Prédiction du prix de LBK jusqu'à $0.006292 d'ici 2026
| Année | Prix min. | Prix max. |
|---|---|---|
| 2026 | $0.0021079 | $0.006292 |
| 2027 | $0.002029 | $0.00533 |
| 2028 | $0.003662 | $0.00897 |
| 2029 | $0.008044 | $0.026464 |
| 2030 | $0.006841 | $0.019781 |
| 2031 | $0.008089 | $0.018058 |
| 2032 | $0.012347 | $0.033497 |
| 2033 | $0.028693 | $0.089226 |
| 2034 | $0.023067 | $0.051674 |
| 2035 | $0.027273 | $0.060886 |
Calculateur de profit d’investissement
Si vous ouvrez une position short de $10,000.00 sur LBK aujourd’hui et la fermez le Apr 06, 2026, notre prévision indique que vous pourriez gagner environ $3,955.31, soit un rendement de 39.55% sur les 90 prochains jours.
Prévision du prix à long terme de LBK pour 2027, 2028, 2029, 2030, 2031, 2032 et 2037
[
'name' => 'LBK'
'name_with_ticker' => 'LBK <small>LBK</small>'
'name_lang' => 'LBK'
'name_lang_with_ticker' => 'LBK <small>LBK</small>'
'name_with_lang' => 'LBK'
'name_with_lang_with_ticker' => 'LBK <small>LBK</small>'
'image' => '/uploads/coins/lbk.jpeg?1717573043'
'price_for_sd' => 0.006101
'ticker' => 'LBK'
'marketcap' => '$0'
'low24h' => '$0'
'high24h' => '$0'
'volume24h' => '$42.34K'
'current_supply' => '0'
'max_supply' => '2B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.006101'
'change_24h_pct' => '0%'
'ath_price' => '$0.1042'
'ath_days' => 2311
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '9 sept. 2019'
'ath_pct' => '-94.15%'
'fdv' => '$12.2M'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.300832'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.006153'
'next_week_prediction_price_date' => '13 janvier 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.005392'
'next_month_prediction_price_date' => '5 février 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.0021079'
'current_year_max_price_prediction' => '$0.006292'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.006841'
'grand_prediction_max_price' => '$0.019781'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0062168349097583
107 => 0.0062400463146002
108 => 0.0062923427949129
109 => 0.005845475096479
110 => 0.0060461055737295
111 => 0.0061639571825807
112 => 0.0056314993263128
113 => 0.0061534322027448
114 => 0.0058376961240402
115 => 0.0057305305567311
116 => 0.0058748148751229
117 => 0.0058185871359245
118 => 0.0057702458275653
119 => 0.0057432705468918
120 => 0.0058492170262397
121 => 0.0058442744963446
122 => 0.0056709254928061
123 => 0.0054447987842993
124 => 0.0055206943300304
125 => 0.0054931207667418
126 => 0.0053931906163233
127 => 0.005460531472093
128 => 0.0051639964237107
129 => 0.0046538232855195
130 => 0.0049908592876344
131 => 0.0049778837681776
201 => 0.0049713409228745
202 => 0.005224614163473
203 => 0.0052002677853973
204 => 0.0051560788707895
205 => 0.0053923790522532
206 => 0.005306126307333
207 => 0.0055719369434745
208 => 0.0057470170199914
209 => 0.0057026110493396
210 => 0.0058672747075391
211 => 0.0055224428101166
212 => 0.0056369821341859
213 => 0.005660588530132
214 => 0.0053894631446939
215 => 0.0052042511539472
216 => 0.0051918996257357
217 => 0.0048707675575656
218 => 0.0050423137162946
219 => 0.0051932672369137
220 => 0.0051209722150036
221 => 0.0050980857708192
222 => 0.0052150076506932
223 => 0.0052240934821276
224 => 0.0050169355625502
225 => 0.0050600102538684
226 => 0.0052396388772372
227 => 0.0050554840734391
228 => 0.0046977013711758
301 => 0.0046089663142816
302 => 0.0045971274219804
303 => 0.0043564709100172
304 => 0.0046148960150865
305 => 0.0045020865313615
306 => 0.0048584503387835
307 => 0.0046548972432015
308 => 0.0046461224760874
309 => 0.0046328581286159
310 => 0.0044257151273739
311 => 0.0044710662800214
312 => 0.0046218204185973
313 => 0.0046756111936081
314 => 0.0046700003750797
315 => 0.0046210816410747
316 => 0.0046434763869977
317 => 0.0045713351075329
318 => 0.004545860520263
319 => 0.0044654557155019
320 => 0.0043472828648972
321 => 0.00436371552457
322 => 0.0041295841859139
323 => 0.0040020170063235
324 => 0.0039667080923212
325 => 0.0039194915368563
326 => 0.0039720413278994
327 => 0.0041289209212486
328 => 0.0039396908478071
329 => 0.0036152691598381
330 => 0.0036347674560727
331 => 0.0036785743386157
401 => 0.0035969405028083
402 => 0.0035196809282251
403 => 0.0035868518600578
404 => 0.0034493901140897
405 => 0.0036951859338847
406 => 0.003688537845794
407 => 0.0037801553275021
408 => 0.0038374456189941
409 => 0.0037054100450571
410 => 0.0036722034552741
411 => 0.0036911194379699
412 => 0.0033784803798813
413 => 0.0037546060465027
414 => 0.0037578587968866
415 => 0.0037300067732976
416 => 0.0039302820791963
417 => 0.0043529254420771
418 => 0.0041939100081715
419 => 0.0041323344258963
420 => 0.0040152791989797
421 => 0.0041712483387944
422 => 0.0041592723423543
423 => 0.00410511234469
424 => 0.0040723562091132
425 => 0.0041327103932714
426 => 0.0040648776577859
427 => 0.0040526930345737
428 => 0.0039788674749091
429 => 0.0039525151089577
430 => 0.0039330048663252
501 => 0.0039115260062238
502 => 0.0039589030194092
503 => 0.0038515404745659
504 => 0.0037220717703648
505 => 0.0037113078484813
506 => 0.0037410279831754
507 => 0.0037278790359771
508 => 0.0037112448963809
509 => 0.0036794857938534
510 => 0.0036700635465594
511 => 0.0037006812792405
512 => 0.0036661156441682
513 => 0.0037171191216049
514 => 0.0037032489978933
515 => 0.003625771614337
516 => 0.0035292061086245
517 => 0.0035283464730707
518 => 0.0035075415932641
519 => 0.0034810434507958
520 => 0.0034736722737565
521 => 0.0035811949115338
522 => 0.0038037635538509
523 => 0.0037600680037478
524 => 0.0037916425167974
525 => 0.0039469578705571
526 => 0.0039963279510217
527 => 0.0039612862373024
528 => 0.0039133189782846
529 => 0.0039154292942435
530 => 0.004079347938984
531 => 0.0040895713437897
601 => 0.0041154025895385
602 => 0.0041486030402348
603 => 0.0039669404176188
604 => 0.0039068730010549
605 => 0.0038784097266735
606 => 0.0037907538582523
607 => 0.0038852831972984
608 => 0.0038302049995861
609 => 0.0038376369301967
610 => 0.0038327968756368
611 => 0.0038354398727096
612 => 0.0036951172289437
613 => 0.003746243425191
614 => 0.0036612362078411
615 => 0.0035474210863175
616 => 0.0035470395381215
617 => 0.0035748956278726
618 => 0.0035583257356797
619 => 0.0035137365818396
620 => 0.0035200702606877
621 => 0.0034645805693681
622 => 0.0035268077138872
623 => 0.0035285921657326
624 => 0.0035046313255573
625 => 0.0036005008273801
626 => 0.003639778640499
627 => 0.0036240071022046
628 => 0.0036386720673285
629 => 0.0037618837511282
630 => 0.0037819726316902
701 => 0.0037908947854389
702 => 0.0037789402813745
703 => 0.0036409241507255
704 => 0.0036470457530097
705 => 0.0036021294971953
706 => 0.0035641799941905
707 => 0.0035656977752917
708 => 0.0035852087529263
709 => 0.0036704143365599
710 => 0.0038497244641734
711 => 0.0038565291524424
712 => 0.0038647766331311
713 => 0.0038312299843184
714 => 0.0038211119940383
715 => 0.0038344602348927
716 => 0.0039017996911457
717 => 0.0040750150551125
718 => 0.0040137891768214
719 => 0.0039640115847332
720 => 0.0040076799529371
721 => 0.0040009575499361
722 => 0.0039442137034204
723 => 0.00394262109264
724 => 0.0038337115090713
725 => 0.0037934501157772
726 => 0.0037598046820276
727 => 0.0037230647467093
728 => 0.0037012840815189
729 => 0.0037347490823867
730 => 0.0037424029240314
731 => 0.0036692311147658
801 => 0.003659258067542
802 => 0.0037190117465115
803 => 0.0036927163802387
804 => 0.003719761816544
805 => 0.0037260365897583
806 => 0.0037250262067505
807 => 0.0036975708243581
808 => 0.0037150700663637
809 => 0.0036736791422453
810 => 0.0036286727289823
811 => 0.0035999614413192
812 => 0.0035749070348334
813 => 0.0035888086757224
814 => 0.0035392518642926
815 => 0.0035233976429346
816 => 0.0037091417169176
817 => 0.0038463528614542
818 => 0.0038443577570711
819 => 0.0038322130722379
820 => 0.0038141685340352
821 => 0.0039004796207837
822 => 0.0038704105640051
823 => 0.0038922883151653
824 => 0.0038978571210419
825 => 0.0039147122192132
826 => 0.0039207364680649
827 => 0.0039025270039254
828 => 0.0038414138181746
829 => 0.003689125569751
830 => 0.0036182349790155
831 => 0.0035948399032966
901 => 0.0035956902698654
902 => 0.0035722333636942
903 => 0.0035791424738264
904 => 0.0035698306571491
905 => 0.0035521963291326
906 => 0.0035877198056596
907 => 0.0035918135554052
908 => 0.0035835219515099
909 => 0.0035854749243877
910 => 0.0035168239855247
911 => 0.0035220433673045
912 => 0.0034929811863079
913 => 0.0034875323777208
914 => 0.003414065714895
915 => 0.003283908872536
916 => 0.0033560283978333
917 => 0.003268918152814
918 => 0.0032359281830896
919 => 0.003392097568772
920 => 0.003376422493914
921 => 0.0033495935795483
922 => 0.0033099080235658
923 => 0.0032951882648156
924 => 0.0032057556703588
925 => 0.003200471515574
926 => 0.0032447967242699
927 => 0.003224342165594
928 => 0.003195616218466
929 => 0.0030915737498706
930 => 0.0029745955678919
1001 => 0.0029781264039072
1002 => 0.0030153349871382
1003 => 0.0031235239611433
1004 => 0.0030812526573113
1005 => 0.0030505843413738
1006 => 0.0030448410876849
1007 => 0.0031167299319175
1008 => 0.0032184677076851
1009 => 0.0032662007958209
1010 => 0.0032188987551538
1011 => 0.0031645607177582
1012 => 0.0031678680223162
1013 => 0.0031898700378424
1014 => 0.0031921821385824
1015 => 0.0031568136622784
1016 => 0.0031667696811859
1017 => 0.0031516455780679
1018 => 0.0030588289851495
1019 => 0.0030571502273082
1020 => 0.0030343715385363
1021 => 0.0030336818088931
1022 => 0.0029949295768819
1023 => 0.002989507871742
1024 => 0.0029125629629913
1025 => 0.0029632083349417
1026 => 0.0029292380784388
1027 => 0.0028780368891154
1028 => 0.0028692097847772
1029 => 0.0028689444313618
1030 => 0.0029215166044204
1031 => 0.0029625939984905
1101 => 0.0029298290055945
1102 => 0.0029223690518349
1103 => 0.0030020218411579
1104 => 0.0029918852976652
1105 => 0.0029831071163743
1106 => 0.0032093582057348
1107 => 0.0030302628139133
1108 => 0.0029521670006715
1109 => 0.0028555086017921
1110 => 0.0028869810638612
1111 => 0.0028936127740458
1112 => 0.0026611667487269
1113 => 0.0025668634252043
1114 => 0.0025345020783171
1115 => 0.0025158776656612
1116 => 0.0025243650443791
1117 => 0.0024394809925322
1118 => 0.002496524479226
1119 => 0.0024230220653968
1120 => 0.0024106991465208
1121 => 0.0025421305676492
1122 => 0.002560418482088
1123 => 0.0024823965574824
1124 => 0.0025324992636814
1125 => 0.0025143313259339
1126 => 0.0024242820533172
1127 => 0.0024208428334608
1128 => 0.0023756592738467
1129 => 0.0023049557523118
1130 => 0.0022726423457416
1201 => 0.002255813243042
1202 => 0.0022627572588085
1203 => 0.0022592461519466
1204 => 0.0022363338046682
1205 => 0.0022605594608724
1206 => 0.0021986729200029
1207 => 0.002174029200775
1208 => 0.0021628982045297
1209 => 0.0021079703374516
1210 => 0.0021953850005061
1211 => 0.0022126067903487
1212 => 0.0022298625124375
1213 => 0.0023800617922378
1214 => 0.0023725582606778
1215 => 0.0024403865316127
1216 => 0.0024377508497324
1217 => 0.0024184051281166
1218 => 0.0023367887108363
1219 => 0.0023693195600915
1220 => 0.0022691946625006
1221 => 0.0023442150436069
1222 => 0.002309978874596
1223 => 0.0023326397604258
1224 => 0.0022918934444541
1225 => 0.002314444138087
1226 => 0.0022166907156067
1227 => 0.0021254099451224
1228 => 0.0021621439918171
1229 => 0.002202078101622
1230 => 0.0022886654267011
1231 => 0.0022370947302139
]
'min_raw' => 0.0021079703374516
'max_raw' => 0.0062923427949129
'avg_raw' => 0.0042001565661823
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.0021079'
'max' => '$0.006292'
'avg' => '$0.00420015'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0039932496625484
'max_diff' => 0.00019112279491291
'year' => 2026
]
1 => [
'items' => [
101 => 0.0022556415027746
102 => 0.0021935129193885
103 => 0.0020653239057104
104 => 0.0020660494416065
105 => 0.0020463303546016
106 => 0.0020292901843955
107 => 0.0022430182450703
108 => 0.0022164377821847
109 => 0.0021740852933416
110 => 0.0022307757826791
111 => 0.002245765647859
112 => 0.0022461923882474
113 => 0.0022875523058748
114 => 0.0023096261013267
115 => 0.0023135167034484
116 => 0.0023785974274752
117 => 0.0024004116277335
118 => 0.0024902612313362
119 => 0.0023077532940036
120 => 0.0023039946631369
121 => 0.0022315735341218
122 => 0.0021856429091676
123 => 0.0022347184433078
124 => 0.0022781926670775
125 => 0.0022329243994382
126 => 0.0022388354795266
127 => 0.0021780665287743
128 => 0.0021997885692234
129 => 0.0022184985167329
130 => 0.002208167983438
131 => 0.0021927026750921
201 => 0.0022746282765019
202 => 0.0022700057130013
203 => 0.0023462967164955
204 => 0.0024057710093412
205 => 0.0025123595744222
206 => 0.0024011288501726
207 => 0.0023970751604789
208 => 0.0024367006274675
209 => 0.002400405561281
210 => 0.0024233427902477
211 => 0.0025086640322275
212 => 0.0025104667356231
213 => 0.002480269131095
214 => 0.0024784316041151
215 => 0.0024842313843903
216 => 0.0025182008786151
217 => 0.0025063308935558
218 => 0.0025200671407777
219 => 0.0025372445282655
220 => 0.0026082974859764
221 => 0.0026254281135318
222 => 0.0025838095697841
223 => 0.0025875672583015
224 => 0.0025720007804853
225 => 0.0025569637579622
226 => 0.0025907647886133
227 => 0.0026525368364889
228 => 0.0026521525557851
301 => 0.0026664824702152
302 => 0.0026754098881898
303 => 0.0026370868749736
304 => 0.0026121400025462
305 => 0.0026217062208456
306 => 0.0026370028122315
307 => 0.0026167457424214
308 => 0.0024917097235663
309 => 0.0025296376643551
310 => 0.0025233246004263
311 => 0.0025143340296969
312 => 0.0025524708674481
313 => 0.0025487924764116
314 => 0.0024386103838911
315 => 0.0024456638839693
316 => 0.0024390393305928
317 => 0.0024604446178085
318 => 0.0023992496055252
319 => 0.0024180727791488
320 => 0.0024298784971893
321 => 0.0024368321558109
322 => 0.0024619535389207
323 => 0.0024590058345626
324 => 0.002461770305479
325 => 0.0024990186848314
326 => 0.0026874082054959
327 => 0.0026976618314476
328 => 0.0026471692271739
329 => 0.0026673400266587
330 => 0.0026286165025168
331 => 0.0026546118636983
401 => 0.0026723972296081
402 => 0.0025920285809909
403 => 0.002587269671208
404 => 0.0025483863213073
405 => 0.0025692800310784
406 => 0.0025360366365217
407 => 0.0025441934027413
408 => 0.0025213863732971
409 => 0.0025624344854625
410 => 0.0026083326530951
411 => 0.0026199283428127
412 => 0.0025894250754241
413 => 0.0025673386995714
414 => 0.0025285622992786
415 => 0.0025930483171539
416 => 0.0026119059939565
417 => 0.0025929492658057
418 => 0.0025885565776804
419 => 0.0025802324416205
420 => 0.0025903225824963
421 => 0.0026118032909987
422 => 0.0026016733855554
423 => 0.0026083643665667
424 => 0.0025828652466612
425 => 0.0026370995614856
426 => 0.0027232367056254
427 => 0.0027235136506286
428 => 0.0027133836905813
429 => 0.002709238729183
430 => 0.0027196326829289
501 => 0.0027252709764538
502 => 0.0027588831169429
503 => 0.0027949502828546
504 => 0.0029632600088268
505 => 0.0029159993112761
506 => 0.0030653337129491
507 => 0.0031834378360273
508 => 0.0032188520984711
509 => 0.0031862726433926
510 => 0.0030748200874768
511 => 0.0030693516933711
512 => 0.0032359088659647
513 => 0.0031888488359052
514 => 0.0031832511950734
515 => 0.0031237017539865
516 => 0.0031589028490106
517 => 0.0031512038531599
518 => 0.0031390506115618
519 => 0.0032062118487383
520 => 0.0033319316892078
521 => 0.0033123370730774
522 => 0.0032977106011042
523 => 0.0032336216586195
524 => 0.0032722175167788
525 => 0.0032584742709432
526 => 0.0033175239767322
527 => 0.0032825442391339
528 => 0.0031884923098927
529 => 0.0032034703896236
530 => 0.0032012064830039
531 => 0.0032477975208134
601 => 0.0032338120477236
602 => 0.0031984755949244
603 => 0.0033315019924605
604 => 0.0033228639981362
605 => 0.0033351106991677
606 => 0.0033405020757035
607 => 0.0034214728996958
608 => 0.003454644055508
609 => 0.0034621744886202
610 => 0.0034936845210926
611 => 0.0034613904903073
612 => 0.0035905896387021
613 => 0.0036764995334053
614 => 0.0037762882969858
615 => 0.003922106501268
616 => 0.003976935494972
617 => 0.0039670311280146
618 => 0.0040775888263013
619 => 0.0042762585525628
620 => 0.0040071879598769
621 => 0.0042905199473295
622 => 0.0042008203113271
623 => 0.003988144087993
624 => 0.0039744502464983
625 => 0.0041184770541619
626 => 0.0044379146514932
627 => 0.0043578991563929
628 => 0.0044380455281784
629 => 0.0043445505282655
630 => 0.0043399077134821
701 => 0.0044335046847174
702 => 0.0046521991097141
703 => 0.0045483055860361
704 => 0.0043993487441066
705 => 0.0045093361581622
706 => 0.0044140548812526
707 => 0.004199359496825
708 => 0.0043578379700518
709 => 0.0042518679282121
710 => 0.0042827956200982
711 => 0.0045055288861912
712 => 0.0044787290303358
713 => 0.0045134105254125
714 => 0.0044521985943748
715 => 0.00439501699855
716 => 0.004288283303582
717 => 0.0042566847184095
718 => 0.0042654174305532
719 => 0.0042566803909111
720 => 0.0041969638695098
721 => 0.0041840680923988
722 => 0.0041625745655703
723 => 0.0041692363082793
724 => 0.0041288221896885
725 => 0.0042050919814522
726 => 0.0042192483268907
727 => 0.0042747511209635
728 => 0.0042805136051676
729 => 0.0044350880966275
730 => 0.0043499510642502
731 => 0.0044070683359466
801 => 0.0044019592295575
802 => 0.0039927534266434
