Prédiction du prix de Lizard jusqu'à $0.00872 d'ici 2026
| Année | Prix min. | Prix max. |
|---|---|---|
| 2026 | $0.002921 | $0.00872 |
| 2027 | $0.002812 | $0.007387 |
| 2028 | $0.005075 | $0.01243 |
| 2029 | $0.011148 | $0.036674 |
| 2030 | $0.009481 | $0.027414 |
| 2031 | $0.01121 | $0.025026 |
| 2032 | $0.017111 | $0.046422 |
| 2033 | $0.039763 | $0.123651 |
| 2034 | $0.031968 | $0.071612 |
| 2035 | $0.037796 | $0.084377 |
Calculateur de profit d’investissement
Si vous ouvrez une position short de $10,000.00 sur Lizard aujourd’hui et la fermez le Apr 06, 2026, notre prévision indique que vous pourriez gagner environ $3,955.22, soit un rendement de 39.55% sur les 90 prochains jours.
Prévision du prix à long terme de Lizard pour 2027, 2028, 2029, 2030, 2031, 2032 et 2037
[
'name' => 'Lizard'
'name_with_ticker' => 'Lizard <small>LIZARD</small>'
'name_lang' => 'Lizard'
'name_lang_with_ticker' => 'Lizard <small>LIZARD</small>'
'name_with_lang' => 'Lizard'
'name_with_lang_with_ticker' => 'Lizard <small>LIZARD</small>'
'image' => '/uploads/coins/lizard-2.?1754585675'
'price_for_sd' => 0.008455
'ticker' => 'LIZARD'
'marketcap' => '$8.66M'
'low24h' => '$0'
'high24h' => '$0'
'volume24h' => '$13.47M'
'current_supply' => '999.98M'
'max_supply' => '999.98M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.008455'
'change_24h_pct' => '0%'
'ath_price' => '$0'
'ath_days' => 0
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '<span class=\"not-set\">(non défini)</span>'
'ath_pct' => null
'fdv' => '$8.66M'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.416901'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.008527'
'next_week_prediction_price_date' => '13 janvier 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.007472'
'next_month_prediction_price_date' => '5 février 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.002921'
'current_year_max_price_prediction' => '$0.00872'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.009481'
'grand_prediction_max_price' => '$0.027414'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.008615452161049
107 => 0.0086476191320092
108 => 0.0087200929600689
109 => 0.0081008120343148
110 => 0.0083788509888456
111 => 0.0085421728259056
112 => 0.0078042788243695
113 => 0.0085275870340053
114 => 0.0080900317311731
115 => 0.0079415188895318
116 => 0.0081414718657228
117 => 0.0080635499964405
118 => 0.0079965573489573
119 => 0.0079591743005819
120 => 0.0081059976982919
121 => 0.0080991482112968
122 => 0.0078589166354498
123 => 0.007545544337849
124 => 0.0076507223670189
125 => 0.0076125102029722
126 => 0.0074740243909998
127 => 0.0075673471074285
128 => 0.0071564010938224
129 => 0.0064493898365282
130 => 0.0069164631294373
131 => 0.0068984813157382
201 => 0.0068894140698609
202 => 0.0072404067405243
203 => 0.0072066668940187
204 => 0.0071454287422295
205 => 0.0074728997043186
206 => 0.0073533683980501
207 => 0.007721735718852
208 => 0.0079643662608366
209 => 0.0079028273071135
210 => 0.0081310225045853
211 => 0.0076531454563812
212 => 0.0078118770426952
213 => 0.007844591402642
214 => 0.0074688587634784
215 => 0.0072121871501748
216 => 0.007195070079838
217 => 0.0067500368738965
218 => 0.006987770020328
219 => 0.0071969653511216
220 => 0.0070967770218849
221 => 0.0070650603898898
222 => 0.0072270937842547
223 => 0.007239685166719
224 => 0.0069526003121574
225 => 0.0070122943442157
226 => 0.0072612283812062
227 => 0.0070060218451825
228 => 0.0065101972334396
301 => 0.0063872258744158
302 => 0.0063708192283102
303 => 0.0060373111496561
304 => 0.0063954434086362
305 => 0.0062391090802436
306 => 0.0067329673504631
307 => 0.0064508781551287
308 => 0.0064387178537224
309 => 0.0064203357746184
310 => 0.0061332715942756
311 => 0.0061961204058902
312 => 0.0064050394278417
313 => 0.0064795840885153
314 => 0.0064718084696806
315 => 0.0064040156106588
316 => 0.0064350508343634
317 => 0.0063350755654222
318 => 0.0062997722171538
319 => 0.0061883451390677
320 => 0.0060245781167971
321 => 0.0060473509256854
322 => 0.0057228856025951
323 => 0.0055460996738974
324 => 0.005497167658835
325 => 0.0054317337232838
326 => 0.0055045585959685
327 => 0.0057219664331017
328 => 0.0054597264558735
329 => 0.0050101344089113
330 => 0.0050371556570013
331 => 0.0050978643787789
401 => 0.0049847340773746
402 => 0.004877665741402
403 => 0.0049707529728015
404 => 0.0047802548956364
405 => 0.005120885161289
406 => 0.0051116720672084
407 => 0.0052386379658094
408 => 0.0053180323478071
409 => 0.0051350540015388
410 => 0.0050890354422783
411 => 0.00511524970506
412 => 0.0046819863342714
413 => 0.0052032311050201
414 => 0.0052077388514427
415 => 0.0051691407898402
416 => 0.0054466875386371
417 => 0.0060323977476003
418 => 0.0058120300068497
419 => 0.0057266969569809
420 => 0.0055644787668022
421 => 0.0057806248736523
422 => 0.0057640282250507
423 => 0.0056889718859824
424 => 0.0056435775779238
425 => 0.0057272179823872
426 => 0.0056332136062035
427 => 0.0056163278371734
428 => 0.0055140184487488
429 => 0.0054774986518618
430 => 0.0054504608481417
501 => 0.0054206948829256
502 => 0.005486351184976
503 => 0.0053375653667239
504 => 0.0051581442555656
505 => 0.0051432273315361
506 => 0.0051844142702909
507 => 0.0051661921158989
508 => 0.0051431400908714
509 => 0.0050991274972486
510 => 0.005086069900901
511 => 0.0051285007543856
512 => 0.0050805987946739
513 => 0.0051512807455832
514 => 0.0051320591659466
515 => 0.0050246889846113
516 => 0.004890865985135
517 => 0.0048896746797364
518 => 0.004860842734013
519 => 0.0048241209162221
520 => 0.004813905746594
521 => 0.0049629134258145
522 => 0.0052713548623762
523 => 0.0052108004280011
524 => 0.0052545572127052
525 => 0.0054697972857676
526 => 0.0055382156324993
527 => 0.0054896539105665
528 => 0.0054231796304283
529 => 0.0054261041613917
530 => 0.005653266899757
531 => 0.0056674347611053
601 => 0.0057032323760073
602 => 0.0057492424275612
603 => 0.0054974896212992
604 => 0.0054142466268565
605 => 0.005374801477944
606 => 0.0052533256864874
607 => 0.0053843269130261
608 => 0.0053079981083538
609 => 0.0053182974718674
610 => 0.0053115899978678
611 => 0.005315252732229
612 => 0.0051207899481877
613 => 0.0051916419660293
614 => 0.0050738367443928
615 => 0.0049161087768782
616 => 0.0049155800174245
617 => 0.0049541837140206
618 => 0.0049312207247225
619 => 0.0048694279109535
620 => 0.0048782052884955
621 => 0.0048013062252367
622 => 0.0048875422270776
623 => 0.0048900151670432
624 => 0.0048568096090276
625 => 0.0049896680681386
626 => 0.0050441002872386
627 => 0.0050222436776208
628 => 0.0050425667692426
629 => 0.0052133167381363
630 => 0.0052411564334094
701 => 0.0052535209870627
702 => 0.0052369541231567
703 => 0.0050456877652238
704 => 0.0050541712415255
705 => 0.0049919251212987
706 => 0.0049393337090417
707 => 0.0049414370897263
708 => 0.0049684759120315
709 => 0.0050865560348441
710 => 0.0053350486920998
711 => 0.0053444788067969
712 => 0.0053559083809056
713 => 0.0053094185589617
714 => 0.0052953967838158
715 => 0.0053138951245606
716 => 0.0054072159015026
717 => 0.0056472622761413
718 => 0.0055624138551857
719 => 0.0054934307682044
720 => 0.0055539475331937
721 => 0.0055446314515697
722 => 0.0054659943472898
723 => 0.0054637872656817
724 => 0.0053128575207655
725 => 0.005257062230574
726 => 0.0052104355098849
727 => 0.0051595203481138
728 => 0.0051293361335242
729 => 0.005175712805614
730 => 0.0051863196992336
731 => 0.0050849162951838
801 => 0.0050710953859102
802 => 0.0051539035946018
803 => 0.0051174627893578
804 => 0.0051549430612398
805 => 0.0051636388058162
806 => 0.0051622385906594
807 => 0.0051241902047849
808 => 0.0051484411113221
809 => 0.0050910804878183
810 => 0.005028709425045
811 => 0.0049889205728502
812 => 0.0049541995220848
813 => 0.0049734647790488
814 => 0.0049047876556693
815 => 0.0048828164617027
816 => 0.00514022544985
817 => 0.0053303762370073
818 => 0.005327611369254
819 => 0.0053107809478724
820 => 0.0052857743556256
821 => 0.0054053865135233
822 => 0.0053637160294323
823 => 0.005394034788294
824 => 0.0054017521848985
825 => 0.0054251104200895
826 => 0.0054334589814621
827 => 0.0054082238305454
828 => 0.0053235315818548
829 => 0.0051124865504154
830 => 0.0050142445185752
831 => 0.0049818230117174
901 => 0.0049830014719145
902 => 0.0049504942788013
903 => 0.0049600691040433
904 => 0.0049471645453281
905 => 0.0049227264330694
906 => 0.0049719557944816
907 => 0.0049776290197811
908 => 0.0049661382985805
909 => 0.0049688447793934
910 => 0.0048737065156032
911 => 0.0048809396711697
912 => 0.0048406645418303
913 => 0.0048331134406031
914 => 0.0047313014207899
915 => 0.0045509266698025
916 => 0.0046508717912502
917 => 0.0045301521389521
918 => 0.0044844337774256
919 => 0.0047008573902282
920 => 0.0046791344621594
921 => 0.0046419542520355
922 => 0.0045869569722276
923 => 0.0045665579461676
924 => 0.0044426199213744
925 => 0.004435297001686
926 => 0.0044967240333817
927 => 0.0044683775718292
928 => 0.0044285684041651
929 => 0.0042843836342762
930 => 0.0041222722149843
1001 => 0.0041271653397367
1002 => 0.0041787299660232
1003 => 0.0043286610713887
1004 => 0.0042700803946879
1005 => 0.0042275794416057
1006 => 0.0042196202906674
1007 => 0.0043192457282718
1008 => 0.0044602365946565
1009 => 0.0045263863546714
1010 => 0.0044608339514948
1011 => 0.0043855308803174
1012 => 0.0043901142293392
1013 => 0.0044206051970042
1014 => 0.0044238093665867
1015 => 0.0043747948085311
1016 => 0.0043885921195193
1017 => 0.0043676327424756
1018 => 0.0042390050842464
1019 => 0.0042366786177918
1020 => 0.0042051113160611
1021 => 0.0042041554707104
1022 => 0.0041504516156341
1023 => 0.0041429380750717
1024 => 0.0040363058112268
1025 => 0.0041064914902018
1026 => 0.0040594146216589
1027 => 0.0039884586764541
1028 => 0.0039762258447559
1029 => 0.0039758581110635
1030 => 0.0040487140013298
1031 => 0.0041056401267052
1101 => 0.0040602335439426
1102 => 0.0040498953452171
1103 => 0.0041602802606713
1104 => 0.004146232773999
1105 => 0.0041340677411372
1106 => 0.0044476124089732
1107 => 0.0041994173381855
1108 => 0.0040911901208427
1109 => 0.0039572383875898
1110 => 0.0040008537473802
1111 => 0.004010044144531
1112 => 0.0036879143726726
1113 => 0.0035572263643484
1114 => 0.0035123791647652
1115 => 0.0034865689673588
1116 => 0.0034983309984209
1117 => 0.0033806964627547
1118 => 0.003459748816218
1119 => 0.0033578872517308
1120 => 0.0033408098289583
1121 => 0.0035229509244879
1122 => 0.003548294793878
1123 => 0.0034401699733368
1124 => 0.0035096036119427
1125 => 0.0034844260093844
1126 => 0.0033596333758935
1127 => 0.0033548672152066
1128 => 0.0032922506583941
1129 => 0.003194267871937
1130 => 0.003149487109297
1201 => 0.0031261648993096
1202 => 0.0031357880976912
1203 => 0.0031309223141148
1204 => 0.0030991697849355
1205 => 0.0031327423319191
1206 => 0.0030469783475102
1207 => 0.0030128264378712
1208 => 0.0029974008126056
1209 => 0.0029212803400519
1210 => 0.0030424218628126
1211 => 0.0030662882688971
1212 => 0.0030902016991744
1213 => 0.0032983517833455
1214 => 0.0032879531933663
1215 => 0.0033819513824592
1216 => 0.0033782987856826
1217 => 0.0033514889794836
1218 => 0.0032383828171291
1219 => 0.0032834649175202
1220 => 0.0031447092198305
1221 => 0.0032486744230099
1222 => 0.0032012290459695
1223 => 0.0032326330933068
1224 => 0.0031761657846056
1225 => 0.0032074171247189
1226 => 0.0030719478791651
1227 => 0.0029454486037706
1228 => 0.0029963556049334
1229 => 0.0030516973371191
1230 => 0.0031716923133087
1231 => 0.0031002242954272
]
'min_raw' => 0.0029212803400519
'max_raw' => 0.0087200929600689
'avg_raw' => 0.0058206866500604
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.002921'
'max' => '$0.00872'
'avg' => '$0.00582'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0055339496599481
'max_diff' => 0.00026486296006888
'year' => 2026
]
1 => [
'items' => [
101 => 0.0031259268971624
102 => 0.0030398274839132
103 => 0.0028621798012987
104 => 0.0028631852678898
105 => 0.0028358580421847
106 => 0.0028122433293352
107 => 0.0031084332569987
108 => 0.0030715973574239
109 => 0.0030129041724148
110 => 0.0030914673329239
111 => 0.0031122406795275
112 => 0.0031128320675015
113 => 0.0031701497214003
114 => 0.0032007401635608
115 => 0.0032061318615782
116 => 0.0032963224284178
117 => 0.0033265531167801
118 => 0.0034510690437373
119 => 0.003198144778267
120 => 0.0031929359694611
121 => 0.0030925728777052
122 => 0.0030289210182359
123 => 0.0030969311749796
124 => 0.0031571788895423
125 => 0.0030944449421365
126 => 0.0031026366712818
127 => 0.0030184214724413
128 => 0.0030485244433334
129 => 0.0030744531771737
130 => 0.0030601368543676
131 => 0.003038704626209
201 => 0.003152239264004
202 => 0.0031458331947938
203 => 0.0032515592596586
204 => 0.0033339802877641
205 => 0.0034816935046503
206 => 0.0033275470623654
207 => 0.0033219293533319
208 => 0.003376843360243
209 => 0.0033265447097318
210 => 0.0033583317206045
211 => 0.0034765721257734
212 => 0.0034790703592138
213 => 0.0034372217302947
214 => 0.0034346752374217
215 => 0.0034427127243795
216 => 0.0034897885365374
217 => 0.0034733388012758
218 => 0.0034923748513769
219 => 0.0035161797235186
220 => 0.0036146467677533
221 => 0.0036383868387597
222 => 0.0035807107740298
223 => 0.0035859182769034
224 => 0.003564345845451
225 => 0.0035435071469698
226 => 0.003590349497908
227 => 0.0036759548149364
228 => 0.0036754222687021
301 => 0.0036952810383231
302 => 0.0037076528872781
303 => 0.0036545438548164
304 => 0.0036199718275572
305 => 0.0036332289426836
306 => 0.0036544273584732
307 => 0.0036263545821482
308 => 0.0034530764020949
309 => 0.00350563793287
310 => 0.0034968891240215
311 => 0.0034844297563297
312 => 0.0035372807819704
313 => 0.0035321831716164
314 => 0.0033794899505652
315 => 0.003389264875165
316 => 0.0033800843961057
317 => 0.0034097484020955
318 => 0.0033249427560594
319 => 0.0033510284016053
320 => 0.003367389073954
321 => 0.003377025635656
322 => 0.0034118395043759
323 => 0.0034077544987018
324 => 0.0034115855746875
325 => 0.0034632053514785
326 => 0.0037242804687186
327 => 0.0037384902113202
328 => 0.0036685162417807
329 => 0.0036964694624362
330 => 0.003642805391475
331 => 0.0036788304418293
401 => 0.0037034778663446
402 => 0.003592100894387
403 => 0.0035855058729382
404 => 0.0035316203112668
405 => 0.0035605753598748
406 => 0.0035145057955978
407 => 0.0035258096552264
408 => 0.003494203078252
409 => 0.0035510886239992
410 => 0.0036146955032648
411 => 0.0036307651128791
412 => 0.0035884928883859
413 => 0.0035578850119775
414 => 0.0035041476638655
415 => 0.0035935140713906
416 => 0.0036196475323428
417 => 0.0035933768034455
418 => 0.0035872893015333
419 => 0.0035757534964094
420 => 0.0035897366771236
421 => 0.003619505203902
422 => 0.0036054669164117
423 => 0.0036147394526218
424 => 0.0035794021063865
425 => 0.0036545614361161
426 => 0.0037739325398043
427 => 0.0037743163374218
428 => 0.0037602779742599
429 => 0.0037545337785147
430 => 0.003768937991038
501 => 0.0037767516854401
502 => 0.0038233322674595
503 => 0.0038733150878186
504 => 0.0041065631012212
505 => 0.0040410679924148
506 => 0.004248019505892
507 => 0.0044116912837618
508 => 0.0044607692934455
509 => 0.0044156198338353
510 => 0.0042611659714346
511 => 0.0042535877280842
512 => 0.0044844070072495
513 => 0.0044191899886925
514 => 0.004411432631854
515 => 0.0043289074613535
516 => 0.0043776900580605
517 => 0.0043670205885632
518 => 0.0043501783089933
519 => 0.0044432521052852
520 => 0.0046174779431884
521 => 0.0045903232124717
522 => 0.0045700534656633
523 => 0.0044812373355836
524 => 0.0045347244836924
525 => 0.0045156787347297
526 => 0.0045975113590044
527 => 0.0045490355251986
528 => 0.0044186959056342
529 => 0.0044394529196549
530 => 0.004436315538743
531 => 0.0045008826155927
601 => 0.0044815011817758
602 => 0.0044325310027293
603 => 0.0046168824582153
604 => 0.0046049117001127
605 => 0.0046218834982059
606 => 0.0046293550085968
607 => 0.004741566490914
608 => 0.0047875359448525
609 => 0.0047979718157051
610 => 0.0048416392415414
611 => 0.0047968853303701
612 => 0.0049759328840532
613 => 0.005094989059538
614 => 0.0052332789339383
615 => 0.0054353576092513
616 => 0.0055113410605013
617 => 0.0054976153301345
618 => 0.0056508290754648
619 => 0.0059261507700731
620 => 0.0055532657163633
621 => 0.0059459145833553
622 => 0.0058216064854148
623 => 0.0055268742214051
624 => 0.005507896938268
625 => 0.0057074930493673
626 => 0.0061501780133719
627 => 0.00603929045078
628 => 0.0061503593856999
629 => 0.0060207915733421
630 => 0.0060143574393752
701 => 0.0061440665662545
702 => 0.0064471390112842
703 => 0.0063031606531513
704 => 0.006096732371826
705 => 0.0062491558023768
706 => 0.0061171125207111
707 => 0.0058195820505308
708 => 0.0060392056571507
709 => 0.0058923496059242
710 => 0.0059352100089692
711 => 0.0062438795854584
712 => 0.0062067396453768
713 => 0.0062548021669082
714 => 0.0061699730744204
715 => 0.0060907293257168
716 => 0.0059428149840434
717 => 0.0058990248395629
718 => 0.0059111268600929
719 => 0.0058990188424025
720 => 0.0058162621276392
721 => 0.0057983908229654
722 => 0.005768604532216
723 => 0.0057778365492233
724 => 0.0057218296083275
725 => 0.0058275262774222
726 => 0.0058471445106021
727 => 0.0059240617319985
728 => 0.005932047533087
