Prédiction du prix de Frictionless jusqu'à $0.0003092 d'ici 2026
| Année | Prix min. | Prix max. |
|---|---|---|
| 2026 | $0.0001036 | $0.0003092 |
| 2027 | $0.000099 | $0.000262 |
| 2028 | $0.000179 | $0.00044 |
| 2029 | $0.000395 | $0.00130065 |
| 2030 | $0.000336 | $0.000972 |
| 2031 | $0.000397 | $0.000887 |
| 2032 | $0.0006068 | $0.001646 |
| 2033 | $0.00141 | $0.004385 |
| 2034 | $0.001133 | $0.002539 |
| 2035 | $0.00134 | $0.002992 |
Calculateur de profit d’investissement
Si vous ouvrez une position short de $10,000.00 sur Frictionless aujourd’hui et la fermez le Apr 06, 2026, notre prévision indique que vous pourriez gagner environ $3,963.85, soit un rendement de 39.64% sur les 90 prochains jours.
Prévision du prix à long terme de Frictionless pour 2027, 2028, 2029, 2030, 2031, 2032 et 2037
[
'name' => 'Frictionless'
'name_with_ticker' => 'Frictionless <small>FRIC</small>'
'name_lang' => 'Frictionless'
'name_lang_with_ticker' => 'Frictionless <small>FRIC</small>'
'name_with_lang' => 'Frictionless'
'name_with_lang_with_ticker' => 'Frictionless <small>FRIC</small>'
'image' => '/uploads/coins/frictionless.png?1717578198'
'price_for_sd' => 0.0002998
'ticker' => 'FRIC'
'marketcap' => '$0'
'low24h' => '$0.0002878'
'high24h' => '$0.0003019'
'volume24h' => '$6.12K'
'current_supply' => '0'
'max_supply' => '500M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.0002998'
'change_24h_pct' => '3.1069%'
'ath_price' => '$0.009178'
'ath_days' => 634
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '12 avr. 2024'
'ath_pct' => '-96.75%'
'fdv' => '$148.93K'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.014785'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.000302'
'next_week_prediction_price_date' => '13 janvier 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.000265'
'next_month_prediction_price_date' => '5 février 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.0001036'
'current_year_max_price_prediction' => '$0.0003092'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.000336'
'grand_prediction_max_price' => '$0.000972'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.00030554218927364
107 => 0.00030668297289657
108 => 0.0003092532166489
109 => 0.00028729076519617
110 => 0.00029715126111475
111 => 0.00030294337866339
112 => 0.00027677438085959
113 => 0.00030242610171655
114 => 0.00028690844777843
115 => 0.00028164152296449
116 => 0.00028873274336188
117 => 0.00028596928787657
118 => 0.00028359343112586
119 => 0.00028226766223657
120 => 0.00028747467186697
121 => 0.00028723175864399
122 => 0.00027871208025163
123 => 0.0002675985070953
124 => 0.00027132858703717
125 => 0.0002699734140246
126 => 0.00026506209220627
127 => 0.00026837173011657
128 => 0.00025379775972902
129 => 0.0002287240011663
130 => 0.00024528849410283
131 => 0.00024465077914347
201 => 0.0002443292143429
202 => 0.00025677697297574
203 => 0.00025558040820184
204 => 0.00025340863142043
205 => 0.00026502220582255
206 => 0.00026078309494115
207 => 0.00027384703581747
208 => 0.00028245179220133
209 => 0.00028026934764768
210 => 0.0002883621626171
211 => 0.00027141452054533
212 => 0.00027704384742019
213 => 0.00027820404388718
214 => 0.00026487889611715
215 => 0.00025577618099702
216 => 0.00025516913367705
217 => 0.00023938628009015
218 => 0.00024781735308153
219 => 0.00025523634841244
220 => 0.00025168322538623
221 => 0.00025055841278266
222 => 0.0002563048364322
223 => 0.00025675138276456
224 => 0.00024657007906391
225 => 0.00024868709450323
226 => 0.00025751540080973
227 => 0.00024846464383541
228 => 0.00023088050146705
301 => 0.0002265193910399
302 => 0.00022593753851771
303 => 0.00021410986115527
304 => 0.00022681082129211
305 => 0.00022126651182781
306 => 0.0002387809189945
307 => 0.00022877678355254
308 => 0.00022834552526864
309 => 0.00022769361512071
310 => 0.00021751304461966
311 => 0.00021974194255038
312 => 0.00022715113874284
313 => 0.00022979482341488
314 => 0.00022951906544452
315 => 0.00022711482963942
316 => 0.00022821547647932
317 => 0.00022466990951725
318 => 0.00022341789602834
319 => 0.00021946619706393
320 => 0.00021365829127094
321 => 0.00021446591619341
322 => 0.00020295893509628
323 => 0.00019668932107286
324 => 0.00019495397454336
325 => 0.00019263339663899
326 => 0.00019521608999248
327 => 0.00020292633726461
328 => 0.00019362614323421
329 => 0.00017768161290185
330 => 0.00017863990634299
331 => 0.00018079290718533
401 => 0.00017678080435914
402 => 0.00017298368574442
403 => 0.00017628497230995
404 => 0.0001695290646151
405 => 0.00018160932635353
406 => 0.00018128258912804
407 => 0.00018578536366575
408 => 0.00018860104099042
409 => 0.00018211181634342
410 => 0.00018047979389343
411 => 0.00018140946805223
412 => 0.00016604402508206
413 => 0.00018452967916323
414 => 0.00018468954386736
415 => 0.00018332068521394
416 => 0.00019316372533162
417 => 0.00021393561010113
418 => 0.00020612039150372
419 => 0.00020309410264656
420 => 0.00019734112531691
421 => 0.00020500662603068
422 => 0.0002044180351763
423 => 0.00020175620411635
424 => 0.00020014632038587
425 => 0.00020311258052101
426 => 0.00019977876792898
427 => 0.00019917992358041
428 => 0.00019555157837715
429 => 0.00019425642421877
430 => 0.00019329754364148
501 => 0.00019224191034355
502 => 0.00019457037435137
503 => 0.0001892937685747
504 => 0.00018293069928008
505 => 0.00018240167891759
506 => 0.00018386235065036
507 => 0.00018321611214283
508 => 0.00018239858497625
509 => 0.00018083770297496
510 => 0.00018037462262814
511 => 0.00018187940910065
512 => 0.00018018059290769
513 => 0.0001826872887397
514 => 0.0001820056061752
515 => 0.00017819778278362
516 => 0.00017345182500093
517 => 0.00017340957602168
518 => 0.00017238706720233
519 => 0.00017108474848565
520 => 0.00017072247321169
521 => 0.00017600694716344
522 => 0.00018694565009256
523 => 0.0001847981209666
524 => 0.00018634993084774
525 => 0.00019398329958029
526 => 0.00019640971795696
527 => 0.00019468750366607
528 => 0.00019233003052315
529 => 0.00019243374737706
530 => 0.00020048994676208
531 => 0.00020099240203579
601 => 0.00020226194441423
602 => 0.00020389366514317
603 => 0.00019496539276197
604 => 0.00019201322655081
605 => 0.00019061432642001
606 => 0.00018630625545965
607 => 0.00019095214064431
608 => 0.00018824518230385
609 => 0.00018861044346684
610 => 0.00018837256665527
611 => 0.00018850246347955
612 => 0.00018160594967417
613 => 0.00018411867683476
614 => 0.00017994078057884
615 => 0.00017434704648303
616 => 0.00017432829432492
617 => 0.00017569735282023
618 => 0.00017488298325596
619 => 0.00017269153569785
620 => 0.00017300282048014
621 => 0.00017027563823805
622 => 0.00017333394978155
623 => 0.00017342165121346
624 => 0.00017224403468185
625 => 0.00017695578558029
626 => 0.00017888619376781
627 => 0.00017811106133971
628 => 0.00017883180841031
629 => 0.00018488736049729
630 => 0.00018587467970973
701 => 0.00018631318168525
702 => 0.00018572564712844
703 => 0.00017894249278612
704 => 0.0001792433545254
705 => 0.00017703583070746
706 => 0.00017517070570443
707 => 0.00017524530092326
708 => 0.00017620421762409
709 => 0.00018039186309637
710 => 0.0001892045161176
711 => 0.00018953894985779
712 => 0.00018994429330703
713 => 0.00018829555778971
714 => 0.00018779828338141
715 => 0.00018845431668337
716 => 0.00019176388581086
717 => 0.00020027699614602
718 => 0.00019726789438205
719 => 0.00019482144780849
720 => 0.00019696764101077
721 => 0.00019663725138969
722 => 0.00019384843049548
723 => 0.00019377015758144
724 => 0.00018841751864547
725 => 0.00018643876990454
726 => 0.00018478517934983
727 => 0.00018297950163217
728 => 0.00018190903535428
729 => 0.00018355375807535
730 => 0.00018392992562144
731 => 0.000180333710647
801 => 0.00017984355983445
802 => 0.00018278030661228
803 => 0.00018148795384831
804 => 0.00018281717071485
805 => 0.0001831255604297
806 => 0.0001830759025828
807 => 0.00018172653787145
808 => 0.00018258658269983
809 => 0.00018055232028901
810 => 0.00017834036545357
811 => 0.00017692927607822
812 => 0.00017569791344438
813 => 0.00017638114500085
814 => 0.00017394554925519
815 => 0.0001731663531573
816 => 0.00018229521886359
817 => 0.00018903881011268
818 => 0.00018894075562516
819 => 0.00018834387414997
820 => 0.00018745702935082
821 => 0.00019169900758999
822 => 0.00019022118719249
823 => 0.0001912964250077
824 => 0.00019157011815926
825 => 0.00019239850489792
826 => 0.00019269458195475
827 => 0.00019179963145028
828 => 0.00018879606824829
829 => 0.00018131147431916
830 => 0.00017782737564087
831 => 0.00017667756504478
901 => 0.00017671935847615
902 => 0.00017556650906496
903 => 0.00017590607488364
904 => 0.00017544842193081
905 => 0.00017458173795629
906 => 0.00017632762970768
907 => 0.00017652882746792
908 => 0.00017612131547129
909 => 0.00017621729929865
910 => 0.00017284327401724
911 => 0.00017309979383139
912 => 0.00017167145890925
913 => 0.00017140366333018
914 => 0.00016779295702637
915 => 0.00016139606742891
916 => 0.000164940565227
917 => 0.00016065931031872
918 => 0.00015903793421336
919 => 0.00016671327652043
920 => 0.00016594288503366
921 => 0.00016462430968943
922 => 0.00016267386194014
923 => 0.0001619504218972
924 => 0.00015755502920953
925 => 0.00015729532596104
926 => 0.00015947380126263
927 => 0.0001584685098677
928 => 0.0001570567000156
929 => 0.00015194326784417
930 => 0.00014619407708427
1001 => 0.00014636760901518
1002 => 0.00014819631962841
1003 => 0.0001535135423716
1004 => 0.00015143601145695
1005 => 0.00014992873894145
1006 => 0.00014964647210774
1007 => 0.00015317963249723
1008 => 0.00015817979466835
1009 => 0.00016052575888672
1010 => 0.00015820097959431
1011 => 0.0001555303983182
1012 => 0.00015569294422619
1013 => 0.00015677428933024
1014 => 0.00015688792341127
1015 => 0.00015514964954071
1016 => 0.00015563896345328
1017 => 0.00015489565087629
1018 => 0.00015033394296336
1019 => 0.00015025143613255
1020 => 0.00014913191944324
1021 => 0.00014909802092281
1022 => 0.00014719344375777
1023 => 0.00014692698024666
1024 => 0.00014314532668591
1025 => 0.0001456344225115
1026 => 0.00014396486771509
1027 => 0.00014144845482873
1028 => 0.00014101462429863
1029 => 0.00014100158282903
1030 => 0.00014358537620369
1031 => 0.00014560422938156
1101 => 0.00014399391033557
1102 => 0.00014362727190352
1103 => 0.00014754201115344
1104 => 0.00014704382490025
1105 => 0.00014661239881794
1106 => 0.00015773208498819
1107 => 0.0001489299857045
1108 => 0.00014509176801056
1109 => 0.00014034124475652
1110 => 0.00014188803908225
1111 => 0.00014221397137382
1112 => 0.00013078981929405
1113 => 0.00012615504221807
1114 => 0.00012456456138349
1115 => 0.00012364921717708
1116 => 0.00012406635102611
1117 => 0.0001198945080526
1118 => 0.00012269805552671
1119 => 0.00011908559214876
1120 => 0.00011847995090748
1121 => 0.00012493948292559
1122 => 0.00012583828906987
1123 => 0.00012200370282119
1124 => 0.00012446612795597
1125 => 0.00012357321837183
1126 => 0.00011914751746498
1127 => 0.00011897848824359
1128 => 0.00011675782709945
1129 => 0.00011328292241359
1130 => 0.00011169479772801
1201 => 0.00011086768860303
1202 => 0.00011120896994803
1203 => 0.00011103640765662
1204 => 0.00010991032197951
1205 => 0.00011110095356948
1206 => 0.00010805938186003
1207 => 0.00010684820349772
1208 => 0.00010630114233059
1209 => 0.00010360157237212
1210 => 0.00010789778868026
1211 => 0.00010874419741527
1212 => 0.00010959227383695
1213 => 0.00011697420008137
1214 => 0.0001166054199073
1215 => 0.00011993901307761
1216 => 0.0001198094757771
1217 => 0.0001188586810043
1218 => 0.000114847434256
1219 => 0.00011644624571627
1220 => 0.00011152535255202
1221 => 0.00011521242029889
1222 => 0.00011352979655485
1223 => 0.00011464352351846
1224 => 0.00011264094201717
1225 => 0.00011374925330455
1226 => 0.00010894491232603
1227 => 0.0001044586863192
1228 => 0.00010626407462545
1229 => 0.00010822673818554
1230 => 0.00011248229286119
1231 => 0.00010994771960394
]
'min_raw' => 0.00010360157237212
'max_raw' => 0.0003092532166489
'avg_raw' => 0.00020642739451051
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.0001036'
'max' => '$0.0003092'
'avg' => '$0.0002064'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.00019625842762788
'max_diff' => 9.3932166488972E-6
'year' => 2026
]
1 => [
'items' => [
101 => 0.00011085924799007
102 => 0.00010780578048453
103 => 0.00010150560484072
104 => 0.00010154126315067
105 => 0.00010057211838466
106 => 9.9734635809368E-5
107 => 0.00011023884583194
108 => 0.00010893248126865
109 => 0.00010685096030981
110 => 0.00010963715882957
111 => 0.00011037387394111
112 => 0.00011039484718464
113 => 0.00011242758570247
114 => 0.00011351245861382
115 => 0.00011370367216656
116 => 0.00011690223014458
117 => 0.00011797434458881
118 => 0.0001223902322533
119 => 0.00011342041472688
120 => 0.00011323568723767
121 => 0.00010967636635653
122 => 0.00010741898878306
123 => 0.00010983093093025
124 => 0.00011196758240972
125 => 0.00010974275807389
126 => 0.00011003327316354
127 => 0.00010704662826751
128 => 0.00010811421328313
129 => 0.00010903376131783
130 => 0.0001085260409416
131 => 0.00010776595896446
201 => 0.00011179240135446
202 => 0.00011156521369506
203 => 0.00011531472941614
204 => 0.00011823774505116
205 => 0.00012347631162067
206 => 0.00011800959431274
207 => 0.0001178103654058
208 => 0.00011975785992841
209 => 0.00011797404643755
210 => 0.00011910135498862
211 => 0.00012329468478497
212 => 0.0001233832832358
213 => 0.00012189914503167
214 => 0.00012180883508707
215 => 0.00012209388006387
216 => 0.00012376339739618
217 => 0.00012318001674119
218 => 0.00012385511960454
219 => 0.0001246993460727
220 => 0.00012819142468963
221 => 0.0001290333530218
222 => 0.00012698790366443
223 => 0.00012717258483947
224 => 0.00012640753063097
225 => 0.00012566849785167
226 => 0.00012732973561248
227 => 0.00013036568027207
228 => 0.00013034679381791
301 => 0.00013105107396861
302 => 0.00013148983466792
303 => 0.00012960635255401
304 => 0.00012838027495542
305 => 0.00012885043112406
306 => 0.0001296022210764
307 => 0.00012860663577489
308 => 0.00012246142209404
309 => 0.00012432548736704
310 => 0.00012401521575748
311 => 0.00012357335125514
312 => 0.00012544768330154
313 => 0.0001252668994032
314 => 0.00011985171977303
315 => 0.00012019838200344
316 => 0.00011987280145144
317 => 0.00012092481882248
318 => 0.00011791723404709
319 => 0.0001188423468676
320 => 0.00011942256895624
321 => 0.00011976432422392
322 => 0.00012099897859457
323 => 0.0001208541061545
324 => 0.00012098997312028
325 => 0.00012282063961528
326 => 0.00013207952253812
327 => 0.00013258346310703
328 => 0.00013010187543809
329 => 0.00013109322076468
330 => 0.00012919005452101
331 => 0.00013046766277049
401 => 0.00013134176988705
402 => 0.00012739184790844
403 => 0.00012715795916365
404 => 0.0001252469378759
405 => 0.00012627381247016
406 => 0.0001246399811558
407 => 0.00012504086621135
408 => 0.0001239199566475
409 => 0.00012593737069156
410 => 0.00012819315306727
411 => 0.00012876305277892
412 => 0.00012726389199482
413 => 0.00012617840078763
414 => 0.00012427263581082
415 => 0.00012744196543999
416 => 0.00012836877400713
417 => 0.00012743709730914
418 => 0.00012722120746068
419 => 0.00012681209658795
420 => 0.00012730800226632
421 => 0.00012836372640863
422 => 0.00012786586639928
423 => 0.00012819471170662
424 => 0.00012694149249885
425 => 0.00012960697606496
426 => 0.0001338404054515
427 => 0.00013385401661922
428 => 0.00013335615392622
429 => 0.00013315243923884
430 => 0.00013366327657469
501 => 0.00013394038487375
502 => 0.00013559233914635
503 => 0.00013736495189762
504 => 0.00014563696215623
505 => 0.00014331421477659
506 => 0.00015065363438213
507 => 0.00015645816238574
508 => 0.00015819868653278
509 => 0.0001565974862155
510 => 0.00015111986642521
511 => 0.00015085110826593
512 => 0.00015903698482405
513 => 0.00015672409975948
514 => 0.00015644898944059
515 => 0.00015352228045381
516 => 0.00015525232794496
517 => 0.00015487394118038
518 => 0.00015427663916117
519 => 0.00015757744925813
520 => 0.00016375627109428
521 => 0.00016279324376649
522 => 0.00016207438853985
523 => 0.00015892457419232
524 => 0.00016082146596604
525 => 0.00016014601913798
526 => 0.00016304816736045
527 => 0.00016132899904391
528 => 0.00015670657738033
529 => 0.00015744271326596
530 => 0.00015733144780774
531 => 0.0001596212830534
601 => 0.00015893393134986
602 => 0.00015719723135603
603 => 0.00016373515255297
604 => 0.00016331061631627
605 => 0.00016391251163741
606 => 0.00016417748457201
607 => 0.0001681570019935
608 => 0.00016978728295073
609 => 0.0001701573852701
610 => 0.00017170602608901
611 => 0.00017011885367575
612 => 0.00017646867496357
613 => 0.00018069093559762
614 => 0.00018559530859962
615 => 0.00019276191572673
616 => 0.00019545662630135
617 => 0.00019496985095546
618 => 0.00020040349068788
619 => 0.00021016762050401
620 => 0.00019694346075846
621 => 0.00021086853308129
622 => 0.00020646001595657
623 => 0.0001960075011597
624 => 0.00019533448243384
625 => 0.00020241304681047
626 => 0.00021811262131127
627 => 0.00021418005596192
628 => 0.00021811905357938
629 => 0.00021352400362644
630 => 0.00021329582066615
701 => 0.00021789588225951
702 => 0.00022864417690869
703 => 0.00022353806501467
704 => 0.00021621720154458
705 => 0.00022162281320564
706 => 0.00021693997211908
707 => 0.00020638822050638
708 => 0.00021417704880331
709 => 0.00020896888113421
710 => 0.00021048890134148
711 => 0.00022143569512545
712 => 0.00022011854793574
713 => 0.00022182305836377
714 => 0.0002188146420731
715 => 0.00021600430687391
716 => 0.00021075860752638
717 => 0.00020920561455943
718 => 0.00020963480594466
719 => 0.00020920540187349
720 => 0.00020627048129902
721 => 0.0002056366854804
722 => 0.0002045803313488
723 => 0.00020490773966528
724 => 0.00020292148485057
725 => 0.00020666995806712
726 => 0.00020736570772754
727 => 0.00021009353393782
728 => 0.00021037674590419
729 => 0.00021797370307164
730 => 0.00021378942672548
731 => 0.00021659660055152
801 => 0.00021634550050238
802 => 0.00019623403885015
803 => 0.00019900522082089
804 => 0.00020331631032257
805 => 0.00020137417034561
806 => 0.00019862843880895
807 => 0.00019641111337629
