => 0.8137502916053
501 => 0.81486963117141
502 => 0.82239376739484
503 => 0.82684647370709
504 => 0.8704890487279
505 => 0.88804245343159
506 => 0.90950642443431
507 => 0.91786785078299
508 => 0.94303274635527
509 => 0.92271004938776
510 => 0.91831310606309
511 => 0.85727130077934
512 => 0.86726689297493
513 => 0.88327080051126
514 => 0.85753519932001
515 => 0.87385851475702
516 => 0.87708108299938
517 => 0.85666071343938
518 => 0.86756811513346
519 => 0.8386012900532
520 => 0.77853800184259
521 => 0.80058072415409
522 => 0.81681158727545
523 => 0.79364814435027
524 => 0.83516771924461
525 => 0.81091284072933
526 => 0.80322520867949
527 => 0.77323301521432
528 => 0.78738817602448
529 => 0.80653323370261
530 => 0.79470381390937
531 => 0.81925163617666
601 => 0.8540178991722
602 => 0.87879440854958
603 => 0.88069644128843
604 => 0.86476680565598
605 => 0.89029414841856
606 => 0.89048008724175
607 => 0.86168514032331
608 => 0.8440483956667
609 => 0.84004129017269
610 => 0.85005182533603
611 => 0.86220646307107
612 => 0.88137093909075
613 => 0.89295163057743
614 => 0.92314793205055
615 => 0.93131818543336
616 => 0.94029481683502
617 => 0.95229036467825
618 => 0.96669409545938
619 => 0.93517955251512
620 => 0.93643168405675
621 => 0.9070857780156
622 => 0.87572546878201
623 => 0.89952403437257
624 => 0.93063749309173
625 => 0.92350003128424
626 => 0.92269692102578
627 => 0.9240475297163
628 => 0.91866611660116
629 => 0.89432618452587
630 => 0.88210282301369
701 => 0.8978740778765
702 => 0.90625579793828
703 => 0.9192551147913
704 => 0.91765267460688
705 => 0.95113751879556
706 => 0.96414871671815
707 => 0.960819895509
708 => 0.96143247872404
709 => 0.98498863106707
710 => 1.0111879171647
711 => 1.0357270058955
712 => 1.0606892209308
713 => 1.0305962964139
714 => 1.0153169652178
715 => 1.0310813348441
716 => 1.0227165384208
717 => 1.0707831398288
718 => 1.0741111670217
719 => 1.1221742926673
720 => 1.1677919221555
721 => 1.1391403063986
722 => 1.1661574895602
723 => 1.1953787758927
724 => 1.2517513782109
725 => 1.2327670689622
726 => 1.2182253855998
727 => 1.2044835650871
728 => 1.2330781121213
729 => 1.2698645400718
730 => 1.2777879843163
731 => 1.2906269909811
801 => 1.2771283453521
802 => 1.2933859771851
803 => 1.3507825615211
804 => 1.3352734977799
805 => 1.3132481340609
806 => 1.3585572249676
807 => 1.3749544088321
808 => 1.4900384324651
809 => 1.6353367661857
810 => 1.5751823019451
811 => 1.5378424848185
812 => 1.5466182275555
813 => 1.5996762603713
814 => 1.6167168165339
815 => 1.5703947106519
816 => 1.586756461554
817 => 1.6769113176766
818 => 1.7252765054723
819 => 1.6595900841344
820 => 1.4783638528245
821 => 1.3112649910427
822 => 1.3555871337471
823 => 1.3505623782406
824 => 1.447422524097
825 => 1.3349036117388
826 => 1.3367981416521
827 => 1.4356612527481
828 => 1.4092862696505
829 => 1.366562174885
830 => 1.3115769242158
831 => 1.2099316028338
901 => 1.1199015070962
902 => 1.2964712575304
903 => 1.2888572488204
904 => 1.2778310358755
905 => 1.3023686796235
906 => 1.4215165125324
907 => 1.41876976934
908 => 1.4012963905503
909 => 1.414549794359
910 => 1.3642387891181
911 => 1.377205080729
912 => 1.3112385217293
913 => 1.341058161404
914 => 1.366470508166
915 => 1.3715724130147
916 => 1.3830672651485
917 => 1.2848450122135
918 => 1.3289439201275
919 => 1.3548478970181
920 => 1.2378127870316
921 => 1.3525344891902
922 => 1.2831351813146
923 => 1.2595800138791
924 => 1.2912939436737
925 => 1.2789349943899
926 => 1.2683094955376
927 => 1.2623802846087
928 => 1.2856674945112
929 => 1.2845811183351
930 => 1.2464787230819
1001 => 1.1967757017264
1002 => 1.2134576671394
1003 => 1.2073969527106
1004 => 1.1854321417729
1005 => 1.2002337723035
1006 => 1.1350548823806
1007 => 1.0229179899721
