Prédiction du prix de Linea jusqu'à $0.007691 d'ici 2026
| Année | Prix min. | Prix max. |
|---|---|---|
| 2026 | $0.002576 | $0.007691 |
| 2027 | $0.00248 | $0.006516 |
| 2028 | $0.004476 | $0.010965 |
| 2029 | $0.009834 | $0.03235 |
| 2030 | $0.008363 | $0.024181 |
| 2031 | $0.009888 | $0.022075 |
| 2032 | $0.015094 | $0.040948 |
| 2033 | $0.035075 | $0.109072 |
| 2034 | $0.028198 | $0.063168 |
| 2035 | $0.033339 | $0.074428 |
Calculateur de profit d’investissement
Si vous ouvrez une position short de $10,000.00 sur Linea aujourd’hui et la fermez le Apr 06, 2026, notre prévision indique que vous pourriez gagner environ $3,955.73, soit un rendement de 39.56% sur les 90 prochains jours.
Prévision du prix à long terme de Linea pour 2027, 2028, 2029, 2030, 2031, 2032 et 2037
[
'name' => 'Linea'
'name_with_ticker' => 'Linea <small>LINEA</small>'
'name_lang' => 'Linea'
'name_lang_with_ticker' => 'Linea <small>LINEA</small>'
'name_with_lang' => 'Linea'
'name_with_lang_with_ticker' => 'Linea <small>LINEA</small>'
'image' => '/uploads/coins/linea.jpeg?1756520474'
'price_for_sd' => 0.007458
'ticker' => 'LINEA'
'marketcap' => '$126.84M'
'low24h' => '$0.00705'
'high24h' => '$0.007542'
'volume24h' => '$31.37M'
'current_supply' => '16.98B'
'max_supply' => '72.01B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.007458'
'change_24h_pct' => '4.7253%'
'ath_price' => '$0.04666'
'ath_days' => 118
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '10 sept. 2025'
'ath_pct' => '-84.01%'
'fdv' => '$537.79M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.367745'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.007522'
'next_week_prediction_price_date' => '13 janvier 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.006591'
'next_month_prediction_price_date' => '5 février 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.002576'
'current_year_max_price_prediction' => '$0.007691'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.008363'
'grand_prediction_max_price' => '$0.024181'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0075996308619342
107 => 0.0076280051249067
108 => 0.0076919337882094
109 => 0.0071456703597099
110 => 0.0073909266016545
111 => 0.0075349916663948
112 => 0.0068841004627662
113 => 0.0075221256400739
114 => 0.0071361611287462
115 => 0.0070051589766091
116 => 0.0071815361162405
117 => 0.0071128017733938
118 => 0.0070537080216302
119 => 0.0070207326927866
120 => 0.0071502445980973
121 => 0.0071442027129143
122 => 0.0069322960986484
123 => 0.0066558725587571
124 => 0.006748649372038
125 => 0.0067149426859858
126 => 0.0065927853074835
127 => 0.0066751046312559
128 => 0.0063126119902186
129 => 0.0056889622420417
130 => 0.0061009643685958
131 => 0.0060851027348955
201 => 0.006077104579916
202 => 0.006386712791119
203 => 0.0063569511054885
204 => 0.0063029333546421
205 => 0.006591793229128
206 => 0.006486355489227
207 => 0.0068112897593458
208 => 0.007025312485077
209 => 0.0069710293989217
210 => 0.0071723188069335
211 => 0.0067507867624332
212 => 0.006890802798686
213 => 0.0069196599097038
214 => 0.0065882287431154
215 => 0.0063618204853267
216 => 0.0063467216357753
217 => 0.0059541609177494
218 => 0.0061638636846794
219 => 0.0063483934414877
220 => 0.0062600180080641
221 => 0.0062320409859832
222 => 0.0063749695243189
223 => 0.0063860762958477
224 => 0.0061328407279475
225 => 0.0061854964214414
226 => 0.0064050794165918
227 => 0.0061799634933556
228 => 0.0057426000269848
301 => 0.0056341278403019
302 => 0.0056196556510593
303 => 0.0053254704777375
304 => 0.005641376470496
305 => 0.0055034750389026
306 => 0.0059391040089931
307 => 0.0056902750776025
308 => 0.0056795485596983
309 => 0.0056633338546481
310 => 0.0054101165233335
311 => 0.0054655550260905
312 => 0.005649841052777
313 => 0.0057155963832295
314 => 0.0057087375635458
315 => 0.0056489379507094
316 => 0.0056763139072423
317 => 0.0055881264128342
318 => 0.0055569855730948
319 => 0.0054586965169142
320 => 0.0053142387573736
321 => 0.0053343264948487
322 => 0.0050481178737698
323 => 0.0048921762267648
324 => 0.0048490136341517
325 => 0.0047912948114206
326 => 0.0048555331287632
327 => 0.0050473070807065
328 => 0.0048159870075493
329 => 0.0044194049673377
330 => 0.0044432402236973
331 => 0.0044967909679863
401 => 0.0043969995102775
402 => 0.0043025552704182
403 => 0.0043846668744724
404 => 0.0042166298359861
405 => 0.0045170974412809
406 => 0.0045089706346084
407 => 0.0046209663770703
408 => 0.0046909996132157
409 => 0.00452959567743
410 => 0.0044890030240626
411 => 0.0045121264442539
412 => 0.0041299478165463
413 => 0.0045897342296509
414 => 0.0045937104816445
415 => 0.0045596633980229
416 => 0.0048044854686882
417 => 0.0053211363997108
418 => 0.0051267515372246
419 => 0.0050514798431563
420 => 0.0049083882977093
421 => 0.0050990492860822
422 => 0.0050844094969499
423 => 0.0050182028185185
424 => 0.0049781608128258
425 => 0.0050519394360696
426 => 0.0049690188249341
427 => 0.0049541240046681
428 => 0.0048638775995808
429 => 0.0048316637389144
430 => 0.0048078138789477
501 => 0.0047815575265633
502 => 0.004839472497248
503 => 0.0047082295543276
504 => 0.0045499634310698
505 => 0.0045368053153842
506 => 0.0045731360296657
507 => 0.0045570623930997
508 => 0.0045367283609962
509 => 0.0044979051560666
510 => 0.0044863871404905
511 => 0.0045238151033661
512 => 0.0044815611154654
513 => 0.0045439091763067
514 => 0.0045269539536334
515 => 0.004432243458064
516 => 0.004314199114268
517 => 0.0043131482720019
518 => 0.0042877158117625
519 => 0.0042553237498518
520 => 0.0042463130192582
521 => 0.0043777516642069
522 => 0.0046498257256231
523 => 0.0045964110771866
524 => 0.0046350086348353
525 => 0.0048248704170602
526 => 0.0048852217682866
527 => 0.0048423858086862
528 => 0.0047837493051783
529 => 0.0047863290137474
530 => 0.0049867076967105
531 => 0.0049992050693774
601 => 0.0050307818983015
602 => 0.0050713670470797
603 => 0.0048492976350183
604 => 0.0047758695644097
605 => 0.0047410752709211
606 => 0.0046339223140623
607 => 0.0047494775914342
608 => 0.00468214847988
609 => 0.0046912334773186
610 => 0.0046853168608184
611 => 0.0046885477335074
612 => 0.0045170134544617
613 => 0.0045795115301697
614 => 0.0044755963576041
615 => 0.0043364656065643
616 => 0.0043359991915013
617 => 0.0043700512457118
618 => 0.0043497957514104
619 => 0.0042952887370615
620 => 0.0043030312011839
621 => 0.004235199068468
622 => 0.004311267250236
623 => 0.0043134486135041
624 => 0.0042841582200615
625 => 0.0044013517494614
626 => 0.0044493660340773
627 => 0.0044300864696524
628 => 0.0044480133284419
629 => 0.0045986306969818
630 => 0.0046231878999504
701 => 0.0046340945873512
702 => 0.0046194810710932
703 => 0.0044507663374466
704 => 0.0044582495533143
705 => 0.004403342680469
706 => 0.0043569521588585
707 => 0.0043588075364367
708 => 0.0043826582948902
709 => 0.004486815955885
710 => 0.0047060096130192
711 => 0.0047143278520789
712 => 0.0047244098004795
713 => 0.0046834014495531
714 => 0.0046710329385166
715 => 0.0046873501971573
716 => 0.0047696678101219
717 => 0.0049814110596808
718 => 0.0049065668534305
719 => 0.0048457173487296
720 => 0.004899098769261
721 => 0.0048908811179876
722 => 0.0048215158712881
723 => 0.0048195690198414
724 => 0.0046864349340143
725 => 0.0046372182938005
726 => 0.0045960891854361
727 => 0.0045511772728048
728 => 0.004524551985536
729 => 0.0045654605277575
730 => 0.0045748167953792
731 => 0.004485369552853
801 => 0.0044731782242156
802 => 0.0045462227733153
803 => 0.0045140785906318
804 => 0.0045471396796592
805 => 0.0045548101359063
806 => 0.0045535750157849
807 => 0.0045200127973274
808 => 0.0045414043545325
809 => 0.0044908069446124
810 => 0.0044357898608096
811 => 0.0044006923890289
812 => 0.0043700651898961
813 => 0.0043870589400382
814 => 0.0043264793237177
815 => 0.00430709868523
816 => 0.0045341573762767
817 => 0.0047018880726451
818 => 0.0046994492018913
819 => 0.0046846032034039
820 => 0.0046625450610525
821 => 0.0047680541196172
822 => 0.0047312968733335
823 => 0.0047580408411756
824 => 0.0047648483034322
825 => 0.0047854524414065
826 => 0.0047928166497468
827 => 0.0047705568973708
828 => 0.0046958504495972
829 => 0.0045096890846214
830 => 0.0044230304666921
831 => 0.004394431679362
901 => 0.0043954711909646
902 => 0.0043667968203802
903 => 0.0043752427076125
904 => 0.0043638596854752
905 => 0.004342302995396
906 => 0.004385727875171
907 => 0.0043907321880343
908 => 0.0043805963022062
909 => 0.0043829836702431
910 => 0.0042990628646794
911 => 0.00430544318126
912 => 0.0042699167677678
913 => 0.0042632559935153
914 => 0.0041734483138457
915 => 0.0040143409914796
916 => 0.0041025018929919
917 => 0.0039960159212637
918 => 0.0039556880702445
919 => 0.0041465938447019
920 => 0.0041274321998483
921 => 0.0040946357932258
922 => 0.004046123072461
923 => 0.004028129232428
924 => 0.0039188043565446
925 => 0.0039123448596519
926 => 0.0039665292201596
927 => 0.0039415250021553
928 => 0.0039064096102394
929 => 0.00377922522031
930 => 0.0036362278567251
1001 => 0.0036405440482823
1002 => 0.0036860288490782
1003 => 0.0038182820418532
1004 => 0.0037666084314325
1005 => 0.003729118634186
1006 => 0.0037220979221008
1007 => 0.0038099768327023
1008 => 0.0039343439024044
1009 => 0.0039926941489523
1010 => 0.0039348708267467
1011 => 0.0038684465076257
1012 => 0.0038724894481499
1013 => 0.0038993853201884
1014 => 0.0039022116960525
1015 => 0.003858976292835
1016 => 0.0038711468055879
1017 => 0.0038526586838213
1018 => 0.0037391971146657
1019 => 0.0037371449546702
1020 => 0.0037092996557845
1021 => 0.0037084565112007
1022 => 0.0036610847114607
1023 => 0.0036544570692113
1024 => 0.0035603974855649
1025 => 0.0036223077883596
1026 => 0.0035807816076817
1027 => 0.0035181918583643
1028 => 0.0035074013619905
1029 => 0.0035070769866396
1030 => 0.0035713426643767
1031 => 0.0036215568064979
1101 => 0.0035815039733735
1102 => 0.0035723847196626
1103 => 0.0036697544913817
1104 => 0.0036573633003853
1105 => 0.003646632608897
1106 => 0.0039232081953826
1107 => 0.0037042770372171
1108 => 0.0036088105561033
1109 => 0.0034906526571319
1110 => 0.0035291254648408
1111 => 0.0035372322507082
1112 => 0.0032530838032442
1113 => 0.0031378048134965
1114 => 0.0030982454084121
1115 => 0.0030754784114982
1116 => 0.0030858536178818
1117 => 0.002982089006232
1118 => 0.003051820541369
1119 => 0.0029619691586845
1120 => 0.0029469052819758
1121 => 0.003107570684666
1122 => 0.0031299263368567
1123 => 0.0030345501792545
1124 => 0.0030957971124324
1125 => 0.0030735881230661
1126 => 0.0029635094027515
1127 => 0.0029593052053198
1128 => 0.00290407157292
1129 => 0.0028176416335532
1130 => 0.0027781408320376
1201 => 0.0027575684716467
1202 => 0.0027660570284913
1203 => 0.0027617649543965
1204 => 0.0027337562676574
1205 => 0.0027633703795346
1206 => 0.0026877185610841
1207 => 0.002657593397409
1208 => 0.0026439865598755
1209 => 0.0025768412166445
1210 => 0.0026836993173947
1211 => 0.0027047517094053
1212 => 0.0027258455811317
1213 => 0.0029094533331117
1214 => 0.0029002808086929
1215 => 0.0029831959622382
1216 => 0.0029799740318426
1217 => 0.0029563252869151
1218 => 0.0028565551220954
1219 => 0.0028963217315603
1220 => 0.0027739262887304
1221 => 0.0028656332765797
1222 => 0.0028237820371007
1223 => 0.0028514833304133
1224 => 0.0028016739073123
1225 => 0.002829240498637
1226 => 0.0027097440125433
1227 => 0.00259815987519
1228 => 0.002643064589405
1229 => 0.0026918811492337
1230 => 0.0027977278891704
1231 => 0.0027346864440808
]
'min_raw' => 0.0025768412166445
'max_raw' => 0.0076919337882094
'avg_raw' => 0.0051343875024269
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.002576'
'max' => '$0.007691'
'avg' => '$0.005134'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0048814587833555
'max_diff' => 0.0002336337882094
'year' => 2026
]
1 => [
'items' => [
101 => 0.002757358531596
102 => 0.0026814108336816
103 => 0.0025247090394969
104 => 0.0025255959546343
105 => 0.0025014907975331
106 => 0.0024806604223871
107 => 0.0027419275124004
108 => 0.0027094348197358
109 => 0.0026576619665132
110 => 0.002726961987923
111 => 0.002745286013523
112 => 0.0027458076727713
113 => 0.0027963671794995
114 => 0.0028233507973036
115 => 0.0028281067768953
116 => 0.0029076632531426
117 => 0.0029343295346053
118 => 0.0030441641739971
119 => 0.002821061425857
120 => 0.0028164667715759
121 => 0.0027279371813409
122 => 0.0026717903156164
123 => 0.0027317816052728
124 => 0.0027849256982806
125 => 0.0027295885164492
126 => 0.0027368143841647
127 => 0.0026625287387699
128 => 0.002689082361534
129 => 0.0027119539186178
130 => 0.0026993255891241
131 => 0.0026804203686541
201 => 0.0027805684887012
202 => 0.0027749177392845
203 => 0.0028681779710678
204 => 0.002940880990846
205 => 0.0030711777995079
206 => 0.002935206287143
207 => 0.0029302509447946
208 => 0.002978690211112
209 => 0.002934322118806
210 => 0.0029623612216089
211 => 0.0030666602665635
212 => 0.0030688639410311
213 => 0.0030319495544245
214 => 0.0030297033106447
215 => 0.0030367931223916
216 => 0.0030783183712397
217 => 0.0030638081733502
218 => 0.0030805997417012
219 => 0.0031015978550458
220 => 0.0031884549548545
221 => 0.0032093959075651
222 => 0.0031585202491176
223 => 0.0031631137514448
224 => 0.0031440848586173
225 => 0.0031257031865774
226 => 0.0031670225008956
227 => 0.0032425343599453
228 => 0.0032420646045892
301 => 0.003259581888148
302 => 0.0032704950106841
303 => 0.0032236478998652
304 => 0.0031931521533382
305 => 0.0032048461630514
306 => 0.0032235451392453
307 => 0.0031987823370903
308 => 0.0030459348509436
309 => 0.0030922990143053
310 => 0.0030845817504302
311 => 0.0030735914282206
312 => 0.0031202109530042
313 => 0.0031157143861098
314 => 0.0029810247501606
315 => 0.0029896471436546
316 => 0.0029815491064672
317 => 0.0030077155213222
318 => 0.002932909046533
319 => 0.0029559190143489
320 => 0.0029703506504579
321 => 0.0029788509949952
322 => 0.0030095600682047
323 => 0.0030059567129064
324 => 0.00300933607858
325 => 0.0030548695272549
326 => 0.00328516208546
327 => 0.0032976964012912
328 => 0.0032359728459277
329 => 0.0032606301888521
330 => 0.0032132934824053
331 => 0.0032450709305714
401 => 0.003266812253547
402 => 0.0031685673956364
403 => 0.0031627499727548
404 => 0.0031152178908819
405 => 0.0031407589393256
406 => 0.0031001212947852
407 => 0.003110092351311
408 => 0.0030822124080039
409 => 0.0031323907551153
410 => 0.0031884979441127
411 => 0.0032026728357935
412 => 0.0031653847984559
413 => 0.0031383858020221
414 => 0.0030909844583067
415 => 0.0031698139493133
416 => 0.0031928660947688
417 => 0.0031696928662068
418 => 0.003164323122804
419 => 0.0031541474687584
420 => 0.0031664819359131
421 => 0.003192740547834
422 => 0.0031803574713725
423 => 0.0031885367115371
424 => 0.0031573658824257
425 => 0.0032236634082082
426 => 0.0033289598345193
427 => 0.0033292983797476
428 => 0.0033169152365367
429 => 0.0033118483211334
430 => 0.0033245541775397
501 => 0.0033314465834186
502 => 0.003372534993181
503 => 0.0034166244938904
504 => 0.0036223709559454
505 => 0.0035645981727082
506 => 0.0037471486737551
507 => 0.0038915224188674
508 => 0.0039348137923279
509 => 0.0038949877657608
510 => 0.0037587450802345
511 => 0.0037520603641025
512 => 0.003955664456457
513 => 0.0038981369747086
514 => 0.0038912942638056
515 => 0.0038184993807398
516 => 0.0038615301724533
517 => 0.003852118707082
518 => 0.0038372622485686
519 => 0.0039193620016071
520 => 0.0040730454101997
521 => 0.0040490924097366
522 => 0.0040312126060387
523 => 0.0039528685109669
524 => 0.0040000491549873
525 => 0.0039832490313373
526 => 0.0040554330241594
527 => 0.0040126728258828
528 => 0.0038977011474545
529 => 0.0039160107661959
530 => 0.0039132433041569
531 => 0.0039701974768132
601 => 0.0039531012478713
602 => 0.0039099049910714
603 => 0.0040725201370166
604 => 0.0040619608139519
605 => 0.0040769315198604
606 => 0.0040835220875857
607 => 0.0041825030613223
608 => 0.0042230523992243
609 => 0.0042322578088441
610 => 0.0042707765436527
611 => 0.0042312994276323
612 => 0.0043892360384205
613 => 0.0044942546687378
614 => 0.0046162392120608
615 => 0.0047944914162098
616 => 0.0048615158938949
617 => 0.0048494085219139
618 => 0.0049845573087354
619 => 0.0052274166744649
620 => 0.0048984973433429
621 => 0.0052448501976929
622 => 0.0051351988828417
623 => 0.0048752175878723
624 => 0.0048584778574544
625 => 0.0050345402088526
626 => 0.0054250295588803
627 => 0.0053272164055919
628 => 0.0054251895461585
629 => 0.0053108986735378
630 => 0.0053052231683931
701 => 0.0054196386935773
702 => 0.0056869768046359
703 => 0.0055599744890912
704 => 0.0053778855275125
705 => 0.0055123371831242
706 => 0.0053958627161201
707 => 0.0051334131428091
708 => 0.005327141609717
709 => 0.0051976009009648
710 => 0.0052354077665415
711 => 0.0055076830686125
712 => 0.0054749221839162
713 => 0.0055173178022894
714 => 0.0054424906455472
715 => 0.0053725902819904
716 => 0.0052421160625425
717 => 0.0052034890784653
718 => 0.0052141641872109
719 => 0.0052034837884115
720 => 0.0051304846617504
721 => 0.0051147205072982
722 => 0.0050884462259012
723 => 0.0050965897243566
724 => 0.005047186388518
725 => 0.0051404206904955
726 => 0.0051577257985204
727 => 0.0052255739484041
728 => 0.0052326181684026
729 => 0.0054215743000706
