Prédiction du prix de KingyTON jusqu'à $0.05023 d'ici 2026
| Année | Prix min. | Prix max. |
|---|---|---|
| 2026 | $0.016827 | $0.05023 |
| 2027 | $0.016199 | $0.042556 |
| 2028 | $0.029235 | $0.0716066 |
| 2029 | $0.064221 | $0.21126 |
| 2030 | $0.054617 | $0.157916 |
| 2031 | $0.064575 | $0.144159 |
| 2032 | $0.098569 | $0.2674086 |
| 2033 | $0.229053 | $0.712279 |
| 2034 | $0.184147 | $0.412513 |
| 2035 | $0.217719 | $0.486044 |
Calculateur de profit d’investissement
Si vous ouvrez une position short de $10,000.00 sur KingyTON aujourd’hui et la fermez le Apr 06, 2026, notre prévision indique que vous pourriez gagner environ $3,954.44, soit un rendement de 39.54% sur les 90 prochains jours.
Prévision du prix à long terme de KingyTON pour 2027, 2028, 2029, 2030, 2031, 2032 et 2037
[
'name' => 'KingyTON'
'name_with_ticker' => 'KingyTON <small>KINGY</small>'
'name_lang' => 'KingyTON'
'name_lang_with_ticker' => 'KingyTON <small>KINGY</small>'
'name_with_lang' => 'KingyTON'
'name_with_lang_with_ticker' => 'KingyTON <small>KINGY</small>'
'image' => '/uploads/coins/kingyton.png?1717582413'
'price_for_sd' => 0.0487
'ticker' => 'KINGY'
'marketcap' => '$0'
'low24h' => '$0.04748'
'high24h' => '$0.04959'
'volume24h' => '$1.27K'
'current_supply' => '0'
'max_supply' => '9.9M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.0487'
'change_24h_pct' => '1.3122%'
'ath_price' => '$0.8553'
'ath_days' => 637
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '9 avr. 2024'
'ath_pct' => '-94.28%'
'fdv' => '$483.74K'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$2.40'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.049121'
'next_week_prediction_price_date' => '13 janvier 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.0430465'
'next_month_prediction_price_date' => '5 février 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.016827'
'current_year_max_price_prediction' => '$0.05023'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.054617'
'grand_prediction_max_price' => '$0.157916'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.049628086973591
107 => 0.049813380235355
108 => 0.050230855415417
109 => 0.046663575710313
110 => 0.048265179568075
111 => 0.049205971784523
112 => 0.044955438324296
113 => 0.049121952404522
114 => 0.046601477307128
115 => 0.045745990202807
116 => 0.046897790886919
117 => 0.046448933040158
118 => 0.046063031421329
119 => 0.045847691687392
120 => 0.046693446990201
121 => 0.046653991494429
122 => 0.045270171665002
123 => 0.043465035109227
124 => 0.044070898188933
125 => 0.043850782452079
126 => 0.043053054626226
127 => 0.043590626862826
128 => 0.041223430791922
129 => 0.037150792988078
130 => 0.039841302269567
131 => 0.039737720588941
201 => 0.039685490008514
202 => 0.041707333373338
203 => 0.041512979785673
204 => 0.041160226120945
205 => 0.04304657602854
206 => 0.042358032937281
207 => 0.044479960503386
208 => 0.045877599236093
209 => 0.045523112844602
210 => 0.046837598828087
211 => 0.044084856050618
212 => 0.044999206780422
213 => 0.045187653198599
214 => 0.043023298763491
215 => 0.041544778436226
216 => 0.041446177986764
217 => 0.038882627491938
218 => 0.040252055474017
219 => 0.041457095427467
220 => 0.040879974804642
221 => 0.040697275656445
222 => 0.041630645981977
223 => 0.041703176850047
224 => 0.040049465371572
225 => 0.040393324354178
226 => 0.041827273473448
227 => 0.040357192515507
228 => 0.037501065350589
301 => 0.036792706324642
302 => 0.036698198172934
303 => 0.034777072313902
304 => 0.036840042261906
305 => 0.035939500595445
306 => 0.03878430092965
307 => 0.037159366235723
308 => 0.037089318548783
309 => 0.036983431196213
310 => 0.035329838808635
311 => 0.035691870450236
312 => 0.036895318765894
313 => 0.037324722682736
314 => 0.037279932336207
315 => 0.036889421212608
316 => 0.037068195205251
317 => 0.03649230188596
318 => 0.036288941968735
319 => 0.035647082131422
320 => 0.034703725488878
321 => 0.034834905015966
322 => 0.032965868664393
323 => 0.031947518462789
324 => 0.031665652548624
325 => 0.031288729668217
326 => 0.03170822699092
327 => 0.032960573919241
328 => 0.031449977823464
329 => 0.02886016677325
330 => 0.029015818830191
331 => 0.029365522788627
401 => 0.028713851775604
402 => 0.028097099852381
403 => 0.028633315610958
404 => 0.027535978528107
405 => 0.0294981307325
406 => 0.029445060014239
407 => 0.030176429017358
408 => 0.030633769064212
409 => 0.029579748321813
410 => 0.029314664955475
411 => 0.029465668488309
412 => 0.026969916455098
413 => 0.029972472830978
414 => 0.0299984390632
415 => 0.029776100418355
416 => 0.031374868994983
417 => 0.034748769360092
418 => 0.03347937232791
419 => 0.032987823429321
420 => 0.032053388613783
421 => 0.033298467524238
422 => 0.033202864890172
423 => 0.032770513522702
424 => 0.032509026066638
425 => 0.032990824722079
426 => 0.032449325881399
427 => 0.03235205781022
428 => 0.031762719127579
429 => 0.031552352031078
430 => 0.031396604607784
501 => 0.031225141998162
502 => 0.031603345789166
503 => 0.030746286241899
504 => 0.029712756446479
505 => 0.029626829626937
506 => 0.029864081130455
507 => 0.029759115001445
508 => 0.029626327089494
509 => 0.029372798802944
510 => 0.029297582376099
511 => 0.029541999273522
512 => 0.029266066846722
513 => 0.029673220173283
514 => 0.029562496997279
515 => 0.028944006336769
516 => 0.028173137979203
517 => 0.02816627563387
518 => 0.02800019331071
519 => 0.027788662501521
520 => 0.027729819469574
521 => 0.028588157015398
522 => 0.030364890047375
523 => 0.030016074839579
524 => 0.030268129575232
525 => 0.0315079894069
526 => 0.031902103563501
527 => 0.031622370670251
528 => 0.031239455032797
529 => 0.031256301377515
530 => 0.032564840027143
531 => 0.032646451977634
601 => 0.032852659047512
602 => 0.033117693406416
603 => 0.031667507167613
604 => 0.03118799773608
605 => 0.03096077956525
606 => 0.030261035543589
607 => 0.031015649479431
608 => 0.030575968254807
609 => 0.030635296273658
610 => 0.030596658823551
611 => 0.030617757483962
612 => 0.02949758227097
613 => 0.029905715243908
614 => 0.029227115017706
615 => 0.028318545491272
616 => 0.028315499647634
617 => 0.028537870752059
618 => 0.028405595717765
619 => 0.028049647001581
620 => 0.028100207836684
621 => 0.027657241718568
622 => 0.028153991943584
623 => 0.02816823696258
624 => 0.027976961067781
625 => 0.028742273327739
626 => 0.02905582238508
627 => 0.028929920493597
628 => 0.029046988772745
629 => 0.03003056968627
630 => 0.030190936291818
701 => 0.030262160544779
702 => 0.030166729481217
703 => 0.029064966826259
704 => 0.029113834685063
705 => 0.028755274761494
706 => 0.028452329410191
707 => 0.028464445635504
708 => 0.028620198926213
709 => 0.029300382681546
710 => 0.030731789295622
711 => 0.030786110130282
712 => 0.03085194856654
713 => 0.030584150558532
714 => 0.030503380116835
715 => 0.030609937178053
716 => 0.031147498242516
717 => 0.03253025124672
718 => 0.032041493984066
719 => 0.031644126721569
720 => 0.031992724940224
721 => 0.031939060976865
722 => 0.031486083120613
723 => 0.031473369540878
724 => 0.030603960208949
725 => 0.030282559374428
726 => 0.030013972780666
727 => 0.029720683231909
728 => 0.029546811356251
729 => 0.029813957580616
730 => 0.02987505708291
731 => 0.029290937194419
801 => 0.029211323812015
802 => 0.02968832872206
803 => 0.029478416645685
804 => 0.029694316421806
805 => 0.02974440702182
806 => 0.029736341281533
807 => 0.029517168965549
808 => 0.029656862863945
809 => 0.029326445149483
810 => 0.028967165512142
811 => 0.028737967487431
812 => 0.028537961812165
813 => 0.028648936585201
814 => 0.02825333178252
815 => 0.028126769844191
816 => 0.02960953771438
817 => 0.03070487428253
818 => 0.030688947655028
819 => 0.030591998406107
820 => 0.030447951487647
821 => 0.031136960313218
822 => 0.030896923415555
823 => 0.031071570314359
824 => 0.031116025280011
825 => 0.031250577072063
826 => 0.031298667772604
827 => 0.03115330427443
828 => 0.0306654466199
829 => 0.029449751728926
830 => 0.028883842475471
831 => 0.028697082995867
901 => 0.028703871348244
902 => 0.028516618285151
903 => 0.028571772704326
904 => 0.028497437828999
905 => 0.028356665558668
906 => 0.028640244294194
907 => 0.028672924101744
908 => 0.028606733436359
909 => 0.028622323734194
910 => 0.028074293295207
911 => 0.028115958859223
912 => 0.027883959704174
913 => 0.027840462659394
914 => 0.027253988997908
915 => 0.026214965895869
916 => 0.026790685554812
917 => 0.026095297165244
918 => 0.025831943045261
919 => 0.027078620489292
920 => 0.026953488651361
921 => 0.026739317338325
922 => 0.026422513329133
923 => 0.026305007640453
924 => 0.02559108027381
925 => 0.025548897636335
926 => 0.025902739316903
927 => 0.02573945355627
928 => 0.025510138507187
929 => 0.024679582644702
930 => 0.023745762867674
1001 => 0.023773949016961
1002 => 0.024070979713699
1003 => 0.024934636524512
1004 => 0.024597190867112
1005 => 0.024352370170927
1006 => 0.024306522613814
1007 => 0.024880400779439
1008 => 0.025692558614992
1009 => 0.026073604900426
1010 => 0.025695999604108
1011 => 0.025262226971412
1012 => 0.025288628701656
1013 => 0.025464267584781
1014 => 0.025482724747998
1015 => 0.02520038335666
1016 => 0.025279860804497
1017 => 0.025159127293662
1018 => 0.024418185960522
1019 => 0.024404784681356
1020 => 0.02422294572891
1021 => 0.024217439717698
1022 => 0.023908086297735
1023 => 0.023864805615824
1024 => 0.023250565624078
1025 => 0.023654860246735
1026 => 0.023383680640277
1027 => 0.022974949008543
1028 => 0.022904483521171
1029 => 0.022902365243532
1030 => 0.023322041238602
1031 => 0.023649956088385
1101 => 0.023388397925633
1102 => 0.023328846202067
1103 => 0.023964702809745
1104 => 0.023883784260456
1105 => 0.023813709318641
1106 => 0.025619838788643
1107 => 0.024190146379096
1108 => 0.023566718884544
1109 => 0.022795108974365
1110 => 0.023046349051914
1111 => 0.023099289027738
1112 => 0.021243706286899
1113 => 0.020490896600038
1114 => 0.020232560684543
1115 => 0.020083884712841
1116 => 0.020151638220101
1117 => 0.019474021206157
1118 => 0.019929391046278
1119 => 0.019342631989743
1120 => 0.019244259924436
1121 => 0.020293457803019
1122 => 0.020439447558499
1123 => 0.019816609906161
1124 => 0.020216572507219
1125 => 0.020071540508179
1126 => 0.019352690289667
1127 => 0.019325235498824
1128 => 0.018964541727982
1129 => 0.01840012582069
1130 => 0.018142172605757
1201 => 0.018007828331768
1202 => 0.018063261397533
1203 => 0.018035232743202
1204 => 0.01785232681438
1205 => 0.01804571669694
1206 => 0.017551685461216
1207 => 0.01735495824247
1208 => 0.0172661011218
1209 => 0.016827619964717
1210 => 0.017525438479091
1211 => 0.017662917517309
1212 => 0.017800667431701
1213 => 0.018999686390626
1214 => 0.01893978679183
1215 => 0.019481249992653
1216 => 0.019460209728356
1217 => 0.019305775652359
1218 => 0.0186542436889
1219 => 0.018913932717094
1220 => 0.018114650252948
1221 => 0.018713527021011
1222 => 0.018440224673759
1223 => 0.018621123222487
1224 => 0.018295851320908
1225 => 0.01847587022139
1226 => 0.017695518897406
1227 => 0.01696683781091
1228 => 0.017260080351643
1229 => 0.017578868529772
1230 => 0.018270082525673
1231 => 0.017858401172106
]
'min_raw' => 0.016827619964717
'max_raw' => 0.050230855415417
'avg_raw' => 0.033529237690067
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.016827'
'max' => '$0.05023'
'avg' => '$0.033529'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.031877530035283
'max_diff' => 0.0015257054154173
'year' => 2026
]
1 => [
'items' => [
101 => 0.018006457354244
102 => 0.017510493928387
103 => 0.016487179715894
104 => 0.016492971563205
105 => 0.016335556965725
106 => 0.016199527770595
107 => 0.017905687727845
108 => 0.017693499766764
109 => 0.017355406021254
110 => 0.01780795793493
111 => 0.017927619843871
112 => 0.017931026450193
113 => 0.018261196644356
114 => 0.018437408536167
115 => 0.018468466645845
116 => 0.018987996580159
117 => 0.019162136161375
118 => 0.01987939245125
119 => 0.018422458188271
120 => 0.018392453585887
121 => 0.017814326268424
122 => 0.017447668783857
123 => 0.017839431620081
124 => 0.018186480012015
125 => 0.017825110029355
126 => 0.017872297320153
127 => 0.017387187643444
128 => 0.017560591526336
129 => 0.017709950310308
130 => 0.017627483168702
131 => 0.017504025866263
201 => 0.018158026001564
202 => 0.018121124750883
203 => 0.018730144712274
204 => 0.019204919323613
205 => 0.020055800303246
206 => 0.01916786164357
207 => 0.019135501629575
208 => 0.019451825957087
209 => 0.019162087733769
210 => 0.019345192289482
211 => 0.020026299328535
212 => 0.020040690046996
213 => 0.019799626971385
214 => 0.019784958261326
215 => 0.019831257061938
216 => 0.020102430583241
217 => 0.020007674222577
218 => 0.020117328682075
219 => 0.020254453262765
220 => 0.020821658668119
221 => 0.020958409971085
222 => 0.020626175202299
223 => 0.020656172282046
224 => 0.020531907358471
225 => 0.020411868999334
226 => 0.020681697700481
227 => 0.021174814955324
228 => 0.021171747298474
301 => 0.021286140916768
302 => 0.021357407193277
303 => 0.021051480164397
304 => 0.020852332917845
305 => 0.020928698644241
306 => 0.021050809103779
307 => 0.020889099867977
308 => 0.019890955553603
309 => 0.020193728776878
310 => 0.020143332507671
311 => 0.020071562091924
312 => 0.020376002909204
313 => 0.020346638849689
314 => 0.019467071264267
315 => 0.019523378327336
316 => 0.019470495483267
317 => 0.019641370771265
318 => 0.019152859907452
319 => 0.01930312255899
320 => 0.01939736588541
321 => 0.019452875928682
322 => 0.019653416268576
323 => 0.019629885174317
324 => 0.019651953542718
325 => 0.019949301926093
326 => 0.021453188011563
327 => 0.021535041213058
328 => 0.021131966112497
329 => 0.021292986664866
330 => 0.020983862415641
331 => 0.021191379595098
401 => 0.021333357578918
402 => 0.020691786370832
403 => 0.020653796687652
404 => 0.020343396572689
405 => 0.020510188012509
406 => 0.020244810839026
407 => 0.020309925114899
408 => 0.020127859922997
409 => 0.020455541019603
410 => 0.020821939402102
411 => 0.020914506103032
412 => 0.020671002965356
413 => 0.02049469064604
414 => 0.020185144294209
415 => 0.020699926775994
416 => 0.02085046486138
417 => 0.020699136063518
418 => 0.020664069874453
419 => 0.02059761950954
420 => 0.020678167633501
421 => 0.020849644998637
422 => 0.020768779439929
423 => 0.020822192566124
424 => 0.020618636808445
425 => 0.021051581438973
426 => 0.02173920170605
427 => 0.021741412517646
428 => 0.021660546523042
429 => 0.021627457900332
430 => 0.021710431318155
501 => 0.021755440993576
502 => 0.022023761812092
503 => 0.022311680740733
504 => 0.023655272751829
505 => 0.023277997491583
506 => 0.024470112254474
507 => 0.025412920255192
508 => 0.025695627150611
509 => 0.025435550109213
510 => 0.024545840599678
511 => 0.024502187206557
512 => 0.025831788839468
513 => 0.025456115478558
514 => 0.025411430327661
515 => 0.024936055818865
516 => 0.025217061029841
517 => 0.025155601068103
518 => 0.025058583511775
519 => 0.025594721879326
520 => 0.026598325041978
521 => 0.026441904077348
522 => 0.026325143083411
523 => 0.025813530396595
524 => 0.026121635506889
525 => 0.026011925178478
526 => 0.026483310373226
527 => 0.026204072226318
528 => 0.025453269383364
529 => 0.025572837210783
530 => 0.025554764774206
531 => 0.02592669423834
601 => 0.025815050245064
602 => 0.025532964492697
603 => 0.026594894835474
604 => 0.026525938985781
605 => 0.026623702615144
606 => 0.02666674118823
607 => 0.027313119474567
608 => 0.027577919976681
609 => 0.027638034326646
610 => 0.027889574323249
611 => 0.027631775782383
612 => 0.02866315375309
613 => 0.029348959921038
614 => 0.030145559076371
615 => 0.031309604547981
616 => 0.031747296413329
617 => 0.031668231295482
618 => 0.03255079728699
619 => 0.034136748755389
620 => 0.031988797431334
621 => 0.034250595391197
622 => 0.033534536270817
623 => 0.031836772977751
624 => 0.031727457036992
625 => 0.032877202050493
626 => 0.035427225831584
627 => 0.034788473796551
628 => 0.035428270601086
629 => 0.034681913643787
630 => 0.034644850730067
701 => 0.03539202170957
702 => 0.037137827429349
703 => 0.036308460572431
704 => 0.035119359813942
705 => 0.035997373309553
706 => 0.035236756763342
707 => 0.033522874801562
708 => 0.034787985354908
709 => 0.03394204195616
710 => 0.034188933212739
711 => 0.035966980412323
712 => 0.03575304106914
713 => 0.036029898389469
714 => 0.035541252465706
715 => 0.035084780120522
716 => 0.034232740590154
717 => 0.033980493690253
718 => 0.034050205658493
719 => 0.033980459144463
720 => 0.03350375085787
721 => 0.033400805748768
722 => 0.033229226056803
723 => 0.033282405777892
724 => 0.032959785759587
725 => 0.033568636390825
726 => 0.033681644433156
727 => 0.034124715148641
728 => 0.034170716220154
729 => 0.035404661856064
