Prédiction du prix de Fabs jusqu'à $0.001062 d'ici 2026
| Année | Prix min. | Prix max. |
|---|---|---|
| 2026 | $0.000355 | $0.001062 |
| 2027 | $0.000342 | $0.0009001 |
| 2028 | $0.000618 | $0.001514 |
| 2029 | $0.001358 | $0.004468 |
| 2030 | $0.001155 | $0.00334 |
| 2031 | $0.001365 | $0.003049 |
| 2032 | $0.002084 | $0.005655 |
| 2033 | $0.004844 | $0.015065 |
| 2034 | $0.003894 | $0.008725 |
| 2035 | $0.0046049 | $0.01028 |
Calculateur de profit d’investissement
Si vous ouvrez une position short de $10,000.00 sur Fabs aujourd’hui et la fermez le Apr 06, 2026, notre prévision indique que vous pourriez gagner environ $3,962.10, soit un rendement de 39.62% sur les 90 prochains jours.
Prévision du prix à long terme de Fabs pour 2027, 2028, 2029, 2030, 2031, 2032 et 2037
[
'name' => 'Fabs'
'name_with_ticker' => 'Fabs <small>FABS</small>'
'name_lang' => 'Fabs'
'name_lang_with_ticker' => 'Fabs <small>FABS</small>'
'name_with_lang' => 'Fabs'
'name_with_lang_with_ticker' => 'Fabs <small>FABS</small>'
'image' => '/uploads/coins/fabs.png?1717193970'
'price_for_sd' => 0.00103
'ticker' => 'FABS'
'marketcap' => '$54.5K'
'low24h' => '$0'
'high24h' => '$0'
'volume24h' => '$103.02'
'current_supply' => '52.9M'
'max_supply' => '52.9M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.00103'
'change_24h_pct' => '0%'
'ath_price' => '$0.01194'
'ath_days' => 623
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '23 avr. 2024'
'ath_pct' => '-91.37%'
'fdv' => '$54.5K'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.050793'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.0010389'
'next_week_prediction_price_date' => '13 janvier 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.00091'
'next_month_prediction_price_date' => '5 février 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.000355'
'current_year_max_price_prediction' => '$0.001062'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.001155'
'grand_prediction_max_price' => '$0.00334'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0010496809901358
107 => 0.0010536001179188
108 => 0.0010624301129295
109 => 0.00098697877234206
110 => 0.0010208542091308
111 => 0.001040752854545
112 => 0.00095085005064469
113 => 0.0010389757651715
114 => 0.00098566533236651
115 => 0.00096757097077668
116 => 0.00099193264490652
117 => 0.00098243887680562
118 => 0.00097427669248523
119 => 0.00096972205339032
120 => 0.00098761057817142
121 => 0.00098677605710897
122 => 0.00095750695855404
123 => 0.00091932661265023
124 => 0.00093214118996268
125 => 0.00092748553388776
126 => 0.00091061283568068
127 => 0.0009219829970549
128 => 0.0008719145606698
129 => 0.00078577441820009
130 => 0.0008426812348595
131 => 0.00084049038432082
201 => 0.00083938565813205
202 => 0.00088214955806271
203 => 0.00087803879581541
204 => 0.00087057772208386
205 => 0.00091047580721055
206 => 0.00089591246943433
207 => 0.00094079324490671
208 => 0.00097035462633938
209 => 0.00096285690379754
210 => 0.00099065952591752
211 => 0.00093243641194215
212 => 0.00095177579489888
213 => 0.00095576161492304
214 => 0.00090998347103331
215 => 0.00087871136735772
216 => 0.00087662587457064
217 => 0.00082240435635852
218 => 0.00085136905372663
219 => 0.00087685678876996
220 => 0.00086465014161234
221 => 0.00086078588178546
222 => 0.00088052754718533
223 => 0.00088206164366283
224 => 0.00084708408139957
225 => 0.00085435702418944
226 => 0.00088468640464935
227 => 0.00085359280161903
228 => 0.00079318301004233
301 => 0.00077820054650059
302 => 0.00077620160968253
303 => 0.00073556798028318
304 => 0.00077920174635589
305 => 0.00076015443815292
306 => 0.0008203246565443
307 => 0.0007859557504985
308 => 0.00078447417565113
309 => 0.00078223455796955
310 => 0.00074725951459143
311 => 0.00075491682631128
312 => 0.00078037089670955
313 => 0.00078945319578827
314 => 0.00078850583758528
315 => 0.00078024615787817
316 => 0.00078402739695168
317 => 0.00077184670842488
318 => 0.00076754545378696
319 => 0.00075396951099639
320 => 0.00073401662554416
321 => 0.00073679119664445
322 => 0.00069725930960711
323 => 0.00067572023943312
324 => 0.00066975850868935
325 => 0.00066178623318089
326 => 0.00067065899842144
327 => 0.00069714732073805
328 => 0.00066519678421316
329 => 0.00061041983041077
330 => 0.00061371201866968
331 => 0.00062110858822798
401 => 0.00060732512978928
402 => 0.00059428024313504
403 => 0.0006056217137158
404 => 0.0005824119962779
405 => 0.00062391337169462
406 => 0.00062279087579586
407 => 0.00063826002212337
408 => 0.0006479331967808
409 => 0.0006256396609229
410 => 0.00062003289694277
411 => 0.00062322676451907
412 => 0.00057043924791082
413 => 0.0006339461558287
414 => 0.00063449536620555
415 => 0.00062979269352363
416 => 0.00066360816143409
417 => 0.0007349693460341
418 => 0.00070812039789058
419 => 0.00069772367365565
420 => 0.0006779594932851
421 => 0.00070429409014795
422 => 0.00070227200399259
423 => 0.00069312736354465
424 => 0.00068759665646872
425 => 0.00069778715383686
426 => 0.00068633394107157
427 => 0.00068427662934568
428 => 0.00067181155866406
429 => 0.00066736209555529
430 => 0.0006640678902078
501 => 0.00066044129380213
502 => 0.00066844066178151
503 => 0.00065031304153575
504 => 0.00062845290859189
505 => 0.00062663547506753
506 => 0.00063165356881869
507 => 0.00062943343588694
508 => 0.0006266248459252
509 => 0.00062126248281426
510 => 0.000619671584228
511 => 0.00062484123283906
512 => 0.00061900500096642
513 => 0.00062761667901051
514 => 0.0006252747790884
515 => 0.00061219311649561
516 => 0.00059588852145319
517 => 0.00059574337635727
518 => 0.00059223057810028
519 => 0.00058775650136724
520 => 0.00058651191557312
521 => 0.00060466656669742
522 => 0.00064224615120174
523 => 0.0006348683795603
524 => 0.00064019957567569
525 => 0.00066642378408468
526 => 0.00067475967134844
527 => 0.00066884305601493
528 => 0.00066074402802549
529 => 0.00066110034415376
530 => 0.00068877717453619
531 => 0.00069050334449805
601 => 0.00069486481910814
602 => 0.00070047054653468
603 => 0.00066979773563552
604 => 0.00065965565751877
605 => 0.00065484977824599
606 => 0.00064004953019515
607 => 0.00065601032884061
608 => 0.00064671065497944
609 => 0.00064796549870541
610 => 0.00064714828008268
611 => 0.00064759453671077
612 => 0.00062390177121439
613 => 0.00063253416970618
614 => 0.00061818113293236
615 => 0.0005989640278962
616 => 0.00059889960542173
617 => 0.00060360296465448
618 => 0.00060080522254038
619 => 0.00059327657044786
620 => 0.00059434597994336
621 => 0.00058497682747717
622 => 0.00059548356468674
623 => 0.000595784860315
624 => 0.00059173919418347
625 => 0.00060792627250515
626 => 0.00061455813170094
627 => 0.0006118951875866
628 => 0.00061437129244301
629 => 0.00063517495928064
630 => 0.00063856686470279
701 => 0.00064007332503462
702 => 0.00063805486775772
703 => 0.00061475154528297
704 => 0.00061578514672811
705 => 0.00060820126512905
706 => 0.0006017936843476
707 => 0.00060204995397552
708 => 0.00060534428342438
709 => 0.00061973081333743
710 => 0.00065000641740716
711 => 0.00065115535445043
712 => 0.00065254789966373
713 => 0.00064688371844409
714 => 0.00064517534718934
715 => 0.00064742912984239
716 => 0.00065879905491535
717 => 0.00068804558910753
718 => 0.00067770791061368
719 => 0.00066930321708262
720 => 0.00067667639919846
721 => 0.00067554135560464
722 => 0.00066596044540527
723 => 0.00066569154116619
724 => 0.00064730271129133
725 => 0.00064050477957999
726 => 0.00063482391902563
727 => 0.00062862056760288
728 => 0.00062494301294126
729 => 0.00063059340832022
730 => 0.0006318857205969
731 => 0.00061953103234879
801 => 0.00061784713399272
802 => 0.00062793623911059
803 => 0.00062349640010797
804 => 0.00062806288462487
805 => 0.00062912234820338
806 => 0.00062895175016572
807 => 0.00062431604833472
808 => 0.00062727070644318
809 => 0.00062028205919069
810 => 0.00061268295496449
811 => 0.00060783519990909
812 => 0.00060360489066186
813 => 0.00060595211209924
814 => 0.00059758469626069
815 => 0.00059490779153112
816 => 0.00062626973475795
817 => 0.00064943713941731
818 => 0.00064910027617826
819 => 0.00064704970784476
820 => 0.00064400297924377
821 => 0.00065857616774129
822 => 0.00065349916026885
823 => 0.00065719310740322
824 => 0.00065813337198339
825 => 0.00066097926967798
826 => 0.00066199643349063
827 => 0.00065892185798312
828 => 0.00064860320705215
829 => 0.00062289011000007
830 => 0.00061092059391115
831 => 0.00060697045423375
901 => 0.00060711403430864
902 => 0.00060315345487348
903 => 0.00060432002301786
904 => 0.0006027477700802
905 => 0.0005997703033851
906 => 0.0006057682619211
907 => 0.00060645947076753
908 => 0.00060505947557496
909 => 0.00060538922512337
910 => 0.00059379786287467
911 => 0.00059467912897132
912 => 0.00058977212735927
913 => 0.0005888521237118
914 => 0.00057644765093805
915 => 0.00055447132936227
916 => 0.0005666483448084
917 => 0.00055194022249695
918 => 0.00054637003371319
919 => 0.00057273844107345
920 => 0.00057009178432025
921 => 0.00056556185843282
922 => 0.00055886115392602
923 => 0.00055637579744419
924 => 0.00054127555822882
925 => 0.00054038335553933
926 => 0.00054786744183522
927 => 0.00054441379352136
928 => 0.00053956356328978
929 => 0.00052199652105099
930 => 0.00050224534932677
1001 => 0.00050284151304969
1002 => 0.00050912399329155
1003 => 0.00052739115190264
1004 => 0.00052025385700823
1005 => 0.00051507566767132
1006 => 0.00051410594846431
1007 => 0.00052624401458464
1008 => 0.00054342192114838
1009 => 0.00055148141057408
1010 => 0.00054349470132354
1011 => 0.00053431999977148
1012 => 0.00053487842134348
1013 => 0.00053859334988473
1014 => 0.00053898373634815
1015 => 0.00053301194881232
1016 => 0.00053469297202371
1017 => 0.00053213934404962
1018 => 0.00051646773388628
1019 => 0.00051618428415364
1020 => 0.0005123382182807
1021 => 0.00051222176093459
1022 => 0.00050567864343863
1023 => 0.00050476321607051
1024 => 0.00049177145914344
1025 => 0.0005003226728955
1026 => 0.00049458696766949
1027 => 0.00048594190697781
1028 => 0.00048445149525605
1029 => 0.00048440669167996
1030 => 0.00049328323601012
1031 => 0.00050021894530683
1101 => 0.00049468674271757
1102 => 0.00049342716742524
1103 => 0.00050687613622967
1104 => 0.00050516463235923
1105 => 0.00050368248104545
1106 => 0.00054188382802452
1107 => 0.00051164448100231
1108 => 0.00049845839969904
1109 => 0.00048213812011732
1110 => 0.00048745208544312
1111 => 0.00048857181601566
1112 => 0.00044932448557312
1113 => 0.00043340184850053
1114 => 0.00042793779948914
1115 => 0.00042479316203277
1116 => 0.00042622621280951
1117 => 0.00041189397190512
1118 => 0.00042152547482625
1119 => 0.00040911496567722
1120 => 0.0004070343034311
1121 => 0.00042922583115663
1122 => 0.00043231365259862
1123 => 0.00041914004701619
1124 => 0.00042759963441312
1125 => 0.00042453207042593
1126 => 0.00040932770823626
1127 => 0.00040874701343633
1128 => 0.00040111799894873
1129 => 0.00038918006854392
1130 => 0.00038372411401149
1201 => 0.00038088260552023
1202 => 0.00038205506730362
1203 => 0.00038146223474802
1204 => 0.0003775936013153
1205 => 0.00038168398028792
1206 => 0.00037123475227417
1207 => 0.00036707378548394
1208 => 0.00036519437331849
1209 => 0.00035592008202117
1210 => 0.00037067960377127
1211 => 0.0003735874154916
1212 => 0.00037650095649929
1213 => 0.00040186134181225
1214 => 0.00040059440862972
1215 => 0.00041204686757831
1216 => 0.00041160184608329
1217 => 0.00040833541927362
1218 => 0.00039455490186474
1219 => 0.00040004757048981
1220 => 0.00038314199021205
1221 => 0.00039580880042387
1222 => 0.00039002819722184
1223 => 0.0003938543726665
1224 => 0.00038697456422466
1225 => 0.0003907821342767
1226 => 0.00037427696552319
1227 => 0.00035886467117516
1228 => 0.00036506702833373
1229 => 0.00037180969989067
1230 => 0.00038642952982688
1231 => 0.00037772207972785
]
'min_raw' => 0.00035592008202117
'max_raw' => 0.0010624301129295
'avg_raw' => 0.00070917509747531
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.000355'
'max' => '$0.001062'
'avg' => '$0.0007091'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.00067423991797883
'max_diff' => 3.227011292946E-5
'year' => 2026
]
1 => [
'items' => [
101 => 0.0003808536080486
102 => 0.00037036351238559
103 => 0.00034871944868511
104 => 0.00034884195173512
105 => 0.00034551248407636
106 => 0.00034263533790895
107 => 0.00037872223511717
108 => 0.0003742342589999
109 => 0.00036708325642884
110 => 0.00037665515753976
111 => 0.00037918612011998
112 => 0.00037925817306653
113 => 0.00038624158503053
114 => 0.00038996863324756
115 => 0.00039062554164977
116 => 0.00040161409126173
117 => 0.00040529730814918
118 => 0.00042046795724024
119 => 0.00038965241924579
120 => 0.00038901779351952
121 => 0.00037678985381791
122 => 0.00036903470114307
123 => 0.00037732085575638
124 => 0.00038466125757086
125 => 0.00037701794056357
126 => 0.0003780159964055
127 => 0.00036775546780515
128 => 0.00037142312397703
129 => 0.0003745822035589
130 => 0.00037283794549591
131 => 0.00037022670675257
201 => 0.00038405942833092
202 => 0.00038327893196859
203 => 0.00039616028031525
204 => 0.00040620221250552
205 => 0.00042419915020059
206 => 0.0004054184075142
207 => 0.00040473396260402
208 => 0.00041142452138948
209 => 0.00040529628385949
210 => 0.00040916911843887
211 => 0.00042357517667606
212 => 0.00042387955398584
213 => 0.00041878084187897
214 => 0.0004184705847839
215 => 0.00041944984821782
216 => 0.00042518542473704
217 => 0.00042318123806476
218 => 0.00042550053362173
219 => 0.00042840084823002
220 => 0.00044039777915784
221 => 0.00044329019858912
222 => 0.00043626311891865
223 => 0.00043689758553401
224 => 0.00043426926483961
225 => 0.00043173033998157
226 => 0.00043743747228224
227 => 0.00044786736873567
228 => 0.00044780248489115
301 => 0.00045022201814013
302 => 0.00045172936730975
303 => 0.00044525872122671
304 => 0.0004410465685589
305 => 0.00044266177591798
306 => 0.00044524452765978
307 => 0.00044182422433757
308 => 0.00042071252779428
309 => 0.00042711646790512
310 => 0.000426050539134
311 => 0.00042453252694257
312 => 0.00043097173824422
313 => 0.00043035066060561
314 => 0.00041174697405916
315 => 0.00041293792171235
316 => 0.0004118193995305
317 => 0.00041543357352819
318 => 0.00040510110660291
319 => 0.0004082793038389
320 => 0.00041027263935156
321 => 0.00041144672928204
322 => 0.00041568834719196
323 => 0.0004151906422868
324 => 0.00041565740915624
325 => 0.00042194660877103
326 => 0.00045375522222993
327 => 0.00045548649487874
328 => 0.00044696107517274
329 => 0.00045036681218882
330 => 0.00044382854187076
331 => 0.00044821772653788
401 => 0.00045122069521392
402 => 0.00043765085720456
403 => 0.00043684733946516
404 => 0.00043028208337971
405 => 0.00043380988012492
406 => 0.00042819690184572
407 => 0.00042957413038179
408 => 0.00042572327933031
409 => 0.00043265404452618
410 => 0.00044040371694718
411 => 0.00044236159024456
412 => 0.0004372112685166
413 => 0.00043348209616281
414 => 0.0004269348979753
415 => 0.00043782303447496
416 => 0.00044100705739741
417 => 0.00043780631015803
418 => 0.00043706462708495
419 => 0.00043565913900167
420 => 0.00043736280802599
421 => 0.00044098971652477
422 => 0.00043927933345523
423 => 0.00044040907160573
424 => 0.00043610367475694
425 => 0.00044526086327981
426 => 0.00045980468245155
427 => 0.00045985144320834
428 => 0.0004581410509192
429 => 0.0004574411952454
430 => 0.00045919616152934
501 => 0.00046014815874589
502 => 0.00046582339790237
503 => 0.00047191315562879
504 => 0.00050033139776849
505 => 0.00049235166909309
506 => 0.00051756602412823
507 => 0.00053750730528679
508 => 0.0005434868235797
509 => 0.0005379859481083
510 => 0.00051916775027209
511 => 0.00051824443970929
512 => 0.00054636677211479
513 => 0.00053842092512581
514 => 0.00053747579190995
515 => 0.00052742117132093
516 => 0.00053336469737803
517 => 0.00053206476104307
518 => 0.00053001274794329
519 => 0.00054135258163061
520 => 0.00056257973797933
521 => 0.00055927128659538
522 => 0.00055680168111189
523 => 0.00054598058877461
524 => 0.00055249730334013
525 => 0.00055017682610279
526 => 0.00056014706892562
527 => 0.0005542409179453
528 => 0.00053836072751991
529 => 0.00054088970018695
530 => 0.00054050745105591
531 => 0.00054837411108616
601 => 0.00054601273500758
602 => 0.00054004635447784
603 => 0.00056250718586662
604 => 0.00056104870440994
605 => 0.00056311649766023
606 => 0.00056402680419764
607 => 0.00057769831645975
608 => 0.00058329909759394
609 => 0.00058457057296688
610 => 0.0005898908818644
611 => 0.00058443819883482
612 => 0.00060625281865026
613 => 0.00062075826790917
614 => 0.00063760709366699
615 => 0.00066222775663659
616 => 0.00067148535366702
617 => 0.00066981305162501
618 => 0.00068848015729682
619 => 0.00072202453124261
620 => 0.00067659332866981
621 => 0.00072443249529455
622 => 0.00070928716747089
623 => 0.00067337786765383
624 => 0.00067106573208844
625 => 0.0006953839268401
626 => 0.00074931934225978
627 => 0.00073580913242757
628 => 0.00074934144012317
629 => 0.00073355528438541
630 => 0.00073277136869686
701 => 0.00074857474177435
702 => 0.0007855001843669
703 => 0.0007679582907207
704 => 0.00074280768473007
705 => 0.00076137850080678
706 => 0.00074529074127324
707 => 0.00070904051636382
708 => 0.00073579880142473
709 => 0.00071790629823658
710 => 0.00072312828188467
711 => 0.00076073566227717
712 => 0.00075621064277156
713 => 0.00076206643701734
714 => 0.00075173111344635
715 => 0.00074207629150011
716 => 0.00072405484936095
717 => 0.00071871958878991
718 => 0.00072019406286918
719 => 0.00071871885811378
720 => 0.00070863602686253
721 => 0.00070645864041381
722 => 0.0007028295676058
723 => 0.0007039543690175
724 => 0.00069713065041574
725 => 0.00071000841726946
726 => 0.00071239864427601
727 => 0.00072177000907552
728 => 0.00072274297525731
729 => 0.00074884209283091
730 => 0.00073446713744922
731 => 0.00074411109859319
