Prédiction du prix de IRobot jusqu'à $0.00081 d'ici 2026
| Année | Prix min. | Prix max. |
|---|---|---|
| 2026 | $0.000271 | $0.00081 |
| 2027 | $0.000261 | $0.000686 |
| 2028 | $0.000471 | $0.001155 |
| 2029 | $0.001036 | $0.0034088 |
| 2030 | $0.000881 | $0.002548 |
| 2031 | $0.001041 | $0.002326 |
| 2032 | $0.00159 | $0.004314 |
| 2033 | $0.003695 | $0.011493 |
| 2034 | $0.002971 | $0.006656 |
| 2035 | $0.003513 | $0.007842 |
Calculateur de profit d’investissement
Si vous ouvrez une position short de $10,000.00 sur IRobot aujourd’hui et la fermez le Apr 06, 2026, notre prévision indique que vous pourriez gagner environ $3,956.16, soit un rendement de 39.56% sur les 90 prochains jours.
Prévision du prix à long terme de IRobot pour 2027, 2028, 2029, 2030, 2031, 2032 et 2037
[
'name' => 'IRobot'
'name_with_ticker' => 'IRobot <small>IRB</small>'
'name_lang' => 'IRobot'
'name_lang_with_ticker' => 'IRobot <small>IRB</small>'
'name_with_lang' => 'IRobot'
'name_with_lang_with_ticker' => 'IRobot <small>IRB</small>'
'image' => '/uploads/coins/irobot.jpg?ts=1572419029'
'price_for_sd' => 0.0008
'ticker' => 'IRB'
'marketcap' => '$0'
'low24h' => '$0'
'high24h' => '$0'
'volume24h' => '$0'
'current_supply' => '0'
'max_supply' => '90M'
'algo' => 'X11'
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.0007859'
'change_24h_pct' => '0%'
'ath_price' => '$21.59'
'ath_days' => 2425
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '18 mai 2019'
'ath_pct' => '0.00%'
'fdv' => '$0'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.03875'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.000792'
'next_week_prediction_price_date' => '13 janvier 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.000694'
'next_month_prediction_price_date' => '5 février 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.000271'
'current_year_max_price_prediction' => '$0.00081'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.000881'
'grand_prediction_max_price' => '$0.002548'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0008007923916166
107 => 0.00080378225971926
108 => 0.000810518585221
109 => 0.00075295742135554
110 => 0.00077880069402415
111 => 0.00079398119552977
112 => 0.00072539513745599
113 => 0.00079262546968264
114 => 0.00075195540955467
115 => 0.00073815138030344
116 => 0.00075673668714766
117 => 0.00074949397499567
118 => 0.0007432671163937
119 => 0.0007397924223028
120 => 0.00075343942046373
121 => 0.00075280277168784
122 => 0.00073047363392835
123 => 0.00070134618397318
124 => 0.00071112231225409
125 => 0.00070757055319794
126 => 0.00069469852019244
127 => 0.00070337271626296
128 => 0.00066517594667857
129 => 0.00059946038990395
130 => 0.0006428740996312
131 => 0.00064120271903173
201 => 0.0006403599331424
202 => 0.00067298413613563
203 => 0.00066984807178626
204 => 0.00066415608428371
205 => 0.00069459398237824
206 => 0.00068348374012624
207 => 0.00071772288884463
208 => 0.00074027500663986
209 => 0.0007345550600824
210 => 0.00075576543587266
211 => 0.00071134753450468
212 => 0.00072610137960223
213 => 0.00072914212662889
214 => 0.00069421838344051
215 => 0.00067036117069818
216 => 0.0006687701666004
217 => 0.00062740504743162
218 => 0.00064950196020401
219 => 0.00066894632901133
220 => 0.0006596339852966
221 => 0.00065668597547487
222 => 0.00067174671830876
223 => 0.00067291706701349
224 => 0.00064623299251759
225 => 0.00065178145658003
226 => 0.0006749194740758
227 => 0.00065119843790517
228 => 0.00060511233943491
301 => 0.00059368234982412
302 => 0.00059215737851354
303 => 0.00056115834016517
304 => 0.00059444615638454
305 => 0.00057991513254677
306 => 0.00062581846274187
307 => 0.00059959872671893
308 => 0.0005984684463037
309 => 0.00059675986168
310 => 0.00057007770881941
311 => 0.00057591940455661
312 => 0.00059533809090242
313 => 0.00060226689695776
314 => 0.00060154416572015
315 => 0.00059524292874549
316 => 0.00059812760276494
317 => 0.00058883506266125
318 => 0.00058555367334315
319 => 0.00057519670603796
320 => 0.00055997482528457
321 => 0.00056209152116455
322 => 0.00053193299237034
323 => 0.00051550102524898
324 => 0.00051095287331964
325 => 0.00050487089447936
326 => 0.00051163984901318
327 => 0.00053184755704749
328 => 0.00050747277385369
329 => 0.00046568391776018
330 => 0.00046819549921614
331 => 0.00047383827705247
401 => 0.00046332299788518
402 => 0.00045337116863383
403 => 0.00046202347675045
404 => 0.00044431698753087
405 => 0.0004759780216809
406 => 0.00047512167943617
407 => 0.00048692295506208
408 => 0.00049430253489752
409 => 0.00047729499254418
410 => 0.0004730176416356
411 => 0.00047545421510788
412 => 0.00043518308314545
413 => 0.00048363194442201
414 => 0.00048405093218621
415 => 0.00048046330457426
416 => 0.00050626082751325
417 => 0.00056070164736371
418 => 0.00054021882105906
419 => 0.0005322872516172
420 => 0.00051720933231028
421 => 0.00053729976454849
422 => 0.00053575713281216
423 => 0.00052878076707477
424 => 0.0005245614393092
425 => 0.0005323356800889
426 => 0.00052359812484288
427 => 0.00052202861982874
428 => 0.00051251912708131
429 => 0.00050912467082483
430 => 0.00050661155054973
501 => 0.00050384485206094
502 => 0.0005099474995089
503 => 0.00049611809752169
504 => 0.00047944119443812
505 => 0.00047805469039331
506 => 0.0004818829499637
507 => 0.00048018923008421
508 => 0.00047804658151415
509 => 0.00047395568187828
510 => 0.00047274199934456
511 => 0.00047668587878409
512 => 0.00047223346883931
513 => 0.00047880324224816
514 => 0.00047701662740309
515 => 0.00046703674211181
516 => 0.0004545981100121
517 => 0.0004544873800955
518 => 0.00045180749721306
519 => 0.00044839426343919
520 => 0.00044744477988751
521 => 0.00046129480349412
522 => 0.00048996393786348
523 => 0.00048433550079253
524 => 0.00048840262340173
525 => 0.00050840884125976
526 => 0.00051476821630886
527 => 0.00051025448252906
528 => 0.00050407580533629
529 => 0.00050434763577546
530 => 0.00052546204615593
531 => 0.0005267789260319
601 => 0.00053010625663692
602 => 0.00053438281676789
603 => 0.00051098279921173
604 => 0.00050324549705289
605 => 0.00049957913404085
606 => 0.00048828815502482
607 => 0.00050046450787823
608 => 0.00049336986851396
609 => 0.00049432717775159
610 => 0.00049370372885472
611 => 0.00049404417410984
612 => 0.00047596917177661
613 => 0.00048255475263268
614 => 0.00047160494716504
615 => 0.00045694438681722
616 => 0.00045689523947828
617 => 0.00046048339085381
618 => 0.00045834901801126
619 => 0.00045260547557173
620 => 0.00045342131866651
621 => 0.00044627367468579
622 => 0.00045428917205804
623 => 0.00045451902784185
624 => 0.00045143262474644
625 => 0.00046378160437388
626 => 0.00046884099140305
627 => 0.00046680945476849
628 => 0.00046869845337711
629 => 0.0004845693877637
630 => 0.00048715704256613
701 => 0.00048830630789849
702 => 0.00048676644460161
703 => 0.00046898854492301
704 => 0.00046977707037122
705 => 0.0004639913938271
706 => 0.00045910310682688
707 => 0.0004592986126712
708 => 0.00046181182762214
709 => 0.000472787184711
710 => 0.00049588417667186
711 => 0.0004967606906331
712 => 0.00049782305112383
713 => 0.00049350189710842
714 => 0.0004921985957095
715 => 0.00049391798666531
716 => 0.00050259200246367
717 => 0.00052490392606936
718 => 0.00051701740210384
719 => 0.00051060553535881
720 => 0.00051623047112106
721 => 0.00051536455635016
722 => 0.00050805536425799
723 => 0.00050785021957998
724 => 0.00049382154306502
725 => 0.00048863546077495
726 => 0.00048430158224183
727 => 0.00047956910002243
728 => 0.00047676352592853
729 => 0.00048107416284738
730 => 0.00048206005651268
731 => 0.00047263477355257
801 => 0.00047135014231273
802 => 0.00047904703183682
803 => 0.00047565991772623
804 => 0.00047914364858535
805 => 0.00047995190402756
806 => 0.00047982175628567
807 => 0.00047628522014663
808 => 0.00047853930282063
809 => 0.00047320772532225
810 => 0.00046741043556981
811 => 0.00046371212589166
812 => 0.00046048486018789
813 => 0.00046227553477013
814 => 0.00045589210684872
815 => 0.00045384991978364
816 => 0.00047777567032914
817 => 0.00049544987950227
818 => 0.00049519288950114
819 => 0.00049362852896171
820 => 0.00049130420651906
821 => 0.00050242196379968
822 => 0.00049854875946969
823 => 0.00050136683923681
824 => 0.00050208415881197
825 => 0.00050425526912317
826 => 0.00050503125444619
827 => 0.00050268568784357
828 => 0.00049481367983836
829 => 0.00047519738433744
830 => 0.00046606594582858
831 => 0.00046305241902452
901 => 0.00046316195500035
902 => 0.00046014046379696
903 => 0.00046103042837009
904 => 0.00045983097043763
905 => 0.00045755948729358
906 => 0.00046213527708686
907 => 0.0004626625942341
908 => 0.00046159455021973
909 => 0.00046184611324887
910 => 0.00045300316497748
911 => 0.00045367547512868
912 => 0.00044993196677375
913 => 0.00044923010408587
914 => 0.00043976684094918
915 => 0.00042300129858062
916 => 0.00043229103652338
917 => 0.00042107033942335
918 => 0.00041682089141026
919 => 0.00043693711737946
920 => 0.00043491800622941
921 => 0.00043146216562704
922 => 0.00042635025711585
923 => 0.0004244542005236
924 => 0.00041293436088766
925 => 0.00041225370730601
926 => 0.00041796325089142
927 => 0.00041532849298015
928 => 0.00041162829501188
929 => 0.00039822655305387
930 => 0.00038315855792878
1001 => 0.00038361336598757
1002 => 0.00038840621488684
1003 => 0.00040234206946521
1004 => 0.00039689708998871
1005 => 0.00039294669490457
1006 => 0.00039220690465375
1007 => 0.00040146692849855
1008 => 0.00041457180227393
1009 => 0.00042072031584431
1010 => 0.0004146273256292
1011 => 0.00040762802653996
1012 => 0.0004080540414439
1013 => 0.00041088812774172
1014 => 0.0004111859501398
1015 => 0.00040663012597228
1016 => 0.00040791256378954
1017 => 0.00040596442347655
1018 => 0.00039400868997168
1019 => 0.00039379244866462
1020 => 0.00039085831885028
1021 => 0.0003907694745656
1022 => 0.00038577778779842
1023 => 0.00038507941631379
1024 => 0.00037516811926383
1025 => 0.00038169176499629
1026 => 0.00037731604594573
1027 => 0.00037072080520877
1028 => 0.00036958378321982
1029 => 0.00036954960296583
1030 => 0.00037632144053385
1031 => 0.00038161263213155
1101 => 0.00037739216345202
1102 => 0.00037643124454404
1103 => 0.0003866913445124
1104 => 0.00038538565326854
1105 => 0.00038425493307216
1106 => 0.00041339840456286
1107 => 0.00039032907278453
1108 => 0.00038026952737776
1109 => 0.00036781892968102
1110 => 0.00037187290707244
1111 => 0.00037272713967414
1112 => 0.00034278569660239
1113 => 0.00033063845687715
1114 => 0.00032646998196252
1115 => 0.00032407096571557
1116 => 0.00032516422754426
1117 => 0.00031423028706243
1118 => 0.0003215780758969
1119 => 0.00031211020766262
1120 => 0.00031052288874204
1121 => 0.00032745260998874
1122 => 0.00032980828179822
1123 => 0.00031975825400911
1124 => 0.00032621199880142
1125 => 0.00032387178122597
1126 => 0.00031227250708907
1127 => 0.00031182950013553
1128 => 0.00030600939210783
1129 => 0.00029690205003948
1130 => 0.00029273975033163
1201 => 0.00029057198850504
1202 => 0.00029146644928353
1203 => 0.00029101418254297
1204 => 0.00028806283613584
1205 => 0.00029118335026431
1206 => 0.00028321172615154
1207 => 0.0002800373611981
1208 => 0.00027860357419333
1209 => 0.00027152829896369
1210 => 0.00028278820824323
1211 => 0.0002850065522199
1212 => 0.00028722926701948
1213 => 0.00030657648183801
1214 => 0.00030560994966034
1215 => 0.00031434692982624
1216 => 0.00031400742684327
1217 => 0.00031151549857026
1218 => 0.00030100246308874
1219 => 0.00030519277165483
1220 => 0.00029229565320693
1221 => 0.00030195905126691
1222 => 0.00029754907994549
1223 => 0.0003004680355271
1224 => 0.00029521949019974
1225 => 0.00029812425189103
1226 => 0.0002855326038719
1227 => 0.00027377470012091
1228 => 0.00027850642382492
1229 => 0.00028365034862941
1230 => 0.00029480368825323
1231 => 0.00028816085118634
]
'min_raw' => 0.00027152829896369
'max_raw' => 0.000810518585221
'avg_raw' => 0.00054102344209234
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.000271'
'max' => '$0.00081'
'avg' => '$0.000541'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.00051437170103631
'max_diff' => 2.4618585220997E-5
'year' => 2026
]
1 => [
'items' => [
101 => 0.00029054986658907
102 => 0.00028254706490626
103 => 0.00026603499914735
104 => 0.00026612845564634
105 => 0.00026358843406423
106 => 0.00026139348456807
107 => 0.00028892386093285
108 => 0.00028550002344104
109 => 0.00028004458649862
110 => 0.0002873469056365
111 => 0.00028927775471994
112 => 0.00028933272327889
113 => 0.00029466030682175
114 => 0.00029750363911359
115 => 0.00029800478875374
116 => 0.00030638785656849
117 => 0.00030919775032465
118 => 0.00032077130503524
119 => 0.00029726240223389
120 => 0.00029677825185116
121 => 0.00028744966424196
122 => 0.00028153332650107
123 => 0.00028785476094872
124 => 0.00029345468890749
125 => 0.00028762366961337
126 => 0.00028838507763365
127 => 0.00028055741064308
128 => 0.00028335543326624
129 => 0.00028576546728366
130 => 0.00028443478815449
131 => 0.00028244269709253
201 => 0.00029299555867561
202 => 0.00029240012486809
203 => 0.0003022271921835
204 => 0.00030988809389618
205 => 0.00032361779931529
206 => 0.00030929013596472
207 => 0.00030876797896492
208 => 0.00031387214739457
209 => 0.00030919696890306
210 => 0.00031215152032802
211 => 0.00032314177540354
212 => 0.00032337398217507
213 => 0.00031948421957044
214 => 0.00031924752716245
215 => 0.00031999459862001
216 => 0.00032437021948129
217 => 0.00032284124310311
218 => 0.00032461061327688
219 => 0.00032682323777275
220 => 0.00033597559082099
221 => 0.00033818219215577
222 => 0.00033282129490386
223 => 0.00033330532390229
224 => 0.00033130020117016
225 => 0.00032936327773503
226 => 0.00033371719875224
227 => 0.00034167407498773
228 => 0.00034162457567364
301 => 0.0003434704163007
302 => 0.00034462035971959
303 => 0.00033968396075568
304 => 0.0003364705465466
305 => 0.00033770277402922
306 => 0.00033967313260835
307 => 0.00033706381329784
308 => 0.00032095788575903
309 => 0.00032584339532367
310 => 0.0003250302076429
311 => 0.00032387212949849
312 => 0.00032878454714426
313 => 0.0003283107324784
314 => 0.00031411814369913
315 => 0.00031502670718504
316 => 0.00031417339645397
317 => 0.00031693061799701
318 => 0.0003090480698913
319 => 0.00031147268859885
320 => 0.00031299338672283
321 => 0.00031388908960041
322 => 0.00031712498258344
323 => 0.00031674528789042
324 => 0.00031710138022821
325 => 0.00032189935527797
326 => 0.00034616586661344
327 => 0.00034748663928439
328 => 0.00034098267160272
329 => 0.00034358087840646
330 => 0.00033859288950865
331 => 0.00034194135987237
401 => 0.0003442322982533
402 => 0.00033387998823199
403 => 0.00033326699161846
404 => 0.00032825841551614
405 => 0.00033094974061328
406 => 0.00032666764887062
407 => 0.00032771832440305
408 => 0.00032478054401811
409 => 0.00033006796380477
410 => 0.00033598012070823
411 => 0.00033747376502019
412 => 0.00033354462988972
413 => 0.00033069967711264
414 => 0.00032570487722178
415 => 0.00033401134075665
416 => 0.00033644040382913
417 => 0.00033399858192241
418 => 0.00033343275843176
419 => 0.0003323605239394
420 => 0.0003336602380481
421 => 0.00033642717462997
422 => 0.00033512233843526
423 => 0.00033598420573012
424 => 0.00033269965635579
425 => 0.00033968559490914
426 => 0.00035078094658953
427 => 0.00035081661995946
428 => 0.00034951177673119
429 => 0.00034897786299542
430 => 0.00035031671133213
501 => 0.00035104298163236
502 => 0.0003553725716505
503 => 0.00036001839423843
504 => 0.00038169842112512
505 => 0.00037561075632937
506 => 0.00039484656593381
507 => 0.00041005959387366
508 => 0.00041462131576773
509 => 0.00041042474627079
510 => 0.00039606850871596
511 => 0.00039536412321148
512 => 0.00041681840316554
513 => 0.00041075658641024
514 => 0.00041003555259574
515 => 0.0004023649710153
516 => 0.00040689923474935
517 => 0.00040590752475708
518 => 0.00040434206201816
519 => 0.00041299312136318
520 => 0.00042918713217166
521 => 0.00042666314372069
522 => 0.00042477910342649
523 => 0.00041652378729321
524 => 0.00042149533149706
525 => 0.00041972505982972
526 => 0.00042733127035475
527 => 0.00042282551973792
528 => 0.00041071066218636
529 => 0.00041263999318254
530 => 0.00041234837868374
531 => 0.00041834978440496
601 => 0.0004165483113715
602 => 0.00041199661216135
603 => 0.00042913178280323
604 => 0.00042801912013258
605 => 0.00042959662140947
606 => 0.00043029108625741
607 => 0.00044072096267155
608 => 0.0004449937493196
609 => 0.00044596374669437
610 => 0.00045002256354084
611 => 0.00044586275963373
612 => 0.00046250494115209
613 => 0.00047357102076359
614 => 0.00048642484168759
615 => 0.00050520772883891
616 => 0.00051227026815923
617 => 0.00051099448364535
618 => 0.00052523545431736
619 => 0.00055082616205596
620 => 0.00051616709734566
621 => 0.00055266317664439
622 => 0.00054110893930591
623 => 0.00051371405042823
624 => 0.00051195014254903
625 => 0.0005305022793582
626 => 0.00057164913322393
627 => 0.00056134231301432
628 => 0.00057166599148948
629 => 0.00055962287217374
630 => 0.00055902482979233
701 => 0.00057108108406506
702 => 0.00059925117932549
703 => 0.00058586862300749
704 => 0.0005666814469882
705 => 0.00058084895917532
706 => 0.00056857574897748
707 => 0.00054092077134651
708 => 0.00056133443158315
709 => 0.00054768439833048
710 => 0.00055166820370929
711 => 0.00058035854331718
712 => 0.00057690644575034
713 => 0.00058137377965746
714 => 0.00057348905224187
715 => 0.00056612347352832
716 => 0.00055237507388442
717 => 0.00054830485053777
718 => 0.00054942971383949
719 => 0.00054830429311138
720 => 0.00054061218986493
721 => 0.00053895108090123
722 => 0.00053618249318688
723 => 0.00053704059428715
724 => 0.00053183483940527
725 => 0.00054165917443123
726 => 0.00054348265758379
727 => 0.00055063198933413
728 => 0.00055137425667345
729 => 0.00057128504383378
730 => 0.00056031851685306
731 => 0.00056767580995611
