Prédiction du prix de L2 Token jusqu'à $0.02454 d'ici 2026
| Année | Prix min. | Prix max. |
|---|---|---|
| 2026 | $0.008221 | $0.02454 |
| 2027 | $0.007914 | $0.020791 |
| 2028 | $0.014283 | $0.034983 |
| 2029 | $0.031375 | $0.103212 |
| 2030 | $0.026683 | $0.07715 |
| 2031 | $0.031548 | $0.070429 |
| 2032 | $0.048156 | $0.130643 |
| 2033 | $0.1119048 | $0.347986 |
| 2034 | $0.089966 | $0.201535 |
| 2035 | $0.106367 | $0.237458 |
Calculateur de profit d’investissement
Si vous ouvrez une position short de $10,000.00 sur L2 Token aujourd’hui et la fermez le Apr 06, 2026, notre prévision indique que vous pourriez gagner environ $3,954.63, soit un rendement de 39.55% sur les 90 prochains jours.
Prévision du prix à long terme de L2 Token pour 2027, 2028, 2029, 2030, 2031, 2032 et 2037
[
'name' => 'L2 Token'
'name_with_ticker' => 'L2 Token <small>L2T</small>'
'name_lang' => 'L2 Token'
'name_lang_with_ticker' => 'L2 Token <small>L2T</small>'
'name_with_lang' => 'L2 Token'
'name_with_lang_with_ticker' => 'L2 Token <small>L2T</small>'
'image' => '/uploads/coins/l2token.jpeg?1758092358'
'price_for_sd' => 0.02379
'ticker' => 'L2T'
'marketcap' => '$0'
'low24h' => '$0.02378'
'high24h' => '$0.0247'
'volume24h' => '$50.33K'
'current_supply' => '0'
'max_supply' => '84M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.02379'
'change_24h_pct' => '-2.9308%'
'ath_price' => '$0.2172'
'ath_days' => 100
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '28 sept. 2025'
'ath_pct' => '-89.03%'
'fdv' => '$2M'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$1.17'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.023998'
'next_week_prediction_price_date' => '13 janvier 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.0210305'
'next_month_prediction_price_date' => '5 février 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.008221'
'current_year_max_price_prediction' => '$0.02454'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.026683'
'grand_prediction_max_price' => '$0.07715'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.024245984249788
107 => 0.024336509953684
108 => 0.02454046898692
109 => 0.022797661378991
110 => 0.023580130828808
111 => 0.024039758323103
112 => 0.021963144582487
113 => 0.023998710346273
114 => 0.022767322975934
115 => 0.022349371607623
116 => 0.022912088064148
117 => 0.02269279691378
118 => 0.022504263259903
119 => 0.02239905824162
120 => 0.022812255102543
121 => 0.022792978975103
122 => 0.022116908712579
123 => 0.021235002615265
124 => 0.021530999249104
125 => 0.021423460897047
126 => 0.021033728036469
127 => 0.021296360927973
128 => 0.020139858589251
129 => 0.018150156425239
130 => 0.019464614621011
131 => 0.019414009410329
201 => 0.01938849196834
202 => 0.020376270973506
203 => 0.020281318814098
204 => 0.020108979714999
205 => 0.021030562893764
206 => 0.020694172636472
207 => 0.021730848145933
208 => 0.022413669684433
209 => 0.022240484055307
210 => 0.022882681012629
211 => 0.021537818413719
212 => 0.021984527822554
213 => 0.022076594012603
214 => 0.021019190700391
215 => 0.02029685416167
216 => 0.020248682549777
217 => 0.018996250535742
218 => 0.019665289608361
219 => 0.020254016305549
220 => 0.019972061904633
221 => 0.019882803564452
222 => 0.020338805066668
223 => 0.020374240288779
224 => 0.019566313469392
225 => 0.019734307038858
226 => 0.020434868150136
227 => 0.019716654696308
228 => 0.018321283275023
301 => 0.017975211870025
302 => 0.017929039565237
303 => 0.016990466467614
304 => 0.017998338016112
305 => 0.017558375075914
306 => 0.018948212732434
307 => 0.018154344916879
308 => 0.018120122862034
309 => 0.018068391206851
310 => 0.01726052256976
311 => 0.017437394458553
312 => 0.018025343555249
313 => 0.018235130416671
314 => 0.018213247928291
315 => 0.018022462283921
316 => 0.018109802974933
317 => 0.017828448177668
318 => 0.01772909594286
319 => 0.017415512960822
320 => 0.016954632606734
321 => 0.017018720846714
322 => 0.016105596269362
323 => 0.015608077536432
324 => 0.015470370908348
325 => 0.015286223850118
326 => 0.015491170808572
327 => 0.016103009502162
328 => 0.015365002228872
329 => 0.014099740524007
330 => 0.01417578490837
331 => 0.014346634062254
401 => 0.014028257794271
402 => 0.01372694137592
403 => 0.013988911555103
404 => 0.013452803491101
405 => 0.014411420160502
406 => 0.014385492266087
407 => 0.014742805279983
408 => 0.014966240440373
409 => 0.014451294733666
410 => 0.01432178728099
411 => 0.01439556061182
412 => 0.013176251785332
413 => 0.014643161735688
414 => 0.014655847633853
415 => 0.014547223271929
416 => 0.01532830753473
417 => 0.01697663895553
418 => 0.016356470371047
419 => 0.016116322350441
420 => 0.015659800787721
421 => 0.016268088664477
422 => 0.016221381646311
423 => 0.016010154797055
424 => 0.015882404139557
425 => 0.016117788643046
426 => 0.015853237394689
427 => 0.015805716721102
428 => 0.015517793142168
429 => 0.015415017524177
430 => 0.015338926548231
501 => 0.01525515786026
502 => 0.015439930712068
503 => 0.015021211120978
504 => 0.014516276341711
505 => 0.014474296478285
506 => 0.014590206572111
507 => 0.014538924984085
508 => 0.014474050961771
509 => 0.014350188785785
510 => 0.014313441524066
511 => 0.014432852297414
512 => 0.014298044496385
513 => 0.014496960750164
514 => 0.014442866535675
515 => 0.014140700650833
516 => 0.013764090082182
517 => 0.013760737458153
518 => 0.013679597328903
519 => 0.013576253174802
520 => 0.013547505195325
521 => 0.013966849157306
522 => 0.014834878608699
523 => 0.014664463657206
524 => 0.014787605924487
525 => 0.015393344001124
526 => 0.015585889920507
527 => 0.015449225387629
528 => 0.015262150545924
529 => 0.015270380889538
530 => 0.01590967225505
531 => 0.015949544073347
601 => 0.016050287295045
602 => 0.016179770804959
603 => 0.01547127698927
604 => 0.015237010894533
605 => 0.015126002622258
606 => 0.014784140109261
607 => 0.015152809520452
608 => 0.014938001642549
609 => 0.01496698656416
610 => 0.014948110095936
611 => 0.014958417924008
612 => 0.014411152207607
613 => 0.014610547071224
614 => 0.01427901443719
615 => 0.013835129456504
616 => 0.013833641398403
617 => 0.013942281618574
618 => 0.013877658164524
619 => 0.013703758111296
620 => 0.013728459793072
621 => 0.013512047068383
622 => 0.013754736216128
623 => 0.013761695672502
624 => 0.013668247131253
625 => 0.014042143248002
626 => 0.014195328792104
627 => 0.014133818960393
628 => 0.014191013098339
629 => 0.014671545167818
630 => 0.014749892862227
701 => 0.014784689732726
702 => 0.01473806653596
703 => 0.014199796342444
704 => 0.014223670914428
705 => 0.014048495146236
706 => 0.013900490081682
707 => 0.01390640950808
708 => 0.013982503350573
709 => 0.014314809623582
710 => 0.015014128584605
711 => 0.01504066722798
712 => 0.015072832837938
713 => 0.0149419991371
714 => 0.014902538441017
715 => 0.01495459728482
716 => 0.015217224718136
717 => 0.015892773779278
718 => 0.015653989622666
719 => 0.015459854386443
720 => 0.015630163327094
721 => 0.015603945600607
722 => 0.015382641604464
723 => 0.015376430338368
724 => 0.014951677214602
725 => 0.014794655655906
726 => 0.0146634366886
727 => 0.01452014900186
728 => 0.014435203258114
729 => 0.014565718527658
730 => 0.014595568914014
731 => 0.014310194996139
801 => 0.014271299585625
802 => 0.014504342087186
803 => 0.014401788770949
804 => 0.014507267399899
805 => 0.014531739346594
806 => 0.014527798799539
807 => 0.014420721359215
808 => 0.014488969326582
809 => 0.014327542538059
810 => 0.01415201515106
811 => 0.014040039613898
812 => 0.013942326106324
813 => 0.013996543239468
814 => 0.013803269059465
815 => 0.013741436759442
816 => 0.014465848450866
817 => 0.015000979156059
818 => 0.014993198143671
819 => 0.014945833231869
820 => 0.014875458580554
821 => 0.015212076374056
822 => 0.015094805465685
823 => 0.015180129849837
824 => 0.015201848486657
825 => 0.015267584259075
826 => 0.015291079147535
827 => 0.015220061276362
828 => 0.014981716626604
829 => 0.014387784420537
830 => 0.014111307375324
831 => 0.014020065345314
901 => 0.014023381819811
902 => 0.013931898647774
903 => 0.013958844541927
904 => 0.013922527965442
905 => 0.013853753155503
906 => 0.013992296588757
907 => 0.014008262428818
908 => 0.013975924736026
909 => 0.01398354143332
910 => 0.01371579914861
911 => 0.01373615501301
912 => 0.013622810973328
913 => 0.013601560332271
914 => 0.013315036469949
915 => 0.012807417915549
916 => 0.013088687870412
917 => 0.012748953317478
918 => 0.012620290694463
919 => 0.013229359540671
920 => 0.013168225921452
921 => 0.013063591739494
922 => 0.012908815976705
923 => 0.012851408140724
924 => 0.012502616302418
925 => 0.012482007819879
926 => 0.012654878473115
927 => 0.012575104614763
928 => 0.012463071904913
929 => 0.012057300786412
930 => 0.011601079703016
1001 => 0.01161485014982
1002 => 0.011759965588153
1003 => 0.01218190829659
1004 => 0.012017047980721
1005 => 0.011897439930004
1006 => 0.011875040937509
1007 => 0.012155411224046
1008 => 0.012552193918886
1009 => 0.012738355481792
1010 => 0.012553875026763
1011 => 0.012341953813158
1012 => 0.012354852475481
1013 => 0.012440661497219
1014 => 0.012449678812129
1015 => 0.012311739887925
1016 => 0.012350568887107
1017 => 0.012291584086752
1018 => 0.011929594475851
1019 => 0.011923047231671
1020 => 0.011834209143285
1021 => 0.011831519161275
1022 => 0.011680383411231
1023 => 0.011659238475048
1024 => 0.01135914927005
1025 => 0.011556668893533
1026 => 0.011424183100347
1027 => 0.011224495759775
1028 => 0.011190069586993
1029 => 0.011189034694669
1030 => 0.011394068944164
1031 => 0.011554272948951
1101 => 0.011426487747441
1102 => 0.011397393534069
1103 => 0.011708043616211
1104 => 0.01166851056162
1105 => 0.011634275191305
1106 => 0.012516666380513
1107 => 0.011818184900412
1108 => 0.011513607107159
1109 => 0.011136634250254
1110 => 0.011259378513324
1111 => 0.011285242533041
1112 => 0.010378690766649
1113 => 0.010010902827928
1114 => 0.0098846918671546
1115 => 0.0098120556748686
1116 => 0.0098451568998012
1117 => 0.0095141046177294
1118 => 0.009736577226381
1119 => 0.0094499139332596
1120 => 0.0094018538992848
1121 => 0.0099144433781535
1122 => 0.0099857672096338
1123 => 0.0096814775859613
1124 => 0.0098768807843743
1125 => 0.0098060248683221
1126 => 0.0094548279526466
1127 => 0.0094414148136975
1128 => 0.00926519654658
1129 => 0.0089894490811215
1130 => 0.0088634250901147
1201 => 0.0087977907014079
1202 => 0.008824872729377
1203 => 0.0088111792273121
1204 => 0.0087218198636967
1205 => 0.0088163012014342
1206 => 0.0085749404258989
1207 => 0.0084788286203049
1208 => 0.008435417147495
1209 => 0.0082211955669995
1210 => 0.008562117366337
1211 => 0.0086292832556262
1212 => 0.0086965814824658
1213 => 0.0092823666006541
1214 => 0.009253102431561
1215 => 0.0095176362679345
1216 => 0.0095073569694995
1217 => 0.0094319076342018
1218 => 0.0091135992993938
1219 => 0.0092404713283477
1220 => 0.0088499789435184
1221 => 0.0091425623891337
1222 => 0.0090090395231317
1223 => 0.0090974181738265
1224 => 0.0089385053910956
1225 => 0.0090264542864069
1226 => 0.0086452107796669
1227 => 0.008289210957314
1228 => 0.0084324756781115
1229 => 0.0085882208139264
1230 => 0.0089259159514959
1231 => 0.0087247875134839
]
'min_raw' => 0.0082211955669995
'max_raw' => 0.02454046898692
'avg_raw' => 0.01638083227696
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.008221'
'max' => '$0.02454'
'avg' => '$0.01638'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.015573884433
'max_diff' => 0.00074538898692003
'year' => 2026
]
1 => [
'items' => [
101 => 0.0087971209053013
102 => 0.0085548161511767
103 => 0.0080548722324864
104 => 0.0080577018607724
105 => 0.0079807963807522
106 => 0.0079143388176308
107 => 0.0087478895340451
108 => 0.0086442243259721
109 => 0.0084790473842749
110 => 0.0087001432846074
111 => 0.0087586045499191
112 => 0.0087602688599556
113 => 0.008921574721527
114 => 0.0090076636887633
115 => 0.0090228372423697
116 => 0.0092766555007961
117 => 0.0093617320330768
118 => 0.0097121502290597
119 => 0.0090003596413635
120 => 0.0089857007826167
121 => 0.0087032545573362
122 => 0.0085241226959651
123 => 0.0087155198691382
124 => 0.00888507163625
125 => 0.008708523003364
126 => 0.0087315765276739
127 => 0.0084945744125777
128 => 0.0085792915167386
129 => 0.0086522612994683
130 => 0.0086119716744105
131 => 0.0085516561556592
201 => 0.0088711703248897
202 => 0.0088531420832756
203 => 0.0091506810232621
204 => 0.0093826339041953
205 => 0.0097983349333647
206 => 0.0093645292384417
207 => 0.0093487196346972
208 => 0.0095032610472396
209 => 0.0093617083735918
210 => 0.009451164777105
211 => 0.0097839221237681
212 => 0.009790952762151
213 => 0.0096731805107726
214 => 0.0096660140585731
215 => 0.0096886335077375
216 => 0.0098211163279995
217 => 0.0097748227598141
218 => 0.009828394848928
219 => 0.0098953875666898
220 => 0.010172497851677
221 => 0.010239308203234
222 => 0.010076993686145
223 => 0.010091648869679
224 => 0.010030938784654
225 => 0.0099722936032157
226 => 0.010104119406649
227 => 0.010345033653466
228 => 0.01034353493844
301 => 0.010399422360998
302 => 0.010434239762255
303 => 0.010284777988164
304 => 0.010187483869093
305 => 0.01022479262533
306 => 0.010284450139033
307 => 0.01020544649768
308 => 0.009717799425203
309 => 0.0098657203959771
310 => 0.0098410991134743
311 => 0.0098060354131402
312 => 0.0099547710930925
313 => 0.009940425173918
314 => 0.0095107091980816
315 => 0.0095382182206446
316 => 0.0095123821128564
317 => 0.0095958638626904
318 => 0.009357200085137
319 => 0.0094306114556873
320 => 0.0094766543791076
321 => 0.0095037740147206
322 => 0.0096017487346629
323 => 0.0095902525320977
324 => 0.0096010341145701
325 => 0.0097463047598774
326 => 0.010481033832976
327 => 0.010521023515337
328 => 0.010324099693855
329 => 0.010402766876386
330 => 0.010251743088547
331 => 0.010353126369095
401 => 0.01042249023479
402 => 0.01010904826362
403 => 0.010090488264309
404 => 0.0099388411475759
405 => 0.010020327718377
406 => 0.0098906767251408
407 => 0.0099224885438817
408 => 0.0098335399253778
409 => 0.0099936297291915
410 => 0.010172635005296
411 => 0.010217858807172
412 => 0.010098894454506
413 => 0.010012756423043
414 => 0.009861526415425
415 => 0.010113025288474
416 => 0.010186571223243
417 => 0.010112638982988
418 => 0.01009550726747
419 => 0.010063042697519
420 => 0.010102394779455
421 => 0.010186170676287
422 => 0.010146663510439
423 => 0.010172758689508
424 => 0.010073310776127
425 => 0.010284827466231
426 => 0.010620766874378
427 => 0.010621846974507
428 => 0.0105823395957
429 => 0.010566174027491
430 => 0.010606710995655
501 => 0.01062870063797
502 => 0.010759789759803
503 => 0.010900453610351
504 => 0.011556870424413
505 => 0.011372551209719
506 => 0.011954963257565
507 => 0.012415575570672
508 => 0.012553693063238
509 => 0.012426631469008
510 => 0.011991960618879
511 => 0.011970633593265
512 => 0.012620215356656
513 => 0.012436678755769
514 => 0.012414847661102
515 => 0.012182601698062
516 => 0.01231988782644
517 => 0.012289861336298
518 => 0.012242463052662
519 => 0.012504395422174
520 => 0.012994709435037
521 => 0.012918289397996
522 => 0.012861245385369
523 => 0.0126112951273
524 => 0.012761821011069
525 => 0.012708221626992
526 => 0.012938518595996
527 => 0.01280209577326
528 => 0.012435288285504
529 => 0.012493703586942
530 => 0.012484874231645
531 => 0.012666581738006
601 => 0.012612037654854
602 => 0.012474223624008
603 => 0.012993033595045
604 => 0.012959344961298
605 => 0.013007107741657
606 => 0.013028134394684
607 => 0.013343924881596
608 => 0.013473294139916
609 => 0.013502663226482
610 => 0.013625554016108
611 => 0.013499605591685
612 => 0.014003489089082
613 => 0.014338542212433
614 => 0.014727723656882
615 => 0.015296422349332
616 => 0.015510258318451
617 => 0.015471630764601
618 => 0.015902811622748
619 => 0.016677634040227
620 => 0.015628244528194
621 => 0.016733254232482
622 => 0.016383420918055
623 => 0.015553972422781
624 => 0.015500565718241
625 => 0.016062277869335
626 => 0.017308101357672
627 => 0.016996036703856
628 => 0.017308611783651
629 => 0.016943976349668
630 => 0.016925869126982
701 => 0.017290902254504
702 => 0.01814382205388
703 => 0.017738631828417
704 => 0.017157692283497
705 => 0.017586649003046
706 => 0.017215046994502
707 => 0.0163777236644
708 => 0.016995798073897
709 => 0.016582509318012
710 => 0.016703128948618
711 => 0.017571800441425
712 => 0.017467279589191
713 => 0.017602539250352
714 => 0.017363809488764
715 => 0.017140798247212
716 => 0.016724531203824
717 => 0.016601295053994
718 => 0.016635353092235
719 => 0.016601278176522
720 => 0.016368380591438
721 => 0.016318086380114
722 => 0.016234260491133
723 => 0.01626024163928
724 => 0.016102624443868
725 => 0.016400080656986
726 => 0.016455291151316
727 => 0.016671754977433
728 => 0.016694228969952
729 => 0.01729707764452
730 => 0.016965038725028
731 => 0.017187799099085
801 => 0.017167873314527
802 => 0.015571949086782
803 => 0.015791853364406
