Prédiction du prix de Everest jusqu'à $0.005732 d'ici 2026
| Année | Prix min. | Prix max. |
|---|---|---|
| 2026 | $0.00192 | $0.005732 |
| 2027 | $0.001848 | $0.004857 |
| 2028 | $0.003336 | $0.008172 |
| 2029 | $0.007329 | $0.024111 |
| 2030 | $0.006233 | $0.018023 |
| 2031 | $0.00737 | $0.016453 |
| 2032 | $0.011249 | $0.030519 |
| 2033 | $0.026142 | $0.081293 |
| 2034 | $0.021017 | $0.04708 |
| 2035 | $0.024848 | $0.055473 |
Calculateur de profit d’investissement
Si vous ouvrez une position short de $10,000.00 sur Everest aujourd’hui et la fermez le Apr 06, 2026, notre prévision indique que vous pourriez gagner environ $3,955.54, soit un rendement de 39.56% sur les 90 prochains jours.
Prévision du prix à long terme de Everest pour 2027, 2028, 2029, 2030, 2031, 2032 et 2037
[
'name' => 'Everest'
'name_with_ticker' => 'Everest <small>ID</small>'
'name_lang' => 'Everest'
'name_lang_with_ticker' => 'Everest <small>ID</small>'
'name_with_lang' => 'Everest'
'name_with_lang_with_ticker' => 'Everest <small>ID</small>'
'image' => '/uploads/coins/everid.jpg?1717270487'
'price_for_sd' => 0.005558
'ticker' => 'ID'
'marketcap' => '$648.71K'
'low24h' => '$0.005438'
'high24h' => '$0.005614'
'volume24h' => '$1.87K'
'current_supply' => '116.7M'
'max_supply' => '800M'
'algo' => null
'proof' => null
'ico_price_and_roi' => ''
'price' => '$0.005558'
'change_24h_pct' => '1.6436%'
'ath_price' => '$1.98'
'ath_days' => 1733
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '9 avr. 2021'
'ath_pct' => '-99.72%'
'fdv' => '$4.45M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.274087'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.005606'
'next_week_prediction_price_date' => '13 janvier 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.004912'
'next_month_prediction_price_date' => '5 février 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.00192'
'current_year_max_price_prediction' => '$0.005732'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.006233'
'grand_prediction_max_price' => '$0.018023'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0056641465255659
107 => 0.0056852943926072
108 => 0.0057329416168881
109 => 0.0053258013022082
110 => 0.0055085953504878
111 => 0.005615969728366
112 => 0.005130848382799
113 => 0.0056063804391482
114 => 0.005318713895135
115 => 0.0052210755494905
116 => 0.005352532719027
117 => 0.0053013037322123
118 => 0.0052572600576161
119 => 0.005232682930425
120 => 0.0053292105673343
121 => 0.005324707437697
122 => 0.0051667694885065
123 => 0.0049607458721618
124 => 0.0050298941603017
125 => 0.0050047719389518
126 => 0.0049137257679488
127 => 0.0049750798942482
128 => 0.0047049073726381
129 => 0.0042400895915536
130 => 0.0045471624554917
131 => 0.0045353404842611
201 => 0.0045293793102829
202 => 0.0047601360806618
203 => 0.0047379541416544
204 => 0.0046976937051497
205 => 0.0049129863534597
206 => 0.0048344016407318
207 => 0.0050765812084723
208 => 0.0052360963349786
209 => 0.0051956381391229
210 => 0.0053456628866055
211 => 0.0050314871972006
212 => 0.0051358437586801
213 => 0.005157351501369
214 => 0.0049103296755986
215 => 0.0047415833812047
216 => 0.0047303299272172
217 => 0.0044377471074098
218 => 0.0045940424881049
219 => 0.0047315759551743
220 => 0.0046657080974762
221 => 0.0046448563014753
222 => 0.0047513836050412
223 => 0.004759661688873
224 => 0.0045709205002376
225 => 0.004610165770011
226 => 0.0047738250689493
227 => 0.0046060419755842
228 => 0.0042800668323885
301 => 0.0041992204899171
302 => 0.0041884340975376
303 => 0.0039691724047507
304 => 0.0042046230291028
305 => 0.0041018425218887
306 => 0.0044265249126786
307 => 0.004241068072366
308 => 0.004233073398648
309 => 0.0042209882767596
310 => 0.0040322606801914
311 => 0.0040735800295754
312 => 0.0042109318400423
313 => 0.0042599405133958
314 => 0.0042548285072488
315 => 0.004210258741239
316 => 0.0042306625518842
317 => 0.0041649347686372
318 => 0.0041417249203672
319 => 0.0040684682548554
320 => 0.0039608011942234
321 => 0.0039757729593647
322 => 0.0037624563396338
323 => 0.0036462301236344
324 => 0.0036140602388827
325 => 0.0035710413245207
326 => 0.0036189193397289
327 => 0.0037618520404519
328 => 0.0035894448785159
329 => 0.0032938648923329
330 => 0.0033116297531463
331 => 0.0033515421209595
401 => 0.0032771656875864
402 => 0.0032067746353396
403 => 0.0032679739442616
404 => 0.0031427328075537
405 => 0.003366676913984
406 => 0.0033606198535012
407 => 0.0034440923677677
408 => 0.003496289443967
409 => 0.0033759920823317
410 => 0.0033457376211991
411 => 0.0033629719372488
412 => 0.0030781270828601
413 => 0.0034208144661821
414 => 0.0034237780409034
415 => 0.0033984021149007
416 => 0.0035808725672337
417 => 0.0039659421356176
418 => 0.0038210634746041
419 => 0.0037649620780789
420 => 0.0036583132822747
421 => 0.0038004164705049
422 => 0.0037895051628039
423 => 0.0037401600913893
424 => 0.0037103160382318
425 => 0.0037653046212432
426 => 0.003703502344265
427 => 0.0036924009571067
428 => 0.003625138629356
429 => 0.0036011290385899
430 => 0.003583353293436
501 => 0.0035637839446302
502 => 0.0036069490517179
503 => 0.0035091312402145
504 => 0.0033911725487397
505 => 0.0033813655598743
506 => 0.003408443518371
507 => 0.0033964635374531
508 => 0.0033813082043347
509 => 0.0033523725461023
510 => 0.0033437879544172
511 => 0.0033716837127418
512 => 0.0033401910280171
513 => 0.0033866601998237
514 => 0.0033740231563489
515 => 0.0033034336587588
516 => 0.0032154530091823
517 => 0.0032146697968554
518 => 0.0031957145102213
519 => 0.0031715721027464
520 => 0.0031648562372903
521 => 0.0032628199091629
522 => 0.0034656017781332
523 => 0.0034257908450955
524 => 0.0034545583242038
525 => 0.003596065849196
526 => 0.0036410468361113
527 => 0.0036091203970319
528 => 0.003565417518083
529 => 0.0035673402229609
530 => 0.0037166861900904
531 => 0.0037260007148688
601 => 0.0037495355140042
602 => 0.0037797843818266
603 => 0.0036142719100219
604 => 0.0035595446004232
605 => 0.0035336117649798
606 => 0.0034537486690845
607 => 0.0035398741710632
608 => 0.0034896925293219
609 => 0.0034964637472418
610 => 0.0034920539826885
611 => 0.0034944620123216
612 => 0.0033666143170423
613 => 0.003413195297725
614 => 0.0033357453828102
615 => 0.0032320486409001
616 => 0.0032317010130605
617 => 0.0032570806437359
618 => 0.0032419838463051
619 => 0.003201358752593
620 => 0.0032071293554098
621 => 0.0031565728026213
622 => 0.0032132678362743
623 => 0.0032148936469749
624 => 0.0031930629708191
625 => 0.0032804094925685
626 => 0.0033161954337972
627 => 0.0033018260150931
628 => 0.003315187237075
629 => 0.0034274451690988
630 => 0.0034457481101756
701 => 0.0034538770675776
702 => 0.0034429853415395
703 => 0.0033172391059976
704 => 0.0033228164862581
705 => 0.003281893370556
706 => 0.0032473176501595
707 => 0.0032487004976496
708 => 0.0032664769124624
709 => 0.0033441075585232
710 => 0.0035074766765814
711 => 0.0035136764151904
712 => 0.0035211906792437
713 => 0.0034906263909725
714 => 0.003481407909169
715 => 0.0034935694661598
716 => 0.0035549223173623
717 => 0.0037127385077919
718 => 0.0036569557259051
719 => 0.0036116034559205
720 => 0.0036513896235812
721 => 0.0036452648549241
722 => 0.003593565643709
723 => 0.0035921146190398
724 => 0.0034928873034804
725 => 0.0034562052242148
726 => 0.0034255509331743
727 => 0.0033920772476087
728 => 0.0033722329247573
729 => 0.0034027228237405
730 => 0.0034096962243838
731 => 0.0033430295273849
801 => 0.0033339431029258
802 => 0.0033883845667958
803 => 0.003364426908329
804 => 0.0033890679541834
805 => 0.0033947848881886
806 => 0.0033938643301416
807 => 0.0033688497831827
808 => 0.0033847933094698
809 => 0.0033470821168069
810 => 0.003306076858824
811 => 0.0032799180589488
812 => 0.0032570910365963
813 => 0.0032697567953118
814 => 0.0032246056781673
815 => 0.0032101609270804
816 => 0.0033793920015045
817 => 0.0035044048157222
818 => 0.0035025870798929
819 => 0.0034915220805162
820 => 0.0034750817358955
821 => 0.0035537196037528
822 => 0.0035263237430051
823 => 0.0035462565206998
824 => 0.0035513302491991
825 => 0.0035666868972574
826 => 0.0035721755789897
827 => 0.0035555849706601
828 => 0.0034999048627335
829 => 0.0033611553276865
830 => 0.0032965670445749
831 => 0.0032752518353451
901 => 0.0032760266027173
902 => 0.0032546550598793
903 => 0.0032609499370505
904 => 0.0032524659584914
905 => 0.0032363993555954
906 => 0.0032687647278575
907 => 0.0032724945355064
908 => 0.003264940070883
909 => 0.0032667194207774
910 => 0.00320417168025
911 => 0.0032089270491157
912 => 0.0031824485509882
913 => 0.0031774841517923
914 => 0.0031105488142725
915 => 0.0029919631614237
916 => 0.0030576711244898
917 => 0.0029783051450438
918 => 0.0029482480460367
919 => 0.0030905336778981
920 => 0.0030762521468483
921 => 0.0030518083737234
922 => 0.003015650938743
923 => 0.0030022397943919
924 => 0.0029207579267667
925 => 0.0029159435433385
926 => 0.0029563281571291
927 => 0.0029376920474144
928 => 0.0029115198913284
929 => 0.0028167269950138
930 => 0.0027101483947068
1001 => 0.0027133653327209
1002 => 0.0027472660025132
1003 => 0.0028458367720625
1004 => 0.002807323467108
1005 => 0.0027793816224742
1006 => 0.002774148954903
1007 => 0.0028396467448875
1008 => 0.0029323398399266
1009 => 0.0029758293662279
1010 => 0.0029327325664599
1011 => 0.0028832252833829
1012 => 0.0028862385623091
1013 => 0.0029062845570326
1014 => 0.002908391107643
1015 => 0.0028761669557908
1016 => 0.0028852378657831
1017 => 0.0028714583240433
1018 => 0.0027868933018215
1019 => 0.002785363788728
1020 => 0.0027646101684796
1021 => 0.0027639817571065
1022 => 0.0027286746718307
1023 => 0.0027237349665343
1024 => 0.0026536306057323
1025 => 0.0026997735083077
1026 => 0.0026688232718712
1027 => 0.0026221739651387
1028 => 0.0026141316070749
1029 => 0.0026138898440801
1030 => 0.0026617882515002
1031 => 0.0026992137875292
1101 => 0.002669361664485
1102 => 0.0026625649147269
1103 => 0.0027351364203957
1104 => 0.0027259010347954
1105 => 0.0027179032504274
1106 => 0.0029240401899326
1107 => 0.0027608667172482
1108 => 0.0026897137695416
1109 => 0.0026016484851764
1110 => 0.0026303229858295
1111 => 0.0026363651244331
1112 => 0.0024245839904954
1113 => 0.0023386644108325
1114 => 0.0023091800489033
1115 => 0.0022922113817653
1116 => 0.0022999442164592
1117 => 0.0022226065174011
1118 => 0.0022745787302156
1119 => 0.0022076108200243
1120 => 0.0021963834319483
1121 => 0.0023161303511026
1122 => 0.0023327924353515
1123 => 0.0022617068074416
1124 => 0.0023073552882776
1125 => 0.0022908025145651
1126 => 0.0022087587926349
1127 => 0.00220562532593
1128 => 0.0021644586702417
1129 => 0.0021000408255248
1130 => 0.0020706001419277
1201 => 0.0020552671782946
1202 => 0.0020615938579231
1203 => 0.0020583948951033
1204 => 0.0020375194988424
1205 => 0.0020595914483811
1206 => 0.002003206738069
1207 => 0.0019807538921003
1208 => 0.0019706124624782
1209 => 0.0019205677866934
1210 => 0.0020002111208354
1211 => 0.0020159018609817
1212 => 0.0020316235167331
1213 => 0.0021684697964194
1214 => 0.0021616333430098
1215 => 0.0022234315523443
1216 => 0.0022210301875692
1217 => 0.0022034043372024
1218 => 0.0021290437738164
1219 => 0.0021586825690325
1220 => 0.0020674589642489
1221 => 0.0021358098915549
1222 => 0.0021046173827354
1223 => 0.0021252636729462
1224 => 0.0020881397815463
1225 => 0.0021086856758549
1226 => 0.0020196227175584
1227 => 0.0019364569802508
1228 => 0.0019699253007026
1229 => 0.0020063091926004
1230 => 0.0020851987406781
1231 => 0.0020382127766677
]
'min_raw' => 0.0019205677866934
'max_raw' => 0.0057329416168881
'avg_raw' => 0.0038267547017907
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.00192'
'max' => '$0.005732'
'avg' => '$0.003826'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0036382422133066
'max_diff' => 0.00017413161688807
'year' => 2026
]
1 => [
'items' => [
101 => 0.0020551107060618
102 => 0.0019985054712706
103 => 0.0018817127034104
104 => 0.0018823737377929
105 => 0.0018644077149263
106 => 0.0018488824480874
107 => 0.0020436096798475
108 => 0.0020193922703961
109 => 0.0019808049979316
110 => 0.0020324555955226
111 => 0.0020461128333309
112 => 0.0020465016356915
113 => 0.0020841845783991
114 => 0.0021042959716771
115 => 0.0021078406919101
116 => 0.0021671356164543
117 => 0.0021870104930426
118 => 0.0022688722969118
119 => 0.002102589660468
120 => 0.0020991651789957
121 => 0.0020331824253529
122 => 0.0019913351198465
123 => 0.0020360477461628
124 => 0.0020756570291969
125 => 0.0020344131961872
126 => 0.0020397987700734
127 => 0.0019844322940028
128 => 0.0020042232039632
129 => 0.0020212698017446
130 => 0.0020118576724024
131 => 0.001997767259225
201 => 0.0020724095196864
202 => 0.0020681979108258
203 => 0.0021377064997857
204 => 0.0021918934154867
205 => 0.0022890060554929
206 => 0.00218766395305
207 => 0.0021839706440387
208 => 0.0022200733320504
209 => 0.0021870049659092
210 => 0.0022079030318292
211 => 0.0022856390539903
212 => 0.0022872814936437
213 => 0.0022597685132846
214 => 0.0022580943459294
215 => 0.0022633785147664
216 => 0.0022943280566927
217 => 0.0022835133357603
218 => 0.0022960284046185
219 => 0.0023116786898632
220 => 0.002376414905219
221 => 0.0023920225875778
222 => 0.0023541040111013
223 => 0.0023575276340009
224 => 0.0023433450455105
225 => 0.002329644842736
226 => 0.002360440897819
227 => 0.0024167212937811
228 => 0.0024163711763588
301 => 0.0024294271342874
302 => 0.0024375608879156
303 => 0.002402644863072
304 => 0.0023799158147967
305 => 0.0023886315781923
306 => 0.0024025682736667
307 => 0.0023841120956841
308 => 0.0022701920154424
309 => 0.0023047480905448
310 => 0.002298996269942
311 => 0.0022908049779584
312 => 0.0023255513786881
313 => 0.0023222000035733
314 => 0.0022218133075152
315 => 0.002228239738093
316 => 0.0022222041200436
317 => 0.0022417064367324
318 => 0.0021859517768068
319 => 0.0022031015346866
320 => 0.0022138577020597
321 => 0.0022201931672753
322 => 0.0022430812119031
323 => 0.0022403955640389
324 => 0.0022429142682611
325 => 0.0022768511962243
326 => 0.0024484925321153
327 => 0.0024578345913226
328 => 0.0024118308750883
329 => 0.0024302084523408
330 => 0.0023949275227504
331 => 0.0024186118471461
401 => 0.002434816060381
402 => 0.0023615923366635
403 => 0.002357256502963
404 => 0.0023218299564261
405 => 0.0023408661758729
406 => 0.0023105781819805
407 => 0.0023180097962526
408 => 0.0022972303548712
409 => 0.0023346292122122
410 => 0.0023764469459144
411 => 0.0023870117568799
412 => 0.0023592202876667
413 => 0.0023390974324093
414 => 0.002303768327458
415 => 0.0023625214163526
416 => 0.0023797026100133
417 => 0.0023624311708565
418 => 0.0023584290010155
419 => 0.0023508448963985
420 => 0.0023600380046624
421 => 0.0023796090375427
422 => 0.0023703796998566
423 => 0.0023764758399983
424 => 0.0023532436400905
425 => 0.0024026564217291
426 => 0.0024811358108046
427 => 0.0024813881348732
428 => 0.0024721587474374
429 => 0.0024683822809487
430 => 0.0024778521925438
501 => 0.002482989231108
502 => 0.0025136131887219
503 => 0.0025464739153538
504 => 0.0026998205882867
505 => 0.0026567614561538
506 => 0.0027928197470143
507 => 0.002900424190127
508 => 0.0029326900576445
509 => 0.0029030069777548
510 => 0.0028014627649006
511 => 0.0027964805213757
512 => 0.0029482304462408
513 => 0.0029053541418795
514 => 0.002900254141907
515 => 0.0028459987587855
516 => 0.0028780704098703
517 => 0.0028710558693153
518 => 0.0028599830738862
519 => 0.0029211735500253
520 => 0.0030357166588461
521 => 0.0030178640411579
522 => 0.0030045378902128
523 => 0.0029461465759554
524 => 0.0029813111893105
525 => 0.0029687897440286
526 => 0.0030225898192654
527 => 0.0029907198465127
528 => 0.002905029311704
529 => 0.002918675811812
530 => 0.0029166131707736
531 => 0.002959062177183
601 => 0.002946320039108
602 => 0.0029141250638104
603 => 0.0030353251629526
604 => 0.0030274551026647
605 => 0.0030386130488067
606 => 0.0030435251217693
607 => 0.0031172974863319
608 => 0.0031475196636408
609 => 0.0031543806270036
610 => 0.00318308935798
611 => 0.0031536663276238
612 => 0.0032713794273135
613 => 0.0033496517698573
614 => 0.0034405691235798
615 => 0.0035734238136494
616 => 0.0036233784060901
617 => 0.0036143545560919
618 => 0.003715083465853
619 => 0.0038960910776159
620 => 0.0036509413696349
621 => 0.0039090846074088
622 => 0.0038273594387366
623 => 0.0036335905339877
624 => 0.0036211141009072
625 => 0.0037523366529064
626 => 0.004043375643538
627 => 0.0039704736773217
628 => 0.0040434948850383
629 => 0.0039583117674871
630 => 0.003954081707721
701 => 0.0040393577311511
702 => 0.0042386098080498
703 => 0.0041439526151677
704 => 0.0040082383182752
705 => 0.0041084476431523
706 => 0.0040216370520085
707 => 0.0038260284934072
708 => 0.0039704179305621
709 => 0.003873868825911
710 => 0.0039020469874809
711 => 0.0041049788448619
712 => 0.0040805615468907
713 => 0.0041121597914464
714 => 0.0040563897168757
715 => 0.0040042916730932
716 => 0.0039070468055216
717 => 0.0038782573943477
718 => 0.0038862137518617
719 => 0.0038782534515721
720 => 0.0038238458418922
721 => 0.003812096523762
722 => 0.003792513812129
723 => 0.0037985833133088
724 => 0.0037617620863143
725 => 0.0038312513493066
726 => 0.0038441491688553
727 => 0.0038947176595374
728 => 0.0038999678479946
729 => 0.004040800374747
730 => 0.0039632321856062
731 => 0.0040152716237971
801 => 0.0040106167266311
