Prédiction du prix de Kolin jusqu'à $0.000967 d'ici 2026
| Année | Prix min. | Prix max. |
|---|---|---|
| 2026 | $0.000324 | $0.000967 |
| 2027 | $0.000312 | $0.000819 |
| 2028 | $0.000563 | $0.001379 |
| 2029 | $0.001236 | $0.004069 |
| 2030 | $0.001051 | $0.003041 |
| 2031 | $0.001243 | $0.002776 |
| 2032 | $0.001898 | $0.00515 |
| 2033 | $0.004411 | $0.013719 |
| 2034 | $0.003546 | $0.007945 |
| 2035 | $0.004193 | $0.009361 |
Calculateur de profit d’investissement
Si vous ouvrez une position short de $10,000.00 sur Kolin aujourd’hui et la fermez le Apr 06, 2026, notre prévision indique que vous pourriez gagner environ $3,956.27, soit un rendement de 39.56% sur les 90 prochains jours.
Prévision du prix à long terme de Kolin pour 2027, 2028, 2029, 2030, 2031, 2032 et 2037
[
'name' => 'Kolin'
'name_with_ticker' => 'Kolin <small>KOLIN</small>'
'name_lang' => 'Kolin'
'name_lang_with_ticker' => 'Kolin <small>KOLIN</small>'
'name_with_lang' => 'Kolin'
'name_with_lang_with_ticker' => 'Kolin <small>KOLIN</small>'
'image' => '/uploads/coins/kolin.png?ts=1630513587'
'price_for_sd' => 0.0009
'ticker' => 'KOLIN'
'marketcap' => '$956.89K'
'low24h' => '$0'
'high24h' => '$0'
'volume24h' => '$0'
'current_supply' => '1.02B'
'max_supply' => '2B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.0009381'
'change_24h_pct' => '0%'
'ath_price' => '$0.0006427'
'ath_days' => 1728
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '14 avr. 2021'
'ath_pct' => '145.96%'
'fdv' => '$0'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.046254'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.000946'
'next_week_prediction_price_date' => '13 janvier 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.000829'
'next_month_prediction_price_date' => '5 février 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.000324'
'current_year_max_price_prediction' => '$0.000967'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.001051'
'grand_prediction_max_price' => '$0.003041'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0009558765015594
107 => 0.00095944539743305
108 => 0.00096748630206873
109 => 0.00089877765233953
110 => 0.00092962581888797
111 => 0.00094774622665286
112 => 0.00086587756514501
113 => 0.00094612794644266
114 => 0.00089758158761069
115 => 0.00088110422428128
116 => 0.00090328882327678
117 => 0.000894643463473
118 => 0.00088721069078628
119 => 0.00088306307591584
120 => 0.00089935299699329
121 => 0.00089859305270436
122 => 0.00087193958008421
123 => 0.00083717121158575
124 => 0.00084884061728663
125 => 0.00084460101279424
126 => 0.00082923613919395
127 => 0.00083959020883863
128 => 0.0007939961261982
129 => 0.00071555387678953
130 => 0.00076737522949998
131 => 0.00076538016379141
201 => 0.00076437416119212
202 => 0.00080331647551703
203 => 0.00079957307054675
204 => 0.00079277875387015
205 => 0.00082911135624002
206 => 0.00081584946763255
207 => 0.00085671948342683
208 => 0.00088363911913583
209 => 0.00087681142876104
210 => 0.00090212947625925
211 => 0.00084910945682509
212 => 0.00086672058048715
213 => 0.00087035020866594
214 => 0.00082866301756654
215 => 0.00080018553789536
216 => 0.00079828641466833
217 => 0.00074891038935693
218 => 0.00077528666352892
219 => 0.0007984966932759
220 => 0.00078738089019816
221 => 0.00078386195901893
222 => 0.0008018394152506
223 => 0.0008032364175663
224 => 0.00077138461672064
225 => 0.00077800761473181
226 => 0.00080562661742017
227 => 0.00077731168672712
228 => 0.0007223004016082
301 => 0.00070865684230819
302 => 0.00070683653999688
303 => 0.00066983412509091
304 => 0.00070956857017984
305 => 0.0006922234200816
306 => 0.00074701654141513
307 => 0.00071571900437082
308 => 0.00071436983010243
309 => 0.00071233035531493
310 => 0.00068048084825486
311 => 0.00068745386615925
312 => 0.00071063323969405
313 => 0.0007189039013056
314 => 0.00071804120353999
315 => 0.00071051964811827
316 => 0.00071396297767374
317 => 0.00070287081344003
318 => 0.00069895393938568
319 => 0.00068659120744905
320 => 0.00066842140679407
321 => 0.00067094802901701
322 => 0.00063494889953253
323 => 0.00061533466317098
324 => 0.00060990570105758
325 => 0.0006026458660276
326 => 0.0006107257187419
327 => 0.00063484691852175
328 => 0.00060575163398925
329 => 0.00055586980945517
330 => 0.00055886779210416
331 => 0.00056560336900741
401 => 0.00055305166600851
402 => 0.00054117253250464
403 => 0.00055150047530169
404 => 0.00053036488866613
405 => 0.00056815750367586
406 => 0.00056713531935242
407 => 0.00058122206914842
408 => 0.00059003080288506
409 => 0.00056972952348351
410 => 0.00056462380661452
411 => 0.00056753225498499
412 => 0.00051946208206991
413 => 0.00057729371047498
414 => 0.00057779384079893
415 => 0.00057351142132728
416 => 0.00060430497810177
417 => 0.00066928898764715
418 => 0.00064483938928045
419 => 0.00063537176579984
420 => 0.00061737380664241
421 => 0.00064135501860662
422 => 0.00063951363569295
423 => 0.00063118620383361
424 => 0.00062614974706192
425 => 0.00063542957308996
426 => 0.00062499987392176
427 => 0.00062312641336218
428 => 0.00061177528071635
429 => 0.00060772344280541
430 => 0.00060472362332447
501 => 0.00060142111683213
502 => 0.00060870562322089
503 => 0.00059219797338733
504 => 0.00057229136595292
505 => 0.00057063634693722
506 => 0.00057520599995031
507 => 0.00057318426866268
508 => 0.00057062666766563
509 => 0.00056574351084109
510 => 0.00056429478252339
511 => 0.00056900244673286
512 => 0.00056368776831424
513 => 0.00057152986582644
514 => 0.00056939724922617
515 => 0.00055748462625664
516 => 0.00054263708741869
517 => 0.00054250491317927
518 => 0.00053930603529148
519 => 0.00053523178334687
520 => 0.00053409841966213
521 => 0.0005506306847663
522 => 0.00058485197876286
523 => 0.00057813351990517
524 => 0.00058298829496521
525 => 0.00060686898331312
526 => 0.00061445993602156
527 => 0.00060907205759068
528 => 0.00060169679728461
529 => 0.000602021271308
530 => 0.00062722476841695
531 => 0.00062879667961639
601 => 0.00063276839209962
602 => 0.00063787316504638
603 => 0.00060994142249717
604 => 0.00060070568874579
605 => 0.00059632928571538
606 => 0.00058285165826286
607 => 0.00059738612398596
608 => 0.00058891751323698
609 => 0.00059006021815596
610 => 0.0005893160300784
611 => 0.00058972240709052
612 => 0.00056814693986975
613 => 0.00057600790615183
614 => 0.00056293752504839
615 => 0.00054543775197001
616 => 0.00054537908659444
617 => 0.00054966213126346
618 => 0.00054711440869877
619 => 0.00054025855278513
620 => 0.00054123239475894
621 => 0.00053270051434373
622 => 0.00054226831951603
623 => 0.00054254268993312
624 => 0.00053885856377991
625 => 0.00055359908775052
626 => 0.00055963829244841
627 => 0.00055721332169274
628 => 0.00055946815003571
629 => 0.00057841270220273
630 => 0.00058150149081472
701 => 0.00058287332668224
702 => 0.00058103524835319
703 => 0.00055981442167232
704 => 0.00056075565557354
705 => 0.0005538495057249
706 => 0.00054801453685494
707 => 0.00054824790500936
708 => 0.00055124783750137
709 => 0.00056434871863773
710 => 0.00059191875065005
711 => 0.00059296501321149
712 => 0.00059423311395758
713 => 0.00058907511092685
714 => 0.00058751940785734
715 => 0.00058957178176706
716 => 0.00059992563622747
717 => 0.00062655856094372
718 => 0.00061714470659576
719 => 0.0006094910964755
720 => 0.00061620537594944
721 => 0.00061517176525269
722 => 0.00060644705078307
723 => 0.00060620217710647
724 => 0.00058945666057933
725 => 0.0005832662243962
726 => 0.00057809303257547
727 => 0.00057244404215682
728 => 0.00056909513128077
729 => 0.00057424058043915
730 => 0.00057541740554084
731 => 0.00056416679102897
801 => 0.00056263337384345
802 => 0.00057182086851523
803 => 0.0005677777946545
804 => 0.00057193619638366
805 => 0.00057290098125494
806 => 0.00057274562866978
807 => 0.00056852419521511
808 => 0.00057121481101416
809 => 0.00056485070253824
810 => 0.00055793069042885
811 => 0.00055351615383506
812 => 0.00054966388515366
813 => 0.00055180134771327
814 => 0.00054418168397351
815 => 0.00054174400018963
816 => 0.00057030329092222
817 => 0.00059140034605049
818 => 0.00059109358651358
819 => 0.00058922626672475
820 => 0.00058645180829054
821 => 0.00059972266731197
822 => 0.00059509936538811
823 => 0.00059846320382752
824 => 0.00059931944189021
825 => 0.00060191101662355
826 => 0.00060283728183735
827 => 0.0006000374650287
828 => 0.00059064093785007
829 => 0.00056722568551591
830 => 0.00055632582234609
831 => 0.00055272868594847
901 => 0.00055285943502459
902 => 0.00054925279181566
903 => 0.0005503151098791
904 => 0.0005488833609461
905 => 0.00054617197484426
906 => 0.00055163392726197
907 => 0.0005522633663965
908 => 0.00055098848143674
909 => 0.00055128876299627
910 => 0.00054073326003992
911 => 0.00054153577200434
912 => 0.00053706728340814
913 => 0.00053622949566479
914 => 0.0005249335456094
915 => 0.00050492113271215
916 => 0.00051600995210915
917 => 0.00050261621760153
918 => 0.0004975438073953
919 => 0.00052155580838996
920 => 0.00051914566947933
921 => 0.00051502055932654
922 => 0.00050891866166227
923 => 0.00050665540846315
924 => 0.00049290459848417
925 => 0.0004920921272729
926 => 0.00049890740000158
927 => 0.00049576238613651
928 => 0.00049134559556005
929 => 0.00047534842781503
930 => 0.0004573623147894
1001 => 0.00045790520248497
1002 => 0.00046362625039489
1003 => 0.00048026096878142
1004 => 0.00047376149652425
1005 => 0.00046904605482883
1006 => 0.00046816299434493
1007 => 0.00047921634511324
1008 => 0.00049485915219897
1009 => 0.00050219840729552
1010 => 0.00049492542839133
1011 => 0.0004865706218312
1012 => 0.00048707914019407
1013 => 0.000490462085042
1014 => 0.00049081758471325
1015 => 0.0004853794645306
1016 => 0.00048691026350804
1017 => 0.00048458483988211
1018 => 0.00047031371938215
1019 => 0.00047005560006652
1020 => 0.00046655323694293
1021 => 0.00046644718677947
1022 => 0.00046048879340081
1023 => 0.00045965517297871
1024 => 0.00044782442127676
1025 => 0.0004556114578738
1026 => 0.00045038832256227
1027 => 0.00044251582563474
1028 => 0.00044115860419711
1029 => 0.0004411178044818
1030 => 0.00044920109856828
1031 => 0.00045551699987607
1101 => 0.00045047918123724
1102 => 0.00044933216758718
1103 => 0.00046157927253733
1104 => 0.00046002071679758
1105 => 0.00045867101757857
1106 => 0.00049345851039625
1107 => 0.00046592149532914
1108 => 0.00045391378500201
1109 => 0.00043905196326984
1110 => 0.00044389104736564
1111 => 0.00044491071348556
1112 => 0.00040917071126441
1113 => 0.00039467099681443
1114 => 0.0003896952412254
1115 => 0.00038683162353706
1116 => 0.00038813661007669
1117 => 0.00037508516642482
1118 => 0.00038385595240983
1119 => 0.00037255450541838
1120 => 0.00037065978105218
1121 => 0.00039086816825351
1122 => 0.00039368004727689
1123 => 0.00038168369778082
1124 => 0.00038938729618986
1125 => 0.00038659386431872
1126 => 0.00037274823628993
1127 => 0.00037221943514078
1128 => 0.00036527218569329
1129 => 0.00035440108556055
1130 => 0.00034943270108933
1201 => 0.00034684512331922
1202 => 0.00034791280833805
1203 => 0.00034737295412083
1204 => 0.000343850040182
1205 => 0.00034757488342403
1206 => 0.00033805944815213
1207 => 0.00033427032515579
1208 => 0.00033255886620533
1209 => 0.0003241133697135
1210 => 0.00033755391036133
1211 => 0.00034020186618843
1212 => 0.0003428550393065
1213 => 0.00036594909990106
1214 => 0.00036479538589689
1215 => 0.00037522439861305
1216 => 0.00037481914635662
1217 => 0.00037184462299117
1218 => 0.00035929559819767
1219 => 0.0003642974158155
1220 => 0.00034890259864286
1221 => 0.00036043744241441
1222 => 0.00035517342142367
1223 => 0.00035865767162231
1224 => 0.00035239267560297
1225 => 0.00035585998307542
1226 => 0.00034082979474772
1227 => 0.00032679481636776
1228 => 0.00033244290137442
1229 => 0.00033858301571352
1230 => 0.00035189634807272
1231 => 0.00034396703715219
]
'min_raw' => 0.0003241133697135
'max_raw' => 0.00096748630206873
'avg_raw' => 0.00064579983589112
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.000324'
'max' => '$0.000967'
'avg' => '$0.000645'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0006139866302865
'max_diff' => 2.9386302068733E-5
'year' => 2026
]
1 => [
'items' => [
101 => 0.00034681871719965
102 => 0.00033726606640612
103 => 0.00031755621923925
104 => 0.00031766777483373
105 => 0.00031463584424947
106 => 0.00031201581355555
107 => 0.0003448778138963
108 => 0.00034079090468258
109 => 0.00033427894973197
110 => 0.00034299546020817
111 => 0.0003453002439277
112 => 0.00034536585788005
113 => 0.00035172519891778
114 => 0.00035511918036959
115 => 0.00035571738431083
116 => 0.00036572394483636
117 => 0.00036907801193479
118 => 0.00038289293962789
119 => 0.00035483122475584
120 => 0.00035425331220457
121 => 0.0003431181193859
122 => 0.00033605600405987
123 => 0.00034360166846418
124 => 0.00035028609704049
125 => 0.00034332582321454
126 => 0.00034423468803681
127 => 0.00033489108910074
128 => 0.00033823098606319
129 => 0.00034110775525996
130 => 0.00033951937239818
131 => 0.0003371414863755
201 => 0.00034973805012545
202 => 0.00034902730263234
203 => 0.00036075751239005
204 => 0.00036990204973153
205 => 0.00038629069542903
206 => 0.00036918828928426
207 => 0.00036856500962844
208 => 0.00037465766824131
209 => 0.0003690770791805
210 => 0.00037260381883155
211 => 0.00038572248314806
212 => 0.00038599965985295
213 => 0.00038135659292407
214 => 0.00038107406187949
215 => 0.00038196581367277
216 => 0.00038718883177936
217 => 0.00038536374876578
218 => 0.00038747578103454
219 => 0.00039011690972721
220 => 0.00040104173781546
221 => 0.0004036756768817
222 => 0.00039727657049156
223 => 0.00039785433815083
224 => 0.00039546089670152
225 => 0.00039314886225122
226 => 0.00039834597804998
227 => 0.00040784380932179
228 => 0.00040778472380638
301 => 0.00040998803604999
302 => 0.00041136068132452
303 => 0.00040546828296845
304 => 0.00040163254830813
305 => 0.00040310341305104
306 => 0.0004054553578062
307 => 0.00040234070906566
308 => 0.00038311565419334
309 => 0.00038894730774034
310 => 0.00038797663543683
311 => 0.00038659428003885
312 => 0.0003924580527752
313 => 0.00039189247759001
314 => 0.00037495130500592
315 => 0.00037603582390926
316 => 0.00037501725819247
317 => 0.00037830845240234
318 => 0.00036889934389239
319 => 0.00037179352229874
320 => 0.00037360872386396
321 => 0.00037467789153091
322 => 0.00037854045827908
323 => 0.00037808723065276
324 => 0.00037851228501346
325 => 0.00038423945182117
326 => 0.00041320549620825
327 => 0.00041478205409427
328 => 0.00040701850646458
329 => 0.00041011989061343
330 => 0.00040416591124578
331 => 0.00040816285748348
401 => 0.00041089746658789
402 => 0.00039854029388017
403 => 0.00039780858230981
404 => 0.00039183002875136
405 => 0.00039504256479109
406 => 0.00038993118896237
407 => 0.0003911853418024
408 => 0.00038767862112659
409 => 0.00039399002016192
410 => 0.00040104714497568
411 => 0.00040283005339794
412 => 0.00039813998892931
413 => 0.00039474407316372
414 => 0.00038878196376352
415 => 0.00039869708457032
416 => 0.00040159656805206
417 => 0.00039868185481794
418 => 0.00039800645207385
419 => 0.00039672656509423
420 => 0.00039827798614699
421 => 0.00040158077684232
422 => 0.00040002324174337
423 => 0.00040105202111646
424 => 0.00039713137501892
425 => 0.00040547023359749
426 => 0.00041871434787586
427 => 0.0004187569298689
428 => 0.00041719938637425
429 => 0.00041656207313399
430 => 0.00041816020727913
501 => 0.00041902712949398
502 => 0.0004241952022717
503 => 0.0004297407502673
504 => 0.00045561940305061
505 => 0.00044835278090416
506 => 0.00047131386118146
507 => 0.00048947309455768
508 => 0.00049491825464017
509 => 0.00048990896357886
510 => 0.00047277244945469
511 => 0.0004719316503177
512 => 0.00049754083726885
513 => 0.00049030506898008
514 => 0.00048944439736616
515 => 0.00048028830552163
516 => 0.00048570068980578
517 => 0.00048451692196795
518 => 0.00048264828652403
519 => 0.00049297473870823
520 => 0.00051230493534831
521 => 0.00050929214292452
522 => 0.00050704323313958
523 => 0.00049718916510975
524 => 0.00050312351504948
525 => 0.00050101040670093
526 => 0.000510089661178
527 => 0.0005047113119559
528 => 0.00049025025091872
529 => 0.00049255322255317
530 => 0.00049220513302356
531 => 0.00049936879087707
601 => 0.00049721843860237
602 => 0.00049178524223
603 => 0.00051223886683765
604 => 0.00051091072222467
605 => 0.00051279372762975
606 => 0.00051362268484295
607 => 0.00052607244570833
608 => 0.00053117271438697
609 => 0.00053233056466979
610 => 0.00053717542544555
611 => 0.00053221002012012
612 => 0.00055207518169586
613 => 0.00056528435497941
614 => 0.0005806274894861
615 => 0.00060304793284614
616 => 0.00061147822695021
617 => 0.00060995536977695
618 => 0.00062695429405155
619 => 0.00065750098310815
620 => 0.00061612972899855
621 => 0.00065969376003321
622 => 0.00064590189077856
623 => 0.00061320161688093
624 => 0.00061109610475282
625 => 0.00063324110989429
626 => 0.00068235659992031
627 => 0.00067005372673207
628 => 0.00068237672301346
629 => 0.00066800129327673
630 => 0.00066728743202466
701 => 0.00068167854047771
702 => 0.00071530414979672
703 => 0.00069932988324637
704 => 0.0006764268550956
705 => 0.00069333809467154
706 => 0.00067868801388952
707 => 0.0006456772815882
708 => 0.0006700443189568
709 => 0.00065375077500169
710 => 0.00065850609734023
711 => 0.00069275270325213
712 => 0.00068863206102353
713 => 0.00069396455362853
714 => 0.00068455284375633
715 => 0.00067576082264527
716 => 0.00065934986233741
717 => 0.00065449138604082
718 => 0.00065583409409953
719 => 0.00065449072066139
720 => 0.00064530893919365
721 => 0.0006433261343599
722 => 0.00064002137276831
723 => 0.00064104565657307
724 => 0.00063483173793877
725 => 0.0006465586862628
726 => 0.00064873531120925
727 => 0.00065726920625315
728 => 0.00065815522354671
729 => 0.00068192199977156
730 => 0.00066883165881137