804 => 0.016133955410626
805 => 0.015979838902513
806 => 0.015761954217749
807 => 0.015586000652564
808 => 0.015319413009133
809 => 0.0156946299979
810 => 0.016188000438249
811 => 0.016706741658504
812 => 0.01732997524537
813 => 0.017190876764021
814 => 0.01669509074011
815 => 0.016717331338971
816 => 0.016854813969775
817 => 0.01667676147127
818 => 0.016624250313463
819 => 0.016847599743056
820 => 0.016849137827827
821 => 0.016644266909933
822 => 0.016416590375677
823 => 0.016415636402685
824 => 0.016375123562509
825 => 0.016951183493935
826 => 0.017267958209991
827 => 0.017304275920679
828 => 0.017265513738698
829 => 0.017280431764127
830 => 0.017096107536508
831 => 0.017517418061192
901 => 0.017904054261935
902 => 0.017800427500858
903 => 0.017645076254592
904 => 0.017521331504211
905 => 0.017771277170333
906 => 0.017760147483272
907 => 0.017900677332016
908 => 0.017894302086337
909 => 0.017847047183799
910 => 0.01780042918848
911 => 0.017985264270463
912 => 0.017932034735212
913 => 0.017878722519791
914 => 0.017771796710072
915 => 0.017786329703463
916 => 0.017631005280779
917 => 0.017559145095684
918 => 0.016478540328545
919 => 0.016189767424986
920 => 0.01628062125896
921 => 0.016310532700123
922 => 0.016184858362422
923 => 0.016365043079597
924 => 0.016336961482288
925 => 0.016446210550232
926 => 0.016377956475624
927 => 0.016380757646654
928 => 0.016581478326774
929 => 0.01663974839414
930 => 0.01661011176758
1001 => 0.016630868244938
1002 => 0.017109192504892
1003 => 0.017041190091076
1004 => 0.017005065164074
1005 => 0.017015072015736
1006 => 0.017137294119542
1007 => 0.017171509635528
1008 => 0.017026536090013
1009 => 0.01709490645216
1010 => 0.017386018776691
1011 => 0.017487891614747
1012 => 0.017813020812083
1013 => 0.017674900150344
1014 => 0.017928426602689
1015 => 0.018707680483659
1016 => 0.019330202404046
1017 => 0.018757705519252
1018 => 0.019900887748353
1019 => 0.020791019093459
1020 => 0.020756854369843
1021 => 0.020601639380715
1022 => 0.019588248509677
1023 => 0.018655711121342
1024 => 0.019435818244313
1025 => 0.0194378068978
1026 => 0.019370795004094
1027 => 0.018954589887551
1028 => 0.019356311968216
1029 => 0.019388199208138
1030 => 0.019370350833283
1031 => 0.019051247346274
1101 => 0.018564035301794
1102 => 0.018659235369064
1103 => 0.018815175021282
1104 => 0.018519948727214
1105 => 0.018425606037868
1106 => 0.018601007046794
1107 => 0.019166185643807
1108 => 0.019059341903898
1109 => 0.01905655178206
1110 => 0.019513674610186
1111 => 0.019186473318528
1112 => 0.018660436146785
1113 => 0.018527604823342
1114 => 0.018056143111021
1115 => 0.01838178339501
1116 => 0.018393502609105
1117 => 0.018215152753527
1118 => 0.018674908254623
1119 => 0.018670671526742
1120 => 0.019107140949458
1121 => 0.019941506555261
1122 => 0.019694743588987
1123 => 0.019407785106945
1124 => 0.019438985450438
1125 => 0.019781176209554
1126 => 0.019574279865137
1127 => 0.019648681233122
1128 => 0.019781063594172
1129 => 0.019860933159463
1130 => 0.019427493449116
1201 => 0.019326437918816
1202 => 0.019119713769494
1203 => 0.019065783297625
1204 => 0.019234155803807
1205 => 0.019189795597116
1206 => 0.018392517654539
1207 => 0.018309197673528
1208 => 0.018311752978392
1209 => 0.018102240924488
1210 => 0.017782684753631
1211 => 0.018622459290936
1212 => 0.018555013642954
1213 => 0.018480558867459
1214 => 0.018489679152624
1215 => 0.018854196816668
1216 => 0.018642758162939
1217 => 0.019204902477992
1218 => 0.019089342506422
1219 => 0.018970818857629
1220 => 0.018954435279047
1221 => 0.018908813786224
1222 => 0.018752360712325
1223 => 0.01856343422422
1224 => 0.018438688592241
1225 => 0.017008715560951
1226 => 0.017274110237788
1227 => 0.017579422622003
1228 => 0.017684815233571
1229 => 0.017504533878537
1230 => 0.01875947931905
1231 => 0.018988769943987
]
'min_raw' => 0.0079143388176308
'max_raw' => 0.020791019093459
'avg_raw' => 0.014352678955545
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.007914'
'max' => '$0.020791'
'avg' => '$0.014352'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00030685674936872
'max_diff' => -0.0037494498934608
'year' => 2027
]
2 => [
'items' => [
101 => 0.018294233684796
102 => 0.018164314308429
103 => 0.018767996811735
104 => 0.018403902465057
105 => 0.018567854127073
106 => 0.01821348031056
107 => 0.018933540546853
108 => 0.018928054894283
109 => 0.018647935199067
110 => 0.018884690447287
111 => 0.018843548396648
112 => 0.018527293950654
113 => 0.018943566376884
114 => 0.018943772842814
115 => 0.018674163726496
116 => 0.018359319303661
117 => 0.018303032557151
118 => 0.018260628054717
119 => 0.018557425218917
120 => 0.018823532628278
121 => 0.019318692543478
122 => 0.019443187510869
123 => 0.019929099656694
124 => 0.019639762632488
125 => 0.019768021987776
126 => 0.019907265661336
127 => 0.019974024198957
128 => 0.019865244744364
129 => 0.020620066316249
130 => 0.020683796384051
131 => 0.020705164524522
201 => 0.020450642937439
202 => 0.020676717678288
203 => 0.020570944793853
204 => 0.0208461364546
205 => 0.020889290020828
206 => 0.020852740485465
207 => 0.020866438108519
208 => 0.020222331056565
209 => 0.020188930707986
210 => 0.019733514585128
211 => 0.019919100021459
212 => 0.01957215694358
213 => 0.019682176167485
214 => 0.019730671593081
215 => 0.019705340334841
216 => 0.019929592743579
217 => 0.019738932384411
218 => 0.019235748349103
219 => 0.018732427221641
220 => 0.018726108434882
221 => 0.018593592866377
222 => 0.018497808381785
223 => 0.018516259871655
224 => 0.018581285328621
225 => 0.018494028984016
226 => 0.018512649549147
227 => 0.018821874998486
228 => 0.018883887957056
229 => 0.018673143693808
301 => 0.017826975066616
302 => 0.017619323163049
303 => 0.017768579233417
304 => 0.017697244445103
305 => 0.014283057480496
306 => 0.015085170064479
307 => 0.014608582004246
308 => 0.014828215709164
309 => 0.014341742711545
310 => 0.014573913124243
311 => 0.014531039726524
312 => 0.015820813025332
313 => 0.015800674989297
314 => 0.015810314001466
315 => 0.01535021883632
316 => 0.016083162927342
317 => 0.016444237542397
318 => 0.01637741224084
319 => 0.016394230729548
320 => 0.016105233371238
321 => 0.015813112127611
322 => 0.015489104711292
323 => 0.016091070442286
324 => 0.016024142128897
325 => 0.016177651599764
326 => 0.016568069405712
327 => 0.016625559910691
328 => 0.016702827732394
329 => 0.016675132718611
330 => 0.017334940306369
331 => 0.017255033253941
401 => 0.017447586259464
402 => 0.017051490118071
403 => 0.016603269736293
404 => 0.01668846177744
405 => 0.016680257098807
406 => 0.016575802122909
407 => 0.016481504841165
408 => 0.016324526435157
409 => 0.0168212293402
410 => 0.016801064109341
411 => 0.017127515757427
412 => 0.017069812257646
413 => 0.016684454163664
414 => 0.01669821730338
415 => 0.016790781032304
416 => 0.017111145154985
417 => 0.01720625103865
418 => 0.017162194204022
419 => 0.017266473463712
420 => 0.017348891538763
421 => 0.017276823905007
422 => 0.018297149621794
423 => 0.017873439247324
424 => 0.018079952735683
425 => 0.018129204985808
426 => 0.018003046382775
427 => 0.018030405666372
428 => 0.018071847526063
429 => 0.018323474382959
430 => 0.018983816064271
501 => 0.019276276899826
502 => 0.020156159753358
503 => 0.019251992098685
504 => 0.019198342531874
505 => 0.019356836003712
506 => 0.019873420383794
507 => 0.020292063503547
508 => 0.02043095157847
509 => 0.020449307930363
510 => 0.020709871192023
511 => 0.02085922119439
512 => 0.020678231958564
513 => 0.020524862531564
514 => 0.019975512280965
515 => 0.020039101068303
516 => 0.020477164755095
517 => 0.021095955514511
518 => 0.021626942360296
519 => 0.021441009273662
520 => 0.022859547476376
521 => 0.023000189744966
522 => 0.022980757530956
523 => 0.02330116154918
524 => 0.022665224822149
525 => 0.022393349550649
526 => 0.020558022742498
527 => 0.021073674713581
528 => 0.021823205136728
529 => 0.02172400197463
530 => 0.021179672946335
531 => 0.021626529437917
601 => 0.021478784707305
602 => 0.021362252308337
603 => 0.021896109818926
604 => 0.021309111556376
605 => 0.021817349380029
606 => 0.021165529114147
607 => 0.02144185860034
608 => 0.021285000619423
609 => 0.021386506956867
610 => 0.020793102982285
611 => 0.021113289362902
612 => 0.020779782176176
613 => 0.020779624050346
614 => 0.020772261860714
615 => 0.0211646315869
616 => 0.021177426749585
617 => 0.020887464929095
618 => 0.020845676900708
619 => 0.021000189143649
620 => 0.020819295773986
621 => 0.020903934643122
622 => 0.020821859399109
623 => 0.020803382532912
624 => 0.02065615571948
625 => 0.020592726360167
626 => 0.020617598646327
627 => 0.020532696711122
628 => 0.020481540224123
629 => 0.02076208554786
630 => 0.020612201498554
701 => 0.020739113667664
702 => 0.02059448123337
703 => 0.020093122202755
704 => 0.019804785322473
705 => 0.018857764589648
706 => 0.019126338494702
707 => 0.019304403271612
708 => 0.019245552863906
709 => 0.019371986311744
710 => 0.019379748298591
711 => 0.019338643495863
712 => 0.019291049400154
713 => 0.019267883226482
714 => 0.019440544905345
715 => 0.01954078082145
716 => 0.019322274454175
717 => 0.019271081469551
718 => 0.019492003470934
719 => 0.019626765764155
720 => 0.020621774820908
721 => 0.020548061336146
722 => 0.020733067717356
723 => 0.020712238837986
724 => 0.020906154999322
725 => 0.021223125968021
726 => 0.020578635362179
727 => 0.020690496646545
728 => 0.020663070842872
729 => 0.020962498575934
730 => 0.020963433356633
731 => 0.020783911473138
801 => 0.02088123319859
802 => 0.020826910881325
803 => 0.020925078650725
804 => 0.020547076847616
805 => 0.02100744224103
806 => 0.021268439753804
807 => 0.021272063704522
808 => 0.021395774454173
809 => 0.021521471740662
810 => 0.021762736736151
811 => 0.021514742990885
812 => 0.021068626384856
813 => 0.021100834562863
814 => 0.020839276559976
815 => 0.020843673397259
816 => 0.020820202735257
817 => 0.020890639958714
818 => 0.020562533857137
819 => 0.020639539703368
820 => 0.020531731067699
821 => 0.020690262291625
822 => 0.02051970890083
823 => 0.020663057617319
824 => 0.020724922171271
825 => 0.0209532037072
826 => 0.020485991532363
827 => 0.019533314280387
828 => 0.019733578588848
829 => 0.019437371946212
830 => 0.019464786998726
831 => 0.019520169767878
901 => 0.019340656092943
902 => 0.019374901644995
903 => 0.019373678152893
904 => 0.019363134758946
905 => 0.019316436318948
906 => 0.019248714341947
907 => 0.019518497854595
908 => 0.019564339330471
909 => 0.019666239252786
910 => 0.019969424302216
911 => 0.019939128966182
912 => 0.019988541916195
913 => 0.019880673723759
914 => 0.0194697906948
915 => 0.019492103620091
916 => 0.019213861084179
917 => 0.019659123965568
918 => 0.019553679838072
919 => 0.019485699323121
920 => 0.019467150209782
921 => 0.019771086796307
922 => 0.019862029386618
923 => 0.019805360067266
924 => 0.019689129639968
925 => 0.019912326420821
926 => 0.019972044463461
927 => 0.019985413130892
928 => 0.020380875032826
929 => 0.020007515058176
930 => 0.020097386514953
1001 => 0.020798537965789
1002 => 0.020162690352167
1003 => 0.020499513014197
1004 => 0.020483027297631
1005 => 0.020655334374068
1006 => 0.020468893088097
1007 => 0.020471204251284
1008 => 0.020624201262068
1009 => 0.020409344553578
1010 => 0.02035614301102
1011 => 0.020282645461012
1012 => 0.0204431246726
1013 => 0.020539324702097
1014 => 0.021314626288706
1015 => 0.021815506471703
1016 => 0.021793761941981
1017 => 0.021992466239581
1018 => 0.021902948133589
1019 => 0.02161387055566
1020 => 0.02210729073193
1021 => 0.021951151942581
1022 => 0.021964023834667
1023 => 0.0219635447422
1024 => 0.022067363387228
1025 => 0.021993798362387
1026 => 0.02184879414713
1027 => 0.021945054712281
1028 => 0.022230914176996
1029 => 0.023118230726711
1030 => 0.023614784823312
1031 => 0.023088337546604
1101 => 0.023451473828668
1102 => 0.023233721458117
1103 => 0.023194149374816
1104 => 0.023422225795512
1105 => 0.023650701433791
1106 => 0.02363614852336
1107 => 0.023470286942323
1108 => 0.023376595943778
1109 => 0.024086055573552
1110 => 0.02460877334344
1111 => 0.024573127495878
1112 => 0.024730456674366
1113 => 0.025192380008415
1114 => 0.025234612489069
1115 => 0.025229292167209
1116 => 0.025124614557405
1117 => 0.025579438068101
1118 => 0.025958859842582
1119 => 0.025100384715162
1120 => 0.025427280805419
1121 => 0.02557403499227
1122 => 0.025789513678571
1123 => 0.026153062340784
1124 => 0.026547972614466
1125 => 0.026603817257136
1126 => 0.026564192810749
1127 => 0.026303738869498
1128 => 0.026735854403221
1129 => 0.026988977548519
1130 => 0.027139706588924
1201 => 0.027521930356471
1202 => 0.025574941296167
1203 => 0.024196765667648
1204 => 0.023981543642158
1205 => 0.024419206094181
1206 => 0.024534614192487
1207 => 0.024488093332769
1208 => 0.022936831364625
1209 => 0.023973376568936
1210 => 0.025088612053579
1211 => 0.025131452790484
1212 => 0.02568976299257
1213 => 0.025871571680278
1214 => 0.026321084572349
1215 => 0.026292967418561
1216 => 0.026402416654467
1217 => 0.026377256170529
1218 => 0.027209884146983
1219 => 0.028128396451463
1220 => 0.028096591291049
1221 => 0.027964544279936
1222 => 0.0281606566088
1223 => 0.029108659740784
1224 => 0.029021382803831
1225 => 0.029106164913849
1226 => 0.030223914033573
1227 => 0.031677146887172
1228 => 0.031001974324482
1229 => 0.032466904509848
1230 => 0.033389000408923
1231 => 0.034983669919879
]
'min_raw' => 0.014283057480496
'max_raw' => 0.034983669919879
'avg_raw' => 0.024633363700187
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.014283'
'max' => '$0.034983'
'avg' => '$0.024633'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0063687186628651
'max_diff' => 0.014192650826419
'year' => 2028
]
3 => [
'items' => [
101 => 0.034784009443194
102 => 0.035404802581584
103 => 0.03442657551953
104 => 0.032180368452747
105 => 0.031824897586293
106 => 0.032536559262889
107 => 0.03428611005187
108 => 0.032481459682422
109 => 0.03284653810178
110 => 0.032741395492444
111 => 0.03273579288962
112 => 0.032949621451986
113 => 0.032639451969727
114 => 0.031375765700581
115 => 0.03195490567078
116 => 0.031731271915701
117 => 0.031979410239962
118 => 0.033318510435974
119 => 0.032726462319156
120 => 0.032102787722171
121 => 0.032885014071263
122 => 0.033881057015792
123 => 0.033818726438385
124 => 0.033697779066054
125 => 0.034379553071283
126 => 0.035505643986881
127 => 0.035810021836367
128 => 0.036034707342126
129 => 0.036065687677278
130 => 0.036384804383509
131 => 0.034668833426337
201 => 0.037392123404629
202 => 0.037862360354513
203 => 0.037773975297259
204 => 0.038296623876459
205 => 0.038142847406144
206 => 0.037920049427446
207 => 0.038748558596018
208 => 0.037798739691492
209 => 0.036450591335392
210 => 0.035710970483885
211 => 0.036684962884662
212 => 0.037279746056166
213 => 0.037672859897216
214 => 0.037791815907992
215 => 0.034802039367
216 => 0.033190715632014
217 => 0.034223555672276
218 => 0.035483691804207
219 => 0.034661833306499
220 => 0.034694048603625
221 => 0.033522294366507
222 => 0.035587366053895
223 => 0.03528650247903
224 => 0.036847383237652
225 => 0.036474866517756
226 => 0.03774770418337
227 => 0.037412523368579
228 => 0.038803840191072
301 => 0.039358874139963
302 => 0.040290862524289
303 => 0.040976436973674
304 => 0.041379019403302
305 => 0.041354849864276
306 => 0.042950082016234
307 => 0.042009429349391
308 => 0.040827747905024
309 => 0.040806375015853
310 => 0.041418384580446
311 => 0.042700988731208
312 => 0.043033549326369
313 => 0.043219405330314
314 => 0.042934760390579
315 => 0.041913749337905
316 => 0.041472881942003
317 => 0.041848513736469
318 => 0.041389148330246
319 => 0.042182141896556
320 => 0.043271091437387
321 => 0.043046227663379
322 => 0.043797913546428
323 => 0.044575829355722
324 => 0.045688283901398
325 => 0.045979120713711
326 => 0.04645986290493
327 => 0.046954704535277
328 => 0.047113634330589
329 => 0.047417080622858
330 => 0.047415481311112
331 => 0.048329937137157
401 => 0.049338610231624
402 => 0.04971936097395
403 => 0.050594876311209
404 => 0.049095586977869
405 => 0.050232815159802
406 => 0.051258623446572
407 => 0.050035612517973
408 => 0.051721248158048
409 => 0.05178669757022
410 => 0.05277490598889
411 => 0.051773167438742
412 => 0.051178338285327
413 => 0.052895587763279
414 => 0.053726510692808
415 => 0.053476229944159
416 => 0.051571581089053
417 => 0.050462993761149
418 => 0.047561606893499
419 => 0.050998424968816
420 => 0.052672398799945
421 => 0.051567245901233
422 => 0.052124620740438
423 => 0.055165477133744
424 => 0.056323238367444
425 => 0.056082432124196
426 => 0.056123124415297
427 => 0.056747831362149
428 => 0.059518125996888
429 => 0.057858101236825
430 => 0.059127127965952
501 => 0.059800215167265
502 => 0.060425416071402
503 => 0.058890120247617
504 => 0.056892722938849
505 => 0.056260063366127
506 => 0.051457360225639
507 => 0.051207358670094
508 => 0.051067025221144
509 => 0.050182242676076