802 => 0.0036377900937123
803 => 0.0036891623142513
804 => 0.0037690813679191
805 => 0.0037330779425695
806 => 0.0036821775226292
807 => 0.0036410727044195
808 => 0.0035787947016485
809 => 0.0036664497946056
810 => 0.0037817069207644
811 => 0.0039028909589172
812 => 0.0040484856404651
813 => 0.0040159906024525
814 => 0.0039001691676192
815 => 0.0039053648325782
816 => 0.003937482388936
817 => 0.0038958872352649
818 => 0.0038836200124135
819 => 0.0039357970608922
820 => 0.0039361563755491
821 => 0.0038882961243083
822 => 0.0038351082133877
823 => 0.0038348853540989
824 => 0.0038254210790848
825 => 0.0039599954409871
826 => 0.0040339977330306
827 => 0.0040424819765528
828 => 0.0040334266758427
829 => 0.004036911701694
830 => 0.003993851398483
831 => 0.004092274482487
901 => 0.0041825972374031
902 => 0.0041583888096214
903 => 0.0041220969349458
904 => 0.0040931887087131
905 => 0.0041515789502376
906 => 0.0041489789246973
907 => 0.0041818083469348
908 => 0.0041803190147102
909 => 0.0041692797147887
910 => 0.0041583892038696
911 => 0.0042015688486565
912 => 0.0041891338044018
913 => 0.0041766794450886
914 => 0.0041517003208191
915 => 0.0041550953986666
916 => 0.0041188097902949
917 => 0.0041020224075456
918 => 0.0038495804495601
919 => 0.0037821197096075
920 => 0.0038033442316866
921 => 0.0038103318954495
922 => 0.0037809728949688
923 => 0.0038230661599497
924 => 0.0038165059691902
925 => 0.0038420278338521
926 => 0.0038260828808419
927 => 0.0038267372672752
928 => 0.0038736279742558
929 => 0.0038872405459796
930 => 0.0038803170821339
1001 => 0.003885166038889
1002 => 0.003996908200692
1003 => 0.0039810220385968
1004 => 0.0039725828316066
1005 => 0.0039749205496175
1006 => 0.0040034730677371
1007 => 0.0040114662139009
1008 => 0.0039775986919365
1009 => 0.0039935708110807
1010 => 0.0040615780672332
1011 => 0.0040853767580092
1012 => 0.0041613307549467
1013 => 0.004129064147073
1014 => 0.0041882909022912
1015 => 0.0043703337559432
1016 => 0.0045157621838478
1017 => 0.0043820201914628
1018 => 0.0046490809791109
1019 => 0.0048570261098896
1020 => 0.0048490448294196
1021 => 0.0048127847860108
1022 => 0.0045760447831265
1023 => 0.0043581931028779
1024 => 0.0045404352838768
1025 => 0.0045408998566746
1026 => 0.0045252450917042
1027 => 0.0044280146909705
1028 => 0.0045218616845178
1029 => 0.0045293109180634
1030 => 0.0045251413281889
1031 => 0.0044505950079152
1101 => 0.00433677655532
1102 => 0.0043590164085142
1103 => 0.0043954457417271
1104 => 0.0043264774140001
1105 => 0.004304437854353
1106 => 0.0043454135889348
1107 => 0.0044774459433905
1108 => 0.004452485991592
1109 => 0.0044518341863794
1110 => 0.0045586234448402
1111 => 0.0044821853823466
1112 => 0.0043592969242849
1113 => 0.0043282659679246
1114 => 0.0042181269778028
1115 => 0.0042942003705816
1116 => 0.0042969381165568
1117 => 0.0042552734967831
1118 => 0.0043626777785527
1119 => 0.004361688029188
1120 => 0.0044636524097106
1121 => 0.0046585700091972
1122 => 0.0046009232837165
1123 => 0.0045338864139283
1124 => 0.004541175180405
1125 => 0.0046211149584464
1126 => 0.004572781543795
1127 => 0.0045901625766962
1128 => 0.0046210886501715
1129 => 0.0046397471181503
1130 => 0.0045384905140004
1201 => 0.0045148827559098
1202 => 0.0044665895680535
1203 => 0.0044539907767769
1204 => 0.0044933245706154
1205 => 0.0044829615056224
1206 => 0.0042967080196087
1207 => 0.0042772434940156
1208 => 0.0042778404432266
1209 => 0.0042288959681352
1210 => 0.0041542438956008
1211 => 0.0043504250849776
1212 => 0.0043346689899167
1213 => 0.0043172754803943
1214 => 0.0043194060860648
1215 => 0.0044045616911759
1216 => 0.0043551671397503
1217 => 0.0044864906503229
1218 => 0.0044594944844953
1219 => 0.00443180596888
1220 => 0.0044279785726091
1221 => 0.0044173208563704
1222 => 0.0043807715818262
1223 => 0.0043366361365432
1224 => 0.0043074940926206
1225 => 0.0039734356071663
1226 => 0.0040354349189378
1227 => 0.0041067594757158
1228 => 0.0041313804269004
1229 => 0.0040892645861812
1230 => 0.0043824345719169
1231 => 0.0044359995533671
]
'min_raw' => 0.0018488824480874
'max_raw' => 0.0048570261098896
'avg_raw' => 0.0033529542789885
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.001848'
'max' => '$0.004857'
'avg' => '$0.003352'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -7.1685338606062E-5
'max_diff' => -0.00087591550699844
'year' => 2027
]
2 => [
'items' => [
101 => 0.0042737477305972
102 => 0.0042433970392552
103 => 0.0043844243581884
104 => 0.0042993676449831
105 => 0.0043376686777314
106 => 0.0042548827944744
107 => 0.0044230973179015
108 => 0.0044218158050694
109 => 0.0043563765561589
110 => 0.0044116853612294
111 => 0.0044020740952655
112 => 0.0043281933444154
113 => 0.0044254394694821
114 => 0.0044254877023469
115 => 0.0043625038480426
116 => 0.0042889524951537
117 => 0.0042758032504626
118 => 0.0042658970609403
119 => 0.0043352323623693
120 => 0.0043973981768247
121 => 0.0045130733453139
122 => 0.0045421568310462
123 => 0.004655671612057
124 => 0.0045880790868994
125 => 0.004618041977832
126 => 0.0046505709344491
127 => 0.004666166512464
128 => 0.0046407543549935
129 => 0.0048170895344511
130 => 0.0048319776263676
131 => 0.0048369694748057
201 => 0.0047775102444313
202 => 0.0048303239576099
203 => 0.00480561417022
204 => 0.004869902172432
205 => 0.0048799833520492
206 => 0.0048714449515618
207 => 0.0048746448770929
208 => 0.0047241739090831
209 => 0.0047163711955942
210 => 0.0046099806435178
211 => 0.0046533355798882
212 => 0.0045722856043999
213 => 0.0045979873865345
214 => 0.0046093164872038
215 => 0.004603398807935
216 => 0.0046557868029413
217 => 0.0046112463050256
218 => 0.0044936966078903
219 => 0.0043761148844185
220 => 0.0043746387416603
221 => 0.00434368154936
222 => 0.0043213051694195
223 => 0.0043256156540408
224 => 0.0043408063640715
225 => 0.0043204222577373
226 => 0.0043247722403241
227 => 0.0043970109350477
228 => 0.0044114978900917
229 => 0.0043622655564334
301 => 0.0041645906326036
302 => 0.0041160807104658
303 => 0.0041509486805049
304 => 0.0041342840366111
305 => 0.0033366898851845
306 => 0.0035240728001809
307 => 0.0034127362350126
308 => 0.0034640452465912
309 => 0.0033503994440181
310 => 0.0034046371776928
311 => 0.003394621448728
312 => 0.0036959276309787
313 => 0.0036912231493759
314 => 0.0036934749357635
315 => 0.0035859913044849
316 => 0.0037572156476104
317 => 0.0038415669160622
318 => 0.0038259557412081
319 => 0.0038298847375893
320 => 0.0037623715623721
321 => 0.0036941286108761
322 => 0.0036184366751521
323 => 0.0037590629359213
324 => 0.0037434276962941
325 => 0.0037792893106173
326 => 0.0038704954928988
327 => 0.0038839259496984
328 => 0.0039019766198352
329 => 0.0038955067395253
330 => 0.0040496455369953
331 => 0.0040309783115811
401 => 0.0040759609539019
402 => 0.0039834282458068
403 => 0.0038787187033118
404 => 0.0038986205641273
405 => 0.0038967038548901
406 => 0.0038723019464043
407 => 0.0038502729945063
408 => 0.003813600996215
409 => 0.0039296366252434
410 => 0.0039249257906108
411 => 0.0040011887275665
412 => 0.003987708512681
413 => 0.0038976843385069
414 => 0.0039008995694992
415 => 0.0039225235431098
416 => 0.0039973643626743
417 => 0.0040195822134726
418 => 0.0040092900197545
419 => 0.0040336508788714
420 => 0.0040529047086452
421 => 0.0040360688634539
422 => 0.004274428927708
423 => 0.004175445210624
424 => 0.0042236891856065
425 => 0.0042351950893698
426 => 0.0042057229588232
427 => 0.0042121144086209
428 => 0.0042217957134985
429 => 0.004280578700922
430 => 0.0044348422689157
501 => 0.0045031645530725
502 => 0.0047087155159202
503 => 0.0044974913384653
504 => 0.0044849581699077
505 => 0.004521984105361
506 => 0.0046426642803318
507 => 0.0047404642272332
508 => 0.0047729101118346
509 => 0.0047771983711079
510 => 0.0048380690075819
511 => 0.0048729589212386
512 => 0.0048306777112573
513 => 0.0047948488128253
514 => 0.0046665141458885
515 => 0.0046813692330301
516 => 0.0047837060523549
517 => 0.0049282628372596
518 => 0.0050523075972779
519 => 0.0050088714457159
520 => 0.0053402586209902
521 => 0.0053731143058235
522 => 0.005368574712531
523 => 0.0054434248521626
524 => 0.0052948625679598
525 => 0.0052313493132043
526 => 0.0048025954273416
527 => 0.0049230577806253
528 => 0.0050981568856291
529 => 0.0050749818624939
530 => 0.0049478202120276
531 => 0.0050522111337632
601 => 0.0050176962304315
602 => 0.0049904728941491
603 => 0.0051151882751621
604 => 0.0049780585907128
605 => 0.005096788912128
606 => 0.0049445160468051
607 => 0.0050090698583974
608 => 0.0049724259928211
609 => 0.0049961390647522
610 => 0.0048575129307805
611 => 0.0049323122277125
612 => 0.0048544010341108
613 => 0.0048543640940607
614 => 0.0048526442001438
615 => 0.0049443063739049
616 => 0.0049472954741005
617 => 0.0048795569891971
618 => 0.0048697948152485
619 => 0.004905890688899
620 => 0.0048636318743786
621 => 0.0048834045077189
622 => 0.0048642307672998
623 => 0.0048599143544707
624 => 0.0048255204426714
625 => 0.0048107025997879
626 => 0.0048165130577913
627 => 0.0047966789691293
628 => 0.0047847282132802
629 => 0.0048502668940092
630 => 0.0048152522207185
701 => 0.0048449003931463
702 => 0.0048111125587672
703 => 0.0046939892041505
704 => 0.0046266303243535
705 => 0.0044053951648233
706 => 0.0044681371816247
707 => 0.0045097352036753
708 => 0.0044959870576357
709 => 0.004525523395155
710 => 0.0045273366863945
711 => 0.0045177341219797
712 => 0.004506615582552
713 => 0.0045012036924524
714 => 0.0045415394873764
715 => 0.0045649557739703
716 => 0.0045139101216978
717 => 0.004501950839575
718 => 0.0045535608123301
719 => 0.0045850428658967
720 => 0.0048174886611942
721 => 0.0048002683258885
722 => 0.0048434879881856
723 => 0.0048386221174708
724 => 0.0048839232089902
725 => 0.0049579713479549
726 => 0.0048074107772545
727 => 0.0048335428863352
728 => 0.0048271358966672
729 => 0.0048970857298603
730 => 0.0048973041056043
731 => 0.0048553656863517
801 => 0.0048781011838017
802 => 0.0048654108528408
803 => 0.0048883439960882
804 => 0.0048000383378118
805 => 0.0049075850975856
806 => 0.0049685571802173
807 => 0.0049694037776438
808 => 0.0049983040609068
809 => 0.0050276684224936
810 => 0.0050840307574625
811 => 0.005026096507562
812 => 0.0049218784317766
813 => 0.004929402640226
814 => 0.0048682996205249
815 => 0.0048693267733252
816 => 0.0048638437511776
817 => 0.0048802987133853
818 => 0.0048036492766736
819 => 0.0048216387462651
820 => 0.0047964533834908
821 => 0.0048334881382752
822 => 0.0047936448641914
823 => 0.0048271328070228
824 => 0.0048415850930059
825 => 0.004894914339419
826 => 0.0047857680911355
827 => 0.004563211502334
828 => 0.0046099955955379
829 => 0.0045407982468781
830 => 0.0045472027249495
831 => 0.0045601407899187
901 => 0.004518204288282
902 => 0.0045262044512232
903 => 0.0045259186291067
904 => 0.0045234555685199
905 => 0.0045125462647797
906 => 0.0044967256160163
907 => 0.0045597502113506
908 => 0.0045704593182127
909 => 0.0045942643361896
910 => 0.0046650919225908
911 => 0.0046580145764798
912 => 0.0046695580216231
913 => 0.004644358745689
914 => 0.0045483716470868
915 => 0.0045535842083488
916 => 0.0044885834858865
917 => 0.0045926021215747
918 => 0.0045679691356648
919 => 0.0045520880894017
920 => 0.0045477547987919
921 => 0.0046187579530802
922 => 0.0046400032096813
923 => 0.0046267645914836
924 => 0.004599611799328
925 => 0.0046517531872692
926 => 0.0046657040230138
927 => 0.0046688271006499
928 => 0.0047612116429624
929 => 0.004673990370301
930 => 0.0046949853975355
1001 => 0.0048587826067242
1002 => 0.0047102411404598
1003 => 0.00478892686801
1004 => 0.0047850756111072
1005 => 0.0048253285667421
1006 => 0.0047817736938494
1007 => 0.004782313608699
1008 => 0.0048180555063313
1009 => 0.0047678624571919
1010 => 0.0047554339523585
1011 => 0.0047382640619459
1012 => 0.004775753889514
1013 => 0.0047982273456221
1014 => 0.0049793468969182
1015 => 0.0050963583871105
1016 => 0.0050912786097254
1017 => 0.0051376982660804
1018 => 0.0051167857857371
1019 => 0.0050492538702752
1020 => 0.005164522615329
1021 => 0.0051280467613448
1022 => 0.0051310537864291
1023 => 0.0051309418648053
1024 => 0.0051551951189302
1025 => 0.0051380094656046
1026 => 0.0051041347788287
1027 => 0.005126622376776
1028 => 0.0051934025032161
1029 => 0.0054006900647507
1030 => 0.0055166909303805
1031 => 0.0053937066669849
1101 => 0.0054785395650502
1102 => 0.0054276700552633
1103 => 0.0054184255520982
1104 => 0.0054717068811851
1105 => 0.0055250814721854
1106 => 0.0055216817414834
1107 => 0.0054829345292328
1108 => 0.0054610472122065
1109 => 0.0056267853095185
1110 => 0.0057488983163431
1111 => 0.0057405710279336
1112 => 0.0057773249707937
1113 => 0.0058852356837875
1114 => 0.0058951016870026
1115 => 0.005893858797365
1116 => 0.0058694048789855
1117 => 0.0059756569899047
1118 => 0.0060642943701615
1119 => 0.0058637445034222
1120 => 0.005940111267286
1121 => 0.005974394767968
1122 => 0.0060247331184253
1123 => 0.006109662353334
1124 => 0.0062019180288118
1125 => 0.0062149639928564
1126 => 0.0062057072570599
1127 => 0.0061448621591166
1128 => 0.0062458094200636
1129 => 0.0063049419580218
1130 => 0.0063401540311518
1201 => 0.0064294459898792
1202 => 0.0059746064911967
1203 => 0.0056526484870393
1204 => 0.0056023700955602
1205 => 0.0057046131817331
1206 => 0.0057315738681835
1207 => 0.0057207060492812
1208 => 0.0053583130444609
1209 => 0.0056004621713888
1210 => 0.0058609942714862
1211 => 0.0058710023705014
1212 => 0.0060014301872795
1213 => 0.0060439028308393
1214 => 0.0061489143189104
1215 => 0.00614234582174
1216 => 0.0061679144479876
1217 => 0.0061620366636001
1218 => 0.0063565483324742
1219 => 0.0065711235885047
1220 => 0.0065636935296959
1221 => 0.0065328457979023
1222 => 0.0065786599399356
1223 => 0.006800124599441
1224 => 0.0067797356824926
1225 => 0.0067995417785841
1226 => 0.0070606610933422
1227 => 0.007400153346317
1228 => 0.0072424251103453
1229 => 0.0075846499973267
1230 => 0.0078000624231197
1231 => 0.0081725959394682
]
'min_raw' => 0.0033366898851845
'max_raw' => 0.0081725959394682
'avg_raw' => 0.0057546429123263
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.003336'
'max' => '$0.008172'
'avg' => '$0.005754'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0014878074370971
'max_diff' => 0.0033155698295785
'year' => 2028
]
3 => [
'items' => [
101 => 0.0081259529084551
102 => 0.0082709774725923
103 => 0.0080424521482474
104 => 0.0075177118109632
105 => 0.0074346696439627
106 => 0.0076009221652603
107 => 0.0080096377661869
108 => 0.0075880502564918
109 => 0.0076733368606264
110 => 0.0076487743128981
111 => 0.0076474654791138
112 => 0.0076974183412501
113 => 0.0076249591093553
114 => 0.0073297471634491
115 => 0.007465041058563
116 => 0.007412797588313
117 => 0.0074707656135641
118 => 0.0077835951380117
119 => 0.007645285748329
120 => 0.0074995880416406
121 => 0.0076823252987372
122 => 0.0079150126223554
123 => 0.0079004514678227
124 => 0.0078721967419388
125 => 0.0080314671523769
126 => 0.0082945352085688
127 => 0.0083656414470644
128 => 0.0084181306186189
129 => 0.0084253679885644
130 => 0.0084999173970038
131 => 0.0080990464389554
201 => 0.0087352389444745
202 => 0.0088450918157144
203 => 0.0088244440288563
204 => 0.0089465408719239
205 => 0.0089106168833955
206 => 0.0088585686603189
207 => 0.0090521181273243
208 => 0.0088302292820391
209 => 0.0085152860011857
210 => 0.0083425018884377
211 => 0.008570037946201
212 => 0.008708986276763
213 => 0.0088008222844909
214 => 0.0088286118049405
215 => 0.0081301649102954
216 => 0.0077537407717224
217 => 0.0079950243288362
218 => 0.0082894069210166
219 => 0.0080974111287921
220 => 0.0081049370003512
221 => 0.0078312014562457
222 => 0.0083136264426955
223 => 0.0082433411800025
224 => 0.008607981247186
225 => 0.0085209569687333
226 => 0.0088183067882756
227 => 0.0087400046155125
228 => 0.0090650325568366
301 => 0.009194695002411
302 => 0.0094124184288787
303 => 0.0095725766676821
304 => 0.0096666246488464
305 => 0.0096609783608224
306 => 0.010033643316713
307 => 0.0098138958121463
308 => 0.0095378411558998
309 => 0.0095328481981096
310 => 0.0096758208163044
311 => 0.0099754522014184
312 => 0.010053142260119
313 => 0.01009656040426
314 => 0.010030064005112
315 => 0.0097915438383497
316 => 0.0096885520396666
317 => 0.0097763040361043
318 => 0.009668990885076
319 => 0.009854243490503
320 => 0.010108634885576
321 => 0.010056104068466
322 => 0.010231706714204
323 => 0.010413436978606
324 => 0.010673319418717
325 => 0.010741262311981
326 => 0.01085356933091
327 => 0.010969170144322
328 => 0.01100629801006
329 => 0.011077186625855
330 => 0.011076813007858
331 => 0.01129044062291
401 => 0.011526078497809
402 => 0.011615026340555
403 => 0.011819557000334
404 => 0.011469305413071
405 => 0.01173497526541
406 => 0.011974616122368
407 => 0.01168890641347
408 => 0.012082690685362
409 => 0.012097980436305
410 => 0.012328837522719
411 => 0.012094819638772
412 => 0.011955860566296
413 => 0.012357030201806
414 => 0.012551143551704
415 => 0.012492675030968
416 => 0.012047726701219
417 => 0.011788747688573
418 => 0.011110949659159
419 => 0.011913830703696
420 => 0.012304890640129
421 => 0.012046713950457
422 => 0.012176923255486
423 => 0.012887303003219
424 => 0.013157769617473
425 => 0.013101514452412
426 => 0.013111020649269
427 => 0.013256959525004
428 => 0.01390413287002
429 => 0.013516331600326