808 => 0.00019305163861264
809 => 0.00019778003482948
810 => 0.00020399737304574
811 => 0.00021053442786152
812 => 0.00021838827089788
813 => 0.00021663538456098
814 => 0.00021038760572898
815 => 0.00021066787652337
816 => 0.00021240040029185
817 => 0.00021015662459529
818 => 0.00020949489133867
819 => 0.000212309488304
820 => 0.00021232887088642
821 => 0.00020974713577818
822 => 0.0002068780096579
823 => 0.0002068659879147
824 => 0.00020635545463406
825 => 0.0002136148263629
826 => 0.0002176067468085
827 => 0.00021806441405429
828 => 0.00021757594215636
829 => 0.00021776393560312
830 => 0.00021544112505179
831 => 0.00022075038116405
901 => 0.00022562267960368
902 => 0.00022431679954038
903 => 0.00022235909968372
904 => 0.00022079969745228
905 => 0.00022394945393317
906 => 0.00022380920023525
907 => 0.00022558012432731
908 => 0.00022549978498114
909 => 0.0002249042898168
910 => 0.00022431682080739
911 => 0.00022664606902523
912 => 0.00022597528294508
913 => 0.00022530345494886
914 => 0.00022395600105073
915 => 0.00022413914241433
916 => 0.00022218178058214
917 => 0.00022127621543579
918 => 0.00020765868838926
919 => 0.00020401964019689
920 => 0.00020516455883787
921 => 0.00020554149578228
922 => 0.00020395777734539
923 => 0.00020622842276
924 => 0.00020587454507734
925 => 0.00020725127612904
926 => 0.00020639115433865
927 => 0.00020642645403695
928 => 0.00020895588882519
929 => 0.0002096901945052
930 => 0.00020931672070977
1001 => 0.00020957828895415
1002 => 0.00021560601874493
1003 => 0.00021474906832463
1004 => 0.0002142938304935
1005 => 0.00021441993448387
1006 => 0.0002159601486814
1007 => 0.00021639132456413
1008 => 0.00021456440205081
1009 => 0.0002154259892694
1010 => 0.00021909451829448
1011 => 0.0002203782958325
1012 => 0.00022447549748567
1013 => 0.00022273493340145
1014 => 0.00022592981410788
1015 => 0.00023574978818437
1016 => 0.00024359466296718
1017 => 0.00023638019191374
1018 => 0.0002507863054136
1019 => 0.00026200353120749
1020 => 0.00026157299539825
1021 => 0.00025961701262198
1022 => 0.00024684649928102
1023 => 0.00023509488250704
1024 => 0.00024492560893848
1025 => 0.00024495066948186
1026 => 0.00024410620136296
1027 => 0.00023886128240297
1028 => 0.00024392368955217
1029 => 0.00024432552504771
1030 => 0.00024410060402689
1031 => 0.00024007933695763
1101 => 0.00023393960539724
1102 => 0.0002351392942477
1103 => 0.00023710440905774
1104 => 0.00023338403675644
1105 => 0.00023219515238087
1106 => 0.00023440551462957
1107 => 0.00024152776234213
1108 => 0.00024018134266844
1109 => 0.00024014618220945
1110 => 0.00024590673654429
1111 => 0.00024178342284598
1112 => 0.00023515442616604
1113 => 0.00023348051707864
1114 => 0.00022753926749861
1115 => 0.00023164290974554
1116 => 0.00023179059252443
1117 => 0.000229543069604
1118 => 0.00023533680026423
1119 => 0.00023528341001623
1120 => 0.00024078369499512
1121 => 0.00025129817406205
1122 => 0.00024818852521587
1123 => 0.00024457234193659
1124 => 0.00024496552132493
1125 => 0.00024927772876564
1126 => 0.00024667046970887
1127 => 0.00024760805824414
1128 => 0.0002492763096131
1129 => 0.00025028280708435
1130 => 0.00024482070182794
1201 => 0.00024354722380997
1202 => 0.00024094213471526
1203 => 0.00024026251559674
1204 => 0.00024238430630742
1205 => 0.00024182528941913
1206 => 0.00023177818035872
1207 => 0.00023072820156032
1208 => 0.00023076040291104
1209 => 0.0002281201812987
1210 => 0.00022409320961408
1211 => 0.00023467585076327
1212 => 0.00023382591657503
1213 => 0.00023288765501088
1214 => 0.00023300258669884
1215 => 0.00023759615254272
1216 => 0.00023493165237264
1217 => 0.0002420156627778
1218 => 0.00024055940320334
1219 => 0.00023906579606577
1220 => 0.00023885933406297
1221 => 0.00023828442274358
1222 => 0.0002363128379143
1223 => 0.00023393203075907
1224 => 0.00023236001565321
1225 => 0.00021433983193613
1226 => 0.00021768427321543
1227 => 0.00022153174805186
1228 => 0.0002228598809476
1229 => 0.00022058801772543
1230 => 0.00023640254492148
1231 => 0.00023929201143278
]
'min_raw' => 9.9734635809368E-5
'max_raw' => 0.00026200353120749
'avg_raw' => 0.00018086908350843
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.000099'
'max' => '$0.000262'
'avg' => '$0.00018'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -3.866936562756E-6
'max_diff' => -4.7249685441407E-5
'year' => 2027
]
2 => [
'items' => [
101 => 0.00023053962889483
102 => 0.0002289024154794
103 => 0.00023650988036043
104 => 0.00023192164906241
105 => 0.00023398772933497
106 => 0.00022952199387119
107 => 0.00023859602356367
108 => 0.00023852689466057
109 => 0.00023499689216394
110 => 0.00023798042610167
111 => 0.00023746196365883
112 => 0.00023347659953415
113 => 0.00023872236671498
114 => 0.00023872496855006
115 => 0.00023532741789593
116 => 0.00023135982255137
117 => 0.00023065051021419
118 => 0.00023011613865082
119 => 0.00023385630668796
120 => 0.00023720972965485
121 => 0.00024344961841218
122 => 0.00024501847470187
123 => 0.00025114182524522
124 => 0.00024749566813719
125 => 0.00024911196235754
126 => 0.00025086667837251
127 => 0.00025170795375763
128 => 0.0002503371406629
129 => 0.00025984922452836
130 => 0.00026065233584933
131 => 0.00026092161212836
201 => 0.00025771419096806
202 => 0.00026056313166468
203 => 0.00025923020665973
204 => 0.00026269810722537
205 => 0.00026324191831444
206 => 0.00026278132966864
207 => 0.00026295394389178
208 => 0.00025483705835919
209 => 0.00025441615502434
210 => 0.00024867710818777
211 => 0.00025101581219457
212 => 0.00024664371715086
213 => 0.00024803015352679
214 => 0.00024864128147085
215 => 0.00024832206291407
216 => 0.00025114803901015
217 => 0.00024874538201971
218 => 0.00024240437518857
219 => 0.00023606164075436
220 => 0.00023598201289022
221 => 0.00023431208287225
222 => 0.0002331050293322
223 => 0.00023333755066654
224 => 0.00023415698617698
225 => 0.00023305740225068
226 => 0.00023329205423168
227 => 0.00023718884059419
228 => 0.00023797031330858
229 => 0.00023531456368398
301 => 0.00022465134571833
302 => 0.00022203456528291
303 => 0.00022391545516688
304 => 0.00022301651094716
305 => 0.00017999173005939
306 => 0.00019009976413337
307 => 0.00018409391352301
308 => 0.00018686168580017
309 => 0.00018073126753447
310 => 0.00018365702445361
311 => 0.00018311674398218
312 => 0.00019937016365468
313 => 0.00019911638886234
314 => 0.00019923785742597
315 => 0.00019343984639929
316 => 0.00020267623539794
317 => 0.00020722641274849
318 => 0.00020638429601995
319 => 0.00020659623865783
320 => 0.0002029543619395
321 => 0.00019927311875335
322 => 0.00019519005352065
323 => 0.00020277588404089
324 => 0.00020193246918149
325 => 0.00020386695941788
326 => 0.00020878691275662
327 => 0.00020951139457484
328 => 0.00021048510548549
329 => 0.00021013609943748
330 => 0.00021845083942848
331 => 0.00021744386955315
401 => 0.00021987037722769
402 => 0.00021487886684158
403 => 0.00020923049904118
404 => 0.00021030406910098
405 => 0.00021020067567111
406 => 0.00020888435863949
407 => 0.00020769604647985
408 => 0.00020571784153893
409 => 0.00021197717469125
410 => 0.00021172305719615
411 => 0.00021583692406254
412 => 0.00021510975813394
413 => 0.00021025356609503
414 => 0.00021042700594373
415 => 0.00021159347227858
416 => 0.00021563062558201
417 => 0.00021682912755282
418 => 0.00021627393368789
419 => 0.0002175880363852
420 => 0.00021862664957686
421 => 0.0002177184702113
422 => 0.00023057637484687
423 => 0.0002252368763922
424 => 0.00022783931078701
425 => 0.00022845997605574
426 => 0.00022687015502108
427 => 0.00022721493027627
428 => 0.00022773717084226
429 => 0.00023090811329376
430 => 0.00023922958380608
501 => 0.00024291510644982
502 => 0.00025400318316399
503 => 0.00024260907509921
504 => 0.00024193299588015
505 => 0.00024393029332421
506 => 0.00025044016814755
507 => 0.00025571581025042
508 => 0.00025746604509504
509 => 0.00025769736752298
510 => 0.00026098092444489
511 => 0.00026286299803782
512 => 0.00026058221426845
513 => 0.00025864948883193
514 => 0.000251726706217
515 => 0.00025252803715479
516 => 0.0002580484126745
517 => 0.00026584626824458
518 => 0.00027253763955231
519 => 0.00027019455453818
520 => 0.00028807063923576
521 => 0.00028984298001627
522 => 0.00028959809982704
523 => 0.00029363575588471
524 => 0.00028562183086459
525 => 0.00028219572265601
526 => 0.00025906736600867
527 => 0.00026556549083316
528 => 0.00027501089688706
529 => 0.00027376076197737
530 => 0.0002669012556246
531 => 0.00027253243600163
601 => 0.00027067059166569
602 => 0.00026920207778995
603 => 0.00027592962454016
604 => 0.00026853241053591
605 => 0.00027493710401879
606 => 0.00026672301837893
607 => 0.00027020525755315
608 => 0.00026822857018091
609 => 0.00026950772916444
610 => 0.0002620297918842
611 => 0.00026606470532396
612 => 0.00026186192621955
613 => 0.00026185993355503
614 => 0.00026176715697336
615 => 0.00026671170795173
616 => 0.00026687294958161
617 => 0.0002632189189378
618 => 0.00026269231603534
619 => 0.00026463944296949
620 => 0.00026235986728296
621 => 0.00026342646639921
622 => 0.00026239217348363
623 => 0.00026215933236279
624 => 0.00026030401469729
625 => 0.00025950469283397
626 => 0.00025981812753256
627 => 0.0002587482133196
628 => 0.0002581035513058
629 => 0.00026163891747291
630 => 0.00025975011394609
701 => 0.00026134943124317
702 => 0.00025952680733321
703 => 0.00025320879878186
704 => 0.00024957524525224
705 => 0.00023764111277844
706 => 0.00024102561794376
707 => 0.0002432695483699
708 => 0.00024252792937745
709 => 0.00024412121394169
710 => 0.00024421902867381
711 => 0.00024370103562036
712 => 0.00024310126602349
713 => 0.00024280933135307
714 => 0.00024498517320878
715 => 0.00024624832264149
716 => 0.00024349475680808
717 => 0.00024284963485979
718 => 0.00024563364194591
719 => 0.00024733188466017
720 => 0.00025987075470212
721 => 0.0002589418347094
722 => 0.00026127324159979
723 => 0.00026101076096229
724 => 0.00026345444680567
725 => 0.0002674488403809
726 => 0.00025932712139244
727 => 0.00026073677098093
728 => 0.00026039115745539
729 => 0.00026416447530243
730 => 0.00026417625518888
731 => 0.00026191396264837
801 => 0.00026314038813609
802 => 0.00026245583107407
803 => 0.00026369291820857
804 => 0.00025892942841656
805 => 0.00026473084479628
806 => 0.00026801987404858
807 => 0.00026806554222293
808 => 0.00026962451598517
809 => 0.00027120852361727
810 => 0.0002742488883291
811 => 0.00027112372949562
812 => 0.00026550187298226
813 => 0.00026590775286404
814 => 0.00026261166044722
815 => 0.00026266706835623
816 => 0.00026237129659552
817 => 0.00026325892991408
818 => 0.00025912421401403
819 => 0.00026009462357142
820 => 0.00025873604450836
821 => 0.00026073381769537
822 => 0.00025858454398989
823 => 0.00026039099079009
824 => 0.00026117059334439
825 => 0.00026404734355342
826 => 0.000258159645645
827 => 0.00024615423104763
828 => 0.00024867791474758
829 => 0.00024494518832428
830 => 0.00024529066636625
831 => 0.00024598858699344
901 => 0.00024372639789527
902 => 0.00024415795228543
903 => 0.00024414253412582
904 => 0.00024400966875579
905 => 0.00024342118600147
906 => 0.00024256776957994
907 => 0.0002459675179356
908 => 0.00024654520142967
909 => 0.00024782932027715
910 => 0.0002516499869411
911 => 0.00025126821224385
912 => 0.00025189090261475
913 => 0.00025053157303133
914 => 0.00024535372176697
915 => 0.00024563490400202
916 => 0.00024212855702532
917 => 0.00024773965510161
918 => 0.00024641087301427
919 => 0.00024555419855832
920 => 0.00024532044699598
921 => 0.0002491505843536
922 => 0.00025029662148104
923 => 0.00024958248805091
924 => 0.00024811777955111
925 => 0.00025093045287293
926 => 0.00025168300559668
927 => 0.00025185147439846
928 => 0.00025683499224811
929 => 0.00025212999768628
930 => 0.00025326253664093
1001 => 0.00026209828226766
1002 => 0.00025408548023377
1003 => 0.00025833004017793
1004 => 0.00025812229105629
1005 => 0.00026029366429564
1006 => 0.00025794417507303
1007 => 0.00025797329980778
1008 => 0.00025990133214276
1009 => 0.00025719375845074
1010 => 0.0002565233251279
1011 => 0.00025559712629413
1012 => 0.00025761944756336
1013 => 0.00025883173770254
1014 => 0.00026860190589531
1015 => 0.00027491388012164
1016 => 0.00027463986067382
1017 => 0.00027714388548392
1018 => 0.00027601579937273
1019 => 0.00027237291174563
1020 => 0.00027859087672227
1021 => 0.00027662325243296
1022 => 0.00027678546098871
1023 => 0.00027677942357816
1024 => 0.00027808772171785
1025 => 0.00027716067258212
1026 => 0.00027533336357594
1027 => 0.00027654641657118
1028 => 0.00028014875029267
1029 => 0.00029133050469726
1030 => 0.00029758796260061
1031 => 0.00029095379787438
1101 => 0.00029552995586753
1102 => 0.00029278589172345
1103 => 0.00029228721363964
1104 => 0.00029516137903475
1105 => 0.00029804057527592
1106 => 0.00029785718292246
1107 => 0.00029576703429974
1108 => 0.00029458636237832
1109 => 0.00030352680572141
1110 => 0.00031011397208011
1111 => 0.00030966477149537
1112 => 0.00031164739678856
1113 => 0.00031746844596965
1114 => 0.000318000649755
1115 => 0.00031793360431061
1116 => 0.00031661448169889
1117 => 0.00032234606057642
1118 => 0.0003271274445136
1119 => 0.00031630914292739
1120 => 0.00032042861054945
1121 => 0.00032227797228595
1122 => 0.00032499338399604
1123 => 0.0003295747387068
1124 => 0.00033455130506701
1125 => 0.00033525504611561
1126 => 0.00033475570816452
1127 => 0.00033147352887268
1128 => 0.0003369189471668
1129 => 0.00034010874549272
1130 => 0.00034200819739857
1201 => 0.00034682489139315
1202 => 0.00032228939331444
1203 => 0.00030492194828095
1204 => 0.00030220977095002
1205 => 0.00030772509020357
1206 => 0.00030917943590688
1207 => 0.00030859319097747
1208 => 0.00028904455261325
1209 => 0.00030210685141472
1210 => 0.00031616078661582
1211 => 0.00031670065550334
1212 => 0.00032373634931894
1213 => 0.00032602745962813
1214 => 0.00033169211533916
1215 => 0.00033133778958211
1216 => 0.00033271704310339
1217 => 0.00033239997660419
1218 => 0.00034289255847487
1219 => 0.00035446743444173
1220 => 0.00035406663329285
1221 => 0.00035240260792489
1222 => 0.00035487396935479
1223 => 0.00036682048179167
1224 => 0.00036572063836545
1225 => 0.00036678904256958
1226 => 0.00038087465400861
1227 => 0.0003991879525342
1228 => 0.00039067958674395
1229 => 0.00040914029229248
1230 => 0.00042076032787533
1231 => 0.00044085597788176
]
'min_raw' => 0.00017999173005939
'max_raw' => 0.00044085597788176
'avg_raw' => 0.00031042385397058
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.000179'
'max' => '$0.00044'
'avg' => '$0.00031'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 8.0257094250019E-5
'max_diff' => 0.00017885244667427
'year' => 2028
]
3 => [
'items' => [
101 => 0.0004383399035278
102 => 0.00044616299260661
103 => 0.00043383560531363
104 => 0.00040552943231293
105 => 0.00040104987208389
106 => 0.00041001806510296
107 => 0.00043206549253685
108 => 0.00040932371315293
109 => 0.00041392434550334
110 => 0.00041259936307692
111 => 0.00041252876039423
112 => 0.00041522337763069
113 => 0.00041131469478742
114 => 0.00039539001772535
115 => 0.00040268820337819
116 => 0.00039987002340997
117 => 0.00040299700419394
118 => 0.00041987202982009
119 => 0.0004124111787404
120 => 0.00040455177819828
121 => 0.0004144092106187
122 => 0.00042696110947118
123 => 0.00042617563419892
124 => 0.00042465148386755
125 => 0.00043324303948358
126 => 0.00044743377227166
127 => 0.0004512694703213
128 => 0.00045410090420415
129 => 0.00045449131109912
130 => 0.00045851274475392
131 => 0.00043688848246031
201 => 0.00047120674207072
202 => 0.00047713255748265
203 => 0.00047601874978509
204 => 0.00048260504421901
205 => 0.00048066718931839
206 => 0.0004778595416075
207 => 0.00048830021923028
208 => 0.00047633082485501
209 => 0.00045934177644416
210 => 0.00045002124848069
211 => 0.00046229527156853
212 => 0.0004697905891639
213 => 0.0004747445173027
214 => 0.00047624357296426
215 => 0.00043856711238578
216 => 0.00041826158976628
217 => 0.00043127719696209
218 => 0.0004471571360302
219 => 0.00043680026859698
220 => 0.00043720623819222
221 => 0.00042244006696934
222 => 0.00044846361453381
223 => 0.00044467220254615
224 => 0.00046434205464501
225 => 0.00045964768658119
226 => 0.00047568768738854
227 => 0.000471463817617
228 => 0.0004889968648853
301 => 0.00049599127212892
302 => 0.00050773597048353
303 => 0.00051637541840271
304 => 0.00052144866746715
305 => 0.0005211440886226
306 => 0.00054124682889857
307 => 0.00052939294529408
308 => 0.00051450167374098
309 => 0.00051423233761995
310 => 0.00052194473816825
311 => 0.00053810781392372
312 => 0.00054229866430393
313 => 0.00054464077794014
314 => 0.00054105374937672
315 => 0.00052818720829954
316 => 0.00052263150109725
317 => 0.00052736512459793
318 => 0.0005215763098215
319 => 0.00053156942818017
320 => 0.00054529211410153
321 => 0.00054245843372415
322 => 0.00055193100237662
323 => 0.00056173411438864
324 => 0.00057575300485114
325 => 0.00057941806193605
326 => 0.00058547626192777
327 => 0.00059171213973427
328 => 0.0005937149356241
329 => 0.00059753889440885
330 => 0.0005975187402585
331 => 0.00060904249743846
401 => 0.00062175355846901
402 => 0.00062655168974631
403 => 0.00063758472804794
404 => 0.00061869103660017
405 => 0.00063302211859839
406 => 0.00064594911329103
407 => 0.00063053701730103
408 => 0.00065177900106544
409 => 0.00065260377915965
410 => 0.00066505694916044
411 => 0.00065243327562594
412 => 0.00064493737857734
413 => 0.00066657775248904
414 => 0.00067704884775952
415 => 0.00067389486864745
416 => 0.00064989293187346
417 => 0.0006359227751795
418 => 0.00059936018046943
419 => 0.00064267015329005
420 => 0.00066376517768175
421 => 0.00064983830085646
422 => 0.00065686220744909
423 => 0.00069518236430911
424 => 0.00070977219899499
425 => 0.00070673761537097
426 => 0.00070725041004993
427 => 0.0007151228200222
428 => 0.0007500334212546
429 => 0.00072911417977475
430 => 0.00074510615605707
501 => 0.00075358824261386
502 => 0.00076146687731962
503 => 0.00074211944055034
504 => 0.0007169487095838
505 => 0.00070897608249129
506 => 0.00064845354742493
507 => 0.00064530308663868
508 => 0.00064353463753063
509 => 0.00063238481605643
510 => 0.00062362411057085
511 => 0.00061665727230458
