Prédiction du prix de Juggernaut jusqu'à $0.0020023 d'ici 2026
| Année | Prix min. | Prix max. |
|---|---|---|
| 2026 | $0.00067 | $0.0020023 |
| 2027 | $0.000645 | $0.001696 |
| 2028 | $0.001165 | $0.002854 |
| 2029 | $0.00256 | $0.008421 |
| 2030 | $0.002177 | $0.006295 |
| 2031 | $0.002574 | $0.005746 |
| 2032 | $0.003929 | $0.010659 |
| 2033 | $0.00913 | $0.028394 |
| 2034 | $0.00734 | $0.016444 |
| 2035 | $0.008679 | $0.019375 |
Calculateur de profit d’investissement
Si vous ouvrez une position short de $10,000.00 sur Juggernaut aujourd’hui et la fermez le Apr 06, 2026, notre prévision indique que vous pourriez gagner environ $3,958.50, soit un rendement de 39.58% sur les 90 prochains jours.
Prévision du prix à long terme de Juggernaut pour 2027, 2028, 2029, 2030, 2031, 2032 et 2037
[
'name' => 'Juggernaut'
'name_with_ticker' => 'Juggernaut <small>JGN</small>'
'name_lang' => 'Juggernaut'
'name_lang_with_ticker' => 'Juggernaut <small>JGN</small>'
'name_with_lang' => 'Juggernaut'
'name_with_lang_with_ticker' => 'Juggernaut <small>JGN</small>'
'image' => '/uploads/coins/juggernaut.png?1717212024'
'price_for_sd' => 0.001941
'ticker' => 'JGN'
'marketcap' => '$194.53K'
'low24h' => '$0.001897'
'high24h' => '$0.001943'
'volume24h' => '$10.92'
'current_supply' => '100.21M'
'max_supply' => '150M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.001941'
'change_24h_pct' => '1.9486%'
'ath_price' => '$5.83'
'ath_days' => 1705
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '7 mai 2021'
'ath_pct' => '-99.97%'
'fdv' => '$291.18K'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.095732'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.001958'
'next_week_prediction_price_date' => '13 janvier 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.001715'
'next_month_prediction_price_date' => '5 février 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.00067'
'current_year_max_price_prediction' => '$0.0020023'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.002177'
'grand_prediction_max_price' => '$0.006295'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0019783617302342
107 => 0.0019857482147896
108 => 0.0020023903416561
109 => 0.001860185189695
110 => 0.0019240311280016
111 => 0.0019615346352013
112 => 0.0017920924252837
113 => 0.0019581853075095
114 => 0.0018577097143772
115 => 0.0018236067889754
116 => 0.0018695218853102
117 => 0.0018516287276146
118 => 0.0018362452413494
119 => 0.0018276609916916
120 => 0.0018613759709757
121 => 0.0018598031268939
122 => 0.0018046388769898
123 => 0.0017326793617722
124 => 0.0017568313370698
125 => 0.0017480566980182
126 => 0.0017162562741443
127 => 0.0017376859202375
128 => 0.0016433206041388
129 => 0.0014809699824734
130 => 0.0015882237760796
131 => 0.0015840946216954
201 => 0.0015820125148127
202 => 0.0016626107764307
203 => 0.0016548631132944
204 => 0.0016408010288366
205 => 0.0017159980129357
206 => 0.0016885501021974
207 => 0.0017731380955517
208 => 0.0018288532187832
209 => 0.0018147220613363
210 => 0.0018671224040301
211 => 0.0017573877498005
212 => 0.0017938372001454
213 => 0.0018013493813448
214 => 0.0017150700938244
215 => 0.0016561307268004
216 => 0.0016522001429779
217 => 0.0015500074029034
218 => 0.0016045979397803
219 => 0.0016526353531219
220 => 0.0016296291599851
221 => 0.0016223460865285
222 => 0.0016595537293126
223 => 0.0016624450818188
224 => 0.0015965219382649
225 => 0.0016102294473242
226 => 0.0016673920387853
227 => 0.0016087890966835
228 => 0.0014949331529159
301 => 0.00146669530468
302 => 0.0014629278551985
303 => 0.0013863445712107
304 => 0.0014685822927237
305 => 0.0014326833234493
306 => 0.0015460877372512
307 => 0.0014813117442877
308 => 0.0014785193806971
309 => 0.0014742983135794
310 => 0.0014083799174354
311 => 0.0014228118568583
312 => 0.0014707858215465
313 => 0.0014879034726126
314 => 0.0014861179613657
315 => 0.0014705507229474
316 => 0.0014776773249781
317 => 0.0014547200567645
318 => 0.001446613367544
319 => 0.0014210264264437
320 => 0.0013834206915991
321 => 0.0013886499996787
322 => 0.0013141431988758
323 => 0.0012735479394232
324 => 0.0012623117066436
325 => 0.0012472861465763
326 => 0.0012640088836347
327 => 0.0013139321304704
328 => 0.0012537141029789
329 => 0.0011504745186482
330 => 0.0011566793935782
331 => 0.0011706199053019
401 => 0.0011446418539304
402 => 0.0011200558084799
403 => 0.0011414313802702
404 => 0.0010976874074059
405 => 0.0011759061554333
406 => 0.0011737905575046
407 => 0.0012029456697543
408 => 0.0012211769597671
409 => 0.0011791597387378
410 => 0.0011685925212755
411 => 0.0011746120885953
412 => 0.0010751220495517
413 => 0.0011948152110083
414 => 0.001195850322439
415 => 0.0011869870699354
416 => 0.0012507199832993
417 => 0.0013852163092912
418 => 0.0013346133813509
419 => 0.0013150183981708
420 => 0.0012777683208216
421 => 0.0013274018371986
422 => 0.0013235907575444
423 => 0.0013063556100386
424 => 0.0012959317390502
425 => 0.0013151380409597
426 => 0.0012935518656969
427 => 0.0012896743954713
428 => 0.0012661811446332
429 => 0.0012577951229589
430 => 0.0012515864463683
501 => 0.001244751303494
502 => 0.0012598279254632
503 => 0.0012256623165863
504 => 0.0011844619415768
505 => 0.001181036576189
506 => 0.0011904943111859
507 => 0.0011863099674954
508 => 0.0011810165431612
509 => 0.0011709099545291
510 => 0.001167911545575
511 => 0.0011776549200545
512 => 0.0011666552183412
513 => 0.0011828858774039
514 => 0.0011784720362222
515 => 0.0011538166781805
516 => 0.0011230869734778
517 => 0.0011228134146482
518 => 0.0011161927501768
519 => 0.001107760338549
520 => 0.0011054146345415
521 => 0.0011396311892354
522 => 0.0012104584334363
523 => 0.0011965533506474
524 => 0.0012066011980126
525 => 0.0012560266623294
526 => 0.0012717375311602
527 => 0.0012605863285964
528 => 0.001245321874751
529 => 0.0012459934332518
530 => 0.0012981566929062
531 => 0.0013014100514261
601 => 0.0013096302388326
602 => 0.0013201955026747
603 => 0.0012623856387142
604 => 0.001243270593858
605 => 0.0012342128251428
606 => 0.0012063184032975
607 => 0.0012364001457706
608 => 0.0012188728026602
609 => 0.0012212378400651
610 => 0.0012196976063525
611 => 0.0012205386781097
612 => 0.0011758842916991
613 => 0.0011921540031417
614 => 0.0011651024523059
615 => 0.001128883462416
616 => 0.0011287620436618
617 => 0.001137626590126
618 => 0.0011323536110194
619 => 0.0011181641598241
620 => 0.0011201797043941
621 => 0.0011025214131056
622 => 0.0011223237406702
623 => 0.0011228916005686
624 => 0.0011152666258162
625 => 0.0011457748436241
626 => 0.0011582740853524
627 => 0.0011532551636275
628 => 0.0011579219444247
629 => 0.0011971311696149
630 => 0.0012035239841394
701 => 0.0012063632500655
702 => 0.0012025590098551
703 => 0.0011586386170838
704 => 0.0011605866732672
705 => 0.0011462931295494
706 => 0.0011342165913244
707 => 0.0011346995895203
708 => 0.001140908500008
709 => 0.0011680231762557
710 => 0.0012250844139214
711 => 0.0012272498461795
712 => 0.0012298744132466
713 => 0.0012191989799832
714 => 0.0012159791671608
715 => 0.0012202269313777
716 => 0.0012416561321076
717 => 0.0012967778543561
718 => 0.0012772941562575
719 => 0.0012614536064214
720 => 0.0012753500392092
721 => 0.0012732107923054
722 => 0.001255153395575
723 => 0.0012546465845908
724 => 0.0012199886669662
725 => 0.001207176423943
726 => 0.001196469554693
727 => 0.001184777932982
728 => 0.001177846747725
729 => 0.0011884961984471
730 => 0.0011909318538279
731 => 0.0011676466437034
801 => 0.0011644729556052
802 => 0.001183488160839
803 => 0.0011751202779739
804 => 0.0011837268530142
805 => 0.0011857236522494
806 => 0.0011854021215823
807 => 0.0011766650908259
808 => 0.0011822338136881
809 => 0.0011690621240029
810 => 0.0011547398897942
811 => 0.0011456031966758
812 => 0.0011376302201234
813 => 0.0011420540909068
814 => 0.001126283799331
815 => 0.0011212385656627
816 => 0.0011803472556826
817 => 0.0012240114805258
818 => 0.0012233765854037
819 => 0.0012195118246293
820 => 0.0012137695740568
821 => 0.001241236050712
822 => 0.0012316672794548
823 => 0.001238629360042
824 => 0.001240401501749
825 => 0.0012457652409613
826 => 0.0012476823167007
827 => 0.0012418875823215
828 => 0.0012224397459776
829 => 0.0011739775868533
830 => 0.0011514183209599
831 => 0.0011439733874608
901 => 0.0011442439966536
902 => 0.0011367793870648
903 => 0.001138978049129
904 => 0.0011360147821257
905 => 0.0011304030713126
906 => 0.0011417075835775
907 => 0.0011430103233072
908 => 0.0011403717150657
909 => 0.0011409932028256
910 => 0.0011191466535505
911 => 0.0011208075992437
912 => 0.0011115592425613
913 => 0.0011098252871739
914 => 0.0010864462468275
915 => 0.0010450268880076
916 => 0.0010679772334682
917 => 0.0010402564434587
918 => 0.0010297581602436
919 => 0.001079455400166
920 => 0.0010744671756646
921 => 0.0010659295036474
922 => 0.0010533005073272
923 => 0.001048616289745
924 => 0.0010201564665589
925 => 0.0010184749083778
926 => 0.0010325803652287
927 => 0.0010260711822312
928 => 0.0010169298240822
929 => 0.00098382075151138
930 => 0.00094659519190454
1001 => 0.00094771879755755
1002 => 0.00095955955546232
1003 => 0.00099398815601422
1004 => 0.00098053630615776
1005 => 0.0009707768347447
1006 => 0.00096894917911767
1007 => 0.0009918261157462
1008 => 0.001024201773942
1009 => 0.0010393917084029
1010 => 0.0010243389446773
1011 => 0.0010070471402077
1012 => 0.0010080996122232
1013 => 0.001015101237027
1014 => 0.0010158370087962
1015 => 0.0010045818217127
1016 => 0.0010077500909491
1017 => 0.0010029372002664
1018 => 0.00097340049903081
1019 => 0.00097286627376735
1020 => 0.0009656174909405
1021 => 0.00096539800067735
1022 => 0.00095306601279524
1023 => 0.00095134068244353
1024 => 0.00092685477200545
1025 => 0.00094297147240596
1026 => 0.00093216123594205
1027 => 0.00091586765971394
1028 => 0.00091305864103079
1029 => 0.00091297419853719
1030 => 0.00092970405814647
1031 => 0.00094277597425582
1101 => 0.0009323492846336
1102 => 0.0009299753295195
1103 => 0.00095532295936499
1104 => 0.00095209724241838
1105 => 0.00094930379234625
1106 => 0.0010213028888499
1107 => 0.00096430998580769
1108 => 0.00093945782704013
1109 => 0.00090869856126833
1110 => 0.00091871393330531
1111 => 0.00092082431934993
1112 => 0.00084685382994313
1113 => 0.00081684401160322
1114 => 0.00080654577284511
1115 => 0.0008006189908441
1116 => 0.00080331989982581
1117 => 0.00077630754351928
1118 => 0.0007944602937004
1119 => 0.00077106987643659
1120 => 0.00076714839686331
1121 => 0.00080897336044768
1122 => 0.00081479305979255
1123 => 0.00078996441434847
1124 => 0.00080590842411614
1125 => 0.00080012690453607
1126 => 0.00077147083800601
1127 => 0.00077037638704432
1128 => 0.00075599778016898
1129 => 0.000733498044656
1130 => 0.00072321506177806
1201 => 0.00071785959501428
1202 => 0.00072006936497699
1203 => 0.00071895203766377
1204 => 0.0007116607211557
1205 => 0.0007193699673911
1206 => 0.00069967602894013
1207 => 0.0006918337439641
1208 => 0.00068829156578006
1209 => 0.00067081206186402
1210 => 0.00069862972576512
1211 => 0.00070411015599133
1212 => 0.00070960138435808
1213 => 0.00075739877826979
1214 => 0.000755010955544
1215 => 0.00077659571006836
1216 => 0.00077575696619936
1217 => 0.00076960064455917
1218 => 0.00074362813622497
1219 => 0.00075398031513154
1220 => 0.00072211791754292
1221 => 0.00074599139224875
1222 => 0.00073509653537314
1223 => 0.00074230783017987
1224 => 0.00072934127190114
1225 => 0.00073651750062866
1226 => 0.00070540976930852
1227 => 0.00067636180749937
1228 => 0.00068805155529424
1229 => 0.00070075964803208
1230 => 0.00072831403104952
1231 => 0.00071190286784306
]
'min_raw' => 0.00067081206186402
'max_raw' => 0.0020023903416561
'avg_raw' => 0.0013366012017601
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.00067'
'max' => '$0.0020023'
'avg' => '$0.001336'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.001270757938136
'max_diff' => 6.0820341656104E-5
'year' => 2026
]
1 => [
'items' => [
101 => 0.00071780494270689
102 => 0.00069803397990846
103 => 0.00065724083635897
104 => 0.00065747172112133
105 => 0.00065119658471319
106 => 0.00064577395067163
107 => 0.00071378788735385
108 => 0.00070532927918619
109 => 0.00069185159410629
110 => 0.00070989201116765
111 => 0.00071466218377859
112 => 0.00071479798388676
113 => 0.00072795980648416
114 => 0.00073498427356379
115 => 0.00073622236633236
116 => 0.00075693277856938
117 => 0.00076387463557428
118 => 0.00079246716212912
119 => 0.0007343882966093
120 => 0.00073319220059378
121 => 0.00071014587683198
122 => 0.00069552953395429
123 => 0.00071114667033364
124 => 0.00072498132121405
125 => 0.00071057575799878
126 => 0.00071245682043665
127 => 0.00069311852879791
128 => 0.00070003105810757
129 => 0.0007059850595673
130 => 0.00070269760992126
131 => 0.00069777613868679
201 => 0.00072384703761013
202 => 0.0007223760153202
203 => 0.000746653835765
204 => 0.00076558013292532
205 => 0.0007994994409169
206 => 0.00076410287477417
207 => 0.00076281288321532
208 => 0.00077542275762422
209 => 0.00076387270506821
210 => 0.00077117193958935
211 => 0.00079832342138982
212 => 0.00079889708941552
213 => 0.00078928741085555
214 => 0.00078870266104185
215 => 0.00079054830492766
216 => 0.00080135829881446
217 => 0.00079758095479285
218 => 0.00080195219292531
219 => 0.00080741849314472
220 => 0.00083002942851546
221 => 0.00083548084848439
222 => 0.00082223672419709
223 => 0.00082343252033206
224 => 0.00081847885428927
225 => 0.00081369367496119
226 => 0.0008244500592714
227 => 0.00084410756301557
228 => 0.000843985274705
301 => 0.00084854543348638
302 => 0.00085138637462878
303 => 0.00083919097554957
304 => 0.00083125221918625
305 => 0.00083429644353214
306 => 0.0008391642245558
307 => 0.00083271788775248
308 => 0.00079292811076876
309 => 0.00080499778732482
310 => 0.00080298880296886
311 => 0.00080012776494513
312 => 0.00081226391805431
313 => 0.00081109335648058
314 => 0.00077603049276234
315 => 0.0007782751035364
316 => 0.00077616699497789
317 => 0.00078297872500885
318 => 0.00076350484929235
319 => 0.00076949488230419
320 => 0.00077325177485615
321 => 0.00077546461343106
322 => 0.00078345890372125
323 => 0.00078252086602545
324 => 0.00078340059398102
325 => 0.00079525401606698
326 => 0.00085520455737454
327 => 0.0008584675330645
328 => 0.00084239944738986
329 => 0.0008488183306879
330 => 0.00083649547841113
331 => 0.00084476789170046
401 => 0.00085042766677651
402 => 0.00082485223152001
403 => 0.00082333782022732
404 => 0.00081096410715572
405 => 0.00081761303967747
406 => 0.0008070341099602
407 => 0.00080962980927756
408 => 0.00080237200769721
409 => 0.00081543460552797
410 => 0.00083004061962524
411 => 0.00083373067559518
412 => 0.00082402372700724
413 => 0.00081699525651048
414 => 0.00080465557764028
415 => 0.0008251767386091
416 => 0.00083117775144743
417 => 0.00082514521784336
418 => 0.00082374734799384
419 => 0.00082109838715489
420 => 0.00082430933755827
421 => 0.00083114506864273
422 => 0.00082792146409943
423 => 0.00083005071169288
424 => 0.00082193621553723
425 => 0.00083919501273411
426 => 0.0008666061362385
427 => 0.00086669426748273
428 => 0.00086347064556301
429 => 0.00086215160892736
430 => 0.00086545924064273
501 => 0.00086725349516217
502 => 0.00087794976961376
503 => 0.0008894272982587
504 => 0.00094298791640655
505 => 0.00092794830915691
506 => 0.00097547047591311
507 => 0.0010130543398362
508 => 0.0010243240972836
509 => 0.0010139564507151
510 => 0.00097848929185348
511 => 0.00097674910383472
512 => 0.0010297520130222
513 => 0.0010147762634897
514 => 0.0010129949457352
515 => 0.00099404473441173
516 => 0.0010052466563332
517 => 0.0010027966316867
518 => 0.00099892914792289
519 => 0.0010203016346165
520 => 0.0010603090217719
521 => 0.0010540734952968
522 => 0.0010494189640409
523 => 0.0010290241629913
524 => 0.0010413063885669
525 => 0.00103693292329
526 => 0.0010557241055894
527 => 0.0010445926254709
528 => 0.0010146628074579
529 => 0.0010194292296264
530 => 0.0010187087945044
531 => 0.0010335352982659
601 => 0.0010290847498531
602 => 0.001017839753498
603 => 0.001060172280872
604 => 0.0010574234420102
605 => 0.0010613206670441
606 => 0.0010630363460298
607 => 0.0010888034094595
608 => 0.0010993593508926
609 => 0.0011017557344056
610 => 0.0011117830623412
611 => 0.0011015062453519
612 => 0.0011426208405556
613 => 0.001169959647263
614 => 0.0012017150780956
615 => 0.0012481182975974
616 => 0.0012655663373838
617 => 0.0012624145051677
618 => 0.0012975968966013
619 => 0.0013608188719468
620 => 0.0012751934739705
621 => 0.0013653572259543
622 => 0.0013368124230668
623 => 0.0012691332089196
624 => 0.0012647754654141
625 => 0.0013106086150064
626 => 0.0014122621295249
627 => 0.0013867990770826
628 => 0.0014123037779568
629 => 0.0013825511896251
630 => 0.0013810737228399
701 => 0.0014108587611505
702 => 0.0014804531266611
703 => 0.0014473914523128
704 => 0.0013999894350794
705 => 0.0014349903469475
706 => 0.0014046693179058
707 => 0.0013363475531534
708 => 0.0013867796059663
709 => 0.0013530571284725
710 => 0.0013628991401907
711 => 0.0014337787720427
712 => 0.001425250347214
713 => 0.0014362869186532
714 => 0.0014168076589404
715 => 0.0013986109587713
716 => 0.0013646454666011
717 => 0.001354589958848
718 => 0.0013573689394317
719 => 0.0013545885817232
720 => 0.0013355852010129
721 => 0.0013314814227579
722 => 0.0013246416125421
723 => 0.0013267615557324
724 => 0.0013139007114698
725 => 0.0013381717817794
726 => 0.0013426767063048
727 => 0.0013603391672369
728 => 0.0013621729425238
729 => 0.0014113626448102
730 => 0.0013842697833902
731 => 0.0014024460139159
801 => 0.0014008201607764
