Prédiction du prix de mStable Governance: Meta jusqu'à $0.031428 d'ici 2026
| Année | Prix min. | Prix max. |
|---|---|---|
| 2026 | $0.010528 | $0.031428 |
| 2027 | $0.010135 | $0.026626 |
| 2028 | $0.018291 | $0.0448026 |
| 2029 | $0.040182 | $0.13218 |
| 2030 | $0.034173 | $0.0988046 |
| 2031 | $0.0404032 | $0.090197 |
| 2032 | $0.061672 | $0.167311 |
| 2033 | $0.143313 | $0.445657 |
| 2034 | $0.115217 | $0.2581008 |
| 2035 | $0.136222 | $0.304107 |
Calculateur de profit d’investissement
Si vous ouvrez une position short de $10,000.00 sur mStable Governance: Meta aujourd’hui et la fermez le Apr 06, 2026, notre prévision indique que vous pourriez gagner environ $3,954.47, soit un rendement de 39.54% sur les 90 prochains jours.
Prévision du prix à long terme de Meta pour 2027, 2028, 2029, 2030, 2031, 2032 et 2037
[
'name' => 'mStable Governance: Meta'
'name_with_ticker' => 'mStable Governance: Meta <small>MTA</small>'
'name_lang' => 'Meta'
'name_lang_with_ticker' => 'Meta <small>MTA</small>'
'name_with_lang' => 'Meta/mStable Governance: Meta'
'name_with_lang_with_ticker' => 'Meta/mStable Governance: Meta <small>MTA</small>'
'image' => '/uploads/coins/meta.png?1717499861'
'price_for_sd' => 0.03047
'ticker' => 'MTA'
'marketcap' => '$1.51M'
'low24h' => '$0.0291'
'high24h' => '$0.03033'
'volume24h' => '$138.31'
'current_supply' => '49.95M'
'max_supply' => '84.58M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.03047'
'change_24h_pct' => '2.9843%'
'ath_price' => '$11.03'
'ath_days' => 1954
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '31 août 2020'
'ath_pct' => '-99.73%'
'fdv' => '$2.56M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$1.50'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.030734'
'next_week_prediction_price_date' => '13 janvier 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.026933'
'next_month_prediction_price_date' => '5 février 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.010528'
'current_year_max_price_prediction' => '$0.031428'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.034173'
'grand_prediction_max_price' => '$0.0988046'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.031051191154318
107 => 0.031167125030506
108 => 0.031428329973288
109 => 0.029196362336029
110 => 0.030198450278031
111 => 0.030787083061015
112 => 0.02812761873285
113 => 0.030734514002077
114 => 0.029157508745144
115 => 0.028622249475117
116 => 0.029342905567162
117 => 0.029062065187231
118 => 0.028820615120067
119 => 0.02868588183395
120 => 0.029215052132038
121 => 0.029190365705136
122 => 0.028324540389937
123 => 0.027195106561813
124 => 0.027574181626933
125 => 0.027436460101927
126 => 0.026937339528876
127 => 0.027273686531065
128 => 0.025792584554749
129 => 0.023244425585479
130 => 0.024927817452799
131 => 0.024863008697085
201 => 0.024830329183611
202 => 0.026095351646368
203 => 0.025973748925608
204 => 0.02575303879669
205 => 0.026933286014276
206 => 0.026502479903292
207 => 0.027830122826659
208 => 0.028704594322549
209 => 0.028482800065002
210 => 0.029305244733574
211 => 0.027582914750809
212 => 0.028155003683199
213 => 0.028272910419283
214 => 0.026918721946816
215 => 0.02599364463461
216 => 0.02593195252454
217 => 0.024327995948681
218 => 0.02518481660482
219 => 0.025938783324574
220 => 0.025577691775992
221 => 0.025463380979015
222 => 0.026047370049786
223 => 0.026092751002114
224 => 0.025058060479798
225 => 0.025273205403775
226 => 0.026170395501626
227 => 0.025250598515262
228 => 0.02346358321874
301 => 0.023020378717783
302 => 0.022961247067476
303 => 0.021759241309889
304 => 0.023049995761802
305 => 0.022486546853473
306 => 0.024266475203729
307 => 0.02324978967601
308 => 0.023205962394934
309 => 0.023139711031523
310 => 0.022105095021735
311 => 0.022331610174601
312 => 0.023084581041959
313 => 0.023353249530256
314 => 0.023325225205791
315 => 0.023080891073927
316 => 0.023192745988301
317 => 0.022832422336267
318 => 0.022705184555245
319 => 0.022303587118832
320 => 0.021713349831428
321 => 0.021795425946377
322 => 0.020626011436042
323 => 0.019988852345287
324 => 0.019812495106587
325 => 0.019576662836522
326 => 0.019839132989017
327 => 0.020622698631664
328 => 0.019677552223907
329 => 0.01805716500212
330 => 0.018154553035154
331 => 0.018373355030617
401 => 0.017965618959592
402 => 0.017579730987062
403 => 0.017915229271096
404 => 0.017228649844038
405 => 0.018456324874205
406 => 0.018423119705159
407 => 0.018880721037491
408 => 0.019166868541523
409 => 0.018507391186084
410 => 0.018341534414607
411 => 0.01843601396941
412 => 0.016874477384326
413 => 0.018753110184109
414 => 0.018769356678573
415 => 0.018630244329436
416 => 0.01963055829904
417 => 0.021741532780655
418 => 0.02094729926692
419 => 0.020639748044566
420 => 0.020055092946054
421 => 0.020834111151437
422 => 0.020774294707841
423 => 0.020503782065186
424 => 0.020340175174857
425 => 0.020641625886748
426 => 0.020302822095646
427 => 0.020241963625059
428 => 0.019873227507967
429 => 0.01974160549059
430 => 0.019644157788947
501 => 0.019536877444452
502 => 0.019773511151812
503 => 0.019237268039178
504 => 0.018590611413901
505 => 0.018536848912431
506 => 0.018685291905837
507 => 0.018619616931536
508 => 0.018536534485921
509 => 0.018377907471083
510 => 0.018330846224311
511 => 0.01848377244545
512 => 0.018311127657937
513 => 0.018565874446361
514 => 0.018496597415692
515 => 0.018109621553881
516 => 0.01762730635325
517 => 0.017623012736274
518 => 0.017519098717453
519 => 0.017386748590908
520 => 0.017349931813464
521 => 0.017886974541396
522 => 0.018998636915878
523 => 0.018780390991941
524 => 0.018938096038727
525 => 0.019713848782495
526 => 0.01996043725204
527 => 0.019785414597125
528 => 0.01954583279215
529 => 0.019556373175671
530 => 0.020375096729614
531 => 0.020426159513406
601 => 0.020555178694572
602 => 0.020721004803186
603 => 0.019813655500474
604 => 0.01951363710511
605 => 0.019371471744999
606 => 0.018933657460777
607 => 0.01940580263095
608 => 0.019130703859562
609 => 0.019167824082535
610 => 0.019143649488627
611 => 0.019156850451579
612 => 0.018455981714014
613 => 0.018711341445407
614 => 0.018286756364133
615 => 0.017718284602218
616 => 0.017716378885541
617 => 0.017855511543916
618 => 0.017772749994453
619 => 0.017550040792842
620 => 0.017581675583773
621 => 0.017304521527526
622 => 0.017615327104237
623 => 0.017624239896062
624 => 0.017504562819334
625 => 0.017983401693162
626 => 0.018179582370466
627 => 0.018100808354832
628 => 0.018174055375533
629 => 0.018789460095402
630 => 0.018889797916731
701 => 0.018934361349021
702 => 0.018874652253276
703 => 0.018185303844098
704 => 0.018215879377381
705 => 0.017991536401337
706 => 0.01780199022726
707 => 0.017809571080184
708 => 0.017907022452938
709 => 0.018332598313199
710 => 0.019228197622052
711 => 0.019262184961148
712 => 0.019303378607614
713 => 0.019135823345171
714 => 0.01908528707473
715 => 0.01915195745996
716 => 0.01948829747199
717 => 0.020353455298356
718 => 0.02004765074057
719 => 0.019799026874958
720 => 0.020017137033612
721 => 0.019983560684291
722 => 0.01970014250598
723 => 0.019692187901668
724 => 0.019148217803215
725 => 0.018947124443417
726 => 0.018779075780392
727 => 0.018595571027391
728 => 0.018486783258677
729 => 0.018653930714578
730 => 0.018692159315374
731 => 0.018326688481807
801 => 0.018276876157653
802 => 0.018575327529579
803 => 0.018443990208183
804 => 0.018579073900248
805 => 0.018610414475534
806 => 0.018605367921078
807 => 0.018468236673545
808 => 0.01855564004141
809 => 0.018348905020212
810 => 0.018124111735255
811 => 0.017980707624569
812 => 0.0178555685182
813 => 0.017925002967541
814 => 0.017677481833871
815 => 0.017598294841593
816 => 0.018526029747015
817 => 0.019211357496482
818 => 0.019201392559585
819 => 0.019140733568999
820 => 0.019050606613216
821 => 0.019481704123809
822 => 0.019331518371185
823 => 0.019440791054658
824 => 0.019468605538762
825 => 0.019552791604959
826 => 0.019582880887587
827 => 0.019491930177134
828 => 0.019186688484159
829 => 0.018426055206776
830 => 0.018071978362864
831 => 0.017955127106757
901 => 0.017959374427984
902 => 0.017842214347656
903 => 0.017876723242059
904 => 0.017830213562482
905 => 0.017742135481261
906 => 0.017919564394223
907 => 0.017940011423577
908 => 0.017898597395174
909 => 0.017908351898073
910 => 0.017565461431059
911 => 0.017591530648547
912 => 0.017446373932857
913 => 0.017419158798556
914 => 0.017052215261532
915 => 0.01640212159638
916 => 0.016762336592993
917 => 0.016327247530978
918 => 0.016162472710517
919 => 0.016942491082835
920 => 0.016864198872596
921 => 0.016730196641473
922 => 0.01653197941313
923 => 0.016458458715004
924 => 0.016011770227017
925 => 0.015985377488157
926 => 0.016206768364407
927 => 0.016104604092612
928 => 0.015961126762377
929 => 0.015441466416331
930 => 0.014857196133746
1001 => 0.014874831580985
1002 => 0.01506067708714
1003 => 0.015601047960967
1004 => 0.015389915712052
1005 => 0.015236736843001
1006 => 0.015208051045367
1007 => 0.015567113860535
1008 => 0.016075262969982
1009 => 0.01631367516294
1010 => 0.016077415920405
1011 => 0.015806014023682
1012 => 0.01582253299958
1013 => 0.015932426345599
1014 => 0.015943974582458
1015 => 0.015767319848257
1016 => 0.015817047121174
1017 => 0.015741506846456
1018 => 0.015277916319953
1019 => 0.01526953143739
1020 => 0.015155758845778
1021 => 0.015152313856921
1022 => 0.014958758296687
1023 => 0.014931678535824
1024 => 0.014547362222998
1025 => 0.014800320383917
1026 => 0.014630649330472
1027 => 0.014374915031575
1028 => 0.014330826342053
1029 => 0.014329500982807
1030 => 0.014592082926632
1031 => 0.014797251961021
1101 => 0.014633600831089
1102 => 0.014596340641047
1103 => 0.014994181990085
1104 => 0.014943553052016
1105 => 0.014899708718169
1106 => 0.016029763790659
1107 => 0.015135237021486
1108 => 0.014745172292324
1109 => 0.014262393118703
1110 => 0.014419588452018
1111 => 0.014452711818427
1112 => 0.013291714933354
1113 => 0.012820698641673
1114 => 0.012659063600243
1115 => 0.012566040348716
1116 => 0.012608432212549
1117 => 0.012184462305335
1118 => 0.012469377094798
1119 => 0.012102254992435
1120 => 0.012040705777255
1121 => 0.012697165573982
1122 => 0.012788508119714
1123 => 0.012398812441716
1124 => 0.01264906015299
1125 => 0.012558316854179
1126 => 0.012108548247176
1127 => 0.012091370394662
1128 => 0.011865692317799
1129 => 0.011512549827395
1130 => 0.011351154233202
1201 => 0.011267098006446
1202 => 0.011301781243829
1203 => 0.011284244337683
1204 => 0.011169804162664
1205 => 0.011290803914556
1206 => 0.010981699549021
1207 => 0.010858611700042
1208 => 0.010803015774275
1209 => 0.010528667858479
1210 => 0.010965277395582
1211 => 0.011051294974653
1212 => 0.011137482034928
1213 => 0.01188768155221
1214 => 0.011850203704368
1215 => 0.012188985196404
1216 => 0.012175820770602
1217 => 0.012079194801178
1218 => 0.011671545730374
1219 => 0.01183402738435
1220 => 0.011333934108667
1221 => 0.011708637993846
1222 => 0.011537638788659
1223 => 0.011650822990563
1224 => 0.011447307590132
1225 => 0.011559941415675
1226 => 0.011071692933693
1227 => 0.010615773371059
1228 => 0.010799248712185
1229 => 0.010998707390939
1230 => 0.011431184627603
1231 => 0.011173604753305
]
'min_raw' => 0.010528667858479
'max_raw' => 0.031428329973288
'avg_raw' => 0.020978498915883
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.010528'
'max' => '$0.031428'
'avg' => '$0.020978'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.019945062141521
'max_diff' => 0.00095459997328752
'year' => 2026
]
1 => [
'items' => [
101 => 0.011266240216276
102 => 0.010955926922313
103 => 0.010315661960258
104 => 0.01031928579041
105 => 0.010220794974928
106 => 0.010135684530458
107 => 0.011203190900401
108 => 0.01107042960852
109 => 0.010858891865276
110 => 0.011142043540784
111 => 0.01121691333801
112 => 0.011219044775882
113 => 0.01142562492913
114 => 0.01153587679395
115 => 0.011555309162983
116 => 0.011880367497578
117 => 0.011989322763711
118 => 0.012438094084987
119 => 0.011526522693507
120 => 0.011507749480575
121 => 0.01114602806553
122 => 0.010916618625519
123 => 0.011161735926156
124 => 0.011378876392672
125 => 0.011152775225101
126 => 0.01118229926433
127 => 0.01087877692001
128 => 0.010987271876051
129 => 0.011080722348042
130 => 0.011029124490173
131 => 0.01095187999958
201 => 0.011361073350655
202 => 0.011337985058146
203 => 0.011719035313981
204 => 0.012016091237571
205 => 0.012548468557741
206 => 0.011992905070686
207 => 0.011972658129053
208 => 0.012170575231228
209 => 0.011989292463634
210 => 0.012103856915085
211 => 0.012530010453452
212 => 0.012539014406194
213 => 0.012388186596832
214 => 0.012379008710925
215 => 0.012407976841589
216 => 0.012577644087687
217 => 0.012518357138553
218 => 0.012586965497053
219 => 0.012672761299927
220 => 0.013027649117279
221 => 0.013113211368575
222 => 0.012905339456866
223 => 0.01292410796305
224 => 0.012846358161859
225 => 0.012771252828111
226 => 0.012940078650124
227 => 0.013248611158132
228 => 0.013246691793413
301 => 0.013318265338256
302 => 0.013362855063745
303 => 0.013171443320269
304 => 0.01304684131367
305 => 0.013094621651632
306 => 0.013171023452553
307 => 0.013069845577311
308 => 0.012445328861168
309 => 0.012634767338563
310 => 0.012603235512856
311 => 0.012558330358649
312 => 0.012748812212554
313 => 0.012730439773062
314 => 0.012180113881141
315 => 0.012215343959214
316 => 0.012182256338874
317 => 0.012289169209281
318 => 0.011983518817774
319 => 0.012077534819615
320 => 0.012136500774624
321 => 0.012171232175122
322 => 0.012296705809266
323 => 0.012281982926511
324 => 0.012295790614202
325 => 0.012481834889827
326 => 0.013422782993248
327 => 0.013473996722433
328 => 0.013221801589388
329 => 0.01332254857071
330 => 0.013129136397514
331 => 0.01325897528513
401 => 0.013347807754486
402 => 0.012946390906966
403 => 0.01292262160643
404 => 0.012728411152394
405 => 0.012832768849751
406 => 0.012666728249673
407 => 0.012707468805078
408 => 0.012593554660467
409 => 0.012798577440688
410 => 0.013027824766293
411 => 0.013085741693993
412 => 0.012933387192021
413 => 0.012823072491943
414 => 0.012629396218526
415 => 0.012951484177575
416 => 0.013045672512253
417 => 0.01295098944635
418 => 0.012929049311114
419 => 0.012887472794488
420 => 0.012937869965662
421 => 0.013045159542355
422 => 0.012994563759314
423 => 0.013027983165395
424 => 0.012900622851354
425 => 0.01317150668552
426 => 0.013601735405922
427 => 0.013603118661607
428 => 0.013552522605836
429 => 0.013531819789921
430 => 0.013583734413568
501 => 0.013611895967247
502 => 0.013779778340607
503 => 0.013959922815951
504 => 0.014800578479187
505 => 0.014564525732888
506 => 0.015310405448141
507 => 0.015900299462547
508 => 0.016077182884528
509 => 0.015914458459313
510 => 0.015357786990855
511 => 0.015330474032871
512 => 0.01616237622738
513 => 0.015927325753897
514 => 0.015899367248
515 => 0.015601935981904
516 => 0.015777754697746
517 => 0.015739300565486
518 => 0.015678598836474
519 => 0.016014048698662
520 => 0.016641980894864
521 => 0.016544111773375
522 => 0.016471057014202
523 => 0.016150952325424
524 => 0.016343726846039
525 => 0.0162750835316
526 => 0.016570018772551
527 => 0.016395305669427
528 => 0.015925545015381
529 => 0.01600035594789
530 => 0.01598904842594
531 => 0.016221756426409
601 => 0.016151903260836
602 => 0.015975408474258
603 => 0.016639834690882
604 => 0.016596690548108
605 => 0.016657859078438
606 => 0.016684787357189
607 => 0.017089211886745
608 => 0.017254891676362
609 => 0.017292503889239
610 => 0.01744988687524
611 => 0.017288588057174
612 => 0.017933898333547
613 => 0.018362992012437
614 => 0.018861406401426
615 => 0.019589723784897
616 => 0.019863577858394
617 => 0.01981410857119
618 => 0.020366310499166
619 => 0.02135860508898
620 => 0.020014679678579
621 => 0.021429836399037
622 => 0.02098181412011
623 => 0.019919561356351
624 => 0.019851164801502
625 => 0.020570534706128
626 => 0.022166027917801
627 => 0.021766374964211
628 => 0.022166681606862
629 => 0.021699702644671
630 => 0.02167651320319
701 => 0.022144001480985
702 => 0.02323631332351
703 => 0.022717396911823
704 => 0.021973402992146
705 => 0.022522756524608
706 => 0.02204685565452
707 => 0.020974517797946
708 => 0.02176606935713
709 => 0.021236781371594
710 => 0.02139125574427
711 => 0.022503740364221
712 => 0.022369883271479
713 => 0.02254310674432
714 => 0.022237371848804
715 => 0.021951767246423
716 => 0.021418665046805
717 => 0.021260839767118
718 => 0.021304456996465
719 => 0.021260818152586
720 => 0.020962552371361
721 => 0.020898141904304
722 => 0.020790788303988
723 => 0.020824061673681
724 => 0.020622205497684
725 => 0.021003149807406
726 => 0.02107385642816
727 => 0.021351075928657
728 => 0.021379857776838
729 => 0.022151910139749
730 => 0.021726676672071
731 => 0.022011959995081
801 => 0.02198644156948
802 => 0.019942583594774