729 => 0.0061462608998279
730 => 0.0060282757771364
731 => 0.0061074303837832
801 => 0.0061003500507327
802 => 0.0055332619632726
803 => 0.005611401698264
804 => 0.005732962604311
805 => 0.0056781995809088
806 => 0.0056007774783919
807 => 0.005538254979499
808 => 0.0054435270004226
809 => 0.005576854811883
810 => 0.0057521667061214
811 => 0.0059364937320335
812 => 0.0061579505760818
813 => 0.0061085239865321
814 => 0.0059323537503762
815 => 0.0059402566184777
816 => 0.0059891090394173
817 => 0.0059258407155901
818 => 0.005907181651749
819 => 0.005986545570575
820 => 0.0059870921062663
821 => 0.0059142942534707
822 => 0.0058333927619548
823 => 0.0058330537817514
824 => 0.0058186581427518
825 => 0.00602335252554
826 => 0.0061359137391371
827 => 0.0061488187008745
828 => 0.0061350451323908
829 => 0.0061403460322468
830 => 0.0060748491421717
831 => 0.0062245556103839
901 => 0.0063619410700506
902 => 0.0063251188320477
903 => 0.0062699170626917
904 => 0.0062259461945223
905 => 0.0063147606929213
906 => 0.0063108059231145
907 => 0.0063607411279129
908 => 0.0063584757785835
909 => 0.0063416844473679
910 => 0.006325119431719
911 => 0.0063907978463423
912 => 0.0063718835176939
913 => 0.0063529398098687
914 => 0.0063149453036889
915 => 0.0063201093881007
916 => 0.0062649171501085
917 => 0.0062393826953884
918 => 0.0058554057621207
919 => 0.0057527945787434
920 => 0.0057850781458771
921 => 0.00579570673442
922 => 0.0057510502159144
923 => 0.0058150761921331
924 => 0.0058050978115597
925 => 0.0058439178532134
926 => 0.0058196647765584
927 => 0.0058206601312841
928 => 0.0058919832584252
929 => 0.0059126886656645
930 => 0.0059021577284295
1001 => 0.0059095332358895
1002 => 0.0060794986922986
1003 => 0.0060553350395866
1004 => 0.0060424985806828
1005 => 0.0060460543675251
1006 => 0.0060894841857381
1007 => 0.0061016421636576
1008 => 0.0060501279568868
1009 => 0.0060744223546
1010 => 0.0061778648166446
1011 => 0.0062140638240239
1012 => 0.0063295936790694
1013 => 0.0062805145432666
1014 => 0.0063706014211279
1015 => 0.0066474977707934
1016 => 0.0068687017346762
1017 => 0.0066652734278491
1018 => 0.007071486337365
1019 => 0.0073877813552041
1020 => 0.0073756414256025
1021 => 0.0073204880732067
1022 => 0.006960394604535
1023 => 0.0066290312259721
1024 => 0.0069062307625722
1025 => 0.0069069374011976
1026 => 0.0068831257151675
1027 => 0.0067352333782833
1028 => 0.0068779793824192
1029 => 0.0068893100418501
1030 => 0.0068829678856343
1031 => 0.0067695791776971
1101 => 0.0065964555784131
1102 => 0.0066302835153138
1103 => 0.0066856943660285
1104 => 0.0065807900657112
1105 => 0.0065472667853842
1106 => 0.0066095929415772
1107 => 0.0068104208030016
1108 => 0.0067724554591159
1109 => 0.006771464030557
1110 => 0.0069338958715114
1111 => 0.0068176297283733
1112 => 0.0066307101939302
1113 => 0.0065835105463175
1114 => 0.0064159835947851
1115 => 0.0065316950569191
1116 => 0.0065358593064441
1117 => 0.0064724853211758
1118 => 0.0066358526435607
1119 => 0.0066343471849247
1120 => 0.0067894401435122
1121 => 0.0070859196300763
1122 => 0.0069982360570298
1123 => 0.0068962696015224
1124 => 0.0069073561824592
1125 => 0.0070289486113224
1126 => 0.0069554310531465
1127 => 0.0069818684796492
1128 => 0.007028908595111
1129 => 0.0070572890647095
1130 => 0.0069032726696346
1201 => 0.0068673640804868
1202 => 0.0067939077092927
1203 => 0.0067747443131763
1204 => 0.0068345729947964
1205 => 0.006818810250968
1206 => 0.0065355093173963
1207 => 0.0065059027935666
1208 => 0.0065068107833841
1209 => 0.0064323637715007
1210 => 0.0063188142090484
1211 => 0.0066172156794809
1212 => 0.0065932498652793
1213 => 0.0065667934612074
1214 => 0.006570034219748
1215 => 0.0066995601842986
1216 => 0.0066244285836413
1217 => 0.006824178257816
1218 => 0.0067831157298305
1219 => 0.0067410001029453
1220 => 0.0067351784404363
1221 => 0.006718967517222
1222 => 0.006663374229701
1223 => 0.0065962419943809
1224 => 0.0065519154777278
1225 => 0.0060437956952622
1226 => 0.006138099771291
1227 => 0.0062465880146752
1228 => 0.006284037721552
1229 => 0.0062199774064983
1230 => 0.0066659037213916
1231 => 0.0067473787561755
]
'min_raw' => 0.0028122433293352
'max_raw' => 0.0073877813552041
'avg_raw' => 0.0051000123422696
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.002812'
'max' => '$0.007387'
'avg' => '$0.005100012'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00010903701071671
'max_diff' => -0.0013323116048648
'year' => 2027
]
2 => [
'items' => [
101 => 0.0065005855613301
102 => 0.0064544206310742
103 => 0.0066689302865335
104 => 0.0065395547415527
105 => 0.0065978125415358
106 => 0.0064718910432852
107 => 0.0067277538061635
108 => 0.0067258045605978
109 => 0.0066262681669155
110 => 0.00671039564526
111 => 0.006695776425622
112 => 0.0065834000823021
113 => 0.0067313163366888
114 => 0.0067313897013056
115 => 0.0066355880864942
116 => 0.0065237127740647
117 => 0.0065037121105792
118 => 0.006488644297354
119 => 0.0065941067831561
120 => 0.0066886641181537
121 => 0.0068646118758328
122 => 0.0069088493225289
123 => 0.0070815110220375
124 => 0.0069786993867257
125 => 0.0070242744530259
126 => 0.0070737526344814
127 => 0.0070974742941711
128 => 0.0070588211226812
129 => 0.0073270358124089
130 => 0.0073496813501077
131 => 0.0073572742030149
201 => 0.0072668337187317
202 => 0.0073471660366341
203 => 0.0073095812054143
204 => 0.0074073664948814
205 => 0.0074227004768551
206 => 0.0074097131396456
207 => 0.0074145803875545
208 => 0.0071857064661855
209 => 0.0071738381459564
210 => 0.007012012757495
211 => 0.0070779577994459
212 => 0.0069546767043468
213 => 0.0069937704095387
214 => 0.0070110025422888
215 => 0.0070020014540551
216 => 0.0070816862331747
217 => 0.0070139378923982
218 => 0.0068351388822305
219 => 0.0066562911583922
220 => 0.0066540458709056
221 => 0.0066069584221435
222 => 0.0065729228211849
223 => 0.0065794792854073
224 => 0.0066025851205002
225 => 0.0065715798680452
226 => 0.0065781964106627
227 => 0.0066880751039059
228 => 0.0067101104922168
229 => 0.0066352256329542
301 => 0.0063345521171814
302 => 0.0062607660822283
303 => 0.0063138020209119
304 => 0.0062884542581731
305 => 0.0050752733800775
306 => 0.0053602922320197
307 => 0.0051909437085213
308 => 0.0052689872995003
309 => 0.005096126309596
310 => 0.005178624634399
311 => 0.0051633902061643
312 => 0.0056216920857665
313 => 0.0056145363322901
314 => 0.0056179614128052
315 => 0.0054544733958203
316 => 0.0057149142460607
317 => 0.0058432167740392
318 => 0.0058194713907716
319 => 0.0058254475921658
320 => 0.00572275665211
321 => 0.0056189556855762
322 => 0.0055038244388361
323 => 0.0057177240646271
324 => 0.0056939420776275
325 => 0.0057484893993157
326 => 0.0058872185965023
327 => 0.0059076469977689
328 => 0.0059351029762358
329 => 0.005925261962405
330 => 0.0061597148371267
331 => 0.0061313210470281
401 => 0.0061997419117149
402 => 0.0060589950019506
403 => 0.0058997265137328
404 => 0.0059299982464638
405 => 0.0059270828351719
406 => 0.0058899663032728
407 => 0.0058564591578665
408 => 0.0058006792013446
409 => 0.00597717523766
410 => 0.0059700098209052
411 => 0.0060860095892794
412 => 0.0060655055034577
413 => 0.0059285742001389
414 => 0.0059334647284252
415 => 0.0059663558814582
416 => 0.0060801925376501
417 => 0.0061139870077984
418 => 0.0060983320627489
419 => 0.0061353861564903
420 => 0.0061646722013665
421 => 0.0061390640328309
422 => 0.0065016216964467
423 => 0.0063510624770813
424 => 0.0064244439930157
425 => 0.006441945052177
426 => 0.0063971164571429
427 => 0.0064068381742141
428 => 0.0064215639265678
429 => 0.0065109758112612
430 => 0.006745618468234
501 => 0.0068495401037407
502 => 0.0071621934715657
503 => 0.0068409108585709
504 => 0.0068218472779154
505 => 0.0068781655906878
506 => 0.0070617262153212
507 => 0.0072104848606138
508 => 0.0072598366853495
509 => 0.0072663593436981
510 => 0.0073589466477496
511 => 0.0074120159637808
512 => 0.0073477041137499
513 => 0.00729320655458
514 => 0.0070980030621196
515 => 0.0071205983978933
516 => 0.0072762578546582
517 => 0.0074961360056347
518 => 0.0076848143335952
519 => 0.007618745759247
520 => 0.0081228023443786
521 => 0.0081727774959079
522 => 0.0081658725458566
523 => 0.0082797233783401
524 => 0.0080537526611793
525 => 0.0079571458016167
526 => 0.0073049895454461
527 => 0.007488218852322
528 => 0.0077545534105461
529 => 0.0077193030330618
530 => 0.0075258837577363
531 => 0.0076846676077305
601 => 0.0076321687012924
602 => 0.007590760635603
603 => 0.0077804590118746
604 => 0.0075718778547841
605 => 0.0077524726539478
606 => 0.0075208579560064
607 => 0.0076190475549295
608 => 0.0075633103896842
609 => 0.0075993791664879
610 => 0.0073885218342996
611 => 0.007502295332476
612 => 0.0073837884827229
613 => 0.0073837322950461
614 => 0.0073811162497695
615 => 0.0075205390329643
616 => 0.0075250856049188
617 => 0.0074220519574818
618 => 0.007407203199198
619 => 0.0074621068411223
620 => 0.0073978290557156
621 => 0.0074279042269478
622 => 0.0073987400020141
623 => 0.007392174520689
624 => 0.0073398596484658
625 => 0.0073173209630846
626 => 0.007326158962373
627 => 0.007295990314501
628 => 0.0072778126129105
629 => 0.0073775002473971
630 => 0.0073242411656786
701 => 0.0073693375292809
702 => 0.0073179445313412
703 => 0.0071397940096189
704 => 0.0070373377606688
705 => 0.0067008279396973
706 => 0.0067962617074857
707 => 0.0068595343942627
708 => 0.0068386227716604
709 => 0.0068835490287339
710 => 0.0068863071360423
711 => 0.0068717011518987
712 => 0.0068547892934029
713 => 0.0068465575359715
714 => 0.0069079103117124
715 => 0.0069435276630694
716 => 0.0068658846548602
717 => 0.0068476939843779
718 => 0.0069261953524654
719 => 0.00697408114165
720 => 0.0073276429042887
721 => 0.007301449906923
722 => 0.0073671891901948
723 => 0.0073597879557499
724 => 0.0074286931977079
725 => 0.0075413241467812
726 => 0.0073123139352065
727 => 0.0073520621893586
728 => 0.0073423168353617
729 => 0.0074487140549303
730 => 0.0074490462154361
731 => 0.0073852557673695
801 => 0.0074198376041482
802 => 0.0074005349715614
803 => 0.0074354174375531
804 => 0.007301100083474
805 => 0.0074646841220799
806 => 0.0075574257308468
807 => 0.0075587134481745
808 => 0.0076026722346871
809 => 0.0076473369077052
810 => 0.0077330668580901
811 => 0.0076449459459189
812 => 0.0074864250033209
813 => 0.007497869703357
814 => 0.0074049289327123
815 => 0.007406491283858
816 => 0.0073981513309988
817 => 0.0074231801573316
818 => 0.0073065925033611
819 => 0.0073339553927159
820 => 0.0072956471873823
821 => 0.0073519789148016
822 => 0.0072913752880665
823 => 0.007342312135857
824 => 0.00736429479078
825 => 0.007445411260699
826 => 0.0072793943195057
827 => 0.0069408745380539
828 => 0.0070120355002707
829 => 0.0069067828475791
830 => 0.0069165243813108
831 => 0.0069362038298025
901 => 0.0068724162985262
902 => 0.0068845849493176
903 => 0.0068841501994818
904 => 0.0068804037602682
905 => 0.0068638101597919
906 => 0.0068397461561574
907 => 0.0069356097401274
908 => 0.0069518988310684
909 => 0.0069881074624389
910 => 0.0070958397888482
911 => 0.0070850747889367
912 => 0.0071026329504279
913 => 0.0070643035824775
914 => 0.0069183023707588
915 => 0.0069262309389881
916 => 0.0068273615661215
917 => 0.0069855791502861
918 => 0.0069481111379858
919 => 0.006923955266712
920 => 0.0069173641134324
921 => 0.007025363487441
922 => 0.0070576785928272
923 => 0.0070375419877366
924 => 0.0069962412232172
925 => 0.0070755509005694
926 => 0.0070967708244222
927 => 0.0071015211828122
928 => 0.0072420427249582
929 => 0.0071093747760186
930 => 0.0071413092699343
1001 => 0.0073904530753619
1002 => 0.0071645140233341
1003 => 0.0072841989782353
1004 => 0.0072783410225034
1005 => 0.0073395677955128
1006 => 0.007273318640041
1007 => 0.007274139877722
1008 => 0.0073285051042935
1009 => 0.0072521589483941
1010 => 0.007233254566535
1011 => 0.0072071382983924
1012 => 0.0072641622144372
1013 => 0.0072983454731361
1014 => 0.0075738374334128
1015 => 0.0077518178037112
1016 => 0.0077440912064467
1017 => 0.0078146978418602
1018 => 0.0077828889059238
1019 => 0.0076801694610118
1020 => 0.0078554990281747
1021 => 0.0078000174170237
1022 => 0.0078045912536368
1023 => 0.0078044210152096
1024 => 0.0078413114363384
1025 => 0.0078151711920112
1026 => 0.0077636460872013
1027 => 0.0077978508563501
1028 => 0.0078994267922933
1029 => 0.0082147216141912
1030 => 0.0083911647736261
1031 => 0.0082040995144447
1101 => 0.0083331346253244
1102 => 0.0082557595387077
1103 => 0.00824169818376
1104 => 0.0083227417690122
1105 => 0.0084039272103321
1106 => 0.0083987560486943
1107 => 0.0083398195872146
1108 => 0.0083065278755821
1109 => 0.0085586238696051
1110 => 0.0087443639036581
1111 => 0.0087316976785526
1112 => 0.0087876022768909
1113 => 0.0089517399066762
1114 => 0.008966746594504
1115 => 0.0089648560967625
1116 => 0.0089276604551953
1117 => 0.0090892752676835
1118 => 0.0092240971876033
1119 => 0.0089190507388579
1120 => 0.0090352084331889
1121 => 0.0090873553645413
1122 => 0.0091639225310639
1123 => 0.0092931041751346
1124 => 0.0094334297043343
1125 => 0.0094532732727543
1126 => 0.0094391933113581
1127 => 0.0093466448526983
1128 => 0.0095001907211803
1129 => 0.0095901342898434
1130 => 0.0096436936266603
1201 => 0.009779511193404
1202 => 0.0090876774062364
1203 => 0.0085979630653088
1204 => 0.0085214870994122
1205 => 0.0086770039833318
1206 => 0.0087180125453975
1207 => 0.0087014820454492
1208 => 0.0081502640318553
1209 => 0.0085185850506478
1210 => 0.0089148674975577
1211 => 0.0089300903202545
1212 => 0.0091284775990528
1213 => 0.0091930806291989
1214 => 0.0093528083918466
1215 => 0.0093428173768038
1216 => 0.0093817085451846
1217 => 0.009372768139075
1218 => 0.0096686301847312
1219 => 0.009995009957029
1220 => 0.0099837084633384
1221 => 0.0099367875095204
1222 => 0.010006473127152
1223 => 0.010343332029145
1224 => 0.010312319459503
1225 => 0.010342445529266
1226 => 0.010739621159252
1227 => 0.011256005975808
1228 => 0.011016093384329
1229 => 0.011536634674849
1230 => 0.011864287824523
1231 => 0.012430930066915
]
'min_raw' => 0.0050752733800775
'max_raw' => 0.012430930066915
'avg_raw' => 0.0087531017234964
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.005075'
'max' => '$0.01243'
'avg' => '$0.008753'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0022630300507423
'max_diff' => 0.0050431487117112
'year' => 2028
]
3 => [
'items' => [
101 => 0.012359983667396
102 => 0.012580573334146
103 => 0.012232974805296
104 => 0.011434818321801
105 => 0.011308507003068
106 => 0.011561385461884
107 => 0.012183062477364
108 => 0.011541806640306
109 => 0.011671531860969
110 => 0.011634170988691
111 => 0.011632180186581
112 => 0.01170816100595
113 => 0.011597946864562
114 => 0.011148914625398
115 => 0.011354703454443
116 => 0.011275238504758
117 => 0.011363410790938
118 => 0.011839240254438
119 => 0.011628864706267
120 => 0.011407251155791
121 => 0.011685203728072
122 => 0.012039132867451
123 => 0.012016984617981
124 => 0.011974007756758
125 => 0.012216266073277
126 => 0.012616405837139
127 => 0.012724562007419
128 => 0.012804400681165
129 => 0.012815409085389
130 => 0.012928802490581
131 => 0.012319057572043
201 => 0.013286738417123
202 => 0.013453830167425
203 => 0.013422423843612
204 => 0.013608139291776
205 => 0.01355349709578
206 => 0.013474329126879
207 => 0.013768727615028
208 => 0.013431223505098
209 => 0.012952178911638
210 => 0.012689365573239
211 => 0.013035459377791
212 => 0.013246806787221
213 => 0.013386493980635
214 => 0.013428763240961
215 => 0.012366390334348
216 => 0.011793830259586
217 => 0.012160834703094
218 => 0.012608605453467
219 => 0.012316570182916
220 => 0.012328017412626
221 => 0.01191165186234
222 => 0.012645444565846
223 => 0.012538537141113
224 => 0.013093173049743
225 => 0.012960804738918
226 => 0.013413088791564
227 => 0.013293987242813
228 => 0.0137883711128
301 => 0.013985594223446
302 => 0.014316762521548
303 => 0.01456037126973
304 => 0.014703422986154
305 => 0.014694834697674
306 => 0.015261676866231
307 => 0.01492742984339
308 => 0.014507536806726
309 => 0.014499942266439
310 => 0.014717410820057
311 => 0.015173165248857
312 => 0.015291335741288
313 => 0.015357376925441
314 => 0.015256232553
315 => 0.014893431365405
316 => 0.014736775652046
317 => 0.014870250858581
318 => 0.014707022150644
319 => 0.01498880069443
320 => 0.015375742819698
321 => 0.015295840800965
322 => 0.015562941270009
323 => 0.01583936215568
324 => 0.016234656437029
325 => 0.016338000999878
326 => 0.016508825632427
327 => 0.016684660292288
328 => 0.016741133646158
329 => 0.016848958801349
330 => 0.016848390509557
331 => 0.017173328872196
401 => 0.017531745948689
402 => 0.017667040097691
403 => 0.017978141533158
404 => 0.017445391227215
405 => 0.017849488454067
406 => 0.018213994267897
407 => 0.017779415409838
408 => 0.018378381121785
409 => 0.018401637603095
410 => 0.0187527828595
411 => 0.018396829870842
412 => 0.018185466122419
413 => 0.01879566534442
414 => 0.019090921526851
415 => 0.019001987961829
416 => 0.018325199140814
417 => 0.017931279018145
418 => 0.016900314075604
419 => 0.018121536584415
420 => 0.018716358444908
421 => 0.018323658695893
422 => 0.018521713607316
423 => 0.019602236984517
424 => 0.020013630327848
425 => 0.019928063388292
