Prédiction du prix de FELLA jusqu'à $0.002877 d'ici 2026
| Année | Prix min. | Prix max. |
|---|---|---|
| 2026 | $0.000963 | $0.002877 |
| 2027 | $0.000927 | $0.002437 |
| 2028 | $0.001674 | $0.0041015 |
| 2029 | $0.003678 | $0.01210086 |
| 2030 | $0.003128 | $0.009045 |
| 2031 | $0.003698 | $0.008257 |
| 2032 | $0.005645 | $0.015316 |
| 2033 | $0.01312 | $0.040798 |
| 2034 | $0.010547 | $0.023628 |
| 2035 | $0.01247 | $0.02784 |
Calculateur de profit d’investissement
Si vous ouvrez une position short de $10,000.00 sur FELLA aujourd’hui et la fermez le Apr 06, 2026, notre prévision indique que vous pourriez gagner environ $3,956.56, soit un rendement de 39.57% sur les 90 prochains jours.
Prévision du prix à long terme de FELLA pour 2027, 2028, 2029, 2030, 2031, 2032 et 2037
[
'name' => 'FELLA'
'name_with_ticker' => 'FELLA <small>FELLA</small>'
'name_lang' => 'FELLA'
'name_lang_with_ticker' => 'FELLA <small>FELLA</small>'
'name_with_lang' => 'FELLA'
'name_with_lang_with_ticker' => 'FELLA <small>FELLA</small>'
'image' => '/uploads/coins/fella.png?1717597099'
'price_for_sd' => 0.002789
'ticker' => 'FELLA'
'marketcap' => '$0'
'low24h' => '$0'
'high24h' => '$0'
'volume24h' => '$30.5'
'current_supply' => '0'
'max_supply' => '100M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.002789'
'change_24h_pct' => '0%'
'ath_price' => '$0.01669'
'ath_days' => 628
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '18 avr. 2024'
'ath_pct' => '-83.29%'
'fdv' => '$278.98K'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.137556'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.002813'
'next_week_prediction_price_date' => '13 janvier 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.002465'
'next_month_prediction_price_date' => '5 février 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.000963'
'current_year_max_price_prediction' => '$0.002877'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.003128'
'grand_prediction_max_price' => '$0.009045'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0028426652425652
107 => 0.0028532787226935
108 => 0.0028771914353601
109 => 0.0026728599237787
110 => 0.0027645987736208
111 => 0.0028184867531352
112 => 0.0025750189012275
113 => 0.0028136741765118
114 => 0.0026693029667587
115 => 0.0026203012097856
116 => 0.0026862756200592
117 => 0.0026605653282134
118 => 0.0026384611290433
119 => 0.0026261266061081
120 => 0.0026745709316831
121 => 0.0026723109459915
122 => 0.0025930466267124
123 => 0.0024896495534399
124 => 0.0025243530051234
125 => 0.0025117449157802
126 => 0.0024660515735245
127 => 0.0024968433691696
128 => 0.0023612518845195
129 => 0.0021279737826111
130 => 0.0022820844422333
131 => 0.002276151349478
201 => 0.0022731596150664
202 => 0.0023889695164667
203 => 0.0023778370666361
204 => 0.0023576315611842
205 => 0.0024656804835715
206 => 0.002426241173437
207 => 0.0025477838342012
208 => 0.0026278396914669
209 => 0.0026075349365287
210 => 0.0026828278572306
211 => 0.002525152502559
212 => 0.0025775259305437
213 => 0.0025883200214649
214 => 0.0024643471766412
215 => 0.0023796584731057
216 => 0.0023740107021018
217 => 0.0022271721609934
218 => 0.0023056121244142
219 => 0.0023746360461583
220 => 0.0023415789441156
221 => 0.0023311140531617
222 => 0.0023845769114872
223 => 0.0023887314334575
224 => 0.002294007892258
225 => 0.0023137039159778
226 => 0.0023958396090809
227 => 0.0023116343072501
228 => 0.0021480371606509
301 => 0.0021074628063867
302 => 0.0021020494395942
303 => 0.0019920085728373
304 => 0.0021101741787525
305 => 0.0020585917251291
306 => 0.0022215400780726
307 => 0.0021284648527808
308 => 0.0021244525658456
309 => 0.0021183874056685
310 => 0.0020236706859198
311 => 0.0020444076279832
312 => 0.0021133403817274
313 => 0.0021379363648464
314 => 0.0021353708022981
315 => 0.0021130025736279
316 => 0.0021232426341693
317 => 0.002090255831292
318 => 0.0020786075046351
319 => 0.0020418421815812
320 => 0.0019878073133718
321 => 0.0019953211932114
322 => 0.0018882639802962
323 => 0.0018299335287436
324 => 0.0018137884285369
325 => 0.0017921985257902
326 => 0.0018162270655006
327 => 0.001887960700663
328 => 0.0018014347175175
329 => 0.0016530919885066
330 => 0.0016620076392839
331 => 0.0016820384594999
401 => 0.0016447111585444
402 => 0.001609384000833
403 => 0.0016400980982802
404 => 0.0015772433284306
405 => 0.001689634158144
406 => 0.0016865943011719
407 => 0.0017284866522868
408 => 0.0017546827991565
409 => 0.0016943091617251
410 => 0.0016791253551788
411 => 0.0016877747414531
412 => 0.0015448196530846
413 => 0.0017168041717121
414 => 0.001718291500971
415 => 0.0017055560848725
416 => 0.0017971325316153
417 => 0.0019903873976527
418 => 0.0019176771433905
419 => 0.0018895215352611
420 => 0.0018359977036254
421 => 0.0019073150313493
422 => 0.0019018389733037
423 => 0.0018770741620883
424 => 0.0018620963269943
425 => 0.0018896934474005
426 => 0.0018586767383722
427 => 0.0018531052851485
428 => 0.0018193483404141
429 => 0.001807298646987
430 => 0.0017983775336857
501 => 0.0017885562645115
502 => 0.0018102195370021
503 => 0.0017611277114977
504 => 0.0017019277824704
505 => 0.0016970059489238
506 => 0.0017105955640778
507 => 0.001704583171
508 => 0.0016969771638989
509 => 0.0016824552249701
510 => 0.0016781468759021
511 => 0.0016921469202594
512 => 0.0016763416864333
513 => 0.0016996631698994
514 => 0.0016933210168331
515 => 0.0016578942653563
516 => 0.0016137394163529
517 => 0.0016133463455789
518 => 0.0016038332557895
519 => 0.0015917169056402
520 => 0.0015883464142132
521 => 0.0016375114426618
522 => 0.0017392815801648
523 => 0.00171930166702
524 => 0.001733739201891
525 => 0.0018047575841029
526 => 0.0018273321922108
527 => 0.0018113092700847
528 => 0.0017893761060277
529 => 0.0017903410539335
530 => 0.0018652933151366
531 => 0.0018699679957295
601 => 0.0018817794054787
602 => 0.0018969604049104
603 => 0.0018138946599324
604 => 0.0017864286648151
605 => 0.0017734137525731
606 => 0.0017333328602726
607 => 0.0017765566663426
608 => 0.0017513720055735
609 => 0.0017547702767418
610 => 0.0017525571481854
611 => 0.0017537656660283
612 => 0.0016896027426166
613 => 0.0017129803396038
614 => 0.001674110550453
615 => 0.0016220682661187
616 => 0.0016218938021332
617 => 0.0016346310774958
618 => 0.0016270544477005
619 => 0.0016066659317343
620 => 0.0016095620241962
621 => 0.0015841892068182
622 => 0.0016126427436156
623 => 0.0016134586892393
624 => 0.0016025025276977
625 => 0.0016463391269656
626 => 0.0016642990174529
627 => 0.0016570874372225
628 => 0.0016637930337593
629 => 0.0017201319226151
630 => 0.0017293176197366
701 => 0.0017333972996249
702 => 0.0017279310690286
703 => 0.0016648228052249
704 => 0.0016676219250816
705 => 0.001647083840818
706 => 0.0016297313238652
707 => 0.0016304253335413
708 => 0.0016393467829244
709 => 0.0016783072756162
710 => 0.0017602973356396
711 => 0.0017634087984835
712 => 0.0017671799822182
713 => 0.0017518406827244
714 => 0.0017472142032197
715 => 0.001753317723882
716 => 0.0017841088795943
717 => 0.0018633120918034
718 => 0.001835316386804
719 => 0.0018125554428604
720 => 0.0018325229270054
721 => 0.0018294490893316
722 => 0.0018035028059638
723 => 0.0018027745802064
724 => 0.001752975366895
725 => 0.001734565731607
726 => 0.001719181262423
727 => 0.0017023818236959
728 => 0.0016924225532961
729 => 0.0017077245190376
730 => 0.0017112242596502
731 => 0.0016777662441239
801 => 0.0016732060402393
802 => 0.0017005285779595
803 => 0.0016885049477957
804 => 0.0017008715495908
805 => 0.001703740707286
806 => 0.0017032787068148
807 => 0.0016907246560187
808 => 0.0016987262336289
809 => 0.0016798001171956
810 => 0.0016592208081851
811 => 0.0016460924911726
812 => 0.0016346362933607
813 => 0.0016409928577449
814 => 0.0016183328663781
815 => 0.0016110834790843
816 => 0.0016960154791758
817 => 0.0017587556608162
818 => 0.0017578433937273
819 => 0.0017522902024397
820 => 0.0017440392866101
821 => 0.0017835052737096
822 => 0.0017697561129514
823 => 0.0017797597761838
824 => 0.0017823061283289
825 => 0.0017900131693597
826 => 0.0017927677740857
827 => 0.0017844414454078
828 => 0.0017564972693893
829 => 0.0016868630396038
830 => 0.0016544481176646
831 => 0.0016437506535114
901 => 0.001644139486016
902 => 0.0016334137497147
903 => 0.0016365729597492
904 => 0.0016323151053911
905 => 0.0016242517593226
906 => 0.0016404949688471
907 => 0.0016423668474288
908 => 0.0016385754882339
909 => 0.0016394684905735
910 => 0.0016080776557503
911 => 0.0016104642327446
912 => 0.0015971754687688
913 => 0.0015946839857218
914 => 0.0015610911475761
915 => 0.0015015765654412
916 => 0.0015345534211642
917 => 0.0014947220166984
918 => 0.0014796372602829
919 => 0.0015510461509928
920 => 0.0015438786789398
921 => 0.0015316110824104
922 => 0.0015134647503522
923 => 0.0015067340992757
924 => 0.0014658407939997
925 => 0.0014634245993667
926 => 0.0014836924256736
927 => 0.0014743395212063
928 => 0.0014612045011123
929 => 0.0014136307898074
930 => 0.0013601421871863
1001 => 0.0013617566718821
1002 => 0.001378770401185
1003 => 0.0014282401137474
1004 => 0.0014089114412145
1005 => 0.001394888267521
1006 => 0.0013922621486233
1007 => 0.0014251335247808
1008 => 0.00147165340881
1009 => 0.0014934794975728
1010 => 0.0014718505064771
1011 => 0.0014470042860939
1012 => 0.0014485165604023
1013 => 0.0014585770438654
1014 => 0.0014596342584298
1015 => 0.0014434619231931
1016 => 0.0014480143408323
1017 => 0.0014410988021566
1018 => 0.0013986581540692
1019 => 0.0013978905373261
1020 => 0.0013874749178375
1021 => 0.0013871595370188
1022 => 0.0013694399699708
1023 => 0.0013669608800512
1024 => 0.0013317776041764
1025 => 0.001354935342902
1026 => 0.0013394023476007
1027 => 0.0013159904598186
1028 => 0.0013119542415405
1029 => 0.0013118329079451
1030 => 0.0013358716818951
1031 => 0.0013546544358323
1101 => 0.0013396725507042
1102 => 0.0013362614658722
1103 => 0.0013726829277525
1104 => 0.0013680479647393
1105 => 0.0013640341166621
1106 => 0.0014674880634298
1107 => 0.001385596191951
1108 => 0.0013498866617617
1109 => 0.0013056893370965
1110 => 0.0013200802088697
1111 => 0.0013231125769982
1112 => 0.001216825978345
1113 => 0.0011737055185086
1114 => 0.0011589082016529
1115 => 0.0011503921365992
1116 => 0.0011542730143822
1117 => 0.0011154595430039
1118 => 0.0011415428376857
1119 => 0.0011079336522932
1120 => 0.0011022989629883
1121 => 0.0011623963498493
1122 => 0.0011707585501472
1123 => 0.0011350828057445
1124 => 0.0011579924090294
1125 => 0.001149685068411
1126 => 0.0011085097853125
1127 => 0.001106937192363
1128 => 0.0010862768826854
1129 => 0.0010539474986641
1130 => 0.0010391721026532
1201 => 0.0010314769481249
1202 => 0.0010346521188589
1203 => 0.0010330466553739
1204 => 0.0010225699201575
1205 => 0.0010336471695729
1206 => 0.001005349374752
1207 => 0.00099408096484343
1208 => 0.00098899128551287
1209 => 0.00096387536384897
1210 => 0.0010038459643173
1211 => 0.0010117206761459
1212 => 0.0010196109035895
1213 => 0.0010882899465984
1214 => 0.0010848589356946
1215 => 0.0011158736032946
1216 => 0.001114668430344
1217 => 0.0011058225447402
1218 => 0.0010685032084552
1219 => 0.0010833780307452
1220 => 0.0010375956397973
1221 => 0.0010718989199954
1222 => 0.0010562443354522
1223 => 0.0010666060892143
1224 => 0.0010479747216685
1225 => 0.0010582860897386
1226 => 0.001013588062453
1227 => 0.00097184967349194
1228 => 0.00098864641962941
1229 => 0.0010069064036218
1230 => 0.0010464987014746
1231 => 0.0010229178555028
]
'min_raw' => 0.00096387536384897
'max_raw' => 0.0028771914353601
'avg_raw' => 0.0019205333996046
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.000963'
'max' => '$0.002877'
'avg' => '$0.00192'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.001825924636151
'max_diff' => 8.7391435360146E-5
'year' => 2026
]
1 => [
'items' => [
101 => 0.0010313984194047
102 => 0.0010029899499625
103 => 0.0009443751630249
104 => 0.00094470691635342
105 => 0.00093569030837562
106 => 0.00092789864263648
107 => 0.0010256263993262
108 => 0.0010134724079346
109 => 0.00099410661332722
110 => 0.0010200284989753
111 => 0.0010268826569763
112 => 0.0010270777852188
113 => 0.001045989723847
114 => 0.0010560830288829
115 => 0.0010578620176424
116 => 0.0010876203616933
117 => 0.0010975949660971
118 => 0.0011386789499775
119 => 0.0010552266824686
120 => 0.0010535080379366
121 => 0.0010203932730655
122 => 0.00099939136566061
123 => 0.0010218312916335
124 => 0.0010417100026901
125 => 0.0010210109600298
126 => 0.0010237138180206
127 => 0.00099592704442302
128 => 0.0010058595084949
129 => 0.001014414684601
130 => 0.0010096910192053
131 => 0.0010026194634798
201 => 0.0010400801750773
202 => 0.0010379664949192
203 => 0.0010728507707768
204 => 0.0011000455584064
205 => 0.0011487834794882
206 => 0.001097922918074
207 => 0.0010960693570637
208 => 0.0011141882132604
209 => 0.0010975921921946
210 => 0.001108080304633
211 => 0.0011470936824288
212 => 0.0011479179736252
213 => 0.0011341100340471
214 => 0.0011332698196689
215 => 0.0011359217855072
216 => 0.0011514544322546
217 => 0.001146026848211
218 => 0.0011523077858759
219 => 0.0011601621946029
220 => 0.0011926513592981
221 => 0.0012004843869146
222 => 0.0011814541907657
223 => 0.0011831724044059
224 => 0.0011760545886557
225 => 0.0011691788678269
226 => 0.0011846344841316
227 => 0.0012128799267092
228 => 0.0012127042132769
301 => 0.001219256606942
302 => 0.0012233386939123
303 => 0.0012058153883652
304 => 0.0011944083608038
305 => 0.0011987825410189
306 => 0.00120577695044
307 => 0.0011965143483119
308 => 0.0011393412771225
309 => 0.0011566839346914
310 => 0.0011537972684593
311 => 0.0011496863047142
312 => 0.0011671244810066
313 => 0.0011654425263624
314 => 0.0011150614547549
315 => 0.0011182866874982
316 => 0.0011152575918403
317 => 0.0011250452196056
318 => 0.001097063628175
319 => 0.0011056705772402
320 => 0.0011110687750087
321 => 0.0011142483549653
322 => 0.0011257351780268
323 => 0.001124387331921
324 => 0.0011256513940204
325 => 0.0011426833202118
326 => 0.0012288249582366
327 => 0.0012335134575335
328 => 0.0012104255722576
329 => 0.0012196487270369
330 => 0.0012019422867429
331 => 0.0012138287387351
401 => 0.0012219611473051
402 => 0.0011852123567497
403 => 0.0011830363318707
404 => 0.001165256810799
405 => 0.0011748105183394
406 => 0.0011596098827068
407 => 0.0011633395869953
408 => 0.0011529110086547
409 => 0.0011716803733586
410 => 0.0011926674395621
411 => 0.0011979696012894
412 => 0.0011840218965089
413 => 0.0011739228390493
414 => 0.0011561922209865
415 => 0.0011856786339775
416 => 0.0011943013597182
417 => 0.00118563334247
418 => 0.0011836247734736
419 => 0.001179818538855
420 => 0.0011844322841412
421 => 0.001194254398502
422 => 0.0011896224707554
423 => 0.0011926819406361
424 => 0.0011810223963626
425 => 0.0012058211893085
426 => 0.001245207640661
427 => 0.0012453342745424
428 => 0.001240702321828
429 => 0.0012388070265741
430 => 0.0012435596911495
501 => 0.0012461378167171
502 => 0.0012615070624641
503 => 0.0012779988754885
504 => 0.0013549589709313
505 => 0.0013333488840917
506 => 0.0014016324591451
507 => 0.0014556359014999
508 => 0.0014718291725777
509 => 0.0014569321251384
510 => 0.0014059701305711
511 => 0.0014034696919906
512 => 0.0014796284274732
513 => 0.0014581100964083
514 => 0.0014555505593989
515 => 0.0014283214100248
516 => 0.0014444172097006
517 => 0.0014408968222004
518 => 0.001435339718308
519 => 0.0014660493828464
520 => 0.0015235351333917
521 => 0.0015145754400712
522 => 0.0015078874446357
523 => 0.0014785825954836
524 => 0.0014962306601482
525 => 0.0014899465223476
526 => 0.0015169471663515
527 => 0.0015009525829811
528 => 0.0014579470738866
529 => 0.0014647958429579
530 => 0.0014637606652906
531 => 0.0014850645483305
601 => 0.0014786696514368
602 => 0.0014625119590377
603 => 0.0015233386533458
604 => 0.0015193889061533
605 => 0.0015249887446344
606 => 0.0015274539667145
607 => 0.0015644781036532
608 => 0.0015796457079168
609 => 0.0015830890196309
610 => 0.0015974970705767
611 => 0.001582730534198
612 => 0.001641807208075
613 => 0.0016810897489837
614 => 0.0017267184417102
615 => 0.0017933942256201
616 => 0.0018184649371556
617 => 0.001813936137516
618 => 0.0018644889559162
619 => 0.0019553312468555
620 => 0.0018322979617953
621 => 0.0019618523097118
622 => 0.0019208368989383
623 => 0.0018235900978301
624 => 0.0018173285503032
625 => 0.0018831852130723
626 => 0.0020292489526252
627 => 0.0019926616425084
628 => 0.0020293087963575
629 => 0.0019865579447643
630 => 0.0019844350046503
701 => 0.0020272324829173
702 => 0.0021272311236573
703 => 0.0020797255178347
704 => 0.0020116145830356
705 => 0.0020619066373677
706 => 0.0020183390055953
707 => 0.0019201689373998
708 => 0.0019926336648819
709 => 0.0019441785652912
710 => 0.0019583203393666
711 => 0.002060165751554
712 => 0.0020479114421101
713 => 0.002063769653249
714 => 0.0020357803256704
715 => 0.0020096338802002
716 => 0.0019608295980694
717 => 0.0019463810561525
718 => 0.0019503741133343
719 => 0.0019463790773917
720 => 0.001919073530074
721 => 0.0019131768997306
722 => 0.0019033489241542
723 => 0.0019063950247389
724 => 0.0018879155553796
725 => 0.0019227901321138
726 => 0.0019292631608694
727 => 0.0019546419695182
728 => 0.0019572768816231
729 => 0.0020279565024653
730 => 0.0019890273550282
731 => 0.0020151443881099
801 => 0.002012808234848
802 => 0.0018256977308882
803 => 0.0018514799074439
804 => 0.0018915888832719
805 => 0.0018735198440278
806 => 0.0018479744500407
807 => 0.0018273451747388
808 => 0.0017960897132046
809 => 0.001840081175106