512 => 0.00059837420821986
513 => 0.00060454420564348
514 => 0.00057540481746447
515 => 0.00059404716538489
516 => 0.00054753999825607
517 => 0.00058627254900889
518 => 0.00056519218258711
519 => 0.00057934708168469
520 => 0.00057929769657521
521 => 0.00055323403952172
522 => 0.0005382010660679
523 => 0.00054778066184475
524 => 0.00055805074894679
525 => 0.00055971703602638
526 => 0.00057303247203088
527 => 0.00057674852400539
528 => 0.00056548871303673
529 => 0.00054657624058938
530 => 0.00055096917659133
531 => 0.00053811204336003
601 => 0.00051558041191468
602 => 0.00053176302298328
603 => 0.00053728847790128
604 => 0.00053972883357129
605 => 0.00051757156182014
606 => 0.00051060926597816
607 => 0.0005069025980912
608 => 0.00054371601504541
609 => 0.00054573273712775
610 => 0.00053541490181872
611 => 0.00058205249579281
612 => 0.00057149697191904
613 => 0.00058329007825218
614 => 0.00055057056369373
615 => 0.00055182049321253
616 => 0.00053633055066708
617 => 0.0005450038834542
618 => 0.00053887385139483
619 => 0.00054430316387654
620 => 0.00054755747139219
621 => 0.00056304487219049
622 => 0.00058644939024825
623 => 0.00056073157097052
624 => 0.00054952594882527
625 => 0.00055647785378137
626 => 0.00057499169279081
627 => 0.00060304110659609
628 => 0.0005864352890763
629 => 0.00059380466890652
630 => 0.00059541455055853
701 => 0.00058317003550022
702 => 0.00060349257933168
703 => 0.00061438359567102
704 => 0.00062555552485689
705 => 0.00063525579793863
706 => 0.00062109321066406
707 => 0.00063624920917499
708 => 0.00062403614976907
709 => 0.00061307977291909
710 => 0.00061309638922017
711 => 0.00060622329397505
712 => 0.0005929058058719
713 => 0.00059044985673875
714 => 0.00060322601428156
715 => 0.00061347128272428
716 => 0.00061431513210474
717 => 0.00061998743913553
718 => 0.00062334425200694
719 => 0.00065624558151257
720 => 0.0006694787684138
721 => 0.00068566005886523
722 => 0.00069196358342361
723 => 0.00071093493240574
724 => 0.00069561402732504
725 => 0.00069229925313782
726 => 0.00064628096598815
727 => 0.00065381645793092
728 => 0.00066588150759811
729 => 0.00064647991421333
730 => 0.00065878575958476
731 => 0.00066121519413453
801 => 0.00064582065549422
802 => 0.00065404354374076
803 => 0.00063220599047441
804 => 0.00058692538923431
805 => 0.00060354298958501
806 => 0.00061577913686692
807 => 0.00059831664598955
808 => 0.00062961748499552
809 => 0.0006113321810287
810 => 0.0006055366175206
811 => 0.00058292605800794
812 => 0.00059359737173767
813 => 0.00060803047635562
814 => 0.00059911249573023
815 => 0.00061761864456944
816 => 0.00064382828673538
817 => 0.00066250683855401
818 => 0.00066394074583014
819 => 0.00065193168837655
820 => 0.00067117627958671
821 => 0.00067131645542388
822 => 0.00064960847792235
823 => 0.00063631246257319
824 => 0.0006332915799108
825 => 0.00064083833708037
826 => 0.00065000149349246
827 => 0.00066444923723869
828 => 0.00067317970619761
829 => 0.00069594413895952
830 => 0.00070210354175746
831 => 0.00070887085801815
901 => 0.00071791407950548
902 => 0.00072877278553541
903 => 0.0007050145549284
904 => 0.0007059585137213
905 => 0.00068383517833514
906 => 0.0006601932216678
907 => 0.00067813451976681
908 => 0.00070159038040039
909 => 0.00069620958005462
910 => 0.00069560413009594
911 => 0.00069662232898862
912 => 0.00069256538124842
913 => 0.00067421595697701
914 => 0.00066500099098138
915 => 0.0006768906481043
916 => 0.00068320947171737
917 => 0.00069300941608191
918 => 0.00069180136608725
919 => 0.00071704497033313
920 => 0.0007268538716161
921 => 0.00072434433492137
922 => 0.00072480615006857
923 => 0.00074256469730721
924 => 0.00076231585416037
925 => 0.00078081541894806
926 => 0.00079963397082488
927 => 0.00077694747203679
928 => 0.00076542866706091
929 => 0.00077731313353147
930 => 0.00077100706833622
1001 => 0.00080724358944858
1002 => 0.00080975252754914
1003 => 0.00084598642834858
1004 => 0.0008803767148599
1005 => 0.00085877679206812
1006 => 0.00087914454637888
1007 => 0.00090117393327334
1008 => 0.00094367219473196
1009 => 0.00092936027537956
1010 => 0.00091839756945199
1011 => 0.00090803786532185
1012 => 0.00092959476505996
1013 => 0.00095732737219316
1014 => 0.00096330071015004
1015 => 0.00097297979963091
1016 => 0.00096280342054453
1017 => 0.00097505974826269
1018 => 0.0010183299708111
1019 => 0.0010066379747217
1020 => 0.00099003346069259
1021 => 0.0010241911456782
1022 => 0.0010365526790899
1023 => 0.0011233123943582
1024 => 0.0012328501187496
1025 => 0.0011875007815881
1026 => 0.001159350984598
1027 => 0.0011659668546127
1028 => 0.0012059663234745
1029 => 0.0012188128833532
1030 => 0.0011838915051281
1031 => 0.0011962263262853
1101 => 0.0012641924035941
1102 => 0.0013006540234575
1103 => 0.0012511342462342
1104 => 0.0011145111448579
1105 => 0.00098853840587819
1106 => 0.001021952048882
1107 => 0.0010181639787114
1108 => 0.0010911850498389
1109 => 0.0010063591244818
1110 => 0.0010077873755166
1111 => 0.0010823184450644
1112 => 0.001062434833495
1113 => 0.0010302259292533
1114 => 0.00098877356652367
1115 => 0.00091214504013855
1116 => 0.0008442730173747
1117 => 0.00097738568400794
1118 => 0.00097164562377303
1119 => 0.00096333316592363
1120 => 0.0009818316413656
1121 => 0.0010716549872279
1122 => 0.001069584268376
1123 => 0.0010564114115301
1124 => 0.0010664029073475
1125 => 0.0010284743717283
1126 => 0.0010382494189741
1127 => 0.00098851845115272
1128 => 0.0010109989255566
1129 => 0.0010301568234105
1130 => 0.0010340030550422
1201 => 0.0010426688113018
1202 => 0.00096862087285959
1203 => 0.0010018662232869
1204 => 0.0010213947519949
1205 => 0.0009331641488383
1206 => 0.0010196507166535
1207 => 0.00096733186299311
1208 => 0.00094957405825796
1209 => 0.00097348260292096
1210 => 0.00096416541981397
1211 => 0.00095615505290192
1212 => 0.00095168513052943
1213 => 0.00096924092704015
1214 => 0.00096842192814921
1215 => 0.0009396972376244
1216 => 0.00090222704980295
1217 => 0.00091480327475282
1218 => 0.00091023421432579
1219 => 0.00089367534991774
1220 => 0.00090483402520385
1221 => 0.00085569686652011
1222 => 0.000771158938932
1223 => 0.00082700728336346
1224 => 0.00082485718285416
1225 => 0.00082377300467807
1226 => 0.00086574149198345
1227 => 0.00086170719030678
1228 => 0.00085438489325963
1229 => 0.00089354087019025
1230 => 0.00087924841188836
1231 => 0.00092329440064809
]
'min_raw' => 0.00039539001772535
'max_raw' => 0.0013006540234575
'avg_raw' => 0.00084802202059143
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.000395'
'max' => '$0.00130065'
'avg' => '$0.000848'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.00021539828766596
'max_diff' => 0.00085979804557574
'year' => 2029
]
4 => [
'items' => [
101 => 0.00095230593756118
102 => 0.00094494767337512
103 => 0.00097223316406681
104 => 0.00091509300557526
105 => 0.0009340726741609
106 => 0.00093798435755172
107 => 0.00089305769151295
108 => 0.00086236725195413
109 => 0.00086032054953219
110 => 0.00080710755674028
111 => 0.00083553350796945
112 => 0.00086054716870532
113 => 0.00084856756635133
114 => 0.00084477518212649
115 => 0.00086414965066339
116 => 0.00086565521279981
117 => 0.00083132823653714
118 => 0.00083846590189611
119 => 0.00086823115298116
120 => 0.00083771589393854
121 => 0.000778429730258
122 => 0.00076372594196988
123 => 0.00076176418556766
124 => 0.00072188634555814
125 => 0.00076470851941219
126 => 0.00074601549296199
127 => 0.00080506653954135
128 => 0.00077133689843233
129 => 0.0007698828810187
130 => 0.00076768492044002
131 => 0.000733360416211
201 => 0.00074087530120111
202 => 0.00076585592345755
203 => 0.0007747692909055
204 => 0.00077383955365561
205 => 0.00076573350478036
206 => 0.00076944441244576
207 => 0.00075749028588956
208 => 0.00075326903499894
209 => 0.0007399456060416
210 => 0.00072036384616551
211 => 0.00072308680997819
212 => 0.00068429021981746
213 => 0.00066315177840701
214 => 0.00065730093642478
215 => 0.00064947694600262
216 => 0.00065818467696181
217 => 0.00068418031395207
218 => 0.00065282406045977
219 => 0.00059906596323266
220 => 0.00060229691647535
221 => 0.00060955590913305
222 => 0.00059602882433847
223 => 0.00058322657382257
224 => 0.00059435709196673
225 => 0.00057157907749113
226 => 0.00061230852335917
227 => 0.00061120690599139
228 => 0.00062638832471896
301 => 0.00063588157740339
302 => 0.00061400270344284
303 => 0.00060850022580853
304 => 0.0006116346871427
305 => 0.00055982902338781
306 => 0.00062215469674961
307 => 0.00062269369176098
308 => 0.00061807848924032
309 => 0.0006512649862162
310 => 0.00072129884596329
311 => 0.00069494929082096
312 => 0.00068474594665032
313 => 0.00066534938192335
314 => 0.00069119415276799
315 => 0.00068920967760835
316 => 0.00068023512834662
317 => 0.00067480729295082
318 => 0.00068480824609409
319 => 0.00067356806418072
320 => 0.00067154901864954
321 => 0.00065931579947377
322 => 0.00065494909680403
323 => 0.00065171616399079
324 => 0.00064815702262483
325 => 0.00065600760159536
326 => 0.00063821715681847
327 => 0.00061676362443635
328 => 0.00061497999534922
329 => 0.00061990475207707
330 => 0.00061772591383002
331 => 0.00061496956390995
401 => 0.00060970694126531
402 => 0.00060814563354479
403 => 0.00061321912619766
404 => 0.00060749144879556
405 => 0.0006159429488051
406 => 0.00061364460844533
407 => 0.00060080626602687
408 => 0.00058480493801033
409 => 0.00058466249262706
410 => 0.00058121503275333
411 => 0.00057682417427508
412 => 0.00057560273789566
413 => 0.00059341971077417
414 => 0.00063030031141555
415 => 0.00062305976703167
416 => 0.00062829180238986
417 => 0.00065402823801643
418 => 0.0006622090769805
419 => 0.00065640251125759
420 => 0.00064845412596271
421 => 0.00064880381457695
422 => 0.00067596585326943
423 => 0.00067765991630504
424 => 0.00068194026707059
425 => 0.00068744172743131
426 => 0.00065733943374601
427 => 0.00064738599925142
428 => 0.00064266950979236
429 => 0.0006281445477696
430 => 0.00064380847403502
501 => 0.00063468177499636
502 => 0.00063591327850911
503 => 0.00063511126023086
504 => 0.00063554921644302
505 => 0.00061229713864898
506 => 0.0006207689737039
507 => 0.00060668290478567
508 => 0.00058782323973959
509 => 0.00058776001552931
510 => 0.00059237589183087
511 => 0.00058963018798744
512 => 0.00058224156954329
513 => 0.00058329108791999
514 => 0.00057409620258499
515 => 0.00058440751347843
516 => 0.00058470320497921
517 => 0.00058073278862433
518 => 0.00059661878574237
519 => 0.00060312729172337
520 => 0.00060051387862403
521 => 0.0006029439276935
522 => 0.00062336064433992
523 => 0.00062668945999709
524 => 0.00062816790002278
525 => 0.00062618698624412
526 => 0.0006033171077943
527 => 0.00060433148415378
528 => 0.00059688866347719
529 => 0.00059060026431059
530 => 0.00059085176729895
531 => 0.00059408482190525
601 => 0.00060820376098711
602 => 0.00063791623592798
603 => 0.00063904380263245
604 => 0.0006404104463717
605 => 0.00063485161946403
606 => 0.00063317502407787
607 => 0.0006353868861582
608 => 0.00064654532953828
609 => 0.00067524787539965
610 => 0.00066510247871366
611 => 0.00065685411328544
612 => 0.00066409015350934
613 => 0.00066297622183483
614 => 0.00065357351748074
615 => 0.0006533096148862
616 => 0.00063526281900427
617 => 0.00062859132947238
618 => 0.0006230161334672
619 => 0.00061692816497372
620 => 0.00061331901318023
621 => 0.00061886431066518
622 => 0.00062013258581002
623 => 0.00060800769594396
624 => 0.00060635511825822
625 => 0.00061625656505678
626 => 0.00061189930748388
627 => 0.00061638085495239
628 => 0.00061742061240709
629 => 0.00061725318750924
630 => 0.00061270371017529
701 => 0.00061560341136058
702 => 0.00060874475361483
703 => 0.00060128699345341
704 => 0.00059652940710531
705 => 0.00059237778201433
706 => 0.00059468134490867
707 => 0.00058646956380431
708 => 0.00058384244975853
709 => 0.00061462105784434
710 => 0.00063735754656314
711 => 0.00063702694901253
712 => 0.00063501452144598
713 => 0.00063202446228812
714 => 0.00064632658808695
715 => 0.00064134401343867
716 => 0.00064496925280334
717 => 0.00064589202837246
718 => 0.00064868499209798
719 => 0.00064968323656651
720 => 0.00064666584845725
721 => 0.00063653912541967
722 => 0.00061130429442993
723 => 0.00059955741248408
724 => 0.00059568074578216
725 => 0.00059582165525394
726 => 0.00059193474297475
727 => 0.00059307961284016
728 => 0.00059153660395739
729 => 0.00058861451842735
730 => 0.00059450091436141
731 => 0.00059517926665724
801 => 0.00059380531150904
802 => 0.00059412892768434
803 => 0.00058275316588114
804 => 0.00058361804034419
805 => 0.00057880230943104
806 => 0.00057789941793933
807 => 0.00056572566954455
808 => 0.00054415810965017
809 => 0.00055610863144535
810 => 0.00054167408161442
811 => 0.00053620749887433
812 => 0.0005620854513379
813 => 0.00055948802265323
814 => 0.00055504235382018
815 => 0.00054846628305754
816 => 0.00054602715444377
817 => 0.00053120778112081
818 => 0.0005303321734866
819 => 0.0005376770550622
820 => 0.00053428764493701
821 => 0.00052952762945124
822 => 0.00051228733587681
823 => 0.00049290353783411
824 => 0.00049348861285481
825 => 0.00049965423836381
826 => 0.0005175816260791
827 => 0.00051057708555178
828 => 0.00050549521103137
829 => 0.00050454352869428
830 => 0.00051645582562484
831 => 0.00053331422148495
901 => 0.00054122380363717
902 => 0.0005333856479419
903 => 0.00052438159671546
904 => 0.00052492963159286
905 => 0.00052857546210823
906 => 0.00052895858734613
907 => 0.00052309787562914
908 => 0.00052474763164815
909 => 0.00052224150139841
910 => 0.0005068613846817
911 => 0.00050658320714118
912 => 0.00050280867846101
913 => 0.00050269438723267
914 => 0.0004962729723474
915 => 0.00049537457201581
916 => 0.00048262446300909
917 => 0.0004910166233682
918 => 0.0004853876028075
919 => 0.00047690334107082
920 => 0.0004754406511495
921 => 0.00047539668092422
922 => 0.00048410812068158
923 => 0.00049091482512259
924 => 0.00048548552203015
925 => 0.00048424937495862
926 => 0.00049744819165809
927 => 0.0004957685219232
928 => 0.00049431393876549
929 => 0.00053180473704018
930 => 0.00050212784476229
1001 => 0.00048918702583134
1002 => 0.00047317030500943
1003 => 0.00047838543007236
1004 => 0.00047948433354925
1005 => 0.00044096700720346
1006 => 0.00042534053270201
1007 => 0.00041997811552438
1008 => 0.0004168919686252
1009 => 0.00041829836452055
1010 => 0.00040423270466659
1011 => 0.00041368506071299
1012 => 0.0004015053882201
1013 => 0.00039946342649058
1014 => 0.00042124218967977
1015 => 0.00042427257734786
1016 => 0.00041134400208815
1017 => 0.00041964624035109
1018 => 0.00041663573334721
1019 => 0.00040171417374721
1020 => 0.00040114427992605
1021 => 0.00039365716583695
1022 => 0.00038194128207848
1023 => 0.00037658680882173
1024 => 0.00037379815265995
1025 => 0.00037494880654212
1026 => 0.0003743670007287
1027 => 0.00037057032424753
1028 => 0.00037458462178037
1029 => 0.00036432975040622
1030 => 0.00036024617799592
1031 => 0.00035840172307635
1101 => 0.00034929993448341
1102 => 0.00036378492771853
1103 => 0.00036663865386299
1104 => 0.00036949800272951
1105 => 0.00039438668245218
1106 => 0.00039314331434791
1107 => 0.00040438275646565
1108 => 0.00040394601241296
1109 => 0.00040074034145409
1110 => 0.0003872161429859
1111 => 0.00039260664744966
1112 => 0.00037601551258059
1113 => 0.00038844671891201
1114 => 0.00038277363548194
1115 => 0.00038652864369769
1116 => 0.00037977680035032
1117 => 0.00038351354923554
1118 => 0.0003673153781981
1119 => 0.00035218975399775
1120 => 0.00035827674672047
1121 => 0.00036489400394211
1122 => 0.00037924190364442
1123 => 0.00037069641294933
1124 => 0.00037376969454406
1125 => 0.00036347471566283
1126 => 0.00034223323361551
1127 => 0.00034235345809708
1128 => 0.00033908591885494
1129 => 0.00033626228788119
1130 => 0.00037167796535283
1201 => 0.00036727346602022
1202 => 0.00036025547278033
1203 => 0.00036964933561589
1204 => 0.00037213322205026
1205 => 0.00037220393480511
1206 => 0.00037905745463924
1207 => 0.00038271517940328
1208 => 0.00038335986924643
1209 => 0.00039414403078552
1210 => 0.0003977587394869
1211 => 0.00041264721305514
1212 => 0.00038240484701215
1213 => 0.00038178202538504
1214 => 0.00036978152653039
1215 => 0.0003621706204364
1216 => 0.00037030265178206
1217 => 0.00037750652142135
1218 => 0.00037000537084079
1219 => 0.00037098486274868
1220 => 0.00036091518096081
1221 => 0.00036451461837741
1222 => 0.00036761493877717
1223 => 0.00036590312408083
1224 => 0.00036334045462765
1225 => 0.00037691588626277
1226 => 0.00037614990720737
1227 => 0.00038879166124382
1228 => 0.00039864681253574
1229 => 0.00041630900546986
1230 => 0.00039787758639216
1231 => 0.00039720587222271
]
'min_raw' => 0.00033626228788119
'max_raw' => 0.00097223316406681
'avg_raw' => 0.000654247725974
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.000336'
'max' => '$0.000972'
'avg' => '$0.000654'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -5.9127729844156E-5
'max_diff' => -0.00032842085939069
'year' => 2030
]
5 => [
'items' => [
101 => 0.0004037719859754
102 => 0.00039775773424909
103 => 0.00040155853373521
104 => 0.00041569663791252
105 => 0.00041599535377525
106 => 0.00041099147820081
107 => 0.00041068699191735
108 => 0.00041164804095783
109 => 0.00041727693520569
110 => 0.00041531002659704
111 => 0.00041758618303501
112 => 0.00042043255151443
113 => 0.00043220633838055
114 => 0.00043504495853401
115 => 0.00042814858321692
116 => 0.00042877124869261
117 => 0.00042619181501429
118 => 0.00042370011440123
119 => 0.00042930109349573
120 => 0.00043953699287843
121 => 0.00043947331587962
122 => 0.00044184784557895
123 => 0.00044332715790997
124 => 0.00043697686646242
125 => 0.00043284306023676
126 => 0.0004344282245846
127 => 0.00043696293689719
128 => 0.00043360625154363
129 => 0.0004128872345735
130 => 0.00041917206078631
131 => 0.0004181259583922
201 => 0.00041663618137258
202 => 0.00042295562272869
203 => 0.00042234609719351
204 => 0.00040408844099462
205 => 0.00040525723690765
206 => 0.00040415951934526
207 => 0.00040770646936122
208 => 0.00039756618730813
209 => 0.00040068526977182
210 => 0.00040264152905346
211 => 0.00040379378079904
212 => 0.0004079565042105
213 => 0.00040746805666414
214 => 0.0004079261416252