1008 => 1.0969990559431
1009 => 1.0941470154879
1010 => 1.0927088873607
1011 => 1.1483787609875
1012 => 1.1430273871608
1013 => 1.1333145912645
1014 => 1.1852537586594
1015 => 1.1662952638799
1016 => 1.2247208776073
1017 => 1.2632037655399
1018 => 1.2534432603691
1019 => 1.2896366024737
1020 => 1.2138419859296
1021 => 1.2390179171934
1022 => 1.2442066417345
1023 => 1.1846128373961
1024 => 1.1439029381004
1025 => 1.1411880519442
1026 => 1.0706026967353
1027 => 1.1083088237428
1028 => 1.1414886551239
1029 => 1.1255980907513
1030 => 1.120567612788
1031 => 1.1462672337248
1101 => 1.1482643143739
1102 => 1.1027306639321
1103 => 1.1121985517221
1104 => 1.151681217712
1105 => 1.1112036898413
1106 => 1.0325624651552
1107 => 1.013058354133
1108 => 1.0104561461906
1109 => 0.95755945020794
1110 => 1.0143617120941
1111 => 0.98956600257479
1112 => 1.0678953518479
1113 => 1.0231540476318
1114 => 1.0212253394304
1115 => 1.0183098141039
1116 => 0.97277944273669
1117 => 0.98274770046006
1118 => 1.0158837073411
1119 => 1.0277070079001
1120 => 1.0264737407863
1121 => 1.0157213228301
1122 => 1.0206437247092
1123 => 1.0047869531781
1124 => 0.99918759712039
1125 => 0.98151448917788
1126 => 0.95553990282307
1127 => 0.9591518283671
1128 => 0.907689376178
1129 => 0.87964990090632
1130 => 0.87188894370546
1201 => 0.86151066738374
1202 => 0.87306119763154
1203 => 0.90754358951687
1204 => 0.86595050905562
1205 => 0.79464209002019
1206 => 0.79892784750785
1207 => 0.80855667212982
1208 => 0.79061342114784
1209 => 0.77363163995631
1210 => 0.78839592092689
1211 => 0.7581816037393
1212 => 0.81220792801133
1213 => 0.81074666734679
1214 => 0.83088434006993
1215 => 0.84347684009035
1216 => 0.81445520441357
1217 => 0.80715634152371
1218 => 0.8113141055406
1219 => 0.74259552787525
1220 => 0.82526856620793
1221 => 0.82598352607651
1222 => 0.81986160561705
1223 => 0.86388244628551
1224 => 0.95678015054048
1225 => 0.92182829739827
1226 => 0.90829388343625
1227 => 0.88256495260085
1228 => 0.91684722530627
1229 => 0.91421488164926
1230 => 0.90231042534556
1231 => 0.89511057302892
]
'min_raw' => 0.67239029540295
'max_raw' => 1.7252765054723
'avg_raw' => 1.1988334004376
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.67239'
'max' => '$1.72'
'avg' => '$1.19'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.41347685080693
'max_diff' => 1.0028277057489
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.021105563049518
]
1 => [
'year' => 2028
'avg' => 0.036223273181704
]
2 => [
'year' => 2029
'avg' => 0.098955453722624
]
3 => [
'year' => 2030
'avg' => 0.076343985178121
]
4 => [
'year' => 2031
'avg' => 0.07497925465084
]
5 => [
'year' => 2032
'avg' => 0.13146223024279
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.021105563049518
'min' => '$0.0211055'
'max_raw' => 0.13146223024279
'max' => '$0.131462'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.13146223024279
]
1 => [
'year' => 2033
'avg' => 0.33813437428617
]
2 => [
'year' => 2034
'avg' => 0.21432581640021
]
3 => [
'year' => 2035
'avg' => 0.2527977919397
]
4 => [
'year' => 2036
'avg' => 0.49068112215971
]
5 => [
'year' => 2037
'avg' => 1.1988334004376
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.13146223024279
'min' => '$0.131462'
'max_raw' => 1.1988334004376
'max' => '$1.19'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 1.1988334004376
]
]
]
]
'prediction_2025_max_price' => '$0.036086'
'last_price' => 0.03499058
'sma_50day_nextmonth' => '$0.031631'
'sma_200day_nextmonth' => '$0.046684'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'augmenter'
'sma_200day_date_nextmonth' => '4 févr. 2026'
'sma_50day_date_nextmonth' => '4 févr. 2026'
