Prédiction du prix de Fry jusqu'à $0.003168 d'ici 2026
| Année | Prix min. | Prix max. |
|---|---|---|
| 2026 | $0.001061 | $0.003168 |
| 2027 | $0.001021 | $0.002684 |
| 2028 | $0.001844 | $0.004517 |
| 2029 | $0.004051 | $0.013327 |
| 2030 | $0.003445 | $0.009962 |
| 2031 | $0.004073 | $0.009094 |
| 2032 | $0.006218 | $0.016869 |
| 2033 | $0.014449 | $0.044933 |
| 2034 | $0.011616 | $0.026023 |
| 2035 | $0.013734 | $0.030661 |
Calculateur de profit d’investissement
Si vous ouvrez une position short de $10,000.00 sur Fry aujourd’hui et la fermez le Apr 06, 2026, notre prévision indique que vous pourriez gagner environ $3,956.10, soit un rendement de 39.56% sur les 90 prochains jours.
Prévision du prix à long terme de Fry pour 2027, 2028, 2029, 2030, 2031, 2032 et 2037
[
'name' => 'Fry'
'name_with_ticker' => 'Fry <small>FRY</small>'
'name_lang' => 'Fry'
'name_lang_with_ticker' => 'Fry <small>FRY</small>'
'name_with_lang' => 'Fry'
'name_with_lang_with_ticker' => 'Fry <small>FRY</small>'
'image' => '/uploads/coins/fry.webp?1736295253'
'price_for_sd' => 0.003072
'ticker' => 'FRY'
'marketcap' => '$0'
'low24h' => '$0.002941'
'high24h' => '$0.003182'
'volume24h' => '$549.52'
'current_supply' => '0'
'max_supply' => '1B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.003072'
'change_24h_pct' => '2.5114%'
'ath_price' => '$0.686'
'ath_days' => 357
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '14 janv. 2025'
'ath_pct' => '-99.55%'
'fdv' => '$3.08M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.151496'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.0030988'
'next_week_prediction_price_date' => '13 janvier 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.002715'
'next_month_prediction_price_date' => '5 février 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.001061'
'current_year_max_price_prediction' => '$0.003168'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.003445'
'grand_prediction_max_price' => '$0.009962'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0031307426378545
107 => 0.0031424316944047
108 => 0.0031687677356702
109 => 0.0029437291465369
110 => 0.0030447648662719
111 => 0.0031041138858495
112 => 0.002835972856262
113 => 0.0030988135998337
114 => 0.0029398117253657
115 => 0.0028858441010433
116 => 0.0029585043974996
117 => 0.0029301886093061
118 => 0.0029058443573762
119 => 0.002892259846512
120 => 0.0029456135490053
121 => 0.0029431245350125
122 => 0.0028558275222261
123 => 0.0027419521277278
124 => 0.0027801724479538
125 => 0.0027662866472983
126 => 0.0027159627144187
127 => 0.0027498749690447
128 => 0.0026005425622711
129 => 0.00234362391804
130 => 0.00251335224405
131 => 0.0025068178881275
201 => 0.0025035229695619
202 => 0.002631069115612
203 => 0.0026188084966595
204 => 0.0025965553532045
205 => 0.002715554017988
206 => 0.0026721179045841
207 => 0.0028059777712596
208 => 0.0028941465369654
209 => 0.0028717840860216
210 => 0.0029547072363246
211 => 0.0027810529669377
212 => 0.002838733949428
213 => 0.0028506219199768
214 => 0.0027140855929363
215 => 0.0026208144855498
216 => 0.0026145943660556
217 => 0.0024528751193977
218 => 0.0025392642356102
219 => 0.0026152830828526
220 => 0.0025788759543243
221 => 0.0025673505450643
222 => 0.0026262313614175
223 => 0.0026308069051283
224 => 0.0025264840236292
225 => 0.0025481760541688
226 => 0.0026386354275192
227 => 0.0025458967100552
228 => 0.0023657205308061
301 => 0.0023210343472218
302 => 0.0023150723866019
303 => 0.0021938799126152
304 => 0.0023240204916842
305 => 0.0022672106413699
306 => 0.0024466722778263
307 => 0.0023441647535544
308 => 0.0023397458590623
309 => 0.0023330660519265
310 => 0.0022287506831681
311 => 0.0022515891193387
312 => 0.0023275075595616
313 => 0.0023545961143156
314 => 0.0023517705561248
315 => 0.0023271355177874
316 => 0.0023384133121864
317 => 0.002302083606983
318 => 0.0022892548319383
319 => 0.0022487636890644
320 => 0.0021892528950036
321 => 0.0021975282359187
322 => 0.0020796217810379
323 => 0.0020153800866497
324 => 0.001997598832335
325 => 0.0019738209959355
326 => 0.0020002846022267
327 => 0.0020792877668654
328 => 0.0019839931888547
329 => 0.0018206173189929
330 => 0.0018304364871505
331 => 0.0018524972426635
401 => 0.0018113871707115
402 => 0.0017724799377158
403 => 0.001806306620162
404 => 0.0017370821103555
405 => 0.0018608626939496
406 => 0.0018575147760545
407 => 0.0019036525230784
408 => 0.0019325034031344
409 => 0.0018660114651887
410 => 0.0018492889226087
411 => 0.0018588148428595
412 => 0.001701372600364
413 => 0.0018907861329374
414 => 0.0018924241890327
415 => 0.0018783981582523
416 => 0.0019792550168609
417 => 0.0021920944465682
418 => 0.0021120156916661
419 => 0.0020810067773748
420 => 0.0020220588086397
421 => 0.0021006034769952
422 => 0.0020945724719532
423 => 0.0020672979799625
424 => 0.002050802282105
425 => 0.0020811961111932
426 => 0.0020470361503273
427 => 0.0020409000827029
428 => 0.0020037221890061
429 => 0.0019904513724427
430 => 0.0019806261881856
501 => 0.0019698096257212
502 => 0.0019936682671982
503 => 0.0019396014467456
504 => 0.0018744021615155
505 => 0.0018689815464146
506 => 0.0018839483412934
507 => 0.0018773266487064
508 => 0.0018689498442981
509 => 0.0018529562433957
510 => 0.0018482112836571
511 => 0.0018636301008801
512 => 0.0018462231552083
513 => 0.0018719080517525
514 => 0.0018649231811026
515 => 0.0018259062614498
516 => 0.0017772767336485
517 => 0.0017768438288472
518 => 0.0017663666768508
519 => 0.0017530224485331
520 => 0.0017493103894897
521 => 0.0018034578313166
522 => 0.0019155414154018
523 => 0.0018935367259131
524 => 0.0019094373692
525 => 0.0019876527967266
526 => 0.0020125151291173
527 => 0.001994868434483
528 => 0.0019707125504668
529 => 0.0019717752867703
530 => 0.002054323254937
531 => 0.0020594716704562
601 => 0.0020724800555313
602 => 0.002089199506522
603 => 0.0019977158292837
604 => 0.0019674664137994
605 => 0.0019531325625693
606 => 0.001908989848679
607 => 0.0019565939810994
608 => 0.0019288570917502
609 => 0.0019325997457505
610 => 0.001930162337423
611 => 0.0019314933271866
612 => 0.0018608280947539
613 => 0.0018865747913971
614 => 0.0018437659145738
615 => 0.0017864496340293
616 => 0.0017862574897593
617 => 0.0018002855682226
618 => 0.0017919411182338
619 => 0.0017694864178695
620 => 0.0017726760020731
621 => 0.0017447318882117
622 => 0.0017760689234403
623 => 0.0017769675574814
624 => 0.0017649010919785
625 => 0.0018131801184258
626 => 0.0018329600749532
627 => 0.0018250176688704
628 => 0.0018324028145696
629 => 0.0018944511201065
630 => 0.0019045677012664
701 => 0.0019090608183538
702 => 0.0019030406366807
703 => 0.0018335369436911
704 => 0.0018366197280277
705 => 0.0018140003020252
706 => 0.0017948892706295
707 => 0.0017956536116612
708 => 0.0018054791660588
709 => 0.0018483879383741
710 => 0.0019386869201016
711 => 0.0019421137004504
712 => 0.0019462670581995
713 => 0.0019293732649237
714 => 0.0019242779352199
715 => 0.0019309999903154
716 => 0.0019649115401574
717 => 0.0020521412532468
718 => 0.0020213084467643
719 => 0.0019962408951529
720 => 0.0020182318960795
721 => 0.002014846553858
722 => 0.0019862708586206
723 => 0.0019854688340296
724 => 0.0019306229386667
725 => 0.0019103476599316
726 => 0.0018934041194423
727 => 0.0018749022155502
728 => 0.0018639336667336
729 => 0.0018807863428322
730 => 0.001884640749251
731 => 0.001847792078427
801 => 0.0018427697407542
802 => 0.0018728611607829
803 => 0.0018596190487494
804 => 0.0018732388893644
805 => 0.0018763988092159
806 => 0.0018758899893407
807 => 0.0018620637035309
808 => 0.0018708761658003
809 => 0.0018500320654118
810 => 0.0018273672369219
811 => 0.0018129084884141
812 => 0.0018002913126664
813 => 0.0018072920550858
814 => 0.0017823356866457
815 => 0.0017743516421092
816 => 0.0018678907018701
817 => 0.0019369890110298
818 => 0.0019359842942487
819 => 0.0019298683392358
820 => 0.0019207812706629
821 => 0.0019642467644914
822 => 0.0019491042555615
823 => 0.001960121696007
824 => 0.0019629260970008
825 => 0.0019714141741778
826 => 0.0019744479321937
827 => 0.0019652778083893
828 => 0.0019345017528655
829 => 0.0018578107485997
830 => 0.0018221108790905
831 => 0.0018103293275242
901 => 0.0018107575645472
902 => 0.0017989448757163
903 => 0.0018024242419846
904 => 0.0017977348941201
905 => 0.00178885440374
906 => 0.0018067437098294
907 => 0.0018088052857058
908 => 0.0018046297079032
909 => 0.0018056132076338
910 => 0.0017710412068413
911 => 0.0017736696409752
912 => 0.0017590341857128
913 => 0.0017562902142842
914 => 0.0017192930578358
915 => 0.0016537472323641
916 => 0.0016900659823627
917 => 0.0016461980395534
918 => 0.0016295845849037
919 => 0.001708230095293
920 => 0.0017003362673368
921 => 0.0016868254652404
922 => 0.0016668401730418
923 => 0.001659427433761
924 => 0.0016143899764786
925 => 0.0016117289232369
926 => 0.0016340507031797
927 => 0.0016237499697816
928 => 0.001609283838898
929 => 0.0015568889792455
930 => 0.0014979798096543
1001 => 0.0014997579071944
1002 => 0.0015184958179973
1003 => 0.0015729788208083
1004 => 0.0015516913690446
1005 => 0.0015362470785446
1006 => 0.0015333548271876
1007 => 0.0015695574082585
1008 => 0.0016207916451491
1009 => 0.0016448296027967
1010 => 0.0016210087168116
1011 => 0.0015936445655994
1012 => 0.0015953100946904
1013 => 0.0016063901135628
1014 => 0.0016075544668832
1015 => 0.0015897432175243
1016 => 0.0015947569798889
1017 => 0.0015871406163891
1018 => 0.0015403990076496
1019 => 0.0015395536001667
1020 => 0.0015280824555718
1021 => 0.0015277351138724
1022 => 0.0015082198353053
1023 => 0.001505489512931
1024 => 0.0014667407428433
1025 => 0.0014922453006571
1026 => 0.001475138182325
1027 => 0.0014493537198372
1028 => 0.0014449084687855
1029 => 0.0014447748391711
1030 => 0.0014712497168458
1031 => 0.001491935926297
1101 => 0.0014754357679725
1102 => 0.0014716790017642
1103 => 0.0015117914363675
1104 => 0.0015066867634313
1105 => 0.0015022661495901
1106 => 0.0016162041811776
1107 => 0.0015260133384806
1108 => 0.0014866849831514
1109 => 0.0014380086751795
1110 => 0.0014538579265024
1111 => 0.0014571975966301
1112 => 0.0013401398505214
1113 => 0.0012926495375037
1114 => 0.0012763526517108
1115 => 0.0012669735635328
1116 => 0.0012712477317907
1117 => 0.0012285008800166
1118 => 0.0012572274713764
1119 => 0.0012202123110416
1120 => 0.0012140065989537
1121 => 0.0012801942909309
1122 => 0.0012894039216067
1123 => 0.0012501127759359
1124 => 0.0012753440521152
1125 => 0.0012661948406316
1126 => 0.0012208468297256
1127 => 0.0012191148692663
1128 => 0.0011963608314533
1129 => 0.0011607551683259
1130 => 0.0011444824248491
1201 => 0.00113600743876
1202 => 0.0011395043831946
1203 => 0.0011377362210802
1204 => 0.0011261977672529
1205 => 0.0011383975917471
1206 => 0.00110723208148
1207 => 0.001094821724174
1208 => 0.001089216253697
1209 => 0.0010615550695151
1210 => 0.001105576314533
1211 => 0.0011142490543666
1212 => 0.0011229388821767
1213 => 0.0011985779004669
1214 => 0.0011947991888668
1215 => 0.0012289569014247
1216 => 0.0012276295955267
1217 => 0.001217887262587
1218 => 0.0011767859624499
1219 => 0.0011931682081243
1220 => 0.0011427462023048
1221 => 0.0011805257974279
1222 => 0.0011632847679273
1223 => 0.0011746965880109
1224 => 0.0011541771065384
1225 => 0.0011655334348139
1226 => 0.0011163056827185
1227 => 0.0010703375004651
1228 => 0.0010888364388988
1229 => 0.0011089469005864
1230 => 0.0011525515055755
1231 => 0.0011265809625742
]
'min_raw' => 0.0010615550695151
'max_raw' => 0.0031687677356702
'avg_raw' => 0.0021151614025927
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.001061'
'max' => '$0.003168'
'avg' => '$0.002115'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0020109649304849
'max_diff' => 9.6247735670211E-5
'year' => 2026
]
1 => [
'items' => [
101 => 0.0011359209518924
102 => 0.0011046335511716
103 => 0.0010400787066805
104 => 0.0010404440800897
105 => 0.0010305137236685
106 => 0.0010219324458647
107 => 0.0011295639918481
108 => 0.0011161783077021
109 => 0.0010948499718905
110 => 0.0011233987969287
111 => 0.0011309475593996
112 => 0.0011311624620548
113 => 0.0011519909478508
114 => 0.0011631071144539
115 => 0.0011650663869979
116 => 0.0011978404594272
117 => 0.001208825896205
118 => 0.0012540733555756
119 => 0.0011621639853819
120 => 0.0011602711723854
121 => 0.0011238005374433
122 => 0.0011006702841851
123 => 0.0011253842856727
124 => 0.0011472775171931
125 => 0.0011244808211738
126 => 0.0011274575884094
127 => 0.001096854886562
128 => 0.0011077939124815
129 => 0.0011172160752493
130 => 0.001112013710778
131 => 0.0011042255193673
201 => 0.0011454825218755
202 => 0.0011431546401065
203 => 0.0011815741093366
204 => 0.0012115248330041
205 => 0.0012652018841484
206 => 0.0012091870830313
207 => 0.0012071456810399
208 => 0.0012271007129568
209 => 0.0012088228411936
210 => 0.0012203738252173
211 => 0.0012633408420447
212 => 0.0012642486674037
213 => 0.0012490414229731
214 => 0.0012481160607675
215 => 0.0012510367784094
216 => 0.0012681435128651
217 => 0.0012621658942094
218 => 0.0012690833458525
219 => 0.001277733725056
220 => 0.0013135153611265
221 => 0.0013221421924449
222 => 0.0013011834648403
223 => 0.0013030758032781
224 => 0.0012952366638241
225 => 0.0012876641533356
226 => 0.0013046860510373
227 => 0.0013357939036535
228 => 0.0013356003833169
301 => 0.0013428168004736
302 => 0.0013473125685782
303 => 0.0013280134407699
304 => 0.0013154504182152
305 => 0.0013202678804686
306 => 0.0013279711075224
307 => 0.0013177698277565
308 => 0.0012548028033495
309 => 0.0012739029762055
310 => 0.0012707237734915
311 => 0.0012661962022225
312 => 0.0012854015737265
313 => 0.0012835491687932
314 => 0.0012280624492664
315 => 0.0012316145290243
316 => 0.0012282784630013
317 => 0.0012390579748164
318 => 0.0012082407121802
319 => 0.0012177198946097
320 => 0.0012236651489676
321 => 0.001227166949458
322 => 0.0012398178540365
323 => 0.0012383334164004
324 => 0.0012397255793088
325 => 0.0012584835310837
326 => 0.0013533548142093
327 => 0.0013585184488282
328 => 0.0013330908234544
329 => 0.0013432486582535
330 => 0.0013237478367135
331 => 0.0013368388688574
401 => 0.0013457954205742
402 => 0.0013053224856121
403 => 0.0013029259410708
404 => 0.0012833446327035
405 => 0.0012938665186781
406 => 0.0012771254415421
407 => 0.0012812331162933
408 => 0.0012697476995884
409 => 0.0012904191629335
410 => 0.001313533070974
411 => 0.0013193725569409
412 => 0.0013040113834187
413 => 0.001292888881438
414 => 0.0012733614319398
415 => 0.0013058360156529
416 => 0.0013153325735756
417 => 0.0013057861342769
418 => 0.0013035740156976
419 => 0.001299382054987
420 => 0.0013044633599791
421 => 0.0013152808532817
422 => 0.0013101795232079
423 => 0.0013135490415955
424 => 0.0013007079121342
425 => 0.0013280198295842
426 => 0.0013713977274657
427 => 0.0013715371945004
428 => 0.0013664358369285
429 => 0.0013643484713204
430 => 0.0013695827737654
501 => 0.0013724221681194
502 => 0.0013893489424196
503 => 0.0014075120456362
504 => 0.001492271323165
505 => 0.0014684712572046
506 => 0.0015436747305802
507 => 0.0016031509140714
508 => 0.0016209852209221
509 => 0.0016045784977884
510 => 0.0015484519842219
511 => 0.0015456981497006
512 => 0.0016295748569719
513 => 0.0016058758453712
514 => 0.0016030569233509
515 => 0.0015730683556991
516 => 0.0015907953133377
517 => 0.0015869181676633
518 => 0.0015807979035399
519 => 0.0016146197038437
520 => 0.0016779310947195
521 => 0.0016680634207211
522 => 0.0016606976598295
523 => 0.0016284230397431
524 => 0.0016478595698325
525 => 0.0016409385937499
526 => 0.0016706754991607
527 => 0.0016530600151484
528 => 0.0016056963020497
529 => 0.0016132391294735
530 => 0.0016120990462824
531 => 0.001635561877567
601 => 0.0016285189179987
602 => 0.0016107237953912
603 => 0.0016777147032683
604 => 0.0016733646863338
605 => 0.0016795320157947
606 => 0.0016822470649543
607 => 0.0017230232500669
608 => 0.0017397279484151
609 => 0.0017435202073971
610 => 0.0017593883788402
611 => 0.001743125392836
612 => 0.0018081889321652
613 => 0.0018514523892563
614 => 0.0019017051209848
615 => 0.001975137868701
616 => 0.0020027492611332
617 => 0.0019977615102303
618 => 0.0020534373814724
619 => 0.0021534856844894
620 => 0.0020179841327605
621 => 0.0021606675957545
622 => 0.0021154956587304
623 => 0.0020083938086547
624 => 0.0020014977121577
625 => 0.002074028328507
626 => 0.0022348942547566
627 => 0.0021945991647573
628 => 0.0022349601630885
629 => 0.0021878769146345
630 => 0.0021855388345
701 => 0.0022326734348029
702 => 0.0023428059975839
703 => 0.002290486145264
704 => 0.0022154728076093
705 => 0.0022708614887967
706 => 0.0022228786871718
707 => 0.0021147600055702
708 => 0.0021945683518614
709 => 0.0021412027835073
710 => 0.0021567776934227
711 => 0.0022689441805738
712 => 0.002255448012084
713 => 0.0022729133038213
714 => 0.0022420875210513
715 => 0.0022132913791643
716 => 0.0021595412419027
717 => 0.0021436284761093
718 => 0.0021480261920933
719 => 0.0021436262968197
720 => 0.0021135535890111
721 => 0.0021070593906231
722 => 0.0020962354421257
723 => 0.0020995902363649
724 => 0.002079238046532
725 => 0.0021176468337237
726 => 0.0021247758430835
727 => 0.0021527265553746
728 => 0.0021556284910476
729 => 0.0022334708269248
730 => 0.0021905965764109
731 => 0.0022193603252403
801 => 0.0022167874248101
802 => 0.0020107150305071
803 => 0.0020391099882499
804 => 0.0020832836316691
805 => 0.0020633834651847
806 => 0.0020352492856976
807 => 0.0020125294273024
808 => 0.001978106518609
809 => 0.0020265561015616