730 => 0.0053175004380267
731 => 0.0053873221699907
801 => 0.0053810766570962
802 => 0.0048808521708665
803 => 0.004949778691551
804 => 0.0050570067274022
805 => 0.0050087006425954
806 => 0.0049404071405616
807 => 0.0048852564760034
808 => 0.0048016975797526
809 => 0.004919305121619
810 => 0.0050739465330056
811 => 0.0052365401297925
812 => 0.0054318856827775
813 => 0.0053882868294242
814 => 0.005232888280559
815 => 0.0052398593459424
816 => 0.0052829517291293
817 => 0.0052271431775464
818 => 0.0052106841461722
819 => 0.0052806905109641
820 => 0.0052811726063237
821 => 0.0052169581230387
822 => 0.0051455954759939
823 => 0.0051452964638971
824 => 0.0051325981701368
825 => 0.0053131576717884
826 => 0.005412447141072
827 => 0.0054238305187124
828 => 0.0054116809490588
829 => 0.0054163568362193
830 => 0.0053585824817373
831 => 0.0054906375236305
901 => 0.0056118242889618
902 => 0.0055793436470754
903 => 0.0055306505474924
904 => 0.0054918641482971
905 => 0.0055702068040745
906 => 0.0055667183289355
907 => 0.0056107658282877
908 => 0.0056087675792864
909 => 0.0055939560619645
910 => 0.0055793441760414
911 => 0.0056372786520739
912 => 0.0056205944533758
913 => 0.0056038843395087
914 => 0.0055703696479579
915 => 0.0055749248511598
916 => 0.0055262401591269
917 => 0.0055037163929326
918 => 0.0051650129914414
919 => 0.0050745003751101
920 => 0.0051029774867621
921 => 0.0051123528913258
922 => 0.0050729616847033
923 => 0.0051294385562293
924 => 0.0051206366956257
925 => 0.0051548795863177
926 => 0.0051334861148669
927 => 0.0051343641103976
928 => 0.0051972777483656
929 => 0.0052155418451214
930 => 0.0052062525781021
1001 => 0.005212758462305
1002 => 0.0053626838177993
1003 => 0.005341369226591
1004 => 0.0053300462748271
1005 => 0.0053331828098481
1006 => 0.0053714919526128
1007 => 0.0053822164209853
1008 => 0.0053367760948962
1009 => 0.0053582060153672
1010 => 0.005449451896871
1011 => 0.0054813827913277
1012 => 0.0055832908787346
1013 => 0.0055399985119324
1014 => 0.0056194635248477
1015 => 0.0058637118829303
1016 => 0.0060588343720674
1017 => 0.005879391667279
1018 => 0.0062377092698802
1019 => 0.0065167109211126
1020 => 0.0065060023730367
1021 => 0.0064573519817199
1022 => 0.0061397160194345
1023 => 0.0058474226712541
1024 => 0.0060919384684381
1025 => 0.0060925617894903
1026 => 0.0060715576656619
1027 => 0.0059411028564865
1028 => 0.0060670181210797
1029 => 0.0060770128175261
1030 => 0.0060714184453204
1031 => 0.0059713990489932
1101 => 0.0058186879174757
1102 => 0.0058485273070354
1103 => 0.0058974048358413
1104 => 0.0058048694768911
1105 => 0.0057752988227914
1106 => 0.0058302762948099
1107 => 0.0060074251646646
1108 => 0.0059739361969721
1109 => 0.0059730616646861
1110 => 0.006116341670007
1111 => 0.0060137841079576
1112 => 0.0058489036772967
1113 => 0.0058072691940492
1114 => 0.0056594948268688
1115 => 0.0057615631086345
1116 => 0.0057652363643866
1117 => 0.0057093346095761
1118 => 0.0058534397966075
1119 => 0.0058521118419398
1120 => 0.0059889182697995
1121 => 0.0062504407777196
1122 => 0.0061730957033866
1123 => 0.0060831517970575
1124 => 0.0060929311935495
1125 => 0.0062001870354592
1126 => 0.0061353377050279
1127 => 0.0061586579763966
1128 => 0.0062001517374355
1129 => 0.0062251859537024
1130 => 0.0060893291550834
1201 => 0.0060576544365434
1202 => 0.0059928590787262
1203 => 0.0059759551793343
1204 => 0.0060287296462769
1205 => 0.006014825438787
1206 => 0.0057649276414642
1207 => 0.0057388119312257
1208 => 0.0057396128627741
1209 => 0.0056739436676452
1210 => 0.0055737823826609
1211 => 0.0058370002592801
1212 => 0.0058158601800557
1213 => 0.0057925231687042
1214 => 0.0057953818194357
1215 => 0.0059096357783945
1216 => 0.0058433627122351
1217 => 0.0060195605205617
1218 => 0.0059833395481607
1219 => 0.0059461896444918
1220 => 0.0059410543961911
1221 => 0.0059267548527594
1222 => 0.0058777163977064
1223 => 0.0058184995164757
1224 => 0.0057793994022088
1225 => 0.0053311904506411
1226 => 0.0054143754249405
1227 => 0.005510072155323
1228 => 0.0055431062831705
1229 => 0.0054865991215953
1230 => 0.0058799476448606
1231 => 0.0059518162104619
]
'min_raw' => 0.0024806604223871
'max_raw' => 0.0065167109211126
'avg_raw' => 0.0044986856717499
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.00248'
'max' => '$0.006516'
'avg' => '$0.004498'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -9.618079425733E-5
'max_diff' => -0.0011752228670968
'year' => 2027
]
2 => [
'items' => [
101 => 0.0057341216373852
102 => 0.0056933998711734
103 => 0.0058826173570741
104 => 0.005768496082179
105 => 0.0058198848852765
106 => 0.0057088104011522
107 => 0.0059345051775658
108 => 0.0059327857615117
109 => 0.0058449853959391
110 => 0.0059191936636901
111 => 0.0059062981509926
112 => 0.0058071717545039
113 => 0.0059376476611431
114 => 0.0059377123755649
115 => 0.0058532064326458
116 => 0.005754521992046
117 => 0.0057368795448892
118 => 0.0057235883308858
119 => 0.0058166160613979
120 => 0.0059000244336849
121 => 0.0060552267358219
122 => 0.0060942482820949
123 => 0.0062465519750099
124 => 0.0061558625414112
125 => 0.0061960639927007
126 => 0.006239708354918
127 => 0.0062606330671332
128 => 0.0062265373714604
129 => 0.0064631276972583
130 => 0.006483103169696
131 => 0.0064898007728171
201 => 0.0064100238461185
202 => 0.0064808844290491
203 => 0.0064477311089517
204 => 0.0065339868375874
205 => 0.0065475128372059
206 => 0.0065360567967305
207 => 0.0065403501625028
208 => 0.0063384620568277
209 => 0.0063279930935039
210 => 0.0061852480357394
211 => 0.0062434177018966
212 => 0.0061346722991604
213 => 0.0061691565865698
214 => 0.0061843569318816
215 => 0.0061764171341027
216 => 0.0062467065275441
217 => 0.0061869461839445
218 => 0.0060292288116752
219 => 0.0058714684694132
220 => 0.0058694879168249
221 => 0.0058279524034086
222 => 0.0057979298348174
223 => 0.0058037132466359
224 => 0.0058240947442266
225 => 0.0057967452251259
226 => 0.0058025816316819
227 => 0.0058995048682841
228 => 0.0059189421321597
229 => 0.005852886714881
301 => 0.0055876646827554
302 => 0.0055225785308127
303 => 0.0055693611661146
304 => 0.0055470020796279
305 => 0.0044768636040216
306 => 0.004728276765277
307 => 0.0045788956020433
308 => 0.0046477373147582
309 => 0.0044952578291613
310 => 0.0045680290318227
311 => 0.00455459084787
312 => 0.0049588557713122
313 => 0.0049525437305809
314 => 0.0049555649704532
315 => 0.0048113533195485
316 => 0.0050410863952127
317 => 0.0051542611692191
318 => 0.0051333155305996
319 => 0.0051385870965841
320 => 0.0050480041274374
321 => 0.0049564420115991
322 => 0.0048548855338259
323 => 0.0050435649167685
324 => 0.0050225869902498
325 => 0.005070702806064
326 => 0.0051930748729831
327 => 0.0052110946246832
328 => 0.0052353133537065
329 => 0.0052266326633582
330 => 0.0054334419252631
331 => 0.005408395959075
401 => 0.0054687495313722
402 => 0.0053445976541203
403 => 0.0052041080204056
404 => 0.0052308105068226
405 => 0.0052282388426528
406 => 0.0051954986061526
407 => 0.0051659421845551
408 => 0.0051167390700654
409 => 0.0052724250050016
410 => 0.0052661044403591
411 => 0.0053684270350686
412 => 0.005350340522545
413 => 0.0052295543653923
414 => 0.0052338682666247
415 => 0.0052628813256032
416 => 0.0053632958539928
417 => 0.0053931057227613
418 => 0.0053792966038298
419 => 0.0054119817640623
420 => 0.0054378147820286
421 => 0.0054152259933867
422 => 0.0057350356050171
423 => 0.0056022283572198
424 => 0.0056669576857293
425 => 0.0056823952491715
426 => 0.0056428522550314
427 => 0.0056514277145319
428 => 0.0056644171990024
429 => 0.0057432868051052
430 => 0.0059502634726234
501 => 0.0060419320297295
502 => 0.0063177214066298
503 => 0.0060343202321497
504 => 0.0060175043792867
505 => 0.0060671823741078
506 => 0.0062290999336186
507 => 0.0063603189074592
508 => 0.0064038518112863
509 => 0.006409605403177
510 => 0.0064912760247694
511 => 0.0065380881019992
512 => 0.0064813590631575
513 => 0.006433287142517
514 => 0.0062610994896894
515 => 0.0062810306793556
516 => 0.006418336811346
517 => 0.0066122898100733
518 => 0.0067787216603514
519 => 0.0067204430271196
520 => 0.0071650678603751
521 => 0.0072091505964628
522 => 0.007203059787701
523 => 0.0073034868208995
524 => 0.0071041596116101
525 => 0.0070189433678561
526 => 0.006443680837399
527 => 0.0066053061438037
528 => 0.0068402380185845
529 => 0.0068091439040079
530 => 0.0066385300967951
531 => 0.0067785922344793
601 => 0.0067322833116129
602 => 0.0066957575427892
603 => 0.0068630891706393
604 => 0.0066791011722137
605 => 0.0068384025975567
606 => 0.0066340968717921
607 => 0.0067207092390072
608 => 0.0066715438704071
609 => 0.0067033598893723
610 => 0.0065173640926098
611 => 0.0066177229097501
612 => 0.0065131888358676
613 => 0.0065131392731058
614 => 0.006510831677631
615 => 0.0066338155519788
616 => 0.006637826051706
617 => 0.0065469407827447
618 => 0.0065338427955926
619 => 0.0065822729190268
620 => 0.0065255739283548
621 => 0.006552103029231
622 => 0.0065263774677947
623 => 0.0065205861020522
624 => 0.0064744395144961
625 => 0.00645455829575
626 => 0.0064623542338962
627 => 0.0064357426779216
628 => 0.0064197082528649
629 => 0.0065076420269066
630 => 0.0064606625586744
701 => 0.0065004417496196
702 => 0.0064551083410035
703 => 0.0062979629959138
704 => 0.0062075870461709
705 => 0.0059107540566779
706 => 0.0059949355242779
707 => 0.0060507479243888
708 => 0.0060323019264851
709 => 0.0060719310676358
710 => 0.0060743639750479
711 => 0.0060614801372886
712 => 0.006046562303685
713 => 0.0060393011272948
714 => 0.0060934199871375
715 => 0.0061248378068333
716 => 0.0060563494454135
717 => 0.0060403035805869
718 => 0.0061095490953283
719 => 0.0061517888193188
720 => 0.0064636632088135
721 => 0.0064405585466988
722 => 0.0064985467145459
723 => 0.0064920181367473
724 => 0.0065527989748907
725 => 0.0066521499573564
726 => 0.006450141631032
727 => 0.0064852032915596
728 => 0.0064766069820902
729 => 0.0065704592348034
730 => 0.006570752231292
731 => 0.0065144831175228
801 => 0.0065449875169592
802 => 0.0065279607980382
803 => 0.0065587303804275
804 => 0.00644024996985
805 => 0.0065845463207634
806 => 0.0066663530534799
807 => 0.0066674889400431
808 => 0.0067062646820923
809 => 0.0067456630817538
810 => 0.0068212848790268
811 => 0.0067435540308717
812 => 0.0066037238019863
813 => 0.0066138190928629
814 => 0.0065318366808293
815 => 0.0065332148199869
816 => 0.0065258582051569
817 => 0.006547935960042
818 => 0.0064450947955074
819 => 0.0064692314112677
820 => 0.0064354400078595
821 => 0.0064851298356479
822 => 0.0064316717949703
823 => 0.0064766028366895
824 => 0.0064959935848079
825 => 0.0065675458628176
826 => 0.0064211034653309
827 => 0.0061224975035768
828 => 0.0061852680969849
829 => 0.0060924254588107
830 => 0.0061010183984505
831 => 0.0061183775040793
901 => 0.0060621109631906
902 => 0.0060728448460297
903 => 0.0060724613562015
904 => 0.0060691566480401
905 => 0.0060545195476381
906 => 0.006033292856193
907 => 0.006117853461679
908 => 0.0061322219563226
909 => 0.0061641613400355
910 => 0.006259191281274
911 => 0.006249695549184
912 => 0.006265183482197
913 => 0.0062313734113906
914 => 0.0061025867506656
915 => 0.0061095804859543
916 => 0.0060223684948374
917 => 0.0061619311333434
918 => 0.0061288808584083
919 => 0.006107573131153
920 => 0.0061017591203566
921 => 0.0061970246224386
922 => 0.0062255295537653
923 => 0.0062077671934573
924 => 0.0061713360742547
925 => 0.0062412945930172
926 => 0.0062600125413251
927 => 0.0062642027996599
928 => 0.0063881558816917
929 => 0.0062711303999985
930 => 0.0062992995965753
1001 => 0.0065190676270156
1002 => 0.0063197683493214
1003 => 0.0064253416216203
1004 => 0.0064201743593181
1005 => 0.0064741820730214
1006 => 0.0064157441504274
1007 => 0.0064164685585151
1008 => 0.0064644237494843
1009 => 0.0063970793325324
1010 => 0.0063804039078284
1011 => 0.0063573669280315
1012 => 0.006407667330627
1013 => 0.0064378201470914
1014 => 0.0066808297029913
1015 => 0.0068378249586847
1016 => 0.0068310093805895
1017 => 0.0068932910061519
1018 => 0.0068652325634017
1019 => 0.0067746244503183
1020 => 0.0069292814508695
1021 => 0.0068803415047713
1022 => 0.0068843760544656
1023 => 0.0068842258883245
1024 => 0.0069167666740755
1025 => 0.0068937085450517
1026 => 0.0068482586058775
1027 => 0.0068784303965612
1028 => 0.0069680298282792
1029 => 0.0072461492135782
1030 => 0.0074017885061833
1031 => 0.0072367795327369
1101 => 0.007350600513062
1102 => 0.007282348483429
1103 => 0.0072699450593227
1104 => 0.0073414330462713
1105 => 0.0074130461634775
1106 => 0.0074084847175035
1107 => 0.007356497271786
1108 => 0.0073271308828328
1109 => 0.0075495030184485
1110 => 0.0077133430199596
1111 => 0.0077021702302539
1112 => 0.0077514832904292
1113 => 0.0078962679602995
1114 => 0.0079095052560119
1115 => 0.0079078376610079
1116 => 0.0078750276424158
1117 => 0.0080175869525683
1118 => 0.00813651243719
1119 => 0.0078674330710843
1120 => 0.0079698949711898
1121 => 0.0080158934192634
1122 => 0.00808343278816
1123 => 0.0081973830244011
1124 => 0.0083211632047664
1125 => 0.0083386670794507
1126 => 0.0083262472427246
1127 => 0.0082446108863839
1128 => 0.0083800526367443
1129 => 0.0084593912376055
1130 => 0.0085066355587867
1201 => 0.008626439296597
1202 => 0.0080161774900189
1203 => 0.0075842038513432
1204 => 0.0075167449298891
1205 => 0.0076539252993572
1206 => 0.007690098668793
1207 => 0.007675517228931
1208 => 0.0071892916252765
1209 => 0.0075141850527125
1210 => 0.0078637430628185
1211 => 0.0078771710096064
1212 => 0.0080521670583788
1213 => 0.0081091529451895
1214 => 0.0082500477017076
1215 => 0.0082412346963259
1216 => 0.0082755403274128
1217 => 0.0082676540569167
1218 => 0.0085286319244753
1219 => 0.0088165292679808
1220 => 0.0088065602984327
1221 => 0.008765171649057
1222 => 0.0088266408511933
1223 => 0.0091237817626453
1224 => 0.0090964257891049
1225 => 0.0091229997872232
1226 => 0.009473345667953
1227 => 0.0099288451490222
1228 => 0.0097172199086654
1229 => 0.010176385786717
1230 => 0.010465406367614
1231 => 0.010965237576988
]
'min_raw' => 0.0044768636040216
'max_raw' => 0.010965237576988
'avg_raw' => 0.0077210505905047
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.004476'
'max' => '$0.010965'
'avg' => '$0.007721'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0019962031816345
'max_diff' => 0.0044485266558752
'year' => 2028
]
3 => [
'items' => [
101 => 0.010902656247854
102 => 0.011097236869732
103 => 0.010790622607586
104 => 0.010086574284731
105 => 0.0099751559426508
106 => 0.010198218285058
107 => 0.01074659528776
108 => 0.010180947941734
109 => 0.010295377663135
110 => 0.010262421895673
111 => 0.010260665822878
112 => 0.010327687979
113 => 0.010230468845905
114 => 0.0098343806082871
115 => 0.010015905513425
116 => 0.0099458100300092
117 => 0.010023586194823
118 => 0.010443312078994
119 => 0.010257741260587
120 => 0.010062257477944
121 => 0.010307437522702
122 => 0.010619635972684
123 => 0.010600099154758
124 => 0.010562189562227
125 => 0.010775883950445
126 => 0.0111288444732
127 => 0.01122424828419
128 => 0.011294673427019
129 => 0.011304383864372
130 => 0.011404407404116
131 => 0.010866555621736
201 => 0.011720140213386
202 => 0.011867530692566
203 => 0.01183982739119
204 => 0.012003645705658
205 => 0.011955446201872
206 => 0.011885612683156
207 => 0.012145299556744
208 => 0.011847589511826
209 => 0.011425027583717
210 => 0.01119320175263
211 => 0.011498488707862
212 => 0.011684916798376
213 => 0.011808133907152
214 => 0.011845419329818
215 => 0.010908307524534
216 => 0.01040325623609
217 => 0.010726988321558
218 => 0.011121963808624
219 => 0.010864361512962
220 => 0.010874459035247
221 => 0.010507185858325
222 => 0.011154459335281
223 => 0.011060157034116
224 => 0.011549397539381
225 => 0.011432636366399
226 => 0.011831593006236
227 => 0.011726534352474
228 => 0.01216262695049
301 => 0.012336596094575
302 => 0.012628717363627
303 => 0.01284360295829
304 => 0.012969787889583
305 => 0.012962212219616
306 => 0.013462219782479
307 => 0.013167382791592
308 => 0.012796998043295
309 => 0.012790298951747
310 => 0.012982126461283
311 => 0.013384144295962
312 => 0.013488381671373
313 => 0.013546636143904
314 => 0.013457417391371
315 => 0.01313739296892
316 => 0.012999208045867
317 => 0.013116945603911
318 => 0.012972962687727
319 => 0.013221517595532
320 => 0.013562836572412
321 => 0.013492355553408
322 => 0.013727963032834
323 => 0.01397179198741
324 => 0.014320478343498
325 => 0.014411637868798
326 => 0.014562321097632
327 => 0.014717423636964
328 => 0.014767238392467
329 => 0.014862350217333
330 => 0.014861848931068
331 => 0.015148474817066
401 => 0.015464632045386
402 => 0.01558397408002
403 => 0.015858394508104
404 => 0.01538845914185
405 => 0.015744910515382
406 => 0.016066438576864
407 => 0.015683099566919
408 => 0.016211443085595
409 => 0.016231957467173
410 => 0.016541700273205
411 => 0.01622771659975
412 => 0.016041274096723
413 => 0.016579526617051
414 => 0.016839970056843
415 => 0.016761522373218
416 => 0.016164531627399
417 => 0.015817057407194
418 => 0.014907650350147
419 => 0.015984882292681
420 => 0.016509570548602
421 => 0.016163172811571
422 => 0.016337875681377
423 => 0.017290997891438
424 => 0.017653885118937
425 => 0.01757840711239
426 => 0.017591161653023