803 => 0.0040491383758316
804 => 0.0041368556621966
805 => 0.0040973391435871
806 => 0.0040414720317146
807 => 0.0039963563434725
808 => 0.0039280014624698
809 => 0.0040242096448419
810 => 0.0041507131740617
811 => 0.0042837219434312
812 => 0.0044435232647488
813 => 0.0044078574701231
814 => 0.0042807345688846
815 => 0.0042864372093708
816 => 0.0043216886889504
817 => 0.0042760348199602
818 => 0.0042625706027257
819 => 0.0043198389122594
820 => 0.0043202332876331
821 => 0.0042677029939056
822 => 0.0042093251853698
823 => 0.0042090805802204
824 => 0.0041986928130542
825 => 0.0043463984889678
826 => 0.004427621675992
827 => 0.0044369337834866
828 => 0.0044269948969626
829 => 0.0044308199799254
830 => 0.0043835579970268
831 => 0.0044915848748274
901 => 0.0045907210206481
902 => 0.0045641504158333
903 => 0.0045243173019819
904 => 0.0044925883081765
905 => 0.0045566760732547
906 => 0.0045538223459592
907 => 0.0045898551528988
908 => 0.0045882204966405
909 => 0.0045761040189291
910 => 0.0045641508485509
911 => 0.0046115438179755
912 => 0.004597895403889
913 => 0.0045842257900456
914 => 0.0045568092867696
915 => 0.0045605356449047
916 => 0.004520709408802
917 => 0.0045022839696563
918 => 0.0042252095737155
919 => 0.004151166241453
920 => 0.0041744617810738
921 => 0.0041821312775854
922 => 0.0041499075244956
923 => 0.0041961081088233
924 => 0.0041889077966944
925 => 0.0042169199991464
926 => 0.0041994191912028
927 => 0.0042001374304653
928 => 0.0042516035750617
929 => 0.0042665444157907
930 => 0.0042589453836086
1001 => 0.0042642674852693
1002 => 0.0043869130717232
1003 => 0.0043694767913146
1004 => 0.0043602141148654
1005 => 0.0043627799395441
1006 => 0.0043941185164341
1007 => 0.0044028916069404
1008 => 0.0043657194059909
1009 => 0.0043832500308486
1010 => 0.0044578932065252
1011 => 0.0044840140935742
1012 => 0.0045673794262973
1013 => 0.0045319643512559
1014 => 0.004596970254223
1015 => 0.0047967762377984
1016 => 0.0049563950830008
1017 => 0.0048096029964249
1018 => 0.0051027226783018
1019 => 0.0053309583961641
1020 => 0.005322198329166
1021 => 0.0052824001525695
1022 => 0.0050225598557438
1023 => 0.0047834509406043
1024 => 0.0049834757012193
1025 => 0.0049839856054696
1026 => 0.0049668033011396
1027 => 0.0048600854846349
1028 => 0.0049630897524495
1029 => 0.0049712658571721
1030 => 0.0049666894127292
1031 => 0.0048848691130282
1101 => 0.0047599446383038
1102 => 0.004784354581638
1103 => 0.0048243385667688
1104 => 0.0047486405413831
1105 => 0.0047244504355673
1106 => 0.0047694244446348
1107 => 0.0049143400725574
1108 => 0.0048869446125377
1109 => 0.0048862292063628
1110 => 0.0050034386018101
1111 => 0.0049195419700405
1112 => 0.0047846624691949
1113 => 0.0047506036163893
1114 => 0.0046297176337219
1115 => 0.0047132140125314
1116 => 0.004716218898559
1117 => 0.0046704887851974
1118 => 0.0047883732158612
1119 => 0.0047872868900794
1120 => 0.0048992006122127
1121 => 0.0051131376160571
1122 => 0.0050498659168197
1123 => 0.0049762878145479
1124 => 0.0049842877943644
1125 => 0.0050720278273178
1126 => 0.005018978200484
1127 => 0.0050380552161686
1128 => 0.0050719989519698
1129 => 0.0050924780505542
1130 => 0.0049813411672335
1201 => 0.0049554298434398
1202 => 0.0049024243685968
1203 => 0.0048885962296043
1204 => 0.0049317680828684
1205 => 0.0049203938248174
1206 => 0.0047159663495239
1207 => 0.004694602540932
1208 => 0.004695257738441
1209 => 0.0046415374259429
1210 => 0.0045596010550311
1211 => 0.0047749249456209
1212 => 0.0047576314237507
1213 => 0.0047385407140181
1214 => 0.0047408792170303
1215 => 0.0048343440199316
1216 => 0.0047801297141632
1217 => 0.0049242673315985
1218 => 0.0048946369706272
1219 => 0.0048642467027025
1220 => 0.0048600458419652
1221 => 0.00484834818159
1222 => 0.0048082325516558
1223 => 0.0047597905179346
1224 => 0.0047278048912948
1225 => 0.0043611501013985
1226 => 0.0044291990976704
1227 => 0.0045074832650202
1228 => 0.0045345066458852
1229 => 0.0044882812829545
1230 => 0.0048100578107312
1231 => 0.0048688494830718
]
'min_raw' => 0.0020292901843955
'max_raw' => 0.0053309583961641
'avg_raw' => 0.0036801242902798
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.002029'
'max' => '$0.00533'
'avg' => '$0.00368'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -7.8680153056155E-5
'max_diff' => -0.00096138439874885
'year' => 2027
]
2 => [
'items' => [
101 => 0.0046907656726663
102 => 0.0046574534628535
103 => 0.0048122417536607
104 => 0.004718885492205
105 => 0.0047609238110222
106 => 0.0046700599594703
107 => 0.0048546882908261
108 => 0.0048532817322782
109 => 0.0047814571413608
110 => 0.0048421627937706
111 => 0.0048316136927717
112 => 0.0047505239065221
113 => 0.0048572589816874
114 => 0.004857311920953
115 => 0.0047881823137963
116 => 0.0047074540670542
117 => 0.0046930217632528
118 => 0.0046821489610457
119 => 0.0047582497681941
120 => 0.0048264815139223
121 => 0.0049534438766383
122 => 0.0049853652311764
123 => 0.0051099564030636
124 => 0.0050357684264389
125 => 0.0050686549955815
126 => 0.005104358018475
127 => 0.0051214753605854
128 => 0.0050935835701838
129 => 0.0052871249438969
130 => 0.0053034657657928
131 => 0.0053089447020269
201 => 0.0052436836397591
202 => 0.0053016507375947
203 => 0.0052745298521859
204 => 0.0053450908616206
205 => 0.0053561557288682
206 => 0.0053467841799536
207 => 0.005350296343465
208 => 0.0051851429240388
209 => 0.0051765788479878
210 => 0.0050598070633541
211 => 0.0051073924287258
212 => 0.0050184338689894
213 => 0.0050466435446565
214 => 0.0050590781008989
215 => 0.0050525829943727
216 => 0.0051100828338874
217 => 0.0050611962238588
218 => 0.0049321764222904
219 => 0.0048031214693634
220 => 0.0048015012895553
221 => 0.0047675233984587
222 => 0.0047429636065571
223 => 0.0047476946937828
224 => 0.0047643676622515
225 => 0.0047419945433199
226 => 0.0047467689825899
227 => 0.0048260564863939
228 => 0.0048419570298292
229 => 0.0047879207704927
301 => 0.0045709573918615
302 => 0.004517714034534
303 => 0.0045559843039194
304 => 0.0045376935800742
305 => 0.0036622728715832
306 => 0.0038679399817442
307 => 0.0037457395686817
308 => 0.0038020551411916
309 => 0.0036773201630982
310 => 0.0037368502325647
311 => 0.0037258572024243
312 => 0.004056563829431
313 => 0.0040514003003224
314 => 0.0040538718084588
315 => 0.0039359002856275
316 => 0.0041238321247737
317 => 0.0042164141065475
318 => 0.0041992796457108
319 => 0.0042035920203559
320 => 0.004129491136372
321 => 0.0040545892669923
322 => 0.0039715115665352
323 => 0.0041258596652704
324 => 0.004108698791501
325 => 0.0041480596616406
326 => 0.0042481654367003
327 => 0.0042629063923427
328 => 0.0042827183862141
329 => 0.004275617196725
330 => 0.0044447963400847
331 => 0.0044243076295439
401 => 0.0044736795269429
402 => 0.0043721177881383
403 => 0.0042571910403522
404 => 0.0042790348578679
405 => 0.0042769311225842
406 => 0.0042501481578684
407 => 0.0042259696948703
408 => 0.0041857193662181
409 => 0.0043130773620015
410 => 0.0043079068599557
411 => 0.004391611278026
412 => 0.0043768157090707
413 => 0.0042780072784976
414 => 0.0042815362409257
415 => 0.0043052702092161
416 => 0.0043874137444589
417 => 0.0044117995384773
418 => 0.0044005030670821
419 => 0.0044272409769695
420 => 0.0044483735307521
421 => 0.0044298949003621
422 => 0.0046915133387021
423 => 0.0045828711231295
424 => 0.0046358225830719
425 => 0.0046484511942601
426 => 0.0046161032722527
427 => 0.0046231183782438
428 => 0.0046337443523185
429 => 0.0046982631861207
430 => 0.0048675792746925
501 => 0.0049425682177474
502 => 0.0051681761528174
503 => 0.0049363414299232
504 => 0.0049225853168941
505 => 0.0049632241187072
506 => 0.0050956798596185
507 => 0.005203022796692
508 => 0.0052386346416819
509 => 0.0052433413348848
510 => 0.0053101515235165
511 => 0.005348445877704
512 => 0.0053020390093342
513 => 0.0052627140473925
514 => 0.0051218569149113
515 => 0.0051381615115372
516 => 0.0052504840137994
517 => 0.0054091461640072
518 => 0.0055452947948687
519 => 0.0054976202895998
520 => 0.0058613431118455
521 => 0.0058974047439967
522 => 0.0058924221924456
523 => 0.0059745759571763
524 => 0.005811517464509
525 => 0.0057418067997842
526 => 0.0052712165505216
527 => 0.0054034332154376
528 => 0.0055956179027054
529 => 0.0055701815386899
530 => 0.0054306118816846
531 => 0.0055451889187683
601 => 0.0055073061671532
602 => 0.0054774264691976
603 => 0.0056143111579968
604 => 0.005463800819749
605 => 0.005594116446947
606 => 0.005426985307123
607 => 0.0054978380627241
608 => 0.0054576186118827
609 => 0.0054836455256876
610 => 0.0053314927194015
611 => 0.0054135906803729
612 => 0.0053280771743121
613 => 0.005328036629776
614 => 0.0053261489143901
615 => 0.0054267551750458
616 => 0.0054300359415939
617 => 0.0053556877629617
618 => 0.005344973028884
619 => 0.0053845910165888
620 => 0.0053382087289539
621 => 0.0053599107094116
622 => 0.0053388660598338
623 => 0.0053341284659457
624 => 0.0052963785118101
625 => 0.0052801147936119
626 => 0.0052864922165818
627 => 0.0052647227841986
628 => 0.005251605913753
629 => 0.0053235396387117
630 => 0.0052851083512644
701 => 0.0053176494927281
702 => 0.0052805647550108
703 => 0.0051520128970314
704 => 0.0050780813640962
705 => 0.0048352588211367
706 => 0.0049041229930996
707 => 0.0049497800103562
708 => 0.0049346903664252
709 => 0.0049671087605059
710 => 0.0049690989866111
711 => 0.0049585594362291
712 => 0.0049463559870867
713 => 0.0049404160229373
714 => 0.0049846876491859
715 => 0.0050103888183376
716 => 0.0049543623028499
717 => 0.0049412360741654
718 => 0.0049978819746321
719 => 0.0050324359411936
720 => 0.0052875630160864
721 => 0.0052686623783287
722 => 0.0053160992700376
723 => 0.0053107586040096
724 => 0.00536048002381
725 => 0.0054417535313438
726 => 0.0052765017660975
727 => 0.0053051837585682
728 => 0.0052981515963783
729 => 0.0053749268992354
730 => 0.0053751665833506
731 => 0.005329135954077
801 => 0.0053540899049679
802 => 0.0053401612941564
803 => 0.0053653321764574
804 => 0.0052684099487883
805 => 0.0053864507599813
806 => 0.0054533722935458
807 => 0.0054543014991043
808 => 0.0054860217748917
809 => 0.0055182514122063
810 => 0.0055801133944217
811 => 0.0055165261150979
812 => 0.0054021387896913
813 => 0.0054103971851169
814 => 0.0053433319380837
815 => 0.0053444593170026
816 => 0.005338441279979
817 => 0.0053565018621036
818 => 0.00527237323093
819 => 0.0052921180525126
820 => 0.0052644751866715
821 => 0.0053051236683764
822 => 0.0052613926214967
823 => 0.0052981482052568
824 => 0.0053140106967407
825 => 0.0053725436318115
826 => 0.005252747259395
827 => 0.0050084743465365
828 => 0.0050598234743421
829 => 0.0049838740809306
830 => 0.0049909034864506
831 => 0.0050051040043225
901 => 0.0049590754797792
902 => 0.0049678562717366
903 => 0.0049675425600584
904 => 0.0049648391622964
905 => 0.0049528653653568
906 => 0.0049355009908507
907 => 0.0050046753144102
908 => 0.0050164293799331
909 => 0.0050425572115698
910 => 0.0051202959158434
911 => 0.0051125279860816
912 => 0.0051251978018114
913 => 0.0050975396652112
914 => 0.004992186468082
915 => 0.0049979076535556
916 => 0.0049265643790236
917 => 0.0050407328036385
918 => 0.0050136962137401
919 => 0.0049962655483492
920 => 0.0049915094298033
921 => 0.0050694408332884
922 => 0.0050927591306362
923 => 0.0050782287325618
924 => 0.0050484264621917
925 => 0.0051056556315526
926 => 0.0051209677429687
927 => 0.0051243955600259
928 => 0.0052257946755286
929 => 0.0051300626441788
930 => 0.0051531062956192
1001 => 0.0053328862860572
1002 => 0.0051698506426728
1003 => 0.0052562142591022
1004 => 0.0052519872094926
1005 => 0.0052961679132724
1006 => 0.0052483631022445
1007 => 0.0052489557001708
1008 => 0.0052881851720671
1009 => 0.0052330944538612
1010 => 0.0052194532172909
1011 => 0.0052006079466694
1012 => 0.005241755905631
1013 => 0.0052664222460664
1014 => 0.0054652148345446
1015 => 0.005593643912745
1016 => 0.0055880684677527
1017 => 0.0056390175981864
1018 => 0.0056160645482855
1019 => 0.0055419430954468
1020 => 0.0056684593772943
1021 => 0.0056284243320517
1022 => 0.0056317247725389
1023 => 0.0056316019299791
1024 => 0.0056582217351411
1025 => 0.0056393591635145
1026 => 0.0056021790986353
1027 => 0.0056268609608231
1028 => 0.0057001572675936
1029 => 0.0059276712528146
1030 => 0.0060549910931037
1031 => 0.0059200064385617
1101 => 0.0060131170457482
1102 => 0.0059572838601379
1103 => 0.0059471373094191
1104 => 0.0060056176515521
1105 => 0.0060642003557824
1106 => 0.0060604688907829
1107 => 0.0060179408557669
1108 => 0.0059939178478952
1109 => 0.0061758281117973
1110 => 0.0063098564954799
1111 => 0.0063007166582504
1112 => 0.006341056927347
1113 => 0.0064594972050921
1114 => 0.0064703258997472
1115 => 0.0064689617331154
1116 => 0.0064421216835552
1117 => 0.0065587415184088
1118 => 0.0066560278363745
1119 => 0.0064359089875656
1120 => 0.0065197273636247
1121 => 0.0065573561330971
1122 => 0.0066126063306353
1123 => 0.0067058226748906
1124 => 0.006807080349166
1125 => 0.0068213992945424
1126 => 0.0068112393175732
1127 => 0.0067444571594362
1128 => 0.0068552545148836
1129 => 0.006920157007187
1130 => 0.0069588049560866
1201 => 0.0070568097240904
1202 => 0.006557588515567
1203 => 0.0062042149312702
1204 => 0.0061490305433058
1205 => 0.0062612501662502
1206 => 0.0062908415858859
1207 => 0.0062789133217353
1208 => 0.0058811592252885
1209 => 0.0061469364503051
1210 => 0.0064328903972392
1211 => 0.006443875052925
1212 => 0.0065870295777753
1213 => 0.0066336465591688
1214 => 0.0067489047153658
1215 => 0.0067416952863142
1216 => 0.0067697588131903
1217 => 0.0067633074943541
1218 => 0.0069767989582407
1219 => 0.0072123117466969
1220 => 0.0072041566877175
1221 => 0.0071702989379161
1222 => 0.0072205834699754
1223 => 0.0074636579067464
1224 => 0.007441279507797
1225 => 0.0074630182161889
1226 => 0.0077496166762168
1227 => 0.0081222354424087
1228 => 0.0079491166152001
1229 => 0.0083247346566422
1230 => 0.0085611663030732
1231 => 0.008970050388087
]
'min_raw' => 0.0036622728715832
'max_raw' => 0.008970050388087
'avg_raw' => 0.0063161616298351
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.003662'
'max' => '$0.00897'
'avg' => '$0.006316'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0016329826871877
'max_diff' => 0.0036390919919229
'year' => 2028
]
3 => [
'items' => [
101 => 0.0089188560868467
102 => 0.0090780316606126
103 => 0.0088272076030535
104 => 0.0082512648669922
105 => 0.0081601197243903
106 => 0.0083425946080419
107 => 0.0087911913038608
108 => 0.0083284667016705
109 => 0.0084220752860398
110 => 0.008395116007444
111 => 0.0083936794620572
112 => 0.0084485065566194
113 => 0.008368976996368
114 => 0.0080449592608092
115 => 0.0081934546795673
116 => 0.0081361134670491
117 => 0.0081997378174086
118 => 0.0085430921956209
119 => 0.0083912870404672
120 => 0.0082313726411622
121 => 0.0084319407857367
122 => 0.0086873329564722
123 => 0.0086713509734114
124 => 0.0086403392463228
125 => 0.0088151507281999
126 => 0.0091038880813023
127 => 0.0091819326276053
128 => 0.0092395435161356
129 => 0.00924748708432
130 => 0.0093293107735194
131 => 0.0088893241744696
201 => 0.0095875942068188
202 => 0.0097081661520852
203 => 0.0096855036235702
204 => 0.0098195142662907
205 => 0.0097800849356805
206 => 0.0097229580218987
207 => 0.0099353933954918
208 => 0.0096918533823179
209 => 0.0093461789944528
210 => 0.0091565351886058
211 => 0.0094062734502745
212 => 0.0095587798920114
213 => 0.009659576948768
214 => 0.0096900780772394
215 => 0.0089234790816726
216 => 0.0085103247405916
217 => 0.0087751519364004
218 => 0.0090982593926838
219 => 0.0088875292962359
220 => 0.0088957895170518
221 => 0.0085953437784121
222 => 0.009124842173901
223 => 0.0090476987114607
224 => 0.0094479191310651
225 => 0.009352403315957
226 => 0.0096787675316772
227 => 0.0095928248960222
228 => 0.0099495679716383
301 => 0.010091882442935
302 => 0.01033085058972
303 => 0.010506636531271
304 => 0.010609861398399
305 => 0.010603664164563
306 => 0.011012692514549
307 => 0.010771502786924
308 => 0.010468511644974
309 => 0.010463031491141
310 => 0.010619954896975
311 => 0.010948823305768
312 => 0.011034094099328
313 => 0.011081748840072
314 => 0.011008763945749
315 => 0.010746969782636
316 => 0.010633928390331
317 => 0.010730242931699
318 => 0.010612458524008
319 => 0.010815787456151
320 => 0.011095001508699
321 => 0.01103734491098
322 => 0.011230082272795
323 => 0.011429545165712
324 => 0.011714786061021
325 => 0.011789358593495
326 => 0.011912624153935
327 => 0.012039504906255
328 => 0.012080255584368
329 => 0.012158061273078
330 => 0.012157651198693
331 => 0.012392123878548
401 => 0.012650754505444
402 => 0.012748381579784
403 => 0.012972869654041
404 => 0.012588441693876
405 => 0.012880034717651
406 => 0.013143058924143
407 => 0.012829470621948
408 => 0.01326167903982
409 => 0.013278460713281
410 => 0.013531844058416
411 => 0.013274991495746
412 => 0.013122473263935
413 => 0.01356278768439
414 => 0.013775841962674
415 => 0.013711668280161
416 => 0.013223303387597
417 => 0.01293905407317
418 => 0.012195118789714
419 => 0.01307634226858
420 => 0.013505560519494
421 => 0.013222191816019
422 => 0.013365106507479
423 => 0.014144802723838
424 => 0.014441660561436
425 => 0.014379916206409
426 => 0.01439034998601
427 => 0.014550529086827
428 => 0.015260851432092
429 => 0.014835209817666
430 => 0.015160596883407