803 => 0.020224209190577
804 => 0.020662330238666
805 => 0.020464957300361
806 => 0.020185918143752
807 => 0.019960579063658
808 => 0.019619167315211
809 => 0.020099697794918
810 => 0.020731544277013
811 => 0.02139588244633
812 => 0.022194041227603
813 => 0.022015901479215
814 => 0.021380961423102
815 => 0.021409444370195
816 => 0.021585514741499
817 => 0.02135748761298
818 => 0.021290237961162
819 => 0.021576275672028
820 => 0.021578245456539
821 => 0.021315872687179
822 => 0.021024293367746
823 => 0.021023071639751
824 => 0.02097118791618
825 => 0.021708932643834
826 => 0.022114617649639
827 => 0.02216112878176
828 => 0.022111487079866
829 => 0.022130592200716
830 => 0.021894533034497
831 => 0.022434094287302
901 => 0.022929249049953
902 => 0.022796536996124
903 => 0.022597582761304
904 => 0.022439106130336
905 => 0.022759204938328
906 => 0.02274495144229
907 => 0.022924924305065
908 => 0.022916759696436
909 => 0.022856241591806
910 => 0.022796539157416
911 => 0.023033252561316
912 => 0.022965082902494
913 => 0.022896807357362
914 => 0.022759870299139
915 => 0.022778482319635
916 => 0.022579562437069
917 => 0.022487532997439
918 => 0.021103631034911
919 => 0.020733807210222
920 => 0.020850161313928
921 => 0.020888468106
922 => 0.020727520303554
923 => 0.020958278108164
924 => 0.020922314748748
925 => 0.021062227142373
926 => 0.020974815953126
927 => 0.020978403338823
928 => 0.021235461008366
929 => 0.021310085943436
930 => 0.021272131099163
1001 => 0.021298713371076
1002 => 0.021911290607643
1003 => 0.021824201713721
1004 => 0.02177793747457
1005 => 0.02179075298499
1006 => 0.021947279602737
1007 => 0.02199109850967
1008 => 0.021805434721896
1009 => 0.02189299483752
1010 => 0.022265814696812
1011 => 0.022396280547788
1012 => 0.022812664916941
1013 => 0.022635777436283
1014 => 0.022960462062542
1015 => 0.023958431910517
1016 => 0.02475567927934
1017 => 0.024022497651329
1018 => 0.025486540915333
1019 => 0.026626508600892
1020 => 0.026582754742405
1021 => 0.0263839750085
1022 => 0.025086152106099
1023 => 0.023891876121861
1024 => 0.024890938694313
1025 => 0.02489348551027
1026 => 0.024807665149271
1027 => 0.024274642257726
1028 => 0.02478911710804
1029 => 0.024829954253359
1030 => 0.024807096311454
1031 => 0.024398428910244
1101 => 0.023774469322958
1102 => 0.023896389532765
1103 => 0.024096097323535
1104 => 0.023718008812199
1105 => 0.023597186623636
1106 => 0.023821818059536
1107 => 0.024545627349824
1108 => 0.024408795396237
1109 => 0.024405222160947
1110 => 0.024990647284172
1111 => 0.024571609238592
1112 => 0.023897927337054
1113 => 0.023727813772143
1114 => 0.023124025218937
1115 => 0.023541064123257
1116 => 0.023556072610984
1117 => 0.023327664665122
1118 => 0.023916461383032
1119 => 0.023911035517621
1120 => 0.024470010370451
1121 => 0.025538560347696
1122 => 0.025222537539274
1123 => 0.024855037396262
1124 => 0.024894994851481
1125 => 0.02533322951183
1126 => 0.025068262832259
1127 => 0.025163546697646
1128 => 0.025333085288288
1129 => 0.025435372129429
1130 => 0.024880277349146
1201 => 0.02475085820261
1202 => 0.024486112048744
1203 => 0.024417044718922
1204 => 0.024632674937136
1205 => 0.024575863992964
1206 => 0.023554811205706
1207 => 0.023448105508353
1208 => 0.02345137801975
1209 => 0.023183061470178
1210 => 0.02277381432873
1211 => 0.023849291381579
1212 => 0.023762915522944
1213 => 0.02366756325997
1214 => 0.023679243368112
1215 => 0.024146071505455
1216 => 0.02387528761041
1217 => 0.024595210975994
1218 => 0.024447216374907
1219 => 0.024295426270737
1220 => 0.024274444254701
1221 => 0.024216018014719
1222 => 0.024015652698373
1223 => 0.023773699538797
1224 => 0.023613941105221
1225 => 0.021782612441363
1226 => 0.022122496389026
1227 => 0.022513501889416
1228 => 0.022648475421295
1229 => 0.022417593855132
1230 => 0.024024769309845
1231 => 0.024318415752549
]
'min_raw' => 0.010135684530458
'max_raw' => 0.026626508600892
'avg_raw' => 0.018381096565675
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.010135'
'max' => '$0.026626'
'avg' => '$0.018381'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00039298332802159
'max_diff' => -0.0048018213723951
'year' => 2027
]
2 => [
'items' => [
101 => 0.023428941523515
102 => 0.023262557212256
103 => 0.024035677437591
104 => 0.023569391431611
105 => 0.023779359991553
106 => 0.02332552281162
107 => 0.024247684923473
108 => 0.024240659593225
109 => 0.023881917703738
110 => 0.024185123892174
111 => 0.024132434355396
112 => 0.023727415645707
113 => 0.024260524738989
114 => 0.024260789154449
115 => 0.023915507885539
116 => 0.023512294955241
117 => 0.023440210006768
118 => 0.023385903681344
119 => 0.023766003964537
120 => 0.024106800689905
121 => 0.024740938905142
122 => 0.024900376319205
123 => 0.025522671160642
124 => 0.025152124881552
125 => 0.025316383247695
126 => 0.025494708939908
127 => 0.025580204834465
128 => 0.025440893862247
129 => 0.026407573897775
130 => 0.026489191311084
131 => 0.026516556923779
201 => 0.026190597854763
202 => 0.026480125799719
203 => 0.026344665262432
204 => 0.026697095948432
205 => 0.026752361580058
206 => 0.026705553556203
207 => 0.02672309573999
208 => 0.025898204863711
209 => 0.025855429920129
210 => 0.02527219052923
211 => 0.025509864892109
212 => 0.025065544062735
213 => 0.025206442774741
214 => 0.025268549584461
215 => 0.025236108511594
216 => 0.025523302643983
217 => 0.025279128961567
218 => 0.024634714467802
219 => 0.023990124403739
220 => 0.023982032100557
221 => 0.023812322914649
222 => 0.023689654257025
223 => 0.023713284592388
224 => 0.023796560976359
225 => 0.023684814082201
226 => 0.023708660947781
227 => 0.024104677807245
228 => 0.024184096164147
229 => 0.023914201556637
301 => 0.022830535761879
302 => 0.022564601457676
303 => 0.022755749761831
304 => 0.022664393183972
305 => 0.018291934182827
306 => 0.019319178567545
307 => 0.018708824836069
308 => 0.018990103916558
309 => 0.018367090807054
310 => 0.018664425317824
311 => 0.018609518490602
312 => 0.020261297062858
313 => 0.020235506812399
314 => 0.020247851240504
315 => 0.019658619523823
316 => 0.02059728164788
317 => 0.021059700363389
318 => 0.020974118966024
319 => 0.020995657959962
320 => 0.020625546682007
321 => 0.020251434726698
322 => 0.019836486992843
323 => 0.020607408593255
324 => 0.02052169527136
325 => 0.020718290793108
326 => 0.02121828855759
327 => 0.021291915127716
328 => 0.021390869984614
329 => 0.021355401712502
330 => 0.022200399849986
331 => 0.022098065000059
401 => 0.022344662544636
402 => 0.021837392686041
403 => 0.021263368690542
404 => 0.021372471885828
405 => 0.02136196437077
406 => 0.021228191644111
407 => 0.021107427607865
408 => 0.020906389512573
409 => 0.021542503794117
410 => 0.021516678715968
411 => 0.021934756712841
412 => 0.021860857365901
413 => 0.021367339440796
414 => 0.021384965530039
415 => 0.021503509451011
416 => 0.021913791315004
417 => 0.022035590906357
418 => 0.021979168482768
419 => 0.022112716174323
420 => 0.022218266824551
421 => 0.022125971710906
422 => 0.023432675886955
423 => 0.022890041209962
424 => 0.023154517575901
425 => 0.023217593630792
426 => 0.023056025642535
427 => 0.023091063953872
428 => 0.023144137448179
429 => 0.023466389312757
430 => 0.024312071449739
501 => 0.024686618311455
502 => 0.025813461024745
503 => 0.024655517408534
504 => 0.024586809826395
505 => 0.024789788226448
506 => 0.025451364187564
507 => 0.025987509365379
508 => 0.026165379651817
509 => 0.026188888146489
510 => 0.02652258462844
511 => 0.026713853228824
512 => 0.026482065098442
513 => 0.026285648927173
514 => 0.025582110581759
515 => 0.025663547060912
516 => 0.026224563645605
517 => 0.027017032615197
518 => 0.02769705343345
519 => 0.027458933844016
520 => 0.029275618225165
521 => 0.029455735061066
522 => 0.029430848738219
523 => 0.029841181695379
524 => 0.029026754338269
525 => 0.028678570864317
526 => 0.02632811633282
527 => 0.026988498182376
528 => 0.027948401983572
529 => 0.02782135511603
530 => 0.027124247317299
531 => 0.027696524614673
601 => 0.027507311843396
602 => 0.027358071880244
603 => 0.028041769083033
604 => 0.027290015923833
605 => 0.027940902670748
606 => 0.027106133685268
607 => 0.027460021554243
608 => 0.027259137684183
609 => 0.027389134167513
610 => 0.02662917738223
611 => 0.02703923161666
612 => 0.026612117777944
613 => 0.026611915270373
614 => 0.02660248670871
615 => 0.027104984245847
616 => 0.027121370672493
617 => 0.026750024233317
618 => 0.02669650740991
619 => 0.026894387155348
620 => 0.026662721798228
621 => 0.02677111656074
622 => 0.026666004965161
623 => 0.026642342131007
624 => 0.026453792642571
625 => 0.026372560338676
626 => 0.026404413618132
627 => 0.026295681953858
628 => 0.026230167193137
629 => 0.02658945417382
630 => 0.026397501633637
701 => 0.02656003469405
702 => 0.026374807758402
703 => 0.025732730499909
704 => 0.025363465078706
705 => 0.024150640658006
706 => 0.024494596159212
707 => 0.02472263901236
708 => 0.024647270850755
709 => 0.024809190825489
710 => 0.024819131396878
711 => 0.024766489562513
712 => 0.024705537062156
713 => 0.024675868755866
714 => 0.024896992004161
715 => 0.025025361492462
716 => 0.024745526163493
717 => 0.024679964661228
718 => 0.024962893628947
719 => 0.025135480135814
720 => 0.026409761934532
721 => 0.026315359023007
722 => 0.026552291805299
723 => 0.026525616810042
724 => 0.026773960112237
725 => 0.027179896453614
726 => 0.026354514370008
727 => 0.026497772160157
728 => 0.026462648658318
729 => 0.026846117841519
730 => 0.026847314990452
731 => 0.026617406059417
801 => 0.026742043420777
802 => 0.026672474264913
803 => 0.026798195132395
804 => 0.026314098214568
805 => 0.026903676005449
806 => 0.027237928621324
807 => 0.02724256971922
808 => 0.027401002806352
809 => 0.027561979998704
810 => 0.027870961701265
811 => 0.02755336266672
812 => 0.026982032921216
813 => 0.027023281083457
814 => 0.02668831066271
815 => 0.026693941576
816 => 0.026663883319555
817 => 0.026754090409827
818 => 0.026333893598098
819 => 0.026432512949934
820 => 0.02629444527985
821 => 0.026497472028006
822 => 0.026279048808514
823 => 0.026462631720702
824 => 0.026541860019732
825 => 0.026834214148817
826 => 0.026235867865942
827 => 0.025015799290679
828 => 0.025272272497101
829 => 0.024892928479268
830 => 0.024928038212383
831 => 0.024998965460948
901 => 0.024769067042397
902 => 0.024812924415725
903 => 0.02481135752173
904 => 0.024797854875787
905 => 0.024738049418024
906 => 0.024651319672118
907 => 0.024996824285799
908 => 0.025055532252262
909 => 0.025186032789333
910 => 0.025574313868294
911 => 0.025535515432208
912 => 0.025598797291196
913 => 0.025460653348336
914 => 0.024934446313686
915 => 0.024963021887325
916 => 0.024606684026143
917 => 0.025176920429065
918 => 0.025041880922101
919 => 0.024954820073476
920 => 0.024931064714316
921 => 0.02532030826697
922 => 0.02543677603857
923 => 0.025364201139171
924 => 0.025215347903155
925 => 0.025501190120814
926 => 0.025577669439545
927 => 0.02559479033856
928 => 0.026101247943443
929 => 0.02562309569263
930 => 0.025738191691826
1001 => 0.026636137821945
1002 => 0.025821824590023
1003 => 0.026253184470324
1004 => 0.026232071648872
1005 => 0.026452740767212
1006 => 0.026213970340319
1007 => 0.026216930185924
1008 => 0.026412869413589
1009 => 0.02613770810616
1010 => 0.026069574296838
1011 => 0.025975447927244
1012 => 0.026180969411709
1013 => 0.026304170246708
1014 => 0.027297078495761
1015 => 0.027938542506767
1016 => 0.027910694862308
1017 => 0.028165170204055
1018 => 0.028050526731871
1019 => 0.027680312718769
1020 => 0.028312222896344
1021 => 0.028112260075915
1022 => 0.028128744767876
1023 => 0.028128131206818
1024 => 0.028261089001351
1025 => 0.028166876218521
1026 => 0.027981173152821
1027 => 0.028104451514232
1028 => 0.028470544174802
1029 => 0.029606907026305
1030 => 0.030242830732812
1031 => 0.029568623620684
1101 => 0.030033682658637
1102 => 0.029754812953344
1103 => 0.029704134032237
1104 => 0.029996225475664
1105 => 0.030288828186497
1106 => 0.030270190658773
1107 => 0.030057776116024
1108 => 0.029937788530645
1109 => 0.030846374725927
1110 => 0.031515805557249
1111 => 0.031470154862475
1112 => 0.03167164218281
1113 => 0.032263215187083
1114 => 0.032317301208759
1115 => 0.032310487613181
1116 => 0.032176429765163
1117 => 0.032758910213331
1118 => 0.033244825650962
1119 => 0.03214539924665
1120 => 0.032564046428864
1121 => 0.032751990636929
1122 => 0.033027948494903
1123 => 0.033493535657212
1124 => 0.033999286806375
1125 => 0.034070805564146
1126 => 0.03402005958302
1127 => 0.033686503104826
1128 => 0.034239902047106
1129 => 0.034564070168692
1130 => 0.034757104866641
1201 => 0.035246608742728
1202 => 0.032753151316374
1203 => 0.030988158217126
1204 => 0.030712529057869
1205 => 0.0312730317918
1206 => 0.031420831892812
1207 => 0.031361253857419
1208 => 0.029374593658064
1209 => 0.030702069703069
1210 => 0.032130322310138
1211 => 0.032185187309517
1212 => 0.03290020042797
1213 => 0.033133038008716
1214 => 0.033708717287982
1215 => 0.033672708392324
1216 => 0.033812877135767
1217 => 0.033780654769034
1218 => 0.0348469794103
1219 => 0.036023293840358
1220 => 0.035982561812096
1221 => 0.035813452695255
1222 => 0.036064608571154
1223 => 0.037278691124489
1224 => 0.037166917858255
1225 => 0.037275496065577
1226 => 0.038706967818654
1227 => 0.040568084722137
1228 => 0.039703409067387
1229 => 0.041579506434477
1230 => 0.042760410279411
1231 => 0.044802661371489
]
'min_raw' => 0.018291934182827
'max_raw' => 0.044802661371489
'avg_raw' => 0.031547297777158
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.018291'
'max' => '$0.0448026'
'avg' => '$0.031547'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0081562496523698
'max_diff' => 0.018176152770597
'year' => 2028
]
3 => [
'items' => [
101 => 0.044546961476463
102 => 0.045341994839878
103 => 0.044089205298186
104 => 0.041212547279922
105 => 0.040757305137127
106 => 0.04166871143557
107 => 0.043909314886564
108 => 0.041598146859267
109 => 0.042065693141118
110 => 0.041931039780491
111 => 0.041923864675143
112 => 0.042197709263008
113 => 0.041800483405537
114 => 0.040182113802633
115 => 0.040923803054532
116 => 0.04063740121553
117 => 0.040955185408574
118 => 0.04267013563426
119 => 0.041911915260177
120 => 0.041113191688902
121 => 0.04211496829823
122 => 0.043390574169696
123 => 0.043310749046744
124 => 0.043155854943904
125 => 0.044028984891623
126 => 0.045471139762183
127 => 0.045860948428648
128 => 0.046148697216945
129 => 0.046188372913295
130 => 0.046597057244014
131 => 0.044399458596028
201 => 0.047887104088717
202 => 0.048489324121042
203 => 0.048376131714428
204 => 0.049045473935064
205 => 0.04884853647418
206 => 0.048563204991899
207 => 0.049624254784781
208 => 0.048407846819545
209 => 0.046681308854397
210 => 0.045734095979668
211 => 0.046981462302594
212 => 0.04774318538892
213 => 0.048246635894294
214 => 0.048398979713027
215 => 0.04457005192331
216 => 0.042506472206724
217 => 0.043829203146066
218 => 0.045443026182077
219 => 0.044390493727579
220 => 0.044431751007088
221 => 0.042931116327638
222 => 0.045575799053316
223 => 0.045190491025467
224 => 0.047189469755543
225 => 0.046712397438804
226 => 0.048342486993273
227 => 0.047913229783331
228 => 0.049695052462352
301 => 0.050405869769937
302 => 0.051599442659251
303 => 0.052477439735347
304 => 0.052993016411838
305 => 0.052962063122061
306 => 0.055005034773599
307 => 0.05380036576668
308 => 0.052287017575304
309 => 0.052259645881075
310 => 0.053043430353698
311 => 0.054686027587547
312 => 0.055111929151466
313 => 0.055349950023137
314 => 0.054985412772607
315 => 0.053677830905002
316 => 0.05311322368416
317 => 0.053594285394563
318 => 0.053005988260845
319 => 0.054021554160665
320 => 0.055416143054289
321 => 0.055128165962558
322 => 0.056090830204277
323 => 0.057087086419224
324 => 0.058511777551265
325 => 0.058884244569341
326 => 0.059499918386567
327 => 0.060133648982807
328 => 0.0603371861708
329 => 0.060725801816561
330 => 0.060723753620282
331 => 0.06189487302563
401 => 0.063186653996278
402 => 0.063674271407899
403 => 0.064795520758542
404 => 0.06287542053883
405 => 0.064331838612003
406 => 0.065645564170514
407 => 0.06407928640111
408 => 0.066238035410318
409 => 0.066321854742515
410 => 0.067587427143797
411 => 0.066304527060763
412 => 0.065542745086619
413 => 0.067741981102373
414 => 0.068806122135112
415 => 0.068485594195784
416 => 0.066046360751084
417 => 0.064626622262625
418 => 0.060910892791225
419 => 0.065312334857666
420 => 0.067456148896404
421 => 0.066040808790631
422 => 0.066754624014566
423 => 0.070648968420988
424 => 0.072131682630827
425 => 0.071823288440135
426 => 0.071875401981761
427 => 0.072675447656224
428 => 0.076223290769989
429 => 0.074097340937861
430 => 0.075722549926703
501 => 0.076584554914257
502 => 0.077385233186758
503 => 0.075419020406463
504 => 0.072861006468702
505 => 0.072050776076493
506 => 0.065900081110417