427 => 0.017786969014112
428 => 0.018655286686264
429 => 0.018134970609665
430 => 0.018532732754354
501 => 0.018743704361659
502 => 0.018939666548099
503 => 0.018458445352687
504 => 0.017832383647999
505 => 0.017634083625841
506 => 0.016128730383377
507 => 0.016050370209689
508 => 0.016006384269641
509 => 0.015729059139577
510 => 0.015511157553093
511 => 0.015337874121354
512 => 0.014883126649657
513 => 0.015036590572103
514 => 0.014311818015391
515 => 0.014775501812813
516 => 0.013618747312056
517 => 0.014582126833432
518 => 0.014057803159439
519 => 0.014409872404885
520 => 0.014408644068455
521 => 0.013760372963933
522 => 0.013386463719917
523 => 0.013624733242969
524 => 0.01388017708554
525 => 0.01392162198958
526 => 0.014252811599239
527 => 0.014345239500398
528 => 0.01406517864484
529 => 0.013594776146161
530 => 0.013704039917865
531 => 0.013384249493071
601 => 0.012823829074179
602 => 0.013226332803029
603 => 0.013363765272898
604 => 0.013424463280947
605 => 0.012873354163687
606 => 0.012700183713883
607 => 0.012607989219448
608 => 0.013523634879654
609 => 0.013573796015874
610 => 0.013317164550906
611 => 0.014477163107355
612 => 0.014214619708076
613 => 0.014507945009765
614 => 0.013694125375832
615 => 0.013725214381802
616 => 0.013339939125059
617 => 0.013555667524733
618 => 0.013403197645095
619 => 0.013538238801909
620 => 0.013619181914508
621 => 0.014004393951372
622 => 0.014586525336119
623 => 0.013946856118754
624 => 0.013668143080516
625 => 0.013841055081897
626 => 0.014301542527652
627 => 0.014999204579889
628 => 0.014586174603207
629 => 0.014769470293155
630 => 0.014809512247151
701 => 0.014504959233547
702 => 0.015010433883911
703 => 0.01528132185551
704 => 0.015559196862003
705 => 0.01580046794426
706 => 0.015448207473807
707 => 0.015825176671746
708 => 0.015521406042229
709 => 0.015248892384321
710 => 0.015249305675051
711 => 0.015078353876656
712 => 0.014747113225953
713 => 0.01468602736782
714 => 0.015003803716121
715 => 0.015258630253927
716 => 0.015279618988117
717 => 0.015420704052906
718 => 0.015504196740957
719 => 0.016322538586658
720 => 0.016651682446677
721 => 0.017054153328335
722 => 0.017210938418757
723 => 0.01768280533036
724 => 0.017301734476083
725 => 0.017219287399713
726 => 0.016074692618653
727 => 0.01626211994993
728 => 0.016562209191353
729 => 0.016079640979715
730 => 0.016385719438108
731 => 0.016446145809423
801 => 0.01606324349654
802 => 0.016267768166083
803 => 0.015724611281116
804 => 0.014598364671934
805 => 0.015011687718342
806 => 0.01531603260353
807 => 0.014881694926912
808 => 0.015660228401061
809 => 0.015205425217656
810 => 0.01506127444292
811 => 0.014498890877211
812 => 0.014764314272097
813 => 0.015123303214177
814 => 0.014901489784916
815 => 0.015361785956087
816 => 0.016013688090971
817 => 0.016478272373732
818 => 0.016513937386197
819 => 0.016215240817111
820 => 0.016693903975327
821 => 0.016697390513866
822 => 0.016157456516002
823 => 0.015826749948675
824 => 0.015751612720765
825 => 0.015939320247604
826 => 0.016167231837907
827 => 0.016526584893275
828 => 0.016743734418507
829 => 0.017309945213105
830 => 0.017463145619588
831 => 0.017631466418851
901 => 0.017856394914879
902 => 0.018126479244843
903 => 0.017535550106791
904 => 0.017559028823076
905 => 0.017008763791693
906 => 0.016420726689672
907 => 0.016866973550246
908 => 0.017450381958715
909 => 0.017316547425203
910 => 0.017301488306192
911 => 0.017326813567318
912 => 0.017225906699677
913 => 0.016769508677122
914 => 0.016540308447397
915 => 0.016836035218956
916 => 0.016993200836756
917 => 0.017236951003681
918 => 0.017206903650665
919 => 0.017834777903807
920 => 0.018078750852646
921 => 0.018016332132142
922 => 0.018027818678905
923 => 0.018469520049111
924 => 0.018960782815595
925 => 0.019420915224239
926 => 0.019888981673458
927 => 0.01932470929998
928 => 0.019038206588209
929 => 0.019333804254711
930 => 0.019176955972027
1001 => 0.020078252728555
1002 => 0.020140656560461
1003 => 0.021041888142974
1004 => 0.02189726423144
1005 => 0.021360017835929
1006 => 0.021866616988787
1007 => 0.022414545276237
1008 => 0.02347158784089
1009 => 0.023115613092321
1010 => 0.022842942013752
1011 => 0.022585269162042
1012 => 0.023121445462038
1013 => 0.023811227706357
1014 => 0.023959800195131
1015 => 0.024200544386004
1016 => 0.0239474313061
1017 => 0.024252278131353
1018 => 0.025328521380979
1019 => 0.025037710954669
1020 => 0.024624713399198
1021 => 0.025474304081277
1022 => 0.025781767646422
1023 => 0.027939707966524
1024 => 0.030664196760721
1025 => 0.029536240509966
1026 => 0.028836081666201
1027 => 0.029000635602475
1028 => 0.02999552668035
1029 => 0.030315054118299
1030 => 0.029446468394241
1031 => 0.029753267555971
1101 => 0.031443761100934
1102 => 0.03235065665028
1103 => 0.031118970681946
1104 => 0.027720797944686
1105 => 0.024587527488032
1106 => 0.025418611906144
1107 => 0.025324392724682
1108 => 0.02714061714538
1109 => 0.025030775222178
1110 => 0.025066299549174
1111 => 0.026920081567477
1112 => 0.026425524306863
1113 => 0.025624404882777
1114 => 0.0245933765464
1115 => 0.022687425308028
1116 => 0.02099927114482
1117 => 0.024310130217556
1118 => 0.024167359953933
1119 => 0.02396060745484
1120 => 0.024420712768616
1121 => 0.026654853569139
1122 => 0.026603349392479
1123 => 0.026275706098229
1124 => 0.026524220649202
1125 => 0.025580839080441
1126 => 0.02582396999111
1127 => 0.024587031161984
1128 => 0.025146179171877
1129 => 0.025622686040294
1130 => 0.025718351848934
1201 => 0.025933891800616
1202 => 0.024092126512535
1203 => 0.024919025055495
1204 => 0.025404750479569
1205 => 0.023210225342762
1206 => 0.02536137177355
1207 => 0.024060065476427
1208 => 0.023618382574219
1209 => 0.024213050414745
1210 => 0.023981307778959
1211 => 0.023782069069094
1212 => 0.023670890445633
1213 => 0.024107548876621
1214 => 0.024087178238896
1215 => 0.023372720294051
1216 => 0.022440739030032
1217 => 0.022753542533479
1218 => 0.022639898088128
1219 => 0.022228035957752
1220 => 0.022505581305202
1221 => 0.021283412057517
1222 => 0.019180733389704
1223 => 0.02056982732445
1224 => 0.020516348719006
1225 => 0.020489382381079
1226 => 0.021533248081305
1227 => 0.021432904480308
1228 => 0.02125077986193
1229 => 0.022224691096311
1230 => 0.021869200394808
1231 => 0.022964738972699
]
'min_raw' => 0.0098343806082871
'max_raw' => 0.03235065665028
'avg_raw' => 0.021092518629284
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.009834'
'max' => '$0.03235'
'avg' => '$0.021092'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0053575170042655
'max_diff' => 0.021385419073293
'year' => 2029
]
4 => [
'items' => [
101 => 0.023686331535092
102 => 0.023503312320195
103 => 0.024181973612884
104 => 0.022760748894424
105 => 0.023232822736258
106 => 0.023330116500794
107 => 0.022212673182855
108 => 0.021449321934401
109 => 0.021398415108971
110 => 0.020074869240432
111 => 0.020781896760117
112 => 0.021404051718652
113 => 0.021106087774689
114 => 0.021011761291449
115 => 0.0214936548374
116 => 0.02153110209306
117 => 0.020677300695541
118 => 0.020854833042459
119 => 0.021595172441404
120 => 0.020836178389121
121 => 0.01936157692651
122 => 0.018995855375822
123 => 0.018947061379375
124 => 0.017955195528167
125 => 0.019020294638605
126 => 0.018555350334017
127 => 0.020024103821321
128 => 0.019185159706456
129 => 0.01914899450244
130 => 0.019094325492289
131 => 0.018240585580693
201 => 0.01842750036333
202 => 0.019048833568744
203 => 0.019270532256255
204 => 0.019247407266823
205 => 0.01904578869707
206 => 0.019138088645849
207 => 0.018840758351398
208 => 0.018735764836032
209 => 0.018404376420797
210 => 0.017917326998787
211 => 0.017985054208165
212 => 0.01702008185975
213 => 0.016494313709375
214 => 0.016348788014863
215 => 0.016154184974226
216 => 0.016370768946122
217 => 0.017017348214329
218 => 0.016237436437428
219 => 0.014900332400381
220 => 0.014980694631322
221 => 0.015161244704485
222 => 0.014824790837603
223 => 0.014506365489031
224 => 0.014783210494949
225 => 0.014216661887721
226 => 0.015229709396951
227 => 0.015202309300859
228 => 0.015579910765862
301 => 0.015816032711091
302 => 0.015271848072727
303 => 0.01513498710781
304 => 0.01521294933341
305 => 0.013924407407234
306 => 0.015474609400279
307 => 0.015488015611488
308 => 0.015373223491967
309 => 0.016198658196146
310 => 0.017940582881505
311 => 0.017285200746115
312 => 0.017031416974262
313 => 0.016548973838454
314 => 0.017191800672279
315 => 0.017142441601102
316 => 0.016919221162368
317 => 0.016784216744531
318 => 0.017032966523856
319 => 0.016753393894081
320 => 0.016703174967631
321 => 0.016398902912076
322 => 0.01629029163174
323 => 0.016209880163718
324 => 0.016121355038494
325 => 0.016316619405652
326 => 0.015874124660506
327 => 0.015340519376154
328 => 0.01529615587045
329 => 0.01541864741018
330 => 0.015364454022272
331 => 0.015295896413358
401 => 0.015165001267388
402 => 0.015126167473711
403 => 0.015252358463683
404 => 0.015109896193397
405 => 0.015320107033526
406 => 0.015262941316507
407 => 0.014943618268219
408 => 0.014545623521518
409 => 0.01454208053345
410 => 0.014456333218116
411 => 0.014347121119842
412 => 0.014316740812537
413 => 0.014759895380734
414 => 0.015677212074404
415 => 0.015497120857908
416 => 0.015627255218316
417 => 0.016267387472814
418 => 0.01647086626707
419 => 0.016326441838566
420 => 0.01612874477312
421 => 0.01613744244067
422 => 0.016813033160273
423 => 0.016855168924758
424 => 0.016961632408099
425 => 0.01709846807077
426 => 0.016349745543613
427 => 0.016102177676972
428 => 0.015984866287215
429 => 0.015623592611986
430 => 0.016013195297457
501 => 0.015786190497083
502 => 0.015816821200242
503 => 0.015796872914626
504 => 0.015807766027469
505 => 0.015229426229526
506 => 0.015440142855252
507 => 0.015089785595821
508 => 0.014620696554892
509 => 0.014619124003943
510 => 0.014733932882152
511 => 0.014665640068921
512 => 0.014481865864486
513 => 0.014507970122836
514 => 0.014279269351496
515 => 0.014535738537238
516 => 0.014543093155794
517 => 0.014444338549313
518 => 0.014839464715875
519 => 0.015001348228708
520 => 0.014936345831193
521 => 0.014996787487215
522 => 0.015504604461017
523 => 0.015587400785354
524 => 0.015624173443407
525 => 0.01557490295306
526 => 0.015006069449284
527 => 0.015031299634043
528 => 0.01484617727877
529 => 0.014689768396277
530 => 0.01469602393132
531 => 0.014776438428653
601 => 0.015127613254753
602 => 0.015866639973393
603 => 0.015894685497144
604 => 0.015928677490076
605 => 0.015790414971815
606 => 0.015748713673314
607 => 0.015803728450056
608 => 0.016081268029398
609 => 0.016795175178728
610 => 0.016542832711899
611 => 0.016337674358423
612 => 0.016517653544717
613 => 0.01648994715971
614 => 0.016256077387536
615 => 0.016249513441959
616 => 0.015800642576468
617 => 0.015634705237791
618 => 0.015496035577398
619 => 0.015344611928312
620 => 0.015254842913367
621 => 0.01539276891961
622 => 0.01542431422913
623 => 0.015122736605946
624 => 0.015081632690273
625 => 0.015327907487371
626 => 0.015219531131218
627 => 0.015330998901125
628 => 0.015356860379897
629 => 0.015352696086174
630 => 0.015239538723405
701 => 0.015311661852033
702 => 0.015141069151889
703 => 0.014955575212678
704 => 0.014837241636142
705 => 0.014733979895943
706 => 0.014791275511013
707 => 0.014587027105055
708 => 0.01452168392928
709 => 0.015287228158876
710 => 0.015852743912265
711 => 0.015844521089242
712 => 0.015794466768827
713 => 0.015720096201839
714 => 0.016075827359197
715 => 0.015951897737043
716 => 0.016042066891827
717 => 0.016065018726107
718 => 0.016134487015822
719 => 0.016159315958394
720 => 0.016084265649132
721 => 0.015832387644626
722 => 0.015204731605238
723 => 0.014912556024578
724 => 0.014816133216391
725 => 0.014819638002336
726 => 0.01472296035993
727 => 0.014751436258407
728 => 0.014713057604533
729 => 0.014640377718891
730 => 0.014786787732881
731 => 0.01480366012309
801 => 0.014769486276355
802 => 0.014777535454372
803 => 0.014494590599251
804 => 0.014516102282062
805 => 0.014396322498598
806 => 0.014373865233165
807 => 0.014071072370987
808 => 0.013534630925111
809 => 0.013831871559758
810 => 0.013472846671463
811 => 0.013336878506151
812 => 0.01398053065335
813 => 0.013915925829903
814 => 0.013805350455203
815 => 0.013641786430094
816 => 0.013581118942133
817 => 0.013212522490273
818 => 0.013190743845512
819 => 0.013373430199995
820 => 0.013289126733255
821 => 0.013170732737732
822 => 0.012741921687354
823 => 0.01225979609227
824 => 0.012274348433452
825 => 0.012427703614983
826 => 0.012873604488047
827 => 0.012699383302778
828 => 0.012572983833907
829 => 0.012549313012941
830 => 0.012845602895544
831 => 0.013264915154076
901 => 0.013461647084196
902 => 0.013266691716285
903 => 0.01304273748677
904 => 0.013056368543017
905 => 0.013147049853404
906 => 0.013156579176961
907 => 0.013010807996414
908 => 0.013051841729879
909 => 0.012989507736543
910 => 0.012606964134501
911 => 0.012600045133799
912 => 0.012506162764509
913 => 0.012503320043678
914 => 0.012343602713462
915 => 0.012321257154891
916 => 0.012004128701596
917 => 0.012212863609908
918 => 0.012072855192487
919 => 0.011861829482787
920 => 0.011825448570894
921 => 0.011824354916752
922 => 0.012041031136128
923 => 0.01221033162213
924 => 0.012075290698851
925 => 0.012044544498279
926 => 0.01237283348177
927 => 0.0123310557162
928 => 0.012294876440655
929 => 0.013227370340382
930 => 0.012489228655341
1001 => 0.012167356749009
1002 => 0.011768979143106
1003 => 0.011898692900382
1004 => 0.011926025494932
1005 => 0.010967999165696
1006 => 0.01057932800324
1007 => 0.010445950707048
1008 => 0.010369190187412
1009 => 0.010404170920108
1010 => 0.010054321287317
1011 => 0.010289426026531
1012 => 0.0099864858165876
1013 => 0.0099356969045378
1014 => 0.010477391527008
1015 => 0.010552765169191
1016 => 0.010231197794884
1017 => 0.010437696106218
1018 => 0.010362816947987
1019 => 0.0099916788569959
1020 => 0.0099775041118271
1021 => 0.0097912800639023
1022 => 0.0094998754889813
1023 => 0.0093666957788138
1024 => 0.0092973346294393
1025 => 0.0093259543914931
1026 => 0.0093114833640196
1027 => 0.0092170501211744
1028 => 0.0093168961669598
1029 => 0.0090618307792127
1030 => 0.0089602616866104
1031 => 0.0089143852838669
1101 => 0.0086880000712254
1102 => 0.009048279618499
1103 => 0.0091192592279941
1104 => 0.0091903786892466
1105 => 0.0098094250441309
1106 => 0.0097784992376477
1107 => 0.010058053466777
1108 => 0.0100471905035
1109 => 0.0099674571088744
1110 => 0.0096310750324543
1111 => 0.0097651509326814
1112 => 0.0093524861518035
1113 => 0.0096616826641147
1114 => 0.009520578288251
1115 => 0.009613975132697
1116 => 0.0094460391851291
1117 => 0.0095389818724185
1118 => 0.0091360911265753
1119 => 0.0087598774169327
1120 => 0.0089112767960557
1121 => 0.0090758652357816
1122 => 0.0094327349094617
1123 => 0.0092201862759287
1124 => 0.0092966268019008
1125 => 0.0090405638358837
1126 => 0.0085122327962201
1127 => 0.0085152230925281
1128 => 0.0084339508723932
1129 => 0.0083637198082582
1130 => 0.0092446000433236
1201 => 0.0091350486614374
1202 => 0.0089604928721322
1203 => 0.0091941427326886
1204 => 0.0092559234643416
1205 => 0.0092576822749183
1206 => 0.0094281471818044
1207 => 0.0095191243331671
1208 => 0.0095351594504123
1209 => 0.0098033896645357
1210 => 0.0098932968942678
1211 => 0.010263612049387
1212 => 0.0095114055574959
1213 => 0.0094959143597987
1214 => 0.0091974306653827
1215 => 0.0090081275875435
1216 => 0.0092103924090782
1217 => 0.0093895714290563
1218 => 0.009202998256993
1219 => 0.0092273607744898
1220 => 0.008976901534583
1221 => 0.0090664289276471
1222 => 0.0091435419791961
1223 => 0.0091009646846264
1224 => 0.0090372244138912
1225 => 0.0093748807927487
1226 => 0.0093558288965675
1227 => 0.0096702622792463
1228 => 0.0099153855863913
1229 => 0.010354690373827
1230 => 0.0098962529266613
1231 => 0.0098795456439627
]
'min_raw' => 0.0083637198082582
'max_raw' => 0.024181973612884
'avg_raw' => 0.016272846710571
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.008363'
'max' => '$0.024181'
'avg' => '$0.016272'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0014706608000289
'max_diff' => -0.008168683037396
'year' => 2030
]
5 => [
'items' => [
101 => 0.010042862012273
102 => 0.0098932718913827
103 => 0.0099878076841102
104 => 0.010339459196101
105 => 0.010346889038425
106 => 0.0102224296067
107 => 0.010214856238969
108 => 0.010238760034269
109 => 0.01037876530996
110 => 0.010329843164706
111 => 0.010386457109751
112 => 0.010457253714934
113 => 0.010750098491108
114 => 0.010820702375222
115 => 0.010649171540742
116 => 0.010664658854546
117 => 0.010600501613823
118 => 0.010538526523173
119 => 0.01067783747622
120 => 0.010932430981075
121 => 0.010930847168095
122 => 0.010989907912631
123 => 0.011026702267191
124 => 0.010868753962305
125 => 0.010765935423744
126 => 0.010805362593942
127 => 0.0108684074977
128 => 0.010784917981351
129 => 0.010269582010337
130 => 0.010425902024153
131 => 0.010399882730196
201 => 0.010362828091547
202 => 0.010520009074226
203 => 0.010504848585001
204 => 0.010050733073668
205 => 0.01007980407533
206 => 0.010052500977565
207 => 0.01014072287213
208 => 0.0098885076195567
209 => 0.0099660873325525
210 => 0.010014744601279