730 => 0.034725025335419
731 => 0.035180984190462
801 => 0.035140198938816
802 => 0.03187356865638
803 => 0.032323681487577
804 => 0.033023915799731
805 => 0.032708461191251
806 => 0.03226248217987
807 => 0.031902330216298
808 => 0.031356663164057
809 => 0.032124679061478
810 => 0.033134538297202
811 => 0.034196327916893
812 => 0.035471998573741
813 => 0.035187283733576
814 => 0.034172480141301
815 => 0.034218003489136
816 => 0.034499410912675
817 => 0.034134962730632
818 => 0.034027479846874
819 => 0.034484644414958
820 => 0.034487792656086
821 => 0.034068450977611
822 => 0.033602429440704
823 => 0.033600476793448
824 => 0.03351755276219
825 => 0.034696665644732
826 => 0.035345058508371
827 => 0.03541939570525
828 => 0.035340055022733
829 => 0.035370590102515
830 => 0.034993304581525
831 => 0.035855667401962
901 => 0.036647056804839
902 => 0.036434947539299
903 => 0.036116965597147
904 => 0.035863677664137
905 => 0.036375280951888
906 => 0.036352500062823
907 => 0.036640144708798
908 => 0.03662709548614
909 => 0.036530371410561
910 => 0.036434950993621
911 => 0.036813282160956
912 => 0.036704328860576
913 => 0.036595206325627
914 => 0.036376344375962
915 => 0.036406091349834
916 => 0.036088164311747
917 => 0.035941076716576
918 => 0.033729232197699
919 => 0.033138155068151
920 => 0.033324119965591
921 => 0.033385344438405
922 => 0.03312810691414
923 => 0.033496919445038
924 => 0.033439440402767
925 => 0.03366305773213
926 => 0.03352335133308
927 => 0.033529084932428
928 => 0.03393993166349
929 => 0.034059202217384
930 => 0.033998540251042
1001 => 0.034041025812897
1002 => 0.03502008765382
1003 => 0.034880896368676
1004 => 0.034806953772629
1005 => 0.034827436377066
1006 => 0.035077607668745
1007 => 0.035147641971569
1008 => 0.034850901709281
1009 => 0.034990846132411
1010 => 0.035586711724506
1011 => 0.035795230958668
1012 => 0.036460724259201
1013 => 0.036178010876935
1014 => 0.036696943525634
1015 => 0.038291965570559
1016 => 0.039566179547175
1017 => 0.038394359715159
1018 => 0.040734291413044
1019 => 0.042556263883114
1020 => 0.042486333545058
1021 => 0.042168630501919
1022 => 0.040094363284389
1023 => 0.038185591665236
1024 => 0.039782360175382
1025 => 0.039786430666693
1026 => 0.039649266835567
1027 => 0.038797354060658
1028 => 0.039619622117628
1029 => 0.039684890769952
1030 => 0.039648357680986
1031 => 0.038995198153878
1101 => 0.037997944280043
1102 => 0.038192805299902
1103 => 0.038511991625488
1104 => 0.03790770532191
1105 => 0.037714599232919
1106 => 0.03807362019229
1107 => 0.039230460528373
1108 => 0.039011766563956
1109 => 0.039006055580734
1110 => 0.039941721101181
1111 => 0.039271986517798
1112 => 0.038195263121393
1113 => 0.037923376263565
1114 => 0.036958361083205
1115 => 0.037624900505545
1116 => 0.037648888072738
1117 => 0.03728383124299
1118 => 0.038224885471185
1119 => 0.038216213490802
1120 => 0.039109604423036
1121 => 0.040817432343155
1122 => 0.040312343590067
1123 => 0.039724980323727
1124 => 0.039788842996595
1125 => 0.040489258891449
1126 => 0.040065771452481
1127 => 0.040218060488193
1128 => 0.040489028383754
1129 => 0.040652510042901
1130 => 0.039765320501684
1201 => 0.039558474180445
1202 => 0.039135339200383
1203 => 0.039024951182274
1204 => 0.039369585794533
1205 => 0.039278786750323
1206 => 0.0376468720106
1207 => 0.037476327840411
1208 => 0.03748155818663
1209 => 0.037052716761757
1210 => 0.03639863065509
1211 => 0.038117529889958
1212 => 0.037979478225419
1213 => 0.037827079872118
1214 => 0.037845747800824
1215 => 0.03859186369978
1216 => 0.03815907879863
1217 => 0.039309708390389
1218 => 0.039073173537414
1219 => 0.038830572457989
1220 => 0.038797037599003
1221 => 0.038703656881176
1222 => 0.038383419654311
1223 => 0.037996713959599
1224 => 0.037741377364076
1225 => 0.034814425616701
1226 => 0.035357650835719
1227 => 0.035982581933662
1228 => 0.036198305644418
1229 => 0.035829295309544
1230 => 0.038397990431477
1231 => 0.038867315782816
]
'min_raw' => 0.016199527770595
'max_raw' => 0.042556263883114
'avg_raw' => 0.029377895826854
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.016199'
'max' => '$0.042556'
'avg' => '$0.029377'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00062809219412231
'max_diff' => -0.0076745915323037
'year' => 2027
]
2 => [
'items' => [
101 => 0.037445698680274
102 => 0.037179772164632
103 => 0.03841542452957
104 => 0.037670175101155
105 => 0.038005760873138
106 => 0.037280407989713
107 => 0.038754269049129
108 => 0.038743040697249
109 => 0.038169675456474
110 => 0.038654279831741
111 => 0.038570067896011
112 => 0.037922739951312
113 => 0.038774790499594
114 => 0.038775213106036
115 => 0.038223361527825
116 => 0.03757891970032
117 => 0.037463708722599
118 => 0.037376912727303
119 => 0.037984414378986
120 => 0.038529098460278
121 => 0.039542620496925
122 => 0.039797444017628
123 => 0.040792037183494
124 => 0.040199805379083
125 => 0.040462334067292
126 => 0.040747346095294
127 => 0.040883991342488
128 => 0.040661335244974
129 => 0.042206347822442
130 => 0.042336794221943
131 => 0.042380531771338
201 => 0.041859562223131
202 => 0.04232230511638
203 => 0.042105803041063
204 => 0.04266908129503
205 => 0.04275741051755
206 => 0.042682598808479
207 => 0.042710635897888
208 => 0.041392240221914
209 => 0.041323874451024
210 => 0.040391702313918
211 => 0.040771569350057
212 => 0.040061426133496
213 => 0.040286619862753
214 => 0.040385883112885
215 => 0.040334033624156
216 => 0.040793046462332
217 => 0.040402791779755
218 => 0.039372845508623
219 => 0.038342618629318
220 => 0.038329684970052
221 => 0.038058444417746
222 => 0.037862387178614
223 => 0.037900154758375
224 => 0.038033252635556
225 => 0.037854651288034
226 => 0.037892764940846
227 => 0.038525705527467
228 => 0.038652637248188
229 => 0.038221273665753
301 => 0.036489286636808
302 => 0.036064252675544
303 => 0.036369758658111
304 => 0.036223746475549
305 => 0.029235390553265
306 => 0.030877201117457
307 => 0.029901693030832
308 => 0.030351252038118
309 => 0.029355510888269
310 => 0.029830730756242
311 => 0.029742974998878
312 => 0.032382957801393
313 => 0.032341738101109
314 => 0.032361467790337
315 => 0.031419718318063
316 => 0.03291995079868
317 => 0.033659019265247
318 => 0.033522237361756
319 => 0.033556662420014
320 => 0.032965125863462
321 => 0.032367195157239
322 => 0.031703997983163
323 => 0.032936136358949
324 => 0.032799143604865
325 => 0.033113355694296
326 => 0.033912485506063
327 => 0.034030160406445
328 => 0.034188316665899
329 => 0.034131628905214
330 => 0.035482161348595
331 => 0.035318602958602
401 => 0.035712731619526
402 => 0.034901979061392
403 => 0.033984535584524
404 => 0.03415891159599
405 => 0.034142117783842
406 => 0.033928313280165
407 => 0.03373530013409
408 => 0.033413987626992
409 => 0.034430667944753
410 => 0.034389392580528
411 => 0.035057592749966
412 => 0.034939481879468
413 => 0.034150708579648
414 => 0.034178879772361
415 => 0.034368344581969
416 => 0.035024084451295
417 => 0.035218752690686
418 => 0.035128574606012
419 => 0.035342019443562
420 => 0.035510717540314
421 => 0.035363205327192
422 => 0.037451667189265
423 => 0.036584392217079
424 => 0.037007096004062
425 => 0.037107908366542
426 => 0.036849679619905
427 => 0.036905680188573
428 => 0.036990505790862
429 => 0.037505550237409
430 => 0.038857175894459
501 => 0.03945580169714
502 => 0.041256796960181
503 => 0.039406094157501
504 => 0.039296281112159
505 => 0.039620694743879
506 => 0.040678069617994
507 => 0.041534972639293
508 => 0.041819256807378
509 => 0.041856829653211
510 => 0.042390165651394
511 => 0.042695863899426
512 => 0.042325404633086
513 => 0.042011479193565
514 => 0.04088703723506
515 => 0.04101719445351
516 => 0.041913848617933
517 => 0.043180425437846
518 => 0.04426728011419
519 => 0.043886701487244
520 => 0.046790247764202
521 => 0.047078122517639
522 => 0.047038347534819
523 => 0.047694169064657
524 => 0.046392496883661
525 => 0.045836006807575
526 => 0.042079353436794
527 => 0.043134819802084
528 => 0.044669002149398
529 => 0.044465947362843
530 => 0.043351783133411
531 => 0.044266434920712
601 => 0.043964022436025
602 => 0.043725497162246
603 => 0.044818227681826
604 => 0.043616725588652
605 => 0.044657016246918
606 => 0.043322832717263
607 => 0.043888439938354
608 => 0.04356737392432
609 => 0.043775142983771
610 => 0.04256052930764
611 => 0.0432159053642
612 => 0.042533263509011
613 => 0.042532939847889
614 => 0.0425178704911
615 => 0.043320995606433
616 => 0.043347185487611
617 => 0.042753674813925
618 => 0.042668140653468
619 => 0.042984405274947
620 => 0.04261414223303
621 => 0.042787385979935
622 => 0.042619389609638
623 => 0.042581570088139
624 => 0.042280217706375
625 => 0.042150386814455
626 => 0.042201296852507
627 => 0.042027514646712
628 => 0.041922804581744
629 => 0.042497041023664
630 => 0.042190249657378
701 => 0.042450020846773
702 => 0.04215397879072
703 => 0.041127768045055
704 => 0.040537583393241
705 => 0.038599166424467
706 => 0.039148899072213
707 => 0.039513372386408
708 => 0.039392913958241
709 => 0.039651705273167
710 => 0.039667592958088
711 => 0.03958345726354
712 => 0.039486038907703
713 => 0.039438621039655
714 => 0.039792034979356
715 => 0.039997203666718
716 => 0.039549952159511
717 => 0.039445167389086
718 => 0.039897363356305
719 => 0.040173202635083
720 => 0.042209844888881
721 => 0.042058963852452
722 => 0.042437645644981
723 => 0.042395011886488
724 => 0.042791930733799
725 => 0.043440725298732
726 => 0.04212154454241
727 => 0.042350508707869
728 => 0.042294371982054
729 => 0.042907258034671
730 => 0.042909171398028
731 => 0.042541715593555
801 => 0.04274091934645
802 => 0.042629729276453
803 => 0.042830664761176
804 => 0.042056948744223
805 => 0.042999251335389
806 => 0.043533476183942
807 => 0.043540893896483
808 => 0.043794112234827
809 => 0.044051396732001
810 => 0.04454523191957
811 => 0.044037623936649
812 => 0.043124486590016
813 => 0.043190412157027
814 => 0.042655040064799
815 => 0.042664039766393
816 => 0.042615998653969
817 => 0.042760173648719
818 => 0.042088587047907
819 => 0.04224620708077
820 => 0.042025538111741
821 => 0.042350029016627
822 => 0.042000930443237
823 => 0.042294344911225
824 => 0.042420972868764
825 => 0.04288823275819
826 => 0.041931915777652
827 => 0.039981920717366
828 => 0.040391833320443
829 => 0.039785540382552
830 => 0.039841655102274
831 => 0.039955015766704
901 => 0.039587576763987
902 => 0.039657672546371
903 => 0.039655168231768
904 => 0.039633587401458
905 => 0.039538002325683
906 => 0.03939938505488
907 => 0.039951593597616
908 => 0.040045424589516
909 => 0.04025399926131
910 => 0.040874576007018
911 => 0.040812565755914
912 => 0.040913707048245
913 => 0.040692916174971
914 => 0.039851896957642
915 => 0.039897568347408
916 => 0.039328045385186
917 => 0.040239435278704
918 => 0.04002360612216
919 => 0.039884459660884
920 => 0.039846492259742
921 => 0.04046860729517
922 => 0.040654753864228
923 => 0.040538759814223
924 => 0.040300852633574
925 => 0.040757704751363
926 => 0.04087993910504
927 => 0.040907302868999
928 => 0.041716757229017
929 => 0.040952542375808
930 => 0.041136496486617
1001 => 0.042571653947138
1002 => 0.041270164168638
1003 => 0.041959592330995
1004 => 0.041925848410059
1005 => 0.042278536528943
1006 => 0.041896917690115
1007 => 0.041901648312989
1008 => 0.042214811469396
1009 => 0.041775030295495
1010 => 0.04166613429218
1011 => 0.041515695243529
1012 => 0.041844173402556
1013 => 0.042041081203104
1014 => 0.043628013462672
1015 => 0.044653244075256
1016 => 0.04460873611051
1017 => 0.045015455592867
1018 => 0.044832224740942
1019 => 0.044240523986219
1020 => 0.045250485024311
1021 => 0.044930891093294
1022 => 0.04495723802866
1023 => 0.04495625739441
1024 => 0.04516875941915
1025 => 0.045018182259097
1026 => 0.044721379220205
1027 => 0.044918410928639
1028 => 0.045503524662565
1029 => 0.047319735646154
1030 => 0.048336111374164
1031 => 0.047258548551128
1101 => 0.048001836957317
1102 => 0.047556128774343
1103 => 0.047475130338827
1104 => 0.047941970386495
1105 => 0.048409627575868
1106 => 0.048379839834642
1107 => 0.04804034472962
1108 => 0.047848572559163
1109 => 0.049300735682258
1110 => 0.050370664734401
1111 => 0.050297702745941
1112 => 0.050619733234497
1113 => 0.051565224708926
1114 => 0.051651668600063
1115 => 0.051640778656669
1116 => 0.051426518453
1117 => 0.052357477597158
1118 => 0.053134100093882
1119 => 0.051376923406422
1120 => 0.052046033285875
1121 => 0.052346418268135
1122 => 0.052787472542302
1123 => 0.0535316050321
1124 => 0.054339930287415
1125 => 0.054454236341352
1126 => 0.054373130726035
1127 => 0.053840018491206
1128 => 0.054724497630898
1129 => 0.055242604767341
1130 => 0.055551125710422
1201 => 0.056333483489086
1202 => 0.052348273343523
1203 => 0.049527343524697
1204 => 0.049086814598767
1205 => 0.04998264749259
1206 => 0.050218871482558
1207 => 0.050123649888402
1208 => 0.046948436909595
1209 => 0.049070097759559
1210 => 0.05135282643981
1211 => 0.051440515345123
1212 => 0.052583297052062
1213 => 0.052955433620047
1214 => 0.053875522681955
1215 => 0.053817970860619
1216 => 0.054041997905379
1217 => 0.053990497967397
1218 => 0.055694769206972
1219 => 0.057574833470951
1220 => 0.057509732823728
1221 => 0.05723945134187
1222 => 0.05764086543227
1223 => 0.059581293232627
1224 => 0.059402649735492
1225 => 0.059576186676142
1226 => 0.061864060410482
1227 => 0.064838621711368
1228 => 0.063456639346035
1229 => 0.066455143424095
1230 => 0.068342542797363
1231 => 0.071606604852691
]
'min_raw' => 0.029235390553265
'max_raw' => 0.071606604852691
'avg_raw' => 0.050420997702978
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.029235'
'max' => '$0.0716066'
'avg' => '$0.05042'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.01303586278267
'max_diff' => 0.029050340969577
'year' => 2028
]
3 => [
'items' => [
101 => 0.071197928207519
102 => 0.072468603612865
103 => 0.070466311719272
104 => 0.065868644801627
105 => 0.065141046412748
106 => 0.06659771681301
107 => 0.070178798852235
108 => 0.066484935795606
109 => 0.067232199481065
110 => 0.067016987489381
111 => 0.067005519756937
112 => 0.067443196461713
113 => 0.066808323573753
114 => 0.064221737216754
115 => 0.065407154501317
116 => 0.064949407959334
117 => 0.06545731187493
118 => 0.068198259831894
119 => 0.066986421404082
120 => 0.065709848062142
121 => 0.067310954327237
122 => 0.069349712802508
123 => 0.069222130961127
124 => 0.068974568863775
125 => 0.07037006344462
126 => 0.072675011650628
127 => 0.073298029888679
128 => 0.073757929214962
129 => 0.073821341561994
130 => 0.074474528146973
131 => 0.070962179255324
201 => 0.076536367149889
202 => 0.077498875415447
203 => 0.077317963753402
204 => 0.078387751182031
205 => 0.07807299258264
206 => 0.077616956756235
207 => 0.079312797380923
208 => 0.077368652952
209 => 0.074609184696122
210 => 0.073095285834853
211 => 0.075088909978109
212 => 0.076306346674501
213 => 0.0771109948873
214 => 0.077354480950311
215 => 0.071234832901408
216 => 0.06793668201429
217 => 0.070050758919556
218 => 0.072630078649774
219 => 0.07094785100399
220 => 0.071013791142826
221 => 0.068615376601586
222 => 0.072842285117759
223 => 0.072226460100849
224 => 0.075421361377953
225 => 0.074658872547488
226 => 0.077264190513613
227 => 0.076578122979419
228 => 0.07942595095634
301 => 0.080562026638197
302 => 0.082469674524098
303 => 0.08387294807449
304 => 0.084696977143626
305 => 0.08464750552917
306 => 0.087912719230739
307 => 0.085987336788801
308 => 0.083568602663929
309 => 0.083524855394618
310 => 0.084777552071617
311 => 0.087402860646058
312 => 0.088083564962724
313 => 0.08846398581235
314 => 0.087881358038603
315 => 0.085791493391283
316 => 0.084889100432424
317 => 0.085657965378213
318 => 0.084717709618831
319 => 0.086340854848694
320 => 0.088569779934409
321 => 0.088109515718334
322 => 0.089648109986005
323 => 0.091240393188207
324 => 0.09351742968127
325 => 0.094112731338974
326 => 0.095096742341864
327 => 0.096109612894613
328 => 0.096434919618529
329 => 0.097056031091234
330 => 0.097052757527183
331 => 0.098924518755802
401 => 0.10098912935459
402 => 0.10176847205979
403 => 0.10356052763718
404 => 0.10049169526201
405 => 0.10281943987078
406 => 0.10491912377512
407 => 0.10241579406456
408 => 0.10586605086955
409 => 0.10600001652284
410 => 0.10802273883613
411 => 0.1059723222649
412 => 0.10475479145006
413 => 0.10826975729221
414 => 0.10997053854283
415 => 0.10945824938873
416 => 0.10555970363115
417 => 0.10329058278374
418 => 0.097351855845363
419 => 0.10438653443779
420 => 0.10781292117577
421 => 0.10555083011725
422 => 0.10669169726919
423 => 0.11291589852274
424 => 0.11528567137291
425 => 0.11479277518604
426 => 0.11487606652786
427 => 0.11615475294339