802 => 0.0012706000227115
803 => 0.0012885432087948
804 => 0.0013164571754585
805 => 0.001303881971313
806 => 0.0012861035747959
807 => 0.001271746566391
808 => 0.0012499942305781
809 => 0.0012806102255181
810 => 0.0013208670032162
811 => 0.00136319392084
812 => 0.0014140469389955
813 => 0.0014026971373376
814 => 0.0013622432590382
815 => 0.0013640579904672
816 => 0.0013752759460903
817 => 0.0013607476742996
818 => 0.001356463003323
819 => 0.0013746872980938
820 => 0.0013748127987959
821 => 0.0013580962663004
822 => 0.0013395188995247
823 => 0.0013394410596796
824 => 0.001336135396698
825 => 0.001383139259726
826 => 0.0014089866317648
827 => 0.0014119499913139
828 => 0.0014087871740563
829 => 0.001410004416891
830 => 0.0013949644006096
831 => 0.0014293414178506
901 => 0.0014608891684056
902 => 0.0014524336973375
903 => 0.0014397577441903
904 => 0.001429660736952
905 => 0.0014500551633196
906 => 0.0014491470316173
907 => 0.0014606136263262
908 => 0.0014600934353559
909 => 0.0014562376508358
910 => 0.0014524338350397
911 => 0.0014675155347073
912 => 0.0014631722474077
913 => 0.0014588222137833
914 => 0.0014500975553927
915 => 0.0014512833813692
916 => 0.0014386096169041
917 => 0.0014327461535505
918 => 0.0013445737331286
919 => 0.0013210111812749
920 => 0.001328424439748
921 => 0.0013308650769226
922 => 0.0013206106241596
923 => 0.0013353128752689
924 => 0.001333021545007
925 => 0.0013419357706725
926 => 0.0013363665494874
927 => 0.0013365951122675
928 => 0.0013529730042897
929 => 0.0013577275760203
930 => 0.001355309362464
1001 => 0.0013570029963474
1002 => 0.00139603207435
1003 => 0.0013904833875377
1004 => 0.0013875357582581
1005 => 0.001388352271713
1006 => 0.0013983250379355
1007 => 0.001401116867985
1008 => 0.001389287687887
1009 => 0.0013948663976049
1010 => 0.00141861983554
1011 => 0.0014269321944891
1012 => 0.0014534612540961
1013 => 0.0014421912380586
1014 => 0.0014628778402503
1015 => 0.001526461402805
1016 => 0.0015772563522217
1017 => 0.0015305432175481
1018 => 0.0016238216734539
1019 => 0.0016964523313764
1020 => 0.0016936646457526
1021 => 0.0016809998105665
1022 => 0.0015983117375077
1023 => 0.0015222209398692
1024 => 0.0015858741230797
1025 => 0.0015860363881341
1026 => 0.0015805685232451
1027 => 0.001546608084023
1028 => 0.0015793867735737
1029 => 0.0015819886269155
1030 => 0.0015805322809328
1031 => 0.0015544948918056
1101 => 0.0015147406111223
1102 => 0.0015225085024095
1103 => 0.0015352324667987
1104 => 0.0015111433477129
1105 => 0.0015034454145539
1106 => 0.0015177573368883
1107 => 0.0015638733326573
1108 => 0.0015551553707889
1109 => 0.0015549277095725
1110 => 0.0015922268474365
1111 => 0.0015655287143836
1112 => 0.0015226064803949
1113 => 0.001511768050238
1114 => 0.0014732989248225
1115 => 0.0014998696867693
1116 => 0.0015008259211888
1117 => 0.0014862733864171
1118 => 0.001523787338388
1119 => 0.0015234416407164
1120 => 0.0015590555548979
1121 => 0.0016271359828375
1122 => 0.0016070012502614
1123 => 0.001583586746928
1124 => 0.0015861325526541
1125 => 0.0016140537578854
1126 => 0.0015971719598234
1127 => 0.0016032427721106
1128 => 0.0016140445689839
1129 => 0.0016205615612311
1130 => 0.0015851948577605
1201 => 0.0015769491873965
1202 => 0.0015600814396689
1203 => 0.0015556809591381
1204 => 0.0015694193877052
1205 => 0.0015657997971636
1206 => 0.0015007455533885
1207 => 0.0014939470229556
1208 => 0.0014941555241779
1209 => 0.0014770602961519
1210 => 0.0014509859700874
1211 => 0.0015195077421678
1212 => 0.0015140044849082
1213 => 0.0015079293148118
1214 => 0.0015086734884842
1215 => 0.001538416467326
1216 => 0.0015211640375413
1217 => 0.0015670324497415
1218 => 0.0015576032831238
1219 => 0.0015479322939619
1220 => 0.0015465954686742
1221 => 0.0015428729629369
1222 => 0.0015301071056802
1223 => 0.0015146915659338
1224 => 0.0015045128913219
1225 => 0.001387833613994
1226 => 0.0014094886091739
1227 => 0.0014344007072135
1228 => 0.0014430002636278
1229 => 0.00142829012731
1230 => 0.0015306879515214
1231 => 0.0015493970207348
]
'min_raw' => 0.00064577395067163
'max_raw' => 0.0016964523313764
'avg_raw' => 0.001171113141024
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.000645'
'max' => '$0.001696'
'avg' => '$0.001171'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -2.503811119239E-5
'max_diff' => -0.00030593801027971
'year' => 2027
]
2 => [
'items' => [
101 => 0.001492726029725
102 => 0.0014821252011684
103 => 0.0015313829400767
104 => 0.0015016745020013
105 => 0.0015150522098476
106 => 0.0014861369226989
107 => 0.0015448905538268
108 => 0.0015444429495969
109 => 0.0015215864600772
110 => 0.0015409046085047
111 => 0.0015375476048191
112 => 0.0015117426844445
113 => 0.0015457086158301
114 => 0.0015457254625083
115 => 0.0015237265882885
116 => 0.0014980367193726
117 => 0.0014934439775781
118 => 0.0014899839635839
119 => 0.0015142012585077
120 => 0.0015359144094109
121 => 0.0015763172000952
122 => 0.0015864754216198
123 => 0.0016261236365016
124 => 0.001602515054976
125 => 0.001612980433384
126 => 0.001624342082064
127 => 0.001629789274252
128 => 0.0016209133668941
129 => 0.0016825033644619
130 => 0.0016877034473253
131 => 0.0016894469901289
201 => 0.0016686791894813
202 => 0.0016871258572206
203 => 0.0016784952722748
204 => 0.0017009496566583
205 => 0.0017044707908416
206 => 0.0017014885154563
207 => 0.0017026061790234
208 => 0.0016500499813195
209 => 0.0016473246652125
210 => 0.0016101647867142
211 => 0.0016253077118742
212 => 0.0015969987391069
213 => 0.0016059758059861
214 => 0.0016099328115299
215 => 0.0016078658963919
216 => 0.0016261638701425
217 => 0.0016106068544254
218 => 0.0015695493321379
219 => 0.0015284806237559
220 => 0.001527965039576
221 => 0.0015171523735819
222 => 0.0015093367965068
223 => 0.0015108423539239
224 => 0.001516148134635
225 => 0.0015090284148865
226 => 0.0015105477680738
227 => 0.0015357791543803
228 => 0.001540839128962
229 => 0.0015236433582735
301 => 0.0014545998576214
302 => 0.0014376564093788
303 => 0.0014498350239724
304 => 0.0014440144305999
305 => 0.0011654323461996
306 => 0.001230881074663
307 => 0.0011919936626388
308 => 0.0012099147712233
309 => 0.0011702207933932
310 => 0.0011891648401534
311 => 0.0011856665664426
312 => 0.0012909061850431
313 => 0.001289263013151
314 => 0.001290049512581
315 => 0.0012525078455728
316 => 0.0013123127404842
317 => 0.001341774782232
318 => 0.0013363221424113
319 => 0.0013376944543817
320 => 0.001314113588044
321 => 0.0012902778269124
322 => 0.0012638402995201
323 => 0.0013129579576378
324 => 0.0013074969125215
325 => 0.0013200225851963
326 => 0.0013518788974884
327 => 0.0013565698604838
328 => 0.0013628745623206
329 => 0.0013606147755113
330 => 0.0014144520653276
331 => 0.001407932014301
401 => 0.0014236434613285
402 => 0.0013913238227626
403 => 0.0013547510839171
404 => 0.0013617023659187
405 => 0.0013610329015633
406 => 0.0013525098519432
407 => 0.0013448156238374
408 => 0.0013320069018767
409 => 0.0013725355934946
410 => 0.001370890202629
411 => 0.0013975271681855
412 => 0.0013928188257857
413 => 0.0013613753629131
414 => 0.001362498372341
415 => 0.0013700511504433
416 => 0.0013961914016916
417 => 0.0014039516080262
418 => 0.0014003567712613
419 => 0.0014088654832402
420 => 0.0014155904222602
421 => 0.0014097100320421
422 => 0.0014929639568847
423 => 0.0014583911228467
424 => 0.0014752416816006
425 => 0.0014792604405741
426 => 0.0014689664739688
427 => 0.0014711988667261
428 => 0.001474580333463
429 => 0.00149511193733
430 => 0.0015489928067444
501 => 0.0015728562770285
502 => 0.0016446507047813
503 => 0.001570874748017
504 => 0.0015664971880578
505 => 0.0015794295324801
506 => 0.001621580461783
507 => 0.0016557398309475
508 => 0.0016670724644006
509 => 0.0016685702589928
510 => 0.0016898310327302
511 => 0.0017020173117465
512 => 0.0016872494155846
513 => 0.0016747351698506
514 => 0.0016299106949568
515 => 0.0016350992499787
516 => 0.0016708432488375
517 => 0.0017213337525366
518 => 0.001764659857352
519 => 0.0017494885655129
520 => 0.0018652348129826
521 => 0.0018767105806382
522 => 0.0018751250006042
523 => 0.0019012685071469
524 => 0.0018493789706922
525 => 0.0018271951885454
526 => 0.001677440891821
527 => 0.0017195157408022
528 => 0.0017806740047656
529 => 0.0017725794791983
530 => 0.001728164713143
531 => 0.0017646261647692
601 => 0.0017525708686066
602 => 0.0017430623563484
603 => 0.0017866226943188
604 => 0.0017387263133603
605 => 0.0017801962017267
606 => 0.0017270106409457
607 => 0.001749557866696
608 => 0.0017367589708736
609 => 0.0017450414250444
610 => 0.0016966223672001
611 => 0.0017227481155067
612 => 0.001695535450177
613 => 0.0016955225478305
614 => 0.0016949218267351
615 => 0.001726937406816
616 => 0.001727981433733
617 => 0.0017043218716804
618 => 0.0017009121591567
619 => 0.0017135196534592
620 => 0.001698759579539
621 => 0.0017056657252275
622 => 0.0016989687596565
623 => 0.0016974611316468
624 => 0.0016854480951638
625 => 0.0016802725487416
626 => 0.0016823020138511
627 => 0.0016753744031713
628 => 0.001671200267154
629 => 0.0016940914860197
630 => 0.0016818616312089
701 => 0.0016922170853692
702 => 0.0016804157383911
703 => 0.0016395071281628
704 => 0.0016159801538198
705 => 0.0015387075813287
706 => 0.0015606219870309
707 => 0.0015751512606835
708 => 0.001570349335828
709 => 0.0015806657285158
710 => 0.0015812990712406
711 => 0.0015779451068146
712 => 0.0015740616456787
713 => 0.0015721713915667
714 => 0.0015862597970619
715 => 0.0015944385906458
716 => 0.0015766094676711
717 => 0.0015724323536141
718 => 0.0015904585813143
719 => 0.001601454569798
720 => 0.0016826427706496
721 => 0.0016766280864961
722 => 0.0016917237633993
723 => 0.001690024221842
724 => 0.0017058468961665
725 => 0.0017317102815259
726 => 0.001679122787574
727 => 0.0016882501581853
728 => 0.0016860123376932
729 => 0.0017104442750382
730 => 0.0017105205488797
731 => 0.0016958723819756
801 => 0.0017038133908937
802 => 0.0016993809375658
803 => 0.0017073909798113
804 => 0.0016765477567223
805 => 0.0017141114731245
806 => 0.0017354076797722
807 => 0.0017357033776222
808 => 0.001745797610556
809 => 0.0017560539358353
810 => 0.0017757400590714
811 => 0.001755504900543
812 => 0.0017191038202033
813 => 0.0017217318606291
814 => 0.0017003899205446
815 => 0.0017007486824132
816 => 0.0016988335834421
817 => 0.0017045809396161
818 => 0.0016778089782006
819 => 0.0016840923040338
820 => 0.0016752956110722
821 => 0.0016882310358927
822 => 0.0016743146570881
823 => 0.0016860112585484
824 => 0.0016910591239901
825 => 0.0017096858561429
826 => 0.0016715634736042
827 => 0.0015938293549495
828 => 0.0016101700091258
829 => 0.0015860008980683
830 => 0.001588237841315
831 => 0.0015927568226801
901 => 0.001578109325557
902 => 0.0015809036064124
903 => 0.0015808037750372
904 => 0.001579943482179
905 => 0.0015761331024641
906 => 0.0015706072980168
907 => 0.0015926204021818
908 => 0.0015963608575329
909 => 0.001604675426434
910 => 0.0016294139436578
911 => 0.0016269419824128
912 => 0.0016309738537642
913 => 0.0016221723012421
914 => 0.001588646120093
915 => 0.0015904667530287
916 => 0.0015677634311467
917 => 0.0016040948514494
918 => 0.0015954910915704
919 => 0.0015899441916057
920 => 0.0015884306685586
921 => 0.0016132305077817
922 => 0.0016206510083671
923 => 0.0016160270503735
924 => 0.0016065431776264
925 => 0.0016247550169562
926 => 0.0016296277368651
927 => 0.0016307185591536
928 => 0.0016629864466723
929 => 0.0016325219756144
930 => 0.0016398550765889
1001 => 0.0016970658370654
1002 => 0.0016451835718585
1003 => 0.0016726667648511
1004 => 0.0016713216055698
1005 => 0.0016853810771243
1006 => 0.0016701683185371
1007 => 0.0016703568989121
1008 => 0.0016828407571814
1009 => 0.0016653094297179
1010 => 0.0016609684264943
1011 => 0.0016549713616318
1012 => 0.0016680657333609
1013 => 0.001675915217005
1014 => 0.001739176290366
1015 => 0.0017800458288127
1016 => 0.0017782715743629
1017 => 0.0017944849387681
1018 => 0.0017871806696062
1019 => 0.0017635932577135
1020 => 0.0018038540936359
1021 => 0.0017911138805651
1022 => 0.0017921641682513
1023 => 0.0017921250764912
1024 => 0.0018005962044145
1025 => 0.0017945936339134
1026 => 0.0017827619513044
1027 => 0.0017906163743817
1028 => 0.0018139412029138
1029 => 0.0018863421863705
1030 => 0.0019268587358983
1031 => 0.0018839030392148
1101 => 0.0019135333035874
1102 => 0.0018957657033066
1103 => 0.0018925368017952
1104 => 0.0019111467974805
1105 => 0.0019297893674997
1106 => 0.0019286019163835
1107 => 0.0019150683678561
1108 => 0.0019074236096941
1109 => 0.0019653122796789
1110 => 0.0020079636656159
1111 => 0.0020050551270335
1112 => 0.0020178924704287
1113 => 0.0020555833076812
1114 => 0.0020590292854826
1115 => 0.0020585951714845
1116 => 0.0020500539559531
1117 => 0.0020871654800019
1118 => 0.0021181245662785
1119 => 0.002048076911337
1120 => 0.0020747501413476
1121 => 0.0020867246136572
1122 => 0.0021043066916734
1123 => 0.0021339706043852
1124 => 0.0021661934815545
1125 => 0.0021707501496922
1126 => 0.0021675169755919
1127 => 0.0021462651219013
1128 => 0.0021815237785988
1129 => 0.002202177472775
1130 => 0.0022144762750055
1201 => 0.0022456639911365
1202 => 0.0020867985639215
1203 => 0.0019743457184147
1204 => 0.00195678458275
1205 => 0.0019924958426817
1206 => 0.0020019126171337
1207 => 0.0019981167271597
1208 => 0.0018715408257764
1209 => 0.0019561181868248
1210 => 0.0020471163158463
1211 => 0.0020506119245836
1212 => 0.0020961674906529
1213 => 0.0021110022503508
1214 => 0.0021476804521412
1215 => 0.0021453862206328
1216 => 0.0021543167790911
1217 => 0.0021522637983572
1218 => 0.0022202024436673
1219 => 0.0022951488584307
1220 => 0.0022925537024024
1221 => 0.0022817792685544
1222 => 0.0022977811401327
1223 => 0.0023751338719144
1224 => 0.0023680124719242
1225 => 0.0023749303054153
1226 => 0.0024661335355949
1227 => 0.0025847107083366
1228 => 0.0025296197066446
1229 => 0.0026491513283076
1230 => 0.0027243901480454
1231 => 0.0028545079069429
]
'min_raw' => 0.0011654323461996
'max_raw' => 0.0028545079069429
'avg_raw' => 0.0020099701265712
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.001165'
'max' => '$0.002854'
'avg' => '$0.0020099'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00051965839552794
'max_diff' => 0.0011580555755665
'year' => 2028
]
3 => [
'items' => [
101 => 0.0028382165226855
102 => 0.002888870411376
103 => 0.0028090515447502
104 => 0.0026257712929227
105 => 0.0025967664915024
106 => 0.0026548348384644
107 => 0.0027975902032441
108 => 0.0026503389640043
109 => 0.0026801276979221
110 => 0.0026715485405498
111 => 0.0026710913937125
112 => 0.0026885388291416
113 => 0.0026632304140546
114 => 0.0025601193780931
115 => 0.0026073745582371
116 => 0.0025891270638034
117 => 0.0026093740193184
118 => 0.0027186384877536
119 => 0.0026703300617188
120 => 0.002619441059149
121 => 0.0026832671615452
122 => 0.0027645397229239
123 => 0.0027594538320937
124 => 0.0027495850781455
125 => 0.0028052147274399
126 => 0.0028970986101164
127 => 0.0029219344543845
128 => 0.0029402677668767
129 => 0.0029427956209255
130 => 0.002968834088681
131 => 0.0028288186850212
201 => 0.0030510267264798
202 => 0.0030893959168665
203 => 0.0030821840993138
204 => 0.0031248298396062
205 => 0.0031122823809942
206 => 0.0030941030821013
207 => 0.0031617056514738
208 => 0.0030842047609342
209 => 0.0029742020039041
210 => 0.0029138523157895
211 => 0.0029933256533693
212 => 0.0030418572473919
213 => 0.0030739335438518
214 => 0.0030836398117796
215 => 0.0028396876822346
216 => 0.0027082110146152
217 => 0.0027924860511762
218 => 0.0028953074121328
219 => 0.0028282475071695
220 => 0.0028308761284829
221 => 0.0027352663270381
222 => 0.0029037667580551
223 => 0.0028792176625676
224 => 0.0030065784133833
225 => 0.0029761827480672
226 => 0.0030800404962415
227 => 0.003052691270495
228 => 0.003166216377494
301 => 0.0032115046162454
302 => 0.0032875506176606
303 => 0.0033434903658645
304 => 0.0033763392559668
305 => 0.0033743671318181
306 => 0.0035045307996552
307 => 0.0034277778323038
308 => 0.0033313580160251
309 => 0.0033296140857492
310 => 0.0033795512748794
311 => 0.0034842059236973
312 => 0.0035113413514726
313 => 0.0035265063537159
314 => 0.0035032806248828
315 => 0.0034199707797576
316 => 0.0033839980110231
317 => 0.0034146478522164
318 => 0.0033771657302079
319 => 0.0034418703884205
320 => 0.0035307237043157
321 => 0.0035123758459474
322 => 0.0035737099856078
323 => 0.0036371843676167
324 => 0.0037279555847023
325 => 0.0037516865420969
326 => 0.0037909129122627
327 => 0.0038312897323547
328 => 0.0038442576787824
329 => 0.0038690175122304
330 => 0.0038688870156863
331 => 0.0039435024403108
401 => 0.004025805564319
402 => 0.0040568730883103
403 => 0.0041283111466552
404 => 0.0040059759752277
405 => 0.0040987686080407
406 => 0.0041824698855882
407 => 0.0040826777718974
408 => 0.0042202179520397
409 => 0.0042255583255619
410 => 0.0043061916253633
411 => 0.0042244543285435
412 => 0.0041759189826066
413 => 0.0043160387077307
414 => 0.0043838382289883
415 => 0.0043634164614147
416 => 0.0042080058018327
417 => 0.0041175501320792
418 => 0.0038808101967386
419 => 0.0041612388765536
420 => 0.0042978275062748
421 => 0.0042076520702791
422 => 0.0042531313150035
423 => 0.004501251327525
424 => 0.0045957193637121
425 => 0.0045760706725666
426 => 0.0045793909779252
427 => 0.0046303642155356
428 => 0.0048564076225749
429 => 0.0047209571734318
430 => 0.0048245039665702
501 => 0.004879424812285
502 => 0.004930438354557
503 => 0.0048051652177327
504 => 0.0046421867073521
505 => 0.0045905645717422
506 => 0.0041986859003329
507 => 0.0041782869136432
508 => 0.0041668363442618