810 => 0.0018979252695358
811 => 0.0019587439033151
812 => 0.0020318135068062
813 => 0.002015505221931
814 => 0.001957377917904
815 => 0.0019599854663006
816 => 0.0019761043044561
817 => 0.0019552289444939
818 => 0.0019490723933056
819 => 0.0019752584888631
820 => 0.0019754388181116
821 => 0.0019514191936036
822 => 0.0019247257765077
823 => 0.0019246139301155
824 => 0.0019198640943711
825 => 0.0019874029299914
826 => 0.0020245424606362
827 => 0.0020288004479712
828 => 0.0020242558641626
829 => 0.0020260048941025
830 => 0.002004394219534
831 => 0.002053789813151
901 => 0.0020991200945719
902 => 0.0020869706108109
903 => 0.0020687568075023
904 => 0.0020542486358713
905 => 0.002083552946651
906 => 0.0020822480718212
907 => 0.002098724174109
908 => 0.0020979767229386
909 => 0.0020924364294368
910 => 0.0020869708086722
911 => 0.002108641377198
912 => 0.0021024006014813
913 => 0.0020961501321161
914 => 0.0020836138589053
915 => 0.0020853177466401
916 => 0.0020671070882014
917 => 0.0020586820043446
918 => 0.0019319889577415
919 => 0.0018981324358744
920 => 0.0019087843868668
921 => 0.0019122912857113
922 => 0.0018975568840065
923 => 0.001918682231094
924 => 0.0019153898681277
925 => 0.0019281985264617
926 => 0.0019201962328219
927 => 0.0019205246497442
928 => 0.0019440576890699
929 => 0.0019508894305029
930 => 0.0019474147516712
1001 => 0.0019498482976199
1002 => 0.0020059283368725
1003 => 0.0019979555486295
1004 => 0.001993720163779
1005 => 0.0019948933943277
1006 => 0.0020092230467264
1007 => 0.002013234567028
1008 => 0.0019962374736255
1009 => 0.0020042534011331
1010 => 0.0020383842030879
1011 => 0.002050328052136
1012 => 0.0020884470849247
1013 => 0.0020722534422843
1014 => 0.0021019775741952
1015 => 0.0021933394219861
1016 => 0.0022663255877604
1017 => 0.0021992044934335
1018 => 0.0023332342921459
1019 => 0.0024375957158763
1020 => 0.0024335901506104
1021 => 0.0024153923224598
1022 => 0.0022965796161348
1023 => 0.0021872463923769
1024 => 0.0022787082765843
1025 => 0.0022789414317365
1026 => 0.0022710847747695
1027 => 0.0022222877531108
1028 => 0.0022693867441895
1029 => 0.0022731252910629
1030 => 0.0022710326989736
1031 => 0.0022336201368785
1101 => 0.0021764980695566
1102 => 0.0021876595847804
1103 => 0.0022059423744057
1104 => 0.0021713292394555
1105 => 0.0021602682455551
1106 => 0.0021808327376561
1107 => 0.0022470958159877
1108 => 0.002234569164865
1109 => 0.00223424204338
1110 => 0.0022878363690098
1111 => 0.0022494743982382
1112 => 0.0021878003672315
1113 => 0.0021722268610217
1114 => 0.002116951405548
1115 => 0.0021551303595281
1116 => 0.0021565043521132
1117 => 0.0021355941291977
1118 => 0.0021894971165782
1119 => 0.0021890003910601
1120 => 0.002240173255177
1121 => 0.0023379965517185
1122 => 0.0023090653893391
1123 => 0.0022754215951934
1124 => 0.0022790796084583
1125 => 0.0023191989852278
1126 => 0.0022949418941966
1127 => 0.0023036649132579
1128 => 0.0023191857818937
1129 => 0.0023285499073031
1130 => 0.0022777322549176
1201 => 0.0022658842292572
1202 => 0.002241647326848
1203 => 0.0022353243714126
1204 => 0.0022550648227054
1205 => 0.0022498639112302
1206 => 0.0021563888733568
1207 => 0.0021466202118088
1208 => 0.002146919802712
1209 => 0.0021223560387751
1210 => 0.0020848904027925
1211 => 0.002183347857198
1212 => 0.002175440345698
1213 => 0.0021667110649948
1214 => 0.0021677803520724
1215 => 0.0022105173959971
1216 => 0.0021857277522483
1217 => 0.0022516350830971
1218 => 0.0022380865172303
1219 => 0.0022241904817724
1220 => 0.0022222696263886
1221 => 0.0022169208382913
1222 => 0.0021985778537095
1223 => 0.0021764275975844
1224 => 0.0021618020798683
1225 => 0.001994148146253
1226 => 0.0020252637411339
1227 => 0.0020610593967687
1228 => 0.0020734159136518
1229 => 0.0020522792364784
1230 => 0.0021994124585539
1231 => 0.002226295116038
]
'min_raw' => 0.00092789864263648
'max_raw' => 0.0024375957158763
'avg_raw' => 0.0016827471792564
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.000927'
'max' => '$0.002437'
'avg' => '$0.001682'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -3.5976721212488E-5
'max_diff' => -0.00043959571948389
'year' => 2027
]
2 => [
'items' => [
101 => 0.0021448657930061
102 => 0.0021296336914041
103 => 0.002200411072599
104 => 0.0021577236595555
105 => 0.0021769457990352
106 => 0.0021353980474283
107 => 0.0022198198710662
108 => 0.0022191767182153
109 => 0.0021863347220668
110 => 0.0022140925523193
111 => 0.0022092689462262
112 => 0.0021721904134608
113 => 0.0022209953266907
114 => 0.0022210195333187
115 => 0.0021894098260723
116 => 0.0021524966082633
117 => 0.0021458973967703
118 => 0.0021409257773897
119 => 0.0021757230854334
120 => 0.0022069222430171
121 => 0.0022649761403532
122 => 0.00227957226947
123 => 0.0023365419331326
124 => 0.0023026192722241
125 => 0.0023176567484328
126 => 0.0023339820560383
127 => 0.0023418090088476
128 => 0.0023290554092622
129 => 0.0024175527465792
130 => 0.0024250246333371
131 => 0.0024275298923354
201 => 0.0023976890881168
202 => 0.0024241947065901
203 => 0.0024117936054803
204 => 0.002444057825443
205 => 0.0024491172671034
206 => 0.0024448321000119
207 => 0.0024464380466527
208 => 0.0023709211812528
209 => 0.0023670052333986
210 => 0.0023136110065438
211 => 0.0023353695486574
212 => 0.0022946929970902
213 => 0.002307591950607
214 => 0.0023132776864115
215 => 0.0023103077806899
216 => 0.0023365997439822
217 => 0.0023142462040905
218 => 0.0022552515370542
219 => 0.0021962407969603
220 => 0.0021954999651875
221 => 0.0021799634789469
222 => 0.0021687334450443
223 => 0.0021708967479808
224 => 0.002178520509693
225 => 0.0021682903381543
226 => 0.002170473463935
227 => 0.0022067278979846
228 => 0.0022139984661785
229 => 0.0021892902346614
301 => 0.0020900831197392
302 => 0.0020657374448951
303 => 0.0020832366331773
304 => 0.0020748731482705
305 => 0.0016745845678639
306 => 0.001768626432266
307 => 0.0017127499497983
308 => 0.0017385004036727
309 => 0.0016814649842182
310 => 0.0017086852758643
311 => 0.0017036586819232
312 => 0.0018548752169807
313 => 0.0018525141787773
314 => 0.0018536442828219
315 => 0.0017997014723029
316 => 0.0018856338341666
317 => 0.0019279672056484
318 => 0.0019201324252533
319 => 0.001922104270685
320 => 0.0018882214331315
321 => 0.0018539723427536
322 => 0.0018159848306273
323 => 0.0018865609327596
324 => 0.0018787140749767
325 => 0.0018967119435203
326 => 0.001942485590637
327 => 0.0019492259340522
328 => 0.0019582850239559
329 => 0.0019550379850953
330 => 0.0020323956240831
331 => 0.0020230271035796
401 => 0.0020456025424858
402 => 0.001999163151853
403 => 0.0019466125732845
404 => 0.0019566007202625
405 => 0.0019556387813889
406 => 0.0019433921954661
407 => 0.0019323365252768
408 => 0.0019139319493274
409 => 0.001972166750996
410 => 0.0019698025243975
411 => 0.0020080766049146
412 => 0.0020013112894086
413 => 0.0019561308567061
414 => 0.0019577444846989
415 => 0.0019685969084333
416 => 0.0020061572708887
417 => 0.0020173077437699
418 => 0.0020121424004618
419 => 0.0020243683849377
420 => 0.0020340313045739
421 => 0.0020255818988711
422 => 0.0021452076654032
423 => 0.0020955307068597
424 => 0.0021197429108038
425 => 0.0021255173787778
426 => 0.0021107262004862
427 => 0.0021139338774253
428 => 0.0021187926339483
429 => 0.0021482940521141
430 => 0.0022257143096852
501 => 0.0022600032147459
502 => 0.0023631630774058
503 => 0.0022571559985052
504 => 0.0022508659771441
505 => 0.0022694481835386
506 => 0.0023300139435004
507 => 0.002379096803297
508 => 0.0023953804195496
509 => 0.0023975325682506
510 => 0.0024280817148548
511 => 0.0024455919159805
512 => 0.0024243722449347
513 => 0.0024063907955156
514 => 0.0023419834756359
515 => 0.0023494387982873
516 => 0.0024007985782676
517 => 0.0024733472925657
518 => 0.0025356016368406
519 => 0.0025138023352585
520 => 0.0026801156184217
521 => 0.0026966049011185
522 => 0.0026943266154121
523 => 0.0027318916553297
524 => 0.0026573327010807
525 => 0.0026254573036275
526 => 0.0024102785889781
527 => 0.0024707350307689
528 => 0.0025586120193941
529 => 0.0025469811704278
530 => 0.0024831625523295
531 => 0.002535553224696
601 => 0.0025182312300039
602 => 0.0025045686540999
603 => 0.0025671595629365
604 => 0.0024983382875779
605 => 0.0025579254745269
606 => 0.0024815042909142
607 => 0.0025139019126319
608 => 0.0024955114556483
609 => 0.0025074123351663
610 => 0.002437840036679
611 => 0.0024753795601707
612 => 0.0024362782690832
613 => 0.0024362597299801
614 => 0.0024353965668122
615 => 0.0024813990623749
616 => 0.0024828992021036
617 => 0.0024489032883769
618 => 0.0024440039460929
619 => 0.0024621193823661
620 => 0.0024409109509304
621 => 0.0024508342425149
622 => 0.0024412115173235
623 => 0.0024390452391973
624 => 0.002421783966526
625 => 0.0024143473356507
626 => 0.0024172634302353
627 => 0.0024073092960682
628 => 0.0024013115701758
629 => 0.0024342034681716
630 => 0.0024166306539278
701 => 0.0024315101823591
702 => 0.0024145530817655
703 => 0.0023557723832509
704 => 0.0023219669819406
705 => 0.0022109356914203
706 => 0.002242424027678
707 => 0.0022633008271938
708 => 0.0022564010450784
709 => 0.0022712244469236
710 => 0.0022721344834062
711 => 0.0022673152443597
712 => 0.0022617351829265
713 => 0.0022590191176176
714 => 0.0022792624431997
715 => 0.0022910143750591
716 => 0.0022653960933208
717 => 0.0022593940883474
718 => 0.0022852955856089
719 => 0.0023010954839756
720 => 0.0024177530563195
721 => 0.0024091106865613
722 => 0.0024308013386751
723 => 0.0024283593041172
724 => 0.0024510945631243
725 => 0.0024882571029635
726 => 0.0024126952686608
727 => 0.0024258101903641
728 => 0.0024225947144303
729 => 0.0024577004375333
730 => 0.0024578100337689
731 => 0.0024367623991077
801 => 0.0024481726633164
802 => 0.0024418037668593
803 => 0.0024533132235653
804 => 0.0024089952624442
805 => 0.0024629697552614
806 => 0.0024935698146492
807 => 0.0024939946965035
808 => 0.0025084988817963
809 => 0.0025232359740795
810 => 0.0025515225393868
811 => 0.0025224470771256
812 => 0.0024701431509568
813 => 0.0024739193254856
814 => 0.0024432535527101
815 => 0.0024437690498907
816 => 0.0024410172855405
817 => 0.0024492755374985
818 => 0.0024108074843472
819 => 0.002419835859533
820 => 0.0024071960814028
821 => 0.002425782713955
822 => 0.0024057865698092
823 => 0.0024225931638304
824 => 0.0024298463326625
825 => 0.0024566106818026
826 => 0.0024018334536798
827 => 0.0022901389774451
828 => 0.0023136185105142
829 => 0.0022788904368274
830 => 0.0022821046522662
831 => 0.0022885978789912
901 => 0.0022675512067239
902 => 0.0022715662485357
903 => 0.0022714228029887
904 => 0.0022701866667608
905 => 0.0022647116144431
906 => 0.0022567717053762
907 => 0.0022884018593235
908 => 0.0022937764388331
909 => 0.0023057234633135
910 => 0.002341269704423
911 => 0.0023377177966981
912 => 0.0023435111055647
913 => 0.002330864344837
914 => 0.0022826912992246
915 => 0.0022853073273689
916 => 0.0022526854144909
917 => 0.0023048892476571
918 => 0.0022925266909064
919 => 0.0022845564701461
920 => 0.002282381721568
921 => 0.0023180160749339
922 => 0.002328678431961
923 => 0.0023220343665858
924 => 0.0023084071946631
925 => 0.0023345753932665
926 => 0.0023415768992651
927 => 0.0023431442782526
928 => 0.0023895093089234
929 => 0.0023457355684158
930 => 0.0023562723428296
1001 => 0.0024384772489506
1002 => 0.0023639287426004
1003 => 0.0024034187490442
1004 => 0.0024014859187249
1005 => 0.0024216876697525
1006 => 0.0023998287854957
1007 => 0.0024000997525637
1008 => 0.0024180375388911
1009 => 0.002392847153091
1010 => 0.0023866096593137
1011 => 0.0023779926063342
1012 => 0.0023968076262665
1013 => 0.0024080863797857
1014 => 0.002498984849819
1015 => 0.0025577094069344
1016 => 0.002555160019035
1017 => 0.0025784566521811
1018 => 0.0025679613055761
1019 => 0.0025340690628559
1020 => 0.0025919189884606
1021 => 0.0025736128514556
1022 => 0.0025751219871483
1023 => 0.0025750658170425
1024 => 0.0025872377978005
1025 => 0.0025786128338878
1026 => 0.0025616121446814
1027 => 0.0025728979955655
1028 => 0.002606412937926
1029 => 0.0027104443473768
1030 => 0.0027686617023383
1031 => 0.0027069395895083
1101 => 0.0027495146764464
1102 => 0.0027239847953381
1103 => 0.0027193452564926
1104 => 0.002746085557364
1105 => 0.0027728726635922
1106 => 0.0027711664407293
1107 => 0.0027517203771407
1108 => 0.0027407357892451
1109 => 0.0028239147688974
1110 => 0.0028851996241883
1111 => 0.0028810204079163
1112 => 0.0028994661093868
1113 => 0.0029536232594081
1114 => 0.0029585747104866
1115 => 0.0029579509414585
1116 => 0.0029456782533301
1117 => 0.0029990030007207
1118 => 0.0030434874431536
1119 => 0.0029428374806204
1120 => 0.0029811636687483
1121 => 0.0029983695293915
1122 => 0.0030236328375647
1123 => 0.0030662562730749
1124 => 0.0031125566293468
1125 => 0.0031191040073812
1126 => 0.0031144583293449
1127 => 0.0030839219997632
1128 => 0.0031345844020741
1129 => 0.0031642612491683
1130 => 0.0031819331324703
1201 => 0.0032267460882032
1202 => 0.0029984757869293
1203 => 0.0028368947219175
1204 => 0.0028116615053571
1205 => 0.00286297424348
1206 => 0.0028765050033116
1207 => 0.0028710507709896
1208 => 0.0026891765920111
1209 => 0.0028107039754445
1210 => 0.0029414572217061
1211 => 0.0029464799864044
1212 => 0.0030119377954045
1213 => 0.0030332535412211
1214 => 0.0030859556572173
1215 => 0.0030826591255125
1216 => 0.0030954912520838
1217 => 0.0030925413684065
1218 => 0.0031901609405496
1219 => 0.0032978498252702
1220 => 0.003294120901622
1221 => 0.0032786393503264
1222 => 0.0033016320939972
1223 => 0.0034127785636711
1224 => 0.0034025459778294
1225 => 0.003412486063365
1226 => 0.0035435340150511
1227 => 0.0037139149935967
1228 => 0.0036347559230917
1229 => 0.0038065083286786
1230 => 0.0039146173637918
1231 => 0.0041015807613371
]
'min_raw' => 0.0016745845678639
'max_raw' => 0.0041015807613371
'avg_raw' => 0.0028880826646005
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.001674'
'max' => '$0.0041015'
'avg' => '$0.002888'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00074668592522745
'max_diff' => 0.0016639850454609
'year' => 2028
]
3 => [
'items' => [
101 => 0.0040781720231503
102 => 0.0041509555018139
103 => 0.0040362654962448
104 => 0.0037729140607837
105 => 0.0037312376880532
106 => 0.0038146748416735
107 => 0.0040197969421707
108 => 0.0038082148167613
109 => 0.0038510176051665
110 => 0.0038386903992263
111 => 0.003838033534809
112 => 0.0038631033779567
113 => 0.0038267382629159
114 => 0.0036785802422803
115 => 0.0037464801900369
116 => 0.0037202607593848
117 => 0.0037493531724814
118 => 0.0039063529273397
119 => 0.0038369395933101
120 => 0.0037638182845913
121 => 0.0038555286326421
122 => 0.0039723074208054
123 => 0.0039649996141138
124 => 0.0039508194147058
125 => 0.0040307524563173
126 => 0.0041627784228756
127 => 0.0041984645111131
128 => 0.00422480725188
129 => 0.0042284394707675
130 => 0.0042658535827202
131 => 0.00406466847318
201 => 0.0043839544088204
202 => 0.0044390862698095
203 => 0.0044287237649251
204 => 0.0044900005081112
205 => 0.0044719713358249
206 => 0.0044458498938725
207 => 0.0045429865657595
208 => 0.0044316272099663
209 => 0.004273566624171
210 => 0.0041868514607197
211 => 0.004301044983065
212 => 0.0043707789823566
213 => 0.0044168687199729
214 => 0.0044308154467275
215 => 0.0040802859005331
216 => 0.0038913699163942
217 => 0.0040124628963011
218 => 0.0041602046891785
219 => 0.0040638477600609
220 => 0.0040676247692545
221 => 0.0039302451104884
222 => 0.0041723597406337
223 => 0.0041370856755261
224 => 0.0043200875877031
225 => 0.0042764127126799
226 => 0.0044256436679669
227 => 0.0043863461561659
228 => 0.0045494679305576
301 => 0.0046145416227082
302 => 0.0047238104797404
303 => 0.0048041890957776
304 => 0.0048513889565126
305 => 0.0048485552539163
306 => 0.0050355846170254
307 => 0.0049252999359082
308 => 0.0047867563843213
309 => 0.0047842505685724
310 => 0.0048560042371166
311 => 0.0050063802417275
312 => 0.0050453705518412
313 => 0.0050671608160388
314 => 0.0050337882678956
315 => 0.0049140821507172
316 => 0.0048623936562433
317 => 0.0049064337510949
318 => 0.0048525764994999
319 => 0.0049455492254287
320 => 0.0050732206360316
321 => 0.0050468569946096
322 => 0.0051349866952254
323 => 0.0052261916638479
324 => 0.0053566188652495
325 => 0.0053907173654012
326 => 0.0054470808895021
327 => 0.005505097470255
328 => 0.0055237308324022
329 => 0.0055593077023338
330 => 0.0055591201946681
331 => 0.0056663334868066
401 => 0.0057845930681547
402 => 0.005829233322398
403 => 0.0059318811255524
404 => 0.0057561003598584
405 => 0.0058894320898612
406 => 0.0060097006478334
407 => 0.0058663115149283
408 => 0.0060639400292549
409 => 0.0060716134966304
410 => 0.0061874737436397
411 => 0.0060700271871581
412 => 0.0060002877968221
413 => 0.0062016228036214
414 => 0.0062990424714183
415 => 0.0062696988746503
416 => 0.0060463926543739
417 => 0.0059164188561187
418 => 0.0055762523560115
419 => 0.0059791942694877
420 => 0.0061754555215652
421 => 0.0060458843851443
422 => 0.0061112325296521
423 => 0.0064677508168798
424 => 0.0066034898978064
425 => 0.0065752571178615
426 => 0.0065800279929211
427 => 0.0066532703371505
428 => 0.0069780672267595
429 => 0.0067834414017728
430 => 0.0069322255524846
501 => 0.0070111401295409
502 => 0.007084440386668
503 => 0.006904438121948
504 => 0.0066702578203058
505 => 0.0065960830885553
506 => 0.0060330010891952
507 => 0.0060036902257873
508 => 0.0059872371499465
509 => 0.0058835028341034
510 => 0.0058019960770712
511 => 0.0057371788777273
512 => 0.0055670791905948