510 => 0.049487045957988
511 => 0.048934199716765
512 => 0.047483366085934
513 => 0.047972979846672
514 => 0.045660653851639
515 => 0.047139998079459
516 => 0.043449469958324
517 => 0.046523051442241
518 => 0.044850240779146
519 => 0.045973488149316
520 => 0.045969569245057
521 => 0.043901314710673
522 => 0.042708388658611
523 => 0.043468567568361
524 => 0.044283539702691
525 => 0.04441576618959
526 => 0.045472398834698
527 => 0.045767282293704
528 => 0.044873771646122
529 => 0.043372991965996
530 => 0.043721588856549
531 => 0.04270132435375
601 => 0.040913350056502
602 => 0.042197504411822
603 => 0.042635971169009
604 => 0.042829623067883
605 => 0.041071355696776
606 => 0.040518869914932
607 => 0.040224731120483
608 => 0.043146021727762
609 => 0.043306056621669
610 => 0.042487295477785
611 => 0.046188173486259
612 => 0.045350550812283
613 => 0.046286380561651
614 => 0.043689957342551
615 => 0.043789144206068
616 => 0.042559955844618
617 => 0.043248219192634
618 => 0.04276177684202
619 => 0.043192614315665
620 => 0.043450856520959
621 => 0.044679843184694
622 => 0.046537084495792
623 => 0.044496273560226
624 => 0.043607063010649
625 => 0.044158724234496
626 => 0.045627870770669
627 => 0.047853702977198
628 => 0.046535965511885
629 => 0.047120755022357
630 => 0.047248505514921
701 => 0.046276854693292
702 => 0.047889529128939
703 => 0.048753774460346
704 => 0.049640311339997
705 => 0.050410066472399
706 => 0.049286209014901
707 => 0.050488897593062
708 => 0.049519742902178
709 => 0.048650310955084
710 => 0.048651629524462
711 => 0.048106222163676
712 => 0.047049426676403
713 => 0.046854537374398
714 => 0.047868376135233
715 => 0.048681378810534
716 => 0.048748341604892
717 => 0.049198461659524
718 => 0.049464838071251
719 => 0.052075689027339
720 => 0.05312579487997
721 => 0.054409844439081
722 => 0.054910054107422
723 => 0.056415505874038
724 => 0.055199731305681
725 => 0.054936690830237
726 => 0.051284957273945
727 => 0.051882928439214
728 => 0.052840337970445
729 => 0.051300744604479
730 => 0.052277262229641
731 => 0.052470047494319
801 => 0.051248429811037
802 => 0.051900948598662
803 => 0.050168052157066
804 => 0.046574856902759
805 => 0.047893529382427
806 => 0.048864516187819
807 => 0.047478798294714
808 => 0.049962643983416
809 => 0.048511632609059
810 => 0.048051731664217
811 => 0.046257494111864
812 => 0.047104305170038
813 => 0.048249629251384
814 => 0.047541952127328
815 => 0.049010488418
816 => 0.051090327449915
817 => 0.052572544600613
818 => 0.05268633082868
819 => 0.051733364501617
820 => 0.053260499122484
821 => 0.053271622630987
822 => 0.051549008540121
823 => 0.05049391700102
824 => 0.050254197983405
825 => 0.05085306308909
826 => 0.051580195883988
827 => 0.05272668163821
828 => 0.053419478968013
829 => 0.05522592697283
830 => 0.055714700008011
831 => 0.056251713386949
901 => 0.056969328870003
902 => 0.057831010250243
903 => 0.055945700445827
904 => 0.056020607319013
905 => 0.054265032933031
906 => 0.052388949926776
907 => 0.053812663071476
908 => 0.055673978619548
909 => 0.055246990776249
910 => 0.055198945921308
911 => 0.055279744040788
912 => 0.05495780915106
913 => 0.053501709576284
914 => 0.052770465485498
915 => 0.053713956922876
916 => 0.05421538063187
917 => 0.054993045075776
918 => 0.05489718151856
919 => 0.056900361611
920 => 0.0576787368219
921 => 0.057479595134398
922 => 0.057516241997511
923 => 0.0589254531368
924 => 0.060492785750065
925 => 0.061960799570141
926 => 0.063454126280583
927 => 0.061653862645611
928 => 0.060739799796598
929 => 0.06168287933513
930 => 0.061182468057179
1001 => 0.06405797969191
1002 => 0.06425707387859
1003 => 0.0671323775811
1004 => 0.069861383179579
1005 => 0.068147343658388
1006 => 0.069763605724835
1007 => 0.071511724925478
1008 => 0.074884130485635
1009 => 0.073748422935632
1010 => 0.072878488751136
1011 => 0.072056405150279
1012 => 0.073767030621567
1013 => 0.075967722962469
1014 => 0.07644173101473
1015 => 0.077209805144406
1016 => 0.076402269112688
1017 => 0.077374857315716
1018 => 0.080808521049316
1019 => 0.079880714798709
1020 => 0.07856308077055
1021 => 0.081273628515657
1022 => 0.082254565207623
1023 => 0.089139292632379
1024 => 0.097831545400037
1025 => 0.094232895677818
1026 => 0.091999097667535
1027 => 0.092524093186349
1028 => 0.095698209645773
1029 => 0.096717635111119
1030 => 0.093946485279277
1031 => 0.094925302247931
1101 => 0.10031867998037
1102 => 0.10321205409355
1103 => 0.099282463415867
1104 => 0.088440878585955
1105 => 0.07844444224286
1106 => 0.081095947306444
1107 => 0.080795348918015
1108 => 0.08658986045395
1109 => 0.079858586926478
1110 => 0.079971924309367
1111 => 0.085886260207371
1112 => 0.08430841678717
1113 => 0.081752512521362
1114 => 0.078463103172534
1115 => 0.072382325757687
1116 => 0.066996411626334
1117 => 0.077559429539864
1118 => 0.077103932999831
1119 => 0.076444306509057
1120 => 0.077912233885232
1121 => 0.08504007254548
1122 => 0.084875752793799
1123 => 0.083830434370279
1124 => 0.084623299181505
1125 => 0.081613519486509
1126 => 0.082389208245319
1127 => 0.07844285875627
1128 => 0.080226773539433
1129 => 0.081747028698722
1130 => 0.082052242429712
1201 => 0.082739904550231
1202 => 0.076863907021156
1203 => 0.079502057401487
1204 => 0.081051723588669
1205 => 0.07405027537764
1206 => 0.08091332746891
1207 => 0.076761618977089
1208 => 0.075352466758397
1209 => 0.077249704579179
1210 => 0.076510349155295
1211 => 0.075874694778248
1212 => 0.075519988713927
1213 => 0.076913110779012
1214 => 0.076848119969535
1215 => 0.074568701877715
1216 => 0.071595293897903
1217 => 0.072593267214718
1218 => 0.072230694152669
1219 => 0.07091668260295
1220 => 0.071802167733101
1221 => 0.067902939353683
1222 => 0.061194519591149
1223 => 0.065626307170734
1224 => 0.065455688169777
1225 => 0.065369654332539
1226 => 0.068700020212984
1227 => 0.068379882378193
1228 => 0.067798829073248
1229 => 0.070906011103337
1230 => 0.069771847864859
1231 => 0.073267071723382
]
'min_raw' => 0.031375765700581
'max_raw' => 0.10321205409355
'avg_raw' => 0.067293909897067
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.031375'
'max' => '$0.103212'
'avg' => '$0.067293'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.017092708220085
'max_diff' => 0.068228384173675
'year' => 2029
]
4 => [
'items' => [
101 => 0.075569252213511
102 => 0.074985344773477
103 => 0.077150556651847
104 => 0.072616258504314
105 => 0.074122370464458
106 => 0.074432778052063
107 => 0.070867668959401
108 => 0.068432260887176
109 => 0.068269846934444
110 => 0.064047184957112
111 => 0.066302896901266
112 => 0.068287830064419
113 => 0.067337201116305
114 => 0.067036260390564
115 => 0.068573701292294
116 => 0.06869317361765
117 => 0.065969191938439
118 => 0.066535593986828
119 => 0.068897584685116
120 => 0.066476077881475
121 => 0.061771485712891
122 => 0.060604681809006
123 => 0.060449008659766
124 => 0.057284543932047
125 => 0.060682653225154
126 => 0.059199287455045
127 => 0.063885222149368
128 => 0.061208641383143
129 => 0.061093259335925
130 => 0.060918842448689
131 => 0.058195056935149
201 => 0.058791392857015
202 => 0.060773704285821
203 => 0.061481015335955
204 => 0.061407236998598
205 => 0.060763989878373
206 => 0.061058465116054
207 => 0.060109857773511
208 => 0.059774884777305
209 => 0.058717617859696
210 => 0.057163727568252
211 => 0.05737980554384
212 => 0.054301142278977
213 => 0.052623723135254
214 => 0.0521594356243
215 => 0.051538570960742
216 => 0.052229563940107
217 => 0.054292420812762
218 => 0.05180417776484
219 => 0.047538259589135
220 => 0.047794648540266
221 => 0.048370678390894
222 => 0.047297250575068
223 => 0.046281341233356
224 => 0.047164591982644
225 => 0.045357066214992
226 => 0.048589109244358
227 => 0.04850169153811
228 => 0.049706397311257
301 => 0.050459724554258
302 => 0.048723549151733
303 => 0.048286905733116
304 => 0.048535637668697
305 => 0.04442465283077
306 => 0.049370442144777
307 => 0.049413213536143
308 => 0.049046978916003
309 => 0.051680459041598
310 => 0.057237923509652
311 => 0.055146981828279
312 => 0.054337306010205
313 => 0.052798111688177
314 => 0.054848996733964
315 => 0.054691520761238
316 => 0.053979354691583
317 => 0.053548634430562
318 => 0.054342249718097
319 => 0.053450296713885
320 => 0.053290077445099
321 => 0.052319322996539
322 => 0.051972807824917
323 => 0.051716261787014
324 => 0.051433829806976
325 => 0.052056804377275
326 => 0.050645062041847
327 => 0.048942639180127
328 => 0.048801101139646
329 => 0.049191900113567
330 => 0.049019000659169
331 => 0.048800273363577
401 => 0.048382663389459
402 => 0.048258767430964
403 => 0.0486613691903
404 => 0.04820685527715
405 => 0.048877515314657
406 => 0.048695132893768
407 => 0.047676359516476
408 => 0.046406590690158
409 => 0.046395287084173
410 => 0.046121717473381
411 => 0.045773285442571
412 => 0.045676359622645
413 => 0.047090207068126
414 => 0.050016828967378
415 => 0.049442263060428
416 => 0.049857445812082
417 => 0.051899734028747
418 => 0.052548916039075
419 => 0.052088142024863
420 => 0.051457406134905
421 => 0.051485155313025
422 => 0.053640570785747
423 => 0.053775001404895
424 => 0.054114664210519
425 => 0.054551226904443
426 => 0.052162490539388
427 => 0.051372646045046
428 => 0.050998373904722
429 => 0.049845760574072
430 => 0.05108875523358
501 => 0.050364515475823
502 => 0.050462240162697
503 => 0.050398596832169
504 => 0.050433350394181
505 => 0.048588205822462
506 => 0.049260479526453
507 => 0.04814269410394
508 => 0.046646104900496
509 => 0.046641087808715
510 => 0.047007375896041
511 => 0.046789493408845
512 => 0.046203177238071
513 => 0.046286460682796
514 => 0.045556810072054
515 => 0.04637505347769
516 => 0.046398517770748
517 => 0.046083449489559
518 => 0.047344066351773
519 => 0.047860542108787
520 => 0.047653157416692
521 => 0.047845991445945
522 => 0.049466138867872
523 => 0.049730293589633
524 => 0.049847613667959
525 => 0.049690420304935
526 => 0.047875604766671
527 => 0.047956099552984
528 => 0.047365482220145
529 => 0.046866472811618
530 => 0.046886430570999
531 => 0.047142986273665
601 => 0.048263380073999
602 => 0.050621182775979
603 => 0.050710659664988
604 => 0.050819108264691
605 => 0.050377993307797
606 => 0.050244948815897
607 => 0.050420468842411
608 => 0.051305935569898
609 => 0.053583596394867
610 => 0.052778518939471
611 => 0.052123978436457
612 => 0.052698186920453
613 => 0.052609792025137
614 => 0.051863650151189
615 => 0.05184270843389
616 => 0.050410623621797
617 => 0.04988121447376
618 => 0.049438800564072
619 => 0.048955696124201
620 => 0.048669295618437
621 => 0.049109336961992
622 => 0.049209979623679
623 => 0.048247821535391
624 => 0.048116682943253
625 => 0.048902402007774
626 => 0.048556636342038
627 => 0.048912264903824
628 => 0.048994773780683
629 => 0.048981487951168
630 => 0.048620468885205
701 => 0.048850571672107
702 => 0.048306309984143
703 => 0.047714507143945
704 => 0.047336973802519
705 => 0.047007525889593
706 => 0.04719032273931
707 => 0.046538685347458
708 => 0.046330213430935
709 => 0.048772618025381
710 => 0.050576848559573
711 => 0.050550614333052
712 => 0.050390920226002
713 => 0.050153647175691
714 => 0.051288577568385
715 => 0.05089319051322
716 => 0.051180867631547
717 => 0.051254093531932
718 => 0.051475726278166
719 => 0.051554940934967
720 => 0.051315499223999
721 => 0.050511903596648
722 => 0.048509419696871
723 => 0.047577258035922
724 => 0.047269629161429
725 => 0.047280810886746
726 => 0.046972368985072
727 => 0.047063218948511
728 => 0.04694077507535
729 => 0.046708896001935
730 => 0.047176004859944
731 => 0.04722983480441
801 => 0.047120806015415
802 => 0.047146486242123
803 => 0.046243774436054
804 => 0.046312405654082
805 => 0.045930258310866
806 => 0.045858610290868
807 => 0.044892575084594
808 => 0.043181103687636
809 => 0.044129424978099
810 => 0.042983986213372
811 => 0.04255019119694
812 => 0.044603709335761
813 => 0.044397593070351
814 => 0.044044811620555
815 => 0.04352297433021
816 => 0.043329419803115
817 => 0.042153443768399
818 => 0.04208396083068
819 => 0.042666806307509
820 => 0.04239784317444
821 => 0.042020117071308
822 => 0.040652031415246
823 => 0.039113850180237
824 => 0.039160278203059
825 => 0.039649545035036
826 => 0.041072154335631
827 => 0.040516316270498
828 => 0.040113049376737
829 => 0.040037529609694
830 => 0.04098281760558
831 => 0.042320598163717
901 => 0.042948254870442
902 => 0.042326266136295
903 => 0.041611758968759
904 => 0.041655247709339
905 => 0.041944558817122
906 => 0.041974961323912
907 => 0.041509890610369
908 => 0.041640805292064
909 => 0.04144193391948
910 => 0.04022146067302
911 => 0.040199386182154
912 => 0.039899862364684
913 => 0.039890792902529
914 => 0.039381228169293
915 => 0.039309936540659
916 => 0.038298164834451
917 => 0.038964116035404
918 => 0.038517430933812
919 => 0.037844171123349
920 => 0.037728100878258
921 => 0.037724611666532
922 => 0.038415898953738
923 => 0.038956037940965
924 => 0.038525201212396
925 => 0.03842710804072
926 => 0.039474486481557
927 => 0.039341198027894
928 => 0.03922577108664
929 => 0.042200814587641
930 => 0.039845835511059
1001 => 0.038818930216164
1002 => 0.037547939909703
1003 => 0.037961780762376
1004 => 0.038048983110621
1005 => 0.034992480536807
1006 => 0.033752457823274
1007 => 0.033326928757259
1008 => 0.03308203076367
1009 => 0.033193633854584
1010 => 0.032077467972247
1011 => 0.032827549904857
1012 => 0.031861044597906
1013 => 0.031699006837916
1014 => 0.033427238053776
1015 => 0.033667711331283
1016 => 0.032641777620248
1017 => 0.033300593146313
1018 => 0.033061697478341
1019 => 0.031877612557356
1020 => 0.031832389222913
1021 => 0.03123825703216
1022 => 0.030308555200293
1023 => 0.0298836565159
1024 => 0.029662365591928
1025 => 0.029753674540033
1026 => 0.029707505941771
1027 => 0.02940622460847
1028 => 0.029724775035129
1029 => 0.02891101032914
1030 => 0.028586962666268
1031 => 0.028440597854797
1101 => 0.027718334839684
1102 => 0.02886777648855
1103 => 0.029094230973661
1104 => 0.029321131644063
1105 => 0.031296147068246
1106 => 0.031197480878989
1107 => 0.032089375177485
1108 => 0.032054717805134
1109 => 0.031800335103473
1110 => 0.03072713632909
1111 => 0.03115489423263
1112 => 0.029838321893871
1113 => 0.030824787408286
1114 => 0.030374605743292
1115 => 0.03067258053451
1116 => 0.030136794992596
1117 => 0.030433320833534
1118 => 0.029147931732989
1119 => 0.027947653476812
1120 => 0.028430680485404
1121 => 0.028955786084582
1122 => 0.030094348818019
1123 => 0.029416230246923
1124 => 0.029660107327591
1125 => 0.028843159931882
1126 => 0.027157564105048
1127 => 0.027167104394373
1128 => 0.026907812199116
1129 => 0.026683745885133
1130 => 0.029494120322176
1201 => 0.029144605835485
1202 => 0.028587700244267
1203 => 0.02933314050866
1204 => 0.029530246746294
1205 => 0.029535858083781
1206 => 0.030079712058084
1207 => 0.030369967021661
1208 => 0.030421125717029
1209 => 0.031276891696338
1210 => 0.031563733164776
1211 => 0.03274519257795
1212 => 0.0303453409159
1213 => 0.030295917550187
1214 => 0.029343630381888
1215 => 0.028739674804688
1216 => 0.029384983736965
1217 => 0.029956639357509
1218 => 0.029361393315502
1219 => 0.029439119882258
1220 => 0.028640050704252
1221 => 0.02892568033569
1222 => 0.02917170305275
1223 => 0.029035863768936
1224 => 0.028832505786371
1225 => 0.029909770115699
1226 => 0.029848986640405
1227 => 0.030852159950075
1228 => 0.031634205282575
1229 => 0.033035770325738
1230 => 0.031573164137959
1231 => 0.031519860955143
]
'min_raw' => 0.026683745885133
'max_raw' => 0.077150556651847
'avg_raw' => 0.05191715126849
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.026683'
'max' => '$0.07715'
'avg' => '$0.051917'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0046920198154474
'max_diff' => -0.026061497441707
'year' => 2030
]
5 => [
'items' => [
101 => 0.032040908117266
102 => 0.031563653395171
103 => 0.031865261905262
104 => 0.032987176531913
105 => 0.033010880820084
106 => 0.032613803451966
107 => 0.03258964125803
108 => 0.032665904310127
109 => 0.033112579388295
110 => 0.032956497391045
111 => 0.033137119429776
112 => 0.033362990054992
113 => 0.034297286728047
114 => 0.034522542492875
115 => 0.033975287766068
116 => 0.034024698740548
117 => 0.033820010450244
118 => 0.033622284126547
119 => 0.034066744026607
120 => 0.034879003229846
121 => 0.034873950207499
122 => 0.035062378554588
123 => 0.0351797678538
124 => 0.034675847047364
125 => 0.034347813132056
126 => 0.034473602208526
127 => 0.03467474168113
128 => 0.03440837538845
129 => 0.032764239237161
130 => 0.033262965117638
131 => 0.033179952744677
201 => 0.033061733030932
202 => 0.033563205760284
203 => 0.033514837492188
204 => 0.032066020077844
205 => 0.032158768668033
206 => 0.032071660426806
207 => 0.032353124974881
208 => 0.031548453385887
209 => 0.031795964947116
210 => 0.031951201878041
211 => 0.032042637622943
212 => 0.032372966231605
213 => 0.032334205982017