801 => 0.00074324845193599
802 => 0.00067415613106738
803 => 0.00068367644327637
804 => 0.000698487061435
805 => 0.00069181489802986
806 => 0.00068238202002077
807 => 0.00067476446526951
808 => 0.00066322309088639
809 => 0.00067946735369817
810 => 0.0007008268319109
811 => 0.00072328468687329
812 => 0.00075026632811366
813 => 0.00074424433988974
814 => 0.00072278028385834
815 => 0.00072374314573241
816 => 0.0007296951789657
817 => 0.00072198675512934
818 => 0.00071971339045369
819 => 0.00072938285356915
820 => 0.00072944944184739
821 => 0.00072057996862952
822 => 0.00071072317224432
823 => 0.00071068187190757
824 => 0.00070892795019618
825 => 0.00073386730316151
826 => 0.00074758142563945
827 => 0.00074915372768013
828 => 0.00074747559718467
829 => 0.00074812144300976
830 => 0.00074014149730991
831 => 0.00075838128680037
901 => 0.00077511992136504
902 => 0.00077063360973294
903 => 0.00076390799082964
904 => 0.00075855071142347
905 => 0.00076937160496164
906 => 0.00076888976760605
907 => 0.00077497372399459
908 => 0.00077469772059017
909 => 0.00077265191488588
910 => 0.00077063368279511
911 => 0.00077863574490439
912 => 0.00077633127952611
913 => 0.00077402323467657
914 => 0.00076939409738685
915 => 0.00077002327402635
916 => 0.00076329881639598
917 => 0.00076018777460593
918 => 0.00071340517051651
919 => 0.00070090333003813
920 => 0.00070483666355105
921 => 0.00070613161907247
922 => 0.00070069080207473
923 => 0.00070849153601828
924 => 0.0007072757998962
925 => 0.00071200551796536
926 => 0.00070905059545624
927 => 0.00070917186650673
928 => 0.00071786166355017
929 => 0.00072038434860092
930 => 0.00071910129062355
1001 => 0.00071999990045025
1002 => 0.00074070798462707
1003 => 0.00073776395726438
1004 => 0.0007362000014046
1005 => 0.00073663322786602
1006 => 0.00074192458735953
1007 => 0.0007434058791202
1008 => 0.00073712954184173
1009 => 0.00074008949878533
1010 => 0.0007526926197767
1011 => 0.00075710299884881
1012 => 0.00077117881174494
1013 => 0.00076519915624904
1014 => 0.00077617507270519
1015 => 0.00080991129792572
1016 => 0.0008368621290011
1017 => 0.00081207703095398
1018 => 0.00086156880005628
1019 => 0.00090010524147504
1020 => 0.00089862614866759
1021 => 0.00089190642874228
1022 => 0.00084803371473132
1023 => 0.00080766138919313
1024 => 0.00084143455380532
1025 => 0.00084152064854743
1026 => 0.00083861950375531
1027 => 0.00082060074261401
1028 => 0.00083799248992552
1029 => 0.00083937298366956
1030 => 0.00083860027427581
1031 => 0.000824785332356
1101 => 0.0008036924694725
1102 => 0.00080781396439076
1103 => 0.00081456505714308
1104 => 0.00080178383013745
1105 => 0.0007976994536673
1106 => 0.00080529308660973
1107 => 0.0008297613541465
1108 => 0.0008251357699037
1109 => 0.00082501497720566
1110 => 0.00084480518814936
1111 => 0.0008306396681085
1112 => 0.00080786594964053
1113 => 0.00080211528537893
1114 => 0.00078170430136186
1115 => 0.00079580224072388
1116 => 0.00079630960046344
1117 => 0.00078858830315231
1118 => 0.00080849249036283
1119 => 0.00080830906977363
1120 => 0.00082720513318272
1121 => 0.00086332730938359
1122 => 0.00085264420441666
1123 => 0.00084022091565863
1124 => 0.00084157167160706
1125 => 0.00085638613041158
1126 => 0.00084742897043716
1127 => 0.0008506500276155
1128 => 0.00085638125495576
1129 => 0.00085983904670851
1130 => 0.00084107414858623
1201 => 0.00083669915320509
1202 => 0.00082774944807001
1203 => 0.00082541463705442
1204 => 0.00083270398514522
1205 => 0.00083078349945977
1206 => 0.00079626695884193
1207 => 0.00079265978829914
1208 => 0.00079277041506984
1209 => 0.0007837000132284
1210 => 0.00076986547327433
1211 => 0.00080622181825616
1212 => 0.0008033018949474
1213 => 0.00080007852559864
1214 => 0.00080047336995157
1215 => 0.00081625442707733
1216 => 0.0008071006169819
1217 => 0.00083143752140056
1218 => 0.0008264345854864
1219 => 0.00082130334314384
1220 => 0.00082059404915063
1221 => 0.00081861895862577
1222 => 0.00081184563831721
1223 => 0.00080366644703117
1224 => 0.00079826583647472
1225 => 0.00073635803797546
1226 => 0.00074784776527583
1227 => 0.0007610656492133
1228 => 0.00076562840978117
1229 => 0.00075782349209641
1230 => 0.00081215382403894
1231 => 0.00082208049922494
]
'min_raw' => 0.00034263533790895
'max_raw' => 0.00090010524147504
'avg_raw' => 0.000621370289692
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.000342'
'max' => '$0.0009001'
'avg' => '$0.000621'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -1.3284744112215E-5
'max_diff' => -0.00016232487145442
'year' => 2027
]
2 => [
'items' => [
101 => 0.00079201195258553
102 => 0.00078638735519997
103 => 0.00081252257170714
104 => 0.00079675984125304
105 => 0.00080385779781136
106 => 0.00078851589810693
107 => 0.00081968945385962
108 => 0.00081945196359477
109 => 0.00080732474632029
110 => 0.00081757458731708
111 => 0.00081579342520769
112 => 0.00080210182677281
113 => 0.00082012350195126
114 => 0.00082013244047731
115 => 0.00080846025751906
116 => 0.00079482970319323
117 => 0.00079239288201909
118 => 0.00079055706460525
119 => 0.0008034062992652
120 => 0.00081492688288281
121 => 0.00083636383280028
122 => 0.0008417535913389
123 => 0.00086279017773167
124 => 0.00085026391478758
125 => 0.00085581664490843
126 => 0.00086184491893625
127 => 0.00086473509518763
128 => 0.00086002570808142
129 => 0.00089270418575381
130 => 0.00089546325051204
131 => 0.00089638834105966
201 => 0.00088536934225191
202 => 0.00089515679222198
203 => 0.00089057756850726
204 => 0.00090249143646797
205 => 0.00090435968308811
206 => 0.00090277734466565
207 => 0.00090337035563115
208 => 0.00087548503981626
209 => 0.0008740390390845
210 => 0.0008543227165034
211 => 0.0008623572636909
212 => 0.00084733706282974
213 => 0.00085210012324803
214 => 0.0008541996348963
215 => 0.00085310296915748
216 => 0.00086281152493394
217 => 0.00085455726919704
218 => 0.00083277293118207
219 => 0.00081098265803878
220 => 0.00081070909890944
221 => 0.00080497210462108
222 => 0.00080082530853351
223 => 0.00080162412857547
224 => 0.00080443927459508
225 => 0.0008006616871292
226 => 0.00080146782694359
227 => 0.00081485511914397
228 => 0.00081753984512096
229 => 0.000808416097261
301 => 0.00077178293305275
302 => 0.00076279306266871
303 => 0.00076925480322388
304 => 0.00076616650742789
305 => 0.00061835616833848
306 => 0.00065308201500579
307 => 0.0006324490960944
308 => 0.00064195769440372
309 => 0.00062089682706365
310 => 0.00063094817685296
311 => 0.0006290920595634
312 => 0.00068493019339193
313 => 0.00068405835773504
314 => 0.00068447565932747
315 => 0.00066455676704693
316 => 0.0006962881033067
317 => 0.0007119201005702
318 => 0.00070902703390886
319 => 0.00070975515645885
320 => 0.00069724359866469
321 => 0.00068459679855583
322 => 0.00067056955090652
323 => 0.00069663044321873
324 => 0.00069373291686788
325 => 0.00070037879981965
326 => 0.00071728115135517
327 => 0.00071977008682456
328 => 0.00072311524133572
329 => 0.00072191624156779
330 => 0.00075048128041632
331 => 0.00074702186573357
401 => 0.00075535805977747
402 => 0.0007382098761606
403 => 0.00071880507867758
404 => 0.00072249329628847
405 => 0.00072213809127377
406 => 0.00071761592375127
407 => 0.00071353351311173
408 => 0.00070673744960896
409 => 0.00072824120015988
410 => 0.00072736818715797
411 => 0.00074150125289225
412 => 0.00073900309624244
413 => 0.00072231979473238
414 => 0.00072291564210961
415 => 0.00072692300207599
416 => 0.00074079252067485
417 => 0.00074490993810382
418 => 0.0007430025863
419 => 0.00074751714654363
420 => 0.00075108527088674
421 => 0.00074796524802532
422 => 0.0007921381921972
423 => 0.00077379450605011
424 => 0.00078273509104365
425 => 0.00078486736788363
426 => 0.00077940558559498
427 => 0.00078059005060163
428 => 0.0007823841923393
429 => 0.00079327786964149
430 => 0.00082186603099335
501 => 0.0008345275330499
502 => 0.00087262028669452
503 => 0.00083347617156072
504 => 0.00083115352176313
505 => 0.00083801517698548
506 => 0.00086037965590236
507 => 0.0008785039654758
508 => 0.00088451684457781
509 => 0.00088531154581295
510 => 0.00089659210673698
511 => 0.00090305791388862
512 => 0.00089522234993259
513 => 0.00088858252989761
514 => 0.00086479951869708
515 => 0.00086755246700253
516 => 0.0008865175508596
517 => 0.00091330684884559
518 => 0.00093629485346897
519 => 0.0009282452554627
520 => 0.00098965800611989
521 => 0.00099574682949896
522 => 0.0009949055509832
523 => 0.0010087767967791
524 => 0.00098124519870429
525 => 0.00096947490712771
526 => 0.00089001813435433
527 => 0.000912342246504
528 => 0.0009447916545627
529 => 0.00094049685372709
530 => 0.00091693122621971
531 => 0.00093627697682732
601 => 0.00092988066667889
602 => 0.00092483563148167
603 => 0.00094794791574832
604 => 0.00092253500979683
605 => 0.00094453814138597
606 => 0.00091631889752964
607 => 0.00092828202534835
608 => 0.00092149117540707
609 => 0.00092588568757434
610 => 0.00090019545923908
611 => 0.00091405728285375
612 => 0.00089961876180327
613 => 0.00089961191606434
614 => 0.00089929318491189
615 => 0.00091628004089758
616 => 0.00091683398166143
617 => 0.00090428066942229
618 => 0.00090247154100903
619 => 0.00090916083695542
620 => 0.00090132942333159
621 => 0.00090499369247585
622 => 0.00090144041031112
623 => 0.00090064049165226
624 => 0.00089426660368358
625 => 0.00089152055749297
626 => 0.0008925973529612
627 => 0.00088892169490201
628 => 0.00088670697796699
629 => 0.0008988526219699
630 => 0.00089236369433303
701 => 0.00089785810074523
702 => 0.00089159653118916
703 => 0.00086989120307182
704 => 0.00085740823934186
705 => 0.0008164088866132
706 => 0.00082803625218751
707 => 0.00083574520759266
708 => 0.00083319739787725
709 => 0.00083867107901743
710 => 0.00083900711858404
711 => 0.00083722756904779
712 => 0.00083516707865923
713 => 0.00083416414589035
714 => 0.00084163918506222
715 => 0.00084597869689974
716 => 0.00083651890440009
717 => 0.00083430260737398
718 => 0.00084386697988059
719 => 0.00084970124158446
720 => 0.00089277815201739
721 => 0.00088958687535593
722 => 0.00089759635351978
723 => 0.00089669460919399
724 => 0.00090508981831964
725 => 0.00091881243715997
726 => 0.000890910516153
727 => 0.00089575332486397
728 => 0.00089456598000483
729 => 0.00090752909983844
730 => 0.00090756956928359
731 => 0.00089979753138748
801 => 0.00090401087921787
802 => 0.0009016591040461
803 => 0.00090590907964297
804 => 0.00088954425391049
805 => 0.00090947484517888
806 => 0.00092077420612912
807 => 0.00092093109776688
808 => 0.00092628690518002
809 => 0.00093172871569922
810 => 0.00094217379710902
811 => 0.00093143740804778
812 => 0.00091212368929303
813 => 0.00091351807740419
814 => 0.00090219445116489
815 => 0.00090238480336775
816 => 0.0009013686883907
817 => 0.0009044181259264
818 => 0.00089021343396483
819 => 0.00089354724677628
820 => 0.00088887988931747
821 => 0.00089574317894038
822 => 0.00088835941384854
823 => 0.00089456540743119
824 => 0.00089724370852951
825 => 0.00090712669724202
826 => 0.00088689968838009
827 => 0.00084565544806252
828 => 0.00085432548741535
829 => 0.00084150181819562
830 => 0.00084268869760505
831 => 0.00084508638290258
901 => 0.00083731470037949
902 => 0.00083879729249104
903 => 0.00083874432386797
904 => 0.00083828786889037
905 => 0.00083626615410949
906 => 0.00083333426769315
907 => 0.00084501400078882
908 => 0.00084699861503631
909 => 0.00085141016666679
910 => 0.00086453595193506
911 => 0.00086322437645943
912 => 0.00086536361047692
913 => 0.00086069367462801
914 => 0.00084290532253538
915 => 0.00084387131563636
916 => 0.00083182536618823
917 => 0.00085110212465642
918 => 0.00084653713381037
919 => 0.0008435940545149
920 => 0.0008427910080617
921 => 0.00085594932961283
922 => 0.00085988650565234
923 => 0.00085743312175857
924 => 0.0008524011598158
925 => 0.00086206401431192
926 => 0.00086464938653198
927 => 0.00086522815602719
928 => 0.00088234888152574
929 => 0.00086618501439503
930 => 0.00087007581786841
1001 => 0.00090043075588893
1002 => 0.00087290301579944
1003 => 0.0008874850736667
1004 => 0.00088677135781546
1005 => 0.00089423104519042
1006 => 0.00088615944571876
1007 => 0.00088625950286793
1008 => 0.00089288319989391
1009 => 0.00088358141201098
1010 => 0.00088127815851983
1011 => 0.00087809623031803
1012 => 0.00088504385413816
1013 => 0.00088920864040433
1014 => 0.00092277375901123
1015 => 0.00094445835638666
1016 => 0.00094351697082553
1017 => 0.00095211947265428
1018 => 0.00094824396679054
1019 => 0.00093572893604975
1020 => 0.00095709056747888
1021 => 0.00095033085348608
1022 => 0.00095088811609459
1023 => 0.00095086737475247
1024 => 0.00095536199361323
1025 => 0.00095217714422461
1026 => 0.00094589947916157
1027 => 0.00095006688619678
1028 => 0.00096244259521608
1029 => 0.0010008571757451
1030 => 0.0010223544839346
1031 => 0.00099956301079927
1101 => 0.0010152842637781
1102 => 0.001005857114046
1103 => 0.0010041439205063
1104 => 0.0010140180291684
1105 => 0.0010239094211507
1106 => 0.0010232793822431
1107 => 0.0010160987395925
1108 => 0.0010120425767613
1109 => 0.0010427572006335
1110 => 0.0010653872122926
1111 => 0.0010638439972109
1112 => 0.0010706552467008
1113 => 0.001090653285867
1114 => 0.0010924816559448
1115 => 0.0010922513233396
1116 => 0.0010877195173312
1117 => 0.0011074101839639
1118 => 0.0011238364844932
1119 => 0.0010866705351767
1120 => 0.0011008228421384
1121 => 0.0011071762686924
1122 => 0.0011165049838503
1123 => 0.001132244089996
1124 => 0.0011493409338619
1125 => 0.0011517586150419
1126 => 0.001150043154548
1127 => 0.0011387673264306
1128 => 0.0011574748969964
1129 => 0.0011684333530874
1130 => 0.0011749588629097
1201 => 0.0011915064700779
1202 => 0.0011072155052918
1203 => 0.0010475501708834
1204 => 0.0010382325673377
1205 => 0.0010571802805446
1206 => 0.0010621766414121
1207 => 0.0010601626146113
1208 => 0.00099300385619978
1209 => 0.0010378789903735
1210 => 0.0010861608615359
1211 => 0.0010880155648413
1212 => 0.0011121864790716
1213 => 0.0011200575195442
1214 => 0.0011395182736537
1215 => 0.0011383009981855
1216 => 0.0011430393821229
1217 => 0.0011419501097131
1218 => 0.0011779970587557
1219 => 0.0012177621965734
1220 => 0.0012163852562961
1221 => 0.0012106685472551
1222 => 0.0012191588350248
1223 => 0.0012602007187438
1224 => 0.0012564222397737
1225 => 0.0012600927102431
1226 => 0.001308483404167
1227 => 0.001371398189764
1228 => 0.001342167955313
1229 => 0.0014055891532983
1230 => 0.0014455094356168
1231 => 0.0015145474360524
]
'min_raw' => 0.00061835616833848
'max_raw' => 0.0015145474360524
'avg_raw' => 0.0010664518021954
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.000618'
'max' => '$0.001514'
'avg' => '$0.001066'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00027572083042953
'max_diff' => 0.00061444219457737
'year' => 2028
]
3 => [
'items' => [
101 => 0.0015059035383786
102 => 0.0015327795253239
103 => 0.0014904291575065
104 => 0.0013931841525762
105 => 0.001377794758307
106 => 0.0014086047153554
107 => 0.0014843479883671
108 => 0.0014062192901408
109 => 0.001422024624037
110 => 0.0014174726868116
111 => 0.0014172301334213
112 => 0.0014264874097913
113 => 0.0014130592475896
114 => 0.0013583504990994
115 => 0.0013834231961318
116 => 0.0013737414237178
117 => 0.001384484072035
118 => 0.0014424577143982
119 => 0.0014168261851905
120 => 0.0013898254513064
121 => 0.0014236903635395
122 => 0.0014668120340587
123 => 0.0014641135574147
124 => 0.0014588773848496
125 => 0.0014883934154419
126 => 0.0015371452505949
127 => 0.001550322675736
128 => 0.0015600499815745
129 => 0.0015613912127055
130 => 0.0015752067269249
131 => 0.0015009172250094
201 => 0.001618816572439
202 => 0.0016391745328364
203 => 0.0016353480800327
204 => 0.0016579750962204
205 => 0.001651317654066
206 => 0.0016416720649049
207 => 0.0016775406984668
208 => 0.0016364202045376
209 => 0.0015780548403312
210 => 0.0015460344471916
211 => 0.0015882014838893
212 => 0.0016139514217738
213 => 0.0016309704927118
214 => 0.0016361204532944
215 => 0.001506684107568
216 => 0.0014369250960903
217 => 0.0014816398226588
218 => 0.001536194875118
219 => 0.0015006141689384
220 => 0.0015020088652575
221 => 0.0014512801286905
222 => 0.0015406832426737
223 => 0.0015276579609649
224 => 0.0015952331455116
225 => 0.0015791057853948
226 => 0.001634210725139
227 => 0.0016196997477367
228 => 0.0016799340036358
301 => 0.0017039630790913
302 => 0.0017443116366081
303 => 0.0017739921997657
304 => 0.0017914211941505
305 => 0.0017903748227021
306 => 0.0018594371815452
307 => 0.0018187135213905
308 => 0.0017675550064064
309 => 0.0017666297102733
310 => 0.0017931254301054
311 => 0.0018486531901276
312 => 0.0018630507304053
313 => 0.001871096991272
314 => 0.0018587738626623
315 => 0.0018145712482553
316 => 0.0017954847834668
317 => 0.0018117470044548
318 => 0.001791859705615
319 => 0.0018261907628029
320 => 0.00187333463704
321 => 0.0018635996134372
322 => 0.0018961423377853
323 => 0.0019298206338912
324 => 0.0019779821099095
325 => 0.0019905733031549
326 => 0.0020113860667895
327 => 0.0020328092372062
328 => 0.0020396897821734
329 => 0.0020528268774235
330 => 0.0020527576384469
331 => 0.0020923471592116
401 => 0.0021360156266005
402 => 0.0021524994621125
403 => 0.0021904031329483
404 => 0.0021254944249451
405 => 0.002174728425583
406 => 0.0022191387265654
407 => 0.0021661909349124
408 => 0.0022391671304528
409 => 0.002242000630758
410 => 0.0022847831212803
411 => 0.0022414148710025
412 => 0.0022156629424239
413 => 0.0022900077953182
414 => 0.0023259809277928
415 => 0.0023151455275324
416 => 0.0022326875965409
417 => 0.0021846935439169
418 => 0.0020590838508383
419 => 0.0022078739582248
420 => 0.0022803452792658
421 => 0.0022324999133272
422 => 0.0022566303329079
423 => 0.0023882780778252
424 => 0.0024384010155295
425 => 0.0024279757948728
426 => 0.0024297374855501
427 => 0.0024567829129396
428 => 0.0025767172321738
429 => 0.0025048498080329