513 => 0.0056244828416734
514 => 0.005353379442948
515 => 0.005526821790138
516 => 0.0050941342197518
517 => 0.00545448928575
518 => 0.0052583644066615
519 => 0.0053900569882077
520 => 0.0053895975251969
521 => 0.0051471097293993
522 => 0.0050072478293745
523 => 0.0050963732755769
524 => 0.0051919228286926
525 => 0.0052074254222183
526 => 0.0053313079119314
527 => 0.0053658808519651
528 => 0.0052611232296067
529 => 0.0050851677315956
530 => 0.0051260381806659
531 => 0.0050064195910286
601 => 0.0047967926137517
602 => 0.0049473503685678
603 => 0.0049987574056193
604 => 0.0050214616817755
605 => 0.0048153176254446
606 => 0.0047505426873403
607 => 0.0047160570538079
608 => 0.0050585571225695
609 => 0.0050773200494864
610 => 0.0049813262625688
611 => 0.0054152272819408
612 => 0.0053170221178541
613 => 0.0054267413469883
614 => 0.0051223296157966
615 => 0.0051339585538729
616 => 0.0049898451619123
617 => 0.0050705390317499
618 => 0.0050135072054335
619 => 0.0050640197644994
620 => 0.0050942967841324
621 => 0.0052383865285034
622 => 0.0054561345591762
623 => 0.0052168643256639
624 => 0.0051126108585097
625 => 0.0051772891231884
626 => 0.0053495358652298
627 => 0.005610498496571
628 => 0.0054560033664546
629 => 0.0055245656817028
630 => 0.0055395434974594
701 => 0.0054256245082322
702 => 0.0056146988521961
703 => 0.0057160253291636
704 => 0.0058199653279722
705 => 0.0059102135166051
706 => 0.0057784494067585
707 => 0.0059194558919376
708 => 0.0058058295558786
709 => 0.005703894985959
710 => 0.0057040495786248
711 => 0.0056401045338878
712 => 0.0055162029521157
713 => 0.0054933535994456
714 => 0.0056122188175906
715 => 0.0057075374659647
716 => 0.0057153883663904
717 => 0.0057681616677793
718 => 0.005799392363933
719 => 0.0061054956423123
720 => 0.0062286129130955
721 => 0.0063791583813186
722 => 0.0064378043254692
723 => 0.0066143075916279
724 => 0.0064717668693104
725 => 0.0064409272874138
726 => 0.0060127880974913
727 => 0.0060828958658563
728 => 0.0061951451674021
729 => 0.0060146390471298
730 => 0.006129128633661
731 => 0.0061517313032632
801 => 0.0060085055182345
802 => 0.0060850085984392
803 => 0.0058818390989979
804 => 0.0054605630990658
805 => 0.0056151678528122
806 => 0.0057290089909669
807 => 0.005566543650309
808 => 0.0058577564851614
809 => 0.0056876359588937
810 => 0.0056337159192923
811 => 0.0054233546209249
812 => 0.0055226370562054
813 => 0.0056569179715098
814 => 0.0055739479776836
815 => 0.0057461231728801
816 => 0.0059899691667257
817 => 0.0061637483432201
818 => 0.0061770889505667
819 => 0.0060653605823814
820 => 0.0062444060054393
821 => 0.0062457101558779
822 => 0.0060437461872466
823 => 0.0059200443810001
824 => 0.00589193907035
825 => 0.0059621516467246
826 => 0.0060474026763999
827 => 0.0061818197893967
828 => 0.0062630452356102
829 => 0.0064748381206872
830 => 0.0065321432028112
831 => 0.0065951041142501
901 => 0.0066792393083585
902 => 0.0067802651807066
903 => 0.0065592263234151
904 => 0.0065680086092832
905 => 0.0063621802858646
906 => 0.0061422232035244
907 => 0.0063091432109833
908 => 0.0065273689162976
909 => 0.0064773076983805
910 => 0.006471674788707
911 => 0.006481147780339
912 => 0.0064434032568761
913 => 0.0062726861761304
914 => 0.0061869531269255
915 => 0.0062975706332334
916 => 0.0063563589148173
917 => 0.006447534412677
918 => 0.0064362951080845
919 => 0.0066711533990374
920 => 0.0067624122291556
921 => 0.0067390643152259
922 => 0.0067433608932879
923 => 0.0069085806461271
924 => 0.007092338991318
925 => 0.0072644529306386
926 => 0.0074395346221812
927 => 0.0072284668094719
928 => 0.007121299591031
929 => 0.0072318688051961
930 => 0.0071731992237857
1001 => 0.007510332041098
1002 => 0.0075336743859021
1003 => 0.0078707828246744
1004 => 0.0081907388751956
1005 => 0.0079897802124713
1006 => 0.0081792751800434
1007 => 0.0083842294372239
1008 => 0.008779619451955
1009 => 0.008646466004982
1010 => 0.0085444725513812
1011 => 0.0084480892305573
1012 => 0.0086486476207706
1013 => 0.0089066627857816
1014 => 0.0089622367810865
1015 => 0.0090522878843805
1016 => 0.0089576101601919
1017 => 0.0090716390505678
1018 => 0.0094742111404283
1019 => 0.0093654326081459
1020 => 0.0092109496052831
1021 => 0.0095287416067935
1022 => 0.009643749296755
1023 => 0.010450933494899
1024 => 0.011470036888173
1025 => 0.011048121391564
1026 => 0.010786224827691
1027 => 0.010847776732471
1028 => 0.011219918792867
1029 => 0.011339439011468
1030 => 0.011014541856221
1031 => 0.011129301024047
1101 => 0.01176163532164
1102 => 0.012100862384585
1103 => 0.011640146468833
1104 => 0.010369049529529
1105 => 0.0091970401011105
1106 => 0.0095079097777994
1107 => 0.0094726668038721
1108 => 0.010152031121326
1109 => 0.0093628382761264
1110 => 0.0093761262596417
1111 => 0.010069539111721
1112 => 0.0098845484508919
1113 => 0.0095848872721628
1114 => 0.0091992279593401
1115 => 0.0084863010504186
1116 => 0.0078548418057492
1117 => 0.0090932788009249
1118 => 0.0090398751457414
1119 => 0.0089625387390574
1120 => 0.0091346425434594
1121 => 0.0099703297651188
1122 => 0.0099510644698039
1123 => 0.0098285084902512
1124 => 0.0099214661205831
1125 => 0.0095685913501221
1126 => 0.0096595352132791
1127 => 0.009196854448829
1128 => 0.009406005477616
1129 => 0.009584244333858
1130 => 0.0096200284231199
1201 => 0.0097006518034079
1202 => 0.0090117338461405
1203 => 0.009321037783385
1204 => 0.0095027248686565
1205 => 0.0086818560075672
1206 => 0.0094864989305674
1207 => 0.0089997413172086
1208 => 0.0088345284723807
1209 => 0.0090569658028043
1210 => 0.0089702817588108
1211 => 0.0088957559080431
1212 => 0.008854169202798
1213 => 0.0090175026287488
1214 => 0.0090098829292026
1215 => 0.0087426377426951
1216 => 0.0083940272912035
1217 => 0.0085110324014721
1218 => 0.0084685233479827
1219 => 0.0083144650543604
1220 => 0.0084182817431926
1221 => 0.0079611255859995
1222 => 0.0071746121784583
1223 => 0.0076942070270372
1224 => 0.0076742031905774
1225 => 0.0076641163491326
1226 => 0.0080545775172928
1227 => 0.0080170436854461
1228 => 0.0079489194131118
1229 => 0.0083132138986753
1230 => 0.0081802415109923
1231 => 0.0085900310775963
]
'min_raw' => 0.0036785802422803
'max_raw' => 0.012100862384585
'avg_raw' => 0.0078897213134328
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.003678'
'max' => '$0.01210086'
'avg' => '$0.007889'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.0020039956744164
'max_diff' => 0.0079992816232482
'year' => 2029
]
4 => [
'items' => [
101 => 0.0088599449896892
102 => 0.0087914860907821
103 => 0.0090453414297125
104 => 0.0085137279628956
105 => 0.0086903086319419
106 => 0.0087267016631021
107 => 0.0083087185612714
108 => 0.0080231846845249
109 => 0.0080041428302704
110 => 0.0075090664369841
111 => 0.0077735322501606
112 => 0.0080062512214171
113 => 0.0078947968939069
114 => 0.0078595137834206
115 => 0.0080397675429225
116 => 0.0080537748038048
117 => 0.0077344077712643
118 => 0.0078008142903681
119 => 0.0080777405141961
120 => 0.0077938364600471
121 => 0.0072422572582998
122 => 0.0071054579900873
123 => 0.007087206445997
124 => 0.0067161959809181
125 => 0.0071145995713204
126 => 0.0069406857275574
127 => 0.0074900774761971
128 => 0.0071762678558211
129 => 0.0071627401502901
130 => 0.0071422910392969
131 => 0.0068229470057541
201 => 0.0068928630537279
202 => 0.0071252746457076
203 => 0.0072082017200299
204 => 0.0071995517467766
205 => 0.0071241357021152
206 => 0.0071586607811685
207 => 0.0070474434722027
208 => 0.0070081703256188
209 => 0.0068842134720699
210 => 0.0067020311413078
211 => 0.0067273647117894
212 => 0.0063664138439497
213 => 0.0061697486540382
214 => 0.0061153143214762
215 => 0.006042522457007
216 => 0.0061235363562598
217 => 0.0063653913154922
218 => 0.006073662922266
219 => 0.005573515054447
220 => 0.0056035747935134
221 => 0.005671110102379
222 => 0.0055452585010987
223 => 0.0054261505224112
224 => 0.0055297052463442
225 => 0.0053177860014165
226 => 0.0056967195306724
227 => 0.0056864704406549
228 => 0.0058277134272693
301 => 0.0059160355653971
302 => 0.0057124816316443
303 => 0.0056612883677738
304 => 0.0056904503774785
305 => 0.0052084673162386
306 => 0.0057883251283668
307 => 0.0057933397628052
308 => 0.0057504014182707
309 => 0.0060591578021276
310 => 0.0067107300755966
311 => 0.0064655823768836
312 => 0.0063706537783135
313 => 0.0061901944430393
314 => 0.006430645792677
315 => 0.0064121828806503
316 => 0.0063286865906136
317 => 0.0062781877738752
318 => 0.006371233392094
319 => 0.0062666583920876
320 => 0.0062478738485576
321 => 0.0061340599525509
322 => 0.0060934335698789
323 => 0.0060633554135313
324 => 0.0060302423188113
325 => 0.0061032815544946
326 => 0.0059377650373247
327 => 0.0057381683434021
328 => 0.0057215740379685
329 => 0.0057673923742567
330 => 0.0057471211712232
331 => 0.0057214769872473
401 => 0.0056725152562595
402 => 0.0056579893565772
403 => 0.0057051914835798
404 => 0.0056519030342489
405 => 0.0057305330440087
406 => 0.0057091500321509
407 => 0.0055897062661301
408 => 0.005440835109922
409 => 0.0054395098443639
410 => 0.0054074357979565
411 => 0.0053665846774915
412 => 0.0053552208303252
413 => 0.0055209841563322
414 => 0.0058641092802879
415 => 0.005796745608167
416 => 0.0058454227649811
417 => 0.0060848661989537
418 => 0.0061609780662983
419 => 0.0061069556656654
420 => 0.0060330064717227
421 => 0.0060362598609577
422 => 0.0062889666426034
423 => 0.0063047276545982
424 => 0.0063445506472138
425 => 0.0063957344467014
426 => 0.0061156724880432
427 => 0.0060230689678904
428 => 0.0059791882825943
429 => 0.0058440527558448
430 => 0.0059897848357997
501 => 0.0059048729936798
502 => 0.0059163305021834
503 => 0.0059088687847397
504 => 0.0059129433870231
505 => 0.0056966136110283
506 => 0.0057754328114425
507 => 0.0056443806035185
508 => 0.005468916408409
509 => 0.0054683281909013
510 => 0.0055112728040744
511 => 0.0054857276677362
512 => 0.0054169863626755
513 => 0.0054267507406096
514 => 0.0053412045153459
515 => 0.005437137601221
516 => 0.0054398886188588
517 => 0.0054029491552864
518 => 0.0055507473102917
519 => 0.0056113003349892
520 => 0.0055869859887459
521 => 0.0056095943756397
522 => 0.0057995448728724
523 => 0.0058305150920426
524 => 0.0058442700176201
525 => 0.0058258402395246
526 => 0.0056130663220321
527 => 0.0056225037500574
528 => 0.0055532581650392
529 => 0.0054947529426189
530 => 0.0054970928446962
531 => 0.0055271721341668
601 => 0.005658530155412
602 => 0.0059349653671442
603 => 0.005945455881358
604 => 0.0059581706906149
605 => 0.0059064531714158
606 => 0.0058908546727554
607 => 0.0059114331188026
608 => 0.0060152476500563
609 => 0.0062822868098111
610 => 0.006187897335808
611 => 0.0061111572241837
612 => 0.0061784789910637
613 => 0.006168115332738
614 => 0.0060806356268518
615 => 0.0060781803628677
616 => 0.0059102788383183
617 => 0.0058482094676251
618 => 0.005796339655662
619 => 0.005739699175094
620 => 0.0057061207996072
621 => 0.0057577124454536
622 => 0.0057695120652731
623 => 0.0056567060299622
624 => 0.0056413309841819
625 => 0.0057334508277043
626 => 0.005692912319144
627 => 0.0057346071805049
628 => 0.0057442807459925
629 => 0.0057427230791479
630 => 0.0057003962203929
701 => 0.0057273740979582
702 => 0.0056635633750239
703 => 0.0055941787978935
704 => 0.0055499157604962
705 => 0.0055112903897271
706 => 0.0055327219903495
707 => 0.0054563222473863
708 => 0.0054318804319894
709 => 0.0057182346000606
710 => 0.0059297675028408
711 => 0.0059266917306582
712 => 0.0059079687585207
713 => 0.0058801502197406
714 => 0.0060132125506736
715 => 0.0059668562952418
716 => 0.0060005843442632
717 => 0.0060091695483009
718 => 0.006035154375225
719 => 0.006044441717379
720 => 0.0060163689189157
721 => 0.0059221531784692
722 => 0.0056873765110406
723 => 0.005578087338585
724 => 0.0055420200913195
725 => 0.0055433310672562
726 => 0.0055071684984692
727 => 0.0055178199956696
728 => 0.0055034643424275
729 => 0.0054762782081926
730 => 0.005531043323169
731 => 0.0055373544924977
801 => 0.0055245716602678
802 => 0.0055275824800033
803 => 0.0054217460887588
804 => 0.0054297925997206
805 => 0.0053849886041844
806 => 0.0053765883951415
807 => 0.0052633277959561
808 => 0.0050626702271128
809 => 0.0051738539985535
810 => 0.0050395596374572
811 => 0.0049887003280184
812 => 0.0052294603886563
813 => 0.0052052947562128
814 => 0.0051639336980176
815 => 0.005102752072547
816 => 0.0050800592125233
817 => 0.0049421845787062
818 => 0.0049340382098077
819 => 0.0050023726012557
820 => 0.0049708386308453
821 => 0.0049265529935405
822 => 0.0047661549043858
823 => 0.0045858143461936
824 => 0.0045912576940651
825 => 0.0046486206702707
826 => 0.0048154112600396
827 => 0.0047502432911104
828 => 0.004702963181936
829 => 0.0046941090387225
830 => 0.0048049371784439
831 => 0.0049617822153629
901 => 0.0050353703974754
902 => 0.0049624467439082
903 => 0.0048786759771786
904 => 0.0048837747155931
905 => 0.0049176943379896
906 => 0.0049212588107058
907 => 0.0048667326533388
908 => 0.0048820814472488
909 => 0.0048587652257763
910 => 0.0047156736176383
911 => 0.0047130855441955
912 => 0.0046779685558945
913 => 0.0046769052274452
914 => 0.004617162470002
915 => 0.0046088040452535
916 => 0.0044901811742239
917 => 0.0045682591071587
918 => 0.0045158885290215
919 => 0.0044369537147982
920 => 0.0044233453230737
921 => 0.0044229362383859
922 => 0.0045039846430917
923 => 0.004567312009361
924 => 0.0045167995376499
925 => 0.0045052988269845
926 => 0.0046280963285792
927 => 0.0046124692271772
928 => 0.004598936258147
929 => 0.0049477384625982
930 => 0.0046716343003997
1001 => 0.0045512371262065
1002 => 0.0044022227603392
1003 => 0.0044507425892612
1004 => 0.0044609664301197
1005 => 0.0041026137420671
1006 => 0.0039572301011541
1007 => 0.0039073399142597
1008 => 0.0038786274063583
1009 => 0.0038917120567579
1010 => 0.003760849728136
1011 => 0.0038487913772331
1012 => 0.0037354756621638
1013 => 0.0037164779137712
1014 => 0.0039191004494385
1015 => 0.003947294191573
1016 => 0.0038270109285184
1017 => 0.0039042522554908
1018 => 0.0038762434765959
1019 => 0.0037374181348628
1020 => 0.0037321160279387
1021 => 0.0036624583514038
1022 => 0.0035534575760106
1023 => 0.0035036412967747
1024 => 0.0034776965460239
1025 => 0.0034884018558368
1026 => 0.0034829889236075
1027 => 0.0034476658793629
1028 => 0.0034850135991559
1029 => 0.0033896056082281
1030 => 0.0033516133774862
1031 => 0.0033344531682732
1101 => 0.0032497730848457
1102 => 0.0033845367549829
1103 => 0.0034110868957079
1104 => 0.0034376893484118
1105 => 0.0036692455369342
1106 => 0.0036576776441266
1107 => 0.0037622457613149
1108 => 0.0037581824365694
1109 => 0.0037283579156561
1110 => 0.0036025331678185
1111 => 0.0036526846696961
1112 => 0.0034983261421908
1113 => 0.0036139820463574
1114 => 0.0035612015216018
1115 => 0.0035961368978451
1116 => 0.0035333199413637
1117 => 0.0035680854387291
1118 => 0.0034173829190191
1119 => 0.0032766590265555
1120 => 0.0033332904288693
1121 => 0.0033948552397709
1122 => 0.0035283434362276
1123 => 0.0034488389676717
1124 => 0.0034774317809612
1125 => 0.0033816506428205
1126 => 0.0031840267963068
1127 => 0.0031851453258162
1128 => 0.0031547452024996
1129 => 0.0031284750574633
1130 => 0.0034579710122768
1201 => 0.0034169929817355
1202 => 0.0033516998531401
1203 => 0.0034390973004109
1204 => 0.0034622065726533
1205 => 0.0034628644611462
1206 => 0.0035266273826204
1207 => 0.0035606576652413
1208 => 0.003566655650049
1209 => 0.0036669879846777
1210 => 0.0037006180598298
1211 => 0.0038391355798747
1212 => 0.0035577704335173
1213 => 0.0035519759034856
1214 => 0.0034403271617238
1215 => 0.0033695177646017
1216 => 0.0034451755417248
1217 => 0.0035121980039394
1218 => 0.0034424097364492
1219 => 0.0034515226108727
1220 => 0.003357837563678
1221 => 0.0033913255597589
1222 => 0.003420169933304
1223 => 0.0034042437656263
1224 => 0.0033804015217776
1225 => 0.0035067029263519
1226 => 0.0034995765061266
1227 => 0.003617191277723
1228 => 0.0037088804028953
1229 => 0.0038732037065959
1230 => 0.0037017237728168
1231 => 0.0036954743624589
]
'min_raw' => 0.0031284750574633
'max_raw' => 0.0090453414297125
'avg_raw' => 0.0060869082435879
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.003128'
'max' => '$0.009045'
'avg' => '$0.006086'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00055010518481699
'max_diff' => -0.0030555209548728
'year' => 2030
]
5 => [
'items' => [
101 => 0.0037565633511444
102 => 0.0037006087074239
103 => 0.0037359701107666
104 => 0.0038675064378322
105 => 0.0038702855931508
106 => 0.0038237311608238
107 => 0.0038208983193858
108 => 0.0038298396073639
109 => 0.0038822090103277
110 => 0.0038639095317829
111 => 0.003885086151641
112 => 0.0039115678390414
113 => 0.0040211073261324
114 => 0.0040475169256259
115 => 0.0039833552906642
116 => 0.0039891483679139
117 => 0.0039651501551619
118 => 0.0039419681823403
119 => 0.0039940778717881
120 => 0.0040893093534725
121 => 0.0040887169233674
122 => 0.0041108087760827
123 => 0.0041245718173056
124 => 0.0040654907692152
125 => 0.0040270311793787
126 => 0.0040417790333693
127 => 0.0040653611730668
128 => 0.0040341316632976
129 => 0.0038413686620862
130 => 0.0038998406429055
131 => 0.0038901080461634
201 => 0.0038762476448784
202 => 0.0039350416737427
203 => 0.0039293708462298
204 => 0.0037595075458107
205 => 0.0037703816431834
206 => 0.003760168835688
207 => 0.0037931685060493
208 => 0.0036988266169287
209 => 0.0037278455466199
210 => 0.0037460459472866
211 => 0.0037567661231014
212 => 0.0037954947490377
213 => 0.0037909503917882
214 => 0.0037952122654105