'daily_sma3' => '$0.033672'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.033095'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.031668'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.030822'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.033994'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.041786'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.049697'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.033865'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.033186'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.032232'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.032022'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.03481'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.0404087'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.05216'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.047024'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.060789'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.157032'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.399612'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.033748'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.034057'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.037063'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.04462'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.076627'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.223531'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.759647'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '62.21'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 115.01
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0.01
'momentum_10_action' => 'BUY'
'vwma_10' => '0.032359'
'vwma_10_action' => 'BUY'
'hma_9' => '0.034324'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 234.28
'cci_20_action' => 'SELL'
'adx_14' => 20.07
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.0008032'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 86.02
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.006088'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 14
'buy_signals' => 21
'sell_pct' => 40
'buy_pct' => 60
'overall_action' => 'bullish'
'overall_action_label' => 'Haussier'
'overall_action_dir' => 1
'last_updated' => 1767713687
'last_updated_date' => '6 janvier 2026'
]
Prévision du prix de Mobox pour 2026
La prévision du prix de Mobox pour 2026 suggère que le prix moyen pourrait varier entre $0.012089 à la baisse et $0.036086 à la hausse. Sur le marché des cryptomonnaies, comparé au prix moyen d'aujourd'hui, Mobox pourrait potentiellement gagner 3.13% d'ici 2026 si MBOX atteint l'objectif de prix prévu.
Prévision du prix de Mobox de 2027 à 2032
La prévision du prix de MBOX pour 2027-2032 se situe actuellement dans une fourchette de prix comprise entre $0.0211055 à la baisse et $0.131462 à la hausse. Compte tenu de la volatilité des prix sur le marché, si Mobox atteint l'objectif de prix le plus élevé, il pourrait gagner 275.71% d'ici 2032 par rapport au prix actuel.
| Prévision du Prix de Mobox | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2027 | $0.011638 | $0.0211055 | $0.030573 |
| 2028 | $0.0210031 | $0.036223 | $0.051443 |
| 2029 | $0.046137 | $0.098955 | $0.151772 |
| 2030 | $0.039238 | $0.076343 | $0.113449 |
| 2031 | $0.046391 | $0.074979 | $0.103566 |
| 2032 | $0.070813 | $0.131462 | $0.19211 |
Prévision du prix de Mobox de 2032 à 2037
La prévision du prix de Mobox pour 2032-2037 est actuellement estimée entre $0.131462 à la baisse et $1.19 à la hausse. Par rapport au prix actuel, Mobox pourrait potentiellement gagner 3326.16% d'ici 2037 s'il atteint l'objectif de prix le plus élevé. Veuillez noter que ces informations sont à titre général seulement et ne doivent pas être considérées comme un conseil en investissement à long terme.