426 => 0.019942522792525
427 => 0.020164503173269
428 => 0.021148886428315
429 => 0.020559021164066
430 => 0.021009951056755
501 => 0.021249122645888
502 => 0.021471278547052
503 => 0.020925733866886
504 => 0.020215988253632
505 => 0.019991182024821
506 => 0.01828461244512
507 => 0.018195778087241
508 => 0.018145912670206
509 => 0.017831518269408
510 => 0.017584490390255
511 => 0.017388044649196
512 => 0.016872512360991
513 => 0.017046489374651
514 => 0.016224838507204
515 => 0.016750501614678
516 => 0.015439126990778
517 => 0.016531278745269
518 => 0.015936870199346
519 => 0.016335999551367
520 => 0.016334607026658
521 => 0.015599683345512
522 => 0.015175794703693
523 => 0.015445913044253
524 => 0.015735501347353
525 => 0.015782486075239
526 => 0.016157944869238
527 => 0.016262727348183
528 => 0.015945231545153
529 => 0.015411951666506
530 => 0.015535820419497
531 => 0.015173284507367
601 => 0.014537954266102
602 => 0.01499425953718
603 => 0.015150062219053
604 => 0.015218873559251
605 => 0.014594099235138
606 => 0.014397781577991
607 => 0.014293263704591
608 => 0.015331301146843
609 => 0.015388167181167
610 => 0.01509723250952
611 => 0.01641228481292
612 => 0.016114647975318
613 => 0.016447181245715
614 => 0.015524580628494
615 => 0.015559825214518
616 => 0.015123051296995
617 => 0.015367615505564
618 => 0.01519476540562
619 => 0.015347857134342
620 => 0.015439619685318
621 => 0.015876321932539
622 => 0.016536265183448
623 => 0.015811093179541
624 => 0.015495125352784
625 => 0.015691150015433
626 => 0.016213189523897
627 => 0.017004106101929
628 => 0.016535867569054
629 => 0.016743663878738
630 => 0.01678905812819
701 => 0.016443796369181
702 => 0.01701683639546
703 => 0.017323933200912
704 => 0.017638950978576
705 => 0.017912472088323
706 => 0.017513125950787
707 => 0.017940483561971
708 => 0.017596108766131
709 => 0.01728716897345
710 => 0.01728763750759
711 => 0.017093835062752
712 => 0.016718318405197
713 => 0.016649067372084
714 => 0.017009319991776
715 => 0.017298208476718
716 => 0.017322002716021
717 => 0.017481946224911
718 => 0.017576599145924
719 => 0.01850432644625
720 => 0.018877466041004
721 => 0.019333734074298
722 => 0.019511476187123
723 => 0.020046416222654
724 => 0.019614408698258
725 => 0.0195209411529
726 => 0.018223351604255
727 => 0.018435831820153
728 => 0.018776033147098
729 => 0.018228961398833
730 => 0.018575952504548
731 => 0.018644455899093
801 => 0.018210372110166
802 => 0.018442235017485
803 => 0.017826475878206
804 => 0.016549687050009
805 => 0.017018257826415
806 => 0.017363283637068
807 => 0.016870889263891
808 => 0.017753487119518
809 => 0.017237891672778
810 => 0.017074472669108
811 => 0.016436916872709
812 => 0.016737818666836
813 => 0.017144792651892
814 => 0.016893330044931
815 => 0.017415152711675
816 => 0.018154192772806
817 => 0.018680876730964
818 => 0.018721308985411
819 => 0.0183826864854
820 => 0.018925331202728
821 => 0.018929283777075
822 => 0.01831717831916
823 => 0.017942267134405
824 => 0.017857086524409
825 => 0.018069884388822
826 => 0.018328260280872
827 => 0.018735647049215
828 => 0.018981822341203
829 => 0.019623716941422
830 => 0.01979739521568
831 => 0.019988214983128
901 => 0.020243209039075
902 => 0.020549394782374
903 => 0.019879477807201
904 => 0.019906094857506
905 => 0.019282277445857
906 => 0.018615639077043
907 => 0.019121534501327
908 => 0.01978292547213
909 => 0.019631201652655
910 => 0.019614129623528
911 => 0.019642840041134
912 => 0.019528445236087
913 => 0.01901104177253
914 => 0.018751204992248
915 => 0.019086460730244
916 => 0.019264634234472
917 => 0.019540965801168
918 => 0.019506902102921
919 => 0.020218702542886
920 => 0.020495286670128
921 => 0.020424524614677
922 => 0.020437546535864
923 => 0.020938288886857
924 => 0.021495217366679
925 => 0.022016854381218
926 => 0.022547485957239
927 => 0.021907788881443
928 => 0.021582990157385
929 => 0.021918099533213
930 => 0.021740285781393
1001 => 0.022762056342338
1002 => 0.022832801519073
1003 => 0.023854498194377
1004 => 0.024824210000617
1005 => 0.024215151389309
1006 => 0.02478946622717
1007 => 0.025410634548892
1008 => 0.026608969022422
1009 => 0.026205412129652
1010 => 0.025896293874333
1011 => 0.025604178616705
1012 => 0.026212024095838
1013 => 0.026994007594173
1014 => 0.02716243934997
1015 => 0.027435363140243
1016 => 0.027148417146304
1017 => 0.027494011989939
1018 => 0.028714113650041
1019 => 0.028384431411346
1020 => 0.027916229633335
1021 => 0.028879382714176
1022 => 0.02922794406997
1023 => 0.031674330207928
1024 => 0.034762993762272
1025 => 0.033484266769515
1026 => 0.032690519660849
1027 => 0.032877069059319
1028 => 0.034004944431505
1029 => 0.034367182204077
1030 => 0.03338249506738
1031 => 0.033730303210822
1101 => 0.035646760276933
1102 => 0.036674878005598
1103 => 0.035278556035439
1104 => 0.031426159098701
1105 => 0.027874073185932
1106 => 0.028816246322512
1107 => 0.02870943312786
1108 => 0.030768427162508
1109 => 0.028376568598986
1110 => 0.028416841362933
1111 => 0.030518413213705
1112 => 0.029957749873982
1113 => 0.029049547067965
1114 => 0.027880704071493
1115 => 0.025719989687623
1116 => 0.023806184701851
1117 => 0.027559597001916
1118 => 0.027397743038399
1119 => 0.027163354513815
1120 => 0.027684960811791
1121 => 0.030217732934234
1122 => 0.030159344339028
1123 => 0.029787905886453
1124 => 0.030069638679023
1125 => 0.02900015794727
1126 => 0.029275787483466
1127 => 0.027873510517375
1128 => 0.028507398270307
1129 => 0.029047598472638
1130 => 0.029156051661057
1201 => 0.029400402232321
1202 => 0.027312453354327
1203 => 0.028249881101588
1204 => 0.028800532078002
1205 => 0.026312670933709
1206 => 0.028751355062263
1207 => 0.027276106809629
1208 => 0.026775385395199
1209 => 0.027449540814698
1210 => 0.027186821792082
1211 => 0.026960951403815
1212 => 0.026834911846216
1213 => 0.027329937182478
1214 => 0.027306843658858
1215 => 0.026496886128456
1216 => 0.025440329548141
1217 => 0.025794944616782
1218 => 0.025666109637811
1219 => 0.025199195053975
1220 => 0.025513839107998
1221 => 0.024128305931791
1222 => 0.021744568115874
1223 => 0.023319338332933
1224 => 0.023258711392596
1225 => 0.023228140540066
1226 => 0.024411536834734
1227 => 0.024297780586599
1228 => 0.02409131188233
1229 => 0.025195403094306
1230 => 0.024792394949813
1231 => 0.026034371090481
]
'min_raw' => 0.011148914625398
'max_raw' => 0.036674878005598
'avg_raw' => 0.023911896315498
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.011148'
'max' => '$0.036674'
'avg' => '$0.023911'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.0060736412453207
'max_diff' => 0.024243947938683
'year' => 2029
]
4 => [
'items' => [
101 => 0.026852416902706
102 => 0.026644934023716
103 => 0.027414310064072
104 => 0.025803114231742
105 => 0.026338288857285
106 => 0.026448587605889
107 => 0.025181778780134
108 => 0.024316392515641
109 => 0.024258681117925
110 => 0.022758220592867
111 => 0.023559754494059
112 => 0.024265071157381
113 => 0.023927279210434
114 => 0.023820344371278
115 => 0.02436665127319
116 => 0.02440910399827
117 => 0.023441177367491
118 => 0.02364243996428
119 => 0.024481738450013
120 => 0.023621291795858
121 => 0.021949584499998
122 => 0.021534977977463
123 => 0.021479661824642
124 => 0.02035521605267
125 => 0.021562683967817
126 => 0.021035591864727
127 => 0.022700669502855
128 => 0.021749586085947
129 => 0.02170858678075
130 => 0.021646610317655
131 => 0.020678753391448
201 => 0.020890652547771
202 => 0.021595037616541
203 => 0.021846370144544
204 => 0.021820154102766
205 => 0.021591585745428
206 => 0.021696223168958
207 => 0.021359149569673
208 => 0.021240121866185
209 => 0.020864437692827
210 => 0.020312285743394
211 => 0.020389065858507
212 => 0.019295108368263
213 => 0.018699062266859
214 => 0.018534084561752
215 => 0.01831346947959
216 => 0.018559003622316
217 => 0.019292009324141
218 => 0.018407848931906
219 => 0.016892017956058
220 => 0.016983121980557
221 => 0.017187805674578
222 => 0.016806378964888
223 => 0.016445390594884
224 => 0.01675924069469
225 => 0.016116963127377
226 => 0.017265421850071
227 => 0.01723435926014
228 => 0.017662433651749
301 => 0.017930117353793
302 => 0.017313193084209
303 => 0.01715803829875
304 => 0.017246421515939
305 => 0.015785643811843
306 => 0.01754305694857
307 => 0.017558255130355
308 => 0.017428119070831
309 => 0.018363887312095
310 => 0.020338650174596
311 => 0.019595664951071
312 => 0.019307958615675
313 => 0.018761028661775
314 => 0.019489780351859
315 => 0.019433823592358
316 => 0.019180765904923
317 => 0.019027715825974
318 => 0.019309715289209
319 => 0.018992772971729
320 => 0.018935841422518
321 => 0.018590898176431
322 => 0.018467769131496
323 => 0.018376609288534
324 => 0.018276251258615
325 => 0.018497616064954
326 => 0.017995974290823
327 => 0.017391043487771
328 => 0.017340750036939
329 => 0.017479614676531
330 => 0.017418177410768
331 => 0.017340455898947
401 => 0.017192064366687
402 => 0.017148039768948
403 => 0.017291098353899
404 => 0.017129593552323
405 => 0.017367902684671
406 => 0.017303095786918
407 => 0.016941089724199
408 => 0.016489896138241
409 => 0.016485879568916
410 => 0.016388670650927
411 => 0.016264860478409
412 => 0.016230419320808
413 => 0.016732809114684
414 => 0.017772740952745
415 => 0.017568577449474
416 => 0.017716106504105
417 => 0.018441803438017
418 => 0.018672480670839
419 => 0.018508751434871
420 => 0.018284628758299
421 => 0.018294489018627
422 => 0.019060384051021
423 => 0.019108151984726
424 => 0.019228846142678
425 => 0.019383972243811
426 => 0.018535170080679
427 => 0.018254510513075
428 => 0.018121518439544
429 => 0.017711954327479
430 => 0.018153634108968
501 => 0.017896286214908
502 => 0.017931011238073
503 => 0.017908396521182
504 => 0.017920745685805
505 => 0.017265100832452
506 => 0.017503983357335
507 => 0.017106794827689
508 => 0.016575003972999
509 => 0.016573221223584
510 => 0.016703376281882
511 => 0.016625954960238
512 => 0.01641761617438
513 => 0.01644720971558
514 => 0.016187939154881
515 => 0.016478689855893
516 => 0.016487027545642
517 => 0.016375072688455
518 => 0.016823014259229
519 => 0.017006536286261
520 => 0.016932845200955
521 => 0.01700136592327
522 => 0.017577061364778
523 => 0.017670924841096
524 => 0.017712612797004
525 => 0.017656756458684
526 => 0.017011888579122
527 => 0.017040491211771
528 => 0.016830624071541
529 => 0.016653308453301
530 => 0.016660400148133
531 => 0.016751563425325
601 => 0.017149678803479
602 => 0.017987489146619
603 => 0.01801928343671
604 => 0.018057819043805
605 => 0.017901075363306
606 => 0.017853799969432
607 => 0.017916168416766
608 => 0.018230805931675
609 => 0.019040139043272
610 => 0.018754066668092
611 => 0.018521485374089
612 => 0.018725521872396
613 => 0.018694112052773
614 => 0.018428981565426
615 => 0.018421540235691
616 => 0.017912670063128
617 => 0.017724552346744
618 => 0.017567347102567
619 => 0.017395683079873
620 => 0.01729391489299
621 => 0.017450277080856
622 => 0.017486038963244
623 => 0.017144150306731
624 => 0.01709755214617
625 => 0.017376745803258
626 => 0.017253883084162
627 => 0.017380250437601
628 => 0.017409568747558
629 => 0.017404847824397
630 => 0.017276565034968
701 => 0.017358328659502
702 => 0.017164933312568
703 => 0.01695464491982
704 => 0.016820494026676
705 => 0.016703429579874
706 => 0.016768383738785
707 => 0.016536834022428
708 => 0.01646275660799
709 => 0.01733062898325
710 => 0.017971735638055
711 => 0.017962413693388
712 => 0.017905668752637
713 => 0.017821357280972
714 => 0.018224638022379
715 => 0.018084143075926
716 => 0.018186364888216
717 => 0.01821238462968
718 => 0.018291138550446
719 => 0.018319286307991
720 => 0.018234204234814
721 => 0.01794865840533
722 => 0.017237105347138
723 => 0.016905875477749
724 => 0.016796564103781
725 => 0.016800537364613
726 => 0.016690937093452
727 => 0.016723219285248
728 => 0.016679710664572
729 => 0.016597315862878
730 => 0.016763296091963
731 => 0.016782423767152
801 => 0.016743681998368
802 => 0.016752807087389
803 => 0.016432041788679
804 => 0.016456428877674
805 => 0.016320638467187
806 => 0.016295179402198
807 => 0.01595191306911
808 => 0.015343767002793
809 => 0.015680738957699
810 => 0.015273724221599
811 => 0.015119581573758
812 => 0.015849268894537
813 => 0.015776028525906
814 => 0.015650672851634
815 => 0.015465245682974
816 => 0.015396468942399
817 => 0.014978603238732
818 => 0.014953913503732
819 => 0.015161019029793
820 => 0.015065446955582
821 => 0.014931227567415
822 => 0.014445098549075
823 => 0.013898528580675
824 => 0.013915026092404
825 => 0.014088879830057
826 => 0.014594383019652
827 => 0.014396874178183
828 => 0.014253579247545
829 => 0.014226744414466
830 => 0.014562638532975
831 => 0.015037999082659
901 => 0.015261027616978
902 => 0.015040013112945
903 => 0.014786123550979
904 => 0.014801576632205
905 => 0.014904379058499
906 => 0.014915182139954
907 => 0.014749926135382
908 => 0.014796444732677
909 => 0.014725778729637
910 => 0.014292101599421
911 => 0.01428425775534
912 => 0.014177826393597
913 => 0.014174603694262
914 => 0.013993537397389
915 => 0.013968204970804
916 => 0.013608686848424
917 => 0.013845322765295
918 => 0.013686599816201
919 => 0.013447366892957
920 => 0.013406123046818
921 => 0.013404883207
922 => 0.013650521927668
923 => 0.013842452333827
924 => 0.013689360869856
925 => 0.013654504911063
926 => 0.014026675360346
927 => 0.013979313278266
928 => 0.013938298020637
929 => 0.014995435759235
930 => 0.014158628749648
1001 => 0.013793733130194
1002 => 0.013342105509321
1003 => 0.013489157739981
1004 => 0.013520143805628
1005 => 0.012434060789425
1006 => 0.011993437045014
1007 => 0.011842231580488
1008 => 0.011755210697922
1009 => 0.011794867206847
1010 => 0.011398254156867
1011 => 0.011664784685828
1012 => 0.011321351309412
1013 => 0.011263773586227
1014 => 0.01187787500649
1015 => 0.011963323631591
1016 => 0.011598773250103
1017 => 0.011832873610364
1018 => 0.011747985565495
1019 => 0.011327238488937
1020 => 0.011311169045418
1021 => 0.011100052952376
1022 => 0.010769697146897
1023 => 0.010618715679163
1024 => 0.010540083219886
1025 => 0.0105725285051
1026 => 0.010556123176053
1027 => 0.010449067307035
1028 => 0.01056225949315
1029 => 0.010273100231866
1030 => 0.010157954684107
1031 => 0.010105946111542
1101 => 0.0098493006237651
1102 => 0.010257737725584
1103 => 0.010338204979997
1104 => 0.010418830779759
1105 => 0.011120623321117
1106 => 0.011085563748996
1107 => 0.011402485206267
1108 => 0.011390170221218
1109 => 0.011299779087817
1110 => 0.010918433764619
1111 => 0.011070431213619
1112 => 0.010602606691245
1113 => 0.010953132632383
1114 => 0.010793167231161
1115 => 0.010899048169319
1116 => 0.010708664695611
1117 => 0.010814030770702
1118 => 0.010357286751157
1119 => 0.0099307856122671
1120 => 0.010102422120901
1121 => 0.010289010634801
1122 => 0.010693582074806
1123 => 0.010452622662781
1124 => 0.01053928077903
1125 => 0.010248990595991
1126 => 0.0096500390310908
1127 => 0.0096534290319022
1128 => 0.0095612933825114
1129 => 0.0094816747294127
1130 => 0.010480299749851
1201 => 0.010356104942634
1202 => 0.010158216771548
1203 => 0.01042309795231
1204 => 0.010493136740732
1205 => 0.010495130646576
1206 => 0.010688381118487
1207 => 0.010791518929987
1208 => 0.010809697416289
1209 => 0.011113781209293
1210 => 0.011215706085746
1211 => 0.011635520226907
1212 => 0.010782768407265
1213 => 0.010765206544709
1214 => 0.010426825373726
1215 => 0.010212218685495
1216 => 0.010441519677274
1217 => 0.010644649053283
1218 => 0.01043313716966
1219 => 0.010460756156401
1220 => 0.010176818733793
1221 => 0.010278313001878
1222 => 0.010365733538307
1223 => 0.010317465056433
1224 => 0.010245204802846
1225 => 0.010627994760907
1226 => 0.010606396251307
1227 => 0.010962859060557
1228 => 0.011240747311267
1229 => 0.011738772735006
1230 => 0.011219057242682
1231 => 0.01120011674446
]
'min_raw' => 0.0094816747294127
'max_raw' => 0.027414310064072
'avg_raw' => 0.018447992396742
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.009481'
'max' => '$0.027414'
'avg' => '$0.018447'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0016672398959854
'max_diff' => -0.0092605679415258
'year' => 2030
]
5 => [
'items' => [
101 => 0.011385263152734
102 => 0.011215677740796
103 => 0.011322849867251
104 => 0.01172150564856
105 => 0.011729928617025
106 => 0.011588833042846
107 => 0.011580247364335
108 => 0.011607346312772
109 => 0.011766065700191
110 => 0.011710604269273
111 => 0.011774785641243
112 => 0.011855045429672
113 => 0.012187033944059
114 => 0.012267075250935
115 => 0.012072616371884
116 => 0.012090173831399
117 => 0.012017440872618
118 => 0.011947181745777
119 => 0.012105114002394
120 => 0.012393738305528
121 => 0.012391942788717
122 => 0.01245889801699
123 => 0.012500610569516
124 => 0.012321549758618
125 => 0.012204987754971
126 => 0.012249685044202
127 => 0.012321156983063
128 => 0.012226507657704
129 => 0.011642288175758
130 => 0.011819503046496
131 => 0.011790005826641
201 => 0.011747998198582
202 => 0.011926189121471
203 => 0.011909002172259
204 => 0.011394186316784
205 => 0.011427143157536
206 => 0.011396190531427
207 => 0.011496204798696
208 => 0.011210276642144
209 => 0.011298226217344
210 => 0.011353387366433
211 => 0.011385877707015
