Prédiction du prix de GemLink jusqu'à $0.0018032 d'ici 2026
| Année | Prix min. | Prix max. |
|---|---|---|
| 2026 | $0.000604 | $0.0018032 |
| 2027 | $0.000581 | $0.001527 |
| 2028 | $0.001049 | $0.00257 |
| 2029 | $0.0023054 | $0.007583 |
| 2030 | $0.00196 | $0.005668 |
| 2031 | $0.002318 | $0.005175 |
| 2032 | $0.003538 | $0.009599 |
| 2033 | $0.008222 | $0.025569 |
| 2034 | $0.00661 | $0.0148086 |
| 2035 | $0.007815 | $0.017448 |
Calculateur de profit d’investissement
Si vous ouvrez une position short de $10,000.00 sur GemLink aujourd’hui et la fermez le Apr 06, 2026, notre prévision indique que vous pourriez gagner environ $3,954.61, soit un rendement de 39.55% sur les 90 prochains jours.
Prévision du prix à long terme de GemLink pour 2027, 2028, 2029, 2030, 2031, 2032 et 2037
[
'name' => 'GemLink'
'name_with_ticker' => 'GemLink <small>GLINK</small>'
'name_lang' => 'GemLink'
'name_lang_with_ticker' => 'GemLink <small>GLINK</small>'
'name_with_lang' => 'GemLink'
'name_with_lang_with_ticker' => 'GemLink <small>GLINK</small>'
'image' => '/uploads/coins/gemlink.png?1717088615'
'price_for_sd' => 0.001748
'ticker' => 'GLINK'
'marketcap' => '$196.18K'
'low24h' => '$0.001716'
'high24h' => '$0.001753'
'volume24h' => '$41.34'
'current_supply' => '112.2M'
'max_supply' => '160M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.001748'
'change_24h_pct' => '0.0208%'
'ath_price' => '$0.05577'
'ath_days' => 1316
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '31 mai 2022'
'ath_pct' => '-96.87%'
'fdv' => '$279.75K'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.08621'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.001763'
'next_week_prediction_price_date' => '13 janvier 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.001545'
'next_month_prediction_price_date' => '5 février 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.000604'
'current_year_max_price_prediction' => '$0.0018032'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.00196'
'grand_prediction_max_price' => '$0.005668'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0017815720183206
107 => 0.0017882237615263
108 => 0.0018032104786153
109 => 0.0016751506219556
110 => 0.0017326457379559
111 => 0.0017664187320423
112 => 0.001613831116088
113 => 0.0017634025654815
114 => 0.0016729213847586
115 => 0.0016422107130395
116 => 0.0016835585866859
117 => 0.0016674452801138
118 => 0.0016535920053282
119 => 0.0016458616399683
120 => 0.001676222954976
121 => 0.0016748065633412
122 => 0.0016251295591114
123 => 0.0015603279321874
124 => 0.001582077485224
125 => 0.0015741756687026
126 => 0.0015455384662747
127 => 0.0015648364830421
128 => 0.0014798577837011
129 => 0.0013336563482932
130 => 0.0014302414947947
131 => 0.0014265230717188
201 => 0.0014246480741869
202 => 0.0014972291423654
203 => 0.0014902521473902
204 => 0.0014775888331913
205 => 0.0015453058945787
206 => 0.0015205882562493
207 => 0.0015967621933726
208 => 0.0016469352749833
209 => 0.0016342097585577
210 => 0.0016813977843201
211 => 0.001582578550998
212 => 0.0016154023363681
213 => 0.0016221672730411
214 => 0.0015444702765526
215 => 0.0014913936700541
216 => 0.0014878540655183
217 => 0.0013958265442567
218 => 0.0014449869032944
219 => 0.0014882459848538
220 => 0.0014675282418272
221 => 0.0014609696233099
222 => 0.0014944761829237
223 => 0.00149707992957
224 => 0.0014377142301024
225 => 0.0014500582388889
226 => 0.0015015348075494
227 => 0.0014487611614339
228 => 0.0013462305875577
301 => 0.0013208015876403
302 => 0.0013174088903018
303 => 0.0012484434257264
304 => 0.0013225008750082
305 => 0.0012901728137805
306 => 0.0013922967718493
307 => 0.0013339641147022
308 => 0.0013314495104406
309 => 0.0013276483172869
310 => 0.0012682868929994
311 => 0.001281283272303
312 => 0.0013244852165128
313 => 0.0013399001569116
314 => 0.0013382922523371
315 => 0.0013242735034174
316 => 0.0013306912148853
317 => 0.0013100175301685
318 => 0.0013027172218095
319 => 0.0012796754405204
320 => 0.00124581038748
321 => 0.0012505195308117
322 => 0.0011834239994656
323 => 0.0011468667929588
324 => 0.001136748240014
325 => 0.0011232172881327
326 => 0.0011382765970335
327 => 0.0011832339262554
328 => 0.0011290058489843
329 => 0.0010360356141603
330 => 0.0010416232836868
331 => 0.0010541771181189
401 => 0.0010307831307067
402 => 0.0010086426849295
403 => 0.0010278920062216
404 => 0.00098849929212174
405 => 0.0010589375394169
406 => 0.0010570323822285
407 => 0.0010832874049481
408 => 0.001099705209462
409 => 0.0010618674853848
410 => 0.0010523514001035
411 => 0.0010577721947617
412 => 0.00096817853403083
413 => 0.0010759656914432
414 => 0.0010768978392565
415 => 0.001068916223756
416 => 0.0011263095575229
417 => 0.0012474273932009
418 => 0.0012018579914652
419 => 0.0011842121417707
420 => 0.0011506673686023
421 => 0.0011953637871576
422 => 0.0011919317995853
423 => 0.0011764110502407
424 => 0.0011670240526095
425 => 0.0011843198835662
426 => 0.0011648809077494
427 => 0.0011613891335454
428 => 0.0011402327809569
429 => 0.0011326809256355
430 => 0.0011270898326036
501 => 0.0011209345885449
502 => 0.0011345115231471
503 => 0.0011037444031439
504 => 0.0010666422725581
505 => 0.0010635576318505
506 => 0.0010720745960485
507 => 0.0010683064734043
508 => 0.0010635395915289
509 => 0.0010544383158459
510 => 0.0010517381617687
511 => 0.001060512352591
512 => 0.0010506068027197
513 => 0.001065222981138
514 => 0.0010612481893583
515 => 0.0010390453255859
516 => 0.0010113723367726
517 => 0.0010111259891261
518 => 0.001005163889079
519 => 0.00099757025826137
520 => 0.00099545788388664
521 => 0.0010262708820731
522 => 0.0010900528661637
523 => 0.0010775309365132
524 => 0.0010865793139846
525 => 0.0011310883756358
526 => 0.0011452364679006
527 => 0.001135194487127
528 => 0.0011214484044817
529 => 0.0011220531623556
530 => 0.0011690276879767
531 => 0.0011719574315195
601 => 0.0011793599482813
602 => 0.0011888742742711
603 => 0.0011368148179842
604 => 0.0011196011666461
605 => 0.0011114443836651
606 => 0.0010863246491559
607 => 0.0011134141292208
608 => 0.0010976302492741
609 => 0.0010997600339331
610 => 0.0010983730088799
611 => 0.0010991304183492
612 => 0.0010589178504913
613 => 0.0010735691967083
614 => 0.0010492084919471
615 => 0.0010165922428893
616 => 0.0010164829017857
617 => 0.0010244656825352
618 => 0.0010197172121792
619 => 0.0010069392005454
620 => 0.0010087542567875
621 => 0.00099285245421506
622 => 0.0010106850235312
623 => 0.0010111963978112
624 => 0.0010043298872778
625 => 0.0010318034207297
626 => 0.0010430593498012
627 => 0.0010385396654732
628 => 0.0010427422367002
629 => 0.0010780512792233
630 => 0.0010838081937961
701 => 0.0010863650349689
702 => 0.0010829392065139
703 => 0.0010433876211798
704 => 0.0010451419021757
705 => 0.0010322701522115
706 => 0.0010213948798834
707 => 0.0010218298337433
708 => 0.0010274211374064
709 => 0.0010518386884287
710 => 0.0011032239850619
711 => 0.001105174019507
712 => 0.0011075375181409
713 => 0.0010979239813974
714 => 0.0010950244467265
715 => 0.0010988496813909
716 => 0.0011181472970958
717 => 0.0011677860039403
718 => 0.0011502403696837
719 => 0.001135975495919
720 => 0.001148489635993
721 => 0.0011465631822177
722 => 0.0011303019736394
723 => 0.0011298455756743
724 => 0.0010986351173897
725 => 0.0010870973215897
726 => 0.0010774554758301
727 => 0.0010669268319674
728 => 0.0010606850989623
729 => 0.0010702752376751
730 => 0.0010724686158659
731 => 0.0010514996099634
801 => 0.0010486416119421
802 => 0.0010657653548095
803 => 0.001058229834011
804 => 0.0010659803040241
805 => 0.0010677784795495
806 => 0.0010674889318744
807 => 0.0010596209827118
808 => 0.0010646357788824
809 => 0.0010527742909561
810 => 0.0010398767043742
811 => 0.0010316488476829
812 => 0.001024468951453
813 => 0.0010284527751794
814 => 0.0010142511710123
815 => 0.0010097077920174
816 => 0.0010629368787763
817 => 0.0011022577774742
818 => 0.0011016860360343
819 => 0.0010982057070592
820 => 0.0010930346441611
821 => 0.0011177690016362
822 => 0.001109152046071
823 => 0.0011154216012154
824 => 0.0011170174661321
825 => 0.0011218476685911
826 => 0.0011235740508002
827 => 0.0011183557247146
828 => 0.0011008423850065
829 => 0.0010572008075722
830 => 0.0010368855354683
831 => 0.0010301811572964
901 => 0.0010304248487095
902 => 0.0010237027516493
903 => 0.0010256827104968
904 => 0.0010230142027637
905 => 0.0010179606946985
906 => 0.0010281407352968
907 => 0.0010293138901421
908 => 0.001026937747024
909 => 0.001027497414746
910 => 0.0010078239645925
911 => 0.0010093196942792
912 => 0.0010009912813156
913 => 0.00099942980428541
914 => 0.00097837630155133
915 => 0.00094107696970389
916 => 0.00096174442028112
917 => 0.00093678104626715
918 => 0.00092732703827122
919 => 0.00097208084172407
920 => 0.00096758880113468
921 => 0.00095990038028877
922 => 0.00094852760345036
923 => 0.00094430932989373
924 => 0.00091868043510678
925 => 0.00091716614327793
926 => 0.00092986851557271
927 => 0.00092400680782061
928 => 0.00091577475013434
929 => 0.00088595907166497
930 => 0.00085243637743351
1001 => 0.00085344821685622
1002 => 0.00086411116217934
1003 => 0.00089511511380043
1004 => 0.00088300133352826
1005 => 0.00087421264695119
1006 => 0.00087256679014226
1007 => 0.00089316813394072
1008 => 0.00092232335153051
1009 => 0.00093600232731241
1010 => 0.00092244687774922
1011 => 0.00090687510716826
1012 => 0.00090782288869088
1013 => 0.00091412805454731
1014 => 0.00091479063832857
1015 => 0.00090465501648425
1016 => 0.00090750813466368
1017 => 0.00090317398725453
1018 => 0.00087657533260477
1019 => 0.0008760942472874
1020 => 0.0008695665084751
1021 => 0.00086936885113815
1022 => 0.00085826353899767
1023 => 0.00085670982906182
1024 => 0.00083465955776264
1025 => 0.00084917311310613
1026 => 0.00083943818217757
1027 => 0.00082476534503018
1028 => 0.00082223574237544
1029 => 0.00082215969946505
1030 => 0.00083722542242908
1031 => 0.00084899706136161
1101 => 0.00083960752546896
1102 => 0.00083746971015471
1103 => 0.00086029598472995
1104 => 0.00085739113322414
1105 => 0.00085487555055439
1106 => 0.00091971282157257
1107 => 0.00086838906224633
1108 => 0.00084600897372232
1109 => 0.00081830936431032
1110 => 0.00082732849680843
1111 => 0.0008292289605444
1112 => 0.00076261639313842
1113 => 0.00073559168283788
1114 => 0.00072631782066746
1115 => 0.00072098058187522
1116 => 0.00072341282861367
1117 => 0.00069908741966082
1118 => 0.00071543449678226
1119 => 0.00069437074880473
1120 => 0.00069083934290893
1121 => 0.00072850393359042
1122 => 0.0007337447413504
1123 => 0.00071138582725497
1124 => 0.00072574386968362
1125 => 0.00072053744390728
1126 => 0.00069473182630718
1127 => 0.00069374624152813
1128 => 0.00068079788972772
1129 => 0.00066053622645505
1130 => 0.00065127610264644
1201 => 0.00064645334976683
1202 => 0.00064844331159853
1203 => 0.00064743712600258
1204 => 0.00064087108437886
1205 => 0.00064781348382252
1206 => 0.00063007852204148
1207 => 0.00062301631735997
1208 => 0.00061982648334724
1209 => 0.00060408568398025
1210 => 0.00062913629573838
1211 => 0.00063407158183402
1212 => 0.00063901659196786
1213 => 0.00068205952908112
1214 => 0.00067990922558102
1215 => 0.00069934692198166
1216 => 0.00069859160884316
1217 => 0.00069304766295989
1218 => 0.00066965866721323
1219 => 0.00067898110404909
1220 => 0.00065028809249666
1221 => 0.00067178684768687
1222 => 0.00066197571362754
1223 => 0.0006684696933923
1224 => 0.00065679293223671
1225 => 0.00066325533398187
1226 => 0.00063524192125434
1227 => 0.00060908339060873
1228 => 0.00061961034695564
1229 => 0.00063105435240821
1230 => 0.00065586787210774
1231 => 0.00064108914448179
]
'min_raw' => 0.00060408568398025
'max_raw' => 0.0018032104786153
'avg_raw' => 0.0012036480812978
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.000604'
'max' => '$0.0018032'
'avg' => '$0.0012036'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0011443543160198
'max_diff' => 5.4770478615346E-5
'year' => 2026
]
1 => [
'items' => [
101 => 0.00064640413378165
102 => 0.0006285998093456
103 => 0.0005918644024802
104 => 0.0005920723208936
105 => 0.0005864213788717
106 => 0.00058153813991373
107 => 0.00064278665912894
108 => 0.00063516943756872
109 => 0.00062303239192983
110 => 0.00063927830982451
111 => 0.00064357398837325
112 => 0.00064369628030252
113 => 0.00065554888263064
114 => 0.00066187461861786
115 => 0.00066298955700291
116 => 0.00068163988285864
117 => 0.00068789122608173
118 => 0.00071363962409444
119 => 0.0006613379241148
120 => 0.00066026080502181
121 => 0.0006395069232055
122 => 0.00062634448325171
123 => 0.0006404081667301
124 => 0.00065286667040771
125 => 0.00063989404364271
126 => 0.00064158799483112
127 => 0.00062417330330166
128 => 0.00063039823608605
129 => 0.00063575998678896
130 => 0.00063279954319995
131 => 0.00062836761586012
201 => 0.00065184521518105
202 => 0.0006505205170179
203 => 0.00067238339725323
204 => 0.00068942707582623
205 => 0.00071997239475102
206 => 0.00068809676208952
207 => 0.00068693508734117
208 => 0.00069829064434478
209 => 0.00068788948760512
210 => 0.00069446265962885
211 => 0.00071891335511716
212 => 0.00071942995978392
213 => 0.00071077616600807
214 => 0.00071024958187035
215 => 0.00071191163762713
216 => 0.00072164635010798
217 => 0.00071824474244967
218 => 0.00072218116895004
219 => 0.00072710373056544
220 => 0.00074746553252964
221 => 0.00075237469404865
222 => 0.00074044797666588
223 => 0.00074152482570775
224 => 0.00073706390601088
225 => 0.00073275471347886
226 => 0.0007424411489838
227 => 0.00076014330025646
228 => 0.00076003317609214
301 => 0.00076413973110674
302 => 0.00076669808086031
303 => 0.00075571577089154
304 => 0.0007485666909326
305 => 0.00075130810309664
306 => 0.00075569168084712
307 => 0.00074988656791254
308 => 0.00071405472169045
309 => 0.00072492381488703
310 => 0.00072311466630762
311 => 0.00072053821873055
312 => 0.00073146717598792
313 => 0.00073041305139908
314 => 0.00069883792743264
315 => 0.00070085926442373
316 => 0.00069896085162994
317 => 0.00070509501174538
318 => 0.00068755822282829
319 => 0.00069295242098711
320 => 0.00069633561150486
321 => 0.0006983283367107
322 => 0.00070552742657869
323 => 0.00070468269647426
324 => 0.00070547491696934
325 => 0.0007161492667543
326 => 0.00077013646497213
327 => 0.00077307486905509
328 => 0.00075860509267981
329 => 0.00076438548293801
330 => 0.00075328839767464
331 => 0.00076073794535595
401 => 0.00076583473668151
402 => 0.00074280331673792
403 => 0.00074143954552154
404 => 0.00073029665863984
405 => 0.00073628421488469
406 => 0.0007267575823786
407 => 0.00072909508476813
408 => 0.00072255922430719
409 => 0.00073432247186005
410 => 0.00074747561044801
411 => 0.00075079861268852
412 => 0.00074205722443617
413 => 0.00073572788325591
414 => 0.00072461564515798
415 => 0.00074309554476722
416 => 0.0007484996305777
417 => 0.00074306715940505
418 => 0.0007418083371325
419 => 0.00073942287120068
420 => 0.00074231442500676
421 => 0.00074847019876579
422 => 0.00074556724954032
423 => 0.00074748469864712
424 => 0.00074017735991693
425 => 0.00075571940649311
426 => 0.00078040391685329
427 => 0.00078048328159042
428 => 0.00077758031671698
429 => 0.00077639248603602
430 => 0.00077937110416281
501 => 0.00078098688230728
502 => 0.00079061918714416
503 => 0.00080095503400209
504 => 0.00084918792140477
505 => 0.00083564431962912
506 => 0.00087843940672009
507 => 0.00091228476436247
508 => 0.0009224335072413
509 => 0.00091309714132802
510 => 0.00088115793787929
511 => 0.00087959084818408
512 => 0.00092732150252036
513 => 0.0009138354064679
514 => 0.00091223127825486
515 => 0.00089516606428552
516 => 0.00090525371930927
517 => 0.0009030474011786
518 => 0.00089956462007257
519 => 0.00091881116314574
520 => 0.00095483897362797
521 => 0.00094922370149765
522 => 0.00094503216133734
523 => 0.00092666605249387
524 => 0.00093772655223656
525 => 0.00093378812012811
526 => 0.0009507101238568
527 => 0.0009406859037162
528 => 0.00091373323602636
529 => 0.00091802553719312
530 => 0.00091737676450668
531 => 0.00093072846042118
601 => 0.00092672061271711
602 => 0.0009165941679188
603 => 0.00095471583448847
604 => 0.00095224042550528
605 => 0.00095574998948616
606 => 0.00095729500808741
607 => 0.00098049899474926
608 => 0.00099000492563986
609 => 0.00099216293837677
610 => 0.0010011928375078
611 => 0.00099193826626034
612 => 0.0010289631496475
613 => 0.0010535825366381
614 => 0.0010821792215298
615 => 0.0011239666642208
616 => 0.0011396791292281
617 => 0.0011368408130613
618 => 0.0011685235751961
619 => 0.0012254567944842
620 => 0.0011483486444625
621 => 0.0012295437136686
622 => 0.0012038382922001
623 => 0.001142891200319
624 => 0.0011389669261209
625 => 0.001180241004353
626 => 0.001271782937389
627 => 0.0012488527214235
628 => 0.0012718204430078
629 => 0.0012450273757774
630 => 0.0012436968741597
701 => 0.0012705191635357
702 => 0.0013331909046696
703 => 0.001303417909672
704 => 0.001260731020705
705 => 0.0012922503552367
706 => 0.0012649453906886
707 => 0.0012034196633835
708 => 0.0012488351871195
709 => 0.0012184671197569
710 => 0.0012273301362686
711 => 0.0012911592969557
712 => 0.0012834792034708
713 => 0.0012934179555978
714 => 0.0012758763182361
715 => 0.001259489662878
716 => 0.0012289027537632
717 => 0.0012198474778906
718 => 0.0012223500303671
719 => 0.0012198462377499
720 => 0.0012027331432084
721 => 0.0011990375720715
722 => 0.0011928781249366
723 => 0.001194787195159
724 => 0.0011832056325356
725 => 0.0012050624340788
726 => 0.0012091192490467
727 => 0.0012250248065038
728 => 0.0012266761742437
729 => 0.0012709729253604
730 => 0.001246575019222
731 => 0.0012629432410735
801 => 0.0012614791132474
