Prédiction du prix de Kolytics jusqu'à $0.0212072 d'ici 2026
| Année | Prix min. | Prix max. |
|---|---|---|
| 2026 | $0.0071045 | $0.0212072 |
| 2027 | $0.006839 | $0.017967 |
| 2028 | $0.012343 | $0.030231 |
| 2029 | $0.027114 | $0.089193 |
| 2030 | $0.023059 | $0.066671 |
| 2031 | $0.027263 | $0.060863 |
| 2032 | $0.041615 | $0.112898 |
| 2033 | $0.0967052 | $0.300721 |
| 2034 | $0.077746 | $0.174161 |
| 2035 | $0.09192 | $0.2052056 |
Calculateur de profit d’investissement
Si vous ouvrez une position short de $10,000.00 sur Kolytics aujourd’hui et la fermez le Apr 06, 2026, notre prévision indique que vous pourriez gagner environ $3,954.71, soit un rendement de 39.55% sur les 90 prochains jours.
Prévision du prix à long terme de Kolytics pour 2027, 2028, 2029, 2030, 2031, 2032 et 2037
[
'name' => 'Kolytics'
'name_with_ticker' => 'Kolytics <small>KOLT</small>'
'name_lang' => 'Kolytics'
'name_lang_with_ticker' => 'Kolytics <small>KOLT</small>'
'name_with_lang' => 'Kolytics'
'name_with_lang_with_ticker' => 'Kolytics <small>KOLT</small>'
'image' => '/uploads/coins/kolytics.png?1748037880'
'price_for_sd' => 0.02056
'ticker' => 'KOLT'
'marketcap' => '$164.51K'
'low24h' => '$0.01941'
'high24h' => '$0.02072'
'volume24h' => '$1.18K'
'current_supply' => '8M'
'max_supply' => '10M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.02056'
'change_24h_pct' => '4.6367%'
'ath_price' => '$0.2419'
'ath_days' => 169
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '21 juil. 2025'
'ath_pct' => '-91.50%'
'fdv' => '$205.63K'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$1.01'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.020739'
'next_week_prediction_price_date' => '13 janvier 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.018174'
'next_month_prediction_price_date' => '5 février 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.0071045'
'current_year_max_price_prediction' => '$0.0212072'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.023059'
'grand_prediction_max_price' => '$0.066671'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.020952759928809
107 => 0.021030989928532
108 => 0.021207246112429
109 => 0.019701156318967
110 => 0.020377346419758
111 => 0.020774544753529
112 => 0.018979988231354
113 => 0.020739072141025
114 => 0.01967493864641
115 => 0.019313755755589
116 => 0.019800040935852
117 => 0.019610535128176
118 => 0.01944760916289
119 => 0.019356693674837
120 => 0.019713767841885
121 => 0.019697109905197
122 => 0.019112867262797
123 => 0.018350746552563
124 => 0.018606539278677
125 => 0.01851360738321
126 => 0.018176810205585
127 => 0.018403770838258
128 => 0.017404351074114
129 => 0.015684901315223
130 => 0.016820822494117
131 => 0.016777090764374
201 => 0.016755039243161
202 => 0.017608652614545
203 => 0.017526597385097
204 => 0.017377666340163
205 => 0.018174074970152
206 => 0.017883375106998
207 => 0.018779243587735
208 => 0.019369320510289
209 => 0.01921965791574
210 => 0.019774628113492
211 => 0.018612432226458
212 => 0.018998467080925
213 => 0.019078028329409
214 => 0.018164247411281
215 => 0.017540022635429
216 => 0.017498393959563
217 => 0.016416074221709
218 => 0.016994240689491
219 => 0.017503003254985
220 => 0.017259345467683
221 => 0.017182210691293
222 => 0.01757627553538
223 => 0.017606897748702
224 => 0.016908708039749
225 => 0.017053883789033
226 => 0.017659290797007
227 => 0.017038629085746
228 => 0.015832784765281
301 => 0.015533718701703
302 => 0.015493817775941
303 => 0.01468272689229
304 => 0.015553703726111
305 => 0.01517349899742
306 => 0.016374561179803
307 => 0.015688520902652
308 => 0.015658947077475
309 => 0.015614241903184
310 => 0.014916102473883
311 => 0.015068950639824
312 => 0.015577041222847
313 => 0.01575833366692
314 => 0.015739423379718
315 => 0.015574551301802
316 => 0.01565002889479
317 => 0.015406889269639
318 => 0.015321031607485
319 => 0.015050041208715
320 => 0.014651760185532
321 => 0.014707143604605
322 => 0.01391804468178
323 => 0.013488101707975
324 => 0.013369099159383
325 => 0.013209963977947
326 => 0.013387073901569
327 => 0.013915809263676
328 => 0.01327804223951
329 => 0.012184635410732
330 => 0.012250351024216
331 => 0.012397994496574
401 => 0.012122861862594
402 => 0.011862471914664
403 => 0.012088859848285
404 => 0.011625568960804
405 => 0.012453980986928
406 => 0.012431574763219
407 => 0.012740355537902
408 => 0.01293344249313
409 => 0.012488439573973
410 => 0.01237652254322
411 => 0.012440275570282
412 => 0.011386580044571
413 => 0.012654246133534
414 => 0.012665208962512
415 => 0.012571338565073
416 => 0.013246331622646
417 => 0.01467077750974
418 => 0.014134843668812
419 => 0.013927313886919
420 => 0.013532799619836
421 => 0.014058466456785
422 => 0.014018103445387
423 => 0.01383556660063
424 => 0.013725167747371
425 => 0.013928581019514
426 => 0.013699962591878
427 => 0.01365889644026
428 => 0.01341008024187
429 => 0.013321264179461
430 => 0.013255508302722
501 => 0.013183117543472
502 => 0.013342793519724
503 => 0.012980946750411
504 => 0.012544595018896
505 => 0.012508317093812
506 => 0.012608483634557
507 => 0.012564167396799
508 => 0.012508104924715
509 => 0.0124010663978
510 => 0.012369310353381
511 => 0.012472502091901
512 => 0.012356004635564
513 => 0.012527902978334
514 => 0.01248115614067
515 => 0.012220032105509
516 => 0.011894574877198
517 => 0.011891677625196
518 => 0.011821558399213
519 => 0.011732251022428
520 => 0.011707407753283
521 => 0.012069794087963
522 => 0.01281992295544
523 => 0.012672654709692
524 => 0.012779071109902
525 => 0.013302534474753
526 => 0.013468927737347
527 => 0.013350825740798
528 => 0.013189160443709
529 => 0.013196272896315
530 => 0.013748732155884
531 => 0.013783188362243
601 => 0.013870248079718
602 => 0.013982144419748
603 => 0.013369882171359
604 => 0.013167435399476
605 => 0.013071504887639
606 => 0.01277607604096
607 => 0.013094670723948
608 => 0.012909039245756
609 => 0.012934087274238
610 => 0.012917774712829
611 => 0.012926682474409
612 => 0.012453749428883
613 => 0.012626061374044
614 => 0.012339559344763
615 => 0.011955965288919
616 => 0.011954679347138
617 => 0.012048563448869
618 => 0.011992717511474
619 => 0.011842437529875
620 => 0.01186378409196
621 => 0.011676765746191
622 => 0.011886491505213
623 => 0.011892505689547
624 => 0.011811749848484
625 => 0.012134861316835
626 => 0.012267240349052
627 => 0.012214085124507
628 => 0.012263510836797
629 => 0.012678774370179
630 => 0.012746480445339
701 => 0.012776551011512
702 => 0.012736260436426
703 => 0.012271101091877
704 => 0.012291732886818
705 => 0.012140350464952
706 => 0.012012448270762
707 => 0.012017563687771
708 => 0.012083322041706
709 => 0.012370492630017
710 => 0.012974826203488
711 => 0.012997760220839
712 => 0.013025556918901
713 => 0.012912493778382
714 => 0.012878392853333
715 => 0.012923380775668
716 => 0.013150336691514
717 => 0.013734128924999
718 => 0.013527777759513
719 => 0.013360011049926
720 => 0.013507187683814
721 => 0.013484530994636
722 => 0.013293285737083
723 => 0.013287918119665
724 => 0.012920857325614
725 => 0.012785163307623
726 => 0.012671767229669
727 => 0.012547941672823
728 => 0.012474533732054
729 => 0.012587321692387
730 => 0.012613117633383
731 => 0.012366504786918
801 => 0.012332892367211
802 => 0.012534281741142
803 => 0.012445657786227
804 => 0.012536809721626
805 => 0.012557957752525
806 => 0.012554552432469
807 => 0.012462018845142
808 => 0.012520996994313
809 => 0.012381496089291
810 => 0.012229809807438
811 => 0.012133043410005
812 => 0.012048601894045
813 => 0.012095454954869
814 => 0.011928432348061
815 => 0.011874998454642
816 => 0.012501016524424
817 => 0.012963462803401
818 => 0.012956738651356
819 => 0.012915807105093
820 => 0.012854991130007
821 => 0.013145887624137
822 => 0.013044545102241
823 => 0.013118280254371
824 => 0.013137048945243
825 => 0.013193856119744
826 => 0.013214159801886
827 => 0.013152787972638
828 => 0.012946816617743
829 => 0.012433555584514
830 => 0.012194631188024
831 => 0.012115782157581
901 => 0.012118648170082
902 => 0.012039590750863
903 => 0.012062876703928
904 => 0.01203149284668
905 => 0.011972059413623
906 => 0.012091785107857
907 => 0.012105582378795
908 => 0.012077636971146
909 => 0.012084219126286
910 => 0.011852843086587
911 => 0.011870434104363
912 => 0.011772485082027
913 => 0.011754120821133
914 => 0.011506514222067
915 => 0.011067843240671
916 => 0.011310909547186
917 => 0.01101731962921
918 => 0.010906132678659
919 => 0.011432474409449
920 => 0.011379644298124
921 => 0.011289222112235
922 => 0.01115546885367
923 => 0.011105858469
924 => 0.010804441476484
925 => 0.010786632152569
926 => 0.010936022553003
927 => 0.010867084023413
928 => 0.010770268218805
929 => 0.010419611188576
930 => 0.010025356588046
1001 => 0.01003725665624
1002 => 0.010162661709301
1003 => 0.010527293814251
1004 => 0.010384825742648
1005 => 0.010281463522067
1006 => 0.010262106885209
1007 => 0.01050439572135
1008 => 0.010847285185569
1009 => 0.011008161250462
1010 => 0.010848737956032
1011 => 0.010665601059351
1012 => 0.010676747753677
1013 => 0.010750901717223
1014 => 0.010758694250311
1015 => 0.010639490957349
1016 => 0.010673045986081
1017 => 0.010622072829101
1018 => 0.010309250658807
1019 => 0.010303592697717
1020 => 0.010226821092188
1021 => 0.010224496478483
1022 => 0.010093888825904
1023 => 0.01007561591246
1024 => 0.0098162864909456
1025 => 0.0099869779015081
1026 => 0.009872487065004
1027 => 0.0096999223687344
1028 => 0.009670172150054
1029 => 0.009669277822556
1030 => 0.0098464631808649
1031 => 0.0099849073874339
1101 => 0.0098744786821228
1102 => 0.009849336206494
1103 => 0.01011779206813
1104 => 0.010083628612707
1105 => 0.010054043280642
1106 => 0.010816583194893
1107 => 0.010212973351031
1108 => 0.0099497650062624
1109 => 0.0096239946977017
1110 => 0.0097300671528456
1111 => 0.009752418177673
1112 => 0.0089689993100962
1113 => 0.0086511663730889
1114 => 0.0085420980863896
1115 => 0.0084793277453949
1116 => 0.0085079329780065
1117 => 0.0082218460566147
1118 => 0.0084141011992309
1119 => 0.0081663741076311
1120 => 0.0081248418545507
1121 => 0.008567808581829
1122 => 0.0086294448141557
1123 => 0.0083664854981736
1124 => 0.0085353479482804
1125 => 0.008474116076508
1126 => 0.0081706206775967
1127 => 0.0081590293857193
1128 => 0.0080067460629248
1129 => 0.0077684521506131
1130 => 0.0076595454384073
1201 => 0.0076028258771191
1202 => 0.0076262294735489
1203 => 0.0076143958990321
1204 => 0.0075371738207722
1205 => 0.0076188221781651
1206 => 0.007410244364457
1207 => 0.0073271869984128
1208 => 0.0072896719130868
1209 => 0.0071045470981299
1210 => 0.0073991630041053
1211 => 0.0074572060490558
1212 => 0.0075153634567353
1213 => 0.0080215839848368
1214 => 0.0079962946378172
1215 => 0.0082248980184628
1216 => 0.0082160149114655
1217 => 0.0081508135241762
1218 => 0.00787573959631
1219 => 0.0079853791612362
1220 => 0.0076479256221649
1221 => 0.0079007687582473
1222 => 0.0077853817099211
1223 => 0.0078617562811393
1224 => 0.0077244279156716
1225 => 0.0078004311032706
1226 => 0.0074709702082686
1227 => 0.0071633242601556
1228 => 0.0072871299704214
1229 => 0.0074217209363806
1230 => 0.0077135484437205
1231 => 0.0075397383878735
]
'min_raw' => 0.0071045470981299
'max_raw' => 0.021207246112429
'avg_raw' => 0.014155896605279
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.0071045'
'max' => '$0.0212072'
'avg' => '$0.014155'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.01345855290187
'max_diff' => 0.00064414611242893
'year' => 2026
]
1 => [
'items' => [
101 => 0.0076022470564419
102 => 0.0073928534805624
103 => 0.006960814723205
104 => 0.0069632600156523
105 => 0.0068968002653089
106 => 0.0068393693377297
107 => 0.0075597025636191
108 => 0.0074701177401966
109 => 0.0073273760486447
110 => 0.0075184414751163
111 => 0.0075689622064914
112 => 0.0075704004606899
113 => 0.0077097968637312
114 => 0.0077841927490225
115 => 0.0077973053462553
116 => 0.0080166485982993
117 => 0.008090169563177
118 => 0.0083929920124319
119 => 0.0077778807779306
120 => 0.0077652129668413
121 => 0.007521130157493
122 => 0.0073663289810078
123 => 0.0075317295264851
124 => 0.007678251830352
125 => 0.0075256830139035
126 => 0.0075456052804282
127 => 0.0073407941096763
128 => 0.0074140044659588
129 => 0.0074770630872893
130 => 0.0074422458230051
131 => 0.0073901226931969
201 => 0.0076662386723533
202 => 0.007650659126702
203 => 0.0079077846743714
204 => 0.008108232426004
205 => 0.0084674706312512
206 => 0.0080925868365645
207 => 0.008078924581058
208 => 0.0082124753201288
209 => 0.0080901491172547
210 => 0.0081674550549142
211 => 0.0084550154495491
212 => 0.008461091147556
213 => 0.0083593153778457
214 => 0.0083531223130094
215 => 0.0083726694628872
216 => 0.0084871577302655
217 => 0.0084471520117744
218 => 0.0084934476420332
219 => 0.0085513410365756
220 => 0.0087908126626938
221 => 0.0088485484610235
222 => 0.0087082804036616
223 => 0.0087209450387265
224 => 0.0086684809348289
225 => 0.0086178012678371
226 => 0.0087317217580637
227 => 0.0089399136930656
228 => 0.0089386185418432
301 => 0.0089869150240907
302 => 0.0090170033324212
303 => 0.0088878422870787
304 => 0.0088037631959439
305 => 0.0088360044695766
306 => 0.0088875589682387
307 => 0.0088192860404946
308 => 0.0083978739033612
309 => 0.0085257034258559
310 => 0.0085044263427685
311 => 0.0084741251890703
312 => 0.0086026587624152
313 => 0.0085902613857064
314 => 0.0082189118217325
315 => 0.0082426844159774
316 => 0.0082203575119259
317 => 0.0082925003065713
318 => 0.0080862531695914
319 => 0.0081496933998307
320 => 0.0081894825175216
321 => 0.008212918613516
322 => 0.008297585862529
323 => 0.0082876511380831
324 => 0.0082969683061085
325 => 0.0084225074850698
326 => 0.0090574415724123
327 => 0.0090919996338832
328 => 0.0089218231001831
329 => 0.0089898052688126
330 => 0.0088592943711099
331 => 0.0089469072110847
401 => 0.0090068496910706
402 => 0.0087359811502903
403 => 0.0087199420732276
404 => 0.0085888925106248
405 => 0.0086593111225409
406 => 0.008547270047705
407 => 0.0085747610084393
408 => 0.0084978938856073
409 => 0.0086362394026134
410 => 0.0087909311873462
411 => 0.0088300124411334
412 => 0.0087272064879569
413 => 0.0086527682026147
414 => 0.0085220790950493
415 => 0.0087394179935272
416 => 0.0088029745107251
417 => 0.0087390841581992
418 => 0.0087242793674872
419 => 0.0086962243158396
420 => 0.008730231379319
421 => 0.008802628368283
422 => 0.0087684872852501
423 => 0.0087910380720818
424 => 0.0087050977269497
425 => 0.0088878850447591
426 => 0.009178195295604
427 => 0.009179128690531
428 => 0.0091449874234649
429 => 0.0091310175525653
430 => 0.0091660485644404
501 => 0.0091850514513353
502 => 0.0092983353201506
503 => 0.0094198934248178
504 => 0.0099871520593434
505 => 0.0098278681046907
506 => 0.010331173711609
507 => 0.010729223100628
508 => 0.010848580707804
509 => 0.010738777325411
510 => 0.010363145885707
511 => 0.010344715615231
512 => 0.010906067573652
513 => 0.01074745993385
514 => 0.01072859405978
515 => 0.010527893034082
516 => 0.010646532197575
517 => 0.010620584072188
518 => 0.010579623686838
519 => 0.010805978946308
520 => 0.011229695785162
521 => 0.011163655542236
522 => 0.011114359564409
523 => 0.010898358939418
524 => 0.011028439561149
525 => 0.010982120343281
526 => 0.011181137098144
527 => 0.011063243981324
528 => 0.010746258324983
529 => 0.010796739335554
530 => 0.01078910923236
531 => 0.010946136215419
601 => 0.010899000612754
602 => 0.01077990524944
603 => 0.011228247567071
604 => 0.011199134710775
605 => 0.011240410084877
606 => 0.01125858078104
607 => 0.011531478849105
608 => 0.011643276455826
609 => 0.011668656469845
610 => 0.011774855549493
611 => 0.011666014139998
612 => 0.012101457380589
613 => 0.012391001726764
614 => 0.012727322384662
615 => 0.013218777260322
616 => 0.013403568839783
617 => 0.013370187894958
618 => 0.013742803372787
619 => 0.014412385103668
620 => 0.013505529506844
621 => 0.014460450652317
622 => 0.014158133642755
623 => 0.013441345451534
624 => 0.013395192742397
625 => 0.013880610027574
626 => 0.014957218846414
627 => 0.014687540548091
628 => 0.014957659943501
629 => 0.014642551320519
630 => 0.014626903521444
701 => 0.014942355821018
702 => 0.015679427313383
703 => 0.015329272276072
704 => 0.014827239168549
705 => 0.015197932602644
706 => 0.014876803643974
707 => 0.014153210221753
708 => 0.014687334330179
709 => 0.014330180749853
710 => 0.014434417151921
711 => 0.015185100855179
712 => 0.015094776605941
713 => 0.015211664548256
714 => 0.01500536038956
715 => 0.014812639774157
716 => 0.014452912433888
717 => 0.014346414902778
718 => 0.014375846988997
719 => 0.014346400317698
720 => 0.014145136176882
721 => 0.014101673204835
722 => 0.014029233013935
723 => 0.014051685258158
724 => 0.013915476506139
725 => 0.014172530563363
726 => 0.014220242061536
727 => 0.014407304567854
728 => 0.014426726017816
729 => 0.014947692435244
730 => 0.01466075288701
731 => 0.014853256709134