| Prévision du Prix de Mobox | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2032 | $0.070813 | $0.131462 | $0.19211 |
| 2033 | $0.164555 | $0.338134 | $0.511713 |
| 2034 | $0.132294 | $0.214325 | $0.296356 |
| 2035 | $0.156413 | $0.252797 | $0.349182 |
| 2036 | $0.258913 | $0.490681 | $0.722448 |
| 2037 | $0.67239 | $1.19 | $1.72 |
Mobox Histogramme des prix potentiels
Prévision du prix de Mobox basée sur l'analyse technique
Au 6 janvier 2026, le sentiment global de prévision du prix pour Mobox est Haussier, avec 21 indicateurs techniques montrant des signaux haussiers et 14 indiquant des signaux baissiers. La prévision du prix de MBOX a été mise à jour pour la dernière fois le 6 janvier 2026.
Moyennes Mobiles Simples sur 50 et 200 jours de Mobox et Indice de Force Relative sur 14 jours - RSI (14)
Selon nos indicateurs techniques, le SMA sur 200 jours de Mobox devrait augmenter au cours du prochain mois, atteignant $0.046684 d'ici le 4 févr. 2026. Le SMA à court terme sur 50 jours pour Mobox devrait atteindre $0.031631 d'ici le 4 févr. 2026.
Le Relative Strength Index (RSI), un oscillateur de momentum, est un outil couramment utilisé pour identifier si une cryptomonnaie est survendue (en dessous de 30) ou surachetée (au-dessus de 70). Actuellement, le RSI est à 62.21, ce qui suggère que le marché de MBOX est dans un état NEUTRAL.
Moyennes Mobiles et Oscillateurs Populaires de MBOX pour le Samedi 19 Octobre 2024
Les moyennes mobiles (MA) sont des indicateurs largement utilisés sur les marchés financiers, conçus pour lisser les mouvements de prix sur une période donnée. En tant qu'indicateurs retardés, ils sont basés sur des données historiques de prix. Le tableau ci-dessous met en évidence deux types : la moyenne mobile simple (SMA) et la moyenne mobile exponentielle (EMA).
Moyenne Mobile Simple Quotidienne (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 3 | $0.033672 | BUY |
| SMA 5 | $0.033095 | BUY |
| SMA 10 | $0.031668 | BUY |
| SMA 21 | $0.030822 | BUY |
| SMA 50 | $0.033994 | BUY |
| SMA 100 | $0.041786 | SELL |
| SMA 200 | $0.049697 | SELL |
Moyenne Mobile Exponentielle Quotidienne (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 3 | $0.033865 | BUY |
| EMA 5 | $0.033186 | BUY |
| EMA 10 | $0.032232 | BUY |
| EMA 21 | $0.032022 | BUY |
| EMA 50 | $0.03481 | BUY |
| EMA 100 | $0.0404087 | SELL |
| EMA 200 | $0.05216 | SELL |
Moyenne Mobile Simple Hebdomadaire (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 21 | $0.047024 | SELL |
| SMA 50 | $0.060789 | SELL |
| SMA 100 | $0.157032 | SELL |
| SMA 200 | $0.399612 | SELL |
Moyenne Mobile Exponentielle Hebdomadaire (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 21 | $0.04462 | SELL |
| EMA 50 | $0.076627 | SELL |
| EMA 100 | $0.223531 | SELL |
| EMA 200 | $0.759647 | SELL |
Oscillateurs de Mobox
Un oscillateur est un outil d'analyse technique qui établit des limites hautes et basses entre deux extrêmes, créant un indicateur de tendance qui fluctue à l'intérieur de ces limites. Les traders utilisent cet indicateur pour identifier les conditions de surachat ou de survente à court terme.