507 => 0.065579910726318
508 => 0.065400189387568
509 => 0.064267071768837
510 => 0.063376751707551
511 => 0.062668736139352
512 => 0.060810691857053
513 => 0.061437727258867
514 => 0.058476392476861
515 => 0.060370949527128
516 => 0.055644587711118
517 => 0.059580842276091
518 => 0.05743851787591
519 => 0.058877031093001
520 => 0.058872012255903
521 => 0.056223253342207
522 => 0.054695504478975
523 => 0.055669045515501
524 => 0.056712758786442
525 => 0.056882097753179
526 => 0.058235299252656
527 => 0.058612948704191
528 => 0.057468653235273
529 => 0.055546644367824
530 => 0.055993083191378
531 => 0.054686457410465
601 => 0.05239664598805
602 => 0.0540412285279
603 => 0.054602761314195
604 => 0.05485076618244
605 => 0.052598999635114
606 => 0.051891445697714
607 => 0.051514749918395
608 => 0.055255969583038
609 => 0.055460922041593
610 => 0.054412356286268
611 => 0.059151972929421
612 => 0.05807925171106
613 => 0.059277744135049
614 => 0.05595257354749
615 => 0.056079599541871
616 => 0.054505410497499
617 => 0.055386851174997
618 => 0.0547638773143
619 => 0.055315639478822
620 => 0.055646363445235
621 => 0.057220294180676
622 => 0.05959881403685
623 => 0.056985201414766
624 => 0.055846412967701
625 => 0.056552910915471
626 => 0.058434408051591
627 => 0.06128497252488
628 => 0.059597380983737
629 => 0.060346305452533
630 => 0.060509912131635
701 => 0.05926554460723
702 => 0.061330854130452
703 => 0.062437670282491
704 => 0.063573034631152
705 => 0.064558839682907
706 => 0.0631195451431
707 => 0.064659796615461
708 => 0.063418625819723
709 => 0.062305167306068
710 => 0.062306855963018
711 => 0.061608367172368
712 => 0.060254957125234
713 => 0.060005367547507
714 => 0.061303764050532
715 => 0.062344955087352
716 => 0.062430712568113
717 => 0.063007169424423
718 => 0.06334831065401
719 => 0.066691958462973
720 => 0.068036801271843
721 => 0.069681249601958
722 => 0.070321854902567
723 => 0.07224984718769
724 => 0.070692836833576
725 => 0.070355967849409
726 => 0.06567928920717
727 => 0.066445095072844
728 => 0.067671224153064
729 => 0.065699507624092
730 => 0.06695010793514
731 => 0.067197002927877
801 => 0.065632509450924
802 => 0.066468173014737
803 => 0.064248898346228
804 => 0.059647188160045
805 => 0.061335977149358
806 => 0.062579494285719
807 => 0.060804842007574
808 => 0.063985837527621
809 => 0.062127565613886
810 => 0.061538582630015
811 => 0.059240750022338
812 => 0.060325238561473
813 => 0.061792024839034
814 => 0.060885721451709
815 => 0.062766437062547
816 => 0.065430031936026
817 => 0.067328268262684
818 => 0.067473991277351
819 => 0.066253552491266
820 => 0.068209313434703
821 => 0.068223559018023
822 => 0.066017452684308
823 => 0.06466622483856
824 => 0.064359223028998
825 => 0.065126173740533
826 => 0.066057393491249
827 => 0.067525667492556
828 => 0.068412914720687
829 => 0.070726384932085
830 => 0.0713523436389
831 => 0.072040082478868
901 => 0.07295911365987
902 => 0.07406264622742
903 => 0.071648179793764
904 => 0.071744111046302
905 => 0.069495793333845
906 => 0.067093143416711
907 => 0.068916455209276
908 => 0.071300192833051
909 => 0.070753360788361
910 => 0.070691831012568
911 => 0.070795307028515
912 => 0.070383013524683
913 => 0.068518225287165
914 => 0.067581740308475
915 => 0.068790044853783
916 => 0.069432204944166
917 => 0.070428139242106
918 => 0.070305369318262
919 => 0.072870789114219
920 => 0.07386763367266
921 => 0.073612598177227
922 => 0.073659530846159
923 => 0.075464270303714
924 => 0.077471511753494
925 => 0.07935155825005
926 => 0.081264022296223
927 => 0.078958472243819
928 => 0.077787856113767
929 => 0.07899563315111
930 => 0.078354769654403
1001 => 0.082037361398943
1002 => 0.082292336061329
1003 => 0.085974661512569
1004 => 0.089469626848955
1005 => 0.087274501739979
1006 => 0.089344405847137
1007 => 0.091583175900786
1008 => 0.095902126561626
1009 => 0.094447655921572
1010 => 0.09333355420575
1011 => 0.0922807334676
1012 => 0.094471486293106
1013 => 0.097289854804988
1014 => 0.09789690438845
1015 => 0.098880556624447
1016 => 0.097846366573569
1017 => 0.099091934577554
1018 => 0.10348933696193
1019 => 0.10230112002073
1020 => 0.10061366094882
1021 => 0.10408498780027
1022 => 0.10534124749337
1023 => 0.11415833592785
1024 => 0.12529027429214
1025 => 0.12068157871308
1026 => 0.11782081264548
1027 => 0.11849316052964
1028 => 0.12255816758039
1029 => 0.12386371882821
1030 => 0.12031478048612
1031 => 0.1215683255056
1101 => 0.12847548180877
1102 => 0.13218094955732
1103 => 0.12714842664408
1104 => 0.11326389551921
1105 => 0.10046172372228
1106 => 0.10385743617213
1107 => 0.10347246776155
1108 => 0.11089334552401
1109 => 0.10227278143965
1110 => 0.10241792963016
1111 => 0.10999226328591
1112 => 0.10797156092351
1113 => 0.10469828188842
1114 => 0.10048562228166
1115 => 0.092698131374712
1116 => 0.085800533508177
1117 => 0.099328311346372
1118 => 0.098744968967321
1119 => 0.097900202755959
1120 => 0.099780138546095
1121 => 0.10890857311391
1122 => 0.10869813315126
1123 => 0.10735942147631
1124 => 0.1083748224829
1125 => 0.10452027718258
1126 => 0.10551368127284
1127 => 0.10045969579286
1128 => 0.10274430830289
1129 => 0.10469125890172
1130 => 0.10508213805953
1201 => 0.10596280876087
1202 => 0.098437574040844
1203 => 0.10181618350085
1204 => 0.10380080002571
1205 => 0.094834230365431
1206 => 0.10362355977324
1207 => 0.098306576446505
1208 => 0.096501912447
1209 => 0.098931654775931
1210 => 0.097984781827345
1211 => 0.097170716068395
1212 => 0.096716453387476
1213 => 0.098500587992968
1214 => 0.09841735598112
1215 => 0.095498165480931
1216 => 0.091690200474861
1217 => 0.092968278523088
1218 => 0.092503940786122
1219 => 0.090821120926595
1220 => 0.091955138327471
1221 => 0.086961499607083
1222 => 0.078370203735411
1223 => 0.084045876946747
1224 => 0.083827369702055
1225 => 0.083717188440767
1226 => 0.087982299995
1227 => 0.087572307931926
1228 => 0.086828168322793
1229 => 0.090807454219111
1230 => 0.089354961338007
1231 => 0.093831202147208
]
'min_raw' => 0.040182113802633
'max_raw' => 0.13218094955732
'avg_raw' => 0.086181531679976
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.040182'
'max' => '$0.13218'
'avg' => '$0.086181'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.021890179619805
'max_diff' => 0.087378288185829
'year' => 2029
]
4 => [
'items' => [
101 => 0.096779543849251
102 => 0.09603174902475
103 => 0.098804678646094
104 => 0.092997722859965
105 => 0.094926560637488
106 => 0.095324091430182
107 => 0.090758350448839
108 => 0.087639387703903
109 => 0.087431388447594
110 => 0.082023536867415
111 => 0.084912367530894
112 => 0.08745441896682
113 => 0.086236973600172
114 => 0.085851566767237
115 => 0.087820526692158
116 => 0.087973531741326
117 => 0.084485000405553
118 => 0.08521037653768
119 => 0.088235315592398
120 => 0.085134155834695
121 => 0.079109108997049
122 => 0.077614814078523
123 => 0.077415447591072
124 => 0.073362801258005
125 => 0.077714670010228
126 => 0.075814962677051
127 => 0.081816115380569
128 => 0.078388289141147
129 => 0.078240522403075
130 => 0.078017151305811
131 => 0.074528871194229
201 => 0.0752925828469
202 => 0.077831276696945
203 => 0.078737111263075
204 => 0.078642625296544
205 => 0.0778188357121
206 => 0.078195962365373
207 => 0.076981106015545
208 => 0.076552114953373
209 => 0.075198101157868
210 => 0.073208074934334
211 => 0.073484800286256
212 => 0.069542037618749
213 => 0.067393811259238
214 => 0.066799210516094
215 => 0.066004085552286
216 => 0.066889021996503
217 => 0.069530868267494
218 => 0.066344241165726
219 => 0.060880992515647
220 => 0.06120934306844
221 => 0.06194704927241
222 => 0.060572338641726
223 => 0.059271290400501
224 => 0.060402446288866
225 => 0.058087595815093
226 => 0.062226787892837
227 => 0.062114834347086
228 => 0.063657669187748
301 => 0.064622435475772
302 => 0.062398961528671
303 => 0.061839763843888
304 => 0.062158308259258
305 => 0.056893478639644
306 => 0.063227420286065
307 => 0.063282196476446
308 => 0.062813169478815
309 => 0.066185797867026
310 => 0.073303095715324
311 => 0.070625281972151
312 => 0.069588351553446
313 => 0.067617146069496
314 => 0.070243660338259
315 => 0.070041985022424
316 => 0.069129932761123
317 => 0.068578320707711
318 => 0.06959468282947
319 => 0.068452382193244
320 => 0.068247193610655
321 => 0.067003974047548
322 => 0.066560201226405
323 => 0.066231649496735
324 => 0.065869946325195
325 => 0.066667773390798
326 => 0.064859792297252
327 => 0.062679544337007
328 => 0.062498280309722
329 => 0.062998766225951
330 => 0.062777338464814
331 => 0.062497220198791
401 => 0.061962398143283
402 => 0.061803727864079
403 => 0.062319329295616
404 => 0.061737245340842
405 => 0.062596141923866
406 => 0.062362569578199
407 => 0.06105785344231
408 => 0.05943169406921
409 => 0.059417217839805
410 => 0.059066864470307
411 => 0.058620636778269
412 => 0.05849650644265
413 => 0.060307183494998
414 => 0.064055230804354
415 => 0.063319399434357
416 => 0.063851113010212
417 => 0.06646661754715
418 => 0.067298007788478
419 => 0.066707906687741
420 => 0.065900139905201
421 => 0.065935677544147
422 => 0.068696061167719
423 => 0.068868222908365
424 => 0.069303220085497
425 => 0.069862314388299
426 => 0.0668031228651
427 => 0.065791589898513
428 => 0.065312269461231
429 => 0.063836148034759
430 => 0.065428018440123
501 => 0.064500503725604
502 => 0.064625657149007
503 => 0.064544150817831
504 => 0.064588658786088
505 => 0.062225630904294
506 => 0.063086594067331
507 => 0.061655075822231
508 => 0.059738433587506
509 => 0.059732008330674
510 => 0.060201103802318
511 => 0.059922067460077
512 => 0.059171187837786
513 => 0.05927784674408
514 => 0.058343402493165
515 => 0.059391305194801
516 => 0.059421355294708
517 => 0.059017855674932
518 => 0.060632294369509
519 => 0.061293731219934
520 => 0.061028139126398
521 => 0.061275096570637
522 => 0.063349976549859
523 => 0.063688272519833
524 => 0.063838521243118
525 => 0.063637207858057
526 => 0.061313021567746
527 => 0.061416109112925
528 => 0.060659721106065
529 => 0.060020652946474
530 => 0.060046212321386
531 => 0.060374776428462
601 => 0.061809635154091
602 => 0.064829210752636
603 => 0.06494380143932
604 => 0.065082688694427
605 => 0.064517764428765
606 => 0.064347377864645
607 => 0.064572161723224
608 => 0.065706155556295
609 => 0.068623095571276
610 => 0.067592054154108
611 => 0.066753801432835
612 => 0.067489175060703
613 => 0.067375970054741
614 => 0.066420405878938
615 => 0.066393586375129
616 => 0.064559553209415
617 => 0.063881552906965
618 => 0.063314965106795
619 => 0.062696266020158
620 => 0.062329480462619
621 => 0.062893029780054
622 => 0.063021920176671
623 => 0.061789709744942
624 => 0.061621764016272
625 => 0.062628013653931
626 => 0.062185200705165
627 => 0.062640644804203
628 => 0.062746311741907
629 => 0.062729296931221
630 => 0.062266949355966
701 => 0.06256163591303
702 => 0.061864614355282
703 => 0.061106708100484
704 => 0.060623211129151
705 => 0.060201295895096
706 => 0.060435398988807
707 => 0.059600864205264
708 => 0.059333879732141
709 => 0.062461802738154
710 => 0.064772433093535
711 => 0.064738835613058
712 => 0.064534319591223
713 => 0.064230450267336
714 => 0.065683925622567
715 => 0.065177563871962
716 => 0.065545984353467
717 => 0.065639762828569
718 => 0.065923602028434
719 => 0.066025050145581
720 => 0.065718403475313
721 => 0.064689259796155
722 => 0.062124731595739
723 => 0.060930936795633
724 => 0.060536964627373
725 => 0.06055128476743
726 => 0.060156271376749
727 => 0.060272620523563
728 => 0.060115809891664
729 => 0.059818848491413
730 => 0.060417062459157
731 => 0.060486001046191
801 => 0.060346370757995
802 => 0.060379258745555
803 => 0.059223179596169
804 => 0.059311073783025
805 => 0.058821667781558
806 => 0.05872991005616
807 => 0.057492734301908
808 => 0.055300898121756
809 => 0.056515388132246
810 => 0.055048454982712
811 => 0.054492905171319
812 => 0.057122791572731
813 => 0.056858823919724
814 => 0.056407026041755
815 => 0.055738722817312
816 => 0.05549084265053
817 => 0.053984801226488
818 => 0.053895816264737
819 => 0.054642251061031
820 => 0.054297797085794
821 => 0.05381405324964
822 => 0.052061982111416
823 => 0.050092074061234
824 => 0.050151533202868
825 => 0.050778124302189
826 => 0.052600022430786
827 => 0.051888175312786
828 => 0.051371722061172
829 => 0.051275005891672
830 => 0.052485611241975
831 => 0.054198871442315
901 => 0.055002694796278
902 => 0.054206130264979
903 => 0.053291079821503
904 => 0.053346774702062
905 => 0.053717287790674
906 => 0.053756223477514
907 => 0.053160619707516
908 => 0.053328278680002
909 => 0.053073589369739
910 => 0.051510561542775
911 => 0.0514822913258
912 => 0.051098699089834
913 => 0.051087084069378
914 => 0.050434497984434
915 => 0.050343196680035
916 => 0.049047447399233
917 => 0.049900313499747
918 => 0.049328255697002
919 => 0.048466029653472
920 => 0.048317381558575
921 => 0.048312913017344
922 => 0.049198226373834
923 => 0.049889968097722
924 => 0.0493382068874
925 => 0.049212581555252
926 => 0.050553931439929
927 => 0.050383232440428
928 => 0.050235408207751
929 => 0.054045467782577
930 => 0.051029508326446
1001 => 0.049714377858625
1002 => 0.048086654168195
1003 => 0.048616649209494
1004 => 0.048728326951943
1005 => 0.044813944895706
1006 => 0.043225880582996
1007 => 0.042680916755815
1008 => 0.042367282368615
1009 => 0.042510209497235
1010 => 0.04108076535443
1011 => 0.042041375459219
1012 => 0.040803597659456
1013 => 0.040596080183248
1014 => 0.04280938022047
1015 => 0.043117347990738
1016 => 0.041803461804688
1017 => 0.042647189434984
1018 => 0.042341242067547
1019 => 0.040824815807195
1020 => 0.040766899478126
1021 => 0.040006010085642
1022 => 0.038815365523623
1023 => 0.038271209009521
1024 => 0.037987807572394
1025 => 0.038104744528736
1026 => 0.03804561762528
1027 => 0.037659774585246
1028 => 0.038067733696683
1029 => 0.037025566747304
1030 => 0.036610567470752
1031 => 0.036423121925443
1101 => 0.035498138772978
1102 => 0.036970198310425
1103 => 0.037260212583819
1104 => 0.037550798274922
1105 => 0.040080148324696
1106 => 0.039953789144079
1107 => 0.041096014597446
1108 => 0.041051629816746
1109 => 0.04072584861462
1110 => 0.039351431311258
1111 => 0.039899249551745
1112 => 0.038213150157382
1113 => 0.039476490467253
1114 => 0.03889995470818
1115 => 0.039281563147168
1116 => 0.038595396765623
1117 => 0.038975149572285
1118 => 0.037328985726861
1119 => 0.035791821090155
1120 => 0.036410421012599
1121 => 0.037082909873777
1122 => 0.038541037071787
1123 => 0.037672588541941
1124 => 0.037984915472948
1125 => 0.03693867253697
1126 => 0.034779974515527
1127 => 0.034792192511895
1128 => 0.034460123851089
1129 => 0.034173168045334
1130 => 0.037772340302513
1201 => 0.037324726337839
1202 => 0.036611512067399
1203 => 0.037566177710392
1204 => 0.03781860645898
1205 => 0.037825792750579
1206 => 0.03852229216022
1207 => 0.03889401402
1208 => 0.03895953160892
1209 => 0.040055488478856
1210 => 0.040422838765638
1211 => 0.041935902607533
1212 => 0.038862476017273
1213 => 0.038799180819171
1214 => 0.037579611813763
1215 => 0.03680614186991
1216 => 0.037632571962551
1217 => 0.038364676205674
1218 => 0.03760236033333
1219 => 0.037701902692891
1220 => 0.036678555917765
1221 => 0.037044354236931
1222 => 0.037359429027753
1223 => 0.037185463247501
1224 => 0.036925028054426
1225 => 0.038304652006544
1226 => 0.038226808216376
1227 => 0.039511545758006
1228 => 0.040513090544169
1229 => 0.04230803784852
1230 => 0.040434916763711
1231 => 0.040366652786399
]
'min_raw' => 0.034173168045334
'max_raw' => 0.098804678646094
'avg_raw' => 0.066488923345714
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.034173'
'max' => '$0.0988046'
'avg' => '$0.066488'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0060089457572991
'max_diff' => -0.033376270911225
'year' => 2030
]
5 => [
'items' => [
101 => 0.041033944114514
102 => 0.040422736606812
103 => 0.040808998653514
104 => 0.042245805061208
105 => 0.042276162516513
106 => 0.041767636026787
107 => 0.041736692143673
108 => 0.041834360218695
109 => 0.042406405184706
110 => 0.042206515096415
111 => 0.042437832967183
112 => 0.042727099506643
113 => 0.04392362856032
114 => 0.044212107664332
115 => 0.04351125300085
116 => 0.043574532329826
117 => 0.043312393446793
118 => 0.043059170570374
119 => 0.043628378616333
120 => 0.044668617508135
121 => 0.044662146235977
122 => 0.044903461439521
123 => 0.045053798812165
124 => 0.044408440755092
125 => 0.043988336390411
126 => 0.044149431135765
127 => 0.044407025141773
128 => 0.044065896871382
129 => 0.04196029516054
130 => 0.042599000213252
131 => 0.042492688461399
201 => 0.04234128759881
202 => 0.042983510468271
203 => 0.042921566505799
204 => 0.041066104338661
205 => 0.041184885006569
206 => 0.04107332778449
207 => 0.041433791991486
208 => 0.040403270356692
209 => 0.040720251870885
210 => 0.040919059705071
211 => 0.041036159046719