801 => 0.014836037355367
802 => 0.01345688042513
803 => 0.013646916081712
804 => 0.013942551926879
805 => 0.013809368379356
806 => 0.013621078003309
807 => 0.01346902342916
808 => 0.013238645200945
809 => 0.013562898133135
810 => 0.01398925625851
811 => 0.014437539163474
812 => 0.014976121701128
813 => 0.014855916348515
814 => 0.014427470737563
815 => 0.01444669049469
816 => 0.014565499470558
817 => 0.014411631051876
818 => 0.014366252251338
819 => 0.014559265120203
820 => 0.014560594293752
821 => 0.014383550082439
822 => 0.014186797840313
823 => 0.014185973441235
824 => 0.01415096328015
825 => 0.0146487795504
826 => 0.014922528164136
827 => 0.014953913001533
828 => 0.014920415714518
829 => 0.01493330749083
830 => 0.014774019204137
831 => 0.015138104992045
901 => 0.015472226115382
902 => 0.015382674516871
903 => 0.015248423940193
904 => 0.015141486889485
905 => 0.015357483546232
906 => 0.015347865555118
907 => 0.01546930785885
908 => 0.015463798534468
909 => 0.015422962055399
910 => 0.01538267597527
911 => 0.015542405729249
912 => 0.015496406125285
913 => 0.01545033507123
914 => 0.015357932519197
915 => 0.015370491560662
916 => 0.015236264164239
917 => 0.015174164428826
918 => 0.014240333406314
919 => 0.013990783243289
920 => 0.014069296804639
921 => 0.014095145507639
922 => 0.013986540956883
923 => 0.014142251984447
924 => 0.01411798458574
925 => 0.014212394838155
926 => 0.014153411411262
927 => 0.014155832111676
928 => 0.014329289793574
929 => 0.014379645296571
930 => 0.014354034081328
1001 => 0.014371971298583
1002 => 0.014785326899399
1003 => 0.014726560951331
1004 => 0.014695342712669
1005 => 0.014703990378127
1006 => 0.01480961159658
1007 => 0.014839179771042
1008 => 0.014713897338128
1009 => 0.014772981257739
1010 => 0.015024553088579
1011 => 0.01511258899164
1012 => 0.015393557334581
1013 => 0.015274196988686
1014 => 0.015493288069372
1015 => 0.016166699357747
1016 => 0.016704666891417
1017 => 0.016209929715005
1018 => 0.017197838580839
1019 => 0.017967067340001
1020 => 0.017937543059007
1021 => 0.017803410232265
1022 => 0.016927663740964
1023 => 0.016121788763024
1024 => 0.01679593740133
1025 => 0.016797655944849
1026 => 0.016739745978946
1027 => 0.016380072154273
1028 => 0.016727230109485
1029 => 0.016754786247278
1030 => 0.016739362137882
1031 => 0.016463601059806
1101 => 0.01604256486275
1102 => 0.016124834327836
1103 => 0.0162595933899
1104 => 0.016004466371728
1105 => 0.015922937830731
1106 => 0.016074514899884
1107 => 0.016562927799031
1108 => 0.016470596169631
1109 => 0.016468185017646
1110 => 0.016863218882925
1111 => 0.016580459889029
1112 => 0.016125872009254
1113 => 0.016011082574334
1114 => 0.015603657411794
1115 => 0.015885067422759
1116 => 0.015895194868069
1117 => 0.015741069481004
1118 => 0.016138378434981
1119 => 0.016134717163025
1120 => 0.016511902883192
1121 => 0.017232940315665
1122 => 0.017019694066786
1123 => 0.016771711880465
1124 => 0.016798674419918
1125 => 0.017094386928503
1126 => 0.016915592395353
1127 => 0.016979888156073
1128 => 0.017094289609168
1129 => 0.017163310846249
1130 => 0.016788743326079
1201 => 0.016701413719492
1202 => 0.016522767992941
1203 => 0.016476162657465
1204 => 0.016621665874175
1205 => 0.016583330917276
1206 => 0.015894343695506
1207 => 0.015822340697342
1208 => 0.015824548926499
1209 => 0.015643493964061
1210 => 0.015367341688172
1211 => 0.016093053381012
1212 => 0.016034768575748
1213 => 0.015970426661623
1214 => 0.015978308178973
1215 => 0.016293315028184
1216 => 0.016110595147415
1217 => 0.016596385897639
1218 => 0.0164965219236
1219 => 0.016394096815447
1220 => 0.016379938545555
1221 => 0.016340513617416
1222 => 0.016205310869458
1223 => 0.016042045426872
1224 => 0.015934243439867
1225 => 0.014698497292356
1226 => 0.014927844589329
1227 => 0.015191687748833
1228 => 0.015282765350209
1229 => 0.015126970810678
1230 => 0.016211462587457
1231 => 0.016409609685498
]
'min_raw' => 0.0068393693377297
'max_raw' => 0.017967067340001
'avg_raw' => 0.012403218338865
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.006839'
'max' => '$0.017967'
'avg' => '$0.0124032'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00026517776040021
'max_diff' => -0.0032401787724279
'year' => 2027
]
2 => [
'items' => [
101 => 0.015809409200718
102 => 0.01569713619604
103 => 0.016218823186953
104 => 0.015904182157791
105 => 0.016045864993957
106 => 0.015739624198535
107 => 0.016361881852004
108 => 0.016357141291251
109 => 0.016115069009725
110 => 0.016319666844432
111 => 0.016284112935746
112 => 0.016010813926101
113 => 0.016370545918085
114 => 0.016370724340665
115 => 0.016137735032801
116 => 0.015865654529134
117 => 0.015817012961333
118 => 0.01578036807407
119 => 0.016036852598063
120 => 0.016266815820268
121 => 0.016694720364075
122 => 0.016802305733149
123 => 0.017222218591009
124 => 0.01697218092934
125 => 0.017083019386228
126 => 0.017203350210237
127 => 0.017261041232287
128 => 0.017167036807728
129 => 0.017819334319013
130 => 0.017874408214844
131 => 0.01789287401573
201 => 0.017672922965035
202 => 0.017868290978236
203 => 0.017776884754768
204 => 0.018014698354852
205 => 0.018051990563902
206 => 0.018020405389546
207 => 0.018032242525315
208 => 0.0174756216726
209 => 0.017446757944978
210 => 0.017053198970773
211 => 0.017213577161802
212 => 0.016913757820799
213 => 0.017008833622313
214 => 0.017050742129704
215 => 0.01702885150373
216 => 0.017222644704094
217 => 0.017057880894449
218 => 0.016623042111119
219 => 0.016188084856253
220 => 0.016182624322226
221 => 0.016068107754653
222 => 0.015985333251054
223 => 0.01600127855703
224 => 0.016057471895071
225 => 0.015982067192093
226 => 0.015998158608589
227 => 0.016265383338966
228 => 0.016318973352884
229 => 0.016136853546622
301 => 0.015405616244716
302 => 0.015226168776659
303 => 0.015355152058101
304 => 0.015293506357159
305 => 0.012343053239459
306 => 0.013036218434773
307 => 0.012624363213383
308 => 0.012814165047947
309 => 0.012393767516301
310 => 0.012594403253325
311 => 0.012557353158741
312 => 0.013671942280556
313 => 0.013654539504486
314 => 0.013662869292456
315 => 0.013265266809489
316 => 0.01389865836094
317 => 0.014210689815208
318 => 0.014152941097472
319 => 0.014167475205579
320 => 0.013917731074495
321 => 0.013665287361559
322 => 0.013385288433104
323 => 0.01390549183326
324 => 0.013847654095331
325 => 0.013980313056779
326 => 0.014317702146687
327 => 0.014367383971793
328 => 0.014434156848558
329 => 0.014410223525455
330 => 0.01498041237995
331 => 0.014911358747443
401 => 0.015077758133698
402 => 0.01473546197142
403 => 0.014348121372753
404 => 0.014421742157441
405 => 0.014414651883855
406 => 0.014324384563262
407 => 0.014242895262355
408 => 0.014107238535814
409 => 0.014536476492009
410 => 0.014519050214868
411 => 0.014801161385948
412 => 0.014751295496178
413 => 0.014418278880039
414 => 0.014430172633634
415 => 0.014510163842499
416 => 0.014787014329705
417 => 0.014869202403726
418 => 0.014831129613211
419 => 0.014921245084347
420 => 0.01499246867843
421 => 0.014930189671186
422 => 0.015811929078949
423 => 0.015445769402189
424 => 0.015624233080919
425 => 0.015666795616727
426 => 0.015557772576249
427 => 0.015581415769906
428 => 0.015617228765912
429 => 0.01583467826476
430 => 0.016405328669255
501 => 0.016658065848857
502 => 0.017418438123523
503 => 0.016637079544362
504 => 0.016590716959858
505 => 0.016727682967568
506 => 0.017174101986377
507 => 0.017535882671115
508 => 0.017655906195871
509 => 0.017671769286039
510 => 0.017896941397495
511 => 0.01802600585257
512 => 0.01786959958055
513 => 0.017737061641432
514 => 0.017262327194727
515 => 0.017317278999592
516 => 0.01769584244203
517 => 0.018230585601748
518 => 0.01868945086333
519 => 0.018528772241793
520 => 0.019754636702691
521 => 0.019876176156781
522 => 0.019859383334067
523 => 0.020136268297982
524 => 0.019586708031254
525 => 0.019351760369999
526 => 0.017765717848239
527 => 0.018211331103019
528 => 0.018859056138792
529 => 0.018773327301463
530 => 0.018302932066745
531 => 0.018689094026363
601 => 0.018561416806112
602 => 0.018460712485168
603 => 0.018922058501907
604 => 0.018414789605453
605 => 0.01885399574351
606 => 0.018290709328446
607 => 0.018529506208201
608 => 0.018393953549947
609 => 0.018481672732546
610 => 0.017968868183466
611 => 0.018245565070523
612 => 0.017957356683269
613 => 0.017957220034968
614 => 0.017950857818845
615 => 0.018289933708338
616 => 0.018300990960921
617 => 0.018050413366271
618 => 0.018014301220124
619 => 0.018147826751571
620 => 0.017991503324639
621 => 0.018064646072212
622 => 0.017993718743951
623 => 0.017977751508401
624 => 0.01785052185894
625 => 0.0177957078277
626 => 0.017817201821733
627 => 0.017743831739186
628 => 0.017699623610539
629 => 0.017942063709355
630 => 0.017812537744563
701 => 0.017922211997587
702 => 0.017797224344272
703 => 0.017363962683356
704 => 0.017114789320504
705 => 0.016296398206411
706 => 0.016528492911157
707 => 0.016682371940522
708 => 0.016631514922235
709 => 0.01674077547657
710 => 0.016747483187229
711 => 0.016711961467235
712 => 0.016670831866096
713 => 0.016650812250872
714 => 0.016800022060993
715 => 0.01688664337794
716 => 0.016697815759755
717 => 0.016653576090794
718 => 0.016844491238237
719 => 0.01696094936789
720 => 0.017820810765074
721 => 0.017757109455455
722 => 0.017916987241848
723 => 0.017898987456625
724 => 0.018066564847294
725 => 0.018340483057549
726 => 0.017783530747365
727 => 0.017880198410451
728 => 0.017856497731845
729 => 0.018115255526217
730 => 0.018116063339807
731 => 0.01796092511617
801 => 0.018045028064034
802 => 0.01799808410578
803 => 0.018082918183201
804 => 0.017756258685628
805 => 0.018154094692958
806 => 0.018379642073128
807 => 0.018382773798721
808 => 0.018489681466867
809 => 0.018598305849377
810 => 0.018806800892417
811 => 0.018592491035788
812 => 0.018206968466356
813 => 0.018234801950639
814 => 0.018008770209238
815 => 0.018012569843647
816 => 0.01799228709739
817 => 0.018053157145722
818 => 0.017769616238218
819 => 0.017836162722475
820 => 0.017742997254819
821 => 0.017879995886919
822 => 0.017732608005464
823 => 0.01785648630266
824 => 0.017909948069099
825 => 0.018107223138209
826 => 0.017703470317357
827 => 0.016880190983978
828 => 0.017053254281151
829 => 0.016797280070803
830 => 0.016820971458533
831 => 0.016868831832205
901 => 0.016713700702195
902 => 0.016743294833057
903 => 0.016742237522452
904 => 0.016733126190863
905 => 0.016692770592499
906 => 0.01663424699076
907 => 0.016867387007475
908 => 0.016907002039346
909 => 0.016995061347932
910 => 0.017257066119084
911 => 0.017230885663948
912 => 0.017273587072492
913 => 0.017180370137399
914 => 0.016825295524799
915 => 0.016844577784579
916 => 0.016604127696149
917 => 0.016988912498566
918 => 0.016897790378442
919 => 0.016839043354814
920 => 0.01682301368513
921 => 0.017085667915432
922 => 0.017164258177739
923 => 0.017115286000266
924 => 0.017014842635521
925 => 0.017207723589246
926 => 0.017259330395468
927 => 0.017270883256196
928 => 0.017612631324942
929 => 0.017289983176891
930 => 0.017367647792974
1001 => 0.017973564957307
1002 => 0.01742408170011
1003 => 0.017715155236386
1004 => 0.017700908701459
1005 => 0.017849812073227
1006 => 0.01768869427881
1007 => 0.01769069152697
1008 => 0.017822907633512
1009 => 0.017637233957175
1010 => 0.017591258543779
1011 => 0.017527743839455
1012 => 0.017666425872708
1013 => 0.017749559479594
1014 => 0.018419555296191
1015 => 0.018852403149234
1016 => 0.018833612082378
1017 => 0.019005327258035
1018 => 0.018927967998671
1019 => 0.018678154543842
1020 => 0.019104555649729
1021 => 0.018969624498446
1022 => 0.018980748058617
1023 => 0.018980334039152
1024 => 0.019070051458869
1025 => 0.019006478444519
1026 => 0.018881169507598
1027 => 0.018964355427849
1028 => 0.019211387871484
1029 => 0.019978184156407
1030 => 0.020407293516149
1031 => 0.019952351234145
1101 => 0.020266164328352
1102 => 0.020077988294866
1103 => 0.02004379111183
1104 => 0.020240888925597
1105 => 0.020438331732996
1106 => 0.020425755479733
1107 => 0.020282422140362
1108 => 0.0202014567739
1109 => 0.020814553654138
1110 => 0.021266272991664
1111 => 0.02123546876121
1112 => 0.021371428616364
1113 => 0.021770610956174
1114 => 0.021807107186611
1115 => 0.021802509500432
1116 => 0.021712049785308
1117 => 0.022105096639228
1118 => 0.022432983239771
1119 => 0.021691110974889
1120 => 0.021973606221535
1121 => 0.022100427439182
1122 => 0.022286638612849
1123 => 0.022600808075441
1124 => 0.02294207944115
1125 => 0.022990338954112
1126 => 0.022956096520235
1127 => 0.022731018880683
1128 => 0.023104442081257
1129 => 0.023323184634301
1130 => 0.023453440818804
1201 => 0.023783748830143
1202 => 0.022101210643848
1203 => 0.020910226488014
1204 => 0.020724237114061
1205 => 0.021102453819666
1206 => 0.021202186548712
1207 => 0.021161984410687
1208 => 0.019821423463755
1209 => 0.020717179338111
1210 => 0.021680937341625
1211 => 0.021717959211568
1212 => 0.022200436619357
1213 => 0.02235755104075
1214 => 0.022746008593779
1215 => 0.022721710468072
1216 => 0.022816293700525
1217 => 0.022794550653337
1218 => 0.023514086470935
1219 => 0.024307841329849
1220 => 0.024280356123071
1221 => 0.024166244470821
1222 => 0.02433571973334
1223 => 0.02515495981168
1224 => 0.025079537313321
1225 => 0.025152803846004
1226 => 0.026118734068713
1227 => 0.027374580760208
1228 => 0.026791113887062
1229 => 0.028057069113718
1230 => 0.028853920823495
1231 => 0.030231993459549
]
'min_raw' => 0.012343053239459
'max_raw' => 0.030231993459549
'avg_raw' => 0.021287523349504
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.012343'
'max' => '$0.030231'
'avg' => '$0.021287'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0055036839017293
'max_diff' => 0.012264926119548
'year' => 2028
]
3 => [
'items' => [
101 => 0.030059451978365
102 => 0.030595925542816
103 => 0.02975056671655
104 => 0.027809451976235
105 => 0.027502263138292
106 => 0.028117262971115
107 => 0.029629180049305
108 => 0.028069647321867
109 => 0.028385138761488
110 => 0.028294277205653
111 => 0.028289435579479
112 => 0.028474220758212
113 => 0.028206180218713
114 => 0.02711413484122
115 => 0.027614612802261
116 => 0.027421354226577
117 => 0.02763578902468
118 => 0.0287930051904
119 => 0.028281372338947
120 => 0.027742408691619
121 => 0.028418388710976
122 => 0.029279143567554
123 => 0.029225279075555
124 => 0.029120759447465
125 => 0.029709931118538
126 => 0.030683070108049
127 => 0.030946105666524
128 => 0.031140273138265
129 => 0.031167045552132
130 => 0.031442818053923
131 => 0.029959919808175
201 => 0.032313317407705
202 => 0.032719684161847
203 => 0.032643304054244
204 => 0.033094963598946
205 => 0.032962073903398
206 => 0.032769537584304
207 => 0.033485514033396
208 => 0.032664704810832
209 => 0.031499669456409
210 => 0.030860508019186
211 => 0.031702207359404
212 => 0.032216203775215
213 => 0.032555922709755
214 => 0.032658721454083
215 => 0.030075032977723
216 => 0.028682568186897
217 => 0.029575122153175
218 => 0.030664099592819
219 => 0.029953870483514
220 => 0.029981710119958
221 => 0.028969110055016
222 => 0.030753692229774
223 => 0.030493693617611
224 => 0.031842566877445
225 => 0.031520647448601
226 => 0.032620601229038
227 => 0.032330946535184
228 => 0.033533286974998
301 => 0.034012933128507
302 => 0.034818333671213
303 => 0.035410789588997
304 => 0.035758691035796
305 => 0.035737804337876
306 => 0.037116363193905
307 => 0.036303475199682
308 => 0.035282296295949
309 => 0.035263826391358
310 => 0.035792709415819
311 => 0.036901103143116
312 => 0.037188493510132
313 => 0.037349105518778
314 => 0.037103122636592
315 => 0.036220790979071
316 => 0.035839804642876
317 => 0.036164416039551
318 => 0.035767444195593
319 => 0.036452728968891
320 => 0.037393771331558
321 => 0.037199449804952
322 => 0.037849037534085
323 => 0.038521292495115
324 => 0.039482647282247
325 => 0.039733981022468
326 => 0.040149426137687
327 => 0.040577055627859
328 => 0.040714398695164
329 => 0.040976629225701
330 => 0.040975247141364
331 => 0.041765496495287
401 => 0.042637166004649
402 => 0.042966201065238
403 => 0.043722799043963
404 => 0.042427151519752
405 => 0.043409915050192
406 => 0.044296392354815
407 => 0.043239497567074
408 => 0.044696180807073
409 => 0.044752740516367
410 => 0.045606724975925
411 => 0.044741048122536
412 => 0.044227011970332
413 => 0.045711015081062
414 => 0.046429077440684
415 => 0.046212791214181
416 => 0.044566842351121
417 => 0.043608829514752
418 => 0.041101525135099
419 => 0.044071535480286
420 => 0.045518140883037
421 => 0.044563095992602
422 => 0.045044765083694
423 => 0.047672595462965
424 => 0.048673103131975
425 => 0.048465004530897
426 => 0.048500169768885
427 => 0.049040025546583
428 => 0.051434043368907
429 => 0.049999492396872
430 => 0.051096152863393
501 => 0.051677817620533
502 => 0.052218100263493
503 => 0.050891336850466
504 => 0.049165237144142
505 => 0.048618508910414
506 => 0.044468135600125
507 => 0.044252090645167