501 => 0.015333181009806
502 => 0.015493486764624
503 => 0.015099826495947
504 => 0.014587680270416
505 => 0.014425462062354
506 => 0.013194016383045
507 => 0.01312991428754
508 => 0.01309393183884
509 => 0.012867067589608
510 => 0.012688814433059
511 => 0.012547060904856
512 => 0.012175057315665
513 => 0.012300597606737
514 => 0.011707701528749
515 => 0.012087015428499
516 => 0.011140738972053
517 => 0.011928826123738
518 => 0.011499906117002
519 => 0.011787914365758
520 => 0.01178690953211
521 => 0.011256595033051
522 => 0.010950720697375
523 => 0.011145635728875
524 => 0.011354600115018
525 => 0.011388503883629
526 => 0.011659431664791
527 => 0.01173504178494
528 => 0.011505939590989
529 => 0.011121129495794
530 => 0.011210512104324
531 => 0.010948909361666
601 => 0.010490460617562
602 => 0.010819726509324
603 => 0.010932152361572
604 => 0.010981806022683
605 => 0.010530974336051
606 => 0.010389313232079
607 => 0.010313894048976
608 => 0.011062932786351
609 => 0.011103966819244
610 => 0.010894030905337
611 => 0.011842961143137
612 => 0.011628189004908
613 => 0.011868142103761
614 => 0.011202401569464
615 => 0.011227833754413
616 => 0.010912661516511
617 => 0.011089136909919
618 => 0.010964409789926
619 => 0.011074879442096
620 => 0.011141094496123
621 => 0.011456215017362
622 => 0.011932424293905
623 => 0.011409146519832
624 => 0.011181146900192
625 => 0.011322596581898
626 => 0.011699295724302
627 => 0.012270014207918
628 => 0.011932137378837
629 => 0.012082081378062
630 => 0.012114837471349
701 => 0.011865699606465
702 => 0.012279200276362
703 => 0.012500798644634
704 => 0.012728112717159
705 => 0.012925483157137
706 => 0.012637318477849
707 => 0.012945695991471
708 => 0.012697198151451
709 => 0.012474269899718
710 => 0.012474607989855
711 => 0.012334761841081
712 => 0.012063792306082
713 => 0.01201382136641
714 => 0.012273776505219
715 => 0.012482235908701
716 => 0.012499405623625
717 => 0.012614819460423
718 => 0.012683120180183
719 => 0.01335256008416
720 => 0.013621814351436
721 => 0.01395105337274
722 => 0.014079310526432
723 => 0.014465318576311
724 => 0.014153585725992
725 => 0.014086140362935
726 => 0.013149811096199
727 => 0.013303134961173
728 => 0.013548621262548
729 => 0.01315385907489
730 => 0.013404244821229
731 => 0.013453676271452
801 => 0.013140445206811
802 => 0.013307755452351
803 => 0.012863429044228
804 => 0.011942109395398
805 => 0.012280225968505
806 => 0.012529193575119
807 => 0.012173886102996
808 => 0.012810760994479
809 => 0.012438711830641
810 => 0.012320790107214
811 => 0.011860735421994
812 => 0.012077863524289
813 => 0.012371532391618
814 => 0.012190079174279
815 => 0.012566621845595
816 => 0.01309990668844
817 => 0.013479957225113
818 => 0.013509132786213
819 => 0.01326478575254
820 => 0.013656353433402
821 => 0.013659205576473
822 => 0.01321751563286
823 => 0.012946983001737
824 => 0.01288551741874
825 => 0.013039070496103
826 => 0.013225512279484
827 => 0.013519479007622
828 => 0.013697116944731
829 => 0.014160302472829
830 => 0.014285627196163
831 => 0.014423321071025
901 => 0.014607322551058
902 => 0.01482826350485
903 => 0.01434485727613
904 => 0.014364063906779
905 => 0.013913922719809
906 => 0.013432882304756
907 => 0.013797932017247
908 => 0.014275185955801
909 => 0.014165703374978
910 => 0.014153384348109
911 => 0.014174101534289
912 => 0.014091555243715
913 => 0.013718201430759
914 => 0.01353070548321
915 => 0.013772623090865
916 => 0.01390119153282
917 => 0.014100589973945
918 => 0.014076009907286
919 => 0.014589638877796
920 => 0.014789219564402
921 => 0.014738158284229
922 => 0.014747554788639
923 => 0.015108886088524
924 => 0.015510760807445
925 => 0.015887169513754
926 => 0.016270068616942
927 => 0.015808468803242
928 => 0.015574096885364
929 => 0.01581590887936
930 => 0.015687600031596
1001 => 0.016424900729725
1002 => 0.016475949830365
1003 => 0.017213197213263
1004 => 0.017912932769417
1005 => 0.017473441403661
1006 => 0.017887861966443
1007 => 0.018336091593297
1008 => 0.019200799266133
1009 => 0.018909596142704
1010 => 0.018686539113893
1011 => 0.01847575129947
1012 => 0.018914367279661
1013 => 0.019478639731116
1014 => 0.019600178612625
1015 => 0.019797118032095
1016 => 0.019590060313128
1017 => 0.019839438528964
1018 => 0.020719853213207
1019 => 0.020481957393889
1020 => 0.020144107086797
1021 => 0.020839109924081
1022 => 0.021090628749139
1023 => 0.022855919584827
1024 => 0.02508467218541
1025 => 0.02416195397399
1026 => 0.023589193004231
1027 => 0.023723805418196
1028 => 0.024537670419893
1029 => 0.024799058027654
1030 => 0.024088516404048
1031 => 0.024339491717663
1101 => 0.025722390371028
1102 => 0.026464271129859
1103 => 0.025456697411488
1104 => 0.022676841483458
1105 => 0.020113687363143
1106 => 0.020793551256185
1107 => 0.020716475789347
1108 => 0.022202227872268
1109 => 0.020476283657276
1110 => 0.020505344131425
1111 => 0.022021819993983
1112 => 0.02161725023283
1113 => 0.020961899033144
1114 => 0.020118472152156
1115 => 0.018559319555106
1116 => 0.017178334619712
1117 => 0.019886764099856
1118 => 0.019769971695713
1119 => 0.019600838986849
1120 => 0.019977225528355
1121 => 0.021804851734726
1122 => 0.02176271903522
1123 => 0.021494692297258
1124 => 0.021697988215723
1125 => 0.020926260275716
1126 => 0.021125152137774
1127 => 0.020113281346435
1128 => 0.020570689203577
1129 => 0.020960492943803
1130 => 0.021038751815796
1201 => 0.021215073050394
1202 => 0.019708427405817
1203 => 0.02038486706744
1204 => 0.020782211994818
1205 => 0.018986993157391
1206 => 0.020746726290471
1207 => 0.019682200057129
1208 => 0.019320883864886
1209 => 0.019807348517953
1210 => 0.01961777276955
1211 => 0.019454786673335
1212 => 0.01936383763119
1213 => 0.019721043583259
1214 => 0.019704379498641
1215 => 0.01911992123037
1216 => 0.018357519244977
1217 => 0.018613406376267
1218 => 0.018520440182515
1219 => 0.018183518703479
1220 => 0.018410563100294
1221 => 0.017410774481257
1222 => 0.015690690126695
1223 => 0.016827030538927
1224 => 0.016783282669157
1225 => 0.016761223009411
1226 => 0.017615151423062
1227 => 0.01753306590957
1228 => 0.017384079898798
1229 => 0.018180782458554
1230 => 0.017889975307082
1231 => 0.018786174425139
]
'min_raw' => 0.0080449592608092
'max_raw' => 0.026464271129859
'avg_raw' => 0.017254615195334
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.008044'
'max' => '$0.026464'
'avg' => '$0.017254'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.004382686389226
'max_diff' => 0.017494220741772
'year' => 2029
]
4 => [
'items' => [
101 => 0.019376469126816
102 => 0.019226751296437
103 => 0.019781926316507
104 => 0.018619301498952
105 => 0.019005478826932
106 => 0.01908506943901
107 => 0.018170951272636
108 => 0.017546496114746
109 => 0.017504852075024
110 => 0.016422132886464
111 => 0.017000512737589
112 => 0.017509463071594
113 => 0.017265715357747
114 => 0.017188552113299
115 => 0.017582762394519
116 => 0.017613395909553
117 => 0.016914948520393
118 => 0.017060177849552
119 => 0.01766580829451
120 => 0.017044917516227
121 => 0.015838628155955
122 => 0.015539451716353
123 => 0.015499536064394
124 => 0.014688145832209
125 => 0.015559444116615
126 => 0.015179099066129
127 => 0.016380604523379
128 => 0.015694311050001
129 => 0.015664726310041
130 => 0.015620004636454
131 => 0.014921607545504
201 => 0.015074512122971
202 => 0.015582790226498
203 => 0.015764149579999
204 => 0.015745232313595
205 => 0.0155802993865
206 => 0.015655804835931
207 => 0.015412575475472
208 => 0.015326686125913
209 => 0.015055595712977
210 => 0.014657167696598
211 => 0.014712571555977
212 => 0.01392318140117
213 => 0.013493079748724
214 => 0.013374033279976
215 => 0.013214839366671
216 => 0.013392014656083
217 => 0.013920945158043
218 => 0.013282942753813
219 => 0.012189132382426
220 => 0.012254872249509
221 => 0.012402570212502
222 => 0.012127336035584
223 => 0.011866849985786
224 => 0.012093321472185
225 => 0.011629859598381
226 => 0.012458577365735
227 => 0.012436162872583
228 => 0.01274505760869
301 => 0.012938215826336
302 => 0.012493048670378
303 => 0.012381090334515
304 => 0.012444866890845
305 => 0.011390782478737
306 => 0.012658916424007
307 => 0.012669883299026
308 => 0.012575978256929
309 => 0.013251220433542
310 => 0.014676192039512
311 => 0.014140060401996
312 => 0.013932454027286
313 => 0.013537794157201
314 => 0.014063655001504
315 => 0.014023277093369
316 => 0.013840672879914
317 => 0.013730233281856
318 => 0.01393372162754
319 => 0.01370501882392
320 => 0.013663937516057
321 => 0.013415029487312
322 => 0.013326180645643
323 => 0.013260400500446
324 => 0.013187983024008
325 => 0.01334771793172
326 => 0.012985737615967
327 => 0.012549224840537
328 => 0.012512933526394
329 => 0.012613137035509
330 => 0.012568804441999
331 => 0.012512721278992
401 => 0.012405643247471
402 => 0.012373875482879
403 => 0.012477105306275
404 => 0.012360564854334
405 => 0.01253252663946
406 => 0.012485762548986
407 => 0.012224542141027
408 => 0.01189896479653
409 => 0.011896066475242
410 => 0.011825921370424
411 => 0.011736581033051
412 => 0.011711728595024
413 => 0.01207424867528
414 => 0.012824654392099
415 => 0.012677331794201
416 => 0.012783787469409
417 => 0.013307444028382
418 => 0.013473898701577
419 => 0.013355753117238
420 => 0.013194028154493
421 => 0.013201143232085
422 => 0.013753806387262
423 => 0.01378827531034
424 => 0.013875367158862
425 => 0.013987304796366
426 => 0.013374816580937
427 => 0.013172295092219
428 => 0.0130763291754
429 => 0.01278079129508
430 => 0.013099503561502
501 => 0.012913803572478
502 => 0.012938860845412
503 => 0.012922542263542
504 => 0.012931453312701
505 => 0.01245834572223
506 => 0.012630721262395
507 => 0.012344113494085
508 => 0.011960377865551
509 => 0.011959091449169
510 => 0.012053010200615
511 => 0.011997143652214
512 => 0.011846808206926
513 => 0.011868162647366
514 => 0.011681075278916
515 => 0.011890878441222
516 => 0.011896894845205
517 => 0.011816109199662
518 => 0.012139339918452
519 => 0.012271767807672
520 => 0.012218592965179
521 => 0.012268036918969
522 => 0.012683453713265
523 => 0.012751184776641
524 => 0.012781266440929
525 => 0.012740960995839
526 => 0.012275629975378
527 => 0.012296269384875
528 => 0.012144831092444
529 => 0.012016881693514
530 => 0.012021998998465
531 => 0.012087781621773
601 => 0.012375058195857
602 => 0.01297961481014
603 => 0.013002557291727
604 => 0.013030364248689
605 => 0.012917259380065
606 => 0.01288314586942
607 => 0.012928150395405
608 => 0.013155190073653
609 => 0.013739197766777
610 => 0.013532770443465
611 => 0.013364941816379
612 => 0.013512172768606
613 => 0.013489507717545
614 => 0.013298191877289
615 => 0.01329282227885
616 => 0.012925626014024
617 => 0.012789881915572
618 => 0.012676443986636
619 => 0.01255257272961
620 => 0.012479137696243
621 => 0.012591967283121
622 => 0.0126177727446
623 => 0.012371068880968
624 => 0.012337444055958
625 => 0.012538907756472
626 => 0.012450251093199
627 => 0.012541436669955
628 => 0.012562592505937
629 => 0.012559185929084
630 => 0.012466618190474
701 => 0.012525618106654
702 => 0.012386065716167
703 => 0.012234323451604
704 => 0.012137521340689
705 => 0.01205304865998
706 => 0.012099919012818
707 => 0.011932834763137
708 => 0.011879381148922
709 => 0.012505630262593
710 => 0.012968247216174
711 => 0.012961520582453
712 => 0.012920573929623
713 => 0.012859735509243
714 => 0.013150739364263
715 => 0.01304935943998
716 => 0.013123121805472
717 => 0.013141897423286
718 => 0.013198725563556
719 => 0.013219036739159
720 => 0.013157642259469
721 => 0.012951594886924
722 => 0.012438144424938
723 => 0.01219913184885
724 => 0.012120253717672
725 => 0.012123120787929
726 => 0.012044034191064
727 => 0.012067328738253
728 => 0.012035933298195
729 => 0.011976477930098
730 => 0.012096247811379
731 => 0.012110050174463
801 => 0.012082094453029
802 => 0.012088679037438
803 => 0.011857217604006
804 => 0.011874815114082
805 => 0.011776829941796
806 => 0.011758458903221
807 => 0.011510760920225
808 => 0.011071928038951
809 => 0.011315084053715
810 => 0.01102138578079
811 => 0.010910157794578
812 => 0.011436693781804
813 => 0.011383844172522
814 => 0.011293388614603
815 => 0.011159585991851
816 => 0.011109957297524
817 => 0.010808429061328
818 => 0.010790613164543
819 => 0.010940058700349
820 => 0.010871094727681
821 => 0.010774243191358
822 => 0.010423456744475
823 => 0.010029056636778
824 => 0.010040961096919
825 => 0.010166412433102
826 => 0.010531179112474
827 => 0.010388658460316
828 => 0.010285258091939
829 => 0.010265894311146
830 => 0.010508272568595
831 => 0.0108512885827
901 => 0.011012224021967
902 => 0.010852741889335
903 => 0.010669537402495
904 => 0.010680688210722
905 => 0.0107548695422
906 => 0.01076266495127
907 => 0.010643417664063
908 => 0.010676985076917
909 => 0.010625993107323
910 => 0.010313055484052
911 => 0.010307395434783
912 => 0.010230595495231
913 => 0.010228270023583
914 => 0.010097614167763
915 => 0.010079334510352
916 => 0.0098199093783776
917 => 0.0099906637858551
918 => 0.009876130694328
919 => 0.0097035023097716
920 => 0.0096737411112065
921 => 0.0096728464536399
922 => 0.0098500972055789
923 => 0.0099885925076183
924 => 0.009878123046491
925 => 0.0098529712915528
926 => 0.010121526231936
927 => 0.010087350167839
928 => 0.010057753916744
929 => 0.010820575260869
930 => 0.010216742643302
1001 => 0.009953437156482
1002 => 0.0096275466161862
1003 => 0.0097336582193893
1004 => 0.009756017493288
1005 => 0.0089723094900618
1006 => 0.0086543592507575
1007 => 0.0085452507103303
1008 => 0.0084824572027461
1009 => 0.0085110729926635
1010 => 0.0082248804854462
1011 => 0.0084172065834834
1012 => 0.0081693880634837
1013 => 0.0081278404821345
1014 => 0.0085709706947176
1015 => 0.0086326296750694
1016 => 0.008369573308945
1017 => 0.0085384980809541
1018 => 0.0084772436103936
1019 => 0.0081736362007268
1020 => 0.0081620406308624
1021 => 0.0080097011050081
1022 => 0.0077713192457909
1023 => 0.0076623723394895
1024 => 0.0076056318447673
1025 => 0.0076290440787398
1026 => 0.0076172061368171
1027 => 0.0075399555582789
1028 => 0.0076216340495527
1029 => 0.0074129792562311
1030 => 0.0073298912362845
1031 => 0.0072923623053021
1101 => 0.0071071691665074
1102 => 0.0074018938060923
1103 => 0.0074599582729338
1104 => 0.0075181371447119
1105 => 0.0080245445031377
1106 => 0.0079992458226031
1107 => 0.0082279335736789
1108 => 0.0082190471882019
1109 => 0.0081538217370991
1110 => 0.0078786462879625
1111 => 0.0079883263174576
1112 => 0.0076507482347326
1113 => 0.0079036846873885
1114 => 0.0077882550532752
1115 => 0.007864657811983
1116 => 0.0077272787628673
1117 => 0.0078033100008899
1118 => 0.0074737275120716
1119 => 0.0071659680213638
1120 => 0.0072898194244842
1121 => 0.0074244600638021
1122 => 0.00771639527564
1123 => 0.0075425210718825
1124 => 0.0076050528104653
1125 => 0.0073955819538997
1126 => 0.0069633837444128
1127 => 0.0069658299393419
1128 => 0.0068993456607622
1129 => 0.0068418935372057
1130 => 0.0075624926157873
1201 => 0.00747287472938
1202 => 0.007330080356289
1203 => 0.0075212162990942
1204 => 0.0075717556761071
1205 => 0.0075731944611207
1206 => 0.0077126423110586
1207 => 0.0077870656535679
1208 => 0.0078001830902544
1209 => 0.0080196072951019
1210 => 0.0080931553942915
1211 => 0.008396089605937
1212 => 0.0077807513529229
1213 => 0.0077680788665367
1214 => 0.0075239059737803
1215 => 0.0073690476649735
1216 => 0.0075345092546714
1217 => 0.0076810856353843
1218 => 0.0075284605105091
1219 => 0.0075483901297256
1220 => 0.0073435033695116
1221 => 0.00741674074547
1222 => 0.0074798226397853
1223 => 0.0074449925255267
1224 => 0.0073928501586851
1225 => 0.0076690680437009
1226 => 0.0076534827481216
1227 => 0.0079107031928701
1228 => 0.0081112249235619
1229 => 0.0084705957125087
1230 => 0.0080955735598198
1231 => 0.0080819062619978
]
'min_raw' => 0.0068418935372057
'max_raw' => 0.019781926316507
'avg_raw' => 0.013311909926856
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.006841'
'max' => '$0.019781'
'avg' => '$0.013311'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0012030657236035
'max_diff' => -0.0066823448133517
'year' => 2030
]
5 => [
'items' => [
101 => 0.0082155062905117
102 => 0.0080931349408232
103 => 0.0081704694097109
104 => 0.0084581359339846
105 => 0.0084642138743436
106 => 0.0083624005423476
107 => 0.0083562051918428
108 => 0.0083757595559685
109 => 0.0084902900774217
110 => 0.0084502695940585
111 => 0.0084965823106011
112 => 0.0085544970718031
113 => 0.0087940570794844
114 => 0.0088518141863098
115 => 0.0087114943603506
116 => 0.0087241636695403
117 => 0.0086716802027662
118 => 0.0086209818314783
119 => 0.0087349443662309
120 => 0.0089432131384304
121 => 0.0089419175092077
122 => 0.0089902318161916
123 => 0.0090203312291852
124 => 0.0088911225144996
125 => 0.0088070123923755
126 => 0.008839265565264
127 => 0.0088908390910955
128 => 0.0088225409659275
129 => 0.0084009732986212
130 => 0.008528849999035
131 => 0.008507565063235
201 => 0.0084772527263191
202 => 0.0086058337374265
203 => 0.0085934317852297
204 => 0.0082219451676288
205 => 0.0082457265356022
206 => 0.0082233913913816
207 => 0.008295560811699
208 => 0.0080892375552862
209 => 0.0081527011993505
210 => 0.0081925050019728
211 => 0.0082159497475046
212 => 0.008300648244578
213 => 0.0082907098535328
214 => 0.0083000304602365
215 => 0.0084256159718221