810 => 0.0020902621511055
811 => 0.002157244181595
812 => 0.0022377187023916
813 => 0.0022197577261765
814 => 0.0021557397664056
815 => 0.0021586115653158
816 => 0.0021763638961673
817 => 0.0021533730147453
818 => 0.0021465925549786
819 => 0.0021754323651164
820 => 0.0021756309690387
821 => 0.0021491771814219
822 => 0.0021197786374778
823 => 0.0021196554565052
824 => 0.0021144242695666
825 => 0.0021888075311697
826 => 0.0022297108040554
827 => 0.0022344002983728
828 => 0.0022293951637239
829 => 0.0022313214414036
830 => 0.0022075207281535
831 => 0.0022619221007609
901 => 0.0023118461800036
902 => 0.0022984654602942
903 => 0.0022784058592684
904 => 0.00226242742085
905 => 0.0022947014480049
906 => 0.0022932643363797
907 => 0.0023114101367242
908 => 0.0023105869384054
909 => 0.0023044851882476
910 => 0.0022984656782069
911 => 0.0023223323551037
912 => 0.0023154591354445
913 => 0.0023085752397768
914 => 0.0022947685331434
915 => 0.00229664509388
916 => 0.0022765889564271
917 => 0.002267310069535
918 => 0.0021277778738404
919 => 0.0020904903118047
920 => 0.0021022217378794
921 => 0.0021060840279496
922 => 0.0020898564331664
923 => 0.0021131226355584
924 => 0.0021094966225606
925 => 0.0021236033179884
926 => 0.0021147900671267
927 => 0.0021151517660162
928 => 0.0021410696576174
929 => 0.0021485937318119
930 => 0.0021447669269499
1001 => 0.0021474470899
1002 => 0.0022092103138604
1003 => 0.0022004295584899
1004 => 0.0021957649572063
1005 => 0.0021970570836403
1006 => 0.0022128389115806
1007 => 0.0022172569617481
1008 => 0.0021985373727378
1009 => 0.0022073656391317
1010 => 0.0022449552769631
1011 => 0.0022581095228149
1012 => 0.0023000915611774
1013 => 0.0022822568451098
1014 => 0.0023149932383204
1015 => 0.002415613750391
1016 => 0.0024959963778427
1017 => 0.0024220731916855
1018 => 0.0025696856503348
1019 => 0.0026846231231429
1020 => 0.0026802116314982
1021 => 0.0026601696245624
1022 => 0.0025293163675412
1023 => 0.0024089032495182
1024 => 0.0025096339357555
1025 => 0.0025098907189902
1026 => 0.0025012378637088
1027 => 0.0024474957226998
1028 => 0.0024993677536945
1029 => 0.0025034851671433
1030 => 0.0025011805105206
1031 => 0.0024599765370141
1101 => 0.0023970656852369
1102 => 0.0024093583150869
1103 => 0.002429493893544
1104 => 0.002391373042803
1105 => 0.0023791911211674
1106 => 0.0024018396311933
1107 => 0.0024748178495012
1108 => 0.0024610217400642
1109 => 0.0024606614678923
1110 => 0.002519687074525
1111 => 0.0024774374786992
1112 => 0.0024095133645157
1113 => 0.0023923616298754
1114 => 0.0023314845266952
1115 => 0.0023735325586986
1116 => 0.0023750457925137
1117 => 0.0023520165151059
1118 => 0.0024113820634558
1119 => 0.0024108349994766
1120 => 0.002467193752239
1121 => 0.0025749305201399
1122 => 0.0025430674564672
1123 => 0.0025060141801074
1124 => 0.0025100428986236
1125 => 0.002554227997022
1126 => 0.0025275126778827
1127 => 0.002537119692911
1128 => 0.0025542134556541
1129 => 0.0025645265471313
1130 => 0.0025085590034695
1201 => 0.0024955102918049
1202 => 0.0024688172072145
1203 => 0.0024618534796949
1204 => 0.0024835944401243
1205 => 0.0024778664651706
1206 => 0.0023749186110711
1207 => 0.0023641599875212
1208 => 0.0023644899391457
1209 => 0.002337436868685
1210 => 0.0022961744427515
1211 => 0.0024046096344533
1212 => 0.0023959007710101
1213 => 0.0023862868597813
1214 => 0.0023874645090506
1215 => 0.0024345325505588
1216 => 0.002407230709491
1217 => 0.0024798171286535
1218 => 0.0024648955430212
1219 => 0.0024495912750217
1220 => 0.0024474757590047
1221 => 0.0024415849215237
1222 => 0.0024213830479172
1223 => 0.002396988071593
1224 => 0.0023808803951671
1225 => 0.0021962363116801
1226 => 0.0022305051795501
1227 => 0.0022699283883289
1228 => 0.0022835371220207
1229 => 0.0022602584413451
1230 => 0.0024223022321155
1231 => 0.0024519091941821
]
'min_raw' => 0.0010219324458647
'max_raw' => 0.0026846231231429
'avg_raw' => 0.0018532777845038
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.001021'
'max' => '$0.002684'
'avg' => '$0.001853'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -3.9622623650367E-5
'max_diff' => -0.00048414461252729
'year' => 2027
]
2 => [
'items' => [
101 => 0.0023622277748681
102 => 0.0023454520429827
103 => 0.0024234020463051
104 => 0.0023763886653013
105 => 0.0023975587878886
106 => 0.0023518005622928
107 => 0.0024447777440133
108 => 0.002444069413668
109 => 0.0024078991899938
110 => 0.0024384700153602
111 => 0.0024331575821417
112 => 0.0023923214886969
113 => 0.0024460723210135
114 => 0.0024460989807558
115 => 0.0024112859268778
116 => 0.0023706319015059
117 => 0.0023633639219746
118 => 0.0023578884757134
119 => 0.0023962121637593
120 => 0.0024305730626263
121 => 0.0024945101766284
122 => 0.0025105854861969
123 => 0.0025733284896367
124 => 0.0025359680859897
125 => 0.0025525294690282
126 => 0.0025705091930671
127 => 0.0025791293339538
128 => 0.0025650832769612
129 => 0.0026625489873537
130 => 0.002670778079583
131 => 0.0026735372230262
201 => 0.0026406723338664
202 => 0.0026698640475634
203 => 0.0026562062114525
204 => 0.0026917401067568
205 => 0.00269731227526
206 => 0.0026925928467734
207 => 0.0026943615410071
208 => 0.0026111917513166
209 => 0.0026068789589655
210 => 0.0025480737292372
211 => 0.0025720372950178
212 => 0.0025272385573946
213 => 0.0025414446985731
214 => 0.0025477066302434
215 => 0.0025444357525003
216 => 0.0025733921590724
217 => 0.0025487732980831
218 => 0.0024838000762169
219 => 0.0024188091524397
220 => 0.0024179932443322
221 => 0.0024008822812868
222 => 0.0023885141890341
223 => 0.0023908967223836
224 => 0.002399293080666
225 => 0.002388026177427
226 => 0.0023904305424795
227 => 0.0024303590225521
228 => 0.0024383663944737
229 => 0.0024111542160018
301 => 0.0023018933927382
302 => 0.0022750805126494
303 => 0.0022943530791347
304 => 0.002285142033667
305 => 0.0018442879691925
306 => 0.00194786009236
307 => 0.0018863210537509
308 => 0.001914681074017
309 => 0.0018518656510538
310 => 0.0018818444633302
311 => 0.0018763084713537
312 => 0.0020428493804851
313 => 0.0020402490732586
314 => 0.0020414937027227
315 => 0.0019820842955337
316 => 0.002076725094327
317 => 0.0021233485549856
318 => 0.0021147197932609
319 => 0.0021168914666877
320 => 0.0020795749221181
321 => 0.0020418550084441
322 => 0.0020000178191265
323 => 0.0020777461456457
324 => 0.0020691040826036
325 => 0.0020889258659061
326 => 0.0021393382417894
327 => 0.0021467616556362
328 => 0.0021567387991272
329 => 0.0021531627034071
330 => 0.0022383598117814
331 => 0.0022280418798087
401 => 0.0022529051271914
402 => 0.002201759540946
403 => 0.0021438834553258
404 => 0.0021548838070904
405 => 0.0021538243847562
406 => 0.0021403367224939
407 => 0.0021281606640775
408 => 0.0021078909573974
409 => 0.0021720273086853
410 => 0.0021694234899497
411 => 0.0022115762886702
412 => 0.0022041253720459
413 => 0.0021543663272804
414 => 0.0021561434812987
415 => 0.0021680956961428
416 => 0.0022094624481866
417 => 0.0022217429166564
418 => 0.0022160541143691
419 => 0.0022295190874216
420 => 0.0022401612531111
421 => 0.0022308555795825
422 => 0.0023626042928183
423 => 0.0023078930415946
424 => 0.0023345589247626
425 => 0.0023409185807737
426 => 0.0023246284556305
427 => 0.0023281612004684
428 => 0.0023335123462825
429 => 0.0023660034558038
430 => 0.0024512695285662
501 => 0.0024890332917668
502 => 0.0026026474365872
503 => 0.0024858975369299
504 => 0.0024789700810434
505 => 0.002499435419344
506 => 0.0025661389496322
507 => 0.0026201958957868
508 => 0.0026381297034463
509 => 0.0026404999521834
510 => 0.0026741449675696
511 => 0.0026934296629466
512 => 0.00267005957775
513 => 0.0026502558774957
514 => 0.0025793214813108
515 => 0.0025875323308172
516 => 0.0026440969416083
517 => 0.0027239977859896
518 => 0.0027925610227348
519 => 0.0027685525668967
520 => 0.0029517201376131
521 => 0.0029698804540772
522 => 0.0029673712855352
523 => 0.0030087431890578
524 => 0.002926628385807
525 => 0.0028915227165179
526 => 0.0026545376622722
527 => 0.0027211207960205
528 => 0.002817903291214
529 => 0.0028050937650594
530 => 0.0027348077300464
531 => 0.0027925077044745
601 => 0.0027734302884836
602 => 0.0027583831389688
603 => 0.0028273170479295
604 => 0.0027515213833783
605 => 0.0028171471714794
606 => 0.0027329814194278
607 => 0.0027686622355006
608 => 0.0027484080786108
609 => 0.0027615150003746
610 => 0.0026848922035618
611 => 0.0027262360048088
612 => 0.0026831721655042
613 => 0.0026831517476373
614 => 0.0026822011109978
615 => 0.0027328655269654
616 => 0.0027345176917512
617 => 0.0026970766118014
618 => 0.0026916807672411
619 => 0.0027116320326573
620 => 0.0026882743260996
621 => 0.0026992032499863
622 => 0.0026886053520707
623 => 0.002686219542024
624 => 0.0026672090016598
625 => 0.0026590187381652
626 => 0.0026622303515186
627 => 0.0026512674594435
628 => 0.0026446619204232
629 => 0.0026808871030277
630 => 0.0026615334492818
701 => 0.0026779208780206
702 => 0.0026592453347143
703 => 0.0025945077650678
704 => 0.0025572765041767
705 => 0.0024349932362903
706 => 0.002469672619371
707 => 0.0024926650862319
708 => 0.0024850660760715
709 => 0.0025013916903225
710 => 0.0025023939504464
711 => 0.0024970863268334
712 => 0.0024909407786383
713 => 0.0024879494656471
714 => 0.0025102442619471
715 => 0.0025231871416075
716 => 0.0024949726878809
717 => 0.0024883624361349
718 => 0.0025168888066152
719 => 0.002534289876129
720 => 0.0026627695966029
721 => 0.0026532514039262
722 => 0.0026771401996938
723 => 0.0026744506878939
724 => 0.0026994899516419
725 => 0.0027404185654877
726 => 0.0026571992497189
727 => 0.0026716432454289
728 => 0.0026681019112414
729 => 0.0027067652693131
730 => 0.0027068859720968
731 => 0.0026837053575548
801 => 0.0026962719447605
802 => 0.0026892576205286
803 => 0.0027019334524585
804 => 0.00265312428266
805 => 0.0027125685828503
806 => 0.002746269670552
807 => 0.0027467376101875
808 => 0.0027627116582897
809 => 0.0027789422163161
810 => 0.002810095359064
811 => 0.0027780733720732
812 => 0.0027204689347544
813 => 0.0027246277890676
814 => 0.0026908543285443
815 => 0.0026914220665173
816 => 0.0026883914367226
817 => 0.0026974865848717
818 => 0.0026551201562142
819 => 0.0026650634723393
820 => 0.0026511427715362
821 => 0.002671612984544
822 => 0.002649590419195
823 => 0.0026681002035028
824 => 0.002676088412801
825 => 0.0027055650770852
826 => 0.0026452366919135
827 => 0.0025222230306759
828 => 0.0025480819936645
829 => 0.0025098345562266
830 => 0.0025133745021797
831 => 0.0025205257563833
901 => 0.0024973462017648
902 => 0.0025017681303143
903 => 0.0025016101479099
904 => 0.0025002487408976
905 => 0.0024942188435044
906 => 0.0024854742993055
907 => 0.0025203098719652
908 => 0.0025262291145758
909 => 0.00253938685766
910 => 0.0025785353760964
911 => 0.002574623515919
912 => 0.0025810039221699
913 => 0.0025670755311486
914 => 0.0025140206002916
915 => 0.0025169017382921
916 => 0.0024809739012587
917 => 0.0025384681020903
918 => 0.002524852716447
919 => 0.0025160747887495
920 => 0.0025136796498502
921 => 0.0025529252098917
922 => 0.0025646680965549
923 => 0.0025573507176222
924 => 0.0025423425599492
925 => 0.0025711626594448
926 => 0.0025788737022475
927 => 0.0025805999203587
928 => 0.002631663610959
929 => 0.0025834538134164
930 => 0.0025950583908491
1001 => 0.0026855939913061
1002 => 0.0026034906947504
1003 => 0.002646982642058
1004 => 0.0026448539375584
1005 => 0.0026671029461137
1006 => 0.002643028869457
1007 => 0.0026433272964897
1008 => 0.0026630829088084
1009 => 0.0026353397142502
1010 => 0.0026284701091242
1011 => 0.0026189797988436
1012 => 0.0026397015441452
1013 => 0.0026521232932895
1014 => 0.0027522334686235
1015 => 0.0028169092074679
1016 => 0.0028141014630745
1017 => 0.0028397589909526
1018 => 0.0028282000396475
1019 => 0.0027908731367861
1020 => 0.0028545856084397
1021 => 0.0028344243165654
1022 => 0.0028360863889716
1023 => 0.0028360245265536
1024 => 0.0028494300231192
1025 => 0.0028399310002068
1026 => 0.0028212074509916
1027 => 0.0028336370167521
1028 => 0.0028705483834097
1029 => 0.0029851223980938
1030 => 0.0030492395346149
1031 => 0.0029812624659674
1101 => 0.0030281521376712
1102 => 0.0030000350431473
1103 => 0.0029949253306612
1104 => 0.0030243755096107
1105 => 0.0030538772371999
1106 => 0.0030519981046919
1107 => 0.0030305813653926
1108 => 0.0030184835927921
1109 => 0.0031100919799744
1110 => 0.0031775874791422
1111 => 0.0031729847385945
1112 => 0.0031932997384805
1113 => 0.0032529452064652
1114 => 0.0032583984405564
1115 => 0.003257711458402
1116 => 0.0032441950487209
1117 => 0.0033029237578946
1118 => 0.0033519162803206
1119 => 0.0032410663904064
1120 => 0.0032832765773541
1121 => 0.0033022260902022
1122 => 0.0033300495971303
1123 => 0.0033769925170793
1124 => 0.0034279849791385
1125 => 0.0034351958723776
1126 => 0.0034300793985515
1127 => 0.0033964484990725
1128 => 0.0034522450595242
1129 => 0.0034849293760465
1130 => 0.0035043921385682
1201 => 0.0035537464660285
1202 => 0.0033023431159424
1203 => 0.0031243873291942
1204 => 0.0030965969633808
1205 => 0.0031531097650646
1206 => 0.0031680117401874
1207 => 0.0031620047727009
1208 => 0.0029616993556835
1209 => 0.0030955423968143
1210 => 0.0032395462552285
1211 => 0.0032450780299044
1212 => 0.0033171693724052
1213 => 0.0033406452686475
1214 => 0.0033986882485889
1215 => 0.0033950576443902
1216 => 0.0034091901863404
1217 => 0.0034059413596875
1218 => 0.0035134537576376
1219 => 0.0036320558983222
1220 => 0.003627949083322
1221 => 0.0036108986223618
1222 => 0.0036362214644233
1223 => 0.0037586315837876
1224 => 0.0037473620215787
1225 => 0.0037583094413256
1226 => 0.0039026378707881
1227 => 0.004090285359569
1228 => 0.0040031042615304
1229 => 0.004192262158589
1230 => 0.0043113270279581
1231 => 0.0045172374079947
]
'min_raw' => 0.0018442879691925
'max_raw' => 0.0045172374079947
'avg_raw' => 0.0031807626885936
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.001844'
'max' => '$0.004517'
'avg' => '$0.00318'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00082235552332778
'max_diff' => 0.0018326142848517
'year' => 2028
]
3 => [
'items' => [
101 => 0.0044914564142841
102 => 0.0045716158141921
103 => 0.0044453030548864
104 => 0.0041552634274999
105 => 0.0041093635462389
106 => 0.0042012562708935
107 => 0.004427165567696
108 => 0.0041941415831943
109 => 0.0042412820317679
110 => 0.0042277055794074
111 => 0.0042269821479573
112 => 0.0042545925839987
113 => 0.0042145422064572
114 => 0.0040513697634279
115 => 0.004126150732487
116 => 0.0040972742090562
117 => 0.0041293148646901
118 => 0.0043022250685747
119 => 0.0042257773457729
120 => 0.0041452458799099
121 => 0.004246250209465
122 => 0.0043748634298419
123 => 0.0043668150456509
124 => 0.0043511978163567
125 => 0.0044392313201964
126 => 0.0045846368771431
127 => 0.004623939414899
128 => 0.0046529517447653
129 => 0.0046569520548865
130 => 0.0046981577353142
131 => 0.0044765844064862
201 => 0.0048282269697429
202 => 0.0048889459264876
203 => 0.0048775332791625
204 => 0.00494501984414
205 => 0.0049251635847547
206 => 0.0048963949802571
207 => 0.0050033755405503
208 => 0.0048807309610602
209 => 0.0047066524209971
210 => 0.0046111494910354
211 => 0.0047369154532106
212 => 0.0048137163376838
213 => 0.0048644768368669
214 => 0.0048798369332493
215 => 0.0044937845132647
216 => 0.0042857236703418
217 => 0.004419088285233
218 => 0.0045818023197342
219 => 0.0044756805218089
220 => 0.0044798402953724
221 => 0.0043285384998487
222 => 0.0045951891713713
223 => 0.0045563404114156
224 => 0.0047578878467881
225 => 0.0047097869338172
226 => 0.0048741410433371
227 => 0.0048308610981945
228 => 0.0050105137307322
301 => 0.0050821820297524
302 => 0.0052025242580873
303 => 0.0052910484911315
304 => 0.0053430316139738
305 => 0.0053399107422621
306 => 0.0055458937728522
307 => 0.0054244327762121
308 => 0.0052718491382733
309 => 0.0052690893816582
310 => 0.0053481146098736
311 => 0.0055137298087004
312 => 0.0055566714201531
313 => 0.0055806699227527
314 => 0.0055439153806275
315 => 0.0054120781739628
316 => 0.0053551515365548
317 => 0.0054036546809499
318 => 0.0053443395032774
319 => 0.0054467341408395
320 => 0.0055873438485267
321 => 0.0055583084999204
322 => 0.0056553693170887
323 => 0.0057558170517621
324 => 0.0058994618237352
325 => 0.0059370158862795
326 => 0.0059990913236121
327 => 0.0060629873393462
328 => 0.0060835090175541
329 => 0.0061226912687557
330 => 0.006122484758951
331 => 0.0062405631102169
401 => 0.0063708071882452
402 => 0.0064199713125436
403 => 0.0065330215054421
404 => 0.0063394270118547
405 => 0.006486270659094
406 => 0.0066187273046387
407 => 0.0064608070312738
408 => 0.0066784633374028
409 => 0.00668691443855
410 => 0.0068145160322632
411 => 0.0066851673715274
412 => 0.006608360549678
413 => 0.0068300989664431
414 => 0.006937391201621
415 => 0.0069050739072122
416 => 0.0066591377010599
417 => 0.0065159922803792
418 => 0.0061413531037682
419 => 0.006585129391672
420 => 0.0068012798763781
421 => 0.0066585779235227
422 => 0.0067305484880661
423 => 0.0071231965516809
424 => 0.007272691512226
425 => 0.0072415976054813
426 => 0.0072468519638719
427 => 0.0073275167310566
428 => 0.0076852287316521
429 => 0.007470879409196
430 => 0.0076347414346978
501 => 0.0077216532621755
502 => 0.0078023818111855
503 => 0.0076041380093368
504 => 0.0073462257359115
505 => 0.007264534092497
506 => 0.0066443890266593
507 => 0.0066121077828289
508 => 0.0065939873424451
509 => 0.0064797405290126
510 => 0.0063899738284905
511 => 0.0063185880154114
512 => 0.0061312503242836