212 => 0.041459202164525
213 => 0.041409562937396
214 => 0.04145611652047
215 => 0.042083377784934
216 => 0.045255850010519
217 => 0.045428520674092
218 => 0.04457822717533
219 => 0.044917902656788
220 => 0.04426580001125
221 => 0.044703560885907
222 => 0.045003065758427
223 => 0.043649660830985
224 => 0.043569520974707
225 => 0.042914726869586
226 => 0.043266576132244
227 => 0.042706758656497
228 => 0.042844118283462
301 => 0.042460048791673
302 => 0.04315129740942
303 => 0.043924220773237
304 => 0.044119491738606
305 => 0.043605817898157
306 => 0.043233884184916
307 => 0.042580891107047
308 => 0.043666833148443
309 => 0.043984395694831
310 => 0.043665165127577
311 => 0.043591192429819
312 => 0.043451014301233
313 => 0.043620931882463
314 => 0.043982666181004
315 => 0.043812078965996
316 => 0.043924754826868
317 => 0.043495350636065
318 => 0.044408654395462
319 => 0.045859200563905
320 => 0.045863864307025
321 => 0.045693276172488
322 => 0.045623475183208
323 => 0.045798508961396
324 => 0.045893457605802
325 => 0.046459484748757
326 => 0.047066854424664
327 => 0.049901183685971
328 => 0.049105315371147
329 => 0.051620100906781
330 => 0.053608969761435
331 => 0.054205344568251
401 => 0.053656707807583
402 => 0.051779851086114
403 => 0.051687763541341
404 => 0.054492579871684
405 => 0.053700090789636
406 => 0.053605826735006
407 => 0.052603016455373
408 => 0.053195801531105
409 => 0.05306615073941
410 => 0.052861490621986
411 => 0.053992483252716
412 => 0.056109600493036
413 => 0.055779627916932
414 => 0.055533318695858
415 => 0.054454063388648
416 => 0.055104016143989
417 => 0.054872580416837
418 => 0.055866975173422
419 => 0.055277917748162
420 => 0.053694086905405
421 => 0.053946317187489
422 => 0.053908193087768
423 => 0.054692784358505
424 => 0.054457269533782
425 => 0.053862205038364
426 => 0.056102364416468
427 => 0.055956900926875
428 => 0.056163134897535
429 => 0.056253925469417
430 => 0.057617471006833
501 => 0.058176071984922
502 => 0.058302884186635
503 => 0.058833511912069
504 => 0.058289681685435
505 => 0.060465390336351
506 => 0.061912109633091
507 => 0.063592548543749
508 => 0.066048121451617
509 => 0.066971439580295
510 => 0.06680465042465
511 => 0.068666437778329
512 => 0.072012028267684
513 => 0.067480889916641
514 => 0.072252189602753
515 => 0.070741651209434
516 => 0.067160191852299
517 => 0.066929588092332
518 => 0.069354993950582
519 => 0.074734310707516
520 => 0.07338685287161
521 => 0.074736514665822
522 => 0.073162062491366
523 => 0.07308387767038
524 => 0.074660047037952
525 => 0.078342852677804
526 => 0.076593289766215
527 => 0.074084862322027
528 => 0.075937046111362
529 => 0.074332513101522
530 => 0.070717051149842
531 => 0.073385822495997
601 => 0.071601291099055
602 => 0.07212211223159
603 => 0.075872931798949
604 => 0.075421623265167
605 => 0.076005658297926
606 => 0.074974851751964
607 => 0.074011915894763
608 => 0.072214524608742
609 => 0.07168240565927
610 => 0.07182946419327
611 => 0.071682332784364
612 => 0.070676708878713
613 => 0.070459544492035
614 => 0.07009759433338
615 => 0.070209777822375
616 => 0.06952920563185
617 => 0.07081358596876
618 => 0.071051978277212
619 => 0.071986643177984
620 => 0.072083683188614
621 => 0.074686711633142
622 => 0.073253007308011
623 => 0.074214859949385
624 => 0.074128822795832
625 => 0.067237812936503
626 => 0.068187333295224
627 => 0.06966448899749
628 => 0.068999032355857
629 => 0.068058232357459
630 => 0.067298485916249
701 => 0.066147392369753
702 => 0.067767534431652
703 => 0.06989784896015
704 => 0.07213771148061
705 => 0.074828759537338
706 => 0.074228148938329
707 => 0.072087404209044
708 => 0.072183436453785
709 => 0.072777070003476
710 => 0.07200826061933
711 => 0.071781523723004
712 => 0.072745919835703
713 => 0.072752561101708
714 => 0.07186795299153
715 => 0.070884872958643
716 => 0.07088075381741
717 => 0.070705824220984
718 => 0.073193182077962
719 => 0.074560977399055
720 => 0.074717792928306
721 => 0.074550422464496
722 => 0.07461483671332
723 => 0.073818946753289
724 => 0.075638115188084
725 => 0.077307564040963
726 => 0.076860116085819
727 => 0.076189327992583
728 => 0.075655012966788
729 => 0.076734248446518
730 => 0.076686191789479
731 => 0.077292982861629
801 => 0.077265455313601
802 => 0.077061414298604
803 => 0.076860123372766
804 => 0.077658219140817
805 => 0.077428380376644
806 => 0.077198184609388
807 => 0.076736491756945
808 => 0.076799243483499
809 => 0.076128571211284
810 => 0.075818287530283
811 => 0.07115236544267
812 => 0.069905478597457
813 => 0.070297774581683
814 => 0.070426928605651
815 => 0.069884281852686
816 => 0.070662297901925
817 => 0.070541044924774
818 => 0.071012769328249
819 => 0.070718056400851
820 => 0.070730151522191
821 => 0.07159683940225
822 => 0.071848442580984
823 => 0.071720475173593
824 => 0.071810099159264
825 => 0.073875446081127
826 => 0.073581819794914
827 => 0.073425836682553
828 => 0.073469045070685
829 => 0.073996785490758
830 => 0.07414452399482
831 => 0.073518545571709
901 => 0.073813760614786
902 => 0.075070748799841
903 => 0.075510623525241
904 => 0.076914492496869
905 => 0.07631810400594
906 => 0.07741280089213
907 => 0.080777525910607
908 => 0.083465501076628
909 => 0.080993528028683
910 => 0.085929652109508
911 => 0.089773132751374
912 => 0.089625613562687
913 => 0.088955413811469
914 => 0.084579713284924
915 => 0.080553128422377
916 => 0.083921537637721
917 => 0.083930124405531
918 => 0.083640775066639
919 => 0.081843651173324
920 => 0.083578239050643
921 => 0.083715924337247
922 => 0.083638857190222
923 => 0.082261006514797
924 => 0.080157283202794
925 => 0.080568345702358
926 => 0.08124167446209
927 => 0.079966922648823
928 => 0.079559562204547
929 => 0.08031692277395
930 => 0.082757296330908
1001 => 0.082295957846087
1002 => 0.082283910433833
1003 => 0.084257712109862
1004 => 0.082844896082887
1005 => 0.080573530516882
1006 => 0.079999980755834
1007 => 0.07796426549353
1008 => 0.079370341276172
1009 => 0.079420943440401
1010 => 0.078650850103994
1011 => 0.080636019346904
1012 => 0.080617725662849
1013 => 0.082502348405544
1014 => 0.0861050392576
1015 => 0.085039546294997
1016 => 0.083800493904794
1017 => 0.083935213254806
1018 => 0.085412752008739
1019 => 0.084519398349182
1020 => 0.084840654553842
1021 => 0.085412265748997
1022 => 0.085757132975342
1023 => 0.08388559216814
1024 => 0.083449246479836
1025 => 0.082556636338092
1026 => 0.082323771013468
1027 => 0.083050783348997
1028 => 0.08285924128431
1029 => 0.079416690524439
1030 => 0.079056924815861
1031 => 0.079067958316516
1101 => 0.078163310336369
1102 => 0.076783505026253
1103 => 0.080409550997345
1104 => 0.080118328759385
1105 => 0.079796841947489
1106 => 0.079836222247568
1107 => 0.081410165905518
1108 => 0.080497199097847
1109 => 0.082924470988358
1110 => 0.082425496858141
1111 => 0.081913725924285
1112 => 0.081842983592302
1113 => 0.081645995445012
1114 => 0.080970449791893
1115 => 0.080154687821752
1116 => 0.079616051108973
1117 => 0.073441598659489
1118 => 0.074587541118976
1119 => 0.075905843462673
1120 => 0.076360916148953
1121 => 0.075582482829
1122 => 0.081001187083972
1123 => 0.081991236567289
1124 => 0.078992312102992
1125 => 0.078431335781002
1126 => 0.081037964598249
1127 => 0.079465848774036
1128 => 0.080173772433417
1129 => 0.078643628695373
1130 => 0.081752762638791
1201 => 0.081729076247366
1202 => 0.080519552920401
1203 => 0.081541833753893
1204 => 0.081364187301978
1205 => 0.07999863844476
1206 => 0.08179605297325
1207 => 0.081796944468431
1208 => 0.080632804563533
1209 => 0.079273344017606
1210 => 0.079030304581019
1211 => 0.078847207013305
1212 => 0.080128741655844
1213 => 0.081277761609091
1214 => 0.083415802875879
1215 => 0.083953357248957
1216 => 0.086051467754101
1217 => 0.084802145103434
1218 => 0.085355953653038
1219 => 0.085957191174635
1220 => 0.086245446552267
1221 => 0.085775749883053
1222 => 0.089034979114279
1223 => 0.089310157921598
1224 => 0.089402422995405
1225 => 0.088303429236482
1226 => 0.089279592917098
1227 => 0.08882287825808
1228 => 0.090011122921856
1229 => 0.090197454857406
1230 => 0.090039638336946
1231 => 0.090098783034339
]
'min_raw' => 0.040403270356692
'max_raw' => 0.090197454857406
'avg_raw' => 0.065300362607049
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.0404032'
'max' => '$0.090197'
'avg' => '$0.06530036'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0062301023113579
'max_diff' => -0.0086072237886888
'year' => 2031
]
6 => [
'items' => [
101 => 0.087317605852922
102 => 0.087173387144187
103 => 0.085206954817295
104 => 0.086008290525638
105 => 0.084510231827911
106 => 0.084985281672675
107 => 0.085194679117805
108 => 0.085085301775669
109 => 0.086053596844273
110 => 0.085230348226346
111 => 0.083057659769035
112 => 0.080884379364206
113 => 0.08085709559904
114 => 0.080284909230034
115 => 0.079871323286403
116 => 0.079950994611896
117 => 0.080231766754627
118 => 0.079855004299052
119 => 0.07993540567129
120 => 0.081270604161988
121 => 0.081538368697097
122 => 0.080628400184438
123 => 0.076974745298281
124 => 0.076078129224719
125 => 0.076722599077726
126 => 0.076414583997163
127 => 0.061672533199465
128 => 0.065135959362453
129 => 0.063078109143245
130 => 0.064026461201392
131 => 0.061925929005311
201 => 0.062928413067606
202 => 0.062743290866156
203 => 0.068312377646012
204 => 0.068225424015973
205 => 0.068267044117189
206 => 0.066280408245553
207 => 0.069445173132111
208 => 0.071004250116493
209 => 0.070715706460174
210 => 0.070788326682041
211 => 0.069540470668069
212 => 0.068279126091082
213 => 0.066880100835664
214 => 0.069479316835483
215 => 0.0691903283864
216 => 0.069853163913834
217 => 0.071538941285514
218 => 0.071787178407139
219 => 0.072120811615976
220 => 0.072001227860237
221 => 0.074850198076647
222 => 0.074505168985329
223 => 0.075336589823762
224 => 0.073626294079056
225 => 0.071690932101158
226 => 0.072058781141407
227 => 0.072023354320775
228 => 0.07157233023313
229 => 0.071165165853453
301 => 0.070487351879144
302 => 0.072632055591452
303 => 0.072544984537421
304 => 0.073954563693152
305 => 0.073705406885455
306 => 0.072041476744642
307 => 0.072100904335141
308 => 0.072500583441169
309 => 0.073883877390588
310 => 0.07429453321661
311 => 0.074104301076191
312 => 0.074554566442273
313 => 0.074910437828827
314 => 0.074599258409332
315 => 0.079004902770055
316 => 0.07717537207103
317 => 0.078067072603942
318 => 0.078279737926837
319 => 0.077735000174111
320 => 0.077853134287081
321 => 0.078032075278611
322 => 0.079118569938943
323 => 0.081969846307419
324 => 0.083232657201722
325 => 0.087031886083225
326 => 0.083127798336126
327 => 0.082896145925935
328 => 0.083580501773214
329 => 0.085811051315876
330 => 0.087618702215339
331 => 0.088218404304572
401 => 0.088297664835667
402 => 0.089422745822511
403 => 0.090067621262652
404 => 0.089286131398141
405 => 0.088623900563367
406 => 0.086251871912324
407 => 0.086526440687502
408 => 0.088417947271723
409 => 0.091089811731118
410 => 0.093382549397395
411 => 0.09257971257664
412 => 0.098704790804536
413 => 0.099312067292131
414 => 0.099228161317145
415 => 0.10061162753075
416 => 0.097865728834744
417 => 0.096691803942922
418 => 0.088767082386484
419 => 0.090993605898652
420 => 0.094229988582728
421 => 0.093801641198678
422 => 0.091451293584745
423 => 0.093380766447969
424 => 0.092742822379192
425 => 0.092239649423824
426 => 0.094544782277242
427 => 0.092010194015271
428 => 0.094204704125956
429 => 0.091390222209702
430 => 0.092583379867611
501 => 0.091906085874439
502 => 0.092344378094051
503 => 0.089782130733981
504 => 0.091164657214436
505 => 0.089724613087069
506 => 0.089723930318654
507 => 0.089692141264728
508 => 0.091386346794442
509 => 0.091441594775942
510 => 0.09018957432968
511 => 0.090009138623139
512 => 0.090676304000405
513 => 0.089895228074516
514 => 0.090260688584206
515 => 0.089906297501054
516 => 0.089826516603618
517 => 0.089190808839249
518 => 0.088916928455209
519 => 0.089024324010819
520 => 0.088657727613319
521 => 0.088436840023454
522 => 0.089648201163443
523 => 0.089001019772516
524 => 0.089549011333396
525 => 0.088924505787725
526 => 0.086759697482313
527 => 0.085514693333439
528 => 0.081425571122353
529 => 0.082585241108876
530 => 0.083354103509707
531 => 0.083099994490819
601 => 0.083645918990527
602 => 0.083679434320994
603 => 0.083501948701097
604 => 0.083296443090573
605 => 0.083196414324543
606 => 0.0839419467945
607 => 0.084374753486779
608 => 0.083431269137682
609 => 0.083210223955438
610 => 0.084164138723573
611 => 0.084746026181078
612 => 0.089042356232969
613 => 0.088724070225762
614 => 0.089522905643378
615 => 0.089432969034483
616 => 0.090270275816607
617 => 0.091638918533131
618 => 0.088856085211916
619 => 0.089339088853342
620 => 0.089220667514648
621 => 0.090513560638776
622 => 0.090517596909985
623 => 0.089742442897269
624 => 0.090162666463
625 => 0.08992810919684
626 => 0.090351985879107
627 => 0.088719819322086
628 => 0.090707622007046
629 => 0.091834578038242
630 => 0.091850225823829
701 => 0.09238439403854
702 => 0.092927139881623
703 => 0.093968893264221
704 => 0.092898085945195
705 => 0.09097180781926
706 => 0.091110878878112
707 => 0.089981502717674
708 => 0.090000487734969
709 => 0.089899144224763
710 => 0.090203283727674
711 => 0.088786560839727
712 => 0.089119062869823
713 => 0.088653558080559
714 => 0.089338076936842
715 => 0.088601647802502
716 => 0.089220610408293
717 => 0.089487734150016
718 => 0.090473426507739
719 => 0.088456060239825
720 => 0.084342513855858
721 => 0.085207231177697
722 => 0.083928246336617
723 => 0.084046621253098
724 => 0.084285757423617
725 => 0.083510638854478
726 => 0.083658507050676
727 => 0.083653224158176
728 => 0.083607699044654
729 => 0.083406060768322
730 => 0.083113645374723
731 => 0.08427853830211
801 => 0.084476476309901
802 => 0.084916467981891
803 => 0.086225584748529
804 => 0.086094773112442
805 => 0.086308132318222
806 => 0.085842370369966
807 => 0.08406822661404
808 => 0.08416457115565
809 => 0.082963153177957
810 => 0.084885745023045
811 => 0.084430449897156
812 => 0.084136918167625
813 => 0.08405682531567
814 => 0.085369187129561
815 => 0.085761866353028
816 => 0.085517175012686
817 => 0.085015305934857
818 => 0.085979042928562
819 => 0.086236898291278
820 => 0.08629462259765
821 => 0.088002179772256
822 => 0.086390056075117
823 => 0.08677811027215
824 => 0.089805598342445
825 => 0.087060084427483
826 => 0.088514444380505
827 => 0.088443261028928
828 => 0.089187262368037
829 => 0.08838223120335
830 => 0.088392210529457
831 => 0.089052833315569
901 => 0.088125107756422
902 => 0.087895389861343
903 => 0.087578036234563
904 => 0.088270966268488
905 => 0.088686346485296
906 => 0.092034005969619
907 => 0.094196746668311
908 => 0.094102856390758
909 => 0.094960837772358
910 => 0.094574309301739
911 => 0.09332610690905
912 => 0.095456636191304
913 => 0.094782447581267
914 => 0.09483802687114
915 => 0.094835958207195
916 => 0.095284234694278
917 => 0.094966589719243
918 => 0.094340478867861
919 => 0.094756120470378
920 => 0.095990427435263
921 => 0.099821754127427
922 => 0.10196581530269
923 => 0.099692678952513
924 => 0.10126065796836
925 => 0.1003204292869
926 => 0.1001495617661
927 => 0.10113436846079
928 => 0.10212089892923
929 => 0.10205806120328
930 => 0.10134189074209
1001 => 0.10093734422072
1002 => 0.10400070601357
1003 => 0.10625773879954
1004 => 0.10610382429488
1005 => 0.10678315286279
1006 => 0.108777682549
1007 => 0.10896003734725
1008 => 0.10893706483405
1009 => 0.10848507943983
1010 => 0.11044895293832
1011 => 0.11208725076182
1012 => 0.10838045788019
1013 => 0.10979195608403
1014 => 0.11042562310337
1015 => 0.11135603428829
1016 => 0.11292579391227
1017 => 0.11463096922209
1018 => 0.1148720997072
1019 => 0.11470100608886
1020 => 0.11357639713446
1021 => 0.11544222030544
1022 => 0.11653517576006
1023 => 0.11718600572145
1024 => 0.11883640221574
1025 => 0.11042953641516
1026 => 0.10447873895316
1027 => 0.10354943599891
1028 => 0.10543921009941
1029 => 0.10593752845904
1030 => 0.10573665695311
1031 => 0.099038493386798
1101 => 0.10351417155395
1102 => 0.1083296249361
1103 => 0.10851460611206
1104 => 0.11092532276154
1105 => 0.11171035092123
1106 => 0.11365129380392
1107 => 0.11352988729814
1108 => 0.11400247600293
1109 => 0.1138938360438
1110 => 0.11748902402024
1111 => 0.12145505024883
1112 => 0.12131771937172
1113 => 0.12074755617747
1114 => 0.12159434574821
1115 => 0.12568770984131
1116 => 0.12531085847044
1117 => 0.12567693747712
1118 => 0.13050324443479
1119 => 0.13677813001391
1120 => 0.1338628156742
1121 => 0.14018820893227
1122 => 0.14416970869354
1123 => 0.1510553008359
1124 => 0.15019319078742
1125 => 0.15287370127964
1126 => 0.14864983387285
1127 => 0.13895098052242
1128 => 0.137416099854
1129 => 0.14048896982155
1130 => 0.14804332079052
1201 => 0.14025105642589
1202 => 0.14182742135819