430 => 0.013812791140371
501 => 0.013970032211446
502 => 0.014116086481402
503 => 0.013757423355318
504 => 0.013290807898091
505 => 0.013143011195603
506 => 0.012021043366775
507 => 0.011962640068825
508 => 0.011929856527885
509 => 0.011723160939581
510 => 0.01156075482586
511 => 0.011431603454477
512 => 0.011092671688103
513 => 0.011207051209808
514 => 0.010666864714766
515 => 0.01101245689126
516 => 0.010150306201914
517 => 0.010868330914947
518 => 0.010477542708221
519 => 0.010739946478822
520 => 0.010739030976787
521 => 0.010255862439918
522 => 0.0099771809113217
523 => 0.01015476762779
524 => 0.010345154684696
525 => 0.01037604434414
526 => 0.010622886133029
527 => 0.010691774370461
528 => 0.010483039794957
529 => 0.01013244004519
530 => 0.010213876370732
531 => 0.0099755306067838
601 => 0.0095578388233024
602 => 0.0098578323543976
603 => 0.009960263335698
604 => 0.010005502692405
605 => 0.009594750795576
606 => 0.0094656836317349
607 => 0.0093969693566843
608 => 0.010079417133311
609 => 0.010116803163053
610 => 0.0099255309490394
611 => 0.010790099493557
612 => 0.010594421004713
613 => 0.010813041819146
614 => 0.010206486877764
615 => 0.010229658093359
616 => 0.0099425052636353
617 => 0.010103291660722
618 => 0.0099896530176485
619 => 0.010090301708759
620 => 0.010150630119221
621 => 0.010437735829991
622 => 0.01087160920098
623 => 0.010394851810934
624 => 0.010187121788799
625 => 0.010315996326214
626 => 0.010659206202236
627 => 0.011179186733
628 => 0.010871347793204
629 => 0.011007961487241
630 => 0.011037805501868
701 => 0.01081081646448
702 => 0.011187556142582
703 => 0.011389453996705
704 => 0.011596559418161
705 => 0.011776383252649
706 => 0.011513836958486
707 => 0.011794799127773
708 => 0.011568393215827
709 => 0.011365283707398
710 => 0.011365591740682
711 => 0.011238178179088
712 => 0.010991298348358
713 => 0.010945769919756
714 => 0.011182614554954
715 => 0.011372541523113
716 => 0.011388184817899
717 => 0.011493338146272
718 => 0.011555566802837
719 => 0.012165492232935
720 => 0.012410809286488
721 => 0.012710778335959
722 => 0.012827633186057
723 => 0.01317932439007
724 => 0.012895305179866
725 => 0.012833855837174
726 => 0.011980768013555
727 => 0.012120461096882
728 => 0.012344123201666
729 => 0.011984456119283
730 => 0.012212582099104
731 => 0.01225761899989
801 => 0.011972234769452
802 => 0.012124670817653
803 => 0.011719845867769
804 => 0.010880433278629
805 => 0.011188490648753
806 => 0.011415324564154
807 => 0.011091604598457
808 => 0.011671860107276
809 => 0.011332886817929
810 => 0.011225448558793
811 => 0.0108062936054
812 => 0.011004118608648
813 => 0.011271679758122
814 => 0.011106358075069
815 => 0.011449425390579
816 => 0.011935300202053
817 => 0.012281563527054
818 => 0.012308145325579
819 => 0.012085521205444
820 => 0.012442277778728
821 => 0.012444876360885
822 => 0.012042453488827
823 => 0.011795971720391
824 => 0.011739970544
825 => 0.011879872462302
826 => 0.012049739218438
827 => 0.012317571748332
828 => 0.012479417336785
829 => 0.012901424795203
830 => 0.013015607913549
831 => 0.013141060542453
901 => 0.013308703942826
902 => 0.01351000282786
903 => 0.013069572327358
904 => 0.013087071452208
905 => 0.012676948668316
906 => 0.01223867365617
907 => 0.012571269758637
908 => 0.013006094919207
909 => 0.012906345546933
910 => 0.012895121704858
911 => 0.012913997093995
912 => 0.01283878932481
913 => 0.012498627372118
914 => 0.012327800169003
915 => 0.012548210843689
916 => 0.012665349307934
917 => 0.012847020850431
918 => 0.012824625998197
919 => 0.01329259238157
920 => 0.013474429967579
921 => 0.013427908131809
922 => 0.013436469269201
923 => 0.013765677532976
924 => 0.014131824829138
925 => 0.014474770089384
926 => 0.014823628737948
927 => 0.014403066020919
928 => 0.014189530209914
929 => 0.014409844660195
930 => 0.014292942711726
1001 => 0.014964695983001
1002 => 0.015011206722022
1003 => 0.01568291141789
1004 => 0.016320439159376
1005 => 0.015920019407444
1006 => 0.016297597198214
1007 => 0.0167059783633
1008 => 0.017493811888208
1009 => 0.017228497273336
1010 => 0.017025270436355
1011 => 0.016833222057393
1012 => 0.017232844247192
1013 => 0.017746951810248
1014 => 0.01785768565527
1015 => 0.018037116787789
1016 => 0.01784846689174
1017 => 0.018075674912426
1018 => 0.018877819065712
1019 => 0.018661072634772
1020 => 0.01835325785911
1021 => 0.018986473629385
1022 => 0.019215631955084
1023 => 0.020823985095986
1024 => 0.022854597374129
1025 => 0.022013910557259
1026 => 0.021492069121233
1027 => 0.021614714236943
1028 => 0.022356225100358
1029 => 0.022594374855308
1030 => 0.02194700172621
1031 => 0.022175664859661
1101 => 0.02343562120664
1102 => 0.024111547362555
1103 => 0.023193548853828
1104 => 0.0206608273766
1105 => 0.018325542506436
1106 => 0.018944965213252
1107 => 0.018874741901223
1108 => 0.020228407813297
1109 => 0.018655903304077
1110 => 0.0186823802471
1111 => 0.020064038536678
1112 => 0.019695435792638
1113 => 0.019098346554366
1114 => 0.018329901918653
1115 => 0.016909360937012
1116 => 0.015651148174857
1117 => 0.018118793150537
1118 => 0.018012383812065
1119 => 0.017858287320976
1120 => 0.018201212386912
1121 => 0.019866359166119
1122 => 0.019827972143304
1123 => 0.019583773489387
1124 => 0.019768996016115
1125 => 0.019065876149893
1126 => 0.01924708614916
1127 => 0.018325172585381
1128 => 0.018741916018721
1129 => 0.019097065469027
1130 => 0.019168366979254
1201 => 0.01932901292254
1202 => 0.017956310925968
1203 => 0.018572613822015
1204 => 0.018934634033671
1205 => 0.017299013547001
1206 => 0.018902303075571
1207 => 0.017932415238194
1208 => 0.017603220738961
1209 => 0.0180464377641
1210 => 0.017873715658361
1211 => 0.017725219334429
1212 => 0.017642355834184
1213 => 0.017967805501368
1214 => 0.017952622885397
1215 => 0.017420124062826
1216 => 0.01672550105621
1217 => 0.016958639337453
1218 => 0.016873938014195
1219 => 0.016566969492017
1220 => 0.016773829212444
1221 => 0.015862923692992
1222 => 0.014295758091525
1223 => 0.015331075691435
1224 => 0.015291217090047
1225 => 0.015271118575784
1226 => 0.016049131138039
1227 => 0.015974343181982
1228 => 0.015838602309413
1229 => 0.016564476504443
1230 => 0.016299522658871
1231 => 0.017116047979946
]
'min_raw' => 0.0073297471634491
'max_raw' => 0.024111547362555
'avg_raw' => 0.015720647263002
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.007329'
'max' => '$0.024111'
'avg' => '$0.01572'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0039930572782646
'max_diff' => 0.015938951423087
'year' => 2029
]
4 => [
'items' => [
101 => 0.017653864365952
102 => 0.017517456733924
103 => 0.018023275644455
104 => 0.01696401037258
105 => 0.01731585580555
106 => 0.017388370661649
107 => 0.016555519329551
108 => 0.015986579416512
109 => 0.015948637610702
110 => 0.014962174206241
111 => 0.01548913499445
112 => 0.015952838680954
113 => 0.015730760599978
114 => 0.015660457313935
115 => 0.016019621555406
116 => 0.016047531693002
117 => 0.015411177598029
118 => 0.015543495765087
119 => 0.016095284517786
120 => 0.015529592104264
121 => 0.014430544150122
122 => 0.014157965061968
123 => 0.014121597986979
124 => 0.013382341881385
125 => 0.014176180100026
126 => 0.013829648444047
127 => 0.014924337793196
128 => 0.014299057107899
129 => 0.014272102507289
130 => 0.014231356675086
131 => 0.013595048406716
201 => 0.013734359477989
202 => 0.014197450696575
203 => 0.014362686860463
204 => 0.014345451374829
205 => 0.014195181296966
206 => 0.014263974169104
207 => 0.01404236835892
208 => 0.013964114735018
209 => 0.013717124772628
210 => 0.013354117760633
211 => 0.013404596112102
212 => 0.012685384235388
213 => 0.012293519433491
214 => 0.012185056421021
215 => 0.012040015147765
216 => 0.012201439218776
217 => 0.012683346798506
218 => 0.012102064014955
219 => 0.011105495454803
220 => 0.011165390923339
221 => 0.011299958258013
222 => 0.011049192920099
223 => 0.010811864572903
224 => 0.011018202315733
225 => 0.010595943079265
226 => 0.011350986269373
227 => 0.011330564467065
228 => 0.011611997876779
301 => 0.011787983963469
302 => 0.011382393009822
303 => 0.011280387981814
304 => 0.011338494681637
305 => 0.010378120367833
306 => 0.011533514806372
307 => 0.011543506705455
308 => 0.011457949999246
309 => 0.012073161868967
310 => 0.013371450803472
311 => 0.01288298228276
312 => 0.012693832507501
313 => 0.012334258646466
314 => 0.012813369466912
315 => 0.012776581231195
316 => 0.012610210877758
317 => 0.012509589568892
318 => 0.012694987415695
319 => 0.012486616723966
320 => 0.012449187622088
321 => 0.01222240798797
322 => 0.012141457976406
323 => 0.012081525810557
324 => 0.01201554638477
325 => 0.012161080557008
326 => 0.011831280976103
327 => 0.011433575012182
328 => 0.011400510064521
329 => 0.011491805292115
330 => 0.011451413950035
331 => 0.011400316686314
401 => 0.011302758094361
402 => 0.011273814544138
403 => 0.011367867040949
404 => 0.01126168725565
405 => 0.01141836131277
406 => 0.011375754638405
407 => 0.011137757218878
408 => 0.010841124316218
409 => 0.010838483661176
410 => 0.010774574588873
411 => 0.010693176776503
412 => 0.010670533767231
413 => 0.011000825126554
414 => 0.011684518355566
415 => 0.011550293015318
416 => 0.011647284579613
417 => 0.012124387079864
418 => 0.012276043617721
419 => 0.012168401399332
420 => 0.012021054091719
421 => 0.012027536625453
422 => 0.012531066980633
423 => 0.012562471551243
424 => 0.012641820769675
425 => 0.012743806939447
426 => 0.012185770085045
427 => 0.012001253139795
428 => 0.011913818774524
429 => 0.01164455477085
430 => 0.011934932913862
501 => 0.011765742005161
502 => 0.011788571639129
503 => 0.011773703810058
504 => 0.011781822650089
505 => 0.011350775219414
506 => 0.011507826247966
507 => 0.01124669845245
508 => 0.010897077647225
509 => 0.010895905595693
510 => 0.010981474792464
511 => 0.010930574885902
512 => 0.010793604546098
513 => 0.010813060536385
514 => 0.010642605588913
515 => 0.010833756853195
516 => 0.010839238387482
517 => 0.010765634738654
518 => 0.011060129635072
519 => 0.011180784434419
520 => 0.011132336936017
521 => 0.01117738522878
522 => 0.011555870684197
523 => 0.011617580327908
524 => 0.011644987675334
525 => 0.011608265460561
526 => 0.011184303248109
527 => 0.011203107775058
528 => 0.011065132633308
529 => 0.010948558177991
530 => 0.010953220544851
531 => 0.011013154968502
601 => 0.011274892111695
602 => 0.011825702499296
603 => 0.011846605350868
604 => 0.011871940216753
605 => 0.011768890584916
606 => 0.011737809829902
607 => 0.011778813368389
608 => 0.011985668789737
609 => 0.012517757094145
610 => 0.012329681550384
611 => 0.012176773205737
612 => 0.012310915047787
613 => 0.012290264962641
614 => 0.012115957462506
615 => 0.012111065231527
616 => 0.011776513409288
617 => 0.011652837217983
618 => 0.011549484135526
619 => 0.011436625267583
620 => 0.011369718747604
621 => 0.011472517570762
622 => 0.011496028877898
623 => 0.011271257454446
624 => 0.011240621939989
625 => 0.011424175136408
626 => 0.011343400218217
627 => 0.011426479224698
628 => 0.01144575426684
629 => 0.011442650541113
630 => 0.011358312249581
701 => 0.0114120669616
702 => 0.011284921042625
703 => 0.01114666895244
704 => 0.011058472732312
705 => 0.010981509832719
706 => 0.011024213322523
707 => 0.01087198317872
708 => 0.01082328169193
709 => 0.011393856074687
710 => 0.011815345505938
711 => 0.01180921688268
712 => 0.011771910464747
713 => 0.01171648069503
714 => 0.011981613756832
715 => 0.011889246699603
716 => 0.011956451451263
717 => 0.011973557881135
718 => 0.01202533389223
719 => 0.012043839365898
720 => 0.011987902971596
721 => 0.01180017360026
722 => 0.011332369855666
723 => 0.011114605949745
724 => 0.011042740233647
725 => 0.011045352415935
726 => 0.010973296767143
727 => 0.01099452038502
728 => 0.010965916058975
729 => 0.010911746385577
730 => 0.011020868497837
731 => 0.011033443804732
801 => 0.011007973399818
802 => 0.011013972602218
803 => 0.010803088528086
804 => 0.010819121586226
805 => 0.010729847481119
806 => 0.010713109662627
807 => 0.010487432498903
808 => 0.010087612690937
809 => 0.010309151675998
810 => 0.01004156373514
811 => 0.0099402241273181
812 => 0.010419950069204
813 => 0.010371798890165
814 => 0.010289385002465
815 => 0.010167477685997
816 => 0.010122261076481
817 => 0.0098475392709002
818 => 0.0098313072410427
819 => 0.0099674667860013
820 => 0.0099046338409668
821 => 0.0098163925894412
822 => 0.0094967917212878
823 => 0.0091374545292725
824 => 0.0091483006603864
825 => 0.0092625991354603
826 => 0.0095949373669872
827 => 0.0094650870704199
828 => 0.0093708791903998
829 => 0.0093532368863505
830 => 0.0095740672581926
831 => 0.0098865884997424
901 => 0.010033216474009
902 => 0.0098879126046686
903 => 0.0097209953432864
904 => 0.0097311548235666
905 => 0.0097987412943436
906 => 0.009805843676801
907 => 0.0096971976990129
908 => 0.0097277809053628
909 => 0.0096813222183303
910 => 0.0093962053417678
911 => 0.0093910484815862
912 => 0.0093210762019471
913 => 0.0093189574691284
914 => 0.0091999171660591
915 => 0.0091832626047729
916 => 0.0089469008577989
917 => 0.0091024748754265
918 => 0.0089981239924044
919 => 0.0088408425978053
920 => 0.0088137272260934
921 => 0.008812912105277
922 => 0.008974404930054
923 => 0.0091005877377432
924 => 0.008999939220691
925 => 0.0089770235043478
926 => 0.0092217034024909
927 => 0.0091905656551454
928 => 0.0091636005667611
929 => 0.0098586056503246
930 => 0.0093084548947612
1001 => 0.0090685577638282
1002 => 0.0087716395090691
1003 => 0.0088683175900104
1004 => 0.0088886890821613
1005 => 0.0081746542030037
1006 => 0.0078849703414569
1007 => 0.00778556175668
1008 => 0.0077283507107099
1009 => 0.0077544225027696
1010 => 0.0074936730508494
1011 => 0.0076689009949376
1012 => 0.0074431140101773
1013 => 0.0074052600874078
1014 => 0.0078089951857994
1015 => 0.0078651725661544
1016 => 0.0076255024086161
1017 => 0.0077794094488297
1018 => 0.0077236006165803
1019 => 0.007446984479983
1020 => 0.0074364197782156
1021 => 0.0072976235243984
1022 => 0.0070804342634252
1023 => 0.0069811729431946
1024 => 0.0069294767857921
1025 => 0.0069508076278744
1026 => 0.0069400221013831
1027 => 0.0068696392454159
1028 => 0.0069440563642999
1029 => 0.0067539513768279
1030 => 0.0066782500390366
1031 => 0.0066440575010139
1101 => 0.0064753283825977
1102 => 0.0067438514441774
1103 => 0.006796753870073
1104 => 0.00684976053009
1105 => 0.0073111473163543
1106 => 0.0072880977363781
1107 => 0.0074964547137625
1108 => 0.0074883583447653
1109 => 0.007428931559656
1110 => 0.0071782197285115
1111 => 0.007278148995897
1112 => 0.0069705822433406
1113 => 0.0072010321668621
1114 => 0.0070958644455857
1115 => 0.0071654748545094
1116 => 0.0070403090627472
1117 => 0.0071095809798772
1118 => 0.0068092989978035
1119 => 0.0065288999080245
1120 => 0.0066417406871113
1121 => 0.006764411518887
1122 => 0.0070303931381233
1123 => 0.0068719766800068
1124 => 0.006928949228735
1125 => 0.0067381007275852
1126 => 0.0063443257565338
1127 => 0.0063465544801062
1128 => 0.006285980779664
1129 => 0.0062336362585769
1130 => 0.0068901727158773
1201 => 0.0068085220291065
1202 => 0.0066784223459149
1203 => 0.0068525659418227
1204 => 0.0068986122726113
1205 => 0.0068999231469153
1206 => 0.0070269738191929
1207 => 0.0070947807857625
1208 => 0.0071067320575126
1209 => 0.0073066490354528
1210 => 0.0073736585694896
1211 => 0.0076496613566432
1212 => 0.00708902783839
1213 => 0.0070774819600167
1214 => 0.0068550164993411
1215 => 0.0067139253871408
1216 => 0.0068646771285022
1217 => 0.0069982225916834
1218 => 0.0068591661291387
1219 => 0.0068773239675049
1220 => 0.0066906520278689
1221 => 0.0067573784625577
1222 => 0.006814852257133
1223 => 0.006783118605922
1224 => 0.006735611794133
1225 => 0.0069872733866349
1226 => 0.0069730736533162
1227 => 0.007207426713929
1228 => 0.0073901216834248
1229 => 0.0077175437293935
1230 => 0.0073758617555279
1231 => 0.0073634095063374
]
'min_raw' => 0.0062336362585769
'max_raw' => 0.018023275644455
'avg_raw' => 0.012128455951516
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.006233'
'max' => '$0.018023'
'avg' => '$0.012128'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0010961109048722
'max_diff' => -0.0060882717181003
'year' => 2030
]
5 => [
'items' => [
101 => 0.0074851322395782
102 => 0.0073736399343734
103 => 0.0074440992226793
104 => 0.0077061916487511
105 => 0.0077117292487142
106 => 0.0076189673145383
107 => 0.0076133227424135
108 => 0.0076311386865763
109 => 0.007735487228009
110 => 0.0076990246413256
111 => 0.0077412200697553
112 => 0.007793986099126
113 => 0.0080122487689362
114 => 0.0080648711597026
115 => 0.0079370260317216
116 => 0.0079485690153571
117 => 0.007900751428065
118 => 0.0078545602378934
119 => 0.0079583912877175
120 => 0.0081481445720755
121 => 0.0081469641267417
122 => 0.008190983200436
123 => 0.0082184067186738
124 => 0.0081006849031548
125 => 0.008024052330003
126 => 0.0080534381348067
127 => 0.0081004266766274
128 => 0.00803820038399
129 => 0.007654110879809
130 => 0.007770619099645
131 => 0.0077512264349034
201 => 0.0077236089220828
202 => 0.0078407588380593
203 => 0.0078294594428742
204 => 0.0074909986883389
205 => 0.007512665847711
206 => 0.0074923163400641
207 => 0.0075580697623886
208 => 0.0073700890337835
209 => 0.0074279106398329
210 => 0.0074641758091032
211 => 0.0074855362724056
212 => 0.0075627049128605
213 => 0.0075536500635802