802 => 0.0011442121086078
803 => 0.0011603704671916
804 => 0.0011855078023758
805 => 0.0011741834669482
806 => 0.0011581735061399
807 => 0.0011452446043875
808 => 0.0011256559961845
809 => 0.0011532265860643
810 => 0.001189478979951
811 => 0.0012275955947782
812 => 0.0012733902099936
813 => 0.0012631693849856
814 => 0.0012267394963008
815 => 0.0012283737144952
816 => 0.0012384758083315
817 => 0.0012253926789415
818 => 0.0012215342086713
819 => 0.0012379457137672
820 => 0.0012380587307832
821 => 0.001223005009271
822 => 0.0012062755526121
823 => 0.0012062054555778
824 => 0.0012032286103528
825 => 0.0012455569499298
826 => 0.0012688332568194
827 => 0.0012715018478926
828 => 0.0012686536393779
829 => 0.0012697498017939
830 => 0.0012562058316733
831 => 0.0012871633310294
901 => 0.0013155729938179
902 => 0.0013079585973067
903 => 0.0012965435344861
904 => 0.0012874508871256
905 => 0.001305816658557
906 => 0.0013049988596656
907 => 0.0013153248601975
908 => 0.0013148564131675
909 => 0.0013113841675692
910 => 0.0013079587213115
911 => 0.0013215402285282
912 => 0.0013176289725622
913 => 0.0013137116413352
914 => 0.0013058548338463
915 => 0.0013069227044718
916 => 0.0012955096126227
917 => 0.0012902293941058
918 => 0.0012108275766268
919 => 0.0011896088164672
920 => 0.0011962846703611
921 => 0.0011984825348015
922 => 0.0011892481031874
923 => 0.0012024879059911
924 => 0.0012004244967486
925 => 0.0012084520150572
926 => 0.0012034367701323
927 => 0.0012036425975334
928 => 0.0012183913634947
929 => 0.001222672992999
930 => 0.0012204953216761
1001 => 0.0012220204880244
1002 => 0.0012571673027892
1003 => 0.0012521705496615
1004 => 0.0012495161241514
1005 => 0.0012502514181584
1006 => 0.001259232182887
1007 => 0.0012617463066795
1008 => 0.0012510937875066
1009 => 0.00125611757713
1010 => 0.0012775082357327
1011 => 0.0012849937556372
1012 => 0.001308883941919
1013 => 0.0012987349661723
1014 => 0.0013173638503928
1015 => 0.001374622689432
1016 => 0.0014203650120668
1017 => 0.0013782984817904
1018 => 0.0014622984320595
1019 => 0.0015277044424212
1020 => 0.0015251940508041
1021 => 0.0015137890000293
1022 => 0.0014393259961412
1023 => 0.0013708040297826
1024 => 0.001428125564238
1025 => 0.0014282716886176
1026 => 0.0014233477179719
1027 => 0.0013927653591831
1028 => 0.0014222835181772
1029 => 0.0014246265624439
1030 => 0.0014233150807203
1031 => 0.001399867657941
1101 => 0.0013640677771652
1102 => 0.001371062988176
1103 => 0.0013825212865101
1104 => 0.0013608283373122
1105 => 0.0013538961256213
1106 => 0.0013667844260619
1107 => 0.0014083132154655
1108 => 0.0014004624383886
1109 => 0.0014002574228717
1110 => 0.001433846376454
1111 => 0.0014098039346389
1112 => 0.0013711512201886
1113 => 0.0013613909000232
1114 => 0.0013267483387757
1115 => 0.0013506760792219
1116 => 0.0013515371960029
1117 => 0.001338432217096
1118 => 0.0013722146170012
1119 => 0.0013719033062388
1120 => 0.0014039746671022
1121 => 0.0014652830636199
1122 => 0.0014471511539666
1123 => 0.0014260657157861
1124 => 0.0014283582875521
1125 => 0.0014535021412759
1126 => 0.0014382995933361
1127 => 0.0014437665355712
1128 => 0.0014534938664041
1129 => 0.0014593626066116
1130 => 0.001427513866151
1201 => 0.0014200884012483
1202 => 0.0014048985060413
1203 => 0.0014009357459146
1204 => 0.0014133075986131
1205 => 0.0014100480525311
1206 => 0.0013514648224718
1207 => 0.0013453425489766
1208 => 0.0013455303103641
1209 => 0.0013301355625622
1210 => 0.0013066548770014
1211 => 0.0013683607166963
1212 => 0.0013634048741961
1213 => 0.0013579340076276
1214 => 0.0013586041575659
1215 => 0.0013853885711725
1216 => 0.0013698522586354
1217 => 0.0014111580918669
1218 => 0.0014026668543215
1219 => 0.0013939578485734
1220 => 0.0013927539986963
1221 => 0.0013894017745007
1222 => 0.0013779057504265
1223 => 0.0013640236105529
1224 => 0.001354857419358
1225 => 0.0012497843518656
1226 => 0.0012692853020102
1227 => 0.0012917193675842
1228 => 0.0012994635171214
1229 => 0.0012862166134591
1230 => 0.0013784288189239
1231 => 0.0013952768774412
]
'min_raw' => 0.00058153813991373
'max_raw' => 0.0015277044424212
'avg_raw' => 0.0010546212911675
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.000581'
'max' => '$0.001527'
'avg' => '$0.001054'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -2.2547544066515E-5
'max_diff' => -0.00027550603619414
'year' => 2027
]
2 => [
'items' => [
101 => 0.0013442430092206
102 => 0.0013346966561756
103 => 0.0013790546762402
104 => 0.0013523013675938
105 => 0.0013643483808392
106 => 0.0013383093275667
107 => 0.0013912186735132
108 => 0.0013908155929444
109 => 0.0013702326623595
110 => 0.0013876292143441
111 => 0.0013846061353286
112 => 0.0013613680573917
113 => 0.0013919553620328
114 => 0.0013919705329543
115 => 0.0013721599097777
116 => 0.0013490254390106
117 => 0.0013448895420493
118 => 0.0013417736992685
119 => 0.0013635820745197
120 => 0.001383135395577
121 => 0.0014195192783852
122 => 0.0014286670509829
123 => 0.0014643714164335
124 => 0.0014431112052217
125 => 0.0014525355814861
126 => 0.0014627670750805
127 => 0.0014676724293603
128 => 0.0014596794177971
129 => 0.001515142993845
130 => 0.0015198258190235
131 => 0.0015213959297996
201 => 0.0015026939240185
202 => 0.0015193056824111
203 => 0.0015115335907828
204 => 0.0015317544140503
205 => 0.0015349252973311
206 => 0.0015322396719997
207 => 0.001533246160402
208 => 0.0014859177826904
209 => 0.001483463556629
210 => 0.0014500000101375
211 => 0.0014636366526828
212 => 0.0014381436030656
213 => 0.0014462277117067
214 => 0.0014497911097675
215 => 0.0014479297928416
216 => 0.0014644076479921
217 => 0.0014503981049108
218 => 0.0014134246173371
219 => 0.0013764410563615
220 => 0.0013759767578796
221 => 0.0013662396390888
222 => 0.0013592014856453
223 => 0.0013605572836904
224 => 0.0013653352928409
225 => 0.0013589237790675
226 => 0.0013602920006031
227 => 0.0013830135945058
228 => 0.00138757024812
229 => 0.0013720849587394
301 => 0.00130990928736
302 => 0.0012946512216476
303 => 0.0013056184167011
304 => 0.0013003768038433
305 => 0.0010495055709499
306 => 0.0011084440458926
307 => 0.0010734248054431
308 => 0.0010895632826
309 => 0.0010538177062895
310 => 0.001070877368891
311 => 0.0010677270721277
312 => 0.0011624983957193
313 => 0.0011610186718551
314 => 0.0011617269373636
315 => 0.0011279195792649
316 => 0.001181775618686
317 => 0.0012083070403054
318 => 0.0012033967802745
319 => 0.0012046325869369
320 => 0.0011833973340542
321 => 0.0011619325410295
322 => 0.0011381247821571
323 => 0.0011823566554141
324 => 0.0011774388261711
325 => 0.0011887185570753
326 => 0.001217406088642
327 => 0.0012216304366385
328 => 0.001227308003185
329 => 0.0012252729997348
330 => 0.0012737550379855
331 => 0.0012678835432585
401 => 0.0012820321562061
402 => 0.001252927385915
403 => 0.0012199925756805
404 => 0.001226252406386
405 => 0.0012256495343507
406 => 0.0012179742813968
407 => 0.0012110454062137
408 => 0.0011995107812323
409 => 0.0012360080414766
410 => 0.0012345263193625
411 => 0.0012585136780761
412 => 0.0012542736794227
413 => 0.0012259579307116
414 => 0.0012269692332163
415 => 0.0012337707285759
416 => 0.0012573107816735
417 => 0.0012642990721618
418 => 0.0012610618175724
419 => 0.0012687241590653
420 => 0.0012747801613625
421 => 0.001269484699714
422 => 0.0013444572695166
423 => 0.0013133234314653
424 => 0.0013284978475037
425 => 0.001332116856316
426 => 0.0013228468413428
427 => 0.0013248571756561
428 => 0.0013279022843575
429 => 0.0013463915880989
430 => 0.0013949128710395
501 => 0.0014164026169583
502 => 0.0014810555778405
503 => 0.0014146181927115
504 => 0.0014106760732231
505 => 0.0014223220238104
506 => 0.0014602801560592
507 => 0.0014910416570208
508 => 0.0015012470215633
509 => 0.0015025958289598
510 => 0.0015217417712814
511 => 0.0015327158683694
512 => 0.0015194169502952
513 => 0.0015081475096822
514 => 0.0014677817722205
515 => 0.001472454216244
516 => 0.0015046427221257
517 => 0.0015501108825771
518 => 0.0015891272944002
519 => 0.0015754651068389
520 => 0.0016796979539297
521 => 0.0016900322149658
522 => 0.0016886043542373
523 => 0.0017121473388216
524 => 0.0016654193088671
525 => 0.0016454421707486
526 => 0.0015105840906563
527 => 0.0015484737103726
528 => 0.0016035484978097
529 => 0.0015962591431725
530 => 0.0015562623603825
531 => 0.0015890969532538
601 => 0.0015782408100179
602 => 0.0015696781194259
603 => 0.001608905464987
604 => 0.0015657733871721
605 => 0.0016031182223391
606 => 0.0015552230849545
607 => 0.0015755275145609
608 => 0.0015640017383016
609 => 0.0015714603280874
610 => 0.0015278575646035
611 => 0.0015513845573822
612 => 0.0015268787643544
613 => 0.0015268671454177
614 => 0.0015263261786784
615 => 0.0015551571355003
616 => 0.0015560973119672
617 => 0.0015347911913147
618 => 0.0015317206464645
619 => 0.0015430740601133
620 => 0.0015297821861943
621 => 0.0015360013703429
622 => 0.0015299705589465
623 => 0.0015286128962729
624 => 0.001517794809102
625 => 0.0015131340796993
626 => 0.0015149616717903
627 => 0.0015087231577954
628 => 0.0015049642274565
629 => 0.0015255784328231
630 => 0.0015145650944704
701 => 0.0015238904807671
702 => 0.0015132630261245
703 => 0.0014764236381716
704 => 0.0014552369165905
705 => 0.0013856507277607
706 => 0.0014053852845915
707 => 0.0014184693161871
708 => 0.0014141450438228
709 => 0.0014234352541326
710 => 0.0014240055975937
711 => 0.0014209852555195
712 => 0.0014174880863273
713 => 0.0014157858577702
714 => 0.0014284728748255
715 => 0.0014358381152514
716 => 0.0014197824737995
717 => 0.0014160208616496
718 => 0.0014322540016137
719 => 0.0014421562076143
720 => 0.0015152685331534
721 => 0.0015098521359278
722 => 0.0015234462300498
723 => 0.0015219157436701
724 => 0.001536164520019
725 => 0.0015594552473674
726 => 0.0015120986864784
727 => 0.001520318147982
728 => 0.0015183029258364
729 => 0.0015403045928026
730 => 0.0015403732796053
731 => 0.0015271821811943
801 => 0.001534333289644
802 => 0.0015303417370878
803 => 0.0015375550120476
804 => 0.0015097797966406
805 => 0.0015436070108571
806 => 0.0015627848615404
807 => 0.0015630511460157
808 => 0.0015721412950347
809 => 0.001581377412904
810 => 0.0015991053368577
811 => 0.0015808829907267
812 => 0.0015481027639469
813 => 0.0015504693904409
814 => 0.0015312503554737
815 => 0.0015315734309237
816 => 0.0015298488288517
817 => 0.0015350244894917
818 => 0.0015109155630984
819 => 0.0015165738799347
820 => 0.0015086522032289
821 => 0.0015203009278039
822 => 0.0015077688257643
823 => 0.0015183019540353
824 => 0.0015228477030183
825 => 0.0015396216146286
826 => 0.001505291305381
827 => 0.0014352894808675
828 => 0.0014500047130703
829 => 0.0014282397287858
830 => 0.0014302541609464
831 => 0.0014343236345055
901 => 0.0014211331392517
902 => 0.0014236494700658
903 => 0.001423559569022
904 => 0.0014227848503948
905 => 0.0014193534931382
906 => 0.0014143773462427
907 => 0.0014342007838969
908 => 0.0014375691722394
909 => 0.0014450566822696
910 => 0.0014673344332932
911 => 0.0014651083606204
912 => 0.0014687391775086
913 => 0.0014608131246278
914 => 0.0014306218278071
915 => 0.0014322613604792
916 => 0.0014118163617867
917 => 0.0014445338576864
918 => 0.0014367859228075
919 => 0.0014317907787878
920 => 0.0014304278074623
921 => 0.0014527607807217
922 => 0.0014594431563474
923 => 0.001455279148295
924 => 0.0014467386462961
925 => 0.0014631389349068
926 => 0.0014675269602663
927 => 0.0014685092773202
928 => 0.0014975674442949
929 => 0.0014701333060581
930 => 0.0014767369758036
1001 => 0.0015282569220572
1002 => 0.0014815354400718
1003 => 0.0015062848510928
1004 => 0.0015050734962131
1005 => 0.001517734457417
1006 => 0.0015040349278486
1007 => 0.0015042047499363
1008 => 0.0015154468257577
1009 => 0.0014996593577857
1010 => 0.0014957501586961
1011 => 0.0014903496281522
1012 => 0.0015021414890205
1013 => 0.001509210176311
1014 => 0.0015661786044941
1015 => 0.0016029828071763
1016 => 0.0016013850396736
1017 => 0.0016159856437521
1018 => 0.0016094079378885
1019 => 0.001588166790544
1020 => 0.0016244228389792
1021 => 0.0016129499082368
1022 => 0.0016138957227076
1023 => 0.0016138605194457
1024 => 0.0016214890154084
1025 => 0.0016160835268775
1026 => 0.001605428754121
1027 => 0.0016125018895142
1028 => 0.0016335065729397
1029 => 0.0016987057547951
1030 => 0.0017351920807357
1031 => 0.0016965092321599
1101 => 0.0017231921431235
1102 => 0.0017071919046387
1103 => 0.0017042841853401
1104 => 0.0017210430252769
1105 => 0.0017378311993444
1106 => 0.0017367618652336
1107 => 0.0017245745129428
1108 => 0.0017176901868764
1109 => 0.0017698206102699
1110 => 0.0018082294182077
1111 => 0.0018056101950022
1112 => 0.001817170594414
1113 => 0.0018511122846367
1114 => 0.0018542154874196
1115 => 0.0018538245551952
1116 => 0.0018461329433122
1117 => 0.0018795529452219
1118 => 0.001907432498784
1119 => 0.0018443525573933
1120 => 0.0018683725732978
1121 => 0.0018791559323139
1122 => 0.001894989102628
1123 => 0.0019217023148953
1124 => 0.0019507199487473
1125 => 0.0019548233603361
1126 => 0.0019519117934475
1127 => 0.0019327738838863
1128 => 0.0019645253250994
1129 => 0.0019831245746992
1130 => 0.0019942000021996
1201 => 0.0020222854435651
1202 => 0.0018792225266681
1203 => 0.0017779554834
1204 => 0.0017621411722799
1205 => 0.0017943001958098
1206 => 0.0018027802738512
1207 => 0.0017993619650258
1208 => 0.0016853767010308
1209 => 0.0017615410634548
1210 => 0.0018434875133414
1211 => 0.001846635410219
1212 => 0.0018876595164517
1213 => 0.001901018647076
1214 => 0.0019340484297459
1215 => 0.0019319824078468
1216 => 0.0019400246343083
1217 => 0.0019381758657168
1218 => 0.0019993565828714
1219 => 0.0020668479993173
1220 => 0.0020645109861754
1221 => 0.0020548082965391
1222 => 0.0020692184452034
1223 => 0.0021388768197953
1224 => 0.0021324637929156
1225 => 0.0021386935022689
1226 => 0.0022208246516868
1227 => 0.0023276068289498
1228 => 0.0022779957868558
1229 => 0.002385637473007
1230 => 0.0024533922085985
1231 => 0.0025705670178336
]
'min_raw' => 0.0010495055709499
'max_raw' => 0.0025705670178336
'avg_raw' => 0.0018100362943918
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.001049'
'max' => '$0.00257'
'avg' => '$0.00181'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00046796743103616
'max_diff' => 0.0010428625754124
'year' => 2028
]
3 => [
'items' => [
101 => 0.0025558961546193
102 => 0.002601511447986
103 => 0.0025296322475641
104 => 0.002364583074212
105 => 0.0023384634107462
106 => 0.00239075563846
107 => 0.0025193109776934
108 => 0.0023867069733379
109 => 0.0024135325907152
110 => 0.0024058068111059
111 => 0.002405395137143
112 => 0.002421107057909
113 => 0.0023983160973592
114 => 0.0023054616240636
115 => 0.0023480162819801
116 => 0.002331583884916
117 => 0.002349816854575
118 => 0.0024482126719757
119 => 0.0024047095356395
120 => 0.0023588825154172
121 => 0.0024163597686059
122 => 0.0024895480632421
123 => 0.0024849680712958
124 => 0.0024760809726318
125 => 0.0025261770824874
126 => 0.0026089211791858
127 => 0.0026312865760307
128 => 0.0026477962547412
129 => 0.0026500726605021
130 => 0.0026735210546173
131 => 0.0025474331297035
201 => 0.0027475379047093
202 => 0.0027820904715699
203 => 0.0027755960210573
204 => 0.0028139997449286
205 => 0.0028027003951572
206 => 0.0027863294101522
207 => 0.0028472074811945
208 => 0.0027774156853515
209 => 0.002678355017695
210 => 0.0026240083762208
211 => 0.0026955764177325
212 => 0.0027392805233033
213 => 0.0027681661569824
214 => 0.0027769069322805
215 => 0.0025572209763883
216 => 0.0024388224305041
217 => 0.0025147145409738
218 => 0.0026073081535405
219 => 0.0025469187675105
220 => 0.0025492859171107
221 => 0.0024631865226835
222 => 0.00261492603947
223 => 0.0025928188682045
224 => 0.0027075109118372
225 => 0.0026801387351631
226 => 0.0027736656444262
227 => 0.0027490368747891
228 => 0.0028512695205764
301 => 0.0028920528908193
302 => 0.002960534516882
303 => 0.003010909879784
304 => 0.0030404912564072
305 => 0.0030387153015117
306 => 0.0031559314530762
307 => 0.003086813183719
308 => 0.0029999843474811
309 => 0.002998413887775
310 => 0.0030433837724368
311 => 0.0031376283138024
312 => 0.0031620645521762
313 => 0.0031757210757742
314 => 0.0031548056344969
315 => 0.0030797827068607
316 => 0.0030473881870822
317 => 0.003074989256493
318 => 0.0030412355203905
319 => 0.0030995039385291
320 => 0.0031795189220959
321 => 0.0031629961444029
322 => 0.0032182293129973
323 => 0.0032753898317938
324 => 0.0033571319409122
325 => 0.0033785023551373
326 => 0.0034138268372073
327 => 0.0034501873327452
328 => 0.0034618653439692
329 => 0.0034841622908698
330 => 0.0034840447749535
331 => 0.0035512381251961
401 => 0.0036253544713185
402 => 0.0036533316761823
403 => 0.0037176637160947
404 => 0.0036074973522084
405 => 0.0036910598047161
406 => 0.0037664352285819
407 => 0.0036765695408851
408 => 0.0038004284553554
409 => 0.0038052376163339
410 => 0.003877850237411
411 => 0.0038042434350544
412 => 0.0037605359507762
413 => 0.0038867178201892
414 => 0.0039477732521065
415 => 0.0039293828591274
416 => 0.003789431060511
417 => 0.0037079731109012
418 => 0.0034947819447074
419 => 0.003747316090237
420 => 0.0038703181060024
421 => 0.0037891125150053
422 => 0.0038300678916571
423 => 0.0040535071468439
424 => 0.0041385783485987
425 => 0.0041208841333263
426 => 0.0041238741644358
427 => 0.0041697770407511
428 => 0.004373335673509
429 => 0.0042513586223083
430 => 0.0043446055075583
501 => 0.0043940633192682
502 => 0.0044400024910982
503 => 0.0043271904043081
504 => 0.0041804235369329
505 => 0.0041339363091812
506 => 0.0037810382193679
507 => 0.0037626683412344
508 => 0.0037523567719737
509 => 0.003687343786386
510 => 0.0036362613882695