| Période | Valeur | Action |
|---|---|---|
| RSI (14) | 62.21 | NEUTRAL |
| Stoch RSI (14) | 115.01 | SELL |
| Stochastique Rapide (14) | 100 | SELL |
| Indice de Canal des Matières Premières (20) | 234.28 | SELL |
| Indice Directionnel Moyen (14) | 20.07 | NEUTRAL |
| Oscillateur Impressionnant (5, 34) | 0.0008032 | BUY |
| Momentum (10) | 0.01 | BUY |
| MACD (12, 26) | 0 | BUY |
| Plage de Pourcentage de Williams (14) | -0 | SELL |
| Oscillateur Ultime (7, 14, 28) | 86.02 | SELL |
| VWMA (10) | 0.032359 | BUY |
| Moyenne Mobile de Hull (9) | 0.034324 | BUY |
| Nuage Ichimoku B/L (9, 26, 52, 26) | -0.006088 | SELL |
Prévision du cours de Mobox basée sur les flux monétaires mondiaux
Définitions des flux monétaires mondiaux utilisés pour la prédiction du cours de Mobox
M0 : le total de toutes les devises physiques, plus les comptes à la banque centrale qui peuvent être échangés contre des devises physiques.
M1 : M0 plus le montant des comptes à vue, y compris les comptes de "chèques" et les comptes "courants".
M2 : M1 plus la plupart des comptes d'épargne, comptes du marché monétaire et comptes de certificats de dépôt (CD) de moins de 100 000 $.
Prédictions du cours de Mobox par des sociétés Internet ou des niches technologiques
| Comparaison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Action Facebook | $0.049167 | $0.069088 | $0.097081 | $0.136415 | $0.191686 | $0.269351 |
| Action Amazon.com | $0.0730099 | $0.152339 | $0.317865 | $0.663245 | $1.38 | $2.88 |
| Action Apple | $0.049631 | $0.070398 | $0.099854 | $0.141636 | $0.20090049 | $0.284962 |
| Action Netflix | $0.0552096 | $0.087112 | $0.137449 | $0.216873 | $0.342192 | $0.539926 |
| Action Google | $0.045312 | $0.058679 | $0.075989 | $0.0984066 | $0.127436 | $0.165029 |
| Action Tesla | $0.07932 | $0.179814 | $0.407626 | $0.924058 | $2.09 | $4.74 |
| Action Kodak | $0.026239 | $0.019676 | $0.014755 | $0.011064 | $0.008297 | $0.006222 |
| Action Nokia | $0.023179 | $0.015355 | $0.010172 | $0.006738 | $0.004464 | $0.002957 |
Ce calcul montre la valeur potentielle des cryptomonnaies si l'on suppose que leur capitalisation se comportera comme celle de certaines sociétés Internet ou niches technologiques. En extrapolant les données, vous pourrez obtenir une potentielle image des cours futurs pour 2024, 2025, 2026, 2027, 2028, 2029 et 2030.
Aperçu des prévisions relatives à Mobox
Vous vous posez peut-être des questions telles que : "Devrais-je investir dans Mobox maintenant ?", "Devrais-je acheter MBOX aujourd'hui ?", " Mobox sera-t-il un bon ou un mauvais investissement à court ou à long terme ?".
Nous mettons régulièrement à jour les prévisions de Mobox avec de nouvelles valeurs. Regardez nos prévisions similaires. Nous faisons une prévision des cours futurs pour une grande quantité de devises numériques comme Mobox en utilisant des méthodes d'analyse technique.
Si vous souhaitez trouver des cryptomonnaies ayant un bon rendement, vous devriez consulter un maximum d'informations disponibles à propos de Mobox afin de prendre une décision responsable concernant cet investissement.
Le cours de Mobox est de $0.03499 USD actuellement, mais ce cours peut subir une hausse ou une baisse, ce qui pourrait causer la perte de votre investissement, car les cryptomonnaies sont des actifs à haut risque.