508 => 0.044130818065117
509 => 0.043366211602248
510 => 0.042765440365769
511 => 0.042287684773315
512 => 0.041033911428819
513 => 0.041457023127684
514 => 0.039458770099392
515 => 0.040737181573154
516 => 0.037547921490493
517 => 0.040204032056708
518 => 0.038758431834046
519 => 0.03972911350427
520 => 0.039725726887367
521 => 0.037938394177579
522 => 0.036907497971256
523 => 0.037564425157006
524 => 0.038268703247075
525 => 0.038382969997712
526 => 0.039296084925025
527 => 0.039550915673899
528 => 0.038778766607902
529 => 0.037481831164088
530 => 0.037783079687738
531 => 0.036901393179539
601 => 0.035356271487503
602 => 0.03646600486196
603 => 0.036844916627532
604 => 0.037012265649336
605 => 0.035492815923643
606 => 0.035015371830972
607 => 0.034761184602178
608 => 0.037285689284934
609 => 0.037423987350202
610 => 0.036716434894913
611 => 0.039914639085697
612 => 0.039190786978151
613 => 0.039999507130352
614 => 0.037755744541754
615 => 0.037841459294266
616 => 0.036779226126933
617 => 0.037374005722194
618 => 0.036953634674905
619 => 0.037325953408623
620 => 0.037549119722486
621 => 0.038611178587808
622 => 0.040216159062942
623 => 0.038452542409871
624 => 0.037684109378673
625 => 0.038160840909397
626 => 0.039430439798662
627 => 0.041353947105469
628 => 0.040215192065647
629 => 0.040720552215006
630 => 0.040830950925732
701 => 0.03999127511837
702 => 0.041384907150188
703 => 0.042131765877885
704 => 0.042897888391865
705 => 0.043563091104488
706 => 0.042591882212386
707 => 0.043631214944262
708 => 0.042793696229295
709 => 0.042042355360877
710 => 0.042043494834834
711 => 0.041572167732736
712 => 0.040658912081386
713 => 0.040490493727421
714 => 0.041366627273638
715 => 0.042069203407549
716 => 0.04212707094305
717 => 0.042516053190448
718 => 0.042746248877622
719 => 0.045002479547792
720 => 0.045909954187854
721 => 0.047019597000105
722 => 0.047451865411519
723 => 0.048752838353073
724 => 0.047702197042912
725 => 0.047474884186615
726 => 0.044319149375411
727 => 0.044835900773958
728 => 0.045663269622126
729 => 0.044332792382979
730 => 0.045176673957572
731 => 0.045343274056252
801 => 0.044287583275506
802 => 0.044851473335208
803 => 0.04335394851839
804 => 0.040248801011685
805 => 0.041388364067016
806 => 0.042227466048517
807 => 0.041029964060387
808 => 0.043176440024382
809 => 0.041922513078474
810 => 0.04152507843573
811 => 0.039974544198703
812 => 0.040706336673043
813 => 0.041696096472848
814 => 0.041084539988496
815 => 0.042353611519195
816 => 0.044150955255681
817 => 0.04543184943597
818 => 0.045530180586206
819 => 0.044706651441525
820 => 0.046026362151569
821 => 0.046035974803331
822 => 0.044547335731225
823 => 0.043635552588337
824 => 0.043428393539865
825 => 0.043945917458872
826 => 0.044574287036733
827 => 0.045565050724548
828 => 0.046163748470993
829 => 0.047724834668974
830 => 0.048147219834299
831 => 0.04861129307181
901 => 0.049231438032012
902 => 0.049976081058638
903 => 0.048346844508931
904 => 0.048411577114328
905 => 0.046894454597556
906 => 0.045273191611009
907 => 0.046503528124514
908 => 0.048112029451114
909 => 0.047743037469556
910 => 0.047701518333809
911 => 0.047771342003688
912 => 0.047493134099745
913 => 0.046234810061075
914 => 0.045602887606381
915 => 0.046418228793548
916 => 0.046851546347867
917 => 0.047523584085353
918 => 0.047440741249212
919 => 0.049171838289392
920 => 0.049844490253549
921 => 0.049672397096717
922 => 0.049704066379227
923 => 0.050921870630287
924 => 0.052276319418012
925 => 0.053544939442976
926 => 0.054835434220867
927 => 0.053279692397251
928 => 0.052489782644035
929 => 0.053304767878746
930 => 0.052872325241461
1001 => 0.055357268906123
1002 => 0.055529321013959
1003 => 0.05801408498891
1004 => 0.06037242188133
1005 => 0.058891192733195
1006 => 0.06028792510386
1007 => 0.061798605039995
1008 => 0.064712951735786
1009 => 0.063731502296597
1010 => 0.062979727407451
1011 => 0.062269303769758
1012 => 0.06374758258322
1013 => 0.065649364660659
1014 => 0.066058990305097
1015 => 0.066722740338126
1016 => 0.066024888337888
1017 => 0.066865374206298
1018 => 0.069832658649989
1019 => 0.06903087220036
1020 => 0.067892206548282
1021 => 0.070234592635549
1022 => 0.071082293054735
1023 => 0.077031898540743
1024 => 0.084543521232772
1025 => 0.081433660114298
1026 => 0.07950326896347
1027 => 0.079956956673405
1028 => 0.082699946996059
1029 => 0.083580908429534
1030 => 0.081186151567732
1031 => 0.082032020176205
1101 => 0.086692839372862
1102 => 0.089193219334886
1103 => 0.085797367500627
1104 => 0.076428346971343
1105 => 0.067789682164723
1106 => 0.070081045075585
1107 => 0.069821275630762
1108 => 0.074828744408534
1109 => 0.069011749858704
1110 => 0.069109693128409
1111 => 0.074220711057504
1112 => 0.072857179099052
1113 => 0.070648431954337
1114 => 0.067805808463225
1115 => 0.062550956029057
1116 => 0.057896586685712
1117 => 0.067024876805254
1118 => 0.066631248336581
1119 => 0.066061215981472
1120 => 0.067329761303825
1121 => 0.073489457306299
1122 => 0.073347456376452
1123 => 0.072444118910274
1124 => 0.073129292416719
1125 => 0.070528317725892
1126 => 0.071198648126811
1127 => 0.067788313756081
1128 => 0.069329927319795
1129 => 0.070643692974964
1130 => 0.070907450880872
1201 => 0.071501710910695
1202 => 0.066423824020206
1203 => 0.068703646155109
1204 => 0.070042828068919
1205 => 0.063992355462472
1206 => 0.069923229679242
1207 => 0.066335429306722
1208 => 0.065117675973335
1209 => 0.066757220409938
1210 => 0.066118288348484
1211 => 0.065568972081396
1212 => 0.06526244416591
1213 => 0.066466344650235
1214 => 0.066410181253669
1215 => 0.064440366394298
1216 => 0.061870823210175
1217 => 0.062733246245147
1218 => 0.062419919871282
1219 => 0.061284384672492
1220 => 0.062049598291434
1221 => 0.058679984779363
1222 => 0.052882739869114
1223 => 0.056712577431238
1224 => 0.056565132851158
1225 => 0.056490784607802
1226 => 0.059368801686803
1227 => 0.059092146751808
1228 => 0.05859001533578
1229 => 0.06127516263526
1230 => 0.060295047750622
1231 => 0.063315530880967
]
'min_raw' => 0.02711413484122
'max_raw' => 0.089193219334886
'avg_raw' => 0.058153677088053
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.027114'
'max' => '$0.089193'
'avg' => '$0.058153'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.014771081601761
'max_diff' => 0.058961225875337
'year' => 2029
]
4 => [
'items' => [
101 => 0.065305016423212
102 => 0.064800418536583
103 => 0.066671539305083
104 => 0.062753114730023
105 => 0.06405465819395
106 => 0.064322904498005
107 => 0.061242028334389
108 => 0.059137410920623
109 => 0.05899705693352
110 => 0.055347940372194
111 => 0.057297268984615
112 => 0.059012597494846
113 => 0.058191088253315
114 => 0.057931022969336
115 => 0.059259640103903
116 => 0.059362885034095
117 => 0.057008889684309
118 => 0.057498359858867
119 => 0.059539531854421
120 => 0.057446927561687
121 => 0.053381339245875
122 => 0.052373017132398
123 => 0.052238488375396
124 => 0.04950383883261
125 => 0.0524403980375
126 => 0.051158511249672
127 => 0.05520797625306
128 => 0.052894943560841
129 => 0.052795233344479
130 => 0.05264450672814
131 => 0.050290680899714
201 => 0.050806019162704
202 => 0.052519082037117
203 => 0.053130322169742
204 => 0.053066564816166
205 => 0.052510687094474
206 => 0.05276516506891
207 => 0.051945402847248
208 => 0.051655927744903
209 => 0.050742264695505
210 => 0.049399432418749
211 => 0.049586161482901
212 => 0.046925659371468
213 => 0.045476076617626
214 => 0.045074851216556
215 => 0.044538315841881
216 => 0.045135454314791
217 => 0.046918122503261
218 => 0.044767846453813
219 => 0.041081348991361
220 => 0.04130291377034
221 => 0.041800704045534
222 => 0.040873075160923
223 => 0.03999515227163
224 => 0.040758434995735
225 => 0.039196417422657
226 => 0.041989466406613
227 => 0.041913922259026
228 => 0.042954998199255
301 => 0.043606004349708
302 => 0.042105645938656
303 => 0.041728309855677
304 => 0.041943257637511
305 => 0.038390649605902
306 => 0.042664674330461
307 => 0.042701636273761
308 => 0.042385145674974
309 => 0.044660931895092
310 => 0.049463550655065
311 => 0.047656612292671
312 => 0.046956911143751
313 => 0.045626778748176
314 => 0.047399101189833
315 => 0.047263014478851
316 => 0.046647578762437
317 => 0.046275361320873
318 => 0.046961183369764
319 => 0.046190380379359
320 => 0.046051922982033
321 => 0.045213021797369
322 => 0.044913572242016
323 => 0.044691871712662
324 => 0.044447801213689
325 => 0.044986159915846
326 => 0.043766168269772
327 => 0.042294977941863
328 => 0.042172664384598
329 => 0.042510382870126
330 => 0.042360967580464
331 => 0.042171949041675
401 => 0.041811061174991
402 => 0.041703993454094
403 => 0.042051911605133
404 => 0.041659132297499
405 => 0.042238699561709
406 => 0.042081089334763
407 => 0.041200691419119
408 => 0.040103389651171
409 => 0.040093621363768
410 => 0.039857209497799
411 => 0.039556103441726
412 => 0.039472342625299
413 => 0.040694153453679
414 => 0.043223265302705
415 => 0.042726740130224
416 => 0.043085530453288
417 => 0.044850423734928
418 => 0.045411430236969
419 => 0.045013241109988
420 => 0.04446817527374
421 => 0.044492155404279
422 => 0.046354810369387
423 => 0.046470981874782
424 => 0.046764509790567
425 => 0.047141776113329
426 => 0.0450774911961
427 => 0.044394927770316
428 => 0.044071491352002
429 => 0.043075432369242
430 => 0.044149596586505
501 => 0.043523727097404
502 => 0.04360817827423
503 => 0.043553179334533
504 => 0.04358321247462
505 => 0.041988685692499
506 => 0.042569647446044
507 => 0.041603685851391
508 => 0.040310371710429
509 => 0.040306036067934
510 => 0.040622572871698
511 => 0.040434284394733
512 => 0.039927604944559
513 => 0.039999576368997
514 => 0.039369030959032
515 => 0.04007613599816
516 => 0.040096413240539
517 => 0.039824139284203
518 => 0.04091353215867
519 => 0.0413598573082
520 => 0.041180640757466
521 => 0.041347282997246
522 => 0.042747372992817
523 => 0.042975648752305
524 => 0.043077033765619
525 => 0.042941191278718
526 => 0.041372874072183
527 => 0.041442435609293
528 => 0.040932039204788
529 => 0.04050080802723
530 => 0.040518055012822
531 => 0.040739763894217
601 => 0.041707979582319
602 => 0.043745532418497
603 => 0.043822856059198
604 => 0.043916574567418
605 => 0.04353537429534
606 => 0.043420400645687
607 => 0.043572080566797
608 => 0.044337278282627
609 => 0.046305574556895
610 => 0.045609847195481
611 => 0.045044210021009
612 => 0.045540426317708
613 => 0.045464037708303
614 => 0.044819240970147
615 => 0.044801143673269
616 => 0.043563572578759
617 => 0.043106070723249
618 => 0.042723747929365
619 => 0.042306261419232
620 => 0.042058761421751
621 => 0.042439033904619
622 => 0.042526006720703
623 => 0.041694534290887
624 => 0.041581207671099
625 => 0.042260206005866
626 => 0.041961404154344
627 => 0.042268729268564
628 => 0.042340031331249
629 => 0.042328550056931
630 => 0.042016566606768
701 => 0.042215415554421
702 => 0.041745078513497
703 => 0.041233657623831
704 => 0.040907402958871
705 => 0.040622702492292
706 => 0.040780670858039
707 => 0.040217542478038
708 => 0.04003738637574
709 => 0.042148050005199
710 => 0.043707219921738
711 => 0.043684548973653
712 => 0.043546545407676
713 => 0.043341500101637
714 => 0.044322277941342
715 => 0.043980594553261
716 => 0.044229197766692
717 => 0.044292477718354
718 => 0.044484007073334
719 => 0.044552462355235
720 => 0.04434554294808
721 => 0.043651096144591
722 => 0.041920600736317
723 => 0.041115050452382
724 => 0.040849205441183
725 => 0.040858868402428
726 => 0.040592320793918
727 => 0.04067083101045
728 => 0.040565018144588
729 => 0.040364634175527
730 => 0.040768297712616
731 => 0.04081481617488
801 => 0.040720596281903
802 => 0.040742788477509
803 => 0.039962688005504
804 => 0.040021997350102
805 => 0.039691755382717
806 => 0.039629838994958
807 => 0.038795016058866
808 => 0.03731600621806
809 => 0.038135521240826
810 => 0.037145662334575
811 => 0.036770787767967
812 => 0.03854538566133
813 => 0.03836726525252
814 => 0.038062400539718
815 => 0.03761144209011
816 => 0.037444177214509
817 => 0.036427928779981
818 => 0.036367883400995
819 => 0.036871563566163
820 => 0.036639132500514
821 => 0.036312711255815
822 => 0.035130446596306
823 => 0.033801189684642
824 => 0.033841311595394
825 => 0.03426412348729
826 => 0.035493506086931
827 => 0.035013165036717
828 => 0.034664672093507
829 => 0.034599409840904
830 => 0.035416303568019
831 => 0.036572379336414
901 => 0.037114784221208
902 => 0.036577277453459
903 => 0.035959818620088
904 => 0.035997400478247
905 => 0.036247415743606
906 => 0.03627368881297
907 => 0.035871786588239
908 => 0.035984919710345
909 => 0.035813060152757
910 => 0.034758358365065
911 => 0.034739282154221
912 => 0.034480441326158
913 => 0.034472603728754
914 => 0.034032250909347
915 => 0.033970642505897
916 => 0.03309629525546
917 => 0.033671793263465
918 => 0.033285779414697
919 => 0.032703965493141
920 => 0.032603660553766
921 => 0.032600645266167
922 => 0.033198038072392
923 => 0.033664812380705
924 => 0.033292494290863
925 => 0.033207724678889
926 => 0.034112842359383
927 => 0.033997657884209
928 => 0.033897908871569
929 => 0.036468865431305
930 => 0.034433752700032
1001 => 0.033546327389023
1002 => 0.032447970049154
1003 => 0.032805600737414
1004 => 0.032880958778118
1005 => 0.030239607369524
1006 => 0.029168011432017
1007 => 0.028800280088506
1008 => 0.028588645501357
1009 => 0.02868509004026
1010 => 0.027720528010837
1011 => 0.028368729646993
1012 => 0.027533500461911
1013 => 0.027393471570961
1014 => 0.028886964818929
1015 => 0.029094775679523
1016 => 0.028208189986456
1017 => 0.028777521526591
1018 => 0.028571073995838
1019 => 0.027547818069036
1020 => 0.027508737219193
1021 => 0.026995303364309
1022 => 0.026191878801801
1023 => 0.025824692217975
1024 => 0.025633458257059
1025 => 0.025712365116409
1026 => 0.025672467393732
1027 => 0.025412107765405
1028 => 0.025687390902861
1029 => 0.024984156241507
1030 => 0.024704122533008
1031 => 0.024577637803613
1101 => 0.023953476564983
1102 => 0.024946794661405
1103 => 0.025142490839892
1104 => 0.025338572600304
1105 => 0.027045330453987
1106 => 0.026960065654864
1107 => 0.027730817913289
1108 => 0.027700867897849
1109 => 0.027481036868388
1110 => 0.026553605915538
1111 => 0.026923263363477
1112 => 0.025785515196244
1113 => 0.02663799348249
1114 => 0.026248957992992
1115 => 0.026506460192156
1116 => 0.026043448020022
1117 => 0.026299698073385
1118 => 0.025188897663661
1119 => 0.024151647870443
1120 => 0.024569067466443
1121 => 0.025022850305016
1122 => 0.026006767120758
1123 => 0.025420754382439
1124 => 0.025631506722734
1125 => 0.024925521662263
1126 => 0.02346887282785
1127 => 0.023477117302061
1128 => 0.023253043613707
1129 => 0.023059411231674
1130 => 0.02548806499482
1201 => 0.025186023508038
1202 => 0.024704759929064
1203 => 0.025348950354176
1204 => 0.025519284527252
1205 => 0.025524133701698
1206 => 0.025994118406897
1207 => 0.026244949328312
1208 => 0.026289159365374
1209 => 0.027028690453698
1210 => 0.027276571519853
1211 => 0.028297558549904
1212 => 0.026223668077088
1213 => 0.026180957667562
1214 => 0.025358015434527
1215 => 0.024836092460134
1216 => 0.025393751947108
1217 => 0.025887762124456
1218 => 0.025373365707785
1219 => 0.025440535020301
1220 => 0.024749999858652
1221 => 0.024996833686242
1222 => 0.02520944023067
1223 => 0.025092051393272
1224 => 0.024916314622003
1225 => 0.025847258923531
1226 => 0.025794731397638
1227 => 0.026661648133538
1228 => 0.027337471722983
1229 => 0.028548668413184
1230 => 0.027284721525847
1231 => 0.027238658277539
]
'min_raw' => 0.023059411231674
'max_raw' => 0.066671539305083
'avg_raw' => 0.044865475268379
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.023059'
'max' => '$0.066671'
'avg' => '$0.044865'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0040547236095456
'max_diff' => -0.022521680029803
'year' => 2030
]
5 => [
'items' => [
101 => 0.027688933918531
102 => 0.027276502584998
103 => 0.027537144951145
104 => 0.028506674898482
105 => 0.028527159538504
106 => 0.028184015425169
107 => 0.028163135074687
108 => 0.028229039655239
109 => 0.02861504484202
110 => 0.028480162769017
111 => 0.028636251718693
112 => 0.02883144334038
113 => 0.029638838647212
114 => 0.029833498922266
115 => 0.029360575373667
116 => 0.029403275075005
117 => 0.029226388685788
118 => 0.029055518650183
119 => 0.029439609536657
120 => 0.030141543181013
121 => 0.030137176488242
122 => 0.030300011450092
123 => 0.030401456282327
124 => 0.029965980800218
125 => 0.029682502274243
126 => 0.029791205979309
127 => 0.029965025570969
128 => 0.029734838628416
129 => 0.028314018186015
130 => 0.028745004345878
131 => 0.02867326717473
201 => 0.028571104719478
202 => 0.029004464635938
203 => 0.028962666014806
204 => 0.02771063503307
205 => 0.027790785994316
206 => 0.027715509278492
207 => 0.027958743747488
208 => 0.027263367125445
209 => 0.027477260290952
210 => 0.027611412079235
211 => 0.027690428513136
212 => 0.027975890054462