509 => 0.0040946421240268
510 => 0.0040379172425834
511 => 0.0039928075107997
512 => 0.0038744261036932
513 => 0.003914376353469
514 => 0.003725701098661
515 => 0.0038464088404467
516 => 0.0035452785780499
517 => 0.003796068808708
518 => 0.0036595750881933
519 => 0.0037512269505321
520 => 0.0037509071858185
521 => 0.0035821470490035
522 => 0.0034848097240227
523 => 0.0035468368559258
524 => 0.0036133348650458
525 => 0.0036241239432993
526 => 0.003710340347899
527 => 0.0037344014932073
528 => 0.0036614950996156
529 => 0.0035390383226877
530 => 0.0035674822390263
531 => 0.003484233308966
601 => 0.0033383427611592
602 => 0.0034431238995986
603 => 0.0034789007871633
604 => 0.0034947018988762
605 => 0.0033512353007508
606 => 0.0033061549808084
607 => 0.0032821545967316
608 => 0.003520518586446
609 => 0.0035335767038789
610 => 0.0034667695288607
611 => 0.0037687442948591
612 => 0.0037003981050118
613 => 0.0037767575442943
614 => 0.0035649012517536
615 => 0.003572994447431
616 => 0.0034726982833945
617 => 0.0035288574334628
618 => 0.0034891659562885
619 => 0.0035243203291128
620 => 0.0035453917152369
621 => 0.0036456714216597
622 => 0.0037972138418738
623 => 0.0036306929775537
624 => 0.0035581374523467
625 => 0.0036031504921173
626 => 0.0037230261487756
627 => 0.0039046439049349
628 => 0.0037971225378906
629 => 0.0038448386947536
630 => 0.0038552625522841
701 => 0.0037759802768831
702 => 0.003907567155516
703 => 0.0039780856327852
704 => 0.0040504229987207
705 => 0.0041132315067155
706 => 0.0040215298640333
707 => 0.0041196637666174
708 => 0.0040405851641004
709 => 0.0039696434826469
710 => 0.0039697510718943
711 => 0.0039252483188259
712 => 0.0038390186270483
713 => 0.0038231165488837
714 => 0.0039058411677071
715 => 0.003972178477953
716 => 0.0039776423365591
717 => 0.0040143700800453
718 => 0.0040361051803145
719 => 0.0042491387103894
720 => 0.0043348225584913
721 => 0.004439595146038
722 => 0.004480409973547
723 => 0.0046032479714234
724 => 0.0045040463117238
725 => 0.00448258340864
726 => 0.0041846186057947
727 => 0.0042334103255684
728 => 0.0043115305766266
729 => 0.0041859067799612
730 => 0.0042655861643333
731 => 0.0042813165626485
801 => 0.0041816381314211
802 => 0.0042348806883904
803 => 0.0040934842423978
804 => 0.0038002958980046
805 => 0.0039078935579556
806 => 0.0039871216526603
807 => 0.0038740533927631
808 => 0.0040767238722829
809 => 0.0039583279621153
810 => 0.0039208021425981
811 => 0.003774400541741
812 => 0.0038434964618312
813 => 0.0039369496831114
814 => 0.0038792064574633
815 => 0.0039990323208721
816 => 0.0041687376998493
817 => 0.0042896798590386
818 => 0.0042989642962764
819 => 0.004221206590413
820 => 0.0043458138103021
821 => 0.0043467214378622
822 => 0.0042061639847919
823 => 0.0041200733274135
824 => 0.0041005133489209
825 => 0.0041493780101552
826 => 0.0042087087298078
827 => 0.0043022567382963
828 => 0.0043587858405992
829 => 0.0045061837586862
830 => 0.004546065409091
831 => 0.0045898832515251
901 => 0.0046484374019391
902 => 0.0047187466724871
903 => 0.004564913991237
904 => 0.0045710260504431
905 => 0.0044277791876214
906 => 0.0042746993710183
907 => 0.0043908678701515
908 => 0.0045427427295204
909 => 0.0045079024689744
910 => 0.004503982227941
911 => 0.0045105749859749
912 => 0.0044843065672998
913 => 0.004365495483185
914 => 0.0043058293005393
915 => 0.0043828138986189
916 => 0.0044237277863079
917 => 0.0044871816580476
918 => 0.004479359629007
919 => 0.0046428099881601
920 => 0.0047063218552447
921 => 0.0046900728018184
922 => 0.0046930630187042
923 => 0.0048080482203387
924 => 0.0049359354130666
925 => 0.0050557186452577
926 => 0.005177567293852
927 => 0.0050306739921379
928 => 0.0049560906326468
929 => 0.0050330416216591
930 => 0.0049922103437256
1001 => 0.0052268389780754
1002 => 0.0052430841556512
1003 => 0.0054776958236802
1004 => 0.0057003702336775
1005 => 0.0055605124263847
1006 => 0.0056923920393278
1007 => 0.0058350305930285
1008 => 0.0061102035053883
1009 => 0.0060175349492053
1010 => 0.0059465522874705
1011 => 0.0058794740151169
1012 => 0.0060190532515089
1013 => 0.0061986197092946
1014 => 0.0062372966044355
1015 => 0.0062999679502748
1016 => 0.0062340766932123
1017 => 0.0063134354546602
1018 => 0.0065936067545779
1019 => 0.0065179019961996
1020 => 0.0064103890691553
1021 => 0.0066315574025027
1022 => 0.006711597362571
1023 => 0.0072733597195827
1024 => 0.0079826079005555
1025 => 0.0076889744964581
1026 => 0.0075067067670442
1027 => 0.0075495440069048
1028 => 0.00780853743303
1029 => 0.007891717901461
1030 => 0.0076656047142387
1031 => 0.0077454717145525
1101 => 0.0081855467386322
1102 => 0.0084216328697538
1103 => 0.0081009961930931
1104 => 0.0072163723188211
1105 => 0.0064007087063994
1106 => 0.0066170594262248
1107 => 0.0065925319687411
1108 => 0.0070653376816374
1109 => 0.0065160964627495
1110 => 0.006525344276268
1111 => 0.0070079271105971
1112 => 0.0068791822839623
1113 => 0.0066706321532057
1114 => 0.0064022313531493
1115 => 0.0059060676501761
1116 => 0.0054666016219042
1117 => 0.0063284957063272
1118 => 0.0062913292661542
1119 => 0.0062375067530259
1120 => 0.0063572829317888
1121 => 0.0069388820568003
1122 => 0.0069254743145162
1123 => 0.0068401810987945
1124 => 0.0069048752511795
1125 => 0.0066592909555009
1126 => 0.0067225836203478
1127 => 0.0064005795011158
1128 => 0.0065461388110886
1129 => 0.0066701846982897
1130 => 0.0066950887466761
1201 => 0.0067511988393228
1202 => 0.0062717442410392
1203 => 0.0064870052796211
1204 => 0.0066134509725562
1205 => 0.0060421647317414
1206 => 0.0066021584804006
1207 => 0.0062633980031732
1208 => 0.0061484176091907
1209 => 0.0063032235621732
1210 => 0.0062428955317422
1211 => 0.0061910290337584
1212 => 0.0061620866367039
1213 => 0.0062757590432647
1214 => 0.0062704560896307
1215 => 0.0060844659696339
1216 => 0.0058418494400251
1217 => 0.0059232795109779
1218 => 0.0058936952027897
1219 => 0.0057864778534642
1220 => 0.0058587294014375
1221 => 0.0055405701498348
1222 => 0.0049931936939312
1223 => 0.0053548073472954
1224 => 0.0053408856150008
1225 => 0.0053338656462776
1226 => 0.0056056083125135
1227 => 0.0055794865253249
1228 => 0.0055320752257923
1229 => 0.0057856071077679
1230 => 0.0056930645603618
1231 => 0.005978258885701
]
'min_raw' => 0.0025601193780931
'max_raw' => 0.0084216328697538
'avg_raw' => 0.0054908761239235
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.00256'
'max' => '$0.008421'
'avg' => '$0.00549'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0013946870318936
'max_diff' => 0.0055671249628109
'year' => 2029
]
4 => [
'items' => [
101 => 0.0061661063135819
102 => 0.0061184621296436
103 => 0.006295133543511
104 => 0.005925155495347
105 => 0.0060480473620042
106 => 0.0060733752054015
107 => 0.0057824785636991
108 => 0.0055837603727626
109 => 0.0055705081349803
110 => 0.00522595817695
111 => 0.0054100139834197
112 => 0.0055719754763663
113 => 0.0054944084899645
114 => 0.0054698530993175
115 => 0.0055953012647186
116 => 0.0056050496615612
117 => 0.0053827851804623
118 => 0.0054290010042835
119 => 0.0056217286723592
120 => 0.0054241447615362
121 => 0.0050402714979558
122 => 0.0049450656211247
123 => 0.004932363402163
124 => 0.0046741575133239
125 => 0.0049514277330592
126 => 0.0048303918517648
127 => 0.0052127427505412
128 => 0.0049943459677492
129 => 0.0049849313189471
130 => 0.0049706996964541
131 => 0.0047484512215793
201 => 0.0047971095129495
202 => 0.0049588570843309
203 => 0.0050165704400166
204 => 0.005010550464187
205 => 0.0049580644329901
206 => 0.0049820922693001
207 => 0.0049046902366925
208 => 0.0048773579679947
209 => 0.0047910898096518
210 => 0.0046642994490748
211 => 0.0046819304263635
212 => 0.0044307255455579
213 => 0.0042938557940429
214 => 0.0042559720507379
215 => 0.0042053123259198
216 => 0.0042616942014565
217 => 0.0044300139136928
218 => 0.0042269846297168
219 => 0.0038789051631883
220 => 0.0038998253322252
221 => 0.0039468267407972
222 => 0.0038592399268687
223 => 0.0037763463580894
224 => 0.0038484155907752
225 => 0.0037009297321565
226 => 0.0039646497021892
227 => 0.0039575168160665
228 => 0.0040558153125612
301 => 0.0041172833797075
302 => 0.0039756193854583
303 => 0.0039399912740048
304 => 0.0039602866654961
305 => 0.0036248490526881
306 => 0.0040284029032487
307 => 0.0040318928537063
308 => 0.004002009779078
309 => 0.0042168897461742
310 => 0.0046703534994896
311 => 0.0044997421949551
312 => 0.0044336763410854
313 => 0.0043080851045852
314 => 0.004475427970352
315 => 0.0044625786492165
316 => 0.0044044691460813
317 => 0.0043693243372725
318 => 0.0044340797251014
319 => 0.0043613004281043
320 => 0.0043482272665223
321 => 0.0042690181310754
322 => 0.0042407440735069
323 => 0.0042198110869059
324 => 0.0041967659254909
325 => 0.0042475978090759
326 => 0.0041324060733811
327 => 0.0039934961325181
328 => 0.0039819472739618
329 => 0.0040138346878219
330 => 0.0039997268809276
331 => 0.00398187973121
401 => 0.0039478046620172
402 => 0.0039376953168864
403 => 0.0039705457842046
404 => 0.0039334595219036
405 => 0.003988182322122
406 => 0.0039733007484132
407 => 0.0038901734873934
408 => 0.0037865661425089
409 => 0.0037856438198156
410 => 0.0037633217873104
411 => 0.0037348913227748
412 => 0.003726982617942
413 => 0.0038423461210158
414 => 0.0040811451198396
415 => 0.0040342631623947
416 => 0.0040681401813049
417 => 0.0042347815850249
418 => 0.0042877518761856
419 => 0.0042501548181898
420 => 0.0041986896463197
421 => 0.0042009538526918
422 => 0.0043768259245392
423 => 0.0043877948499312
424 => 0.0044155097856875
425 => 0.0044511313103742
426 => 0.0042562213178758
427 => 0.0041917736095731
428 => 0.0041612347099565
429 => 0.004067186719179
430 => 0.0041686094141672
501 => 0.0041095147531504
502 => 0.0041174886418826
503 => 0.0041122956363851
504 => 0.0041151313685362
505 => 0.003964575987083
506 => 0.0040194304551267
507 => 0.003928224262805
508 => 0.0038061094096619
509 => 0.0038057000378551
510 => 0.0038355874751619
511 => 0.0038178092579563
512 => 0.0037699685325758
513 => 0.0037767640818142
514 => 0.0037172279198724
515 => 0.0037839928498109
516 => 0.0037859074291052
517 => 0.0037601992943685
518 => 0.0038630598807237
519 => 0.0039052019468797
520 => 0.0038882803018744
521 => 0.0039040146791565
522 => 0.0040362113193859
523 => 0.0040577651398871
524 => 0.0040673379231883
525 => 0.0040545116617155
526 => 0.0039064309910631
527 => 0.0039129989984942
528 => 0.0038648073179064
529 => 0.0038240904261239
530 => 0.0038257188882632
531 => 0.0038466526634649
601 => 0.00393807168752
602 => 0.0041304576341982
603 => 0.0041377585402424
604 => 0.0041466074513503
605 => 0.0041106144827679
606 => 0.0040997586590371
607 => 0.0041140802926639
608 => 0.0041863303390637
609 => 0.0043721770741003
610 => 0.0043064864256523
611 => 0.0042530789059282
612 => 0.0042999316992901
613 => 0.0042927190789964
614 => 0.0042318373051927
615 => 0.0042301285565751
616 => 0.0041132769675653
617 => 0.0040700795956903
618 => 0.0040339806384843
619 => 0.0039945615196026
620 => 0.0039711925445886
621 => 0.0040070979112192
622 => 0.0040153098933875
623 => 0.0039368021817312
624 => 0.0039261018707284
625 => 0.0039902129627736
626 => 0.0039620000614669
627 => 0.0039910177301071
628 => 0.0039977500781406
629 => 0.0039966660150481
630 => 0.0039672085058528
701 => 0.0039859838437783
702 => 0.003941574572387
703 => 0.0038932861598057
704 => 0.0038624811610533
705 => 0.0038355997139517
706 => 0.0038505151031626
707 => 0.0037973444640684
708 => 0.0037803341065086
709 => 0.0039796231817476
710 => 0.0041268401643453
711 => 0.004124699571114
712 => 0.0041116692603344
713 => 0.0040923088616179
714 => 0.0041849140053091
715 => 0.0041526522249454
716 => 0.0041761253657219
717 => 0.0041821002652142
718 => 0.0042001844864526
719 => 0.004206648041154
720 => 0.004187110689619
721 => 0.0041215409515809
722 => 0.0039581473985737
723 => 0.0038820872585764
724 => 0.0038569861454955
725 => 0.0038578985232822
726 => 0.0038327310708914
727 => 0.0038401440135466
728 => 0.0038301531519561
729 => 0.0038112328771527
730 => 0.0038493468295094
731 => 0.0038537391074625
801 => 0.0038448428555546
802 => 0.0038469382449279
803 => 0.0037732810787696
804 => 0.0037788810731377
805 => 0.0037476995928834
806 => 0.0037418534412341
807 => 0.0036630293744335
808 => 0.003523381114365
809 => 0.0036007598064275
810 => 0.0035072972275066
811 => 0.00347190153268
812 => 0.0036394592468289
813 => 0.0036226410996559
814 => 0.0035938557423686
815 => 0.0035512761995466
816 => 0.0035354830329267
817 => 0.0034395287520534
818 => 0.0034338592612432
819 => 0.0034814167938275
820 => 0.0034594706288946
821 => 0.0034286499016663
822 => 0.003317020351892
823 => 0.003191511778672
824 => 0.0031953000935787
825 => 0.00323522203555
826 => 0.0033513004660388
827 => 0.0033059466150696
828 => 0.003273041875816
829 => 0.0032668798072666
830 => 0.0033440109963264
831 => 0.0034531677883297
901 => 0.0035043817128921
902 => 0.0034536302690408
903 => 0.0033953297429962
904 => 0.0033988782258779
905 => 0.0034224846927416
906 => 0.0034249653986315
907 => 0.0033870177495673
908 => 0.0033976997904993
909 => 0.0033814727935374
910 => 0.003281887743135
911 => 0.0032800865653608
912 => 0.0032556467879662
913 => 0.0032549067612197
914 => 0.0032133286030833
915 => 0.0032075115313438
916 => 0.0031249555747501
917 => 0.0031792941553825
918 => 0.0031428466883978
919 => 0.0030879117585636
920 => 0.0030784409559539
921 => 0.0030781562521912
922 => 0.0031345621419054
923 => 0.0031786350197201
924 => 0.0031434807076905
925 => 0.0031354767522791
926 => 0.0032209380560182
927 => 0.0032100623261203
928 => 0.0032006440141697
929 => 0.003443393994848
930 => 0.0032512384431239
1001 => 0.0031674476547167
1002 => 0.0030637406426237
1003 => 0.0030975081686974
1004 => 0.0031046234825892
1005 => 0.0028552268130996
1006 => 0.002754046615348
1007 => 0.0027193253843749
1008 => 0.0026993428250638
1009 => 0.0027084491282671
1010 => 0.0026173750830371
1011 => 0.0026785783476573
1012 => 0.0025997159227856
1013 => 0.0025864943806153
1014 => 0.0027275101654657
1015 => 0.0027471316881254
1016 => 0.00266342017653
1017 => 0.0027171765186369
1018 => 0.0026976837217199
1019 => 0.0026010677927112
1020 => 0.0025973777748817
1021 => 0.0025488992979192
1022 => 0.0024730398687558
1023 => 0.0024383700740479
1024 => 0.0024203137439471
1025 => 0.0024277641376575
1026 => 0.0024239969906117
1027 => 0.0023994138079413
1028 => 0.0024254060698664
1029 => 0.002359006581392
1030 => 0.0023325657700645
1031 => 0.00232062306901
1101 => 0.0022616897011771
1102 => 0.0023554788971869
1103 => 0.002373956550326
1104 => 0.0023924706101498
1105 => 0.0025536228608307
1106 => 0.0025455721497982
1107 => 0.0026183466566765
1108 => 0.0026155187731629
1109 => 0.0025947623049324
1110 => 0.002507194179741
1111 => 0.0025420972736905
1112 => 0.002434670975659
1113 => 0.0025151620624224
1114 => 0.0024784292918117
1115 => 0.0025027426757291
1116 => 0.0024590250191962
1117 => 0.0024832201753793
1118 => 0.002378338287361
1119 => 0.0022804010560575
1120 => 0.0023198138569001
1121 => 0.0023626600788164
1122 => 0.0024555616049453
1123 => 0.0024002302224039
1124 => 0.002420129479877
1125 => 0.0023534702984375
1126 => 0.0022159333668741
1127 => 0.0022167118109703
1128 => 0.0021955547504542
1129 => 0.0021772719611869
1130 => 0.0024065856972924
1201 => 0.002378066909294
1202 => 0.0023326259530651
1203 => 0.0023934504787292
1204 => 0.0024095334487298
1205 => 0.0024099913082758
1206 => 0.002454367312092
1207 => 0.0024780507932836
1208 => 0.0024822251094937
1209 => 0.0025520517103056
1210 => 0.0025754566658627
1211 => 0.0026718583654088
1212 => 0.0024760414153718
1213 => 0.0024720086941467
1214 => 0.0023943064045408
1215 => 0.0023450263840482
1216 => 0.0023976806497049
1217 => 0.0024443251410526
1218 => 0.002395755778908
1219 => 0.0024020979122489
1220 => 0.0023368975118325
1221 => 0.0023602035870174
1222 => 0.002380277918634
1223 => 0.00236919405263
1224 => 0.0023526009687568
1225 => 0.0024405008246889
1226 => 0.0024355411703349
1227 => 0.0025173955369878
1228 => 0.0025812068692557
1229 => 0.0026955681843198
1230 => 0.0025762261902602
1231 => 0.0025718768936552
]
'min_raw' => 0.0021772719611869
'max_raw' => 0.006295133543511
'avg_raw' => 0.0042362027523489
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.002177'
'max' => '$0.006295'
'avg' => '$0.004236'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00038284741690627
'max_diff' => -0.0021264993262428
'year' => 2030
]
5 => [
'items' => [
101 => 0.0026143919656182
102 => 0.0025754501570267
103 => 0.0026000600358309
104 => 0.0026916031523772
105 => 0.002693537314178
106 => 0.0026611376119868
107 => 0.0026591660871639
108 => 0.0026653888043837
109 => 0.0027018354535027
110 => 0.0026890998744081
111 => 0.0027038378089618
112 => 0.0027222678217964
113 => 0.002798502169044
114 => 0.0028168820120752
115 => 0.0027722285223654
116 => 0.0027762602325222
117 => 0.0027595586016051
118 => 0.0027434250354099
119 => 0.0027796909360985
120 => 0.0028459675824151
121 => 0.0028455552788381
122 => 0.0028609301725496
123 => 0.0028705086039594
124 => 0.0028293909645083
125 => 0.0028026248931631
126 => 0.0028128887080862
127 => 0.0028293007716651
128 => 0.0028075664970638
129 => 0.0026734124859297
130 => 0.0027141062431164
131 => 0.0027073328120974
201 => 0.0026976866226491
202 => 0.0027386045101759
203 => 0.0027346578801041
204 => 0.002616440987067
205 => 0.0026240088490055
206 => 0.0026169012138171
207 => 0.0026398674371962
208 => 0.0025742099055955
209 => 0.0025944057201056
210 => 0.0026070723456424
211 => 0.0026145330853932
212 => 0.0026414863932501
213 => 0.002638323733667
214 => 0.0026412897978898