212 => 0.011503255096031
213 => 0.011489482214194
214 => 0.011502398954358
215 => 0.011676438635786
216 => 0.012556671621244
217 => 0.012604580760517
218 => 0.012368658636789
219 => 0.01246290487186
220 => 0.012281972709909
221 => 0.012403433682367
222 => 0.012486534194948
223 => 0.012111018957901
224 => 0.012088783382637
225 => 0.011907104449292
226 => 0.012004728417251
227 => 0.011849401664817
228 => 0.011887513416765
301 => 0.011780949635795
302 => 0.011972743224904
303 => 0.012187198259238
304 => 0.012241378069997
305 => 0.012098854313766
306 => 0.011995657721481
307 => 0.0118144785005
308 => 0.012115783582834
309 => 0.012203894371014
310 => 0.012115320774373
311 => 0.01209479633666
312 => 0.012055902564281
313 => 0.012103047834333
314 => 0.012203414500739
315 => 0.012156083434344
316 => 0.012187346437564
317 => 0.012068204107557
318 => 0.012321609035197
319 => 0.012724077045506
320 => 0.012725371045969
321 => 0.012678039724442
322 => 0.01265867276744
323 => 0.012707237575632
324 => 0.012733581991844
325 => 0.012890631676274
326 => 0.013059152244804
327 => 0.013845564206847
328 => 0.013624742874784
329 => 0.014322494351366
330 => 0.014874325177652
331 => 0.015039795113818
401 => 0.014887570558508
402 => 0.014366818577799
403 => 0.014341268001247
404 => 0.015119491316241
405 => 0.014899607584869
406 => 0.014873453114687
407 => 0.014595213740621
408 => 0.014759687671311
409 => 0.014723714809982
410 => 0.014666929888521
411 => 0.014980734690924
412 => 0.015568149267475
413 => 0.015476595196981
414 => 0.015408254330428
415 => 0.01510880454692
416 => 0.015289140201122
417 => 0.015224926128762
418 => 0.015500830534876
419 => 0.015337390876725
420 => 0.014897941749342
421 => 0.014967925471321
422 => 0.014957347572532
423 => 0.01517503998006
424 => 0.015109694122778
425 => 0.014944587745134
426 => 0.015566141548312
427 => 0.015525781301598
428 => 0.015583002903802
429 => 0.015608193622729
430 => 0.015986522469718
501 => 0.016141511693156
502 => 0.016176696960345
503 => 0.016323924735314
504 => 0.016173033799182
505 => 0.016776705127125
506 => 0.017178111335009
507 => 0.01764436530164
508 => 0.018325687664141
509 => 0.018581871175025
510 => 0.018535593916794
511 => 0.019052164756217
512 => 0.019980431071935
513 => 0.01872322307935
514 => 0.020047066148282
515 => 0.019627952717161
516 => 0.018634242311503
517 => 0.018570259076455
518 => 0.019243211300382
519 => 0.0207357545638
520 => 0.020361889404599
521 => 0.020736366073267
522 => 0.020299519147767
523 => 0.020277826015881
524 => 0.020715149393156
525 => 0.021736979301416
526 => 0.021251546214723
527 => 0.020555558851873
528 => 0.021069465089839
529 => 0.020624271946735
530 => 0.019621127193608
531 => 0.020361603516958
601 => 0.019866468087086
602 => 0.02001097492837
603 => 0.021051675956125
604 => 0.020926456055112
605 => 0.021088502202073
606 => 0.020802494994172
607 => 0.020535319162796
608 => 0.020036615632795
609 => 0.019888974103348
610 => 0.019929776910502
611 => 0.019888953883504
612 => 0.01960993384179
613 => 0.019549679490347
614 => 0.019449252931473
615 => 0.019480379321372
616 => 0.019291548009862
617 => 0.019647911709221
618 => 0.019714055952088
619 => 0.019973387734215
620 => 0.020000312420136
621 => 0.020722547742002
622 => 0.02032475266339
623 => 0.020591627946098
624 => 0.020567756108885
625 => 0.018655779029187
626 => 0.018919232601253
627 => 0.019329083683102
628 => 0.019144446326269
629 => 0.018883412302195
630 => 0.018672613331996
701 => 0.018353231336843
702 => 0.018802755361833
703 => 0.019393831653143
704 => 0.020015303090308
705 => 0.02076196030164
706 => 0.020595315104118
707 => 0.020001344853106
708 => 0.020027989924671
709 => 0.020192699272636
710 => 0.019979385701599
711 => 0.019916475365124
712 => 0.020184056358458
713 => 0.020185899041699
714 => 0.019940455998415
715 => 0.019667690971407
716 => 0.019666548075985
717 => 0.019618012174026
718 => 0.020308153576902
719 => 0.020687661567318
720 => 0.020731171546811
721 => 0.020684732999028
722 => 0.02070260535299
723 => 0.020481778015255
724 => 0.020986523825004
725 => 0.021449728494217
726 => 0.021325579747944
727 => 0.021139463128496
728 => 0.020991212276514
729 => 0.021290656558697
730 => 0.02127732277618
731 => 0.021445682805522
801 => 0.021438045022097
802 => 0.02138143187657
803 => 0.021325581769777
804 => 0.0215470211302
805 => 0.021483250150606
806 => 0.021419380117066
807 => 0.021291278986789
808 => 0.021308690057928
809 => 0.021122605574138
810 => 0.021036514377291
811 => 0.019741909338365
812 => 0.019395948569525
813 => 0.019504794870083
814 => 0.019540629898419
815 => 0.019390067328459
816 => 0.019605935377431
817 => 0.01957229257066
818 => 0.019703177051424
819 => 0.019621406110186
820 => 0.019624762018137
821 => 0.019865232920915
822 => 0.019935042647028
823 => 0.019899536856894
824 => 0.019924403895236
825 => 0.020497454298129
826 => 0.020415984855958
827 => 0.020372705838551
828 => 0.020384694422147
829 => 0.020531121086425
830 => 0.020572112557823
831 => 0.020398428813089
901 => 0.020480339071159
902 => 0.020829102554065
903 => 0.020951150034778
904 => 0.021340667007101
905 => 0.021175193274146
906 => 0.02147892747252
907 => 0.022412502847703
908 => 0.023158307455902
909 => 0.022472434716523
910 => 0.023842009901836
911 => 0.024908420637493
912 => 0.024867490017259
913 => 0.024681536638972
914 => 0.023467456368422
915 => 0.022350241602545
916 => 0.023284839193646
917 => 0.023287221675108
918 => 0.023206938913178
919 => 0.02270830957386
920 => 0.023189587693012
921 => 0.023227789802365
922 => 0.023206406779888
923 => 0.022824108834531
924 => 0.022240410532441
925 => 0.022354463783493
926 => 0.02254128533534
927 => 0.022187593162636
928 => 0.022074567082492
929 => 0.02228470406957
930 => 0.022961809225716
1001 => 0.02283380641815
1002 => 0.022830463747544
1003 => 0.023378114039951
1004 => 0.022986114620918
1005 => 0.022355902360238
1006 => 0.022196765452938
1007 => 0.021631936639488
1008 => 0.022022065912789
1009 => 0.022036105970801
1010 => 0.021822436154839
1011 => 0.022373240488202
1012 => 0.022368164729303
1013 => 0.022891071467425
1014 => 0.023890672755913
1015 => 0.023595041467515
1016 => 0.023251254443701
1017 => 0.023288633625369
1018 => 0.023698590988594
1019 => 0.023450721408372
1020 => 0.023539857037628
1021 => 0.023698456071144
1022 => 0.023794142805856
1023 => 0.02327486577678
1024 => 0.02315379746141
1025 => 0.022906134177369
1026 => 0.022841523449417
1027 => 0.023043240026605
1028 => 0.022990094835268
1029 => 0.022034925958291
1030 => 0.021935105496138
1031 => 0.021938166847201
1101 => 0.021687163548912
1102 => 0.021304323271327
1103 => 0.022310404662615
1104 => 0.022229602246795
1105 => 0.022140402633339
1106 => 0.022151329077022
1107 => 0.022588034909718
1108 => 0.022334723472581
1109 => 0.023008193445138
1110 => 0.02286974826514
1111 => 0.022727752488678
1112 => 0.022708124347073
1113 => 0.022653468087646
1114 => 0.022466031437369
1115 => 0.022239690418965
1116 => 0.02209024047329
1117 => 0.020377079150917
1118 => 0.020695031927348
1119 => 0.021060807614325
1120 => 0.021187071915716
1121 => 0.020971088090964
1122 => 0.022474559795208
1123 => 0.022749258563387
1124 => 0.021917178076415
1125 => 0.021761529790925
1126 => 0.022484764070892
1127 => 0.022048565388277
1128 => 0.022244985628349
1129 => 0.021820432505439
1130 => 0.022683091674251
1201 => 0.022676519656734
1202 => 0.022340925756026
1203 => 0.022624567422857
1204 => 0.022575277703166
1205 => 0.022196393015797
1206 => 0.022695102994645
1207 => 0.022695350348573
1208 => 0.022372348515581
1209 => 0.02199515308884
1210 => 0.021927719455497
1211 => 0.021876917271207
1212 => 0.022232491405245
1213 => 0.022551298061971
1214 => 0.023144518211266
1215 => 0.023293667851362
1216 => 0.023875808826111
1217 => 0.023529172219578
1218 => 0.023682831737558
1219 => 0.023849650880792
1220 => 0.023929630112629
1221 => 0.023799308246273
1222 => 0.024703612798841
1223 => 0.024779963810253
1224 => 0.024805563643946
1225 => 0.024500637236832
1226 => 0.024771483255264
1227 => 0.024644763372717
1228 => 0.024974453303306
1229 => 0.025026152894115
1230 => 0.024982365179966
1231 => 0.024998775446112
]
'min_raw' => 0.011210276642144
'max_raw' => 0.025026152894115
'avg_raw' => 0.01811821476813
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.01121'
'max' => '$0.025026'
'avg' => '$0.018118'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0017286019127315
'max_diff' => -0.002388157169957
'year' => 2031
]
6 => [
'items' => [
101 => 0.024227111040749
102 => 0.024187096170477
103 => 0.023641490574992
104 => 0.023863828888065
105 => 0.023448178068727
106 => 0.023579985225217
107 => 0.023638084563893
108 => 0.023607736766477
109 => 0.023876399562692
110 => 0.023647981301726
111 => 0.023045147955598
112 => 0.022442150367927
113 => 0.022434580224405
114 => 0.022275821603363
115 => 0.022161068198442
116 => 0.022183173775325
117 => 0.022261076711539
118 => 0.022156540338169
119 => 0.022178848473556
120 => 0.022549312159311
121 => 0.022623606009463
122 => 0.022371126478165
123 => 0.021357384727383
124 => 0.021108609958962
125 => 0.021287424329085
126 => 0.021201962577286
127 => 0.017111638545203
128 => 0.018072599503907
129 => 0.017501629133396
130 => 0.017764758549211
131 => 0.01718194565298
201 => 0.017460094514902
202 => 0.017408730576475
203 => 0.018953927361169
204 => 0.018929801238725
205 => 0.018941349136813
206 => 0.01839013787318
207 => 0.019268232383165
208 => 0.019700813314041
209 => 0.019620754096504
210 => 0.01964090327675
211 => 0.019294673602699
212 => 0.018944701396879
213 => 0.018556528360287
214 => 0.019277705882637
215 => 0.019197523253062
216 => 0.019381433356506
217 => 0.019849168530584
218 => 0.01991804431172
219 => 0.020010614060036
220 => 0.019977434394828
221 => 0.020767908630929
222 => 0.020672176985221
223 => 0.020902862707505
224 => 0.020428324674599
225 => 0.019891339846802
226 => 0.019993403107209
227 => 0.019983573594491
228 => 0.0198584326158
229 => 0.019745460935668
301 => 0.019557394917822
302 => 0.020152463626819
303 => 0.020128304923957
304 => 0.020519406241876
305 => 0.020450275284978
306 => 0.019988601835601
307 => 0.020005090593164
308 => 0.020115985412002
309 => 0.020499793646174
310 => 0.020613734061734
311 => 0.020560952321506
312 => 0.02068588278559
313 => 0.020784622730576
314 => 0.020698283002453
315 => 0.021920671478301
316 => 0.021413050558502
317 => 0.021660461462808
318 => 0.021719467505656
319 => 0.021568324767666
320 => 0.02160110221552
321 => 0.021650751117699
322 => 0.021952209529482
323 => 0.022743323629693
324 => 0.02309370267938
325 => 0.024147835337764
326 => 0.023064608576816
327 => 0.023000334383659
328 => 0.02319021550719
329 => 0.023809102968935
330 => 0.024310653127536
331 => 0.024477046250267
401 => 0.024499037848287
402 => 0.024811202408135
403 => 0.024990129312316
404 => 0.024773297419827
405 => 0.024589555094188
406 => 0.023931412890685
407 => 0.024007594642802
408 => 0.024532411369081
409 => 0.0252737459065
410 => 0.025909888062319
411 => 0.025687133251144
412 => 0.027386595220022
413 => 0.027555089932557
414 => 0.027531809411371
415 => 0.0279156654419
416 => 0.027153789392221
417 => 0.02682807262033
418 => 0.024629282270555
419 => 0.025247052671349
420 => 0.026145018229286
421 => 0.026026169120495
422 => 0.025374042529633
423 => 0.025909393365822
424 => 0.02573238963741
425 => 0.025592779452919
426 => 0.026232360772836
427 => 0.025529114839035
428 => 0.026138002813141
429 => 0.02535709768821
430 => 0.025688150776358
501 => 0.025500229032289
502 => 0.025621837431524
503 => 0.024910917214463
504 => 0.025294512506976
505 => 0.02489495838915
506 => 0.024894768948474
507 => 0.024885948769178
508 => 0.025356022416907
509 => 0.025371351501683
510 => 0.02502396636577
511 => 0.024973902740509
512 => 0.025159014202506
513 => 0.024942297161276
514 => 0.025043697700867
515 => 0.024945368480322
516 => 0.024923232501647
517 => 0.024746849257438
518 => 0.024670858506075
519 => 0.024700656437725
520 => 0.024598940735117
521 => 0.024537653345078
522 => 0.024873757164718
523 => 0.024694190452274
524 => 0.024846235990687
525 => 0.024672960909989
526 => 0.024072313987929
527 => 0.023726875591327
528 => 0.022592309235556
529 => 0.022914070846628
530 => 0.023127399127655
531 => 0.023056894132048
601 => 0.023208366144422
602 => 0.023217665295778
603 => 0.02316842020048
604 => 0.023111400688813
605 => 0.02308364674391
606 => 0.023290501910835
607 => 0.023410588297659
608 => 0.02314880947462
609 => 0.023087478359057
610 => 0.023352151202354
611 => 0.023513601483869
612 => 0.0247056596515
613 => 0.024617348132144
614 => 0.024838992715466
615 => 0.024814038936797
616 => 0.025046357770869
617 => 0.025426100879311
618 => 0.024653976962005
619 => 0.024787990976013
620 => 0.024755133834613
621 => 0.025113859488805
622 => 0.025114979391142
623 => 0.024899905441778
624 => 0.025016500518904
625 => 0.024951420345471
626 => 0.025069029014978
627 => 0.024616168677962
628 => 0.025167703685195
629 => 0.025480388494165
630 => 0.025484730123041
701 => 0.025632940240873
702 => 0.025783530304341
703 => 0.026072574817538
704 => 0.025775469009747
705 => 0.025241004584199
706 => 0.025279591189414
707 => 0.024966234892268
708 => 0.024971502468236
709 => 0.024943383734894
710 => 0.025027770170332
711 => 0.02463468675508
712 => 0.024726942646956
713 => 0.02459778385808
714 => 0.02478771021003
715 => 0.024583380851283
716 => 0.024755117989905
717 => 0.024829234045758
718 => 0.025102723887461
719 => 0.024542986179295
720 => 0.023401643101434
721 => 0.023641567253848
722 => 0.023286700586792
723 => 0.023319544847901
724 => 0.023385895482466
725 => 0.023170831367265
726 => 0.023211858822996
727 => 0.023210393033571
728 => 0.023197761652195
729 => 0.023141815169661
730 => 0.023060681701312
731 => 0.023383892467648
801 => 0.023438812275024
802 => 0.023560892203696
803 => 0.023924119263815
804 => 0.023887824315025
805 => 0.023947022882365
806 => 0.023817792742249
807 => 0.02332553946346
808 => 0.0233522711848
809 => 0.023018926191341
810 => 0.023552367822751
811 => 0.023426041803348
812 => 0.023344598596839
813 => 0.023322376063377
814 => 0.023686503493123
815 => 0.023795456127101
816 => 0.023727564157145
817 => 0.02358831574604
818 => 0.023855713860458
819 => 0.023927258315256
820 => 0.023943274480227
821 => 0.024417052670473
822 => 0.023969753418043
823 => 0.024077422793875
824 => 0.024917428528539
825 => 0.024155659240066
826 => 0.024559185421653
827 => 0.024539434914913
828 => 0.024745865254831
829 => 0.024522501601789
830 => 0.024525270461968
831 => 0.024708566619013
901 => 0.024451160224079
902 => 0.02438742278078
903 => 0.024299369959357
904 => 0.024491630073585
905 => 0.024606881316887
906 => 0.025535721695195
907 => 0.026135794939848
908 => 0.026109744177717
909 => 0.026347799378612
910 => 0.026240553330273
911 => 0.02589422755011
912 => 0.026485363426919
913 => 0.026298303301321
914 => 0.026313724310797
915 => 0.026313150340054
916 => 0.026437528970497
917 => 0.026349395311694
918 => 0.02617567482346
919 => 0.026290998590745
920 => 0.026633468950583
921 => 0.027696507455794
922 => 0.028291397886696
923 => 0.027660694304887
924 => 0.028095745190162
925 => 0.027834869683477
926 => 0.027787460843539
927 => 0.028060704949499
928 => 0.028334427333095
929 => 0.028316992400595
930 => 0.028118284005904
1001 => 0.028006038675782
1002 => 0.02885599792041
1003 => 0.029482233413175
1004 => 0.029439528350904
1005 => 0.029628014607336
1006 => 0.030181416085881
1007 => 0.030232012181626
1008 => 0.0302256382365
1009 => 0.030100230534039
1010 => 0.030645126157929
1011 => 0.031099687673904
1012 => 0.030071202274297
1013 => 0.030462836050605
1014 => 0.030638653070442
1015 => 0.030896804618122
1016 => 0.031332349550281
1017 => 0.031805466869193
1018 => 0.031872370845554
1019 => 0.031824899272676
1020 => 0.031512865682777
1021 => 0.032030556298594
1022 => 0.032333807320001
1023 => 0.032514386363473
1024 => 0.032972304772229
1025 => 0.030639738856501
1026 => 0.0289886327653
1027 => 0.028730788706898
1028 => 0.029255124738876
1029 => 0.029393387969006
1030 => 0.029337654234308
1031 => 0.027479184216663
1101 => 0.028721004246875
1102 => 0.030057098184188
1103 => 0.030108422993734
1104 => 0.03077729955516
1105 => 0.030995113181737
1106 => 0.03153364648534
1107 => 0.031499961080573
1108 => 0.031631085370064
1109 => 0.031600942166666
1110 => 0.032598461710024
1111 => 0.033698873899434
1112 => 0.033660770124411
1113 => 0.033502572852698
1114 => 0.033737522777836
1115 => 0.034873266084643
1116 => 0.034768705040868
1117 => 0.034870277188407
1118 => 0.036209382554822
1119 => 0.037950410016677
1120 => 0.037141527964346
1121 => 0.038896569268364
1122 => 0.040001274738502
1123 => 0.041911748620427
1124 => 0.041672547881128
1125 => 0.042416281343656
1126 => 0.041244328635081
1127 => 0.038553288325473
1128 => 0.038127420895589
1129 => 0.038980018274897
1130 => 0.041076045736692
1201 => 0.038914006910997
1202 => 0.03935138454959
1203 => 0.039225419760251
1204 => 0.039218707631943
1205 => 0.03947488226926
1206 => 0.039103287596662
1207 => 0.037589344051892
1208 => 0.038283175456735
1209 => 0.038015253830804
1210 => 0.038312532849654
1211 => 0.039916825107195
1212 => 0.039207529258586
1213 => 0.038460343700591
1214 => 0.039397480204065