801 => 0.00056701770441145
802 => 0.00051430778073878
803 => 0.00052157074315728
804 => 0.0005328696334373
805 => 0.00052777949868143
806 => 0.00052058323904473
807 => 0.00051477187354907
808 => 0.00050596706058051
809 => 0.0005183596657523
810 => 0.00053465462374658
811 => 0.00055178752369896
812 => 0.00057237158039967
813 => 0.00056777745856891
814 => 0.00055140271907691
815 => 0.00055213727792877
816 => 0.00055667803171269
817 => 0.00055079734299153
818 => 0.00054906301308297
819 => 0.0005564397614157
820 => 0.00055649056102728
821 => 0.00054972411794861
822 => 0.00054220445471268
823 => 0.00054217294704915
824 => 0.00054083489560765
825 => 0.00055986090855268
826 => 0.00057032329192557
827 => 0.0005715227873183
828 => 0.00057024255632856
829 => 0.00057073526642596
830 => 0.00056464743606416
831 => 0.00057856241098122
901 => 0.0005913321680135
902 => 0.00058790960034278
903 => 0.00058277868485771
904 => 0.00057869166353548
905 => 0.00058694682800667
906 => 0.0005865792385276
907 => 0.00059122063532592
908 => 0.00059101007475714
909 => 0.00058944934758563
910 => 0.00058790965608126
911 => 0.00059401435885723
912 => 0.00059225630249628
913 => 0.00059049551538821
914 => 0.00058696398727996
915 => 0.00058744398060234
916 => 0.00058231395104217
917 => 0.00057994056463345
918 => 0.00054425052759661
919 => 0.00053471298349476
920 => 0.00053771368902382
921 => 0.00053870159919727
922 => 0.00053455084778145
923 => 0.00054050195907118
924 => 0.00053957448468046
925 => 0.00054318274498037
926 => 0.00054092846059744
927 => 0.00054102097721484
928 => 0.00054765034692095
929 => 0.00054957488114998
930 => 0.0005485960475082
1001 => 0.00054928158903845
1002 => 0.00056507960425411
1003 => 0.00056283363168253
1004 => 0.00056164050351778
1005 => 0.0005619710081734
1006 => 0.00056600773977427
1007 => 0.00056713780422514
1008 => 0.00056234964173858
1009 => 0.00056460776684728
1010 => 0.00057422257696136
1011 => 0.00057758721635016
1012 => 0.0005883255301607
1013 => 0.00058376370359568
1014 => 0.00059213713368701
1015 => 0.00061787420307508
1016 => 0.00063843475497201
1017 => 0.00061952642174685
1018 => 0.00065728325693507
1019 => 0.00068668236902543
1020 => 0.00068555398213662
1021 => 0.00068042756692995
1022 => 0.00064695745943091
1023 => 0.00061615776749911
1024 => 0.00064192301762406
1025 => 0.0006419886985453
1026 => 0.0006397754407095
1027 => 0.00062602908637528
1028 => 0.00063929709737562
1029 => 0.00064035026390649
1030 => 0.00063976077070878
1031 => 0.00062922147307077
1101 => 0.00061312991356531
1102 => 0.00061627416577493
1103 => 0.00062142451503529
1104 => 0.00061167382941002
1105 => 0.00060855789453787
1106 => 0.00061435101029606
1107 => 0.00063301763631255
1108 => 0.00062948881879253
1109 => 0.00062939666710602
1110 => 0.00064449444490816
1111 => 0.0006336876943062
1112 => 0.00061631382486458
1113 => 0.00061192669369739
1114 => 0.00059635533357953
1115 => 0.00060711052747622
1116 => 0.00060749758775746
1117 => 0.00060160707797566
1118 => 0.00061679180726892
1119 => 0.00061665187731527
1120 => 0.00063106751783053
1121 => 0.0006586248082284
1122 => 0.00065047476144584
1123 => 0.0006409971437603
1124 => 0.00064202762358856
1125 => 0.00065332944386354
1126 => 0.00064649610532982
1127 => 0.00064895342151027
1128 => 0.00065332572442119
1129 => 0.00065596364332552
1130 => 0.00064164806765349
1201 => 0.0006383104221712
1202 => 0.00063148277086882
1203 => 0.00062970156408817
1204 => 0.00063526254361035
1205 => 0.00063379742197856
1206 => 0.00060746505683959
1207 => 0.00060471317817067
1208 => 0.00060479757436067
1209 => 0.00059787784460297
1210 => 0.00058732359579706
1211 => 0.00061505953149755
1212 => 0.00061283194769663
1213 => 0.00061037286758171
1214 => 0.00061067409086447
1215 => 0.00062271332049398
1216 => 0.00061572995931319
1217 => 0.00063429636956269
1218 => 0.00063047967377277
1219 => 0.00062656509413756
1220 => 0.00062602397999096
1221 => 0.00062451720080764
1222 => 0.0006193498943402
1223 => 0.00061311006127378
1224 => 0.00060898998299825
1225 => 0.00056176106822719
1226 => 0.00057052648009074
1227 => 0.00058061028744732
1228 => 0.00058409117733849
1229 => 0.0005781368743094
1230 => 0.00061958500651569
1231 => 0.00062715797967392
]
'min_raw' => 0.00026139348456807
'max_raw' => 0.00068668236902543
'avg_raw' => 0.00047403792679675
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.000261'
'max' => '$0.000686'
'avg' => '$0.000474'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -1.0134814395618E-5
'max_diff' => -0.00012383621619557
'year' => 2027
]
2 => [
'items' => [
101 => 0.00060421895000483
102 => 0.00059992799414815
103 => 0.00061986632086729
104 => 0.00060784107249433
105 => 0.00061325604110036
106 => 0.0006015518408036
107 => 0.00062533387220264
108 => 0.00062515269296918
109 => 0.00061590094561341
110 => 0.00062372045912528
111 => 0.00062236162622381
112 => 0.0006119164262452
113 => 0.00062566500367273
114 => 0.00062567182279561
115 => 0.00061676721711601
116 => 0.00060636858715109
117 => 0.00060450955771803
118 => 0.00060310902876569
119 => 0.00061291159683207
120 => 0.00062170054870855
121 => 0.00063805460918473
122 => 0.00064216640855133
123 => 0.00065821503521717
124 => 0.00064865885943112
125 => 0.00065289498838388
126 => 0.00065749390559913
127 => 0.00065969879563171
128 => 0.00065610604564455
129 => 0.00068103616873488
130 => 0.00068314103496293
131 => 0.00068384677840218
201 => 0.00067544048116388
202 => 0.00068290724062986
203 => 0.00067941379114881
204 => 0.00068850277619028
205 => 0.00068992804509877
206 => 0.00068872089303869
207 => 0.00068917329588658
208 => 0.00066789983380407
209 => 0.00066679669256864
210 => 0.00065175528354821
211 => 0.00065788476890452
212 => 0.00064642598982478
213 => 0.00065005968670947
214 => 0.0006516613856731
215 => 0.00065082474903012
216 => 0.00065823132080996
217 => 0.00065193422173445
218 => 0.00063531514193523
219 => 0.00061869153427883
220 => 0.000618482838426
221 => 0.00061410613596112
222 => 0.00061094258171205
223 => 0.00061155199449354
224 => 0.00061369964462246
225 => 0.00061081775638235
226 => 0.00061143275335382
227 => 0.00062164580078362
228 => 0.00062369395460954
229 => 0.00061673352764369
301 => 0.00058878640899099
302 => 0.00058192811597357
303 => 0.00058685772098863
304 => 0.00058450168729866
305 => 0.0004717384801363
306 => 0.00049823052301881
307 => 0.00048248985072279
308 => 0.00048974387671031
309 => 0.00047367672632341
310 => 0.00048134481263954
311 => 0.00047992879709063
312 => 0.00052252721808915
313 => 0.00052186210233747
314 => 0.00052218045805065
315 => 0.00050698451038885
316 => 0.00053119206762904
317 => 0.00054311758080116
318 => 0.00054091048570026
319 => 0.00054146596398716
320 => 0.0005319210066306
321 => 0.00052227287410211
322 => 0.00051157161029106
323 => 0.00053145323573581
324 => 0.00052924273837702
325 => 0.00053431282400624
326 => 0.00054720747927509
327 => 0.00054910626624546
328 => 0.00055165825518924
329 => 0.00055074354881584
330 => 0.00057253556562009
331 => 0.00056989640859674
401 => 0.00057625601768572
402 => 0.00056317381928498
403 => 0.00054837007002088
404 => 0.00055118377878496
405 => 0.00055091279600456
406 => 0.00054746287419054
407 => 0.00054434843903327
408 => 0.00053916378198308
409 => 0.00055556880407475
410 => 0.00055490279013692
411 => 0.00056568478163394
412 => 0.00056377895990616
413 => 0.00055105141597439
414 => 0.00055150598269584
415 => 0.0005545631623549
416 => 0.00056514409606116
417 => 0.00056828523759008
418 => 0.00056683013568104
419 => 0.00057027425396894
420 => 0.00057299634463568
421 => 0.00057061610664664
422 => 0.00060431525709383
423 => 0.00059032102033158
424 => 0.00059714171395823
425 => 0.00059876840919832
426 => 0.00059460166354654
427 => 0.00059550528147843
428 => 0.00059687401642411
429 => 0.00060518470698848
430 => 0.00062699436374707
501 => 0.00063665371226209
502 => 0.00066571433885341
503 => 0.00063585163783254
504 => 0.00063407970873811
505 => 0.00063931440513405
506 => 0.00065637606932289
507 => 0.00067020294562731
508 => 0.00067479011818912
509 => 0.00067539638876913
510 => 0.00068400222944454
511 => 0.00068893493683027
512 => 0.00068295725403047
513 => 0.00067789179374712
514 => 0.00065974794376023
515 => 0.00066184814380027
516 => 0.00067631643940802
517 => 0.00069675375913232
518 => 0.00071429110559647
519 => 0.00070815013810296
520 => 0.00075500138523105
521 => 0.00075964649501362
522 => 0.00075900469103605
523 => 0.00076958694240576
524 => 0.0007485833284749
525 => 0.00073960387659361
526 => 0.00067898700375579
527 => 0.00069601787249311
528 => 0.00072077324039064
529 => 0.00071749677462154
530 => 0.00069951876474147
531 => 0.00071427746766385
601 => 0.0007093977789304
602 => 0.00070554896596786
603 => 0.00072318112427838
604 => 0.00070379384192682
605 => 0.00072057983741869
606 => 0.00069905162457147
607 => 0.00070817818952519
608 => 0.00070299750985519
609 => 0.0007063500445219
610 => 0.00068675119536383
611 => 0.00069732625863435
612 => 0.00068631123796419
613 => 0.00068630601541019
614 => 0.00068606285821839
615 => 0.00069902198118876
616 => 0.00069944457772358
617 => 0.00068986776626833
618 => 0.00068848759811971
619 => 0.00069359080314055
620 => 0.00068761628659266
621 => 0.00069041172528226
622 => 0.00068770095758281
623 => 0.00068709070667616
624 => 0.00068222812362636
625 => 0.00068013318914899
626 => 0.00068095466693738
627 => 0.00067815053974479
628 => 0.00067646095168155
629 => 0.0006857267566263
630 => 0.00068077641082582
701 => 0.00068496804513442
702 => 0.00068019114881335
703 => 0.00066363234496986
704 => 0.00065410920177329
705 => 0.00062283115631486
706 => 0.00063170157120658
707 => 0.00063758266545689
708 => 0.00063563896384225
709 => 0.00063981478702318
710 => 0.00064007114865186
711 => 0.00063871354596826
712 => 0.00063714161598033
713 => 0.00063637648739538
714 => 0.00064207912900947
715 => 0.00064538970440855
716 => 0.0006381729119438
717 => 0.00063648211844297
718 => 0.00064377869407486
719 => 0.00064822960099522
720 => 0.00068109259694656
721 => 0.00067865800006041
722 => 0.00068476836047915
723 => 0.00068408042766712
724 => 0.00069048505884271
725 => 0.00070095392401571
726 => 0.00067966779397826
727 => 0.00068336233013377
728 => 0.00068245651518774
729 => 0.00069234596525106
730 => 0.00069237683903469
731 => 0.00068644761970706
801 => 0.00068966194569516
802 => 0.00068786779710902
803 => 0.0006911100660979
804 => 0.00067862548453469
805 => 0.00069383035725138
806 => 0.00070245054030139
807 => 0.0007025702315514
808 => 0.00070665612990311
809 => 0.00071080763926771
810 => 0.0007187760999728
811 => 0.00071058540322353
812 => 0.00069585113711986
813 => 0.00069691490354115
814 => 0.00068827620871563
815 => 0.00068842142673635
816 => 0.00068764624156078
817 => 0.00068997263062589
818 => 0.00067913599611028
819 => 0.00068167933257113
820 => 0.00067811864663217
821 => 0.00068335458989792
822 => 0.00067772158047641
823 => 0.00068245607837634
824 => 0.00068449933071886
825 => 0.00069203897585084
826 => 0.00067660796876011
827 => 0.00064514310071478
828 => 0.00065175739745256
829 => 0.00064197433303558
830 => 0.00064287979289413
831 => 0.00064470896591125
901 => 0.00063878001769458
902 => 0.00063991107417169
903 => 0.0006398706648752
904 => 0.00063952243938897
905 => 0.00063798009097097
906 => 0.00063574338062053
907 => 0.00064465374623353
908 => 0.00064616779098105
909 => 0.00064953332490432
910 => 0.00065954687099651
911 => 0.00065854628160622
912 => 0.00066017828441584
913 => 0.00065661563144575
914 => 0.00064304505414747
915 => 0.00064378200178479
916 => 0.0006345922529387
917 => 0.00064929832236496
918 => 0.00064581573101419
919 => 0.00064357048171475
920 => 0.00064295784464131
921 => 0.00065299621237742
922 => 0.0006559998493362
923 => 0.00065412818435007
924 => 0.00065028934485832
925 => 0.00065766105153349
926 => 0.00065963340925243
927 => 0.00066007494740795
928 => 0.00067313619825181
929 => 0.00066080492623773
930 => 0.00066377318597382
1001 => 0.00068693070110771
1002 => 0.00066593003039992
1003 => 0.00067705455404468
1004 => 0.00067651006650149
1005 => 0.00068220099636479
1006 => 0.00067604324414691
1007 => 0.00067611957686564
1008 => 0.00068117273704728
1009 => 0.00067407648491442
1010 => 0.0006723193530915
1011 => 0.00066989188806296
1012 => 0.00067519216914575
1013 => 0.00067836944794378
1014 => 0.00070397598160182
1015 => 0.00072051897014471
1016 => 0.00071980079538304
1017 => 0.00072636356833793
1018 => 0.00072340697901364
1019 => 0.00071385937217665
1020 => 0.00073015597284078
1021 => 0.00072499904651191
1022 => 0.0007254241772528
1023 => 0.00072540835386539
1024 => 0.00072883725904776
1025 => 0.00072640756547151
1026 => 0.00072161839002978
1027 => 0.00072479766818946
1028 => 0.00073423898771096
1029 => 0.00076354513320074
1030 => 0.00077994524047161
1031 => 0.00076255782615045
1101 => 0.00077455143172243
1102 => 0.00076735954213787
1103 => 0.00076605256186017
1104 => 0.00077358543247987
1105 => 0.00078113148839239
1106 => 0.00078065083725326
1107 => 0.00077517278815503
1108 => 0.00077207837721978
1109 => 0.00079551029352516
1110 => 0.00081277453030668
1111 => 0.00081159722509909
1112 => 0.00081679346740521
1113 => 0.00083204979552973
1114 => 0.00083344464297491
1115 => 0.00083326892425702
1116 => 0.00082981164932687
1117 => 0.00084483348565001
1118 => 0.00085736496579483
1119 => 0.00082901139007081
1120 => 0.00083980806053096
1121 => 0.00084465503374752
1122 => 0.00085177182846157
1123 => 0.00086377905405747
1124 => 0.00087682208581391
1125 => 0.00087866651351384
1126 => 0.00087735780379675
1127 => 0.00086875557373786
1128 => 0.0008830274147215
1129 => 0.00089138752445385
1130 => 0.00089636577848176
1201 => 0.00090898980239405
1202 => 0.00084468496700399
1203 => 0.00079916680835722
1204 => 0.00079205849059435
1205 => 0.00080651353428594
1206 => 0.0008103252140306
1207 => 0.00080878873070497
1208 => 0.00075755390481809
1209 => 0.00079178874983935
1210 => 0.00082862256453468
1211 => 0.00083003750136756
1212 => 0.0008484772791628
1213 => 0.00085448202668495
1214 => 0.00086932846476704
1215 => 0.00086839981602276
1216 => 0.00087201468743732
1217 => 0.00087118369109996
1218 => 0.00089868359136065
1219 => 0.0009290200651229
1220 => 0.00092796960950059
1221 => 0.0009236083824724
1222 => 0.00093008554830898
1223 => 0.00096139604028572
1224 => 0.00095851347192491
1225 => 0.00096131364155085
1226 => 0.00099823047617343
1227 => 0.0010462276125413
1228 => 0.0010239281238647
1229 => 0.0010723115977878
1230 => 0.0011027664299247
1231 => 0.001155434913017
]
'min_raw' => 0.0004717384801363
'max_raw' => 0.001155434913017
'avg_raw' => 0.00081358669657665
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.000471'
'max' => '$0.001155'
'avg' => '$0.000813'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00021034499556823
'max_diff' => 0.00046875254399157
'year' => 2028
]
3 => [
'items' => [
101 => 0.0011488405595361
102 => 0.0011693440135047
103 => 0.0011370352905222
104 => 0.001062847931884
105 => 0.0010511074984017
106 => 0.0010746121435484
107 => 0.0011323960200918
108 => 0.0010727923236407
109 => 0.0010848500738047
110 => 0.0010813774409463
111 => 0.001081192399099
112 => 0.0010882546937903
113 => 0.0010780104669961
114 => 0.0010362736441351
115 => 0.0010554013840956
116 => 0.0010480152451074
117 => 0.001056210716988
118 => 0.0011004382986581
119 => 0.0010808842305479
120 => 0.0010602856082373
121 => 0.001086120851815
122 => 0.0011190179948423
123 => 0.0011169593507535
124 => 0.0011129647207747
125 => 0.0011354822408129
126 => 0.0011726745869016
127 => 0.0011827275285984
128 => 0.0011901484046356
129 => 0.0011911716180644
130 => 0.0012017113523048
131 => 0.0011450365449395
201 => 0.0012349809197405
202 => 0.0012505118286054
203 => 0.001247592661429
204 => 0.0012648546129918
205 => 0.0012597757089486
206 => 0.0012524171738456
207 => 0.001279781038795
208 => 0.0012484105757805
209 => 0.0012038841529629
210 => 0.0011794560767724
211 => 0.0012116249380568
212 => 0.0012312693391046
213 => 0.0012442530385787
214 => 0.0012481818981945
215 => 0.0011494360489028
216 => 0.0010962175128304
217 => 0.001130329984301
218 => 0.0011719495538122
219 => 0.0011448053461294
220 => 0.0011458693476798
221 => 0.0011071688408964
222 => 0.001175373689929
223 => 0.0011654368171181
224 => 0.0012169893308394
225 => 0.001204685909705
226 => 0.0012467249833878
227 => 0.0012356546864043
228 => 0.0012816068702506
301 => 0.0012999384404926
302 => 0.00133072000001
303 => 0.0013533630404945
304 => 0.0013666594669594
305 => 0.0013658611993881
306 => 0.0014185482652951
307 => 0.0013874805432756
308 => 0.0013484521623192
309 => 0.0013477462620407
310 => 0.0013679596135744
311 => 0.001410321253127
312 => 0.0014213050099262
313 => 0.0014274434315452
314 => 0.0014180422251556
315 => 0.0013843204395471
316 => 0.0013697595434947
317 => 0.0013821658488012
318 => 0.0013669940034974
319 => 0.0013931848649596
320 => 0.0014291505118135
321 => 0.0014217237479617
322 => 0.0014465503060354
323 => 0.0014722431818116
324 => 0.0015089851481108
325 => 0.0015185908586525
326 => 0.0015344687329055
327 => 0.0015508122811217
328 => 0.0015560613883378
329 => 0.0015660835627157
330 => 0.0015660307409096
331 => 0.0015962332379673
401 => 0.0016295475275155
402 => 0.0016421229005924
403 => 0.0016710392775725
404 => 0.0016215209953447
405 => 0.0016590811812395
406 => 0.001692961409109
407 => 0.0016525680047251
408 => 0.0017082409022121
409 => 0.0017104025546641
410 => 0.0017430409402561
411 => 0.0017099556837005
412 => 0.0016903097639696
413 => 0.0017470267981096
414 => 0.00177447038436
415 => 0.0017662041528381
416 => 0.0017032977228018
417 => 0.001666683482337
418 => 0.001570856952681
419 => 0.0016843676164565
420 => 0.0017396553496301
421 => 0.0017031545409294
422 => 0.0017215634257128
423 => 0.00182199633199
424 => 0.0018602346801513
425 => 0.00185228137104
426 => 0.0018536253493572