215 => 0.0026812544380322
216 => 0.0028833818736637
217 => 0.0028943832240161
218 => 0.0028402085513262
219 => 0.0028618502645176
220 => 0.0028203029077124
221 => 0.0028481939266789
222 => 0.0028672762535006
223 => 0.0027810468879135
224 => 0.0027759409445074
225 => 0.0027342221069814
226 => 0.0027566394471921
227 => 0.002720971847053
228 => 0.0027297234285275
301 => 0.0027052532437758
302 => 0.0027492947043636
303 => 0.0027985399006519
304 => 0.0028109811819861
305 => 0.0027782535271043
306 => 0.0027545565481124
307 => 0.0027129524592726
308 => 0.0027821409862207
309 => 0.0028023738199825
310 => 0.0027820347117583
311 => 0.0027773216959645
312 => 0.0027683905395514
313 => 0.0027792164830178
314 => 0.0028022636276246
315 => 0.002791395019842
316 => 0.0027985739267626
317 => 0.0027712153364378
318 => 0.0028294045761578
319 => 0.0029218230928364
320 => 0.0029221202334795
321 => 0.002911251567111
322 => 0.0029068043430017
323 => 0.0029179562542616
324 => 0.0029240057086447
325 => 0.0029600689447483
326 => 0.0029987662339102
327 => 0.0031793495974786
328 => 0.0031286425116046
329 => 0.0032888668147148
330 => 0.0034155834359532
331 => 0.0034535802100163
401 => 0.0034186249657646
402 => 0.0032990449634248
403 => 0.0032931777980235
404 => 0.0034718808068939
405 => 0.0034213890217717
406 => 0.0034153831845949
407 => 0.0033514912240562
408 => 0.0033892592859078
409 => 0.0033809988567568
410 => 0.003367959365228
411 => 0.0034400181962949
412 => 0.0035749058953158
413 => 0.0035538823824546
414 => 0.0035381893053564
415 => 0.003469426809698
416 => 0.0035108371907438
417 => 0.003496091747217
418 => 0.0035594475302978
419 => 0.0035219169679031
420 => 0.0034210064968393
421 => 0.0034370768219615
422 => 0.0034346478246483
423 => 0.0034846364172335
424 => 0.0034696310825326
425 => 0.0034317177922209
426 => 0.0035744448638248
427 => 0.0035651769616845
428 => 0.003578316727982
429 => 0.0035841012594669
430 => 0.0036709767128191
501 => 0.003706566806353
502 => 0.0037146463806775
503 => 0.0037484542168982
504 => 0.0037138052109141
505 => 0.0038524259391728
506 => 0.0039446006347211
507 => 0.004051666286867
508 => 0.0042081179811863
509 => 0.0042669452655095
510 => 0.0042563186431391
511 => 0.0043749385322135
512 => 0.0045880958361083
513 => 0.0042994038286568
514 => 0.0046033972135022
515 => 0.0045071564176325
516 => 0.0042789712219236
517 => 0.0042642787854467
518 => 0.0044188084492653
519 => 0.0047615403706862
520 => 0.0046756899116036
521 => 0.0047616807912822
522 => 0.0046613678624626
523 => 0.0046563864800429
524 => 0.0047568088162321
525 => 0.0049914510784746
526 => 0.0048799813351169
527 => 0.0047201621245111
528 => 0.0048381701425601
529 => 0.0047359406761996
530 => 0.0045055890762634
531 => 0.0046756242633755
601 => 0.0045619265760769
602 => 0.0045951096057321
603 => 0.0048340852331791
604 => 0.0048053310534336
605 => 0.0048425416245896
606 => 0.0047768659404694
607 => 0.0047155144953964
608 => 0.0046009974671494
609 => 0.0045670946207067
610 => 0.0045764641477668
611 => 0.0045670899776344
612 => 0.0045030187527961
613 => 0.0044891825778925
614 => 0.0044661216802098
615 => 0.0044732692166856
616 => 0.0044299079823386
617 => 0.0045117395904396
618 => 0.0045269282580008
619 => 0.0045864784781869
620 => 0.0045926611795969
621 => 0.0047585076951708
622 => 0.0046671622213302
623 => 0.0047284446515713
624 => 0.0047229629741979
625 => 0.0042839166870326
626 => 0.0043444133916658
627 => 0.0044385272791633
628 => 0.004396129100414
629 => 0.0043361879953085
630 => 0.004287782339097
701 => 0.0042144428202042
702 => 0.0043176667846851
703 => 0.0044533953213328
704 => 0.0045961034792724
705 => 0.004767557980428
706 => 0.0047292913317205
707 => 0.0045928982566346
708 => 0.0045990167503478
709 => 0.0046368388709439
710 => 0.0045878557882699
711 => 0.0045734097209259
712 => 0.0046348542031253
713 => 0.0046352773375049
714 => 0.0045789163810852
715 => 0.0045162814919707
716 => 0.0045160190494983
717 => 0.0045048737759617
718 => 0.0046633505818654
719 => 0.0047504968013001
720 => 0.0047604879749152
721 => 0.0047498243157103
722 => 0.0047539283349128
723 => 0.0047032198699596
724 => 0.0048191243837144
725 => 0.0049254898273041
726 => 0.0048969816162558
727 => 0.0048542437552134
728 => 0.0048202009903588
729 => 0.0048889622227507
730 => 0.0048859003933125
731 => 0.0049245608179456
801 => 0.0049228069577708
802 => 0.0049098069110588
803 => 0.0048969820805284
804 => 0.0049478310839282
805 => 0.0049331873875591
806 => 0.0049185209454848
807 => 0.0048891051505849
808 => 0.0048931032456564
809 => 0.0048503727639082
810 => 0.0048306036878377
811 => 0.0045333242163833
812 => 0.0044538814277237
813 => 0.004478875746243
814 => 0.0044871045248768
815 => 0.0044525309214435
816 => 0.0045021005875369
817 => 0.0044943752075835
818 => 0.004524430141786
819 => 0.0045056531237298
820 => 0.0045064237391005
821 => 0.0045616429455215
822 => 0.0045776733160648
823 => 0.0045695201402255
824 => 0.0045752303451088
825 => 0.0047068196065179
826 => 0.0046881118215332
827 => 0.0046781736836201
828 => 0.0046809266157405
829 => 0.0047145504933361
830 => 0.0047239633432672
831 => 0.0046840804366799
901 => 0.0047028894459868
902 => 0.004782975820397
903 => 0.0048110015189444
904 => 0.0049004460956091
905 => 0.0048624484496914
906 => 0.004932194773273
907 => 0.005146571193689
908 => 0.0053178299120373
909 => 0.0051603333170784
910 => 0.0054748281436587
911 => 0.005719707477755
912 => 0.0057103086010445
913 => 0.0056676082249837
914 => 0.0053888196135691
915 => 0.0051322741768413
916 => 0.0053468853281587
917 => 0.0053474324161186
918 => 0.0053289971278913
919 => 0.0052144971360116
920 => 0.005325012776367
921 => 0.0053337851065645
922 => 0.0053288749344048
923 => 0.0052410880590901
924 => 0.0051070537262111
925 => 0.0051332437140228
926 => 0.0051761434483196
927 => 0.0050949253014736
928 => 0.0050689711823752
929 => 0.0051172248277523
930 => 0.0052727081272034
1001 => 0.0052433149100956
1002 => 0.0052425473344096
1003 => 0.0053683039818606
1004 => 0.0052782893622688
1005 => 0.005133574053641
1006 => 0.0050970315296521
1007 => 0.0049673301874852
1008 => 0.0050569153665002
1009 => 0.0050601393776075
1010 => 0.0050110744905993
1011 => 0.0051375553988097
1012 => 0.005136389854974
1013 => 0.005256464653121
1014 => 0.0054860025691432
1015 => 0.0054181169125006
1016 => 0.0053391732797636
1017 => 0.0053477566415117
1018 => 0.0054418949343453
1019 => 0.0053849767735299
1020 => 0.0054054449410066
1021 => 0.0054418639533224
1022 => 0.0054638364476858
1023 => 0.0053445951377103
1024 => 0.0053167942843838
1025 => 0.0052599234952514
1026 => 0.0052450869679104
1027 => 0.0052914070390107
1028 => 0.005279203336788
1029 => 0.005059868411958
1030 => 0.0050369466919452
1031 => 0.0050376496683733
1101 => 0.0049800119135329
1102 => 0.0048921005027551
1103 => 0.0051231264413616
1104 => 0.0051045718252856
1105 => 0.0050840889651508
1106 => 0.0050865979986438
1107 => 0.0051868785283973
1108 => 0.0051287107568521
1109 => 0.0052833593110153
1110 => 0.0052515682174404
1111 => 0.0052189618022741
1112 => 0.0052144546024824
1113 => 0.005201903914492
1114 => 0.0051588629354676
1115 => 0.0051068883669337
1116 => 0.0050725702548276
1117 => 0.0046791779250293
1118 => 0.004752189253182
1119 => 0.0048361821310297
1120 => 0.0048651761358823
1121 => 0.0048155798842578
1122 => 0.0051608212977744
1123 => 0.005223900230853
1124 => 0.0050328300280211
1125 => 0.0049970885944162
1126 => 0.0051631645002113
1127 => 0.0050630004270631
1128 => 0.0051081043030686
1129 => 0.0050106143936458
1130 => 0.0052087063630411
1201 => 0.0052071972341291
1202 => 0.0051301349839243
1203 => 0.0051952674700979
1204 => 0.0051839490977935
1205 => 0.0050969460071082
1206 => 0.0052114645162004
1207 => 0.0052115213159522
1208 => 0.0051373505756079
1209 => 0.0050507353889485
1210 => 0.0050352506393332
1211 => 0.0050235849605815
1212 => 0.0051052352612148
1213 => 0.0051784426654486
1214 => 0.0053146634950733
1215 => 0.005348912648168
1216 => 0.0054825893727919
1217 => 0.00540299139188
1218 => 0.0054382761458518
1219 => 0.0054765827376214
1220 => 0.0054949483263941
1221 => 0.0054650225850409
1222 => 0.0056726775619168
1223 => 0.0056902100043492
1224 => 0.0056960884806418
1225 => 0.0056260683907968
1226 => 0.0056882626189852
1227 => 0.0056591639992722
1228 => 0.0057348705239361
1229 => 0.0057467422736729
1230 => 0.0057366873239956
1231 => 0.0057404556047449
]
'min_raw' => 0.0025742099055955
'max_raw' => 0.0057467422736729
'avg_raw' => 0.0041604760896342
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.002574'
'max' => '$0.005746'
'avg' => '$0.00416'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00039693794440861
'max_diff' => -0.00054839126983812
'year' => 2031
]
6 => [
'items' => [
101 => 0.0055632587148294
102 => 0.0055540701212992
103 => 0.0054287829965224
104 => 0.0054798384259446
105 => 0.0053843927477902
106 => 0.0054146595555324
107 => 0.0054280008759924
108 => 0.0054210321272974
109 => 0.0054827250233212
110 => 0.005430273458675
111 => 0.0052918451557379
112 => 0.0051533791381023
113 => 0.0051516408100429
114 => 0.0051151851517276
115 => 0.0050888343879526
116 => 0.0050939104798992
117 => 0.0051117992900043
118 => 0.0050877946577892
119 => 0.005092917263138
120 => 0.0051779866436695
121 => 0.005195046701248
122 => 0.0051370699598014
123 => 0.0049042849768894
124 => 0.0048471589581859
125 => 0.0048882200075718
126 => 0.0048685954706356
127 => 0.0039293365230999
128 => 0.0041500014805985
129 => 0.0040188898559267
130 => 0.0040793121247313
131 => 0.003945481107132
201 => 0.004009352283415
202 => 0.0039975576093574
203 => 0.0043523803310644
204 => 0.0043468402623076
205 => 0.0043494920000476
206 => 0.004222917648654
207 => 0.0044245540272921
208 => 0.0045238873580189
209 => 0.0045055034021723
210 => 0.0045101302477921
211 => 0.0044306257105712
212 => 0.0043502617777562
213 => 0.0042611258083438
214 => 0.0044267294219732
215 => 0.0044083171270856
216 => 0.0044505483070232
217 => 0.0045579540880527
218 => 0.0045737699973042
219 => 0.0045950267397273
220 => 0.0045874077107266
221 => 0.0047689238921417
222 => 0.00474694108489
223 => 0.0047999133254814
224 => 0.0046909454075714
225 => 0.0045676378651266
226 => 0.0045910745977181
227 => 0.0045888174519033
228 => 0.0045600813950487
229 => 0.0045341397677964
301 => 0.0044909542674293
302 => 0.0046275995808421
303 => 0.0046220520306612
304 => 0.0047118604197685
305 => 0.0046959859146417
306 => 0.0045899720842541
307 => 0.0045937583889461
308 => 0.0046192231076363
309 => 0.0047073567897742
310 => 0.0047335208672313
311 => 0.004721400624095
312 => 0.0047500883405912
313 => 0.0047727619420174
314 => 0.0047529357958414
315 => 0.0050336322160515
316 => 0.0049170674922942
317 => 0.0049738803276014
318 => 0.0049874298540615
319 => 0.0049527230269497
320 => 0.004960249694992
321 => 0.0049716505461817
322 => 0.00504087428209
323 => 0.0052225373951628
324 => 0.0053029947513201
325 => 0.0055450546770155
326 => 0.0052963138879117
327 => 0.005281554638878
328 => 0.0053251569410052
329 => 0.0054672717420337
330 => 0.0055824424401028
331 => 0.0056206512050093
401 => 0.0056257011240497
402 => 0.0056973833070849
403 => 0.0057384701976071
404 => 0.0056886792046359
405 => 0.005646486551427
406 => 0.0054953577047776
407 => 0.0055128512802874
408 => 0.0056333646680062
409 => 0.005803596926362
410 => 0.0059496739136791
411 => 0.0058985228440177
412 => 0.006288769398507
413 => 0.0063274607503704
414 => 0.006322114856584
415 => 0.006410259514174
416 => 0.0062353103192053
417 => 0.0061605161488751
418 => 0.0056556090819577
419 => 0.0057974673728699
420 => 0.006003666729756
421 => 0.0059763754716642
422 => 0.0058266279869689
423 => 0.0059495603167838
424 => 0.0059089150440976
425 => 0.0058768564311561
426 => 0.0060237231519091
427 => 0.0058622371594888
428 => 0.0060020557834513
429 => 0.005822736951981
430 => 0.0058987564977952
501 => 0.0058556041269394
502 => 0.0058835289994388
503 => 0.005720280765406
504 => 0.0058083655498632
505 => 0.0057166161487767
506 => 0.0057165726476145
507 => 0.0057145472745003
508 => 0.0058224900379994
509 => 0.0058260100476419
510 => 0.0057462401823235
511 => 0.0057347440984917
512 => 0.0057772511457595
513 => 0.0057274865260222
514 => 0.0057507710783825
515 => 0.0057281917913928
516 => 0.0057231087182989
517 => 0.0056826059270729
518 => 0.0056651562109653
519 => 0.0056719986942749
520 => 0.0056486417711974
521 => 0.0056345683801864
522 => 0.0057117477228061
523 => 0.0056705139134502
524 => 0.0057054280501462
525 => 0.0056656389848657
526 => 0.0055277127493331
527 => 0.0054483899127348
528 => 0.0051878600395825
529 => 0.0052617459884222
530 => 0.0053107324489435
531 => 0.0052945424240334
601 => 0.0053293248622481
602 => 0.0053314602214633
603 => 0.0053201520962347
604 => 0.0053070587358805
605 => 0.0053006856121684
606 => 0.0053481856549165
607 => 0.0053757610285097
608 => 0.0053156488956111
609 => 0.005301565463931
610 => 0.0053623421491734
611 => 0.0053994158920616
612 => 0.0056731475796119
613 => 0.0056528686520565
614 => 0.0057037647806821
615 => 0.0056980346576636
616 => 0.0057513819088523
617 => 0.0058385821183154
618 => 0.0056612797109149
619 => 0.0056920532781837
620 => 0.0056845083101548
621 => 0.005766882292697
622 => 0.005767139455279
623 => 0.0057177521378594
624 => 0.0057445258038503
625 => 0.0057295814779913
626 => 0.0057565878946653
627 => 0.0056525978146155
628 => 0.0057792465070807
629 => 0.005851048154647
630 => 0.0058520451205931
701 => 0.0058860785316864
702 => 0.0059206584484395
703 => 0.0059870315873709
704 => 0.0059188073376188
705 => 0.0057960785538114
706 => 0.0058049391755908
707 => 0.0057329833345493
708 => 0.005734192925237
709 => 0.0057277360353483
710 => 0.0057471136479565
711 => 0.0056568501108853
712 => 0.0056780347826197
713 => 0.0056483761181343
714 => 0.0056919888060393
715 => 0.0056450687632891
716 => 0.0056845046717428
717 => 0.0057015239025104
718 => 0.0057643252304405
719 => 0.0056357929560916
720 => 0.0053737069478242
721 => 0.0054288006042477
722 => 0.005347312758884
723 => 0.0053548547692185
724 => 0.0053700908303963
725 => 0.0053207057711901
726 => 0.0053301268841846
727 => 0.0053297902957331
728 => 0.0053268897582977
729 => 0.0053140427970567
730 => 0.0052954121615634
731 => 0.0053696308791614
801 => 0.005382242085528
802 => 0.0054102752350828
803 => 0.0054936828730911
804 => 0.0054853484831665
805 => 0.005498942218924
806 => 0.0054692671700909
807 => 0.0053562313096238
808 => 0.0053623697006791
809 => 0.0052858238658585
810 => 0.0054083177859879
811 => 0.0053793096088605
812 => 0.0053606078483571
813 => 0.0053555048997332
814 => 0.0054391192891432
815 => 0.0054641380249497
816 => 0.00544854802774
817 => 0.0054165724886301
818 => 0.0054779749764407
819 => 0.0054944036918158
820 => 0.0054980814753206
821 => 0.0056068749109617
822 => 0.0055041618198286
823 => 0.0055288858817446
824 => 0.005721775955019
825 => 0.0055468512755698
826 => 0.0056395127795599
827 => 0.0056349774811268
828 => 0.0056823799710738
829 => 0.0056310890933761
830 => 0.0056317249052767
831 => 0.0056738151050269
901 => 0.0056147070104853
902 => 0.0056000710150378
903 => 0.0055798514921521
904 => 0.0056240000806566
905 => 0.0056504651627962
906 => 0.00586375428838
907 => 0.0060015487906729
908 => 0.0059955667679213
909 => 0.0060502312579943
910 => 0.006025604404547
911 => 0.0059460777985302
912 => 0.0060818200177645
913 => 0.0060388654999031
914 => 0.0060424066181658
915 => 0.0060422748175672
916 => 0.006070835816796
917 => 0.0060505977312653
918 => 0.0060107063872874
919 => 0.006037188123071
920 => 0.0061158294109544
921 => 0.0063599343815538
922 => 0.006496538757062
923 => 0.0063517106266227
924 => 0.0064516111316738
925 => 0.0063917064268327
926 => 0.0063808199599525
927 => 0.0064435648597139
928 => 0.0065064195861163
929 => 0.0065024160117729
930 => 0.0064567867080307
1001 => 0.0064310118721475
1002 => 0.006626187564659
1003 => 0.0067699896901703
1004 => 0.0067601833492721
1005 => 0.0068034653488038
1006 => 0.0069305426380907
1007 => 0.0069421609928386
1008 => 0.0069406973471852
1009 => 0.0069119000426925
1010 => 0.0070370241370667
1011 => 0.0071414048579427
1012 => 0.0069052342987365
1013 => 0.0069951649559826
1014 => 0.0070355377254052
1015 => 0.0070948169289784
1016 => 0.0071948308817546
1017 => 0.0073034725618604
1018 => 0.0073188356866227
1019 => 0.0073079348144106
1020 => 0.0072362827059358
1021 => 0.0073551597286723
1022 => 0.0074247951005821
1023 => 0.0074662613709773
1024 => 0.0075714129333699
1025 => 0.0070357870538846
1026 => 0.0066566444340514
1027 => 0.0065974358390786
1028 => 0.0067178388452187
1029 => 0.0067495881577419
1030 => 0.0067367900496741
1031 => 0.0063100305609128
1101 => 0.0065951890386902
1102 => 0.0069019955839728
1103 => 0.0069137812728861
1104 => 0.0070673750444769
1105 => 0.0071173914725283
1106 => 0.0072410545906547
1107 => 0.0072333194289461
1108 => 0.0072634294302999
1109 => 0.0072565076624212
1110 => 0.0074855675484087
1111 => 0.0077382546183752
1112 => 0.0077295048686379
1113 => 0.0076931781126725
1114 => 0.0077471295399134
1115 => 0.0080079296757109
1116 => 0.0079839193784437
1117 => 0.0080072433370465
1118 => 0.0083147413952033
1119 => 0.0087145326118958
1120 => 0.0085287894533603
1121 => 0.0089317986612284
1122 => 0.0091854715949812
1123 => 0.0096241727036358
1124 => 0.0095692451641837
1125 => 0.0097400282864455
1126 => 0.0094709134048411
1127 => 0.0088529712395864
1128 => 0.0087551795265472
1129 => 0.0089509610125322
1130 => 0.0094322706917481
1201 => 0.008935802857898
1202 => 0.0090362376540848
1203 => 0.0090073124260264
1204 => 0.0090057711235474