1215 => 0.040590777008028
1216 => 0.040516102638596
1217 => 0.040371203150434
1218 => 0.041187993978513
1219 => 0.042537093129241
1220 => 0.042901749208564
1221 => 0.043170930871254
1222 => 0.043208046474678
1223 => 0.043590360257159
1224 => 0.041534562693277
1225 => 0.044797166223784
1226 => 0.045360527725899
1227 => 0.045254639112443
1228 => 0.045880791712168
1229 => 0.045696561733371
1230 => 0.045429641398891
1231 => 0.046422226455932
]
'min_raw' => 0.017111638545203
'max_raw' => 0.046422226455932
'avg_raw' => 0.031766932500568
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.017111'
'max' => '$0.046422'
'avg' => '$0.031766'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0059013619030588
'max_diff' => 0.021396073561817
'year' => 2032
]
7 => [
'items' => [
101 => 0.045284307785519
102 => 0.043669175492843
103 => 0.042783081973387
104 => 0.043949961398932
105 => 0.044662533945633
106 => 0.045133499070876
107 => 0.04527601283321
108 => 0.041694148406056
109 => 0.039763722139129
110 => 0.041001103243847
111 => 0.042510793591085
112 => 0.041526176287172
113 => 0.041564771421358
114 => 0.040160965898853
115 => 0.042634999230497
116 => 0.042274553383972
117 => 0.044144547073361
118 => 0.043698258071751
119 => 0.045223165332711
120 => 0.044821606145693
121 => 0.046488455880133
122 => 0.047153407367356
123 => 0.048269964405839
124 => 0.049091308308552
125 => 0.049573617158031
126 => 0.049544661143803
127 => 0.051455809090751
128 => 0.050328871916859
129 => 0.048913173227753
130 => 0.048887567704939
131 => 0.049620778116633
201 => 0.05115738599309
202 => 0.05155580605872
203 => 0.051778468521942
204 => 0.051437453208581
205 => 0.050214243674637
206 => 0.049686067999693
207 => 0.050136088977467
208 => 0.049585751992392
209 => 0.050535788025918
210 => 0.051840390416694
211 => 0.051570995181956
212 => 0.052471543061696
213 => 0.053403515376827
214 => 0.05473627764496
215 => 0.055084711053894
216 => 0.055660658229126
217 => 0.056253497061231
218 => 0.056443900916648
219 => 0.056807440955487
220 => 0.056805524920034
221 => 0.057901077296141
222 => 0.05910950549342
223 => 0.059565659162716
224 => 0.060614559372801
225 => 0.058818354520877
226 => 0.060180796534376
227 => 0.061409753334687
228 => 0.059944540373414
301 => 0.061963995089694
302 => 0.062042405940144
303 => 0.063226316688295
304 => 0.062026196335189
305 => 0.061313568700434
306 => 0.063370897980162
307 => 0.064366374813357
308 => 0.064066529089739
309 => 0.0617846883278
310 => 0.060456559131598
311 => 0.056980588848147
312 => 0.061098025799636
313 => 0.063103509231424
314 => 0.061779494610201
315 => 0.062447250571815
316 => 0.066090310577782
317 => 0.067477351957387
318 => 0.06718885704658
319 => 0.067237607937476
320 => 0.067986030289329
321 => 0.071304947161162
322 => 0.069316175239669
323 => 0.070836516855788
324 => 0.071642900566979
325 => 0.072391914698184
326 => 0.07055257272029
327 => 0.068159615832349
328 => 0.067401665936442
329 => 0.061647847449597
330 => 0.061348336209789
331 => 0.061180211474766
401 => 0.06012020880216
402 => 0.05928733706066
403 => 0.058625006529273
404 => 0.056886853426277
405 => 0.057473429074519
406 => 0.054703175809088
407 => 0.056475485676563
408 => 0.052054094574832
409 => 0.055736360466699
410 => 0.053732270553842
411 => 0.0550779630305
412 => 0.055073268036221
413 => 0.052595421534504
414 => 0.051166251383651
415 => 0.052076974227909
416 => 0.053053341410223
417 => 0.05321175370066
418 => 0.054477639238321
419 => 0.054830920681763
420 => 0.053760461414999
421 => 0.051962471071729
422 => 0.052380103220677
423 => 0.051157788081482
424 => 0.049015727815717
425 => 0.050554192895374
426 => 0.051079492515103
427 => 0.051311494752835
428 => 0.049205024498738
429 => 0.048543125811207
430 => 0.048190736503833
501 => 0.051690552213846
502 => 0.051882280018828
503 => 0.050901373460961
504 => 0.055335164115894
505 => 0.05433166073758
506 => 0.055452819875453
507 => 0.052342207480573
508 => 0.052461037063053
509 => 0.050988423305541
510 => 0.051812988609661
511 => 0.05123021242969
512 => 0.051746371881601
513 => 0.052055755728872
514 => 0.053528127844956
515 => 0.055753172591161
516 => 0.053308204550096
517 => 0.052242896962017
518 => 0.052903807798144
519 => 0.054663900448562
520 => 0.05733053091143
521 => 0.055751832006473
522 => 0.056452431772447
523 => 0.056605481653798
524 => 0.055441407527893
525 => 0.057373451984871
526 => 0.058408850305266
527 => 0.059470954736498
528 => 0.060393150254647
529 => 0.059046726870487
530 => 0.060487592893749
531 => 0.059326509226092
601 => 0.058284897145581
602 => 0.058286476841148
603 => 0.057633058367519
604 => 0.056366977738837
605 => 0.056133493045746
606 => 0.057348109905071
607 => 0.058322117601605
608 => 0.058402341540673
609 => 0.058941602247797
610 => 0.059260731179446
611 => 0.062388628544348
612 => 0.063646694739835
613 => 0.065185034269703
614 => 0.065784304212652
615 => 0.067587891890764
616 => 0.06613134836046
617 => 0.06581621600559
618 => 0.061441302247526
619 => 0.062157694130321
620 => 0.063304706656213
621 => 0.061460216061607
622 => 0.062630120800673
623 => 0.062861084778135
624 => 0.061397540977005
625 => 0.062179282957183
626 => 0.060103208028174
627 => 0.055798425351356
628 => 0.057378244438577
629 => 0.058541523048127
630 => 0.056881381041081
701 => 0.059857121332343
702 => 0.058118755285936
703 => 0.057567776705511
704 => 0.055418212825227
705 => 0.05643272423242
706 => 0.057804865437052
707 => 0.056957041701126
708 => 0.058716403254547
709 => 0.061208128418779
710 => 0.06298388015561
711 => 0.063120200324367
712 => 0.061978510923711
713 => 0.063808075474427
714 => 0.063821401854797
715 => 0.0617576455676
716 => 0.060493606332735
717 => 0.060206413959012
718 => 0.060923876815953
719 => 0.061795009175229
720 => 0.063168542107534
721 => 0.063998539291881
722 => 0.066162731752168
723 => 0.066748300179661
724 => 0.067391662348222
725 => 0.068251392610964
726 => 0.069283719221701
727 => 0.067025047367796
728 => 0.067114788611242
729 => 0.065011544654326
730 => 0.062763926850668
731 => 0.06446958859413
801 => 0.066699514429034
802 => 0.066187966978658
803 => 0.066130407440525
804 => 0.066227206617981
805 => 0.065841516545975
806 => 0.064097054644634
807 => 0.06322099679869
808 => 0.064351334926151
809 => 0.064952059335334
810 => 0.065883730505303
811 => 0.065768882368412
812 => 0.068168767248073
813 => 0.069101289943557
814 => 0.068862710733156
815 => 0.068906615049599
816 => 0.070594902846685
817 => 0.072472626099911
818 => 0.074231361713963
819 => 0.07602042312003
820 => 0.073863639766761
821 => 0.072768558191876
822 => 0.07389840284907
823 => 0.073298891370248
824 => 0.076743862154216
825 => 0.076982384456851
826 => 0.08042710613022
827 => 0.083696557188074
828 => 0.081643073556936
829 => 0.083579416130165
830 => 0.085673728495439
831 => 0.089713996837988
901 => 0.088353376598571
902 => 0.087311162818816
903 => 0.086326275832887
904 => 0.088375669304199
905 => 0.091012181265181
906 => 0.091580060689378
907 => 0.092500242303215
908 => 0.09153278385072
909 => 0.092697980994698
910 => 0.096811638926508
911 => 0.09570009224107
912 => 0.094121517257701
913 => 0.097368855114958
914 => 0.098544054061792
915 => 0.10679221572715
916 => 0.11720586054422
917 => 0.11289454321027
918 => 0.11021836941575
919 => 0.11084733373715
920 => 0.11465004430023
921 => 0.11587135424108
922 => 0.11255141281105
923 => 0.11372407224985
924 => 0.12018554105101
925 => 0.12365191175409
926 => 0.11894411474361
927 => 0.10595548950563
928 => 0.093979383852012
929 => 0.097155986362419
930 => 0.096795858219191
1001 => 0.10373790036138
1002 => 0.095673582220235
1003 => 0.095809364655635
1004 => 0.10289496087758
1005 => 0.10100464528343
1006 => 0.097942576114253
1007 => 0.094001740345636
1008 => 0.086716740944157
1009 => 0.08026421381703
1010 => 0.092919105441576
1011 => 0.092373403503298
1012 => 0.091583146228176
1013 => 0.093341778279192
1014 => 0.10188119632251
1015 => 0.10168433509721
1016 => 0.10043200442135
1017 => 0.10138188620146
1018 => 0.09777605724559
1019 => 0.098705361470716
1020 => 0.093977486775689
1021 => 0.096114683591329
1022 => 0.097936006289062
1023 => 0.098301663785775
1024 => 0.099125508796804
1025 => 0.092085843378714
1026 => 0.095246446477718
1027 => 0.097103004689922
1028 => 0.08871500714502
1029 => 0.096937200947927
1030 => 0.091963298465627
1031 => 0.090275081257626
1101 => 0.092548043322495
1102 => 0.091662267795287
1103 => 0.090900730011478
1104 => 0.090475778843233
1105 => 0.092144791326004
1106 => 0.092066929898781
1107 => 0.089336101535604
1108 => 0.085773847258644
1109 => 0.086969456721003
1110 => 0.08653508059443
1111 => 0.084960845476093
1112 => 0.086021689871979
1113 => 0.081350268033558
1114 => 0.073313329559935
1115 => 0.078622777293694
1116 => 0.078418369331512
1117 => 0.078315297567817
1118 => 0.082305200797379
1119 => 0.081921663664586
1120 => 0.08122554001296
1121 => 0.084948060619324
1122 => 0.083589290523033
1123 => 0.087776699793302
1124 => 0.090534798363353
1125 => 0.089835255350846
1126 => 0.092429260387026
1127 => 0.086997001148224
1128 => 0.088801379762942
1129 => 0.089173259694674
1130 => 0.084902125292873
1201 => 0.081984415082795
1202 => 0.081789837076114
1203 => 0.076730929657073
1204 => 0.079433357166251
1205 => 0.081811381540279
1206 => 0.080672492407266
1207 => 0.080311954131099
1208 => 0.082153865992824
1209 => 0.082296998319388
1210 => 0.079033566105238
1211 => 0.079712137002017
1212 => 0.082541890444614
1213 => 0.079640834475663
1214 => 0.074004556612795
1215 => 0.072606681775165
1216 => 0.07242017950388
1217 => 0.068629032077378
1218 => 0.072700094456014
1219 => 0.070922966630051
1220 => 0.076536892139009
1221 => 0.073330247996378
1222 => 0.073192015976428
1223 => 0.072983058004044
1224 => 0.069719860803726
1225 => 0.070434293603595
1226 => 0.072809177041547
1227 => 0.073656562207185
1228 => 0.073568172991987
1229 => 0.072797538817088
1230 => 0.073150331196071
1231 => 0.072013864022353
]
'min_raw' => 0.039763722139129
'max_raw' => 0.12365191175409
'avg_raw' => 0.081707816946608
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.039763'
'max' => '$0.123651'
'avg' => '$0.0817078'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.022652083593926
'max_diff' => 0.077229685298155
'year' => 2033
]
8 => [
'items' => [
101 => 0.071612553809794
102 => 0.070345908389888
103 => 0.068484289542355
104 => 0.068743159061076
105 => 0.065054805005044
106 => 0.063045193959552
107 => 0.062488960108408
108 => 0.061745140956045
109 => 0.062572976460894
110 => 0.065044356361421
111 => 0.062063347868892
112 => 0.056952617901883
113 => 0.05725978148116
114 => 0.057949886846111
115 => 0.056663880064029
116 => 0.055446782571156
117 => 0.056504950094968
118 => 0.054339466434384
119 => 0.058211575200772
120 => 0.058106845510101
121 => 0.059550128208611
122 => 0.060452642499131
123 => 0.058372639251953
124 => 0.057849524060214
125 => 0.058147514247688
126 => 0.053222400230085
127 => 0.059147641319227
128 => 0.059198883050217
129 => 0.058760120239724
130 => 0.061915128198398
131 => 0.068573179062858
201 => 0.066068152508172
202 => 0.06509813051137
203 => 0.063254117986366
204 => 0.065711155189304
205 => 0.06552249306787
206 => 0.064669291406759
207 => 0.064153272379967
208 => 0.065104053258837
209 => 0.064035460107249
210 => 0.063843511414248
211 => 0.062680511176898
212 => 0.062265373005304
213 => 0.061958021230182
214 => 0.061619657125534
215 => 0.062366004025305
216 => 0.060674683760313
217 => 0.058635117322902
218 => 0.058465549442046
219 => 0.05893374126965
220 => 0.058726601238717
221 => 0.05846455773527
222 => 0.057964245323888
223 => 0.057815813318914
224 => 0.058298145326107
225 => 0.057753620611689
226 => 0.05855709648961
227 => 0.058338595509163
228 => 0.057118066794251
301 => 0.055596836117864
302 => 0.055583293973955
303 => 0.055255547320046
304 => 0.054838112679253
305 => 0.054721991911795
306 => 0.056415834177582
307 => 0.059922036975328
308 => 0.059233685469808
309 => 0.059731089977646
310 => 0.062177827856872
311 => 0.062955572252703
312 => 0.062403547702428
313 => 0.06164790245062
314 => 0.061681147006735
315 => 0.064263415581537
316 => 0.064424468505072
317 => 0.064831397285203
318 => 0.065354415765732
319 => 0.062492620011258
320 => 0.061546356684056
321 => 0.061097964622937
322 => 0.059717090624258
323 => 0.061206244844644
324 => 0.060338578452367
325 => 0.06045565629239
326 => 0.060379409195484
327 => 0.060421045266201
328 => 0.058210492867458
329 => 0.059015901978346
330 => 0.057676753119829
331 => 0.055883783124788
401 => 0.055877772460668
402 => 0.056316599326856
403 => 0.05605556793555
404 => 0.055353139173279
405 => 0.055452915863589
406 => 0.054578767066502
407 => 0.05555905335453
408 => 0.055587164457638
409 => 0.055209700840192
410 => 0.056719967120339
411 => 0.057338724447575
412 => 0.057090269808518
413 => 0.05732129220777
414 => 0.059262289582584
415 => 0.059578756846331
416 => 0.059719310700234
417 => 0.059530987155821
418 => 0.057356770076642
419 => 0.057453205849589
420 => 0.056745624133848
421 => 0.056147792147171
422 => 0.056171702291423
423 => 0.056479065645293
424 => 0.057821339438266
425 => 0.060646075504216
426 => 0.060753272173063
427 => 0.060883197662854
428 => 0.060354725400556
429 => 0.060195333109448
430 => 0.06040561268406
501 => 0.061466435032864
502 => 0.064195158124447
503 => 0.063230645138594
504 => 0.062446481067557
505 => 0.063134404366972
506 => 0.063028503967148
507 => 0.062134598018239
508 => 0.062109509055499
509 => 0.060393817740522
510 => 0.059759565725776
511 => 0.059229537269314
512 => 0.0586507600316
513 => 0.058307641484295
514 => 0.058834827517547
515 => 0.058955401200833
516 => 0.057802699725493
517 => 0.057645590773783
518 => 0.058586911681335
519 => 0.058172671445902
520 => 0.058598727800708
521 => 0.058697576529667
522 => 0.058681659607625
523 => 0.058249145226645
524 => 0.058524816995317
525 => 0.057872771080698
526 => 0.057163769082679
527 => 0.056711469980328
528 => 0.056316779024757
529 => 0.056535776506481
530 => 0.055755090471496
531 => 0.055505333296799
601 => 0.058431425602902
602 => 0.060592961450214
603 => 0.060561531862932
604 => 0.060370212333386
605 => 0.06008595032023
606 => 0.061445639496043
607 => 0.060971950975033
608 => 0.061316598952068
609 => 0.061404326327054
610 => 0.06166985066934
611 => 0.061764752799119
612 => 0.06147789264916
613 => 0.060515154948881
614 => 0.05811610413414
615 => 0.056999339503764
616 => 0.056630788574554
617 => 0.056644184700853
618 => 0.056274659734587
619 => 0.0563835013981
620 => 0.056236809045816
621 => 0.055959009219281
622 => 0.056518623150012
623 => 0.056583113442364
624 => 0.056452492864043
625 => 0.056483258738772
626 => 0.055401776139052
627 => 0.055483998912252
628 => 0.05502617206271
629 => 0.054940335047606
630 => 0.053782988639508
701 => 0.051732581717518
702 => 0.052868706190116
703 => 0.051496427590493
704 => 0.050976724891402
705 => 0.053436916638547
706 => 0.053189981622231
707 => 0.052767336214369
708 => 0.05214215556912
709 => 0.051910269986431
710 => 0.050501406592066
711 => 0.050418163426733
712 => 0.051116434167492
713 => 0.050794206246661
714 => 0.050341676208558
715 => 0.048702658282782
716 => 0.046859859474023
717 => 0.046915481986639
718 => 0.047501642001215
719 => 0.04920598129804
720 => 0.048540066449401
721 => 0.048056937586221
722 => 0.047966462072948
723 => 0.04909895254488
724 => 0.050701663826754
725 => 0.051453620101565
726 => 0.050708454270479
727 => 0.049852447886304
728 => 0.049904549028557
729 => 0.050251154586244
730 => 0.050287577929618
731 => 0.049730405772399
801 => 0.049887246471001
802 => 0.04964899110801
803 => 0.048186818385116
804 => 0.048160372317158
805 => 0.04780153155024
806 => 0.04779066599443
807 => 0.047180188332877
808 => 0.047094778287993
809 => 0.045882637837635
810 => 0.04668047235276
811 => 0.046145326848207
812 => 0.045338736344781
813 => 0.045199679837968
814 => 0.045195499631458
815 => 0.046023687728139
816 => 0.046670794492656
817 => 0.046154635933374
818 => 0.046037116634739
819 => 0.047291915288606
820 => 0.047132230722158
821 => 0.046993944917468
822 => 0.050558158610153
823 => 0.04773680535333
824 => 0.046506534296142
825 => 0.044983840240734
826 => 0.045479637103265
827 => 0.045584108786971
828 => 0.041922304069948
829 => 0.0404367103523
830 => 0.039926910571822
831 => 0.039633513590646
901 => 0.039767218279215
902 => 0.038430009690569
903 => 0.039328635977528
904 => 0.038170726371189
905 => 0.037976599057522
906 => 0.040047084871132
907 => 0.040335180876493
908 => 0.039106073813209
909 => 0.039895359522196
910 => 0.039609153552225
911 => 0.038190575407987
912 => 0.038136396157232
913 => 0.037424603509886
914 => 0.036310785847005
915 => 0.035801741287351
916 => 0.035536626460956
917 => 0.035646018005311
918 => 0.035590706293049
919 => 0.03522975995625
920 => 0.035611395314565
921 => 0.034636474676688
922 => 0.034248253423217
923 => 0.034072902889688
924 => 0.033207604709234
925 => 0.034584678914184
926 => 0.034855979880482
927 => 0.035127815393494
928 => 0.037493957944272
929 => 0.037375752149085
930 => 0.038444274969022
1001 => 0.038402754137127
1002 => 0.038097994119959
1003 => 0.036812261738115
1004 => 0.037324731749542
1005 => 0.035747428709893
1006 => 0.036929251393379