430 => 0.0025597897609676
501 => 0.0025889297139035
502 => 0.0026159965261775
503 => 0.0025495289897864
504 => 0.0024630557015435
505 => 0.0024356659812553
506 => 0.0022277426346137
507 => 0.0022169193214557
508 => 0.0022108438678001
509 => 0.0021725389918919
510 => 0.0021424418520165
511 => 0.0021185074889525
512 => 0.0020556965728666
513 => 0.0020768934132118
514 => 0.0019767859226279
515 => 0.0020408311475118
516 => 0.0018810571753601
517 => 0.0020141216870773
518 => 0.0019417007230505
519 => 0.0019903294526389
520 => 0.0019901597915825
521 => 0.0019006188826575
522 => 0.0018489735550607
523 => 0.0018818839678716
524 => 0.0019171665428368
525 => 0.00192289102192
526 => 0.0019686358013317
527 => 0.0019814021859848
528 => 0.0019427194444805
529 => 0.0018777462149188
530 => 0.0018928380142644
531 => 0.0018486677202287
601 => 0.0017712609789169
602 => 0.0018268558519191
603 => 0.001845838385896
604 => 0.0018542221543113
605 => 0.0017781015144555
606 => 0.0017541827567533
607 => 0.0017414486108505
608 => 0.0018679199961955
609 => 0.0018748483841777
610 => 0.0018394017716854
611 => 0.0019996238213363
612 => 0.0019633606369376
613 => 0.0020038754986069
614 => 0.0018914685916585
615 => 0.0018957626868799
616 => 0.00184254745573
617 => 0.0018723444293309
618 => 0.0018512848887911
619 => 0.0018699371283234
620 => 0.001881117203793
621 => 0.0019343237028472
622 => 0.0020147292198297
623 => 0.0019263764261689
624 => 0.0018878798487355
625 => 0.0019117629088622
626 => 0.0019753666452524
627 => 0.0020717295616989
628 => 0.0020146807756781
629 => 0.0020399980581629
630 => 0.0020455287580984
701 => 0.0020034630953475
702 => 0.0020732805826863
703 => 0.0021106963413475
704 => 0.0021490771676335
705 => 0.0021824021636913
706 => 0.0021337470216024
707 => 0.0021858149980781
708 => 0.0021438574002738
709 => 0.0021062170975466
710 => 0.0021062741823486
711 => 0.0020826618706107
712 => 0.0020369100412759
713 => 0.0020284727019876
714 => 0.002072364806484
715 => 0.0021075621176924
716 => 0.0021104611368273
717 => 0.0021299481768154
718 => 0.0021414804063479
719 => 0.002254511933072
720 => 0.0022999741481663
721 => 0.002355564484228
722 => 0.0023772200530236
723 => 0.0024423955511475
724 => 0.0023897610431173
725 => 0.0023783732362184
726 => 0.0022202787965129
727 => 0.002246166752158
728 => 0.0022876158669621
729 => 0.0022209622771493
730 => 0.002263238638344
731 => 0.0022715848875796
801 => 0.0022186974136728
802 => 0.0022469468986193
803 => 0.00217192464199
804 => 0.002016364500012
805 => 0.0020734537655936
806 => 0.0021154906811006
807 => 0.0020554988195578
808 => 0.0021630319093676
809 => 0.0021002132982343
810 => 0.0020803028143301
811 => 0.0020026249180199
812 => 0.0020392858949819
813 => 0.0020888703912576
814 => 0.0020582329373756
815 => 0.0021218102544176
816 => 0.0022118526908001
817 => 0.0022760222930861
818 => 0.0022809484383525
819 => 0.0022396916831121
820 => 0.0023058058966819
821 => 0.0023062874665493
822 => 0.002231710363558
823 => 0.0021860323032228
824 => 0.0021756541518072
825 => 0.0022015808087998
826 => 0.0022330605567138
827 => 0.0022826953452738
828 => 0.0023126886084724
829 => 0.0023908951316966
830 => 0.0024120555745243
831 => 0.0024353044857466
901 => 0.0024663722008383
902 => 0.0025036769584044
903 => 0.0024220562726107
904 => 0.0024252992146172
905 => 0.0023492951621214
906 => 0.0022680739319459
907 => 0.0023297107212798
908 => 0.0024102926241355
909 => 0.0023918070465853
910 => 0.0023897270414848
911 => 0.0023932250331185
912 => 0.0023792875113282
913 => 0.0023162486168193
914 => 0.0022845908786413
915 => 0.0023254374376413
916 => 0.0023471455658786
917 => 0.002380812979627
918 => 0.0023766627602496
919 => 0.002463386402449
920 => 0.0024970845874209
921 => 0.0024884631496785
922 => 0.0024900497017096
923 => 0.0025510586559661
924 => 0.0026189131605477
925 => 0.002682467858279
926 => 0.0027471184265489
927 => 0.0026691796431448
928 => 0.0026296071355281
929 => 0.0026704358621983
930 => 0.0026487715651212
1001 => 0.0027732610421742
1002 => 0.0027818804234643
1003 => 0.0029063608985112
1004 => 0.0030245076921899
1005 => 0.0029503018079
1006 => 0.003020274614479
1007 => 0.0030959559097608
1008 => 0.003241957407207
1009 => 0.0031927892392617
1010 => 0.003155127193179
1011 => 0.0031195367416126
1012 => 0.0031935948214973
1013 => 0.0032888693581622
1014 => 0.0033093905808316
1015 => 0.0033426428012665
1016 => 0.0033076821573673
1017 => 0.0033497884021553
1018 => 0.0034984419486786
1019 => 0.0034582744482069
1020 => 0.0034012301402891
1021 => 0.0035185778384308
1022 => 0.0035610455142107
1023 => 0.0038591059033284
1024 => 0.00423541945685
1025 => 0.004079623174684
1026 => 0.003982915394829
1027 => 0.0040056440170342
1028 => 0.0041430609877626
1029 => 0.0041871949573639
1030 => 0.0040672236140959
1031 => 0.0041095995207298
1101 => 0.0043430949325903
1102 => 0.0044683577296238
1103 => 0.0042982340262142
1104 => 0.0038288694757113
1105 => 0.0033960939244964
1106 => 0.0035108854888156
1107 => 0.0034978716878188
1108 => 0.003748733378717
1109 => 0.0034573164666049
1110 => 0.0034622231800245
1111 => 0.0037182724250234
1112 => 0.003649962876253
1113 => 0.0035393101556711
1114 => 0.0033969018118122
1115 => 0.0031336468170117
1116 => 0.0029004745267082
1117 => 0.0033577790843647
1118 => 0.0033380592802842
1119 => 0.0033095020816644
1120 => 0.0033730530369812
1121 => 0.0036816384367462
1122 => 0.0036745245444882
1123 => 0.0036292695914822
1124 => 0.0036635950744784
1125 => 0.0035332927325406
1126 => 0.0035668746129871
1127 => 0.0033960253706379
1128 => 0.0034732563634744
1129 => 0.0035390727446294
1130 => 0.0035522863575744
1201 => 0.0035820573022434
1202 => 0.0033276678396086
1203 => 0.0034418812398494
1204 => 0.0035089709121425
1205 => 0.0032058573319791
1206 => 0.0035029793312471
1207 => 0.0033232394850296
1208 => 0.0032622330816215
1209 => 0.003344370166828
1210 => 0.0033123612648421
1211 => 0.0032848418905404
1212 => 0.0032694856068372
1213 => 0.0033297980170736
1214 => 0.0033269843710471
1215 => 0.003228301561766
1216 => 0.0030995738598846
1217 => 0.0031427791019788
1218 => 0.0031270822324747
1219 => 0.0030701947524553
1220 => 0.0031085300453678
1221 => 0.0029397208164289
1222 => 0.0026492933119795
1223 => 0.0028411586174538
1224 => 0.0028337720119023
1225 => 0.0028300473504274
1226 => 0.0029742288247238
1227 => 0.0029603691028027
1228 => 0.0029352135718013
1229 => 0.0030697327514013
1230 => 0.003020631441309
1231 => 0.0031719501092898
]
'min_raw' => 0.0013583504990994
'max_raw' => 0.0044683577296238
'avg_raw' => 0.0029133541143616
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.001358'
'max' => '$0.004468'
'avg' => '$0.002913'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.00073999433076091
'max_diff' => 0.0029538102935713
'year' => 2029
]
4 => [
'items' => [
101 => 0.0032716183706998
102 => 0.0032463392756757
103 => 0.0033400777572703
104 => 0.0031437744634943
105 => 0.0032089785433655
106 => 0.0032224170138581
107 => 0.0030680728056059
108 => 0.0029626367247151
109 => 0.002955605340179
110 => 0.0027727937059013
111 => 0.0028704502053285
112 => 0.0029563838835239
113 => 0.0029152283203911
114 => 0.0029021996985908
115 => 0.0029687601018055
116 => 0.0029739324151866
117 => 0.0028560031219606
118 => 0.0028805243563573
119 => 0.0029827819801076
120 => 0.0028779477266048
121 => 0.002674271896627
122 => 0.0026237574747539
123 => 0.0026170179197105
124 => 0.0024800188012411
125 => 0.0026271330899675
126 => 0.0025629137605206
127 => 0.0027657818527777
128 => 0.0026499046864839
129 => 0.0026449094534457
130 => 0.0026373584260671
131 => 0.0025194376254383
201 => 0.0025452547865182
202 => 0.0026310749620124
203 => 0.0026616965674622
204 => 0.0026585024831383
205 => 0.0026306543963334
206 => 0.0026434031078674
207 => 0.0026023350660708
208 => 0.002587833085755
209 => 0.0025420608467946
210 => 0.0024747883004264
211 => 0.0024841429606054
212 => 0.0023508584434308
213 => 0.0022782379645293
214 => 0.0022581375730919
215 => 0.0022312584896087
216 => 0.0022611736370939
217 => 0.00235048086514
218 => 0.002242757400531
219 => 0.0020580730763815
220 => 0.0020691729189497
221 => 0.0020941109696275
222 => 0.0020476390771711
223 => 0.0020036573310514
224 => 0.0020418958909506
225 => 0.001963642708158
226 => 0.002103567492909
227 => 0.0020997829196161
228 => 0.0021519382264806
301 => 0.0021845520101977
302 => 0.0021093877975678
303 => 0.002090484201357
304 => 0.0021012525488792
305 => 0.0019232757511278
306 => 0.0021373937250836
307 => 0.0021392454262138
308 => 0.0021233900369366
309 => 0.0022374012479173
310 => 0.002478000464075
311 => 0.0023874773608755
312 => 0.0023524240792413
313 => 0.002285787765231
314 => 0.0023745766971769
315 => 0.0023677590925266
316 => 0.0023369272987979
317 => 0.0023182801337498
318 => 0.0023526381071043
319 => 0.0023140228006283
320 => 0.0023070864305076
321 => 0.002265059574421
322 => 0.0022500578988983
323 => 0.0022389512555751
324 => 0.0022267239325925
325 => 0.002253694360233
326 => 0.0021925758229444
327 => 0.0021188728584985
328 => 0.0021127452544819
329 => 0.0021296641079161
330 => 0.002122178774732
331 => 0.0021127094175864
401 => 0.0020946298359697
402 => 0.0020892660103131
403 => 0.0021066958415387
404 => 0.0020870185783073
405 => 0.0021160534520812
406 => 0.0021081575729875
407 => 0.0020640518342234
408 => 0.0020090797536874
409 => 0.0020085903868628
410 => 0.0019967467422836
411 => 0.0019816620802081
412 => 0.0019774658723091
413 => 0.0020386755460919
414 => 0.002165377738971
415 => 0.0021405030667823
416 => 0.0021584775666976
417 => 0.0022468943162643
418 => 0.0022749993421671
419 => 0.0022550510604853
420 => 0.0022277446221628
421 => 0.0022289459668665
422 => 0.0023222603328354
423 => 0.0023280802353792
424 => 0.0023427852515355
425 => 0.0023616853529335
426 => 0.0022582698294797
427 => 0.0022240751050118
428 => 0.0022078717475078
429 => 0.0021579716778841
430 => 0.0022117846248647
501 => 0.0021804301251592
502 => 0.0021846609183917
503 => 0.0021819056087488
504 => 0.0021834101941271
505 => 0.00210352838108
506 => 0.0021326331152898
507 => 0.0020842408497099
508 => 0.002019449038385
509 => 0.0020192318335146
510 => 0.0020350895375458
511 => 0.002025656754676
512 => 0.0020002733785124
513 => 0.0020038789672902
514 => 0.0019722902156171
515 => 0.0020077144136762
516 => 0.0020087302529226
517 => 0.0019950900071008
518 => 0.002049665871808
519 => 0.0020720256481083
520 => 0.002063047346106
521 => 0.0020713957065055
522 => 0.0021415367217142
523 => 0.0021529727676602
524 => 0.0021580519038467
525 => 0.0021512465342134
526 => 0.0020726777555038
527 => 0.0020761626149398
528 => 0.0020505930286389
529 => 0.0020289894226712
530 => 0.002029853453614
531 => 0.0020409605153535
601 => 0.0020894657053908
602 => 0.0021915420182871
603 => 0.0021954157397447
604 => 0.0022001108031557
605 => 0.0021810136207132
606 => 0.0021752537277531
607 => 0.002182852513322
608 => 0.0022211870095283
609 => 0.002319793741485
610 => 0.0022849395366893
611 => 0.0022566025256524
612 => 0.0022814617239351
613 => 0.0022776348452123
614 => 0.0022453321375574
615 => 0.002244425508141
616 => 0.0021824262843508
617 => 0.0021595065829696
618 => 0.0021403531649856
619 => 0.0021194381325596
620 => 0.0021070390002593
621 => 0.0021260897027774
622 => 0.0021304468238446
623 => 0.0020887921298394
624 => 0.0020831147489658
625 => 0.0021171308712696
626 => 0.0021021616440925
627 => 0.0021175578654631
628 => 0.0021211299208874
629 => 0.0021205547376926
630 => 0.0021049251453151
701 => 0.0021148869814154
702 => 0.0020913242692718
703 => 0.0020657033588207
704 => 0.002049358814192
705 => 0.0020350960312142
706 => 0.0020430098521681
707 => 0.002014798525474
708 => 0.0020057731542828
709 => 0.002111512135493
710 => 0.0021896226577986
711 => 0.0021884868998691
712 => 0.0021815732655666
713 => 0.0021713010073725
714 => 0.0022204355298594
715 => 0.0022033180447008
716 => 0.0022157724453675
717 => 0.0022189426130467
718 => 0.0022285377558182
719 => 0.0022319671946287
720 => 0.0022216010486451
721 => 0.0021868109966062
722 => 0.002100117494664
723 => 0.0020597614354852
724 => 0.0020464432637729
725 => 0.0020469273540199
726 => 0.0020335739839354
727 => 0.0020375071498813
728 => 0.0020322061893308
729 => 0.0020221674524882
730 => 0.0020423899884565
731 => 0.0020447204473408
801 => 0.0020400002658045
802 => 0.0020411120394294
803 => 0.0020020309523248
804 => 0.0020050022024977
805 => 0.0019884579039668
806 => 0.0019853560474367
807 => 0.0019435335014274
808 => 0.0018694387988969
809 => 0.0019104944566456
810 => 0.0018609049953842
811 => 0.0018421247150016
812 => 0.0019310276414001
813 => 0.0019221042533731
814 => 0.0019068312919743
815 => 0.0018842393989013
816 => 0.0018758598460008
817 => 0.0018249483352211
818 => 0.0018219402115619
819 => 0.0018471733310308
820 => 0.0018355291146145
821 => 0.0018191762247565
822 => 0.0017599477153567
823 => 0.0016933552609057
824 => 0.0016953652685204
825 => 0.0017165470892845
826 => 0.0017781360899141
827 => 0.0017540722018676
828 => 0.0017366135749886
829 => 0.0017333440989785
830 => 0.0017742684363559
831 => 0.0018321849476587
901 => 0.0018593580789531
902 => 0.0018324303311006
903 => 0.0018014971842606
904 => 0.0018033799415784
905 => 0.0018159050825232
906 => 0.0018172212977406
907 => 0.0017970869991266
908 => 0.0018027546862491
909 => 0.0017941449512459
910 => 0.0017413070234233
911 => 0.0017403513528598
912 => 0.0017273840732455
913 => 0.0017269914291723
914 => 0.0017049308517088
915 => 0.0017018444244241
916 => 0.001658041808889
917 => 0.0016868728230807
918 => 0.0016675344924571
919 => 0.0016383870667562
920 => 0.001633362039579
921 => 0.0016332109811942
922 => 0.0016631388701439
923 => 0.0016865230982735
924 => 0.0016678708909977
925 => 0.0016636241449589
926 => 0.0017089682822601
927 => 0.0017031978274675
928 => 0.0016982006508326
929 => 0.0018269991593054
930 => 0.0017250450895762
1001 => 0.0016805872958394
1002 => 0.0016255623337841
1003 => 0.0016434787388893
1004 => 0.0016472539886917
1005 => 0.0015149288739436
1006 => 0.0014612445913703
1007 => 0.0014428221686407
1008 => 0.0014322198039049
1009 => 0.0014370514346511
1010 => 0.0013887292837969
1011 => 0.0014212025683456
1012 => 0.0013793596702755
1013 => 0.0013723445722455
1014 => 0.0014471648573351
1015 => 0.0014575756629116
1016 => 0.0014131599319387
1017 => 0.001441682021477
1018 => 0.0014313395153237
1019 => 0.0013800769466665
1020 => 0.0013781190936057
1021 => 0.00135239733862
1022 => 0.0013121477727805
1023 => 0.0012937526411518
1024 => 0.0012841722968858
1025 => 0.0012881253336471
1026 => 0.0012861265572957
1027 => 0.0012730831895779
1028 => 0.0012868741878652
1029 => 0.0012516438860751
1030 => 0.0012376148960324
1031 => 0.0012312783267002
1101 => 0.001200009406081
1102 => 0.0012497721641383
1103 => 0.0012595760543704
1104 => 0.0012693992612947
1105 => 0.0013549035709829
1106 => 0.0013506320173036
1107 => 0.0013892447822339
1108 => 0.001387744361193
1109 => 0.0013767313751496
1110 => 0.0013302693985805
1111 => 0.0013487883143358
1112 => 0.0012917899701195
1113 => 0.001334497005117
1114 => 0.0013150072978326
1115 => 0.0013279075154793
1116 => 0.0013047117609848
1117 => 0.0013175492492512
1118 => 0.0012619009204447
1119 => 0.0012099372939983
1120 => 0.0012308489741931
1121 => 0.0012535823621057
1122 => 0.0013028741394595
1123 => 0.0012735163635159
1124 => 0.0012840745298856
1125 => 0.0012487064399627
1126 => 0.0011757319680563
1127 => 0.0011761449956423
1128 => 0.0011649194629747
1129 => 0.0011552189637954
1130 => 0.0012768884572396
1201 => 0.0012617569324198
1202 => 0.0012376468279844
1203 => 0.0012699191608686
1204 => 0.001278452477914
1205 => 0.0012786954094539
1206 => 0.0013022404704568
1207 => 0.0013148064737347
1208 => 0.0013170212862766
1209 => 0.0013540699484893
1210 => 0.0013664881713794
1211 => 0.0014176370739708
1212 => 0.0013137403361503
1213 => 0.0013116006512061
1214 => 0.0012703732987746
1215 => 0.0012442262600839
1216 => 0.0012721636088835
1217 => 0.0012969122860916
1218 => 0.0012711423091621
1219 => 0.0012745073241152
1220 => 0.0012399132355719
1221 => 0.001252278994423
1222 => 0.0012629300517931
1223 => 0.0012570491639535
1224 => 0.0012482451902195
1225 => 0.0012948831767907
1226 => 0.0012922516788126
1227 => 0.0013356820441104
1228 => 0.0013695391195952
1229 => 0.0014302170515402
1230 => 0.0013668964663435
1231 => 0.0013645888125424
]
'min_raw' => 0.0011552189637954
'max_raw' => 0.0033400777572703
'avg_raw' => 0.0022476483605328
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.001155'
'max' => '$0.00334'
'avg' => '$0.002247'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00020313153530399
'max_diff' => -0.0011282799723535
'year' => 2030
]
5 => [
'items' => [
101 => 0.0013871464986074
102 => 0.0013664847179152
103 => 0.0013795422500922
104 => 0.0014281132812378
105 => 0.0014291395105887
106 => 0.0014119488467396
107 => 0.0014109027932821
108 => 0.0014142044483196
109 => 0.0014335423449993
110 => 0.0014267850897059
111 => 0.0014346047566042
112 => 0.0014443833697996
113 => 0.0014848318600217
114 => 0.0014945838540765
115 => 0.0014708915643525
116 => 0.0014730307128433
117 => 0.0014641691461186
118 => 0.0014556089836976
119 => 0.0014748509787086
120 => 0.0015100161027935
121 => 0.0015097973423816
122 => 0.001517954967657
123 => 0.0015230371006221
124 => 0.001501220865587
125 => 0.0014870192987844
126 => 0.0014924650831657
127 => 0.0015011730109852
128 => 0.0014896412195364
129 => 0.0014184616606691
130 => 0.0014400529918616
131 => 0.001436459138589
201 => 0.0014313410545014
202 => 0.0014530513049763
203 => 0.0014509572983555
204 => 0.0013882336702962
205 => 0.0013922490334582
206 => 0.0013884778578294
207 => 0.0014006632977962
208 => 0.0013658266641678
209 => 0.0013765421780436
210 => 0.0013832628478947
211 => 0.0013872213740677
212 => 0.0014015222849913
213 => 0.0013998442381549