213 => 0.027942394437372
214 => 0.027973807919873
215 => 0.028397072026607
216 => 0.030537796631764
217 => 0.030654311548781
218 => 0.030080549484064
219 => 0.030309756111962
220 => 0.029869729508378
221 => 0.030165122315286
222 => 0.030367222571609
223 => 0.02945397037493
224 => 0.029399893506801
225 => 0.028958050756897
226 => 0.029195472023443
227 => 0.028817717717175
228 => 0.028910405410649
301 => 0.02865124253933
302 => 0.029117684108891
303 => 0.029639238261353
304 => 0.029771003437063
305 => 0.029424385988246
306 => 0.029173412112099
307 => 0.028732784661521
308 => 0.029465557931856
309 => 0.029679843166963
310 => 0.02946443238274
311 => 0.029414516997217
312 => 0.029319927431846
313 => 0.029434584620664
314 => 0.029678676123553
315 => 0.029563567078453
316 => 0.029639598630702
317 => 0.029349844756926
318 => 0.029966124960723
319 => 0.030944926240261
320 => 0.030948073246425
321 => 0.030832963580844
322 => 0.030785863185761
323 => 0.030903972688085
324 => 0.030968042247991
325 => 0.031349986720929
326 => 0.03175982835773
327 => 0.033672380448766
328 => 0.033135343474804
329 => 0.034832273468205
330 => 0.036174324774202
331 => 0.03657674728008
401 => 0.036206537510115
402 => 0.034940069885402
403 => 0.034877930941731
404 => 0.036770568261891
405 => 0.036235811530665
406 => 0.036172203919067
407 => 0.035495526398425
408 => 0.035895526621266
409 => 0.035808040704881
410 => 0.035669939905911
411 => 0.036433112466834
412 => 0.037861703371997
413 => 0.037639044082187
414 => 0.037472839251211
415 => 0.036744578063372
416 => 0.037183153961476
417 => 0.037026985484529
418 => 0.037697984368457
419 => 0.037300499494063
420 => 0.036231760222478
421 => 0.036401960474088
422 => 0.036376235048453
423 => 0.03690566248511
424 => 0.036746741509822
425 => 0.036345203177437
426 => 0.037856820603591
427 => 0.037758664575995
428 => 0.037897827381535
429 => 0.037959091152286
430 => 0.038879186041899
501 => 0.039256119478421
502 => 0.03934168996766
503 => 0.039699747579278
504 => 0.0393327811681
505 => 0.040800908455428
506 => 0.041777127433898
507 => 0.042911056013161
508 => 0.044568030438734
509 => 0.045191068150619
510 => 0.045078521964561
511 => 0.046334821063242
512 => 0.048592362617612
513 => 0.045534835658283
514 => 0.048754418970712
515 => 0.047735136065874
516 => 0.045318434634619
517 => 0.045162827553484
518 => 0.046799445821211
519 => 0.050429307620358
520 => 0.049520068409223
521 => 0.050430794809981
522 => 0.049368384087416
523 => 0.04931562644034
524 => 0.050379195892531
525 => 0.052864283889729
526 => 0.051683711734391
527 => 0.049991072061545
528 => 0.051240890855584
529 => 0.050158182150919
530 => 0.047718536408222
531 => 0.049519373131134
601 => 0.0483152048994
602 => 0.048666645206524
603 => 0.051197627723123
604 => 0.050893093210577
605 => 0.051287189068948
606 => 0.050591620194207
607 => 0.049941849184055
608 => 0.048729003340976
609 => 0.048369939479418
610 => 0.048469171812988
611 => 0.048369890304802
612 => 0.047691314202228
613 => 0.047544775757485
614 => 0.04730053859625
615 => 0.047376237905214
616 => 0.046917000587991
617 => 0.047783676288863
618 => 0.047944538936065
619 => 0.048575233236404
620 => 0.048640714010913
621 => 0.050397188659985
622 => 0.049429751939633
623 => 0.050078792016113
624 => 0.050020735762671
625 => 0.045370811882713
626 => 0.046011530366746
627 => 0.047008287259364
628 => 0.046559249630311
629 => 0.045924415481454
630 => 0.045411752868599
701 => 0.044635016587679
702 => 0.045728257987175
703 => 0.04716575417425
704 => 0.048677171286447
705 => 0.05049303991478
706 => 0.050087759175977
707 => 0.048643224885532
708 => 0.048708025638569
709 => 0.049108598395683
710 => 0.048589820279347
711 => 0.048436822485088
712 => 0.049087578848193
713 => 0.049092060249616
714 => 0.048495143330342
715 => 0.047831779409211
716 => 0.04782899989016
717 => 0.047710960687731
718 => 0.049389382999303
719 => 0.050312345563031
720 => 0.050418161733534
721 => 0.050305223291657
722 => 0.050348688815569
723 => 0.049811637235828
724 => 0.051039177889418
725 => 0.05216569058434
726 => 0.051863761117668
727 => 0.051411125925322
728 => 0.051050580192755
729 => 0.051778828001383
730 => 0.051746400272833
731 => 0.052155851478698
801 => 0.052137276406895
802 => 0.051999593366602
803 => 0.051863766034763
804 => 0.05240230605228
805 => 0.052247215175923
806 => 0.052091883400598
807 => 0.051780341745078
808 => 0.051822685430222
809 => 0.051370128391725
810 => 0.051160754798115
811 => 0.048012278307715
812 => 0.047170902510043
813 => 0.047435616463774
814 => 0.047522767170637
815 => 0.047156599345238
816 => 0.047681589946064
817 => 0.047599770717028
818 => 0.047918081474559
819 => 0.0477192147327
820 => 0.047727376293154
821 => 0.048312200978101
822 => 0.048481978072164
823 => 0.048395628071854
824 => 0.048456104652166
825 => 0.049849761919883
826 => 0.049651628423065
827 => 0.049546373951827
828 => 0.049575530159682
829 => 0.049931639471932
830 => 0.050031330636515
831 => 0.049608932167005
901 => 0.049808137727082
902 => 0.050656329718942
903 => 0.050953148912584
904 => 0.051900453297393
905 => 0.051498021557733
906 => 0.052236702432717
907 => 0.054507155607548
908 => 0.056320950707012
909 => 0.054652909775292
910 => 0.057983713490046
911 => 0.060577221957397
912 => 0.060477678782705
913 => 0.060025440592491
914 => 0.057072800154402
915 => 0.054355736401884
916 => 0.056628675603486
917 => 0.056634469792945
918 => 0.056439222299758
919 => 0.05522655688825
920 => 0.056397024172042
921 => 0.056489931614516
922 => 0.056437928152814
923 => 0.055508180425055
924 => 0.054088627490871
925 => 0.054366004736281
926 => 0.054820354322605
927 => 0.05396017576844
928 => 0.053685296600328
929 => 0.05419634927175
930 => 0.055843067461124
1001 => 0.055531764926212
1002 => 0.055523635558953
1003 => 0.056855519816127
1004 => 0.055902178126603
1005 => 0.054369503351631
1006 => 0.053982482757453
1007 => 0.052608820376436
1008 => 0.053557613875822
1009 => 0.053591759264761
1010 => 0.053072114761581
1011 => 0.054411669639139
1012 => 0.054399325405119
1013 => 0.055671033394928
1014 => 0.058102061439736
1015 => 0.057383086823262
1016 => 0.056546997568518
1017 => 0.056637903652749
1018 => 0.057634919021429
1019 => 0.057032100769878
1020 => 0.057248878416134
1021 => 0.057634590902499
1022 => 0.057867300822225
1023 => 0.056604420276503
1024 => 0.056309982410736
1025 => 0.055707665871024
1026 => 0.055550532728584
1027 => 0.056041106982432
1028 => 0.055911857998787
1029 => 0.053588889477038
1030 => 0.05334612634164
1031 => 0.053353571540417
1101 => 0.052743132093701
1102 => 0.051812065415206
1103 => 0.054258853055189
1104 => 0.054062341764927
1105 => 0.053845408509244
1106 => 0.053871981595261
1107 => 0.05493404918045
1108 => 0.054317996345342
1109 => 0.055955873776551
1110 => 0.055619175415797
1111 => 0.055273842012568
1112 => 0.055226106417129
1113 => 0.055093182519348
1114 => 0.054637337015051
1115 => 0.054086876176545
1116 => 0.053723414250862
1117 => 0.049557009837487
1118 => 0.05033027026175
1119 => 0.051219835894959
1120 => 0.051526910386832
1121 => 0.051001638219575
1122 => 0.054658077961786
1123 => 0.055326144737018
1124 => 0.053302526897923
1125 => 0.052923990624
1126 => 0.054682894736885
1127 => 0.053622060539533
1128 => 0.054099754113645
1129 => 0.053067241890829
1130 => 0.055165227014143
1201 => 0.05514924388259
1202 => 0.054333080284478
1203 => 0.055022896168755
1204 => 0.054903023683327
1205 => 0.05398157699118
1206 => 0.055194438517839
1207 => 0.055195040082025
1208 => 0.054409500363768
1209 => 0.053492161949601
1210 => 0.053328163507714
1211 => 0.053204612711843
1212 => 0.054069368191662
1213 => 0.054844705250847
1214 => 0.056287415295632
1215 => 0.056650146878837
1216 => 0.058065912396492
1217 => 0.0572228929631
1218 => 0.057596592558994
1219 => 0.058002296333371
1220 => 0.05819680564207
1221 => 0.05787986316149
1222 => 0.060079129762744
1223 => 0.060264815247678
1224 => 0.060327073984603
1225 => 0.059585493660694
1226 => 0.060244190557361
1227 => 0.059936008093159
1228 => 0.060737813249458
1229 => 0.060863546535928
1230 => 0.06075705491538
1231 => 0.06079696464507
]
'min_raw' => 0.027263367125445
'max_raw' => 0.060863546535928
'avg_raw' => 0.044063456830687
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.027263'
'max' => '$0.060863'
'avg' => '$0.044063'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0042039558937709
'max_diff' => -0.0058079927691551
'year' => 2031
]
6 => [
'items' => [
101 => 0.058920278578114
102 => 0.058822962505234
103 => 0.057496050946291
104 => 0.058036777214595
105 => 0.057025915373685
106 => 0.057346470076468
107 => 0.057487767535098
108 => 0.05741396176127
109 => 0.058067349066506
110 => 0.057511836378848
111 => 0.056045747061375
112 => 0.054579258308849
113 => 0.054560847737136
114 => 0.054174747134273
115 => 0.053895667116255
116 => 0.053949427828621
117 => 0.054138887591118
118 => 0.05388465537044
119 => 0.053938908704622
120 => 0.054839875540125
121 => 0.055020558013583
122 => 0.054406528371571
123 => 0.05194111075484
124 => 0.051336091087662
125 => 0.051770967226368
126 => 0.051563124441676
127 => 0.041615465761294
128 => 0.043952520612543
129 => 0.042563921978814
130 => 0.043203852115588
131 => 0.041786452486424
201 => 0.04246290988174
202 => 0.042337992901094
203 => 0.046095907943422
204 => 0.046037233268879
205 => 0.046065317730588
206 => 0.044724773199543
207 => 0.046860297037248
208 => 0.047912332870655
209 => 0.047717629036918
210 => 0.04776663179714
211 => 0.046924602022613
212 => 0.046073470419391
213 => 0.045129434483204
214 => 0.046883336566272
215 => 0.046688332594742
216 => 0.047135601545218
217 => 0.048273132417598
218 => 0.048440638159616
219 => 0.048665767575563
220 => 0.048585074705749
221 => 0.050507506237993
222 => 0.050274687094826
223 => 0.050835714243218
224 => 0.049681638833744
225 => 0.04837569296208
226 => 0.048623910577696
227 => 0.048600005225272
228 => 0.048295662651631
229 => 0.048020915784223
301 => 0.047563539659438
302 => 0.049010745397186
303 => 0.048951991487141
304 => 0.049903148996813
305 => 0.049735022667927
306 => 0.048612233896138
307 => 0.048652334516777
308 => 0.048922030462274
309 => 0.049855451208972
310 => 0.050132554038723
311 => 0.050004188967344
312 => 0.050308019569941
313 => 0.050548154890062
314 => 0.05033817686896
315 => 0.053311022843312
316 => 0.052076489928663
317 => 0.052678192681438
318 => 0.052821695242536
319 => 0.052454116449816
320 => 0.052533831127948
321 => 0.052654577144367
322 => 0.05338772331157
323 => 0.055311710991863
324 => 0.056163832038438
325 => 0.058727480249971
326 => 0.056093075247618
327 => 0.05593676055703
328 => 0.056398551014686
329 => 0.057903683904579
330 => 0.059123452741894
331 => 0.059528120435383
401 => 0.059581603951413
402 => 0.060340787446199
403 => 0.060775937267477
404 => 0.060248602601424
405 => 0.059801741686186
406 => 0.058201141354219
407 => 0.058386415200934
408 => 0.059662768277568
409 => 0.061465692175134
410 => 0.063012788441506
411 => 0.062471049250771
412 => 0.066604136867812
413 => 0.067013915622893
414 => 0.066957297448674
415 => 0.067890834436003
416 => 0.066037953627657
417 => 0.065245811184214
418 => 0.059898358088147
419 => 0.061400774288364
420 => 0.06358462446919
421 => 0.06329558370874
422 => 0.061709613332942
423 => 0.063011585340759
424 => 0.062581112678545
425 => 0.062241581029531
426 => 0.063797041335116
427 => 0.062086748834337
428 => 0.063567562993189
429 => 0.0616684035174
430 => 0.062473523869762
501 => 0.062016498618472
502 => 0.062312249966964
503 => 0.060583293626869
504 => 0.061516196499942
505 => 0.060544481800249
506 => 0.060544021080961
507 => 0.060522570425108
508 => 0.061665788460053
509 => 0.06170306875913
510 => 0.060858228903999
511 => 0.060736474281995
512 => 0.061186664933722
513 => 0.060659609585668
514 => 0.060906215465776
515 => 0.060667079026555
516 => 0.060613244377103
517 => 0.060184280731054
518 => 0.059999471397735
519 => 0.060071939899279
520 => 0.059824567543436
521 => 0.059675516751191
522 => 0.060492920470976
523 => 0.060056214637467
524 => 0.060425989038747
525 => 0.060004584439238
526 => 0.058543812500096
527 => 0.057703707110512
528 => 0.054944444331102
529 => 0.055726967832488
530 => 0.056245781723486
531 => 0.056074313735606
601 => 0.056442693322875
602 => 0.056465308837678
603 => 0.056345544878672
604 => 0.056206873556856
605 => 0.056139376026401
606 => 0.056642447318723
607 => 0.056934497136517
608 => 0.056297851638282
609 => 0.056148694505663
610 => 0.056792378254539
611 => 0.05718502496951
612 => 0.060084107703723
613 => 0.059869334290859
614 => 0.060408373409994
615 => 0.060347685877409
616 => 0.060912684749929
617 => 0.061836219120161
618 => 0.059958415521209
619 => 0.060284337296424
620 => 0.060204428803774
621 => 0.061076848773393
622 => 0.06107957237331
623 => 0.060556513020914
624 => 0.060840071981517
625 => 0.060681797148742
626 => 0.060967821163693
627 => 0.059866465860989
628 => 0.061207797735724
629 => 0.061968246475183
630 => 0.061978805306668
701 => 0.062339251973877
702 => 0.062705486663425
703 => 0.063408442257692
704 => 0.06268588161343
705 => 0.061386065354265
706 => 0.061479907889795
707 => 0.060717826092631
708 => 0.060730636825323
709 => 0.060662252130219
710 => 0.060867479747984
711 => 0.059911501782138
712 => 0.06013586789994
713 => 0.059821754021131
714 => 0.060283654474197
715 => 0.059786725941578
716 => 0.06020439026948
717 => 0.060384640347611
718 => 0.06104976701642
719 => 0.059688486191797
720 => 0.056912742439779
721 => 0.057496237429093
722 => 0.056633202507356
723 => 0.056713079675168
724 => 0.056874444266506
725 => 0.056351408830771
726 => 0.056451187509168
727 => 0.056447622712644
728 => 0.056416903222058
729 => 0.056280841504636
730 => 0.056083525095384
731 => 0.056869572939056
801 => 0.057003137784844
802 => 0.057300035891846
803 => 0.058183403270373
804 => 0.058095134038021
805 => 0.058239104818243
806 => 0.05792481741338
807 => 0.056727658566482
808 => 0.056792670051573
809 => 0.055981975790743
810 => 0.057279304616907
811 => 0.056972080026968
812 => 0.05677401033522
813 => 0.056719965184723
814 => 0.05760552226012
815 => 0.057870494816485
816 => 0.057705381701005
817 => 0.057366729884036
818 => 0.058017041486038
819 => 0.058191037436289
820 => 0.058229988712827
821 => 0.059382216186692
822 => 0.058294385428966
823 => 0.058556237104458
824 => 0.060599129127794
825 => 0.058746507962457
826 => 0.059727882712118
827 => 0.05967984952495
828 => 0.060181887638965
829 => 0.059638667746206
830 => 0.05964540160782
831 => 0.060091177442058
901 => 0.059465165678966
902 => 0.059310156362801
903 => 0.059096012102717
904 => 0.0595635882603
905 => 0.05984387902012
906 => 0.06210281669339
907 => 0.063562193450396
908 => 0.063498838056542
909 => 0.06407778776004
910 => 0.063816965616043
911 => 0.06297470211167
912 => 0.064412343210542
913 => 0.063957413413401
914 => 0.063994917273137
915 => 0.063993521377605
916 => 0.064296009922051
917 => 0.064081669065643
918 => 0.063659181236025
919 => 0.063939648374007
920 => 0.064772535504976
921 => 0.067357842715601
922 => 0.068804614881431
923 => 0.067270745214597
924 => 0.068328787971446
925 => 0.067694339336518
926 => 0.06757904114634
927 => 0.068243570186387
928 => 0.068909262396549
929 => 0.068866860680628
930 => 0.068383602319724
1001 => 0.068110621933876
1002 => 0.070177720870655
1003 => 0.071700724155163
1004 => 0.071596865541503
1005 => 0.072055263685567
1006 => 0.07340113481426
1007 => 0.073524184403261
1008 => 0.073508682983309
1009 => 0.073203691738072
1010 => 0.074528876647721
1011 => 0.07563436921376
1012 => 0.073133095076844
1013 => 0.074085547524099
1014 => 0.074513134113773
1015 => 0.075140958086639
1016 => 0.076200202364379
1017 => 0.077350822600674
1018 => 0.077513532917995
1019 => 0.07739808216145
1020 => 0.076639217185282
1021 => 0.07789823957759
1022 => 0.078635745367295
1023 => 0.079074913187545
1024 => 0.080188569709142
1025 => 0.074515774742983
1026 => 0.070500288509732
1027 => 0.069873212350086
1028 => 0.071148396379279
1029 => 0.071484652238375
1030 => 0.071349107923202
1031 => 0.066829313095642
1101 => 0.069849416565712
1102 => 0.073098793961995
1103 => 0.073223615781292
1104 => 0.074850322047149
1105 => 0.075380044288254
1106 => 0.076689756049533
1107 => 0.076607833222269
1108 => 0.076926727194074
1109 => 0.07685341899243
1110 => 0.07927938423785
1111 => 0.081955584162873
1112 => 0.081862915869264
1113 => 0.081478180466682
1114 => 0.082049578146651
1115 => 0.084811703268288
1116 => 0.084557411049241
1117 => 0.084804434279486
1118 => 0.088061135464446
1119 => 0.092295310265236
1120 => 0.09032811096607
1121 => 0.094596367398911
1122 => 0.097283008572834
1123 => 0.10192927667925
1124 => 0.10134754102897
1125 => 0.10315629910691
1126 => 0.10030611280309
1127 => 0.093761508931812
1128 => 0.092725800317446
1129 => 0.094799315191726
1130 => 0.099896849179522
1201 => 0.094638775705867
1202 => 0.095702477121458
1203 => 0.095396131042209
1204 => 0.095379807161533
1205 => 0.096002823292921