513 => 0.0061944712956836
514 => 0.0058958941164408
515 => 0.0060869132147949
516 => 0.0056103768273252
517 => 0.0060072504911651
518 => 0.0057912501995683
519 => 0.0059362885860664
520 => 0.0059357825607993
521 => 0.005668720906794
522 => 0.0055146853181983
523 => 0.0056128427904063
524 => 0.0057180753923631
525 => 0.0057351490279856
526 => 0.0058715858432746
527 => 0.0059096624257222
528 => 0.0057942886032803
529 => 0.0056005016698982
530 => 0.0056455139547135
531 => 0.0055137731456832
601 => 0.0052829024451947
602 => 0.0054487178129013
603 => 0.0055053344698234
604 => 0.0055303396109
605 => 0.0053033047926486
606 => 0.0052319655235884
607 => 0.0051939850953351
608 => 0.0055711943258431
609 => 0.005591858698992
610 => 0.0054861368443142
611 => 0.0059640096524155
612 => 0.0058558523182841
613 => 0.0059766905596991
614 => 0.005641429561663
615 => 0.0056542369832767
616 => 0.0054955190540106
617 => 0.0055843904888638
618 => 0.0055215790231696
619 => 0.0055772105551723
620 => 0.0056105558660773
621 => 0.005769247751293
622 => 0.006009062497584
623 => 0.0057455444755498
624 => 0.0056307258997019
625 => 0.0057019586983937
626 => 0.0058916610282586
627 => 0.0061790697686875
628 => 0.0060089180097136
629 => 0.006084428470982
630 => 0.0061009241475425
701 => 0.0059754605398357
702 => 0.006183695790863
703 => 0.0062952907535887
704 => 0.0064097640940215
705 => 0.0065091580880491
706 => 0.00636404092453
707 => 0.0065193370912237
708 => 0.0063941957943323
709 => 0.0062819311141511
710 => 0.0062821013733301
711 => 0.0062116760995272
712 => 0.0060752182573785
713 => 0.0060500533376474
714 => 0.0061809644280677
715 => 0.0062859427252584
716 => 0.0062945892406272
717 => 0.0063527106199316
718 => 0.0063871062535062
719 => 0.0067242302211332
720 => 0.0068598242697485
721 => 0.0070256261057313
722 => 0.0070902152649261
723 => 0.0072846054776072
724 => 0.007127619593266
725 => 0.0070936547097013
726 => 0.0066221276382909
727 => 0.0066993401698189
728 => 0.0068229648826964
729 => 0.0066241661642724
730 => 0.0067502581939551
731 => 0.0067751514316088
801 => 0.0066174110598917
802 => 0.0067016670079849
803 => 0.0064779081899968
804 => 0.0060139398283539
805 => 0.0061842123202819
806 => 0.006309590187442
807 => 0.006130660512025
808 => 0.0064513850296753
809 => 0.0062640243875619
810 => 0.0062046400589089
811 => 0.0059729606207915
812 => 0.0060823043974235
813 => 0.0062301934209704
814 => 0.0061388151983628
815 => 0.0063284387307827
816 => 0.0065969962234383
817 => 0.0067883862855798
818 => 0.0068030788380512
819 => 0.0066800278502325
820 => 0.0068772178435129
821 => 0.0068786541573367
822 => 0.0066562230393717
823 => 0.0065199852181197
824 => 0.0064890316984844
825 => 0.0065663596593283
826 => 0.0066602500793219
827 => 0.0068082891029167
828 => 0.0068977459844136
829 => 0.0071310020870937
830 => 0.0071941145005024
831 => 0.0072634559083503
901 => 0.0073561174133335
902 => 0.0074673813079879
903 => 0.007223942240741
904 => 0.0072336145287099
905 => 0.0070069274399329
906 => 0.0067646797753577
907 => 0.0069485155561726
908 => 0.007188856384939
909 => 0.0071337219332669
910 => 0.0071275181811592
911 => 0.0071379511714271
912 => 0.0070963815953892
913 => 0.0069083639436104
914 => 0.0068139426559399
915 => 0.0069357702064744
916 => 0.0070005161276631
917 => 0.007100931404989
918 => 0.0070885531025492
919 => 0.0073472120731272
920 => 0.0074477191276526
921 => 0.0074220051221657
922 => 0.0074267371180174
923 => 0.0076087003393929
924 => 0.0078110808651532
925 => 0.0080006369339901
926 => 0.0081934615088337
927 => 0.0079610039577885
928 => 0.0078429763493564
929 => 0.0079647507137935
930 => 0.0079001355219249
1001 => 0.0082714335805128
1002 => 0.0082971414524954
1003 => 0.0086684126620076
1004 => 0.0090207932499878
1005 => 0.0087994693162314
1006 => 0.0090081678171148
1007 => 0.0092338922612586
1008 => 0.0096693513364832
1009 => 0.0095227040395825
1010 => 0.0094103745084127
1011 => 0.0093042236442296
1012 => 0.0095251067416195
1013 => 0.009809269317718
1014 => 0.0098704752149343
1015 => 0.009969652150877
1016 => 0.009865379729512
1017 => 0.0099909643758157
1018 => 0.010434333361957
1019 => 0.010314531148176
1020 => 0.010144392745439
1021 => 0.010494389978387
1022 => 0.010621052616412
1023 => 0.011510037343805
1024 => 0.012632417284267
1025 => 0.012167744618972
1026 => 0.01187930730073
1027 => 0.011947096912342
1028 => 0.01235695207164
1029 => 0.012488584540654
1030 => 0.01213076211344
1031 => 0.012257151043947
1101 => 0.012953566477326
1102 => 0.013327171013652
1103 => 0.012819765871538
1104 => 0.011419855208426
1105 => 0.010129073643797
1106 => 0.010471447039388
1107 => 0.010432632521411
1108 => 0.011180844024982
1109 => 0.010311673904998
1110 => 0.010326308500708
1111 => 0.011089992225803
1112 => 0.010886254500801
1113 => 0.010556225479054
1114 => 0.010131483220887
1115 => 0.0093463078727623
1116 => 0.0086508561706934
1117 => 0.010014797111412
1118 => 0.0099559814978828
1119 => 0.0098708077735065
1120 => 0.010060352680346
1121 => 0.010980728944699
1122 => 0.010959511292839
1123 => 0.010824535417043
1124 => 0.010926913429211
1125 => 0.010538278118531
1126 => 0.010638438287155
1127 => 0.010128869177402
1128 => 0.010359215696496
1129 => 0.010555517384997
1130 => 0.01059492785526
1201 => 0.010683721657111
1202 => 0.0099249883421549
1203 => 0.01026563732533
1204 => 0.010465736688452
1205 => 0.0095616804861891
1206 => 0.010447866404096
1207 => 0.0099117804831708
1208 => 0.0097298248698684
1209 => 0.0099748041323508
1210 => 0.0098793354755113
1211 => 0.0097972571304683
1212 => 0.0097514560036493
1213 => 0.0099313417366418
1214 => 0.0099229498521878
1215 => 0.0096286218786958
1216 => 0.0092446830356185
1217 => 0.0093735455137182
1218 => 0.0093267285673324
1219 => 0.0091570579141241
1220 => 0.0092713954482737
1221 => 0.0087679108127806
1222 => 0.0079016916662688
1223 => 0.0084739425674645
1224 => 0.0084519115302577
1225 => 0.00844080248227
1226 => 0.0088708332186653
1227 => 0.008829495685858
1228 => 0.0087544676590344
1229 => 0.0091556799655738
1230 => 0.0090092320766199
1231 => 0.0094605499629136
]
'min_raw' => 0.0040513697634279
'max_raw' => 0.013327171013652
'avg_raw' => 0.0086892703885399
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.004051'
'max' => '$0.013327'
'avg' => '$0.008689'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0022070817942354
'max_diff' => 0.0088099336056572
'year' => 2029
]
4 => [
'items' => [
101 => 0.0097578171122374
102 => 0.009682420547584
103 => 0.0099620017383398
104 => 0.009376514244948
105 => 0.0095709897045716
106 => 0.0096110708272687
107 => 0.0091507290679896
108 => 0.0088362590174552
109 => 0.0088152874503056
110 => 0.0082700397193212
111 => 0.0085613066561272
112 => 0.0088176095070716
113 => 0.0086948603313739
114 => 0.0086560016093753
115 => 0.0088545223926375
116 => 0.0088699491577125
117 => 0.0085182172791473
118 => 0.008591353474601
119 => 0.0088963435675237
120 => 0.0085836685067833
121 => 0.0079761919389459
122 => 0.0078255293511015
123 => 0.0078054281846207
124 => 0.0073968192971863
125 => 0.0078355973456425
126 => 0.0076440589689708
127 => 0.0082491264058947
128 => 0.0079035151309655
129 => 0.0078886165196678
130 => 0.0078660950835402
131 => 0.0075143885347049
201 => 0.0075913899167826
202 => 0.0078473542384506
203 => 0.0079386851920662
204 => 0.0079291586253516
205 => 0.0078460998736336
206 => 0.0078841237448405
207 => 0.0077616356072881
208 => 0.0077183824965482
209 => 0.0075818637813478
210 => 0.0073812189842608
211 => 0.0074091198739218
212 => 0.0070115900293255
213 => 0.0067949946714838
214 => 0.0067350439311141
215 => 0.0066548752955778
216 => 0.0067440991918185
217 => 0.0070104638772228
218 => 0.0066891715542048
219 => 0.0061383384024265
220 => 0.0061714444134224
221 => 0.0062458237908673
222 => 0.0061072183130675
223 => 0.0059760398606061
224 => 0.0060900888821771
225 => 0.0058566936142635
226 => 0.0062740284939356
227 => 0.0062627407550079
228 => 0.0064182973903339
301 => 0.0065155701467467
302 => 0.006291387935644
303 => 0.0062350067158048
304 => 0.0062671240210088
305 => 0.0057362965081688
306 => 0.0063749174576706
307 => 0.0063804402781613
308 => 0.0063331505361191
309 => 0.0066731964765191
310 => 0.0073907994737515
311 => 0.007120808360679
312 => 0.0070162596411727
313 => 0.0068175124489666
314 => 0.0070823312821407
315 => 0.0070619973275703
316 => 0.0069700394735795
317 => 0.0069144230765599
318 => 0.0070168979933603
319 => 0.0069017253003287
320 => 0.0068810371199263
321 => 0.0067556892556498
322 => 0.0067109457710675
323 => 0.0066778194763722
324 => 0.0066413506808352
325 => 0.0067217917563322
326 => 0.0065395016963513
327 => 0.0063196777541292
328 => 0.0063014017718615
329 => 0.0063518633657435
330 => 0.0063295378668745
331 => 0.0063012948859621
401 => 0.0062473713438821
402 => 0.0062313733808412
403 => 0.006283358999616
404 => 0.0062246702669691
405 => 0.0063112686889303
406 => 0.0062877187098661
407 => 0.0061561704411822
408 => 0.005992212592995
409 => 0.0059907530242329
410 => 0.0059554285747858
411 => 0.0059104375773483
412 => 0.0058979221111158
413 => 0.006080483991689
414 => 0.0064583816208581
415 => 0.0063841912739284
416 => 0.0064378014029177
417 => 0.0067015101776504
418 => 0.0067853352671384
419 => 0.0067258382041259
420 => 0.0066443949546553
421 => 0.0066479780443005
422 => 0.0069262942822897
423 => 0.0069436525246634
424 => 0.0069875112031606
425 => 0.0070438819994906
426 => 0.0067354383944951
427 => 0.0066334503782431
428 => 0.0065851227980632
429 => 0.0064362925562364
430 => 0.006596793212306
501 => 0.0065032763533376
502 => 0.0065158949726032
503 => 0.0065076770802525
504 => 0.0065121646051675
505 => 0.0062739118403314
506 => 0.006360718625641
507 => 0.0062163855086109
508 => 0.0060231396670603
509 => 0.0060224918392387
510 => 0.006069788485187
511 => 0.006041654589459
512 => 0.0059659469994436
513 => 0.0059767009052755
514 => 0.0058824853743962
515 => 0.0059881403765515
516 => 0.0059911701839616
517 => 0.0059504872530649
518 => 0.0061132633614659
519 => 0.0061799528658904
520 => 0.0061531744892614
521 => 0.0061780740236004
522 => 0.0063872742177926
523 => 0.0064213829774904
524 => 0.0064365318354499
525 => 0.0064162343726232
526 => 0.006181897819116
527 => 0.0061922916417401
528 => 0.0061160286677347
529 => 0.0060515944910944
530 => 0.0060541715202473
531 => 0.0060872990628971
601 => 0.0062319689845532
602 => 0.0065364183059209
603 => 0.0065479719351172
604 => 0.0065619752707463
605 => 0.0065050166672301
606 => 0.0064878374073892
607 => 0.0065105012854626
608 => 0.0066248364433834
609 => 0.0069189375112484
610 => 0.006814982551515
611 => 0.0067304655510965
612 => 0.0068046097460833
613 => 0.0067931958284264
614 => 0.0066968508768423
615 => 0.0066941467949381
616 => 0.0065092300295038
617 => 0.0064408705116737
618 => 0.0063837441819537
619 => 0.0063213637212201
620 => 0.0062843824930852
621 => 0.006341202467168
622 => 0.0063541978675149
623 => 0.0062299600011397
624 => 0.0062130268390274
625 => 0.00631448216257
626 => 0.0062698354573146
627 => 0.0063157557008548
628 => 0.0063264095912527
629 => 0.0063246940695187
630 => 0.0062780777815906
701 => 0.0063077896133983
702 => 0.0062375122736499
703 => 0.0061610962219886
704 => 0.0061123475419169
705 => 0.0060698078529803
706 => 0.0060934113448235
707 => 0.0060092692062296
708 => 0.0059823504426468
709 => 0.0062977239133192
710 => 0.0065306936869411
711 => 0.0065273062141665
712 => 0.0065066858448383
713 => 0.0064760481587057
714 => 0.0066225951058125
715 => 0.0065715410797392
716 => 0.0066086871494141
717 => 0.006618142383162
718 => 0.0066467605279827
719 => 0.0066569890549435
720 => 0.0066260713422994
721 => 0.0065223077223852
722 => 0.0062637386471081
723 => 0.0061433740445728
724 => 0.0061036517209051
725 => 0.006105095551927
726 => 0.0060652682467978
727 => 0.006076999173093
728 => 0.0060611887093682
729 => 0.0060312475160355
730 => 0.0060915625605073
731 => 0.0060985133075092
801 => 0.0060844350554184
802 => 0.0060877509934259
803 => 0.005971189079014
804 => 0.0059800510282076
805 => 0.0059307065689757
806 => 0.0059214550777261
807 => 0.0057967165817016
808 => 0.0055757242548601
809 => 0.0056981754561745
810 => 0.0055502716242312
811 => 0.0054942582019654
812 => 0.0057594170310969
813 => 0.0057328024390132
814 => 0.005687249826451
815 => 0.0056198680184752
816 => 0.0055948754504488
817 => 0.0054430285188064
818 => 0.0054340565920131
819 => 0.0055093160315471
820 => 0.0054745863897214
821 => 0.0054258128194541
822 => 0.0052491598920437
823 => 0.0050505435138601
824 => 0.0050565384938594
825 => 0.0051197146683705
826 => 0.0053034079162295
827 => 0.0052316357863655
828 => 0.0051795642826589
829 => 0.0051698128552783
830 => 0.0052918723849425
831 => 0.0054646121916793
901 => 0.0055456578441648
902 => 0.0054653440639447
903 => 0.0053730839176288
904 => 0.0053786993652427
905 => 0.0054160564224531
906 => 0.0054199821209656
907 => 0.0053599302502102
908 => 0.005376834500072
909 => 0.0053511553987749
910 => 0.0051935628015148
911 => 0.0051907124511619
912 => 0.0051520366862704
913 => 0.0051508655994802
914 => 0.0050850684752779
915 => 0.005075863002768
916 => 0.0049452188190645
917 => 0.0050312092164052
918 => 0.0049735313725676
919 => 0.0048865972570764
920 => 0.0048716097827982
921 => 0.0048711592412235
922 => 0.0049604211397205
923 => 0.0050301661391504
924 => 0.0049745347033552
925 => 0.0049618685037946
926 => 0.0050971103776206
927 => 0.0050798996164192
928 => 0.0050649952082163
929 => 0.0054491452366128
930 => 0.0051450605135365
1001 => 0.005012462217726
1002 => 0.0048483466469271
1003 => 0.0049017835043218
1004 => 0.0049130434353256
1005 => 0.0045183750716094
1006 => 0.0043582581656025
1007 => 0.0043033120773393
1008 => 0.0042716898267202
1009 => 0.0042861004834145
1010 => 0.0041419764881685
1011 => 0.0042388301965647
1012 => 0.0041140309991797
1013 => 0.0040931080076063
1014 => 0.0043162644321847
1015 => 0.0043473153450038
1016 => 0.0042148425041549
1017 => 0.0042999115133847
1018 => 0.0042690643080903
1019 => 0.0041161703232234
1020 => 0.0041103308976135
1021 => 0.0040336140704907
1022 => 0.0039135670913486
1023 => 0.0038587024005901
1024 => 0.003830128393286
1025 => 0.003841918585596
1026 => 0.0038359571035782
1027 => 0.0037970544009105
1028 => 0.0038381869609572
1029 => 0.0037331102671851
1030 => 0.0036912678810646
1031 => 0.0036723686459899
1101 => 0.0035791070322783
1102 => 0.0037275277333214
1103 => 0.0037567684811816
1104 => 0.003786066842348
1105 => 0.0040410890734609
1106 => 0.0040283488834798
1107 => 0.0041435139961844
1108 => 0.0041390388916797
1109 => 0.0041061919359852
1110 => 0.0039676160329722
1111 => 0.0040228499180352
1112 => 0.0038528486050627
1113 => 0.0039802251477074
1114 => 0.0039220958130159
1115 => 0.0039605715611753
1116 => 0.0038913886967664
1117 => 0.0039296773504208
1118 => 0.0037637025472594
1119 => 0.0036087176113959
1120 => 0.0036710880738797
1121 => 0.0037388918995272
1122 => 0.0038859078696243
1123 => 0.0037983463706899
1124 => 0.0038298367967736
1125 => 0.0037243491408269
1126 => 0.0035066979755497
1127 => 0.0035079298575083
1128 => 0.0034744489675188
1129 => 0.0034455165902779
1130 => 0.0038084038621553
1201 => 0.0037632730934985
1202 => 0.0036913631202129
1203 => 0.0037876174770444
1204 => 0.0038130686567527
1205 => 0.0038137932160589
1206 => 0.0038840179101186
1207 => 0.0039214968419268
1208 => 0.0039281026661009
1209 => 0.0040386027395089
1210 => 0.004075640906584
1211 => 0.0042281958749289
1212 => 0.0039183170164136
1213 => 0.0039119352652439
1214 => 0.0037889719732381
1215 => 0.0037109867094752
1216 => 0.0037943116909672
1217 => 0.0038681262495748
1218 => 0.0037912655973313
1219 => 0.0038013019758974
1220 => 0.0036981228300064
1221 => 0.0037350045196324
1222 => 0.0037667719992384
1223 => 0.0037492318642061
1224 => 0.0037229734331106
1225 => 0.0038620742975391
1226 => 0.0038542256816274
1227 => 0.0039837596044983
1228 => 0.0040847405604359
1229 => 0.004265716485981
1230 => 0.0040768586731863
1231 => 0.0040699759438462
]
'min_raw' => 0.0034455165902779
'max_raw' => 0.0099620017383398
'avg_raw' => 0.0067037591643088
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.003445'
'max' => '$0.009962'
'avg' => '$0.0067037'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00060585317315002
'max_diff' => -0.0033651692753121
'year' => 2030
]
5 => [
'items' => [
101 => 0.0041372557271698
102 => 0.0040756306063997
103 => 0.0041145755554996
104 => 0.0042594418525945
105 => 0.0042625026491748
106 => 0.0042112303628412
107 => 0.0042081104395582
108 => 0.0042179578430059
109 => 0.0042756343925772
110 => 0.0042554804339356
111 => 0.0042788031051115
112 => 0.0043079684625463
113 => 0.0044286087467519
114 => 0.0044576947108481
115 => 0.0043870308974377
116 => 0.0043934110485994
117 => 0.0043669808426189
118 => 0.0043414495948112
119 => 0.0043988401113436
120 => 0.00450372240832
121 => 0.0045030699409939
122 => 0.0045274005952719
123 => 0.0045425583913211
124 => 0.0044774900344932
125 => 0.004435132926828
126 => 0.0044513753371596
127 => 0.0044773473049936
128 => 0.0044429529780325
129 => 0.0042306552590268
130 => 0.0042950528253423
131 => 0.0042843339214273
201 => 0.0042690688987891
202 => 0.004333821149691
203 => 0.0043275756371274
204 => 0.0041404982882838
205 => 0.0041524743731858
206 => 0.0041412265936727
207 => 0.0041775704703586
208 => 0.0040736679177883
209 => 0.0041056276431645
210 => 0.0041256724833167
211 => 0.0041374790481581
212 => 0.0041801324562023
213 => 0.0041751275710721
214 => 0.0041798213455155