211 => 0.010043404106361
212 => 0.010146941890726
213 => 0.01013479292676
214 => 0.010146186694068
215 => 0.010299705895319
216 => 0.011076153333821
217 => 0.011118413654764
218 => 0.010910308378455
219 => 0.010993442331645
220 => 0.010833843320916
221 => 0.010940983206039
222 => 0.011014285594382
223 => 0.010683046196699
224 => 0.010663432349294
225 => 0.010503174616676
226 => 0.010589288044723
227 => 0.010452275388925
228 => 0.010485893502159
301 => 0.010391894326784
302 => 0.01056107412741
303 => 0.010750243432394
304 => 0.010798035069355
305 => 0.010672315848103
306 => 0.010581286846617
307 => 0.010421469906824
308 => 0.010687249039452
309 => 0.010764970957305
310 => 0.010686840799305
311 => 0.010668736334519
312 => 0.010634428406463
313 => 0.01067601492364
314 => 0.010764547667049
315 => 0.0107227972602
316 => 0.010750374139471
317 => 0.010645279512845
318 => 0.010868806249766
319 => 0.011223820502635
320 => 0.011224961931509
321 => 0.01118321129961
322 => 0.011166127840567
323 => 0.011208966522535
324 => 0.011232204750169
325 => 0.011370737192384
326 => 0.011519388022256
327 => 0.012213076583834
328 => 0.012018291611583
329 => 0.012633773371131
330 => 0.013120539532631
331 => 0.01326649942076
401 => 0.013132223191624
402 => 0.012672871465212
403 => 0.012650333478061
404 => 0.013336798890618
405 => 0.013142840969463
406 => 0.01311977029191
407 => 0.012874337261277
408 => 0.013019418579854
409 => 0.012987687167266
410 => 0.012937597580144
411 => 0.013214402629535
412 => 0.013732556971438
413 => 0.013651797758031
414 => 0.013591514751536
415 => 0.013327372165191
416 => 0.013486445000553
417 => 0.01342980221072
418 => 0.013673175582245
419 => 0.013529006588334
420 => 0.013141371547447
421 => 0.01320310370537
422 => 0.013193773013888
423 => 0.013385797983412
424 => 0.013328156853913
425 => 0.013182517658246
426 => 0.013730785976228
427 => 0.013695184481287
428 => 0.013745659261478
429 => 0.013767879820703
430 => 0.014101601084287
501 => 0.014238316008088
502 => 0.014269352689322
503 => 0.014399221293021
504 => 0.014266121440155
505 => 0.014798615750209
506 => 0.01515269339449
507 => 0.015563972798992
508 => 0.016164962550452
509 => 0.016390940256467
510 => 0.016350119406524
511 => 0.016805782977079
512 => 0.017624600284536
513 => 0.016515625795243
514 => 0.017683378625269
515 => 0.017313681561638
516 => 0.016437136474334
517 => 0.016380697304499
518 => 0.016974303814519
519 => 0.018290865921233
520 => 0.017961082045825
521 => 0.018291405329512
522 => 0.017906065672937
523 => 0.017886930311091
524 => 0.018272690242486
525 => 0.019174039348871
526 => 0.018745842174994
527 => 0.018131916527986
528 => 0.018585229671995
529 => 0.018192527874503
530 => 0.017307660814441
531 => 0.017960829866311
601 => 0.017524074322509
602 => 0.017651542809392
603 => 0.018569537999979
604 => 0.018459082389934
605 => 0.018602022177247
606 => 0.018349737194025
607 => 0.018114063238006
608 => 0.017674160297718
609 => 0.017543926724052
610 => 0.0175799185985
611 => 0.017543908888266
612 => 0.017297787236092
613 => 0.017244637288738
614 => 0.017156051714596
615 => 0.0171835080882
616 => 0.017016941292189
617 => 0.017331287250717
618 => 0.017389632630627
619 => 0.017618387404967
620 => 0.017642137484503
621 => 0.018279216274918
622 => 0.017928323982832
623 => 0.018163732826946
624 => 0.018142675644175
625 => 0.016456133864293
626 => 0.016688524441077
627 => 0.017050051250371
628 => 0.016887183912822
629 => 0.016656927602615
630 => 0.016470983286561
701 => 0.016189258633955
702 => 0.016585780672454
703 => 0.017107164987663
704 => 0.017655360651152
705 => 0.018313981821632
706 => 0.018166985243577
707 => 0.017643048186497
708 => 0.017666551620142
709 => 0.017811840598671
710 => 0.01762367817058
711 => 0.017568185397169
712 => 0.017804216743753
713 => 0.017805842161917
714 => 0.01758933854821
715 => 0.017348734401317
716 => 0.017347726261156
717 => 0.017304913077177
718 => 0.017913682043257
719 => 0.018248443421116
720 => 0.018286823273593
721 => 0.01824586015125
722 => 0.018261625231272
723 => 0.018066834961459
724 => 0.018512067754991
725 => 0.018920657395295
726 => 0.018811146643449
727 => 0.018646974458561
728 => 0.018516203405694
729 => 0.018780341139357
730 => 0.018768579501868
731 => 0.018917088721233
801 => 0.018910351485211
802 => 0.018860413420453
803 => 0.018811148426894
804 => 0.019006478557694
805 => 0.01895022661693
806 => 0.018893887301364
807 => 0.01878089017888
808 => 0.018796248364509
809 => 0.018632104526263
810 => 0.01855616407598
811 => 0.017414201910336
812 => 0.017109032304986
813 => 0.017205044875129
814 => 0.017236654706186
815 => 0.017103844502852
816 => 0.017294260218291
817 => 0.01726458413074
818 => 0.01738003642747
819 => 0.017307906844829
820 => 0.01731086706806
821 => 0.017522984790959
822 => 0.01758456346833
823 => 0.017553244056018
824 => 0.017575179098835
825 => 0.018080662902338
826 => 0.018008799269942
827 => 0.017970623147527
828 => 0.017981198194336
829 => 0.018110360143826
830 => 0.018146518437702
831 => 0.017993313205751
901 => 0.018065565678808
902 => 0.018373207538882
903 => 0.018480864778887
904 => 0.018824455010575
905 => 0.018678491773324
906 => 0.018946413612438
907 => 0.01976991400459
908 => 0.020427783099733
909 => 0.019822779492249
910 => 0.021030872306355
911 => 0.021971545852758
912 => 0.021935441235274
913 => 0.021771413044287
914 => 0.020700481220807
915 => 0.019714993790147
916 => 0.020539395871901
917 => 0.020541497442347
918 => 0.020470680572398
919 => 0.0200308430752
920 => 0.020455375180899
921 => 0.020489072997775
922 => 0.020470211181297
923 => 0.020132988803449
924 => 0.019618112561587
925 => 0.019718718146807
926 => 0.019883512147696
927 => 0.019571522724383
928 => 0.019471823199529
929 => 0.019657183584844
930 => 0.020254453367698
1001 => 0.020141542974997
1002 => 0.020138594428337
1003 => 0.020621672969767
1004 => 0.020275892988978
1005 => 0.01971998710542
1006 => 0.019579613538324
1007 => 0.019081381942099
1008 => 0.019425512280252
1009 => 0.019437896918479
1010 => 0.019249420249199
1011 => 0.019735280948378
1012 => 0.019730803656501
1013 => 0.02019205607955
1014 => 0.021073797473921
1015 => 0.020813023155747
1016 => 0.020509770995875
1017 => 0.020542742913923
1018 => 0.020904363473286
1019 => 0.020685719428101
1020 => 0.02076434535119
1021 => 0.020904244463535
1022 => 0.020988649071512
1023 => 0.020530598389749
1024 => 0.020423804864733
1025 => 0.020205342791985
1026 => 0.020148350114992
1027 => 0.020326282914885
1028 => 0.020279403908572
1029 => 0.019436856037591
1030 => 0.019348805097182
1031 => 0.019351505493816
1101 => 0.019130097217562
1102 => 0.0187923964522
1103 => 0.019679853900507
1104 => 0.019608578647449
1105 => 0.019529896284339
1106 => 0.019539534424865
1107 => 0.019924749624451
1108 => 0.019701305354857
1109 => 0.020295368567368
1110 => 0.020173247030051
1111 => 0.020047993536108
1112 => 0.02003067968793
1113 => 0.019982467778888
1114 => 0.019817131203921
1115 => 0.019617477354461
1116 => 0.019485648589328
1117 => 0.017974480816167
1118 => 0.018254944764807
1119 => 0.018577592972624
1120 => 0.018688969841031
1121 => 0.018498452000577
1122 => 0.019824654009483
1123 => 0.02006696389611
1124 => 0.019332991444032
1125 => 0.019195695166146
1126 => 0.019833655130603
1127 => 0.019448887284602
1128 => 0.019622148222097
1129 => 0.019247652843899
1130 => 0.020008598540083
1201 => 0.020002801408811
1202 => 0.019706776346257
1203 => 0.019956974702036
1204 => 0.01991349658064
1205 => 0.019579285014094
1206 => 0.020019193642865
1207 => 0.020019411832057
1208 => 0.019734494145489
1209 => 0.019401772664079
1210 => 0.019342289921733
1211 => 0.019297477665758
1212 => 0.019611127154168
1213 => 0.01989234430472
1214 => 0.020415619702254
1215 => 0.020547183569911
1216 => 0.021060686104078
1217 => 0.020754920346966
1218 => 0.020890462346764
1219 => 0.021037612361131
1220 => 0.021108161489282
1221 => 0.020993205470836
1222 => 0.021790886272472
1223 => 0.021858234972439
1224 => 0.021880816408974
1225 => 0.021611842930762
1226 => 0.02185075433344
1227 => 0.021738975600041
1228 => 0.022029792811319
1229 => 0.022075396663388
1230 => 0.02203677182309
1231 => 0.022051247205544
]
'min_raw' => 0.0098885076195567
'max_raw' => 0.022075396663388
'avg_raw' => 0.015981952141472
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.009888'
'max' => '$0.022075'
'avg' => '$0.015981'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0015247878112985
'max_diff' => -0.0021065769494964
'year' => 2031
]
6 => [
'items' => [
101 => 0.021370567361884
102 => 0.021335270521117
103 => 0.020853995592723
104 => 0.021050118683448
105 => 0.020683475965762
106 => 0.020799742148379
107 => 0.020850991173851
108 => 0.020824221591301
109 => 0.021061207188737
110 => 0.020859721017957
111 => 0.020327965885876
112 => 0.019796065877464
113 => 0.019789388306135
114 => 0.019649348422735
115 => 0.019548125236621
116 => 0.019567624413352
117 => 0.01963634205547
118 => 0.019544131242339
119 => 0.019563809094528
120 => 0.019890592553696
121 => 0.01995612664592
122 => 0.019733416194722
123 => 0.0188392015962
124 => 0.018619759090755
125 => 0.018777490011935
126 => 0.018702104790783
127 => 0.015094058205594
128 => 0.015941715231873
129 => 0.015438066210571
130 => 0.015670170851364
131 => 0.015156075619897
201 => 0.015401428810393
202 => 0.015356121034972
203 => 0.016719128449233
204 => 0.016697846963215
205 => 0.016708033284381
206 => 0.016221813634819
207 => 0.016996374738872
208 => 0.017377951391045
209 => 0.017307331708062
210 => 0.017325105160828
211 => 0.017019698356048
212 => 0.016710990289837
213 => 0.016368585534578
214 => 0.017004731247343
215 => 0.016934002703453
216 => 0.017096228535809
217 => 0.017508814503172
218 => 0.017569569354128
219 => 0.017651224489927
220 => 0.017621956936351
221 => 0.018319228801826
222 => 0.018234784578169
223 => 0.018438270860921
224 => 0.018019684138759
225 => 0.017546013530016
226 => 0.01763604282728
227 => 0.017627372281983
228 => 0.017516986288772
229 => 0.017417334749793
301 => 0.017251443014039
302 => 0.017776349013322
303 => 0.017755038788342
304 => 0.01810002656034
305 => 0.018039046620607
306 => 0.017631807658746
307 => 0.017646352277938
308 => 0.017744171831911
309 => 0.018082726425095
310 => 0.018183232478907
311 => 0.018136674070308
312 => 0.018246874370036
313 => 0.018333972193714
314 => 0.018257812515709
315 => 0.019336072949714
316 => 0.01888830404146
317 => 0.019106543491787
318 => 0.019158592314749
319 => 0.019025270349202
320 => 0.019054183109627
321 => 0.019097978063416
322 => 0.019363892446892
323 => 0.020061728732079
324 => 0.020370795672456
325 => 0.021300638811675
326 => 0.020345131965478
327 => 0.020288436143505
328 => 0.020455928971451
329 => 0.021001845328065
330 => 0.021444259259784
331 => 0.021591033484408
401 => 0.02161043212117
402 => 0.021885790323929
403 => 0.022043620510625
404 => 0.021852354595475
405 => 0.021690276758761
406 => 0.021109734065495
407 => 0.021176933463006
408 => 0.021639870673419
409 => 0.022293796749994
410 => 0.022854933353108
411 => 0.022658442872282
412 => 0.024157526540318
413 => 0.024306154562796
414 => 0.024285618975809
415 => 0.024624215729829
416 => 0.023952170127128
417 => 0.023664857611704
418 => 0.02172531982672
419 => 0.022270250831582
420 => 0.023062340049825
421 => 0.022957504071609
422 => 0.022382267708715
423 => 0.022854496984744
424 => 0.022698363218114
425 => 0.022575214038377
426 => 0.023139384304395
427 => 0.022519055922071
428 => 0.023056151799685
429 => 0.0223673207811
430 => 0.022659340424248
501 => 0.022493575951396
502 => 0.022600845880661
503 => 0.021973748066064
504 => 0.022312114824881
505 => 0.021959670896451
506 => 0.021959503792139
507 => 0.021951723572885
508 => 0.022366372291708
509 => 0.022379893971542
510 => 0.022073467941832
511 => 0.022029307163677
512 => 0.022192592706118
513 => 0.022001428100471
514 => 0.022090872816278
515 => 0.022004137289794
516 => 0.021984611295853
517 => 0.021829024854055
518 => 0.021761993936991
519 => 0.021788278486746
520 => 0.021698555767818
521 => 0.021644494584251
522 => 0.021940969442773
523 => 0.021782574885626
524 => 0.021916693205192
525 => 0.021763848452965
526 => 0.021234021950458
527 => 0.020929313126053
528 => 0.019928519977759
529 => 0.020212343673135
530 => 0.020400519076806
531 => 0.020338327107016
601 => 0.020471939523224
602 => 0.020480142240424
603 => 0.020436703481897
604 => 0.020386406964373
605 => 0.020361925401214
606 => 0.020544390915632
607 => 0.020650318288258
608 => 0.020419404996027
609 => 0.020365305242477
610 => 0.020598771329996
611 => 0.020741185508513
612 => 0.021792691787069
613 => 0.021714792805633
614 => 0.021910303962134
615 => 0.021888292406275
616 => 0.022093219245659
617 => 0.022428188019506
618 => 0.021747102843532
619 => 0.021865315679928
620 => 0.021836332622377
621 => 0.022152762044954
622 => 0.022153749903072
623 => 0.021964034657415
624 => 0.022066882369864
625 => 0.022009475598254
626 => 0.022113217393544
627 => 0.021713752417243
628 => 0.022200257638797
629 => 0.022476074749715
630 => 0.022479904470567
701 => 0.022610639592122
702 => 0.02274347404729
703 => 0.022998438216541
704 => 0.022736363234991
705 => 0.022264915855669
706 => 0.022298952833691
707 => 0.02202254340769
708 => 0.022027189900079
709 => 0.022002386559557
710 => 0.022076823251571
711 => 0.021730087085202
712 => 0.021811465370403
713 => 0.021697535294571
714 => 0.021865068018193
715 => 0.021684830501727
716 => 0.021836318645869
717 => 0.021901695906969
718 => 0.022142939407899
719 => 0.021649198640491
720 => 0.020642427792434
721 => 0.020854063230613
722 => 0.020541037793942
723 => 0.020570009489878
724 => 0.020628536926479
725 => 0.020438830355469
726 => 0.020475020390876
727 => 0.020473727428146
728 => 0.020462585373853
729 => 0.020413235367918
730 => 0.020341668095711
731 => 0.02062677008094
801 => 0.020675214463807
802 => 0.020782900325931
803 => 0.021103300407595
804 => 0.021071284883883
805 => 0.021123503531369
806 => 0.021009510517102
807 => 0.02057529729887
808 => 0.020598877165683
809 => 0.020304835848685
810 => 0.02077538102836
811 => 0.020663949718921
812 => 0.020592109228821
813 => 0.0205725068855
814 => 0.020893701176994
815 => 0.020989807543113
816 => 0.020929920505206
817 => 0.020807090443275
818 => 0.021042960473631
819 => 0.021106069343196
820 => 0.021120197091726
821 => 0.021538113561924
822 => 0.021143553979938
823 => 0.021238528392907
824 => 0.02197949165125
825 => 0.021307540221873
826 => 0.021663487880319
827 => 0.021646066094701
828 => 0.02182815687215
829 => 0.021631129336118
830 => 0.021633571728563
831 => 0.02179525600304
901 => 0.021568199599449
902 => 0.021511977240819
903 => 0.021434306455043
904 => 0.021603897774256
905 => 0.021705560100168
906 => 0.02252488378427
907 => 0.023054204249899
908 => 0.023031225052502
909 => 0.02324121190145
910 => 0.02314661090274
911 => 0.022841119323423
912 => 0.023362556198588
913 => 0.02319755175344
914 => 0.023211154519418
915 => 0.023210648223789
916 => 0.023320361754873
917 => 0.023242619663003
918 => 0.023089382019863
919 => 0.02319110831868
920 => 0.02349319905835
921 => 0.024430897983561
922 => 0.024955646724968
923 => 0.024399307450435
924 => 0.024783062832328
925 => 0.024552946349216
926 => 0.024511127338862
927 => 0.024752154077991
928 => 0.02499360270252
929 => 0.024978223468948
930 => 0.024802944166064
1001 => 0.024703933335413
1002 => 0.025453676516168
1003 => 0.026006074520206
1004 => 0.025968404679654
1005 => 0.026134667104963
1006 => 0.026622818727974
1007 => 0.026667449194666
1008 => 0.026661826781683
1009 => 0.026551205513277
1010 => 0.027031854180629
1011 => 0.027432819755144
1012 => 0.026525599885797
1013 => 0.026871057335664
1014 => 0.027026144314853
1015 => 0.027253858012536
1016 => 0.027638049189775
1017 => 0.028055382709932
1018 => 0.028114398245512
1019 => 0.028072523898865
1020 => 0.027797281223794
1021 => 0.028253932541375
1022 => 0.028521428173422
1023 => 0.028680715700778
1024 => 0.029084642367235
1025 => 0.027027102079239
1026 => 0.025570672797007
1027 => 0.025343230333493
1028 => 0.025805743526782
1029 => 0.025927704567379
1030 => 0.025878542224841
1031 => 0.024239198654932
1101 => 0.025334599528867
1102 => 0.0265131587653
1103 => 0.026558432025405
1104 => 0.027148443421675
1105 => 0.027340575317685
1106 => 0.027815611826244
1107 => 0.027785898163295
1108 => 0.027901561993647
1109 => 0.027874972882068
1110 => 0.028754877983434
1111 => 0.029725543977414
1112 => 0.029691932900571
1113 => 0.029552388179538
1114 => 0.029759635886183
1115 => 0.030761467214859
1116 => 0.030669234640135
1117 => 0.030758830730128
1118 => 0.031940046327377
1119 => 0.03347579462976
1120 => 0.032762285356694
1121 => 0.034310395172484
1122 => 0.035284848239748
1123 => 0.036970064059254
1124 => 0.036759066738789
1125 => 0.037415108890638
1126 => 0.036381337498687
1127 => 0.034007589423099
1128 => 0.033631934703795
1129 => 0.034384004964935
1130 => 0.036232896316005
1201 => 0.034325776796644
1202 => 0.034711584591573
1203 => 0.034600471920679
1204 => 0.034594551198645
1205 => 0.034820521077347
1206 => 0.034492739982494
1207 => 0.033157300835368
1208 => 0.033769324726703
1209 => 0.033532992910457
1210 => 0.033795220680286
1211 => 0.035210355803094
1212 => 0.034584690832693
1213 => 0.03392560361127