731 => 0.00067761378969313
801 => 0.00067682823324644
802 => 0.00061391033097219
803 => 0.00062257986277623
804 => 0.00063606693361437
805 => 0.00062999102648308
806 => 0.00062140111534275
807 => 0.00061446430153503
808 => 0.00060395431929072
809 => 0.00061874691747326
810 => 0.00063819761106587
811 => 0.00065864852523475
812 => 0.00068321895861169
813 => 0.00067773512391333
814 => 0.00065818919807361
815 => 0.00065906601402847
816 => 0.00066448614524707
817 => 0.00065746658284814
818 => 0.00065539637685855
819 => 0.00066420173073428
820 => 0.00066426236836708
821 => 0.00065618551348465
822 => 0.00064720956733168
823 => 0.00064717195778955
824 => 0.00064557477486899
825 => 0.00066828542857013
826 => 0.00068077399179969
827 => 0.00068220578544763
828 => 0.00068067762067925
829 => 0.00068126575064791
830 => 0.00067399893087134
831 => 0.00069060872597211
901 => 0.00070585151649506
902 => 0.00070176612302018
903 => 0.00069564153742845
904 => 0.00069076301000462
905 => 0.00070061689700096
906 => 0.00070017811892447
907 => 0.00070571838401736
908 => 0.00070546704559062
909 => 0.00070360406281979
910 => 0.00070176618955317
911 => 0.00070905314931158
912 => 0.00070695462192615
913 => 0.00070485283494806
914 => 0.00070063737939602
915 => 0.00070121032981684
916 => 0.00069508680172116
917 => 0.00069225377743052
918 => 0.00064965188947497
919 => 0.0006382672729564
920 => 0.00064184910506838
921 => 0.00064302833720188
922 => 0.00063807373750321
923 => 0.00064517736073886
924 => 0.00064407026858218
925 => 0.00064837731653657
926 => 0.00064568645996495
927 => 0.00064579689365726
928 => 0.00065371012908327
929 => 0.00065600737499275
930 => 0.00065483897718214
1001 => 0.00065565728295835
1002 => 0.00067451479418601
1003 => 0.0006718338591187
1004 => 0.00067040966579721
1005 => 0.00067080417708037
1006 => 0.00067562267550864
1007 => 0.00067697159198829
1008 => 0.00067125613807732
1009 => 0.00067395157918238
1010 => 0.00068542842530532
1011 => 0.00068944467191511
1012 => 0.00070226260318584
1013 => 0.00069681731816147
1014 => 0.00070681237449011
1015 => 0.00073753377007855
1016 => 0.00076207614663347
1017 => 0.00073950596289696
1018 => 0.00078457491198727
1019 => 0.00081966755361084
1020 => 0.00081832063957547
1021 => 0.00081220142580098
1022 => 0.00077224938629869
1023 => 0.00073548492389733
1024 => 0.0007662399577976
1025 => 0.00076631835870384
1026 => 0.00076367647401651
1027 => 0.0007472679551198
1028 => 0.00076310549312644
1029 => 0.00076436261937991
1030 => 0.00076365896297482
1031 => 0.00075107859000851
1101 => 0.00073187068573052
1102 => 0.00073562386424922
1103 => 0.0007417716472256
1104 => 0.00073013261148942
1105 => 0.00072641323433767
1106 => 0.00073332826410324
1107 => 0.00075560993081156
1108 => 0.00075139771078925
1109 => 0.00075128771270155
1110 => 0.00076930937621624
1111 => 0.00075640975445813
1112 => 0.00073567120384968
1113 => 0.00073043444631317
1114 => 0.00071184748496113
1115 => 0.00072468556537147
1116 => 0.00072514758503024
1117 => 0.0007181162995915
1118 => 0.00073624175391141
1119 => 0.00073607472465893
1120 => 0.00075328214591783
1121 => 0.00078617627255256
1122 => 0.00077644786068501
1123 => 0.00076513477613124
1124 => 0.00076636482210004
1125 => 0.00077985539036567
1126 => 0.00077169868483255
1127 => 0.00077463189301283
1128 => 0.00077985095060379
1129 => 0.00078299973763032
1130 => 0.00076591176010401
1201 => 0.00076192773513017
1202 => 0.00075377781823646
1203 => 0.0007516516570443
1204 => 0.00075828959430063
1205 => 0.00075654073235537
1206 => 0.00072510875406695
1207 => 0.00072182393744994
1208 => 0.00072192467808594
1209 => 0.00071366485051794
1210 => 0.00070106663089098
1211 => 0.00073417399987003
1212 => 0.00073151501480368
1213 => 0.00072857970107953
1214 => 0.00072893926026207
1215 => 0.00074331004702303
1216 => 0.00073497426495954
1217 => 0.00075713630778313
1218 => 0.00075258045803059
1219 => 0.00074790776792269
1220 => 0.00074726185981615
1221 => 0.0007454632727798
1222 => 0.00073929524860738
1223 => 0.00073184698877839
1224 => 0.00072692900248207
1225 => 0.00067055357946803
1226 => 0.00068101653005868
1227 => 0.00069305320098528
1228 => 0.00069720821155521
1229 => 0.00069010077845737
1230 => 0.0007395758933864
1231 => 0.000748615473638
]
'min_raw' => 0.00031201581355555
'max_raw' => 0.00081966755361084
'avg_raw' => 0.0005658416835832
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.000312'
'max' => '$0.000819'
'avg' => '$0.000565'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -1.2097556157945E-5
'max_diff' => -0.0001478187484579
'year' => 2027
]
2 => [
'items' => [
101 => 0.00072123399541866
102 => 0.00071611203882221
103 => 0.00073991168800815
104 => 0.00072555759016024
105 => 0.00073202123954224
106 => 0.00071805036500555
107 => 0.0007464381034652
108 => 0.0007462218364606
109 => 0.00073517836503365
110 => 0.00074451223146128
111 => 0.00074289024247431
112 => 0.00073042219043215
113 => 0.00074683336295379
114 => 0.00074684150269062
115 => 0.00073621240154795
116 => 0.00072379993842274
117 => 0.00072158088318525
118 => 0.00071990912315192
119 => 0.0007316100890548
120 => 0.00074210113849534
121 => 0.00076162238055248
122 => 0.00076653048461891
123 => 0.0007856871415412
124 => 0.00077428028506468
125 => 0.0007793367967972
126 => 0.00078482635557011
127 => 0.00078745825191768
128 => 0.00078316971805465
129 => 0.00081292789144953
130 => 0.00081544039305093
131 => 0.00081628281310483
201 => 0.00080624852446855
202 => 0.00081516132133206
203 => 0.00081099131884043
204 => 0.0008218405068636
205 => 0.00082354179807501
206 => 0.00082210086494413
207 => 0.00082264088162769
208 => 0.00079724753033668
209 => 0.00079593075111164
210 => 0.00077797637294386
211 => 0.00078529291475929
212 => 0.00077161499052631
213 => 0.00077595240119882
214 => 0.0007778642904949
215 => 0.00077686562802539
216 => 0.00078570658105589
217 => 0.00077818996489258
218 => 0.00075835237899152
219 => 0.00073850938835344
220 => 0.00073826027576973
221 => 0.0007330359665926
222 => 0.00072925974793749
223 => 0.00072998718161902
224 => 0.00073255075279339
225 => 0.00072911074852052
226 => 0.00072984484784478
227 => 0.00074203578790572
228 => 0.00074448059399314
229 => 0.0007361721876607
301 => 0.00070281273733865
302 => 0.00069462624455377
303 => 0.00070051053322233
304 => 0.00069769822223549
305 => 0.00056309691845765
306 => 0.00059471949821089
307 => 0.00057593043512286
308 => 0.00058458929983705
309 => 0.00056541053182846
310 => 0.00057456364516751
311 => 0.00057287339935197
312 => 0.00062372157181503
313 => 0.00062292764754139
314 => 0.00062330765707764
315 => 0.00060516881180275
316 => 0.00063406448484897
317 => 0.00064829953244633
318 => 0.00064566500398958
319 => 0.00064632805804346
320 => 0.00063493459259469
321 => 0.00062341797072807
322 => 0.00061064426468258
323 => 0.00063437623163731
324 => 0.00063173764203013
325 => 0.00063778961725442
326 => 0.00065318149422059
327 => 0.00065544800657192
328 => 0.00065849422215679
329 => 0.00065740237071401
330 => 0.00068341470175366
331 => 0.00068026443682987
401 => 0.00068785566890313
402 => 0.00067223992858028
403 => 0.00065456923614529
404 => 0.00065792785707872
405 => 0.00065760439487451
406 => 0.00065348634976224
407 => 0.00064976876276512
408 => 0.00064358002783856
409 => 0.00066316210090664
410 => 0.00066236710450114
411 => 0.00067523717222394
412 => 0.00067296226274077
413 => 0.00065776986044735
414 => 0.0006583124600674
415 => 0.00066196170327666
416 => 0.00067459177569026
417 => 0.00067834124110351
418 => 0.00067660433933373
419 => 0.00068071545698977
420 => 0.00068396471676133
421 => 0.00068112351399059
422 => 0.00072134895365787
423 => 0.00070464454660015
424 => 0.00071278615837157
425 => 0.00071472788480589
426 => 0.00070975419337448
427 => 0.00071083280895142
428 => 0.00071246661764532
429 => 0.00072238678410216
430 => 0.00074842017130821
501 => 0.00075995018128651
502 => 0.0007946387851869
503 => 0.0007589927744633
504 => 0.00075687768770482
505 => 0.00076312615276276
506 => 0.00078349203541392
507 => 0.0007999966704326
508 => 0.00080547221004353
509 => 0.00080619589299442
510 => 0.00081646836931152
511 => 0.00082235636116614
512 => 0.00081522102049368
513 => 0.00080917456637507
514 => 0.00078751691823574
515 => 0.00079002384997969
516 => 0.00080729412369088
517 => 0.00083168940252199
518 => 0.00085262308965524
519 => 0.00084529284203382
520 => 0.00090121745703684
521 => 0.00090676215418282
522 => 0.00090599605631877
523 => 0.00091862770157888
524 => 0.00089355645812738
525 => 0.00088283801581939
526 => 0.00081048187838568
527 => 0.00083081100163606
528 => 0.00086036057616804
529 => 0.00085644957917351
530 => 0.000834989888286
531 => 0.00085260681055536
601 => 0.00084678210512102
602 => 0.0008421879182777
603 => 0.00086323477883387
604 => 0.00084009289109498
605 => 0.00086012971813522
606 => 0.00083443228020168
607 => 0.0008453263259875
608 => 0.00083914233871376
609 => 0.00084314413636085
610 => 0.00081974970908615
611 => 0.00083237277417596
612 => 0.00081922454807762
613 => 0.0008192183141065
614 => 0.00081892806628664
615 => 0.00083439689598317
616 => 0.00083490133396422
617 => 0.00082346984544639
618 => 0.00082182238935755
619 => 0.00082791389798466
620 => 0.00082078233675095
621 => 0.00082411914936669
622 => 0.00082088340540582
623 => 0.00082015497128503
624 => 0.00081435068427775
625 => 0.00081185003784282
626 => 0.00081283060574367
627 => 0.00080948342198064
628 => 0.00080746662269049
629 => 0.00081852687414573
630 => 0.00081261782796247
701 => 0.00081762122807049
702 => 0.00081191922216796
703 => 0.00079215358546408
704 => 0.00078078615877786
705 => 0.00074345070331973
706 => 0.00075403899217317
707 => 0.00076105903863737
708 => 0.00075873891332283
709 => 0.00076372344026778
710 => 0.00076402944973955
711 => 0.00076240892921851
712 => 0.00076053257405668
713 => 0.00075961926813285
714 => 0.00076642630223156
715 => 0.0007703780146401
716 => 0.00076176359421616
717 => 0.00075974535603938
718 => 0.00076845501070317
719 => 0.00077376789501668
720 => 0.00081299524773581
721 => 0.00081008915874369
722 => 0.00081738287182273
723 => 0.00081656171166118
724 => 0.00082420668494763
725 => 0.0008367029852642
726 => 0.0008112945127001
727 => 0.00081570454497835
728 => 0.00081462330690624
729 => 0.00082642798066168
730 => 0.00082646483356463
731 => 0.00081938734196105
801 => 0.00082322416497854
802 => 0.00082108255562791
803 => 0.00082495273318036
804 => 0.00081005034615344
805 => 0.00082819984493895
806 => 0.00083848944122246
807 => 0.00083863231227684
808 => 0.00084350949925194
809 => 0.00084846500368626
810 => 0.00085797666291447
811 => 0.00084819972867285
812 => 0.00083061197573755
813 => 0.00083188175469138
814 => 0.00082157006158052
815 => 0.00082174340300467
816 => 0.00082081809289753
817 => 0.00082359501818315
818 => 0.00081065972509358
819 => 0.00081369561252701
820 => 0.00080944535234208
821 => 0.00081569530574277
822 => 0.00080897138903794
823 => 0.0008146227855005
824 => 0.00081706174086698
825 => 0.00082606153867626
826 => 0.00080764211158399
827 => 0.00077008365285727
828 => 0.00077797889623392
829 => 0.00076630121112187
830 => 0.00076738202533907
831 => 0.00076956544206813
901 => 0.00076248827407976
902 => 0.00076383837470475
903 => 0.00076379013960991
904 => 0.00076337447562131
905 => 0.00076153343089434
906 => 0.00075886355180063
907 => 0.00076949952836452
908 => 0.00077130678803833
909 => 0.0007753241024211
910 => 0.00078727690505385
911 => 0.00078608253820434
912 => 0.0007880306000897
913 => 0.00078377799193187
914 => 0.00076757929163474
915 => 0.00076845895899517
916 => 0.00075748949291487
917 => 0.0007750435885107
918 => 0.00077088654697087
919 => 0.00076820647524698
920 => 0.00076747519284643
921 => 0.00077945762416498
922 => 0.00078304295541709
923 => 0.0007808088175834
924 => 0.0007762265357063
925 => 0.00078502587154036
926 => 0.00078738020259538
927 => 0.00078790725049421
928 => 0.00080349798648686
929 => 0.00078877859944472
930 => 0.00079232170220389
1001 => 0.00081996397850762
1002 => 0.00079489624827352
1003 => 0.00080817518405562
1004 => 0.00080752524924933
1005 => 0.00081431830346076
1006 => 0.0008069680205296
1007 => 0.00080705913609576
1008 => 0.00081309090803416
1009 => 0.00080462037218248
1010 => 0.00080252294838419
1011 => 0.00079962537242889
1012 => 0.0008059521235216
1013 => 0.00080974472466734
1014 => 0.00084031030454341
1015 => 0.00086005706310313
1016 => 0.00085919980423569
1017 => 0.00086703354556281
1018 => 0.00086350437334609
1019 => 0.00085210774530973
1020 => 0.00087156039969707
1021 => 0.00086540476591529
1022 => 0.00086591222888516
1023 => 0.00086589334108808
1024 => 0.00086998629941812
1025 => 0.00086708606332716
1026 => 0.00086136940028876
1027 => 0.00086516438799915
1028 => 0.00087643414476606
1029 => 0.00091141581556892
1030 => 0.0009309920219957
1031 => 0.00091023730336142
1101 => 0.00092455363035859
1102 => 0.00091596893558918
1103 => 0.00091440884117703
1104 => 0.0009234005524995
1105 => 0.00093240800262234
1106 => 0.0009318342669898
1107 => 0.0009252953207383
1108 => 0.00092160163592044
1109 => 0.00094957145483642
1110 => 0.00097017914096029
1111 => 0.00096877383492232
1112 => 0.0009749763987439
1113 => 0.00099318731796213
1114 => 0.00099485229618877
1115 => 0.0009946425472013
1116 => 0.00099051572494405
1117 => 0.0010084467399011
1118 => 0.0010234051080444
1119 => 0.00098956048482686
1120 => 0.0010024480742895
1121 => 0.0010082337284114
1122 => 0.0010167287851887
1123 => 0.0010310613699088
1124 => 0.0010466303584451
1125 => 0.0010488319841294
1126 => 0.0010472698253489
1127 => 0.0010370016588923
1128 => 0.0010540374319255
1129 => 0.0010640165882303
1130 => 0.0010699589474408
1201 => 0.0010850277816845
1202 => 0.0010082694586416
1203 => 0.00095393610245566
1204 => 0.00094545116430405
1205 => 0.00096270561968907
1206 => 0.00096725548197239
1207 => 0.00096542143819103
1208 => 0.00090426430603111
1209 => 0.00094512918465999
1210 => 0.00098909635804808
1211 => 0.00099078531623986
1212 => 0.0010127962025482
1213 => 0.0010199638493869
1214 => 0.0010376854978979
1215 => 0.0010365770039584
1216 => 0.0010408919433579
1217 => 0.0010399000135143
1218 => 0.0010727256356476
1219 => 0.0011089371715126
1220 => 0.0011076832811713
1221 => 0.0011024774444552
1222 => 0.0011102089997056
1223 => 0.0011475831853824
1224 => 0.0011441423692744
1225 => 0.0011474848290353
1226 => 0.001191551100265
1227 => 0.0012488435212177
1228 => 0.0012222254396201
1229 => 0.0012799790175401
1230 => 0.0013163318334551
1231 => 0.0013792002696288
]
'min_raw' => 0.00056309691845765
'max_raw' => 0.0013792002696288
'avg_raw' => 0.00097114859404321
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.000563'
'max' => '$0.001379'
'avg' => '$0.000971'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0002510811049021
'max_diff' => 0.00055953271601793
'year' => 2028
]
3 => [
'items' => [
101 => 0.0013713288317862
102 => 0.0013958030526388
103 => 0.0013572373152295
104 => 0.0012686825867163
105 => 0.0012546684619552
106 => 0.0012827250946211
107 => 0.0013516995883039
108 => 0.0012805528423556
109 => 0.0012949457363993
110 => 0.0012908005819464
111 => 0.0012905797042814
112 => 0.0012990097063808
113 => 0.0012867815486563
114 => 0.0012369618342832
115 => 0.001259793915791
116 => 0.0012509773526342
117 => 0.0012607599867749
118 => 0.0013135528285674
119 => 0.0012902118547868
120 => 0.0012656240349757
121 => 0.0012964626174928
122 => 0.0013357307303239
123 => 0.0013332734023945
124 => 0.0013285051591281
125 => 0.0013553834967636
126 => 0.0013997786359236
127 => 0.0014117784636444
128 => 0.0014206364911422
129 => 0.0014218578634766
130 => 0.0014344387575991
131 => 0.001366788119109
201 => 0.0014741514197844
202 => 0.0014926900959597
203 => 0.0014892055931881
204 => 0.0015098105515302
205 => 0.0015037480500886
206 => 0.0014949644366771
207 => 0.0015276276784497
208 => 0.0014901819075451
209 => 0.0014370323500376
210 => 0.0014078734516099
211 => 0.0014462722412407
212 => 0.0014697210421352
213 => 0.0014852192079026
214 => 0.0014899089434995
215 => 0.0013720396455983
216 => 0.0013085146313604
217 => 0.0013492334371711
218 => 0.001398913190522
219 => 0.0013665121455707
220 => 0.0013677822051895
221 => 0.0013215868299338
222 => 0.0014030004561934
223 => 0.0013911391756438
224 => 0.0014526755201176
225 => 0.0014379893776489
226 => 0.0014881698777403
227 => 0.0014749556703345
228 => 0.0015298071064793
301 => 0.0015516888294009
302 => 0.0015884316478043
303 => 0.0016154598145921
304 => 0.0016313312710963
305 => 0.0016303784083801
306 => 0.0016932690261781
307 => 0.0016561846260934
308 => 0.0016095978794651
309 => 0.0016087552721979
310 => 0.001632883208416
311 => 0.0016834487435531
312 => 0.0016965596511156
313 => 0.0017038868598201
314 => 0.0016926649846272
315 => 0.0016524125261982
316 => 0.0016350317187332
317 => 0.0016498406702638
318 => 0.0016317305950895
319 => 0.00166299366563
320 => 0.0017059245389136
321 => 0.0016970594833476
322 => 0.0017266940349813
323 => 0.0017573626782765
324 => 0.0018012202156035
325 => 0.0018126861999007
326 => 0.0018316390359316
327 => 0.0018511477298897
328 => 0.001857413396615
329 => 0.0018693764985158
330 => 0.0018693134470636
331 => 0.0019053650598513
401 => 0.0019451311051817
402 => 0.0019601418667078
403 => 0.001994658285139
404 => 0.0019355501281752
405 => 0.0019803843442178
406 => 0.0020208259293614
407 => 0.0019726098043423
408 => 0.0020390644997649
409 => 0.0020416447849985
410 => 0.0020806040285714
411 => 0.0020411113715223
412 => 0.0020176607578317
413 => 0.0020853618008736
414 => 0.0021181202030388
415 => 0.0021082531057099
416 => 0.0020331640078386
417 => 0.0019894589321546
418 => 0.0018750743190101
419 => 0.0020105678343273
420 => 0.0020765627732383
421 => 0.00203299309689
422 => 0.0020549671073434
423 => 0.0021748501832801
424 => 0.0022204938967425
425 => 0.002211000323416
426 => 0.0022126045810306