1205 => 0.0090645963702379
1206 => 0.0089792672817948
1207 => 0.008631621225068
1208 => 0.0087909453641749
1209 => 0.0087294226626921
1210 => 0.0087976866868084
1211 => 0.009166079470739
1212 => 0.0090032042395762
1213 => 0.0088316284144555
1214 => 0.0090468225748804
1215 => 0.0093208386898377
1216 => 0.009303691253818
1217 => 0.0092704180608675
1218 => 0.0094579773074016
1219 => 0.0097677702329731
1220 => 0.0098515060159062
1221 => 0.0099133180589648
1222 => 0.0099218408953795
1223 => 0.010009631407365
1224 => 0.0095375596983625
1225 => 0.01028674962421
1226 => 0.01041611402845
1227 => 0.010391798882058
1228 => 0.010535581972885
1229 => 0.010493277340139
1230 => 0.010431984564683
1231 => 0.010659911347183
]
'min_raw' => 0.0039293365230999
'max_raw' => 0.010659911347183
'avg_raw' => 0.0072946239351416
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.003929'
'max' => '$0.010659'
'avg' => '$0.007294'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0013551266175044
'max_diff' => 0.0049131690735104
'year' => 2032
]
7 => [
'items' => [
101 => 0.01039861168379
102 => 0.010027729708315
103 => 0.0098242565213565
104 => 0.010092206427658
105 => 0.010255834085273
106 => 0.010363981558283
107 => 0.010396706918271
108 => 0.0095742052813166
109 => 0.0091309225170301
110 => 0.0094150616866905
111 => 0.0097617310839142
112 => 0.0095356339323572
113 => 0.0095444965126397
114 => 0.0092221413918057
115 => 0.0097902523593037
116 => 0.0097074833699046
117 => 0.010136889033323
118 => 0.010034407925553
119 => 0.010384571574639
120 => 0.010292361750572
121 => 0.010675119574889
122 => 0.010827812033763
123 => 0.011084206436897
124 => 0.011272811203555
125 => 0.011383563529971
126 => 0.011376914375715
127 => 0.011815770269564
128 => 0.011556992281418
129 => 0.011231906139018
130 => 0.011226026356335
131 => 0.011394393075991
201 => 0.011747243531235
202 => 0.011838732520514
203 => 0.011889862384364
204 => 0.011811555218035
205 => 0.011530670258688
206 => 0.011409385557361
207 => 0.011512723636847
208 => 0.011386350045578
209 => 0.011604506318276
210 => 0.011904081476357
211 => 0.011842220390862
212 => 0.01204901272494
213 => 0.012263021035523
214 => 0.012569062531371
215 => 0.01264907311107
216 => 0.012781327556781
217 => 0.012917460824741
218 => 0.012961183161515
219 => 0.013044662668661
220 => 0.013044222690452
221 => 0.013295793804056
222 => 0.01357328453287
223 => 0.013678030859072
224 => 0.013918889260428
225 => 0.013506427688791
226 => 0.013819284528895
227 => 0.014101489229983
228 => 0.013765033151412
301 => 0.01422875947151
302 => 0.014246764913693
303 => 0.014518625713611
304 => 0.014243042710667
305 => 0.014079402403211
306 => 0.014551825839314
307 => 0.014780416658845
308 => 0.014711563243669
309 => 0.014187585354462
310 => 0.013882607748475
311 => 0.01308442252782
312 => 0.014029907400721
313 => 0.01449042550214
314 => 0.014186392723832
315 => 0.01433972917268
316 => 0.015176283118082
317 => 0.015494788697635
318 => 0.01542854176361
319 => 0.015439736404943
320 => 0.015611596234384
321 => 0.016373717363064
322 => 0.01591703671693
323 => 0.016266151959402
324 => 0.01645132142518
325 => 0.016623317144602
326 => 0.016200950017508
327 => 0.015651456590964
328 => 0.015477408956612
329 => 0.014156162655861
330 => 0.014087386048025
331 => 0.014048779653902
401 => 0.01380537179994
402 => 0.013614119901749
403 => 0.013462029291579
404 => 0.013062898112394
405 => 0.01319759316875
406 => 0.01256146137428
407 => 0.012968435953255
408 => 0.011953154249341
409 => 0.01279871102162
410 => 0.012338512913217
411 => 0.012647523566021
412 => 0.012646445456964
413 => 0.012077458873236
414 => 0.011749279286188
415 => 0.011958408091995
416 => 0.012182610772486
417 => 0.012218986903087
418 => 0.012509671530632
419 => 0.012590795361935
420 => 0.012344986365778
421 => 0.011932114792707
422 => 0.012028015442533
423 => 0.01174733586258
424 => 0.011255455694897
425 => 0.011608732618731
426 => 0.011729356893018
427 => 0.011782631444356
428 => 0.011298923792258
429 => 0.011146932346165
430 => 0.011066013375597
501 => 0.011869674208961
502 => 0.011913700563575
503 => 0.011688455508673
504 => 0.012706584515441
505 => 0.012476150564593
506 => 0.012733601745379
507 => 0.012019313463744
508 => 0.01204660023802
509 => 0.011708444718516
510 => 0.011897789213878
511 => 0.011763966627414
512 => 0.011882492049792
513 => 0.011953535699266
514 => 0.012291635730776
515 => 0.012802571580882
516 => 0.012241134860711
517 => 0.011996508841811
518 => 0.012148273448108
519 => 0.012552442593982
520 => 0.01316477953902
521 => 0.012802263743128
522 => 0.012963142097427
523 => 0.012998286860862
524 => 0.012730981134035
525 => 0.013174635482449
526 => 0.013412393452005
527 => 0.01365628393169
528 => 0.013868047201544
529 => 0.013558868710837
530 => 0.01388973401489
531 => 0.013623114985412
601 => 0.013383930153402
602 => 0.013384292898061
603 => 0.013234248759008
604 => 0.012943519332815
605 => 0.012889904366035
606 => 0.013168816194047
607 => 0.013392477067064
608 => 0.013410898847829
609 => 0.013534728999241
610 => 0.013608010407295
611 => 0.014326267827469
612 => 0.0146151569036
613 => 0.014968404997502
614 => 0.015106015038049
615 => 0.015520171924164
616 => 0.015185706602448
617 => 0.015113342926209
618 => 0.014108733790178
619 => 0.014273238479924
620 => 0.014536626360549
621 => 0.014113076959318
622 => 0.014381721566765
623 => 0.014434757702946
624 => 0.014098684912737
625 => 0.014278195910836
626 => 0.013801467921187
627 => 0.012812962948309
628 => 0.013175735971063
629 => 0.013442859023888
630 => 0.013061641491471
701 => 0.013744959163173
702 => 0.013345779085905
703 => 0.013219258165434
704 => 0.012725654946711
705 => 0.012958616665418
706 => 0.013273700725659
707 => 0.013079015408884
708 => 0.013483016673341
709 => 0.014055190207014
710 => 0.014462955140632
711 => 0.014494258268998
712 => 0.01423209273481
713 => 0.014652214676464
714 => 0.014655274806152
715 => 0.014181375539717
716 => 0.013891114877709
717 => 0.013825167044586
718 => 0.01398991766156
719 => 0.014189955325207
720 => 0.014505358967139
721 => 0.01469595078229
722 => 0.015192913154114
723 => 0.015327376922902
724 => 0.015475111837932
725 => 0.015672531244173
726 => 0.015909583858662
727 => 0.015390926233573
728 => 0.015411533467916
729 => 0.014928566668736
730 => 0.014412447379368
731 => 0.014804117584821
801 => 0.015316174276747
802 => 0.015198707905847
803 => 0.0151854905395
804 => 0.015207718483503
805 => 0.015119152675938
806 => 0.01471857281072
807 => 0.01451740411017
808 => 0.014776963057488
809 => 0.014914907086348
810 => 0.015128846245126
811 => 0.015102473728099
812 => 0.015653558025724
813 => 0.015867692719856
814 => 0.015812907901757
815 => 0.015822989626758
816 => 0.016210670262079
817 => 0.01664185086116
818 => 0.01704570839149
819 => 0.017456529617427
820 => 0.016961268594935
821 => 0.016709805591167
822 => 0.016969251223168
823 => 0.016831585718867
824 => 0.017622652540825
825 => 0.017677424291224
826 => 0.018468433910048
827 => 0.019219196229984
828 => 0.018747655868136
829 => 0.019192297190714
830 => 0.019673213033222
831 => 0.020600977719202
901 => 0.020288539212119
902 => 0.020049216212229
903 => 0.019823057133734
904 => 0.020293658274341
905 => 0.020899079123695
906 => 0.021029480975997
907 => 0.021240781794068
908 => 0.021018624820501
909 => 0.021286188425374
910 => 0.022230805523982
911 => 0.021975561645572
912 => 0.02161307430573
913 => 0.02235875878309
914 => 0.022628619096672
915 => 0.024522640104332
916 => 0.026913919864609
917 => 0.025923914341865
918 => 0.025309385966619
919 => 0.02545381471161
920 => 0.026327029130135
921 => 0.026607477886924
922 => 0.025845121489486
923 => 0.02611439865718
924 => 0.027598142325922
925 => 0.028394123200006
926 => 0.027313074258506
927 => 0.024330503103931
928 => 0.021580436286837
929 => 0.022309877843853
930 => 0.022227181808494
1001 => 0.023821279279765
1002 => 0.021969474163487
1003 => 0.022000653812426
1004 => 0.023627715531224
1005 => 0.023193643359549
1006 => 0.022490502033197
1007 => 0.021585569996662
1008 => 0.019912719431044
1009 => 0.018431029034187
1010 => 0.021336965115343
1011 => 0.021211655867422
1012 => 0.021030189506641
1013 => 0.021434023255847
1014 => 0.023394925311777
1015 => 0.023349720172567
1016 => 0.023062148140779
1017 => 0.023280268992347
1018 => 0.022452264393319
1019 => 0.022665660031803
1020 => 0.021580000662202
1021 => 0.022070764038402
1022 => 0.022488993407708
1023 => 0.022572959145588
1024 => 0.022762138240428
1025 => 0.021145623587863
1026 => 0.021871391208488
1027 => 0.022297711690375
1028 => 0.020371580243536
1029 => 0.022259638264656
1030 => 0.021117483664183
1031 => 0.020729819238196
1101 => 0.021251758316883
1102 => 0.021048358150316
1103 => 0.02087348663116
1104 => 0.020775905318797
1105 => 0.021159159773871
1106 => 0.021141280495454
1107 => 0.020514201820469
1108 => 0.019696203251948
1109 => 0.019970750421431
1110 => 0.019871004860864
1111 => 0.019509514081937
1112 => 0.019753115220371
1113 => 0.018680419090423
1114 => 0.01683490115274
1115 => 0.018054106832117
1116 => 0.018007168739701
1117 => 0.017983500425032
1118 => 0.018899699796714
1119 => 0.018811628367442
1120 => 0.018651777860917
1121 => 0.019506578302028
1122 => 0.019194564642334
1123 => 0.020156117221848
1124 => 0.020789457940037
1125 => 0.020628822247478
1126 => 0.021224482254136
1127 => 0.019977075433709
1128 => 0.02039141394218
1129 => 0.020476808534527
1130 => 0.019496030197272
1201 => 0.018826037942469
1202 => 0.018781357097544
1203 => 0.017619682858335
1204 => 0.018240239860214
1205 => 0.018786304341474
1206 => 0.018524781831266
1207 => 0.018441991617297
1208 => 0.018864948865458
1209 => 0.018897816266024
1210 => 0.018148436049989
1211 => 0.018304255926688
1212 => 0.018954050715421
1213 => 0.018287882765213
1214 => 0.016993627255876
1215 => 0.016672633995078
1216 => 0.016629807577008
1217 => 0.015759248395428
1218 => 0.016694084299654
1219 => 0.016286003375415
1220 => 0.017575126125526
1221 => 0.016838786124367
1222 => 0.016807043978621
1223 => 0.016759061069765
1224 => 0.016009734819832
1225 => 0.0161737896464
1226 => 0.016719132876167
1227 => 0.016913717484279
1228 => 0.016893420715469
1229 => 0.016716460396831
1230 => 0.01679747192452
1231 => 0.016536505567546
]
'min_raw' => 0.0091309225170301
'max_raw' => 0.028394123200006
'avg_raw' => 0.018762522858518
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.00913'
'max' => '$0.028394'
'avg' => '$0.018762'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0052015859939302
'max_diff' => 0.017734211852822
'year' => 2033
]
8 => [
'items' => [
101 => 0.016444352915353
102 => 0.01615349379645
103 => 0.015726011243544
104 => 0.015785455314428
105 => 0.014938500520228
106 => 0.014477034597054
107 => 0.014349306911542
108 => 0.014178504112369
109 => 0.014368599542198
110 => 0.01493610120371
111 => 0.014251573797733
112 => 0.0130779995742
113 => 0.013148533384707
114 => 0.013307001915241
115 => 0.013011696856965
116 => 0.012732215402382
117 => 0.012975201852095
118 => 0.012477942982628
119 => 0.013367093273934
120 => 0.013343044250369
121 => 0.013674464494283
122 => 0.01388170837423
123 => 0.013404078326954
124 => 0.013283955661713
125 => 0.013352382991105
126 => 0.012221431660017
127 => 0.013582041642412
128 => 0.01359380825404
129 => 0.013493055381562
130 => 0.014217538193067
131 => 0.015746422897198
201 => 0.015171194972259
202 => 0.014948449333366
203 => 0.014525009711006
204 => 0.015089217866444
205 => 0.015045895483125
206 => 0.014849975236229
207 => 0.014731482059598
208 => 0.01494980937074
209 => 0.014704428889626
210 => 0.014660351812613
211 => 0.014393292682249
212 => 0.014297964723125
213 => 0.014227387697305
214 => 0.014149689326633
215 => 0.014321072571108
216 => 0.013932695591783
217 => 0.013464351027781
218 => 0.013425413244843
219 => 0.01353292388698
220 => 0.013485358431061
221 => 0.01342518551974
222 => 0.013310299044911
223 => 0.01327621468199
224 => 0.0133869723261
225 => 0.013261933403472
226 => 0.013446435145032
227 => 0.013396260880275
228 => 0.013115991515986
301 => 0.012766672119074
302 => 0.01276356244372
303 => 0.012688302152654
304 => 0.01259244685652
305 => 0.012565782106008
306 => 0.012954738211044
307 => 0.013759865707992
308 => 0.013601799915273
309 => 0.013716018649747
310 => 0.01427786177692
311 => 0.014456454811836
312 => 0.014329693705861
313 => 0.014156175285717
314 => 0.014163809215582
315 => 0.014756774184812
316 => 0.014793756682597
317 => 0.014887199523494
318 => 0.015007299980991
319 => 0.014350147333101
320 => 0.014132857384963
321 => 0.014029893352748
322 => 0.013712803985621
323 => 0.01405475768288
324 => 0.013855515907404
325 => 0.013882400429984
326 => 0.013864891849385
327 => 0.013874452718317
328 => 0.013366844738306
329 => 0.013551790407132
330 => 0.013244282361907
331 => 0.012832563608748
401 => 0.01283118338312
402 => 0.012931950964674
403 => 0.01287201046413
404 => 0.012710712118377
405 => 0.012733623787084
406 => 0.012532893460415
407 => 0.012757996083082
408 => 0.012764451220844
409 => 0.012677774449695
410 => 0.013024576098088
411 => 0.013166661016398
412 => 0.013109608508831
413 => 0.013162658060377
414 => 0.013608368262585
415 => 0.013681038473244
416 => 0.013713313780495
417 => 0.013670069144438
418 => 0.013170804824671
419 => 0.013192949320289
420 => 0.013030467704552
421 => 0.012893187861144
422 => 0.012898678334943
423 => 0.012969258019584
424 => 0.013277483641859
425 => 0.013926126293042
426 => 0.013950741807503
427 => 0.013980576529115
428 => 0.01385922372259
429 => 0.013822622554953
430 => 0.01387090894263
501 => 0.014114505018404
502 => 0.014741100260984
503 => 0.014519619653367
504 => 0.014339552471824
505 => 0.014497519935801
506 => 0.014473202082912
507 => 0.014267934931903
508 => 0.014262173766637
509 => 0.013868200475973
510 => 0.013722557520753
511 => 0.013600847366184
512 => 0.013467943054719
513 => 0.01338915292389
514 => 0.013510210374318
515 => 0.01353789764554
516 => 0.013273203414458
517 => 0.01323712656884
518 => 0.013453281591764
519 => 0.013358159825247
520 => 0.013455994921016
521 => 0.013478693502448
522 => 0.013475038508045
523 => 0.013375720459136
524 => 0.013439022821804
525 => 0.013289293862751
526 => 0.013126486108344
527 => 0.013022624904314
528 => 0.012931992228609
529 => 0.012982280504692
530 => 0.012803011982731
531 => 0.012745660374593
601 => 0.01341757740568
602 => 0.01391392974087
603 => 0.013906712581339
604 => 0.013862779978798
605 => 0.013797505042826
606 => 0.014109729750265
607 => 0.014000956905323
608 => 0.014080098238294
609 => 0.014100243029086
610 => 0.014161215243591
611 => 0.014183007569538
612 => 0.014117136024783
613 => 0.013896063075055
614 => 0.013345170303318
615 => 0.013088728230967
616 => 0.013004098075711
617 => 0.013007174221119
618 => 0.012922320398248
619 => 0.012947313651965
620 => 0.012913628764573
621 => 0.012849837737102
622 => 0.012978341588504
623 => 0.012993150460282
624 => 0.012963156125858
625 => 0.012970220877426
626 => 0.012721880599144
627 => 0.012740761371135
628 => 0.012635630833436
629 => 0.012615920124985
630 => 0.012350159280446
701 => 0.011879325421695
702 => 0.012140213084392
703 => 0.011825097474211
704 => 0.011705758417855
705 => 0.012270690949614
706 => 0.012213987392215
707 => 0.012116935550391
708 => 0.011973375648958
709 => 0.011920127885055
710 => 0.011596611327777
711 => 0.011577496243679
712 => 0.011737839785148
713 => 0.011663846757845
714 => 0.01155993252416
715 => 0.011183565703369
716 => 0.010760404786029
717 => 0.010773177354229
718 => 0.010907776968846
719 => 0.011299143501577
720 => 0.011146229826529
721 => 0.0110352892008
722 => 0.011014513356464
723 => 0.011274566545507
724 => 0.011642596290829
725 => 0.011815267613134
726 => 0.011644155576836
727 => 0.011447591282864
728 => 0.011459555240647
729 => 0.011539146091829
730 => 0.011547509964934
731 => 0.011419566816694
801 => 0.011455582063492
802 => 0.011400871610303
803 => 0.011065113660065
804 => 0.011059040863445
805 => 0.010976640447628
806 => 0.010974145395785
807 => 0.010833961732734
808 => 0.010814349069229
809 => 0.010536005897701
810 => 0.010719212216102
811 => 0.010596327036482
812 => 0.010411110085111
813 => 0.010379178612883
814 => 0.010378218714269
815 => 0.010568395109574
816 => 0.010716989894196
817 => 0.010598464676793
818 => 0.010571478782305
819 => 0.010859617534579
820 => 0.010822949251909
821 => 0.010791194755602
822 => 0.011609643263721
823 => 0.010961777405211
824 => 0.010679270912011
825 => 0.010329615480147
826 => 0.010443465051877
827 => 0.010467454829439
828 => 0.0096265965459354
829 => 0.0092854604450401
830 => 0.0091683953906556
831 => 0.0091010227968004
901 => 0.009131725333832
902 => 0.0088246628317524
903 => 0.0090310139114949
904 => 0.0087651237400412
905 => 0.0087205463875155
906 => 0.0091959909515464
907 => 0.0092621462851244
908 => 0.0089799070792294
909 => 0.0091611503397909
910 => 0.0090954290140415
911 => 0.0087696816638797
912 => 0.0087572405111389
913 => 0.0085937919414007
914 => 0.0083380265796401
915 => 0.0082211349462146
916 => 0.008160256768627
917 => 0.0081853762911917
918 => 0.0081726750919129
919 => 0.0080897911751966
920 => 0.0081774259009986
921 => 0.0079535553897432
922 => 0.007864408348314
923 => 0.007824142697896
924 => 0.007625444733651
925 => 0.0079416615561506
926 => 0.0080039602537776
927 => 0.008066381699084
928 => 0.0086097177635452
929 => 0.0085825742292165
930 => 0.0088279385601107
1001 => 0.0088184041534082
1002 => 0.0087484222715985
1003 => 0.0084531802237045
1004 => 0.0085708584418116
1005 => 0.0082086631777334
1006 => 0.0084800444964647
1007 => 0.0083561973957506