428 => 0.12182515269532
429 => 0.11842731772513
430 => 0.12102483524539
501 => 0.12240254917209
502 => 0.12368224664805
503 => 0.12053971409965
504 => 0.11645132542715
505 => 0.11515636111569
506 => 0.10532590974242
507 => 0.10481419205696
508 => 0.10452694941348
509 => 0.10271592517759
510 => 0.10129295620946
511 => 0.10016135845456
512 => 0.097191708022008
513 => 0.098193877867993
514 => 0.093460874892716
515 => 0.096488882468972
516 => 0.088934895438076
517 => 0.095226080305343
518 => 0.091802074407165
519 => 0.094101202279448
520 => 0.094093180838892
521 => 0.089859757486864
522 => 0.087418007246705
523 => 0.088973985534075
524 => 0.090642117771847
525 => 0.090912766615154
526 => 0.093075543604131
527 => 0.093679128173018
528 => 0.09185023875062
529 => 0.088778355847201
530 => 0.089491884183476
531 => 0.087403547617745
601 => 0.083743818113007
602 => 0.086372299736057
603 => 0.087269778928345
604 => 0.087666156867921
605 => 0.084067233222785
606 => 0.082936373277049
607 => 0.082334312930773
608 => 0.088313779997962
609 => 0.088641348701786
610 => 0.086965460899474
611 => 0.094540632680127
612 => 0.092826138003943
613 => 0.094741648618635
614 => 0.089427138965809
615 => 0.089630160391483
616 => 0.08711418635304
617 => 0.088522963697122
618 => 0.087527285277338
619 => 0.08840914840953
620 => 0.088937733534907
621 => 0.091453294726767
622 => 0.095254803973352
623 => 0.091077553771277
624 => 0.089257466038908
625 => 0.090386638231507
626 => 0.093393772580972
627 => 0.097949735052786
628 => 0.095252513572183
629 => 0.096449494663484
630 => 0.096710981781951
701 => 0.09472215051872
702 => 0.098023066098301
703 => 0.099792053573988
704 => 0.10160666868366
705 => 0.10318224813903
706 => 0.10088187150462
707 => 0.10334360424948
708 => 0.10135988221145
709 => 0.099580278469919
710 => 0.099582977394207
711 => 0.098466605971283
712 => 0.096303495667517
713 => 0.095904584939436
714 => 0.097979768923783
715 => 0.099643869958575
716 => 0.099780933290307
717 => 0.10070226512777
718 => 0.1012474998187
719 => 0.10659154100049
720 => 0.10874095857203
721 => 0.11136922569212
722 => 0.11239308385642
723 => 0.11547452985747
724 => 0.11298601194881
725 => 0.11244760544576
726 => 0.1049730253805
727 => 0.10619698744746
728 => 0.10815666881142
729 => 0.1050053398044
730 => 0.1070041327234
731 => 0.10739873678584
801 => 0.10489825885061
802 => 0.10623387215509
803 => 0.10268687920014
804 => 0.095332118726957
805 => 0.098031254049177
806 => 0.10001872616546
807 => 0.097182358401981
808 => 0.10226643783542
809 => 0.099296423587108
810 => 0.098355071656218
811 => 0.094682522157624
812 => 0.096415824151567
813 => 0.098760139916868
814 => 0.097311625329872
815 => 0.10031751059345
816 => 0.10457464576699
817 => 0.10760853380844
818 => 0.10784143806032
819 => 0.10589085130439
820 => 0.10901667902926
821 => 0.10903944727169
822 => 0.10551350082865
823 => 0.10335387826485
824 => 0.10286320747446
825 => 0.10408899931051
826 => 0.10557733689313
827 => 0.10792403043786
828 => 0.10934208819886
829 => 0.11303963075984
830 => 0.11404007975998
831 => 0.11513926989396
901 => 0.11660812689064
902 => 0.11837186632235
903 => 0.1145129048555
904 => 0.11466622858858
905 => 0.11107281710161
906 => 0.10723274158045
907 => 0.11014688022884
908 => 0.11395672885999
909 => 0.1130827453745
910 => 0.11298440437852
911 => 0.11314978665624
912 => 0.11249083164981
913 => 0.10951040257773
914 => 0.10801364975621
915 => 0.10994484275834
916 => 0.11097118589147
917 => 0.11256295458441
918 => 0.11236673549485
919 => 0.1164669607044
920 => 0.11806018423645
921 => 0.11765256947907
922 => 0.11772758040423
923 => 0.12061203550674
924 => 0.12382014281418
925 => 0.12682495865463
926 => 0.12988158638739
927 => 0.12619670235334
928 => 0.1243257454929
929 => 0.12625609539659
930 => 0.12523182456605
1001 => 0.13111758857677
1002 => 0.13152510610672
1003 => 0.13741044450971
1004 => 0.14299633146721
1005 => 0.13948793595077
1006 => 0.14279619490117
1007 => 0.14637434668234
1008 => 0.15327718200243
1009 => 0.1509525499113
1010 => 0.14917191816112
1011 => 0.14748922976116
1012 => 0.15099063720223
1013 => 0.15549514193882
1014 => 0.15646536911547
1015 => 0.15803750779695
1016 => 0.15638459620534
1017 => 0.15837534615519
1018 => 0.16540356825802
1019 => 0.16350448060601
1020 => 0.16080747084657
1021 => 0.16635557719912
1022 => 0.1683634153204
1023 => 0.18245547476848
1024 => 0.20024728193562
1025 => 0.19288135694112
1026 => 0.18830908960012
1027 => 0.18938368088088
1028 => 0.19588064656764
1029 => 0.19796726574285
1030 => 0.19229511552388
1031 => 0.19429861487252
1101 => 0.20533809326323
1102 => 0.21126041923098
1103 => 0.20321710509228
1104 => 0.18102592038609
1105 => 0.16056463462635
1106 => 0.16599188899354
1107 => 0.16537660677561
1108 => 0.17723714910346
1109 => 0.16345918799358
1110 => 0.16369117352311
1111 => 0.17579697930577
1112 => 0.17256735786901
1113 => 0.16733578476012
1114 => 0.16060283089965
1115 => 0.14815634296573
1116 => 0.13713214150666
1117 => 0.15875313928987
1118 => 0.15782080255022
1119 => 0.15647064078665
1120 => 0.15947527968871
1121 => 0.1740649533155
1122 => 0.17372861411623
1123 => 0.17158899573229
1124 => 0.17321187741878
1125 => 0.16705128575396
1126 => 0.16863901050005
1127 => 0.16056139345415
1128 => 0.16421281370998
1129 => 0.16732456015385
1130 => 0.16794928932265
1201 => 0.16935683603941
1202 => 0.15732950345414
1203 => 0.16272942268099
1204 => 0.16590136932276
1205 => 0.15157039899884
1206 => 0.16561809211704
1207 => 0.15712013435223
1208 => 0.15423579985181
1209 => 0.15811917627445
1210 => 0.15660582070584
1211 => 0.15530472645517
1212 => 0.15457869350765
1213 => 0.15743021655983
1214 => 0.15729718960114
1215 => 0.15263154443101
1216 => 0.1465454005026
1217 => 0.14858811017584
1218 => 0.14784597460105
1219 => 0.1451563795406
1220 => 0.1469688418684
1221 => 0.13898767504299
1222 => 0.12525649234484
1223 => 0.13432773223274
1224 => 0.13397849936467
1225 => 0.13380240031613
1226 => 0.14061918638124
1227 => 0.13996390969109
1228 => 0.13877457608198
1229 => 0.14513453649619
1230 => 0.14281306539146
1231 => 0.14996729232884
]
'min_raw' => 0.064221737216754
'max_raw' => 0.21126041923098
'avg_raw' => 0.13774107822387
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.064221'
'max' => '$0.21126'
'avg' => '$0.137741'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.034986346663489
'max_diff' => 0.13965381437829
'year' => 2029
]
4 => [
'items' => [
101 => 0.15467952889618
102 => 0.15348435327782
103 => 0.15791623454562
104 => 0.14863517008102
105 => 0.15171796740448
106 => 0.15235332766027
107 => 0.14505605557191
108 => 0.14007112106154
109 => 0.13973868276211
110 => 0.13109549328743
111 => 0.13571261533942
112 => 0.13977549167568
113 => 0.13782968920255
114 => 0.13721370626875
115 => 0.14036062948712
116 => 0.14060517237276
117 => 0.13502956866463
118 => 0.13618891323196
119 => 0.14102357280271
120 => 0.13606709221524
121 => 0.12643746007028
122 => 0.12404917815826
123 => 0.12373053732642
124 => 0.11725332736397
125 => 0.12420877457563
126 => 0.12117253547335
127 => 0.13076397841774
128 => 0.12528539764784
129 => 0.12504922698075
130 => 0.12469222037874
131 => 0.11911701819389
201 => 0.12033763314979
202 => 0.12439514316811
203 => 0.12584290845376
204 => 0.12569189467328
205 => 0.12437525915545
206 => 0.12497800815325
207 => 0.12303634361967
208 => 0.12235070146061
209 => 0.12018662620589
210 => 0.11700603342249
211 => 0.11744831435673
212 => 0.11114672780545
213 => 0.1077132890018
214 => 0.10676295839295
215 => 0.10549213658574
216 => 0.1069065010976
217 => 0.1111288762025
218 => 0.10603579599914
219 => 0.09730406722851
220 => 0.097828859005767
221 => 0.099007910317186
222 => 0.096810755998562
223 => 0.094731333829169
224 => 0.096539222696603
225 => 0.092839474108141
226 => 0.099455007258344
227 => 0.099276075626448
228 => 0.10174193728302
301 => 0.10328389118145
302 => 0.099730186659072
303 => 0.098836439581933
304 => 0.099345558535611
305 => 0.090930956307799
306 => 0.10105428476087
307 => 0.10114183172571
308 => 0.10039220146143
309 => 0.10578256133999
310 => 0.11715790197915
311 => 0.11287804125868
312 => 0.11122074982824
313 => 0.1080702376075
314 => 0.11226810808273
315 => 0.11194577712721
316 => 0.11048807430598
317 => 0.10960645109139
318 => 0.11123086889632
319 => 0.10940516774872
320 => 0.1090772216557
321 => 0.10709022514086
322 => 0.10638095778765
323 => 0.10585584447608
324 => 0.1052777463166
325 => 0.10655288680332
326 => 0.10366325070172
327 => 0.10017863283771
328 => 0.099888924566407
329 => 0.10068883457489
330 => 0.10033493394243
331 => 0.099887230226334
401 => 0.09903244190745
402 => 0.0987788444729
403 => 0.099602913107204
404 => 0.098672587665261
405 => 0.1000453335323
406 => 0.099672022613956
407 => 0.097586738170408
408 => 0.094987701682564
409 => 0.094964564806158
410 => 0.094404606658127
411 => 0.093691415766337
412 => 0.093493022375838
413 => 0.0963869673388
414 => 0.10237734680365
415 => 0.10120129197706
416 => 0.10205111211622
417 => 0.10623138610293
418 => 0.10756016949809
419 => 0.10661703051817
420 => 0.10532600371217
421 => 0.10538280233957
422 => 0.10979463175604
423 => 0.11006979214508
424 => 0.11076503367809
425 => 0.11165861552325
426 => 0.10676921137035
427 => 0.10515251184366
428 => 0.10438642991684
429 => 0.10202719409324
430 => 0.1045714276634
501 => 0.10308901171701
502 => 0.10328904027472
503 => 0.1031587714141
504 => 0.10322990702074
505 => 0.099453158082003
506 => 0.1008292068952
507 => 0.098541258854204
508 => 0.095477953261532
509 => 0.095467683987052
510 => 0.096217423691076
511 => 0.095771449177805
512 => 0.094571343229645
513 => 0.094741812615241
514 => 0.093248321421105
515 => 0.09492314948674
516 => 0.094971177562839
517 => 0.094326277529068
518 => 0.096906581245915
519 => 0.097963733784034
520 => 0.097539246766709
521 => 0.097933950643303
522 => 0.10125016236468
523 => 0.10179084957172
524 => 0.1020309871133
525 => 0.10170923461972
526 => 0.097994564905914
527 => 0.098159326303717
528 => 0.096950416487548
529 => 0.095929015084663
530 => 0.095969865784233
531 => 0.096494998878204
601 => 0.098788285898224
602 => 0.1036143732352
603 => 0.10379751972182
604 => 0.10401949860635
605 => 0.10311659892529
606 => 0.1028442757419
607 => 0.10320354031337
608 => 0.10501596497352
609 => 0.10967801326793
610 => 0.10803013403295
611 => 0.10669038256414
612 => 0.10786570579669
613 => 0.10768477399753
614 => 0.10615752752927
615 => 0.10611466280756
616 => 0.10318338854474
617 => 0.10209976319166
618 => 0.10119420473868
619 => 0.10020535854822
620 => 0.099619137380094
621 => 0.10051983952709
622 => 0.10072584076491
623 => 0.098756439778913
624 => 0.098488017701709
625 => 0.10009627305934
626 => 0.099388539838252
627 => 0.10011646100708
628 => 0.10028534496225
629 => 0.10025815075574
630 => 0.099519195990275
701 => 0.099990183721833
702 => 0.098876157328498
703 => 0.0976648209471
704 => 0.096892063804692
705 => 0.09621773070658
706 => 0.096591889901882
707 => 0.0952580806894
708 => 0.094831368278051
709 => 0.09983062367594
710 => 0.10352362738941
711 => 0.10346992965283
712 => 0.10314305849131
713 => 0.10265739424869
714 => 0.10498043560916
715 => 0.10417113444985
716 => 0.10475996866262
717 => 0.10490985168307
718 => 0.10536350244408
719 => 0.10552564359854
720 => 0.10503554041549
721 => 0.10339069427211
722 => 0.099291894070079
723 => 0.097383891511536
724 => 0.09675421888692
725 => 0.096777106290906
726 => 0.096145769515096
727 => 0.096331726490102
728 => 0.096081101268042
729 => 0.095606477730214
730 => 0.096562583235876
731 => 0.096672765488664
801 => 0.096449599039033
802 => 0.096502162816664
803 => 0.094654439929354
804 => 0.094794918287433
805 => 0.094012716938522
806 => 0.093866063615179
807 => 0.091888726719195
808 => 0.088385587788394
809 => 0.090326666813982
810 => 0.087982116308086
811 => 0.087094199505766
812 => 0.091297459548556
813 => 0.090875568820546
814 => 0.090153475285683
815 => 0.089085348450144
816 => 0.088689169816772
817 => 0.086282113855319
818 => 0.086139892147972
819 => 0.087332894078446
820 => 0.086782364736223
821 => 0.086009213037974
822 => 0.083208935960049
823 => 0.080060497384584
824 => 0.080155528954798
825 => 0.081156988686871
826 => 0.08406886792312
827 => 0.082931146329495
828 => 0.082105716259469
829 => 0.08195113801969
830 => 0.08388600832199
831 => 0.086624255167604
901 => 0.087908979322746
902 => 0.086635856702653
903 => 0.08517336198648
904 => 0.085262377263305
905 => 0.085854556020479
906 => 0.085916785634901
907 => 0.084964851921558
908 => 0.08523281568588
909 => 0.084825754224754
910 => 0.082327618789202
911 => 0.082282435440846
912 => 0.081669352717086
913 => 0.081650788815865
914 => 0.080607782162096
915 => 0.080461858321269
916 => 0.078390905304233
917 => 0.079754012851469
918 => 0.078839711875141
919 => 0.077461644642018
920 => 0.077224065331602
921 => 0.077216923410646
922 => 0.078631890328869
923 => 0.079737478139196
924 => 0.078855616532071
925 => 0.078654833738297
926 => 0.080798668685174
927 => 0.080525846146694
928 => 0.080289583587888
929 => 0.086379075195934
930 => 0.081558767419209
1001 => 0.079456838095009
1002 => 0.076855301410758
1003 => 0.077702374873236
1004 => 0.077880865697879
1005 => 0.071624638934489
1006 => 0.069086488515745
1007 => 0.068215490940213
1008 => 0.067714219521396
1009 => 0.067942655201521
1010 => 0.0656580221293
1011 => 0.067193333338176
1012 => 0.065215034212859
1013 => 0.064883365926558
1014 => 0.068420809826858
1015 => 0.068913024480138
1016 => 0.066813083850142
1017 => 0.068161585684106
1018 => 0.067672600173533
1019 => 0.0652489464733
1020 => 0.065156380729141
1021 => 0.063940276497911
1022 => 0.062037308860217
1023 => 0.061167601586352
1024 => 0.060714650486979
1025 => 0.060901546938421
1026 => 0.060807046373446
1027 => 0.060190366264339
1028 => 0.060842393755441
1029 => 0.059176732952036
1030 => 0.05851345339898
1031 => 0.058213865412833
1101 => 0.056735495577953
1102 => 0.059088239419296
1103 => 0.059551759595127
1104 => 0.060016193048893
1105 => 0.064058769181737
1106 => 0.063856813502342
1107 => 0.065682394487671
1108 => 0.065611455767609
1109 => 0.065090770498142
1110 => 0.06289408499483
1111 => 0.063769644684296
1112 => 0.061074808052306
1113 => 0.063093962888072
1114 => 0.06217250494295
1115 => 0.062782417029923
1116 => 0.06168574010399
1117 => 0.062292686395482
1118 => 0.059661677424281
1119 => 0.057204878266269
1120 => 0.058193565965892
1121 => 0.059268382565534
1122 => 0.061598858811736
1123 => 0.06021084638551
1124 => 0.060710028140541
1125 => 0.059037852823202
1126 => 0.055587677510266
1127 => 0.05560720512785
1128 => 0.055076470822109
1129 => 0.054617838893473
1130 => 0.060370276309626
1201 => 0.059654869784349
1202 => 0.058514963116411
1203 => 0.060040773489536
1204 => 0.060444221970057
1205 => 0.060455707581116
1206 => 0.061568899442481
1207 => 0.062163010138443
1208 => 0.062267724723629
1209 => 0.064019356169591
1210 => 0.0646064799257
1211 => 0.067024759584248
1212 => 0.062112603996711
1213 => 0.06201144138492
1214 => 0.060062244770532
1215 => 0.058826033462108
1216 => 0.060146889216445
1217 => 0.061316987099996
1218 => 0.060098602973409
1219 => 0.060257698218849
1220 => 0.058622117074547
1221 => 0.059206760372389
1222 => 0.059710333940448
1223 => 0.059432290214852
1224 => 0.059016045300166
1225 => 0.061221052417165
1226 => 0.061096637274131
1227 => 0.063149990594375
1228 => 0.06475072634421
1229 => 0.067619530973656
1230 => 0.064625783788662
1231 => 0.064516679742173
]
'min_raw' => 0.054617838893473
'max_raw' => 0.15791623454562
'avg_raw' => 0.10626703671954
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.054617'
'max' => '$0.157916'
'avg' => '$0.106267'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.009603898323281
'max_diff' => -0.053344184685361
'year' => 2030
]
5 => [
'items' => [
101 => 0.065583189297438
102 => 0.064606316648643
103 => 0.065223666442184
104 => 0.067520066377726
105 => 0.067568585689745
106 => 0.066755824699834
107 => 0.066706368119734
108 => 0.066862467758478
109 => 0.067776748218281
110 => 0.067457270532625
111 => 0.067826978198651
112 => 0.068289303296182
113 => 0.070201675921349
114 => 0.070662742486969
115 => 0.069542589768117
116 => 0.069643727016811
117 => 0.069224759151081
118 => 0.068820041442437
119 => 0.069729787747193
120 => 0.071392367000243
121 => 0.071382024180998
122 => 0.071767710251783
123 => 0.072007989478686
124 => 0.070976535141674
125 => 0.070305096295906
126 => 0.070562568674137
127 => 0.070974272613948
128 => 0.070429058635263
129 => 0.067063745391141
130 => 0.068084566452365
131 => 0.067914651912178
201 => 0.067672672944637
202 => 0.068699116415474
203 => 0.068600113438686
204 => 0.06563458991499