1214 => 0.034752245250097
1215 => 0.035804844121209
1216 => 0.035738974375557
1217 => 0.035611159537574
1218 => 0.036331645087117
1219 => 0.037521676132503
1220 => 0.037843336742138
1221 => 0.03808078002811
1222 => 0.038113519445608
1223 => 0.038450755793275
1224 => 0.036637350957368
1225 => 0.039515271003491
1226 => 0.04001220829452
1227 => 0.039918804679747
1228 => 0.040471129564407
1229 => 0.04030862157221
1230 => 0.040073172988239
1231 => 0.040948725413298
]
'min_raw' => 0.015094058205594
'max_raw' => 0.040948725413298
'avg_raw' => 0.028021391809446
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.015094'
'max' => '$0.040948'
'avg' => '$0.028021'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0052055505860377
'max_diff' => 0.01887332874991
'year' => 2032
]
7 => [
'items' => [
101 => 0.039944975211406
102 => 0.038520278168456
103 => 0.037738661193381
104 => 0.038767957477402
105 => 0.039396512800564
106 => 0.039811947885547
107 => 0.03993765829125
108 => 0.036778120412678
109 => 0.035075304732132
110 => 0.036166790060541
111 => 0.037498477491492
112 => 0.036629953366451
113 => 0.036663997867819
114 => 0.035425710709634
115 => 0.037608038428383
116 => 0.037290091636026
117 => 0.03893960015721
118 => 0.038545931710496
119 => 0.03989104187597
120 => 0.03953682928985
121 => 0.041007145931074
122 => 0.041593695046492
123 => 0.04257860230036
124 => 0.043303104085599
125 => 0.043728545391401
126 => 0.043703003491191
127 => 0.045388813898799
128 => 0.044394750399162
129 => 0.04314597236084
130 => 0.043123385905971
131 => 0.04377014574734
201 => 0.045125576944951
202 => 0.04547702053377
203 => 0.045673429555104
204 => 0.045372622301884
205 => 0.044293637618201
206 => 0.043827737502363
207 => 0.044224697899483
208 => 0.043739249445002
209 => 0.044577269670216
210 => 0.045728050430897
211 => 0.045490418754497
212 => 0.046284785820971
213 => 0.047106872164919
214 => 0.048282492558973
215 => 0.048589843263076
216 => 0.049097882289457
217 => 0.04962082132973
218 => 0.049788775255864
219 => 0.050109451413895
220 => 0.050107761292252
221 => 0.051074140478474
222 => 0.052140086647149
223 => 0.052542456649113
224 => 0.053467684281819
225 => 0.051883264384654
226 => 0.053085065077158
227 => 0.054169119384818
228 => 0.052876665148912
301 => 0.054658012209894
302 => 0.054727177879653
303 => 0.055771497375744
304 => 0.054712879499048
305 => 0.054084275583094
306 => 0.055899031534972
307 => 0.056777134775808
308 => 0.056512642933427
309 => 0.054499846953333
310 => 0.053328313360038
311 => 0.050262183974431
312 => 0.053894146678615
313 => 0.055663169766018
314 => 0.054495265610902
315 => 0.055084288533815
316 => 0.058297806609906
317 => 0.059521306233394
318 => 0.059266826864616
319 => 0.059309829688853
320 => 0.059970007877598
321 => 0.062897601533264
322 => 0.061143319553699
323 => 0.062484402395384
324 => 0.06319570789898
325 => 0.063856408092207
326 => 0.062233937234083
327 => 0.060123126486495
328 => 0.059454544116927
329 => 0.05437914055955
330 => 0.054114943763029
331 => 0.053966642095159
401 => 0.053031621056926
402 => 0.052296950644692
403 => 0.05171271345632
404 => 0.050179500606039
405 => 0.050696914935073
406 => 0.048253293658117
407 => 0.049816635954493
408 => 0.045916557393172
409 => 0.0491646587105
410 => 0.047396864836523
411 => 0.048583890878235
412 => 0.0485797494562
413 => 0.046394058166459
414 => 0.04513339704475
415 => 0.045936739377168
416 => 0.046797986126914
417 => 0.046937720514478
418 => 0.048054349406364
419 => 0.048365976528231
420 => 0.047421731800493
421 => 0.045835736933741
422 => 0.046204127368596
423 => 0.045125931624346
424 => 0.043236435054748
425 => 0.044593504478479
426 => 0.045056867645871
427 => 0.045261515217808
428 => 0.043403412351756
429 => 0.042819556089867
430 => 0.042508715915065
501 => 0.04559587918679
502 => 0.045765000959693
503 => 0.044899750058116
504 => 0.048810766179698
505 => 0.047925582778835
506 => 0.048914549512798
507 => 0.046170699797919
508 => 0.046275518552111
509 => 0.044976536124945
510 => 0.045703879486121
511 => 0.045189816641813
512 => 0.045645117330285
513 => 0.04591802268568
514 => 0.047216791962612
515 => 0.049179488569401
516 => 0.047022799142777
517 => 0.046083098675235
518 => 0.046666083560222
519 => 0.048218649133792
520 => 0.050570865452119
521 => 0.049178306048904
522 => 0.049796300264859
523 => 0.049931304508396
524 => 0.048904482759816
525 => 0.050608725834633
526 => 0.051522043543673
527 => 0.052458918528677
528 => 0.053272380827515
529 => 0.052084710057344
530 => 0.053355688027345
531 => 0.052331504141338
601 => 0.051412705317406
602 => 0.051414098755958
603 => 0.050837722832196
604 => 0.049720921851868
605 => 0.049514966616294
606 => 0.050586371761027
607 => 0.051445537224658
608 => 0.051516302207368
609 => 0.05199198035355
610 => 0.052273481780585
611 => 0.055032578448169
612 => 0.056142309952315
613 => 0.057499268629443
614 => 0.058027880508186
615 => 0.059618812745352
616 => 0.058334005754641
617 => 0.058056029680386
618 => 0.054196948462989
619 => 0.054828872796148
620 => 0.055840644625165
621 => 0.054213632207791
622 => 0.055245597099979
623 => 0.055449328829702
624 => 0.054158346948433
625 => 0.054847916151253
626 => 0.053016624791582
627 => 0.0492194057167
628 => 0.050612953224956
629 => 0.051639073254051
630 => 0.050174673452845
701 => 0.052799553416408
702 => 0.051266152730215
703 => 0.050780138328906
704 => 0.048884022872753
705 => 0.04977891637988
706 => 0.05098927266191
707 => 0.050241413198636
708 => 0.051793333876593
709 => 0.053991267438707
710 => 0.055557645784276
711 => 0.055677892863852
712 => 0.05467081652685
713 => 0.056284662783971
714 => 0.056296417892078
715 => 0.05447599272129
716 => 0.053360992440352
717 => 0.053107662030542
718 => 0.053740531062599
719 => 0.054508950901585
720 => 0.055720534816985
721 => 0.056452669602204
722 => 0.058361688827766
723 => 0.058878214694333
724 => 0.059445720020833
725 => 0.060204082149197
726 => 0.061114690324357
727 => 0.059122331478059
728 => 0.059201491609244
729 => 0.057346234637658
730 => 0.055363626492755
731 => 0.056868178939142
801 => 0.058835181120569
802 => 0.058383948646805
803 => 0.058333175775664
804 => 0.058418561661703
805 => 0.058078347112361
806 => 0.056539569314623
807 => 0.055766804737857
808 => 0.056763868195154
809 => 0.057293763048518
810 => 0.058115583754398
811 => 0.058014277005868
812 => 0.060131198887115
813 => 0.060953770717773
814 => 0.060743321643657
815 => 0.060782049338034
816 => 0.062271276346288
817 => 0.063927603062361
818 => 0.065478971603523
819 => 0.067057090316422
820 => 0.065154606613
821 => 0.064188642717285
822 => 0.065185270887867
823 => 0.064656445951999
824 => 0.067695230893162
825 => 0.06790562976933
826 => 0.070944194971754
827 => 0.073828155174468
828 => 0.072016791442657
829 => 0.07372482585614
830 => 0.075572204332411
831 => 0.079136097139494
901 => 0.077935903421329
902 => 0.077016573842648
903 => 0.076147811832963
904 => 0.077955567663033
905 => 0.080281216658813
906 => 0.080782139177715
907 => 0.081593825025466
908 => 0.080740436604779
909 => 0.081768248959846
910 => 0.085396878216864
911 => 0.084416390560821
912 => 0.083023940467984
913 => 0.085888394769142
914 => 0.086925029645446
915 => 0.094200676097252
916 => 0.10338648028462
917 => 0.099583497033809
918 => 0.097222862608526
919 => 0.097777667693465
920 => 0.1011320124236
921 => 0.10220932148934
922 => 0.099280824077954
923 => 0.10031521887176
924 => 0.10601483588509
925 => 0.10907249754714
926 => 0.10491978231133
927 => 0.093462605674816
928 => 0.082898565572251
929 => 0.085700624712377
930 => 0.085382958163905
1001 => 0.091506485603028
1002 => 0.084393006254493
1003 => 0.084512779003188
1004 => 0.090762934504824
1005 => 0.089095500171779
1006 => 0.086394470101101
1007 => 0.082918286080905
1008 => 0.076492238411469
1009 => 0.070800508787053
1010 => 0.081963301307582
1011 => 0.081481941395875
1012 => 0.080784860910183
1013 => 0.082336138099105
1014 => 0.089868699790801
1015 => 0.089695049863285
1016 => 0.088590377621397
1017 => 0.089428261780735
1018 => 0.086247584956859
1019 => 0.087067317797037
1020 => 0.082896892174325
1021 => 0.08478209872815
1022 => 0.086388674903664
1023 => 0.086711218856665
1024 => 0.08743792685228
1025 => 0.08122828659557
1026 => 0.084016232765373
1027 => 0.085653889944903
1028 => 0.078254895229308
1029 => 0.085507635608958
1030 => 0.081120190573903
1031 => 0.079631025831793
1101 => 0.081635989974508
1102 => 0.0808546534982
1103 => 0.080182906277488
1104 => 0.079808059786249
1105 => 0.081280284172841
1106 => 0.081211603145518
1107 => 0.078802758302612
1108 => 0.075660518402119
1109 => 0.076715157253233
1110 => 0.076331997071331
1111 => 0.074943375143472
1112 => 0.075879138659998
1113 => 0.071758509712295
1114 => 0.064669181779427
1115 => 0.069352608963867
1116 => 0.069172302111854
1117 => 0.069081383220805
1118 => 0.072600849309492
1119 => 0.072262533852962
1120 => 0.071648487986567
1121 => 0.074932097709595
1122 => 0.073733535989907
1123 => 0.07742722079333
1124 => 0.079860120497419
1125 => 0.079243058436402
1126 => 0.081531212367323
1127 => 0.076739454002292
1128 => 0.078331083919178
1129 => 0.078659116639144
1130 => 0.074891578475315
1201 => 0.072317886445668
1202 => 0.072146250529528
1203 => 0.06768382322673
1204 => 0.07006761587243
1205 => 0.072165254752604
1206 => 0.071160648512354
1207 => 0.070842620188448
1208 => 0.072467357923354
1209 => 0.072593613960294
1210 => 0.069714962938051
1211 => 0.070313525640597
1212 => 0.072809631612985
1213 => 0.070250630174441
1214 => 0.065278908389861
1215 => 0.064045852647854
1216 => 0.063881340282144
1217 => 0.060537195314936
1218 => 0.06412825132862
1219 => 0.062560659144329
1220 => 0.067512664071867
1221 => 0.064684105415392
1222 => 0.06456217190508
1223 => 0.064377851520487
1224 => 0.061499407802322
1225 => 0.062129604041959
1226 => 0.064224472324108
1227 => 0.06497194492756
1228 => 0.064893977411157
1229 => 0.064214206326674
1230 => 0.064525402048159
1231 => 0.063522932201479
]
'min_raw' => 0.035075304732132
'max_raw' => 0.10907249754714
'avg_raw' => 0.072073901139636
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.035075'
'max' => '$0.109072'
'avg' => '$0.072073'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.019981246526538
'max_diff' => 0.068123772133842
'year' => 2033
]
8 => [
'items' => [
101 => 0.063168939234011
102 => 0.062051640055244
103 => 0.060409518924233
104 => 0.060637865939215
105 => 0.057384394294315
106 => 0.055611730267364
107 => 0.055121080228041
108 => 0.054464962489781
109 => 0.05519519047244
110 => 0.057375177617922
111 => 0.054745650610398
112 => 0.05023751099587
113 => 0.0505084578682
114 => 0.051117195045475
115 => 0.049982817342822
116 => 0.048909224048365
117 => 0.049842626314518
118 => 0.047932468130088
119 => 0.051348028536175
120 => 0.051255647199188
121 => 0.052528756901738
122 => 0.053324858525584
123 => 0.05149010202358
124 => 0.051028665725036
125 => 0.051291520811797
126 => 0.04694711174457
127 => 0.052173725995767
128 => 0.052218925972851
129 => 0.051831896327354
130 => 0.054614907062506
131 => 0.060487927756491
201 => 0.058278261129703
202 => 0.057422611424284
203 => 0.055796020708806
204 => 0.057963356259781
205 => 0.057796938705167
206 => 0.057044335411222
207 => 0.056589158590779
208 => 0.057427835838929
209 => 0.056485237198503
210 => 0.056315920581804
211 => 0.055290046102904
212 => 0.054923855588252
213 => 0.054652742709668
214 => 0.054354274069348
215 => 0.055012621516143
216 => 0.053520719588886
217 => 0.051721632117565
218 => 0.051572057460721
219 => 0.051985046239006
220 => 0.051802329448013
221 => 0.051571182683022
222 => 0.051129860559577
223 => 0.050998929712906
224 => 0.05142439144597
225 => 0.050944069955301
226 => 0.051652810479248
227 => 0.051460072273137
228 => 0.050383452321411
301 => 0.049041585245802
302 => 0.049029639814168
303 => 0.048740536753831
304 => 0.048372320539556
305 => 0.048269891212391
306 => 0.049764017779133
307 => 0.052856815056845
308 => 0.052249624946864
309 => 0.052688382028671
310 => 0.054846632617316
311 => 0.055532675578587
312 => 0.055045738534495
313 => 0.054379189075573
314 => 0.05440851386897
315 => 0.056686315148349
316 => 0.056828378820136
317 => 0.057187327887264
318 => 0.057648678877518
319 => 0.055124308603073
320 => 0.054289616256057
321 => 0.053894092715072
322 => 0.052676033295712
323 => 0.053989605950969
324 => 0.05322424341754
325 => 0.053327516971807
326 => 0.053260259934109
327 => 0.053296986824593
328 => 0.051347073817432
329 => 0.052057519632831
330 => 0.050876265671498
331 => 0.049294699219253
401 => 0.049289397253937
402 => 0.04967648340252
403 => 0.04944622941466
404 => 0.048826621853701
405 => 0.04891463418327
406 => 0.048143553565319
407 => 0.049008257331154
408 => 0.049033053941099
409 => 0.048700095890521
410 => 0.050032291347914
411 => 0.050578092913777
412 => 0.050358932792233
413 => 0.050562716055413
414 => 0.052274856437233
415 => 0.052554010025391
416 => 0.052677991609401
417 => 0.052511872711241
418 => 0.050594010838572
419 => 0.050679076168003
420 => 0.05005492322237
421 => 0.049527579754927
422 => 0.049548670728072
423 => 0.04981979382019
424 => 0.051003804264629
425 => 0.053495484443722
426 => 0.053590041885124
427 => 0.053704648262539
428 => 0.053238486529044
429 => 0.053097887689655
430 => 0.053283373850448
501 => 0.054219117919396
502 => 0.056626105716765
503 => 0.055775315471865
504 => 0.055083609759422
505 => 0.055690422151756
506 => 0.055597008140309
507 => 0.054808499875158
508 => 0.054786369074363
509 => 0.053272969612197
510 => 0.052713500289472
511 => 0.052245965847851
512 => 0.051735430442895
513 => 0.051432767941536
514 => 0.051897795101271
515 => 0.052004152314742
516 => 0.050987362302699
517 => 0.050848777581225
518 => 0.051679110253996
519 => 0.051313711802632
520 => 0.051689533171306
521 => 0.051776726952574
522 => 0.051762686745547
523 => 0.051381168796578
524 => 0.051624336960222
525 => 0.051049171761285
526 => 0.050423765994461
527 => 0.050024796079383
528 => 0.049676641912798
529 => 0.049869818079258
530 => 0.049181180318402
531 => 0.048960871239164
601 => 0.051541957057836
602 => 0.053448632903438
603 => 0.053420909081516
604 => 0.053252147445557
605 => 0.053001401886569
606 => 0.054200774319958
607 => 0.053782936946374
608 => 0.054086948547137
609 => 0.054164332258858
610 => 0.054398549447755
611 => 0.054482261961138
612 => 0.054229224603616
613 => 0.053380000325862
614 => 0.051263814167522
615 => 0.050278723798279
616 => 0.049953627568451
617 => 0.04996544419896
618 => 0.049639488777771
619 => 0.049735497257608
620 => 0.049606100946563
621 => 0.049361055637773
622 => 0.04985468722196
623 => 0.049911573663541
624 => 0.049796354153334
625 => 0.049823492518995
626 => 0.048869524185373
627 => 0.048942052325868
628 => 0.048538206423162
629 => 0.04846249018484
630 => 0.047441602909683
701 => 0.045632953121768
702 => 0.046635120674156
703 => 0.045424643196953
704 => 0.04496621703461
705 => 0.047136335187248
706 => 0.046918515514432
707 => 0.046545702918505
708 => 0.045994235388176
709 => 0.045789690716846
710 => 0.044546942044818
711 => 0.044473513823469
712 => 0.045089453622362
713 => 0.044805218598367
714 => 0.044406044976457
715 => 0.042960278581478
716 => 0.041334758476719
717 => 0.041383822711026
718 => 0.041900870412474
719 => 0.043404256337814
720 => 0.042816857447943
721 => 0.042390692813716
722 => 0.042310884988187
723 => 0.04330984701368
724 => 0.044723587568768
725 => 0.045386883006554
726 => 0.04472957737229
727 => 0.043974500051497
728 => 0.044020458109323
729 => 0.044326196478462
730 => 0.04435832525815
731 => 0.043866847545517
801 => 0.044005195642776
802 => 0.043795032232224
803 => 0.042505259769599
804 => 0.042481931875663
805 => 0.042165400912944
806 => 0.042155816481191
807 => 0.041617318351257
808 => 0.041541978740418
809 => 0.040472758018934
810 => 0.041176522335713
811 => 0.040704474181303
812 => 0.039992986267704
813 => 0.039870325483224
814 => 0.039866638151925
815 => 0.040597177153405
816 => 0.04116798556214
817 => 0.04071268566105
818 => 0.04060902269919
819 => 0.041715871927435
820 => 0.041575015273987
821 => 0.041453034320528
822 => 0.044597002608102
823 => 0.042108306381582
824 => 0.041023092777005
825 => 0.039679934864867
826 => 0.040117273853849
827 => 0.040209427604674
828 => 0.036979374948392
829 => 0.035668942988016
830 => 0.035219252121802
831 => 0.0349604486706
901 => 0.035078388653162
902 => 0.033898846190485
903 => 0.034691518233235
904 => 0.033670134164799
905 => 0.033498895801855
906 => 0.035325257041424
907 => 0.035579384538463
908 => 0.034495197684872
909 => 0.035191421158785
910 => 0.034938960848914
911 => 0.033687642863103
912 => 0.033639851720117
913 => 0.033011984340791
914 => 0.032029493471227
915 => 0.031580468780087
916 => 0.03134661282233
917 => 0.031443106348262
918 => 0.0313943162688
919 => 0.031075927997429
920 => 0.031412565911823
921 => 0.030552595148937
922 => 0.0302101478619
923 => 0.030055472367063
924 => 0.029292198816931
925 => 0.030506906464479
926 => 0.03074621917353
927 => 0.030986003402544
928 => 0.033073161408473
929 => 0.032968892892744
930 => 0.033911429494107
1001 => 0.033874804254992
1002 => 0.033605977548202
1003 => 0.032471841892105
1004 => 0.032923888150601
1005 => 0.031532560030537