427 => 0.0022372331003229
428 => 0.0023464495180382
429 => 0.0022810045089265
430 => 0.0023310347662147
501 => 0.0023575706342829
502 => 0.0023822186274046
503 => 0.0023216909463759
504 => 0.0022429453226858
505 => 0.0022180032781467
506 => 0.0020286609512417
507 => 0.0020188048608542
508 => 0.0020132723386496
509 => 0.0019783905687405
510 => 0.0019509830525129
511 => 0.0019291875780328
512 => 0.0018719897443175
513 => 0.0018912923341364
514 => 0.0018001309253099
515 => 0.0018584527641151
516 => 0.0017129569544588
517 => 0.0018341301881719
518 => 0.0017681811061328
519 => 0.0018124641410272
520 => 0.0018123096416901
521 => 0.0017307705345005
522 => 0.0016837404791513
523 => 0.0017137098608569
524 => 0.0017458394170179
525 => 0.0017510523294082
526 => 0.0017927091376381
527 => 0.001804334657405
528 => 0.0017691087897677
529 => 0.001709941877199
530 => 0.0017236850015351
531 => 0.0016834619751752
601 => 0.0016129726686359
602 => 0.0016635993192177
603 => 0.001680885483623
604 => 0.0016885200385954
605 => 0.0016192019013655
606 => 0.0015974206376779
607 => 0.0015858244756532
608 => 0.0017009937761425
609 => 0.0017073030104033
610 => 0.0016750240758892
611 => 0.0018209279207071
612 => 0.0017879053870381
613 => 0.0018247996478636
614 => 0.0017224379570502
615 => 0.0017263483114876
616 => 0.0016778886466377
617 => 0.0017050228208777
618 => 0.0016858452611001
619 => 0.0017028306477442
620 => 0.0017130116184653
621 => 0.001761463331561
622 => 0.0018346834289064
623 => 0.0017542262613468
624 => 0.0017191699212732
625 => 0.0017409186774905
626 => 0.0017988384813148
627 => 0.0018865899489688
628 => 0.0018346393139548
629 => 0.001857694123595
630 => 0.0018627305738643
701 => 0.001824424098922
702 => 0.0018880023633397
703 => 0.0019220744717501
704 => 0.0019570254047497
705 => 0.0019873723205704
706 => 0.0019430652335222
707 => 0.0019904801678352
708 => 0.0019522721006415
709 => 0.0019179955144914
710 => 0.0019180474979238
711 => 0.0018965452947309
712 => 0.0018548820665925
713 => 0.0018471987280952
714 => 0.0018871684252569
715 => 0.0019192203372362
716 => 0.0019218602862251
717 => 0.0019396058715835
718 => 0.0019501075262046
719 => 0.0020530380177981
720 => 0.0020944375130027
721 => 0.0021450600320865
722 => 0.0021647803561985
723 => 0.0022241314616482
724 => 0.0021762006237365
725 => 0.0021658304854552
726 => 0.002021864117233
727 => 0.0020454386019642
728 => 0.0020831836266184
729 => 0.0020224865187872
730 => 0.0020609848631577
731 => 0.0020685852518429
801 => 0.0020204240542891
802 => 0.0020461490308251
803 => 0.0019778311200695
804 => 0.0018361725726696
805 => 0.0018881600697982
806 => 0.0019264403664872
807 => 0.0018718096631855
808 => 0.0019697330843537
809 => 0.0019125282432569
810 => 0.0018943970549459
811 => 0.0018236608251092
812 => 0.0018570456027049
813 => 0.0019021989924272
814 => 0.0018742994472238
815 => 0.0019321951926586
816 => 0.0020141910084255
817 => 0.0020726261096762
818 => 0.0020771120311587
819 => 0.0020395421759022
820 => 0.0020997481087184
821 => 0.0021001866432106
822 => 0.0020322741050455
823 => 0.001990678053558
824 => 0.0019812273431412
825 => 0.0020048370706833
826 => 0.0020335036385156
827 => 0.0020787028261642
828 => 0.0021060157486293
829 => 0.0021772333647633
830 => 0.0021965028097201
831 => 0.002217674087597
901 => 0.0022459654438207
902 => 0.0022799364707222
903 => 0.0022056097978334
904 => 0.0022085629351095
905 => 0.0021393509664383
906 => 0.0020653880519128
907 => 0.0021215166844302
908 => 0.0021948974049677
909 => 0.0021780637865979
910 => 0.0021761696606517
911 => 0.0021793550551065
912 => 0.0021666630565902
913 => 0.0021092576176887
914 => 0.0020804289656494
915 => 0.0021176252817536
916 => 0.0021373934683454
917 => 0.0021680522017823
918 => 0.0021642728657589
919 => 0.0022432464705846
920 => 0.0022739332253821
921 => 0.0022660822403446
922 => 0.002267527010536
923 => 0.0023230839143063
924 => 0.0023848746174476
925 => 0.0024427497649409
926 => 0.0025016228507664
927 => 0.0024306490479481
928 => 0.0023946129279325
929 => 0.0024317930052887
930 => 0.002412064732896
1001 => 0.00252542923785
1002 => 0.0025332783502096
1003 => 0.0026466346576196
1004 => 0.0027542232915696
1005 => 0.0026866487982362
1006 => 0.0027503685018276
1007 => 0.0028192865564054
1008 => 0.0029522406652373
1009 => 0.0029074663987646
1010 => 0.0028731700123488
1011 => 0.0028407600929048
1012 => 0.002908199990338
1013 => 0.0029949603410071
1014 => 0.003013647689561
1015 => 0.0030439283333347
1016 => 0.0030120919389476
1017 => 0.0030504353693231
1018 => 0.0031858045275058
1019 => 0.0031492265860282
1020 => 0.0030972800289326
1021 => 0.0032041409783257
1022 => 0.0032428135404996
1023 => 0.0035142378348144
1024 => 0.0038569222183651
1025 => 0.0037150486333881
1026 => 0.0036269831209609
1027 => 0.0036476806053232
1028 => 0.0037728173415975
1029 => 0.0038130072896473
1030 => 0.003703757156542
1031 => 0.0037423461504977
1101 => 0.0039549753011794
1102 => 0.0040690440185603
1103 => 0.0039141233788844
1104 => 0.0034867034782604
1105 => 0.0030926028098257
1106 => 0.003197136053679
1107 => 0.0031852852278702
1108 => 0.003413728724251
1109 => 0.0031483542142211
1110 => 0.0031528224403792
1111 => 0.0033859899063392
1112 => 0.0033237848239235
1113 => 0.0032230205570349
1114 => 0.0030933385004864
1115 => 0.0028536092248181
1116 => 0.0026412743200134
1117 => 0.0030577119661437
1118 => 0.0030397544175998
1119 => 0.0030137492261487
1120 => 0.0030716209656675
1121 => 0.003352629705591
1122 => 0.0033461515445993
1123 => 0.0033049407895564
1124 => 0.0033361987840415
1125 => 0.0032175408794715
1126 => 0.0032481217232694
1127 => 0.0030925403822663
1128 => 0.0031628696460505
1129 => 0.0032228043621737
1130 => 0.003234837143784
1201 => 0.0032619476151613
1202 => 0.0030302916055145
1203 => 0.0031342983527828
1204 => 0.0031953925726886
1205 => 0.0029193666645275
1206 => 0.0031899364279752
1207 => 0.0030262589897747
1208 => 0.0029707044088968
1209 => 0.0030455013332894
1210 => 0.0030163528991112
1211 => 0.0029912927870583
1212 => 0.0029773088139454
1213 => 0.003032231420184
1214 => 0.0030296692149562
1215 => 0.0029398051711314
1216 => 0.0028225811892888
1217 => 0.0028619254053412
1218 => 0.0028476312827954
1219 => 0.0027958275387108
1220 => 0.0028307370074159
1221 => 0.0026770133745165
1222 => 0.0024125398539722
1223 => 0.0025872591626868
1224 => 0.0025805326593593
1225 => 0.002577140851359
1226 => 0.002708437582971
1227 => 0.0026958164317574
1228 => 0.0026729089187182
1229 => 0.0027954068242696
1230 => 0.002750693440914
1231 => 0.0028884895526178
]
'min_raw' => 0.0012369618342832
'max_raw' => 0.0040690440185603
'avg_raw' => 0.0026530029264217
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.001236'
'max' => '$0.004069'
'avg' => '$0.002653'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.00067386491582551
'max_diff' => 0.0026898437489315
'year' => 2029
]
4 => [
'items' => [
101 => 0.0029792509838796
102 => 0.0029562309490869
103 => 0.0030415925138767
104 => 0.0028628318166149
105 => 0.002922208949611
106 => 0.0029344464944283
107 => 0.0027938952191299
108 => 0.0026978814081844
109 => 0.0026914783816319
110 => 0.0025250036649705
111 => 0.0026139331148741
112 => 0.0026921873506385
113 => 0.0026547096444814
114 => 0.0026428453223266
115 => 0.0027034575711576
116 => 0.0027081676620006
117 => 0.0026007770916277
118 => 0.0026231069918253
119 => 0.0027162263876863
120 => 0.0026207606219694
121 => 0.0024352862334257
122 => 0.0023892860206828
123 => 0.0023831487443508
124 => 0.0022583925190692
125 => 0.0023923599748569
126 => 0.0023338795903009
127 => 0.0025186184244105
128 => 0.0024130965931414
129 => 0.0024085477578992
130 => 0.0024016715262615
131 => 0.0022942886895469
201 => 0.0023177987062521
202 => 0.0023959495824569
203 => 0.0024238346955194
204 => 0.002420926049771
205 => 0.0023955666005284
206 => 0.0024071760265303
207 => 0.0023697780203862
208 => 0.0023565720060445
209 => 0.0023148901921818
210 => 0.0022536294406985
211 => 0.0022621481239263
212 => 0.0021407745454904
213 => 0.0020746437781752
214 => 0.0020563396533719
215 => 0.0020318626127028
216 => 0.0020591044002464
217 => 0.0021404307093925
218 => 0.0020423339262233
219 => 0.0018741538721689
220 => 0.0018842617799824
221 => 0.0019069712477747
222 => 0.001864652304782
223 => 0.001824600976799
224 => 0.0018594223570132
225 => 0.0017881622510319
226 => 0.0019155826911333
227 => 0.0019121363253202
228 => 0.0019596307857629
301 => 0.0019893300465621
302 => 0.0019208828656698
303 => 0.0019036685847762
304 => 0.0019134746215186
305 => 0.0017514026773831
306 => 0.0019463860502261
307 => 0.0019480722745313
308 => 0.0019336337982937
309 => 0.0020374564248964
310 => 0.0022565545501173
311 => 0.0021741210222075
312 => 0.0021422002686343
313 => 0.0020815188927576
314 => 0.0021623732232097
315 => 0.002156164872155
316 => 0.0021280883542385
317 => 0.0021111075885986
318 => 0.0021423951699489
319 => 0.0021072307110249
320 => 0.0021009142079475
321 => 0.0020626430717213
322 => 0.0020489820173143
323 => 0.0020388679164936
324 => 0.002027733285281
325 => 0.0020522935071587
326 => 0.0019966368132175
327 => 0.0019295202964175
328 => 0.0019239402842563
329 => 0.0019393471884329
330 => 0.0019325307802439
331 => 0.0019239076499164
401 => 0.0019074437457513
402 => 0.0019025592570812
403 => 0.0019184314756421
404 => 0.0019005126662947
405 => 0.0019269528455748
406 => 0.0019197625798125
407 => 0.0018795983397579
408 => 0.0018295388259437
409 => 0.0018290931912674
410 => 0.0018183079511302
411 => 0.0018045713262437
412 => 0.0018007501114517
413 => 0.0018564897974963
414 => 0.0019718692794602
415 => 0.0019492175263537
416 => 0.0019655857394182
417 => 0.0020461011474795
418 => 0.0020716945745195
419 => 0.0020535289662201
420 => 0.0020286627611739
421 => 0.0020297567479978
422 => 0.0021147320981526
423 => 0.0021200319065089
424 => 0.0021334228124422
425 => 0.0021506339108361
426 => 0.0020564600906994
427 => 0.0020253211695383
428 => 0.0020105658211706
429 => 0.0019651250592365
430 => 0.0020141290251859
501 => 0.0019855765127862
502 => 0.0019894292222017
503 => 0.0019869201401406
504 => 0.0019882902686093
505 => 0.0019155470745235
506 => 0.0019420508711786
507 => 0.0018979831687435
508 => 0.0018389814620147
509 => 0.001838783667605
510 => 0.0018532242517393
511 => 0.0018446344272361
512 => 0.0018215194303627
513 => 0.0018248028065689
514 => 0.0017960369760721
515 => 0.0018282954992133
516 => 0.0018292205582305
517 => 0.0018167992696875
518 => 0.0018664979754049
519 => 0.0018868595756876
520 => 0.0018786836174788
521 => 0.0018862859286643
522 => 0.0019501588089618
523 => 0.0019605728754194
524 => 0.0019651981158253
525 => 0.0019590009064084
526 => 0.001887453407663
527 => 0.0018906268434758
528 => 0.0018673422770891
529 => 0.0018476692721596
530 => 0.0018484560891854
531 => 0.0018585705710309
601 => 0.0019027411064564
602 => 0.0019956953942641
603 => 0.0019992229415377
604 => 0.0020034984317391
605 => 0.0019861078644007
606 => 0.0019808627028862
607 => 0.0019877824248149
608 => 0.0020226911680113
609 => 0.0021124859331435
610 => 0.0020807464659551
611 => 0.0020549417850766
612 => 0.002077579447099
613 => 0.0020740945564705
614 => 0.0020446785724961
615 => 0.0020438529637989
616 => 0.001987394285693
617 => 0.0019665227978992
618 => 0.0019490810204948
619 => 0.0019300350548984
620 => 0.0019187439680663
621 => 0.0019360922091476
622 => 0.0019400599571413
623 => 0.0019021277248217
624 => 0.0018969577017209
625 => 0.0019279339814572
626 => 0.0019143024756574
627 => 0.0019283228174176
628 => 0.0019315756569702
629 => 0.001931051874883
630 => 0.0019168190172595
701 => 0.0019258906162788
702 => 0.0019044335802243
703 => 0.0018811022762577
704 => 0.0018662183579187
705 => 0.0018532301651025
706 => 0.0018604367693551
707 => 0.0018347465410686
708 => 0.0018265277199976
709 => 0.0019228173626485
710 => 0.0019939475569628
711 => 0.0019929132957669
712 => 0.0019866174967267
713 => 0.0019772632164093
714 => 0.0020220068441418
715 => 0.0020064190589169
716 => 0.0020177604750711
717 => 0.00202064734148
718 => 0.0020293850166315
719 => 0.0020325079844696
720 => 0.0020230682066223
721 => 0.0019913871591949
722 => 0.0019124410011496
723 => 0.0018756913514684
724 => 0.0018635633549598
725 => 0.0018640041845985
726 => 0.0018518441352118
727 => 0.0018554258147314
728 => 0.0018505985732423
729 => 0.001841456945697
730 => 0.0018598722996146
731 => 0.0018619944976027
801 => 0.0018576961339513
802 => 0.0018587085541942
803 => 0.0018231199390152
804 => 0.0018258256641329
805 => 0.0018107598428509
806 => 0.0018079351829817
807 => 0.0017698500987119
808 => 0.0017023768514067
809 => 0.0017397635802004
810 => 0.0016946056691873
811 => 0.0016775036840326
812 => 0.0017584618218505
813 => 0.0017503358702428
814 => 0.0017364277733566
815 => 0.0017158547993606
816 => 0.0017082240831845
817 => 0.0016618622672895
818 => 0.0016591229638757
819 => 0.0016821011317076
820 => 0.0016714974978837
821 => 0.0016566059800847
822 => 0.0016026704121458
823 => 0.0015420289763296
824 => 0.0015438593600984
825 => 0.0015631482725575
826 => 0.0016192333869966
827 => 0.0015973199625029
828 => 0.0015814215216052
829 => 0.0015784442215304
830 => 0.0016157113653661
831 => 0.0016684521816015
901 => 0.00169319699257
902 => 0.0016686756364113
903 => 0.0016405068227799
904 => 0.0016422213279439
905 => 0.0016536271626884
906 => 0.0016548257546502
907 => 0.0016364907527769
908 => 0.0016416519484064
909 => 0.0016338116202956
910 => 0.0015856955411522
911 => 0.0015848252738583
912 => 0.0015730168120599
913 => 0.0015726592565296
914 => 0.0015525701172517
915 => 0.0015497595077971
916 => 0.0015098713024372
917 => 0.0015361258399977
918 => 0.0015185156746272
919 => 0.0014919730015959
920 => 0.0014873970347607
921 => 0.001487259475672
922 => 0.0015145128660421
923 => 0.0015358073682635
924 => 0.0015188220109934
925 => 0.0015149547743903
926 => 0.0015562467437953
927 => 0.0015509919643039
928 => 0.001546441359154
929 => 0.001663729819974
930 => 0.0015708868511022
1001 => 0.0015304020173827
1002 => 0.0014802943477934
1003 => 0.0014966096576765
1004 => 0.0015000475331906
1005 => 0.0013795476204148
1006 => 0.0013306608208089
1007 => 0.0013138847134443
1008 => 0.0013042298264767
1009 => 0.0013086296797063
1010 => 0.0012646258262113
1011 => 0.0012941971435165
1012 => 0.001256093525943
1013 => 0.0012497053304569
1014 => 0.0013178393188108
1015 => 0.0013273197652572
1016 => 0.0012868732353728
1017 => 0.001312846455257
1018 => 0.0013034282046722
1019 => 0.0012567467031023
1020 => 0.0012549638131082
1021 => 0.0012315406765545
1022 => 0.001194888003461
1023 => 0.0011781367483348
1024 => 0.001169412549224
1025 => 0.0011730123238083
1026 => 0.0011711921676235
1027 => 0.0011593144173168
1028 => 0.0011718729863675
1029 => 0.0011397910320019
1030 => 0.0011270157392716
1031 => 0.0011212454359298
1101 => 0.0010927708548619
1102 => 0.0011380865760447
1103 => 0.0011470143439901
1104 => 0.0011559597023963
1105 => 0.0012338229400667
1106 => 0.0012299331127519
1107 => 0.0012650952572548
1108 => 0.0012637289209785
1109 => 0.0012537001077773
1110 => 0.001211390194541
1111 => 0.0012282541718553
1112 => 0.0011763494709259
1113 => 0.0012152400020388
1114 => 0.0011974919877463
1115 => 0.0012092393805536
1116 => 0.0011881165090664
1117 => 0.0011998067782894
1118 => 0.0011491314489683
1119 => 0.0011018115394694
1120 => 0.001120854452406
1121 => 0.0011415562765894
1122 => 0.0011864431061456
1123 => 0.0011597088807702
1124 => 0.0011693235191482
1125 => 0.001137116090053
1126 => 0.0010706629642323
1127 => 0.0010710390817077
1128 => 0.0010608167160602
1129 => 0.001051983099651
1130 => 0.0011627796281514
1201 => 0.0011490003283985
1202 => 0.0011270448176323
1203 => 0.0011564331412701
1204 => 0.0011642038804954
1205 => 0.0011644251025168
1206 => 0.0011858660648205
1207 => 0.0011973091102455
1208 => 0.0011993259965987
1209 => 0.0012330638140462
1210 => 0.0012443722854421
1211 => 0.0012909502786868
1212 => 0.0011963382477893
1213 => 0.0011943897752741
1214 => 0.0011568466952517
1215 => 0.0011330362803688
1216 => 0.0011584770147294
1217 => 0.0011810140323663
1218 => 0.0011575469832113
1219 => 0.0011606112844145
1220 => 0.0011291086882523
1221 => 0.0011403693840454
1222 => 0.0011500686122419
1223 => 0.0011447132685261
1224 => 0.0011366960597819
1225 => 0.0011791662539289
1226 => 0.001176769919133
1227 => 0.0012163191403082
1228 => 0.0012471505864062
1229 => 0.0013024060495941
1230 => 0.0012447440932251
1231 => 0.0012426426623495
]
'min_raw' => 0.001051983099651
'max_raw' => 0.0030415925138767
'avg_raw' => 0.0020467878067639
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.001051'
'max' => '$0.003041'
'avg' => '$0.002046'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00018497873463217
'max_diff' => -0.0010274515046835
'year' => 2030
]
5 => [
'items' => [
101 => 0.0012631844862387
102 => 0.0012443691405959
103 => 0.0012562597895584
104 => 0.0013004902822175
105 => 0.0013014248028299
106 => 0.0012857703785106
107 => 0.0012848178053681
108 => 0.0012878244087992
109 => 0.0013054341790051
110 => 0.0012992807842016
111 => 0.0013064016484531
112 => 0.0013153063982381
113 => 0.0013521402188848
114 => 0.0013610207283424
115 => 0.0013394456943767
116 => 0.0013413936783784
117 => 0.0013333240234273
118 => 0.001325528837857
119 => 0.0013430512766236
120 => 0.0013750738778739
121 => 0.0013748746669335
122 => 0.0013823032879931
123 => 0.0013869312573713
124 => 0.0013670646249196
125 => 0.0013541321777099
126 => 0.0013590913008831
127 => 0.0013670210468327
128 => 0.0013565197911461
129 => 0.0012917011763937
130 => 0.0013113630034804
131 => 0.001308090314039
201 => 0.0013034296063017
202 => 0.0013231997254778
203 => 0.0013212928492538
204 => 0.0012641745030916
205 => 0.0012678310342929
206 => 0.0012643968688648
207 => 0.0012754933599272
208 => 0.0012437698936629
209 => 0.001253527818225