Prévision à court terme de Mobox
basée sur l'historique des cours sur 4 heures
Prévision à long terme de Mobox
basée sur l'historique des cours sur 1 mois
Prévision du cours de Mobox basée sur le modèle de croissance du Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Mobox présente 1 % de la précédente croissance annuelle moyenne du Bitcoin | $0.035900097 | $0.036833 | $0.03779 | $0.038772 |
| Si Mobox présente 2 % de la précédente croissance annuelle moyenne du Bitcoin | $0.0368096 | $0.038723 | $0.040736 | $0.042854 |
| Si Mobox présente 5 % de la précédente croissance annuelle moyenne du Bitcoin | $0.039538 | $0.044676 | $0.050483 | $0.057044 |
| Si Mobox présente 10 % de la précédente croissance annuelle moyenne du Bitcoin | $0.044085 | $0.055545 | $0.069983 | $0.088173 |
| Si Mobox présente 20 % de la précédente croissance annuelle moyenne du Bitcoin | $0.05318 | $0.080827 | $0.122847 | $0.186711 |
| Si Mobox présente 50 % de la précédente croissance annuelle moyenne du Bitcoin | $0.080466 | $0.185045 | $0.425541 | $0.978602 |
| Si Mobox présente 100 % de la précédente croissance annuelle moyenne du Bitcoin | $0.125942 | $0.4533069 | $1.63 | $5.87 |
Boîte à questions
Est-ce que MBOX est un bon investissement ?
La décision d'acquérir Mobox dépend entièrement de votre tolérance individuelle au risque. Comme vous pouvez le discerner, la valeur de Mobox a connu une hausse de 4.841% au cours des 24 heures précédentes, et Mobox a enregistré une déclin de sur une période de 30 jours précédents. Par conséquent, la détermination de si investir ou non dans Mobox dépendra de la mesure dans laquelle cet investissement s'aligne avec vos aspirations de trading.
Est-ce que Mobox peut monter ?
Il semble que la valeur moyenne de Mobox pourrait potentiellement s'envoler jusqu'à $0.036086 pour la fin de cette année. En regardant les perspectives de Mobox sur une période de cinq ans plus longue, la monnaie numérique pourrait potentiellement croître jusqu'à $0.113449. Cependant, compte tenu de l'imprévisibilité du marché, il est essentiel de mener des recherches approfondies avant d'investir des fonds dans un projet, un réseau ou un actif particulier.
Quel sera le prix de Mobox la semaine prochaine ?
Basé sur notre nouveau pronostic expérimental de Mobox, le prix de Mobox va augmenter de 0.86% durant la prochaine semaine et atteindre $0.03529 d'ici 13 janvier 2026.
Quel sera le prix de Mobox le mois prochain ?
Basé sur notre nouveau pronostic expérimental de Mobox, le prix de Mobox va diminuer de -11.62% durant le prochain mois et atteindre $0.030925 d'ici 5 février 2026.
Jusqu'où le prix de Mobox peut-il monter cette année en 2026 ?
Selon notre prédiction la plus récente sur la valeur de Mobox en 2026, MBOX devrait fluctuer dans la fourchette de $0.012089 et $0.036086. Cependant, il est crucial de garder à l'esprit que le marché des cryptomonnaies est exceptionnellement instable, et cette prévision de prix de Mobox ne prend pas en compte les fluctuations de prix soudaines et extrêmes.
Où sera Mobox dans 5 ans ?
L'avenir de Mobox semble suivre une tendance haussière, avec un prix maximum de $0.113449 prévue après une période de cinq ans. Selon la prévision de Mobox pour 2030, la valeur de Mobox pourrait potentiellement atteindre son point le plus élevé d'environ $0.113449, tandis que son point le plus bas devrait être autour de $0.039238.
Combien vaudra Mobox en 2026 ?
Basé sur notre nouvelle simulation expérimentale de prédiction de prix de Mobox, il est attendu que la valeur de MBOX en 2026 augmente de 3.13% jusqu'à $0.036086 si le meilleur scénario se produit. Le prix sera entre $0.036086 et $0.012089 durant 2026.