215 => 0.00041409836152615
216 => 0.00044531533173504
217 => 0.00044701440254715
218 => 0.00043864755646238
219 => 0.0004419899464445
220 => 0.00043557328857916
221 => 0.00043988083399204
222 => 0.00044282794716374
223 => 0.0004295105094381
224 => 0.00042872193720544
225 => 0.00042227879551056
226 => 0.00042574097489919
227 => 0.00042023239855237
228 => 0.00042158401050606
301 => 0.00041780478565213
302 => 0.00042460663795304
303 => 0.00043221216572644
304 => 0.0004341336223934
305 => 0.00042907909714175
306 => 0.0004254192877501
307 => 0.00041899386807454
308 => 0.00042967948419482
309 => 0.00043280428398664
310 => 0.00042966307095178
311 => 0.00042893518325474
312 => 0.00042755583738412
313 => 0.00042922781800178
314 => 0.00043278726565589
315 => 0.00043110869587489
316 => 0.00043221742078783
317 => 0.00042799210473186
318 => 0.00043697896867313
319 => 0.00045125227141845
320 => 0.00045129816242069
321 => 0.00044961958359158
322 => 0.00044893274530019
323 => 0.00045065506904354
324 => 0.00045158935902089
325 => 0.00045715903818674
326 => 0.00046313552583749
327 => 0.00049102518595771
328 => 0.00048319388099823
329 => 0.0005079392466202
330 => 0.0005275096180436
331 => 0.00053337791672485
401 => 0.00052797935806289
402 => 0.00050951118050472
403 => 0.00050860504360662
404 => 0.00053620429794197
405 => 0.00052840624446631
406 => 0.00052747869081858
407 => 0.00051761108713335
408 => 0.00052344406303781
409 => 0.00052216830564291
410 => 0.00052015446018287
411 => 0.00053128337187996
412 => 0.00055211570109211
413 => 0.00054886878722005
414 => 0.00054644511663456
415 => 0.00053582529764883
416 => 0.00054222080070068
417 => 0.00053994348456171
418 => 0.00054972827991527
419 => 0.00054393198390758
420 => 0.00052834716654163
421 => 0.00053082910007539
422 => 0.00053045396081472
423 => 0.00053817430021665
424 => 0.0005358568459588
425 => 0.00053000144067706
426 => 0.00055204449845563
427 => 0.00055061314489342
428 => 0.00055264247699165
429 => 0.00055353585174047
430 => 0.00056695307256804
501 => 0.00057244967863792
502 => 0.00057369750444741
503 => 0.00057891885509102
504 => 0.00057356759248686
505 => 0.0005949764582891
506 => 0.00060921210480564
507 => 0.00062574754079427
508 => 0.00064991025707985
509 => 0.00065899566192085
510 => 0.00065735446485663
511 => 0.00067567436057909
512 => 0.00070859480596395
513 => 0.00066400862810046
514 => 0.00071095798165441
515 => 0.00069609435837558
516 => 0.00066085297496665
517 => 0.00065858384534373
518 => 0.00068244971934914
519 => 0.00073538193088788
520 => 0.0007221230122496
521 => 0.00073540361772889
522 => 0.0007199110859964
523 => 0.00071914175121457
524 => 0.00073465118004262
525 => 0.00077088980587432
526 => 0.00075367419312625
527 => 0.00072899139081048
528 => 0.00074721678793351
529 => 0.00073142826226466
530 => 0.00069585229500267
531 => 0.00072211287340439
601 => 0.00070455317248537
602 => 0.00070967802673859
603 => 0.00074658590626198
604 => 0.00074214505255159
605 => 0.00074789192846482
606 => 0.0007377488428999
607 => 0.00072827360156448
608 => 0.00071058735997127
609 => 0.00070535133575669
610 => 0.00070679838447718
611 => 0.00070535061867121
612 => 0.00069545532904475
613 => 0.00069331844219206
614 => 0.00068975687048508
615 => 0.00069086075048303
616 => 0.00068416395369935
617 => 0.00069680219285898
618 => 0.00069914796141479
619 => 0.00070834501793348
620 => 0.00070929988685132
621 => 0.00073491355834398
622 => 0.00072080597850609
623 => 0.00073027056105119
624 => 0.00072942395970425
625 => 0.00066161676260634
626 => 0.00067095999609847
627 => 0.00068549513534403
628 => 0.00067894707481582
629 => 0.00066968964923912
630 => 0.00066221378173418
701 => 0.00065088707801749
702 => 0.00066682919598865
703 => 0.00068779138586548
704 => 0.00070983152257947
705 => 0.00073631130271437
706 => 0.00073040132404688
707 => 0.0007093365015088
708 => 0.00071028145406
709 => 0.00071612277890637
710 => 0.00070855773248999
711 => 0.00070632665261456
712 => 0.00071581626279204
713 => 0.00071588161252194
714 => 0.0007071771123535
715 => 0.000697503653323
716 => 0.00069746312117645
717 => 0.0006957418225765
718 => 0.00072021730119344
719 => 0.00073367633968276
720 => 0.00073521939675523
721 => 0.00073357247964735
722 => 0.00073420631267837
723 => 0.00072637479473111
724 => 0.00074427532239404
725 => 0.00076070261675624
726 => 0.00075629975094922
727 => 0.00074969922920023
728 => 0.00074444159570296
729 => 0.00075506121958725
730 => 0.00075458834445253
731 => 0.00076055913867085
801 => 0.00076028826895612
802 => 0.00075828051543343
803 => 0.00075629982265242
804 => 0.00076415304564178
805 => 0.00076189144353975
806 => 0.00075962632854498
807 => 0.00075508329365121
808 => 0.00075570076754509
809 => 0.00074910138546924
810 => 0.00074604820935378
811 => 0.00070013576617103
812 => 0.00068786646112023
813 => 0.00069172663425395
814 => 0.00069299750347892
815 => 0.00068765788619727
816 => 0.00069531352574402
817 => 0.00069412040242998
818 => 0.00069876214729109
819 => 0.000695862186623
820 => 0.00069598120202037
821 => 0.0007045093680084
822 => 0.00070698513087613
823 => 0.00070572593789975
824 => 0.0007066078334978
825 => 0.00072693074533005
826 => 0.00072404147715764
827 => 0.00072250661102629
828 => 0.00072293177943414
829 => 0.00072812471913542
830 => 0.00072957845872778
831 => 0.00072341886192247
901 => 0.00072632376338406
902 => 0.00073869246512063
903 => 0.00074302081072053
904 => 0.00075683481215169
905 => 0.00075096637881944
906 => 0.00076173814218063
907 => 0.00079484687038819
908 => 0.00082129641343011
909 => 0.00079697232057516
910 => 0.00084554353804267
911 => 0.00088336319796845
912 => 0.00088191161642856
913 => 0.000875316883936
914 => 0.00083226020659818
915 => 0.00079263881017302
916 => 0.00082578379069602
917 => 0.0008258682840677
918 => 0.00082302110084595
919 => 0.00080533749038378
920 => 0.00082240574953331
921 => 0.00082376056596179
922 => 0.00082300222903661
923 => 0.00080944424635668
924 => 0.00078874371273848
925 => 0.0007927885474574
926 => 0.00079941406923939
927 => 0.00078687057427745
928 => 0.00078286216759995
929 => 0.00079031455824399
930 => 0.00081432771366636
1001 => 0.0008097881657325
1002 => 0.00080966961979019
1003 => 0.00082909173091917
1004 => 0.00081518969090474
1005 => 0.00079283956577656
1006 => 0.00078719586441976
1007 => 0.0007671645266559
1008 => 0.00078100024299858
1009 => 0.0007814981657985
1010 => 0.00077392048535521
1011 => 0.00079345445278155
1012 => 0.00079327444383283
1013 => 0.00081181903865678
1014 => 0.00084726933892844
1015 => 0.00083678494073478
1016 => 0.00082459272633483
1017 => 0.00082591835809354
1018 => 0.00084045726654861
1019 => 0.00083166671060568
1020 => 0.00083482785581269
1021 => 0.00084045248177674
1022 => 0.00084384595827245
1023 => 0.00082543008904845
1024 => 0.00082113646899948
1025 => 0.00081235322923515
1026 => 0.00081006184592757
1027 => 0.00081721561144731
1028 => 0.00081533084697912
1029 => 0.00078145631731522
1030 => 0.00077791624048924
1031 => 0.00077802480959142
1101 => 0.00076912311809101
1102 => 0.00075554590190214
1103 => 0.00079122601539305
1104 => 0.00078836040293686
1105 => 0.00078519698856602
1106 => 0.00078558448877626
1107 => 0.00080107201673142
1108 => 0.00079208846837851
1109 => 0.00081597270404932
1110 => 0.00081106282322125
1111 => 0.00080602702247661
1112 => 0.00080533092141946
1113 => 0.0008033925677671
1114 => 0.00079674523186354
1115 => 0.00078871817431704
1116 => 0.00078341801563302
1117 => 0.00072266170810184
1118 => 0.00073393772537645
1119 => 0.00074690975540957
1120 => 0.00075138764819485
1121 => 0.00074372790272487
1122 => 0.0007970476853014
1123 => 0.00080678972338034
1124 => 0.00077728045458181
1125 => 0.00077176047524511
1126 => 0.00079740957422774
1127 => 0.00078194003206638
1128 => 0.00078890596595443
1129 => 0.0007738494270506
1130 => 0.0008044431516873
1201 => 0.00080421007876407
1202 => 0.00079230842888979
1203 => 0.00080236762186455
1204 => 0.0008006195895406
1205 => 0.00078718265614501
1206 => 0.00080486912644296
1207 => 0.00080487789871157
1208 => 0.00079342281947175
1209 => 0.00078004579475894
1210 => 0.0007776542986915
1211 => 0.00077585262765699
1212 => 0.00078846286532438
1213 => 0.00079976916498577
1214 => 0.00082080738558624
1215 => 0.00082609689410099
1216 => 0.00084674219797658
1217 => 0.00083444892472026
1218 => 0.00083989837353025
1219 => 0.00084581452108508
1220 => 0.00084865093978199
1221 => 0.000844029147726
1222 => 0.00087609980259088
1223 => 0.00087880754848095
1224 => 0.00087971543225598
1225 => 0.00086890138787905
1226 => 0.00087850679034437
1227 => 0.00087401274062834
1228 => 0.00088570500950647
1229 => 0.00088753850656095
1230 => 0.00088598559978436
1231 => 0.00088656758068923
]
'min_raw' => 0.00039756618730813
'max_raw' => 0.00088753850656095
'avg_raw' => 0.00064255234693454
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.000397'
'max' => '$0.000887'
'avg' => '$0.000642'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 6.1303899426942E-5
'max_diff' => -8.4694657505866E-5
'year' => 2031
]
6 => [
'items' => [
101 => 0.00085920093441326
102 => 0.00085778182943329
103 => 0.00083843223233631
104 => 0.00084631733617833
105 => 0.00083157651248854
106 => 0.00083625097952788
107 => 0.00083831144005886
108 => 0.00083723517240758
109 => 0.00084676314811884
110 => 0.00083866242232743
111 => 0.00081728327508128
112 => 0.00079589830310076
113 => 0.00079562983219737
114 => 0.00078999954655101
115 => 0.00078592988126694
116 => 0.00078671384317978
117 => 0.0007894766272144
118 => 0.00078576930323638
119 => 0.00078656044877319
120 => 0.00079969873605934
121 => 0.0008023335258766
122 => 0.00079337948059871
123 => 0.00075742769674544
124 => 0.00074860503880963
125 => 0.00075494659037298
126 => 0.00075191573717392
127 => 0.00060685468451651
128 => 0.00064093462711736
129 => 0.00062068548246944
130 => 0.00063001721994155
131 => 0.0006093480867466
201 => 0.00061921248046932
202 => 0.00061739088713871
203 => 0.00067219042634207
204 => 0.00067133480691171
205 => 0.00067174434665465
206 => 0.000652195947674
207 => 0.00068333707804705
208 => 0.00069867831866764
209 => 0.00069583906332267
210 => 0.00069655364272364
211 => 0.00068427480110007
212 => 0.00067186323268178
213 => 0.00065809689317921
214 => 0.000683673050404
215 => 0.00068082941832017
216 => 0.00068735168721395
217 => 0.0007039396533957
218 => 0.00070638229442752
219 => 0.0007096652287451
220 => 0.00070848853048742
221 => 0.00073652225688367
222 => 0.0007331271876446
223 => 0.00074130832768267
224 => 0.00072447910191977
225 => 0.00070543523552428
226 => 0.00070905485193516
227 => 0.00070870625376768
228 => 0.00070426819899324
229 => 0.00070026172158172
301 => 0.00069359206550954
302 => 0.00071469584424528
303 => 0.00071383906936863
304 => 0.00072770925872968
305 => 0.00072525756803228
306 => 0.00070888457752459
307 => 0.00070946934208367
308 => 0.00071340216477172
309 => 0.00072701370899925
310 => 0.00073105454207058
311 => 0.00072918266719259
312 => 0.00073361325618426
313 => 0.00073711501307362
314 => 0.00073405302293557
315 => 0.00077740434612463
316 => 0.00075940185429283
317 => 0.00076817614355112
318 => 0.0007702687598381
319 => 0.00076490856722196
320 => 0.0007660710010663
321 => 0.0007678317715962
322 => 0.00077852282545955
323 => 0.00080657924427835
324 => 0.0008190052411867
325 => 0.00085638946597334
326 => 0.00081797343512169
327 => 0.00081569398683229
328 => 0.0008224280146118
329 => 0.00084437651208364
330 => 0.00086216370776703
331 => 0.00086806474674315
401 => 0.00086884466645938
402 => 0.00087991540787223
403 => 0.00088626095039297
404 => 0.0008785711286753
405 => 0.00087205480992747
406 => 0.00084871416500801
407 => 0.0008514159082119
408 => 0.00087002823969691
409 => 0.00089631925418034
410 => 0.00091887967972096
411 => 0.00091097980500684
412 => 0.00097125027263313
413 => 0.00097722584331549
414 => 0.00097640021266052
415 => 0.00099001345195909
416 => 0.0009629939442394
417 => 0.00095144258121092
418 => 0.00087346371200411
419 => 0.00089537259353449
420 => 0.00092721843950238
421 => 0.00092300352237274
422 => 0.00089987621778895
423 => 0.00091886213558655
424 => 0.00091258479741812
425 => 0.00090763360035768
426 => 0.00093031599392834
427 => 0.00090537577045603
428 => 0.00092696964169497
429 => 0.00089927527847103
430 => 0.0009110158909691
501 => 0.00090435135148567
502 => 0.00090866412530669
503 => 0.00088345173767345
504 => 0.00089705573004423
505 => 0.00088288576686505
506 => 0.00088287904845752
507 => 0.00088256624573497
508 => 0.00089923714457604
509 => 0.00089978078198874
510 => 0.00088746096255686
511 => 0.00088568548410498
512 => 0.00089225035850752
513 => 0.00088456460992547
514 => 0.00088816072331349
515 => 0.00088467353253658
516 => 0.00088388849244122
517 => 0.00087763315939785
518 => 0.0008749381899288
519 => 0.00087599495689842
520 => 0.00087238766643039
521 => 0.000870214143442
522 => 0.0008821338773058
523 => 0.00087576564434306
524 => 0.00088115785427094
525 => 0.00087501275050698
526 => 0.00085371114356682
527 => 0.00084146036415512
528 => 0.00080122360330516
529 => 0.00081263469876867
530 => 0.0008202002668666
531 => 0.00081769984665536
601 => 0.00082307171680327
602 => 0.00082340150600183
603 => 0.00082165505625701
604 => 0.00081963289118658
605 => 0.00081864861306304
606 => 0.00082598461579199
607 => 0.00083024341229464
608 => 0.00082095957283947
609 => 0.00081878449914984
610 => 0.00082817097341384
611 => 0.0008338967172925
612 => 0.00087617239307489
613 => 0.0008730404744643
614 => 0.0008809009755689
615 => 0.00088001600377375
616 => 0.0008882550612074
617 => 0.00090172243802595
618 => 0.00087433949541605
619 => 0.00087909222742222
620 => 0.00087792696729092
621 => 0.00089064897185685
622 => 0.00089068868856645
623 => 0.00088306121131791
624 => 0.00088719619047603
625 => 0.00088488815854719
626 => 0.00088905908419183
627 => 0.00087299864578182
628 => 0.00089255852614802
629 => 0.00090364771790481
630 => 0.00090380169134311
701 => 0.00090905788022656
702 => 0.00091439847255008
703 => 0.0009246492744475
704 => 0.00091411258324879
705 => 0.00089515810150852
706 => 0.00089652655386756
707 => 0.00088541354815842
708 => 0.00088560035979211
709 => 0.00088460314465074
710 => 0.00088759586235686
711 => 0.00087365537902319
712 => 0.00087692718259777
713 => 0.00087234663843371
714 => 0.00087908227021377
715 => 0.00087183584385825
716 => 0.0008779264053672
717 => 0.00088055488980915
718 => 0.00089025405398718
719 => 0.000870403269423
720 => 0.00082992617591668
721 => 0.00083843495170903
722 => 0.00082584980396223
723 => 0.00082701460730123
724 => 0.0008293676954231
725 => 0.00082174056693761
726 => 0.0008231955826942
727 => 0.00082314359929259
728 => 0.00082269563442119
729 => 0.00082071152372844
730 => 0.00081783417067961
731 => 0.00082929665962357
801 => 0.00083124435985641
802 => 0.00083557385620499
803 => 0.00084845550061295
804 => 0.0008471683205665
805 => 0.00084926776462684
806 => 0.00084468469003099
807 => 0.00082722720298716
808 => 0.00082817522852414
809 => 0.00081635333488688
810 => 0.00083527154380545
811 => 0.00083079146222537
812 => 0.00082790312448604
813 => 0.00082711501477361
814 => 0.00084002859028646
815 => 0.0008438925344754
816 => 0.0008414847837565
817 => 0.00083654641678673
818 => 0.00084602954126583
819 => 0.00084856682531553
820 => 0.00084913482964282
821 => 0.00086593710801102
822 => 0.00085007389035358
823 => 0.00085389232451055
824 => 0.00088368265778313
825 => 0.00085666693628988
826 => 0.00087097776648734
827 => 0.00087027732581914
828 => 0.00087759826229607
829 => 0.00086967679534591
830 => 0.00086977499142254
831 => 0.00087627548705086
901 => 0.00086714671331145
902 => 0.00086488630055534
903 => 0.00086176355652216
904 => 0.00086858195387531
905 => 0.00087266927471894
906 => 0.00090561007891223
907 => 0.00092689134070427
908 => 0.00092596746500454
909 => 0.00093440995947721
910 => 0.00093060653839288
911 => 0.00091832428841982
912 => 0.00093928859146302
913 => 0.00093265460879646
914 => 0.0009332015062672
915 => 0.00093318115071602
916 => 0.00093759216923646
917 => 0.00093446655835082
918 => 0.00092830565845785
919 => 0.00093239555132396
920 => 0.00094454107097286
921 => 0.0009822411366331
922 => 0.001003338592836
923 => 0.00098097104327894
924 => 0.00099639987944998
925 => 0.0009871480756038
926 => 0.00098546674762762
927 => 0.00099515719692507
928 => 0.0010048646080712
929 => 0.0010042462879475
930 => 0.00099719920593648
1001 => 0.00099321848812154
1002 => 0.0010233618170546
1003 => 0.0010455709083342
1004 => 0.0010440563972006
1005 => 0.001050740956799
1006 => 0.0010703670305257
1007 => 0.0010721613927453
1008 => 0.0010719353443486
1009 => 0.001067487830365
1010 => 0.0010868122487167
1011 => 0.0011029330184864
1012 => 0.0010664583593788
1013 => 0.0010803474320786
1014 => 0.0010865826842916
1015 => 0.0010957378844561
1016 => 0.0011111842417234
1017 => 0.0011279630826596
1018 => 0.0011303357947386
1019 => 0.0011286522419739
1020 => 0.001117586145337
1021 => 0.0011359457533026
1022 => 0.001146700381063
1023 => 0.0011531045157791
1024 => 0.0011693443358727
1025 => 0.0010866211910865
1026 => 0.0010280656375998
1027 => 0.0010189213423704
1028 => 0.001037516626301
1029 => 0.0010424200543789
1030 => 0.0010404434886691
1031 => 0.00097453388958179
1101 => 0.0010185743419715
1102 => 0.0010659581657164
1103 => 0.0010677783713632
1104 => 0.0010914997042789
1105 => 0.0010992243426466
1106 => 0.0011183231248699
1107 => 0.0011171284908418
1108 => 0.0011217787403852
1109 => 0.0011207097285463
1110 => 0.001156086200892
1111 => 0.0011951117033462
1112 => 0.0011937603742898
1113 => 0.0011881499965832
1114 => 0.001196482364189
1115 => 0.0012367608649488
1116 => 0.0012330526660487
1117 => 0.0012366548654165
1118 => 0.0012841454878092
1119 => 0.0013458900523819
1120 => 0.0013172035030849
1121 => 0.0013794450607271
1122 => 0.0014186228219797
1123 => 0.0014863767090098
1124 => 0.0014778935886587
1125 => 0.0015042696796786
1126 => 0.0014627070327496
1127 => 0.0013672707942038
1128 => 0.0013521676441387
1129 => 0.0013824045330418
1130 => 0.0014567389739374
1201 => 0.0013800634769641
1202 => 0.0013955748301394
1203 => 0.0013911075593815
1204 => 0.0013908695175074