214 => 0.0014014179752438
215 => 0.001422622450843
216 => 0.0015298674119261
217 => 0.0015357045185352
218 => 0.0015069604707706
219 => 0.0015184431509013
220 => 0.0014963989160365
221 => 0.0015111973585848
222 => 0.0015213220771366
223 => 0.0014755704208723
224 => 0.0014728613047141
225 => 0.0014507260854504
226 => 0.0014626202984798
227 => 0.0014436957503259
228 => 0.0014483391724902
301 => 0.0014353557593123
302 => 0.0014587233180608
303 => 0.001484851879693
304 => 0.0014914529862095
305 => 0.0014740883169197
306 => 0.0014615151519664
307 => 0.0014394408161664
308 => 0.0014761509285604
309 => 0.0014868860841449
310 => 0.0014760945413583
311 => 0.0014735939050947
312 => 0.0014688552038939
313 => 0.0014745992429558
314 => 0.001486827618182
315 => 0.001481060942248
316 => 0.0014848699332982
317 => 0.0014703539872293
318 => 0.0015012280876686
319 => 0.0015502635894232
320 => 0.0015504212465794
321 => 0.0015446545395608
322 => 0.0015422949272942
323 => 0.0015482119186484
324 => 0.0015514216437303
325 => 0.0015705561087789
326 => 0.0015910881521268
327 => 0.0016869022395991
328 => 0.0016599980272432
329 => 0.0017450099856542
330 => 0.0018122434073361
331 => 0.0018324037707373
401 => 0.0018138571850266
402 => 0.0017504103171772
403 => 0.0017472973111512
404 => 0.0018421137182949
405 => 0.0018153237404102
406 => 0.0018121371577858
407 => 0.0017782373024788
408 => 0.001798276315544
409 => 0.0017938934894321
410 => 0.0017869749839992
411 => 0.0018252080249979
412 => 0.0018967768646603
413 => 0.0018856221898306
414 => 0.0018772957425207
415 => 0.001840811674201
416 => 0.0018627832323411
417 => 0.0018549595813249
418 => 0.0018885749511022
419 => 0.0018686619507178
420 => 0.0018151207799791
421 => 0.0018236473878932
422 => 0.0018223586082601
423 => 0.0018488816017848
424 => 0.0018409200574699
425 => 0.0018208039889544
426 => 0.0018965322501469
427 => 0.0018916148780878
428 => 0.0018985865873999
429 => 0.0019016557494463
430 => 0.0019477502075525
501 => 0.0019666336321805
502 => 0.0019709205001719
503 => 0.001988858293072
504 => 0.0019704741915436
505 => 0.0020440237052995
506 => 0.002092929840214
507 => 0.002149736832604
508 => 0.0022327471167658
509 => 0.0022639597514986
510 => 0.0022583214684076
511 => 0.0023212589184758
512 => 0.0024343561172274
513 => 0.002281181645848
514 => 0.0024424747361472
515 => 0.0023914112059768
516 => 0.0022703404945363
517 => 0.0022625449680494
518 => 0.0023445354594968
519 => 0.0025263824782347
520 => 0.0024808318625327
521 => 0.0025264569827239
522 => 0.0024732328564999
523 => 0.0024705898300247
524 => 0.0025238720057117
525 => 0.0026483687134646
526 => 0.0025892249943005
527 => 0.0025044279702439
528 => 0.0025670407732194
529 => 0.0025127997687406
530 => 0.0023905796045486
531 => 0.0024807970308353
601 => 0.0024204712071218
602 => 0.0024380774895785
603 => 0.0025648733982353
604 => 0.0025496169790454
605 => 0.0025693601981835
606 => 0.0025345139331747
607 => 0.0025019620269048
608 => 0.0024412014765157
609 => 0.0024232132730044
610 => 0.0024281845653072
611 => 0.0024232108094789
612 => 0.0023892158399545
613 => 0.0023818746295224
614 => 0.0023696389571764
615 => 0.002373431303667
616 => 0.0023504246599844
617 => 0.0023938429500287
618 => 0.0024019017672616
619 => 0.0024334979779709
620 => 0.0024367784013832
621 => 0.0025247733984647
622 => 0.0024763072327681
623 => 0.0025088225210848
624 => 0.002505914047652
625 => 0.0022729644639717
626 => 0.0023050628612713
627 => 0.0023549978944374
628 => 0.0023325022296814
629 => 0.0023006986228913
630 => 0.0022750155052067
701 => 0.002236102955681
702 => 0.0022908716218891
703 => 0.0023628865939545
704 => 0.0024386048199175
705 => 0.0025295753071575
706 => 0.0025092717534187
707 => 0.0024369041899363
708 => 0.0024401505459696
709 => 0.0024602182415734
710 => 0.0024342287524241
711 => 0.0024265639446989
712 => 0.002459165214693
713 => 0.0024593897217221
714 => 0.0024294856735213
715 => 0.002396252796329
716 => 0.0023961135493602
717 => 0.0023902000798553
718 => 0.0024742848495879
719 => 0.0025205229710118
720 => 0.0025258240971166
721 => 0.0025201661629878
722 => 0.0025223436772786
723 => 0.0024954387332095
724 => 0.002556935456938
725 => 0.002613370932027
726 => 0.0025982450191351
727 => 0.0025755691254349
728 => 0.0025575066838837
729 => 0.0025939900819383
730 => 0.0025923655336531
731 => 0.0026128780173853
801 => 0.0026119474526374
802 => 0.0026050498758718
803 => 0.0025982452654693
804 => 0.0026252247765569
805 => 0.0026174551106413
806 => 0.0026096733762886
807 => 0.0025940659167202
808 => 0.002596187229688
809 => 0.0025735152513006
810 => 0.0025630261566994
811 => 0.0024052953407548
812 => 0.0023631445127313
813 => 0.0023764060212868
814 => 0.0023807720542381
815 => 0.0023624279598645
816 => 0.002388728678985
817 => 0.0023846297397695
818 => 0.002400576314458
819 => 0.0023906135869124
820 => 0.002391022460726
821 => 0.0024203207181602
822 => 0.0024288261269371
823 => 0.0024245002073861
824 => 0.0024275299331558
825 => 0.0024973486847502
826 => 0.0024874226909515
827 => 0.0024821497045783
828 => 0.0024836103578399
829 => 0.0025014505458032
830 => 0.0025064448243948
831 => 0.0024852837150605
901 => 0.0024952634165535
902 => 0.0025377557188977
903 => 0.0025526256198622
904 => 0.0026000832057833
905 => 0.0025799223797927
906 => 0.0026169284484386
907 => 0.0027306724871577
908 => 0.0028215390957752
909 => 0.0027379744072691
910 => 0.0029048393622025
911 => 0.0030347676649742
912 => 0.0030297808003069
913 => 0.0030071247954229
914 => 0.0028592048770399
915 => 0.0027230867627821
916 => 0.0028369553452392
917 => 0.0028372456196731
918 => 0.002827464207455
919 => 0.0027667126962374
920 => 0.0028253501865512
921 => 0.0028300046175922
922 => 0.0028273993739223
923 => 0.0027808213327113
924 => 0.0027097052728429
925 => 0.0027236011807134
926 => 0.0027463629612741
927 => 0.0027032701620678
928 => 0.0026894994016366
929 => 0.0027151018652726
930 => 0.0027975983375927
1001 => 0.0027820028573701
1002 => 0.0027815955963552
1003 => 0.0028483196742603
1004 => 0.0028005596344375
1005 => 0.0027237764526125
1006 => 0.0027043876865559
1007 => 0.002635570628893
1008 => 0.0026831028157387
1009 => 0.0026848134145234
1010 => 0.0026587805215551
1011 => 0.0027258888784014
1012 => 0.0027252704630789
1013 => 0.0027889798601436
1014 => 0.0029107682991747
1015 => 0.0028747494649081
1016 => 0.0028328634794941
1017 => 0.002837417647481
1018 => 0.0028873656296529
1019 => 0.0028571659394302
1020 => 0.002868025958594
1021 => 0.0028873491917132
1022 => 0.0028990073780229
1023 => 0.0028357402138803
1024 => 0.0028209896115004
1025 => 0.002790815055789
1026 => 0.0027829430774386
1027 => 0.0028075196234528
1028 => 0.0028010445718803
1029 => 0.0026846696453193
1030 => 0.0026725078179897
1031 => 0.0026728808038708
1101 => 0.0026422993107872
1102 => 0.0025956551934353
1103 => 0.0027182331488605
1104 => 0.0027083884235625
1105 => 0.0026975206087547
1106 => 0.0026988518540577
1107 => 0.0027520587899554
1108 => 0.0027211960801201
1109 => 0.002803249652516
1110 => 0.0027863819047876
1111 => 0.0027690815629777
1112 => 0.0027666901287583
1113 => 0.0027600309731573
1114 => 0.0027371942508389
1115 => 0.0027096175363651
1116 => 0.0026914090008154
1117 => 0.0024826825359107
1118 => 0.0025214209536911
1119 => 0.0025659859722294
1120 => 0.0025813696380458
1121 => 0.0025550548131497
1122 => 0.0027382333205165
1123 => 0.0027717017989645
1124 => 0.0026703235946508
1125 => 0.0026513598718685
1126 => 0.002739476579025
1127 => 0.0026863314327803
1128 => 0.0027102626888802
1129 => 0.0026585364028895
1130 => 0.0027636402225778
1201 => 0.0027628395075689
1202 => 0.0027219517478327
1203 => 0.0027565098023744
1204 => 0.0027505044899658
1205 => 0.0027043423099258
1206 => 0.0027651036460231
1207 => 0.0027651337828877
1208 => 0.0027257802031182
1209 => 0.0026798238375537
1210 => 0.0026716079248317
1211 => 0.0026654183382483
1212 => 0.0027087404300092
1213 => 0.0027475828820174
1214 => 0.0028198590553442
1215 => 0.0028380310025581
1216 => 0.0029089573223089
1217 => 0.0028667241522371
1218 => 0.0028854455695188
1219 => 0.0029057703162843
1220 => 0.0029155147473015
1221 => 0.002899636719874
1222 => 0.0030098144888849
1223 => 0.003019116868349
1224 => 0.0030222358757181
1225 => 0.0029850845519158
1226 => 0.0030180836228278
1227 => 0.0030026444503625
1228 => 0.0030428128879917
1229 => 0.0030491118119083
1230 => 0.0030437768474417
1231 => 0.0030457762253145
]
'min_raw' => 0.0013658266641678
'max_raw' => 0.0030491118119083
'avg_raw' => 0.002207469238038
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.001365'
'max' => '$0.003049'
'avg' => '$0.0022074'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00021060770037237
'max_diff' => -0.00029096594536197
'year' => 2031
]
6 => [
'items' => [
101 => 0.0029517589361541
102 => 0.0029468836437304
103 => 0.0028804086855985
104 => 0.0029074977223953
105 => 0.002856856066515
106 => 0.0028729150572615
107 => 0.0028799937073669
108 => 0.0028762962222617
109 => 0.0029090292958918
110 => 0.0028811994963811
111 => 0.0028077520798297
112 => 0.0027342846525788
113 => 0.002733362328875
114 => 0.0027140196520876
115 => 0.0027000384395583
116 => 0.0027027317171016
117 => 0.0027122231784539
118 => 0.00269948677857
119 => 0.0027022047352371
120 => 0.0027473409255616
121 => 0.0027563926666346
122 => 0.002725631313725
123 => 0.002602120042951
124 => 0.0025718100672985
125 => 0.0025935962767246
126 => 0.0025831838718305
127 => 0.0020848309938022
128 => 0.0022019116103222
129 => 0.0021323462836681
130 => 0.0021644051867371
131 => 0.0020933970020772
201 => 0.0021272858296547
202 => 0.002121027800623
203 => 0.0023092899673199
204 => 0.0023063505125331
205 => 0.002307757473987
206 => 0.0022405995379705
207 => 0.0023475839535815
208 => 0.0024002883237466
209 => 0.0023905341475104
210 => 0.0023929890635236
211 => 0.0023508054728915
212 => 0.0023081659033531
213 => 0.0022608720585523
214 => 0.0023487381764963
215 => 0.0023389689641056
216 => 0.0023613760224782
217 => 0.0024183634807647
218 => 0.0024267551004717
219 => 0.0024380335224573
220 => 0.0024339910110282
221 => 0.0025303000338534
222 => 0.0025186363757219
223 => 0.0025467424359554
224 => 0.0024889261376431
225 => 0.0024235015081294
226 => 0.0024359365913077
227 => 0.002434738992801
228 => 0.0024194921892713
229 => 0.0024057280567752
301 => 0.0023828146541896
302 => 0.002455316050516
303 => 0.0024523726262282
304 => 0.0025000232440905
305 => 0.0024916005345299
306 => 0.0024353516186978
307 => 0.0024373605597309
308 => 0.0024508716536425
309 => 0.0024976337039374
310 => 0.0025115158642681
311 => 0.0025050850944945
312 => 0.0025203062495524
313 => 0.0025323364298937
314 => 0.0025218170549833
315 => 0.0026707492203153
316 => 0.0026089022017551
317 => 0.0026390460082726
318 => 0.0026462351285094
319 => 0.0026278203481938
320 => 0.0026318138546604
321 => 0.0026378629287919
322 => 0.0026745917223885
323 => 0.002770978704348
324 => 0.0028136678425295
325 => 0.0029421002209934
326 => 0.002810123103865
327 => 0.0028022921279102
328 => 0.0028254266775578
329 => 0.0029008300796641
330 => 0.0029619374547898
331 => 0.0029822102964881
401 => 0.0029848896871867
402 => 0.0030229228859256
403 => 0.0030447228061656
404 => 0.0030183046552263
405 => 0.0029959180384009
406 => 0.0029157319556615
407 => 0.002925013713078
408 => 0.002988955817402
409 => 0.0030792778059308
410 => 0.0031567834684898
411 => 0.0031296436868067
412 => 0.0033367010633487
413 => 0.0033572299564793
414 => 0.0033543935272272
415 => 0.0034011614008877
416 => 0.0033083366957836
417 => 0.0032686523359576
418 => 0.0030007582790574
419 => 0.0030760255817898
420 => 0.003185431026605
421 => 0.0031709508057343
422 => 0.0030914976472936
423 => 0.0031567231961444
424 => 0.0031351575899028
425 => 0.0031181479015023
426 => 0.0031960725815555
427 => 0.0031103911948675
428 => 0.0031845762892299
429 => 0.0030894331383636
430 => 0.0031297676590433
501 => 0.0031068718343443
502 => 0.0031216882389313
503 => 0.0030350718404645
504 => 0.003081807946583
505 => 0.0030331274647959
506 => 0.0030331043839092
507 => 0.0030320297595756
508 => 0.0030893021305158
509 => 0.003091169780476
510 => 0.0030488454118174
511 => 0.0030427458090628
512 => 0.0030652992373778
513 => 0.0030388950795732
514 => 0.0030512494188242
515 => 0.0030392692799236
516 => 0.0030365722983167
517 => 0.0030150822900196
518 => 0.0030058238035652
519 => 0.0030094542946658
520 => 0.002997061556893
521 => 0.00298959448412
522 => 0.0030305443708575
523 => 0.0030086664982874
524 => 0.0030271912731133
525 => 0.0030060799541862
526 => 0.002932898925021
527 => 0.0028908117412727
528 => 0.0027525795610647
529 => 0.0027917820358952
530 => 0.0028177733172657
531 => 0.0028091831989278
601 => 0.0028276380970521
602 => 0.0028287710779125
603 => 0.0028227712024069
604 => 0.002815824115203
605 => 0.0028124426573502
606 => 0.0028376452738087
607 => 0.0028522762409439
608 => 0.0028203818900697
609 => 0.0028129094899093
610 => 0.0028451564395785
611 => 0.0028648270602482
612 => 0.0030100638713067
613 => 0.0029993042592348
614 => 0.0030263087740681
615 => 0.0030232684801159
616 => 0.0030515735138178
617 => 0.0030978402813207
618 => 0.0030037670065958
619 => 0.0030200948742789
620 => 0.0030160916581885
621 => 0.0030597977217637
622 => 0.0030599341673235
623 => 0.0030337301989304
624 => 0.0030479357953071
625 => 0.0030400066211198
626 => 0.0030543357105685
627 => 0.0029991605580557
628 => 0.0030663579380266
629 => 0.0031044545223665
630 => 0.003104983493477
701 => 0.003123040972101
702 => 0.0031413884162015
703 => 0.0031766047374269
704 => 0.0031404062521162
705 => 0.0030752887008938
706 => 0.0030799899777637
707 => 0.0030418115813075
708 => 0.0030424533670494
709 => 0.0030390274644614
710 => 0.003049308856018
711 => 0.0030014167453296
712 => 0.0030126569279828
713 => 0.0029969206064459
714 => 0.0030200606665891
715 => 0.002995165787064
716 => 0.0030160897277165
717 => 0.0030251198068625
718 => 0.003058440993315
719 => 0.0029902442207323
720 => 0.0028511863849207
721 => 0.0028804180279216
722 => 0.0028371821318273
723 => 0.0028411837786215
724 => 0.0028492677420031
725 => 0.002823064971775
726 => 0.0028280636345903
727 => 0.0028278850471795
728 => 0.0028263460773539
729 => 0.0028195297248185
730 => 0.0028096446650681
731 => 0.002849023700653
801 => 0.0028557149661498
802 => 0.0028705888204767
803 => 0.0029148433219217
804 => 0.0029104212536343
805 => 0.0029176338304809
806 => 0.0029018888157217
807 => 0.0028419141446984
808 => 0.0028451710578818
809 => 0.0028045572982961
810 => 0.0028695502353319
811 => 0.002854159049977
812 => 0.002844236252653
813 => 0.0028415287254691
814 => 0.0028858929252635
815 => 0.0028991673891655
816 => 0.0028908956340779
817 => 0.0028739300230675
818 => 0.0029065090116401
819 => 0.002915225774585
820 => 0.0029171771363465
821 => 0.0029749008576957
822 => 0.0029204032511393
823 => 0.0029335213666971
824 => 0.0030358651595473
825 => 0.0029430534619102
826 => 0.0029922178880964
827 => 0.0029898115452739
828 => 0.0030149624020774
829 => 0.0029877484409176
830 => 0.0029880857905818
831 => 0.0030104180475566
901 => 0.0029790564202792
902 => 0.0029712908403258
903 => 0.0029605627472383
904 => 0.0029839871460155
905 => 0.0029980290136879
906 => 0.0031111961545128
907 => 0.0031843072885343
908 => 0.0031811333413896
909 => 0.0032101372769127
910 => 0.0031970707383139
911 => 0.0031548754383998
912 => 0.0032268976701846
913 => 0.0032041068225097
914 => 0.0032059856723011
915 => 0.0032059157414181
916 => 0.0032210696627114
917 => 0.0032103317206386
918 => 0.0031891661345859
919 => 0.0032032168383642
920 => 0.0032449424053672
921 => 0.0033744598456411
922 => 0.0034469395210963
923 => 0.0033700964781706
924 => 0.0034231017802114
925 => 0.0033913174867071
926 => 0.0033855413350766
927 => 0.0034188325818193
928 => 0.0034521821004824
929 => 0.0034500578803175
930 => 0.0034258478422848
1001 => 0.0034121722061071
1002 => 0.0035157287049187
1003 => 0.0035920273692042
1004 => 0.0035868243118126
1005 => 0.003609788915014
1006 => 0.0036772137002815
1007 => 0.0036833781776514
1008 => 0.0036826015951917
1009 => 0.0036673222948336
1010 => 0.0037337107521442
1011 => 0.0037890931712265
1012 => 0.0036637855782621
1013 => 0.0037115010692661
1014 => 0.0037329220904749
1015 => 0.00376437450494
1016 => 0.0038174400001794
1017 => 0.0038750832029368
1018 => 0.0038832345838323
1019 => 0.0038774507890075
1020 => 0.0038394335472565
1021 => 0.0039025074275401
1022 => 0.0039394546273457
1023 => 0.0039614558393084
1024 => 0.004017247252193
1025 => 0.0037330543794093
1026 => 0.0035318885387508
1027 => 0.003500473587862
1028 => 0.0035643571258263
1029 => 0.0035812027053258
1030 => 0.0035744122733521
1031 => 0.0033479818304928
1101 => 0.0034992814784412
1102 => 0.0036620671779979
1103 => 0.0036683204396835
1104 => 0.0037498143645701
1105 => 0.003776352127062
1106 => 0.0038419654182486
1107 => 0.0038378612890203
1108 => 0.0038538370812887
1109 => 0.0038501645233083
1110 => 0.003971699328723
1111 => 0.0041057702671886
1112 => 0.004101127816909
1113 => 0.0040818535332492
1114 => 0.0041104791312377
1115 => 0.0042488547076491
1116 => 0.0042361153019966
1117 => 0.004248490549448
1118 => 0.0044116431525428
1119 => 0.0046237647447533
1120 => 0.0045252129685119
1121 => 0.004739041965446
1122 => 0.004873635984428
1123 => 0.0051064024229759
1124 => 0.0050772589184708
1125 => 0.0051678731848785
1126 => 0.0050250859629738
1127 => 0.0046972176394218
1128 => 0.0046453312221902
1129 => 0.0047492091434613
1130 => 0.0050045828766469
1201 => 0.0047411665158053
1202 => 0.0047944553025294
1203 => 0.0047791081283679
1204 => 0.0047782903426781
1205 => 0.004809501896282
1206 => 0.0047642279098944
1207 => 0.0045797735447169
1208 => 0.0046643078932814
1209 => 0.0046316651216278
1210 => 0.0046678847104573
1211 => 0.0048633468932753
1212 => 0.004776928403015
1213 => 0.0046858935435938