511 => 0.0035956387687195
512 => 0.003489032884079
513 => 0.0035250092406966
514 => 0.0033551017109571
515 => 0.0034638025273313
516 => 0.0031926260073062
517 => 0.0034184698712369
518 => 0.0032955533239599
519 => 0.0033780884796264
520 => 0.0033778005222436
521 => 0.0032258271328665
522 => 0.0031381720534775
523 => 0.0031940292816509
524 => 0.0032539126642051
525 => 0.0032636285415526
526 => 0.0033412689101503
527 => 0.0033629366681518
528 => 0.0032972823498364
529 => 0.0031870064766761
530 => 0.0032126210468864
531 => 0.0031376529750297
601 => 0.0030062743127063
602 => 0.0031006327616384
603 => 0.0031328508847519
604 => 0.0031470802433449
605 => 0.003017884417891
606 => 0.0029772882845556
607 => 0.0029556752438024
608 => 0.0031703289179817
609 => 0.0031820881308065
610 => 0.0031219263354096
611 => 0.0033938633553791
612 => 0.0033323156325689
613 => 0.0034010795185061
614 => 0.003210296793119
615 => 0.0032175849501518
616 => 0.0031272653505247
617 => 0.0031778382911581
618 => 0.0031420949667604
619 => 0.0031737524973264
620 => 0.0031927278906188
621 => 0.0032830326696883
622 => 0.0034195010067553
623 => 0.0032695441470943
624 => 0.0032042057959182
625 => 0.0032447413415111
626 => 0.0033526928411364
627 => 0.0035162448890044
628 => 0.0034194187848748
629 => 0.0034623885656737
630 => 0.0034717755511857
701 => 0.0034003795666978
702 => 0.0035188773607907
703 => 0.0035823812913194
704 => 0.003647523183755
705 => 0.0037040840637225
706 => 0.0036215040794153
707 => 0.0037098764999997
708 => 0.0036386639288409
709 => 0.0035747788906911
710 => 0.0035748757779234
711 => 0.0035347997602806
712 => 0.0034571474261944
713 => 0.0034428271443884
714 => 0.0035173230587956
715 => 0.0035770617273609
716 => 0.0035819820902328
717 => 0.0036150564866342
718 => 0.0036346295737311
719 => 0.0038264724356027
720 => 0.0039036332216549
721 => 0.0039979839702605
722 => 0.0040347389041592
723 => 0.0041453580778213
724 => 0.0040560241110391
725 => 0.0040366961453888
726 => 0.0037683702133406
727 => 0.0038123085696816
728 => 0.0038826581176043
729 => 0.0037695302514745
730 => 0.0038412838440885
731 => 0.0038554495232194
801 => 0.0037656862098723
802 => 0.0038136326739748
803 => 0.0036863010804545
804 => 0.003422276487537
805 => 0.003519171295638
806 => 0.0035905184888401
807 => 0.0034886972470952
808 => 0.0036712078818968
809 => 0.0035645889368299
810 => 0.0035307958498557
811 => 0.0033989569694637
812 => 0.0034611798460649
813 => 0.0035453371776136
814 => 0.0034933377310564
815 => 0.0036012443904189
816 => 0.003754068997731
817 => 0.0038629809137643
818 => 0.0038713418183127
819 => 0.003801318752835
820 => 0.0039135311621443
821 => 0.0039143485070411
822 => 0.003787772450939
823 => 0.0037102453213548
824 => 0.0036926309943949
825 => 0.0037366350366331
826 => 0.0037900640675047
827 => 0.0038743067576789
828 => 0.0039252128510109
829 => 0.0040579489439151
830 => 0.004093863524813
831 => 0.0041333227605991
901 => 0.0041860524683871
902 => 0.0042493680022061
903 => 0.0041108372187654
904 => 0.0041163413050452
905 => 0.0039873433575945
906 => 0.0038494905505664
907 => 0.0039541036475058
908 => 0.0040908713556568
909 => 0.0040594966922921
910 => 0.0040559664017373
911 => 0.0040619033712295
912 => 0.0040382478996532
913 => 0.0039312550784262
914 => 0.0038775239534166
915 => 0.003946850812951
916 => 0.00398369495341
917 => 0.0040408370021152
918 => 0.0040337930384899
919 => 0.0041809848193465
920 => 0.004238179094539
921 => 0.0042235463514637
922 => 0.0042262391283462
923 => 0.0043297866316275
924 => 0.0044449527514445
925 => 0.0045528210201612
926 => 0.0046625492561497
927 => 0.0045302675848996
928 => 0.0044631031102381
929 => 0.0045323997038343
930 => 0.004495629955852
1001 => 0.0047069198343743
1002 => 0.004721549087134
1003 => 0.0049328236869932
1004 => 0.005133348440371
1005 => 0.0050074024355485
1006 => 0.0051261638453635
1007 => 0.0052546139928381
1008 => 0.0055024151676021
1009 => 0.005418964449692
1010 => 0.0053550425076124
1011 => 0.0052946365812157
1012 => 0.0054203317248764
1013 => 0.005582036519167
1014 => 0.0056168661830679
1015 => 0.005673303544543
1016 => 0.0056139665597841
1017 => 0.0056854314221717
1018 => 0.0059377337896517
1019 => 0.005869559462824
1020 => 0.0057727409591588
1021 => 0.0059719094469073
1022 => 0.0060439877483756
1023 => 0.0065498710157796
1024 => 0.0071885695378726
1025 => 0.0069241441558055
1026 => 0.0067600067882027
1027 => 0.0067985829629797
1028 => 0.0070318140419387
1029 => 0.0071067204621159
1030 => 0.0069030989902828
1031 => 0.0069750215364845
1101 => 0.0073713218373245
1102 => 0.0075839242338893
1103 => 0.007295181623043
1104 => 0.0064985522114163
1105 => 0.0057640235122179
1106 => 0.0059588535995037
1107 => 0.005936765913887
1108 => 0.0063625411476702
1109 => 0.005867933527676
1110 => 0.0058762614515047
1111 => 0.0063108412662187
1112 => 0.0061949028222372
1113 => 0.0060070973912611
1114 => 0.005765394699702
1115 => 0.0053185849195619
1116 => 0.0049228330370794
1117 => 0.005698993614843
1118 => 0.0056655241593734
1119 => 0.0056170554279581
1120 => 0.0057249173448585
1121 => 0.0062486641961876
1122 => 0.0062365901360614
1123 => 0.0061597811257777
1124 => 0.0062180400831143
1125 => 0.0059968843143621
1126 => 0.0060538811915928
1127 => 0.0057639071591192
1128 => 0.0058949875321826
1129 => 0.006006694445154
1130 => 0.0060291212617821
1201 => 0.0060796500247869
1202 => 0.0056478872772048
1203 => 0.0058417360749809
1204 => 0.0059556040824983
1205 => 0.005441144281981
1206 => 0.0059454348663564
1207 => 0.0056403712483548
1208 => 0.0055368280745033
1209 => 0.0056762353173185
1210 => 0.0056219081792154
1211 => 0.005575200896071
1212 => 0.0055491374295434
1213 => 0.0056515027228509
1214 => 0.0056467272595652
1215 => 0.0054792377714667
1216 => 0.0052607545619872
1217 => 0.0053340846985554
1218 => 0.0053074431724665
1219 => 0.0052108908450949
1220 => 0.0052759554559709
1221 => 0.0049894438381192
1222 => 0.0044965154911834
1223 => 0.0048221590559728
1224 => 0.0048096221329605
1225 => 0.0048033004478734
1226 => 0.0050480125866856
1227 => 0.0050244891610084
1228 => 0.0049817939130623
1229 => 0.0052101067133844
1230 => 0.0051267694700263
1231 => 0.0053835952173319
]
'min_raw' => 0.0023054616240636
'max_raw' => 0.0075839242338893
'avg_raw' => 0.0049446929289764
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.0023054'
'max' => '$0.007583'
'avg' => '$0.004944'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0012559560531137
'max_diff' => 0.0050133572160556
'year' => 2029
]
4 => [
'items' => [
101 => 0.0055527572649552
102 => 0.005509852297859
103 => 0.0056689500212799
104 => 0.0053357740767959
105 => 0.0054464417608547
106 => 0.0054692502171604
107 => 0.0052072893688685
108 => 0.0050283378843683
109 => 0.0050164038605484
110 => 0.0047061266474588
111 => 0.0048718742302211
112 => 0.005017725243951
113 => 0.0049478739268702
114 => 0.0049257610866312
115 => 0.0050387307917225
116 => 0.0050475095053281
117 => 0.0048473539047922
118 => 0.0048889725922472
119 => 0.0050625294374654
120 => 0.0048845994050487
121 => 0.0045389104167688
122 => 0.0044531747681512
123 => 0.0044417360522041
124 => 0.0042092141733731
125 => 0.0044589040341528
126 => 0.0043499077186502
127 => 0.0046942257733465
128 => 0.0044975531471187
129 => 0.0044890749832867
130 => 0.0044762589951782
131 => 0.0042761178087106
201 => 0.004319936008911
202 => 0.0044655943800777
203 => 0.004517566927869
204 => 0.0045121457653359
205 => 0.0044648805745954
206 => 0.0044865183368794
207 => 0.0044168155654664
208 => 0.0043922020661427
209 => 0.0043145150918008
210 => 0.0042003367010926
211 => 0.0042162139066173
212 => 0.0039899966382233
213 => 0.0038667414641431
214 => 0.0038326260564348
215 => 0.0037870055074662
216 => 0.0038377790188325
217 => 0.0039893557931247
218 => 0.0038065220445217
219 => 0.0034930664068382
220 => 0.0035119056247654
221 => 0.0035542317540338
222 => 0.0034753572921575
223 => 0.0034007092334234
224 => 0.0034656096641043
225 => 0.0033327943782051
226 => 0.0035702818468022
227 => 0.0035638584763276
228 => 0.003652379118494
301 => 0.0037077328926672
302 => 0.0035801603641953
303 => 0.0035480762182774
304 => 0.0035663528059354
305 => 0.0032642815235516
306 => 0.0036276934502264
307 => 0.0036308362516593
308 => 0.0036039256777408
309 => 0.0037974313096107
310 => 0.0042057885487763
311 => 0.0040521481292703
312 => 0.0039926539150313
313 => 0.003879555370273
314 => 0.0040302524660364
315 => 0.0040186812803226
316 => 0.0039663519902833
317 => 0.0039347030723902
318 => 0.0039930171740171
319 => 0.0039274773098651
320 => 0.0039157045493484
321 => 0.0038443744295068
322 => 0.003818912822037
323 => 0.0038000620615222
324 => 0.0037793092264329
325 => 0.0038250848093557
326 => 0.0037213513161732
327 => 0.0035962588925148
328 => 0.0035858588110064
329 => 0.0036145743504357
330 => 0.0036018698618587
331 => 0.0035857979868029
401 => 0.0035551124004066
402 => 0.0035460086424166
403 => 0.0035755914393685
404 => 0.003542194186394
405 => 0.0035914736524004
406 => 0.0035780723644039
407 => 0.003503213859041
408 => 0.0034099124451903
409 => 0.0034090818669007
410 => 0.0033889802303316
411 => 0.0033633777738595
412 => 0.0033562557561738
413 => 0.0034601439308544
414 => 0.0036751893433316
415 => 0.0036329707832617
416 => 0.0036634780196443
417 => 0.0038135434285248
418 => 0.0038612447093836
419 => 0.0038273874700968
420 => 0.0037810415927374
421 => 0.0037830805761319
422 => 0.0039414584689202
423 => 0.0039513363038231
424 => 0.0039762944059125
425 => 0.0040083726202561
426 => 0.0038328505287096
427 => 0.0037748135014045
428 => 0.0037473123380956
429 => 0.003662619399394
430 => 0.0037539534727599
501 => 0.0037007370195245
502 => 0.0037079177371989
503 => 0.0037032412853933
504 => 0.0037057949442995
505 => 0.0035702154642147
506 => 0.0036196135009099
507 => 0.0035374796839974
508 => 0.0034275117231051
509 => 0.0034271430719405
510 => 0.0034540575745773
511 => 0.0034380477752443
512 => 0.0033949658168888
513 => 0.0034010854057321
514 => 0.0033474713681308
515 => 0.0034075951206104
516 => 0.0034093192546983
517 => 0.0033861683350308
518 => 0.0034787972712045
519 => 0.0035167474219329
520 => 0.003501508990667
521 => 0.0035156782529728
522 => 0.003634725155038
523 => 0.0036541349944551
524 => 0.0036627555629822
525 => 0.0036512051431624
526 => 0.0035178542118051
527 => 0.0035237688926627
528 => 0.0034803708889817
529 => 0.0034437041490403
530 => 0.0034451706263462
531 => 0.0034640220970187
601 => 0.0035463475750694
602 => 0.0037195966902752
603 => 0.0037261713675538
604 => 0.0037341400682123
605 => 0.003701727357886
606 => 0.0036919513743037
607 => 0.0037048484200442
608 => 0.0037699116787098
609 => 0.0039372720445
610 => 0.0038781157136067
611 => 0.0038300206957674
612 => 0.0038722129927362
613 => 0.003865717819332
614 => 0.0038108920192891
615 => 0.0038093532416849
616 => 0.0037041250025339
617 => 0.0036652245184509
618 => 0.0036327163623004
619 => 0.0035972183044309
620 => 0.0035761738658202
621 => 0.0036085076880525
622 => 0.0036159028157596
623 => 0.0035452043483501
624 => 0.003535568408482
625 => 0.003593302303101
626 => 0.0035678957686157
627 => 0.0035940270193856
628 => 0.0036000896937139
629 => 0.0035991134635118
630 => 0.0035725861235873
701 => 0.0035894938589985
702 => 0.0035495020243124
703 => 0.0035060169106706
704 => 0.0034782761173855
705 => 0.0034540685959619
706 => 0.0034675003357971
707 => 0.0034196186358234
708 => 0.0034043003163336
709 => 0.0035837658986773
710 => 0.0037163390539347
711 => 0.0037144113877525
712 => 0.003702677215624
713 => 0.003685242616031
714 => 0.0037686362291561
715 => 0.0037395835618512
716 => 0.0037607218047471
717 => 0.0037661023747334
718 => 0.0037823877395578
719 => 0.0037882083577081
720 => 0.0037706144069786
721 => 0.0037115669594103
722 => 0.0035644263341328
723 => 0.0034959319758676
724 => 0.0034733276967764
725 => 0.0034741493193897
726 => 0.0034514852998292
727 => 0.0034581608693199
728 => 0.0034491638091885
729 => 0.0034321255539222
730 => 0.0034664482715469
731 => 0.003470403645015
801 => 0.0034623923125954
802 => 0.0034642792713947
803 => 0.0033979488606457
804 => 0.0034029918177129
805 => 0.0033749119919349
806 => 0.0033696473631089
807 => 0.0032986640087323
808 => 0.0031729067072525
809 => 0.003242588459829
810 => 0.0031584227014538
811 => 0.0031265478534377
812 => 0.0032774384263898
813 => 0.0032622931979184
814 => 0.003236371150248
815 => 0.0031980270391154
816 => 0.0031838048353087
817 => 0.0030973952271822
818 => 0.0030922896865568
819 => 0.0031351166216
820 => 0.0031153534646624
821 => 0.0030875985074292
822 => 0.0029870728658055
823 => 0.0028740487617244
824 => 0.0028774602489824
825 => 0.0029134111136024
826 => 0.0030179431011197
827 => 0.0029771006451749
828 => 0.0029474689747739
829 => 0.0029419198536325
830 => 0.0030113787225889
831 => 0.0031096775742451
901 => 0.0031557971961294
902 => 0.0031100940515158
903 => 0.0030575927398158
904 => 0.0030607882513914
905 => 0.0030820465582889
906 => 0.0030842805057676
907 => 0.0030501075490729
908 => 0.0030597270362132
909 => 0.0030451141556228
910 => 0.0029554349344123
911 => 0.0029538129216765
912 => 0.0029318041945187
913 => 0.0029311377790072
914 => 0.0028936954437774
915 => 0.0028884570022521
916 => 0.0028141129730661
917 => 0.0028630464382108
918 => 0.002830224438914
919 => 0.0027807539440468
920 => 0.0027722252120851
921 => 0.0027719688281036
922 => 0.002822763964932
923 => 0.0028624528674626
924 => 0.0028307953916441
925 => 0.0028235875980546
926 => 0.0029005479764646
927 => 0.0028907540668025
928 => 0.0028822726041991
929 => 0.0031008759902306
930 => 0.0029278343523517
1001 => 0.0028523783213651
1002 => 0.0027589871543076
1003 => 0.0027893957892207
1004 => 0.0027958033353927
1005 => 0.0025712144136425
1006 => 0.0024800987160592
1007 => 0.0024488312422712
1008 => 0.002430836369049
1009 => 0.0024390368587418
1010 => 0.0023570220441114
1011 => 0.0024121373559429
1012 => 0.0023411194590127
1013 => 0.0023292130774801
1014 => 0.0024562018746205
1015 => 0.0024738716238848
1016 => 0.0023984869839625
1017 => 0.0024468961264572
1018 => 0.0024293422984512
1019 => 0.0023423368570218
1020 => 0.0023390138891279
1021 => 0.0022953576170078
1022 => 0.0022270440046598
1023 => 0.0021958228507179
1024 => 0.0021795626026704
1025 => 0.0021862718979207
1026 => 0.0021828794729344
1027 => 0.0021607416051736
1028 => 0.0021841483896007
1029 => 0.0021243537277405
1030 => 0.0021005430115894
1031 => 0.0020897882635083
1101 => 0.002036717059455
1102 => 0.0021211769459754
1103 => 0.0021378166076176
1104 => 0.0021544890545334
1105 => 0.0022996113221726
1106 => 0.0022923614237927
1107 => 0.002357896974304
1108 => 0.0023553503833233
1109 => 0.0023366585827119
1110 => 0.0022578009505845
1111 => 0.0022892321972484
1112 => 0.0021924917055173
1113 => 0.0022649762596362
1114 => 0.0022318973361637
1115 => 0.0022537922423357
1116 => 0.0022144232268543
1117 => 0.0022362116655285
1118 => 0.0021417624886837
1119 => 0.0020535671762817
1120 => 0.0020890595445739
1121 => 0.0021276438079522
1122 => 0.0022113043220438
1123 => 0.0021614768100351
1124 => 0.0021793966675402
1125 => 0.0021193681446459
1126 => 0.001995512155615
1127 => 0.0019962131670622
1128 => 0.0019771606214991
1129 => 0.0019606964404155
1130 => 0.0021672000991846
1201 => 0.0021415181048769
1202 => 0.0021005972081239
1203 => 0.0021553714545596
1204 => 0.0021698546347014
1205 => 0.0021702669504791
1206 => 0.0022102288267506
1207 => 0.0022315564872803
1208 => 0.002235315579888
1209 => 0.0022981964556348
1210 => 0.0023192732957663
1211 => 0.0024060858173619
1212 => 0.0022297469842924
1213 => 0.0022261154020683
1214 => 0.0021561422405349
1215 => 0.0021117641552585
1216 => 0.0021591808460009
1217 => 0.0022011855609749
1218 => 0.0021574474441169
1219 => 0.0021631587188165
1220 => 0.00210444387047
1221 => 0.0021254316659635
1222 => 0.0021435091828038
1223 => 0.0021335278405519
1224 => 0.0021185852880983
1225 => 0.0021977416533625
1226 => 0.002193275341018
1227 => 0.002266987568149
1228 => 0.0023244515204095
1229 => 0.0024274371957705
1230 => 0.0023199662747666
1231 => 0.002316049607247
]
'min_raw' => 0.0019606964404155
'max_raw' => 0.0056689500212799
'avg_raw' => 0.0038148232308477
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.00196'
'max' => '$0.005668'
'avg' => '$0.003814'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00034476518364808
'max_diff' => -0.0019149742126094
'year' => 2030
]
5 => [
'items' => [
101 => 0.0023543356605043
102 => 0.002319267434371
103 => 0.0023414293427732
104 => 0.0024238665697051
105 => 0.0024256083384073
106 => 0.0023964314685034
107 => 0.0023946560533181
108 => 0.0024002597903432
109 => 0.0024330810531283
110 => 0.0024216122954156
111 => 0.0024348842321941
112 => 0.0024514809923627
113 => 0.0025201322293007
114 => 0.0025366838101087
115 => 0.0024964720497559
116 => 0.0025001027214837
117 => 0.0024850624192743
118 => 0.0024705336757943
119 => 0.0025031921693846
120 => 0.0025628762083251
121 => 0.0025625049170165
122 => 0.0025763504539587
123 => 0.0025849761087711
124 => 0.002547948483951
125 => 0.0025238448617367
126 => 0.002533087724247
127 => 0.0025478672626844
128 => 0.0025282949191254
129 => 0.002407485347888
130 => 0.0024441312544561
131 => 0.0024380315837099
201 => 0.002429344910822
202 => 0.0024661926532507
203 => 0.0024626385986028
204 => 0.0023561808636451
205 => 0.0023629959424358
206 => 0.0023565953111586
207 => 0.0023772770602612
208 => 0.0023181505520477
209 => 0.0023363374677511
210 => 0.0023477441307885
211 => 0.0023544627429476
212 => 0.002378734977062
213 => 0.0023758869105377
214 => 0.0023785579372479
215 => 0.0024145472528072
216 => 0.0025965688608645
217 => 0.002606475895383