215 => 0.0038526365936959
216 => 0.0041430691405137
217 => 0.0041588767432337
218 => 0.0040810343260813
219 => 0.0041121308363599
220 => 0.0040524323366843
221 => 0.0040925083394617
222 => 0.0041199273227419
223 => 0.0039960262096659
224 => 0.0039886895898611
225 => 0.0039287446932414
226 => 0.0039609556852323
227 => 0.0039097056809224
228 => 0.003922280639331
301 => 0.0038871199593554
302 => 0.00395040218289
303 => 0.004021161541865
304 => 0.0040390381503138
305 => 0.0039920124898487
306 => 0.00395796281253
307 => 0.0038981827958192
308 => 0.0039975982958938
309 => 0.004026670417748
310 => 0.0039974455924141
311 => 0.0039906735618091
312 => 0.0039778405760496
313 => 0.0039933961404034
314 => 0.0040265120847289
315 => 0.0040108952169405
316 => 0.0040212104332485
317 => 0.0039818994656871
318 => 0.0040655103275005
319 => 0.0041983044981097
320 => 0.0041987314530823
321 => 0.0041831145011132
322 => 0.0041767243808393
323 => 0.0041927483212755
324 => 0.0042014406516257
325 => 0.0042532591367083
326 => 0.0043088624357415
327 => 0.0045683387707091
328 => 0.0044954788541615
329 => 0.0047257016948611
330 => 0.00490777807116
331 => 0.0049623748151771
401 => 0.0049121483796567
402 => 0.0047403264569202
403 => 0.0047318960536709
404 => 0.0049886705475839
405 => 0.0049161199920366
406 => 0.0049074903343082
407 => 0.0048156853561149
408 => 0.0048699534684949
409 => 0.0048580842362522
410 => 0.0048393480724944
411 => 0.004942887850566
412 => 0.0051367050720562
413 => 0.0051064968404806
414 => 0.0050839477969289
415 => 0.0049851444520133
416 => 0.0050446461341785
417 => 0.0050234587248391
418 => 0.0051144932812233
419 => 0.0050605664266836
420 => 0.0049155703502229
421 => 0.0049386614533126
422 => 0.0049351712795334
423 => 0.0050069988085921
424 => 0.0049854379672376
425 => 0.0049309611792198
426 => 0.0051360426258638
427 => 0.0051227257774417
428 => 0.0051416060238488
429 => 0.0051499176922083
430 => 0.00527474715484
501 => 0.005325885791583
502 => 0.0053374951574315
503 => 0.0053860729071332
504 => 0.0053362864987656
505 => 0.0055354676293435
506 => 0.0056679114586366
507 => 0.0058217517818577
508 => 0.0060465538424644
509 => 0.0061310814967878
510 => 0.006115812332612
511 => 0.0062862546893335
512 => 0.0065925358156414
513 => 0.0061777205051514
514 => 0.0066145220343476
515 => 0.0064762357133203
516 => 0.006148361333829
517 => 0.0061272500891748
518 => 0.0063492904256661
519 => 0.0068417545214133
520 => 0.0067183978509102
521 => 0.006841956288735
522 => 0.0066978188078195
523 => 0.006690661167006
524 => 0.0068349558530078
525 => 0.0071721082519448
526 => 0.0070119397851785
527 => 0.0067822990131497
528 => 0.0069518621856096
529 => 0.0068049708732941
530 => 0.0064739836343575
531 => 0.0067183035223891
601 => 0.0065549337710922
602 => 0.0066026137497343
603 => 0.0069459926675438
604 => 0.006904676407685
605 => 0.0069581434737249
606 => 0.0068637755016413
607 => 0.0067756209352518
608 => 0.0066110738906418
609 => 0.006562359622804
610 => 0.0065758224938786
611 => 0.0065623529512737
612 => 0.0064702903920798
613 => 0.0064504094911873
614 => 0.0064172737853641
615 => 0.0064275439261574
616 => 0.0063652391050172
617 => 0.0064828211753418
618 => 0.0065046454437237
619 => 0.006590211868975
620 => 0.0065990956591003
621 => 0.0068373969354634
622 => 0.0067061445969329
623 => 0.0067941999974008
624 => 0.0067863234935734
625 => 0.0061554673658347
626 => 0.0062423937741463
627 => 0.0063776239864696
628 => 0.0063167029591182
629 => 0.0062305748797682
630 => 0.0061610218377977
701 => 0.0060556418670486
702 => 0.0062039621522349
703 => 0.0063989875551509
704 => 0.0066040418251592
705 => 0.0068504010948862
706 => 0.0067954165738211
707 => 0.0065994363099756
708 => 0.006608227841448
709 => 0.0066625736296705
710 => 0.0065921908960868
711 => 0.0065714336539188
712 => 0.0066597219033457
713 => 0.0066603298959972
714 => 0.0065793460549717
715 => 0.0064893473355583
716 => 0.0064889702376378
717 => 0.0064729558348027
718 => 0.0067006677345077
719 => 0.0068258862550756
720 => 0.006840242356659
721 => 0.0068249199750556
722 => 0.0068308169516112
723 => 0.0067579550534945
724 => 0.0069244957460645
725 => 0.0070773299547341
726 => 0.007036367121984
727 => 0.0069749580124818
728 => 0.0069260426988999
729 => 0.0070248442286552
730 => 0.0070204447520632
731 => 0.007075995081251
801 => 0.0070734749974448
802 => 0.0070547955110925
803 => 0.0070363677890873
804 => 0.0071094316238627
805 => 0.0070883904128167
806 => 0.0070673165189581
807 => 0.0070250495985732
808 => 0.0070307943750327
809 => 0.0069693958686791
810 => 0.0069409901102354
811 => 0.0065138356581869
812 => 0.0063996860309252
813 => 0.0064355998273917
814 => 0.0064474235816898
815 => 0.0063977455176187
816 => 0.006468971100249
817 => 0.0064578706686426
818 => 0.0065010559544877
819 => 0.0064740756627789
820 => 0.0064751829433617
821 => 0.0065545262284727
822 => 0.0065775599216909
823 => 0.0065658447994155
824 => 0.0065740496694863
825 => 0.0067631274372099
826 => 0.0067362466250063
827 => 0.0067219667292775
828 => 0.006725922357985
829 => 0.0067742357815114
830 => 0.0067877609022837
831 => 0.0067304540151782
901 => 0.0067574802744243
902 => 0.0068725546561513
903 => 0.0069128241771098
904 => 0.0070413451575428
905 => 0.0069867471607766
906 => 0.0070869641467869
907 => 0.0073949969952944
908 => 0.007641074948934
909 => 0.0074147714931655
910 => 0.0078666623171862
911 => 0.008218524143575
912 => 0.0082050191006216
913 => 0.0081436638524801
914 => 0.007743078517867
915 => 0.0073744539205653
916 => 0.0076828240488354
917 => 0.0076836101477092
918 => 0.0076571208802109
919 => 0.0074925983147892
920 => 0.0076513958515575
921 => 0.0076640006233583
922 => 0.0076569453030292
923 => 0.007530806237864
924 => 0.0073382151997526
925 => 0.0073758470276018
926 => 0.0074374887292872
927 => 0.0073207881281906
928 => 0.0072834952150015
929 => 0.0073528298358871
930 => 0.0075762404308225
1001 => 0.0075340059519794
1002 => 0.0075329030390539
1003 => 0.0077136000497509
1004 => 0.0075842599869474
1005 => 0.0073763216854647
1006 => 0.0073238145219711
1007 => 0.0071374494646323
1008 => 0.0072661724735458
1009 => 0.0072708049854754
1010 => 0.0072003047090108
1011 => 0.0073820423943506
1012 => 0.0073803676495859
1013 => 0.0075529005337314
1014 => 0.0078827186078256
1015 => 0.0077851751739542
1016 => 0.0076717427730572
1017 => 0.007684076020174
1018 => 0.0078193412999978
1019 => 0.0077375568240103
1020 => 0.007766967091797
1021 => 0.0078192967840351
1022 => 0.0078508685866354
1023 => 0.0076795333236423
1024 => 0.0076395868779256
1025 => 0.0075578704692865
1026 => 0.0075365521835815
1027 => 0.0076031084933493
1028 => 0.0075855732571946
1029 => 0.0072704156407857
1030 => 0.0072374799163506
1031 => 0.0072384900079976
1101 => 0.0071556715628971
1102 => 0.0070293535554145
1103 => 0.0073613097370224
1104 => 0.0073346490099155
1105 => 0.0073052176305659
1106 => 0.0073088228066031
1107 => 0.0074529137340002
1108 => 0.0073693337193437
1109 => 0.0075915448868032
1110 => 0.0075458649510526
1111 => 0.0074990134973163
1112 => 0.0074925371992797
1113 => 0.0074745033867694
1114 => 0.0074126587335854
1115 => 0.0073379775985783
1116 => 0.0072886666444775
1117 => 0.0067234097020694
1118 => 0.006828318102632
1119 => 0.0069490056547776
1120 => 0.0069906665141533
1121 => 0.0069194027313475
1122 => 0.0074154726620885
1123 => 0.0075061094186836
1124 => 0.0072315647708675
1125 => 0.0071802086768452
1126 => 0.0074188395590627
1127 => 0.0072749159656467
1128 => 0.0073397247509493
1129 => 0.0071996436056352
1130 => 0.0074842776781739
1201 => 0.0074821092434337
1202 => 0.007371380160464
1203 => 0.0074649676231499
1204 => 0.0074487044984339
1205 => 0.0073236916364748
1206 => 0.0074882408088794
1207 => 0.007488322423216
1208 => 0.0073817480883156
1209 => 0.0072572925972737
1210 => 0.0072350428949829
1211 => 0.0072182807331337
1212 => 0.0073356022866737
1213 => 0.0074407924247226
1214 => 0.007636525192785
1215 => 0.0076857370611717
1216 => 0.0078778142597047
1217 => 0.0077634416400474
1218 => 0.0078141415409681
1219 => 0.0078691834553564
1220 => 0.0078955725732135
1221 => 0.0078525729217835
1222 => 0.0081509478732343
1223 => 0.0081761398611091
1224 => 0.0081845865167336
1225 => 0.0080839761618921
1226 => 0.0081733417051381
1227 => 0.0081315305269291
1228 => 0.0082403115971493
1229 => 0.0082573698579462
1230 => 0.0082429221179164
1231 => 0.0082483366791397
]
'min_raw' => 0.0036988266169287
'max_raw' => 0.0082573698579462
'avg_raw' => 0.0059780982374374
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.003698'
'max' => '$0.008257'
'avg' => '$0.005978'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00057035155946536
'max_diff' => -0.00078797157176635
'year' => 2031
]
6 => [
'items' => [
101 => 0.0079937262950247
102 => 0.0079805234034316
103 => 0.0078005010397247
104 => 0.0078738614835934
105 => 0.0077367176500385
106 => 0.0077802073723968
107 => 0.007799377227627
108 => 0.0077893639831344
109 => 0.0078780091730206
110 => 0.0078026426526015
111 => 0.0076037380138124
112 => 0.0074047791835874
113 => 0.0074022814175423
114 => 0.0073498990694591
115 => 0.0073120362261006
116 => 0.007319329952988
117 => 0.0073450339978749
118 => 0.0073105422602844
119 => 0.0073179028212748
120 => 0.0074401371768771
121 => 0.0074646504051576
122 => 0.0073813448775239
123 => 0.0070468611631443
124 => 0.0069647780206467
125 => 0.0070237777556945
126 => 0.0069955796824112
127 => 0.0056459787863142
128 => 0.0059630474979391
129 => 0.0057746560361277
130 => 0.0058614754892048
131 => 0.0056691765904278
201 => 0.005760951704173
202 => 0.0057440041917548
203 => 0.0062538412973024
204 => 0.0062458808921573
205 => 0.006249691116845
206 => 0.0060678191650134
207 => 0.0063575461226428
208 => 0.0065002760402154
209 => 0.0064738605311065
210 => 0.0064805087456494
211 => 0.0063662703932135
212 => 0.0062507971938093
213 => 0.006122719644472
214 => 0.0063606719002771
215 => 0.006334215671412
216 => 0.0063948967417778
217 => 0.0065492257888459
218 => 0.0065719513272657
219 => 0.0066024946813616
220 => 0.0065915470631422
221 => 0.0068523637439274
222 => 0.0068207771229604
223 => 0.0068968917913997
224 => 0.0067403181435863
225 => 0.0065631401989783
226 => 0.0065968159338649
227 => 0.0065935726897922
228 => 0.006552282470324
229 => 0.0065150075063986
301 => 0.0064529551936188
302 => 0.0066492978932685
303 => 0.0066413267382266
304 => 0.0067703704729009
305 => 0.0067475607393333
306 => 0.0065952317560799
307 => 0.0066006722155173
308 => 0.0066372619198298
309 => 0.006763899304229
310 => 0.0068014939020494
311 => 0.0067840785864533
312 => 0.0068252993467047
313 => 0.0068578785549016
314 => 0.0068293907936559
315 => 0.0072327174175232
316 => 0.0070652280834594
317 => 0.0071468612194988
318 => 0.0071663302414338
319 => 0.0071164607511367
320 => 0.0071272756578896
321 => 0.0071436572947345
322 => 0.0072431233858036
323 => 0.0075041511895143
324 => 0.0076197586269014
325 => 0.007967569306251
326 => 0.0076101590385596
327 => 0.0075889517923855
328 => 0.0076516029986127
329 => 0.0078558046868904
330 => 0.0080212909755502
331 => 0.0080761923246316
401 => 0.0080834484442352
402 => 0.0081864470248848
403 => 0.0082454838905033
404 => 0.0081739402880623
405 => 0.008113314575921
406 => 0.0078961608001713
407 => 0.0079212969410044
408 => 0.0080944600250332
409 => 0.0083390630804786
410 => 0.0085489579486612
411 => 0.0084754600813983
412 => 0.0090361969272057
413 => 0.0090917916950629
414 => 0.0090841102957391
415 => 0.0092107634505285
416 => 0.008959382730738
417 => 0.0088519126027554
418 => 0.008126422543017
419 => 0.0083302556574485
420 => 0.0086265390599738
421 => 0.0085873248406439
422 => 0.008372155914052
423 => 0.0085487947237357
424 => 0.008490392409248
425 => 0.0084443280806972
426 => 0.0086553576997976
427 => 0.0084233219649778
428 => 0.0086242243260209
429 => 0.0083665649699143
430 => 0.008475795813465
501 => 0.0084137911037642
502 => 0.008453915749952
503 => 0.0082193478882192
504 => 0.0083459150125973
505 => 0.008214082279731
506 => 0.0082140197738505
507 => 0.0082111095589656
508 => 0.008366210184547
509 => 0.0083712680103789
510 => 0.0082566484137302
511 => 0.0082401299391586
512 => 0.0083012073973331
513 => 0.0082297016900224
514 => 0.0082631587604215
515 => 0.0082307150706015
516 => 0.0082234113126543
517 => 0.0081652137266996
518 => 0.0081401406064943
519 => 0.0081499724229815
520 => 0.0081164113646619
521 => 0.0080961896130678
522 => 0.0082070869435995
523 => 0.0081478389734819
524 => 0.0081980063424434
525 => 0.0081408342938851
526 => 0.007942651064906
527 => 0.0078286737941705
528 => 0.0074543240462241
529 => 0.0075604891703623
530 => 0.0076308767575017
531 => 0.007607613660372
601 => 0.0076575917946301
602 => 0.0076606600461679
603 => 0.0076444116452539
604 => 0.0076255980785444
605 => 0.0076164406747258
606 => 0.0076846924602698
607 => 0.0077243149190276
608 => 0.0076379410935355
609 => 0.007617704914721
610 => 0.007705033621123
611 => 0.0077583040815801
612 => 0.0081516232315092
613 => 0.0081224848784784
614 => 0.0081956164264728
615 => 0.0081873829364637
616 => 0.0082640364495312
617 => 0.0083893325472047
618 => 0.0081345705472945
619 => 0.0081787884214717
620 => 0.0081679472198633
621 => 0.0082863086163085
622 => 0.0082866781276686
623 => 0.0082157145579095
624 => 0.0082541850603283
625 => 0.0082327118812611
626 => 0.0082715168181097
627 => 0.0081220957180088
628 => 0.0083040744889207
629 => 0.0084072447255748
630 => 0.0084086772444108
701 => 0.0084575791177752
702 => 0.008507266253319
703 => 0.0086026363831577
704 => 0.00850460643216
705 => 0.0083282600933385
706 => 0.0083409917294062
707 => 0.0082375999354778
708 => 0.0082393379702129
709 => 0.0082300602045843
710 => 0.0082579034776335
711 => 0.00812820575068
712 => 0.0081586455479599
713 => 0.0081160296535129
714 => 0.0081786957828399
715 => 0.0081112773867663
716 => 0.0081679419919076
717 => 0.0081923965570252
718 => 0.0082826344287782
719 => 0.0080979491797382
720 => 0.0077213634548535
721 => 0.0078005263398848
722 => 0.0076834382148131
723 => 0.0076942751665744
724 => 0.0077161675338203
725 => 0.0076452072088394
726 => 0.0076587442026289
727 => 0.0076582605659524
728 => 0.0076540928463558
729 => 0.0076356333252104
730 => 0.0076088633674448
731 => 0.0077155066398248
801 => 0.0077336274098827
802 => 0.0077739076370329
803 => 0.007893754270693
804 => 0.0078817787658122
805 => 0.0079013113111318
806 => 0.0078586718743696
807 => 0.0076962530877529
808 => 0.0077050732092866
809 => 0.0075950861524292
810 => 0.0077710950207045
811 => 0.0077294137974933
812 => 0.0077025416417367
813 => 0.0076952093250698
814 => 0.0078153530353537
815 => 0.0078513019164926
816 => 0.0078289009862066
817 => 0.0077829560246503
818 => 0.0078711839332469
819 => 0.0078947899995507
820 => 0.0079000745272379
821 => 0.0080563974652477
822 => 0.0079088112429414
823 => 0.0079443367135314
824 => 0.0082214962938818
825 => 0.0079701507999117
826 => 0.008103294113741
827 => 0.0080967774413734
828 => 0.0081648890554044
829 => 0.0080911903009939
830 => 0.0080921038853819
831 => 0.0081525823843611
901 => 0.0080676512398997
902 => 0.0080466210941416
903 => 0.0080175680983977
904 => 0.008081004251722
905 => 0.0081190313566695
906 => 0.0084255018947154
907 => 0.0086234958390475
908 => 0.0086149003997521
909 => 0.0086934466249234
910 => 0.0086580608310828
911 => 0.0085437907684707
912 => 0.0087388358315999
913 => 0.0086771154125938
914 => 0.0086822035689463
915 => 0.0086820141875128
916 => 0.0087230528704592
917 => 0.0086939732024516
918 => 0.0086366541918419
919 => 0.0086747052260508
920 => 0.0087877031941576
921 => 0.0091384523543622
922 => 0.0093347362312209
923 => 0.009126635818514
924 => 0.0092701806966237
925 => 0.0091841049200276
926 => 0.0091684623908876
927 => 0.0092586191822236
928 => 0.0093489337810881
929 => 0.0093431811315812
930 => 0.0092776173705116
1001 => 0.0092405820655022
1002 => 0.0095210258027707
1003 => 0.0097276519711558
1004 => 0.0097135614517114
1005 => 0.0097757524220568
1006 => 0.0099583470344852
1007 => 0.0099750411974955
1008 => 0.0099729381166671
1009 => 0.0099315598917904
1010 => 0.010111348000633
1011 => 0.0102613304041
1012 => 0.0099219820282633
1013 => 0.010051201447386
1014 => 0.010109212207819
1015 => 0.010194389215153
1016 => 0.010338097103849
1017 => 0.010494201987607
1018 => 0.010516276929773
1019 => 0.010500613701923
1020 => 0.01039765833476
1021 => 0.010568470161287
1022 => 0.010668527723236
1023 => 0.010728109711601
1024 => 0.010879199720595
1025 => 0.010109570462526
1026 => 0.0095647886206094
1027 => 0.0094797130692489
1028 => 0.0096527175483713
1029 => 0.009698337449831
1030 => 0.0096799481247551
1031 => 0.0090667466322794
1101 => 0.009476484690296
1102 => 0.0099173283889674
1103 => 0.0099342629908258
1104 => 0.010154958563988
1105 => 0.010226826089226
1106 => 0.010404514952852
1107 => 0.010393400466053
1108 => 0.010436664876698
1109 => 0.010426719137926
1110 => 0.010755850340987
1111 => 0.011118930934421
1112 => 0.011106358607996
1113 => 0.011054161476915
1114 => 0.011131683117503
1115 => 0.011506421200007
1116 => 0.011471921322426
1117 => 0.011505435014804
1118 => 0.011947272333389
1119 => 0.012521723698176
1120 => 0.012254833365258
1121 => 0.012833908592065
1122 => 0.01319840575188
1123 => 0.013828765900072
1124 => 0.013749841704929
1125 => 0.013995236284824
1126 => 0.013608550923647
1127 => 0.01272064317238
1128 => 0.012580128371968
1129 => 0.012861442560795
1130 => 0.013553026043789
1201 => 0.012839662135779
1202 => 0.012983974725282
1203 => 0.012942412689797
1204 => 0.012940198025553