1008 => 0.0084381716671343
1009 => 0.0082907745358643
1010 => 0.0083723501941875
1011 => 0.0080187335861143
1012 => 0.0076885313730155
1013 => 0.0078214143827699
1014 => 0.0079658734113885
1015 => 0.0082790973929095
1016 => 0.0080925437735574
1017 => 0.0081596355094497
1018 => 0.0079348894252312
1019 => 0.0074711740579432
1020 => 0.0074737986365627
1021 => 0.0074024661298938
1022 => 0.0073408244294155
1023 => 0.008113971700869
1024 => 0.0080178186160141
1025 => 0.0078646112595024
1026 => 0.0080696853944117
1027 => 0.0081239102506458
1028 => 0.0081254539560716
1029 => 0.0082750707511719
1030 => 0.0083549212615371
1031 => 0.0083689952600809
1101 => 0.0086044205198559
1102 => 0.0086833319615983
1103 => 0.0090083570221696
1104 => 0.0083481465036171
1105 => 0.0083345499024511
1106 => 0.0080725712080444
1107 => 0.0079064201783323
1108 => 0.0080839477111972
1109 => 0.0082412128703905
1110 => 0.0080774578749154
1111 => 0.0080988408202679
1112 => 0.0078790131181173
1113 => 0.0079575911777813
1114 => 0.0080252731883718
1115 => 0.0079879031602884
1116 => 0.0079319584195179
1117 => 0.0082283189207649
1118 => 0.0082115970998384
1119 => 0.0084875748118981
1120 => 0.0087027191738042
1121 => 0.0090882963319948
1122 => 0.0086859264668311
1123 => 0.0086712625096691
1124 => 0.0088146050430997
1125 => 0.0086833100166032
1126 => 0.0087662839411987
1127 => 0.0090749279499706
1128 => 0.0090814491115211
1129 => 0.0089722112535083
1130 => 0.0089655641199207
1201 => 0.0089865444454833
1202 => 0.0091094268676118
1203 => 0.0090664879735247
1204 => 0.0091161779488421
1205 => 0.0091783160238565
1206 => 0.0094353454481138
1207 => 0.0094973143721333
1208 => 0.0093467620139694
1209 => 0.0093603552062483
1210 => 0.0093040444915404
1211 => 0.0092496490467037
1212 => 0.0093719220628798
1213 => 0.0095953784032237
1214 => 0.0095939882929278
1215 => 0.0096458258205171
1216 => 0.0096781201707599
1217 => 0.0095394891786085
1218 => 0.0094492455003208
1219 => 0.0094838506689307
1220 => 0.0095391850871406
1221 => 0.0094659064628839
1222 => 0.0090135968480112
1223 => 0.0091507986915135
1224 => 0.0091279615959273
1225 => 0.0090954387947269
1226 => 0.009233396309319
1227 => 0.009220089970487
1228 => 0.0088215134619727
1229 => 0.0088470290368695
1230 => 0.0088230651485924
1231 => 0.0089004973741659
]
'min_raw' => 0.0073408244294155
'max_raw' => 0.016444352915353
'avg_raw' => 0.011892588672384
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.00734'
'max' => '$0.016444'
'avg' => '$0.011892'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0017900980876146
'max_diff' => -0.011949770284652
'year' => 2034
]
9 => [
'items' => [
101 => 0.0086791284223114
102 => 0.0087472200209592
103 => 0.008789926433312
104 => 0.0088150808382739
105 => 0.0089059557975333
106 => 0.0088952926699391
107 => 0.0089052929625504
108 => 0.0090400365370323
109 => 0.0097215232983511
110 => 0.0097586151191539
111 => 0.0095759614278248
112 => 0.009648927974826
113 => 0.0095088481606134
114 => 0.0096028846783475
115 => 0.0096672220755126
116 => 0.0093764937490935
117 => 0.0093592787044142
118 => 0.0092186207309791
119 => 0.0092942023586283
120 => 0.0091739465545271
121 => 0.0092034531224841
122 => 0.0091209501861401
123 => 0.0092694390453886
124 => 0.0094354726628644
125 => 0.009477419311505
126 => 0.0093670757380992
127 => 0.0092871797189575
128 => 0.0091469086287296
129 => 0.0093801825779238
130 => 0.0094483989895629
131 => 0.009379824266154
201 => 0.0093639340043529
202 => 0.0093338219869528
203 => 0.009370322411193
204 => 0.0094480274683349
205 => 0.0094113831983739
206 => 0.0094355873842721
207 => 0.0093433459868763
208 => 0.0095395350712353
209 => 0.0098511305526718
210 => 0.0098521323830956
211 => 0.0098154879156084
212 => 0.0098004937890286
213 => 0.0098380932364428
214 => 0.0098584893942549
215 => 0.0099800791126329
216 => 0.010110549724801
217 => 0.010719399142999
218 => 0.010548436662719
219 => 0.011088644087159
220 => 0.011515878022736
221 => 0.01164398679934
222 => 0.011526132752848
223 => 0.011122960426151
224 => 0.011103178868368
225 => 0.01170568853942
226 => 0.011535451960656
227 => 0.011515202861301
228 => 0.01129978665555
301 => 0.011427124312965
302 => 0.011399273699358
303 => 0.01135531014328
304 => 0.011598261523209
305 => 0.012053044818017
306 => 0.01198216257659
307 => 0.011929252271498
308 => 0.011697414716541
309 => 0.011837032707418
310 => 0.011787317415073
311 => 0.012000925861089
312 => 0.011874388949676
313 => 0.01153416225114
314 => 0.011588344474284
315 => 0.011580154940255
316 => 0.011748694970248
317 => 0.011698103436665
318 => 0.011570276131358
319 => 0.012051490418156
320 => 0.012020243039026
321 => 0.012064544678487
322 => 0.012084047630252
323 => 0.012376954286679
324 => 0.01249694877185
325 => 0.012524189620783
326 => 0.012638175100988
327 => 0.012521353558197
328 => 0.012988723021711
329 => 0.013299496443184
330 => 0.013660475764479
331 => 0.014187963574985
401 => 0.01438630387127
402 => 0.014350475472021
403 => 0.014750410709812
404 => 0.015469085442061
405 => 0.014495740183106
406 => 0.015520675104252
407 => 0.01519619254166
408 => 0.014426850222946
409 => 0.014377313647571
410 => 0.014898321198052
411 => 0.016053865799901
412 => 0.015764414983216
413 => 0.016054339237744
414 => 0.015716127194604
415 => 0.015699332115987
416 => 0.016037913033712
417 => 0.016829025803063
418 => 0.016453197780763
419 => 0.015914356153985
420 => 0.016312228425894
421 => 0.015967554642626
422 => 0.015190908140806
423 => 0.015764193645632
424 => 0.015380853954786
425 => 0.015492732856034
426 => 0.016298455868716
427 => 0.016201509144152
428 => 0.016326967182763
429 => 0.016105537028422
430 => 0.015898686347937
501 => 0.015512584191879
502 => 0.015398278378077
503 => 0.015429868392719
504 => 0.015398262723634
505 => 0.015182242115781
506 => 0.015135592486083
507 => 0.015057841059486
508 => 0.015081939477739
509 => 0.014935744048753
510 => 0.015211645028766
511 => 0.015262854681888
512 => 0.015463632406909
513 => 0.015484477816375
514 => 0.016043640922666
515 => 0.015735663280075
516 => 0.015942281272236
517 => 0.015923799414253
518 => 0.014443524203842
519 => 0.014647493067258
520 => 0.014964804609778
521 => 0.014821856189978
522 => 0.014619760569161
523 => 0.014456557519669
524 => 0.01420928821132
525 => 0.014557315014434
526 => 0.015014933252006
527 => 0.015496083770065
528 => 0.016074154591282
529 => 0.015945135913472
530 => 0.01548527713816
531 => 0.015505906066893
601 => 0.015633425987139
602 => 0.015468276104014
603 => 0.015419570179372
604 => 0.015626734541024
605 => 0.015628161168127
606 => 0.015438136268561
607 => 0.015226958366884
608 => 0.015226073523765
609 => 0.015188496455898
610 => 0.0157228120715
611 => 0.016016631634679
612 => 0.016050317574083
613 => 0.016014364302561
614 => 0.016028201289836
615 => 0.015857234159894
616 => 0.016248014320213
617 => 0.016606632839474
618 => 0.016510515415545
619 => 0.016366421733178
620 => 0.016251644174681
621 => 0.016483477470446
622 => 0.016473154298725
623 => 0.01660350061956
624 => 0.01659758735753
625 => 0.016553756792407
626 => 0.016510516980872
627 => 0.016681957945999
628 => 0.0166325857013
629 => 0.016583136767868
630 => 0.016483959361618
701 => 0.01649743921829
702 => 0.016353370415729
703 => 0.016286717595524
704 => 0.015284419102126
705 => 0.015016572193641
706 => 0.015100842283577
707 => 0.015128586185256
708 => 0.015012018867428
709 => 0.015179146457506
710 => 0.015153099799624
711 => 0.015254432108657
712 => 0.015191124081311
713 => 0.015193722264836
714 => 0.015379897674566
715 => 0.015433945188057
716 => 0.015406456186478
717 => 0.015425708540916
718 => 0.015869370923026
719 => 0.015806296319814
720 => 0.015772789193982
721 => 0.015782070896829
722 => 0.015895436147687
723 => 0.015927172228414
724 => 0.015792704224319
725 => 0.0158561201124
726 => 0.016126136915176
727 => 0.016220627514521
728 => 0.016522196149567
729 => 0.016394084433444
730 => 0.016629239032932
731 => 0.017352024101649
801 => 0.017929434827462
802 => 0.017398424061497
803 => 0.01845876532664
804 => 0.019284393098475
805 => 0.019252704129436
806 => 0.019108736830303
807 => 0.018168781562519
808 => 0.017303820711161
809 => 0.0180273971915
810 => 0.018029241736753
811 => 0.017967085875384
812 => 0.017581041158627
813 => 0.017953652356041
814 => 0.017983228879766
815 => 0.017966673891513
816 => 0.017670694312305
817 => 0.017218788201025
818 => 0.017307089573459
819 => 0.017451729022805
820 => 0.017177896370243
821 => 0.017090390245644
822 => 0.017253080779995
823 => 0.017777303579592
824 => 0.017678202295944
825 => 0.017675614360928
826 => 0.018099611677858
827 => 0.017796121103284
828 => 0.017308203336546
829 => 0.017184997665599
830 => 0.016747700535025
831 => 0.017049743220712
901 => 0.017060613199253
902 => 0.016895187507104
903 => 0.01732162671975
904 => 0.017317697007333
905 => 0.01772253757264
906 => 0.018496440682334
907 => 0.018267559451339
908 => 0.018001395481898
909 => 0.018030334885302
910 => 0.018347728712117
911 => 0.018155825159028
912 => 0.018224835014718
913 => 0.018347624257435
914 => 0.018421706056251
915 => 0.018019675654507
916 => 0.017925943136523
917 => 0.017734199300371
918 => 0.017684176912588
919 => 0.017840348266267
920 => 0.017799202632188
921 => 0.017059699619647
922 => 0.016982417440281
923 => 0.016984787574389
924 => 0.016790457859805
925 => 0.016494058400589
926 => 0.017272978482317
927 => 0.017210420298774
928 => 0.017141360905762
929 => 0.017149820287359
930 => 0.017487923094786
1001 => 0.017291806391877
1002 => 0.017813214789456
1003 => 0.017706028897885
1004 => 0.017596094092644
1005 => 0.017580897753864
1006 => 0.017538582233043
1007 => 0.017393466567237
1008 => 0.017218230680677
1009 => 0.017102524769697
1010 => 0.015776175064007
1011 => 0.016022337854361
1012 => 0.01630552570622
1013 => 0.016403281017878
1014 => 0.016236063792826
1015 => 0.017400069322483
1016 => 0.017612744349388
1017 => 0.016968537820445
1018 => 0.016848033081659
1019 => 0.017407969593096
1020 => 0.017070259427245
1021 => 0.017222330294249
1022 => 0.016893636258102
1023 => 0.017561517163258
1024 => 0.017556429029768
1025 => 0.017296608272887
1026 => 0.017516206997427
1027 => 0.017478046314979
1028 => 0.017184709320372
1029 => 0.017570816469203
1030 => 0.017571007973532
1031 => 0.017320936144025
1101 => 0.017028906994924
1102 => 0.016976699080485
1103 => 0.016937367430102
1104 => 0.017212657119329
1105 => 0.017459480993881
1106 => 0.017918759031595
1107 => 0.018034232442454
1108 => 0.018484932852534
1109 => 0.018216562702536
1110 => 0.018335527714055
1111 => 0.018464681062687
1112 => 0.018526601927478
1113 => 0.018425705201158
1114 => 0.019125828453702
1115 => 0.019184940307439
1116 => 0.019204760000682
1117 => 0.018968682379123
1118 => 0.019178374561723
1119 => 0.019080266533759
1120 => 0.019335516367324
1121 => 0.019375542800421
1122 => 0.01934164183557
1123 => 0.019354346857209
1124 => 0.018756915171367
1125 => 0.018725935186753
1126 => 0.0183035208983
1127 => 0.018475657843174
1128 => 0.018153856075472
1129 => 0.018255902730935
1130 => 0.018300883924328
1201 => 0.01827738830156
1202 => 0.018485390207765
1203 => 0.018308546095508
1204 => 0.017841825407401
1205 => 0.017374977561554
1206 => 0.017369116667135
1207 => 0.017246203869872
1208 => 0.017157360430053
1209 => 0.017174474828453
1210 => 0.017234788200679
1211 => 0.017153854907216
1212 => 0.017171126128798
1213 => 0.017457943484615
1214 => 0.017515462659836
1215 => 0.017319990028242
1216 => 0.016535139205825
1217 => 0.016342534845355
1218 => 0.016480975040151
1219 => 0.016414809543729
1220 => 0.013248032425147
1221 => 0.013992019735689
1222 => 0.013549967739186
1223 => 0.013753685637009
1224 => 0.01330246501739
1225 => 0.013517811147571
1226 => 0.013478044580508
1227 => 0.014674354159674
1228 => 0.014655675431066
1229 => 0.014664615949994
1230 => 0.014237861687132
1231 => 0.014917692815513
]
'min_raw' => 0.0086791284223114
'max_raw' => 0.019375542800421
'avg_raw' => 0.014027335611366
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.008679'
'max' => '$0.019375'
'avg' => '$0.014027'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0013383039928959
'max_diff' => 0.0029311898850678
'year' => 2035
]
10 => [
'items' => [
101 => 0.01525260207529
102 => 0.015190619284626
103 => 0.015206219017669
104 => 0.014938163919599
105 => 0.014667211309283
106 => 0.014366683165135
107 => 0.014925027310561
108 => 0.014862948972842
109 => 0.015005334344489
110 => 0.015367460434062
111 => 0.015420784876335
112 => 0.015492453467513
113 => 0.015466765379293
114 => 0.016078759857989
115 => 0.01600464328855
116 => 0.016183242896107
117 => 0.015815849952977
118 => 0.015400109964566
119 => 0.015479128544799
120 => 0.015471518420095
121 => 0.015374632798123
122 => 0.015287168790655
123 => 0.015141565861052
124 => 0.015602275075494
125 => 0.015583571122742
126 => 0.015886366376839
127 => 0.015832844374481
128 => 0.01547541134368
129 => 0.015488177134301
130 => 0.015574033211254
131 => 0.015871182073879
201 => 0.015959396087744
202 => 0.015918531841801
203 => 0.016015254480881
204 => 0.016091700111109
205 => 0.01602485487506
206 => 0.016971242453396
207 => 0.016578236348959
208 => 0.016769784789743
209 => 0.016815467964201
210 => 0.01669845147344
211 => 0.01672382816024
212 => 0.016762266926008
213 => 0.01699565958467
214 => 0.017608149453708
215 => 0.017879417047346
216 => 0.018695538986912
217 => 0.017856892049922
218 => 0.017807130211347
219 => 0.017954138417184
220 => 0.01843328839099
221 => 0.018821594440492
222 => 0.018950417959025
223 => 0.018967444113643
224 => 0.019209125598437
225 => 0.019347652918427
226 => 0.019179779109329
227 => 0.019037523633238
228 => 0.01852798217528
229 => 0.018586962986474
301 => 0.018993282287144
302 => 0.019567232231428
303 => 0.020059740992937
304 => 0.019887281590319
305 => 0.021203025094925
306 => 0.021333475689076
307 => 0.021315451634937
308 => 0.021612637502065
309 => 0.021022784076665
310 => 0.020770610309435
311 => 0.019068280881837
312 => 0.019546566013877
313 => 0.020241781541998
314 => 0.020149767159927
315 => 0.019644883060241
316 => 0.020059357993073
317 => 0.019922319618449
318 => 0.019814231766656
319 => 0.020309403169582
320 => 0.019764941871545
321 => 0.020236350124059
322 => 0.019631764164116
323 => 0.019888069370344
324 => 0.019742578139201
325 => 0.019836728796485
326 => 0.019286325977816
327 => 0.019583309978496
328 => 0.019273970466995
329 => 0.019273823799789
330 => 0.019266995112927
331 => 0.019630931676388
401 => 0.019642799634657
402 => 0.019373849964382
403 => 0.019335090115112
404 => 0.019478405592723
405 => 0.019310620702823
406 => 0.019389126196782
407 => 0.01931299855426
408 => 0.019295860618435
409 => 0.019159302630003
410 => 0.019100469693846
411 => 0.019123539604051
412 => 0.019044790107167
413 => 0.0189973406868
414 => 0.019257556228932
415 => 0.019118533561836
416 => 0.019236249011334
417 => 0.019102097399757
418 => 0.018637069466956
419 => 0.018369626985222
420 => 0.017491232328274
421 => 0.017740343963339
422 => 0.017905505235112
423 => 0.017850919435776
424 => 0.017968190854649
425 => 0.017975390367329
426 => 0.017937264233613
427 => 0.01789311905503
428 => 0.017871631623477
429 => 0.018031781333949
430 => 0.01812475363127
501 => 0.017922081378307
502 => 0.017874598105124
503 => 0.018079510942711
504 => 0.018204507655265
505 => 0.019127413151177
506 => 0.019059041331094
507 => 0.01923064118221
508 => 0.019211321672388
509 => 0.019391185654357
510 => 0.019685187248686
511 => 0.019087399803277
512 => 0.019191155033865
513 => 0.019165716647383
514 => 0.019443446280692
515 => 0.019444313322292
516 => 0.019277800533499
517 => 0.019368069817665
518 => 0.019317683979652
519 => 0.019408737998996
520 => 0.019058128183753
521 => 0.019485133092729
522 => 0.019727217360529
523 => 0.019730578700823
524 => 0.01984532472246
525 => 0.019961913326086
526 => 0.020185694998018
527 => 0.019955672176714
528 => 0.019541883513457
529 => 0.019571757718415
530 => 0.019329153576547
531 => 0.019333231796002
601 => 0.019311461940936
602 => 0.019376794914747
603 => 0.019072465097512
604 => 0.019143890697331
605 => 0.019043894439317
606 => 0.019190937661529
607 => 0.019032743461544
608 => 0.019165704380223
609 => 0.019223085905001
610 => 0.019434824966766
611 => 0.019001469429962
612 => 0.018117828154827
613 => 0.018303580263975
614 => 0.018028838304032
615 => 0.018054266718441
616 => 0.01810563616245
617 => 0.017939130987382
618 => 0.017970894927604
619 => 0.017969760096139
620 => 0.017959980731667
621 => 0.017916666304897
622 => 0.017853851816582
623 => 0.018104085404749
624 => 0.0181466049675
625 => 0.018241120688436
626 => 0.018522335363316
627 => 0.018494235385797
628 => 0.018540067614988
629 => 0.018440016116001
630 => 0.018058907820525
701 => 0.018079603834536
702 => 0.017821524208179
703 => 0.018234521012148
704 => 0.018136717917677
705 => 0.018073663626424
706 => 0.018056458678862
707 => 0.018338370430528
708 => 0.018422722845052
709 => 0.018370160081001
710 => 0.018262352318431
711 => 0.018469375093069
712 => 0.018524765653973
713 => 0.018537165557834
714 => 0.018903970221813
715 => 0.018557665863858
716 => 0.018641024764787
717 => 0.019291367113987
718 => 0.018701596344373
719 => 0.019014011074495
720 => 0.018998719999183
721 => 0.019158540803576
722 => 0.018985610028403
723 => 0.018987753712617
724 => 0.019129663759719
725 => 0.018930376692176
726 => 0.018881030411673
727 => 0.018812858878581
728 => 0.01896170892708
729 => 0.019050937799247
730 => 0.019770056977524
731 => 0.02023464076251
801 => 0.020214471955151
802 => 0.020398777099985
803 => 0.020315745944195
804 => 0.020047616439639