214 => 0.0075621420507157
215 => 0.0076765627727445
216 => 0.0082552635203164
217 => 0.0082867609251755
218 => 0.0081316561840147
219 => 0.0081936174688027
220 => 0.0080746653514531
221 => 0.0081545187047398
222 => 0.0082091523410033
223 => 0.0079622734441727
224 => 0.0079476548781331
225 => 0.0078282118030816
226 => 0.0078923937460127
227 => 0.0077902756599643
228 => 0.0078153318663416
301 => 0.0077452725289499
302 => 0.00787136538758
303 => 0.0080123567963777
304 => 0.0080479767941594
305 => 0.0079542759153689
306 => 0.0078864303039357
307 => 0.0077673157599928
308 => 0.0079654059012106
309 => 0.0080233334951903
310 => 0.0079651016322199
311 => 0.0079516080371783
312 => 0.0079260376989569
313 => 0.0079570329053108
314 => 0.0080230180090729
315 => 0.0079919006526922
316 => 0.0080124542147989
317 => 0.0079341252307894
318 => 0.0081007238739741
319 => 0.0083653226134982
320 => 0.0083661733417121
321 => 0.0083350558175973
322 => 0.0083223231971659
323 => 0.0083542516652769
324 => 0.0083715715494529
325 => 0.0084748223606443
326 => 0.0085856145947466
327 => 0.0091026336088628
328 => 0.008957456738584
329 => 0.0094161867655067
330 => 0.0097789826581636
331 => 0.0098877692832298
401 => 0.0097876907069752
402 => 0.0094453273037466
403 => 0.0094285293218533
404 => 0.0099401647883773
405 => 0.0097956043346953
406 => 0.0097784093287174
407 => 0.0095954835165335
408 => 0.0097036153273368
409 => 0.0096799653141162
410 => 0.0096426326112491
411 => 0.0098489405737346
412 => 0.010235130662268
413 => 0.010174939315303
414 => 0.010130009266989
415 => 0.009933138874219
416 => 0.010051698823261
417 => 0.010009481896273
418 => 0.010190872606135
419 => 0.010083420767909
420 => 0.0097945091470796
421 => 0.0098405192749619
422 => 0.009833564936692
423 => 0.0099766847254963
424 => 0.0099337237173488
425 => 0.0098251761103516
426 => 0.01023381070653
427 => 0.010207276248799
428 => 0.01024489604324
429 => 0.010261457440184
430 => 0.010510186117928
501 => 0.01061208229877
502 => 0.010635214515765
503 => 0.010732008006632
504 => 0.010632806205536
505 => 0.011029684139605
506 => 0.011293584807292
507 => 0.011600119013015
508 => 0.012048047876202
509 => 0.012216473272335
510 => 0.012186048732041
511 => 0.012525663283968
512 => 0.013135943084574
513 => 0.01230940372831
514 => 0.013179751677451
515 => 0.012904209565403
516 => 0.012250904174529
517 => 0.012208839009322
518 => 0.012651265005053
519 => 0.013632523281661
520 => 0.01338672921271
521 => 0.013632925312704
522 => 0.013345724484585
523 => 0.01333146254275
524 => 0.013618976609527
525 => 0.014290768898127
526 => 0.01397162556357
527 => 0.013514055336328
528 => 0.013851918071542
529 => 0.013559230102579
530 => 0.012899722190301
531 => 0.013386541258618
601 => 0.013061019211443
602 => 0.013156023850513
603 => 0.013840222775923
604 => 0.013757898151052
605 => 0.01386443383869
606 => 0.013676401138533
607 => 0.013500748946551
608 => 0.013172881086113
609 => 0.013075815576328
610 => 0.013102640991181
611 => 0.013075802282984
612 => 0.012892363228331
613 => 0.012852749581944
614 => 0.012786725102452
615 => 0.012807188849438
616 => 0.01268304351185
617 => 0.012917331413614
618 => 0.01296081731272
619 => 0.013131312509634
620 => 0.013149013886574
621 => 0.013623840583133
622 => 0.013362314017806
623 => 0.013537768616944
624 => 0.013522074306155
625 => 0.012265063283345
626 => 0.012438268311586
627 => 0.012707720980797
628 => 0.012586332918552
629 => 0.012414718598969
630 => 0.012276130834529
701 => 0.012066156200075
702 => 0.012361691465863
703 => 0.012750288913703
704 => 0.013158869359134
705 => 0.013649751993069
706 => 0.013540192703679
707 => 0.013149692649744
708 => 0.013167210196903
709 => 0.013275496780539
710 => 0.013135255815856
711 => 0.013093896017543
712 => 0.013269814579374
713 => 0.013271026033826
714 => 0.013109661855272
715 => 0.012930335100141
716 => 0.01292958371449
717 => 0.012897674250505
718 => 0.013351401107341
719 => 0.013600905001641
720 => 0.013629510221026
721 => 0.013598979642461
722 => 0.013610729650436
723 => 0.013465548831786
724 => 0.013797389131185
725 => 0.014101918605518
726 => 0.014020298201074
727 => 0.013897937611787
728 => 0.013800471508736
729 => 0.013997338284712
730 => 0.013988572117075
731 => 0.014099258806226
801 => 0.014094237418649
802 => 0.014057017648224
803 => 0.014020299530309
804 => 0.014165882717415
805 => 0.014123957097523
806 => 0.014081966355563
807 => 0.013997747494102
808 => 0.014009194236101
809 => 0.013886854774096
810 => 0.013830254941099
811 => 0.012979129254816
812 => 0.012751680660107
813 => 0.012823240618146
814 => 0.012846800014386
815 => 0.012747814094485
816 => 0.012889734476226
817 => 0.012867616335062
818 => 0.01295366508365
819 => 0.012899905561335
820 => 0.012902111870883
821 => 0.013060207163272
822 => 0.013106102899238
823 => 0.013082759957502
824 => 0.013099108553745
825 => 0.013475855053852
826 => 0.013422293749212
827 => 0.013393840373638
828 => 0.013401722153126
829 => 0.013497988961439
830 => 0.013524938411794
831 => 0.013410751696936
901 => 0.013464602811769
902 => 0.013693894024002
903 => 0.013774132971525
904 => 0.014030217175138
905 => 0.013921428053909
906 => 0.014121115194208
907 => 0.014734885385122
908 => 0.01522520748329
909 => 0.014774287018397
910 => 0.015674701109541
911 => 0.016375802636227
912 => 0.016348893191887
913 => 0.016226639923939
914 => 0.015428454475555
915 => 0.014693952325678
916 => 0.015308394562659
917 => 0.015309960902282
918 => 0.015257179769204
919 => 0.01492936068472
920 => 0.015245772375653
921 => 0.015270887986641
922 => 0.015256829923268
923 => 0.015005491799807
924 => 0.014621744940331
925 => 0.014696728158113
926 => 0.014819552198455
927 => 0.014587020666308
928 => 0.014512712752205
929 => 0.014650865302182
930 => 0.015096021603434
1001 => 0.015011867383297
1002 => 0.015009669776516
1003 => 0.015369717217204
1004 => 0.015112000952772
1005 => 0.014697673936618
1006 => 0.014593050900738
1007 => 0.014221709605883
1008 => 0.014478196360912
1009 => 0.01448742686261
1010 => 0.014346951688112
1011 => 0.014709072722826
1012 => 0.014705735713741
1013 => 0.015049515741598
1014 => 0.01570669403698
1015 => 0.015512334077256
1016 => 0.0152863145904
1017 => 0.015310889175462
1018 => 0.015580411718346
1019 => 0.015417452236317
1020 => 0.015476053602248
1021 => 0.01558032301816
1022 => 0.015643231345643
1023 => 0.015301837635241
1024 => 0.015222242430598
1025 => 0.015059418576018
1026 => 0.015016940871609
1027 => 0.015149557503733
1028 => 0.015114617706583
1029 => 0.014486651074685
1030 => 0.014421025067678
1031 => 0.014423037723621
1101 => 0.014258018008656
1102 => 0.014006323334065
1103 => 0.014667761910982
1104 => 0.014614639136429
1105 => 0.014555995704698
1106 => 0.01456317919047
1107 => 0.014850287258477
1108 => 0.014683750079728
1109 => 0.015126516464338
1110 => 0.015035497006438
1111 => 0.014942143242891
1112 => 0.014929238909143
1113 => 0.014893305674746
1114 => 0.014770077243832
1115 => 0.014621271508622
1116 => 0.014523017072904
1117 => 0.013396715565976
1118 => 0.013605750574268
1119 => 0.013846226297166
1120 => 0.013929237553065
1121 => 0.013787241055646
1122 => 0.014775684131029
1123 => 0.014956282205776
1124 => 0.014409238857246
1125 => 0.014306909382369
1126 => 0.014782392834366
1127 => 0.014495618187324
1128 => 0.014624752793327
1129 => 0.014345634408001
1130 => 0.014912781418098
1201 => 0.014908460708112
1202 => 0.014687827711588
1203 => 0.014874305209421
1204 => 0.014841900155186
1205 => 0.014592806045506
1206 => 0.014920678145676
1207 => 0.014920840766147
1208 => 0.014708486303968
1209 => 0.014460502782512
1210 => 0.014416169185985
1211 => 0.014382769776382
1212 => 0.014616538585986
1213 => 0.014826134969701
1214 => 0.015216141876445
1215 => 0.015314198879135
1216 => 0.015696921888662
1217 => 0.015469028970934
1218 => 0.015570050949655
1219 => 0.015679724597989
1220 => 0.015732306178115
1221 => 0.015646627314983
1222 => 0.016241153683853
1223 => 0.016291349925203
1224 => 0.016308180290732
1225 => 0.016107709344214
1226 => 0.016285774465531
1227 => 0.016202463692164
1228 => 0.016419215180066
1229 => 0.016453204580991
1230 => 0.016424416767616
1231 => 0.016435205539956
]
'min_raw' => 0.0073700890337835
'max_raw' => 0.016453204580991
'avg_raw' => 0.011911646807387
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.00737'
'max' => '$0.016453'
'avg' => '$0.011911'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0011364527752067
'max_diff' => -0.0015700710634635
'year' => 2031
]
6 => [
'items' => [
101 => 0.015927882165763
102 => 0.015901574772467
103 => 0.015542871598191
104 => 0.015689045793108
105 => 0.015415780142021
106 => 0.015502435494929
107 => 0.015540632348808
108 => 0.015520680479994
109 => 0.015697310262771
110 => 0.01554713886433
111 => 0.01515081185338
112 => 0.014754376863402
113 => 0.014749399945031
114 => 0.014645025609829
115 => 0.01456958208259
116 => 0.014584115182439
117 => 0.014635331721889
118 => 0.014566605284211
119 => 0.014581271554208
120 => 0.014824829357013
121 => 0.014873673137391
122 => 0.014707682887171
123 => 0.014041208080256
124 => 0.013877653490914
125 => 0.013995213286304
126 => 0.013939027275928
127 => 0.011249882908148
128 => 0.011881657488716
129 => 0.01150627848598
130 => 0.011679270400798
131 => 0.011296105642926
201 => 0.011478971948768
202 => 0.011445203219288
203 => 0.012461078049272
204 => 0.012445216561091
205 => 0.012452808616112
206 => 0.012090420048989
207 => 0.012667714876338
208 => 0.012952111067141
209 => 0.012899476901183
210 => 0.012912723786796
211 => 0.012685098402932
212 => 0.012455012527392
213 => 0.012199811881457
214 => 0.012673943137852
215 => 0.012621227835831
216 => 0.0127421377723
217 => 0.013049645783674
218 => 0.013094927506458
219 => 0.013155786601082
220 => 0.013133972947905
221 => 0.013653662665202
222 => 0.013590724811414
223 => 0.013742386930587
224 => 0.013430406444816
225 => 0.013077370911708
226 => 0.013144471424951
227 => 0.013138009105937
228 => 0.01305573636779
229 => 0.012981464218454
301 => 0.012857822015858
302 => 0.013249044240476
303 => 0.013233161332612
304 => 0.013490287149067
305 => 0.013444837663421
306 => 0.013141314874907
307 => 0.013152155250677
308 => 0.013225061987443
309 => 0.013477393035824
310 => 0.013552302070991
311 => 0.013517601221293
312 => 0.013599735558626
313 => 0.013664651189968
314 => 0.013607887962464
315 => 0.014411535560865
316 => 0.014077805047894
317 => 0.014240462977834
318 => 0.014279255935689
319 => 0.014179888589872
320 => 0.014201437809102
321 => 0.014234079004424
322 => 0.01443226995062
323 => 0.014952380340449
324 => 0.015182733691593
325 => 0.015875763113944
326 => 0.015163606052454
327 => 0.015121349599624
328 => 0.015246185126073
329 => 0.015653066761608
330 => 0.01598280611076
331 => 0.016092199675993
401 => 0.01610665784153
402 => 0.016311887442254
403 => 0.016429521222083
404 => 0.016286967170652
405 => 0.016166167538094
406 => 0.015733478248477
407 => 0.015783563211924
408 => 0.016128598943206
409 => 0.016615982236144
410 => 0.017034207805075
411 => 0.016887759787468
412 => 0.018005054785619
413 => 0.018115830020945
414 => 0.018100524465215
415 => 0.018352886936853
416 => 0.017851998823376
417 => 0.017637859450614
418 => 0.016192285789787
419 => 0.016598433024296
420 => 0.017188791881846
421 => 0.017110655673317
422 => 0.016681921290627
423 => 0.0170338825716
424 => 0.016917513165263
425 => 0.016825727786315
426 => 0.01724621440075
427 => 0.01678387209554
428 => 0.017184179663678
429 => 0.01667078106689
430 => 0.016888428749676
501 => 0.016764881398493
502 => 0.016844831676102
503 => 0.016377443986849
504 => 0.016629635038775
505 => 0.016366952009962
506 => 0.016366827464004
507 => 0.016361028721584
508 => 0.016670074140068
509 => 0.01668015210007
510 => 0.016451767068868
511 => 0.016418853217827
512 => 0.016540552975973
513 => 0.016398074432401
514 => 0.016464739246189
515 => 0.016400093641698
516 => 0.016385540554483
517 => 0.016269579079545
518 => 0.016219619687715
519 => 0.016239210052546
520 => 0.016172338037851
521 => 0.01613204523013
522 => 0.016353013467973
523 => 0.016234959052327
524 => 0.016334919935636
525 => 0.016221001893036
526 => 0.015826112325654
527 => 0.015599007159572
528 => 0.01485309737307
529 => 0.015064636463224
530 => 0.015204887098849
531 => 0.015158534264611
601 => 0.015258118088719
602 => 0.015264231726733
603 => 0.015231856010378
604 => 0.015194369078426
605 => 0.015176122513109
606 => 0.015312117461851
607 => 0.015391067106975
608 => 0.015218963126445
609 => 0.015178641571797
610 => 0.015352648198235
611 => 0.015458792139841
612 => 0.016242499367534
613 => 0.016184439804765
614 => 0.0163301579137
615 => 0.016313752290861
616 => 0.01646648808374
617 => 0.016716146554135
618 => 0.016208521078216
619 => 0.016296627308467
620 => 0.016275025695479
621 => 0.016510866441832
622 => 0.016511602710899
623 => 0.016370204402342
624 => 0.016446858719336
625 => 0.016404072382491
626 => 0.01648139307609
627 => 0.016183664383907
628 => 0.01654626579316
629 => 0.016751837426687
630 => 0.016754691789018
701 => 0.016852131111793
702 => 0.016951135107037
703 => 0.017141164654477
704 => 0.016945835286098
705 => 0.016594456767313
706 => 0.016619825161424
707 => 0.016413812064425
708 => 0.016417275181805
709 => 0.016398788789822
710 => 0.016454267843754
711 => 0.016195838916387
712 => 0.0162564916691
713 => 0.01617157746012
714 => 0.01629644272156
715 => 0.016162108341218
716 => 0.016275015278528
717 => 0.016323742169746
718 => 0.016503545447357
719 => 0.016135551250921
720 => 0.015385186173372
721 => 0.01554292200997
722 => 0.015309618317759
723 => 0.015331211462723
724 => 0.015374833052074
725 => 0.015233441208892
726 => 0.015260414316802
727 => 0.015259450647581
728 => 0.015251146266847
729 => 0.015214364787624
730 => 0.015161024365756
731 => 0.015373516189162
801 => 0.015409622690634
802 => 0.015489882970756
803 => 0.015728683123332
804 => 0.015704821356794
805 => 0.015743740888032
806 => 0.015658779769863
807 => 0.015335152565321
808 => 0.015352727079545
809 => 0.015133572605558
810 => 0.01548427869813
811 => 0.015401226866314
812 => 0.015347682810059
813 => 0.015333072818227
814 => 0.015572464910192
815 => 0.01564409477612
816 => 0.015599459850575
817 => 0.015507912316075
818 => 0.015683710645914
819 => 0.015730746862643
820 => 0.01574127653694
821 => 0.016052757471429
822 => 0.015758684861056
823 => 0.015829471061204
824 => 0.016381724787939
825 => 0.015880906863595
826 => 0.016146201287693
827 => 0.016133216506159
828 => 0.016268932156453
829 => 0.016122083861591
830 => 0.016123904222202
831 => 0.016244410525489
901 => 0.016075181155949
902 => 0.016033277584173
903 => 0.015975388099883
904 => 0.016101787670985
905 => 0.0161775584973
906 => 0.016788215709858
907 => 0.017182728118523
908 => 0.01716560129441
909 => 0.017322108406728
910 => 0.017251600519188
911 => 0.017023911951281
912 => 0.017412548573036
913 => 0.017289567684666
914 => 0.017299706079681
915 => 0.017299328728112
916 => 0.017381100267703
917 => 0.017323157637651
918 => 0.017208946766131
919 => 0.017284765272644
920 => 0.017509919131377
921 => 0.018208803617446
922 => 0.018599908634839
923 => 0.018185258604313
924 => 0.018471278642985
925 => 0.018299768539142
926 => 0.01826860005129
927 => 0.018448241772291
928 => 0.018628197932343
929 => 0.01861673550292
930 => 0.018486096571573
1001 => 0.018412301954095
1002 => 0.018971099520647
1003 => 0.019382812048814
1004 => 0.019354736014549
1005 => 0.01947865449898
1006 => 0.019842483001924
1007 => 0.019875746920586
1008 => 0.019871556431397
1009 => 0.019789108338262
1010 => 0.020147344748512
1011 => 0.020446191864512
1012 => 0.019770023986856
1013 => 0.02002749986298
1014 => 0.020143089079126
1015 => 0.020312808342205
1016 => 0.020599153187269
1017 => 0.020910199638228
1018 => 0.020954185016845
1019 => 0.020922975285822
1020 => 0.020717831790037
1021 => 0.021058182528233
1022 => 0.021257552008461
1023 => 0.021376271971447
1024 => 0.021677326044462
1025 => 0.020143802918774
1026 => 0.019058299029368
1027 => 0.018888781922171
1028 => 0.019233501625587
1029 => 0.019324401462289
1030 => 0.019287759852093
1031 => 0.01806592653487
1101 => 0.01888234922262
1102 => 0.019760751387869
1103 => 0.019794494392441
1104 => 0.020234240882888
1105 => 0.020377440365995
1106 => 0.020731493929695
1107 => 0.020709347782887
1108 => 0.020795554191425
1109 => 0.020775736830989
1110 => 0.021431546502969
1111 => 0.022155001959842
1112 => 0.022129950997818
1113 => 0.022025945716356
1114 => 0.022180411294863
1115 => 0.022927094856554
1116 => 0.022858352199553
1117 => 0.022925129835343
1118 => 0.023805511835818
1119 => 0.024950133669315
1120 => 0.024418341909503
1121 => 0.025572177009339
1122 => 0.026298455042516
1123 => 0.027554477802344
1124 => 0.027397217566771
1125 => 0.027886178010052
1126 => 0.027115688923894
1127 => 0.02534649024054
1128 => 0.025066507776679
1129 => 0.025627039759614
1130 => 0.02700505294375
1201 => 0.025583641220513
1202 => 0.025871190960873
1203 => 0.025788376616305
1204 => 0.025783963791821
1205 => 0.025952383354111
1206 => 0.025708081994836
1207 => 0.024712754308174
1208 => 0.025168907121468
1209 => 0.024992764613998
1210 => 0.02518820785833
1211 => 0.026242934441065
1212 => 0.025776614677297
1213 => 0.025285384686908
1214 => 0.025901496107517
1215 => 0.026686017664806
1216 => 0.026636923715671
1217 => 0.026541660934672