205 => 0.06582443310936
206 => 0.06564613490842
207 => 0.066222252872036
208 => 0.06457520438795
209 => 0.065081825408614
210 => 0.065399573363497
211 => 0.065586729349978
212 => 0.066262865107209
213 => 0.066183528380028
214 => 0.066257933424854
215 => 0.067260464259606
216 => 0.072330921194741
217 => 0.072606894978388
218 => 0.071247899135042
219 => 0.071790791169451
220 => 0.070748557180822
221 => 0.071448215839749
222 => 0.071926904524784
223 => 0.069763802403652
224 => 0.069635717534455
225 => 0.068589181875412
226 => 0.069151530859772
227 => 0.068256793191332
228 => 0.068476330518573
301 => 0.067862485012689
302 => 0.068967284707858
303 => 0.070202622435574
304 => 0.07051471753056
305 => 0.069693729701038
306 => 0.06909928040673
307 => 0.068055623269695
308 => 0.069791248348
309 => 0.070298798013112
310 => 0.069788582405679
311 => 0.069670354301006
312 => 0.069446312256284
313 => 0.069717885879909
314 => 0.070296033788634
315 => 0.070023389911595
316 => 0.070203475995746
317 => 0.069517173546925
318 => 0.070976876595978
319 => 0.073295236334543
320 => 0.073302690240193
321 => 0.073030044893502
322 => 0.072918484291861
323 => 0.07319823496307
324 => 0.073349988226227
325 => 0.074254650599415
326 => 0.075225389369185
327 => 0.079755403641194
328 => 0.078483393760759
329 => 0.08250269191464
330 => 0.085681434913814
331 => 0.086634600949681
401 => 0.085757733046611
402 => 0.08275801531768
403 => 0.08261083485499
404 => 0.08709367959017
405 => 0.085827070625185
406 => 0.085676411519117
407 => 0.084073653173123
408 => 0.085021081861088
409 => 0.08481386530909
410 => 0.08448676384438
411 => 0.086294391782563
412 => 0.089678109914781
413 => 0.089150725711568
414 => 0.088757057868517
415 => 0.087032119975258
416 => 0.088070917865827
417 => 0.087701021833858
418 => 0.089290329929017
419 => 0.08834885902093
420 => 0.085817474816531
421 => 0.086220606094633
422 => 0.086159673612935
423 => 0.087413659768549
424 => 0.087037244250484
425 => 0.08608617244178
426 => 0.089666544734063
427 => 0.089434055272479
428 => 0.089763672174514
429 => 0.089908779728532
430 => 0.092088089249608
501 => 0.092980882630266
502 => 0.093183562358224
503 => 0.094031647018731
504 => 0.093162461239283
505 => 0.096639824076033
506 => 0.098952067452725
507 => 0.10163785712171
508 => 0.1055625177003
509 => 0.10703822638299
510 => 0.10677165281802
511 => 0.10974728567718
512 => 0.11509443178048
513 => 0.10785246392626
514 => 0.11547827366163
515 => 0.11306403034362
516 => 0.10733990286699
517 => 0.10697133654053
518 => 0.11084778212618
519 => 0.1194453653411
520 => 0.11729176825875
521 => 0.11944888785443
522 => 0.11693249326391
523 => 0.11680753306266
524 => 0.11932667218586
525 => 0.12521277805836
526 => 0.12241650979572
527 => 0.11840737356811
528 => 0.1213676573695
529 => 0.1188031855794
530 => 0.11302471288584
531 => 0.11729012144365
601 => 0.11443796421289
602 => 0.11527037532184
603 => 0.12126518559453
604 => 0.12054387416222
605 => 0.12147731794727
606 => 0.11982981409913
607 => 0.11829078571746
608 => 0.11541807495333
609 => 0.114567606919
610 => 0.11480264568705
611 => 0.11456749044545
612 => 0.1129602351745
613 => 0.11261314855176
614 => 0.11203465564099
615 => 0.11221395478353
616 => 0.1111262188672
617 => 0.11317900127901
618 => 0.1135600157837
619 => 0.11505385963517
620 => 0.11520895545947
621 => 0.11936928932228
622 => 0.11707784734221
623 => 0.11861514445602
624 => 0.11847763413256
625 => 0.10746396206649
626 => 0.10898154890274
627 => 0.11134243777497
628 => 0.11027886053814
629 => 0.10877521116401
630 => 0.10756093367382
701 => 0.10572117910993
702 => 0.10831059832924
703 => 0.1117154092486
704 => 0.11529530708318
705 => 0.11959631976722
706 => 0.11863638380545
707 => 0.11521490264277
708 => 0.11536838778834
709 => 0.11631717256403
710 => 0.11508841007332
711 => 0.11472602402651
712 => 0.11626738628602
713 => 0.11627800080078
714 => 0.11486416105431
715 => 0.11329293690604
716 => 0.11328635341949
717 => 0.11300676925853
718 => 0.11698223066505
719 => 0.11916833247415
720 => 0.11941896552349
721 => 0.11915146287299
722 => 0.11925441402637
723 => 0.11798236955112
724 => 0.12088988600847
725 => 0.12355811063331
726 => 0.12284296943555
727 => 0.12177087111679
728 => 0.12091689316665
729 => 0.12264179937031
730 => 0.12256499201231
731 => 0.12353480601892
801 => 0.12349080965367
802 => 0.12316469767979
803 => 0.12284298108204
804 => 0.12411855102695
805 => 0.12375120736784
806 => 0.12338329312257
807 => 0.12264538477882
808 => 0.12274567877809
809 => 0.12167376557222
810 => 0.12117784947578
811 => 0.11372046125433
812 => 0.11172760344437
813 => 0.11235459707975
814 => 0.1125610196644
815 => 0.11169372539159
816 => 0.11293720258918
817 => 0.1127434079851
818 => 0.11349734942351
819 => 0.11302631954513
820 => 0.11304565077564
821 => 0.11443084921381
822 => 0.11483297821347
823 => 0.11462845215867
824 => 0.11477169519671
825 => 0.1180726705493
826 => 0.11760337741341
827 => 0.11735407478833
828 => 0.11742313331924
829 => 0.11826660329553
830 => 0.11850272883714
831 => 0.1175022483251
901 => 0.11797408071829
902 => 0.11998308316404
903 => 0.12068612032037
904 => 0.12292987744637
905 => 0.12197668953964
906 => 0.12372630719545
907 => 0.1291040353808
908 => 0.13340013676574
909 => 0.12944926438825
910 => 0.13733850747648
911 => 0.14348141486538
912 => 0.14324563984825
913 => 0.14217448185698
914 => 0.13518094511237
915 => 0.12874538833222
916 => 0.13412900484699
917 => 0.13414272879264
918 => 0.13368027135952
919 => 0.13080798796027
920 => 0.13358032212327
921 => 0.13380037994149
922 => 0.13367720608138
923 => 0.13147503313359
924 => 0.12811272207191
925 => 0.12876970960513
926 => 0.12984586858672
927 => 0.12780847512429
928 => 0.12715740446302
929 => 0.12836786869358
930 => 0.1322682366547
1001 => 0.13153089468494
1002 => 0.13151163970628
1003 => 0.13466630133455
1004 => 0.1324082444273
1005 => 0.12877799632189
1006 => 0.12786131079819
1007 => 0.1246076947424
1008 => 0.12685497894111
1009 => 0.12693585469866
1010 => 0.12570504010971
1011 => 0.12887787014238
1012 => 0.12884863195506
1013 => 0.13186076185765
1014 => 0.13761882292707
1015 => 0.13591588093186
1016 => 0.133935544671
1017 => 0.13415086213133
1018 => 0.1365123632223
1019 => 0.13508454575487
1020 => 0.13559799887126
1021 => 0.13651158604952
1022 => 0.13706277587725
1023 => 0.13407155439745
1024 => 0.13337415758384
1025 => 0.13194752845622
1026 => 0.13157534754612
1027 => 0.13273730720297
1028 => 0.13243117188603
1029 => 0.12692905740441
1030 => 0.1263540558276
1031 => 0.12637169030505
1101 => 0.12492582150034
1102 => 0.12272052452487
1103 => 0.12851591330495
1104 => 0.12805046247949
1105 => 0.12753664079122
1106 => 0.12759958101621
1107 => 0.13011516286169
1108 => 0.12865599835138
1109 => 0.13253542635439
1110 => 0.13173793258325
1111 => 0.1309199861061
1112 => 0.1308069209877
1113 => 0.13049208137792
1114 => 0.12941237920929
1115 => 0.12810857396064
1116 => 0.1272476888018
1117 => 0.11737926663228
1118 => 0.11921078838498
1119 => 0.12131778721299
1120 => 0.12204511476515
1121 => 0.12080097065764
1122 => 0.12946150560181
1123 => 0.1310438687911
1124 => 0.12625078747574
1125 => 0.12535419766186
1126 => 0.12952028588074
1127 => 0.12700762540118
1128 => 0.12813907626127
1129 => 0.12569349837228
1130 => 0.1306627238358
1201 => 0.1306248666635
1202 => 0.12869172572314
1203 => 0.13032560320835
1204 => 0.13004167678755
1205 => 0.127859165427
1206 => 0.1307319133388
1207 => 0.13073333818593
1208 => 0.12887273206094
1209 => 0.12669995144602
1210 => 0.12631150959086
1211 => 0.12601887083281
1212 => 0.12806710506588
1213 => 0.12990354547458
1214 => 0.13332070578298
1215 => 0.13417986107424
1216 => 0.13753320137324
1217 => 0.13553645049636
1218 => 0.13642158429783
1219 => 0.13738252224914
1220 => 0.13784323124032
1221 => 0.1370925306622
1222 => 0.14230164843647
1223 => 0.14274145757986
1224 => 0.14288892178131
1225 => 0.14113243657659
1226 => 0.14269260654886
1227 => 0.14196265468623
1228 => 0.14386178664632
1229 => 0.14415959478699
1230 => 0.14390736188667
1231 => 0.1440018908911
]
'min_raw' => 0.06457520438795
'max_raw' => 0.14415959478699
'avg_raw' => 0.10436739958747
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.064575'
'max' => '$0.144159'
'avg' => '$0.104367'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0099573654944778
'max_diff' => -0.013756639758626
'year' => 2031
]
6 => [
'items' => [
101 => 0.13955682782211
102 => 0.13932632785241
103 => 0.13618344440997
104 => 0.13746419264379
105 => 0.13506989520853
106 => 0.13582915158925
107 => 0.13616382456741
108 => 0.13598901039614
109 => 0.13753660422731
110 => 0.13622083331829
111 => 0.13274829755661
112 => 0.12927481570489
113 => 0.12923120896968
114 => 0.12831670251017
115 => 0.12765568184015
116 => 0.12778301787217
117 => 0.12823176665768
118 => 0.12762959974496
119 => 0.12775810258643
120 => 0.12989210596472
121 => 0.13032006512322
122 => 0.1288656926882
123 => 0.12302617749664
124 => 0.12159314582131
125 => 0.12262318057128
126 => 0.12213089030353
127 => 0.098569160400118
128 => 0.10410463934485
129 => 0.10081564572299
130 => 0.10233136530326
131 => 0.098974154496119
201 => 0.10057639145978
202 => 0.10028051679692
203 => 0.10918140313331
204 => 0.10904242803594
205 => 0.10910894806065
206 => 0.10593377396403
207 => 0.11099191251532
208 => 0.11348373345046
209 => 0.11302256371303
210 => 0.11313863020043
211 => 0.11114422340025
212 => 0.10912825827803
213 => 0.10689224270269
214 => 0.1110464832618
215 => 0.11058460262688
216 => 0.11164399062399
217 => 0.11433831257782
218 => 0.11473506172026
219 => 0.11526829659112
220 => 0.11507716984816
221 => 0.11963058427219
222 => 0.11907913574104
223 => 0.12040796803853
224 => 0.11767445918384
225 => 0.11458123444773
226 => 0.11516915534493
227 => 0.11511253383477
228 => 0.11439167702326
229 => 0.11374091972552
301 => 0.11265759217452
302 => 0.11608540084821
303 => 0.11594623807597
304 => 0.11819912159947
305 => 0.11780090255335
306 => 0.11514149830261
307 => 0.1152364794457
308 => 0.1158752732793
309 => 0.11808614603103
310 => 0.11874248359144
311 => 0.11843844188293
312 => 0.11915808605497
313 => 0.11972686346629
314 => 0.11922951574078
315 => 0.12627091072051
316 => 0.12334683260058
317 => 0.12477200793063
318 => 0.12511190384923
319 => 0.12424126760098
320 => 0.12443007742808
321 => 0.12471607286853
322 => 0.12645258117932
323 => 0.13100968144956
324 => 0.13302799013801
325 => 0.13910017140883
326 => 0.13286039769765
327 => 0.13249015534838
328 => 0.13358393855756
329 => 0.13714895176919
330 => 0.14003806013256
331 => 0.14099654405335
401 => 0.14112322352633
402 => 0.14292140308053
403 => 0.14395208606694
404 => 0.14270305678583
405 => 0.14164463524891
406 => 0.13785350067978
407 => 0.13829233482908
408 => 0.14131546694682
409 => 0.14558581912473
410 => 0.14925022554779
411 => 0.14796707813589
412 => 0.15775658712778
413 => 0.15872717695777
414 => 0.15859307282619
415 => 0.16080422090204
416 => 0.15641554226396
417 => 0.15453929711954
418 => 0.14187347799879
419 => 0.14543205653967
420 => 0.15060465943684
421 => 0.14992004604713
422 => 0.14616356355914
423 => 0.14924737591897
424 => 0.14822777111308
425 => 0.14742356649924
426 => 0.15110778373801
427 => 0.14705683554468
428 => 0.15056424812979
429 => 0.14606595520984
430 => 0.14797293944519
501 => 0.14689044296276
502 => 0.14759095085267
503 => 0.14349579604197
504 => 0.14570544217356
505 => 0.14340386749826
506 => 0.14340277625219
507 => 0.14335196886367
508 => 0.14605976126242
509 => 0.14614806227533
510 => 0.1441469996014
511 => 0.14385861520762
512 => 0.14492492345982
513 => 0.14367655576306
514 => 0.14426065915124
515 => 0.14369424765965
516 => 0.14356673650245
517 => 0.14255070590758
518 => 0.14211297199097
519 => 0.14228461873868
520 => 0.14169869989876
521 => 0.1413456626041
522 => 0.14328174085994
523 => 0.14224737234902
524 => 0.14312320905071
525 => 0.14212508258973
526 => 0.13866514141297
527 => 0.13667529265401
528 => 0.13013978450783
529 => 0.13199324651081
530 => 0.13322209373634
531 => 0.13281595973563
601 => 0.13368849272214
602 => 0.13374205916109
603 => 0.13345838979276
604 => 0.13312993700452
605 => 0.13297006435179
606 => 0.13416162412406
607 => 0.13485336467792
608 => 0.13334542499527
609 => 0.13299213582595
610 => 0.13451674610074
611 => 0.13544675748762
612 => 0.14231343904012
613 => 0.14180473309163
614 => 0.14308148519386
615 => 0.1429377425005
616 => 0.1442759821062
617 => 0.14646343827926
618 => 0.14201572825706
619 => 0.14278769692668
620 => 0.14259842803625
621 => 0.14466481615298
622 => 0.14467126719113
623 => 0.14343236429141
624 => 0.14410399365225
625 => 0.14372910856821
626 => 0.14440657658383
627 => 0.14179793901354
628 => 0.14497497798912
629 => 0.14677615436441
630 => 0.14680116370013
701 => 0.14765490700699
702 => 0.14852235965225
703 => 0.15018735946561
704 => 0.14847592371113
705 => 0.14539721739374
706 => 0.1456194900457
707 => 0.14381444565827
708 => 0.14384478878053
709 => 0.14368281481587
710 => 0.14416891087664
711 => 0.14190460976333
712 => 0.1424360367088
713 => 0.14169203587311
714 => 0.14278607961416
715 => 0.1416090694007
716 => 0.14259833676506
717 => 0.14302527176478
718 => 0.14460067110503
719 => 0.14137638163722
720 => 0.13480183714716
721 => 0.13618388610762
722 => 0.1341397271375
723 => 0.13432892183285
724 => 0.13471112522756
725 => 0.13347227897613
726 => 0.13370861180037
727 => 0.13370016832884
728 => 0.13362740705272
729 => 0.13330513529621
730 => 0.13283777748975
731 => 0.13469958714555
801 => 0.13501594488581
802 => 0.13571916895399
803 => 0.13781148677943
804 => 0.13760241488841
805 => 0.13794341981697
806 => 0.1371990079726
807 => 0.13436345296328
808 => 0.13451743724256
809 => 0.1325972508126
810 => 0.13567006546981
811 => 0.13494238239981
812 => 0.13447324039072
813 => 0.13434523064697
814 => 0.1364427349236
815 => 0.13707034107752
816 => 0.13667925903948
817 => 0.13587713836977
818 => 0.1374174471813
819 => 0.13782956883885
820 => 0.13792182767951
821 => 0.14065095956861
822 => 0.13807435583524
823 => 0.1386945699631
824 => 0.14353330354074
825 => 0.13914523988541
826 => 0.14146969506913
827 => 0.14135592508377
828 => 0.14254503770049
829 => 0.14125838314161
830 => 0.1412743327669
831 => 0.14233018421308
901 => 0.14084743128074
902 => 0.14048028080268
903 => 0.13997306504684
904 => 0.14108055209361
905 => 0.14174444049082
906 => 0.14709489340003
907 => 0.15055152998967
908 => 0.15040146827908
909 => 0.1517727514101
910 => 0.15115497580006
911 => 0.14916001539429
912 => 0.15256516954744
913 => 0.15148763629568
914 => 0.15157646682775
915 => 0.15157316055091
916 => 0.15228962596374
917 => 0.15178194455566
918 => 0.15078125238791
919 => 0.15144555854921
920 => 0.15341831035448
921 => 0.15954179248945
922 => 0.16296857421752
923 => 0.15933549592662
924 => 0.16184154468283
925 => 0.16033880842558
926 => 0.16006571654511
927 => 0.16163970035955
928 => 0.1632164392243
929 => 0.16311600777505
930 => 0.16197137632568
1001 => 0.16132480306387
1002 => 0.16622087242018
1003 => 0.16982821291954
1004 => 0.1695822164814
1005 => 0.17066796475702
1006 => 0.17385575527517
1007 => 0.17414720688945
1008 => 0.17411049068499
1009 => 0.17338809744915
1010 => 0.17652689120117
1011 => 0.17914532817093
1012 => 0.173220884287
1013 => 0.17547683496133
1014 => 0.17648960390123
1015 => 0.17797664918001
1016 => 0.18048554382304
1017 => 0.1832108688568
1018 => 0.18359625969824
1019 => 0.18332280645359
1020 => 0.18152538133315
1021 => 0.18450746450498
1022 => 0.18625429888859
1023 => 0.18729449878843
1024 => 0.18993227266167
1025 => 0.17649585841742
1026 => 0.16698489658222
1027 => 0.1654996225517
1028 => 0.16851998569828
1029 => 0.16931643137309
1030 => 0.16899538512023
1031 => 0.15828993287589
1101 => 0.16544326056118
1102 => 0.17313963968167
1103 => 0.17343528894817
1104 => 0.17728825725959
1105 => 0.1785429416803
1106 => 0.18164508619109
1107 => 0.18145104620731
1108 => 0.18220636902979
1109 => 0.18203273339327
1110 => 0.18777880286592
1111 => 0.19411757079382
1112 => 0.19389807941652
1113 => 0.19298680652999
1114 => 0.19434020216161
1115 => 0.20088248996686
1116 => 0.20028018094378
1117 => 0.20086527285514
1118 => 0.20857899888471
1119 => 0.21860793998789
1120 => 0.21394848995624
1121 => 0.22405815580429
1122 => 0.23042165456527
1123 => 0.24142666767435
1124 => 0.24004878583226
1125 => 0.24433295667711
1126 => 0.2375820897623
1127 => 0.22208073475061
1128 => 0.21962758598321
1129 => 0.22453885193917
1130 => 0.23661272005758
1201 => 0.22415860286487
1202 => 0.22667805455268
1203 => 0.2259524522971
1204 => 0.22591378803651
1205 => 0.22738944560427
1206 => 0.22524892733711
1207 => 0.21652807084479
1208 => 0.22052478798289
1209 => 0.21898146355775