216 => 0.0090607843936787
217 => 0.0090953552094602
218 => 0.0089251158688701
219 => 0.0089931231276133
220 => 0.0088625640623789
221 => 0.0089502092375405
222 => 0.00901017384044
223 => 0.0087392053304673
224 => 0.0087231603338778
225 => 0.0085920624049387
226 => 0.0086625070061844
227 => 0.0085504245804565
228 => 0.0085779256872533
301 => 0.0085010301951461
302 => 0.0086394267711993
303 => 0.0087941756478806
304 => 0.0088332713253486
305 => 0.0087304274296777
306 => 0.008655961671469
307 => 0.0085252243306001
308 => 0.0087426434421367
309 => 0.0088062234160773
310 => 0.0087423094836004
311 => 0.0087274992288985
312 => 0.0086994338229999
313 => 0.0087334534374336
314 => 0.0088058771458848
315 => 0.0087717234624351
316 => 0.0087942825720641
317 => 0.0087083105090113
318 => 0.0088911652879606
319 => 0.0091815826833311
320 => 0.0091825164227452
321 => 0.0091483625551945
322 => 0.009134387528448
323 => 0.0091694314691851
324 => 0.0091884413694573
325 => 0.0093017670478412
326 => 0.0094233700158414
327 => 0.0099908380079668
328 => 0.0098314952665378
329 => 0.010334986627973
330 => 0.010733182924698
331 => 0.010852584583072
401 => 0.01074274067565
402 => 0.010366970602011
403 => 0.010348533529492
404 => 0.010910092665542
405 => 0.01075142648857
406 => 0.010732553651691
407 => 0.010531778553457
408 => 0.010650461502993
409 => 0.010624503800956
410 => 0.010583528298396
411 => 0.010809967098584
412 => 0.011233840318206
413 => 0.01116777570187
414 => 0.011118461530425
415 => 0.01090238118629
416 => 0.011032509816751
417 => 0.010986173503894
418 => 0.01118526370968
419 => 0.01106732708216
420 => 0.010750224436227
421 => 0.010800724077776
422 => 0.010793091158547
423 => 0.010950176095404
424 => 0.010903023096447
425 => 0.010783883778722
426 => 0.011232391565622
427 => 0.011203267964672
428 => 0.011244558572237
429 => 0.011262735974642
430 => 0.011535734760934
501 => 0.011647573628691
502 => 0.011672963009687
503 => 0.011779201284127
504 => 0.011670319704638
505 => 0.012105923653847
506 => 0.012395574861876
507 => 0.012732019645317
508 => 0.013223655901757
509 => 0.013408515682067
510 => 0.01337512241737
511 => 0.013747875416035
512 => 0.014417704268803
513 => 0.013510513979654
514 => 0.014465787556958
515 => 0.014163358971548
516 => 0.013446306235997
517 => 0.013400136493324
518 => 0.013885732930992
519 => 0.014962739092816
520 => 0.014692961264582
521 => 0.014963180352697
522 => 0.014647955432878
523 => 0.014632301858685
524 => 0.014947870581937
525 => 0.01568521410457
526 => 0.015334929835876
527 => 0.014832711443476
528 => 0.01520354168904
529 => 0.014882294211613
530 => 0.014158433733463
531 => 0.014692754970561
601 => 0.014335469575906
602 => 0.014439744448403
603 => 0.015190705205775
604 => 0.015100347620652
605 => 0.015217278702688
606 => 0.015010898403514
607 => 0.014818106660899
608 => 0.014458246556406
609 => 0.014351709720354
610 => 0.014381152669045
611 => 0.014351695129891
612 => 0.014150356708712
613 => 0.014106877695828
614 => 0.014034410769496
615 => 0.014056871300147
616 => 0.013920612277695
617 => 0.014177761205613
618 => 0.014225490312623
619 => 0.014412621857921
620 => 0.014432050475739
621 => 0.014953209165742
622 => 0.014666163717004
623 => 0.014858738586329
624 => 0.014841512877432
625 => 0.01346184694307
626 => 0.01365195273593
627 => 0.013947697691135
628 => 0.013814464989688
629 => 0.013626105121492
630 => 0.013473994428707
701 => 0.013243531175021
702 => 0.01356790377893
703 => 0.013994419259889
704 => 0.014442867612193
705 => 0.014981648923988
706 => 0.014861399207301
707 => 0.014432795470338
708 => 0.014452022320883
709 => 0.014570875145465
710 => 0.014416949938713
711 => 0.014371554390265
712 => 0.014564638494204
713 => 0.014565968158311
714 => 0.014388858605461
715 => 0.014192033748174
716 => 0.014191209044835
717 => 0.014156185962583
718 => 0.014654185961407
719 => 0.014928035607281
720 => 0.01495943202785
721 => 0.014925922378023
722 => 0.014938818912291
723 => 0.014779471837222
724 => 0.015143691997922
725 => 0.015477936435021
726 => 0.015388351785788
727 => 0.015254051661379
728 => 0.015147075143516
729 => 0.015363151517942
730 => 0.015353529977125
731 => 0.015475017101452
801 => 0.015469505743749
802 => 0.015428654193199
803 => 0.015388353244725
804 => 0.015548141950012
805 => 0.015502125369018
806 => 0.015456037311563
807 => 0.015363600656608
808 => 0.015376164333227
809 => 0.015241887397628
810 => 0.015179764743125
811 => 0.014245589072494
812 => 0.01399594680823
813 => 0.014074489346505
814 => 0.014100347589461
815 => 0.013991702956128
816 => 0.014147471451811
817 => 0.014123195096758
818 => 0.014217640193075
819 => 0.014158634997225
820 => 0.014161056591045
821 => 0.014334578290803
822 => 0.014384952378457
823 => 0.014359331710907
824 => 0.014377275548234
825 => 0.014790783705805
826 => 0.014731996069045
827 => 0.014700766308697
828 => 0.014709417165741
829 => 0.014815077365715
830 => 0.014844656452875
831 => 0.014719327782094
901 => 0.014778433507751
902 => 0.015030098185964
903 => 0.015118166580352
904 => 0.01539923862001
905 => 0.015279834221906
906 => 0.015499006162327
907 => 0.016172665985959
908 => 0.016710832066791
909 => 0.016215912298204
910 => 0.017204185770615
911 => 0.017973698428297
912 => 0.017944163250804
913 => 0.017809980919789
914 => 0.016933911217571
915 => 0.016127738816127
916 => 0.016802136261823
917 => 0.016803855439604
918 => 0.016745924100925
919 => 0.016386117531779
920 => 0.016733403612244
921 => 0.016760969920154
922 => 0.016745540118198
923 => 0.016469677265245
924 => 0.016048485676763
925 => 0.016130785504962
926 => 0.016265594302424
927 => 0.016010373124768
928 => 0.015928814494111
929 => 0.016080447505667
930 => 0.016569040662894
1001 => 0.016476674956748
1002 => 0.016474262914881
1003 => 0.01686944257493
1004 => 0.016586579223444
1005 => 0.016131823569357
1006 => 0.016016991769209
1007 => 0.015609416238656
1008 => 0.015890930109344
1009 => 0.01590106129238
1010 => 0.015746879022407
1011 => 0.016144334610818
1012 => 0.0161406719876
1013 => 0.016517996915339
1014 => 0.017239300460405
1015 => 0.017025975508937
1016 => 0.016777901800069
1017 => 0.016804874290561
1018 => 0.017100695937477
1019 => 0.0169218354168
1020 => 0.016986154907095
1021 => 0.017100598582225
1022 => 0.017169645292907
1023 => 0.016794939531462
1024 => 0.016707577694221
1025 => 0.016528866035063
1026 => 0.016482243499
1027 => 0.016627800416443
1028 => 0.016589451311298
1029 => 0.015900209805676
1030 => 0.015828180233435
1031 => 0.015830389277581
1101 => 0.015649267493361
1102 => 0.015373013298217
1103 => 0.016098992828775
1104 => 0.016040686512394
1105 => 0.01597632085166
1106 => 0.015984205277835
1107 => 0.01629932838632
1108 => 0.0161165410693
1109 => 0.016602511109851
1110 => 0.01650261027911
1111 => 0.016400147369021
1112 => 0.01638598387375
1113 => 0.016346544395091
1114 => 0.016211291747984
1115 => 0.016047966049178
1116 => 0.015940124275797
1117 => 0.014703922052642
1118 => 0.014933353994602
1119 => 0.015197294530447
1120 => 0.015288405745746
1121 => 0.015132553707274
1122 => 0.016217445736392
1123 => 0.016415665964392
1124 => 0.015815243964195
1125 => 0.015702929523027
1126 => 0.016224809052457
1127 => 0.015910051899033
1128 => 0.016051787025947
1129 => 0.015745433206529
1130 => 0.016367920516033
1201 => 0.016363178205686
1202 => 0.016121016582775
1203 => 0.016325689928208
1204 => 0.016290122897675
1205 => 0.016016723021827
1206 => 0.016376587779752
1207 => 0.016376766268182
1208 => 0.016143690971178
1209 => 0.015871510051021
1210 => 0.015822850531123
1211 => 0.015786192119367
1212 => 0.016042771303856
1213 => 0.016272819398368
1214 => 0.016700881868494
1215 => 0.016808506943997
1216 => 0.017228574778692
1217 => 0.016978444835863
1218 => 0.017089324199794
1219 => 0.017209699434185
1220 => 0.017267411748205
1221 => 0.017173372629523
1222 => 0.017825910883624
1223 => 0.017881005105526
1224 => 0.017899477721566
1225 => 0.017679445493748
1226 => 0.017874885611235
1227 => 0.017783445652559
1228 => 0.018021347022281
1229 => 0.01805865299473
1230 => 0.018027056163264
1231 => 0.018038897667754
]
'min_raw' => 0.0080892375552862
'max_raw' => 0.01805865299473
'avg_raw' => 0.013073945275008
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.008089'
'max' => '$0.018058'
'avg' => '$0.013073'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0012473440180806
'max_diff' => -0.0017232733217766
'year' => 2031
]
6 => [
'items' => [
101 => 0.017482071383515
102 => 0.017453197003185
103 => 0.017059492778546
104 => 0.017219930160201
105 => 0.016920000165161
106 => 0.01701511105621
107 => 0.017057035030734
108 => 0.017035136325607
109 => 0.017229001049042
110 => 0.017064176430176
111 => 0.016629177161313
112 => 0.016194059377191
113 => 0.01618859682785
114 => 0.016074037995758
115 => 0.015991232942651
116 => 0.016007184133547
117 => 0.016063398210809
118 => 0.015987965678289
119 => 0.016004063033629
120 => 0.016271386388381
121 => 0.016324996180714
122 => 0.016142809159669
123 => 0.015411301980715
124 => 0.015231788284153
125 => 0.01536081916933
126 => 0.015299150716869
127 => 0.012347608678269
128 => 0.013041029699396
129 => 0.012629022474996
130 => 0.01281889435954
131 => 0.012398341672181
201 => 0.012599051457644
202 => 0.012561987689016
203 => 0.013676988171169
204 => 0.013659578972273
205 => 0.01366791183451
206 => 0.013270162608776
207 => 0.013903787925439
208 => 0.014215934540857
209 => 0.014158164509856
210 => 0.014172703982053
211 => 0.013922867678142
212 => 0.013670330796047
213 => 0.013390228528656
214 => 0.013910623919782
215 => 0.013852764835735
216 => 0.013985472757498
217 => 0.014322986367274
218 => 0.014372686528403
219 => 0.01443948404897
220 => 0.014415541892818
221 => 0.014985941186366
222 => 0.014916862068302
223 => 0.015083322867418
224 => 0.014740900374224
225 => 0.014353416820134
226 => 0.014427064775975
227 => 0.014419971885588
228 => 0.014329671250122
229 => 0.014248151874037
301 => 0.014112445080798
302 => 0.014541841455433
303 => 0.014524408746793
304 => 0.014806624036373
305 => 0.014756739742646
306 => 0.014423600220385
307 => 0.014435498363595
308 => 0.014515519094739
309 => 0.014792471758889
310 => 0.014874690165984
311 => 0.01483660332398
312 => 0.014926752053947
313 => 0.014998001934453
314 => 0.014935699941956
315 => 0.015817764772436
316 => 0.015451469957475
317 => 0.015629999501624
318 => 0.015672577745946
319 => 0.015563514468439
320 => 0.015587166388067
321 => 0.015622992601541
322 => 0.015840522354266
323 => 0.016411383368158
324 => 0.016664213825229
325 => 0.01742486672976
326 => 0.016643219775339
327 => 0.01659684007984
328 => 0.016733856637463
329 => 0.01718044041571
330 => 0.017542354622498
331 => 0.017662422444221
401 => 0.017678291388966
402 => 0.017903546604476
403 => 0.018032658693245
404 => 0.017876194696513
405 => 0.017743607841745
406 => 0.017268698185254
407 => 0.017323670271129
408 => 0.017702373429612
409 => 0.018237313946476
410 => 0.018696348561019
411 => 0.018535610637977
412 => 0.019761927527495
413 => 0.019883511838036
414 => 0.01986671281761
415 => 0.020143699971193
416 => 0.019593936878784
417 => 0.019358902505622
418 => 0.017772274624671
419 => 0.018218052341508
420 => 0.018866016432538
421 => 0.018780255955349
422 => 0.018309687112313
423 => 0.018695991592354
424 => 0.018568267250395
425 => 0.018467525762604
426 => 0.018929042047874
427 => 0.018421585934175
428 => 0.01886095416962
429 => 0.01829745986298
430 => 0.01853634487527
501 => 0.018400742188726
502 => 0.01848849374576
503 => 0.017975499936397
504 => 0.018252298943709
505 => 0.017963984187662
506 => 0.017963847488928
507 => 0.017957482924709
508 => 0.018296683956614
509 => 0.018307745290087
510 => 0.018057075215004
511 => 0.018020949740982
512 => 0.018154524552569
513 => 0.0179981434315
514 => 0.018071313173797
515 => 0.018000359668455
516 => 0.017984386539893
517 => 0.017857109933907
518 => 0.017802275672505
519 => 0.017823777599306
520 => 0.017750380438133
521 => 0.017706155993634
522 => 0.017948685569585
523 => 0.01781911180077
524 => 0.017928826531164
525 => 0.017803792748777
526 => 0.017370371184395
527 => 0.017121105859369
528 => 0.016302412702453
529 => 0.016534593066169
530 => 0.01668852888752
531 => 0.016637653099482
601 => 0.016746953978505
602 => 0.016753664164772
603 => 0.016718129334811
604 => 0.01667698455401
605 => 0.016656957550165
606 => 0.016806222429008
607 => 0.016892875715201
608 => 0.016703978406589
609 => 0.016659722410135
610 => 0.016850708018449
611 => 0.016967209129191
612 => 0.017827387874596
613 => 0.017763663054796
614 => 0.01792359984713
615 => 0.017905593418744
616 => 0.018073232657039
617 => 0.018347251962025
618 => 0.017790094097987
619 => 0.017886797438114
620 => 0.017863088012321
621 => 0.018121941306184
622 => 0.018122749417913
623 => 0.017967553937561
624 => 0.018051687925219
625 => 0.018004726641404
626 => 0.018089592028456
627 => 0.017762811970976
628 => 0.018160794807259
629 => 0.018386425429985
630 => 0.0183895583114
701 => 0.018496505435856
702 => 0.018605169908264
703 => 0.018813741900369
704 => 0.018599352948607
705 => 0.01821368809473
706 => 0.01824153185149
707 => 0.018015416688772
708 => 0.018019217725508
709 => 0.017998927493517
710 => 0.0180598200071
711 => 0.017776174453425
712 => 0.01784274549793
713 => 0.017749545645783
714 => 0.017886594839837
715 => 0.017739152562078
716 => 0.017863076578918
717 => 0.01791655807644
718 => 0.018113905953671
719 => 0.017710004120153
720 => 0.01688642093986
721 => 0.017059548109338
722 => 0.016803479426834
723 => 0.016827179558322
724 => 0.016875057595776
725 => 0.016719869211669
726 => 0.016749474264809
727 => 0.016748416563983
728 => 0.016739301869683
729 => 0.016698931377317
730 => 0.016640386176328
731 => 0.016873612237806
801 => 0.016913241890359
802 => 0.01700133369891
803 => 0.017263435167911
804 => 0.017237245050379
805 => 0.017279962218691
806 => 0.017186710880114
807 => 0.016831505220467
808 => 0.016850794596732
809 => 0.016610255765619
810 => 0.016995182580193
811 => 0.016904026829716
812 => 0.016845258124381
813 => 0.016829222538641
814 => 0.017091973706488
815 => 0.017170592974028
816 => 0.01712160272244
817 => 0.017021122287159
818 => 0.017214074427272
819 => 0.017265700279969
820 => 0.0172772574045
821 => 0.017619131601878
822 => 0.017296364374385
823 => 0.017374057654073
824 => 0.017980198443672
825 => 0.017430512389217
826 => 0.017721693351724
827 => 0.017707441558842
828 => 0.017856399886234
829 => 0.017695222628228
830 => 0.01769722061351
831 => 0.017829485516923
901 => 0.01764374331418
902 => 0.017597750932683
903 => 0.017534212787048
904 => 0.017672946003545
905 => 0.017756110292472
906 => 0.018426353383782
907 => 0.018859360987566
908 => 0.01884056298551
909 => 0.019012341535922
910 => 0.01893495372565
911 => 0.01868504807241
912 => 0.019111606549743
913 => 0.01897662559955
914 => 0.018987753265082
915 => 0.018987339092815
916 => 0.019077089624454
917 => 0.019013493147273
918 => 0.018888137962703
919 => 0.018971354584302
920 => 0.019218478199963
921 => 0.019985557485655
922 => 0.020414825216377
923 => 0.019959715029261
924 => 0.020273643942166
925 => 0.020085398458732
926 => 0.020051188654574
927 => 0.020248359211042
928 => 0.020445874888469
929 => 0.020433293993701
930 => 0.020289907754431
1001 => 0.020208912506159
1002 => 0.020822235661474
1003 => 0.021274121714623
1004 => 0.021243306115281
1005 => 0.021379316149007
1006 => 0.021778645814661
1007 => 0.021815155514726
1008 => 0.021810556131684
1009 => 0.021720063030679
1010 => 0.022113254946025
1011 => 0.02244126255936
1012 => 0.021699116492394
1013 => 0.021981715999289
1014 => 0.022108584022722
1015 => 0.022294863921168
1016 => 0.022609149333982
1017 => 0.022950546652386
1018 => 0.02299882397644
1019 => 0.022964568904741
1020 => 0.022739408196001
1021 => 0.023112969215516
1022 => 0.023331792499665
1023 => 0.023462096757693
1024 => 0.023792526675492
1025 => 0.022109367516444
1026 => 0.020917943805231
1027 => 0.020731885788358
1028 => 0.021110242082039
1029 => 0.021210011619348
1030 => 0.021169794643959
1031 => 0.019828738937485
1101 => 0.020724825407602
1102 => 0.021688939104357
1103 => 0.021725974637926
1104 => 0.022208630113188
1105 => 0.02236580252065
1106 => 0.022754403441336
1107 => 0.022730096347942
1108 => 0.022824714488138
1109 => 0.022802963416265
1110 => 0.023522764792257
1111 => 0.024316812601515
1112 => 0.024289317250797
1113 => 0.024175163483469
1114 => 0.024344701294061
1115 => 0.02516424372855
1116 => 0.025088793394082
1117 => 0.025162086967173
1118 => 0.026128373684823
1119 => 0.027384683870451
1120 => 0.026801001657746
1121 => 0.028067424109283
1122 => 0.028864569912355
1123 => 0.030243151152354
1124 => 0.030070545991451
1125 => 0.030607217551686
1126 => 0.029761546729649
1127 => 0.027819715583981
1128 => 0.027512413372148
1129 => 0.028127640182369
1130 => 0.029640115262343
1201 => 0.028080006959658
1202 => 0.028395614837402
1203 => 0.02830471974738
1204 => 0.028299876334312
1205 => 0.028484729711534
1206 => 0.02821659024657
1207 => 0.027124141828937
1208 => 0.027624804500899
1209 => 0.027431474599458
1210 => 0.027645988538806
1211 => 0.028803631797186
1212 => 0.028291810117888
1213 => 0.027752647555764
1214 => 0.028428877058418
1215 => 0.029289949592964
1216 => 0.029236065221248
1217 => 0.0291315070182
1218 => 0.029720896134296
1219 => 0.030694394279279
1220 => 0.030957526916036