1218 => 0.027078652243369
1219 => 0.027965604561645
1220 => 0.028205344209212
1221 => 0.028382315115785
1222 => 0.028406716413853
1223 => 0.02865806494928
1224 => 0.027306500526303
1225 => 0.029451467976203
1226 => 0.029821844601271
1227 => 0.029752229146297
1228 => 0.030163887177228
1229 => 0.030042766941772
1230 => 0.029867282723778
1231 => 0.030519848264979
]
'min_raw' => 0.011249882908148
'max_raw' => 0.030519848264979
'avg_raw' => 0.020884865586564
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.011249'
'max' => '$0.030519'
'avg' => '$0.020884'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0038797938743644
'max_diff' => 0.014066643683988
'year' => 2032
]
7 => [
'items' => [
101 => 0.029771734531316
102 => 0.028709881271281
103 => 0.028127327571749
104 => 0.028894481276559
105 => 0.029362955274111
106 => 0.029672586785951
107 => 0.029766281094349
108 => 0.027411418625048
109 => 0.026142278360755
110 => 0.026955782719445
111 => 0.027948314182117
112 => 0.027300986963914
113 => 0.027326360965315
114 => 0.026403442466758
115 => 0.02802997199041
116 => 0.027793000320081
117 => 0.029022409764946
118 => 0.028729001334302
119 => 0.02973153701119
120 => 0.029467535768836
121 => 0.030563390165737
122 => 0.031000556153734
123 => 0.031734625887034
124 => 0.032274610571051
125 => 0.032591699905766
126 => 0.032572663051482
127 => 0.033829128968905
128 => 0.033088234914976
129 => 0.032157497367921
130 => 0.032140663262134
131 => 0.032622705426407
201 => 0.033632933560914
202 => 0.03389487101797
203 => 0.0340412583223
204 => 0.03381706106994
205 => 0.033012873674756
206 => 0.032665629634838
207 => 0.032961491617477
208 => 0.03259967783642
209 => 0.033224269929541
210 => 0.034081968279068
211 => 0.033904856961598
212 => 0.034496913541889
213 => 0.035109629816322
214 => 0.035985841607571
215 => 0.036214915815832
216 => 0.036593566771175
217 => 0.036983322984583
218 => 0.037108502176105
219 => 0.037347508093543
220 => 0.037346248414382
221 => 0.038066508833534
222 => 0.038860978380467
223 => 0.039160872242422
224 => 0.039850461641744
225 => 0.0386695639615
226 => 0.03956528841714
227 => 0.040373254297564
228 => 0.039409964066399
301 => 0.040737635232222
302 => 0.040789185695023
303 => 0.041567536479795
304 => 0.040778528845461
305 => 0.040310018630795
306 => 0.041662590065687
307 => 0.042317056777431
308 => 0.042119926077627
309 => 0.040619751718577
310 => 0.039746585896104
311 => 0.037461342517586
312 => 0.040168312014608
313 => 0.041486797893225
314 => 0.040616337158674
315 => 0.041055346921504
316 => 0.043450441838114
317 => 0.044362338911448
318 => 0.044172670694836
319 => 0.044204721501239
320 => 0.044696764609907
321 => 0.046878754726831
322 => 0.045571255670635
323 => 0.046570789708042
324 => 0.047100938957394
325 => 0.047593371125731
326 => 0.04638411335508
327 => 0.044810886762988
328 => 0.044312579861713
329 => 0.040529786993529
330 => 0.040332876196903
331 => 0.040222344199749
401 => 0.039525455592756
402 => 0.038977892041513
403 => 0.038542449175834
404 => 0.037399717062046
405 => 0.037785355605196
406 => 0.035964079122545
407 => 0.03712926727407
408 => 0.0342224660315
409 => 0.036643336482378
410 => 0.035325766759438
411 => 0.036210479392468
412 => 0.036207392713436
413 => 0.034578356257632
414 => 0.033638762027048
415 => 0.034237508040331
416 => 0.034879411295087
417 => 0.03498355793855
418 => 0.035815802263731
419 => 0.036048063765858
420 => 0.035344300571162
421 => 0.034162229036731
422 => 0.034436797293998
423 => 0.033633197910078
424 => 0.032224920899761
425 => 0.033236370034728
426 => 0.033581723239685
427 => 0.033734250889332
428 => 0.032349372191393
429 => 0.031914213237321
430 => 0.031682538261511
501 => 0.033983458587389
502 => 0.034109508196874
503 => 0.033464620573128
504 => 0.036379573783217
505 => 0.035719830096244
506 => 0.036456925435721
507 => 0.034411883102539
508 => 0.034490006473682
509 => 0.033521850659896
510 => 0.034063953223421
511 => 0.033680812604303
512 => 0.03402015669345
513 => 0.034223558141317
514 => 0.03519155509026
515 => 0.03665438945262
516 => 0.035046968625942
517 => 0.034346592353068
518 => 0.034781101853693
519 => 0.03593825791285
520 => 0.037691408576203
521 => 0.036653508098053
522 => 0.037114110705563
523 => 0.03721473188452
524 => 0.036449422497097
525 => 0.037719626624943
526 => 0.038400339336176
527 => 0.039098609724253
528 => 0.039704898337128
529 => 0.03881970517596
530 => 0.039766988745865
531 => 0.039003645406582
601 => 0.038318847518261
602 => 0.038319886073985
603 => 0.037890302355341
604 => 0.037057929769435
605 => 0.036904427493708
606 => 0.037702965717243
607 => 0.038343317750667
608 => 0.03839606021122
609 => 0.038750591999399
610 => 0.038960400259675
611 => 0.041016806430884
612 => 0.041843910004429
613 => 0.042855276597889
614 => 0.04324926088354
615 => 0.044435012332165
616 => 0.043477421735376
617 => 0.043270240986234
618 => 0.040393995828211
619 => 0.040864980811707
620 => 0.041619073213576
621 => 0.040406430534169
622 => 0.041175573202383
623 => 0.041327418257758
624 => 0.040365225399946
625 => 0.040879174179203
626 => 0.03951427859669
627 => 0.036684140446489
628 => 0.037722777377742
629 => 0.038487563760555
630 => 0.0373961192948
701 => 0.039352491254932
702 => 0.038209619143538
703 => 0.037847383551762
704 => 0.036434173361931
705 => 0.037101154172082
706 => 0.038003255268058
707 => 0.037445861671254
708 => 0.038602537077691
709 => 0.04024069792727
710 => 0.041408148902846
711 => 0.041497771292454
712 => 0.0407471785283
713 => 0.041950008223076
714 => 0.041958769524243
715 => 0.040601972714832
716 => 0.039770942223744
717 => 0.039582130347666
718 => 0.040053819432858
719 => 0.040626537060891
720 => 0.041529553134898
721 => 0.042075226836065
722 => 0.043498054445742
723 => 0.043883030801256
724 => 0.044306003098428
725 => 0.044871224527275
726 => 0.045549917772406
727 => 0.044064975590088
728 => 0.04412397511127
729 => 0.042741217511518
730 => 0.041263542708686
731 => 0.042384913689271
801 => 0.043850957076657
802 => 0.043514645103756
803 => 0.043476803136575
804 => 0.043540442828888
805 => 0.043286874584243
806 => 0.042139994811394
807 => 0.041564038969316
808 => 0.042307168947602
809 => 0.042702109458152
810 => 0.043314627747581
811 => 0.043239121939717
812 => 0.044816903273626
813 => 0.045429981390352
814 => 0.045273129773002
815 => 0.045301994245439
816 => 0.046411942891344
817 => 0.04764643406394
818 => 0.048802697952533
819 => 0.0499788992427
820 => 0.048560942679486
821 => 0.047840991784089
822 => 0.048583797335074
823 => 0.048189654253976
824 => 0.050454517308397
825 => 0.050611331512281
826 => 0.052876030791324
827 => 0.05502550008251
828 => 0.053675456932458
829 => 0.054948486815678
830 => 0.056325372426029
831 => 0.058981608160035
901 => 0.058087081412322
902 => 0.057401887942594
903 => 0.056754383424533
904 => 0.058101737538171
905 => 0.05983508708086
906 => 0.060208433970539
907 => 0.060813398561309
908 => 0.060177352265665
909 => 0.060943399970567
910 => 0.063647884987287
911 => 0.06291710926262
912 => 0.061879290255532
913 => 0.064014221434731
914 => 0.064786844729148
915 => 0.070209519635328
916 => 0.077055870703908
917 => 0.074221436405951
918 => 0.072462011570586
919 => 0.072875518141012
920 => 0.075375573787648
921 => 0.076178512313548
922 => 0.073995848610645
923 => 0.074766802329825
924 => 0.079014833121009
925 => 0.081293765347334
926 => 0.078198669282553
927 => 0.069659421993111
928 => 0.061785846008968
929 => 0.06387427291171
930 => 0.063637510112371
1001 => 0.068201489244864
1002 => 0.06289968050327
1003 => 0.062988949365232
1004 => 0.067647306752847
1005 => 0.066404536866295
1006 => 0.064391408812022
1007 => 0.061800544071625
1008 => 0.057011090973018
1009 => 0.052768938799801
1010 => 0.061088776120778
1011 => 0.060730009606855
1012 => 0.060210462528476
1013 => 0.061366658330543
1014 => 0.066980816953475
1015 => 0.066851392425959
1016 => 0.066028059614872
1017 => 0.066652550295559
1018 => 0.064281932576329
1019 => 0.064892894740537
1020 => 0.061784598794304
1021 => 0.063189678375907
1022 => 0.064387089543359
1023 => 0.064627487563201
1024 => 0.065169116576931
1025 => 0.060540955956494
1026 => 0.062618864199413
1027 => 0.063839440618455
1028 => 0.058324831952272
1029 => 0.063730434535944
1030 => 0.06046038997682
1031 => 0.059350487739033
1101 => 0.060844824883713
1102 => 0.06026248024514
1103 => 0.059761814521321
1104 => 0.0594824344449
1105 => 0.060579710719981
1106 => 0.060528521470219
1107 => 0.05873316451204
1108 => 0.056391194548206
1109 => 0.057177236540612
1110 => 0.056891660115588
1111 => 0.055856694311208
1112 => 0.056554136301112
1113 => 0.053482954744889
1114 => 0.048199146503532
1115 => 0.051689792075196
1116 => 0.051555406017778
1117 => 0.051487642473706
1118 => 0.054110766146454
1119 => 0.053858613331079
1120 => 0.053400953502086
1121 => 0.055848289029548
1122 => 0.054954978640716
1123 => 0.057707950768697
1124 => 0.059521236263258
1125 => 0.059061328408197
1126 => 0.060766732180201
1127 => 0.057195345360535
1128 => 0.058381616802859
1129 => 0.058626105703021
1130 => 0.055818089289029
1201 => 0.053899868650101
1202 => 0.0537719452028
1203 => 0.050446014961986
1204 => 0.052222700050658
1205 => 0.053786109404465
1206 => 0.053037357649459
1207 => 0.052800325212146
1208 => 0.054011272528313
1209 => 0.054105373505842
1210 => 0.051959861245815
1211 => 0.052405981184212
1212 => 0.054266375488594
1213 => 0.052359104021021
1214 => 0.048653587110554
1215 => 0.047734567683978
1216 => 0.047611953551585
1217 => 0.045119499978362
1218 => 0.047795980956525
1219 => 0.046627625284326
1220 => 0.050318446853751
1221 => 0.048210269367569
1222 => 0.0481193900497
1223 => 0.047982012631645
1224 => 0.045836654879212
1225 => 0.046306351882397
1226 => 0.047867696257857
1227 => 0.048424801520825
1228 => 0.048366690877668
1229 => 0.047860044818629
1230 => 0.04809198479001
1231 => 0.04734482532895
]
'min_raw' => 0.026142278360755
'max_raw' => 0.081293765347334
'avg_raw' => 0.053718021854045
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.026142'
'max' => '$0.081293'
'avg' => '$0.053718'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.014892395452607
'max_diff' => 0.050773917082354
'year' => 2033
]
8 => [
'items' => [
101 => 0.04708098777247
102 => 0.046248243869983
103 => 0.045024340384701
104 => 0.045194531670966
105 => 0.042769658614856
106 => 0.041448459076134
107 => 0.041082768456945
108 => 0.040593751677704
109 => 0.041138004203385
110 => 0.042762789254157
111 => 0.040802953765548
112 => 0.037442953286802
113 => 0.037644895040737
114 => 0.038098598204784
115 => 0.037253125360129
116 => 0.036452956267821
117 => 0.037148638373813
118 => 0.035724961876864
119 => 0.038270642707745
120 => 0.038201789175458
121 => 0.039150661565363
122 => 0.039744010943593
123 => 0.038376532725916
124 => 0.038032615652225
125 => 0.038228526447559
126 => 0.034990557397374
127 => 0.038886050413972
128 => 0.038919738799344
129 => 0.038631278390982
130 => 0.040705508162467
131 => 0.04508277994879
201 => 0.043435874227425
202 => 0.042798142554124
203 => 0.041585814177
204 => 0.043201169758582
205 => 0.043077135653389
206 => 0.042516206391169
207 => 0.042176954623172
208 => 0.042802036407733
209 => 0.042099500072592
210 => 0.041973305242393
211 => 0.041208701872717
212 => 0.04093577325698
213 => 0.040733707775489
214 => 0.040511253534912
215 => 0.041001932157482
216 => 0.039889989844589
217 => 0.038549096420289
218 => 0.038437615640726
219 => 0.038745423874589
220 => 0.038609241644733
221 => 0.038436963652603
222 => 0.038108038048507
223 => 0.038010452848156
224 => 0.03832755740769
225 => 0.03796956484832
226 => 0.038497802370534
227 => 0.038354150993207
228 => 0.037551726076825
301 => 0.036551607535258
302 => 0.036542704382419
303 => 0.036327230483162
304 => 0.03605279207574
305 => 0.035976449589095
306 => 0.037090049967261
307 => 0.03939516942281
308 => 0.038942619316852
309 => 0.039269633147607
310 => 0.040878217537437
311 => 0.041389538143143
312 => 0.041026614888505
313 => 0.040529823153425
314 => 0.040551679468507
315 => 0.042249367216362
316 => 0.04235524991877
317 => 0.042622781348699
318 => 0.042966634840532
319 => 0.041085174625029
320 => 0.040463062861554
321 => 0.040168271794573
322 => 0.039260429406773
323 => 0.040239459589492
324 => 0.039669020628274
325 => 0.039745992333112
326 => 0.039695864409359
327 => 0.039723237645364
328 => 0.038269931138071
329 => 0.038799439645787
330 => 0.037919029051846
331 => 0.036740258097284
401 => 0.036736306443714
402 => 0.03702480896488
403 => 0.036853196376186
404 => 0.036391391312574
405 => 0.036456988542201
406 => 0.035882287786015
407 => 0.036526767619296
408 => 0.036545248994854
409 => 0.036297089153987
410 => 0.037289999258236
411 => 0.037696795338084
412 => 0.037533451214726
413 => 0.037685334678947
414 => 0.038961424816896
415 => 0.039169483189098
416 => 0.039261888974465
417 => 0.039138077463493
418 => 0.037708659264117
419 => 0.037772060039615
420 => 0.037306867216087
421 => 0.036913828301018
422 => 0.036929547796403
423 => 0.037131620890231
424 => 0.038014085942408
425 => 0.039871181620558
426 => 0.039941657044024
427 => 0.040027075313179
428 => 0.039679636284745
429 => 0.039574845349226
430 => 0.039713091642011
501 => 0.040410519137272
502 => 0.042204492004802
503 => 0.041570382177997
504 => 0.041054841018298
505 => 0.041507109604253
506 => 0.041437486400444
507 => 0.040849796493977
508 => 0.040833301995664
509 => 0.039705337169325
510 => 0.039288354255544
511 => 0.038939892122158
512 => 0.038559380569335
513 => 0.038333800565959
514 => 0.038680393975423
515 => 0.03875966398894
516 => 0.038001831441731
517 => 0.037898541665834
518 => 0.038517404082836
519 => 0.03824506580663
520 => 0.038525172477372
521 => 0.038590159627695
522 => 0.038579695199712
523 => 0.038295342761501
524 => 0.038476580526105
525 => 0.038047899183239
526 => 0.037581772608727
527 => 0.0372844128949
528 => 0.037024927105544
529 => 0.037168904902882
530 => 0.036655650344681
531 => 0.036491449881739
601 => 0.038415181249436
602 => 0.039836262294351
603 => 0.039815599213148
604 => 0.039689818020438
605 => 0.039502932681855
606 => 0.040396847310718
607 => 0.040085425328409
608 => 0.040312010840716
609 => 0.040369686363362
610 => 0.040544252799656
611 => 0.040606645296139
612 => 0.040418051837393
613 => 0.03978510915509
614 => 0.038207876169176
615 => 0.037473669956573
616 => 0.037231369677243
617 => 0.037240176832203
618 => 0.036997236181537
619 => 0.037068793090995
620 => 0.036972351608646
621 => 0.036789714772778
622 => 0.037157627592924
623 => 0.037200026118101
624 => 0.037114150869648
625 => 0.037134377599388
626 => 0.036423367219996
627 => 0.036477423794908
628 => 0.036176429916621
629 => 0.036119997192978
630 => 0.035359110879205
701 => 0.034011090482122
702 => 0.034758024637612
703 => 0.033855833212616
704 => 0.033514159649539
705 => 0.035131589156004
706 => 0.034969244094067
707 => 0.034691379917731
708 => 0.034280360888962
709 => 0.034127909933056
710 => 0.033201666185077
711 => 0.033146938763128
712 => 0.033606010175311
713 => 0.033394164514271
714 => 0.033096652973945
715 => 0.032019096333146
716 => 0.030807565902145
717 => 0.030844134390448
718 => 0.031229499679225
719 => 0.032350001229932
720 => 0.031912201889197
721 => 0.031594573444325
722 => 0.031535091184477
723 => 0.032279636201027
724 => 0.033333323386448
725 => 0.033827689838926
726 => 0.033337787698653
727 => 0.032775014498111
728 => 0.032809267895189
729 => 0.03303714040015
730 => 0.033061086578477
731 => 0.032694779078945
801 => 0.032797892494405
802 => 0.032641253787433
803 => 0.031679962331878
804 => 0.031662575617735
805 => 0.031426659191623
806 => 0.031419515736
807 => 0.031018163043073
808 => 0.030962011026912
809 => 0.030165100894739
810 => 0.030689629557002
811 => 0.030337803269347
812 => 0.029807518066419
813 => 0.029716096697558
814 => 0.029713348460816
815 => 0.03025783279462
816 => 0.030683266940547
817 => 0.03034392343825
818 => 0.030266661500675
819 => 0.031091616860269
820 => 0.030986633771126
821 => 0.030895719092996
822 => 0.033238977255936
823 => 0.031384105573254
824 => 0.030575275647231
825 => 0.02957419502114
826 => 0.029900151920882
827 => 0.029968835828961
828 => 0.027561417381558
829 => 0.026584728017271
830 => 0.02624956503321
831 => 0.026056673997374
901 => 0.026144576864578
902 => 0.025265441882484
903 => 0.025856235130001
904 => 0.025094978546938
905 => 0.024967351403444
906 => 0.026328572475556
907 => 0.026517978435602
908 => 0.025709913766226
909 => 0.026228822097752
910 => 0.026040658723375
911 => 0.025108028106116
912 => 0.025072408476503
913 => 0.024604447216313
914 => 0.023872178459272
915 => 0.02353751198791
916 => 0.023363214783918
917 => 0.02343513320727
918 => 0.023398769051683
919 => 0.023161468338816
920 => 0.02341237085077
921 => 0.022771418612802
922 => 0.02251618626714
923 => 0.02240090373795
924 => 0.021832021734919
925 => 0.022737365984716
926 => 0.022915730207153
927 => 0.023094445862207
928 => 0.024650043625094
929 => 0.024572330356933
930 => 0.025274820453205
1001 => 0.02524752297986
1002 => 0.025047161424818
1003 => 0.024201868981974
1004 => 0.024538787483803
1005 => 0.023501804703934
1006 => 0.024278782710586
1007 => 0.023924202395727
1008 => 0.024158898749457
1009 => 0.023736893543734
1010 => 0.023970448648749
1011 => 0.022958026981169
1012 => 0.02201264187314