218 => 0.0025576900340862
219 => 0.0025771790234157
220 => 0.0025397644256765
221 => 0.0025648810957948
222 => 0.0025820652835956
223 => 0.0025044132432534
224 => 0.0024998151933819
225 => 0.0024622461722887
226 => 0.002482433636206
227 => 0.0024503139295835
228 => 0.002458194982089
301 => 0.0024361588722258
302 => 0.0024758194826339
303 => 0.0025201662077061
304 => 0.0025313699417645
305 => 0.0025018977409675
306 => 0.0024805579252778
307 => 0.0024430922386989
308 => 0.0025053985104568
309 => 0.0025236187630681
310 => 0.0025053028072265
311 => 0.0025010586000464
312 => 0.0024930158351094
313 => 0.0025027649106484
314 => 0.0025235195316594
315 => 0.0025137320356683
316 => 0.0025201968492039
317 => 0.0024955596464929
318 => 0.0025479607416356
319 => 0.0026311862917324
320 => 0.0026314538754847
321 => 0.0026216663267353
322 => 0.0026176614726628
323 => 0.0026277040916377
324 => 0.0026331518004619
325 => 0.0026656277887255
326 => 0.0027004758180328
327 => 0.0028630963654235
328 => 0.0028174331664528
329 => 0.0029617197904376
330 => 0.0030758317767363
331 => 0.0031100489719149
401 => 0.003078570762394
402 => 0.0029708855080427
403 => 0.0029656019557246
404 => 0.0031265291892672
405 => 0.0030810598748572
406 => 0.0030756514445902
407 => 0.0030181148842374
408 => 0.0030521261174476
409 => 0.0030446873618298
410 => 0.0030329449221708
411 => 0.0030978359858928
412 => 0.003219306264315
413 => 0.0032003739822818
414 => 0.0031862419119874
415 => 0.0031243192937408
416 => 0.0031616105408427
417 => 0.0031483318420165
418 => 0.0032053855590444
419 => 0.0031715882009717
420 => 0.0030807154000802
421 => 0.0030951871931428
422 => 0.0030929998107346
423 => 0.003138015985696
424 => 0.0031245032473427
425 => 0.0030903612316994
426 => 0.0032188910921088
427 => 0.0032105450778945
428 => 0.003222377817886
429 => 0.0032275869559698
430 => 0.0033058208170509
501 => 0.0033378707267314
502 => 0.0033451466173415
503 => 0.0033755915527091
504 => 0.0033443891196149
505 => 0.0034692210989495
506 => 0.0035522270810591
507 => 0.0036486428007281
508 => 0.0037895320812669
509 => 0.0038425077540482
510 => 0.0038329381729271
511 => 0.0039397588174845
512 => 0.0041317131412646
513 => 0.0038717376299472
514 => 0.0041454924746343
515 => 0.004058824851458
516 => 0.0038533374759911
517 => 0.003840106511548
518 => 0.0039792649479717
519 => 0.0042879049664563
520 => 0.0042105941423921
521 => 0.0042880314192687
522 => 0.004197696722469
523 => 0.0041932108433723
524 => 0.0042836440646759
525 => 0.0044949462155102
526 => 0.0043945644841915
527 => 0.0042506426577359
528 => 0.0043569122947191
529 => 0.0042648517003736
530 => 0.0040574134151753
531 => 0.0042105350242619
601 => 0.0041081469649181
602 => 0.0041380292438832
603 => 0.0043532337155496
604 => 0.0043273397441583
605 => 0.0043608489408558
606 => 0.004301706085773
607 => 0.0042464573331535
608 => 0.0041433314335629
609 => 0.0041128009387395
610 => 0.0041212384691365
611 => 0.0041127967575185
612 => 0.0040550987644735
613 => 0.0040426388883689
614 => 0.0040218718823148
615 => 0.0040283084458566
616 => 0.0039892603988731
617 => 0.0040629521312691
618 => 0.0040766299661711
619 => 0.0041302566636284
620 => 0.0041358243652582
621 => 0.0042851739543485
622 => 0.0042029147103955
623 => 0.0042581013131606
624 => 0.0042531649039729
625 => 0.0038577910105097
626 => 0.0039122700446155
627 => 0.0039970223252215
628 => 0.0039588415376875
629 => 0.0039048628370428
630 => 0.0038612721421174
701 => 0.0037952277819279
702 => 0.0038881839506249
703 => 0.0040104114276751
704 => 0.0041389242557822
705 => 0.0042933239982589
706 => 0.0042588637731493
707 => 0.0041360378599948
708 => 0.0041415477407346
709 => 0.0041756076554094
710 => 0.0041314969712359
711 => 0.0041184878693303
712 => 0.0041738204045759
713 => 0.0041742014493359
714 => 0.0041234467762401
715 => 0.0040670422451013
716 => 0.0040668059080563
717 => 0.0040567692665433
718 => 0.0041994822186976
719 => 0.0042779599124756
720 => 0.0042869572535941
721 => 0.0042773543197312
722 => 0.0042810501078482
723 => 0.0042353856669768
724 => 0.0043397610374396
725 => 0.0044355461990305
726 => 0.0044098737295726
727 => 0.0043713870482987
728 => 0.0043407305528943
729 => 0.0044026520335328
730 => 0.0043998947674734
731 => 0.0044347095992051
801 => 0.0044331301973376
802 => 0.0044214232788783
803 => 0.0044098741476636
804 => 0.0044556651474752
805 => 0.0044424780749104
806 => 0.0044292705191796
807 => 0.0044027807441857
808 => 0.0044063811445559
809 => 0.0043679011085502
810 => 0.0043500984831672
811 => 0.0040823897118791
812 => 0.0040108491805545
813 => 0.004033357288051
814 => 0.0040407675414616
815 => 0.0040096330105474
816 => 0.0040542719300736
817 => 0.0040473150017498
818 => 0.0040743803401909
819 => 0.0040574710917733
820 => 0.0040581650532265
821 => 0.0041078915473908
822 => 0.0041223273601983
823 => 0.0041149851892931
824 => 0.0041201273941202
825 => 0.0042386273339721
826 => 0.0042217804319399
827 => 0.0042128308510065
828 => 0.0042153099460876
829 => 0.0042455892213871
830 => 0.0042540657652838
831 => 0.0042181500531572
901 => 0.0042350881106224
902 => 0.0043072082095495
903 => 0.0043324461625299
904 => 0.0044129935935386
905 => 0.0043787756132297
906 => 0.0044415841970063
907 => 0.0046346363705113
908 => 0.0047888598049014
909 => 0.0046470295610833
910 => 0.0049302412581048
911 => 0.0051507621885412
912 => 0.0051422982279342
913 => 0.0051038453029716
914 => 0.0048527880865221
915 => 0.0046217614928931
916 => 0.0048150250483711
917 => 0.004815517716919
918 => 0.0047989162061065
919 => 0.0046958056482579
920 => 0.0047953281821984
921 => 0.0048032279195299
922 => 0.004798806167334
923 => 0.004719751544387
924 => 0.0045990497468834
925 => 0.0046226345891963
926 => 0.0046612670420227
927 => 0.0045881277492485
928 => 0.0045647553135412
929 => 0.004608209118309
930 => 0.0047482263312306
1001 => 0.0047217568881923
1002 => 0.0047210656640631
1003 => 0.0048343131661719
1004 => 0.0047532523950026
1005 => 0.004622932069587
1006 => 0.0045900244687057
1007 => 0.0044732246547931
1008 => 0.0045538987022892
1009 => 0.0045568020176373
1010 => 0.0045126176662925
1011 => 0.0046265173861848
1012 => 0.0046254677802143
1013 => 0.0047335986125161
1014 => 0.004940304151791
1015 => 0.0048791711524655
1016 => 0.0048080801255015
1017 => 0.0048158096912728
1018 => 0.0049005839495907
1019 => 0.0048493274978036
1020 => 0.0048677596752389
1021 => 0.0049005560502825
1022 => 0.0049203429176345
1023 => 0.0048129626655635
1024 => 0.0047879271922145
1025 => 0.0047367133999997
1026 => 0.0047233526775616
1027 => 0.0047650652427097
1028 => 0.0047540754555198
1029 => 0.0045565580052245
1030 => 0.0045359163326919
1031 => 0.004536549383319
1101 => 0.0044846449162778
1102 => 0.0044054781455405
1103 => 0.0046135236922358
1104 => 0.0045968147232406
1105 => 0.0045783693146414
1106 => 0.0045806287719468
1107 => 0.0046709342924494
1108 => 0.0046185525300198
1109 => 0.004757818030641
1110 => 0.0047291892304174
1111 => 0.0046998262094944
1112 => 0.0046957673455834
1113 => 0.0046844650876633
1114 => 0.0046457054398703
1115 => 0.0045989008360665
1116 => 0.0045679963824899
1117 => 0.0042137351994717
1118 => 0.0042794840143974
1119 => 0.0043551220327763
1120 => 0.0043812319736204
1121 => 0.0043365691130537
1122 => 0.0046474690018288
1123 => 0.0047042734074139
1124 => 0.004532209157637
1125 => 0.0045000229618407
1126 => 0.0046495791234668
1127 => 0.0045593784755091
1128 => 0.0045999958217614
1129 => 0.0045122033356645
1130 => 0.0046905908895356
1201 => 0.004689231875256
1202 => 0.0046198350877345
1203 => 0.004678488777339
1204 => 0.0046682962553738
1205 => 0.0045899474531787
1206 => 0.0046930746863134
1207 => 0.0046931258361344
1208 => 0.0046263329369612
1209 => 0.0045483334535727
1210 => 0.0045343889882084
1211 => 0.0045238837067318
1212 => 0.0045974121665036
1213 => 0.0046633375536174
1214 => 0.0047860083547469
1215 => 0.0048168507087372
1216 => 0.0049372304696531
1217 => 0.0048655501832118
1218 => 0.0048973251257761
1219 => 0.0049318213207697
1220 => 0.0049483600652052
1221 => 0.0049214110686655
1222 => 0.0051084103876542
1223 => 0.005124198859688
1224 => 0.0051294925977911
1225 => 0.0050664374795679
1226 => 0.0051224451827843
1227 => 0.0050962410332295
1228 => 0.0051644169506486
1229 => 0.0051751078050138
1230 => 0.0051660530317047
1231 => 0.0051694464776238
]
'min_raw' => 0.0023181505520477
'max_raw' => 0.0051751078050138
'avg_raw' => 0.0037466291785308
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.002318'
'max' => '$0.005175'
'avg' => '$0.003746'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00035745411163223
'max_diff' => -0.0004938422162661
'year' => 2031
]
6 => [
'items' => [
101 => 0.0050098755478074
102 => 0.0050016009532927
103 => 0.0048887762699463
104 => 0.0049347531623679
105 => 0.0048488015657155
106 => 0.0048760577024136
107 => 0.004888071947764
108 => 0.0048817963877954
109 => 0.0049373526268822
110 => 0.0048901184742686
111 => 0.0047654597795075
112 => 0.0046407671215684
113 => 0.0046392017068204
114 => 0.0046063723309933
115 => 0.0045826427052704
116 => 0.0045872138730383
117 => 0.0046033232644793
118 => 0.0045817063981545
119 => 0.0045863194525879
120 => 0.0046629268928019
121 => 0.0046782899685976
122 => 0.0046260802343027
123 => 0.0044164506172801
124 => 0.0043650069834466
125 => 0.0044019836472745
126 => 0.0043843111835669
127 => 0.0035384813065966
128 => 0.0037371964898189
129 => 0.0036191266756782
130 => 0.0036735386781652
131 => 0.0035530199719577
201 => 0.0036105378154865
202 => 0.003599916370002
203 => 0.0039194445042137
204 => 0.0039144555118946
205 => 0.0039168434785061
206 => 0.0038028596103219
207 => 0.0039844390073387
208 => 0.0040738915476931
209 => 0.0040573362631758
210 => 0.0040615028716192
211 => 0.0039899067339272
212 => 0.0039175366856204
213 => 0.0038372671643776
214 => 0.0039863980132341
215 => 0.0039698172085897
216 => 0.0040078476088587
217 => 0.0041045696244353
218 => 0.0041188123086402
219 => 0.0041379546206466
220 => 0.0041310934644348
221 => 0.0042945540413049
222 => 0.0042747578868983
223 => 0.0043224609232758
224 => 0.0042243321582092
225 => 0.0041132901460684
226 => 0.0041343956023395
227 => 0.0041323629771812
228 => 0.0041064853259779
229 => 0.0040831241395396
301 => 0.0040442343460932
302 => 0.0041672874071641
303 => 0.0041622916776059
304 => 0.0042431667322528
305 => 0.0042288712807656
306 => 0.0041334027570436
307 => 0.0041368124340451
308 => 0.0041597441505151
309 => 0.0042391110830476
310 => 0.0042626725923361
311 => 0.0042517579624698
312 => 0.0042775920817809
313 => 0.0042980103163424
314 => 0.0042801562976771
315 => 0.0045329315511844
316 => 0.004427961642499
317 => 0.0044791232456163
318 => 0.0044913249864982
319 => 0.0044600704838043
320 => 0.0044668484662988
321 => 0.0044771152628882
322 => 0.0045394532413343
323 => 0.0047030461344162
324 => 0.0047755003131477
325 => 0.0049934822846876
326 => 0.0047694840022149
327 => 0.00475619287113
328 => 0.0047954580066293
329 => 0.0049234364996582
330 => 0.0050271510478496
331 => 0.0050615591469205
401 => 0.0050661067452286
402 => 0.0051306586264928
403 => 0.0051676585610121
404 => 0.0051228203302243
405 => 0.00508482462439
406 => 0.0049487287222924
407 => 0.0049644821935371
408 => 0.0050730079884468
409 => 0.0052263070658943
410 => 0.0053578536223948
411 => 0.0053117906031687
412 => 0.0056632189244403
413 => 0.0056980616070384
414 => 0.0056932474749021
415 => 0.005772624291147
416 => 0.0056150774757084
417 => 0.0055477231597827
418 => 0.005093039727261
419 => 0.0052207872255034
420 => 0.0054064757165462
421 => 0.0053818991484606
422 => 0.0052470472027977
423 => 0.0053577513251016
424 => 0.0053211490802299
425 => 0.0052922793710711
426 => 0.0054245371053961
427 => 0.0052791142936575
428 => 0.0054050250127565
429 => 0.0052435432131325
430 => 0.0053120010151605
501 => 0.0052731410557981
502 => 0.005298288212003
503 => 0.0051512784506696
504 => 0.0052306013494249
505 => 0.0051479783572919
506 => 0.0051479391832357
507 => 0.005146115276105
508 => 0.0052433208599431
509 => 0.0052464907305423
510 => 0.0051746556572164
511 => 0.0051643031008754
512 => 0.0052025819276625
513 => 0.0051577674467355
514 => 0.0051787358603023
515 => 0.0051584025586216
516 => 0.0051538251041284
517 => 0.005117351167937
518 => 0.005101637193354
519 => 0.0051077990476872
520 => 0.0050867654621942
521 => 0.0050740919661166
522 => 0.0051435941987479
523 => 0.0051064619595651
524 => 0.0051379031505419
525 => 0.0051020719452292
526 => 0.0049778653767024
527 => 0.0049064328656819
528 => 0.0046718181716897
529 => 0.0047383546078673
530 => 0.00478246833389
531 => 0.0047678887477026
601 => 0.0047992113403839
602 => 0.004801134293183
603 => 0.0047909509990062
604 => 0.0047791600489104
605 => 0.0047734208664842
606 => 0.0048161960302653
607 => 0.004841028452586
608 => 0.0047868957364618
609 => 0.0047742131984711
610 => 0.0048289443632219
611 => 0.0048623303421026
612 => 0.0051088336521973
613 => 0.0050905718907903
614 => 0.0051364053282322
615 => 0.0051312451865476
616 => 0.0051792859308259
617 => 0.0052578122441876
618 => 0.0050981462928208
619 => 0.0051258587811449
620 => 0.0051190643189826
621 => 0.0051932444752664
622 => 0.0051934760576173
623 => 0.0051490013483516
624 => 0.0051731118097643
625 => 0.0051596540116396
626 => 0.0051839740717814
627 => 0.005090327993833
628 => 0.0052043788083047
629 => 0.005269038270838
630 => 0.005269936067538
701 => 0.0053005841396096
702 => 0.0053317243558509
703 => 0.0053914952891849
704 => 0.005330057376961
705 => 0.0052195365537303
706 => 0.0052275158001874
707 => 0.0051627174819653
708 => 0.0051638067534013
709 => 0.0051579921371078
710 => 0.0051754422383087
711 => 0.0050941573097423
712 => 0.0051132347200068
713 => 0.0050865262339193
714 => 0.0051258007221122
715 => 0.0050835478651221
716 => 0.0051190610424873
717 => 0.0051343873525576
718 => 0.0051909417666689
719 => 0.0050751947321749
720 => 0.0048391786934562
721 => 0.0048887921262127
722 => 0.0048154099621147
723 => 0.0048222017607876
724 => 0.0048359222750135
725 => 0.0047914495993344
726 => 0.0047999335843589
727 => 0.0047996304767129
728 => 0.004797018458772
729 => 0.0047854493982117
730 => 0.0047686719715302
731 => 0.0048355080756094
801 => 0.0048468648320794
802 => 0.0048721094949078
803 => 0.0049472204878667
804 => 0.0049397151284309
805 => 0.004951956681065
806 => 0.0049252334403981
807 => 0.004823441375278
808 => 0.0048289691741505
809 => 0.0047600374336344
810 => 0.0048703467553231
811 => 0.0048442240519353
812 => 0.004827382575123
813 => 0.0048227872221396
814 => 0.0048980844007219
815 => 0.0049206144966924
816 => 0.004906575252822
817 => 0.0048777803540539
818 => 0.0049330750721364
819 => 0.0049478696059984
820 => 0.0049511815565287
821 => 0.0050491531952604
822 => 0.0049566570828047
823 => 0.0049789218164051
824 => 0.0051526249122068
825 => 0.0049951001737033
826 => 0.0050785445409095
827 => 0.0050744603733583
828 => 0.0051171476880175
829 => 0.0050709587676069
830 => 0.0050715313346323
831 => 0.0051094347781605
901 => 0.0050562062276472
902 => 0.0050430260899853
903 => 0.0050248178242033
904 => 0.0050645749064022
905 => 0.0050884074791222
906 => 0.00528048051215
907 => 0.0054045684510804
908 => 0.0053991814663928
909 => 0.0054484084224249
910 => 0.0054262312278652
911 => 0.0053546152165836
912 => 0.0054768550151991
913 => 0.0054381732281867
914 => 0.0054413621077097
915 => 0.0054412434174546
916 => 0.0054669634241973
917 => 0.0054487384422161
918 => 0.0054128151319751
919 => 0.0054366627017837
920 => 0.0055074814584533
921 => 0.0057273050521403
922 => 0.0058503212474428
923 => 0.0057198993227194
924 => 0.0058098626199744
925 => 0.0057559166988218
926 => 0.0057461131201962
927 => 0.0058026167191078
928 => 0.0058592192200895
929 => 0.0058556138854763
930 => 0.0058145233763342
1001 => 0.0057913123903529
1002 => 0.0059670737524541
1003 => 0.0060965717300336
1004 => 0.0060877408361281
1005 => 0.0061267175298663
1006 => 0.0062411543081853
1007 => 0.0062516169730264
1008 => 0.006250298917738
1009 => 0.0062243661112632
1010 => 0.0063370439810117
1011 => 0.0064310418423345
1012 => 0.0062183634158351
1013 => 0.006299348576481
1014 => 0.0063357054242739
1015 => 0.0063890880634245
1016 => 0.0064791535236407
1017 => 0.006576988502119
1018 => 0.0065908234407818
1019 => 0.0065810068897378
1020 => 0.0065164820914859
1021 => 0.0066235342923509
1022 => 0.0066862429609346
1023 => 0.0067235845380138
1024 => 0.0068182765644408
1025 => 0.0063359299517885
1026 => 0.0059945010451711
1027 => 0.0059411819911096
1028 => 0.0060496083842119
1029 => 0.0060781995593886
1030 => 0.0060666744925252
1031 => 0.0056823652167691
1101 => 0.0059391586823073
1102 => 0.0062154468594186
1103 => 0.0062260602135205
1104 => 0.0063643758518957
1105 => 0.0064094170935003
1106 => 0.0065207793118375
1107 => 0.0065138135747599
1108 => 0.006540928502765
1109 => 0.0065346952503818
1110 => 0.0067409703097698
1111 => 0.0069685223324175
1112 => 0.0069606429294443
1113 => 0.0069279296339154
1114 => 0.0069765144562216
1115 => 0.0072113725295508
1116 => 0.0071897505616826
1117 => 0.0072107544617117
1118 => 0.0074876653661878
1119 => 0.0078476889321236
1120 => 0.0076804218399714
1121 => 0.0080433433001324
1122 => 0.0082717831216638
1123 => 0.008666846171884
1124 => 0.0086173823322699
1125 => 0.0087711774786141
1126 => 0.0085288317359458
1127 => 0.0079723569246241
1128 => 0.0078842926556324
1129 => 0.0080605995522962
1130 => 0.0084940328539688
1201 => 0.0080469491951684
1202 => 0.0081373936370607
1203 => 0.0081113456317112
1204 => 0.008109957644203
1205 => 0.0081629314820371
1206 => 0.0080860901673292
1207 => 0.0077730248277208
1208 => 0.0079165008279577
1209 => 0.0078610978539828