1214 => 0.0048000714595605
1215 => 0.0049454591823747
1216 => 0.0049363610799678
1217 => 0.0049187069585867
1218 => 0.0050182223164722
1219 => 0.0051825925324348
1220 => 0.0052270211413165
1221 => 0.0052598174320901
1222 => 0.0052643394864899
1223 => 0.0053109194572489
1224 => 0.0050604472148133
1225 => 0.0054579530961421
1226 => 0.0055265913809692
1227 => 0.0055136902281871
1228 => 0.0055899787930319
1229 => 0.0055675327620004
1230 => 0.0055350119847103
1231 => 0.0056559455870323
]
'min_raw' => 0.0020848309938022
'max_raw' => 0.0056559455870323
'avg_raw' => 0.0038703882904173
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.002084'
'max' => '$0.005655'
'avg' => '$0.00387'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.00071900432963444
'max_diff' => 0.002606833775124
'year' => 2032
]
7 => [
'items' => [
101 => 0.0055173049708086
102 => 0.0053205220704472
103 => 0.0052125630793845
104 => 0.0053547321876193
105 => 0.0054415499010001
106 => 0.0054989308869012
107 => 0.0055162943385643
108 => 0.0050798906619906
109 => 0.0048446932843748
110 => 0.0049954521068831
111 => 0.0051793882751613
112 => 0.0050594254401114
113 => 0.0050641277561257
114 => 0.0048930922790229
115 => 0.0051945211197435
116 => 0.0051506054730661
117 => 0.0053784399257138
118 => 0.0053240654051037
119 => 0.0055098555567554
120 => 0.0054609307833195
121 => 0.0056640147825048
122 => 0.0057450304880595
123 => 0.0058810684667737
124 => 0.0059811385576901
125 => 0.006039901629112
126 => 0.0060363737147186
127 => 0.0062692222793381
128 => 0.0061319196158912
129 => 0.0059594351108487
130 => 0.0059563154103341
131 => 0.00604564757962
201 => 0.0062328632993592
202 => 0.0062814056116097
203 => 0.0063085341418937
204 => 0.0062669858534128
205 => 0.0061179536528118
206 => 0.0060536023042026
207 => 0.0061084315176557
208 => 0.0060413801011306
209 => 0.0061571296573575
210 => 0.0063160785208281
211 => 0.0062832562090734
212 => 0.0063929762762736
213 => 0.006506525002938
214 => 0.0066689047818607
215 => 0.0067113568689768
216 => 0.0067815285546716
217 => 0.0068537582694495
218 => 0.0068769565071907
219 => 0.0069212491410292
220 => 0.0069210156969854
221 => 0.0070544945302957
222 => 0.0072017258169324
223 => 0.0072573022192256
224 => 0.0073850970917982
225 => 0.0071662528509841
226 => 0.0073322487215431
227 => 0.0074819811519333
228 => 0.0073034639756785
301 => 0.0075495083139783
302 => 0.007559061658086
303 => 0.0077033058118601
304 => 0.0075570867281739
305 => 0.0074702623030289
306 => 0.0077209211651538
307 => 0.0078422070928558
308 => 0.0078056747843743
309 => 0.0075276621130078
310 => 0.007365846813748
311 => 0.0069423449637451
312 => 0.007444001198992
313 => 0.0076883433176678
314 => 0.0075270293259491
315 => 0.0076083867202975
316 => 0.0080522462836384
317 => 0.0082212392675801
318 => 0.0081860899082704
319 => 0.008192029571386
320 => 0.0082832151180813
321 => 0.0086875820489262
322 => 0.0084452760108119
323 => 0.0086305098979163
324 => 0.008728757283726
325 => 0.0088200149310523
326 => 0.0085959149914944
327 => 0.0083043642628116
328 => 0.0082120179085707
329 => 0.007510989828624
330 => 0.0074744982726521
331 => 0.0074540144564778
401 => 0.007324866892992
402 => 0.007223392284587
403 => 0.0071426959084727
404 => 0.0069309245195711
405 => 0.0070023911467111
406 => 0.0066648717529257
407 => 0.0068808047001167
408 => 0.0063421155979445
409 => 0.0067907518894666
410 => 0.0065465795529803
411 => 0.0067105347099369
412 => 0.0067099626858398
413 => 0.0064080692598527
414 => 0.0062339434320985
415 => 0.0063449031866221
416 => 0.0064638608514677
417 => 0.0064831613323673
418 => 0.0066373930499523
419 => 0.0066804358071306
420 => 0.0065500142434062
421 => 0.0063309524636529
422 => 0.0063818355188224
423 => 0.0062329122886095
424 => 0.0059719300559108
425 => 0.0061593720517476
426 => 0.0062233729903691
427 => 0.0062516394509174
428 => 0.0059949933990702
429 => 0.0059143496375229
430 => 0.0058714155755418
501 => 0.0062978226811826
502 => 0.0063211822249892
503 => 0.0062016714961679
504 => 0.0067418713229124
505 => 0.0066196074648974
506 => 0.0067562061496727
507 => 0.0063772184148967
508 => 0.0063916962567398
509 => 0.006212277389549
510 => 0.0063127399664028
511 => 0.0062417362551425
512 => 0.0063046235829836
513 => 0.0063423179879973
514 => 0.0065217074143175
515 => 0.006792800228558
516 => 0.0064949126161354
517 => 0.0063651187175737
518 => 0.0064456421222528
519 => 0.0066600865601634
520 => 0.0069849808608067
521 => 0.0067926368957187
522 => 0.0068779958812125
523 => 0.0068966430221859
524 => 0.0067548157032906
525 => 0.0069902102363548
526 => 0.0071163600789657
527 => 0.0072457637144526
528 => 0.0073581212653384
529 => 0.0071940770567922
530 => 0.0073696278747502
531 => 0.007228164904367
601 => 0.0071012579957602
602 => 0.0071014504611557
603 => 0.0070218399035725
604 => 0.0068675844166794
605 => 0.0068391373381925
606 => 0.0069871226329512
607 => 0.007105792825088
608 => 0.0071155670705043
609 => 0.0071812689863659
610 => 0.0072201507033892
611 => 0.007601244387349
612 => 0.00775452341961
613 => 0.007941950118835
614 => 0.0080149633809732
615 => 0.0082347071233058
616 => 0.008057246204658
617 => 0.0080188514186271
618 => 0.0074858249773585
619 => 0.0075731080272555
620 => 0.0077128566117023
621 => 0.0074881293800434
622 => 0.0076306670834526
623 => 0.0076588070454669
624 => 0.0074804932347046
625 => 0.0075757383455177
626 => 0.0073227955694054
627 => 0.0067983136898644
628 => 0.0069907941346178
629 => 0.0071325245301735
630 => 0.0069302577804838
701 => 0.0072928131004983
702 => 0.0070810157672068
703 => 0.0070138861806183
704 => 0.006751989729911
705 => 0.006875594773326
706 => 0.0070427723643985
707 => 0.0069394760495967
708 => 0.0071538314128302
709 => 0.007457415773656
710 => 0.0076737680679418
711 => 0.0076903769106399
712 => 0.0075512768798921
713 => 0.00777418556689
714 => 0.0077758092133198
715 => 0.0075243673037775
716 => 0.0073703605342173
717 => 0.0073353698721402
718 => 0.0074227834063322
719 => 0.0075289195742698
720 => 0.0076962667292903
721 => 0.007797391110227
722 => 0.0080610698634825
723 => 0.0081324137738512
724 => 0.0082107991012242
725 => 0.0083155460717344
726 => 0.0084413216664037
727 => 0.0081661318256757
728 => 0.0081770656310659
729 => 0.0079208126616426
730 => 0.0076469696134208
731 => 0.0078547823520033
801 => 0.0081264698635299
802 => 0.0080641444481976
803 => 0.0080571315657801
804 => 0.0080689252887951
805 => 0.0080219339609923
806 => 0.0078093939269205
807 => 0.0077026576523807
808 => 0.0078403746778649
809 => 0.0079135651478301
810 => 0.0080270771838664
811 => 0.0080130844294765
812 => 0.0083054792440033
813 => 0.0084190950273682
814 => 0.00839002724809
815 => 0.0083953764190324
816 => 0.0086010723678174
817 => 0.0088298485674646
818 => 0.0090441276681127
819 => 0.0092621015727934
820 => 0.0089993255230345
821 => 0.0088659040507405
822 => 0.0090035609532795
823 => 0.0089305182631311
824 => 0.0093502432265931
825 => 0.0093793040723989
826 => 0.0097989986849686
827 => 0.010197338848602
828 => 0.0099471485288292
829 => 0.010183066731556
830 => 0.010438231502497
831 => 0.010930485744636
901 => 0.010764711833597
902 => 0.010637731615749
903 => 0.010517735923447
904 => 0.010767427910348
905 => 0.01108865266257
906 => 0.011157841397546
907 => 0.011269953580338
908 => 0.011152081328557
909 => 0.011294045472624
910 => 0.011795241283387
911 => 0.011659813751141
912 => 0.01146748488429
913 => 0.011863130841529
914 => 0.01200631357542
915 => 0.013011244987242
916 => 0.014280012406313
917 => 0.013754734363642
918 => 0.013428677331939
919 => 0.013505308468565
920 => 0.013968619379522
921 => 0.014117420139369
922 => 0.013712928379409
923 => 0.013855801707217
924 => 0.014643047790433
925 => 0.015065380056201
926 => 0.014491796112498
927 => 0.012909300760491
928 => 0.011450167774146
929 => 0.011837195547739
930 => 0.011793318609084
1001 => 0.012639116314551
1002 => 0.011656583849286
1003 => 0.011673127176156
1004 => 0.012536415082457
1005 => 0.012306104669557
1006 => 0.011933031296589
1007 => 0.011452891622636
1008 => 0.010565309027789
1009 => 0.0097791523714614
1010 => 0.011320986615585
1011 => 0.011254499919335
1012 => 0.011158217330388
1013 => 0.011372483813225
1014 => 0.012412901033277
1015 => 0.012388916048853
1016 => 0.012236335815194
1017 => 0.012352066577644
1018 => 0.011912743134382
1019 => 0.012025966788919
1020 => 0.011449936640026
1021 => 0.011710326324469
1022 => 0.011932230848686
1023 => 0.011976781467276
1024 => 0.012077156285768
1025 => 0.01121946445159
1026 => 0.011604542904627
1027 => 0.011830740418814
1028 => 0.010808771820579
1029 => 0.011810539385507
1030 => 0.011204533944949
1031 => 0.010998846596527
1101 => 0.011275777513929
1102 => 0.011167857266094
1103 => 0.011075073774294
1104 => 0.011023298991647
1105 => 0.011226646493637
1106 => 0.011217160089617
1107 => 0.010884444108311
1108 => 0.010450429673937
1109 => 0.010596099164151
1110 => 0.010543176072698
1111 => 0.010351375962056
1112 => 0.010480626078595
1113 => 0.009911473977343
1114 => 0.0089322773690913
1115 => 0.0095791646421057
1116 => 0.0095542601857726
1117 => 0.0095417022295623
1118 => 0.010027820136582
1119 => 0.0099810911164699
1120 => 0.0098962774873954
1121 => 0.010349818293246
1122 => 0.010184269798126
1123 => 0.010694451251955
1124 => 0.011030489753915
1125 => 0.010945259520111
1126 => 0.011261305355419
1127 => 0.010599455094995
1128 => 0.010819295202684
1129 => 0.010864603944194
1130 => 0.010344221670103
1201 => 0.0099887365620677
1202 => 0.0099650297581887
1203 => 0.0093486675697208
1204 => 0.0096779232756986
1205 => 0.0099676546714321
1206 => 0.0098288958169403
1207 => 0.0097849689089111
1208 => 0.010009381955449
1209 => 0.010026820771132
1210 => 0.0096292139254605
1211 => 0.0097118889792469
1212 => 0.01005665769712
1213 => 0.0097032016921419
1214 => 0.0090164944111794
1215 => 0.0088461815110297
1216 => 0.0088234586306602
1217 => 0.0083615565377679
1218 => 0.0088575626334006
1219 => 0.00864104268052
1220 => 0.0093250266173624
1221 => 0.0089343386609174
1222 => 0.0089174968839732
1223 => 0.0088920380679705
1224 => 0.0084944598556829
1225 => 0.0085815042167604
1226 => 0.0088708529302124
1227 => 0.0089740958109186
1228 => 0.008963326732617
1229 => 0.0088694349636628
1230 => 0.0089124181346864
1231 => 0.00877395436449
]
'min_raw' => 0.0048446932843748
'max_raw' => 0.015065380056201
'avg_raw' => 0.0099550366702878
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.004844'
'max' => '$0.015065'
'avg' => '$0.009955'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0027598622905726
'max_diff' => 0.0094094344691684
'year' => 2033
]
8 => [
'items' => [
101 => 0.0087250599253595
102 => 0.0085707356259885
103 => 0.0083439215390891
104 => 0.0083754614290041
105 => 0.0079260833737221
106 => 0.0076812383589059
107 => 0.0076134684858102
108 => 0.0075228437792087
109 => 0.007623704787564
110 => 0.0079248103421528
111 => 0.0075616131602117
112 => 0.0069389370670938
113 => 0.0069763609612786
114 => 0.007060441340258
115 => 0.0069037581102773
116 => 0.0067554705825273
117 => 0.0068843945569585
118 => 0.0066205584877106
119 => 0.0070923246687349
120 => 0.0070795647156477
121 => 0.0072554099741086
122 => 0.0073653696229322
123 => 0.0071119482322529
124 => 0.0070482134378213
125 => 0.0070845196733144
126 => 0.0064844584737523
127 => 0.0072063721721839
128 => 0.0072126153118261
129 => 0.00715915775989
130 => 0.0075435545177199
131 => 0.0083547515730966
201 => 0.0080495466105379
202 => 0.0079313620241664
203 => 0.0077066930390817
204 => 0.0080060511221827
205 => 0.0079830650921141
206 => 0.007879113546951
207 => 0.0078162433280877
208 => 0.0079320836340494
209 => 0.0078018894322311
210 => 0.0077785029760872
211 => 0.00763680649657
212 => 0.0075862273001614
213 => 0.0075487804767563
214 => 0.0075075552036361
215 => 0.0075984878834412
216 => 0.0073924224678127
217 => 0.0071439277774064
218 => 0.007123268132649
219 => 0.0071803112282389
220 => 0.0071550739047994
221 => 0.0071231473060538
222 => 0.0070621907343569
223 => 0.0070441062216654
224 => 0.0071028721145543
225 => 0.0070365288477472
226 => 0.0071344219518258
227 => 0.0071078004441889
228 => 0.0069590948665815
301 => 0.0067737526590263
302 => 0.0067721027246106
303 => 0.006732171050015
304 => 0.00668131205865
305 => 0.0066671642507483
306 => 0.0068735369394301
307 => 0.0073007222287867
308 => 0.0072168555348084
309 => 0.0072774578162122
310 => 0.0075755610604366
311 => 0.0076703191174982
312 => 0.0076030620930635
313 => 0.0075109965297846
314 => 0.0075150469473282
315 => 0.0078296628471935
316 => 0.0078492850549524
317 => 0.0078988640435949
318 => 0.0079625870550211
319 => 0.0076139143974555
320 => 0.0074986244965125
321 => 0.0074439937454055
322 => 0.0072757521767575
323 => 0.0074571862846024
324 => 0.0073514723997443
325 => 0.0073657368145122
326 => 0.0073564470956816
327 => 0.0073615199103311
328 => 0.0070921928004727
329 => 0.007190321443889
330 => 0.007027163541846
331 => 0.0068087134263446
401 => 0.0068079811049589
402 => 0.0068614464612499
403 => 0.0068296431752284
404 => 0.006744061350282
405 => 0.0067562178445808
406 => 0.0066497141628587
407 => 0.0067691493198533
408 => 0.0067725742927963
409 => 0.0067265852516765
410 => 0.0069105915899022
411 => 0.0069859791368081
412 => 0.0069557081647623
413 => 0.0069838552447131
414 => 0.0072203405745786
415 => 0.007258898001925
416 => 0.0072760226641916
417 => 0.0072530778853373
418 => 0.0069881777624209
419 => 0.0069999272093145
420 => 0.0069137175638894
421 => 0.0068408794980538
422 => 0.0068437926387019
423 => 0.0068812408728272
424 => 0.007044779507562
425 => 0.0073889369232325
426 => 0.0074019974455813
427 => 0.0074178271796705
428 => 0.0073534396957429
429 => 0.0073340198144851
430 => 0.0073596396505608
501 => 0.0074888870809494
502 => 0.0078213465622438
503 => 0.0077038331773322
504 => 0.0076082929661942
505 => 0.0076921074888182
506 => 0.0076792049000201
507 => 0.0075702940658585
508 => 0.0075672373014824
509 => 0.0073582025898262
510 => 0.007280927216417
511 => 0.0072163501304348
512 => 0.0071458336383697
513 => 0.0071040290981394
514 => 0.007168259871757
515 => 0.0071829502096395
516 => 0.0070425085005628
517 => 0.0070233668145656
518 => 0.0071380545458425
519 => 0.0070875847512971
520 => 0.0071394941865777
521 => 0.0071515376208337
522 => 0.0071495983505347
523 => 0.0070969020886103
524 => 0.0071304891145357
525 => 0.0070510457854478
526 => 0.0069646630970668
527 => 0.0069095563237115
528 => 0.0068614683551061
529 => 0.0068881503549775
530 => 0.0067930338973767
531 => 0.0067626042282741
601 => 0.0071191105858842
602 => 0.00738246566534
603 => 0.0073786363781846
604 => 0.0073553265774392
605 => 0.0073206929417518
606 => 0.0074863534147792
607 => 0.0074286406184622
608 => 0.0074706314998483
609 => 0.0074813199415129
610 => 0.0075136706352787
611 => 0.0075252332276639
612 => 0.0074902830427391
613 => 0.0073729859533258
614 => 0.0070806927587807
615 => 0.0069446294876895
616 => 0.0068997263419164
617 => 0.0069013584859821
618 => 0.0068563366664398
619 => 0.0068695976100314
620 => 0.0068517250514341
621 => 0.0068178787492871
622 => 0.0068860604411963
623 => 0.0068939177460324
624 => 0.0068780033244303
625 => 0.006881751746828
626 => 0.0067499871331006
627 => 0.0067600049105046
628 => 0.0067042246529215
629 => 0.0066937665270657
630 => 0.0065527588932383
701 => 0.0063029434305298
702 => 0.006441365447044
703 => 0.0062741711161757
704 => 0.0062108520896684
705 => 0.0065105945130252
706 => 0.0064805086872808
707 => 0.0064290148316006
708 => 0.0063528446867897
709 => 0.0063245924391438
710 => 0.006152940726022
711 => 0.0061427986270845
712 => 0.0062278738510938
713 => 0.0061886145624732
714 => 0.0061334796525946
715 => 0.0059337865979506
716 => 0.0057092654884326
717 => 0.0057160423694395
718 => 0.0057874583570135
719 => 0.0059951099726428
720 => 0.005913976894007
721 => 0.0058551139145619
722 => 0.0058440906479265
723 => 0.0059820699086404
724 => 0.0061773394700994
725 => 0.0062689555794258
726 => 0.0061781667975059
727 => 0.0060738735332516
728 => 0.0060802213809983
729 => 0.0061224507681713
730 => 0.0061268884796718
731 => 0.006059004286163
801 => 0.0060781132890018
802 => 0.0060490849663258
803 => 0.0058709382036456
804 => 0.0058677160936182
805 => 0.0058239960050519
806 => 0.0058226721781456
807 => 0.0057482934010071
808 => 0.0057378872959292
809 => 0.0055902037194515
810 => 0.0056874094967162
811 => 0.0056222089648594
812 => 0.0055239363841007
813 => 0.0055069941541367
814 => 0.0055064848502456
815 => 0.0056073888173379
816 => 0.0056862303751115
817 => 0.0056233431560258
818 => 0.0056090249552576
819 => 0.005761905879995
820 => 0.0057424503887816
821 => 0.0057256020588653
822 => 0.006159855222606
823 => 0.0058161099583083
824 => 0.0056662174027807
825 => 0.0054806969014911
826 => 0.0055411033121865
827 => 0.0055538318304749
828 => 0.0051076884674571
829 => 0.0049266881606445
830 => 0.004864575676199
831 => 0.004828829063259
901 => 0.0048451192436535
902 => 0.0046821977383036
903 => 0.0047916836843717
904 => 0.0046506074321507
905 => 0.004626955539364
906 => 0.0048792173543292
907 => 0.0049143181121895
908 => 0.0047645673742069
909 => 0.004860731590434
910 => 0.0048258611088475
911 => 0.0046530257795816
912 => 0.0046464247412943
913 => 0.0045597020485243
914 => 0.0044239978271615
915 => 0.0043619773565684
916 => 0.004329676556997
917 => 0.0043430044964302
918 => 0.0043362654824111
919 => 0.0042922888574919
920 => 0.0043387861710743
921 => 0.0042200047488877
922 => 0.004172705029486
923 => 0.0041513408435774
924 => 0.0040459154945832
925 => 0.0042136941076985
926 => 0.0042467486081015
927 => 0.0042798682360813
928 => 0.0045681519859154
929 => 0.0045537501444551
930 => 0.0046839357772749
1001 => 0.0046788770029795
1002 => 0.0046417459516319
1003 => 0.0044850961537577
1004 => 0.0045475339711762
1005 => 0.0043553600741533
1006 => 0.0044993498243577