215 => 0.0042430650895629
216 => 0.0045629302443225
217 => 0.0045803397989534
218 => 0.0044946087847055
219 => 0.0045288566339281
220 => 0.004463108252602
221 => 0.0045072455814621
222 => 0.0045374432209015
223 => 0.0044009858949468
224 => 0.0043929057777045
225 => 0.0043268860294207
226 => 0.0043623613025988
227 => 0.0043059175922101
228 => 0.0043197669044223
301 => 0.0042810430201157
302 => 0.0043507383020192
303 => 0.0044286684567392
304 => 0.0044483566913765
305 => 0.0043965654223636
306 => 0.0043590651303873
307 => 0.0042932269710411
308 => 0.004402717297333
309 => 0.0044347356053979
310 => 0.0044025491187913
311 => 0.0043950908065559
312 => 0.0043809573183468
313 => 0.0043980892928928
314 => 0.0044345612268159
315 => 0.0044173617363087
316 => 0.0044287223028047
317 => 0.004385427538287
318 => 0.0044775115748268
319 => 0.0046237631860822
320 => 0.0046242334089269
321 => 0.004607033825708
322 => 0.004599996126825
323 => 0.0046176439429656
324 => 0.0046272171592706
325 => 0.0046842869606133
326 => 0.0047455251312153
327 => 0.0050312969531074
328 => 0.0049510533690545
329 => 0.005204607130079
330 => 0.0054051352352142
331 => 0.0054652648459129
401 => 0.0054099484333869
402 => 0.0052207139742692
403 => 0.0052114292289143
404 => 0.0054942254035639
405 => 0.00541432253134
406 => 0.0054048183389378
407 => 0.0053037097893649
408 => 0.0053634774647
409 => 0.0053504053973653
410 => 0.0053297704995701
411 => 0.005443803060657
412 => 0.0056572618352549
413 => 0.0056239922834301
414 => 0.005599158106323
415 => 0.0054903419713599
416 => 0.0055558735895713
417 => 0.0055325390355017
418 => 0.0056327990882587
419 => 0.0055734072540376
420 => 0.0054137171884963
421 => 0.0054391483577791
422 => 0.0054353044877024
423 => 0.0055144110615009
424 => 0.0054906652315925
425 => 0.0054306677333058
426 => 0.0056565322563693
427 => 0.005641865870566
428 => 0.0056626594524324
429 => 0.0056718134302329
430 => 0.0058092931852423
501 => 0.0058656142420082
502 => 0.0058784001079329
503 => 0.0059319007558336
504 => 0.0058770689630752
505 => 0.0060964352285147
506 => 0.0062423009946556
507 => 0.0064117315882118
508 => 0.0066593152240478
509 => 0.0067524089613988
510 => 0.0067355924109961
511 => 0.006923307498054
512 => 0.007260627336825
513 => 0.006803774394755
514 => 0.0072848416520803
515 => 0.0071325413125997
516 => 0.0067714399474573
517 => 0.0067481892766475
518 => 0.0069927313135951
519 => 0.0075351020152458
520 => 0.0073992443059999
521 => 0.0075353242297885
522 => 0.0073765797703784
523 => 0.0073686967699653
524 => 0.0075276143657192
525 => 0.0078989339903454
526 => 0.0077225339553935
527 => 0.0074696212502268
528 => 0.0076563680559643
529 => 0.0074945906902335
530 => 0.0071300610066084
531 => 0.00739914041817
601 => 0.0072192146785992
602 => 0.0072717265747844
603 => 0.0076499037174284
604 => 0.0076044004430928
605 => 0.0076632858935728
606 => 0.0075593546147762
607 => 0.0074622664119219
608 => 0.0072810440714297
609 => 0.0072273930705634
610 => 0.0072422202770421
611 => 0.0072273857229362
612 => 0.0071259934889502
613 => 0.0071040978456745
614 => 0.0070676041476116
615 => 0.0070789150706134
616 => 0.0070102962416472
617 => 0.0071397941492799
618 => 0.0071638301020682
619 => 0.007258067880014
620 => 0.0072678519587421
621 => 0.0075303028289304
622 => 0.0073857492999384
623 => 0.0074827282873374
624 => 0.0074740535739028
625 => 0.006779266108995
626 => 0.0068750016914976
627 => 0.0070239362143909
628 => 0.0069568414137034
629 => 0.0068619850632968
630 => 0.0067853834744678
701 => 0.0066693242344771
702 => 0.0068326753860437
703 => 0.0070474647798954
704 => 0.0072732993722267
705 => 0.0075446248376441
706 => 0.0074840681523395
707 => 0.0072682271313808
708 => 0.007277909601909
709 => 0.0073377628248029
710 => 0.0072602474629166
711 => 0.0072373866694167
712 => 0.0073346221028274
713 => 0.0073352917098176
714 => 0.007246100917923
715 => 0.0071469816744747
716 => 0.0071465663612255
717 => 0.0071289290492322
718 => 0.0073797174090005
719 => 0.0075176256493099
720 => 0.0075334366068112
721 => 0.007516561445895
722 => 0.0075230560255804
723 => 0.0074428102591451
724 => 0.0076262282850735
725 => 0.0077945508038281
726 => 0.0077494367731157
727 => 0.0076818044277406
728 => 0.0076279320070342
729 => 0.0077367461428875
730 => 0.0077319008207073
731 => 0.0077930806534681
801 => 0.0077903051828623
802 => 0.0077697327061947
803 => 0.0077494375078237
804 => 0.0078299056752995
805 => 0.0078067321353457
806 => 0.0077835226004836
807 => 0.0077369723251158
808 => 0.0077432992806565
809 => 0.0076756786129593
810 => 0.0076443941979713
811 => 0.0071739516583599
812 => 0.0070482340396223
813 => 0.0070877873616953
814 => 0.0071008093423232
815 => 0.0070460968735371
816 => 0.0071245404992964
817 => 0.0071123151433141
818 => 0.0071598768518469
819 => 0.007130162361245
820 => 0.0071313818543041
821 => 0.0072187658353671
822 => 0.0072441337768277
823 => 0.0072312314370564
824 => 0.0072402677935659
825 => 0.0074485068153187
826 => 0.0074189018855345
827 => 0.0074031748566348
828 => 0.0074075313511205
829 => 0.0074607408858733
830 => 0.0074756366504712
831 => 0.0074125222491631
901 => 0.00744228736568
902 => 0.0075690234540533
903 => 0.0076133739123426
904 => 0.0077549192857744
905 => 0.0076947882953722
906 => 0.0078051613306637
907 => 0.0081444104122094
908 => 0.0084154260527989
909 => 0.0081661888695178
910 => 0.0086638745798268
911 => 0.0090513942940773
912 => 0.0090365206419965
913 => 0.0089689476163244
914 => 0.0085277667243949
915 => 0.0081217854900047
916 => 0.0084614060314458
917 => 0.0084622717940496
918 => 0.0084330980883452
919 => 0.0082519027077769
920 => 0.0084267928818652
921 => 0.0084406750287765
922 => 0.008432904718067
923 => 0.0082939826446203
924 => 0.008081874315558
925 => 0.0081233197753412
926 => 0.0081912082839305
927 => 0.0080626811741444
928 => 0.0080216089748356
929 => 0.0080979700076564
930 => 0.008344021165858
1001 => 0.0082975066196773
1002 => 0.0082962919368965
1003 => 0.0084953008906949
1004 => 0.0083528534285954
1005 => 0.0081238425353158
1006 => 0.0080660142644801
1007 => 0.0078607628608044
1008 => 0.0080025307364036
1009 => 0.008007632709862
1010 => 0.0079299878932288
1011 => 0.0081301429842606
1012 => 0.0081282985198601
1013 => 0.008318315989641
1014 => 0.0086815580245595
1015 => 0.0085741294807791
1016 => 0.0084492017725549
1017 => 0.0084627848783085
1018 => 0.0086117580224636
1019 => 0.0085216854587813
1020 => 0.0085540761806897
1021 => 0.0086117089952267
1022 => 0.0086464803031791
1023 => 0.0084577818221942
1024 => 0.0084137871797849
1025 => 0.0083237895814366
1026 => 0.0083003108879123
1027 => 0.0083736120539055
1028 => 0.0083542997864347
1029 => 0.0080072039087486
1030 => 0.0079709304583072
1031 => 0.0079720429132457
1101 => 0.0078808315974021
1102 => 0.0077417124475167
1103 => 0.0081073092670428
1104 => 0.0080779467259107
1105 => 0.008045532752981
1106 => 0.0080495032797133
1107 => 0.0082081964678437
1108 => 0.00811614640453
1109 => 0.0083608765845582
1110 => 0.008310567416807
1111 => 0.0082589680087369
1112 => 0.0082518353987851
1113 => 0.0082319740289328
1114 => 0.0081638620016187
1115 => 0.0080816126357387
1116 => 0.0080273044800666
1117 => 0.0074047640611521
1118 => 0.0075203039417516
1119 => 0.0076532220425899
1120 => 0.0076991048383634
1121 => 0.0076206191412
1122 => 0.0081669610953187
1123 => 0.0082667830350182
1124 => 0.0079644158684443
1125 => 0.0079078553171483
1126 => 0.0081706691956453
1127 => 0.0080121602992217
1128 => 0.0080835368455756
1129 => 0.0079292597932419
1130 => 0.0082427388528722
1201 => 0.0082403506676589
1202 => 0.008118400233217
1203 => 0.0082214719053267
1204 => 0.0082035606658284
1205 => 0.0080658789256942
1206 => 0.0082471036096129
1207 => 0.0082471934947952
1208 => 0.0081298188530759
1209 => 0.0079927509681609
1210 => 0.007968246467737
1211 => 0.0079497856183841
1212 => 0.0080789966083054
1213 => 0.0081948467778366
1214 => 0.0084104152216415
1215 => 0.008464614250194
1216 => 0.0086761566668678
1217 => 0.0085501934575519
1218 => 0.008606031316745
1219 => 0.0086666512116466
1220 => 0.0086957146184852
1221 => 0.00864835735667
1222 => 0.008976969804097
1223 => 0.0090047147630851
1224 => 0.0090140174078408
1225 => 0.0089032111394855
1226 => 0.0090016330403151
1227 => 0.0089555846923077
1228 => 0.0090753897012234
1229 => 0.0090941766563685
1230 => 0.0090782647737259
1231 => 0.0090842280498209
]
'min_raw' => 0.0040736679177883
'max_raw' => 0.0090941766563685
'avg_raw' => 0.0065839222870784
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.004073'
'max' => '$0.009094'
'avg' => '$0.006583'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0006281513275104
'max_diff' => -0.00086782508197132
'year' => 2031
]
6 => [
'items' => [
101 => 0.0088038152971501
102 => 0.008789274416629
103 => 0.0085910084789501
104 => 0.008671803314062
105 => 0.0085207612424174
106 => 0.0085686582392417
107 => 0.0085897707790625
108 => 0.0085787427863862
109 => 0.0086763713328157
110 => 0.0085933671241562
111 => 0.0083743053703487
112 => 0.0081551839333128
113 => 0.0081524330421632
114 => 0.0080947422356063
115 => 0.0080530423490639
116 => 0.0080610752265949
117 => 0.0080893841347589
118 => 0.0080513969838586
119 => 0.0080595034685007
120 => 0.0081941251267826
121 => 0.0082211225402734
122 => 0.0081293747806615
123 => 0.0077609942866815
124 => 0.0076705927894463
125 => 0.0077355715929193
126 => 0.0077045159100301
127 => 0.0062181456522066
128 => 0.0065673462966406
129 => 0.0063598631314513
130 => 0.006455480919812
131 => 0.0062436943356589
201 => 0.0063447699943027
202 => 0.0063261050108432
203 => 0.0068876093134947
204 => 0.0068788421961327
205 => 0.0068830385512684
206 => 0.0066827355870983
207 => 0.0070018236478394
208 => 0.007159017900596
209 => 0.0071299254280003
210 => 0.0071372473765799
211 => 0.0070114320412059
212 => 0.0068842567187335
213 => 0.0067431997139698
214 => 0.007005266193648
215 => 0.0069761288747318
216 => 0.0070429594010492
217 => 0.0072129282460193
218 => 0.00723795680409
219 => 0.0072715954399516
220 => 0.0072595383835564
221 => 0.0075467863827126
222 => 0.0075119987546915
223 => 0.0075958269291388
224 => 0.0074233860142418
225 => 0.0072282527507939
226 => 0.0072653412047883
227 => 0.0072617692884222
228 => 0.007216294693426
229 => 0.00717524226237
301 => 0.0071069015311124
302 => 0.0073231417173365
303 => 0.0073143627606767
304 => 0.0074564838645772
305 => 0.0074313625789721
306 => 0.0072635964854794
307 => 0.0072695882843291
308 => 0.0073098860111532
309 => 0.0074493569038031
310 => 0.007490761360644
311 => 0.007471581166553
312 => 0.0075169792632938
313 => 0.0075528600679282
314 => 0.0075214853399253
315 => 0.0079656853250012
316 => 0.0077812225216828
317 => 0.0078711284085362
318 => 0.0078925704327946
319 => 0.0078376471385341
320 => 0.0078495580344035
321 => 0.0078675997961207
322 => 0.0079771458403288
323 => 0.008264626357734
324 => 0.0083919495219468
325 => 0.008775007543495
326 => 0.0083813771055829
327 => 0.0083580207044019
328 => 0.0084270210213267
329 => 0.0086519166307851
330 => 0.0088341733988807
331 => 0.0088946384835032
401 => 0.0089026299426058
402 => 0.0090160664610004
403 => 0.0090810861578784
404 => 0.0090022922839907
405 => 0.0089355227259333
406 => 0.0086963624567145
407 => 0.0087240459090884
408 => 0.0089147574435855
409 => 0.0091841487189161
410 => 0.0094153144585348
411 => 0.0093343682734597
412 => 0.0099519305264815
413 => 0.010013159301353
414 => 0.010004699464429
415 => 0.01014418772565
416 => 0.0098673319334171
417 => 0.0097489707184092
418 => 0.008949959062252
419 => 0.0091744487463702
420 => 0.009500757686053
421 => 0.0094575694742903
422 => 0.0092205952000297
423 => 0.0094151346922978
424 => 0.0093508138523416
425 => 0.009300081337194
426 => 0.0095324968240669
427 => 0.0092769464491482
428 => 0.0094982083755774
429 => 0.0092144376662704
430 => 0.0093347380288147
501 => 0.0092664497247607
502 => 0.0093106406265834
503 => 0.0090523015174963
504 => 0.0091916950299324
505 => 0.0090465022890956
506 => 0.0090464334488318
507 => 0.0090432283110305
508 => 0.0092140469267418
509 => 0.0092196173156675
510 => 0.0090933821005643
511 => 0.0090751896339033
512 => 0.0091424567182069
513 => 0.0090637045797646
514 => 0.0091005522096817
515 => 0.0090648206569376
516 => 0.0090567767317932
517 => 0.0089926813676819
518 => 0.008965067322484
519 => 0.0089758955011324
520 => 0.0089389333450967
521 => 0.0089166623091057
522 => 0.0090387980414181
523 => 0.0089735458465849
524 => 0.0090287972067117
525 => 0.0089658313085697
526 => 0.0087475640726737
527 => 0.0086220362771757
528 => 0.0082097497019515
529 => 0.0083266736632452
530 => 0.0084041943705495
531 => 0.0083785737772479
601 => 0.0084336167255132
602 => 0.0084369959154964
603 => 0.0084191008919189
604 => 0.0083983807471106
605 => 0.0083882953265139
606 => 0.0084634637888121
607 => 0.0085071016112304
608 => 0.0084119746106207
609 => 0.0083896876853461
610 => 0.0084858663350681
611 => 0.0085445352558379
612 => 0.0089777136035833
613 => 0.0089456223524347
614 => 0.0090261650952277
615 => 0.0090170972184183
616 => 0.0091015188443306
617 => 0.009239512523456
618 => 0.0089589327901545
619 => 0.0090076317301385
620 => 0.0089956918746772
621 => 0.0091260480858054
622 => 0.0091264550436677
623 => 0.0090482999833206
624 => 0.0090906691094558
625 => 0.0090670198255833
626 => 0.0091097572779333
627 => 0.0089451937542105
628 => 0.0091456143625703
629 => 0.0092592399326916
630 => 0.0092608176238429
701 => 0.0093146752422921
702 => 0.0093693977018594
703 => 0.0094744326976771
704 => 0.0093664683328339
705 => 0.0091722509506001
706 => 0.0091862728182791
707 => 0.0090724032381368
708 => 0.0090743174063512
709 => 0.0090640994264066
710 => 0.009094764353394
711 => 0.0089519229812457
712 => 0.0089854475657817
713 => 0.0089385129511117
714 => 0.0090075297034523
715 => 0.0089332790868117
716 => 0.0089956861169173
717 => 0.0090226189222851
718 => 0.0091220015539141
719 => 0.0089186001913145
720 => 0.0085038510439122
721 => 0.0085910363430435
722 => 0.0084620824373709
723 => 0.008474017612303
724 => 0.008498128565135
725 => 0.0084199770783938
726 => 0.0084348859192276
727 => 0.0084343532705211
728 => 0.0084297631917288
729 => 0.0084094329716738
730 => 0.0083799501303826
731 => 0.0084974006957468
801 => 0.0085173578354766
802 => 0.0085617200849295
803 => 0.0086937120481001
804 => 0.0086805229383945
805 => 0.0087020349235352
806 => 0.0086550743807577
807 => 0.0084761959771964
808 => 0.0084859099351198
809 => 0.00836477672416
810 => 0.0085586224363807
811 => 0.0085127172130885
812 => 0.0084831218170008
813 => 0.0084750464389789
814 => 0.008607365584696
815 => 0.0086469575469431
816 => 0.0086222864929885
817 => 0.0085716854415579
818 => 0.0086688544191625
819 => 0.0086948527383395
820 => 0.0087006728032221
821 => 0.008872837601234
822 => 0.0087102949029186
823 => 0.0087494205459386
824 => 0.0090546676438732
825 => 0.0087778506472667
826 => 0.0089244867841249
827 => 0.0089173097082833
828 => 0.0089923237940036
829 => 0.0089111563637571
830 => 0.0089121625313333
831 => 0.0089787699575586
901 => 0.0088852318401378
902 => 0.0088620704868349
903 => 0.0088300732431317
904 => 0.0088999380541619
905 => 0.0089418188486609
906 => 0.0092793472942687
907 => 0.0094974060632985
908 => 0.0094879395570458
909 => 0.0095744457036381
910 => 0.0095354738922927
911 => 0.0094096236332144
912 => 0.0096244346796571
913 => 0.0095564594764867
914 => 0.0095620632696462
915 => 0.0095618546961849
916 => 0.0096070522637978
917 => 0.0095750256448478
918 => 0.0095118978914324
919 => 0.0095538050401984
920 => 0.0096782542899538
921 => 0.010064548579764
922 => 0.01028072398206
923 => 0.010051534549108
924 => 0.010209626350989
925 => 0.010114827603729
926 => 0.010097599851333
927 => 0.010196893185807
928 => 0.010296360320119
929 => 0.010290024693672
930 => 0.010217816661855
1001 => 0.010177028176893
1002 => 0.010485892250172
1003 => 0.010713458038001
1004 => 0.010697939576892
1005 => 0.010766433017355
1006 => 0.010967531876979
1007 => 0.01098591783645
1008 => 0.010983601628153
1009 => 0.010938030109228
1010 => 0.011136038052514
1011 => 0.011301219762422
1012 => 0.010927481619284
1013 => 0.0110697962116
1014 => 0.01113368581718
1015 => 0.011227494713363
1016 => 0.011385766045421
1017 => 0.011557690691434
1018 => 0.011582002721438
1019 => 0.011564752172712
1020 => 0.011451363247084
1021 => 0.011639485246239
1022 => 0.01174968270134
1023 => 0.011815302764029
1024 => 0.01198170432487
1025 => 0.011134080377633
1026 => 0.010534090018136
1027 => 0.010440392859534
1028 => 0.010630929716009
1029 => 0.010681172765558
1030 => 0.010660919855284
1031 => 0.0099855761569328
1101 => 0.010436837314728
1102 => 0.0109223563774
1103 => 0.010941007141936
1104 => 0.011184068136434
1105 => 0.011263218759649
1106 => 0.011458914718953
1107 => 0.011446673883417
1108 => 0.011494322735304
1109 => 0.011483369089419
1110 => 0.011845854645383
1111 => 0.012245730043238
1112 => 0.012231883629736
1113 => 0.012174396810184
1114 => 0.012259774540179
1115 => 0.012672488804017
1116 => 0.012634492688214
1117 => 0.012671402678215
1118 => 0.013158016054837
1119 => 0.013790682664391
1120 => 0.013496745505564
1121 => 0.01413450456208
1122 => 0.014535940082001
1123 => 0.015230181304498
1124 => 0.015143258884232
1125 => 0.015413521897572
1126 => 0.014987649610698
1127 => 0.014009760757044
1128 => 0.013855006102745
1129 => 0.014164828839663
1130 => 0.014926497806317
1201 => 0.014140841173354
1202 => 0.014299778486961
1203 => 0.01425400452995
1204 => 0.014251565430307
1205 => 0.01434465594312