1006 => 0.032575037659205
1007 => 0.032099294404388
1008 => 0.032414188386197
1009 => 0.031847980614058
1010 => 0.032161343373306
1011 => 0.030802969094762
1012 => 0.029534538306299
1013 => 0.03004499188338
1014 => 0.030599913299113
1015 => 0.031803124319771
1016 => 0.031086501762142
1017 => 0.031344226332365
1018 => 0.030480892164692
1019 => 0.028699587177572
1020 => 0.028709669170349
1021 => 0.02843565420592
1022 => 0.028198865269812
1023 => 0.031168814483429
1024 => 0.030799454350767
1025 => 0.030210927320028
1026 => 0.030998694137806
1027 => 0.031206992187967
1028 => 0.031212922140623
1029 => 0.031787656475669
1030 => 0.03209439229331
1031 => 0.032148455810639
1101 => 0.033052812704791
1102 => 0.033355941206955
1103 => 0.034604484607018
1104 => 0.032068367902227
1105 => 0.03201613824763
1106 => 0.03100977963244
1107 => 0.030371531088787
1108 => 0.03105348105627
1109 => 0.031657595632006
1110 => 0.031028551156271
1111 => 0.031110691084949
1112 => 0.030266250271097
1113 => 0.030568098127416
1114 => 0.030828090164575
1115 => 0.030684537843281
1116 => 0.030469633070294
1117 => 0.031608065126027
1118 => 0.031543830327892
1119 => 0.032603964430631
1120 => 0.033430414774633
1121 => 0.034911561536755
1122 => 0.033365907676554
1123 => 0.03330957790647
1124 => 0.033860210444615
1125 => 0.033355856907983
1126 => 0.033674590933442
1127 => 0.034860208557644
1128 => 0.034885258789772
1129 => 0.034465635126233
1130 => 0.034440100988172
1201 => 0.034520694302934
1202 => 0.034992731864784
1203 => 0.034827787436425
1204 => 0.035018665304805
1205 => 0.035257361002039
1206 => 0.03624470761068
1207 => 0.036482753535377
1208 => 0.035904425351024
1209 => 0.035956641910805
1210 => 0.035740331294394
1211 => 0.035531377949304
1212 => 0.03600107455388
1213 => 0.036859454330652
1214 => 0.03685411439461
1215 => 0.037053241818303
1216 => 0.037177296553603
1217 => 0.03664476281608
1218 => 0.03629810293476
1219 => 0.036431034391799
1220 => 0.036643594686476
1221 => 0.036362103953052
1222 => 0.03462461274717
1223 => 0.035151656587666
1224 => 0.035063930721481
1225 => 0.034938998420202
1226 => 0.035468945077331
1227 => 0.035417830429438
1228 => 0.033886748277647
1229 => 0.033984763189421
1230 => 0.033892708889068
1231 => 0.034190155166047
]
'min_raw' => 0.028198865269812
'max_raw' => 0.063168939234011
'avg_raw' => 0.045683902251912
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.028198'
'max' => '$0.063168'
'avg' => '$0.045683'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0068764394623197
'max_diff' => -0.045903558313129
'year' => 2034
]
9 => [
'items' => [
101 => 0.03333979383289
102 => 0.033601359251698
103 => 0.033765410630351
104 => 0.03386203815268
105 => 0.034211123021443
106 => 0.034170161941216
107 => 0.034208576823184
108 => 0.034726177528571
109 => 0.037344024277308
110 => 0.037486507899888
111 => 0.036784866431365
112 => 0.037065158358774
113 => 0.036527059151255
114 => 0.036888288754214
115 => 0.037135432874321
116 => 0.036018636118638
117 => 0.035952506662717
118 => 0.035412186528357
119 => 0.035702523963266
120 => 0.035240576228325
121 => 0.035353922044234
122 => 0.035036997261643
123 => 0.035607398771212
124 => 0.036245196290343
125 => 0.036406329131063
126 => 0.035982457999179
127 => 0.035675547365226
128 => 0.035136713394652
129 => 0.036032806296414
130 => 0.036294851168826
131 => 0.036031429886255
201 => 0.035970389419215
202 => 0.035854717844471
203 => 0.035994929690612
204 => 0.036293424016174
205 => 0.036152659604563
206 => 0.036245636978382
207 => 0.035891303107238
208 => 0.036644939106905
209 => 0.037841894446758
210 => 0.037845742853898
211 => 0.037704977683515
212 => 0.037647379608622
213 => 0.03779181321578
214 => 0.037870162522686
215 => 0.03833723432364
216 => 0.038838420975026
217 => 0.041177240392173
218 => 0.040520509258775
219 => 0.042595648982659
220 => 0.044236815081081
221 => 0.044728929034502
222 => 0.044276207353105
223 => 0.042727470936592
224 => 0.042651482539361
225 => 0.044965948605281
226 => 0.044312005932397
227 => 0.044234221532286
228 => 0.043406726933921
301 => 0.043895878728754
302 => 0.0437888940558
303 => 0.043620013515673
304 => 0.044553281065606
305 => 0.046300274605712
306 => 0.046027989279285
307 => 0.04582474091406
308 => 0.044934165742353
309 => 0.045470490912887
310 => 0.045279515792292
311 => 0.046100066106174
312 => 0.045613990277645
313 => 0.044307051673479
314 => 0.044515185953919
315 => 0.044483726876138
316 => 0.045131152467644
317 => 0.044936811375165
318 => 0.044445778658769
319 => 0.046294303571715
320 => 0.046174270645904
321 => 0.046344449891357
322 => 0.046419368058173
323 => 0.04754453259802
324 => 0.048005476508747
325 => 0.04811011884644
326 => 0.048547979910949
327 => 0.048099224464273
328 => 0.049894566208186
329 => 0.051088363706793
330 => 0.052475020933683
331 => 0.054501299840495
401 => 0.055263199453584
402 => 0.055125569107978
403 => 0.056661870649521
404 => 0.05942257036961
405 => 0.055683585452834
406 => 0.059620745649163
407 => 0.058374286187706
408 => 0.055418953227438
409 => 0.055228664625884
410 => 0.057230050418698
411 => 0.061668931480917
412 => 0.060557042120203
413 => 0.061670750133587
414 => 0.060371550577891
415 => 0.060307034369437
416 => 0.061607650911035
417 => 0.064646612353396
418 => 0.063202915685897
419 => 0.06113302250409
420 => 0.062661399418431
421 => 0.061337377890623
422 => 0.058353986818179
423 => 0.060556191879364
424 => 0.059083640070139
425 => 0.059513408973231
426 => 0.062608493850671
427 => 0.062236085049639
428 => 0.062718016522301
429 => 0.061867420087394
430 => 0.061072828890445
501 => 0.059589665414223
502 => 0.059150573827989
503 => 0.059271922945564
504 => 0.059150513693393
505 => 0.058320697359422
506 => 0.058141498601109
507 => 0.057842826153042
508 => 0.057935397233589
509 => 0.057373805651517
510 => 0.058433644997629
511 => 0.058630360519539
512 => 0.059401623212373
513 => 0.059481698263708
514 => 0.061629653885012
515 => 0.060446596023726
516 => 0.061240293377378
517 => 0.061169297615498
518 => 0.055483004254041
519 => 0.056266525308658
520 => 0.057485438187192
521 => 0.05693631958761
522 => 0.056159994361764
523 => 0.055533070117969
524 => 0.054583215782324
525 => 0.055920117519408
526 => 0.057678001140023
527 => 0.059526281093277
528 => 0.061746868353012
529 => 0.061251259127124
530 => 0.059484768759064
531 => 0.059564012226554
601 => 0.060053864161416
602 => 0.059419461398028
603 => 0.059232363638091
604 => 0.060028159802283
605 => 0.060033640013104
606 => 0.05930368296369
607 => 0.058492469283997
608 => 0.058489070269059
609 => 0.058344722630152
610 => 0.060397229702182
611 => 0.061525901059927
612 => 0.061655301412148
613 => 0.061517191385215
614 => 0.061570344453191
615 => 0.060913595458695
616 => 0.062414728907248
617 => 0.063792317406351
618 => 0.063423094260706
619 => 0.06286957627722
620 => 0.062428672542336
621 => 0.063319231352889
622 => 0.063279576170925
623 => 0.063780285372593
624 => 0.063757570310969
625 => 0.063589200639074
626 => 0.063423100273717
627 => 0.064081669447223
628 => 0.06389201210155
629 => 0.063702060165635
630 => 0.063321082477972
701 => 0.063372863673095
702 => 0.062819441262293
703 => 0.06256340273217
704 => 0.05871319756145
705 => 0.05768429693075
706 => 0.058008010014372
707 => 0.058114584766707
708 => 0.057666805893654
709 => 0.058308805772657
710 => 0.05820875077156
711 => 0.058598006250609
712 => 0.058354816326807
713 => 0.058364796926108
714 => 0.059079966638449
715 => 0.059287583448491
716 => 0.05918198786323
717 => 0.059255943391542
718 => 0.060960217326805
719 => 0.060717924072823
720 => 0.060589210610729
721 => 0.060624865119372
722 => 0.061060343649877
723 => 0.061182253862173
724 => 0.0606657117262
725 => 0.060909315983619
726 => 0.061946551993727
727 => 0.062309525894792
728 => 0.063467964349632
729 => 0.062975839104414
730 => 0.063879156290693
731 => 0.066655645357791
801 => 0.06887369694302
802 => 0.066833885040385
803 => 0.070907054309491
804 => 0.074078600846919
805 => 0.073956871608326
806 => 0.073403839110332
807 => 0.069793117697397
808 => 0.066470478020391
809 => 0.06925000719694
810 => 0.069257092788426
811 => 0.069018328767118
812 => 0.067535385936839
813 => 0.068966725571089
814 => 0.069080340113394
815 => 0.069016746182249
816 => 0.067879777391217
817 => 0.066143836194269
818 => 0.066483034948897
819 => 0.067038649428444
820 => 0.065986755305338
821 => 0.065650611396494
822 => 0.066275566877031
823 => 0.068289303649969
824 => 0.067908618377828
825 => 0.067898677146902
826 => 0.0695274101768
827 => 0.06836158882998
828 => 0.066487313331458
829 => 0.066014034049424
830 => 0.06433421143733
831 => 0.065494470898826
901 => 0.065536226571275
902 => 0.064900764321778
903 => 0.066538877590772
904 => 0.066523782088614
905 => 0.06807892683654
906 => 0.07105177950888
907 => 0.070172560688473
908 => 0.069150124859076
909 => 0.069261291982802
910 => 0.070480520946234
911 => 0.069743347282653
912 => 0.070008440071834
913 => 0.070480119696548
914 => 0.070764695725284
915 => 0.069220345871643
916 => 0.068860284045967
917 => 0.068123723915162
918 => 0.06793156912558
919 => 0.06853148198329
920 => 0.068373426140518
921 => 0.065532717168692
922 => 0.065235847275581
923 => 0.06524495185137
924 => 0.064498458389747
925 => 0.063359876681814
926 => 0.066352001429081
927 => 0.066111691937117
928 => 0.065846408856465
929 => 0.065878904520161
930 => 0.067177684460433
1001 => 0.066424326505116
1002 => 0.068427252102266
1003 => 0.068015510812947
1004 => 0.067593209913198
1005 => 0.067534835065253
1006 => 0.06737228524787
1007 => 0.066814841441939
1008 => 0.066141694549098
1009 => 0.065697224663459
1010 => 0.060602217009884
1011 => 0.061547820794092
1012 => 0.062635651753325
1013 => 0.063011166641244
1014 => 0.06236882244062
1015 => 0.066840205106113
1016 => 0.067657169806414
1017 => 0.065182530439914
1018 => 0.064719626453301
1019 => 0.066870553014411
1020 => 0.065573281357983
1021 => 0.066157442705439
1022 => 0.064894805391413
1023 => 0.067460386933631
1024 => 0.067440841500804
1025 => 0.066442772334594
1026 => 0.067286333559392
1027 => 0.067139744037561
1028 => 0.066012926407046
1029 => 0.067496109062386
1030 => 0.067496844702479
1031 => 0.066536224829897
1101 => 0.065414431125451
1102 => 0.065213880906681
1103 => 0.065062793256968
1104 => 0.066120284405452
1105 => 0.067068427662493
1106 => 0.068832687199199
1107 => 0.0692762639645
1108 => 0.071007573610046
1109 => 0.06997666301206
1110 => 0.07043365232762
1111 => 0.070929778874745
1112 => 0.071167640185887
1113 => 0.070780057943723
1114 => 0.073469494458737
1115 => 0.073696565302809
1116 => 0.073772700192672
1117 => 0.072865837331753
1118 => 0.073671343806144
1119 => 0.073294474002347
1120 => 0.07427498453438
1121 => 0.07442874110559
1122 => 0.074298514759824
1123 => 0.074347319522408
1124 => 0.072052359905957
1125 => 0.071933354142967
1126 => 0.070310702120343
1127 => 0.070971944813601
1128 => 0.069735783292743
1129 => 0.070127782844881
1130 => 0.070300572512355
1201 => 0.070210316995794
1202 => 0.071009330483357
1203 => 0.070330005791257
1204 => 0.068537156237487
1205 => 0.066743818223054
1206 => 0.066721304325105
1207 => 0.06624915008095
1208 => 0.065907869041789
1209 => 0.065973611877527
1210 => 0.066205298205639
1211 => 0.065894403011216
1212 => 0.065960748263733
1213 => 0.067062521511612
1214 => 0.067283474278987
1215 => 0.066532590443628
1216 => 0.063517683492641
1217 => 0.062777817764547
1218 => 0.063309618577726
1219 => 0.063055452041385
1220 => 0.050890671073652
1221 => 0.053748605919275
1222 => 0.052050518080303
1223 => 0.052833075081766
1224 => 0.05109976711589
1225 => 0.05192699252766
1226 => 0.051774234199541
1227 => 0.056369708858862
1228 => 0.056297956842925
1229 => 0.056332300735922
1230 => 0.054692977240655
1231 => 0.057304464081099
]
'min_raw' => 0.03333979383289
'max_raw' => 0.07442874110559
'avg_raw' => 0.05388426746924
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.033339'
'max' => '$0.074428'
'avg' => '$0.053884'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0051409285630782
'max_diff' => 0.011259801871579
'year' => 2035
]
10 => [
'items' => [
101 => 0.058590976404731
102 => 0.058352877213043
103 => 0.058412801649945
104 => 0.05738310128481
105 => 0.05634227048627
106 => 0.055187828947977
107 => 0.057332638632838
108 => 0.057094172409004
109 => 0.057641128129041
110 => 0.059032190523836
111 => 0.059237029745602
112 => 0.059512335736929
113 => 0.059413658136653
114 => 0.061764558913067
115 => 0.0614798493173
116 => 0.062165917526556
117 => 0.060754623167996
118 => 0.059157609639996
119 => 0.059461149701363
120 => 0.059431916352538
121 => 0.059059742269524
122 => 0.058723760148407
123 => 0.058164444579122
124 => 0.059934201803468
125 => 0.059862352892116
126 => 0.061025503251686
127 => 0.060819905127392
128 => 0.059446870534963
129 => 0.059495908734042
130 => 0.059825714189805
131 => 0.060967174637852
201 => 0.061306037815386
202 => 0.06114906289019
203 => 0.061520610894664
204 => 0.061814267288168
205 => 0.061557489616475
206 => 0.065192919951465
207 => 0.063683235815058
208 => 0.064419045358828
209 => 0.064594531599376
210 => 0.064145027284291
211 => 0.06424250867469
212 => 0.064390166419056
213 => 0.065286715328494
214 => 0.067639519085376
215 => 0.068681559853223
216 => 0.071816590916674
217 => 0.068595032873361
218 => 0.068403878951203
219 => 0.068968592714599
220 => 0.070809187825586
221 => 0.072300817284733
222 => 0.0727956768305
223 => 0.072861080688713
224 => 0.073789470094213
225 => 0.074321605588008
226 => 0.07367673920132
227 => 0.073130282458927
228 => 0.071172942236383
229 => 0.071399509696803
301 => 0.072960334822956
302 => 0.075165092245789
303 => 0.077057003480493
304 => 0.076394522105863
305 => 0.081448787355324
306 => 0.081949897109986
307 => 0.081880659944709
308 => 0.083022262540959
309 => 0.080756413870729
310 => 0.079787719665455
311 => 0.07324843260918
312 => 0.07508570553794
313 => 0.07775628963915
314 => 0.077402827819178
315 => 0.075463378259962
316 => 0.077055532234087
317 => 0.076529116338984
318 => 0.0761139102815
319 => 0.078016049722488
320 => 0.07592456927154
321 => 0.077735425521752
322 => 0.075412983649945
323 => 0.076397548264979
324 => 0.075838661771454
325 => 0.076200329827317
326 => 0.074086025762833
327 => 0.075226852914199
328 => 0.074038563602645
329 => 0.074038000198791
330 => 0.074011768646378
331 => 0.07540978575174
401 => 0.075455375039355
402 => 0.074422238286206
403 => 0.074273347139448
404 => 0.074823875746021
405 => 0.074179350931394
406 => 0.074480920035567
407 => 0.074188485152346
408 => 0.074122651900512
409 => 0.073598081349294
410 => 0.073372081932461
411 => 0.073460702127089
412 => 0.073158195715983
413 => 0.072975924661157
414 => 0.073975510345877
415 => 0.073441472037702
416 => 0.073893661315961
417 => 0.073378334562549
418 => 0.07159198751804
419 => 0.070564640442466
420 => 0.067190396469849
421 => 0.068147327874747
422 => 0.068781774386211
423 => 0.068572089817957
424 => 0.069022573407723
425 => 0.069050229441458
426 => 0.068903772634289
427 => 0.068734194413865
428 => 0.068651653114427
429 => 0.069266848335622
430 => 0.069623989868045
501 => 0.068845449581436
502 => 0.068663048485219
503 => 0.069450195699369
504 => 0.06993035504528
505 => 0.073475581877256
506 => 0.073212940022611
507 => 0.073872119536908
508 => 0.073797906039533
509 => 0.074488831186048
510 => 0.075618201793846
511 => 0.073321875571203
512 => 0.073720438402468
513 => 0.073622720000401
514 => 0.074689583891018
515 => 0.074692914523633
516 => 0.074053276327404
517 => 0.074400034570524
518 => 0.074206483632029
519 => 0.074556256337868
520 => 0.073209432280517
521 => 0.074849718601697
522 => 0.075779655248091
523 => 0.075792567419328
524 => 0.076233350009285
525 => 0.076681210649087
526 => 0.077540840146747
527 => 0.076657236048962
528 => 0.075067718294173
529 => 0.075182476341958
530 => 0.074250542663907
531 => 0.074266208637403
601 => 0.074182582443119
602 => 0.074433550947251
603 => 0.073264505753991
604 => 0.073538878324195
605 => 0.073154755119186
606 => 0.073719603393638
607 => 0.073111920023092
608 => 0.073622672877629
609 => 0.073843096877922
610 => 0.074656466184392
611 => 0.072991784715196
612 => 0.069597386510478
613 => 0.07031093016621
614 => 0.069255543051738
615 => 0.069353223147324
616 => 0.069550552486081
617 => 0.068910943537029
618 => 0.069032960768113
619 => 0.069028601453997
620 => 0.068991035240034
621 => 0.068824648249516
622 => 0.068583354194602
623 => 0.069544595442986
624 => 0.069707929062102
625 => 0.070070999464641
626 => 0.071151250709592
627 => 0.071043308136143
628 => 0.071219366951932
629 => 0.070835031545591
630 => 0.069371051364524
701 => 0.069450552531777
702 => 0.068459171702211
703 => 0.070045647627901
704 => 0.069669949188239
705 => 0.069427733960125
706 => 0.069361643291026
707 => 0.070444572269869
708 => 0.070768601593171
709 => 0.070566688263688
710 => 0.070152558134166
711 => 0.07094781040943
712 => 0.071160586369291
713 => 0.071208219059828
714 => 0.072617253617097
715 => 0.071286968439158
716 => 0.071607181303385
717 => 0.074105390661293
718 => 0.071839859502997
719 => 0.07303996188492
720 => 0.072981223118357
721 => 0.073595154887698
722 => 0.072930862793945
723 => 0.072939097490594
724 => 0.073484227310429
725 => 0.072718690793152