1007 => 0.0044336389155201
1008 => 0.0044771328999805
1009 => 0.0043989267942263
1010 => 0.0044422092822016
1011 => 0.0042545870563881
1012 => 0.0040793880618394
1013 => 0.0041498932516233
1014 => 0.0042265404561648
1015 => 0.0043927311249554
1016 => 0.004293749333667
1017 => 0.0043293469287302
1018 => 0.0042101009442339
1019 => 0.0039640624172864
1020 => 0.0039654549686292
1021 => 0.003927607301499
1022 => 0.0038949013912486
1023 => 0.0043051185830885
1024 => 0.0042541015907091
1025 => 0.0041728126902914
1026 => 0.004281621113793
1027 => 0.0043103917879887
1028 => 0.0043112108486363
1029 => 0.0043905946656712
1030 => 0.004432961823053
1031 => 0.0044404292181714
1101 => 0.0045653413694767
1102 => 0.0046072102749631
1103 => 0.0047796623711523
1104 => 0.004429367265752
1105 => 0.0044221531685744
1106 => 0.0042831522714499
1107 => 0.0041949957049763
1108 => 0.0042891884269776
1109 => 0.0043726303200819
1110 => 0.004285745043662
1111 => 0.0042970904265142
1112 => 0.0041804540417083
1113 => 0.0042221460610244
1114 => 0.004258056844581
1115 => 0.0042382290206393
1116 => 0.0042085458085212
1117 => 0.0043657890364062
1118 => 0.0043569167572477
1119 => 0.0045033452660604
1120 => 0.004617496759883
1121 => 0.0048220766438335
1122 => 0.0046085868699407
1123 => 0.004600806454035
1124 => 0.0046768612675307
1125 => 0.0046071986313674
1126 => 0.0046512230127501
1127 => 0.0048149836353784
1128 => 0.004818443639284
1129 => 0.0047604841159032
1130 => 0.0047569572736381
1201 => 0.0047680890341111
1202 => 0.0048332881028956
1203 => 0.0048105055448973
1204 => 0.0048368700977967
1205 => 0.0048698393749059
1206 => 0.0050062142837132
1207 => 0.0050390938125315
1208 => 0.0049592136035841
1209 => 0.0049664258920712
1210 => 0.0049365485011641
1211 => 0.0049076873159105
1212 => 0.0049725630455231
1213 => 0.0050911247165258
1214 => 0.0050903871505238
1215 => 0.0051178911536869
1216 => 0.005135025919802
1217 => 0.0050614709602205
1218 => 0.0050135893862237
1219 => 0.0050319502284778
1220 => 0.0050613096150892
1221 => 0.0050224293750957
1222 => 0.0047824425227765
1223 => 0.0048552392033507
1224 => 0.0048431222761273
1225 => 0.0048258662982926
1226 => 0.0048990639235299
1227 => 0.004892003834009
1228 => 0.0046805267427833
1229 => 0.0046940648200278
1230 => 0.0046813500381001
1231 => 0.0047224340997083
]
'min_raw' => 0.0038949013912486
'max_raw' => 0.0087250599253595
'avg_raw' => 0.006309980658304
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.003894'
'max' => '$0.008725'
'avg' => '$0.0063099'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.00094979189312621
'max_diff' => -0.0063403201308413
'year' => 2034
]
9 => [
'items' => [
101 => 0.0046049799572142
102 => 0.0046411080603796
103 => 0.0046637672680051
104 => 0.0046771137153727
105 => 0.0047253302350093
106 => 0.0047196725829429
107 => 0.0047249785474131
108 => 0.0047964709173448
109 => 0.0051580547912408
110 => 0.0051777350037071
111 => 0.0050808224398234
112 => 0.0051195370975792
113 => 0.0050452134206531
114 => 0.0050951074028989
115 => 0.0051292435983818
116 => 0.0049749886950077
117 => 0.004965854720736
118 => 0.0048912242835568
119 => 0.0049313264532129
120 => 0.0048675210178421
121 => 0.0048831766398627
122 => 0.0048394021558605
123 => 0.0049181875116516
124 => 0.0050062817814327
125 => 0.0050285378729276
126 => 0.0049699916780545
127 => 0.0049276003745841
128 => 0.0048531752102536
129 => 0.0049769459172082
130 => 0.0050131402437657
131 => 0.0049767558038192
201 => 0.0049683247340679
202 => 0.0049523478721237
203 => 0.0049717143008568
204 => 0.0050129431216901
205 => 0.0049935003711619
206 => 0.005006342650423
207 => 0.0049574011247807
208 => 0.0050614953099727
209 => 0.0052268219276876
210 => 0.0052273534797972
211 => 0.0052079106244653
212 => 0.0051999550269657
213 => 0.0052199045764273
214 => 0.0052307263886368
215 => 0.005295239573474
216 => 0.005364464791123
217 => 0.0056875086765618
218 => 0.0055967992462116
219 => 0.0058834229993397
220 => 0.0061101051746278
221 => 0.0061780772473865
222 => 0.0061155461387816
223 => 0.0059016305941085
224 => 0.0058911348769489
225 => 0.0062108150135039
226 => 0.0061204907326493
227 => 0.0061097469468511
228 => 0.005995451217871
301 => 0.0060630141494997
302 => 0.0060482371452641
303 => 0.0060249109211624
304 => 0.0061538162882352
305 => 0.006395115627934
306 => 0.0063575068629511
307 => 0.0063294336645117
308 => 0.0062064250809357
309 => 0.0062805037232103
310 => 0.0062541257375792
311 => 0.0063674623037335
312 => 0.0063003242326561
313 => 0.0061198064373854
314 => 0.0061485544912767
315 => 0.0061442092807641
316 => 0.0062336334052087
317 => 0.0062067905026936
318 => 0.0061389677732348
319 => 0.0063942908930235
320 => 0.0063777116298063
321 => 0.0064012172345011
322 => 0.0064115651286228
323 => 0.0065669758123402
324 => 0.006630642596872
325 => 0.0066450960716046
326 => 0.006705574592744
327 => 0.006643591310904
328 => 0.006891568631595
329 => 0.0070564590799767
330 => 0.0072479878209569
331 => 0.0075278627896014
401 => 0.0076330983667999
402 => 0.0076140885017061
403 => 0.0078262865087635
404 => 0.0082076016105489
405 => 0.007691163185993
406 => 0.0082349741010608
407 => 0.0080628098439493
408 => 0.0076546114874405
409 => 0.0076283283256238
410 => 0.0079047649919319
411 => 0.0085178749117602
412 => 0.0083642978306784
413 => 0.0085181261088473
414 => 0.0083386772512931
415 => 0.0083297661030019
416 => 0.0085094106783733
417 => 0.0089291600206447
418 => 0.0087297528422004
419 => 0.0084438537552543
420 => 0.0086549571919728
421 => 0.0084720798583865
422 => 0.0080600060416737
423 => 0.0083641803931788
424 => 0.0081607876667142
425 => 0.0082201484772486
426 => 0.0086476497358925
427 => 0.0085962116534245
428 => 0.0086627772951763
429 => 0.0085452906798104
430 => 0.0084355396551199
501 => 0.008230681217317
502 => 0.0081700327332825
503 => 0.0081867937923658
504 => 0.008170024427334
505 => 0.0080554080141295
506 => 0.0080306566106107
507 => 0.0079894031870289
508 => 0.0080021893479954
509 => 0.0079246208425468
510 => 0.0080710086387993
511 => 0.0080981795037486
512 => 0.0082047083341321
513 => 0.0082157685106984
514 => 0.0085124497869735
515 => 0.0083490427255275
516 => 0.0084586702902323
517 => 0.0084488641689905
518 => 0.0076634583835917
519 => 0.0077716803711258
520 => 0.0079400398217982
521 => 0.0078641941174761
522 => 0.0077569660367262
523 => 0.0076703736123147
524 => 0.0075391772348013
525 => 0.0077238336167482
526 => 0.0079666371229913
527 => 0.0082219264083035
528 => 0.0085286397573895
529 => 0.0084601849084105
530 => 0.0082161926155877
531 => 0.0082271379316073
601 => 0.008294797568417
602 => 0.0082071721912221
603 => 0.0081813297568368
604 => 0.00829124721477
605 => 0.0082920041558932
606 => 0.00819118056955
607 => 0.008079133603851
608 => 0.0080786641229735
609 => 0.0080587264476727
610 => 0.0083422241194374
611 => 0.0084981191740604
612 => 0.0085159922908355
613 => 0.0084969161708959
614 => 0.0085042578123565
615 => 0.0084135459149845
616 => 0.0086208864125994
617 => 0.0088111625570608
618 => 0.0087601644856882
619 => 0.0086837111268977
620 => 0.0086228123441284
621 => 0.0087458186678589
622 => 0.0087403413898931
623 => 0.0088095006609322
624 => 0.0088063631969146
625 => 0.0087831075352759
626 => 0.0087601653162211
627 => 0.0088511286215023
628 => 0.0088249326504073
629 => 0.0087986959897337
630 => 0.008746074350121
701 => 0.0087532265048972
702 => 0.008676786346857
703 => 0.008641421632084
704 => 0.0081096211737129
705 => 0.0079675067141549
706 => 0.0080122188161384
707 => 0.0080269392010606
708 => 0.0079650908061363
709 => 0.0080537655169087
710 => 0.0080399456571645
711 => 0.0080937106470813
712 => 0.0080601206155858
713 => 0.0080614991621951
714 => 0.0081602802826736
715 => 0.0081889568621934
716 => 0.0081743717224013
717 => 0.0081845866543623
718 => 0.0084199854499526
719 => 0.0083865192688494
720 => 0.008368741027144
721 => 0.0083736657215951
722 => 0.0084338151608755
723 => 0.0084506537198364
724 => 0.0083793075622946
725 => 0.0084129548226385
726 => 0.0085562205867098
727 => 0.0086063554959948
728 => 0.0087663620603108
729 => 0.0086983884278995
730 => 0.0088231569720204
731 => 0.0092066529399169
801 => 0.0095130160549751
802 => 0.0092312718733764
803 => 0.0097938687190734
804 => 0.010231931063173
805 => 0.010215117500775
806 => 0.010138731198517
807 => 0.0096400088662498
808 => 0.0091810771405664
809 => 0.0095649930163709
810 => 0.0095659716968913
811 => 0.0095329929826816
812 => 0.0093281650210764
813 => 0.0095258654136081
814 => 0.0095415581528249
815 => 0.0095327743918996
816 => 0.0093757332739815
817 => 0.0091359605129705
818 => 0.0091828115365372
819 => 0.0092595544688744
820 => 0.0091142640877073
821 => 0.0090678350074698
822 => 0.0091541555011252
823 => 0.0094322981172722
824 => 0.0093797168668601
825 => 0.0093783437579144
826 => 0.0096033086450977
827 => 0.0094422823363357
828 => 0.0091834024779821
829 => 0.009118031899542
830 => 0.0088860103849778
831 => 0.0090462684715196
901 => 0.0090520358747523
902 => 0.0089642641585513
903 => 0.0091905246690143
904 => 0.009188439638578
905 => 0.0094032403188299
906 => 0.0098138585440204
907 => 0.0096924185295359
908 => 0.0095511970053264
909 => 0.0095665517006561
910 => 0.0097349548098055
911 => 0.0096331344457447
912 => 0.0096697497585778
913 => 0.0097348993881442
914 => 0.0097742057772359
915 => 0.0095608961161568
916 => 0.0095111634303787
917 => 0.0094094278090775
918 => 0.0093828868844653
919 => 0.0094657484252318
920 => 0.0094439173367812
921 => 0.0090515511468431
922 => 0.0090105466968896
923 => 0.0090118042448288
924 => 0.0089086966057657
925 => 0.0087514327075255
926 => 0.0091647128423612
927 => 0.0091315206636821
928 => 0.009094879067291
929 => 0.0090993674537748
930 => 0.0092787583529436
1001 => 0.0091747025719682
1002 => 0.0094513519200985
1003 => 0.0093944811309635
1004 => 0.0093361518206804
1005 => 0.009328088933245
1006 => 0.0093056371252089
1007 => 0.0092286415215032
1008 => 0.0091356647033102
1009 => 0.0090742733544251
1010 => 0.0083705375051825
1011 => 0.0085011467853588
1012 => 0.0086514008567911
1013 => 0.0087032679601442
1014 => 0.0086145456907645
1015 => 0.0092321448174669
1016 => 0.0093449861292487
1017 => 0.009003182435405
1018 => 0.0089392449200397
1019 => 0.0092363365503298
1020 => 0.0090571539792902
1021 => 0.0091378398800578
1022 => 0.0089634410954262
1023 => 0.0093178059616198
1024 => 0.0093151062950629
1025 => 0.0091772503584201
1026 => 0.0092937652520739
1027 => 0.0092735179220109
1028 => 0.0091178789090653
1029 => 0.0093227399959385
1030 => 0.0093228416044817
1031 => 0.0091901582627095
1101 => 0.009035213167638
1102 => 0.009007512644279
1103 => 0.0089866440209697
1104 => 0.0091327074779936
1105 => 0.0092636675168327
1106 => 0.0095073516813653
1107 => 0.0095686196701217
1108 => 0.0098077527090791
1109 => 0.0096653606275563
1110 => 0.0097284811930092
1111 => 0.0097970074957574
1112 => 0.0098298615252663
1113 => 0.009776327647226
1114 => 0.010147799687812
1115 => 0.010179163309647
1116 => 0.010189679260754
1117 => 0.010064420978732
1118 => 0.010175679650234
1119 => 0.010123625402338
1120 => 0.010259056094276
1121 => 0.010280293356037
1122 => 0.010262306150863
1123 => 0.010269047192953
1124 => 0.0099520613384713
1125 => 0.0099356239496828
1126 => 0.0097114989872079
1127 => 0.0098028315660645
1128 => 0.0096320896875765
1129 => 0.0096862336960812
1130 => 0.0097100998591271
1201 => 0.0096976335299448
1202 => 0.0098079953730387
1203 => 0.0097141652609739
1204 => 0.0094665321681361
1205 => 0.0092188316078277
1206 => 0.0092157219290655
1207 => 0.0091505067438144
1208 => 0.0091033681096348
1209 => 0.0091124486829107
1210 => 0.0091444498075327
1211 => 0.0091015081460969
1212 => 0.0091106719267617
1213 => 0.0092628517437489
1214 => 0.0092933703207489
1215 => 0.0091896562717252
1216 => 0.0087732293990291
1217 => 0.0086710371999418
1218 => 0.0087444909260864
1219 => 0.0087093847760151
1220 => 0.0070291532538559
1221 => 0.0074238987267608
1222 => 0.0071893543710503
1223 => 0.0072974432010286
1224 => 0.0070580341488148
1225 => 0.0071722926970347
1226 => 0.0071511933152326
1227 => 0.0077859323542959
1228 => 0.0077760217772559
1229 => 0.0077807654460289
1230 => 0.0075543377759319
1231 => 0.0079150432025776
]
'min_raw' => 0.0046049799572142
'max_raw' => 0.010280293356037
'avg_raw' => 0.0074426366566258
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.0046049'
'max' => '$0.01028'
'avg' => '$0.007442'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.00071007856596552
'max_diff' => 0.001555233430678
'year' => 2035
]
10 => [
'items' => [
101 => 0.0080927396662909
102 => 0.0080598527800958
103 => 0.008068129700831
104 => 0.0079259047798506
105 => 0.0077821424941522
106 => 0.0076226879944555
107 => 0.0079189347457202
108 => 0.0078859971640802
109 => 0.0079615441257944
110 => 0.0081536813201447
111 => 0.0081819742518709
112 => 0.0082200002390297
113 => 0.0082063706295074
114 => 0.0085310832240436
115 => 0.0084917583863226
116 => 0.0085865199307023
117 => 0.0083915882443376
118 => 0.0081710045381304
119 => 0.0082129302892557
120 => 0.0082088925022767
121 => 0.0081574868396783
122 => 0.008111080105987
123 => 0.008033825969407
124 => 0.008278269489007
125 => 0.0082683455285175
126 => 0.0084290029135
127 => 0.0084006051601618
128 => 0.00821095801326
129 => 0.0082177312982128
130 => 0.0082632848946502
131 => 0.0084209464120416
201 => 0.008467751084818
202 => 0.0084460692955442
203 => 0.0084973884825291
204 => 0.0085379490754701
205 => 0.0085024822685206
206 => 0.0090046174620491
207 => 0.0087960959209525
208 => 0.0088977278691995
209 => 0.0089219664900061
210 => 0.0088598797724931
211 => 0.008873344158363
212 => 0.0088937390341304
213 => 0.0090175727260637
214 => 0.0093425481652644
215 => 0.0094864775751037
216 => 0.0099194963059573
217 => 0.0094745262412106
218 => 0.0094481235590378
219 => 0.0095261233083774
220 => 0.0097803511430762
221 => 0.0099863789246933
222 => 0.010054730225884
223 => 0.010063763978693
224 => 0.010191995563634
225 => 0.010265495516745
226 => 0.010176424876397
227 => 0.010100946834786
228 => 0.0098305938584171
229 => 0.0098618879515785
301 => 0.010077473220602
302 => 0.010382000111007
303 => 0.010643315863597
304 => 0.010551812194813
305 => 0.011249920596109
306 => 0.01131913519258
307 => 0.011309571973324
308 => 0.011467253124599
309 => 0.011154288150526
310 => 0.0110204895607
311 => 0.010117266044095
312 => 0.010371035010252
313 => 0.010739903105891
314 => 0.010691082030249
315 => 0.010423200159324
316 => 0.010643112651176
317 => 0.01057040270407
318 => 0.010513053352049
319 => 0.010775781851376
320 => 0.010486901074074
321 => 0.010737021299155
322 => 0.010416239523327
323 => 0.010552230175865
324 => 0.010475035304356
325 => 0.01052498984687
326 => 0.010232956612075
327 => 0.010390530656864
328 => 0.010226401013757
329 => 0.010226323194935
330 => 0.010222700023967
331 => 0.010415797821221
401 => 0.010422094733457
402 => 0.010279395169532
403 => 0.010258829932984
404 => 0.010334870391178
405 => 0.01024584692966
406 => 0.010287500446997
407 => 0.010247108572267
408 => 0.010238015510482
409 => 0.010165560447124
410 => 0.010134344813636
411 => 0.010146585267855
412 => 0.010104802287221
413 => 0.010079626530032
414 => 0.010217691932197
415 => 0.010143929157363
416 => 0.010206386729047
417 => 0.010135208443339
418 => 0.0098884734941722
419 => 0.0097465736157316
420 => 0.0092805141690975
421 => 0.009412688050018
422 => 0.009500319469812
423 => 0.0094713572860928
424 => 0.0095335792635989
425 => 0.0095373991876718
426 => 0.0095171701885066
427 => 0.0094937475989686
428 => 0.0094823467777319
429 => 0.0095673191587124
430 => 0.0096166484859104
501 => 0.0095091144551455
502 => 0.0094839207362983
503 => 0.0095926435785181
504 => 0.0096589644494651
505 => 0.010148640498059
506 => 0.010112363714746
507 => 0.010203411321902
508 => 0.010193160758576
509 => 0.010288593155896
510 => 0.010444584792774
511 => 0.010127410179053
512 => 0.010182460724922
513 => 0.010168963602378
514 => 0.010316321647181
515 => 0.010316781682912
516 => 0.010228433173972
517 => 0.01027632833396
518 => 0.01024959456959
519 => 0.010297906095091
520 => 0.010111879216188
521 => 0.010338439874331
522 => 0.010466885168252
523 => 0.010468668631283
524 => 0.010529550681196
525 => 0.010591410369959
526 => 0.010710144655695
527 => 0.010588098935173
528 => 0.010368550564864
529 => 0.010384401248063
530 => 0.010255680118881
531 => 0.010257843944318
601 => 0.010246293274554
602 => 0.01028095770401
603 => 0.010119486109104
604 => 0.010157383169684
605 => 0.010104327062947
606 => 0.010182345391308
607 => 0.010098410566884
608 => 0.010168957093657
609 => 0.010199402635957
610 => 0.010311747342493
611 => 0.010081817162384
612 => 0.0096129739602368
613 => 0.0097115304855024
614 => 0.0095657576431866
615 => 0.0095792494747392
616 => 0.0096065051216847
617 => 0.0095181606524416
618 => 0.009535013993119
619 => 0.0095344118731949
620 => 0.0095292231289802
621 => 0.0095062413205048
622 => 0.0094729131514032
623 => 0.0096056823192345
624 => 0.009628242388026
625 => 0.0096783906263484
626 => 0.0098275977677209
627 => 0.0098126884557511
628 => 0.0098370061621553
629 => 0.0097839207456131
630 => 0.00958171195496
701 => 0.0095926928651483
702 => 0.009455760739143
703 => 0.0096748889640211
704 => 0.0096229965080187
705 => 0.0095895411040536
706 => 0.0095804124871195
707 => 0.0097299894841356
708 => 0.0097747452659749
709 => 0.0097468564661814
710 => 0.0096896557241587
711 => 0.0097994980587237
712 => 0.0098288872335772
713 => 0.0098354663859958
714 => 0.010030085942666
715 => 0.0098463434572601
716 => 0.0098905720997406
717 => 0.010235631342751
718 => 0.0099227102242612
719 => 0.010088471519699
720 => 0.010080358366867
721 => 0.010165156236557
722 => 0.010073402466488
723 => 0.010074539864434
724 => 0.010149834628013
725 => 0.010044096712049
726 => 0.01001791451706