1205 => 0.013024722752046
1206 => 0.012902115227754
1207 => 0.012402590117119
1208 => 0.012631519531603
1209 => 0.012543118890578
1210 => 0.0126412059925
1211 => 0.013170541627378
1212 => 0.012936509725413
1213 => 0.012689976127901
1214 => 0.012999183969366
1215 => 0.013392911806893
1216 => 0.013368273026417
1217 => 0.013320463494084
1218 => 0.013589963324623
1219 => 0.014035098088634
1220 => 0.014155416226649
1221 => 0.014244232616336
1222 => 0.014256478895909
1223 => 0.014382623186528
1224 => 0.013704313543417
1225 => 0.014780808367261
1226 => 0.014966689285769
1227 => 0.014931751377064
1228 => 0.015138350194922
1229 => 0.015077563581802
1230 => 0.014989493316519
1231 => 0.015316996387651
]
'min_raw' => 0.0056459787863142
'max_raw' => 0.015316996387651
'avg_raw' => 0.010481487586983
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.005645'
'max' => '$0.015316'
'avg' => '$0.010481'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0019471521693855
'max_diff' => 0.0070596265297051
'year' => 2032
]
7 => [
'items' => [
101 => 0.014941540544733
102 => 0.014408628244286
103 => 0.014116262016451
104 => 0.014501273449775
105 => 0.014736386497059
106 => 0.014891781265315
107 => 0.014938803628297
108 => 0.013756968790112
109 => 0.013120025359895
110 => 0.013528298796092
111 => 0.014026420565781
112 => 0.013701546451835
113 => 0.013714280902034
114 => 0.013251095790963
115 => 0.014067402170401
116 => 0.013948473197134
117 => 0.014565476920824
118 => 0.014418224030401
119 => 0.014921366615124
120 => 0.014788872310422
121 => 0.015338848761583
122 => 0.015558249257968
123 => 0.015926656838361
124 => 0.016197658954186
125 => 0.016356796580043
126 => 0.016347242553896
127 => 0.016977825109592
128 => 0.016605992607375
129 => 0.016138883350398
130 => 0.01613043481765
131 => 0.016372357320828
201 => 0.016879360519291
202 => 0.017010819072056
203 => 0.017084286469146
204 => 0.016971768593084
205 => 0.016568171061402
206 => 0.016393899693508
207 => 0.016542383948082
208 => 0.016360800464136
209 => 0.016674264500753
210 => 0.017104717575334
211 => 0.017015830717629
212 => 0.017312966156275
213 => 0.017620470075713
214 => 0.018060214491375
215 => 0.018175179965318
216 => 0.018365213521999
217 => 0.018560820474596
218 => 0.018623644156015
219 => 0.018743594056888
220 => 0.018742961861701
221 => 0.019104438961539
222 => 0.019503159396674
223 => 0.019653667130539
224 => 0.019999751365515
225 => 0.019407094241356
226 => 0.019856631477985
227 => 0.020262125318071
228 => 0.019778678845372
301 => 0.020444997179406
302 => 0.020470868810407
303 => 0.020861499722303
304 => 0.020465520457268
305 => 0.020230389233702
306 => 0.020909204265887
307 => 0.021237661477488
308 => 0.02113872749228
309 => 0.020385834979876
310 => 0.019947619244578
311 => 0.0188007241398
312 => 0.020159270933591
313 => 0.020820979447493
314 => 0.020384121314682
315 => 0.020604447146352
316 => 0.021806473443052
317 => 0.022264127231396
318 => 0.022168938442662
319 => 0.022185023781017
320 => 0.022431965458204
321 => 0.023527040848115
322 => 0.022870846290832
323 => 0.023372482442734
324 => 0.023638548448919
325 => 0.023885685383484
326 => 0.023278795180624
327 => 0.02248923994369
328 => 0.022239154656879
329 => 0.020340684382907
330 => 0.020241860760508
331 => 0.020186388066593
401 => 0.01983664057823
402 => 0.019561834856276
403 => 0.019343299143296
404 => 0.018769796172148
405 => 0.018963336589554
406 => 0.018049292552916
407 => 0.018634065535825
408 => 0.017175229182987
409 => 0.018390191447187
410 => 0.017728942724338
411 => 0.018172953457504
412 => 0.018171404345884
413 => 0.017353839812395
414 => 0.016882285651616
415 => 0.017182778316027
416 => 0.017504930305413
417 => 0.017557198381842
418 => 0.017974876845109
419 => 0.018091441926238
420 => 0.017738244288513
421 => 0.017144998042148
422 => 0.017282795614672
423 => 0.016879493188207
424 => 0.016172721198629
425 => 0.016680337180599
426 => 0.016853659595142
427 => 0.016930208647365
428 => 0.016235179568927
429 => 0.016016786342667
430 => 0.015900515621502
501 => 0.017055278515923
502 => 0.017118539034009
503 => 0.016794889279344
504 => 0.018257816860159
505 => 0.017926711292975
506 => 0.018296637334353
507 => 0.017270291929291
508 => 0.017309499705922
509 => 0.016823611343251
510 => 0.017095676359275
511 => 0.016903389575014
512 => 0.017073696194579
513 => 0.017175777280146
514 => 0.017661585913317
515 => 0.018395738601413
516 => 0.017589022303812
517 => 0.017237524460557
518 => 0.017455591745613
519 => 0.018036333662289
520 => 0.018916187393685
521 => 0.018395296275992
522 => 0.01862645890872
523 => 0.018676957660261
524 => 0.018292871834511
525 => 0.018930349185935
526 => 0.01927197847742
527 => 0.019622419440262
528 => 0.019926697509165
529 => 0.019482445613341
530 => 0.01995785882288
531 => 0.01957475969772
601 => 0.019231080178392
602 => 0.019231601398358
603 => 0.019016006215526
604 => 0.01859826338205
605 => 0.018521225194232
606 => 0.018921987576112
607 => 0.019243361054041
608 => 0.019269830912958
609 => 0.019447759783105
610 => 0.019553056255645
611 => 0.020585104830149
612 => 0.021000203304368
613 => 0.021507777861231
614 => 0.021705506756464
615 => 0.022300599841383
616 => 0.021820013844214
617 => 0.021716036040698
618 => 0.020272534870151
619 => 0.020508908105962
620 => 0.02088736446312
621 => 0.020278775476086
622 => 0.020664785110484
623 => 0.020740991589116
624 => 0.020258095855187
625 => 0.020516031331371
626 => 0.019831031179164
627 => 0.018410669732841
628 => 0.018931930454257
629 => 0.01931575379968
630 => 0.018767990560684
701 => 0.019749834965219
702 => 0.019176261733472
703 => 0.018994466555379
704 => 0.018285218750976
705 => 0.018619956413203
706 => 0.019072693894346
707 => 0.018792954767381
708 => 0.019373455458874
709 => 0.020195599251908
710 => 0.020781507878334
711 => 0.020826486667414
712 => 0.020449786673452
713 => 0.021053450817844
714 => 0.0210578478521
715 => 0.020376912231186
716 => 0.019959842954841
717 => 0.019865083937735
718 => 0.020101810541067
719 => 0.020389240339654
720 => 0.020842437020826
721 => 0.021116294283715
722 => 0.021830368782659
723 => 0.022023576867953
724 => 0.022235853976659
725 => 0.022519521657728
726 => 0.02286013743975
727 => 0.022114889499952
728 => 0.022144499589916
729 => 0.021450535027035
730 => 0.020708934367012
731 => 0.021271716826143
801 => 0.022007480027642
802 => 0.021838695136272
803 => 0.02181970338803
804 => 0.021851642240701
805 => 0.021724383944607
806 => 0.021148799387787
807 => 0.020859744426702
808 => 0.021232699072287
809 => 0.021430907868114
810 => 0.021738312424818
811 => 0.021700418324681
812 => 0.022492259449911
813 => 0.022799944967143
814 => 0.02272122584523
815 => 0.022735712058143
816 => 0.023292761990115
817 => 0.023912316080524
818 => 0.024492610243555
819 => 0.025082910390405
820 => 0.024371280523571
821 => 0.024009958764421
822 => 0.024382750589675
823 => 0.02418494199977
824 => 0.025321608831201
825 => 0.025400309176418
826 => 0.026536893813898
827 => 0.027615647976849
828 => 0.026938101814988
829 => 0.027576997328273
830 => 0.028268014915807
831 => 0.029601099955722
901 => 0.029152163812776
902 => 0.028808285763005
903 => 0.028483322667579
904 => 0.029159519282723
905 => 0.030029435425601
906 => 0.030216807030823
907 => 0.030520420612746
908 => 0.030201208055457
909 => 0.030585664420602
910 => 0.031942964328253
911 => 0.031576209911988
912 => 0.031055359682177
913 => 0.032126817602798
914 => 0.032514574059084
915 => 0.035236051938929
916 => 0.038672030180878
917 => 0.037249512626861
918 => 0.036366510076729
919 => 0.036574036621111
920 => 0.037828739559866
921 => 0.038231710321514
922 => 0.037136296879004
923 => 0.037523215425558
924 => 0.039655174658064
925 => 0.040798902384862
926 => 0.039245566508743
927 => 0.034959974432726
928 => 0.031008462817729
929 => 0.032056581636913
930 => 0.031937757489731
1001 => 0.034228281717728
1002 => 0.031567462940454
1003 => 0.031612264304613
1004 => 0.033950154147937
1005 => 0.033326445219317
1006 => 0.032316116633556
1007 => 0.031015839334501
1008 => 0.028612156486105
1009 => 0.026483147555625
1010 => 0.03065862434977
1011 => 0.030478570197795
1012 => 0.030217825103204
1013 => 0.03079808509565
1014 => 0.033615662909293
1015 => 0.033550708621079
1016 => 0.033137502579431
1017 => 0.03345091572019
1018 => 0.032261173794651
1019 => 0.032567797378783
1020 => 0.0310078368781
1021 => 0.031713004174114
1022 => 0.032313948922173
1023 => 0.032434597477485
1024 => 0.032706424833071
1025 => 0.030383689841428
1026 => 0.031426529660759
1027 => 0.032039100353739
1028 => 0.029271483677343
1029 => 0.031984393470613
1030 => 0.030343256192842
1031 => 0.029786229551712
1101 => 0.030536192541314
1102 => 0.030243931234903
1103 => 0.029992662125811
1104 => 0.029852449645586
1105 => 0.030403139694755
1106 => 0.030377449345745
1107 => 0.029476413540972
1108 => 0.028301049064563
1109 => 0.02869553996287
1110 => 0.028552217721143
1111 => 0.028032799428189
1112 => 0.028382824642836
1113 => 0.026841490741236
1114 => 0.024189705875098
1115 => 0.025941556184036
1116 => 0.025874111852788
1117 => 0.025840103362616
1118 => 0.027156570452197
1119 => 0.027030022517597
1120 => 0.026800336777137
1121 => 0.028028581069443
1122 => 0.027580255380535
1123 => 0.028961889514934
1124 => 0.029871923114343
1125 => 0.02964110915703
1126 => 0.030497000155847
1127 => 0.028704628236407
1128 => 0.029299982290565
1129 => 0.029422683936002
1130 => 0.028013424725532
1201 => 0.027050727324742
1202 => 0.026986526383664
1203 => 0.025317341758569
1204 => 0.026209006712107
1205 => 0.026993634971618
1206 => 0.026617858924925
1207 => 0.026498899454532
1208 => 0.027106637589608
1209 => 0.027153864047628
1210 => 0.026077095799924
1211 => 0.026300990015438
1212 => 0.027234666113445
1213 => 0.026277463773334
1214 => 0.024417775984612
1215 => 0.023956547700814
1216 => 0.023895011345632
1217 => 0.022644123659495
1218 => 0.023987369180187
1219 => 0.023401006513663
1220 => 0.025253319151508
1221 => 0.024195288106923
1222 => 0.024149678503251
1223 => 0.024080732897826
1224 => 0.023004042192848
1225 => 0.023239769029974
1226 => 0.024023360938793
1227 => 0.024302955359654
1228 => 0.024273791370908
1229 => 0.024019520910952
1230 => 0.024135924625445
1231 => 0.023760947703322
]
'min_raw' => 0.013120025359895
'max_raw' => 0.040798902384862
'avg_raw' => 0.026959463872378
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.01312'
'max' => '$0.040798'
'avg' => '$0.026959'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0074740465735804
'max_diff' => 0.02548190599721
'year' => 2033
]
8 => [
'items' => [
101 => 0.023628535547651
102 => 0.02321060636152
103 => 0.022596365913791
104 => 0.022681779815403
105 => 0.021464808763697
106 => 0.020801738345185
107 => 0.020618209192469
108 => 0.020372786339245
109 => 0.020645930356785
110 => 0.021461361237612
111 => 0.020477778592023
112 => 0.018791495136463
113 => 0.018892843645429
114 => 0.019120543654434
115 => 0.018696226194039
116 => 0.018294645328041
117 => 0.018643787309741
118 => 0.017929286779738
119 => 0.019206887629918
120 => 0.019172332107356
121 => 0.019648542697997
122 => 0.019946326953149
123 => 0.01926003065382
124 => 0.019087428990481
125 => 0.019185750742227
126 => 0.017560711200274
127 => 0.019515742298244
128 => 0.019532649488363
129 => 0.019387879861906
130 => 0.020428873566762
131 => 0.022625694978086
201 => 0.021799162396209
202 => 0.021479103998427
203 => 0.020870672750282
204 => 0.021681371263362
205 => 0.021619122266425
206 => 0.021337608695041
207 => 0.021167348408693
208 => 0.021481058206755
209 => 0.02112847629304
210 => 0.021065142893034
211 => 0.020681411396415
212 => 0.020544436710793
213 => 0.020443026106677
214 => 0.020331382995946
215 => 0.020577639878489
216 => 0.020019589384857
217 => 0.0193466351959
218 => 0.019290686336554
219 => 0.019445166056283
220 => 0.019376820279966
221 => 0.019290359123271
222 => 0.019125281228847
223 => 0.019076306143902
224 => 0.019235451410639
225 => 0.019055785683239
226 => 0.019320892250916
227 => 0.019248797933523
228 => 0.018846084937087
301 => 0.018344155440079
302 => 0.018339687214723
303 => 0.018231547327922
304 => 0.01809381492314
305 => 0.01805550091902
306 => 0.018614383545879
307 => 0.019771253857526
308 => 0.019544132533789
309 => 0.019708250966519
310 => 0.020515551221564
311 => 0.020772167696277
312 => 0.02059002740082
313 => 0.020340702530474
314 => 0.020351671559424
315 => 0.021203690117167
316 => 0.021256829469506
317 => 0.021391095469462
318 => 0.021563665222973
319 => 0.020619416776055
320 => 0.020307197542489
321 => 0.020159250748362
322 => 0.019703631885065
323 => 0.020194977767321
324 => 0.019908691563259
325 => 0.019947321353116
326 => 0.019922163651794
327 => 0.019935901457872
328 => 0.019206530514443
329 => 0.019472274951621
330 => 0.019030423282832
331 => 0.018438833498501
401 => 0.018436850282106
402 => 0.018581641043716
403 => 0.018495513833048
404 => 0.018263747723671
405 => 0.018296669005603
406 => 0.018008243934479
407 => 0.018331689031341
408 => 0.018340964279377
409 => 0.018216420298912
410 => 0.01871473209745
411 => 0.018918890847895
412 => 0.018836913331962
413 => 0.018913139086842
414 => 0.019553570450182
415 => 0.019657988706386
416 => 0.019704364398309
417 => 0.019642227114734
418 => 0.018924844996507
419 => 0.018956663943995
420 => 0.018723197619534
421 => 0.018525943177439
422 => 0.01853383232066
423 => 0.018635246745179
424 => 0.019078129484931
425 => 0.020010150101376
426 => 0.020045519602472
427 => 0.020088388469602
428 => 0.01991401924282
429 => 0.019861427815534
430 => 0.019930809483124
501 => 0.020280827423345
502 => 0.021181168594537
503 => 0.020862927892872
504 => 0.020604193248708
505 => 0.020831173285999
506 => 0.020796231488387
507 => 0.020501287552353
508 => 0.02049300945841
509 => 0.019926917745881
510 => 0.019717646529044
511 => 0.019542763836576
512 => 0.019351796501829
513 => 0.019238584664508
514 => 0.019412529500493
515 => 0.019452312742537
516 => 0.019071979318621
517 => 0.019020141278321
518 => 0.019330729762359
519 => 0.01919405135044
520 => 0.01933462848656
521 => 0.019367243587988
522 => 0.019361991805469
523 => 0.019219283846009
524 => 0.019310241643756
525 => 0.019095099336261
526 => 0.018861164390189
527 => 0.018711928469258
528 => 0.018581700334972
529 => 0.018653958472777
530 => 0.018396371405317
531 => 0.018313964118233
601 => 0.019279427188495
602 => 0.019992625138974
603 => 0.019982254958317
604 => 0.019919129150559
605 => 0.019825337004834
606 => 0.02027396594369
607 => 0.020117672592011
608 => 0.020231389064104
609 => 0.020260334678917
610 => 0.020347944337094
611 => 0.020379257259588
612 => 0.020284607859588
613 => 0.01996695291274
614 => 0.019175386986921
615 => 0.018806910911661
616 => 0.01868530766937
617 => 0.01868972771627
618 => 0.018567803090815
619 => 0.01860371535729
620 => 0.018555314270105
621 => 0.018463654320456
622 => 0.018648298729178
623 => 0.018669577277201
624 => 0.018626479065869
625 => 0.018636630254816
626 => 0.018279795472474
627 => 0.018306924845971
628 => 0.018155865046906
629 => 0.018127543155634
630 => 0.017745677137878
701 => 0.017069146135059
702 => 0.017444009983074
703 => 0.016991227168505
704 => 0.016819751455849
705 => 0.01763149080962
706 => 0.017550014692646
707 => 0.017410562997204
708 => 0.017204284875365
709 => 0.01712777431343
710 => 0.016662920359416
711 => 0.016635454307914
712 => 0.016865848479636
713 => 0.016759529496765
714 => 0.016610217378668
715 => 0.016069424022446
716 => 0.015461393239525
717 => 0.015479745866916
718 => 0.015673149146148
719 => 0.016235495264502
720 => 0.016015776907374
721 => 0.015856368718301
722 => 0.01582651635628
723 => 0.016200181167125
724 => 0.016728995159668
725 => 0.016977102853423
726 => 0.016731235664054
727 => 0.016448796675337
728 => 0.016465987427884
729 => 0.016580349802986
730 => 0.016592367671613
731 => 0.016408528925155
801 => 0.016460278455441
802 => 0.01638166618686
803 => 0.015899222839686
804 => 0.01589049696938
805 => 0.015772097591533
806 => 0.015768512505427
807 => 0.015567085627601
808 => 0.015538904614995
809 => 0.015138959323334
810 => 0.015402204525451
811 => 0.015225633464865
812 => 0.014959499227658
813 => 0.014913617584851
814 => 0.014912238327265
815 => 0.01518549868235
816 => 0.015399011319102
817 => 0.01522870499406
818 => 0.015189929545097
819 => 0.015603949895172
820 => 0.015551262031746
821 => 0.015505634681819
822 => 0.016681645666718
823 => 0.015750741206889
824 => 0.015344813728234
825 => 0.014842401389862
826 => 0.015005989380619
827 => 0.015040459773879
828 => 0.013832248666724
829 => 0.013342077571024
830 => 0.013173869322688
831 => 0.013077063097655
901 => 0.013121178910018
902 => 0.012679967432554
903 => 0.012976468842374
904 => 0.012594416997567
905 => 0.012530364762481
906 => 0.013213520788138
907 => 0.013308577958168
908 => 0.01290303453887
909 => 0.013163459065575
910 => 0.01306902551202
911 => 0.012600966179891
912 => 0.012583089756215
913 => 0.012348234036434
914 => 0.011980730312005
915 => 0.0118127712485
916 => 0.011725296709939
917 => 0.011761390409394
918 => 0.011743140330464
919 => 0.011624046220617
920 => 0.011749966665434
921 => 0.011428291962847
922 => 0.011300198504368
923 => 0.011242341660919
924 => 0.010956836847469
925 => 0.011411201970235
926 => 0.011500717623361
927 => 0.011590409649976
928 => 0.012371117506316
929 => 0.012332115548071
930 => 0.012684674255884
1001 => 0.012670974472812
1002 => 0.012570419018272
1003 => 0.012146192096134
1004 => 0.01231528138618
1005 => 0.011794850833728
1006 => 0.012184792789463