427 => 0.0018742580679499
428 => 0.0019657549048356
429 => 0.0019109278792936
430 => 0.001952841085991
501 => 0.001975071699694
502 => 0.0019957207326269
503 => 0.0019450132339375
504 => 0.0018790435231838
505 => 0.0018581481465681
506 => 0.0016995252548564
507 => 0.0016912682444786
508 => 0.0016866333343404
509 => 0.0016574108815406
510 => 0.0016344500383433
511 => 0.0016161907233515
512 => 0.0015682728281198
513 => 0.0015844437111159
514 => 0.0015080725873585
515 => 0.001556932125912
516 => 0.00143504196835
517 => 0.0015365557135533
518 => 0.0014813063973028
519 => 0.0015184048272394
520 => 0.0015182753943122
521 => 0.001449965422731
522 => 0.0014105656567157
523 => 0.0014356727210825
524 => 0.0014625894870849
525 => 0.00146695664181
526 => 0.0015018549315316
527 => 0.0015115942940567
528 => 0.0014820835709183
529 => 0.0014325160657613
530 => 0.0014440294666949
531 => 0.0014103323380132
601 => 0.00135127941614
602 => 0.0013936922555945
603 => 0.0014081738637451
604 => 0.0014145697669035
605 => 0.0013564980005151
606 => 0.0013382505907164
607 => 0.0013285358228503
608 => 0.0014250197299546
609 => 0.0014303053361859
610 => 0.0014032634273972
611 => 0.0015254954193409
612 => 0.0014978305550296
613 => 0.0015287389865217
614 => 0.0014429847462379
615 => 0.0014462606737002
616 => 0.0014056632420772
617 => 0.0014283950910647
618 => 0.001412328952882
619 => 0.001426558582307
620 => 0.0014350877635134
621 => 0.0014756785334973
622 => 0.0015370191949446
623 => 0.0014696156260446
624 => 0.001440246925838
625 => 0.0014584671022703
626 => 0.0015069898331365
627 => 0.0015805042542315
628 => 0.0015369822373276
629 => 0.0015562965693778
630 => 0.001560515891696
701 => 0.0015284243677037
702 => 0.001581687514496
703 => 0.001610231667571
704 => 0.0016395120622458
705 => 0.0016649354085239
706 => 0.001627816828723
707 => 0.0016675390298494
708 => 0.001635529947654
709 => 0.0016068144918866
710 => 0.0016068580413798
711 => 0.001588844416511
712 => 0.001553940748465
713 => 0.001547503976559
714 => 0.0015809888768888
715 => 0.0016078405959215
716 => 0.001610052232112
717 => 0.0016249187234597
718 => 0.0016337165599021
719 => 0.0017199473171171
720 => 0.0017546300410072
721 => 0.0017970394192696
722 => 0.0018135602621644
723 => 0.0018632820762278
724 => 0.0018231276731633
725 => 0.0018144400154773
726 => 0.0016938311584409
727 => 0.001713580852024
728 => 0.0017452020170125
729 => 0.0016943525798048
730 => 0.001726604843786
731 => 0.0017329721238922
801 => 0.0016926247353862
802 => 0.001714176018895
803 => 0.0016569421994059
804 => 0.0015382667358075
805 => 0.0015818196342122
806 => 0.0016138892271851
807 => 0.0015681219638604
808 => 0.0016501580119322
809 => 0.0016022342462164
810 => 0.001587044713231
811 => 0.0015277849295953
812 => 0.0015557532663531
813 => 0.001593580842286
814 => 0.0015702077982872
815 => 0.001618710374065
816 => 0.0016874029565308
817 => 0.00173635738151
818 => 0.0017401154943904
819 => 0.0017086410788205
820 => 0.0017590790306383
821 => 0.0017594464160529
822 => 0.0017025522003574
823 => 0.0016677048100322
824 => 0.0016597874096308
825 => 0.0016795666281313
826 => 0.0017035822508361
827 => 0.0017414481943103
828 => 0.0017643297909048
829 => 0.001823992859362
830 => 0.0018401359750123
831 => 0.0018578723648251
901 => 0.0018815736513151
902 => 0.0019100331226315
903 => 0.0018477654195899
904 => 0.0018502394315133
905 => 0.001792256608596
906 => 0.0017302936467309
907 => 0.0017773158109942
908 => 0.0018387910356722
909 => 0.001824688551207
910 => 0.001823101733617
911 => 0.0018257703206568
912 => 0.0018151375079142
913 => 0.0017670456899494
914 => 0.0017428942800383
915 => 0.0017740557605055
916 => 0.0017906167005358
917 => 0.0018163012742572
918 => 0.0018131351084105
919 => 0.0018792958119949
920 => 0.001905003860812
921 => 0.0018984266418152
922 => 0.0018996370084002
923 => 0.0019461802028071
924 => 0.0019979458073255
925 => 0.0020464311270302
926 => 0.0020957524767267
927 => 0.0020362936646225
928 => 0.0020061041467457
929 => 0.0020372520230854
930 => 0.0020207245214615
1001 => 0.0021156964481679
1002 => 0.0021222720983154
1003 => 0.0022172371574707
1004 => 0.0023073703068378
1005 => 0.0022507592906234
1006 => 0.0023041409290975
1007 => 0.002361877523376
1008 => 0.002473260781164
1009 => 0.0024357508184513
1010 => 0.0024070187748693
1011 => 0.0023798671325167
1012 => 0.0024363653900508
1013 => 0.0025090494957867
1014 => 0.0025247049560025
1015 => 0.0025500727823982
1016 => 0.0025234016147734
1017 => 0.0025555240984448
1018 => 0.0026689305811394
1019 => 0.0026382871484486
1020 => 0.00259476854785
1021 => 0.002684292074263
1022 => 0.002716690290458
1023 => 0.0029440779387918
1024 => 0.0032311642377285
1025 => 0.0031123086248585
1026 => 0.0030385311105034
1027 => 0.0030558705764028
1028 => 0.00316070477429
1029 => 0.0031943741913803
1030 => 0.0031028491091849
1031 => 0.0031351773155059
1101 => 0.0033133089107738
1102 => 0.0034088707964892
1103 => 0.0032790849200141
1104 => 0.002921010834202
1105 => 0.0025908501740134
1106 => 0.0026784236484237
1107 => 0.0026684955341469
1108 => 0.0028598757108932
1109 => 0.0026375563127134
1110 => 0.0026412996012088
1111 => 0.0028366373173351
1112 => 0.0027845245636088
1113 => 0.0027001085766696
1114 => 0.0025914665041384
1115 => 0.0023906315848892
1116 => 0.0022127464962142
1117 => 0.0025616201195953
1118 => 0.0025465760545696
1119 => 0.0025247900190068
1120 => 0.0025732724836565
1121 => 0.0028086895700075
1122 => 0.0028032624441963
1123 => 0.0027687378387298
1124 => 0.0027949244476902
1125 => 0.0026955179375084
1126 => 0.0027211372586264
1127 => 0.002590797874878
1128 => 0.0026497167197858
1129 => 0.0026999274578747
1130 => 0.0027100080069288
1201 => 0.0027327199986731
1202 => 0.0025386485159086
1203 => 0.0026257809140305
1204 => 0.0026769630347255
1205 => 0.0024457203514041
1206 => 0.0026723921103781
1207 => 0.0025352701631638
1208 => 0.0024887289147767
1209 => 0.0025513905743867
1210 => 0.0025269712646962
1211 => 0.0025059769761743
1212 => 0.0024942618024514
1213 => 0.002540273609554
1214 => 0.0025381271037566
1215 => 0.0024628428568299
1216 => 0.0023646376256925
1217 => 0.002397598524739
1218 => 0.0023856235211053
1219 => 0.0023422245631306
1220 => 0.0023714702207954
1221 => 0.0022426871453283
1222 => 0.0020211225575491
1223 => 0.0021674949109429
1224 => 0.0021618597345597
1225 => 0.0021590182230924
1226 => 0.0022690130012332
1227 => 0.0022584395413263
1228 => 0.0022392486080596
1229 => 0.0023418721065915
1230 => 0.0023044131491465
1231 => 0.0024198528295516
]
'min_raw' => 0.0010362736441351
'max_raw' => 0.0034088707964892
'avg_raw' => 0.0022225722203122
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.001036'
'max' => '$0.0034088'
'avg' => '$0.002222'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.0005645351639988
'max_diff' => 0.0022534358834722
'year' => 2029
]
4 => [
'items' => [
101 => 0.0024958888692368
102 => 0.0024766036700644
103 => 0.0025481159329024
104 => 0.0023983578772814
105 => 0.0024481014961084
106 => 0.0024583535870069
107 => 0.0023406057485494
108 => 0.0022601694901312
109 => 0.0022548053087352
110 => 0.0021153399214373
111 => 0.0021898412056066
112 => 0.0022553992526029
113 => 0.0022240020356016
114 => 0.0022140626146642
115 => 0.0022648409606362
116 => 0.0022687868730053
117 => 0.0021788196528198
118 => 0.0021975266867877
119 => 0.0022755381282195
120 => 0.0021955609986203
121 => 0.0020401784999992
122 => 0.00200164149201
123 => 0.0019964999447663
124 => 0.0018919845226911
125 => 0.0020042167191558
126 => 0.001955224357763
127 => 0.002109990640384
128 => 0.0020215889697791
129 => 0.0020177781504455
130 => 0.0020120175380971
131 => 0.0019220567968393
201 => 0.0019417524818714
202 => 0.0020072239386557
203 => 0.002030584892025
204 => 0.002028148153198
205 => 0.0020069030927996
206 => 0.0020166289726577
207 => 0.0019852985249137
208 => 0.0019742350917284
209 => 0.0019393158533586
210 => 0.0018879942196407
211 => 0.0018951308075831
212 => 0.0017934492221522
213 => 0.0017380476977592
214 => 0.0017227132859876
215 => 0.0017022074696974
216 => 0.0017250294725015
217 => 0.0017931611709962
218 => 0.0017109798876654
219 => 0.0015700858417413
220 => 0.0015785538139731
221 => 0.0015975788334145
222 => 0.0015621258355486
223 => 0.0015285725484131
224 => 0.0015577444093132
225 => 0.0014980457446818
226 => 0.0016047931318214
227 => 0.0016019059141554
228 => 0.0016416947388669
301 => 0.0016665755075079
302 => 0.0016092333910349
303 => 0.0015948120038115
304 => 0.0016030270813895
305 => 0.0014672501483375
306 => 0.0016305988667229
307 => 0.0016320115132227
308 => 0.0016199155762488
309 => 0.0017068937259632
310 => 0.0018904447510257
311 => 0.0018213854720743
312 => 0.0017946436319365
313 => 0.0017438073742865
314 => 0.0018115436692469
315 => 0.0018063425786447
316 => 0.0017828212744868
317 => 0.0017685955163411
318 => 0.0017948069119101
319 => 0.0017653476343615
320 => 0.0017600559386269
321 => 0.0017279940198974
322 => 0.0017165493736353
323 => 0.0017080762131674
324 => 0.0016987480960477
325 => 0.0017193235979917
326 => 0.0016726968036538
327 => 0.0016164694605634
328 => 0.0016117947653737
329 => 0.0016247020097958
330 => 0.0016189915149704
331 => 0.0016117674257214
401 => 0.0015979746719816
402 => 0.0015938826565826
403 => 0.0016071797214658
404 => 0.0015921681104797
405 => 0.0016143185602145
406 => 0.0016082948635269
407 => 0.001574646983494
408 => 0.0015327092669323
409 => 0.0015323359332875
410 => 0.001523300521046
411 => 0.001511792565073
412 => 0.0015085913149877
413 => 0.0015552876365551
414 => 0.0016519476246965
415 => 0.0016329709561468
416 => 0.0016466835439812
417 => 0.001714135904279
418 => 0.0017355769812545
419 => 0.0017203586126771
420 => 0.0016995267711402
421 => 0.0017004432664444
422 => 0.0017716319752032
423 => 0.0017760719276467
424 => 0.0017872902550883
425 => 0.0018017089761498
426 => 0.0017228141832221
427 => 0.0016967273287924
428 => 0.00168436592992
429 => 0.0016462976058565
430 => 0.0016873510296276
501 => 0.001663430957679
502 => 0.0016666585926109
503 => 0.0016645565911273
504 => 0.0016657044260741
505 => 0.0016047632937512
506 => 0.001626967039398
507 => 0.0015900490057729
508 => 0.0015406199029926
509 => 0.001540454199308
510 => 0.0015525519021873
511 => 0.0015453557151315
512 => 0.0015259909607953
513 => 0.0015287416327497
514 => 0.0015046428520361
515 => 0.0015316676610508
516 => 0.0015324426358739
517 => 0.001522036612352
518 => 0.0015636720593441
519 => 0.0015807301359481
520 => 0.0015738806683473
521 => 0.0015802495590419
522 => 0.0016337595223996
523 => 0.0016424839812303
524 => 0.0016463588095375
525 => 0.0016411670529222
526 => 0.0015812276229425
527 => 0.0015838861915442
528 => 0.0015643793791327
529 => 0.0015478981782222
530 => 0.0015485573398261
531 => 0.0015570308195002
601 => 0.0015940350022003
602 => 0.0016719081231768
603 => 0.0016748633511934
604 => 0.0016784451737595
605 => 0.0016638761013032
606 => 0.0016594819296432
607 => 0.0016652789762947
608 => 0.0016945240261593
609 => 0.0017697502343647
610 => 0.0017431602681954
611 => 0.0017215422118023
612 => 0.0017405070754452
613 => 0.0017375875833389
614 => 0.0017129441318886
615 => 0.0017122524722839
616 => 0.0016649538099628
617 => 0.0016474685714412
618 => 0.001632856597385
619 => 0.001616900703171
620 => 0.0016074415142345
621 => 0.0016219751275654
622 => 0.0016252991368909
623 => 0.0015935211373386
624 => 0.0015891899134234
625 => 0.0016151405138335
626 => 0.0016037206221289
627 => 0.0016154662639468
628 => 0.0016181913536008
629 => 0.0016177525514024
630 => 0.0016058288728965
701 => 0.0016134286700069
702 => 0.0015954528842323
703 => 0.0015759069170781
704 => 0.0015634378077905
705 => 0.0015525568561497
706 => 0.0015585942405247
707 => 0.0015370720676109
708 => 0.00153018669134
709 => 0.0016108540297468
710 => 0.0016704438599479
711 => 0.0016695774002166
712 => 0.0016643030494377
713 => 0.0016564664340433
714 => 0.001693950728932
715 => 0.0016808919501149
716 => 0.0016903933028018
717 => 0.0016928117958311
718 => 0.0017001318458274
719 => 0.0017027481345215
720 => 0.0016948398929586
721 => 0.001668298868363
722 => 0.0016021611585156
723 => 0.0015713738760463
724 => 0.0015612135600287
725 => 0.0015615828682187
726 => 0.0015513956996727
727 => 0.0015543962773664
728 => 0.0015503522212036
729 => 0.0015426937571935
730 => 0.001558121351953
731 => 0.0015598992385311
801 => 0.0015562982535682
802 => 0.0015571464158845
803 => 0.0015273317983926
804 => 0.0015295985390065
805 => 0.0015169770392245
806 => 0.0015146106601698
807 => 0.0014827046078005
808 => 0.0014261784111721
809 => 0.0014574994112349
810 => 0.0014196680475581
811 => 0.001405340736895
812 => 0.0014731639972202
813 => 0.001466356423008
814 => 0.001454704815138
815 => 0.0014374696586905
816 => 0.0014310769715112
817 => 0.0013922370278892
818 => 0.0013899421568169
819 => 0.0014091922816427
820 => 0.001400309011392
821 => 0.0013878335356024
822 => 0.0013426486269112
823 => 0.0012918458293331
824 => 0.001293379246457
825 => 0.0013095386711469
826 => 0.0013565243778282
827 => 0.0013381662493669
828 => 0.0013248472165329
829 => 0.0013223529620517
830 => 0.0013535737789587
831 => 0.0013977577758455
901 => 0.0014184879186235
902 => 0.0013979449767143
903 => 0.0013743463511595
904 => 0.0013757826901515
905 => 0.0013853380099742
906 => 0.0013863421389826
907 => 0.0013709818597243
908 => 0.0013753056883622
909 => 0.0013687373972821
910 => 0.0013284278070478
911 => 0.0013276987343835
912 => 0.0013178061108601
913 => 0.0013175065661514
914 => 0.0013006767457074
915 => 0.0012983221374882
916 => 0.0012649055074996
917 => 0.001286900434553
918 => 0.0012721473922711
919 => 0.0012499110776614
920 => 0.0012460775286413
921 => 0.0012459622875287
922 => 0.0012687940106838
923 => 0.0012866336325747
924 => 0.0012724040277579
925 => 0.0012691642225705
926 => 0.0013037568659511
927 => 0.001299354636762
928 => 0.0012955423346755
929 => 0.0013938015835386
930 => 0.0013160217207987
1001 => 0.0012821052611247
1002 => 0.0012401272017172
1003 => 0.001253795469532
1004 => 0.0012566755743892
1005 => 0.001155725908628
1006 => 0.0011147706418012
1007 => 0.0011007163375929
1008 => 0.0010926278868223
1009 => 0.0010963138954069
1010 => 0.001059449351689
1011 => 0.0010842229347507
1012 => 0.0010523013559734
1013 => 0.0010469495994095
1014 => 0.0011040293365882
1015 => 0.0011119716485616
1016 => 0.0010780872782001
1017 => 0.0010998465293534
1018 => 0.001091956322409
1019 => 0.001052848559821
1020 => 0.0010513549309474
1021 => 0.001031732030385
1022 => 0.0010010259907473
1023 => 0.00098699250667978
1024 => 0.00097968374633313
1025 => 0.00098269948329705
1026 => 0.00098117463440502
1027 => 0.00097122396393695
1028 => 0.00098174499518841
1029 => 0.0009548681079312
1030 => 0.00094416551486358
1031 => 0.00093933140187322
1101 => 0.00091547661745653
1102 => 0.00095344018773425
1103 => 0.00096091948933142
1104 => 0.00096841352746321
1105 => 0.0010336440130033
1106 => 0.0010303852822852
1107 => 0.0010598426209109
1108 => 0.0010586979629005
1109 => 0.0010502962527472
1110 => 0.0010148508196246
1111 => 0.0010289787375131
1112 => 0.00098549520221798
1113 => 0.0010180760234541
1114 => 0.0010032074972496
1115 => 0.001013048959788
1116 => 0.00099535312277502
1117 => 0.0010051467296212
1118 => 0.00096269310920391
1119 => 0.00092305051579682
1120 => 0.00093900385262327
1121 => 0.000956346954239
1122 => 0.00099395121748199
1123 => 0.0009715544285229
1124 => 0.00097960916074894
1125 => 0.00095262715613759
1126 => 0.00089695557359578
1127 => 0.00089727066870705
1128 => 0.00088870680860434
1129 => 0.00088130638313156
1130 => 0.0009741269691549
1201 => 0.00096258326200658
1202 => 0.00094418987546877
1203 => 0.00096881015427375
1204 => 0.00097532014676616
1205 => 0.00097550547710045
1206 => 0.00099346779697519
1207 => 0.0010030542903123
1208 => 0.0010047439513132
1209 => 0.0010330080497377
1210 => 0.0010424818027171
1211 => 0.0010815028504637
1212 => 0.0010022409433297
1213 => 0.001000608596512
1214 => 0.00096915661208643
1215 => 0.0009492092663275
1216 => 0.00097052242391624
1217 => 0.00098940297200372
1218 => 0.00096974328334483
1219 => 0.000972310423645
1220 => 0.00094591889787602
1221 => 0.00095535262650173
1222 => 0.00096347822445466
1223 => 0.00095899174686562
1224 => 0.00095227527276686
1225 => 0.00098785498237148
1226 => 0.00098584743571758
1227 => 0.0010189800792754
1228 => 0.0010448093442668
1229 => 0.0010911000046647
1230 => 0.0010427932873528
1231 => 0.0010410327985721
]
'min_raw' => 0.00088130638313156
'max_raw' => 0.0025481159329024
'avg_raw' => 0.001714711158017
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.000881'
'max' => '$0.002548'
'avg' => '$0.001714'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00015496726100354
'max_diff' => -0.00086075486358681
'year' => 2030
]
5 => [
'items' => [
101 => 0.0010582418587943
102 => 0.0010424791680997
103 => 0.0010524406445091
104 => 0.0010894950568113
105 => 0.0010902779581537
106 => 0.0010771633519576
107 => 0.0010763653269788
108 => 0.0010788841305568
109 => 0.0010936368417867
110 => 0.0010884817911779
111 => 0.0010944473462523
112 => 0.0011019073642206
113 => 0.0011327651615196
114 => 0.0011402048719798
115 => 0.0011221302326091
116 => 0.0011237621701712
117 => 0.0011170017588866
118 => 0.0011104712862934
119 => 0.001125150834984
120 => 0.0011519779987433
121 => 0.0011518111083499
122 => 0.0011580344888965
123 => 0.0011619116034198
124 => 0.0011452681896646
125 => 0.0011344339393052
126 => 0.0011385884802943
127 => 0.0011452316818099
128 => 0.0011364341795776
129 => 0.0010821319204006
130 => 0.0010986037569931
131 => 0.0010958620379525
201 => 0.0010919574966341
202 => 0.0011085200557009
203 => 0.0011069225564743
204 => 0.0010590712525101
205 => 0.0010621345377367
206 => 0.0010592575410306
207 => 0.0010685537059661
208 => 0.0010419771446857
209 => 0.0010501519159397
210 => 0.0010552790558365