1013 => 0.022393092438122
1014 => 0.022806685712058
1015 => 0.023703461311557
1016 => 0.023169349162733
1017 => 0.023361436088467
1018 => 0.022717977042223
1019 => 0.021390337234833
1020 => 0.021397851531962
1021 => 0.0211936230718
1022 => 0.021017139864377
1023 => 0.023230698368077
1024 => 0.022955407376961
1025 => 0.02251676721181
1026 => 0.023103904503731
1027 => 0.023259152922837
1028 => 0.023263572627075
1029 => 0.023691932839054
1030 => 0.023920548760974
1031 => 0.023960843308091
1101 => 0.024634877356974
1102 => 0.024860804679436
1103 => 0.025791367346223
1104 => 0.02390115229725
1105 => 0.023862224562207
1106 => 0.023112166729497
1107 => 0.022636468194047
1108 => 0.023144738215197
1109 => 0.023594996068159
1110 => 0.023126157496077
1111 => 0.023187377915869
1112 => 0.022558000438368
1113 => 0.022782973271611
1114 => 0.022976750182714
1115 => 0.022869757962084
1116 => 0.022709585429318
1117 => 0.023558080058889
1118 => 0.023510204666611
1119 => 0.024300342372476
1120 => 0.024916311217486
1121 => 0.026020237505347
1122 => 0.024868232874985
1123 => 0.024826249247451
1124 => 0.025236645940982
1125 => 0.02486074184984
1126 => 0.025098300259674
1127 => 0.025981963172884
1128 => 0.026000633577782
1129 => 0.025687880240277
1130 => 0.025668849171267
1201 => 0.025728916870881
1202 => 0.026080735263704
1203 => 0.025957799106964
1204 => 0.026100063939906
1205 => 0.026277968291936
1206 => 0.027013856121814
1207 => 0.027191276186261
1208 => 0.026760237411411
1209 => 0.026799155386643
1210 => 0.026637935052571
1211 => 0.026482198229941
1212 => 0.026832271863676
1213 => 0.02747203831004
1214 => 0.027468058356181
1215 => 0.027616471736455
1216 => 0.027708932042843
1217 => 0.027312024722745
1218 => 0.027053652652049
1219 => 0.027152728944596
1220 => 0.02731115409398
1221 => 0.027101353803851
1222 => 0.025806369224232
1223 => 0.026199184821754
1224 => 0.026133801098625
1225 => 0.026040686725957
1226 => 0.026435665846817
1227 => 0.026397569147053
1228 => 0.025256425082561
1229 => 0.025329477423137
1230 => 0.025260867637349
1231 => 0.025482559891473
]
'min_raw' => 0.021017139864377
'max_raw' => 0.04708098777247
'avg_raw' => 0.034049063818424
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.021017'
'max' => '$0.04708'
'avg' => '$0.034049'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0051251384963782
'max_diff' => -0.034212777574864
'year' => 2034
]
9 => [
'items' => [
101 => 0.024848769740586
102 => 0.025043719322357
103 => 0.025165989872505
104 => 0.025238008165869
105 => 0.025498187624905
106 => 0.025467658568367
107 => 0.025496289895886
108 => 0.025882067348806
109 => 0.02783319732284
110 => 0.027939393022401
111 => 0.02741644655851
112 => 0.027625353356172
113 => 0.027224297987556
114 => 0.027493529143345
115 => 0.027677730262406
116 => 0.026845360825208
117 => 0.02679607330917
118 => 0.026393362642384
119 => 0.026609756544017
120 => 0.026265458287247
121 => 0.026349937036417
122 => 0.026113727089014
123 => 0.026538857965408
124 => 0.027014220343875
125 => 0.027134315653305
126 => 0.026818396598476
127 => 0.0265896503827
128 => 0.026188047381484
129 => 0.026855922122812
130 => 0.02705122905029
131 => 0.026854896258667
201 => 0.026809401660891
202 => 0.026723189480314
203 => 0.026827691982552
204 => 0.027050165366819
205 => 0.026945251027237
206 => 0.027014548796884
207 => 0.026750457158541
208 => 0.027312156115584
209 => 0.028204269239583
210 => 0.028207137529152
211 => 0.028102222624043
212 => 0.028059293705295
213 => 0.028166942764706
214 => 0.028225337963441
215 => 0.028573455282114
216 => 0.028946999034657
217 => 0.030690164737865
218 => 0.030200690783794
219 => 0.031747331097072
220 => 0.032970522778765
221 => 0.033337304480415
222 => 0.03299988257331
223 => 0.031845580456275
224 => 0.031788944887524
225 => 0.033513959584157
226 => 0.03302656392168
227 => 0.032968589758509
228 => 0.032351842611258
301 => 0.032716416560903
302 => 0.032636678890139
303 => 0.032510809075937
304 => 0.033206390775418
305 => 0.034508457621841
306 => 0.034305518293121
307 => 0.034154033498315
308 => 0.033490271224039
309 => 0.033890004369825
310 => 0.033747667052994
311 => 0.03435923849559
312 => 0.033996957120963
313 => 0.03302287142017
314 => 0.03317799777865
315 => 0.033154550741636
316 => 0.033637089101895
317 => 0.033492243063484
318 => 0.033126267227941
319 => 0.034504007298913
320 => 0.034414544522097
321 => 0.034541382285584
322 => 0.034597220191659
323 => 0.035435826294357
324 => 0.03577937638223
325 => 0.035857368266868
326 => 0.03618371427923
327 => 0.035849248480786
328 => 0.037187350144634
329 => 0.038077109670697
330 => 0.039110611146825
331 => 0.040620834582457
401 => 0.041188692564603
402 => 0.041086114102828
403 => 0.042231148275782
404 => 0.044288749231901
405 => 0.041502014085122
406 => 0.044436452961402
407 => 0.043507443492898
408 => 0.041304778755241
409 => 0.041162953113847
410 => 0.042654623247652
411 => 0.045963004036501
412 => 0.045134292172238
413 => 0.045964359512233
414 => 0.044996041868507
415 => 0.044947956735874
416 => 0.045917330485603
417 => 0.048182325089656
418 => 0.047106311055323
419 => 0.045563581087642
420 => 0.046702708888241
421 => 0.045715890966061
422 => 0.043492313994444
423 => 0.045133658471894
424 => 0.044036138162623
425 => 0.044356452936257
426 => 0.04666327738252
427 => 0.046385714162045
428 => 0.046744906671002
429 => 0.046110941294398
430 => 0.045518717665486
501 => 0.044413288283018
502 => 0.044086025139879
503 => 0.044176468898949
504 => 0.044085980320444
505 => 0.043467502740374
506 => 0.043333942565843
507 => 0.043111336423554
508 => 0.043180331375253
509 => 0.042761766702024
510 => 0.04355168472028
511 => 0.043698300465202
512 => 0.044273136925193
513 => 0.044332818353416
514 => 0.045933729712206
515 => 0.045051974638007
516 => 0.04564353206885
517 => 0.045590617604281
518 => 0.04135251717917
519 => 0.041936490024673
520 => 0.042844968511503
521 => 0.0424357001846
522 => 0.041857090524398
523 => 0.041389832200698
524 => 0.040681888060676
525 => 0.041678305842894
526 => 0.042988489269293
527 => 0.044366046767242
528 => 0.046021091839884
529 => 0.045651705046518
530 => 0.044335106850834
531 => 0.044394168484117
601 => 0.044759264261175
602 => 0.044286432057435
603 => 0.044146984609771
604 => 0.044740106323227
605 => 0.044744190826494
606 => 0.044200140232411
607 => 0.043595527557295
608 => 0.04359299420811
609 => 0.043485409222439
610 => 0.045015180998456
611 => 0.045856400797894
612 => 0.045952845292206
613 => 0.045849909314998
614 => 0.045889525287242
615 => 0.045400038020963
616 => 0.046518860758738
617 => 0.047545603143022
618 => 0.047270414250882
619 => 0.046857866981159
620 => 0.046529253209855
621 => 0.047193003289859
622 => 0.047163447543636
623 => 0.047536635444005
624 => 0.047519705485207
625 => 0.047394216430619
626 => 0.047270418732491
627 => 0.047761262612112
628 => 0.047619907457493
629 => 0.047478332739275
630 => 0.047194382967885
701 => 0.047232976457723
702 => 0.046820500420102
703 => 0.046629670131479
704 => 0.043760040456479
705 => 0.042993181639465
706 => 0.043234451034148
707 => 0.043313883183435
708 => 0.042980145243514
709 => 0.043458639719118
710 => 0.043384066861946
711 => 0.04367418622554
712 => 0.043492932242685
713 => 0.043500370969366
714 => 0.044033400285517
715 => 0.044188140963665
716 => 0.044109438605849
717 => 0.044164559039504
718 => 0.045434786168217
719 => 0.045254200490091
720 => 0.045158267947793
721 => 0.045184841917624
722 => 0.045509412182987
723 => 0.045600274136409
724 => 0.045215285655004
725 => 0.045396848448426
726 => 0.046169919779072
727 => 0.04644045099275
728 => 0.04730385676446
729 => 0.046937066646824
730 => 0.04761032578205
731 => 0.049679694832783
801 => 0.051332850019954
802 => 0.049812540190304
803 => 0.052848349163501
804 => 0.055212161910068
805 => 0.055121434839719
806 => 0.054709249411381
807 => 0.052018111444628
808 => 0.049541686165015
809 => 0.051613321065983
810 => 0.051618602089381
811 => 0.051440646814146
812 => 0.050335381883212
813 => 0.05140218599035
814 => 0.051486865026311
815 => 0.051439467284146
816 => 0.05059206325303
817 => 0.049298233923959
818 => 0.04955104507787
819 => 0.049965154905183
820 => 0.049181158609719
821 => 0.048930624289308
822 => 0.049396415257057
823 => 0.050897290806549
824 => 0.050613558977897
825 => 0.050606149593201
826 => 0.051820074677192
827 => 0.050951166298484
828 => 0.049554233836134
829 => 0.049201489966115
830 => 0.047949486864291
831 => 0.048814249866203
901 => 0.048845371147134
902 => 0.048371749288651
903 => 0.049592665639671
904 => 0.049581414680558
905 => 0.050740493046435
906 => 0.052956215552037
907 => 0.052300917378047
908 => 0.051538876897937
909 => 0.051621731827215
910 => 0.052530445898011
911 => 0.051981016626883
912 => 0.052178595223538
913 => 0.052530146839141
914 => 0.05274224665737
915 => 0.051591213927403
916 => 0.051322853137788
917 => 0.050773881144073
918 => 0.05063066459796
919 => 0.051077790832164
920 => 0.050959988866655
921 => 0.048842755523979
922 => 0.048621492859495
923 => 0.048628278669524
924 => 0.048071903179211
925 => 0.047223297011066
926 => 0.04945338335331
927 => 0.049274276209989
928 => 0.049076555785555
929 => 0.049100775409371
930 => 0.0500687803059
1001 => 0.049507288580495
1002 => 0.05100010635917
1003 => 0.050693227902084
1004 => 0.050378479170533
1005 => 0.050334971308352
1006 => 0.050213819899804
1007 => 0.049798346641441
1008 => 0.049296637715896
1009 => 0.048965366025968
1010 => 0.045167961859501
1011 => 0.045872737984313
1012 => 0.046683518673545
1013 => 0.046963396918468
1014 => 0.046484645813542
1015 => 0.049817250653086
1016 => 0.05042614967105
1017 => 0.048581754828137
1018 => 0.048236743859173
1019 => 0.049839869514773
1020 => 0.048872988770305
1021 => 0.049308375110336
1022 => 0.048367307986785
1023 => 0.050279483728267
1024 => 0.050264916152888
1025 => 0.049521036601003
1026 => 0.050149758504389
1027 => 0.050040502601589
1028 => 0.049200664419606
1029 => 0.050306108096628
1030 => 0.0503066563829
1031 => 0.049590688487548
1101 => 0.048754594731302
1102 => 0.048605120915338
1103 => 0.048492512473991
1104 => 0.049280680336788
1105 => 0.049987349178035
1106 => 0.051302284693533
1107 => 0.051632890724227
1108 => 0.052923268071713
1109 => 0.052154911188618
1110 => 0.052495513843006
1111 => 0.052865286205532
1112 => 0.053042568674056
1113 => 0.052753696405099
1114 => 0.054758183566251
1115 => 0.054927423698552
1116 => 0.054984168450991
1117 => 0.05430826665837
1118 => 0.054908625647001
1119 => 0.054627737558021
1120 => 0.05535853033259
1121 => 0.055473127970873
1122 => 0.055376067848176
1123 => 0.055412442947368
1124 => 0.053701966771091
1125 => 0.053613269557871
1126 => 0.052403876761941
1127 => 0.052896713265662
1128 => 0.051975379044223
1129 => 0.052267543616636
1130 => 0.052396326976309
1201 => 0.052329057857607
1202 => 0.052924577502137
1203 => 0.052418264147661
1204 => 0.051082019959576
1205 => 0.049745411712655
1206 => 0.049728631684892
1207 => 0.049376726326573
1208 => 0.04912236320719
1209 => 0.049171362568
1210 => 0.04934404270658
1211 => 0.04911232672362
1212 => 0.049161775076883
1213 => 0.049982947213703
1214 => 0.050147627429411
1215 => 0.049587979711723
1216 => 0.047340913368425
1217 => 0.046789477651441
1218 => 0.047185838709364
1219 => 0.046996403652598
1220 => 0.037929765666563
1221 => 0.04005983777404
1222 => 0.038794221258191
1223 => 0.03937747557691
1224 => 0.038085608844037
1225 => 0.038702155361501
1226 => 0.038588301732399
1227 => 0.042013394647806
1228 => 0.041959916532993
1229 => 0.041985513676555
1230 => 0.040763695321336
1231 => 0.042710085137183
]
'min_raw' => 0.024848769740586
'max_raw' => 0.055473127970873
'avg_raw' => 0.040160948855729
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.024848'
'max' => '$0.055473'
'avg' => '$0.04016'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0038316298762083
'max_diff' => 0.008392140198403
'year' => 2035
]
10 => [
'items' => [
101 => 0.043668946750383
102 => 0.043491486985055
103 => 0.043536149784768
104 => 0.042768694910773
105 => 0.041992944317308
106 => 0.041132517521996
107 => 0.04273108415572
108 => 0.042553350834492
109 => 0.042961007126958
110 => 0.043997791856831
111 => 0.044150462346667
112 => 0.044355653033238
113 => 0.04428210677857
114 => 0.046034276944015
115 => 0.045822077575788
116 => 0.046333416999289
117 => 0.045281553009733
118 => 0.044091269061703
119 => 0.04431750312691
120 => 0.044295714967171
121 => 0.04401832668641
122 => 0.043767912949407
123 => 0.04335104463093
124 => 0.044670077675494
125 => 0.044616527342722
126 => 0.04548344498485
127 => 0.045330208870815
128 => 0.044306860598053
129 => 0.044343409681815
130 => 0.044589219835006
131 => 0.045439971581813
201 => 0.045692532623861
202 => 0.045575536286367
203 => 0.045852457939124
204 => 0.046071325522457
205 => 0.045879944337846
206 => 0.048589498324739
207 => 0.047464302599936
208 => 0.048012715167143
209 => 0.048143508332988
210 => 0.047808484388961
211 => 0.047881139086113
212 => 0.047991191155077
213 => 0.048659405767425
214 => 0.050412994259681
215 => 0.051189646665821
216 => 0.053526243749047
217 => 0.051125156495014
218 => 0.050982685914047
219 => 0.051403577607208
220 => 0.052775407448982
221 => 0.053887146686315
222 => 0.054255974729114
223 => 0.054304721443657
224 => 0.054996667371172
225 => 0.055393277872795
226 => 0.054912646935587
227 => 0.054505362540459
228 => 0.053046520391111
229 => 0.053215385342194
301 => 0.054378697399836
302 => 0.056021944199994
303 => 0.057432020905219
304 => 0.056938261189184
305 => 0.060705299282497
306 => 0.061078785722478
307 => 0.061027181972735
308 => 0.061878039665247
309 => 0.060189260419767
310 => 0.059467274573767
311 => 0.05459342204956
312 => 0.055962775807001
313 => 0.057953211912768
314 => 0.057689770230418
315 => 0.0562442623259
316 => 0.057430924357852
317 => 0.057038576779736
318 => 0.05672911596636
319 => 0.058146815944366
320 => 0.056587996582643
321 => 0.057937661497201
322 => 0.056206702283785
323 => 0.056940516641976
324 => 0.05652396812166
325 => 0.056793526064571
326 => 0.055217695838287
327 => 0.056067975577273
328 => 0.055182321405684
329 => 0.055181901490291
330 => 0.055162350625366
331 => 0.056204318830649
401 => 0.056238297376415
402 => 0.055468281298385
403 => 0.055357309951629
404 => 0.055767629183023
405 => 0.055287252825837
406 => 0.055512017899912
407 => 0.055294060730959
408 => 0.055244993981348
409 => 0.054854021772423
410 => 0.054685580194814
411 => 0.054751630477599
412 => 0.054526166811198
413 => 0.054390316796815
414 => 0.05513532663821
415 => 0.054737297933564
416 => 0.055074323030688
417 => 0.054690240396557
418 => 0.05335884264982
419 => 0.052593141726397
420 => 0.050078254803448
421 => 0.050791473615089
422 => 0.051264338425085
423 => 0.051108056608202
424 => 0.051443810423901
425 => 0.051464422981306
426 => 0.051355265993217
427 => 0.051228876184886
428 => 0.051167356615986
429 => 0.051625873080533
430 => 0.051892057321157
501 => 0.051311796734883
502 => 0.051175849798228
503 => 0.051762525288015
504 => 0.052120396997875
505 => 0.054762720632732
506 => 0.054566968763269
507 => 0.055058267541257
508 => 0.05500295483845
509 => 0.055517914227815
510 => 0.05635965519135
511 => 0.054648160458008
512 => 0.054945216764681
513 => 0.054872385418316
514 => 0.055667538960518
515 => 0.055670021343083
516 => 0.055193287073668
517 => 0.055451732455248
518 => 0.055307475333328
519 => 0.055568167450156
520 => 0.054564354377708
521 => 0.055786890345025
522 => 0.056479989460016
523 => 0.0564896131419
524 => 0.056818136621631
525 => 0.057151935503835
526 => 0.057792633390469
527 => 0.057134066787516
528 => 0.05594936957897
529 => 0.056034900890878
530 => 0.055340313350972
531 => 0.055351989493005
601 => 0.055289661331756
602 => 0.055476712835511
603 => 0.054605401663964
604 => 0.054809896654374
605 => 0.054523602470279
606 => 0.054944594417037
607 => 0.054491676674787
608 => 0.054872350296836
609 => 0.055036636412582
610 => 0.055642855716512
611 => 0.054402137590695
612 => 0.051872229342921
613 => 0.052404046728776
614 => 0.051617447041743
615 => 0.051690249837574
616 => 0.051837323071632
617 => 0.051360610600682
618 => 0.051451552317203
619 => 0.051448303239142
620 => 0.051420304439705
621 => 0.051296293114502
622 => 0.051116452158064
623 => 0.051832883176384
624 => 0.051954618766971
625 => 0.052225221904997
626 => 0.053030353291901
627 => 0.052949901680044
628 => 0.053081121596888
629 => 0.052794669255185
630 => 0.05170353754014
701 => 0.05176279124186
702 => 0.051023896631936
703 => 0.05220632670856
704 => 0.051926311659101
705 => 0.051745784135109
706 => 0.051696525527612
707 => 0.052503652679494
708 => 0.052745157773505
709 => 0.052594668005721
710 => 0.052286009101509
711 => 0.05287872544441
712 => 0.053037311333075
713 => 0.053072812865125
714 => 0.05412299258266
715 => 0.053131506245294
716 => 0.053370166861224
717 => 0.055232128858038
718 => 0.05354358626012
719 => 0.05443804493323
720 => 0.05439426583572
721 => 0.054851840626052
722 => 0.054356731347305
723 => 0.054362868820199
724 => 0.054769164235212
725 => 0.05419859560059
726 => 0.054057314782732
727 => 0.053862136344735
728 => 0.054288301323642
729 => 0.054543767954713
730 => 0.056602641381578
731 => 0.057932767511367
801 => 0.057875023228115
802 => 0.058402697884272
803 => 0.058164975618728
804 => 0.057397307715319
805 => 0.05870762321931