1203 => 0.14137342815164
1204 => 0.14134923678301
1205 => 0.14227252293021
1206 => 0.14093324821832
1207 => 0.13547680211117
1208 => 0.13797745920704
1209 => 0.13701183541091
1210 => 0.13808326700474
1211 => 0.14386534142464
1212 => 0.14130894849617
1213 => 0.13861599621051
1214 => 0.14199355599067
1215 => 0.14629435024628
1216 => 0.14602521427103
1217 => 0.14550297798895
1218 => 0.14844679656767
1219 => 0.1533091224018
1220 => 0.15462338953636
1221 => 0.15559355466608
1222 => 0.15572732404639
1223 => 0.15710523180084
1224 => 0.14969587452772
1225 => 0.16145471480595
1226 => 0.16348514169059
1227 => 0.16310350558885
1228 => 0.16536023961771
1229 => 0.1646962512186
1230 => 0.16373423620489
1231 => 0.16731163966172
]
'min_raw' => 0.061672533199465
'max_raw' => 0.16731163966172
'avg_raw' => 0.11449208643059
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.061672'
'max' => '$0.167311'
'avg' => '$0.114492'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.021269262842773
'max_diff' => 0.077114184804311
'year' => 2032
]
7 => [
'items' => [
101 => 0.16321043528003
102 => 0.15738929198751
103 => 0.15419569764807
104 => 0.15840128029415
105 => 0.1609694828615
106 => 0.16266690139016
107 => 0.16318053921132
108 => 0.15027104184109
109 => 0.14331353875209
110 => 0.14777321846421
111 => 0.15321433550364
112 => 0.14966564884783
113 => 0.14980475064619
114 => 0.14474525605346
115 => 0.15366198850893
116 => 0.15236289559169
117 => 0.15910259194438
118 => 0.15749410932037
119 => 0.16299007006248
120 => 0.16154279940938
121 => 0.16755033897459
122 => 0.16994690915479
123 => 0.17397112348371
124 => 0.17693135192556
125 => 0.17866965468677
126 => 0.17856529350919
127 => 0.18545331506808
128 => 0.18139168940395
129 => 0.17628933031813
130 => 0.17619704474
131 => 0.17883962881154
201 => 0.18437776006793
202 => 0.18581371692618
203 => 0.18661622091311
204 => 0.18538715812177
205 => 0.18097855456269
206 => 0.17907494189801
207 => 0.18069687504128
208 => 0.17871339018136
209 => 0.18213744151715
210 => 0.18683939533909
211 => 0.1858684604684
212 => 0.18911415017043
213 => 0.19247309755551
214 => 0.19727654317594
215 => 0.1985323417322
216 => 0.20060812899196
217 => 0.20274479594283
218 => 0.20343103578267
219 => 0.20474128056463
220 => 0.20473437492787
221 => 0.20868288576795
222 => 0.21303821549975
223 => 0.2146822516474
224 => 0.21846262211622
225 => 0.21198887016834
226 => 0.21689928538591
227 => 0.22132860282782
228 => 0.21604778797425
301 => 0.22332616097784
302 => 0.22360876370842
303 => 0.22787572941878
304 => 0.22355034221961
305 => 0.22098194110787
306 => 0.22839681888074
307 => 0.23198464466857
308 => 0.23090396234258
309 => 0.22267991648193
310 => 0.21789316904512
311 => 0.20536532770834
312 => 0.22020509693422
313 => 0.22743311564214
314 => 0.22266119765964
315 => 0.22506787552412
316 => 0.23819792958482
317 => 0.24319700406309
318 => 0.24215723151778
319 => 0.24233293596182
320 => 0.24503034581068
321 => 0.25699214657124
322 => 0.24982435828314
323 => 0.25530386385749
324 => 0.25821017385629
325 => 0.2609097165536
326 => 0.25428049288824
327 => 0.24565597030225
328 => 0.24292422196644
329 => 0.2221867244605
330 => 0.22110724765693
331 => 0.2205013046156
401 => 0.2166809194523
402 => 0.21367914320551
403 => 0.21129201928526
404 => 0.20502749326298
405 => 0.20714158689841
406 => 0.19715723992708
407 => 0.20354487129581
408 => 0.18760961244909
409 => 0.20088096953541
410 => 0.19365797324789
411 => 0.19850802099309
412 => 0.19849109963341
413 => 0.18956062402544
414 => 0.18440971206904
415 => 0.18769207364415
416 => 0.19121102580686
417 => 0.19178196395608
418 => 0.19634437728908
419 => 0.19761764878158
420 => 0.19375957671596
421 => 0.18727938962898
422 => 0.18878458929196
423 => 0.18437920924591
424 => 0.17665895016571
425 => 0.1822037750199
426 => 0.18409702201386
427 => 0.1849331877423
428 => 0.17734119961467
429 => 0.17495563211489
430 => 0.17368557599485
501 => 0.18629935929781
502 => 0.18699037082115
503 => 0.18345505816855
504 => 0.19943500659041
505 => 0.1958182521077
506 => 0.19985905299125
507 => 0.1886480081993
508 => 0.18907628520803
509 => 0.18376879693855
510 => 0.18674063572296
511 => 0.18464023585698
512 => 0.18650054051747
513 => 0.18761559946064
514 => 0.19292221682351
515 => 0.20094156258156
516 => 0.19212958514959
517 => 0.18829008039265
518 => 0.19067208754966
519 => 0.19701568650603
520 => 0.20662656364778
521 => 0.20093673094293
522 => 0.20346178207772
523 => 0.20401339341896
524 => 0.19981792143147
525 => 0.20678125668431
526 => 0.21051296461635
527 => 0.21434092478647
528 => 0.21766463534517
529 => 0.21281195331587
530 => 0.21800501869186
531 => 0.21382032469826
601 => 0.21006622158028
602 => 0.21007191500508
603 => 0.20771691128048
604 => 0.20315379481449
605 => 0.2023122861274
606 => 0.20668992058849
607 => 0.21020036886277
608 => 0.21048950619655
609 => 0.21243307073453
610 => 0.21358325220781
611 => 0.22485659424176
612 => 0.22939082566579
613 => 0.23493519802249
614 => 0.23709504351913
615 => 0.24359540411654
616 => 0.23834583500065
617 => 0.23721005770109
618 => 0.22144230914351
619 => 0.22402427708649
620 => 0.22815825688605
621 => 0.22151047694777
622 => 0.22572696321059
623 => 0.22655938691626
624 => 0.22128458792927
625 => 0.22410208597883
626 => 0.21661964648914
627 => 0.20110465931528
628 => 0.20679852930023
629 => 0.21099113414507
630 => 0.20500777008704
701 => 0.21573271857289
702 => 0.20946742507533
703 => 0.20748162782373
704 => 0.1997343247574
705 => 0.20339075358366
706 => 0.20833612592621
707 => 0.20528046077976
708 => 0.21162142476907
709 => 0.22060192085126
710 => 0.22700195715722
711 => 0.22749327247522
712 => 0.22337847789962
713 => 0.22997246246729
714 => 0.23002049244605
715 => 0.2225824509165
716 => 0.21802669189484
717 => 0.21699161385972
718 => 0.21957744173046
719 => 0.22271711413568
720 => 0.2276675024427
721 => 0.23065891841797
722 => 0.23845894475703
723 => 0.2405694082401
724 => 0.24288816775545
725 => 0.2459867455469
726 => 0.24970738264458
727 => 0.24156684049084
728 => 0.24189027940648
729 => 0.2343099192664
730 => 0.22620921732312
731 => 0.23235664033132
801 => 0.24039357815713
802 => 0.23854989573986
803 => 0.2383424438049
804 => 0.23869132041713
805 => 0.23730124408355
806 => 0.2310139803454
807 => 0.22785655585645
808 => 0.23193043899209
809 => 0.234095526571
810 => 0.23745338859042
811 => 0.23703946122066
812 => 0.24568895317461
813 => 0.24904988420086
814 => 0.248190014222
815 => 0.24834825099204
816 => 0.25443305607607
817 => 0.26120061076513
818 => 0.26753931878892
819 => 0.27398732484457
820 => 0.26621400187453
821 => 0.26226718786225
822 => 0.26633929246795
823 => 0.26417857644514
824 => 0.2765946916222
825 => 0.2774543564982
826 => 0.28986957384881
827 => 0.30165309349112
828 => 0.29425207592747
829 => 0.30123090214084
830 => 0.30877907168265
831 => 0.32334071537518
901 => 0.31843686606434
902 => 0.31468059434535
903 => 0.31113093572108
904 => 0.31851721182575
905 => 0.32801953803577
906 => 0.33006624808926
907 => 0.33338270027932
908 => 0.32989585631795
909 => 0.33409537580616
910 => 0.34892152496193
911 => 0.344915368586
912 => 0.33922598251041
913 => 0.35092980335039
914 => 0.35516537061493
915 => 0.38489279986124
916 => 0.42242490726357
917 => 0.4068863683499
918 => 0.39724109582067
919 => 0.39950796365396
920 => 0.41321341873528
921 => 0.417615175918
922 => 0.40564968251868
923 => 0.40987609707158
924 => 0.43316405678997
925 => 0.44565730001169
926 => 0.42868979765018
927 => 0.38187713157567
928 => 0.33871371554323
929 => 0.35016259714899
930 => 0.34886464927505
1001 => 0.37388465676033
1002 => 0.34481982308136
1003 => 0.34530920033959
1004 => 0.37084659508302
1005 => 0.36403365598725
1006 => 0.35299756718743
1007 => 0.33879429120473
1008 => 0.3125382219067
1009 => 0.28928248912477
1010 => 0.33489233658553
1011 => 0.3329255570269
1012 => 0.3300773687656
1013 => 0.33641570353497
1014 => 0.36719285800731
1015 => 0.3664833449808
1016 => 0.36196978510284
1017 => 0.36539328048958
1018 => 0.35239741189378
1019 => 0.35574674314134
1020 => 0.3387068782376
1021 => 0.34640960882171
1022 => 0.35297388869743
1023 => 0.3542917650683
1024 => 0.35726100782432
1025 => 0.33188915357065
1026 => 0.34328037125204
1027 => 0.34997164442711
1028 => 0.31974022879158
1029 => 0.3493740665414
1030 => 0.33144748603538
1031 => 0.32536293536343
1101 => 0.33355498126461
1102 => 0.3303625330099
1103 => 0.32761785346734
1104 => 0.32608627512302
1105 => 0.33210160950973
1106 => 0.33182098697071
1107 => 0.32197873238795
1108 => 0.30913991250636
1109 => 0.31344904187852
1110 => 0.31188349477931
1111 => 0.30620975013218
1112 => 0.31003316897381
1113 => 0.2931967673833
1114 => 0.26423061352683
1115 => 0.2833665420217
1116 => 0.28262982959053
1117 => 0.28225834577549
1118 => 0.29663846716117
1119 => 0.29525615029578
1120 => 0.29274723164942
1121 => 0.30616367187373
1122 => 0.30126649071527
1123 => 0.31635844912464
1124 => 0.32629898901973
1125 => 0.32377774655955
1126 => 0.33312687237768
1127 => 0.31354831551604
1128 => 0.32005152675011
1129 => 0.32139182957239
1130 => 0.30599811508394
1201 => 0.29548231443036
1202 => 0.29478103041567
1203 => 0.27654808124896
1204 => 0.28628797552259
1205 => 0.29485867941918
1206 => 0.2907539773662
1207 => 0.28945455132072
1208 => 0.29609303717598
1209 => 0.29660890438172
1210 => 0.28484707742168
1211 => 0.2872927336953
1212 => 0.29749152691278
1213 => 0.28703575027362
1214 => 0.26672188420516
1215 => 0.26168376455901
1216 => 0.26101158652725
1217 => 0.24734780646858
1218 => 0.26202043580447
1219 => 0.25561543989734
1220 => 0.27584874522435
1221 => 0.26429158973495
1222 => 0.2637933838608
1223 => 0.2630402726111
1224 => 0.25127929267096
1225 => 0.25385419982859
1226 => 0.26241358338996
1227 => 0.26546766787302
1228 => 0.26514910184006
1229 => 0.26237163774095
1230 => 0.26364314658261
1231 => 0.2595471735806
]
'min_raw' => 0.14331353875209
'max_raw' => 0.44565730001169
'avg_raw' => 0.29448541938189
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.143313'
'max' => '$0.445657'
'avg' => '$0.294485'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.081641005552624
'max_diff' => 0.27834566034998
'year' => 2033
]
8 => [
'items' => [
101 => 0.25810080026328
102 => 0.25353564821752
103 => 0.24682613586568
104 => 0.24775913471003
105 => 0.23446583510163
106 => 0.22722293994617
107 => 0.22521820202696
108 => 0.22253738269762
109 => 0.22552100770359
110 => 0.23442817685405
111 => 0.22368424109725
112 => 0.20526451684166
113 => 0.20637157365511
114 => 0.2088588016268
115 => 0.20422386875621
116 => 0.19983729377464
117 => 0.20365106482704
118 => 0.19584638483702
119 => 0.20980195991629
120 => 0.20942450072044
121 => 0.21462627610303
122 => 0.21787905300093
123 => 0.21038245535029
124 => 0.20849708131411
125 => 0.20957107605059
126 => 0.19182033540939
127 => 0.21317566189198
128 => 0.2133603436422
129 => 0.21177898637327
130 => 0.22315003845352
131 => 0.24714650506292
201 => 0.23811806906883
202 => 0.234621985766
203 => 0.22797592885169
204 => 0.23683140508619
205 => 0.23615144267833
206 => 0.2330763948019
207 => 0.2312165962515
208 => 0.23464333210515
209 => 0.23079198575723
210 => 0.23010017812522
211 => 0.22590857656939
212 => 0.22441236551967
213 => 0.22330463042434
214 => 0.22208512292819
215 => 0.22477505258237
216 => 0.21867931809627
217 => 0.21132845987826
218 => 0.21071731555482
219 => 0.21240473876419
220 => 0.21165817960793
221 => 0.2107137413168
222 => 0.20891055141657
223 => 0.20837558349223
224 => 0.2101139697168
225 => 0.20815143302347
226 => 0.21104726281938
227 => 0.21025975734846
228 => 0.20586081580394
301 => 0.20037810594272
302 => 0.20032929832458
303 => 0.19914805747842
304 => 0.19764356966009
305 => 0.19722505556705
306 => 0.20332987966648
307 => 0.21596668285028
308 => 0.21348577601223
309 => 0.21527848545628
310 => 0.22409684161126
311 => 0.22689993185571
312 => 0.22491036479503
313 => 0.22218692269122
314 => 0.22230674032209
315 => 0.23161356643279
316 => 0.23219402176133
317 => 0.23366064511456
318 => 0.23554567059118
319 => 0.22523139278478
320 => 0.22182093876496
321 => 0.22020487644558
322 => 0.21522802999672
323 => 0.22059513220925
324 => 0.21746795159224
325 => 0.21788991509717
326 => 0.21761511081102
327 => 0.21776517253345
328 => 0.20979805904864
329 => 0.21270085646335
330 => 0.20787439275458
331 => 0.20141229964452
401 => 0.20139063644251
402 => 0.20297222457636
403 => 0.2020314340668
404 => 0.1994997909955
405 => 0.19985939894476
406 => 0.19670885491199
407 => 0.20024193203278
408 => 0.20034324804265
409 => 0.19898282090313
410 => 0.20442601367841
411 => 0.20665609419966
412 => 0.20576063191326
413 => 0.20659326617853
414 => 0.21358886889197
415 => 0.21472945737381
416 => 0.21523603143439
417 => 0.21455728930141
418 => 0.20672113295412
419 => 0.20706869981003
420 => 0.20451848483558
421 => 0.20236382191721
422 => 0.20244999713422
423 => 0.20355777396084
424 => 0.20839550033294
425 => 0.21857621028347
426 => 0.21896256078409
427 => 0.21943082886148
428 => 0.21752614725805
429 => 0.21695167706111
430 => 0.21770955153421
501 => 0.22153289091533
502 => 0.23136755783009
503 => 0.2278913297071
504 => 0.22506510213239
505 => 0.22754446566089
506 => 0.22716278707957
507 => 0.22394103574549
508 => 0.22385061191592
509 => 0.21766704104961
510 => 0.21538111569343
511 => 0.21347082536726
512 => 0.21138483820047
513 => 0.21014819508508
514 => 0.21204824095457
515 => 0.2124828039256
516 => 0.20832832042484
517 => 0.20776207967503
518 => 0.21115472058251
519 => 0.20966174580953
520 => 0.21119730738753
521 => 0.21155357084543
522 => 0.21149620422326
523 => 0.20993736709322
524 => 0.21093092339472
525 => 0.20858086654828
526 => 0.2060255326949
527 => 0.20439538889937
528 => 0.20297287223057
529 => 0.20376216715558
530 => 0.2009484748675
531 => 0.20004831807611
601 => 0.21059432887549
602 => 0.21838478044172
603 => 0.21827150419059
604 => 0.21758196414412
605 => 0.21655744750316
606 => 0.22145794114173
607 => 0.21975070714651
608 => 0.2209928625222
609 => 0.22130904319841
610 => 0.22226602687778
611 => 0.22260806628762
612 => 0.22157418562942
613 => 0.21810435586263
614 => 0.20945786998528
615 => 0.20543290746864
616 => 0.20410460279709
617 => 0.20415288414909
618 => 0.20282106892346
619 => 0.20321334819518
620 => 0.20268465020156
621 => 0.20168342410743
622 => 0.20370034426564
623 => 0.20393277552497
624 => 0.20346200225964
625 => 0.20357288640587
626 => 0.19967508483884
627 => 0.1999714262264
628 => 0.19832135972322
629 => 0.19801199214572
630 => 0.19384076771341
701 => 0.18645083900291
702 => 0.19054557686626
703 => 0.18559970933461
704 => 0.18372663435825
705 => 0.19259347997341
706 => 0.19170349460166
707 => 0.19018022651257
708 => 0.18792699553192
709 => 0.18709125024318
710 => 0.18201352643356
711 => 0.18171350742229
712 => 0.18423016445241
713 => 0.18306881382589
714 => 0.18143783770838
715 => 0.17553060754015
716 => 0.16888892501438
717 => 0.1690893956617
718 => 0.17120199130026
719 => 0.17734464804169
720 => 0.17494460578377
721 => 0.17320334758834
722 => 0.17287726227036
723 => 0.17695890273068
724 => 0.18273527911213
725 => 0.18544542567117
726 => 0.18275975273954
727 => 0.17967459628257
728 => 0.17986237546087
729 => 0.18111158620752
730 => 0.18124286059411
731 => 0.17923474089983
801 => 0.17980001483114
802 => 0.17894131203975
803 => 0.17367145459403
804 => 0.17357613958373
805 => 0.17228283157862
806 => 0.17224367072622
807 => 0.17004343117872
808 => 0.16973560245649
809 => 0.16536689328994
810 => 0.16824239089303
811 => 0.16631365807128
812 => 0.16340660276681
813 => 0.16290542533659
814 => 0.16289035933785
815 => 0.16587525512986
816 => 0.16820751064781
817 => 0.16634720920447
818 => 0.16592365462625
819 => 0.1704461094125
820 => 0.16987058581786
821 => 0.16937218609663
822 => 0.18221806796302
823 => 0.17204955008911
824 => 0.16761549589738
825 => 0.16212751183105
826 => 0.16391442711586
827 => 0.16429095642162
828 => 0.15109334402559
829 => 0.14573907432018
830 => 0.14390169072868
831 => 0.14284425049498
901 => 0.14332613928798
902 => 0.13850666855991
903 => 0.14174543259586
904 => 0.13757217832507
905 => 0.13687251866563
906 => 0.1443348142688
907 => 0.14537314910788
908 => 0.140943290099
909 => 0.14378797671173
910 => 0.14275645380185
911 => 0.13764371679158
912 => 0.13744844784453
913 => 0.13488305613417
914 => 0.13086871486517
915 => 0.12903405318609
916 => 0.12807854545435
917 => 0.12847280656694
918 => 0.12827345608383
919 => 0.12697255933565
920 => 0.12834802196266
921 => 0.12483428333106
922 => 0.12343508429584
923 => 0.1228030985528
924 => 0.119684453274
925 => 0.12464760478042
926 => 0.12562540815132
927 => 0.12660513809691
928 => 0.13513301838331
929 => 0.13470698958374
930 => 0.1385580824474
1001 => 0.13840843606042
1002 => 0.13731004199214
1003 => 0.1326760980951
1004 => 0.13452310554035
1005 => 0.12883830371256
1006 => 0.13309774377089