1210 => 0.0079225715841733
1211 => 0.0082543199523164
1212 => 0.008107646090867
1213 => 0.007953137092647
1214 => 0.0081469256647064
1215 => 0.0083936851099161
1216 => 0.0083782433473042
1217 => 0.0083482798736811
1218 => 0.0085171824056579
1219 => 0.0087961599046851
1220 => 0.0088715664016497
1221 => 0.0089272299360911
1222 => 0.0089349049970474
1223 => 0.0090139628949215
1224 => 0.0085888486528969
1225 => 0.0092635158726981
1226 => 0.0093800122642519
1227 => 0.0093581157709205
1228 => 0.009487596607215
1229 => 0.0094495000605654
1230 => 0.0093943041416351
1231 => 0.0095995588085257
]
'min_raw' => 0.0035384813065966
'max_raw' => 0.0095995588085257
'avg_raw' => 0.0065690200575611
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.003538'
'max' => '$0.009599'
'avg' => '$0.006569'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0012203307545489
'max_diff' => 0.0044244510035119
'year' => 2032
]
7 => [
'items' => [
101 => 0.0093642508961332
102 => 0.0090302609389345
103 => 0.0088470274428429
104 => 0.0090883240915208
105 => 0.0092356755347758
106 => 0.0093330654654554
107 => 0.0093625355996344
108 => 0.0086218490613602
109 => 0.0082226600975891
110 => 0.0084785356466556
111 => 0.0087907214761038
112 => 0.0085871144448516
113 => 0.0085950954549976
114 => 0.0083048053354186
115 => 0.0088164057103792
116 => 0.0087418698389839
117 => 0.0091285620716345
118 => 0.0090362748669134
119 => 0.009351607371334
120 => 0.0092685697549771
121 => 0.0096132542579043
122 => 0.0097507582380823
123 => 0.0099816488215868
124 => 0.010151492874707
125 => 0.010251228551297
126 => 0.010245240795374
127 => 0.010640443234144
128 => 0.010407406163323
129 => 0.010114656679751
130 => 0.010109361765206
131 => 0.01026098087104
201 => 0.010578732922198
202 => 0.010661121405959
203 => 0.010707165328738
204 => 0.010636647458202
205 => 0.010383702419743
206 => 0.010274482034597
207 => 0.01036754096716
208 => 0.01025373788928
209 => 0.010450193929205
210 => 0.010719970032768
211 => 0.010664262334193
212 => 0.010850484818366
213 => 0.011043205498308
214 => 0.011318804726253
215 => 0.011390856569847
216 => 0.011509955527423
217 => 0.011632547476738
218 => 0.011671920706912
219 => 0.011747096420111
220 => 0.011746700206994
221 => 0.011973247278627
222 => 0.012223135714217
223 => 0.012317462813721
224 => 0.012534362777805
225 => 0.012162929190392
226 => 0.012444665833166
227 => 0.012698799337274
228 => 0.012395810896982
301 => 0.012813409874672
302 => 0.012829624296676
303 => 0.013074442818289
304 => 0.012826272345081
305 => 0.012678909510278
306 => 0.01310434049274
307 => 0.013310193144204
308 => 0.013248188650298
309 => 0.012776331390141
310 => 0.012501690225819
311 => 0.011782901324465
312 => 0.012634337827489
313 => 0.013049047711368
314 => 0.012775257391728
315 => 0.012913341303523
316 => 0.013666682352416
317 => 0.013953505848614
318 => 0.013893848566452
319 => 0.013903929665095
320 => 0.014058694417429
321 => 0.014745006559782
322 => 0.014333752415493
323 => 0.014648140799403
324 => 0.014814891264617
325 => 0.014969778389812
326 => 0.014589424562911
327 => 0.01409458982262
328 => 0.013937854888621
329 => 0.012748034340257
330 => 0.012686099013586
331 => 0.012651332837893
401 => 0.012432137017922
402 => 0.012259909146214
403 => 0.01212294714822
404 => 0.011763517965169
405 => 0.011884814763295
406 => 0.011311959664213
407 => 0.011678452055867
408 => 0.010764161485663
409 => 0.01152560984082
410 => 0.011111188119916
411 => 0.011389461159667
412 => 0.011388490291246
413 => 0.010876101398518
414 => 0.010580566178475
415 => 0.010768892723089
416 => 0.010970793728295
417 => 0.011003551487113
418 => 0.011265321410517
419 => 0.011338375769414
420 => 0.011117017651376
421 => 0.0107452148458
422 => 0.010831576157616
423 => 0.010578816069248
424 => 0.010135863736659
425 => 0.01045399983513
426 => 0.010562625486605
427 => 0.010610600762563
428 => 0.010175008016881
429 => 0.010038135319009
430 => 0.0099652654431354
501 => 0.010688985292272
502 => 0.010728632299313
503 => 0.01052579260577
504 => 0.011442647254633
505 => 0.011235134810054
506 => 0.011466977052432
507 => 0.010823739773765
508 => 0.010848312304044
509 => 0.010543793467989
510 => 0.010714303668224
511 => 0.010593792554498
512 => 0.010700528129059
513 => 0.010764504992364
514 => 0.011068973859875
515 => 0.011529086386212
516 => 0.011023496364211
517 => 0.010803203551443
518 => 0.010939871973511
519 => 0.011303837991431
520 => 0.011855265139657
521 => 0.011528809169401
522 => 0.011673684785419
523 => 0.011705333662451
524 => 0.011464617116042
525 => 0.011864140702078
526 => 0.012078248637558
527 => 0.012297879075966
528 => 0.012488578031731
529 => 0.012210153849089
530 => 0.012508107635055
531 => 0.01226800947949
601 => 0.012052616613057
602 => 0.012052943275125
603 => 0.011917824183624
604 => 0.01165601391774
605 => 0.011607732087821
606 => 0.011858900264383
607 => 0.012060313356272
608 => 0.012076902703223
609 => 0.012188415339871
610 => 0.012254407369568
611 => 0.012901218972409
612 => 0.013161371949778
613 => 0.01347948208606
614 => 0.013603403911847
615 => 0.013976364179033
616 => 0.013675168472929
617 => 0.013610002887303
618 => 0.012705323273484
619 => 0.012853464509566
620 => 0.013090652922036
621 => 0.012709234423044
622 => 0.012951156670218
623 => 0.012998917246424
624 => 0.0126962739684
625 => 0.012857928819637
626 => 0.012428621462075
627 => 0.011538444113445
628 => 0.011865131723937
629 => 0.01210568376712
630 => 0.011762386341645
701 => 0.012377733689364
702 => 0.012018260472174
703 => 0.011904324720083
704 => 0.011459820730144
705 => 0.011669609502868
706 => 0.011953351821862
707 => 0.011778032057308
708 => 0.012141846893151
709 => 0.012657105726578
710 => 0.013024309855471
711 => 0.013052499228896
712 => 0.012816411574783
713 => 0.01319474354719
714 => 0.013197499282574
715 => 0.012770739272168
716 => 0.012509351142004
717 => 0.012449963208865
718 => 0.012598325909536
719 => 0.012778465617415
720 => 0.013062495728974
721 => 0.013234129176793
722 => 0.013681658181358
723 => 0.013802746698331
724 => 0.01393578626674
725 => 0.014113568158017
726 => 0.014327040900838
727 => 0.013859974692557
728 => 0.013878532103732
729 => 0.013443606517553
730 => 0.012978826154082
731 => 0.013331536514266
801 => 0.013792658391114
802 => 0.013686876523071
803 => 0.013674973901989
804 => 0.013694990809137
805 => 0.013615234735145
806 => 0.013254500968379
807 => 0.013073342729021
808 => 0.013307083076188
809 => 0.013431305668121
810 => 0.013623964074862
811 => 0.013600214859705
812 => 0.014096482225465
813 => 0.014289316717453
814 => 0.01423998140255
815 => 0.014249060287813
816 => 0.014598177924581
817 => 0.014986468538186
818 => 0.015350153937286
819 => 0.015720110345902
820 => 0.015274113455671
821 => 0.015047663740076
822 => 0.01528130204352
823 => 0.015157330271015
824 => 0.015869708848241
825 => 0.015919032395303
826 => 0.01663135945945
827 => 0.017307442665654
828 => 0.016882806917126
829 => 0.017283219301974
830 => 0.017716297942287
831 => 0.018551776903929
901 => 0.018270416982153
902 => 0.018054899691544
903 => 0.01785123689329
904 => 0.018275026845897
905 => 0.018820225849716
906 => 0.018937656493287
907 => 0.019127938997831
908 => 0.018927880210941
909 => 0.019168828983998
910 => 0.020019484031146
911 => 0.019789629528466
912 => 0.019463199183707
913 => 0.020134709645651
914 => 0.020377726671397
915 => 0.022083347427092
916 => 0.024236764086835
917 => 0.023345235449605
918 => 0.022791834855027
919 => 0.022921897121591
920 => 0.023708251987975
921 => 0.023960804213402
922 => 0.023274280204719
923 => 0.02351677209071
924 => 0.024852926223796
925 => 0.025569730047239
926 => 0.024596214175406
927 => 0.021910322495217
928 => 0.019433807702713
929 => 0.0200906909446
930 => 0.02001622077043
1001 => 0.021451751697808
1002 => 0.019784147574596
1003 => 0.019812225751221
1004 => 0.021277441937923
1005 => 0.020886547379476
1006 => 0.020253348256784
1007 => 0.019438430757049
1008 => 0.017931980388044
1009 => 0.01659767528574
1010 => 0.019214554863471
1011 => 0.019101710257593
1012 => 0.018938294545647
1013 => 0.019301958529155
1014 => 0.021067807605249
1015 => 0.021027099068549
1016 => 0.020768132127744
1017 => 0.020964556269915
1018 => 0.020218914154964
1019 => 0.020411083105942
1020 => 0.019433415410117
1021 => 0.01987536203964
1022 => 0.020251989695851
1023 => 0.020327603273903
1024 => 0.020497964526179
1025 => 0.019042246277993
1026 => 0.019695821033786
1027 => 0.020079734971142
1028 => 0.018345197835262
1029 => 0.020045448748927
1030 => 0.019016905461973
1031 => 0.018667802422179
1101 => 0.019137823674434
1102 => 0.018954655935319
1103 => 0.0187971790692
1104 => 0.018709304272109
1105 => 0.019054436005412
1106 => 0.019038335197532
1107 => 0.018473632694665
1108 => 0.017737001299894
1109 => 0.01798423897508
1110 => 0.01789441520982
1111 => 0.017568882297018
1112 => 0.017788252175253
1113 => 0.016822258252063
1114 => 0.015160315915211
1115 => 0.016258245929606
1116 => 0.01621597681837
1117 => 0.016194662815733
1118 => 0.017019726876994
1119 => 0.016940416004971
1120 => 0.016796465995633
1121 => 0.01756623854221
1122 => 0.017285261207808
1123 => 0.01815116714585
1124 => 0.018721508799929
1125 => 0.018576851707834
1126 => 0.019113260790196
1127 => 0.017989934831767
1128 => 0.018363058655142
1129 => 0.018439958958013
1130 => 0.017556739668474
1201 => 0.016953392244488
1202 => 0.016913155849972
1203 => 0.015867034563177
1204 => 0.016425864110587
1205 => 0.01691761098637
1206 => 0.016682102393969
1207 => 0.016607547409234
1208 => 0.016988432657242
1209 => 0.017018030703074
1210 => 0.016343192121449
1211 => 0.016483512431928
1212 => 0.017068671452933
1213 => 0.016468767925962
1214 => 0.015303253366742
1215 => 0.015014189641556
1216 => 0.014975623212114
1217 => 0.014191659463476
1218 => 0.015033506261884
1219 => 0.014666017574288
1220 => 0.015826909935215
1221 => 0.015163814444644
1222 => 0.015135229723358
1223 => 0.015092019724666
1224 => 0.014417229741079
1225 => 0.014564965862344
1226 => 0.015056063230275
1227 => 0.015231292303761
1228 => 0.015213014475787
1229 => 0.015053656585255
1230 => 0.015126609811496
1231 => 0.014891602051185
]
'min_raw' => 0.0082226600975891
'max_raw' => 0.025569730047239
'avg_raw' => 0.016896195072414
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.008222'
'max' => '$0.025569'
'avg' => '$0.016896'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0046841787909925
'max_diff' => 0.015970171238713
'year' => 2033
]
8 => [
'items' => [
101 => 0.014808615919756
102 => 0.014546688861831
103 => 0.014161728445877
104 => 0.014215259552815
105 => 0.013452552238439
106 => 0.013036988813626
107 => 0.012921966334676
108 => 0.012768153468704
109 => 0.012939339907168
110 => 0.013450391584447
111 => 0.012833954835987
112 => 0.011777117268764
113 => 0.011840635007317
114 => 0.011983340507262
115 => 0.011717409752207
116 => 0.011465728610424
117 => 0.011684544943668
118 => 0.011236748934391
119 => 0.012037454515612
120 => 0.012015797673591
121 => 0.01231425119897
122 => 0.012500880313271
123 => 0.012070760626699
124 => 0.011962586688693
125 => 0.012024207480013
126 => 0.011005753061512
127 => 0.012231021744907
128 => 0.012241617919361
129 => 0.012150887040559
130 => 0.01280330478854
131 => 0.014180109730979
201 => 0.013662100329783
202 => 0.013461511432723
203 => 0.013080191792782
204 => 0.013588277572483
205 => 0.013549264511975
206 => 0.013372832657093
207 => 0.01326612612076
208 => 0.013462736185755
209 => 0.013241763957919
210 => 0.013202071273889
211 => 0.012961576794734
212 => 0.012875731207477
213 => 0.012812174552283
214 => 0.012742204919862
215 => 0.012896540493636
216 => 0.01254679577893
217 => 0.012125037938892
218 => 0.012089973337975
219 => 0.012186789784016
220 => 0.01214395571378
221 => 0.012089768264927
222 => 0.011986309667992
223 => 0.011955615712325
224 => 0.012055356177653
225 => 0.011942755007528
226 => 0.012108904167751
227 => 0.012063720789623
228 => 0.011811330112338
301 => 0.011496757881444
302 => 0.011493957528751
303 => 0.011426183457607
304 => 0.011339862988105
305 => 0.011315850608234
306 => 0.01166611684241
307 => 0.012391157464568
308 => 0.012248814641687
309 => 0.012351671919098
310 => 0.012857627922371
311 => 0.013018456121184
312 => 0.012904304075091
313 => 0.012748045713808
314 => 0.01275492028868
315 => 0.013288902411807
316 => 0.013322206221831
317 => 0.013406354205544
318 => 0.013514508144833
319 => 0.012922723158623
320 => 0.012727047269048
321 => 0.012634325176882
322 => 0.012348777020977
323 => 0.012656716226072
324 => 0.012477293238535
325 => 0.012501503529516
326 => 0.012485736545754
327 => 0.012494346385046
328 => 0.012037230702084
329 => 0.012203779631662
330 => 0.011926859733542
331 => 0.011556095075676
401 => 0.011554852142536
402 => 0.011645596267286
403 => 0.011591618111067
404 => 0.011446364280585
405 => 0.011466996901626
406 => 0.011286233430641
407 => 0.011488944859832
408 => 0.011494757898285
409 => 0.01141670295628
410 => 0.011729007881735
411 => 0.011856959464511
412 => 0.011805582029585
413 => 0.011853354686715
414 => 0.012254729628617
415 => 0.012320171257364
416 => 0.012349236106022
417 => 0.012310293059175
418 => 0.011860691083839
419 => 0.0118806328433
420 => 0.011734313443938
421 => 0.011610688970235
422 => 0.011615633300858
423 => 0.011679192350398
424 => 0.011956758447427
425 => 0.012540879935211
426 => 0.012563046918685
427 => 0.012589913949312
428 => 0.012480632233463
429 => 0.012447671822278
430 => 0.012491155112435
501 => 0.012710520431598
502 => 0.013274787589588
503 => 0.013075337889818
504 => 0.012913182179285
505 => 0.013055436454288
506 => 0.013033537523677
507 => 0.012848688511017
508 => 0.012843500414891
509 => 0.012488716059792
510 => 0.012357560361761
511 => 0.012247956843653
512 => 0.012128272663151
513 => 0.012057319869099
514 => 0.012166335608231
515 => 0.012191268797606
516 => 0.011952903978726
517 => 0.011920415734701
518 => 0.01211506959126
519 => 0.012029409686416
520 => 0.012117513022812
521 => 0.012137953752592
522 => 0.012134662324308
523 => 0.012045223545672
524 => 0.012102229156072
525 => 0.011967393893287
526 => 0.01182078079661
527 => 0.011727250775249
528 => 0.011645633426654
529 => 0.011690919475282
530 => 0.011529482980828
531 => 0.011477836197177
601 => 0.012082916937935
602 => 0.012529896586848
603 => 0.012523397325729
604 => 0.012483834745144
605 => 0.012425052775371
606 => 0.012706220164379
607 => 0.012608267068168
608 => 0.012679536129917
609 => 0.012697677097285
610 => 0.012752584341798
611 => 0.012772208962274
612 => 0.012712889729019
613 => 0.012513807136982
614 => 0.012017712245828
615 => 0.011786778734814
616 => 0.011710566829677
617 => 0.011713336987682
618 => 0.011636923663382
619 => 0.011659430811994
620 => 0.011629096595606
621 => 0.011571650928403
622 => 0.01168737236721
623 => 0.011700708185013
624 => 0.011673697418427
625 => 0.011680059431762
626 => 0.011456421820881
627 => 0.011473424502721
628 => 0.011378751409639
629 => 0.011361001345988
630 => 0.011121676010808
701 => 0.010697676488774
702 => 0.01093261338261
703 => 0.010648842651982
704 => 0.010541374376466
705 => 0.011050112478017
706 => 0.010999049282819
707 => 0.010911651289279
708 => 0.010782371441495
709 => 0.010734420288398
710 => 0.010443084261674
711 => 0.010425870574998
712 => 0.010570264576577
713 => 0.010503631713142
714 => 0.010410053937041
715 => 0.010071124717831
716 => 0.0096900560598305
717 => 0.0097015581273034
718 => 0.0098227689773789
719 => 0.010175205871484
720 => 0.010037502679737
721 => 0.0099375974341623
722 => 0.0099188881848069
723 => 0.010153073610957
724 => 0.010484495052323
725 => 0.010639990577475
726 => 0.010485899234518
727 => 0.010308887396597
728 => 0.010319661286977
729 => 0.01039133515289
730 => 0.010398867062784
731 => 0.010283650553408
801 => 0.010316083325913
802 => 0.010266814978763
803 => 0.009964455223249
804 => 0.0099589864940649
805 => 0.009884782533852
806 => 0.0098825356674273
807 => 0.0097562962200598
808 => 0.009738634448721
809 => 0.0094879783637861
810 => 0.0096529609579468
811 => 0.0095422992957587
812 => 0.0093755060683942
813 => 0.0093467508531284
814 => 0.0093458864366346
815 => 0.0095171457868547
816 => 0.0096509596927274
817 => 0.0095442243027509
818 => 0.0095199227234318
819 => 0.0097794000124432
820 => 0.0097463791622285
821 => 0.0097177833189042
822 => 0.01045481989731
823 => 0.0098713979338205
824 => 0.0096169926571774
825 => 0.0093021178170799
826 => 0.0094046426527524
827 => 0.0094262461420318
828 => 0.0086690289120532
829 => 0.0083618259761563
830 => 0.0082564055052549
831 => 0.0081957345338245
901 => 0.0082233830573634
902 => 0.0079468643837457
903 => 0.0081326895056136
904 => 0.0078932477078023
905 => 0.0078531045111882
906 => 0.0082812561068217
907 => 0.0083408309001287
908 => 0.0080866663234433
909 => 0.0082498811271826
910 => 0.0081906971704913
911 => 0.0078973522501861
912 => 0.0078861486319296
913 => 0.007738958462493
914 => 0.0075086343489577
915 => 0.0074033700486511
916 => 0.0073485474871048
917 => 0.0073711683444692
918 => 0.0073597305467761
919 => 0.0072850911800041
920 => 0.0073640087879098
921 => 0.0071624069107179
922 => 0.0070821274188034
923 => 0.0070458670347756
924 => 0.0068669337649967
925 => 0.0071516961692012
926 => 0.0072077979501717
927 => 0.0072640102689815
928 => 0.0077533001264405
929 => 0.0077288565878806
930 => 0.0079498142719757
1001 => 0.0079412282626869
1002 => 0.0078782075519058
1003 => 0.0076123335395241
1004 => 0.0077183061821109
1005 => 0.007392138860034
1006 => 0.007636525594956
1007 => 0.0075249976949717
1008 => 0.0075988178997844
1009 => 0.0074660825154316
1010 => 0.0075395437576421
1011 => 0.0072211017636787