1205 => 0.0013999546076523
1206 => 0.0013867762105507
1207 => 0.0013330850500105
1208 => 0.0013576913924821
1209 => 0.0013481897019602
1210 => 0.0013587325359922
1211 => 0.0014156278630674
1212 => 0.0013904730827523
1213 => 0.0013639745650987
1214 => 0.0013972095867281
1215 => 0.0014395291900548
1216 => 0.0014368809053343
1217 => 0.0014317421260793
1218 => 0.001460709155682
1219 => 0.0015085542020423
1220 => 0.0015214865258165
1221 => 0.001531032902837
1222 => 0.0015323491869407
1223 => 0.0015459077312754
1224 => 0.0014730000211947
1225 => 0.0015887064294956
1226 => 0.0016086857298841
1227 => 0.0016049304494682
1228 => 0.0016271366009926
1229 => 0.0016206029878984
1230 => 0.0016111368076175
1231 => 0.0016463382811675
]
'min_raw' => 0.00060685468451651
'max_raw' => 0.0016463382811675
'avg_raw' => 0.001126596482842
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.0006068'
'max' => '$0.001646'
'avg' => '$0.001126'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.00020928849720838
'max_diff' => 0.00075879977460655
'year' => 2032
]
7 => [
'items' => [
101 => 0.0016059826323548
102 => 0.0015487028695002
103 => 0.0015172780587329
104 => 0.0015586607845184
105 => 0.0015839317710976
106 => 0.0016006342856898
107 => 0.0016056884565134
108 => 0.0014786596391866
109 => 0.0014101981519887
110 => 0.00145408118037
111 => 0.0015076215036401
112 => 0.0014727026019956
113 => 0.0014740713568298
114 => 0.0014242861796107
115 => 0.0015120263871304
116 => 0.0014992433769061
117 => 0.0015655616565626
118 => 0.0015497342668851
119 => 0.0016038142494842
120 => 0.0015895731776483
121 => 0.0016486870706316
122 => 0.0016722692029874
123 => 0.0017118672734787
124 => 0.0017409957753251
125 => 0.0017581005887489
126 => 0.0017570736799094
127 => 0.0018248514722784
128 => 0.0017848852760941
129 => 0.0017346783143775
130 => 0.001733770228841
131 => 0.0017597731257522
201 => 0.0018142680641316
202 => 0.0018283978087843
203 => 0.00183629440843
204 => 0.0018242004911901
205 => 0.0017808200496351
206 => 0.0017620885949155
207 => 0.0017780483370391
208 => 0.0017585309438583
209 => 0.0017922234401018
210 => 0.0018384904337729
211 => 0.0018289364825394
212 => 0.0018608739091048
213 => 0.0018939257856847
214 => 0.0019411914536468
215 => 0.0019535484494946
216 => 0.0019739740937367
217 => 0.0019949987911364
218 => 0.0020017513573097
219 => 0.0020146441013328
220 => 0.0020145761502078
221 => 0.002053429302103
222 => 0.0020962855318255
223 => 0.0021124627664217
224 => 0.0021496614253578
225 => 0.0020859600255262
226 => 0.0021342782690474
227 => 0.0021778625341876
228 => 0.0021258995765191
301 => 0.0021975184078488
302 => 0.0022002992047776
303 => 0.0022422859368878
304 => 0.0021997243402095
305 => 0.0021744513999633
306 => 0.0022474134314893
307 => 0.0022827174602622
308 => 0.0022720835994821
309 => 0.0021911593938869
310 => 0.002144058035228
311 => 0.0020207846944442
312 => 0.0021668072916146
313 => 0.0022379306391588
314 => 0.0021909752015989
315 => 0.0022146567930694
316 => 0.0023438558773509
317 => 0.0023930465236241
318 => 0.0023828152130678
319 => 0.0023845441361301
320 => 0.0024110865159857
321 => 0.0025287900454211
322 => 0.002458259362237
323 => 0.002512177426797
324 => 0.0025407753738235
325 => 0.0025673387408027
326 => 0.0025021075069402
327 => 0.0024172426301222
328 => 0.0023903623612488
329 => 0.0021863064087241
330 => 0.0021756844102251
331 => 0.0021697219605881
401 => 0.0021321295590322
402 => 0.0021025922288346
403 => 0.0020791030472108
404 => 0.0020174604201664
405 => 0.0020382629972555
406 => 0.0019400175155629
407 => 0.0020028714931438
408 => 0.0018460693321422
409 => 0.0019766588312257
410 => 0.0019055849040505
411 => 0.0019533091346215
412 => 0.0019531426292769
413 => 0.0018652671898146
414 => 0.0018145824702464
415 => 0.0018468807462341
416 => 0.0018815070619332
417 => 0.0018871250651585
418 => 0.0019320189873017
419 => 0.0019445479159802
420 => 0.0019065846771645
421 => 0.0018428199558816
422 => 0.0018576310463171
423 => 0.0018142823239715
424 => 0.0017383153554452
425 => 0.0017928761584968
426 => 0.0018115056155278
427 => 0.0018197334450494
428 => 0.0017450286563691
429 => 0.0017215547898459
430 => 0.0017090575002737
501 => 0.0018331765057655
502 => 0.0018399760250692
503 => 0.0018051887229565
504 => 0.001962430627173
505 => 0.0019268419414694
506 => 0.00196660322284
507 => 0.0018562870951026
508 => 0.0018605013197426
509 => 0.0018082758969773
510 => 0.0018375186440218
511 => 0.0018168508129485
512 => 0.0018351561190431
513 => 0.0018461282440406
514 => 0.0018983450971279
515 => 0.0019772550638109
516 => 0.0018905456405552
517 => 0.0018527651031409
518 => 0.0018762039360669
519 => 0.0019386246368822
520 => 0.0020331951938743
521 => 0.0019772075207251
522 => 0.0020020538993364
523 => 0.0020074817277245
524 => 0.0019661984903206
525 => 0.0020347173657231
526 => 0.0020714371876977
527 => 0.002109104126947
528 => 0.0021418092748936
529 => 0.0020940591230971
530 => 0.0021451586302347
531 => 0.0021039814477591
601 => 0.0020670412582595
602 => 0.0020670972812788
603 => 0.0020439241607957
604 => 0.0019990233198585
605 => 0.0019907429158872
606 => 0.0020338186230457
607 => 0.0020683612609021
608 => 0.002071206358004
609 => 0.0020903309371861
610 => 0.0021016486661473
611 => 0.002212577795673
612 => 0.0022571944092221
613 => 0.0023117507597207
614 => 0.0023330035328673
615 => 0.0023969667604979
616 => 0.0023453112593469
617 => 0.0023341352667445
618 => 0.0021789813987252
619 => 0.0022043878359214
620 => 0.0022450659932293
621 => 0.0021796521665565
622 => 0.002221142183393
623 => 0.0022293331915952
624 => 0.002177429429757
625 => 0.002205153471584
626 => 0.0021315266360972
627 => 0.0019788599276256
628 => 0.0020348873274118
629 => 0.0020761423522733
630 => 0.002017266345088
701 => 0.0021227993091514
702 => 0.0020611491301881
703 => 0.0020416089831873
704 => 0.0019653759031715
705 => 0.0020013549824586
706 => 0.0020500172023652
707 => 0.0020199496080532
708 => 0.0020823443809226
709 => 0.0021707120193839
710 => 0.0022336880609352
711 => 0.0022385225794289
712 => 0.0021980332037785
713 => 0.002262917686658
714 => 0.0022633902992798
715 => 0.0021902003375308
716 => 0.0021453718934829
717 => 0.0021351867766754
718 => 0.0021606311953704
719 => 0.0021915254169649
720 => 0.0022402369937145
721 => 0.0022696723793514
722 => 0.0023464242537702
723 => 0.0023671911103392
724 => 0.002390007589591
725 => 0.0024204974422131
726 => 0.0024571083277237
727 => 0.0023770057944854
728 => 0.0023801884174608
729 => 0.0023055980476044
730 => 0.0022258875400718
731 => 0.002286377879234
801 => 0.002365460950996
802 => 0.0023473192069548
803 => 0.0023452778901479
804 => 0.002348710818803
805 => 0.0023350325362499
806 => 0.0022731661712029
807 => 0.0022420972699803
808 => 0.0022821840790795
809 => 0.0023034884340572
810 => 0.0023365296306925
811 => 0.0023324566057921
812 => 0.0024175671799593
813 => 0.0024506385754704
814 => 0.0024421774972939
815 => 0.0024437345393056
816 => 0.0025036087211828
817 => 0.002570201125495
818 => 0.002632573699775
819 => 0.0026960217612971
820 => 0.0026195326467123
821 => 0.0025806961915188
822 => 0.0026207654999713
823 => 0.0025995041608901
824 => 0.0027216781217735
825 => 0.002730137181748
826 => 0.0028523023080635
827 => 0.0029682515600895
828 => 0.0028954259123386
829 => 0.0029640972180285
830 => 0.0030383708339859
831 => 0.0031816566896275
901 => 0.0031334030543046
902 => 0.0030964415258781
903 => 0.0030615130601118
904 => 0.0031341936526336
905 => 0.0032276960738119
906 => 0.0032478355997787
907 => 0.0032804693257359
908 => 0.0032461589531541
909 => 0.0032874820177653
910 => 0.0034333705941178
911 => 0.0033939502129933
912 => 0.003337966934654
913 => 0.0034531319543964
914 => 0.0034948097273485
915 => 0.0037873261647456
916 => 0.0041566402502107
917 => 0.0040037417937811
918 => 0.0039088327878729
919 => 0.0039311386555331
920 => 0.0040659996574742
921 => 0.0041093127310234
922 => 0.0039915728662048
923 => 0.0040331605769259
924 => 0.0042623129518126
925 => 0.004385245848851
926 => 0.0042182864625821
927 => 0.0037576521375716
928 => 0.0033329262529658
929 => 0.0034455826832191
930 => 0.0034328109401644
1001 => 0.0036790065796393
1002 => 0.0033930100499406
1003 => 0.0033978254980218
1004 => 0.0036491122025953
1005 => 0.0035820732179598
1006 => 0.0034734786485548
1007 => 0.0033337191135004
1008 => 0.0030753606867601
1009 => 0.0028465254233385
1010 => 0.0032953240725221
1011 => 0.0032759710586819
1012 => 0.0032479450266853
1013 => 0.0033103139281603
1014 => 0.0036131596100009
1015 => 0.0036061780368186
1016 => 0.0035617648302632
1017 => 0.0035954518559955
1018 => 0.0034675731500695
1019 => 0.0035005304043307
1020 => 0.0033328589742157
1021 => 0.0034086534632051
1022 => 0.0034732456533811
1023 => 0.0034862134918627
1024 => 0.0035154306941159
1025 => 0.0032657728997959
1026 => 0.0033778619198778
1027 => 0.0034437037178551
1028 => 0.0031462280792486
1029 => 0.0034378235809369
1030 => 0.0032614269130352
1031 => 0.0032015552345603
1101 => 0.0032821645621329
1102 => 0.0032507510287827
1103 => 0.0032237435174728
1104 => 0.0032086728621139
1105 => 0.0032678634557564
1106 => 0.0032651021438149
1107 => 0.0031682548442167
1108 => 0.0030419214898917
1109 => 0.0030843231103542
1110 => 0.0030689182041228
1111 => 0.0030130888366681
1112 => 0.0030507110894691
1113 => 0.00288504172832
1114 => 0.002600016203207
1115 => 0.0027883127956646
1116 => 0.0027810635816822
1117 => 0.0027774081992667
1118 => 0.0029189078843629
1119 => 0.0029053059545941
1120 => 0.0028806183188732
1121 => 0.0030126354288778
1122 => 0.0029644474078454
1123 => 0.0031129515341415
1124 => 0.0032107659563649
1125 => 0.003185957054924
1126 => 0.0032779519918031
1127 => 0.0030852999580504
1128 => 0.003149291235805
1129 => 0.0031624797494622
1130 => 0.0030110063582328
1201 => 0.0029075313985222
1202 => 0.0029006307984104
1203 => 0.002721219478
1204 => 0.0028170595572056
1205 => 0.0029013948607747
1206 => 0.002861004795049
1207 => 0.0028482185068592
1208 => 0.0029135408802136
1209 => 0.0029186169880715
1210 => 0.002802881190969
1211 => 0.0028269463280626
1212 => 0.0029273019502393
1213 => 0.0028244176238698
1214 => 0.002624530183793
1215 => 0.002574955334994
1216 => 0.0025683411363184
1217 => 0.0024338902145444
1218 => 0.0025782681634421
1219 => 0.0025152433196598
1220 => 0.0027143380460145
1221 => 0.0026006162060871
1222 => 0.0025957138848608
1223 => 0.0025883033073131
1224 => 0.0024725758448446
1225 => 0.0024979128042612
1226 => 0.0025821367162902
1227 => 0.0026121887569524
1228 => 0.0026090540829022
1229 => 0.002581723973173
1230 => 0.0025942355574542
1231 => 0.0025539313851595
]
'min_raw' => 0.0014101981519887
'max_raw' => 0.004385245848851
'avg_raw' => 0.0028977220004198
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.00141'
'max' => '$0.004385'
'avg' => '$0.002897'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.00080334346747215
'max_diff' => 0.0027389075676835
'year' => 2033
]
8 => [
'items' => [
101 => 0.0025396991430635
102 => 0.0024947782721217
103 => 0.0024287570015447
104 => 0.0024379376641504
105 => 0.0023071322517321
106 => 0.0022358625206779
107 => 0.002216135998442
108 => 0.0021897568684802
109 => 0.0022191155913634
110 => 0.0023067616964335
111 => 0.0022010418985605
112 => 0.0020197927204888
113 => 0.0020306861049245
114 => 0.0020551603054766
115 => 0.0020095527946608
116 => 0.0019663891132219
117 => 0.0020039164322528
118 => 0.0019271187661382
119 => 0.0020644409365214
120 => 0.0020607267566534
121 => 0.0021119119698262
122 => 0.0021439191340495
123 => 0.0020701529829573
124 => 0.0020516009954426
125 => 0.0020621690506718
126 => 0.0018875026383662
127 => 0.0020976379975451
128 => 0.0020994552568574
129 => 0.0020838947793358
130 => 0.0021957853708972
131 => 0.0024319094186425
201 => 0.0023430700538129
202 => 0.0023086687665669
203 => 0.002243271894365
204 => 0.002330409343692
205 => 0.0023237185471396
206 => 0.0022934602277207
207 => 0.0022751599017244
208 => 0.0023088788134912
209 => 0.0022709817554058
210 => 0.0022641744024321
211 => 0.0022229292498849
212 => 0.0022082066069605
213 => 0.0021973065482645
214 => 0.0021853066546578
215 => 0.0022117754297669
216 => 0.0021517937031124
217 => 0.0020794616208483
218 => 0.002073447990852
219 => 0.0020900521519955
220 => 0.0020827060467239
221 => 0.0020734128205262
222 => 0.0020556695208552
223 => 0.0020504054628685
224 => 0.0020675110975676
225 => 0.0020481998333128
226 => 0.0020766946556598
227 => 0.0020689456406718
228 => 0.0020256602728636
301 => 0.0019717106782787
302 => 0.0019712304137238
303 => 0.0019596070620656
304 => 0.0019448029761462
305 => 0.001940684818115
306 => 0.0020007559861162
307 => 0.0021251015061
308 => 0.0021006895051911
309 => 0.0021183296776902
310 => 0.0022051018672658
311 => 0.0022326841370011
312 => 0.0022131068952648
313 => 0.0021863083593046
314 => 0.002187487358882
315 => 0.0022790660687266
316 => 0.0022847777205269
317 => 0.0022992092219775
318 => 0.0023177577796834
319 => 0.0022162657948484
320 => 0.0021827070955232
321 => 0.0021668051220173
322 => 0.002117833198457
323 => 0.0021706452194813
324 => 0.0021398739164667
325 => 0.0021440260165408
326 => 0.0021413219559205
327 => 0.0021427985558669
328 => 0.0020644025521761
329 => 0.0020929659355484
330 => 0.0020454737707327
331 => 0.0019818870932901
401 => 0.0019816739284509
402 => 0.0019972366776718
403 => 0.0019879793454648
404 => 0.0019630681025234
405 => 0.0019666066270055
406 => 0.0019356054291322
407 => 0.0019703707337221
408 => 0.0019713676782615
409 => 0.0019579811423155
410 => 0.0020115418907238
411 => 0.0020334857730481
412 => 0.0020246744683211
413 => 0.0020328675484194
414 => 0.0021017039340424
415 => 0.002112927268441
416 => 0.0021179119322091
417 => 0.0021112331431013
418 => 0.0020341257511838
419 => 0.0020375457919013
420 => 0.002012451802349
421 => 0.0019912500255168
422 => 0.0019920979854015
423 => 0.0020029984547313
424 => 0.0020506014435986
425 => 0.0021507791273205
426 => 0.0021545807971888
427 => 0.0021591885319717
428 => 0.0021404465589476
429 => 0.002134793800547
430 => 0.0021422512479781
501 => 0.0021798727188917
502 => 0.0022766453562111
503 => 0.0022424394429553
504 => 0.0022146295030316
505 => 0.0022390263178506
506 => 0.0022352706194378
507 => 0.0022035687452321
508 => 0.0022026789792095
509 => 0.0021418329469066
510 => 0.0021193395541613
511 => 0.0021005423915821
512 => 0.0020800163807579
513 => 0.0020678478735032
514 => 0.002086544231134
515 => 0.002090820309333
516 => 0.0020499403966168
517 => 0.0020443686155701
518 => 0.0020777520347483
519 => 0.0020630612366273
520 => 0.002078171086809
521 => 0.0020816767016611
522 => 0.0020811122169287
523 => 0.002065773336463
524 => 0.0020755498814599
525 => 0.0020524254380139
526 => 0.0020272810789455
527 => 0.0020112405444087
528 => 0.0019972430505573
529 => 0.0020050096736852
530 => 0.0019773230803636
531 => 0.001968465581939
601 => 0.0020722378079941
602 => 0.0021488954671205
603 => 0.002147780834397
604 => 0.0021409957943532
605 => 0.0021309146011432
606 => 0.0021791352168165
607 => 0.0021623361185176
608 => 0.0021745588661417
609 => 0.0021776700683991
610 => 0.0021870867405982
611 => 0.0021904523915191
612 => 0.0021802790568414
613 => 0.0021461361030949
614 => 0.0020610551085734
615 => 0.0020214496759519
616 => 0.0020083792235061
617 => 0.0020088543096282
618 => 0.0019957493135034
619 => 0.0019996093221869
620 => 0.0019944069600092
621 => 0.0019845549446311
622 => 0.0020044013394979
623 => 0.0020066884516243
624 => 0.0020020560659156
625 => 0.0020031471604448
626 => 0.001964792985295
627 => 0.0019677089699308
628 => 0.0019514723969335
629 => 0.0019484282352313
630 => 0.0019073835925744
701 => 0.0018346670585915
702 => 0.0018749590771828
703 => 0.0018262919846397
704 => 0.0018078610192669
705 => 0.0018951103427387
706 => 0.0018863529305817
707 => 0.0018713640477244
708 => 0.0018491923660215
709 => 0.0018409686736057
710 => 0.0017910041217917
711 => 0.00178805194952
712 => 0.0018128157305554
713 => 0.0018013880976773
714 => 0.0017853393731333
715 => 0.0017272125196683
716 => 0.0016618586912338
717 => 0.0016638313125147
718 => 0.0016846191493885
719 => 0.0017450625887209
720 => 0.0017214462912916
721 => 0.0017043123965409
722 => 0.001701103733097
723 => 0.0017412668738884
724 => 0.0017981061325464
725 => 0.001824773841002
726 => 0.0017983469518328
727 => 0.0017679891644801
728 => 0.0017698369023318
729 => 0.0017821290744582
730 => 0.0017834208079467
731 => 0.001763661009211
801 => 0.0017692232768114
802 => 0.001760773683702
803 => 0.0017089185463862
804 => 0.0017079806513865
805 => 0.0016952545644122
806 => 0.0016948692235563
807 => 0.0016732189749417
808 => 0.0016701899554995
809 => 0.0016272020727991
810 => 0.0016554968273718
811 => 0.0016365181915457
812 => 0.0016079129107483
813 => 0.0016029813495568
814 => 0.0016028331008723
815 => 0.0016322043282276
816 => 0.0016551536074794
817 => 0.0016368483330414
818 => 0.0016326805768847
819 => 0.0016771813088989
820 => 0.0016715181851169
821 => 0.001666613956445
822 => 0.001793016800352
823 => 0.0016929590860627
824 => 0.0016493282115378
825 => 0.001595326719035
826 => 0.0016129098772931
827 => 0.0016166149070884
828 => 0.0014867510521198
829 => 0.0014340653023325
830 => 0.0014159855384261
831 => 0.0014055803786876
901 => 0.0014103221406402
902 => 0.0013628987864096
903 => 0.0013947680647625
904 => 0.0013537034485951
905 => 0.0013468188320588
906 => 0.0014202474526959
907 => 0.0014304646162937
908 => 0.0013868750221613
909 => 0.0014148665981086
910 => 0.0014047164635581
911 => 0.0013544073835767
912 => 0.0013524859467699
913 => 0.0013272426188849
914 => 0.0012877416988164
915 => 0.0012696887183938
916 => 0.0012602865694466
917 => 0.0012641660793465
918 => 0.0012622044804261
919 => 0.0012494037205944
920 => 0.0012629382049957
921 => 0.0012283631901855
922 => 0.0012145951406982
923 => 0.0012083764321611
924 => 0.0011776891164535
925 => 0.0012265262824556
926 => 0.0012361478193924
927 => 0.0012457883137293
928 => 0.0013297022350864
929 => 0.0013255101327137
930 => 0.0013634046965264
1001 => 0.0013619321834603
1002 => 0.0013511240400096
1003 => 0.0013055262606447
1004 => 0.0013237007227973