1221 => 0.031151766048979
1222 => 0.031178548343715
1223 => 0.031454422624599
1224 => 0.029970977087019
1225 => 0.032325243252741
1226 => 0.032731759984271
1227 => 0.032655351687136
1228 => 0.033107177925392
1229 => 0.032974239184372
1230 => 0.032781631806083
1231 => 0.033497872499916
]
'min_raw' => 0.012347608678269
'max_raw' => 0.033497872499916
'avg_raw' => 0.022922740589093
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.012347'
'max' => '$0.033497'
'avg' => '$0.022922'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0042583711229831
'max_diff' => 0.015439219505186
'year' => 2032
]
7 => [
'items' => [
101 => 0.03267676034208
102 => 0.031511295009177
103 => 0.030871897677256
104 => 0.031713907662641
105 => 0.032228093778617
106 => 0.032567938092897
107 => 0.032670774777059
108 => 0.030086132741273
109 => 0.028693154034804
110 => 0.029586037415118
111 => 0.030675416762619
112 => 0.029964925529739
113 => 0.029992775440931
114 => 0.028979801656655
115 => 0.030765042465443
116 => 0.030504947895842
117 => 0.031854318983035
118 => 0.031532280743697
119 => 0.032632640483019
120 => 0.032342878886585
121 => 0.033545663073031
122 => 0.034025486249086
123 => 0.034831184040197
124 => 0.035423858615118
125 => 0.03577188846157
126 => 0.035750994055016
127 => 0.037130061694439
128 => 0.036316873688425
129 => 0.035295317899173
130 => 0.035276841177913
131 => 0.035805919396724
201 => 0.03691472219783
202 => 0.037202218631732
203 => 0.037362889917299
204 => 0.037116816250446
205 => 0.036234158951627
206 => 0.035853032005171
207 => 0.036177763205862
208 => 0.035780644851887
209 => 0.036466182542579
210 => 0.037407572214847
211 => 0.037213178970182
212 => 0.037863006442034
213 => 0.038535509511557
214 => 0.039497219104978
215 => 0.039748645604701
216 => 0.04016424404785
217 => 0.040592031362828
218 => 0.040729425119207
219 => 0.040991752430914
220 => 0.040990369836493
221 => 0.041780910846986
222 => 0.042652902062577
223 => 0.04298205855982
224 => 0.043738935775434
225 => 0.042442810067835
226 => 0.043425936305868
227 => 0.044312740781819
228 => 0.043255455926933
301 => 0.044712676783617
302 => 0.044769257367348
303 => 0.045623557006132
304 => 0.044757560658217
305 => 0.044243334791184
306 => 0.045727885601518
307 => 0.046446212975726
308 => 0.046229846924672
309 => 0.044583290592845
310 => 0.043624924183598
311 => 0.041116694435526
312 => 0.04408780091958
313 => 0.045534940219598
314 => 0.044579542851661
315 => 0.045061389711902
316 => 0.047690189942009
317 => 0.048691066867424
318 => 0.048482891463595
319 => 0.048518069679983
320 => 0.049058124701736
321 => 0.051453026081919
322 => 0.050017945661534
323 => 0.051115010871481
324 => 0.051696890303074
325 => 0.052237372347631
326 => 0.050910119267304
327 => 0.049183382511019
328 => 0.048636452496826
329 => 0.044484547412244
330 => 0.044268422721782
331 => 0.044147105383777
401 => 0.043382216728334
402 => 0.042781223765792
403 => 0.04230329184854
404 => 0.04104905577512
405 => 0.041472323631413
406 => 0.039473333109794
407 => 0.040752216405652
408 => 0.037561779265834
409 => 0.040218870120226
410 => 0.038772736371277
411 => 0.039743776290053
412 => 0.039740388423254
413 => 0.0379523960643
414 => 0.036921119386103
415 => 0.037578289023339
416 => 0.038282827040646
417 => 0.038397135963604
418 => 0.039310587893366
419 => 0.039565512692379
420 => 0.038793078650069
421 => 0.037495664547535
422 => 0.037797024252688
423 => 0.036915012341297
424 => 0.035369320392681
425 => 0.036479463335369
426 => 0.036858514945542
427 => 0.037025925730689
428 => 0.035505915223145
429 => 0.035028294920641
430 => 0.03477401387921
501 => 0.037299450278486
502 => 0.037437799385288
503 => 0.036729985794294
504 => 0.039929370343228
505 => 0.03920525108428
506 => 0.040014269710051
507 => 0.037769679018149
508 => 0.037855425405322
509 => 0.036792800200614
510 => 0.037387799310608
511 => 0.036967273117381
512 => 0.037339729262416
513 => 0.037562977940057
514 => 0.038625428778425
515 => 0.040231001602162
516 => 0.038466734052786
517 => 0.037698017416746
518 => 0.038174924894319
519 => 0.039444992353227
520 => 0.04136920956703
521 => 0.040230034247978
522 => 0.040735580910122
523 => 0.040846020365595
524 => 0.040006034659889
525 => 0.041400181038142
526 => 0.042147315408273
527 => 0.042913720674354
528 => 0.043579168892704
529 => 0.042607601557468
530 => 0.043647317874877
531 => 0.042809490057682
601 => 0.042057871892611
602 => 0.042059011787113
603 => 0.041587510732774
604 => 0.040673918027037
605 => 0.040505437515072
606 => 0.041381894415056
607 => 0.042084729848066
608 => 0.042142618740683
609 => 0.042531744549386
610 => 0.042762025194661
611 => 0.045019088569719
612 => 0.045926898130575
613 => 0.047036950477633
614 => 0.047469378425935
615 => 0.048770831516323
616 => 0.047719802446983
617 => 0.047492405696548
618 => 0.044335506201327
619 => 0.044852448316817
620 => 0.045680122521211
621 => 0.044349154244106
622 => 0.045193347269262
623 => 0.045360008854881
624 => 0.044303928451352
625 => 0.044868026625417
626 => 0.043369949118552
627 => 0.040263655598038
628 => 0.041403639230812
629 => 0.042243050898875
630 => 0.041045106949836
701 => 0.043192375111655
702 => 0.041937985380133
703 => 0.041540404056566
704 => 0.039989297565356
705 => 0.040721360121643
706 => 0.041711485211147
707 => 0.04109970302023
708 => 0.042369242925941
709 => 0.044167250006354
710 => 0.045448616925029
711 => 0.045546984366248
712 => 0.044723151282457
713 => 0.046043349056865
714 => 0.046052965256359
715 => 0.04456377677366
716 => 0.043651657119843
717 => 0.043444421615379
718 => 0.043962136536443
719 => 0.044590738026061
720 => 0.045581867374078
721 => 0.046180786081326
722 => 0.047742448427892
723 => 0.048164989482504
724 => 0.04862923399508
725 => 0.049249607831586
726 => 0.0499945256829
727 => 0.048364687832423
728 => 0.048429444328621
729 => 0.046911761888898
730 => 0.045289900544377
731 => 0.046520691136998
801 => 0.048129786111639
802 => 0.047760657946564
803 => 0.047719123487389
804 => 0.047788972927023
805 => 0.047510662345156
806 => 0.046251873898041
807 => 0.045619718220333
808 => 0.04643536032469
809 => 0.046868837803102
810 => 0.047541123568911
811 => 0.047458250158044
812 => 0.049189986092547
813 => 0.049862886311718
814 => 0.04969072964063
815 => 0.049722410611292
816 => 0.050940664316198
817 => 0.052295612989037
818 => 0.053564701222376
819 => 0.054855672281935
820 => 0.053299356282178
821 => 0.052509154997728
822 => 0.053324441018258
823 => 0.052891838779783
824 => 0.055377699560218
825 => 0.05554981516716
826 => 0.058035496191567
827 => 0.060394703473119
828 => 0.058912927649165
829 => 0.060310175510505
830 => 0.061821412991834
831 => 0.064736835282762
901 => 0.06375502362097
902 => 0.063002971274988
903 => 0.062292285441925
904 => 0.06377110984233
905 => 0.065673593808654
906 => 0.066083370633235
907 => 0.066747365635852
908 => 0.066049256080046
909 => 0.066890052145769
910 => 0.069858431722281
911 => 0.069056349358096
912 => 0.06791726345978
913 => 0.070260514049231
914 => 0.071108527328398
915 => 0.077060328629591
916 => 0.084574723628996
917 => 0.081463714757064
918 => 0.079532611158628
919 => 0.07998646631065
920 => 0.082730468986109
921 => 0.083611755555175
922 => 0.081216114862756
923 => 0.082062295655145
924 => 0.086724835015869
925 => 0.089226137790725
926 => 0.085829032652689
927 => 0.076456554307992
928 => 0.067814701237645
929 => 0.070106909819616
930 => 0.069847044501935
1001 => 0.074856361381401
1002 => 0.069037219958977
1003 => 0.06913519937651
1004 => 0.074248103624086
1005 => 0.072884068428202
1006 => 0.0706745061033
1007 => 0.067830833487865
1008 => 0.062574041650352
1009 => 0.057917954523383
1010 => 0.067049613612196
1011 => 0.066655839867442
1012 => 0.066085597131038
1013 => 0.067354610634196
1014 => 0.073516579989761
1015 => 0.073374526651766
1016 => 0.072470855791698
1017 => 0.07315628217447
1018 => 0.070554347544412
1019 => 0.071224925343528
1020 => 0.067813332323966
1021 => 0.069355514849518
1022 => 0.070669765374915
1023 => 0.070933620625701
1024 => 0.071528099978503
1025 => 0.066448338997174
1026 => 0.068729002543844
1027 => 0.070068678708237
1028 => 0.064015973059673
1029 => 0.069949036178497
1030 => 0.066359911659937
1031 => 0.065141708891497
1101 => 0.066781858433191
1102 => 0.066142690561695
1103 => 0.065593171558979
1104 => 0.065286530513529
1105 => 0.06649087532025
1106 => 0.066434691195513
1107 => 0.064464149338464
1108 => 0.061893657815504
1109 => 0.062756399144117
1110 => 0.062442957131189
1111 => 0.061307002841513
1112 => 0.062072498877111
1113 => 0.058701641745015
1114 => 0.052902257251153
1115 => 0.05673350828775
1116 => 0.05658600929044
1117 => 0.056511633607449
1118 => 0.059390712873451
1119 => 0.059113955833685
1120 => 0.058611639096496
1121 => 0.061297777400713
1122 => 0.060317300786015
1123 => 0.063338898683169
1124 => 0.065329118482934
1125 => 0.064824334364847
1126 => 0.066696145706093
1127 => 0.062776274961836
1128 => 0.064078298785161
1129 => 0.064346644090621
1130 => 0.061264630870997
1201 => 0.059159236708102
1202 => 0.059018830920688
1203 => 0.055368367583416
1204 => 0.057318415632676
1205 => 0.059034377217554
1206 => 0.058212564782396
1207 => 0.057952403516373
1208 => 0.05928151100239
1209 => 0.059384794037089
1210 => 0.057029929900499
1211 => 0.057519580723345
1212 => 0.059561506052288
1213 => 0.057468129444096
1214 => 0.053401040645507
1215 => 0.052392346391555
1216 => 0.052257767984155
1217 => 0.049522109166887
1218 => 0.052459752164864
1219 => 0.051177392272309
1220 => 0.055228351807859
1221 => 0.052914465446885
1222 => 0.052814718430569
1223 => 0.052663936185702
1224 => 0.050309241633037
1225 => 0.050824770091425
1226 => 0.052538465204309
1227 => 0.053149930926743
1228 => 0.053086150042302
1229 => 0.052530067163352
1230 => 0.05278463905773
1231 => 0.051964574287211
]
'min_raw' => 0.028693154034804
'max_raw' => 0.089226137790725
'avg_raw' => 0.058959645912764
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.028693'
'max' => '$0.089226'
'avg' => '$0.058959'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.016345545356534
'max_diff' => 0.055728265290809
'year' => 2033
]
8 => [
'items' => [
101 => 0.051674992348569
102 => 0.050760992094426
103 => 0.04941766421985
104 => 0.049604462199919
105 => 0.046942978179526
106 => 0.045492860429568
107 => 0.045091486948624
108 => 0.044554753555354
109 => 0.045152112413587
110 => 0.046935438529694
111 => 0.044784368879928
112 => 0.041096510845397
113 => 0.041318157397077
114 => 0.041816131391249
115 => 0.040888160147536
116 => 0.040009913244085
117 => 0.040773477672213
118 => 0.039210883606808
119 => 0.042004963418672
120 => 0.041929391390079
121 => 0.042970851559205
122 => 0.043622097975874
123 => 0.042121185828984
124 => 0.041743710482939
125 => 0.041958737595344
126 => 0.038404818406099
127 => 0.04268042054086
128 => 0.042717396125669
129 => 0.042400788720001
130 => 0.044677414862355
131 => 0.049481806120223
201 => 0.047674200872822
202 => 0.046974241485871
203 => 0.045643618179609
204 => 0.047416594730609
205 => 0.047280457794235
206 => 0.046664794939551
207 => 0.046292440124054
208 => 0.04697851528863
209 => 0.046207427818705
210 => 0.04606891932104
211 => 0.045229708523921
212 => 0.044930148451008
213 => 0.044708366098853
214 => 0.044464205521015
215 => 0.045002762914702
216 => 0.043782321007482
217 => 0.042310587708771
218 => 0.042188229009358
219 => 0.042526072136324
220 => 0.042376601702105
221 => 0.042187513402425
222 => 0.041826492343202
223 => 0.041719385106925
224 => 0.042067431663781
225 => 0.041674507393465
226 => 0.042254288558009
227 => 0.042096620162008
228 => 0.041215897318751
301 => 0.040118190570692
302 => 0.040108418678117
303 => 0.039871919559847
304 => 0.039570702374851
305 => 0.0394869106449
306 => 0.04070917240583
307 => 0.043239217671738
308 => 0.042742509247188
309 => 0.043101431988652
310 => 0.044866976637762
311 => 0.045428190189934
312 => 0.045029854103674
313 => 0.044484587100501
314 => 0.044508576081364
315 => 0.046371918494752
316 => 0.046488132875453
317 => 0.046781769123303
318 => 0.047159174683385
319 => 0.045094127902504
320 => 0.044411312563691
321 => 0.044087756775009
322 => 0.043091330177716
323 => 0.044165890835736
324 => 0.043539790357583
325 => 0.043624272702724
326 => 0.043569253464621
327 => 0.04359929768901
328 => 0.042004182416421
329 => 0.042585358584962
330 => 0.041619040483791
331 => 0.04032524902062
401 => 0.040320911777974
402 => 0.040637565405672
403 => 0.040449207437259
404 => 0.039942340987388
405 => 0.04001433897425
406 => 0.039383560849496
407 => 0.040090926859202
408 => 0.040111211585283
409 => 0.039838837141059
410 => 0.040928632076709
411 => 0.041375121951033
412 => 0.041195839257019
413 => 0.04136254299929
414 => 0.042763149724732
415 => 0.042991509733735
416 => 0.043092932165119
417 => 0.042957039542962
418 => 0.041388143519101
419 => 0.041457730729221
420 => 0.040947145953205
421 => 0.04051575562157
422 => 0.040533008972491
423 => 0.040754799679769
424 => 0.041723372706306
425 => 0.043761677540153
426 => 0.043839029718616
427 => 0.043932782815436
428 => 0.04355144185414
429 => 0.043436425771271
430 => 0.043588161672745
501 => 0.044353641799361
502 => 0.046322664510846
503 => 0.045626680378002
504 => 0.045060834444362
505 => 0.045557233879133
506 => 0.045480817077057
507 => 0.044835782364387
508 => 0.044817678388357
509 => 0.043579650544672
510 => 0.043121979839391
511 => 0.042739515942001
512 => 0.042321875350523
513 => 0.042074284008455
514 => 0.042454696838123
515 => 0.042541701753181
516 => 0.041709922452633
517 => 0.041596554007498
518 => 0.042275802939529
519 => 0.041976890809495
520 => 0.042284329347899
521 => 0.042355657725968
522 => 0.042344172214267
523 => 0.042032073620672
524 => 0.042230995957315
525 => 0.041760485329551
526 => 0.041248875690268
527 => 0.040922500614812
528 => 0.040637695074106
529 => 0.040795721741085
530 => 0.040232385527833
531 => 0.040052162935496
601 => 0.042163605545555
602 => 0.043723350903438
603 => 0.043700671588207
604 => 0.043562617089388
605 => 0.043357496107474
606 => 0.044338635921914
607 => 0.043996826429073
608 => 0.044245521394254
609 => 0.044308824700587
610 => 0.044500424743122
611 => 0.044568905289749
612 => 0.044361909515047
613 => 0.043667206412742
614 => 0.041936072332189
615 => 0.041130224744585
616 => 0.040864281618222
617 => 0.040873948145767
618 => 0.040607302162786
619 => 0.040685841355009
620 => 0.040579989436894
621 => 0.040379531512314
622 => 0.040783344029118
623 => 0.040829879659905
624 => 0.040735624993283
625 => 0.040757825379341
626 => 0.039977436996404
627 => 0.040036768230245
628 => 0.039706404380774
629 => 0.039644465141593
630 => 0.038809334098202
701 => 0.037329778400653
702 => 0.038149595881042
703 => 0.037159371648514
704 => 0.036784358727311
705 => 0.038559611569814
706 => 0.038381425422276
707 => 0.038076448193347
708 => 0.037625323308938
709 => 0.037457996701049
710 => 0.036441373200687
711 => 0.03638130566081
712 => 0.036885171718733
713 => 0.036652654869974
714 => 0.0363261131533
715 => 0.035143412156508
716 => 0.033813664657271
717 => 0.033853801375778
718 => 0.034276769314454
719 => 0.035506605641151
720 => 0.035026087311926
721 => 0.034677465750761
722 => 0.03461217941188
723 => 0.035429374629179
724 => 0.036585877069348
725 => 0.037128482138992
726 => 0.036590776994136
727 => 0.035973090275827
728 => 0.036010686004285
729 => 0.036260793542539
730 => 0.036287076308479
731 => 0.03588502575408
801 => 0.035998200630119
802 => 0.035826277644489
803 => 0.03477118659902
804 => 0.034752103347738
805 => 0.034493166989538
806 => 0.03448532649952
807 => 0.034044811159521
808 => 0.033983180018317
809 => 0.033108510073379
810 => 0.033684220479881
811 => 0.033298064165353
812 => 0.032716035514292
813 => 0.032615693555469
814 => 0.03261267715502
815 => 0.033210290440435
816 => 0.033677237020694
817 => 0.033304781519772
818 => 0.033219980621958
819 => 0.034125432353366
820 => 0.034010205367168
821 => 0.033910419540256
822 => 0.036482324960461
823 => 0.034446461132086
824 => 0.03355870829987
825 => 0.032459945590312
826 => 0.032817708268986
827 => 0.03289309412201
828 => 0.030250767872388
829 => 0.029178776441997
830 => 0.028810909380231
831 => 0.028599196685308
901 => 0.028695676818905
902 => 0.0277307587995
903 => 0.028379199666811
904 => 0.027543662224496
905 => 0.027403581653218
906 => 0.028897626103305
907 => 0.029105513660454
908 => 0.028218600756056
909 => 0.028788142418836
910 => 0.028581618694691
911 => 0.027557985115806
912 => 0.027518889842432
913 => 0.027005266495008
914 => 0.026201545413367
915 => 0.025834223312342
916 => 0.025642918772891
917 => 0.02572185475432
918 => 0.025681942306628
919 => 0.025421486587624
920 => 0.025696871323563
921 => 0.024993377120067
922 => 0.024713240059797
923 => 0.024586708648803
924 => 0.023962317051585
925 => 0.024956001750963
926 => 0.025151770154851
927 => 0.02534792428297
928 => 0.027055312048135
929 => 0.026970015780415
930 => 0.027741052499636
1001 => 0.027711091430573
1002 => 0.027491179268284
1003 => 0.026563406029384
1004 => 0.026933199906441
1005 => 0.025795031831585
1006 => 0.026647824741174
1007 => 0.026258645670721
1008 => 0.026516242905975
1009 => 0.026053059850382
1010 => 0.026309404477707
1011 => 0.025198194105941
1012 => 0.024160561495939
1013 => 0.024578135148588
1014 => 0.025032085464357