1012 => 0.0069237451103154
1013 => 0.0070434101080107
1014 => 0.0071734996458578
1015 => 0.0074555669101082
1016 => 0.0072875699745251
1017 => 0.0073479880252282
1018 => 0.0071455976692322
1019 => 0.0067280085548655
1020 => 0.0067303720639027
1021 => 0.0066661350763308
1022 => 0.0066106249403149
1023 => 0.00730686644348
1024 => 0.007220277806612
1025 => 0.0070823101462036
1026 => 0.0072669853422772
1027 => 0.0073158163953085
1028 => 0.00731720654674
1029 => 0.0074519408026385
1030 => 0.0075238484991641
1031 => 0.0075365225423425
1101 => 0.0077485298051252
1102 => 0.0078195918431665
1103 => 0.0081122863207828
1104 => 0.007517747633505
1105 => 0.0075055035004875
1106 => 0.0072695841010075
1107 => 0.0071199602881191
1108 => 0.0072798289714847
1109 => 0.0074214508006951
1110 => 0.0072739846860104
1111 => 0.0072932406474086
1112 => 0.0070952794368686
1113 => 0.0071660412546959
1114 => 0.0072269908648551
1115 => 0.0071933380725777
1116 => 0.0071429582137249
1117 => 0.0074098394257339
1118 => 0.0073947809418365
1119 => 0.0076433068620318
1120 => 0.0078370505890832
1121 => 0.008184273983793
1122 => 0.0078219282702484
1123 => 0.007808722952253
1124 => 0.007937807053857
1125 => 0.0078195720810631
1126 => 0.0078942925025363
1127 => 0.0081722353687205
1128 => 0.0081781078635063
1129 => 0.0080797360095614
1130 => 0.0080737500733088
1201 => 0.0080926434639291
1202 => 0.0082033026429164
1203 => 0.0081646349255651
1204 => 0.0082093821870309
1205 => 0.0082653393226882
1206 => 0.0084968017611006
1207 => 0.0085526065713895
1208 => 0.0084170298138644
1209 => 0.0084292708770803
1210 => 0.0083785614481007
1211 => 0.0083295767750937
1212 => 0.0084396871663765
1213 => 0.0086409160706709
1214 => 0.0086396642361011
1215 => 0.0086863454305664
1216 => 0.0087154274279904
1217 => 0.0085905862057233
1218 => 0.0085093191605664
1219 => 0.008540482116836
1220 => 0.008590312362552
1221 => 0.0085243228397455
1222 => 0.0081170049356637
1223 => 0.0082405591681937
1224 => 0.0082199937024074
1225 => 0.0081907059782817
1226 => 0.0083149407145072
1227 => 0.0083029579711256
1228 => 0.0079440282850742
1229 => 0.0079670057990307
1230 => 0.0079454256238018
1231 => 0.0080151555848548
]
'min_raw' => 0.0066106249403149
'max_raw' => 0.014808615919756
'avg_raw' => 0.010709620430035
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.00661'
'max' => '$0.0148086'
'avg' => '$0.0107096'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0016120351572742
'max_diff' => -0.010761114127483
'year' => 2034
]
9 => [
'items' => [
101 => 0.0078158064343321
102 => 0.0078771248903958
103 => 0.0079155832512142
104 => 0.0079382355211873
105 => 0.008020071053137
106 => 0.0080104685980049
107 => 0.0080194741510435
108 => 0.0081408146411455
109 => 0.0087545132010532
110 => 0.0087879154596195
111 => 0.0086234305221372
112 => 0.0086891390103395
113 => 0.0085629930818579
114 => 0.0086476756887519
115 => 0.0087056133776837
116 => 0.0084438041021776
117 => 0.0084283014560103
118 => 0.0083016348784093
119 => 0.0083696983224504
120 => 0.0082614044890462
121 => 0.0082879760078061
122 => 0.00821367972489
123 => 0.0083473982418966
124 => 0.0084969163216668
125 => 0.0085346904932646
126 => 0.0084353229105941
127 => 0.0083633742320978
128 => 0.0082370560540264
129 => 0.0084471259993433
130 => 0.0085085568531196
131 => 0.0084468033292203
201 => 0.0084324936883917
202 => 0.0084053769448785
203 => 0.0084382466337172
204 => 0.0085082222874969
205 => 0.0084752230614218
206 => 0.008497019631616
207 => 0.0084139535825615
208 => 0.0085906275333625
209 => 0.0088712282861362
210 => 0.0088721304634392
211 => 0.008839131059486
212 => 0.0088256284143704
213 => 0.0088594878053977
214 => 0.0088778551360451
215 => 0.0089873501978769
216 => 0.0091048427616982
217 => 0.0096531292910303
218 => 0.0094991726275978
219 => 0.0099856450541329
220 => 0.010370381582983
221 => 0.010485747245496
222 => 0.010379616264358
223 => 0.010016547910968
224 => 0.0099987340454419
225 => 0.010541311448912
226 => 0.010388008480812
227 => 0.010369773580563
228 => 0.010175785050259
301 => 0.010290456297615
302 => 0.010265376013693
303 => 0.010225785558551
304 => 0.010444570310439
305 => 0.010854115834924
306 => 0.010790284324239
307 => 0.010742637062572
308 => 0.010533860631854
309 => 0.01065959067505
310 => 0.010614820614869
311 => 0.010807181205191
312 => 0.010693231052793
313 => 0.010386847060051
314 => 0.01043563972075
315 => 0.010428264808243
316 => 0.010580039985054
317 => 0.010534480844267
318 => 0.010419368654806
319 => 0.010852716052844
320 => 0.010824576883221
321 => 0.010864471792237
322 => 0.010882034764977
323 => 0.011145805689726
324 => 0.011253864197867
325 => 0.011278395371046
326 => 0.011381042596235
327 => 0.011275841414573
328 => 0.011696721148391
329 => 0.011976581612366
330 => 0.01230165394276
331 => 0.012776671988672
401 => 0.012955283168098
402 => 0.012923018657221
403 => 0.013283171918326
404 => 0.013930359322773
405 => 0.013053833735456
406 => 0.013976817307271
407 => 0.013684611364793
408 => 0.012991796331735
409 => 0.012947187211359
410 => 0.013416369595493
411 => 0.014456970966372
412 => 0.01419631212537
413 => 0.014457397310858
414 => 0.01415282757363
415 => 0.014137703119062
416 => 0.014442605038533
417 => 0.015155024992716
418 => 0.014816580977146
419 => 0.01433133849095
420 => 0.014689633991548
421 => 0.014379245270247
422 => 0.013679852608822
423 => 0.014196112804467
424 => 0.013850904313883
425 => 0.013951654503728
426 => 0.014677231405048
427 => 0.014589928072643
428 => 0.014702906668846
429 => 0.014503502403712
430 => 0.01431722737691
501 => 0.01396953120642
502 => 0.013866595511552
503 => 0.013895043234375
504 => 0.013866581414273
505 => 0.013672048602377
506 => 0.01363003926017
507 => 0.013560021849352
508 => 0.01358172317272
509 => 0.013450069956067
510 => 0.013698526776833
511 => 0.013744642552161
512 => 0.013925448706735
513 => 0.013944220601504
514 => 0.014447763168378
515 => 0.014170420384233
516 => 0.014356485868461
517 => 0.014339842420235
518 => 0.013006811734301
519 => 0.013190491601393
520 => 0.013476239832671
521 => 0.013347510641803
522 => 0.013165517683907
523 => 0.013018548612561
524 => 0.012795875441112
525 => 0.013109283653867
526 => 0.013521382126391
527 => 0.013954672098833
528 => 0.014475241610439
529 => 0.014359056555546
530 => 0.013944940413914
531 => 0.013963517361516
601 => 0.014078352741829
602 => 0.013929630490429
603 => 0.013885769395088
604 => 0.014072326900862
605 => 0.014073611619875
606 => 0.013902488695954
607 => 0.013712316881181
608 => 0.013711520054333
609 => 0.013677680816736
610 => 0.014158847498825
611 => 0.014423440522535
612 => 0.01445377568629
613 => 0.014421398724316
614 => 0.014433859331984
615 => 0.014279898481397
616 => 0.014631807330167
617 => 0.014954753689978
618 => 0.014868197166806
619 => 0.014738436633837
620 => 0.014635076119212
621 => 0.014843848714405
622 => 0.014834552399379
623 => 0.014951933035257
624 => 0.01494660797159
625 => 0.014907137278654
626 => 0.014868198576429
627 => 0.015022586129319
628 => 0.014978124993475
629 => 0.014933594797206
630 => 0.014844282671357
701 => 0.014856421672578
702 => 0.014726683544594
703 => 0.014666660750176
704 => 0.013764061936948
705 => 0.013522858040787
706 => 0.013598745696677
707 => 0.013623729883418
708 => 0.013518757638698
709 => 0.01366926087247
710 => 0.013645805102909
711 => 0.013737057781105
712 => 0.013680047069499
713 => 0.013682386808989
714 => 0.013850043155857
715 => 0.013898714506614
716 => 0.013873959864793
717 => 0.013891297167385
718 => 0.014290827987997
719 => 0.014234027481582
720 => 0.014203853344626
721 => 0.014212211786777
722 => 0.01431430047748
723 => 0.014342879737042
724 => 0.014221787406052
725 => 0.014278895249373
726 => 0.01452205319817
727 => 0.014607144718701
728 => 0.014878716005989
729 => 0.014763347696355
730 => 0.014975111221713
731 => 0.015626000103157
801 => 0.01614597517974
802 => 0.015667784610435
803 => 0.016622652620153
804 => 0.017366154333399
805 => 0.017337617499277
806 => 0.017207970778069
807 => 0.016361513844554
808 => 0.015582591554372
809 => 0.016234193124897
810 => 0.016235854191303
811 => 0.016179881038518
812 => 0.015832236593782
813 => 0.016167783765404
814 => 0.016194418281359
815 => 0.016179510035114
816 => 0.015912971854431
817 => 0.015506017317017
818 => 0.015585535259516
819 => 0.015715787271452
820 => 0.015469193039441
821 => 0.015390391240643
822 => 0.015536898777265
823 => 0.01600897658632
824 => 0.015919733011079
825 => 0.015917402500668
826 => 0.016299224360715
827 => 0.016025922311236
828 => 0.015586538235423
829 => 0.015475587961516
830 => 0.015081789234207
831 => 0.015353787417822
901 => 0.015363576148221
902 => 0.015214605522809
903 => 0.015598626380651
904 => 0.01559508756084
905 => 0.015959658211399
906 => 0.016656580368784
907 => 0.016450466193389
908 => 0.016210777832563
909 => 0.016236838603222
910 => 0.01652266093389
911 => 0.016349846228079
912 => 0.016411991601196
913 => 0.016522566869425
914 => 0.016589279674177
915 => 0.01622723965727
916 => 0.016142830810953
917 => 0.015970159934868
918 => 0.015925113326352
919 => 0.016065750152027
920 => 0.016028697317234
921 => 0.015362753443335
922 => 0.015293158603236
923 => 0.015295292977623
924 => 0.01512029344314
925 => 0.014853377148352
926 => 0.015554817234311
927 => 0.015498481778761
928 => 0.015436291795851
929 => 0.015443909713907
930 => 0.015748381081211
1001 => 0.015571772312002
1002 => 0.016041315670553
1003 => 0.0159447916718
1004 => 0.015845792196698
1005 => 0.015832107453641
1006 => 0.015794001101965
1007 => 0.015663320243319
1008 => 0.015505515253801
1009 => 0.015401318730887
1010 => 0.014206902418616
1011 => 0.014428579138573
1012 => 0.014683597998416
1013 => 0.014771629486909
1014 => 0.014621045534247
1015 => 0.01566926621559
1016 => 0.015860786234977
1017 => 0.015280659603712
1018 => 0.015172141597416
1019 => 0.015676380638016
1020 => 0.015372262855819
1021 => 0.015509207074521
1022 => 0.015213208578169
1023 => 0.015814654670667
1024 => 0.01581007265914
1025 => 0.015576096544882
1026 => 0.015773851554454
1027 => 0.015739486755029
1028 => 0.01547532829829
1029 => 0.015823028964917
1030 => 0.015823201420109
1031 => 0.015598004497216
1101 => 0.015335023793221
1102 => 0.015288009054674
1103 => 0.01525258976472
1104 => 0.015500496100434
1105 => 0.015722768145852
1106 => 0.016136361316462
1107 => 0.016240348466284
1108 => 0.016646217234859
1109 => 0.016404542144564
1110 => 0.016511673581876
1111 => 0.016627979911744
1112 => 0.016683741443306
1113 => 0.016592881019954
1114 => 0.0172233622798
1115 => 0.017276594215578
1116 => 0.017294442423189
1117 => 0.017081847689732
1118 => 0.017270681571459
1119 => 0.01718233245172
1120 => 0.017412192317189
1121 => 0.017448237279093
1122 => 0.017417708478697
1123 => 0.017429149718536
1124 => 0.016891145187773
1125 => 0.016863246814653
1126 => 0.016482850517583
1127 => 0.016637864820387
1128 => 0.016348073011325
1129 => 0.016439968979165
1130 => 0.016480475846172
1201 => 0.016459317357592
1202 => 0.016646629096486
1203 => 0.016487375853166
1204 => 0.016067080360387
1205 => 0.015646670358381
1206 => 0.015641392453265
1207 => 0.01553070592059
1208 => 0.015450699830715
1209 => 0.015466111841994
1210 => 0.015520425779959
1211 => 0.015447543005904
1212 => 0.015463096240999
1213 => 0.015721383574241
1214 => 0.015773181256902
1215 => 0.01559715249256
1216 => 0.014890371602895
1217 => 0.014716925799746
1218 => 0.01484159520347
1219 => 0.014782011258228
1220 => 0.011930236774066
1221 => 0.012600218888151
1222 => 0.012202138266404
1223 => 0.012385592131714
1224 => 0.011979254899388
1225 => 0.012173180324613
1226 => 0.012137369379597
1227 => 0.013214680792833
1228 => 0.013197860056909
1229 => 0.013205911253062
1230 => 0.01282160668338
1231 => 0.01343381429789
]
'min_raw' => 0.0078158064343321
'max_raw' => 0.017448237279093
'avg_raw' => 0.012632021856712
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.007815'
'max' => '$0.017448'
'avg' => '$0.012632'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0012051814940172
'max_diff' => 0.002639621359337
'year' => 2035
]
10 => [
'items' => [
101 => 0.013735409783072
102 => 0.013679592485469
103 => 0.013693640496739
104 => 0.013452249119828
105 => 0.013208248449246
106 => 0.012937614154137
107 => 0.01344041922304
108 => 0.013384515882547
109 => 0.013512738032251
110 => 0.013838843060683
111 => 0.013886863264873
112 => 0.013951402906276
113 => 0.013928270039077
114 => 0.014479388786448
115 => 0.014412644669742
116 => 0.014573478787409
117 => 0.014242630804855
118 => 0.013868244908217
119 => 0.013939403427571
120 => 0.013932550289936
121 => 0.013845301982184
122 => 0.013766538111082
123 => 0.013635418457278
124 => 0.014050300443969
125 => 0.014033456992973
126 => 0.014306132886231
127 => 0.014257934773465
128 => 0.013936055980337
129 => 0.013947551944404
130 => 0.014024867827524
131 => 0.014292458981779
201 => 0.014371898255358
202 => 0.014335098818728
203 => 0.014422200355666
204 => 0.014491041859046
205 => 0.014430845788588
206 => 0.015283095203993
207 => 0.014929181828095
208 => 0.015101676744994
209 => 0.015142815766275
210 => 0.015037439028324
211 => 0.015060291469527
212 => 0.015094906691033
213 => 0.015305083537663
214 => 0.01585664839838
215 => 0.016100932720562
216 => 0.016835874156624
217 => 0.016080648308207
218 => 0.016035836331797
219 => 0.016168221477537
220 => 0.016599709901957
221 => 0.016949390742303
222 => 0.017065400050617
223 => 0.017080732595816
224 => 0.017298373770367
225 => 0.017423121632851
226 => 0.017271946407245
227 => 0.017143841232249
228 => 0.016684984396415
229 => 0.016738098324588
301 => 0.017104000619156
302 => 0.01762085916177
303 => 0.018064377561298
304 => 0.01790907287596
305 => 0.019093937997069
306 => 0.019211412534087
307 => 0.019195181351478
308 => 0.01946280582936
309 => 0.018931625741541
310 => 0.018704535962869
311 => 0.017171539025139
312 => 0.017602248634509
313 => 0.018228310346416
314 => 0.018145448731234
315 => 0.017690785981369
316 => 0.018064032658832
317 => 0.01794062563476
318 => 0.017843289394713
319 => 0.018289205579929
320 => 0.017798902417056
321 => 0.018223419197304
322 => 0.017678972035572
323 => 0.017909782294681
324 => 0.017778763228575
325 => 0.017863548621438
326 => 0.017367894947209
327 => 0.01763533763851
328 => 0.017356768451981
329 => 0.017356636373915
330 => 0.017350486943683
331 => 0.01767822235627
401 => 0.017688909796309
402 => 0.017446712831226
403 => 0.01741180846473
404 => 0.017540868201785
405 => 0.017389773050492
406 => 0.017460469520801
407 => 0.017391914374558
408 => 0.017376481167147
409 => 0.017253506744749
410 => 0.017200525982327
411 => 0.017221301104419
412 => 0.017150384902411
413 => 0.01710765532555
414 => 0.017341986955358
415 => 0.017216793018463
416 => 0.017322799188995
417 => 0.017201991778628
418 => 0.016783220661014
419 => 0.01654238096285
420 => 0.015751361141781
421 => 0.015975693381779
422 => 0.016124425888986
423 => 0.016075269796241
424 => 0.01618087610434
425 => 0.016187359473958
426 => 0.016153025786667
427 => 0.016113271775201
428 => 0.016093921720954
429 => 0.016238141172108
430 => 0.016321865417707
501 => 0.016139353185869
502 => 0.016096593123567
503 => 0.016281123066732
504 => 0.016393686225463
505 => 0.017224789345758
506 => 0.017163218542179
507 => 0.017317749176503
508 => 0.017300351398544
509 => 0.017462324121976
510 => 0.017727081070007
511 => 0.017188756167453
512 => 0.017282190756662
513 => 0.017259282753107
514 => 0.017509386329111
515 => 0.017510167125176
516 => 0.017360217537761
517 => 0.017441507641753
518 => 0.017396133735782
519 => 0.017478130516523
520 => 0.017162396226559
521 => 0.017546926510324
522 => 0.017764930402635
523 => 0.017767957386891
524 => 0.01787128950166
525 => 0.017976280914859
526 => 0.018177802789667
527 => 0.017970660579146
528 => 0.017598031907307
529 => 0.01762493449383
530 => 0.01740646243987
531 => 0.017410134994567
601 => 0.01739053060977
602 => 0.017449364844296
603 => 0.017175307032502
604 => 0.017239627853151
605 => 0.01714957832758
606 => 0.017281995006579
607 => 0.017139536549237
608 => 0.017259271706175
609 => 0.017310945430625
610 => 0.017501622586305
611 => 0.017111373378308
612 => 0.016315628825655
613 => 0.016482903978093
614 => 0.016235490888457
615 => 0.016258389911871
616 => 0.016304649583519
617 => 0.016154706852484
618 => 0.016183311200327
619 => 0.016182289251736
620 => 0.016173482650883
621 => 0.016134476755478
622 => 0.016077910490059
623 => 0.01630325308131
624 => 0.016341543178652
625 => 0.016426657321904
626 => 0.016679899278747
627 => 0.016654594435402
628 => 0.016695867684786
629 => 0.01660576841312
630 => 0.016262569358673
701 => 0.01628120671851
702 => 0.016048798542699
703 => 0.016420714122324
704 => 0.016332639604023
705 => 0.016275857389116
706 => 0.016260363835695
707 => 0.016514233530366
708 => 0.016590195321932
709 => 0.016542861031034
710 => 0.016445777019442
711 => 0.016632207022011
712 => 0.016682087825848
713 => 0.016693254298294
714 => 0.017023572518439
715 => 0.016711715417422
716 => 0.01678678252123
717 => 0.017372434636289
718 => 0.016841328982398
719 => 0.017122667492333
720 => 0.017108897436287
721 => 0.017252820697994
722 => 0.017097091528022
723 => 0.017099021977723
724 => 0.017226816083913
725 => 0.017047352309558
726 => 0.017002914555223
727 => 0.016941524115879
728 => 0.017075567894263
729 => 0.017155921077126
730 => 0.01780350871809
731 => 0.018221879867737
801 => 0.018203717272755
802 => 0.018369689391934
803 => 0.018294917432114
804 => 0.018053459050007
805 => 0.01846559906555
806 => 0.018335180719962
807 => 0.018345932249914
808 => 0.018345532077432
809 => 0.018432248875879
810 => 0.018370802076701