1007 => 0.13115391320674
1008 => 0.13244053270183
1009 => 0.13012707483985
1010 => 0.13140743794101
1011 => 0.12585728160467
1012 => 0.12067462371061
1013 => 0.12276027653839
1014 => 0.12502761968553
1015 => 0.12994379733681
1016 => 0.12701576248529
1017 => 0.12806879453915
1018 => 0.12454131343415
1019 => 0.11726311233938
1020 => 0.11730430616716
1021 => 0.11618471349296
1022 => 0.11521722195924
1023 => 0.12735208251051
1024 => 0.1258429207772
1025 => 0.12343826906938
1026 => 0.12665699093736
1027 => 0.12750807208723
1028 => 0.12753230117109
1029 => 0.12988059755873
1030 => 0.13113388376177
1031 => 0.13135478088711
1101 => 0.13504987599136
1102 => 0.13628842313082
1103 => 0.14138982351252
1104 => 0.13102755118367
1105 => 0.13081414700414
1106 => 0.12670228495481
1107 => 0.12409447703717
1108 => 0.12688084379401
1109 => 0.12934918436359
1110 => 0.12677898317678
1111 => 0.12711459719187
1112 => 0.12366431209174
1113 => 0.12489762666403
1114 => 0.12595992331911
1115 => 0.12537338554509
1116 => 0.12449531010863
1117 => 0.12914680858546
1118 => 0.12888435281203
1119 => 0.13321593513115
1120 => 0.13659271330332
1121 => 0.14264450345916
1122 => 0.13632914494459
1123 => 0.13609898817904
1124 => 0.13834880748057
1125 => 0.13628807869521
1126 => 0.13759038815362
1127 => 0.14243468127178
1128 => 0.14253703355183
1129 => 0.14082250098754
1130 => 0.14071817152518
1201 => 0.14104746625909
1202 => 0.1429761558009
1203 => 0.14230221241235
1204 => 0.14308211676374
1205 => 0.14405739909747
1206 => 0.14809158034094
1207 => 0.14906420778108
1208 => 0.14670122735104
1209 => 0.1469145780267
1210 => 0.14603075848061
1211 => 0.1451769998733
1212 => 0.14709612454109
1213 => 0.15060336259196
1214 => 0.15058154424607
1215 => 0.15139515530291
1216 => 0.151902028251
1217 => 0.14972615850412
1218 => 0.14830974730784
1219 => 0.14885288948908
1220 => 0.14972138566498
1221 => 0.14857124788454
1222 => 0.14147206470802
1223 => 0.1436255033862
1224 => 0.14326706589237
1225 => 0.14275660731369
1226 => 0.14492190655664
1227 => 0.14471305816238
1228 => 0.13845723792164
1229 => 0.13885771523649
1230 => 0.13848159227358
1231 => 0.13969692251427
]
'min_raw' => 0.11521722195924
'max_raw' => 0.25810080026328
'avg_raw' => 0.18665901111126
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.115217'
'max' => '$0.2581008'
'avg' => '$0.186659'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.028096316792845
'max_diff' => -0.18755649974841
'year' => 2034
]
9 => [
'items' => [
101 => 0.13622244687384
102 => 0.13729117217989
103 => 0.13796146667316
104 => 0.13835627527915
105 => 0.13978259468676
106 => 0.13961523256679
107 => 0.13977219122239
108 => 0.14188704636951
109 => 0.15258325797301
110 => 0.15316542917073
111 => 0.15029860527406
112 => 0.15144384487518
113 => 0.14924523527739
114 => 0.15072117662979
115 => 0.15173097821825
116 => 0.14716787901367
117 => 0.14689768189304
118 => 0.14468999785136
119 => 0.14587628220574
120 => 0.14398881850105
121 => 0.14445193607351
122 => 0.14315701896706
123 => 0.14548761194324
124 => 0.14809357702813
125 => 0.14875194672126
126 => 0.14702005950462
127 => 0.14576605902285
128 => 0.14356444727029
129 => 0.14722577668091
130 => 0.14829646097757
131 => 0.1472201528321
201 => 0.146970748717
202 => 0.14649812836955
203 => 0.14707101735793
204 => 0.14829062980094
205 => 0.14771548309553
206 => 0.14809537762724
207 => 0.1466476114179
208 => 0.14972687880754
209 => 0.15461749648834
210 => 0.15463322062388
211 => 0.15405807081821
212 => 0.1538227319095
213 => 0.15441287051313
214 => 0.15473299649685
215 => 0.15664139652808
216 => 0.15868918579559
217 => 0.16824532478664
218 => 0.16556199919746
219 => 0.17404077420757
220 => 0.18074638440942
221 => 0.18275710370816
222 => 0.18090733656497
223 => 0.17457938309059
224 => 0.17426890350404
225 => 0.18372553758782
226 => 0.18105360531787
227 => 0.18073578747638
228 => 0.17735474260462
301 => 0.17935335887438
302 => 0.17891623217825
303 => 0.17822620630344
304 => 0.18203942692133
305 => 0.18917743550948
306 => 0.18806490993119
307 => 0.18723446119558
308 => 0.18359567657613
309 => 0.18578703766901
310 => 0.18500673595659
311 => 0.18835940730484
312 => 0.1863733590689
313 => 0.18103336280301
314 => 0.18188377480921
315 => 0.18175523674526
316 => 0.18440054099296
317 => 0.18360648631829
318 => 0.18160018482591
319 => 0.18915303857212
320 => 0.18866259826102
321 => 0.1893579304919
322 => 0.18966403724379
323 => 0.1942613262229
324 => 0.1961446884208
325 => 0.19657224461262
326 => 0.19836129303617
327 => 0.19652773145806
328 => 0.20386328507775
329 => 0.20874100019342
330 => 0.2144067173052
331 => 0.22268585280671
401 => 0.22579888434156
402 => 0.22523654305845
403 => 0.23151368910723
404 => 0.24279358102376
405 => 0.22751653171924
406 => 0.24360330173247
407 => 0.23851041607697
408 => 0.22643527580488
409 => 0.22565777912791
410 => 0.23383520431543
411 => 0.25197194633334
412 => 0.24742889816308
413 => 0.25197937713264
414 => 0.24667100170172
415 => 0.24640739611908
416 => 0.25172156118648
417 => 0.26413839752652
418 => 0.25823962401952
419 => 0.24978228575862
420 => 0.25602705271971
421 => 0.25061725765212
422 => 0.23842747525854
423 => 0.24742542417976
424 => 0.24140875198297
425 => 0.24316473679388
426 => 0.25581088683909
427 => 0.25428926860809
428 => 0.25625838349706
429 => 0.25278294725874
430 => 0.24953634178615
501 => 0.24347631157547
502 => 0.24168223538597
503 => 0.24217805350065
504 => 0.24168198968314
505 => 0.23829145847482
506 => 0.2375592735832
507 => 0.23633893335274
508 => 0.23671716781829
509 => 0.2344225711619
510 => 0.23875294914036
511 => 0.23955670545233
512 => 0.2427079934215
513 => 0.24303517059246
514 => 0.25181146273082
515 => 0.24697762850061
516 => 0.25022058183541
517 => 0.24993050156528
518 => 0.22669698070961
519 => 0.22989835489243
520 => 0.23487868847434
521 => 0.23263505494637
522 => 0.22946308206722
523 => 0.22690154389687
524 => 0.22302055163808
525 => 0.22848297371448
526 => 0.23566547788112
527 => 0.24321733075106
528 => 0.25229038715729
529 => 0.25026538658944
530 => 0.24304771627263
531 => 0.24337149569053
601 => 0.24537297264949
602 => 0.24278087813428
603 => 0.24201641885805
604 => 0.245267947684
605 => 0.24529033917602
606 => 0.24230782117119
607 => 0.23899329820385
608 => 0.2389794102316
609 => 0.23838962288405
610 => 0.24677592356063
611 => 0.25138754098212
612 => 0.2519162554875
613 => 0.25135195428333
614 => 0.2515691314205
615 => 0.24888573285299
616 => 0.25501918624119
617 => 0.26064784960587
618 => 0.25913924758528
619 => 0.256877638696
620 => 0.25507615828186
621 => 0.25871487605158
622 => 0.25855284967716
623 => 0.26059868814171
624 => 0.26050587709163
625 => 0.25981793856388
626 => 0.25913927215373
627 => 0.26183010775698
628 => 0.26105519031674
629 => 0.26027906921568
630 => 0.25872243952931
701 => 0.25893401135657
702 => 0.25667279296595
703 => 0.25562664987214
704 => 0.23989516778948
705 => 0.23569120173598
706 => 0.23701385503603
707 => 0.23744930684509
708 => 0.23561973543108
709 => 0.23824287086043
710 => 0.23783405798236
711 => 0.23942450974342
712 => 0.2384308645325
713 => 0.23847164407855
714 => 0.24139374277638
715 => 0.24224204045986
716 => 0.24181058941144
717 => 0.24211276293648
718 => 0.24907622428145
719 => 0.24808624275716
720 => 0.24756033480344
721 => 0.24770601490074
722 => 0.24948532857267
723 => 0.24998343925389
724 => 0.24787290929596
725 => 0.24886824742495
726 => 0.25310627085097
727 => 0.25458933919873
728 => 0.25932258145158
729 => 0.25731181601589
730 => 0.26100266299698
731 => 0.27234706831437
801 => 0.28140976425504
802 => 0.27307533453625
803 => 0.28971782150393
804 => 0.30267638483123
805 => 0.30217901358711
806 => 0.29991938833403
807 => 0.28516640850713
808 => 0.27159049651587
809 => 0.28294732336023
810 => 0.28297627424741
811 => 0.2820007127496
812 => 0.27594158407211
813 => 0.28178986820555
814 => 0.28225408376222
815 => 0.28199424649536
816 => 0.27734872674471
817 => 0.27025587672102
818 => 0.27164180263776
819 => 0.27391197756151
820 => 0.26961406282275
821 => 0.26824061864388
822 => 0.27079411268085
823 => 0.27902200250957
824 => 0.27746656759837
825 => 0.27742594890684
826 => 0.284080759064
827 => 0.27931735118939
828 => 0.27165928360192
829 => 0.26972552053859
830 => 0.26286196440263
831 => 0.26760264707288
901 => 0.26777325580251
902 => 0.26517683235261
903 => 0.27186996905518
904 => 0.27180829062216
905 => 0.27816242777931
906 => 0.29030915151886
907 => 0.2867167676051
908 => 0.28253921596366
909 => 0.28299343165803
910 => 0.28797505672538
911 => 0.28496305249022
912 => 0.28604619021362
913 => 0.28797341726671
914 => 0.28913616119819
915 => 0.2828261306999
916 => 0.2813549607471
917 => 0.27834546333416
918 => 0.27756034163405
919 => 0.28001151448167
920 => 0.27936571703754
921 => 0.26775891679941
922 => 0.2665459415949
923 => 0.2665831418127
924 => 0.26353305798713
925 => 0.25888094804914
926 => 0.27110641520312
927 => 0.27012453909535
928 => 0.26904062386355
929 => 0.26917339729471
930 => 0.27448005822673
1001 => 0.27140192689336
1002 => 0.27958564353893
1003 => 0.27790331742164
1004 => 0.27617784598744
1005 => 0.27593933327609
1006 => 0.27527517398423
1007 => 0.27299752464964
1008 => 0.27024712621263
1009 => 0.26843107492908
1010 => 0.24761347740914
1011 => 0.25147710241845
1012 => 0.25592185081116
1013 => 0.25745616014511
1014 => 0.25483161785841
1015 => 0.2731011575759
1016 => 0.27643917853195
1017 => 0.26632809532235
1018 => 0.26443672448664
1019 => 0.27322515553301
1020 => 0.26792465727005
1021 => 0.2703114713133
1022 => 0.26515248486927
1023 => 0.2756351470323
1024 => 0.27555528670988
1025 => 0.2714772943668
1026 => 0.27492398557028
1027 => 0.27432503815477
1028 => 0.26972099484308
1029 => 0.27578110341736
1030 => 0.27578410915561
1031 => 0.27185913018859
1101 => 0.26727561404349
1102 => 0.26645618961457
1103 => 0.26583886338156
1104 => 0.27015964690277
1105 => 0.27403364789715
1106 => 0.2812422033014
1107 => 0.28305460540108
1108 => 0.29012853145457
1109 => 0.28591635291293
1110 => 0.28778355710359
1111 => 0.28981067138472
1112 => 0.29078254451576
1113 => 0.28919892940233
1114 => 0.30018764830753
1115 => 0.30111543286877
1116 => 0.30142651100685
1117 => 0.29772117681935
1118 => 0.30101238082212
1119 => 0.29947253546244
1120 => 0.30347878530695
1121 => 0.30410701643694
1122 => 0.30357492701981
1123 => 0.30377433749642
1124 => 0.29439740445369
1125 => 0.29391116100816
1126 => 0.28728119712612
1127 => 0.28998295641427
1128 => 0.28493214692377
1129 => 0.28653381064231
1130 => 0.28723980874823
1201 => 0.28687103540274
1202 => 0.29013570983074
1203 => 0.28736006963801
1204 => 0.28003469881192
1205 => 0.27270733219345
1206 => 0.2726153430743
1207 => 0.27068617678242
1208 => 0.26929174289782
1209 => 0.2695603603342
1210 => 0.2705070032163
1211 => 0.26923672229261
1212 => 0.26950780113256
1213 => 0.27400951606453
1214 => 0.27491230288937
1215 => 0.27184428051697
1216 => 0.25952572797825
1217 => 0.2565027242865
1218 => 0.25867559939136
1219 => 0.25763710504232
1220 => 0.20793325152076
1221 => 0.21961043463797
1222 => 0.21267224894939
1223 => 0.21586968412526
1224 => 0.2087875931717
1225 => 0.21216753817893
1226 => 0.21154338575192
1227 => 0.23031995065143
1228 => 0.23002678041684
1229 => 0.23016710549392
1230 => 0.22346902395021
1231 => 0.23413924972207
]
'min_raw' => 0.13622244687384
'max_raw' => 0.30410701643694
'avg_raw' => 0.22016473165539
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.136222'
'max' => '$0.304107'
'avg' => '$0.220164'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.021005224914596
'max_diff' => 0.046006216173656
'year' => 2035
]
10 => [
'items' => [
101 => 0.23939578662619
102 => 0.23842294154344
103 => 0.23866778569164
104 => 0.23446055201801
105 => 0.23020784071243
106 => 0.22549092938697
107 => 0.23425436760182
108 => 0.23328002286921
109 => 0.23551481912765
110 => 0.24119853523349
111 => 0.24203548402041
112 => 0.24316035167753
113 => 0.24275716669599
114 => 0.25236266868936
115 => 0.25119937901882
116 => 0.25400257242355
117 => 0.24823619091123
118 => 0.24171098288009
119 => 0.24295121160169
120 => 0.24283176760251
121 => 0.24131110840152
122 => 0.23993832526813
123 => 0.23765302813029
124 => 0.24488404643476
125 => 0.24459048029699
126 => 0.24934297483421
127 => 0.24850292526149
128 => 0.24289286861985
129 => 0.24309323289031
130 => 0.24444077890099
131 => 0.24910465102996
201 => 0.25048920581846
202 => 0.24984782487546
203 => 0.25136592599373
204 => 0.25256577121964
205 => 0.25151660808096
206 => 0.2663705456354
207 => 0.26020215514989
208 => 0.26320858575314
209 => 0.2639256017371
210 => 0.26208898037141
211 => 0.26248727778115
212 => 0.26309058982736
213 => 0.2667537824313
214 => 0.27636705977737
215 => 0.28062471487416
216 => 0.29343408030183
217 => 0.28027117588779
218 => 0.27949014361337
219 => 0.28179749713268
220 => 0.28931795064776
221 => 0.29541257186145
222 => 0.29743450932517
223 => 0.29770174173955
224 => 0.30149503083734
225 => 0.30366927340753
226 => 0.30103442576746
227 => 0.29880166827254
228 => 0.29080420806579
229 => 0.29172993586109
301 => 0.29810728237056
302 => 0.30711565993903
303 => 0.31484578505472
304 => 0.31213896466126
305 => 0.33279009354592
306 => 0.33483756862254
307 => 0.33455467376974
308 => 0.33921912669942
309 => 0.32996113753333
310 => 0.32600316779973
311 => 0.29928441578581
312 => 0.30679129525799
313 => 0.31770298543438
314 => 0.3162587823228
315 => 0.30833442124639
316 => 0.31483977371624
317 => 0.31268890074853
318 => 0.31099241799909
319 => 0.31876433435363
320 => 0.31021879306909
321 => 0.31761773712307
322 => 0.30812851484156
323 => 0.31215132918881
324 => 0.30986778520368
325 => 0.31134551802268
326 => 0.30270672215781
327 => 0.30736800671158
328 => 0.30251279739549
329 => 0.30251049539411
330 => 0.30240331637936
331 => 0.30811544860844
401 => 0.30830172103536
402 => 0.30408044668751
403 => 0.30347209510529
404 => 0.30572148975474
405 => 0.30308803773763
406 => 0.30432021336169
407 => 0.30312535908204
408 => 0.30285637221621
409 => 0.30071303910494
410 => 0.29978963226844
411 => 0.30015172388229
412 => 0.29891571853318
413 => 0.29817098060207
414 => 0.30225516926008
415 => 0.3000731520158
416 => 0.30192074382286
417 => 0.29981517977404
418 => 0.29251637743026
419 => 0.28831875901892
420 => 0.27453199799084
421 => 0.27844190631598
422 => 0.28103417958064
423 => 0.28017743328214
424 => 0.28201805584813
425 => 0.28213105512477
426 => 0.28153264996563
427 => 0.28083977345181
428 => 0.28050251948335
429 => 0.28301613425723
430 => 0.28447537223785
501 => 0.28129434888289
502 => 0.28054907961807
503 => 0.28376526985904
504 => 0.2857271440481
505 => 0.30021252077824
506 => 0.29913939728292
507 => 0.30183272666633
508 => 0.30152949911026
509 => 0.30435253738508
510 => 0.30896701185943
511 => 0.29958449502573
512 => 0.30121297552504
513 => 0.30081370971372
514 => 0.30517278914863
515 => 0.30518639771882
516 => 0.30257291184542
517 => 0.30398972493635
518 => 0.30319889873723
519 => 0.30462802856562
520 => 0.29912506506439
521 => 0.30582708060069
522 => 0.30962669154142
523 => 0.30967944914302
524 => 0.31148043457335
525 => 0.31331034007661
526 => 0.31682268433894
527 => 0.31321238270146
528 => 0.30671780151143
529 => 0.30718668929598
530 => 0.30337891872054
531 => 0.30344292803184
601 => 0.3031012413116
602 => 0.30412666888001
603 => 0.29935008875086
604 => 0.30047114255988
605 => 0.29890166066237
606 => 0.30120956377791
607 => 0.29872664153564
608 => 0.30081351717565
609 => 0.30171414352086
610 => 0.30503747412377
611 => 0.29823578290348
612 => 0.28436667407129
613 => 0.28728212889451
614 => 0.28296994220694
615 => 0.28336905150253
616 => 0.28417531579739
617 => 0.28156194942449
618 => 0.2820604973718
619 => 0.28204268573089
620 => 0.28188919463219
621 => 0.2812093571056
622 => 0.28022345819029
623 => 0.2841509760252
624 => 0.28481833783806
625 => 0.28630180047941
626 => 0.29071557905775
627 => 0.2902745384937
628 => 0.29099389395225
629 => 0.28942354502525
630 => 0.28344189548538
701 => 0.28376672783398
702 => 0.27971606324187
703 => 0.28619821587866
704 => 0.28466315657403
705 => 0.28367349385419
706 => 0.28340345521192
707 => 0.28782817469362
708 => 0.28915212011153
709 => 0.28832712617376
710 => 0.28663503953848
711 => 0.28988434609873
712 => 0.29075372345701
713 => 0.29094834498613
714 => 0.29670549321815
715 => 0.29127010561836
716 => 0.29257845743674
717 => 0.3027858448382
718 => 0.29352915298825
719 => 0.29843262911003
720 => 0.29819262947033
721 => 0.30070108192965
722 => 0.29798686315242
723 => 0.29802050914713
724 => 0.30024784499371
725 => 0.29711995349932
726 => 0.29634544357767
727 => 0.29527546366806
728 => 0.29761172565627
729 => 0.29901220905816
730 => 0.31029907673567
731 => 0.31759090799905
801 => 0.31727435037307
802 => 0.32016709450348
803 => 0.31886388677823
804 => 0.31465548526457
805 => 0.32183871348849
806 => 0.31956563951941