727 => 0.0099817440022041
728 => 0.010060720998121
729 => 0.01010806413535
730 => 0.010489615051719
731 => 0.010736114344529
801 => 0.010725413160132
802 => 0.010823201953739
803 => 0.010779147206576
804 => 0.010636882806934
805 => 0.010879710789828
806 => 0.010802869855686
807 => 0.010809204528935
808 => 0.01080896875208
809 => 0.010860061255734
810 => 0.010823857534336
811 => 0.010752496283226
812 => 0.010799869212003
813 => 0.010940549874339
814 => 0.011377226966842
815 => 0.011621597253008
816 => 0.011362515568774
817 => 0.011541226645317
818 => 0.011434063680659
819 => 0.011414588982159
820 => 0.011526832744872
821 => 0.011639272975434
822 => 0.011632111018839
823 => 0.011550485185321
824 => 0.011504376823146
825 => 0.011853524788973
826 => 0.012110771062614
827 => 0.012093228591353
828 => 0.012170655354383
829 => 0.012397982725361
830 => 0.012418766691204
831 => 0.012416148389222
901 => 0.012364633161298
902 => 0.012588466480214
903 => 0.012775192172827
904 => 0.012352708874451
905 => 0.01251358498376
906 => 0.012585807452334
907 => 0.01269185146364
908 => 0.012870765485755
909 => 0.013065113568371
910 => 0.013092596518171
911 => 0.013073096050108
912 => 0.012944918265265
913 => 0.013157576256319
914 => 0.013282146320035
915 => 0.013356324942243
916 => 0.013544429586015
917 => 0.012586253473712
918 => 0.011908008796982
919 => 0.011802091096738
920 => 0.012017478905191
921 => 0.012074274952594
922 => 0.012051380537102
923 => 0.011287954490134
924 => 0.011798071816596
925 => 0.012346915167986
926 => 0.012367998476347
927 => 0.012642760933827
928 => 0.012732234852875
929 => 0.012953454645085
930 => 0.01293961728685
1001 => 0.012993480785878
1002 => 0.012981098500237
1003 => 0.013390861581982
1004 => 0.013842891111552
1005 => 0.013827238766309
1006 => 0.013762254173263
1007 => 0.013858767375456
1008 => 0.014325310292402
1009 => 0.014282358496807
1010 => 0.014324082507602
1011 => 0.014874162899887
1012 => 0.015589345657881
1013 => 0.015257071463618
1014 => 0.015978010855845
1015 => 0.016431803987897
1016 => 0.017216592286696
1017 => 0.017118332926522
1018 => 0.017423845252202
1019 => 0.016942428164465
1020 => 0.015836997220574
1021 => 0.015662058542283
1022 => 0.016012290206374
1023 => 0.016873300577433
1024 => 0.015985173925713
1025 => 0.016164840790658
1026 => 0.016113096721467
1027 => 0.016110339499918
1028 => 0.016215571432014
1029 => 0.01606292702598
1030 => 0.015441026255591
1031 => 0.015726039713776
1101 => 0.015615982330101
1102 => 0.01573809920261
1103 => 0.016397113598715
1104 => 0.016105747625256
1105 => 0.015798817240866
1106 => 0.016183776056195
1107 => 0.01667396091431
1108 => 0.016643286026836
1109 => 0.016583763924029
1110 => 0.01691928690108
1111 => 0.01747347256016
1112 => 0.017623266716911
1113 => 0.017733841701018
1114 => 0.017749088123147
1115 => 0.01790613574667
1116 => 0.017061651093885
1117 => 0.018401869925759
1118 => 0.018633288695226
1119 => 0.018589791557892
1120 => 0.018847003780563
1121 => 0.018771325419809
1122 => 0.018661679348647
1123 => 0.01906941543219
1124 => 0.018601978915013
1125 => 0.017938511627501
1126 => 0.017574520351677
1127 => 0.018053853426021
1128 => 0.018346565408104
1129 => 0.018540029408282
1130 => 0.018598571497842
1201 => 0.017127206033541
1202 => 0.016334221653953
1203 => 0.016842515549685
1204 => 0.017462669183048
1205 => 0.01705820610914
1206 => 0.017074060295887
1207 => 0.016497402243519
1208 => 0.017513690625098
1209 => 0.017365625956233
1210 => 0.018133785720228
1211 => 0.017950458227683
1212 => 0.018576862695431
1213 => 0.018411909405974
1214 => 0.019096621288099
1215 => 0.019369771395713
1216 => 0.019828432938816
1217 => 0.020165826237011
1218 => 0.020363950035017
1219 => 0.020352055425328
1220 => 0.02113712061791
1221 => 0.020674195101933
1222 => 0.020092651550699
1223 => 0.020082133262604
1224 => 0.020383322908324
1225 => 0.021014533778409
1226 => 0.021178197573277
1227 => 0.021269663307183
1228 => 0.021129580351761
1229 => 0.020627107882339
1230 => 0.020410142817635
1231 => 0.020595003338846
]
'min_raw' => 0.0076226879944555
'max_raw' => 0.021269663307183
'avg_raw' => 0.014446175650819
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.007622'
'max' => '$0.021269'
'avg' => '$0.014446'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.0030177080372414
'max_diff' => 0.010989369951146
'year' => 2036
]
11 => [
'items' => [
101 => 0.020368934806651
102 => 0.020759192516846
103 => 0.021295099707492
104 => 0.021184436991831
105 => 0.021554365858807
106 => 0.021937203318475
107 => 0.022484678080107
108 => 0.022627808255729
109 => 0.022864396993279
110 => 0.02310792451957
111 => 0.023186138997764
112 => 0.023335474705164
113 => 0.023334687632272
114 => 0.023784720837972
115 => 0.024281121400228
116 => 0.02446850112078
117 => 0.024899370456011
118 => 0.02416152181889
119 => 0.024721188485941
120 => 0.025226021828986
121 => 0.024624138705572
122 => 0.025453694370416
123 => 0.025485904137069
124 => 0.025972233372323
125 => 0.025479245522985
126 => 0.025186510911721
127 => 0.026031624765818
128 => 0.026440548738978
129 => 0.026317377510328
130 => 0.025380038378591
131 => 0.024834466799554
201 => 0.023406600744314
202 => 0.025097969765969
203 => 0.025921786278506
204 => 0.025377904892843
205 => 0.025652207028081
206 => 0.02714871053517
207 => 0.027718482179242
208 => 0.02759997366028
209 => 0.027619999649168
210 => 0.027927438086223
211 => 0.029290789425564
212 => 0.028473837700794
213 => 0.029098366683784
214 => 0.029429614604455
215 => 0.029737296133821
216 => 0.028981727541443
217 => 0.027998743904267
218 => 0.027687391723528
219 => 0.02532382660777
220 => 0.025200792779051
221 => 0.025131730162685
222 => 0.024696300135598
223 => 0.02435417140863
224 => 0.024082097942519
225 => 0.023368095919431
226 => 0.023609050642474
227 => 0.022471080441475
228 => 0.023199113448887
301 => 0.021382885530841
302 => 0.022895494110493
303 => 0.022072250030462
304 => 0.022625036289124
305 => 0.022623107669944
306 => 0.021605252906702
307 => 0.021018175521352
308 => 0.021392284080691
309 => 0.021793358153077
310 => 0.021858431071946
311 => 0.022378434075899
312 => 0.022523555736875
313 => 0.022083830329035
314 => 0.021345248244192
315 => 0.021516804017237
316 => 0.021014698949086
317 => 0.020134779130345
318 => 0.020766752906091
319 => 0.020982536539056
320 => 0.021077838884296
321 => 0.020212538802038
322 => 0.019940642729614
323 => 0.019795887542084
324 => 0.021233548869545
325 => 0.021312307202401
326 => 0.020909368436207
327 => 0.022730689867624
328 => 0.022318468734136
329 => 0.022779020736872
330 => 0.021501237128996
331 => 0.02155005018358
401 => 0.020945126946221
402 => 0.021283843538157
403 => 0.021044449568322
404 => 0.021256478584791
405 => 0.021383567903034
406 => 0.021988391878443
407 => 0.02290240022875
408 => 0.021898051345619
409 => 0.021460442154697
410 => 0.021731932435538
411 => 0.022454946829986
412 => 0.023550350648
413 => 0.022901849540679
414 => 0.023189643319845
415 => 0.023252513457539
416 => 0.022774332749817
417 => 0.023567981852764
418 => 0.023993304854627
419 => 0.024429598246345
420 => 0.02480841957371
421 => 0.024255333071396
422 => 0.024847214910708
423 => 0.024370262629432
424 => 0.023942387126706
425 => 0.023943036037225
426 => 0.023674623484101
427 => 0.023154540340267
428 => 0.023058629029037
429 => 0.023557571782319
430 => 0.023957676620397
501 => 0.023990631171234
502 => 0.024212149767722
503 => 0.024343242191301
504 => 0.025628126153883
505 => 0.026144917112751
506 => 0.026776839314903
507 => 0.027023008625825
508 => 0.027763889995117
509 => 0.027165568117971
510 => 0.027036117416229
511 => 0.025238981554774
512 => 0.02553326245141
513 => 0.026004434560807
514 => 0.025246751009315
515 => 0.025727326828023
516 => 0.025822202674624
517 => 0.025221005212166
518 => 0.025542130753074
519 => 0.02468931652351
520 => 0.022920989248483
521 => 0.023569950506524
522 => 0.02404780443044
523 => 0.023365847962048
524 => 0.024588228536281
525 => 0.023874139039871
526 => 0.02364780695185
527 => 0.022764804783264
528 => 0.023181547816966
529 => 0.023745198737234
530 => 0.023396927999961
531 => 0.024119642072916
601 => 0.025143197941024
602 => 0.025872644806443
603 => 0.025928642679192
604 => 0.025459657213872
605 => 0.026211209415073
606 => 0.026216683652371
607 => 0.025368929699235
608 => 0.024849685123254
609 => 0.024731711663091
610 => 0.025026432496637
611 => 0.025384277997029
612 => 0.025948500613986
613 => 0.026289448524593
614 => 0.027178459850657
615 => 0.027419000825537
616 => 0.027683282429464
617 => 0.028036444153739
618 => 0.028460505352539
619 => 0.027532683591383
620 => 0.02756954767963
621 => 0.026705572902208
622 => 0.025782291946017
623 => 0.02648294710317
624 => 0.027398960516899
625 => 0.027188826027684
626 => 0.02716518160499
627 => 0.027204944965546
628 => 0.02704651042303
629 => 0.026329916859085
630 => 0.025970048057385
701 => 0.026434370623901
702 => 0.026681137403384
703 => 0.027063851158038
704 => 0.027016673609669
705 => 0.028002503141201
706 => 0.028385566687216
707 => 0.028287562639932
708 => 0.028305597743231
709 => 0.028999115995793
710 => 0.029770450925547
711 => 0.030492907873871
712 => 0.031227822111955
713 => 0.030341854313754
714 => 0.029892014504726
715 => 0.030356134362534
716 => 0.030109865833021
717 => 0.031524997851594
718 => 0.031622978522192
719 => 0.033038008210613
720 => 0.034381039883525
721 => 0.033537505752681
722 => 0.034332920444455
723 => 0.035193226284721
724 => 0.036852895830186
725 => 0.036293977515152
726 => 0.035865854845203
727 => 0.035461280990774
728 => 0.036303134957549
729 => 0.03738616663686
730 => 0.037619441287435
731 => 0.037997435339141
801 => 0.037600020812685
802 => 0.038078662836027
803 => 0.039768479504387
804 => 0.039311876124172
805 => 0.03866342592161
806 => 0.039997373889562
807 => 0.040480124473573
808 => 0.043868320890602
809 => 0.048146058826513
810 => 0.046375047231904
811 => 0.045275723184943
812 => 0.045534090412294
813 => 0.047096175495922
814 => 0.04759786764668
815 => 0.046234095437263
816 => 0.046715802837064
817 => 0.049370057970395
818 => 0.050793980690727
819 => 0.048860102378181
820 => 0.043524608812592
821 => 0.038605040075717
822 => 0.039909931235804
823 => 0.039761997073737
824 => 0.04261366308943
825 => 0.039300986284563
826 => 0.039356763266123
827 => 0.042267398715054
828 => 0.041490891078204
829 => 0.04023304815409
830 => 0.038614223721075
831 => 0.035621677033511
901 => 0.032971094978998
902 => 0.03816949678049
903 => 0.037945332242129
904 => 0.03762070877126
905 => 0.038343123177752
906 => 0.041850962474769
907 => 0.041770095425205
908 => 0.04125566051461
909 => 0.041645854860275
910 => 0.040164645198733
911 => 0.04054638665503
912 => 0.038604260790894
913 => 0.039482182791824
914 => 0.040230349388101
915 => 0.040380554909099
916 => 0.040718975617593
917 => 0.037827207716529
918 => 0.039125526606261
919 => 0.039888167317951
920 => 0.036442528837432
921 => 0.039820058123763
922 => 0.037776868470974
923 => 0.037083379215139
924 => 0.038017071137859
925 => 0.03765321048753
926 => 0.037340384466991
927 => 0.037165822172497
928 => 0.037851422472726
929 => 0.03781943839925
930 => 0.036697663238792
1001 => 0.03523435327138
1002 => 0.035725488127956
1003 => 0.035547054230148
1004 => 0.034900386766061
1005 => 0.035336162557928
1006 => 0.033417226511627
1007 => 0.030115796781583
1008 => 0.032296822386778
1009 => 0.032212855273477
1010 => 0.032170515247345
1011 => 0.033809495710529
1012 => 0.033651945556707
1013 => 0.033365990484784
1014 => 0.034895134976917
1015 => 0.034336976667392
1016 => 0.036057089058709
1017 => 0.037190066329525
1018 => 0.036902706645671
1019 => 0.037968277245027
1020 => 0.035736802883098
1021 => 0.036478009154919
1022 => 0.036630770740274
1023 => 0.034876265571247
1024 => 0.033677722710328
1025 => 0.033597793565893
1026 => 0.03151968541444
1027 => 0.032629794015044
1028 => 0.033606643644159
1029 => 0.033138808478406
1030 => 0.032990705841107
1031 => 0.033747330095527
1101 => 0.033806126280144
1102 => 0.032465567039938
1103 => 0.032744311755966
1104 => 0.03390672355926
1105 => 0.032715021960965
1106 => 0.030399740418828
1107 => 0.029825518585107
1108 => 0.02974890680748
1109 => 0.02819157165232
1110 => 0.029863890833785
1111 => 0.029133878695707
1112 => 0.031439978293005
1113 => 0.030122746570889
1114 => 0.030065963344066
1115 => 0.029980127168435
1116 => 0.028639664467683
1117 => 0.028933140608299
1118 => 0.029908699997385
1119 => 0.030256790577874
1120 => 0.030220481878507
1121 => 0.029903919224164
1122 => 0.030048839986259
1123 => 0.02958199971781
1124 => 0.029417148702581
1125 => 0.028896833552673
1126 => 0.028132114023038
1127 => 0.028238452963931
1128 => 0.026723343475974
1129 => 0.025897831413988
1130 => 0.025669340555304
1201 => 0.025363793029782
1202 => 0.025703852961343
1203 => 0.026719051361158
1204 => 0.025494506704626
1205 => 0.023395110782822
1206 => 0.023521288054919
1207 => 0.023804770922953
1208 => 0.023276502473799
1209 => 0.022776540720885
1210 => 0.023211216901865
1211 => 0.022321675173949
1212 => 0.023912267790936
1213 => 0.02386924671823
1214 => 0.024462121284255
1215 => 0.024832857917402
1216 => 0.02397843000541
1217 => 0.023763543696163
1218 => 0.023885952703948
1219 => 0.021862804474689
1220 => 0.024296786911356
1221 => 0.024317836092542
1222 => 0.024137600223902
1223 => 0.025433620730651
1224 => 0.028168628238823
1225 => 0.027139608398826
1226 => 0.02674114081449
1227 => 0.02598365364539
1228 => 0.026992960323079
1229 => 0.026915461317869
1230 => 0.026564981425686
1231 => 0.02635301009333
]
'min_raw' => 0.019795887542084
'max_raw' => 0.050793980690727
'avg_raw' => 0.035294934116406
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.019795'
'max' => '$0.050793'
'avg' => '$0.035294'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.012173199547629
'max_diff' => 0.029524317383544
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.000621370289692
]
1 => [
'year' => 2028
'avg' => 0.0010664518021954
]
2 => [
'year' => 2029
'avg' => 0.0029133541143616
]
3 => [
'year' => 2030
'avg' => 0.0022476483605328
]
4 => [
'year' => 2031
'avg' => 0.002207469238038
]
5 => [
'year' => 2032
'avg' => 0.0038703882904173
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.000621370289692
'min' => '$0.000621'
'max_raw' => 0.0038703882904173
'max' => '$0.00387'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.0038703882904173
]
1 => [
'year' => 2033
'avg' => 0.0099550366702878
]
2 => [
'year' => 2034
'avg' => 0.006309980658304
]
3 => [
'year' => 2035
'avg' => 0.0074426366566258
]
4 => [
'year' => 2036
'avg' => 0.014446175650819
]
5 => [
'year' => 2037
'avg' => 0.035294934116406
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.0038703882904173
'min' => '$0.00387'
'max_raw' => 0.035294934116406
'max' => '$0.035294'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.035294934116406
]
]
]
]
'prediction_2025_max_price' => '$0.001062'
'last_price' => 0.00103016
'sma_50day_nextmonth' => '$0.00104'
'sma_200day_nextmonth' => '$0.0021013'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'augmenter'
'sma_200day_date_nextmonth' => '4 févr. 2026'
'sma_50day_date_nextmonth' => '4 févr. 2026'
'daily_sma3' => '$0.000968'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.000944'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.000976'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.001199'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.001528'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.002227'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.002357'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.000987'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.000979'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.001019'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.001169'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.001513'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.001866'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.002218'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.001934'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.002111'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.001021'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.001088'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.001311'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.001683'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.002346'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.00285'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.001425'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '33.75'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 66.44
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => -0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.0010096'
'vwma_10_action' => 'BUY'
'hma_9' => '0.000941'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 40.49
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => -46.83
'cci_20_action' => 'NEUTRAL'
'adx_14' => 40.29
'adx_14_action' => 'SELL'
'ao_5_34' => '-0.000420'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -59.51
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 43.39
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.000475'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 16
'buy_signals' => 15
'sell_pct' => 51.61
'buy_pct' => 48.39
'overall_action' => 'bearish'
'overall_action_label' => 'Baissier'
'overall_action_dir' => -1
'last_updated' => 1767695501
'last_updated_date' => '6 janvier 2026'
]
Prévision du prix de Fabs pour 2026
La prévision du prix de Fabs pour 2026 suggère que le prix moyen pourrait varier entre $0.000355 à la baisse et $0.001062 à la hausse. Sur le marché des cryptomonnaies, comparé au prix moyen d'aujourd'hui, Fabs pourrait potentiellement gagner 3.13% d'ici 2026 si FABS atteint l'objectif de prix prévu.