1005 => 0.0012677625532302
1006 => 0.0013096752332957
1007 => 0.0012905480364292
1008 => 0.0013032083087949
1009 => 0.0012804439975506
1010 => 0.0012930427073086
1011 => 0.0012384294427356
1012 => 0.0011874323447068
1013 => 0.0012079550656517
1014 => 0.0012302656103766
1015 => 0.0012786405559613
1016 => 0.0012498288374557
1017 => 0.001260190620922
1018 => 0.0012254803808515
1019 => 0.001153863241096
1020 => 0.0011542685863295
1021 => 0.0011432518496423
1022 => 0.0011337317806747
1023 => 0.0012531382099139
1024 => 0.0012382881329017
1025 => 0.0012146264787128
1026 => 0.0012462985431214
1027 => 0.0012546731396543
1028 => 0.0012549115526443
1029 => 0.0012780186732626
1030 => 0.0012903509476787
1031 => 0.0012925245644957
1101 => 0.0013288841180509
1102 => 0.0013410713608084
1103 => 0.0013912688889238
1104 => 0.0012893046403553
1105 => 0.0012872047537555
1106 => 0.001246744234019
1107 => 0.0012210835327466
1108 => 0.0012485012441888
1109 => 0.0012727895936357
1110 => 0.0012474989407398
1111 => 0.0012508013660932
1112 => 0.0012168507309026
1113 => 0.0012289864854574
1114 => 0.0012394394321426
1115 => 0.0012336679293788
1116 => 0.0012250277103976
1117 => 0.0012707982259618
1118 => 0.0012682156740975
1119 => 0.0013108382304505
1120 => 0.0013440655610959
1121 => 0.0014036148777082
1122 => 0.0013414720614472
1123 => 0.0013392073302273
1124 => 0.0013613454411759
1125 => 0.001341067971579
1126 => 0.0013538826324098
1127 => 0.0014015502377345
1128 => 0.0014025573791214
1129 => 0.0013856864632627
1130 => 0.0013846598664995
1201 => 0.0013879001104377
1202 => 0.0014068783203913
1203 => 0.001400246750692
1204 => 0.0014079209710388
1205 => 0.0014175177010943
1206 => 0.001457213845533
1207 => 0.0014667844515665
1208 => 0.0014435328406953
1209 => 0.0014456322008198
1210 => 0.001436935460083
1211 => 0.0014285345175011
1212 => 0.001447418609566
1213 => 0.0014819296589825
1214 => 0.0014817149675352
1215 => 0.0014897208602009
1216 => 0.0014947084650072
1217 => 0.0014732980140286
1218 => 0.0014593605977256
1219 => 0.001464705089997
1220 => 0.0014732510495269
1221 => 0.0014619337505011
1222 => 0.0013920781382307
1223 => 0.0014132678685998
1224 => 0.0014097408613415
1225 => 0.0014047179741069
1226 => 0.0014260244118483
1227 => 0.0014239693539508
1228 => 0.0013624123913674
1229 => 0.0013663530683909
1230 => 0.0013626520369891
1231 => 0.001374610826608
]
'min_raw' => 0.0011337317806747
'max_raw' => 0.0025396991430635
'avg_raw' => 0.0018367154618691
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.001133'
'max' => '$0.002539'
'avg' => '$0.001836'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.00027646637131399
'max_diff' => -0.0018455467057875
'year' => 2034
]
9 => [
'items' => [
101 => 0.0013404221576942
102 => 0.0013509383619879
103 => 0.0013575340267376
104 => 0.0013614189239455
105 => 0.0013754538365592
106 => 0.0013738070015544
107 => 0.0013753514669831
108 => 0.0013961615373098
109 => 0.0015014117318683
110 => 0.0015071402677367
111 => 0.0014789308620073
112 => 0.0014901999631903
113 => 0.0014685657532005
114 => 0.0014830889433032
115 => 0.0014930253411225
116 => 0.0014481246700367
117 => 0.001445465943698
118 => 0.0014237424416279
119 => 0.0014354154211583
120 => 0.0014168428714084
121 => 0.0014213999254768
122 => 0.0014086580050248
123 => 0.0014315909249474
124 => 0.0014572334928365
125 => 0.0014637118181409
126 => 0.0014466701333593
127 => 0.0014343308304756
128 => 0.001412667079431
129 => 0.0014486943802264
130 => 0.0014592298608911
131 => 0.0014486390418316
201 => 0.0014461849176415
202 => 0.0014415343567359
203 => 0.0014471715561223
204 => 0.0014591724824008
205 => 0.0014535130671902
206 => 0.0014572512106428
207 => 0.001443005262558
208 => 0.0014733051017788
209 => 0.0015214285385148
210 => 0.0015215832632329
211 => 0.0015159238175159
212 => 0.0015136080942629
213 => 0.0015194150290125
214 => 0.0015225650529011
215 => 0.0015413436150714
216 => 0.0015614937604509
217 => 0.0016555256967401
218 => 0.001629121905305
219 => 0.0017125526331657
220 => 0.0017785355067794
221 => 0.0017983208854948
222 => 0.0017801192680506
223 => 0.0017178525180063
224 => 0.0017147974141899
225 => 0.0018078502270999
226 => 0.001781558545364
227 => 0.001778431233481
228 => 0.0017451619187221
301 => 0.0017648282042294
302 => 0.001760526899102
303 => 0.0017537370785313
304 => 0.0017912589813138
305 => 0.0018614966337193
306 => 0.0018505494369074
307 => 0.0018423778623131
308 => 0.0018065724011507
309 => 0.0018281352862097
310 => 0.0018204571558501
311 => 0.0018534472765372
312 => 0.0018339046598628
313 => 0.0017813593600163
314 => 0.0017897273722084
315 => 0.0017884625639997
316 => 0.0018144922273102
317 => 0.0018066787684803
318 => 0.0017869368607616
319 => 0.0018612565690592
320 => 0.0018564306605903
321 => 0.0018632726954429
322 => 0.001866284770782
323 => 0.0019115218675626
324 => 0.001930054058688
325 => 0.0019342611905251
326 => 0.0019518653387631
327 => 0.00193382318328
328 => 0.0020060046690515
329 => 0.0020540011451831
330 => 0.002109751522086
331 => 0.0021912178070299
401 => 0.002221849883774
402 => 0.0022163164732873
403 => 0.0022780832807698
404 => 0.002389076860817
405 => 0.0022387514492427
406 => 0.002397044472649
407 => 0.0023469307290194
408 => 0.0022281119443814
409 => 0.0022204614154321
410 => 0.0023009268759035
411 => 0.0024793915227153
412 => 0.0024346881528182
413 => 0.0024794646414139
414 => 0.0024272304890238
415 => 0.0024246366230936
416 => 0.0024769277452211
417 => 0.0025991088023128
418 => 0.002541065161977
419 => 0.0024578453706711
420 => 0.002519293569528
421 => 0.0024660614529158
422 => 0.0023461145954573
423 => 0.0024346539689937
424 => 0.0023754502113661
425 => 0.0023927290152867
426 => 0.0025171665079257
427 => 0.0025021938595906
428 => 0.0025215698529661
429 => 0.0024873717318164
430 => 0.0024554252941138
501 => 0.0023957948957683
502 => 0.0023781412745613
503 => 0.0023830201003522
504 => 0.0023781388568576
505 => 0.0023447761970149
506 => 0.0023375715337984
507 => 0.0023255634461273
508 => 0.0023292852546108
509 => 0.0023067065366992
510 => 0.0023493172423996
511 => 0.0023572261648618
512 => 0.0023882346830326
513 => 0.0023914540902559
514 => 0.0024778123719829
515 => 0.0024302476815996
516 => 0.0024621581824465
517 => 0.0024593038068975
518 => 0.0022306871077345
519 => 0.002262188471777
520 => 0.0023111947085544
521 => 0.0022891174653126
522 => 0.0022579054086479
523 => 0.0022326999994066
524 => 0.0021945112270206
525 => 0.0022482611908035
526 => 0.0023189366775066
527 => 0.002393246537231
528 => 0.002482524964715
529 => 0.002462599059016
530 => 0.00239157753913
531 => 0.0023947635126308
601 => 0.0024144579471786
602 => 0.0023889518650111
603 => 0.0023814296234421
604 => 0.0024134245066989
605 => 0.0024136448378758
606 => 0.0023842970078291
607 => 0.0023516822653284
608 => 0.0023515456083665
609 => 0.0023457421299595
610 => 0.0024282629149399
611 => 0.0024736410028867
612 => 0.0024788435275393
613 => 0.002473290831526
614 => 0.0024754278438429
615 => 0.0024490233343046
616 => 0.0025093762130951
617 => 0.0025647619829543
618 => 0.0025499174134877
619 => 0.0025276632935773
620 => 0.002509936815165
621 => 0.0025457416185293
622 => 0.0025441472869975
623 => 0.0025642782365721
624 => 0.0025633649804174
625 => 0.0025565956992388
626 => 0.00254991765524
627 => 0.0025763953448432
628 => 0.0025687701954562
629 => 0.002561133202106
630 => 0.0025458160427771
701 => 0.002547897899121
702 => 0.0025256476216981
703 => 0.0025153536252589
704 => 0.0023605566175638
705 => 0.0023191897989695
706 => 0.0023322046421985
707 => 0.0023364894665198
708 => 0.0023184865740545
709 => 0.0023442980972861
710 => 0.0023402753987316
711 => 0.0023559253656071
712 => 0.0023461479457459
713 => 0.0023465492144675
714 => 0.0023753025215136
715 => 0.0023836497288745
716 => 0.0023794042718405
717 => 0.0023823776444213
718 => 0.0024508977605642
719 => 0.0024411563911986
720 => 0.0024359814828759
721 => 0.0024374149678472
722 => 0.0024549233266096
723 => 0.0024598247111421
724 => 0.0024390572004637
725 => 0.0024488512785551
726 => 0.0024905532200151
727 => 0.0025051465394007
728 => 0.0025517214096886
729 => 0.002531935576988
730 => 0.0025682533292207
731 => 0.0026798817179501
801 => 0.0027690581989641
802 => 0.0026870478216497
803 => 0.0028508090724755
804 => 0.0029783206963996
805 => 0.0029734265878917
806 => 0.0029511919868635
807 => 0.0028060233930978
808 => 0.0026724370887728
809 => 0.0027841877047148
810 => 0.0027844725800165
811 => 0.0027748731030004
812 => 0.0027152515756969
813 => 0.0027727984030874
814 => 0.0027773662612663
815 => 0.0027748094753776
816 => 0.0027290977901841
817 => 0.0026593044958252
818 => 0.0026729419384814
819 => 0.0026952803477486
820 => 0.0026529890787255
821 => 0.0026394744557543
822 => 0.00266460071112
823 => 0.0027455627411715
824 => 0.0027302573383714
825 => 0.0027298576524503
826 => 0.0027953406561301
827 => 0.002748468957612
828 => 0.0026731139503065
829 => 0.0026540858171514
830 => 0.0025865487633372
831 => 0.0026331968469654
901 => 0.0026348756284492
902 => 0.0026093269497779
903 => 0.0026751870847738
904 => 0.0026745801720354
905 => 0.0027371045682266
906 => 0.0028566277306534
907 => 0.0028212788501462
908 => 0.0027801719480636
909 => 0.0027846414080907
910 => 0.0028336603530211
911 => 0.0028040223799225
912 => 0.0028146804016921
913 => 0.0028336442208287
914 => 0.002845085563759
915 => 0.0027829951749153
916 => 0.0027685189351492
917 => 0.0027389056290576
918 => 0.0027311800702568
919 => 0.0027552994901666
920 => 0.002748944875172
921 => 0.002634734533366
922 => 0.002622798917187
923 => 0.002623164965495
924 => 0.0025931522911052
925 => 0.0025473757587934
926 => 0.002667673752534
927 => 0.0026580121400673
928 => 0.0026473464676534
929 => 0.0026486529516666
930 => 0.0027008702334721
1001 => 0.002670581572989
1002 => 0.0027511089410972
1003 => 0.0027345549350884
1004 => 0.0027175763812895
1005 => 0.0027152294279751
1006 => 0.0027086941333047
1007 => 0.0026862821762036
1008 => 0.0026592183912543
1009 => 0.0026413485362059
1010 => 0.0024365044034946
1011 => 0.0024745222830023
1012 => 0.0025182583879372
1013 => 0.0025333559160993
1014 => 0.0025075305494609
1015 => 0.002687301919086
1016 => 0.0027201478806365
1017 => 0.0026206553206109
1018 => 0.0026020443248846
1019 => 0.0026885220528674
1020 => 0.0026363654114215
1021 => 0.002659851543871
1022 => 0.0026090873717427
1023 => 0.002712236250341
1024 => 0.0027114504287077
1025 => 0.0026713231852099
1026 => 0.0027052384566348
1027 => 0.0026993448436109
1028 => 0.0026540412845309
1029 => 0.0027136724539704
1030 => 0.0027137020302864
1031 => 0.0026750804308613
1101 => 0.002629978858088
1102 => 0.0026219157621277
1103 => 0.0026158413024462
1104 => 0.0026583575991605
1105 => 0.0026964775778495
1106 => 0.0027674094074456
1107 => 0.0027852433547048
1108 => 0.0028548504381304
1109 => 0.0028134028090578
1110 => 0.0028317760061891
1111 => 0.0028517227107224
1112 => 0.0028612858943915
1113 => 0.0028457031997915
1114 => 0.0029538316517701
1115 => 0.0029629610060872
1116 => 0.0029660219996211
1117 => 0.0029295616939918
1118 => 0.0029619469790315
1119 => 0.0029467949766493
1120 => 0.0029862162775001
1121 => 0.00299239804083
1122 => 0.0029871623072122
1123 => 0.0029891244964656
1124 => 0.0028968559378679
1125 => 0.0028920713263492
1126 => 0.002826832808791
1127 => 0.0028534179869147
1128 => 0.0028037182706732
1129 => 0.0028194785626572
1130 => 0.0028264255491941
1201 => 0.0028227968376652
1202 => 0.0028549210729978
1203 => 0.0028276089104174
1204 => 0.0027555276228326
1205 => 0.0026834266967493
1206 => 0.0026825215283544
1207 => 0.0026635386272037
1208 => 0.0026498174665635
1209 => 0.0026524606488872
1210 => 0.0026617755681513
1211 => 0.0026492760665223
1212 => 0.0026519434689357
1213 => 0.0026962401218068
1214 => 0.0027051234996309
1215 => 0.002674934310825
1216 => 0.0025537203614903
1217 => 0.0025239741542814
1218 => 0.0025453551381302
1219 => 0.0025351364049622
1220 => 0.0020460529380885
1221 => 0.0021609558439529
1222 => 0.0020926844390222
1223 => 0.0021241470434306
1224 => 0.002054459617791
1225 => 0.0020877181099371
1226 => 0.0020815764808434
1227 => 0.0022663369532492
1228 => 0.0022634521726023
1229 => 0.0022648329644387
1230 => 0.0021989241724498
1231 => 0.0023039186677069
]
'min_raw' => 0.0013404221576942
'max_raw' => 0.00299239804083
'avg_raw' => 0.0021664100992621
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.00134'
'max' => '$0.002992'
'avg' => '$0.002166'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.00020669037701951
'max_diff' => 0.00045269889776646
'year' => 2035
]
10 => [
'items' => [
101 => 0.0023556427315504
102 => 0.0023460699839244
103 => 0.0023484792382651
104 => 0.0023070802664499
105 => 0.0022652337969796
106 => 0.0022188196222115
107 => 0.0023050514219652
108 => 0.0022954639178585
109 => 0.0023174542028041
110 => 0.0023733816889207
111 => 0.0023816172236992
112 => 0.0023926858659581
113 => 0.0023887185456279
114 => 0.0024832362114251
115 => 0.0024717894984495
116 => 0.0024993727832768
117 => 0.0024426318736381
118 => 0.0023784241484854
119 => 0.0023906279379283
120 => 0.0023894526148683
121 => 0.0023744894033412
122 => 0.0023609812850249
123 => 0.002338494073917
124 => 0.0024096469373434
125 => 0.0024067582610286
126 => 0.0024535225728451
127 => 0.0024452565264872
128 => 0.0023900538458649
129 => 0.0023920254204027
130 => 0.0024052852066764
131 => 0.0024511774783672
201 => 0.0024648014291892
202 => 0.0024584902723479
203 => 0.0024734283124672
204 => 0.0024852347303045
205 => 0.0024749110167727
206 => 0.0026210730295974
207 => 0.0025603763714926
208 => 0.0025899595003282
209 => 0.0025970149022416
210 => 0.0025789426385996
211 => 0.0025828618654643
212 => 0.002588798426239
213 => 0.0026248440607648
214 => 0.002719438235649
215 => 0.0027613333517809
216 => 0.0028873768757323
217 => 0.0027578545455943
218 => 0.0027501692265406
219 => 0.002772873471354
220 => 0.0028468743629755
221 => 0.0029068451350844
222 => 0.0029267408999897
223 => 0.0029293704537653
224 => 0.0029666962313732
225 => 0.0029880906710135
226 => 0.0029621639002062
227 => 0.002940193676593
228 => 0.0028614990626552
229 => 0.0028706081784969
301 => 0.0029333609535701
302 => 0.0030220029444809
303 => 0.0030980669943098
304 => 0.0030714320151595
305 => 0.0032746381047112
306 => 0.0032947851584678
307 => 0.0032920014870708
308 => 0.003337899473812
309 => 0.0032468013170933
310 => 0.0032078550901523
311 => 0.0029449438883108
312 => 0.0030188112120197
313 => 0.0031261817051064
314 => 0.0031119708177277
315 => 0.0030339954956266
316 => 0.0030980078430357
317 => 0.0030768433591311
318 => 0.0030601500525603
319 => 0.0031366253261179
320 => 0.0030525376214102
321 => 0.0031253428659282
322 => 0.00303196938676
323 => 0.0030715536815007
324 => 0.003049083721329
325 => 0.0030636245393748
326 => 0.0029786192141967
327 => 0.0030244860242752
328 => 0.0029767110041013
329 => 0.0029766883525213
330 => 0.002975633716303
331 => 0.0030318408156707
401 => 0.0030336737271631
402 => 0.0029921365958062
403 => 0.0029861504462458
404 => 0.0030082843786388
405 => 0.0029823713406926
406 => 0.0029944958880529
407 => 0.0029827385808807
408 => 0.0029800917633894
409 => 0.0029590014713003
410 => 0.0029499151935787
411 => 0.0029534781571978
412 => 0.0029413159255319
413 => 0.002933987741026
414 => 0.0029741759559571
415 => 0.0029527050139074
416 => 0.0029708852261513
417 => 0.0029501665797736
418 => 0.0028783467247442
419 => 0.0028370423666355
420 => 0.002701381318189
421 => 0.0027398546232414
422 => 0.0027653624642947
423 => 0.0027569321229787
424 => 0.0027750437582344
425 => 0.0027761556655425
426 => 0.0027702673882946
427 => 0.0027634495175766
428 => 0.002760130955163
429 => 0.002784864800547
430 => 0.0027992236302954
501 => 0.0027679225173953
502 => 0.0027605891045919
503 => 0.0027922362579157
504 => 0.0028115410031612
505 => 0.002954076395655
506 => 0.0029435169133958
507 => 0.0029700191416727
508 => 0.0029670353974785
509 => 0.0029948139548487
510 => 0.0030402201560547
511 => 0.0029478966532294
512 => 0.0029639208210133
513 => 0.0029599920651248
514 => 0.0030028851917408
515 => 0.0030030190994002
516 => 0.0029773025273233
517 => 0.0029912438982499
518 => 0.0029834622074602
519 => 0.0029975247744758
520 => 0.0029433758850724
521 => 0.0030093233873543
522 => 0.003046711371585
523 => 0.0030472305037823
524 => 0.0030649521115783
525 => 0.0030829582914652
526 => 0.0031175195857505
527 => 0.0030819943957258
528 => 0.0030180880371788
529 => 0.0030227018698496
530 => 0.002985233595216
531 => 0.0029858634436817
601 => 0.0029825012632092
602 => 0.0029925914199003
603 => 0.0029455901070474
604 => 0.0029566212212291
605 => 0.0029411775967766
606 => 0.0029638872495899
607 => 0.0029394554172029
608 => 0.0029599901705597
609 => 0.0029688522893707
610 => 0.0030015536985709
611 => 0.0029346253924753
612 => 0.0027981540456983
613 => 0.002826841977346
614 => 0.0027844102730507
615 => 0.0027883374888321
616 => 0.0027962710897223
617 => 0.0027705556935244
618 => 0.0027754613807337
619 => 0.0027752861150658
620 => 0.002773775770226
621 => 0.0027670862024992
622 => 0.0027573850058047
623 => 0.0027960315875647
624 => 0.0028025983948838
625 => 0.0028171955940988
626 => 0.0028606269575879
627 => 0.0028562871401933
628 => 0.0028633655624212
629 => 0.0028479134064413
630 => 0.0027890542700302
701 => 0.0027922506043171
702 => 0.0027523922645408
703 => 0.002816176326737
704 => 0.0028010714189004
705 => 0.002791333186555
706 => 0.0027886760196354
707 => 0.0028322150410741
708 => 0.0028452425986791
709 => 0.0028371246990265
710 => 0.0028204746500022
711 => 0.002852447666274
712 => 0.0028610022965951
713 => 0.0028629173628414
714 => 0.0029195674174574
715 => 0.0028660834715908
716 => 0.0028789575889456
717 => 0.0029793977774688
718 => 0.0028883123862768
719 => 0.0029365623494378
720 => 0.0029342007648218
721 => 0.0029588838132852
722 => 0.0029321760344036
723 => 0.0029325071093318
724 => 0.0029544239841928
725 => 0.0029236456861797
726 => 0.0029160245467555
727 => 0.0029054959972246
728 => 0.0029284846999461
729 => 0.002942265387538
730 => 0.0030533276087292
731 => 0.0031250788686713
801 => 0.0031219639572467
802 => 0.0031504284167975