1206 => 0.014209623299011
1207 => 0.013659476015001
1208 => 0.013911605273225
1209 => 0.013814246058383
1210 => 0.01392227336586
1211 => 0.014505252190462
1212 => 0.014247503355626
1213 => 0.013975985895941
1214 => 0.014316529044934
1215 => 0.014750157496923
1216 => 0.014723021807702
1217 => 0.014670367228777
1218 => 0.014967178333275
1219 => 0.015457423320413
1220 => 0.015589934570472
1221 => 0.015687751666193
1222 => 0.01570123899106
1223 => 0.01584016681951
1224 => 0.015093116871611
1225 => 0.016278704324531
1226 => 0.016483422526457
1227 => 0.016444943989195
1228 => 0.016672479654778
1229 => 0.016605532889941
1230 => 0.016508537531318
1231 => 0.01686922995949
]
'min_raw' => 0.0062181456522066
'max_raw' => 0.01686922995949
'avg_raw' => 0.011543687805848
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.006218'
'max' => '$0.016869'
'avg' => '$0.011543'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0021444777344184
'max_diff' => 0.0077750533031219
'year' => 2032
]
7 => [
'items' => [
101 => 0.016455725196968
102 => 0.01586880724537
103 => 0.015546812449203
104 => 0.015970841171375
105 => 0.016229780715443
106 => 0.016400923282424
107 => 0.016452710919785
108 => 0.015151108232488
109 => 0.014449616574229
110 => 0.014899264684554
111 => 0.015447866412207
112 => 0.015090069361314
113 => 0.015104094328309
114 => 0.014593969761147
115 => 0.015493001117141
116 => 0.015362019810617
117 => 0.016041551060567
118 => 0.015879375474188
119 => 0.016433506829271
120 => 0.016287585472514
121 => 0.016893296866061
122 => 0.017134931539929
123 => 0.017540673764786
124 => 0.017839139397059
125 => 0.018014404125067
126 => 0.018003881888199
127 => 0.018698368057109
128 => 0.018288853826802
129 => 0.017774407438442
130 => 0.017765102726334
131 => 0.018031541800627
201 => 0.018589925006356
202 => 0.018734705647456
203 => 0.018815618274492
204 => 0.018691697769597
205 => 0.018247199422747
206 => 0.018055267290235
207 => 0.018218799027945
208 => 0.018018813765168
209 => 0.018364044434674
210 => 0.018838119881198
211 => 0.018740225176188
212 => 0.019067472497841
213 => 0.01940613904833
214 => 0.019890447425995
215 => 0.020017063569803
216 => 0.020226355240739
217 => 0.020441785118864
218 => 0.02051097538972
219 => 0.020643081085263
220 => 0.020642384823039
221 => 0.021040494228299
222 => 0.021479621230723
223 => 0.021645381508324
224 => 0.022026538126594
225 => 0.021373820775128
226 => 0.021868914384091
227 => 0.022315501212373
228 => 0.021783061985082
301 => 0.022516905417474
302 => 0.022545398895028
303 => 0.022975616577091
304 => 0.022539508536586
305 => 0.022280548974239
306 => 0.023028155527644
307 => 0.023389898789452
308 => 0.023280938775031
309 => 0.022451747685271
310 => 0.021969122905352
311 => 0.020706000764936
312 => 0.022202223503074
313 => 0.022930989953406
314 => 0.022449860356222
315 => 0.022692514139404
316 => 0.024016354499694
317 => 0.024520387196577
318 => 0.024415551919079
319 => 0.024433267355241
320 => 0.024705234249638
321 => 0.0259112852343
322 => 0.025188591528248
323 => 0.025741063787708
324 => 0.026034093082039
325 => 0.026306275021314
326 => 0.025637882202441
327 => 0.024768312965728
328 => 0.024492883886427
329 => 0.02240202149981
330 => 0.022293183032431
331 => 0.022232088702548
401 => 0.021846897594603
402 => 0.021544242896482
403 => 0.021303560643687
404 => 0.02067193853855
405 => 0.020885092457572
406 => 0.019878418651762
407 => 0.02052245287839
408 => 0.018915777177328
409 => 0.020253864443799
410 => 0.019525604380022
411 => 0.020014611426357
412 => 0.020012905326839
413 => 0.019112488314711
414 => 0.018593146573339
415 => 0.018924091344024
416 => 0.019278890408627
417 => 0.019336455363172
418 => 0.019796461611633
419 => 0.019924839467777
420 => 0.019535848570271
421 => 0.018882482394602
422 => 0.019034244455514
423 => 0.018590071120019
424 => 0.017811674434444
425 => 0.018370732523526
426 => 0.018561619535188
427 => 0.018645926114131
428 => 0.017880462373331
429 => 0.017639937046946
430 => 0.017511883381381
501 => 0.018783670637947
502 => 0.018853342014759
503 => 0.018496893400448
504 => 0.020108074936976
505 => 0.019743414933648
506 => 0.020150829501235
507 => 0.019020473639181
508 => 0.019063654755337
509 => 0.018528526175484
510 => 0.018828162422897
511 => 0.018616389180953
512 => 0.01880395477517
513 => 0.018916380818981
514 => 0.019451421589499
515 => 0.020259973749951
516 => 0.019371504340421
517 => 0.018984385495573
518 => 0.019224551849678
519 => 0.019864146499411
520 => 0.020833165134004
521 => 0.020259486599008
522 => 0.020514075391146
523 => 0.020569691716361
524 => 0.020146682403388
525 => 0.020848762090748
526 => 0.021225012298889
527 => 0.021610967158432
528 => 0.021946080948763
529 => 0.021456808300201
530 => 0.021980400168641
531 => 0.021558477549085
601 => 0.021179969341785
602 => 0.021180543382494
603 => 0.020943099654932
604 => 0.020483022512945
605 => 0.020398177229113
606 => 0.020839553110386
607 => 0.021193494768715
608 => 0.021222647098961
609 => 0.021418607387191
610 => 0.021534574667214
611 => 0.022671211661312
612 => 0.023128376463093
613 => 0.023687388929024
614 => 0.02390515578872
615 => 0.024560555962666
616 => 0.024031267093205
617 => 0.023916752116914
618 => 0.022326965674685
619 => 0.022587293115539
620 => 0.023004102466207
621 => 0.022333838707357
622 => 0.022758966788897
623 => 0.022842896077637
624 => 0.022311063401311
625 => 0.02259513821287
626 => 0.021840719735681
627 => 0.020276418011165
628 => 0.020850503605747
629 => 0.02127322383848
630 => 0.020669949945341
701 => 0.021751295048869
702 => 0.021119595562882
703 => 0.020919377152746
704 => 0.020138253751792
705 => 0.020506913928846
706 => 0.021005532097016
707 => 0.02069744403967
708 => 0.021336773018317
709 => 0.02224223335489
710 => 0.022887518311828
711 => 0.022937055278286
712 => 0.02252218028171
713 => 0.02318702011142
714 => 0.023191862743758
715 => 0.022441920699894
716 => 0.021982585373722
717 => 0.021878223421166
718 => 0.022138940040017
719 => 0.022455498146245
720 => 0.022954622050049
721 => 0.023256232171696
722 => 0.024042671407303
723 => 0.024255459315478
724 => 0.0244892487133
725 => 0.024801663446771
726 => 0.025176797435795
727 => 0.024356025624199
728 => 0.024388636418384
729 => 0.023624345071785
730 => 0.022807590157478
731 => 0.0234274053275
801 => 0.024237731211747
802 => 0.02405184155857
803 => 0.024030925175206
804 => 0.024066100730303
805 => 0.023925946002396
806 => 0.02329203136245
807 => 0.022973683398785
808 => 0.023384433491141
809 => 0.023602728884844
810 => 0.023941286003119
811 => 0.023899551692218
812 => 0.024771638470514
813 => 0.025110505022025
814 => 0.025023808457231
815 => 0.025039762711623
816 => 0.025653264416757
817 => 0.026335604489115
818 => 0.026974706009581
819 => 0.027624827526248
820 => 0.026841080663231
821 => 0.026443142340977
822 => 0.026853713112692
823 => 0.026635858482018
824 => 0.02788771580975
825 => 0.027974391695006
826 => 0.029226158499204
827 => 0.030414234254006
828 => 0.029668025159003
829 => 0.030371666725595
830 => 0.031132712448604
831 => 0.032600893123505
901 => 0.032106461523417
902 => 0.031727734666481
903 => 0.031369839616671
904 => 0.032114562401086
905 => 0.033072636366
906 => 0.033278996321724
907 => 0.033613378285567
908 => 0.033261816536867
909 => 0.03368523393992
910 => 0.035180083431731
911 => 0.034776161903642
912 => 0.03420252840013
913 => 0.035382568507044
914 => 0.035809620434446
915 => 0.038806894509785
916 => 0.042591076841117
917 => 0.041024400507665
918 => 0.040051913951162
919 => 0.040280471359629
920 => 0.041662326644376
921 => 0.042106134703942
922 => 0.040899711408229
923 => 0.041325840511627
924 => 0.043673853767436
925 => 0.044933487545894
926 => 0.043222735683362
927 => 0.038502839144039
928 => 0.034150878979399
929 => 0.035305214786382
930 => 0.03517434892908
1001 => 0.037696996251829
1002 => 0.034766528508783
1003 => 0.034815870069972
1004 => 0.037390683067825
1005 => 0.036703767103468
1006 => 0.035591051214759
1007 => 0.034159003036792
1008 => 0.031511729531395
1009 => 0.029166965562983
1010 => 0.033765587671932
1011 => 0.033567286724542
1012 => 0.033280117566168
1013 => 0.033919181453181
1014 => 0.037022294287067
1015 => 0.03695075749245
1016 => 0.036495676903489
1017 => 0.03684085151932
1018 => 0.035530540435709
1019 => 0.035868237437184
1020 => 0.034150189606674
1021 => 0.03492681897808
1022 => 0.035588663826208
1023 => 0.03572153897825
1024 => 0.036020913480574
1025 => 0.033462791136133
1026 => 0.034611312966261
1027 => 0.035285961939519
1028 => 0.0322378733344
1029 => 0.035225711028148
1030 => 0.033418259917425
1031 => 0.032804783863441
1101 => 0.033630748550806
1102 => 0.033308869308863
1103 => 0.033032136438023
1104 => 0.03287771474122
1105 => 0.033484212049225
1106 => 0.033455918224886
1107 => 0.032463570912935
1108 => 0.031169094297746
1109 => 0.03160356313955
1110 => 0.031445716536155
1111 => 0.030873660082837
1112 => 0.031259157062014
1113 => 0.029561623461274
1114 => 0.02664110513132
1115 => 0.028570488997983
1116 => 0.028496209817883
1117 => 0.028458754886983
1118 => 0.029908633538527
1119 => 0.029769261160573
1120 => 0.029516298929848
1121 => 0.030869014233094
1122 => 0.030375254950821
1123 => 0.031896904714469
1124 => 0.032899161662943
1125 => 0.032644956881194
1126 => 0.033587584385563
1127 => 0.031613572424161
1128 => 0.032269260014125
1129 => 0.032404396317673
1130 => 0.030852321936229
1201 => 0.029792064205254
1202 => 0.029721357102421
1203 => 0.027883016309426
1204 => 0.028865043122476
1205 => 0.029729186078928
1206 => 0.02931532866299
1207 => 0.029184313768742
1208 => 0.029853640449789
1209 => 0.029905652865302
1210 => 0.028719764279584
1211 => 0.028966348068762
1212 => 0.029994643460779
1213 => 0.028940437663217
1214 => 0.026892288002094
1215 => 0.026384318568251
1216 => 0.026316546082042
1217 => 0.024938892689895
1218 => 0.02641826351477
1219 => 0.025772478505039
1220 => 0.027812505613088
1221 => 0.026647253069855
1222 => 0.026597021361677
1223 => 0.026521088767377
1224 => 0.025335285582611
1225 => 0.025594901118351
1226 => 0.026457902699713
1227 => 0.026765831386351
1228 => 0.02673371190155
1229 => 0.026453673521155
1230 => 0.026581873657671
1231 => 0.026168896350065
]
'min_raw' => 0.014449616574229
'max_raw' => 0.044933487545894
'avg_raw' => 0.029691552060061
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.014449'
'max' => '$0.044933'
'avg' => '$0.029691'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.008231470922022
'max_diff' => 0.028064257586403
'year' => 2033
]
8 => [
'items' => [
101 => 0.02602306546737
102 => 0.025562783087639
103 => 0.024886295145688
104 => 0.024980364943158
105 => 0.023640065317454
106 => 0.022909798946286
107 => 0.022707670839502
108 => 0.022437376687596
109 => 0.022738201283185
110 => 0.023636268417014
111 => 0.022553008918046
112 => 0.020695836488882
113 => 0.020807455716343
114 => 0.021058230980401
115 => 0.020590912934873
116 => 0.020148635623813
117 => 0.020533159862688
118 => 0.01974625142178
119 => 0.021153325105985
120 => 0.021115267706106
121 => 0.021639737762724
122 => 0.021967699652337
123 => 0.021211853675702
124 => 0.021021760456604
125 => 0.021130046193457
126 => 0.019340324172724
127 => 0.02149347929106
128 => 0.021512099865935
129 => 0.021352659198976
130 => 0.022499147828284
131 => 0.024918596434894
201 => 0.024008302546993
202 => 0.023655809239819
203 => 0.02298571920521
204 => 0.023878574390317
205 => 0.023810017042811
206 => 0.023499974717789
207 => 0.023312460152225
208 => 0.023657961488788
209 => 0.023269648713131
210 => 0.023199897068501
211 => 0.022777277992585
212 => 0.022626422210425
213 => 0.022514734595056
214 => 0.022391777504733
215 => 0.022662990206988
216 => 0.022048386542677
217 => 0.021307234773857
218 => 0.021245616023653
219 => 0.021415750810543
220 => 0.021340478832389
221 => 0.021245255650381
222 => 0.021063448663437
223 => 0.021009510414102
224 => 0.021184783557321
225 => 0.020986910397686
226 => 0.021278883023437
227 => 0.021199482624815
228 => 0.02075595845254
301 => 0.020203163120206
302 => 0.020198242082221
303 => 0.020079143234635
304 => 0.019927452945604
305 => 0.019885256177399
306 => 0.020500776303815
307 => 0.021774884544529
308 => 0.02152474661005
309 => 0.021705496902878
310 => 0.022594609448448
311 => 0.022877231590137
312 => 0.022676633088238
313 => 0.022402041486462
314 => 0.022414122123364
315 => 0.023352484751164
316 => 0.023411009277241
317 => 0.023558881873909
318 => 0.023748939949419
319 => 0.022709000800332
320 => 0.022365141082962
321 => 0.022202201272262
322 => 0.021700409720947
323 => 0.022241548888684
324 => 0.021926250269533
325 => 0.021968794825391
326 => 0.021941087627576
327 => 0.021956217631136
328 => 0.021152931800214
329 => 0.021445606937541
330 => 0.020958977756458
331 => 0.020307435909676
401 => 0.020305251712946
402 => 0.020464715656907
403 => 0.020369860263214
404 => 0.020114606837742
405 => 0.020150864382068
406 => 0.01983321014179
407 => 0.020189433358154
408 => 0.020199648565371
409 => 0.020062483223461
410 => 0.0206112942376
411 => 0.02083614255788
412 => 0.020745857391469
413 => 0.020829807909923
414 => 0.021535140970533
415 => 0.021650141035251
416 => 0.021701216467521
417 => 0.021632782154478
418 => 0.020842700103473
419 => 0.020877743602123
420 => 0.020620617660753
421 => 0.02040337333556
422 => 0.020412061969271
423 => 0.020523753792206
424 => 0.021011518533601
425 => 0.022037990676565
426 => 0.022076944544049
427 => 0.022124157767804
428 => 0.021932117859327
429 => 0.021874196785356
430 => 0.021950609632621
501 => 0.022336098600177
502 => 0.023327680883965
503 => 0.02297718947932
504 => 0.022692234511621
505 => 0.022942216841601
506 => 0.022903734021327
507 => 0.022578900290471
508 => 0.022569783289538
509 => 0.0219463235044
510 => 0.021715844617327
511 => 0.021523239208243
512 => 0.021312919129615
513 => 0.021188234337011
514 => 0.021379806846675
515 => 0.021423621746254
516 => 0.02100474510576
517 => 0.020947653767463
518 => 0.021289717474171
519 => 0.021139187990269
520 => 0.021294011297414
521 => 0.021329931632721
522 => 0.021324147631421
523 => 0.021166977562026
524 => 0.02126715307738
525 => 0.021030208119811
526 => 0.020772566066436
527 => 0.02060820648805
528 => 0.020464780956774
529 => 0.020544361777467
530 => 0.020260670682581
531 => 0.020169912191754
601 => 0.021233215866798
602 => 0.022018689723995
603 => 0.022007268623029
604 => 0.021937745608171
605 => 0.02183444851032
606 => 0.022328541774072
607 => 0.022156409560687
608 => 0.022281650128052
609 => 0.022313529108776
610 => 0.022410017182094
611 => 0.022444503374876
612 => 0.02234026214809
613 => 0.021990415859005
614 => 0.021118632168992
615 => 0.020712814507956
616 => 0.020578887920386
617 => 0.020583755897482
618 => 0.020449475357585
619 => 0.020489026994616
620 => 0.020435720912317
621 => 0.020334772088568
622 => 0.020538128472067
623 => 0.020561563400869
624 => 0.020514097591033
625 => 0.020525277507537
626 => 0.020132280875004
627 => 0.020162159555432
628 => 0.019995791266011
629 => 0.019964599217345
630 => 0.019544034669035
701 => 0.018798943609897
702 => 0.019211796384398
703 => 0.018713128288685
704 => 0.018524275124784
705 => 0.019418276629999
706 => 0.019328543674618
707 => 0.019174959860982
708 => 0.018947777390944
709 => 0.018863513202918
710 => 0.018351550671272
711 => 0.018321301193688
712 => 0.018575043648523
713 => 0.018457950236362
714 => 0.018293506738944
715 => 0.017697909060666
716 => 0.017028260074667
717 => 0.017048472568291
718 => 0.017261475451475
719 => 0.017880810061684
720 => 0.017638825314878
721 => 0.017463262604615
722 => 0.017430384986378
723 => 0.017841917212565
724 => 0.018424321531286
725 => 0.018697572607068
726 => 0.018426789089727
727 => 0.018115727565025
728 => 0.018134660438713
729 => 0.018260612365285
730 => 0.018273848131903
731 => 0.018071379056964
801 => 0.01812837291559
802 => 0.018041794032709
803 => 0.017510459588283
804 => 0.017500849433063
805 => 0.017370451391475
806 => 0.017366502990599
807 => 0.017144663392543
808 => 0.01711362649927
809 => 0.016673150512628
810 => 0.01696307314092
811 => 0.016768608263483
812 => 0.016475503823558
813 => 0.016424972507638
814 => 0.016423453475263
815 => 0.016724406198112
816 => 0.01695955633313
817 => 0.016771991063284
818 => 0.01672928608714
819 => 0.01718526350703
820 => 0.017127236224023
821 => 0.017076984971174
822 => 0.018372173612411
823 => 0.017346930738042
824 => 0.016899866326
825 => 0.016346539220868
826 => 0.016526705316416
827 => 0.016564668959939
828 => 0.015234017016805
829 => 0.014694171689197
830 => 0.014508917116404
831 => 0.014402300490647
901 => 0.014450887025812
902 => 0.013964962913424
903 => 0.014291511953391
904 => 0.013870742746206
905 => 0.01380019941932
906 => 0.01455258688507
907 => 0.014657277205545
908 => 0.014210635773665
909 => 0.014497451877612
910 => 0.014393448371278
911 => 0.013877955626582
912 => 0.013858267595443
913 => 0.013599611456601
914 => 0.01319486468501
915 => 0.013009884549588
916 => 0.012913545288989
917 => 0.012953296745527
918 => 0.012933197192686
919 => 0.012802034014542
920 => 0.012940715312524
921 => 0.01258644190325
922 => 0.012445367377103
923 => 0.012381647286546
924 => 0.0120672092446
925 => 0.012567620000569
926 => 0.012666207223503
927 => 0.012764988693722
928 => 0.013624813951003
929 => 0.01358185951099
930 => 0.013970146729045
1001 => 0.013955058601765
1002 => 0.01384431279734
1003 => 0.013377094465271
1004 => 0.013563319365068
1005 => 0.012990148069268
1006 => 0.013419606975941