1007 => 0.012006839565231
1008 => 0.012124626625345
1009 => 0.011912834870828
1010 => 0.012030049172445
1011 => 0.011521945105529
1012 => 0.01104748467706
1013 => 0.011238421403839
1014 => 0.011445991462111
1015 => 0.011896056236313
1016 => 0.011628001369753
1017 => 0.011724404036045
1018 => 0.011401471241578
1019 => 0.0107351686454
1020 => 0.010738939845734
1021 => 0.010636443707504
1022 => 0.010547872079391
1023 => 0.011658790695718
1024 => 0.011520630404753
1025 => 0.011300490063073
1026 => 0.011595156658441
1027 => 0.011673071183244
1028 => 0.011675289300231
1029 => 0.011890270441766
1030 => 0.012005005915541
1031 => 0.012025228540086
1101 => 0.012363506011266
1102 => 0.012476892157618
1103 => 0.012943913647434
1104 => 0.011995271412203
1105 => 0.01197573474964
1106 => 0.011599303221724
1107 => 0.011360564395572
1108 => 0.0116156498734
1109 => 0.011841620784116
1110 => 0.011606324767811
1111 => 0.011637049460171
1112 => 0.011321183782673
1113 => 0.011434090899517
1114 => 0.011531341718774
1115 => 0.011477645532519
1116 => 0.011397259742771
1117 => 0.011823093746375
1118 => 0.011799066523035
1119 => 0.012195612937073
1120 => 0.012504749224122
1121 => 0.013058776715235
1122 => 0.012480620146153
1123 => 0.012459549822811
1124 => 0.012665515613261
1125 => 0.012476860625329
1126 => 0.012596084065553
1127 => 0.013039567975828
1128 => 0.013048938092019
1129 => 0.012891976573102
1130 => 0.012882425450411
1201 => 0.01291257162709
1202 => 0.013089138725497
1203 => 0.013027440755955
1204 => 0.013098839208311
1205 => 0.013188124066274
1206 => 0.013557444094804
1207 => 0.013646485903355
1208 => 0.01343016047146
1209 => 0.013449692235867
1210 => 0.013368780586072
1211 => 0.01329062094619
1212 => 0.013466312402346
1213 => 0.013787391991694
1214 => 0.013785394572233
1215 => 0.013859878796066
1216 => 0.013906281850454
1217 => 0.01370708597191
1218 => 0.013577416779614
1219 => 0.013627140199005
1220 => 0.013706649029448
1221 => 0.013601356556886
1222 => 0.012951442640019
1223 => 0.013148585005735
1224 => 0.013115770876311
1225 => 0.013069039565676
1226 => 0.01326726773886
1227 => 0.013248148147975
1228 => 0.012675442171136
1229 => 0.012712104949633
1230 => 0.012677671756127
1231 => 0.012788932448713
]
'min_raw' => 0.010547872079391
'max_raw' => 0.023628535547651
'avg_raw' => 0.017088203813521
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.010547'
'max' => '$0.023628'
'avg' => '$0.017088'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0025721532805035
'max_diff' => -0.017170366837211
'year' => 2034
]
9 => [
'items' => [
101 => 0.012470852182803
102 => 0.012568691530294
103 => 0.012630055451853
104 => 0.012666199273071
105 => 0.012796775539362
106 => 0.012781453921618
107 => 0.01279582312609
108 => 0.012989433258143
109 => 0.013968646867092
110 => 0.014021943303314
111 => 0.013759492159101
112 => 0.013864336214594
113 => 0.013663058554922
114 => 0.013798177596303
115 => 0.013890622612765
116 => 0.013472881359529
117 => 0.013448145433631
118 => 0.013246037029458
119 => 0.013354638637856
120 => 0.013181845670164
121 => 0.013224243020394
122 => 0.013105696333016
123 => 0.013319056767886
124 => 0.013557626886931
125 => 0.013617899120421
126 => 0.013459348822937
127 => 0.013344547958584
128 => 0.013142995458536
129 => 0.013478181758006
130 => 0.013576200446588
131 => 0.013477666907563
201 => 0.01345483453357
202 => 0.013411567226111
203 => 0.013464013897385
204 => 0.01357566661576
205 => 0.013523013255676
206 => 0.013557791727644
207 => 0.013425252055907
208 => 0.013707151914035
209 => 0.014154876731637
210 => 0.014156316240136
211 => 0.014103662596231
212 => 0.014082117859584
213 => 0.01413614369352
214 => 0.014165450492175
215 => 0.014340160132482
216 => 0.014527630537271
217 => 0.015402473116673
218 => 0.015156820821116
219 => 0.01593303320218
220 => 0.016546916417039
221 => 0.016730993151315
222 => 0.016561651217261
223 => 0.015982341608531
224 => 0.015953917915384
225 => 0.016819651049034
226 => 0.016575041785689
227 => 0.016545946292154
228 => 0.016236419398556
301 => 0.016419388128324
302 => 0.016379370183134
303 => 0.016316199898908
304 => 0.016665291489593
305 => 0.017318759783733
306 => 0.017216910621904
307 => 0.017140884947246
308 => 0.016807762571634
309 => 0.017008376647329
310 => 0.016936941817483
311 => 0.017243871180162
312 => 0.017062053025029
313 => 0.016573188629939
314 => 0.016651041896175
315 => 0.016639274531603
316 => 0.016881446060662
317 => 0.016808752178705
318 => 0.016625079884455
319 => 0.017316526300145
320 => 0.017271627615937
321 => 0.017335283684876
322 => 0.017363307055052
323 => 0.017784178303629
324 => 0.017956595787794
325 => 0.017995737575292
326 => 0.018159520850001
327 => 0.017991662498214
328 => 0.01866321558634
329 => 0.019109759203734
330 => 0.019628442594263
331 => 0.020386378436777
401 => 0.020671369324861
402 => 0.020619888271783
403 => 0.021194546577375
404 => 0.022227194778587
405 => 0.02082861599779
406 => 0.022301322849984
407 => 0.021835080863798
408 => 0.020729629501885
409 => 0.020658451466593
410 => 0.021407075963435
411 => 0.023067453044992
412 => 0.022651547417903
413 => 0.023068133317604
414 => 0.02258216373734
415 => 0.022558031251606
416 => 0.023044530859795
417 => 0.02418126371204
418 => 0.023641244543732
419 => 0.02286699464783
420 => 0.023438688722301
421 => 0.022943434407205
422 => 0.02182748782234
423 => 0.022651229382708
424 => 0.022100416860099
425 => 0.022261173237
426 => 0.023418899232346
427 => 0.023279598577623
428 => 0.023459866523727
429 => 0.023141698317286
430 => 0.022844479041949
501 => 0.022289697192738
502 => 0.022125453637602
503 => 0.022170844647377
504 => 0.022125431144071
505 => 0.021815035798147
506 => 0.021748005952747
507 => 0.021636286607103
508 => 0.021670913103826
509 => 0.021460848049368
510 => 0.021857284208786
511 => 0.021930866253357
512 => 0.022219359430149
513 => 0.022249311748803
514 => 0.023052761139725
515 => 0.022610234716623
516 => 0.022907119647133
517 => 0.022880563464559
518 => 0.020753587984919
519 => 0.02104666643955
520 => 0.02150260454187
521 => 0.021297205044784
522 => 0.021006818211985
523 => 0.020772315274943
524 => 0.020417019346168
525 => 0.020917091543065
526 => 0.021574633305235
527 => 0.022265988093
528 => 0.02309660557114
529 => 0.022911221419472
530 => 0.022250460277012
531 => 0.022280101539176
601 => 0.02246333215847
602 => 0.022226031858228
603 => 0.022156047367034
604 => 0.022453717364065
605 => 0.022455767253738
606 => 0.02218272457961
607 => 0.021879287613597
608 => 0.02187801620163
609 => 0.021824022524382
610 => 0.022591769092574
611 => 0.023013952077147
612 => 0.023062354675946
613 => 0.023010694196596
614 => 0.023030576264767
615 => 0.022784917288211
616 => 0.023346420860711
617 => 0.023861712065784
618 => 0.023723603015234
619 => 0.0235165579151
620 => 0.0233516365202
621 => 0.023684752775873
622 => 0.023669919633381
623 => 0.023857211446638
624 => 0.023848714808139
625 => 0.023785735615742
626 => 0.023723605264419
627 => 0.023969945084518
628 => 0.023899003172426
629 => 0.02382795106795
630 => 0.02368544519489
701 => 0.023704814109811
702 => 0.023497804758932
703 => 0.023402032761113
704 => 0.02196185170306
705 => 0.021576988265075
706 => 0.021698074137283
707 => 0.021737938750407
708 => 0.02157044568898
709 => 0.021810587713629
710 => 0.021773161833461
711 => 0.021918764039788
712 => 0.021827798102587
713 => 0.02183153137638
714 => 0.022099042801704
715 => 0.02217670250655
716 => 0.022137204153874
717 => 0.022164867446164
718 => 0.022802356341032
719 => 0.022711725805929
720 => 0.022663580140489
721 => 0.02267691681885
722 => 0.022839808899404
723 => 0.022885409788382
724 => 0.022692195617467
725 => 0.022783316537428
726 => 0.023171297849658
727 => 0.023307069351097
728 => 0.023740386809675
729 => 0.023556305851668
730 => 0.023894194416928
731 => 0.024932748671838
801 => 0.025762417673148
802 => 0.024999419772021
803 => 0.026523001235217
804 => 0.027709327949095
805 => 0.027663794753886
806 => 0.02745693125109
807 => 0.026106329827467
808 => 0.024863486261117
809 => 0.025903177678294
810 => 0.025905828065531
811 => 0.025816517650739
812 => 0.025261818334821
813 => 0.025797215316926
814 => 0.025839713185089
815 => 0.025815925680013
816 => 0.02539063901506
817 => 0.02474130488379
818 => 0.024868183218754
819 => 0.025076012519673
820 => 0.0246825482953
821 => 0.024556812634775
822 => 0.024790579149879
823 => 0.025543823568733
824 => 0.025401427074597
825 => 0.025397708526665
826 => 0.026006941114093
827 => 0.025570862062116
828 => 0.024869783560879
829 => 0.024692751993227
830 => 0.024064409190816
831 => 0.024498407802521
901 => 0.024514026639924
902 => 0.024276330035651
903 => 0.024889071330295
904 => 0.024883424811393
905 => 0.025465131476151
906 => 0.026577136140122
907 => 0.02624826164256
908 => 0.025865816383338
909 => 0.025907398787072
910 => 0.026363455121918
911 => 0.026087713051117
912 => 0.026186871822319
913 => 0.026363305033242
914 => 0.026469751569982
915 => 0.025892082768555
916 => 0.025757400537849
917 => 0.025481887960865
918 => 0.025410011872215
919 => 0.025634411117411
920 => 0.025575289844444
921 => 0.024512713937119
922 => 0.024401668842687
923 => 0.024405074437198
924 => 0.024125846267342
925 => 0.023699956285873
926 => 0.024819169728605
927 => 0.024729281225771
928 => 0.024630051275461
929 => 0.024642206378175
930 => 0.025128019000002
1001 => 0.024846223145217
1002 => 0.025595423610595
1003 => 0.025441410517941
1004 => 0.025283447570605
1005 => 0.025261612279614
1006 => 0.025200810021655
1007 => 0.024992296455589
1008 => 0.024740503794842
1009 => 0.024574248470311
1010 => 0.022668445224002
1011 => 0.02302215122097
1012 => 0.023429057729164
1013 => 0.023569520225218
1014 => 0.02332924940601
1015 => 0.025001783811999
1016 => 0.025307371964916
1017 => 0.024381725516709
1018 => 0.024208574860145
1019 => 0.025013135540217
1020 => 0.024527887096591
1021 => 0.024746394441044
1022 => 0.024274101079464
1023 => 0.025233764727544
1024 => 0.025226453698422
1025 => 0.024853122864332
1026 => 0.025168659528846
1027 => 0.025113827268411
1028 => 0.024692337676197
1029 => 0.025247126699415
1030 => 0.025247401867849
1031 => 0.02488807905695
1101 => 0.024468468679697
1102 => 0.024393452254999
1103 => 0.024336937456028
1104 => 0.024732495264917
1105 => 0.02508715115949
1106 => 0.025747077852637
1107 => 0.025912999102766
1108 => 0.026560600788022
1109 => 0.026174985515606
1110 => 0.026345923771314
1111 => 0.026531501428578
1112 => 0.026620474181863
1113 => 0.026475497854927
1114 => 0.027481489835617
1115 => 0.027566426381585
1116 => 0.02759490487075
1117 => 0.027255690035011
1118 => 0.027556992203368
1119 => 0.027416022896873
1120 => 0.027782785869972
1121 => 0.027840298987219
1122 => 0.027791587423
1123 => 0.027809842994196
1124 => 0.026951406307823
1125 => 0.026906891837021
1126 => 0.026299933869023
1127 => 0.026547273727389
1128 => 0.026084883717482
1129 => 0.026231512352768
1130 => 0.026296144858073
1201 => 0.026262384505164
1202 => 0.026561257951875
1203 => 0.02630715446636
1204 => 0.025636533589604
1205 => 0.024965730002638
1206 => 0.024957308610029
1207 => 0.024780697866248
1208 => 0.024653040646365
1209 => 0.024677631955797
1210 => 0.024764294937733
1211 => 0.02464800363631
1212 => 0.024672820281587
1213 => 0.025084941945631
1214 => 0.025167590006237
1215 => 0.024886719603614
1216 => 0.023758984407676
1217 => 0.023482235361883
1218 => 0.023681157087827
1219 => 0.023586085315026
1220 => 0.019035811667709
1221 => 0.020104830965983
1222 => 0.019469655999414
1223 => 0.019762373847004
1224 => 0.019114024683897
1225 => 0.019423450887423
1226 => 0.019366311166067
1227 => 0.021085262563111
1228 => 0.021058423501387
1229 => 0.021071269939943
1230 => 0.020458075956448
1231 => 0.021434910622186
]
'min_raw' => 0.012470852182803
'max_raw' => 0.027840298987219
'avg_raw' => 0.020155575585011
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.01247'
'max' => '$0.02784'
'avg' => '$0.020155'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0019229801034117
'max_diff' => 0.0042117634395681
'year' => 2035
]
10 => [
'items' => [
101 => 0.021916134504367
102 => 0.021827072771134
103 => 0.021849487690629
104 => 0.021464325109524
105 => 0.021074999155652
106 => 0.020643176755972
107 => 0.021445449399715
108 => 0.021356250376981
109 => 0.021560840842337
110 => 0.022081171999437
111 => 0.022157792738865
112 => 0.022260771789669
113 => 0.022223861130504
114 => 0.02310322277941
115 => 0.022996726281513
116 => 0.023253352200312
117 => 0.022725453215086
118 => 0.022128085404671
119 => 0.022241625496006
120 => 0.022230690672179
121 => 0.022091477814451
122 => 0.021965802671121
123 => 0.02175658896623
124 => 0.022418572086309
125 => 0.022391696780557
126 => 0.022826776741557
127 => 0.022749872132309
128 => 0.02223628433
129 => 0.022254627218834
130 => 0.022377991961535
131 => 0.022804958744577
201 => 0.022931711555899
202 => 0.022872994603469
203 => 0.023011973274598
204 => 0.023121816349642
205 => 0.02302576787365
206 => 0.024385611745384
207 => 0.023820909761856
208 => 0.024096141579456
209 => 0.024161782746194
210 => 0.023993644277881
211 => 0.024030107491071
212 => 0.024085339323423
213 => 0.024420696193963
214 => 0.025300769658553
215 => 0.025690548205157
216 => 0.02686321619395
217 => 0.025658182522841
218 => 0.025586680811722
219 => 0.025797913727684
220 => 0.026486393976619
221 => 0.027044342552719
222 => 0.027229446284237
223 => 0.027253910798087
224 => 0.027601177703878
225 => 0.027800224618133
226 => 0.027559010367489
227 => 0.027354606546252
228 => 0.02662245743012
229 => 0.026707205683888
301 => 0.027291037111551
302 => 0.028115733390626
303 => 0.028823408593095
304 => 0.028575605402161
305 => 0.030466168827197
306 => 0.03065361046853
307 => 0.030627712094412
308 => 0.031054732048425
309 => 0.03020718440081
310 => 0.029844841360992
311 => 0.027398800972486
312 => 0.028086038548965
313 => 0.029084978726426
314 => 0.028952765248105
315 => 0.028227308189486
316 => 0.028822858268863
317 => 0.028625950788048
318 => 0.02847064168823
319 => 0.029182142782645
320 => 0.028399818102482
321 => 0.029077174439294
322 => 0.028208457930979
323 => 0.028576737346264
324 => 0.028367684138477
325 => 0.028502967184513
326 => 0.027712105261675
327 => 0.02813883515815
328 => 0.027694351895024
329 => 0.027694141152084
330 => 0.027684329159415
331 => 0.028207261747342
401 => 0.028224314560261
402 => 0.027837866587675
403 => 0.027782173397374
404 => 0.027988100311901
405 => 0.027747013827334
406 => 0.027859816676083
407 => 0.027750430510708
408 => 0.027725805380858
409 => 0.027529588156585
410 => 0.027445052381264
411 => 0.027478201036986
412 => 0.027365047585703
413 => 0.027296868538366
414 => 0.027670766630858
415 => 0.027471007963046
416 => 0.027640150750073
417 => 0.027447391196734
418 => 0.026779202603519
419 => 0.026394920277596
420 => 0.02513277396613
421 => 0.025490717094374
422 => 0.025728033758719
423 => 0.025649600602568
424 => 0.025818105371581
425 => 0.02582845019586
426 => 0.025773667577751
427 => 0.025710236324069
428 => 0.025679361497745
429 => 0.025909477157894
430 => 0.026043067043947
501 => 0.025751851660873
502 => 0.025683623971155
503 => 0.025978058801885
504 => 0.026157663878541
505 => 0.027483766853193
506 => 0.027385524861575
507 => 0.02763209298152
508 => 0.02760433319511
509 => 0.027862775866194
510 => 0.028285220407395
511 => 0.027426272537783
512 => 0.027575356187765
513 => 0.027538804319633
514 => 0.027937868031477
515 => 0.027939113864826
516 => 0.027699855234865
517 => 0.027829561219695
518 => 0.02775716289726
519 => 0.027887996451119
520 => 0.027384212779881
521 => 0.027997766911363
522 => 0.028345612567358
523 => 0.028350442404629
524 => 0.028515318484897
525 => 0.028682842131427
526 => 0.029004389182708
527 => 0.028673874358687
528 => 0.028079310365242
529 => 0.028122235965139
530 => 0.027773643313325
531 => 0.02777950321878
601 => 0.02774822258421
602 => 0.027842098123251
603 => 0.027404813181621
604 => 0.027507443083389
605 => 0.027363760619914
606 => 0.02757504385015
607 => 0.027347738020785
608 => 0.027538786693216
609 => 0.027621236966873
610 => 0.027925480251695
611 => 0.027302801040244
612 => 0.02603311597642
613 => 0.026300019170279
614 => 0.025905248381768
615 => 0.025941785921243
616 => 0.026015597565889
617 => 0.025776349875924
618 => 0.025821990795608
619 => 0.025820360180787
620 => 0.025806308423186
621 => 0.025744070858842
622 => 0.025653814077216
623 => 0.026013369315641
624 => 0.026074464757043
625 => 0.026210272355155
626 => 0.026614343647965
627 => 0.026573967397156
628 => 0.02663982273742
629 => 0.026496060899386
630 => 0.02594845462059
701 => 0.025978192276142
702 => 0.025607363234897
703 => 0.026200789422833
704 => 0.026060258268687
705 => 0.0259696569194
706 => 0.025944935501831
707 => 0.026350008409219
708 => 0.02647121257185
709 => 0.026395686271407
710 => 0.026240779625746
711 => 0.026538246179455
712 => 0.026617835680121
713 => 0.026635652834173
714 => 0.027162706533791
715 => 0.026665109281145
716 => 0.026784885885548
717 => 0.027719348761363
718 => 0.026871919880061
719 => 0.027320821858406
720 => 0.027298850442539
721 => 0.027528493504646
722 => 0.027280013008668
723 => 0.027283093222217
724 => 0.027487000703999
725 => 0.027200649420744
726 => 0.027129744816043
727 => 0.027031790612477
728 => 0.027245670032381
729 => 0.027373881071679
730 => 0.02840716788779
731 => 0.029074718294602
801 => 0.029045738170903
802 => 0.02931056225299
803 => 0.029191256578499
804 => 0.028805987084322
805 => 0.029463595132273
806 => 0.029255500430412