211 => 0.0010582989806242
212 => 0.0010692090197393
213 => 0.0010679288525723
214 => 0.0010691294427508
215 => 0.001085306150615
216 => 0.0011671223878162
217 => 0.0011715754650897
218 => 0.0011496468839585
219 => 0.0011584069195983
220 => 0.001141589566779
221 => 0.0011528791683931
222 => 0.0011606032270926
223 => 0.0011256996910805
224 => 0.0011236329302
225 => 0.0011067461661834
226 => 0.0011158201566507
227 => 0.0011013827853742
228 => 0.0011049252112876
301 => 0.0010950202796105
302 => 0.0011128471845771
303 => 0.0011327804343507
304 => 0.0011378163604314
305 => 0.0011245690070156
306 => 0.0011149770500994
307 => 0.0010981367335416
308 => 0.0011261425552882
309 => 0.0011343323110288
310 => 0.0011260995379877
311 => 0.0011241918245845
312 => 0.0011205767111325
313 => 0.0011249587879931
314 => 0.0011342877078602
315 => 0.001129888361529
316 => 0.0011327942072873
317 => 0.0011217201197518
318 => 0.0011452736993271
319 => 0.0011826824521702
320 => 0.0011828027274275
321 => 0.0011784033573822
322 => 0.0011766032299454
323 => 0.001181117250588
324 => 0.0011835659216118
325 => 0.0011981634366403
326 => 0.0012138271518565
327 => 0.0012869228761561
328 => 0.00126639788927
329 => 0.0013312527643528
330 => 0.0013825445501916
331 => 0.0013979247140468
401 => 0.0013837756869927
402 => 0.0013353726297561
403 => 0.0013329977448491
404 => 0.0014053323476042
405 => 0.0013848945091912
406 => 0.0013824634933446
407 => 0.0013566015920033
408 => 0.0013718891787548
409 => 0.0013685455592769
410 => 0.0013632674923555
411 => 0.0013924351429349
412 => 0.0014470343810054
413 => 0.0014385245777237
414 => 0.0014321724043324
415 => 0.0014043390296212
416 => 0.0014211009380066
417 => 0.0014151323434838
418 => 0.0014407772133176
419 => 0.0014255857605315
420 => 0.001384739672464
421 => 0.0013912445466192
422 => 0.0013902613479767
423 => 0.0014104955063705
424 => 0.0014044217142634
425 => 0.0013890753425869
426 => 0.0014468477667454
427 => 0.0014430963468677
428 => 0.0014484150025603
429 => 0.0014507564392811
430 => 0.0014859214958021
501 => 0.0015003274943025
502 => 0.0015035979081746
503 => 0.00151728249255
504 => 0.0015032574232489
505 => 0.0015593677001581
506 => 0.0015966777601773
507 => 0.0016400153148476
508 => 0.0017033431302576
509 => 0.0017271549746668
510 => 0.0017228535781059
511 => 0.0017708680049994
512 => 0.0018571488628262
513 => 0.0017402934063368
514 => 0.0018633424857674
515 => 0.0018243865678896
516 => 0.0017320227873884
517 => 0.0017260756488216
518 => 0.0017886254733425
519 => 0.0019273549639324
520 => 0.0018926047999965
521 => 0.0019274118027517
522 => 0.001886807585155
523 => 0.0018847912435121
524 => 0.0019254397465334
525 => 0.0020204171894772
526 => 0.0019752969665108
527 => 0.0019106060629559
528 => 0.0019583728194389
529 => 0.0019169928343687
530 => 0.001823752146477
531 => 0.0018925782272011
601 => 0.0018465561870748
602 => 0.0018599878650499
603 => 0.0019567193481334
604 => 0.0019450803601691
605 => 0.0019601422883362
606 => 0.0019335583793605
607 => 0.0019087248164795
608 => 0.0018623711271974
609 => 0.0018486480850103
610 => 0.0018524406401675
611 => 0.0018486462056083
612 => 0.0018227117424674
613 => 0.0018171111976214
614 => 0.0018077767108458
615 => 0.0018106698586161
616 => 0.0017931182925776
617 => 0.0018262417240308
618 => 0.0018323897247912
619 => 0.0018564941959379
620 => 0.0018589968020958
621 => 0.0019261274111337
622 => 0.0018891529997597
623 => 0.0019139586271264
624 => 0.0019117397783351
625 => 0.0017340245905834
626 => 0.0017585121754612
627 => 0.0017966071729036
628 => 0.0017794454281923
629 => 0.0017551827364004
630 => 0.0017355893118952
701 => 0.0017059032702393
702 => 0.0017476858038
703 => 0.0018026253923554
704 => 0.0018603901607257
705 => 0.0019297907450251
706 => 0.0019143013425213
707 => 0.0018590927650763
708 => 0.0018615693815306
709 => 0.0018768788499384
710 => 0.0018570516973384
711 => 0.0018512042829647
712 => 0.0018760755049966
713 => 0.0018762467794337
714 => 0.001853433244176
715 => 0.00182808017457
716 => 0.0018279739442826
717 => 0.0018234626104278
718 => 0.0018876101414258
719 => 0.0019228847974277
720 => 0.0019269289798904
721 => 0.0019226125917256
722 => 0.0019242737982189
723 => 0.0019037482531154
724 => 0.0019506635625608
725 => 0.0019937176899511
726 => 0.0019821782640932
727 => 0.0019648790243062
728 => 0.0019510993465716
729 => 0.0019789322099434
730 => 0.0019776928563504
731 => 0.0019933416497079
801 => 0.0019926317300494
802 => 0.0019873696294242
803 => 0.0019821784520194
804 => 0.0020027608836453
805 => 0.0019968334738808
806 => 0.0019908968572117
807 => 0.0019789900636313
808 => 0.0019806083946298
809 => 0.0019633121418004
810 => 0.0019553101038189
811 => 0.0018349786521504
812 => 0.0018028221563209
813 => 0.0018129392445147
814 => 0.0018162700526382
815 => 0.0018022755044435
816 => 0.0018223400916502
817 => 0.0018192130469877
818 => 0.0018313785485095
819 => 0.0018237780713234
820 => 0.0018240899975582
821 => 0.0018464413803702
822 => 0.0018529300818901
823 => 0.0018496298759268
824 => 0.001851941227059
825 => 0.0019052053383408
826 => 0.001897632885007
827 => 0.0018936101700979
828 => 0.0018947244896195
829 => 0.0019083346120474
830 => 0.0019121447032421
831 => 0.0018960010791198
901 => 0.0019036145055811
902 => 0.0019360315091653
903 => 0.0019473756257763
904 => 0.0019835806005136
905 => 0.0019682000837531
906 => 0.0019964316879202
907 => 0.0020832060142669
908 => 0.0021525273504793
909 => 0.002088776584873
910 => 0.0022160763908082
911 => 0.0023151975498013
912 => 0.0023113931146242
913 => 0.00229410904784
914 => 0.0021812622435987
915 => 0.0020774189318848
916 => 0.0021642882715534
917 => 0.0021645097193651
918 => 0.0021570475660469
919 => 0.0021107007726693
920 => 0.0021554347980999
921 => 0.0021589856225884
922 => 0.0021569981051153
923 => 0.0021214641272985
924 => 0.002067210310949
925 => 0.0020778113767984
926 => 0.0020951761389156
927 => 0.0020623010215589
928 => 0.0020517954295898
929 => 0.002071327323831
930 => 0.0021342631567078
1001 => 0.0021223655020649
1002 => 0.00212205480622
1003 => 0.0021729580181731
1004 => 0.0021365223040153
1005 => 0.0020779450901881
1006 => 0.0020631535711582
1007 => 0.0020106536433632
1008 => 0.0020469155304895
1009 => 0.0020482205312514
1010 => 0.0020283602662598
1011 => 0.002079556641236
1012 => 0.0020790848576276
1013 => 0.0021276881960927
1014 => 0.0022205995246577
1015 => 0.0021931210729122
1016 => 0.0021611666231793
1017 => 0.0021646409578661
1018 => 0.002202745833991
1019 => 0.0021797067560362
1020 => 0.0021879917691029
1021 => 0.0022027332936315
1022 => 0.0022116272213911
1023 => 0.0021633612585312
1024 => 0.0021521081537607
1025 => 0.0021290882507034
1026 => 0.0021230827876825
1027 => 0.0021418320183967
1028 => 0.0021368922585236
1029 => 0.0020481108509906
1030 => 0.0020388326999283
1031 => 0.0020391172475752
1101 => 0.002015786895577
1102 => 0.0019802025088538
1103 => 0.0020737161525292
1104 => 0.0020662056982194
1105 => 0.0020579147379245
1106 => 0.0020589303332531
1107 => 0.0020995214365011
1108 => 0.0020759765467174
1109 => 0.0021385744951389
1110 => 0.00212570623881
1111 => 0.0021125079602627
1112 => 0.002110683556138
1113 => 0.0021056033449215
1114 => 0.0020881814103967
1115 => 0.0020671433775621
1116 => 0.0020532522460015
1117 => 0.0018940166624333
1118 => 0.0019235698605127
1119 => 0.0019575681210444
1120 => 0.0019693041843405
1121 => 0.0019492288359617
1122 => 0.0020889741075114
1123 => 0.0021145069152425
1124 => 0.0020371663751612
1125 => 0.0020226991179055
1126 => 0.0020899225784886
1127 => 0.0020493786140231
1128 => 0.0020676355587394
1129 => 0.0020281740302777
1130 => 0.0021083568095479
1201 => 0.0021077459511128
1202 => 0.0020765530389665
1203 => 0.0021029170747127
1204 => 0.0020983356747147
1205 => 0.0020631189537263
1206 => 0.0021094732424182
1207 => 0.0021094962335671
1208 => 0.0020794737338186
1209 => 0.0020444140268827
1210 => 0.0020381461793559
1211 => 0.0020334241982113
1212 => 0.0020664742408405
1213 => 0.0020961068057171
1214 => 0.0021512456624165
1215 => 0.0021651088810577
1216 => 0.0022192179463409
1217 => 0.0021869986324874
1218 => 0.0022012810370087
1219 => 0.002216786607486
1220 => 0.0022242205481714
1221 => 0.0022121073407519
1222 => 0.0022961609913165
1223 => 0.0023032576947615
1224 => 0.0023056371580403
1225 => 0.0022772947399925
1226 => 0.0023024694408445
1227 => 0.0022906910320143
1228 => 0.0023213351796543
1229 => 0.0023261405732884
1230 => 0.0023220705758372
1231 => 0.0023235958836246
]
'min_raw' => 0.0010419771446857
'max_raw' => 0.0023261405732884
'avg_raw' => 0.0016840588589871
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.001041'
'max' => '$0.002326'
'avg' => '$0.001684'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00016067076155417
'max_diff' => -0.00022197535961402
'year' => 2031
]
6 => [
'items' => [
101 => 0.0022518709209477
102 => 0.0022481516032536
103 => 0.0021974384425836
104 => 0.0022181044304094
105 => 0.0021794703567156
106 => 0.002191721619459
107 => 0.0021971218593419
108 => 0.002194301080488
109 => 0.002219272854354
110 => 0.0021980417451715
111 => 0.0021420093573214
112 => 0.0020859617034846
113 => 0.0020852580708461
114 => 0.0020705017129142
115 => 0.0020598355688911
116 => 0.0020618902466317
117 => 0.0020691311989855
118 => 0.002059414711577
119 => 0.002061488216804
120 => 0.0020959222192658
121 => 0.0021028277128874
122 => 0.0020793601474106
123 => 0.0019851344856675
124 => 0.0019620112719285
125 => 0.0019786317794108
126 => 0.0019706882473321
127 => 0.0015904992215085
128 => 0.0016798189937022
129 => 0.0016267482180775
130 => 0.0016512056731544
131 => 0.0015970341538523
201 => 0.0016228876422358
202 => 0.0016181134469496
203 => 0.0017617369974729
204 => 0.0017594945132792
205 => 0.0017605678717931
206 => 0.0017093336733042
207 => 0.0017909511426572
208 => 0.0018311588429297
209 => 0.0018237174677025
210 => 0.0018255903015291
211 => 0.0017934088113938
212 => 0.0017608794589629
213 => 0.0017247994008856
214 => 0.0017918316891633
215 => 0.0017843788429861
216 => 0.0018014729906671
217 => 0.0018449482211822
218 => 0.0018513501140218
219 => 0.0018599543229199
220 => 0.0018568703265193
221 => 0.0019303436326448
222 => 0.0019214455304805
223 => 0.0019428873965378
224 => 0.0018987798512598
225 => 0.0018488679770511
226 => 0.001858354592596
227 => 0.0018574409552325
228 => 0.0018458093029707
229 => 0.001835308767395
301 => 0.0018178283341691
302 => 0.0018731390115133
303 => 0.0018708934990222
304 => 0.0019072457361291
305 => 0.0019008201251136
306 => 0.0018579083221389
307 => 0.0018594409255771
308 => 0.0018697484202431
309 => 0.001905422776971
310 => 0.0019160133549432
311 => 0.0019111073772649
312 => 0.0019227194625332
313 => 0.0019318971812665
314 => 0.0019238720427035
315 => 0.0020374910812357
316 => 0.0019903085349454
317 => 0.0020133049797133
318 => 0.0020187894962875
319 => 0.0020047410224096
320 => 0.0020077876333556
321 => 0.002012402418787
322 => 0.0020404224922586
323 => 0.0021139552727218
324 => 0.0021465224406344
325 => 0.0022445023721352
326 => 0.0021438181906961
327 => 0.0021378440080421
328 => 0.0021554931524158
329 => 0.0022130177444358
330 => 0.0022596360232579
331 => 0.0022751019958162
401 => 0.0022771460794051
402 => 0.0023061612720829
403 => 0.0023227922394245
404 => 0.0023026380645165
405 => 0.002285559511512
406 => 0.0022243862545181
407 => 0.0022314672255844
408 => 0.0022802480943701
409 => 0.0023491539447086
410 => 0.002408282332731
411 => 0.0023875776320779
412 => 0.0025455398828199
413 => 0.002561201194763
414 => 0.0025590373078433
415 => 0.0025947161071655
416 => 0.0025239009563721
417 => 0.002493626107429
418 => 0.0022892520885214
419 => 0.0023466728515266
420 => 0.0024301373027577
421 => 0.0024190904696616
422 => 0.0023584763541664
423 => 0.0024082363514889
424 => 0.0023917841402351
425 => 0.0023788075986164
426 => 0.0024382556513983
427 => 0.0023728900753732
428 => 0.0024294852311348
429 => 0.0023569013584686
430 => 0.0023876722094065
501 => 0.0023702051861955
502 => 0.0023815084908908
503 => 0.0023154296026064
504 => 0.0023510841667504
505 => 0.0023139462555167
506 => 0.0023139286473113
507 => 0.0023131088258625
508 => 0.0023568014137341
509 => 0.002358226227456
510 => 0.002325937339003
511 => 0.0023212840057297
512 => 0.0023384898177518
513 => 0.0023183463180832
514 => 0.0023277713347965
515 => 0.002318631792238
516 => 0.0023165742886999
517 => 0.0023001797504528
518 => 0.0022931165325987
519 => 0.002295886202316
520 => 0.0022864318917083
521 => 0.0022807353275898
522 => 0.0023119756358788
523 => 0.0022952851993904
524 => 0.0023094175871124
525 => 0.0022933119476537
526 => 0.0022374827843966
527 => 0.0022053748422247
528 => 0.0020999187281983
529 => 0.0021298259513183
530 => 0.0021496544711881
531 => 0.0021431011454894
601 => 0.0021571802248906
602 => 0.0021580445660203
603 => 0.0021534673137877
604 => 0.0021481674420848
605 => 0.002145587757641
606 => 0.0021648146119887
607 => 0.0021759764480836
608 => 0.0021516445284284
609 => 0.0021459439000929
610 => 0.0021705448142665
611 => 0.0021855513577008
612 => 0.0022963512429719
613 => 0.0022881428295921
614 => 0.0023087443363556
615 => 0.00230642492285
616 => 0.0023280185840155
617 => 0.0023633150938591
618 => 0.0022915474202877
619 => 0.0023040038068803
620 => 0.0023009497885478
621 => 0.0023342927598956
622 => 0.0023343968530127
623 => 0.0023144060760847
624 => 0.0023252434005707
625 => 0.002319194303349
626 => 0.002330125839613
627 => 0.002288033201227
628 => 0.0023392974911616
629 => 0.0023683610401567
630 => 0.0023687645875627
701 => 0.0023825404791238
702 => 0.0023965375827957
703 => 0.002423403804403
704 => 0.0023957882984567
705 => 0.0023461106915746
706 => 0.0023496972543338
707 => 0.0023205712915951
708 => 0.0023210609042908
709 => 0.0023184473133496
710 => 0.0023262908965059
711 => 0.0022897544266469
712 => 0.0022983294630947
713 => 0.0022863243618524
714 => 0.0023039777101347
715 => 0.0022849856255859
716 => 0.0023009483158077
717 => 0.0023078372837358
718 => 0.0023332577236995
719 => 0.0022812310059346
720 => 0.0021751450065128
721 => 0.0021974455697597
722 => 0.0021644612850461
723 => 0.0021675141061764
724 => 0.0021736812907124
725 => 0.0021536914278539
726 => 0.0021575048637343
727 => 0.0021573686209699
728 => 0.0021561945544308
729 => 0.0021509944190562
730 => 0.0021434531939475
731 => 0.0021734951137136
801 => 0.0021785998212871
802 => 0.0021899469538835
803 => 0.0022237083236568
804 => 0.0022203347666685
805 => 0.0022258371780839
806 => 0.0022138254448588
807 => 0.0021680712960302
808 => 0.0021705559664414
809 => 0.0021395720865991
810 => 0.0021891546264147
811 => 0.0021774128265288
812 => 0.0021698428117574
813 => 0.0021677772630914
814 => 0.0022016223207701
815 => 0.0022117492924839
816 => 0.0022054388433077
817 => 0.002192495927942
818 => 0.0022173501516735
819 => 0.0022240000934285
820 => 0.0022254887701471
821 => 0.0022695256892745
822 => 0.0022279499447371
823 => 0.0022379576396747
824 => 0.0023160348187546
825 => 0.0022452295912433
826 => 0.0022827366994011
827 => 0.0022809009216343
828 => 0.0023000882889965
829 => 0.0022793269974733
830 => 0.0022795843585639
831 => 0.0022966214409167
901 => 0.0022726959314062
902 => 0.0022667716387863
903 => 0.0022585872709623
904 => 0.0022764575386868
905 => 0.0022871699559849
906 => 0.002373504172004
907 => 0.002429280012871
908 => 0.0024268586365206
909 => 0.0024489854837362
910 => 0.0024390171364069
911 => 0.0024068267133634
912 => 0.0024617718402948
913 => 0.0024443849031319
914 => 0.0024458182611065
915 => 0.0024457649114511
916 => 0.002457325704672
917 => 0.0024491338231438
918 => 0.0024329867837725
919 => 0.002443705942058
920 => 0.0024755380099966
921 => 0.0025743457256051
922 => 0.0026296398322878
923 => 0.0025710169509535
924 => 0.0026114542295062
925 => 0.0025872062716502
926 => 0.0025827996963935
927 => 0.002608197295616
928 => 0.0026336393499739
929 => 0.0026320188011003
930 => 0.0026135491761004
1001 => 0.0026031161535874
1002 => 0.0026821184953751
1003 => 0.0027403260750345
1004 => 0.0027363567083303
1005 => 0.0027538762020555
1006 => 0.0028053139774901
1007 => 0.0028100168030367
1008 => 0.002809424355111
1009 => 0.0027977679113048
1010 => 0.0028484150812594
1011 => 0.0028906658414876
1012 => 0.0027950697813507
1013 => 0.0028314715096065
1014 => 0.002847813418211
1015 => 0.0028718081884682
1016 => 0.0029122913878825
1017 => 0.0029562668800847
1018 => 0.0029624854968488
1019 => 0.0029580730906665
1020 => 0.0029290700714344
1021 => 0.0029771885797389
1022 => 0.0030053752733857
1023 => 0.0030221598044114
1024 => 0.0030647225824129
1025 => 0.0028479143402751
1026 => 0.0026944466904211
1027 => 0.0026704805007967
1028 => 0.0027192166898218
1029 => 0.0027320680342039
1030 => 0.0027268876733977
1031 => 0.0025541458808188
1101 => 0.0026695710510085
1102 => 0.0027937588289087
1103 => 0.0027985293872285
1104 => 0.0028607003854893
1105 => 0.0028809458109983
1106 => 0.0029310016135373
1107 => 0.0029278706094597
1108 => 0.0029400584008162
1109 => 0.0029372566386465
1110 => 0.0030299744723571
1111 => 0.0031322560116715
1112 => 0.0031287143272004
1113 => 0.0031140101457837
1114 => 0.003135848362623
1115 => 0.0032414138723513
1116 => 0.0032316950918684
1117 => 0.0032411360592638
1118 => 0.0033656037446449
1119 => 0.0035274294409622
1120 => 0.0034522451579885
1121 => 0.0036153734183467
1122 => 0.0037180540111846
1123 => 0.0038956294791263
1124 => 0.0038733961559624
1125 => 0.0039425249825232
1126 => 0.0038335938672644
1127 => 0.0035834660080198
1128 => 0.0035438823168433
1129 => 0.0036231298689973
1130 => 0.0038179522431047
1201 => 0.0036169942191227
1202 => 0.003657647765646
1203 => 0.0036459395415123
1204 => 0.003645315660005
1205 => 0.0036691266796304
1206 => 0.0036345875537645
1207 => 0.0034938689415169
1208 => 0.00355835945225
1209 => 0.0035334565689673
1210 => 0.0035610881746024
1211 => 0.0037102045540742