Prévision du prix de Fabs de 2027 à 2032
La prévision du prix de FABS pour 2027-2032 se situe actuellement dans une fourchette de prix comprise entre $0.000621 à la baisse et $0.00387 à la hausse. Compte tenu de la volatilité des prix sur le marché, si Fabs atteint l'objectif de prix le plus élevé, il pourrait gagner 275.71% d'ici 2032 par rapport au prix actuel.
| Prévision du Prix de Fabs | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2027 | $0.000342 | $0.000621 | $0.0009001 |
| 2028 | $0.000618 | $0.001066 | $0.001514 |
| 2029 | $0.001358 | $0.002913 | $0.004468 |
| 2030 | $0.001155 | $0.002247 | $0.00334 |
| 2031 | $0.001365 | $0.0022074 | $0.003049 |
| 2032 | $0.002084 | $0.00387 | $0.005655 |
Prévision du prix de Fabs de 2032 à 2037
La prévision du prix de Fabs pour 2032-2037 est actuellement estimée entre $0.00387 à la baisse et $0.035294 à la hausse. Par rapport au prix actuel, Fabs pourrait potentiellement gagner 3326.16% d'ici 2037 s'il atteint l'objectif de prix le plus élevé. Veuillez noter que ces informations sont à titre général seulement et ne doivent pas être considérées comme un conseil en investissement à long terme.
| Prévision du Prix de Fabs | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2032 | $0.002084 | $0.00387 | $0.005655 |
| 2033 | $0.004844 | $0.009955 | $0.015065 |
| 2034 | $0.003894 | $0.0063099 | $0.008725 |
| 2035 | $0.0046049 | $0.007442 | $0.01028 |
| 2036 | $0.007622 | $0.014446 | $0.021269 |
| 2037 | $0.019795 | $0.035294 | $0.050793 |
Fabs Histogramme des prix potentiels
Prévision du prix de Fabs basée sur l'analyse technique
Au 6 janvier 2026, le sentiment global de prévision du prix pour Fabs est Baissier, avec 15 indicateurs techniques montrant des signaux haussiers et 16 indiquant des signaux baissiers. La prévision du prix de FABS a été mise à jour pour la dernière fois le 6 janvier 2026.
Moyennes Mobiles Simples sur 50 et 200 jours de Fabs et Indice de Force Relative sur 14 jours - RSI (14)
Selon nos indicateurs techniques, le SMA sur 200 jours de Fabs devrait augmenter au cours du prochain mois, atteignant $0.0021013 d'ici le 4 févr. 2026. Le SMA à court terme sur 50 jours pour Fabs devrait atteindre $0.00104 d'ici le 4 févr. 2026.
Le Relative Strength Index (RSI), un oscillateur de momentum, est un outil couramment utilisé pour identifier si une cryptomonnaie est survendue (en dessous de 30) ou surachetée (au-dessus de 70). Actuellement, le RSI est à 33.75, ce qui suggère que le marché de FABS est dans un état NEUTRAL.
Moyennes Mobiles et Oscillateurs Populaires de FABS pour le Samedi 19 Octobre 2024
Les moyennes mobiles (MA) sont des indicateurs largement utilisés sur les marchés financiers, conçus pour lisser les mouvements de prix sur une période donnée. En tant qu'indicateurs retardés, ils sont basés sur des données historiques de prix. Le tableau ci-dessous met en évidence deux types : la moyenne mobile simple (SMA) et la moyenne mobile exponentielle (EMA).
Moyenne Mobile Simple Quotidienne (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 3 | $0.000968 | BUY |
| SMA 5 | $0.000944 | BUY |
| SMA 10 | $0.000976 | BUY |
| SMA 21 | $0.001199 | SELL |
| SMA 50 | $0.001528 | SELL |
| SMA 100 | $0.002227 | SELL |
| SMA 200 | $0.002357 | SELL |
Moyenne Mobile Exponentielle Quotidienne (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 3 | $0.000987 | BUY |
| EMA 5 | $0.000979 | BUY |
| EMA 10 | $0.001019 | BUY |
| EMA 21 | $0.001169 | SELL |
| EMA 50 | $0.001513 | SELL |
| EMA 100 | $0.001866 | SELL |
| EMA 200 | $0.002218 | SELL |
Moyenne Mobile Simple Hebdomadaire (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 21 | $0.001934 | SELL |
| SMA 50 | $0.002111 | SELL |
| SMA 100 | — | — |
| SMA 200 | — | — |
Moyenne Mobile Exponentielle Hebdomadaire (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 21 | $0.001683 | SELL |
| EMA 50 | $0.002346 | SELL |
| EMA 100 | $0.00285 | SELL |
| EMA 200 | $0.001425 | SELL |
Oscillateurs de Fabs
Un oscillateur est un outil d'analyse technique qui établit des limites hautes et basses entre deux extrêmes, créant un indicateur de tendance qui fluctue à l'intérieur de ces limites. Les traders utilisent cet indicateur pour identifier les conditions de surachat ou de survente à court terme.
| Période | Valeur | Action |
|---|---|---|
| RSI (14) | 33.75 | NEUTRAL |
| Stoch RSI (14) | 66.44 | NEUTRAL |
| Stochastique Rapide (14) | 40.49 | NEUTRAL |
| Indice de Canal des Matières Premières (20) | -46.83 | NEUTRAL |
| Indice Directionnel Moyen (14) | 40.29 | SELL |
| Oscillateur Impressionnant (5, 34) | -0.000420 | NEUTRAL |
| Momentum (10) | -0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Plage de Pourcentage de Williams (14) | -59.51 | NEUTRAL |
| Oscillateur Ultime (7, 14, 28) | 43.39 | NEUTRAL |
| VWMA (10) | 0.0010096 | BUY |
| Moyenne Mobile de Hull (9) | 0.000941 | BUY |
| Nuage Ichimoku B/L (9, 26, 52, 26) | -0.000475 | SELL |
Prévision du cours de Fabs basée sur les flux monétaires mondiaux
Définitions des flux monétaires mondiaux utilisés pour la prédiction du cours de Fabs
M0 : le total de toutes les devises physiques, plus les comptes à la banque centrale qui peuvent être échangés contre des devises physiques.
M1 : M0 plus le montant des comptes à vue, y compris les comptes de "chèques" et les comptes "courants".
M2 : M1 plus la plupart des comptes d'épargne, comptes du marché monétaire et comptes de certificats de dépôt (CD) de moins de 100 000 $.
Prédictions du cours de Fabs par des sociétés Internet ou des niches technologiques
| Comparaison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Action Facebook | $0.001447 | $0.002034 | $0.002858 | $0.004016 | $0.005643 | $0.007929 |
| Action Amazon.com | $0.002149 | $0.004485 | $0.009358 | $0.019526 | $0.040743 | $0.085013 |
| Action Apple | $0.001461 | $0.002072 | $0.002939 | $0.004169 | $0.005914 | $0.008389 |
| Action Netflix | $0.001625 | $0.002564 | $0.004046 | $0.006384 | $0.010074 | $0.015895 |
| Action Google | $0.001334 | $0.001727 | $0.002237 | $0.002897 | $0.003751 | $0.004858 |
| Action Tesla | $0.002335 | $0.005293 | $0.01200095 | $0.0272052 | $0.061672 | $0.1398063 |
| Action Kodak | $0.000772 | $0.000579 | $0.000434 | $0.000325 | $0.000244 | $0.000183 |
| Action Nokia | $0.000682 | $0.000452 | $0.000299 | $0.000198 | $0.000131 | $0.000087 |
Ce calcul montre la valeur potentielle des cryptomonnaies si l'on suppose que leur capitalisation se comportera comme celle de certaines sociétés Internet ou niches technologiques. En extrapolant les données, vous pourrez obtenir une potentielle image des cours futurs pour 2024, 2025, 2026, 2027, 2028, 2029 et 2030.
Aperçu des prévisions relatives à Fabs
Vous vous posez peut-être des questions telles que : "Devrais-je investir dans Fabs maintenant ?", "Devrais-je acheter FABS aujourd'hui ?", " Fabs sera-t-il un bon ou un mauvais investissement à court ou à long terme ?".
Nous mettons régulièrement à jour les prévisions de Fabs avec de nouvelles valeurs. Regardez nos prévisions similaires. Nous faisons une prévision des cours futurs pour une grande quantité de devises numériques comme Fabs en utilisant des méthodes d'analyse technique.
Si vous souhaitez trouver des cryptomonnaies ayant un bon rendement, vous devriez consulter un maximum d'informations disponibles à propos de Fabs afin de prendre une décision responsable concernant cet investissement.
Le cours de Fabs est de $0.00103 USD actuellement, mais ce cours peut subir une hausse ou une baisse, ce qui pourrait causer la perte de votre investissement, car les cryptomonnaies sont des actifs à haut risque.
Prévision du cours de Fabs basée sur le modèle de croissance du Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Fabs présente 1 % de la précédente croissance annuelle moyenne du Bitcoin | $0.001056 | $0.001084 | $0.001112 | $0.001141 |
| Si Fabs présente 2 % de la précédente croissance annuelle moyenne du Bitcoin | $0.001083 | $0.00114 | $0.001199 | $0.001261 |
| Si Fabs présente 5 % de la précédente croissance annuelle moyenne du Bitcoin | $0.001164 | $0.001315 | $0.001486 | $0.001679 |
| Si Fabs présente 10 % de la précédente croissance annuelle moyenne du Bitcoin | $0.001297 | $0.001635 | $0.00206 | $0.002595 |
| Si Fabs présente 20 % de la précédente croissance annuelle moyenne du Bitcoin | $0.001565 | $0.002379 | $0.003616 | $0.005496 |
| Si Fabs présente 50 % de la précédente croissance annuelle moyenne du Bitcoin | $0.002369 | $0.005447 | $0.012528 | $0.028811 |
| Si Fabs présente 100 % de la précédente croissance annuelle moyenne du Bitcoin | $0.0037078 | $0.013345 | $0.048035 | $0.172896 |
Boîte à questions
Est-ce que FABS est un bon investissement ?
La décision d'acquérir Fabs dépend entièrement de votre tolérance individuelle au risque. Comme vous pouvez le discerner, la valeur de Fabs a connu une baisse de 0% au cours des 24 heures précédentes, et Fabs a enregistré une déclin de sur une période de 30 jours précédents. Par conséquent, la détermination de si investir ou non dans Fabs dépendra de la mesure dans laquelle cet investissement s'aligne avec vos aspirations de trading.
Est-ce que Fabs peut monter ?
Il semble que la valeur moyenne de Fabs pourrait potentiellement s'envoler jusqu'à $0.001062 pour la fin de cette année. En regardant les perspectives de Fabs sur une période de cinq ans plus longue, la monnaie numérique pourrait potentiellement croître jusqu'à $0.00334. Cependant, compte tenu de l'imprévisibilité du marché, il est essentiel de mener des recherches approfondies avant d'investir des fonds dans un projet, un réseau ou un actif particulier.
Quel sera le prix de Fabs la semaine prochaine ?
Basé sur notre nouveau pronostic expérimental de Fabs, le prix de Fabs va augmenter de 0.86% durant la prochaine semaine et atteindre $0.0010389 d'ici 13 janvier 2026.
Quel sera le prix de Fabs le mois prochain ?
Basé sur notre nouveau pronostic expérimental de Fabs, le prix de Fabs va diminuer de -11.62% durant le prochain mois et atteindre $0.00091 d'ici 5 février 2026.
Jusqu'où le prix de Fabs peut-il monter cette année en 2026 ?
Selon notre prédiction la plus récente sur la valeur de Fabs en 2026, FABS devrait fluctuer dans la fourchette de $0.000355 et $0.001062. Cependant, il est crucial de garder à l'esprit que le marché des cryptomonnaies est exceptionnellement instable, et cette prévision de prix de Fabs ne prend pas en compte les fluctuations de prix soudaines et extrêmes.
Où sera Fabs dans 5 ans ?
L'avenir de Fabs semble suivre une tendance haussière, avec un prix maximum de $0.00334 prévue après une période de cinq ans. Selon la prévision de Fabs pour 2030, la valeur de Fabs pourrait potentiellement atteindre son point le plus élevé d'environ $0.00334, tandis que son point le plus bas devrait être autour de $0.001155.
Combien vaudra Fabs en 2026 ?
Basé sur notre nouvelle simulation expérimentale de prédiction de prix de Fabs, il est attendu que la valeur de FABS en 2026 augmente de 3.13% jusqu'à $0.001062 si le meilleur scénario se produit. Le prix sera entre $0.001062 et $0.000355 durant 2026.
Combien vaudra Fabs en 2027 ?
Selon notre dernière simulation expérimentale pour la prédiction de prix de Fabs, le valeur de FABS pourrait diminuer de -12.62% jusqu'à $0.0009001 en 2027, en supposant les conditions les plus favorables. Il est prévu que le prix fluctue entre $0.0009001 et $0.000342 tout au long de l'année.
Combien vaudra Fabs en 2028 ?
Notre nouveau modèle expérimental de prédiction de prix de Fabs suggère que la valeur de FABS en 2028 pourrait augmenter de 47.02%, atteignant $0.001514 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.001514 et $0.000618 durant l'année.
Combien vaudra Fabs en 2029 ?
Basé sur notre modèle de prévision expérimental, la valeur de Fabs pourrait connaître un 333.75% croissance en 2029, atteignant potentiellement $0.004468 sous des conditions optimales. Le range de prix prévu pour 2029 se situe entre $0.004468 et $0.001358.
Combien vaudra Fabs en 2030 ?
En utilisant notre nouvelle simulation expérimentale pour les prédictions de prix de Fabs, il est prévu que la valeur de FABS en 2030 augmente de 224.23%, atteignant $0.00334 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.00334 et $0.001155 au cours de 2030.
Combien vaudra Fabs en 2031 ?
Notre simulation expérimentale indique que le prix de Fabs pourrait augmenter de 195.98% en 2031, atteignant potentiellement $0.003049 dans des conditions idéales. Il est probable que le prix fluctue entre $0.003049 et $0.001365 durant l'année.
Combien vaudra Fabs en 2032 ?
Basé sur les résultats de notre dernière prédiction expérimentale de prix de Fabs, FABS pourrait connaître une 449.04% hausse en valeur, atteignant $0.005655 si le scénario le plus positif se réalise en 2032. Il est prévu que le prix reste dans une fourchette de $0.005655 et $0.002084 tout au long de l'année.
Combien vaudra Fabs en 2033 ?
Selon notre prédiction expérimentale de prix de Fabs, la valeur de FABS est anticipée à augmenter de 1362.43% en 2033, avec le prix potentiel le plus élevé étant $0.015065. Tout au long de l'année, le prix de FABS pourrait osciller entre $0.015065 et $0.004844.
Combien vaudra Fabs en 2034 ?
Les résultats de notre nouvelle simulation de prédiction de prix de Fabs suggèrent que FABS pourrait augmenter de 746.96% en 2034, atteignant potentiellement $0.008725 dans les meilleures circonstances. La fourchette de prix prévue pour l'année est entre $0.008725 et $0.003894.
Combien vaudra Fabs en 2035 ?
Basé sur notre prédiction expérimentale pour le prix de Fabs, FABS pourrait augmenter de 897.93%, avec la valeur potentiellement atteignant $0.01028 en 2035. La fourchette de prix attendue pour l'année se situe entre $0.01028 et $0.0046049.
Combien vaudra Fabs en 2036 ?
Notre récente simulation de prédiction de prix de Fabs suggère que la valeur de FABS pourrait augmenter de 1964.7% en 2036, pouvant atteindre $0.021269 si les conditions sont optimales. La fourchette de prix attendue pour 2036 est entre $0.021269 et $0.007622.
Combien vaudra Fabs en 2037 ?
Selon la simulation expérimentale, la valeur de Fabs pourrait augmenter de 4830.69% en 2037, avec un maximum de $0.050793 sous des conditions favorables. Il est prévu que le prix chute entre $0.050793 et $0.019795 au cours de l'année.
Prévisions liées
Comment lire et prédire les mouvements de prix de Fabs ?
Les traders de Fabs utilisent des indicateurs et des modèles graphiques pour prédire la direction du marché. Ils identifient également des niveaux clés de support et de résistance pour évaluer quand une tendance baissière pourrait ralentir ou une tendance haussière pourrait s'arrêter.
Indicateurs de prédiction du prix de Fabs
Les moyennes mobiles sont des outils populaires pour la prédiction du prix de Fabs. Une moyenne mobile simple (SMA) calcule le prix de clôture moyen de FABS sur une période spécifique, comme une SMA de 12 jours. Une moyenne mobile exponentielle (EMA) donne plus de poids aux prix récents, réagissant plus rapidement aux changements de prix.
Les moyennes mobiles couramment utilisées sur le marché des cryptomonnaies incluent les moyennes sur 50 jours, 100 jours et 200 jours, qui aident à identifier les niveaux clés de résistance et de support. Un mouvement de prix de FABS au-dessus de ces moyennes est considéré comme haussier, tandis qu'une chute en dessous indique une faiblesse.
Les traders utilisent également le RSI et les niveaux de retracement de Fibonacci pour évaluer la direction future de FABS.
Comment lire les graphiques de Fabs et prédire les mouvements de prix ?
La plupart des traders préfèrent les graphiques en chandeliers aux simples graphiques linéaires parce qu'ils fournissent des informations plus détaillées. Les chandeliers peuvent représenter l'action des prix de Fabs dans différentes périodes, comme 5 minutes pour les tendances à court terme et hebdomadaire pour les tendances à long terme. Les options populaires incluent les graphiques de 1 heure, 4 heures et 1 jour.
Par exemple, un graphique en chandeliers de 1 heure montre les prix d'ouverture, de clôture, les plus hauts et les plus bas de FABS au sein de chaque heure. La couleur du chandelier est cruciale : le vert indique que le prix a clôturé plus haut qu'il n'a ouvert, tandis que le rouge signifie le contraire. Certains graphiques utilisent des chandeliers creux et pleins pour transmettre la même information.
Qu'est-ce qui affecte le prix de Fabs ?
L'action du prix de Fabs est déterminée par l'offre et la demande, influencée par des facteurs tels que les réductions de récompenses de bloc, les hard forks et les mises à jour de protocole. Les événements du monde réel, tels que les réglementations, l'adoption par les entreprises et les gouvernements et les piratages d'échanges de cryptomonnaies, impactent également le prix de FABS. La capitalisation boursière de Fabs peut changer rapidement.
Les traders surveillent souvent l'activité des « baleines » de FABS, de grands détenteurs de Fabs, car leurs actions peuvent influencer significativement les mouvements de prix sur le marché relativement petit de Fabs.
Modèles de prédiction de prix haussiers et baissiers
Les traders identifient souvent des modèles de chandeliers pour obtenir un avantage dans les prédictions de prix des cryptomonnaies. Certaines formations indiquent des tendances haussières, tandis que d'autres suggèrent des mouvements baissiers.
Modèles de chandeliers haussiers couramment suivis :
- Marteau
- Englobante haussière
- Ligne pénétrante
- Étoile du matin
- Trois soldats blancs
Modèles de chandeliers baissiers courants :
- Harami baissier
- Nuage sombre
- Étoile du soir
- Étoile filante
- Pendu