807 => 0.029272655504798
808 => 0.029272016992073
809 => 0.029410381776856
810 => 0.029312337645891
811 => 0.029119082599735
812 => 0.029247374318209
813 => 0.029628354856947
814 => 0.030810930139101
815 => 0.031472714934033
816 => 0.030771089863484
817 => 0.031255061442015
818 => 0.030964850951602
819 => 0.03091211107248
820 => 0.031216080989016
821 => 0.031520582964651
822 => 0.031501187505202
823 => 0.03128013470724
824 => 0.031155267590678
825 => 0.032100803230836
826 => 0.032797457783724
827 => 0.032749950613649
828 => 0.032959631812203
829 => 0.033575262296354
830 => 0.033631547832493
831 => 0.033624457148647
901 => 0.03348494757454
902 => 0.034091115735907
903 => 0.034596791880634
904 => 0.033452655138953
905 => 0.033888327432336
906 => 0.03408391476132
907 => 0.034371094988414
908 => 0.034855616168516
909 => 0.035381934683003
910 => 0.03545636189174
911 => 0.035403552225471
912 => 0.035056431016966
913 => 0.035632335015803
914 => 0.035969686071711
915 => 0.036170570905363
916 => 0.036679981419455
917 => 0.034085122642078
918 => 0.032248352626601
919 => 0.031961514465404
920 => 0.032544811145552
921 => 0.032698621828403
922 => 0.032636620935008
923 => 0.030569169290765
924 => 0.031950629760366
925 => 0.03343696506916
926 => 0.033494061261662
927 => 0.034238151795051
928 => 0.034480458174023
929 => 0.035079548583577
930 => 0.035042075315344
1001 => 0.03518794429646
1002 => 0.0351544115438
1003 => 0.036264100374129
1004 => 0.037488251944367
1005 => 0.037445863468053
1006 => 0.037269877196327
1007 => 0.037531246819958
1008 => 0.038794702428499
1009 => 0.038678383682528
1010 => 0.038791377436232
1011 => 0.040281062803939
1012 => 0.04221786568723
1013 => 0.041318026296111
1014 => 0.04327041885303
1015 => 0.044499346475728
1016 => 0.046624649725697
1017 => 0.046358551291461
1018 => 0.047185916250478
1019 => 0.045882179557761
1020 => 0.042888536582625
1021 => 0.042414781122604
1022 => 0.043363251550964
1023 => 0.045694973548695
1024 => 0.043289817327361
1025 => 0.043776377298455
1026 => 0.043636247994048
1027 => 0.043628781098927
1028 => 0.043913762115626
1029 => 0.043500382287294
1030 => 0.041816198501057
1031 => 0.042588050005332
1101 => 0.042290001072178
1102 => 0.042620708584532
1103 => 0.044405400634556
1104 => 0.043616345737496
1105 => 0.042785140501057
1106 => 0.043827656326759
1107 => 0.045155137220182
1108 => 0.045072065851584
1109 => 0.044910872675366
1110 => 0.045819510169908
1111 => 0.047320313105085
1112 => 0.047725974107749
1113 => 0.048025424766541
1114 => 0.048066713953128
1115 => 0.048492018236062
1116 => 0.046205049916247
1117 => 0.049834527373305
1118 => 0.050461237867847
1119 => 0.050343442269362
1120 => 0.051040004608037
1121 => 0.050835058297918
1122 => 0.050538123249646
1123 => 0.051642322719504
1124 => 0.050376447131614
1125 => 0.04857969610391
1126 => 0.047593962954405
1127 => 0.048892055882498
1128 => 0.049684755936484
1129 => 0.050208680246976
1130 => 0.050367219426767
1201 => 0.04638258075675
1202 => 0.044235081511803
1203 => 0.045611603906686
1204 => 0.047291056230943
1205 => 0.046195720473788
1206 => 0.046238655561724
1207 => 0.044676994621195
1208 => 0.047429228572163
1209 => 0.047028251235438
1210 => 0.049108522367683
1211 => 0.048612048966754
1212 => 0.05030842931944
1213 => 0.049861715520682
1214 => 0.051715999523897
1215 => 0.052455723615515
1216 => 0.053697835494204
1217 => 0.054611538048472
1218 => 0.055148081664683
1219 => 0.05511586959849
1220 => 0.057241922710886
1221 => 0.055988263469144
1222 => 0.054413371996719
1223 => 0.054384887178702
1224 => 0.055200545788656
1225 => 0.056909942470107
1226 => 0.057353164158897
1227 => 0.057600864617515
1228 => 0.057221502742626
1229 => 0.055860745486282
1230 => 0.055273177402189
1231 => 0.055773802433323
]
'min_raw' => 0.020643176755972
'max_raw' => 0.057600864617515
'avg_raw' => 0.039122020686744
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.020643'
'max' => '$0.05760086'
'avg' => '$0.039122'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.0081723245731693
'max_diff' => 0.029760565630297
'year' => 2036
]
11 => [
'items' => [
101 => 0.055161581039446
102 => 0.056218446924261
103 => 0.057669749518485
104 => 0.05737006127185
105 => 0.058371874148577
106 => 0.059408645082202
107 => 0.060891274081581
108 => 0.061278888203611
109 => 0.061919599607683
110 => 0.062579102105205
111 => 0.062790916533318
112 => 0.063195335998744
113 => 0.063193204508534
114 => 0.064411949788163
115 => 0.065756263572994
116 => 0.066263710905832
117 => 0.067430558066883
118 => 0.065432373194784
119 => 0.066948019373765
120 => 0.06831517016629
121 => 0.06668519663043
122 => 0.068931735414487
123 => 0.069018963424706
124 => 0.070336002817142
125 => 0.06900093107869
126 => 0.068208169742097
127 => 0.070496842016461
128 => 0.071604258437525
129 => 0.071270695599047
130 => 0.068732265928199
131 => 0.067254790981396
201 => 0.063387954061978
202 => 0.067968389427952
203 => 0.070199385881587
204 => 0.068726488186354
205 => 0.069469332110487
206 => 0.073522047692607
207 => 0.075065059392377
208 => 0.074744123745291
209 => 0.074798356586598
210 => 0.07563093769215
211 => 0.079323060824958
212 => 0.077110655061035
213 => 0.078801956370292
214 => 0.079699016486281
215 => 0.080532255915716
216 => 0.078486083225051
217 => 0.075824042618744
218 => 0.074980862613863
219 => 0.068580037538204
220 => 0.068246846795641
221 => 0.068059816735128
222 => 0.06688061865952
223 => 0.065954091981629
224 => 0.06521728356764
225 => 0.063283678259716
226 => 0.063936213289561
227 => 0.060854450003522
228 => 0.062826052942945
301 => 0.057907484326649
302 => 0.062003814426356
303 => 0.05977436819036
304 => 0.061271381377067
305 => 0.061266158439086
306 => 0.058509682533896
307 => 0.056919804757967
308 => 0.057932936755757
309 => 0.059019094679907
310 => 0.059195320148827
311 => 0.060603552249109
312 => 0.06099655955845
313 => 0.05980572906339
314 => 0.057805557924639
315 => 0.058270152061125
316 => 0.056910389772619
317 => 0.054527458664515
318 => 0.056238921388341
319 => 0.05682329000996
320 => 0.057081380484012
321 => 0.054738041420679
322 => 0.054001713410613
323 => 0.053609698556444
324 => 0.057503062277955
325 => 0.057716349531391
326 => 0.056625141787034
327 => 0.061557504264092
328 => 0.060441158727279
329 => 0.061688390203196
330 => 0.058227995012884
331 => 0.058360186769194
401 => 0.056721980230807
402 => 0.057639266427303
403 => 0.056990958109134
404 => 0.057565158767425
405 => 0.057909332274487
406 => 0.059547269999301
407 => 0.062022517044118
408 => 0.059302616723623
409 => 0.058117517204293
410 => 0.058852746280833
411 => 0.060810758199012
412 => 0.063777246483839
413 => 0.062021025713081
414 => 0.062800406668581
415 => 0.062970666735112
416 => 0.061675694557582
417 => 0.063824993955154
418 => 0.064976820963189
419 => 0.066158357136418
420 => 0.067184251889741
421 => 0.065686425606293
422 => 0.067289314434546
423 => 0.065997668986942
424 => 0.064838929492589
425 => 0.064840686822095
426 => 0.064113792610804
427 => 0.062705343481864
428 => 0.062445603853001
429 => 0.063796802203846
430 => 0.064880335322263
501 => 0.06496958029967
502 => 0.065569479907967
503 => 0.065924494316701
504 => 0.069404118140971
505 => 0.070803651628051
506 => 0.072514974684239
507 => 0.073181631459507
508 => 0.075188029343382
509 => 0.073567700100484
510 => 0.073217131676434
511 => 0.0683502666979
512 => 0.069147215565488
513 => 0.070423207596625
514 => 0.068371307336517
515 => 0.06967276576922
516 => 0.069929701232494
517 => 0.068301584550848
518 => 0.069171232017284
519 => 0.066861706178933
520 => 0.062072858396188
521 => 0.0638303253117
522 => 0.065124412518485
523 => 0.063277590514602
524 => 0.066587947474681
525 => 0.064654105278241
526 => 0.064041170142765
527 => 0.061649891652122
528 => 0.062778483050956
529 => 0.06430491907775
530 => 0.063361759080426
531 => 0.06531895769106
601 => 0.068090872889521
602 => 0.070066304730348
603 => 0.070217953858052
604 => 0.068947883528055
605 => 0.070983179337356
606 => 0.070998004245344
607 => 0.068702182258024
608 => 0.067296004073981
609 => 0.066976517431943
610 => 0.067774657702801
611 => 0.068743747336446
612 => 0.070271731588198
613 => 0.07119506047013
614 => 0.07360261249841
615 => 0.074254027047337
616 => 0.074969734140056
617 => 0.075926139531822
618 => 0.077074549421947
619 => 0.074561893961366
620 => 0.07466172644699
621 => 0.07232197647218
622 => 0.069821618070008
623 => 0.071719078423182
624 => 0.074199755426384
625 => 0.073630685380945
626 => 0.073566653375787
627 => 0.073674337447465
628 => 0.073245277217295
629 => 0.071304653697946
630 => 0.070330084715475
701 => 0.071587527341927
702 => 0.072255802135553
703 => 0.073292238060781
704 => 0.073164475456488
705 => 0.075834223094783
706 => 0.076871606298046
707 => 0.076606199282522
708 => 0.076655040560755
709 => 0.078533173298383
710 => 0.080622043170082
711 => 0.082578545455586
712 => 0.084568783614129
713 => 0.082169473833688
714 => 0.080951252296035
715 => 0.082208145962372
716 => 0.081541220490954
717 => 0.085373572072665
718 => 0.085638915781248
719 => 0.089470990240319
720 => 0.093108085216916
721 => 0.090823691027441
722 => 0.092977771856742
723 => 0.095307585898419
724 => 0.099802175183518
725 => 0.098288555633854
726 => 0.097129146780254
727 => 0.096033511015825
728 => 0.098313355114323
729 => 0.10124633812564
730 => 0.10187807457452
731 => 0.10290172896359
801 => 0.10182548153998
802 => 0.10312170301696
803 => 0.10769793441925
804 => 0.10646139629884
805 => 0.10470531338443
806 => 0.10831780857061
807 => 0.10962515653527
808 => 0.11880080921469
809 => 0.13038544974975
810 => 0.12558933249938
811 => 0.12261222775234
812 => 0.12331191798577
813 => 0.12754223654434
814 => 0.12890088060176
815 => 0.12520761770101
816 => 0.12651214059451
817 => 0.13370018999554
818 => 0.13755634787896
819 => 0.13231916752218
820 => 0.11786999462741
821 => 0.10454719733171
822 => 0.10808100310791
823 => 0.10768037919965
824 => 0.11540304155363
825 => 0.10643190527362
826 => 0.10658295620081
827 => 0.11446531503384
828 => 0.11236243683503
829 => 0.10895604346925
830 => 0.10457206777302
831 => 0.096467883229877
901 => 0.089289780978108
902 => 0.10336769251205
903 => 0.10276062736768
904 => 0.10188150707663
905 => 0.10383789415362
906 => 0.11333755446932
907 => 0.11311855655164
908 => 0.1117254035331
909 => 0.11278209781898
910 => 0.10877079985189
911 => 0.10980460267357
912 => 0.10454508693255
913 => 0.10692260770427
914 => 0.10894873487897
915 => 0.10935550990662
916 => 0.11027199481436
917 => 0.10244073162186
918 => 0.10595673888148
919 => 0.10802206374118
920 => 0.098690850887888
921 => 0.10783761566521
922 => 0.10230440675266
923 => 0.10042635254174
924 => 0.10295490512192
925 => 0.10196952572233
926 => 0.10112235437797
927 => 0.10064961821157
928 => 0.1025063081603
929 => 0.10241969135496
930 => 0.09938178623086
1001 => 0.095418962837322
1002 => 0.096749016443437
1003 => 0.096265795499016
1004 => 0.094514540459693
1005 => 0.095694674908857
1006 => 0.090497960047117
1007 => 0.081557282229226
1008 => 0.087463767856092
1009 => 0.087236374584478
1010 => 0.087121712585466
1011 => 0.091560273290784
1012 => 0.091133608093986
1013 => 0.09035920658388
1014 => 0.094500317968667
1015 => 0.092988756607412
1016 => 0.097647032554154
1017 => 0.10071527437108
1018 => 0.09993706899908
1019 => 0.102822765258
1020 => 0.096779658192191
1021 => 0.098786935952078
1022 => 0.099200633116424
1023 => 0.094449217296987
1024 => 0.09120341579684
1025 => 0.090986957841626
1026 => 0.08535918533937
1027 => 0.088365495984283
1028 => 0.091010924942219
1029 => 0.089743969764947
1030 => 0.089342889605033
1031 => 0.091391921158364
1101 => 0.091551148458826
1102 => 0.087920749134133
1103 => 0.088675624113531
1104 => 0.091823578265147
1105 => 0.088596303745729
1106 => 0.082326236526799
1107 => 0.080771173166043
1108 => 0.080563699048214
1109 => 0.076346243880214
1110 => 0.080875089935634
1111 => 0.078898127266915
1112 => 0.08514332864975
1113 => 0.081576103113561
1114 => 0.081422327150419
1115 => 0.081189872228101
1116 => 0.077559734344124
1117 => 0.078354503833417
1118 => 0.080996438662639
1119 => 0.081939110773231
1120 => 0.081840782349012
1121 => 0.080983491740673
1122 => 0.081375954991132
1123 => 0.080111694118143
1124 => 0.079665257290576
1125 => 0.07825617986065
1126 => 0.076185225306234
1127 => 0.076473204238928
1128 => 0.072370101371895
1129 => 0.070134513161784
1130 => 0.069515731809804
1201 => 0.068688271525284
1202 => 0.069609195650729
1203 => 0.072358477797
1204 => 0.069042260235852
1205 => 0.063356837832878
1206 => 0.063698541406785
1207 => 0.064466247884653
1208 => 0.063035631942033
1209 => 0.061681674014838
1210 => 0.062858830582455
1211 => 0.060449842160716
1212 => 0.064757362626342
1213 => 0.064640856269433
1214 => 0.06624643352374
1215 => 0.06725043393062
1216 => 0.064936538041753
1217 => 0.064354599483143
1218 => 0.06468609813376
1219 => 0.059207163861427
1220 => 0.065798687704145
1221 => 0.065855691476056
1222 => 0.065367590572962
1223 => 0.068877373528742
1224 => 0.076284110294195
1225 => 0.073497397987735
1226 => 0.072418298753849
1227 => 0.070366930321414
1228 => 0.073100256959428
1229 => 0.072890380120167
1230 => 0.071941237459598
1231 => 0.071367193016981
]
'min_raw' => 0.053609698556444
'max_raw' => 0.13755634787896
'avg_raw' => 0.095583023217703
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.0536096'
'max' => '$0.137556'
'avg' => '$0.095583'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.032966521800472
'max_diff' => 0.079955483261447
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0016827471792564
]
1 => [
'year' => 2028
'avg' => 0.0028880826646005
]
2 => [
'year' => 2029
'avg' => 0.0078897213134328
]
3 => [
'year' => 2030
'avg' => 0.0060869082435879
]
4 => [
'year' => 2031
'avg' => 0.0059780982374374
]
5 => [
'year' => 2032
'avg' => 0.010481487586983
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0016827471792564
'min' => '$0.001682'
'max_raw' => 0.010481487586983
'max' => '$0.010481'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.010481487586983
]
1 => [
'year' => 2033
'avg' => 0.026959463872378
]
2 => [
'year' => 2034
'avg' => 0.017088203813521
]
3 => [
'year' => 2035
'avg' => 0.020155575585011
]
4 => [
'year' => 2036
'avg' => 0.039122020686744
]
5 => [
'year' => 2037
'avg' => 0.095583023217703
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.010481487586983
'min' => '$0.010481'
'max_raw' => 0.095583023217703
'max' => '$0.095583'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.095583023217703
]
]
]
]
'prediction_2025_max_price' => '$0.002877'
'last_price' => 0.0027898
'sma_50day_nextmonth' => '$0.002734'
'sma_200day_nextmonth' => '$0.002875'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'augmenter'
'sma_200day_date_nextmonth' => '4 févr. 2026'
'sma_50day_date_nextmonth' => '4 févr. 2026'
'daily_sma3' => '$0.0028055'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.002798'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.002788'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.003036'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.003615'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.003525'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.002834'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.002799'
'daily_ema3_action' => 'SELL'
'daily_ema5' => '$0.0028033'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.002847'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.003043'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.003358'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.003357'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.003342'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.003654'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.002981'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.0029062'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.003037'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.003277'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.003352'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.003589'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.003393'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.001696'
'weekly_ema200_action' => 'BUY'
'rsi_14' => '36.64'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 77.33
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => -0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.002792'
'vwma_10_action' => 'SELL'
'hma_9' => '0.0028083'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 18.97
'stochastic_fast_14_action' => 'BUY'
'cci_20' => -48.65
'cci_20_action' => 'NEUTRAL'
'adx_14' => 25.52
'adx_14_action' => 'SELL'
'ao_5_34' => '-0.0006016'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -81.03
'williams_percent_r_14_action' => 'BUY'
'ultimate_oscillator' => 58.23
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.000013'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 27
'buy_signals' => 4
'sell_pct' => 87.1
'buy_pct' => 12.9
'overall_action' => 'bearish'
'overall_action_label' => 'Baissier'
'overall_action_dir' => -1
'last_updated' => 1767711096
'last_updated_date' => '6 janvier 2026'
]
Prévision du prix de FELLA pour 2026
La prévision du prix de FELLA pour 2026 suggère que le prix moyen pourrait varier entre $0.000963 à la baisse et $0.002877 à la hausse. Sur le marché des cryptomonnaies, comparé au prix moyen d'aujourd'hui, FELLA pourrait potentiellement gagner 3.13% d'ici 2026 si FELLA atteint l'objectif de prix prévu.