1210 => 0.2206938970699
1211 => 0.22993519447368
1212 => 0.22584939660645
1213 => 0.2215453404566
1214 => 0.22694358201504
1215 => 0.23381739855599
1216 => 0.23338724747029
1217 => 0.23255257457483
1218 => 0.23725758198447
1219 => 0.24502887578737
1220 => 0.24712942527471
1221 => 0.24868000796242
1222 => 0.24889380711774
1223 => 0.25109607129303
1224 => 0.23925394178047
1225 => 0.25804770544436
1226 => 0.26129286926187
1227 => 0.26068291296244
1228 => 0.26428977596823
1229 => 0.26322854537465
1230 => 0.26169098874652
1231 => 0.26740863381246
]
'min_raw' => 0.098569160400118
'max_raw' => 0.26740863381246
'avg_raw' => 0.18298889710629
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.098569'
'max' => '$0.2674086'
'avg' => '$0.182988'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.033993956012168
'max_diff' => 0.12324903902547
'year' => 2032
]
7 => [
'items' => [
101 => 0.26085381513452
102 => 0.2515500752499
103 => 0.24644585954209
104 => 0.25316750253148
105 => 0.25727217535208
106 => 0.25998510298027
107 => 0.26080603324137
108 => 0.24017321258431
109 => 0.22905326659885
110 => 0.23618102448509
111 => 0.24487738103787
112 => 0.23920563308073
113 => 0.23942795486261
114 => 0.23134153278486
115 => 0.24559284996047
116 => 0.24351655292042
117 => 0.25428838563707
118 => 0.25171760130988
119 => 0.26050161273016
120 => 0.25818848813892
121 => 0.26779013899211
122 => 0.27162049747177
123 => 0.2780522655068
124 => 0.28278350025538
125 => 0.28556177179384
126 => 0.28539497479171
127 => 0.29640387075649
128 => 0.28991230942759
129 => 0.28175737845495
130 => 0.28160988148214
131 => 0.28583343578913
201 => 0.29468484694104
202 => 0.29697988906994
203 => 0.29826250452459
204 => 0.29629813430763
205 => 0.2892520097395
206 => 0.28620952887565
207 => 0.28880181072081
208 => 0.28563167278149
209 => 0.29110422024836
210 => 0.29861919679342
211 => 0.29706738385431
212 => 0.30225486184898
213 => 0.30762335583487
214 => 0.31530054334884
215 => 0.31730764445042
216 => 0.32062530624812
217 => 0.32404027003308
218 => 0.32513706436495
219 => 0.32723118505979
220 => 0.32722014801005
221 => 0.33353092167453
222 => 0.34049190045485
223 => 0.34311950879739
224 => 0.34916154929389
225 => 0.33881476668198
226 => 0.34666292014839
227 => 0.35374215102711
228 => 0.34530200013107
301 => 0.35693478183832
302 => 0.35738645639156
303 => 0.36420620589279
304 => 0.35729308326738
305 => 0.35318809311987
306 => 0.36503904586374
307 => 0.37077334859498
308 => 0.36904612994503
309 => 0.35590191073558
310 => 0.34825141137359
311 => 0.32822857887217
312 => 0.3519464888921
313 => 0.36349879100189
314 => 0.35587199306394
315 => 0.3597185063195
316 => 0.38070383540571
317 => 0.38869369002231
318 => 0.38703185611536
319 => 0.38731267868952
320 => 0.39162385921451
321 => 0.41074200787282
322 => 0.39928597004154
323 => 0.408043681714
324 => 0.4126887404068
325 => 0.4170033297926
326 => 0.40640806190105
327 => 0.39262377404954
328 => 0.38825771146193
329 => 0.35511365831677
330 => 0.35338836641324
331 => 0.35241990778609
401 => 0.34631391313312
402 => 0.34151627390857
403 => 0.33770101307229
404 => 0.32768862930456
405 => 0.33106751490956
406 => 0.3151098649307
407 => 0.32531900388278
408 => 0.29985020920559
409 => 0.32106137822208
410 => 0.30951710327991
411 => 0.3172687734213
412 => 0.31724172857443
413 => 0.30296844617488
414 => 0.29473591476263
415 => 0.29998200419343
416 => 0.30560622849835
417 => 0.30651873996966
418 => 0.31381069358826
419 => 0.3158457211032
420 => 0.3096794927266
421 => 0.29932242504571
422 => 0.30172813564842
423 => 0.29468716311405
424 => 0.28234812957467
425 => 0.29121023888151
426 => 0.29423615263831
427 => 0.29557256853581
428 => 0.28343854619741
429 => 0.27962577293624
430 => 0.27759588444426
501 => 0.29775607513435
502 => 0.29886049588941
503 => 0.29321012315716
504 => 0.31875034369724
505 => 0.31296980519429
506 => 0.3194280829684
507 => 0.30150984262669
508 => 0.30219434353785
509 => 0.29371156140754
510 => 0.29846135258081
511 => 0.29510435327246
512 => 0.29807761639236
513 => 0.2998597780472
514 => 0.30834116823643
515 => 0.32115822207419
516 => 0.3070743313716
517 => 0.30093777850745
518 => 0.30474486139109
519 => 0.31488362480172
520 => 0.33024437036259
521 => 0.32115049982674
522 => 0.32518620514661
523 => 0.32606782722297
524 => 0.31936234376323
525 => 0.33049161110235
526 => 0.33645587588339
527 => 0.34257397741804
528 => 0.34788615355527
529 => 0.34013027312517
530 => 0.34843017694716
531 => 0.34174191959689
601 => 0.33574186133436
602 => 0.33575096094602
603 => 0.33198703675107
604 => 0.32469395933839
605 => 0.3233490039676
606 => 0.33034563165555
607 => 0.33595626447817
608 => 0.33641838307056
609 => 0.33952471768589
610 => 0.34136301451345
611 => 0.35938082246689
612 => 0.36662773387689
613 => 0.37548911997202
614 => 0.37894112925643
615 => 0.38933043958868
616 => 0.38094022771686
617 => 0.37912495260148
618 => 0.35392388405296
619 => 0.35805055761599
620 => 0.36465776015517
621 => 0.35403283438924
622 => 0.36077190426693
623 => 0.3621023394138
624 => 0.35367180347739
625 => 0.35817491698298
626 => 0.34621598259224
627 => 0.32141889416392
628 => 0.33051921735039
629 => 0.3372201183513
630 => 0.32765710640787
701 => 0.3447984351768
702 => 0.33478482477884
703 => 0.33161099102075
704 => 0.31922873397703
705 => 0.32507268266489
706 => 0.3329767069425
707 => 0.32809293888038
708 => 0.33822749091074
709 => 0.35258071937202
710 => 0.36280968472307
711 => 0.36359493766915
712 => 0.35701839823588
713 => 0.36755734464861
714 => 0.3676341093676
715 => 0.35574613476118
716 => 0.34846481650727
717 => 0.34681048567996
718 => 0.35094332843725
719 => 0.35596136250946
720 => 0.36387340363642
721 => 0.36865448438327
722 => 0.38112100728178
723 => 0.38449409093489
724 => 0.3882000872146
725 => 0.39315244113121
726 => 0.39909901176559
727 => 0.38608825375603
728 => 0.38660519542683
729 => 0.37448975771453
730 => 0.36154267498942
731 => 0.37136789690114
801 => 0.38421306755621
802 => 0.38126637121528
803 => 0.38093480768138
804 => 0.38149240557734
805 => 0.37927069276639
806 => 0.36922196806297
807 => 0.36417556142526
808 => 0.37068671346355
809 => 0.37414710099386
810 => 0.37951386027587
811 => 0.37885229391582
812 => 0.3926764894784
813 => 0.39804815385205
814 => 0.39667385223879
815 => 0.39692675681004
816 => 0.4066518985744
817 => 0.4174682563443
818 => 0.42759920273994
819 => 0.43790483654785
820 => 0.42548099275668
821 => 0.41917293107568
822 => 0.42568124054867
823 => 0.42222783993122
824 => 0.44207210422429
825 => 0.44344607802846
826 => 0.46328890735536
827 => 0.48212211522675
828 => 0.4702933147947
829 => 0.48144734082125
830 => 0.49351132937006
831 => 0.51678472059231
901 => 0.50894706119643
902 => 0.50294353693097
903 => 0.49727023550893
904 => 0.50907547515696
905 => 0.52426272737085
906 => 0.52753391603602
907 => 0.53283449136386
908 => 0.52726158453015
909 => 0.5339735369758
910 => 0.55766967849028
911 => 0.55126677188144
912 => 0.54217361517829
913 => 0.56087944310235
914 => 0.567649009511
915 => 0.61516137181638
916 => 0.6751476918647
917 => 0.65031296147328
918 => 0.63489724290759
919 => 0.63852030243626
920 => 0.66042527585283
921 => 0.66746045808512
922 => 0.648336407605
923 => 0.65509134553879
924 => 0.69231171768484
925 => 0.7122792531687
926 => 0.68516065798383
927 => 0.61034152940787
928 => 0.54135487590755
929 => 0.55965324292533
930 => 0.55757877596995
1001 => 0.5975674225049
1002 => 0.5511140646764
1003 => 0.55189622008596
1004 => 0.59271178948254
1005 => 0.58182289532353
1006 => 0.56418428133015
1007 => 0.54148365730976
1008 => 0.4995194542545
1009 => 0.46235058935008
1010 => 0.53524729290602
1011 => 0.53210385449463
1012 => 0.52755168984347
1013 => 0.53768203967896
1014 => 0.58687214293015
1015 => 0.58573815183738
1016 => 0.57852427907254
1017 => 0.58399593798452
1018 => 0.5632250730678
1019 => 0.56857819790064
1020 => 0.54134394806917
1021 => 0.55365496639574
1022 => 0.56414643678642
1023 => 0.56625275479623
1024 => 0.57099839682358
1025 => 0.53044740529078
1026 => 0.54865360997444
1027 => 0.55934804953541
1028 => 0.51103018253191
1029 => 0.55839296065854
1030 => 0.529741502746
1031 => 0.52001676760003
1101 => 0.53310984233765
1102 => 0.52800745837897
1103 => 0.52362072827333
1104 => 0.5211728575008
1105 => 0.53078696655818
1106 => 0.5303384568793
1107 => 0.51460790844327
1108 => 0.49408804926765
1109 => 0.50097518754841
1110 => 0.49847302564375
1111 => 0.48940486811593
1112 => 0.49551571139616
1113 => 0.46860665021704
1114 => 0.42231100906966
1115 => 0.45289532768546
1116 => 0.45171786468809
1117 => 0.45112413445112
1118 => 0.47410740460241
1119 => 0.47189809349163
1120 => 0.46788817219191
1121 => 0.48933122276665
1122 => 0.48150422085714
1123 => 0.50562519646866
1124 => 0.52151283105331
1125 => 0.5174832130115
1126 => 0.53242561012996
1127 => 0.50113385330433
1128 => 0.51152771971443
1129 => 0.51366988117627
1130 => 0.48906661885107
1201 => 0.47225956411236
1202 => 0.47113872517574
1203 => 0.44199760841363
1204 => 0.45756455776907
1205 => 0.47126282899773
1206 => 0.46470242010799
1207 => 0.46262559064014
1208 => 0.47323566198204
1209 => 0.47406015539442
1210 => 0.45526161821624
1211 => 0.45917042936783
1212 => 0.47547082165576
1213 => 0.45875970130468
1214 => 0.42629272420852
1215 => 0.4182404649976
1216 => 0.41716614518628
1217 => 0.39532777957353
1218 => 0.41877855546145
1219 => 0.40854166334465
1220 => 0.44087988288482
1221 => 0.42240846531683
1222 => 0.42161219942382
1223 => 0.42040852673974
1224 => 0.40161134332532
1225 => 0.40572673186975
1226 => 0.41940691018282
1227 => 0.42428815192316
1228 => 0.42377899841881
1229 => 0.41933986984589
1230 => 0.42137208017456
1231 => 0.41482562263691
]
'min_raw' => 0.22905326659885
'max_raw' => 0.7122792531687
'avg_raw' => 0.47066625988377
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.229053'
'max' => '$0.712279'
'avg' => '$0.470666'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.13048410619873
'max_diff' => 0.44487061935623
'year' => 2033
]
8 => [
'items' => [
101 => 0.41251393222764
102 => 0.40521760141543
103 => 0.39449401078431
104 => 0.39598519183317
105 => 0.37473895281281
106 => 0.36316287417126
107 => 0.35995876817354
108 => 0.35567410372459
109 => 0.36044273242411
110 => 0.37467876488711
111 => 0.35750708939396
112 => 0.32806745621395
113 => 0.32983682833076
114 => 0.33381208214595
115 => 0.32640422296029
116 => 0.31939330593556
117 => 0.32548872947489
118 => 0.31301476880069
119 => 0.33531950069837
120 => 0.33471622020883
121 => 0.34303004494492
122 => 0.34822885016925
123 => 0.33624728726034
124 => 0.33323395659034
125 => 0.33495048668821
126 => 0.30658006778838
127 => 0.34071157645613
128 => 0.34100674716043
129 => 0.33847931638688
130 => 0.35665329106035
131 => 0.39500604622622
201 => 0.38057619699682
202 => 0.37498852323069
203 => 0.36436635131672
204 => 0.37851976470993
205 => 0.37743300338897
206 => 0.37251825655362
207 => 0.36954580233266
208 => 0.3750226403752
209 => 0.3688671614897
210 => 0.36776146834062
211 => 0.36106217086318
212 => 0.35867082646235
213 => 0.35690037027014
214 => 0.35495127196394
215 => 0.35925049714237
216 => 0.34950788727788
217 => 0.33775925486114
218 => 0.33678248319765
219 => 0.33947943563918
220 => 0.3382862349483
221 => 0.3367767706118
222 => 0.33389479211526
223 => 0.33303977065907
224 => 0.33581817559426
225 => 0.3326815184135
226 => 0.33730982694627
227 => 0.33605118312135
228 => 0.32902050103001
301 => 0.32025766805231
302 => 0.32017966045815
303 => 0.31829172246703
304 => 0.31588714958196
305 => 0.31521825241451
306 => 0.32497538990592
307 => 0.34517237250659
308 => 0.34120722154925
309 => 0.34407244948094
310 => 0.35816653508457
311 => 0.36264662107403
312 => 0.35946676215536
313 => 0.35511397514234
314 => 0.35530547568015
315 => 0.37018026658188
316 => 0.37110798904463
317 => 0.37345204441339
318 => 0.37646481799222
319 => 0.35997985052344
320 => 0.35452903519484
321 => 0.35194613649243
322 => 0.34399180819659
323 => 0.35256986931108
324 => 0.34757180044887
325 => 0.34824621069672
326 => 0.34780700013807
327 => 0.34804683880238
328 => 0.33531326607123
329 => 0.33995271071759
330 => 0.33223873415794
331 => 0.32191058547908
401 => 0.32187596190319
402 => 0.32440376166046
403 => 0.32290012745202
404 => 0.31885388645908
405 => 0.31942863589441
406 => 0.31439322606115
407 => 0.3200400258172
408 => 0.32020195582899
409 => 0.31802763033965
410 => 0.32672730447205
411 => 0.33029156806235
412 => 0.3288603804467
413 => 0.33019115212398
414 => 0.34137199147311
415 => 0.34319495614124
416 => 0.34400459662853
417 => 0.34291978563237
418 => 0.33039551734233
419 => 0.33095102189829
420 => 0.32687509804969
421 => 0.32343137190789
422 => 0.3235691028936
423 => 0.32533962578355
424 => 0.33307160308373
425 => 0.34934309348701
426 => 0.34996058465351
427 => 0.35070900196079
428 => 0.34766481264766
429 => 0.34674665602185
430 => 0.34795794160763
501 => 0.35406865788877
502 => 0.36978707920718
503 => 0.36423113931519
504 => 0.35971407369965
505 => 0.36367675803663
506 => 0.3630667338435
507 => 0.35791751574682
508 => 0.35777299434485
509 => 0.34788999851273
510 => 0.34423647997852
511 => 0.34118332643021
512 => 0.33784936246005
513 => 0.33587287686305
514 => 0.33890965703668
515 => 0.33960420459251
516 => 0.33296423166905
517 => 0.33205922789512
518 => 0.33748157311819
519 => 0.33509540115093
520 => 0.33754963819348
521 => 0.33811904223941
522 => 0.33802735507352
523 => 0.33553591748959
524 => 0.33712388550985
525 => 0.33336786774589
526 => 0.3292837625632
527 => 0.32667835790539
528 => 0.32440479678467
529 => 0.32566630063459
530 => 0.32116926975112
531 => 0.31973057906415
601 => 0.336585917675
602 => 0.34903713753226
603 => 0.34885609186431
604 => 0.34775402292184
605 => 0.34611657201985
606 => 0.35394886815624
607 => 0.35122025279403
608 => 0.35320554845348
609 => 0.35371088952141
610 => 0.35524040473503
611 => 0.35578707495763
612 => 0.35413465785806
613 => 0.34858894424616
614 => 0.33476955319594
615 => 0.32833658935732
616 => 0.3262136041411
617 => 0.32629077062158
618 => 0.32416217460341
619 => 0.32478914152775
620 => 0.32394414109348
621 => 0.32234391469853
622 => 0.32556749116402
623 => 0.32593897832198
624 => 0.32518655705606
625 => 0.32536377950223
626 => 0.31913405278377
627 => 0.31960768537592
628 => 0.31697043891652
629 => 0.31647598699786
630 => 0.3098092575998
701 => 0.29799818011325
702 => 0.30454266356983
703 => 0.29663784784791
704 => 0.29364417435652
705 => 0.30781575905303
706 => 0.30639332500807
707 => 0.30395873624032
708 => 0.30035747204007
709 => 0.29902172811735
710 => 0.29090617088803
711 => 0.29042666047211
712 => 0.29444894977343
713 => 0.29259280165939
714 => 0.28998606672902
715 => 0.2805447370517
716 => 0.26992955657755
717 => 0.27024996215142
718 => 0.27362645355779
719 => 0.28344405770372
720 => 0.27960814991763
721 => 0.27682515480685
722 => 0.27630398347913
723 => 0.28282753379166
724 => 0.29205972420994
725 => 0.29639126139558
726 => 0.29209883959535
727 => 0.28716793655165
728 => 0.28746805777232
729 => 0.28946462979673
730 => 0.28967444128648
731 => 0.28646493031006
801 => 0.28736838885011
802 => 0.2859959527138
803 => 0.27757331467858
804 => 0.277420975865
805 => 0.27535392465778
806 => 0.27529133516872
807 => 0.27177476541514
808 => 0.27128277299771
809 => 0.26430041031145
810 => 0.26889622257609
811 => 0.26581359299994
812 => 0.26116734310989
813 => 0.26036632787756
814 => 0.26034224839243
815 => 0.26511290814705
816 => 0.26884047463924
817 => 0.26586721666121
818 => 0.2651902634538
819 => 0.27241835265497
820 => 0.27149851241862
821 => 0.27070193670628
822 => 0.29123308281753
823 => 0.27498107860517
824 => 0.2678942771366
825 => 0.25912301457216
826 => 0.26197898189169
827 => 0.2625807761688
828 => 0.24148747084023
829 => 0.23292991949543
830 => 0.22999329035841
831 => 0.22830321877222
901 => 0.22907340561663
902 => 0.22137060570565
903 => 0.22654701463838
904 => 0.21987704101694
905 => 0.21875879823334
906 => 0.23068553731965
907 => 0.23234507338851
908 => 0.2252649769413
909 => 0.22981154502391
910 => 0.22816289623513
911 => 0.2199913785707
912 => 0.21967928670153
913 => 0.21557910638025
914 => 0.20916311812881
915 => 0.20623083933395
916 => 0.20470368307838
917 => 0.20533381751311
918 => 0.20501520226048
919 => 0.20293602221739
920 => 0.20513437842675
921 => 0.19951848673535
922 => 0.19728219341352
923 => 0.19627211160166
924 => 0.19128768448687
925 => 0.19922012461129
926 => 0.20078291524605
927 => 0.20234878506113
928 => 0.21597861273667
929 => 0.21529770506349
930 => 0.22145277881352
1001 => 0.22121360396605
1002 => 0.21945807722696
1003 => 0.21205179868486
1004 => 0.21500380930752
1005 => 0.20591797945528
1006 => 0.21272570095695