1007 => 0.013223619865568
1008 => 0.013353343536779
1009 => 0.013120088679231
1010 => 0.013249181548255
1011 => 0.012689585911406
1012 => 0.012167043379439
1013 => 0.01237732974827
1014 => 0.012605935080352
1015 => 0.013101609687862
1016 => 0.012806389980856
1017 => 0.012912562150988
1018 => 0.012556903154051
1019 => 0.0118230770544
1020 => 0.011827230430431
1021 => 0.01171434727227
1022 => 0.011616799742408
1023 => 0.012840299515523
1024 => 0.012688137978067
1025 => 0.012445688482541
1026 => 0.012770216766863
1027 => 0.012856027196194
1028 => 0.012858470098482
1029 => 0.013095237557436
1030 => 0.013221600392722
1031 => 0.01324387239013
1101 => 0.013616431102493
1102 => 0.013741307868709
1103 => 0.014255657595532
1104 => 0.013210879388996
1105 => 0.013189362869368
1106 => 0.012774783545348
1107 => 0.012511850783814
1108 => 0.012792786776479
1109 => 0.013041657714392
1110 => 0.012782516659114
1111 => 0.012816355010167
1112 => 0.012468479316057
1113 => 0.012592828507629
1114 => 0.012699934783055
1115 => 0.01264079699318
1116 => 0.012552264859437
1117 => 0.01302125313557
1118 => 0.012994790979051
1119 => 0.01343152364378
1120 => 0.013771987986988
1121 => 0.014382160955299
1122 => 0.013745413653831
1123 => 0.013722208051324
1124 => 0.013949046538124
1125 => 0.013741273140919
1126 => 0.013872578755858
1127 => 0.014361005590756
1128 => 0.014371325280124
1129 => 0.014198457187034
1130 => 0.014187938147859
1201 => 0.014221139356107
1202 => 0.014415599869835
1203 => 0.01434764939117
1204 => 0.014426283405376
1205 => 0.014524616444228
1206 => 0.014931363585263
1207 => 0.01502942894393
1208 => 0.014791180963427
1209 => 0.014812692088517
1210 => 0.014723580803756
1211 => 0.014637500419237
1212 => 0.014830996552604
1213 => 0.015184614539508
1214 => 0.015182414700364
1215 => 0.015264447199975
1216 => 0.015315552767638
1217 => 0.015096170259665
1218 => 0.014953360313893
1219 => 0.015008122734335
1220 => 0.015095689037192
1221 => 0.014979726162508
1222 => 0.014263949580727
1223 => 0.014481070471654
1224 => 0.014444930938734
1225 => 0.01439346384914
1226 => 0.014611780583913
1227 => 0.014590723402257
1228 => 0.013959979059308
1229 => 0.014000357265698
1230 => 0.013962434591775
1231 => 0.01408497050947
]
'min_raw' => 0.011616799742408
'max_raw' => 0.02602306546737
'avg_raw' => 0.018819932604889
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.011616'
'max' => '$0.026023'
'avg' => '$0.018819'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0028328168318205
'max_diff' => -0.018910422078524
'year' => 2034
]
9 => [
'items' => [
101 => 0.013734655799235
102 => 0.013842410244698
103 => 0.013909992822757
104 => 0.013949799480427
105 => 0.014093608423614
106 => 0.014076734103968
107 => 0.014092559492213
108 => 0.014305790190806
109 => 0.01538423789235
110 => 0.015442935421284
111 => 0.015153887321199
112 => 0.015269356335961
113 => 0.015047681077915
114 => 0.015196493163737
115 => 0.015298306613439
116 => 0.014838231211836
117 => 0.014810988532418
118 => 0.014588398341728
119 => 0.014708005702052
120 => 0.014517701791702
121 => 0.014564395714754
122 => 0.014433835435199
123 => 0.014668817944106
124 => 0.014931564901654
125 => 0.014997945159322
126 => 0.014823327279894
127 => 0.01469689242731
128 => 0.0144749144764
129 => 0.014844068755864
130 => 0.014952020716952
131 => 0.014843501730169
201 => 0.014818355509744
202 => 0.014770703467478
203 => 0.014828465115777
204 => 0.014951432787388
205 => 0.014893443504312
206 => 0.014931746447423
207 => 0.014785775126108
208 => 0.015096242884404
209 => 0.015589340402713
210 => 0.015590925791864
211 => 0.015532936196205
212 => 0.015509208103064
213 => 0.015568708947313
214 => 0.015600985714466
215 => 0.015793400534179
216 => 0.015999869301876
217 => 0.016963368951337
218 => 0.016692822105275
219 => 0.017547696313127
220 => 0.018223790820016
221 => 0.018426522000602
222 => 0.018240018853702
223 => 0.017602001662858
224 => 0.017570697495654
225 => 0.018524164542684
226 => 0.01825476643034
227 => 0.018222722382095
228 => 0.017881827848036
301 => 0.018083338738274
302 => 0.018039265350593
303 => 0.017969693351994
304 => 0.018354162093198
305 => 0.01907385325497
306 => 0.018961682638187
307 => 0.018877952476203
308 => 0.018511071279875
309 => 0.018732015705947
310 => 0.018653341627734
311 => 0.018991375395538
312 => 0.018791131679856
313 => 0.018252725474679
314 => 0.018338468437464
315 => 0.01832550856113
316 => 0.018592221897736
317 => 0.018512161174319
318 => 0.018309875419954
319 => 0.019071393428819
320 => 0.019021944685109
321 => 0.019092051698134
322 => 0.019122914973398
323 => 0.019586437565943
324 => 0.019776327941039
325 => 0.019819436380685
326 => 0.019999817550378
327 => 0.01981494833286
328 => 0.020554557012453
329 => 0.021046353627019
330 => 0.02161760070246
331 => 0.022452346216419
401 => 0.022766218251495
402 => 0.022709520077718
403 => 0.023342414599583
404 => 0.024479711986918
405 => 0.022939400396275
406 => 0.024561352241391
407 => 0.024047861013562
408 => 0.022830382549692
409 => 0.022751991289747
410 => 0.023576481840695
411 => 0.025405122528424
412 => 0.024947068776419
413 => 0.025405871740269
414 => 0.024870653712184
415 => 0.024844075625918
416 => 0.025379877395274
417 => 0.026631807434409
418 => 0.026037062400712
419 => 0.025184349557441
420 => 0.025813979451231
421 => 0.025268535767735
422 => 0.024039498488743
423 => 0.024946718511347
424 => 0.02434008631837
425 => 0.024517133842622
426 => 0.025792184482531
427 => 0.025638767016172
428 => 0.025837303423716
429 => 0.025486891861003
430 => 0.025159552206598
501 => 0.024548548433089
502 => 0.024367660337875
503 => 0.02441765129972
504 => 0.024367635564837
505 => 0.024025784568973
506 => 0.023951961878964
507 => 0.023828920828036
508 => 0.02386705639464
509 => 0.023635703221967
510 => 0.024072314458806
511 => 0.024153353351768
512 => 0.024471082599584
513 => 0.024504070304119
514 => 0.025388941736693
515 => 0.024901569421291
516 => 0.025228540848164
517 => 0.02519929344617
518 => 0.022856768999722
519 => 0.023179548200174
520 => 0.023681691342385
521 => 0.023455476537458
522 => 0.023135661729403
523 => 0.022877394124514
524 => 0.022486092293888
525 => 0.023036842106208
526 => 0.023761019543695
527 => 0.024522436639008
528 => 0.025437229389002
529 => 0.025233058296565
530 => 0.024505335224864
531 => 0.024537980350258
601 => 0.024739779670063
602 => 0.024478431215514
603 => 0.024401354454139
604 => 0.024729190506645
605 => 0.024731448133363
606 => 0.024430735151388
607 => 0.024096547701817
608 => 0.024095147444201
609 => 0.024035682015418
610 => 0.024881232479861
611 => 0.02534619974051
612 => 0.025399507487612
613 => 0.025342611704396
614 => 0.025364508633243
615 => 0.025093954429126
616 => 0.025712361109381
617 => 0.026279872233265
618 => 0.026127767128957
619 => 0.025899739954585
620 => 0.025718105326921
621 => 0.026084979783111
622 => 0.026068643441091
623 => 0.026274915518684
624 => 0.026265557825759
625 => 0.02619619628435
626 => 0.026127769606077
627 => 0.026399073650829
628 => 0.02632094244295
629 => 0.026242689875725
630 => 0.026085742372286
701 => 0.026107074144625
702 => 0.02587908634236
703 => 0.02577360875302
704 => 0.024187478885471
705 => 0.023763613156573
706 => 0.023896969943467
707 => 0.023940874460319
708 => 0.023756407551904
709 => 0.024020885712911
710 => 0.02397966707167
711 => 0.02414002469264
712 => 0.024039840212976
713 => 0.024043951818968
714 => 0.024338573012076
715 => 0.024424102797844
716 => 0.024380601658492
717 => 0.024411068365362
718 => 0.025113160765986
719 => 0.025013345678268
720 => 0.024960320902307
721 => 0.024975009127626
722 => 0.025154408789016
723 => 0.025204630899347
724 => 0.02499183628883
725 => 0.025092191457301
726 => 0.025519491027683
727 => 0.025669021694255
728 => 0.026146251803163
729 => 0.02594351597081
730 => 0.026315646365295
731 => 0.027459448329341
801 => 0.028373196483296
802 => 0.027532875918679
803 => 0.029210858038293
804 => 0.030517407810651
805 => 0.030467260254215
806 => 0.030239433080364
807 => 0.028751960900957
808 => 0.027383166824506
809 => 0.028528221191524
810 => 0.028531140170588
811 => 0.028432778984962
812 => 0.027821866108719
813 => 0.0284115205411
814 => 0.028458325168632
815 => 0.028432127023569
816 => 0.027963741553714
817 => 0.02724860351335
818 => 0.027388339774638
819 => 0.027617230621171
820 => 0.027183892497051
821 => 0.027045414709512
822 => 0.027302871263025
823 => 0.028132449921645
824 => 0.027975622881654
825 => 0.027971527493852
826 => 0.028642500075945
827 => 0.028162228512113
828 => 0.02739010229639
829 => 0.027195130243827
830 => 0.026503110806139
831 => 0.026981091096639
901 => 0.026998292756362
902 => 0.026736507836095
903 => 0.027411344699891
904 => 0.027405125959389
905 => 0.028045783125351
906 => 0.029270479006828
907 => 0.028908276171051
908 => 0.028487073680599
909 => 0.028532870069989
910 => 0.029035143426481
911 => 0.02873145748936
912 => 0.028840665069722
913 => 0.029034978127728
914 => 0.029152212020145
915 => 0.028516001916997
916 => 0.028367670908507
917 => 0.028064237722244
918 => 0.027985077667797
919 => 0.028232217666666
920 => 0.028167105008549
921 => 0.02699684702347
922 => 0.026874548552776
923 => 0.02687829927227
924 => 0.026570773952733
925 => 0.026101724025905
926 => 0.027334359228092
927 => 0.027235361370638
928 => 0.027126075397834
929 => 0.027139462305926
930 => 0.027674507469312
1001 => 0.027364154254119
1002 => 0.0281892791426
1003 => 0.028019658271053
1004 => 0.027845687264189
1005 => 0.027821639171754
1006 => 0.02775467517662
1007 => 0.027525030721101
1008 => 0.027247721241569
1009 => 0.027064617503046
1010 => 0.024965679016292
1011 => 0.02535522979047
1012 => 0.025803372447492
1013 => 0.025958069496876
1014 => 0.025693449489194
1015 => 0.027535479531882
1016 => 0.027872036170924
1017 => 0.026852584158219
1018 => 0.026661886310593
1019 => 0.027547981651025
1020 => 0.027013557839994
1021 => 0.027254208849378
1022 => 0.026734052996155
1023 => 0.027790969532108
1024 => 0.027782917598923
1025 => 0.027371753194895
1026 => 0.027719266533647
1027 => 0.027658877539156
1028 => 0.027194673939661
1029 => 0.027805685614197
1030 => 0.027805988668364
1031 => 0.027410251868972
1101 => 0.026948117925207
1102 => 0.026865499291178
1103 => 0.026803257248689
1104 => 0.027238901122432
1105 => 0.027629498057407
1106 => 0.028356302116204
1107 => 0.028539037925024
1108 => 0.029252267952259
1109 => 0.02882757419758
1110 => 0.029015835438325
1111 => 0.029220219646331
1112 => 0.02931820895163
1113 => 0.029158540637042
1114 => 0.03026648044653
1115 => 0.03036002451285
1116 => 0.030391389029134
1117 => 0.030017797959127
1118 => 0.030349634269372
1119 => 0.030194379049072
1120 => 0.030598310001149
1121 => 0.030661651532085
1122 => 0.030608003508823
1123 => 0.03062810911052
1124 => 0.029682677937097
1125 => 0.029633652343208
1126 => 0.028965184891838
1127 => 0.029237590319333
1128 => 0.028728341429363
1129 => 0.028889829498217
1130 => 0.028961011900254
1201 => 0.028923830252996
1202 => 0.02925299171349
1203 => 0.028973137228826
1204 => 0.028234555231461
1205 => 0.027495772007924
1206 => 0.027486497186352
1207 => 0.027291988604202
1208 => 0.027151394525331
1209 => 0.027178477932765
1210 => 0.027273923393104
1211 => 0.027145847061666
1212 => 0.027173178640613
1213 => 0.027627064960495
1214 => 0.027718088624978
1215 => 0.027408754647823
1216 => 0.026166734092864
1217 => 0.025861939133305
1218 => 0.026081019705889
1219 => 0.02597631330279
1220 => 0.02096491220348
1221 => 0.0221422665566
1222 => 0.021442722579152
1223 => 0.021765104628431
1224 => 0.021051051373492
1225 => 0.021391835013486
1226 => 0.021328904718605
1227 => 0.023222055677973
1228 => 0.023192496729687
1229 => 0.023206645034007
1230 => 0.022531309605601
1231 => 0.023607137280407
]
'min_raw' => 0.013734655799235
'max_raw' => 0.030661651532085
'avg_raw' => 0.02219815366566
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.013734'
'max' => '$0.030661'
'avg' => '$0.022198'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0021178560568265
'max_diff' => 0.0046385860647149
'year' => 2035
]
10 => [
'items' => [
101 => 0.024137128678528
102 => 0.024039041376
103 => 0.024063727836838
104 => 0.023639532649478
105 => 0.023210752170665
106 => 0.022735168630819
107 => 0.023618744063951
108 => 0.023520505558923
109 => 0.02374582934436
110 => 0.024318891172023
111 => 0.024403276702996
112 => 0.024516691712378
113 => 0.024476040504945
114 => 0.025444517189115
115 => 0.025327228272447
116 => 0.025609860815292
117 => 0.025028464231277
118 => 0.024370558809793
119 => 0.024495605121868
120 => 0.024483562156457
121 => 0.024330241384492
122 => 0.024191830246998
123 => 0.023961414700165
124 => 0.024690483585427
125 => 0.024660884720122
126 => 0.025140055944501
127 => 0.025055357776171
128 => 0.024489722678906
129 => 0.024509924447062
130 => 0.024645791046547
131 => 0.025116026898662
201 => 0.025255624915668
202 => 0.025190957552172
203 => 0.025344020404928
204 => 0.025464995042871
205 => 0.025359212956895
206 => 0.026856864219631
207 => 0.026234934999461
208 => 0.026538058974016
209 => 0.026610352255838
210 => 0.026425174534616
211 => 0.026465332951632
212 => 0.026526162010898
213 => 0.026895504147206
214 => 0.027864764782886
215 => 0.028294043720449
216 => 0.029585550584356
217 => 0.028258398080536
218 => 0.028179650343262
219 => 0.028412289729222
220 => 0.029170540978221
221 => 0.029785032396617
222 => 0.029988894650959
223 => 0.030015838413269
224 => 0.030398297554921
225 => 0.030617516002476
226 => 0.030351856955451
227 => 0.030126738728759
228 => 0.029320393183451
229 => 0.029413729875926
301 => 0.030056727129537
302 => 0.030964998622613
303 => 0.031744390053214
304 => 0.031471474338751
305 => 0.033553628591633
306 => 0.033760065680969
307 => 0.033731542750133
308 => 0.034201837161598
309 => 0.033268398528631
310 => 0.032869335428516
311 => 0.03017541184457
312 => 0.030932294487944
313 => 0.032032467860247
314 => 0.031886855788984
315 => 0.031087880478299
316 => 0.031743783958795
317 => 0.031526921756145
318 => 0.031355873539293
319 => 0.032139478580017
320 => 0.031277872649021
321 => 0.032023872681991
322 => 0.031067119923324
323 => 0.031472720994746
324 => 0.031242482209891
325 => 0.031391474920696
326 => 0.030520466577748
327 => 0.030990441537071
328 => 0.030500914074306
329 => 0.03050068197455
330 => 0.030489875628678
331 => 0.031065802517723
401 => 0.031084583472898
402 => 0.030658972631717
403 => 0.030597635460211
404 => 0.030824431131379
405 => 0.030558912798322
406 => 0.030683147155207
407 => 0.030562675730433
408 => 0.0305355550752
409 => 0.030319453080103
410 => 0.030226350398767
411 => 0.030262858359079
412 => 0.03013823786939
413 => 0.030063149516632
414 => 0.030474938665368
415 => 0.030254936334725
416 => 0.030441220152919
417 => 0.030228926231195
418 => 0.02949302300644
419 => 0.029069797279847
420 => 0.02767974430655
421 => 0.028073961605422
422 => 0.028335328082421
423 => 0.028248946463332
424 => 0.028434527606384
425 => 0.02844592078134
426 => 0.028385586459958
427 => 0.028315727045103
428 => 0.028281723345419
429 => 0.028535159064152
430 => 0.028682287029131
501 => 0.02836155970502
502 => 0.028286417780433
503 => 0.02861069081295
504 => 0.028808497175458
505 => 0.030268988218429
506 => 0.030160790324641
507 => 0.030432345805283
508 => 0.030401772825521
509 => 0.030686406231414
510 => 0.031151661554996
511 => 0.030205667394719
512 => 0.030369859270926
513 => 0.030329603214624
514 => 0.030769108281623
515 => 0.030770480368469
516 => 0.030506975125897
517 => 0.030649825592779
518 => 0.030570090381063
519 => 0.030714182685495
520 => 0.030159345275805
521 => 0.03083507734981
522 => 0.031218173892558
523 => 0.031223493188425
524 => 0.031405077909246
525 => 0.031589578502277
526 => 0.031943711323986
527 => 0.031579701930086
528 => 0.03092488446606
529 => 0.030972160171915
530 => 0.030588240932345
531 => 0.030594694684123
601 => 0.030560244051343
602 => 0.030663632993638
603 => 0.030182033334574
604 => 0.030295063811948
605 => 0.030136820481718
606 => 0.030369515280831
607 => 0.030119174142814
608 => 0.030329583801935
609 => 0.030420389635621
610 => 0.030755465116832
611 => 0.030069683221798
612 => 0.02867132751447
613 => 0.028965278837575
614 => 0.028530501741325
615 => 0.028570742016896
616 => 0.028652033777742
617 => 0.028388540583832
618 => 0.028438806781605
619 => 0.028437010919303
620 => 0.028421535148185
621 => 0.028352990391859
622 => 0.028253586934019
623 => 0.028649579715281
624 => 0.028716866605244
625 => 0.028866437026547
626 => 0.029311457145762
627 => 0.029266989141555
628 => 0.029339518301376
629 => 0.029181187552721
630 => 0.028578086526223
701 => 0.028610837813568
702 => 0.028202428735567
703 => 0.028855993088194
704 => 0.028701220422864
705 => 0.02860143747867
706 => 0.028574210777864
707 => 0.029020334015877
708 => 0.029153821080816
709 => 0.02907064089993
710 => 0.028900035922179
711 => 0.029227647914294
712 => 0.029315303062544
713 => 0.02933492581764
714 => 0.029915391454299
715 => 0.02936736739856
716 => 0.029499282235667
717 => 0.030528444138026
718 => 0.029595136307221
719 => 0.030089530280447
720 => 0.030065332268159
721 => 0.030318247495481
722 => 0.030044585837477
723 => 0.030047978201708
724 => 0.030272549789609
725 => 0.029957179496102
726 => 0.029879089376367
727 => 0.029771208435245
728 => 0.030006762523439
729 => 0.030147966546116
730 => 0.031285967265966
731 => 0.032021167630127
801 => 0.031989250643366
802 => 0.032280912156268
803 => 0.032149515973392
804 => 0.031725203038325
805 => 0.032449453479035