806 => 0.058292984567918
807 => 0.058327166874553
808 => 0.058325894607392
809 => 0.058601593062228
810 => 0.058406235439585
811 => 0.058021165512306
812 => 0.058276792900495
813 => 0.059035914854951
814 => 0.061392252694291
815 => 0.06271089056651
816 => 0.061312869038653
817 => 0.062277205568315
818 => 0.061698947278757
819 => 0.06159386054585
820 => 0.062199535150387
821 => 0.062806269908141
822 => 0.062767623527059
823 => 0.062327165249104
824 => 0.062078361544102
825 => 0.063962386553731
826 => 0.065350504087298
827 => 0.065255843777566
828 => 0.065673643599538
829 => 0.066900316798909
830 => 0.06701246842309
831 => 0.066998339896219
901 => 0.066720360393873
902 => 0.067928179462298
903 => 0.068935763378732
904 => 0.06665601617068
905 => 0.067524114063424
906 => 0.067913831175844
907 => 0.068486051520733
908 => 0.069451483157827
909 => 0.070500197983805
910 => 0.070648497758772
911 => 0.070543271971635
912 => 0.069851616352935
913 => 0.07099913262929
914 => 0.071671320751411
915 => 0.072071593395383
916 => 0.073086618221477
917 => 0.067916237936055
918 => 0.064256385785459
919 => 0.063684847023238
920 => 0.064847093570867
921 => 0.065153568716734
922 => 0.065030028969722
923 => 0.060910532635026
924 => 0.063663158727585
925 => 0.066624752955803
926 => 0.066738519851581
927 => 0.068221155846241
928 => 0.068703962901406
929 => 0.06989767921065
930 => 0.069823011930493
1001 => 0.070113662855619
1002 => 0.070046847241305
1003 => 0.072257955337554
1004 => 0.074697135920447
1005 => 0.074612674852981
1006 => 0.074262013785115
1007 => 0.074782805267493
1008 => 0.077300301027516
1009 => 0.07706853035998
1010 => 0.077293675821312
1011 => 0.080261945202223
1012 => 0.084121117628802
1013 => 0.082328144582079
1014 => 0.086218380179371
1015 => 0.088667077275339
1016 => 0.092901845702809
1017 => 0.092371631839016
1018 => 0.094020196111664
1019 => 0.091422438363853
1020 => 0.085457461481418
1021 => 0.084513481056758
1022 => 0.086403353772318
1023 => 0.09104942143244
1024 => 0.08625703256775
1025 => 0.087226526593456
1026 => 0.086947312248831
1027 => 0.086932434102991
1028 => 0.08750027241593
1029 => 0.086676593326557
1030 => 0.083320776539414
1031 => 0.084858727597009
1101 => 0.084264850835196
1102 => 0.084923801378873
1103 => 0.088479885691223
1104 => 0.086907656050271
1105 => 0.085251439841093
1106 => 0.087328702511202
1107 => 0.089973771715147
1108 => 0.089808248038011
1109 => 0.089487062920836
1110 => 0.091297566609643
1111 => 0.094287988275745
1112 => 0.095096287235605
1113 => 0.095692957002829
1114 => 0.095775227682911
1115 => 0.096622666818697
1116 => 0.092065773003417
1117 => 0.099297680517599
1118 => 0.10054643116789
1119 => 0.10031171780104
1120 => 0.10169965159338
1121 => 0.10129128626319
1122 => 0.10069962897031
1123 => 0.10289979925314
1124 => 0.10037748156846
1125 => 0.096797369166023
1126 => 0.094833248695453
1127 => 0.097419760972179
1128 => 0.098999253762737
1129 => 0.10004319802269
1130 => 0.10035909492498
1201 => 0.092419511698484
1202 => 0.088140516688876
1203 => 0.090883303431257
1204 => 0.094229692553991
1205 => 0.092047183642877
1206 => 0.092132733860156
1207 => 0.089021049706159
1208 => 0.094505007555819
1209 => 0.093706041024468
1210 => 0.097851080802459
1211 => 0.096861833793419
1212 => 0.10024195282285
1213 => 0.099351854202279
1214 => 0.10304660381154
1215 => 0.10452053946203
1216 => 0.10699550681896
1217 => 0.10881610288165
1218 => 0.10988519171211
1219 => 0.10982100762878
1220 => 0.11405727019302
1221 => 0.11155929416263
1222 => 0.10842124754071
1223 => 0.10836449017773
1224 => 0.10998972898969
1225 => 0.11339578367706
1226 => 0.11427892410141
1227 => 0.11477247911839
1228 => 0.11401658242911
1229 => 0.11130520847968
1230 => 0.11013445095529
1231 => 0.11113197028618
]
'min_raw' => 0.041132517521996
'max_raw' => 0.11477247911839
'avg_raw' => 0.077952498320194
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.041132'
'max' => '$0.114772'
'avg' => '$0.077952'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.01628374778141
'max_diff' => 0.059299351147519
'year' => 2036
]
11 => [
'items' => [
101 => 0.10991208986231
102 => 0.1120179457119
103 => 0.11490973557992
104 => 0.11431259240755
105 => 0.11630875250407
106 => 0.1183745682018
107 => 0.12132877743115
108 => 0.12210111711776
109 => 0.12337776525026
110 => 0.12469185553568
111 => 0.12511390591963
112 => 0.12591973105713
113 => 0.12591548396089
114 => 0.12834389225103
115 => 0.13102250179661
116 => 0.13203361489012
117 => 0.13435861369552
118 => 0.13037713471894
119 => 0.13339713225861
120 => 0.13612124563484
121 => 0.13287344536569
122 => 0.1373497813963
123 => 0.13752358738077
124 => 0.14014785139435
125 => 0.13748765706844
126 => 0.13590804216935
127 => 0.14046833119561
128 => 0.14267491140766
129 => 0.14201027149005
130 => 0.13695232889968
131 => 0.13400838936673
201 => 0.12630353176545
202 => 0.13543026841924
203 => 0.13987563561274
204 => 0.13694081647257
205 => 0.13842096853864
206 => 0.14649619827018
207 => 0.14957072291954
208 => 0.14893124328502
209 => 0.14903930481653
210 => 0.15069826251075
211 => 0.15805499453165
212 => 0.15364667017701
213 => 0.15701666896937
214 => 0.1588041041774
215 => 0.16046437361346
216 => 0.15638727661203
217 => 0.15108303331762
218 => 0.14940295680929
219 => 0.13664900654805
220 => 0.13598510804935
221 => 0.13561244170385
222 => 0.13326283311016
223 => 0.13141668436748
224 => 0.12994855834419
225 => 0.12609575723955
226 => 0.1273959645122
227 => 0.12125540369348
228 => 0.12518391689719
301 => 0.11538343356148
302 => 0.12354556730639
303 => 0.11910328899572
304 => 0.12208615940664
305 => 0.12207575245278
306 => 0.11658334230635
307 => 0.11341543475756
308 => 0.11543414874445
309 => 0.11759837038412
310 => 0.11794950806384
311 => 0.12075547791163
312 => 0.12153856378203
313 => 0.11916577703594
314 => 0.115180340328
315 => 0.11610606637712
316 => 0.11339667494872
317 => 0.10864857068567
318 => 0.11205874206134
319 => 0.11322312450364
320 => 0.11373738212357
321 => 0.10906816690432
322 => 0.10760099810884
323 => 0.10681988975287
324 => 0.11457760327669
325 => 0.11500258833558
326 => 0.1128283046875
327 => 0.12265627295085
328 => 0.12043190104838
329 => 0.12291706944778
330 => 0.11602206644117
331 => 0.11628546484137
401 => 0.11302125992071
402 => 0.11484899656203
403 => 0.11355721121465
404 => 0.11470133350346
405 => 0.11538711568598
406 => 0.11865078498273
407 => 0.12358283316726
408 => 0.11816330162357
409 => 0.11580193412087
410 => 0.11726691323871
411 => 0.12116834568222
412 => 0.12707921554478
413 => 0.1235798616188
414 => 0.12513281546827
415 => 0.12547206679827
416 => 0.12289177276637
417 => 0.12717435466623
418 => 0.12946942509799
419 => 0.13182369246308
420 => 0.1338678368511
421 => 0.13088334630601
422 => 0.13407717899918
423 => 0.13150351363585
424 => 0.12919466974432
425 => 0.12919817130745
426 => 0.12774979980746
427 => 0.12494339751968
428 => 0.12442585387988
429 => 0.12711818125269
430 => 0.12927717284133
501 => 0.12945499772944
502 => 0.13065032640591
503 => 0.13135770960378
504 => 0.1382910265837
505 => 0.14107966402843
506 => 0.14448955710965
507 => 0.14581790263582
508 => 0.14981574643139
509 => 0.14658716287747
510 => 0.14588863851684
511 => 0.13619117715354
512 => 0.13777913590852
513 => 0.14032161109047
514 => 0.13623310163284
515 => 0.13882631983855
516 => 0.13933827604423
517 => 0.13609417564596
518 => 0.13782698983798
519 => 0.13322514908757
520 => 0.12368314072023
521 => 0.12718497764927
522 => 0.1297635083346
523 => 0.12608362711609
524 => 0.1326796717692
525 => 0.12882639865286
526 => 0.1276050960647
527 => 0.1228403592425
528 => 0.12508913161104
529 => 0.12813062843881
530 => 0.12625133701121
531 => 0.13015114890051
601 => 0.1356743225776
602 => 0.13961046505058
603 => 0.13991263319438
604 => 0.13738195728532
605 => 0.14143738158014
606 => 0.14146692091872
607 => 0.13689238574727
608 => 0.13409050842587
609 => 0.13345391600325
610 => 0.13504424868625
611 => 0.13697520615503
612 => 0.14001978789511
613 => 0.14185956487632
614 => 0.146656727501
615 => 0.1479547021618
616 => 0.1493807827927
617 => 0.15128646630256
618 => 0.15357472796337
619 => 0.14856814172033
620 => 0.14876706272521
621 => 0.1441049989366
622 => 0.13912291517089
623 => 0.14290369572355
624 => 0.14784656336
625 => 0.14671266406282
626 => 0.14658507722842
627 => 0.14679964289424
628 => 0.14594471985385
629 => 0.1420779346271
630 => 0.14013605929358
701 => 0.14264157389905
702 => 0.14397314340423
703 => 0.14603829158171
704 => 0.14578371847884
705 => 0.15110331840329
706 => 0.15317035407758
707 => 0.15264151789866
708 => 0.15273883648273
709 => 0.15648110583654
710 => 0.16064327901437
711 => 0.16454170344253
712 => 0.16850734821208
713 => 0.16372660866064
714 => 0.16129924395144
715 => 0.16380366472761
716 => 0.1624747838115
717 => 0.17011092772717
718 => 0.17063963776398
719 => 0.17827522949953
720 => 0.18552231528591
721 => 0.18097055054851
722 => 0.1852626596799
723 => 0.18990492564628
724 => 0.19886060987594
725 => 0.19584465049216
726 => 0.19353447287029
727 => 0.19135136618033
728 => 0.19589406464372
729 => 0.20173817364549
730 => 0.20299693875029
731 => 0.20503661910535
801 => 0.20289214461226
802 => 0.20547492793307
803 => 0.21459328798806
804 => 0.21212942661121
805 => 0.20863034737061
806 => 0.21582841689741
807 => 0.21843337027737
808 => 0.23671629732263
809 => 0.25979924794732
810 => 0.25024275481787
811 => 0.24431073114632
812 => 0.24570489741862
813 => 0.25413400957956
814 => 0.25684117287901
815 => 0.24948216981596
816 => 0.25208149410645
817 => 0.26640402650696
818 => 0.27408760561798
819 => 0.26365227314287
820 => 0.23486160471531
821 => 0.20831529356925
822 => 0.21535657068115
823 => 0.21455830837293
824 => 0.22994608266498
825 => 0.21207066433223
826 => 0.21237164053289
827 => 0.22807761770136
828 => 0.22388753226142
829 => 0.21710013047433
830 => 0.20836484911368
831 => 0.19221687360279
901 => 0.17791416137319
902 => 0.20596507377335
903 => 0.20475546742338
904 => 0.20300377817501
905 => 0.20690197304469
906 => 0.22583050080994
907 => 0.22539413697929
908 => 0.22261821292345
909 => 0.22472372685393
910 => 0.21673102370231
911 => 0.21879092529495
912 => 0.20831108849793
913 => 0.21304841240683
914 => 0.21708556775847
915 => 0.21789608646642
916 => 0.21972222650154
917 => 0.20411805984188
918 => 0.21112387255781
919 => 0.21523913117253
920 => 0.19664624303681
921 => 0.21487160955478
922 => 0.20384642601648
923 => 0.20010431313088
924 => 0.20514257514545
925 => 0.2031791595385
926 => 0.20149113009528
927 => 0.20054918066193
928 => 0.20424872423275
929 => 0.20407613610326
930 => 0.19802296477094
1001 => 0.19012684952675
1002 => 0.19277704498385
1003 => 0.19181420412857
1004 => 0.1883247446601
1005 => 0.19067621902291
1006 => 0.18032151598305
1007 => 0.1625067875936
1008 => 0.17427574284756
1009 => 0.17382265087244
1010 => 0.1735941813525
1011 => 0.18243822595582
1012 => 0.18158807513403
1013 => 0.18004504306779
1014 => 0.18829640566614
1015 => 0.18528454732126
1016 => 0.19456638505712
1017 => 0.20068000370158
1018 => 0.1991293922585
1019 => 0.20487928014331
1020 => 0.19283810013454
1021 => 0.19683769712516
1022 => 0.19766200852172
1023 => 0.1881945851325
1024 => 0.18172717032247
1025 => 0.18129586748857
1026 => 0.17008226147263
1027 => 0.17607247929328
1028 => 0.18134362308339
1029 => 0.17881915426521
1030 => 0.17801998285373
1031 => 0.18210277627583
1101 => 0.18242004429149
1102 => 0.17518629991193
1103 => 0.17669042443133
1104 => 0.18296287371714
1105 => 0.17653237480278
1106 => 0.16403896582821
1107 => 0.16094042766762
1108 => 0.16052702555961
1109 => 0.15212354431994
1110 => 0.16114748680375
1111 => 0.15720829408294
1112 => 0.16965215668919
1113 => 0.16254428910628
1114 => 0.16223788314109
1115 => 0.16177470558473
1116 => 0.15454148213831
1117 => 0.15612509837775
1118 => 0.16138927994919
1119 => 0.16326759923914
1120 => 0.16307167514858
1121 => 0.16136348258763
1122 => 0.16214548439467
1123 => 0.1596263841067
1124 => 0.15873683736448
1125 => 0.15592918315692
1126 => 0.15180270710608
1127 => 0.1523765189101
1128 => 0.14420089010219
1129 => 0.13974637361419
1130 => 0.13851342215989
1201 => 0.13686466794661
1202 => 0.13869965333544
1203 => 0.14417772957299
1204 => 0.1375700073918
1205 => 0.12624153118997
1206 => 0.12692239191248
1207 => 0.12845208380661
1208 => 0.12560151308183
1209 => 0.12290368712109
1210 => 0.12524922791241
1211 => 0.12044920320503
1212 => 0.12903214386011
1213 => 0.1287999993688
1214 => 0.13199918887952
1215 => 0.13399970773456
1216 => 0.12938915944938
1217 => 0.1282296190239
1218 => 0.12889014594843
1219 => 0.11797310722795
1220 => 0.13110703390805
1221 => 0.13122061665138
1222 => 0.13024805224492
1223 => 0.13724146273758
1224 => 0.15199974017653
1225 => 0.14644708255366
1226 => 0.14429692569212
1227 => 0.14020947592658
1228 => 0.14565576005041
1229 => 0.14523757040497
1230 => 0.14334635823456
1231 => 0.14220254721296
]
'min_raw' => 0.10681988975287
'max_raw' => 0.27408760561798
'avg_raw' => 0.19045374768542
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.106819'
'max' => '$0.274087'
'avg' => '$0.190453'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.06568737223087
'max_diff' => 0.15931512649959
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0033529542789885
]
1 => [
'year' => 2028
'avg' => 0.0057546429123263
]
2 => [
'year' => 2029
'avg' => 0.015720647263002
]
3 => [
'year' => 2030
'avg' => 0.012128455951516
]
4 => [
'year' => 2031
'avg' => 0.011911646807387
]
5 => [
'year' => 2032
'avg' => 0.020884865586564
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0033529542789885
'min' => '$0.003352'
'max_raw' => 0.020884865586564
'max' => '$0.020884'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.020884865586564
]
1 => [
'year' => 2033
'avg' => 0.053718021854045
]
2 => [
'year' => 2034
'avg' => 0.034049063818424
]
3 => [
'year' => 2035
'avg' => 0.040160948855729
]
4 => [
'year' => 2036
'avg' => 0.077952498320194
]
5 => [
'year' => 2037
'avg' => 0.19045374768542
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.020884865586564
'min' => '$0.020884'
'max_raw' => 0.19045374768542
'max' => '$0.190453'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.19045374768542
]
]
]
]
'prediction_2025_max_price' => '$0.005732'
'last_price' => 0.00555881
'sma_50day_nextmonth' => '$0.0054049'
'sma_200day_nextmonth' => '$0.009863'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'augmenter'
'sma_200day_date_nextmonth' => '4 févr. 2026'
'sma_50day_date_nextmonth' => '4 févr. 2026'
'daily_sma3' => '$0.006036'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.006042'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.0059053'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.00581'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.006364'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.008649'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.010943'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.005859'
'daily_ema3_action' => 'SELL'
'daily_ema5' => '$0.005923'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.005944'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.005984'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.0067018'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.008238'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.011099'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.009844'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.012473'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.04012'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.0486043'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.005882'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.006098'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.007028'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.009112'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.016122'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.036137'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.0995073'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '44.44'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 45.5
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => -0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.005814'
'vwma_10_action' => 'SELL'
'hma_9' => '0.006180'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 5.17
'stochastic_fast_14_action' => 'BUY'
'cci_20' => -42.04
'cci_20_action' => 'NEUTRAL'
'adx_14' => 13.83
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000080'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -94.83
'williams_percent_r_14_action' => 'BUY'
'ultimate_oscillator' => 49.49
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.0019070'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 31
'buy_signals' => 2
'sell_pct' => 93.94
'buy_pct' => 6.06
'overall_action' => 'bearish'
'overall_action_label' => 'Baissier'
'overall_action_dir' => -1
'last_updated' => 1767689512
'last_updated_date' => '6 janvier 2026'
]
Prévision du prix de Everest pour 2026
La prévision du prix de Everest pour 2026 suggère que le prix moyen pourrait varier entre $0.00192 à la baisse et $0.005732 à la hausse. Sur le marché des cryptomonnaies, comparé au prix moyen d'aujourd'hui, Everest pourrait potentiellement gagner 3.13% d'ici 2026 si ID atteint l'objectif de prix prévu.