807 => 0.31975302897564
808 => 0.31974605433072
809 => 0.32125744980458
810 => 0.32018648759399
811 => 0.31807551114489
812 => 0.31947687582695
813 => 0.32363842793562
814 => 0.33655601337293
815 => 0.3437848653189
816 => 0.33612082740897
817 => 0.34140737813369
818 => 0.33823733148948
819 => 0.33766123971351
820 => 0.34098158424166
821 => 0.34430774059337
822 => 0.34409587881313
823 => 0.34168126010181
824 => 0.34031730326047
825 => 0.35064564142218
826 => 0.35825538504108
827 => 0.35773645154264
828 => 0.36002685523854
829 => 0.36675155132922
830 => 0.36736637326312
831 => 0.36728891983097
901 => 0.36576501951777
902 => 0.37238635613119
903 => 0.37790999162543
904 => 0.36541228062498
905 => 0.3701712453669
906 => 0.37230769796382
907 => 0.37544464423301
908 => 0.38073719840238
909 => 0.38648631601098
910 => 0.38729930427671
911 => 0.38672245019711
912 => 0.38293075258966
913 => 0.38922150567823
914 => 0.3929064813012
915 => 0.39510079995551
916 => 0.40066522696303
917 => 0.37232089196772
918 => 0.35225736285319
919 => 0.34912415306108
920 => 0.35549565838072
921 => 0.3571757735217
922 => 0.35649852121506
923 => 0.33391519510039
924 => 0.34900525652281
925 => 0.36524089380494
926 => 0.36586457075466
927 => 0.37399247024926
928 => 0.37663924749856
929 => 0.38318327193985
930 => 0.3827739414293
1001 => 0.38436730724258
1002 => 0.38400102003536
1003 => 0.39612244730593
1004 => 0.40949418163474
1005 => 0.40903116099444
1006 => 0.4071088159775
1007 => 0.4099638261362
1008 => 0.42376488896566
1009 => 0.42249430825785
1010 => 0.42372856918768
1011 => 0.44000080005744
1012 => 0.46115701488598
1013 => 0.45132782904888
1014 => 0.47265433404335
1015 => 0.48607823846791
1016 => 0.50929349311257
1017 => 0.50638682889352
1018 => 0.51542435716527
1019 => 0.50118329330229
1020 => 0.46848293207901
1021 => 0.46330797474347
1022 => 0.47366837038001
1023 => 0.49913839209982
1024 => 0.47286622875594
1025 => 0.47818105318347
1026 => 0.47665038339079
1027 => 0.47656882050247
1028 => 0.47968174420955
1029 => 0.47516628601325
1030 => 0.45676949700609
1031 => 0.46520063699511
1101 => 0.46194496894876
1102 => 0.46555737537232
1103 => 0.48505204297056
1104 => 0.47643298573055
1105 => 0.46735350908355
1106 => 0.47874118769605
1107 => 0.49324161580069
1108 => 0.49233420506968
1109 => 0.49057344898325
1110 => 0.50049873885225
1111 => 0.51689240987877
1112 => 0.52132355328214
1113 => 0.52459453275176
1114 => 0.52504554555697
1115 => 0.52969125775353
1116 => 0.5047100924024
1117 => 0.54435584337647
1118 => 0.55120156937793
1119 => 0.54991485661593
1120 => 0.55752359295435
1121 => 0.55528490970858
1122 => 0.55204140892409
1123 => 0.56410287444513
1124 => 0.55027537753533
1125 => 0.53064898650533
1126 => 0.51988156022028
1127 => 0.53406097573594
1128 => 0.54271984999795
1129 => 0.5484428150773
1130 => 0.55017458085241
1201 => 0.50664930915635
1202 => 0.48319160173442
1203 => 0.49822772324872
1204 => 0.51657282923383
1205 => 0.50460818441239
1206 => 0.50507717583732
1207 => 0.48801873657529
1208 => 0.5180821225953
1209 => 0.51370214012506
1210 => 0.53642549692872
1211 => 0.53100238546119
1212 => 0.54953240081895
1213 => 0.54465282676681
1214 => 0.56490766584392
1215 => 0.57298786952965
1216 => 0.58655578910129
1217 => 0.59653640596955
1218 => 0.60239721509337
1219 => 0.60204535409692
1220 => 0.62526879968901
1221 => 0.61157474518874
1222 => 0.59437178529557
1223 => 0.59406063802574
1224 => 0.60297029472224
1225 => 0.62164249091316
1226 => 0.62648391971607
1227 => 0.62918961793702
1228 => 0.62504574692559
1229 => 0.61018183222728
1230 => 0.60376366922231
1231 => 0.60923213005463
]
'min_raw' => 0.22549092938697
'max_raw' => 0.62918961793702
'avg_raw' => 0.42734027366199
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.22549'
'max' => '$0.629189'
'avg' => '$0.42734'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.089268482513128
'max_diff' => 0.32508260150008
'year' => 2036
]
11 => [
'items' => [
101 => 0.6025446723669
102 => 0.61408910050515
103 => 0.62994206609575
104 => 0.62666849139071
105 => 0.63761156082791
106 => 0.64893648645094
107 => 0.6651316387261
108 => 0.66936565123558
109 => 0.67636431290867
110 => 0.68356823471089
111 => 0.68588194024262
112 => 0.69029952200336
113 => 0.6902762391669
114 => 0.70358891914045
115 => 0.71827321741065
116 => 0.72381620006536
117 => 0.73656198303803
118 => 0.71473527636284
119 => 0.73129108410311
120 => 0.74622483710357
121 => 0.72842020113005
122 => 0.75295974387142
123 => 0.75391255870827
124 => 0.7682989315108
125 => 0.75371558657989
126 => 0.74505604291161
127 => 0.77005582101308
128 => 0.78215242615075
129 => 0.77850883023784
130 => 0.75078088543413
131 => 0.73464203225087
201 => 0.69240354051799
202 => 0.74243685854264
203 => 0.76680662826055
204 => 0.75071777361786
205 => 0.75883205606685
206 => 0.80310095004359
207 => 0.81995567867131
208 => 0.81645001294019
209 => 0.81704241274058
210 => 0.82613691837314
211 => 0.86646696478362
212 => 0.8423002661313
213 => 0.86077480174207
214 => 0.87057362881513
215 => 0.87967532549516
216 => 0.8573244350698
217 => 0.82824625502619
218 => 0.81903597478742
219 => 0.74911805410032
220 => 0.74547852269041
221 => 0.74343554342095
222 => 0.73055484811211
223 => 0.72043414991875
224 => 0.71238579495795
225 => 0.69126450809859
226 => 0.69839232239174
227 => 0.66472939949308
228 => 0.68626574462291
301 => 0.63253890685695
302 => 0.67728421385005
303 => 0.65293137757316
304 => 0.66928365216566
305 => 0.66922660062008
306 => 0.63911687860192
307 => 0.62175021931571
308 => 0.63281693053337
309 => 0.64468132343534
310 => 0.64660628126707
311 => 0.66198877635681
312 => 0.66628170009073
313 => 0.65327394075951
314 => 0.63142553756355
315 => 0.63650042331695
316 => 0.6216473769179
317 => 0.59561798441773
318 => 0.61431274854094
319 => 0.62069596296336
320 => 0.62351515409601
321 => 0.59791823606802
322 => 0.5898751286875
323 => 0.58559304580632
324 => 0.62812129687847
325 => 0.6304510904743
326 => 0.61853153703841
327 => 0.67240904882707
328 => 0.66021490857489
329 => 0.67383875087348
330 => 0.63603993062727
331 => 0.63748389646353
401 => 0.61958932920601
402 => 0.62960909115481
403 => 0.6225274463614
404 => 0.62879959340656
405 => 0.6325590924844
406 => 0.65045072341952
407 => 0.6774885075356
408 => 0.64777831039112
409 => 0.63483315203741
410 => 0.64286425547372
411 => 0.66425214225104
412 => 0.69665588554446
413 => 0.67747221732865
414 => 0.68598560352301
415 => 0.68784539967229
416 => 0.67370007294795
417 => 0.69717744391747
418 => 0.70975915774986
419 => 0.72266539272305
420 => 0.73387151492578
421 => 0.71751035866057
422 => 0.73501914114397
423 => 0.72091015317852
424 => 0.70825293241314
425 => 0.70827212819237
426 => 0.70033206871375
427 => 0.68494720296206
428 => 0.68210999767126
429 => 0.69686949789353
430 => 0.70870521934192
501 => 0.70968006604969
502 => 0.71623292958485
503 => 0.72011084672509
504 => 0.75811970647217
505 => 0.77340718428822
506 => 0.79210042278454
507 => 0.79938249267206
508 => 0.82129891226693
509 => 0.8035996234795
510 => 0.79977027101659
511 => 0.74660820588565
512 => 0.75531349107265
513 => 0.76925149259211
514 => 0.74683803839702
515 => 0.76105421621781
516 => 0.76386079085945
517 => 0.74607643780009
518 => 0.75557582918562
519 => 0.73034826203889
520 => 0.67803839956041
521 => 0.69723567974798
522 => 0.71137133970067
523 => 0.69119801003388
524 => 0.72735792264592
525 => 0.70623404819007
526 => 0.69953879411237
527 => 0.6734182209248
528 => 0.68574612599627
529 => 0.70241979412402
530 => 0.69211740574304
531 => 0.71349640854497
601 => 0.74377477808429
602 => 0.76535294732609
603 => 0.76700945122328
604 => 0.75313613402587
605 => 0.77536821337305
606 => 0.77553014979979
607 => 0.75045227347545
608 => 0.73509221386099
609 => 0.73160237599874
610 => 0.74032067520165
611 => 0.7509062999208
612 => 0.76759687972299
613 => 0.7776826475376
614 => 0.8039809809202
615 => 0.81109655590122
616 => 0.81891441549782
617 => 0.8293614868575
618 => 0.84190587459891
619 => 0.8144594683731
620 => 0.81554996525895
621 => 0.78999225180284
622 => 0.76268016962812
623 => 0.78340663549962
624 => 0.81050373250041
625 => 0.8042876285088
626 => 0.80358818982626
627 => 0.80476445168218
628 => 0.80007771227148
629 => 0.77887976361556
630 => 0.76823428650674
701 => 0.78196966792798
702 => 0.78926941186187
703 => 0.80059067809877
704 => 0.79919509307213
705 => 0.82835745908315
706 => 0.83968907269086
707 => 0.83678996102292
708 => 0.83732346734084
709 => 0.85783881250918
710 => 0.8806560956389
711 => 0.90202749229559
712 => 0.92376739489761
713 => 0.89755909378803
714 => 0.88425213478788
715 => 0.89798151977127
716 => 0.890696514844
717 => 0.93255831402893
718 => 0.93545673417824
719 => 0.97731550627862
720 => 1.0170444654517
721 => 0.99209141801334
722 => 1.0156210178378
723 => 1.0410701984444
724 => 1.0901657968153
725 => 1.0736321264879
726 => 1.0609675941328
727 => 1.0489996722519
728 => 1.0739030178321
729 => 1.1059407740804
730 => 1.1128413999225
731 => 1.1240230500286
801 => 1.1122669121691
802 => 1.1264258853247
803 => 1.1764132823321
804 => 1.1629062464097
805 => 1.1437240840356
806 => 1.1831843331323
807 => 1.1974648438825
808 => 1.2976929470893
809 => 1.4242350676043
810 => 1.3718457987908
811 => 1.339326089047
812 => 1.3469689922146
813 => 1.3931778909056
814 => 1.408018722568
815 => 1.3676762261681
816 => 1.3819258779121
817 => 1.4604428600161
818 => 1.5025647017885
819 => 1.4453575829435
820 => 1.2875254109173
821 => 1.1419969401904
822 => 1.1805976438596
823 => 1.1762215219828
824 => 1.2605782240606
825 => 1.1625841080701
826 => 1.1642340776634
827 => 1.2503351870048
828 => 1.2273648871793
829 => 1.1901559432755
830 => 1.1422686066588
831 => 1.0537444358803
901 => 0.97533610914258
902 => 1.1291128942344
903 => 1.1224817596363
904 => 1.1128788940592
905 => 1.1342490322625
906 => 1.2380163573583
907 => 1.2356241846528
908 => 1.2204064023976
909 => 1.2319489561148
910 => 1.1881324778015
911 => 1.1994249819455
912 => 1.1419738877371
913 => 1.1679441816889
914 => 1.1900761095933
915 => 1.1945194217889
916 => 1.2045304310467
917 => 1.1189874530242
918 => 1.1573937387464
919 => 1.1799538334259
920 => 1.0780265049207
921 => 1.1779390578627
922 => 1.1174983400928
923 => 1.0969838526925
924 => 1.1246039073988
925 => 1.1138403452184
926 => 1.1045864665132
927 => 1.0994226431939
928 => 1.119703763056
929 => 1.1187576245733
930 => 1.0855737760832
1001 => 1.0422867984746
1002 => 1.0568153290067
1003 => 1.0515369776587
1004 => 1.0324075514527
1005 => 1.0452984750198
1006 => 0.98853337157739
1007 => 0.89087196149803
1008 => 0.95539008044635
1009 => 0.95290620304904
1010 => 0.95165371943045
1011 => 1.0001373026703
1012 => 0.99547672484835
1013 => 0.98701773046504
1014 => 1.0322521953872
1015 => 1.0157410072012
1016 => 1.0666245986653
1017 => 1.1001398229479
1018 => 1.0916392779659
1019 => 1.1231605083968
1020 => 1.0571500370066
1021 => 1.079076067722
1022 => 1.0835949922643
1023 => 1.0316940091117
1024 => 0.99623925301836
1025 => 0.99387482500074
1026 => 0.93240116390131
1027 => 0.96523989746257
1028 => 0.99413662403736
1029 => 0.9802973344846
1030 => 0.97591622884922
1031 => 0.99829834739453
1101 => 1.0000376296954
1102 => 0.96038180891507
1103 => 0.96862750979182
1104 => 1.0030134531816
1105 => 0.96776107224364
1106 => 0.89927145452499
1107 => 0.88228508238771
1108 => 0.88001878722365
1109 => 0.83395039878119
1110 => 0.88342019299742
1111 => 0.86182530211398
1112 => 0.93004330366826
1113 => 0.89107754704094
1114 => 0.8893978111526
1115 => 0.88685864399371
1116 => 0.84720567900013
1117 => 0.85588715825633
1118 => 0.88474571753058
1119 => 0.89504277659457
1120 => 0.89396870897288
1121 => 0.8846042948464
1122 => 0.88889127567994
1123 => 0.87508141673197
1124 => 0.87020486811008
1125 => 0.85481313925904
1126 => 0.83219154992162
1127 => 0.83533722066526
1128 => 0.790517932927
1129 => 0.76609800622756
1130 => 0.75933889236661
1201 => 0.75030032282894
1202 => 0.76035982284661
1203 => 0.79039096551608
1204 => 0.75416703599436
1205 => 0.69206364964259
1206 => 0.69579616898135
1207 => 0.70418203174061
1208 => 0.68855503196676
1209 => 0.67376538815549
1210 => 0.68662378352766
1211 => 0.66030976003594
1212 => 0.70736195576285
1213 => 0.7060893257307
1214 => 0.72362747460943
1215 => 0.73459443902234
1216 => 0.70931913664746
1217 => 0.70296246645187
1218 => 0.70658351468983
1219 => 0.64673565330091
1220 => 0.71873662751825
1221 => 0.71935929493319
1222 => 0.71402763849415
1223 => 0.7523659344842
1224 => 0.8332716970376
1225 => 0.80283169473825
1226 => 0.791044405794
1227 => 0.76863676089453
1228 => 0.79849361728878
1229 => 0.79620107655721
1230 => 0.78583333794884
1231 => 0.77956289728917
]
'min_raw' => 0.58559304580632
'max_raw' => 1.5025647017885
'avg_raw' => 1.0440788737974
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.585593'
'max' => '$1.50'
'avg' => '$1.04'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.36010211641935
'max_diff' => 0.87337508385147
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.018381096565675
]
1 => [
'year' => 2028
'avg' => 0.031547297777158
]
2 => [
'year' => 2029
'avg' => 0.086181531679976
]
3 => [
'year' => 2030
'avg' => 0.066488923345714
]
4 => [
'year' => 2031
'avg' => 0.065300362607049
]
5 => [
'year' => 2032
'avg' => 0.11449208643059
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.018381096565675
'min' => '$0.018381'
'max_raw' => 0.11449208643059
'max' => '$0.114492'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.11449208643059
]
1 => [
'year' => 2033
'avg' => 0.29448541938189
]
2 => [
'year' => 2034
'avg' => 0.18665901111126
]
3 => [
'year' => 2035
'avg' => 0.22016473165539
]
4 => [
'year' => 2036
'avg' => 0.42734027366199
]
5 => [
'year' => 2037
'avg' => 1.0440788737974
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.11449208643059
'min' => '$0.114492'
'max_raw' => 1.0440788737974
'max' => '$1.04'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 1.0440788737974
]
]
]
]
'prediction_2025_max_price' => '$0.031428'
'last_price' => 0.03047373
'sma_50day_nextmonth' => '$0.02859'
'sma_200day_nextmonth' => '$0.030161'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'augmenter'
'sma_200day_date_nextmonth' => '4 févr. 2026'
'sma_50day_date_nextmonth' => '4 févr. 2026'
'daily_sma3' => '$0.029713'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.029396'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.02890015'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.029471'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.030045'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.030457'
'daily_sma100_action' => 'BUY'
'daily_sma200' => '$0.0306019'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.029865'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.029558'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.029292'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.029415'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.029856'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.0302024'
'daily_ema100_action' => 'BUY'
'daily_ema200' => '$0.030464'
'daily_ema200_action' => 'BUY'
'weekly_sma21' => '$0.030449'
'weekly_sma21_action' => 'BUY'
'weekly_sma50' => '$0.030617'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.030912'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.061433'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.029926'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.029906'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.030057'
'weekly_ema10_action' => 'BUY'
'weekly_ema21' => '$0.03031'
'weekly_ema21_action' => 'BUY'
'weekly_ema50' => '$0.031121'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.070082'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.372397'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '56.81'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 73.39
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.029047'
'vwma_10_action' => 'BUY'
'hma_9' => '0.029928'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 71.22
'cci_20_action' => 'NEUTRAL'
'adx_14' => 10.17
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.000378'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 70.76
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.0003054'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 7
'buy_signals' => 26
'sell_pct' => 21.21
'buy_pct' => 78.79
'overall_action' => 'bullish'
'overall_action_label' => 'Haussier'
'overall_action_dir' => 1
'last_updated' => 1767676475
'last_updated_date' => '6 janvier 2026'
]
Prévision du prix de Meta pour 2026
La prévision du prix de Meta pour 2026 suggère que le prix moyen pourrait varier entre $0.010528 à la baisse et $0.031428 à la hausse. Sur le marché des cryptomonnaies, comparé au prix moyen d'aujourd'hui, Meta pourrait potentiellement gagner 3.13% d'ici 2026 si MTA atteint l'objectif de prix prévu.