1206 => 0.095099105900006
1207 => 0.091417198665614
1208 => 0.09310459505352
1209 => 0.09245301027272
1210 => 0.093175992165881
1211 => 0.097077627262861
1212 => 0.095352621383122
1213 => 0.093535467816916
1214 => 0.095814581647596
1215 => 0.098716676742533
1216 => 0.098535068847058
1217 => 0.098182673623626
1218 => 0.1001691070473
1219 => 0.10345011309283
1220 => 0.10433695584279
1221 => 0.1049916050301
1222 => 0.10508187009265
1223 => 0.10601165633625
1224 => 0.10101196136807
1225 => 0.10894660568385
1226 => 0.11031669956706
1227 => 0.11005917870159
1228 => 0.11158198039042
1229 => 0.11113393350382
1230 => 0.11048478386153
1231 => 0.11289874844753
]
'min_raw' => 0.041615465761294
'max_raw' => 0.11289874844753
'avg_raw' => 0.07725710710441
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.041615'
'max' => '$0.112898'
'avg' => '$0.077257'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.014352098635849
'max_diff' => 0.052035201911598
'year' => 2032
]
7 => [
'items' => [
101 => 0.11013133284658
102 => 0.10620333480897
103 => 0.10404835739855
104 => 0.10688620548967
105 => 0.10861918029166
106 => 0.10976456639788
107 => 0.11011115954156
108 => 0.10140007345614
109 => 0.096705281195084
110 => 0.099714589208519
111 => 0.10338615267625
112 => 0.10099156564762
113 => 0.10108542892559
114 => 0.097671377109163
115 => 0.10368822050691
116 => 0.10281161703347
117 => 0.10735943740433
118 => 0.10627406357429
119 => 0.10998263454135
120 => 0.10900604351797
121 => 0.11305981825554
122 => 0.11467697874992
123 => 0.11739244291092
124 => 0.11938994940168
125 => 0.12056292341927
126 => 0.12049250245897
127 => 0.12514040988997
128 => 0.12239970126343
129 => 0.11895672529305
130 => 0.1188944527202
131 => 0.1206776187626
201 => 0.12441464559976
202 => 0.12538360228711
203 => 0.12592511688784
204 => 0.12509576842657
205 => 0.12212092564081
206 => 0.12083640360871
207 => 0.12193085359624
208 => 0.12059243530865
209 => 0.12290292076688
210 => 0.12607571079409
211 => 0.12542054220004
212 => 0.12761067258158
213 => 0.12987722711804
214 => 0.1331185019025
215 => 0.13396589115522
216 => 0.13536659336663
217 => 0.13680837604888
218 => 0.13727143778929
219 => 0.13815556633134
220 => 0.13815090653751
221 => 0.14081528740771
222 => 0.14375418201654
223 => 0.14486354669581
224 => 0.14741446960507
225 => 0.14304610351797
226 => 0.14635955937521
227 => 0.14934837949961
228 => 0.1457849849327
301 => 0.15069629417874
302 => 0.15088698918749
303 => 0.15376625741619
304 => 0.15084756746536
305 => 0.14911445868934
306 => 0.15411787878696
307 => 0.15653887616594
308 => 0.15580965205266
309 => 0.15026022054437
310 => 0.14703021338023
311 => 0.13857666160983
312 => 0.14859025884813
313 => 0.15346758996227
314 => 0.15024758943506
315 => 0.15187157040474
316 => 0.16073148399771
317 => 0.16410476545699
318 => 0.16340314649448
319 => 0.16352170854951
320 => 0.16534186999555
321 => 0.1734134682285
322 => 0.16857677946914
323 => 0.1722742467984
324 => 0.17423537013763
325 => 0.1760569707897
326 => 0.17158369531102
327 => 0.16576402963872
328 => 0.16392069722735
329 => 0.14992742384191
330 => 0.14919901319249
331 => 0.14879013422187
401 => 0.14621221014918
402 => 0.14418666798089
403 => 0.1425758816451
404 => 0.13834869727847
405 => 0.13977524791191
406 => 0.13303799831345
407 => 0.13734825185308
408 => 0.12659543881736
409 => 0.13555070103507
410 => 0.13067675895578
411 => 0.13394947997777
412 => 0.13393806176244
413 => 0.1279119447438
414 => 0.12443620620931
415 => 0.12665108208126
416 => 0.12902560483305
417 => 0.12941086316068
418 => 0.13248949388976
419 => 0.1333486735513
420 => 0.13074531906557
421 => 0.12637261066761
422 => 0.12738829109759
423 => 0.12441562347782
424 => 0.11920613781616
425 => 0.12294768136726
426 => 0.12422520883966
427 => 0.1247894377506
428 => 0.11966650691584
429 => 0.11805677082332
430 => 0.11719976083465
501 => 0.12571130462785
502 => 0.12617758621056
503 => 0.12379202370782
504 => 0.13457499242854
505 => 0.1321344745102
506 => 0.13486113096639
507 => 0.12729612874443
508 => 0.12758512201694
509 => 0.12400372873052
510 => 0.12600906966213
511 => 0.12459175932682
512 => 0.12584705793202
513 => 0.12659947874018
514 => 0.1301802843552
515 => 0.13559158808327
516 => 0.12964543140566
517 => 0.12705460579069
518 => 0.12866193943086
519 => 0.13294248072658
520 => 0.13942771990648
521 => 0.13558832778438
522 => 0.13729218481106
523 => 0.13766440177206
524 => 0.13483337616325
525 => 0.13953210385881
526 => 0.14205019020325
527 => 0.1446332257481
528 => 0.14687600313668
529 => 0.14360150454932
530 => 0.14710568741873
531 => 0.14428193459753
601 => 0.14174873640271
602 => 0.14175257821871
603 => 0.14016346598698
604 => 0.13708436079698
605 => 0.136516526558
606 => 0.13947047197876
607 => 0.14183925646654
608 => 0.14203436090266
609 => 0.14334584170764
610 => 0.1441219625387
611 => 0.15172900176817
612 => 0.15478861587499
613 => 0.15852985408928
614 => 0.15998727721838
615 => 0.16437359832186
616 => 0.16083128779122
617 => 0.16006488662574
618 => 0.1494251063834
619 => 0.15116736980203
620 => 0.15395690163867
621 => 0.14947110473593
622 => 0.1523163103826
623 => 0.15287801424695
624 => 0.14931867907369
625 => 0.15121987377952
626 => 0.14617086430578
627 => 0.13570164269245
628 => 0.13954375909525
629 => 0.1423728500101
630 => 0.13833538845021
701 => 0.14557238202498
702 => 0.14134467978047
703 => 0.14000470113446
704 => 0.13477696669948
705 => 0.13724425611884
706 => 0.1405813003867
707 => 0.1385193950022
708 => 0.14279815827169
709 => 0.14885802816579
710 => 0.15317665232381
711 => 0.15350818266209
712 => 0.15073159665383
713 => 0.155181093452
714 => 0.15521350317855
715 => 0.15019445261348
716 => 0.14712031208857
717 => 0.14642186089326
718 => 0.14816672891856
719 => 0.15028532082169
720 => 0.15362574976806
721 => 0.15564430101995
722 => 0.160907612128
723 => 0.16233171320288
724 => 0.16389636852371
725 => 0.16598723055417
726 => 0.16849784650775
727 => 0.16300476173075
728 => 0.16322301222933
729 => 0.15810792774193
730 => 0.15264172638982
731 => 0.15678989184445
801 => 0.16221306636906
802 => 0.16096898414104
803 => 0.16082899947609
804 => 0.16106441485402
805 => 0.16012641748202
806 => 0.15588389013227
807 => 0.15375331945685
808 => 0.15650229919469
809 => 0.15796325958234
810 => 0.16022908173445
811 => 0.1599497713285
812 => 0.1657862858608
813 => 0.16805417892102
814 => 0.1674739548276
815 => 0.16758073002466
816 => 0.17168664208149
817 => 0.1762532607339
818 => 0.18053050172028
819 => 0.18488149496341
820 => 0.17963620278666
821 => 0.17697296690396
822 => 0.17972074652324
823 => 0.17826273597945
824 => 0.18664089703809
825 => 0.18722098273195
826 => 0.19559853795418
827 => 0.2035498354408
828 => 0.19855576795174
829 => 0.20326494865618
830 => 0.20835831153316
831 => 0.21818423489121
901 => 0.21487520958437
902 => 0.21234054805837
903 => 0.2099453051637
904 => 0.21492942539341
905 => 0.22134141644568
906 => 0.22272249790505
907 => 0.22496037748296
908 => 0.22260752074169
909 => 0.22544127752788
910 => 0.23544568419897
911 => 0.2327424052051
912 => 0.22890331446002
913 => 0.23680083269342
914 => 0.23965891384126
915 => 0.25971842412552
916 => 0.28504438447645
917 => 0.27455927059194
918 => 0.26805082205132
919 => 0.26958046184083
920 => 0.27882864522313
921 => 0.28179886820285
922 => 0.2737247782467
923 => 0.27657668331683
924 => 0.29229096064636
925 => 0.30072116625928
926 => 0.28927181470927
927 => 0.25768350787067
928 => 0.22855764634283
929 => 0.23628313637465
930 => 0.23540730555491
1001 => 0.25229033614947
1002 => 0.23267793289513
1003 => 0.23300815546712
1004 => 0.25024030925494
1005 => 0.24564306605826
1006 => 0.23819612085005
1007 => 0.22861201728413
1008 => 0.21089491542025
1009 => 0.19520238422148
1010 => 0.22597905167638
1011 => 0.22465190581198
1012 => 0.22273000192834
1013 => 0.22700699104966
1014 => 0.24777483617825
1015 => 0.24729607012908
1016 => 0.24425040479285
1017 => 0.24656051510712
1018 => 0.23779114734274
1019 => 0.24005121309041
1020 => 0.22855303265756
1021 => 0.23375069041964
1022 => 0.23818014305023
1023 => 0.23906942124499
1024 => 0.24107301042545
1025 => 0.22395256024742
1026 => 0.23163913974735
1027 => 0.23615428506845
1028 => 0.21575469424531
1029 => 0.23575105074756
1030 => 0.22365453129939
1031 => 0.21954879091505
1101 => 0.2250766294524
1102 => 0.22292242539839
1103 => 0.22107036725187
1104 => 0.22003688698371
1105 => 0.22409592152026
1106 => 0.22390656270753
1107 => 0.21726519438108
1108 => 0.20860180013604
1109 => 0.2115095196109
1110 => 0.21045311786566
1111 => 0.20662458166241
1112 => 0.20920455280418
1113 => 0.19784366558933
1114 => 0.17829784962371
1115 => 0.19121041435513
1116 => 0.19071329465914
1117 => 0.19046262436584
1118 => 0.20016605988442
1119 => 0.19923329845566
1120 => 0.19754032732882
1121 => 0.20659348892002
1122 => 0.20328896315702
1123 => 0.21347273291438
1124 => 0.2201804223215
1125 => 0.21847913531684
1126 => 0.22478774962531
1127 => 0.21157650759483
1128 => 0.21596475225433
1129 => 0.2168691633968
1130 => 0.20648177431127
1201 => 0.19938590976106
1202 => 0.19891269649434
1203 => 0.18660944523465
1204 => 0.1931817427492
1205 => 0.19896509258186
1206 => 0.19619531681809
1207 => 0.19531848855598
1208 => 0.19979801398626
1209 => 0.20014611147673
1210 => 0.19220945180422
1211 => 0.19385973467146
1212 => 0.20074168856455
1213 => 0.19368632709063
1214 => 0.17997891223356
1215 => 0.17657928382917
1216 => 0.17612571073244
1217 => 0.1669056488718
1218 => 0.1768064632551
1219 => 0.17248449245146
1220 => 0.186137546435
1221 => 0.1783389952224
1222 => 0.17800281526639
1223 => 0.17749462995601
1224 => 0.1695585418366
1225 => 0.17129604077004
1226 => 0.17707175185335
1227 => 0.17913259063592
1228 => 0.17891762826695
1229 => 0.17704344771812
1230 => 0.17790143797601
1231 => 0.17513755241171
]
'min_raw' => 0.096705281195084
'max_raw' => 0.30072116625928
'avg_raw' => 0.19871322372718
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.0967052'
'max' => '$0.300721'
'avg' => '$0.198713'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.055089815433791
'max_diff' => 0.18782241781175
'year' => 2033
]
8 => [
'items' => [
101 => 0.17416156689365
102 => 0.17108108813268
103 => 0.16655363535804
104 => 0.16718320543484
105 => 0.15821313681582
106 => 0.1533257673546
107 => 0.15197300790223
108 => 0.15016404142681
109 => 0.15217733547911
110 => 0.15818772573845
111 => 0.15093791991026
112 => 0.13850863633257
113 => 0.13925565745405
114 => 0.14093399212148
115 => 0.13780642657203
116 => 0.13484644825616
117 => 0.13741990925118
118 => 0.13215345794696
119 => 0.14157041760082
120 => 0.14131571523291
121 => 0.14482577545099
122 => 0.14702068813904
123 => 0.1419621250045
124 => 0.14068991005598
125 => 0.1414146215096
126 => 0.12943675549586
127 => 0.14384692825759
128 => 0.14397154803003
129 => 0.14290447787955
130 => 0.15057745001099
131 => 0.16676981446838
201 => 0.16067759562316
202 => 0.158318504348
203 => 0.15383387010944
204 => 0.15980937896109
205 => 0.15935055311374
206 => 0.1572755686275
207 => 0.15602061153588
208 => 0.15833290845628
209 => 0.15573409235838
210 => 0.15526727357651
211 => 0.15243885966221
212 => 0.15142924457943
213 => 0.15068176576608
214 => 0.14985886503833
215 => 0.15167397898966
216 => 0.14756069197783
217 => 0.14260047107205
218 => 0.14218808237407
219 => 0.14332672382678
220 => 0.14282295974584
221 => 0.14218567054546
222 => 0.14096891190655
223 => 0.14060792561032
224 => 0.14178095594742
225 => 0.14045667308875
226 => 0.14241072458413
227 => 0.14187933069999
228 => 0.13891100765998
301 => 0.13521137813818
302 => 0.1351784436752
303 => 0.13438136456333
304 => 0.13336616447273
305 => 0.13308375903215
306 => 0.13720317954414
307 => 0.14573025672009
308 => 0.14405618743478
309 => 0.14526587405894
310 => 0.1512163349789
311 => 0.15310780756875
312 => 0.15176528512646
313 => 0.14992755760427
314 => 0.15000840828862
315 => 0.1562884795499
316 => 0.15668015989117
317 => 0.1576698097527
318 => 0.15894178949979
319 => 0.15198190877758
320 => 0.1496805985325
321 => 0.14859011006654
322 => 0.14523182766355
323 => 0.1488534473178
324 => 0.14674328463848
325 => 0.14702801767735
326 => 0.14684258491226
327 => 0.1469438437409
328 => 0.14156778536868
329 => 0.14352653848221
330 => 0.14026973152455
331 => 0.13590923260199
401 => 0.13589461468061
402 => 0.1369618406144
403 => 0.13632701286843
404 => 0.13461870772694
405 => 0.13486136440931
406 => 0.13273543653634
407 => 0.13511949054426
408 => 0.13518785668265
409 => 0.1342698660293
410 => 0.13794283016455
411 => 0.13944764656762
412 => 0.13884340545432
413 => 0.13940525140033
414 => 0.14412575257156
415 => 0.14489540023237
416 => 0.14523722688324
417 => 0.14477922445443
418 => 0.13949153349619
419 => 0.13972606507519
420 => 0.13800522796266
421 => 0.13655130193992
422 => 0.13660945135599
423 => 0.13735695832883
424 => 0.14062136511993
425 => 0.1474911167645
426 => 0.14775181881769
427 => 0.14806779731137
428 => 0.14678255397951
429 => 0.1463949122925
430 => 0.14690631173647
501 => 0.14948622925979
502 => 0.15612247757055
503 => 0.1537767841974
504 => 0.15186969897215
505 => 0.15354272686118
506 => 0.15328517733129
507 => 0.15111120011033
508 => 0.15105018381039
509 => 0.1468776264608
510 => 0.14533512701319
511 => 0.14404609902068
512 => 0.14263851410379
513 => 0.14180405058239
514 => 0.14308616580815
515 => 0.14337940072983
516 => 0.14057603338115
517 => 0.14019394477032
518 => 0.14248323506214
519 => 0.14147580375805
520 => 0.1425119718374
521 => 0.14275237171989
522 => 0.14271366180193
523 => 0.14166178781772
524 => 0.14233222092792
525 => 0.14074644675656
526 => 0.13902215552079
527 => 0.1379221651395
528 => 0.13696227763928
529 => 0.13749487901339
530 => 0.13559625236385
531 => 0.13498884348686
601 => 0.14210509327541
602 => 0.14736194350679
603 => 0.14728550682248
604 => 0.14682021816469
605 => 0.14612889359957
606 => 0.14943565456186
607 => 0.14828364516337
608 => 0.14912182825438
609 => 0.14933518102947
610 => 0.14998093562194
611 => 0.15021173738426
612 => 0.14951409415639
613 => 0.1471727182737
614 => 0.14133823218537
615 => 0.13862226316136
616 => 0.1377259481454
617 => 0.13775852749388
618 => 0.13685984362203
619 => 0.13712454629848
620 => 0.1367677908336
621 => 0.13609218229155
622 => 0.13745316208974
623 => 0.13761000233307
624 => 0.13729233338568
625 => 0.13736715592257
626 => 0.13473699271634
627 => 0.13493695831249
628 => 0.13382352446269
629 => 0.1336147690385
630 => 0.13080010522399
701 => 0.12581352028454
702 => 0.12857657240051
703 => 0.12523919398834
704 => 0.12397527821412
705 => 0.12995845891006
706 => 0.12935791351579
707 => 0.1283300408516
708 => 0.12680960295384
709 => 0.12624565774769
710 => 0.12281930519848
711 => 0.12261685801099
712 => 0.12431505085368
713 => 0.12353139328803
714 => 0.12243084127152
715 => 0.1184447534289
716 => 0.11396307094547
717 => 0.11409834476879
718 => 0.11552388458211
719 => 0.11966883384955
720 => 0.11804933046241
721 => 0.11687436217338
722 => 0.11665432593226
723 => 0.11940854016693
724 => 0.12330633033471
725 => 0.12513508627329
726 => 0.1233228446783
727 => 0.12124103911199
728 => 0.12136774897065
729 => 0.12221069289332
730 => 0.12229927438101
731 => 0.12094423297041
801 => 0.12132566919029
802 => 0.12074623269303
803 => 0.1171902319789
804 => 0.11712591520218
805 => 0.11625321527868
806 => 0.11622679027183
807 => 0.11474210999675
808 => 0.11453439296315
809 => 0.11158647016333
810 => 0.1135268018773
811 => 0.11222532923556
812 => 0.11026370297808
813 => 0.10992551787191
814 => 0.10991535161925
815 => 0.11192950317407
816 => 0.11350326534369
817 => 0.11224796890937
818 => 0.11196216224417
819 => 0.11501382969726
820 => 0.11462547719728
821 => 0.11428916643691
822 => 0.12295732597652
823 => 0.116095801316
824 => 0.11310378492188
825 => 0.10940059646565
826 => 0.11060637330009
827 => 0.11086044819566
828 => 0.10195494750832
829 => 0.098341986988572
830 => 0.097102155089741
831 => 0.096388614303314
901 => 0.09671378379977
902 => 0.093461695573998
903 => 0.095647152646291
904 => 0.092831119134948
905 => 0.092359001952605
906 => 0.097394418710498
907 => 0.098095067535881
908 => 0.09510588197227
909 => 0.097025423009293
910 => 0.096329370745652
911 => 0.092879391946994
912 => 0.092747628133211
913 => 0.091016550044662
914 => 0.088307748038853
915 => 0.087069752835337
916 => 0.086424994184579
917 => 0.086691034169977
918 => 0.086556516212402
919 => 0.08567869554777
920 => 0.086606831865358
921 => 0.084235827106325
922 => 0.083291673906794
923 => 0.082865221810754
924 => 0.080760818617169
925 => 0.08410985993051
926 => 0.084769663259349
927 => 0.085430766604569
928 => 0.091185219870289
929 => 0.090897743647049
930 => 0.093496388698533
1001 => 0.093395410130434
1002 => 0.092654234466492
1003 => 0.0895273362578
1004 => 0.090773662152183
1005 => 0.086937664771319
1006 => 0.08981185483153
1007 => 0.088500194517096
1008 => 0.089368381159808
1009 => 0.087807303294978
1010 => 0.0886712682407