210 => 0.0012596478970355
211 => 0.0012632526704715
212 => 0.0012762755839387
213 => 0.0012747474953532
214 => 0.0012761805958067
215 => 0.0012954901385569
216 => 0.0013931511795526
217 => 0.0013984666545371
218 => 0.00137229131167
219 => 0.0013827478448596
220 => 0.001362673587728
221 => 0.0013761495710262
222 => 0.0013853694965461
223 => 0.0013437064260117
224 => 0.0013412394093658
225 => 0.0013210822986342
226 => 0.0013319135881843
227 => 0.0013146802277129
228 => 0.0013189086915752
301 => 0.0013070855379853
302 => 0.0013283648604807
303 => 0.001352158449503
304 => 0.0013581696497274
305 => 0.0013423567699215
306 => 0.0013309072028226
307 => 0.0013108055347186
308 => 0.0013442350567704
309 => 0.0013540108677645
310 => 0.0013441837085969
311 => 0.0013419065410901
312 => 0.0013375913127794
313 => 0.0013428220371756
314 => 0.0013539576265984
315 => 0.0013487062882686
316 => 0.0013521748897521
317 => 0.0013389561577035
318 => 0.0013670712016016
319 => 0.0014117246575657
320 => 0.0014118682257282
321 => 0.0014066168590918
322 => 0.0014044681130064
323 => 0.001409856333855
324 => 0.0014127792226289
325 => 0.0014302037408223
326 => 0.0014489009430673
327 => 0.001536152627716
328 => 0.0015116527038099
329 => 0.0015890675890563
330 => 0.0016502927122214
331 => 0.0016686514496084
401 => 0.0016517622750577
402 => 0.0015939853212549
403 => 0.0015911505082618
404 => 0.0016774936700439
405 => 0.0016530977720731
406 => 0.0016501959576366
407 => 0.0016193255547249
408 => 0.0016375737862195
409 => 0.0016335826303062
410 => 0.0016272823954431
411 => 0.001662098749952
412 => 0.0017272718575152
413 => 0.0017171140175119
414 => 0.0017095316611581
415 => 0.0016763079828065
416 => 0.0016963160579514
417 => 0.0016891915656218
418 => 0.0017198029059845
419 => 0.0017016694260778
420 => 0.0016529129491519
421 => 0.0016606775788058
422 => 0.0016595039706539
423 => 0.0016836567432577
424 => 0.0016764066804307
425 => 0.0016580882795276
426 => 0.0017270491029188
427 => 0.001722571170628
428 => 0.0017289198548185
429 => 0.0017317147419387
430 => 0.0017736899799109
501 => 0.0017908858918503
502 => 0.0017947896649174
503 => 0.0018111244512802
504 => 0.001794383240552
505 => 0.0018613600197459
506 => 0.0019058956697064
507 => 0.0019576261189192
508 => 0.0020332182090529
509 => 0.0020616415342091
510 => 0.002056507114927
511 => 0.0021138201749458
512 => 0.0022168104698018
513 => 0.0020773243981226
514 => 0.0022242035702995
515 => 0.0021777033201899
516 => 0.0020674520636838
517 => 0.0020603531825417
518 => 0.002135016613491
519 => 0.0023006129172478
520 => 0.0022591329213344
521 => 0.0023006807636613
522 => 0.0022522129986434
523 => 0.0022498061655919
524 => 0.0022983267924964
525 => 0.0024116978819806
526 => 0.0023578395270184
527 => 0.0022806203685697
528 => 0.0023376377935051
529 => 0.0022882440233125
530 => 0.0021769460346228
531 => 0.0022591012023633
601 => 0.0022041663813397
602 => 0.0022201992826101
603 => 0.0023356641054638
604 => 0.002321771072496
605 => 0.0023397499436165
606 => 0.0023080177066778
607 => 0.0022783747936625
608 => 0.0022230440952079
609 => 0.002206663403166
610 => 0.0022111904371308
611 => 0.0022066611597928
612 => 0.0021757041425228
613 => 0.0021690189775908
614 => 0.0021578767431536
615 => 0.0021613301875146
616 => 0.0021403795269971
617 => 0.002179917752021
618 => 0.002187256394995
619 => 0.002216029017953
620 => 0.0022190162871181
621 => 0.0022991476325035
622 => 0.0022550126340177
623 => 0.0022846222014344
624 => 0.0022819736430286
625 => 0.0020698415427233
626 => 0.002099071474488
627 => 0.002144544075456
628 => 0.0021240587303566
629 => 0.0020950972452185
630 => 0.0020717092931529
701 => 0.0020362741542327
702 => 0.0020861484317913
703 => 0.0021517278032429
704 => 0.0022206794882005
705 => 0.0023035204197837
706 => 0.0022850312882291
707 => 0.0022191308346075
708 => 0.0022220870808167
709 => 0.0022403614316416
710 => 0.0022166944869234
711 => 0.0022097146428924
712 => 0.0022394025082546
713 => 0.0022396069522672
714 => 0.0022123752721231
715 => 0.0021821122429877
716 => 0.0021819854397907
717 => 0.0021766004260622
718 => 0.0022531709806229
719 => 0.0022952770434749
720 => 0.0023001044357236
721 => 0.002294952121514
722 => 0.0022969350427652
723 => 0.0022724344525354
724 => 0.0023284355363765
725 => 0.0023798276688422
726 => 0.0023660534795086
727 => 0.0023454040115812
728 => 0.0023289557157638
729 => 0.0023621787837484
730 => 0.002360699412829
731 => 0.0023793788033987
801 => 0.002378531398345
802 => 0.0023722502218639
803 => 0.0023660537038292
804 => 0.002390622197414
805 => 0.0023835468658195
806 => 0.0023764605442808
807 => 0.0023622478415734
808 => 0.0023641795839193
809 => 0.0023435336814137
810 => 0.0023339819422223
811 => 0.0021903467026114
812 => 0.0021519626731705
813 => 0.0021640390702115
814 => 0.002168014933681
815 => 0.0021513101548778
816 => 0.0021752605165759
817 => 0.002171527878075
818 => 0.0021860493909617
819 => 0.0021769769801609
820 => 0.0021773493150647
821 => 0.002204029340788
822 => 0.0022117746657604
823 => 0.002207835330967
824 => 0.0022105943060238
825 => 0.0022741737217172
826 => 0.0022651347619608
827 => 0.0022603329947434
828 => 0.0022616631170785
829 => 0.0022779090209462
830 => 0.0022824569870357
831 => 0.0022631869351346
901 => 0.00227227480301
902 => 0.0023109697910013
903 => 0.0023245108468516
904 => 0.0023677273970503
905 => 0.002349368238413
906 => 0.0023830672686575
907 => 0.0024866465987833
908 => 0.0025693929348322
909 => 0.0024932959845647
910 => 0.0026452490930362
911 => 0.00276356638436
912 => 0.0027590251696513
913 => 0.0027383938131807
914 => 0.0026036927226364
915 => 0.0024797387708374
916 => 0.0025834315148801
917 => 0.0025836958490092
918 => 0.0025747885503354
919 => 0.0025194660832689
920 => 0.0025728634483999
921 => 0.0025771019373333
922 => 0.0025747295106358
923 => 0.0025323139048463
924 => 0.00246755311452
925 => 0.0024802072179343
926 => 0.0025009348974637
927 => 0.0024616930758677
928 => 0.0024491529361219
929 => 0.0024724674417685
930 => 0.0025475916367319
1001 => 0.0025333898428389
1002 => 0.0025330189766064
1003 => 0.0025937802733785
1004 => 0.0025502882979982
1005 => 0.0024803668267024
1006 => 0.0024627107330494
1007 => 0.0024000434951507
1008 => 0.0024433279795804
1009 => 0.0024448857111171
1010 => 0.0024211792413517
1011 => 0.0024822904760701
1012 => 0.0024817273252837
1013 => 0.0025397433474419
1014 => 0.0026506481919855
1015 => 0.002617848172158
1016 => 0.0025797053177306
1017 => 0.0025838525035935
1018 => 0.0026293368963825
1019 => 0.0026018359941946
1020 => 0.0026117255103645
1021 => 0.0026293219274153
1022 => 0.0026399382827166
1023 => 0.0025823249734421
1024 => 0.0025688925550871
1025 => 0.0025414145412709
1026 => 0.0025342460403677
1027 => 0.0025566263092734
1028 => 0.0025507298991233
1029 => 0.0024447547898133
1030 => 0.0024336798012504
1031 => 0.0024340194553382
1101 => 0.0024061708700099
1102 => 0.002363695092958
1103 => 0.0024753188989536
1104 => 0.002466353945158
1105 => 0.0024564573299999
1106 => 0.0024576696088875
1107 => 0.0025061217197884
1108 => 0.0024780170485756
1109 => 0.0025527379232598
1110 => 0.0025373775577398
1111 => 0.0025216232568042
1112 => 0.0025194455325272
1113 => 0.0025133814707607
1114 => 0.0024925855466257
1115 => 0.0024674732185914
1116 => 0.0024508918844305
1117 => 0.0022608182097323
1118 => 0.0022960947781486
1119 => 0.0023366772545512
1120 => 0.0023506861627813
1121 => 0.0023267229558667
1122 => 0.0024935317600922
1123 => 0.0025240093360338
1124 => 0.0024316907705035
1125 => 0.002414421736235
1126 => 0.0024946639151038
1127 => 0.0024462680720385
1128 => 0.0024680607172075
1129 => 0.0024209569382918
1130 => 0.0025166681804771
1201 => 0.0025159390211718
1202 => 0.0024787051862253
1203 => 0.0025101749685558
1204 => 0.0025047063194425
1205 => 0.0024626694114908
1206 => 0.002518000825439
1207 => 0.00251802826913
1208 => 0.0024821915125274
1209 => 0.0024403420264902
1210 => 0.0024328603268275
1211 => 0.0024272238711566
1212 => 0.0024666744946335
1213 => 0.002502045800284
1214 => 0.0025678630308092
1215 => 0.0025844110463421
1216 => 0.0026489990526306
1217 => 0.0026105400396188
1218 => 0.0026275884219593
1219 => 0.0026460968526309
1220 => 0.0026549704749199
1221 => 0.0026405113835849
1222 => 0.002740843142835
1223 => 0.0027493142174014
1224 => 0.002752154495429
1225 => 0.0027183231907201
1226 => 0.0027483733076171
1227 => 0.0027343138530762
1228 => 0.0027708926479625
1229 => 0.0027766286700621
1230 => 0.0027717704634086
1231 => 0.00277359116736
]
'min_raw' => 0.0012437698936629
'max_raw' => 0.0027766286700621
'avg_raw' => 0.0020101992818625
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.001243'
'max' => '$0.002776'
'avg' => '$0.00201'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00019178679401192
'max_diff' => -0.00026496384381462
'year' => 2031
]
6 => [
'items' => [
101 => 0.0026879757105752
102 => 0.0026835360974834
103 => 0.002623001657956
104 => 0.0026476698895114
105 => 0.0026015538129977
106 => 0.0026161776959084
107 => 0.002622623764154
108 => 0.0026192567039137
109 => 0.0026490645943116
110 => 0.0026237217981237
111 => 0.0025568379922422
112 => 0.0024899359639126
113 => 0.0024890960634441
114 => 0.0024714819403038
115 => 0.0024587501554609
116 => 0.002461202748906
117 => 0.0024698460081032
118 => 0.0024582477935238
119 => 0.0024607228606487
120 => 0.0025018254662085
121 => 0.0025100683006231
122 => 0.0024820559285989
123 => 0.0023695822127556
124 => 0.0023419808807687
125 => 0.0023618201708427
126 => 0.0023523382680013
127 => 0.0018985205747514
128 => 0.0020051383102074
129 => 0.0019417896721956
130 => 0.0019709836391222
131 => 0.0019063210837624
201 => 0.001937181444435
202 => 0.0019314826626587
203 => 0.0021029208262239
204 => 0.0021002440551053
205 => 0.0021015252837882
206 => 0.0020403689005302
207 => 0.0021377926796369
208 => 0.0021857871364707
209 => 0.0021769046398419
210 => 0.0021791401728775
211 => 0.0021407263086506
212 => 0.0021018972139624
213 => 0.0020588297721984
214 => 0.0021388437556993
215 => 0.0021299475666182
216 => 0.0021503522236224
217 => 0.0022022470114404
218 => 0.0022098887160757
219 => 0.0022201592446001
220 => 0.0022164779912301
221 => 0.0023041803814532
222 => 0.0022935590433182
223 => 0.0023191534122561
224 => 0.0022665038535014
225 => 0.0022069258802285
226 => 0.002218249705197
227 => 0.0022171591297921
228 => 0.0022032748531834
229 => 0.0021907407490689
301 => 0.0021698749971803
302 => 0.0022358973237061
303 => 0.00223321693782
304 => 0.0022766092697069
305 => 0.0022689392535553
306 => 0.0022177170085234
307 => 0.0022195464210254
308 => 0.0022318500992875
309 => 0.0022744332702334
310 => 0.0022870748546536
311 => 0.0022812187690701
312 => 0.0022950796892765
313 => 0.0023060347954524
314 => 0.0022964554819444
315 => 0.0024320783602332
316 => 0.0023757582855736
317 => 0.0024032082980901
318 => 0.0024097549643304
319 => 0.0023929858164174
320 => 0.0023966224441416
321 => 0.002402130944222
322 => 0.0024355774780351
323 => 0.0025233508605934
324 => 0.0025622250942348
325 => 0.0026791801441659
326 => 0.0025589971302863
327 => 0.0025518659676095
328 => 0.0025729331038062
329 => 0.0026415980990651
330 => 0.0026972446283474
331 => 0.0027157057924356
401 => 0.0027181457400305
402 => 0.002752780111135
403 => 0.0027726318867593
404 => 0.0027485745875085
405 => 0.0027281885452977
406 => 0.0026551682725072
407 => 0.0026636205679103
408 => 0.0027218485014996
409 => 0.0028040988873027
410 => 0.0028746782750158
411 => 0.0028499638333786
412 => 0.0030385175773932
413 => 0.0030572119109393
414 => 0.0030546289585034
415 => 0.0030972174324112
416 => 0.0030126879846961
417 => 0.002976550008117
418 => 0.0027325962390151
419 => 0.0028011372973878
420 => 0.0029007657510077
421 => 0.0028875795515836
422 => 0.0028152267054886
423 => 0.002874623388894
424 => 0.0028549849878541
425 => 0.002839495366156
426 => 0.002910456325966
427 => 0.0028324318357394
428 => 0.0028999873970321
429 => 0.0028133466909013
430 => 0.0028500767268663
501 => 0.0028292269820206
502 => 0.0028427193221844
503 => 0.002763843377281
504 => 0.0028064029225455
505 => 0.0027620727602752
506 => 0.0027620517420063
507 => 0.0027610731512172
508 => 0.0028132273905382
509 => 0.0028149281384101
510 => 0.0027763860767511
511 => 0.0027708315635259
512 => 0.0027913695101578
513 => 0.0027673249535486
514 => 0.0027785752502514
515 => 0.0027676657135749
516 => 0.002765209747079
517 => 0.0027456401881916
518 => 0.0027372090841466
519 => 0.0027405151372854
520 => 0.0027292298735355
521 => 0.0027224300939203
522 => 0.0027597205039037
523 => 0.0027397977421404
524 => 0.0027566670549309
525 => 0.0027374423439292
526 => 0.0026708011197893
527 => 0.0026324750470684
528 => 0.002506595952313
529 => 0.0025422951074331
530 => 0.0025659636842112
531 => 0.0025581412197272
601 => 0.0025749469003306
602 => 0.0025759786326296
603 => 0.0025705149345518
604 => 0.0025641886721208
605 => 0.0025611093974336
606 => 0.0025840597881494
607 => 0.0025973832624345
608 => 0.0025683391425355
609 => 0.0025615345116136
610 => 0.0025908997204013
611 => 0.002608812480798
612 => 0.0027410702392569
613 => 0.0027312721573233
614 => 0.0027558634202001
615 => 0.0027530948213838
616 => 0.0027788703825741
617 => 0.0028210025315552
618 => 0.0027353360923424
619 => 0.0027502048240672
620 => 0.0027465593544174
621 => 0.0027863596361599
622 => 0.0027864838882952
623 => 0.002762621631219
624 => 0.0027755577479009
625 => 0.0027683371624529
626 => 0.0027813857362781
627 => 0.0027311412979655
628 => 0.0027923336002783
629 => 0.0028270256925449
630 => 0.0028275073922796
701 => 0.0028439511686805
702 => 0.0028606589978631
703 => 0.0028927282210338
704 => 0.0028597646046345
705 => 0.0028004662676754
706 => 0.0028047474160714
707 => 0.0027699808228087
708 => 0.0027705652555225
709 => 0.0027674455078932
710 => 0.0027768081053724
711 => 0.0027331958616076
712 => 0.0027434315680483
713 => 0.0027291015190911
714 => 0.0027501736733394
715 => 0.0027275035187201
716 => 0.0027465575964616
717 => 0.0027547807047621
718 => 0.0027851241514219
719 => 0.002723021766977
720 => 0.002596390801132
721 => 0.0026230101654047
722 => 0.0025836380347394
723 => 0.0025872820753328
724 => 0.0025946436172761
725 => 0.0025707824512912
726 => 0.0025753344098094
727 => 0.0025751717818194
728 => 0.0025737703416612
729 => 0.0025675631308265
730 => 0.0025585614470571
731 => 0.0025944213846224
801 => 0.0026005146867915
802 => 0.0026140593427129
803 => 0.0026543590513073
804 => 0.0026503321600862
805 => 0.002656900186742
806 => 0.0026425622214302
807 => 0.0025879471724213
808 => 0.0025909130323434
809 => 0.00255392871159
810 => 0.0026131135704792
811 => 0.0025990978146923
812 => 0.0025900617657585
813 => 0.0025875961960886
814 => 0.0026279957998657
815 => 0.002640083994502
816 => 0.0026325514428132
817 => 0.0026171019595399
818 => 0.0026467695346544
819 => 0.0026547073261806
820 => 0.0026564843049688
821 => 0.0027090495598784
822 => 0.0026594221187911
823 => 0.0026713679371151
824 => 0.0027645658015953
825 => 0.002680048198938
826 => 0.002724819058033
827 => 0.0027226277574566
828 => 0.0027455310140063
829 => 0.0027207490219235
830 => 0.0027210562244164
831 => 0.0027413927646316
901 => 0.0027128337616137
902 => 0.0027057621508403
903 => 0.0026959927712047
904 => 0.0027173238542334
905 => 0.0027301108737872
906 => 0.00283316486036
907 => 0.0028997424355188
908 => 0.0028968521273953
909 => 0.0029232641332141
910 => 0.0029113652826865
911 => 0.0028729407555747
912 => 0.0029385267379826
913 => 0.0029177725889147
914 => 0.0029194835357475
915 => 0.002919419854221
916 => 0.0029332195489919
917 => 0.0029234412005233
918 => 0.0029041670719646
919 => 0.0029169621379878
920 => 0.0029549589097567
921 => 0.0030729020552108
922 => 0.0031389046019458
923 => 0.0030689286190221
924 => 0.0031171971150271
925 => 0.0030882532172478
926 => 0.0030829932500149
927 => 0.0031133094325199
928 => 0.0031436786794891
929 => 0.003141744289747
930 => 0.0031196977759255
1001 => 0.0031072442596772
1002 => 0.0032015464569429
1003 => 0.0032710267094922
1004 => 0.0032662886220698
1005 => 0.0032872009990434
1006 => 0.0033486003846335
1007 => 0.0033542139749697
1008 => 0.0033535067916142
1009 => 0.0033395929222484
1010 => 0.0034000485910795
1011 => 0.0034504817736348
1012 => 0.0033363722635005
1013 => 0.0033798236711565
1014 => 0.0033993304079701
1015 => 0.0034279720850006
1016 => 0.0034762953950535
1017 => 0.0035287873268959
1018 => 0.0035362102616031
1019 => 0.0035309433342082
1020 => 0.0034963234940993
1021 => 0.0035537607922802
1022 => 0.0035874062144842
1023 => 0.0036074412934449
1024 => 0.0036582469201699
1025 => 0.0033994508749358
1026 => 0.0032162621711211
1027 => 0.0031876546097435
1028 => 0.0032458292107417
1029 => 0.0032611693890911
1030 => 0.0032549857824334
1031 => 0.0030487902415016
1101 => 0.0031865690328936
1102 => 0.0033348074276616
1103 => 0.0033405018681245
1104 => 0.003414713108064
1105 => 0.0034388793298098
1106 => 0.0034986291050507
1107 => 0.0034948917403412
1108 => 0.0035094398597858
1109 => 0.0035060954990638
1110 => 0.003616769375898
1111 => 0.0037388590972758
1112 => 0.003734631518446
1113 => 0.0037170796764979
1114 => 0.0037431471548246
1115 => 0.0038691568312162
1116 => 0.003857555879478
1117 => 0.0038688252159249
1118 => 0.0040173977259847
1119 => 0.0042105631232556
1120 => 0.0041208184027345
1121 => 0.0043155386229177
1122 => 0.0044381046798477
1123 => 0.0046500700017412
1124 => 0.0046235308994889
1125 => 0.0047060474438287
1126 => 0.0045760203675795
1127 => 0.0042774519177037
1128 => 0.0042302023176367
1129 => 0.0043247972135212
1130 => 0.0045573495346183
1201 => 0.0043174733133464
1202 => 0.0043659999604943
1203 => 0.0043520242828511
1204 => 0.0043512795783823
1205 => 0.0043797019190244
1206 => 0.0043384738315135
1207 => 0.0041705031862031
1208 => 0.0042474831430916
1209 => 0.0042177574848558