1015 => 0.026016365413334
1016 => 0.025430136395857
1017 => 0.025640966518315
1018 => 0.024934720900616
1019 => 0.023477534462216
1020 => 0.023485781979207
1021 => 0.023261625592191
1022 => 0.023067921746441
1023 => 0.0254974718505
1024 => 0.025195318889557
1025 => 0.024713877691096
1026 => 0.025358305866949
1027 => 0.025528702905095
1028 => 0.025533553869221
1029 => 0.026003712031225
1030 => 0.026254635526566
1031 => 0.026298861880185
1101 => 0.027038665906537
1102 => 0.027286638457919
1103 => 0.028308002302673
1104 => 0.026233346421092
1105 => 0.026190620248476
1106 => 0.02536737429294
1107 => 0.024845258692937
1108 => 0.025403123994762
1109 => 0.025897316495972
1110 => 0.025382730231509
1111 => 0.025449924334139
1112 => 0.024759134317341
1113 => 0.025006059243655
1114 => 0.025218744254576
1115 => 0.025101312092593
1116 => 0.024925510462322
1117 => 0.02585679834657
1118 => 0.025804251434394
1119 => 0.026671488122421
1120 => 0.027347561137429
1121 => 0.02855920484283
1122 => 0.027294791471829
1123 => 0.027248711223002
1124 => 0.027699153046792
1125 => 0.027286569497623
1126 => 0.027547308058798
1127 => 0.028517195829622
1128 => 0.028537688029891
1129 => 0.028194417272686
1130 => 0.028173529215914
1201 => 0.028239458119806
1202 => 0.028625605769151
1203 => 0.028490673915351
1204 => 0.028646820472625
1205 => 0.028842084133497
1206 => 0.02964977742494
1207 => 0.029844509543074
1208 => 0.029371411453036
1209 => 0.029414126913511
1210 => 0.029237175241004
1211 => 0.02906624214256
1212 => 0.029450474785088
1213 => 0.03015266749142
1214 => 0.030148299187038
1215 => 0.030311194246231
1216 => 0.030412676518613
1217 => 0.029977040315986
1218 => 0.029693457166863
1219 => 0.029802200991102
1220 => 0.029976084734191
1221 => 0.029745812836764
1222 => 0.028324468013527
1223 => 0.028755613237038
1224 => 0.028683849589921
1225 => 0.02858164942967
1226 => 0.029015169285858
1227 => 0.02897335523815
1228 => 0.027720862170541
1229 => 0.027801042713025
1230 => 0.027725738214896
1231 => 0.027969062454204
]
'min_raw' => 0.023067921746441
'max_raw' => 0.051674992348569
'avg_raw' => 0.037371457047505
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.023067'
'max' => '$0.051674'
'avg' => '$0.037371'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0056252322883625
'max_diff' => -0.037551145442156
'year' => 2034
]
9 => [
'items' => [
101 => 0.027273429190178
102 => 0.027487401297031
103 => 0.027621602596585
104 => 0.027700648193005
105 => 0.027986215089348
106 => 0.027952707110063
107 => 0.027984132186309
108 => 0.02840755250672
109 => 0.030549067187053
110 => 0.030665625106117
111 => 0.030091651283587
112 => 0.030320942504555
113 => 0.029880753500774
114 => 0.030176255328022
115 => 0.030378430173292
116 => 0.029464840923502
117 => 0.029410744097275
118 => 0.028968738276892
119 => 0.029206247168276
120 => 0.02882835344459
121 => 0.028921075346221
122 => 0.02866181682591
123 => 0.029128430544614
124 => 0.029650177186566
125 => 0.029781990992723
126 => 0.029435245618137
127 => 0.029184179115303
128 => 0.028743389042774
129 => 0.029476432757037
130 => 0.02969079707819
131 => 0.029475306792515
201 => 0.029425372984769
202 => 0.029330748509318
203 => 0.029445448014555
204 => 0.02968962960406
205 => 0.029574478075775
206 => 0.029650537688916
207 => 0.029360676875956
208 => 0.029977184529696
209 => 0.030956347054483
210 => 0.030959495222109
211 => 0.030844343073115
212 => 0.030797225294734
213 => 0.030915378387619
214 => 0.030979471593615
215 => 0.031361557030433
216 => 0.031771549927094
217 => 0.033684807881895
218 => 0.033147572704212
219 => 0.034845128981936
220 => 0.036187675597521
221 => 0.036590246625087
222 => 0.036219900222157
223 => 0.034952965183454
224 => 0.034890803306222
225 => 0.036784139140221
226 => 0.036249185046842
227 => 0.036185553959644
228 => 0.035508626698279
301 => 0.035908774548818
302 => 0.03582125634409
303 => 0.035683104576391
304 => 0.036446558800678
305 => 0.037875676954516
306 => 0.037652935488055
307 => 0.037486669316021
308 => 0.036758139349525
309 => 0.037196877112414
310 => 0.037040650998518
311 => 0.03771189752736
312 => 0.037314265953605
313 => 0.036245132243442
314 => 0.036415395310697
315 => 0.036389660390603
316 => 0.036919283222536
317 => 0.036760303594436
318 => 0.036358617066685
319 => 0.037870792384031
320 => 0.037772600130083
321 => 0.037911814296306
322 => 0.037973100677619
323 => 0.03889353514577
324 => 0.039270607696753
325 => 0.03935620976741
326 => 0.039714399527007
327 => 0.039347297679888
328 => 0.040815966807544
329 => 0.041792546078216
330 => 0.042926893155412
331 => 0.044584479118944
401 => 0.04520774677476
402 => 0.04509515905139
403 => 0.046351921811173
404 => 0.048610296554237
405 => 0.045551641156368
406 => 0.04877241271732
407 => 0.047752753626718
408 => 0.045335160265786
409 => 0.045179495754895
410 => 0.046816718047755
411 => 0.050447919516511
412 => 0.049538344733334
413 => 0.05044940725501
414 => 0.04938660442954
415 => 0.04933382731125
416 => 0.050397789293998
417 => 0.052883794460237
418 => 0.051702786592267
419 => 0.050009522218522
420 => 0.051259802281984
421 => 0.050176693983056
422 => 0.047736147842646
423 => 0.049537649198639
424 => 0.048333036545692
425 => 0.048684606558553
426 => 0.05121652318244
427 => 0.050911876275633
428 => 0.051306117582585
429 => 0.050610291994907
430 => 0.049960281174391
501 => 0.048746987707462
502 => 0.048387791326549
503 => 0.048487060283701
504 => 0.048387742133784
505 => 0.04770891558978
506 => 0.047562323062233
507 => 0.047317995760624
508 => 0.047393723007859
509 => 0.04693431620036
510 => 0.047801311764401
511 => 0.047962233781025
512 => 0.048593160851104
513 => 0.04865866579254
514 => 0.050415788702025
515 => 0.049447994930732
516 => 0.050097274547809
517 => 0.050039196867601
518 => 0.045387556844701
519 => 0.04602851179809
520 => 0.047025636562817
521 => 0.046576433207878
522 => 0.045941364761391
523 => 0.045428512940637
524 => 0.044651489990404
525 => 0.045745134871453
526 => 0.047183161593866
527 => 0.048695136523326
528 => 0.05051167533255
529 => 0.050106245017174
530 => 0.048661177593846
531 => 0.048726002262834
601 => 0.049126722858951
602 => 0.048607753277674
603 => 0.048454699016665
604 => 0.049105695553797
605 => 0.049110178609166
606 => 0.048513041386338
607 => 0.047849432638122
608 => 0.047846652093236
609 => 0.047728569326191
610 => 0.049407611091475
611 => 0.050330914292111
612 => 0.050436769516086
613 => 0.050323789392127
614 => 0.050367270957818
615 => 0.049830021168966
616 => 0.051058014869806
617 => 0.052184943325688
618 => 0.051882902426197
619 => 0.051430100180216
620 => 0.051069421381381
621 => 0.051797937963728
622 => 0.051765498267108
623 => 0.052175100588736
624 => 0.05215651866145
625 => 0.052018784806608
626 => 0.051882907345106
627 => 0.052421646121071
628 => 0.052266498005473
629 => 0.052111108901999
630 => 0.051799452266099
701 => 0.051841811578987
702 => 0.051389087515698
703 => 0.051179636648776
704 => 0.048029998153181
705 => 0.047188311829751
706 => 0.047453123481207
707 => 0.047540306352697
708 => 0.04717400338609
709 => 0.047699187744693
710 => 0.047617338318713
711 => 0.04793576655489
712 => 0.047736826417473
713 => 0.047744990990106
714 => 0.048330031515739
715 => 0.04849987126927
716 => 0.048413489399849
717 => 0.048473988300195
718 => 0.049868159923662
719 => 0.049669953301904
720 => 0.049564659984499
721 => 0.049593826953008
722 => 0.04995006769418
723 => 0.050049795651685
724 => 0.049627241287977
725 => 0.04982652036866
726 => 0.050675025401924
727 => 0.050971954142341
728 => 0.05191960814787
729 => 0.051517027883114
730 => 0.052255981382339
731 => 0.054527272511144
801 => 0.056341737026224
802 => 0.054673080472239
803 => 0.058005113483522
804 => 0.060599579134553
805 => 0.060499999221558
806 => 0.060047594124229
807 => 0.057093863957968
808 => 0.054375797421339
809 => 0.05664957549443
810 => 0.056655371822345
811 => 0.056460052269353
812 => 0.055246939300586
813 => 0.056417838567615
814 => 0.05651078029935
815 => 0.056458757644779
816 => 0.05552866677592
817 => 0.054108589928697
818 => 0.05438606954546
819 => 0.05484058681815
820 => 0.053980090798712
821 => 0.053705110181209
822 => 0.05421635146635
823 => 0.055863677408426
824 => 0.055552259981386
825 => 0.055544127613829
826 => 0.056876503428247
827 => 0.055922809889821
828 => 0.05438956945204
829 => 0.054002406020544
830 => 0.05262823666327
831 => 0.053577380332963
901 => 0.053611538323907
902 => 0.05309170203603
903 => 0.05443175130182
904 => 0.054419402511925
905 => 0.055691579849782
906 => 0.058123505111777
907 => 0.057404265144031
908 => 0.056567867314628
909 => 0.056658806949481
910 => 0.057656190285666
911 => 0.057053149552561
912 => 0.057270007204735
913 => 0.057655862045637
914 => 0.057888657851389
915 => 0.056625311215557
916 => 0.056330764681889
917 => 0.055728225845791
918 => 0.055571034710373
919 => 0.05606179001999
920 => 0.055932493334546
921 => 0.053608667477034
922 => 0.053365814745279
923 => 0.053373262691848
924 => 0.052762597950832
925 => 0.051831187644452
926 => 0.054278878318
927 => 0.054082294501505
928 => 0.053865281182474
929 => 0.053891864075794
930 => 0.054954323637247
1001 => 0.05433804343611
1002 => 0.055976525357171
1003 => 0.055639702731476
1004 => 0.05529424187638
1005 => 0.05524648866321
1006 => 0.055113515707334
1007 => 0.054657501964574
1008 => 0.054106837968015
1009 => 0.053743241899788
1010 => 0.049575299795536
1011 => 0.050348845606281
1012 => 0.051238739550624
1013 => 0.051545927374185
1014 => 0.051020461345234
1015 => 0.05467825056615
1016 => 0.055346563904146
1017 => 0.053322199210357
1018 => 0.052943523230415
1019 => 0.054703076500353
1020 => 0.053641850781941
1021 => 0.054119720657962
1022 => 0.053086827366852
1023 => 0.055185586791522
1024 => 0.055169597761089
1025 => 0.054353132942261
1026 => 0.055043203416225
1027 => 0.054923286689573
1028 => 0.054001499919981
1029 => 0.055214809076279
1030 => 0.055215410862483
1031 => 0.054429581225837
1101 => 0.053511904250462
1102 => 0.053347845281828
1103 => 0.053224248887183
1104 => 0.054089323521476
1105 => 0.054864946733566
1106 => 0.056308189237962
1107 => 0.056671054694164
1108 => 0.05808734272704
1109 => 0.057244012161275
1110 => 0.057617849678119
1111 => 0.058023703185199
1112 => 0.058218284281262
1113 => 0.057901224827025
1114 => 0.060101303109493
1115 => 0.06028705712519
1116 => 0.060349338839887
1117 => 0.05960748482164
1118 => 0.060266424822938
1119 => 0.05995812861813
1120 => 0.060760229695889
1121 => 0.060886009386622
1122 => 0.060779478463313
1123 => 0.06081940292245
1124 => 0.058942024228768
1125 => 0.058844672239539
1126 => 0.05751727095862
1127 => 0.05805819679225
1128 => 0.057046961873529
1129 => 0.05736763488313
1130 => 0.057508984490277
1201 => 0.057435151477023
1202 => 0.058088779927284
1203 => 0.057533062217091
1204 => 0.056066431811442
1205 => 0.054599401823319
1206 => 0.054580984456835
1207 => 0.054194741356192
1208 => 0.05391555833838
1209 => 0.053969338892161
1210 => 0.05415886857839
1211 => 0.053904542528471
1212 => 0.053958815885879
1213 => 0.054860115240347
1214 => 0.055040864398112
1215 => 0.05442660813677
1216 => 0.051960280610725
1217 => 0.051355037649519
1218 => 0.051790074287544
1219 => 0.051582154794516
1220 => 0.041630824741293
1221 => 0.043968742127133
1222 => 0.04257963100464
1223 => 0.043219797319814
1224 => 0.04180187457233
1225 => 0.042478581627128
1226 => 0.042353618543492
1227 => 0.046112920515917
1228 => 0.046054224186368
1229 => 0.046082319013183
1230 => 0.044741279728655
1231 => 0.046877591722092
]
'min_raw' => 0.027273429190178
'max_raw' => 0.060886009386622
'avg_raw' => 0.0440797192884
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.027273'
'max' => '$0.060886'
'avg' => '$0.044079'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.004205507443737
'max_diff' => 0.0092110170380533
'year' => 2035
]
10 => [
'items' => [
101 => 0.047930015829354
102 => 0.04773524013646
103 => 0.047784260982084
104 => 0.046941920440437
105 => 0.046090474710891
106 => 0.045146090360266
107 => 0.046900639754293
108 => 0.046705563812834
109 => 0.047152997836433
110 => 0.04829094853624
111 => 0.048458516099441
112 => 0.048683728603685
113 => 0.048603005952631
114 => 0.050526146994835
115 => 0.050293241925331
116 => 0.050854476131474
117 => 0.049699974788496
118 => 0.048393546932643
119 => 0.048641856157696
120 => 0.048617941982547
121 => 0.048313487085484
122 => 0.048038638817513
123 => 0.047581093889362
124 => 0.049028833745942
125 => 0.048970058151648
126 => 0.049921566704108
127 => 0.049753378325
128 => 0.048630175166637
129 => 0.048670290587173
130 => 0.048940086069094
131 => 0.049873851312491
201 => 0.050151056412318
202 => 0.050022643965365
203 => 0.050326586702431
204 => 0.050566810649064
205 => 0.050356755131575
206 => 0.053330698291336
207 => 0.05209570974881
208 => 0.052697634571442
209 => 0.052841190094893
210 => 0.052473475640221
211 => 0.052553219738572
212 => 0.052674010318608
213 => 0.053407427067363
214 => 0.055332124831943
215 => 0.056184560370014
216 => 0.058749154744731
217 => 0.056113777465053
218 => 0.055957405083552
219 => 0.056419365973769
220 => 0.057925054361613
221 => 0.059145273377841
222 => 0.059550090421648
223 => 0.059603593676788
224 => 0.060363057362698
225 => 0.060798367784302
226 => 0.060270838495351
227 => 0.059823812657583
228 => 0.058222621593589
229 => 0.058407963819144
301 => 0.059684787958183
302 => 0.061488377259141
303 => 0.063036044510847
304 => 0.062494105380949
305 => 0.066628718392669
306 => 0.067038648384402
307 => 0.066982009314168
308 => 0.067915890841097
309 => 0.066062326191809
310 => 0.065269891393115
311 => 0.059920464717667
312 => 0.061423435413189
313 => 0.063608091585505
314 => 0.063318944149059
315 => 0.061732388440696
316 => 0.063034840966072
317 => 0.062604209429727
318 => 0.062264552470092
319 => 0.063820586847919
320 => 0.062109663131129
321 => 0.063591023812641
322 => 0.061691163415888
323 => 0.062496580913245
324 => 0.062039386988084
325 => 0.062335247489243
326 => 0.060605653044891
327 => 0.061538900223532
328 => 0.060566826894028
329 => 0.060566366004702
330 => 0.060544907432076
331 => 0.061688547393404
401 => 0.061725841451485
402 => 0.060880689792119
403 => 0.060758890234254
404 => 0.061209247037413
405 => 0.060681997169548
406 => 0.060928694064251
407 => 0.060689469367174
408 => 0.060635614849019
409 => 0.06020649288577
410 => 0.060021615345048
411 => 0.060094110592472
412 => 0.059846646939151
413 => 0.059697541136873
414 => 0.060515246535064
415 => 0.060078379526952
416 => 0.060448290400516
417 => 0.060026730273616
418 => 0.058565419208776
419 => 0.057725003762303
420 => 0.054964722624428
421 => 0.055747534931011
422 => 0.056266540300154
423 => 0.056095009028748
424 => 0.056463524573517
425 => 0.056486148435007
426 => 0.056366340274831
427 => 0.056227617773723
428 => 0.05616009533202
429 => 0.056663352292381
430 => 0.056955509896721
501 => 0.056318629432343
502 => 0.056169417250444
503 => 0.056813338563064
504 => 0.057206130191781
505 => 0.060106282887675
506 => 0.059891430208594
507 => 0.06043066827038
508 => 0.060369958339905
509 => 0.060935165736017
510 => 0.061859040954192
511 => 0.059980544316069
512 => 0.06030658637892
513 => 0.06022664839452
514 => 0.061099390347339
515 => 0.061102114952453
516 => 0.060578862555044
517 => 0.06086252616848
518 => 0.060704192921364
519 => 0.060990322498924
520 => 0.059888560720075
521 => 0.061230387638878
522 => 0.061991117036423
523 => 0.062001679764846
524 => 0.062362259461761
525 => 0.062728629317193
526 => 0.063431844350607
527 => 0.062709017031582
528 => 0.061408721050477
529 => 0.061502598220383
530 => 0.060740235162421
531 => 0.060753050623157
601 => 0.06068464068938
602 => 0.060889944050305
603 => 0.059933613262588
604 => 0.060158062186979
605 => 0.059843832378461
606 => 0.060305903304685
607 => 0.059808791371129
608 => 0.060226609846003
609 => 0.060406926448857
610 => 0.061072298595328
611 => 0.059710515364097
612 => 0.056933747170998
613 => 0.057517457510248
614 => 0.05665410406904
615 => 0.056734010717042
616 => 0.056895434863055
617 => 0.056372206391133
618 => 0.056472021894752
619 => 0.056468455782572
620 => 0.056437724954373
621 => 0.056301613020784
622 => 0.056104223788154
623 => 0.056890561737749
624 => 0.057024175878186
625 => 0.057321183561087
626 => 0.058204876963165
627 => 0.058116575153372
628 => 0.058260599068751
629 => 0.057946195670138
630 => 0.056748594988973
701 => 0.056813630467791
702 => 0.056002637004809
703 => 0.057300444634877
704 => 0.056993106657853
705 => 0.056794963864714
706 => 0.056740898767826
707 => 0.057626782674922
708 => 0.057891853024454
709 => 0.057726678970835
710 => 0.057387902167966
711 => 0.058038453779846
712 => 0.058212513946616
713 => 0.058251479598864
714 => 0.059404132324216
715 => 0.058315900081836
716 => 0.058577848398675
717 => 0.060621494390209
718 => 0.058768189479757
719 => 0.059749926424455
720 => 0.059701875509724
721 => 0.060204098910465
722 => 0.059660678532061
723 => 0.059667414878935
724 => 0.060113355235232
725 => 0.05948711243058
726 => 0.059332045905275
727 => 0.059117822611175
728 => 0.059585571336641
729 => 0.059865965543102
730 => 0.062125736920332
731 => 0.063585652288117
801 => 0.063522273511748
802 => 0.064101436887657
803 => 0.063840518482282
804 => 0.062997944124526
805 => 0.064436115812218
806 => 0.063981018114573