1007 => 0.036389916874731
1008 => 0.036746901850103
1009 => 0.036105010676348
1010 => 0.036460259754941
1011 => 0.034920315404194
1012 => 0.033482337037069
1013 => 0.034061021509205
1014 => 0.034690117711015
1015 => 0.036054158567268
1016 => 0.035241747086376
1017 => 0.035533920975584
1018 => 0.034555187356056
1019 => 0.032535780337532
1020 => 0.03254720996195
1021 => 0.032236568187324
1022 => 0.031968128339605
1023 => 0.035335062317784
1024 => 0.034916330854247
1025 => 0.034249137069322
1026 => 0.035142202463672
1027 => 0.035378343128792
1028 => 0.035385065721553
1029 => 0.036036623179917
1030 => 0.036384359512244
1031 => 0.036445649547992
1101 => 0.037470889286558
1102 => 0.037814536123686
1103 => 0.039229968811096
1104 => 0.036354856513944
1105 => 0.036295645468205
1106 => 0.035154769725219
1107 => 0.034431208292485
1108 => 0.035204312595552
1109 => 0.035889177468807
1110 => 0.035176050385884
1111 => 0.03526916972798
1112 => 0.034311854883779
1113 => 0.034654049894731
1114 => 0.034948794336808
1115 => 0.034786053780171
1116 => 0.034542423290152
1117 => 0.035833026359296
1118 => 0.035760205476221
1119 => 0.036962044725045
1120 => 0.037898964363852
1121 => 0.039578091851014
1122 => 0.037825834783265
1123 => 0.037761975571125
1124 => 0.038386209613132
1125 => 0.037814440556706
1126 => 0.03817577886357
1127 => 0.039519874663509
1128 => 0.039548273289764
1129 => 0.039072559710441
1130 => 0.039043612495906
1201 => 0.039134978492552
1202 => 0.039670111988668
1203 => 0.039483119902133
1204 => 0.039699511878731
1205 => 0.039970113358979
1206 => 0.041089435813932
1207 => 0.041359300668373
1208 => 0.040703668980966
1209 => 0.040762865181542
1210 => 0.04051764093296
1211 => 0.04028075738148
1212 => 0.040813237011142
1213 => 0.041786354000262
1214 => 0.041780300289978
1215 => 0.042006044516763
1216 => 0.042146681299883
1217 => 0.041542965274312
1218 => 0.041149968340919
1219 => 0.041300668372226
1220 => 0.041541641004107
1221 => 0.041222524195455
1222 => 0.039252787423173
1223 => 0.039850279732611
1224 => 0.039750827796439
1225 => 0.039609196145562
1226 => 0.040209979282974
1227 => 0.04015203228375
1228 => 0.038416294683723
1229 => 0.03852741097329
1230 => 0.03842305203332
1231 => 0.038760257118192
]
'min_raw' => 0.031968128339605
'max_raw' => 0.071612553809794
'avg_raw' => 0.051790341074699
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.031968'
'max' => '$0.071612'
'avg' => '$0.05179'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0077955937995239
'max_diff' => -0.052039357944293
'year' => 2034
]
9 => [
'items' => [
101 => 0.037796230375511
102 => 0.03809275850874
103 => 0.038278738174123
104 => 0.038388281625797
105 => 0.038784027687891
106 => 0.038737591455188
107 => 0.038781141146466
108 => 0.039367928083464
109 => 0.04233569504984
110 => 0.042497224057811
111 => 0.041701796146102
112 => 0.042019553907708
113 => 0.041409528491408
114 => 0.041819042640185
115 => 0.042099221820247
116 => 0.040833145980906
117 => 0.040758177186465
118 => 0.040145633978274
119 => 0.040474780002135
120 => 0.039951085011735
121 => 0.040079581444306
122 => 0.03972029421672
123 => 0.040366939693002
124 => 0.041089989814032
125 => 0.041272660828719
126 => 0.040792132033895
127 => 0.040444197518051
128 => 0.039833339124983
129 => 0.040849210246521
130 => 0.041146281920571
131 => 0.040847649855485
201 => 0.040778450280765
202 => 0.040647317211712
203 => 0.040806270781271
204 => 0.041144664004434
205 => 0.040985084009532
206 => 0.041090489407603
207 => 0.040688792723732
208 => 0.041543165129437
209 => 0.042900114125614
210 => 0.04290447693852
211 => 0.042744896083422
212 => 0.042679599035733
213 => 0.04284333867724
214 => 0.042932160715805
215 => 0.043461664691722
216 => 0.04402984355425
217 => 0.046681286389809
218 => 0.045936771851504
219 => 0.048289289670252
220 => 0.050149825828675
221 => 0.0507077192712
222 => 0.050194483554992
223 => 0.048438731894292
224 => 0.048352586341563
225 => 0.050976420581879
226 => 0.050235067229768
227 => 0.050146885607502
228 => 0.049208782131785
301 => 0.049763317472309
302 => 0.049642032458794
303 => 0.049450578131494
304 => 0.050508592931948
305 => 0.052489102188764
306 => 0.052180421247991
307 => 0.051950005245001
308 => 0.050940389392987
309 => 0.051548403641764
310 => 0.05133190141352
311 => 0.052262132381763
312 => 0.051711084163315
313 => 0.050229450748985
314 => 0.050465405753745
315 => 0.050429741629451
316 => 0.051163706780231
317 => 0.050943388660102
318 => 0.050386720980516
319 => 0.052482333023433
320 => 0.052346255633773
321 => 0.052539182260689
322 => 0.052624114528312
323 => 0.053899676650009
324 => 0.054422233637833
325 => 0.054540863222717
326 => 0.055037251945142
327 => 0.054528512619103
328 => 0.05656383264825
329 => 0.057917201703417
330 => 0.059489209504727
331 => 0.061786335418306
401 => 0.062650076011414
402 => 0.062494049004311
403 => 0.06423570365525
404 => 0.067365418348181
405 => 0.06312665382572
406 => 0.067590083160395
407 => 0.066177012965807
408 => 0.062826648954485
409 => 0.062610925010352
410 => 0.064879830417346
411 => 0.069912044236004
412 => 0.068651531749327
413 => 0.069914105982866
414 => 0.068441246073864
415 => 0.068368106165144
416 => 0.069842572464571
417 => 0.073287743342156
418 => 0.071651071798515
419 => 0.069304501812378
420 => 0.071037172573469
421 => 0.069536172809103
422 => 0.066154000236605
423 => 0.068650567859184
424 => 0.066981184188118
425 => 0.067468399092652
426 => 0.070977195267154
427 => 0.070555007628314
428 => 0.071101357526495
429 => 0.070137064256673
430 => 0.069236262287567
501 => 0.067554848517799
502 => 0.067057064793268
503 => 0.067194634306346
504 => 0.067056996620649
505 => 0.066116261069454
506 => 0.065913109316742
507 => 0.065574514161938
508 => 0.065679458958658
509 => 0.065042801008122
510 => 0.066244306101028
511 => 0.066467316033898
512 => 0.067341671243306
513 => 0.067432449701709
514 => 0.069867516514242
515 => 0.068526322633534
516 => 0.069426111281822
517 => 0.06934562571598
518 => 0.062899261501802
519 => 0.063787513613763
520 => 0.065169355151106
521 => 0.064546837411575
522 => 0.063666742974595
523 => 0.062956019529056
524 => 0.06187920083386
525 => 0.063394802468876
526 => 0.065387657452658
527 => 0.067482991792809
528 => 0.070000398710757
529 => 0.069438542792518
530 => 0.06743593062155
531 => 0.06752576634063
601 => 0.068081095406934
602 => 0.067361893809105
603 => 0.067149787217422
604 => 0.068051955218355
605 => 0.068058167953554
606 => 0.067230639596836
607 => 0.066310993264434
608 => 0.066307139912722
609 => 0.066143497730601
610 => 0.06847035765453
611 => 0.069749895340618
612 => 0.06989659227425
613 => 0.069740021468165
614 => 0.069800279357354
615 => 0.069055744570508
616 => 0.070757530308305
617 => 0.072319257190473
618 => 0.071900681024623
619 => 0.071273175847907
620 => 0.070773337749908
621 => 0.071782935053818
622 => 0.071737979275128
623 => 0.072305616868578
624 => 0.072279865548505
625 => 0.072088990375758
626 => 0.071900687841377
627 => 0.072647286105445
628 => 0.072432277795395
629 => 0.072216935518052
630 => 0.071785033613588
701 => 0.071843736255536
702 => 0.071216339426435
703 => 0.070926076945567
704 => 0.066561225670394
705 => 0.065394794784037
706 => 0.065761777685775
707 => 0.065882597985734
708 => 0.06537496576917
709 => 0.066102779967706
710 => 0.06598935089581
711 => 0.066430637060769
712 => 0.066154940623321
713 => 0.06616625530128
714 => 0.066977019739138
715 => 0.067212388104687
716 => 0.067092677854313
717 => 0.067176518810247
718 => 0.069108598252701
719 => 0.068833918340407
720 => 0.068688000111574
721 => 0.068728420458184
722 => 0.069222108179981
723 => 0.069360313787734
724 => 0.068774726916149
725 => 0.069050893070026
726 => 0.070226773502531
727 => 0.070638265104839
728 => 0.071951548772232
729 => 0.071393642528567
730 => 0.07241770358443
731 => 0.075565318142011
801 => 0.078079850448967
802 => 0.075767382622048
803 => 0.080385000980014
804 => 0.083980479229704
805 => 0.083842478785898
806 => 0.083215523988154
807 => 0.079122167591618
808 => 0.07535540000702
809 => 0.078506461036936
810 => 0.078514493739523
811 => 0.078243814802515
812 => 0.076562651171814
813 => 0.0781853139523
814 => 0.07831411503117
815 => 0.078242020677974
816 => 0.076953076464012
817 => 0.074985096886002
818 => 0.075369635384868
819 => 0.075999517290383
820 => 0.074807019436112
821 => 0.07442594411568
822 => 0.07513443563891
823 => 0.077417342946828
824 => 0.076985772544248
825 => 0.076974502496923
826 => 0.078820943693494
827 => 0.077499290283699
828 => 0.075374485646802
829 => 0.074837944453255
830 => 0.07293358467362
831 => 0.074248932756511
901 => 0.074296269792345
902 => 0.073575867089877
903 => 0.075432942355741
904 => 0.075415829080234
905 => 0.077178845655996
906 => 0.080549071190066
907 => 0.079552329660915
908 => 0.078393227707682
909 => 0.07851925422841
910 => 0.079901454100831
911 => 0.079065744505411
912 => 0.079366271502698
913 => 0.079900999217227
914 => 0.080223613723944
915 => 0.078472834965649
916 => 0.078064644687661
917 => 0.077229630634219
918 => 0.077011791053951
919 => 0.07769189257734
920 => 0.077512709854268
921 => 0.074292291297781
922 => 0.073955739640388
923 => 0.073966061199236
924 => 0.073119786054563
925 => 0.07182901332963
926 => 0.075221086982719
927 => 0.074948655996336
928 => 0.074647913271852
929 => 0.074684752539587
930 => 0.07615713674435
1001 => 0.075303079548403
1002 => 0.07757373058105
1003 => 0.077106952990756
1004 => 0.076628204316583
1005 => 0.076562026666771
1006 => 0.076377749272132
1007 => 0.075745793519317
1008 => 0.07498266897314
1009 => 0.074478788047037
1010 => 0.068702745039551
1011 => 0.069774745024044
1012 => 0.07100798329033
1013 => 0.07143369219796
1014 => 0.070705487653299
1015 => 0.075774547473199
1016 => 0.076700713548971
1017 => 0.073895296093141
1018 => 0.073370517031595
1019 => 0.075808951901108
1020 => 0.074338277588252
1021 => 0.075000522141281
1022 => 0.073569111646037
1023 => 0.076477627262626
1024 => 0.076455469246724
1025 => 0.075323990980066
1026 => 0.076280308663017
1027 => 0.076114124931782
1028 => 0.074836688755433
1029 => 0.076518124267938
1030 => 0.076518958238974
1031 => 0.075429935007775
1101 => 0.074158194291574
1102 => 0.073930837088692
1103 => 0.073759553977464
1104 => 0.074958396995764
1105 => 0.076033275897287
1106 => 0.078033359047945
1107 => 0.078536227472823
1108 => 0.080498956412972
1109 => 0.079330246892651
1110 => 0.079848320685687
1111 => 0.08041076307404
1112 => 0.080680418638151
1113 => 0.080241029366948
1114 => 0.083289955302461
1115 => 0.083547378068095
1116 => 0.083633689694714
1117 => 0.082605609023847
1118 => 0.083518785284854
1119 => 0.083091540353548
1120 => 0.084203112972746
1121 => 0.084377421752707
1122 => 0.084229788417294
1123 => 0.084285116775331
1124 => 0.081683396356763
1125 => 0.081548483427892
1126 => 0.079708936069746
1127 => 0.080458565215438
1128 => 0.079057169458227
1129 => 0.079501566488815
1130 => 0.079697452465527
1201 => 0.079595132747724
1202 => 0.080500948122601
1203 => 0.0797308200081
1204 => 0.077698325293148
1205 => 0.07566527682637
1206 => 0.075639753558955
1207 => 0.075104487783939
1208 => 0.074717588667418
1209 => 0.074792119163244
1210 => 0.075054774351698
1211 => 0.074702322670384
1212 => 0.074777536106346
1213 => 0.076026580287818
1214 => 0.076277067190636
1215 => 0.075425814823308
1216 => 0.072007913733355
1217 => 0.071169152232725
1218 => 0.071772037366015
1219 => 0.071483897103078
1220 => 0.057693084051604
1221 => 0.060933031016026
1222 => 0.059007964547969
1223 => 0.0598951237445
1224 => 0.057930129374159
1225 => 0.058867927681864
1226 => 0.058694750577342
1227 => 0.063904489419132
1228 => 0.063823146512879
1229 => 0.063862081057532
1230 => 0.062003633797849
1231 => 0.064964190744865
]
'min_raw' => 0.037796230375511
'max_raw' => 0.084377421752707
'avg_raw' => 0.061086826064109
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.037796'
'max' => '$0.084377'
'avg' => '$0.061086'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0058281020359058
'max_diff' => 0.012764867942913
'year' => 2035
]
10 => [
'items' => [
101 => 0.06642266755515
102 => 0.066152742313669
103 => 0.066220676681639
104 => 0.065053339162593
105 => 0.06387338343639
106 => 0.062564630942146
107 => 0.064996131309754
108 => 0.064725789975971
109 => 0.065345855729927
110 => 0.066922857525556
111 => 0.06715507703041
112 => 0.067467182399871
113 => 0.067355314842092
114 => 0.070020453918256
115 => 0.069697687990979
116 => 0.070475461009622
117 => 0.068875522900492
118 => 0.067065041062492
119 => 0.067409154470785
120 => 0.067376013582381
121 => 0.066954092035658
122 => 0.066573200128664
123 => 0.065939122419148
124 => 0.067945438117901
125 => 0.067863985364494
126 => 0.06918261076368
127 => 0.06894953091593
128 => 0.067392966648343
129 => 0.067448559645675
130 => 0.067822449269816
131 => 0.069116485527963
201 => 0.069500643594088
202 => 0.069322686271807
203 => 0.069743898053831
204 => 0.070076806672155
205 => 0.069785706250742
206 => 0.073907074341502
207 => 0.072195594969437
208 => 0.073029758106985
209 => 0.073228701100115
210 => 0.072719112806532
211 => 0.072829624260422
212 => 0.072997019000496
213 => 0.074013407082974
214 => 0.076680703505658
215 => 0.077862030934364
216 => 0.081416112789294
217 => 0.077763938136281
218 => 0.077547233206573
219 => 0.078187430671636
220 => 0.080274052958252
221 => 0.081965064335089
222 => 0.082526070365572
223 => 0.082600216573701
224 => 0.083652701181863
225 => 0.084255965731586
226 => 0.083524901867339
227 => 0.082905401787967
228 => 0.080686429398835
229 => 0.080943281494938
301 => 0.082712737729121
302 => 0.085212198880357
303 => 0.087356996572727
304 => 0.086605963174605
305 => 0.092335817855323
306 => 0.092903909542559
307 => 0.092825417639986
308 => 0.094119615046887
309 => 0.091550896752907
310 => 0.090452719915657
311 => 0.083039344736752
312 => 0.08512220077438
313 => 0.088149754346919
314 => 0.087749046278851
315 => 0.085550355947734
316 => 0.087355328668949
317 => 0.0867585482406
318 => 0.086287842756318
319 => 0.088444235830561
320 => 0.086073193065685
321 => 0.088126101381587
322 => 0.085493225231826
323 => 0.086609393831905
324 => 0.0859758025515
325 => 0.086385813759949
326 => 0.08398889661326
327 => 0.085282214923739
328 => 0.083935090319509
329 => 0.083934451607045
330 => 0.083904713756743
331 => 0.085489599879555
401 => 0.08554128295912
402 => 0.084370049719732
403 => 0.084201256711834
404 => 0.084825372930029
405 => 0.08409469629482
406 => 0.08443657529361
407 => 0.084105051461415
408 => 0.084030418463828
409 => 0.083435730041295
410 => 0.083179521917569
411 => 0.083279987724552
412 => 0.082937046131645
413 => 0.08273041141718
414 => 0.083863608911115
415 => 0.083258187203162
416 => 0.083770819351402
417 => 0.083186610319148
418 => 0.081161487285596
419 => 0.079996817613713
420 => 0.076171547932339
421 => 0.077256389668744
422 => 0.077975640862331
423 => 0.077737928347141
424 => 0.078248626812301
425 => 0.07827997955034
426 => 0.078113946273362
427 => 0.077921701008802
428 => 0.077828126645844
429 => 0.078525553283296
430 => 0.078930432920638
501 => 0.078047827341947
502 => 0.077841045203824
503 => 0.07873340817387
504 => 0.079277749070097
505 => 0.083296856409105
506 => 0.082999107955886
507 => 0.083746398143284
508 => 0.083662264736285
509 => 0.084445543905341
510 => 0.085725874308272
511 => 0.083122604613103
512 => 0.083574442217891
513 => 0.083463662071651
514 => 0.084673130660185
515 => 0.0846769064891
516 => 0.083951769652838
517 => 0.084344878095777
518 => 0.084125455747294
519 => 0.084521981587712
520 => 0.082995131343765
521 => 0.084854670127594
522 => 0.085908908791992
523 => 0.08592354689687
524 => 0.08642324765684
525 => 0.086930972569685
526 => 0.087905506326372
527 => 0.08690379335214
528 => 0.085101809226291
529 => 0.085231906659804
530 => 0.084175404026139
531 => 0.084193164026283
601 => 0.084098359753635
602 => 0.084382874512386
603 => 0.083057566333658
604 => 0.083368613514217
605 => 0.082933145639944
606 => 0.083573495595778
607 => 0.08288458489694
608 => 0.08346360865011
609 => 0.083713496107037
610 => 0.084635586202789
611 => 0.082748391440069
612 => 0.078900273567031
613 => 0.079709194597863
614 => 0.078512736853887
615 => 0.078623473573328
616 => 0.078847179370217
617 => 0.078122075690518
618 => 0.078260402621962
619 => 0.078255460610579
620 => 0.078212873026372
621 => 0.07802424555445
622 => 0.077750698401355
623 => 0.078840426065913
624 => 0.079025592030859
625 => 0.079437193033723
626 => 0.08066183842662
627 => 0.080539467472743
628 => 0.080739059575639
629 => 0.080303351135678
630 => 0.078643684838216
701 => 0.078733812703064
702 => 0.077609916784212
703 => 0.079408452488216
704 => 0.078982535493996
705 => 0.078707944037069
706 => 0.078633019213974
707 => 0.079860700265927
708 => 0.080228041678214
709 => 0.079999139161442
710 => 0.079529653421389
711 => 0.08043120483329
712 => 0.080672421957714
713 => 0.080726421576128
714 => 0.082323797822679
715 => 0.080815697163673
716 => 0.081178711981527
717 => 0.084010849963274
718 => 0.081442491622156
719 => 0.082803008316672
720 => 0.082736418104263
721 => 0.083432412407802
722 => 0.082679326256821
723 => 0.082688661662228
724 => 0.083306657453033
725 => 0.082438793820976