811 => 0.018249684128138
812 => 0.018330087874732
813 => 0.018568858257251
814 => 0.01931000885096
815 => 0.019724766542139
816 => 0.019285039917166
817 => 0.019588357454898
818 => 0.019406475015348
819 => 0.019373421565548
820 => 0.019563927394234
821 => 0.019754766678154
822 => 0.019742611040789
823 => 0.019604071520369
824 => 0.019525814060594
825 => 0.020118405764184
826 => 0.020555017236854
827 => 0.020525243261498
828 => 0.020656655905702
829 => 0.021042487493525
830 => 0.021077763098517
831 => 0.021073319183089
901 => 0.020985884915488
902 => 0.021365786220263
903 => 0.021682706572434
904 => 0.020965646408757
905 => 0.021238693532078
906 => 0.021361273182766
907 => 0.021541256477719
908 => 0.021844918465008
909 => 0.022174775925568
910 => 0.022221421387194
911 => 0.022188324199979
912 => 0.021970774337696
913 => 0.022331708307058
914 => 0.022543134961367
915 => 0.022669034695595
916 => 0.02298829547388
917 => 0.021362030192958
918 => 0.020210878796492
919 => 0.020031109883106
920 => 0.02039667703754
921 => 0.02049307418082
922 => 0.020454216613236
923 => 0.019158491058407
924 => 0.020024288156217
925 => 0.020955813035172
926 => 0.020991596699527
927 => 0.021457937531199
928 => 0.021609797221948
929 => 0.021985262716133
930 => 0.021961777247244
1001 => 0.022053197120117
1002 => 0.022032181274515
1003 => 0.022727652038906
1004 => 0.023494859570438
1005 => 0.023468293613192
1006 => 0.023357998453347
1007 => 0.023521805573836
1008 => 0.024313645965332
1009 => 0.024240745991067
1010 => 0.024311562106461
1011 => 0.025245186554204
1012 => 0.026459031142799
1013 => 0.025895078463392
1014 => 0.027118693504693
1015 => 0.027888894312145
1016 => 0.029220876968383
1017 => 0.02905410617967
1018 => 0.029572637253203
1019 => 0.028755551661758
1020 => 0.026879357983556
1021 => 0.026582443152199
1022 => 0.027176874163656
1023 => 0.028638224801592
1024 => 0.027130851031562
1025 => 0.027435790782031
1026 => 0.027347968113382
1027 => 0.027343288416592
1028 => 0.027521893409364
1029 => 0.027262817551937
1030 => 0.026207295901924
1031 => 0.026691035253897
1101 => 0.026504240259028
1102 => 0.026711503232324
1103 => 0.02783001601745
1104 => 0.027335494853132
1105 => 0.026814556978159
1106 => 0.027467928678743
1107 => 0.028299895376462
1108 => 0.028247832395707
1109 => 0.028146808452404
1110 => 0.028716275131362
1111 => 0.029656867246919
1112 => 0.029911105516149
1113 => 0.030098779008821
1114 => 0.030124656012691
1115 => 0.03039120523502
1116 => 0.028957902887505
1117 => 0.031232590522826
1118 => 0.031625366240468
1119 => 0.031551540684437
1120 => 0.031988094364067
1121 => 0.031859649197222
1122 => 0.031673552302893
1123 => 0.032365582742738
1124 => 0.031572225687432
1125 => 0.030446155228303
1126 => 0.029828370703276
1127 => 0.030641919201087
1128 => 0.031138724879771
1129 => 0.031467081830605
1130 => 0.031566442445529
1201 => 0.029069166068654
1202 => 0.027723272606817
1203 => 0.028585974885155
1204 => 0.029638531205258
1205 => 0.028952055884002
1206 => 0.028978964416926
1207 => 0.028000231011356
1208 => 0.029725127394334
1209 => 0.029473824499996
1210 => 0.030777584360367
1211 => 0.030466431606363
1212 => 0.031529597160829
1213 => 0.031249630039781
1214 => 0.032411757906503
1215 => 0.032875362175895
1216 => 0.033653825898446
1217 => 0.034226466981672
1218 => 0.034562732778621
1219 => 0.034542544641474
1220 => 0.03587499725594
1221 => 0.035089296501538
1222 => 0.034102271178559
1223 => 0.034084419004491
1224 => 0.034595613405519
1225 => 0.035666936630738
1226 => 0.035944715155918
1227 => 0.036099955456251
1228 => 0.035862199532338
1229 => 0.035009377675115
1230 => 0.034641133521071
1231 => 0.034954888209376
]
'min_raw' => 0.012937614154137
'max_raw' => 0.036099955456251
'avg_raw' => 0.024518784805194
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.012937'
'max' => '$0.036099'
'avg' => '$0.024518'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.005121807719805
'max_diff' => 0.018651718177158
'year' => 2036
]
11 => [
'items' => [
101 => 0.034571193186826
102 => 0.035233558441557
103 => 0.036143127409886
104 => 0.035955305014751
105 => 0.036583167121779
106 => 0.037232938349532
107 => 0.038162140388271
108 => 0.038405068209449
109 => 0.038806618660139
110 => 0.039219945976351
111 => 0.039352695570834
112 => 0.039606155736484
113 => 0.039604819876299
114 => 0.04036863914532
115 => 0.041211155452564
116 => 0.041529185854252
117 => 0.042260479226633
118 => 0.041008164954006
119 => 0.041958059715343
120 => 0.042814888567477
121 => 0.041793341887056
122 => 0.043201305996166
123 => 0.043255974052008
124 => 0.044081396790309
125 => 0.043244672713178
126 => 0.042747828627096
127 => 0.044182198887111
128 => 0.044876245473692
129 => 0.044667192993475
130 => 0.043076293296831
131 => 0.042150321436487
201 => 0.039726874471332
202 => 0.042597552086676
203 => 0.043995775414295
204 => 0.043072672236199
205 => 0.043538231785526
206 => 0.046078173728461
207 => 0.047045219171269
208 => 0.046844080479323
209 => 0.046878069607237
210 => 0.04739986977506
211 => 0.049713819079787
212 => 0.048327247019469
213 => 0.049387229405718
214 => 0.049949440241334
215 => 0.050471652997804
216 => 0.04918926351495
217 => 0.0475208936398
218 => 0.046992450866938
219 => 0.042980887817512
220 => 0.042772068539454
221 => 0.042654851950809
222 => 0.041915817940014
223 => 0.041335139645982
224 => 0.040873362707364
225 => 0.039661522122165
226 => 0.040070482745716
227 => 0.038139061783696
228 => 0.039374716469841
301 => 0.036292121978667
302 => 0.038859398270706
303 => 0.037462146504679
304 => 0.038400363486601
305 => 0.038397090135936
306 => 0.036669535210253
307 => 0.035673117582271
308 => 0.036308073675975
309 => 0.036988797011304
310 => 0.037099242082233
311 => 0.037981817655184
312 => 0.038228125526696
313 => 0.037481801176999
314 => 0.036228242059558
315 => 0.0365194152519
316 => 0.035667216966821
317 => 0.034173772251554
318 => 0.035246390319102
319 => 0.03561262928705
320 => 0.03577438127947
321 => 0.034305749925289
322 => 0.033844274068267
323 => 0.033598588194146
324 => 0.036038660194016
325 => 0.03617233284632
326 => 0.035488444657725
327 => 0.038579684119115
328 => 0.03788004142416
329 => 0.038661713731047
330 => 0.036492994336628
331 => 0.036575842338063
401 => 0.035549135821475
402 => 0.03612402286621
403 => 0.035717711232466
404 => 0.03607757767414
405 => 0.036293280135495
406 => 0.037319818179646
407 => 0.03887111968622
408 => 0.037166487627877
409 => 0.036423755029276
410 => 0.036884542156161
411 => 0.038111678996874
412 => 0.039970854126533
413 => 0.038870185030389
414 => 0.039358643284684
415 => 0.039465349683253
416 => 0.03865375704074
417 => 0.040000778704906
418 => 0.040722658557917
419 => 0.041463157915119
420 => 0.042106112758656
421 => 0.041167386187923
422 => 0.042171958179775
423 => 0.04136245048517
424 => 0.040636238397742
425 => 0.040637339761712
426 => 0.040181776311002
427 => 0.039299064720564
428 => 0.039136279160062
429 => 0.039983110203345
430 => 0.04066218850486
501 => 0.040718120646338
502 => 0.04109409328636
503 => 0.041316590021898
504 => 0.043497360499821
505 => 0.044374484426321
506 => 0.045447014960538
507 => 0.045864826048125
508 => 0.047122287628196
509 => 0.046106785276253
510 => 0.0458870749546
511 => 0.042836884473896
512 => 0.043336352994237
513 => 0.044136050286846
514 => 0.042850071187705
515 => 0.043665728934524
516 => 0.043826757051739
517 => 0.042806374110002
518 => 0.043351404727328
519 => 0.041903964998026
520 => 0.038902669916922
521 => 0.040004120004297
522 => 0.040815158012696
523 => 0.039657706774446
524 => 0.04173239331946
525 => 0.040520404270086
526 => 0.040136261927169
527 => 0.038637585690815
528 => 0.039344903185036
529 => 0.04030156022378
530 => 0.039710457397154
531 => 0.040937084516939
601 => 0.042674315648058
602 => 0.043912370005997
603 => 0.044007412446617
604 => 0.043211426437663
605 => 0.044486999096927
606 => 0.044496290251175
607 => 0.043057439080658
608 => 0.042176150750273
609 => 0.041975920187363
610 => 0.042476135391026
611 => 0.043083488993094
612 => 0.044041116344565
613 => 0.044619790496951
614 => 0.046128665781318
615 => 0.046536924170422
616 => 0.046985476363839
617 => 0.047584880422618
618 => 0.048304618679227
619 => 0.046729872348487
620 => 0.046792439955902
621 => 0.045326057976564
622 => 0.043759018531194
623 => 0.044948206136005
624 => 0.046502910738299
625 => 0.046146259784737
626 => 0.046106129266743
627 => 0.046173617666731
628 => 0.045904714494876
629 => 0.044688475414595
630 => 0.044077687762537
701 => 0.04486575966224
702 => 0.045284584803888
703 => 0.045934146073192
704 => 0.045854073936175
705 => 0.047527274008116
706 => 0.048177428961128
707 => 0.048011091502449
708 => 0.04804170159798
709 => 0.049218776084961
710 => 0.050527924998315
711 => 0.051754115713085
712 => 0.053001449574266
713 => 0.051497739920343
714 => 0.050734248893999
715 => 0.051521976746164
716 => 0.051103997259733
717 => 0.053505831369535
718 => 0.053672129152113
719 => 0.056073789581971
720 => 0.058353251314311
721 => 0.056921562241027
722 => 0.058271580552442
723 => 0.059731735424844
724 => 0.062548611075299
725 => 0.061599986455106
726 => 0.060873354862881
727 => 0.060186691519287
728 => 0.061615528932571
729 => 0.063453705438525
730 => 0.063849631052071
731 => 0.064491181801242
801 => 0.063816669633582
802 => 0.064629045244451
803 => 0.067497088126748
804 => 0.066722117623036
805 => 0.065621534925041
806 => 0.067885579330848
807 => 0.068704928200059
808 => 0.074455547660522
809 => 0.081715942275597
810 => 0.078710091230634
811 => 0.076844262488819
812 => 0.077282776501195
813 => 0.079934026834753
814 => 0.080785524295412
815 => 0.078470860668564
816 => 0.079288438992424
817 => 0.083793375939424
818 => 0.086210130075809
819 => 0.082927853345215
820 => 0.073872182022489
821 => 0.065522439494823
822 => 0.067737167206966
823 => 0.067486085815411
824 => 0.072326078562634
825 => 0.066703634832823
826 => 0.066798302365672
827 => 0.071738381037265
828 => 0.070420452742073
829 => 0.068285577691365
830 => 0.065538026445287
831 => 0.060458923849181
901 => 0.055960221038556
902 => 0.064783213239574
903 => 0.064402749772296
904 => 0.06385178229015
905 => 0.065077900800757
906 => 0.071031584248452
907 => 0.07089433257479
908 => 0.070021207453371
909 => 0.070683465162596
910 => 0.068169480712969
911 => 0.068817391748
912 => 0.065521116852946
913 => 0.06701117077011
914 => 0.068280997208328
915 => 0.068535933665902
916 => 0.069110318522194
917 => 0.064202262813434
918 => 0.066405835733722
919 => 0.067700228377531
920 => 0.061852115322395
921 => 0.067584629985548
922 => 0.064116824482983
923 => 0.062939799210722
924 => 0.064524508678533
925 => 0.063906945857747
926 => 0.06337600160894
927 => 0.063079725595325
928 => 0.064243361330485
929 => 0.064189076332594
930 => 0.06228514241791
1001 => 0.059801538240478
1002 => 0.060635117323952
1003 => 0.060332270228081
1004 => 0.059234713284589
1005 => 0.059974334144972
1006 => 0.056717418189397
1007 => 0.051114063567591
1008 => 0.05481581126615
1009 => 0.054673298006482
1010 => 0.054601436358496
1011 => 0.057383197445171
1012 => 0.057115795302835
1013 => 0.056630457796085
1014 => 0.059225799680671
1015 => 0.058278464980523
1016 => 0.061197927306253
1017 => 0.063120874012963
1018 => 0.062633152527332
1019 => 0.064441693199401
1020 => 0.060654321302442
1021 => 0.061912334323626
1022 => 0.062171609063761
1023 => 0.05919377356468
1024 => 0.057159545600339
1025 => 0.057023885787014
1026 => 0.053496814830729
1027 => 0.055380947666054
1028 => 0.057038906590426
1029 => 0.056244872928462
1030 => 0.055993505592165
1031 => 0.057277686798383
1101 => 0.057377478676374
1102 => 0.055102213282702
1103 => 0.055575313006331
1104 => 0.057548217500148
1105 => 0.055525600875038
1106 => 0.051595987165
1107 => 0.05062138863375
1108 => 0.050491359224267
1109 => 0.047848170711133
1110 => 0.050686515967833
1111 => 0.04944750220036
1112 => 0.053361531846142
1113 => 0.051125859103833
1114 => 0.051029483720295
1115 => 0.050883798192881
1116 => 0.048608696650885
1117 => 0.049106799298337
1118 => 0.05076256836164
1119 => 0.051353365417
1120 => 0.051291740443869
1121 => 0.050754454189928
1122 => 0.051000421085631
1123 => 0.050208076014024
1124 => 0.049928282478003
1125 => 0.049045177115046
1126 => 0.047747256195581
1127 => 0.047927740060044
1128 => 0.045356219099102
1129 => 0.043955117998634
1130 => 0.04356731168024
1201 => 0.043048720863742
1202 => 0.043625887892881
1203 => 0.045348934303314
1204 => 0.043270574767644
1205 => 0.039707373123706
1206 => 0.039921527613907
1207 => 0.04040266917035
1208 => 0.039506065062989
1209 => 0.038657504521651
1210 => 0.039395259066452
1211 => 0.037885483557058
1212 => 0.040585118327622
1213 => 0.040512100772717
1214 => 0.041518357670889
1215 => 0.042147590759786
1216 => 0.04069741220651
1217 => 0.040332696222061
1218 => 0.04054045502222
1219 => 0.037106664844029
1220 => 0.041237743755622
1221 => 0.041273469497596
1222 => 0.040967564005086
1223 => 0.043167235992757
1224 => 0.047809229981641
1225 => 0.046062725119247
1226 => 0.045386425648139
1227 => 0.044100779859192
1228 => 0.045813826538871
1229 => 0.045682291281563
1230 => 0.04508743896475
1231 => 0.044727670427489
]
'min_raw' => 0.033598588194146
'max_raw' => 0.086210130075809
'avg_raw' => 0.059904359134977
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.033598'
'max' => '$0.08621'
'avg' => '$0.0599043'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.020660974040009
'max_diff' => 0.050110174619558
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0010546212911675
]
1 => [
'year' => 2028
'avg' => 0.0018100362943918
]
2 => [
'year' => 2029
'avg' => 0.0049446929289764
]
3 => [
'year' => 2030
'avg' => 0.0038148232308477
]
4 => [
'year' => 2031
'avg' => 0.0037466291785308
]
5 => [
'year' => 2032
'avg' => 0.0065690200575611
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0010546212911675
'min' => '$0.001054'
'max_raw' => 0.0065690200575611
'max' => '$0.006569'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.0065690200575611
]
1 => [
'year' => 2033
'avg' => 0.016896195072414
]
2 => [
'year' => 2034
'avg' => 0.010709620430035
]
3 => [
'year' => 2035
'avg' => 0.012632021856712
]
4 => [
'year' => 2036
'avg' => 0.024518784805194
]
5 => [
'year' => 2037
'avg' => 0.059904359134977
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.0065690200575611
'min' => '$0.006569'
'max_raw' => 0.059904359134977
'max' => '$0.0599043'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.059904359134977
]
]
]
]
'prediction_2025_max_price' => '$0.0018032'
'last_price' => 0.00174844
'sma_50day_nextmonth' => '$0.001638'
'sma_200day_nextmonth' => '$0.001161'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'augmenter'
'sma_200day_date_nextmonth' => '4 févr. 2026'
'sma_50day_date_nextmonth' => '4 févr. 2026'
'daily_sma3' => '$0.001779'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.001844'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.002047'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.001659'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.001271'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.001111'
'daily_sma100_action' => 'BUY'
'daily_sma200' => '$0.001091'
'daily_sma200_action' => 'BUY'
'daily_ema3' => '$0.001785'
'daily_ema3_action' => 'SELL'
'daily_ema5' => '$0.00183'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.001841'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.001689'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.0014063'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.001234'
'daily_ema100_action' => 'BUY'
'daily_ema200' => '$0.001269'
'daily_ema200_action' => 'BUY'
'weekly_sma21' => '$0.001117'
'weekly_sma21_action' => 'BUY'
'weekly_sma50' => '$0.001181'
'weekly_sma50_action' => 'BUY'
'weekly_sma100' => '$0.004419'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.006975'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.001775'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.00167'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.00145'
'weekly_ema10_action' => 'BUY'
'weekly_ema21' => '$0.001283'
'weekly_ema21_action' => 'BUY'
'weekly_ema50' => '$0.001826'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.00353'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.006975'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '53.01'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => -1.76
'stoch_rsi_14_action' => 'BUY'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.002192'
'vwma_10_action' => 'SELL'
'hma_9' => '0.001681'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 35.96
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => 11.89
'cci_20_action' => 'NEUTRAL'
'adx_14' => 19.11
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000438'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => -0
'macd_12_26_action' => 'SELL'
'williams_percent_r_14' => -64.04
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 33.8
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '0.000035'
'ichimoku_cloud_action' => 'BUY'
'sell_signals' => 19
'buy_signals' => 15
'sell_pct' => 55.88
'buy_pct' => 44.12
'overall_action' => 'bearish'
'overall_action_label' => 'Baissier'
'overall_action_dir' => -1
'last_updated' => 1767678297
'last_updated_date' => '6 janvier 2026'
]
Prévision du prix de GemLink pour 2026
La prévision du prix de GemLink pour 2026 suggère que le prix moyen pourrait varier entre $0.000604 à la baisse et $0.0018032 à la hausse. Sur le marché des cryptomonnaies, comparé au prix moyen d'aujourd'hui, GemLink pourrait potentiellement gagner 3.13% d'ici 2026 si GLINK atteint l'objectif de prix prévu.