807 => 0.064018535815824
808 => 0.064017139405109
809 => 0.064319739588712
810 => 0.06410531962573
811 => 0.063682675868934
812 => 0.063963246518653
813 => 0.064796441042476
814 => 0.067382702409952
815 => 0.068830008534597
816 => 0.067295572763957
817 => 0.068354006011631
818 => 0.067719323221354
819 => 0.067603982478183
820 => 0.068268756775325
821 => 0.068934694671872
822 => 0.068892277306791
823 => 0.068408840590187
824 => 0.06813575945573
825 => 0.07020362129473
826 => 0.071727186672598
827 => 0.071623289727939
828 => 0.072081857052566
829 => 0.073428224900624
830 => 0.073551319903419
831 => 0.073535812762373
901 => 0.07323070895431
902 => 0.074556382948682
903 => 0.075662283517801
904 => 0.07316008623804
905 => 0.074112890206005
906 => 0.074540634604652
907 => 0.075168690287909
908 => 0.076228325499918
909 => 0.077379370394518
910 => 0.07754214076318
911 => 0.077426647397335
912 => 0.076667502347599
913 => 0.077926989406092
914 => 0.078664767386352
915 => 0.079104097289848
916 => 0.080218164827587
917 => 0.074543276208436
918 => 0.070526307983536
919 => 0.069899000389493
920 => 0.071174655049632
921 => 0.071511035010355
922 => 0.071375440669972
923 => 0.066853977726074
924 => 0.069875195822832
925 => 0.073125772463711
926 => 0.073250640350878
927 => 0.074877946983654
928 => 0.075407864728839
929 => 0.07671805986418
930 => 0.076636106801737
1001 => 0.076955118467434
1002 => 0.076881783210002
1003 => 0.079308643804086
1004 => 0.081985831431647
1005 => 0.08189312893704
1006 => 0.081508251540532
1007 => 0.082079860105694
1008 => 0.084843004642198
1009 => 0.084588618571766
1010 => 0.084835732970637
1011 => 0.088093636103177
1012 => 0.092329373606797
1013 => 0.090361448275273
1014 => 0.094631279989419
1015 => 0.097318912719421
1016 => 0.10196689561955
1017 => 0.10138494526865
1018 => 0.1031943709032
1019 => 0.10034313268385
1020 => 0.093796113401907
1021 => 0.092760022539556
1022 => 0.094834302683981
1023 => 0.099933718013753
1024 => 0.094673703947968
1025 => 0.09573779794282
1026 => 0.095431338800717
1027 => 0.095415008895402
1028 => 0.096038254962756
1029 => 0.09513420403573
1030 => 0.091450937923369
1031 => 0.093138957077041
1101 => 0.092487131816471
1102 => 0.093210380539865
1103 => 0.097113455609565
1104 => 0.095387813083562
1105 => 0.093569988862234
1106 => 0.095849943843268
1107 => 0.098753110011655
1108 => 0.098571435090329
1109 => 0.098218909808729
1110 => 0.10020607636348
1111 => 0.10348829332676
1112 => 0.10437546338292
1113 => 0.10503035418099
1114 => 0.10512065255757
1115 => 0.10605078195649
1116 => 0.10104924175568
1117 => 0.10898681450303
1118 => 0.11035741404547
1119 => 0.11009979813703
1120 => 0.11162316184481
1121 => 0.11117494959797
1122 => 0.11052556037465
1123 => 0.11294041588024
1124 => 0.11017197891187
1125 => 0.1062425311718
1126 => 0.10408675842593
1127 => 0.10692565387892
1128 => 0.10865926826826
1129 => 0.10980507710103
1130 => 0.11015179816151
1201 => 0.10143749708391
1202 => 0.096740972120383
1203 => 0.099751390776237
1204 => 0.10342430930438
1205 => 0.10102883850781
1206 => 0.10112273642781
1207 => 0.097707424590553
1208 => 0.10372648861892
1209 => 0.10284956161828
1210 => 0.10739906044883
1211 => 0.10631328604091
1212 => 0.1100232257267
1213 => 0.10904627427382
1214 => 0.11310154513413
1215 => 0.11471930247238
1216 => 0.11743576882714
1217 => 0.1194340125357
1218 => 0.12060741946168
1219 => 0.12053697251118
1220 => 0.12518659534092
1221 => 0.12244487520367
1222 => 0.11900062853747
1223 => 0.11893833298173
1224 => 0.12072215713551
1225 => 0.12446056319358
1226 => 0.12542987749285
1227 => 0.12597159194984
1228 => 0.12514193740174
1229 => 0.1221659966936
1230 => 0.12088100058419
1231 => 0.12197585449933
]
'min_raw' => 0.045146090360266
'max_raw' => 0.12597159194984
'avg_raw' => 0.085558841155055
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.045146'
'max' => '$0.125971'
'avg' => '$0.085558'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.017872661170088
'max_diff' => 0.065085582563222
'year' => 2036
]
11 => [
'items' => [
101 => 0.12063694224299
102 => 0.12294828042987
103 => 0.12612224143565
104 => 0.12546683103916
105 => 0.12765776973001
106 => 0.12992516078157
107 => 0.13316763182021
108 => 0.13401533381806
109 => 0.1354165529853
110 => 0.1368588677849
111 => 0.13732210042706
112 => 0.13820655527359
113 => 0.13820189375997
114 => 0.14086725797066
115 => 0.1438072372345
116 => 0.14491701134593
117 => 0.14746887572185
118 => 0.14309889740608
119 => 0.14641357615729
120 => 0.14940349936267
121 => 0.14583878965715
122 => 0.15075191151537
123 => 0.15094267690375
124 => 0.1538230077812
125 => 0.15090324063228
126 => 0.14916949221947
127 => 0.15417475892454
128 => 0.1565966498187
129 => 0.15586715657137
130 => 0.15031567693973
131 => 0.14708447767994
201 => 0.13862780596531
202 => 0.14864509891233
203 => 0.15352423009838
204 => 0.15030304116867
205 => 0.15192762149944
206 => 0.16079080501222
207 => 0.16416533144525
208 => 0.1634634535369
209 => 0.16358205934952
210 => 0.16540289256079
211 => 0.17347746977075
212 => 0.16863899593931
213 => 0.17233782788929
214 => 0.17429967501843
215 => 0.17612194796691
216 => 0.17164702154074
217 => 0.16582520801001
218 => 0.16398119528172
219 => 0.1499827574123
220 => 0.14925407792906
221 => 0.14884504805387
222 => 0.14626617254923
223 => 0.14423988281603
224 => 0.14262850198887
225 => 0.13839975749937
226 => 0.13982683462848
227 => 0.13308709851978
228 => 0.13739894284054
301 => 0.12664216127444
302 => 0.13560072860218
303 => 0.13072498770177
304 => 0.13399891658376
305 => 0.13398749415432
306 => 0.12795915308246
307 => 0.12448213176048
308 => 0.12669782507454
309 => 0.12907322418917
310 => 0.12945862470371
311 => 0.13253839166009
312 => 0.13339788841824
313 => 0.13079357311497
314 => 0.12641925088571
315 => 0.1274353061719
316 => 0.12446154143254
317 => 0.11925013311102
318 => 0.12299305754999
319 => 0.12427105651823
320 => 0.1248354936686
321 => 0.11971067211867
322 => 0.1181003419224
323 => 0.11724301563788
324 => 0.12575770077837
325 => 0.12622415445118
326 => 0.12383771151118
327 => 0.13462465989181
328 => 0.13218324125387
329 => 0.13491090403453
330 => 0.12734310980447
331 => 0.12763220973544
401 => 0.12404949466765
402 => 0.12605557570851
403 => 0.12463774228784
404 => 0.12589350418488
405 => 0.12664620268827
406 => 0.13022832986778
407 => 0.13564163074052
408 => 0.12969327952058
409 => 0.12710149771209
410 => 0.12870942456934
411 => 0.13299154568033
412 => 0.13947917836122
413 => 0.13563836923835
414 => 0.13734285510591
415 => 0.13771520944068
416 => 0.13488313898796
417 => 0.13958360083843
418 => 0.14210261653059
419 => 0.14468660539388
420 => 0.14693021052216
421 => 0.14365450341875
422 => 0.14715997957357
423 => 0.14433518459263
424 => 0.14180105147278
425 => 0.14180489470668
426 => 0.14021519598283
427 => 0.13713495439043
428 => 0.1365669105814
429 => 0.13952194621197
430 => 0.14189160494476
501 => 0.14208678138789
502 => 0.14339874621983
503 => 0.14417515349306
504 => 0.1517850002452
505 => 0.15484574356086
506 => 0.15858836255035
507 => 0.16004632356921
508 => 0.164434263528
509 => 0.16089064564022
510 => 0.16012396161979
511 => 0.14948025456397
512 => 0.15122316099809
513 => 0.15401372236457
514 => 0.14952626989307
515 => 0.15237252561706
516 => 0.15293443678892
517 => 0.14937378797524
518 => 0.15127568435318
519 => 0.14622481144635
520 => 0.13575172596745
521 => 0.13959526037646
522 => 0.14242539542119
523 => 0.13838644375923
524 => 0.14562610828427
525 => 0.14139684572575
526 => 0.14005637253511
527 => 0.1348267087052
528 => 0.13729490872469
529 => 0.14063318459228
530 => 0.13857051822234
531 => 0.14285086065089
601 => 0.14891296705534
602 => 0.15323318508384
603 => 0.15356483777971
604 => 0.15078722701951
605 => 0.1552383659892
606 => 0.15527078767717
607 => 0.15024988473593
608 => 0.14717460964093
609 => 0.14647590066891
610 => 0.14822141267097
611 => 0.15034078648077
612 => 0.15368244827606
613 => 0.15570174451271
614 => 0.16096699814594
615 => 0.16239162481244
616 => 0.16395685759911
617 => 0.16604849130201
618 => 0.16856003384621
619 => 0.16306492174169
620 => 0.16328325278977
621 => 0.15816628048304
622 => 0.15269806172525
623 => 0.15684775813932
624 => 0.16227293418975
625 => 0.16102839280949
626 => 0.16088835648054
627 => 0.161123858743
628 => 0.16018551518521
629 => 0.15594142204996
630 => 0.15381006504687
701 => 0.15656005934802
702 => 0.15802155893092
703 => 0.16028821732784
704 => 0.16000880383706
705 => 0.16584747244618
706 => 0.16811620251551
707 => 0.16753576427934
708 => 0.16764257888382
709 => 0.17175000630567
710 => 0.17631831035564
711 => 0.18059712993925
712 => 0.18494972899928
713 => 0.17970250094758
714 => 0.17703828214697
715 => 0.17978707588664
716 => 0.1783285272363
717 => 0.18670978041479
718 => 0.18729008020032
719 => 0.19567072731882
720 => 0.20362495938316
721 => 0.19862904873842
722 => 0.20333996745566
723 => 0.20843521013519
724 => 0.21826475993734
725 => 0.2149545133717
726 => 0.21241891638061
727 => 0.21002278947594
728 => 0.21500874919012
729 => 0.22142310670977
730 => 0.22280469788355
731 => 0.22504340339353
801 => 0.22268967828568
802 => 0.22552448092377
803 => 0.23553257991162
804 => 0.23282830322117
805 => 0.22898779558656
806 => 0.23688822854942
807 => 0.23974736452653
808 => 0.259814278155
809 => 0.2851495855338
810 => 0.27466060191838
811 => 0.2681497513109
812 => 0.2696799556431
813 => 0.27893155224356
814 => 0.28190287144063
815 => 0.27382580158785
816 => 0.27667875920784
817 => 0.29239883619062
818 => 0.30083215313143
819 => 0.28937857598024
820 => 0.25777861087555
821 => 0.22864199989396
822 => 0.23637034116497
823 => 0.23549418710319
824 => 0.25238344870165
825 => 0.23276380711647
826 => 0.23309415156338
827 => 0.25033266520566
828 => 0.24573372530884
829 => 0.23828403166372
830 => 0.2286963909019
831 => 0.21097275020424
901 => 0.19527442737804
902 => 0.22606245354805
903 => 0.22473481787521
904 => 0.22281220467635
905 => 0.22709077230193
906 => 0.24786628219918
907 => 0.24738733945229
908 => 0.24434055005528
909 => 0.24665151295974
910 => 0.23787890869322
911 => 0.24013980856119
912 => 0.22863738450592
913 => 0.23383696056256
914 => 0.23826804796698
915 => 0.23915765436679
916 => 0.24116198300999
917 => 0.22403521420385
918 => 0.23172463058229
919 => 0.23624144230374
920 => 0.2158343226232
921 => 0.23583805916155
922 => 0.22373707526256
923 => 0.21962981957656
924 => 0.22515969826796
925 => 0.22300469916394
926 => 0.22115195748009
927 => 0.22011809578636
928 => 0.22417862838689
929 => 0.22398919968769
930 => 0.21734538023781
1001 => 0.20867878860217
1002 => 0.21158758122626
1003 => 0.21053078959585
1004 => 0.20670084039841
1005 => 0.20928176372766
1006 => 0.19791668356107
1007 => 0.17836365383991
1008 => 0.19128098419921
1009 => 0.19078368103172
1010 => 0.19053291822378
1011 => 0.20023993498
1012 => 0.19930682929787
1013 => 0.1976132333478
1014 => 0.20666973618065
1015 => 0.20336399081951
1016 => 0.21355151909099
1017 => 0.22026168409861
1018 => 0.21855976920158
1019 => 0.22487071182428
1020 => 0.21165459393338
1021 => 0.21604445815812
1022 => 0.21694920309075
1023 => 0.2065579803415
1024 => 0.19945949692738
1025 => 0.19898610901229
1026 => 0.18667831700346
1027 => 0.19325304014955
1028 => 0.19903852443758
1029 => 0.19626772643533
1030 => 0.19539057456306
1031 => 0.19987175324748
1101 => 0.20021997920996
1102 => 0.19228039036209
1103 => 0.19393128229764
1104 => 0.20081577610684
1105 => 0.19375781071744
1106 => 0.18004533687793
1107 => 0.17664445377594
1108 => 0.17619071327943
1109 => 0.16696724857941
1110 => 0.17687171704677
1111 => 0.17254815113752
1112 => 0.18620624404058
1113 => 0.17840481462417
1114 => 0.17806851059455
1115 => 0.1775601377287
1116 => 0.16962112064487
1117 => 0.17135926083537
1118 => 0.17713710355483
1119 => 0.17919870292919
1120 => 0.17898366122426
1121 => 0.17710878897341
1122 => 0.17796709588895
1123 => 0.17520219026005
1124 => 0.17422584453595
1125 => 0.17114422886565
1126 => 0.16661510514836
1127 => 0.16724490757998
1128 => 0.15827152838635
1129 => 0.15338235514838
1130 => 0.15202909643437
1201 => 0.15021946232543
1202 => 0.15223349942223
1203 => 0.15824610793054
1204 => 0.15099362642346
1205 => 0.13855975558202
1206 => 0.13930705240587
1207 => 0.14098600649466
1208 => 0.1378572866576
1209 => 0.13489621590537
1210 => 0.13747062668517
1211 => 0.13220223169682
1212 => 0.14162266685895
1213 => 0.14136787048827
1214 => 0.14487922616091
1215 => 0.14707494892328
1216 => 0.1420145188297
1217 => 0.14074183434602
1218 => 0.14146681326821
1219 => 0.12948452659496
1220 => 0.14390001770531
1221 => 0.14402468347105
1222 => 0.14295721949802
1223 => 0.15063302348592
1224 => 0.16683136404371
1225 => 0.16073689674913
1226 => 0.15837693480642
1227 => 0.15389064542821
1228 => 0.15986835965517
1229 => 0.15940936446941
1230 => 0.15733361417064
1231 => 0.15607819391321
]
'min_raw' => 0.11724301563788
'max_raw' => 0.30083215313143
'avg_raw' => 0.20903758438466
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.117243'
'max' => '$0.300832'
'avg' => '$0.209037'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.07209692527761
'max_diff' => 0.17486056118159
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0036801242902798
]
1 => [
'year' => 2028
'avg' => 0.0063161616298351
]
2 => [
'year' => 2029
'avg' => 0.017254615195334
]
3 => [
'year' => 2030
'avg' => 0.013311909926856
]
4 => [
'year' => 2031
'avg' => 0.013073945275008
]
5 => [
'year' => 2032
'avg' => 0.022922740589093
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0036801242902798
'min' => '$0.00368'
'max_raw' => 0.022922740589093
'max' => '$0.022922'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.022922740589093
]
1 => [
'year' => 2033
'avg' => 0.058959645912764
]
2 => [
'year' => 2034
'avg' => 0.037371457047505
]
3 => [
'year' => 2035
'avg' => 0.0440797192884
]
4 => [
'year' => 2036
'avg' => 0.085558841155055
]
5 => [
'year' => 2037
'avg' => 0.20903758438466
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.022922740589093
'min' => '$0.022922'
'max_raw' => 0.20903758438466
'max' => '$0.209037'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.20903758438466
]
]
]
]
'prediction_2025_max_price' => '$0.006292'
'last_price' => 0.00610122
'sma_50day_nextmonth' => '$0.007466'
'sma_200day_nextmonth' => '$0.010839'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'augmenter'
'sma_200day_date_nextmonth' => '4 févr. 2026'
'sma_50day_date_nextmonth' => '4 févr. 2026'
'daily_sma3' => '$0.007402'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.009116'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.010296'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.010248'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.00999'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.0105054'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.0133015'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.007257'
'daily_ema3_action' => 'SELL'
'daily_ema5' => '$0.008288'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.0094002'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.009931'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.010191'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.0107048'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.011356'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.010571'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.011736'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.011315'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.014396'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.0085055'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.009124'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.009825'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.01087'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.011557'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.01198'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.01358'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '27.38'
'rsi_14_action' => 'BUY'
'stoch_rsi_14' => -28.82
'stoch_rsi_14_action' => 'BUY'
'momentum_10' => -0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.011575'
'vwma_10_action' => 'SELL'
'hma_9' => '0.007124'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 3.73
'stochastic_fast_14_action' => 'BUY'
'cci_20' => -285.45
'cci_20_action' => 'BUY'
'adx_14' => 22.24
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.000878'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => -0
'macd_12_26_action' => 'SELL'
'williams_percent_r_14' => -96.27
'williams_percent_r_14_action' => 'BUY'
'ultimate_oscillator' => 24.34
'ultimate_oscillator_action' => 'BUY'
'ichimoku_cloud' => '-0.001355'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 33
'buy_signals' => 2
'sell_pct' => 94.29
'buy_pct' => 5.71
'overall_action' => 'bearish'
'overall_action_label' => 'Baissier'
'overall_action_dir' => -1
'last_updated' => 1767679391
'last_updated_date' => '6 janvier 2026'
]
Prévision du prix de LBK pour 2026
La prévision du prix de LBK pour 2026 suggère que le prix moyen pourrait varier entre $0.0021079 à la baisse et $0.006292 à la hausse. Sur le marché des cryptomonnaies, comparé au prix moyen d'aujourd'hui, LBK pourrait potentiellement gagner 3.13% d'ici 2026 si LBK atteint l'objectif de prix prévu.