726 => 0.082223898580884
727 => 0.081927022345807
728 => 0.082575240744098
729 => 0.082963818357478
730 => 0.086095468542505
731 => 0.088118657382631
801 => 0.0880308254193
802 => 0.088833445149598
803 => 0.088471857609945
804 => 0.08730419606243
805 => 0.089297251942881
806 => 0.088666565669307
807 => 0.088718558679416
808 => 0.088716623496983
809 => 0.08913597473336
810 => 0.088838825949411
811 => 0.08825311519455
812 => 0.088641937327603
813 => 0.089796600056313
814 => 0.093380708595609
815 => 0.095386423217321
816 => 0.093259962056932
817 => 0.094726766490919
818 => 0.093847206506386
819 => 0.093687364292554
820 => 0.094608625873093
821 => 0.095531500000075
822 => 0.095472716907881
823 => 0.094802757681803
824 => 0.094424314714578
825 => 0.097290011650103
826 => 0.099401408336325
827 => 0.099257425237307
828 => 0.099892919810557
829 => 0.10175875153273
830 => 0.10192933980204
831 => 0.10190784960103
901 => 0.1014850287765
902 => 0.10332218241584
903 => 0.10485476830342
904 => 0.10138715797209
905 => 0.10270757859191
906 => 0.10330035794944
907 => 0.10417073391601
908 => 0.10563920406356
909 => 0.10723435213627
910 => 0.10745992356366
911 => 0.10729986984134
912 => 0.10624782680751
913 => 0.10799325686274
914 => 0.10901568885372
915 => 0.10962452370641
916 => 0.11116842759238
917 => 0.10330401875295
918 => 0.097737199289918
919 => 0.096867860044919
920 => 0.098635695584703
921 => 0.09910185971832
922 => 0.098913949540579
923 => 0.092647988121857
924 => 0.09683487105482
925 => 0.10133960504757
926 => 0.10151265022634
927 => 0.10376781425266
928 => 0.10450218810192
929 => 0.10631789073422
930 => 0.1062043180402
1001 => 0.10664641273703
1002 => 0.10654478282224
1003 => 0.10990798960726
1004 => 0.11361810613218
1005 => 0.11348963659437
1006 => 0.11295626344781
1007 => 0.11374841352409
1008 => 0.11757765137806
1009 => 0.11722511651875
1010 => 0.11756757410572
1011 => 0.12208246134194
1012 => 0.12795245698424
1013 => 0.12522525467047
1014 => 0.13114249896003
1015 => 0.13486709058068
1016 => 0.14130838665861
1017 => 0.1405019046656
1018 => 0.14300945396033
1019 => 0.13905813358025
1020 => 0.12998510329397
1021 => 0.128549261521
1022 => 0.13142385311178
1023 => 0.13849075603919
1024 => 0.13120129118963
1025 => 0.13267594043488
1026 => 0.13225124135304
1027 => 0.13222861094382
1028 => 0.13309232161908
1029 => 0.1318394642365
1030 => 0.12673509787515
1031 => 0.12907439889834
1101 => 0.12817108243082
1102 => 0.12917337939823
1103 => 0.13458236275264
1104 => 0.1321909222776
1105 => 0.12967173400199
1106 => 0.13283135515223
1107 => 0.13685463864012
1108 => 0.13660286878998
1109 => 0.13611433004908
1110 => 0.13886819735247
1111 => 0.14341677933024
1112 => 0.14464624276115
1113 => 0.14555380753058
1114 => 0.14567894537885
1115 => 0.14696794298878
1116 => 0.14003667797095
1117 => 0.15103677356176
1118 => 0.15293618619878
1119 => 0.15257917534561
1120 => 0.15469029255216
1121 => 0.15406914831612
1122 => 0.15316920777264
1123 => 0.15651577759253
1124 => 0.15267920534828
1125 => 0.14723367405859
1126 => 0.14424614789267
1127 => 0.14818036334482
1128 => 0.15058285143624
1129 => 0.15217074323774
1130 => 0.15265123833744
1201 => 0.1405747323435
1202 => 0.1340661654065
1203 => 0.13823808219225
1204 => 0.14332810860117
1205 => 0.14000840261724
1206 => 0.14013852880678
1207 => 0.13540550047708
1208 => 0.14374687658621
1209 => 0.14253160824913
1210 => 0.14883642253169
1211 => 0.14733172800386
1212 => 0.15247305929981
1213 => 0.15111917446481
1214 => 0.15673907472021
1215 => 0.15898100508481
1216 => 0.16274555509558
1217 => 0.16551477340798
1218 => 0.16714091136772
1219 => 0.16704328414411
1220 => 0.17348685287933
1221 => 0.16968730551732
1222 => 0.16491417854607
1223 => 0.16482784773818
1224 => 0.16729991783232
1225 => 0.17248069857033
1226 => 0.17382399963841
1227 => 0.17457472167896
1228 => 0.17342496474103
1229 => 0.16930082839558
1230 => 0.16752004723145
1231 => 0.16903732437748
]
'min_raw' => 0.062564630942146
'max_raw' => 0.17457472167896
'avg_raw' => 0.11856967631055
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.062564'
'max' => '$0.174574'
'avg' => '$0.118569'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.024768400566635
'max_diff' => 0.09019729992625
'year' => 2036
]
11 => [
'items' => [
101 => 0.167181824809
102 => 0.17038493762543
103 => 0.17478349567036
104 => 0.17387521082787
105 => 0.17691147087866
106 => 0.18005368060735
107 => 0.18454718164485
108 => 0.18572194920991
109 => 0.18766379532256
110 => 0.18966259283568
111 => 0.1903045527278
112 => 0.1915302533503
113 => 0.19152379330299
114 => 0.19521752462806
115 => 0.19929182466495
116 => 0.20082977860861
117 => 0.20436621889879
118 => 0.19831018883351
119 => 0.20290375720469
120 => 0.20704727085996
121 => 0.20210720306313
122 => 0.20891593563289
123 => 0.20918030328965
124 => 0.21317194103505
125 => 0.20912565147483
126 => 0.20672297765018
127 => 0.21365940695492
128 => 0.21701572660001
129 => 0.21600477580828
130 => 0.20831139036637
131 => 0.20383351005435
201 => 0.1921140335592
202 => 0.20599625971141
203 => 0.21275788712007
204 => 0.20829387938487
205 => 0.21054526523068
206 => 0.22282809639113
207 => 0.2275046032426
208 => 0.22653192250874
209 => 0.22669628954108
210 => 0.22921964775353
211 => 0.24040960770629
212 => 0.23370432432136
213 => 0.23883026222696
214 => 0.24154904120915
215 => 0.24407439464701
216 => 0.23787292474978
217 => 0.22980490353118
218 => 0.22724942253875
219 => 0.20785002179158
220 => 0.20684019873536
221 => 0.20627335445314
222 => 0.20269948143542
223 => 0.1998913962097
224 => 0.19765830258069
225 => 0.19179799803997
226 => 0.19377567879142
227 => 0.18443557649411
228 => 0.19041104295103
301 => 0.17550401415987
302 => 0.1879190307019
303 => 0.18116210163961
304 => 0.18569919777791
305 => 0.18568336827691
306 => 0.17732913579865
307 => 0.17251058885357
308 => 0.17558115450763
309 => 0.17887304463058
310 => 0.17940714272778
311 => 0.18367516419931
312 => 0.1848662772512
313 => 0.18125714909622
314 => 0.17519509912221
315 => 0.17660317507054
316 => 0.17248205423942
317 => 0.16525994849952
318 => 0.17044699092779
319 => 0.17221807527095
320 => 0.17300028701335
321 => 0.1658981754826
322 => 0.1636665378453
323 => 0.16247843269245
324 => 0.17427830570809
325 => 0.17492472938859
326 => 0.17161753444404
327 => 0.18656636919452
328 => 0.18318298749217
329 => 0.18696305380234
330 => 0.17647540693698
331 => 0.17687604917073
401 => 0.17191102907267
402 => 0.17469110856482
403 => 0.17272623798591
404 => 0.17446650561513
405 => 0.1755096148567
406 => 0.18047382024381
407 => 0.18797571395331
408 => 0.17973233350064
409 => 0.17614057459003
410 => 0.17836888161735
411 => 0.18430315687398
412 => 0.19329388765773
413 => 0.18797119407843
414 => 0.19033331510373
415 => 0.19084933346431
416 => 0.18692457627575
417 => 0.19343859905349
418 => 0.19692951677991
419 => 0.20051047602357
420 => 0.20361972259864
421 => 0.19908016215467
422 => 0.20393814255015
423 => 0.20002346790037
424 => 0.1965116000479
425 => 0.19651692610179
426 => 0.19431388009773
427 => 0.1900452008632
428 => 0.18925799091906
429 => 0.19335315646212
430 => 0.19663709141403
501 => 0.19690757202566
502 => 0.1987257271497
503 => 0.19980169262363
504 => 0.21034761697222
505 => 0.21458927498568
506 => 0.21977589411406
507 => 0.22179637456641
508 => 0.22787729634563
509 => 0.22296645814059
510 => 0.22190396740431
511 => 0.20715364022227
512 => 0.209569005472
513 => 0.2134362382849
514 => 0.20721740946696
515 => 0.21116182497487
516 => 0.21194053615027
517 => 0.20700609604339
518 => 0.20964179370905
519 => 0.20264216213897
520 => 0.18812828679375
521 => 0.19345475714576
522 => 0.19737683219538
523 => 0.19177954751121
524 => 0.20181246366275
525 => 0.19595144116845
526 => 0.19409377841645
527 => 0.18684637371631
528 => 0.19026686975659
529 => 0.19489313962785
530 => 0.19203464270901
531 => 0.19796645302107
601 => 0.20636747837897
602 => 0.21235454933873
603 => 0.21281416230526
604 => 0.20896487678074
605 => 0.2151333813996
606 => 0.21517831222143
607 => 0.20822021381229
608 => 0.20395841727954
609 => 0.2029901281404
610 => 0.20540910425423
611 => 0.20834618782405
612 => 0.21297715000232
613 => 0.2157755434579
614 => 0.22307226943685
615 => 0.22504655427323
616 => 0.22721569474264
617 => 0.23011433534793
618 => 0.23359489659077
619 => 0.22597962673989
620 => 0.22628219560771
621 => 0.21919096176316
622 => 0.21161296141446
623 => 0.21736371906805
624 => 0.22488206970888
625 => 0.22315735176483
626 => 0.22296328576334
627 => 0.22328965094843
628 => 0.22198926994264
629 => 0.21610769484783
630 => 0.21315400465583
701 => 0.21696501857025
702 => 0.21899040285705
703 => 0.2221315972538
704 => 0.22174437874183
705 => 0.22983575816822
706 => 0.2329798235427
707 => 0.23217543707777
708 => 0.23232346354596
709 => 0.23801564372632
710 => 0.24434651877302
711 => 0.2502762186868
712 => 0.25630816412563
713 => 0.24903641846828
714 => 0.2453442744824
715 => 0.24915362462737
716 => 0.24713232981996
717 => 0.25874728933829
718 => 0.25955148393472
719 => 0.27116560355927
720 => 0.28218878606661
721 => 0.27526532263458
722 => 0.28179383681134
723 => 0.28885495717108
724 => 0.30247700397051
725 => 0.29788957783785
726 => 0.29437568131436
727 => 0.29105506607869
728 => 0.2979647392513
729 => 0.30685392340314
730 => 0.30876856852989
731 => 0.31187102508597
801 => 0.3086091713676
802 => 0.31253771488998
803 => 0.3264071998135
804 => 0.32265954255784
805 => 0.31733726678883
806 => 0.32828589309646
807 => 0.33224815839548
808 => 0.36005741131848
809 => 0.3951677418767
810 => 0.38063183447873
811 => 0.37160892768602
812 => 0.37372952480852
813 => 0.38655062896868
814 => 0.39066836070343
815 => 0.37947494638115
816 => 0.38342864955155
817 => 0.40521394273999
818 => 0.4169010535797
819 => 0.40102838727097
820 => 0.35723633044429
821 => 0.31685805408811
822 => 0.32756819123525
823 => 0.32635399405701
824 => 0.34975957381731
825 => 0.32257016217172
826 => 0.3230279621327
827 => 0.3469175444955
828 => 0.34054421349224
829 => 0.3302202335015
830 => 0.31693343056724
831 => 0.29237154646274
901 => 0.27061640075257
902 => 0.31328325140105
903 => 0.31144337921645
904 => 0.30877897163938
905 => 0.31470832238315
906 => 0.34349956651932
907 => 0.34283583515382
908 => 0.33861351484522
909 => 0.34181610758547
910 => 0.32965880350983
911 => 0.33279201758679
912 => 0.31685165796283
913 => 0.32405736624108
914 => 0.33019808287718
915 => 0.33143092265674
916 => 0.33420857363044
917 => 0.31047385017961
918 => 0.32113004419416
919 => 0.32738955982736
920 => 0.29910884047344
921 => 0.32683054093518
922 => 0.31006068144932
923 => 0.30436873926499
924 => 0.31203218955983
925 => 0.30904573552698
926 => 0.30647815772
927 => 0.30504540518712
928 => 0.31067259729951
929 => 0.31041008206152
930 => 0.30120290357472
1001 => 0.2891925145713
1002 => 0.29322359534843
1003 => 0.29175906591051
1004 => 0.28645142229945
1005 => 0.29002813324597
1006 => 0.27427810836948
1007 => 0.24718100918453
1008 => 0.26508218291271
1009 => 0.2643930071969
1010 => 0.26404549354936
1011 => 0.27749773085398
1012 => 0.27620460863306
1013 => 0.2738575791398
1014 => 0.28640831726225
1015 => 0.2818271290163
1016 => 0.2959452717266
1017 => 0.30524439361981
1018 => 0.30288583551261
1019 => 0.31163170459974
1020 => 0.29331646330789
1021 => 0.29940005178511
1022 => 0.30065387093877
1023 => 0.28625344310202
1024 => 0.27641617942072
1025 => 0.27576014608619
1026 => 0.25870368652125
1027 => 0.26781510954591
1028 => 0.27583278475131
1029 => 0.27199294052465
1030 => 0.27077736055458
1031 => 0.27698749499456
1101 => 0.27747007562675
1102 => 0.26646718607118
1103 => 0.26875503522598
1104 => 0.27829574652477
1105 => 0.2685146337802
1106 => 0.24951152945318
1107 => 0.24479849684161
1108 => 0.2441696914128
1109 => 0.23138757317489
1110 => 0.24511344421696
1111 => 0.23912173367662
1112 => 0.25804947548183
1113 => 0.24723805087421
1114 => 0.2467719919679
1115 => 0.24606747557503
1116 => 0.235065378385
1117 => 0.23747413844986
1118 => 0.24548122376998
1119 => 0.24833824201848
1120 => 0.2480402316083
1121 => 0.24544198468367
1122 => 0.24663144882059
1123 => 0.24279977039879
1124 => 0.24144672499856
1125 => 0.23717614153099
1126 => 0.23089956361246
1127 => 0.23177236026852
1128 => 0.21933681705595
1129 => 0.21256127310951
1130 => 0.21068589184537
1201 => 0.20817805364138
1202 => 0.21096915884361
1203 => 0.21930158872447
1204 => 0.20925091046454
1205 => 0.192019727561
1206 => 0.19305535101401
1207 => 0.19538208943356
1208 => 0.19104622778165
1209 => 0.18694269860939
1210 => 0.19051038429482
1211 => 0.18320930494392
1212 => 0.1962643899918
1213 => 0.19591128652771
1214 => 0.20077741491251
1215 => 0.20382030485454
1216 => 0.19680742868549
1217 => 0.1950437092938
1218 => 0.19604840401588
1219 => 0.17944303824505
1220 => 0.19942040226422
1221 => 0.19959316733783
1222 => 0.19811384788882
1223 => 0.20875117749711
1224 => 0.2311992608369
1225 => 0.22275338891241
1226 => 0.21948289202542
1227 => 0.21326567505252
1228 => 0.22154974752709
1229 => 0.2209136600127
1230 => 0.21803703104363
1231 => 0.2162972368675
]
'min_raw' => 0.16247843269245
'max_raw' => 0.4169010535797
'avg_raw' => 0.28968974313607
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.162478'
'max' => '$0.416901'
'avg' => '$0.289689'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.099913801750307
'max_diff' => 0.24232633190074
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0051000123422696
]
1 => [
'year' => 2028
'avg' => 0.0087531017234964
]
2 => [
'year' => 2029
'avg' => 0.023911896315498
]
3 => [
'year' => 2030
'avg' => 0.018447992396742
]
4 => [
'year' => 2031
'avg' => 0.01811821476813
]
5 => [
'year' => 2032
'avg' => 0.031766932500568
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0051000123422696
'min' => '$0.005100012'
'max_raw' => 0.031766932500568
'max' => '$0.031766'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.031766932500568
]
1 => [
'year' => 2033
'avg' => 0.081707816946608
]
2 => [
'year' => 2034
'avg' => 0.051790341074699
]
3 => [
'year' => 2035
'avg' => 0.061086826064109
]
4 => [
'year' => 2036
'avg' => 0.11856967631055
]
5 => [
'year' => 2037
'avg' => 0.28968974313607
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.031766932500568
'min' => '$0.031766'
'max_raw' => 0.28968974313607
'max' => '$0.289689'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.28968974313607
]
]
]
]
'prediction_2025_max_price' => '$0.00872'
'last_price' => 0.00012209127997014
'sma_50day_nextmonth' => '$0.00471'
'sma_200day_nextmonth' => '—'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'decrease'
'sma_200day_direction_label' => 'diminuer'
'sma_200day_date_nextmonth' => '4 févr. 2026'
'sma_50day_date_nextmonth' => '4 févr. 2026'
'daily_sma3' => '$0.000113'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.0001064'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.0001061'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.0001096'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.000116'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.00017'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '—'
'daily_sma200_action' => '—'
'daily_ema3' => '$0.000115'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.000111'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.0001087'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.00011'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.000162'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.000586'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.000783'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.00042'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '—'
'weekly_sma50_action' => '—'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.000113'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.000116'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.000234'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.000815'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.000447'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.000223'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.000111'
'weekly_ema200_action' => 'BUY'
'rsi_14' => '55.39'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 95.31
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.000110'
'vwma_10_action' => 'BUY'
'hma_9' => '0.000113'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 97.27
'cci_20_action' => 'NEUTRAL'
'adx_14' => 11.53
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.0000054'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 66.41
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.000077'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 9
'buy_signals' => 20
'sell_pct' => 31.03
'buy_pct' => 68.97
'overall_action' => 'bullish'
'overall_action_label' => 'Haussier'
'overall_action_dir' => 1
'last_updated' => 1767679197
'last_updated_date' => '6 janvier 2026'
]
Prévision du prix de Lizard pour 2026
La prévision du prix de Lizard pour 2026 suggère que le prix moyen pourrait varier entre $0.002921 à la baisse et $0.00872 à la hausse. Sur le marché des cryptomonnaies, comparé au prix moyen d'aujourd'hui, Lizard pourrait potentiellement gagner 3.13% d'ici 2026 si LIZARD atteint l'objectif de prix prévu.