1210 => 0.0042507403188631
1211 => 0.0044287350708449
1212 => 0.0043500393481288
1213 => 0.0042671397969688
1214 => 0.0043711142310065
1215 => 0.0045035094150284
1216 => 0.0044952243623493
1217 => 0.0044791478972686
1218 => 0.0045697700891925
1219 => 0.0047194514004399
1220 => 0.0047599096574018
1221 => 0.0047897751155585
1222 => 0.0047938930576572
1223 => 0.0048363104205611
1224 => 0.004608221569675
1225 => 0.0049702044337684
1226 => 0.0050327088748225
1227 => 0.005020960630448
1228 => 0.0050904316860907
1229 => 0.00506999153921
1230 => 0.0050403769733408
1231 => 0.0051505033734517
]
'min_raw' => 0.0018985205747514
'max_raw' => 0.0051505033734517
'avg_raw' => 0.0035245119741015
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.001898'
'max' => '$0.00515'
'avg' => '$0.003524'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.00065475068108844
'max_diff' => 0.0023738747033896
'year' => 2032
]
7 => [
'items' => [
101 => 0.0050242523424667
102 => 0.0048450548985464
103 => 0.0047467436366881
104 => 0.0048762078368463
105 => 0.004955267106205
106 => 0.0050075202541372
107 => 0.0050233320251293
108 => 0.0046259274578836
109 => 0.0044117484372059
110 => 0.0045490347338928
111 => 0.004716533490845
112 => 0.0046072911056229
113 => 0.0046115732003004
114 => 0.0044558222673676
115 => 0.00473031399242
116 => 0.0046903228569186
117 => 0.0048977969386426
118 => 0.0048482815839557
119 => 0.0050174686435042
120 => 0.0049729160206492
121 => 0.0051578514672165
122 => 0.0052316272237795
123 => 0.0053555082013284
124 => 0.0054466355526997
125 => 0.0055001472764133
126 => 0.005496934633239
127 => 0.0057089747420275
128 => 0.0055839420979921
129 => 0.005426871629152
130 => 0.0054240307199216
131 => 0.0055053797414397
201 => 0.0056758649735273
202 => 0.0057200693137484
203 => 0.005744773509465
204 => 0.0057069381737658
205 => 0.0055712241998357
206 => 0.0055126235939781
207 => 0.0055625530079918
208 => 0.0055014936251365
209 => 0.0056068992501816
210 => 0.0057516436867951
211 => 0.005721754533016
212 => 0.0058216694928674
213 => 0.0059250709649532
214 => 0.0060729397140866
215 => 0.006111598080674
216 => 0.006175498890597
217 => 0.0062412738143303
218 => 0.0062623989471496
219 => 0.0063027333804452
220 => 0.0063025207980721
221 => 0.0064240713276291
222 => 0.0065581453258371
223 => 0.0066087551563403
224 => 0.0067251296709403
225 => 0.0065258423929372
226 => 0.0066770040825498
227 => 0.0068133557104029
228 => 0.0066507916785587
301 => 0.0068748483238944
302 => 0.0068835479357095
303 => 0.0070149017454628
304 => 0.0068817494949328
305 => 0.0068026841136051
306 => 0.0070309429069569
307 => 0.0071413901469753
308 => 0.0071081225394323
309 => 0.0068549544034059
310 => 0.0067075996893463
311 => 0.006321943980051
312 => 0.0067787698267982
313 => 0.0070012763709561
314 => 0.0068543781652101
315 => 0.0069284650756301
316 => 0.0073326592361198
317 => 0.0074865502028005
318 => 0.0074545419575099
319 => 0.0074599508240635
320 => 0.0075429875963657
321 => 0.0079112183739397
322 => 0.0076905659564948
323 => 0.0078592464619431
324 => 0.00794871399381
325 => 0.0080318164234878
326 => 0.0078277431209918
327 => 0.0075622467528768
328 => 0.0074781529083154
329 => 0.0068397720336959
330 => 0.0068065415368243
331 => 0.0067878882519432
401 => 0.0066702819293273
402 => 0.0065778755748341
403 => 0.0065043906109131
404 => 0.0063115441211167
405 => 0.006376624150355
406 => 0.00606926709581
407 => 0.0062659032472427
408 => 0.0057753539667933
409 => 0.0061838979843021
410 => 0.0059615460497892
411 => 0.0061108493936785
412 => 0.0061103284883769
413 => 0.0058354136956083
414 => 0.0056768485804648
415 => 0.0057778924432808
416 => 0.0058862194850915
417 => 0.0059037951831693
418 => 0.0060442440205019
419 => 0.0060834402720638
420 => 0.0059646737999333
421 => 0.0057651884233059
422 => 0.0058115243265195
423 => 0.0056759095848651
424 => 0.0054382499664615
425 => 0.0056089412535378
426 => 0.0056672227637117
427 => 0.005692963198829
428 => 0.0054592522595206
429 => 0.0053858152082786
430 => 0.0053467179383938
501 => 0.0057350192758575
502 => 0.0057562912996645
503 => 0.005647460618307
504 => 0.0061393856177916
505 => 0.0060280478399669
506 => 0.0061524394162149
507 => 0.0058073198289728
508 => 0.0058205038619706
509 => 0.0056571187185834
510 => 0.005748603481481
511 => 0.0056839449997566
512 => 0.0057412124167089
513 => 0.0057755382703078
514 => 0.0059388966038006
515 => 0.0061857632740645
516 => 0.0059144963162971
517 => 0.0057963014181835
518 => 0.0058696288682199
519 => 0.006064909530645
520 => 0.0063607697304524
521 => 0.006185614537425
522 => 0.0062633454377625
523 => 0.0062803261814792
524 => 0.0061511732267385
525 => 0.0063655317841155
526 => 0.0064804082764597
527 => 0.0065982477872641
528 => 0.0067005645327075
529 => 0.0065511800953024
530 => 0.0067110428567438
531 => 0.0065822216905982
601 => 0.0064666557872783
602 => 0.0064668310530501
603 => 0.0063943348737491
604 => 0.0062538643912469
605 => 0.0062279594790697
606 => 0.0063627201036455
607 => 0.0064707853626767
608 => 0.0064796861350082
609 => 0.0065395166150014
610 => 0.0065749236767584
611 => 0.0069219610155433
612 => 0.0070615423040461
613 => 0.0072322196614887
614 => 0.0072987081110613
615 => 0.0074988145068467
616 => 0.0073372123404031
617 => 0.0073022486951678
618 => 0.0068168560332958
619 => 0.0068963390544851
620 => 0.0070235990403801
621 => 0.0068189545035904
622 => 0.0069487543595042
623 => 0.0069743796005985
624 => 0.0068120007605385
625 => 0.0068987343149901
626 => 0.0066683957090735
627 => 0.0061907840262307
628 => 0.0063660635024511
629 => 0.006495128195383
630 => 0.0063109369650072
701 => 0.0066410926162707
702 => 0.0064482225005986
703 => 0.0063870919333288
704 => 0.0061485997957885
705 => 0.0062611589043033
706 => 0.0064133967102608
707 => 0.0063193314457236
708 => 0.0065145309936087
709 => 0.006790985611232
710 => 0.0069880036349074
711 => 0.0070031282323826
712 => 0.0068764588423418
713 => 0.0070794473482755
714 => 0.0070809258979336
715 => 0.006851954034008
716 => 0.0067117100422742
717 => 0.0066798463122764
718 => 0.0067594481570632
719 => 0.0068560994919455
720 => 0.0070084917088095
721 => 0.0071005791338277
722 => 0.0073406942988788
723 => 0.0074056625779003
724 => 0.0074770430193935
725 => 0.0075724293021414
726 => 0.0076869649911211
727 => 0.0074363674241539
728 => 0.0074463241326618
729 => 0.0072129711480614
730 => 0.0069636000178128
731 => 0.0071528416211213
801 => 0.0074002498436916
802 => 0.0073434941240722
803 => 0.0073371079462009
804 => 0.0073478477260024
805 => 0.0073050557668779
806 => 0.0071115093217016
807 => 0.007014311508599
808 => 0.0071397214853081
809 => 0.0072063713065731
810 => 0.0073097393668799
811 => 0.0072969970716121
812 => 0.0075632620940432
813 => 0.0076667246303236
814 => 0.0076402544861315
815 => 0.0076451256297024
816 => 0.0078324396096232
817 => 0.0080407712793532
818 => 0.0082359013798405
819 => 0.0084343960990889
820 => 0.0081951029676542
821 => 0.0080736046730602
822 => 0.0081989598996967
823 => 0.0081324446519408
824 => 0.0085146609952502
825 => 0.0085411248255779
826 => 0.0089233135302954
827 => 0.0092860561212566
828 => 0.0090582239990824
829 => 0.0092730594285085
830 => 0.0095054214612224
831 => 0.0099536855217086
901 => 0.0098027259562566
902 => 0.0096870932949584
903 => 0.0095778209887645
904 => 0.0098051993114639
905 => 0.010097717891159
906 => 0.010160723591517
907 => 0.010262816896128
908 => 0.010155478269705
909 => 0.010284755822269
910 => 0.010741162390255
911 => 0.010617837306773
912 => 0.010442695862732
913 => 0.010802985014404
914 => 0.010933372257806
915 => 0.011848498216327
916 => 0.013003882540928
917 => 0.012525545843881
918 => 0.012228626820195
919 => 0.012298409833774
920 => 0.012720317076891
921 => 0.012855820292714
922 => 0.012487475841348
923 => 0.012617581328667
924 => 0.013334475355484
925 => 0.013719066000157
926 => 0.013196740247276
927 => 0.011755664210818
928 => 0.01042692629196
929 => 0.01077936742189
930 => 0.010739411535277
1001 => 0.011509624732741
1002 => 0.010614896044318
1003 => 0.010629960980772
1004 => 0.011416101371489
1005 => 0.011206372593104
1006 => 0.010866638832153
1007 => 0.010429406724387
1008 => 0.0096211427341082
1009 => 0.0089052407778092
1010 => 0.010309289376486
1011 => 0.010248744247814
1012 => 0.010161065929212
1013 => 0.010356184539476
1014 => 0.011303625125531
1015 => 0.011281783553457
1016 => 0.011142838615587
1017 => 0.011248227126357
1018 => 0.010848163716669
1019 => 0.01095126916662
1020 => 0.010426715813085
1021 => 0.010663835836166
1022 => 0.010865909916084
1023 => 0.010906479279385
1024 => 0.010997884126426
1025 => 0.010216839716196
1026 => 0.01056750572613
1027 => 0.010773489154005
1028 => 0.009842848533126
1029 => 0.010755093381168
1030 => 0.010203243470681
1031 => 0.010015937322554
1101 => 0.010268120375298
1102 => 0.010169844394388
1103 => 0.01008535247696
1104 => 0.01003820453528
1105 => 0.010223379936788
1106 => 0.010214741282975
1107 => 0.009911758385112
1108 => 0.0095165295460128
1109 => 0.0096491813173589
1110 => 0.0096009876852119
1111 => 0.0094263277452088
1112 => 0.0095440274562493
1113 => 0.0090257374952876
1114 => 0.008134046555821
1115 => 0.0087231249036648
1116 => 0.0087004460280668
1117 => 0.0086890103105851
1118 => 0.00913168640806
1119 => 0.009089133315563
1120 => 0.0090118990359999
1121 => 0.0094249092770968
1122 => 0.0092741549833248
1123 => 0.0097387441945514
1124 => 0.010044752696811
1125 => 0.0099671390423003
1126 => 0.010254941517743
1127 => 0.0096522373462518
1128 => 0.009852431495727
1129 => 0.0098936912324767
1130 => 0.0094198127948316
1201 => 0.0090960955277585
1202 => 0.0090745072766918
1203 => 0.0085132261465744
1204 => 0.0088130579957801
1205 => 0.0090768976151962
1206 => 0.0089505389122774
1207 => 0.0089105375217922
1208 => 0.0091148959505381
1209 => 0.0091307763506632
1210 => 0.0087687015448809
1211 => 0.0088439883624209
1212 => 0.0091579469069549
1213 => 0.0088360774126333
1214 => 0.0082107375622499
1215 => 0.008055644633355
1216 => 0.0080349523777106
1217 => 0.0076143280539722
1218 => 0.0080660086844695
1219 => 0.0078688379849691
1220 => 0.008491697862223
1221 => 0.0081359236408001
1222 => 0.0081205869251915
1223 => 0.008097403230142
1224 => 0.0077353544989284
1225 => 0.007814620161667
1226 => 0.0080781112971114
1227 => 0.008172127902678
1228 => 0.0081623212004621
1229 => 0.0080768200468006
1230 => 0.0081159620371101
1231 => 0.0079898720483498
]
'min_raw' => 0.0044117484372059
'max_raw' => 0.013719066000157
'avg_raw' => 0.0090654072186815
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.004411'
'max' => '$0.013719'
'avg' => '$0.009065'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0025132278624546
'max_diff' => 0.0085685626267054
'year' => 2033
]
8 => [
'items' => [
101 => 0.0079453470489824
102 => 0.0078048139034129
103 => 0.0075982690026981
104 => 0.007626990337956
105 => 0.0072177708442268
106 => 0.0069948063451208
107 => 0.0069330927103931
108 => 0.0068505666588449
109 => 0.0069424142475089
110 => 0.0072166115768168
111 => 0.006885871423463
112 => 0.0063188406292622
113 => 0.0063529201461671
114 => 0.0064294867023531
115 => 0.0062868054314389
116 => 0.0061517695828501
117 => 0.0062691722973934
118 => 0.0060289138748556
119 => 0.0064585207848686
120 => 0.0064469011219122
121 => 0.0066070320112519
122 => 0.0067071651425727
123 => 0.0064763906933645
124 => 0.0064183515434691
125 => 0.0064514132809819
126 => 0.0059049764058273
127 => 0.0065623764606719
128 => 0.0065680616836453
129 => 0.0065193813529479
130 => 0.006869426587203
131 => 0.0076081312133279
201 => 0.007330200818655
202 => 0.007222577769347
203 => 0.0070179862739405
204 => 0.0072905922941287
205 => 0.0072696604050946
206 => 0.0071749984646994
207 => 0.0071177466277851
208 => 0.0072232348927368
209 => 0.0071046754643706
210 => 0.0070833789332408
211 => 0.0069543451254488
212 => 0.0069082859267312
213 => 0.0068741855296702
214 => 0.0068366443431419
215 => 0.0069194508459425
216 => 0.0067318004164936
217 => 0.0065055123941766
218 => 0.0064866989935913
219 => 0.0065386444466985
220 => 0.0065156624505827
221 => 0.0064865889646357
222 => 0.0064310797622701
223 => 0.0064146113676947
224 => 0.0064681256607356
225 => 0.0064077111439695
226 => 0.0064968560544069
227 => 0.0064726135713808
228 => 0.0063371970318592
301 => 0.006168417885991
302 => 0.0061669153975666
303 => 0.0061305522074426
304 => 0.0060842382175774
305 => 0.0060713547251174
306 => 0.0062592849682374
307 => 0.0066482949472167
308 => 0.0065719229801232
309 => 0.0066271095532623
310 => 0.0068985728729475
311 => 0.0069848628990886
312 => 0.0069236162824249
313 => 0.0068397781360089
314 => 0.0068434665889654
315 => 0.0071299669148018
316 => 0.0071478355886957
317 => 0.0071929839629731
318 => 0.0072510123828486
319 => 0.0069334987732517
320 => 0.0068285117265069
321 => 0.0067787630392996
322 => 0.0066255563378662
323 => 0.0067907766304123
324 => 0.006694509841384
325 => 0.0067074995201657
326 => 0.0066990399748184
327 => 0.0067036594586099
328 => 0.0064584007009818
329 => 0.0065477601018407
330 => 0.006399182766372
331 => 0.006200254392768
401 => 0.0061995875151064
402 => 0.0062482749527243
403 => 0.0062193137596895
404 => 0.0061413799338933
405 => 0.0061524500660104
406 => 0.0060554640601244
407 => 0.0061642259231132
408 => 0.0061673448241751
409 => 0.0061254655826257
410 => 0.0062930282388049
411 => 0.0063616787957596
412 => 0.0063341129818315
413 => 0.0063597447047695
414 => 0.0065750965801547
415 => 0.0066102083323035
416 => 0.0066258026532559
417 => 0.0066049083290314
418 => 0.0063636809417246
419 => 0.0063743804021297
420 => 0.0062958748608805
421 => 0.0062295459512351
422 => 0.0062321987597716
423 => 0.006266300441484
424 => 0.0064152244855595
425 => 0.0067286263567643
426 => 0.0067405197286828
427 => 0.0067549348424021
428 => 0.00669630133045
429 => 0.0066786169021982
430 => 0.0067019472278006
501 => 0.0068196444927376
502 => 0.0071223938126513
503 => 0.0070153819830466
504 => 0.0069283796998396
505 => 0.0070047041578593
506 => 0.006992954605798
507 => 0.0068937765620698
508 => 0.0068909929647051
509 => 0.006700638589652
510 => 0.0066302689113543
511 => 0.0065714627410896
512 => 0.0065072479383345
513 => 0.0064691792507616
514 => 0.0065276700567826
515 => 0.0065410475961625
516 => 0.0064131564265531
517 => 0.0063957253327095
518 => 0.0065001640225352
519 => 0.0064542044490097
520 => 0.0065014750101232
521 => 0.0065124421857809
522 => 0.0065106762179045
523 => 0.0064626891447206
524 => 0.0064932746741729
525 => 0.0064209307790329
526 => 0.0063422676587699
527 => 0.0062920854889277
528 => 0.0062482948900414
529 => 0.006272592459428
530 => 0.0061859760611255
531 => 0.0061582657320649
601 => 0.0064829129849906
602 => 0.006722733401273
603 => 0.006719246317441
604 => 0.0066980195914185
605 => 0.0066664809822332
606 => 0.0068173372470339
607 => 0.0067647819408435
608 => 0.0068030203172398
609 => 0.0068127535888922
610 => 0.0068422132707103
611 => 0.006852742574815
612 => 0.0068209157047386
613 => 0.0067141008414372
614 => 0.0064479283577427
615 => 0.0063240243480639
616 => 0.0062831339610855
617 => 0.0062846202489902
618 => 0.0062436217934954
619 => 0.0062556976760605
620 => 0.0062394222943527
621 => 0.0062086006588357
622 => 0.006270689310288
623 => 0.006277844448972
624 => 0.0062633522158189
625 => 0.006266765661353
626 => 0.0061467761605592
627 => 0.006155898701701
628 => 0.0061051032333867
629 => 0.0060955796954263
630 => 0.005967173174795
701 => 0.005739682410674
702 => 0.0058657343770599
703 => 0.0057134813272544
704 => 0.005655820790283
705 => 0.0059287768042527
706 => 0.0059013795910714
707 => 0.0058544874713875
708 => 0.0057851242532009
709 => 0.0057593967608535
710 => 0.0056030846616848
711 => 0.0055938489089733
712 => 0.005671321406103
713 => 0.0056355705143435
714 => 0.0055853627223917
715 => 0.0054035151894244
716 => 0.0051990583547202
717 => 0.0052052296213901
718 => 0.0052702635364549
719 => 0.005459358415524
720 => 0.0053854757748971
721 => 0.0053318730714166
722 => 0.0053218348963461
723 => 0.0054474836736969
724 => 0.0056253030178809
725 => 0.0057087318756885
726 => 0.0056260564113733
727 => 0.0055310832895311
728 => 0.0055368638633946
729 => 0.0055753194315655
730 => 0.0055793605680478
731 => 0.0055175428291231
801 => 0.005534944160531
802 => 0.0055085099469114
803 => 0.005346283226722
804 => 0.0053433490597803
805 => 0.0053035360063866
806 => 0.0053023304829525
807 => 0.0052345985472982
808 => 0.0052251223812914
809 => 0.0050906365120151
810 => 0.0051791555184335
811 => 0.0051197816163845
812 => 0.005030291141109
813 => 0.0050148629494405
814 => 0.0050143991593689
815 => 0.0051062858677727
816 => 0.0051780817687467
817 => 0.0051208144508308
818 => 0.0051077757926216
819 => 0.0052469945503837
820 => 0.0052292776944514
821 => 0.0052139350114754
822 => 0.0056093812459489
823 => 0.0052963546943086
824 => 0.0051598572508626
825 => 0.0049909157444366
826 => 0.0050459239508059
827 => 0.0050575149881266
828 => 0.0046512411191674
829 => 0.0044864158611289
830 => 0.0044298540438789
831 => 0.0043973019183848
901 => 0.0044121363307363
902 => 0.0042637742664271
903 => 0.004363476027325
904 => 0.0042350070203663
905 => 0.0042134687732754
906 => 0.0044431872719735
907 => 0.0044751512590714
908 => 0.0043387829596796
909 => 0.0044263534839114
910 => 0.0043945991945036
911 => 0.0042372092527622
912 => 0.0042311981146697
913 => 0.0041522253744279
914 => 0.0040286483280852
915 => 0.0039721703018917
916 => 0.0039427560554855
917 => 0.0039548929468249
918 => 0.0039487561631687
919 => 0.0039087094987314
920 => 0.0039510515910973
921 => 0.0038428850420629
922 => 0.0037998122506803
923 => 0.0037803572700939
924 => 0.0036843532319916
925 => 0.0038371383498019
926 => 0.0038672389427467
927 => 0.0038973988431582
928 => 0.0041599201852016
929 => 0.0041468053608307
930 => 0.0042653569859649
1001 => 0.0042607502878146