805 => 0.020505280809007
806 => 0.020360456653048
807 => 0.020372395780504
808 => 0.020371951405584
809 => 0.020468246808549
810 => 0.020400012690204
811 => 0.020265516238858
812 => 0.020354801259948
813 => 0.020619945852607
814 => 0.021442962803847
815 => 0.021903533993286
816 => 0.021415235839933
817 => 0.021752057367543
818 => 0.021550084472759
819 => 0.021513379989603
820 => 0.021724928799858
821 => 0.0219368478983
822 => 0.021923349567881
823 => 0.021769507184578
824 => 0.021682605525856
825 => 0.02234065399989
826 => 0.022825492905995
827 => 0.022792430143
828 => 0.022938358426274
829 => 0.023366808379358
830 => 0.023405980473558
831 => 0.023401045690049
901 => 0.023303953567388
902 => 0.023725818187456
903 => 0.024077745075519
904 => 0.023281479546253
905 => 0.023584687035916
906 => 0.023720806646761
907 => 0.02392067062035
908 => 0.024257874644887
909 => 0.024624167654483
910 => 0.024675965502238
911 => 0.024639212450501
912 => 0.024397632364187
913 => 0.024798434546072
914 => 0.025033215064253
915 => 0.025173021489972
916 => 0.025527547324027
917 => 0.023721647275137
918 => 0.022443341461477
919 => 0.022243715549714
920 => 0.022649662691185
921 => 0.022756707715023
922 => 0.022713558000137
923 => 0.021274708588383
924 => 0.022236140305338
925 => 0.023270559993308
926 => 0.023310296266329
927 => 0.023828148390822
928 => 0.023996782270033
929 => 0.02441372110668
930 => 0.024387641468927
1001 => 0.024489159440705
1002 => 0.024465822217039
1003 => 0.025238113615097
1004 => 0.026090065713536
1005 => 0.026060565321409
1006 => 0.025938087127419
1007 => 0.02611998813113
1008 => 0.026999293997455
1009 => 0.026918341603873
1010 => 0.02699697995873
1011 => 0.028033731130634
1012 => 0.029381655130244
1013 => 0.028755409103068
1014 => 0.0301141827846
1015 => 0.030969458791626
1016 => 0.032448570208588
1017 => 0.032263378174408
1018 => 0.03283918539481
1019 => 0.03193184578248
1020 => 0.029848410628979
1021 => 0.029518699040868
1022 => 0.030178789989893
1023 => 0.031801559177339
1024 => 0.030127683213236
1025 => 0.030466306140713
1026 => 0.030368782714819
1027 => 0.030363586105901
1028 => 0.030561919532166
1029 => 0.030274226552993
1030 => 0.029102113600866
1031 => 0.029639286059521
1101 => 0.029431857976094
1102 => 0.029662014899444
1103 => 0.030904076890829
1104 => 0.030354931677378
1105 => 0.029776451803942
1106 => 0.030501993940191
1107 => 0.031425858402964
1108 => 0.031368044625227
1109 => 0.031255861732135
1110 => 0.031888230826793
1111 => 0.032932719304409
1112 => 0.033215040342813
1113 => 0.033423443961564
1114 => 0.033452179299582
1115 => 0.033748171140078
1116 => 0.032156548414183
1117 => 0.034682494555949
1118 => 0.035118655676778
1119 => 0.035036675463089
1120 => 0.035521450192424
1121 => 0.035378817169506
1122 => 0.035172164297733
1123 => 0.035940635358272
1124 => 0.035059645299781
1125 => 0.033809190825316
1126 => 0.03312316676944
1127 => 0.0340265785862
1128 => 0.034578260657968
1129 => 0.034942887413836
1130 => 0.035053223249849
1201 => 0.032280101555625
1202 => 0.030785542766819
1203 => 0.031743537815293
1204 => 0.032912357891717
1205 => 0.032150055559643
1206 => 0.032179936367831
1207 => 0.031093093571823
1208 => 0.033008519362984
1209 => 0.032729457936479
1210 => 0.03417722911084
1211 => 0.033831706900989
1212 => 0.035012308091528
1213 => 0.034701416231805
1214 => 0.035991910959787
1215 => 0.036506724245529
1216 => 0.037371175876579
1217 => 0.038007070015331
1218 => 0.038380479216323
1219 => 0.038358061128518
1220 => 0.039837694414573
1221 => 0.038965206360236
1222 => 0.037869155734343
1223 => 0.037849331636516
1224 => 0.038416991786823
1225 => 0.039606651731911
1226 => 0.039915113246824
1227 => 0.040087501152566
1228 => 0.039823483074055
1229 => 0.038876459822855
1230 => 0.038467539984504
1231 => 0.038815951534327
]
'min_raw' => 0.014366683165135
'max_raw' => 0.040087501152566
'avg_raw' => 0.02722709215885
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.014366'
'max' => '$0.040087'
'avg' => '$0.027227'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.0056875547428232
'max_diff' => 0.020711958352145
'year' => 2036
]
11 => [
'items' => [
101 => 0.038389874148239
102 => 0.039125403252827
103 => 0.040135441813967
104 => 0.039926872845217
105 => 0.040624087637341
106 => 0.041345631598054
107 => 0.04237747186844
108 => 0.042647233124054
109 => 0.043093138221481
110 => 0.043552121038928
111 => 0.043699533949958
112 => 0.043980990936655
113 => 0.043979507519404
114 => 0.044827697093054
115 => 0.045763276459035
116 => 0.046116436010981
117 => 0.046928506927349
118 => 0.045537863941428
119 => 0.046592682620804
120 => 0.047544155473425
121 => 0.046409770313909
122 => 0.047973255978459
123 => 0.048033962583879
124 => 0.048950560251516
125 => 0.0480214129165
126 => 0.047469688194911
127 => 0.049062496793283
128 => 0.049833206701034
129 => 0.049601062604574
130 => 0.047834434568146
131 => 0.046806181276704
201 => 0.044115044077752
202 => 0.047302812338386
203 => 0.048855481269665
204 => 0.047830413530711
205 => 0.04834739807361
206 => 0.051167898106866
207 => 0.052241761905676
208 => 0.052018405742398
209 => 0.052056149257237
210 => 0.052635586671068
211 => 0.05520513126601
212 => 0.053665400583143
213 => 0.054842466997587
214 => 0.055466778779579
215 => 0.056046674355966
216 => 0.054622634098237
217 => 0.052769978646237
218 => 0.052183164895404
219 => 0.047728490745949
220 => 0.047496605610801
221 => 0.047366441457603
222 => 0.046545774883778
223 => 0.045900955756245
224 => 0.045388171645431
225 => 0.044042473008358
226 => 0.044496606794972
227 => 0.042351844036611
228 => 0.043723987243685
301 => 0.040300894094233
302 => 0.043151747786859
303 => 0.041600157734374
304 => 0.042642008724737
305 => 0.04263837380478
306 => 0.040719995812365
307 => 0.039613515421867
308 => 0.040318607791553
309 => 0.041074522782159
310 => 0.041197167446181
311 => 0.042177230962901
312 => 0.042450745624023
313 => 0.041621983431646
314 => 0.040229958097262
315 => 0.040553293833722
316 => 0.039606963033488
317 => 0.037948554706166
318 => 0.03913965251988
319 => 0.039546345682356
320 => 0.039725964551704
321 => 0.038095110431266
322 => 0.037582660659059
323 => 0.037309836700206
324 => 0.040019435309702
325 => 0.040167873238104
326 => 0.039408443809395
327 => 0.042841136839212
328 => 0.042064212685541
329 => 0.04293222731623
330 => 0.040523954504683
331 => 0.040615953769253
401 => 0.039475838825983
402 => 0.040114227011706
403 => 0.039663034818249
404 => 0.040062651554975
405 => 0.040302180179287
406 => 0.041442108040914
407 => 0.043164763931947
408 => 0.041271840831631
409 => 0.040447067129665
410 => 0.040958752095661
411 => 0.042321436589166
412 => 0.044385973351361
413 => 0.043163726035467
414 => 0.043706138639155
415 => 0.043824631662804
416 => 0.042923391742119
417 => 0.044419203352752
418 => 0.045220820946842
419 => 0.046043114726989
420 => 0.046757089376143
421 => 0.045714672508571
422 => 0.046830207981462
423 => 0.045931283308831
424 => 0.045124854948357
425 => 0.0451260779673
426 => 0.044620193676736
427 => 0.043639979118246
428 => 0.043459212514471
429 => 0.044399583215614
430 => 0.045153671464494
501 => 0.045215781784511
502 => 0.045633283785544
503 => 0.045880357169143
504 => 0.04830201220839
505 => 0.049276021898156
506 => 0.050467022509742
507 => 0.050930984369071
508 => 0.05232734322612
509 => 0.051199670042331
510 => 0.050955690855622
511 => 0.047568581013923
512 => 0.048123220060752
513 => 0.049011250689432
514 => 0.047583224311908
515 => 0.048488978362085
516 => 0.048667793398083
517 => 0.04753470052204
518 => 0.048139934385188
519 => 0.046532612684002
520 => 0.04319979915273
521 => 0.044422913726947
522 => 0.045323537749485
523 => 0.044038236223182
524 => 0.046342089461042
525 => 0.044996225960669
526 => 0.044569651843891
527 => 0.04290543412969
528 => 0.043690880829179
529 => 0.044753208736751
530 => 0.044096813598746
531 => 0.045458932068331
601 => 0.04738805508499
602 => 0.048762863027924
603 => 0.048868403710724
604 => 0.047984494308396
605 => 0.049400964766661
606 => 0.049411282207553
607 => 0.047813497744179
608 => 0.046834863656864
609 => 0.046612515933162
610 => 0.047167984140808
611 => 0.047842425089978
612 => 0.048905830489532
613 => 0.049548424101007
614 => 0.051223967434417
615 => 0.051677321418846
616 => 0.052175419999393
617 => 0.052841033310918
618 => 0.053640272751154
619 => 0.051891582356645
620 => 0.051961061085986
621 => 0.050332704802886
622 => 0.048592572584481
623 => 0.049913116027707
624 => 0.051639550915192
625 => 0.051243504844462
626 => 0.051198941571018
627 => 0.05127388463613
628 => 0.050975278832455
629 => 0.04962469584928
630 => 0.048946441530226
701 => 0.049821562642936
702 => 0.050286650567182
703 => 0.051007961377758
704 => 0.050919044595331
705 => 0.052777063780248
706 => 0.053499033851924
707 => 0.053314323012748
708 => 0.053348314252471
709 => 0.054655406581454
710 => 0.056109162075323
711 => 0.057470795935265
712 => 0.058855908381132
713 => 0.05718610126578
714 => 0.056338276191989
715 => 0.057213015254198
716 => 0.056748866394946
717 => 0.059416003415701
718 => 0.059600670196214
719 => 0.062267614352604
720 => 0.064798861930822
721 => 0.063209030678954
722 => 0.064708169941893
723 => 0.066329611281379
724 => 0.069457634694624
725 => 0.068404226454234
726 => 0.067597332251106
727 => 0.066834821128036
728 => 0.068421485729914
729 => 0.070462704392645
730 => 0.070902363342048
731 => 0.071614778802726
801 => 0.070865761055841
802 => 0.071767870430366
803 => 0.074952712929382
804 => 0.074092140372766
805 => 0.072869988998428
806 => 0.075384116275877
807 => 0.076293969164163
808 => 0.082679793227814
809 => 0.090742159893408
810 => 0.087404287153498
811 => 0.085332361831356
812 => 0.085819313428785
813 => 0.088763416806725
814 => 0.089708969370549
815 => 0.087138631550561
816 => 0.088046518321773
817 => 0.093049063692611
818 => 0.095732768783194
819 => 0.092087936800501
820 => 0.082031989916385
821 => 0.072759947639017
822 => 0.07521931077648
823 => 0.074940495319615
824 => 0.080315106240336
825 => 0.074071616001901
826 => 0.074176740365193
827 => 0.079662492547942
828 => 0.078198987915186
829 => 0.075828297841633
830 => 0.072777256300116
831 => 0.067137123823439
901 => 0.062141501202116
902 => 0.071939067585711
903 => 0.071516578707532
904 => 0.070904752202585
905 => 0.072266305882802
906 => 0.078877624070181
907 => 0.078725211787213
908 => 0.077755642604403
909 => 0.078491052284174
910 => 0.075699376969115
911 => 0.076418855263071
912 => 0.072758478900148
913 => 0.074413121887009
914 => 0.075823211405466
915 => 0.076106307753028
916 => 0.076744138279344
917 => 0.071293946266774
918 => 0.073740922471188
919 => 0.075178291740616
920 => 0.068684205089396
921 => 0.075049924527602
922 => 0.071199070549418
923 => 0.069892032871337
924 => 0.071651786915753
925 => 0.070966009053227
926 => 0.070376417517255
927 => 0.070047415309714
928 => 0.071339584462967
929 => 0.071279303227491
930 => 0.069165063693544
1001 => 0.066407124408939
1002 => 0.067332779359124
1003 => 0.06699648023766
1004 => 0.065777688838026
1005 => 0.066599007083945
1006 => 0.062982337188572
1007 => 0.056760044611727
1008 => 0.060870681681967
1009 => 0.060712426626276
1010 => 0.060632627250901
1011 => 0.063721657399522
1012 => 0.063424718426783
1013 => 0.062885771283627
1014 => 0.065767790651095
1015 => 0.064715814813338
1016 => 0.067957756468624
1017 => 0.070093108918435
1018 => 0.069551514465748
1019 => 0.071559823765849
1020 => 0.067354104579616
1021 => 0.068751075789116
1022 => 0.069038989619275
1023 => 0.065732226979465
1024 => 0.06347330131503
1025 => 0.06332265672685
1026 => 0.059405990923851
1027 => 0.061498242181591
1028 => 0.063339336705163
1029 => 0.062457595303078
1030 => 0.062178462316454
1031 => 0.063604492208561
1101 => 0.063715306944298
1102 => 0.061188719225879
1103 => 0.061714076819165
1104 => 0.063904905316603
1105 => 0.061658873562117
1106 => 0.057295200750354
1107 => 0.05621294956054
1108 => 0.056068557301972
1109 => 0.053133406240772
1110 => 0.056285270760029
1111 => 0.054909397432656
1112 => 0.059255764788334
1113 => 0.056773143064806
1114 => 0.056666122204258
1115 => 0.056504344476993
1116 => 0.053977938709055
1117 => 0.05453106101077
1118 => 0.056369723784579
1119 => 0.057025779376293
1120 => 0.056957347403172
1121 => 0.056360713333909
1122 => 0.056633849355557
1123 => 0.05575398306293
1124 => 0.05544328396217
1125 => 0.054462632135652
1126 => 0.053021344862651
1127 => 0.053221764697891
1128 => 0.050366197476747
1129 => 0.048810332898245
1130 => 0.048379690088881
1201 => 0.047803816526398
1202 => 0.048444736540105
1203 => 0.050358108013593
1204 => 0.048050176072164
1205 => 0.044093388641186
1206 => 0.044331198307825
1207 => 0.04486548602244
1208 => 0.043869844400922
1209 => 0.042927553164022
1210 => 0.043746798944002
1211 => 0.04207025594809
1212 => 0.045068088233718
1213 => 0.044987005271719
1214 => 0.046104411763096
1215 => 0.046803148973644
1216 => 0.04519278592219
1217 => 0.044787783969634
1218 => 0.045018491488122
1219 => 0.041205410114858
1220 => 0.045792801665258
1221 => 0.045832473617881
1222 => 0.045492778273978
1223 => 0.047935422654742
1224 => 0.053090164178041
1225 => 0.051150743067979
1226 => 0.050399740594849
1227 => 0.04897208434445
1228 => 0.050874351532266
1229 => 0.050728287092233
1230 => 0.050067728301108
1231 => 0.049668220283167
]
'min_raw' => 0.037309836700206
'max_raw' => 0.095732768783194
'avg_raw' => 0.0665213027417
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.0373098'
'max' => '$0.095732'
'avg' => '$0.066521'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.022943153535072
'max_diff' => 0.055645267630628
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.001171113141024
]
1 => [
'year' => 2028
'avg' => 0.0020099701265712
]
2 => [
'year' => 2029
'avg' => 0.0054908761239235
]
3 => [
'year' => 2030
'avg' => 0.0042362027523489
]
4 => [
'year' => 2031
'avg' => 0.0041604760896342
]
5 => [
'year' => 2032
'avg' => 0.0072946239351416
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.001171113141024
'min' => '$0.001171'
'max_raw' => 0.0072946239351416
'max' => '$0.007294'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.0072946239351416
]
1 => [
'year' => 2033
'avg' => 0.018762522858518
]
2 => [
'year' => 2034
'avg' => 0.011892588672384
]
3 => [
'year' => 2035
'avg' => 0.014027335611366
]
4 => [
'year' => 2036
'avg' => 0.02722709215885
]
5 => [
'year' => 2037
'avg' => 0.0665213027417
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.0072946239351416
'min' => '$0.007294'
'max_raw' => 0.0665213027417
'max' => '$0.066521'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.0665213027417
]
]
]
]
'prediction_2025_max_price' => '$0.0020023'
'last_price' => 0.00194157
'sma_50day_nextmonth' => '$0.00180041'
'sma_200day_nextmonth' => '$0.002683'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'augmenter'
'sma_200day_date_nextmonth' => '4 févr. 2026'
'sma_50day_date_nextmonth' => '4 févr. 2026'
'daily_sma3' => '$0.001904'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.001883'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.001846'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.001825'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.002324'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.002841'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.002571'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.0019091'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.00189'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.00187'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.00194'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.002252'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.002612'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.003686'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.0026019'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.004878'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.013749'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.02809'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.001926'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.001991'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.002181'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.002737'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.006098'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.0295057'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.15998'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '47.09'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 123.97
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.001864'
'vwma_10_action' => 'BUY'
'hma_9' => '0.001920'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 245.77
'cci_20_action' => 'SELL'
'adx_14' => 13.51
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.000260'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 79.94
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '0.000213'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 17
'buy_signals' => 17
'sell_pct' => 50
'buy_pct' => 50
'overall_action' => 'neutral'
'overall_action_label' => 'Neutre'
'overall_action_dir' => 0
'last_updated' => 1767684111
'last_updated_date' => '6 janvier 2026'
]
Prévision du prix de Juggernaut pour 2026
La prévision du prix de Juggernaut pour 2026 suggère que le prix moyen pourrait varier entre $0.00067 à la baisse et $0.0020023 à la hausse. Sur le marché des cryptomonnaies, comparé au prix moyen d'aujourd'hui, Juggernaut pourrait potentiellement gagner 3.13% d'ici 2026 si JGN atteint l'objectif de prix prévu.