1011 => 0.084926127105706
1012 => 0.081428967009407
1013 => 0.082836326320625
1014 => 0.084366286842979
1015 => 0.087683631082133
1016 => 0.085707848220789
1017 => 0.08641841445035
1018 => 0.084038136528671
1019 => 0.079126943283472
1020 => 0.079154740103886
1021 => 0.078399260019273
1022 => 0.077746414924269
1023 => 0.085934790649907
1024 => 0.084916436689359
1025 => 0.083293822932098
1026 => 0.0854657559263
1027 => 0.086040049483178
1028 => 0.086056398813381
1029 => 0.087640985060246
1030 => 0.08848667902425
1031 => 0.088635736250853
1101 => 0.091129116947547
1102 => 0.091964865268592
1103 => 0.095407194323447
1104 => 0.088414927799939
1105 => 0.088270926672276
1106 => 0.085496319477607
1107 => 0.083736619729943
1108 => 0.085616807624818
1109 => 0.087282397428435
1110 => 0.085548073995619
1111 => 0.085774540022379
1112 => 0.083446352513253
1113 => 0.084278569996361
1114 => 0.084995387804615
1115 => 0.084599603143501
1116 => 0.084007094349618
1117 => 0.087145838058674
1118 => 0.086968737837773
1119 => 0.089891608139053
1120 => 0.092170194555361
1121 => 0.096253828759428
1122 => 0.091992343582819
1123 => 0.091837038125114
1124 => 0.09335517388596
1125 => 0.091964632849917
1126 => 0.092843406784851
1127 => 0.096112244692718
1128 => 0.096181310086744
1129 => 0.095024375751076
1130 => 0.094953976191608
1201 => 0.095176178086248
1202 => 0.096477621523503
1203 => 0.096022857197209
1204 => 0.096549121988821
1205 => 0.097207224169184
1206 => 0.09992941381671
1207 => 0.1005857245248
1208 => 0.09899122976223
1209 => 0.099135194786489
1210 => 0.098538809975429
1211 => 0.097962709720624
1212 => 0.099257698960739
1213 => 0.10162431725013
1214 => 0.10160959464058
1215 => 0.10215860408323
1216 => 0.10250063241776
1217 => 0.1010323964259
1218 => 0.10007662878374
1219 => 0.10044313091482
1220 => 0.1010291758038
1221 => 0.10025308445584
1222 => 0.095462689135771
1223 => 0.096915789064242
1224 => 0.096673922183188
1225 => 0.09632947433255
1226 => 0.097790577547117
1227 => 0.097649650577687
1228 => 0.093428340708751
1229 => 0.093698575270554
1230 => 0.093444774567499
1231 => 0.094264856561808
]
'min_raw' => 0.077746414924269
'max_raw' => 0.17416156689365
'avg_raw' => 0.12595399090896
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.077746'
'max' => '$0.174161'
'avg' => '$0.125953'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.018958866270816
'max_diff' => -0.12655959936563
'year' => 2034
]
9 => [
'items' => [
101 => 0.091920345730945
102 => 0.092641501471997
103 => 0.09309380359237
104 => 0.093360213016018
105 => 0.094322666532887
106 => 0.094209733721279
107 => 0.094315646470752
108 => 0.095742710957961
109 => 0.10296031342487
110 => 0.1033531516024
111 => 0.10141867274242
112 => 0.10219145889107
113 => 0.10070787847541
114 => 0.10170381594757
115 => 0.10238521107195
116 => 0.09930611752962
117 => 0.099123793593194
118 => 0.097634089913419
119 => 0.098434572289801
120 => 0.097160947272257
121 => 0.097473450302051
122 => 0.096599664587224
123 => 0.098172304904912
124 => 0.099930761143685
125 => 0.10037501663314
126 => 0.099206371704397
127 => 0.098360195758533
128 => 0.09687458954528
129 => 0.099345185786813
130 => 0.10006766341789
131 => 0.099341390919385
201 => 0.099173097712113
202 => 0.098854182388432
203 => 0.099240757105642
204 => 0.10006372864955
205 => 0.099675630467344
206 => 0.099931976154104
207 => 0.098955050738698
208 => 0.10103288247311
209 => 0.1043329793248
210 => 0.10434358967579
211 => 0.10395548940159
212 => 0.10379668713112
213 => 0.10419490156435
214 => 0.10441091655877
215 => 0.10569866901579
216 => 0.10708047870849
217 => 0.11352878161354
218 => 0.11171812396111
219 => 0.11743944190972
220 => 0.12196426158693
221 => 0.12332105716173
222 => 0.12207286907508
223 => 0.11780288505641
224 => 0.11759337926942
225 => 0.12397453813406
226 => 0.12217156847921
227 => 0.12195711097576
228 => 0.1196756454708
301 => 0.12102427414924
302 => 0.12072930927407
303 => 0.12026369278845
304 => 0.12283678236061
305 => 0.1276533763384
306 => 0.12690266499723
307 => 0.12634229380555
308 => 0.12388691036517
309 => 0.12536559962602
310 => 0.12483906670266
311 => 0.12710138628747
312 => 0.12576123828195
313 => 0.1221579092108
314 => 0.12273175124211
315 => 0.12264501617349
316 => 0.12443001773962
317 => 0.12389420457593
318 => 0.12254039005378
319 => 0.12763691374382
320 => 0.12730597384374
321 => 0.12777517095866
322 => 0.12798172603905
323 => 0.13108389019835
324 => 0.13235474759623
325 => 0.13264325447505
326 => 0.1338504707114
327 => 0.13261321783534
328 => 0.13756311148593
329 => 0.14085450192928
330 => 0.14467762130263
331 => 0.15026422626471
401 => 0.15236484140943
402 => 0.15198538408542
403 => 0.15622108420862
404 => 0.1638325431757
405 => 0.1535238775626
406 => 0.16437892748459
407 => 0.16094234400687
408 => 0.15279426640268
409 => 0.1522696262645
410 => 0.15778759901918
411 => 0.17002593150386
412 => 0.16696036802246
413 => 0.17003094566751
414 => 0.16644895374123
415 => 0.16627107765069
416 => 0.1698569763148
417 => 0.17823562400066
418 => 0.17425524255402
419 => 0.16854838972069
420 => 0.17276224104436
421 => 0.16911181305427
422 => 0.16088637710214
423 => 0.16695802384384
424 => 0.16289808657821
425 => 0.16408299211046
426 => 0.17261637637273
427 => 0.17158961700176
428 => 0.17291833870315
429 => 0.17057317967889
430 => 0.1683824313526
501 => 0.16429323691447
502 => 0.16308262803619
503 => 0.163417196777
504 => 0.16308246224054
505 => 0.16079459553404
506 => 0.1603005309366
507 => 0.1594770682954
508 => 0.15973229380073
509 => 0.15818394312279
510 => 0.16110600075764
511 => 0.16164836040376
512 => 0.16377479027102
513 => 0.163995563274
514 => 0.16991764018649
515 => 0.16665585973955
516 => 0.16884414367193
517 => 0.16864840296009
518 => 0.1529708599515
519 => 0.15513108705395
520 => 0.15849172250875
521 => 0.1569777607916
522 => 0.15483737313602
523 => 0.15310889534382
524 => 0.1504900747427
525 => 0.15417601444878
526 => 0.15902263320628
527 => 0.16411848152383
528 => 0.17024080938415
529 => 0.16887437707748
530 => 0.16400402886308
531 => 0.16422250912619
601 => 0.1655730681439
602 => 0.16382397150474
603 => 0.16330812875943
604 => 0.16550219927199
605 => 0.16551730862977
606 => 0.16350476156103
607 => 0.16126818378635
608 => 0.16125881244381
609 => 0.16086083503158
610 => 0.16651975303875
611 => 0.16963158576155
612 => 0.16998835236825
613 => 0.16960757252635
614 => 0.16975411957489
615 => 0.16794341267805
616 => 0.17208215169578
617 => 0.17588026789731
618 => 0.17486229162038
619 => 0.17333620046741
620 => 0.17212059535756
621 => 0.17457593368899
622 => 0.17446660133815
623 => 0.1758470946657
624 => 0.17578446751424
625 => 0.17532025953117
626 => 0.17486230819871
627 => 0.17667803346744
628 => 0.1761551337497
629 => 0.17563142182427
630 => 0.17458103738154
701 => 0.17472380207235
702 => 0.17319797442053
703 => 0.17249205673168
704 => 0.16187674842469
705 => 0.15903999117985
706 => 0.1599324927566
707 => 0.16022632744945
708 => 0.1589917670611
709 => 0.16076180952546
710 => 0.16048595028232
711 => 0.16155915722509
712 => 0.16088866412048
713 => 0.16091618139137
714 => 0.16288795864783
715 => 0.16346037397392
716 => 0.16316923891911
717 => 0.16337313993197
718 => 0.16807195271212
719 => 0.16740393179436
720 => 0.16704905899595
721 => 0.16714736118635
722 => 0.16834800859536
723 => 0.16868412431697
724 => 0.16725997838609
725 => 0.16793161383998
726 => 0.17079135235941
727 => 0.17179209899403
728 => 0.1749860018661
729 => 0.17362917515895
730 => 0.176119689302
731 => 0.18377468069893
801 => 0.1898900175119
802 => 0.18426610105171
803 => 0.19549613832529
804 => 0.20424033319594
805 => 0.20390471643259
806 => 0.20237996380002
807 => 0.19242493041623
808 => 0.18326416027528
809 => 0.19092753348503
810 => 0.19094706899933
811 => 0.1902887784443
812 => 0.18620019234381
813 => 0.19014650451053
814 => 0.19045974843942
815 => 0.19028441513752
816 => 0.18714970576047
817 => 0.18236358393285
818 => 0.18329878068161
819 => 0.18483065203358
820 => 0.18193049998246
821 => 0.18100372567572
822 => 0.18272677543798
823 => 0.18827880078365
824 => 0.18722922255274
825 => 0.18720181382345
826 => 0.1916923545857
827 => 0.18847809651928
828 => 0.18331057650753
829 => 0.18200570955334
830 => 0.1773743109297
831 => 0.18057323445553
901 => 0.18068835801829
902 => 0.1789363402954
903 => 0.18345274308982
904 => 0.18341112364297
905 => 0.18769877591843
906 => 0.19589515670046
907 => 0.19347108358381
908 => 0.19065215028755
909 => 0.1909586464974
910 => 0.19432015342229
911 => 0.19228770959976
912 => 0.19301859056905
913 => 0.19431904714641
914 => 0.19510364488806
915 => 0.19084575495665
916 => 0.18985303713522
917 => 0.18782228486919
918 => 0.18729249950876
919 => 0.18894650485641
920 => 0.18851073288418
921 => 0.18067868232862
922 => 0.17986018946844
923 => 0.17988529147593
924 => 0.1778271522618
925 => 0.17468799595026
926 => 0.18293751130772
927 => 0.18227495977262
928 => 0.18154355415529
929 => 0.18163314717007
930 => 0.18521398218472
1001 => 0.18313691703972
1002 => 0.18865913515199
1003 => 0.18752393312118
1004 => 0.18635961744179
1005 => 0.18619867354897
1006 => 0.18575051134715
1007 => 0.1842135964033
1008 => 0.18235767925433
1009 => 0.18113224199578
1010 => 0.16708491862703
1011 => 0.16969202013475
1012 => 0.1726912527746
1013 => 0.17372657586321
1014 => 0.17195558407797
1015 => 0.1842835259533
1016 => 0.18653595972893
1017 => 0.17971319089993
1018 => 0.17843692942384
1019 => 0.1843671974432
1020 => 0.18079052088175
1021 => 0.18240109811837
1022 => 0.17891991107144
1023 => 0.18599341439134
1024 => 0.1859395261474
1025 => 0.18318777359364
1026 => 0.18551353600889
1027 => 0.18510937755504
1028 => 0.18200265569912
1029 => 0.18609190301553
1030 => 0.18609393123118
1031 => 0.18344542922645
1101 => 0.18035255871656
1102 => 0.17979962651974
1103 => 0.17938306638542
1104 => 0.18229864986092
1105 => 0.18491275288827
1106 => 0.18977695053106
1107 => 0.19099992538895
1108 => 0.19577327767732
1109 => 0.1929309787999
1110 => 0.19419093307832
1111 => 0.19555879167897
1112 => 0.19621459339346
1113 => 0.19514599969196
1114 => 0.20256098058598
1115 => 0.20318703216258
1116 => 0.20339694184089
1117 => 0.20089665200335
1118 => 0.20311749457921
1119 => 0.20207843588454
1120 => 0.20478177794925
1121 => 0.205205696503
1122 => 0.20484665256932
1123 => 0.20498121100937
1124 => 0.19865383290859
1125 => 0.19832572497449
1126 => 0.19385195001151
1127 => 0.1956750463774
1128 => 0.19226685510465
1129 => 0.1933476276655
1130 => 0.19382402191234
1201 => 0.19357518059292
1202 => 0.19577812151057
1203 => 0.19390517169947
1204 => 0.18896214920653
1205 => 0.18401777999041
1206 => 0.1839557074625
1207 => 0.18265394232326
1208 => 0.18171300455777
1209 => 0.18189426255296
1210 => 0.18253303936988
1211 => 0.18167587768794
1212 => 0.18185879659198
1213 => 0.18489646918137
1214 => 0.18550565275548
1215 => 0.18343540894726
1216 => 0.17512308132249
1217 => 0.17308321527347
1218 => 0.1745494305372
1219 => 0.1738486740775
1220 => 0.14030944831324
1221 => 0.14818899191218
1222 => 0.14350723466971
1223 => 0.14566480380433
1224 => 0.14088594199493
1225 => 0.14316666533198
1226 => 0.14274549901031
1227 => 0.15541557194477
1228 => 0.15521774618301
1229 => 0.15531243490646
1230 => 0.15079269542621
1231 => 0.15799276314254
]
'min_raw' => 0.091920345730945
'max_raw' => 0.205205696503
'avg_raw' => 0.14856302111697
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.09192'
'max' => '$0.2052056'
'avg' => '$0.148563'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.014173930806676
'max_diff' => 0.031044129609356
'year' => 2035
]
10 => [
'items' => [
101 => 0.16153977540567
102 => 0.16088331783644
103 => 0.16104853406379
104 => 0.15820957189033
105 => 0.15533992226596
106 => 0.15215703919662
107 => 0.15807044252322
108 => 0.15741297301846
109 => 0.15892097151231
110 => 0.16275623626841
111 => 0.1633209935725
112 => 0.1640800331164
113 => 0.16380797147203
114 => 0.17028958360287
115 => 0.16950461760677
116 => 0.17139615980724
117 => 0.16750511398922
118 => 0.16310202630468
119 => 0.16393890932573
120 => 0.16385831076101
121 => 0.16283219852546
122 => 0.16190587027978
123 => 0.16036379474209
124 => 0.16524314992758
125 => 0.1650450570178
126 => 0.16825195096936
127 => 0.16768510131331
128 => 0.16389954057862
129 => 0.16403474262084
130 => 0.16494404133065
131 => 0.1680911345475
201 => 0.16902540608471
202 => 0.16859261428439
203 => 0.16961700037382
204 => 0.17042663337132
205 => 0.16971867781298
206 => 0.17974183557298
207 => 0.17557952165891
208 => 0.17760820449943
209 => 0.1780920334032
210 => 0.17685271584002
211 => 0.17712147944284
212 => 0.17752858306741
213 => 0.18000043655677
214 => 0.18648729534941
215 => 0.18936028095113
216 => 0.19800379988451
217 => 0.1891217194908
218 => 0.18859469359793
219 => 0.1901516523671
220 => 0.1952263129904
221 => 0.19933884878695
222 => 0.20070321416854
223 => 0.20088353757694
224 => 0.20344317773411
225 => 0.20491031573773
226 => 0.20313237009381
227 => 0.20162574731925
228 => 0.19622921154968
229 => 0.19685387525928
301 => 0.20115718876928
302 => 0.20723587256605
303 => 0.21245201564294
304 => 0.21062550413835
305 => 0.22456049760217
306 => 0.22594209528476
307 => 0.22575120315743
308 => 0.22889868828768
309 => 0.22265157127833
310 => 0.21998080772464
311 => 0.201951496264
312 => 0.20701699737838
313 => 0.21438000073459
314 => 0.21340547963055
315 => 0.20805826977963
316 => 0.21244795930477
317 => 0.21099659066947
318 => 0.20985183600948
319 => 0.21509617902853
320 => 0.20932980845335
321 => 0.21432247677706
322 => 0.20791932800936
323 => 0.21063384748905
324 => 0.20909295494584
325 => 0.21009010126598
326 => 0.20426080425348
327 => 0.20740615142324
328 => 0.20412994747027
329 => 0.20412839412302
330 => 0.20405607173918
331 => 0.20791051116093
401 => 0.2080362042921
402 => 0.20518776773569
403 => 0.20477726352697
404 => 0.20629511274057
405 => 0.20451810883678
406 => 0.20534955777903
407 => 0.20454329257823
408 => 0.20436178529898
409 => 0.20291550441705
410 => 0.20229240684679
411 => 0.20253673945933
412 => 0.20170270629062
413 => 0.20120017113817
414 => 0.20395610484873
415 => 0.20248372064123
416 => 0.20373044085197
417 => 0.20230964582319
418 => 0.19738455124254
419 => 0.19455207726727
420 => 0.18524903016091
421 => 0.18788736277988
422 => 0.18963658003581
423 => 0.18905846374316
424 => 0.19030048124108
425 => 0.1903767310282
426 => 0.18997293847876
427 => 0.18950539843553
428 => 0.18927782579908
429 => 0.19097396578446
430 => 0.19195863213542
501 => 0.18981213738895
502 => 0.18930924370251
503 => 0.19147946840241
504 => 0.19280330421565
505 => 0.20257776406154
506 => 0.20185364050507
507 => 0.20367104852974
508 => 0.20346643627656
509 => 0.20537136942223
510 => 0.20848513003057
511 => 0.20215398409265
512 => 0.20325285211292
513 => 0.20298343505092
514 => 0.2059248598889
515 => 0.20593404269618
516 => 0.20417051157074
517 => 0.20512655040386
518 => 0.20459291575477
519 => 0.20555726569073
520 => 0.20184396939349
521 => 0.20636636345797
522 => 0.20893026947589
523 => 0.20896586931343
524 => 0.21018114041751
525 => 0.21141592624301
526 => 0.21378599010787
527 => 0.21134982644817
528 => 0.20696740518012
529 => 0.20728380184054
530 => 0.20471438985455
531 => 0.20475758213424
601 => 0.20452701836023
602 => 0.20521895760206
603 => 0.20199581114596
604 => 0.20275227717687
605 => 0.20169322030373
606 => 0.2032505499301
607 => 0.20157512068794
608 => 0.20298330512985
609 => 0.20359103085293
610 => 0.20583355185448
611 => 0.20124389851267
612 => 0.1918852846565
613 => 0.19385257875129
614 => 0.19094279625748
615 => 0.19121210770561
616 => 0.19175615969142
617 => 0.18999270920267
618 => 0.19032911998321
619 => 0.19031710102284
620 => 0.19021352811557
621 => 0.18975478653575
622 => 0.18908952048577
623 => 0.19173973567082
624 => 0.19219005887359
625 => 0.19319107157011
626 => 0.19616940636156
627 => 0.19587180048192
628 => 0.19635720801916
629 => 0.19529756609082
630 => 0.19126126145554
701 => 0.19148045221648
702 => 0.18874713991523
703 => 0.19312117462924
704 => 0.19208534547453
705 => 0.19141753968001
706 => 0.1912353226818
707 => 0.19422104018912
708 => 0.1951144136627
709 => 0.19455772326603
710 => 0.19341593502121
711 => 0.19560850599066
712 => 0.19619514548494
713 => 0.19632647243328
714 => 0.20021128780737
715 => 0.19654359045778
716 => 0.1974264416636
717 => 0.20431419475044
718 => 0.19806795314563
719 => 0.20137672663151
720 => 0.2012147793874
721 => 0.20290743593999
722 => 0.20107593214515
723 => 0.20109863582972
724 => 0.20260160017793
725 => 0.20049095781192
726 => 0.19996833308007
727 => 0.19924633075612
728 => 0.20082279641653
729 => 0.20176781628254
730 => 0.20938398236197
731 => 0.21430437298864
801 => 0.21409076585493
802 => 0.21604273520125
803 => 0.21516335513274
804 => 0.21232360492279
805 => 0.21717071226054
806 => 0.21563688468729
807 => 0.21576333156883
808 => 0.21575862520958
809 => 0.21677848645626
810 => 0.21605582129408