1002 => 0.0042269374439173
1003 => 0.0040842866174576
1004 => 0.004141144694378
1005 => 0.0039661443713241
1006 => 0.0040972665122213
1007 => 0.0040374278429073
1008 => 0.004077034997934
1009 => 0.0040058177619629
1010 => 0.0040452323208369
1011 => 0.0038743769099923
1012 => 0.0037148345313462
1013 => 0.0037790390418458
1014 => 0.0038488366874352
1015 => 0.0040001757671824
1016 => 0.0039100394598053
1017 => 0.0039424558843692
1018 => 0.0038338662885239
1019 => 0.0036098149352104
1020 => 0.0036110830415383
1021 => 0.003576617622055
1022 => 0.0035468344675879
1023 => 0.0039203926989937
1024 => 0.0038739348278367
1025 => 0.0037999102904038
1026 => 0.0038989950753759
1027 => 0.0039251946652095
1028 => 0.0039259405306998
1029 => 0.003998230232067
1030 => 0.0040368112586453
1031 => 0.0040436113317995
1101 => 0.0041573607388231
1102 => 0.0041954880396665
1103 => 0.0043525289958628
1104 => 0.0040335379280908
1105 => 0.0040269685169679
1106 => 0.003900389401498
1107 => 0.0038201109253303
1108 => 0.0039058861374424
1109 => 0.0039818712658896
1110 => 0.0039027504712466
1111 => 0.0039130819766958
1112 => 0.0038068687742939
1113 => 0.0038448349963569
1114 => 0.0038775366214
1115 => 0.0038594807061639
1116 => 0.0038324501271392
1117 => 0.00397564135188
1118 => 0.0039675619418091
1119 => 0.0041009049022397
1120 => 0.004204855275342
1121 => 0.004391152927293
1122 => 0.0041967416155659
1123 => 0.0041896564946515
1124 => 0.0042589146880781
1125 => 0.0041954774365979
1126 => 0.0042355675897539
1127 => 0.0043846937838282
1128 => 0.0043878445853191
1129 => 0.0043350646007695
1130 => 0.004331852933913
1201 => 0.0043419899072956
1202 => 0.0044013624770194
1203 => 0.0043806158768231
1204 => 0.00440462436781
1205 => 0.0044346473534201
1206 => 0.0045588351513855
1207 => 0.0045887764090392
1208 => 0.004516034675703
1209 => 0.0045226024397686
1210 => 0.0044953950346957
1211 => 0.004469113022303
1212 => 0.0045281911479821
1213 => 0.0046361575838441
1214 => 0.0046354859302501
1215 => 0.0046605320448024
1216 => 0.0046761355666753
1217 => 0.0046091538283207
1218 => 0.0045655511796386
1219 => 0.0045822712096519
1220 => 0.0046090069017581
1221 => 0.0045736011850365
1222 => 0.0043550606999074
1223 => 0.0044213519226754
1224 => 0.0044103178217316
1225 => 0.0043946039201952
1226 => 0.0044612602573032
1227 => 0.0044548310909799
1228 => 0.0042622525990186
1229 => 0.0042745808492546
1230 => 0.0042630023207479
1231 => 0.0043004149150971
]
'min_raw' => 0.0035468344675879
'max_raw' => 0.0079453470489824
'avg_raw' => 0.0057460907582851
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.003546'
'max' => '$0.007945'
'avg' => '$0.005746'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.00086491396961802
'max_diff' => -0.0057737189511747
'year' => 2034
]
9 => [
'items' => [
101 => 0.0041934570337254
102 => 0.004226356557663
103 => 0.0042469908306628
104 => 0.0042591445759796
105 => 0.0043030522379652
106 => 0.0042979001806115
107 => 0.0043027319788462
108 => 0.0043678354503778
109 => 0.0046971064685709
110 => 0.0047150279635956
111 => 0.0046267759676151
112 => 0.0046620308993156
113 => 0.0045943491398566
114 => 0.0046397843584098
115 => 0.0046708699810145
116 => 0.0045304000298854
117 => 0.004522082311022
118 => 0.0044541212048659
119 => 0.0044906396538004
120 => 0.0044325361757763
121 => 0.00444679273691
122 => 0.0044069301491154
123 => 0.0044786748705836
124 => 0.0045588966171877
125 => 0.0045791637984326
126 => 0.0045258495701473
127 => 0.0044872465552898
128 => 0.0044194723778238
129 => 0.0045321823453959
130 => 0.004565142174688
131 => 0.004532009221444
201 => 0.0045243315922081
202 => 0.0045097824986791
203 => 0.0045274182511782
204 => 0.0045649626683792
205 => 0.0045472574145637
206 => 0.0045589520466353
207 => 0.0045143841686309
208 => 0.0046091760020632
209 => 0.0047597282464508
210 => 0.0047602122965343
211 => 0.0047425069472809
212 => 0.0047352622998335
213 => 0.0047534290626179
214 => 0.0047632837861888
215 => 0.0048220317658189
216 => 0.0048850706885847
217 => 0.0051792458350962
218 => 0.0050966426311166
219 => 0.0053576523216593
220 => 0.0055640770990121
221 => 0.0056259748638787
222 => 0.0055690318327163
223 => 0.005374232799112
224 => 0.0053646750291855
225 => 0.005655787027421
226 => 0.0055735345541452
227 => 0.0055637508841743
228 => 0.0054596691654547
301 => 0.0055211943519896
302 => 0.0055077378911744
303 => 0.005486496209465
304 => 0.005603881979492
305 => 0.0058236176618825
306 => 0.0057893697951138
307 => 0.0057638053512837
308 => 0.0056517894001182
309 => 0.0057192480223883
310 => 0.0056952272990827
311 => 0.0057984355703312
312 => 0.0057372972767867
313 => 0.0055729114107626
314 => 0.0055990904017499
315 => 0.005595133499927
316 => 0.0056765662590532
317 => 0.0056521221660488
318 => 0.0055903603984542
319 => 0.0058228666292085
320 => 0.0058077689678509
321 => 0.00582917399985
322 => 0.0058385971569087
323 => 0.0059801196023494
324 => 0.0060380968200334
325 => 0.0060512586634817
326 => 0.0061063325361625
327 => 0.0060498883753582
328 => 0.0062757052625799
329 => 0.0064258603158016
330 => 0.006600273137027
331 => 0.0068551371465841
401 => 0.0069509683718015
402 => 0.006933657318718
403 => 0.0071268923020415
404 => 0.0074741312717014
405 => 0.0070038442424283
406 => 0.007499057626199
407 => 0.0073422787864107
408 => 0.0069705589776034
409 => 0.0069466246042049
410 => 0.0071983575744849
411 => 0.0077566770741654
412 => 0.0076168243719028
413 => 0.0077569058230854
414 => 0.0075934933694165
415 => 0.0075853785637435
416 => 0.0077489692449542
417 => 0.0081312077884666
418 => 0.0079496205844414
419 => 0.0076892708004621
420 => 0.0078815090294611
421 => 0.007714974484694
422 => 0.0073397255452494
423 => 0.007616717429177
424 => 0.0074315008446693
425 => 0.0074855568906838
426 => 0.0078748546024314
427 => 0.0078280132718
428 => 0.0078886302910275
429 => 0.0077816428387145
430 => 0.0076816996878815
501 => 0.0074951483749758
502 => 0.007439919728093
503 => 0.0074551829391729
504 => 0.0074399121644036
505 => 0.007335538419328
506 => 0.0073129989190164
507 => 0.0072754320976856
508 => 0.0072870756264604
509 => 0.0072164390117973
510 => 0.0073497448979359
511 => 0.0073744876450907
512 => 0.007471496552234
513 => 0.0074815683387883
514 => 0.0077517367643471
515 => 0.0076029325355452
516 => 0.0077027632593645
517 => 0.0076938334597829
518 => 0.0069786152730133
519 => 0.0070771660287267
520 => 0.0072304800776859
521 => 0.007161412306442
522 => 0.0070637666372727
523 => 0.0069849125239889
524 => 0.0068654404791169
525 => 0.0070335950880168
526 => 0.0072547005174712
527 => 0.0074871759373588
528 => 0.0077664799219608
529 => 0.0077041425240544
530 => 0.0074819545436464
531 => 0.0074919217341391
601 => 0.00755353498382
602 => 0.0074737402273292
603 => 0.0074502071958614
604 => 0.0075503019066706
605 => 0.0075509912039328
606 => 0.0074591776930718
607 => 0.0073571437774448
608 => 0.0073567162516128
609 => 0.0073385603018577
610 => 0.0075967232725442
611 => 0.0077386868032015
612 => 0.0077549626932057
613 => 0.0077375913061247
614 => 0.0077442768635665
615 => 0.00766167141303
616 => 0.007850482977071
617 => 0.0080237551397635
618 => 0.0079773144987421
619 => 0.0079076933759248
620 => 0.0078522367981933
621 => 0.0079642506914639
622 => 0.0079592628891228
623 => 0.0080222417585817
624 => 0.0080193846732794
625 => 0.0079982072482355
626 => 0.0079773152550546
627 => 0.0080601496464931
628 => 0.0080362946720384
629 => 0.0080124026442195
630 => 0.0079644835247422
701 => 0.0079709965289315
702 => 0.0079013874271827
703 => 0.007869183071618
704 => 0.0073849068329774
705 => 0.0072554923978301
706 => 0.0072962088136012
707 => 0.0073096137148743
708 => 0.0072532923868491
709 => 0.0073340427034752
710 => 0.0073214578521648
711 => 0.0073704181467219
712 => 0.0073398298802915
713 => 0.0073410852334154
714 => 0.0074310388028812
715 => 0.0074571527067869
716 => 0.0074438709644954
717 => 0.0074531730415249
718 => 0.0076675354805084
719 => 0.0076370599966098
720 => 0.0076208705031876
721 => 0.0076253551035066
722 => 0.0076801293026494
723 => 0.0076954630878489
724 => 0.0076304927624723
725 => 0.0076611331435089
726 => 0.0077915959971194
727 => 0.007837250612325
728 => 0.0079829582286029
729 => 0.0079210590434617
730 => 0.0080346776767224
731 => 0.0083839026199193
801 => 0.0086628876690729
802 => 0.0084063214883265
803 => 0.0089186420025654
804 => 0.0093175570109133
805 => 0.0093022459884652
806 => 0.0092326859296893
807 => 0.0087785317983895
808 => 0.0083606123957107
809 => 0.0087102197218466
810 => 0.0087111109428184
811 => 0.0086810793634519
812 => 0.0084945558032459
813 => 0.00867458874787
814 => 0.0086888791092306
815 => 0.0086808803069824
816 => 0.0085378731307001
817 => 0.0083195276046611
818 => 0.0083621917978038
819 => 0.0084320766164975
820 => 0.0082997700752099
821 => 0.0082574901185324
822 => 0.0083360966020866
823 => 0.0085893830704095
824 => 0.0085415007307617
825 => 0.0085402503293658
826 => 0.0087451112836512
827 => 0.0085984750521438
828 => 0.008362729929909
829 => 0.0083032011774485
830 => 0.0080919142095865
831 => 0.0082378508708672
901 => 0.0082431028715006
902 => 0.0081631748535538
903 => 0.0083692156480569
904 => 0.0083673169458628
905 => 0.0085629220151184
906 => 0.0089368454416261
907 => 0.0088262578847534
908 => 0.0086976565880025
909 => 0.0087116391146865
910 => 0.0088649929205934
911 => 0.0087722717088152
912 => 0.0088056149030459
913 => 0.0088649424516755
914 => 0.0089007362347839
915 => 0.0087064889401323
916 => 0.0086612006038268
917 => 0.0085685565617919
918 => 0.008544387460508
919 => 0.008619844099664
920 => 0.0085999639411688
921 => 0.0082426614611841
922 => 0.0082053213640135
923 => 0.0082064665314844
924 => 0.008112573081724
925 => 0.0079693630338294
926 => 0.0083457104890687
927 => 0.0083154845214337
928 => 0.0082821173924688
929 => 0.0082862046753768
930 => 0.0084495643500974
1001 => 0.0083548074888981
1002 => 0.0086067341347406
1003 => 0.0085549455899636
1004 => 0.008501828864429
1005 => 0.0084944865149851
1006 => 0.0084740411073604
1007 => 0.0084039261972142
1008 => 0.0083192582299597
1009 => 0.0082633531041645
1010 => 0.0076225064393994
1011 => 0.0077414438527462
1012 => 0.0078782705053154
1013 => 0.0079255025174839
1014 => 0.007844708892314
1015 => 0.0084071164219788
1016 => 0.0085098736971424
1017 => 0.0081986152079807
1018 => 0.0081403914532589
1019 => 0.0084109335616452
1020 => 0.0082477635978606
1021 => 0.0083212390225618
1022 => 0.0081624253432664
1023 => 0.0084851224786397
1024 => 0.0084826640671338
1025 => 0.0083571275930282
1026 => 0.0084632301613055
1027 => 0.0084447922290114
1028 => 0.0083030618589289
1029 => 0.0084896155841712
1030 => 0.0084897081124915
1031 => 0.0083688819855632
1101 => 0.0082277835215512
1102 => 0.0082025584487828
1103 => 0.0081835547449635
1104 => 0.0083165652763705
1105 => 0.0084358221029168
1106 => 0.0086577294908449
1107 => 0.0087135222805595
1108 => 0.008931285253152
1109 => 0.0088016180056599
1110 => 0.0088590978170011
1111 => 0.0089215002832279
1112 => 0.0089514183203117
1113 => 0.008902668484374
1114 => 0.0092409440156256
1115 => 0.0092695048349577
1116 => 0.0092790810306296
1117 => 0.0091650164247774
1118 => 0.0092663324919276
1119 => 0.0092189300593435
1120 => 0.0093422580201523
1121 => 0.0093615974191375
1122 => 0.0093452176362161
1123 => 0.0093513562667057
1124 => 0.0090626977766754
1125 => 0.0090477293111724
1126 => 0.0088436332219264
1127 => 0.0089268038868963
1128 => 0.0087713203152087
1129 => 0.0088206257574491
1130 => 0.0088423591265892
1201 => 0.0088310068479083
1202 => 0.0089315062315054
1203 => 0.0088460612247802
1204 => 0.0086205578035727
1205 => 0.0083949929441088
1206 => 0.0083921611610394
1207 => 0.0083327739150931
1208 => 0.0082898478135905
1209 => 0.0082981169036251
1210 => 0.0083272582554616
1211 => 0.0082881540652457
1212 => 0.008296498926861
1213 => 0.0084350792311979
1214 => 0.0084628705229231
1215 => 0.0083684248548821
1216 => 0.0079892118692525
1217 => 0.0078961520513953
1218 => 0.0079630416030147
1219 => 0.0079310727055795
1220 => 0.0064009946682479
1221 => 0.0067604638071506
1222 => 0.0065468794512331
1223 => 0.0066453089489836
1224 => 0.0064272946289927
1225 => 0.0065313424896019
1226 => 0.0065121286489668
1227 => 0.0070901443868573
1228 => 0.0070811194661448
1229 => 0.0070854392181017
1230 => 0.006879246202145
1231 => 0.0072077172753145
]
'min_raw' => 0.0041934570337254
'max_raw' => 0.0093615974191375
'avg_raw' => 0.0067775272264315
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.004193'
'max' => '$0.009361'
'avg' => '$0.006777'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.00064662256613754
'max_diff' => 0.0014162503701551
'year' => 2035
]
10 => [
'items' => [
101 => 0.0073695339373956
102 => 0.0073395859798554
103 => 0.0073471232355649
104 => 0.0072176082103536
105 => 0.0070866932066516
106 => 0.0069414883198714
107 => 0.0072112610516425
108 => 0.0071812669290437
109 => 0.0072500626547408
110 => 0.0074250295550475
111 => 0.0074507940957522
112 => 0.0074854218997376
113 => 0.0074730102969838
114 => 0.0077687050288065
115 => 0.0077328944457261
116 => 0.007819187647542
117 => 0.0076416759843258
118 => 0.007440804687835
119 => 0.0074789837543204
120 => 0.0074753068032012
121 => 0.0074284949952456
122 => 0.0073862353881206
123 => 0.007315885048828
124 => 0.007538483932241
125 => 0.0075294468240878
126 => 0.0076757471006002
127 => 0.0076498871056416
128 => 0.0074771877302936
129 => 0.0074833557222698
130 => 0.0075248384325457
131 => 0.007668410566452
201 => 0.0077110325509316
202 => 0.0076912883495282
203 => 0.0077380214097427
204 => 0.0077749573150758
205 => 0.0077426599907773
206 => 0.0081999219938148
207 => 0.008010034929958
208 => 0.0081025845636561
209 => 0.008124657105959
210 => 0.0080681187529857
211 => 0.008080379897259
212 => 0.0080989521898712
213 => 0.0082117195137846
214 => 0.0085076536012216
215 => 0.008638720794056
216 => 0.0090330429104396
217 => 0.0086278374882345
218 => 0.0086037942753876
219 => 0.0086748235959354
220 => 0.0089063324214877
221 => 0.0090939485800795
222 => 0.0091561916837203
223 => 0.0091644181373881
224 => 0.0092811903376615
225 => 0.0093481219851856
226 => 0.0092670111211345
227 => 0.0091982781565127
228 => 0.008952085208687
229 => 0.008980582712759
301 => 0.0091769022561998
302 => 0.0094542151744733
303 => 0.0096921785078436
304 => 0.0096088520423568
305 => 0.010244574154704
306 => 0.010307603405451
307 => 0.010298894800978
308 => 0.01044248481419
309 => 0.010157487879561
310 => 0.010035646168452
311 => 0.0092131390036162
312 => 0.0094442299673037
313 => 0.0097801342545199
314 => 0.0097356760625304
315 => 0.0094917333904067
316 => 0.0096919934554519
317 => 0.0096257812152367
318 => 0.0095735568742307
319 => 0.0098128067045661
320 => 0.0095497416882709
321 => 0.0097775099797481
322 => 0.0094853947899673
323 => 0.0096092326706322
324 => 0.0095389363002025
325 => 0.0095844266670697
326 => 0.0093184909118852
327 => 0.0094619833901572
328 => 0.0093125211530296
329 => 0.0093124502884686
330 => 0.0093091509013001
331 => 0.0094849925604637
401 => 0.0094907267506561
402 => 0.0093607794988522
403 => 0.0093420520697097
404 => 0.0094112971906926
405 => 0.0093302292893475
406 => 0.0093681604501516
407 => 0.0093313781855672
408 => 0.0093230977230562
409 => 0.0092571175889643
410 => 0.0092286915330359
411 => 0.0092398381220146
412 => 0.0092017890673697
413 => 0.0091788631356516
414 => 0.0093045903564441
415 => 0.0092374193741963
416 => 0.0092942954400471
417 => 0.0092294779846783
418 => 0.0090047924447492
419 => 0.0088755734147295
420 => 0.0084511632581641
421 => 0.0085715254520869
422 => 0.0086513257111814
423 => 0.0086249517260267
424 => 0.0086816132515164
425 => 0.0086850918089956
426 => 0.008666670569463
427 => 0.0086453411339912
428 => 0.0086349591443953
429 => 0.0087123379890386
430 => 0.0087572590128062
501 => 0.0086593347347713
502 => 0.0086363924465339
503 => 0.0087353992981748
504 => 0.0087957934204814
505 => 0.0092417096870672
506 => 0.009208674769748
507 => 0.0092915859294442
508 => 0.0092822514052378
509 => 0.009369155509383
510 => 0.0095112069912456
511 => 0.0092223766103999
512 => 0.0092725075775116
513 => 0.0092602166220689
514 => 0.0093944060507306
515 => 0.0093948249754796
516 => 0.0093143717097378
517 => 0.0093579867303016
518 => 0.0093336420223384
519 => 0.0093776362000125
520 => 0.0092082335682867
521 => 0.0094145476878447
522 => 0.0095315144990459
523 => 0.0095331385833329
524 => 0.0095885799235362
525 => 0.0096449115361287
526 => 0.0097530351610505
527 => 0.0096418960269138
528 => 0.0094419675437786
529 => 0.0094564017344959
530 => 0.0093391837379847
531 => 0.0093411541936832
601 => 0.0093306357467371
602 => 0.009362202397814
603 => 0.0092151606730513
604 => 0.0092496710719503
605 => 0.0092013563113991
606 => 0.0092724025506578
607 => 0.0091959685415795
608 => 0.009260210694998
609 => 0.0092879354787523
610 => 0.0093902405276776
611 => 0.0091808580026715
612 => 0.0087539128602334
613 => 0.0088436619053834
614 => 0.0087109160179713
615 => 0.0087232021552505
616 => 0.0087480221078788
617 => 0.0086675725208273
618 => 0.0086829197667789
619 => 0.0086823714551566
620 => 0.0086776464018175
621 => 0.008656718357115
622 => 0.0086263685518088
623 => 0.0087472728349711
624 => 0.008767816828655
625 => 0.0088134835817518
626 => 0.0089493568629135
627 => 0.0089357799180128
628 => 0.0089579244784478
629 => 0.0089095830273546
630 => 0.0087254445765201
701 => 0.0087354441803172
702 => 0.0086107489607342
703 => 0.008810294844634
704 => 0.0087630397454496
705 => 0.0087325740755927
706 => 0.0087242612353099
707 => 0.0088604713200547
708 => 0.0089012275122418
709 => 0.0088758309883171
710 => 0.0088237419768126
711 => 0.0089237682776351
712 => 0.0089505310959644
713 => 0.0089565223040136
714 => 0.0091337497309304
715 => 0.0089664273484271
716 => 0.0090067035089371
717 => 0.0093209266158989