Prévision du prix de GemLink de 2027 à 2032
La prévision du prix de GLINK pour 2027-2032 se situe actuellement dans une fourchette de prix comprise entre $0.001054 à la baisse et $0.006569 à la hausse. Compte tenu de la volatilité des prix sur le marché, si GemLink atteint l'objectif de prix le plus élevé, il pourrait gagner 275.71% d'ici 2032 par rapport au prix actuel.
| Prévision du Prix de GemLink | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2027 | $0.000581 | $0.001054 | $0.001527 |
| 2028 | $0.001049 | $0.00181 | $0.00257 |
| 2029 | $0.0023054 | $0.004944 | $0.007583 |
| 2030 | $0.00196 | $0.003814 | $0.005668 |
| 2031 | $0.002318 | $0.003746 | $0.005175 |
| 2032 | $0.003538 | $0.006569 | $0.009599 |
Prévision du prix de GemLink de 2032 à 2037
La prévision du prix de GemLink pour 2032-2037 est actuellement estimée entre $0.006569 à la baisse et $0.0599043 à la hausse. Par rapport au prix actuel, GemLink pourrait potentiellement gagner 3326.16% d'ici 2037 s'il atteint l'objectif de prix le plus élevé. Veuillez noter que ces informations sont à titre général seulement et ne doivent pas être considérées comme un conseil en investissement à long terme.
| Prévision du Prix de GemLink | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2032 | $0.003538 | $0.006569 | $0.009599 |
| 2033 | $0.008222 | $0.016896 | $0.025569 |
| 2034 | $0.00661 | $0.0107096 | $0.0148086 |
| 2035 | $0.007815 | $0.012632 | $0.017448 |
| 2036 | $0.012937 | $0.024518 | $0.036099 |
| 2037 | $0.033598 | $0.0599043 | $0.08621 |
GemLink Histogramme des prix potentiels
Prévision du prix de GemLink basée sur l'analyse technique
Au 6 janvier 2026, le sentiment global de prévision du prix pour GemLink est Baissier, avec 15 indicateurs techniques montrant des signaux haussiers et 19 indiquant des signaux baissiers. La prévision du prix de GLINK a été mise à jour pour la dernière fois le 6 janvier 2026.
Moyennes Mobiles Simples sur 50 et 200 jours de GemLink et Indice de Force Relative sur 14 jours - RSI (14)
Selon nos indicateurs techniques, le SMA sur 200 jours de GemLink devrait augmenter au cours du prochain mois, atteignant $0.001161 d'ici le 4 févr. 2026. Le SMA à court terme sur 50 jours pour GemLink devrait atteindre $0.001638 d'ici le 4 févr. 2026.
Le Relative Strength Index (RSI), un oscillateur de momentum, est un outil couramment utilisé pour identifier si une cryptomonnaie est survendue (en dessous de 30) ou surachetée (au-dessus de 70). Actuellement, le RSI est à 53.01, ce qui suggère que le marché de GLINK est dans un état NEUTRAL.
Moyennes Mobiles et Oscillateurs Populaires de GLINK pour le Samedi 19 Octobre 2024
Les moyennes mobiles (MA) sont des indicateurs largement utilisés sur les marchés financiers, conçus pour lisser les mouvements de prix sur une période donnée. En tant qu'indicateurs retardés, ils sont basés sur des données historiques de prix. Le tableau ci-dessous met en évidence deux types : la moyenne mobile simple (SMA) et la moyenne mobile exponentielle (EMA).
Moyenne Mobile Simple Quotidienne (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 3 | $0.001779 | SELL |
| SMA 5 | $0.001844 | SELL |
| SMA 10 | $0.002047 | SELL |
| SMA 21 | $0.001659 | BUY |
| SMA 50 | $0.001271 | BUY |
| SMA 100 | $0.001111 | BUY |
| SMA 200 | $0.001091 | BUY |
Moyenne Mobile Exponentielle Quotidienne (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 3 | $0.001785 | SELL |
| EMA 5 | $0.00183 | SELL |
| EMA 10 | $0.001841 | SELL |
| EMA 21 | $0.001689 | BUY |
| EMA 50 | $0.0014063 | BUY |
| EMA 100 | $0.001234 | BUY |
| EMA 200 | $0.001269 | BUY |
Moyenne Mobile Simple Hebdomadaire (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 21 | $0.001117 | BUY |
| SMA 50 | $0.001181 | BUY |
| SMA 100 | $0.004419 | SELL |
| SMA 200 | $0.006975 | SELL |
Moyenne Mobile Exponentielle Hebdomadaire (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 21 | $0.001283 | BUY |
| EMA 50 | $0.001826 | SELL |
| EMA 100 | $0.00353 | SELL |
| EMA 200 | $0.006975 | SELL |
Oscillateurs de GemLink
Un oscillateur est un outil d'analyse technique qui établit des limites hautes et basses entre deux extrêmes, créant un indicateur de tendance qui fluctue à l'intérieur de ces limites. Les traders utilisent cet indicateur pour identifier les conditions de surachat ou de survente à court terme.
| Période | Valeur | Action |
|---|---|---|
| RSI (14) | 53.01 | NEUTRAL |
| Stoch RSI (14) | -1.76 | BUY |
| Stochastique Rapide (14) | 35.96 | NEUTRAL |
| Indice de Canal des Matières Premières (20) | 11.89 | NEUTRAL |
| Indice Directionnel Moyen (14) | 19.11 | NEUTRAL |
| Oscillateur Impressionnant (5, 34) | 0.000438 | NEUTRAL |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | -0 | SELL |
| Plage de Pourcentage de Williams (14) | -64.04 | NEUTRAL |
| Oscillateur Ultime (7, 14, 28) | 33.8 | NEUTRAL |
| VWMA (10) | 0.002192 | SELL |
| Moyenne Mobile de Hull (9) | 0.001681 | SELL |
| Nuage Ichimoku B/L (9, 26, 52, 26) | 0.000035 | BUY |
Prévision du cours de GemLink basée sur les flux monétaires mondiaux
Définitions des flux monétaires mondiaux utilisés pour la prédiction du cours de GemLink
M0 : le total de toutes les devises physiques, plus les comptes à la banque centrale qui peuvent être échangés contre des devises physiques.
M1 : M0 plus le montant des comptes à vue, y compris les comptes de "chèques" et les comptes "courants".
M2 : M1 plus la plupart des comptes d'épargne, comptes du marché monétaire et comptes de certificats de dépôt (CD) de moins de 100 000 $.
Prédictions du cours de GemLink par des sociétés Internet ou des niches technologiques
| Comparaison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Action Facebook | $0.002456 | $0.003452 | $0.004851 | $0.006816 | $0.009578 | $0.013459 |
| Action Amazon.com | $0.003648 | $0.007612 | $0.015883 | $0.033141 | $0.069151 | $0.144289 |
| Action Apple | $0.00248 | $0.003517 | $0.004989 | $0.007077 | $0.010038 | $0.014239 |
| Action Netflix | $0.002758 | $0.004352 | $0.006868 | $0.010836 | $0.017098 | $0.026979 |
| Action Google | $0.002264 | $0.002932 | $0.003797 | $0.004917 | $0.006367 | $0.008246 |
| Action Tesla | $0.003963 | $0.008985 | $0.020368 | $0.046174 | $0.104673 | $0.237286 |
| Action Kodak | $0.001311 | $0.000983 | $0.000737 | $0.000552 | $0.000414 | $0.00031 |
| Action Nokia | $0.001158 | $0.000767 | $0.0005083 | $0.000336 | $0.000223 | $0.000147 |
Ce calcul montre la valeur potentielle des cryptomonnaies si l'on suppose que leur capitalisation se comportera comme celle de certaines sociétés Internet ou niches technologiques. En extrapolant les données, vous pourrez obtenir une potentielle image des cours futurs pour 2024, 2025, 2026, 2027, 2028, 2029 et 2030.
Aperçu des prévisions relatives à GemLink
Vous vous posez peut-être des questions telles que : "Devrais-je investir dans GemLink maintenant ?", "Devrais-je acheter GLINK aujourd'hui ?", " GemLink sera-t-il un bon ou un mauvais investissement à court ou à long terme ?".
Nous mettons régulièrement à jour les prévisions de GemLink avec de nouvelles valeurs. Regardez nos prévisions similaires. Nous faisons une prévision des cours futurs pour une grande quantité de devises numériques comme GemLink en utilisant des méthodes d'analyse technique.
Si vous souhaitez trouver des cryptomonnaies ayant un bon rendement, vous devriez consulter un maximum d'informations disponibles à propos de GemLink afin de prendre une décision responsable concernant cet investissement.
Le cours de GemLink est de $0.001748 USD actuellement, mais ce cours peut subir une hausse ou une baisse, ce qui pourrait causer la perte de votre investissement, car les cryptomonnaies sont des actifs à haut risque.
Prévision du cours de GemLink basée sur le modèle de croissance du Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si GemLink présente 1 % de la précédente croissance annuelle moyenne du Bitcoin | $0.001793 | $0.00184 | $0.001888 | $0.001937 |
| Si GemLink présente 2 % de la précédente croissance annuelle moyenne du Bitcoin | $0.001839 | $0.001934 | $0.002035 | $0.002141 |
| Si GemLink présente 5 % de la précédente croissance annuelle moyenne du Bitcoin | $0.001975 | $0.002232 | $0.002522 | $0.00285 |
| Si GemLink présente 10 % de la précédente croissance annuelle moyenne du Bitcoin | $0.0022029 | $0.002775 | $0.003496 | $0.0044059 |
| Si GemLink présente 20 % de la précédente croissance annuelle moyenne du Bitcoin | $0.002657 | $0.004038 | $0.006138 | $0.009329 |
| Si GemLink présente 50 % de la précédente croissance annuelle moyenne du Bitcoin | $0.00402 | $0.009246 | $0.021263 | $0.048899 |
| Si GemLink présente 100 % de la précédente croissance annuelle moyenne du Bitcoin | $0.006293 | $0.022651 | $0.081529 | $0.293449 |
Boîte à questions
Est-ce que GLINK est un bon investissement ?
La décision d'acquérir GemLink dépend entièrement de votre tolérance individuelle au risque. Comme vous pouvez le discerner, la valeur de GemLink a connu une hausse de 0.0208% au cours des 24 heures précédentes, et GemLink a enregistré une déclin de sur une période de 30 jours précédents. Par conséquent, la détermination de si investir ou non dans GemLink dépendra de la mesure dans laquelle cet investissement s'aligne avec vos aspirations de trading.
Est-ce que GemLink peut monter ?
Il semble que la valeur moyenne de GemLink pourrait potentiellement s'envoler jusqu'à $0.0018032 pour la fin de cette année. En regardant les perspectives de GemLink sur une période de cinq ans plus longue, la monnaie numérique pourrait potentiellement croître jusqu'à $0.005668. Cependant, compte tenu de l'imprévisibilité du marché, il est essentiel de mener des recherches approfondies avant d'investir des fonds dans un projet, un réseau ou un actif particulier.
Quel sera le prix de GemLink la semaine prochaine ?
Basé sur notre nouveau pronostic expérimental de GemLink, le prix de GemLink va augmenter de 0.86% durant la prochaine semaine et atteindre $0.001763 d'ici 13 janvier 2026.
Quel sera le prix de GemLink le mois prochain ?
Basé sur notre nouveau pronostic expérimental de GemLink, le prix de GemLink va diminuer de -11.62% durant le prochain mois et atteindre $0.001545 d'ici 5 février 2026.
Jusqu'où le prix de GemLink peut-il monter cette année en 2026 ?
Selon notre prédiction la plus récente sur la valeur de GemLink en 2026, GLINK devrait fluctuer dans la fourchette de $0.000604 et $0.0018032. Cependant, il est crucial de garder à l'esprit que le marché des cryptomonnaies est exceptionnellement instable, et cette prévision de prix de GemLink ne prend pas en compte les fluctuations de prix soudaines et extrêmes.
Où sera GemLink dans 5 ans ?
L'avenir de GemLink semble suivre une tendance haussière, avec un prix maximum de $0.005668 prévue après une période de cinq ans. Selon la prévision de GemLink pour 2030, la valeur de GemLink pourrait potentiellement atteindre son point le plus élevé d'environ $0.005668, tandis que son point le plus bas devrait être autour de $0.00196.
Combien vaudra GemLink en 2026 ?
Basé sur notre nouvelle simulation expérimentale de prédiction de prix de GemLink, il est attendu que la valeur de GLINK en 2026 augmente de 3.13% jusqu'à $0.0018032 si le meilleur scénario se produit. Le prix sera entre $0.0018032 et $0.000604 durant 2026.
Combien vaudra GemLink en 2027 ?
Selon notre dernière simulation expérimentale pour la prédiction de prix de GemLink, le valeur de GLINK pourrait diminuer de -12.62% jusqu'à $0.001527 en 2027, en supposant les conditions les plus favorables. Il est prévu que le prix fluctue entre $0.001527 et $0.000581 tout au long de l'année.
Combien vaudra GemLink en 2028 ?
Notre nouveau modèle expérimental de prédiction de prix de GemLink suggère que la valeur de GLINK en 2028 pourrait augmenter de 47.02%, atteignant $0.00257 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.00257 et $0.001049 durant l'année.
Combien vaudra GemLink en 2029 ?
Basé sur notre modèle de prévision expérimental, la valeur de GemLink pourrait connaître un 333.75% croissance en 2029, atteignant potentiellement $0.007583 sous des conditions optimales. Le range de prix prévu pour 2029 se situe entre $0.007583 et $0.0023054.
Combien vaudra GemLink en 2030 ?
En utilisant notre nouvelle simulation expérimentale pour les prédictions de prix de GemLink, il est prévu que la valeur de GLINK en 2030 augmente de 224.23%, atteignant $0.005668 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.005668 et $0.00196 au cours de 2030.
Combien vaudra GemLink en 2031 ?
Notre simulation expérimentale indique que le prix de GemLink pourrait augmenter de 195.98% en 2031, atteignant potentiellement $0.005175 dans des conditions idéales. Il est probable que le prix fluctue entre $0.005175 et $0.002318 durant l'année.
Combien vaudra GemLink en 2032 ?
Basé sur les résultats de notre dernière prédiction expérimentale de prix de GemLink, GLINK pourrait connaître une 449.04% hausse en valeur, atteignant $0.009599 si le scénario le plus positif se réalise en 2032. Il est prévu que le prix reste dans une fourchette de $0.009599 et $0.003538 tout au long de l'année.
Combien vaudra GemLink en 2033 ?
Selon notre prédiction expérimentale de prix de GemLink, la valeur de GLINK est anticipée à augmenter de 1362.43% en 2033, avec le prix potentiel le plus élevé étant $0.025569. Tout au long de l'année, le prix de GLINK pourrait osciller entre $0.025569 et $0.008222.
Combien vaudra GemLink en 2034 ?
Les résultats de notre nouvelle simulation de prédiction de prix de GemLink suggèrent que GLINK pourrait augmenter de 746.96% en 2034, atteignant potentiellement $0.0148086 dans les meilleures circonstances. La fourchette de prix prévue pour l'année est entre $0.0148086 et $0.00661.
Combien vaudra GemLink en 2035 ?
Basé sur notre prédiction expérimentale pour le prix de GemLink, GLINK pourrait augmenter de 897.93%, avec la valeur potentiellement atteignant $0.017448 en 2035. La fourchette de prix attendue pour l'année se situe entre $0.017448 et $0.007815.
Combien vaudra GemLink en 2036 ?
Notre récente simulation de prédiction de prix de GemLink suggère que la valeur de GLINK pourrait augmenter de 1964.7% en 2036, pouvant atteindre $0.036099 si les conditions sont optimales. La fourchette de prix attendue pour 2036 est entre $0.036099 et $0.012937.
Combien vaudra GemLink en 2037 ?
Selon la simulation expérimentale, la valeur de GemLink pourrait augmenter de 4830.69% en 2037, avec un maximum de $0.08621 sous des conditions favorables. Il est prévu que le prix chute entre $0.08621 et $0.033598 au cours de l'année.
Prévisions liées
Prévision du cours de Internet Doge
Prévision du cours de Cat
Prévision du cours de Jupiter
Prévision du cours de SafeMoon Inu
Prévision du cours de TenXPrévision du cours de Zenlink Network
Prévision du cours de McPepe's
Prévision du cours de Spore
Prévision du cours de Dastra Network
Prévision du cours de Ulord
Prévision du cours de Raiden Network Token
Prévision du cours de BitcoinZ
Prévision du cours de BISO
Prévision du cours de DaTa eXchange DTX
Prévision du cours de PRIMAL
Prévision du cours de FourCoin
Prévision du cours de Corite
Prévision du cours de Nord Finance
Prévision du cours de Futureswap
Prévision du cours de CorgiCoin
Prévision du cours de Meowcoin
Prévision du cours de Hot CrossPrévision du cours de OSHI
Prévision du cours de ROM Token
Prévision du cours de Clube Atlético Mineiro Fan Token
Comment lire et prédire les mouvements de prix de GemLink ?
Les traders de GemLink utilisent des indicateurs et des modèles graphiques pour prédire la direction du marché. Ils identifient également des niveaux clés de support et de résistance pour évaluer quand une tendance baissière pourrait ralentir ou une tendance haussière pourrait s'arrêter.
Indicateurs de prédiction du prix de GemLink
Les moyennes mobiles sont des outils populaires pour la prédiction du prix de GemLink. Une moyenne mobile simple (SMA) calcule le prix de clôture moyen de GLINK sur une période spécifique, comme une SMA de 12 jours. Une moyenne mobile exponentielle (EMA) donne plus de poids aux prix récents, réagissant plus rapidement aux changements de prix.
Les moyennes mobiles couramment utilisées sur le marché des cryptomonnaies incluent les moyennes sur 50 jours, 100 jours et 200 jours, qui aident à identifier les niveaux clés de résistance et de support. Un mouvement de prix de GLINK au-dessus de ces moyennes est considéré comme haussier, tandis qu'une chute en dessous indique une faiblesse.
Les traders utilisent également le RSI et les niveaux de retracement de Fibonacci pour évaluer la direction future de GLINK.
Comment lire les graphiques de GemLink et prédire les mouvements de prix ?
La plupart des traders préfèrent les graphiques en chandeliers aux simples graphiques linéaires parce qu'ils fournissent des informations plus détaillées. Les chandeliers peuvent représenter l'action des prix de GemLink dans différentes périodes, comme 5 minutes pour les tendances à court terme et hebdomadaire pour les tendances à long terme. Les options populaires incluent les graphiques de 1 heure, 4 heures et 1 jour.
Par exemple, un graphique en chandeliers de 1 heure montre les prix d'ouverture, de clôture, les plus hauts et les plus bas de GLINK au sein de chaque heure. La couleur du chandelier est cruciale : le vert indique que le prix a clôturé plus haut qu'il n'a ouvert, tandis que le rouge signifie le contraire. Certains graphiques utilisent des chandeliers creux et pleins pour transmettre la même information.
Qu'est-ce qui affecte le prix de GemLink ?
L'action du prix de GemLink est déterminée par l'offre et la demande, influencée par des facteurs tels que les réductions de récompenses de bloc, les hard forks et les mises à jour de protocole. Les événements du monde réel, tels que les réglementations, l'adoption par les entreprises et les gouvernements et les piratages d'échanges de cryptomonnaies, impactent également le prix de GLINK. La capitalisation boursière de GemLink peut changer rapidement.
Les traders surveillent souvent l'activité des « baleines » de GLINK, de grands détenteurs de GemLink, car leurs actions peuvent influencer significativement les mouvements de prix sur le marché relativement petit de GemLink.
Modèles de prédiction de prix haussiers et baissiers
Les traders identifient souvent des modèles de chandeliers pour obtenir un avantage dans les prédictions de prix des cryptomonnaies. Certaines formations indiquent des tendances haussières, tandis que d'autres suggèrent des mouvements baissiers.
Modèles de chandeliers haussiers couramment suivis :
- Marteau
- Englobante haussière
- Ligne pénétrante
- Étoile du matin
- Trois soldats blancs
Modèles de chandeliers baissiers courants :
- Harami baissier
- Nuage sombre
- Étoile du soir
- Étoile filante
- Pendu