1212 => 0.0036442766482192
1213 => 0.0035748269549491
1214 => 0.0036619322824305
1215 => 0.0037728472969522
1216 => 0.0037659064346769
1217 => 0.0037524382608074
1218 => 0.003828357651739
1219 => 0.0039537542432637
1220 => 0.0039876484380685
1221 => 0.0040126684397371
1222 => 0.0040161182752508
1223 => 0.0040516537251029
1224 => 0.0038605706551621
1225 => 0.0041638243945194
1226 => 0.0042161879380909
1227 => 0.0042063457621459
1228 => 0.0042645456370309
1229 => 0.0042474217574514
1230 => 0.0042226119425951
1231 => 0.0043148711237562
]
'min_raw' => 0.0015904992215085
'max_raw' => 0.0043148711237562
'avg_raw' => 0.0029526851726323
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.00159'
'max' => '$0.004314'
'avg' => '$0.002952'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.00054852207682274
'max_diff' => 0.0019887305504678
'year' => 2032
]
7 => [
'items' => [
101 => 0.0042091034174871
102 => 0.0040589794742219
103 => 0.0039766185098318
104 => 0.0040850780716102
105 => 0.0041513105412712
106 => 0.0041950859905409
107 => 0.0042083324150401
108 => 0.0038754038899379
109 => 0.0036959738799703
110 => 0.0038109864591903
111 => 0.0039513097435828
112 => 0.0038597911522322
113 => 0.0038633785077456
114 => 0.0037328970471423
115 => 0.0039628544575662
116 => 0.0039293515971137
117 => 0.0041031644964068
118 => 0.0040616826530549
119 => 0.0042034203250506
120 => 0.0041660960458674
121 => 0.0043210270419843
122 => 0.0043828332109245
123 => 0.0044866153879373
124 => 0.0045629579798174
125 => 0.0046077878099704
126 => 0.0046050963951205
127 => 0.0047827345163196
128 => 0.0046779875224517
129 => 0.0045464006111827
130 => 0.0045440206191093
131 => 0.0046121713450564
201 => 0.0047549965704031
202 => 0.004792029073313
203 => 0.0048127251903726
204 => 0.0047810283666587
205 => 0.0046673330120998
206 => 0.0046182399344499
207 => 0.004660068658971
208 => 0.0046089157232649
209 => 0.0046972200412725
210 => 0.0048184807306815
211 => 0.0047934408778353
212 => 0.0048771453517157
213 => 0.0049637706762144
214 => 0.0050876487808343
215 => 0.0051200351045749
216 => 0.0051735684661765
217 => 0.0052286718800578
218 => 0.0052463696115178
219 => 0.0052801600721585
220 => 0.0052799819797515
221 => 0.0053818118072527
222 => 0.0054941332603937
223 => 0.0055365320087068
224 => 0.0056340255925722
225 => 0.0054670712467854
226 => 0.005593708035898
227 => 0.005707937589602
228 => 0.0055717484065444
301 => 0.0057594534673794
302 => 0.0057667416295428
303 => 0.0058767842253056
304 => 0.0057652349728895
305 => 0.0056989973828827
306 => 0.0058902228233423
307 => 0.0059827507904358
308 => 0.0059548806137297
309 => 0.0057427871928757
310 => 0.0056193397248239
311 => 0.0052962538896941
312 => 0.0056789630176748
313 => 0.0058653694701358
314 => 0.0057423044451963
315 => 0.0058043712855108
316 => 0.0061429878410261
317 => 0.0062719111015679
318 => 0.0062450959646169
319 => 0.0062496272813469
320 => 0.0063191919326125
321 => 0.0066276799062778
322 => 0.0064428267617623
323 => 0.0065841400644292
324 => 0.0066590921306207
325 => 0.0067287117868234
326 => 0.0065577479147079
327 => 0.0063353264290437
328 => 0.006264876207915
329 => 0.0057300680538126
330 => 0.0057022289668375
331 => 0.0056866020437077
401 => 0.0055880765038464
402 => 0.0055106624179321
403 => 0.0054490998626124
404 => 0.005287541333318
405 => 0.0053420625943545
406 => 0.005084572018545
407 => 0.0052493053640422
408 => 0.0048383441877229
409 => 0.0051806048671389
410 => 0.0049943279400163
411 => 0.0051194078866773
412 => 0.0051189714945266
413 => 0.0048886596560906
414 => 0.0047558205941661
415 => 0.004840470814598
416 => 0.0049312225704439
417 => 0.0049459467375043
418 => 0.0050636087578216
419 => 0.0050964456985555
420 => 0.0049969482351216
421 => 0.0048298279307922
422 => 0.0048686461658796
423 => 0.0047550339438711
424 => 0.0045559328948322
425 => 0.0046989307442227
426 => 0.0047477564971763
427 => 0.0047693207312223
428 => 0.0045735277164026
429 => 0.004512005300273
430 => 0.0044792512821487
501 => 0.0048045535112423
502 => 0.0048223743016803
503 => 0.0047312006181936
504 => 0.0051433143129969
505 => 0.0050500402914721
506 => 0.0051542502262054
507 => 0.0048651238179189
508 => 0.0048761688360758
509 => 0.0047392917609367
510 => 0.0048159337768851
511 => 0.0047617656703003
512 => 0.0048097418593877
513 => 0.0048384985893134
514 => 0.0049753532042713
515 => 0.0051821675270092
516 => 0.0049549116884958
517 => 0.004855893065292
518 => 0.0049173236622258
519 => 0.0050809214370898
520 => 0.0053287804404248
521 => 0.0051820429218232
522 => 0.0052471625408139
523 => 0.0052613882805932
524 => 0.0051531894668946
525 => 0.0053327698850191
526 => 0.0054290084900007
527 => 0.0055277293849386
528 => 0.0056134459719164
529 => 0.0054882980885814
530 => 0.0056222242629943
531 => 0.0055143034075697
601 => 0.005417487243601
602 => 0.0054176340737577
603 => 0.0053568998798416
604 => 0.0052392197261283
605 => 0.0052175177002461
606 => 0.0053304143795491
607 => 0.0054209468249948
608 => 0.0054284035108229
609 => 0.0054785269243467
610 => 0.0055081894441578
611 => 0.0057989224625472
612 => 0.0059158576876131
613 => 0.0060588438673531
614 => 0.0061145450426214
615 => 0.0062821856102023
616 => 0.0061468022367795
617 => 0.0061175111923381
618 => 0.0057108700101985
619 => 0.0057774574809934
620 => 0.0058840704464713
621 => 0.0057126280187312
622 => 0.0058213687785251
623 => 0.0058428365079526
624 => 0.0057068024706399
625 => 0.0057794641276524
626 => 0.005586496309307
627 => 0.0051863736981289
628 => 0.0053332153358664
629 => 0.0054413402076021
630 => 0.0052870326839348
701 => 0.0055636229475825
702 => 0.0054020446255415
703 => 0.0053508320545817
704 => 0.005151033556668
705 => 0.0052453307567338
706 => 0.0053728690700287
707 => 0.0052940652203328
708 => 0.0054575950409094
709 => 0.005689196878656
710 => 0.0058542501403621
711 => 0.0058669208803214
712 => 0.0057608026907541
713 => 0.005930857766773
714 => 0.0059320964323484
715 => 0.0057402736119037
716 => 0.0056227832024553
717 => 0.0055960891342267
718 => 0.0056627761503421
719 => 0.0057437464990086
720 => 0.0058714141711474
721 => 0.0059485610716077
722 => 0.0061497192724537
723 => 0.0062041469139451
724 => 0.0062639463905142
725 => 0.0063438569326862
726 => 0.0064398100272062
727 => 0.0062298701190092
728 => 0.0062382114229389
729 => 0.0060427182872418
730 => 0.0058338058351979
731 => 0.0059923443449944
801 => 0.0061996123570592
802 => 0.0061520648460807
803 => 0.0061467147797882
804 => 0.0061557121073077
805 => 0.0061198628367864
806 => 0.0059577179148548
807 => 0.0058762897501417
808 => 0.005981352857162
809 => 0.0060371892227224
810 => 0.0061237865562637
811 => 0.0061131116070568
812 => 0.0063361770383846
813 => 0.00642285351985
814 => 0.0064006779667954
815 => 0.0064047588022419
816 => 0.0065616824317268
817 => 0.0067362137815198
818 => 0.006899685422041
819 => 0.0070659757960495
820 => 0.0068655062597585
821 => 0.006763720192472
822 => 0.0068687374322264
823 => 0.0068130138065881
824 => 0.0071332182882072
825 => 0.0071553885517767
826 => 0.0074755698789672
827 => 0.0077794600849542
828 => 0.0075885920913323
829 => 0.0077685720124345
830 => 0.0079632349710848
831 => 0.008338771401248
901 => 0.0082123039431
902 => 0.0081154318521563
903 => 0.008023888194297
904 => 0.0082143760141557
905 => 0.0084594355512866
906 => 0.0085122190284336
907 => 0.0085977484262518
908 => 0.0085078247224831
909 => 0.0086161279189014
910 => 0.008998485793094
911 => 0.0088951693203209
912 => 0.0087484433200312
913 => 0.0090502781396657
914 => 0.0091595109875382
915 => 0.0099261643195944
916 => 0.010894095820185
917 => 0.010493365823159
918 => 0.01024461978253
919 => 0.010303081002413
920 => 0.010656536819879
921 => 0.010770055610323
922 => 0.010461472405624
923 => 0.010570469210318
924 => 0.011171052320515
925 => 0.011493245890122
926 => 0.011055663746226
927 => 0.0098483919659758
928 => 0.0087352322490691
929 => 0.0090304923322281
930 => 0.008997019001785
1001 => 0.0096422706294222
1002 => 0.0088927052566143
1003 => 0.0089053260151248
1004 => 0.0095639207630882
1005 => 0.009388218975504
1006 => 0.0091036045818022
1007 => 0.0087373102491162
1008 => 0.0080601812970213
1009 => 0.007460429301013
1010 => 0.0086366810798209
1011 => 0.0085859589642437
1012 => 0.0085125058242914
1013 => 0.0086759678387953
1014 => 0.0094696929817238
1015 => 0.0094513950481417
1016 => 0.0093349929303804
1017 => 0.0094232829107812
1018 => 0.0090881269213622
1019 => 0.0091745042511955
1020 => 0.0087350559188826
1021 => 0.0089337049180715
1022 => 0.0091029939271402
1023 => 0.0091369812020773
1024 => 0.009213556267944
1025 => 0.0085592307141652
1026 => 0.0088530036778229
1027 => 0.0090255677711676
1028 => 0.0082459169195008
1029 => 0.0090101565805988
1030 => 0.0085478403620169
1031 => 0.0083909232936736
1101 => 0.0086021914539461
1102 => 0.0085198600464229
1103 => 0.0084490763368969
1104 => 0.0084095778107629
1105 => 0.008564709830851
1106 => 0.008557472736691
1107 => 0.0083036466419993
1108 => 0.0079725408487491
1109 => 0.008083670821141
1110 => 0.008043296260322
1111 => 0.0078969736434918
1112 => 0.0079955774201752
1113 => 0.0075613762898908
1114 => 0.0068143558130474
1115 => 0.0073078604219062
1116 => 0.0072888610312948
1117 => 0.0072792806769948
1118 => 0.0076501357510867
1119 => 0.007614486592795
1120 => 0.0075497830214181
1121 => 0.0078957853116623
1122 => 0.0077694898213356
1123 => 0.0081587027635625
1124 => 0.0084150635800279
1125 => 0.0083500421845686
1126 => 0.0085911507715537
1127 => 0.0080862310312539
1128 => 0.0082539451151176
1129 => 0.0082885107553603
1130 => 0.0078915156971092
1201 => 0.0076203192359721
1202 => 0.0076022335238803
1203 => 0.0071320162334429
1204 => 0.0073832025145332
1205 => 0.0076042360470981
1206 => 0.0074983781378945
1207 => 0.0074648666862558
1208 => 0.0076360694249311
1209 => 0.0076493733439785
1210 => 0.0073460425798123
1211 => 0.0074091146509185
1212 => 0.0076721356722906
1213 => 0.0074024871960223
1214 => 0.0068786042534615
1215 => 0.0067486740404581
1216 => 0.0067313389549545
1217 => 0.006378957912394
1218 => 0.0067573565985764
1219 => 0.0065921754316035
1220 => 0.0071139807588968
1221 => 0.006815928354445
1222 => 0.0068030799109988
1223 => 0.0067836576042731
1224 => 0.0064803486842638
1225 => 0.0065467540614584
1226 => 0.0067674956490778
1227 => 0.0068462587343723
1228 => 0.0068380430992892
1229 => 0.0067664138948733
1230 => 0.006799205377854
1231 => 0.0066935725858631
]
'min_raw' => 0.0036959738799703
'max_raw' => 0.011493245890122
'avg_raw' => 0.0075946098850462
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.003695'
'max' => '$0.011493'
'avg' => '$0.007594'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0021054746584618
'max_diff' => 0.0071783747663659
'year' => 2033
]
8 => [
'items' => [
101 => 0.0066562714484546
102 => 0.0065385387983075
103 => 0.0063655043270658
104 => 0.0063895658315741
105 => 0.0060467392671121
106 => 0.0058599491596103
107 => 0.0058082481197079
108 => 0.0057391113284151
109 => 0.0058160573042504
110 => 0.0060457680825289
111 => 0.0057686881480648
112 => 0.0052936540353237
113 => 0.0053222043949182
114 => 0.0053863485762491
115 => 0.0052668163186951
116 => 0.0051536890685022
117 => 0.005252044034241
118 => 0.0050507658184085
119 => 0.0054106720870144
120 => 0.0054009376310743
121 => 0.0055350884315562
122 => 0.0056189756801491
123 => 0.0054256427309617
124 => 0.005377020017069
125 => 0.0054047177246814
126 => 0.0049469363152539
127 => 0.0054976779239335
128 => 0.0055024407602354
129 => 0.0054616584642168
130 => 0.0057549113685992
131 => 0.0063737664647207
201 => 0.0061409282841712
202 => 0.0060507663030912
203 => 0.00587936831115
204 => 0.0061077459588058
205 => 0.0060902101187122
206 => 0.0060109063995387
207 => 0.0059629432627399
208 => 0.0060513168129217
209 => 0.0059519928018856
210 => 0.0059341514802622
211 => 0.0058260524827739
212 => 0.0057874660588616
213 => 0.0057588982067667
214 => 0.0057274478086294
215 => 0.0057968195499694
216 => 0.0056396140574804
217 => 0.0054500396445831
218 => 0.0054342785833743
219 => 0.0054777962590985
220 => 0.0054585429271005
221 => 0.005434186405828
222 => 0.0053876831736148
223 => 0.0053738866580016
224 => 0.0054187186406269
225 => 0.0053681059461099
226 => 0.0054427877338859
227 => 0.0054224784199426
228 => 0.0053090322431917
301 => 0.005167636303806
302 => 0.0051663775833574
303 => 0.0051359140601526
304 => 0.0050971141831298
305 => 0.005086320944963
306 => 0.0052437608533608
307 => 0.0055696567519642
308 => 0.0055056755890405
309 => 0.0055519085363062
310 => 0.0057793288784239
311 => 0.0058516189664148
312 => 0.0058003091742434
313 => 0.0057300731660691
314 => 0.005733163193975
315 => 0.0059731808957923
316 => 0.0059881505054429
317 => 0.006025973879651
318 => 0.0060745876043926
319 => 0.0058085883017786
320 => 0.0057206346507428
321 => 0.0056789573313992
322 => 0.0055506073189735
323 => 0.0056890218034762
324 => 0.0056083736108556
325 => 0.0056192558073747
326 => 0.0056121687626157
327 => 0.005616038768278
328 => 0.0054105714858774
329 => 0.0054854329645418
330 => 0.0053609612366398
331 => 0.0051943075655861
401 => 0.0051937488840445
402 => 0.0052345371339367
403 => 0.0052102746868564
404 => 0.0051449850656079
405 => 0.0051542591481479
406 => 0.005073008426449
407 => 0.005164124456854
408 => 0.0051667373385772
409 => 0.0051316527037475
410 => 0.0052720295201756
411 => 0.0053295420164028
412 => 0.0053064485581722
413 => 0.0053279217178109
414 => 0.0055083342952176
415 => 0.0055377494172875
416 => 0.005550813671457
417 => 0.0055333093015518
418 => 0.0053312193285379
419 => 0.0053401828781939
420 => 0.0052744142982262
421 => 0.0052188467786757
422 => 0.0052210691880444
423 => 0.0052496381163653
424 => 0.0053744003018881
425 => 0.0056369549661882
426 => 0.0056469187237734
427 => 0.00565899508863
428 => 0.0056098744436635
429 => 0.0055950591871203
430 => 0.0056146043346429
501 => 0.0057132060620856
502 => 0.0059668364751761
503 => 0.0058771865477842
504 => 0.0058042997613303
505 => 0.0058682411231869
506 => 0.005858397851718
507 => 0.0057753107346026
508 => 0.0057729787559554
509 => 0.0056135080136526
510 => 0.0055545553111964
511 => 0.0055052900204907
512 => 0.005451493609143
513 => 0.0054196012932241
514 => 0.0054686023852739
515 => 0.0054798095147896
516 => 0.0053726677706301
517 => 0.0053580647468035
518 => 0.0054455590078994
519 => 0.0054070560457059
520 => 0.0054466572971494
521 => 0.0054558451271775
522 => 0.0054543656749293
523 => 0.0054141641603623
524 => 0.0054397874069209
525 => 0.0053791807901524
526 => 0.0053132801972362
527 => 0.0052712397247077
528 => 0.005234553836567
529 => 0.0052549092995038
530 => 0.005182345790895
531 => 0.0051591312640761
601 => 0.0054311068275282
602 => 0.0056320181004802
603 => 0.0056290967710019
604 => 0.0056113139291076
605 => 0.0055848922331704
606 => 0.0057112731504572
607 => 0.0056672445659407
608 => 0.0056992790398878
609 => 0.00570743315799
610 => 0.005732113217622
611 => 0.0057409342176177
612 => 0.0057142710290524
613 => 0.0056247861115931
614 => 0.0054017982052553
615 => 0.0052979967329106
616 => 0.0052637405180866
617 => 0.0052649856664337
618 => 0.0052306389164354
619 => 0.0052407555736232
620 => 0.0052271207559234
621 => 0.0052012997098167
622 => 0.0052533149226685
623 => 0.0052593091913944
624 => 0.0052471682191793
625 => 0.0052500278576456
626 => 0.0051495057931814
627 => 0.0051571482674202
628 => 0.0051145939997001
629 => 0.0051066155875019
630 => 0.0049990421043294
701 => 0.0048084600858637
702 => 0.0049140610243379
703 => 0.0047865099404
704 => 0.0047382044121985
705 => 0.0049668752696537
706 => 0.0049439230579075
707 => 0.0049046388484846
708 => 0.0048465293152016
709 => 0.0048249759240537
710 => 0.0046940243424135
711 => 0.0046862870243707
712 => 0.0047511901642217
713 => 0.0047212395983611
714 => 0.0046791776607266
715 => 0.0045268335863647
716 => 0.0043555484073922
717 => 0.0043607184302851
718 => 0.0044152010588422
719 => 0.0045736166493554
720 => 0.0045117209375244
721 => 0.0044668148884195
722 => 0.004458405335293
723 => 0.0045636684992627
724 => 0.0047126379295946
725 => 0.0047825310533031
726 => 0.0047132690903937
727 => 0.0046337046767322
728 => 0.0046385473939258
729 => 0.0046707638218391
730 => 0.0046741493128971
731 => 0.0046223610589574
801 => 0.00463693914909
802 => 0.00461479369713
803 => 0.0044788870993293
804 => 0.0044764289799396
805 => 0.0044430753090494
806 => 0.0044420653731504
807 => 0.004385322458503
808 => 0.0043773837324986
809 => 0.0042647172314174
810 => 0.0043388746636146
811 => 0.0042891337515367
812 => 0.0042141624643402
813 => 0.0042012373861692
814 => 0.0042008488427119
815 => 0.0042778275913895
816 => 0.0043379751221171
817 => 0.0042899990159982
818 => 0.0042790757866127
819 => 0.0043957072989517
820 => 0.0043808648758867
821 => 0.0043680114332358
822 => 0.0046992993510194
823 => 0.0044370591133751
824 => 0.0043227074016127
825 => 0.0041811754435057
826 => 0.0042272589627314
827 => 0.00423696943734
828 => 0.0038966105911456
829 => 0.0037585270496335
830 => 0.0037111419817551
831 => 0.0036838712052645
901 => 0.0036962988405561
902 => 0.0035720074576112
903 => 0.0036555333225399
904 => 0.0035479074909987
905 => 0.0035298636700961
906 => 0.0037223119891739
907 => 0.0037490900485068
908 => 0.0036348465281017
909 => 0.0037082093625477
910 => 0.0036816069789579
911 => 0.0035497524269756
912 => 0.0035447165529463
913 => 0.0034785565736733
914 => 0.0033750290172073
915 => 0.0033277141458871
916 => 0.0033030721500971
917 => 0.003313239917823
918 => 0.0033080987833219
919 => 0.0032745494031052
920 => 0.0033100217945244
921 => 0.0032194044926524
922 => 0.0031833199528938
923 => 0.0031670214034397
924 => 0.003086593332291
925 => 0.0032145901600142
926 => 0.0032398071475372
927 => 0.0032650738203156
928 => 0.003485002956561
929 => 0.0034740159184275
930 => 0.0035733333922501
1001 => 0.0035694740978504