Prévision du prix de Everest de 2027 à 2032
La prévision du prix de ID pour 2027-2032 se situe actuellement dans une fourchette de prix comprise entre $0.003352 à la baisse et $0.020884 à la hausse. Compte tenu de la volatilité des prix sur le marché, si Everest atteint l'objectif de prix le plus élevé, il pourrait gagner 275.71% d'ici 2032 par rapport au prix actuel.
| Prévision du Prix de Everest | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2027 | $0.001848 | $0.003352 | $0.004857 |
| 2028 | $0.003336 | $0.005754 | $0.008172 |
| 2029 | $0.007329 | $0.01572 | $0.024111 |
| 2030 | $0.006233 | $0.012128 | $0.018023 |
| 2031 | $0.00737 | $0.011911 | $0.016453 |
| 2032 | $0.011249 | $0.020884 | $0.030519 |
Prévision du prix de Everest de 2032 à 2037
La prévision du prix de Everest pour 2032-2037 est actuellement estimée entre $0.020884 à la baisse et $0.190453 à la hausse. Par rapport au prix actuel, Everest pourrait potentiellement gagner 3326.16% d'ici 2037 s'il atteint l'objectif de prix le plus élevé. Veuillez noter que ces informations sont à titre général seulement et ne doivent pas être considérées comme un conseil en investissement à long terme.
| Prévision du Prix de Everest | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2032 | $0.011249 | $0.020884 | $0.030519 |
| 2033 | $0.026142 | $0.053718 | $0.081293 |
| 2034 | $0.021017 | $0.034049 | $0.04708 |
| 2035 | $0.024848 | $0.04016 | $0.055473 |
| 2036 | $0.041132 | $0.077952 | $0.114772 |
| 2037 | $0.106819 | $0.190453 | $0.274087 |
Everest Histogramme des prix potentiels
Prévision du prix de Everest basée sur l'analyse technique
Au 6 janvier 2026, le sentiment global de prévision du prix pour Everest est Baissier, avec 2 indicateurs techniques montrant des signaux haussiers et 31 indiquant des signaux baissiers. La prévision du prix de ID a été mise à jour pour la dernière fois le 6 janvier 2026.
Moyennes Mobiles Simples sur 50 et 200 jours de Everest et Indice de Force Relative sur 14 jours - RSI (14)
Selon nos indicateurs techniques, le SMA sur 200 jours de Everest devrait augmenter au cours du prochain mois, atteignant $0.009863 d'ici le 4 févr. 2026. Le SMA à court terme sur 50 jours pour Everest devrait atteindre $0.0054049 d'ici le 4 févr. 2026.
Le Relative Strength Index (RSI), un oscillateur de momentum, est un outil couramment utilisé pour identifier si une cryptomonnaie est survendue (en dessous de 30) ou surachetée (au-dessus de 70). Actuellement, le RSI est à 44.44, ce qui suggère que le marché de ID est dans un état NEUTRAL.
Moyennes Mobiles et Oscillateurs Populaires de ID pour le Samedi 19 Octobre 2024
Les moyennes mobiles (MA) sont des indicateurs largement utilisés sur les marchés financiers, conçus pour lisser les mouvements de prix sur une période donnée. En tant qu'indicateurs retardés, ils sont basés sur des données historiques de prix. Le tableau ci-dessous met en évidence deux types : la moyenne mobile simple (SMA) et la moyenne mobile exponentielle (EMA).
Moyenne Mobile Simple Quotidienne (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 3 | $0.006036 | SELL |
| SMA 5 | $0.006042 | SELL |
| SMA 10 | $0.0059053 | SELL |
| SMA 21 | $0.00581 | SELL |
| SMA 50 | $0.006364 | SELL |
| SMA 100 | $0.008649 | SELL |
| SMA 200 | $0.010943 | SELL |
Moyenne Mobile Exponentielle Quotidienne (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 3 | $0.005859 | SELL |
| EMA 5 | $0.005923 | SELL |
| EMA 10 | $0.005944 | SELL |
| EMA 21 | $0.005984 | SELL |
| EMA 50 | $0.0067018 | SELL |
| EMA 100 | $0.008238 | SELL |
| EMA 200 | $0.011099 | SELL |
Moyenne Mobile Simple Hebdomadaire (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 21 | $0.009844 | SELL |
| SMA 50 | $0.012473 | SELL |
| SMA 100 | $0.04012 | SELL |
| SMA 200 | $0.0486043 | SELL |
Moyenne Mobile Exponentielle Hebdomadaire (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 21 | $0.009112 | SELL |
| EMA 50 | $0.016122 | SELL |
| EMA 100 | $0.036137 | SELL |
| EMA 200 | $0.0995073 | SELL |
Oscillateurs de Everest
Un oscillateur est un outil d'analyse technique qui établit des limites hautes et basses entre deux extrêmes, créant un indicateur de tendance qui fluctue à l'intérieur de ces limites. Les traders utilisent cet indicateur pour identifier les conditions de surachat ou de survente à court terme.
| Période | Valeur | Action |
|---|---|---|
| RSI (14) | 44.44 | NEUTRAL |
| Stoch RSI (14) | 45.5 | NEUTRAL |
| Stochastique Rapide (14) | 5.17 | BUY |
| Indice de Canal des Matières Premières (20) | -42.04 | NEUTRAL |
| Indice Directionnel Moyen (14) | 13.83 | NEUTRAL |
| Oscillateur Impressionnant (5, 34) | 0.000080 | BUY |
| Momentum (10) | -0 | BUY |
| MACD (12, 26) | 0 | NEUTRAL |
| Plage de Pourcentage de Williams (14) | -94.83 | BUY |
| Oscillateur Ultime (7, 14, 28) | 49.49 | NEUTRAL |
| VWMA (10) | 0.005814 | SELL |
| Moyenne Mobile de Hull (9) | 0.006180 | SELL |
| Nuage Ichimoku B/L (9, 26, 52, 26) | -0.0019070 | SELL |
Prévision du cours de Everest basée sur les flux monétaires mondiaux
Définitions des flux monétaires mondiaux utilisés pour la prédiction du cours de Everest
M0 : le total de toutes les devises physiques, plus les comptes à la banque centrale qui peuvent être échangés contre des devises physiques.
M1 : M0 plus le montant des comptes à vue, y compris les comptes de "chèques" et les comptes "courants".
M2 : M1 plus la plupart des comptes d'épargne, comptes du marché monétaire et comptes de certificats de dépôt (CD) de moins de 100 000 $.
Prédictions du cours de Everest par des sociétés Internet ou des niches technologiques
| Comparaison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Action Facebook | $0.007811 | $0.010975 | $0.015422 | $0.021671 | $0.030452 | $0.04279 |
| Action Amazon.com | $0.011598 | $0.0242015 | $0.050497 | $0.105367 | $0.219854 | $0.458739 |
| Action Apple | $0.007884 | $0.011183 | $0.015863 | $0.0225012 | $0.031916 | $0.04527 |
| Action Netflix | $0.00877 | $0.013839 | $0.021836 | $0.034453 | $0.054362 | $0.085775 |
| Action Google | $0.007198 | $0.009322 | $0.012072 | $0.015633 | $0.020245 | $0.026217 |
| Action Tesla | $0.0126014 | $0.028566 | $0.064757 | $0.1468013 | $0.332787 | $0.7544041 |
| Action Kodak | $0.004168 | $0.003125 | $0.002344 | $0.001757 | $0.001318 | $0.000988 |
| Action Nokia | $0.003682 | $0.002439 | $0.001616 | $0.00107 | $0.0007092 | $0.000469 |
Ce calcul montre la valeur potentielle des cryptomonnaies si l'on suppose que leur capitalisation se comportera comme celle de certaines sociétés Internet ou niches technologiques. En extrapolant les données, vous pourrez obtenir une potentielle image des cours futurs pour 2024, 2025, 2026, 2027, 2028, 2029 et 2030.
Aperçu des prévisions relatives à Everest
Vous vous posez peut-être des questions telles que : "Devrais-je investir dans Everest maintenant ?", "Devrais-je acheter ID aujourd'hui ?", " Everest sera-t-il un bon ou un mauvais investissement à court ou à long terme ?".
Nous mettons régulièrement à jour les prévisions de Everest avec de nouvelles valeurs. Regardez nos prévisions similaires. Nous faisons une prévision des cours futurs pour une grande quantité de devises numériques comme Everest en utilisant des méthodes d'analyse technique.
Si vous souhaitez trouver des cryptomonnaies ayant un bon rendement, vous devriez consulter un maximum d'informations disponibles à propos de Everest afin de prendre une décision responsable concernant cet investissement.
Le cours de Everest est de $0.005558 USD actuellement, mais ce cours peut subir une hausse ou une baisse, ce qui pourrait causer la perte de votre investissement, car les cryptomonnaies sont des actifs à haut risque.
Prévision à court terme de Everest
basée sur l'historique des cours sur 4 heures
Prévision à long terme de Everest
basée sur l'historique des cours sur 1 mois
Prévision du cours de Everest basée sur le modèle de croissance du Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Everest présente 1 % de la précédente croissance annuelle moyenne du Bitcoin | $0.0057033 | $0.005851 | $0.0060036 | $0.006159 |
| Si Everest présente 2 % de la précédente croissance annuelle moyenne du Bitcoin | $0.005847 | $0.006151 | $0.006471 | $0.006808 |
| Si Everest présente 5 % de la précédente croissance annuelle moyenne du Bitcoin | $0.006281 | $0.007097 | $0.00802 | $0.009062 |
| Si Everest présente 10 % de la précédente croissance annuelle moyenne du Bitcoin | $0.0070037 | $0.008824 | $0.011117 | $0.0140078 |
| Si Everest présente 20 % de la précédente croissance annuelle moyenne du Bitcoin | $0.008448 | $0.01284 | $0.019516 | $0.029662 |
| Si Everest présente 50 % de la précédente croissance annuelle moyenne du Bitcoin | $0.012783 | $0.029397 | $0.0676041 | $0.155466 |
| Si Everest présente 100 % de la précédente croissance annuelle moyenne du Bitcoin | $0.0200079 | $0.072015 | $0.2592051 | $0.932962 |
Boîte à questions
Est-ce que ID est un bon investissement ?
La décision d'acquérir Everest dépend entièrement de votre tolérance individuelle au risque. Comme vous pouvez le discerner, la valeur de Everest a connu une hausse de 1.6436% au cours des 24 heures précédentes, et Everest a enregistré une déclin de sur une période de 30 jours précédents. Par conséquent, la détermination de si investir ou non dans Everest dépendra de la mesure dans laquelle cet investissement s'aligne avec vos aspirations de trading.
Est-ce que Everest peut monter ?
Il semble que la valeur moyenne de Everest pourrait potentiellement s'envoler jusqu'à $0.005732 pour la fin de cette année. En regardant les perspectives de Everest sur une période de cinq ans plus longue, la monnaie numérique pourrait potentiellement croître jusqu'à $0.018023. Cependant, compte tenu de l'imprévisibilité du marché, il est essentiel de mener des recherches approfondies avant d'investir des fonds dans un projet, un réseau ou un actif particulier.
Quel sera le prix de Everest la semaine prochaine ?
Basé sur notre nouveau pronostic expérimental de Everest, le prix de Everest va augmenter de 0.86% durant la prochaine semaine et atteindre $0.005606 d'ici 13 janvier 2026.
Quel sera le prix de Everest le mois prochain ?
Basé sur notre nouveau pronostic expérimental de Everest, le prix de Everest va diminuer de -11.62% durant le prochain mois et atteindre $0.004912 d'ici 5 février 2026.
Jusqu'où le prix de Everest peut-il monter cette année en 2026 ?
Selon notre prédiction la plus récente sur la valeur de Everest en 2026, ID devrait fluctuer dans la fourchette de $0.00192 et $0.005732. Cependant, il est crucial de garder à l'esprit que le marché des cryptomonnaies est exceptionnellement instable, et cette prévision de prix de Everest ne prend pas en compte les fluctuations de prix soudaines et extrêmes.
Où sera Everest dans 5 ans ?
L'avenir de Everest semble suivre une tendance haussière, avec un prix maximum de $0.018023 prévue après une période de cinq ans. Selon la prévision de Everest pour 2030, la valeur de Everest pourrait potentiellement atteindre son point le plus élevé d'environ $0.018023, tandis que son point le plus bas devrait être autour de $0.006233.
Combien vaudra Everest en 2026 ?
Basé sur notre nouvelle simulation expérimentale de prédiction de prix de Everest, il est attendu que la valeur de ID en 2026 augmente de 3.13% jusqu'à $0.005732 si le meilleur scénario se produit. Le prix sera entre $0.005732 et $0.00192 durant 2026.
Combien vaudra Everest en 2027 ?
Selon notre dernière simulation expérimentale pour la prédiction de prix de Everest, le valeur de ID pourrait diminuer de -12.62% jusqu'à $0.004857 en 2027, en supposant les conditions les plus favorables. Il est prévu que le prix fluctue entre $0.004857 et $0.001848 tout au long de l'année.
Combien vaudra Everest en 2028 ?
Notre nouveau modèle expérimental de prédiction de prix de Everest suggère que la valeur de ID en 2028 pourrait augmenter de 47.02%, atteignant $0.008172 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.008172 et $0.003336 durant l'année.
Combien vaudra Everest en 2029 ?
Basé sur notre modèle de prévision expérimental, la valeur de Everest pourrait connaître un 333.75% croissance en 2029, atteignant potentiellement $0.024111 sous des conditions optimales. Le range de prix prévu pour 2029 se situe entre $0.024111 et $0.007329.
Combien vaudra Everest en 2030 ?
En utilisant notre nouvelle simulation expérimentale pour les prédictions de prix de Everest, il est prévu que la valeur de ID en 2030 augmente de 224.23%, atteignant $0.018023 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.018023 et $0.006233 au cours de 2030.
Combien vaudra Everest en 2031 ?
Notre simulation expérimentale indique que le prix de Everest pourrait augmenter de 195.98% en 2031, atteignant potentiellement $0.016453 dans des conditions idéales. Il est probable que le prix fluctue entre $0.016453 et $0.00737 durant l'année.
Combien vaudra Everest en 2032 ?
Basé sur les résultats de notre dernière prédiction expérimentale de prix de Everest, ID pourrait connaître une 449.04% hausse en valeur, atteignant $0.030519 si le scénario le plus positif se réalise en 2032. Il est prévu que le prix reste dans une fourchette de $0.030519 et $0.011249 tout au long de l'année.
Combien vaudra Everest en 2033 ?
Selon notre prédiction expérimentale de prix de Everest, la valeur de ID est anticipée à augmenter de 1362.43% en 2033, avec le prix potentiel le plus élevé étant $0.081293. Tout au long de l'année, le prix de ID pourrait osciller entre $0.081293 et $0.026142.
Combien vaudra Everest en 2034 ?
Les résultats de notre nouvelle simulation de prédiction de prix de Everest suggèrent que ID pourrait augmenter de 746.96% en 2034, atteignant potentiellement $0.04708 dans les meilleures circonstances. La fourchette de prix prévue pour l'année est entre $0.04708 et $0.021017.
Combien vaudra Everest en 2035 ?
Basé sur notre prédiction expérimentale pour le prix de Everest, ID pourrait augmenter de 897.93%, avec la valeur potentiellement atteignant $0.055473 en 2035. La fourchette de prix attendue pour l'année se situe entre $0.055473 et $0.024848.
Combien vaudra Everest en 2036 ?
Notre récente simulation de prédiction de prix de Everest suggère que la valeur de ID pourrait augmenter de 1964.7% en 2036, pouvant atteindre $0.114772 si les conditions sont optimales. La fourchette de prix attendue pour 2036 est entre $0.114772 et $0.041132.
Combien vaudra Everest en 2037 ?
Selon la simulation expérimentale, la valeur de Everest pourrait augmenter de 4830.69% en 2037, avec un maximum de $0.274087 sous des conditions favorables. Il est prévu que le prix chute entre $0.274087 et $0.106819 au cours de l'année.
Prévisions liées
Prévision du cours de Saros
Prévision du cours de Kasta
Prévision du cours de UX Chain
Prévision du cours de Guacamole
Prévision du cours de RMRK
Prévision du cours de Cult DAO
Prévision du cours de Wrapped Ampleforth
Prévision du cours de SpaceN
Prévision du cours de Polaris Share
Prévision du cours de Prisma mkUSD
Prévision du cours de Source
Prévision du cours de VLaunch
Prévision du cours de agEUR
Prévision du cours de Solve.CarePrévision du cours de Hubble
Prévision du cours de NumberGoUpTech
Prévision du cours de Geodnet
Prévision du cours de AC Milan Fan Token
Prévision du cours de Electra Protocol
Prévision du cours de Concentrated Voting Power
Prévision du cours de Vita Inu
Prévision du cours de Hapi
Prévision du cours de Hydra
Prévision du cours de Bitrock
Prévision du cours de Rejuve.AI
Comment lire et prédire les mouvements de prix de Everest ?
Les traders de Everest utilisent des indicateurs et des modèles graphiques pour prédire la direction du marché. Ils identifient également des niveaux clés de support et de résistance pour évaluer quand une tendance baissière pourrait ralentir ou une tendance haussière pourrait s'arrêter.
Indicateurs de prédiction du prix de Everest
Les moyennes mobiles sont des outils populaires pour la prédiction du prix de Everest. Une moyenne mobile simple (SMA) calcule le prix de clôture moyen de ID sur une période spécifique, comme une SMA de 12 jours. Une moyenne mobile exponentielle (EMA) donne plus de poids aux prix récents, réagissant plus rapidement aux changements de prix.
Les moyennes mobiles couramment utilisées sur le marché des cryptomonnaies incluent les moyennes sur 50 jours, 100 jours et 200 jours, qui aident à identifier les niveaux clés de résistance et de support. Un mouvement de prix de ID au-dessus de ces moyennes est considéré comme haussier, tandis qu'une chute en dessous indique une faiblesse.
Les traders utilisent également le RSI et les niveaux de retracement de Fibonacci pour évaluer la direction future de ID.
Comment lire les graphiques de Everest et prédire les mouvements de prix ?
La plupart des traders préfèrent les graphiques en chandeliers aux simples graphiques linéaires parce qu'ils fournissent des informations plus détaillées. Les chandeliers peuvent représenter l'action des prix de Everest dans différentes périodes, comme 5 minutes pour les tendances à court terme et hebdomadaire pour les tendances à long terme. Les options populaires incluent les graphiques de 1 heure, 4 heures et 1 jour.
Par exemple, un graphique en chandeliers de 1 heure montre les prix d'ouverture, de clôture, les plus hauts et les plus bas de ID au sein de chaque heure. La couleur du chandelier est cruciale : le vert indique que le prix a clôturé plus haut qu'il n'a ouvert, tandis que le rouge signifie le contraire. Certains graphiques utilisent des chandeliers creux et pleins pour transmettre la même information.
Qu'est-ce qui affecte le prix de Everest ?
L'action du prix de Everest est déterminée par l'offre et la demande, influencée par des facteurs tels que les réductions de récompenses de bloc, les hard forks et les mises à jour de protocole. Les événements du monde réel, tels que les réglementations, l'adoption par les entreprises et les gouvernements et les piratages d'échanges de cryptomonnaies, impactent également le prix de ID. La capitalisation boursière de Everest peut changer rapidement.
Les traders surveillent souvent l'activité des « baleines » de ID, de grands détenteurs de Everest, car leurs actions peuvent influencer significativement les mouvements de prix sur le marché relativement petit de Everest.
Modèles de prédiction de prix haussiers et baissiers
Les traders identifient souvent des modèles de chandeliers pour obtenir un avantage dans les prédictions de prix des cryptomonnaies. Certaines formations indiquent des tendances haussières, tandis que d'autres suggèrent des mouvements baissiers.
Modèles de chandeliers haussiers couramment suivis :
- Marteau
- Englobante haussière
- Ligne pénétrante
- Étoile du matin
- Trois soldats blancs
Modèles de chandeliers baissiers courants :
- Harami baissier
- Nuage sombre
- Étoile du soir
- Étoile filante
- Pendu