1007 => 0.20961894116083
1008 => 0.21167530234477
1009 => 0.20797777952144
1010 => 0.21002414131885
1011 => 0.20115351088126
1012 => 0.19287024099179
1013 => 0.19620367059903
1014 => 0.19982748980603
1015 => 0.20768485317875
1016 => 0.2030050723758
1017 => 0.20468809851464
1018 => 0.19905024268468
1019 => 0.18741773573357
1020 => 0.18748357445963
1021 => 0.18569416669314
1022 => 0.18414785712508
1023 => 0.203542601496
1024 => 0.20113055844794
1025 => 0.19728728353124
1026 => 0.20243165973291
1027 => 0.20379191445286
1028 => 0.20383063899245
1029 => 0.20758384307361
1030 => 0.20958692876453
1031 => 0.20993998129943
1101 => 0.21584572901449
1102 => 0.21782525774988
1103 => 0.22597865645757
1104 => 0.20941698093844
1105 => 0.20907590412984
1106 => 0.20250405165587
1107 => 0.19833607892
1108 => 0.20278943631495
1109 => 0.20673450302297
1110 => 0.20262663587532
1111 => 0.20316303660299
1112 => 0.19764856058235
1113 => 0.19961972627951
1114 => 0.20131755972261
1115 => 0.20038011588937
1116 => 0.19897671709821
1117 => 0.20641105254186
1118 => 0.20599157820073
1119 => 0.21291460228048
1120 => 0.21831159462085
1121 => 0.22798396972257
1122 => 0.21789034207161
1123 => 0.21752249016147
1124 => 0.22111830158837
1125 => 0.21782470724989
1126 => 0.21990614518079
1127 => 0.227648617893
1128 => 0.22781220414098
1129 => 0.22507192371834
1130 => 0.22490517740558
1201 => 0.22543147823613
1202 => 0.22851403863938
1203 => 0.22743689731697
1204 => 0.22868339252515
1205 => 0.23024215386998
1206 => 0.23668985169332
1207 => 0.23824436980995
1208 => 0.23446769671178
1209 => 0.23480868800692
1210 => 0.23339610859621
1211 => 0.23203157458503
1212 => 0.23509884776798
1213 => 0.24070434979721
1214 => 0.24066947826001
1215 => 0.24196984577541
1216 => 0.24277996396467
1217 => 0.23930234365359
1218 => 0.23703854070672
1219 => 0.23790662680607
1220 => 0.2392947153834
1221 => 0.23745648838864
1222 => 0.22611009982741
1223 => 0.22955186930678
1224 => 0.22897899057149
1225 => 0.22816314158799
1226 => 0.23162386741391
1227 => 0.2312900719655
1228 => 0.22129160235912
1229 => 0.22193167194337
1230 => 0.22133052711052
1231 => 0.22327294904812
]
'min_raw' => 0.18414785712508
'max_raw' => 0.41251393222764
'avg_raw' => 0.29833089467636
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.184147'
'max' => '$0.412513'
'avg' => '$0.29833'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.044905409473767
'max_diff' => -0.29976532094106
'year' => 2034
]
9 => [
'items' => [
101 => 0.21771981009077
102 => 0.21942791823309
103 => 0.22049922764743
104 => 0.22113023712267
105 => 0.22340987603446
106 => 0.22314238671966
107 => 0.22339324852308
108 => 0.22677335122691
109 => 0.24386875079172
110 => 0.24479921567116
111 => 0.24021726630326
112 => 0.24204766470078
113 => 0.23853370004167
114 => 0.24089264805885
115 => 0.24250658038142
116 => 0.23521353055705
117 => 0.23478168347796
118 => 0.23125321543671
119 => 0.23314921429943
120 => 0.2301325437817
121 => 0.23087272920809
122 => 0.22880310622768
123 => 0.2325280155346
124 => 0.23669304293212
125 => 0.23774529333464
126 => 0.23497727554787
127 => 0.23297304824899
128 => 0.22945428534566
129 => 0.23530606647464
130 => 0.23701730560655
131 => 0.23529707806397
201 => 0.23489846375465
202 => 0.23414309035875
203 => 0.23505871979147
204 => 0.23700798583073
205 => 0.2360887479639
206 => 0.23669592076983
207 => 0.23438200414752
208 => 0.23930349489062
209 => 0.2471200066119
210 => 0.24714513797521
211 => 0.24622589515335
212 => 0.24584976079601
213 => 0.24679295971556
214 => 0.24730460643736
215 => 0.25035473879008
216 => 0.25362765232717
217 => 0.26890091172075
218 => 0.26461224159997
219 => 0.27816358594421
220 => 0.28888093989868
221 => 0.29209460573653
222 => 0.28913818438037
223 => 0.27902442662367
224 => 0.2785281974179
225 => 0.29364242142479
226 => 0.28937196086753
227 => 0.28886400317273
228 => 0.2834601915082
301 => 0.28665451347704
302 => 0.28595586840458
303 => 0.28485302297881
304 => 0.29094756677695
305 => 0.30235600870338
306 => 0.30057789604145
307 => 0.2992506174236
308 => 0.29343486888516
309 => 0.29693724849976
310 => 0.29569011820266
311 => 0.30104858140744
312 => 0.29787434650942
313 => 0.28933960792869
314 => 0.29069879317854
315 => 0.29049335506233
316 => 0.29472125693649
317 => 0.29345214573685
318 => 0.29024554073209
319 => 0.30231701588913
320 => 0.3015331614375
321 => 0.30264448783583
322 => 0.30313372808529
323 => 0.31048142229013
324 => 0.31349153750586
325 => 0.31417488635932
326 => 0.3170342630036
327 => 0.31410374246357
328 => 0.3258279140494
329 => 0.33362380402959
330 => 0.34267913141442
331 => 0.3559113985662
401 => 0.36088685342058
402 => 0.35998808203471
403 => 0.37002063597141
404 => 0.38804891238451
405 => 0.36363211214594
406 => 0.38934306208578
407 => 0.38120327218202
408 => 0.36190397674877
409 => 0.36066132964662
410 => 0.37373103658344
411 => 0.40271838865663
412 => 0.39545738573412
413 => 0.40273026505623
414 => 0.39424606500526
415 => 0.39382475296228
416 => 0.40231820639684
417 => 0.42216362330075
418 => 0.41273580962403
419 => 0.3992187269237
420 => 0.40919953044053
421 => 0.4005532347545
422 => 0.38107071062808
423 => 0.39545183338203
424 => 0.38583558614726
425 => 0.38864211831819
426 => 0.40885403969685
427 => 0.40642208784246
428 => 0.40956925873472
429 => 0.40401458448568
430 => 0.39882564284535
501 => 0.3891400979378
502 => 0.38627268558227
503 => 0.38706513519865
504 => 0.3862722928836
505 => 0.38085331952258
506 => 0.37968309274121
507 => 0.37773266350346
508 => 0.3783371830808
509 => 0.37466980549562
510 => 0.38159090471773
511 => 0.38287552172187
512 => 0.38791212056395
513 => 0.38843503696401
514 => 0.40246189304769
515 => 0.39473613642854
516 => 0.3999192409784
517 => 0.39945561532219
518 => 0.36232225100139
519 => 0.36743890097435
520 => 0.37539880263906
521 => 0.3718128777285
522 => 0.36674321888217
523 => 0.36264919754585
524 => 0.35644633658614
525 => 0.36517674427153
526 => 0.37665630200247
527 => 0.38872617749222
528 => 0.40322734204359
529 => 0.39999085092788
530 => 0.38845508830773
531 => 0.38897257419199
601 => 0.3921714683053
602 => 0.38802860977839
603 => 0.3868067999206
604 => 0.392003610393
605 => 0.39203939797061
606 => 0.38727253855422
607 => 0.38197504663897
608 => 0.38195284995442
609 => 0.3810102124358
610 => 0.39441375812574
611 => 0.40178435300389
612 => 0.40262937982836
613 => 0.40172747596578
614 => 0.40207458296721
615 => 0.39778579620759
616 => 0.40758869093987
617 => 0.41658479655202
618 => 0.4141736480742
619 => 0.41055899374099
620 => 0.40767974745925
621 => 0.41349538915399
622 => 0.41323642778399
623 => 0.41650622341753
624 => 0.41635788660034
625 => 0.41525837731201
626 => 0.41417368734114
627 => 0.41847436046785
628 => 0.41723583567406
629 => 0.41599538710917
630 => 0.4135074776091
701 => 0.41384562582996
702 => 0.41023159561779
703 => 0.40855957987487
704 => 0.38341647482805
705 => 0.37669741558488
706 => 0.37881136840184
707 => 0.37950733655795
708 => 0.37658319336461
709 => 0.3807756635531
710 => 0.38012227151515
711 => 0.38266423771326
712 => 0.38107612759202
713 => 0.38114130418535
714 => 0.38581159743114
715 => 0.38716740342923
716 => 0.3864778295559
717 => 0.38696078345958
718 => 0.39809025232756
719 => 0.39650799775491
720 => 0.39566745654869
721 => 0.39590029220718
722 => 0.39874411012145
723 => 0.39954022387075
724 => 0.39616703397306
725 => 0.39775784982899
726 => 0.40453134183893
727 => 0.40690168069596
728 => 0.41446666450041
729 => 0.41125292492342
730 => 0.41715188300439
731 => 0.43528326904228
801 => 0.44976787480583
802 => 0.43644723274402
803 => 0.46304636662536
804 => 0.48375760777112
805 => 0.48296267583956
806 => 0.47935119188616
807 => 0.45577199447855
808 => 0.43407406547804
809 => 0.4522253044297
810 => 0.45227157567062
811 => 0.45071236814714
812 => 0.44102826413012
813 => 0.45037538231886
814 => 0.45111732261693
815 => 0.45070203334786
816 => 0.44327725350359
817 => 0.43194098701008
818 => 0.43415606634773
819 => 0.43778441148918
820 => 0.43091519718432
821 => 0.42872006699354
822 => 0.4328012316588
823 => 0.44595159455469
824 => 0.44346559462409
825 => 0.44340067511919
826 => 0.45403683705034
827 => 0.44642364053504
828 => 0.43418400559184
829 => 0.43109333634773
830 => 0.42012354265541
831 => 0.42770041823176
901 => 0.4279730964949
902 => 0.42382331917553
903 => 0.43452073715058
904 => 0.4344221585607
905 => 0.44457776482746
906 => 0.463991469738
907 => 0.45824988190555
908 => 0.4515730399394
909 => 0.45229899778987
910 => 0.46026096359284
911 => 0.45544697731436
912 => 0.45717812034441
913 => 0.46025834330053
914 => 0.46211671828759
915 => 0.452031606228
916 => 0.44968028418023
917 => 0.4448703044724
918 => 0.44361547054915
919 => 0.44753309865766
920 => 0.44650094206291
921 => 0.42795017894275
922 => 0.42601152098122
923 => 0.42607097685313
924 => 0.42119612923071
925 => 0.41376081650902
926 => 0.43330037440216
927 => 0.4317310744474
928 => 0.42999868875152
929 => 0.43021089611441
930 => 0.43869235593876
1001 => 0.43377268091665
1002 => 0.4468524432818
1003 => 0.44416363735317
1004 => 0.44140587369827
1005 => 0.44102466675763
1006 => 0.43996316303183
1007 => 0.43632287178792
1008 => 0.43192700136331
1009 => 0.42902446694521
1010 => 0.39575239260944
1011 => 0.4019274960714
1012 => 0.409031389726
1013 => 0.4114836253485
1014 => 0.40728890662668
1015 => 0.43648850485017
1016 => 0.44182355281993
1017 => 0.42566334452295
1018 => 0.42264042936755
1019 => 0.4366866866645
1020 => 0.42821507642932
1021 => 0.43202984199949
1022 => 0.42378440540197
1023 => 0.44053849599245
1024 => 0.44041085789293
1025 => 0.43389313824494
1026 => 0.43940187026
1027 => 0.43844459250915
1028 => 0.431086103079
1029 => 0.44077177323249
1030 => 0.44077657720405
1031 => 0.4345034137503
1101 => 0.42717773220838
1102 => 0.42586807337356
1103 => 0.42488142136943
1104 => 0.43178718608934
1105 => 0.43797887314346
1106 => 0.44950006770176
1107 => 0.45239676975055
1108 => 0.46370279069135
1109 => 0.45697060570127
1110 => 0.45995489611098
1111 => 0.46319476550438
1112 => 0.46474807803382
1113 => 0.46221703862244
1114 => 0.47977994288738
1115 => 0.48126279012082
1116 => 0.48175997597161
1117 => 0.47583786347004
1118 => 0.48109808545913
1119 => 0.47863700179068
1120 => 0.48504005778725
1121 => 0.48604413872584
1122 => 0.48519371789207
1123 => 0.48551242903032
1124 => 0.47052558854881
1125 => 0.46974844180796
1126 => 0.45915199085269
1127 => 0.46347012294197
1128 => 0.45539758197451
1129 => 0.45795746787168
1130 => 0.45908584118366
1201 => 0.45849644300011
1202 => 0.46371426365143
1203 => 0.45927805016747
1204 => 0.44757015340228
1205 => 0.43585906682844
1206 => 0.43571204367615
1207 => 0.43262872129911
1208 => 0.43040004395917
1209 => 0.43082936628142
1210 => 0.43234235414241
1211 => 0.43031210635423
1212 => 0.43074536265601
1213 => 0.43794030403729
1214 => 0.43938319821933
1215 => 0.4344796800136
1216 => 0.41479134684333
1217 => 0.4099597804989
1218 => 0.41343261457315
1219 => 0.41177282356482
1220 => 0.33233280616801
1221 => 0.35099605990496
1222 => 0.33990698827868
1223 => 0.34501734266772
1224 => 0.33369827203846
1225 => 0.33910032582607
1226 => 0.33810276374291
1227 => 0.3681127234661
1228 => 0.36764415922237
1229 => 0.36786843612997
1230 => 0.35716311497964
1231 => 0.37421698225326
]
'min_raw' => 0.21771981009077
'max_raw' => 0.48604413872584
'avg_raw' => 0.3518819744083
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.217719'
'max' => '$0.486044'
'avg' => '$0.351881'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.03357195296569
'max_diff' => 0.0735302064982
'year' => 2035
]
10 => [
'items' => [
101 => 0.38261833050948
102 => 0.3810634645419
103 => 0.38145479080767
104 => 0.37473050903582
105 => 0.36793354187607
106 => 0.36039465925017
107 => 0.37440097133505
108 => 0.37284370852693
109 => 0.37641550912328
110 => 0.38549960370218
111 => 0.38683727113605
112 => 0.38863510973245
113 => 0.3879907125745
114 => 0.40334286721434
115 => 0.40148361999068
116 => 0.40596387085777
117 => 0.39674765490671
118 => 0.38631863174683
119 => 0.38830084809907
120 => 0.38810994472437
121 => 0.38567952565578
122 => 0.38348545199203
123 => 0.37983293751831
124 => 0.39139003378359
125 => 0.39092083678096
126 => 0.39851659087176
127 => 0.39717396755499
128 => 0.38820760044996
129 => 0.38852783600523
130 => 0.3906815740144
131 => 0.39813568585506
201 => 0.400348573764
202 => 0.39932347591624
203 => 0.40174980648623
204 => 0.40366747923928
205 => 0.401990636659
206 => 0.42573119144766
207 => 0.4158724579137
208 => 0.42067753604153
209 => 0.42182351886185
210 => 0.41888810796502
211 => 0.41952469347936
212 => 0.42048894707441
213 => 0.42634370608337
214 => 0.44170828781104
215 => 0.44851315646799
216 => 0.4689859395687
217 => 0.44794810685437
218 => 0.44669980892431
219 => 0.45038757537957
220 => 0.46240726632387
221 => 0.47214809688206
222 => 0.47537969234021
223 => 0.47580680102783
224 => 0.48186948893972
225 => 0.48534450858838
226 => 0.4811333191627
227 => 0.47756477705434
228 => 0.46478270216596
229 => 0.46626226213872
301 => 0.47645496314204
302 => 0.49085275365633
303 => 0.50320755575237
304 => 0.49888133466666
305 => 0.53188734771451
306 => 0.53515975909073
307 => 0.53470761764826
308 => 0.5421626577634
309 => 0.52736592132737
310 => 0.5210400298277
311 => 0.47833633636284
312 => 0.49033433236544
313 => 0.50777412417283
314 => 0.50546590233126
315 => 0.49280065935376
316 => 0.50319794802985
317 => 0.49976027924026
318 => 0.4970488472369
319 => 0.50947044288125
320 => 0.49581238821926
321 => 0.50763787462971
322 => 0.49247156598932
323 => 0.49890109648017
324 => 0.49525138401216
325 => 0.4976131952709
326 => 0.48380609491206
327 => 0.49125607111727
328 => 0.48349615140868
329 => 0.48349247219636
330 => 0.4833211715387
331 => 0.49245068266312
401 => 0.49274839569312
402 => 0.48600167317826
403 => 0.48502936506025
404 => 0.48862449777983
405 => 0.48441553893195
406 => 0.486384884286
407 => 0.48447518839652
408 => 0.48404527562745
409 => 0.48061965753986
410 => 0.47914380707839
411 => 0.47972252607232
412 => 0.47774705979597
413 => 0.47655676990873
414 => 0.48308439292097
415 => 0.47959694726909
416 => 0.48254989185781
417 => 0.47918463880765
418 => 0.46751920556484
419 => 0.46081029154719
420 => 0.43877536953776
421 => 0.44502444608539
422 => 0.44916759030162
423 => 0.44779828116287
424 => 0.45074008704519
425 => 0.45092069003401
426 => 0.4499642789535
427 => 0.44885687744613
428 => 0.44831785563548
429 => 0.45233528259975
430 => 0.45466753417288
501 => 0.44958341025183
502 => 0.44839227115158
503 => 0.45353260113794
504 => 0.45666819946014
505 => 0.4798196957308
506 => 0.47810455810872
507 => 0.48240921696138
508 => 0.48192457843494
509 => 0.48643654669846
510 => 0.49381170790925
511 => 0.47881594304021
512 => 0.48141868930694
513 => 0.48078055602852
514 => 0.48774752783471
515 => 0.48776927796022
516 => 0.48359223033636
517 => 0.48585667561811
518 => 0.48459272438364
519 => 0.48687685509758
520 => 0.47808165140011
521 => 0.48879326012006
522 => 0.49486605202346
523 => 0.49495037274493
524 => 0.49782882791048
525 => 0.50075350506756
526 => 0.50636716818488
527 => 0.50059694305004
528 => 0.49021686975255
529 => 0.4909662775172
530 => 0.4848804443408
531 => 0.48498274829599
601 => 0.48443664176548
602 => 0.48607554857253
603 => 0.47844129928053
604 => 0.48023304233024
605 => 0.47772459156821
606 => 0.48141323642487
607 => 0.47744486431394
608 => 0.48078024830133
609 => 0.48221968946056
610 => 0.48753125832706
611 => 0.47666034127366
612 => 0.45449380550538
613 => 0.45915348006714
614 => 0.45226145538076
615 => 0.45289933850527
616 => 0.45418796393514
617 => 0.45001110730495
618 => 0.45080791992211
619 => 0.45077945216834
620 => 0.45053413244588
621 => 0.44944757071851
622 => 0.44787184124414
623 => 0.45414906248608
624 => 0.45521568469477
625 => 0.45758665373815
626 => 0.46464104936758
627 => 0.4639361488901
628 => 0.46508587081492
629 => 0.46257603430845
630 => 0.45301576262242
701 => 0.45353493137083
702 => 0.44706088875909
703 => 0.45742109791294
704 => 0.45496766363723
705 => 0.45338591859914
706 => 0.45295432481074
707 => 0.46002620692246
708 => 0.46214222488846
709 => 0.46082366449273
710 => 0.45811925865255
711 => 0.46331251735152
712 => 0.46470201429337
713 => 0.46501307141598
714 => 0.47421453012197
715 => 0.46552733074219
716 => 0.46761842597624
717 => 0.48393255406284
718 => 0.46913789108408
719 => 0.47697495402428
720 => 0.47659137057547
721 => 0.48060054678393
722 => 0.47626250110729
723 => 0.47631627638255
724 => 0.47987615325054
725 => 0.47487694821663
726 => 0.47363907474625
727 => 0.47192896141274
728 => 0.47566293131321
729 => 0.47790127739561
730 => 0.49594070293569
731 => 0.50759499453233