214 => 0.032370556840069
215 => 0.032860346963195
216 => 0.035337537330294
217 => 0.035472365336363
218 => 0.034808422923454
219 => 0.035073654821726
220 => 0.034564467576883
221 => 0.034906288385604
222 => 0.035140153501624
223 => 0.034083362012007
224 => 0.034020785678512
225 => 0.033509496836782
226 => 0.033784234499447
227 => 0.033347107123809
228 => 0.033454362891724
301 => 0.033154466414244
302 => 0.033694220364916
303 => 0.03429774915105
304 => 0.034450224356502
305 => 0.034049127735662
306 => 0.033758707348618
307 => 0.033248824819393
308 => 0.034096770828968
309 => 0.034344736082855
310 => 0.034095468373052
311 => 0.034037707598083
312 => 0.03392825103389
313 => 0.034060929325611
314 => 0.034343385610829
315 => 0.034210184442869
316 => 0.034298166161009
317 => 0.033962870577813
318 => 0.034676013866119
319 => 0.035808657035229
320 => 0.035812298668223
321 => 0.035679096782259
322 => 0.035624593440398
323 => 0.035761266658763
324 => 0.035835406273097
325 => 0.036277382399708
326 => 0.036751640392667
327 => 0.038964795510834
328 => 0.038343350409736
329 => 0.040306993291761
330 => 0.041859979864326
331 => 0.042325652633566
401 => 0.041897255597462
402 => 0.040431732478504
403 => 0.040359826922641
404 => 0.042549937190265
405 => 0.041931130726256
406 => 0.041857525666388
407 => 0.041074492187104
408 => 0.041537361953944
409 => 0.041436125546046
410 => 0.041276318923525
411 => 0.042159442194869
412 => 0.043812570121866
413 => 0.043554914631508
414 => 0.04336258676025
415 => 0.042519862014199
416 => 0.043027370540708
417 => 0.042846656475104
418 => 0.04362311878492
419 => 0.043163159713331
420 => 0.041926442658679
421 => 0.042123393925905
422 => 0.042093625138074
423 => 0.042706264682182
424 => 0.04252236549769
425 => 0.042057715870826
426 => 0.04380691991033
427 => 0.043693336329588
428 => 0.043854371878258
429 => 0.043925264706972
430 => 0.044989974381386
501 => 0.045426151868083
502 => 0.045525171793926
503 => 0.045939506671111
504 => 0.045514862764731
505 => 0.047213741156225
506 => 0.048343396154267
507 => 0.049655548566007
508 => 0.051572955912878
509 => 0.052293918812311
510 => 0.052163683317617
511 => 0.053617439684947
512 => 0.056229807561851
513 => 0.052691717555995
514 => 0.056417334923315
515 => 0.055237847479142
516 => 0.052441303967083
517 => 0.052261239533988
518 => 0.054155091268893
519 => 0.058355472140437
520 => 0.057303324372441
521 => 0.058357193077264
522 => 0.057127799253555
523 => 0.057066749488064
524 => 0.058297484163305
525 => 0.06117316281586
526 => 0.059807035681233
527 => 0.05784835744563
528 => 0.059294614974391
529 => 0.058041732858162
530 => 0.055218638790676
531 => 0.057302519814871
601 => 0.055909087919506
602 => 0.056315765425488
603 => 0.059244552012193
604 => 0.058892152661473
605 => 0.059348190052607
606 => 0.058543295993832
607 => 0.057791398022794
608 => 0.056387924623174
609 => 0.055972425339949
610 => 0.056087254393735
611 => 0.055972368436373
612 => 0.055187137967872
613 => 0.055017567522962
614 => 0.054734942685727
615 => 0.054822539940651
616 => 0.054291122561836
617 => 0.055294016952094
618 => 0.0554801629884
619 => 0.056209985891178
620 => 0.056285758526039
621 => 0.058318304921896
622 => 0.057198812522612
623 => 0.057949864676375
624 => 0.057882683502566
625 => 0.052501913544851
626 => 0.053243336170088
627 => 0.054396757103722
628 => 0.053877142536545
629 => 0.05314252910964
630 => 0.052549289379935
701 => 0.051650470527554
702 => 0.052915540801993
703 => 0.054578973687654
704 => 0.056327945929102
705 => 0.05842922148
706 => 0.057960241238583
707 => 0.056288664044294
708 => 0.056363649776142
709 => 0.056827182064628
710 => 0.05622686563469
711 => 0.056049820599932
712 => 0.056802858795564
713 => 0.056808044555754
714 => 0.056117307952446
715 => 0.055349680621333
716 => 0.055346464234787
717 => 0.055209872365616
718 => 0.05715209864364
719 => 0.058220126715328
720 => 0.058342574412534
721 => 0.058211885009694
722 => 0.058262182173971
723 => 0.057640720171448
724 => 0.059061198020382
725 => 0.060364768965264
726 => 0.060015384105305
727 => 0.059491606532241
728 => 0.05907439246675
729 => 0.059917101730729
730 => 0.059879577213751
731 => 0.060353383410271
801 => 0.06033188882436
802 => 0.060172565621222
803 => 0.060015389795238
804 => 0.060638574178916
805 => 0.060459107084452
806 => 0.06027936122802
807 => 0.059918853395231
808 => 0.059967852397108
809 => 0.059444165261627
810 => 0.059201883630461
811 => 0.055558549212635
812 => 0.054584931206806
813 => 0.054891251251262
814 => 0.054992099763493
815 => 0.054568379959631
816 => 0.055175885313683
817 => 0.055081206247761
818 => 0.055449547107861
819 => 0.055219423729972
820 => 0.05522886807367
821 => 0.055905611860566
822 => 0.056102073460975
823 => 0.056002151505367
824 => 0.056072133417951
825 => 0.05768483705592
826 => 0.05745556216996
827 => 0.057333764456411
828 => 0.057367503255445
829 => 0.057779583611702
830 => 0.0578949436127
831 => 0.057406155182266
901 => 0.057636670631711
902 => 0.058618176158682
903 => 0.058961647544721
904 => 0.060057843333337
905 => 0.059592159879006
906 => 0.060446942013738
907 => 0.063074250879199
908 => 0.065173126996874
909 => 0.063242913779336
910 => 0.067097232479184
911 => 0.070098372456196
912 => 0.069983183705218
913 => 0.069459865532608
914 => 0.066043147458214
915 => 0.062899032545761
916 => 0.065529218176199
917 => 0.065535923060274
918 => 0.065309987782023
919 => 0.063906723173085
920 => 0.065261157215384
921 => 0.06536866727108
922 => 0.065308490229122
923 => 0.064232610543577
924 => 0.062589941119553
925 => 0.062910914793012
926 => 0.063436676217824
927 => 0.062441300155332
928 => 0.062123217191403
929 => 0.062714593939106
930 => 0.064620133038445
1001 => 0.064259901909751
1002 => 0.064250494819173
1003 => 0.065791716349496
1004 => 0.064688534350208
1005 => 0.062914963298934
1006 => 0.062467113217959
1007 => 0.060877547138462
1008 => 0.061975466091411
1009 => 0.06201497823994
1010 => 0.06141365924987
1011 => 0.06296375702092
1012 => 0.062949472597071
1013 => 0.064421059729078
1014 => 0.067234181622588
1015 => 0.066402203053356
1016 => 0.06543470249635
1017 => 0.065539896632777
1018 => 0.06669361666813
1019 => 0.065996051197889
1020 => 0.066246900604587
1021 => 0.066693236977509
1022 => 0.066962522793202
1023 => 0.065501150547972
1024 => 0.065160434772094
1025 => 0.064463449869635
1026 => 0.064281619518423
1027 => 0.064849299178409
1028 => 0.064699735644421
1029 => 0.062011657396855
1030 => 0.061730738263658
1031 => 0.061739353652413
1101 => 0.061032969135013
1102 => 0.059955563194269
1103 => 0.062786921677979
1104 => 0.062559523966901
1105 => 0.062308494493055
1106 => 0.062339244171247
1107 => 0.063568240925383
1108 => 0.06285536074216
1109 => 0.064750669548022
1110 => 0.064361051035735
1111 => 0.063961440278772
1112 => 0.063906201899719
1113 => 0.063752385851476
1114 => 0.06322489338962
1115 => 0.062587914544547
1116 => 0.062167325936867
1117 => 0.057346072024345
1118 => 0.058240868706565
1119 => 0.059270250726176
1120 => 0.059625589274356
1121 => 0.059017758099015
1122 => 0.063248894269197
1123 => 0.064021963619732
1124 => 0.061680286130896
1125 => 0.061242253882796
1126 => 0.063277611590459
1127 => 0.062050042080378
1128 => 0.062602816555602
1129 => 0.06140802049164
1130 => 0.063835753851302
1201 => 0.063817258590667
1202 => 0.062872815480914
1203 => 0.06367105233001
1204 => 0.063532339033835
1205 => 0.062466065088984
1206 => 0.063869556637232
1207 => 0.06387025275153
1208 => 0.062961246792356
1209 => 0.061899726839033
1210 => 0.061709952143361
1211 => 0.061566982402815
1212 => 0.062567654763632
1213 => 0.06346485447332
1214 => 0.065134320698377
1215 => 0.065554064172896
1216 => 0.067192350897847
1217 => 0.066216830919871
1218 => 0.066649266291009
1219 => 0.067118736058098
1220 => 0.067343817128619
1221 => 0.066977059602721
1222 => 0.069521993232289
1223 => 0.069736863605376
1224 => 0.069808907782851
1225 => 0.068950770481868
1226 => 0.069712997254677
1227 => 0.069356376589977
1228 => 0.070284204487452
1229 => 0.070429699748877
1230 => 0.070306470438594
1231 => 0.070352652931057
]
'min_raw' => 0.031548453385887
'max_raw' => 0.070429699748877
'avg_raw' => 0.050989076567382
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.031548'
'max' => '$0.070429'
'avg' => '$0.050989'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0048647075007538
'max_diff' => -0.0067208569029703
'year' => 2031
]
6 => [
'items' => [
101 => 0.068181001035277
102 => 0.068068389428104
103 => 0.066532922173751
104 => 0.067158636429501
105 => 0.065988893619642
106 => 0.066359831114334
107 => 0.066523336827572
108 => 0.066437930721844
109 => 0.067194013374707
110 => 0.066551188662293
111 => 0.064854668556063
112 => 0.063157686234066
113 => 0.063136382003345
114 => 0.062689596512189
115 => 0.062366652434927
116 => 0.062428862921265
117 => 0.062648100789358
118 => 0.062353909931481
119 => 0.062416690466864
120 => 0.063459265658743
121 => 0.063668346678169
122 => 0.062957807680934
123 => 0.060104891076747
124 => 0.059404778186081
125 => 0.05990800544805
126 => 0.059667495228815
127 => 0.04815632550672
128 => 0.050860704085333
129 => 0.04925385416594
130 => 0.049994364536406
131 => 0.048354186860476
201 => 0.049136965616507
202 => 0.048992414962771
203 => 0.0533409756888
204 => 0.053273078894313
205 => 0.053305577496815
206 => 0.051754334524707
207 => 0.054225506700112
208 => 0.055442894974195
209 => 0.055217588804402
210 => 0.055274293513308
211 => 0.054299918742614
212 => 0.053315011574473
213 => 0.052222597948879
214 => 0.054252167438829
215 => 0.054026513957453
216 => 0.054544081856169
217 => 0.055860402747025
218 => 0.05605423599842
219 => 0.056314749853958
220 => 0.056221374181387
221 => 0.058445961529805
222 => 0.058176549323612
223 => 0.058825755225356
224 => 0.057490289430098
225 => 0.055979083119186
226 => 0.056266314033834
227 => 0.056238651386988
228 => 0.055886474142934
229 => 0.05556854427391
301 => 0.055039280618171
302 => 0.056713949141212
303 => 0.056645960657481
304 => 0.057746615181129
305 => 0.057552063802887
306 => 0.056252802084185
307 => 0.056299205470647
308 => 0.056611290545309
309 => 0.057691420552037
310 => 0.058012076678893
311 => 0.057863535984996
312 => 0.058215120789585
313 => 0.058492999083865
314 => 0.058250018025057
315 => 0.061690117416072
316 => 0.06026154830603
317 => 0.060957822950344
318 => 0.061123880350325
319 => 0.060698527812086
320 => 0.060790771546897
321 => 0.060930495670224
322 => 0.061778873186274
323 => 0.064005261268402
324 => 0.06499131339444
325 => 0.067957899866581
326 => 0.064909435491881
327 => 0.064728552231686
328 => 0.065262924037647
329 => 0.067004624341863
330 => 0.06841610884884
331 => 0.068884379690298
401 => 0.068946269412306
402 => 0.06982477664094
403 => 0.070328320601203
404 => 0.06971810275635
405 => 0.069201007025308
406 => 0.067348834301003
407 => 0.06756322833714
408 => 0.06904019064179
409 => 0.071126486889753
410 => 0.072916746112634
411 => 0.072289859729614
412 => 0.077072560319239
413 => 0.07754674554712
414 => 0.077481228480871
415 => 0.078561492998208
416 => 0.076417387923337
417 => 0.075500741463751
418 => 0.069312808991645
419 => 0.071051365613822
420 => 0.073578459766005
421 => 0.073243989378847
422 => 0.071408746056111
423 => 0.072915353916004
424 => 0.072417222241539
425 => 0.072024325122387
426 => 0.073824262992077
427 => 0.071845157366981
428 => 0.073558716673458
429 => 0.0713610591384
430 => 0.072292723293807
501 => 0.071763865659673
502 => 0.072106101363312
503 => 0.070105398432865
504 => 0.071184929169816
505 => 0.07006048640504
506 => 0.070059953272763
507 => 0.070035131136408
508 => 0.071358033062624
509 => 0.071401172846944
510 => 0.070423546324677
511 => 0.070282655069421
512 => 0.070803603884196
513 => 0.070193709258806
514 => 0.070479075115395
515 => 0.070202352699895
516 => 0.0701400566555
517 => 0.069643671174964
518 => 0.069429814661545
519 => 0.06951367331086
520 => 0.069227420508652
521 => 0.069054942841105
522 => 0.070000820987133
523 => 0.069495476450326
524 => 0.069923369689206
525 => 0.06943573133907
526 => 0.067745364363583
527 => 0.066773216440673
528 => 0.063580269921079
529 => 0.064485785593198
530 => 0.065086143420637
531 => 0.064887725162249
601 => 0.065314004358938
602 => 0.065340174439518
603 => 0.065201586727273
604 => 0.065041119910678
605 => 0.064963013538731
606 => 0.065545154443873
607 => 0.065883106833269
608 => 0.065146397360372
609 => 0.064973796638533
610 => 0.065718650590477
611 => 0.066173011070874
612 => 0.06952775357503
613 => 0.069279223414647
614 => 0.069902985345628
615 => 0.069832759324607
616 => 0.070486561201344
617 => 0.07155525095252
618 => 0.069382305878025
619 => 0.06975945400817
620 => 0.069666985996281
621 => 0.070676527503673
622 => 0.070679679182064
623 => 0.070074408618044
624 => 0.070402535610193
625 => 0.070219384124869
626 => 0.070550363613257
627 => 0.069275904142833
628 => 0.070828058208411
629 => 0.071708029544996
630 => 0.071720247947858
701 => 0.072137347377514
702 => 0.072561144554815
703 => 0.073374586331689
704 => 0.072538458105155
705 => 0.071034344821061
706 => 0.071142936941916
707 => 0.070261075873786
708 => 0.070275900117662
709 => 0.070196767142052
710 => 0.070434251158709
711 => 0.069328018529605
712 => 0.069587649116549
713 => 0.069224164774432
714 => 0.069758663864197
715 => 0.069183631199475
716 => 0.069666941405406
717 => 0.069875522068298
718 => 0.070645189204793
719 => 0.069069950737617
720 => 0.065857932868777
721 => 0.06653313796676
722 => 0.065534456590628
723 => 0.065626888354237
724 => 0.065813615227133
725 => 0.065208372338844
726 => 0.065323833608535
727 => 0.065319708519493
728 => 0.065284160730684
729 => 0.065126713679851
730 => 0.064898384306193
731 => 0.065807978254771
801 => 0.065962535991236
802 => 0.066306098693745
803 => 0.067328308255603
804 => 0.067226165415012
805 => 0.067392764625882
806 => 0.067029079483968
807 => 0.065643758664896
808 => 0.065718988250351
809 => 0.064780874114253
810 => 0.066282109006116
811 => 0.065926596768391
812 => 0.065697395715985
813 => 0.065634856085304
814 => 0.066659599506948
815 => 0.06696621879959
816 => 0.066775154232871
817 => 0.066383275232287
818 => 0.067135798762034
819 => 0.067337142312176
820 => 0.067382215707788
821 => 0.068715543120426
822 => 0.067456733898735
823 => 0.067759741789883
824 => 0.070123722859208
825 => 0.067979918236419
826 => 0.069115539357659
827 => 0.069059956613261
828 => 0.069640901951564
829 => 0.069012302138996
830 => 0.069020094387043
831 => 0.06953593449081
901 => 0.068811530097323
902 => 0.068632157382173
903 => 0.068384355260886
904 => 0.068925422127057
905 => 0.069249767242977
906 => 0.071863750672056
907 => 0.073552503179368
908 => 0.073479189979258
909 => 0.074149135391706
910 => 0.073847318847401
911 => 0.07287267361066
912 => 0.074536274184452
913 => 0.0740098413549
914 => 0.074053239837753
915 => 0.074051624544053
916 => 0.074401656354149
917 => 0.074153626736752
918 => 0.073664734901144
919 => 0.073989284117247
920 => 0.074953079260605
921 => 0.077944728958432
922 => 0.079618895763423
923 => 0.077843942014626
924 => 0.079068281342969
925 => 0.078334114022672
926 => 0.078200693980988
927 => 0.078969669557153
928 => 0.079739991123268
929 => 0.079690924969698
930 => 0.079131711069149
1001 => 0.078815825326256
1002 => 0.081207818000929
1003 => 0.082970197457097
1004 => 0.082850014993328
1005 => 0.083380461302973
1006 => 0.084937868074176
1007 => 0.085080257831278
1008 => 0.085062319994674
1009 => 0.084709392124863
1010 => 0.086242861345938
1011 => 0.087522108348983
1012 => 0.084627699520068
1013 => 0.085729852511525
1014 => 0.086224644498542
1015 => 0.086951145933649
1016 => 0.088176875630455
1017 => 0.08950834318993
1018 => 0.089696627301639
1019 => 0.089563030714157
1020 => 0.088684892066914
1021 => 0.090141799758204
1022 => 0.090995222115072
1023 => 0.091503415598363
1024 => 0.092792109716658
1025 => 0.086227700165406
1026 => 0.081581084812706
1027 => 0.080855448727443
1028 => 0.082331058241056
1029 => 0.08272016470203
1030 => 0.082563316375509
1031 => 0.07733312834426
1101 => 0.080827912869871
1102 => 0.084588007169599
1103 => 0.084732447705118
1104 => 0.086614829531426
1105 => 0.08722781021551
1106 => 0.088743374315114
1107 => 0.08864857536804
1108 => 0.089017591108402
1109 => 0.088932760780155
1110 => 0.091740024134998
1111 => 0.094836852498033
1112 => 0.094729619179132
1113 => 0.094284413461936
1114 => 0.094945619870828
1115 => 0.098141878617776
1116 => 0.097847618331359
1117 => 0.098133467134581
1118 => 0.10190203633048
1119 => 0.10680171235787
1120 => 0.10452532092372
1121 => 0.10946443532184
1122 => 0.11257334602425
1123 => 0.11794988561671
1124 => 0.11727671637971
1125 => 0.11936976378819
1126 => 0.11607160295084
1127 => 0.10849835900001
1128 => 0.10729986415558
1129 => 0.10969928118486
1130 => 0.11559801381964
1201 => 0.10951350910238
1202 => 0.11074439648221
1203 => 0.11038990083401
1204 => 0.11037101126743