803 => 0.0031376049170653
804 => 0.0030961944537618
805 => 0.0031668770651528
806 => 0.0031445101294226
807 => 0.0031463540324284
808 => 0.0031462854022664
809 => 0.0031611574591756
810 => 0.0031506192438514
811 => 0.003129847339722
812 => 0.0031436366990673
813 => 0.0031845861665367
814 => 0.0033116945700447
815 => 0.0033828261166101
816 => 0.0033074123616261
817 => 0.0033594317599837
818 => 0.0033282386573759
819 => 0.0033225699427177
820 => 0.0033552419690896
821 => 0.0033879711835186
822 => 0.0033858864740518
823 => 0.0033621267450401
824 => 0.0033487054770022
825 => 0.0034503358150399
826 => 0.0035252153168784
827 => 0.0035201090368516
828 => 0.0035426464962388
829 => 0.0036088171740572
830 => 0.0036148669915589
831 => 0.0036141048536072
901 => 0.0035991097496959
902 => 0.0036642633753563
903 => 0.0037186156761513
904 => 0.0035956388163906
905 => 0.0036424667947022
906 => 0.0036634893828695
907 => 0.0036943567794199
908 => 0.0037464352513768
909 => 0.0038030062850545
910 => 0.0038110060494863
911 => 0.003805329833798
912 => 0.0037680197163765
913 => 0.0038299204164595
914 => 0.003866180394818
915 => 0.0038877723821356
916 => 0.0039425260694091
917 => 0.003663619211217
918 => 0.0034661950744184
919 => 0.0034353644446182
920 => 0.0034980597426716
921 => 0.0035145919927826
922 => 0.0035079278634925
923 => 0.0032857090485084
924 => 0.0034341945085466
925 => 0.0035939523785355
926 => 0.0036000893289562
927 => 0.0036800674590522
928 => 0.0037061116166258
929 => 0.0037705044943262
930 => 0.0037664767022938
1001 => 0.0037821553432993
1002 => 0.0037785510952484
1003 => 0.0038978253416683
1004 => 0.0040294025478664
1005 => 0.0040248464476057
1006 => 0.0040059306674638
1007 => 0.0040340238265943
1008 => 0.0041698256040611
1009 => 0.0041573231525711
1010 => 0.0041694682192373
1011 => 0.0043295861683235
1012 => 0.0045377622786482
1013 => 0.0044410435748626
1014 => 0.00465089533202
1015 => 0.004782985889387
1016 => 0.0050114228499345
1017 => 0.0049828214173982
1018 => 0.0050717502497915
1019 => 0.0049316188838591
1020 => 0.0046098489424567
1021 => 0.0045589276175439
1022 => 0.0046608733995526
1023 => 0.0049114971568971
1024 => 0.0046529803655396
1025 => 0.0047052779757383
1026 => 0.0046902162604828
1027 => 0.004689413685685
1028 => 0.0047200447014092
1029 => 0.0046756128154949
1030 => 0.0044945893191364
1031 => 0.0045775513207394
1101 => 0.0045455157077579
1102 => 0.004581061608774
1103 => 0.0047728881763129
1104 => 0.0046880770782298
1105 => 0.0045987354758932
1106 => 0.0047107896717119
1107 => 0.0048534731689883
1108 => 0.0048445442921557
1109 => 0.0048272185391193
1110 => 0.0049248829018383
1111 => 0.0050861958160766
1112 => 0.0051297980485875
1113 => 0.0051619843252186
1114 => 0.0051664222689744
1115 => 0.0052121358478261
1116 => 0.0049663224130353
1117 => 0.0053564346469851
1118 => 0.0054237962531553
1119 => 0.0054111350630478
1120 => 0.0054860046532962
1121 => 0.005463976120587
1122 => 0.0054320602328621
1123 => 0.0055507444586244
1124 => 0.0054146825711111
1125 => 0.0052215598515013
1126 => 0.005115608907989
1127 => 0.0052551336572248
1128 => 0.0053403365528403
1129 => 0.0053966502469202
1130 => 0.0054136907367232
1201 => 0.004985404210237
1202 => 0.0047545815263206
1203 => 0.0049025362203236
1204 => 0.0050830511582946
1205 => 0.0049653196434404
1206 => 0.0049699344959275
1207 => 0.0048020802950432
1208 => 0.0050979025305214
1209 => 0.0050548037190688
1210 => 0.0052784004291252
1211 => 0.0052250372797945
1212 => 0.0054073717168712
1213 => 0.0053593569488965
1214 => 0.00555866356629
1215 => 0.0056381723719795
1216 => 0.0057716800312896
1217 => 0.0058698888089521
1218 => 0.0059275588816301
1219 => 0.0059240965867815
1220 => 0.0061526141458478
1221 => 0.0060178653250618
1222 => 0.005848589048296
1223 => 0.0058455273745091
1224 => 0.0059331979569095
1225 => 0.0061169314463711
1226 => 0.0061645708669749
1227 => 0.0061911948040032
1228 => 0.0061504193176585
1229 => 0.0060041591302303
1230 => 0.0059410047228548
1231 => 0.0059948141076981
]
'min_raw' => 0.0022188196222115
'max_raw' => 0.0061911948040032
'avg_raw' => 0.0042050072131074
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.002218'
'max' => '$0.006191'
'avg' => '$0.004205'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.00087839746451736
'max_diff' => 0.0031987967631732
'year' => 2036
]
11 => [
'items' => [
101 => 0.0059290098539279
102 => 0.0060426064573478
103 => 0.0061985988567685
104 => 0.006166387043149
105 => 0.0062740663066142
106 => 0.0063855030161119
107 => 0.0065448625156293
108 => 0.0065865249898684
109 => 0.0066553914755035
110 => 0.0067262777106841
111 => 0.0067490444589865
112 => 0.006792513245603
113 => 0.0067922841436407
114 => 0.0069232802578961
115 => 0.0070677730285317
116 => 0.0071223157044313
117 => 0.0072477335801618
118 => 0.0070329598631399
119 => 0.0071958681946437
120 => 0.0073428155875201
121 => 0.0071676188478029
122 => 0.007409086737898
123 => 0.0074184623888924
124 => 0.0075600235876221
125 => 0.0074165241928654
126 => 0.0073313147103251
127 => 0.0075773112936612
128 => 0.0076963412915178
129 => 0.0076604884874651
130 => 0.0073876468783532
131 => 0.007228841359123
201 => 0.0068132166840005
202 => 0.0073055420653329
203 => 0.0075453393972516
204 => 0.0073870258611943
205 => 0.0074668700002332
206 => 0.0079024737332802
207 => 0.0080683234315714
208 => 0.0080338278537037
209 => 0.0080396570385178
210 => 0.0081291465253308
211 => 0.0085259921926202
212 => 0.0082881930699699
213 => 0.0084699815890729
214 => 0.0085664015641179
215 => 0.0086559618104833
216 => 0.0084360301512165
217 => 0.0081499022939481
218 => 0.0080592735907208
219 => 0.0073712847000522
220 => 0.0073354718905086
221 => 0.0073153690752726
222 => 0.0071886236688091
223 => 0.0070890364978175
224 => 0.0070098410820104
225 => 0.0068020086611794
226 => 0.0068721460022251
227 => 0.006540904501418
228 => 0.0067528210751564
301 => 0.0062241516417624
302 => 0.00666444325539
303 => 0.0064248125476957
304 => 0.0065857181230652
305 => 0.0065851567386709
306 => 0.0062888785592565
307 => 0.0061179914885381
308 => 0.0062268873810242
309 => 0.0063436324219359
310 => 0.0063625739120464
311 => 0.0065139369049458
312 => 0.0065561790627274
313 => 0.0064281833525514
314 => 0.0062131961428354
315 => 0.0062631327683162
316 => 0.0061169795244166
317 => 0.0058608515861859
318 => 0.006044807142988
319 => 0.0061076176580351
320 => 0.006135358359716
321 => 0.0058834859489585
322 => 0.0058043421690825
323 => 0.0057622066847571
324 => 0.0061806825774849
325 => 0.0062036076315444
326 => 0.0060863198136998
327 => 0.0066164718720448
328 => 0.0064964821334725
329 => 0.0066305400696574
330 => 0.0062586015429648
331 => 0.0062728100955661
401 => 0.0060967284364505
402 => 0.0061953223997745
403 => 0.0061256393643289
404 => 0.0061873569818625
405 => 0.0062243502673409
406 => 0.0064004030331888
407 => 0.0066664534951785
408 => 0.0063741066208135
409 => 0.0062467269011683
410 => 0.0063257525628254
411 => 0.0065362083136983
412 => 0.0068550595493024
413 => 0.0066662932003456
414 => 0.0067500645005522
415 => 0.0067683648029215
416 => 0.0066291754857109
417 => 0.0068601916579655
418 => 0.0069839951014488
419 => 0.0071109918169497
420 => 0.007221259506652
421 => 0.007060266536061
422 => 0.0072325520920292
423 => 0.0070937203464135
424 => 0.0069691739184341
425 => 0.0069693628039548
426 => 0.0068912330103504
427 => 0.0067398466902543
428 => 0.0067119287301458
429 => 0.0068571614842802
430 => 0.0069736243995031
501 => 0.0069832168430206
502 => 0.0070476966969686
503 => 0.0070858552103397
504 => 0.0074598605153601
505 => 0.0076102885429734
506 => 0.0077942290876822
507 => 0.0078658842961673
508 => 0.0080815407838936
509 => 0.0079073806552911
510 => 0.0078697000159493
511 => 0.007346587917425
512 => 0.0074322474942531
513 => 0.0075693967416746
514 => 0.0073488494579998
515 => 0.0074887359465045
516 => 0.0075163525025362
517 => 0.007341355345694
518 => 0.0074348288883442
519 => 0.0071865908720391
520 => 0.0066718644055777
521 => 0.0068607646956651
522 => 0.0069998588923194
523 => 0.0068013543235029
524 => 0.0071571660799189
525 => 0.0069493081972662
526 => 0.0068834272274032
527 => 0.0066264020757062
528 => 0.0067477080535018
529 => 0.0069117761254047
530 => 0.0068104011319293
531 => 0.0070207694649226
601 => 0.0073187071276262
602 => 0.0075310352485633
603 => 0.0075473351652001
604 => 0.0074108224083168
605 => 0.0076295849724351
606 => 0.0076311784188862
607 => 0.0073844133528895
608 => 0.0072332711239601
609 => 0.0071989312915414
610 => 0.0072847189256441
611 => 0.0073888809507156
612 => 0.0075531154326608
613 => 0.0076523588904485
614 => 0.007911133193696
615 => 0.0079811501005141
616 => 0.0080580774533074
617 => 0.0081608761201563
618 => 0.0082843122767456
619 => 0.0080142409933526
620 => 0.0080249714289176
621 => 0.0077734847892135
622 => 0.0075047352478574
623 => 0.0077086826496434
624 => 0.0079753167474928
625 => 0.0079141505908416
626 => 0.0079072681487072
627 => 0.0079188425073471
628 => 0.007872725222732
629 => 0.0076641384536045
630 => 0.007559387483971
701 => 0.0076945429596207
702 => 0.0077663720798504
703 => 0.0078777727811691
704 => 0.0078640402933481
705 => 0.0081509965363831
706 => 0.0082624990553201
707 => 0.0082339719395142
708 => 0.0082392216153659
709 => 0.0084410915998469
710 => 0.0086656125403186
711 => 0.0088759060292178
712 => 0.0090898255984416
713 => 0.0088319372083194
714 => 0.00870099738816
715 => 0.0088360938591572
716 => 0.0087644097700256
717 => 0.0091763278090577
718 => 0.0092048481203544
719 => 0.0096167363730239
720 => 0.010007667371548
721 => 0.0097621306156313
722 => 0.0099936607172423
723 => 0.010244079399061
724 => 0.010727177665255
725 => 0.010564487164803
726 => 0.010439868791142
727 => 0.010322105030183
728 => 0.010567152722267
729 => 0.010882402663401
730 => 0.010950304481294
731 => 0.011060331366773
801 => 0.01094465155014
802 => 0.011083975147561
803 => 0.011575848668348
804 => 0.011442940101144
805 => 0.011254188569595
806 => 0.011642475474222
807 => 0.011782994995579
808 => 0.012769234587109
809 => 0.01401440281094
810 => 0.013498894990059
811 => 0.013178902650304
812 => 0.013254108440466
813 => 0.013708801724205
814 => 0.013854834775698
815 => 0.013457866601128
816 => 0.013598082471385
817 => 0.014370685702224
818 => 0.014785162547489
819 => 0.014222247319952
820 => 0.012669186532717
821 => 0.011237193559354
822 => 0.011617022579374
823 => 0.011573961755971
824 => 0.012404027543291
825 => 0.011439770275772
826 => 0.011456005895181
827 => 0.012303236563928
828 => 0.012077209946717
829 => 0.011711075774137
830 => 0.011239866744002
831 => 0.010368793270238
901 => 0.0095972592028444
902 => 0.011110415182688
903 => 0.011045165145341
904 => 0.01095067342175
905 => 0.01116095452753
906 => 0.012182019887866
907 => 0.012158481026444
908 => 0.012008738799712
909 => 0.012122316958921
910 => 0.011691164973686
911 => 0.011802282657429
912 => 0.011236966724351
913 => 0.011492513135781
914 => 0.011710290214642
915 => 0.011754012187468
916 => 0.011852520024745
917 => 0.011010781340644
918 => 0.011388697297656
919 => 0.011610687516464
920 => 0.010607727631817
921 => 0.011590862224306
922 => 0.010996128542854
923 => 0.010794266998769
924 => 0.011066046974643
925 => 0.01096013405373
926 => 0.010869076343745
927 => 0.010818264577002
928 => 0.011017829796023
929 => 0.011008519840024
930 => 0.010681992407766
1001 => 0.010256050683346
1002 => 0.010399010707122
1003 => 0.010347071990227
1004 => 0.010158839379971
1005 => 0.010285685431991
1006 => 0.0097271196142118
1007 => 0.0087661361564469
1008 => 0.0094009912643658
1009 => 0.0093765500333004
1010 => 0.0093642256562756
1011 => 0.0098413017237703
1012 => 0.0097954418678982
1013 => 0.0097122057804294
1014 => 0.01015731068395
1015 => 0.0099948414066594
1016 => 0.010495533436694
1017 => 0.010825321590405
1018 => 0.010741676647094
1019 => 0.011051843999664
1020 => 0.010402304217331
1021 => 0.010618055278009
1022 => 0.010662521272597
1023 => 0.010151818158533
1024 => 0.0098029451074773
1025 => 0.0097796792524159
1026 => 0.0091747814595538
1027 => 0.0094979129779363
1028 => 0.0097822553420222
1029 => 0.0096460774154839
1030 => 0.0096029675521417
1031 => 0.0098232064945684
1101 => 0.0098403209466139
1102 => 0.0094501096262674
1103 => 0.0095312469161529
1104 => 0.0098696029029274
1105 => 0.0095227212134182
1106 => 0.0088487867535042
1107 => 0.0086816416895726
1108 => 0.0086593414569494
1109 => 0.0082060307871248
1110 => 0.0086928111219797
1111 => 0.0084803184609136
1112 => 0.0091515802311685
1113 => 0.008768159108048
1114 => 0.0087516305897643
1115 => 0.0087266453101722
1116 => 0.0083364620906262
1117 => 0.0084218874182695
1118 => 0.0087058542180008
1119 => 0.0088071767712599
1120 => 0.0087966079988438
1121 => 0.0087044626257646
1122 => 0.0087466463056996
1123 => 0.0086107579748606
1124 => 0.0085627729769703
1125 => 0.0084113191243151
1126 => 0.0081887238011066
1127 => 0.0082196770460552
1128 => 0.0077786574655446
1129 => 0.0075383665914017
1130 => 0.0074718572444217
1201 => 0.0073829181660232
1202 => 0.0074819031499847
1203 => 0.0077774081124842
1204 => 0.0074209664328348
1205 => 0.0068098721745525
1206 => 0.0068465999807292
1207 => 0.0069291164566248
1208 => 0.0067753475496945
1209 => 0.0066298181841312
1210 => 0.0067563441603179
1211 => 0.0064974154671704
1212 => 0.0069604067521452
1213 => 0.0069478841354047
1214 => 0.0071204586552543
1215 => 0.0072283730441019
1216 => 0.0069796653155064
1217 => 0.0069171159943419
1218 => 0.0069527469303854
1219 => 0.0063638469264777
1220 => 0.0070723329611315
1221 => 0.0070784599777797
1222 => 0.0070259967414181
1223 => 0.007403243682819
1224 => 0.0081993523954467
1225 => 0.0078998242743574
1226 => 0.0077838379325862
1227 => 0.0075633478120937
1228 => 0.007857137806242
1229 => 0.0078345793185293
1230 => 0.0077325612820399
1231 => 0.0076708604552555
]
'min_raw' => 0.0057622066847571
'max_raw' => 0.014785162547489
'avg_raw' => 0.010273684616123
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.005762'
'max' => '$0.014785'
'avg' => '$0.010273'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.0035433870625455
'max_diff' => 0.008593967743486
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.00018086908350843
]
1 => [
'year' => 2028
'avg' => 0.00031042385397058
]
2 => [
'year' => 2029
'avg' => 0.00084802202059143
]
3 => [
'year' => 2030
'avg' => 0.000654247725974
]
4 => [
'year' => 2031
'avg' => 0.00064255234693454
]
5 => [
'year' => 2032
'avg' => 0.001126596482842
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.00018086908350843
'min' => '$0.00018'
'max_raw' => 0.001126596482842
'max' => '$0.001126'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.001126596482842
]
1 => [
'year' => 2033
'avg' => 0.0028977220004198
]
2 => [
'year' => 2034
'avg' => 0.0018367154618691
]
3 => [
'year' => 2035
'avg' => 0.0021664100992621
]
4 => [
'year' => 2036
'avg' => 0.0042050072131074
]
5 => [
'year' => 2037
'avg' => 0.010273684616123
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.001126596482842
'min' => '$0.001126'
'max_raw' => 0.010273684616123
'max' => '$0.010273'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.010273684616123
]
]
]
]
'prediction_2025_max_price' => '$0.0003092'
'last_price' => 0.00029986
'sma_50day_nextmonth' => '$0.000293'
'sma_200day_nextmonth' => '$0.000474'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'augmenter'
'sma_200day_date_nextmonth' => '4 févr. 2026'
'sma_50day_date_nextmonth' => '4 févr. 2026'
'daily_sma3' => '$0.000291'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.000287'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.00029'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.000324'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.000333'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.000373'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.000564'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.000292'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.000291'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.000296'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.000317'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.000342'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.0004076'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.000639'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.000425'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.000975'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.0003084'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.000321'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.000351'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.000482'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.001036'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.00187'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.000935'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '42.65'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 34.28
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.000290'
'vwma_10_action' => 'BUY'
'hma_9' => '0.000290'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 82.23
'stochastic_fast_14_action' => 'SELL'
'cci_20' => -33.69
'cci_20_action' => 'NEUTRAL'
'adx_14' => 22.78
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.000074'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => -0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -17.77
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 43.21
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '0.0000047'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 17
'buy_signals' => 13
'sell_pct' => 56.67
'buy_pct' => 43.33
'overall_action' => 'bearish'
'overall_action_label' => 'Baissier'
'overall_action_dir' => -1
'last_updated' => 1767701673
'last_updated_date' => '6 janvier 2026'
]
Prévision du prix de Frictionless pour 2026
La prévision du prix de Frictionless pour 2026 suggère que le prix moyen pourrait varier entre $0.0001036 à la baisse et $0.0003092 à la hausse. Sur le marché des cryptomonnaies, comparé au prix moyen d'aujourd'hui, Frictionless pourrait potentiellement gagner 3.13% d'ici 2026 si FRIC atteint l'objectif de prix prévu.