1002 => 0.0035411471454798
1003 => 0.0034216403929858
1004 => 0.0034692736545269
1005 => 0.0033226658793557
1006 => 0.0034325143928736
1007 => 0.0033823841186877
1008 => 0.0034155652967448
1009 => 0.0033559025467718
1010 => 0.0033889223760215
1011 => 0.0032457870307675
1012 => 0.003112129259338
1013 => 0.0031659170482748
1014 => 0.0032243905262289
1015 => 0.0033511759251985
1016 => 0.003275663587529
1017 => 0.0033028206795926
1018 => 0.003211848967222
1019 => 0.0030241483398165
1020 => 0.0030252107049834
1021 => 0.0029963370527375
1022 => 0.0029713860015748
1023 => 0.0032843370878789
1024 => 0.0032454166732724
1025 => 0.0031834020863749
1026 => 0.0032664110752989
1027 => 0.0032883599695002
1028 => 0.0032889848236616
1029 => 0.0033495460392085
1030 => 0.003381867570802
1031 => 0.0033875643808349
1101 => 0.0034828587620095
1102 => 0.0035148001816159
1103 => 0.003646362368456
1104 => 0.0033791253146643
1105 => 0.0033736217434016
1106 => 0.0032675791820033
1107 => 0.0032003253130978
1108 => 0.0032721841119454
1109 => 0.0033358411980201
1110 => 0.003269557185111
1111 => 0.0032782124778651
1112 => 0.0031892316061375
1113 => 0.0032210380808409
1114 => 0.0032484341016504
1115 => 0.0032333076292231
1116 => 0.0032106625678699
1117 => 0.0033306220428978
1118 => 0.0033238534591918
1119 => 0.0034355624801942
1120 => 0.0035226476504544
1121 => 0.0036787198438968
1122 => 0.0035158503738122
1123 => 0.0035099147629748
1124 => 0.0035679363110122
1125 => 0.0035147912988192
1126 => 0.0035483771120218
1127 => 0.0036733086501552
1128 => 0.0036759482566915
1129 => 0.0036317314462688
1130 => 0.0036290408493362
1201 => 0.0036375331714568
1202 => 0.0036872729673698
1203 => 0.0036698923543282
1204 => 0.0036900056397632
1205 => 0.0037151576111852
1206 => 0.0038191968292015
1207 => 0.0038442803324421
1208 => 0.0037833404238727
1209 => 0.0037888426153013
1210 => 0.0037660494166585
1211 => 0.0037440314723674
1212 => 0.0037935245956712
1213 => 0.0038839742512984
1214 => 0.0038834115686851
1215 => 0.0039043941307006
1216 => 0.0039174660930073
1217 => 0.0038613516615257
1218 => 0.003824823230016
1219 => 0.0038388305550213
1220 => 0.0038612285727446
1221 => 0.0038315671797465
1222 => 0.0036484833216685
1223 => 0.0037040192687673
1224 => 0.003694775371601
1225 => 0.0036816109379399
1226 => 0.0037374527621944
1227 => 0.003732066682018
1228 => 0.0035707326698313
1229 => 0.0035810607498446
1230 => 0.0035713607545846
1231 => 0.0036027034237019
]
'min_raw' => 0.0029713860015748
'max_raw' => 0.0066562714484546
'avg_raw' => 0.0048138287250147
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.002971'
'max' => '$0.006656'
'avg' => '$0.004813'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.00072458787839548
'max_diff' => -0.0048369744416675
'year' => 2034
]
9 => [
'items' => [
101 => 0.003513098691829
102 => 0.0035406605038561
103 => 0.0035579470139835
104 => 0.0035681289012497
105 => 0.003604912859841
106 => 0.0036005966868592
107 => 0.0036046445604682
108 => 0.003659185460454
109 => 0.0039350346164053
110 => 0.0039500484773369
111 => 0.0038761147350482
112 => 0.003905649806814
113 => 0.0038489489276339
114 => 0.0038870126076903
115 => 0.0039130548108723
116 => 0.0037953751023206
117 => 0.0037884068737151
118 => 0.003731471969837
119 => 0.0037620655622233
120 => 0.0037133889569796
121 => 0.003725332493271
122 => 0.0036919373245814
123 => 0.003752041979311
124 => 0.0038192483226178
125 => 0.0038362272989961
126 => 0.0037915629220539
127 => 0.0037592229696219
128 => 0.0037024446665939
129 => 0.0037968682499165
130 => 0.0038244805831865
131 => 0.0037967232140847
201 => 0.0037902912251533
202 => 0.0037781026177507
203 => 0.0037928770958331
204 => 0.0038243302004895
205 => 0.0038094974971812
206 => 0.0038192947590349
207 => 0.003781957699741
208 => 0.0038613702377374
209 => 0.0039874964597438
210 => 0.0039879019761713
211 => 0.0039730691929092
212 => 0.0039669999375751
213 => 0.0039822192733306
214 => 0.0039904751386481
215 => 0.0040396916797325
216 => 0.0040925029891896
217 => 0.0043389503270462
218 => 0.004269748900751
219 => 0.0044884116401152
220 => 0.0046613454771492
221 => 0.0047132007733954
222 => 0.0046654963408291
223 => 0.0045023020539624
224 => 0.0044942949636893
225 => 0.0047381761271188
226 => 0.004669268527985
227 => 0.0046610721883302
228 => 0.0045738769823376
301 => 0.0046254201484156
302 => 0.0046141469019017
303 => 0.0045963515307734
304 => 0.0046946923011222
305 => 0.0048787774442741
306 => 0.0048500860483743
307 => 0.0048286692522907
308 => 0.0047348270861879
309 => 0.0047913410305884
310 => 0.0047712174974407
311 => 0.004857680966553
312 => 0.0048064619228512
313 => 0.0046687464851491
314 => 0.0046906781225192
315 => 0.004687363199651
316 => 0.0047555840773797
317 => 0.0047351058632319
318 => 0.0046833644996751
319 => 0.0048781482612674
320 => 0.0048655000872338
321 => 0.0048834323062383
322 => 0.0048913266236164
323 => 0.0050098880668228
324 => 0.0050584588965614
325 => 0.0050694853252641
326 => 0.005115623856913
327 => 0.0050683373565655
328 => 0.0052575170726591
329 => 0.0053833105449189
330 => 0.0055294261362216
331 => 0.0057429402872833
401 => 0.0058232235831988
402 => 0.0058087211243796
403 => 0.0059706051169112
404 => 0.0062615070530116
405 => 0.0058675207228701
406 => 0.0062823892851826
407 => 0.0061510466882424
408 => 0.0058396357536494
409 => 0.0058195845607554
410 => 0.006030475661217
411 => 0.0064982118245247
412 => 0.0063810492206358
413 => 0.0064984034605723
414 => 0.0063615035060489
415 => 0.0063547052694234
416 => 0.0064917545353475
417 => 0.0068119776153459
418 => 0.0066598516334213
419 => 0.0064417417355113
420 => 0.0066027906899622
421 => 0.0064632751812397
422 => 0.006148907692156
423 => 0.0063809596286006
424 => 0.0062257931071588
425 => 0.0062710789472215
426 => 0.0065972158960142
427 => 0.0065579742354841
428 => 0.0066087565778899
429 => 0.0065191270727489
430 => 0.0064353989816716
501 => 0.006279114281946
502 => 0.0062328460870998
503 => 0.0062456329516
504 => 0.0062328397505648
505 => 0.0061453998973989
506 => 0.0061265172694329
507 => 0.006095045395556
508 => 0.0061047998452566
509 => 0.0060456235149467
510 => 0.0061573014766953
511 => 0.0061780298904986
512 => 0.0062592997978901
513 => 0.006267737509278
514 => 0.0064940730445586
515 => 0.0063694112351402
516 => 0.0064530451396808
517 => 0.0064455641360659
518 => 0.0058463849728826
519 => 0.0059289465749668
520 => 0.0060573865185517
521 => 0.0059995244980629
522 => 0.0059177211387194
523 => 0.0058516605400308
524 => 0.0057515719779746
525 => 0.0058924447070381
526 => 0.006077677365612
527 => 0.0062724353151799
528 => 0.0065064242305394
529 => 0.0064542006285624
530 => 0.0062680610551666
531 => 0.0062764111404541
601 => 0.0063280280820639
602 => 0.0062611794527855
603 => 0.006241464486971
604 => 0.0063253195485049
605 => 0.0063258970122277
606 => 0.0062489795853162
607 => 0.0061634999410446
608 => 0.006163141778214
609 => 0.0061479315011512
610 => 0.0063642093805485
611 => 0.006483140346057
612 => 0.0064967755895857
613 => 0.0064822225855276
614 => 0.0064878234592015
615 => 0.0064186201508371
616 => 0.0065767983921545
617 => 0.0067219583885941
618 => 0.0066830524086573
619 => 0.0066247268139211
620 => 0.0065782676683724
621 => 0.0066721081104589
622 => 0.0066679295432914
623 => 0.00672069054266
624 => 0.0067182969989663
625 => 0.0067005554593202
626 => 0.0066830530422635
627 => 0.0067524481475098
628 => 0.0067324634716502
629 => 0.006712447754069
630 => 0.006672303168207
701 => 0.0066777594841566
702 => 0.0066194439601566
703 => 0.0065924645304174
704 => 0.0061867586398433
705 => 0.0060783407690595
706 => 0.0061124512382573
707 => 0.0061236812903952
708 => 0.0060764976940888
709 => 0.0061441468507208
710 => 0.0061336038013179
711 => 0.006174620639067
712 => 0.0061489950995854
713 => 0.0061500467806643
714 => 0.0062254060283385
715 => 0.0062472831385395
716 => 0.0062361562637213
717 => 0.006243949145437
718 => 0.0064235328154051
719 => 0.0063980017602981
720 => 0.0063844388961254
721 => 0.0063881959021915
722 => 0.0064340833801856
723 => 0.0064469293686606
724 => 0.0063925000128206
725 => 0.0064181692116871
726 => 0.0065274654025542
727 => 0.0065657128837291
728 => 0.0066877804838067
729 => 0.0066359239977151
730 => 0.0067311088222323
731 => 0.0070236745219002
801 => 0.0072573962468014
802 => 0.0070424560896235
803 => 0.0074716562731224
804 => 0.007805850181086
805 => 0.0077930232622693
806 => 0.0077347488243715
807 => 0.0073542779451597
808 => 0.0070041629696077
809 => 0.0072970490133241
810 => 0.007297795640082
811 => 0.007272636469179
812 => 0.0071163750194766
813 => 0.0072671989094457
814 => 0.0072791707621196
815 => 0.0072724697081948
816 => 0.0071526644210822
817 => 0.0069697438913796
818 => 0.0070054861250336
819 => 0.0070640326328807
820 => 0.0069531918794451
821 => 0.0069177715426444
822 => 0.0069836246877518
823 => 0.0071958172423354
824 => 0.0071557034690392
825 => 0.0071546559363059
826 => 0.0073262796693546
827 => 0.0072034341152114
828 => 0.0070059369490624
829 => 0.0069560663099422
830 => 0.0067790591379534
831 => 0.006901318622124
901 => 0.0069057185233049
902 => 0.0068387582532864
903 => 0.0070113704059353
904 => 0.0070097797545609
905 => 0.0071736493035727
906 => 0.0074869063346914
907 => 0.0073942608161473
908 => 0.0072865241578842
909 => 0.0072982381198509
910 => 0.0074267113701038
911 => 0.0073490335102419
912 => 0.0073769670102375
913 => 0.007426669089406
914 => 0.0074566555878016
915 => 0.0072939235241978
916 => 0.0072559828957974
917 => 0.0071783696854411
918 => 0.0071581218475783
919 => 0.0072213361879608
920 => 0.0072046814426656
921 => 0.0069053487286479
922 => 0.0068740667945616
923 => 0.0068750261668197
924 => 0.0067963662561847
925 => 0.0066763910119247
926 => 0.0069916787904905
927 => 0.006966356769422
928 => 0.0069384032179312
929 => 0.0069418273684881
930 => 0.0070786831070692
1001 => 0.0069992998673117
1002 => 0.0072103532208641
1003 => 0.0071669669962183
1004 => 0.0071224680786215
1005 => 0.0071163169727394
1006 => 0.0070991886859339
1007 => 0.0070404494173229
1008 => 0.0069695182207924
1009 => 0.0069226833008879
1010 => 0.0063858094134143
1011 => 0.0064854500840777
1012 => 0.006600077593143
1013 => 0.0066396465499314
1014 => 0.0065719611112563
1015 => 0.0070431220509894
1016 => 0.0071292076948984
1017 => 0.0068684486642704
1018 => 0.006819671296361
1019 => 0.007046319887109
1020 => 0.0069096230802246
1021 => 0.0069711776439946
1022 => 0.0068381303456701
1023 => 0.0071084721841627
1024 => 0.0071064126322998
1025 => 0.0070012435511788
1026 => 0.0070901317383755
1027 => 0.0070746852284192
1028 => 0.0069559495948537
1029 => 0.0071122363155316
1030 => 0.0071123138317952
1031 => 0.0070110908777893
1101 => 0.0068928846280643
1102 => 0.0068717521425204
1103 => 0.0068558316534132
1104 => 0.0069672621796179
1105 => 0.0070671704409789
1106 => 0.0072530749460132
1107 => 0.007299815755561
1108 => 0.0074822482469376
1109 => 0.0073736185807996
1110 => 0.0074217727048089
1111 => 0.0074740508182377
1112 => 0.0074991148682795
1113 => 0.0074582743437475
1114 => 0.0077416670950647
1115 => 0.0077655941262054
1116 => 0.0077736166527789
1117 => 0.007678058211526
1118 => 0.0077629364730902
1119 => 0.0077232247453769
1120 => 0.0078265436286512
1121 => 0.0078427453487903
1122 => 0.0078290230682254
1123 => 0.0078341657499243
1124 => 0.0075923400305822
1125 => 0.007579800091302
1126 => 0.0074088171294233
1127 => 0.0074784939502311
1128 => 0.0073482364734278
1129 => 0.0073895424611228
1130 => 0.0074077497469209
1201 => 0.0073982392940743
1202 => 0.0074824333731373
1203 => 0.0074108512062198
1204 => 0.0072219340985266
1205 => 0.0070329655204937
1206 => 0.007030593173927
1207 => 0.0069808410829034
1208 => 0.0069448794336433
1209 => 0.0069518069230989
1210 => 0.0069762202995068
1211 => 0.0069434604838254
1212 => 0.0069504514514658
1213 => 0.007066548094871
1214 => 0.0070898304487425
1215 => 0.0070107079132842
1216 => 0.0066930195160917
1217 => 0.0066150579865596
1218 => 0.0066710951879429
1219 => 0.0066443130149397
1220 => 0.0053624791704253
1221 => 0.0056636270184838
1222 => 0.0054846951931821
1223 => 0.0055671552105386
1224 => 0.005384512151077
1225 => 0.005471678992195
1226 => 0.0054555824594639
1227 => 0.0059398192875292
1228 => 0.005932258595505
1229 => 0.0059358774986741
1230 => 0.0057631378214111
1231 => 0.0060383168176844
]
'min_raw' => 0.003513098691829
'max_raw' => 0.0078427453487903
'avg_raw' => 0.0056779220203097
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.003513'
'max' => '$0.007842'
'avg' => '$0.005677'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.00054171269025423
'max_diff' => 0.0011864739003357
'year' => 2035
]
10 => [
'items' => [
101 => 0.0061738798863652
102 => 0.0061487907702467
103 => 0.0061551051602499
104 => 0.0060466030194189
105 => 0.0059369280365713
106 => 0.0058152816017343
107 => 0.0060412856417076
108 => 0.0060161578504802
109 => 0.0060737919628619
110 => 0.006220371737887
111 => 0.0062419561665619
112 => 0.0062709658575886
113 => 0.0062605679484059
114 => 0.0065082883297506
115 => 0.0064782877570581
116 => 0.0065505805054933
117 => 0.006401868837098
118 => 0.0062335874684677
119 => 0.0062655722551119
120 => 0.0062624918629526
121 => 0.0062232749352559
122 => 0.0061878716464386
123 => 0.0061289351453725
124 => 0.0063154189557065
125 => 0.0063078480535664
126 => 0.0064304121590041
127 => 0.0064087477628438
128 => 0.0062640676231081
129 => 0.006269234902603
130 => 0.0063039873405156
131 => 0.0064242659249277
201 => 0.0064599727979716
202 => 0.0064434319517048
203 => 0.0064825829079169
204 => 0.0065135262273938
205 => 0.0064864689124314
206 => 0.0068695434334709
207 => 0.0067104641844729
208 => 0.0067879983035682
209 => 0.0068064897341149
210 => 0.0067591243236025
211 => 0.0067693961851144
212 => 0.0067849552563903
213 => 0.0068794268903991
214 => 0.0071273477936255
215 => 0.0072371502740099
216 => 0.0075674964538051
217 => 0.0072280327065383
218 => 0.0072078903326161
219 => 0.0072673956550961
220 => 0.0074613438333303
221 => 0.0076185206151631
222 => 0.0076706652214432
223 => 0.0076775569919767
224 => 0.0077753837398659
225 => 0.0078314562073951
226 => 0.0077635049995732
227 => 0.0077059234657322
228 => 0.0074996735587967
229 => 0.0075235475471243
301 => 0.0076880156520067
302 => 0.007920336537276
303 => 0.0081196920257055
304 => 0.0080498846818977
305 => 0.0085824654388465
306 => 0.0086352686455007
307 => 0.0086279729496731
308 => 0.0087482665126021
309 => 0.0085095082875462
310 => 0.0084074345206121
311 => 0.0077183732469268
312 => 0.0079119713583883
313 => 0.0081933775830159
314 => 0.0081561324139673
315 => 0.0079517676916327
316 => 0.0081195369967378
317 => 0.0080640672178388
318 => 0.008020315901778
319 => 0.0082207491622626
320 => 0.0080003645590152
321 => 0.0081911790780131
322 => 0.0079464574836748
323 => 0.0080502035559641
324 => 0.0079913122676998
325 => 0.0080294221486516
326 => 0.0078066325633201
327 => 0.0079268444156535
328 => 0.0078016313550432
329 => 0.0078015719877492
330 => 0.0077988079024963
331 => 0.0079461205130247
401 => 0.0079509243719653
402 => 0.0078420601302078
403 => 0.0078263710921915
404 => 0.0078843816886956
405 => 0.0078164664731886
406 => 0.007848243575071
407 => 0.0078174289692328
408 => 0.0078104919524037
409 => 0.0077552166220734
410 => 0.0077314024899402
411 => 0.0077407406247642
412 => 0.0077088647564714
413 => 0.0076896583928245
414 => 0.0077949872733498
415 => 0.00773871430144
416 => 0.0077863626333366
417 => 0.0077320613454416
418 => 0.0075438294236526
419 => 0.0074355752549152
420 => 0.0070800226037642
421 => 0.0071808568945689
422 => 0.0072477101336931
423 => 0.0072256151385614
424 => 0.0072730837377324
425 => 0.0072759979241975
426 => 0.0072605653987219
427 => 0.0072426965112501
428 => 0.0072339989250403
429 => 0.0072988236068495
430 => 0.0073364565165382
501 => 0.0072544197506201
502 => 0.0072351996841819
503 => 0.007318143383899
504 => 0.0073687389928114
505 => 0.0077423085418038
506 => 0.0077146333030007
507 => 0.0077840927214052
508 => 0.0077762726568345
509 => 0.0078490771930755
510 => 0.0079680818403368
511 => 0.0077261121182318
512 => 0.0077681096953058
513 => 0.0077578128592729
514 => 0.0078702310151042
515 => 0.0078705819723158
516 => 0.0078031816721916
517 => 0.0078397204683339
518 => 0.0078193255147167
519 => 0.0078561819524463
520 => 0.0077142636833137
521 => 0.0078871048159868
522 => 0.0079850946005758
523 => 0.0079864551888299
524 => 0.0080329015690301
525 => 0.0080800937813064
526 => 0.0081706751231954
527 => 0.0080775675168442
528 => 0.0079100759968613
529 => 0.0079221683436098
530 => 0.0078239681267266
531 => 0.0078256188901137
601 => 0.0078168069857806
602 => 0.0078432521740135
603 => 0.0077200669149889
604 => 0.0077489782490628
605 => 0.0077085022120548
606 => 0.0077680217083062
607 => 0.0077039885692649
608 => 0.0077578078938268
609 => 0.0077810345301689
610 => 0.0078667413183049
611 => 0.0076913296069711
612 => 0.0073336532532326
613 => 0.007408841159195
614 => 0.007297632340394
615 => 0.0073079251399759
616 => 0.0073287182332182
617 => 0.0072613210149432
618 => 0.0072741782802596
619 => 0.0072737189282673
620 => 0.0072697604809598
621 => 0.0072522278614824
622 => 0.0072268020945172
623 => 0.0073280905244684
624 => 0.0073453014024517
625 => 0.0073835590522319
626 => 0.0074973878675661
627 => 0.0074860136846459
628 => 0.007504565448899
629 => 0.0074640670516981
630 => 0.0073098037444698
701 => 0.0073181809842355
702 => 0.0072137166701216
703 => 0.0073808876648522
704 => 0.0073412993667507
705 => 0.0073157765334275
706 => 0.0073088123918879
707 => 0.0074229233668383
708 => 0.0074570671590138
709 => 0.0074357910390347
710 => 0.0073921530962339
711 => 0.0074759508468111
712 => 0.0074983715897223
713 => 0.0075033907672149
714 => 0.0076518643146127
715 => 0.0075116887891791
716 => 0.0075454304313759
717 => 0.0078086730918186
718 => 0.0075699483238011