Prévision du prix de LBK de 2027 à 2032
La prévision du prix de LBK pour 2027-2032 se situe actuellement dans une fourchette de prix comprise entre $0.00368 à la baisse et $0.022922 à la hausse. Compte tenu de la volatilité des prix sur le marché, si LBK atteint l'objectif de prix le plus élevé, il pourrait gagner 275.71% d'ici 2032 par rapport au prix actuel.
| Prévision du Prix de LBK | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2027 | $0.002029 | $0.00368 | $0.00533 |
| 2028 | $0.003662 | $0.006316 | $0.00897 |
| 2029 | $0.008044 | $0.017254 | $0.026464 |
| 2030 | $0.006841 | $0.013311 | $0.019781 |
| 2031 | $0.008089 | $0.013073 | $0.018058 |
| 2032 | $0.012347 | $0.022922 | $0.033497 |
Prévision du prix de LBK de 2032 à 2037
La prévision du prix de LBK pour 2032-2037 est actuellement estimée entre $0.022922 à la baisse et $0.209037 à la hausse. Par rapport au prix actuel, LBK pourrait potentiellement gagner 3326.16% d'ici 2037 s'il atteint l'objectif de prix le plus élevé. Veuillez noter que ces informations sont à titre général seulement et ne doivent pas être considérées comme un conseil en investissement à long terme.
| Prévision du Prix de LBK | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2032 | $0.012347 | $0.022922 | $0.033497 |
| 2033 | $0.028693 | $0.058959 | $0.089226 |
| 2034 | $0.023067 | $0.037371 | $0.051674 |
| 2035 | $0.027273 | $0.044079 | $0.060886 |
| 2036 | $0.045146 | $0.085558 | $0.125971 |
| 2037 | $0.117243 | $0.209037 | $0.300832 |
LBK Histogramme des prix potentiels
Prévision du prix de LBK basée sur l'analyse technique
Au 6 janvier 2026, le sentiment global de prévision du prix pour LBK est Baissier, avec 2 indicateurs techniques montrant des signaux haussiers et 33 indiquant des signaux baissiers. La prévision du prix de LBK a été mise à jour pour la dernière fois le 6 janvier 2026.
Moyennes Mobiles Simples sur 50 et 200 jours de LBK et Indice de Force Relative sur 14 jours - RSI (14)
Selon nos indicateurs techniques, le SMA sur 200 jours de LBK devrait augmenter au cours du prochain mois, atteignant $0.010839 d'ici le 4 févr. 2026. Le SMA à court terme sur 50 jours pour LBK devrait atteindre $0.007466 d'ici le 4 févr. 2026.
Le Relative Strength Index (RSI), un oscillateur de momentum, est un outil couramment utilisé pour identifier si une cryptomonnaie est survendue (en dessous de 30) ou surachetée (au-dessus de 70). Actuellement, le RSI est à 27.38, ce qui suggère que le marché de LBK est dans un état BUY.
Moyennes Mobiles et Oscillateurs Populaires de LBK pour le Samedi 19 Octobre 2024
Les moyennes mobiles (MA) sont des indicateurs largement utilisés sur les marchés financiers, conçus pour lisser les mouvements de prix sur une période donnée. En tant qu'indicateurs retardés, ils sont basés sur des données historiques de prix. Le tableau ci-dessous met en évidence deux types : la moyenne mobile simple (SMA) et la moyenne mobile exponentielle (EMA).
Moyenne Mobile Simple Quotidienne (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 3 | $0.007402 | SELL |
| SMA 5 | $0.009116 | SELL |
| SMA 10 | $0.010296 | SELL |
| SMA 21 | $0.010248 | SELL |
| SMA 50 | $0.00999 | SELL |
| SMA 100 | $0.0105054 | SELL |
| SMA 200 | $0.0133015 | SELL |
Moyenne Mobile Exponentielle Quotidienne (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 3 | $0.007257 | SELL |
| EMA 5 | $0.008288 | SELL |
| EMA 10 | $0.0094002 | SELL |
| EMA 21 | $0.009931 | SELL |
| EMA 50 | $0.010191 | SELL |
| EMA 100 | $0.0107048 | SELL |
| EMA 200 | $0.011356 | SELL |
Moyenne Mobile Simple Hebdomadaire (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 21 | $0.010571 | SELL |
| SMA 50 | $0.011736 | SELL |
| SMA 100 | $0.011315 | SELL |
| SMA 200 | $0.014396 | SELL |
Moyenne Mobile Exponentielle Hebdomadaire (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 21 | $0.01087 | SELL |
| EMA 50 | $0.011557 | SELL |
| EMA 100 | $0.01198 | SELL |
| EMA 200 | $0.01358 | SELL |
Oscillateurs de LBK
Un oscillateur est un outil d'analyse technique qui établit des limites hautes et basses entre deux extrêmes, créant un indicateur de tendance qui fluctue à l'intérieur de ces limites. Les traders utilisent cet indicateur pour identifier les conditions de surachat ou de survente à court terme.
| Période | Valeur | Action |
|---|---|---|
| RSI (14) | 27.38 | BUY |
| Stoch RSI (14) | -28.82 | BUY |
| Stochastique Rapide (14) | 3.73 | BUY |
| Indice de Canal des Matières Premières (20) | -285.45 | BUY |
| Indice Directionnel Moyen (14) | 22.24 | NEUTRAL |
| Oscillateur Impressionnant (5, 34) | -0.000878 | NEUTRAL |
| Momentum (10) | -0 | SELL |
| MACD (12, 26) | -0 | SELL |
| Plage de Pourcentage de Williams (14) | -96.27 | BUY |
| Oscillateur Ultime (7, 14, 28) | 24.34 | BUY |
| VWMA (10) | 0.011575 | SELL |
| Moyenne Mobile de Hull (9) | 0.007124 | SELL |
| Nuage Ichimoku B/L (9, 26, 52, 26) | -0.001355 | SELL |
Prévision du cours de LBK basée sur les flux monétaires mondiaux
Définitions des flux monétaires mondiaux utilisés pour la prédiction du cours de LBK
M0 : le total de toutes les devises physiques, plus les comptes à la banque centrale qui peuvent être échangés contre des devises physiques.
M1 : M0 plus le montant des comptes à vue, y compris les comptes de "chèques" et les comptes "courants".
M2 : M1 plus la plupart des comptes d'épargne, comptes du marché monétaire et comptes de certificats de dépôt (CD) de moins de 100 000 $.
Prédictions du cours de LBK par des sociétés Internet ou des niches technologiques
| Comparaison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Action Facebook | $0.008573 | $0.012046 | $0.016927 | $0.023786 | $0.033423 | $0.046966 |
| Action Amazon.com | $0.01273 | $0.026563 | $0.055425 | $0.115648 | $0.2413073 | $0.503502 |
| Action Apple | $0.008654 | $0.012275 | $0.017411 | $0.024696 | $0.03503 | $0.049688 |
| Action Netflix | $0.009626 | $0.015189 | $0.023966 | $0.037815 | $0.059667 | $0.094145 |
| Action Google | $0.007901 | $0.010231 | $0.01325 | $0.017158 | $0.02222 | $0.028775 |
| Action Tesla | $0.013831 | $0.031353 | $0.071076 | $0.161125 | $0.365259 | $0.828016 |
| Action Kodak | $0.004575 | $0.00343 | $0.002572 | $0.001929 | $0.001446 | $0.001084 |
| Action Nokia | $0.004041 | $0.002677 | $0.001773 | $0.001175 | $0.000778 | $0.000515 |
Ce calcul montre la valeur potentielle des cryptomonnaies si l'on suppose que leur capitalisation se comportera comme celle de certaines sociétés Internet ou niches technologiques. En extrapolant les données, vous pourrez obtenir une potentielle image des cours futurs pour 2024, 2025, 2026, 2027, 2028, 2029 et 2030.
Aperçu des prévisions relatives à LBK
Vous vous posez peut-être des questions telles que : "Devrais-je investir dans LBK maintenant ?", "Devrais-je acheter LBK aujourd'hui ?", " LBK sera-t-il un bon ou un mauvais investissement à court ou à long terme ?".
Nous mettons régulièrement à jour les prévisions de LBK avec de nouvelles valeurs. Regardez nos prévisions similaires. Nous faisons une prévision des cours futurs pour une grande quantité de devises numériques comme LBK en utilisant des méthodes d'analyse technique.
Si vous souhaitez trouver des cryptomonnaies ayant un bon rendement, vous devriez consulter un maximum d'informations disponibles à propos de LBK afin de prendre une décision responsable concernant cet investissement.
Le cours de LBK est de $0.006101 USD actuellement, mais ce cours peut subir une hausse ou une baisse, ce qui pourrait causer la perte de votre investissement, car les cryptomonnaies sont des actifs à haut risque.
Prévision du cours de LBK basée sur le modèle de croissance du Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si LBK présente 1 % de la précédente croissance annuelle moyenne du Bitcoin | $0.006259 | $0.006422 | $0.006589 | $0.00676 |
| Si LBK présente 2 % de la précédente croissance annuelle moyenne du Bitcoin | $0.006418 | $0.006752 | $0.007103 | $0.007472 |
| Si LBK présente 5 % de la précédente croissance annuelle moyenne du Bitcoin | $0.006894 | $0.00779 | $0.0088026 | $0.009946 |
| Si LBK présente 10 % de la précédente croissance annuelle moyenne du Bitcoin | $0.007687 | $0.009685 | $0.0122027 | $0.015374 |
| Si LBK présente 20 % de la précédente croissance annuelle moyenne du Bitcoin | $0.009273 | $0.014093 | $0.02142 | $0.032556 |
| Si LBK présente 50 % de la précédente croissance annuelle moyenne du Bitcoin | $0.01403 | $0.032265 | $0.07420068 | $0.170636 |
| Si LBK présente 100 % de la précédente croissance annuelle moyenne du Bitcoin | $0.02196 | $0.079041 | $0.284497 | $1.02 |
Boîte à questions
Est-ce que LBK est un bon investissement ?
La décision d'acquérir LBK dépend entièrement de votre tolérance individuelle au risque. Comme vous pouvez le discerner, la valeur de LBK a connu une baisse de 0% au cours des 24 heures précédentes, et LBK a enregistré une déclin de sur une période de 30 jours précédents. Par conséquent, la détermination de si investir ou non dans LBK dépendra de la mesure dans laquelle cet investissement s'aligne avec vos aspirations de trading.
Est-ce que LBK peut monter ?
Il semble que la valeur moyenne de LBK pourrait potentiellement s'envoler jusqu'à $0.006292 pour la fin de cette année. En regardant les perspectives de LBK sur une période de cinq ans plus longue, la monnaie numérique pourrait potentiellement croître jusqu'à $0.019781. Cependant, compte tenu de l'imprévisibilité du marché, il est essentiel de mener des recherches approfondies avant d'investir des fonds dans un projet, un réseau ou un actif particulier.
Quel sera le prix de LBK la semaine prochaine ?
Basé sur notre nouveau pronostic expérimental de LBK, le prix de LBK va augmenter de 0.86% durant la prochaine semaine et atteindre $0.006153 d'ici 13 janvier 2026.
Quel sera le prix de LBK le mois prochain ?
Basé sur notre nouveau pronostic expérimental de LBK, le prix de LBK va diminuer de -11.62% durant le prochain mois et atteindre $0.005392 d'ici 5 février 2026.
Jusqu'où le prix de LBK peut-il monter cette année en 2026 ?
Selon notre prédiction la plus récente sur la valeur de LBK en 2026, LBK devrait fluctuer dans la fourchette de $0.0021079 et $0.006292. Cependant, il est crucial de garder à l'esprit que le marché des cryptomonnaies est exceptionnellement instable, et cette prévision de prix de LBK ne prend pas en compte les fluctuations de prix soudaines et extrêmes.
Où sera LBK dans 5 ans ?
L'avenir de LBK semble suivre une tendance haussière, avec un prix maximum de $0.019781 prévue après une période de cinq ans. Selon la prévision de LBK pour 2030, la valeur de LBK pourrait potentiellement atteindre son point le plus élevé d'environ $0.019781, tandis que son point le plus bas devrait être autour de $0.006841.
Combien vaudra LBK en 2026 ?
Basé sur notre nouvelle simulation expérimentale de prédiction de prix de LBK, il est attendu que la valeur de LBK en 2026 augmente de 3.13% jusqu'à $0.006292 si le meilleur scénario se produit. Le prix sera entre $0.006292 et $0.0021079 durant 2026.
Combien vaudra LBK en 2027 ?
Selon notre dernière simulation expérimentale pour la prédiction de prix de LBK, le valeur de LBK pourrait diminuer de -12.62% jusqu'à $0.00533 en 2027, en supposant les conditions les plus favorables. Il est prévu que le prix fluctue entre $0.00533 et $0.002029 tout au long de l'année.
Combien vaudra LBK en 2028 ?
Notre nouveau modèle expérimental de prédiction de prix de LBK suggère que la valeur de LBK en 2028 pourrait augmenter de 47.02%, atteignant $0.00897 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.00897 et $0.003662 durant l'année.
Combien vaudra LBK en 2029 ?
Basé sur notre modèle de prévision expérimental, la valeur de LBK pourrait connaître un 333.75% croissance en 2029, atteignant potentiellement $0.026464 sous des conditions optimales. Le range de prix prévu pour 2029 se situe entre $0.026464 et $0.008044.
Combien vaudra LBK en 2030 ?
En utilisant notre nouvelle simulation expérimentale pour les prédictions de prix de LBK, il est prévu que la valeur de LBK en 2030 augmente de 224.23%, atteignant $0.019781 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.019781 et $0.006841 au cours de 2030.
Combien vaudra LBK en 2031 ?
Notre simulation expérimentale indique que le prix de LBK pourrait augmenter de 195.98% en 2031, atteignant potentiellement $0.018058 dans des conditions idéales. Il est probable que le prix fluctue entre $0.018058 et $0.008089 durant l'année.
Combien vaudra LBK en 2032 ?
Basé sur les résultats de notre dernière prédiction expérimentale de prix de LBK, LBK pourrait connaître une 449.04% hausse en valeur, atteignant $0.033497 si le scénario le plus positif se réalise en 2032. Il est prévu que le prix reste dans une fourchette de $0.033497 et $0.012347 tout au long de l'année.
Combien vaudra LBK en 2033 ?
Selon notre prédiction expérimentale de prix de LBK, la valeur de LBK est anticipée à augmenter de 1362.43% en 2033, avec le prix potentiel le plus élevé étant $0.089226. Tout au long de l'année, le prix de LBK pourrait osciller entre $0.089226 et $0.028693.
Combien vaudra LBK en 2034 ?
Les résultats de notre nouvelle simulation de prédiction de prix de LBK suggèrent que LBK pourrait augmenter de 746.96% en 2034, atteignant potentiellement $0.051674 dans les meilleures circonstances. La fourchette de prix prévue pour l'année est entre $0.051674 et $0.023067.
Combien vaudra LBK en 2035 ?
Basé sur notre prédiction expérimentale pour le prix de LBK, LBK pourrait augmenter de 897.93%, avec la valeur potentiellement atteignant $0.060886 en 2035. La fourchette de prix attendue pour l'année se situe entre $0.060886 et $0.027273.
Combien vaudra LBK en 2036 ?
Notre récente simulation de prédiction de prix de LBK suggère que la valeur de LBK pourrait augmenter de 1964.7% en 2036, pouvant atteindre $0.125971 si les conditions sont optimales. La fourchette de prix attendue pour 2036 est entre $0.125971 et $0.045146.
Combien vaudra LBK en 2037 ?
Selon la simulation expérimentale, la valeur de LBK pourrait augmenter de 4830.69% en 2037, avec un maximum de $0.300832 sous des conditions favorables. Il est prévu que le prix chute entre $0.300832 et $0.117243 au cours de l'année.
Prévisions liées
Prévision du cours de SolPod
Prévision du cours de zuzalu
Prévision du cours de SOFT COQ INU
Prévision du cours de All Street Bets
Prévision du cours de MagicRing
Prévision du cours de AI INU
Prévision du cours de Wall Street Baby On Solana
Prévision du cours de Meta Masters Guild Games
Prévision du cours de Morfey
Prévision du cours de PANTIESPrévision du cours de Celer Bridged BUSD (zkSync)
Prévision du cours de Bridged BUSD
Prévision du cours de Multichain Bridged BUSD (Moonriver)
Prévision du cours de tooker kurlson
Prévision du cours de dogwifsaudihatPrévision du cours de Harmony Horizen Bridged BUSD (Harmony)
Prévision du cours de IoTeX Bridged BUSD (IoTeX)
Prévision du cours de MIMANY
Prévision du cours de The Open League MEME
Prévision du cours de Sandwich Cat
Prévision du cours de Hege
Prévision du cours de DexNet
Prévision du cours de SolDocs
Prévision du cours de Secret Society
Prévision du cours de duk
Comment lire et prédire les mouvements de prix de LBK ?
Les traders de LBK utilisent des indicateurs et des modèles graphiques pour prédire la direction du marché. Ils identifient également des niveaux clés de support et de résistance pour évaluer quand une tendance baissière pourrait ralentir ou une tendance haussière pourrait s'arrêter.
Indicateurs de prédiction du prix de LBK
Les moyennes mobiles sont des outils populaires pour la prédiction du prix de LBK. Une moyenne mobile simple (SMA) calcule le prix de clôture moyen de LBK sur une période spécifique, comme une SMA de 12 jours. Une moyenne mobile exponentielle (EMA) donne plus de poids aux prix récents, réagissant plus rapidement aux changements de prix.
Les moyennes mobiles couramment utilisées sur le marché des cryptomonnaies incluent les moyennes sur 50 jours, 100 jours et 200 jours, qui aident à identifier les niveaux clés de résistance et de support. Un mouvement de prix de LBK au-dessus de ces moyennes est considéré comme haussier, tandis qu'une chute en dessous indique une faiblesse.
Les traders utilisent également le RSI et les niveaux de retracement de Fibonacci pour évaluer la direction future de LBK.
Comment lire les graphiques de LBK et prédire les mouvements de prix ?
La plupart des traders préfèrent les graphiques en chandeliers aux simples graphiques linéaires parce qu'ils fournissent des informations plus détaillées. Les chandeliers peuvent représenter l'action des prix de LBK dans différentes périodes, comme 5 minutes pour les tendances à court terme et hebdomadaire pour les tendances à long terme. Les options populaires incluent les graphiques de 1 heure, 4 heures et 1 jour.
Par exemple, un graphique en chandeliers de 1 heure montre les prix d'ouverture, de clôture, les plus hauts et les plus bas de LBK au sein de chaque heure. La couleur du chandelier est cruciale : le vert indique que le prix a clôturé plus haut qu'il n'a ouvert, tandis que le rouge signifie le contraire. Certains graphiques utilisent des chandeliers creux et pleins pour transmettre la même information.
Qu'est-ce qui affecte le prix de LBK ?
L'action du prix de LBK est déterminée par l'offre et la demande, influencée par des facteurs tels que les réductions de récompenses de bloc, les hard forks et les mises à jour de protocole. Les événements du monde réel, tels que les réglementations, l'adoption par les entreprises et les gouvernements et les piratages d'échanges de cryptomonnaies, impactent également le prix de LBK. La capitalisation boursière de LBK peut changer rapidement.
Les traders surveillent souvent l'activité des « baleines » de LBK, de grands détenteurs de LBK, car leurs actions peuvent influencer significativement les mouvements de prix sur le marché relativement petit de LBK.
Modèles de prédiction de prix haussiers et baissiers
Les traders identifient souvent des modèles de chandeliers pour obtenir un avantage dans les prédictions de prix des cryptomonnaies. Certaines formations indiquent des tendances haussières, tandis que d'autres suggèrent des mouvements baissiers.
Modèles de chandeliers haussiers couramment suivis :
- Marteau
- Englobante haussière
- Ligne pénétrante
- Étoile du matin
- Trois soldats blancs
Modèles de chandeliers baissiers courants :
- Harami baissier
- Nuage sombre
- Étoile du soir
- Étoile filante
- Pendu