Prévision du prix de FELLA de 2027 à 2032
La prévision du prix de FELLA pour 2027-2032 se situe actuellement dans une fourchette de prix comprise entre $0.001682 à la baisse et $0.010481 à la hausse. Compte tenu de la volatilité des prix sur le marché, si FELLA atteint l'objectif de prix le plus élevé, il pourrait gagner 275.71% d'ici 2032 par rapport au prix actuel.
| Prévision du Prix de FELLA | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2027 | $0.000927 | $0.001682 | $0.002437 |
| 2028 | $0.001674 | $0.002888 | $0.0041015 |
| 2029 | $0.003678 | $0.007889 | $0.01210086 |
| 2030 | $0.003128 | $0.006086 | $0.009045 |
| 2031 | $0.003698 | $0.005978 | $0.008257 |
| 2032 | $0.005645 | $0.010481 | $0.015316 |
Prévision du prix de FELLA de 2032 à 2037
La prévision du prix de FELLA pour 2032-2037 est actuellement estimée entre $0.010481 à la baisse et $0.095583 à la hausse. Par rapport au prix actuel, FELLA pourrait potentiellement gagner 3326.16% d'ici 2037 s'il atteint l'objectif de prix le plus élevé. Veuillez noter que ces informations sont à titre général seulement et ne doivent pas être considérées comme un conseil en investissement à long terme.
| Prévision du Prix de FELLA | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2032 | $0.005645 | $0.010481 | $0.015316 |
| 2033 | $0.01312 | $0.026959 | $0.040798 |
| 2034 | $0.010547 | $0.017088 | $0.023628 |
| 2035 | $0.01247 | $0.020155 | $0.02784 |
| 2036 | $0.020643 | $0.039122 | $0.05760086 |
| 2037 | $0.0536096 | $0.095583 | $0.137556 |
FELLA Histogramme des prix potentiels
Prévision du prix de FELLA basée sur l'analyse technique
Au 6 janvier 2026, le sentiment global de prévision du prix pour FELLA est Baissier, avec 4 indicateurs techniques montrant des signaux haussiers et 27 indiquant des signaux baissiers. La prévision du prix de FELLA a été mise à jour pour la dernière fois le 6 janvier 2026.
Moyennes Mobiles Simples sur 50 et 200 jours de FELLA et Indice de Force Relative sur 14 jours - RSI (14)
Selon nos indicateurs techniques, le SMA sur 200 jours de FELLA devrait augmenter au cours du prochain mois, atteignant $0.002875 d'ici le 4 févr. 2026. Le SMA à court terme sur 50 jours pour FELLA devrait atteindre $0.002734 d'ici le 4 févr. 2026.
Le Relative Strength Index (RSI), un oscillateur de momentum, est un outil couramment utilisé pour identifier si une cryptomonnaie est survendue (en dessous de 30) ou surachetée (au-dessus de 70). Actuellement, le RSI est à 36.64, ce qui suggère que le marché de FELLA est dans un état NEUTRAL.
Moyennes Mobiles et Oscillateurs Populaires de FELLA pour le Samedi 19 Octobre 2024
Les moyennes mobiles (MA) sont des indicateurs largement utilisés sur les marchés financiers, conçus pour lisser les mouvements de prix sur une période donnée. En tant qu'indicateurs retardés, ils sont basés sur des données historiques de prix. Le tableau ci-dessous met en évidence deux types : la moyenne mobile simple (SMA) et la moyenne mobile exponentielle (EMA).
Moyenne Mobile Simple Quotidienne (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 3 | $0.0028055 | SELL |
| SMA 5 | $0.002798 | SELL |
| SMA 10 | $0.002788 | BUY |
| SMA 21 | $0.003036 | SELL |
| SMA 50 | $0.003615 | SELL |
| SMA 100 | $0.003525 | SELL |
| SMA 200 | $0.002834 | SELL |
Moyenne Mobile Exponentielle Quotidienne (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 3 | $0.002799 | SELL |
| EMA 5 | $0.0028033 | SELL |
| EMA 10 | $0.002847 | SELL |
| EMA 21 | $0.003043 | SELL |
| EMA 50 | $0.003358 | SELL |
| EMA 100 | $0.003357 | SELL |
| EMA 200 | $0.003342 | SELL |
Moyenne Mobile Simple Hebdomadaire (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 21 | $0.003654 | SELL |
| SMA 50 | $0.002981 | SELL |
| SMA 100 | — | — |
| SMA 200 | — | — |
Moyenne Mobile Exponentielle Hebdomadaire (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 21 | $0.003352 | SELL |
| EMA 50 | $0.003589 | SELL |
| EMA 100 | $0.003393 | SELL |
| EMA 200 | $0.001696 | BUY |
Oscillateurs de FELLA
Un oscillateur est un outil d'analyse technique qui établit des limites hautes et basses entre deux extrêmes, créant un indicateur de tendance qui fluctue à l'intérieur de ces limites. Les traders utilisent cet indicateur pour identifier les conditions de surachat ou de survente à court terme.
| Période | Valeur | Action |
|---|---|---|
| RSI (14) | 36.64 | NEUTRAL |
| Stoch RSI (14) | 77.33 | NEUTRAL |
| Stochastique Rapide (14) | 18.97 | BUY |
| Indice de Canal des Matières Premières (20) | -48.65 | NEUTRAL |
| Indice Directionnel Moyen (14) | 25.52 | SELL |
| Oscillateur Impressionnant (5, 34) | -0.0006016 | NEUTRAL |
| Momentum (10) | -0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Plage de Pourcentage de Williams (14) | -81.03 | BUY |
| Oscillateur Ultime (7, 14, 28) | 58.23 | NEUTRAL |
| VWMA (10) | 0.002792 | SELL |
| Moyenne Mobile de Hull (9) | 0.0028083 | SELL |
| Nuage Ichimoku B/L (9, 26, 52, 26) | -0.000013 | SELL |
Prévision du cours de FELLA basée sur les flux monétaires mondiaux
Définitions des flux monétaires mondiaux utilisés pour la prédiction du cours de FELLA
M0 : le total de toutes les devises physiques, plus les comptes à la banque centrale qui peuvent être échangés contre des devises physiques.
M1 : M0 plus le montant des comptes à vue, y compris les comptes de "chèques" et les comptes "courants".
M2 : M1 plus la plupart des comptes d'épargne, comptes du marché monétaire et comptes de certificats de dépôt (CD) de moins de 100 000 $.
Prédictions du cours de FELLA par des sociétés Internet ou des niches technologiques
| Comparaison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Action Facebook | $0.00392 | $0.0055084 | $0.00774 | $0.010876 | $0.015283 | $0.021475 |
| Action Amazon.com | $0.005821 | $0.012146 | $0.025343 | $0.05288 | $0.110338 | $0.230227 |
| Action Apple | $0.003957 | $0.005612 | $0.007961 | $0.011292 | $0.016017 | $0.02272 |
| Action Netflix | $0.0044018 | $0.006945 | $0.010958 | $0.017291 | $0.027283 | $0.043048 |
| Action Google | $0.003612 | $0.004678 | $0.006058 | $0.007845 | $0.01016 | $0.013157 |
| Action Tesla | $0.006324 | $0.014336 | $0.032500061 | $0.073675 | $0.167016 | $0.378612 |
| Action Kodak | $0.002092 | $0.001568 | $0.001176 | $0.000882 | $0.000661 | $0.000496 |
| Action Nokia | $0.001848 | $0.001224 | $0.000811 | $0.000537 | $0.000355 | $0.000235 |
Ce calcul montre la valeur potentielle des cryptomonnaies si l'on suppose que leur capitalisation se comportera comme celle de certaines sociétés Internet ou niches technologiques. En extrapolant les données, vous pourrez obtenir une potentielle image des cours futurs pour 2024, 2025, 2026, 2027, 2028, 2029 et 2030.
Aperçu des prévisions relatives à FELLA
Vous vous posez peut-être des questions telles que : "Devrais-je investir dans FELLA maintenant ?", "Devrais-je acheter FELLA aujourd'hui ?", " FELLA sera-t-il un bon ou un mauvais investissement à court ou à long terme ?".
Nous mettons régulièrement à jour les prévisions de FELLA avec de nouvelles valeurs. Regardez nos prévisions similaires. Nous faisons une prévision des cours futurs pour une grande quantité de devises numériques comme FELLA en utilisant des méthodes d'analyse technique.
Si vous souhaitez trouver des cryptomonnaies ayant un bon rendement, vous devriez consulter un maximum d'informations disponibles à propos de FELLA afin de prendre une décision responsable concernant cet investissement.
Le cours de FELLA est de $0.002789 USD actuellement, mais ce cours peut subir une hausse ou une baisse, ce qui pourrait causer la perte de votre investissement, car les cryptomonnaies sont des actifs à haut risque.
Prévision du cours de FELLA basée sur le modèle de croissance du Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si FELLA présente 1 % de la précédente croissance annuelle moyenne du Bitcoin | $0.002862 | $0.002936 | $0.003013 | $0.003091 |
| Si FELLA présente 2 % de la précédente croissance annuelle moyenne du Bitcoin | $0.002934 | $0.003087 | $0.003247 | $0.003416 |
| Si FELLA présente 5 % de la précédente croissance annuelle moyenne du Bitcoin | $0.003152 | $0.003562 | $0.004025 | $0.004548 |
| Si FELLA présente 10 % de la précédente croissance annuelle moyenne du Bitcoin | $0.003514 | $0.004428 | $0.005579 | $0.00703 |
| Si FELLA présente 20 % de la précédente croissance annuelle moyenne du Bitcoin | $0.00424 | $0.006444 | $0.009794 | $0.014886 |
| Si FELLA présente 50 % de la précédente croissance annuelle moyenne du Bitcoin | $0.006415 | $0.014753 | $0.033928 | $0.078023 |
| Si FELLA présente 100 % de la précédente croissance annuelle moyenne du Bitcoin | $0.010041 | $0.036142 | $0.130087 | $0.468225 |
Boîte à questions
Est-ce que FELLA est un bon investissement ?
La décision d'acquérir FELLA dépend entièrement de votre tolérance individuelle au risque. Comme vous pouvez le discerner, la valeur de FELLA a connu une baisse de 0% au cours des 24 heures précédentes, et FELLA a enregistré une déclin de sur une période de 30 jours précédents. Par conséquent, la détermination de si investir ou non dans FELLA dépendra de la mesure dans laquelle cet investissement s'aligne avec vos aspirations de trading.
Est-ce que FELLA peut monter ?
Il semble que la valeur moyenne de FELLA pourrait potentiellement s'envoler jusqu'à $0.002877 pour la fin de cette année. En regardant les perspectives de FELLA sur une période de cinq ans plus longue, la monnaie numérique pourrait potentiellement croître jusqu'à $0.009045. Cependant, compte tenu de l'imprévisibilité du marché, il est essentiel de mener des recherches approfondies avant d'investir des fonds dans un projet, un réseau ou un actif particulier.
Quel sera le prix de FELLA la semaine prochaine ?
Basé sur notre nouveau pronostic expérimental de FELLA, le prix de FELLA va augmenter de 0.86% durant la prochaine semaine et atteindre $0.002813 d'ici 13 janvier 2026.
Quel sera le prix de FELLA le mois prochain ?
Basé sur notre nouveau pronostic expérimental de FELLA, le prix de FELLA va diminuer de -11.62% durant le prochain mois et atteindre $0.002465 d'ici 5 février 2026.
Jusqu'où le prix de FELLA peut-il monter cette année en 2026 ?
Selon notre prédiction la plus récente sur la valeur de FELLA en 2026, FELLA devrait fluctuer dans la fourchette de $0.000963 et $0.002877. Cependant, il est crucial de garder à l'esprit que le marché des cryptomonnaies est exceptionnellement instable, et cette prévision de prix de FELLA ne prend pas en compte les fluctuations de prix soudaines et extrêmes.
Où sera FELLA dans 5 ans ?
L'avenir de FELLA semble suivre une tendance haussière, avec un prix maximum de $0.009045 prévue après une période de cinq ans. Selon la prévision de FELLA pour 2030, la valeur de FELLA pourrait potentiellement atteindre son point le plus élevé d'environ $0.009045, tandis que son point le plus bas devrait être autour de $0.003128.
Combien vaudra FELLA en 2026 ?
Basé sur notre nouvelle simulation expérimentale de prédiction de prix de FELLA, il est attendu que la valeur de FELLA en 2026 augmente de 3.13% jusqu'à $0.002877 si le meilleur scénario se produit. Le prix sera entre $0.002877 et $0.000963 durant 2026.
Combien vaudra FELLA en 2027 ?
Selon notre dernière simulation expérimentale pour la prédiction de prix de FELLA, le valeur de FELLA pourrait diminuer de -12.62% jusqu'à $0.002437 en 2027, en supposant les conditions les plus favorables. Il est prévu que le prix fluctue entre $0.002437 et $0.000927 tout au long de l'année.
Combien vaudra FELLA en 2028 ?
Notre nouveau modèle expérimental de prédiction de prix de FELLA suggère que la valeur de FELLA en 2028 pourrait augmenter de 47.02%, atteignant $0.0041015 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.0041015 et $0.001674 durant l'année.
Combien vaudra FELLA en 2029 ?
Basé sur notre modèle de prévision expérimental, la valeur de FELLA pourrait connaître un 333.75% croissance en 2029, atteignant potentiellement $0.01210086 sous des conditions optimales. Le range de prix prévu pour 2029 se situe entre $0.01210086 et $0.003678.
Combien vaudra FELLA en 2030 ?
En utilisant notre nouvelle simulation expérimentale pour les prédictions de prix de FELLA, il est prévu que la valeur de FELLA en 2030 augmente de 224.23%, atteignant $0.009045 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.009045 et $0.003128 au cours de 2030.
Combien vaudra FELLA en 2031 ?
Notre simulation expérimentale indique que le prix de FELLA pourrait augmenter de 195.98% en 2031, atteignant potentiellement $0.008257 dans des conditions idéales. Il est probable que le prix fluctue entre $0.008257 et $0.003698 durant l'année.
Combien vaudra FELLA en 2032 ?
Basé sur les résultats de notre dernière prédiction expérimentale de prix de FELLA, FELLA pourrait connaître une 449.04% hausse en valeur, atteignant $0.015316 si le scénario le plus positif se réalise en 2032. Il est prévu que le prix reste dans une fourchette de $0.015316 et $0.005645 tout au long de l'année.
Combien vaudra FELLA en 2033 ?
Selon notre prédiction expérimentale de prix de FELLA, la valeur de FELLA est anticipée à augmenter de 1362.43% en 2033, avec le prix potentiel le plus élevé étant $0.040798. Tout au long de l'année, le prix de FELLA pourrait osciller entre $0.040798 et $0.01312.
Combien vaudra FELLA en 2034 ?
Les résultats de notre nouvelle simulation de prédiction de prix de FELLA suggèrent que FELLA pourrait augmenter de 746.96% en 2034, atteignant potentiellement $0.023628 dans les meilleures circonstances. La fourchette de prix prévue pour l'année est entre $0.023628 et $0.010547.
Combien vaudra FELLA en 2035 ?
Basé sur notre prédiction expérimentale pour le prix de FELLA, FELLA pourrait augmenter de 897.93%, avec la valeur potentiellement atteignant $0.02784 en 2035. La fourchette de prix attendue pour l'année se situe entre $0.02784 et $0.01247.
Combien vaudra FELLA en 2036 ?
Notre récente simulation de prédiction de prix de FELLA suggère que la valeur de FELLA pourrait augmenter de 1964.7% en 2036, pouvant atteindre $0.05760086 si les conditions sont optimales. La fourchette de prix attendue pour 2036 est entre $0.05760086 et $0.020643.
Combien vaudra FELLA en 2037 ?
Selon la simulation expérimentale, la valeur de FELLA pourrait augmenter de 4830.69% en 2037, avec un maximum de $0.137556 sous des conditions favorables. Il est prévu que le prix chute entre $0.137556 et $0.0536096 au cours de l'année.
Prévisions liées
Comment lire et prédire les mouvements de prix de FELLA ?
Les traders de FELLA utilisent des indicateurs et des modèles graphiques pour prédire la direction du marché. Ils identifient également des niveaux clés de support et de résistance pour évaluer quand une tendance baissière pourrait ralentir ou une tendance haussière pourrait s'arrêter.
Indicateurs de prédiction du prix de FELLA
Les moyennes mobiles sont des outils populaires pour la prédiction du prix de FELLA. Une moyenne mobile simple (SMA) calcule le prix de clôture moyen de FELLA sur une période spécifique, comme une SMA de 12 jours. Une moyenne mobile exponentielle (EMA) donne plus de poids aux prix récents, réagissant plus rapidement aux changements de prix.
Les moyennes mobiles couramment utilisées sur le marché des cryptomonnaies incluent les moyennes sur 50 jours, 100 jours et 200 jours, qui aident à identifier les niveaux clés de résistance et de support. Un mouvement de prix de FELLA au-dessus de ces moyennes est considéré comme haussier, tandis qu'une chute en dessous indique une faiblesse.
Les traders utilisent également le RSI et les niveaux de retracement de Fibonacci pour évaluer la direction future de FELLA.
Comment lire les graphiques de FELLA et prédire les mouvements de prix ?
La plupart des traders préfèrent les graphiques en chandeliers aux simples graphiques linéaires parce qu'ils fournissent des informations plus détaillées. Les chandeliers peuvent représenter l'action des prix de FELLA dans différentes périodes, comme 5 minutes pour les tendances à court terme et hebdomadaire pour les tendances à long terme. Les options populaires incluent les graphiques de 1 heure, 4 heures et 1 jour.
Par exemple, un graphique en chandeliers de 1 heure montre les prix d'ouverture, de clôture, les plus hauts et les plus bas de FELLA au sein de chaque heure. La couleur du chandelier est cruciale : le vert indique que le prix a clôturé plus haut qu'il n'a ouvert, tandis que le rouge signifie le contraire. Certains graphiques utilisent des chandeliers creux et pleins pour transmettre la même information.
Qu'est-ce qui affecte le prix de FELLA ?
L'action du prix de FELLA est déterminée par l'offre et la demande, influencée par des facteurs tels que les réductions de récompenses de bloc, les hard forks et les mises à jour de protocole. Les événements du monde réel, tels que les réglementations, l'adoption par les entreprises et les gouvernements et les piratages d'échanges de cryptomonnaies, impactent également le prix de FELLA. La capitalisation boursière de FELLA peut changer rapidement.
Les traders surveillent souvent l'activité des « baleines » de FELLA, de grands détenteurs de FELLA, car leurs actions peuvent influencer significativement les mouvements de prix sur le marché relativement petit de FELLA.
Modèles de prédiction de prix haussiers et baissiers
Les traders identifient souvent des modèles de chandeliers pour obtenir un avantage dans les prédictions de prix des cryptomonnaies. Certaines formations indiquent des tendances haussières, tandis que d'autres suggèrent des mouvements baissiers.
Modèles de chandeliers haussiers couramment suivis :
- Marteau
- Englobante haussière
- Ligne pénétrante
- Étoile du matin
- Trois soldats blancs
Modèles de chandeliers baissiers courants :
- Harami baissier
- Nuage sombre
- Étoile du soir
- Étoile filante
- Pendu