726 => 0.07252913318571
727 => 0.072267260708666
728 => 0.072839049681878
729 => 0.073181811311528
730 => 0.075944218315831
731 => 0.077728859221674
801 => 0.077651383253296
802 => 0.078359368575337
803 => 0.078040414703355
804 => 0.077010428514945
805 => 0.078768489345126
806 => 0.078212165338068
807 => 0.078258028013276
808 => 0.078256321002214
809 => 0.078626227832219
810 => 0.078364114941697
811 => 0.077847463529143
812 => 0.078190440847908
813 => 0.079208960868007
814 => 0.082370478262404
815 => 0.084139705280843
816 => 0.082263968574387
817 => 0.083557826637385
818 => 0.082781972848353
819 => 0.082640977135235
820 => 0.083453615614157
821 => 0.084267676509161
822 => 0.084215824349432
823 => 0.083624857942148
824 => 0.083291036013891
825 => 0.085818847493204
826 => 0.087681295931016
827 => 0.08755428943357
828 => 0.088114854808572
829 => 0.08976069208721
830 => 0.089911166821664
831 => 0.089892210463745
901 => 0.089519243133985
902 => 0.091139783673782
903 => 0.092491667102779
904 => 0.089432911973208
905 => 0.090597645884504
906 => 0.091120532462667
907 => 0.091888285092868
908 => 0.093183612470299
909 => 0.094590681570807
910 => 0.094789656569346
911 => 0.094648474286052
912 => 0.09372047439022
913 => 0.095260106189821
914 => 0.096161986389219
915 => 0.096699035408799
916 => 0.098060902366018
917 => 0.091123761632162
918 => 0.086213308622474
919 => 0.08544647047721
920 => 0.087005866000025
921 => 0.087417066163445
922 => 0.087251311893171
923 => 0.081724150591911
924 => 0.085417371116831
925 => 0.089390965866843
926 => 0.089543607824165
927 => 0.091532872439969
928 => 0.092180658541587
929 => 0.093782277296183
930 => 0.093682095607009
1001 => 0.094072064286432
1002 => 0.093982417240349
1003 => 0.096949078722619
1004 => 0.10022174689106
1005 => 0.10010842479883
1006 => 0.099637940029166
1007 => 0.10033669014169
1008 => 0.10371443441196
1009 => 0.1034034658468
1010 => 0.10370554531961
1011 => 0.10768809617557
1012 => 0.11286597879958
1013 => 0.11046033246981
1014 => 0.11567989279932
1015 => 0.11896532934975
1016 => 0.12464715214322
1017 => 0.12393575994591
1018 => 0.12614765186427
1019 => 0.12266221944069
1020 => 0.11465896207405
1021 => 0.11339241596054
1022 => 0.11592807335384
1023 => 0.12216173962945
1024 => 0.11573175301909
1025 => 0.11703253093593
1026 => 0.11665790680837
1027 => 0.11663794468067
1028 => 0.11739981790342
1029 => 0.11629468105718
1030 => 0.11179215473526
1031 => 0.11385563601504
1101 => 0.11305882679641
1102 => 0.11394294603054
1103 => 0.11871417289867
1104 => 0.11660469976843
1105 => 0.1143825411854
1106 => 0.11716962118498
1107 => 0.12071853176904
1108 => 0.1204964473227
1109 => 0.12006551067269
1110 => 0.12249467800567
1111 => 0.1265069507605
1112 => 0.12759145196352
1113 => 0.12839200857993
1114 => 0.12850239181182
1115 => 0.12963940770307
1116 => 0.12352538669093
1117 => 0.13322849505639
1118 => 0.13490395382815
1119 => 0.13458903701971
1120 => 0.13645123893043
1121 => 0.13590333188879
1122 => 0.13510950054944
1123 => 0.13806148667965
1124 => 0.13467727279436
1125 => 0.12987380724489
1126 => 0.12723853104267
1127 => 0.13070887532742
1128 => 0.13282809348379
1129 => 0.13422876187756
1130 => 0.13465260328721
1201 => 0.12400000073771
1202 => 0.11825883878396
1203 => 0.12193885777376
1204 => 0.12642873492266
1205 => 0.12350044519666
1206 => 0.12361522860994
1207 => 0.11944025700167
1208 => 0.12679812727069
1209 => 0.12572614746192
1210 => 0.1312875806061
1211 => 0.12996029995295
1212 => 0.13449543278844
1213 => 0.133301180324
1214 => 0.13825845553412
1215 => 0.1402360468283
1216 => 0.14355673039874
1217 => 0.14599943875078
1218 => 0.14743384381665
1219 => 0.14734772751682
1220 => 0.15303155500559
1221 => 0.14968000051327
1222 => 0.14546965817017
1223 => 0.14539350636064
1224 => 0.14757410232114
1225 => 0.15214403323708
1226 => 0.15332894983379
1227 => 0.15399115656205
1228 => 0.15297696390613
1229 => 0.14933909171279
1230 => 0.14776827694413
1231 => 0.14910665663791
]
'min_raw' => 0.055187828947977
'max_raw' => 0.15399115656205
'avg_raw' => 0.10458949275501
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.055187'
'max' => '$0.153991'
'avg' => '$0.104589'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.021848035115087
'max_diff' => 0.079562415456463
'year' => 2036
]
11 => [
'items' => [
101 => 0.1474699332807
102 => 0.15029537697871
103 => 0.1541753146583
104 => 0.1533741228704
105 => 0.15605238689595
106 => 0.15882410840081
107 => 0.16278779463856
108 => 0.16382404899598
109 => 0.16553693804358
110 => 0.1673000635283
111 => 0.16786633191643
112 => 0.16894751397212
113 => 0.168941815609
114 => 0.17220003050579
115 => 0.17579394243546
116 => 0.17715056098966
117 => 0.18027003055066
118 => 0.1749280482467
119 => 0.17898000318852
120 => 0.18263496797306
121 => 0.17827736828043
122 => 0.18428330426621
123 => 0.18451650115079
124 => 0.18803749724392
125 => 0.1844682931623
126 => 0.18234891117194
127 => 0.18846748756591
128 => 0.1914280739496
129 => 0.19053632123678
130 => 0.18375003906097
131 => 0.17980013175731
201 => 0.16946246246342
202 => 0.18170787829611
203 => 0.18767226314454
204 => 0.1837345927451
205 => 0.18572052465397
206 => 0.19655512520818
207 => 0.20068023961078
208 => 0.19982224465177
209 => 0.19996723167604
210 => 0.20219306853157
211 => 0.2120636549397
212 => 0.20614897076555
213 => 0.2106705251977
214 => 0.21306874136484
215 => 0.21529633819492
216 => 0.20982606441946
217 => 0.20270931861186
218 => 0.20045514647393
219 => 0.18334306902688
220 => 0.18245231108177
221 => 0.18195230165446
222 => 0.17879981294297
223 => 0.17632282035507
224 => 0.17435302388434
225 => 0.16918368971411
226 => 0.17092818824917
227 => 0.16268934850572
228 => 0.16796026620703
301 => 0.15481087904274
302 => 0.16576207940931
303 => 0.15980183893977
304 => 0.16380398011491
305 => 0.16379001702137
306 => 0.15642080623792
307 => 0.15217039924953
308 => 0.15487892401085
309 => 0.15778267755794
310 => 0.15825380180156
311 => 0.16201859407109
312 => 0.16306926666958
313 => 0.15988567964495
314 => 0.15453838722107
315 => 0.15578044129238
316 => 0.15214522906342
317 => 0.14577465945858
318 => 0.15035011376825
319 => 0.1519123750381
320 => 0.15260235861492
321 => 0.14633763507343
322 => 0.14436912292292
323 => 0.14332110357141
324 => 0.15372969008089
325 => 0.15429989594594
326 => 0.15138264212138
327 => 0.16456890603372
328 => 0.16158444839618
329 => 0.16491881878719
330 => 0.155667737904
331 => 0.15602114165197
401 => 0.15164153170673
402 => 0.15409382063042
403 => 0.15236062186012
404 => 0.15389569991938
405 => 0.15481581937874
406 => 0.15919471067309
407 => 0.16581207931398
408 => 0.15854065033687
409 => 0.15537238460276
410 => 0.1573379588452
411 => 0.16257254207316
412 => 0.1705032036169
413 => 0.16580809236356
414 => 0.16789170300963
415 => 0.16834687924241
416 => 0.16488487802667
417 => 0.17063085253987
418 => 0.1737101669617
419 => 0.17686890638417
420 => 0.17961155131882
421 => 0.17560723639667
422 => 0.17989242735937
423 => 0.17643931988146
424 => 0.17334152549809
425 => 0.17334622357346
426 => 0.17140293190521
427 => 0.16763755942748
428 => 0.16694316697141
429 => 0.17055548421999
430 => 0.17345222056564
501 => 0.1736908096455
502 => 0.17529459172614
503 => 0.1762436934412
504 => 0.18554618048993
505 => 0.18928771773514
506 => 0.19386279865491
507 => 0.19564505051059
508 => 0.20100898962354
509 => 0.196677173152
510 => 0.19573995740998
511 => 0.18272879565308
512 => 0.18485937266187
513 => 0.18827063202305
514 => 0.1827850460635
515 => 0.186264387747
516 => 0.18695128349785
517 => 0.18259864795168
518 => 0.18492357866317
519 => 0.17874925198736
520 => 0.16594666276302
521 => 0.17064510548149
522 => 0.17410474080099
523 => 0.1691674146301
524 => 0.17801738069052
525 => 0.1728474132184
526 => 0.17120878173195
527 => 0.16481589608897
528 => 0.16783309202772
529 => 0.17191389273696
530 => 0.16939243234266
531 => 0.17462484126003
601 => 0.18203532771952
602 => 0.18731648167265
603 => 0.18772190309682
604 => 0.18432647491479
605 => 0.18976767024582
606 => 0.18980730341352
607 => 0.18366961285218
608 => 0.17991031155817
609 => 0.17905619039453
610 => 0.18118995252161
611 => 0.18378073365812
612 => 0.18786567341898
613 => 0.19033411696336
614 => 0.19677050856581
615 => 0.19851201158762
616 => 0.20042539541787
617 => 0.2029822662808
618 => 0.20605244531999
619 => 0.19933506836764
620 => 0.19960196227672
621 => 0.19334683386711
622 => 0.18666233208529
623 => 0.19173503570278
624 => 0.19836692088917
625 => 0.19684555909983
626 => 0.19667437481993
627 => 0.19696225929616
628 => 0.19581520219003
629 => 0.19062710541092
630 => 0.18802167568766
701 => 0.19138334474668
702 => 0.19316992224087
703 => 0.19594074812844
704 => 0.19559918535276
705 => 0.20273653527415
706 => 0.20550989363134
707 => 0.20480034988488
708 => 0.20493092301035
709 => 0.20995195584319
710 => 0.21553637700746
711 => 0.22076692435709
712 => 0.22608766177835
713 => 0.2196733051451
714 => 0.21641649042925
715 => 0.21977669188872
716 => 0.21799372169607
717 => 0.22823919728639
718 => 0.22894857178697
719 => 0.23919330651279
720 => 0.24891677968791
721 => 0.24280964040073
722 => 0.24856839767694
723 => 0.25479696318954
724 => 0.26681287661167
725 => 0.26276633969603
726 => 0.25966675583596
727 => 0.25673766406528
728 => 0.26283263905984
729 => 0.27067372702074
730 => 0.27236262226652
731 => 0.2750992777723
801 => 0.27222201913028
802 => 0.27568736024495
803 => 0.2879215371278
804 => 0.28461575453999
805 => 0.27992101183423
806 => 0.28957871950039
807 => 0.29307380636139
808 => 0.31760415634307
809 => 0.34857473649315
810 => 0.33575271294722
811 => 0.32779366916815
812 => 0.32966423324727
813 => 0.34097364069779
814 => 0.34460586342824
815 => 0.33473222994461
816 => 0.33821976421107
817 => 0.35743642090607
818 => 0.36774554067878
819 => 0.35374437132794
820 => 0.31511570038339
821 => 0.27949830161986
822 => 0.28894563964432
823 => 0.28787460469738
824 => 0.30852050498941
825 => 0.28453691271856
826 => 0.28494073490305
827 => 0.30601357054874
828 => 0.30039169927833
829 => 0.29128498781514
830 => 0.27956479069164
831 => 0.25789892232181
901 => 0.23870885850922
902 => 0.27634499285347
903 => 0.27472205430367
904 => 0.27237179877756
905 => 0.27760203812672
906 => 0.30299859577694
907 => 0.30241312292247
908 => 0.29868864333319
909 => 0.3015136282756
910 => 0.29078975429614
911 => 0.29355354079872
912 => 0.27949265964193
913 => 0.28584876515906
914 => 0.29126544890238
915 => 0.29235292835922
916 => 0.29480307510357
917 => 0.27386683943483
918 => 0.28326659459451
919 => 0.28878807011287
920 => 0.26384184284792
921 => 0.28829496340807
922 => 0.27350238615076
923 => 0.26848156325257
924 => 0.27524143984186
925 => 0.27260710936082
926 => 0.2703422667063
927 => 0.26907844559014
928 => 0.27404215289696
929 => 0.27381059001818
930 => 0.26568900145015
1001 => 0.25509472024145
1002 => 0.25865050876051
1003 => 0.25735865745584
1004 => 0.25267682167558
1005 => 0.25583181370447
1006 => 0.24193882551416
1007 => 0.21803666142743
1008 => 0.23382716316621
1009 => 0.23321924602603
1010 => 0.2329127066371
1011 => 0.24477883227638
1012 => 0.24363817809426
1013 => 0.2415678795844
1014 => 0.2526387990199
1015 => 0.24859776450106
1016 => 0.26105128070064
1017 => 0.26925397191261
1018 => 0.26717350409199
1019 => 0.2748881748239
1020 => 0.25873242694631
1021 => 0.26409871833514
1022 => 0.26520470355302
1023 => 0.25250218559256
1024 => 0.24382480322517
1025 => 0.24324612075066
1026 => 0.22820073554255
1027 => 0.23623785887862
1028 => 0.2433101948156
1029 => 0.23992309473722
1030 => 0.23885084003915
1031 => 0.24432875674795
1101 => 0.24475443779141
1102 => 0.23504886488892
1103 => 0.23706696083087
1104 => 0.24548275638933
1105 => 0.2368549043755
1106 => 0.22009239726426
1107 => 0.21593506374088
1108 => 0.215380398814
1109 => 0.20410538057631
1110 => 0.21621287664597
1111 => 0.21092763015085
1112 => 0.22762366050198
1113 => 0.21808697750802
1114 => 0.21767587016488
1115 => 0.21705442111938
1116 => 0.20734954715706
1117 => 0.2094742977779
1118 => 0.2165372924502
1119 => 0.2190574485196
1120 => 0.21879457559453
1121 => 0.2165026799231
1122 => 0.21755189802508
1123 => 0.21417200094679
1124 => 0.21297848894197
1125 => 0.20921143675342
1126 => 0.20367491071098
1127 => 0.20444479861467
1128 => 0.19347549181375
1129 => 0.18749883128344
1130 => 0.18584457041977
1201 => 0.18363242365654
1202 => 0.18609443828297
1203 => 0.1934444171458
1204 => 0.18457878325222
1205 => 0.16937927579359
1206 => 0.17029279209055
1207 => 0.17234519198441
1208 => 0.16852055836019
1209 => 0.16490086361204
1210 => 0.16804789452044
1211 => 0.16160766283865
1212 => 0.17312346321458
1213 => 0.17281199308707
1214 => 0.1771043713349
1215 => 0.17978848354174
1216 => 0.17360247389662
1217 => 0.17204670919963
1218 => 0.1729329434766
1219 => 0.15828546498949
1220 => 0.17590735984795
1221 => 0.17605975472646
1222 => 0.17475485725511
1223 => 0.18413797225228
1224 => 0.20393927156326
1225 => 0.19648922625705
1226 => 0.19360434353568
1227 => 0.1881201793735
1228 => 0.19542750250215
1229 => 0.19486641409787
1230 => 0.19232895954725
1231 => 0.19079429911769
]
'min_raw' => 0.14332110357141
'max_raw' => 0.36774554067878
'avg_raw' => 0.2555333221251
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.143321'
'max' => '$0.367745'
'avg' => '$0.255533'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.088133274623436
'max_diff' => 0.21375438411673
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0044986856717499
]
1 => [
'year' => 2028
'avg' => 0.0077210505905047
]
2 => [
'year' => 2029
'avg' => 0.021092518629284
]
3 => [
'year' => 2030
'avg' => 0.016272846710571
]
4 => [
'year' => 2031
'avg' => 0.015981952141472
]
5 => [
'year' => 2032
'avg' => 0.028021391809446
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0044986856717499
'min' => '$0.004498'
'max_raw' => 0.028021391809446
'max' => '$0.028021'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.028021391809446
]
1 => [
'year' => 2033
'avg' => 0.072073901139636
]
2 => [
'year' => 2034
'avg' => 0.045683902251912
]
3 => [
'year' => 2035
'avg' => 0.05388426746924
]
4 => [
'year' => 2036
'avg' => 0.10458949275501
]
5 => [
'year' => 2037
'avg' => 0.2555333221251
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.028021391809446
'min' => '$0.028021'
'max_raw' => 0.2555333221251
'max' => '$0.255533'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.2555333221251
]
]
]
]
'prediction_2025_max_price' => '$0.007691'
'last_price' => 0.0074583
'sma_50day_nextmonth' => '$0.006782'
'sma_200day_nextmonth' => '—'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'decrease'
'sma_200day_direction_label' => 'diminuer'
'sma_200day_date_nextmonth' => '4 févr. 2026'
'sma_50day_date_nextmonth' => '4 févr. 2026'
'daily_sma3' => '$0.007254'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.007111'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.006841'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.006683'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.008086'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.012891'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '—'
'daily_sma200_action' => '—'
'daily_ema3' => '$0.007282'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.007143'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.006966'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.007054'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.008786'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.013632'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.008912'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '—'
'weekly_sma21_action' => '—'
'weekly_sma50' => '—'
'weekly_sma50_action' => '—'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.007191'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.007393'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.00949'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.012969'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.005447'
'weekly_ema50_action' => 'BUY'
'weekly_ema100' => '$0.002723'
'weekly_ema100_action' => 'BUY'
'weekly_ema200' => '$0.001361'
'weekly_ema200_action' => 'BUY'
'rsi_14' => '53.09'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 108.3
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.006897'
'vwma_10_action' => 'BUY'
'hma_9' => '0.007412'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 182.82
'cci_20_action' => 'SELL'
'adx_14' => 25.66
'adx_14_action' => 'SELL'
'ao_5_34' => '-0.000049'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 74.81
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.003473'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 9
'buy_signals' => 20
'sell_pct' => 31.03
'buy_pct' => 68.97
'overall_action' => 'bullish'
'overall_action_label' => 'Haussier'
'overall_action_dir' => 1
'last_updated' => 1767713772
'last_updated_date' => '6 janvier 2026'
]
Prévision du prix de Linea pour 2026
La prévision du prix de Linea pour 2026 suggère que le prix moyen pourrait varier entre $0.002576 à la baisse et $0.007691 à la hausse. Sur le marché des cryptomonnaies, comparé au prix moyen d'aujourd'hui, Linea pourrait potentiellement gagner 3.13% d'ici 2026 si LINEA atteint l'objectif de prix prévu.