Prévision du prix de Meta de 2027 à 2032
La prévision du prix de MTA pour 2027-2032 se situe actuellement dans une fourchette de prix comprise entre $0.018381 à la baisse et $0.114492 à la hausse. Compte tenu de la volatilité des prix sur le marché, si Meta atteint l'objectif de prix le plus élevé, il pourrait gagner 275.71% d'ici 2032 par rapport au prix actuel.
| Prévision du Prix de Meta | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2027 | $0.010135 | $0.018381 | $0.026626 |
| 2028 | $0.018291 | $0.031547 | $0.0448026 |
| 2029 | $0.040182 | $0.086181 | $0.13218 |
| 2030 | $0.034173 | $0.066488 | $0.0988046 |
| 2031 | $0.0404032 | $0.06530036 | $0.090197 |
| 2032 | $0.061672 | $0.114492 | $0.167311 |
Prévision du prix de Meta de 2032 à 2037
La prévision du prix de Meta pour 2032-2037 est actuellement estimée entre $0.114492 à la baisse et $1.04 à la hausse. Par rapport au prix actuel, Meta pourrait potentiellement gagner 3326.16% d'ici 2037 s'il atteint l'objectif de prix le plus élevé. Veuillez noter que ces informations sont à titre général seulement et ne doivent pas être considérées comme un conseil en investissement à long terme.
| Prévision du Prix de Meta | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2032 | $0.061672 | $0.114492 | $0.167311 |
| 2033 | $0.143313 | $0.294485 | $0.445657 |
| 2034 | $0.115217 | $0.186659 | $0.2581008 |
| 2035 | $0.136222 | $0.220164 | $0.304107 |
| 2036 | $0.22549 | $0.42734 | $0.629189 |
| 2037 | $0.585593 | $1.04 | $1.50 |
Meta Histogramme des prix potentiels
Prévision du prix de Meta basée sur l'analyse technique
Au 6 janvier 2026, le sentiment global de prévision du prix pour Meta est Haussier, avec 26 indicateurs techniques montrant des signaux haussiers et 7 indiquant des signaux baissiers. La prévision du prix de MTA a été mise à jour pour la dernière fois le 6 janvier 2026.
Moyennes Mobiles Simples sur 50 et 200 jours de Meta et Indice de Force Relative sur 14 jours - RSI (14)
Selon nos indicateurs techniques, le SMA sur 200 jours de Meta devrait augmenter au cours du prochain mois, atteignant $0.030161 d'ici le 4 févr. 2026. Le SMA à court terme sur 50 jours pour Meta devrait atteindre $0.02859 d'ici le 4 févr. 2026.
Le Relative Strength Index (RSI), un oscillateur de momentum, est un outil couramment utilisé pour identifier si une cryptomonnaie est survendue (en dessous de 30) ou surachetée (au-dessus de 70). Actuellement, le RSI est à 56.81, ce qui suggère que le marché de MTA est dans un état NEUTRAL.
Moyennes Mobiles et Oscillateurs Populaires de MTA pour le Samedi 19 Octobre 2024
Les moyennes mobiles (MA) sont des indicateurs largement utilisés sur les marchés financiers, conçus pour lisser les mouvements de prix sur une période donnée. En tant qu'indicateurs retardés, ils sont basés sur des données historiques de prix. Le tableau ci-dessous met en évidence deux types : la moyenne mobile simple (SMA) et la moyenne mobile exponentielle (EMA).
Moyenne Mobile Simple Quotidienne (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 3 | $0.029713 | BUY |
| SMA 5 | $0.029396 | BUY |
| SMA 10 | $0.02890015 | BUY |
| SMA 21 | $0.029471 | BUY |
| SMA 50 | $0.030045 | BUY |
| SMA 100 | $0.030457 | BUY |
| SMA 200 | $0.0306019 | SELL |
Moyenne Mobile Exponentielle Quotidienne (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 3 | $0.029865 | BUY |
| EMA 5 | $0.029558 | BUY |
| EMA 10 | $0.029292 | BUY |
| EMA 21 | $0.029415 | BUY |
| EMA 50 | $0.029856 | BUY |
| EMA 100 | $0.0302024 | BUY |
| EMA 200 | $0.030464 | BUY |
Moyenne Mobile Simple Hebdomadaire (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 21 | $0.030449 | BUY |
| SMA 50 | $0.030617 | SELL |
| SMA 100 | $0.030912 | SELL |
| SMA 200 | $0.061433 | SELL |
Moyenne Mobile Exponentielle Hebdomadaire (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 21 | $0.03031 | BUY |
| EMA 50 | $0.031121 | SELL |
| EMA 100 | $0.070082 | SELL |
| EMA 200 | $0.372397 | SELL |
Oscillateurs de Meta
Un oscillateur est un outil d'analyse technique qui établit des limites hautes et basses entre deux extrêmes, créant un indicateur de tendance qui fluctue à l'intérieur de ces limites. Les traders utilisent cet indicateur pour identifier les conditions de surachat ou de survente à court terme.
| Période | Valeur | Action |
|---|---|---|
| RSI (14) | 56.81 | NEUTRAL |
| Stoch RSI (14) | 73.39 | NEUTRAL |
| Stochastique Rapide (14) | 100 | SELL |
| Indice de Canal des Matières Premières (20) | 71.22 | NEUTRAL |
| Indice Directionnel Moyen (14) | 10.17 | NEUTRAL |
| Oscillateur Impressionnant (5, 34) | -0.000378 | NEUTRAL |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Plage de Pourcentage de Williams (14) | -0 | SELL |
| Oscillateur Ultime (7, 14, 28) | 70.76 | SELL |
| VWMA (10) | 0.029047 | BUY |
| Moyenne Mobile de Hull (9) | 0.029928 | BUY |
| Nuage Ichimoku B/L (9, 26, 52, 26) | -0.0003054 | NEUTRAL |
Prévision du cours de Meta basée sur les flux monétaires mondiaux
Définitions des flux monétaires mondiaux utilisés pour la prédiction du cours de Meta
M0 : le total de toutes les devises physiques, plus les comptes à la banque centrale qui peuvent être échangés contre des devises physiques.
M1 : M0 plus le montant des comptes à vue, y compris les comptes de "chèques" et les comptes "courants".
M2 : M1 plus la plupart des comptes d'épargne, comptes du marché monétaire et comptes de certificats de dépôt (CD) de moins de 100 000 $.
Prédictions du cours de Meta par des sociétés Internet ou des niches technologiques
| Comparaison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Action Facebook | $0.04282 | $0.06017 | $0.084549 | $0.1188057 | $0.166941 | $0.234581 |
| Action Amazon.com | $0.063585 | $0.132674 | $0.276833 | $0.577628 | $1.20 | $2.51 |
| Action Apple | $0.043224 | $0.06131 | $0.086964 | $0.123352 | $0.174966 | $0.248176 |
| Action Netflix | $0.048082 | $0.075867 | $0.1197063 | $0.188877 | $0.298019 | $0.470228 |
| Action Google | $0.039463 | $0.0511048 | $0.06618 | $0.0857035 | $0.110985 | $0.143725 |
| Action Tesla | $0.069081 | $0.1566028 | $0.3550068 | $0.804773 | $1.82 | $4.13 |
| Action Kodak | $0.022852 | $0.017136 | $0.01285 | $0.009636 | $0.007226 | $0.005419 |
| Action Nokia | $0.020187 | $0.013373 | $0.008859 | $0.005868 | $0.003887 | $0.002575 |
Ce calcul montre la valeur potentielle des cryptomonnaies si l'on suppose que leur capitalisation se comportera comme celle de certaines sociétés Internet ou niches technologiques. En extrapolant les données, vous pourrez obtenir une potentielle image des cours futurs pour 2024, 2025, 2026, 2027, 2028, 2029 et 2030.
Aperçu des prévisions relatives à Meta
Vous vous posez peut-être des questions telles que : "Devrais-je investir dans Meta maintenant ?", "Devrais-je acheter MTA aujourd'hui ?", " Meta sera-t-il un bon ou un mauvais investissement à court ou à long terme ?".
Nous mettons régulièrement à jour les prévisions de Meta/mStable Governance: Meta avec de nouvelles valeurs. Regardez nos prévisions similaires. Nous faisons une prévision des cours futurs pour une grande quantité de devises numériques comme Meta en utilisant des méthodes d'analyse technique.
Si vous souhaitez trouver des cryptomonnaies ayant un bon rendement, vous devriez consulter un maximum d'informations disponibles à propos de Meta afin de prendre une décision responsable concernant cet investissement.
Le cours de Meta est de $0.03047 USD actuellement, mais ce cours peut subir une hausse ou une baisse, ce qui pourrait causer la perte de votre investissement, car les cryptomonnaies sont des actifs à haut risque.
Prévision à court terme de Meta
basée sur l'historique des cours sur 4 heures
Prévision à long terme de Meta
basée sur l'historique des cours sur 1 mois
Prévision du cours de Meta basée sur le modèle de croissance du Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Meta présente 1 % de la précédente croissance annuelle moyenne du Bitcoin | $0.031265 | $0.032078 | $0.032912 | $0.033767 |
| Si Meta présente 2 % de la précédente croissance annuelle moyenne du Bitcoin | $0.032057 | $0.033724 | $0.035477 | $0.037322 |
| Si Meta présente 5 % de la précédente croissance annuelle moyenne du Bitcoin | $0.034434 | $0.0389095 | $0.043966 | $0.04968 |
| Si Meta présente 10 % de la précédente croissance annuelle moyenne du Bitcoin | $0.038394 | $0.048374 | $0.060949 | $0.076791 |
| Si Meta présente 20 % de la précédente croissance annuelle moyenne du Bitcoin | $0.046315 | $0.070393 | $0.106989 | $0.162609 |
| Si Meta présente 50 % de la précédente croissance annuelle moyenne du Bitcoin | $0.070079 | $0.161158 | $0.3706097 | $0.852276 |
| Si Meta présente 100 % de la précédente croissance annuelle moyenne du Bitcoin | $0.109684 | $0.39479 | $1.42 | $5.11 |
Boîte à questions
Est-ce que MTA est un bon investissement ?
La décision d'acquérir Meta dépend entièrement de votre tolérance individuelle au risque. Comme vous pouvez le discerner, la valeur de Meta a connu une hausse de 2.9843% au cours des 24 heures précédentes, et Meta a enregistré une déclin de sur une période de 30 jours précédents. Par conséquent, la détermination de si investir ou non dans Meta dépendra de la mesure dans laquelle cet investissement s'aligne avec vos aspirations de trading.
Est-ce que Meta peut monter ?
Il semble que la valeur moyenne de Meta pourrait potentiellement s'envoler jusqu'à $0.031428 pour la fin de cette année. En regardant les perspectives de Meta sur une période de cinq ans plus longue, la monnaie numérique pourrait potentiellement croître jusqu'à $0.0988046. Cependant, compte tenu de l'imprévisibilité du marché, il est essentiel de mener des recherches approfondies avant d'investir des fonds dans un projet, un réseau ou un actif particulier.
Quel sera le prix de Meta la semaine prochaine ?
Basé sur notre nouveau pronostic expérimental de Meta, le prix de Meta va augmenter de 0.86% durant la prochaine semaine et atteindre $0.030734 d'ici 13 janvier 2026.
Quel sera le prix de Meta le mois prochain ?
Basé sur notre nouveau pronostic expérimental de Meta, le prix de Meta va diminuer de -11.62% durant le prochain mois et atteindre $0.026933 d'ici 5 février 2026.
Jusqu'où le prix de Meta peut-il monter cette année en 2026 ?
Selon notre prédiction la plus récente sur la valeur de Meta en 2026, MTA devrait fluctuer dans la fourchette de $0.010528 et $0.031428. Cependant, il est crucial de garder à l'esprit que le marché des cryptomonnaies est exceptionnellement instable, et cette prévision de prix de Meta ne prend pas en compte les fluctuations de prix soudaines et extrêmes.
Où sera Meta dans 5 ans ?
L'avenir de Meta semble suivre une tendance haussière, avec un prix maximum de $0.0988046 prévue après une période de cinq ans. Selon la prévision de Meta pour 2030, la valeur de Meta pourrait potentiellement atteindre son point le plus élevé d'environ $0.0988046, tandis que son point le plus bas devrait être autour de $0.034173.
Combien vaudra Meta en 2026 ?
Basé sur notre nouvelle simulation expérimentale de prédiction de prix de Meta, il est attendu que la valeur de MTA en 2026 augmente de 3.13% jusqu'à $0.031428 si le meilleur scénario se produit. Le prix sera entre $0.031428 et $0.010528 durant 2026.
Combien vaudra Meta en 2027 ?
Selon notre dernière simulation expérimentale pour la prédiction de prix de Meta, le valeur de MTA pourrait diminuer de -12.62% jusqu'à $0.026626 en 2027, en supposant les conditions les plus favorables. Il est prévu que le prix fluctue entre $0.026626 et $0.010135 tout au long de l'année.
Combien vaudra Meta en 2028 ?
Notre nouveau modèle expérimental de prédiction de prix de Meta suggère que la valeur de MTA en 2028 pourrait augmenter de 47.02%, atteignant $0.0448026 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.0448026 et $0.018291 durant l'année.
Combien vaudra Meta en 2029 ?
Basé sur notre modèle de prévision expérimental, la valeur de Meta pourrait connaître un 333.75% croissance en 2029, atteignant potentiellement $0.13218 sous des conditions optimales. Le range de prix prévu pour 2029 se situe entre $0.13218 et $0.040182.
Combien vaudra Meta en 2030 ?
En utilisant notre nouvelle simulation expérimentale pour les prédictions de prix de Meta, il est prévu que la valeur de MTA en 2030 augmente de 224.23%, atteignant $0.0988046 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.0988046 et $0.034173 au cours de 2030.
Combien vaudra Meta en 2031 ?
Notre simulation expérimentale indique que le prix de Meta pourrait augmenter de 195.98% en 2031, atteignant potentiellement $0.090197 dans des conditions idéales. Il est probable que le prix fluctue entre $0.090197 et $0.0404032 durant l'année.
Combien vaudra Meta en 2032 ?
Basé sur les résultats de notre dernière prédiction expérimentale de prix de Meta, MTA pourrait connaître une 449.04% hausse en valeur, atteignant $0.167311 si le scénario le plus positif se réalise en 2032. Il est prévu que le prix reste dans une fourchette de $0.167311 et $0.061672 tout au long de l'année.
Combien vaudra Meta en 2033 ?
Selon notre prédiction expérimentale de prix de Meta, la valeur de MTA est anticipée à augmenter de 1362.43% en 2033, avec le prix potentiel le plus élevé étant $0.445657. Tout au long de l'année, le prix de MTA pourrait osciller entre $0.445657 et $0.143313.
Combien vaudra Meta en 2034 ?
Les résultats de notre nouvelle simulation de prédiction de prix de Meta suggèrent que MTA pourrait augmenter de 746.96% en 2034, atteignant potentiellement $0.2581008 dans les meilleures circonstances. La fourchette de prix prévue pour l'année est entre $0.2581008 et $0.115217.
Combien vaudra Meta en 2035 ?
Basé sur notre prédiction expérimentale pour le prix de Meta, MTA pourrait augmenter de 897.93%, avec la valeur potentiellement atteignant $0.304107 en 2035. La fourchette de prix attendue pour l'année se situe entre $0.304107 et $0.136222.
Combien vaudra Meta en 2036 ?
Notre récente simulation de prédiction de prix de Meta suggère que la valeur de MTA pourrait augmenter de 1964.7% en 2036, pouvant atteindre $0.629189 si les conditions sont optimales. La fourchette de prix attendue pour 2036 est entre $0.629189 et $0.22549.
Combien vaudra Meta en 2037 ?
Selon la simulation expérimentale, la valeur de Meta pourrait augmenter de 4830.69% en 2037, avec un maximum de $1.50 sous des conditions favorables. Il est prévu que le prix chute entre $1.50 et $0.585593 au cours de l'année.
Prévisions liées
Prévision du cours de PutinCoin
Prévision du cours de Colony Avalanche Index
Prévision du cours de Metastrike
Prévision du cours de MoonEdge
Prévision du cours de ZooKeeper
Prévision du cours de MagicCoin
Prévision du cours de Wrapped Accumulate
Prévision du cours de Rome
Prévision du cours de Spice
Prévision du cours de BlockchainSpace
Prévision du cours de RIBBIT
Prévision du cours de OceanEX
Prévision du cours de Abyss Token
Prévision du cours de Kromatika
Prévision du cours de Materium
Prévision du cours de AfricararePrévision du cours de Alpha Impact
Prévision du cours de Tune.Fm
Prévision du cours de TitanSwap
Prévision du cours de CitaDAO
Prévision du cours de UPCX
Prévision du cours de Kintsugi
Prévision du cours de Good Entry
Prévision du cours de Mt Pelerin Shares
Prévision du cours de Glo Dollar
Comment lire et prédire les mouvements de prix de Meta ?
Les traders de Meta utilisent des indicateurs et des modèles graphiques pour prédire la direction du marché. Ils identifient également des niveaux clés de support et de résistance pour évaluer quand une tendance baissière pourrait ralentir ou une tendance haussière pourrait s'arrêter.
Indicateurs de prédiction du prix de Meta
Les moyennes mobiles sont des outils populaires pour la prédiction du prix de Meta. Une moyenne mobile simple (SMA) calcule le prix de clôture moyen de MTA sur une période spécifique, comme une SMA de 12 jours. Une moyenne mobile exponentielle (EMA) donne plus de poids aux prix récents, réagissant plus rapidement aux changements de prix.
Les moyennes mobiles couramment utilisées sur le marché des cryptomonnaies incluent les moyennes sur 50 jours, 100 jours et 200 jours, qui aident à identifier les niveaux clés de résistance et de support. Un mouvement de prix de MTA au-dessus de ces moyennes est considéré comme haussier, tandis qu'une chute en dessous indique une faiblesse.
Les traders utilisent également le RSI et les niveaux de retracement de Fibonacci pour évaluer la direction future de MTA.
Comment lire les graphiques de Meta et prédire les mouvements de prix ?
La plupart des traders préfèrent les graphiques en chandeliers aux simples graphiques linéaires parce qu'ils fournissent des informations plus détaillées. Les chandeliers peuvent représenter l'action des prix de Meta dans différentes périodes, comme 5 minutes pour les tendances à court terme et hebdomadaire pour les tendances à long terme. Les options populaires incluent les graphiques de 1 heure, 4 heures et 1 jour.
Par exemple, un graphique en chandeliers de 1 heure montre les prix d'ouverture, de clôture, les plus hauts et les plus bas de MTA au sein de chaque heure. La couleur du chandelier est cruciale : le vert indique que le prix a clôturé plus haut qu'il n'a ouvert, tandis que le rouge signifie le contraire. Certains graphiques utilisent des chandeliers creux et pleins pour transmettre la même information.
Qu'est-ce qui affecte le prix de Meta ?
L'action du prix de Meta est déterminée par l'offre et la demande, influencée par des facteurs tels que les réductions de récompenses de bloc, les hard forks et les mises à jour de protocole. Les événements du monde réel, tels que les réglementations, l'adoption par les entreprises et les gouvernements et les piratages d'échanges de cryptomonnaies, impactent également le prix de MTA. La capitalisation boursière de Meta peut changer rapidement.
Les traders surveillent souvent l'activité des « baleines » de MTA, de grands détenteurs de Meta, car leurs actions peuvent influencer significativement les mouvements de prix sur le marché relativement petit de Meta.
Modèles de prédiction de prix haussiers et baissiers
Les traders identifient souvent des modèles de chandeliers pour obtenir un avantage dans les prédictions de prix des cryptomonnaies. Certaines formations indiquent des tendances haussières, tandis que d'autres suggèrent des mouvements baissiers.
Modèles de chandeliers haussiers couramment suivis :
- Marteau
- Englobante haussière
- Ligne pénétrante
- Étoile du matin
- Trois soldats blancs
Modèles de chandeliers baissiers courants :
- Harami baissier
- Nuage sombre
- Étoile du soir
- Étoile filante
- Pendu