1205 => 0.11109194919448
1206 => 0.1100461911297
1207 => 0.10578558464551
1208 => 0.1077381954893
1209 => 0.10698419867044
1210 => 0.10782081435516
1211 => 0.112335684159
1212 => 0.11033955259767
1213 => 0.10823679015036
1214 => 0.11087412089963
1215 => 0.1142323492286
1216 => 0.11402219733509
1217 => 0.11361441482501
1218 => 0.11591306348358
1219 => 0.11970975762667
1220 => 0.12073598879719
1221 => 0.1214935316669
1222 => 0.12159798402985
1223 => 0.12267390828492
1224 => 0.11688839239755
1225 => 0.12607015469339
1226 => 0.12765559140082
1227 => 0.12735759500945
1228 => 0.12911974118438
1229 => 0.12860127307838
1230 => 0.12785009413794
1231 => 0.13064347064444
]
'min_raw' => 0.04815632550672
'max_raw' => 0.13064347064444
'avg_raw' => 0.089399898075582
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.048156'
'max' => '$0.130643'
'avg' => '$0.089399'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.016607872120834
'max_diff' => 0.060213770895567
'year' => 2032
]
7 => [
'items' => [
101 => 0.1274410898936
102 => 0.12289571358629
103 => 0.12040203024676
104 => 0.12368591362796
105 => 0.12569126661712
106 => 0.12701667737855
107 => 0.12741774587412
108 => 0.11733750552664
109 => 0.1119048150551
110 => 0.11538710736143
111 => 0.11963574431013
112 => 0.11686479100478
113 => 0.11697340712824
114 => 0.11302275590853
115 => 0.11998528928126
116 => 0.11897090673298
117 => 0.12423352518789
118 => 0.12297755905847
119 => 0.12726902011478
120 => 0.12613893459613
121 => 0.1308298564018
122 => 0.13270119211173
123 => 0.13584345601883
124 => 0.13815491814021
125 => 0.13951225290911
126 => 0.13943076362082
127 => 0.1448092001967
128 => 0.14163772405617
129 => 0.13765360256412
130 => 0.13758154237607
131 => 0.13964497535224
201 => 0.1439693647951
202 => 0.14509061606032
203 => 0.14571724255367
204 => 0.14475754226608
205 => 0.14131513221728
206 => 0.13982871701162
207 => 0.14109518583243
208 => 0.13954640329348
209 => 0.14222003646734
210 => 0.14589150587228
211 => 0.14513336195872
212 => 0.14766772339445
213 => 0.15029052085784
214 => 0.15404123902768
215 => 0.15502181564597
216 => 0.15664267150801
217 => 0.15831106461347
218 => 0.15884690751449
219 => 0.15986999787482
220 => 0.15986460568361
221 => 0.16294775734638
222 => 0.16634856910768
223 => 0.1676322968186
224 => 0.1705841579047
225 => 0.16552919924031
226 => 0.16936344345443
227 => 0.17282202771292
228 => 0.16869856097925
301 => 0.17438179922709
302 => 0.17460246648976
303 => 0.17793428016781
304 => 0.17455684870684
305 => 0.17255134068645
306 => 0.1783411671959
307 => 0.18114268186599
308 => 0.18029884284788
309 => 0.17387718625455
310 => 0.17013950667943
311 => 0.16035727828678
312 => 0.17194475037869
313 => 0.17758867002346
314 => 0.17386256986614
315 => 0.17574179805119
316 => 0.18599425768704
317 => 0.18989773051876
318 => 0.1890858354571
319 => 0.18922303235759
320 => 0.19132927544455
321 => 0.20066951722137
322 => 0.19507262784359
323 => 0.19935124006146
324 => 0.20162060055413
325 => 0.20372850905256
326 => 0.19855215199174
327 => 0.1918177875114
328 => 0.18968473159109
329 => 0.1734920826389
330 => 0.17264918493983
331 => 0.17217604091893
401 => 0.16919293479469
402 => 0.16684903052257
403 => 0.1649850708218
404 => 0.16009348394148
405 => 0.16174425091955
406 => 0.15394808238585
407 => 0.15893579473446
408 => 0.14649292150961
409 => 0.15685571607324
410 => 0.15121571813071
411 => 0.15500282506186
412 => 0.15498961220254
413 => 0.14801634763895
414 => 0.14399431416698
415 => 0.1465573104352
416 => 0.14930504588563
417 => 0.14975085671797
418 => 0.15331336745269
419 => 0.15430758762283
420 => 0.15129505409159
421 => 0.14623507061895
422 => 0.14741038937371
423 => 0.14397049636993
424 => 0.13794221619438
425 => 0.14227183226013
426 => 0.14375015354476
427 => 0.14440306444216
428 => 0.13847494324216
429 => 0.13661219885535
430 => 0.13562048937375
501 => 0.14546982461419
502 => 0.14600939343228
503 => 0.14324888307159
504 => 0.15572665166421
505 => 0.15290254833796
506 => 0.1560577636755
507 => 0.14730374151582
508 => 0.14763815695118
509 => 0.14349386257136
510 => 0.14581439050221
511 => 0.14417431615479
512 => 0.1456269147773
513 => 0.14649759640234
514 => 0.15064121074423
515 => 0.15690302949305
516 => 0.15002229293891
517 => 0.14702425748832
518 => 0.14888422182028
519 => 0.15383755193952
520 => 0.16134210062647
521 => 0.15689925676068
522 => 0.15887091542393
523 => 0.15930163512887
524 => 0.15602564654525
525 => 0.16146289099837
526 => 0.16437675447289
527 => 0.16736577545866
528 => 0.16996105863014
529 => 0.16617189474697
530 => 0.17022684325727
531 => 0.16695927055273
601 => 0.16402792004131
602 => 0.16403236569002
603 => 0.16219348669401
604 => 0.15863042692556
605 => 0.15797334403712
606 => 0.16139157220323
607 => 0.16413266748505
608 => 0.16435843722142
609 => 0.16587604841199
610 => 0.16677415508193
611 => 0.17557682136418
612 => 0.17911732656237
613 => 0.18344658930039
614 => 0.18513308112073
615 => 0.19020881685916
616 => 0.18610974801927
617 => 0.18522288869141
618 => 0.17291081405048
619 => 0.1749269155832
620 => 0.17815488866194
621 => 0.17296404213761
622 => 0.17625643948913
623 => 0.17690642846883
624 => 0.17278765915902
625 => 0.1749876718089
626 => 0.1691450904691
627 => 0.15703038180032
628 => 0.16147637813229
629 => 0.16475012793881
630 => 0.16007808331447
701 => 0.16845254247049
702 => 0.16356035631547
703 => 0.16200976817068
704 => 0.15596037099325
705 => 0.15881545359835
706 => 0.16267699370258
707 => 0.16029101087039
708 => 0.16524228350432
709 => 0.17225460601014
710 => 0.17725200461882
711 => 0.17763564283104
712 => 0.17442265032537
713 => 0.17957149132076
714 => 0.17960899500629
715 => 0.17380108132986
716 => 0.17024376654165
717 => 0.16943553713711
718 => 0.17145465265235
719 => 0.17390623163714
720 => 0.17777168840258
721 => 0.18010750296958
722 => 0.18619806853999
723 => 0.18784600095314
724 => 0.18965657905331
725 => 0.19207606975674
726 => 0.19498128869089
727 => 0.18862483505717
728 => 0.18887738880995
729 => 0.18295834719733
730 => 0.17663300235781
731 => 0.18143315062564
801 => 0.18770870594886
802 => 0.18626908662384
803 => 0.18610710004102
804 => 0.18637951654199
805 => 0.1852940905845
806 => 0.18038474920652
807 => 0.1779193087006
808 => 0.18110035595419
809 => 0.18279094099735
810 => 0.18541289096478
811 => 0.18508968028864
812 => 0.19184354182787
813 => 0.19446788819584
814 => 0.1937964680928
815 => 0.19392002555039
816 => 0.19867127929448
817 => 0.20395565062777
818 => 0.20890516171561
819 => 0.21394001698061
820 => 0.20787030244491
821 => 0.20478847573163
822 => 0.2079681342395
823 => 0.20628096267829
824 => 0.2159759509166
825 => 0.2166472108673
826 => 0.22634149804761
827 => 0.23554253095596
828 => 0.22976352703985
829 => 0.23521286744069
830 => 0.24110677337544
831 => 0.25247707417535
901 => 0.24864795687795
902 => 0.24571491303805
903 => 0.24294320078172
904 => 0.24871069399022
905 => 0.25613048186501
906 => 0.25772863310739
907 => 0.26031824866082
908 => 0.25759558454951
909 => 0.26087473357996
910 => 0.27245157058854
911 => 0.26932340703726
912 => 0.26488091191705
913 => 0.27401971288407
914 => 0.27732700942785
915 => 0.30053934861674
916 => 0.3298458856966
917 => 0.31771278690844
918 => 0.31018138095798
919 => 0.31195144000367
920 => 0.32265319525635
921 => 0.32609025938678
922 => 0.31674713425322
923 => 0.32004728400186
924 => 0.3382314335804
925 => 0.34798664641192
926 => 0.33473775708684
927 => 0.29818459689751
928 => 0.26448091383786
929 => 0.27342064828191
930 => 0.27240715982821
1001 => 0.29194376003149
1002 => 0.26924880137111
1003 => 0.26963092627049
1004 => 0.28957152267635
1005 => 0.28425171342363
1006 => 0.27563430374392
1007 => 0.26454383046512
1008 => 0.24404206486464
1009 => 0.22588307933827
1010 => 0.2614970317201
1011 => 0.25996129333362
1012 => 0.25773731656633
1013 => 0.26268653620252
1014 => 0.28671854189535
1015 => 0.28616452638012
1016 => 0.28264016233342
1017 => 0.28531336140052
1018 => 0.27516567902273
1019 => 0.27778096782992
1020 => 0.26447557500227
1021 => 0.27049016824266
1022 => 0.27561581465303
1023 => 0.2766448640564
1024 => 0.27896336490677
1025 => 0.25915202898844
1026 => 0.26804673718551
1027 => 0.27327154492983
1028 => 0.24966567346084
1029 => 0.27280493274955
1030 => 0.25880715770635
1031 => 0.25405610261716
1101 => 0.26045277239084
1102 => 0.25795998395907
1103 => 0.25581683084689
1104 => 0.25462091458624
1105 => 0.25931792289335
1106 => 0.25909880184169
1107 => 0.25141358460123
1108 => 0.24138853200057
1109 => 0.24475326871449
1110 => 0.24353082832175
1111 => 0.23910054664051
1112 => 0.24208602157941
1113 => 0.22893950086277
1114 => 0.20632159526648
1115 => 0.22126367650858
1116 => 0.22068842263461
1117 => 0.22039835354567
1118 => 0.23162691463032
1119 => 0.23054754756901
1120 => 0.22858848578354
1121 => 0.23906456693451
1122 => 0.23524065639123
1123 => 0.24702504765898
1124 => 0.25478700991456
1125 => 0.25281832521337
1126 => 0.26011848823156
1127 => 0.24483078545256
1128 => 0.24990874707957
1129 => 0.25095530793314
1130 => 0.23893529371926
1201 => 0.230724145369
1202 => 0.23017655538798
1203 => 0.21593955571456
1204 => 0.22354484602305
1205 => 0.23023718676623
1206 => 0.22703207489687
1207 => 0.22601743222902
1208 => 0.23120102156991
1209 => 0.23160383085613
1210 => 0.22241973644234
1211 => 0.22432940049342
1212 => 0.23229301704162
1213 => 0.22412873778894
1214 => 0.20826687682842
1215 => 0.20433291600283
1216 => 0.20380805311141
1217 => 0.19313883934603
1218 => 0.20459580207616
1219 => 0.19959453081695
1220 => 0.21539348680037
1221 => 0.20636920787414
1222 => 0.20598018924623
1223 => 0.20539213053351
1224 => 0.19620869750598
1225 => 0.1982192857014
1226 => 0.20490278708418
1227 => 0.20728753567259
1228 => 0.20703878685715
1229 => 0.20487003428123
1230 => 0.20586287810468
1231 => 0.20266458221964
]
'min_raw' => 0.1119048150551
'max_raw' => 0.34798664641192
'avg_raw' => 0.22994573073351
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.1119048'
'max' => '$0.347986'
'avg' => '$0.229945'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.06374848954838
'max_diff' => 0.21734317576747
'year' => 2033
]
8 => [
'items' => [
101 => 0.20153519737587
102 => 0.19797054814713
103 => 0.19273149854037
104 => 0.19346002052115
105 => 0.18308009237826
106 => 0.17742455662153
107 => 0.17585917886283
108 => 0.17376589030226
109 => 0.17609562137577
110 => 0.183050687346
111 => 0.17466140218635
112 => 0.16027856122007
113 => 0.16114299446931
114 => 0.16308511932782
115 => 0.15946598250242
116 => 0.15604077322832
117 => 0.15901871479614
118 => 0.15292451547308
119 => 0.16382157420063
120 => 0.1635268393007
121 => 0.16758858892474
122 => 0.17012848432015
123 => 0.16427484773464
124 => 0.1628026739633
125 => 0.16364129105002
126 => 0.14978081864915
127 => 0.16645589262531
128 => 0.1666000993575
129 => 0.16536531376602
130 => 0.17424427587317
131 => 0.19298165533699
201 => 0.18593189947336
202 => 0.18320202092296
203 => 0.17801251980313
204 => 0.18492722192322
205 => 0.18439628068656
206 => 0.18199516306087
207 => 0.1805429596289
208 => 0.18321868897928
209 => 0.18021140715141
210 => 0.17967121670054
211 => 0.17639825030131
212 => 0.17522995020727
213 => 0.17436498732901
214 => 0.17341274818954
215 => 0.175513150448
216 => 0.1707533625994
217 => 0.16501352506175
218 => 0.16453631967639
219 => 0.16585392570168
220 => 0.16527098311972
221 => 0.16453352877158
222 => 0.16312552758725
223 => 0.16270780371304
224 => 0.1640652036534
225 => 0.16253277826207
226 => 0.16479395540251
227 => 0.16417904033695
228 => 0.16074417476692
301 => 0.15646306051656
302 => 0.15642494961979
303 => 0.15550259057699
304 => 0.15432782765836
305 => 0.15400103548934
306 => 0.15876792086345
307 => 0.168635230927
308 => 0.16669804185681
309 => 0.16809785949114
310 => 0.17498357680164
311 => 0.1771723392739
312 => 0.17561880751477
313 => 0.1734922374252
314 => 0.17358579571662
315 => 0.1808529294692
316 => 0.18130617168731
317 => 0.18245136855097
318 => 0.18392327015337
319 => 0.17586947872234
320 => 0.17320646286448
321 => 0.17194457821253
322 => 0.16805846189535
323 => 0.172249305173
324 => 0.16980748026492
325 => 0.17013696586963
326 => 0.16992238793732
327 => 0.17003956199806
328 => 0.16381852825063
329 => 0.16608514598029
330 => 0.162316454387
331 => 0.15727059939907
401 => 0.15725368392384
402 => 0.15848864978368
403 => 0.15775404376603
404 => 0.15577723786098
405 => 0.15605803380953
406 => 0.15359796583284
407 => 0.15635673060287
408 => 0.15643584210514
409 => 0.15537356739774
410 => 0.15962382516216
411 => 0.16136515923612
412 => 0.16066594726758
413 => 0.16131610066045
414 => 0.16677854080856
415 => 0.16766915689567
416 => 0.16806470973077
417 => 0.16753472133245
418 => 0.16141594403881
419 => 0.16168733783084
420 => 0.15969603025758
421 => 0.15801358519701
422 => 0.15808087417617
423 => 0.15894586963985
424 => 0.16272335556108
425 => 0.17067285198733
426 => 0.1709745295657
427 => 0.17134017159124
428 => 0.16985292171641
429 => 0.1694043529231
430 => 0.16999613094691
501 => 0.17298154383994
502 => 0.18066083633253
503 => 0.17794646148295
504 => 0.17573963247848
505 => 0.17767561647222
506 => 0.17737758691113
507 => 0.17486191748915
508 => 0.17479131102718
509 => 0.16996293709824
510 => 0.16817799719346
511 => 0.1666863678086
512 => 0.1650575474603
513 => 0.16409192815927
514 => 0.16557555827177
515 => 0.16591488203229
516 => 0.1626708988619
517 => 0.1622287559427
518 => 0.16487786262589
519 => 0.16371208954327
520 => 0.16491111606852
521 => 0.16518930050744
522 => 0.16514450640565
523 => 0.16392730541921
524 => 0.16470311303051
525 => 0.1628680967504
526 => 0.16087279215632
527 => 0.15959991213716
528 => 0.15848915549742
529 => 0.1591054678387
530 => 0.1569084268762
531 => 0.1562055492546
601 => 0.16444028686802
602 => 0.1705233760814
603 => 0.17043492555507
604 => 0.16989650572366
605 => 0.16909652306867
606 => 0.17292302012595
607 => 0.17158994506441
608 => 0.17255986855383
609 => 0.17280675478944
610 => 0.17355400506728
611 => 0.17382108281327
612 => 0.17301378836746
613 => 0.17030440960459
614 => 0.16355289532753
615 => 0.16041004720619
616 => 0.15937285497788
617 => 0.15941055494547
618 => 0.15837062153924
619 => 0.15867692853392
620 => 0.1582641004668
621 => 0.1574823039815
622 => 0.15905719410878
623 => 0.15923868552483
624 => 0.15887108735059
625 => 0.15895767002787
626 => 0.15591411414838
627 => 0.15614550909164
628 => 0.15485707264332
629 => 0.15461550634159
630 => 0.15135845119721
701 => 0.14558810589125
702 => 0.14878543733172
703 => 0.14492351056447
704 => 0.14346094037997
705 => 0.15038452015706
706 => 0.14968958477765
707 => 0.14850015748925
708 => 0.14674074663133
709 => 0.14608816402969
710 => 0.14212327872462
711 => 0.14188901214895
712 => 0.14385411636705
713 => 0.14294728838551
714 => 0.1416737584568
715 => 0.1370611621507
716 => 0.13187507672448
717 => 0.13203161204493
718 => 0.13368120932846
719 => 0.13847763590882
720 => 0.13660358906485
721 => 0.13524394657734
722 => 0.13498932641013
723 => 0.13817643088616
724 => 0.14268685143878
725 => 0.14480303984709
726 => 0.14270596140405
727 => 0.14029695060341
728 => 0.14044357592856
729 => 0.14141900852751
730 => 0.14152151270178
731 => 0.13995349432087
801 => 0.14039488231038
802 => 0.13972437359296
803 => 0.1356094628318
804 => 0.13553503714465
805 => 0.13452517168196
806 => 0.1344945933571
807 => 0.13277656028232
808 => 0.13253619557896
809 => 0.12912493663183
810 => 0.13137023760107
811 => 0.1298642075945
812 => 0.12759426513802
813 => 0.12720292620293
814 => 0.12719116208199
815 => 0.12952188543494
816 => 0.13134300174168
817 => 0.12989040563125
818 => 0.1295596776543
819 => 0.1330909871932
820 => 0.13264159586578
821 => 0.13225242587449
822 => 0.14228299274902
823 => 0.13434301637293
824 => 0.13088073347495
825 => 0.12659550091901
826 => 0.12799079424725
827 => 0.12828480305263
828 => 0.11797959122682
829 => 0.11379876807252
830 => 0.11236406711696
831 => 0.11153837643334
901 => 0.11191465404624
902 => 0.10815142284573
903 => 0.11068037645057
904 => 0.10742173632894
905 => 0.10687541470802
906 => 0.11270226691354
907 => 0.11351303935796
908 => 0.1100540322228
909 => 0.11227527476596
910 => 0.11146982134223
911 => 0.10747759636096
912 => 0.10732512273149
913 => 0.10532196456939
914 => 0.10218740993354
915 => 0.10075483435363
916 => 0.10000873655342
917 => 0.10031659104694
918 => 0.10016093039451
919 => 0.099145139344497
920 => 0.10021915434846
921 => 0.09747548982698
922 => 0.09638294050732
923 => 0.095889461326582
924 => 0.093454301144333
925 => 0.097329723914939
926 => 0.098093231022038
927 => 0.098858242473997
928 => 0.1055171448678
929 => 0.10518448492207
930 => 0.10819156881952
1001 => 0.10807471906894
1002 => 0.10721705002986
1003 => 0.10359868543368
1004 => 0.10504090107057
1005 => 0.10060198551029
1006 => 0.10392792286497
1007 => 0.10241010395076
1008 => 0.10341474676329
1009 => 0.10160830840137
1010 => 0.10260806597687