801 => 0.50708905099812
802 => 0.51171242781425
803 => 0.50962955421331
804 => 0.50290340592155
805 => 0.51438412088918
806 => 0.5107511422999
807 => 0.51105064064073
808 => 0.51103949329753
809 => 0.5134551064589
810 => 0.51174342314637
811 => 0.5083695196367
812 => 0.51060927423991
813 => 0.5172605446845
814 => 0.53790629223042
815 => 0.54945992607689
816 => 0.53721074896569
817 => 0.54566006731397
818 => 0.54059348710496
819 => 0.53967273876328
820 => 0.54497953508572
821 => 0.55029562025263
822 => 0.54995700860956
823 => 0.54609780376239
824 => 0.54391783686791
825 => 0.56042527653535
826 => 0.57258767688542
827 => 0.57175828271931
828 => 0.57541895883508
829 => 0.58616681713143
830 => 0.5871494665975
831 => 0.58702567535072
901 => 0.58459007612019
902 => 0.59517273839871
903 => 0.60400098145568
904 => 0.58402630526955
905 => 0.59163240047352
906 => 0.59504702166366
907 => 0.60006069864324
908 => 0.60851961209763
909 => 0.61770823572508
910 => 0.61900760785413
911 => 0.61808564114789
912 => 0.61202549686213
913 => 0.62207979847836
914 => 0.62796937256276
915 => 0.63147647914952
916 => 0.64036991792664
917 => 0.59506810920165
918 => 0.56300123734012
919 => 0.5579935322477
920 => 0.56817689747142
921 => 0.5708621696701
922 => 0.56977973981385
923 => 0.53368556014126
924 => 0.55780350386159
925 => 0.58375238341036
926 => 0.58474918555396
927 => 0.59773973722156
928 => 0.60196999334523
929 => 0.61242909014818
930 => 0.61177487079545
1001 => 0.61432149442638
1002 => 0.61373606975501
1003 => 0.63310934415979
1004 => 0.65448094278735
1005 => 0.6537409122844
1006 => 0.65066849212441
1007 => 0.65523155998749
1008 => 0.67728934009083
1009 => 0.67525861316764
1010 => 0.67723129139661
1011 => 0.70323865726046
1012 => 0.73705193238812
1013 => 0.72134227129401
1014 => 0.75542771553504
1015 => 0.776882695893
1016 => 0.81398686593573
1017 => 0.80934124110449
1018 => 0.82378562221914
1019 => 0.80102460308541
1020 => 0.74876070239344
1021 => 0.74048974005076
1022 => 0.75704841611493
1023 => 0.7977563054467
1024 => 0.75576637981279
1025 => 0.76426088708074
1026 => 0.76181446841611
1027 => 0.76168410916208
1028 => 0.76665939167892
1029 => 0.75944248489496
1030 => 0.73003950836036
1031 => 0.74351471923334
1101 => 0.73831129318251
1102 => 0.74408488232701
1103 => 0.77524256173064
1104 => 0.76146700895999
1105 => 0.74695558315114
1106 => 0.76515613145861
1107 => 0.78833168384097
1108 => 0.78688139942335
1109 => 0.78406724148132
1110 => 0.79993050245604
1111 => 0.82613196208692
1112 => 0.83321411133916
1113 => 0.83844200912899
1114 => 0.83916284790815
1115 => 0.84658793533232
1116 => 0.80666136888963
1117 => 0.87002585522113
1118 => 0.88096715160197
1119 => 0.87891064135264
1120 => 0.89107143179981
1121 => 0.88749341876077
1122 => 0.88230943924026
1123 => 0.90158687877333
1124 => 0.87948684995782
1125 => 0.84811864137046
1126 => 0.83090942174662
1127 => 0.85357191037544
1128 => 0.8674111013692
1129 => 0.87655792627822
1130 => 0.87932574996903
1201 => 0.80976075458622
1202 => 0.7722690803264
1203 => 0.79630081368403
1204 => 0.82562118696196
1205 => 0.80649849273565
1206 => 0.80724806614527
1207 => 0.77998412953419
1208 => 0.82803344038693
1209 => 0.821033059954
1210 => 0.8573510460235
1211 => 0.84868346717797
1212 => 0.87829937496155
1213 => 0.87050051390498
1214 => 0.90287315012235
1215 => 0.9157874711636
1216 => 0.93747262614542
1217 => 0.95342431442451
1218 => 0.96279145088917
1219 => 0.96222908315108
1220 => 0.9993463445129
1221 => 0.97745959226617
1222 => 0.94996467313284
1223 => 0.94946737679108
1224 => 0.96370738501625
1225 => 0.99355053570073
1226 => 1.001288430473
1227 => 1.0056128580277
1228 => 0.9989898466933
1229 => 0.97523334576715
1230 => 0.96497540911543
1231 => 0.97371546834373
]
'min_raw' => 0.36039465925017
'max_raw' => 1.0056128580277
'avg_raw' => 0.68300375863895
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.360394'
'max' => '$1.00'
'avg' => '$0.6830037'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.1426748491594
'max_diff' => 0.5195687193019
'year' => 2036
]
11 => [
'items' => [
101 => 0.96302712694937
102 => 0.98147820281496
103 => 1.0068154709156
104 => 1.0015834252472
105 => 1.0190733694844
106 => 1.0371736217741
107 => 1.0630577954816
108 => 1.0698248769769
109 => 1.0810106053596
110 => 1.0925243941857
111 => 1.0962223128514
112 => 1.1032827869809
113 => 1.103245574797
114 => 1.124522788811
115 => 1.1479922147689
116 => 1.1568513797495
117 => 1.1772225411253
118 => 1.1423376411599
119 => 1.1687982385125
120 => 1.1926663596762
121 => 1.1642098016577
122 => 1.2034305373585
123 => 1.2049533896497
124 => 1.2279466512328
125 => 1.2046385756424
126 => 1.1907983147589
127 => 1.2307546293419
128 => 1.2500882313565
129 => 1.2442647930876
130 => 1.1999481403229
131 => 1.1741539475832
201 => 1.1066455698551
202 => 1.1866121594189
203 => 1.225561552538
204 => 1.1998472708042
205 => 1.2128160588003
206 => 1.2835695609634
207 => 1.310507913637
208 => 1.3049049245942
209 => 1.3058517375094
210 => 1.3203871836464
211 => 1.3848453566344
212 => 1.3462205252513
213 => 1.3757477615989
214 => 1.3914089012893
215 => 1.4059558406385
216 => 1.3702331552042
217 => 1.3237584663246
218 => 1.3090379814817
219 => 1.1972904922589
220 => 1.1914735501501
221 => 1.188208324273
222 => 1.1676215369936
223 => 1.1514459613876
224 => 1.138582543105
225 => 1.1048250921898
226 => 1.1162172409133
227 => 1.0624149098821
228 => 1.0968357346383
301 => 1.0109659152097
302 => 1.0824808524653
303 => 1.0435585235023
304 => 1.0696938205883
305 => 1.0696026369989
306 => 1.02147926886
307 => 0.99372271442664
308 => 1.0114102712129
309 => 1.0303727361277
310 => 1.0334493322627
311 => 1.0580346629958
312 => 1.0648959003435
313 => 1.0441060308595
314 => 1.009186454066
315 => 1.0172974753243
316 => 0.99355834483973
317 => 0.9519564317779
318 => 0.98183565203862
319 => 0.99203773153221
320 => 0.99654355103622
321 => 0.95563284755192
322 => 0.94277781630256
323 => 0.93593390552957
324 => 1.0039053959808
325 => 1.0076290276646
326 => 0.98857840150144
327 => 1.0746890382136
328 => 1.0551995490666
329 => 1.0769740834845
330 => 1.0165614851608
331 => 1.0188693277732
401 => 0.99026903557189
402 => 1.0062832881324
403 => 0.99496493058609
404 => 1.0049894947814
405 => 1.0109981772273
406 => 1.039593776402
407 => 1.0828073682742
408 => 1.0353225474645
409 => 1.0146327310426
410 => 1.0274685767868
411 => 1.0616521254916
412 => 1.1134419516031
413 => 1.0827813321777
414 => 1.0963879944276
415 => 1.099360444811
416 => 1.0767524391645
417 => 1.114275541019
418 => 1.13438447614
419 => 1.1550120826162
420 => 1.1729224553472
421 => 1.1467729629788
422 => 1.1747566681955
423 => 1.1522067415798
424 => 1.131977126237
425 => 1.132007806213
426 => 1.119317473001
427 => 1.0947283533177
428 => 1.0901937423833
429 => 1.1137833611222
430 => 1.1327000014055
501 => 1.1342580665038
502 => 1.1447312905368
503 => 1.1509292366367
504 => 1.2116775341149
505 => 1.2361110018969
506 => 1.2659877837989
507 => 1.2776264741128
508 => 1.3126547592565
509 => 1.2843665741448
510 => 1.2782462473548
511 => 1.193279085261
512 => 1.2071924532939
513 => 1.229469097955
514 => 1.1936464189265
515 => 1.216367663526
516 => 1.2208533185116
517 => 1.1924291780008
518 => 1.2076117395823
519 => 1.1672913573377
520 => 1.0836862424242
521 => 1.1143686174117
522 => 1.1369611729782
523 => 1.1047188105428
524 => 1.1625119972566
525 => 1.1287504106719
526 => 1.1180496085665
527 => 1.076301964442
528 => 1.0960052454546
529 => 1.1226542151479
530 => 1.1061882501527
531 => 1.1403575998949
601 => 1.1887505117625
602 => 1.2232381826071
603 => 1.2258857177394
604 => 1.2037124558809
605 => 1.2392452495171
606 => 1.2395040671267
607 => 1.1994229307493
608 => 1.1748734578908
609 => 1.1692957660049
610 => 1.1832299339069
611 => 1.2001485861293
612 => 1.2268245851899
613 => 1.2429443327324
614 => 1.2849760850695
615 => 1.2963486721072
616 => 1.3088436973086
617 => 1.3255409043008
618 => 1.3455901823709
619 => 1.3017235033595
620 => 1.3034664082944
621 => 1.2626183641745
622 => 1.2189663708303
623 => 1.2520927924808
624 => 1.2954011821655
625 => 1.2854661897203
626 => 1.2843483001167
627 => 1.2862282803532
628 => 1.2787376204961
629 => 1.2448576435789
630 => 1.227843331271
701 => 1.2497961349622
702 => 1.2614630731172
703 => 1.2795574767317
704 => 1.2773269595597
705 => 1.3239362000734
706 => 1.3420471415468
707 => 1.337413587707
708 => 1.3382662731263
709 => 1.3710552675725
710 => 1.4075233729677
711 => 1.4416805660607
712 => 1.4764267299604
713 => 1.4345388732134
714 => 1.4132708028411
715 => 1.435214022625
716 => 1.4235706413345
717 => 1.4904769638809
718 => 1.4951094124894
719 => 1.5620108969472
720 => 1.6255083721782
721 => 1.585626745661
722 => 1.6232333231588
723 => 1.6639079028319
724 => 1.742375766234
725 => 1.7159505503729
726 => 1.6957092491592
727 => 1.6765813173175
728 => 1.7163835070064
729 => 1.7675883881856
730 => 1.7786174291573
731 => 1.7964886889495
801 => 1.7776992444717
802 => 1.8003290607557
803 => 1.8802222562836
804 => 1.8586344096152
805 => 1.8279761969266
806 => 1.8910442017718
807 => 1.9138682675546
808 => 2.0740595142744
809 => 2.2763075804284
810 => 2.1925755530082
811 => 2.1406003815729
812 => 2.1528157797277
813 => 2.2266699269581
814 => 2.250389535035
815 => 2.1859114636427
816 => 2.2086862085012
817 => 2.334177291835
818 => 2.4014992318076
819 => 2.310066994782
820 => 2.0578090790834
821 => 1.8252157603128
822 => 1.8869099822644
823 => 1.8799157720897
824 => 2.0147402858004
825 => 1.8581195466117
826 => 1.8607566381834
827 => 1.998369180056
828 => 1.9616565131606
829 => 1.9021866945932
830 => 1.8256499558015
831 => 1.6841647153536
901 => 1.5588472922811
902 => 1.8046236178053
903 => 1.7940252957334
904 => 1.77867735479
905 => 1.8128325365389
906 => 1.9786804039936
907 => 1.9748570738516
908 => 1.9505349981684
909 => 1.9689830782091
910 => 1.8989526569669
911 => 1.9170010910841
912 => 1.8251789163427
913 => 1.8666863741586
914 => 1.9020590990718
915 => 1.9091606973003
916 => 1.9251609607257
917 => 1.788440461593
918 => 1.8498239518006
919 => 1.8858810014424
920 => 1.7229739393943
921 => 1.8826608526118
922 => 1.7860604618788
923 => 1.7532728383748
924 => 1.797417053982
925 => 1.7802140102282
926 => 1.7654238434053
927 => 1.7571706761909
928 => 1.7895853161135
929 => 1.7880731344172
930 => 1.7350364920933
1001 => 1.6658523542319
1002 => 1.6890728217901
1003 => 1.6806366082332
1004 => 1.6500626820096
1005 => 1.6706658167744
1006 => 1.5799400382783
1007 => 1.4238510518914
1008 => 1.5269682174336
1009 => 1.5229983187301
1010 => 1.5209965157832
1011 => 1.598486215739
1012 => 1.5910373690798
1013 => 1.577517639454
1014 => 1.6498143815727
1015 => 1.623425098171
1016 => 1.704750651518
1017 => 1.7583169207593
1018 => 1.7447307821925
1019 => 1.7951101173222
1020 => 1.6896077744639
1021 => 1.7246514207421
1022 => 1.7318738676717
1023 => 1.6489222509973
1024 => 1.5922560925147
1025 => 1.5884771057854
1026 => 1.4902257960541
1027 => 1.5427108526557
1028 => 1.5888955304859
1029 => 1.566776653881
1030 => 1.5597744783305
1031 => 1.5955470746312
1101 => 1.5983269117354
1102 => 1.5349463311672
1103 => 1.5481251608693
1104 => 1.6030830715251
1105 => 1.5467403625282
1106 => 1.4372756824766
1107 => 1.4101269283562
1108 => 1.4065047841057
1109 => 1.3328752097363
1110 => 1.4119411379233
1111 => 1.3774267414346
1112 => 1.4864573063966
1113 => 1.4241796324329
1114 => 1.4214949663812
1115 => 1.4174366998891
1116 => 1.3540606836299
1117 => 1.3679360034347
1118 => 1.4140596797368
1119 => 1.4305171270617
1120 => 1.4288004804738
1121 => 1.4138336485602
1122 => 1.4206853875677
1123 => 1.3986135489204
1124 => 1.3908195233085
1125 => 1.3662194345616
1126 => 1.3300641000516
1127 => 1.3350917210688
1128 => 1.2634585428466
1129 => 1.2244289854906
1130 => 1.2136261184158
1201 => 1.1991800730804
1202 => 1.2152578376758
1203 => 1.2632556150529
1204 => 1.2053601122396
1205 => 1.1061023335637
1206 => 1.1120678951891
1207 => 1.1254707409704
1208 => 1.1004946265257
1209 => 1.0768568302903
1210 => 1.097407976322
1211 => 1.0553511470048
1212 => 1.1305531078645
1213 => 1.1285191055743
1214 => 1.1565497461247
1215 => 1.1740778809076
1216 => 1.1336812050341
1217 => 1.1235215502962
1218 => 1.1293089513655
1219 => 1.0336561032853
1220 => 1.1487328677445
1221 => 1.1497280563822
1222 => 1.1412066470696
1223 => 1.2024814715476
1224 => 1.3317904632932
1225 => 1.2831392191563
1226 => 1.2642999869349
1227 => 1.2284865927106
1228 => 1.2762058141256
1229 => 1.2725417224567
1230 => 1.2559713103647
1231 => 1.2459494734285
]
'min_raw' => 0.93593390552957
'max_raw' => 2.4014992318076
'avg_raw' => 1.6687165686686
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.935933'
'max' => '$2.40'
'avg' => '$1.66'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.5755392462794
'max_diff' => 1.3958863737799
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.029377895826854
]
1 => [
'year' => 2028
'avg' => 0.050420997702978
]
2 => [
'year' => 2029
'avg' => 0.13774107822387
]
3 => [
'year' => 2030
'avg' => 0.10626703671954
]
4 => [
'year' => 2031
'avg' => 0.10436739958747
]
5 => [
'year' => 2032
'avg' => 0.18298889710629
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.029377895826854
'min' => '$0.029377'
'max_raw' => 0.18298889710629
'max' => '$0.182988'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.18298889710629
]
1 => [
'year' => 2033
'avg' => 0.47066625988377
]
2 => [
'year' => 2034
'avg' => 0.29833089467636
]
3 => [
'year' => 2035
'avg' => 0.3518819744083
]
4 => [
'year' => 2036
'avg' => 0.68300375863895
]
5 => [
'year' => 2037
'avg' => 1.6687165686686
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.18298889710629
'min' => '$0.182988'
'max_raw' => 1.6687165686686
'max' => '$1.66'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 1.6687165686686
]
]
]
]
'prediction_2025_max_price' => '$0.05023'
'last_price' => 0.04870515
'sma_50day_nextmonth' => '$0.044884'
'sma_200day_nextmonth' => '$0.0603035'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'augmenter'
'sma_200day_date_nextmonth' => '4 févr. 2026'
'sma_50day_date_nextmonth' => '4 févr. 2026'
'daily_sma3' => '$0.048135'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.0468059'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.045621'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.045138'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.049376'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.062786'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.063298'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.047933'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.047133'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.046222'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.046671'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.051485'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.057418'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.06508'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.061867'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.073744'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.140054'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.048398'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.049672'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.054183'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.060623'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.075193'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.109329'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.077815'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '52.80'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 108.78
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.045212'
'vwma_10_action' => 'BUY'
'hma_9' => '0.048998'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 137.85
'cci_20_action' => 'SELL'
'adx_14' => 18.37
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.001469'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 73.31
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.019842'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 17
'buy_signals' => 16
'sell_pct' => 51.52
'buy_pct' => 48.48
'overall_action' => 'bearish'
'overall_action_label' => 'Baissier'
'overall_action_dir' => -1
'last_updated' => 1767678040
'last_updated_date' => '6 janvier 2026'
]
Prévision du prix de KingyTON pour 2026
La prévision du prix de KingyTON pour 2026 suggère que le prix moyen pourrait varier entre $0.016827 à la baisse et $0.05023 à la hausse. Sur le marché des cryptomonnaies, comparé au prix moyen d'aujourd'hui, KingyTON pourrait potentiellement gagner 3.13% d'ici 2026 si KINGY atteint l'objectif de prix prévu.