719 => 0.0076964061576175
720 => 0.007690216704707
721 => 0.0077549082533878
722 => 0.0076849101095104
723 => 0.0076857778203958
724 => 0.0077432195330392
725 => 0.007662553007299
726 => 0.0076425788411098
727 => 0.0076149846735772
728 => 0.0076752355288723
729 => 0.0077113531917099
730 => 0.008002435028681
731 => 0.0081904871703087
801 => 0.0081823233308884
802 => 0.008256925541123
803 => 0.0082233165621344
804 => 0.0081147843033795
805 => 0.0083000356349751
806 => 0.0082414143624133
807 => 0.0082462470288985
808 => 0.0082460671568105
809 => 0.0082850451783035
810 => 0.0082574256777925
811 => 0.0082029848072018
812 => 0.008239125197749
813 => 0.008346449237248
814 => 0.0086795863489567
815 => 0.0088660142901485
816 => 0.0086683631528111
817 => 0.0088047002606922
818 => 0.0087229465778422
819 => 0.008708089501707
820 => 0.0087937192806895
821 => 0.0088794989432646
822 => 0.0088740351495942
823 => 0.0088117635193991
824 => 0.008776587855586
825 => 0.0090429497666907
826 => 0.0092392006854358
827 => 0.0092258176884602
828 => 0.0092848858847266
829 => 0.0094583119358752
830 => 0.0094741678405462
831 => 0.0094721703610015
901 => 0.0094328698468819
902 => 0.0096036303164562
903 => 0.0097460817044198
904 => 0.0094237729133642
905 => 0.0095465038816663
906 => 0.0096016017674819
907 => 0.0096825018106653
908 => 0.0098189937439374
909 => 0.0099672601861681
910 => 0.0099882266867583
911 => 0.0099733499512501
912 => 0.0098755642469831
913 => 0.010037799157258
914 => 0.010132832562821
915 => 0.010189422781033
916 => 0.010332926158703
917 => 0.0096019420332671
918 => 0.0090845151370154
919 => 0.0090037114554307
920 => 0.009168028919381
921 => 0.0092113581242175
922 => 0.0091938921760781
923 => 0.0086114811619515
924 => 0.0090006451819741
925 => 0.0094193529456782
926 => 0.0094354372161232
927 => 0.0096450510773999
928 => 0.0097133099429941
929 => 0.0098820765760388
930 => 0.0098715201771916
1001 => 0.0099126121666743
1002 => 0.0099031658299063
1003 => 0.010215770479614
1004 => 0.010560619830482
1005 => 0.010548678794015
1006 => 0.010499102619755
1007 => 0.010572731692525
1008 => 0.010928653178922
1009 => 0.01089588563198
1010 => 0.010927716512701
1011 => 0.01134736800402
1012 => 0.011892974637463
1013 => 0.011639485578218
1014 => 0.012189483897267
1015 => 0.01253567868495
1016 => 0.013134386773039
1017 => 0.013059425571711
1018 => 0.013292498236881
1019 => 0.012925229376459
1020 => 0.012081905835646
1021 => 0.011948446657199
1022 => 0.012215635312174
1023 => 0.012872492548541
1024 => 0.012194948540244
1025 => 0.012332014810687
1026 => 0.012292539715579
1027 => 0.012290436255519
1028 => 0.012370716770618
1029 => 0.012254265696317
1030 => 0.011779823070464
1031 => 0.011997257329984
1101 => 0.011913295520333
1102 => 0.012006457407909
1103 => 0.012509213692271
1104 => 0.012286933154741
1105 => 0.012052778665059
1106 => 0.012346460358162
1107 => 0.012720418073461
1108 => 0.012697016471704
1109 => 0.012651607583185
1110 => 0.012907575110234
1111 => 0.01333035847347
1112 => 0.013444635117671
1113 => 0.013528991800138
1114 => 0.013540623161432
1115 => 0.013660433411614
1116 => 0.013016183500315
1117 => 0.014038624655058
1118 => 0.014215171998115
1119 => 0.014181988414758
1120 => 0.014378213356318
1121 => 0.014320479000765
1122 => 0.014236830977811
1123 => 0.014547889248426
1124 => 0.014191286042274
1125 => 0.013685132686236
1126 => 0.013407446944536
1127 => 0.013773125929477
1128 => 0.013996433325142
1129 => 0.01414402530866
1130 => 0.014188686553694
1201 => 0.013066194786985
1202 => 0.012461233980976
1203 => 0.012849006921738
1204 => 0.013322116672126
1205 => 0.013013555351764
1206 => 0.013025650371338
1207 => 0.012585723016989
1208 => 0.013361040481347
1209 => 0.013248083248237
1210 => 0.013834105573433
1211 => 0.013694246642402
1212 => 0.014172125099343
1213 => 0.01404628368618
1214 => 0.014568644356524
1215 => 0.014777028170275
1216 => 0.015126937025914
1217 => 0.015384331404507
1218 => 0.015535478306787
1219 => 0.015526404013712
1220 => 0.016125323341632
1221 => 0.015772161538605
1222 => 0.015328507080157
1223 => 0.015320482770715
1224 => 0.015550257701378
1225 => 0.016031802920373
1226 => 0.01615666058946
1227 => 0.016226438993084
1228 => 0.016119570938931
1229 => 0.01573623911308
1230 => 0.015570718374213
1231 => 0.015711746839325
]
'min_raw' => 0.0058152816017343
'max_raw' => 0.016226438993084
'avg_raw' => 0.011020860297409
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.005815'
'max' => '$0.016226'
'avg' => '$0.01102'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.0023021829099053
'max_diff' => 0.0083836936442935
'year' => 2036
]
11 => [
'items' => [
101 => 0.015539281145208
102 => 0.015837005318581
103 => 0.016245844199074
104 => 0.016161420586977
105 => 0.016443636064724
106 => 0.016735699394258
107 => 0.017153363072878
108 => 0.01726255582451
109 => 0.01744304729073
110 => 0.017628832297828
111 => 0.017688501435062
112 => 0.017802428332286
113 => 0.017801827881302
114 => 0.018145154254254
115 => 0.018523853875552
116 => 0.018666804215676
117 => 0.018995510640463
118 => 0.018432612407262
119 => 0.018859577183254
120 => 0.01924471009882
121 => 0.018785538759716
122 => 0.01941839947747
123 => 0.019442972025047
124 => 0.01981398831959
125 => 0.019437892226949
126 => 0.01921456756768
127 => 0.019859297491124
128 => 0.020171261992276
129 => 0.020077295745678
130 => 0.019362207969378
131 => 0.018945996212015
201 => 0.017856689761742
202 => 0.019147020306627
203 => 0.019775502675582
204 => 0.019360580351873
205 => 0.019569843037362
206 => 0.020711512395734
207 => 0.021146186169786
208 => 0.021055777063382
209 => 0.021071054714104
210 => 0.021305596792695
211 => 0.02234568553385
212 => 0.021722440251082
213 => 0.022198887917203
214 => 0.022451594041354
215 => 0.02268632157293
216 => 0.022109904941776
217 => 0.021359995373887
218 => 0.021122467534675
219 => 0.019319324504005
220 => 0.019225463078606
221 => 0.019172775816237
222 => 0.018840590079761
223 => 0.018579583084222
224 => 0.018372020630801
225 => 0.017827314769629
226 => 0.018011137007766
227 => 0.017142989554007
228 => 0.017698399529665
301 => 0.016312815231312
302 => 0.01746677100784
303 => 0.016838725342607
304 => 0.017260441115577
305 => 0.017258969788973
306 => 0.016482457345827
307 => 0.016034581174022
308 => 0.016319985302298
309 => 0.016625961183217
310 => 0.01667560474047
311 => 0.01707231045687
312 => 0.017183022495156
313 => 0.016847559850497
314 => 0.016284102076484
315 => 0.016414980466283
316 => 0.01603192892763
317 => 0.015360645840004
318 => 0.015842773073015
319 => 0.016007392508003
320 => 0.016080097828656
321 => 0.01541996800936
322 => 0.015212540888021
323 => 0.015102108429102
324 => 0.016198887606368
325 => 0.016258971645537
326 => 0.015951573206119
327 => 0.017341043301007
328 => 0.017026563425252
329 => 0.017377914495911
330 => 0.016403104624212
331 => 0.016440343674066
401 => 0.015978853058782
402 => 0.016237256966527
403 => 0.01605462541328
404 => 0.016216380484379
405 => 0.016313335807054
406 => 0.016774750696269
407 => 0.017472039624694
408 => 0.016705830698651
409 => 0.016371982497259
410 => 0.016579100043769
411 => 0.017130681363755
412 => 0.017966355298462
413 => 0.01747161950961
414 => 0.017691174851544
415 => 0.017739137926419
416 => 0.017374338071834
417 => 0.017979805989446
418 => 0.018304281165306
419 => 0.018637125555062
420 => 0.018926125012599
421 => 0.018504180186388
422 => 0.018955721633848
423 => 0.018591858934991
424 => 0.018265436478681
425 => 0.018265931526806
426 => 0.018061161951692
427 => 0.017664395097282
428 => 0.017591225201833
429 => 0.017971864238297
430 => 0.018277100698891
501 => 0.01830224143577
502 => 0.01847123602397
503 => 0.018571245280484
504 => 0.019551471950315
505 => 0.019945727225782
506 => 0.020427815113751
507 => 0.0206156155151
508 => 0.02118082739299
509 => 0.02072437289733
510 => 0.02062561609596
511 => 0.019254596959596
512 => 0.019479101266369
513 => 0.019838554322958
514 => 0.019260524208104
515 => 0.019627151271786
516 => 0.01969953122038
517 => 0.019240882965987
518 => 0.01948586681568
519 => 0.018835262343545
520 => 0.01748622102429
521 => 0.017981307858078
522 => 0.018345858412172
523 => 0.01782559982272
524 => 0.018758143207524
525 => 0.018213370613725
526 => 0.018040703855186
527 => 0.017367069269984
528 => 0.017684998863627
529 => 0.018115003191341
530 => 0.017849310510182
531 => 0.018400662717544
601 => 0.019181524483431
602 => 0.019738013078923
603 => 0.019780733363339
604 => 0.019422948478277
605 => 0.019996301039941
606 => 0.02000047728741
607 => 0.019353733255639
608 => 0.018957606137265
609 => 0.018867605222512
610 => 0.019092445153284
611 => 0.019365442336982
612 => 0.01979588280707
613 => 0.020055988968197
614 => 0.020734207886766
615 => 0.020917714480071
616 => 0.02111933259039
617 => 0.021388756562499
618 => 0.021712269119904
619 => 0.021004442061882
620 => 0.021032565350452
621 => 0.020373446594554
622 => 0.019669083676686
623 => 0.020203607331271
624 => 0.020902425904938
625 => 0.020742116152012
626 => 0.020724078029977
627 => 0.020754413147883
628 => 0.020633544829404
629 => 0.020086861904515
630 => 0.019812321162052
701 => 0.020166548762642
702 => 0.0203548049675
703 => 0.020646773923567
704 => 0.020610782587015
705 => 0.021362863262668
706 => 0.021655099071487
707 => 0.021580332646116
708 => 0.021594091467739
709 => 0.022123170440605
710 => 0.022711615071822
711 => 0.023262771121064
712 => 0.023823430727057
713 => 0.023147533689116
714 => 0.022804354856783
715 => 0.023158427812685
716 => 0.022970551718346
717 => 0.024050143484088
718 => 0.024124892075591
719 => 0.02520440577456
720 => 0.026228992820982
721 => 0.025585468054508
722 => 0.026192282924301
723 => 0.026848602680324
724 => 0.028114749973735
725 => 0.027688356108913
726 => 0.027361745090903
727 => 0.027053099257057
728 => 0.027695342241145
729 => 0.028521577580092
730 => 0.028699540758518
731 => 0.028987909094734
801 => 0.028684725049205
802 => 0.029049876837417
803 => 0.030339023105632
804 => 0.029990684404352
805 => 0.029495987450293
806 => 0.030513644618124
807 => 0.030881930791121
808 => 0.033466756026174
809 => 0.036730204659234
810 => 0.035379115496188
811 => 0.034540450853311
812 => 0.034737556937779
813 => 0.035929257903864
814 => 0.036311994431473
815 => 0.03527158461224
816 => 0.035639074949181
817 => 0.037663982836582
818 => 0.03875028095135
819 => 0.037274942202194
820 => 0.033204541106057
821 => 0.029451445402176
822 => 0.030446935386948
823 => 0.030334077716325
824 => 0.032509588628934
825 => 0.029982376641529
826 => 0.030024928410001
827 => 0.032245426584376
828 => 0.031653035740429
829 => 0.030693438440921
830 => 0.029458451524417
831 => 0.027175463986795
901 => 0.025153358258906
902 => 0.029119173254433
903 => 0.02894816010046
904 => 0.028700507710776
905 => 0.029251631305229
906 => 0.031927731040733
907 => 0.03186603828014
908 => 0.031473580413171
909 => 0.031771256246302
910 => 0.030641254428132
911 => 0.030932481626337
912 => 0.029450850892642
913 => 0.030120609862637
914 => 0.030691379576094
915 => 0.03080597004646
916 => 0.03106414822733
917 => 0.028858043939213
918 => 0.029848519996759
919 => 0.03043033188551
920 => 0.027801684605632
921 => 0.030378371980533
922 => 0.028819640571696
923 => 0.028290583720177
924 => 0.029002889072808
925 => 0.028725302984148
926 => 0.02848665076552
927 => 0.02835347872696
928 => 0.028876517163659
929 => 0.028852116795421
930 => 0.027996324395596
1001 => 0.026879978096584
1002 => 0.027254660557351
1003 => 0.027118534906688
1004 => 0.026625197988126
1005 => 0.02695764750551
1006 => 0.025493708079801
1007 => 0.022975076386819
1008 => 0.024638961630978
1009 => 0.024574903859037
1010 => 0.024542603025635
1011 => 0.02579296680021
1012 => 0.025672773174085
1013 => 0.025454620565729
1014 => 0.026621191444396
1015 => 0.02619537738109
1016 => 0.027507635989788
1017 => 0.028371974381041
1018 => 0.028152750206602
1019 => 0.028965664641286
1020 => 0.027263292484495
1021 => 0.027828752227664
1022 => 0.027945292697038
1023 => 0.026606796140835
1024 => 0.025692438337779
1025 => 0.025631461096757
1026 => 0.024046090672525
1027 => 0.024892982756487
1028 => 0.025638212743598
1029 => 0.025281305411955
1030 => 0.02516831921306
1031 => 0.025745541199498
1101 => 0.025790396291416
1102 => 0.024767695442152
1103 => 0.024980347333438
1104 => 0.025867141070535
1105 => 0.024958002406541
1106 => 0.023191694489358
1107 => 0.022753625704779
1108 => 0.022695179253707
1109 => 0.021507101966256
1110 => 0.022782899555672
1111 => 0.022225979718642
1112 => 0.023985282810896
1113 => 0.022980378319932
1114 => 0.022937058895804
1115 => 0.022871575232656
1116 => 0.021848948032492
1117 => 0.022072838397979
1118 => 0.022817084072323
1119 => 0.023082639313457
1120 => 0.023054939726177
1121 => 0.022813436862497
1122 => 0.022923995636795
1123 => 0.022567847303552
1124 => 0.022442083914497
1125 => 0.022045140064695
1126 => 0.021461742264022
1127 => 0.021542867306392
1128 => 0.020387003608923
1129 => 0.019757227720211
1130 => 0.019582914054529
1201 => 0.019349814535709
1202 => 0.019609243265434
1203 => 0.020383729192294
1204 => 0.019449534848145
1205 => 0.017847924171216
1206 => 0.017944183701911
1207 => 0.018160450287672
1208 => 0.017757438935853
1209 => 0.017376022513535
1210 => 0.017707633147448
1211 => 0.017029009589973
1212 => 0.018242458702431
1213 => 0.018209638304591
1214 => 0.018661937094525
1215 => 0.018944768809977
1216 => 0.018292933273716
1217 => 0.018128998399097
1218 => 0.018222383154105
1219 => 0.016678941170943
1220 => 0.018535804956157
1221 => 0.01855186319128
1222 => 0.018414362832924
1223 => 0.019403085474313
1224 => 0.02148959863797
1225 => 0.020704568456004
1226 => 0.020400581041885
1227 => 0.01982270074543
1228 => 0.020592691929319
1229 => 0.02053356862013
1230 => 0.020266190594128
1231 => 0.020104479529732
]
'min_raw' => 0.015102108429102
'max_raw' => 0.03875028095135
'avg_raw' => 0.026926194690226
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.0151021'
'max' => '$0.03875'
'avg' => '$0.026926'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.009286826827368
'max_diff' => 0.022523841958266
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.00047403792679675
]
1 => [
'year' => 2028
'avg' => 0.00081358669657665
]
2 => [
'year' => 2029
'avg' => 0.0022225722203122
]
3 => [
'year' => 2030
'avg' => 0.001714711158017
]
4 => [
'year' => 2031
'avg' => 0.0016840588589871
]
5 => [
'year' => 2032
'avg' => 0.0029526851726323
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.00047403792679675
'min' => '$0.000474'
'max_raw' => 0.0029526851726323
'max' => '$0.002952'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.0029526851726323
]
1 => [
'year' => 2033
'avg' => 0.0075946098850462
]
2 => [
'year' => 2034
'avg' => 0.0048138287250147
]
3 => [
'year' => 2035
'avg' => 0.0056779220203097
]
4 => [
'year' => 2036
'avg' => 0.011020860297409
]
5 => [
'year' => 2037
'avg' => 0.026926194690226
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.0029526851726323
'min' => '$0.002952'
'max_raw' => 0.026926194690226
'max' => '$0.026926'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.026926194690226
]
]
]
]
'prediction_2025_max_price' => '$0.00081'
'last_price' => false
'sma_50day_nextmonth' => '—'
'sma_200day_nextmonth' => '—'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'decrease'
'sma_200day_direction_label' => 'diminuer'
'sma_200day_date_nextmonth' => '4 févr. 2026'
'sma_50day_date_nextmonth' => '4 févr. 2026'
'daily_sma3' => '—'
'daily_sma3_action' => '—'
'daily_sma5' => '—'
'daily_sma5_action' => '—'
'daily_sma10' => '—'
'daily_sma10_action' => '—'
'daily_sma21' => '—'
'daily_sma21_action' => '—'
'daily_sma50' => '—'
'daily_sma50_action' => '—'
'daily_sma100' => '—'
'daily_sma100_action' => '—'
'daily_sma200' => '—'
'daily_sma200_action' => '—'
'daily_ema3' => '—'
'daily_ema3_action' => '—'
'daily_ema5' => '—'
'daily_ema5_action' => '—'
'daily_ema10' => '—'
'daily_ema10_action' => '—'
'daily_ema21' => '—'
'daily_ema21_action' => '—'
'daily_ema50' => '—'
'daily_ema50_action' => '—'
'daily_ema100' => '—'
'daily_ema100_action' => '—'
'daily_ema200' => '—'
'daily_ema200_action' => '—'
'weekly_sma21' => '—'
'weekly_sma21_action' => '—'
'weekly_sma50' => '—'
'weekly_sma50_action' => '—'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '—'
'weekly_ema3_action' => '—'
'weekly_ema5' => '—'
'weekly_ema5_action' => '—'
'weekly_ema10' => '—'
'weekly_ema10_action' => '—'
'weekly_ema21' => '—'
'weekly_ema21_action' => '—'
'weekly_ema50' => '—'
'weekly_ema50_action' => '—'
'weekly_ema100' => '—'
'weekly_ema100_action' => '—'
'weekly_ema200' => '—'
'weekly_ema200_action' => '—'
'rsi_14' => '—'
'rsi_14_action' => '—'
'stoch_rsi_14' => '—'
'stoch_rsi_14_action' => '—'
'momentum_10' => '—'
'momentum_10_action' => '—'
'vwma_10' => '—'
'vwma_10_action' => '—'
'hma_9' => '—'
'hma_9_action' => '—'
'stochastic_fast_14' => '—'
'stochastic_fast_14_action' => '—'
'cci_20' => '—'
'cci_20_action' => '—'
'adx_14' => '—'
'adx_14_action' => '—'
'ao_5_34' => '—'
'ao_5_34_action' => '—'
'macd_12_26' => '—'
'macd_12_26_action' => '—'
'williams_percent_r_14' => '—'
'williams_percent_r_14_action' => '—'
'ultimate_oscillator' => '—'
'ultimate_oscillator_action' => '—'
'ichimoku_cloud' => '—'
'ichimoku_cloud_action' => '—'
'sell_signals' => 0
'buy_signals' => 0
'sell_pct' => 0
'buy_pct' => 0
'overall_action' => 'neutral'
'overall_action_label' => 'Neutre'
'overall_action_dir' => 0
'last_updated' => 1767695529
'last_updated_date' => '6 janvier 2026'
]
Prévision du prix de IRobot pour 2026
La prévision du prix de IRobot pour 2026 suggère que le prix moyen pourrait varier entre $0.000271 à la baisse et $0.00081 à la hausse. Sur le marché des cryptomonnaies, comparé au prix moyen d'aujourd'hui, IRobot pourrait potentiellement gagner 3.13% d'ici 2026 si IRB atteint l'objectif de prix prévu.