Prévision du prix de Frictionless de 2027 à 2032
La prévision du prix de FRIC pour 2027-2032 se situe actuellement dans une fourchette de prix comprise entre $0.00018 à la baisse et $0.001126 à la hausse. Compte tenu de la volatilité des prix sur le marché, si Frictionless atteint l'objectif de prix le plus élevé, il pourrait gagner 275.71% d'ici 2032 par rapport au prix actuel.
| Prévision du Prix de Frictionless | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2027 | $0.000099 | $0.00018 | $0.000262 |
| 2028 | $0.000179 | $0.00031 | $0.00044 |
| 2029 | $0.000395 | $0.000848 | $0.00130065 |
| 2030 | $0.000336 | $0.000654 | $0.000972 |
| 2031 | $0.000397 | $0.000642 | $0.000887 |
| 2032 | $0.0006068 | $0.001126 | $0.001646 |
Prévision du prix de Frictionless de 2032 à 2037
La prévision du prix de Frictionless pour 2032-2037 est actuellement estimée entre $0.001126 à la baisse et $0.010273 à la hausse. Par rapport au prix actuel, Frictionless pourrait potentiellement gagner 3326.16% d'ici 2037 s'il atteint l'objectif de prix le plus élevé. Veuillez noter que ces informations sont à titre général seulement et ne doivent pas être considérées comme un conseil en investissement à long terme.
| Prévision du Prix de Frictionless | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2032 | $0.0006068 | $0.001126 | $0.001646 |
| 2033 | $0.00141 | $0.002897 | $0.004385 |
| 2034 | $0.001133 | $0.001836 | $0.002539 |
| 2035 | $0.00134 | $0.002166 | $0.002992 |
| 2036 | $0.002218 | $0.004205 | $0.006191 |
| 2037 | $0.005762 | $0.010273 | $0.014785 |
Frictionless Histogramme des prix potentiels
Prévision du prix de Frictionless basée sur l'analyse technique
Au 6 janvier 2026, le sentiment global de prévision du prix pour Frictionless est Baissier, avec 13 indicateurs techniques montrant des signaux haussiers et 17 indiquant des signaux baissiers. La prévision du prix de FRIC a été mise à jour pour la dernière fois le 6 janvier 2026.
Moyennes Mobiles Simples sur 50 et 200 jours de Frictionless et Indice de Force Relative sur 14 jours - RSI (14)
Selon nos indicateurs techniques, le SMA sur 200 jours de Frictionless devrait augmenter au cours du prochain mois, atteignant $0.000474 d'ici le 4 févr. 2026. Le SMA à court terme sur 50 jours pour Frictionless devrait atteindre $0.000293 d'ici le 4 févr. 2026.
Le Relative Strength Index (RSI), un oscillateur de momentum, est un outil couramment utilisé pour identifier si une cryptomonnaie est survendue (en dessous de 30) ou surachetée (au-dessus de 70). Actuellement, le RSI est à 42.65, ce qui suggère que le marché de FRIC est dans un état NEUTRAL.
Moyennes Mobiles et Oscillateurs Populaires de FRIC pour le Samedi 19 Octobre 2024
Les moyennes mobiles (MA) sont des indicateurs largement utilisés sur les marchés financiers, conçus pour lisser les mouvements de prix sur une période donnée. En tant qu'indicateurs retardés, ils sont basés sur des données historiques de prix. Le tableau ci-dessous met en évidence deux types : la moyenne mobile simple (SMA) et la moyenne mobile exponentielle (EMA).
Moyenne Mobile Simple Quotidienne (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 3 | $0.000291 | BUY |
| SMA 5 | $0.000287 | BUY |
| SMA 10 | $0.00029 | BUY |
| SMA 21 | $0.000324 | SELL |
| SMA 50 | $0.000333 | SELL |
| SMA 100 | $0.000373 | SELL |
| SMA 200 | $0.000564 | SELL |
Moyenne Mobile Exponentielle Quotidienne (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 3 | $0.000292 | BUY |
| EMA 5 | $0.000291 | BUY |
| EMA 10 | $0.000296 | BUY |
| EMA 21 | $0.000317 | SELL |
| EMA 50 | $0.000342 | SELL |
| EMA 100 | $0.0004076 | SELL |
| EMA 200 | $0.000639 | SELL |
Moyenne Mobile Simple Hebdomadaire (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 21 | $0.000425 | SELL |
| SMA 50 | $0.000975 | SELL |
| SMA 100 | — | — |
| SMA 200 | — | — |
Moyenne Mobile Exponentielle Hebdomadaire (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 21 | $0.000482 | SELL |
| EMA 50 | $0.001036 | SELL |
| EMA 100 | $0.00187 | SELL |
| EMA 200 | $0.000935 | SELL |
Oscillateurs de Frictionless
Un oscillateur est un outil d'analyse technique qui établit des limites hautes et basses entre deux extrêmes, créant un indicateur de tendance qui fluctue à l'intérieur de ces limites. Les traders utilisent cet indicateur pour identifier les conditions de surachat ou de survente à court terme.
| Période | Valeur | Action |
|---|---|---|
| RSI (14) | 42.65 | NEUTRAL |
| Stoch RSI (14) | 34.28 | NEUTRAL |
| Stochastique Rapide (14) | 82.23 | SELL |
| Indice de Canal des Matières Premières (20) | -33.69 | NEUTRAL |
| Indice Directionnel Moyen (14) | 22.78 | NEUTRAL |
| Oscillateur Impressionnant (5, 34) | -0.000074 | NEUTRAL |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | -0 | NEUTRAL |
| Plage de Pourcentage de Williams (14) | -17.77 | SELL |
| Oscillateur Ultime (7, 14, 28) | 43.21 | NEUTRAL |
| VWMA (10) | 0.000290 | BUY |
| Moyenne Mobile de Hull (9) | 0.000290 | BUY |
| Nuage Ichimoku B/L (9, 26, 52, 26) | 0.0000047 | NEUTRAL |
Prévision du cours de Frictionless basée sur les flux monétaires mondiaux
Définitions des flux monétaires mondiaux utilisés pour la prédiction du cours de Frictionless
M0 : le total de toutes les devises physiques, plus les comptes à la banque centrale qui peuvent être échangés contre des devises physiques.
M1 : M0 plus le montant des comptes à vue, y compris les comptes de "chèques" et les comptes "courants".
M2 : M1 plus la plupart des comptes d'épargne, comptes du marché monétaire et comptes de certificats de dépôt (CD) de moins de 100 000 $.
Prédictions du cours de Frictionless par des sociétés Internet ou des niches technologiques
| Comparaison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Action Facebook | $0.000421 | $0.000592 | $0.000831 | $0.001169 | $0.001642 | $0.0023082 |
| Action Amazon.com | $0.000625 | $0.0013055 | $0.002724 | $0.005683 | $0.011859 | $0.024745 |
| Action Apple | $0.000425 | $0.0006032 | $0.000855 | $0.001213 | $0.001721 | $0.002442 |
| Action Netflix | $0.000473 | $0.000746 | $0.001177 | $0.001858 | $0.002932 | $0.004627 |
| Action Google | $0.000388 | $0.0005028 | $0.000651 | $0.000843 | $0.001092 | $0.001414 |
| Action Tesla | $0.000679 | $0.00154 | $0.003493 | $0.007918 | $0.017951 | $0.040694 |
| Action Kodak | $0.000224 | $0.000168 | $0.000126 | $0.000094 | $0.000071 | $0.000053 |
| Action Nokia | $0.000198 | $0.000131 | $0.000087 | $0.000057 | $0.000038 | $0.000025 |
Ce calcul montre la valeur potentielle des cryptomonnaies si l'on suppose que leur capitalisation se comportera comme celle de certaines sociétés Internet ou niches technologiques. En extrapolant les données, vous pourrez obtenir une potentielle image des cours futurs pour 2024, 2025, 2026, 2027, 2028, 2029 et 2030.
Aperçu des prévisions relatives à Frictionless
Vous vous posez peut-être des questions telles que : "Devrais-je investir dans Frictionless maintenant ?", "Devrais-je acheter FRIC aujourd'hui ?", " Frictionless sera-t-il un bon ou un mauvais investissement à court ou à long terme ?".
Nous mettons régulièrement à jour les prévisions de Frictionless avec de nouvelles valeurs. Regardez nos prévisions similaires. Nous faisons une prévision des cours futurs pour une grande quantité de devises numériques comme Frictionless en utilisant des méthodes d'analyse technique.
Si vous souhaitez trouver des cryptomonnaies ayant un bon rendement, vous devriez consulter un maximum d'informations disponibles à propos de Frictionless afin de prendre une décision responsable concernant cet investissement.
Le cours de Frictionless est de $0.0002998 USD actuellement, mais ce cours peut subir une hausse ou une baisse, ce qui pourrait causer la perte de votre investissement, car les cryptomonnaies sont des actifs à haut risque.
Prévision du cours de Frictionless basée sur le modèle de croissance du Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Frictionless présente 1 % de la précédente croissance annuelle moyenne du Bitcoin | $0.0003076 | $0.000315 | $0.000323 | $0.000332 |
| Si Frictionless présente 2 % de la précédente croissance annuelle moyenne du Bitcoin | $0.000315 | $0.000331 | $0.000349 | $0.000367 |
| Si Frictionless présente 5 % de la précédente croissance annuelle moyenne du Bitcoin | $0.000338 | $0.000382 | $0.000432 | $0.000488 |
| Si Frictionless présente 10 % de la précédente croissance annuelle moyenne du Bitcoin | $0.000377 | $0.000476 | $0.000599 | $0.000755 |
| Si Frictionless présente 20 % de la précédente croissance annuelle moyenne du Bitcoin | $0.000455 | $0.000692 | $0.001052 | $0.001600065 |
| Si Frictionless présente 50 % de la précédente croissance annuelle moyenne du Bitcoin | $0.000689 | $0.001585 | $0.003646 | $0.008386 |
| Si Frictionless présente 100 % de la précédente croissance annuelle moyenne du Bitcoin | $0.001079 | $0.003884 | $0.013982 | $0.050326 |
Boîte à questions
Est-ce que FRIC est un bon investissement ?
La décision d'acquérir Frictionless dépend entièrement de votre tolérance individuelle au risque. Comme vous pouvez le discerner, la valeur de Frictionless a connu une hausse de 3.1069% au cours des 24 heures précédentes, et Frictionless a enregistré une déclin de sur une période de 30 jours précédents. Par conséquent, la détermination de si investir ou non dans Frictionless dépendra de la mesure dans laquelle cet investissement s'aligne avec vos aspirations de trading.
Est-ce que Frictionless peut monter ?
Il semble que la valeur moyenne de Frictionless pourrait potentiellement s'envoler jusqu'à $0.0003092 pour la fin de cette année. En regardant les perspectives de Frictionless sur une période de cinq ans plus longue, la monnaie numérique pourrait potentiellement croître jusqu'à $0.000972. Cependant, compte tenu de l'imprévisibilité du marché, il est essentiel de mener des recherches approfondies avant d'investir des fonds dans un projet, un réseau ou un actif particulier.
Quel sera le prix de Frictionless la semaine prochaine ?
Basé sur notre nouveau pronostic expérimental de Frictionless, le prix de Frictionless va augmenter de 0.86% durant la prochaine semaine et atteindre $0.000302 d'ici 13 janvier 2026.
Quel sera le prix de Frictionless le mois prochain ?
Basé sur notre nouveau pronostic expérimental de Frictionless, le prix de Frictionless va diminuer de -11.62% durant le prochain mois et atteindre $0.000265 d'ici 5 février 2026.
Jusqu'où le prix de Frictionless peut-il monter cette année en 2026 ?
Selon notre prédiction la plus récente sur la valeur de Frictionless en 2026, FRIC devrait fluctuer dans la fourchette de $0.0001036 et $0.0003092. Cependant, il est crucial de garder à l'esprit que le marché des cryptomonnaies est exceptionnellement instable, et cette prévision de prix de Frictionless ne prend pas en compte les fluctuations de prix soudaines et extrêmes.
Où sera Frictionless dans 5 ans ?
L'avenir de Frictionless semble suivre une tendance haussière, avec un prix maximum de $0.000972 prévue après une période de cinq ans. Selon la prévision de Frictionless pour 2030, la valeur de Frictionless pourrait potentiellement atteindre son point le plus élevé d'environ $0.000972, tandis que son point le plus bas devrait être autour de $0.000336.
Combien vaudra Frictionless en 2026 ?
Basé sur notre nouvelle simulation expérimentale de prédiction de prix de Frictionless, il est attendu que la valeur de FRIC en 2026 augmente de 3.13% jusqu'à $0.0003092 si le meilleur scénario se produit. Le prix sera entre $0.0003092 et $0.0001036 durant 2026.
Combien vaudra Frictionless en 2027 ?
Selon notre dernière simulation expérimentale pour la prédiction de prix de Frictionless, le valeur de FRIC pourrait diminuer de -12.62% jusqu'à $0.000262 en 2027, en supposant les conditions les plus favorables. Il est prévu que le prix fluctue entre $0.000262 et $0.000099 tout au long de l'année.
Combien vaudra Frictionless en 2028 ?
Notre nouveau modèle expérimental de prédiction de prix de Frictionless suggère que la valeur de FRIC en 2028 pourrait augmenter de 47.02%, atteignant $0.00044 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.00044 et $0.000179 durant l'année.
Combien vaudra Frictionless en 2029 ?
Basé sur notre modèle de prévision expérimental, la valeur de Frictionless pourrait connaître un 333.75% croissance en 2029, atteignant potentiellement $0.00130065 sous des conditions optimales. Le range de prix prévu pour 2029 se situe entre $0.00130065 et $0.000395.
Combien vaudra Frictionless en 2030 ?
En utilisant notre nouvelle simulation expérimentale pour les prédictions de prix de Frictionless, il est prévu que la valeur de FRIC en 2030 augmente de 224.23%, atteignant $0.000972 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.000972 et $0.000336 au cours de 2030.
Combien vaudra Frictionless en 2031 ?
Notre simulation expérimentale indique que le prix de Frictionless pourrait augmenter de 195.98% en 2031, atteignant potentiellement $0.000887 dans des conditions idéales. Il est probable que le prix fluctue entre $0.000887 et $0.000397 durant l'année.
Combien vaudra Frictionless en 2032 ?
Basé sur les résultats de notre dernière prédiction expérimentale de prix de Frictionless, FRIC pourrait connaître une 449.04% hausse en valeur, atteignant $0.001646 si le scénario le plus positif se réalise en 2032. Il est prévu que le prix reste dans une fourchette de $0.001646 et $0.0006068 tout au long de l'année.
Combien vaudra Frictionless en 2033 ?
Selon notre prédiction expérimentale de prix de Frictionless, la valeur de FRIC est anticipée à augmenter de 1362.43% en 2033, avec le prix potentiel le plus élevé étant $0.004385. Tout au long de l'année, le prix de FRIC pourrait osciller entre $0.004385 et $0.00141.
Combien vaudra Frictionless en 2034 ?
Les résultats de notre nouvelle simulation de prédiction de prix de Frictionless suggèrent que FRIC pourrait augmenter de 746.96% en 2034, atteignant potentiellement $0.002539 dans les meilleures circonstances. La fourchette de prix prévue pour l'année est entre $0.002539 et $0.001133.
Combien vaudra Frictionless en 2035 ?
Basé sur notre prédiction expérimentale pour le prix de Frictionless, FRIC pourrait augmenter de 897.93%, avec la valeur potentiellement atteignant $0.002992 en 2035. La fourchette de prix attendue pour l'année se situe entre $0.002992 et $0.00134.
Combien vaudra Frictionless en 2036 ?
Notre récente simulation de prédiction de prix de Frictionless suggère que la valeur de FRIC pourrait augmenter de 1964.7% en 2036, pouvant atteindre $0.006191 si les conditions sont optimales. La fourchette de prix attendue pour 2036 est entre $0.006191 et $0.002218.
Combien vaudra Frictionless en 2037 ?
Selon la simulation expérimentale, la valeur de Frictionless pourrait augmenter de 4830.69% en 2037, avec un maximum de $0.014785 sous des conditions favorables. Il est prévu que le prix chute entre $0.014785 et $0.005762 au cours de l'année.
Prévisions liées
Prévision du cours de SolPod
Prévision du cours de zuzalu
Prévision du cours de SOFT COQ INU
Prévision du cours de All Street Bets
Prévision du cours de MagicRing
Prévision du cours de AI INU
Prévision du cours de Wall Street Baby On Solana
Prévision du cours de Meta Masters Guild Games
Prévision du cours de Morfey
Prévision du cours de PANTIESPrévision du cours de Celer Bridged BUSD (zkSync)
Prévision du cours de Bridged BUSD
Prévision du cours de Multichain Bridged BUSD (Moonriver)
Prévision du cours de tooker kurlson
Prévision du cours de dogwifsaudihatPrévision du cours de Harmony Horizen Bridged BUSD (Harmony)
Prévision du cours de IoTeX Bridged BUSD (IoTeX)
Prévision du cours de MIMANY
Prévision du cours de The Open League MEME
Prévision du cours de Sandwich Cat
Prévision du cours de Hege
Prévision du cours de DexNet
Prévision du cours de SolDocs
Prévision du cours de Secret Society
Prévision du cours de duk
Comment lire et prédire les mouvements de prix de Frictionless ?
Les traders de Frictionless utilisent des indicateurs et des modèles graphiques pour prédire la direction du marché. Ils identifient également des niveaux clés de support et de résistance pour évaluer quand une tendance baissière pourrait ralentir ou une tendance haussière pourrait s'arrêter.
Indicateurs de prédiction du prix de Frictionless
Les moyennes mobiles sont des outils populaires pour la prédiction du prix de Frictionless. Une moyenne mobile simple (SMA) calcule le prix de clôture moyen de FRIC sur une période spécifique, comme une SMA de 12 jours. Une moyenne mobile exponentielle (EMA) donne plus de poids aux prix récents, réagissant plus rapidement aux changements de prix.
Les moyennes mobiles couramment utilisées sur le marché des cryptomonnaies incluent les moyennes sur 50 jours, 100 jours et 200 jours, qui aident à identifier les niveaux clés de résistance et de support. Un mouvement de prix de FRIC au-dessus de ces moyennes est considéré comme haussier, tandis qu'une chute en dessous indique une faiblesse.
Les traders utilisent également le RSI et les niveaux de retracement de Fibonacci pour évaluer la direction future de FRIC.
Comment lire les graphiques de Frictionless et prédire les mouvements de prix ?
La plupart des traders préfèrent les graphiques en chandeliers aux simples graphiques linéaires parce qu'ils fournissent des informations plus détaillées. Les chandeliers peuvent représenter l'action des prix de Frictionless dans différentes périodes, comme 5 minutes pour les tendances à court terme et hebdomadaire pour les tendances à long terme. Les options populaires incluent les graphiques de 1 heure, 4 heures et 1 jour.
Par exemple, un graphique en chandeliers de 1 heure montre les prix d'ouverture, de clôture, les plus hauts et les plus bas de FRIC au sein de chaque heure. La couleur du chandelier est cruciale : le vert indique que le prix a clôturé plus haut qu'il n'a ouvert, tandis que le rouge signifie le contraire. Certains graphiques utilisent des chandeliers creux et pleins pour transmettre la même information.
Qu'est-ce qui affecte le prix de Frictionless ?
L'action du prix de Frictionless est déterminée par l'offre et la demande, influencée par des facteurs tels que les réductions de récompenses de bloc, les hard forks et les mises à jour de protocole. Les événements du monde réel, tels que les réglementations, l'adoption par les entreprises et les gouvernements et les piratages d'échanges de cryptomonnaies, impactent également le prix de FRIC. La capitalisation boursière de Frictionless peut changer rapidement.
Les traders surveillent souvent l'activité des « baleines » de FRIC, de grands détenteurs de Frictionless, car leurs actions peuvent influencer significativement les mouvements de prix sur le marché relativement petit de Frictionless.
Modèles de prédiction de prix haussiers et baissiers
Les traders identifient souvent des modèles de chandeliers pour obtenir un avantage dans les prédictions de prix des cryptomonnaies. Certaines formations indiquent des tendances haussières, tandis que d'autres suggèrent des mouvements baissiers.
Modèles de chandeliers haussiers couramment suivis :
- Marteau
- Englobante haussière
- Ligne pénétrante
- Étoile du matin
- Trois soldats blancs
Modèles de chandeliers baissiers courants :
- Harami baissier
- Nuage sombre
- Étoile du soir
- Étoile filante
- Pendu