1011 => 0.098274286881377
1012 => 0.094227464939926
1013 => 0.095856024223263
1014 => 0.097626454412595
1015 => 0.10146519816029
1016 => 0.099178874053111
1017 => 0.10000112265754
1018 => 0.09724672747546
1019 => 0.091563623460746
1020 => 0.091595789212286
1021 => 0.090721567472774
1022 => 0.089966112251371
1023 => 0.099441485879939
1024 => 0.098263073385736
1025 => 0.096385427303038
1026 => 0.098898731199419
1027 => 0.099563288641118
1028 => 0.099582207657226
1029 => 0.10141584930226
1030 => 0.10239446417692
1031 => 0.10256694929013
1101 => 0.10545222403705
1102 => 0.10641933007452
1103 => 0.1104027029729
1104 => 0.102311435542
1105 => 0.10214480121387
1106 => 0.098934098539384
1107 => 0.096897820144023
1108 => 0.099073524263226
1109 => 0.10100090109961
1110 => 0.098993987510232
1111 => 0.099256048056747
1112 => 0.096561930533871
1113 => 0.097524950778288
1114 => 0.098354433545615
1115 => 0.09789644191624
1116 => 0.097210806280021
1117 => 0.10084287817854
1118 => 0.10063794244782
1119 => 0.1040202113007
1120 => 0.10665693173988
1121 => 0.11138240613706
1122 => 0.10645112725905
1123 => 0.10627141185668
1124 => 0.10802815874213
1125 => 0.10641906112573
1126 => 0.10743595527513
1127 => 0.11121856876846
1128 => 0.11129848943101
1129 => 0.10995971536135
1130 => 0.10987825083754
1201 => 0.1101353770422
1202 => 0.1116413732541
1203 => 0.11111513190308
1204 => 0.11172411171729
1205 => 0.11248565029999
1206 => 0.1156356967637
1207 => 0.11639516230167
1208 => 0.11455005478214
1209 => 0.11471664733236
1210 => 0.11402652647072
1211 => 0.11335987836557
1212 => 0.11485840594982
1213 => 0.11759699456367
1214 => 0.11757995794603
1215 => 0.11821525727389
1216 => 0.11861104349204
1217 => 0.11691203931052
1218 => 0.11580605006246
1219 => 0.11623015671609
1220 => 0.11690831249108
1221 => 0.11601023993821
1222 => 0.11046692011422
1223 => 0.11214840924018
1224 => 0.111868527229
1225 => 0.11146994121027
1226 => 0.11316069152899
1227 => 0.11299761453614
1228 => 0.10811282547048
1229 => 0.1084255338178
1230 => 0.1081318423008
1231 => 0.10908081967586
]
'min_raw' => 0.089966112251371
'max_raw' => 0.20153519737587
'avg_raw' => 0.14575065481362
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.089966'
'max' => '$0.201535'
'avg' => '$0.14575'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.021938702803729
'max_diff' => -0.14645144903605
'year' => 2034
]
9 => [
'items' => [
101 => 0.10636781323319
102 => 0.10720231574258
103 => 0.10772570789349
104 => 0.10803398989127
105 => 0.10914771585818
106 => 0.10901703297054
107 => 0.1091395924264
108 => 0.11079095402257
109 => 0.11914297429715
110 => 0.11959755633301
111 => 0.11735902813291
112 => 0.11825327599583
113 => 0.11653651564952
114 => 0.11768898837129
115 => 0.11847748093789
116 => 0.11491443464783
117 => 0.11470345417051
118 => 0.11297960814357
119 => 0.11390590535481
120 => 0.11243209988859
121 => 0.11279372019848
122 => 0.11178259828655
123 => 0.11360241641566
124 => 0.11563725585514
125 => 0.1161513366558
126 => 0.11479901139497
127 => 0.11381983878355
128 => 0.1121007342374
129 => 0.11495964341038
130 => 0.11579567557624
131 => 0.11495525208933
201 => 0.11476050760379
202 => 0.1143914671556
203 => 0.11483880127944
204 => 0.11579112236552
205 => 0.11534202532794
206 => 0.11563866183333
207 => 0.114508189365
208 => 0.1169126017516
209 => 0.12073138727487
210 => 0.12074366529476
211 => 0.12029456583638
212 => 0.12011080401399
213 => 0.12057160731193
214 => 0.12082157419792
215 => 0.12231172756657
216 => 0.12391072150147
217 => 0.13137252849992
218 => 0.12927728295366
219 => 0.13589784202758
220 => 0.14113384468304
221 => 0.14270389293677
222 => 0.14125952241982
223 => 0.13631840890469
224 => 0.13607597430281
225 => 0.14346008397873
226 => 0.14137373478163
227 => 0.14112557018335
228 => 0.13848551813829
301 => 0.14004611587372
302 => 0.1397047902564
303 => 0.13916599107122
304 => 0.14214350283826
305 => 0.14771713906184
306 => 0.14684843558716
307 => 0.14619998874131
308 => 0.14335868342284
309 => 0.14506978385308
310 => 0.14446049376384
311 => 0.14707839065225
312 => 0.14552760652907
313 => 0.14135792863448
314 => 0.14202196358264
315 => 0.14192159603607
316 => 0.14398715303216
317 => 0.14336712409221
318 => 0.14180052543444
319 => 0.14769808897915
320 => 0.14731513400653
321 => 0.14785807660202
322 => 0.1480970967236
323 => 0.15168683972655
324 => 0.15315744257589
325 => 0.15349129516921
326 => 0.15488825413558
327 => 0.15345653755753
328 => 0.15918442466636
329 => 0.16299313536225
330 => 0.16741714882998
331 => 0.17388182156906
401 => 0.17631259832053
402 => 0.17587350025741
403 => 0.1807749413479
404 => 0.18958272203458
405 => 0.17765380455828
406 => 0.19021498362649
407 => 0.18623825935928
408 => 0.17680951765994
409 => 0.17620241785207
410 => 0.1825876712008
411 => 0.19674954857044
412 => 0.19320215891203
413 => 0.1967553508291
414 => 0.19261036371894
415 => 0.19240453017222
416 => 0.19655403805695
417 => 0.20624958940751
418 => 0.20164359639317
419 => 0.19503977597128
420 => 0.19991593420398
421 => 0.19569175467568
422 => 0.18617349592501
423 => 0.19319944629001
424 => 0.18850139336848
425 => 0.18987253497321
426 => 0.19974714343164
427 => 0.19855900441695
428 => 0.20009656632067
429 => 0.19738280980561
430 => 0.19484773330041
501 => 0.19011582474621
502 => 0.18871493990358
503 => 0.18910209407553
504 => 0.1887147480492
505 => 0.18606728870161
506 => 0.18549557010757
507 => 0.18454268073659
508 => 0.18483802099742
509 => 0.18304631020236
510 => 0.18642763865897
511 => 0.18705524301668
512 => 0.189515891888
513 => 0.18977136461671
514 => 0.1966242366982
515 => 0.19284978991355
516 => 0.19538201468675
517 => 0.19515550866881
518 => 0.17701386708301
519 => 0.17951362522848
520 => 0.1834024644355
521 => 0.18165054764393
522 => 0.17917374718605
523 => 0.17717359801867
524 => 0.17414316750434
525 => 0.178408440259
526 => 0.18401682037018
527 => 0.18991360239156
528 => 0.19699819961779
529 => 0.1954169999907
530 => 0.18978116077436
531 => 0.19003398040462
601 => 0.19159681187805
602 => 0.18957280312175
603 => 0.18897588342618
604 => 0.1915148042782
605 => 0.19153228843074
606 => 0.189203421747
607 => 0.18661531260612
608 => 0.18660446833432
609 => 0.18614393931087
610 => 0.19269229080914
611 => 0.19629322202017
612 => 0.19670606298033
613 => 0.19626543453421
614 => 0.1964350149352
615 => 0.19433971240461
616 => 0.19912895264688
617 => 0.20352403309997
618 => 0.20234605765134
619 => 0.20058010499478
620 => 0.19917343864402
621 => 0.20201469176361
622 => 0.20188817523474
623 => 0.2034856459064
624 => 0.20341317540929
625 => 0.20287600610632
626 => 0.20234607683535
627 => 0.20444718649427
628 => 0.20384210065529
629 => 0.20323607495087
630 => 0.20202059762277
701 => 0.2021858011786
702 => 0.20042015343866
703 => 0.19960328400362
704 => 0.18731952764443
705 => 0.18403690656194
706 => 0.18506968597841
707 => 0.18540970377841
708 => 0.18398110287652
709 => 0.18602934959238
710 => 0.18571013251134
711 => 0.1869520194379
712 => 0.18617614240265
713 => 0.18620798466681
714 => 0.18848967359307
715 => 0.18915205759536
716 => 0.1888151637457
717 => 0.18905111264996
718 => 0.19448845556074
719 => 0.19371543927527
720 => 0.1933047897804
721 => 0.1934185424969
722 => 0.19480790018856
723 => 0.1951968444861
724 => 0.19354886016677
725 => 0.19432605909865
726 => 0.19763527350936
727 => 0.1987933112678
728 => 0.20248921190306
729 => 0.20091912762381
730 => 0.20380108527004
731 => 0.21265924054279
801 => 0.21973574791238
802 => 0.21322789928627
803 => 0.22622300388274
804 => 0.23634155684814
805 => 0.235953189932
806 => 0.23418878617613
807 => 0.22266908264068
808 => 0.21206847969825
809 => 0.22093633418497
810 => 0.22095894016974
811 => 0.22019718360482
812 => 0.21546597900298
813 => 0.22003254794016
814 => 0.22039502559905
815 => 0.22019213450066
816 => 0.21656473102533
817 => 0.21102635637471
818 => 0.21210854152445
819 => 0.21388118287569
820 => 0.21052520298606
821 => 0.20945276406533
822 => 0.21144663205882
823 => 0.21787129017273
824 => 0.21665674577181
825 => 0.21662502910914
826 => 0.22182136510328
827 => 0.21810190997097
828 => 0.21212219134482
829 => 0.21061223352892
830 => 0.20525290051194
831 => 0.20895461091606
901 => 0.20908782888347
902 => 0.2070604399257
903 => 0.21228670278517
904 => 0.21223854185285
905 => 0.21720010061134
906 => 0.22668473748121
907 => 0.22387966364816
908 => 0.22061766797148
909 => 0.22097233734687
910 => 0.22486218499622
911 => 0.22251029431084
912 => 0.22335605059926
913 => 0.22486090484278
914 => 0.22576882077133
915 => 0.22084170221678
916 => 0.21969295519039
917 => 0.21734302192982
918 => 0.21672996820572
919 => 0.21864393981349
920 => 0.21813967591646
921 => 0.20907663242916
922 => 0.20812949395844
923 => 0.20815854134313
924 => 0.20577691662453
925 => 0.20214436727323
926 => 0.21169049008019
927 => 0.21092380282089
928 => 0.2100774394235
929 => 0.2101811141104
930 => 0.21432476247278
1001 => 0.21192123716334
1002 => 0.21831140312854
1003 => 0.21699777711207
1004 => 0.21565046154504
1005 => 0.21546422149344
1006 => 0.21494561994769
1007 => 0.2131671422842
1008 => 0.21101952363559
1009 => 0.20960147978024
1010 => 0.19334628560497
1011 => 0.19636315509179
1012 => 0.19983378844006
1013 => 0.20103183716419
1014 => 0.19898249191911
1015 => 0.21324806292538
1016 => 0.21585452021469
1017 => 0.20795939107037
1018 => 0.20648253476347
1019 => 0.21334488537899
1020 => 0.20920604906959
1021 => 0.21106976680629
1022 => 0.20704142845864
1023 => 0.21522670097967
1024 => 0.21516434291714
1025 => 0.2119800870337
1026 => 0.21467139830154
1027 => 0.21420371673884
1028 => 0.2106086996889
1029 => 0.21534066943247
1030 => 0.21534301643043
1031 => 0.2122782393743
1101 => 0.20869925073872
1102 => 0.20805941210261
1103 => 0.20757737964054
1104 => 0.21095121636974
1105 => 0.21397618783144
1106 => 0.21960490976763
1107 => 0.22102010419752
1108 => 0.22654370227222
1109 => 0.22325466855785
1110 => 0.22471265460331
1111 => 0.22629550470038
1112 => 0.2270543812443
1113 => 0.22581783263955
1114 => 0.23439825405323
1115 => 0.23512270451786
1116 => 0.23536560649218
1117 => 0.23247233666868
1118 => 0.23504223745018
1119 => 0.23383986598069
1120 => 0.2369681025159
1121 => 0.23745864994795
1122 => 0.23704317372473
1123 => 0.23719888122243
1124 => 0.22987700523592
1125 => 0.22949732734004
1126 => 0.22432039228909
1127 => 0.22643003158832
1128 => 0.22248616203605
1129 => 0.22373680369743
1130 => 0.22428807462522
1201 => 0.22400012197689
1202 => 0.22654930742903
1203 => 0.22438197903053
1204 => 0.21866204304513
1205 => 0.21294054866699
1206 => 0.2128687199657
1207 => 0.2113623514887
1208 => 0.21027352298498
1209 => 0.21048326998306
1210 => 0.21122244576204
1211 => 0.21023056074496
1212 => 0.2104422297032
1213 => 0.2139573447529
1214 => 0.21466227600746
1215 => 0.21226664417003
1216 => 0.20264783665474
1217 => 0.20028735716354
1218 => 0.20198402301147
1219 => 0.20117312601543
1220 => 0.16236241361319
1221 => 0.17148041480466
1222 => 0.16606280811475
1223 => 0.16855949052956
1224 => 0.16302951698161
1225 => 0.16566871020944
1226 => 0.16518134758817
1227 => 0.17984282368278
1228 => 0.17961390489977
1229 => 0.17972347620709
1230 => 0.1744933522223
1231 => 0.18282508174341
]
'min_raw' => 0.10636781323319
'max_raw' => 0.23745864994795
'avg_raw' => 0.17191323159057
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.106367'
'max' => '$0.237458'
'avg' => '$0.171913'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.016401700981823
'max_diff' => 0.035923452572083
'year' => 2035
]
10 => [
'items' => [
101 => 0.18692959130481
102 => 0.18616995582298
103 => 0.18636113970805
104 => 0.18307596713999
105 => 0.17975528385858
106 => 0.17607213505
107 => 0.18291497028538
108 => 0.1821541638183
109 => 0.18389918012426
110 => 0.18833724791037
111 => 0.18899077025045
112 => 0.1898691109029
113 => 0.18955428830354
114 => 0.19705463986446
115 => 0.19614629780152
116 => 0.19833514082536
117 => 0.1938325246574
118 => 0.18873738707111
119 => 0.18970580615367
120 => 0.18961253960848
121 => 0.18842514944192
122 => 0.18735322669136
123 => 0.18556877732402
124 => 0.19121503917108
125 => 0.19098581125137
126 => 0.1946967448231
127 => 0.19404080126821
128 => 0.18966024967205
129 => 0.18981670192929
130 => 0.1908689185476
131 => 0.19451065227755
201 => 0.19559176679674
202 => 0.19509095147649
203 => 0.19627634419203
204 => 0.19721323026203
205 => 0.19639400265787
206 => 0.20799253793474
207 => 0.20317601744073
208 => 0.20552355601638
209 => 0.20608343013417
210 => 0.20464932435433
211 => 0.2049603305465
212 => 0.20543142018352
213 => 0.20829178421071
214 => 0.21579820707105
215 => 0.21912275065795
216 => 0.22912480406923
217 => 0.21884669359294
218 => 0.21823683305233
219 => 0.22003850490478
220 => 0.22591076908207
221 => 0.23066968764405
222 => 0.23224849547965
223 => 0.2324571609984
224 => 0.23541910945516
225 => 0.2371168430735
226 => 0.23505945100553
227 => 0.23331602664585
228 => 0.22707129699128
229 => 0.22779414145263
301 => 0.23277382298098
302 => 0.23980791644154
303 => 0.24584390040339
304 => 0.24373030919523
305 => 0.25985551815064
306 => 0.26145426675299
307 => 0.26123337138988
308 => 0.26487555863174
309 => 0.25764655867518
310 => 0.25455602113847
311 => 0.23369297478112
312 => 0.23955463981493
313 => 0.2480749141851
314 => 0.24694722392282
315 => 0.24075957292762
316 => 0.24583920651525
317 => 0.24415972079635
318 => 0.24283504072793
319 => 0.24890365692324
320 => 0.24223096413148
321 => 0.24800834897016
322 => 0.24059879315516
323 => 0.24373996390183
324 => 0.24195688346469
325 => 0.24311075503364
326 => 0.23636524541902
327 => 0.24000495866908
328 => 0.23621382138155
329 => 0.23621202388885
330 => 0.23612833432311
331 => 0.24058859052941
401 => 0.24073403932417
402 => 0.23743790324864
403 => 0.23696287854483
404 => 0.23871929384533
405 => 0.23666299153434
406 => 0.23762512244344
407 => 0.23669213349944
408 => 0.23648209803639
409 => 0.23480849973224
410 => 0.23408746756626
411 => 0.23437020285725
412 => 0.23340508154907
413 => 0.23282356105093
414 => 0.23601265525937
415 => 0.2343088508715
416 => 0.23575152280093
417 => 0.23410741605763
418 => 0.22840822578212
419 => 0.22513056118683
420 => 0.21436531907161
421 => 0.21741832838124
422 => 0.2194424767121
423 => 0.21877349570082
424 => 0.22021072577432
425 => 0.22029896002814
426 => 0.21983170188042
427 => 0.21929067680483
428 => 0.2190273357186
429 => 0.22099006442406
430 => 0.22212949449999
501 => 0.21964562707671
502 => 0.21906369169243
503 => 0.22157501879545
504 => 0.22310692687755
505 => 0.23441767545095
506 => 0.2335797386634
507 => 0.23568279556337
508 => 0.23544602363047
509 => 0.23765036230488
510 => 0.2412535244145
511 => 0.23392728838567
512 => 0.23519886963809
513 => 0.2348871072801
514 => 0.23829084695621
515 => 0.23830147305995
516 => 0.23626076109471
517 => 0.23736706415783
518 => 0.23674955613784
519 => 0.23786547659119
520 => 0.23356854750673
521 => 0.23880174330677
522 => 0.2417686281057
523 => 0.24180982330401
524 => 0.24321610315205
525 => 0.24464496492389
526 => 0.24738754066731
527 => 0.24456847597494
528 => 0.23949725302379
529 => 0.23986337894091
530 => 0.23689012278013
531 => 0.23694010375336
601 => 0.2366733014012
602 => 0.23747399534397
603 => 0.23374425480024
604 => 0.23461961745096
605 => 0.23339410461384
606 => 0.23519620561252
607 => 0.23325744283591
608 => 0.23488695693885
609 => 0.23559020120643
610 => 0.23818518769356
611 => 0.23287416122184
612 => 0.22204461872112
613 => 0.22432111985028
614 => 0.22095399586495
615 => 0.22126563600933
616 => 0.22189519869816
617 => 0.21985458004358
618 => 0.22024386577559
619 => 0.22022995774988
620 => 0.22011010589805
621 => 0.21957926217356
622 => 0.21880943374883
623 => 0.22187619325228
624 => 0.22239729545165
625 => 0.22355564108994
626 => 0.22700209199614
627 => 0.2266577102777
628 => 0.22721941114873
629 => 0.22599322130108
630 => 0.22132251543957
701 => 0.22157615723929
702 => 0.2184132399324
703 => 0.22347475818319
704 => 0.22227612385263
705 => 0.22150335650214
706 => 0.22129249977092
707 => 0.22474749376229
708 => 0.22578128211491
709 => 0.22513709458851
710 => 0.22381584717793
711 => 0.22635303279799
712 => 0.22703187663465
713 => 0.22718384473488
714 => 0.23167925119653
715 => 0.22743508801835
716 => 0.22845670027869
717 => 0.23642702750181
718 => 0.22919904054041
719 => 0.23302786643721
720 => 0.23284046533381
721 => 0.2347991631022
722 => 0.23267979494669
723 => 0.23270606705502
724 => 0.23444525797968
725 => 0.23200287799074
726 => 0.23139811035821
727 => 0.23056262820529
728 => 0.23238687292067
729 => 0.23348042512405
730 => 0.24229365275769
731 => 0.24798739974102
801 => 0.24774021916829
802 => 0.24999898690045
803 => 0.24898139134917
804 => 0.24569530688594
805 => 0.25130425236936
806 => 0.24952934733016
807 => 0.24967566834508
808 => 0.2496702222696
809 => 0.25085037895578
810 => 0.25001412978385
811 => 0.24836579682676
812 => 0.24946003716815