Prévision du prix de IRobot de 2027 à 2032
La prévision du prix de IRB pour 2027-2032 se situe actuellement dans une fourchette de prix comprise entre $0.000474 à la baisse et $0.002952 à la hausse. Compte tenu de la volatilité des prix sur le marché, si IRobot atteint l'objectif de prix le plus élevé, il pourrait gagner 275.71% d'ici 2032 par rapport au prix actuel.
| Prévision du Prix de IRobot | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2027 | $0.000261 | $0.000474 | $0.000686 |
| 2028 | $0.000471 | $0.000813 | $0.001155 |
| 2029 | $0.001036 | $0.002222 | $0.0034088 |
| 2030 | $0.000881 | $0.001714 | $0.002548 |
| 2031 | $0.001041 | $0.001684 | $0.002326 |
| 2032 | $0.00159 | $0.002952 | $0.004314 |
Prévision du prix de IRobot de 2032 à 2037
La prévision du prix de IRobot pour 2032-2037 est actuellement estimée entre $0.002952 à la baisse et $0.026926 à la hausse. Par rapport au prix actuel, IRobot pourrait potentiellement gagner 3326.16% d'ici 2037 s'il atteint l'objectif de prix le plus élevé. Veuillez noter que ces informations sont à titre général seulement et ne doivent pas être considérées comme un conseil en investissement à long terme.
| Prévision du Prix de IRobot | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2032 | $0.00159 | $0.002952 | $0.004314 |
| 2033 | $0.003695 | $0.007594 | $0.011493 |
| 2034 | $0.002971 | $0.004813 | $0.006656 |
| 2035 | $0.003513 | $0.005677 | $0.007842 |
| 2036 | $0.005815 | $0.01102 | $0.016226 |
| 2037 | $0.0151021 | $0.026926 | $0.03875 |
IRobot Histogramme des prix potentiels
Prévision du prix de IRobot basée sur l'analyse technique
Au 6 janvier 2026, le sentiment global de prévision du prix pour IRobot est Neutre, avec 0 indicateurs techniques montrant des signaux haussiers et 0 indiquant des signaux baissiers. La prévision du prix de IRB a été mise à jour pour la dernière fois le 6 janvier 2026.
Moyennes Mobiles Simples sur 50 et 200 jours de IRobot et Indice de Force Relative sur 14 jours - RSI (14)
Selon nos indicateurs techniques, le SMA sur 200 jours de IRobot devrait diminuer au cours du prochain mois, atteignant — d'ici le 4 févr. 2026. Le SMA à court terme sur 50 jours pour IRobot devrait atteindre — d'ici le 4 févr. 2026.
Le Relative Strength Index (RSI), un oscillateur de momentum, est un outil couramment utilisé pour identifier si une cryptomonnaie est survendue (en dessous de 30) ou surachetée (au-dessus de 70). Actuellement, le RSI est à —, ce qui suggère que le marché de IRB est dans un état —.
Moyennes Mobiles et Oscillateurs Populaires de IRB pour le Samedi 19 Octobre 2024
Les moyennes mobiles (MA) sont des indicateurs largement utilisés sur les marchés financiers, conçus pour lisser les mouvements de prix sur une période donnée. En tant qu'indicateurs retardés, ils sont basés sur des données historiques de prix. Le tableau ci-dessous met en évidence deux types : la moyenne mobile simple (SMA) et la moyenne mobile exponentielle (EMA).
Moyenne Mobile Simple Quotidienne (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 3 | — | — |
| SMA 5 | — | — |
| SMA 10 | — | — |
| SMA 21 | — | — |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Moyenne Mobile Exponentielle Quotidienne (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 3 | — | — |
| EMA 5 | — | — |
| EMA 10 | — | — |
| EMA 21 | — | — |
| EMA 50 | — | — |
| EMA 100 | — | — |
| EMA 200 | — | — |
Moyenne Mobile Simple Hebdomadaire (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 21 | — | — |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Moyenne Mobile Exponentielle Hebdomadaire (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 21 | — | — |
| EMA 50 | — | — |
| EMA 100 | — | — |
| EMA 200 | — | — |
Oscillateurs de IRobot
Un oscillateur est un outil d'analyse technique qui établit des limites hautes et basses entre deux extrêmes, créant un indicateur de tendance qui fluctue à l'intérieur de ces limites. Les traders utilisent cet indicateur pour identifier les conditions de surachat ou de survente à court terme.
| Période | Valeur | Action |
|---|---|---|
| RSI (14) | — | — |
| Stoch RSI (14) | — | — |
| Stochastique Rapide (14) | — | — |
| Indice de Canal des Matières Premières (20) | — | — |
| Indice Directionnel Moyen (14) | — | — |
| Oscillateur Impressionnant (5, 34) | — | — |
| Momentum (10) | — | — |
| MACD (12, 26) | — | — |
| Plage de Pourcentage de Williams (14) | — | — |
| Oscillateur Ultime (7, 14, 28) | — | — |
| VWMA (10) | — | — |
| Moyenne Mobile de Hull (9) | — | — |
| Nuage Ichimoku B/L (9, 26, 52, 26) | — | — |
Prévision du cours de IRobot basée sur les flux monétaires mondiaux
Définitions des flux monétaires mondiaux utilisés pour la prédiction du cours de IRobot
M0 : le total de toutes les devises physiques, plus les comptes à la banque centrale qui peuvent être échangés contre des devises physiques.
M1 : M0 plus le montant des comptes à vue, y compris les comptes de "chèques" et les comptes "courants".
M2 : M1 plus la plupart des comptes d'épargne, comptes du marché monétaire et comptes de certificats de dépôt (CD) de moins de 100 000 $.
Prédictions du cours de IRobot par des sociétés Internet ou des niches technologiques
| Comparaison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Action Facebook | $0.0011043 | $0.001551 | $0.00218 | $0.003064 | $0.0043054 | $0.006049 |
| Action Amazon.com | $0.001639 | $0.003421 | $0.007139 | $0.014897 | $0.031083 | $0.064858 |
| Action Apple | $0.001114 | $0.001581 | $0.002242 | $0.003181 | $0.004512 | $0.00640053 |
| Action Netflix | $0.00124 | $0.001956 | $0.003087 | $0.004871 | $0.007685 | $0.012127 |
| Action Google | $0.001017 | $0.001318 | $0.0017068 | $0.00221 | $0.002862 | $0.0037067 |
| Action Tesla | $0.001781 | $0.004038 | $0.009155 | $0.020755 | $0.04705 | $0.10666 |
| Action Kodak | $0.000589 | $0.000441 | $0.000331 | $0.000248 | $0.000186 | $0.000139 |
| Action Nokia | $0.00052 | $0.000344 | $0.000228 | $0.000151 | $0.00010027 | $0.000066 |
Ce calcul montre la valeur potentielle des cryptomonnaies si l'on suppose que leur capitalisation se comportera comme celle de certaines sociétés Internet ou niches technologiques. En extrapolant les données, vous pourrez obtenir une potentielle image des cours futurs pour 2024, 2025, 2026, 2027, 2028, 2029 et 2030.
Aperçu des prévisions relatives à IRobot
Vous vous posez peut-être des questions telles que : "Devrais-je investir dans IRobot maintenant ?", "Devrais-je acheter IRB aujourd'hui ?", " IRobot sera-t-il un bon ou un mauvais investissement à court ou à long terme ?".
Nous mettons régulièrement à jour les prévisions de IRobot avec de nouvelles valeurs. Regardez nos prévisions similaires. Nous faisons une prévision des cours futurs pour une grande quantité de devises numériques comme IRobot en utilisant des méthodes d'analyse technique.
Si vous souhaitez trouver des cryptomonnaies ayant un bon rendement, vous devriez consulter un maximum d'informations disponibles à propos de IRobot afin de prendre une décision responsable concernant cet investissement.
Le cours de IRobot est de $0.0007859 USD actuellement, mais ce cours peut subir une hausse ou une baisse, ce qui pourrait causer la perte de votre investissement, car les cryptomonnaies sont des actifs à haut risque.
Prévision du cours de IRobot basée sur le modèle de croissance du Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si IRobot présente 1 % de la précédente croissance annuelle moyenne du Bitcoin | $0.0008063 | $0.000827 | $0.000848 | $0.00087 |
| Si IRobot présente 2 % de la précédente croissance annuelle moyenne du Bitcoin | $0.000826 | $0.000869 | $0.000914 | $0.000962 |
| Si IRobot présente 5 % de la précédente croissance annuelle moyenne du Bitcoin | $0.000888 | $0.0010034 | $0.001133 | $0.001281 |
| Si IRobot présente 10 % de la précédente croissance annuelle moyenne du Bitcoin | $0.00099 | $0.001247 | $0.001571 | $0.00198 |
| Si IRobot présente 20 % de la précédente croissance annuelle moyenne du Bitcoin | $0.001194 | $0.001815 | $0.002759 | $0.004193 |
| Si IRobot présente 50 % de la précédente croissance annuelle moyenne du Bitcoin | $0.0018073 | $0.004156 | $0.009558 | $0.02198 |
| Si IRobot présente 100 % de la précédente croissance annuelle moyenne du Bitcoin | $0.002828 | $0.010181 | $0.036647 | $0.1319055 |
Boîte à questions
Est-ce que IRB est un bon investissement ?
La décision d'acquérir IRobot dépend entièrement de votre tolérance individuelle au risque. Comme vous pouvez le discerner, la valeur de IRobot a connu une baisse de 0% au cours des 24 heures précédentes, et IRobot a enregistré une déclin de sur une période de 30 jours précédents. Par conséquent, la détermination de si investir ou non dans IRobot dépendra de la mesure dans laquelle cet investissement s'aligne avec vos aspirations de trading.
Est-ce que IRobot peut monter ?
Il semble que la valeur moyenne de IRobot pourrait potentiellement s'envoler jusqu'à $0.00081 pour la fin de cette année. En regardant les perspectives de IRobot sur une période de cinq ans plus longue, la monnaie numérique pourrait potentiellement croître jusqu'à $0.002548. Cependant, compte tenu de l'imprévisibilité du marché, il est essentiel de mener des recherches approfondies avant d'investir des fonds dans un projet, un réseau ou un actif particulier.
Quel sera le prix de IRobot la semaine prochaine ?
Basé sur notre nouveau pronostic expérimental de IRobot, le prix de IRobot va augmenter de 0.86% durant la prochaine semaine et atteindre $0.000792 d'ici 13 janvier 2026.
Quel sera le prix de IRobot le mois prochain ?
Basé sur notre nouveau pronostic expérimental de IRobot, le prix de IRobot va diminuer de -11.62% durant le prochain mois et atteindre $0.000694 d'ici 5 février 2026.
Jusqu'où le prix de IRobot peut-il monter cette année en 2026 ?
Selon notre prédiction la plus récente sur la valeur de IRobot en 2026, IRB devrait fluctuer dans la fourchette de $0.000271 et $0.00081. Cependant, il est crucial de garder à l'esprit que le marché des cryptomonnaies est exceptionnellement instable, et cette prévision de prix de IRobot ne prend pas en compte les fluctuations de prix soudaines et extrêmes.
Où sera IRobot dans 5 ans ?
L'avenir de IRobot semble suivre une tendance haussière, avec un prix maximum de $0.002548 prévue après une période de cinq ans. Selon la prévision de IRobot pour 2030, la valeur de IRobot pourrait potentiellement atteindre son point le plus élevé d'environ $0.002548, tandis que son point le plus bas devrait être autour de $0.000881.
Combien vaudra IRobot en 2026 ?
Basé sur notre nouvelle simulation expérimentale de prédiction de prix de IRobot, il est attendu que la valeur de IRB en 2026 augmente de 3.13% jusqu'à $0.00081 si le meilleur scénario se produit. Le prix sera entre $0.00081 et $0.000271 durant 2026.
Combien vaudra IRobot en 2027 ?
Selon notre dernière simulation expérimentale pour la prédiction de prix de IRobot, le valeur de IRB pourrait diminuer de -12.62% jusqu'à $0.000686 en 2027, en supposant les conditions les plus favorables. Il est prévu que le prix fluctue entre $0.000686 et $0.000261 tout au long de l'année.
Combien vaudra IRobot en 2028 ?
Notre nouveau modèle expérimental de prédiction de prix de IRobot suggère que la valeur de IRB en 2028 pourrait augmenter de 47.02%, atteignant $0.001155 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.001155 et $0.000471 durant l'année.
Combien vaudra IRobot en 2029 ?
Basé sur notre modèle de prévision expérimental, la valeur de IRobot pourrait connaître un 333.75% croissance en 2029, atteignant potentiellement $0.0034088 sous des conditions optimales. Le range de prix prévu pour 2029 se situe entre $0.0034088 et $0.001036.
Combien vaudra IRobot en 2030 ?
En utilisant notre nouvelle simulation expérimentale pour les prédictions de prix de IRobot, il est prévu que la valeur de IRB en 2030 augmente de 224.23%, atteignant $0.002548 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.002548 et $0.000881 au cours de 2030.
Combien vaudra IRobot en 2031 ?
Notre simulation expérimentale indique que le prix de IRobot pourrait augmenter de 195.98% en 2031, atteignant potentiellement $0.002326 dans des conditions idéales. Il est probable que le prix fluctue entre $0.002326 et $0.001041 durant l'année.
Combien vaudra IRobot en 2032 ?
Basé sur les résultats de notre dernière prédiction expérimentale de prix de IRobot, IRB pourrait connaître une 449.04% hausse en valeur, atteignant $0.004314 si le scénario le plus positif se réalise en 2032. Il est prévu que le prix reste dans une fourchette de $0.004314 et $0.00159 tout au long de l'année.
Combien vaudra IRobot en 2033 ?
Selon notre prédiction expérimentale de prix de IRobot, la valeur de IRB est anticipée à augmenter de 1362.43% en 2033, avec le prix potentiel le plus élevé étant $0.011493. Tout au long de l'année, le prix de IRB pourrait osciller entre $0.011493 et $0.003695.
Combien vaudra IRobot en 2034 ?
Les résultats de notre nouvelle simulation de prédiction de prix de IRobot suggèrent que IRB pourrait augmenter de 746.96% en 2034, atteignant potentiellement $0.006656 dans les meilleures circonstances. La fourchette de prix prévue pour l'année est entre $0.006656 et $0.002971.
Combien vaudra IRobot en 2035 ?
Basé sur notre prédiction expérimentale pour le prix de IRobot, IRB pourrait augmenter de 897.93%, avec la valeur potentiellement atteignant $0.007842 en 2035. La fourchette de prix attendue pour l'année se situe entre $0.007842 et $0.003513.
Combien vaudra IRobot en 2036 ?
Notre récente simulation de prédiction de prix de IRobot suggère que la valeur de IRB pourrait augmenter de 1964.7% en 2036, pouvant atteindre $0.016226 si les conditions sont optimales. La fourchette de prix attendue pour 2036 est entre $0.016226 et $0.005815.
Combien vaudra IRobot en 2037 ?
Selon la simulation expérimentale, la valeur de IRobot pourrait augmenter de 4830.69% en 2037, avec un maximum de $0.03875 sous des conditions favorables. Il est prévu que le prix chute entre $0.03875 et $0.0151021 au cours de l'année.
Prévisions liées
Prévision du cours de SolPod
Prévision du cours de zuzalu
Prévision du cours de SOFT COQ INU
Prévision du cours de All Street Bets
Prévision du cours de MagicRing
Prévision du cours de AI INU
Prévision du cours de Wall Street Baby On Solana
Prévision du cours de Meta Masters Guild Games
Prévision du cours de Morfey
Prévision du cours de PANTIESPrévision du cours de Celer Bridged BUSD (zkSync)
Prévision du cours de Bridged BUSD
Prévision du cours de Multichain Bridged BUSD (Moonriver)
Prévision du cours de tooker kurlson
Prévision du cours de dogwifsaudihatPrévision du cours de Harmony Horizen Bridged BUSD (Harmony)
Prévision du cours de IoTeX Bridged BUSD (IoTeX)
Prévision du cours de MIMANY
Prévision du cours de The Open League MEME
Prévision du cours de Sandwich Cat
Prévision du cours de Hege
Prévision du cours de DexNet
Prévision du cours de SolDocs
Prévision du cours de Secret Society
Prévision du cours de duk
Comment lire et prédire les mouvements de prix de IRobot ?
Les traders de IRobot utilisent des indicateurs et des modèles graphiques pour prédire la direction du marché. Ils identifient également des niveaux clés de support et de résistance pour évaluer quand une tendance baissière pourrait ralentir ou une tendance haussière pourrait s'arrêter.
Indicateurs de prédiction du prix de IRobot
Les moyennes mobiles sont des outils populaires pour la prédiction du prix de IRobot. Une moyenne mobile simple (SMA) calcule le prix de clôture moyen de IRB sur une période spécifique, comme une SMA de 12 jours. Une moyenne mobile exponentielle (EMA) donne plus de poids aux prix récents, réagissant plus rapidement aux changements de prix.
Les moyennes mobiles couramment utilisées sur le marché des cryptomonnaies incluent les moyennes sur 50 jours, 100 jours et 200 jours, qui aident à identifier les niveaux clés de résistance et de support. Un mouvement de prix de IRB au-dessus de ces moyennes est considéré comme haussier, tandis qu'une chute en dessous indique une faiblesse.
Les traders utilisent également le RSI et les niveaux de retracement de Fibonacci pour évaluer la direction future de IRB.
Comment lire les graphiques de IRobot et prédire les mouvements de prix ?
La plupart des traders préfèrent les graphiques en chandeliers aux simples graphiques linéaires parce qu'ils fournissent des informations plus détaillées. Les chandeliers peuvent représenter l'action des prix de IRobot dans différentes périodes, comme 5 minutes pour les tendances à court terme et hebdomadaire pour les tendances à long terme. Les options populaires incluent les graphiques de 1 heure, 4 heures et 1 jour.
Par exemple, un graphique en chandeliers de 1 heure montre les prix d'ouverture, de clôture, les plus hauts et les plus bas de IRB au sein de chaque heure. La couleur du chandelier est cruciale : le vert indique que le prix a clôturé plus haut qu'il n'a ouvert, tandis que le rouge signifie le contraire. Certains graphiques utilisent des chandeliers creux et pleins pour transmettre la même information.
Qu'est-ce qui affecte le prix de IRobot ?
L'action du prix de IRobot est déterminée par l'offre et la demande, influencée par des facteurs tels que les réductions de récompenses de bloc, les hard forks et les mises à jour de protocole. Les événements du monde réel, tels que les réglementations, l'adoption par les entreprises et les gouvernements et les piratages d'échanges de cryptomonnaies, impactent également le prix de IRB. La capitalisation boursière de IRobot peut changer rapidement.
Les traders surveillent souvent l'activité des « baleines » de IRB, de grands détenteurs de IRobot, car leurs actions peuvent influencer significativement les mouvements de prix sur le marché relativement petit de IRobot.
Modèles de prédiction de prix haussiers et baissiers
Les traders identifient souvent des modèles de chandeliers pour obtenir un avantage dans les prédictions de prix des cryptomonnaies. Certaines formations indiquent des tendances haussières, tandis que d'autres suggèrent des mouvements baissiers.
Modèles de chandeliers haussiers couramment suivis :
- Marteau
- Englobante haussière
- Ligne pénétrante
- Étoile du matin
- Trois soldats blancs
Modèles de chandeliers baissiers courants :
- Harami baissier
- Nuage sombre
- Étoile du soir
- Étoile filante
- Pendu