Prévision du prix de Lizard de 2027 à 2032
La prévision du prix de LIZARD pour 2027-2032 se situe actuellement dans une fourchette de prix comprise entre $0.005100012 à la baisse et $0.031766 à la hausse. Compte tenu de la volatilité des prix sur le marché, si Lizard atteint l'objectif de prix le plus élevé, il pourrait gagner 275.71% d'ici 2032 par rapport au prix actuel.
| Prévision du Prix de Lizard | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2027 | $0.002812 | $0.005100012 | $0.007387 |
| 2028 | $0.005075 | $0.008753 | $0.01243 |
| 2029 | $0.011148 | $0.023911 | $0.036674 |
| 2030 | $0.009481 | $0.018447 | $0.027414 |
| 2031 | $0.01121 | $0.018118 | $0.025026 |
| 2032 | $0.017111 | $0.031766 | $0.046422 |
Prévision du prix de Lizard de 2032 à 2037
La prévision du prix de Lizard pour 2032-2037 est actuellement estimée entre $0.031766 à la baisse et $0.289689 à la hausse. Par rapport au prix actuel, Lizard pourrait potentiellement gagner 3326.16% d'ici 2037 s'il atteint l'objectif de prix le plus élevé. Veuillez noter que ces informations sont à titre général seulement et ne doivent pas être considérées comme un conseil en investissement à long terme.
| Prévision du Prix de Lizard | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2032 | $0.017111 | $0.031766 | $0.046422 |
| 2033 | $0.039763 | $0.0817078 | $0.123651 |
| 2034 | $0.031968 | $0.05179 | $0.071612 |
| 2035 | $0.037796 | $0.061086 | $0.084377 |
| 2036 | $0.062564 | $0.118569 | $0.174574 |
| 2037 | $0.162478 | $0.289689 | $0.416901 |
Lizard Histogramme des prix potentiels
Prévision du prix de Lizard basée sur l'analyse technique
Au 6 janvier 2026, le sentiment global de prévision du prix pour Lizard est Haussier, avec 20 indicateurs techniques montrant des signaux haussiers et 9 indiquant des signaux baissiers. La prévision du prix de LIZARD a été mise à jour pour la dernière fois le 6 janvier 2026.
Moyennes Mobiles Simples sur 50 et 200 jours de Lizard et Indice de Force Relative sur 14 jours - RSI (14)
Selon nos indicateurs techniques, le SMA sur 200 jours de Lizard devrait diminuer au cours du prochain mois, atteignant — d'ici le 4 févr. 2026. Le SMA à court terme sur 50 jours pour Lizard devrait atteindre $0.00471 d'ici le 4 févr. 2026.
Le Relative Strength Index (RSI), un oscillateur de momentum, est un outil couramment utilisé pour identifier si une cryptomonnaie est survendue (en dessous de 30) ou surachetée (au-dessus de 70). Actuellement, le RSI est à 55.39, ce qui suggère que le marché de LIZARD est dans un état NEUTRAL.
Moyennes Mobiles et Oscillateurs Populaires de LIZARD pour le Samedi 19 Octobre 2024
Les moyennes mobiles (MA) sont des indicateurs largement utilisés sur les marchés financiers, conçus pour lisser les mouvements de prix sur une période donnée. En tant qu'indicateurs retardés, ils sont basés sur des données historiques de prix. Le tableau ci-dessous met en évidence deux types : la moyenne mobile simple (SMA) et la moyenne mobile exponentielle (EMA).
Moyenne Mobile Simple Quotidienne (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 3 | $0.000113 | BUY |
| SMA 5 | $0.0001064 | BUY |
| SMA 10 | $0.0001061 | BUY |
| SMA 21 | $0.0001096 | BUY |
| SMA 50 | $0.000116 | BUY |
| SMA 100 | $0.00017 | SELL |
| SMA 200 | — | — |
Moyenne Mobile Exponentielle Quotidienne (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 3 | $0.000115 | BUY |
| EMA 5 | $0.000111 | BUY |
| EMA 10 | $0.0001087 | BUY |
| EMA 21 | $0.00011 | BUY |
| EMA 50 | $0.000162 | SELL |
| EMA 100 | $0.000586 | SELL |
| EMA 200 | $0.000783 | SELL |
Moyenne Mobile Simple Hebdomadaire (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 21 | $0.00042 | SELL |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Moyenne Mobile Exponentielle Hebdomadaire (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 21 | $0.000815 | SELL |
| EMA 50 | $0.000447 | SELL |
| EMA 100 | $0.000223 | SELL |
| EMA 200 | $0.000111 | BUY |
Oscillateurs de Lizard
Un oscillateur est un outil d'analyse technique qui établit des limites hautes et basses entre deux extrêmes, créant un indicateur de tendance qui fluctue à l'intérieur de ces limites. Les traders utilisent cet indicateur pour identifier les conditions de surachat ou de survente à court terme.
| Période | Valeur | Action |
|---|---|---|
| RSI (14) | 55.39 | NEUTRAL |
| Stoch RSI (14) | 95.31 | NEUTRAL |
| Stochastique Rapide (14) | 100 | SELL |
| Indice de Canal des Matières Premières (20) | 97.27 | NEUTRAL |
| Indice Directionnel Moyen (14) | 11.53 | NEUTRAL |
| Oscillateur Impressionnant (5, 34) | -0.0000054 | NEUTRAL |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Plage de Pourcentage de Williams (14) | -0 | SELL |
| Oscillateur Ultime (7, 14, 28) | 66.41 | NEUTRAL |
| VWMA (10) | 0.000110 | BUY |
| Moyenne Mobile de Hull (9) | 0.000113 | BUY |
| Nuage Ichimoku B/L (9, 26, 52, 26) | -0.000077 | SELL |
Prévision du cours de Lizard basée sur les flux monétaires mondiaux
Définitions des flux monétaires mondiaux utilisés pour la prédiction du cours de Lizard
M0 : le total de toutes les devises physiques, plus les comptes à la banque centrale qui peuvent être échangés contre des devises physiques.
M1 : M0 plus le montant des comptes à vue, y compris les comptes de "chèques" et les comptes "courants".
M2 : M1 plus la plupart des comptes d'épargne, comptes du marché monétaire et comptes de certificats de dépôt (CD) de moins de 100 000 $.
Prédictions du cours de Lizard par des sociétés Internet ou des niches technologiques
| Comparaison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Action Facebook | $0.011881 | $0.016694 | $0.023458 | $0.032963 | $0.046319 | $0.065086 |
| Action Amazon.com | $0.017642 | $0.036811 | $0.0768099 | $0.160268 | $0.3344099 | $0.697766 |
| Action Apple | $0.011993 | $0.017011 | $0.024129 | $0.034225 | $0.048546 | $0.068859 |
| Action Netflix | $0.013341 | $0.02105 | $0.033213 | $0.0524059 | $0.082688 | $0.130469 |
| Action Google | $0.010949 | $0.014179 | $0.018362 | $0.023779 | $0.030794 | $0.039878 |
| Action Tesla | $0.019167 | $0.04345 | $0.09850007 | $0.223292 | $0.506186 | $1.14 |
| Action Kodak | $0.00634 | $0.004754 | $0.003565 | $0.002673 | $0.002005 | $0.0015035 |
| Action Nokia | $0.0056012 | $0.00371 | $0.002458 | $0.001628 | $0.001078 | $0.000714 |
Ce calcul montre la valeur potentielle des cryptomonnaies si l'on suppose que leur capitalisation se comportera comme celle de certaines sociétés Internet ou niches technologiques. En extrapolant les données, vous pourrez obtenir une potentielle image des cours futurs pour 2024, 2025, 2026, 2027, 2028, 2029 et 2030.
Aperçu des prévisions relatives à Lizard
Vous vous posez peut-être des questions telles que : "Devrais-je investir dans Lizard maintenant ?", "Devrais-je acheter LIZARD aujourd'hui ?", " Lizard sera-t-il un bon ou un mauvais investissement à court ou à long terme ?".
Nous mettons régulièrement à jour les prévisions de Lizard avec de nouvelles valeurs. Regardez nos prévisions similaires. Nous faisons une prévision des cours futurs pour une grande quantité de devises numériques comme Lizard en utilisant des méthodes d'analyse technique.
Si vous souhaitez trouver des cryptomonnaies ayant un bon rendement, vous devriez consulter un maximum d'informations disponibles à propos de Lizard afin de prendre une décision responsable concernant cet investissement.
Le cours de Lizard est de $0.008455 USD actuellement, mais ce cours peut subir une hausse ou une baisse, ce qui pourrait causer la perte de votre investissement, car les cryptomonnaies sont des actifs à haut risque.
Prévision du cours de Lizard basée sur le modèle de croissance du Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Lizard présente 1 % de la précédente croissance annuelle moyenne du Bitcoin | $0.008675 | $0.00890049 | $0.009131 | $0.009369 |
| Si Lizard présente 2 % de la précédente croissance annuelle moyenne du Bitcoin | $0.008894 | $0.009357 | $0.009843 | $0.010355 |
| Si Lizard présente 5 % de la précédente croissance annuelle moyenne du Bitcoin | $0.009554 | $0.010795 | $0.012198 | $0.013784 |
| Si Lizard présente 10 % de la précédente croissance annuelle moyenne du Bitcoin | $0.010653 | $0.013422 | $0.01691 | $0.0213065 |
| Si Lizard présente 20 % de la précédente croissance annuelle moyenne du Bitcoin | $0.01285 | $0.019531 | $0.029685 | $0.045117 |
| Si Lizard présente 50 % de la précédente croissance annuelle moyenne du Bitcoin | $0.019444 | $0.044714 | $0.102829 | $0.236472 |
| Si Lizard présente 100 % de la précédente croissance annuelle moyenne du Bitcoin | $0.030433 | $0.109538 | $0.394264 | $1.41 |
Boîte à questions
Est-ce que LIZARD est un bon investissement ?
La décision d'acquérir Lizard dépend entièrement de votre tolérance individuelle au risque. Comme vous pouvez le discerner, la valeur de Lizard a connu une baisse de 0% au cours des 24 heures précédentes, et Lizard a enregistré une déclin de sur une période de 30 jours précédents. Par conséquent, la détermination de si investir ou non dans Lizard dépendra de la mesure dans laquelle cet investissement s'aligne avec vos aspirations de trading.
Est-ce que Lizard peut monter ?
Il semble que la valeur moyenne de Lizard pourrait potentiellement s'envoler jusqu'à $0.00872 pour la fin de cette année. En regardant les perspectives de Lizard sur une période de cinq ans plus longue, la monnaie numérique pourrait potentiellement croître jusqu'à $0.027414. Cependant, compte tenu de l'imprévisibilité du marché, il est essentiel de mener des recherches approfondies avant d'investir des fonds dans un projet, un réseau ou un actif particulier.
Quel sera le prix de Lizard la semaine prochaine ?
Basé sur notre nouveau pronostic expérimental de Lizard, le prix de Lizard va augmenter de 0.86% durant la prochaine semaine et atteindre $0.008527 d'ici 13 janvier 2026.
Quel sera le prix de Lizard le mois prochain ?
Basé sur notre nouveau pronostic expérimental de Lizard, le prix de Lizard va diminuer de -11.62% durant le prochain mois et atteindre $0.007472 d'ici 5 février 2026.
Jusqu'où le prix de Lizard peut-il monter cette année en 2026 ?
Selon notre prédiction la plus récente sur la valeur de Lizard en 2026, LIZARD devrait fluctuer dans la fourchette de $0.002921 et $0.00872. Cependant, il est crucial de garder à l'esprit que le marché des cryptomonnaies est exceptionnellement instable, et cette prévision de prix de Lizard ne prend pas en compte les fluctuations de prix soudaines et extrêmes.
Où sera Lizard dans 5 ans ?
L'avenir de Lizard semble suivre une tendance haussière, avec un prix maximum de $0.027414 prévue après une période de cinq ans. Selon la prévision de Lizard pour 2030, la valeur de Lizard pourrait potentiellement atteindre son point le plus élevé d'environ $0.027414, tandis que son point le plus bas devrait être autour de $0.009481.
Combien vaudra Lizard en 2026 ?
Basé sur notre nouvelle simulation expérimentale de prédiction de prix de Lizard, il est attendu que la valeur de LIZARD en 2026 augmente de 3.13% jusqu'à $0.00872 si le meilleur scénario se produit. Le prix sera entre $0.00872 et $0.002921 durant 2026.
Combien vaudra Lizard en 2027 ?
Selon notre dernière simulation expérimentale pour la prédiction de prix de Lizard, le valeur de LIZARD pourrait diminuer de -12.62% jusqu'à $0.007387 en 2027, en supposant les conditions les plus favorables. Il est prévu que le prix fluctue entre $0.007387 et $0.002812 tout au long de l'année.
Combien vaudra Lizard en 2028 ?
Notre nouveau modèle expérimental de prédiction de prix de Lizard suggère que la valeur de LIZARD en 2028 pourrait augmenter de 47.02%, atteignant $0.01243 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.01243 et $0.005075 durant l'année.
Combien vaudra Lizard en 2029 ?
Basé sur notre modèle de prévision expérimental, la valeur de Lizard pourrait connaître un 333.75% croissance en 2029, atteignant potentiellement $0.036674 sous des conditions optimales. Le range de prix prévu pour 2029 se situe entre $0.036674 et $0.011148.
Combien vaudra Lizard en 2030 ?
En utilisant notre nouvelle simulation expérimentale pour les prédictions de prix de Lizard, il est prévu que la valeur de LIZARD en 2030 augmente de 224.23%, atteignant $0.027414 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.027414 et $0.009481 au cours de 2030.
Combien vaudra Lizard en 2031 ?
Notre simulation expérimentale indique que le prix de Lizard pourrait augmenter de 195.98% en 2031, atteignant potentiellement $0.025026 dans des conditions idéales. Il est probable que le prix fluctue entre $0.025026 et $0.01121 durant l'année.
Combien vaudra Lizard en 2032 ?
Basé sur les résultats de notre dernière prédiction expérimentale de prix de Lizard, LIZARD pourrait connaître une 449.04% hausse en valeur, atteignant $0.046422 si le scénario le plus positif se réalise en 2032. Il est prévu que le prix reste dans une fourchette de $0.046422 et $0.017111 tout au long de l'année.
Combien vaudra Lizard en 2033 ?
Selon notre prédiction expérimentale de prix de Lizard, la valeur de LIZARD est anticipée à augmenter de 1362.43% en 2033, avec le prix potentiel le plus élevé étant $0.123651. Tout au long de l'année, le prix de LIZARD pourrait osciller entre $0.123651 et $0.039763.
Combien vaudra Lizard en 2034 ?
Les résultats de notre nouvelle simulation de prédiction de prix de Lizard suggèrent que LIZARD pourrait augmenter de 746.96% en 2034, atteignant potentiellement $0.071612 dans les meilleures circonstances. La fourchette de prix prévue pour l'année est entre $0.071612 et $0.031968.
Combien vaudra Lizard en 2035 ?
Basé sur notre prédiction expérimentale pour le prix de Lizard, LIZARD pourrait augmenter de 897.93%, avec la valeur potentiellement atteignant $0.084377 en 2035. La fourchette de prix attendue pour l'année se situe entre $0.084377 et $0.037796.
Combien vaudra Lizard en 2036 ?
Notre récente simulation de prédiction de prix de Lizard suggère que la valeur de LIZARD pourrait augmenter de 1964.7% en 2036, pouvant atteindre $0.174574 si les conditions sont optimales. La fourchette de prix attendue pour 2036 est entre $0.174574 et $0.062564.
Combien vaudra Lizard en 2037 ?
Selon la simulation expérimentale, la valeur de Lizard pourrait augmenter de 4830.69% en 2037, avec un maximum de $0.416901 sous des conditions favorables. Il est prévu que le prix chute entre $0.416901 et $0.162478 au cours de l'année.
Prévisions liées
Comment lire et prédire les mouvements de prix de Lizard ?
Les traders de Lizard utilisent des indicateurs et des modèles graphiques pour prédire la direction du marché. Ils identifient également des niveaux clés de support et de résistance pour évaluer quand une tendance baissière pourrait ralentir ou une tendance haussière pourrait s'arrêter.
Indicateurs de prédiction du prix de Lizard
Les moyennes mobiles sont des outils populaires pour la prédiction du prix de Lizard. Une moyenne mobile simple (SMA) calcule le prix de clôture moyen de LIZARD sur une période spécifique, comme une SMA de 12 jours. Une moyenne mobile exponentielle (EMA) donne plus de poids aux prix récents, réagissant plus rapidement aux changements de prix.
Les moyennes mobiles couramment utilisées sur le marché des cryptomonnaies incluent les moyennes sur 50 jours, 100 jours et 200 jours, qui aident à identifier les niveaux clés de résistance et de support. Un mouvement de prix de LIZARD au-dessus de ces moyennes est considéré comme haussier, tandis qu'une chute en dessous indique une faiblesse.
Les traders utilisent également le RSI et les niveaux de retracement de Fibonacci pour évaluer la direction future de LIZARD.
Comment lire les graphiques de Lizard et prédire les mouvements de prix ?
La plupart des traders préfèrent les graphiques en chandeliers aux simples graphiques linéaires parce qu'ils fournissent des informations plus détaillées. Les chandeliers peuvent représenter l'action des prix de Lizard dans différentes périodes, comme 5 minutes pour les tendances à court terme et hebdomadaire pour les tendances à long terme. Les options populaires incluent les graphiques de 1 heure, 4 heures et 1 jour.
Par exemple, un graphique en chandeliers de 1 heure montre les prix d'ouverture, de clôture, les plus hauts et les plus bas de LIZARD au sein de chaque heure. La couleur du chandelier est cruciale : le vert indique que le prix a clôturé plus haut qu'il n'a ouvert, tandis que le rouge signifie le contraire. Certains graphiques utilisent des chandeliers creux et pleins pour transmettre la même information.
Qu'est-ce qui affecte le prix de Lizard ?
L'action du prix de Lizard est déterminée par l'offre et la demande, influencée par des facteurs tels que les réductions de récompenses de bloc, les hard forks et les mises à jour de protocole. Les événements du monde réel, tels que les réglementations, l'adoption par les entreprises et les gouvernements et les piratages d'échanges de cryptomonnaies, impactent également le prix de LIZARD. La capitalisation boursière de Lizard peut changer rapidement.
Les traders surveillent souvent l'activité des « baleines » de LIZARD, de grands détenteurs de Lizard, car leurs actions peuvent influencer significativement les mouvements de prix sur le marché relativement petit de Lizard.
Modèles de prédiction de prix haussiers et baissiers
Les traders identifient souvent des modèles de chandeliers pour obtenir un avantage dans les prédictions de prix des cryptomonnaies. Certaines formations indiquent des tendances haussières, tandis que d'autres suggèrent des mouvements baissiers.
Modèles de chandeliers haussiers couramment suivis :
- Marteau
- Englobante haussière
- Ligne pénétrante
- Étoile du matin
- Trois soldats blancs
Modèles de chandeliers baissiers courants :
- Harami baissier
- Nuage sombre
- Étoile du soir
- Étoile filante
- Pendu