Combien vaudra Mobox en 2027 ?
Selon notre dernière simulation expérimentale pour la prédiction de prix de Mobox, le valeur de MBOX pourrait diminuer de -12.62% jusqu'à $0.030573 en 2027, en supposant les conditions les plus favorables. Il est prévu que le prix fluctue entre $0.030573 et $0.011638 tout au long de l'année.
Combien vaudra Mobox en 2028 ?
Notre nouveau modèle expérimental de prédiction de prix de Mobox suggère que la valeur de MBOX en 2028 pourrait augmenter de 47.02%, atteignant $0.051443 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.051443 et $0.0210031 durant l'année.
Combien vaudra Mobox en 2029 ?
Basé sur notre modèle de prévision expérimental, la valeur de Mobox pourrait connaître un 333.75% croissance en 2029, atteignant potentiellement $0.151772 sous des conditions optimales. Le range de prix prévu pour 2029 se situe entre $0.151772 et $0.046137.
Combien vaudra Mobox en 2030 ?
En utilisant notre nouvelle simulation expérimentale pour les prédictions de prix de Mobox, il est prévu que la valeur de MBOX en 2030 augmente de 224.23%, atteignant $0.113449 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.113449 et $0.039238 au cours de 2030.
Combien vaudra Mobox en 2031 ?
Notre simulation expérimentale indique que le prix de Mobox pourrait augmenter de 195.98% en 2031, atteignant potentiellement $0.103566 dans des conditions idéales. Il est probable que le prix fluctue entre $0.103566 et $0.046391 durant l'année.
Combien vaudra Mobox en 2032 ?
Basé sur les résultats de notre dernière prédiction expérimentale de prix de Mobox, MBOX pourrait connaître une 449.04% hausse en valeur, atteignant $0.19211 si le scénario le plus positif se réalise en 2032. Il est prévu que le prix reste dans une fourchette de $0.19211 et $0.070813 tout au long de l'année.
Combien vaudra Mobox en 2033 ?
Selon notre prédiction expérimentale de prix de Mobox, la valeur de MBOX est anticipée à augmenter de 1362.43% en 2033, avec le prix potentiel le plus élevé étant $0.511713. Tout au long de l'année, le prix de MBOX pourrait osciller entre $0.511713 et $0.164555.
Combien vaudra Mobox en 2034 ?
Les résultats de notre nouvelle simulation de prédiction de prix de Mobox suggèrent que MBOX pourrait augmenter de 746.96% en 2034, atteignant potentiellement $0.296356 dans les meilleures circonstances. La fourchette de prix prévue pour l'année est entre $0.296356 et $0.132294.
Combien vaudra Mobox en 2035 ?
Basé sur notre prédiction expérimentale pour le prix de Mobox, MBOX pourrait augmenter de 897.93%, avec la valeur potentiellement atteignant $0.349182 en 2035. La fourchette de prix attendue pour l'année se situe entre $0.349182 et $0.156413.
Combien vaudra Mobox en 2036 ?
Notre récente simulation de prédiction de prix de Mobox suggère que la valeur de MBOX pourrait augmenter de 1964.7% en 2036, pouvant atteindre $0.722448 si les conditions sont optimales. La fourchette de prix attendue pour 2036 est entre $0.722448 et $0.258913.
Combien vaudra Mobox en 2037 ?
Selon la simulation expérimentale, la valeur de Mobox pourrait augmenter de 4830.69% en 2037, avec un maximum de $1.72 sous des conditions favorables. Il est prévu que le prix chute entre $1.72 et $0.67239 au cours de l'année.