Prévision du prix de KingyTON de 2027 à 2032
La prévision du prix de KINGY pour 2027-2032 se situe actuellement dans une fourchette de prix comprise entre $0.029377 à la baisse et $0.182988 à la hausse. Compte tenu de la volatilité des prix sur le marché, si KingyTON atteint l'objectif de prix le plus élevé, il pourrait gagner 275.71% d'ici 2032 par rapport au prix actuel.
| Prévision du Prix de KingyTON | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2027 | $0.016199 | $0.029377 | $0.042556 |
| 2028 | $0.029235 | $0.05042 | $0.0716066 |
| 2029 | $0.064221 | $0.137741 | $0.21126 |
| 2030 | $0.054617 | $0.106267 | $0.157916 |
| 2031 | $0.064575 | $0.104367 | $0.144159 |
| 2032 | $0.098569 | $0.182988 | $0.2674086 |
Prévision du prix de KingyTON de 2032 à 2037
La prévision du prix de KingyTON pour 2032-2037 est actuellement estimée entre $0.182988 à la baisse et $1.66 à la hausse. Par rapport au prix actuel, KingyTON pourrait potentiellement gagner 3326.16% d'ici 2037 s'il atteint l'objectif de prix le plus élevé. Veuillez noter que ces informations sont à titre général seulement et ne doivent pas être considérées comme un conseil en investissement à long terme.
| Prévision du Prix de KingyTON | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2032 | $0.098569 | $0.182988 | $0.2674086 |
| 2033 | $0.229053 | $0.470666 | $0.712279 |
| 2034 | $0.184147 | $0.29833 | $0.412513 |
| 2035 | $0.217719 | $0.351881 | $0.486044 |
| 2036 | $0.360394 | $0.6830037 | $1.00 |
| 2037 | $0.935933 | $1.66 | $2.40 |
KingyTON Histogramme des prix potentiels
Prévision du prix de KingyTON basée sur l'analyse technique
Au 6 janvier 2026, le sentiment global de prévision du prix pour KingyTON est Baissier, avec 16 indicateurs techniques montrant des signaux haussiers et 17 indiquant des signaux baissiers. La prévision du prix de KINGY a été mise à jour pour la dernière fois le 6 janvier 2026.
Moyennes Mobiles Simples sur 50 et 200 jours de KingyTON et Indice de Force Relative sur 14 jours - RSI (14)
Selon nos indicateurs techniques, le SMA sur 200 jours de KingyTON devrait augmenter au cours du prochain mois, atteignant $0.0603035 d'ici le 4 févr. 2026. Le SMA à court terme sur 50 jours pour KingyTON devrait atteindre $0.044884 d'ici le 4 févr. 2026.
Le Relative Strength Index (RSI), un oscillateur de momentum, est un outil couramment utilisé pour identifier si une cryptomonnaie est survendue (en dessous de 30) ou surachetée (au-dessus de 70). Actuellement, le RSI est à 52.80, ce qui suggère que le marché de KINGY est dans un état NEUTRAL.
Moyennes Mobiles et Oscillateurs Populaires de KINGY pour le Samedi 19 Octobre 2024
Les moyennes mobiles (MA) sont des indicateurs largement utilisés sur les marchés financiers, conçus pour lisser les mouvements de prix sur une période donnée. En tant qu'indicateurs retardés, ils sont basés sur des données historiques de prix. Le tableau ci-dessous met en évidence deux types : la moyenne mobile simple (SMA) et la moyenne mobile exponentielle (EMA).
Moyenne Mobile Simple Quotidienne (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 3 | $0.048135 | BUY |
| SMA 5 | $0.0468059 | BUY |
| SMA 10 | $0.045621 | BUY |
| SMA 21 | $0.045138 | BUY |
| SMA 50 | $0.049376 | SELL |
| SMA 100 | $0.062786 | SELL |
| SMA 200 | $0.063298 | SELL |
Moyenne Mobile Exponentielle Quotidienne (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 3 | $0.047933 | BUY |
| EMA 5 | $0.047133 | BUY |
| EMA 10 | $0.046222 | BUY |
| EMA 21 | $0.046671 | BUY |
| EMA 50 | $0.051485 | SELL |
| EMA 100 | $0.057418 | SELL |
| EMA 200 | $0.06508 | SELL |
Moyenne Mobile Simple Hebdomadaire (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 21 | $0.061867 | SELL |
| SMA 50 | $0.073744 | SELL |
| SMA 100 | $0.140054 | SELL |
| SMA 200 | — | — |
Moyenne Mobile Exponentielle Hebdomadaire (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 21 | $0.060623 | SELL |
| EMA 50 | $0.075193 | SELL |
| EMA 100 | $0.109329 | SELL |
| EMA 200 | $0.077815 | SELL |
Oscillateurs de KingyTON
Un oscillateur est un outil d'analyse technique qui établit des limites hautes et basses entre deux extrêmes, créant un indicateur de tendance qui fluctue à l'intérieur de ces limites. Les traders utilisent cet indicateur pour identifier les conditions de surachat ou de survente à court terme.
| Période | Valeur | Action |
|---|---|---|
| RSI (14) | 52.80 | NEUTRAL |
| Stoch RSI (14) | 108.78 | SELL |
| Stochastique Rapide (14) | 100 | SELL |
| Indice de Canal des Matières Premières (20) | 137.85 | SELL |
| Indice Directionnel Moyen (14) | 18.37 | NEUTRAL |
| Oscillateur Impressionnant (5, 34) | -0.001469 | NEUTRAL |
| Momentum (10) | 0 | SELL |
| MACD (12, 26) | 0 | BUY |
| Plage de Pourcentage de Williams (14) | -0 | SELL |
| Oscillateur Ultime (7, 14, 28) | 73.31 | SELL |
| VWMA (10) | 0.045212 | BUY |
| Moyenne Mobile de Hull (9) | 0.048998 | BUY |
| Nuage Ichimoku B/L (9, 26, 52, 26) | -0.019842 | SELL |
Prévision du cours de KingyTON basée sur les flux monétaires mondiaux
Définitions des flux monétaires mondiaux utilisés pour la prédiction du cours de KingyTON
M0 : le total de toutes les devises physiques, plus les comptes à la banque centrale qui peuvent être échangés contre des devises physiques.
M1 : M0 plus le montant des comptes à vue, y compris les comptes de "chèques" et les comptes "courants".
M2 : M1 plus la plupart des comptes d'épargne, comptes du marché monétaire et comptes de certificats de dépôt (CD) de moins de 100 000 $.
Prédictions du cours de KingyTON par des sociétés Internet ou des niches technologiques
| Comparaison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Action Facebook | $0.068438 | $0.096168 | $0.135132 | $0.189883 | $0.266817 | $0.374923 |
| Action Amazon.com | $0.101626 | $0.212049 | $0.442453 | $0.9232045 | $1.92 | $4.01 |
| Action Apple | $0.069084 | $0.097991 | $0.138992 | $0.19715 | $0.279643 | $0.396652 |
| Action Netflix | $0.076849 | $0.121255 | $0.191322 | $0.301877 | $0.476314 | $0.75155 |
| Action Google | $0.063072 | $0.081679 | $0.105774 | $0.136977 | $0.177384 | $0.229712 |
| Action Tesla | $0.11041 | $0.250293 | $0.567395 | $1.28 | $2.91 | $6.60 |
| Action Kodak | $0.036523 | $0.027388 | $0.020538 | $0.0154018 | $0.011549 | $0.008661 |
| Action Nokia | $0.032265 | $0.021374 | $0.014159 | $0.00938 | $0.006213 | $0.004116 |
Ce calcul montre la valeur potentielle des cryptomonnaies si l'on suppose que leur capitalisation se comportera comme celle de certaines sociétés Internet ou niches technologiques. En extrapolant les données, vous pourrez obtenir une potentielle image des cours futurs pour 2024, 2025, 2026, 2027, 2028, 2029 et 2030.
Aperçu des prévisions relatives à KingyTON
Vous vous posez peut-être des questions telles que : "Devrais-je investir dans KingyTON maintenant ?", "Devrais-je acheter KINGY aujourd'hui ?", " KingyTON sera-t-il un bon ou un mauvais investissement à court ou à long terme ?".
Nous mettons régulièrement à jour les prévisions de KingyTON avec de nouvelles valeurs. Regardez nos prévisions similaires. Nous faisons une prévision des cours futurs pour une grande quantité de devises numériques comme KingyTON en utilisant des méthodes d'analyse technique.
Si vous souhaitez trouver des cryptomonnaies ayant un bon rendement, vous devriez consulter un maximum d'informations disponibles à propos de KingyTON afin de prendre une décision responsable concernant cet investissement.
Le cours de KingyTON est de $0.0487 USD actuellement, mais ce cours peut subir une hausse ou une baisse, ce qui pourrait causer la perte de votre investissement, car les cryptomonnaies sont des actifs à haut risque.
Prévision du cours de KingyTON basée sur le modèle de croissance du Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si KingyTON présente 1 % de la précédente croissance annuelle moyenne du Bitcoin | $0.049971 | $0.05127 | $0.0526027 | $0.05397 |
| Si KingyTON présente 2 % de la précédente croissance annuelle moyenne du Bitcoin | $0.051237 | $0.05390079 | $0.0567029 | $0.05965 |
| Si KingyTON présente 5 % de la précédente croissance annuelle moyenne du Bitcoin | $0.055035 | $0.062187 | $0.07027 | $0.0794029 |
| Si KingyTON présente 10 % de la précédente croissance annuelle moyenne du Bitcoin | $0.061365 | $0.077315 | $0.097412 | $0.122733 |
| Si KingyTON présente 20 % de la précédente croissance annuelle moyenne du Bitcoin | $0.074025 | $0.1125082 | $0.170997 | $0.259892 |
| Si KingyTON présente 50 % de la précédente croissance annuelle moyenne du Bitcoin | $0.1120053 | $0.257574 | $0.592333 | $1.36 |
| Si KingyTON présente 100 % de la précédente croissance annuelle moyenne du Bitcoin | $0.1753054 | $0.63098 | $2.27 | $8.17 |
Boîte à questions
Est-ce que KINGY est un bon investissement ?
La décision d'acquérir KingyTON dépend entièrement de votre tolérance individuelle au risque. Comme vous pouvez le discerner, la valeur de KingyTON a connu une hausse de 1.3122% au cours des 24 heures précédentes, et KingyTON a enregistré une déclin de sur une période de 30 jours précédents. Par conséquent, la détermination de si investir ou non dans KingyTON dépendra de la mesure dans laquelle cet investissement s'aligne avec vos aspirations de trading.
Est-ce que KingyTON peut monter ?
Il semble que la valeur moyenne de KingyTON pourrait potentiellement s'envoler jusqu'à $0.05023 pour la fin de cette année. En regardant les perspectives de KingyTON sur une période de cinq ans plus longue, la monnaie numérique pourrait potentiellement croître jusqu'à $0.157916. Cependant, compte tenu de l'imprévisibilité du marché, il est essentiel de mener des recherches approfondies avant d'investir des fonds dans un projet, un réseau ou un actif particulier.
Quel sera le prix de KingyTON la semaine prochaine ?
Basé sur notre nouveau pronostic expérimental de KingyTON, le prix de KingyTON va augmenter de 0.86% durant la prochaine semaine et atteindre $0.049121 d'ici 13 janvier 2026.
Quel sera le prix de KingyTON le mois prochain ?
Basé sur notre nouveau pronostic expérimental de KingyTON, le prix de KingyTON va diminuer de -11.62% durant le prochain mois et atteindre $0.0430465 d'ici 5 février 2026.
Jusqu'où le prix de KingyTON peut-il monter cette année en 2026 ?
Selon notre prédiction la plus récente sur la valeur de KingyTON en 2026, KINGY devrait fluctuer dans la fourchette de $0.016827 et $0.05023. Cependant, il est crucial de garder à l'esprit que le marché des cryptomonnaies est exceptionnellement instable, et cette prévision de prix de KingyTON ne prend pas en compte les fluctuations de prix soudaines et extrêmes.
Où sera KingyTON dans 5 ans ?
L'avenir de KingyTON semble suivre une tendance haussière, avec un prix maximum de $0.157916 prévue après une période de cinq ans. Selon la prévision de KingyTON pour 2030, la valeur de KingyTON pourrait potentiellement atteindre son point le plus élevé d'environ $0.157916, tandis que son point le plus bas devrait être autour de $0.054617.
Combien vaudra KingyTON en 2026 ?
Basé sur notre nouvelle simulation expérimentale de prédiction de prix de KingyTON, il est attendu que la valeur de KINGY en 2026 augmente de 3.13% jusqu'à $0.05023 si le meilleur scénario se produit. Le prix sera entre $0.05023 et $0.016827 durant 2026.
Combien vaudra KingyTON en 2027 ?
Selon notre dernière simulation expérimentale pour la prédiction de prix de KingyTON, le valeur de KINGY pourrait diminuer de -12.62% jusqu'à $0.042556 en 2027, en supposant les conditions les plus favorables. Il est prévu que le prix fluctue entre $0.042556 et $0.016199 tout au long de l'année.
Combien vaudra KingyTON en 2028 ?
Notre nouveau modèle expérimental de prédiction de prix de KingyTON suggère que la valeur de KINGY en 2028 pourrait augmenter de 47.02%, atteignant $0.0716066 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.0716066 et $0.029235 durant l'année.
Combien vaudra KingyTON en 2029 ?
Basé sur notre modèle de prévision expérimental, la valeur de KingyTON pourrait connaître un 333.75% croissance en 2029, atteignant potentiellement $0.21126 sous des conditions optimales. Le range de prix prévu pour 2029 se situe entre $0.21126 et $0.064221.
Combien vaudra KingyTON en 2030 ?
En utilisant notre nouvelle simulation expérimentale pour les prédictions de prix de KingyTON, il est prévu que la valeur de KINGY en 2030 augmente de 224.23%, atteignant $0.157916 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.157916 et $0.054617 au cours de 2030.
Combien vaudra KingyTON en 2031 ?
Notre simulation expérimentale indique que le prix de KingyTON pourrait augmenter de 195.98% en 2031, atteignant potentiellement $0.144159 dans des conditions idéales. Il est probable que le prix fluctue entre $0.144159 et $0.064575 durant l'année.
Combien vaudra KingyTON en 2032 ?
Basé sur les résultats de notre dernière prédiction expérimentale de prix de KingyTON, KINGY pourrait connaître une 449.04% hausse en valeur, atteignant $0.2674086 si le scénario le plus positif se réalise en 2032. Il est prévu que le prix reste dans une fourchette de $0.2674086 et $0.098569 tout au long de l'année.
Combien vaudra KingyTON en 2033 ?
Selon notre prédiction expérimentale de prix de KingyTON, la valeur de KINGY est anticipée à augmenter de 1362.43% en 2033, avec le prix potentiel le plus élevé étant $0.712279. Tout au long de l'année, le prix de KINGY pourrait osciller entre $0.712279 et $0.229053.
Combien vaudra KingyTON en 2034 ?
Les résultats de notre nouvelle simulation de prédiction de prix de KingyTON suggèrent que KINGY pourrait augmenter de 746.96% en 2034, atteignant potentiellement $0.412513 dans les meilleures circonstances. La fourchette de prix prévue pour l'année est entre $0.412513 et $0.184147.
Combien vaudra KingyTON en 2035 ?
Basé sur notre prédiction expérimentale pour le prix de KingyTON, KINGY pourrait augmenter de 897.93%, avec la valeur potentiellement atteignant $0.486044 en 2035. La fourchette de prix attendue pour l'année se situe entre $0.486044 et $0.217719.
Combien vaudra KingyTON en 2036 ?
Notre récente simulation de prédiction de prix de KingyTON suggère que la valeur de KINGY pourrait augmenter de 1964.7% en 2036, pouvant atteindre $1.00 si les conditions sont optimales. La fourchette de prix attendue pour 2036 est entre $1.00 et $0.360394.
Combien vaudra KingyTON en 2037 ?
Selon la simulation expérimentale, la valeur de KingyTON pourrait augmenter de 4830.69% en 2037, avec un maximum de $2.40 sous des conditions favorables. Il est prévu que le prix chute entre $2.40 et $0.935933 au cours de l'année.
Prévisions liées
Prévision du cours de SolPod
Prévision du cours de zuzalu
Prévision du cours de SOFT COQ INU
Prévision du cours de All Street Bets
Prévision du cours de MagicRing
Prévision du cours de AI INU
Prévision du cours de Wall Street Baby On Solana
Prévision du cours de Meta Masters Guild Games
Prévision du cours de Morfey
Prévision du cours de PANTIESPrévision du cours de Celer Bridged BUSD (zkSync)
Prévision du cours de Bridged BUSD
Prévision du cours de Multichain Bridged BUSD (Moonriver)
Prévision du cours de tooker kurlson
Prévision du cours de dogwifsaudihatPrévision du cours de Harmony Horizen Bridged BUSD (Harmony)
Prévision du cours de IoTeX Bridged BUSD (IoTeX)
Prévision du cours de MIMANY
Prévision du cours de The Open League MEME
Prévision du cours de Sandwich Cat
Prévision du cours de Hege
Prévision du cours de DexNet
Prévision du cours de SolDocs
Prévision du cours de Secret Society
Prévision du cours de duk
Comment lire et prédire les mouvements de prix de KingyTON ?
Les traders de KingyTON utilisent des indicateurs et des modèles graphiques pour prédire la direction du marché. Ils identifient également des niveaux clés de support et de résistance pour évaluer quand une tendance baissière pourrait ralentir ou une tendance haussière pourrait s'arrêter.
Indicateurs de prédiction du prix de KingyTON
Les moyennes mobiles sont des outils populaires pour la prédiction du prix de KingyTON. Une moyenne mobile simple (SMA) calcule le prix de clôture moyen de KINGY sur une période spécifique, comme une SMA de 12 jours. Une moyenne mobile exponentielle (EMA) donne plus de poids aux prix récents, réagissant plus rapidement aux changements de prix.
Les moyennes mobiles couramment utilisées sur le marché des cryptomonnaies incluent les moyennes sur 50 jours, 100 jours et 200 jours, qui aident à identifier les niveaux clés de résistance et de support. Un mouvement de prix de KINGY au-dessus de ces moyennes est considéré comme haussier, tandis qu'une chute en dessous indique une faiblesse.
Les traders utilisent également le RSI et les niveaux de retracement de Fibonacci pour évaluer la direction future de KINGY.
Comment lire les graphiques de KingyTON et prédire les mouvements de prix ?
La plupart des traders préfèrent les graphiques en chandeliers aux simples graphiques linéaires parce qu'ils fournissent des informations plus détaillées. Les chandeliers peuvent représenter l'action des prix de KingyTON dans différentes périodes, comme 5 minutes pour les tendances à court terme et hebdomadaire pour les tendances à long terme. Les options populaires incluent les graphiques de 1 heure, 4 heures et 1 jour.
Par exemple, un graphique en chandeliers de 1 heure montre les prix d'ouverture, de clôture, les plus hauts et les plus bas de KINGY au sein de chaque heure. La couleur du chandelier est cruciale : le vert indique que le prix a clôturé plus haut qu'il n'a ouvert, tandis que le rouge signifie le contraire. Certains graphiques utilisent des chandeliers creux et pleins pour transmettre la même information.
Qu'est-ce qui affecte le prix de KingyTON ?
L'action du prix de KingyTON est déterminée par l'offre et la demande, influencée par des facteurs tels que les réductions de récompenses de bloc, les hard forks et les mises à jour de protocole. Les événements du monde réel, tels que les réglementations, l'adoption par les entreprises et les gouvernements et les piratages d'échanges de cryptomonnaies, impactent également le prix de KINGY. La capitalisation boursière de KingyTON peut changer rapidement.
Les traders surveillent souvent l'activité des « baleines » de KINGY, de grands détenteurs de KingyTON, car leurs actions peuvent influencer significativement les mouvements de prix sur le marché relativement petit de KingyTON.
Modèles de prédiction de prix haussiers et baissiers
Les traders identifient souvent des modèles de chandeliers pour obtenir un avantage dans les prédictions de prix des cryptomonnaies. Certaines formations indiquent des tendances haussières, tandis que d'autres suggèrent des mouvements baissiers.
Modèles de chandeliers haussiers couramment suivis :
- Marteau
- Englobante haussière
- Ligne pénétrante
- Étoile du matin
- Trois soldats blancs
Modèles de chandeliers baissiers courants :
- Harami baissier
- Nuage sombre
- Étoile du soir
- Étoile filante
- Pendu