806 => 0.032220270335669
807 => 0.03223916391555
808 => 0.032238460695564
809 => 0.032390847450364
810 => 0.032282867468547
811 => 0.032070027840468
812 => 0.032211320718396
813 => 0.032630910052716
814 => 0.033933328221016
815 => 0.034662178682742
816 => 0.033889450508048
817 => 0.034422468055709
818 => 0.034102847460684
819 => 0.034044762890679
820 => 0.034379537300298
821 => 0.034714897688204
822 => 0.034693536681297
823 => 0.034450082260624
824 => 0.034312561035812
825 => 0.035353917823072
826 => 0.036121171764875
827 => 0.03606885018978
828 => 0.036299780606362
829 => 0.036977799451858
830 => 0.037039788997881
831 => 0.037031979739896
901 => 0.036878332182137
902 => 0.0375459297874
903 => 0.038102851454974
904 => 0.03684276721182
905 => 0.037322590795899
906 => 0.037537999061742
907 => 0.037854282304753
908 => 0.038387905150938
909 => 0.038967561098365
910 => 0.039049530804935
911 => 0.038991369375512
912 => 0.038609070696196
913 => 0.039243337150604
914 => 0.039614875564217
915 => 0.039836118187019
916 => 0.040397152667181
917 => 0.037539329349859
918 => 0.035516419962823
919 => 0.035200513450872
920 => 0.035842921765335
921 => 0.036012319714748
922 => 0.035944035613747
923 => 0.033667067183763
924 => 0.035188525683317
925 => 0.036825487100974
926 => 0.036888369455761
927 => 0.037707866568689
928 => 0.03797472842098
929 => 0.038634531010829
930 => 0.038593260179189
1001 => 0.038753911610065
1002 => 0.038716980628202
1003 => 0.03993912598807
1004 => 0.041287333810347
1005 => 0.0412406496605
1006 => 0.041046828834776
1007 => 0.041334685812337
1008 => 0.042726180767658
1009 => 0.042598074210424
1010 => 0.042722518818686
1011 => 0.044363169792228
1012 => 0.046496249437712
1013 => 0.04550521978469
1014 => 0.047655468970647
1015 => 0.049008936853396
1016 => 0.051349619605418
1017 => 0.05105655459676
1018 => 0.051967765215399
1019 => 0.050531907066747
1020 => 0.047234886522634
1021 => 0.046713120401041
1022 => 0.047757709389694
1023 => 0.050325729488794
1024 => 0.047676833297965
1025 => 0.04821270154744
1026 => 0.048058371455542
1027 => 0.048050147860805
1028 => 0.048364009024124
1029 => 0.047908737036832
1030 => 0.046053877058738
1031 => 0.04690394845594
1101 => 0.046575695065699
1102 => 0.046939916675083
1103 => 0.04890547048451
1104 => 0.048036452292412
1105 => 0.047121012220341
1106 => 0.048269177223132
1107 => 0.049731185823985
1108 => 0.049639695953225
1109 => 0.049462167364153
1110 => 0.050462886725659
1111 => 0.052115781927606
1112 => 0.052562552858821
1113 => 0.052892350026415
1114 => 0.052937823483857
1115 => 0.053406228357109
1116 => 0.050887497300404
1117 => 0.054884788172997
1118 => 0.055575009883761
1119 => 0.055445276808896
1120 => 0.056212429191442
1121 => 0.05598671349972
1122 => 0.055659686876121
1123 => 0.056875786580447
1124 => 0.055481626403623
1125 => 0.053502791552507
1126 => 0.052417163616269
1127 => 0.053846806057815
1128 => 0.054719838809221
1129 => 0.055296857922589
1130 => 0.055471463557649
1201 => 0.051083019222428
1202 => 0.048717891120025
1203 => 0.050233911117417
1204 => 0.052083560144346
1205 => 0.050877222406668
1206 => 0.050924508562086
1207 => 0.049204587968139
1208 => 0.052235734953237
1209 => 0.051794122333467
1210 => 0.054085209386033
1211 => 0.053538423073816
1212 => 0.055406715625696
1213 => 0.054914731583484
1214 => 0.056956929836248
1215 => 0.057771618009586
1216 => 0.05913960624871
1217 => 0.060145903966123
1218 => 0.060736821233196
1219 => 0.060701344776956
1220 => 0.063042853382913
1221 => 0.06166214756406
1222 => 0.059927655648204
1223 => 0.059896284161698
1224 => 0.06079460210286
1225 => 0.062677230066045
1226 => 0.063165368105776
1227 => 0.063438170676969
1228 => 0.06302036404286
1229 => 0.061521706832573
1230 => 0.060874594247535
1231 => 0.061425952918644
]
'min_raw' => 0.022735168630819
'max_raw' => 0.063438170676969
'avg_raw' => 0.043086669653894
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.022735'
'max' => '$0.063438'
'avg' => '$0.043086'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.0090005128315843
'max_diff' => 0.032776519144884
'year' => 2036
]
11 => [
'items' => [
101 => 0.060751688642669
102 => 0.061915657948144
103 => 0.063514036414989
104 => 0.063183977582259
105 => 0.064287314774889
106 => 0.065429152694805
107 => 0.067062032203433
108 => 0.067488927372342
109 => 0.068194568853179
110 => 0.068920905728111
111 => 0.069154185557011
112 => 0.069599589132862
113 => 0.06959724163616
114 => 0.070939495291106
115 => 0.072420042638646
116 => 0.072978914987592
117 => 0.074264011137594
118 => 0.072063329015856
119 => 0.073732571684808
120 => 0.075238270356057
121 => 0.073443114327524
122 => 0.075917318695146
123 => 0.076013386444073
124 => 0.077463895395987
125 => 0.075993526689331
126 => 0.075120426444902
127 => 0.07764103413593
128 => 0.07886067679922
129 => 0.078493310503256
130 => 0.075697634851857
131 => 0.074070431710573
201 => 0.069811727225789
202 => 0.074856346650359
203 => 0.077313433618501
204 => 0.075691271590198
205 => 0.076509395761744
206 => 0.080972815964043
207 => 0.082672197392022
208 => 0.082318737934576
209 => 0.082378466764446
210 => 0.083295422137029
211 => 0.087361707235608
212 => 0.084925094948789
213 => 0.086787793743942
214 => 0.087775762468431
215 => 0.088693442879831
216 => 0.086439909825304
217 => 0.083508096432339
218 => 0.082579468061634
219 => 0.075529979545803
220 => 0.075163023054177
221 => 0.074957039255507
222 => 0.073658340541884
223 => 0.072637919096493
224 => 0.071826442077298
225 => 0.069696884051381
226 => 0.070415547371296
227 => 0.067021476351286
228 => 0.069192882711397
301 => 0.063775863410751
302 => 0.068287318051927
303 => 0.065831938401407
304 => 0.067480659799507
305 => 0.067474907565868
306 => 0.06443908874437
307 => 0.062688091804053
308 => 0.063803895204244
309 => 0.065000125021832
310 => 0.065194209285136
311 => 0.066745152468432
312 => 0.067177987373478
313 => 0.06586647740406
314 => 0.063663607726221
315 => 0.064175284110275
316 => 0.062677722698461
317 => 0.060053303927126
318 => 0.061938207306655
319 => 0.062581796193777
320 => 0.062866041710781
321 => 0.060285227265705
322 => 0.059474279334854
323 => 0.059042537460981
324 => 0.063330456989842
325 => 0.063565358901064
326 => 0.062363567511469
327 => 0.067795778550974
328 => 0.066566301890005
329 => 0.067939928549402
330 => 0.06412885484156
331 => 0.064274442989491
401 => 0.062470219621033
402 => 0.063480464149121
403 => 0.062766455878369
404 => 0.063398846374682
405 => 0.063777898630728
406 => 0.065581825943885
407 => 0.068307916004155
408 => 0.065312379358974
409 => 0.064007181145794
410 => 0.064816918776537
411 => 0.066973356793185
412 => 0.070240470774437
413 => 0.068306273540739
414 => 0.069164637428255
415 => 0.069352151751726
416 => 0.067925946319471
417 => 0.070293057003042
418 => 0.071561610848741
419 => 0.072862884604197
420 => 0.073992744145196
421 => 0.072343127250644
422 => 0.074108453791108
423 => 0.072685912221578
424 => 0.071409745374066
425 => 0.071411680792394
426 => 0.070611122687127
427 => 0.069059940481359
428 => 0.068773878683211
429 => 0.070262008282801
430 => 0.071455347295275
501 => 0.071553636412051
502 => 0.072214330205329
503 => 0.072605321986504
504 => 0.076437572969567
505 => 0.077978936016997
506 => 0.079863685574886
507 => 0.080597901746349
508 => 0.082807629191385
509 => 0.08102309481423
510 => 0.080636999576485
511 => 0.075276923591165
512 => 0.076154635733484
513 => 0.077559937559962
514 => 0.075300096500679
515 => 0.076733445509084
516 => 0.077016418965826
517 => 0.075223307966223
518 => 0.076181086026864
519 => 0.073637511459206
520 => 0.068363358978943
521 => 0.070298928642449
522 => 0.071724159420494
523 => 0.069690179370536
524 => 0.073336009884187
525 => 0.071206190963331
526 => 0.070531140614757
527 => 0.067897528532145
528 => 0.069140492058112
529 => 0.070821618024507
530 => 0.069782877629146
531 => 0.071938419917175
601 => 0.074991242659155
602 => 0.077166865943827
603 => 0.077333883284802
604 => 0.075935103268198
605 => 0.078176657171701
606 => 0.078192984444728
607 => 0.075664502484559
608 => 0.074115821362603
609 => 0.073763957753241
610 => 0.07464298203635
611 => 0.075710279792879
612 => 0.077393110882275
613 => 0.078410010465153
614 => 0.081061545255436
615 => 0.081778974544226
616 => 0.082567211821637
617 => 0.083620539907633
618 => 0.084885330342648
619 => 0.082118040875394
620 => 0.082227990444801
621 => 0.079651128808625
622 => 0.076897382591032
623 => 0.078987132710873
624 => 0.081719203004757
625 => 0.081092463060671
626 => 0.081021942013826
627 => 0.081140538853712
628 => 0.080667997403284
629 => 0.078530709936201
630 => 0.077457377550359
701 => 0.07884225016439
702 => 0.079578248325159
703 => 0.080719717286726
704 => 0.080579007143727
705 => 0.083519308603908
706 => 0.084661820841233
707 => 0.08436951732007
708 => 0.084423308202641
709 => 0.086491772034822
710 => 0.088792329228239
711 => 0.090947104625133
712 => 0.09313903470861
713 => 0.090496577440491
714 => 0.089154900603847
715 => 0.090539168625818
716 => 0.089804656528377
717 => 0.094025380910712
718 => 0.094317614709369
719 => 0.098538033885291
720 => 0.10254371424141
721 => 0.10002781817895
722 => 0.1024001948474
723 => 0.10496611363704
724 => 0.10991618728757
725 => 0.10824917662776
726 => 0.10697227258774
727 => 0.10576560443987
728 => 0.10827648930241
729 => 0.1115067025657
730 => 0.11220245956402
731 => 0.11332985170092
801 => 0.11214453671992
802 => 0.11357211805637
803 => 0.11861210748507
804 => 0.11725025785222
805 => 0.11531621244532
806 => 0.11929480005354
807 => 0.12073463544259
808 => 0.13084015425059
809 => 0.14359878918385
810 => 0.13831663054377
811 => 0.13503782422168
812 => 0.13580842148169
813 => 0.14046744305227
814 => 0.14196377291079
815 => 0.13789623253951
816 => 0.139332956563
817 => 0.14724944718801
818 => 0.1514963904169
819 => 0.14572847107149
820 => 0.12981501035651
821 => 0.11514207281727
822 => 0.11903399658367
823 => 0.11859277320901
824 => 0.12709805478327
825 => 0.11721777818887
826 => 0.11738413670734
827 => 0.1260652984973
828 => 0.12374931336453
829 => 0.1199977140584
830 => 0.11516946364398
831 => 0.1062439961938
901 => 0.098338460768104
902 => 0.11384303627397
903 => 0.11317445078491
904 => 0.11220623991795
905 => 0.11436088843103
906 => 0.12482325000289
907 => 0.1245820587053
908 => 0.12304772272691
909 => 0.1242115030435
910 => 0.11979369774211
911 => 0.12093226675983
912 => 0.115139748549
913 => 0.11775820869723
914 => 0.11998966481122
915 => 0.12043766266338
916 => 0.12144702469962
917 => 0.11282213661294
918 => 0.11669445815045
919 => 0.11896908426628
920 => 0.10869224072337
921 => 0.11876594411201
922 => 0.1126719965
923 => 0.11060361915246
924 => 0.11338841676292
925 => 0.11230317842582
926 => 0.11137015423091
927 => 0.11084951069877
928 => 0.11289435871699
929 => 0.11279896411282
930 => 0.1094531958671
1001 => 0.10508877758152
1002 => 0.10655361961531
1003 => 0.10602142877147
1004 => 0.1040927004994
1005 => 0.10539243047923
1006 => 0.099669077426326
1007 => 0.089822345972808
1008 => 0.096327398384544
1009 => 0.096076960942827
1010 => 0.09595067902828
1011 => 0.10083904612926
1012 => 0.10036914242631
1013 => 0.099516262604166
1014 => 0.10407703669263
1015 => 0.10241229279927
1016 => 0.1075426412156
1017 => 0.11092182049273
1018 => 0.11006475132305
1019 => 0.11324288576618
1020 => 0.1065873666172
1021 => 0.10879806310541
1022 => 0.10925368458774
1023 => 0.10402075744833
1024 => 0.10044602448351
1025 => 0.1002076305497
1026 => 0.094009536217262
1027 => 0.097320508180381
1028 => 0.1002340264906
1029 => 0.098838677318157
1030 => 0.098396951455034
1031 => 0.10065363309108
1101 => 0.10082899658137
1102 => 0.096830690418526
1103 => 0.097662064879671
1104 => 0.10112903458715
1105 => 0.09757470613837
1106 => 0.09066922655865
1107 => 0.088956572147154
1108 => 0.088728072478177
1109 => 0.084083217881867
1110 => 0.089071019904306
1111 => 0.086893710656728
1112 => 0.093771804481657
1113 => 0.089843074176815
1114 => 0.089673714465627
1115 => 0.089417702422498
1116 => 0.085419684194927
1117 => 0.086294996099452
1118 => 0.089204666183859
1119 => 0.090242869249755
1120 => 0.090134576164235
1121 => 0.089190407213081
1122 => 0.089622642923992
1123 => 0.088230261098242
1124 => 0.087738582095648
1125 => 0.086186707916497
1126 => 0.083905881589329
1127 => 0.084223044479243
1128 => 0.07970413071445
1129 => 0.077241986658486
1130 => 0.076560497634332
1201 => 0.075649182029846
1202 => 0.076663433156777
1203 => 0.079691329199526
1204 => 0.07603904416799
1205 => 0.069777457659428
1206 => 0.070153789677817
1207 => 0.070999295989158
1208 => 0.069423700571558
1209 => 0.067932531738501
1210 => 0.069228982056493
1211 => 0.066575865307779
1212 => 0.071319912472825
1213 => 0.071191599292049
1214 => 0.072959886705269
1215 => 0.074065633113666
1216 => 0.071517245631961
1217 => 0.070876333071885
1218 => 0.071241425993956
1219 => 0.065207253246653
1220 => 0.072466766056613
1221 => 0.072529546624851
1222 => 0.071991981284406
1223 => 0.075857447743397
1224 => 0.084014787641092
1225 => 0.080945668243342
1226 => 0.079757212447909
1227 => 0.077497957112033
1228 => 0.080508280705779
1229 => 0.080277134822143
1230 => 0.079231805476867
1231 => 0.078599587027218
]
'min_raw' => 0.059042537460981
'max_raw' => 0.1514963904169
'avg_raw' => 0.10526946393894
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.059042'
'max' => '$0.151496'
'avg' => '$0.105269'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.036307368830162
'max_diff' => 0.088058219739931
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0018532777845038
]
1 => [
'year' => 2028
'avg' => 0.0031807626885936
]
2 => [
'year' => 2029
'avg' => 0.0086892703885399
]
3 => [
'year' => 2030
'avg' => 0.0067037591643088
]
4 => [
'year' => 2031
'avg' => 0.0065839222870784
]
5 => [
'year' => 2032
'avg' => 0.011543687805848
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0018532777845038
'min' => '$0.001853'
'max_raw' => 0.011543687805848
'max' => '$0.011543'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.011543687805848
]
1 => [
'year' => 2033
'avg' => 0.029691552060061
]
2 => [
'year' => 2034
'avg' => 0.018819932604889
]
3 => [
'year' => 2035
'avg' => 0.02219815366566
]
4 => [
'year' => 2036
'avg' => 0.043086669653894
]
5 => [
'year' => 2037
'avg' => 0.10526946393894
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.011543687805848
'min' => '$0.011543'
'max_raw' => 0.10526946393894
'max' => '$0.105269'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.10526946393894
]
]
]
]
'prediction_2025_max_price' => '$0.003168'
'last_price' => 0.00307252
'sma_50day_nextmonth' => '$0.003095'
'sma_200day_nextmonth' => '$0.019514'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'augmenter'
'sma_200day_date_nextmonth' => '4 févr. 2026'
'sma_50day_date_nextmonth' => '4 févr. 2026'
'daily_sma3' => '$0.003044'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.0031099'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.003234'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.003468'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.005255'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.008283'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.036445'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.003078'
'daily_ema3_action' => 'SELL'
'daily_ema5' => '$0.003122'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.003261'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.003688'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.005584'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.014961'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.064518'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.01023'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.1269055'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.003189'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.003561'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.006133'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.027885'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.142784'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.083629'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.041814'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '39.46'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 23.46
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => -0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.003225'
'vwma_10_action' => 'SELL'
'hma_9' => '0.003012'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 3.23
'stochastic_fast_14_action' => 'BUY'
'cci_20' => -90.54
'cci_20_action' => 'NEUTRAL'
'adx_14' => 21.62
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.000944'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -96.77
'williams_percent_r_14_action' => 'BUY'
'ultimate_oscillator' => 37.53
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.002077'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 27
'buy_signals' => 4
'sell_pct' => 87.1
'buy_pct' => 12.9
'overall_action' => 'bearish'
'overall_action_label' => 'Baissier'
'overall_action_dir' => -1
'last_updated' => 1767698469
'last_updated_date' => '6 janvier 2026'
]
Prévision du prix de Fry pour 2026
La prévision du prix de Fry pour 2026 suggère que le prix moyen pourrait varier entre $0.001061 à la baisse et $0.003168 à la hausse. Sur le marché des cryptomonnaies, comparé au prix moyen d'aujourd'hui, Fry pourrait potentiellement gagner 3.13% d'ici 2026 si FRY atteint l'objectif de prix prévu.