718 => 0.0090359696177093
719 => 0.0091869176949497
720 => 0.0091795295720647
721 => 0.0092567495005764
722 => 0.0091731952840459
723 => 0.0091742310386986
724 => 0.009242797103886
725 => 0.0091465084312853
726 => 0.0091226660018387
727 => 0.009089727856321
728 => 0.0091616470920411
729 => 0.0092047594212279
730 => 0.0095522131319577
731 => 0.0097766840749034
801 => 0.0097669391992701
802 => 0.0098559891209154
803 => 0.0098158713156104
804 => 0.0096863203397383
805 => 0.0099074480584936
806 => 0.0098374739959027
807 => 0.0098432425726042
808 => 0.0098430278658912
809 => 0.0098895545002755
810 => 0.0098565861157108
811 => 0.0097916020455987
812 => 0.0098347415040187
813 => 0.0099628502728875
814 => 0.010360503822314
815 => 0.010583036016781
816 => 0.010347107104787
817 => 0.010509847709066
818 => 0.010412261336905
819 => 0.01039452699014
820 => 0.010496740116064
821 => 0.010599132152534
822 => 0.010592610222464
823 => 0.010518278861876
824 => 0.010476290962368
825 => 0.010794237404418
826 => 0.011028494926845
827 => 0.011012520134298
828 => 0.01108302767332
829 => 0.011290039988605
830 => 0.011308966600352
831 => 0.011306582282295
901 => 0.011259670700292
902 => 0.011463501208637
903 => 0.011633540204754
904 => 0.011248812024465
905 => 0.011395311479057
906 => 0.011461079804141
907 => 0.011557647217948
908 => 0.011720572631617
909 => 0.011897552844693
910 => 0.011922579787311
911 => 0.011904821973874
912 => 0.011788098765867
913 => 0.011981752626828
914 => 0.012095190516837
915 => 0.012162740184358
916 => 0.012334034901997
917 => 0.011461485966927
918 => 0.010843852462189
919 => 0.010747400071688
920 => 0.010943539800574
921 => 0.010995260282897
922 => 0.010974411821324
923 => 0.01027920915896
924 => 0.010743739973546
925 => 0.01124353607118
926 => 0.011262735274774
927 => 0.011512943651494
928 => 0.011594421755341
929 => 0.011795872294162
930 => 0.01178327150811
1001 => 0.011832321508534
1002 => 0.011821045762864
1003 => 0.012194190465614
1004 => 0.012605824485271
1005 => 0.012591570908087
1006 => 0.012532393647528
1007 => 0.01262028197068
1008 => 0.013045132392349
1009 => 0.013006018973611
1010 => 0.013044014328242
1011 => 0.01354493691891
1012 => 0.014196207542186
1013 => 0.013893626951173
1014 => 0.014550139768452
1015 => 0.01496337978668
1016 => 0.01567803566839
1017 => 0.015588557232246
1018 => 0.015866767522609
1019 => 0.015428372156834
1020 => 0.014421727782694
1021 => 0.014262422457207
1022 => 0.014581355753086
1023 => 0.015365422139949
1024 => 0.014556662712308
1025 => 0.01472027369119
1026 => 0.014673153718265
1027 => 0.014670642895155
1028 => 0.014766470801014
1029 => 0.014627467425518
1030 => 0.014061142667518
1031 => 0.014320685966736
1101 => 0.014220463834615
1102 => 0.014331667762259
1103 => 0.014931789495762
1104 => 0.014666461372265
1105 => 0.014386959747667
1106 => 0.014737516811288
1107 => 0.015183896417755
1108 => 0.015155962784203
1109 => 0.015101759859761
1110 => 0.015407298906872
1111 => 0.015911959898157
1112 => 0.01604836773621
1113 => 0.016149061213525
1114 => 0.016162945142816
1115 => 0.016305958243333
1116 => 0.015536940757915
1117 => 0.016757391257042
1118 => 0.016968129343977
1119 => 0.016928519317832
1120 => 0.017162745832246
1121 => 0.017093830449952
1122 => 0.016993982873501
1123 => 0.017365281720255
1124 => 0.016939617554723
1125 => 0.01633544086138
1126 => 0.016003977578151
1127 => 0.016440475167887
1128 => 0.016707029014272
1129 => 0.016883204150723
1130 => 0.016936514640566
1201 => 0.015596637396196
1202 => 0.014874517874479
1203 => 0.015337388208783
1204 => 0.015902121962236
1205 => 0.0155338036334
1206 => 0.015548241014572
1207 => 0.015023115870006
1208 => 0.01594858388542
1209 => 0.015813750979986
1210 => 0.016513264331896
1211 => 0.016346319856517
1212 => 0.016916745840048
1213 => 0.016766533561528
1214 => 0.01739005633141
1215 => 0.017638796445521
1216 => 0.018056469810421
1217 => 0.018363712037878
1218 => 0.018544130550448
1219 => 0.018533298899686
1220 => 0.019248206930634
1221 => 0.018826650641768
1222 => 0.018297076589763
1223 => 0.018287498265947
1224 => 0.018561772171603
1225 => 0.019136575034485
1226 => 0.019285613053789
1227 => 0.019368904974439
1228 => 0.019241340498551
1229 => 0.018783771360198
1230 => 0.018586195326186
1231 => 0.018754535831493
]
'min_raw' => 0.0069414883198714
'max_raw' => 0.019368904974439
'avg_raw' => 0.013155196647155
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.006941'
'max' => '$0.019368'
'avg' => '$0.013155'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.002748031286146
'max_diff' => 0.010007307555302
'year' => 2036
]
11 => [
'items' => [
101 => 0.018548669859167
102 => 0.018904052283192
103 => 0.019392068256968
104 => 0.019291294888208
105 => 0.019628165151187
106 => 0.019976790433584
107 => 0.020475340245154
108 => 0.020605679627144
109 => 0.020821125669212
110 => 0.021042890416837
111 => 0.021114115277047
112 => 0.021250105634963
113 => 0.021249388898651
114 => 0.021659204995439
115 => 0.022111244841145
116 => 0.022281879418152
117 => 0.022674244219135
118 => 0.022002333247554
119 => 0.022511985437855
120 => 0.022971704470928
121 => 0.022423608487707
122 => 0.023179031110592
123 => 0.023208362459214
124 => 0.023651230999628
125 => 0.023202298890572
126 => 0.022935724437257
127 => 0.023705314895563
128 => 0.024077695476465
129 => 0.023965531414964
130 => 0.023111957368716
131 => 0.022615140662287
201 => 0.021314875512775
202 => 0.022855095749646
203 => 0.023605292098185
204 => 0.023110014541407
205 => 0.023359803732471
206 => 0.024722572564497
207 => 0.025241426702985
208 => 0.025133508669244
209 => 0.025151745040464
210 => 0.025431709315724
211 => 0.026673225091366
212 => 0.025929280060491
213 => 0.026497998161506
214 => 0.026799644191619
215 => 0.027079829835304
216 => 0.026391782447996
217 => 0.025496642906532
218 => 0.025213114638349
219 => 0.023060768949239
220 => 0.022948730008958
221 => 0.02288583915665
222 => 0.02248932122894
223 => 0.02217776675316
224 => 0.021930007066744
225 => 0.021279811662284
226 => 0.021499233524603
227 => 0.02046295775622
228 => 0.021125930269473
301 => 0.019472009121381
302 => 0.020849443800044
303 => 0.020099768728718
304 => 0.020603155376667
305 => 0.020601399108074
306 => 0.019674504690317
307 => 0.019139891333948
308 => 0.01948056777209
309 => 0.019845799956707
310 => 0.019905057649872
311 => 0.020378590710764
312 => 0.0205107436095
313 => 0.020110314156701
314 => 0.019437735281778
315 => 0.019593960014532
316 => 0.019136725444725
317 => 0.018335439448413
318 => 0.018910937040075
319 => 0.019107437220712
320 => 0.01919422289485
321 => 0.018406250145795
322 => 0.018158652000321
323 => 0.018026832825221
324 => 0.019336017894813
325 => 0.019407738008243
326 => 0.019040807767731
327 => 0.0206993672486
328 => 0.020323984157309
329 => 0.020743379041371
330 => 0.019579784257504
331 => 0.019624235145236
401 => 0.01907337072712
402 => 0.019381817992491
403 => 0.019163817407046
404 => 0.019356898501585
405 => 0.019472630513548
406 => 0.020023404540234
407 => 0.020855732754709
408 => 0.019941137267342
409 => 0.019542634916248
410 => 0.019789863533604
411 => 0.020448265921031
412 => 0.021445779240981
413 => 0.020855231278744
414 => 0.02111730643623
415 => 0.021174558199229
416 => 0.020739109995149
417 => 0.021461834837382
418 => 0.021849148951741
419 => 0.02224645308971
420 => 0.0225914211405
421 => 0.0220877610801
422 => 0.022626749541561
423 => 0.022192419985895
424 => 0.021802781474298
425 => 0.021803372395085
426 => 0.021558946465049
427 => 0.021085340425957
428 => 0.020998000205929
429 => 0.021452355060372
430 => 0.021816704626072
501 => 0.021846714201419
502 => 0.022048436841947
503 => 0.022167814222703
504 => 0.02333787483979
505 => 0.023808482899231
506 => 0.024383933526161
507 => 0.024608103975971
508 => 0.025282776660343
509 => 0.024737923673476
510 => 0.024620041302481
511 => 0.022983506053947
512 => 0.023251488609214
513 => 0.023680554536667
514 => 0.022990581193055
515 => 0.023428210469605
516 => 0.023514607759052
517 => 0.022967136162861
518 => 0.023259564397238
519 => 0.022482961705662
520 => 0.020872660571175
521 => 0.021463627562874
522 => 0.021898778186103
523 => 0.02127776459307
524 => 0.022390907422037
525 => 0.021740632361287
526 => 0.021534526385737
527 => 0.02073043349303
528 => 0.021109934386014
529 => 0.021623214777704
530 => 0.021306067170889
531 => 0.021964196074981
601 => 0.022896282119743
602 => 0.023560542141924
603 => 0.023611535778277
604 => 0.02318446108598
605 => 0.023868851005941
606 => 0.023873836039342
607 => 0.023101841413812
608 => 0.022628999004159
609 => 0.022521568213816
610 => 0.022789951391138
611 => 0.023115818114675
612 => 0.023629619113517
613 => 0.023940098296304
614 => 0.024749663339579
615 => 0.024968708428241
616 => 0.025209372570358
617 => 0.0255309740823
618 => 0.025917139154322
619 => 0.025072231961129
620 => 0.025105801699018
621 => 0.024319035819253
622 => 0.023478263643083
623 => 0.024116304921065
624 => 0.024950459016951
625 => 0.024759103145696
626 => 0.024737571701135
627 => 0.024773781618563
628 => 0.024629505540735
629 => 0.023976950187842
630 => 0.023649240974832
701 => 0.024072069467152
702 => 0.024296783992889
703 => 0.024645296625141
704 => 0.024602335087007
705 => 0.025500066200163
706 => 0.025848897364756
707 => 0.025759651425526
708 => 0.025776074826168
709 => 0.026407616987315
710 => 0.027110021757063
711 => 0.027767916514404
712 => 0.028437155318809
713 => 0.027630361819264
714 => 0.0272207218363
715 => 0.027643365734927
716 => 0.027419104933172
717 => 0.028707774020133
718 => 0.028796998671728
719 => 0.030085574573246
720 => 0.031308586544551
721 => 0.03054043463791
722 => 0.031264767287551
723 => 0.032048192103845
724 => 0.033559545680571
725 => 0.03305057496599
726 => 0.032660711375208
727 => 0.032292292165727
728 => 0.033058914055755
729 => 0.034045160870193
730 => 0.034257588987868
731 => 0.034601803692289
801 => 0.034239904019162
802 => 0.034675772313502
803 => 0.036214578922755
804 => 0.035798779793513
805 => 0.035208278186944
806 => 0.036423018216392
807 => 0.036862627910867
808 => 0.039948038972075
809 => 0.043843497888825
810 => 0.042230752318328
811 => 0.041229669099747
812 => 0.041464947402125
813 => 0.042887437128916
814 => 0.043344295681594
815 => 0.042102396646828
816 => 0.042541056380999
817 => 0.044958114644354
818 => 0.046254788854131
819 => 0.044493731110673
820 => 0.039635042641038
821 => 0.035155109978091
822 => 0.036343389854301
823 => 0.036208675792957
824 => 0.038805503362773
825 => 0.035788863121795
826 => 0.035839655606848
827 => 0.038490182820719
828 => 0.037783067601599
829 => 0.036637631507098
830 => 0.035163472929196
831 => 0.032438354454781
901 => 0.03002464102644
902 => 0.03475848890442
903 => 0.034554356775978
904 => 0.034258743203307
905 => 0.034916599220557
906 => 0.038110961304633
907 => 0.038037320919454
908 => 0.0375688583606
909 => 0.037924183082651
910 => 0.036575341365352
911 => 0.036922968588455
912 => 0.035154400333868
913 => 0.035953867046876
914 => 0.03663517391568
915 => 0.036771956356513
916 => 0.037080134179995
917 => 0.034446788420124
918 => 0.035629083355337
919 => 0.03632357086372
920 => 0.033185851035174
921 => 0.036261548231248
922 => 0.034400947729111
923 => 0.033769431973404
924 => 0.034619684742589
925 => 0.034288340411539
926 => 0.034003470012895
927 => 0.033844507435757
928 => 0.034468839230473
929 => 0.034439713406011
930 => 0.033418185412277
1001 => 0.032085643787258
1002 => 0.032532888495802
1003 => 0.032370400300246
1004 => 0.031781522118158
1005 => 0.032178354911463
1006 => 0.030430904122231
1007 => 0.027424505863946
1008 => 0.029410624641838
1009 => 0.029334161229371
1010 => 0.029295604909465
1011 => 0.03078811827876
1012 => 0.030644647556444
1013 => 0.030384246790572
1014 => 0.031776739653884
1015 => 0.031268461027103
1016 => 0.032834855989337
1017 => 0.033866585019538
1018 => 0.033604905164541
1019 => 0.034575251304224
1020 => 0.032543192110579
1021 => 0.033218160662644
1022 => 0.033357270745758
1023 => 0.031759556508102
1024 => 0.030668121140947
1025 => 0.030595334845232
1026 => 0.028702936327644
1027 => 0.029713840340833
1028 => 0.030603394038388
1029 => 0.030177366849415
1030 => 0.030042499368586
1031 => 0.030731508078952
1101 => 0.030785049956708
1102 => 0.029564289469757
1103 => 0.029818124231451
1104 => 0.030876657384233
1105 => 0.029791451911918
1106 => 0.027683074946516
1107 => 0.027160168308504
1108 => 0.027090402923912
1109 => 0.025672238649376
1110 => 0.027195111430432
1111 => 0.026530336651047
1112 => 0.028630352213897
1113 => 0.027430834587007
1114 => 0.027379125779557
1115 => 0.027300960333064
1116 => 0.026080287758342
1117 => 0.026347537474417
1118 => 0.027235916233931
1119 => 0.027552899783629
1120 => 0.027519835802426
1121 => 0.027231562693356
1122 => 0.027363532646491
1123 => 0.026938411446064
1124 => 0.026788292302061
1125 => 0.026314474990062
1126 => 0.025618094436798
1127 => 0.025714930423879
1128 => 0.024335218329979
1129 => 0.023583477954358
1130 => 0.023375406126166
1201 => 0.023097163781586
1202 => 0.023406834339361
1203 => 0.024331309778968
1204 => 0.023216196260396
1205 => 0.021304412348922
1206 => 0.021419313819523
1207 => 0.02167746330941
1208 => 0.021196403442835
1209 => 0.020741120651416
1210 => 0.021136952100294
1211 => 0.020326904054401
1212 => 0.021775353745706
1213 => 0.02173617724079
1214 => 0.02227606971418
1215 => 0.0226136755575
1216 => 0.021835603389837
1217 => 0.021639920343801
1218 => 0.021751390300122
1219 => 0.019909040224534
1220 => 0.022125510407649
1221 => 0.022144678533833
1222 => 0.021980549400134
1223 => 0.023160751346804
1224 => 0.025651345568494
1225 => 0.024714283838373
1226 => 0.02435142521363
1227 => 0.023661630702745
1228 => 0.024580740932554
1229 => 0.024510167607258
1230 => 0.02419100826613
1231 => 0.023997979700778
]
'min_raw' => 0.018026832825221
'max_raw' => 0.046254788854131
'avg_raw' => 0.032140810839676
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.018026'
'max' => '$0.046254'
'avg' => '$0.03214'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.011085344505349
'max_diff' => 0.026885883879691
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0005658416835832
]
1 => [
'year' => 2028
'avg' => 0.00097114859404321
]
2 => [
'year' => 2029
'avg' => 0.0026530029264217
]
3 => [
'year' => 2030
'avg' => 0.0020467878067639
]
4 => [
'year' => 2031
'avg' => 0.0020101992818625
]
5 => [
'year' => 2032
'avg' => 0.0035245119741015
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0005658416835832
'min' => '$0.000565'
'max_raw' => 0.0035245119741015
'max' => '$0.003524'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.0035245119741015
]
1 => [
'year' => 2033
'avg' => 0.0090654072186815
]
2 => [
'year' => 2034
'avg' => 0.0057460907582851
]
3 => [
'year' => 2035
'avg' => 0.0067775272264315
]
4 => [
'year' => 2036
'avg' => 0.013155196647155
]
5 => [
'year' => 2037
'avg' => 0.032140810839676
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.0035245119741015
'min' => '$0.003524'
'max_raw' => 0.032140810839676
'max' => '$0.03214'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.032140810839676
]
]
]
]
'prediction_2025_max_price' => '$0.000967'
'last_price' => false
'sma_50day_nextmonth' => '—'
'sma_200day_nextmonth' => '—'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'decrease'
'sma_200day_direction_label' => 'diminuer'
'sma_200day_date_nextmonth' => '4 févr. 2026'
'sma_50day_date_nextmonth' => '4 févr. 2026'
'daily_sma3' => '—'
'daily_sma3_action' => '—'
'daily_sma5' => '—'
'daily_sma5_action' => '—'
'daily_sma10' => '—'
'daily_sma10_action' => '—'
'daily_sma21' => '—'
'daily_sma21_action' => '—'
'daily_sma50' => '—'
'daily_sma50_action' => '—'
'daily_sma100' => '—'
'daily_sma100_action' => '—'
'daily_sma200' => '—'
'daily_sma200_action' => '—'
'daily_ema3' => '—'
'daily_ema3_action' => '—'
'daily_ema5' => '—'
'daily_ema5_action' => '—'
'daily_ema10' => '—'
'daily_ema10_action' => '—'
'daily_ema21' => '—'
'daily_ema21_action' => '—'
'daily_ema50' => '—'
'daily_ema50_action' => '—'
'daily_ema100' => '—'
'daily_ema100_action' => '—'
'daily_ema200' => '—'
'daily_ema200_action' => '—'
'weekly_sma21' => '—'
'weekly_sma21_action' => '—'
'weekly_sma50' => '—'
'weekly_sma50_action' => '—'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '—'
'weekly_ema3_action' => '—'
'weekly_ema5' => '—'
'weekly_ema5_action' => '—'
'weekly_ema10' => '—'
'weekly_ema10_action' => '—'
'weekly_ema21' => '—'
'weekly_ema21_action' => '—'
'weekly_ema50' => '—'
'weekly_ema50_action' => '—'
'weekly_ema100' => '—'
'weekly_ema100_action' => '—'
'weekly_ema200' => '—'
'weekly_ema200_action' => '—'
'rsi_14' => '—'
'rsi_14_action' => '—'
'stoch_rsi_14' => '—'
'stoch_rsi_14_action' => '—'
'momentum_10' => '—'
'momentum_10_action' => '—'
'vwma_10' => '—'
'vwma_10_action' => '—'
'hma_9' => '—'
'hma_9_action' => '—'
'stochastic_fast_14' => '—'
'stochastic_fast_14_action' => '—'
'cci_20' => '—'
'cci_20_action' => '—'
'adx_14' => '—'
'adx_14_action' => '—'
'ao_5_34' => '—'
'ao_5_34_action' => '—'
'macd_12_26' => '—'
'macd_12_26_action' => '—'
'williams_percent_r_14' => '—'
'williams_percent_r_14_action' => '—'
'ultimate_oscillator' => '—'
'ultimate_oscillator_action' => '—'
'ichimoku_cloud' => '—'
'ichimoku_cloud_action' => '—'
'sell_signals' => 0
'buy_signals' => 0
'sell_pct' => 0
'buy_pct' => 0
'overall_action' => 'neutral'
'overall_action_label' => 'Neutre'
'overall_action_dir' => 0
'last_updated' => 1767700864
'last_updated_date' => '6 janvier 2026'
]
Prévision du prix de Kolin pour 2026
La prévision du prix de Kolin pour 2026 suggère que le prix moyen pourrait varier entre $0.000324 à la baisse et $0.000967 à la hausse. Sur le marché des cryptomonnaies, comparé au prix moyen d'aujourd'hui, Kolin pourrait potentiellement gagner 3.13% d'ici 2026 si KOLIN atteint l'objectif de prix prévu.