Prévisions liées
Prévision du cours de Chainge Finance
Prévision du cours de Trias Token
Prévision du cours de SuperRare
Prévision du cours de CONX
Prévision du cours de Banana Gun
Prévision du cours de Dora Factory
Prévision du cours de Automata
Prévision du cours de Storm
Prévision du cours de Adventure Gold
Prévision du cours de Star Atlas
Prévision du cours de Radio Caca
Prévision du cours de CoinEx Token
Prévision du cours de Blendr Network
Prévision du cours de Access Protocol
Prévision du cours de Bancor Network Token
Prévision du cours de Gitcoin
Prévision du cours de Wexo
Prévision du cours de Origin Protocol
Prévision du cours de Euler
Prévision du cours de Polkastarter
Prévision du cours de ArbDoge AI
Prévision du cours de PhoenixPrévision du cours de Opulous
Prévision du cours de Mainframe
Prévision du cours de Frontier Token
Comment lire et prédire les mouvements de prix de Mobox ?
Les traders de Mobox utilisent des indicateurs et des modèles graphiques pour prédire la direction du marché. Ils identifient également des niveaux clés de support et de résistance pour évaluer quand une tendance baissière pourrait ralentir ou une tendance haussière pourrait s'arrêter.
Indicateurs de prédiction du prix de Mobox
Les moyennes mobiles sont des outils populaires pour la prédiction du prix de Mobox. Une moyenne mobile simple (SMA) calcule le prix de clôture moyen de MBOX sur une période spécifique, comme une SMA de 12 jours. Une moyenne mobile exponentielle (EMA) donne plus de poids aux prix récents, réagissant plus rapidement aux changements de prix.
Les moyennes mobiles couramment utilisées sur le marché des cryptomonnaies incluent les moyennes sur 50 jours, 100 jours et 200 jours, qui aident à identifier les niveaux clés de résistance et de support. Un mouvement de prix de MBOX au-dessus de ces moyennes est considéré comme haussier, tandis qu'une chute en dessous indique une faiblesse.
Les traders utilisent également le RSI et les niveaux de retracement de Fibonacci pour évaluer la direction future de MBOX.
Comment lire les graphiques de Mobox et prédire les mouvements de prix ?
La plupart des traders préfèrent les graphiques en chandeliers aux simples graphiques linéaires parce qu'ils fournissent des informations plus détaillées. Les chandeliers peuvent représenter l'action des prix de Mobox dans différentes périodes, comme 5 minutes pour les tendances à court terme et hebdomadaire pour les tendances à long terme. Les options populaires incluent les graphiques de 1 heure, 4 heures et 1 jour.
Par exemple, un graphique en chandeliers de 1 heure montre les prix d'ouverture, de clôture, les plus hauts et les plus bas de MBOX au sein de chaque heure. La couleur du chandelier est cruciale : le vert indique que le prix a clôturé plus haut qu'il n'a ouvert, tandis que le rouge signifie le contraire. Certains graphiques utilisent des chandeliers creux et pleins pour transmettre la même information.
Qu'est-ce qui affecte le prix de Mobox ?
L'action du prix de Mobox est déterminée par l'offre et la demande, influencée par des facteurs tels que les réductions de récompenses de bloc, les hard forks et les mises à jour de protocole. Les événements du monde réel, tels que les réglementations, l'adoption par les entreprises et les gouvernements et les piratages d'échanges de cryptomonnaies, impactent également le prix de MBOX. La capitalisation boursière de Mobox peut changer rapidement.
Les traders surveillent souvent l'activité des « baleines » de MBOX, de grands détenteurs de Mobox, car leurs actions peuvent influencer significativement les mouvements de prix sur le marché relativement petit de Mobox.
Modèles de prédiction de prix haussiers et baissiers
Les traders identifient souvent des modèles de chandeliers pour obtenir un avantage dans les prédictions de prix des cryptomonnaies. Certaines formations indiquent des tendances haussières, tandis que d'autres suggèrent des mouvements baissiers.
Modèles de chandeliers haussiers couramment suivis :
- Marteau
- Englobante haussière
- Ligne pénétrante
- Étoile du matin
- Trois soldats blancs
Modèles de chandeliers baissiers courants :
- Harami baissier
- Nuage sombre
- Étoile du soir
- Étoile filante
- Pendu