Prévision du prix de Fry de 2027 à 2032
La prévision du prix de FRY pour 2027-2032 se situe actuellement dans une fourchette de prix comprise entre $0.001853 à la baisse et $0.011543 à la hausse. Compte tenu de la volatilité des prix sur le marché, si Fry atteint l'objectif de prix le plus élevé, il pourrait gagner 275.71% d'ici 2032 par rapport au prix actuel.
| Prévision du Prix de Fry | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2027 | $0.001021 | $0.001853 | $0.002684 |
| 2028 | $0.001844 | $0.00318 | $0.004517 |
| 2029 | $0.004051 | $0.008689 | $0.013327 |
| 2030 | $0.003445 | $0.0067037 | $0.009962 |
| 2031 | $0.004073 | $0.006583 | $0.009094 |
| 2032 | $0.006218 | $0.011543 | $0.016869 |
Prévision du prix de Fry de 2032 à 2037
La prévision du prix de Fry pour 2032-2037 est actuellement estimée entre $0.011543 à la baisse et $0.105269 à la hausse. Par rapport au prix actuel, Fry pourrait potentiellement gagner 3326.16% d'ici 2037 s'il atteint l'objectif de prix le plus élevé. Veuillez noter que ces informations sont à titre général seulement et ne doivent pas être considérées comme un conseil en investissement à long terme.
| Prévision du Prix de Fry | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2032 | $0.006218 | $0.011543 | $0.016869 |
| 2033 | $0.014449 | $0.029691 | $0.044933 |
| 2034 | $0.011616 | $0.018819 | $0.026023 |
| 2035 | $0.013734 | $0.022198 | $0.030661 |
| 2036 | $0.022735 | $0.043086 | $0.063438 |
| 2037 | $0.059042 | $0.105269 | $0.151496 |
Fry Histogramme des prix potentiels
Prévision du prix de Fry basée sur l'analyse technique
Au 6 janvier 2026, le sentiment global de prévision du prix pour Fry est Baissier, avec 4 indicateurs techniques montrant des signaux haussiers et 27 indiquant des signaux baissiers. La prévision du prix de FRY a été mise à jour pour la dernière fois le 6 janvier 2026.
Moyennes Mobiles Simples sur 50 et 200 jours de Fry et Indice de Force Relative sur 14 jours - RSI (14)
Selon nos indicateurs techniques, le SMA sur 200 jours de Fry devrait augmenter au cours du prochain mois, atteignant $0.019514 d'ici le 4 févr. 2026. Le SMA à court terme sur 50 jours pour Fry devrait atteindre $0.003095 d'ici le 4 févr. 2026.
Le Relative Strength Index (RSI), un oscillateur de momentum, est un outil couramment utilisé pour identifier si une cryptomonnaie est survendue (en dessous de 30) ou surachetée (au-dessus de 70). Actuellement, le RSI est à 39.46, ce qui suggère que le marché de FRY est dans un état NEUTRAL.
Moyennes Mobiles et Oscillateurs Populaires de FRY pour le Samedi 19 Octobre 2024
Les moyennes mobiles (MA) sont des indicateurs largement utilisés sur les marchés financiers, conçus pour lisser les mouvements de prix sur une période donnée. En tant qu'indicateurs retardés, ils sont basés sur des données historiques de prix. Le tableau ci-dessous met en évidence deux types : la moyenne mobile simple (SMA) et la moyenne mobile exponentielle (EMA).
Moyenne Mobile Simple Quotidienne (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 3 | $0.003044 | BUY |
| SMA 5 | $0.0031099 | SELL |
| SMA 10 | $0.003234 | SELL |
| SMA 21 | $0.003468 | SELL |
| SMA 50 | $0.005255 | SELL |
| SMA 100 | $0.008283 | SELL |
| SMA 200 | $0.036445 | SELL |
Moyenne Mobile Exponentielle Quotidienne (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 3 | $0.003078 | SELL |
| EMA 5 | $0.003122 | SELL |
| EMA 10 | $0.003261 | SELL |
| EMA 21 | $0.003688 | SELL |
| EMA 50 | $0.005584 | SELL |
| EMA 100 | $0.014961 | SELL |
| EMA 200 | $0.064518 | SELL |
Moyenne Mobile Simple Hebdomadaire (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 21 | $0.01023 | SELL |
| SMA 50 | $0.1269055 | SELL |
| SMA 100 | — | — |
| SMA 200 | — | — |
Moyenne Mobile Exponentielle Hebdomadaire (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 21 | $0.027885 | SELL |
| EMA 50 | $0.142784 | SELL |
| EMA 100 | $0.083629 | SELL |
| EMA 200 | $0.041814 | SELL |
Oscillateurs de Fry
Un oscillateur est un outil d'analyse technique qui établit des limites hautes et basses entre deux extrêmes, créant un indicateur de tendance qui fluctue à l'intérieur de ces limites. Les traders utilisent cet indicateur pour identifier les conditions de surachat ou de survente à court terme.
| Période | Valeur | Action |
|---|---|---|
| RSI (14) | 39.46 | NEUTRAL |
| Stoch RSI (14) | 23.46 | NEUTRAL |
| Stochastique Rapide (14) | 3.23 | BUY |
| Indice de Canal des Matières Premières (20) | -90.54 | NEUTRAL |
| Indice Directionnel Moyen (14) | 21.62 | NEUTRAL |
| Oscillateur Impressionnant (5, 34) | -0.000944 | NEUTRAL |
| Momentum (10) | -0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Plage de Pourcentage de Williams (14) | -96.77 | BUY |
| Oscillateur Ultime (7, 14, 28) | 37.53 | NEUTRAL |
| VWMA (10) | 0.003225 | SELL |
| Moyenne Mobile de Hull (9) | 0.003012 | SELL |
| Nuage Ichimoku B/L (9, 26, 52, 26) | -0.002077 | SELL |
Prévision du cours de Fry basée sur les flux monétaires mondiaux
Définitions des flux monétaires mondiaux utilisés pour la prédiction du cours de Fry
M0 : le total de toutes les devises physiques, plus les comptes à la banque centrale qui peuvent être échangés contre des devises physiques.
M1 : M0 plus le montant des comptes à vue, y compris les comptes de "chèques" et les comptes "courants".
M2 : M1 plus la plupart des comptes d'épargne, comptes du marché monétaire et comptes de certificats de dépôt (CD) de moins de 100 000 $.
Prédictions du cours de Fry par des sociétés Internet ou des niches technologiques
| Comparaison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Action Facebook | $0.004317 | $0.006066 | $0.008524 | $0.011978 | $0.016831 | $0.023651 |
| Action Amazon.com | $0.00641 | $0.013376 | $0.027911 | $0.058239 | $0.12152 | $0.253559 |
| Action Apple | $0.004358 | $0.006181 | $0.008768 | $0.012437 | $0.017641 | $0.025022 |
| Action Netflix | $0.004847 | $0.007649 | $0.012069 | $0.019043 | $0.030047 | $0.04741 |
| Action Google | $0.003978 | $0.005152 | $0.006672 | $0.008641 | $0.01119 | $0.014491 |
| Action Tesla | $0.006965 | $0.015789 | $0.035793 | $0.081141 | $0.183941 | $0.416981 |
| Action Kodak | $0.002304 | $0.001727 | $0.001295 | $0.000971 | $0.000728 | $0.000546 |
| Action Nokia | $0.002035 | $0.001348 | $0.000893 | $0.000591 | $0.000392 | $0.000259 |
Ce calcul montre la valeur potentielle des cryptomonnaies si l'on suppose que leur capitalisation se comportera comme celle de certaines sociétés Internet ou niches technologiques. En extrapolant les données, vous pourrez obtenir une potentielle image des cours futurs pour 2024, 2025, 2026, 2027, 2028, 2029 et 2030.
Aperçu des prévisions relatives à Fry
Vous vous posez peut-être des questions telles que : "Devrais-je investir dans Fry maintenant ?", "Devrais-je acheter FRY aujourd'hui ?", " Fry sera-t-il un bon ou un mauvais investissement à court ou à long terme ?".
Nous mettons régulièrement à jour les prévisions de Fry avec de nouvelles valeurs. Regardez nos prévisions similaires. Nous faisons une prévision des cours futurs pour une grande quantité de devises numériques comme Fry en utilisant des méthodes d'analyse technique.
Si vous souhaitez trouver des cryptomonnaies ayant un bon rendement, vous devriez consulter un maximum d'informations disponibles à propos de Fry afin de prendre une décision responsable concernant cet investissement.
Le cours de Fry est de $0.003072 USD actuellement, mais ce cours peut subir une hausse ou une baisse, ce qui pourrait causer la perte de votre investissement, car les cryptomonnaies sont des actifs à haut risque.
Prévision du cours de Fry basée sur le modèle de croissance du Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Fry présente 1 % de la précédente croissance annuelle moyenne du Bitcoin | $0.003152 | $0.003234 | $0.003318 | $0.0034046 |
| Si Fry présente 2 % de la précédente croissance annuelle moyenne du Bitcoin | $0.003232 | $0.00340028 | $0.003577 | $0.003763 |
| Si Fry présente 5 % de la précédente croissance annuelle moyenne du Bitcoin | $0.003471 | $0.003923 | $0.004432 | $0.005009 |
| Si Fry présente 10 % de la précédente croissance annuelle moyenne du Bitcoin | $0.003871 | $0.004877 | $0.006145 | $0.007742 |
| Si Fry présente 20 % de la précédente croissance annuelle moyenne du Bitcoin | $0.004669 | $0.007097 | $0.010787 | $0.016395 |
| Si Fry présente 50 % de la précédente croissance annuelle moyenne du Bitcoin | $0.007065 | $0.016248 | $0.037366 | $0.08593 |
| Si Fry présente 100 % de la précédente croissance annuelle moyenne du Bitcoin | $0.011058 | $0.0398048 | $0.14327 | $0.515676 |
Boîte à questions
Est-ce que FRY est un bon investissement ?
La décision d'acquérir Fry dépend entièrement de votre tolérance individuelle au risque. Comme vous pouvez le discerner, la valeur de Fry a connu une hausse de 2.5114% au cours des 24 heures précédentes, et Fry a enregistré une déclin de sur une période de 30 jours précédents. Par conséquent, la détermination de si investir ou non dans Fry dépendra de la mesure dans laquelle cet investissement s'aligne avec vos aspirations de trading.
Est-ce que Fry peut monter ?
Il semble que la valeur moyenne de Fry pourrait potentiellement s'envoler jusqu'à $0.003168 pour la fin de cette année. En regardant les perspectives de Fry sur une période de cinq ans plus longue, la monnaie numérique pourrait potentiellement croître jusqu'à $0.009962. Cependant, compte tenu de l'imprévisibilité du marché, il est essentiel de mener des recherches approfondies avant d'investir des fonds dans un projet, un réseau ou un actif particulier.
Quel sera le prix de Fry la semaine prochaine ?
Basé sur notre nouveau pronostic expérimental de Fry, le prix de Fry va augmenter de 0.86% durant la prochaine semaine et atteindre $0.0030988 d'ici 13 janvier 2026.
Quel sera le prix de Fry le mois prochain ?
Basé sur notre nouveau pronostic expérimental de Fry, le prix de Fry va diminuer de -11.62% durant le prochain mois et atteindre $0.002715 d'ici 5 février 2026.
Jusqu'où le prix de Fry peut-il monter cette année en 2026 ?
Selon notre prédiction la plus récente sur la valeur de Fry en 2026, FRY devrait fluctuer dans la fourchette de $0.001061 et $0.003168. Cependant, il est crucial de garder à l'esprit que le marché des cryptomonnaies est exceptionnellement instable, et cette prévision de prix de Fry ne prend pas en compte les fluctuations de prix soudaines et extrêmes.
Où sera Fry dans 5 ans ?
L'avenir de Fry semble suivre une tendance haussière, avec un prix maximum de $0.009962 prévue après une période de cinq ans. Selon la prévision de Fry pour 2030, la valeur de Fry pourrait potentiellement atteindre son point le plus élevé d'environ $0.009962, tandis que son point le plus bas devrait être autour de $0.003445.
Combien vaudra Fry en 2026 ?
Basé sur notre nouvelle simulation expérimentale de prédiction de prix de Fry, il est attendu que la valeur de FRY en 2026 augmente de 3.13% jusqu'à $0.003168 si le meilleur scénario se produit. Le prix sera entre $0.003168 et $0.001061 durant 2026.
Combien vaudra Fry en 2027 ?
Selon notre dernière simulation expérimentale pour la prédiction de prix de Fry, le valeur de FRY pourrait diminuer de -12.62% jusqu'à $0.002684 en 2027, en supposant les conditions les plus favorables. Il est prévu que le prix fluctue entre $0.002684 et $0.001021 tout au long de l'année.
Combien vaudra Fry en 2028 ?
Notre nouveau modèle expérimental de prédiction de prix de Fry suggère que la valeur de FRY en 2028 pourrait augmenter de 47.02%, atteignant $0.004517 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.004517 et $0.001844 durant l'année.
Combien vaudra Fry en 2029 ?
Basé sur notre modèle de prévision expérimental, la valeur de Fry pourrait connaître un 333.75% croissance en 2029, atteignant potentiellement $0.013327 sous des conditions optimales. Le range de prix prévu pour 2029 se situe entre $0.013327 et $0.004051.
Combien vaudra Fry en 2030 ?
En utilisant notre nouvelle simulation expérimentale pour les prédictions de prix de Fry, il est prévu que la valeur de FRY en 2030 augmente de 224.23%, atteignant $0.009962 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.009962 et $0.003445 au cours de 2030.
Combien vaudra Fry en 2031 ?
Notre simulation expérimentale indique que le prix de Fry pourrait augmenter de 195.98% en 2031, atteignant potentiellement $0.009094 dans des conditions idéales. Il est probable que le prix fluctue entre $0.009094 et $0.004073 durant l'année.
Combien vaudra Fry en 2032 ?
Basé sur les résultats de notre dernière prédiction expérimentale de prix de Fry, FRY pourrait connaître une 449.04% hausse en valeur, atteignant $0.016869 si le scénario le plus positif se réalise en 2032. Il est prévu que le prix reste dans une fourchette de $0.016869 et $0.006218 tout au long de l'année.
Combien vaudra Fry en 2033 ?
Selon notre prédiction expérimentale de prix de Fry, la valeur de FRY est anticipée à augmenter de 1362.43% en 2033, avec le prix potentiel le plus élevé étant $0.044933. Tout au long de l'année, le prix de FRY pourrait osciller entre $0.044933 et $0.014449.
Combien vaudra Fry en 2034 ?
Les résultats de notre nouvelle simulation de prédiction de prix de Fry suggèrent que FRY pourrait augmenter de 746.96% en 2034, atteignant potentiellement $0.026023 dans les meilleures circonstances. La fourchette de prix prévue pour l'année est entre $0.026023 et $0.011616.
Combien vaudra Fry en 2035 ?
Basé sur notre prédiction expérimentale pour le prix de Fry, FRY pourrait augmenter de 897.93%, avec la valeur potentiellement atteignant $0.030661 en 2035. La fourchette de prix attendue pour l'année se situe entre $0.030661 et $0.013734.
Combien vaudra Fry en 2036 ?
Notre récente simulation de prédiction de prix de Fry suggère que la valeur de FRY pourrait augmenter de 1964.7% en 2036, pouvant atteindre $0.063438 si les conditions sont optimales. La fourchette de prix attendue pour 2036 est entre $0.063438 et $0.022735.
Combien vaudra Fry en 2037 ?
Selon la simulation expérimentale, la valeur de Fry pourrait augmenter de 4830.69% en 2037, avec un maximum de $0.151496 sous des conditions favorables. Il est prévu que le prix chute entre $0.151496 et $0.059042 au cours de l'année.
Prévisions liées
Comment lire et prédire les mouvements de prix de Fry ?
Les traders de Fry utilisent des indicateurs et des modèles graphiques pour prédire la direction du marché. Ils identifient également des niveaux clés de support et de résistance pour évaluer quand une tendance baissière pourrait ralentir ou une tendance haussière pourrait s'arrêter.
Indicateurs de prédiction du prix de Fry
Les moyennes mobiles sont des outils populaires pour la prédiction du prix de Fry. Une moyenne mobile simple (SMA) calcule le prix de clôture moyen de FRY sur une période spécifique, comme une SMA de 12 jours. Une moyenne mobile exponentielle (EMA) donne plus de poids aux prix récents, réagissant plus rapidement aux changements de prix.
Les moyennes mobiles couramment utilisées sur le marché des cryptomonnaies incluent les moyennes sur 50 jours, 100 jours et 200 jours, qui aident à identifier les niveaux clés de résistance et de support. Un mouvement de prix de FRY au-dessus de ces moyennes est considéré comme haussier, tandis qu'une chute en dessous indique une faiblesse.
Les traders utilisent également le RSI et les niveaux de retracement de Fibonacci pour évaluer la direction future de FRY.
Comment lire les graphiques de Fry et prédire les mouvements de prix ?
La plupart des traders préfèrent les graphiques en chandeliers aux simples graphiques linéaires parce qu'ils fournissent des informations plus détaillées. Les chandeliers peuvent représenter l'action des prix de Fry dans différentes périodes, comme 5 minutes pour les tendances à court terme et hebdomadaire pour les tendances à long terme. Les options populaires incluent les graphiques de 1 heure, 4 heures et 1 jour.
Par exemple, un graphique en chandeliers de 1 heure montre les prix d'ouverture, de clôture, les plus hauts et les plus bas de FRY au sein de chaque heure. La couleur du chandelier est cruciale : le vert indique que le prix a clôturé plus haut qu'il n'a ouvert, tandis que le rouge signifie le contraire. Certains graphiques utilisent des chandeliers creux et pleins pour transmettre la même information.
Qu'est-ce qui affecte le prix de Fry ?
L'action du prix de Fry est déterminée par l'offre et la demande, influencée par des facteurs tels que les réductions de récompenses de bloc, les hard forks et les mises à jour de protocole. Les événements du monde réel, tels que les réglementations, l'adoption par les entreprises et les gouvernements et les piratages d'échanges de cryptomonnaies, impactent également le prix de FRY. La capitalisation boursière de Fry peut changer rapidement.
Les traders surveillent souvent l'activité des « baleines » de FRY, de grands détenteurs de Fry, car leurs actions peuvent influencer significativement les mouvements de prix sur le marché relativement petit de Fry.
Modèles de prédiction de prix haussiers et baissiers
Les traders identifient souvent des modèles de chandeliers pour obtenir un avantage dans les prédictions de prix des cryptomonnaies. Certaines formations indiquent des tendances haussières, tandis que d'autres suggèrent des mouvements baissiers.
Modèles de chandeliers haussiers couramment suivis :
- Marteau
- Englobante haussière
- Ligne pénétrante
- Étoile du matin
- Trois soldats blancs
Modèles de chandeliers baissiers courants :
- Harami baissier
- Nuage sombre
- Étoile du soir
- Étoile filante
- Pendu