Prévision du prix de Juggernaut de 2027 à 2032
La prévision du prix de JGN pour 2027-2032 se situe actuellement dans une fourchette de prix comprise entre $0.001171 à la baisse et $0.007294 à la hausse. Compte tenu de la volatilité des prix sur le marché, si Juggernaut atteint l'objectif de prix le plus élevé, il pourrait gagner 275.71% d'ici 2032 par rapport au prix actuel.
| Prévision du Prix de Juggernaut | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2027 | $0.000645 | $0.001171 | $0.001696 |
| 2028 | $0.001165 | $0.0020099 | $0.002854 |
| 2029 | $0.00256 | $0.00549 | $0.008421 |
| 2030 | $0.002177 | $0.004236 | $0.006295 |
| 2031 | $0.002574 | $0.00416 | $0.005746 |
| 2032 | $0.003929 | $0.007294 | $0.010659 |
Prévision du prix de Juggernaut de 2032 à 2037
La prévision du prix de Juggernaut pour 2032-2037 est actuellement estimée entre $0.007294 à la baisse et $0.066521 à la hausse. Par rapport au prix actuel, Juggernaut pourrait potentiellement gagner 3326.16% d'ici 2037 s'il atteint l'objectif de prix le plus élevé. Veuillez noter que ces informations sont à titre général seulement et ne doivent pas être considérées comme un conseil en investissement à long terme.
| Prévision du Prix de Juggernaut | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2032 | $0.003929 | $0.007294 | $0.010659 |
| 2033 | $0.00913 | $0.018762 | $0.028394 |
| 2034 | $0.00734 | $0.011892 | $0.016444 |
| 2035 | $0.008679 | $0.014027 | $0.019375 |
| 2036 | $0.014366 | $0.027227 | $0.040087 |
| 2037 | $0.0373098 | $0.066521 | $0.095732 |
Juggernaut Histogramme des prix potentiels
Prévision du prix de Juggernaut basée sur l'analyse technique
Au 6 janvier 2026, le sentiment global de prévision du prix pour Juggernaut est Neutre, avec 17 indicateurs techniques montrant des signaux haussiers et 17 indiquant des signaux baissiers. La prévision du prix de JGN a été mise à jour pour la dernière fois le 6 janvier 2026.
Moyennes Mobiles Simples sur 50 et 200 jours de Juggernaut et Indice de Force Relative sur 14 jours - RSI (14)
Selon nos indicateurs techniques, le SMA sur 200 jours de Juggernaut devrait augmenter au cours du prochain mois, atteignant $0.002683 d'ici le 4 févr. 2026. Le SMA à court terme sur 50 jours pour Juggernaut devrait atteindre $0.00180041 d'ici le 4 févr. 2026.
Le Relative Strength Index (RSI), un oscillateur de momentum, est un outil couramment utilisé pour identifier si une cryptomonnaie est survendue (en dessous de 30) ou surachetée (au-dessus de 70). Actuellement, le RSI est à 47.09, ce qui suggère que le marché de JGN est dans un état NEUTRAL.
Moyennes Mobiles et Oscillateurs Populaires de JGN pour le Samedi 19 Octobre 2024
Les moyennes mobiles (MA) sont des indicateurs largement utilisés sur les marchés financiers, conçus pour lisser les mouvements de prix sur une période donnée. En tant qu'indicateurs retardés, ils sont basés sur des données historiques de prix. Le tableau ci-dessous met en évidence deux types : la moyenne mobile simple (SMA) et la moyenne mobile exponentielle (EMA).
Moyenne Mobile Simple Quotidienne (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 3 | $0.001904 | BUY |
| SMA 5 | $0.001883 | BUY |
| SMA 10 | $0.001846 | BUY |
| SMA 21 | $0.001825 | BUY |
| SMA 50 | $0.002324 | SELL |
| SMA 100 | $0.002841 | SELL |
| SMA 200 | $0.002571 | SELL |
Moyenne Mobile Exponentielle Quotidienne (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 3 | $0.0019091 | BUY |
| EMA 5 | $0.00189 | BUY |
| EMA 10 | $0.00187 | BUY |
| EMA 21 | $0.00194 | BUY |
| EMA 50 | $0.002252 | SELL |
| EMA 100 | $0.002612 | SELL |
| EMA 200 | $0.003686 | SELL |
Moyenne Mobile Simple Hebdomadaire (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 21 | $0.0026019 | SELL |
| SMA 50 | $0.004878 | SELL |
| SMA 100 | $0.013749 | SELL |
| SMA 200 | $0.02809 | SELL |
Moyenne Mobile Exponentielle Hebdomadaire (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 21 | $0.002737 | SELL |
| EMA 50 | $0.006098 | SELL |
| EMA 100 | $0.0295057 | SELL |
| EMA 200 | $0.15998 | SELL |
Oscillateurs de Juggernaut
Un oscillateur est un outil d'analyse technique qui établit des limites hautes et basses entre deux extrêmes, créant un indicateur de tendance qui fluctue à l'intérieur de ces limites. Les traders utilisent cet indicateur pour identifier les conditions de surachat ou de survente à court terme.
| Période | Valeur | Action |
|---|---|---|
| RSI (14) | 47.09 | NEUTRAL |
| Stoch RSI (14) | 123.97 | SELL |
| Stochastique Rapide (14) | 100 | SELL |
| Indice de Canal des Matières Premières (20) | 245.77 | SELL |
| Indice Directionnel Moyen (14) | 13.51 | NEUTRAL |
| Oscillateur Impressionnant (5, 34) | -0.000260 | NEUTRAL |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Plage de Pourcentage de Williams (14) | -0 | SELL |
| Oscillateur Ultime (7, 14, 28) | 79.94 | SELL |
| VWMA (10) | 0.001864 | BUY |
| Moyenne Mobile de Hull (9) | 0.001920 | BUY |
| Nuage Ichimoku B/L (9, 26, 52, 26) | 0.000213 | NEUTRAL |
Prévision du cours de Juggernaut basée sur les flux monétaires mondiaux
Définitions des flux monétaires mondiaux utilisés pour la prédiction du cours de Juggernaut
M0 : le total de toutes les devises physiques, plus les comptes à la banque centrale qui peuvent être échangés contre des devises physiques.
M1 : M0 plus le montant des comptes à vue, y compris les comptes de "chèques" et les comptes "courants".
M2 : M1 plus la plupart des comptes d'épargne, comptes du marché monétaire et comptes de certificats de dépôt (CD) de moins de 100 000 $.
Prédictions du cours de Juggernaut par des sociétés Internet ou des niches technologiques
| Comparaison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Action Facebook | $0.002728 | $0.003833 | $0.005386 | $0.007569 | $0.010636 | $0.014945 |
| Action Amazon.com | $0.004051 | $0.008453 | $0.017637 | $0.0368023 | $0.07679 | $0.160227 |
| Action Apple | $0.002753 | $0.0039062 | $0.00554 | $0.007859 | $0.011147 | $0.015812 |
| Action Netflix | $0.003063 | $0.004833 | $0.007626 | $0.012033 | $0.018987 | $0.029959 |
| Action Google | $0.002514 | $0.003256 | $0.004216 | $0.00546 | $0.007071 | $0.009157 |
| Action Tesla | $0.0044013 | $0.009977 | $0.022618 | $0.051274 | $0.116235 | $0.263496 |
| Action Kodak | $0.001455 | $0.001091 | $0.000818 | $0.000613 | $0.00046 | $0.000345 |
| Action Nokia | $0.001286 | $0.000852 | $0.000564 | $0.000373 | $0.000247 | $0.000164 |
Ce calcul montre la valeur potentielle des cryptomonnaies si l'on suppose que leur capitalisation se comportera comme celle de certaines sociétés Internet ou niches technologiques. En extrapolant les données, vous pourrez obtenir une potentielle image des cours futurs pour 2024, 2025, 2026, 2027, 2028, 2029 et 2030.
Aperçu des prévisions relatives à Juggernaut
Vous vous posez peut-être des questions telles que : "Devrais-je investir dans Juggernaut maintenant ?", "Devrais-je acheter JGN aujourd'hui ?", " Juggernaut sera-t-il un bon ou un mauvais investissement à court ou à long terme ?".
Nous mettons régulièrement à jour les prévisions de Juggernaut avec de nouvelles valeurs. Regardez nos prévisions similaires. Nous faisons une prévision des cours futurs pour une grande quantité de devises numériques comme Juggernaut en utilisant des méthodes d'analyse technique.
Si vous souhaitez trouver des cryptomonnaies ayant un bon rendement, vous devriez consulter un maximum d'informations disponibles à propos de Juggernaut afin de prendre une décision responsable concernant cet investissement.
Le cours de Juggernaut est de $0.001941 USD actuellement, mais ce cours peut subir une hausse ou une baisse, ce qui pourrait causer la perte de votre investissement, car les cryptomonnaies sont des actifs à haut risque.
Prévision du cours de Juggernaut basée sur le modèle de croissance du Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Juggernaut présente 1 % de la précédente croissance annuelle moyenne du Bitcoin | $0.001992 | $0.002043 | $0.002096 | $0.002151 |
| Si Juggernaut présente 2 % de la précédente croissance annuelle moyenne du Bitcoin | $0.002042 | $0.002148 | $0.00226 | $0.002377 |
| Si Juggernaut présente 5 % de la précédente croissance annuelle moyenne du Bitcoin | $0.002193 | $0.002479 | $0.0028012 | $0.003165 |
| Si Juggernaut présente 10 % de la précédente croissance annuelle moyenne du Bitcoin | $0.002446 | $0.003082 | $0.003883 | $0.004892 |
| Si Juggernaut présente 20 % de la précédente croissance annuelle moyenne du Bitcoin | $0.00295 | $0.004485 | $0.006816 | $0.01036 |
| Si Juggernaut présente 50 % de la précédente croissance annuelle moyenne du Bitcoin | $0.004464 | $0.010267 | $0.023612 | $0.054301 |
| Si Juggernaut présente 100 % de la précédente croissance annuelle moyenne du Bitcoin | $0.006988 | $0.025153 | $0.090534 | $0.325863 |
Boîte à questions
Est-ce que JGN est un bon investissement ?
La décision d'acquérir Juggernaut dépend entièrement de votre tolérance individuelle au risque. Comme vous pouvez le discerner, la valeur de Juggernaut a connu une hausse de 1.9486% au cours des 24 heures précédentes, et Juggernaut a enregistré une déclin de sur une période de 30 jours précédents. Par conséquent, la détermination de si investir ou non dans Juggernaut dépendra de la mesure dans laquelle cet investissement s'aligne avec vos aspirations de trading.
Est-ce que Juggernaut peut monter ?
Il semble que la valeur moyenne de Juggernaut pourrait potentiellement s'envoler jusqu'à $0.0020023 pour la fin de cette année. En regardant les perspectives de Juggernaut sur une période de cinq ans plus longue, la monnaie numérique pourrait potentiellement croître jusqu'à $0.006295. Cependant, compte tenu de l'imprévisibilité du marché, il est essentiel de mener des recherches approfondies avant d'investir des fonds dans un projet, un réseau ou un actif particulier.
Quel sera le prix de Juggernaut la semaine prochaine ?
Basé sur notre nouveau pronostic expérimental de Juggernaut, le prix de Juggernaut va augmenter de 0.86% durant la prochaine semaine et atteindre $0.001958 d'ici 13 janvier 2026.
Quel sera le prix de Juggernaut le mois prochain ?
Basé sur notre nouveau pronostic expérimental de Juggernaut, le prix de Juggernaut va diminuer de -11.62% durant le prochain mois et atteindre $0.001715 d'ici 5 février 2026.
Jusqu'où le prix de Juggernaut peut-il monter cette année en 2026 ?
Selon notre prédiction la plus récente sur la valeur de Juggernaut en 2026, JGN devrait fluctuer dans la fourchette de $0.00067 et $0.0020023. Cependant, il est crucial de garder à l'esprit que le marché des cryptomonnaies est exceptionnellement instable, et cette prévision de prix de Juggernaut ne prend pas en compte les fluctuations de prix soudaines et extrêmes.
Où sera Juggernaut dans 5 ans ?
L'avenir de Juggernaut semble suivre une tendance haussière, avec un prix maximum de $0.006295 prévue après une période de cinq ans. Selon la prévision de Juggernaut pour 2030, la valeur de Juggernaut pourrait potentiellement atteindre son point le plus élevé d'environ $0.006295, tandis que son point le plus bas devrait être autour de $0.002177.
Combien vaudra Juggernaut en 2026 ?
Basé sur notre nouvelle simulation expérimentale de prédiction de prix de Juggernaut, il est attendu que la valeur de JGN en 2026 augmente de 3.13% jusqu'à $0.0020023 si le meilleur scénario se produit. Le prix sera entre $0.0020023 et $0.00067 durant 2026.
Combien vaudra Juggernaut en 2027 ?
Selon notre dernière simulation expérimentale pour la prédiction de prix de Juggernaut, le valeur de JGN pourrait diminuer de -12.62% jusqu'à $0.001696 en 2027, en supposant les conditions les plus favorables. Il est prévu que le prix fluctue entre $0.001696 et $0.000645 tout au long de l'année.
Combien vaudra Juggernaut en 2028 ?
Notre nouveau modèle expérimental de prédiction de prix de Juggernaut suggère que la valeur de JGN en 2028 pourrait augmenter de 47.02%, atteignant $0.002854 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.002854 et $0.001165 durant l'année.
Combien vaudra Juggernaut en 2029 ?
Basé sur notre modèle de prévision expérimental, la valeur de Juggernaut pourrait connaître un 333.75% croissance en 2029, atteignant potentiellement $0.008421 sous des conditions optimales. Le range de prix prévu pour 2029 se situe entre $0.008421 et $0.00256.
Combien vaudra Juggernaut en 2030 ?
En utilisant notre nouvelle simulation expérimentale pour les prédictions de prix de Juggernaut, il est prévu que la valeur de JGN en 2030 augmente de 224.23%, atteignant $0.006295 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.006295 et $0.002177 au cours de 2030.
Combien vaudra Juggernaut en 2031 ?
Notre simulation expérimentale indique que le prix de Juggernaut pourrait augmenter de 195.98% en 2031, atteignant potentiellement $0.005746 dans des conditions idéales. Il est probable que le prix fluctue entre $0.005746 et $0.002574 durant l'année.
Combien vaudra Juggernaut en 2032 ?
Basé sur les résultats de notre dernière prédiction expérimentale de prix de Juggernaut, JGN pourrait connaître une 449.04% hausse en valeur, atteignant $0.010659 si le scénario le plus positif se réalise en 2032. Il est prévu que le prix reste dans une fourchette de $0.010659 et $0.003929 tout au long de l'année.
Combien vaudra Juggernaut en 2033 ?
Selon notre prédiction expérimentale de prix de Juggernaut, la valeur de JGN est anticipée à augmenter de 1362.43% en 2033, avec le prix potentiel le plus élevé étant $0.028394. Tout au long de l'année, le prix de JGN pourrait osciller entre $0.028394 et $0.00913.
Combien vaudra Juggernaut en 2034 ?
Les résultats de notre nouvelle simulation de prédiction de prix de Juggernaut suggèrent que JGN pourrait augmenter de 746.96% en 2034, atteignant potentiellement $0.016444 dans les meilleures circonstances. La fourchette de prix prévue pour l'année est entre $0.016444 et $0.00734.
Combien vaudra Juggernaut en 2035 ?
Basé sur notre prédiction expérimentale pour le prix de Juggernaut, JGN pourrait augmenter de 897.93%, avec la valeur potentiellement atteignant $0.019375 en 2035. La fourchette de prix attendue pour l'année se situe entre $0.019375 et $0.008679.
Combien vaudra Juggernaut en 2036 ?
Notre récente simulation de prédiction de prix de Juggernaut suggère que la valeur de JGN pourrait augmenter de 1964.7% en 2036, pouvant atteindre $0.040087 si les conditions sont optimales. La fourchette de prix attendue pour 2036 est entre $0.040087 et $0.014366.
Combien vaudra Juggernaut en 2037 ?
Selon la simulation expérimentale, la valeur de Juggernaut pourrait augmenter de 4830.69% en 2037, avec un maximum de $0.095732 sous des conditions favorables. Il est prévu que le prix chute entre $0.095732 et $0.0373098 au cours de l'année.
Prévisions liées
Prévision du cours de Electronic Gulden
Prévision du cours de Holdstation USDC
Prévision du cours de bloXmove (ERC20)
Prévision du cours de Vertcoin
Prévision du cours de LIF3 LSHARE (OLD)
Prévision du cours de Aldrin
Prévision du cours de HanChain
Prévision du cours de Spain National Fan Token
Prévision du cours de BetSwirl
Prévision du cours de DEEPSPACE
Prévision du cours de Rubic
Prévision du cours de SPX6900
Prévision du cours de ADAMANT MessengerPrévision du cours de Realm
Prévision du cours de BTC Standard Hashrate Token
Prévision du cours de Bolt
Prévision du cours de Fear
Prévision du cours de cLINK
Prévision du cours de Lonk
Prévision du cours de win.win
Prévision du cours de NAGA
Prévision du cours de LocalCoinSwap
Prévision du cours de Ertha
Prévision du cours de Nexium
Prévision du cours de SafeCoin
Comment lire et prédire les mouvements de prix de Juggernaut ?
Les traders de Juggernaut utilisent des indicateurs et des modèles graphiques pour prédire la direction du marché. Ils identifient également des niveaux clés de support et de résistance pour évaluer quand une tendance baissière pourrait ralentir ou une tendance haussière pourrait s'arrêter.
Indicateurs de prédiction du prix de Juggernaut
Les moyennes mobiles sont des outils populaires pour la prédiction du prix de Juggernaut. Une moyenne mobile simple (SMA) calcule le prix de clôture moyen de JGN sur une période spécifique, comme une SMA de 12 jours. Une moyenne mobile exponentielle (EMA) donne plus de poids aux prix récents, réagissant plus rapidement aux changements de prix.
Les moyennes mobiles couramment utilisées sur le marché des cryptomonnaies incluent les moyennes sur 50 jours, 100 jours et 200 jours, qui aident à identifier les niveaux clés de résistance et de support. Un mouvement de prix de JGN au-dessus de ces moyennes est considéré comme haussier, tandis qu'une chute en dessous indique une faiblesse.
Les traders utilisent également le RSI et les niveaux de retracement de Fibonacci pour évaluer la direction future de JGN.
Comment lire les graphiques de Juggernaut et prédire les mouvements de prix ?
La plupart des traders préfèrent les graphiques en chandeliers aux simples graphiques linéaires parce qu'ils fournissent des informations plus détaillées. Les chandeliers peuvent représenter l'action des prix de Juggernaut dans différentes périodes, comme 5 minutes pour les tendances à court terme et hebdomadaire pour les tendances à long terme. Les options populaires incluent les graphiques de 1 heure, 4 heures et 1 jour.
Par exemple, un graphique en chandeliers de 1 heure montre les prix d'ouverture, de clôture, les plus hauts et les plus bas de JGN au sein de chaque heure. La couleur du chandelier est cruciale : le vert indique que le prix a clôturé plus haut qu'il n'a ouvert, tandis que le rouge signifie le contraire. Certains graphiques utilisent des chandeliers creux et pleins pour transmettre la même information.
Qu'est-ce qui affecte le prix de Juggernaut ?
L'action du prix de Juggernaut est déterminée par l'offre et la demande, influencée par des facteurs tels que les réductions de récompenses de bloc, les hard forks et les mises à jour de protocole. Les événements du monde réel, tels que les réglementations, l'adoption par les entreprises et les gouvernements et les piratages d'échanges de cryptomonnaies, impactent également le prix de JGN. La capitalisation boursière de Juggernaut peut changer rapidement.
Les traders surveillent souvent l'activité des « baleines » de JGN, de grands détenteurs de Juggernaut, car leurs actions peuvent influencer significativement les mouvements de prix sur le marché relativement petit de Juggernaut.
Modèles de prédiction de prix haussiers et baissiers
Les traders identifient souvent des modèles de chandeliers pour obtenir un avantage dans les prédictions de prix des cryptomonnaies. Certaines formations indiquent des tendances haussières, tandis que d'autres suggèrent des mouvements baissiers.
Modèles de chandeliers haussiers couramment suivis :
- Marteau
- Englobante haussière
- Ligne pénétrante
- Étoile du matin
- Trois soldats blancs
Modèles de chandeliers baissiers courants :
- Harami baissier
- Nuage sombre
- Étoile du soir
- Étoile filante
- Pendu