Prévision du prix de Linea de 2027 à 2032
La prévision du prix de LINEA pour 2027-2032 se situe actuellement dans une fourchette de prix comprise entre $0.004498 à la baisse et $0.028021 à la hausse. Compte tenu de la volatilité des prix sur le marché, si Linea atteint l'objectif de prix le plus élevé, il pourrait gagner 275.71% d'ici 2032 par rapport au prix actuel.
| Prévision du Prix de Linea | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2027 | $0.00248 | $0.004498 | $0.006516 |
| 2028 | $0.004476 | $0.007721 | $0.010965 |
| 2029 | $0.009834 | $0.021092 | $0.03235 |
| 2030 | $0.008363 | $0.016272 | $0.024181 |
| 2031 | $0.009888 | $0.015981 | $0.022075 |
| 2032 | $0.015094 | $0.028021 | $0.040948 |
Prévision du prix de Linea de 2032 à 2037
La prévision du prix de Linea pour 2032-2037 est actuellement estimée entre $0.028021 à la baisse et $0.255533 à la hausse. Par rapport au prix actuel, Linea pourrait potentiellement gagner 3326.16% d'ici 2037 s'il atteint l'objectif de prix le plus élevé. Veuillez noter que ces informations sont à titre général seulement et ne doivent pas être considérées comme un conseil en investissement à long terme.
| Prévision du Prix de Linea | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2032 | $0.015094 | $0.028021 | $0.040948 |
| 2033 | $0.035075 | $0.072073 | $0.109072 |
| 2034 | $0.028198 | $0.045683 | $0.063168 |
| 2035 | $0.033339 | $0.053884 | $0.074428 |
| 2036 | $0.055187 | $0.104589 | $0.153991 |
| 2037 | $0.143321 | $0.255533 | $0.367745 |
Linea Histogramme des prix potentiels
Prévision du prix de Linea basée sur l'analyse technique
Au 6 janvier 2026, le sentiment global de prévision du prix pour Linea est Haussier, avec 20 indicateurs techniques montrant des signaux haussiers et 9 indiquant des signaux baissiers. La prévision du prix de LINEA a été mise à jour pour la dernière fois le 6 janvier 2026.
Moyennes Mobiles Simples sur 50 et 200 jours de Linea et Indice de Force Relative sur 14 jours - RSI (14)
Selon nos indicateurs techniques, le SMA sur 200 jours de Linea devrait diminuer au cours du prochain mois, atteignant — d'ici le 4 févr. 2026. Le SMA à court terme sur 50 jours pour Linea devrait atteindre $0.006782 d'ici le 4 févr. 2026.
Le Relative Strength Index (RSI), un oscillateur de momentum, est un outil couramment utilisé pour identifier si une cryptomonnaie est survendue (en dessous de 30) ou surachetée (au-dessus de 70). Actuellement, le RSI est à 53.09, ce qui suggère que le marché de LINEA est dans un état NEUTRAL.
Moyennes Mobiles et Oscillateurs Populaires de LINEA pour le Samedi 19 Octobre 2024
Les moyennes mobiles (MA) sont des indicateurs largement utilisés sur les marchés financiers, conçus pour lisser les mouvements de prix sur une période donnée. En tant qu'indicateurs retardés, ils sont basés sur des données historiques de prix. Le tableau ci-dessous met en évidence deux types : la moyenne mobile simple (SMA) et la moyenne mobile exponentielle (EMA).
Moyenne Mobile Simple Quotidienne (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 3 | $0.007254 | BUY |
| SMA 5 | $0.007111 | BUY |
| SMA 10 | $0.006841 | BUY |
| SMA 21 | $0.006683 | BUY |
| SMA 50 | $0.008086 | SELL |
| SMA 100 | $0.012891 | SELL |
| SMA 200 | — | — |
Moyenne Mobile Exponentielle Quotidienne (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 3 | $0.007282 | BUY |
| EMA 5 | $0.007143 | BUY |
| EMA 10 | $0.006966 | BUY |
| EMA 21 | $0.007054 | BUY |
| EMA 50 | $0.008786 | SELL |
| EMA 100 | $0.013632 | SELL |
| EMA 200 | $0.008912 | SELL |
Moyenne Mobile Simple Hebdomadaire (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 21 | — | — |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Moyenne Mobile Exponentielle Hebdomadaire (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 21 | $0.012969 | SELL |
| EMA 50 | $0.005447 | BUY |
| EMA 100 | $0.002723 | BUY |
| EMA 200 | $0.001361 | BUY |
Oscillateurs de Linea
Un oscillateur est un outil d'analyse technique qui établit des limites hautes et basses entre deux extrêmes, créant un indicateur de tendance qui fluctue à l'intérieur de ces limites. Les traders utilisent cet indicateur pour identifier les conditions de surachat ou de survente à court terme.
| Période | Valeur | Action |
|---|---|---|
| RSI (14) | 53.09 | NEUTRAL |
| Stoch RSI (14) | 108.3 | SELL |
| Stochastique Rapide (14) | 100 | SELL |
| Indice de Canal des Matières Premières (20) | 182.82 | SELL |
| Indice Directionnel Moyen (14) | 25.66 | SELL |
| Oscillateur Impressionnant (5, 34) | -0.000049 | NEUTRAL |
| Momentum (10) | 0 | SELL |
| MACD (12, 26) | 0 | BUY |
| Plage de Pourcentage de Williams (14) | -0 | SELL |
| Oscillateur Ultime (7, 14, 28) | 74.81 | SELL |
| VWMA (10) | 0.006897 | BUY |
| Moyenne Mobile de Hull (9) | 0.007412 | BUY |
| Nuage Ichimoku B/L (9, 26, 52, 26) | -0.003473 | SELL |
Prévision du cours de Linea basée sur les flux monétaires mondiaux
Définitions des flux monétaires mondiaux utilisés pour la prédiction du cours de Linea
M0 : le total de toutes les devises physiques, plus les comptes à la banque centrale qui peuvent être échangés contre des devises physiques.
M1 : M0 plus le montant des comptes à vue, y compris les comptes de "chèques" et les comptes "courants".
M2 : M1 plus la plupart des comptes d'épargne, comptes du marché monétaire et comptes de certificats de dépôt (CD) de moins de 100 000 $.
Prédictions du cours de Linea par des sociétés Internet ou des niches technologiques
| Comparaison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Action Facebook | $0.01048 | $0.014726 | $0.020693 | $0.029077 | $0.040858 | $0.057412 |
| Action Amazon.com | $0.015562 | $0.032471 | $0.067753 | $0.141371 | $0.29498 | $0.615494 |
| Action Apple | $0.010579 | $0.0150055 | $0.021284 | $0.03019 | $0.042822 | $0.06074 |
| Action Netflix | $0.011768 | $0.018568 | $0.029297 | $0.046226 | $0.072938 | $0.115086 |
| Action Google | $0.009658 | $0.0125076 | $0.016197 | $0.020975 | $0.027163 | $0.035176 |
| Action Tesla | $0.0169074 | $0.038327 | $0.086886 | $0.196964 | $0.4465036 | $1.01 |
| Action Kodak | $0.005592 | $0.004194 | $0.003145 | $0.002358 | $0.001768 | $0.001326 |
| Action Nokia | $0.00494 | $0.003273 | $0.002168 | $0.001436 | $0.000951 | $0.00063 |
Ce calcul montre la valeur potentielle des cryptomonnaies si l'on suppose que leur capitalisation se comportera comme celle de certaines sociétés Internet ou niches technologiques. En extrapolant les données, vous pourrez obtenir une potentielle image des cours futurs pour 2024, 2025, 2026, 2027, 2028, 2029 et 2030.
Aperçu des prévisions relatives à Linea
Vous vous posez peut-être des questions telles que : "Devrais-je investir dans Linea maintenant ?", "Devrais-je acheter LINEA aujourd'hui ?", " Linea sera-t-il un bon ou un mauvais investissement à court ou à long terme ?".
Nous mettons régulièrement à jour les prévisions de Linea avec de nouvelles valeurs. Regardez nos prévisions similaires. Nous faisons une prévision des cours futurs pour une grande quantité de devises numériques comme Linea en utilisant des méthodes d'analyse technique.
Si vous souhaitez trouver des cryptomonnaies ayant un bon rendement, vous devriez consulter un maximum d'informations disponibles à propos de Linea afin de prendre une décision responsable concernant cet investissement.
Le cours de Linea est de $0.007458 USD actuellement, mais ce cours peut subir une hausse ou une baisse, ce qui pourrait causer la perte de votre investissement, car les cryptomonnaies sont des actifs à haut risque.
Prévision à court terme de Linea
basée sur l'historique des cours sur 4 heures
Prévision à long terme de Linea
basée sur l'historique des cours sur 1 mois
Prévision du cours de Linea basée sur le modèle de croissance du Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Linea présente 1 % de la précédente croissance annuelle moyenne du Bitcoin | $0.007652 | $0.007851 | $0.008055 | $0.008264 |
| Si Linea présente 2 % de la précédente croissance annuelle moyenne du Bitcoin | $0.007846 | $0.008253 | $0.008683 | $0.009134 |
| Si Linea présente 5 % de la précédente croissance annuelle moyenne du Bitcoin | $0.008427 | $0.009522 | $0.01076 | $0.012159 |
| Si Linea présente 10 % de la précédente croissance annuelle moyenne du Bitcoin | $0.009396 | $0.011839 | $0.014916 | $0.018794 |
| Si Linea présente 20 % de la précédente croissance annuelle moyenne du Bitcoin | $0.011335 | $0.017228 | $0.026185 | $0.039797 |
| Si Linea présente 50 % de la précédente croissance annuelle moyenne du Bitcoin | $0.017151 | $0.039442 | $0.0907049 | $0.20859 |
| Si Linea présente 100 % de la précédente croissance annuelle moyenne du Bitcoin | $0.026844 | $0.096623 | $0.347777 | $1.25 |
Boîte à questions
Est-ce que LINEA est un bon investissement ?
La décision d'acquérir Linea dépend entièrement de votre tolérance individuelle au risque. Comme vous pouvez le discerner, la valeur de Linea a connu une hausse de 4.7253% au cours des 24 heures précédentes, et Linea a enregistré une déclin de sur une période de 30 jours précédents. Par conséquent, la détermination de si investir ou non dans Linea dépendra de la mesure dans laquelle cet investissement s'aligne avec vos aspirations de trading.
Est-ce que Linea peut monter ?
Il semble que la valeur moyenne de Linea pourrait potentiellement s'envoler jusqu'à $0.007691 pour la fin de cette année. En regardant les perspectives de Linea sur une période de cinq ans plus longue, la monnaie numérique pourrait potentiellement croître jusqu'à $0.024181. Cependant, compte tenu de l'imprévisibilité du marché, il est essentiel de mener des recherches approfondies avant d'investir des fonds dans un projet, un réseau ou un actif particulier.
Quel sera le prix de Linea la semaine prochaine ?
Basé sur notre nouveau pronostic expérimental de Linea, le prix de Linea va augmenter de 0.86% durant la prochaine semaine et atteindre $0.007522 d'ici 13 janvier 2026.
Quel sera le prix de Linea le mois prochain ?
Basé sur notre nouveau pronostic expérimental de Linea, le prix de Linea va diminuer de -11.62% durant le prochain mois et atteindre $0.006591 d'ici 5 février 2026.
Jusqu'où le prix de Linea peut-il monter cette année en 2026 ?
Selon notre prédiction la plus récente sur la valeur de Linea en 2026, LINEA devrait fluctuer dans la fourchette de $0.002576 et $0.007691. Cependant, il est crucial de garder à l'esprit que le marché des cryptomonnaies est exceptionnellement instable, et cette prévision de prix de Linea ne prend pas en compte les fluctuations de prix soudaines et extrêmes.
Où sera Linea dans 5 ans ?
L'avenir de Linea semble suivre une tendance haussière, avec un prix maximum de $0.024181 prévue après une période de cinq ans. Selon la prévision de Linea pour 2030, la valeur de Linea pourrait potentiellement atteindre son point le plus élevé d'environ $0.024181, tandis que son point le plus bas devrait être autour de $0.008363.
Combien vaudra Linea en 2026 ?
Basé sur notre nouvelle simulation expérimentale de prédiction de prix de Linea, il est attendu que la valeur de LINEA en 2026 augmente de 3.13% jusqu'à $0.007691 si le meilleur scénario se produit. Le prix sera entre $0.007691 et $0.002576 durant 2026.
Combien vaudra Linea en 2027 ?
Selon notre dernière simulation expérimentale pour la prédiction de prix de Linea, le valeur de LINEA pourrait diminuer de -12.62% jusqu'à $0.006516 en 2027, en supposant les conditions les plus favorables. Il est prévu que le prix fluctue entre $0.006516 et $0.00248 tout au long de l'année.
Combien vaudra Linea en 2028 ?
Notre nouveau modèle expérimental de prédiction de prix de Linea suggère que la valeur de LINEA en 2028 pourrait augmenter de 47.02%, atteignant $0.010965 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.010965 et $0.004476 durant l'année.
Combien vaudra Linea en 2029 ?
Basé sur notre modèle de prévision expérimental, la valeur de Linea pourrait connaître un 333.75% croissance en 2029, atteignant potentiellement $0.03235 sous des conditions optimales. Le range de prix prévu pour 2029 se situe entre $0.03235 et $0.009834.
Combien vaudra Linea en 2030 ?
En utilisant notre nouvelle simulation expérimentale pour les prédictions de prix de Linea, il est prévu que la valeur de LINEA en 2030 augmente de 224.23%, atteignant $0.024181 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.024181 et $0.008363 au cours de 2030.
Combien vaudra Linea en 2031 ?
Notre simulation expérimentale indique que le prix de Linea pourrait augmenter de 195.98% en 2031, atteignant potentiellement $0.022075 dans des conditions idéales. Il est probable que le prix fluctue entre $0.022075 et $0.009888 durant l'année.
Combien vaudra Linea en 2032 ?
Basé sur les résultats de notre dernière prédiction expérimentale de prix de Linea, LINEA pourrait connaître une 449.04% hausse en valeur, atteignant $0.040948 si le scénario le plus positif se réalise en 2032. Il est prévu que le prix reste dans une fourchette de $0.040948 et $0.015094 tout au long de l'année.
Combien vaudra Linea en 2033 ?
Selon notre prédiction expérimentale de prix de Linea, la valeur de LINEA est anticipée à augmenter de 1362.43% en 2033, avec le prix potentiel le plus élevé étant $0.109072. Tout au long de l'année, le prix de LINEA pourrait osciller entre $0.109072 et $0.035075.
Combien vaudra Linea en 2034 ?
Les résultats de notre nouvelle simulation de prédiction de prix de Linea suggèrent que LINEA pourrait augmenter de 746.96% en 2034, atteignant potentiellement $0.063168 dans les meilleures circonstances. La fourchette de prix prévue pour l'année est entre $0.063168 et $0.028198.
Combien vaudra Linea en 2035 ?
Basé sur notre prédiction expérimentale pour le prix de Linea, LINEA pourrait augmenter de 897.93%, avec la valeur potentiellement atteignant $0.074428 en 2035. La fourchette de prix attendue pour l'année se situe entre $0.074428 et $0.033339.
Combien vaudra Linea en 2036 ?
Notre récente simulation de prédiction de prix de Linea suggère que la valeur de LINEA pourrait augmenter de 1964.7% en 2036, pouvant atteindre $0.153991 si les conditions sont optimales. La fourchette de prix attendue pour 2036 est entre $0.153991 et $0.055187.
Combien vaudra Linea en 2037 ?
Selon la simulation expérimentale, la valeur de Linea pourrait augmenter de 4830.69% en 2037, avec un maximum de $0.367745 sous des conditions favorables. Il est prévu que le prix chute entre $0.367745 et $0.143321 au cours de l'année.
Prévisions liées
Comment lire et prédire les mouvements de prix de Linea ?
Les traders de Linea utilisent des indicateurs et des modèles graphiques pour prédire la direction du marché. Ils identifient également des niveaux clés de support et de résistance pour évaluer quand une tendance baissière pourrait ralentir ou une tendance haussière pourrait s'arrêter.
Indicateurs de prédiction du prix de Linea
Les moyennes mobiles sont des outils populaires pour la prédiction du prix de Linea. Une moyenne mobile simple (SMA) calcule le prix de clôture moyen de LINEA sur une période spécifique, comme une SMA de 12 jours. Une moyenne mobile exponentielle (EMA) donne plus de poids aux prix récents, réagissant plus rapidement aux changements de prix.
Les moyennes mobiles couramment utilisées sur le marché des cryptomonnaies incluent les moyennes sur 50 jours, 100 jours et 200 jours, qui aident à identifier les niveaux clés de résistance et de support. Un mouvement de prix de LINEA au-dessus de ces moyennes est considéré comme haussier, tandis qu'une chute en dessous indique une faiblesse.
Les traders utilisent également le RSI et les niveaux de retracement de Fibonacci pour évaluer la direction future de LINEA.
Comment lire les graphiques de Linea et prédire les mouvements de prix ?
La plupart des traders préfèrent les graphiques en chandeliers aux simples graphiques linéaires parce qu'ils fournissent des informations plus détaillées. Les chandeliers peuvent représenter l'action des prix de Linea dans différentes périodes, comme 5 minutes pour les tendances à court terme et hebdomadaire pour les tendances à long terme. Les options populaires incluent les graphiques de 1 heure, 4 heures et 1 jour.
Par exemple, un graphique en chandeliers de 1 heure montre les prix d'ouverture, de clôture, les plus hauts et les plus bas de LINEA au sein de chaque heure. La couleur du chandelier est cruciale : le vert indique que le prix a clôturé plus haut qu'il n'a ouvert, tandis que le rouge signifie le contraire. Certains graphiques utilisent des chandeliers creux et pleins pour transmettre la même information.
Qu'est-ce qui affecte le prix de Linea ?
L'action du prix de Linea est déterminée par l'offre et la demande, influencée par des facteurs tels que les réductions de récompenses de bloc, les hard forks et les mises à jour de protocole. Les événements du monde réel, tels que les réglementations, l'adoption par les entreprises et les gouvernements et les piratages d'échanges de cryptomonnaies, impactent également le prix de LINEA. La capitalisation boursière de Linea peut changer rapidement.
Les traders surveillent souvent l'activité des « baleines » de LINEA, de grands détenteurs de Linea, car leurs actions peuvent influencer significativement les mouvements de prix sur le marché relativement petit de Linea.
Modèles de prédiction de prix haussiers et baissiers
Les traders identifient souvent des modèles de chandeliers pour obtenir un avantage dans les prédictions de prix des cryptomonnaies. Certaines formations indiquent des tendances haussières, tandis que d'autres suggèrent des mouvements baissiers.
Modèles de chandeliers haussiers couramment suivis :
- Marteau
- Englobante haussière
- Ligne pénétrante
- Étoile du matin
- Trois soldats blancs
Modèles de chandeliers baissiers courants :
- Harami baissier
- Nuage sombre
- Étoile du soir
- Étoile filante
- Pendu