811 => 0.21463137407936
812 => 0.21557698861666
813 => 0.21838512572904
814 => 0.22710166949005
815 => 0.23197956285755
816 => 0.22680801418446
817 => 0.23037527920936
818 => 0.22823619134092
819 => 0.22784745544287
820 => 0.23008796149732
821 => 0.23233238926103
822 => 0.23218942891541
823 => 0.2305600896116
824 => 0.22963971718183
825 => 0.23660908556742
826 => 0.24174399747383
827 => 0.2413938309067
828 => 0.24293935225375
829 => 0.24747705072986
830 => 0.24789192101022
831 => 0.24783965689058
901 => 0.24681135761346
902 => 0.25127931105779
903 => 0.25500655642722
904 => 0.24657333604122
905 => 0.24978459596525
906 => 0.25122623400548
907 => 0.25334298636327
908 => 0.25691430239974
909 => 0.26079369886015
910 => 0.26134228805507
911 => 0.26095303776886
912 => 0.25839447151945
913 => 0.26263935341725
914 => 0.26512590567826
915 => 0.26660659064595
916 => 0.27036136136152
917 => 0.25123513707122
918 => 0.23769664488352
919 => 0.23558241383022
920 => 0.23988178581514
921 => 0.24101549592072
922 => 0.24055849879871
923 => 0.2253196949756
924 => 0.23550218468183
925 => 0.24645768743768
926 => 0.24687853291622
927 => 0.25236308666456
928 => 0.25414908218448
929 => 0.25856486682878
930 => 0.25828865829699
1001 => 0.2593638315874
1002 => 0.25911666786734
1003 => 0.26729597906776
1004 => 0.27631897396129
1005 => 0.27600653633949
1006 => 0.27470937406832
1007 => 0.27663588124005
1008 => 0.28594857893306
1009 => 0.28509121496243
1010 => 0.28592407102981
1011 => 0.29690426645052
1012 => 0.31118008241203
1013 => 0.30454753262942
1014 => 0.31893825719289
1015 => 0.32799645548607
1016 => 0.34366167279893
1017 => 0.34170031043854
1018 => 0.34779866458176
1019 => 0.33818906246476
1020 => 0.31612347358311
1021 => 0.31263150967891
1022 => 0.31962250984573
1023 => 0.33680920158404
1024 => 0.31908123976065
1025 => 0.32266758334857
1026 => 0.32163471615399
1027 => 0.32157967905059
1028 => 0.32368022143516
1029 => 0.32063327514942
1030 => 0.30821946784611
1031 => 0.31390864257819
1101 => 0.31171177899752
1102 => 0.3141493629273
1103 => 0.32730399806023
1104 => 0.32148802030063
1105 => 0.31536136018255
1106 => 0.32304555158534
1107 => 0.33283016781573
1108 => 0.33221786411667
1109 => 0.33102973901742
1110 => 0.3377271379937
1111 => 0.34878927894873
1112 => 0.35177933119759
1113 => 0.35398652663877
1114 => 0.35429086159924
1115 => 0.35742570083517
1116 => 0.34056888018237
1117 => 0.36732108747222
1118 => 0.37194045465636
1119 => 0.3710722050789
1120 => 0.37620643729139
1121 => 0.37469581593157
1122 => 0.37250716259043
1123 => 0.38064601272974
1124 => 0.37131547781636
1125 => 0.35807195818851
1126 => 0.35080630139355
1127 => 0.36037430436496
1128 => 0.36621714990232
1129 => 0.37007889912774
1130 => 0.37124746211002
1201 => 0.34187742718443
1202 => 0.32604860729635
1203 => 0.33619469936682
1204 => 0.34857363193866
1205 => 0.3405001145869
1206 => 0.3408165811819
1207 => 0.32930586712133
1208 => 0.34959207471942
1209 => 0.34663654490624
1210 => 0.36196983880526
1211 => 0.35831042515888
1212 => 0.37081413109849
1213 => 0.36752148627978
1214 => 0.38118907083298
1215 => 0.38664144034633
1216 => 0.3957968173528
1217 => 0.40253154994785
1218 => 0.40648631374257
1219 => 0.40624888455828
1220 => 0.42191962896846
1221 => 0.41267913848389
1222 => 0.40107090461887
1223 => 0.40086094829176
1224 => 0.4068730171004
1225 => 0.41947266399277
1226 => 0.42273956911456
1227 => 0.42456532339824
1228 => 0.42176911715782
1229 => 0.41173922700873
1230 => 0.40740837129506
1231 => 0.41109838584008
]
'min_raw' => 0.15215703919662
'max_raw' => 0.42456532339824
'avg_raw' => 0.28836118129743
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.152157'
'max' => '$0.424565'
'avg' => '$0.288361'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.060236693465673
'max_diff' => 0.21935962689524
'year' => 2036
]
11 => [
'items' => [
101 => 0.40658581513808
102 => 0.41437577817344
103 => 0.42507306126731
104 => 0.42286411461007
105 => 0.43024829210144
106 => 0.43789013896688
107 => 0.44881832320128
108 => 0.45167535522965
109 => 0.45639792052933
110 => 0.4612589915046
111 => 0.46282023649232
112 => 0.46580113759974
113 => 0.46578542677949
114 => 0.4747685729045
115 => 0.48467726126526
116 => 0.48841756173478
117 => 0.49701817642308
118 => 0.48228992517085
119 => 0.49346147293162
120 => 0.50353848865382
121 => 0.49152425508322
122 => 0.50808307710288
123 => 0.50872601863881
124 => 0.51843367249594
125 => 0.50859310555029
126 => 0.50274980831017
127 => 0.51961918849691
128 => 0.52778175018878
129 => 0.52532312017806
130 => 0.50661282439893
131 => 0.49572262973314
201 => 0.46722088973111
202 => 0.50098243194706
203 => 0.51742669432276
204 => 0.50657023773202
205 => 0.51204560295403
206 => 0.54191742021214
207 => 0.5532906741671
208 => 0.55092511684951
209 => 0.5513248570958
210 => 0.55746165849073
211 => 0.58467561547412
212 => 0.56836838163509
213 => 0.58083465088463
214 => 0.58744671514411
215 => 0.59358836892266
216 => 0.57850640833215
217 => 0.5588849992019
218 => 0.55267007527963
219 => 0.50549077708145
220 => 0.50303488972092
221 => 0.50165632572446
222 => 0.4929646747285
223 => 0.48613541788925
224 => 0.48070453929663
225 => 0.46645229207196
226 => 0.47126200713118
227 => 0.44854689973023
228 => 0.46307922047138
301 => 0.42682536058402
302 => 0.45701865238748
303 => 0.44058581637938
304 => 0.45162002379911
305 => 0.45158152648891
306 => 0.43126405223053
307 => 0.41954535709317
308 => 0.42701296573314
309 => 0.43501883497469
310 => 0.43631776032415
311 => 0.44669757877039
312 => 0.44959436298529
313 => 0.44081697157623
314 => 0.42607407991976
315 => 0.429498517402
316 => 0.41947596097689
317 => 0.40191181635396
318 => 0.4145266916627
319 => 0.41883396473001
320 => 0.42073630189647
321 => 0.40346398291546
322 => 0.39803664529133
323 => 0.39514717628002
324 => 0.4238444404358
325 => 0.42541654134667
326 => 0.41737345081401
327 => 0.45372898269874
328 => 0.44550060614556
329 => 0.45469371875666
330 => 0.42918778559374
331 => 0.43016214658886
401 => 0.41808722907882
402 => 0.42484837603816
403 => 0.42006981528924
404 => 0.4243021421788
405 => 0.42683898146587
406 => 0.43891191760076
407 => 0.45715650592511
408 => 0.43710862353915
409 => 0.42837347409262
410 => 0.4337927116809
411 => 0.44822485551727
412 => 0.47009029219722
413 => 0.45714551359977
414 => 0.46289018652472
415 => 0.46414514199612
416 => 0.45460014150011
417 => 0.47044222998036
418 => 0.47893213389782
419 => 0.48764101857906
420 => 0.49520269913038
421 => 0.4841624985249
422 => 0.49597709572335
423 => 0.48645661593855
424 => 0.47791576136248
425 => 0.47792871431336
426 => 0.47257091147581
427 => 0.46218949335146
428 => 0.4602750005698
429 => 0.47023443379378
430 => 0.47822095607757
501 => 0.47887876430573
502 => 0.48330051340437
503 => 0.48591725897331
504 => 0.51156492284199
505 => 0.52188062541858
506 => 0.53449447126298
507 => 0.53940827509677
508 => 0.55419706294031
509 => 0.54225391567003
510 => 0.53966994063219
511 => 0.5037971786994
512 => 0.50967134145626
513 => 0.5190764428024
514 => 0.50395226535648
515 => 0.51354507484014
516 => 0.51543889863571
517 => 0.50343835159421
518 => 0.5098483622821
519 => 0.49282527433078
520 => 0.45752756272372
521 => 0.47048152642376
522 => 0.48002000396403
523 => 0.46640742042827
524 => 0.49080744953638
525 => 0.47655345625026
526 => 0.4720356246909
527 => 0.45440995305461
528 => 0.46272859159262
529 => 0.47397966932672
530 => 0.46702781136522
531 => 0.48145396046205
601 => 0.50188523489659
602 => 0.51644577776206
603 => 0.5175635554443
604 => 0.5082021018624
605 => 0.52320389097139
606 => 0.52331316262722
607 => 0.50639108322818
608 => 0.4960264038188
609 => 0.49367152684951
610 => 0.49955447121961
611 => 0.50669745173634
612 => 0.51795994115036
613 => 0.52476562762683
614 => 0.54251124850027
615 => 0.5473127047018
616 => 0.55258804935672
617 => 0.55963753667173
618 => 0.56810225364486
619 => 0.54958193480427
620 => 0.550317781598
621 => 0.53307191712491
622 => 0.51464223762828
623 => 0.52862806707424
624 => 0.54691267861792
625 => 0.5427181685271
626 => 0.54224620045581
627 => 0.54303991983868
628 => 0.5398773962101
629 => 0.52557341904661
630 => 0.51839005126273
701 => 0.5276584283765
702 => 0.53258415832446
703 => 0.54022353590495
704 => 0.53928182137046
705 => 0.55896003760855
706 => 0.5666063974003
707 => 0.56465013135938
708 => 0.56501013139108
709 => 0.5788535005563
710 => 0.59425017417403
711 => 0.60867119078706
712 => 0.62334086828291
713 => 0.60565599949441
714 => 0.59667671377467
715 => 0.60594104460493
716 => 0.6010252602615
717 => 0.62927281521522
718 => 0.63122861463236
719 => 0.65947412696634
720 => 0.68628248158433
721 => 0.66944463437033
722 => 0.68532196589983
723 => 0.70249459444683
724 => 0.73562338107254
725 => 0.72446677122177
726 => 0.71592098292244
727 => 0.70784525427252
728 => 0.72464956360718
729 => 0.74626803911082
730 => 0.75092445167512
731 => 0.75846961891579
801 => 0.75053679814138
802 => 0.76009100699261
803 => 0.79382156256956
804 => 0.78470726870482
805 => 0.77176350622103
806 => 0.79839054033204
807 => 0.80802676046684
808 => 0.87565879990052
809 => 0.96104704342575
810 => 0.92569574991687
811 => 0.90375206125679
812 => 0.90890934860317
813 => 0.94009024456412
814 => 0.95010455871461
815 => 0.92288220071248
816 => 0.93249759777008
817 => 0.98547938092241
818 => 1.0139024077245
819 => 0.97530011960547
820 => 0.86879793767395
821 => 0.77059806203014
822 => 0.79664509104891
823 => 0.7936921662916
824 => 0.85061448267672
825 => 0.78448989581044
826 => 0.78560326426731
827 => 0.8437026738735
828 => 0.82820274746661
829 => 0.80309485176804
830 => 0.7707813774548
831 => 0.71104693155218
901 => 0.65813846699796
902 => 0.76190415008046
903 => 0.75742958514029
904 => 0.75094975201356
905 => 0.76536991944593
906 => 0.83539015926159
907 => 0.83377596610044
908 => 0.8235072927778
909 => 0.83129599098909
910 => 0.8017294553138
911 => 0.80934942477482
912 => 0.77058250666812
913 => 0.78810677270186
914 => 0.8030409815004
915 => 0.80603924502145
916 => 0.81279448582949
917 => 0.75507169274263
918 => 0.78098753218646
919 => 0.79621065987395
920 => 0.72743201515977
921 => 0.79485112720815
922 => 0.75406686733661
923 => 0.74022407697718
924 => 0.7588615705472
925 => 0.75159852117741
926 => 0.74535417782983
927 => 0.74186972695044
928 => 0.75555504528316
929 => 0.75491660882545
930 => 0.73252477182729
1001 => 0.70331553327124
1002 => 0.71311911249123
1003 => 0.70955738025156
1004 => 0.69664920314241
1005 => 0.70534775597473
1006 => 0.66704373153805
1007 => 0.60114364836468
1008 => 0.64467926188314
1009 => 0.64300318812032
1010 => 0.64215803572521
1011 => 0.67487384604836
1012 => 0.67172897576795
1013 => 0.66602100541435
1014 => 0.69654437179063
1015 => 0.68540293246607
1016 => 0.71973822321109
1017 => 0.74235366636313
1018 => 0.73661765844683
1019 => 0.75788759204125
1020 => 0.71334496715601
1021 => 0.72814024040295
1022 => 0.73118952571379
1023 => 0.69616771818756
1024 => 0.67224351543909
1025 => 0.67064804387165
1026 => 0.62916677326402
1027 => 0.6513257331975
1028 => 0.67082470093889
1029 => 0.66148620857179
1030 => 0.65852992086789
1031 => 0.67363295360654
1101 => 0.67480658859907
1102 => 0.64804758639331
1103 => 0.65361163029928
1104 => 0.67681461833251
1105 => 0.65302697453358
1106 => 0.60681146832182
1107 => 0.59534938380194
1108 => 0.59382013043886
1109 => 0.56273404815156
1110 => 0.59611533509765
1111 => 0.58154350878281
1112 => 0.62757573351411
1113 => 0.60128237362336
1114 => 0.60014891943034
1115 => 0.59843553717602
1116 => 0.57167846200145
1117 => 0.57753656096384
1118 => 0.5970097741285
1119 => 0.6039580359671
1120 => 0.6032332753319
1121 => 0.59691434476042
1122 => 0.59980711881789
1123 => 0.5904884856695
1124 => 0.58719788235423
1125 => 0.57681183313948
1126 => 0.56154721001312
1127 => 0.56366984948222
1128 => 0.533426636863
1129 => 0.51694852949927
1130 => 0.51238760655896
1201 => 0.50628854978907
1202 => 0.51307651125008
1203 => 0.53334096164151
1204 => 0.50889773512647
1205 => 0.46699153775942
1206 => 0.46951017162587
1207 => 0.47516879413467
1208 => 0.46462398852506
1209 => 0.45464421497401
1210 => 0.46332081839202
1211 => 0.44556461012797
1212 => 0.47731454707209
1213 => 0.47645580025592
1214 => 0.48829021334576
1215 => 0.49569051471744
1216 => 0.47863521593174
1217 => 0.47434585440956
1218 => 0.47678926967321
1219 => 0.43640505813997
1220 => 0.48498996169227
1221 => 0.48541012595572
1222 => 0.48181242444292
1223 => 0.50768238569391
1224 => 0.56227607297675
1225 => 0.54173573179496
1226 => 0.53378189085428
1227 => 0.51866163341181
1228 => 0.53880847870185
1229 => 0.53726151532332
1230 => 0.53026556025717
1231 => 0.52603438480445
]
'min_raw' => 0.39514717628002
'max_raw' => 1.0139024077245
'avg_raw' => 0.70452479200227
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.395147'
'max' => '$1.01'
'avg' => '$0.704524'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.24299013708341
'max_diff' => 0.58933708432627
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.012403218338865
]
1 => [
'year' => 2028
'avg' => 0.021287523349504
]
2 => [
'year' => 2029
'avg' => 0.058153677088053
]
3 => [
'year' => 2030
'avg' => 0.044865475268379
]
4 => [
'year' => 2031
'avg' => 0.044063456830687
]
5 => [
'year' => 2032
'avg' => 0.07725710710441
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.012403218338865
'min' => '$0.0124032'
'max_raw' => 0.07725710710441
'max' => '$0.077257'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.07725710710441
]
1 => [
'year' => 2033
'avg' => 0.19871322372718
]
2 => [
'year' => 2034
'avg' => 0.12595399090896
]
3 => [
'year' => 2035
'avg' => 0.14856302111697
]
4 => [
'year' => 2036
'avg' => 0.28836118129743
]
5 => [
'year' => 2037
'avg' => 0.70452479200227
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.07725710710441
'min' => '$0.077257'
'max_raw' => 0.70452479200227
'max' => '$0.704524'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.70452479200227
]
]
]
]
'prediction_2025_max_price' => '$0.0212072'
'last_price' => 0.0205631
'sma_50day_nextmonth' => '$0.019995'
'sma_200day_nextmonth' => '$0.059152'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'augmenter'
'sma_200day_date_nextmonth' => '4 févr. 2026'
'sma_50day_date_nextmonth' => '4 févr. 2026'
'daily_sma3' => '$0.020194'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.020466'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.020657'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.021988'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.026337'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.041152'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.069437'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.020248'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.020367'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.0208013'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.022333'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.028125'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.03972'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.061859'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.044273'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '—'
'weekly_sma50_action' => '—'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.021107'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.022268'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.0275019'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.041464'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.042831'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.021415'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.0107078'
'weekly_ema200_action' => 'BUY'
'rsi_14' => '36.69'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 75.56
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => -0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.019712'
'vwma_10_action' => 'BUY'
'hma_9' => '0.020154'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 59.84
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => -61.43
'cci_20_action' => 'NEUTRAL'
'adx_14' => 38.48
'adx_14_action' => 'SELL'
'ao_5_34' => '-0.004121'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -40.16
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 42.28
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.011540'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 18
'buy_signals' => 12
'sell_pct' => 60
'buy_pct' => 40
'overall_action' => 'bearish'
'overall_action_label' => 'Baissier'
'overall_action_dir' => -1
'last_updated' => 1767693170
'last_updated_date' => '6 janvier 2026'
]
Prévision du prix de Kolytics pour 2026
La prévision du prix de Kolytics pour 2026 suggère que le prix moyen pourrait varier entre $0.0071045 à la baisse et $0.0212072 à la hausse. Sur le marché des cryptomonnaies, comparé au prix moyen d'aujourd'hui, Kolytics pourrait potentiellement gagner 3.13% d'ici 2026 si KOLT atteint l'objectif de prix prévu.