813 => 0.25270953978401
814 => 0.26279609561055
815 => 0.26844066588017
816 => 0.26245628539279
817 => 0.26658423091894
818 => 0.26410893454063
819 => 0.263659099555
820 => 0.2662517543982
821 => 0.26884894734049
822 => 0.26868351737804
823 => 0.26679808866927
824 => 0.26573305783267
825 => 0.27379782813893
826 => 0.2797398135208
827 => 0.27933460995333
828 => 0.28112304672088
829 => 0.28637395238466
830 => 0.28685402939206
831 => 0.28679355072357
901 => 0.28560362976987
902 => 0.29077382831213
903 => 0.29508689889706
904 => 0.28532819744921
905 => 0.28904418320977
906 => 0.29071240893927
907 => 0.29316185925045
908 => 0.29729449250094
909 => 0.30178362833781
910 => 0.30241844136601
911 => 0.3019680111439
912 => 0.29900730538504
913 => 0.30391937138427
914 => 0.30679674444449
915 => 0.30851015425435
916 => 0.31285507644793
917 => 0.29072271133344
918 => 0.27505632325549
919 => 0.27260979053173
920 => 0.27758491103064
921 => 0.27889681063036
922 => 0.2783679855467
923 => 0.26073404143928
924 => 0.27251695146544
925 => 0.28519437191837
926 => 0.28568136326839
927 => 0.29202794501949
928 => 0.29409465219282
929 => 0.29920448236794
930 => 0.29888486109923
1001 => 0.30012902343172
1002 => 0.29984301205737
1003 => 0.30930789645509
1004 => 0.31974906949471
1005 => 0.31938752487325
1006 => 0.31788648271445
1007 => 0.32011578628599
1008 => 0.33089219580698
1009 => 0.32990007670673
1010 => 0.33086383590412
1011 => 0.3435698300612
1012 => 0.36008942987199
1013 => 0.35241441721918
1014 => 0.36906698625039
1015 => 0.37954889574079
1016 => 0.39767627435476
1017 => 0.39540663727307
1018 => 0.40246349274264
1019 => 0.39134351320929
1020 => 0.36580979248207
1021 => 0.36176898343783
1022 => 0.36985878547398
1023 => 0.38974677438851
1024 => 0.36923244192772
1025 => 0.37338246466661
1026 => 0.37218725783862
1027 => 0.37212357034606
1028 => 0.37455426290138
1029 => 0.37102841657349
1030 => 0.35666348434602
1031 => 0.36324684813279
1101 => 0.36070469521562
1102 => 0.36352540340728
1103 => 0.37874760216908
1104 => 0.37201750524459
1105 => 0.36492789484332
1106 => 0.37381983959701
1107 => 0.38514234087218
1108 => 0.38443379909087
1109 => 0.38305893188764
1110 => 0.39080898632653
1111 => 0.40360980570669
1112 => 0.40706981574729
1113 => 0.40962392442247
1114 => 0.40997609285676
1115 => 0.41360364660138
1116 => 0.39409737585529
1117 => 0.4250543284859
1118 => 0.43039973903665
1119 => 0.42939502339768
1120 => 0.43533622225557
1121 => 0.43358817083791
1122 => 0.43105551859459
1123 => 0.44047358251359
1124 => 0.42967653222902
1125 => 0.41435147866091
1126 => 0.40594385117825
1127 => 0.41701569327138
1128 => 0.42377688088361
1129 => 0.428245595803
1130 => 0.42959782623753
1201 => 0.39561159212608
1202 => 0.37729489690296
1203 => 0.38903568853964
1204 => 0.40336026464254
1205 => 0.39401780211177
1206 => 0.39438400895536
1207 => 0.38106411254244
1208 => 0.40453877991716
1209 => 0.40111871833369
1210 => 0.4188620038787
1211 => 0.41462742638462
1212 => 0.4290963869562
1213 => 0.42528622473003
1214 => 0.44110199510757
1215 => 0.44741133410605
1216 => 0.45800569625472
1217 => 0.46579895217808
1218 => 0.47037530111752
1219 => 0.47010055429265
1220 => 0.48823432871867
1221 => 0.47754147548547
1222 => 0.46410873171256
1223 => 0.46386577575747
1224 => 0.47082278410091
1225 => 0.48540276502673
1226 => 0.4891831419507
1227 => 0.4912958569227
1228 => 0.48806016039895
1229 => 0.476453834578
1230 => 0.47144228193393
1231 => 0.47571226998534
]
'min_raw' => 0.17607213505
'max_raw' => 0.4912958569227
'avg_raw' => 0.33368399598635
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.176072'
'max' => '$0.491295'
'avg' => '$0.333683'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.069704321816807
'max_diff' => 0.25383720697475
'year' => 2036
]
11 => [
'items' => [
101 => 0.47049044152272
102 => 0.47950478243549
103 => 0.49188339786806
104 => 0.48932726273158
105 => 0.49787203925562
106 => 0.50671498402129
107 => 0.5193607921977
108 => 0.52266687472793
109 => 0.52813170343135
110 => 0.53375680726988
111 => 0.53556343902201
112 => 0.53901285960175
113 => 0.53899467945262
114 => 0.54938974054244
115 => 0.56085581483277
116 => 0.56518399243714
117 => 0.57513639818127
118 => 0.55809325211833
119 => 0.57102067418462
120 => 0.58268153248278
121 => 0.56877897649896
122 => 0.58794041104256
123 => 0.58868440612514
124 => 0.59991784856051
125 => 0.5885306025851
126 => 0.58176889227427
127 => 0.60128969658364
128 => 0.61073519888937
129 => 0.60789013672484
130 => 0.5862390731747
131 => 0.57363722553071
201 => 0.54065575953153
202 => 0.57972373070086
203 => 0.5987525998291
204 => 0.58618979300069
205 => 0.59252574203011
206 => 0.62709262549623
207 => 0.64025345668017
208 => 0.63751609579507
209 => 0.63797866472385
210 => 0.64508001034472
211 => 0.67657128761013
212 => 0.65770098431061
213 => 0.67212662412631
214 => 0.67977793146905
215 => 0.68688489214098
216 => 0.66943244290872
217 => 0.64672706288494
218 => 0.63953531592439
219 => 0.58494066944747
220 => 0.58209878100581
221 => 0.58050354290548
222 => 0.57044579233377
223 => 0.56254315543416
224 => 0.55625868516549
225 => 0.53976635847881
226 => 0.54533203459824
227 => 0.51904670807577
228 => 0.53586312849007
301 => 0.49391111267881
302 => 0.52884999805731
303 => 0.50983435122198
304 => 0.52260284664772
305 => 0.52255829857004
306 => 0.49904745023609
307 => 0.48548688357595
308 => 0.49412820443694
309 => 0.50339238634883
310 => 0.50489546869558
311 => 0.51690672236423
312 => 0.52025880508211
313 => 0.51010183795314
314 => 0.49304175039838
315 => 0.49700441963819
316 => 0.48540658021028
317 => 0.46508181271734
318 => 0.47967941556717
319 => 0.48466367899139
320 => 0.48686501366675
321 => 0.46687793915275
322 => 0.46059756639996
323 => 0.4572539486438
324 => 0.49046167006556
325 => 0.49228086400724
326 => 0.48297361059352
327 => 0.52504327857352
328 => 0.51552161703645
329 => 0.52615964583707
330 => 0.49664484893941
331 => 0.49777235392784
401 => 0.48379957608089
402 => 0.49162339801383
403 => 0.48609377284518
404 => 0.49099131051816
405 => 0.49392687440605
406 => 0.50789735945765
407 => 0.5290095185555
408 => 0.50581063486556
409 => 0.49570254902772
410 => 0.50197354863148
411 => 0.51867404695897
412 => 0.54397615680789
413 => 0.52899679852491
414 => 0.5356443833649
415 => 0.53709658492197
416 => 0.52605136069009
417 => 0.54438340998006
418 => 0.55420770412386
419 => 0.56428539706417
420 => 0.5730355754737
421 => 0.5602601448906
422 => 0.57393168690056
423 => 0.56291483739257
424 => 0.55303158448294
425 => 0.55304657329797
426 => 0.54684666437647
427 => 0.53483355960227
428 => 0.53261815876781
429 => 0.54414295368294
430 => 0.55338474780273
501 => 0.55414594623165
502 => 0.55926267831689
503 => 0.56229070765841
504 => 0.59196951161153
505 => 0.60390657207742
506 => 0.61850298365812
507 => 0.62418910857749
508 => 0.64130230599616
509 => 0.62748200921464
510 => 0.62449190107222
511 => 0.58298088181872
512 => 0.58977830889599
513 => 0.60066164550085
514 => 0.58316034403075
515 => 0.59426089156923
516 => 0.59645237479507
517 => 0.58256565650375
518 => 0.58998315275282
519 => 0.57028448184966
520 => 0.52943889575093
521 => 0.54442888279372
522 => 0.5554665588323
523 => 0.53971443418961
524 => 0.56794950792021
525 => 0.55145516073702
526 => 0.54622724454825
527 => 0.52583127960913
528 => 0.53545738994771
529 => 0.54847684201326
530 => 0.54043233431051
531 => 0.55712589568262
601 => 0.58076843059573
602 => 0.59761750891211
603 => 0.5989109719294
604 => 0.58807814337255
605 => 0.60543782026909
606 => 0.60556426656329
607 => 0.58598248010763
608 => 0.57398874493537
609 => 0.5712637430692
610 => 0.57807133199898
611 => 0.58633700170998
612 => 0.59936965907222
613 => 0.60724502096623
614 => 0.62777978801658
615 => 0.6333359072025
616 => 0.63944039767774
617 => 0.6475978795078
618 => 0.6573930279802
619 => 0.6359618007607
620 => 0.63681330337094
621 => 0.61685684131968
622 => 0.59553049957175
623 => 0.6117145345924
624 => 0.63287300750994
625 => 0.62801923044462
626 => 0.6274730813711
627 => 0.62839155262364
628 => 0.62473196322592
629 => 0.60817977601079
630 => 0.59986737121353
701 => 0.61059249412263
702 => 0.61629241962852
703 => 0.6251325070024
704 => 0.62404277964197
705 => 0.64681389536103
706 => 0.65566206236666
707 => 0.6533983226122
708 => 0.65381490520696
709 => 0.66983408892712
710 => 0.68765071582033
711 => 0.70433833801681
712 => 0.72131370406512
713 => 0.70084923773407
714 => 0.69045864380397
715 => 0.70117908445993
716 => 0.69549066774675
717 => 0.72817799747466
718 => 0.73044119726433
719 => 0.76312616332626
720 => 0.79414808817239
721 => 0.77466377299205
722 => 0.79303660461428
723 => 0.81290831997266
724 => 0.8512440829686
725 => 0.83833394665997
726 => 0.82844498457519
727 => 0.81909996318819
728 => 0.83854546921417
729 => 0.86356180206706
730 => 0.86895008056011
731 => 0.87768115019967
801 => 0.86850149805807
802 => 0.87955737795711
803 => 0.91858949220048
804 => 0.90804267038592
805 => 0.89306448792303
806 => 0.92387659343407
807 => 0.93502737463949
808 => 1.0132893968486
809 => 1.1120984327304
810 => 1.0711908430602
811 => 1.0457981820723
812 => 1.0517660597264
813 => 1.0878477747335
814 => 1.0994360764174
815 => 1.0679350777135
816 => 1.0790617630001
817 => 1.1403708928809
818 => 1.1732612740296
819 => 1.1285917186621
820 => 1.0053501870237
821 => 0.89171586647209
822 => 0.92185680530251
823 => 0.91843975822137
824 => 0.9843087698086
825 => 0.90779113217371
826 => 0.90907949295106
827 => 0.97631060594141
828 => 0.95837449762866
829 => 0.92932029924518
830 => 0.89192799427359
831 => 0.82280486016401
901 => 0.76158057264196
902 => 0.88165549958404
903 => 0.87647765039221
904 => 0.86897935744819
905 => 0.88566599699508
906 => 0.96669158204951
907 => 0.96482368005978
908 => 0.95294104061309
909 => 0.96195391790463
910 => 0.92774029827936
911 => 0.93655792708643
912 => 0.89169786621514
913 => 0.91197648725059
914 => 0.92925796198436
915 => 0.93272747389377
916 => 0.94054446138334
917 => 0.8737491591514
918 => 0.9037382888465
919 => 0.92135409294092
920 => 0.8417652491739
921 => 0.91978087739728
922 => 0.87258640154568
923 => 0.85656788760441
924 => 0.8781347063476
925 => 0.86973009610896
926 => 0.86250430576105
927 => 0.85847219059208
928 => 0.87430848203415
929 => 0.87356970010991
930 => 0.84765845361897
1001 => 0.81385828884905
1002 => 0.82520273359842
1003 => 0.82108119046624
1004 => 0.80614418646556
1005 => 0.81620992366128
1006 => 0.77188551120436
1007 => 0.69562766335472
1008 => 0.74600593348524
1009 => 0.74406642488623
1010 => 0.74308843670089
1011 => 0.78094631435087
1012 => 0.77730715294466
1013 => 0.77070203935763
1014 => 0.80602287837474
1015 => 0.79313029700117
1016 => 0.83286219492031
1017 => 0.85903219258789
1018 => 0.85239463466865
1019 => 0.87700764396559
1020 => 0.82546408669289
1021 => 0.8425847888503
1022 => 0.84611334183667
1023 => 0.80558702470398
1024 => 0.77790256475699
1025 => 0.77605632690447
1026 => 0.72805528850997
1027 => 0.75369705576947
1028 => 0.7762607498294
1029 => 0.76545449138809
1030 => 0.76203355279335
1031 => 0.77951038616279
1101 => 0.78086848579455
1102 => 0.74990367026547
1103 => 0.75634223594214
1104 => 0.78319212513636
1105 => 0.75566568762417
1106 => 0.70218631595602
1107 => 0.68892269237216
1108 => 0.68715308048898
1109 => 0.6511810813783
1110 => 0.68980903112251
1111 => 0.67294689589447
1112 => 0.72621417904046
1113 => 0.69578819258564
1114 => 0.69447658912122
1115 => 0.69249390811436
1116 => 0.66153132249522
1117 => 0.66831016097084
1118 => 0.69084405251006
1119 => 0.69888439887371
1120 => 0.69804572487537
1121 => 0.6907336241482
1122 => 0.69408106641708
1123 => 0.68329778854281
1124 => 0.67948998869088
1125 => 0.66747152494033
1126 => 0.64980770341238
1127 => 0.65226396613435
1128 => 0.61726731369716
1129 => 0.59819928003645
1130 => 0.59292149963181
1201 => 0.5858638311011
1202 => 0.59371868207209
1203 => 0.6171681725779
1204 => 0.58888311194096
1205 => 0.54039035944524
1206 => 0.54330485649787
1207 => 0.54985286605317
1208 => 0.53765069356628
1209 => 0.52610236135815
1210 => 0.53614269926731
1211 => 0.51559568076622
1212 => 0.55233587507448
1213 => 0.55134215578165
1214 => 0.5650366282214
1215 => 0.57360006287683
1216 => 0.55386411844094
1217 => 0.54890058178698
1218 => 0.55172803784524
1219 => 0.50499648743844
1220 => 0.56121766356553
1221 => 0.56170386663132
1222 => 0.55754070079965
1223 => 0.58747674145325
1224 => 0.65065112451759
1225 => 0.62688238042512
1226 => 0.61767840429842
1227 => 0.60018163895349
1228 => 0.62349503992047
1229 => 0.62170493447192
1230 => 0.61360939875623
1231 => 0.60871319349576
]
'min_raw' => 0.4572539486438
'max_raw' => 1.1732612740296
'avg_raw' => 0.81525761133669
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.457253'
'max' => '$1.17'
'avg' => '$0.815257'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.2811818135938
'max_diff' => 0.68196541710688
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.014352678955545
]
1 => [
'year' => 2028
'avg' => 0.024633363700187
]
2 => [
'year' => 2029
'avg' => 0.067293909897067
]
3 => [
'year' => 2030
'avg' => 0.05191715126849
]
4 => [
'year' => 2031
'avg' => 0.050989076567382
]
5 => [
'year' => 2032
'avg' => 0.089399898075582
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.014352678955545
'min' => '$0.014352'
'max_raw' => 0.089399898075582
'max' => '$0.089399'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.089399898075582
]
1 => [
'year' => 2033
'avg' => 0.22994573073351
]
2 => [
'year' => 2034
'avg' => 0.14575065481362
]
3 => [
'year' => 2035
'avg' => 0.17191323159057
]
4 => [
'year' => 2036
'avg' => 0.33368399598635
]
5 => [
'year' => 2037
'avg' => 0.81525761133669
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.089399898075582
'min' => '$0.089399'
'max_raw' => 0.81525761133669
'max' => '$0.815257'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.81525761133669
]
]
]
]
'prediction_2025_max_price' => '$0.02454'
'last_price' => 0.02379508
'sma_50day_nextmonth' => '$0.0230055'
'sma_200day_nextmonth' => '—'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'decrease'
'sma_200day_direction_label' => 'diminuer'
'sma_200day_date_nextmonth' => '4 févr. 2026'
'sma_50day_date_nextmonth' => '4 févr. 2026'
'daily_sma3' => '$0.024332'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.024417'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.024537'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.024689'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.02424'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.045153'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '—'
'daily_sma200_action' => '—'
'daily_ema3' => '$0.024197'
'daily_ema3_action' => 'SELL'
'daily_ema5' => '$0.024332'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.024483'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.024632'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.029511'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.049913'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.032651'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '—'
'weekly_sma21_action' => '—'
'weekly_sma50' => '—'
'weekly_sma50_action' => '—'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.02421'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.024814'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.033969'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.0501029'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.021043'
'weekly_ema50_action' => 'BUY'
'weekly_ema100' => '$0.010521'
'weekly_ema100_action' => 'BUY'
'weekly_ema200' => '$0.00526'
'weekly_ema200_action' => 'BUY'
'rsi_14' => '28.82'
'rsi_14_action' => 'BUY'
'stoch_rsi_14' => -43.09
'stoch_rsi_14_action' => 'BUY'
'momentum_10' => -0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.024543'
'vwma_10_action' => 'SELL'
'hma_9' => '0.024339'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 0
'stochastic_fast_14_action' => 'BUY'
'cci_20' => -387.68
'cci_20_action' => 'BUY'
'adx_14' => 22.28
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.000264'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -100
'williams_percent_r_14_action' => 'BUY'
'ultimate_oscillator' => 15.27
'ultimate_oscillator_action' => 'BUY'
'ichimoku_cloud' => '-0.0129018'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 24
'buy_signals' => 5
'sell_pct' => 82.76
'buy_pct' => 17.24
'overall_action' => 'bearish'
'overall_action_label' => 'Baissier'
'overall_action_dir' => -1
'last_updated' => 1767689003
'last_updated_date' => '6 janvier 2026'
]
Prévision du prix de L2 Token pour 2026
La prévision du prix de L2 Token pour 2026 suggère que le prix moyen pourrait varier entre $0.008221 à la baisse et $0.02454 à la hausse. Sur le marché des cryptomonnaies, comparé au prix moyen d'aujourd'hui, L2 Token pourrait potentiellement gagner 3.13% d'ici 2026 si L2T atteint l'objectif de prix prévu.