Prévision du prix de Kolin de 2027 à 2032
La prévision du prix de KOLIN pour 2027-2032 se situe actuellement dans une fourchette de prix comprise entre $0.000565 à la baisse et $0.003524 à la hausse. Compte tenu de la volatilité des prix sur le marché, si Kolin atteint l'objectif de prix le plus élevé, il pourrait gagner 275.71% d'ici 2032 par rapport au prix actuel.
| Prévision du Prix de Kolin | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2027 | $0.000312 | $0.000565 | $0.000819 |
| 2028 | $0.000563 | $0.000971 | $0.001379 |
| 2029 | $0.001236 | $0.002653 | $0.004069 |
| 2030 | $0.001051 | $0.002046 | $0.003041 |
| 2031 | $0.001243 | $0.00201 | $0.002776 |
| 2032 | $0.001898 | $0.003524 | $0.00515 |
Prévision du prix de Kolin de 2032 à 2037
La prévision du prix de Kolin pour 2032-2037 est actuellement estimée entre $0.003524 à la baisse et $0.03214 à la hausse. Par rapport au prix actuel, Kolin pourrait potentiellement gagner 3326.16% d'ici 2037 s'il atteint l'objectif de prix le plus élevé. Veuillez noter que ces informations sont à titre général seulement et ne doivent pas être considérées comme un conseil en investissement à long terme.
| Prévision du Prix de Kolin | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2032 | $0.001898 | $0.003524 | $0.00515 |
| 2033 | $0.004411 | $0.009065 | $0.013719 |
| 2034 | $0.003546 | $0.005746 | $0.007945 |
| 2035 | $0.004193 | $0.006777 | $0.009361 |
| 2036 | $0.006941 | $0.013155 | $0.019368 |
| 2037 | $0.018026 | $0.03214 | $0.046254 |
Kolin Histogramme des prix potentiels
Prévision du prix de Kolin basée sur l'analyse technique
Au 6 janvier 2026, le sentiment global de prévision du prix pour Kolin est Neutre, avec 0 indicateurs techniques montrant des signaux haussiers et 0 indiquant des signaux baissiers. La prévision du prix de KOLIN a été mise à jour pour la dernière fois le 6 janvier 2026.
Moyennes Mobiles Simples sur 50 et 200 jours de Kolin et Indice de Force Relative sur 14 jours - RSI (14)
Selon nos indicateurs techniques, le SMA sur 200 jours de Kolin devrait diminuer au cours du prochain mois, atteignant — d'ici le 4 févr. 2026. Le SMA à court terme sur 50 jours pour Kolin devrait atteindre — d'ici le 4 févr. 2026.
Le Relative Strength Index (RSI), un oscillateur de momentum, est un outil couramment utilisé pour identifier si une cryptomonnaie est survendue (en dessous de 30) ou surachetée (au-dessus de 70). Actuellement, le RSI est à —, ce qui suggère que le marché de KOLIN est dans un état —.
Moyennes Mobiles et Oscillateurs Populaires de KOLIN pour le Samedi 19 Octobre 2024
Les moyennes mobiles (MA) sont des indicateurs largement utilisés sur les marchés financiers, conçus pour lisser les mouvements de prix sur une période donnée. En tant qu'indicateurs retardés, ils sont basés sur des données historiques de prix. Le tableau ci-dessous met en évidence deux types : la moyenne mobile simple (SMA) et la moyenne mobile exponentielle (EMA).
Moyenne Mobile Simple Quotidienne (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 3 | — | — |
| SMA 5 | — | — |
| SMA 10 | — | — |
| SMA 21 | — | — |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Moyenne Mobile Exponentielle Quotidienne (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 3 | — | — |
| EMA 5 | — | — |
| EMA 10 | — | — |
| EMA 21 | — | — |
| EMA 50 | — | — |
| EMA 100 | — | — |
| EMA 200 | — | — |
Moyenne Mobile Simple Hebdomadaire (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 21 | — | — |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Moyenne Mobile Exponentielle Hebdomadaire (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 21 | — | — |
| EMA 50 | — | — |
| EMA 100 | — | — |
| EMA 200 | — | — |
Oscillateurs de Kolin
Un oscillateur est un outil d'analyse technique qui établit des limites hautes et basses entre deux extrêmes, créant un indicateur de tendance qui fluctue à l'intérieur de ces limites. Les traders utilisent cet indicateur pour identifier les conditions de surachat ou de survente à court terme.
| Période | Valeur | Action |
|---|---|---|
| RSI (14) | — | — |
| Stoch RSI (14) | — | — |
| Stochastique Rapide (14) | — | — |
| Indice de Canal des Matières Premières (20) | — | — |
| Indice Directionnel Moyen (14) | — | — |
| Oscillateur Impressionnant (5, 34) | — | — |
| Momentum (10) | — | — |
| MACD (12, 26) | — | — |
| Plage de Pourcentage de Williams (14) | — | — |
| Oscillateur Ultime (7, 14, 28) | — | — |
| VWMA (10) | — | — |
| Moyenne Mobile de Hull (9) | — | — |
| Nuage Ichimoku B/L (9, 26, 52, 26) | — | — |
Prévision du cours de Kolin basée sur les flux monétaires mondiaux
Définitions des flux monétaires mondiaux utilisés pour la prédiction du cours de Kolin
M0 : le total de toutes les devises physiques, plus les comptes à la banque centrale qui peuvent être échangés contre des devises physiques.
M1 : M0 plus le montant des comptes à vue, y compris les comptes de "chèques" et les comptes "courants".
M2 : M1 plus la plupart des comptes d'épargne, comptes du marché monétaire et comptes de certificats de dépôt (CD) de moins de 100 000 $.
Prédictions du cours de Kolin par des sociétés Internet ou des niches technologiques
| Comparaison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Action Facebook | $0.001318 | $0.001852 | $0.0026029 | $0.003657 | $0.005139 | $0.007221 |
| Action Amazon.com | $0.001957 | $0.004084 | $0.008522 | $0.017782 | $0.0371049 | $0.077421 |
| Action Apple | $0.00133 | $0.001887 | $0.002677 | $0.003797 | $0.005386 | $0.00764 |
| Action Netflix | $0.00148 | $0.002335 | $0.003685 | $0.005814 | $0.009174 | $0.014476 |
| Action Google | $0.001214 | $0.001573 | $0.002037 | $0.002638 | $0.003416 | $0.004424 |
| Action Tesla | $0.002126 | $0.004821 | $0.010929 | $0.024775 | $0.056164 | $0.12732 |
| Action Kodak | $0.0007035 | $0.000527 | $0.000395 | $0.000296 | $0.000222 | $0.000166 |
| Action Nokia | $0.000621 | $0.000411 | $0.000272 | $0.00018 | $0.000119 | $0.000079 |
Ce calcul montre la valeur potentielle des cryptomonnaies si l'on suppose que leur capitalisation se comportera comme celle de certaines sociétés Internet ou niches technologiques. En extrapolant les données, vous pourrez obtenir une potentielle image des cours futurs pour 2024, 2025, 2026, 2027, 2028, 2029 et 2030.
Aperçu des prévisions relatives à Kolin
Vous vous posez peut-être des questions telles que : "Devrais-je investir dans Kolin maintenant ?", "Devrais-je acheter KOLIN aujourd'hui ?", " Kolin sera-t-il un bon ou un mauvais investissement à court ou à long terme ?".
Nous mettons régulièrement à jour les prévisions de Kolin avec de nouvelles valeurs. Regardez nos prévisions similaires. Nous faisons une prévision des cours futurs pour une grande quantité de devises numériques comme Kolin en utilisant des méthodes d'analyse technique.
Si vous souhaitez trouver des cryptomonnaies ayant un bon rendement, vous devriez consulter un maximum d'informations disponibles à propos de Kolin afin de prendre une décision responsable concernant cet investissement.
Le cours de Kolin est de $0.0009381 USD actuellement, mais ce cours peut subir une hausse ou une baisse, ce qui pourrait causer la perte de votre investissement, car les cryptomonnaies sont des actifs à haut risque.
Prévision du cours de Kolin basée sur le modèle de croissance du Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Kolin présente 1 % de la précédente croissance annuelle moyenne du Bitcoin | $0.000962 | $0.000987 | $0.001013 | $0.001039 |
| Si Kolin présente 2 % de la précédente croissance annuelle moyenne du Bitcoin | $0.000986 | $0.001038 | $0.001092 | $0.001148 |
| Si Kolin présente 5 % de la précédente croissance annuelle moyenne du Bitcoin | $0.00106 | $0.001197 | $0.001353 | $0.001529 |
| Si Kolin présente 10 % de la précédente croissance annuelle moyenne du Bitcoin | $0.001182 | $0.001489 | $0.001876 | $0.002364 |
| Si Kolin présente 20 % de la précédente croissance annuelle moyenne du Bitcoin | $0.001425 | $0.002167 | $0.003293 | $0.005006 |
| Si Kolin présente 50 % de la précédente croissance annuelle moyenne du Bitcoin | $0.002157 | $0.004961 | $0.0114095 | $0.026238 |
| Si Kolin présente 100 % de la précédente croissance annuelle moyenne du Bitcoin | $0.003376 | $0.012153 | $0.043746 | $0.157456 |
Boîte à questions
Est-ce que KOLIN est un bon investissement ?
La décision d'acquérir Kolin dépend entièrement de votre tolérance individuelle au risque. Comme vous pouvez le discerner, la valeur de Kolin a connu une baisse de 0% au cours des 24 heures précédentes, et Kolin a enregistré une déclin de sur une période de 30 jours précédents. Par conséquent, la détermination de si investir ou non dans Kolin dépendra de la mesure dans laquelle cet investissement s'aligne avec vos aspirations de trading.
Est-ce que Kolin peut monter ?
Il semble que la valeur moyenne de Kolin pourrait potentiellement s'envoler jusqu'à $0.000967 pour la fin de cette année. En regardant les perspectives de Kolin sur une période de cinq ans plus longue, la monnaie numérique pourrait potentiellement croître jusqu'à $0.003041. Cependant, compte tenu de l'imprévisibilité du marché, il est essentiel de mener des recherches approfondies avant d'investir des fonds dans un projet, un réseau ou un actif particulier.
Quel sera le prix de Kolin la semaine prochaine ?
Basé sur notre nouveau pronostic expérimental de Kolin, le prix de Kolin va augmenter de 0.86% durant la prochaine semaine et atteindre $0.000946 d'ici 13 janvier 2026.
Quel sera le prix de Kolin le mois prochain ?
Basé sur notre nouveau pronostic expérimental de Kolin, le prix de Kolin va diminuer de -11.62% durant le prochain mois et atteindre $0.000829 d'ici 5 février 2026.
Jusqu'où le prix de Kolin peut-il monter cette année en 2026 ?
Selon notre prédiction la plus récente sur la valeur de Kolin en 2026, KOLIN devrait fluctuer dans la fourchette de $0.000324 et $0.000967. Cependant, il est crucial de garder à l'esprit que le marché des cryptomonnaies est exceptionnellement instable, et cette prévision de prix de Kolin ne prend pas en compte les fluctuations de prix soudaines et extrêmes.
Où sera Kolin dans 5 ans ?
L'avenir de Kolin semble suivre une tendance haussière, avec un prix maximum de $0.003041 prévue après une période de cinq ans. Selon la prévision de Kolin pour 2030, la valeur de Kolin pourrait potentiellement atteindre son point le plus élevé d'environ $0.003041, tandis que son point le plus bas devrait être autour de $0.001051.
Combien vaudra Kolin en 2026 ?
Basé sur notre nouvelle simulation expérimentale de prédiction de prix de Kolin, il est attendu que la valeur de KOLIN en 2026 augmente de 3.13% jusqu'à $0.000967 si le meilleur scénario se produit. Le prix sera entre $0.000967 et $0.000324 durant 2026.
Combien vaudra Kolin en 2027 ?
Selon notre dernière simulation expérimentale pour la prédiction de prix de Kolin, le valeur de KOLIN pourrait diminuer de -12.62% jusqu'à $0.000819 en 2027, en supposant les conditions les plus favorables. Il est prévu que le prix fluctue entre $0.000819 et $0.000312 tout au long de l'année.
Combien vaudra Kolin en 2028 ?
Notre nouveau modèle expérimental de prédiction de prix de Kolin suggère que la valeur de KOLIN en 2028 pourrait augmenter de 47.02%, atteignant $0.001379 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.001379 et $0.000563 durant l'année.
Combien vaudra Kolin en 2029 ?
Basé sur notre modèle de prévision expérimental, la valeur de Kolin pourrait connaître un 333.75% croissance en 2029, atteignant potentiellement $0.004069 sous des conditions optimales. Le range de prix prévu pour 2029 se situe entre $0.004069 et $0.001236.
Combien vaudra Kolin en 2030 ?
En utilisant notre nouvelle simulation expérimentale pour les prédictions de prix de Kolin, il est prévu que la valeur de KOLIN en 2030 augmente de 224.23%, atteignant $0.003041 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.003041 et $0.001051 au cours de 2030.
Combien vaudra Kolin en 2031 ?
Notre simulation expérimentale indique que le prix de Kolin pourrait augmenter de 195.98% en 2031, atteignant potentiellement $0.002776 dans des conditions idéales. Il est probable que le prix fluctue entre $0.002776 et $0.001243 durant l'année.
Combien vaudra Kolin en 2032 ?
Basé sur les résultats de notre dernière prédiction expérimentale de prix de Kolin, KOLIN pourrait connaître une 449.04% hausse en valeur, atteignant $0.00515 si le scénario le plus positif se réalise en 2032. Il est prévu que le prix reste dans une fourchette de $0.00515 et $0.001898 tout au long de l'année.
Combien vaudra Kolin en 2033 ?
Selon notre prédiction expérimentale de prix de Kolin, la valeur de KOLIN est anticipée à augmenter de 1362.43% en 2033, avec le prix potentiel le plus élevé étant $0.013719. Tout au long de l'année, le prix de KOLIN pourrait osciller entre $0.013719 et $0.004411.
Combien vaudra Kolin en 2034 ?
Les résultats de notre nouvelle simulation de prédiction de prix de Kolin suggèrent que KOLIN pourrait augmenter de 746.96% en 2034, atteignant potentiellement $0.007945 dans les meilleures circonstances. La fourchette de prix prévue pour l'année est entre $0.007945 et $0.003546.
Combien vaudra Kolin en 2035 ?
Basé sur notre prédiction expérimentale pour le prix de Kolin, KOLIN pourrait augmenter de 897.93%, avec la valeur potentiellement atteignant $0.009361 en 2035. La fourchette de prix attendue pour l'année se situe entre $0.009361 et $0.004193.
Combien vaudra Kolin en 2036 ?
Notre récente simulation de prédiction de prix de Kolin suggère que la valeur de KOLIN pourrait augmenter de 1964.7% en 2036, pouvant atteindre $0.019368 si les conditions sont optimales. La fourchette de prix attendue pour 2036 est entre $0.019368 et $0.006941.
Combien vaudra Kolin en 2037 ?
Selon la simulation expérimentale, la valeur de Kolin pourrait augmenter de 4830.69% en 2037, avec un maximum de $0.046254 sous des conditions favorables. Il est prévu que le prix chute entre $0.046254 et $0.018026 au cours de l'année.
Prévisions liées
Prévision du cours de Ethereum YieldPrévision du cours de CryptoBlades
Prévision du cours de Draken
Prévision du cours de Dragon Crypto Aurum
Prévision du cours de Stronger
Prévision du cours de Apes Go Bananas
Prévision du cours de KING Coin
Prévision du cours de Blue Protocol
Prévision du cours de Piggycoin
Prévision du cours de Kitty Coin
Prévision du cours de Must
Prévision du cours de Bitcoin Plus
Prévision du cours de TAIKAI
Prévision du cours de Callisto Network
Prévision du cours de DPRating
Prévision du cours de Alpha Coin
Prévision du cours de handle.fi
Prévision du cours de StarShip
Prévision du cours de Green Planet
Prévision du cours de Golden Inu
Prévision du cours de Kalao
Prévision du cours de QuiverX
Prévision du cours de Sabai Protocol
Prévision du cours de Bitcointry Token
Prévision du cours de Wizardia
Comment lire et prédire les mouvements de prix de Kolin ?
Les traders de Kolin utilisent des indicateurs et des modèles graphiques pour prédire la direction du marché. Ils identifient également des niveaux clés de support et de résistance pour évaluer quand une tendance baissière pourrait ralentir ou une tendance haussière pourrait s'arrêter.
Indicateurs de prédiction du prix de Kolin
Les moyennes mobiles sont des outils populaires pour la prédiction du prix de Kolin. Une moyenne mobile simple (SMA) calcule le prix de clôture moyen de KOLIN sur une période spécifique, comme une SMA de 12 jours. Une moyenne mobile exponentielle (EMA) donne plus de poids aux prix récents, réagissant plus rapidement aux changements de prix.
Les moyennes mobiles couramment utilisées sur le marché des cryptomonnaies incluent les moyennes sur 50 jours, 100 jours et 200 jours, qui aident à identifier les niveaux clés de résistance et de support. Un mouvement de prix de KOLIN au-dessus de ces moyennes est considéré comme haussier, tandis qu'une chute en dessous indique une faiblesse.
Les traders utilisent également le RSI et les niveaux de retracement de Fibonacci pour évaluer la direction future de KOLIN.
Comment lire les graphiques de Kolin et prédire les mouvements de prix ?
La plupart des traders préfèrent les graphiques en chandeliers aux simples graphiques linéaires parce qu'ils fournissent des informations plus détaillées. Les chandeliers peuvent représenter l'action des prix de Kolin dans différentes périodes, comme 5 minutes pour les tendances à court terme et hebdomadaire pour les tendances à long terme. Les options populaires incluent les graphiques de 1 heure, 4 heures et 1 jour.
Par exemple, un graphique en chandeliers de 1 heure montre les prix d'ouverture, de clôture, les plus hauts et les plus bas de KOLIN au sein de chaque heure. La couleur du chandelier est cruciale : le vert indique que le prix a clôturé plus haut qu'il n'a ouvert, tandis que le rouge signifie le contraire. Certains graphiques utilisent des chandeliers creux et pleins pour transmettre la même information.
Qu'est-ce qui affecte le prix de Kolin ?
L'action du prix de Kolin est déterminée par l'offre et la demande, influencée par des facteurs tels que les réductions de récompenses de bloc, les hard forks et les mises à jour de protocole. Les événements du monde réel, tels que les réglementations, l'adoption par les entreprises et les gouvernements et les piratages d'échanges de cryptomonnaies, impactent également le prix de KOLIN. La capitalisation boursière de Kolin peut changer rapidement.
Les traders surveillent souvent l'activité des « baleines » de KOLIN, de grands détenteurs de Kolin, car leurs actions peuvent influencer significativement les mouvements de prix sur le marché relativement petit de Kolin.
Modèles de prédiction de prix haussiers et baissiers
Les traders identifient souvent des modèles de chandeliers pour obtenir un avantage dans les prédictions de prix des cryptomonnaies. Certaines formations indiquent des tendances haussières, tandis que d'autres suggèrent des mouvements baissiers.
Modèles de chandeliers haussiers couramment suivis :
- Marteau
- Englobante haussière
- Ligne pénétrante
- Étoile du matin
- Trois soldats blancs
Modèles de chandeliers baissiers courants :
- Harami baissier
- Nuage sombre
- Étoile du soir
- Étoile filante
- Pendu