Prévision du prix de Kolytics de 2027 à 2032
La prévision du prix de KOLT pour 2027-2032 se situe actuellement dans une fourchette de prix comprise entre $0.0124032 à la baisse et $0.077257 à la hausse. Compte tenu de la volatilité des prix sur le marché, si Kolytics atteint l'objectif de prix le plus élevé, il pourrait gagner 275.71% d'ici 2032 par rapport au prix actuel.
| Prévision du Prix de Kolytics | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2027 | $0.006839 | $0.0124032 | $0.017967 |
| 2028 | $0.012343 | $0.021287 | $0.030231 |
| 2029 | $0.027114 | $0.058153 | $0.089193 |
| 2030 | $0.023059 | $0.044865 | $0.066671 |
| 2031 | $0.027263 | $0.044063 | $0.060863 |
| 2032 | $0.041615 | $0.077257 | $0.112898 |
Prévision du prix de Kolytics de 2032 à 2037
La prévision du prix de Kolytics pour 2032-2037 est actuellement estimée entre $0.077257 à la baisse et $0.704524 à la hausse. Par rapport au prix actuel, Kolytics pourrait potentiellement gagner 3326.16% d'ici 2037 s'il atteint l'objectif de prix le plus élevé. Veuillez noter que ces informations sont à titre général seulement et ne doivent pas être considérées comme un conseil en investissement à long terme.
| Prévision du Prix de Kolytics | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2032 | $0.041615 | $0.077257 | $0.112898 |
| 2033 | $0.0967052 | $0.198713 | $0.300721 |
| 2034 | $0.077746 | $0.125953 | $0.174161 |
| 2035 | $0.09192 | $0.148563 | $0.2052056 |
| 2036 | $0.152157 | $0.288361 | $0.424565 |
| 2037 | $0.395147 | $0.704524 | $1.01 |
Kolytics Histogramme des prix potentiels
Prévision du prix de Kolytics basée sur l'analyse technique
Au 6 janvier 2026, le sentiment global de prévision du prix pour Kolytics est Baissier, avec 12 indicateurs techniques montrant des signaux haussiers et 18 indiquant des signaux baissiers. La prévision du prix de KOLT a été mise à jour pour la dernière fois le 6 janvier 2026.
Moyennes Mobiles Simples sur 50 et 200 jours de Kolytics et Indice de Force Relative sur 14 jours - RSI (14)
Selon nos indicateurs techniques, le SMA sur 200 jours de Kolytics devrait augmenter au cours du prochain mois, atteignant $0.059152 d'ici le 4 févr. 2026. Le SMA à court terme sur 50 jours pour Kolytics devrait atteindre $0.019995 d'ici le 4 févr. 2026.
Le Relative Strength Index (RSI), un oscillateur de momentum, est un outil couramment utilisé pour identifier si une cryptomonnaie est survendue (en dessous de 30) ou surachetée (au-dessus de 70). Actuellement, le RSI est à 36.69, ce qui suggère que le marché de KOLT est dans un état NEUTRAL.
Moyennes Mobiles et Oscillateurs Populaires de KOLT pour le Samedi 19 Octobre 2024
Les moyennes mobiles (MA) sont des indicateurs largement utilisés sur les marchés financiers, conçus pour lisser les mouvements de prix sur une période donnée. En tant qu'indicateurs retardés, ils sont basés sur des données historiques de prix. Le tableau ci-dessous met en évidence deux types : la moyenne mobile simple (SMA) et la moyenne mobile exponentielle (EMA).
Moyenne Mobile Simple Quotidienne (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 3 | $0.020194 | BUY |
| SMA 5 | $0.020466 | BUY |
| SMA 10 | $0.020657 | SELL |
| SMA 21 | $0.021988 | SELL |
| SMA 50 | $0.026337 | SELL |
| SMA 100 | $0.041152 | SELL |
| SMA 200 | $0.069437 | SELL |
Moyenne Mobile Exponentielle Quotidienne (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 3 | $0.020248 | BUY |
| EMA 5 | $0.020367 | BUY |
| EMA 10 | $0.0208013 | SELL |
| EMA 21 | $0.022333 | SELL |
| EMA 50 | $0.028125 | SELL |
| EMA 100 | $0.03972 | SELL |
| EMA 200 | $0.061859 | SELL |
Moyenne Mobile Simple Hebdomadaire (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 21 | $0.044273 | SELL |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Moyenne Mobile Exponentielle Hebdomadaire (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 21 | $0.041464 | SELL |
| EMA 50 | $0.042831 | SELL |
| EMA 100 | $0.021415 | SELL |
| EMA 200 | $0.0107078 | BUY |
Oscillateurs de Kolytics
Un oscillateur est un outil d'analyse technique qui établit des limites hautes et basses entre deux extrêmes, créant un indicateur de tendance qui fluctue à l'intérieur de ces limites. Les traders utilisent cet indicateur pour identifier les conditions de surachat ou de survente à court terme.
| Période | Valeur | Action |
|---|---|---|
| RSI (14) | 36.69 | NEUTRAL |
| Stoch RSI (14) | 75.56 | NEUTRAL |
| Stochastique Rapide (14) | 59.84 | NEUTRAL |
| Indice de Canal des Matières Premières (20) | -61.43 | NEUTRAL |
| Indice Directionnel Moyen (14) | 38.48 | SELL |
| Oscillateur Impressionnant (5, 34) | -0.004121 | NEUTRAL |
| Momentum (10) | -0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Plage de Pourcentage de Williams (14) | -40.16 | NEUTRAL |
| Oscillateur Ultime (7, 14, 28) | 42.28 | NEUTRAL |
| VWMA (10) | 0.019712 | BUY |
| Moyenne Mobile de Hull (9) | 0.020154 | SELL |
| Nuage Ichimoku B/L (9, 26, 52, 26) | -0.011540 | SELL |
Prévision du cours de Kolytics basée sur les flux monétaires mondiaux
Définitions des flux monétaires mondiaux utilisés pour la prédiction du cours de Kolytics
M0 : le total de toutes les devises physiques, plus les comptes à la banque centrale qui peuvent être échangés contre des devises physiques.
M1 : M0 plus le montant des comptes à vue, y compris les comptes de "chèques" et les comptes "courants".
M2 : M1 plus la plupart des comptes d'épargne, comptes du marché monétaire et comptes de certificats de dépôt (CD) de moins de 100 000 $.
Prédictions du cours de Kolytics par des sociétés Internet ou des niches technologiques
| Comparaison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Action Facebook | $0.028894 | $0.0406017 | $0.057052 | $0.080167 | $0.112649 | $0.158291 |
| Action Amazon.com | $0.0429061 | $0.089526 | $0.1868017 | $0.389772 | $0.813284 | $1.69 |
| Action Apple | $0.029167 | $0.041371 | $0.058682 | $0.083236 | $0.118064 | $0.167465 |
| Action Netflix | $0.032445 | $0.051193 | $0.080775 | $0.127451 | $0.201098 | $0.3173012 |
| Action Google | $0.026629 | $0.034484 | $0.044657 | $0.057831 | $0.074891 | $0.096983 |
| Action Tesla | $0.046614 | $0.105672 | $0.239551 | $0.543046 | $1.23 | $2.79 |
| Action Kodak | $0.01542 | $0.011563 | $0.008671 | $0.0065026 | $0.004876 | $0.003656 |
| Action Nokia | $0.013622 | $0.009024 | $0.005978 | $0.00396 | $0.002623 | $0.001737 |
Ce calcul montre la valeur potentielle des cryptomonnaies si l'on suppose que leur capitalisation se comportera comme celle de certaines sociétés Internet ou niches technologiques. En extrapolant les données, vous pourrez obtenir une potentielle image des cours futurs pour 2024, 2025, 2026, 2027, 2028, 2029 et 2030.
Aperçu des prévisions relatives à Kolytics
Vous vous posez peut-être des questions telles que : "Devrais-je investir dans Kolytics maintenant ?", "Devrais-je acheter KOLT aujourd'hui ?", " Kolytics sera-t-il un bon ou un mauvais investissement à court ou à long terme ?".
Nous mettons régulièrement à jour les prévisions de Kolytics avec de nouvelles valeurs. Regardez nos prévisions similaires. Nous faisons une prévision des cours futurs pour une grande quantité de devises numériques comme Kolytics en utilisant des méthodes d'analyse technique.
Si vous souhaitez trouver des cryptomonnaies ayant un bon rendement, vous devriez consulter un maximum d'informations disponibles à propos de Kolytics afin de prendre une décision responsable concernant cet investissement.
Le cours de Kolytics est de $0.02056 USD actuellement, mais ce cours peut subir une hausse ou une baisse, ce qui pourrait causer la perte de votre investissement, car les cryptomonnaies sont des actifs à haut risque.
Prévision du cours de Kolytics basée sur le modèle de croissance du Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Kolytics présente 1 % de la précédente croissance annuelle moyenne du Bitcoin | $0.021097 | $0.021645 | $0.0222086 | $0.022785 |
| Si Kolytics présente 2 % de la précédente croissance annuelle moyenne du Bitcoin | $0.021632 | $0.022756 | $0.023939 | $0.025184 |
| Si Kolytics présente 5 % de la précédente croissance annuelle moyenne du Bitcoin | $0.023235 | $0.026255 | $0.029667 | $0.033523 |
| Si Kolytics présente 10 % de la précédente croissance annuelle moyenne du Bitcoin | $0.0259081 | $0.032642 | $0.041127 | $0.051817 |
| Si Kolytics présente 20 % de la précédente croissance annuelle moyenne du Bitcoin | $0.031253 | $0.0475005 | $0.072194 | $0.109725 |
| Si Kolytics présente 50 % de la précédente croissance annuelle moyenne du Bitcoin | $0.047288 | $0.108746 | $0.25008 | $0.57510029 |
| Si Kolytics présente 100 % de la précédente croissance annuelle moyenne du Bitcoin | $0.074013 | $0.266397 | $0.958849 | $3.45 |
Boîte à questions
Est-ce que KOLT est un bon investissement ?
La décision d'acquérir Kolytics dépend entièrement de votre tolérance individuelle au risque. Comme vous pouvez le discerner, la valeur de Kolytics a connu une hausse de 4.6367% au cours des 24 heures précédentes, et Kolytics a enregistré une déclin de sur une période de 30 jours précédents. Par conséquent, la détermination de si investir ou non dans Kolytics dépendra de la mesure dans laquelle cet investissement s'aligne avec vos aspirations de trading.
Est-ce que Kolytics peut monter ?
Il semble que la valeur moyenne de Kolytics pourrait potentiellement s'envoler jusqu'à $0.0212072 pour la fin de cette année. En regardant les perspectives de Kolytics sur une période de cinq ans plus longue, la monnaie numérique pourrait potentiellement croître jusqu'à $0.066671. Cependant, compte tenu de l'imprévisibilité du marché, il est essentiel de mener des recherches approfondies avant d'investir des fonds dans un projet, un réseau ou un actif particulier.
Quel sera le prix de Kolytics la semaine prochaine ?
Basé sur notre nouveau pronostic expérimental de Kolytics, le prix de Kolytics va augmenter de 0.86% durant la prochaine semaine et atteindre $0.020739 d'ici 13 janvier 2026.
Quel sera le prix de Kolytics le mois prochain ?
Basé sur notre nouveau pronostic expérimental de Kolytics, le prix de Kolytics va diminuer de -11.62% durant le prochain mois et atteindre $0.018174 d'ici 5 février 2026.
Jusqu'où le prix de Kolytics peut-il monter cette année en 2026 ?
Selon notre prédiction la plus récente sur la valeur de Kolytics en 2026, KOLT devrait fluctuer dans la fourchette de $0.0071045 et $0.0212072. Cependant, il est crucial de garder à l'esprit que le marché des cryptomonnaies est exceptionnellement instable, et cette prévision de prix de Kolytics ne prend pas en compte les fluctuations de prix soudaines et extrêmes.
Où sera Kolytics dans 5 ans ?
L'avenir de Kolytics semble suivre une tendance haussière, avec un prix maximum de $0.066671 prévue après une période de cinq ans. Selon la prévision de Kolytics pour 2030, la valeur de Kolytics pourrait potentiellement atteindre son point le plus élevé d'environ $0.066671, tandis que son point le plus bas devrait être autour de $0.023059.
Combien vaudra Kolytics en 2026 ?
Basé sur notre nouvelle simulation expérimentale de prédiction de prix de Kolytics, il est attendu que la valeur de KOLT en 2026 augmente de 3.13% jusqu'à $0.0212072 si le meilleur scénario se produit. Le prix sera entre $0.0212072 et $0.0071045 durant 2026.
Combien vaudra Kolytics en 2027 ?
Selon notre dernière simulation expérimentale pour la prédiction de prix de Kolytics, le valeur de KOLT pourrait diminuer de -12.62% jusqu'à $0.017967 en 2027, en supposant les conditions les plus favorables. Il est prévu que le prix fluctue entre $0.017967 et $0.006839 tout au long de l'année.
Combien vaudra Kolytics en 2028 ?
Notre nouveau modèle expérimental de prédiction de prix de Kolytics suggère que la valeur de KOLT en 2028 pourrait augmenter de 47.02%, atteignant $0.030231 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.030231 et $0.012343 durant l'année.
Combien vaudra Kolytics en 2029 ?
Basé sur notre modèle de prévision expérimental, la valeur de Kolytics pourrait connaître un 333.75% croissance en 2029, atteignant potentiellement $0.089193 sous des conditions optimales. Le range de prix prévu pour 2029 se situe entre $0.089193 et $0.027114.
Combien vaudra Kolytics en 2030 ?
En utilisant notre nouvelle simulation expérimentale pour les prédictions de prix de Kolytics, il est prévu que la valeur de KOLT en 2030 augmente de 224.23%, atteignant $0.066671 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.066671 et $0.023059 au cours de 2030.
Combien vaudra Kolytics en 2031 ?
Notre simulation expérimentale indique que le prix de Kolytics pourrait augmenter de 195.98% en 2031, atteignant potentiellement $0.060863 dans des conditions idéales. Il est probable que le prix fluctue entre $0.060863 et $0.027263 durant l'année.
Combien vaudra Kolytics en 2032 ?
Basé sur les résultats de notre dernière prédiction expérimentale de prix de Kolytics, KOLT pourrait connaître une 449.04% hausse en valeur, atteignant $0.112898 si le scénario le plus positif se réalise en 2032. Il est prévu que le prix reste dans une fourchette de $0.112898 et $0.041615 tout au long de l'année.
Combien vaudra Kolytics en 2033 ?
Selon notre prédiction expérimentale de prix de Kolytics, la valeur de KOLT est anticipée à augmenter de 1362.43% en 2033, avec le prix potentiel le plus élevé étant $0.300721. Tout au long de l'année, le prix de KOLT pourrait osciller entre $0.300721 et $0.0967052.
Combien vaudra Kolytics en 2034 ?
Les résultats de notre nouvelle simulation de prédiction de prix de Kolytics suggèrent que KOLT pourrait augmenter de 746.96% en 2034, atteignant potentiellement $0.174161 dans les meilleures circonstances. La fourchette de prix prévue pour l'année est entre $0.174161 et $0.077746.
Combien vaudra Kolytics en 2035 ?
Basé sur notre prédiction expérimentale pour le prix de Kolytics, KOLT pourrait augmenter de 897.93%, avec la valeur potentiellement atteignant $0.2052056 en 2035. La fourchette de prix attendue pour l'année se situe entre $0.2052056 et $0.09192.
Combien vaudra Kolytics en 2036 ?
Notre récente simulation de prédiction de prix de Kolytics suggère que la valeur de KOLT pourrait augmenter de 1964.7% en 2036, pouvant atteindre $0.424565 si les conditions sont optimales. La fourchette de prix attendue pour 2036 est entre $0.424565 et $0.152157.
Combien vaudra Kolytics en 2037 ?
Selon la simulation expérimentale, la valeur de Kolytics pourrait augmenter de 4830.69% en 2037, avec un maximum de $1.01 sous des conditions favorables. Il est prévu que le prix chute entre $1.01 et $0.395147 au cours de l'année.
Prévisions liées
Comment lire et prédire les mouvements de prix de Kolytics ?
Les traders de Kolytics utilisent des indicateurs et des modèles graphiques pour prédire la direction du marché. Ils identifient également des niveaux clés de support et de résistance pour évaluer quand une tendance baissière pourrait ralentir ou une tendance haussière pourrait s'arrêter.
Indicateurs de prédiction du prix de Kolytics
Les moyennes mobiles sont des outils populaires pour la prédiction du prix de Kolytics. Une moyenne mobile simple (SMA) calcule le prix de clôture moyen de KOLT sur une période spécifique, comme une SMA de 12 jours. Une moyenne mobile exponentielle (EMA) donne plus de poids aux prix récents, réagissant plus rapidement aux changements de prix.
Les moyennes mobiles couramment utilisées sur le marché des cryptomonnaies incluent les moyennes sur 50 jours, 100 jours et 200 jours, qui aident à identifier les niveaux clés de résistance et de support. Un mouvement de prix de KOLT au-dessus de ces moyennes est considéré comme haussier, tandis qu'une chute en dessous indique une faiblesse.
Les traders utilisent également le RSI et les niveaux de retracement de Fibonacci pour évaluer la direction future de KOLT.
Comment lire les graphiques de Kolytics et prédire les mouvements de prix ?
La plupart des traders préfèrent les graphiques en chandeliers aux simples graphiques linéaires parce qu'ils fournissent des informations plus détaillées. Les chandeliers peuvent représenter l'action des prix de Kolytics dans différentes périodes, comme 5 minutes pour les tendances à court terme et hebdomadaire pour les tendances à long terme. Les options populaires incluent les graphiques de 1 heure, 4 heures et 1 jour.
Par exemple, un graphique en chandeliers de 1 heure montre les prix d'ouverture, de clôture, les plus hauts et les plus bas de KOLT au sein de chaque heure. La couleur du chandelier est cruciale : le vert indique que le prix a clôturé plus haut qu'il n'a ouvert, tandis que le rouge signifie le contraire. Certains graphiques utilisent des chandeliers creux et pleins pour transmettre la même information.
Qu'est-ce qui affecte le prix de Kolytics ?
L'action du prix de Kolytics est déterminée par l'offre et la demande, influencée par des facteurs tels que les réductions de récompenses de bloc, les hard forks et les mises à jour de protocole. Les événements du monde réel, tels que les réglementations, l'adoption par les entreprises et les gouvernements et les piratages d'échanges de cryptomonnaies, impactent également le prix de KOLT. La capitalisation boursière de Kolytics peut changer rapidement.
Les traders surveillent souvent l'activité des « baleines » de KOLT, de grands détenteurs de Kolytics, car leurs actions peuvent influencer significativement les mouvements de prix sur le marché relativement petit de Kolytics.
Modèles de prédiction de prix haussiers et baissiers
Les traders identifient souvent des modèles de chandeliers pour obtenir un avantage dans les prédictions de prix des cryptomonnaies. Certaines formations indiquent des tendances haussières, tandis que d'autres suggèrent des mouvements baissiers.
Modèles de chandeliers haussiers couramment suivis :
- Marteau
- Englobante haussière
- Ligne pénétrante
- Étoile du matin
- Trois soldats blancs
Modèles de chandeliers baissiers courants :
- Harami baissier
- Nuage sombre
- Étoile du soir
- Étoile filante
- Pendu