Prévision du prix de L2 Token de 2027 à 2032
La prévision du prix de L2T pour 2027-2032 se situe actuellement dans une fourchette de prix comprise entre $0.014352 à la baisse et $0.089399 à la hausse. Compte tenu de la volatilité des prix sur le marché, si L2 Token atteint l'objectif de prix le plus élevé, il pourrait gagner 275.71% d'ici 2032 par rapport au prix actuel.
| Prévision du Prix de L2 Token | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2027 | $0.007914 | $0.014352 | $0.020791 |
| 2028 | $0.014283 | $0.024633 | $0.034983 |
| 2029 | $0.031375 | $0.067293 | $0.103212 |
| 2030 | $0.026683 | $0.051917 | $0.07715 |
| 2031 | $0.031548 | $0.050989 | $0.070429 |
| 2032 | $0.048156 | $0.089399 | $0.130643 |
Prévision du prix de L2 Token de 2032 à 2037
La prévision du prix de L2 Token pour 2032-2037 est actuellement estimée entre $0.089399 à la baisse et $0.815257 à la hausse. Par rapport au prix actuel, L2 Token pourrait potentiellement gagner 3326.16% d'ici 2037 s'il atteint l'objectif de prix le plus élevé. Veuillez noter que ces informations sont à titre général seulement et ne doivent pas être considérées comme un conseil en investissement à long terme.
| Prévision du Prix de L2 Token | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2032 | $0.048156 | $0.089399 | $0.130643 |
| 2033 | $0.1119048 | $0.229945 | $0.347986 |
| 2034 | $0.089966 | $0.14575 | $0.201535 |
| 2035 | $0.106367 | $0.171913 | $0.237458 |
| 2036 | $0.176072 | $0.333683 | $0.491295 |
| 2037 | $0.457253 | $0.815257 | $1.17 |
L2 Token Histogramme des prix potentiels
Prévision du prix de L2 Token basée sur l'analyse technique
Au 6 janvier 2026, le sentiment global de prévision du prix pour L2 Token est Baissier, avec 5 indicateurs techniques montrant des signaux haussiers et 24 indiquant des signaux baissiers. La prévision du prix de L2T a été mise à jour pour la dernière fois le 6 janvier 2026.
Moyennes Mobiles Simples sur 50 et 200 jours de L2 Token et Indice de Force Relative sur 14 jours - RSI (14)
Selon nos indicateurs techniques, le SMA sur 200 jours de L2 Token devrait diminuer au cours du prochain mois, atteignant — d'ici le 4 févr. 2026. Le SMA à court terme sur 50 jours pour L2 Token devrait atteindre $0.0230055 d'ici le 4 févr. 2026.
Le Relative Strength Index (RSI), un oscillateur de momentum, est un outil couramment utilisé pour identifier si une cryptomonnaie est survendue (en dessous de 30) ou surachetée (au-dessus de 70). Actuellement, le RSI est à 28.82, ce qui suggère que le marché de L2T est dans un état BUY.
Moyennes Mobiles et Oscillateurs Populaires de L2T pour le Samedi 19 Octobre 2024
Les moyennes mobiles (MA) sont des indicateurs largement utilisés sur les marchés financiers, conçus pour lisser les mouvements de prix sur une période donnée. En tant qu'indicateurs retardés, ils sont basés sur des données historiques de prix. Le tableau ci-dessous met en évidence deux types : la moyenne mobile simple (SMA) et la moyenne mobile exponentielle (EMA).
Moyenne Mobile Simple Quotidienne (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 3 | $0.024332 | SELL |
| SMA 5 | $0.024417 | SELL |
| SMA 10 | $0.024537 | SELL |
| SMA 21 | $0.024689 | SELL |
| SMA 50 | $0.02424 | SELL |
| SMA 100 | $0.045153 | SELL |
| SMA 200 | — | — |
Moyenne Mobile Exponentielle Quotidienne (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 3 | $0.024197 | SELL |
| EMA 5 | $0.024332 | SELL |
| EMA 10 | $0.024483 | SELL |
| EMA 21 | $0.024632 | SELL |
| EMA 50 | $0.029511 | SELL |
| EMA 100 | $0.049913 | SELL |
| EMA 200 | $0.032651 | SELL |
Moyenne Mobile Simple Hebdomadaire (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 21 | — | — |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Moyenne Mobile Exponentielle Hebdomadaire (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 21 | $0.0501029 | SELL |
| EMA 50 | $0.021043 | BUY |
| EMA 100 | $0.010521 | BUY |
| EMA 200 | $0.00526 | BUY |
Oscillateurs de L2 Token
Un oscillateur est un outil d'analyse technique qui établit des limites hautes et basses entre deux extrêmes, créant un indicateur de tendance qui fluctue à l'intérieur de ces limites. Les traders utilisent cet indicateur pour identifier les conditions de surachat ou de survente à court terme.
| Période | Valeur | Action |
|---|---|---|
| RSI (14) | 28.82 | BUY |
| Stoch RSI (14) | -43.09 | BUY |
| Stochastique Rapide (14) | 0 | BUY |
| Indice de Canal des Matières Premières (20) | -387.68 | BUY |
| Indice Directionnel Moyen (14) | 22.28 | NEUTRAL |
| Oscillateur Impressionnant (5, 34) | -0.000264 | NEUTRAL |
| Momentum (10) | -0 | SELL |
| MACD (12, 26) | 0 | NEUTRAL |
| Plage de Pourcentage de Williams (14) | -100 | BUY |
| Oscillateur Ultime (7, 14, 28) | 15.27 | BUY |
| VWMA (10) | 0.024543 | SELL |
| Moyenne Mobile de Hull (9) | 0.024339 | SELL |
| Nuage Ichimoku B/L (9, 26, 52, 26) | -0.0129018 | SELL |
Prévision du cours de L2 Token basée sur les flux monétaires mondiaux
Définitions des flux monétaires mondiaux utilisés pour la prédiction du cours de L2 Token
M0 : le total de toutes les devises physiques, plus les comptes à la banque centrale qui peuvent être échangés contre des devises physiques.
M1 : M0 plus le montant des comptes à vue, y compris les comptes de "chèques" et les comptes "courants".
M2 : M1 plus la plupart des comptes d'épargne, comptes du marché monétaire et comptes de certificats de dépôt (CD) de moins de 100 000 $.
Prédictions du cours de L2 Token par des sociétés Internet ou des niches technologiques
| Comparaison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Action Facebook | $0.033436 | $0.046983 | $0.066019 | $0.092768 | $0.130354 | $0.18317 |
| Action Amazon.com | $0.049649 | $0.103597 | $0.216162 | $0.451034 | $0.941111 | $1.96 |
| Action Apple | $0.033751 | $0.047873 | $0.0679055 | $0.096318 | $0.13662 | $0.193786 |
| Action Netflix | $0.037544 | $0.059239 | $0.093471 | $0.147483 | $0.2327054 | $0.367172 |
| Action Google | $0.030814 | $0.0399046 | $0.051676 | $0.06692 | $0.086661 | $0.112226 |
| Action Tesla | $0.053941 | $0.122281 | $0.2772032 | $0.628398 | $1.42 | $3.22 |
| Action Kodak | $0.017843 | $0.01338 | $0.010034 | $0.007524 | $0.005642 | $0.004231 |
| Action Nokia | $0.015763 | $0.010442 | $0.006917 | $0.004582 | $0.003035 | $0.002011 |
Ce calcul montre la valeur potentielle des cryptomonnaies si l'on suppose que leur capitalisation se comportera comme celle de certaines sociétés Internet ou niches technologiques. En extrapolant les données, vous pourrez obtenir une potentielle image des cours futurs pour 2024, 2025, 2026, 2027, 2028, 2029 et 2030.
Aperçu des prévisions relatives à L2 Token
Vous vous posez peut-être des questions telles que : "Devrais-je investir dans L2 Token maintenant ?", "Devrais-je acheter L2T aujourd'hui ?", " L2 Token sera-t-il un bon ou un mauvais investissement à court ou à long terme ?".
Nous mettons régulièrement à jour les prévisions de L2 Token avec de nouvelles valeurs. Regardez nos prévisions similaires. Nous faisons une prévision des cours futurs pour une grande quantité de devises numériques comme L2 Token en utilisant des méthodes d'analyse technique.
Si vous souhaitez trouver des cryptomonnaies ayant un bon rendement, vous devriez consulter un maximum d'informations disponibles à propos de L2 Token afin de prendre une décision responsable concernant cet investissement.
Le cours de L2 Token est de $0.02379 USD actuellement, mais ce cours peut subir une hausse ou une baisse, ce qui pourrait causer la perte de votre investissement, car les cryptomonnaies sont des actifs à haut risque.
Prévision du cours de L2 Token basée sur le modèle de croissance du Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si L2 Token présente 1 % de la précédente croissance annuelle moyenne du Bitcoin | $0.024413 | $0.025048 | $0.025699 | $0.026367 |
| Si L2 Token présente 2 % de la précédente croissance annuelle moyenne du Bitcoin | $0.025032 | $0.026333 | $0.0277024 | $0.029142 |
| Si L2 Token présente 5 % de la précédente croissance annuelle moyenne du Bitcoin | $0.026887 | $0.030382 | $0.03433 | $0.038792 |
| Si L2 Token présente 10 % de la précédente croissance annuelle moyenne du Bitcoin | $0.02998 | $0.037772 | $0.047591 | $0.059961 |
| Si L2 Token présente 20 % de la précédente croissance annuelle moyenne du Bitcoin | $0.036165 | $0.054966 | $0.083541 | $0.126971 |
| Si L2 Token présente 50 % de la précédente croissance annuelle moyenne du Bitcoin | $0.05472 | $0.125838 | $0.289386 | $0.66549 |
| Si L2 Token présente 100 % de la précédente croissance annuelle moyenne du Bitcoin | $0.085646 | $0.308267 | $1.10 | $3.99 |
Boîte à questions
Est-ce que L2T est un bon investissement ?
La décision d'acquérir L2 Token dépend entièrement de votre tolérance individuelle au risque. Comme vous pouvez le discerner, la valeur de L2 Token a connu une baisse de -2.9308% au cours des 24 heures précédentes, et L2 Token a enregistré une déclin de sur une période de 30 jours précédents. Par conséquent, la détermination de si investir ou non dans L2 Token dépendra de la mesure dans laquelle cet investissement s'aligne avec vos aspirations de trading.
Est-ce que L2 Token peut monter ?
Il semble que la valeur moyenne de L2 Token pourrait potentiellement s'envoler jusqu'à $0.02454 pour la fin de cette année. En regardant les perspectives de L2 Token sur une période de cinq ans plus longue, la monnaie numérique pourrait potentiellement croître jusqu'à $0.07715. Cependant, compte tenu de l'imprévisibilité du marché, il est essentiel de mener des recherches approfondies avant d'investir des fonds dans un projet, un réseau ou un actif particulier.
Quel sera le prix de L2 Token la semaine prochaine ?
Basé sur notre nouveau pronostic expérimental de L2 Token, le prix de L2 Token va augmenter de 0.86% durant la prochaine semaine et atteindre $0.023998 d'ici 13 janvier 2026.
Quel sera le prix de L2 Token le mois prochain ?
Basé sur notre nouveau pronostic expérimental de L2 Token, le prix de L2 Token va diminuer de -11.62% durant le prochain mois et atteindre $0.0210305 d'ici 5 février 2026.
Jusqu'où le prix de L2 Token peut-il monter cette année en 2026 ?
Selon notre prédiction la plus récente sur la valeur de L2 Token en 2026, L2T devrait fluctuer dans la fourchette de $0.008221 et $0.02454. Cependant, il est crucial de garder à l'esprit que le marché des cryptomonnaies est exceptionnellement instable, et cette prévision de prix de L2 Token ne prend pas en compte les fluctuations de prix soudaines et extrêmes.
Où sera L2 Token dans 5 ans ?
L'avenir de L2 Token semble suivre une tendance haussière, avec un prix maximum de $0.07715 prévue après une période de cinq ans. Selon la prévision de L2 Token pour 2030, la valeur de L2 Token pourrait potentiellement atteindre son point le plus élevé d'environ $0.07715, tandis que son point le plus bas devrait être autour de $0.026683.
Combien vaudra L2 Token en 2026 ?
Basé sur notre nouvelle simulation expérimentale de prédiction de prix de L2 Token, il est attendu que la valeur de L2T en 2026 augmente de 3.13% jusqu'à $0.02454 si le meilleur scénario se produit. Le prix sera entre $0.02454 et $0.008221 durant 2026.
Combien vaudra L2 Token en 2027 ?
Selon notre dernière simulation expérimentale pour la prédiction de prix de L2 Token, le valeur de L2T pourrait diminuer de -12.62% jusqu'à $0.020791 en 2027, en supposant les conditions les plus favorables. Il est prévu que le prix fluctue entre $0.020791 et $0.007914 tout au long de l'année.
Combien vaudra L2 Token en 2028 ?
Notre nouveau modèle expérimental de prédiction de prix de L2 Token suggère que la valeur de L2T en 2028 pourrait augmenter de 47.02%, atteignant $0.034983 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.034983 et $0.014283 durant l'année.
Combien vaudra L2 Token en 2029 ?
Basé sur notre modèle de prévision expérimental, la valeur de L2 Token pourrait connaître un 333.75% croissance en 2029, atteignant potentiellement $0.103212 sous des conditions optimales. Le range de prix prévu pour 2029 se situe entre $0.103212 et $0.031375.
Combien vaudra L2 Token en 2030 ?
En utilisant notre nouvelle simulation expérimentale pour les prédictions de prix de L2 Token, il est prévu que la valeur de L2T en 2030 augmente de 224.23%, atteignant $0.07715 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.07715 et $0.026683 au cours de 2030.
Combien vaudra L2 Token en 2031 ?
Notre simulation expérimentale indique que le prix de L2 Token pourrait augmenter de 195.98% en 2031, atteignant potentiellement $0.070429 dans des conditions idéales. Il est probable que le prix fluctue entre $0.070429 et $0.031548 durant l'année.
Combien vaudra L2 Token en 2032 ?
Basé sur les résultats de notre dernière prédiction expérimentale de prix de L2 Token, L2T pourrait connaître une 449.04% hausse en valeur, atteignant $0.130643 si le scénario le plus positif se réalise en 2032. Il est prévu que le prix reste dans une fourchette de $0.130643 et $0.048156 tout au long de l'année.
Combien vaudra L2 Token en 2033 ?
Selon notre prédiction expérimentale de prix de L2 Token, la valeur de L2T est anticipée à augmenter de 1362.43% en 2033, avec le prix potentiel le plus élevé étant $0.347986. Tout au long de l'année, le prix de L2T pourrait osciller entre $0.347986 et $0.1119048.
Combien vaudra L2 Token en 2034 ?
Les résultats de notre nouvelle simulation de prédiction de prix de L2 Token suggèrent que L2T pourrait augmenter de 746.96% en 2034, atteignant potentiellement $0.201535 dans les meilleures circonstances. La fourchette de prix prévue pour l'année est entre $0.201535 et $0.089966.
Combien vaudra L2 Token en 2035 ?
Basé sur notre prédiction expérimentale pour le prix de L2 Token, L2T pourrait augmenter de 897.93%, avec la valeur potentiellement atteignant $0.237458 en 2035. La fourchette de prix attendue pour l'année se situe entre $0.237458 et $0.106367.
Combien vaudra L2 Token en 2036 ?
Notre récente simulation de prédiction de prix de L2 Token suggère que la valeur de L2T pourrait augmenter de 1964.7% en 2036, pouvant atteindre $0.491295 si les conditions sont optimales. La fourchette de prix attendue pour 2036 est entre $0.491295 et $0.176072.
Combien vaudra L2 Token en 2037 ?
Selon la simulation expérimentale, la valeur de L2 Token pourrait augmenter de 4830.69% en 2037, avec un maximum de $1.17 sous des conditions favorables. Il est prévu que le prix chute entre $1.17 et $0.457253 au cours de l'année.
Prévisions liées
Comment lire et prédire les mouvements de prix de L2 Token ?
Les traders de L2 Token utilisent des indicateurs et des modèles graphiques pour prédire la direction du marché. Ils identifient également des niveaux clés de support et de résistance pour évaluer quand une tendance baissière pourrait ralentir ou une tendance haussière pourrait s'arrêter.
Indicateurs de prédiction du prix de L2 Token
Les moyennes mobiles sont des outils populaires pour la prédiction du prix de L2 Token. Une moyenne mobile simple (SMA) calcule le prix de clôture moyen de L2T sur une période spécifique, comme une SMA de 12 jours. Une moyenne mobile exponentielle (EMA) donne plus de poids aux prix récents, réagissant plus rapidement aux changements de prix.
Les moyennes mobiles couramment utilisées sur le marché des cryptomonnaies incluent les moyennes sur 50 jours, 100 jours et 200 jours, qui aident à identifier les niveaux clés de résistance et de support. Un mouvement de prix de L2T au-dessus de ces moyennes est considéré comme haussier, tandis qu'une chute en dessous indique une faiblesse.
Les traders utilisent également le RSI et les niveaux de retracement de Fibonacci pour évaluer la direction future de L2T.
Comment lire les graphiques de L2 Token et prédire les mouvements de prix ?
La plupart des traders préfèrent les graphiques en chandeliers aux simples graphiques linéaires parce qu'ils fournissent des informations plus détaillées. Les chandeliers peuvent représenter l'action des prix de L2 Token dans différentes périodes, comme 5 minutes pour les tendances à court terme et hebdomadaire pour les tendances à long terme. Les options populaires incluent les graphiques de 1 heure, 4 heures et 1 jour.
Par exemple, un graphique en chandeliers de 1 heure montre les prix d'ouverture, de clôture, les plus hauts et les plus bas de L2T au sein de chaque heure. La couleur du chandelier est cruciale : le vert indique que le prix a clôturé plus haut qu'il n'a ouvert, tandis que le rouge signifie le contraire. Certains graphiques utilisent des chandeliers creux et pleins pour transmettre la même information.
Qu'est-ce qui affecte le prix de L2 Token ?
L'action du prix de L2 Token est déterminée par l'offre et la demande, influencée par des facteurs tels que les réductions de récompenses de bloc, les hard forks et les mises à jour de protocole. Les événements du monde réel, tels que les réglementations, l'adoption par les entreprises et les gouvernements et les piratages d'échanges de cryptomonnaies, impactent également le prix de L2T. La capitalisation boursière de L2 Token peut changer rapidement.
Les traders surveillent souvent l'activité des « baleines » de L2T, de grands détenteurs de L2 Token, car leurs actions peuvent influencer significativement les mouvements de prix sur le marché relativement petit de L2 Token.
Modèles de prédiction de prix haussiers et baissiers
Les traders identifient souvent des modèles de chandeliers pour obtenir un avantage dans les prédictions de prix des cryptomonnaies. Certaines formations indiquent des tendances haussières, tandis que d'autres suggèrent des mouvements baissiers.
Modèles de chandeliers haussiers couramment suivis :
- Marteau
- Englobante haussière
- Ligne pénétrante
- Étoile du matin
- Trois soldats blancs
Modèles de chandeliers baissiers courants :
- Harami baissier
- Nuage sombre
- Étoile du soir
- Étoile filante
- Pendu


